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Abstract 

Bacterial resistance to antibiotics is an emerging epidemic throughout the world and there is a 

desperate need for new antibiotics and new strategies to maintain the effectiveness of current agents. 

-Lactams, such as the penicillins and cephalosporins, have been the most important class of 

antibiotic for several decades and represent half of the global antibacterial market, but the continued 

use of -lactams is threatened by -lactamases, enzymes that efficiently inactivate -lactams through 

hydrolysis. Class A, C, and D -lactamases use an active-site serine residue for hydrolysis and 

achieve turnover through an acylenzyme intermediate while the class B metallo--lactamases (MBLs) 

use a zinc-bound hydroxide as the active-site nucleophile.  

Two successful approaches to combat -lactamase-mediated resistance have involved the 

development of -lactam antibiotics which bind poorly to -lactamases and the combination of -

lactams with -lactamase inhibitors. These strategies have been effective for overcoming resistance 

due to class A -lactamases, but the ever-increasing prevalence of extended-spectrum -lactamases 

(ESBLs), metallo--lactamases, and carbapenemases compromises the effectiveness of current 

penicillins, cephalosporins, carbapenems, and mechanism-based -lactamase inhibitors.  

Cyclobutanone analogues of -lactam antibiotics were explored in the early 1980s as potential 

inhibitors of -lactamases and D-Ala-D-Ala transpeptidases, but simple analogues showed only weak 

inhibitory activity and this approach was subsequently abandoned. The increasing threat of multidrug-

resistant -lactamase-producing organisms in recent years, however, has inspired a re-evaluation of 

these inhibitors since cyclobutanones have the potential to exhibit broad-spectrum inhibition of both 

serine- and metallo--lactamases through the formation of enzyme-bound hemiketals or hydrates.   

7,7-Dichloro-2-thia-bicyclo[3.2.0]heptan-6-one-4-carboxylic acid (65), a dichlorocyclobutanone 

that had shown modest inhibition of the class B and D -lactamases IMP-1 and OXA-10 in earlier 

work in this laboratory, was prepared in an efficient seven-step sequence from triethyl 

phosphonoacetate (103) with an overall yield of 28%. Initial efforts to improve upon the potency of 

the cyclobutanones involved functionalization at C3 and a highly stereoselective chlorination with 

sulfuryl chloride provided the 3-chloro derivative 117 in nearly quantitative yield. Elimination of 

HCl from 117 was achieved under a variety of conditions and 3-alkoxy derivatives were prepared 
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from 117 through diastereoselective substitution reactions with alcohols. Cyclobutanones with 3-

OR substituents were found to favour an endo envelope conformation while the 3-OR derivatives 

adopt the exo envelope conformation. Evidence from X-ray crystal structures and ab initio molecular 

orbital calculations suggests that an anomeric effect contributes to the large conformational 

preference of the tetrahydrothiophene ring that favours the 3-alkoxy substituent in an axial 

orientation. In addition, the conformation of the bicyclic system was found to have a dramatic effect 

on the tendency of the cyclobutanone to undergo hemiketal formation.   

Cyclobutanone analogues of penicillins, including 3-alkoxy derivatives, and cyclobutanone 

analogues of penems were evaluated against class A, B, C, and D -lactamases and found to be 

moderate inhibitors of KPC-2, IMP-1, GC1, and OXA-10. The cyclobutanones found to be most 

potent were those which are hydrated to a larger extent in aqueous solution. Dichlorocyclobutanones 

were found to be better inhibitors than dechlorinated cyclobutanones and a 3-methoxy derivative 

152, which favours the exo envelope conformation in which the C4 carboxylate is equatorial, was 

found to be a better inhibitor than cyclobutanones that favour the endo envelope conformation. A 3,4-

unsaturated penem analogue, 153, showed comparable potency to that of 152 and molecular models 

of enzyme–inhibitor complexes indicate that an equatorial carboxylate is required for binding to -

lactamases. An X-ray crystal structure of 152 bound to the class D -lactamase OXA-10 confirms 

that a serine hemiketal is formed in the active site and that the inhibitor adopts the exo envelope.  

The biochemical data described above demonstrate that cyclobutanones can indeed act as inhibitors 

of serine- and metallo--lactamases and these cyclobutanones represent the first class of reversible 

inhibitors to show moderate inhibition of all four classes of -lactamase. Although the inhibitory 

potency of these compounds is modest (low micromolar IC50 values), penem analogue 153 was able 

to enhance the potency of meropenem against carbapenem-resistant MBL-producing clinical isolates 

of Chryseobacterium meningosepticum and Stenotrophomonas maltophilia and the synergy 

demonstrated in these antimicrobial assays is encouraging.    

Synthetic studies toward other C3-alkyl and C3-thioalkyl-substituted inhibitors are described and 

the design and synthesis of C7-monochloro- and 7-hydroxymethyl-7-chloro cyclobutanone 

derivatives is presented.   
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Chapter 1 

Introduction 

1.1 Antibiotics and Bacterial Resistance 

The development of antibiotics is perhaps the most important medical advance of the twentieth 

century and, since their introduction into clinical use prior to World War II, antibiotics have been 

used to save countless human lives.  

The effectiveness of the sulfonamides and penicillin in the 1930s and 1940s for the treatment of 

once deadly infections triggered decades of extensive research toward other antibiotics. These efforts 

were rewarded with the discovery of a variety of different classes of antimicrobial agents such as the 

aminoglycosides, polyketides, cephalosporins, tetracyclines, macrolides, glycopeptides, 

streptogramins, carbapenems, quinolones, and oxazolidinones (Figure 1).1  

The widespread use of antibiotics, however, has proven to be a major driving force for the 

evolution of bacteria,2 and the enormous benefits of antibiotics to human health are necessarily 

coupled with the development of resistance.3 Without exception, resistance has developed to every 

major class of antibiotic, both natural and synthetic, within only a few years of its introduction and it 

is now widely recognized that bacterial resistance to antibiotics is an inevitable consequence of 

antibiotic use.4,5,6 

Unfortunately, the success of the pharmaceutical industry in the development of large numbers of 

antibiotics caused complacency toward antibiotic resistance and, with increasing costs for 

antimicrobial development, most major pharmaceutical companies withdrew from the area in the 

1980s and 1990s.7,8 As a result, the antibiotic pipeline is now ill-equipped to address the relentless 

increase in bacterial resistance and the current situation has been described as a “perfect storm”.9   

Antibiotic resistance was recognized as a crisis as early as 1992 with the emergence of methicillin-

resistant S. aureus (MRSA), vancomycin-resistant S. aureus (VRSA), and vancomycin-resistant 

Enterococcus spp. (VRE).10 In recent years, the list of most threatening pathogens has grown to 

include Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter  



 

2 

N

S
H

CO2H

H
N

H

O
O N

HH
N

H

O
O

S

CO2H

OAc

amoxicillin
(penicillin)

cefotaxime
(cephalosporin)

O NHMe

O

HO
HO

HO

OMe

OHC

HO

O

OH

HN

H
N

OH

HN

NH2

HO NH2

NH

streptomycin
(aminoglycoside)

OH

O
Me

O

MeMe

O

Me

O

O

HO
Me Me

OH

Me

O
Me

OMe

OH
Me

erythromycin A
(macrolide)

chloramphenicol
(phenylpropanoid)

N

H

CO2H

H

O

S

HO

meropenem
(carbapenem)

N
O

F

ON

O

NHAclinezolid
(oxazolidinone)

OOH HO
OH

HH
OH

NMe2

O

NH2

O

tigecycline
(tetracycline)

virginiamycin M1
(streptogramin)

O

O O

N
H

H
N

O

O
H
N

NH2

O
O

N
H

O

NHMe

Cl

ClHO OH

OH
OH

HO

O

N
H

H

HO2C

HN

O

O
OH

OH
OH

O

O
Me

NH2
HO

Me

O

NMe2
HO

Me

vancomycin
(glycopeptide)

N
H

O

t-BuN
H

NMe2

O2N

OH

HN

OH

O

CHCl2

N

OO

O
O

N

N
H

O

Me
O

OH

Me

i-Pr

N

S

N
OMe

H2N

NH2

HO
NH

Me O

NMe2

N

CO2H

O

N

F

MeN O

levofloxacin
(fluoroquinolone)  

Figure 1. Representative structures of several classes of clinically used antibiotics.  

baumannii, Pseudomonas aeruginosa, and Enterobacter spp., and these have been collectively 

dubbed the ESKAPE pathogens.11,12 The increasing prevalence of multidrug-resistant and pan-

resistant strains is also extremely concerning and has elevated fears that the era of untreatable 

infections has arrived and the antibiotic era is about to end.13,14 It is clear that there is an urgent need 

for new antibiotics and new strategies to maintain the effectiveness of known antibiotics.15,16,17,18  

-Lactams are the most important antibiotics and penicillins and cephalosporins represent half of 

the $42 billion global antibiotic market.19,20 In addition to obvious economic motivations, continuing 

efforts to preserve the usefulness of the -lactams are justified by the unparalleled efficacy and safety 

of these agents.21 Furthermore, the -lactams are active against Gram-positive and Gram-negative 

bacteria and target bacterial cell wall biosynthesis, a process that is uniquely prokaryotic and more 

easily accessed than the intracellular targets of other antibiotics.22,23    

Mechanisms of resistance to antibiotics include target alteration, reduced accumulation owing to  
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Figure 2. Comparison of Gram-positive and Gram-negative bacterial cell walls.1,19,21    

decreased permeability or efflux,24 and drug inactivation or modification. With respect to -lactams, 

the deletion of porin proteins in the membrane, the acquisition of efflux exporter proteins, and the 

expression of -lactam-sensing proteins are notable defensive measures, but penicillin-binding 

protein (PBP) alterations and the expression of -lactamases are the most important mechanisms of 

resistance (Figure 2).25,26  

-Lactamases, enzymes which hydrolytically inactivate -lactams, were first encountered by 

Abraham and Chain in 1940,27 even before the widespread use of penicillin. Though not apparent at 

the time, -lactamases would prove to be the largest driving force for the development of new 

generations of penicillins and cephalosporins in the decades to follow.28 Initially, the most successful 

strategy for overcoming -lactam resistance was to modify the sidechains of penicillins and 

cephalosporins in order to improve stability to -lactamases. Another approach involves the 

combination of the -lactam antibiotic with a -lactamase inhibitor which protects the -lactam from 

deactivation by -lactamases. Such combinations have been used clinically since the mid-1980s and 

mechanism-based inhibitors, such as clavulanic acid, have been very successful against serine -

lactamases. However, new -lactamases are emerging at an alarming rate (more than 850 are now 

known)29 and new enzymes, such as extended-spectrum -lactamases (ESBLs), carbapenemases, and 

metallo--lactamases (MBLs), compromise the effectiveness of current penicillins, cephalosporins, 

carbapenems, and mechanism-based inhibitors.  

The metallo--lactamases are among the most threatening of the new -lactamases since they have 

a spectrum of activity encompassing all -lactam classes (except monobactams) and there are no 
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MBL inhibitors available for clinical use at present. As a result, there has been a longstanding interest 

in the Dmitrienko laboratory in the development of MBL inhibitors and this thesis describes efforts 

by this author in the design and synthesis of cyclobutanone analogues of -lactams which have the 

potential to act as inhibitors of both serine- and metallo--lactamases.  

This introductory chapter provides a summary of the development of -lactam antibiotics, a brief 

description of penicillin-binding proteins, and a review of -lactamases and -lactamase inhibitors as 

essential context for the present study. While a comprehensive review of these topics is well beyond 

the scope of this thesis, efforts have been made to provide an accurate and appropriate summary of 

the 80 years of research in the field in the following sections of this chapter. This introduction has 

been written from an historical perspective with an intent to highlight the most important classical 

contributions to the field.   

It should be noted that the evolution of the penicillins, cephalosporins, carbapenems, and other -

lactams has always been intimately interconnected with the evolution of penicillin-binding proteins 

(PBPs), -lactamases, and -lactamase inhibitors and the remainder of this chapter represents an 

attempt to provide a chronological yet cohesive summary of each area. The discovery and 

development of -lactam antibiotics are presented in Section 1.2, followed by a discussion of 

penicillin-binding proteins and the -lactam mode of action in Section 1.3. -Lactamases and -

lactamase inhibitors are reviewed in Sections 1.4 and 1.5, respectively.   

1.2 -Lactam Antibiotics  

With the prominent role that the penicillins and cephalosporins have played in the history of modern 

medicine, and the advancement of other antibiotics, it seems appropriate to mention some of the most 

important events in their early development. The following sections describe the fascinating story of 

the discovery of penicillin and its curative effect in infectious diseases (for which Sir Alexander 

Fleming, Ernst Chain, and Sir Howard Florey were awarded the Nobel Prize in medicine in 1945), the 

monumental collaborative effort between American and British scientists to elucidate the structure of 

penicillin and complete its total synthesis, the discovery of the cephalosporins, and the development 

of other semisynthetic penicillins and cephalosporins. In an effort to maintain historical accuracy, the  
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Figure 3. Families of -lactam antibiotics.   

discussion provided below of the early years of penicillin and cephalosporin research is based on 

several first-hand accounts from scientists directly involved in its development.30,31,32,33,34,35,36 The 

following sections also describe the discovery of the cephamycins, carbapenems, penems, 

monobactams, and other -lactam families (Figure 3). Structures of selected penicillins, 

cephalosporins, carbapenems, and monobactams are provided in Appendix A.  

1.2.1 Penicillins 

While Sir Alexander Fleming’s name is widely recognized for the discovery of penicillin, the 

scientific contributions of those at Oxford and elsewhere in England and the United States are much 

less appreciated.37,38 In reality, penicillin may have been forgotten if it were not for the efforts of 

Florey and Chain.  

Alexander Fleming worked as a bacteriologist in a basement laboratory at St. Mary’s hospital in 

London. On September 28, 1928 Fleming examined a Petri dish of Staphylococcus that had been left 

on the bench for several days and noticed that a contaminant mould, later identified as Penicillium 

notatum, had developed in a corner of it. In a fairly large circumference around the mould were 

‘ghosts’ of the colonies of Staphylococcus and it was obvious to Fleming, a trained and experienced 

observer, that the colonies had undergone lysis under the influence of the mould. This was a striking 

observation as staphylococci were known to be notoriously resistant to lysis and Fleming already had 

a special interest in lysis through his discovery of lysozyme in 1922, six years earlier.39  

Fleming was able to subculture the mould40 and found that a substance was produced that passed 

into the liquid. This solution, which he called ‘penicillin’,41 had potent antibacterial activities against 

many different microbes, including human pathogens,42 and was no more toxic to mice, rabbits, or 
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leukocytes than the broth itself. These results were published in 192943 with suggestions that it could 

be used as an antiseptic for application to, or injection into, areas infected with penicillin-sensitive 

microbes. Fleming knew that more serious clinical trials would demand a large amount of active 

penicillin and that purification of the unstable substance would require considerable effort.30a It is 

widely believed that Fleming had lost interest in penicillin because he did not publish additional 

research in this area, but Wainright has argued that Fleming did continue research with penicillin 

throughout the 1930s.44  

A group of natural product chemists from London reported their attempts to purify penicillin in 

1932 and they had found, just as Fleming did, that the active substance was most stable between pH 5 

and 6.45 Extraction of the broth at pH 2 was much more efficient than extraction at neutral or alkaline 

pH, but the extracted material was considered too labile upon removal of the ether and their efforts 

were discontinued.  

In 1935 a biochemist named Ernst Chain joined the staff of Professor Howard Florey, the newly 

appointed head of the Sir William Dunn School of Pathology at the University of Oxford. Chain 

began research into the mode of action of lysozyme and in 1938 found evidence that it acted on the 

bacterial cell wall with carbohydrase activity. In a search of the literature for other bacteriolytic 

substances, Chain came across Fleming’s penicillin paper and considered the possibility that 

penicillin was an enzyme that had a similar carbohydrase mode of action to that of lysozyme. Chain 

and Florey then began their work with the Penicillium mould with their new colleague Norman 

Heatley.31 They quickly found that penicillin was not an enzyme, but their disappointment was 

converted to optimism when they found that a concentrated form of the penicillin (solid but non-

homogeneous) was nontoxic to mice in “enormous” doses of 10 mg. They published these results and 

the effectiveness of this form of penicillin in vivo against various pathogenic organisms in 1940.46 

Later that year, Abraham and Chain reported that an enzyme from Escherichia coli, which they called 

penicillinase, inactivates penicillin and that the growth of the mould and isolation of penicillin 

therefore require strictly sterile conditions.27  

The group published a more refined method in 1941 for culturing the mould and for harvesting and 

purifying the penicillin with more precise antimicrobial activity results and the results of a small 

series of clinical trials with humans.47 The new method for purification, developed by Heatley,36 
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involved an extraction of the penicillin into amyl acetate, followed by a crude chromatographic 

purification with alumina and extraction of the penicillin back into aqueous solution at pH 6–7. In the 

first extraction, penicillin hydrolysis was minimized by passing the crude aqueous solution through a 

cooling coil and acidification to pH 2 with phosphoric acid just seconds before droplets of this 

solution were allowed to fall through a column of amyl acetate.  

A major source of difficulty for the group was the small amount of material to work with for the 

structural elucidation. Cultures of the mould produced only 0.5 mg/mL and most of the pure penicillin 

was reserved for clinical trials. Since it was obvious that the tremendous therapeutic potential of 

penicillin could only be realized if its production were to be expanded beyond the means of the 

Oxford laboratory, pharmaceutical companies in the U.K. and the U.S. were asked to help with large-

scale culture and production. Following the discovery of a deep fermentation technique in late 1941 

by the U.S. Department of Agriculture (Peoria, IL), other academic and industrial laboratories in both 

England and the U.S. entered the collaborative effort. These included the Imperial College of Science, 

Imperial Chemical Industries, Wellcome, and Glaxo in England and included Harvard, Cornell, and 

Michigan universities and Merck, Squibb, Pfizer, Abbott, Eli Lilly, Upjohn, and Shell in the United 

States.32  

The possibility that penicillin might be more easily obtained by chemical synthesis was considered 

and in 1942 Florey’s group began to collaborate with Sir Robert Robinson and Dr. Wilson Baker of 

the Dyson Perrins Laboratory at Oxford. In the early stages of the collaborative chemical work at 

Oxford little was known about the penicillin structure except that it was a carboxylic acid, it was 

inactivated in weak acid and alkali to liberate new ionizable groups, and it was soluble in alcohols but 

readily inactivated in methanol.48 It was most stable at pH 5–7 but was inactivated at neutral pH in the 

presence of heavy metal salts such as Zn2+, Cu2+, and Pb2+. It was later found that the barium salt of 

penicillin was stable when dry or in organic solvents and was also highly active in vivo.49    

The barium salt, one of the purest samples of penicillin available in 1942, was found to contain 

nitrogen, and the nitrogen content was correlated with antibiotic potency.50 Analysis of this sample 

suggested a formula of C24H32O10N2Ba and that sulfur was not present. This unfortunate analytical 

error caused confusion for several months and was not corrected until the structure of penicillamine 

was determined in 1943.   
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Scheme 1. Penicillamine and 2-Pentenylpenilloaldehyde as Degradation Products of Penicillin.  
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Degradation studies by Abraham in late 1942 showed that hot acid hydrolysis yielded a volatile 

acid and the crystalline salt of a base (called penicillamine) with the loss of CO2 (Scheme 1).51 

Molecular weight determinations seemed to be consistent with a formula of C6H11O4NHClH2O but 

this formula was later found to be incorrect. The presence of sulfur was recognized after Abraham 

had found that penicillamine could be oxidized with bromine/water to a strongly acidic compound 

named penicillaminic acid, which had a molecular formula inconsistent with only C, H, N, and O. 

Finally, the puzzling results of earlier experiments involving penicillamine could be rationalized, and 

the molecular formula of penicillamine was revised to C5H11O2SNHCl. In October 1943 the structure 

of penicillamine was confirmed to be 3-mercapto-D-valine by John Cornforth through a synthesis 

from hippuric acid.52,53   

While these advances were being made, Chain had found that hydrolysates of penicillin contained 

an ether-soluble compound that yielded a 2,4-dinitrophenylhydrazone in addition to the water-soluble 

penicillamine. They named this compound 2-pentenylpenilloaldehyde and its structure was later 

confirmed through synthesis.32,36   

Meanwhile, early research in the United States had been mainly concerned with large-scale 

preparation of penicillin. Production had been developed to take advantage of deep-tank fermentation 

vessels and purification was optimized using silica gel chromatography. By 1942 Americans had also 

become actively involved in the chemical work and in August 1943 researchers at Squibb had 

successfully crystallized a sodium salt of their penicillin and found a molecular formula of 

C16H17O4N2SNa. When the Oxford group received this news, they immediately converted their 
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Figure 4. Structures proposed for the penicillins, penicilloic acids, and penillic acids (R =  C5H9 or 
CH2Ph).  

purified barium salt into the sodium salt (which they had avoided using due to its hygroscopic nature) 

and found that it had the formula C14H19O4N2SNa. It had become clear that the American penicillin 

was different than the British penicillin and it was later found to be due to the addition of corn steep 

liquor, which contained phenylacetic acid, to stimulate the growth of the Penicillium mould in the 

American fermentations. Oxford’s 2-pentenyl penicillin was then named penicillin F and the 

American benzyl penicillin was called penicillin G.30b,32,36  

After the molecular formula for penicillin was determined and the structures of penicillamine and 

2-pentenylpenilloaldehyde were confirmed, it seemed clear that penicilloic acid was a thiazolidine 

and that the carbon dioxide liberated upon acid-catalyzed hydrolysis came from a carboxyl group in 

the -position to the formyl group of the penilloaldehyde. Structure 1 was correctly assigned to 

penicilloic acid, the hydrolysis product of penicillin, but it was unclear how a molecule of water had 

been added to the structure (Figure 4).  

Robinson proposed a thiazolidine–oxazolone structure 3 for penicillin because it offered an 

explanation for the isomerization of penicillin to penillic acid at pH 2 (as indicated by arrows in 

Figure 4). Penillic acid, isolated in early 1943 by researchers at Wellcome, was known to have two 

acid groups and one basic group, and was correctly assigned the structure 2.54 Robinson’s oxazolone 

structure appeared to have the support of the majority of those in the field until 1945.36  

In late 1943 Abraham and Chain proposed a -lactam structure 4 (which was independently put 

forward by Merck) but this ring system was not supported by Robinson and received little attention 

from other laboratories. The main difficulty in acceptance of the -lactam structure was that penicillin 

was much more labile than all known -lactams which, at that time, included only monocyclic - 
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Scheme 2. Summary of Degradation Studies Used for the Structural Elucidation of the Penicillins.  

 

lactams.36  

Other potential structures for penicillin were proposed by various groups, including the tricyclic 

structure 5 in 1944 independently by researchers at Eli Lilly and Glaxo, tri-cycle 6 by the Imperial 

College group, and azlactol 7 by Stodola of the U.S. Department of Agriculture. Each of these 

possessed a pre-formed core of penillic acid and seemed to give reasonable explanations for the 

formation of penillic acid at pH 2, but none of these structures was widely accepted.32a   

A major criticism of the non--lactam structures and support for the -lactam structure involved 

electrometric titrations done by Abraham in late 1943.36,55 Each of the non--lactam structures contain 

a weakly basic group that could not be detected in the titration experiments and provided evidence 

against 5, 6, 7, and Robinson’s oxazolone 3, and support for the -lactam 4. In addition, other 

evidence began to accumulate in favour of the -lactam structure, including infrared spectroscopic 

studies that suggested the presence of a mono-substituted amide in penicillin, and some reasoning 

from Woodward regarding the labile nature of the penicillins. Woodward suggested in late 1944 that 

the penicillins could be less stable than monocyclic -lactams because amide resonance would be 

suppressed by the non-planarity at the bridgehead nitrogen.56 More convincing synthetic evidence 

provided support for the -lactam structure when researchers at Merck treated penicillin with Raney 

nickel to provide desthiopenicillin, a -lactam that behaved like other known monocyclic -lactams 

(Scheme 2).57  

Debate about the structure of penicillin continued until May 1945 when the structure was 

conclusively determined by Crowfoot and Low at Oxford using X-ray crystallographic analysis.58 The 

-lactam ring was shown clearly in electron density projections from crystals of the sodium,  
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Scheme 3. Sheehan’s Total Synthesis of Penicillin V.63,64,66  
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potassium, and rubidium salts of penicillin.59 For this and other structures of biochemical 

significance, Dorothy Crowfoot Hodgkin was awarded the Nobel Prize in chemistry in 1964.  

Although the large-scale production of penicillin for the war effort through total synthesis was 

unsuccessful, fermentation methods had been become so effective by early 1944 that sufficient 

amounts of penicillin could be supplied to the allied soldiers for the D-Day invasion in June 1944.  

At the height of the effort more than one thousand highly skilled chemists were involved in the 

collaborative project but research on the chemistry of penicillin had declined significantly after the 

war had ended.60 Many of these researchers had come to the conclusion that the synthesis of penicillin 

was “an impossible problem” and even Woodward had described the molecule was “a diabolical 

concatenation of reactive groups”.61 Sheehan’s view of the situation, however, was simply that the 

appropriate organic reactions for construction of the “enchanted ring” had not yet been discovered.62 

In 1957, more than a decade after Hodgkin’s structure determination by X-ray crystallographic 

analysis, Sheehan published the first rational total synthesis of a penicillin (Scheme 3).63,64,65  

Many unsuccessful attempts were made to generate the -lactam ring via a [2 + 2] Staudinger 

reaction between thiazolines and ketenes, including several studies by the Sheehan group, but the first 

successful synthesis involved a late-stage cyclization to form the -lactam ring from a penicilloic 

acid. This was accomplished only after the development of mild conditions involving carbodiimides 

that are now very well-known and widely used for the coupling of amines with carboxylic acids.  
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The condensation of D-penicillamine with malonaldehyde 8 afforded a mixture of only two 

diastereomeric thiazolidines 9, the D--isomer of which could be isomerized in high yield to the 

natural and desired D--isomer. Deprotection with hydrazine, followed by acidification and acylation, 

provided amino ester 10 and cleavage of the t-butyl ester provided the penicilloic acid that was 

cyclized with a DCC-mediated amide coupling to provide penicillin V in 10–12% yield. Subsequent 

studies in 1962 demonstrated that protection of the primary amine of 12 with a trityl group prevented 

the undesired azlactonization in the cyclization to follow and also improved the yield of the 

lactamization to 67%.66 Hydrogenolysis and acidification provided the hydrochloride salt of 6-

aminopenicillanic acid (6-APA), a versatile molecule that proved to be crucial in the development of 

new penicillins (vide infra, Section 1.2.3).  

1.2.2 Cephalosporins 

In July 1945, as the therapeutic properties of penicillin were becoming widely known, a Professor of 

Hygiene in Sardinia named Brotzu had been looking for antibiotic-producing organisms and collected 

a sample of Cephalosporium acremonium, a seawater fungus.60,67,68 He found that it produced 

antibiotic material that was active against Gram-positive and Gram-negative species and sent a 

culture of the organism to Oxford in 1948 with the hope that the work would be taken up by the 

Florey group.  

The antibiotic extracted by organic solvent, named cephalosporin P, was shown to be a steroid with 

activity against Gram-positive bacteria but this compound alone could not be responsible for the 

broad-spectrum antibacterial activity observed by Brotzu. Abraham then detected an unstable 

hydrophilic antibiotic in the aqueous phase which was named cephalosporin N because it showed 

activity against both Gram-negative and Gram-positive bacteria. Cephalosporin N was inactivated by 

penicillinase and, after purification69 and chemical degradation studies,70,71 was actually found to be a 

penicillin with a -(D--aminoadipoyl) sidechain.72   
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It was during chemical studies in 1953, to establish the molecular formula of penicillin N, that 

Newton and Abraham discovered a third antibiotic from the Cephalosporium species. Penicillin N 

was converted to its isomeric penillic acid at pH 3 because it was thought that purification of the 

penillic acid might be more straightforward than purification of the penicillin. Anion-exchange 

chromatography provided the desired penillic acid and an additional compound which had UV 

absorbance at 260 nm73 and crystallized as a sodium salt. This compound, named cephalosporin C, 

was similar to penicillin N as it was found to have the aminoadipoyl sidechain and a -lactam ring, as 

indicated by an IR band at 5.62  (1780 cm–1), but was stable to dilute acid and its -lactam was 

clearly fused to a ring that differed from the thiazolidine of the penicillins.74,75,76  

Preliminary antimicrobial assays revealed cephalosporin C to be a broad-spectrum antibiotic that 

was resistant to hydrolysis by a penicillinase from Bacillus cereus. While the Oxford group’s interests 

in this material were purely academic in nature, benzylpenicillin-resistant penicillinase-producing 

strains of staphylococci were becoming a serious clinical problem, and the clinical need for such a 

compound was obvious, even in the early-1950s.  

In 1957, a mutant strain of the Cephalosporium fungus was isolated which produced considerably 

more cephalosporin C than Brotzu’s wild strain. This development was crucial to provide enough 

material for the chemical studies that led to the structural elucidation. Abraham’s conclusion through 

chemical methods that cephalosporin C was a -lactam fused with a dihydrothiazine ring77 was 

confirmed by an X-ray crystallographic analysis by Hodgkin and Maslen and published in 1961.78  

 

Woodward, who had been actively involved in the structural assignment of cephalosporin C 

through discussions with Abraham and Hodgkin, described the completion of its total synthesis in his 

Nobel lecture in 196579 and published the work in 1966 (Scheme 4).80 While Sheehan’s route to 

penicillin V involved the formation of the -lactam ring at a late stage from a penicilloic acid 

(Scheme 3), an analogous route to cephalosporin C would not be viable since the cephalosporoic acid 

was known to be less stable than penicilloic acids and could therefore not be used as a synthetic  
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Scheme 4. Woodward’s Total Synthesis of Cephalosporin C.80  

 

intermediate.79 Instead, Woodward’s route began with L-(+)-cysteine as a readily available and chiral 

building block from which the -lactam ring could be constructed with the desired stereochemistry. 

Condensation of -lactam 13 with dialdehyde 14, followed by acid-catalyzed deprotection of 15 and 

cyclization provided the dihydrothiazine ring of the delicate but versatile aminoaldehyde 16 which 

was taken through to cephalosporin C.  

1.2.3 Semisynthetic Penicillins and Cephalosporins from 6-APA and 7-ACA 

In the course of optimizing fermentation conditions for the production of penicillins, it was shown 

that penicillins with differing 6-acylamido sidechains were produced in different fermentation 

conditions. Structure–activity relationships with the penicillins had made it clear that antimicrobial 

activity was dependent to a great extent on the nature of the sidechain.   

In 1959, Batchelor et al. reported that 6-aminopenicillanic acid (6-APA) was produced from 

Penicillium chrysogenum fermentations when no sidechain precursor was present.81 The significant 

impact of this development is evident in the many semisynthetic penicillins that have been prepared 

Scheme 5. 6-APA and Semisynthetic Penicillins.  
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Scheme 6. Conversion of Cephalosporin C to 7-ACA and other 7-Acyl Derivatives.  

OAc

N
O

HHH
N

O

S

CO2

N

HO2C

NH2 N
O

HH
H2N S

CO2

N

AcOH PyAcOH Py H2O

S
H
N

N
O

H H

CO2Na

O OAc

HO2C

NH2

cephalosporin C

dilute HCl

rt, 3 d

SHCl H2N

N
O

H H

O
O

N
O

HH
H2N S

CO2H
7-ACA

2019

17

SN

N
O

H H

CO2H

O OAc

21
HO2CH2

NOCl

HCO2H

H2O

40%
cephalosporin C 7-ACA

S
H
N

N
O

H H

CO2H

OAcO

R

R = OPh
R = 2-furyl
R = 2-thienyl

or DCC +

R COCl

R CO2H

S
H
N

N
O

H H

CO2H

OAcO

Ph

18

22:
23:

cefalothin:

PhCH2COCl

 

from 6-APA and used clinically since many of them would not have been prepared without 6-APA 

readily available (Scheme 5).82 Around the same time, 6-APA was prepared by Sheehan via total 

synthesis63 and methods for the conversion of benzylpenicillin to 6-APA by various microorganisms 

and enzyme preparations (penicillin deaminase/penicillin (de)acylase) were being studied.60,83  

Some of the many semisynthetic penicillins that became clinically useful in the 60s and 70s include 

methicillin84 and oxacillin, which were stable to staphylococcal penicillinases,85,86 and ampicillin and 

carbenicillin, which showed an improved spectrum of activity including Gram-negative bacteria.87  

After the discovery in the mid-1950s that cephalosporin C possessed the same aminoadipoyl 

sidechain and penicillin N, which had only 1% the antimicrobial activity of penicillin G, the Oxford 

group considered the logical possibility that substitution of the aminoadipoyl sidechain of the 

cephalosporin for a phenylacetyl group may improve its antibiotic potency. In 1961, Loder, Newton, 

and Abraham reported that 7-aminocephalosporanic acid (7-ACA) could be obtained in low yield by 

mild acid hydrolysis, although this was accompanied by formation of lactone 17 (Scheme 6). 

Acylation of 7-ACA with phenylacetyl chloride generated an antibiotic (18) 100 times more potent 

than cephalosporin C against S. aureus.88 The group also discovered that substitution had occurred at 

the C3ʹ position when preparations of cephalosporin C were stored in aqueous pyridinium acetate and 

that the pyridinium salt 19 was more active than cephalosporin C.89 7-ACA also underwent 
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substitution with pyridine to give 20.  

In 1962 researchers at Eli Lilly reported more practical chemical conditions for the conversion of 

cephalosporin C to 7-ACA (nitrosyl chloride in anhydrous formic acid) which involved an 

intramolecular substitution to form iminolactone 21.90,91 The group also prepared several 7-

arylacetylamido cephalosporins from 7-ACA, including 18, 22, 23, and a 2-thienylacetyl derivative 

they called cephalothin, which all showed better antibiotic activity than the corresponding penicillins 

against several organisms.92  

Cephalothin, which became the prototype of the so-called first-generation cephalosporins, was 

found to be very resistant to staphylococcal penicillinase, showed activity against Gram-negative 

pathogens such as E. coli and Klebsiella pneumoniae, and was available for clinical use around 

1964.87 Other first-generation cephalosporins include cephaloridine and cefalexin.  

 

The demand for large amounts of 7-ACA in the early 1960s also prompted chemists to pursue 

methods for the synthesis of cephalosporins from penicillins. In 1963 Morin and coworkers at Eli 

Lilly discovered a process to achieve the ring-expansion through penicillin sulfoxides (Scheme 

7).93,94,95,96 This strategy may be considered to be biomimetic as the penicillins were later confirmed to 

be biosynthetic precursors to the cephalosporins.97  

Scheme 7. Synthesis of Cephalosporins from Penicillin Sulfoxides.  
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1.2.4 Cephamycins and Expanded-Spectrum Penicillins and Cephalosporins 

By the mid-1960s, Gram-negative bacteria had replaced S. aureus as the most problematic hospital 

pathogens and biochemical studies in the early 1970s suggested that the major mechanism for 

resistance to the clinically available cephalosporins was inactivation by -lactamases.98,99 Major 

pharmaceutical companies therefore directed efforts toward the design and synthesis of -lactams 

with high stability to new -lactamases and broad-spectrum antibacterial activity. These efforts were 

restricted to chemical modification of existing -lactams until the discovery of the cephamycins in 

1971, when researchers at Eli Lilly isolated and identified three new -lactam antibiotics from 

streptomycetes.100 7-Methoxycephalosporin C (24) was produced by a strain of Streptomyces 

lipmanii and S. clavuligerus produced carbamates 25 and 26. Researchers at Merck simultaneously 

reported the isolation of the 7-methoxycephalosporins 27, 28, and 26 from other species of 

Streptomyces (actinomycetes from soil) and named these compounds cephamycins A, B, and C, 

respectively.101,102,103   
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 The discovery of a new family of cephalosporins among streptomycetes was considered a major 

breakthrough but the greatest significance of the discovery was the broad spectrum of Gram-negative 

activity and the high stability to hydrolysis by -lactamases.98 The concept of expanded-spectrum -

lactams was introduced with the discovery of the cephamycins and these new structures provided 

additional inspiration for the design and synthesis of new generations of cephalosporins.    

Cephalosporins have been classified as belonging to the first, second, or third generation on the 

basis of their biological characteristics. First generation cephalosporins, including cephalothin and 

cephaloridine, were very potent against staphylococci and streptococci but much less active against 

Gram-negative bacteria.86 The second generation cephalosporins such as cefamandole, cefoxitin, and 

cefuroxime, showed improved clinical utility because of their greater stability to -lactamases and, 

while these compounds were more active against Gram-negative bacilli than first generation agents, 

they remained inactive against Pseudomonas organisms.87  
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Modification of the acylamido sidechains of the penicillins was also explored extensively in the 

mid-1970s and led to the development of the ureidopenicillins (which are also called third-generation 

penicillins).104 Piperacillin, azlocillin, and mezlocillin, which are N-acylated derivatives of ampicillin, 

were shown to have similar activity to that of ampicillin against streptococci and better activity 

against P. aeruginosa than carbenicillin. The acylureido sidechain does not significantly increase -

lactamase stability but does improve affinity for PBPs and improves penetration of the outer 

membrane of P. aeruginosa and K. pneumoniae.86,87   

 

The third generation cephalosporins, which originated with cefotaxime in the early 1980s,105 have 

an even broader spectrum of activity, including all or most Enterobacteriaceae and improved activity 

against P. aeruginosa. They also have improved stability to plasmid-mediated and chromosomal -

lactamases.99 The 2-aminothiazoyloximino sidechain present in many third generation cephalosporins 

was found to be a major improvement. The aminothiazole heterocycle provides high affinity for PBPs 

and the syn-oximino106 group was found to improve stability to -lactamases.86 Third generation 

cephalosporins such as cefotaxime, ceftazidime, and ceftriaxone have very potent activity against a 

broad range of microorganisms, including Gram-negative aerobes, but tend to be less active than 

earlier generation agents against Gram-positives such as S. aureus.19 Moxalactam,107 an 

oxacephamycin108 with performance superior to many other third generation cephalosporins, has 

suffered restricted clinical use due to side effects.19  

In the 1990s, efforts to improve upon the spectrum and activity of the third generation 

cephalosporins against both Gram-negative and Gram positive organisms and the stability to -

lactamases led to the development of the fourth generation cephalosporins. The observation that 

ceftazidime, a third generation agent bearing a pyridinium group at C3ʹ position, showed improved  
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activity against P. aeruginosa prompted further exploration of other C3ʹ quaternary ammonium 

cephems, including cefepime, cefpirome, cefclidin, and cefozopran.109 Cefipime and cefpirome, 

zwitterionic oximino cephalosporins,110 indeed demonstrated reduced affinity for -lactamases, 

increased outer membrane permeability, better activity than third generation agents against P. 

aeruginosa, and similar potency against S. aureus as first generation cephalosporins.111  

 

Ceftobiprole112 and ceftaroline113 are cephalosporins currently in development114 which have been 

categorized as fifth generation because of their high activity against MRSA.115 Ceftaroline has a 

spectrum of activity against Gram-negative bacteria similar to earlier broad-spectrum cephalosporins, 

but has poor activity against P. aeruginosa and is labile to hydrolysis by AmpC -lactamases and 

ESBLs. Ceftobiprole has an unusually broad antibiotic spectrum, with potent activity against a wide 

range of Gram-positive and Gram-negative bacteria including P. aeruginosa, but is susceptible to 
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hydrolysis by class A ESBLs and class B and D -lactamases.19 These agents are considered the first 

of the fifth generation, despite their instability to -lactamases, because of their high affinity for 

PBP2a,116 the penicillin-binding protein that is largely responsible for conferring resistance to -

lactams in MRSA (see Section 1.3).  

1.2.5 Carbapenems 

In the late 1960s and early 1970s, various pharmaceutical companies had programs to screen for 

inhibitors of cell wall biosynthesis and -lactamases and the carbapenems were discovered as a direct 

result of these efforts.117,118 Thienamycin was discovered at Merck in fermentation broths of the soil 

bacterium Streptomyces cattleya along with several epimeric compounds and some acetylated 

derivatives. Beecham independently isolated several related carbapenems from Streptomyces 

olivaceus, some of which were identical to Merck’s epithienamycins, and named them olivanic acids. 

Some Japanese groups isolated related derivatives from S. fulvoviridis and S. cremeus including the 

carpetamycins and so-called PS- compounds (Appendix A). Other important -lactams discovered in 

these screening programs include clavulanic acid,119 monocyclic -lactams called nocardicins,120 and 

discovered later were the pluracidomycins121,122 and asparenomycins.123,124  

 

Thienamycin showed very potent antibiotic activity against both Gram-positive and Gram-negative 

bacteria, including Pseudomonas spp, and equally impressive stability to -lactamases.125 Its high 

activity was surprising at first because of the lack of acylamino functionality at C6 and because of the 

 stereochemistry of the hydroxyethyl substituent. Comparison of the biological activities of 

carbapenem stereoisomers revealed that the so-called trans arrangement between C5 and C6 and the 

(R)-stereochemistry at C8 of thienamycin provided maximum -lactamase stability and antibacterial 

potency.117,126  

The first total synthesis of thienamycin,127 published in 1978 by researchers at Merck, was soon  
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Scheme 8. Merck’s Total Synthesis of Thienamycin.128  
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followed by a more practical second-generation synthesis from the process group at Merck in 1980.128 

The first synthesis relied on a late-stage cyclization to form the C2–C3 bond while the second-

generation approach was based on a highly efficient rhodium-catalyzed N–H bond insertion to join 

C3 with N4 (Scheme 8).65   

In the early 1980s thienamycin was thought to be the “ultimate antibiotic,” both in broadness of its 

spectrum and in its potency against pathogenic bacteria,87 but thienamycin itself was too unstable to 

be pursued clinically because of its free amine and highly reactive -lactam.129 Derivatization of the 

amine, to improve chemical stability and maintain or improve its antibacterial activity, revealed that a 

basic sidechain was required for antipseudomonal activity since acetylation reduced activity. Of the 

many derivatives prepared, the N-formimido derivative, now called imipenem, was the first to be 

selected for clinical evaluation. Imipenem showed greatly improved stability in concentrated solution, 

retained the antibacterial spectrum of thienamycin, and was two- to four-fold more potent against P. 

aeruginosa.130,131  
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 While imipenem showed improved antibiotic potency relative to thienamycin, a similar antibiotic 

spectrum, and improved pharmacokinetics in humans, imipenem retained the instability to renal 



 

22 

dehydropeptidase I (DHP-I) and nephrotoxicity of its metabolites.132 The approach that was used 

successfully to overcome this problem has involved co-administration of imipenem with cilastatin, an 

inhibitor of DHP-I. This combination significantly reduces the associated nephrotoxicity and 

improves urinary recovery in animals. Imipenem-cilastatin (Primaxin, Merck) has been used for 

more than 26 million people since it was put on the market in 1986,133 generated $555 million in sales 

in 1997,1 and is still considered one of the most important carbapenems in clinical use.134   

In 1993, panipenem became the second carbapenem to be introduced and has been approved for 

use in Japan, China, and South Korea.134 Panipenem is also unstable to DHP-I and is therefore co-

administered with the DHP-1 inhibitor betamipron.  

 

Meropenem, which was introduced in 1995, has a spectrum of antibiotic activity broadly similar to 

that of imipenem, but is more active against Gram-negative aerobes, active against imipenem-

resistant P. aeruginosa, and is more stable to DHP-I.134,135,136 A study by the Sumitomo group in 1992 

revealed that the -methyl group at C1 of meropenem provides sufficient stability to human DHP that 

co-administration with a DHP inhibitor is not required.137 As a result, all carbapenems developed 

since the early 1990s have incorporated the 1-methyl group or a similar substituent.  

Biapenem, a zwitterionic carbapenem clinically used in Japan since 2002, is generally considered 

to have a spectrum of activity similar to imipenem and meropenem but is slightly more active than 

imipenem against Gram-positive bacteria and less active against some Gram-negative pathogens.19 

Ertapenem is an N-arylated analogue of meropenem which was approved in the U.S. in 2001.138 In 

contrast to the zwitterionic carbapenems imipenem and meropenem, which penetrate Gram-negative 

outer membranes efficiently,136 ertapenem has an overall negative charge at physiological pH and 

penetrates Gram-negative organisms much more slowly, but has a much longer serum half-life.19 
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Ertapenem has activity against Gram-positive and Gram-negative aerobes and anaerobes and is 

resistant to nearly all -lactamases, but shows much less activity than imipenem and meropenem 

against nosocomial pathogens P. aeruginosa, Acinetobacter, MRSA, and enterococci. Because of its 

unique spectrum of activity, ertapenem represents a separate class134 within the carbapenem group 

and is also unique from other carbapenems because it is considered suitable for community-acquired 

infections.   

Doripenem is structurally similar to meropenem and became the most recent carbapenem to be 

launched in 2005.19,134 Doripenem combines the best features of the carbapenem class as it boasts a 

broad antibiotic spectrum with better activity against Gram-positive organisms than meropenem and 

better activity against Gram-negative organisms than imipenem. It is also more potent than other -

lactams against P. aeruginosa and ESBL- and AmpC-producing pathogens139 and shows the lowest 

rate of spontaneous resistance in vitro.134,140  

 

Tebipenem (as its pivaloyloxymethyl ester prodrug, L-084), is an oral carbapenem in Phase III 

clinical studies with high bioavailability in humans and very potent activity against S. pneumoniae 

(MIC90 of 0.02–0.06 g/mL) and other bacteria that cause respiratory infections.19,141 Razupenem, 

which is currently in Phase II clinical trials for complicated skin infections, features a lipophilic 2-

thiazol-2-ylthio- sidechain that is thought to be important in its tight binding to PBPs. Razupenem 

shows activity against a wide range of Gram-positive and Gram-negative bacteria and is also very 

active against MRSA (MIC90 of 2 g/mL) and VRE (MIC90 of 8 g/mL).142 ME1036 is a carbapenem 

in Phase I evaluation for the treatment of respiratory infection. While it is inactive against P. 

aeruginosa, it is very potent against community-acquired MRSA (MIC90 of 0.25 g/mL),143 S.  
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pneumoniae, and Enterobacteriaceae, and resistant to hydrolysis by ESBLs and AmpC -

lactamases.19 Tricyclic -lactams (trinems) represent another set of carbapenems in development. 

Sanfetrinem has shown very potent antimicrobial activity against Gram-positive and Gram-negative 

bacteria.144,145,146  

1.2.6 Penems 

The notion that the biological activities of the -lactams were correlated with chemical reactivity of 

the -lactam ring had arisen because penicillins and cephalosporins were known to be far more 

reactive than monocyclic -lactams. Even before the structures of the carbapenems were published in 

the late 1970s, Woodward had postulated that penems, hybrid structures of penams and cephems, 

should be more reactive and more potent antibiotics.147  

The accepted rationale for the increased reactivity of the penicillins, in comparison to monocyclic 

-lactams, toward ring-opening by nucleophiles had been given by Woodward in 1944 and proposed 

that the pyramidal geometry of the -lactam nitrogen limits delocalization of its unshared electrons 

into the carbonyl and results in a weakened amide bond.56 The increased reactivity of the 

cephalosporins, however, in which the -lactam nitrogen is nearly planar, was thought to arise from a 

conjugative interaction with the adjacent double bond (3) which also results in a weakened -lactam 

amide bond.148  

Woodward first targeted penems with 6-acylamino substituents, as it was clear that these sidechains 

were important for the activity of the penicillins and cephalosporins, and reported the synthesis of 

penems 29 and 30 in 1978 (Scheme 9).149 The first penems of the series, 29 and 30, indeed showed 

antibiotic activity against strains of S. aureus but the potency of these compounds was disappointing.  

In order to study the new system in a more systematic way, a series of 6-unsubstituted penems were 

pursued. Even though 6-unsubstituted penams and cephems were known to have poor antibiotic 

activity, the appearance of clavulanic acid in the literature, which is 6-unsubstituted, encouraged the 

preparation of the simpler analogues.  

In 1979, the Woodward group published the synthesis of the racemic simplified analogues 31–

34.150,151,152 Not only did each of the new penems 31–33 show better stability153 and activity than 29 

and 30, but they were also more potent than cephalexin against most Gram-positive and Gram- 
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Scheme 9. Woodward’s Syntheses of Penems.149,150   

 

negative strains tested. These results indicate that the penems 29 and 30 were too reactive to interact 

specifically with their biological targets.  

The recent discovery of thienamycin and other carbapenems prompted the Woodward group to 

incorporate the hydroxyethyl sidechain at C6 and, in 1980, the Woodward group reported the 

synthesis of penems 35 and 36.147 Penem 35 proved to be 16–64 times more potent than 36 against 

Gram-positive and Gram-negative bacteria and 4–32 times more potent than ()-34 (except against P. 

aeruginosa).154   

 

After Woodward’s contributions to the field, many other penems were prepared and evaluated.148 

In general, the penems have good to excellent activity against Gram-positive bacteria but are inferior 

to their carbapenem analogues against Gram-negatives.19 Of the several that were selected for clinical 

evaluation, including Sch 29482155 and Sch 34343,156 only faropenem and sulopenem remain in 

development. Faropenem has a broad spectrum of antibiotic activity and is stable to class A, C, and D 

-lactamases. Faropenem has been available in Japan since 1997157 and has been in Phase III 

development elsewhere as an oral antibiotic for community-onset infections.158 The development of 

sulopenem began in the 1980s and clinical trials have recently been resumed by Pfizer. Sulopenem 

has potent activity against Gram-positive and Gram-negative bacteria, with MIC90s less than 1 g/mL 

against clinically significant bacterial species.19   
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6-Alkylidene penems represent another type of penem in development. These compounds have 

greater potential as broad-spectrum -lactamase inhibitors than as antimicrobial agents and are 

discussed in Section 1.5.2.    

1.2.7 Monobactams 

Many pharmaceutical companies had initiated large screening programs by the early 1970s to identify 

inhibitors of cell wall synthesis and -lactamase inhibitors. Screening at Beecham led to the isolation 

of the olivanic acids and clavulanic acid,119 screens at Merck generated thienamycin and 

epithienamycins,117 and a program in Japan led to the isolation of the nocardicins from Nocardia 

uniformis in 1976.120  

 

Nocardicin A shows moderate activity against some Gram-negative organisms such as P. 

aeruginosa but weak activity against E. coli and staphylococci. Initial efforts to improve potency 

focused on the synthesis of N-acyl derivatives of 3-amino nocardicinic acid (3-ANA) in the same way 

that 6-APA and 7-ACA were used for semi-synthetic penicillins and cephalosporins; however, 

nocardicin A proved to be the only useful antibiotic after extensive SAR with hundreds of 

compounds.19 The formadicins, structural relatives of the nocardicins which have a formamido 

substituent at C3, were isolated later from a species of Flexibacter.159,160 The formadicins have a 

spectrum of antibacterial activity similar to the nocardicins but the formamido substituent provides 

additional stability to -lactamases.161  

In 1981 groups at Takeda and Squibb discovered independently a new class of -lactam produced 

by bacteria and Sykes named them monobactams.162,163 The Takeda group reported the isolation and 
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identification of sulfazecin and isosulfazecin and the Squibb group described their discovery of 

sulfazecin and several other monobactams including SQ 26180. In general, these monobactams 

showed weak activity against S. aureus and only modest activity against Gram-negative aerobes, but 

SQ 26180 showed good activity against P. aeruginosa (MIC of 3.1 g/mL). Early SAR studies 

showed that the N1-sulfonate served to increase the reactivity of the -lactam and that the -methoxy 

group was important for antibacterial activity and -lactamase stability. With 3-amino-3-methoxy 

monobactamic acid (3-AMA) and 37 in hand, Squibb was able to prepare a series of N-acyl analogues 

and discovered SQ 26776,164,165 an oximino-aminothaizole derivative which later became known as 

aztreonam.   

 

Aztreonam showed no activity against Gram-positive organisms or anaerobes but has very good 

activity against Gram-negative rods including Pseudomonas, Serratia, and Enterobacter, bacteria 

typically resistant to cephalosporins.166 Studies with PBPs indicated that it has very high affinity for 

PBP3 of Gram-negative organisms, moderate affinity for PBP1a, and poor interaction with all other 

PBPs of Gram-negatives and S. aureus.164 Although aztreonam lacks the 3-methoxy group and is 

slowly hydrolyzed by class A -lactamases, its affinity for these enzymes is low and it is active 

against class A-producing organisms.167,168 Aztreonam acts as a progressive inhibitor of class C 

enzymes and is one of the only -lactams that is stable to hydrolysis by metallo--lactamases. 

Aztreonam was approved for clinical use in 1986 and carumonam, which shows slightly improved 

activity over aztreonam against Enterobacteriaceae, is also clinically available.  
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The renewed interest in Gram-negative therapy, against drug-resistant A. baumannii and P. 

aeruginosa for example, has prompted new research with the monobactams and BAL30072 and 

BAL19764 are two siderophore monobactams in development by Basilea.19,169 BAL30376 is a three-

component combination of BAL19764, which is stable to MBLs, with clavulanate, a class A -

lactamase inhibitor, and a bridged monobactam (BAL29880) which inhibits class C -lactamases.170  

1.3 Penicillin-Binding Proteins 

After Florey and the Oxford group had demonstrated in the early 1940s that penicillin was effective 

as an antibiotic in humans, penicillin’s mode of action immediately became a subject of intense 

research interest. Early work in the 1940s, 50s, and 60s was concerned with the elucidation of the 

structure of the cell wall and, in combination with morphological studies, led to the conclusion that 

penicillin inhibited the transpeptidase reaction, the last stage in cell wall biosynthesis.171,172 Other 

research in the 1970s demonstrated that penicillin has many target enzymes, called penicillin-binding 

proteins (PBPs), and significant progress has been made since that time in understanding the roles 

that each enzyme plays in synthesis and maintenance of the cell wall.173,174,175 Current research in this 

area continues to build upon the understanding of these complex processes176 and also examines the 

role of PBPs in antibiotic resistance.177  

1.3.1 Peptidoglycan and D-Ala-D-Ala Transpeptidases 

Fleming noted that penicillin was not merely bacteriostatic but killed bacteria by lysis.31 Gardner 

observed in 1940 that organisms do not lyse in the presence of low concentrations of penicillin but are 

converted to elongated forms (filaments).178 In 1949, Park reported that uridine nucleotides 

accumulated in the cytoplasm of penicillin-inhibited S. aureus179 and this material was later identified 

as a uridine pyrophosphate (UDP) linked to an N-acetyl-aminosugar and a peptide containing D-

glutamate, L-lysine, and DL-alanine in a ratio of 1:1:3.180 In 1957 Park and Strominger concluded that 

this nucleotide was a cell wall precursor since its sugar and amino acid composition was found to be 

similar to that of the recently discovered cell wall.181 At the same time, Lederberg182 and Hanh and 

Ciak183 had shown that a hypertonic medium protects penicillin-treated cells from lysis. Since the cell  
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wall was already known to be a rigid macromolecule that determines cell shape and provides 

protection from osmotic rupture, each of these studies was recognized as support for the hypothesis 

that penicillin inhibited an essential step in synthesis of the cell wall.    

Over the next few years, the complex structure of peptidoglycan and steps leading to its synthesis 

became more clear. By the early 1960s, the cell wall glycopeptide in all species examined was known 

to contain alternating units of N-acetylglucosamine (NAG, or GlcNAc) and N-acetylmuramic acid 

(NAM, or MurNAc) with a peptide unit attached to the D-lactyl portion of NAM (Figure 5). In Gram-

negative bacteria, the pentapeptide unit is [L-Ala–-D-Glu–L,L-DAP–D-Ala–D-Ala]. In Gram-positive 

organisms, the pentapeptide unit also has a pentaglycine bridge bound to the -amino group of L-Lys 

and in S. aureus this peptide unit is [L-Ala–-D-Glx–L-Lys(-Gly5)–D-Ala–D-Ala].184  

In the early 1960s, it had become widely accepted that all reactions leading to the synthesis of the 

linear glycopeptide were insensitive to penicillin. Salton provided evidence that the bacterial cell wall 

was highly cross-linked185 and it seemed clear that cross-linking must be the last stage in 

peptidoglycan synthesis and the penicillin-sensitive step. In 1965 Wise and Park confirmed that this 

cross-linking reaction was a transpeptidation with a loss of D-alanine and proposed that penicillin 

inhibits this reaction by acting as an analogue of the L-Ala–-D-Glu portion of the substrate.186 Later 

that year, however, Tipper and Strominger proposed that penicillin was more likely to be an analogue 

of the D-Ala-D-Ala segment of the peptidoglycan chain and noted that the highly reactive -lactam  
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Figure 6. Structural analogy of penicillin and the D-Ala-D-Ala fragment of peptidoglycan as proposed 
by Tipper and Strominger in 1965.187  

amide bond would correspond to the peptide bond cleaved during the transpeptidation process (Figure 

6).187,188 The Tipper–Strominger hypothesis is widely considered a major milestone in the 

understanding of the penicillin mode of action.189   

In accord with earlier evidence from Schepartz and Johnson that penicillin binds to its target 

covalently,190 Tipper and Strominger suggested that penicillin could react with the transpeptidase to 

form a stable penicilloyl enzyme intermediate (with the active-site serine nucleophile) which would 

prevent the enzyme from completing the transpeptidation (Figure 7).  

Several studies by Cooper and others in the 1940s and 50s demonstrated that radioactive [35S]- or 

[14C]-penicillin bound specifically to a target in bacterial membranes,191 but progress in this area was 

slow until the early 1970s. In 1972, the Strominger group used SDS-PAGE to study [14C]-penicillin 

G-binding components and discovered that multiple penicillin-binding proteins were present in B. 

subtilis, B. cereus, S. aureus, and E. coli.192,193  

Penicillin-binding proteins of each organism were originally numbered in order of decreasing 

apparent molecular weight and this historical numbering system persists to this day. The classical 

numbering scheme of PBPs can cause confusion, however, because PBPs from different organisms 

with the same number do not necessarily share any structural or functional similarities. It became 

apparent that PBPs did not only include D-Ala-D-Ala transpeptidases, which cross-link the glycan 

strands, when the Strominger group found that carboxypeptidases, which remove the terminal D-

alanine through hydrolysis, were also members of the PBP group (Figure 7).193,194 Other PBPs include 

endopeptidases, which hydrolyze the peptide bond connecting two strands, and transglycosylases, 

which catalyze the polymerization of the polysaccharide strand. PBPs vary greatly in their relative 

abundance, their sensitivity to different -lactams, and regulation. It should also be noted that the 

structure and shape of the cell wall must be continuously modified (formation and cleavage of peptide  
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Figure 7. Reactions of penicillin-binding proteins (D-Ala-D-Ala transpeptidases and D-Ala-D-Ala 
carboxypeptidases) in E. coli and inactivation of PBPs by penicillins via a stable acyl enzyme.  

cross-links) to allow for cell growth and division and that the degree of peptidoglycan cross-linking is 

different in each organism.175   

PBPs are distinguished by size and have been categorized into different classes (A, B, and C) 

according to function.195 High molecular weight (HMW, MW >55000) class A PBPs are 

multimodular proteins with a cytoplasmic tail, a transmembrane anchor, and two domains on the 

outer surface of the inner membrane (e.g. PBP1a and PBP1b of E. coli). In HMW class A PBPs, the 

C-terminal penicillin-binding domain has transpeptidase activity and the N-terminal domain has 

transglycosylase activity. HMW class B PBPs also have a C-terminal domain with transpeptidase 

activity but the N-terminal domain is believed to be involved with cell morphogenesis (e.g. PBP2 and 

PBP3 of E. coli). HMW class C PBPs include penicillin-sensing proteins such as BlaR and MecR 

which are involved in regulation of -lactamase and PBP2a, respectively.   

Low molecular weight (LMW) PBPs are also commonly divided into classes A, B, and C. LMW 

PBPs are not as essential for cell vitality as the HMW PBPs and have diverse functions, including  
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Figure 8. Peptidoglycan-mimetic peptides and penicillins prepared as substrates and inhibitors of the 
Streptomyces R61 DD-peptidase.  

endopeptidase activity, carboxypeptidase activity, transpeptidase activity, or both carboxypeptidase 

and transpeptidase activities.176,196  

While most physiologically important transpeptidases are membrane-bound, most of the early 

mechanistic information about PBPs was obtained from studies with soluble D-Ala-D-Ala 

carboxypeptidase–transpeptidases (often referred to as DD-peptidases) from Actinomadura strain R39 

and Streptomyces strain R61, which are PBPs secreted in the extracellular medium.175 Although these 

enzymes are not lethal targets in the bacteria that produce them, they have been very valuable as 

models.  

In the last few years, however, studies by the Pratt group have demonstrated that substrate 

specificities of the LMW soluble R61 DD-peptidase cannot be extended to HMW PBPs and that many 

mechanistic uncertainties still remain. Peptide 38, which was designed to incorporate an N-terminal 

glycine in order to best mimic the peptidoglycan of Streptomyces, was found to be the best (most 

specific) substrate ever found for the R61 enzyme and the corresponding peptidoglycan-mimetic 

penicillin 39 proved to be an excellent inhibitor of the R61 transpeptidase (Figure 8).197,198 X-ray 

structures of the DD-peptidase of Streptomyces strain R61 were solved with this so-called “perfect 

penicillin” bound as a non-covalent (Michaelis) complex (PDB: 1PW1) and with 39 bound as the 

acylenzyme (PDB: 1PWG).199,200 In a related study, a peptidoglycan-mimetic boronic acid was shown 

to be a potent inhibitor of the Actinomadura R39 DD-peptidase (Ki of 32 nM) and was co-crystallized 

with this enzyme (PDB: 2XDM).201 Rather surprisingly, however, peptidoglycan-mimetic peptides 

such as 38 are not good substrates for the physiologically more important high molecular weight 

PBPs and peptidoglycan-mimetic -lactams such as 40 are much poorer inhibitors of other PBPs in 

vitro and in vivo than generic -lactams such as penicillin G.202,203 It is possible that there is no 

specific recognition of the peptidoglycan chain by the HMW PBPs or that there is an unknown 

mechanism through which the active site is opened or closed.204 Nevertheless, these studies clearly 
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demonstrate that cell wall biosynthesis is a complex process and give an indication of the difficulties 

that challenge the rational design of inhibitors and -lactam antibiotics.205  

1.3.2 PBPs and Resistance to -Lactam Antibiotics 

Resistance to antibiotics is inevitable. The small proportion of mutant bacteria that escape the action 

of a given antibacterial agent will be selected for and amplified and various mechanisms of resistance 

to -lactams have been discovered since the introduction of the penicillins in the 1940s. Aside from 

the restriction of the permeability of the -lactams (porin deletion) and active export of the -lactams 

from the periplasm (efflux pumps), major resistance mechanisms involve the modification of 

penicillin-recognizing proteins (-lactamases, PBPs with low affinity for -lactams, and -lactam-

sensing proteins).177,206  

The most important mechanism of bacterial resistance to -lactams is the expression of -

lactamases. An evolutionary link between the PBPs and -lactamases was proposed as early as the 

1960s187 and modern gene sequence analysis has been used to describe this evolutionary relationship 

in detail.207 Transpeptidases and serine -lactamases are similar in the formation of acyl enzyme 

intermediates upon reaction with -lactams (the first half-reaction), but serine -lactamases have 

evolved the ability to hydrolyze the acyl enzyme intermediate much faster than transpeptidases in 

order to complete the second half-reaction. At the same time, however, -lactamases have lost the 

ability to recognize the peptidoglycan substrate of the transpeptidases in order to be effective as 

enzymes that protect -lactam-sensitive enzymes.26,208 -Lactamases represent the primary mode of 

resistance to -lactams in Gram-negative bacteria and are discussed in more detail below (Section 

1.4).  

A second strategy that bacteria have used to overcome the threat of -lactams involves PBPs which 

retain their main function as transpeptidases but have low-affinity for -lactams. Some important 

examples of low-affinity penicillin-binding proteins include PBP1a, PBP2b, and PBP2x of S. 

pneumoniae, and PBP5 of E. faecium,19,206 but the most clinically significant is PBP2a (also known as 

PBP2ʹ) of MRSA.209 S. aureus normally expresses four PBPs with transpeptidase activity, including 

three HMW PBPs (PBP1, PBP2, PBP3) and one LMW PBP (PBP4).26 These enzymes are all 

unchanged in MRSA but PBP2a (which is encoded by the mecA gene) is expressed in addition to the 
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others. Surprisingly, it is not an increase in the rate of the deacylation (second half-reaction) in 

PBP2a, but a decrease in the rate of acylation (2–3 orders of magnitude compared to PBP2) that gives 

this enzyme low affinity for -lactams.210,211 Crystal structures indicate that a conformational change 

is necessary in the -helix that contains the nucleophilic serine (Ser403) before acylation can 

occur.26,212 Extensive efforts have been made to develop -lactam antibiotics which are able to bind to 

PBP2a (without sacrificing activity against the other HMW PBPs) and therefore be effective against 

MRSA. Ceftobiprole, a new cephalosporin with impressive anti-MRSA activity,213 is under regulatory 

review in the U.S. and has been approved in Canada and Switzerland for the treatment of complicated 

skin and skin structure infections (cSSSIs).214 Another cephalosporin called ceftaroline and 

carbapenems ME1036 and razupenem are also in development as anti-MRSA -lactams.  

 

-Lactam-sensing proteins represent another set of modified PBPs that contribute to -lactam 

resistance. The induction of -lactamase production in B. cereus,215,216 B. licheniformis,217 and other 

organisms has been known since the mid-1940s.218 In the mid-1980s Salerno and Lampen reported 

that -lactamase production in B. licheniformis 749 increased 180-fold one hour after exposure to a -

lactam and decreased slowly over the 1–2 hours that follow.219 The induction of -lactamase 

production implied that a transduction mechanism was present and a membrane-spanning protein 

called BlaR, which is structurally very similar to class D -lactamases,220 was later detected. It is 

believed that the reaction with the -lactam (acylation) is accompanied by a conformational change in 

the protein which transmits a signal through the cell membrane to de-repress transcription of the bla 

operon and increase -lactamase production. The bla operon is also present in S. aureus and codes for 

the expression of the PC1 -lactamase.   

Methicillin-resistant S. aureus (MRSA), however, has acquired a second mechanism for resistance 

with a -lactam-sensing system coded by the mec operon. The sensor–transducer protein MecR1, 

coded by the mecR gene, undergoes a conformational change221 upon reaction with -lactams and 

signals the production of PBP2a, the low-affinity penicillin-binding protein mentioned above.222    
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1.4 -Lactamases 

-Lactamases are enzymes that efficiently hydrolyze -lactam antibiotics. Serine -lactamases form 

an acyl enzyme intermediate upon reaction with -lactams in the same way that penicillin-binding 

proteins do; however, -lactamases have evolved the ability to hydrolyze this acyl enzyme 

intermediate much more quickly than PBPs. -Lactamases were discovered by Abraham and Chain in 

194027 and currently represent the most important mechanism of bacterial resistance to -lactam 

antibiotics. The widespread use of penicillins and cephalosporins over the last six decades has been 

an enormous evolutionary driving force and, as with all types of antibiotics, has inadvertently selected 

for resistant bacterial strains. It should be noted, however, that -lactamases did not evolve from 

PBPs as a result of the selective pressure exerted by humans. Instead, -lactamases are ancient 

enzymes which evolved from DD-peptidases billions of years ago.223,224 Correlation of their amino 

acid sequences shows that the different classes of -lactamase are more closely related to different 

classes of PBPs than to each other.207  

1.4.1 -Lactamases and Resistance to -Lactams 

The introduction of benzylpenicillin into widespread use in the mid-1940s was quickly followed by 

-lactamase-producing penicillin-resistant staphylococci. By 1948 50% of hospital isolates of S. 

aureus had become penicillin-resistant and this number had risen to 80% by the mid-1950s.225 

Methicillin, which was introduced in 1960 as the first -lactamase-stable semisynthetic penicillin, 

reduced considerably the problem of penicillin-resistant staphylococci and, as a result, had also 

reduced the perceived clinical relevance of the -lactamases.226 However, these enzymes were 

recognized to be of crucial importance when it was realized in the mid-1960s that new broad-

spectrum penicillins and cephalosporins such as ampicillin and cephaloridine (which were stable to 

staphylococcal -lactamase) were not stable to -lactamases of Gram-negative bacteria. Significant 

advances were made in the fight against -lactamase-producing organisms in the 1970s and 80s with 

the second- and third generation cephalosporins, ureido penicillins, carbapenems, and clavulanate, but 

the clinical utility of these -lactams is currently threatened by the increasingly more common 

extended-spectrum -lactamases (ESBLs) and carbapenemases which are often plasmid-encoded and 

expressed in multidrug-resistant human pathogens.    



 

36 

1.4.2 -Lactamase Classifications 

Penicillinase was the original name that Abraham and Chain27 had given to the enzyme that destroyed 

the growth-inhibiting activity of penicillin and this name was based simply on biochemical function. 

It became apparent when additional substrates became available in the years to follow (e.g. 

semisynthetic penicillins, cephalosporins) that enzymes from different sources exhibited different 

properties and enzymes were described as penicillinases or cephalosporinases based on their preferred 

substrates.227 The term “-lactamase” entered common use in the 1960s to distinguish the enzymes 

that hydrolyze the -lactam amide bond from penicillin acylases or amidases, which hydrolyze the 6-

acylamino sidechain of the penicillins, and cephalosporin esterases, which hydrolyze the C3ʹ acetoxy 

group.218  

The first widely accepted classification scheme for -lactamases was proposed by Richmond and 

Sykes in 1973228 and enzymes were classified into five major groups on the basis of substrate profile 

and inhibition profile (cloxacillin, NaCl, and p-chloromercuribenzoate) and sub-grouped according to 

whether the enzyme was inducible or constitutive.229 Sykes and Matthew revised and updated this 

classification in 1976 and divided enzymes according to whether the -lactamase was chromosomally 

encoded or R-factor-mediated.218,230  

In 1980 Ambler proposed a different classification based on the amino acid sequences of four 

serine -lactamases that were available and a partial sequence for a zinc-dependent enzyme.231,232 The 

four very similar serine -lactamases (PC1, BcI, TEM-1, and B. licheniformis 749/C) were called 

class A -lactamases and the metallo--lactamase (BcII) designated class B. The first of the class C 

-lactamases were described in 1981 when an AmpC cephalosporinase from E. coli was sequenced233 

and it was suggested in 1987 that the oxacillinases OXA-1 and OXA-2 be classified as class D -

lactamases because of the lack of sequence homology with the class A and C enzymes.234   

The Bush classification, which was proposed in 1989 as a modification of the Richmond–Sykes 

scheme, was the first attempt to correlate -lactamase function (substrate and inhibitory profiles) with 

structure and sequence.235,236 The Bush scheme grouped cephalosporinases into group 1 (e.g. Gram-

negative AmpC enzymes), penicillinases into group 2 (e.g. Ambler class A and D enzymes), and 

metallo--lactamases into group 3. Updates to this classification were made in 1995237 and 2010238 to 

include new sub-groups for enzymes such as extended-spectrum -lactamases and carbapenemases.239  
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A table of important -lactamases, sorted according to the Ambler and Bush–Jacoby classifications 

is supplied in Appendix B. Several reviews of -lactamases were published in the 1980s225,226,240, 241 

and 1990s242,243 and other reviews have been written more recently.26,244,245  

1.4.3 Class A -Lactamases 

The first enzymes to be designated as class A -lactamases include the chromosomally-encoded 

penicillinases PC1 of S. aureus, B. cereus -lactamase I (BcI), and the -lactamase of B. licheniformis 

749/C, and the R-factor (plasmid)-encoded broad-spectrum -lactamase TEM-1 (R-TEM) of E. 

coli.231 The plasmid-encoded TEM-1 quickly spread worldwide within a few years of its first isolation 

and its genetic location has also facilitated its transfer to other species of bacteria.246 TEM-1 is an 

enzyme in Bush’s functional group 2b and is able to hydrolyze penicillins and early generation 

cephalosporins such as cephalothin and cephaloridine. TEM-1 is the most commonly encountered -

lactamase in Gram-negative bacteria and accounts for most ampicillin resistance in E. coli and 

contributes to the increasing resistance in H. influenzae, and N. gonorrhoeae.246 As of November 

2010, more than 180 unique TEMs have been identified.247  

Mutations to TEM-1 over the last three decades have given rise to TEM variants with the ability to 

hydrolyze oximino cephalosporins more efficiently. These enzymes were called extended spectrum -

lactamases (ESBLs) and have been classified by Bush as group 2be.248 Other mutations provide 

resistance to clavulanic acid and these TEM derivatives were called inhibitor-resistant TEMs (IRTs) 

(e.g. TEM-30 and -31, group 2br). However, the mutations that increase the spectrum of activity, 

which generally ‘open’ the active site, typically also enhance the susceptibility of the enzyme to 

clavulanate and are usually distinct from mutations that lead to inhibitor resistance.244 Complex 

mutant TEMs (CMTs) such as TEM-50 and TEM-158 represent exceptions to this trend since they 

both have ESBL activity and a modest increase in resistance to clavulanate (group 2ber).238   

The SHV -lactamases, which have high sequence homology and similar overall structures with 

the TEM enzymes, is the second largest among Ambler class A -lactamases with more than 130 

members.247 Most mutants of SHV-1 (a group 2b enzyme) have ESBL activity (Bush’s group 2be), a 

small number have an inhibitor-resistant phenotype (e.g. SHV-10, group 2br), but none of the SHV 

enzymes characterized to date display both phenotypes (functional group 2ber). SHV -lactamases 
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are most commonly found in K. pneumoniae but have also been found in E. coli and P. aeruginosa.246    

Over the last decade, the CTX-M family of ESBLs has emerged as the largest group of class A -

lactamases not related to the TEM or SHV enzymes.249 Most (but not all) CTX-Ms have greater 

activity against cefotaxime than ceftazidime, they hydrolyze cephaloridine and cephalothin better 

than benzylpenicillin and, in contrast to TEMs and SHVs, they are inhibited more effectively by 

tazobactam than clavulanate.238 Currently, more than 100 CTX-Ms are known and all belong to 

functional group 2be.247 TOHO-1 and TOHO-2 are ESBLs that were later found to be part of the 

CTX-M group and are now also called CTX-M-44 and -45, respectively. The PER and VEB families 

are other ESBLs in group 2be that are unrelated to the TEMs, SHVs, or CTX-Ms.  

-Lactamases with carbapenemase activity have also arisen from class A and these group 2f 

enzymes include the SME, IMI, NMC-A, KPC, and GES families. The SME, IMI, and NMC-A 

families are closely related as IMI-1 and NMC-A share 97% amino acid identity and SME has 

approximately 70%. The SME, IMI, and NMC-A -lactamases are all chromosomally located (except 

for IMI-2) and are isolated relatively rarely. These enzymes have a broad spectrum of activity which 

includes penicillins, early cephalosporins, aztreonam, and carbapenems.  

The KPC and GES families, however, are plasmid-encoded -lactamases which are able to 

hydrolyze oximino cephalosporins in addition to penicillins and carbapenems. While GES enzymes 

have been isolated from E. cloacae, K. pneumoniae, and P. aeruginosa from cities scattered 

throughout the world, they have not been associated with large outbreaks. KPCs, on the other hand, 

have the greatest potential to spread as they are most commonly found in K. pneumoniae, an 

organism known for its ability to transfer resistance determinants. Several reports of KPC-producing 

K. pneumoniae have come from New York and the east coast of the U.S. since the early 2000s and, 

more recently, from other countries worldwide.  

The TEM family of class A -lactamases were the most abundant and clinically significant group 

of -lactamase in the 1980s and the class A enzymes have been the best studied of the four Ambler 

classes since that time. The mechanisms of -lactam hydrolysis and -lactamase inactivation have 

been topics of interest since the -lactamases were discovered. Various chemical methods were used 

in the 1970s in an effort to define active site amino acids and sequencing of various -lactamases was 

also undertaken with the hope that conserved residues might be identified. Speculation that the active 
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site nucleophile in -lactamases was a serine was confirmed by studies in 1979 with the irreversible 

-lactamase inhibitor 6-bromopenicillanic acid (see section 1.5.2).250 Inactivation of BcI with [3H]-

6-bromopenicillanic acid followed by a tryptic digest demonstrated that the 3H label was bound to 

the Ser44-containing peptide251 and these results provided the first strong evidence that -lactamases 

act through a serine acylenzyme mechanism.225   

 

The conclusion that an acylenzyme intermediate is formed during catalysis was supported by 

subsequent well-known studies in the Knowles group of the mechanism of inactivation of RTEM by 

clavulanate252,253 and interaction with cefoxitin.254 (The mechanisms of inactivation by clavulanate are 

discussed in more detail in Section 1.5.2). By the early 1990s X-ray crystallography and site-directed 

mutagenesis had become important tools for the study of -lactamases and indicated that functional 

class A -lactamase active sites included Ser70, Glu166, Lys73, Lys234, and an oxyanion hole 

analogous to that of serine proteases.255 Protein crystallography continues to be very valuable for the 

study of -lactamases since an understanding of the three-dimensional relationship of these residues 

is crucial for understanding their evolution as resistance enzymes (Figure 9).  

When Glu166 was found to be near Ser70 it was naturally suspected to act as a general base both in 

the acylation process, by activating Ser70, and in the deacylation process, by activating the hydrolytic 

water molecule, but it was recognized that these conclusions were not unambiguous (Figure 10). 

Glu166 mutants (e.g. Glu166Asp, -Asn, -Ala, and -Arg), for example, were unable to undergo 

deacylation but retained the ability to undergo acylation (albeit more slowly) and these mutagenesis 

studies indicated that Lys73 was the general base for the acylation half-reaction.256 In 1992 Strynadka 

et al. reported the X-ray crystal structure of benzylpenicillin bound to the TEM-1 deacylation-

defective mutant Glu166Asn (PDB: 1FQG) as the acyl enzyme intermediate and the group supported 

the hypothesis that Lys73 activates Ser70.257    

While there has been consensus since the late 1980s that Glu166 acts as the general base in the 

deacylation half-reaction, the identity of the general base in the acylation process has been debated  
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Figure 9. Class A -lactamase active sites and the mechanism of penicillin turnover by TEM-1. The 
modeled Michaelis complex of TEM-1 with penicillanic acid was generated by docking the -lactam 
into an X-ray structure of the wild type enzyme (PDB: 1ZG4)258 and one of the two reasonable 
mechanisms266 for acylation is indicated with arrows (albeit in a simplified manner, wherein the 
formation and collapse of the tetrahedral intermediate are not shown). The mechanism of deacylation 
is shown with arrows in a model of an acylenzyme which was generated from an X-ray structure of a 
penicillin-acylated TEM-1 mutant (PDB: 1FQG).257 Figures of PC1 (3BLM), SHV-2 (1N9B), TOHO-
1 (1IYS), CTX-M-9 (1YLJ), BlaC (2GDN), GES-1 (2QPN), SME-1 (1DY6), NMC-A (1BUE), and 
KPC-2 (3DW0) were created from X-ray coordinates deposited in the PDB. Note that the Gly170Asn 
mutation of GES-1 (as in GES-2 and GES-4–6) is associated with carbapenemase activity (group 
2f).259 The Bush–Jacoby functional group designations (Appendix B) for each enzyme are shown in 
brackets (asterisks indicate where designations are unofficial and deduced by this author). For Figure 
9–Figure 14, small red spheres represent water molecules and hydrogen, nitrogen, oxygen, and sulfur 
atoms are coloured white, blue, red, and yellow, respectively.  
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Figure 10. Mechanisms for penicillin acylation in class A -lactamases in which Glu166 (A) or Lys73 
(B) acts as the general base to activate Ser70 for nucleophilic attack. See text and ref 266.     

since the early 1990s. In 2002, the Shoichet group solved an ultrahigh-resolution (0.85 Å) X-ray 

structure of a boronic acid transition state analogue bound to TEM-1.260 The structure, which 

represents a snapshot of the complex mid-way through the acylation, exhibited clear enough electron 

density to view a proton bound to Glu166 H-bonding with the water molecule that bridges Glu166 

and Ser70. This X-ray study of TEM-1 provides compelling evidence in favour of a mechanism in 

which Glu166 acts as the general base via the water molecule and Lys73 functions as a Lewis acid 

that increases the acidity of the Ser70 proton and facilitates its activation. The Glu166 pathway is also 

supported by other high-resolution X-ray studies with CTX-M enzymes261,262 and computational work 

by Díaz et al.263 and Hermann et al.264  

Recent work by the Mobashery group, however, indicating that the pKa of Lys73 in TEM-1 is 8.0–

8.5, has led the group to suggest that the acylation step involves deprotonation of Lys73 by Glu166, 

followed by activation of Ser70 by a neutral Lys73.265 Subsequent high-level ab initio QM/MM 

calculations from the same group indicate that both pathways exist in TEM-1 and Ser70 is activated 

by dual participation of Glu166 and Lys73.266 The energy barrier calculated for the pathway in which 

Glu166 activates Ser70 through a water molecule is 26 kcal/mol (Figure 10A) while the pathway 

involving Lys73 (neutral) activating Ser70 directly has a barrier of 22 kcal/mol (Figure 10B).267  

The formation of the tetrahedral intermediate (not shown in Figure 9 for clarity) is often called a 

“proton shuttle” mechanism in which the proton of Ser70 is shuttled to Glu166. The collapse of the 

tetrahedral intermediate is referred to in the same way as the proton of Lys73 is shuttled to the 

nitrogen of the substrate via Ser130 as the -lactam ring is opened.268 Lys234 serves to enhance the 

acidity of Ser130 in the breakdown of the tetrahedral intermediate. As for the second half-reaction, it 

is widely accepted that hydrolysis of the acylenzyme intermediate occurs through activation of the 
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hydrolytic water molecule by Glu166.  

The roles of important residues in the active sites of class A -lactamases have been studied in 

detail over the past few decades. Several common mutations in TEM- and SHV -lactamases are 

apparent upon inspection of the TEM and SHV tables provided by Bush and Jacoby 

(http://www.lahey.org/studies/). The effects of several mutations on substrate and inhibition profiles 

of class A ESBLs and IRTs have been reviewed by Fisher et al.26 and Drawz and Bonomo.29 While 

the study of class A carbapenemases is less advanced, it is clear that the introduction of a new 

disulfide bond (Cys69–Cys238) is important for the acquisition of carbapenemase activity. This 

cystine serves to enlarge the binding cavity for the hydroxyethyl sidechain of the carbapenems by 

causing a change in conformation of the S3 strand, which contains residues 237–240, and indirectly 

altering the orientation of Asn132.259   

1.4.4 Class C -Lactamases 

The penicillin-destroying “penicillinase” first reported by Abraham and Chain in 1940 was actually 

an E. coli cephalosporinase.269 In the 1960s and 1970s, many Gram-negative bacteria were found to 

produce chromosomal cephalosporinases (encoded by the ampC gene) and many of these were 

normally expressed at low levels but inducible in the presence of -lactams.218,270 The AmpC -

lactamase of E. coli strain K-12 was sequenced in 1981 and became the first enzyme of the class C -

lactamases because of its lack of sequence homology with known class A and B enzymes.233  

Plasmid-mediated AmpC enzymes have been known since the late 1980s and include the MIR, 

CMY, BIL, FOX, DHA, ACC, and LAT -lactamase families.271 These plasmid-encoded enzymes, 

and the very closely related chromosomal AmpC -lactamases of Bush functional group 1, generally 

provide resistance to penicillins, cephamycins, oximino cephalosporins, and monobactams, and are 

resistant to inhibition by clavulanate. Plasmid-mediated AmpCs have been found worldwide but are 

less often a cause of cefoxitin resistance than an increased production of chromosomal AmpCs. 

Hyperproduction of chromosomal AmpC -lactamases is often a result of mutations in the regulatory 

gene (ampR) and the development of resistance in enteric organisms upon therapy is a concern.269 

Production of group 1 -lactamases in large amounts can even provide resistance to carbapenems.238  

In 1995 Nukaga et al. described the isolation of the first extended-spectrum class C -lactamase 
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(functional group 1e) from a clinical isolate of E. cloacae (strain GC1) in Japan.272 The kinetic 

parameters of the new GC1 -lactamase differed significantly from the well-known class C -

lactamase P99 (the AmpC enzyme from E. cloacae strain P99) and its substrate profile included 

oximino cephalosporins normally considered unfavourable substrates. The expanded spectrum of 

GC1 is attributed to a duplication of three amino acid residues (Ala208–Val209–Arg210) after 

position 210, which increases the flexibility of the  loop and allows the enzyme to accommodate the 

bulky sidechains of oximino cephalosporins.273 Several other group 1e -lactamases are now known 

and all have amino acid insertions or alterations in the  loop, the R2 loop, or the H-9 helix which 

increase the accessibility for bulky substrates.270    

The class C -lactamases share with the class A -lactamases a similar acyl enzyme mechanism of 

-lactam hydrolysis, but there are several important points of difference. While the class A and C -

lactamases have both reached “catalytic perfection” for their favoured substrates (penicillins and 

cephalosporins, respectively), the rate-limiting step for class A enzymes is the acylation step and for 

class C enzymes is the deacylation.26 Another difference, which was revealed by an X-ray structure of 

P99 in 1993,274 is that the approach of the hydrolytic water molecule in the class C -lactamases 

occurs from the “” face while the approach in class A enzymes is from the “” face.  

The first X-ray crystal structure of a class C enzyme was that of the chromosomal -lactamase of 

Citrobacter freundii in 1990 (PDB: 1FR1).275 Comparison of the structure of this AmpC enzyme with 

the class A enzyme TEM-1 revealed that they shared similar folds and active site residues. The 

residues of the class C -lactamases Ser64, Lys67, Lys315, and Tyr150 occupy similar positions as 

the catalytically important residues Ser70, Lys73, Lys234, and Ser130 of the class A enzymes. Since 

the class C enzymes lack a residue equivalent to Glu166 of the class A -lactamases, Oefner et al. 

suggested that Tyr150 (as its anion) might act as a general base in both the acylation and deacylation 

steps of -lactam hydrolysis.275  

The anionic Tyr150 was proposed to activate Ser64 directly in the formation of the tetrahedral 

intermediate, to shuttle the proton of Ser64 to the nitrogen of the -lactam substrate in the breakdown 

of the tetrahedral intermediate, and to activate the hydrolytic water molecule for hydrolysis of the 

acyl enzyme intermediate. This hypothesis is inconsistent, however, with NMR experiments which 

indicate that the pKa of Tyr150 is >11 (in the apo enzyme)276 and site-directed mutagenesis studies by  
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Figure 11. Class C -lactamases and the mechanism of penicillin turnover by E. coli AmpC. The 
modeled Michaelis complex with penicillanic acid was generated by docking the -lactam into an X-
ray structure of AmpC (PDB: 3GSG)277 and a simplified mechanism of acylation (wherein the 
formation and collapse of the tetrahedral intermediate are not shown) is indicated with arrows. The 
mechanism of deacylation is shown with arrows in a modeled acylenzyme that was generated using 
X-ray structures of a penicillin-acylated AmpC (PDB: 1LL9)278 and a boronic acid-inhibited AmpC 
(2FFY). Figures of the P99 (1XX2), GC1 (1GCE), and CMY-10 (1ZKJ) active sites were created 
from X-ray structures downloaded from the PDB. Bush–Jacoby functional group designations are 
shown in brackets. 

Dubus et al.279 Mutation of Tyr150 to Phe, Ser, and Glu produced much smaller changes in kcat (200- 

to 2000-fold) than would be expected for substitution of a catalytically important residue. These 

results implicate Lys67 (as the free base) as the general base in the acylation process, either by 

activating Ser64 directly or via Tyr150 (Figure 11).  

The mechanism of deacylation in the class C -lactamases has also been debated. The original 

proposal that Tyr150 (as its anion) activates the hydrolytic water are clearly challenged by the NMR 

studies of the Ishiguro group which indicate that its pKa is >11.276 A related model, supported by 

Gherman et al.,280 involves activation of the hydrolytic water molecule by the basic form of Lys67 

through Tyr150 (neutral). This hypothesis is disfavoured, however, by a recent high-resolution X-ray 

structure of AmpC (PDB:2FFY) from the Shoichet group which resolves a proton on Tyr150 (H-

bonding with an oxygen of the boronic acid transition state analogue) and shows that Lys67 is fully 

protonated.281     
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Given that the approach of the hydrolytic water occurs from the -face in class C enzymes, the 

Mobashery group proposed a mechanism for deacylation involving activation of the water molecule 

by the thiazolidine nitrogen of the substrate itself.282 The evaluation of a pyrrolidine-containing non-

-lactam substrate and a cyclopentane (amine-lacking) analogue supported this proposal as the 

amine-containing analogue was turned over (underwent acylation and deacylation) and the amine-

lacking substrate acted as an irreversible inhibitor (acylation only). This type of activation has been 

called substrate-assisted catalysis and this mechanism is consistent with available X-ray crystal 

structures of AmpC.281,283  

1.4.5 Class D -Lactamases 

Among the first types of -lactamases known to be encoded on Gram-negative plasmids were the 

TEM, OXA, SHV, and PSE families.284 The OXAs were originally set apart from the TEMs by their 

ability to hydrolyze isoxazoyl -lactams such as oxacillin and cloxacillin. In the late 1980s OXA-1, 

OXA-2, and PSE-2 (now known as OXA-10) became the first class D -lactamases when their 

sequences were found to be very similar to each other but very different from the class A and C serine 

-lactamases that had been sequenced.234,285  

Over the last few years, the number of enzymes in the OXA family has increased drastically. While 

only 20 class D enzymes were known in 2000286 and 50 in 2005,26 nearly 200 OXA variants have 

been described to date.247 The class D -lactamases have expanded from a series of narrow spectrum 

enzymes (functional group 2d) to become the most diverse of the four Ambler classes, with 

increasing numbers of OXAs with ESBL activity against third generation cephalosporins (group 2de) 

and carbapenemase activity (group 2df). The OXAs have also expanded from their historical host of 

P. aeruginosa to other Gram-negative organisms including E. coli, K. pneumoniae, and most 

importantly, A. baumannii.287    

The OXAs were originally defined as -lactamases that hydrolyze oxacillin faster than 

benzylpenicillin but many of the recently characterized OXAs hydrolyze oxacillin only poorly. Most 

class D -lactamases, however, can hydrolyze amino- and ureidopenicillins well, most are resistant to 

inhibition by clavulanate, tazobactam, and sulbactam, and most are inhibited by NaCl.288  

Several OXA subgroups have been identified within the Ambler class D enzymes and the most 
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important of the narrow spectrum families are the OXA-1, OXA-2, and OXA-10 subgroups. Whereas 

OXA-1 and OXA-2 variants mostly retain a narrow spectrum of activity, many OXA-10 variants, 

including OXA-11, OXA-13, OXA-16, OXA-28, OXA-35, and OXA-74, have increased activities 

toward expanded-spectrum cephalosporins. OXAs with ESBL activities which are not variants of 

narrow spectrum OXAs include OXA-18, OXA-45, and OXA-53.288  

The most clinically important OXAs are the carbapenem-hydrolyzing class D -lactamases 

(CHDLs), which include those of the OXA-23, OXA-40 (OXA-24 is now known as OXA-40), OXA-

48, OXA-51, and OXA-58 subgroups and others.289 The importance of the CHDLs to carbapenem 

resistance has been debated because of the relatively low level of hydrolysis of carbapenems by these 

enzymes, but knockout and complementation experiments demonstrate that OXA-23, OXA-40, and 

OXA-58 (to a lesser extent) contribute significantly to carbapenem resistance in A. baumannii.290 So 

far, none of the class D -lactamases have both ESBL and carbapenemase activity.    

Structural and mechanistic information about the class D -lactamases was extremely limited until 

2000, when two X-ray crystal structures of OXA-10 were published independently by the 

Strynadka291 and Mobashery286 groups. Both groups noted that the overall folds of the class D -

lactamase are more similar to class A enzymes than to class C enzymes and that several residues 

important for catalysis in TEM-1 aligned very well with residues in OXA-10. An important 

difference, however, was that OXA-10 appeared to lack an acidic residue equivalent to Glu166, the 

residue that functions as a general base in TEM-1. Lys70 was proposed as the best candidate for the 

general base in OXA-10 by both Strynadka and Mobashery, since it was thought that its pKa might be 

lowered significantly by its hydrophobic environment. This explanation was found to be incomplete 

later that year, when Mobashery and coworkers published an X-ray crystal structure of OXA-10 in 

which Lys70 was carboxylated (Figure 12).292 As an unusual functional group with some precedent, 

this carboxylated lysine was proposed to act as the general base in the hydrolysis of -lactams, 

through direct activation of Ser67 in the acylation process and through activation of the hydrolytic 

water molecule in the deacylation half-reaction (Figure 13).    

The discovery of lysine carboxylation in OXA-10, which is reversible, pH dependent, and critical 

for enzymatic activity,293 was a major breakthrough in the study of class D -lactamases because 

these enzymes were notorious for poorly reproducible behaviour in enzyme assays (biphasic burst- 
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Figure 12. The discovery of Lys70 carboxylation in class D -lactamases. The first X-ray structures of 
OXA-10 by Strynadka (PDB: 1FOF) and Mobashery (1EWZ) are shown in black and blue, 
respectively. A subsequent structure (1E4D) showed that Lys70 is N-carboxylated (Kcx70).  

 

Figure 13. Class D -lactamase active sites and the mechanism of penicillin turnover by OXA-10. The 
Michaelis complex shown was generated by docking penicillanic acid into an X-ray structure of 
OXA-10 (3LCE) and arrows indicate a simplified version (without formation and collapse of the 
tetrahedral intermediate) of one possible mechanism of acylation.298 The acylenzyme structure shown 
is a model created from the PDB files 2WG1 and 1K54 and a possible mechanism for deacylation 
indicated with arrows. Images of OXA-1 (1M6K), OXA-2 (1K38), OXA-40 (3G4P), and OXA-48 
(3HBR) were created from X-ray structures retrieved from the PDB. The X-ray structure of OXA-45 
was kindly provided by Prof. J. Spencer (U. Bristol, U.K.) prior to publication. Bush–Jacoby 
functional group designations are shown in brackets.   
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type progress curves).26 Supplementation of the medium with bicarbonate to mimic the in vivo 

concentration of CO2 (ca. 1.3 mM)294 restores the kinetic profile for most enzymes, but some OXAs 

retain biphasic profiles with some substrates. Evidence that OXA-10 exists predominantly as a dimer 

and that the dimer is the more active form,295,296,297 led to the proposal that a monomer–dimer 

equilibrium might be responsible for the complex biphasic kinetics (of OXA-10 and other OXAs); 

however, this rationale is not applicable to in vitro biochemical assays conducted with nanomolar 

concentrations of enzyme since dissociation constants for these enzymes are typically in the 

micromolar range.293  

It is widely accepted that the carboxylated lysine functions as the general base in the acylation and 

deacylation half-reactions, but the exact mechanisms of these processes have not yet been elucidated. 

Some of the most detailed mechanistic information currently available on the OXAs includes the 

results of advanced computational work done in 2005.298 Li et al. used QM/MM methods to 

investigate the mechanism of lysine carboxylation in OXA-10 and found that carboxylation is 

exothermic in the enzyme and that carboxylation of Lys70 (neutral) by CO2 (and not bicarbonate) is 

mediated by a water molecule. It is possible that this water molecule, which is the hydrolytic water 

involved in deacylation, is also involved in the acylation process as a bridge between Kcx70 and 

Ser67. In addition, the authors suggest the possibility that a decarboxylation event partway through -

lactam turnover may be the main source of the biphasic kinetics observed with various OXAs since it 

is known that Lys70 must be carboxylated for catalysis to resume.   

Additional mechanistic insights have been gained from a number of X-ray structures of OXAs with 

and without inhibitors but a recent focus of research in this area has involved structural studies with 

OXA carbapenemases. The Romero group, which reported the crystal structure of OXA-24 (now 

OXA-40) in 2007, postulated that the specificity of OXA-40 for carbapenems is a result of the 

hydrophobic barrier formed by residues Met223 and Tyr112 (Figure 13).299 The importance of these 

residues was demonstrated by site-directed mutagenesis but an explanation for the improved activity 

toward carbapenems, compared to other OXAs, was not provided. In 2009 Docquier et al. published 

the structure of OXA-48, a carbapenemase which is more similar in sequence and 3D structure to the 

narrow-spectrum enzyme OXA-10 than to the carbapenemase OXA-40.300 With support from 

molecular dynamics simulations, the authors proposed that the orientation and flexibility of the 5/6 
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loop of OXA-40 and OXA-48 better accommodates the hydroxyethyl sidechain of carbapenems than 

the corresponding loop of the narrow-spectrum enzymes OXA-10 and OXA-13.  

1.4.6 Class B -Lactamases 

The first metallo--lactamase, BcII of Bacillus cereus, was discovered indirectly by Newton and 

Abraham during the structural elucidations of penicillin N and cephalosporin C in the mid-1950s.75,216 

Crude preparations of -lactamase from B. cereus showed a selective loss of cephalosporinase 

activity upon purification, and a loss of penicillinase activity in aqueous solution at 60 C, indicating 

that the preparations were mixtures of two enzymes. The metal dependence of the cephalosporinase 

was confirmed with experiments in the mid-1960s which showed that activity was lost upon treatment 

with EDTA but restored with the addition of ZnSO4.
301 After purification of the penicillinase (called 

BcI) and cephalosporinase (called BcII) by fractional precipitation with a ammonium sulfate, BcII 

was shown to hydrolyze semisynthetic penicillins and cephalosporins at a rate comparable to 

benzylpenicillin.302  

BcII was the only known Ambler class B231 (Bush group 3) metallo--lactamase (MBL) for many 

years until the identification of L1 from Pseudomonas (now Stenotrophomonas) maltophilia in 

1982303 and the imipenem-hydrolyzing MBLs CphA and CcrA (also called CfiA) from Aeromonas 

hydrophila and Bacteroides fragilis, respectively, in 1986.304,305 Despite the ability of these enzymes 

to hydrolyze carbapenems and their resistance to inhibitors, the MBLs were not widely considered an 

immediate threat in the 1980s because these enzymes were chromosomally encoded. A plasmid-

encoded metallo--lactamase was discovered in 1991, however, when imipenem resistance due to the 

production of the MBL was found to be transferable in a Japanese isolate of P. aeruginosa.306 This 

enzyme, which was later identified as IMP-1, has a broad spectrum activity that includes penicillins, 

cephalosporins, and carbapenems (but not aztreonam).307 IMP-1 was subsequently isolated from 

Serratia marcescens308 and members of the IMP family, now known to be mobilized by integrons, 

were found in other strains of Pseudomonas spp., Acinetobacter spp., and Enterobacteriaceae in 

Japan.309 Since the mid-1990s the IMPs have spread worldwide259,310,311 and 24 IMP variants have 

been reported to date.247   

The VIM family of metallo--lactamases was first discovered in Verona from a strain of P. 
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aeruginosa isolated in 1997,312 and VIM-1, like IMP-1, hydrolyzes efficiently most -lactams except 

the monobactam aztreonam. The VIMs, which are mostly integron-borne, are the dominant MBLs in 

Europe and have quickly spread across the globe, with VIM-2 being the MBL most reported in the 

world.309 The VIMs have become the second largest family of MBLs with 21 variants.247  

The third type of acquired metallo--lactamase discovered was SPM-1, an enzyme first isolated 

from a highly resistant strain of P. aeruginosa in 2001 from São Paulo, Brazil.313 GIM-1, which has 

some similarity to IMPs and VIMs, was identified from an isolate of P. aeruginosa in Germany in 

2002314 but GIM-1 has not spread as quickly as the other MBLs.310 Other MBLs identified recently 

include SIM-1 from a strain of A. baumannii isolated in Seoul, Korea,315 KHM-1 from a C. freundii 

strain isolated in Tokyo,316 DIM-1 from a Dutch strain of Pseudomonas stutzeri,317 and AIM-1 from 

P. aeruginosa in Australia.318 

The recent discovery of a new MBL called NDM-1, which originated from New Delhi, India, 

represents a very concerning development. NDM-1 was found on a class 1 integron in a strain of K. 

pneumoniae which also expressed the ESBL CMY-4 and an erythromycin esterase and was resistant 

to all antibiotics tested (MICs > 32 g/mL) except colistin.319 Transferability of the MBL gene in vivo 

was inferred as NDM-1 was found in a strain of E. coli that was later isolated from the same patient. 

Since its first isolation in 2006, NDM-1 has spread rapidly and has been detected in India, Pakistan, 

the U.K.,320 the Netherlands, Australia,321 the U.S., Canada,322 Kenya,323 Norway,324 and Germany325 

in isolates of K. pneumoniae, E. coli, C. freundii, M. morganii, Providencia spp., and E. clocae. 

NDM-1 is most similar to VIM-2 (32% amino acid identity) and has an activity profile similar to the 

IMPs and VIMs, hydrolyzing most -lactams well except aztreonam.   

As a result of the increasing number and diversity of the metallo--lactamases in the late 1990s, 

Bush proposed326,327 that the MBLs could be subclassified according to structure (molecular 

subclasses B1, B2, and B3) or subgrouped according to substrate specificities (functional groups 3a, 

3b, and 3c). With additional biochemical characterization, however, the functional groupings were 

updated in 2010238 to include only two functional groups (groups 3a and 3b). Subgroup 3a is 

comprised of enzymes which hydrolyze penicillins and cephalosporins at rates of at least 60% of the 

rate of imipenem hydrolysis while group 3b enzymes hydrolyze carbapenems preferentially. With 

respect to the molecular/structural classification scheme, most known MBLs, including BcII, CcrA 
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(CfiA), BlaB, and the IMP, VIM, SPM, GIM families, belong to subclass B1. Subclass B2 includes 

CphA, ImiS, and Sfh-I, and subclass B3 contains L1, FEZ-1, THIN-B, BJP-1, and the GOB family. 

Structural subclasses B1 and B3 are part of Bush’s functional group 3a and subclass B2 aligns with 

functional group 3b.328,329,330 In 2002 Galleni et al. proposed a standardized numbering scheme for 

metallo--lactamases based on sequence homology and structural information.331,332   

Although MBLs have now been characterized extensively by X-ray crystallography, with nearly 

100 entries for MBLs in the PDB, the mechanisms of -lactam hydrolysis have not been completely 

resolved. Elucidation of these mechanisms has been complicated by the fact that ZnII is silent in most 

spectroscopic techniques333 and, with the exception of two structures (PDB: 1X8I, 2AIO), the lack of 

enzyme–substrate complexes. Furthermore, the metal content of the MBLs in vivo (mono- vs di-zinc) 

and the site of the zinc atom (in mono-zinc enzymes), which are issues of central importance to 

inhibitor design, remain controversial despite extensive study.   

The earliest data regarding the metal content of the MBLs and mechanism of action was obtained 

by chemical methods in the mid-1970s in the study of the metal-dependent -lactamase II of B. 

cereus (BcII). A cysteine residue became the first amino acid to be implicated in zinc binding as the 

presence of a thiol group in the enzyme was only detected (by derivatization with iodo-[2-14C]-

acetate, for example) in the presence of EDTA.216,334 Replacement of Zn2+ with Co2+, Cd2+, Mn2+, and 

Hg2+ gave enzymes with significant activity (albeit much lower) and, with respect to metal content, 

equilibrium dialysis revealed that at least two zinc binding sites were present.335 The enzyme bound 

one zinc with high affinity and the other with much lower affinity and, although BcII was active 

against benzylpenicillin with only one zinc (80% Vmax at 10 M ZnSO4), the rate of hydrolysis 

increased with increasing occupation of the second zinc site (full activity at 1 mM ZnSO4). NMR 

studies by Baldwin et al. implicated three histidines as ligands for one zinc and a fourth histidine 

ligand as a ligand in the other zinc-binding site.336  

In the 1980s and 90s it became apparent that the metallo--lactamases were quite diverse in their 

metal requirements for activity. The class B2 MBL of Aeromonas hydrophila (CphA), for example, 

binds one zinc tightly (nM) and the binding of a second zinc is inhibitory to enzymatic activity (Ki = 

46 M).337 The class B1 and B3 MBLs BcII, CcrA, BlaB, IMP-1, VIM-4, and L1 are known to 

require two zincs for maximal activity but each of these enzymes has also been shown to be active (at 
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a reduced level) in its mono-zinc form.335,338,339,340,341,342,343 The metal requirements for the activity of 

SPM-1 are uncertain, however, since the native form of the enzyme was found to contain 1.5 mol Zn 

per mol protein344 and the X-ray crystal structure of SPM-1 (PDB: 2FHX) shows only one zinc bound 

in the active site.345    

With the free zinc ion concentration in the cell estimated to be in the picomolar range and the low 

affinity of the MBLs for a second zinc atom, Wommer et al. suggested in 2002 that the 

physiologically relevant form of an MBL is the mono-zinc state and that the di-zinc form is 

unattainable under physiological conditions.341 The group also proposed that the apo (metal-free) 

form of the enzyme exists under normal conditions as they had found experimentally that the 

presence of a -lactam substrate activated (increased affinity) apo MBLs for binding zinc. In this 

model, the use of a second zinc atom is not necessary for catalysis but is regarded as catalytic 

augmentation since an incremental improvement in activity is achieved. Despite the possibility that 

the mono-zinc form of the MBLs may be the physiologically relevant one, kinetic assays with MBLs 

in vitro require the addition of Zn2+ in order to improve enzyme stability and reproducibility.  

As stated above, the metallo--lactamases have now been studied extensively by X-ray 

crystallography (Figure 14) and the first of these structures were reported in the mid-1990s. The 

structure of a mono-zinc form of BcII was published in 1995 by Carfi et al. (PDB: 1BMC),346,347 

followed by the structure of the dinuclear MBL CcrA by Concha et al. in 1996348 and a di-zinc form 

of BcII by Fabiane et al. in 1998.349 The common topology of these (and subsequent) metallo--

lactamases is an / sandwich fold and MLBs appear to be members of a large and ancient 

superfamily of metalloenzymes.350 In the structure of the mono-Zn BcII, the zinc atom was 

coordinated in a tetrahedral geometry to three histidines and a water molecule. In the di-zinc 

structures of CcrA and BcII (and all other di-zinc B1 MBLs), one zinc binds to the same site (called 

the Zn1 site or 3H site) and the other is coordinated by an aspartate, a histidine, a cysteine, and a 

water molecule (called the Zn2 or DHC site) in a trigonal bipyramidal geometry. The remaining 

ligand for both zincs, which are 3.5 Å apart in the CcrA structure, is a bridging water molecule or 

hydroxide molecule that was proposed to act as the nucleophile in the hydrolysis. The structure of 

SPM-1 indicates that the unusual orientation of Asp120 may be responsible for the low affinity for 

zinc at the Zn2 site.345 
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Figure 14. Class B metallo--lactamase active sites. Figures were generated from X-ray structures of 
BcII (1BC2), BlaB (1M2X), CcrA (1ZNB), IMP-1 (1DDK), VIM-2 (1KO3), SPM-1 (2FHX), CphA 
(1X8G), L1 (1SML), and FEZ-1 (1K07) retrieved from the PDB. All structures shown were 
crystallized without inhibitors except BlaB which was co-crystallized with the thiol D-captopril (not 
shown for clarity, except for a small yellow sphere which represents the sulfur atom that displaced the 
zinc-bridging hydroxide). Bush–Jacoby functional group designations are shown in brackets and 
molecular subclasses also indicated. It should be noted that amino acid residues have been numbered 
as in each PDB file and not according to the standardized (BBL) numbering schemes of Galleni331 
and Garau.332  

The structure of L1, a di-zinc class B3 MBL from S. maltophilia,351 shows that the Zn1 site is 

comprised of three histidines as with the class B1 enzymes but, in contrast to class B1 MBLs, the 

cysteine of the Zn2 site is replaced by a histidine in the class B3 enzymes and the site is therefore 

called the DHH site. This substitution is also present in FEZ-1,352 indicating that the DHH site for Zn2 

is a common feature of subclass B3 MBLs. The narrow-spectrum carbapenemases of subclass B2, 

such as CphA of Aeromonas hydrophila, possess the same Zn2 (DCH) site of the B1 enzymes, but the 

Zn1 site is comprised of two histidines and an asparagine.353 The His-to-Asn substitution causes a 

substantial decrease in the affinity for zinc at the Zn1 site and class B2 MBLs function as mono-zinc 
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enzymes.     

One of the first proposals for the mechanism of the metallo--lactamases was suggested by Carfi et 

al. in 1995 with the publication of the X-ray structure of a mono-zinc form of BcII.346 Based on 

molecular models and mechanistic studies with other zinc peptidases, the zinc atom was proposed to 

serve as a Lewis acid toward the substrate, to polarize and activate the -lactam carbonyl for attack, 

and as a Lewis acid toward the hydrolytic water, to increase its acidity. Asp90(120) was implicated as 

the general base that would be able to deprotonate the hydrolytic water and shuttle a proton to the 

nitrogen of the -lactam. Some aspects of this early proposal are supported by recent computational 

work by Dal Peraro et al.354,355 (Figure 15D) but it is thought that the pKa of the zinc-bound water in 

the mono-zinc form of BcII is less than 4.9 so that it exists as a hydroxide in vivo.356     

In one of the first proposals for the mechanism of -lactam hydrolysis by di-zinc (class B1 and B3) 

MBLs, Concha et al. suggested in 1996 that nucleophilic attack at the -lactam carbonyl is carried out 

by the bridging hydroxide, which is oriented appropriately through a hydrogen bond with 

Asp103(120), and that Zn1 and Asn193 together serve as an oxyanion hole to stabilize the tetrahedral 

intermediate.348 The pKa of the bridging hydroxide has been estimated to be between 4.9 and 5.6.356,357 

A large amount of research has been focused on the di-zinc MBLs since Concha’s X-ray structure and 

mechanistic studies remains ongoing. A detailed summary of this research is beyond the scope of this 

review but several classical mechanistic studies should be mentioned. Early work in the late 1990s 

with BcII by Paul-Soto et al.339,340 and Bounaga et al.,357 for example, provided a basis for the 

understanding of the pH dependence of enzymatic activity, zinc binding, and inhibition by thiols. The 

Benkovic group proposed a minimum kinetic mechanism for the B. fragilis MBL (CcrA) based on the 

direct observation of an enzyme-bound intermediate in nitrocefin hydrolysis and was also able to rule 

out a mechanism involving nucleophilic catalysis by Asp103(120).358,359,360,361 Since these reports 

from Benkovic, the role of Asp120 in catalysis has been studied in detail362,363,364,365,366 and other 

enzyme-bound intermediates have also been detected.333,367,368 Other recent experimental research 

with MBLs, which includes several publications from the Crowder and Vila groups, has been focused 

on elucidating the relationships of metal content, localization, and movement with enzymatic 

activity356,369,370,371,372,373 and the roles of each metal in -lactam hydrolysis.333,372,374,375 Recent 

computational studies by Dal Peraro and coworkers have also made important contributions to the 
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Figure 15. Proposed mechanisms of -lactam hydrolysis by metallo--lactamases. Hydrolysis of 
cephalosporins by dinuclear class B1 and B3 enzymes (A) as adapted from Garrity et al.,362 Crowder 
et al.,350 Hu et al.375 and (B,C) as calculated by Dal Peraro et al.376 (D) The “water-assisted” 
mechanism of cephalosporin hydrolysis catalyzed by mono-zinc class B1 and B3 MBLs as studied 
computationally by Dal Peraro et al.355 (E) Mechanisms of carbapenem hydrolysis by class B2 MBLs 
as proposed by Garau et al.353 and calculated by Xu et al.389 and (F) Simona et al.390     
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Figure 16. The flexible loop region (red) of class B1 metallo--lactamases. Figures were generated 
from X-ray structures of CcrA (2BMI), CcrAMES (1A7T), IMP-1 (1DDK), and IMP-1thiol (1DD6) 
retrieved from the PDB. (MES = 2-(N-morpholino)ethanesulfonic acid).  

understanding of di-zinc MBL mechanisms (Figure 15B,C).376   

An interesting characteristic of many B1 MBLs is the presence of a flexible loop near the active 

site. NMR characterization by Dyson and coworkers,377,378,379 mutagenesis studies,379,380 molecular 

dynamics (MD) simulations,354,381,382,383 and X-ray crystal structures348,384 have shown that this loop is 

flexible in the absence of substrate but closes down on the active site in the presence of a substrate or 

inhibitor (Figure 16). The tryptophan residue present in the loops of CcrA and IMP-1 interacts non-

specifically with a variety of substrates and is thought to have a role in promoting catalysis. 

Substitution of Trp for other residues or deletion of the loop resulted in increased Km values and 

reduced kcat and kcat/Km values.379,380    

While the mechanisms of the B1 and B3 MBLs have been investigated heavily since the mid-

1990s, the mechanisms of the class B2 MBLs had remained poorly understood until the mid-2000s. 

Class B2 MBLs, which have a narrow spectrum of activity including only carbapenems, were known 

to bind only one zinc tightly and be inhibited by binding a second zinc,337 but the three dimensional 

structure of the class B2 enzymes was unknown until the X-ray crystal structure of CphA was 

reported by Garau et al. in 2005.353 In contrast to mono-zinc B1 enzymes, in which the zinc binds to 

the Zn1 site, the zinc of CphA was observed in the Zn2 (DCH) site as a result of the substitution of a 

histidine for an asparagine in the Zn1 site of the class B2 enzyme that causes a significant decrease in 

the affinity for a zinc atom. Although spectroscopic studies with ImiS indicate that, even in the 

presence of added Zn2+, a second zinc atom does not binds in the active site,385,386 recent X-ray crystal 

structures (PDB: 3F9O, 3FAI) of di-zinc CphA show that the second zinc binds in the Zn1 site with a 

distorted geometry.387 Mutagenesis studies by Bebrone et al. demonstrate that the 

Asn116His/Asn220Gly double mutation significantly increases the affinity for a second zinc and also 
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broadens the substrate profile of CphA to include penicillins and cephalosporins.388    

With the X-ray crystal structure of CphA alone (PDB: 1X8G) and a complex of CphA with 

biapenem (PDB: 1X8I), Garau and coworkers proposed a mechanism for -lactam hydrolysis that 

involves activation of the hydrolytic water molecule by His118 and not by coordination to the zinc 

(Figure 15E).353 Xu et al. later examined this proposal computationally and found that a similar 

mechanism (for the first part of the reaction), which involves activation of the hydrolytic water by 

Asp120 (rather than His118), has an estimated activation energy of 14 kcal/mol;389 however, the 

second step of this reaction may have an energy barrier larger than experimental data.390 Simona et. 

al. have advanced a mechanism in which an additional water molecule in the active site allows the 

nucleophilic addition and nitrogen protonation to occur in a concerted manner with a calculated 

activation energy of 15 kcal/mol (Figure 15F).390 Very recently, however, Wu et al.391 have pointed 

out that the Simona mechanism is inconsistent with experiments that suggest direct substrate–metal 

contact and refinement of mechanistic proposals for the class B2 MBLs (which should also account 

for recent experimental data)392,393 appears to be an ongoing process.   

1.5 -Lactamase Inhibitors 

Two approaches have been used to overcome bacterial resistance to -lactam antibiotics due to the 

production of -lactamases. The first involves alteration of the structure of the antibiotic to reduce its 

susceptibility to -lactamases while its antibiotic potency is maintained. The second strategy uses a -

lactamase inhibitor in combination with a -lactam antibiotic. While the first approach avoids the -

lactamase, the second neutralizes it.394     

Although the concept that -lactamase inhibitors might be used to extend the action of -lactams 

against -lactam-resistant organisms was proposed as early as 1950,395 the first strategy that was 

employed clinically for circumventing bacterial resistance involved the use of semisynthetic -

lactams, such as methicillin, which retained potent antibiotic activity but were poorly recognized as 

substrates by -lactamases. Early screening programs for the discovery of -lactamase inhibitors in 

the 1940s and 50s, which involved miscellaneous organic, inorganic, and serine-reactive compounds, 

showed limited success396 and subsequent screens of semisynthetic penicillins showed moderate 
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success,397 but the screening of natural products in the late 1960s and early 1970s proved to be much 

more rewarding and led to the discovery of potent -lactamase inhibitors the olivanic acids and 

clavulanic acid.398 -Lactam–-lactamase inhibitor combinations (e.g. Augmentin, Timentin, Unasyn, 

Zosyn) have been used clinically for three decades and have been very successful since their 

introduction, with combined revenues of ca. $2.5 billion, for example, in 1997.1     

Several excellent reviews of -lactamase inhibition have been published, including the reviews of 

Cole,396,399 Sykes and Bush,400 and Cartwright and Waley,401 which describe the earliest -lactamase 

inhibition studies, and the reviews of Bush and Sykes,402 Knowles,394 Bush,403 Pratt,255 Rolinson,404 

and Mobashery,405 which summarize the development of the mechanism-based inhibitors. Since 2000, 

several updates of these reviews have been published406,407,408,409,410,411 and other more in-depth 

reviews have become available more recently.29,412,413,414 It should be noted, however, that each of 

these reviews offers a different perspective on a vast subject of research that has been active for more 

than 70 years and, since no single article claims to be completely comprehensive, a thorough review 

of the work in the field requires the combination of all of the articles cited above. While a thorough 

review of -lactamase inhibitors is also beyond the scope of this thesis, the summary provided herein 

discusses several aspects of inhibition that are often overlooked in other reviews of this topic. In 

addition, this summary is presented from an historical perspective in order to highlight the earliest 

studies that have played major roles in the development of this field of research. Some important 

classes of -lactamase inhibitors are discussed only briefly but a more detailed list of known -

lactamase inhibitors is supplied in Appendix C.    

1.5.1 -Lactams as -Lactamase Inhibitors 

Screening for -lactamase inhibitors began in the 1940s, as noted above, but the first breakthrough 

came with the discovery of inhibition of penicillinase by cephalosporin C in 1956.415 Cephalosporin 

C, which was insensitive to hydrolysis by the S. aureus penicillinase, was found to competitively 

inhibit the hydrolysis of penicillin G and penicillin N.  

While the observation that a -lactamase can be inhibited by a -lactam may initially seem 

counterintuitive, it should be noted that each -lactamase has a unique substrate profile and 

hydrolyzes one class of -lactam more rapidly than another. -Lactams which act as inhibitors of -
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lactamases can be considered to be substrate analogues (analogues of the enzyme’s preferred 

substrate) and are often called poor substrates or slow substrates to emphasize this point.   

In 1960 researchers from Beecham showed that methicillin was slowly inactivated by the 

penicillinase of B. cereus (BcI) but also acted as a competitive inhibitor of benzylpenicillin 

hydrolysis.84 Methicillin did not inhibit the activity of staphylococcal penicillinase (PC1) but was not 

hydrolyzed by this enzyme either and showed antibiotic activity against -lactamase-producing 

strains of S. aureus. -Lactamase inhibition gained further interest in 1964 with the demonstration of 

synergistic activity of methicillin and cloxacillin with benzylpenicillin and ampicillin against -

lactamase-producing Gram negative organisms.416 Other semisynthetic penicillins and cephalosporins 

were evaluated for -lactamase inhibition,396 but synergy was found to be significant in only a small 

proportion of clinical isolates and levels of cloxacillin required were too high be reached in vivo.404 

Although such combinations failed to find clinical utility, these studies did encourage the continued 

pursuit for other -lactamase inhibitors. While the bulky nature of the 6-acylamino sidechains 

decreases the affinity of -lactamases for the aforementioned penicillins, these agents form inert acyl 

enzyme adducts upon reaction with the enzyme. Studies in the 1970s and 80s indicate that the 

substrate-induced deactivation observed is a result of conformational changes in the enzyme caused 

by steric interactions with the bulky aromatic sidechains.417,418,419  

 

With cephalosporins, carbapenems, and penems the formation of inert acyl enzyme species with 

serine -lactamases is a result of a rearrangement of the position or conformation of the inhibitor 

itself within the active site. For example, the acyl enzyme complex (ES) formed with a cephalosporin 

may undergo deacylation or, if X is a sufficiently good leaving group, may undergo elimination to 

form ESʹ which is hydrolyzed much less readily (Scheme 10). The exact reasons for the slower 

hydrolysis of ESʹ are unclear but cephems which lack a C3ʹ leaving group are generally hydrolyzed 

much more rapidly and the ESʹ species has been observed as an accumulating species in class A420 

and C -lactamases and R61 transpeptidase.255 A similar (non-covalent) ESʹ complex is observed in 
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Scheme 10. Inhibition of Serine -Lactamases by Cephalosporins and Carbapenems.  
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the X-ray crystal structure of a complex of the metallo--lactamase L1 with moxalactam (PDB: 

2AIO368); however, to the knowledge of this author, the kinetics of elimination and importance of the 

C3ʹ leaving group with MBLs have not been studied.  

The effect of the C3ʹ leaving group and the effect of the 7-methoxy group of the cephamycins can 

reinforce each other to improve inhibition.421 The 7-methoxy substitution not only serves to slow the 

acylation process, through steric interactions which decreases the affinity of -lactamases for 

cephamycins, but also slows the deacylation reaction. In acylenzyme complexes with class A -

lactamases, the methoxy group displaces the hydrolytic water molecule422 and perturbs the 

conformation of Asn132 and the loop that contains Glu166.423 In contrast, an X-ray crystal structure 

of a complex of the class C -lactamase AmpC with moxalactam shows that the -methoxy group 

does not displace the hydrolytic water molecule directly, but steric interactions force the oxacephem 

ring into a position which disfavours formation of the tetrahedral intermediate.283   

A similar situation applies to the carbapenems which generally bind poorly to -lactamases but also 

act as potent inhibitors of a broad range of -lactamases.255,424,425 Mechanistic studies by the Knowles 

group in the early 1980s indicated that the biphasic profile for carbapenem hydrolysis by TEM-1, 

which involved an initial fast phase for turnover followed by a slower phase, was a consequence of an 

isomerization of the acylenzyme to a 1-pyrroline (Scheme 10).426,427,428 While the conformations of 

the 2- and 1-acylenzyme species were found to be similar in computational work by the Mobashery 
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group, the studies suggested that the 6-1R-hydroxyethyl substituent slowed the hydrolysis of the 

acylenzyme through the formation of a hydrogen bond between the hydroxyl group and Asn132 and 

through displacement of the hydrolytic water by the methyl group.429 However, in 1998 an X-ray 

crystal structure of imipenem-acylated TEM-1 (PDB: 1BT5) showed a hydrogen bonding interaction 

between the hydroxyl group of the hydroxyethyl moiety and the hydrolytic water, an interaction 

which is thought to decrease the nucleophilicity of the water molecule.430 In addition, the structure 

revealed that the carbonyl of the acylenzyme was flipped out of the oxyanion hole, as a result of a 

steric interaction with the adjacent methyl group, and other conformational changes in the enzyme. 

Rotation of the ester carbonyl out of the oxyanion hole has been observed in crystal structures of 

other carbapenem-acylated class A -lactamases (e.g. SHV-1)431 and class C -lactamases as well.432  

 

In some of the earliest studies of -lactamase inhibition by carbapenems, the Knowles group found 

that the olivanic acid MM22382 behaved simply as a good substrate for TEM-2 while the sulfate ester 

analogue MM13902 was a poor substrate and potent inhibitor.426 Olivanic acids, pluracidomycins, 

and asparenomycins were found to be potent inhibitors of a wide range of -lactamases406 but were 

not suitable for clinical use as a result of poor penetration through bacterial cell walls and rapid 

metabolism in humans.404 Tricyclic carbapenems (trinems) represent another class of carbapenems 

which act as potent inhibitors and LK-157, one of the most potent in the series, exhibits nanomolar 

IC50 values against TEM-1, SHV-1, and AmpC, and synergy with penicillins and cephalosporins 

against -lactamase-producing organisms.433,434,435,436     

With the discovery that the hydroxyethyl group of imipenem contributes to -lactamase inhibition, 

by either sterically displacing or hydrogen bonding to the hydrolytic water molecule, the Mobashery 

group considered the possibility that 6-(hydroxymethyl)penam could acylate a -lactamase but resist 

deacylation.437 The molecule inhibited TEM-1 rapidly with a long-lived acylenzyme species and a 

partition ratio (kcat/kinact = 28) that is lower than those of clinically used mechanism-based inhibitors. 

An X-ray crystal structure of the 6-hydroxymethylated penicillin bound to TEM-1 (PDB: 1TEM) was 
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reported the following year and showed the hydroxymethyl substituent hydrogen bonded with the 

hydrolytic water molecule and Asn132.438     

 

The strategy of incorporating 6-hydroxyalkyl substituents into penicillins for inhibition was later 

applied to -lactamases such as the class A carbapenemase NMC-A439 and the class D enzyme OXA-

10286,293,440 and X-ray crystal structures of enzyme–inhibitor complexes were solved (PDB: 1BUL, 

1K54). In addition, a 6,6-bis-hydroxymethyl penicillin proved to be a moderate inhibitor of class A 

and C enzymes, with Ki values of 480 M and 700 M against TEM-1 and P99, respectively.441   

1.5.2 Mechanism-Based Inhibitors 

Each of the three clinically used -lactamase inhibitors, clavulanate, sulbactam, and tazobactam, are 

called “mechanism-based” inhibitors or “suicide” inhibitors since they are recognized by the enzyme 

as potential substrates but, in a diversion from the normal hydrolytic process, lead to irreversible 

inactivation of the -lactamase.394,442 

 

Clavulanic acid was discovered in a program begun by Beecham in the late 1960s in which 

microorganisms were screened for naturally occurring -lactamase inhibitors.398,443 Clavulanate was 

isolated from a strain of Streptomyces clavuligerus and, although it was found have only weak 

antibacterial activity (MICs: 31–125 g/mL),119 it showed synergy with ampicillin and cephaloridine 

against Gram-positive and Gram-negative organisms.398 Clavulanate was found to be a potent 

inhibitor of penicillinases (IC50 values <0.1 g/mL) but much less effective against chromosomal 

cephalosporinases. According to the Ambler classification of -lactamases, clavulanic acid has potent 

activity against class A enzymes and some class D enzymes, but shows poorer activity against most 
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class C -lactamases, and does not inhibit class B metallo--lactamases. Beecham’s formulation of 

clavulanate with amoxicillin, called Augmentin, was released in the U.K. in 1981444 and was soon 

followed by a combination of clavulanate with ticarcillin called Timentin.404 Augmentin has been 

used in more than 819 million patient courses worldwide since its introduction445 and generated a 

revenue of $1.4 billion in 1997.5     

In 1978, shortly after the disclosure of clavulanic acid, researchers at Pfizer reported the discovery 

of potent -lactamase inhibition by a semisynthetic derivative, penicillanic acid sulfone (PAS).446 

This compound showed weak antibacterial activity on its own but inhibited penicillinases with 

comparable potency to clavulanic acid. Penicillanic acid sulfone was also able to expand the spectrum 

of activity of ampicillin, penicillin G, carbenicillin, and cefazolin against Gram-positive and Gram-

negative organisms, although PAS was slightly less effective than clavulanate in a head-to-head 

comparison. The combination of PAS (later called sulbactam) with ampicillin447 was introduced as 

Unasyn in the U.S. by Pfizer in 1987448 and its revenue of $619 million in 19971 indicates its clinical 

success. Tazobactam, a triazole-substituted analogue of sulbactam, was found to have improved 

activity against class C -lactamases449 and its combination with piperacillin is marketed by Wyeth as 

Zosyn.    

The complex mechanisms by which clavulanate and penicillanic acid sulfones inhibit serine -

lactamases have been studied extensively. Initial efforts to elucidate these mechanisms in the late 

1970s, when structural information on -lactamases was not yet available and the serine acylenzyme 

mechanism had not yet been confirmed, indicated that clavulanate was a substrate for RTEM and 

inhibited the enzyme by forming two catalytically inactive forms.252 A transiently stable form, which 

could decompose to free enzyme and was the major component of enzyme after short time periods, 

was formed three-fold faster than the irreversibly inactivated form. The Knowles group found that 

both species showed an increase in absorbance at 281 nm, typical of ,-unsaturated esters, and 

treatment of inactivated enzyme with hydroxylamine partially restored enzymatic activity, consistent 

with cleavage of an acylenzyme species.253,450 Other studies by Durkin and Viswanatha,451 Reading 

and Hepburn,452 and the Knowles group453 were followed by spectroscopic studies with PC1 by Rizwi 

et al. which indicated that a slow isomerization of the initially formed cis-enamine B to the trans-

enamine C was responsible for the progression of transient inhibition to inactivation.454 Two forms of 
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Scheme 11. Inhibition of Class A -Lactamases by Clavulanate and Sulbactam.29,412,467  
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the inhibitor were observed in the X-ray crystal structure of clavulanate-inhibited PC1 (PDB: 1BLC) 

published by Chen and Herzberg in 1992 and these forms were thought to be the cis- and trans-

enamines B and D.455 Potential mechanisms for the inhibition of class A -lactamases by clavulanate 

were evaluated by the Mobashery group in a detailed molecular modeling study and a refined 

mechanistic scheme was proposed (Scheme 11).456 Enamines B–D are thought to give rise to transient 

inhibition and irreversible inhibition a result of cross-linking with Ser130 (F) (and not Lys73 or 

Lys234). Other studies of the mechanism of inhibition of class A -lactamases by clavulanate have 

also been published.457,458,459     

The discovery of potent -lactamase inhibition by penicillanic acid sulfone in 1978446 stimulated 

several studies of its interactions with class A enzymes.460,461,462,463,464,465,466,467,468 Early indications that 

penicillanic acid sulfone shared a similar mechanism of inhibition with clavulanate inspired the 

synthesis of a number of other penam sulfones. Among the earliest PAS derivatives to show potent 

inhibition were 6-chloropenicillanic acid sulfone, reported by Cartwright and Coulson,469 and 6-

(trifluoromethanesulfonyl)amidopenicillanic acid sulfone, from the laboratories of Viswanatha and 
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Dmitrienko.470,471,472,473,474 Tazobactam was discovered in 1984475 and has found widespread clinical 

utility, possibly as a result of its improved activity against class C -lactamases.449 The sulfones of 

other -lactams were also evaluated461 and more recent developments include the 2-alkenyl PAS 

derivatives of Hoffman–La Roche476 and 2-imino penam sulfones of Phillips et al.477 A 2-

substituted penam sulfone, SA2-13, was designed to form a stabilized trans-enamine intermediate in 

the active site of SHV-1 (PDB: 2H5S) and was found to be 10-fold more stable to hydrolysis than 

tazobactam.466,478     

 

The 6-halopenicillinates represent another class of potent -lactamase inhibitors discovered in the 

late 1970s. In 1978 Loosemore and Pratt discovered that 6-bromopenicillanic acid (-BPA) was an 

irreversible inhibitor of -lactamases from B. cereus, B. licheniformis, S. aureus, and E. coli. 

Although 6-BPA showed weak antibacterial activity, its inhibitory potency against -lactamases was 

comparable to that of clavulanate and a study of its interactions with BcI were reported.250,479,480,481 A 

3H-labelled version of this compound was used by Knott-Hunziker et al. in 1979 to covalently modify 

the -lactamase of B. cereus and this work provided some of the first firm evidence that the active site 

nucleophile of -lactamases was a serine.251 In a detailed study of the mechanism of irreversible 

inhibition induced by 6-halopenicillinates, Pratt demonstrated that a rearrangement occurs upon 

acylation of the -lactamase to give an enzyme-bound dihydrothiazine and concluded that the 

rearrangement is more likely to proceed through an episulfonium intermediate than through 

thiazolidine ring-opening (Scheme 12).255,482 The serine-bound dihydrothiazine is also observed in 

recently solved X-ray crystal structures of the 6-iodopenicillinate-modified class A -lactamase 

from Bacillus licheniformis BS3 and the 6-iodopenicillinate-modified DD-transpeptidase from 

Actinomadura strain R39.483  

Other potent inhibitors were discovered in the early 1980s, including 6-alkylidene penams such as 

6-(methoxymethylidene)penicillanic acid 41, which was conceived by Knowles,484 and Hoffman–La 

Roche’s 6-(acetylmethylidene)penicillanic acid (Ro15-1903).485  
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Scheme 12. Inhibition of Serine -Lactamases by 6-Halopenicillins.  

 

Sulfone derivatives of alkylidene penams were also found to be potent mechanism-based inhibitors 

and the discovery of heteroarylmethylidene PAS 42 was disclosed by researchers at Pfizer in 

1986.486,487 In 1993 6-vinylidene derivatives, including 43, were reported by the Buynak group488 and 

other alkylidenepenam sulfones (e.g. 44) and -cephem sulfones have also been developed (Appendix 

C).489,490,491,492,493 With the lack of a proton at C6, which is important in the mechanism of inhibition 

for clavulanate and sulbactam, inhibition by the alkylidene PASs involves an intramolecular attack of 

the alkylidene substituent on the imine(iminium) intermediate and subsequent tautomerization 

(Scheme 13). Many of the alkylidene penam sulfone inhibitors have not only shown greater potency 

than clavulanate and sulbactam against class A -lactamases, but also inhibit class C and, more 

recently, class D -lactamases.494,495 Spirocyclopropylpenam sulfones 45 have been prepared by 

investigators at Wyeth and were shown to be potent inhibitors of TEM-1 and AmpC enzymes.496  

 

Structural modifications of penems in the late 1980s by Beecham led to the discovery of the BRL-

42715, an alkylidene penem which lacked clinically useful antibiotic activity but exhibited much 

more potent -lactamase inhibitory activity than clavulanate and sulbactam.497,498,499 BRL 42715 has 

been shown to be a progressive inhibitor of class A, C, and D -lactamases with nanomolar IC50 

values against TEM-1, SHV-1, P99, GC1, OXA-1, and other enzymes. Several studies concerned 

with the interactions of BRL 42715 with -lactamases500,501,502,503,504 and transpeptidases505 determined 

that the mechanism of inhibition involves the opening of the dihydrothiazole intermediate and 
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Scheme 13. Inhibition of -Lactamases by 6-Heteroarylidene Penam Sulfones.29,486  
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subsequent cyclization to form a dihydrothiazepine (Scheme 14). Despite the attractive inhibition 

profile of BRL 42715, its development has been discontinued as a result of its low serum half-life in 

humans and other factors.409  

Researchers at Wyeth reported in 2004 the evaluation of new bicyclic heterocycle-bearing 

alkylidene penems which show improved potency against TEM-1 and AmpC enzymes and 

impressive synergy with piperacillin against resistant strains.506,507,508,509 BLI-489, for example, 

showed IC50 values of 0.4 nM and 2 nM against TEM-1 and AmpC, respectively. Penems with 

tricyclic heterocycles, such as 46–48, offer additional lipophilicity (desirable in this case for in vivo 

evaluation) and display potent activity against class A and C enzymes (e.g. IC50 for 47 vs TEM-1 = 

1.9 nM; AmpC = 0.62 nM).510 X-ray crystal structures of BRL 42715 with 908R (PDB: 1Y54)504 and 

46 with SHV-1 and GC1 have been solved (PDB: 1Q2P, 1Q2Q).509 In addition, while BRL-42715 

was found to be a substrate for the metallo--lactamase CcrA, many of the Wyeth penems are potent 

(nanomolar) inhibitors of CcrA.507,511 More recently, potent inhibition of the class D OXA -

lactamases has also been observed.512 Detailed reviews of the 6-alkylidene penems have been 

published previously by Phillips409 and Mansour et al.411  
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The discovery of the nocardicins and monobactams as natural products in the early 1980s (Section 

1.2.7) led to the development of semisynthetic derivatives such as aztreonam.164,165 While certain 

monocyclic -lactams, such as nocardicin A and desthiobenzylpenicillin, are substrates for class A 

and class C -lactamases,513 aztreonam was found to have poor affinity for broad spectrum class A -

lactamases such as TEM-2 and exhibited potent inhibition of the class C enzyme P99 (Ki = 1.9 

nM).514 Bush et al. found that the trans relationship between the C3-acylamino substituent and the 4-

methyl substituent of aztreonam accounted for its significantly decreased affinity for TEM-2 and 

slower turnover relative to its 4-unsubstituted (SQ 82,402) or 4-epi (SQ 26,917) analogues. An X-ray 

crystal structure of an aztreonam-acylated AmpC enzyme (PDB: 1FR1)515 indicates that a steric 

interaction between the 4-methyl group and Tyr150 causes a bond rotation to occur such that the N-

sulfonyl group obstructs attack of the hydrolytic water. This observation prompted investigators at 

Hoffman–La Roche to investigate bridged monobactams which could form acylenzyme intermediates 

with more rigid conformations that might block hydrolysis more effectively.516 This strategy proved 

effective as a series of monobactams showed low nanomolar IC50s against class C enzymes, exhibited 

very long deacylation half-lives, and Ro-48-1256 was shown to potentiate -lactams against P. 

aeruginosa.517  

 

Merck researchers have recently prepared and evaluated analogues of Ro 48-1256 as inhibitors of 

class C -lactamases and potential partners for combination with imipenem and the (S)-azepine 
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analogue 49 was selected for preclinical development.518 BAL29880 is a bridged monobactam which 

is currently in development at Basilea as part of BAL30376, which is a three-component combination 

of clavulanate (for the inhibition of class A -lactamases and ESBLs), BAL29880 (class C -

lactamase inhibitor) and BAL19764 (a siderophore monobactam with activity against Gram-negative 

organisms and stability to MBLs).170   

1.5.3 Non--Lactam Inhibitors: -Lactam Mimics and Transition State Analogues 

The concept that analogues of -lactams might also have biological activity was explored as early as 

the 1940s as researchers at Lilly prepared -lactam and -lactam analogues of penicillin.519 The lack 

of antibiotic activity suggested that the amide bond of such compounds was insufficiently reactive to 

acylate the target enzymes or that the molecules were unable to fit appropriately into the active site 

and the failure of such attempts led to the belief that the -lactam moiety was essential for antibiotic 

activity. With the growing threat of -lactamases in the 1970s, researchers began to question this 

belief and the desire to prepare -lactam analogues with antibiotic activity and resistance to -

lactamases was renewed. Early studies, which were mainly directed toward screening for antibacterial 

activity, have been reviewed519,520 and the discussion below is limited to work related to -lactamase 

inhibition.      

 

One example of a natural non--lactam antibiotic which inhibits PBPs and -lactamases is 

lactivicin. Lactivicin was first reported in 1986 as a new antibiotic isolated from strains of 

Empedobacter lactamgenus and Lysobacter albus from soil samples in Japan.521 Lactivicin shares a 

similar mechanism of inhibition with clavulanate and X-ray crystal structures of lactivicin bound to 

PBP1b (PDB: 2JE5)522 and the class A -lactamase BS3 has recently been solved (PDB: 2X71).523  

Boronic acids have been known to be reversible -lactamase inhibitors since the late 1970s.524 Even 

very simple phenylboronic acids showed Ki values in the low micromolar range against class C 

enzymes (AmpCs) from P. aeruginosa and E. coli.525 Since these early investigations more than 20 
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studies with boronic acids have been reported and investigators have achieved potent inhibition (low 

nanomolar IC50 values) of class A and C -lactamases with these compounds (e.g. 50–53, see 

Appendix C). Another series of transition state analogues that have been evaluated as -lactamase 

inhibitors are the phosphonates. The phosphonate monoester 54 was first reported by Pratt in 1989 as 

a rapid inactivator of the P99 class C enzyme526 and many other phosphonates (e.g. 55) have been 

reported as inhibitors of class A, C, and D -lactamases. As some of the most potent serine -

lactamase inhibitors yet discovered, boronic acids and phosphonates have proven to be extremely 

valuable as tools in the study of -lactamase mechanisms and much of our knowledge in this area is 

derived from X-ray co-crystal structures of enzyme adducts with transition state analogues.  

-Sultams, the sulfonyl analogues of -lactams, have been found by Page to inactivate P99 -

lactamase and ESI MS experiments indicate that the mechanism of inactivation by 56 is through 

sulfonation of the active-site serine rather than acylation.527     

 

In the early 1980s several research groups proposed independently that analogues of -lactams in 

which the -lactam ring is replaced by a cyclobutanone system might inhibit serine -lactamases and 

DD-transpeptidases by virtue of their ability to form an enzyme-bound hemiketal with an active-site 

serine residue. Gordon et al. reported the synthesis of cyclobutanones 57–59 for this purpose, but 

found no significant inhibition of either R-TEM -lactamase or R61 transpeptidase.528 Meth-Cohn et 

al. synthesized cyclobutanone 60 but did not disclose any biochemical or biological data.529  

The 2-oxabicyclo[3.2.0]heptanones 61 and 62 prepared by Lowe and Swain, however, showed 

time-dependent inhibition of the class A -lactamases R-TEM-2 and BcI and 62 demonstrated 

activity against R61 transpeptidase.530,531 In a subsequent publication Cocuzza and Boswell described 
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the synthesis of several cyclobutanone derivatives, including the N-acetyl thienamycin analogue 63 

and simpler analogues 64.532 While none of the free acids showed significant activity, several of the 

esters 64b showed synergy with benzylpenicillin against penicillin-resistant S. aureus.533 The 

Dmitrienko laboratory described the preparation of dichlorocyclobutanone 65534 and Kelly et al. 

reported that 65 was a weak competitive inhibitor of R61 transpeptidase (Ki  1 mM).535,536,537  

Trifluoromethyl ketones were prepared by the Schofield group in 1996 as potential inhibitors of 

metallo--lactamases.538 Trifluoromethyl ketones 66, for example, inhibited the MBL from X. 

maltophilia with Ki values of 1.5 and 15 M and inhibited the MBL from A. hydrophila with Ki 

values of 44 and 6 M. However, inhibition of the metallo-enzymes of B. cereus and P. aeruginosa 

was more modest with Ki values >300 M.  

 

A small series of -ketoheterocycles was evaluated as inhibitors of serine -lactamases by the Pratt 

group in 2001.539 Moderate inhibition of the class C enzyme P99 was observed by tetrazole 67 (Ki = 

110 M) and thiazole 68 (Ki = 550 M) but these compounds were not inhibitors of TEM-1.  

In 2004 researchers at Aventis in France reported that a bicyclic urea derivative AVE1330A (or 

NXL104) was a potent inhibitor of serine -lactamases, with IC50s of 8 nM against TEM-1 (class A) 

and 80 nM vs P99 (class C).540 Although AVE1330A showed weak antibacterial activity of its own, 

the combination of this -lactamase inhibitor with ceftazidime showed impressive activity against a 

broad range of -lactamase-producing organisms, including CTX-M-, ESBL-, and carbapenemase 

producers but not MBL producers.541 NXL104 also has potent activity against the extended-spectrum 
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Figure 17. Reaction of a serine -lactamase with NXL104. 

-lactamase KPC-2 (IC50 = 38 nM) and its combination with ceftazidime is effective against KPC-

producing isolates of K. pneumoniae,542,543,544 against P. aeruginosa,545 and carbapenemase-producing 

Enterobacteriaceae.546 An X-ray crystal structure of NXL104-treated CTX-M-15 confirms that the 

compound acylates the active-site serine (Figure 17)547 and recent mechanistic studies indicate that 

the serine carbamate intermediate is more stable than the corresponding acyl enzyme intermediates of 

clavulanate, sulbactam, and tazobactam.548 The combination of NXL104 with ceftazidime is currently 

in Phase II clinical trials and a combination of NXL104 with ceftaroline may also enter clinical trials 

for the treatment of MRSA infections.549,550 Novexel, a spin-off company created by Sanofi–Aventis, 

was sold to AstraZeneca in March, 2010 for more than $350 million.551    

1.5.4 Metallo--Lactamase Inhibitors  

Metallo--lactamases have a broad spectrum of substrate specificity that encompasses all -lactam 

classes with the exception of monobactams. The clinically available -lactamase inhibitors, 

clavulanate, sulbactam, and tazobactam, are ineffective against MBL-producing organisms. A large 

number of MBL inhibitors has been published since the mid-1990s but none of these have been 

developed for clinical use. The most common strategy for MBL inhibition has involved metal-binding 

or -chelating functional groups. Aside from EDTA, a metal chelator used for characterization and 

identification of MBLs, inhibitors often contain thiol- and carboxylic acid functional groups.  

Thiols have been reported as metallo--lactamase inhibitors by a number of research groups 

(Figure 18, Appendix C), including the Dmitrienko group,552 and several thiols have been co-

crystallized with MBLs. Thioesters have been investigated as thiol-releasing substrates and have also 

shown inhibitory activity. Mercaptophosphonates have recently been investigated as inhibitors of 

subclass B1, B2, and B3 MBLs.553 
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Figure 18. Inhibitors of metallo--lactamases.  

Other than thiols, pyridine carboxylates, succinic acids, maleic acids, and phthalates have been 

explored as metal-binding compounds, and other non-covalent inhibitors include biphenyl tetrazoles, 

triazoles, and tricyclic natural products (Figure 18). In this laboratory, N-arylsulfonyl hydrazones 

were found to act as competitive inhibitors of IMP-1554 and N-acyl hydrazone analogues were found 

to be inhibitors of a more broad spectrum of enzymes, including IMP-1, VIM-2, and OXA-10, and 

OXA-45.555  

 

A strategy employed by the Buynak group to simultaneously target serine- and metallo--

lactamases involved derivatization of penicillins with a thiol functionality at C6.556 Among the series 
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of penams and penam sulfones prepared, the mercaptomethyl PASs 69 and 69 showed the most 

potent and broad-spectrum activity with low micromolar IC50 values against class A (TEM-1), class C 

(P99), and class B (BcII) -lactamases and sub-micromolar IC50s against the metallo-enzyme L1.     

Although clinically used carbapenems can be hydrolyzed by metallo--lactamases, certain 

carbapenems have been shown to act as potent inhibitors of MBLs as a series with various sidechains 

at C2 was investigated by Banyu Tsukuba in the late 1990s.557 Carbapenems J-110,441 and J-

111,225, for example, inhibited IMP-1-catalyzed imipenem hydrolysis with IC50 values of <0.1 M 

and 0.7 M, respectively. The latter compound, which was later shown to have a Ki of 0.18 M vs 

IMP-1, demonstrated better antibacterial activity than imipenem when used alone against IMP-1-

producing organisms and synergy with imipenem when used in combination.558 In addition, the 

enzymes IMP-1, CcrA, BcII, and L1 hydrolyzed J-111,225 more slowly than imipenem.  

  

Cefotetan, a synthetic cephamycin that is considered a second generation cephalosporin, has been 

reported to be a poor substrate for the metallo--lactamases of Aeromonas spp. but gives rise to 

transient inactivation of the enzymes.559 Inhibition was maximal after a 15 minute incubation of the 

inhibitor and Ki values of 12 and 40 M against the MBLs of A. hydrophila and A. schubertii.   

1.6 Clinical Significance of -Lactamases and the Need for -Lactamase Inhibitors 

One of the most important criteria for the development of the third generation cephalosporins in the 

late 1970s was the requirement for stability to the class A TEM and SHV -lactamases since TEM-1, 

TEM-2, and SHV-1 had emerged as the most commonly encountered plasmid-encoded -lactamases 

worldwide. However, shortly after the introduction of cefotaxime and ceftazidime in the early 1980s, 

resistance to the third generation cephalosporins was observed as a result of mutant TEMs and 

SHVs.560 These enzymes were named extended-spectrum -lactamases (ESBLs) because of their 



 

75 

ability to hydrolyze extended-spectrum cephalosporins and monobactams. Class A ESBLs (Bush 

functional group 2be) now include the VEB and GES -lactamases, but the most widespread ESBLs 

are the CTX-Ms.249 Third generation cephalosporins, which have a broad spectrum of activity and are 

prescribed for a wide variety of infections,561 are among the most widely used of all antibiotics, with 

revenues of $11.9 billion in 2009,20 and ESBL-mediated resistance is deeply concerning.    

Resistance also quickly emerged to -lactamase inhibitor combinations, such as amoxicillin–

clavulanate and piperacillin–tazobactam, which were also developed in the mid-1980s in order to 

overcome resistance to broad-spectrum, plasmid-encoded class A -lactamases. While mutant TEMs 

and SHVs rarely possess both the extended-spectrum and inhibitor-resistant phenotypes (Bush group 

2ber), the increased prevalence of ESBLs and inhibitor-resistant -lactamases over the last decade has 

caused an increase in the use of carbapenems. Carbapenems, which have been historically considered 

the -lactams of last resort, are now being used as the first line of defense against Gram-negative 

infections in which ESBL-mediated resistance is suspected.562         

This increased dependence upon carbapenems adds to the concern that has already been caused by 

the emergence of carbapenemases in the last decade.134,259,326,563 Among the most threatening 

carbapenemases are metallo--lactamases such as VIM-2, which has replaced IMP-1 as the dominant 

MBL in P. aeruginosa, and serine carbapenemases such as the class A KPC-2, which is increasingly 

encountered in Enterobacteriaceae.564 Therapeutic options are becoming increasingly limited for 

carbapenem-resistant infections.    

With very few new -lactams in the antibiotic pipeline and increasing numbers of -lactamases, 

there is a growing movement toward the development of combination antibiotics.549 It is thought that 

single -lactam-containing agents will be difficult to sustain in the clinical setting and that 

combinations of established -lactam antibiotics with potent, broad-spectrum -lactamase inhibitors 

may be better suited to contend with multi--lactamase-producing multidrug-resistant Gram-negative 

pathogens.410,565 The ideal -lactamase inhibitor would show potent inhibition of both serine- and 

metallo--lactamases.311,408,549,566,567      
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Chapter 2 

Cyclobutanone Analogues of -Lactam Antibiotics: Synthesis and           

.    Conformational Properties*,568   

2.1 Previous Work with Cyclobutanones  

By the early 1960s Gram-negative bacteria had replaced S. aureus as the most problematic hospital 

pathogens and biochemical studies in the early 1970s suggested that the major mechanism for 

resistance to the clinically available cephalosporins was inactivation by -lactamases.98,99 For the 

most part, pharmaceutical companies directed efforts toward the discovery of new cephalosporins that 

showed higher stability to -lactamases, but -lactamase inhibitors were also pursued as potential 

solutions to the -lactamase problem. Clavulanic acid, for example, which was discovered in the early 

1970s in a screening program by Beecham,119 showed very potent inhibitory activity and encouraged 

the development of other types of inhibitors.  

As noted in the previous chapter, the concept that the -lactam ring was essential for biological 

activity was a widely held belief but researchers began to question this notion in the 1970s with the 

synthesis and evaluation of -lactam mimics.519 With the increasing success of aldehydes and ketones 

in the late 1970s as transition state analogues569,570 for the inhibition of serine proteases,571 the 

synthesis of ketone analogues of -lactams for the inhibition of -lactamases and/or DD-

transpeptidases seemed to be a logical progression. Such compounds would be hydrolytically stable 

analogues of -lactams that might inhibit these enzymes through formation of a stable hemiketal 

linkage in the active site. In the early 1980s it became clear that other groups had also pursued this 

strategy for -lactamase inhibition.  

In 1981 Gordon, Pluščec, and Ondetti reported the synthesis of simple carbocyclic cyclobutanones 

57–59 as potential -lactamase inhibitors through a [2 + 2] cycloaddition of dichloroketene with 6,6- 

                                                      

 * Reproduced in part, with permission, from ref 568: Johnson, J. W.; Evanoff, D. P.; Savard, M. E.; 

Lange, G.; Ramadhar, T. R.; Assoud, A.; Taylor, N. J.; Dmitrienko, G. I. J. Org. Chem. 2008, 73, 

6970–6982. Copyright 2008 American Chemical Society. 
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Scheme 15. Synthetic Routes to Cyclobutanone Analogues of -Lactams.  
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bis(methylmercapto)fulvene, followed by a low-yielding hydrolysis of dithioketeneacetal 70 with 

mercuric chloride (Scheme 15). These compounds did not show significant inhibition of either R-

TEM -lactamase or R61 transpeptidase.528  
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Meth-Cohn, Reason, and Roberts synthesized oxime 60, by way of a tricyclic intermediate 71, 

through interesting rearrangement chemistry developed previously by that group.529,572 It was thought 

that the oxime moiety might improve the ability of cyclobutanone 60 to acylate the active-site serine 

but no biochemical or biological data was reported. 

Lowe and Swain pursued the synthesis of 2-oxabicyclo[3.2.0]heptanone analogues of penicillins 

and the cycloaddition of dichloroketene with dihydrofuran 72, prepared by Birch reduction of the 

parent furan, provided dichlorocyclobutanone 73.530,531 Catalytic hydrogenolysis of 73 gave the 

monochloro acid 61, which was regarded as an analogue of 6-bromopenicillanic acid. Attempts to 

introduce the 6-acylamino sidechain directly through a cycloaddition of phthalimidoketene with 

dihydrofuran 72 were unsuccessful but a route involving an intramolecular nitrene insertion from 74 

was devised and provided cyclobutanone 62 in low yield. Biochemical assays with the 2-

oxacyclobutanones indicated that 61 and 62 showed time-dependent inhibition of the class A -

lactamases R-TEM-2 and BcI and 62 demonstrated activity against R61 transpeptidase.530,531   

Cyclobutanone 63,  an analogue of N-acetyl thienamycin, was prepared by Cocuzza and Boswell in 

a 14-step synthesis from 6-silyloxyfulvene 75.532 Addition of the 7-hydroxyethyl sidechain was 

accomplished through treatment of a zirconium enolate of 76 with acetaldehyde and installation of the 

2-aminoethylthio group at C3 was done through an addition–elimination displacement of the 

phenylsulfonyl group of 77 with the corresponding thiolate nucleophile. Other cyclobutanone 

analogues such as 64a, which possess electron-withdrawing groups at C3 (e.g. SO2R, COPh, CN), 

were prepared from 78 using a similar addition–elimination strategy. While none of the free acids 63 

or 64a showed significant anti--lactamase activity, several benzhydryl esters 64b exhibited 

antibacterial activity against S. aureus (MICs: 25–50 g/mL) and synergy with benzylpenicillin 

against -lactamase-producing penicillin-resistant S. aureus.533   

 

Initial attempts in this laboratory to prepare simple cyclobutanone analogues of -lactams 79, 

through a [2 + 2] cycloaddition of dichloroketene with 5,5-dicyanocyclopentadiene, were 
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unsuccessful since a homo-Diels–Alder reaction of the diene to give 80 was favoured.573,574,575 As an 

alternative, sulfur-containing cyclobutanone derivatives were targeted and the 2-thiabicyclo-

[3.2.0]heptanone 65534 was prepared in four steps from the known dihydrothiophene 81.576,577 A novel 

and efficient deconjugation procedure was used for the conversion of conjugated acid 82 to the 

deconjugated ester 83 that was required for the [2 + 2] cycloaddition to afford cyclobutanone 84 

(discussed in more detail in Section 2.2). While dichlorocyclobutanone 65534 showed no significant 

inhibition of the serine -lactamase BcI from B. cereus (Dr. Marc Savard, unpublished results), Kelly 

et al. reported that 65 was a weak competitive inhibitor (Ki = 1 mM) of R61 transpeptidase.535 In 

addition, X-ray crystallographic data by Kelly et al. was consistent with the binding of 65 to the 

active site of the transpeptidase but the resolution of the structure was low and the data was 

insufficient to define a detailed structure of the enzyme-bound inhibitor.536,537  

Other studies toward the synthesis of cyclobutanones were reported by the Page group but no 

biological data was reported.578,579 It should also be noted that the Baldwin group later prepared 

cyclobutanones 85 and 86 as hydrolytically stable analogues of penicillins that could be used for the 

study of penicillin biosynthetic enzymes. Martyres et al. reported the synthesis of the model system 

85 by combining the synthesis of 84, developed in this laboratory, with the nitrene insertion 

methodology developed by Lowe and Swain for the installation of the 7-acylamino sidechain.580 

Ferguson et al. extended this strategy to incorporate a gem-dimethyl group at C3 and the 

aminoadipoyl sidechain at C7 and generate a cyclobutanone analogue of penicillin N (86) for 

crystallographic studies.581 In 2007 the group published an X-ray crystal structure (PDB: 2JB4) of 

cyclobutanone 87 bound to isopenicillin N synthase (IPNS).582   

 

Although the preliminary biochemical data for 61, 62, 64b, and 65 served as a proof of principle 

for the concept that cyclobutanones can act as -lactamase and transpeptidase inhibitors, other more 

impressive advances in the inhibition of -lactamases were being made in the early 1980s which 

discouraged further explorations of the cyclobutanones.  
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Figure 19. Cyclobutanones as potential broad-spectrum inhibitors of -lactamases and penicillin-
binding proteins (PBPs).  

In the 1980s the clinically most significant -lactamases were Ambler class A enzymes such as the 

plasmid-encoded TEMs of Gram-negative organisms and the introduction of the mechanism-based 

inhibitors clavulanic acid, sulbactam, and tazobactam, was very successful for combating such 

organisms. The current situation, however, is much different. Inhibitor-resistant TEMs, ESBLs, class 

A carbapenemases, hyper-produced AmpCs, OXA carbapenemases, and metallo--lactamases 

represent a very real threat to the continued use of penicillins and cephalosporins, the most heavily 

used classes of antibiotics, and carbapenems, the -lactam antibiotics of last resort. Renewed efforts 

are therefore required to establish strategies with potential for overcoming this emerging epidemic.  

Cyclobutanone analogues of -lactams have the potential to form an enzyme-bound hemiketal in 

the active site of a serine -lactamase and an enzyme-bound hydrate in the active site of a metallo--

lactamases (Figure 19) and therefore represent a core structure that might form the basis for the 

design of broad-spectrum inhibitors. The previous work with cyclobutanones mentioned above 

yielded only a superficial understanding of the inhibitory properties toward class A -lactamases and 

DD-transpeptidases and the interactions of such compounds with class B metallo--lactamases and 

class C and class D serine -lactamases, which were not of clinical interest in the 1980s, were not 

studied. At the outset of this project, encouraging preliminary studies in the Dmitrienko group had 

already indicated that the dichlorocyclobutanone 65 was a moderate inhibitor of the serine -

lactamase OXA-10 and the metallo--lactamase IMP-1.583 Therefore, a systematic investigation was 

undertaken to gain insight into the properties of the cyclobutanones and the nature of the inhibition of 

-lactamases with the ultimate goal of discovering broad-spectrum -lactamase inhibitors that might 

be developed for clinical use.  
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2.2 Synthesis of 2-Thiabicyclo[3.2.0]heptan-6-one-4-carboxylates 

2.2.1 Early Synthetic Studies 

Cyclobutanones are versatile intermediates in organic synthesis and can undergo a wide variety of 

transformations. Ring expansions of cyclobutanones with diazomethane, Baeyer–Villiger ring 

expansions with m-CPBA, and Favorskii584 ring contractions are well-documented and 

reviewed.585,586,587 More specifically, the bicyclo[3.2.0]heptanone system of interest to this laboratory, 

has been especially useful as precursors for the stereoselective synthesis of prostaglandins.588 The 

most widely used method for the synthesis of cyclobutanones involves a [2 + 2] cycloaddition of an 

alkene with a ketene and, since such reactions are stereospecific and are often highly regioselective,589 

this strategy has been used for the synthesis of the -lactam analogues 57–65 and 85–87 mentioned 

above.  

In the early 1980s the Dmitrienko group targeted cyclobutanones such as 79 and 88 as simple 

analogues of penicillins. The failure of 5,5-dicyanocyclopentadiene to undergo the desired [2 + 2] 

cycloaddition with dichloroketene to provide 79574 encouraged the group to pursue the synthesis of 

sulfur-containing analogues which might be synthetically more accessible and also act as better 

mimics of penicillins (Scheme 16). Early synthetic efforts in this laboratory toward 88 by Gerald 

Lange (M.Sc. 1984)590 involved unsuccessful attempts to cyclize malonates such as 89 and 

cyclobutanone analogues such as 90, which lack the gem-dimethyl group at C3, were then pursued. 

Dihydrothiophene 91, which could be generated from the Birch reduction of thiophene 92 and 

esterification with diazomethane, indeed reacted with dichloroketene to provide cyclobutanone 84 

with the desired regiochemistry, but the overall yield of 4% over three steps was considered 

impractical. A survey of the literature revealed that dihydrothiophene 81 was readily available from 

phosphonate 93 by the method of McIntosh and Sieler576,577 and this prompted Lange to explore the 

possibility that 91 might be prepared by isomerization of 95.  

Initial attempts to effect the deconjugation of 95 using potassium tert-butoxide at –78 C and 

quenching with acetic acid were unsuccessful and only the dimer 96, the result of a Michael-type 

addition, was isolated (Scheme 17). It was thought that the deconjugation could be more successful 

with a bulkier ester that might sterically hinder the dimerization. Thus a transesterification from  
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Scheme 16. Retrosynthetic Analysis of 2-Thiabicyclo[3.2.0]heptan-6-one-4-carboxylates.  

 

Scheme 17. Discovery of a Deconjugation Procedure Involving Chloroformates.590   

 

methyl ester 95 to benzyl ester 97 was attempted using a well-known method involving ethyl 

chloroformate. The saponification of 95, followed by treatment of the conjugated acid 82 with ethyl 

chloroformate and benzyl alcohol generated a mixture of the conjugated benzyl ester 97 and what was 

thought to be the deconjugated mixed anhydride 98. Further characterization of the undesired by-

product with 13C NMR and elemental analysis, however, indicated that the major product was not the 

mixed anhydride 98 but rather the deconjugated ethyl ester 83.590 The rationale for this outcome was 

based on the assumption that the enhanced acidity of the -proton of the mixed anhydride 

intermediate 99 would permit triethylamine to induce the elimination of carbon dioxide and ethoxide. 

Attack of the resulting ketene intermediate 100 by ethoxide would generate anion 101 which could 
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undergo kinetic protonation to provide the observed product 83. With Lange’s subsequent 

demonstration that the deconjugated ethyl ester 83 could be converted to the targeted cyclobutanone 

84, it became clear that the serendipitously discovered deconjugation process provided efficient 

access to the targeted cyclobutanones.  

With the decision to revisit the cyclobutanones in the early 2000s, Darryl Evanoff (M.Sc. 2004) 

prepared cyclobutanone 65 according to the route developed by Lange and Savard so that the 

cyclobutanones could be screened for inhibitory activity against two -lactamases that had been 

recently acquired. Preliminary biochemical results in this laboratory indicated that 65 was a moderate 

time-dependent inhibitor of the class D -lactamase OXA-10 and, more interestingly, the class B 

metallo--lactamase IMP-1. In order to prepare additional material for more detailed biochemical 

studies and to synthesize other potentially more potent analogues, it seemed reasonable to continue to 

use the fairly efficient route developed by Lange and Savard and attempt to make improvements to 

the procedures where possible.        

2.2.2 Synthetic Route for 2-Thiabicyclo[3.2.0]heptan-6-one-4-carboxylates 

As noted above, the methodology developed by McIntosh and Sieler576,577 provided efficient access to 

dihydrothiophene 81 and literature procedures were used for the preparation of the substrate required 

for this reaction, phosphonoacrylate 93 (Scheme 18).591 The Michaelis–Arbuzov reaction592 of ethyl 

bromoacetate (102) with triethyl phosphite has been conducted on scales of up to 300 mmol and was 

found to be a very convenient and high-yielding reaction. The two reagents were combined, warmed 

slowly593 without solvent to 85–95C, and heated overnight to afford the crude phosphonoacetate 103 

which could be distilled in 98% yield or used without purification in the next reaction. Triethyl 

phosphonoacetate (103), which is also available from commercial sources, was then treated with 

paraformaldehyde and piperidine and refluxed overnight in methanol to generate a primary alcohol 

that was concentrated but not purified.594 Dehydration of the intermediate with 10 mol% p-

toluenesulfonic acid (TsOH) in refluxing toluene under a Dean–Stark trap,595 followed by distillation 

under high vacuum, provided the desired phosphonoacrylate 93 in 91% yield over two steps. As 

indicated in Scheme 18, the methyl ester 94 was obtained in 76% yield from methyl bromoacetate 

(104).        
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Scheme 18. Michaelis–Arbuzov Reactions and Synthesis of Phosphonoacrylates.   
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The method developed by McIntosh and Sieler576,577 for the synthesis of dihydrothiophenes is a 

one-pot procedure involving the conjugate addition of a mercaptoaldehyde to a phosphonoacrylate 

and an intramolecular Horner–Wadsworth–Emmons cyclization (Scheme 19).596 For the synthesis of 

dihydrothiophene 81, phosphonate 93 was added to a suspension of triethylamine and 2,5-

dihydroxydithiane (106), which is a dimer of mercaptoacetaldehyde, in CH2Cl2 and refluxed 

overnight. Aqueous washes of the crude product and flash chromatography provided the conjugated 

ethyl ester 81 in 75% yield. The methyl ester 94 was converted to dihydrothiophene 95 with a yield of 

73%.  

Scheme 19. Synthesis of Dihydrothiophenes by the Method of McIntosh and Sieler.   

 

Hydrolysis of ester 81 with 25% aqueous NaOH at 70 C for 6–16 hours, followed by acidification 

gave the conjugated acid 82 as dull yellow powder which could be recrystallized to furnish the 

conjugated acid 82 as a storable crystalline solid (mp: 169–170 C (EtOAc/hexane)). Prolonged 

reaction times for the hydrolysis generated small amounts of the deconjugated acid 107 but isomeric 

mixtures of 82 and 107 could be used together in the following deconjugation reaction without issue. 

The acid 82 was obtained in 93% yield through hydrolysis of the methyl ester 95 under the same 

conditions.  

As described above, the conjugated acid 82 was converted to the deconjugated ester 83 through 

treatment with ethyl chloroformate and triethylamine in CH2Cl2 at room temperature (Scheme 20). 

The yield of this reaction was consistently above 90% on reaction scales as large as 100 mmol and, 

despite a noticeable warming of the reaction vessel during the slow addition of ethyl chloroformate on 
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large scales, only a small proportion (typically 3–7% by 1H NMR) of the undesired isomer 81 was 

generated. The deconjugated dihydrothiophene 83 was found to be more sensitive to oxidation than 

its conjugated isomer 81 and the oxidation product, thiophene 108, was observed as a minor by-

product of the reaction. The oxidation of 83 to the thiophene 108, which occurs even at 4 C, prevents 

long-term storage of the compound and the dihydrothiophene was therefore used immediately in the 

next step following its purification by flash chromatography.      

Scheme 20. Preparation of the Deconjugated Dihydrothiophene 83.   
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Additional experiments in this laboratory in the mid-1980s suggest that the mixed anhydride 

method has some generality as straight-chain and carbocyclic ,-unsaturated acids can also undergo 

deconjugation (Dr. Marc Savard, unpublished results). Related deconjugations involving ,-

unsaturated acid chlorides have also been studied.597  

Lange’s early attempts at the [2 + 2] cycloaddition of 83 with dichloroketene (generated in situ by 

the combination of dichloroacetyl chloride and triethylamine) revealed that the ethyl ester substituent 

of 83 significantly deactivates the dihydrothiophene, presumably through inductive and steric effects, 

relative to 2,3-dihydrothiophene itself.590 A similar decrease in reactivity was noted by Lowe and 

Swain with the dihydrofuran 72.530,531 A slower addition of the ketene precursor dichloroacetyl 

chloride over 3.5 hours to a solution of triethylamine and 83 in CCl4, in order to decrease the known 

polymerization of the ketene,589 was successful for improving the yield of the dichlorocyclobutanone 

84 to 33% (Scheme 21). In an effort to further improve upon the yield of the cycloaddition, Evanoff 

studied the effects of even slower addition times (up to 24 hours) and extended stirring times 

following the slow addition (up to 24 hours).583 While the Baldwin group reported a yield of 80% for 

the same reaction,580 conducted in CCl4 with a slow addition over a 48 hour period, experiments in 

this laboratory indicated that an addition period of longer than 2 hours was not beneficial. The highest 

yield obtained from Evanoff’s six experiments was 40% and was the result of a slow drop-wise 

addition of dichloroacetyl chloride (2.5 equiv) over 2 hours to a solution of Et3N (2.5 equiv) and 83 in  
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Scheme 21. Preparation of Dichlorocyclobutanone 84 via [2 + 2] Cycloaddition.   
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CCl4, followed by an additional 22 hours of stirring.  

With the considerable increase in the price of carbon tetrachloride, more recent attempts to improve 

the yield of the [2 + 2] reaction have explored the use of other solvents. Hexane and cyclohexane 

were found to be reasonable alternatives to CCl4 as yields as high as 65% have been obtained. In the 

highest-yielding reaction, dichloroacetyl chloride (2.5 equiv) was added to a solution of Et3N (2.5 

equiv) and 83 (37 mmol) in hexane (0.1 M) at room temperature over a period of 3 hours with a 

motor-driven syringe pump and the solution was stirred for an additional 21 hours before workup. 

Attempts to improve the yield of the reaction, through slower addition times or by maintaining strictly 

anhydrous conditions, were unsuccessful. In addition, efforts to de-gas solvents and reagents prior to 

use failed to decrease the formation of the major by-product of the reaction, thiophene 108. Other 

unproductive attempts to improve the yield involved a reversal of the order of addition such that Et3N 

was added slowly to a solution of dihydrothiophene 83 and dichloroacetyl chloride in hexane. While 

only very small proportions of the C4-epimer 109 were observed in previous reactions, 109 was 

isolated in more significant amounts (3–5%) when Et3N was added to the dihydrothiophene and 

dichloroacetyl chloride. These observations may indicate that this [2 + 2] cycloaddition is not as 

stereoselective as once thought to be.  

As dichlorocyclobutanones are known to be sensitive to base-induced ring cleavage,528,598 

conversion of 84 to carboxylic acid 65 was accomplished with acid catalysis (Scheme 22). Ethyl ester 

84 was heated to 70–80 C in a 1:1 mixture of dioxane and 6 M HCl for 6–8 hours and extracted with 

CH2Cl2. The resulting yellow solid was recrystallized from toluene to give 65 in 79% yield.  

Ester 84 was readily dechlorinated with excess zinc dust (added in portions) in hot acetic acid for 

6–12 hours and purification by flash chromatography provided cyclobutanone 110 in good yield. The 

acid 65 could be dechlorinated with a similar procedure; however, longer reaction times were often 

required and chromatography was ineffective for purification. Upon completion of the reaction, 
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Scheme 22. Acid-Catalyzed Hydrolysis of Ethyl Ester 84 and Dechlorinations of 84 and 65.    

 

zinc salts were removed by filtration, the acetic acid removed under reduced pressure, and the crude 

product was diluted with aqueous HCl and extracted with EtOAc. In some cases, the dechlorinated 

acid 111 was purified by crystallization but simple trituration of the crude product was also found to 

be effective. The dechlorinated acid 111 could also be prepared through the acid-catalyzed hydrolysis 

of 110; however, an impurity produced by these reaction conditions prevented the purification of acid 

111. This by-product, which was not purified, was identified as the methyl ketone 112 by 1H NMR 

and is thought to be generated through the acid-catalyzed ring-opening of the cyclobutanone (Scheme 

22). Cyclobutanone ring openings of this type have precedent. 599,600  

Overall, the route developed in this laboratory for the synthesis of 2-thiabicyclo[3.2.0]heptan-6-

one-4-carboxylates is very efficient as the dichlorocyclobutanone 65 was prepared in seven steps 

from commercially available triethyl phosphonoacetate (103) with an overall yield of 28% (Scheme 

23). In practice, the four- or five-step synthesis of dihydrothiophene 82, a storable solid, by this 

method is high-yielding, operationally simple, and these reactions have been done on scales of up to 

250 mmol. The deconjugation is also high-yielding on large scale but the deconjugated 

dihydrothiophene 83 is unstable and must be used quickly in the next reaction. The key reaction in the 

sequence, the [2 + 2] cycloaddition, is low-yielding, requires careful setup and operation, and the 

maximum scale of this reaction (determined by practical limitations) is 75 mmol. Careful 

chromatography is required for purification of the [2 + 2] adduct 84 but the cyclobutanone can be 

stored for years at 4 C without decomposition. The acid-catalyzed hydrolysis of 84 can be done on 

large scales in reasonable yield and recrystallization provides the acid 65 as a crystalline solid.   
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Scheme 23. Synthetic Route to 2-Thiabicyclo[3.2.0]heptan-6-one-4-carboxylate Derivatives.   
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2.2.3 Conformations of 2-Thiabicyclo[3.2.0]heptan-6-ones 

With the synthesis of cyclobutanone 84 in this laboratory in the early 1980s, Lange was able to 

correctly assign the stereochemistry at C4 through an examination of molecular models and 1H NMR 

analysis.534,590 An X-ray crystal structure of the 4-unsubstituted cyclobutanone 113 revealed that this 

simple analogue adopted an endo envelope conformation in the solid state, a preference that differed 

from the exo envelope conformation assigned to cyclobutanone 114 by Thandi (Figure 20).574 The 

feature of 84 which allowed Lange to assign the stereochemistry at C4 was that H5 appeared as a 

doublet in the 1H NMR spectrum and coupled only to H1. The lack of coupling between H4 and H5 

indicated that the dihedral angle between H4 and H5 was close to 90, according to the Karplus  
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Figure 20. Conformational analysis of cyclobutanones 113, 114, 84, and 109. (A) X-ray structure of 
Lange’s cyclobutanone 113.590 (B) The conformational preference of the carbocyclic cyclobutanone 
114 prepared by Thandi.574 (C) Lange’s conformational analysis of cyclobutanones 84 and 109 used 
for assignment of the stereochemistry at C4 ( = dihedral angle, E = CO2Et).583,590  
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Figure 21. X-ray crystal structures of cyclobutanones 84, 109, 65, and 111. Colour scheme: white, 
grey, red, yellow, and green represent H, C, O, S, and Cl, respectively. See Appendix G for tables of 
crystallographic data.   

relationship,601 and molecular models indicated that 84 possessed a 4-CO2Et group and favoured the 

endo envelope conformation. In the present study, X-ray crystallographic analysis (Figure 21) and ab 

initio molecular orbital calculations (RHF, Section 2.6) confirmed this conformational preference for 

ester 84 and acids 63 and 111 in the solid state and gas phase, respectively. NMR analysis of 

cyclobutanones 61 and 62 led Lowe and Swain to recognize that an endo envelope is also preferred 

by the 2-oxa- ring system.530,531 The 1H NMR spectrum of the recently isolated cyclobutanone 109 

shows a coupling of J4,5 = 7.6 Hz and an X-ray crystal structure confirms that this compound also 

favours the endo envelope.     

2.3 -Lactamase Inhibition with Simple Analogues 65 and 111  

The first cyclobutanone analogues to be tested for inhibitory activity against the metallo--lactamase 

IMP-1 were the dichlorocyclobutanone 65 and the dechlorinated derivative 111 prepared by 

Evanoff.583 These biochemical assays, which were conducted by Ms. Miriam Heynen in this 

laboratory in the early 2000s, indicated that the dichlorocyclobutanone 65 inhibited nitrocefin 

hydrolysis by IMP-1 with an IC50 of 526 M but the dechlorinated cyclobutanone 111 was a very 

poor inhibitor with an IC50 of approximately 180 mM (Table 1, Figure 22).  

It was thought that the dichlorocyclobutanone 65 displayed better inhibition than 111 because the 

electron-withdrawing chlorines could enhance the stability of an enzyme-bound hydrate. The extent 

to which these cyclobutanones undergo hydrate- and hemiketal formation in solution was then 

evaluated by NMR experiments in D2O (with acetone-d6 as a cosolvent to facilitate solubilization) 
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Table 1. Hydrate and Hemiketal Formation with Cyclobutanones 65 and 111 and Initial Inhibition 
Results with IMP-1 and OXA-10.a,b   

65:
111:

S

O H CO2D

HX
X S

RO
H CO2D

HX
X

DO

ROD

hydrate or
hemiketal

X = Cl
X = H  

ketone 
% hydrate in 

D2O/acetone-d6
 a

% hemiketal 
 in CD3OD a 

IMP-1 
IC50 (1 min)b 

OXA-10 
IC50 (10 min)b 

65 74 88 526 M 444 M 

111 0 24 180 mM 14 mM 

a Cyclobutanone hydrate and hemiketal formation data were determined by 1H NMR in 
the present study. b -Lactamase inhibition, as reported by Evanoff,583 was assessed by 
monitoring nitrocefin hydrolysis (Figure 22). The enzyme and inhibitor were allowed to 
preincubate prior to the addition of nitrocefin for 1 min in IMP-1 assays and for 10 min in 
OXA-10 assays. More recent inhibition results are reported in Chapter 3.  

 

Figure 22. Enzymatic hydrolysis of nitrocefin, a chromogenic cephalosporin substrate of serine- and 
metallo--lactamases.602     

and methanol-d4 (Table 1). Indeed the tendencies for 65 and 111 to form tetrahedral adducts in 

solution were found to parallel the inhibition results described above and these data were also 

consistent with other studies in which di- and trifluoromethyl ketones are more potent inhibitors of 

serine proteases than mono- and non-fluorinated ketones.603,604,605   

Further study of the interaction of IMP-1 with the cyclobutanones revealed that the inhibition by 65 

was progressive and was related to the time allowed for preincubation of the enzyme with the 

inhibitor prior to the addition of nitrocefin.583 At an inhibitor concentration of 500 M, for example, 

IMP-1 activity was inhibited by 40% after 1 minute and 80% inhibited after 40 minutes. The 

dechlorinated cyclobutanone 111, however, showed no significant improvement in inhibition of IMP-

1 with increased preincubation time.   

With the acquisition of the expression system for OXA-10 in the early 2000s, as a generous gift  
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Scheme 24. Ring Opening of the Dichlorocyclobutanone 65 in Aqueous Na2CO3.      
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from Prof. Mobashery (Notre Dame), cyclobutanones 65 and 111 could be evaluated as potential 

inhibitors of a class D serine -lactamase. While dichlorocyclobutanone 65 showed no inhibition after 

a 1 minute preincubation with the enzyme, an IC50 value of 444 M was obtained with a 10 minute 

preincubation. In a separate time course study, 500 M of cyclobutanone 65 inhibited OXA-10 

activity by 80% after 20 minutes and by 95% after 40 minutes.583   

In addition to the possibility that the progressive inhibition of IMP-1 and OXA-10 was a result of 

slow binding, alternate explanations for the time dependence were also considered. As mentioned 

above, dichlorocyclobutanones are well-known to be susceptible to ring-opening by alkoxides but 

Evanoff had demonstrated that acid 65 is especially sensitive as it is fully converted to the diacid 115 

in aqueous sodium carbonate in only 5 minutes and further hydrolyzed to aldehyde 116 with longer 

reaction times (Scheme 24). Hydrolysis to the diacid 115 was also found to occur under the assay 

conditions of IMP-1 (50 mM HEPES buffer, pH 7.3) and OXA-10 (100 mM NaxPO4, pH 7.0), with a 

half-life for the dichlorocyclobutanone 65 of approximately 2 hours in each case, but the aldehyde 

116 was not observed.583   

The progressive inhibition observed led to the speculation that the ring-opened diacid 115 and 

aldehyde 116 might be more potent inhibitors of IMP-1 and OXA-10 than the parent cyclobutanone 

65. In revisiting Evanoff’s chemistry for the preparation of the ring-opened products, cyclobutanone 

65 was treated with cold, dilute Na2CO3 to generate the diacid 115 as a mixture of diastereomers and 

an X-ray crystal structure of isomer 115a was obtained (Scheme 24). Exposure of 65 to Na2CO3 for 

30 minutes produced aldehyde 116 as a mixture of diastereomers. Biochemical evaluation of each of 

these diacids, however, revealed that 115 and 116 were poor inhibitors of IMP-1 and OXA-10 and 

ended speculation that the ring-openend products were the active inhibitory species.  

Extensive efforts have been made in this laboratory by Valerie Goodfellow and, more recently, Dr. 

Laura Marrone to elucidate the nature of the erratic behaviour of cyclobutanones 65 and 111 with 
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these enzymes. For example, one source of concern in the earliest experiments with IMP-1 was the 

significant loss of enzyme activity over the course of the assay. While enzyme stability was improved 

with higher concentrations of salt in the assays (100–500 M NaCl) inhibition of IMP-1 by the 

cyclobutanones decreased. Enzyme stability was also found to be sensitive to the concentration of 

DMSO and assays are now conducted with 1% DMSO for serine -lactamases and 0.1% with 

MBLs. It should also be noted that attempts were made to detect complexes of 65 with OXA-10, as 

an acyl-enzyme or serine hemiketal, and IMP-1, as a non-covalent zinc-bound hydrate or zinc-bound 

diacid, by mass spectrometry but these studies were unsuccessful. Other variables in the assays were 

investigated to improve the reproducibility and reliability of the IC50 values but the good behaviour of 

other inhibitors, such as the N-sulfonyl hydrazones552 and N-acyl hydrazones,555 with these enzymes 

discouraged further study of these cyclobutanones.    

2.4 Derivatization at C3: Chlorination and Substitutions 

While the irregular behaviour of the cyclobutanones in biochemical assays had prevented the 

determination of reliable IC50 or Ki values for the inhibition of IMP-1 and OXA-10, it seemed clear 

even from the earliest assays that the dichlorocyclobutanone 65 was a much better inhibitor than the 

dechlorinated analogue 111. Since the chlorines were beneficial for inhibition, synthetic efforts to 

improve upon the inhibitory potency focused on the functionalization of the tetrahydrothiophene ring. 

A sidechain at C3, for example, could increase the affinity of such inhibitors for -lactamase active 

sites through favourable hydrogen bonds or other non-covalent contacts. More specifically, sidechains 

similar to those of carbapenem antibiotics might improve the affinity of such cyclobutanones for 

carbapenemases.  

 

It was thought that carbapenem mimics might be accessed through a route involving chlorination at 

C3, followed by elimination, conjugate addition of a thiol(ate) to C3, oxidation, and deprotection  
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Figure 23. Initial strategy for the synthesis of carbapenem analogues.   

Scheme 25. Chlorination of 84 and X-Ray Structure of 117. 
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(Figure 23). Chlorination was first considered as a possible strategy for introducing functionality at 

C3 because Lange had successfully chlorinated the simpler analogue 113 with sulfuryl chloride.590   

The chlorination of 84 with SO2Cl2 in CH2Cl2 was fully regioselective and was also very 

stereoselective to produce 117 in nearly quantitative yield (Scheme 25). The stereoselectivity of the 

process may be a consequence of the initial chlorination of 84 occurring on the exo face to generate 

the S-chlorosulfonium ion A. Elimination of HCl might then lead to the sulfur-stabilized carbocation 

B with the chloride leaving group poised for subsequent attack from the exo face of the ring system, 

which would provide the 3-chloride 117.  

It was clear from the 1H NMR spectrum of 117 that the conformation was different from that of 

65 and 111 since the coupling constant between H4 and H5 was found to be 6 Hz (J4,5  0 Hz for 65 

and 111). The stereochemistry and exo envelope conformation for 117 were confirmed by a single-

crystal X-ray diffraction study (Scheme 25).  

Initial attempts to effect elimination with pyridine, Et3N, or DBU in CH2Cl2, THF, or MeCN were 

unsuccessful, however, and the use of Ag2CO3 resulted in a complex mixture with only a low yield of 

the elimination product 118. Heating of 117 in MeCN achieved partial elimination but the 3- 

chloro epimer 117 was observed as a major byproduct that showed even slower elimination (by 

NMR).  
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2.5 Substitutions and Eliminations at C3 

As the preliminary efforts to prepare the unsaturated ester 118 indicated that 117 was unreactive in 

mildly basic conditions, the potential for elimination under acidic conditions was investigated. 

Heating of the -chloro derivative 117 in AcOH, for example, generated a mixture of products with 

small amounts of 118 and 117 and, more interestingly, larger proportions of substitution product. 

While the search for an efficient method for elimination continued, attention was also given to the 

exploration of substitution reactions. Hydrolysis of 117 to generate 119, for example, could provide 

another potential route toward carbapenem analogues (Figure 24).  

 

Figure 24. Revised strategy for the synthesis of carbapenem analogues.   

Hydrolysis of 117 in water and acetonitrile (1:1) generated the thiolactols 119 and 119, in a 

1:14 ratio, which could not be separated by flash chromatography. Interestingly, 1H and 13C NMR 

spectra of the chromatographed thiolactol mixture showed a third material (~6%) which was 

identified as a tricyclic hemiketal 119c (C6 105.9) (Figure 25). A similar oxatricyclo[3.2.1.03,6]octane 

120b (C3 103.90) has been observed by Grudzinski and Roberts (Figure 26).606,607,608 Since the 

119:119:119c ratio was consistently close to 6:88:6 in several different preparations, it is thought 

that the mixture may be part of an equilibrium that allows the interconversion of 119 and 119. In 

order to gain insight into the mechanism of interconversion, an NMR experiment was conducted in 

which the thiolactol mixture 119 was subjected to AcCl (to generate HCl in situ) in methanol-

d4/acetonitrile-d3 (1:1). The lack of any cross-over products from reaction with the solvent (to 

generate the 3-methoxy derivatives 121 or 121) suggests that equilibration via ring-opened 

aldehyde C is more likely than equilibration through a sulfur-stabilized carbocation D.  

With the 3-hydroxy derivatives 119 in hand, several attempts were made to oxidize the thiolactol to 

the corresponding thiolactone. Pyridinium chlorochromate (PCC),609 pyridinium dichromate 

(PDC),610 Dess–Martin periodinane (DMP),611,612 and (COCl)2/DMSO/Et3N (Swern oxidation)613 had 

each failed to react with thiolactol 119. The 3-hydroxy derivatives 119 were also unreactive toward 
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Figure 25. An equilibrium involving 119, 119, and 119c.  

 

Figure 26. Tricyclic hemiketals prepared by Grudzinski and Roberts.606  

SO2Cl2, N-chlorosuccinimide (NCS), N-bromosuccinimide (NBS), and N-methylmorpholine-N-oxide 

(NMO) at room temperature and gave complex mixtures when treated with Br2 or I2/K2CO3. Other 

conditions that involved aqueous alkaline conditions were not attempted due to the sensitivity of the 

dichlorocyclobutanone ring. While there is some literature precedent for the oxidation of simpler 

thiolactols,614 Grudzinski and Roberts have reported that acetylation of a related cyclic hemiketal 

(120b) takes place at the reactive hemiketal site (Figure 26).606    

The lack of success with the attempted oxidation of 119, together with the relative ease with which 

117 was hydrolyzed, encouraged further exploration of substitution reactions since C3-alkoxy 

derivatives were thought of as penicillin analogues that would certainly be worthy of investigation.     

As with the hydrolysis of 117 in H2O/MeCN, the solvolysis of 117 in ROH/MeCN provided the 

3-alkoxy (S,O-acetal) derivatives 121–125 (Figure 27).  

Similar to the hydrolysis, the methanolysis of 117 in MeOH/MeCN was complete within 48 hours 

and cleanly generated the substitution products 121 and 121 (Table 2). However, the reactions with 

sterically demanding alcohols, 2-propanol and tert-butyl alcohol, showed incomplete conversion and  
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Figure 27. Solvolysis of 117 and X-ray crystal structures of 123 and 124.   

Table 2. Substitutions at C3 with Alcohols and AcOH.a   

 

solvent(s) time (h) product OR b  117 118 

MeCN/H2O 1:1 48 119 OHc 6 88 0 0 

MeCN/MeOH 1:1 48 121 OMe 75 24 0 1 

MeCN/i-PrOH 1:1 40 122 Oi-Prd 46 20 16 18 

MeCN/t-BuOH 1:1 48 123 Ot-Bue 34f 7 44 15 

AcOH 48 124 OAc 3 52 43 2 

AcOH, 80 C 1 124 OAc 4 79 6 11 

CF3CH2OH 48 125 OTFE 5 76 0 19 

a Reactions were performed at room temperature unless otherwise stated. b Product distributions were 
determined by 1H NMR of the crude product. c Remaining 6% is attributed to 119c. d 85% conversion. e 
42% conversion. f An improved yield of 123 was obtained by heating 117 in t-BuOH at 80 C. See 
Chapter 5 for a detailed procedure. 

generated considerably more of the epimerization and elimination by-products, 117 and 118. The 

3-chloro isomer could not be prepared in useful quantities for further studies since it was found to be 

unstable during flash chromatography. However, 117 was found to prefer an endo envelope 

conformation in solution, as indicated by the multiplicity of H3 and H4 in the 1H NMR spectrum. As 

with 124, H3 and H4 in 117 appear as singlets and J3,4 = 0 Hz.  

In contrast to the hydrolysis, the substitutions in MeOH, i-PrOH, and t-BuOH selectively produced 

the -OR retention products with / ratios of 3.1:1, 2.3:1, and 4.9:1, respectively (Table 2). Control  
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Figure 28. Control experiments which demonstrate that conjugate addition to the unsaturated ester 118 
does not occur under the conditions of the substitution reactions and that equilibration of substitution 
products does not occur.  
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Figure 29. Possible intermediates in substitutions involving 117 with ROH (E = CO2Et).  

experiments which involved the exposure of 118 to AcCl (1 equiv) in methanol-d4/acetonitrile-d3 

(1:1), in order to mimic the conditions of the substitution reactions, discount the possibility that the -

OR products are the result of the conjugate addition of ROH to 118 since no reaction was observed by 

NMR in 48 hours (Figure 28). Similarly, the 3-OMe derivatives 121 and 121 were separately 

exposed to AcCl in isopropanol-d8/acetonitrile-d3 (1:1) and the lack of reaction over a period of 4 

days demonstrates that equilibration of the substitution products -OR and -OR does not occur. 

Together, these experiments imply that the / ratios are the consequences of kinetic and not 

thermodynamic control.  

The high -selectivity in the substitution with methanol led to the speculation that a cyclobutanone 

hemiketal could be generated that would block the endo face of C3 from subsequent inversion 

(structures E–F, Figure 29). In this way, attack from the exo () face of F would lead to the major 

isomer 121 whereas the minor isomer 121 would be a result of attack from the endo () face of D. 

In addition, it is possible that the hemiketal could provide higher -selectivity through a double  
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Figure 30. Solvolysis of 117 with AcOH and TFEOH and a rationale for high  selectivity.  

inversion resulting from neighbouring group participation (structures G–H). Work reported by 

Grudzinski and Roberts involving the bromination of similar bicyclic substrates indicates that this 

pathway is plausible (Figure 26). The fact that a tricyclic methyl ketal (neutral form of H) was not 

observed may indicate that either this is a minor pathway, or that H is very reactive since one full 

equivalent of HCl is generated in this solvolysis reaction while the brominations by Grudzinski and 

Roberts using N-bromoacetamide were non-acidic. 

While the hypothesis involving intermediates E–H is reasonable for methanol, it was suspected that 

hemiketal formation with a bulkier alcohols is less significant. In order to determine the extent of 

hemiketal formation in alcohols other than methanol, cyclobutanone 118 was dissolved in deuterated 

alcohols such that hemiketal formation could be observed by NMR. In methanol-d4, 96% hemiketal 

was observed after 2 hours and 96% after 4 days. In t-butanol-d10, less than 1% hemiketal was 

observed after 24 hours and 5% after 18 days. In isopropanol-d8, 7% hemiketal was observed after 5 

hours and 36% after 8 days. In trifluoroethanol-d3, less than 1% hemiketal was observed after 4 hours 

and 3% after 8 days. 

With the confirmation that hemiketal formation in t-butanol occurs to a much lesser extent than in 

methanol, it is likely that the substitution products 123 and 123 are the result of attack by t-butanol 

on intermediate D. The five-membered ring of structure D is essentially flat, as indicated by a gas 

phase structural optimization (RHF/6-31G(d)), and the fact that the retention product 123 is 

generated in preference to 123 indicates that the exo face is more accessible than endo face as a 

consequence of steric shielding by the 7-chlorine atom. The rationale that steric hindrance drives the 

5:1 : selectivity would be consistent with the lower conversion observed with t-butanol.  
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The 2:1 : selectivity shown by 2-propanol could be rationalized by a combination of its 

capability to slowly form the hemiketal, which would lead to 122 from F or H, and its ability to 

attack from the endo () face of C or D, which would yield 122. The high selectivity in favour of 

inversion demonstrated by acetic acid (124:124  1:17) and trifluoroethanol (125:125  1:15) 

was unexpected as it clearly contrasts with that of the aforementioned alcohols. This selectivity 

suggests that attack from the endo face must be favoured electronically since the enhanced acidity and 

weaker nucleophilicity of AcOH and TFEOH increase the SN1 character of the substitution relative to 

reactions with ordinary alcohols (Figure 30). 

Attack on the carbocation from the  (exo) face may be disfavoured as a result of two destabilizing 

eclipsing interactions in TS that are not present in TS. The high -selectivity demonstrated by t-

BuOH, however, indicates that the 7-Cl imposes such a large destabilizing steric interaction in TS 

that TS is preferred. 

While the solvolysis reactions using ROH/MeCN were useful for the synthesis of 119 and 121–

123 and interesting from a mechanistic point of view, they generally required relatively long 

reaction times, difficult chromatographic separations, and generated large proportions of the 

epimerization and elimination by-products 117 and 118. Efforts were then made to develop a 

complementary method that would be more selective for inversion and improve upon the reaction 

times and the amount of by-products formed. The use of silver triflate was explored (Table 3) as it has 

been used as a promoter in substitutions at the anomeric position of chlorocarbohydrates. 

Since the / selectivity of the hydrolysis was not a concern (based on the proposed 

interconversion of the products 119 and 119), acetonitrile was chosen as a water-miscible solvent. 

However, the use of MeCN with 117 was otherwise considered problematic due to the spontaneous 

epimerization to 117 observed previously and CH2Cl2 was chosen for reactions with alcohols. 

Typically, 117 was slowly added as a solution in CH2Cl2 to a suspension of AgOTf, ROH, and 

molecular sieves in CH2Cl2 at 0 C.  

Indeed, the AgOTf-promoted reactions displayed improved reaction times and an increased 

selectivity for inversion with ROH. Interestingly, ten equivalents of methanol showed less selectivity 

for inversion than ten equivalents of t-butanol. Since a decrease to five equivalents of MeOH 

improved the  selectivity, it is possible that hemiketal formation remains significant at low 
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Table 3. Substitutions at C3 Promoted by Silver Triflate.a   

 

ROH equiv ROH time (h) product OR b  117 118 

H2O c excess 4 119 OHd 6 85 0 3 

MeOH 5 6 121 OMe 22 72 2 4 

MeOH 10 6 121 OMe 26 61 0 2 

i-PrOH  5 12 122 Oi-Pr 16 71 2 11 

t-BuOH  10 8 123 Ot-Bue 5 42 30 22 

a Reaction conditions: AgOTf (1.2 equiv) in CH2Cl2 was used with 4 Å MS (3 Å MS for R = Me). 
Reactions were begun at 0 C and allowed to warm to room temperature. b Product distributions were 
determined by 1H NMR of the crude product. c Hydrolysis was performed at room temperature in 
MeCN/H2O 1:1 without the use of molecular sieves. d Remaining 6% is attributed to 119c. e 92% 
conversion. 

concentrations of MeOH and that leakage to 121 could be through structures F–H (and to a lesser 

extent D).  

The proportion of the elimination by-product 118 remained a concern in the AgOTf-catalyzed 

reactions with the hindered nucleophiles i-PrOH and t-BuOH. This observation inspired an 

investigation into whether the elimination could be effected exclusively in the absence of a 

nucleophile. Gratifyingly, the addition of 117 to AgOTf in refluxing CH2Cl2 furnished 118 cleanly 

in 81% isolated yield (Scheme 26).    

It was also found that the unsaturated ester 118 could be prepared in high yield through dehydration 

of the thiolactols 119 with TsOH in refluxing toluene under a Dean–Stark trap,595 although it should 

be noted that high yields for this reaction were achieved only when the water from TsOHH2O was 

azeotropically removed prior to the addition of 120. A more convenient and expedient procedure for 

the synthesis of 118 was discovered more recently. Although one very early attempt to eliminate  

Scheme 26. Methods for the Synthesis of the Unsaturated Esters 118 and 126.  
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HCl from the 117 involved methanesulfonic acid (MsOH), its use in only catalytic quantities was 

insufficient to promote the desired reaction. With a higher concentration of MsOH (10% in CH2Cl2), 

however, the unsaturated ester 118 was isolated in 72% yield. Cyclobutanone 118 could also be 

dechlorinated readily with zinc in acetic acid to give 126. 

2.6 Conformational Properties of C3 Derivatives and Anomeric Effects 

During the development of the solvolysis reactions and silver-triflate promoted substitutions it 

became clear that cyclobutanones with 3 substituents (Z = Cl, O-alkyl) conformed to an exo 

envelope while those with 3 substituents (Z = H, Cl, OAc, O-alkyl) showed preference for the endo 

envelope. This was apparent from 1H NMR spectroscopy (Figure 31) as the spectrum of each 

derivative displayed a pattern similar to either 117 and 123 or 124, the structures of which were 

solved by X-ray crystallographic studies.  

4.04.55.05.56.0 ppm

4.04.55.05.56.0 ppm

Cl

Cl
O

S
H

H

H H
ZO O

Et

exo
envelope

Cl

Cl
O

H H

Z

H
H

O
OEt

endo
envelope

5

5

3

3

S
4

4

J4,5 = 0 Hz
J3 ,4 = 0 Hz

Z = Cl, OAc, OR

Z = Cl, OR

J4,5 = 5-6 Hz
J3 ,4 = 4-5 Hz

H3 H5 H1 H4OCH2

H3 H5 H1 H4OCH2

 

Figure 31. Conformations of C3-substituted cyclobutanones. Coupling patterns in the 1H NMR spectra 
shown (123 and 123, Z = Ot-Bu), are representative of derivatives 117, 119, and 121–125. 

The possibility was considered that the conformational preferences could be a result of an anomeric 

effect involving the sulfur and the electron-withdrawing substituents at C3.615 Although the 

conformational properties of sulfur-containing six-membered rings are well known,616 the anomeric 

effect has been studied relatively little in five-membered rings since the conformational consequences 

are much less dramatic and twisted conformations are typically favoured in which the substituents are  



 

102 

S

O H CO2H

HCl
Cl

65

S

O H CO2H

H

111

1.811
1.813

Cl

Cl
O

H H

OAc

H
H

CO2Et

S

124

1.801

1.441

Cl

Cl
O

S
H

H

EH H
Cl

117

1.782

Cl

Cl
O

S
H

H

EH H
Ot-Bu

123

1.395

1.844

1.800

(1.819)

S

HO

HO

N

H
NH

Me

O

O

H

H

H
H

1.831

1.839

S

HO

HO

N

H
NH

O

O

H

H

H
H

1.838

1.842

Br

OO

Cl

Cl

1.819

1.781

1.394

1.425

O

Cl

OAc
AcO

AcO

OAc

1.366

1.859

O
Cl

AcO
AcO

AcO

1.428

1.754

1.427

S
AcO

OAc

OH
HO

1.470

1.794 1.810

1.432
EtO2C S

OAc

AcO

HO
OH

E

S

S
Cl

Cl

1.800
1.8151.781

1.798

1.838

 

Figure 32. Comparison of bond lengths (Å) obtained from X-ray crystal structures in the present study 
with related compounds. The X-ray structure of 111 contains two crystallographically different 
molecules in the unit cell (E = CO2Et). 

in pseudo-axial or pseudo-equatorial orientations. While this is evident in the crystal structures of 

numerous 4′-thionucleoside derivatives (-aza substituents),617 anomeric effects and gauche effects 

have been argued previously to rationalize the conformations of 4′-thionucleosides.617,618 In addition, 

it is possible that anomeric effects are responsible for the axial arrangements that have been 

recognized by 1H NMR analysis in known -halo and -alkoxy tetrahydrothiophenes such as trans-

2,3-dichlorotetrahydrothiophene,619 2-alkoxy-3-chlorotetrahydrothiophenes,620 trans-2,3-dibromo-

tetrahydrothiophene, and 2-alkoxy-3-bromotetrahydrothiophenes.621     

Since the anomeric effect is often characterized by a shortening of the O–C bond and lengthening 

of the C–X bond in the O–C–X segment of carbohydrate derivatives, the bond lengths obtained in the 

X-ray crystal structures of 117, 123, and 124 were examined closely (Figure 32). The anomeric 

effect is generally thought to be strongest with electron-withdrawing substituents (halogen > OR > SR 

> OH > NR2)
615c and structural evidence for the anomeric effect was indeed discovered in 2-

thiabicyclo[3.2.0]heptan-6-ones which possess electron-withdrawing substituents at C3.   

The X-ray crystal structure of 3-Cl derivative 117 clearly reveals a shortened S–C3 bond (1.782 

Å) and a lengthened C3–Cl bond (1.800 Å) in comparison to structurally related 

tetrahydrothiophenes, dithianes and dioxanes, chlorocarbohydrates, and the unsubstituted 
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cyclobutanones 65 and 111 (Figure 32). Similarly, the solid-state structure of 124 exhibits a shorter 

S–C3 bond (1.801 Å) relative to 65 and 111 and C3–O bond (1.441 Å) of intermediate length relative 

to acetoxythiopyranosides. 

Interestingly, in contrast to 117 and 124, the X-ray crystal structure of the 3-Ot-Bu derivative 

123 shows a long S–C3 bond (1.844 Å) and a short C3–O bond (1.395 Å). This is consistent with 

the general consensus that anomeric effects are stronger with oxygen than sulfur.615,616,622 

In order to probe these phenomena further, ab initio (RHF/6-31G(d)) molecular orbital (MO) 

calculations623 were carried out with several of the cyclobutanone derivatives that had been prepared 

synthetically (Table 4). The conformational preferences observed by NMR (solution phase) and by X-

ray (solid state) were also found in the gas phase and the preferred conformations are those in which 

C3- substituents are oriented axially.  

In order to gain additional insight into the origin of the conformational preferences and putative 

stereoelectronic stabilizations of axial arrangements, additional calculations were performed with a 

series of simplified cyclobutanone derivatives that lack the C4-carboxylate moiety. 

These calculations show that the C4-carboxylate has a minor effect on the conformations of 

unsubstituted (Z = H) cyclobutanones, as each of the cyclobutanones 65, 84, 110, and 111 (1.4–1.9 

kcal/mol) and 112 and 130 (2 kcal/mol) have a similar preference for the endo envelope, and suggest 

that the eclipsing interactions between substituents at C4 and C5 in the exo envelope are significant 

(Figure 33). The 2-oxa and 2-carba analogues 139–142 also favour the endo envelope conformation.  

Computational evidence for the anomeric effect is noted in the comparison of cyclobutanones 112 

and 130 to compounds with  substituents at C3. The small preference for the exo envelope (0.05 

kcal/mol) shown by cyclobutanone 131, for example, indicates that the energy gained by 

stereoelectronic stabilization in the exo envelope is enough to overcome the natural endo preference 

(1.89 kcal/mol) of the fused bicycle. Thus, comparison of 130 with 131–135 suggests that 

anomeric effects could be worth up to 1.9, 3.3, 3.1, 1.5, and 1.1 kcal/mol for Z = -Cl, -OAc, -

OMe, -Ot-Bu, and -SMe, respectively. Similar trends were found with the dichlorocyclobutanones 

136, 137, and 138, which gave values of 1.9, 3.2, and 1.0 kcal/mol for Z = -Cl, -OMe, and -

SMe, respectively, when compared to 112. 
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Table 4. Calculated Conformational Preferences for Cyclobutanone Derivatives (kcal/mol).a   

 

Cyclobutanone or -Lactam 
Relative Energy  

Cyclobutanone or -Lactam 
Relative Energy 

endo exo  endo exo 

 

     

 

    

65: R = H 0 + 1.93  136: Z = Cl 0 + 0.47 

84: R = Et 0 + 1.92  137: Z = OMe + 0.77 0 

127: R = – 0 + 2.28  138: Z = SMe 0 + 1.42 

 

     

S

O H

HCl
Cl

Z

 

    

111: R = H 0 + 1.43  136: Z = Cl 0 + 1.59 

110: R = Et 0 + 1.44  137: Z = OMe 0 + 4.84 

128: R = – 0 + 1.73  138: Z = SMe 0 + 0.51 

      

 

    

 

117: Z = Cl + 2.44 0  139: Y = O 0 + 0.78 

119: Z = OH + 3.84 0  140: Y = CH2 0 + 2.27 

121: Z = OMe + 3.75 0     

123: Z = Ot-Bu + 1.29 0  

Y

O H

HCl
Cl

 

   

124: Z = OAc + 3.41 0  141: Y = O 0 + 1.40 

129: Z = SMe + 0.55 0  142: Y = CH2 0 + 2.02 

          

 

117: Z = Cl 0 + 1.69  

O

O H

H

Z

 

    

119: Z = OH 0 + 5.18  143: Z = OMe + 2.10 0 

121: Z = OMe 0 + 4.85  144: Z = SMe + 0.62 0 

123: Z = Ot-Bu 0 + 3.55      

124: Z = OAc 0 + 4.78  

 

    

129: Z = SMe 0 + 0.64  143: Z = OMe 0 + 3.45 

S

O H

HX
X

 

     144: Z = SMe 0 + 0.38 

130: X = H 0 + 1.89      

112: X = Cl 0 + 2.42  

O H

H

Z

 

    

     145: Z = OMe 0 + 1.36 

S

O H

H

Z

 

131: Z = Cl + 0.05 0  146: Z = SMe 0 + 2.69 

132: Z = OAc + 1.40 0      

133: Z = OMe + 1.17 0  

 

    

134: Z = Ot-Bu 0 + 0.35  145: Z = OMe 0 + 2.41 

135: Z = SMe 0 + 0.75  146: Z = SMe +0.74 0 

          

 

131: Z = Cl 0 + 2.08  

N

S

O

H

CO2

HH
NR

O

    

132: Z = OAc 0 + 4.64  147: R = Me 0 + 2.05 

133: Z = OMe 0 + 4.46  148: R = CH2Ph 0 + 2.18 

134: Z = Ot-Bu 0 + 3.33     

 135: Z = SMe 0 + 0.92       

a Comparison of the relative energy of each conformer was done following zero-point energy corrections. 
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Figure 33. Favoured conformations and relevant steric interactions. 

 Calculations involving -substituents at C3 also indicate that an anomeric effect is present as the 

-alkoxy derivatives 132–134 show increased preferences for the endo envelope (2.8, 2.6, and 1.4 

kcal/mol for Z = -OAc, -OMe, and -Ot-Bu) relative to 130 (Z = H). However, the -Cl derivative 

131, which contains a sterically larger substituent, shows only a modest increase in endo preference 

(0.2 kcal/mol) and the -SMe analogue 135 shows a decrease in endo preference (1.0 kcal/mol). 

Since this pattern is magnified in the 7,7-dichloro series 136–138 (–0.8, +2.4, and –1.9 kcal/mol 

for -Cl, -OMe, and -SMe compared to 112), it seems reasonable to conclude that large 3-

substituents experience a significant steric interaction with the 7-H or 7-Cl (Figure 33).624,625   

Given the large magnitudes of the calculated conformational preferences (2–5 kcal/mol) for 

cyclobutanones 117, 119, 121, 123, 124, and 129, and the relatively small preferences with 

derivatives 131–135, and 136–138, it is clear that the C4-carboxylate moiety significantly 

enhances the preference for the exo conformation with -substituents. It is likely that a disfavoured 

steric interaction between the 3-Z function and the carboxylate in the endo envelope accounts for 

much of this energy since a significant rotation of the C4–CO2Et bond is observed in the optimized 

endo envelope conformations of 121, 123, 124, and 129, and not in the exo envelope 

conformations. A torsional scan about the C4–CO2Et bond of 84 revealed that the dihedral angle 

between the C4–C5 bond and the C=O bond of the ester was close to 0 in the lowest energy 

conformations, in both the endo envelope and exo envelope, and that rotation of the bond is 

associated with a substantial increase in potential energy (Figure 34). Comparison of the  
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Figure 34. Rotation of the C4–CO2Et bond in cyclobutanone 84. Calculated (RHF/6-31G(d)) potential 
energies in the (A) endo envelope and (B) exo envelope conformations are superimposed and offset 
by 1.92 kcal/mol in (C) to reflect relative energies.  represents the dihedral angle between the C4–C5 
bond and the C=O bond (as coloured in blue). Determination of the potential energy at each angle 
involved the manual rotation of the C4-CO2Et bond (10 increments) from the RHF/6-31G(d)-
optimized geometry of 84, followed by calculation of the RHF/6-31G(d) energy at each angle.    
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conformational preferences of cyclobutanones with -substituents, however, indicates that the C4-

carboxylate has a minor energetic effect as 117, 121, and 129, have nearly identical preferences 

as the de-carboxy analogues 136–138. 

In addition to the computational results described thus far, the conformational preferences of 

several 2-oxa and 2-carba (CH2) analogues 139–146 have been calculated for the purpose of 

comparison. It is worth noting that the calculated conformational preferences for the 2-thia series are 

generally larger in magnitude than the preferences of the 2-oxa counterparts, and that this is likely a 

consequence of increased steric interactions in the tetrahydrofuran system due to the shorter 

endocyclic carbon-oxygen bond lengths.  

2.7 Conformational Properties of Penicillins 

The importance of the penicillins to antibiotic therapy has led to numerous studies of their three-

dimensional structures by experimental and theoretical methods and particular attention has been paid 

to the conformational properties of the thiazolidine ring. X-ray crystal structures, which have been 

obtained for a variety of penicillins, show that the bicycle can adopt an endo envelope conformation I 

or an exo envelope conformation J (Figure 35).626 The endo and exo envelopes are also referred to as 

the C3-puckered and S-puckered conformations, based on the atom that is most out of the plane of the 

ring, or the axial and equatorial conformations, respectively, based on the orientation of the 3-

carboxylate.  

Attempts have been made to correlate the solid-state conformational preferences with biological 

activity,627,628 but NMR studies by Dobson et al. demonstrate that these differences in conformational 

preference are not present in solution. The use of lanthanide ions as probes629 and 13C cross 

polarization magic angle spinning (CP-MAS) NMR experiments630,631 indicate that several penicillins 

(with different solid-state preferences) all favour the exo envelope conformation J in aqueous solution 

with ratios of endo:exo conformers ranging from 45:55 to 21:79, respectively.632   

While penicillin G has been found to favour the endo envelope conformation I in the gas phase by 

several computational studies633,634 including our own (2.2 kcal/mol, Table 4), molecular dynamics 

(MD) studies by Díaz et al.633 show that solvent has a significant energetic effect (~1.5 kcal/mol) in 
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Figure 35. Two conformations of penicillin G. Figures of the endo envelope (C3-puckered, axial) 
conformation I and the exo envelope (S-puckered, equatorial) conformation J were adapted from X-
ray crystal structures of the potassium salt (CCDC: BPENK01) and the procaine salt (CCDC: 
PRPENG), respectively.  

 

Figure 36. Non-covalent complexes of penicillins with penicillin-recognizing proteins. (A) X-ray 
crystal structure (PDB: 1PW1) of a peptidoglycan-mimetic penicillin bound to an acylation-deficient 
form of R61 DD-transpeptidase.199 (B) X-ray crystal structure of benzylpenicillin bound to the 
Ser70Gly mutant of the class A -lactamase CTX-M-9 (PDB: 3HUO).637  

stabilizing the exo envelope conformation J, and the MD simulation which predicts an endo:exo ratio 

of 70:30 in aqueous solution is in reasonable agreement with Dobson’s experimental results. 

In the context of biological activity, it is thought that - lactamases preferentially bind to the exo 

envelope conformer J of penicillins. Through detailed MD simulations of penicillin G complexed 

with the class A TEM-1 -lactamase, Díaz et al. have shown that H-bonding interactions between the 

C3-carboxylate and Ser130, Ser235, and Arg244, are favoured with the equatorial conformer J and 

that a steric clash between the 2-methyl group and Ala237 is also avoided.263 Additional molecular 

modeling studies involving mechanisms of penicillin acylation in TEM-1 (class A)264,266,635 and P99 

(class C)636 -lactamases have also involved the exo envelope conformation J of the penicillins, but 

analogous studies with the class B and class D enzymes have yet to be reported.   

Recent crystallographic work, however, could be considered the strongest evidence that the exo 

envelope is the biologically active conformation. A non-covalent complex between the R61 
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transpeptidase and a peptidoglycan-mimetic penicillin has been trapped crystallographically199 and an 

X-ray crystal structure of benzylpenicillin bound to the Ser70Gly mutant of CTX-M-9 has been 

recently deposited in the PDB (Figure 36).637 These crystal structures show that the penicillin adopts 

the exo envelope conformation J in the active sites of the PBP and the -lactamase.   

2.8 Conformations of Cyclobutanone Derivatives and Hemiketal Formation 

Since the tendency for the cyclobutanones to undergo hydrate and hemiketal formation is central to 

their ability to function as -lactamase inhibitors, the strong evidence (discussed above) indicating 

that penicillins bind to PBPs and -lactamases in the exo envelope conformation brought to mind the 

following question: Does the conformation of the tetrahydrothiophene ring have a significant effect 

on the tendency of the cyclobutanones to undergo hydrate and hemiketal formation?  

Hemiketal formation with cyclobutanones was evaluated through simple NMR experiments in 

which the cyclobutanone of interest was dissolved in neat methanol-d4 (Table 5). As mentioned 

above, the dichlorocyclobutanones 65 and 84 (X = Cl) underwent hemiketal formation to a much 

greater extent than the dechlorinated ketones 110 and 111 (X = H). As expected, this pattern was also 

evident in the unsaturated system as hemiketal formation occurred to a greater extent with 118 (X = 

Cl) than with 126 (X = H).  

Exposure of the 3-alkoxy dichlorocyclobutanones 121–123 and 121–124 to methanol-d4 

revealed that the extent of hemiketal formation was highly dependent upon the steric environment 

surrounding the carbonyl group. Thus, hemiketal formation is highly favoured in cyclobutanones that 

prefer the exo envelope, 121–123 (98%), while hemiketal formation is less significant with 

cyclobutanones 121–124 (15–40%), which adopt the endo envelope. It is reasonable that the 

unsaturated esters 118 and 126 show larger proportions of hemiketal than 84 and 110, respectively, 

since the C3 methylene unit could impose additional steric congestion in the endo envelope. Steric 

hindrance of ketone hydration has been noted previously.605   

While it has been well established that nucleophilic attack on the carbonyl group is highly favoured 

from the exo face of bicyclo[3.2.0]heptan-6-ones, the reversible nature of hemiketal formation gave 

rise to a mixture of the ketone and each of the - and -hemiketals which often required weeks to  
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Table 5. Cyclobutanone Hemiketal Formation in Methanol-d4.
a   

 

Cyclobutanone 
 :  

hemiketal 
ratio b 

%  
hemiketal 

 

    
65: R = H 2.7 : 1 88 
84: R = Et 2.7 : 1 91 

    

 

    
110: R = Et 1.8 : 1 19 
111: R = H 1.6 : 1 24 

    

S

CO2Et
O H

HX
X

 

    
118: X = Cl 1.8 : 1 96 
126: X = H 1.5 : 1 38 

    

 

121: Z = OMe 1.2 : 1 98 
122: Z = Oi-Pr 1.1 : 1 98 
123: Z = Ot-Bu 1.1 : 1 98 

    

 

121: Z = OMe 4.7 : 1 15 
122: Z = Oi-Pr 4.2 : 1 24 
123: Z = Ot-Bu 1.8 : 1 40 
124: Z = OAc 1.5 : 1 30 

      

a The extent of hemiketal formation was determined by 1H NMR 
experiments in neat CD3OD. b The / hemiketal ratio was 
determined when the system had reached equilibrium. 

equilibrate. Tabulation of the equilibrium ratios of -hemiketal/-hemiketal revealed that the relative 

stability of the - and -hemiketals is highly sensitive to steric hindrance in the same way that the 

extent of hemiketal formation was found to be. Namely, the cyclobutanone derivatives with the 

greatest steric bulk on the endo face of the bicycle have the highest /-hemiketal ratios. 

Interestingly, the coupling patterns in 1H NMR and the chemical shifts observed in the 13C NMR 

indicate that the -hemiketals of 3-alkoxy cyclobutanones 121–124 adopt the exo envelope 

conformation (Figure 37).  

In contrast to the fast hydrate formation observed with 65 (X = Cl) in D2O and the classical study 

by Wiberg et al. involving carbonyl reactions,638 hemiketal formation involving 65 and 84 was  
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Figure 37. Conformations of cyclobutanone hemiketals as indicated by 1H NMR and 13C NMR (R = 
Me, i-Pr, t-Bu). For tables of selected 1H and 13C NMR data for cyclobutanones and cyclobutanone 
hemiketals, see Appendix D.   

surprisingly slow given the high electrophilicity of the carbonyl carbon and required several hours to 

equilibrate (Appendix E).639 The results reported by the Wiberg group, which show that hemiketal 

formation with ketones is fast, were replicated in our laboratory under our conditions for 

cyclobutanone itself and were also reflected in the relatively fast hemiketal formation demonstrated 

by the dechlorinated cyclobutanones 110 and 111.  

Although the extent of hemiketal formation is greater for the 7,7-dichlorinated systems as 

compared with the non-chlorinated compounds, qualitative observations of relative rates of hemiketal 

formation suggest that the process is somewhat impeded by the halogen substituents. The 

approximate trend in relative rates of hemiketal formation is: 121–123 > 126  118  110 > 84 > 

123 > 122 > 121.  

Hemiketal formation must involve either protonation of the carbonyl oxygen or at least substantial 

H-bonding to the oxygen from the solvent to activate the carbonyl for nucleophilic attack at carbon. 

The chlorine atoms at C7 likely diminish electron density on the carbonyl oxygen atom making it less 

basic and less prone to protonation by an acid catalyst or to act as an H-bond acceptor. Furthermore, 

the chlorines likely offer a degree of steric hindrance to the solvation which might be required for 

lowering the activation energy for the addition step in hemiketal formation. 

2.9 Summary and Outlook  

This chapter describes details of the synthetic route used for construction of the 2-thia-  
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Figure 38. Synthesis of 3-alkoxy, 3-alkoxy, and 3,4-unsaturated cyclobutanone analogues of -
lactams and the relationship between conformation and the extent of cyclobutanone hemiketal 
formation in methanol-d4.   

bicyclo[3.2.0]heptan-6-one-4-carboxylate skeleton and the results of preliminary biochemical assays 

with cyclobutanones 65 and 111 which encouraged the synthesis of other dichlorocyclobutanone 

analogues of -lactams. 3-Alkoxy derivatives were prepared through two complementary 

diastereoselective substitution reactions following a highly stereoselective chlorination of 84 with 

sulfuryl chloride (Figure 38). Cyclobutanone derivatives with 3 substituents favour an endo 

envelope conformation in solution, the solid state, and the gas phase, whereas those with 3 

substituents adopt an exo envelope conformation. Evidence from X-ray crystal structures and ab initio 

calculations suggests that an anomeric effect contributes to the large conformational preference of the 

tetrahydrothiophene ring that favours the 3-alkoxy substituent in an axial orientation. In addition, the 

conformation of the bicyclic system, which is determined by the stereochemistry of the 3-alkoxy 

substituent, has a dramatic effect on the ability of the cyclobutanone to undergo hemiketal formation 

in methanol-d4.  

If the extent of hemiketal formation in alcoholic solution can be used as an estimate of the relative 

stability of the tetrahedral adducts, then the results presented above (Table 5, Figure 38) indicate that 

3-alkoxy cyclobutanone derivatives should also form more stable hemiketal adducts than the 3-

epimers in the active sites of serine -lactamases. In addition, crystallographic and computational 

studies which indicate that penicillins bind to PBPs and -lactamases in the exo envelope 

conformation suggest that 3-alkoxy cyclobutanone derivatives, which strongly favour the exo 
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envelope conformation, would be better penicillin mimics than the 3-alkoxy analogues, which 

strongly favour the endo envelope conformation. The relatively rapid and complete hemiketal 

formation exhibited by the 3-alkoxy derivatives and the unsaturated cyclobutanone 118 are 

properties desirable for potential -lactamase inhibitors functioning by the mechanism described 

above and experiments designed to exploit these observations are presented in the following chapters 

of this thesis.    
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Chapter 3 

Cyclobutanones Analogues of -Lactam Antibiotics: Inhibition of Serine- 

...and Metallo--Lactamases†,640  

3.1 A Modified Synthetic Route to the Free-Acid Form of the Cyclobutanones 

The relationship between the strong conformational preferences of 3-alkoxy-substituted 2-thia-

bicyclo[3.2.0]heptan-6-one-4-carboxylates and their tendency to undergo hemiketal formation led to 

the prediction that 3-alkoxy cyclobutanone derivatives should be better -lactamase inhibitors than 

the 3-alkoxy counterparts. In order to test this hypothesis in enzyme inhibition assays the carboxylic 

acid form of these derivatives was required. Not unexpectedly, however, the conditions used for the 

acid-catalyzed hydrolysis of other ethyl esters (6 M HCl/dioxane, 85 C) were found to be 

inappropriate for 3-alkoxy ethyl ester derivatives. Even 3 M HCl at room temperature led to the 

decomposition of the 3-alkoxy substrates, presumably through hydrolysis of the S,O-acetal 

functionality at C3. Since the sensitivity of the dichlorocyclobutanone ring to aqueous hydroxide had 

already been established other esters were considered for the protection of the C4-carboxylate (Figure 

39).   

 

Figure 39. Protecting group strategies considered for the C4-carboxylate of 3-alkoxy cyclobutanone 
derivatives.   

While the 3-alkoxy derivatives were unstable to concentrations of aqueous HCl required for ethyl 

ester hydrolysis, compounds such as 121 and 121 were fully stable in previous experiments with  

                                                      

 † Reproduced in part, with permission, from ref 640. Johnson, J. W.; Gretes, M.; Goodfellow, V. J.; 

Marrone, L.; Heynen, M. L.; Strynadka, N. C. J.; Dmitrienko, G. I. J. Am. Chem. Soc. 2010, 132, 

2558–2560. Copyright 2010 American Chemical Society.  
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Scheme 27. Synthesis and X-ray Structures of 3-Methoxy Cyclobutanone Analogues of Penicillins.a 
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0.1 M HCl in i-PrOH. Several protecting groups were considered potentially useful for the present 

application (methyl, t-butyl, allyl, benzyl, p-methoxybenzyl, p-nitrobenzyl, etc.) but the benzhydryl 

ester was chosen since deprotection typically involves TFA and because diphenyldiazomethane had 

already been prepared by other researchers in this laboratory.  

The esterification of 65 with diphenyldiazomethane in EtOAc cleanly afforded the benzhydryl ester 

149 in 98% yield (Scheme 27). While previous chlorinations at C3 employed SO2Cl2, the chlorination 

of 149 used N-chlorosuccinimide in order to avoid the production of HCl. Chlorinations with NCS, 

which selectively produced the -chloro isomer 150, were initially done in CH2Cl2 but were found 

to be faster in MeCN. While the succinimide byproduct could be removed with aqueous washes of 

150 in CH2Cl2, the washing process caused a certain amount of epimerization and elimination. As a 

result, the mixture of 150 and succinimide was typically used directly in the subsequent 

methanolysis without purification to generate the 3-methoxy substitution products 151 and 151 in 

a 3:1 ratio. The -chloro isomer 151 could be selectively crystallized from the mixture prior to the 

difficult separation of the diastereomers with flash chromatography. Treatment of each of the 3-

methoxy isomers with TFA (10% in CH2Cl2), followed by trituration with CH2Cl2/hexane, provided 

the free acids 152 and 152 without epimerization at C3.  

As with the ethyl esters, the conformational preferences of the new benzhydryl- and carboxylic acid 

derivatives were apparent by analysis of 1H NMR spectra and confirmed in some cases with single-

crystal X-ray structures. Namely, derivatives which lack functionality at C3 and derivatives with -
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methoxy substituents adopt the endo envelope conformation in which J3,4 and J4,5 are close to 0 Hz. 

The -methoxy epimers, on the other hand, favour the exo envelope conformation in which J3,4 = 4 

Hz and J4,5 = 6 Hz. One important consequence of the conformation of the five-membered ring is that 

the C4 carboxylate is oriented axially in the endo envelope and equatorially in the exo envelope.  

3.2 Synthesis of Cyclobutanone Analogues of Penems 

With the saturated cyclobutanone derivatives 65, 111, 152, and 152 in hand, the potential for 

unsaturated cyclobutanone analogues to act as inhibitors was also considered since such compounds 

could be considered as analogues of penems or carbapenems.  

The success of earlier elimination attempts (e.g. 119→118) supported the notion that the 

unsaturated acid 153 could be obtained by elimination of methanol from 152 or 152 under acidic 

conditions. While initial experiments involving Amberlyst 15, an acidic resin, effected elimination 

only slowly and resulted in partial decarboxylation, the unsaturated acid 153 was obtained cleanly by 

subjecting mixtures of 152 and 152 to 10% MsOH in CH2Cl2 at reflux for 2 hours (Scheme 28). 

This method provided enough material for X-ray crystallographic analysis and preliminary studies to 

evaluate the extent of hydrate formation in D2O, but this synthetic route to 153 was considered 

unfavourable since it consumed material (152 and 152) which could otherwise be used for 

biochemical and biological assays.  

Scheme 28. Synthesis and X-ray Structure of the Penem Analogue 153.  
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Scheme 29. Improved Three-Step One-Pot Synthesis of the Unsaturated Acid 153.  
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With a view to develop a more practical synthetic route toward 153, it was thought that the steps 

required for protection of the carboxylate as an ester and deprotection may be avoided if the readily 

available acid 65 could be used directly. Attempts to chlorinate 65 with SO2Cl2 directly were 

unsuccessful and indicated that some sort of modification of the carboxylate was necessary. As a 

rather unconventional solution to this problem, it was found that an acid chloride was an ideal 

protecting group for this purpose (Scheme 29). Thus, the saturated acid 65 was converted to the 

unsaturated acid 153 in three simple operations by treatment with SOCl2, SO2Cl2, and then 10% 

MsOH/CH2Cl2. Since the first two steps proceed in quantitative yield (by 1H NMR) and the by-

products of SOCl2 and SO2Cl2 are volatile, no purification of the acid chloride intermediates 154 and 

155 was required and all three steps were done in a single flask. Isolation of the final product 

involved an aqueous workup and provided the crude unsaturated acid (95% pure by 1H NMR) in 

93% yield (one-gram scale) from acid 65.     

Scheme 30. Preparation of the Dechlorinated Unsaturated Cyclobutanone 156. 

 

Using the typical procedure for the dechlorination of cyclobutanones, acid 153 was heated with 

excess zinc dust in acetic acid. While this method was effective for the synthesis of other 

dechlorinated cyclobutanones (110, 111, 126), this method repeatedly provided only a very low yield 

(0–9%) of the desired cyclobutanone 156 (Scheme 30). Variations of the dechlorination (e.g. Zn in 
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AcOH at rt, or Zn in i-PrOH/AcOH 100:1) were also unsuccessful. In a different approach toward the 

dechlorinated acid 156, the direct hydrolysis of the ethyl ester 126 was attempted but the use of KOH 

(1 equiv) in THF or H2O resulted in a complex mixture of products. Since the failure of the alkaline 

hydrolysis was suspected to be a result of the ability of the cyclobutanone to participate in undesired 

enolate reactions, the ketone 126 was converted to the dimethyl ketal 157 using trimethyl 

orthoformate in acidic methanol. Protection of the ketone permitted the alkaline hydrolysis of the 

ethyl ester and KOH was used in D2O/methanol-d4 (2:1) so that the reaction could be followed by 1H 

NMR. After 36 hours at room temperature, the desired product 158 was separated from small 

amounts of remaining unhydrolyzed ester by washing the alkaline aqueous phase with CH2Cl2. Acid-

catalyzed hydrolysis of the dimethyl ketal in TFA/acetone-d6/D2O (1:4:4) then furnished the 

dechlorinated acid 156 in 46% yield over three steps. TFA was used in favour of HCl because 

previous attempts to hydrolyze the unsaturated ester 119 with aqueous HCl led to extensive 

decomposition and, furthermore, HCl had been found to induce the ring-opening of cyclobutanone 

110 (Scheme 22).    

3.3 Inhibition of -Lactamases with Cyclobutanone Analogues of Penams and 
Penems 

While the synthetic studies described above were in progress, this laboratory acquired the expression 

systems for additional -lactamases as generous gifts from different researchers throughout the world. 

In addition to IMP-1 and OXA-10, which had already been given to this group by Prof. M. Galleni 

(U. Liège, Belgium) and Prof. S. Mobashery (U. Notre Dame), SPM-1 and OXA-45 were provided by 

Prof. J. Spencer and Prof. T. Walsh (U. Bristol, U.K.), and VIM-2, KPC-2, and GC1 were obtained 

from Prof. P. Nordmann (U. Paris), Prof. F. van den Akker (Case Western), and Prof. M. Nukaga 

(Josai International University, Japan), respectively.     

The KPCs (Klebsiella pneumoniae carbapenemases) are class A ESBLs that hydrolyze -lactams 

of all classes and are found on transferrable plasmids. KPC-producing strains have been isolated in 

New York, South America, Europe, China, and very recently in Canada.259,641,642 KPC-2 (Bush group 

2f) has been characterized structurally.643,644 IMP-1 is a class B1 metallo--lactamase which has a 
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wide spectrum of activity including all classes of -lactam except monobactams and is found in 

resistant strains of Serratia, Pseudomonas, Acinetobacter, Klebsiella, Citrobacter, Achromobacter, 

and Shigella.307,309,563 VIM-2 is a class B1 MBL that also has a broad spectrum of activity against 

penicillins, cephalosporins, and carbapenems.645 While VIM-2 is mainly observed in P. aeruginosa, it 

has spread more rapidly than the IMP family and, since it has been found in more than 37 countries 

across five continents, is now considered the global MBL.311,564 SPM-1, which was discovered from 

an isolate of P. aeruginosa in 2001,313 is the most important metallo--lactamase in Brazil564 and, 

unlike other class B1 MBLs, has very low affinity for the second zinc atom.344,345 GC1 is a group 1e 

class C enzyme from Enterobacter cloacae that owes its ESBL activity to a three amino acid insertion 

after Arg210 which gives additional conformational flexibility to the  loop and allows the enzyme 

to accommodate bulky oximino sidechains of third-generation cephalosporins.272,646,647 OXA-10 is a 

narrow-spectrum class D -lactamase (group 2d) that has been characterized by X-ray crystallography 

several times.291,293 OXA-45 is a class D enzyme with an extended-spectrum of activity (group 2de) 

which was discovered in a strain of P. aeruginosa from Texas that also expressed the metallo-enzyme 

VIM-7.648 Interestingly, OXA -lactamases employ a carbamylated lysine residue (Kcx70) as the 

general base in the turnover of -lactams.293  

With several cyclobutanone analogues of penams and penems in hand and several diverse -

lactamases available, the inhibition of class A, B, C, and D -lactamases could be studied (Table 6). 

Inhibition assays were conducted by Ms. Valerie Goodfellow and Dr. Laura Marrone with some 

assistance from Ms. Jun Wang.  

The cyclobutanone inhibitors found to be most potent against the serine -lactamases KPC-2, GC1, 

and OXA-10 were those which are hydrated to a larger extent in aqueous solution (Table 6). The 

dichlorocyclobutanones 65 and 153 undergo hydration to a much greater extent than their 

dechlorinated counterparts 111 and 156 and are also more effective as inhibitors of each serine -

lactamase. Among the dichlorocyclobutanones, steric hindrance of hydration is apparent as the 3-

methoxy derivative 152, which adopts the exo envelope, undergoes hydration to a greater extent 

than 65 and 152, which favour the endo envelope conformation and have greater steric bulk at C3 

(Figure 40). The corresponding observation that 152 is more potent than 65 and 152 against each 

enzyme is consistent with the hypothesis that each -lactamase binds more tightly the exo envelope  
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Table 6. Inhibition of -Lactamases by Cyclobutanone Analogues of Penams and Penems.a,b,c  

 

ketone 
inhibitor 

% hydrate 
in D2O

d 
class A 
KPC-2 

class B 
IMP-1 

class B 
VIM-2 

class B 
SPM-1e 

class C 
GC1 

class D 
OXA-10 

class D  
OXA-45e 

65 74   76 ± 8 >1000 >1000 >500 25 ± 3 268 ± 8 194 ± 28 

111 0   117 ± 13   235 ± 14 >1000  44 ± 3 1135 ± 33 689 ± 31 

152 >98   58 ± 2 122 ± 5 363 ± 9 524 ± 22    6.5 ± 1.4 156 ± 6 148 ± 21 

152 6   99 ± 5    38 ± 4   547 ± 19 392 ± 20 

153 93   26 ± 2   213 ± 21 >1000     4.5 ± 0.3   370 ± 15 47 ± 6 

156 <2 170 ± 2 >500   34 ± 3 >1000  

a IC50 values (M). Inhibition was assayed by monitoring nitrocefin hydrolysis. For assay conditions see ref 

640. b For a table of IC50 values corrected for the extent of hydration, see Appendix F. c Class A, C, and D 

enzymes are serine -lactamases and class B enzymes are metallo--lactamases. d The extent of cyclobutanone 

hydrate formation was determined by 1H NMR. Acetone-d6 was used as a cosolvent for solubility purposes. e 

Assays for the inhibition of KPC-2, IMP-1, VIM-2, GC-1, and OXA-10 used concentrations of nitrocefin close 

to Km. Concentrations of nitrocefin in SPM-1 and OXA-45 assays were >Km.  

 

Figure 40. Cyclobutanone hydration and steric interactions at C3.  

conformation than the endo envelope. In addition, the 3-methoxy derivative 152, which favours the 

endo envelope conformation by 5.0 kcal/mol, is a poorer inhibitor than 65, which favours the endo 

envelope by only 1.9 kcal/mol (Table 4). 

The unsaturated acid 153, in which the carboxylate is fixed in an equatorial orientation, was found 

to be comparable in potency to 152 with respect to the inhibition of GC1 and somewhat more potent 

than 152 against KPC-2. On the other hand, 152 and 65 were found to be more potent than 153 

with respect to OXA-10, suggesting that the relatively subtle difference in orientation of the C4 

carboxylate may be important for binding to the various serine -lactamases.  
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Preliminary data indicates that cyclobutanones are also moderate inhibitors of OXA-45. While 

minor differences in assay conditions prevent direct comparisons with other enzymes it appears that 

the overall trends in inhibition for OXA-45 are similar to those of the other serine -lactamases.  

Gratifyingly, the cyclobutanones also acted as moderate inhibitors of metallo--lactamases. As 

with the serine -lactamases, the inhibitors found to be most potent against IMP-1 were 152 and 

153. Since the unsaturated acid 153 was more effective than its dechlorinated analogue 156 against 

the serine enzymes and IMP-1, it was somewhat surprising to find that the dechlorinated acid 111 was 

more potent than compound 65 under these assay conditions. This exception to the general trend 

indicates that electron-withdrawing substituents like chlorines are not necessarily beneficial for the 

inhibition of all -lactamases. While the cyclobutanones were generally found to be less potent 

inhibitors of VIM-2 than IMP-1, the moderate inhibition exhibited by 152 is considered 

encouraging. In addition, preliminary assays indicate that the -methoxy derivative 152 is also a 

moderate inhibitor of SPM-1; however, the poor supply of this enzyme in this laboratory has 

prevented more detailed studies thus far.   

3.4 X-Ray Crystal Structure of a Cyclobutanone Bound to OXA-10 as a Serine 
Hemiketal 

In a collaborative effort with Prof. Natalie Strynadka and Dr. Michael Gretes at the University of 

British Columbia, structural insight into enzyme–inhibitor interactions was pursued by solving the X-

ray crystal structure of a complex of 152 with the class D -lactamase OXA-10 (Figure 41). The 

structure was obtained by soaking pre-formed crystals of OXA-10 with the inhibitor and was refined 

to 2.0 Å resolution.649 Consistent with previous observations (PDB: 1K54),293 two dimers of OXA-10 

are present in the asymmetric unit and the inhibitor is bound to only two of the four monomers 

(Figure 41A). It is interesting to note that the use of higher concentrations of inhibitor in early 

crystallization trials at UBC resulted in disruption of the crystal lattice. It is possible that this is a 

consequence of the binding of the inhibitor to chain D and displacement the loop of chain A (which 

includes Lys95) from the active site of chain D. Disruption of OXA-10 crystals has been observed 

previously.440 Carboxylated Lys70 (Kcx70), which has been associated with a more highly active  
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Figure 41. X-ray structure of cyclobutanone 152 bound to OXA-10 as a serine hemiketal (PDB code: 
3LCE). (A) View of the asymmetric unit cell with two OXA-10 dimers. Cyclobutanone 152 is 
bound to chains A and B and a phosphate is observed in the active sites of chains C and D. (B) 
Interactions between OXA-10 active site residues and the bound inhibitor in chain A. (C) Stereoview 
of the active site of chain A with electron density. The continuous electron density from Ser67 to C6 
of the inhibitor is unambiguous support for the formation of a serine-bound hemiketal. (D) 
Stereoview of the chain A active site from an alternate perspective.  

state of OXA-10,297 is observed in all four monomers.  

The clear continuous electron density from the active site serine through to and including the 

tetrahedral carbon of the hemiketal linkage (Figure 41C) provides unambiguous support for the 

inhibition mechanism originally envisaged for such compounds (Figure 19). Recent studies with other 

serine-dependent hydrolytic enzymes suggest that such a hemiketal likely exists in the alkoxide form, 

stabilized by the functionality that defines the oxyanion hole.650,651,652 The structure also shows that  

the inhibitor adopts the exo envelope such that the C4 carboxylate has an equatorial orientation and 

the 3-methoxy group has an axial orientation.  
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The electron density associated with the chlorine atoms in the structure is relatively weak, possibly 

indicating that X-ray radiation had caused partial dechlorination of the inhibitor. X-ray radiation has 

been reported to cause cleavage of disulfides, decarboxylation of aspartate and glutamate residues, 

and cleavage of C–Br bonds.653 The cleavage of C–Cl bonds has also been described.654  

Another potential contributing factor that was considered for the weak electron density surrounding 

the chlorines involves disorder caused by a rapid conformational change of the inhibitor. Ab initio 

and DFT molecular modeling studies, which were undertaken to investigate this phenomenon, 

indicate that model hemiketals of 152, acid A and guanidinium salt B, can adopt two slightly 

different exo envelope conformations in which the chlorines show the greatest differences in position 

(Figure 42 and Figure 43). The low energy difference (0.1–0.3 kcal/mol) between the C4-puckered 

and S-puckered conformers and the low energy barrier (0.4–0.8 kcal/mol) for interconversion support 

this hypothesis. The possibility of an endo envelope-to-exo envelope conformational change in the 

active site of OXA-10 was discounted after the structures were superimposed. In addition, the large 

energy difference (3.5 kcal/mol) and barrier for interconversion (>4 kcal/mol) are inconsistent with 

the rapid conformational change required to account for the weak electron density associated with the 

chlorine atoms.  

Another curious aspect of the X-ray crystal structure is that close contacts are observed between the 

two chlorines of the inhibitor and amino acid residues of OXA-10. The contacts of 2.5 Å between the 

7-chloride and a methyl group of Val117 and 2.3 Å between the 7-chloride and the amide oxygen 

of Phe208 (Figure 41B) are much closer than contacts, 3.45 Å and 3.27 Å, calculated from the sum of 

the atomic van der Waals radii.625  

In an effort to find precedent for this sort of interaction, searches of the Cambridge structural 

database (CSD) and protein data bank (PDB) were conducted. In the CSD, a substructure search of 

the 2-chloropropane moiety returned 30 hits with ClO or ClC intermolecular contacts <3.0 Å but 

eight of these were disordered in some way. Of the remaining 22 structures, 18 showed ClO 

contacts655 and five showed ClC contacts.656 The structures with the shortest ClC contacts were 

CLMPMO,657 a trichloromethyl-substituted pyrimidone, and BCARPC,658,659 a tricyclic alkyl chloride 

(Figure 44). Coincidently, the structure with the shortest of the ClO contacts, NAFBUR, is a 

dichlorocyclobutanone. Each of the chlorines in this structure has a close ClO contact and one also 



 

124 

C4-puckered
(C6-exo) S-puckered

(C6-endo)

TS

RHF/6-31G(d)
RHF/6-311G++(d)
B3LYP/6-31G(d)

B3LYP/6-311G++(d)

0.63
0.71
0.16
0.31

0.10
0.10
0.27
0.15

0.73
0.81
0.43
0.45

S1
3

45
6

7

Cl

Cl

E E E

endo
envelope

TS

4.96
nd

4.60
nd

3.55
nd

3.48
nd

1.41
nd

1.12
nd

E E E

C4-puckered
(C6-exo)

S-puckered
(C6-endo)

TS

RHF/6-31G(d)
RHF/6-311G++(d)
B3LYP/6-31G(d)

B3LYP/6-311G++(d)

0.32
0.41
na

0.05

0.60
0.51
na

0.41

0.92
0.91
na

0.46

E E E

S1
3

45
6

7

Cl

Cl

S

HO

H

H

Cl
Cl

CO2

hemiketal B

OMe

MeO Gdm

TS

S

HO

H

H

Cl
Cl

CO2H

OMe

MeO

hemiketal A

 

Figure 42. Conformational analysis of model hemiketals A (left) and B (right). Structure optimizations 
and transition state calculations used Gaussian-03.623 Calculated energy differences are given in 
kcal/mol (na = not available, nd = not determined). 

 

Figure 43. Superimposition of two RHF-G31G(d)-optimized exo envelope conformations of hemiketal 
A and heavy atom displacements in the conformational change. Structure optimizations were done 
with Gaussian-03623 and the least-squares superimposition (RMSD = 0.78 Å) done in Sybyl.660   

shows a short ClC contact. 

A search of the PDB for enzyme ligands that contained “chloro” (but not chlorophyll or chloride) 

in the ligand name returned 714 hits. Inspection of each entry with the program RCSB PDB Ligand 

Explorer, which is available from the protein data bank, revealed that 280 structures contained a 

contact between a chlorine and a carbon, oxygen, nitrogen, or sulfur of less than 3.3 Å. Of these 

structures, 80 contained intermolecular contacts with chlorines of less than 3.0 Å and 17 entries 

showed contacts shorter than 2.7 Å.661,662,663 Aside from the structures that appeared to be disordered, 

ClO contacts as low as 2.25 Å were observed and ClC contacts as low as 2.40 Å were present.  
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Figure 44. X-ray crystal structures of small molecules in the Cambridge structural database (CSD) that 
have intermolecular close contacts between chlorines and carbons or oxygens.  

While most of these ligands were aryl- or heteroaryl chlorides, a dichloroacetamide (PDB: 1GRQ) 

and an alkyl chloride (PDB: 1XVF) were among those with the shortest contacts.  

It has been noted recently that close contacts between halogens (Cl, Br, I) and oxygens are present 

in more than 154 PDB structures. Lu et al.664 have studied this phenomenon computationally 

(ONIOM methods) in the context of halogen bonding and it is possible that halogen bonding plays a 

role in the present study.   

3.5 Molecular Models of -Lactamase Adducts with Cyclobutanones 

Computational models of enzyme–inhibitor complexes were constructed in order to gain further 

insight into specific active site interactions and provide support for the inhibition observed (Figure 

45). Cyclobutanone structures (obtained from optimizations in Gaussian-03)623 were manually docked 

into X-ray crystal structures of KPC-2 (PDB: 2OV5),643 IMP-1 (1JJE),665 and GC1 (1RGZ)666 using 

Sybyl660 and optimized using the MMFF94 force field.  

In complexes of cyclobutanones with serine -lactamases, pre-optimized cyclobutanone hemiketals 

were docked such that the hemiketal moiety was positioned suitably in the oxyanion hole and the C4-

carboxylate was able to interact appropriately with nearby Arg, Ser, or Thr residues. Although recent 

reports have concluded that tetrahedral adducts of an -ketoheterocycle and a peptidyl 

trifluoromethyl ketone are not protonated in the active sites of FAAH651 and elastase,652 the 

protonation states of the cyclobutanone hemiketal adducts in -lactamases are unknown and were  
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Figure 45. Structure-optimized models of cyclobutanones 153 (blue), 152 (red), and 65 (grey) bound 
as tetrahedral adducts to the class A, B, and C -lactamases KPC-2, IMP-1, and GC1. With the class 
D -lactamase OXA-10, the X-ray crystal structure of 152 bound to OXA-10 is shown (PDB: 
3LCE) and this structure was also used to generate a model of 153 with OXA-10.  

modeled as protonated species. Though not initially considered, it was found that the protonated 

hemiketal could act as a donor in a hydrogen bond with the backbone amide oxygen of the non-serine 

residue of the oxyanion hole (Thr237 in KPC-2, Ser321 in GC1, and Phe208 in OXA-10). 

Interestingly, the hemiketal of cyclobutanone 65 was initially docked in KPC-2 and GC1 in its 

favoured endo envelope conformation but the structure changed through the course of the 

optimization to the exo envelope conformation (Figure 45). The -methoxy derivative 152 must also  
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Figure 46. Interactions of cyclobutanones with IMP-1 in modeled complexes of enzyme–inhibitor 
adducts.  

 

Figure 47. Conformations of enzyme-bound adducts of 153 (blue), 152 (red), and 65 (grey) extracted 
from modeled complexes with GC1.  

adopt the exo envelope conformation in order to avoid steric clashes within each active site (not 

shown). Changes with enzyme-bound hemiketals of 152 and 153 were more subtle with the 

inhibitors adopting one of two possible conformations (twisted forms) of the four-membered ring. As 

shown in Figure 42, the twist of the four-membered ring in inhibitors such as 152 causes a twist of 

the five-membered ring.   

Cyclobutanone hydrates were initially docked in the metallo--lactamase IMP-1 such that the 6-

oxygen would bridge the two zinc atoms in the position normally occupied by the nucleophilic 

hydroxide. In accord with speculations that Asn167 plays a role similar to that of the oxyanion hole of 

serine -lactamases, to polarize the -lactam carbonyl to facilitate hydrolysis (Section 1.4.6), the 

cyclobutanone hydrate was initially oriented to hydrogen bond with the amide sidechain of this 

residue; however, such a hydrogen bond was not observed in optimized complexes (Figure 46). It has 

also been suggested that the C3- and C4-carboxylates of carbapenems and cephalosporins coordinate 

to Zn2 during catalysis. While an attractive interaction was certainly observed in optimizations of the 

present study, coordination led to a large amount of strain such that the outputted structures displayed 

highly twisted rings and unreasonably skewed conformations. Reasonable conformations of adducts 

of 152 and 153, however, were obtained when cyclobutanone hydrates were initially docked such 

that the C4-carboxylate could not only form a salt bridge with Lys161 but also hydrogen bond with 
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the backbone amide of Asn167 and, very importantly, the water molecule that also hydrogen bonds to 

His139.  

In addition to the value that these models may have for the design of potentially more potent 

inhibitors, these computational studies provide support for the need for an equatorial carboxylate to 

interact appropriately with active-site residues and that cyclobutanones such as 65 and 152 must 

adopt their normally disfavoured exo envelope conformation in order to bind to each serine- and 

metallo--lactamase (Figure 47).  

3.6 Antimicrobial Assays with Cyclobutanones 

The recent acquisition of several -lactamase-producing carbapenem-resistant bacterial strains 

allowed our group to test the cyclobutanones for synergy with -lactams. These strains were collected 

as clinical isolates from Ontario and Calgary hospitals and were kindly provided by Prof. D. Pillai (U. 

Toronto) and by Prof. J. Pitout (U. Calgary), respectively. Microbiological assays were conducted in 

this laboratory by Valerie Goodfellow according to published procedures.667  

With the modest (micromolar) potency of the cyclobutanones against metallo--lactamases in 

biochemical assays, it was not surprising that cyclobutanones 65, 111, 152, and 153 were unable to 

enhance the potency of meropenem by greater than a factor of 2 (one 2-fold dilution) against VIM-2- 

and IMP-7-producing strains of P. aeruginosa at concentrations of up to 400 M. It was surprising, 

however, to discover that cyclobutanone 153 improved the MIC of meropenem by a factor of 4 

against MBL-producing strains of Chryseobacterium meningosepticum and Stenotrophomonas 

maltophilia at concentrations of 200 M and 100 M, respectively (Table 7). The MBLs expressed in 

these strains have not yet been identified but are thought to be BlaB668 and L1,368 respectively. The 

synergy observed with meropenem suggests that cyclobutanone 153 might have higher affinity for 

these enzymes than other MBLs and this encouraging possibility may be evaluated in future work.  

Although the carboxylic acid form of the inhibitors is required for favourable binding to -

lactamases, Cocuzza and Boswell reported in the mid-1980s that benzhydryl ester derivatives of 

cyclobutanones showed synergy with penicillin G against -lactamase-producing S. aureus.532,533 

Such benzhydryl esters presumably exhibited improved cell wall penetration and were converted to   
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Table 7. Antimicrobial Activity of Meropenem (MIC) in the Presence of Cyclobutanones Against MBL-Producing Carbapenem-Resistant Clinical 
Isolates.a,b  

 

ID clinical isolate enzyme  153 (g/mL) 65 (g/mL)  152 (g/mL) 111 (g/mL) 

    0 25 100 200 400 0 100 200 400  0 100 200 400 0 100 200 400 

24 P. aeruginosa C10 VIM-2  16   16 8 16  16 16  16 16 16 16 16 16   

25 P. aeruginosa C7 IMP-7  64   64 64 64  64 64  256 128 128 128 128 128   

26 P. aeruginosa IS 5563 MBL .  64 64 32 32  32  64           

32 C. meningosepticum IS 5824 MBL c  64 64 32 16  32  16           

34 S. maltophilia IS 6081 MBL d  64 32 16 16  32  64           

                      

ID clinical isolate enzyme  118 (g/mL) 149 (g/mL)  151 (g/mL)  

    0 25 100 200 400 0 100 200 400  0 100 200 400     

24 P.aeruginosa C10 VIM-2  16  16 16 16 16 16 16 16  16 16 16 16     

25 P.aeruginosa C7 IMP-7  256  128 128 128 256 256 128 256 e  256 256 256 256     

a The author gratefully acknowledges Ms. Valerie J. Goodfellow for the data contained in this Table.  b Underlined MIC values indicate enhancements in the 

potency of meropenem relative to control values. c The MBL of Chryseobacterium meningosepticum IS 5824 is likely BlaB. d The MBL of Stenotrophomonas 

maltophilia IS 6081 is likely L1. e Precipitation was observed.  
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the carboxylic acid form by esterases in vivo. In order to evaluate the possibility that esters of the 

present study might exhibit similar behaviour, cyclobutanones 118, 149, and 151 were also tested 

for synergy with meropenem and preliminary experiments indicate that ethyl ester 118 and 

benzhydryl ester 149 improved the potency of meropenem 2-fold against a strain of P. aeruginosa.  

3.7 Summary and Outlook 

Cyclobutanone analogues of penams and penems have been prepared and evaluated as inhibitors of 

class A, B, C, and D -lactamases. The cyclobutanone derivatives found to be most potent as 

inhibitors are those that are more extensively hydrated in aqueous solution. Inhibitors which favour 

conformations in which the C4 carboxylate is equatorial were found to be more potent than those in 

which the carboxylate is axial, and molecular modeling studies with enzyme–inhibitor complexes 

indicate that an equatorial carboxylate is required for binding to -lactamases. An X-ray crystal 

structure of the class D -lactamase OXA-10 complexed with a cyclobutanone confirms that a serine 

hemiketal is formed in the active site and that the inhibitor adopts the exo envelope. The unsaturated 

penem analogue 153 was also found to enhance the potency of meropenem against MBL-producing 

carbapenem-resistant strains of bacteria isolated from Canadian hospitals.   

-Lactamase inhibition has been studied for several decades and, despite much research effort, the 

goal of a universal inhibitor that is effective against all classes of -lactamase has remained elusive. 

The biochemical data described above demonstrate that cyclobutanones can indeed act as inhibitors of 

serine- and metallo--lactamases and these cyclobutanones represent the first type of reversible 

inhibitors to show moderate to low micromolar inhibition of all four classes of -lactamase. It is also 

worth noting that the inhibition demonstrated by the cyclobutanones in this study represents, to the 

knowledge of this author, the most successful application of cyclobutanones as inhibitors of serine- or 

cysteine-active enzymes.669 Although the activity of the compounds described herein is relatively 

modest, the breadth of activity and the synergy with meropenem in antimicrobial assays are 

particularly encouraging since it serves as a proof of principle for the concept that cyclobutanones 

might be effective as clinical inhibitors.   
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Chapter 4 

Synthetic Studies Toward Other C3- and C7-Substituted    

Cyclobutanone Analogues of Penams and Penems 

4.1 Rationale for Modifications at C3 and C7  

The demonstration that cyclobutanones 152 and 153 can act as inhibitors of serine- and metallo--

lactamases and show synergy with meropenem against resistant bacteria is considered very 

encouraging. Improvement of the potency of the cyclobutanones requires increased affinity of such 

inhibitors for -lactamase active sites and might be achieved with additional hydrogen bonding 

interactions and favourable non-covalent contacts. As indicated by molecular modeling studies with 

enzyme–inhibitor complexes and by direct comparison with -lactam antibiotics (-lactamase 

substrates), the most appropriate sites for modification are at C3 and C7. 

 

Figure 48. C3-Alkoxy, -thioalkyl, and -alkyl cyclobutanone derivatives as potentially more potent 
analogues of inhibitors 152 and 153.  

In addition to 3-alkoxy cyclobutanone derivatives, 3-thioalkyl- and 3-alkyl derivatives are also 

considered worthy of exploration since carbapenems and mechanism-based inhibitors (e.g. 

tazobactam) possess thioalkyl- and alkyl sidechains at this position (Figure 48).  

Ab initio molecular orbital calculations indicate that the conformational preferences of 3-thioalkyl 

and 3-alkyl derivatives are much weaker than those of the corresponding 3-alkoxy derivatives (Table 

8). As noted in the previous chapter, the poorer inhibitory potency of the 3-methoxy derivative 

152, compared to its epimer 152, is thought to be a consequence of its large preference (5.0 
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Table 8. Calculated Conformational Preferences for Cyclobutanone Derivatives.a   

 

Cyclobutanone 
Relative Energy (kcal/mol) 

endo  
envelope 

exo  
envelope 

152: Z = OMe + 3.88 0 

159: Z = SMe + 0.74 0 

160: Z = Me 0 + 1.02 

152: Z = OMe 0 + 5.00 

159: Z = SMe 0 + 0.66 

160: Z = Me 0 + 0.12 

 

161: Z = OMe + 4.12 0 

162: Z = SMe + 1.42 0 

163: Z = Me 0 + 0.43 

 

161: Z = OMe 0 + 4.32 

162: Z = SMe 0 + 0.87 

163: Z = Me + 0.11 0 

a Structure optimizations (RHF/6-31G(d)) used Gaussian-

03623 and comparison of the relative energy of each 

conformer was done following zero-point energy corrections. 

kcal/mol) for the endo envelope conformation since the inhibitors must bind to the -lactamase in the 

exo envelope conformation. These computational studies therefore suggest that the weaker 

conformational preferences of the 3-thioalkyl and 3-alkyl derivatives might be beneficial for 

inhibition since the compounds could adopt the exo envelope conformation in the enzyme active site 

without a significant energetic penalty. As a result of these calculations, recent synthetic efforts have 

been focused more toward penam and penem analogues with thioalkyl- or alkyl sidechains at C3 than 

toward 3-alkoxy derivatives.    

In addition to the potential alterations at C3, modifications of the cyclobutanone analogues at C7 

have also been considered. Although the dichlorocyclobutanones described appear to be much better 

-lactamase inhibitors than their dechlorinated counterparts, it is unlikely that a compound as reactive  
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Figure 49. Penam-mimetic 7-acylamino- and carbapenem-mimetic 7-hydroxyalkyl sidechains which 
may improve the inhibitory potency of cyclobutanone derivatives toward -lactamases (X1 = H, OMe; 
X2 = H, F, Cl, OH; R2 = H, Me; Z = OR, SR, CH2R).  

as a dichlorocyclobutanone would be appropriate for clinical evaluation. It is well known that drug 

candidates which rely on an electrophilic functionality may be prone to inactivation by natural 

electrophile scavengers such as glutathione and might exhibit toxic side effects as a result of 

nonspecific covalent modification of biomolecules in the host. It should also be noted, however, that 

these complications do not necessarily indicate that all cyclobutanones are unsuitable for clinical use 

since numerous ketone-containing serine protease inhibitors, which also inhibit through the formation 

of serine hemiketals, have been pursued as drug candidates in clinical trials.670,671,672  

These issues indicate that cyclobutanones might be better suited for therapeutic use if the 

electrophilicity of the carbonyl was attenuated and if the stability of the inhibitors toward hydrolysis 

at neutral pH was improved. In addition, substitution of one or both of the chlorines at C7 for other 

functionalities could improve the affinity of the cyclobutanones for -lactamase active sites (Figure 

49). For example, the introduction of a penam-mimetic acylamino groups at C7 would provide an 

important hydrogen bonding interaction (Figure 36) and favourable non-covalent contacts that are 

important to the binding of potent (nanomolar) boronic acid-based inhibitors. Alternatively, 

carbapenem-mimetic hydroxymethyl or hydroxyethyl sidechains could be introduced as potential 

hydrogen bond donors in order to provide additional affinity for -lactamase active sites.  

The remainder of this chapter describes synthetic efforts made toward the stereoselective 

preparation of such C3- and C7-substituted cyclobutanone derivatives, with special focus on C3-

thioalkyl and C7-hydroxymethyl derivatives.     
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4.2 Substitution Reactions at C3 

Initial attempts to introduce sulfur-containing sidechains at C3 involved the treatment of the -chloro 

derivative 117 with thiols in MeCN. The desired substitution product was not observed, however, 

despite the success of similar conditions for the solvolysis of 117 in ROH/MeCN (Figure 27). The 

subsequent discovery that substitutions with alcohols could also be promoted by AgOTf (Table 3) 

encouraged the exploration of Lewis acid-promoted substitutions with thiols and SnCl4 proved to be a 

suitable reagent for this purpose (Scheme 31). Typically, SnCl4 was added slowly to a solution of 

117 and the thiol in CH2Cl2 provided the 3-SR and 3-SR substitution products (>3:1) with very 

low proportions of elimination and isomerization byproducts 118 and 117.673 As with the AgOTf-

promoted substitutions with alcohols, the SnCl4-promoted substitutions generated the inversion 

products in higher proportions than the retention products. 1H NMR spectra of the substitution 

products in CDCl3 indicate that the 3-SR derivatives adopt the exo envelope conformation and the 

3-SR derivatives favour the endo envelope conformation.  

Scheme 31. Substitutions at C3 with Thiols.  

 

With the hope that the S,S-acetal moiety at C3 would show greater stability to acidic conditions 

than the S,O-acetal functionality of 121–123, hydrolysis of the ethyl esters 164 and 165 was 

attempted with 6 M HCl in dioxane (Scheme 31). Unfortunately, the S,S-acetals were also found to be 

unstable to these conditions and it became clear that alternate protection of the C4-carboxylate would 

be necessary for the synthesis of the desired carboxylic acid derivatives.  

Given the reactivity of the 3-chloro derivative 117 toward solvolysis and substitution reactions 

and the resemblance of the 3-position to the anomeric position of a sugar, the reactivity of 117  
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Figure 50. Allylation of 117 with allyltrimethylsilane (Upper panel). Additional carbon-based 
nucleophiles that might be used in the synthesis of cyclobutanone inhibitors (Lower panel).  

toward allylation was also explored (Figure 50). In the first attempt to effect this transformation, 

which involved the slow addition of SnCl4 to a solution of 117 and allyltrimethylsilane, the 

substitution products 166 and 166 were generated cleanly and, as with other Lewis acid-promoted 

substitutions, the reaction was selective toward inversion. It is possible that other latent carbon 

nucleophiles could be used for substitutions at C3, including allenes,674 enolates, or imines, but such 

reactions have not yet been investigated.  

While the SnCl4-promoted substitutions provide efficient access to the 3-thioalkyl and 3-allyl 

derivatives from the -chloro derivative 117, a method selective for the 3 epimers was also 

desired. Some of the first attempts to generate 3-thioalkyl isomers were based on the concept that 

the conjugate addition of a thiol to the unsaturated ester 118 would occur preferentially from the exo 

face of the bicycle. Even weakly basic conditions, however, involving thioacetic acid and 

triethylamine at room temperature were found to be incompatible with 118 and decomposition of the 

starting material, presumably through ring-opening of the dichlorocyclobutanone ring, occurred 

quickly (Scheme 32). The conjugate addition of the thiol in the presence of a Lewis acid, which has 

some literature precedent,675 was considered to be an attractive alternative since the 

dichlorocyclobutanone ring was known to be very stable to acidic conditions and because the 

oxidation of the thiol nucleophile would be less problematic. In order to follow the reaction 

conveniently by NMR, the unsaturated ester 118 was combined with i-PrSH and SnCl4 in CDCl3. 

Although changes in 13C NMR chemical shifts had indicated that an interaction between the ethyl 

ester moiety and the Lewis acid was present ( = 0.9, 0.5, 0.5 for C3, OCH2, CO2Et, respectively), 

none of the desired conjugate addition product was observed after 13 hours. The use of TFA, as a 

Brønsted acid substitute for the Lewis acid, was also unsuccessful and no reaction was observed.  
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Scheme 32. Synthetic Efforts Toward 3-Allyl and 3-Thioalkyl Derivatives.  
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While attempts to effect conjugate addition were being made, it was also considered that 3-

thioalkyl derivatives might be accessed through a Lewis acid-promoted substitution, which would be 

expected to favour inversion, from a 3-substituted derivative (e.g. 3-OAc, 3-Cl, or 3-Br). 

Perhaps the most obvious choice of 3-X derivative would be the 3-chloro epimer 117, but early 

attempts to prepare or isolate the 3-chloro derivative 117 in useful amounts were unsuccessful. 

While 117 was observed as a byproduct in many different reaction conditions involving polar 

solvent or acidic conditions (Lewis acids, Brønsted acids, flash chromatography), efforts to prepare 

the -chloride (e.g. BnNEt3Cl in MeCN; dry HCl in ether) generated mixtures of 117, 117, and the 

elimination byproduct 118.  

Since Lewis acid-promoted substitutions with acetoxy dihydrothiophenes are well-

precedented,618,676 the 3-acetoxy derivative 124 was also explored as a possible precursor to the 

desired 3-thioalkyl isomers. In contrast to the high-yielding reactions reported with other acetoxy 

dihydrothiophenes, BF3OEt2 and TiCl4 were not effective promoters in the present study and 

unreacted starting material 124 was isolated following attempted reactions with thiols and 

allyltrimethylsilane.   

With the apparently low reactivity of 124, attention had returned to the 3-halo derivatives and 
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brief attempts were made to produce the -bromo derivative 167 from 117. The -chloride 117 

was slow to react with Bu4NBr (TBAB) in acetone-d6 and, although the addition of ZnBr2 improved 

the rate of conversion, the reaction remained incomplete after 21 hours at room temperature and was 

comprised of a mixture of compounds (117:117:167:118  23:8:3:66).  

While the pursuit of the 3-bromo derivative 167 was abandoned because of its presumed poor 

stability, the concept that a Lewis acid could facilitate isomerization was applied to the 3-chloro 

derivatives. Thus, 117 was exposed to TiCl4 in CDCl3 and 1H NMR spectra revealed that the 

isomerization was relatively rapid since the 117/117 ratio had reached 15:85 within 4 minutes. The 

ratio was unchanged after 2 hours and the fact that this result was reproduced in a second experiment 

in CH2Cl2 suggests that the two isomers had reached equilibrium under these conditions. As an 

important benefit, the elimination product 118 was generated only when the mixture was subjected to 

an aqueous workup and this observation encouraged use of the equilibrium mixture directly in 

substitution reactions. In such an attempt, 117 was pretreated with TiCl4 for 30 minutes before the 

addition of p-Tol-SH and the substitution products 165 and 165 were isolated as a mixture (1:1) 

with no indication that elimination had occurred (Scheme 32). While the stereoselectivity of this 

method is clearly lower than that desired for the synthesis of the 3-SR derivatives, it does provide 

higher proportions of the 3-SR isomers than the SnCl4-promoted substitution method described 

above and can be considered a complementary approach.   

With methods available for substitutions at C3 with thiols, efforts were focused toward the 

application of these reactions in the synthesis of potential inhibitors. Although 2-propyl mercaptan 

and 4-methylbenzenethiol were considered useful for the development of the reactions described 

above, the isopropyl- and p-toluyl substituents are thought to be poor choices for sidechains of broad-

spectrum inhibitors. Instead, amine-containing acyclic and heterocyclic substituents (Figure 51) are 

considered more likely to provide favourable interactions within the active sites of a large number of 

-lactamases. Since molecular modeling studies have revealed that this region of the active site is 

highly variable among class A, B, C, and D -lactamases (and also within the same class), the design 

of such sidechains was based on similarity to carbapenem sidechains and the concept that hydrogen 

bond donors and acceptors can exhibit versatility in interactions with amino acid residues.  
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Figure 51. Installation of an imipenem-mimetic sidechain at C3 (Upper panel). Additional amine-
containing and carbapenem-mimetic sidechains that may provide favourable hydrogen bonding 
interactions and non-covalent contacts in the active sites of -lactamases (Lower panel).  

Scheme 33. Preparation of the Mercaptoproline Sidechain of Meropenem.  

 

One concern that had arisen from the design of the sidechains was whether the Lewis acid-

promoted substitution chemistry would be compatible with amine-containing nucleophiles. However, 

the reaction of 117 with 2-diethylaminoethanethiol, as its commercially available hydrochloride salt, 

proceeded smoothly to produce the substitution products (168/168  1:5) with only small amounts 

of 118 (Figure 51). The success of this reaction encouraged the preparation of more complex thiols 

for reactions with cyclobutanones and the substituent considered most interesting was the proline-

based sidechain of meropenem.   

The synthesis of the meropenem sidechain in this laboratory followed the concise route published 

by Merck researchers in 1996 (Scheme 33).677 Following the reaction of the amino acid (–)-trans-4-

hydroxy-L-proline with Boc2O under typical conditions,678 the Boc-protected hydroxy acid 169 was 
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treated with diisopropylethylamine (Hünig’s base) and diphenylphosphinic chloride (1 equivalent) at 

–10 C and then with pyridine and methanesulfonyl chloride (1 equivalent) to generate 170 in situ. 

Sodium sulfide nonahydrate was allowed to react with 170 overnight to afford the [2.2.1] bicycle 171 

in 73% yield over 3 steps. As noted by Brands et al.,677 a variety of conditions can be used for the 

ring-opening of the cyclic thioester and Me2NHHCl was used with Et3N in MeCN in this laboratory 

rather than a solution of Me2NH in H2O/THF. Since the resulting thiol 172 is known to be sensitive to 

oxidation, the crude product was used directly in the attempted substitution reaction with 117 and 

SnCl4. The desired substitution products 173 and 173 were not observed, however, as the tert-butyl 

carbamate was found to be unstable to the reaction conditions. While the instability of the Boc group 

was not completely unexpected, it indicates that a different protecting group is required. It is thought 

that benzyl, p-nitrobenzyl, or allyl carbamates (as in 174 and 175), which have much greater stability 

to Lewis acids such as SnCl4 and TiCl4 and could be removed selectively without the use of strong 

base or strong acid, could be used as alternatives.   

Scheme 34. Attempted Allylation of 150 in the Presence of Weak Bases.  

 

As noted above, the S,S-acetal moiety was found to be unstable in 6 M HCl in attempts to 

hydrolyze the ethyl ester functionality (Scheme 31). While the use of benzhydryl esters proved to be 

successful for the synthesis of the 3-alkoxy derivatives (Chapter 3), such protection would not be 

appropriate for the synthesis of 3-thioalkyl and 3-alkyl derivatives since benzhydryl esters are known 

to have similar susceptibilities to Lewis acids and Brønsted acids as tert-butyl esters (Scheme 34).679 

An attempted SnCl4-promoted allylation of 150, in the presence of sterically hindered weak bases 

(to neutralize the HCl generated in the reaction), was unsuccessful and confirmed the suspicion that 

alternate protection of the C4-carboxylate is required for Lewis acid-promoted substitutions at C3.   

As a result of these investigations, it is thought that the C4-carboxylate of the cyclobutanone should 

be protected as a benzyl-, p-nitrobenzyl-, or allyl ester since such derivatives would exhibit sufficient 

stability to Lewis acids and low concentrations of HCl and deprotection could be achieved through a  
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Scheme 35. Revised Protecting Group Strategy for the Synthesis of 3-Thioalkyl and 3-Alkyl 
Cyclobutanone Derivatives.  

 

variety of methods that do not involve alkaline conditions or strong acid-catalyzed hydrolysis 

(Scheme 35).679 The PNB ester seems particularly attractive for future work since it has been used 

extensively as a protecting group for -lactam antibiotics, including sulfur-containing penams, 

penems, carbapenems, and oxapenems.   

4.3 C3-Substituted Cyclobutanone Analogues of Penems 

Although the discussion presented thus far has focused on the development of substitution reactions 

toward the synthesis of 3-thioalkyl and 3-thioaryl penam analogues, the synthesis of 3-thioalkyl 

analogues of penems and carbapenems has also been an important goal throughout this work. It is 

hoped that the synthetic scheme devised for the penam analogues might exhibit some versatility such 

that penem analogues could be generated by oxidation of the saturated precursors (Figure 52).  

 

Figure 52. General synthetic strategy for the synthesis of cyclobutanone analogues of penems and 
carbapenems from penam analogues.  

Some of the first attempts to produce unsaturated analogues involved the treatment of 117 and 

124 with SO2Cl2 (Scheme 36). Interestingly, the parent cyclobutanone 84 was found to react fairly 

rapidly with 1 equivalent of sulfuryl chloride to generate 117 in quantitative yield. Upon exposure  
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Scheme 36. Synthetic Studies Toward 3-Substituted Penem Analogues: Attempts to Oxidize 3-Alkoxy 
and 3-Thioalkyl Derivatives.  
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of 117 to excess SO2Cl2 (5 equivalents), in experiments aimed at generating the 3,3-dichloro 

species 179 or the unsaturated ester 180, 117 reacted slowly to produce a mixture of unidentified 

products with spectral characteristics inconsistent with those expected for 179 and 180. In related 

efforts, the -acetoxy derivative 124 and the 3-methoxy derivatives 121 (as mixtures of 121 and 

121) were found to be unreactive toward SO2Cl2, NCS, NBS, and DDQ in CH2Cl2 or MeCN. These 

results were somewhat unexpected since it was thought that the 3-alkoxy functionality could serve to 

stabilize the intermediate cation B; however, it seems that the electron-withdrawing properties of the 

C3 substituents of 117, 121, and 124 disfavour the formation of chlorosulfonium ion A.  

An attempt to oxidize the 3-thioaryl derivative 165 (4:1 dr) with SO2Cl2 failed to produce the 

desired unsaturated ester 181 and, unexpectedly, generated the 3-chloro derivatives 117 and 117. 

Although unintended, the substitution reaction indicates that oxidations may be possible with NCS, 

NBS, DDQ, or other reagents and more polar solvents and higher temperatures could be explored.  
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4.4 7-Monochloro- and 7-Hydroxymethyl Cyclobutanone Derivatives 

Although the dichlorocyclobutanones are generally much better inhibitors than their dechlorinated 

counterparts, dichlorocyclobutanones are susceptible to ring-opening by nucleophiles and have poor 

stability in aqueous solution at neutral pH. These undesirable properties indicated that modifications 

at C7 should be explored.    

With the high electrophilicity and reactivity of the dichlorocyclobutanones and the poorer 

inhibition of the dechlorinated cyclobutanones, the first C7-modified derivatives to be considered 

were monochlorocyclobutanones. In addition to the greater stability at neutral pH expected from 

monochlorocyclobutanones, -lactamase inhibition by a monochloro derivative was reported by 

Lowe and Swain. The 7-chloro-2-oxacyclobutanone 61 showed time-dependent inhibition of the 

class A enzymes R-TEM-2 and BcI.530,531  

Other modifications that have been considered for potential -lactamase inhibitors are the 7-

acylamino functionality of penams and cephems and the hydroxyalkyl group of carbapenems (Figure 

53). While both of these functional groups have the potential to improve inhibition through 

favourable hydrogen bonding interactions in -lactamase active sites, the carbapenem-mimetic  

 

Figure 53. Modifications at C7 that could potentially improve cyclobutanone stability and affinity for 
-lactamase active sites.  

 

Figure 54. Structure-optimized models of a 7-hydroxymethyl-7-chlorocyclobutanone derivative 
bound to the metallo--lactamase IMP-1 and the class D carbapenemase OXA-48.  
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Scheme 37. Unsuccessful Mono-Dechlorination Attempts.  

 

sidechain was considered especially interesting because of its potential to interact favourably with 

carbapenemases and its synthetic accessibility. In addition, molecular modeling studies with the 7-

hydroxymethyl derivative 182 indicate that the hydroxymethyl group could be used to interact 

specifically with the conserved zinc-coordinating aspartate residues in MBLs and conserved 

hydrolytic machinery in serine -lactamases (Figure 54). It is thought that the 7-chloride could be 

retained to improve the stability of the enzyme-bound hemiketal or hydrate and a hydroxymethyl 

group may be a better choice for the inhibition of -lactamases than a hydroxyethyl substituent 

because it may provide improved binding to a wider range of enzymes as a result of its flexibility.    

Efforts to prepare monocyclobutanones for inhibition studies were initiated in the early stages of 

the project but progress to this end has been made only recently. Initial efforts to effect the 

monodechlorination of cyclobutanone 84 with 1 equivalent of zinc dust in AcOH, at 70 C or at room 

temperature, resulted in mixtures of the starting material 84 with the di-dechlorinated product 110 and 

each of the monochloro derivatives 183 and 183 and chromatographic separation of each 

constituent was not achieved. Since hydrolysis of the ethyl ester in alkaline conditions would likely 

result in Favorskii ring-contraction588 and acid-catalyzed hydrolysis would cause epimerization, 

attempts were not made to convert the esters 183 into the acids 184. Instead, efforts were made to 

generate the acids 184 and/or 184 directly through the monodechlorination of acid 65. Not 

unexpectedly, a similar mixture of products 111, 184, and 184 was obtained and purification of the 

monochloro isomers was not possible by flash chromatography or through selective crystallizaton.  

It should be noted in passing that the fairly obvious approach to monochlorocyclobutanones 

involving the [2 + 2] cycloaddition of 83 with chloroketene was also unsuccessul despite considerable  
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Scheme 38. Mono-Dechlorinations Using Zinc with TMSCl.  

 

literature precedent for successful [2 + 2] cycloadditions with chloroketene. It is thought that the 

enolization of the cyclobutanone adduct is problematic since Lowe and Swain observed similar issues 

with phthalimidoketene.530,531   

After careful consideration, it was thought that monodechlorination could be achieved efficiently if 

bis-dechlorination were to be prevented by the formation of a silyl enol ether intermediate. Thus, the 

dichlorocyclobutanone 84 was combined with zinc dust and TMSCl in MeCN and heated to 40 C for 

4 hours before the reaction mixture was concentrated and subjected to an aqueous workup. It was 

satisfying to discover that the monochlorocyclobutanone 183 was produced fairly cleanly under 

these conditions (Scheme 38) and, while isomerization occurred upon exposure to aqueous HCl and 

during chromatography, the -chloro isomer 183 was not detected by 1H NMR of the crude reaction 

mixture. The major byproduct of the reaction was the bis-dechlorinated cyclobutanone 110 (ca. 30%) 

but additional experimentation revealed that the formation of 110 could be limited with the use of 

more strictly anhydrous conditions. The application of this method to the benzhydryl ester 149 

generated the monochloro acid 184 in approximately 25% yield (rather than the monochloro ester 

185) and achieved the monodechlorination and deprotection in one operation. Lower yields were 

obtained in subsequent experiments, however, and the relative proportions of the monochloro acid 

184 and ester 185 were also highly variable. The addition of anisole failed to improve the yield of 

184 and 185 and a reaction involving TMS-imidazole instead of TMSCl generated a complex 

mixture. An attempt to apply this method to the -methoxy derivative 151 was also unsuccessful.    
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Scheme 39. Hydroxymethylation of Cyclobutanone Derivatives at C7.  

 

With a method for monodechlorination available, synthetic studies toward 7-hydroxymethyl 

cyclobutanones were undertaken. In collaboration with Ms. Nootaree Niljianskul, an undergraduate 

researcher in this laboratory, the hydroxymethylation conditions first explored involved the treatment 

of 183 (as a mixture of 183 and 183) with paraformaldehyde and Et3N in MeCN at 70 C (Scheme 

39). This operationally simple protocol produced the hydroxymethyl diastereomers 187 and 186 in a 

>5:1 ratio, as indicated by 1H NMR of the crude product, and flash chromatography afforded the 

major isomer in 65% yield. Spectral data and NOE correlations support the conclusion that the major 

stereoisomer was the expected 7-hydroxymethyl derivative 187.  

Despite the realization that the hydroxymethyl derivative 186 could potentially undergo a variety of 

undesired base-induced reactions, including retro-aldol deformylation, Favorskii ring-contraction, and 

epoxidation, attempts were made to convert the ethyl ester 187 to the carboxylic acid 188 through 

alkaline hydrolysis. As anticipated, complex mixtures of products were observed upon exposure of 

187 to KOH (1–5 equiv) in MeOH/H2O or THF/H2O. Efforts to hydrolyze the ethyl esters were 

discontinued after the pleasing discovery that the hydroxymethyl derivative 188 could be prepared 

directly from the monochloro acids 184. The conditions used for the hydroxymethylation of the ethyl 

esters 183 were applied to a mixture of the acids 184 and 184 and the hydroxymethyl acid 188 was 

generated in modest yield. The C7-epimer of 188 was not detected by 1H NMR.  

Recent biochemical assays indicate that the hydroxymethyl acid 188 is a reasonable inhibitor of the 

recently acquired metallo--lactamase NDM-1 (IC50 = 55 M). This result should be considered only 

preliminary, however, since the sample of 188 tested was of questionable purity. More detailed 

inhibition studies with NDM-1 and other -lactamases are in progress.      
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Table 9. Inhibition of -Lactamases by the Monochlorocyclobutanone 184.a,b  

 

ketone 
inhibitor 

% hydrate 
in D2O 

class A 
KPC-2 

class B 
IMP-1 

class B 
VIM-2 

class C 
GC1 

class D 
OXA-10 

65 74   76 ± 8 >1000 >1000 25 ± 3 268 ± 8 

111 0   117 ± 13   235 ± 14 >1000 44 ± 3 1135 ± 33 

184 nd c >500 260 >500 >500 >500 

a IC50 values (M). b For comparisons to C3-alkoxy derivatives and penem analogues, see 

Table 6. c nd = not determined.  

Preliminary biochemical assays with 184 indicate that the monochloro derivative is a poorer -

lactamase inhibitor than the dichloro acid 65 and the dechlorinated acid 111 (Table 9). These 

somewhat surprising results may be an indication that the interaction of the 7-Cl with residues in -

lactamase active sites are disfavourable and suggest that the -chloro isomer 184 may show greater 

affinity for these enzymes. Greater insight might also be gained with investigations of the tendency of 

184 and 184 to undergo hydrate formation and the extent to which isomerization occurrs under the 

assay conditions.  

4.5 Summary and Outlook 

Ab initio molecular orbital calculations, which indicated that C3-thioalkyl and C3-alkyl 

cyclobutanone derivatives have relatively weak preferences for endo or exo envelope conformations, 

encouraged synthetic studies toward such analogues since it is possible that conformational flexibility 

could improve affinity for -lactamase active sites. As an extension of the methodology developed for 

substitutions at C3 with alcohols, C3-thioalkyl and C3-alkyl analogues were prepared from 3-chloro 

derivatives through SnCl4- or TiCl4-promoted substitutions with thiols or allyltrimethylsilane. 

Substitutions were efficient with the ethyl ester derivatives but were unsuccessful with Lewis acid-

sensitive benzhydryl esters. As a result, alternate protection of the C4-carboxylate is required and 

further synthetic efforts toward C3-thioalkyl and C3-alkyl cyclobutanone analogues may involve the 
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use of benzyl-, para-nitrobenzyl-, or allyl esters as protective groups.    

In order to explore modifications at C7 which have the potential to improve inhibition and 

cyclobutanone stability, a method for the monodechlorination of dichlorocyclobutanones was 

developed. Although the 7-chloro cyclobutanone 184 showed poor inhibition relative to its 

dichloro and dechlorinated counterparts, the monochloro derivative served as a precursor for the 

synthesis of a 7-hydroxymethyl cyclobutanone 188 that was designed to interact with specific 

residues in the active sites of both serine- and metallo--lactamases. Preliminary biochemical data 

with cyclobutanone 188 is encouraging and additional 7-hydroxymethyl-7-chloro analogues should 

be prepared and evaluated for -lactamase inhibition and for synergy with -lactams against resistant 

bacteria.      
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Chapter 5 

Experimental Procedures 

5.1 General Synthetic Experimental Procedures 

Chemical shifts in 1H NMR and 13C NMR spectra are reported in parts per million (ppm) relative to 

tetramethylsilane (TMS), with calibration of the residual solvent peaks according to values reported 

by Gottlieb et al. (chloroform: H 7.26, C 77.0 (exception); acetone: H 2.05, C 29.84, 206.26; 

acetone in water: H 2.22, C 30.89, 215.94; acetonitrile: H 1.94, C 1.32, 118.26; methanol: H 3.31, 

C 49.00; DMSO: H 2.50, C 39.52, ).680 19F NMR chemical shifts are reported relative to CFCl3 ( 0) 

using a TFA external standard. 31P NMR chemical shifts are reported relative to H3PO4 ( 0) using an 

H3PO4 external standard. When peak multiplicities are given, the following abbreviations are used: s, 

singlet; d, doublet; t, triplet; q, quartet; sept., septet; dd, doublet of doublets; m, multiplet; br, broad; 

app., apparent; gem, geminal. 1H NMR spectra were acquired at 300 MHz and 500 MHz with a digital 

resolution (Brüker parameter: FIDRES) of 0.245 and 0.0993 Hz/point, respectively. The coupling 

constants reported herein therefore have uncertainties of 0.5 Hz and 0.2 Hz at 300 MHz and 500 

MHz, respectively. Assignments of protons and carbons relied on data from 2-dimensional NMR 

experiments including COSY, HMQC, and HMBC. Melting points (mp) are uncorrected. Reactions 

were carried out at room temperature (rt) if temperature is not specified. All reactions were done 

under an atmosphere of either nitrogen or argon, with the exception of selected reactions done in 

aqueous media. For the purification of compounds by flash chromatography, 230–400 mesh (40–63 

M) flash silica was used (Silicycle, Québec, QC). Figures of X-ray crystal structures were generated 

with Mercury.681  

5.2 General Molecular Modeling Procedures 

Ab initio calculations made use of GaussView682 and Gaussian-03.623 Determination of energy 

differences between conformations involved an optimization and frequency calculation followed by 
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addition of the zero-point energy correction for each conformation. All optimized structures were 

checked for zero imaginary frequencies and all transition states for one imaginary frequency. In 

addition, IRC calculations were done for HF/6-31G(d)-optimized transition states. All optimizations 

using Gaussian were done in the gas phase. 

The Sybyl 7.2 modeling package683 was used for least-squared superimpositions of small 

molecules, for docking of inhibitors to enzyme active sites, and for structural optimizations of 

enzyme–inhibitor complexes. Structural optimizations used the MMFF94 force field and included the 

inhibitor and monomers (amino acid residues and waters) within a 6 Å radius of the inhibitor.  

PyMOL was used to generate graphics of selected structures of small molecules and of enzyme–

inhibitor complexes.684  

5.3 Synthetic Procedures 

Triethyl Phosphonoacetate (103) 

 

As a modification of the procedure reported by Wolinsky and Erickson,591 ethyl bromoacetate (102) 

(35.02 g, 209.7 mmol) and triethyl phosphite (36.10 g, 217.2 mmol) were combined neat at rt. The 

mixture was slowly heated to 90 °C over 2 h593 and stirred at this temperature for an additional 22 h. 

The crude product was distilled under reduced pressure to afford phosphonate 103 as a colourless oil 

(46.09 g, 205.6 mmol, 98%). Bp: 89–90 °C/~0.1 mmHg. 1H NMR (300 MHz, CDCl3):  1.29 (t, J = 

7.1 Hz, 3H, CO2CH2CH3), 1.35 (t, J = 7.1 Hz, 6H, P(OCH2CH3)2), 2.97 (d, 2JP,H = 21.6 Hz, 2H, 

PCH2), 4.18–4.22 (m, 6H, P(OCH2CH3)2 and CO2CH2CH3). 
13C NMR (75.5 MHz, CDCl3):  14.0, 

16.3 (d, 3JP,C = 6.2 Hz), 34.3 (d, 1JP,C = 133.4 Hz), 61.5, 62.6 (d, 2JP,C = 6.3 Hz), 165.8 (d, 2JP,C = 6.0 

Hz). 31P NMR (121.5 MHz, CDCl3):  21.4. LRMS (EI) m/z (relative intensity): 224 (M+, 20), 197 

(100), 179 (85), 152 (50), 151 (55), 123 (65). 
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Methyl Diethylphosphonoacetate (105) 

O

OMe
Br

104

P(OEt)3
O

OMe
PEtO

O

EtO

105  

In a similar procedure to that described above, methyl bromoacetate (104) (50.04 g, 327.1 mmol) 

and triethyl phosphite (54.72 g, 329.3 mmol) were combined neat at rt. The mixture was slowly 

heated to 85 °C over 1.5 h593 and stirred at this temperature for an additional 12 h. The reaction 

mixture was cooled to rt before volatile material was removed under reduced pressure and the crude 

phosphonate 105 (estimated to be 97% pure by 1H NMR) was used in the next step without further 

purification. 1H NMR (300 MHz, CDCl3):  1.33 (t, J = 7.1 Hz, 6H, P(OCH2CH3)2), 2.95 (d, 2JP,H = 

21.6 Hz, 2H, PCH2), 3.73 (s, 3H, CO2CH3), 4.10–4.21 (m, 4H, P(OCH2CH3)2). 

Ethyl-2-(diethoxyphosphoryl) Acrylate (93) 

O

OEt
PEtO

O

EtO

103

O

OEt
PEtO

O

EtO

93

1. CH2O, piper.

2. TsOH, PhMe

 

Following a published procedure,577 phosphonate 103 (46.09 g, 205.6 mmol) was added to a 

solution of paraformaldehyde (12.35 g, 411.3 mmol) and piperidine (2.05 mL, 20.6 mmol) in MeOH 

(500 mL) over 30 min at rt using a pressure-equalized dropping funnel. The suspension was heated to 

reflux for 24 h and the solvent was then removed under reduced pressure to give the primary 

alcohol.594 The crude oil was taken up in PhMe (500 mL), treated with TsOH·H2O (3.918 g, 20.60 

mmol), and the solution heated to reflux under a Dean–Stark trap.595 At 16 h the solution was 

concentrated and distilled under reduced pressure to give the vinyl phosphonate 93 as a clear, dull 

yellow oil (44.00 g, 186.3 mmol, 91% over 2 steps). Bp 98–100 °C/~0.2 mmHg. 1H NMR (300 MHz, 

CDCl3):  1.33 (m, 9H, P(OCH2CH3)2 and CO2CH2CH3), 4.08–4.25 (m, 4H, P(OCH2CH3)2), 4.29 (q, 

J = 7.2 Hz, 2H, CO2CH2CH3), 6.75 (dd, Jgem = 1.9 Hz, 3JP,Hcis = 20.5 Hz, 1H, H3cis), 7.00 (dd, Jgem = 

1.9 Hz, 3JP,Htrans = 41.9 Hz, H3trans). 
13C NMR (75.5 MHz, CDCl3):  14.0, 16.3 (d, 3JP,C = 6.3 Hz), 

61.5, 62.7 (d, 2JP,C = 5.9 Hz), 133.2 (d, 1JP,C = 186.2 Hz), 143.2 (d, 3JP,C = 4.8 Hz), 163.8 (d, 2JP,C = 

16.2 Hz). 31P NMR (121.5 MHz, CDCl3):  13.7. 
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Methyl-2-(diethoxyphosphoryl) Acrylate (94) 

 

Phosphonate 105 (25.90 g, 123.2 mmol) was added dropwise to a suspension of paraformaldehyde 

(7.398 g, 246.4 mmol) and piperidine (1.25 mL, 12.6 mmol) in MeOH (250 mL) at rt. The reaction 

mixture was slowly heated to reflux over 3 h and maintained at this temperature for an additional 12 h 

before the solvent was removed under reduced pressure to give the primary alcohol. The crude oil 

was taken up in PhMe (250 mL), treated with TsOH·H2O (2.405 g, 12.61 mmol), and the solution 

heated to reflux under a Dean–Stark trap.595 After 12 h at reflux the solution was concentrated and 

distilled under reduced pressure to give the vinyl phosphonate 94 as a clear, colourless oil (21.40 g, 

96.32 mmol, 78% over 2 steps). Bp 98–100 °C/~0.2 mmHg. 1H NMR (300 MHz, CDCl3):  1.34 (t, 

6H, P(OCH2CH3)2), 3.83 (s, 3H, CO2CH3), 4.13–4.21 (m, 4H, P(OCH2CH3)2), 6.74 (dd, Jgem = 1.9 Hz, 

3JP,Hcis = 20.5 Hz, 1H, H3cis), 6.99 (dd, Jgem = 1.9 Hz, 3JP,Htrans = 41.9 Hz, H3trans).  

Ethyl 2,5-Dihydrothiophene-3-carboxylate (81)  

 

Similar to the procedures developed by McIntosh and Sieler for the synthesis of 

dihydrothiophenes,576,577 a solution of the vinyl phosphonate 93 (44.00 g, 186.29 mmol) in dry 

CH2Cl2 (100 mL) was added to a suspension of p-dithiane-2,5-diol (14.18 g, 93.17 mmol) and Et3N 

(26.4 mL, 188.64 mmol) in dry CH2Cl2 (200 mL) over 30 minutes using a pressure-equalized 

dropping funnel. The solution was stirred at reflux for 6 h before it was cooled to rt, acidified to pH 1 

with 5% HCl, and extracted with CH2Cl2 (3 × 100 mL). The organic phase was dried over Na2SO4 

and concentrated under reduced pressure. Caution: the dihydrothiophene product is somewhat 

volatile. Flash chromatography (20% EtOAc/hexane) gave dihydrothiophene 81 as a pale yellow oil 

(22.17 g, 140.12 mmol, 75%). 1H NMR (300 MHz, CDCl3):  1.30 (t, J = 7.2 Hz, 3H, CO2CH2CH3), 

3.92 (s, 4H, CH2SCH2), 4.22 (q, J = 7.2 Hz, 2H, CO2CH2CH3), 6.89 (brs, 1H, H4). 
13C NMR (75.5 

MHz, CDCl3):  14.2, 37.1, 38.9, 60.8, 135.7, 140.4, 163.9.  IR (film, cm–1): 2982, 2908, 1715, 1645, 

1334, 1263, 1211, 1079. LRMS (EI) m/z (relative intensity): 160 (M+2, 5), 158 (M+, 100), 129 (50), 



 

152 

113 (30), 85 (80), 84 (30).  

Methyl 2,5-Dihydrothiophene-3-carboxylate (95)  

O

OMe
PEtO

O

EtO

94

S

CO2Me

OHC SH

Et3N, CH2Cl2

95  

Similar to the procedures described above, a solution of vinyl phosphonate 94 (48.78 g, 208.6 

mmol) in dry CH2Cl2 (50 mL) was added slowly to a suspension of p-dithiane-2,5-diol (15.89 g, 

104.4 mmol) and Et3N (32.0 mL, 229 mmol) in dry CH2Cl2 (200 mL) over 30 minutes using a 

pressure-equalized dropping funnel. The solution was stirred at reflux for 21 h before it was cooled to 

rt, acidified to pH 1 with 5% HCl, and extracted with CH2Cl2 (2 × 200 mL). The organic phase was 

dried over Na2SO4, filtered through Celite, and concentrated under reduced pressure. Caution: the 

dihydrothiophene product is somewhat volatile. Flash chromatography (10% EtOAc/hexane) gave 

dihydrothiophene 95 as a pale yellow oil (21.94 g, 152.2 mmol, 73%). 1H NMR (300 MHz, CDCl3):  

3.75 (s, 3H, CO2CH3), 3.87–3.93 (brs, 4H, CH2SCH2), 6.85–6.93 (brs, 1H, H4).  

2,5-Dihydrothiophene-3-carboxylic Acid (82)  

 

Ethyl ester 81 (7.699 g, 48.66 mmol) was stirred in a solution of 25% aqueous NaOH (80 mL) at 70 

°C for 16 h. The reaction mixture was then cooled to rt before it was washed with CH2Cl2 (2 × 50 

mL). The aqueous phase was acidified with concentrated HCl, extracted with CH2Cl2 (3 × 200 mL), 

dried with Na2SO4, and concentrated in vacuo to give the title compound 82 as a light yellow powder 

(5.40 g, 41.49 mmol, 85%). An analytical sample was obtained by recrystallization from 

EtOAc/hexane. Mp 169–170 C (lit.580 mp 174–176 °C). 1H NMR (300 MHz, CDCl3):  3.94 (s, 4H, 

CH2SCH2), 7.03 (s, 1H, H4). 
13C NMR (75.5 MHz, CDCl3):  36.7, 39.1, 134.9, 143.7, 169.1. IR 

(film, cm–1): 3044, br 3200–2800, 1684, 1645, 1278. LRMS (EI) m/z (relative intensity): 130 (M+, 

100), 112 (10), 85 (95), 84 (40). HRMS (EI) m/z: 130.0089 calcd for C5H6O2S; 130.0093 obsd.  
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Alternatively, the acid 82 could be obtained through hydrolysis of the methyl ester 95. The methyl 

ester 95 (21.94 g, 152.2 mmol) was stirred in a solution of 25% aqueous NaOH (50 mL) at 85 °C for 

2.5 h. The reaction mixture was then cooled to rt before it was washed with CH2Cl2 (100 mL). The 

aqueous phase was acidified with concd HCl and extracted with CH2Cl2 (4 × 200 mL), dried with 

Na2SO4, and concentrated in vacuo to give the title compound 82 as an off-white powder (18.47 g, 

141.8 mmol, 93%) with identical spectral characteristics as those reported above.  

Ethyl 2,3-Dihydrothiophene-3-carboxylate (83)  

 

To a stirring solution of conjugated acid 82 (992.7 mg, 7.626 mmol) and Et3N (2.302 g, 22.75 

mmol) in CH2Cl2 (20 mL) was added a solution of ethyl chloroformate (1.732 g, 15.96 mmol) in 

CH2Cl2 (15 mL) dropwise over 5 minutes.  The solution was stirred at rt for 24 h before it was 

washed with 5% HCl (50 mL), sat. NaHCO3 (50 mL), and brine (50 mL). The organic solvent was 

dried with Na2SO4 before it was removed under reduced pressure. Caution: The deconjugated ester 

product is somewhat volatile. The crude product was purified by flash chromatography (20% 

EtOAc/hexane) to give the deconjugated ester 83 (1.136 g, 7.177 mmol, 94%). 1H NMR (300 MHz, 

CDCl3):  1.29 (t, J = 7.1 Hz, 3H, CO2CH2CH3), 3.40 (dd, J = 10.3 Hz, Jgem = 11.5 Hz, 1H, one of 

SCH2), 3.63 (dd, J = 8.2 Hz, Jgem = 11.5 Hz, 1H, one of SCH2), 3.92–3.95 (m, 1H, H3), 4.19 (q, J = 

7.1 Hz, 2H, CO2CH2CH3), 5.63 (dd, J4,3 = 2.8 Hz, J4,5 = 5.9 Hz, 1H, H4), 6.28 (dd, J5,3 = 2.4 Hz, J5,4 = 

5.9 Hz, 1H, H5). 
13C NMR (75.5 MHz, CDCl3):  14.2, 33.2, 52.9, 61.2, 120.2, 128.5, 172.0. IR (film, 

cm–1): 3072, 2982, 1732, 1645, 1575, 1188, 1048. LRMS (EI) m/z (relative intensity): 160 (M+2, 2), 

158 (M+, 40), 129 (5), 111 (10), 85 (100), 84 (5). HRMS (EI) m/z: 158.0402 calcd for C7H10O2S; 

158.0401 obsd. 
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Ethyl 7,7-Dichloro-2-thiabicyclo[3.2.0]heptan-6-one-4-carboxylate (84)  

 

To a stirring solution of deconjugated ester 83 (5.986 g, 37.83 mmol) and Et3N (13.4 mL, 95.7 

mmol) in dry hexane (350 mL) was added a solution of dichloroacetyl chloride (9.10 mL, 94.6 mmol) 

in hexane (40 mL) over 3 h at rt using a motor-driven syringe pump. The reaction mixture was stirred 

for an additional 21 h before it was filtered through Celite. The filter cake was rinsed with hexane and 

the filtrate washed with 5% HCl (3 × 100 mL), sat. NaHCO3 (3 × 100 mL), and brine (100 mL). The 

organic phase was dried over Na2SO4 before the solvent was removed in vacuo. Flash 

chromatography (5% Et2O/hexane) afforded the cycloadduct 84 as a pale yellow oil which 

crystallized upon storage at 4 C (6.645 g, 24.69 mmol, 65%). Mp: 32–33 C. 1H NMR (300 MHz, 

CDCl3):  1.28 (t, J = 7.1 Hz, 3H, CO2CH2CH3), 3.05 (dd, Jgem = 12.4 Hz, J3,4 = 5.8 Hz, 1H, H3), 

3.45 (d, Jgem = 12.4 Hz, 1H, H3), 3.66 (d, J4,3 = 5.8 Hz, 1H, H4), 4.20 (q, J = 7.1 Hz, 2H, 

CO2CH2CH3), 4.52 (d, J1,5 = 8.3 Hz, 1H, H1), 5.07 (d, J5,1 = 8.3 Hz, 1H, H5). 
13C NMR (75.5 MHz, 

CDCl3):  14.1, 35.6, 50.1, 58.9, 62.1, 67.4, 89.2, 169.8, 194.8. IR (film, cm–1): 2983, 1810, 1732, 

1445, 1370, 1331, 1213, 1025. LRMS (EI) m/z (relative intensity): 272 ([M(37Cl2)]
+, 7), 270 

([M(37Cl35Cl)]+, 35), 268 ([M(35Cl2)]
+, 50), 222 (15), 208 (45), 194 (40), 180 (20), 135 (40), 85 (100). 

HRMS (EI) m/z: 267.9728 calcd for C9H10
35Cl2O3S; 267.9726 obsd.  

Ethyl 7,7-Dichloro-2-thiabicyclo[3.2.0]heptan-6-one-4-carboxylate (109)  

S

CO2Et
109

O H

HCl
Cl

 

Small amounts of the 4 epimer were isolated by chromatography from reactions in which Et3N 

was added to a solution of the dihydrothiophene with dichloroacetyl chloride. 109: 1H NMR (300 

MHz, CDCl3):  1.31 (t, J = 7.1 Hz, 3H, CO2CH2CH3), 3.10 (B of ABX, Jgem = 12.0 Hz, J3,4 = 7.6 

Hz, H3), 3.14 (A of ABX, Jgem = 12.0 Hz, J3,4 = 10.5 Hz, H3), 3.28 (dt, J4,3 = 7.6 Hz, J4,3 = 10.5 

Hz, J4,5 = 7.6 Hz, H4), 4.23 (B of ABX3, JBA = 10.8 Hz, JBX = 7.2 Hz, one of CO2CH2CH3), 4.28 (A of 

ABX3, JAB = 10.8 Hz, JAX = 7.2 Hz, one of CO2CH2CH3), 4.45 (d, J1,5 = 8.4 Hz, H1), 4.81 (dd, J5,1 = 
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8.4 Hz, J5,4 = 7.6 Hz, H5). 
13C NMR (75.5 MHz, CDCl3):  14.0, 33.3, 51.4, 58.2, 61.8, 66.1, 89.7, 

168.3, 193.3. 

Ethyl 2-Thiabicyclo[3.2.0]heptan-6-one-4-carboxylate (110) 

 

To a stirring solution of dichlorocyclobutanone 84 (800.5 mg, 2.974 mmol) in glacial acetic acid 

(25 mL) was added zinc dust (972.1 mg, 14.87 mmol). The reaction mixture was stirred at 80 °C for 5 

h before it was cooled, diluted with EtOAc, and filtered to remove residual zinc. The solvents were 

removed under reduced pressure before the crude oil taken up in EtOAc (75 mL), washed with satd 

Na2CO3 (2 × 75 mL) and brine (2 × 75 mL), dried over Na2SO4, and concentrated in vacuo. The crude 

yellow product was purified by flash chromatography (10% EtOAc/hexane) to give the title 

compound 110 as a colourless oil (510.2 mg, 2.548 mmol, 86%). 1H NMR (300 MHz, CDCl3):  1.27 

(t, J = 7.1 Hz, 3H, CO2CH2CH3), 2.98 (dt, J7,5 = 3.3 Hz, J7,1
 = 3.3 Hz, Jgem = 18.7 Hz, 1H, H7), 3.21 

(dd, Jgem
 = 12.2 Hz, J3,4 = 5.9 Hz, 1H, H3), 3.45 (d, Jgem = 12.2 Hz, 1H, H3), 3.57 (d, J4,3 = 5.9 Hz, 

1H, H4), 3.63 (ddd, Jgem = 18.7 Hz, J7,1 = 8.3 Hz, J7,5 = 3.6 Hz, 1H, H7), 4.12–4.21 (m, 3H, H1 and 

CO2CH2CH3), 4.63 (m, 1H, H5). 
13C NMR (75.5 MHz, CDCl3):  14.0, 35.3, 36.9, 50.0, 56.5, 61.5, 

71.5, 170.8, 208.4.  IR (film, cm–1): 2982, 1784, 1732, 1446, 1369, 1331, 1214, 1027. LRMS (EI) m/z 

(relative intensity): 200 (M+, 12), 158 (40), 99 (10), 85 (100). HRMS (EI) m/z: 200.0507 calcd for 

C9H12O3S; 200.0497 obsd. 

7,7-Dichloro-2-thiabicyclo[3.2.0]heptan-6-one-4-carboxylic Acid (65) 

 

Ethyl ester 84 (1.323 g, 4.916 mmol) was dissolved in dioxane (10 mL) and stirred with 6 M HCl 

(20 mL) at 80 °C for 6 h. The reaction mixture was cooled to rt, extracted with CH2Cl2 (3 × 20 mL), 

and dried with Na2SO4 before the solvent was removed in vacuo. The crude beige-coloured solid was 

recrystallized from PhMe to give dichlorocyclobutanone 65 (936.1 mg, 3.883 mmol, 79%) as light 
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yellow needles. Mp 160–161 °C. 1H NMR (300 MHz, acetone-d6):  3.06 (dd, Jgem
 = 12.4 Hz, J3,4 = 

5.9 Hz, 1H, H3), 3.50 (d, Jgem = 12.4 Hz, 1H, H3), 3.81 (d, J4,3 = 5.9 Hz, 1H, H4), 4.69 (d, J1,5 = 8.5 

Hz, 1H, H1), 5.14 (d, J5,1 = 8.5 Hz, 1H, H5). 
13C NMR (75.5 MHz, acetone-d6):  36.3, 50.7, 59.5, 

68.6, 90.2, 171.3, 196.0. IR (film, cm–1): br 3200–2600, 2951, 1810, 1700, 1453, 1417, 1262, 1190. 

LRMS (EI) m/z (relative intensity): 244 (M[(37Cl2)]
+, 5), 242 ([M(37Cl35Cl)]+, 27), 240 ([M(35Cl2)]

+, 

38), 222 (10), 194 (20), 180 (60), 141 (40), 130 (40), 85 (100). HRMS (EI) m/z: 239.9415 calcd for 

C7H6
35Cl2O3S; 239.9421 obsd. 

Ethyl 2-Thiabicyclo[3.2.0]heptan-6-one-4-carboxylic Acid (111) 

 

Zinc dust (293.4 mg, 4.486 mmol) was added to a stirring solution of dichlorocyclobutanone 65 

(212.1 mg, 0.8798 mmol) in glacial acetic acid (25 mL) at rt before it was heated to 80 C. An 

additional portion of zinc dust was added after 1.5 h (293.0 mg, 4.481 mmol) and the suspension was 

stirred for an additional 16 h before it was cooled to rt. The solution was diluted with EtOAc (100 

mL) and filtered through glass wool to remove residual solid before concentration under reduced 

pressure. The resulting oil was re-dissolved in EtOAc (50 mL) and washed with 10% HCl (2 × 50 

ml). The organic phase was then dried over Na2SO4 and the solvent removed under reduced pressure. 

Trituration with CH2Cl2/hexane provided the product 111 as a white solid (134.0 mg, 0.7782 mmol, 

88%). Mp 98–100 C. 1H NMR (300 MHz, acetone-d6):  2.85 (ddd, Jgem = 18.4 Hz, J7,1
 = 3.2 Hz, 

J7,5 =
 3.2 Hz, 1H, H7), 3.22 (dd, Jgem = 12.1 Hz, J3,4 = 5.9 Hz, 1H, H3), 3.44 (d, Jgem = 12.1 Hz, 1H, 

H3), 3.56 (d, J4,3 = 5.9 Hz, 1H, H4),  3.70 (ddd, Jgem = 18.3 Hz, J7,1 = 8.2 Hz, J7,5 = 3.5 Hz, 1H, 

H7) 4.17 (ddd, J1,5 = 8 Hz, J1,7 = 8.2 Hz, J1,7 = 3.5 Hz, 1H, H1), 4.64 (m, 1H, H5). 
13C NMR (75.5 

MHz, acetone-d6):  35.6, 37.5, 50.3, 56.6, 72.3, 172.4, 208.4. IR (film, cm–1): br 3200–2600, 2933, 

1780, 1705, 1383, 1252. LRMS (EI) m/z (relative intensity): 174 ([M+2]+, 2.7), 173 ([M+1]+, 4.4), 

172 (M+, 49), 130 (65), 97 (10), 85 (100). HRMS (EI) m/z: 172.0194 calcd for C7H8O3S; 172.0191 

obsd. 
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Ethyl 3,7,7-Trichloro-2-thiabicyclo[3.2.0]heptan-6-one-4-carboxylate (117)  

 

To a stirring solution of dichlorocyclobutanone 84 (1.005 g, 3.735 mmol) in dry CH2Cl2 (45 mL) at 

0 °C was added a solution of SO2Cl2 (1 M in CH2Cl2, 4.50 mL, 4.50 mmol). The solution was stirred 

at rt for 4 h before it was concentrated under reduced pressure to give 117 as a white crystalline 

solid (1.132 g, 3.729 mmol, 99.8%). Mp 84–87 °C. 1H NMR (300 MHz, CDCl3):  1.30 (t, J = 7.1 

Hz, 3H, CO2CH2CH3), 3.97 (dd, J4,3 = 4.8 Hz, J4,5 = 5.8 Hz, 1H, H4), 4.23 (B of ABX3, JAB = 10.8 Hz, 

JBX = 7.1 Hz, 1H, one of CO2CH2CH3), 4.26 (A of ABX3, JAB = 10.8 Hz, JAX = 7.1 Hz, 1H, one of 

CO2CH2CH3), 4.94 (d, J1,5 = 8.3 Hz, 1H, H1),  5.20 (dd, J5,1 = 8.3 Hz, J5,4 = 5.8 Hz, 1H, H5) 5.87 (d, 

J3,4 = 4.8 Hz, 1H, H3). 
13C NMR (75.5 MHz, CDCl3):  14.0, 59.8, 60.0, 62.5, 65.5, 74.1, 85.0, 

166.2, 192.0. IR (film, cm–1): 2985, 1815, 1740, 1372, 1266, 1236, 1212. LRMS (EI) m/z (relative 

intensity): 306 (M[(37Cl2
35Cl)]+, 1), 304 ([M(37Cl35Cl2)]

+, 2), 302 ([M(35Cl3)]
+, 2), 267 (10), 259 (15), 

207 (100), 169 (50), 131 (55), 99 (90). HRMS (EI) m/z: 301.9338 calcd for C9H9
35Cl3O4S; 301.9336 

obsd. 

Ethyl 3,7,7-Trichloro-2-thiabicyclo[3.2.0]heptan-6-one-4-carboxylate (117)  

S

CO2Et
117

O H

HCl
Cl

Cl

 

The 3-chloro isomer 117 was observed as a by-product in most solvolysis reactions in alcohol, 

substitution reactions with AgOTf, and elimination attempts involving 117. Although 117 was, for 

the most part, unstable to chromatography, a small amount could be isolated in a nearly pure form 

(98%) from chromatography of the reaction mixture resulting from: 117 in t-BuOH  123 (major) 

+ 123 (minor) + 117 (minor) + 118 (minor). 117: 1H NMR (300 MHz, CDCl3):  1.31 (t, J = 7.1 

Hz, 3H, CO2CH2CH3), 4.08 (s, 1H, H4), 4.23 (q, J = 7.1 Hz, 2H, CO2CH2CH3), 4.72 (d, J1,5 = 8.7 Hz, 

1H, H1), 5.15 (d, J5,1 = 8.7 Hz, 1H, H5), 6.14 (s, 1H, H3). 13C NMR (125 MHz, CDCl3):  14.0, 61.4, 

62.3, 62.9, 65.9, 71.5, 89.7, 167.1, 192.7. 
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Ethyl 7,7-Dichloro-2-thiabicyclo[3.2.0]hept-3-ene-6-one-4-carboxylate (118)  

 

A solution of cyclobutanone 117 (105.0 mg, was 0.346 mmol) in CH2Cl2 (2 mL) was slowly 

added to a stirring solution of AgOTf (104.1 mg, 0.405 mmol) in refluxing CH2Cl2 (20 mL) dropwise 

over 10 minutes.  After 2 h at reflux, the solution was cooled to rt, diluted with CH2Cl2, filtered 

through Celite, and concentrated in vacuo. Purification by flash chromatography (10% EtOAc/ 

hexane) furnished the elimination product 118 as a colourless oil that solidified under reduced 

pressure (74.4 mg, 0.279 mmol, 81%). Mp 75–76 °C. 1H NMR (300 MHz, CDCl3):  1.31 (t, J = 7.1 

Hz, 3H, CO2CH2CH3), 4.21 (B of ABX3, JAB = 10.7 Hz, JBX = 7.1 Hz, 1H, one of CO2CH2CH3), 4.24 

(A of ABX3, JAB = 10.7 Hz, JAX = 7.1 Hz, 1H, one of CO2CH2CH3), 4.89 (d, J1,5 = 10.0 Hz, 1H, H1) 

5.43 (dd, J5,1 = 10.0 Hz, J5,3 = 1.7 Hz, 1H, H5), 7.43 (d, J3,5 = 1.7 Hz, 1H, H3). 
13C NMR (75.5 MHz, 

CDCl3):  14.2, 59.6, 61.2, 71.3, 93.8, 122.2, 144.4, 161.1, 187.4. IR (film, cm–1): 3075, 2984, 1812, 

1705, 1576, 1370, 1327, 1238, 1078. LRMS (EI) m/z (relative intensity): 268 ([M(37Cl35Cl)]+, 1.5), 

266 ([M(35Cl2)]
+, 2.0), 238 (20), 203 (100), 175 (40). HRMS (EI) m/z: 265.9571 calcd for 

C9H8
35Cl2O3S; 265.9572 obsd.  

 

The unsaturated ester 118 could also be prepared from 117 using MsOH. Methanesulfonic acid (2 

mL) was added to a solution of the -chloride 117 (304.5 mg, 1.003 mmol) in CH2Cl2 (18 mL) and 

the solution was heated to reflux for 2 h. The reaction was cooled to rt, diluted with CH2Cl2 (70 mL), 

and washed with satd NaHCO3 (2  50 mL) and brine (25 mL). The organic phase was dried over 

Na2SO4, concentrated under reduced pressure, and filtered through silica to provide the title 

compound 118 as a clear light yellow oil that solidified under vacuum (194.2 mg, 0.7269 mmol, 

72%).   
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Alternatively, the unsaturated ester 118 could be prepared from thiolactol 119. TsOHH2O (10.9 

mg, 0.057 mmol) was stirred in PhMe (40 mL) and heated at reflux under a Dean–Stark trap595 for 2 

h. (Note: incomplete conversion was observed if the TsOH was not predried). The thiolactol 119 

(83.7 mg, 0.294 mmol) was then added as a solution in PhMe (2 mL) and stirred at reflux for an 

additional 18 h. The solution was concentrated under reduced pressure and purified by flash 

chromatography (10% EtOAc/hexane) to give a colourless oil that crystallized under vacuum (73.8 

mg, 0.276 mmol, 94%).  

Ethyl 7,7-Dichloro-3-hydroxy-2-thiabicyclo[3.2.0]heptan-6-one-4-carboxylate (119)  

 

A solution of the trichlorocyclobutanone 117 (57.5 mg, 0.189 mmol) in MeCN (2 mL) was added 

slowly dropwise to a stirring solution of AgOTf (60.1 mg, 0.234 mmol) in MeCN (5 mL) and H2O (2 

mL). The mixture was stirred for 4 h at rt before it was concentrated under reduced pressure, diluted 

with CH2Cl2 (25 mL), and filtered through Celite. The resulting yellow oil was subjected to flash 

chromatography (10% EtOAc/hexane) which provided a colourless oil (48.6 mg, 0.170 mmol, 90%) 

that was determined to be an 88:6:6 mixture of the thiolactol 119, epimer 119, and an oxa-thia-

tricyclo-octane 119c, respectively. Thiolactol 119: 1H NMR (500 MHz, CDCl3):  1.26 (t, J = 7.1 

Hz, 3H, CO2CH2CH3), 2.7–2.9 (brs, 1H, OH), 3.83 (s, 1H, H4), 4.18 (q, J = 7.1 Hz, 2H, CO2CH2CH3), 

4.67 (d, J1,5 = 8.5 Hz, 1H, H1) 5.05 (d, J5,1 = 8.5 Hz, 1H, H5), 5.98 (s, 1H, H3). 13C NMR (125 MHz, 

CDCl3):   14.0, 59.3, 59.8, 62.3, 65.0, 86.0, 90.4, 167.9, 193.1. IR (film, cm–1): br 3600–3300, 2984, 

1815, 1732, 1246, 1213, 1024. LRMS (EI) m/z (relative intensity): 288 (M[(37Cl2)]
+, 0.4), 286 

([M(37Cl35Cl)]+, 5), 284 ([M(35Cl2)]
+, 8.0), 238 (15), 203 (50), 195 (75), 151 (85), 115 (100). HRMS 

(EI) m/z: 283.9677 calcd for C9H10
35Cl2O4S; 283.9681 obsd. Epimer 119: 1H NMR (500 MHz, 

CDCl3):  1.26 (3H, CO2CH2CH3), 2.7–2.9 (1H, OH), 3.70 (dd, J4,3 = 4.6 Hz, J4,5 = 4.8 Hz, 1H, H4), 

4.18 (2H, CO2CH2CH3), 4.79 (d, J1,5 = 8.4 Hz,  1H, H1) 5.08 (dd, J5,1 = 8.4 Hz, J5,4 = 4.8 Hz,  1H, H5), 



 

160 

5.84 (d, J3,4 = 4.6 Hz, 1H, H3). 
13C NMR (125 MHz, CDCl3):   14.0, 57.0, 58.7, 61.6, 65.7, 86.2, 

87.0, 166.8, 192.3.  Oxa-thia-tricyclo-octane 119c: 1H NMR (500 MHz, CDCl3):  1.26 (3H, 

CO2CH2CH3), 2.7–2.9 (1H, OH), 3.7 (m, 1H, H4), 3.97 (m, 1H, H5), 4.18 (m, 2H, CO2CH2CH3), 4.26 

(m, 1H, H1), 5.87 (m, 1H, H3). 13C NMR (125 MHz, CDCl3):  14.0, 50.1, 55.2, 56.4, 62.3, 86.8, 

90.6, 105.7, 168.4. 

 

Alternatively, 119 could be obtained by hydrolysis of 117 without AgOTf. H2O (15 mL) was 

added to a solution of the 3-Cl cyclobutanone 117 (769.2 mg, 2.534 mmol) in MeCN (15 mL). 

After stirring at rt for 48 h, the solution was concentrated in vacuo to a yellow oil. Flash 

chromatography (10% EtOAc/hexane) afforded a colourless oil (543.2 mg, 1.905 mmol, 75%) with 

identical spectral properties to material prepared in ROH/MeCN: an 88:6:6 mixture of 119, 119, 

and 119c. 

Ethyl 7,7-Dichloro-3-methoxy-2-thiabicyclo[3.2.0]heptan-6-one-4-carboxylate (121)  

 

The 3-chlorocyclobutanone 117 (102.2 mg, 0.337 mmol) was dissolved in MeCN (5 mL) and 

stirred with MeOH (5 mL) at rt for 48 h. The solution was concentrated under reduced pressure to 

give a colourless oil that partially crystallized in vacuo. 1H NMR of the crude mixture showed a 

product distribution of 75:24:1 for 121:121:118, respectively. Flash chromatography (5% 

EtOAc/hexane) provided 121 (23.4 mg, 0.0782 mmol, 23%, 98% pure) and a 68:32 mixture of 121 

and 121 (50.3 mg, 0.168 mmol, 50%). 1H NMR (300 MHz, CDCl3):  1.27 (t, J = 7.1 Hz, 3H, 

CO2CH2CH3), 3.32 (s, 3H, OCH3), 3.75 (app. t, J4,3 = 4.5 Hz, J4,5 = 5.5 Hz, 1H, H4), 4.17 (B of 

ABX3, JAB = 10.8 Hz, JBX = 7.1 Hz, 1H, one of CO2CH2CH3), 4.26 (A of ABX3, JAB = 10.8 Hz, JAX = 

7.1 Hz, 1H, one of CO2CH2CH3), 4.66 (d, J1,5 = 8.1 Hz, 1H, H1), 5.17 (dd, J5,4 = 5.5 Hz, J5,1 = 8.1 Hz, 

1H, H5), 5.32 (d, J3,4 = 4.5 Hz, 1H, H3). 
13C NMR (75.5 MHz, CDCl3):  14.1, 56.7, 57.4, 58.7, 61.8, 
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66.4, 85.3, 97.4, 167.3, 193.4. IR (film, cm–1): 2986, 2930, 2831, 1813, 1739, 1464, 1335, 1265, 

1215, 1085, 1021. LRMS (EI) m/z (relative intensity): 302 (M[(37Cl2)]
+, 0.4), 300 ([M(37Cl35Cl)]+, 

1.5), 298 ([M(35Cl2)]
+, 2), 253 (20), 217 (10), 203 (20), 189 (20), 167 (60), 165 (100), 143 (50). 

HRMS (EI) m/z: 297.9833 calcd for C10H12
35Cl2O4S; 297.9827 obsd.  

Ethyl 7,7-Dichloro-3-methoxy-2-thiabicyclo[3.2.0]heptan-6-one-4-carboxylate (121)  
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The 3-chlorocyclobutanone 117 (104.1 mg, 0.343 mmol) in CH2Cl2 (1 mL) was added dropwise 

over 10 minutes to a suspension of AgOTf (118.3 mg, 0.460 mmol), MeOH (75 L, 1.841 mmol), 

and 3 Å MS (1 g) in CH2Cl2 (8 mL) at 0 °C. The reaction mixture was allowed to warm to rt over 2 h 

and stirred for an additional 4 h at rt before dilution with CH2Cl2 and filtration through Celite. The 

filtrate was concentrated under reduced pressure and 1H NMR of the crude mixture showed a product 

distribution of 22:72:2:4 for 121:121:117:118, respectively. Flash chromatography (5% 

EtOAc/hexane) provided 121 (29.7 mg, 0.099 mmol, 29%) and a 38:62 mixture of 121:121 (32.0 

mg, 0.107 mmol, 31%). 1H NMR (300 MHz, CDCl3):  1.28 (t, J = 7.1 Hz, 3H, CO2CH2CH3), 3.34 

(s, 3H, OCH3), 3.82 (s, 1H, H4), 4.19 (q, J = 7.1 Hz, 2H, CO2CH2CH3), 4.59 (d, J1,5 = 8.6 Hz, 1H, H1) 

5.02 (d, J5,1 = 8.6 Hz, 1H, H5), 5.46 (s, 1H, H3). 13C NMR (75.5 MHz, CDCl3):  14.0, 56.3, 57.9, 

59.4, 62.2, 64.9, 90.4, 95.2, 167.8, 192.7. IR (film, cm–1): 2984, 2934, 2829, 1817, 1734, 1370, 1313, 

1259, 1212, 1086. LRMS (EI) m/z (relative intensity): 302 (M[(37Cl2)]
+, 1), 300 ([M(37Cl35Cl)]+, 5), 

298 ([M(35Cl2)]
+, 8), 263 (30), 252 (20), 217 (40), 203 (100), 189 (90), 169 (55), 165 (55). HRMS 

(EI) m/z: 297.9833 calcd for C10H12
35Cl2O4S; 297.9836 obsd.  

Ethyl 7,7-Dichloro-3-isopropoxy-2-thiabicyclo[3.2.0]heptan-6-one-4-carboxylate (122)  

 

The 3-chlorocyclobutanone 117 (197.1 mg, 0.649 mmol) was dissolved in MeCN (8 mL) and 

stirred with i-PrOH (8 mL) at rt for 40 h. The reaction mixture was concentrated in vacuo and 1H 
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NMR of the crude mixture showed a product distribution of 46:20:16:18 for 122:122:117:118, 

with 85% conversion. Flash chromatography (5% EtOAc/hexane) provided 122 (9.7 mg, 0.030 

mmol, 4.6%) and a 77:23 mixture of 122:122  (121.7 mg, 0.372 mmol, 57%). 1H NMR (300 MHz, 

CDCl3):  1.08 (d, J = 6.1 Hz, 3H, one of CHCH3), 1.15 (d, J = 6.1 Hz, 3H, one of CHCH3), 1.28 (t, J 

= 7.1 Hz, 3H, CO2CH2CH3), 3.73 (dd, J4,3 = 4.5 Hz, J4,5 = 5.6 Hz, 1H, H4), 3.79 (sept., J = 6.1 Hz, 

1H, CHMe2), 4.18 (q, J = 7.1 Hz, 2H, CO2CH2CH3), 4.69 (d, J1,5 = 8.1 Hz, 1H, H1), 5.20 (dd, J5,4 = 

5.6 Hz, J5,1 = 8.1 Hz, 1H, H5), 5.54 (d, J3,4 = 4.5 Hz, 1H, H3). 
13C NMR (75.5 MHz, CDCl3):  14.1, 

20.3, 22.8, 57.5, 58.7, 61.7, 66.7, 70.9, 85.2, 93.3, 167.3, 193.7. IR (film, cm–1): 2977, 2926, 1811, 

1739, 1467, 1371, 1239. LRMS (EI) m/z (relative intensity): 330 (M[(37Cl2)]
+, 3), 328 ([M(37Cl35Cl)]+, 

12), 326 ([M(35Cl2)]
+, 20), 291 (12), 281 (20), 267 (30), 224 (40), 195 (90), 157 (90), 129 (100), 101 

(80). HRMS (EI) m/z: 326.0146 calcd for C12H16
35Cl2O4S; 326.0152 obsd.  

Ethyl 7,7-Dichloro-3-isopropoxy-2-thiabicyclo[3.2.0]heptan-6-one-4-carboxylate (122)  

 

The 3-chlorocyclobutanone 117 (200.4 mg, 0.660 mmol) in CH2Cl2 (2 mL) was added dropwise 

over 10 minutes to a suspension of AgOTf (206.2 mg, 0.803 mmol), i-PrOH (265 L, 3.328 mmol), 

and 4 Å MS (1 g) in CH2Cl2 (8 mL) at 0 °C. The reaction mixture was allowed to warm to rt over 2 h 

and stirred for an additional 10 h at rt before dilution with CH2Cl2 and filtration through Celite. The 

filtrate was concentrated under reduced pressure and 1H NMR of the crude mixture showed a product 

distribution of 16:71:2:11 for 122:122:117:118, respectively. Flash chromatography (2.5% 

EtOAc/hexane) provided 122 (63.0 mg, 0.193 mmol, 29%) and a 1:3 mixture of 122:122 (48.5 

mg, 0.148 mmol, 22%). 1H NMR (300 MHz, CDCl3):  1.13 (d, J = 6.1 Hz, 6H, CH(CH3)2), 1.28 (t, J 

= 7.1 Hz, 3H, CO2CH2CH3), 3.75 (s, 1H, H4), 3.98 (sept., J = 6.1 Hz, 1H, CHMe2), 4.19 (q, J = 7.1 

Hz, 2H, CO2CH2CH3), 4.59 (d, J1,5 = 8.4 Hz, 1H, H1) 5.03 (d, J5,1 = 8.4 Hz, 1H, H5), 5.71 (s, 1H, H3). 

13C NMR (75.5 MHz, CDCl3):  14.1, 19.7, 22.4, 57.9, 59.5, 62.2, 65.3, 69.4, 90.1, 90.2, 168.2, 

192.3. IR (film, cm–1): 2977, 1818, 1734, 1374, 1258, 1211. LRMS (EI) m/z (relative intensity): 330 

(M[(37Cl2)]
+, 0.5), 328 ([M(37Cl,35Cl)]+, 2.0), 326 ([M(35Cl2)]

+, 3.5), 291 (20), 267 (15), 238 (25), 205 

(40), 203 (100), 175 (40). HRMS (EI) m/z: 326.0146 calcd for C12H16
35Cl2O4S; 326.0139 obsd.  
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Ethyl 3-tert-Butoxy-7,7-dichloro-2-thiabicyclo[3.2.0]heptan-6-one-4-carboxylate (123)  

 

Solid t-BuOH (8 g) was combined with the 3-chlorocyclobutanone 117 (216.9 mg, 0.7145 

mmol) at rt and the reaction mixture was slowly heated to 80 C (with stirring) over 30 minutes. After 

64 h at 80 C, the reaction mixture was concentrated under reduced pressure and 1H NMR of the 

crude mixture showed a product distribution of 37:26:28:9 for 123:123:118:119, respectively. 

Flash chromatography (5% EtOAc/hexane) provided 123 (10.8 mg, 0.0316 mmol, 4.4%, 98% pure) 

and a 58:42 mixture of 123:123  (135.1 mg, 0.396 mmol, 55%). 123: Mp 97–99 °C. 1H NMR 

(300 MHz, CDCl3):  1.21 (s, 9H, C(CH3)3), 1.29 (t, J = 7.1 Hz, 3H, CO2CH2CH3), 3.70 (app. t, J4,3 

= 5.0 Hz, J4,5 = 5.2 Hz, 1H, H4), 4.09 (B of ABX3, JAB = 10.8 Hz, JBX = 7.1 Hz, 1H, one of 

CO2CH2CH3), 4.24 (A of ABX3, JAB = 10.8 Hz, JAX = 7.1 Hz, 1H, one of CO2CH2CH3), 4.78 (d, J1,5 = 

8.2 Hz, 1H, H1), 5.13 (dd, J5,1 = 8.2 Hz, J5,4 = 5.2 Hz, 1H, H5), 5.75 (d, J3β,4 = 5.0 Hz, 1H, H3β). 
13C 

NMR (75.5 MHz, CDCl3):  14.1, 27.9 (3C), 57.8, 58.8, 61.6, 66.6, 76.8, 85.9, 89.0, 167.5, 193.7.  IR 

(film, cm–1): 2983, 2946, 1808, 1739, 1469, 1370, 1235, 1210, 1179, 1060. LRMS (EI) m/z (relative 

intensity): 344 (M[(37Cl2)]
+, 0.2), 342 ([M(37Cl35Cl)]+, 1.5), 340 ([M(35Cl2)]

+, 2.0), 284 (10), 267 (10), 

238 (10), 203 (10), 57 (100). HRMS (EI) m/z: 340.0303 calcd for C13H18
35Cl2O4S; 340.0294 obsd.  

Ethyl 3-tert-Butoxy-7,7-dichloro-2-thiabicyclo[3.2.0]heptan-6-one-4-carboxylate (123)  
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The 3-chlorocyclobutanone 117 (201.5 mg, 0.664 mmol) in CH2Cl2 (2 mL) was added dropwise 

over 10 minutes to a suspension of AgOTf (206.0 mg, 0.802 mmol), t-BuOH (497.0 mg, 6.705 

mmol), and 4 Å MS (1 g) in CH2Cl2 (8 mL) at 0 °C. The reaction mixture was allowed to warm to rt 

over 2 h and stirred for an additional 6 h at rt before dilution with CH2Cl2 and filtration through 

Celite. The filtrate was concentrated under reduced pressure and 1H NMR of the crude mixture 

showed a product distribution of 5:42:30:22 for 123:123:117:118, respectively, with 92% 

conversion. Flash chromatography (5% EtOAc/hexane) provided 123 (21.3 mg, 0.0624 mmol, 



 

164 

9.4%) and a 86:14 mixture of 123:123  (65.1 mg, 0.191 mmol, 29%). 1H NMR (300 MHz, CDCl3): 

 1.23 (s, 9H, C(CH3)3), 1.28 (t, J = 7.1 Hz, 3H, CO2CH2CH3), 3.61 (s, 1H, H4), 4.19 (q, J = 7.1 Hz, 

2H, CO2CH2CH3), 4.58 (d, J1,5 = 8.4 Hz, 1H, H1), 4.98 (d, J5,1 = 8.4 Hz, 1H, H5), 5.79 (s, 1H, H3). 

13C NMR (75.5 MHz, CDCl3):  14.1, 27.5 (3C), 59.6 (2C), 62.1, 65.3, 77.5, 86.6, 90.6, 168.2, 193.0. 

IR (film, cm–1): 2980, 2934, 1818, 1735, 1369, 1252, 1209, 1188, 1064, 1027. LRMS (EI) m/z 

(relative intensity): 344 (M[(37Cl2)]
+, 0.2), 342 ([M(37Cl,35Cl)]+, 1.2), 340 ([M(35Cl2)]

+, 1.6), 284 (10), 

238 (15), 203 (30), 57 (100). HRMS (EI) m/z: 340.0303 calcd for C13H18
35Cl2O4S; 340.0302 obsd.  

Ethyl 3-Acetoxy-7,7-dichloro-2-thiabicyclo[3.2.0]heptan-6-one-4-carboxylate (124)  

S

CO2Et

Cl
Cl

O H

H

117

Cl
S

CO2Et

Cl
Cl

O H

H

124

OAc
AcOH

 

The 3-chlorocyclobutanone 117 (53.3 mg, 0.176 mmol) was dissolved in AcOH (4 mL) at rt and 

stirred at 80 °C for 1 h. The solution was cooled, diluted with EtOAc (40 mL), and washed with H2O 

(3 × 40 mL), dried with Na2SO4, and concentrated under reduced pressure to give an amber oil. 1H 

NMR of the crude mixture showed a product distribution of 3:52:43:2 for 124:124:117:118, 

respectively.685 Purification by flash chromatography (20% EtOAc/hexane) afforded the title 

compound as a dull yellow oil (40.2 mg, 0.123 mmol, 70%) that solidified under vacuum. 1H NMR 

(300 MHz, CDCl3):  1.29 (t, J = 7.1 Hz, 3H, CO2CH2CH3), 2.02 (s, 3H, COCH3), 3.81 (s, 1H, H4), 

4.21 (q, J = 7.1 Hz, 2H, CO2CH2CH3), 4.64 (d, J1,5 = 8.6 Hz, 1H, H1) 5.13 (d, J5,1 = 8.6 Hz, 1H, H5), 

6.55 (s, 1H, H3). 13C NMR (75.5 MHz, CDCl3):  14.0, 20.7, 56.3, 59.6, 62.7, 65.6, 85.8, 90.1, 

167.2, 169.0, 192.9. IR (film, cm–1): 2999, 2956, 1813, 1747, 1740, 1369, 1213, 1022. LRMS (EI) 

m/z (relative intensity): 330 (M[(37Cl2)]
+, 0.4), 328 ([M(37Cl35Cl)]+, 1.5), 326 ([M(35Cl2)]

+, 2.0), 266 

(20), 224 (100), 220 (45), 203 (50), 195 (30). HRMS (EI) m/z: 325.9783 calcd for C11H12
35Cl2O5S; 

325.9786 obsd.  

The 3-acetoxy derivative 124 was not isolated by chromatography and could only be identified 

by three signals in the 1H NMR of the crude reaction mixture: 2.03 (s, 3H, COCH3), 3.84 (dd, H4), 

6.52 (d, 1H, H3). 
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Ethyl 7,7-Dichloro-3-(2,2,2-trifluoroethoxy)-2-thiabicyclo[3.2.0]heptan-6-one-4-carboxylate 

(125)  
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The 3-chlorocyclobutanone 117 (157.8 mg, 0.5198 mmol) was dissolved in 2,2,2-

trifluoroethanol (6 mL) and stirred at rt for 48 h. The solvent was removed under reduced pressure 

and 1H NMR of the crude mixture showed a product distribution of 125:125:118 of 5:76:19.686 

Flash chromatography (5% EtOAc/hexane) afforded 125 (122.1 mg, 0.3325 mmol, 64%) as a 

colourless oil. 1H NMR (300 MHz, CDCl3):  1.29 (t, J = 7.1 Hz, 3H, CO2CH2CH3), 3.83 (B of ABF3, 

JBA = 12.4 Hz, JBF = 8.1 Hz, 1H, one of CO2CH2CF3), 3.93 (s, 1H, H4), 4.04 (A of ABF3, JAB = 12.4 

Hz, JAF = 8.9 Hz, 1H, one of CO2CH2CF3), 4.21 (q, J = 7.1 Hz, 2H, CO2CH2CH3), 4.64 (d, J1,5 = 8.5 

Hz, 1H, H1), 5.08 (d, J5,1 = 8.4 Hz, 1H, H5), 5.76 (s, 1H, H3). 13C NMR (75.5 MHz, CDCl3):  14.0, 

57.9, 59.7, 62.6, 65.1, 65.2 (q, 2JC,F = 35.0 Hz), 90.0, 94.2, 123.3 (q, 1JC,F = 279.1 Hz), 167.2, 191.6. 

19F NMR (282.4 MHz, CDCl3):  –72.5. IR (film, cm–1): 2989, 1819, 738, 1371 1278, 1167, 1109. 

LRMS (EI) m/z (relative intensity): 370 (M[(37Cl2)]
+, 0.5), 368 ([M(37Cl35Cl)]+, 2.8), 366 ([M(35Cl2)]

+, 

3.8), 331 (6), 320 (15), 285 (10), 257 (35), 233 (100), 203 (40), 183 (25). HRMS (EI) m/z: 365.9707 

calcd for C11H11
35Cl2F3O4S; 365.9704 obsd.  

Ethyl 2-Thiabicyclo[3.2.0]hept-3-ene-6-one-4-carboxylate (126)  

 

Dichlorocyclobutanone 118 (171.3 mg, 0.641 mmol) was dissolved in AcOH (15 mL), combined 

with zinc dust (216.0 mg, 3.303 mmol), and stirred at 80 °C for 5 h. The reaction mixture was cooled 

to rt, diluted with EtOAc, and filtered through glass wool to remove residual zinc dust. The organic 

solution (75 mL) was washed with 10% HCl (2 × 75 mL) and brine (50 mL) before it was dried over 

Na2SO4 and concentrated. Flash chromatography (10% EtOAc/hexane) provided the dechlorinated 

cyclobutanone 126 as a colourless oil (106.5 mg, 0.537 mmol, 84%). 1H NMR (300 MHz, CDCl3):  

1.25 (t, J = 7.1 Hz, 3H, CO2CH2CH3), 3.34 (ddd, Jgem = 18.7 Hz, J7,1 = 5.7 Hz, J7,5 = 3.3 Hz, 1H, 
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H7), 3.74 (ddd, Jgem = 18.7 Hz, J7,1 = 8.3 Hz, J7,5 = 5.1 Hz, 1H, H7), 4.11–4.22 (m, 3H, H1 and 

CO2CH2CH3), 5.05–5.14 (m, 1H, H5), 7.43 (s, 1H, H3). 
13C NMR (75.5 MHz, CDCl3):  14.2, 37.0, 

60.7 (2C), 76.0, 121.2, 143.2, 161.8, 200.0. IR (film, cm–1): 3069, 2983, 1790, 1700, 1567, 1370, 

1328, 1305, 1226. LRMS (EI) m/z (relative intensity): 200 ([M+2]+, 2), 199 ([M+1]+, 5), 198 ([M]+, 

40), 170 (10), 156 (40), 141 (40), 128 (60), 111 (100), 97 (25). HRMS (EI) m/z: 198.0351 calcd for 

C9H10O3S; 198.0349 obsd.  

Benzhydryl 7,7-Dichloro-2-thiabicyclo[3.2.0]heptan-6-one-4-carboxylate (149)  

 

A solution of diphenyldiazomethane687 (1.0 M in EtOAc, 5.0 mL) was added slowly to a stirring 

solution of acid 65 (1207 mg, 5.004 mmol) in EtOAc (20 mL) and stirred for 2 h at rt before the 

reaction was quenched with acetic acid (2 mL). After stirring for 30 min, the solution was diluted 

with EtOAc to 50 mL and washed with H2O (2 × 20 mL), sat. NaHCO3 (2 × 20 mL), and brine (20 

mL). The organic solution was dried over Na2SO4 and concentrated under reduced pressure to a 

yellow oil that partially crystallized under vacuum. Flash chromatography (10% EtOAc/hexane) 

provided the benzhydryl ester 149 as a white powder (2007 mg, 4.927 mmol, 98%). Mp 95–96 °C. 1H 

NMR (300 MHz, CDCl3):  3.09 (dd, Jgem = 12.4 Hz, J3,4 = 5.8 Hz, 1H, H3), 3.50 (d, Jgem = 12.4 Hz, 

1H, H3), 3.76 (d, J3,4 = 5.8 Hz, 1H, H4), 4.50 (d, J1,5 = 8.3 Hz, 1H, H1), 5.07 (d, J5,1 = 8.3 Hz, 1H, 

H5), 6.87 (s, 1H, CHPh2), 7.28–7.40 (m, 10H, ArH). 13C NMR (75.5 MHz, CDCl3):  35.6, 50.3, 58.9, 

67.4, 78.7, 89.3, 126.9 (2C), 127.1 (2C), 128.3 (2C), 128.7 (2C), 139.2 (2C), 169.0, 194.6. IR (film, 

cm–1): 3064, 3031, 2933, 1808, 1738, 1495, 1454, 1207, 1177, 742, 699. LRMS (NH3 CI) m/z 

(relative intensity): 428 ([M(37Cl2) + NH4]
+, 1.0), 426 ([M(37Cl35Cl) + NH4]

+, 5.5), 424 ([M(35Cl2) + 

NH4]
+, 7.0), 167 (100).   
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Benzhydryl 7,7-Dichloro-3-methoxy-2-thiabicyclo[3.2.0]heptan-6-one-4-carboxylates (151 and 

151)  

 

N-Chlorosuccinimide (261.9 mg, 2.015 mmol) was added as a suspension in CH2Cl2 (5 mL) to a 

stirring solution of the benzhydryl ester 149 (722.1 mg, 1.773 mmol) in CH2Cl2 (20 mL). After 

stirring the solution at rt for 24 h, the solvent was removed under reduced pressure to provide a 

mixture of succinimide and the 3-chloro intermediate as a yellow oily solid. The 3-Cl epimer 150 

was not detected by 1H NMR. 150: 1H NMR (300 MHz, CDCl3):  4.08 (app. t, J4,3 = 4.7 Hz, J4,5 = 

5.9 Hz, 1H, H4), 4.93 (d, J1,5 = 8.3 Hz, 1H, H1), 5.18 (dd, J5,1 = 8.3 Hz, J5,4 = 5.9 Hz, 1H, H5), 5.94 (d, 

J3,4 = 4.7 Hz, 1H, H3), 6.91 (s, 1H, CHPh2), 7.28–7.40 (m, 10H, ArH). 

The intermediate mixture of 150 with succinimide was then dissolved in MeOH (25 mL) and 

stirred at rt for 24 h before concentration in vacuo. The mixture was then dissolved in CH2Cl2 (75 

mL) and washed with H2O (3 × 25 mL) and brine (25 mL) before the solution was dried over Na2SO4 

and concentrated under reduced pressure. The resulting viscous oil was then subjected to high 

vacuum for several hours for the removal of methanol. 1H NMR spectra of the crude mixture showed 

a product distribution of 77:23 for 151:151. Recrystallization from CH2Cl2/hexane provided a pure 

sample of 151 as white needles (195.1 mg, 0.446 mmol, 25%). The mother liquor was concentrated 

and subjected to flash chromatography (10% EtOAc/hexane) to provide the 3-methoxy derivative 

151 as a white solid (37.5 mg, 4.8%) and additional samples of 151/151 mixtures. 151: Mp 

161–163 °C. 1H NMR (300 MHz, CDCl3):  3.15 (s, 3H, OCH3), 3.91 (app. t, J4,3 = 4.6 Hz, J4,5 = 5.4 

Hz, H4), 4.66 (d, J1,5 = 8.2 Hz, H1),  5.21 (dd, J5,1 = 8.2 Hz, J5,4 = 5.4 Hz, H5), 5.39 (d, J3,4 = 4.6 Hz, 

H3), 6.97 (s, 1H, CHPh2), 7.30-7.41 (m, 10H, ArH). 13C NMR (75.5 MHz, CDCl3):  56.3, 57.4, 

58.6, 66.3, 78.3, 85.2, 97.3, 127.1 (2C), 127.3 (2C), 128.1, 128.2, 128.4 (2C), 128.5 (2C), 139.1, 

139.4, 166.4, 193.1. IR (film, cm–1): 3067, 3033, 2957, 1813, 1744, 1450, 1430, 1285, 1234, 1180, 

1079, 944, 881. LRMS (NH3 CI) m/z (relative intensity): 458 ([M(37Cl2) + NH4]
+, 10), 456 

([M(37Cl35Cl) + NH4]
+, 35), 454 ([M(35Cl2) + NH4]

+, 55), 420 (15), 184 (40), 167 (100). 151: Mp 

136–139 C. 1H NMR (300 MHz, CDCl3):  3.35 (s, 3H, OCH3), 3.93 (s, 1H, H4), 4.58 (d, J1,5 = 8.5 
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Hz, 1H, H1), 5.03 (d, J5,1 = 8.5 Hz, 1H, H5), 5.51 (s, 1H, H3), 6.86 (s, 1H, CHPh2), 7.26–7.39 (m, 

10H, ArH). 13C NMR (75.5 MHz, CDCl3):  56.3, 58.1, 59.4, 64.9, 78.9, 90.5, 95.0, 127.0 (2C), 127.1 

(2C), 128.3, 128.4, 128.7 (4C), 139.0 (2C), 167.0, 192.5. IR (film, cm–1): 3064, 3032, 2930, 2828, 

1816, 1741, 1600, 1496, 1454, 1304, 1256, 1207, 1176, 1085, 700. LRMS (NH3 CI) m/z (relative 

intensity): 458 ([M(37Cl2) + NH4]
+, 3), 456 ([M(37Cl35Cl) + NH4]

+, 15), 454 ([M(35Cl2) + NH4]
+, 20), 

184 (50), 167 (100).  

7,7-Dichloro-3-methoxy-2-thiabicyclo[3.2.0]heptan-6-one-4-carboxylic Acid (152)  

 

TFA (1.0 mL) was added dropwise to a solution of the 3-methoxy benzhydryl ester 151 (190.5 

mg, 0.436 mmol) and anisole (200 L, 1.84 mmol) in CH2Cl2 (10 mL). The solution was stirred for 2 

h at rt before the solvent was removed under reduced pressure. Trituration with hexane provided the 

acid 152 as a white solid (93.8 mg, 0.346 mmol, 79%). Mp 144–147 °C. 1H NMR (300 MHz, 

acetone-d6):  3.34 (s, 1H, OCH3), 3.84 (dd, J4,3 = 4.4 Hz, J4,5 = 6.0 Hz, 1H, H4), 4.77 (d, J1,5 = 8.4 

Hz, 1H, H1), 5.13 (dd, J5,1 = 8.4 Hz, J5,4 = 6.0 Hz, 1H, H5), 5.57 (d, J3,4 = 4.4 Hz, 1H, H3). 
13C NMR 

75.5 MHz, acetone-d6):  56.8, 58.3, 58.8, 67.7, 86.7, 98.5, 168.6, 194.7. IR (film, cm–1): br 3500–

2500, 2953, 2831, 1813, 1720, 1422, 1258, 1192, 1071. LRMS (EI) m/z (relative intensity): 274 

([M(37Cl2)]
+, 0.5), 272 ([M(37Cl35Cl)]+, 1.5), 270 ([M(35Cl2)]

+, 2.0), 165 (100), 143 (60), 115 (40), 83 

(80). HRMS (EI) m/z: 269.95203 calcd for C8H8
35Cl2O4S; 269.9530 obsd.  

7,7-Dichloro-3-methoxy-2-thiabicyclo[3.2.0]heptan-6-one-4-carboxylic Acid (152)  

 

TFA (1.0 mL) was added dropwise to a solution of the 3-methoxy benzhydryl ester 151 (95.7 

mg, 0.219 mmol) and anisole (100 L, 0.92 mmol) in CH2Cl2 (9 mL). The solution was stirred for 2 h 

at rt before the solvent was removed under reduced pressure. Trituration with hexane and 

recrystallization from CH2Cl2/hexane provided the acid 152 as a white solid (36.1 mg, 0.133 mmol, 
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61%). Mp 190 C (dec). 1H NMR (300 MHz, acetone-d6):  3.33 (s, 3H, OCH3), 3.90 (s, 1H, H4), 

4.78 (d, J1,5 = 8.6 Hz, 1H, H1), 5.12 (d, J5,1 = 8.6 Hz, 1H, H5), 5.61 (s, 1H, H3). 13C NMR 75.5 MHz, 

acetone-d6):  56.4, 58.6, 60.0, 66.2, 91.5, 96.4, 169.4, 193.8. IR (film, cm–1): 2958, 1814, 1703, 

1430, 1286, 1234, 944, 828. LRMS (EI) m/z (relative intensity): 274 ([M(37Cl2)]
+, 2), 272 

([M(37Cl35Cl)]+, 2), 270 ([M(35Cl2)]
+, 3), 252 (20), 217 (50), 189 (100), 175 (95), 165 (55), 128 (35), 

83 (35). HRMS (EI) m/z: 269.9520 calcd for C8H8
35Cl2O4S; 269. 9512 obsd.   

7,7-Dichloro-2-thiabicyclo[3.2.0]hept-3-ene-6-one-4-carboxylic Acid (153)  

 

A mixture of the methoxy acids 151 and 151 (51.8 mg, 0.191 mmol, 10:1 dr) was stirred in a 

solution of 50% MsOH/CH2Cl2 (5 mL) at rt for 1 h. The solution was diluted with EtOAc (50 mL) 

and washed with H2O until the aqueous washes were no longer acidic (4 × 25 mL). The combined 

aqueous washes were back-extracted with EtOAc (2 × 25 mL) and CH2Cl2 (2 × 25 mL). The organic 

extracts were combined, dried over Na2SO4, and concentrated under reduced pressure to give the 

unsaturated acid 153 as an off-white solid (30.4 mg, 0.127 mmol, 67%). Mp 162–163 C. 1H NMR 

(300 MHz, acetone-d6):  5.23 (d, J1,5 = 10.0 Hz, 1H, H1), 5.62 (dd, J5,1 = 10.0 Hz, J5,3 = 1.8 Hz, 1H, 

H5), 7.68 (d, J3,5 = 1.8 Hz, 1H, H3). 
13C NMR 75.5 MHz, acetone-d6):  60.1, 72.8, 94.8, 123.3, 146.1, 

162.3, 189.5. IR (film, cm–1): br 3500–2300, 3066, 2925, 1807, 1700, br 1690–1630, 1558, 1446, 

1338, 1258. LRMS (EI) m/z (relative intensity): 240 ([M(37Cl35Cl)]+, 1.8), 238 ([M(35Cl2)]
+, 2.1), 210 

(20), 175 (100), 165 (30), 111 (20). HRMS (EI) m/z: 237.9258 calcd for C7H4
35Cl2O3S; 237.9252 

obsd.  

 

Alternatively, the unsaturated acid could be prepared in a one-pot three-step procedure from the 

acid 63 through the acid chloride 154. SOCl2 (4 mL, 55 mmol) was added to a solution of acid 65 

(1.475 g, 6.120 mmol) in CH2Cl2 (30 mL) and heated to reflux for 4 h. Concentration of the solution 

in vacuo provided the crude acid chloride 154 as a yellow oil that was used directly in the next step 
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without purification. 1H NMR (300 MHz, CDCl3):  3.13 (dd, Jgem = 13.1 Hz, J3,4 = 6.0 Hz, 1H, H3), 

3.54 (d, Jgem = 13.1 Hz, 1H, H3), 4.03 (d, J4,3 = 6.0 Hz, 1H, H4), 4.55 (d, J1,5 = 8.2 Hz, 1H, H1), 5.03 

(d, J5,1 = 8.2 Hz, 1H, H5). 
13C NMR (75.5 MHz, CDCl3):  35.4, 58.3, 60.3, 66.8, 89.1, 172.0, 192.9. 

IR (film, cm–1): 2965, 1809, 1780, 1443, 997, 927, 873. LRMS (EI) m/z (relative intensity): 264 

([M(37Cl3)]
+, 0.5), 262 ([M(37Cl2

35Cl)]+, 3), 260 ([M(37Cl35Cl2)]
+, 7), 258 ([M(35Cl3)]

+, 7), 225 (4), 223 

(6), 200 (15), 198 (15), 141 (30), 131 (30), 85 (100), 55 (40). HRMS (EI) m/z: 257.9076 calcd for 

C7H5
35Cl3O2S; 257.9080 obsd.  

SO2Cl2 (550 L, 6.85 mmol) was added dropwise over 2 min to a stirring solution of the crude acid 

chloride 154 in CH2Cl2 (25 mL). After 12 h at rt, the reaction mixture was concentrated under 

reduced pressure to give the 3-chloro acid chloride 155 as an off-white solid. 1H NMR (300 MHz, 

CDCl3):  4.37 (dd, J4,3 = 4.2 Hz, J4,5 = 5.2 Hz, 1H, H4), 4.99 (d, J1,5 = 8.1 Hz, 1H, H1), 5.13 (dd, J5,1 

= 8.1 Hz, J5,4 = 5.2 Hz, 1H, H5), 6.03 (d, J3,4 = 4.2 Hz, 1H, H3). 
13C NMR (75.5 MHz, CDCl3):  

60.0, 64.1, 69.4, 72.9, 84.7, 167.2, 190.5.  

MsOH (4 mL) was added to a solution of the crude acid chloride 155 in CH2Cl2 (36 mL) and the 

solution was heated to reflux for 3 h. The reaction mixture was cooled to rt, diluted with EtOAc (100 

mL), washed with H2O (4  75 mL) until the aqueous washes showed a pH of 4. The combined 

aqueous washes were back-extracted with EtOAc (2  100 mL) and the combined organic extracts 

were dried over Na2SO4 and concentrated in vacuo to give the unsaturated acid 153 as a beige solid 

(1.368 g, 5.722 mmol, 94% over 3 steps) which was estimated to be 95% pure by 1H NMR. 

Analytically pure material was obtained by recrystallization from CHCl3/hexane.     

2-Thiabicyclo[3.2.0]hept-3-ene-6-one-4-carboxylic Acid (156)  

 

Following a typical procedure for the dechlorination of cyclobutanones, zinc dust (82.1 mg, 1.26 

mmol) was added to a stirring solution of the dichlorocyclobutanone 153 (60.0 mg, 0.251 mmol) in 

AcOH (18 mL) at rt. The suspension was heated to 85 C for 12 h before the addition of another 

portion of zinc dust (78.0 mg, 1.20 mmol). After stirring for an additional 2 h, the reaction mixture 

was cooled to rt, diluted with EtOAc, and filtered for the removal of residual zinc, and the solution 
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was concentrated under reduced pressure. The resulting solid was suspended in EtOAc (75 mL) and 

washed with 10% HCl (2 × 50 mL). The organic phase was dried over Na2SO4 and concentrated in 

vacuo to give an off-white solid (20 mg). This material was soluble only in DMSO-d6 and 1H NMR 

showed only a small amount of the dechlorinated acid 156 within a complex mixture. A small amount 

of 156 was obtained, however, from back-extraction of the combined aqueous HCl washes (100 mL) 

with EtOAc (50 mL) and CH2Cl2 (50 mL). These organic extracts were combined, dried over Na2SO4, 

and concentrated under reduced pressure to give the acid 156 as a white solid (3.9 mg, 0.023 mmol, 

9%). 1H NMR (300 MHz, acetone-d6):  3.30 (ddd, J7,1 = 5.4 Hz, J7,5 = 3.2 Hz, Jgem = 18.5 Hz, 1H, 

H7), 3.85 (ddd, J7,1 = 8.4 Hz, J7,5 = 4.9 Hz, Jgem = 18.5 Hz, 1H, H7), 4.39 (ddd, J1,7 = 8.4 Hz, J1,7 

= 5.4 Hz, J1,5 = 8.5 Hz, 1H, H1), 5.12–5.18 (m, 1H, H5), 7.59 (s, 1H, H3). 
13C NMR (75.5 MHz, 

acetone-d6):  38.1, 61.6, 77.0, 122.5, 144.6, 163.0, 201.1. LRMS (EI) m/z (relative intensity): 172 

([M +2]+, 2), 171 ([M + 1]+, 9), 170 (M+, 21), 141 (20), 128 (100), 111 (100), 97 (30). HRMS (EI) 

m/z: 170.0038 calcd for C7H6O3S; 170.0038 obsd.  

With the low yield of 156 using the dechlorination procedure described above, alternate methods 

for the synthesis of acid 156 were pursued. Attempts to effect dechlorination of 153 were also 

unsuccessful with zinc in AcOH at rt and with zinc in i-PrOH/AcOH 100:1. While the direct 

hydrolysis of ethyl ester 126 using KOH (1 equiv) in THF/H2O was also unsuccessful, hydrolysis of 

the ester could be accomplished through the dimethyl ketal 157.  

 

Acetyl chloride (100 L) was added to a stirring solution of trimethyl orthoformate (1 mL) and 

ketone 126 (17.3 mg, 0.087 mmol) in MeOH (16 mL). After stirring at rt for 4 h, the solvents were 

removed under reduced pressure to give the dimethyl ketal 157 as a yellow oil. 1H NMR (300 MHz, 

CDCl3):  1.28 (t, J = 7.1 Hz, 3H, CO2CH2CH3), 2.49 (dd, J7,1 = 6.4 Hz, Jgem = 13.1 Hz, 1H, H7), 

2.72 (ddd, J7,1 = 8.3 Hz, J7,5 = 3.2 Hz, Jgem = 13.1 Hz, 1H, H7), 3.10 (s, 3H, one of OCH3), 3.32 (s, 

3H, one of OCH3), 3.97–4.04 (m, 1H, H1),  4.15 (B of ABX3, JAB = 10.8 Hz, JAX = 7.1 Hz, 1H, one of 

CO2CH2CH3), 4.23 (A of ABX3, JBA = 10.8 Hz, JBX = 7.1 Hz, 1H, one of CO2CH2CH3), 4.34–4.37 

(m, 1H, H5), 7.39 (s, 1H, H3). 
13C NMR (75.5 MHz, CDCl3):  14.3, 38.9, 45.2, 48.7, 49.4, 59.3, 60.2, 
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105.9, 126.0, 143.2, 163.3. 

The crude dimethyl ketal was used in the following step without further characterization or 

purification. A crystal of KOH (24.0 mg, 0.429 mmol) was added to a solution of ketal 157 in CD3OD 

(0.5 mL) and D2O (1.0 mL) and the progress of the reaction was followed by NMR. After 36 h at rt, 

the solution was concentrated in vacuo, diluted with H2O (25 mL), and washed with CH2Cl2 (25 mL). 

The aqueous phase (pH ~10) was then acidified with TFA (~1 mL) to pH 2 and extracted with 

CH2Cl2 (2 × 25 mL). The organic extracts were dried over Na2SO4 and concentrated under reduced 

pressure to provide the ketal acid 158 as a white solid. 1H NMR (300 MHz, acetone-d6):  2.42 (dd, 

J7,1 = 6.1 Hz, Jgem = 13.1 Hz, 1H, H7), 2.70 (ddd, J7,1 = 8.4 Hz, J7,5 = 2.9 Hz, Jgem = 13.1 Hz, 1H, 

H7), 3.06 (s, 3H, one of OCH3), 3.26 (s, 3H, one of OCH3), 4.04–4.10 (app. br q, 1H, H1), 4.33 (br d, 

J5,1 = 8 Hz, 1H, H5), 7.43 (s, 1H, H3). 

TFA (100 L) was added to an NMR tube containing a solution of the ketal 158 in acetone-d6 (400 

L) and D2O (400 L) and the progress of the hydrolysis was followed by NMR. After 16 h at rt the 

solution was diluted with H2O (40 mL) and extracted with CH2Cl2 (3 × 30 mL). The organic extracts 

were dried over Na2SO4 and concentrated under reduced pressure to provide ketone 156 as a white 

solid (6.9 mg, 0.041 mmol, 46% over 3 steps) with spectral data identical to that obtained using the 

dechlorination procedure above. 

Ethyl 7,7-Dichloro-3-(isopropylthio)-2-thiabicyclo[3.2.0]heptan-6-one-4-carboxylate (164)  

 

A solution of SnCl4 (200 L, 1.0 M in CH2Cl2) was added dropwise at rt to a solution of -chloro 

derivative 117 (51 mg, 0.17 mmol) and 2-propanethiol (50 L, 0.54 mmol) in CH2Cl2 (7 mL) and 

stirred for 16 h at rt. The reaction mixture was diluted with CH2Cl2 (75 mL), filtered through Celite, 

washed with H2O (20 mL), dried over Na2SO4, and concentrated in vacuo. The substitution products 

were not purified but used as a mixture in a failed attempt to effect hydrolysis of the ethyl ester. 

Compounds 164 and 164 were identified by 1H NMR of the crude mixture, however, which 

showed a product distribution of 15:83:2 for 164:164:118, respectively. 164: 1H NMR (300 MHz, 

CDCl3):  1.22–1.35 (m, 9H, CO2CH2CH3 + SCH(CH3)2), 3.06 (sept, J = 6.6 Hz, 1H, SCH(CH3)2), 
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3.75 (dd, J4,3 = 5.8 Hz, J4,5 = 2.1 Hz, 1H, H4), 4.21 (q, J = 7.1 Hz, 2H, CO2CH2CH3), 4.70 (d, J1,5 = 

8.4 Hz, 1H, H1), 4.90 (d, J5,1 = 8.4 Hz, J5,4 = 2.1 Hz, 1H, H5), 4.67 (d, J3,4 = 5.8 Hz, 1H, H3). 164: 

1H NMR (300 MHz, CDCl3):  1.22–1.35 (m, 9H, CO2CH2CH3 + SCH(CH3)2), 3.13 (sept, J = 6.7 Hz, 

1H, SCH(CH3)2), 3.72 (s, 1H, H4), 4.21 (q, J = 7.1 Hz, 2H, CO2CH2CH3), 4.60 (d, J1,5 = 8.6 Hz, 1H, 

H1), 4.98 (d, J5,1 = 8.6 Hz, 1H, H5), 5.10 (s, 1H, H3).   

Ethyl 7,7-Dichloro-3-(p-tolylthio)-2-thiabicyclo[3.2.0]heptan-6-one-4-carboxylate (165)  

 

A solution of the 3-chloride 117 (74.9 mg, 0.247 mmol) in CH2Cl2 (1 mL) was added dropwise 

at rt to a solution of 4-methylbenzenethiol (84.7 mg, 0.682 mmol) and SnCl4 (300 L, 1.0 M in 

CH2Cl2) in CH2Cl2 (8 mL). After 2 h of stirring at rt, the reaction mixture was diluted with CH2Cl2 

(50 mL), washed with H2O (40 mL) and satd NaHCO3 (30 mL), dried over Na2SO4, and concentrated 

under reduced pressure. 1H NMR spectra of the crude product showed a product distribution of 

32:>67:<1 for 165:165:118, respectively. Flash chromatography (10% EtOAc/Hex) provided the 

3-S-p-Tol isomer 165 (33.4 mg, 0.085 mmol, 35%) and additional fractions of 165/165 

mixtures. 165: 1H NMR (300 MHz, CDCl3):  1.33 (t, J = 7.1 Hz, 3H, CO2CH2CH3), 2.36 (s, 3H, 

ArCH3), 3.85 (dd, J4,3 = 5.9 Hz, J4,5 = 3.1 Hz, 1H, H4), 4.24 (q, J = 7.1 Hz, 2H, CO2CH2CH3), 4.57 

(d, J1,5 = 8.5 Hz, 1H, H1), 4.90 (d, J3,4 = 5.9 Hz, 1H, H3), 4.95 (dd, J5,4 = 3.1 Hz, J5,1 = 8.5 Hz, 1H, 

H5), 7.16 (d, J = 8.0 Hz, 2H, ArH), 7.40 (d, J = 8.0 Hz, 2H, ArH). 165: 1H NMR (300 MHz, CDCl3): 

 1.24 (t, J = 7.1 Hz, 3H, CO2CH2CH3), 2.35 (s, 3H, ArCH3), 3.71 (s, 1H, H4), 4.13 (B of ABX3, JBA 

= 10.7 Hz, JBX = 7.1 Hz, 1H, one of CO2CH2CH3), 4.16 (A of ABX3, JAB = 10.7 Hz, JAX = 7.1 Hz, 

1H, one of CO2CH2CH3), 4.62 (d, J1,5 = 8.6 Hz, 1H, H1), 4.99 (d, J5,1 = 8.6 Hz, 1H, H5), 5.33 (s, 1H, 

H3), 7.17 (d, J = 8.0 Hz, 2H, ArH), 7.35 (d, J = 8.0 Hz, 2H, ArH). 13C NMR (75.5 MHz, CDCl3):  

14.0, 21.2, 56.8, 60.8, 61.0, 62.4, 66.3, 89.8, 130.2 (2C), 130.5, 132.8 (2C), 139.0, 168.8, 193.9.  
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Ethyl 3-Allyl-7,7-dichloro-2-thiabicyclo[3.2.0]heptan-6-one-4-carboxylate (166)  

 

A solution of SnCl4 (560 L, 0.1 M in CH2Cl2) was added to a stirring solution of the 3-chloro 

derivative 117 (155 mg, 0.511 mmol) and allyltrimethylsilane (320 L, 2.70 mmol) in CH2Cl2 (6 

mL) and stirred for 1.5 h at rt. The solution was diluted with EtOAc (75 mL), washed with H2O (3  

25 mL) and brine (20 mL), dried over Na2SO4, and concentrated under reduced pressure. 1H NMR 

spectra of the crude product showed a 166/166 ratio of >10:1 and flash chromatography (5% 

EtOAc/Hex) provided the 3-allyl product 166 (47 mg, 0.151 mmol, 30%) as a colourless oil and 

additional fractions of 166/166 mixtures. The 3-allyl isomer 166 was not purified with a single 

column but was identified in mixtures with 166 by 1H NMR. 166: 1H NMR (300 MHz, CDCl3):  

1.28 (t, J = 7.1 Hz, 3H, CO2CH2CH3), 2.12–2.28 (m, 1H, B of ABX, one of CH2CH=CH2), 2.52–2.66 

(m, 1H, A of ABX, one of CH2CH=CH2), 3.55 (d, J = 3 Hz, 1H, H4), 3.62–3.73 (m, 1H, H3), 4.10–

4.35 (m, 2H, CO2CH2CH3), 4.61 (d, J1,5 = 8 Hz, 1H, H1), 4.80 (d, J5,1 = 8 Hz, 1H, H5), 5.07–5. 18 (m, 

2H, CH=CH2), 5.60–5.85 (m, 1H, CH=CH2). 166: 1H NMR (500 MHz, CDCl3):  1.28 (t, J = 7.1 

Hz, 3H, CO2CH2CH3), 2.33–2.43 (m, 2H CH2CH=CH2), 3.47 (dd, J4,5 = 2.0 Hz, J4,3 = 3.5 Hz, 1H, 

H4), 3.96 (dt, J3,4 = 3.5 Hz, J3,3 = 7.8 Hz, 1H, H3), 4.20 (B of ABX3, JBA = 10.9 Hz, JBX = 7.1 Hz, 

1H, one of CO2CH2CH3), 4.20 (A of ABX3, JAB = 10.9 Hz, JAX = 7.1 Hz, 1H, one of CO2CH2CH3), 

4.56 (d, J1,5 = 8.5 Hz, 1H, H1), 4.95 (dd, J5,1 = 8.5 Hz, J5,4 = 2.0 Hz, 1H, H5), 5.11–5.16 (m, 2H, 

CH=CH2), 5.67–5.77 (m, 1H, CH=CH2). 
13C NMR (125 MHz, CDCl3):  14.1, 41.4, 54.0, 55.6, 59.8, 

62.1, 68.0, 88.3, 118.5, 134.4, 170.5, 194.8.  

Ethyl 7-Chloro-2-thiabicyclo[3.2.0]heptan-6-one-4-carboxylate (183)  
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Zinc dust (587 mg, 8.98 mmol) was added at rt to a solution of the dichlorocyclobutanone 84 

(1.209 g, 4.491 mmol) and TMSCl (1.71 mL, 13.47 mmol) in dry MeCN (80 mL). The suspension 

was heated to 40 C and stirred for an additional 8 h before the solvent was removed in vacuo. The 
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reaction mixture was then taken up in CH2Cl2, washed with H2O, dried over Na2SO4, and 

concentrated under reduced pressure. Flash chromatography (20% EtOAc/Hex) provided the 7-

chlorocyclobutanone 183 as a colourless oil (763 mg, 3.25 mmol, 72%) that was used in the 

following step without further purification. 1H NMR (300 MHz, CDCl3):  1.29 (t, J = 7.1 Hz, 3H, 

CO2CH2CH3), 3.03 (dd, Jgem = 12.3 Hz, J3,4 = 6.0 Hz, 1H, H3), 3.38 (d, Jgem = 12.3 Hz, 1H, H3), 

3.62 (d, J4,3 = 6.0 Hz, 1H, H4), 4.19 (1.29 (q, J = 7.1 Hz, 2H, CO2CH2CH3), 4.47 (dd, J1,5 = 7.9 Hz, 

J1,7 = 8.1 Hz, 1H, H1), 4.69 (dd, J5,1 = 7.9 Hz, J5,7 = 3.4 Hz, 1H, H5), 5.19 (dd, J7,1 = 8.1 Hz, J7,5 = 

3.4 Hz, 1H, H7). 

Ethyl 7-Chloro-7-hydroxymethyl-2-thiabicyclo[3.2.0]heptan-6-one-4-carboxylate (187)  

 

Triethylamine (0.10 mL, 0.74 mmol) was added to a suspension of the 7-chlorocyclobutanone 

183 (115.7 mg, 0.493 mmol) and paraformaldehyde (44.4 mg, 1.48 mmol) in MeCN (20 mL) and 

heated to 70 C. After 6 h at this temperature, the solution was cooled to rt and the solvent removed 

under reduced pressure. The reaction mixture was dissolved in CH2Cl2 (20 mL), washed with 5% HCl 

(20 mL), brine (20 mL), dried over Na2SO4, and concentrated under reduced pressure. Flash 

chromatography (20% EtOAc/hexane) provided the title compound 187 as a dull yellow oil (85 mg, 

0.32 mmol, 65%). 1H NMR (300 MHz, CDCl3):  1.26 (t, J = 7.1 Hz, 3H, CO2CH2CH3), 2.50–2.58 

(brs, 1H, OH), 3.02 (dd, Jgem = 12.4 Hz, J3,4 = 5.8 Hz, 1H, H3), 3.38 (d, Jgem = 12.4 Hz, 1H, H3), 

3.58 (d, J3,4 = 5.8 Hz, 1H, H4), 3.98 (B of AB, JAB = 11.7 Hz, one of CH2OH), 4.06 (A of AB, JAB = 

11.7 Hz, one of CH2OH), 4.17 (q, J = 7.1 Hz, 2H, CO2CH2CH3), 4.35 (d, J1,5 = 8.4 Hz, 1H, H1), 4.69 

(d, J5,1 = 8.4 Hz, 1H, H5). 
13C NMR (75.5 MHz, CDCl3):  14.0, 35.7, 49.3, 50.5, 62.0, 65.6, 67.8, 

82.4, 170.6, 204.1. IR (film, cm–1): 3600–3200 (br), 2984, 1795, 1730, 1265, 1184, 910, 733. LRMS 

(EI) m/z (relative intensity): 266 (M[(37Cl)]+, 5), 264 ([M(35Cl)]+, 15), 246 (10), 218 (10), 173 (20), 

158 (25), 99 (20), 85 (100). HRMS (EI) m/z: 264.0223 calcd for C10H13
35ClO4S; 264.0226 obsd.  
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7-Chloro-7-hydroxymethyl-2-thiabicyclo[3.2.0]heptan-6-one-4-carboxylic Acid (188)  

 

Zinc dust (323 mg, 4.97 mmol) was added at rt to a stirring solution of the dichlorocyclobutanone 

149 (1003 mg, 2.46 mmol), TMSCl (935 L, 7.37 mmol), and PhOMe (800 L, 7.36 mmol) in dry 

MeCN (15 mL). The suspension was heated to 40 C and stirred for an additional 4 h before the 

solvent was removed under reduced pressure. The reaction mixture was then taken up in CH2Cl2 (50 

mL) and washed with 5% HCl (50 mL). The aqueous washes were back-extracted with CH2Cl2 (25 

mL) before the organic extracts were combined and extracted with satd NaHCO3 (2  20 mL). The 

aqueous extracts were then acidified with 6 M HCl (~4 mL) to pH 1–2 and extracted with CH2Cl2 (3 

 20 mL). The organic solution was dried over Na2SO4 and concentrated under reduced pressure to 

give a mixture of monochlorocyclobutanones 184 and 184 (87.2 mg, 0.423 mmol, 17%) that was 

used in the following reaction without additional purification or characterization. 184: 1H NMR 

(300 MHz, acetone-d6):  3.37 (dd, Jgem = 12.3 Hz, J3,4 = 6.2 Hz, 1H, H3), 3.55 (dd, Jgem = 12.3 Hz, 

J3,4 = 1.9 Hz, 1H, H3), 3.74 (dd, J4,3 = 1.9 Hz, J4,3 = 6.2 Hz, 1H, H4), 4.18 (dd, J1,5 = 8.2 Hz, J1,7 = 

3.5 Hz, 1H, H1), 4.85–4.95 (m, 2H, H5
 + H7). 184: 1H NMR (300 MHz, acetone-d6):  2.97 (dd, Jgem 

= 12.1 Hz, J3,4 = 6.0 Hz, 1H, H3), 3.36 (d, Jgem = 12.1 Hz, 1H, H3), 3.63 (d, J4,3 = 6.0 Hz, 1H, H4), 

4.55 (dd, J1,5 = 7.9 Hz, J1,7 = 8.0 Hz, 1H, H1), 4.77 (dd, J5,1 = 7.9 Hz, J5,7 = 3.3 Hz, 1H, H5), 5.54 

(dd, J7,1 = 8.0 Hz, J7,5 = 3.3 Hz, 1H, H7). LRMS (EI) m/z (relative intensity): 208 (M[(37Cl)]+, 20), 

206 ([M(35Cl)]+, 50), 146 (20), 130 (40), 85 (100). HRMS (EI) m/z: 205.9804 calcd for C7H7O3
35ClS; 

205.9808 obsd. 

Triethylamine (110 L, 0.786 mmol) was added at rt to a suspension of the monochloro-

cyclobutanones 184 (40.7 mg, 0.197 mmol, 184:184  3:97) and paraformaldehyde (12 mg, 0.40 

mmol) in MeCN (15 mL) and H2O (0.4 mL). The suspension was heated to 50 C and stirred for 1.5 h 

before the reaction mixture was concentrated under reduced pressure. The crude mixture was taken up 

in CH2Cl2 (25 mL) and extracted with satd NaHCO3 (25 mL) before the aqueous extracts were 

acidified with 6 M HCl (~2 mL) to pH 2 and extracted with CH2Cl2 (2  40 mL). The organic solution 

was dried over Na2SO4 and concentrated under reduced pressure to provide hydroxymethylated 
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cyclobutanone derivative 188 as a white solid (23.8 mg, 0.101 mmol, 51%). 1H NMR (300 MHz, 

acetone-d6):  2.96 (dd, Jgem = 12.2 Hz, J3,4 = 5.8 Hz, 1H, H3), 3.42 (d, Jgem = 12.2 Hz, 1H, H3), 

3.63 (d, J4,3 = 5.8 Hz, 1H, H4), 3.96 (B of AB, JAB = 11.3 Hz, 1H, one of CH2OH), 4.04 (A of AB, 

JAB = 11.3 Hz, 1H, one of CH2OH), 4.47 (d, J1,5 = 8.4 Hz, 1H, H1), 4.71 (d, J5,1 = 8.4 Hz, 1H, H5). 
13C 

NMR (75.5 MHz, acetone-d6):  36.4, 50.2, 51.0, 66.0, 69.3, 83.2, 172.3, 205.5.  

5.4 Cyclobutanone Hydrate Formation688 

Hydrate Formation with Cyclobutanone 65  
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The dichlorocyclobutanone 65 (32.5 mg, 0.135 mmol) was dissolved in acetone-d6 (0.2 mL) and 

combined with D2O (0.6 mL). 1H NMR of the mixture within 5 minutes showed a ketone:hydrate 

ratio of 26:74 and this ratio did not change in the following 3 weeks. Ketone: 1H NMR (300 MHz, 

D2O):  3.08 (dd, Jgem = 12.6, J3,4 = 5.9, 1H, H3), 3.48 (d, Jgem = 12.6, 1H, H3), 3.85 (d, J4,3 = 5.9 

Hz, 1H, H4), 4.72 (d, J1,5 = 8.4 Hz, 1H, H1), 5.20 (d, J5,1 = 8.4 Hz, 1H, H5). 
13C NMR (75.5 MHz, 

D2O):  36.9, 51.3, 59.9, 69.0, 90.3, 174.7, 198.3. Hydrate: 1H NMR (300 MHz, D2O):  3.33 (d, Jgem 

= 11.5, 1H, H3), 3.49 (dd, Jgem = 11.5, J3,4 = 6.5, 1H, H3), 3.64 (d, J4,3 = 6.5 Hz, 1H, H4), 3.97 (d, 

J5,1 = 8.9 Hz, 1H, H5), 4.41 (d, J1,5 = 8.9 Hz, 1H, H1). 
13C NMR (75.5 MHz, D2O):  39.1, 49.7, 59.5, 

62.1, 96.6, 98.7, 177.0.  

Hydrate Formation with Cyclobutanone 111  

 

The dechlorinated cyclobutanone 111 (21.1 mg, 0.123 mmol) was dissolved in acetone-d6 (0.2 mL) 

and combined with D2O (0.6 mL). None of the cyclobutanone hydrate could be detected by 1H NMR, 
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even after 3 weeks in solution. Ketone: 1H NMR (500 MHz, D2O):  3.00 (ddd, J7,1 =3.4 Hz, J7,5 = 

3.3 Hz, Jgem = 19.1 Hz, 1H, H7), 3.27 (dd, Jgem = 12.5 Hz, J3,4 = 6.0 Hz, 1H, H3), 3.44 (d, Jgem = 12.5 

Hz, 1H, H3), 3.66 (d, J4,3 = 6.0 Hz, H4), 3.81 (ddd, J7,1 = 8.4 Hz, J7,5 = 4.0 Hz, Jgem = 19.1 Hz, 1H, 

H7), 4.27 (ddd, J1,5 = 8.0 Hz, J1,7 = 8.4 Hz, J1,7 = 3.4 Hz, 1H, H1), 4.66 (m, 1H, H5). 
13C NMR (125 

MHz, D2O):  36.3, 38.3, 51.3, 57.4, 72.6, 175.9, 214.8.  

Hydrate Formation with Cyclobutanone 152  
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The 3-methoxy dichlorocyclobutanone 152 (23.9 mg, 0.088 mmol) was dissolved in acetone-d6 

(150 L) and combined with D2O (450 L). 1H NMR of the mixture within 5 minutes showed >98% 

as the signals corresponding to the ketone could not be identified. Hydrate: 1H NMR (500 MHz, 

D2O):  3.33 (s, 3H, OCH3), 3.75 (dd, J4,3 = 4.4 Hz, J4,5 = 9.5 Hz, 1H, H4), 3.83 (dd, J5,1 = 9.4 Hz, J5,4 

= 9.5 Hz, 1H, H5), 4.44 (d, J1,5 = 9.4 Hz, 1H, H1), 5.52 (d, J3,4 = 4.4 Hz, 1H, H3). 
13C NMR (125 

MHz, D2O):  56.4, 57.0, 57.4, 59.3, 95.3, 97.1, 97.9, 173.0.  

Hydrate Formation with Cyclobutanone 152  
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The 3-methoxy dichlorocyclobutanone 152 (15 mg, 0.055 mmol) was dissolved in acetone-d6 

(150 L) before the addition of D2O (450 L), as done previously with 152 (see above). However, 

the addition of D2O induced a large amount of precipitation, and additional acetone-d6 (300 L) was 

required to dissolve most of the solid. Integration of the 1H NMR spectrum of the mixture within 10 

minutes indicated approximately 6.5% hydration of the ketone (ketone:hydrate = 93.5:6.5) and this 

ratio did not change over 24 h. Ketone: 1H NMR (500 MHz, D2O):  3.37 (s, 3H, OCH3), 3.91 (s, 1H, 

H4), 4.81 (d, J1,5 = 8.6 Hz, H1), 5.17 (d, J5,1 = 8.6 Hz, H5), 5.61 (s, 1H, H3). 13C NMR (125 MHz, 

D2O):  57.2, 59.2, 60.3, 66.5, 91.5, 96.8, 171.9, 196.4. Hydrate: 1H NMR (500 MHz, D2O):  3.52 

(s, 3H, OCH3), 3.79 (br s, 1H, H4), 4.23 (dd, J5,1 = 9.6 Hz, J5,4 = 1.8 Hz, H5), 4.56 (d, J1,5 = 9.6 Hz, 
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H1), 5.75 (d, J3,4 = 1.2 Hz, H3). 13C NMR (125 MHz, D2O):  56.9, 57.7, 61.0, 62.5, 98.5.689  

Hydrate Formation with Cyclobutanone 153  
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The unsaturated dichlorocyclobutanone 153 (21.8 mg, 0.0912 mmol) was dissolved in acetone-d6 

(250 L) and combined with D2O (750 L). 1H NMR of the mixture within 5 minutes showed 93% 

hydration and the ketone:hydrate (93.3:6.7) ratio did not change over 12 h. Ketone: 1H NMR (500 

MHz, D2O):  5.21 (d, J5,1 = 10.1 Hz, 1H, H5), 5.56 (dd, J1,3 = 1.8 Hz, J1,5 = 10.1 Hz, 1H, H1), 7.73 (d, 

J3,1 = 1.8 Hz, 1H, H3). 
13C NMR (125 MHz, D2O):  60.5, 72.5, 94.7, 123.0, 149.0, 165.4, 192.4. 

Hydrate: 1H NMR (500 MHz, D2O):  4.45 (dd, J1,3 = 1.4 Hz, J1,5 = 10.1 Hz, 3H, H5), 4.88 (d, J1,5 = 

10.1 Hz, 1H, H1), 7.63 (d, J3,1 = 1.4 Hz, 1H, H3). 
13C NMR (125 MHz, D2O):  61.6, 62.7, 97.6, 

101.5, 126.6, 149.9, 166.9.  

Hydrate Formation with Cyclobutanone 156  

 

The unsaturated dichlorocyclobutanone 156 (6.2 mg, 0.041 mmol) was dissolved in acetone-d6 

(350 L) and combined with D2O (700 L). The cyclobutanone hydrate could not be detected by 1H 

NMR, even after 48 h in solution. Given the relatively poor solubility of 156 in this solvent mixture 

and the detection limit of 1H NMR in this experiment, we conclude that the extent of hydration is less 

than 2%. Ketone: 1H NMR (500 MHz, D2O):  3.42 (ddd, J7,1 = 8.7 Hz, J7,5 = 3.4 Hz, Jgem = 19.1 

Hz,1H, H7), 3.92 (ddd, J7,1 = 8.4 Hz, J7,5 = 5.3 Hz, Jgem = 19.1 Hz,1H, H7), 4.39–4.45 (m, 1H, H1), 

5.14–5.18 (m, 1H, H5), 7.71 (s, 1H, H3). 
13C NMR (125 MHz, D2O):  38.7, 61.6, 76.4, 122.0, 148.1, 

166.1, 206.9.  
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5.5 Cyclobutanone Hemiketal Formation 

General 

A neat sample of the cyclobutanone (typically 20–25 mg) was dissolved in neat methanol-d4 (1 g) 

with swirling. Between periodic NMR experiments, the solution remained in the NMR tube at 

ambient temperature. 1H NMR was done at 500 MHz, 13C NMR at 125 MHz, and protons were 

assigned based on COSY, HMQC, and HMBC experiments. 

Assignment of signals to protons of the  and  hemiketals was based on reasoning that 

nucleophilic attack by the alcohol on the carbonyl is kinetically much faster from the exo () face of 

the [3.2.0] bicycle, and would give the thermodynamically more stable -hemiketal. Peaks of the first 

hemiketal to form were therefore assigned to the -hemiketal and the peaks of the second hemiketal 

to form were assigned to the -hemiketal. As expected, the ratio of -hemiketal:-hemiketal was >1 

at equilibrium with all cyclobutanones tested. NOE and NOESY experiments were performed, but 

could not give an unambiguous assignment of any protons to either of the hemiketals. Ketone:: 

ratios were calculated using a weighted average of the integrated values of the most resolved peaks. 

In many experiments, quaternary carbons C6 and C7 could not be observed, and in some cases (in 

which the proportion of a compound was less than 5% of the mixture) none of the carbons could be 

observed. 

After equilibrium had been reached, the solvent was removed in vacuo to give the ketone in all 

cases. For several substrates the -hemiketal persisted, but removal of methanol could be facilitated 

by washing a solution of the compound in CH2Cl2 with water, followed by removal of the solvent 

under reduced pressure. With the carboxylic acids 65 and 111, hemiketal formation was also found to 

be fully reversible, but after two weeks or more in methanol-d4 a significant amount of esterification 

was observed (ca. 30% after two weeks by 1H NMR). 

Hemiketal Formation with Cyclobutanone 65  

 

The cyclobutanone 65 (20.6 mg, 0.085 mmol) was dissolved in methanol-d4 (1 g). 7 d were 
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required for the system to reach equilibrium and the ketone:: ratio was 12:65:24. Ketone: 1H NMR 

(500 MHz, CD3OD):  3.00 (dd, J3,4 = 5.9 Hz, Jgem = 12.3 Hz, 1H, H3), 3.42 (d, Jgem = 12.3 Hz, 1H, 

H3), 3.75 (d, J4,3 = 5.9 Hz, 1H, H4), 4.58 (d, J1,5 = 8.4 Hz, 1H, H1), 5.10 (d, J5,1 = 8.4 Hz, 1H, H5). 

13C NMR (125 MHz, CD3OD):  35.2, 50.0, 58.7, 67.7, 172.9, 195.1.690 -Hemiketal: 1H NMR (500 

MHz, CD3OD):  3.30 (m, 1H, H3), 3.47–3.55 (m, 2H, H3 and H4), 3.96 (d, J5,1 = 8.9 Hz, H5), 4.29 

(d, J1,5 = 8.9 Hz, H1). 
13C NMR (125 MHz, CD3OD):  37.3, 48.5, 55.4, 61.3, 93.9, 100.2, 174.2. -

Hemiketal: 1H NMR (500 MHz, CD3OD):  3.30–3.35 (m, 1H, H3), 3.4–3.5 (m, 2H, H3 and H4), 

3.89 (dd, J5,4 = 2.6 Hz, J5,1 = 9.2 Hz, 1H, H5), 4.27 (d, J1,5 = 9.2 Hz, 1H, H1).
 13C NMR (500 MHz, 

CD3OD):  37.6, 48.0, 58.6, 60.7, 94.9, 99.2, 174.3.  

Hemiketal Formation with Cyclobutanone 84  
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The cyclobutanone 84 (20.0 mg, 0.074 mmol) was dissolved in methanol-d4 (1 g). 12 d were 

required for the system to reach equilibrium and the ketone:: ratio was 9:67:25. Ketone: 1H NMR 

(500 MHz, CD3OD):  1.28 (t, J = 7.1 Hz, 3H, CO2CH2CH3), 3.05 (dd, Jgem = 12.4 Hz, J3,4 = 5.8 Hz, 

1H, H3), 3.46 (d, Jgem = 12.4 Hz, 1H, H3), 3.78 (d, J3,4 = 5.8 Hz, 1H, H4), 4.17 (app. q, J = 7.1 Hz, 

2H, CO2CH2CH3), 4.64 (d, J1,5 = 8.4 Hz, 1H, H1), 5.16 (d, J5,1 = 8.4 Hz, 1H, H5). 
13C NMR (125 

MHz, CD3OD):  13.0, 35.1, 50.1, 58.7, 61.6, 67.5, 170.2, 195.1.690 -Hemiketal: 1H NMR (500 

MHz, CD3OD):  1.26 (m, 3H, CO2CH2CH3), 3.29 (d, Jgem = 10.8 Hz, 1H, H3), 3.50 (dd, Jgem = 10.8 

Hz, J3,4 = 6.6 Hz, 1H, H3), 3.54 (d, J4,3 = 6.6 Hz, 1H, H4), 3.96 (d, J5,1 = 8.9 Hz, 1H, H5), 4.10–4.15 

(m, 2H, CO2CH2CH3), 4.29 (d, J1,5 = 8.9 Hz, 1H, H1). 
13C NMR (500 MHz, CD3OD):  13.0, 37.3, 

48.5, 55.1, 60.7, 61.0, 93.9, 100.2, 174.2. -Hemiketal: 1H NMR (500 MHz, CD3OD):  1.26 (m, 3H, 

CO2CH2CH3), 3.29 (dd, Jgem = 11.5 Hz, J3,4 = 2.7 Hz, 1H, H3), 3.36 (dd, Jgem = 11.5 Hz, J3,4 = 6.7 

Hz, 1H, H3), 3.56 (app. dt, J4,3 = 2.7 Hz, J4,3 = 6.7 Hz, J4,5 = 2.7 Hz, 1H, H4), 3.88 (dd, J5,1 = 9.3 

Hz, J5,4 = 2.7 Hz, 1H, H5), 4.10–4.15 (m, 2H, CO2CH2CH3), 4.27 (d, J1,5 = 9.3 Hz, 1H, H1). 
13C NMR 

(125 MHz, CD3OD):  13.0, 37.6, 48.4, 55.1, 58.7, 60.0, 60.7, 95.5, 99.2, 172.5.  
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Hemiketal Formation with Cyclobutanone 110  

 

The cyclobutanone 110 (25.5 mg, 0.127 mmol) was dissolved in methanol-d4 (1 g). Equilibrium 

was reached in 7 d and the ketone:: ratio was 81:12:6.5. Ketone: 1H NMR (500 MHz, CD3OD):  

1.29 (t, 3H, CO2CH2CH3), 2.90 (app. dt, J7,5 = 3.3 Hz, J7,1
 = 3.3 Hz, Jgem = 18.5 Hz, 1H, H7), 3.23 

(dd, Jgem
 = 12.2 Hz, J3,4 = 6.0 Hz, 1H, H3), 3.42 (d, Jgem = 12.2 Hz, 1H, H3), 3.58 (d, J4,3 = 6.0 Hz, 

1H, H4), 3.70 (ddd, J7,1 = 8.3 Hz, J7,5 = 3.6 Hz, Jgem = 18.5 Hz, 1H, H7), 4.12–4.21 (m, 3H, H1 and 

CO2CH2CH3), 4.65 (app. ddd, J5,1 = 7.6 Hz, J5,7 = 3.6 Hz, J5,7 = 3.3 Hz, 1H, H5). 
13C NMR (125 

MHz, CD3OD):  13.0, 34.7, 36.8, 50.0, 55.9, 61.2, 71.5, 171.3, 208.7. -Hemiketal: 1H NMR (500 

MHz, CD3OD):  1.28 (t, 3H, CO2CH2CH3), 2.02 (dd, J7,1
 = 4.3 Hz, Jgem = 13.5 Hz, 1H, H7), 2.83 

(ddd, J7,1 = 7.8 Hz, J7,5 = 3.6 Hz, Jgem = 13.5 Hz, 1H, H7), 3.37 (dd, Jgem = 11.4 Hz, J3,4 = 2.0 Hz, 

1H, H3), 3.43 (dd, Jgem
 = 11.4 Hz, J3,4 = 6 Hz, 1H, H3), 3.47 (dd, J4,3 = 6 Hz, J4,3 = 2.0 Hz, 1H, 

H4), 3.72–3.77 (m, 2H, H1 and H5), 4.15–4.19 (m, 2H, CO2CH2CH3). 
13C NMR (125 MHz, CD3OD): 

 13.1, 35.6, 38.0, 44.2, 49.0, 57.4, 60.7, 96.4, 173.1. -Hemiketal: 1H NMR (500 MHz, CD3OD):  

1.27 (t, 3H, CO2CH2CH3), 2.17 (dd, J7,1
 = 6.0 Hz, Jgem = 13.4 Hz, 1H, H7), 2.62 (ddd, J7,1 = 8.4 Hz, 

J7,5 = 3.0 Hz, Jgem = 13.4 Hz, 1H, H7), 3.31 (dd, Jgem
 = 11.9 Hz, J3,4 = 6.0 Hz, 1H, H3), 3.36 (dd, 

Jgem = 11.9 Hz, J3,4 = 2.4 Hz, 1H, H3),  3.50 (app. dt, J4,3 = 6.0 Hz, J4,3 = 2.4 Hz, J4,5 = 2 Hz, 1H, 

H4), 3.70–3.74 (m, 1H, H5), 3.80 (app. dt, J1,5
 = 8 Hz, J1,7

 = 8.4 Hz, J1,7
 = 6.0 Hz, 1H, H1), 4.15–4.19 

(m, 2H, CO2CH2CH3). 
13C NMR (125 MHz, CD3OD):  13.1, 35.5, 37.7, 43.7, 48.5, 59.9, 60.7, 95.8, 

173.2.  

Hemiketal Formation with Cyclobutanone 111  

 

The cyclobutanone 111 (18.3 mg, 0.1063 mmol) was dissolved in methanol-d4 (1 g). Less than 12 h 

were required for the system to reach equilibrium and the ketone:: ratio was 76:14.5:9.2. Ketone: 
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1H NMR (500 MHz, CD3OD):  2.89 (dt, J7,5 = 3.3 Hz, J7,1
 = 3.4 Hz, Jgem = 18.5 Hz, 1H, H7), 3.22 

(dd, Jgem
 = 12.1 Hz, J3,4 = 6.1 Hz, 1H, H3), 3.44 (d, Jgem = 12.1 Hz, 1H, H3), 3.55 (d, J4,3 = 6.1 Hz, 

1H, H4), 3.69 (ddd, J7,1 = 8.3 Hz, J7,5 = 3.6 Hz, Jgem = 18.5 Hz, 1H, H7), 4.17 (ddd, J1,5 = 8.0 Hz, 

J1,7 = 8.3 Hz, J1,7 = 3.4 Hz, 1H, H1), 4.64 (app. dt, J5,1 = 8.0 Hz, J5,7 = 3.6 Hz, J5,7 = 3.3 Hz, 1H, 

H5).  
13C NMR (125 MHz, CD3OD):  34.8, 36.8, 50.0, 55.8, 71.7, 173.2, 209.1. -Hemiketal: 1H 

NMR (500 MHz, CD3OD):  2.02 (dd, J7,1
 = 4.0 Hz, Jgem = 13.5 Hz, 1H, H7), 2.82 (ddd, J7,1 = 7.4 

Hz, J7,5 = 3.9 Hz, Jgem = 13.5 Hz, 1H, H7), 3.35–3.45 (m, 3H, H4 and H3 and H3), 3.73–3.76 (m, 

2H, H1 and H5). 
13C NMR (125 MHz, CD3OD):  35.6, 38.1, 44.2, 48.9, 57.5, 96.4, 175.1. -

Hemiketal: 1H NMR (500 MHz, CD3OD):  2.17 (dd, J7,1
 = 6.0 Hz, Jgem = 13.3 Hz, 1H, H7), 2.62 

(ddd, J7,1 = 8.4 Hz, J7,5 = 3.0 Hz, Jgem = 13.3 Hz, 1H, H7), 3.30 (dd, Jgem
 = 11.7 Hz, J3,4 = 6.1 Hz, 

1H, H3), 3.41 (m, 1H, H3),  3.48 (app. dt, J4,3 = 6.1 Hz, J4,3 = 2 Hz, J4,5 = 2 Hz, 1H, H4), 3.72–3.76 

(m, 1H, H5), 3.81 (app. dt, J1,5
 = 8 Hz, J1,7

 = 8 Hz, J1,7
 = 6 Hz, 1H, H1). 

13C NMR (125 MHz, 

CD3OD):  34.8, 37.8, 43.7, 48.4, 60.0, 95.4, 175.2  

Hemiketal Formation with Cyclobutanone 121  

 

The 3-methoxycyclobutanone 121 (13.5 mg, 0.045 mmol) was dissolved in methanol-d4 (0.6 g). 

Equilibrium was reached within 7 d and the ketone:: ratio was 1.6:54:44. Ketone: 1H NMR (500 

MHz, CD3OD):  1.28 (t, 3H, CO2CH2CH3), 3.34 (s, 3H, OCH3), 3.84 (dd, J4,3 = 5.0 Hz, J4,5 = 5.7 

Hz, 1H, H4), 4.15–4.30 (m, 2H, CO2CH2CH3), 4.74 (d, J1,5 = 8.3 Hz, 1H, H1), 5.15 (dd, J5,1 = 8.3 Hz, 

J5,4 = 5.7 Hz, 1H, H5), 5.49 (d, J3,4 = 5.0 Hz, 1H, H3). -Hemiketal: 1H NMR (500 MHz, CD3OD): 

 1.28 (t, 3H, CO2CH2CH3), 3.27 (s, 3H, OCH3), 3.69 (dd, J4,3 = 4.4, J4,5 = 9.1, 1H, H4), 3.91 (dd, J5,1 

= 9.7, J5,4 = 9.1, 1H, H5), 4.15 (B of ABX3, JAB = 10.7 Hz, JBX = 7.1 Hz, 1H, one of CO2CH2CH3), 

4.23 (A of ABX3, JAB = 10.7 Hz, JAX = 7.1 Hz, 1H, one of CO2CH2CH3), 4.31 (d, J1,5 = 9.7, 1H, H1), 

5.39 (d, J3,4 = 4.4, 1H, H3). 
13C NMR (125 MHz, CDCl3):  13.1, 52.2, 55.1, 55.2, 58.9, 60.7, 93.1, 

96.9, 99.2, 169.1. -Hemiketal: 1H NMR (500 MHz, CD3OD):  1.27 (t, 3H, CO2CH2CH3), 3.25 (s, 

3H, OCH3), 3.63 (dd, J4,3 = 4.4, J4,5 = 10.5, 1H, H4), 3.79 (dd, J5,1 = 9.6, J5,4 = 10.5, 1H, H5), 4.15 (B 
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of ABX3, JAB = 10.7 Hz, JBX = 7.1 Hz, 1H, one of CO2CH2CH3), 4.23 (A of ABX3, JAB = 10.7 Hz, JAX 

= 7.1 Hz, 1H, one of CO2CH2CH3), 4.28 (d, J1,5 = 9.6, 1H, H1), 5.40 (d, J3,4 = 4.4, 1H, H3). 
13C 

NMR (125 MHz, CDCl3):  13.1, 55.1, 55.3, 55.9, 58.2, 60.8, 93.9, 97.0, 97.8, 169.0.  

Hemiketal Formation with Cyclobutanone 121  

 

The 3-methoxycyclobutanone 121 (18.0 mg, 0.060 mmol) was dissolved in methanol-d4 (1 g). 

Equilibrium was reached in 14 d and the ketone:: ratio was 85:12:2.6. Ketone: 1H NMR (500 

MHz, CDCl3):  1.30 (t, J = 7.1 Hz, 3H, CO2CH2CH3), 3.34 (s, 3H, OCH3), 3.88 (s, 1H, H4), 4.20 (q, 

J = 7.1 Hz, 2H, CO2CH2CH3), 4.72 (d, J1,5 = 8.6 Hz, 1H, H1) 5.10 (d, J5,1 = 8.6 Hz, 1H, H5), 5.54 (s, 

1H, H3). 13C NMR (125 MHz, CDCl3):  12.9, 55.1, 57.8, 59.1, 61.7, 65.0, 90.4, 95.4, 168.1, 192.7. 

-Hemiketal: 1H NMR (500 MHz, CD3OD):  1.30 (t, J = 7.1 Hz, 3H, CO2CH2CH3), 3.49 (s, 3H, 

OCH3), 3.72 (app t., J4,3 = 1.5 Hz, J4,5 = 1.5 Hz, 1H, H4), 4.15 (dd, J5,1 = 9.7 Hz, J5,4 = 1.5 Hz, 1H, 

H5), 4.20 (q, J = 7.1 Hz, 2H, CO2CH2CH3), 4.47 (d, J1,5 = 9.7 Hz, 1H, H1), 5.70 (d, J3,4 = 1.5 Hz, 1H, 

H3). 13C NMR (125 MHz, CDCl3):  12.9, 55.5, 55.6, 57.6, 61.6 (2C), 97.2, 169.5.691 -Hemiketal: 

1H NMR (500 MHz, CD3OD):  1.30 (t, J = 7.1 Hz, 3H, CO2CH2CH3), 3.40 (s, 3H, OCH3), 3.56 (dd, 

J5,1 = 9.7 Hz, J5,4 = 8.6 Hz, 1H, H5), 3.64 (dd, J4,3 = 7.0 Hz, J4,5 = 8.6 Hz, 1H, H4), 4.20 (q, J = 7.1 

Hz, 2H, CO2CH2CH3), 4.28 (d, J1,5 = 9.7 Hz, 1H, H1), 5.68 (d, J3,4 = 7.0 Hz, 1H, H3)  

Hemiketal Formation with Cyclobutanone 122  

 

The 3-isopropoxycyclobutanone 122 (8.9 mg, 0.027 mmol) was dissolved in methanol-d4 (0.4 

g). Equilibrium was reached within 7 d and the ketone:: ratio was 2:51:47 by the integration of 

peaks in the 500 MHz 1H NMR. Ketone: 1H NMR (500 MHz, CD3OD):  4.76 (d, J1,5 = 8.1 Hz, 1H, 

H1), 5.17 (dd, J5,1 = 8.1 Hz, J5,4 = 5.4 Hz, 1H, H5), 5.73 (d, J3,4 = 4.5 Hz, 1H, H3).
692 -Hemiketal: 
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1H NMR (500 MHz, CD3OD):  1.09 (d, J = 6.1 Hz, 3H, one of CHCH3), 1.13 (d, J = 6.1 Hz, 3H, one 

of CHCH3), 1.28 (t, J = 7.1 Hz, 3H, CO2CH2CH3), 3.68 (dd, J4,3 = 4.5 Hz, J4,5 = 8.9 Hz, 1H, H4), 

3.76 (sept., J = 6.1 Hz, 1H, CHMe2), 3.93 (app. t, J5,1 = 9.7 Hz, J5,4 = 8.9 Hz, 1H, H5), 4.17 (m, 2H, 

CO2CH2CH3), 4.34 (d, J1,5 = 9.7 Hz, 1H, H1), 5.64 (d, J3,4 = 4.5 Hz, 1H, H3). 
13C NMR (125 MHz, 

CD3OD):  13.2, 19.4, 21.8, 52.5, 55.2, 58.9, 60.7, 70.3, 92.8, 93.1, 99.3, 169.2. -Hemiketal: 1H 

NMR (500 MHz, CD3OD):  1.10 (d, J = 6.1 Hz, 3H, one of CHCH3), 1.12 (d, J = 6.1 Hz, 3H, one of 

CHCH3), 1.29 (m, 3H, CO2CH2CH3), 3.62 (dd, J4,3 = 4.5 Hz, J4,5 = 10.4 Hz, 1H, H4), 3.72 (sept., J = 

6.1 Hz, 1H, CHMe2), 3.81 (dd, J5,1 = 9.7 Hz, J5,4 = 10.4 Hz, 1H, H5), 4.15–4.19 (m, 2H, CO2CH2CH3), 

4.31 (d, J1,5 = 9.7 Hz, 1H, H1), 5.65 (d, J3,4 = 4.5 Hz, 1H, H3). 
13C NMR (125 MHz, CD3OD):  

13.2, 19.4, 21.7, 55.4, 56.2, 58.2, 60.7, 70.4, 92.9, 94.1, 97.9, 169.1.  

Hemiketal Formation with Cyclobutanone 122  

 

The 3-isopropoxycyclobutanone 122 (21.7 mg, 0.066 mmol) was dissolved in methanol-d4 (1 g). 

Equilibrium was reached in 14 d and the ketone:: ratio was 77:19:4. Ketone: 1H NMR (500 MHz, 

CD3OD):  1.13 (d, J = 6.1 Hz, 1H, one of CH(CH3)2), 1.15 (d, J = 6.1 Hz, 1H, one of CH(CH3)2), 

1.29 (t, J = 7.1 Hz, 3H, CO2CH2CH3), 3.81 (s, 1H, H4), 4.00 (sept., J = 6.1 Hz, 1H, CHMe2), 4.20 (q, 

J = 7.1 Hz, 2H, CO2CH2CH3), 4.71 (d, J1,5 = 8.5 Hz, 1H, H1), 5.12 (d, J5,1 = 8.5 Hz, 1H, H5), 5.78 (s, 

1H, H3). 13C NMR (125 MHz, CD3OD):  12.9, 18.6, 21.4, 57.9, 59.3, 61.7, 65.4, 69.2, 90.1, 90.4, 

168.3, 192.4. -Hemiketal: 1H NMR (500 MHz, CD3OD):  1.15 (d, J = 6.2 Hz, 3H, one of 

CH(CH3)2), 1.24 (d, J = 6.2 Hz, 3H, one of CH(CH3)2), 1.29 (t, 3H, J = 7.1 Hz, CO2CH2CH3), 3.65 

(dd, J4,3 = 1.5 Hz, J4,5 = 1.8 Hz, 1H, H4), 4.10 (sept., J = 6.2 Hz, 1H, CHMe2), 4.13 (dd, J5,1 = 9.6 Hz, 

J5,4 = 1.8 Hz, 1H, H5), 4.19 (q, J = 7.1 Hz, 2H, CO2CH2CH3), 4.45 (d, J1,5 = 9.6 Hz, 1H, H1), 5.90 (d, 

J3,4 = 1.5 Hz, 1H, H3). 13C NMR (125 MHz, CD3OD):  12.9, 18.9, 21.3, 55.8, 57.4, 61.5, 61.6, 

71.2, 92.5, 95.6, 100.8, 169.6. -Hemiketal: 1H NMR (500 MHz, CD3OD):  1.10 (d, J = 6.1 Hz, one 

of CH(CH3)2), 1.19 (d, J = 6.1 Hz, one of CH(CH3)2), 1.29 (m, 3H, CO2CH2CH3), 3.42 (app. t, J5,1 = 

9.7 Hz, J5,4 = 9.7 Hz, 1H, H5), 3.57 (dd, J4,3 = 9.6 Hz, J4,5 = 9.7 Hz, 1H, H4), 4.18 (m, 1H, H1), 4.2 
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(m, 2H, CO2CH2CH3), 5.68 (d, J3,4 = 9.6 Hz, 1H, H3).  

Hemiketal Formation with Cyclobutanone 123  

 

The 3-tert-butoxycyclobutanone 123 (10.8 mg, 0.031 mmol) was dissolved in methanol-d4 (0.5 

g). Equilibrium was reached within 7 d and the ketone:: ratio was 2.1:52:46. Ketone: 1H NMR 

(500 MHz, CD3OD):  1.25 (s, 9H, C(CH3)3), 1.30 (t, 3H, J = 7.1 Hz, CO2CH2CH3), 3.76 (dd, J4,3 = 

5.1 Hz, J4,5 = 5.7 Hz, 1H, H4), 4.05–4.25 (m, 2H, CO2CH2CH3), 4.51 (d, J1,5 = 8.3 Hz, 1H, H1), 5.13 

(dd, J5,1 = 8.3 Hz, J5,4 = 5.7 Hz, 1H, H5), 5.94 (d, J3,4 = 5.1 Hz, 1H, H3). -Hemiketal: 1H NMR 

(500 MHz, CD3OD):  1.21 (s, 9H, C(CH3)3), 1.30 (t, 3H, CO2CH2CH3), 3.60 (dd, J4,3 = 5.1 Hz, J4,5 

= 8.3 Hz, 1H, H4), 3.91 (dd, J5,1 = 9.6 Hz, J5,4 = 8.3 Hz, 1H, H5), 4.10 (B of ABX3, JAB = 10.8 Hz, JBX 

= 7.1 Hz, 1H, one of CO2CH2CH3), 4.22 (A of ABX3, JAB = 10.8 Hz, JAX = 7.1 Hz, 1H, one of 

CO2CH2CH3), 4.39 (d, J1,5 = 9.6 Hz, 1H, H1), 5.90 (d, J3,4 = 5.1 Hz, 1H, H3). 
13C NMR (125 MHz, 

CDCl3):  13.1, 26.9, 53.0, 55.5, 59.2, 60.7, 75.6, 88.5, 93.6, 99.4, 169.2. -Hemiketal: 1H NMR 

(500 MHz, CD3OD):  1.19 (s, 9H, C(CH3)3), 1.29 (t, 3H, J = 7.1 Hz, CO2CH2CH3), 3.61 (dd, J4,3 = 

5.3, J4,5 = 10.6 Hz, 1H, H4), 3.85 (dd, J5,1 = 9.6 Hz, J5,4 = 10.6 Hz, 1H, H5), 4.05 (B of ABX3, JAB = 

10.8 Hz, JBX = 7.1 Hz, 1H, one of CO2CH2CH3), 4.24 (A of ABX3, JAB = 10.8 Hz, JAX = 7.1 Hz, 1H, 

one of CO2CH2CH3), 4.36 (d, J1,5 = 9.6 Hz, 1H, H1), 5.85 (d, J3,4 = 5.3 Hz, 1H, H3). 
13C NMR (125 

MHz, CDCl3):  13.1, 26.9, 55.8, 56.6, 58.4, 60.8, 75.6, 88.8, 94.2, 98.1, 169.5.  

Hemiketal Formation with Cyclobutanone 123  

 

The 3-tert-butoxycyclobutanone 123 (20.6 mg, 0.060 mmol) was dissolved in methanol-d4 (1 g). 

Equilibrium was reached in 12 d and the ketone:: ratio was 60:26:14. Ketone: 1H NMR (500 MHz, 

CD3OD):  1.25 (s, C(CH3)3), 1.29 (t, J = 7.1 Hz, 3H, CO2CH2CH3), 3.68 (s, 1H, H4), 4.20 (q, J = 7.1 



 

187 

Hz, 2H, CO2CH2CH3), 4.68 (d, J1,5 = 8.5 Hz, 1H, H1), 5.07 (d, J5,1 = 8.5 Hz, 1H, H5), 5.89 (s, 1H, 

H3). 13C NMR (125 MHz, CD3OD):  13.1, 26.9, 59.5, 59.6, 61.6, 65.4, 76.9, 86.9, 90.5, 168.4, 

192.9. -Hemiketal: 1H NMR (500 MHz, CD3OD):  1.29 (3H, CO2CH2CH3), 1.32 (s, C(CH3)3), 

3.58 (dd, J4,3 = 3.6 Hz, J4,5 = 3.7 Hz, 1H, H4), 3.93 (dd, J5,1 = 9.6 Hz, J5,4 = 3.7 Hz, 1H, H5), 4.20 

(2H, CO2CH2CH3), 4.35 (d, J1,5 = 9.6 Hz, 1H, H1), 5.95 (d, J3,4 = 3.6 Hz, 1H, H3). 13C NMR (125 

MHz, CD3OD):  13.1, 26.9, 55.8, 56.6, 60.9, 61.4, 77.6, 88.7, 95.2, 100.6, 170.3. -Hemiketal: 1H 

NMR (500 MHz, CD3OD):  1.19 (s, C(CH3)3), 1.29 (3H, CO2CH2CH3), 3.37 (dd, J5,1 = 9.8 Hz, J5,4 = 

10.3 Hz, 1H, H5), 3.53 (dd, J4,3 = 9.0 Hz, J4,5 = 10.3 Hz, 1H, H4), 4.16 (d, J1,5 = 9.8 Hz, 1H, H1), 4.20 

(2H, CO2CH2CH3), 5.79 (d, J3,4 = 9.0 Hz, 1H, H3). 13C NMR (125 MHz, CD3OD):  13.1, 26.9, 

54.9, 55.0, 58.4, 61.0, 75.3, 90.3, 94.2, 98.4, 172.2.  

Hemiketal Formation with Cyclobutanone 124  
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The 3-acetoxycyclobutanone 124 (25.2 mg, 0.077 mmol) was dissolved in methanol-d4 (1 g). 

Equilibrium was reached in 14 d and the ketone:: ratio was 70:18:12 by the average integration of 

the most resolved peaks in the 1H NMR: H1 and H5 in this case. Ketone: 1H NMR (500 MHz, 

CD3OD):  1.28 (t, J = 7.1 Hz, 3H, CO2CH2CH3), 1.99 (s, 3H, COCH3), 3.99 (s, 1H, H4), 4.18 (app. 

q, J = 7.1 Hz, 2H, CO2CH2CH3), 4.76 (d, J1,5 = 8.6 Hz, 1H, H1), 5.21 (d, J5,1 = 8.6 Hz, 1H, H5), 6.52 

(s, 1H, H3). 13C NMR (125 MHz, CD3OD):  13.0, 19.4, 56.2, 59.4, 62.1, 65.8, 85.9, 90.0, 167.5, 

169.1, 193.1. -Hemiketal: 1H NMR (500 MHz, CD3OD):  1.26 (t, 3H, CO2CH2CH3), 2.10 (s, 3H, 

COCH3), 3.79 (dd, J4,3 = 3.3 Hz, J4,5 = 4.1 Hz, 1H, H4), 3.86 (dd, J5,1 = 9.6 Hz, J5,4 = 4.1 Hz, 1H, H5), 

4.2 (m, 2H, CO2CH2CH3), 4.34 (d, J1,5 = 9.6 Hz, 1H, H1), 6.47 (d, J3,4 = 3.3 Hz, 1H, H3). 13C NMR 

(125 MHz, CD3OD):  13.0, 19.2, 53.9, 56.3, 61.5, 61.9, 88.6, 167.5, 170.7.691 -Hemiketal: 1H 

NMR (500 MHz, CD3OD):  1.26 (m, 3H, CO2CH2CH3), 2.04 (s, 3H, COCH3), 3.62 (dd, J5,1 = 9.8 

Hz, J5,4 = 7.5 Hz, 1H, H5), 3.82 (dd, J4,3 = 5.6 Hz, J4,5 = 7.5 Hz, 1H, H4), 4.2 (m, 2H, CO2CH2CH3), 

4.31 (d, J1,5 = 9.8 Hz, 1H, H1), 6.51 (d, J3,4 = 5.6 Hz, 1H, H3). 13C NMR (125 MHz, CD3OD):  

13.0, 19.2, 53.5, 58.5, 60.8, 61.5, 88.9, 167.5, 170.8.691  
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Hemiketal Formation with Cyclobutanone 118  

 

The cyclobutanone 118 (21.2 mg, 0.079 mmol) was dissolved in methanol-d4 (1 g). The system 

required 4 d to reach equilibrium and the ketone:: ratio was 4:62:34. Ketone: 1H NMR (500 MHz, 

CD3OD):  1.30 (t, 3H, J = 7.1 Hz, CO2CH2CH3), 4.20 (m, 2H, CO2CH2CH3), 5.13 (d, J1,5 = 10.0 Hz, 

1H, H1), 5.53 (dd, J5,1 = 10.0 Hz, J5,3 = 1.8 Hz, 1H, H5), 7.64 (d, J3,5 = 1.8 Hz, 1H, H3). -Hemiketal: 

1H NMR (500 MHz, CD3OD):  1.30 (t, 3H, CO2CH2CH3), 4.20 (m, 2H, CO2CH2CH3), 4.45 (dd, J5,1 

= 10.2 Hz, J5,3 = 1.1 Hz, 1H, H5), 4.80 (d, J1,5 = 10.2 Hz, 1H, H1), 7.50 (d, J3,5 = 1.1 Hz, 1H, H3). 
13C 

NMR (125 MHz, CD3OD):  13.1, 58.3, 60.2, 61.0, 95.1, 103.1, 125.3, 146.0, 162.9. -Hemiketal: 

1H NMR (500 MHz, CD3OD):  1.30 (t, 3H, CO2CH2CH3), 4.20 (m, 2H, CO2CH2CH3), 4.35 (dd, J5,1 

= 10.0 Hz, J5,3 = 1.5 Hz, 1H, H5), 4.72 (d, J1,5 = 10.0 Hz, 1H, H1), 7.43 (d, J3,5 = 1.5 Hz, 1H, H3). 
13C 

NMR (125 MHz, CD3OD):  13.1, 59.7, 60.2, 62.2 95.5, 102.6, 126.4, 145.0, 163.2  

Hemiketal Formation with Cyclobutanone 126  

 

The cyclobutanone 126 (25.6 mg, 0.129 mmol) was dissolved in methanol-d4 (1 g). 16 d were 

required for the system to reach equilibrium and the ketone:: ratio was 62:23:15. Ketone: 1H NMR 

(500 MHz, CD3OD):  1.31 (t, J = 7.1 Hz, 3H, CO2CH2CH3), 3.33 (ddd, J7,1 = 5.7 Hz, J7,5 = 3.3 Hz, 

Jgem = 18.5 Hz, 1H, H7), 3.83 (ddd, J7,1 = 8.5 Hz, J7,5 = 5.2 Hz, Jgem = 18.5 Hz, 1H, H7), 4.18–4.24 

(m, 2H, CO2CH2CH3), 4.32 (app. dt, J1,5
 = 8.5 Hz, J1,7

 = 8.5 Hz, J1,7
 = 5.7 Hz, 1H, H1), 5.14 (dddd, 

J5,1 = 8.5 Hz, J5,3 = 1.7 Hz, J5,7 = 5.2 Hz, J5,7 = 3.3 Hz, 1H, H5), 7.62 (d, J3,5 = 1.7 Hz, H3). 
13C NMR 

(125 MHz, CD3OD):  13.2, 37.2, 60.3, 60.4, 75.6, 120.9, 144.2, 162.3, 201.0. -Hemiketal: 1H 

NMR (500 MHz, CD3OD):  1.30 (t, J = 7.1 Hz, 3H, CO2CH2CH3), 2.40 (ddd, J7,1 = 6.5 Hz, J7,5 = 

1.2 Hz, Jgem = 13.1 Hz, 1H, H7), 2.91 (ddd, J7,1 = 8.4 Hz, J7,5 = 3.5 Hz, Jgem = 13.1 Hz, 1H, H7), 

3.99 (app. dt, J1,5
 = 8 Hz, J1,7

 = 8.4 Hz, J1,7
 = 6.5 Hz, 1H, H1), 4.18–4.24 (m, 2H, CO2CH2CH3), 
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4.20–4.24 (m, 1H, H5), 7.53 (s, 1H, H3). 
13C NMR (125 MHz, CD3OD):  13.2, 38.4, 47.2, 60.1, 

102.7, 125.8, 144.3, 163.9. -Hemiketal: 1H NMR (500 MHz, CD3OD):  1.26 (t, J = 7.1 Hz, 3H, 

CO2CH2CH3), 3.46 (ddd, J7,1 = 6.9 Hz, J7,5 = 1.2 Hz, Jgem = 12.8 Hz, 1H, H7), 2.73 (ddd, J7,1 = 8.2 

Hz, J7,5 = 3.6 Hz, Jgem = 12.8 Hz, 1H, H7), 4.05 (app. dt, J1,5
 = 8 Hz, J1,7

 = 8.2 Hz, J1,7
 = 6.9 Hz, 

1H, H1), 4.18–4.24 (m, 2H, CO2CH2CH3), 4.30 (m, 1H, H5), 7.46 (s, 1H, H3). 
13C NMR (125 MHz, 

CD3OD):  13.2, 38.6, 46.3, 60.0, 64.1, 102.2, 126.1, 143.6, 164.1  

Hemiketal Formation with Cyclobutanone 118 in Trifluoroethanol-d3.
693  

 

The dichlorocyclobutanone 118 (24.9 mg, 0.0932 mmol) was dissolved in trifluoroethanol-d3 (1 g). 

After 8 d in solution the ketone:: ratio was 96.6:2.4:1.0. Ketone: 1H NMR (500 MHz, 

CF3CD2OD):  1.29 (t, J = 7.1 Hz, 3H, CO2CH2CH3), 4.20 (B of ABX3, JBX = 7.1 Hz, JBA = 10.6 Hz, 

2H, one of CO2CH2CH3), 4.22 (A of ABX3, JAX = 7.1 Hz, JAB = 10.6 Hz, 2H, one of CO2CH2CH3), 

4.91 (d, J1,5 = 10.0 Hz, 1H, H1), 5.37 (dd, J5,1 = 10.0 Hz, J5,3 = 1.8 Hz, 1H, H5), 7.52 (d, J3,5 = 1.8 Hz, 

1H, H3). 
13C NMR (125 MHz, CF3CD2OD):  14.4, 61.2, 63.7, 72.7, 95.3, 123.4, 148.2, 165.0, 192.0. 

-Hemiketal: 1H NMR (500 MHz, CF3CD2OD):  4.43 (dd, J5,1 = 10.2 Hz, J5,3 = 1.0 Hz, 1H, H5), 

4.76 (d, J1,5 = 10.2 Hz, 1H, H1).
694 -Hemiketal: 1H NMR (500 MHz, CF3CD2OD):  4.51 (d, J5,1 = 9 

Hz, 1H, H5), 4.76 (d, J1,5 = 9 Hz, 1H, H1).
694  

Hemiketal Formation with Cyclobutanone 118 in Isopropanol-d8.
695  

 

The dichlorocyclobutanone 118 (25.0 mg, 0.0936 mmol) was dissolved in isopropanol-d8 (0.8 mL). 

After 8 d in solution the ketone:: ratio was 63:33:3.8. Ketone: 1H NMR (500 MHz, (CD3)2CDOD): 

 1.29 (t, J = 7.1 Hz, 3H, CO2CH2CH3), 4.17 (B of ABX3, JBX = 7.3 Hz, JBA = 10.8 Hz, 2H, one of 

CO2CH2CH3), 4.22 (A of ABX3, JAX = 7.1 Hz, JAB = 10.8 Hz, 2H, one of CO2CH2CH3), 5.13 (d, J1,5 = 
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10.1 Hz, 1H, H1), 5.54 (dd, J5,1 = 10.1 Hz, J5,3 = 1.8 Hz, 1H, H5), 7.58 (d, J3,5 = 1.8 Hz, 1H, H3). 
13C 

NMR (125 MHz, (CD3)2CDOD):  14.4, 60.0, 61.4, 72.2, 94.6, 122.7, 145.8, 161.7, 188.0. -

Hemiketal: 1H NMR (500 MHz, (CD3)2CDOD):  1.26 (t, J = 7.2 Hz, 3H, CO2CH2CH3), 4.12 (B of 

ABX3, JBX = 7.2 Hz, JBA = 10.9 Hz, 2H, one of CO2CH2CH3), 4.17 (A of ABX3, JAX = 7.2 Hz, JAB = 

10.9 Hz, 2H, one of CO2CH2CH3), 4.36 (d, J5,1 = 10.2 Hz, 1H, H5), 4.66 (d, J1,5 = 10.2 Hz, 1H, H1), 

7.37 (s, 1H, H3). 
13C NMR (125 MHz, (CD3)2CDOD):  14.4, 60.1, 60.8, 63.3, 97, 104, 126.6, 146.1, 

163.6. -Hemiketal: 1H NMR (500 MHz, (CD3)2CDOD):  1.26–1.28 (m, 3H, CO2CH2CH3), 4.15–

4.25 (m, 2H, CO2CH2CH3), 4.36 (d, J5,1 = 9.9 Hz, 1H, H5), 4.57 (d, J1,5 = 9.9 Hz, 1H, H1), 7.27 (s, 1H, 

H3).  

Hemiketal Formation with Cyclobutanone 118 in tert-Butanol-d10.
696  

 

The dichlorocyclobutanone 118 (34.2 mg, 0.128 mmol) was dissolved in liquid t-butanol-d10 (1 g, 

mp: 11 C). After 18 d in solution the ketone:: ratio was ≥94:4.7:≤0.9. Ketone: 1H NMR (300 

MHz, (CD3)3COD):  1.28 (t, J = 7.1 Hz, 3H, CO2CH2CH3), 4.16 (B of ABX3, JBX = 7.1 Hz, JBA = 

10.9 Hz, 2H, one of CO2CH2CH3), 4.22 (A of ABX3, JAX = 7.1 Hz, JAB = 10.9 Hz, 2H, one of 

CO2CH2CH3), 5.09 (d, J1,5 = 10.0 Hz, 1H, H1), 5.53 (d, J5,1 = 10.0 Hz, 1H, H5), 7.56 (s, 1H, H3). -

Hemiketal: 1H NMR (300 MHz, (CD3)3COD):  4.35 (d, J5,1 = 10.0 Hz, 1H, H5), 4.62 (d, J1,5 = 10.0 

Hz, 1H, H1), 7.33 (s, 1H, H3).
694 The -hemiketal could not be observed by NMR.   
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Appendix A 

Structures of Selected -Lactam Antibiotics a 

Penicillins  
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Cephalosporins  

First Generation 
Cephalosporins 

Second Generation 
Cephalosporins 



 

192 

Second Generation 
Continued 

 
 
 
 
 

N
O

CO2H

H
N

O
Cl

H

Loracarbef (carbacephem)

H
NH2

N
O

S

CO2H

H
N

O
Cl

H

Cefaclor

H
NH2

N
O

S

CO2H

H
N

O
Me

H

Cefadroxil

H
NH2

HO

Cefotetan (cephamycin)

N
O

S

CO2H

H
N

SO

OMe

N N
N

Me
N

S

S

CO2H

O

H2N

Cefmetazole (cephamycin)

N
O

S

CO2H

H
N

SO

OMe

N N
N

Me
N

SNC

Third Generation 
Cephalosporins 

 
 
 
 
 
 
 
 
 
 
 N

O

S

CO2H

H
N

SO

N
H

Ar

N

O

N

O

O

Et

Cefoperazone

N
O

S

CO2H

H
N

SO

N
H

ArO

Cefpiramide

NMe

OH
H H H H

N N
N

Me
N

N N
N

Me
N

OH

Ar =

N
O

S

CO2H

H
N

O S

H
N

S

Ceftiofur

H

O

O

H2N

N
OMe

N
O

S

CO2H

H
N

O S

H
N

S

Ceftriaxone

H

H2N

N
OMe

MeN
N
H

N O

O

N
O

S

CO2H

H
N

O OAc

H H
N

S

Cefotaxime

N
OMe

H2N
N

O

S

CO2H

H
N

O N

H H
N

S

Ceftazidime

N
O

H2N

CO2

N
O

O

CO2H

H
N

O S

OMe

Moxalactam (oxacephamycin)
N N

N

Me
N

HO

HO2C

Fourth Generation 
Cephalosporins 

 
 
 
 
 
 
 

 

Fifth Generation 
Cephalosporins 

Cephalosporins in 
Development 

 
 
 
 
 
 



 

193 

Other Cephalosporins 
of Interest 
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Monobactams  
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a This table provides the structures of representative -lactams of each class and should not be considered to 
be a comprehensive list of all -lactam antibiotics. b Expanded-spectrum refers to antibiotic activity and not -
lactamase inhibition.    
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Appendix B 

Classification Schemes for -Lactamases a 

Bush–Jacoby 
group a 

Ambler 
class b  

Distinctive 
substrate(s) 

Inhibited by 
clav or tazo c

Characteristics 
Representative 

enzymes   

1 C Cephalosporins No Greater hydrolysis of 
cephalosporins than PenG; 
hydrolyze cephamycins 

E. coli AmpC, P99, 
ACT-1, CMY-2, FOX-
1, MIR-1 

1e C Cephalosporins No Increased hydrolysis of 
ceftazidime and often other 
oximino--lactams 

GC1, CMY-10, CMY-
19, CMY-37 

2a A Penicillins Yes Greater hydrolysis of PenG than 
cephalosporins 

PC1, BcI 

2b A Penicillins, early 
cephalosporins 

Yes Similar hydrolysis of PenG and 
cephalosporins 

TEM-1, TEM-2, SHV-1

2be A Extended-spectrum 
cephalosporins 

Yes Increased hydrolysis of oxi-
mino--lactams (cefotaxime, 
ceftazidime, ceftizxone, 
cefepime, aztreonam)  

TEM-3, TEM-26,  
SHV-2, CTX-M-15, 
K1,  PER-1, VEB-1 

2br A Penicillins No Resistance to clavulanic acid, 
sulbactam, and tazobactam 

TEM-30,  TEM-31, 
SHV-10 

2ber A Extended-spectrum 
cephalosporins, 
monobactams 

No Increased hydrolysis of 
oximino--lactams combined 
with resistance to clav/sul/tazo 

TEM-50  

2c A Carbenicillin Yes Increased hydrolysis of 
carbenicillin 

PSE-1, CARB-3 

2ce A Carbenicillin, 
cefepime 

Yes Increased hydrolysis of carbeni-
cillin, cefepime, and cefpirome 

RTG-4 

2d D Cloxacillin Variable Increased hydrolysis of 
cloxacillin or oxacillin 

OXA-1, OXA-2,   
OXA-10 

2de D Extended-spectrum 
cephalosporins 

Variable Hydrolyzes cloxacillin or oxa-
cillin and oximino--lactams 

OXA-11, OXA-15, 
OXA-18,d OXA-45 d 

2df D Carbapenems Variable Hydrolyzes cloxacillin or 
oxacillin and carbapenems 

OXA-23, OXA-40, 
OXA-48 

2e A Extended-spectrum 
cephalosporins 

Yes Hydrolyzes cephalosporins, 
Inhibited by clav but not 
aztreonam 

CepA 

2f A Carbapenems Variable Increased hydrolysis of 
carbapenems, oximino--
lactams, cephamycins 

KPC-2, IMI-1, SME-1, 
GES-2 to GES-15,  
NMC-1 

3a B (B1) Carbapenems No Broad-spectrum hydrolysis 
including carbapenems but not 
monobactams 

BcII, IMP-1, VIM-1, 
CcrA, IND-1 

 B (B3)    L1, GOB-1, FEZ-1 

3b B (B2) Carbapenems No Preferential hydrolysis of 
carbapenems 

CphA, Sfh-1 

a Adapted from refs 235–238, 697 and tables at www.lahey.org/studies. b See ref 231. c clav = clavulanic acid, 
tazo = tazobactam, sul = sulbactam, PenG = penicillin G = benzyl penicillin. d Classifications of OXA-18 and 
OXA-45 were deduced by this author based on ref 648.  
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Appendix C 

Known -Lactamase Inhibitors a 

Entry -Lactamase Inhibitor  
Structural Type 

Target 
Classes 

Comments 

1 

 

A, (C), (D) 

- Beecham, 1976: X-ray crystal structure.443  
- Weak antibiotic activity (31–125 g/mL),119 but a potent inhibitor of 

penicillinases and cephalosporinases.398  
- Potent mechanism-based inhibitor of penicillinases such as TEMs and 

SHVs (class A) (IC50 values < 0.1 g/mL); ineffective against MBLs 
(class B); much less active against cephalosporinases (class C); 
variable efficacy against OXAs (class D).403,414     

- Herzberg, 1992: X-ray of complex with TEM-1 (class A) (1BLC).455 
- Sulton et al., 2006: Mechanistic studies of TEM-1 and SHV-

1inactivation.459   
- Blanchard, 2008: X-ray of complex with BlaC (class A) (3CG5).698  
- X-ray structure of clavulanate bound to a E166A mutant of SHV-1 

(2A49)699 and a double mutant (M69V, E166A) of SHV-1 (2H0T).700 
- Review of clavulanate combinations for use against ESBLs.701  

2 

 

A 

- Pfizer, 1978: Weak antibacterial activity but showed similar potency 
against penicillinases to that of clavulanate.446 

- Potent mechanism-based inhibitor of class A enzymes, but much less
effective against class C and class D enzymes. Ineffective against 
MBLs.414  

- Labia,460 Knowles,461–464 and Mobashery465 groups, 1981–1994: 
Mechanisms of inhibition of class A -lactamases.   

- Poor inhibitor of OXA-10 (class D).704  
- X-ray structures of sulbactam bound to the E166A mutant of SHV-1 

(2A3U)699 and the M69V E166A double mutant of SHV-1 (2H10).700 
- Mechanism in SHV-1: Raman studies by Carey.702  
- Akova, 2008: Review of sulbactam-containing -lactamase inhibitor 

combinations.703  

3 A 
- Cartwright, Coulson, 1979: irreversible inhibition of PC1 at pH 7.469  
- The apparent Km is 100 M and the kcat/ki = 100 (similar to 

clavulanate).  

4 

 

A 

- Aronoff, 1984: Synergy with Amoxicillin and Ampicillin and 
comparisons with clavulanate.475  

- Bush, 1993: Kinetic interactions of tazobactam with -lactamase 
from all major structural classes.449 

- Effective mechanism-based inhibitor vs TEM-1. 
- Poor activity against MBLs but some activity against CcrA. 
- IC50 value of 48 M vs AmpC (class C).  
- Poor inhibitor of OXA-10 (class D).704 
- X-ray structure of tazobactam bound to WT SHV-1 (1VM1),705 a 

S130G mutant of SHV-1 (1TDG),706 an E166A mutant of SHV-1 
(1RCJ),478 and a M69V/E166A double mutant of SHV-1 (2H10).700  

5 

 

A 

- Loosemore and Pratt, 1978: Epimerization in solution and preparation 
of 6-bromopenicillanic acid.479  

- Pratt and Loosemore, 1978: Potent irreversible inhibition of BcI and 
enzyme of B. licheniformis by 6-BPA; less potent vs penicillinases 
of S. aureus and E. coli. Poor inhibition of BcII.250  

- Knott-Hunziker et al., 1979: 3H-labelled 6-BPA and labelling of 
Ser44 of BcI.251   

- Loosemore, Cohen, Pratt, 1980: Kinetics of inactivation of BcI.480   
- Wise, Andrews, Patel, 1981: Comparisons with clavulanate and 

sulbactam.481  

6 

 

A 

- Pfizer, 1980: 6-Iodopenicillanic acid via SN2 reactions from 
penicillin-6-triflates.707  

- Daehne, 1980: Synthesis and purification of 6-halopenicillins.708  
- Sauvage (Liège), Pratt, JACS 2009: X-rays in the class A enzyme 

BS3 (2WK0) and R39 DD-transpeptidase (2WKE).483 
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7 

 

A 
- Roveri, 1993: Poor inhibition of BcI (mM IC50 values).709   
- The 6-chloropenicillanic acid is less potent than the bromo- and 

iodo penicillinates.708   

8 A 

- Dmitrienko and Viswanatha groups, 1982–1985.470,471,472,473,474  
- Potent mechanism-based inhibitor of B. cereus 569/H, B. 

licheniformis 749/C, and E. coli R6K. But less effective against S. 
aureus PC1. 

9 (A) 
- Changov et al., 1999 (Bulgarian group): Synergy with Ampicillin 

against Gram-positives; poor synergy against Gram-negatives.710 
- No direct enzyme inhibition data reported.  

10 
N

S

O

H

CO2H

OMe

6-(methoxymethylene)
penicillinate A 

- Knowles, 1984: Designed to generate an ,-unsaturated acylenzyme 
upon ring-opening of -lactam.484  

11 

 

A, C, D 

- Hoffman–La Roche, 1982: Potent irreversible inhibitor of PC1, 
TEMs, SHV-1, OXAs, and chromosomal -lactamases (class C). 
More potent than clavulanate and sulbactam.485a  

- Hoffman–La Roche, 1982: Poor affinity for PBPs of E. coli. Synergy 
with piperacillin and ceftriaxone.485b   

- Hoffman–La Roche, 1983: Mechanism of inactivation of TEM-1.485c 
- Hoffman–La Roche, 1986 and 1992: Prodrug evaluations.485e,485g   
- Hoffman–La Roche, 1987: the geometrical isomer is less active.485f 

12 A - Bycroft, 1988: “Exhibit significant -lactamase inhibitory and 
antibacterial properties” but no biochemical details provided.711 

13 

 

A, C 

- Wyeth patent 2002: Improves antimicrobial activity of piperacillin.712  
- Wyeth 2003: Mechanism-based inhibition similar to that of the 6-

alkylidene derivatives.496 
- IC50 values 0.1–13 M against TEM-1 (class A) and 0.02–66 M vs 

AmpC (class C).  

14 A, B, C - Wyeth group, 2000: Mid to sub-M activities reported against TEM-
1 (class A), CcrA (class B), and AmpC (class C).713   

15 A 

- Buynak, Bonomo, Carey, van den Akker, 2006: X-ray structure of a 
complex of SA2-13 with SHV-1 (class A) (2H5S).466  

- Rational design of an inhibitor that could form a long-lived trans-
enamine intermediate.  

16 A, C 
- Naeja Pharmaceuticals, 2005 (Edmonton, AB):  Low to sub-

micromolar IC50 values against TEM-1 (class A), CTX-1 (class A), 
and a class C enzyme.477   

17 A, C 

- Buynak, 2005: IC50 values of 34 M against TEM-1 (class A) and 28 
M against P99 (class C) for the carboxymethyl compound; better 
than sulbactam.714  

- IC50s for 3-methylidene analogues were >1 mM.  
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18 A, C, D 

- Pfizer, 1986: more potent than clavulanate against -lactamases from 
S. aureus and E. coli. Its reaction with methoxide provided insight 
into its likely mechanism of inhibition.486  

- Pfizer, 1986: SAR with heterocycle portion.487   

19 

N

S

CO2Na

H

O
LN-1-255

O

OOO
N

OH

OH

N

S

CO2Na

H

O

Ar

methylidene
penam sulfones

O

O

Ph

OO

 

A, D 

- Buynak, 1999: Moderate inhibition of TEM-1 (class A), PC1 (class 
A), and P99 (class C). Mid-M to mid-nM IC50s.715  

- Buynak, 2004: More active against Bacillus anthracis class A Bla1 
(low to high nM) than class B Bla 2 (low M).716  

- Buynak, Bonomo, Carey, 2007: One analogue (SA-1-204) has a Ki

value of 42 nM against SHV-1 (class A) and 1 M against OXA-1 
(class D).494 Raman spectroscopy indicates that hey bind as Michaelis 
complexes. 

- Buynak, Bonomo, 2009: X-ray structure of a complex of LN-1-255 
(Ar = 2-pyridyl) in SHV-1 (3D4F).717 LN-I-255 has Ki values of 110 
and 100 nm against SHV-1 and SHV-2; Improves pipericillin potency 
vs SHV-producing E. coli.  

- Buynak, Bonomo, 2010: LN-I-255 has low to sub-micromolar Kis 
against class D enzymes: 0.70 (OXA-1), 8.0 (OXA-10), 1.4 (OXA-
14), 0.20 (OXA-17), 0.65 (OXA-24/40).718  

20 C 

- Buynak, 1993: The vinylidene PAS with R = t-Bu showed an IC50 of 
1 M vs P99, approximately equal in potency to clavulanate.488 

- Buynak, 1994: The cephem sulfone with R = t-Bu gave an IC50 of 
0.05 g/mL vs P99 and other derivatives sub-micromolar as well.489  

21 A, C 

- Buynak, 1995: 6-(Carboxymethylene)PAS showed potent, partially 
irreversible broad spectrum activity against class A and C enzymes.490

- IC50 values against TEM-2, P99, and E-2 (from E. cloacae) were 120 
nM, 45 nM, and 91 nM, respectively.  

- Synergy with piperacillin against several organisms.  

22 

N

S

CO2H

H

O

N

NRN

6-(triazolyl)methylene
penam sulfones

A, C 
- SynPhar Labs (Edmonton), 1996: IC50 of 0.2 and 0.7 M vs TEM 

(class A) and P99 (class C) and synergy with ampicillin against -
lactamase-producing isolates.491  

23 

 

A, C 

- Buynak patent 2000: Antibacterial Activity of -Lactamase-
Inhibiting Cephalosporins.719  

- Buynak, 2000: Potent IC50 values against TEM-1 (class A), PC1 
(class A), P99 (class C), and GC1 (class C).720  

- Buynak, 2000: Synthesis of alkylidene cephalosporins.721  
- Knox, 2001: X-ray structure of an alkylidene cephem sulfone in GC1 

(1GA0).722  
- Buynak, 2002: Potent IC50 values against TEM-1 (class A) and P99 

(class C): sub-micromolar to low nanomolar.723  
- Buynak patent for preparation, 2003.724  
- Buynak, 2001: Coupling reactions with 3-stannylated cephem 

sulfones.725  

24 A, C 

- Buynak, 2000: IC50 values: Low-M against TEM-1 (class A), high 
M vs PC1 (class A), nanomolar against P99 (class C).493  

- Buynak, Bonomo, 2010: ASR-II-292 has low-M Ki values against 
OXAs: 1.40 (OXA-1), 17 (OXA-10), 4.0 (OXA-14), 0.87 (OXA-17), 
2.4 (OXA-24/40).718  

25 A, B, C 

- Buynak patent 2003, BMCL 2004: Low M IC50 values against TEM-
1 (class A), L1 (class B), BcII (class B), and P99 (class C).556,726  

- Buynak, 2004: More active against Bacillus anthracis class B Bla2 
(low M) than class A Bla1 (high M).716  
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26  - Buynak, US Patent 2006.727  

27 N

H
N

H

O

R

O

S

CO2Na

OAc

HO

N

HN

O

S

CO2Na

OAc

OH On

N-hydroxy cephalosporins oximino cephalosporins

B 
(A, C, D) 

- Pratt, Buynak, 2009: Intended for both serine- and metallo--
lactamases, but they are turned over by TEM-1 (class A), P99 (class 
C), and OXA-1 (class D).728 

- Low M IC50 values against class B MBLsVIM-2 and GIM-1 (2–270 
M).  

28  
- Sutton and Yu, patents 2009, 2010: Mechanism-based inhibitors 

designed to release a leaving group (e.g. epoxide ring-opening) and 
cross-link the active site.729  

29 

N

S

CO2Na

H

O

N

NN
Me

BRL 42715

 

A, C, D 

- Beecham, 1989: Penem BRL 42715 lacks antibacterial activity but 
showed potent (0.001–0.01 g/mL) inhibition of TEM-1, SHV-1, K1, 
P99, OXA-1, PSE-4, and others; synergy with amoxicillin.497  

- SmithKline Beecham, 1994: BRL 42715 quickly inactivates class A 
(BcI, TEM-1 (Ki est. 6.3 nM), K1 (Ki est. 7.3 nM)) and the C enzyme 
P99.501  

- Mobashery, 1995: Kinetic studies with BRL 42715. Nanomolar Ki

values against TEM-1 (class A) and Q908R (class C).502  
- SmithKline Beecham and Frère groups, 1995: Kinetic studies with 

BRL 42715 and -lactamases and DD-peptidases. The penem inhibits 
the R61 transpeptidase and does not inhibit BcII.505   

30 

 

A, C 
- SynPhar Laboratories (Edmonton, AB), 1997: Synergy with 

piperacillin against Gram-positive and Gram-negative isolates was 
slightly inferior to that of BRL 42715.730  

31 

6-alkylidene
penems

N

S

CO2Na

H

O

N

N
S

N

S

CO2Na

H

O

N

N

O

BLI-489  

A, B,  
C, D 

- Nukaga, 2003: X-ray structures of a penem bound to SHV-1 (class A) 
(1ONG) and GC1 (class C) (1ONH). IC50 values are 0.4, 9.0, and 6.2 
nm against TEM-1, SHV-1, and GC1, respectively.503  

- Wyeth, 2004: Low to high nM IC50s against TEM-1 (class A), Imi-1 
(class A), CcrA (class B), AmpC (class C), and OXA-1 (class 
D).506,508,509,510,511,512,731,732  

- Frère, 2005: X-ray of BRL-42715 bound to Enterobacter clocae
908R (class C) (1Y54).504  

- Bonomo, 2010: Wyeth’s Penem-1 shows synergy with piperacillin, 
aztreonam, cefotaxime, and cefepime against blaKPC-possessing K. 
pneumoniae isolates.733   

32 

N

O

CO2K

H

O

Et oxapenems

N

O

CO2

H

O

R

H
HO

2

AM-113:
AM-112:

R = Me
R = (CH2)3NH3

N

O

CO2

H

O

R

H
HO

AM-114:
AM-115:

R = Me
R = (CH2)3NH3

A, C, D 

- Cherry, 1978: The 2-ethyl derivative was a potent inhibitor (superior 
to clavulanate) but was inactive against intact bacteria and lacked 
chemical stability.734     

- Wild and Metzger (Bayer), 1993: Synthesis of various 6-substituted 
derivatives.735  

- Pfaendler et al., 1993: Synthesis and antibacterial activity of 
derivatives such as AM-114, which showed low MIC values (<2 
g/mL) vs S. aureus, B. fragilis, E. coli, and others.736   

- Aston University and Micron Research, UK. Amura, UK. 2003: AM-
112–AM-115 show low to high nanomolar activity against TEM-1, 
TEM-10, SHV-5 (class A enzymes), P99, S2, S+A (class C 
enzymes), OXA-1, and OXA-5 (class D enzymes).737   
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33 
O

N

CO2H

H

S

HO
H

imipenem

O
N

CO2H

H

S

HO
H Me

NH

NMe2

O

meropenem

H
N H

NH

O
N

CO2H

H

S

HO
H

thienamycin

NH2

 

A, C, (D) 

- Carbapenems are generally poor substrates for class A and C 
enzymes. Some OXA- enzymes are susceptible, some are 
carbapenemases.  

- Mobashery, 1995: Mechanism of turnover of imipenem by TEM-1.429

- Mobashery, Samama 1998: X-ray structure of imipenem in TEM-1 
(1BT5).430  

- Shoichet, 2002: Imipenem inhibits class C enzymes. X-ray structure 
of a complex with AmpC (class C) (1LL5).432  

- Nukaga, Knox, Bonomo, 2008: Carbapenems are resistant to 
hydrolysis by SHV-1. X-ray of meropenem in SHV-1 (2ZD8) shows 
two conformations of meropenem.431   

- Blanchard, 2009: Carbapenems are poor/very slow substrates for 
BlaC (class A), allowing the determination of the X-ray structure a 
complex with meropenem (3DWZ).738  

- Queenan, 2010: Hydrolysis and inhibition profiles of -lactamases 
with Doripenem, Imipenem, and Meropenem.697  

34 

O
N

CO2H

H

S

HO
H Me

J-110,441S

O
N

CO2H

H

S

HO
H Me

NH

N
H

J-110,225

B 

- Banyu Tsukuba Research Institute (Japan), 1999: A series of 
carbapenems were screened for inhibition of IMP-1 (class B MBL).557

- J-110,441 had an IC50 of <0.1 M against IMP-1 and J-110,225 
showed an IC50 of 0.7 M; Ki of 0.18 M relative to imipenem. 

- Banyu, 2000: J-110,225 had better antibacterial activity than 
imipenem, and was hydrolyzed slower by CcrA, L1, and BcII.558 

- J-100, 225 was not hydrolyzed by TEM-1 or a class C enzyme. 

35 

 

A, C 

- Glaxo, 1994: Antibacterial activity of GV104326.144 
- Wise, 1996: In vitro activity of GV104326.145  
- Tamura et al., 1998: In vivo antibacterial activities of sanfetrinem.146  
- Matagne, 2001: Kinetic study of the interaction of LK-156 and LK-

157 with class C -lactamases”.433  
- Lek Pharmaceuticals (Slovenia), 2002: Low M IC50s against TEM-

1(class A) and 908R (class C).434,739  
- Lek, 2007: Mid-nanomolar IC50s against TEM-1, SHV-1 (class A), 

and AmpC (class C).435  
- Lek, 2009: X-ray structure of LK-157 (R = Me, R1 = Me) and another 

trinem (R = n-Bu) in AmpC (2Q9M, 2Q9N).436  
- Lek patents 2009 (compounds with the hydroxyethyl sidechain).740  

36 

 

 - Wyeth: US Patent, 2010.741  

37 

 

A, D 

- Mobashery, 1995: 6-hydroxymethyl penicillin (1) inhibits TEM-1 
(class A) rapidly with a partition ratio (kcat/kinact) of 28; Ki = 48 M; 
kcat = 0.029 s–1; Km = 24 M.437  

- The low rate of hydrolysis (kcat/Km = 1200 M–1 s–1) makes it a very 
poor substrate for TEM-1; No conformational change associated with 
inhibition.  

- Mobashery, 1996: X-ray structure of 1 in TEM-1 (1TEM).438 
- Mobashery, 1998: Comparison of 1, 2, and 3 against TEM-1 and 

NMC-A (class A).439  
- Hydroxypropyl moiety is too big to fit in TEM-1 but this derivative 

(3) inactivates NMC-A with a Ki value of 390 M.  
- X-ray of the 6-hydroxypropyl derivative 3 in NMC-A (class A) 

(1BUL).   
- The 6-hydroxymethyl cmpd (1) has a Km of 70 M vs NMC-A.  
- Mobashery, 2000: 1, 1, 2, and 2 tested against OXA-10.286  
- Compounds 1 and 2 are substrates for OXA-10 but 1 and 2 are 

competitive inhibitors with Ki values of 1900 and 1200 M. 
- Mobashery, 2002:  X-ray structure of 6-hydroxypropyl (3) in 

OXA-10.440 The structure was first published in PNAS (1K54).293 
- 3 and 3 had Ki values of 300 and 240 M against OXA-10.  
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38 

 

A, C 

- Mobashery, 2001: Postulated that a bis(hydroxymethyl) derivative 
might be able to impair the approach of the hydrolytic water molecule 
(which approaches from different faces) in class A and class C -
lactamases.441  

- Ki values were 480 M against TEM-1 and 700 M against P99. 

39 

 

A, C 

- Wyeth 1999: Synthesis of several hydroxyethyl- and hydroxymethyl 
penicillins and PASs and evaluation against TEM-1 and AmpC.742  

- Most showed IC50 values in the mid-M range but the 6-
hydroxymethyl PAS was best with an IC50 of 8 nM against TEM-1 
and 1.2 M vs AmpC.  

- Also showed synergy with piperacillin vs -lactamase-producing E. 
coli and S. marcescens. 

- Wyeth 1999: 2-substituted derivatives of the hydroxymethyl 
compounds above.743  

40 

N

HH

O

HO

S

CO2H

CN

N

HH

O

HO

S

CO2H

CN

N

HH

O

HO

S

CO2H O

N

hydroxyethyl
cephalosporins A, C 

- Fujisawa Pharma (Japan), 1989: Poor antibacterial activity alone but 
reasonable inhibitors of penicillinases and cephalosporinases.744  

41 C 

- Squibb, 1982: Discovery165 and interaction with -lactamases.514  
- Hydrolyzed slowly by TEMs (class A), but binds poorly and is active 

against class A-producing organisms. 
- Competitive, progressive inhibitor of C. freundii cephalosporinase 

(class C).167 
- Bind poorly to MBLs such as IMP-1 (class B). Not turned over.  

42 A 

- Miller, Mobashery, 1993,745 1995,746 1999,747 2000.748  
- Fast reaction with TEM-1 but activity is recovered.  
- X-rays in TEM-1 (not deposited in PDB).   
- Ki values against Q908R (class C) ranged from 5 to 680 M. 

43 

N
O SO3H

HH
N

O

N
O

S

N

OH

O

OH

H
Monobactam

Syn2190

(A), C 
- Naeja Pharmaceuticals, 1999: IC50 values of 2–10 nM against AmpC 

(class C); modest inhibition of TEMs (class A).749  

44 C 

- Page, Basilea Pharmaceutica 2010 : Modest inhibition of class C -
lactamases, poor inhibition of MBLs and class A enzymes, but good 
inhibition (sub-micromolar) of PBPs.750 

- Page, Bonomo, 2011: Activity against A. baumannii.751    

45 

N
O SO3H

HH
N

O

N
H

bridged
monobactams

Ro48-1256
Cmpd 2

N

N

O SO3

HH

N

O

R R1

diazabicyclo[3.2.0]heptanone
sulfonic acids

HN

n

n = 0:
n = 1:

C 

- Hoffman–La Roche patent, 1992.752  
- Hoffman–La Roche, J. Med. Chem. 1998.516 
- Miller, 1997: Synthetic route.753  
- Livermore, 1997: Synergy of Ro48-1256 with -lactams against P. 

aeruginosa.517  
- Merck patent 2009:  IC50 of 1.2 M vs P99 (class C).  
- Merck, 2010: The (S)-azepine analogue 2 was better than Ro48-1256 

and was selected for preclinical development.518  
- IC50 for cmpd 2 against P. aeruginosa AmpC was 1.0 M.   
- X-ray structures of AmpC of P. aeruginosa (class C) with 2 (S)-

(2WZX) and (R)-azepine-bearing inhibitors (2WZZ).  
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46 C 
- Merck patents, 2009: One compound showed an IC50 value of 465 

nM against AmpC (class C).754  

47 

 

A, C, D 

- Aventis Pharma patent, 2003: Synthesis of azabicycles.  
- Aventis Pharma, 2004: Nanomolar IC50s vs TEM-1 (8 nM) and P99 

(80 nM); Improved the antibacterial activity of ceftazidime against 
SHV- and AmpC producers.540   

- Livermore, Woodford, Novexel (France), 2008: NXL 104 improved 
the potency of cephalosporins against Enterobacteriaceae that 
produced CTX-M ESBLs, AmpC (class C), KPC (class A), SME 
(class A), and OXA-48 (class D).541  

- Novexel, 2009: Activity against KPC-2 and KPC-2-producing 
Enterobacteriaceae; IC50s of 170 nM and 35 nM after 5- and 30 min 
pre-incubations, respectively, against KPC-2.542  

- Bonomo, 2009: NXL104 effectively lowers MICs of -lactams 
against KPC-2-producing clinical isolates of K. pneumoniae.543  

- NXL104: Currently in clinical development; Displays broad-
spectrum inhibition against class A (TEM-, SHV-, and CTX-M-
types), and class C (CTX-M ESBLs), and some class D (OXA...). 

- Patents in 2009.755  
- But not effective with cephalosporins against MBL producers (IMP 

or VIM MBLs).  

48 

 

 - Chen, Liang. Chinese Patent 2006.756  

49 

N

CO2Me

H

O H

Ph

O

N

CO2Me

H

O

Ts

H

6-azabicyclo[3.2.0]hept-2-enes

C 

- Cooper, 1994: Some analogues showed inhibition (>50%) of P99 at a 
fixed concentration of 200 M but poor inhibition of TEM-1.757  

- Carboxylic acids were inactive as antibiotics and -lactamase 
inhibitors.  

50 

 

– 
- Buynak. JACS 1998: No activity against TEM-1 (class A) or P99 

(class C) -lactamases.758  

51 

B
HO

OH

R arylboronic
acids

B
R

arylalkylboronic
acids

HO

OH

n

S
R B

OH

OH benzothiophene
boronic acids

S
B

OH

OHN
OHC

CHO
 

A, C 

- Waley, 1978: Phenylboronic acid, m-aminobenzeneboronic acid, and 
boric acid as reversible inhibitors of BcI (class A).524  

- Waley, 1983: Inhibition of class C -lactamases by boronic acids.525  
- Jones group (UofT), 1994: Arylalkylboronic and arylboronic acids

with Ki values ranging between 13 and 3700 M against R-TEM-1.759

- Shoichet group, 1998: X-ray of m-aminophenylboronic acid (MAPB) 
bound to AmpC.760 Ki values for MAPB and MNPB (nitro) were 7.3 
and 1.2 M, respectively, vs AmpC. Inhibition is not time-dependent.

- Shoichet group, 1998: Benzo[b]thiophene-2-boronic acid was the 
most potent of several arylboronic acids tested with an IC50 of 27 nM 
against AmpC (class C).761  

- Shoichet, 1999: X-ray structure of benzo[b]thiophene-2-boronic acid 
bound to AmpC (1C3B).762    

- Shoichet group, 2002: Structure-based approach for binding site 
identification in AmpC (class C).763  

- X-ray structures of AmpC with 3-nitrophenylboronic acid (1KDS), 4-
carboxyphenylboronic acid (1KDW, 3BM6), 4-(carboxyvin2-yl)-
phenylboronic acid (1KE0), and 4,4′-biphenyldiboronic acid (1KE3).

- Shoichet, 2007: Complex of the di-N-formylmethyl derivative in 
AmpC (2I72).764 

- X-ray structures of benzo[b]thiophene-2-boronic acid with WT 
AmpC (1C3B) and the K67R mutant (3FKV).765    
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52 C 

- Shoichet group 2001: X-ray structure of AmpC with a boronic acid 
lacking the carboxylic acid at the 4-position (1GA9). 

- Shoichet group and Italian group, 2010: IC50 values of high-M to 
low-M.766  

- X-ray structure of the compound shown in AmpC (3BM6); IC50 of 26 
nM.  

53 A 

- Jones group (UofT), 1995.767  
- The compounds shown are very potent against TEM-1 with Ki values 

of 5.9 and 13 nM. 
- X-ray structures of these boronic acids in TEM-1 by the Strynadka 

group (1ERM, 1ERO, 1ERQ).768,769  

54 

 

A, C 

- Shoichet group, 2001: Several acylglycineboronic acid analogues of 
-lactams with low to sub-micromolar Ki values against TEM-1 and 
AmpC.770  

- The analogue of ceftazidime has Ki values of 0.39 and 0.020 M 
against TEM-1 and AmpC, respectively. 

- X-ray structures of AmpC with the cloxacillin analogue (1FSY) and 
the cephalothin analogue (1FSW). 

- Synergy observed with amoxicillin and cefotaxime against resistant 
strains of E. cloacae and S. aereus.   

- Bonomo, van den Akker, 2011: X-ray structures of boronic acids with 
the sidechains of cefoperazone and ceftazidime bound to SHV-1 
(these inhibitors bind with only micromolar affinity).771   

55 

 

C 

- Shoichet, Biochemistry 2003: X-ray of carboxy (1PI5) and non-
carboxy (1PI4) cmpds in N289A mutant of AmpC.772  

- Shoichet, JACS 2003: X-ray structures of same compounds in WT 
AmpC (class C) (1MXO, 1MY8).773  

- Shoichet, JACS 2006: Ultrahigh resolution X-ray structure of the non-
carboxy cmpd in the N289A mutant of AmpC (2FFY – a higher 
resolution structure of 1PI4).281  

- Shoichet patent 2007.774  
- Shiochet 2008: X-ray of a carboxyvinyl derivative in AmpC (2RCX); 

Ki values for non-carboxy, carboxy, and carboxyvinyl compounds 
against AmpC: 35 nM, 1 nM, and 1 nM.775   

56 A, C 
- Burns, Jackson, patents 2009 (Protez Pharma).776  
- Burns, patent 2010 (Novartis).777  

57 

 

A, C, D 
- Merck Rahway, 2010: DSABA gave IC50 values of 1.1, 0.57, 1.2, 

0.62, and 5.6 M against TEM-1, SHV-5 (class A enzymes), AmpC, 
P99 (class C), and OXA-40 (class D).778  

58 C 

- Shoichet, 2010: Sulfonamides compared with carboxamides vs 
AmpC (class C). No simple correlations observed due to differences 
in geometry and polarity.779  

- One compound showed a Ki value of 25 nM.   

59 A, C 
- Anacor, Naeja Pharmaceutials, 2011. Low micromolar to low 

nanomolar Ki values against CTX-M-9a, TEM-1, P99, and CMY-2.780

60 A, C, D 
- Pratt, 2008: Vanadates are better inhibitors than the boronates.781 
- Low M IC50 values against TEM-2 (class A), P99 (class C), and 

OXA-1 (class D). 
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61 A, C, D 

- Merck, Methylgene Patents 2006, 2007, and 2008.782  
- IC50 of 0.6 M vs TEM-1 (class A).  
- Also inhibitors of AmpC enzymes from P. aeruginosa and A. 

baumannii (class C), and OXA-40 (class D).  

62 A, C 

- Pratt, Science 1989: Rapid inactivation of P99 and very slow 
reactivation.526  

- Pratt, 1992: Mechanism of P99 inhibition.783   
- Pratt, 1994: Thermodynamic and kinetic data with PC1 confirms that 

phosphonates act as transition state analogues.784  
- Pratt and Herzberg, 1993: X-ray in PC1, the class A -lactamase from 

S. aureus (1BLH).785 
- Pratt, Knox, 1994: X-ray structure in P99 (1BLS).786  
- Pratt, Samama, 1998: X-ray in TEM-1 (1AXB).787 

63 

P

H
N

O O
O

O NO2

N
OMe

N

S
H2N

phosphonate
transition state analogues

C 

- Nukaga, Pratt, Knox, 2004: X-rays of the transition state analogue 
shown in class C -lactamase from Citrobacter freundii (1RGY) and 
in class C ESBL GC1 (1RGZ).666  

- Silvaggi, Pratt, Kelly, 2003: Similar phosphonates have been used as 
transition state analogues with R61 transpeptidase (1MPL).788  

64 C 

- SmithKline Beecham 1994: Analogues of dipeptides mostly showed 
IC50s greater than 100 M against TEM-1, P99, PC1, SHV-5, OXA-
1, and PSE-4, but acyclic compounds showed IC50s in the 10ʹs of M 
against P99 (only).789  

65 (A, C), D 

- Pratt, JOC 2006: Ketophosph(on)ates were modest inhibitors of P99 
(class C), OXA-1, and OXA-10 with Ki values of 70–1590 M.790  

- Pratt, 2008: Intramolecular cooperativity between hydrophobic sites 
of OXA-1.791   

66 A, C 
- Pratt, JACS 1998: Acyl phosph(on)ates react -lactamases P99 and 

TEM-1 to form phosphoryl enzymes which can hydrolyze or react 
further to form more inert complexes.792 

67 

 

A, C 

- Pratt, 1998: Salicyloyl phosphate inhibits TEM-1 (class A), P99 
(class C), and R61 transpeptidase.793  

- Pratt, 1998792 and 2001: Additional studies revealed subtle differences 
between cyclic and acylic acyl phosphates.794  

- Silvaggi, Pratt, Kelly, 2004: X-ray structures in R61 transpeptidase 
(1SDE, 1SCW).795  

68 
 

D 

- Pratt, 2005: Potent inhibitors of OXA-1: Ki values from 200 nM 
down to <1 nM.796  

- Pratt, 2005: These compounds are less potent vs OXA-10.797   
- Pratt, 2009: Inhibition of TEM and P99 (low to sub-micromolar Kis), 

2009.798  

69 

 
– 

- Pratt, 2006: Tested against TEM-1, PC1 (class A), P99 (class C), and 
DD-peptidases R61, R39, and PBP3, but no inhibition of these 
enzymes was observed. Some derivatives were substrates, but most 
were not.799  

70 C 
- Pratt and Shoichet, 2007: X-ray of cross-linked AmpC (2P9V).800 
- Pratt, 2008: Irreversible inhibitors of P99 (class C).801  
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71 A, C 
- Pratt, 2001: Concludes that specific electrophilic ketones are, at best, 

moderate inhibitors of -lactamases.539   

72 
O CF3

H
N

O

PhO
R trifluoromethyl

ketones

HO CF3

H
N

O

PhO
R trifluoroethyl

alcohols

 

B 

- Adlington, Baldwin, Schofield groups, 1996: Some TFMKs showed 
low M Ki values against the MBL from X. maltophilia (e.g. 1.5 and 
3.0 M).538 

- TFMKs and alcohols showed low M Ki values against the MBL 
from A. hydrophilia (e.g. 6, 11, 44 M);  All TFMKs and alcohols 
had high M Ki values against the MBLs from B. cereus and P. 
aeruginosa.  

- Synthesis, 1997802 and 1998.803  

73 C 
- Merck Rahway group, 2010 (as a small part of a paper about boronic 

acids).778   
- No IC50s given; only % inhibition of AmpC (class C) at 2 M.  

74 B 

- Concha et al., 2000: X-ray structures of IMP-1 alone (1DDK) and 
with the mercaptocarboxylate inhibitor (1DD6).384  

- This mercaptocarboxylate inhibits IMP-1, B. fragilis, and L1 enzymes 
with IC50 values between 100 and 500 nM.  

75 B 
- Yamaguchi et al., 2007: X-ray of the thiol in VIM-2 (2YZ3).804  
- This mercaptocarboxylate has Ki values of 220 nM and 1660 nM 

against VIM-2 and IMP-1, respectively.  

76 

 

B 

- García-Sáez, 2003: X-ray of D-captopril in the dizinc MBL BlaB 
from C. meningosepticum (1M2X).668 

- Ki approx. 70–100 M against BlaB.   
- Schofield, 2008: X-ray of D-captopril in CphA (2QDS).805 Very 

surprisingly, the thiol does not coordinate with the zinc atom.   

77 

 

B 
- Page, 2001.806  
- Ki values against BcII range between 3.0 M and 515 M.  
- Inhibition is reversible and competitive.  

78 B 

- Crowder and Geysen, 2006.807  
- Homo-cysteinyl peptides more potent than cysteinyl peptides against 

L1.  
- Several compounds with low nanomolar Ki values against L1 

(competitive inhibition), including one with a Ki of 2.1 nM.  

79 

 

B 

- Payne et al., SmithKline Beecham, 1997.808  
- IC50 values 2–186 M  against L1, 0.5–30 against CphA, and 38–650 

against BcII. IC50s were >1000 M against CfiA (B. fragilis). 
- Irreversible inhibition of BcII via mechanism-based delivery of 

mercaptoacetic acid and formation of a disulfide bond with the active 
site Cys; One compound showed uncompetitive inhibition of CphA 
but irreversible inhibition of L1.  

- Payne, 1997: With mercaptophenylacetic acid thioesters, potent IC50

values against L1 (as low as <1.95 M); competitive inhibitors of 
BcII but not as potent (Ki of 185 M for one compound).809  

80 B 

- Merck Rahway, 1999.810,811  
- Several compounds were very potent against IMP-1 (IC50s as low as 

0.4 nM) but few had activity against CcrA (lowest IC50 was 180 M). 
- The parent thiols themselves were potent (20–300 nM) but less potent 

than thioesters.  
- Reversible inhibition of IMP-1.    
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81 

 

B 

- Schofield, Galleni, Frère, 2001: The (R) isomer has a Ki value of 0.09 
M vs BcII and the (S)- isomer has a Ki value of 1.28 M.812  

- Other simple thiols were also screened against BcII with Ki values 
between 0.21 M and 346 M.  

- Broad-spectrum MBL inhibition was demonstrated with racemic 
thiomandelic acid with the following Ki values: 0.34 (BcII), 0.80 
(CfiA), 0.081 (L1), 0.029 (IMP-1), 0.059 (IMP-2), 0.23 (VIM-1), 
0.56 (BlaB), 0.27 (FEZ-1), 144 (CphA).   

- Schofield, 2003.813  

82 

SH

SH

SH

SH

HO

HO

CO2H

NH2

HS

NH2

HS
HS

R

SH

R

SH
R

HO2C

NH2

H
N

O
O

H
N

CO2

SH

various charged and
neutral thiols

B 

- Dmitrienko, 2003.552  
- Classical, slow-binding inhibitors of IMP-1 (pH dependent) with low 
M IC50 values. Differences observed between negatively charged 
thiols and neutral ones.  

- Two compounds were similarly potent against BcII (IC50s of 30 and 
25 M), but were poorer inhibitors of CcrA (IC50s of 950 and 170 
M). 

83 B 

- Goto, 1997: Screened simple thiols against IMP-1 which showed low 
M IC50 values.814  

- Goto, 2004: Arylalkyl thiols and dansyl thiols screened against IMP-1 
and VIM-2 (low M IC50s against each enzyme).815  

84 
N
H

N
H

S
NMe2

O OO

HS

n

n = 2-6

dansyl-derived thiols

B 
- Kurosaki, 2006: X-ray structure of a dansyl thiol in IMP-1 

(2DOO).816  

85 

 

B 
- Kurosaki, 2005: X-ray in IMP-1 (1VGN).817  
- Irreversible inhibitor of IMP-1 via thiol coordination with zinc atoms 

and subsequent aminolysis of the aryl ester by Lys224.  

86 B 

- Schofield 2008: Thiols which have low to sub-micromolar Ki values 
against MBLs of all three classes: B1 (IMP-1, BcII), B2 (CphA), B3 
(L1, FEZ-1).805  

- The valine derivative drawn had Ki values of 0.063, 0.32, 3.6, and 
0.082 M against IMP-1, BcII, CphA, and L1, respectively.  

- X-ray crystal structure of alanine derivative with L1 (2QDT). 

87 N CO2H

CO2H

pyridine-2,4-
dicarboxylate

N CO2H

2-picolinic acid

 

B 

- Galleni, Schofield, 2007: Screened pyridine carboxylates for 
inhibition of MBLs.818  

- Little inhibition of MBLs except for  2-picolinic acid  and the 2,4-
isomer with CphA (Ki values of 5.7 and 4.5 M, respectively, relative 
to imipenem hydrolysis). (pH dependent inhibition).  

- X-ray structure of pyridine-2,4-dicarboxylate in CphA (2GKL). The 
pyridine nitrogen and 2-carboxylate coordinate to the zinc atom.   

88 B 

- Hodder and Fokin at Scripps, 2009819 and 2010.820  
- Libraries of triazoles from Click chemistry.  
- Inhibit VIM-2 only; no inhibition of IMP-1, TEM-1, or AmpC. 
- Enhance the antimicrobial activity of imipenem against VIM-2-

producing E. coli at low concentrations of inhibitor (10, 20 M).  
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89 

 

B 
- Dmitrienko, 2002.554  
- Low micromolar IC50 values against IMP-1.   

90 

HN

O

NH

R

R

N-acyl
hydrazones

 

B, D 
- Dmitrienko group, patent 2010.555  
- Low micromolar IC50 values against IMP-1, VIM-2, OXA-10, and 

OXA-45.   

91 

 

B 

- Toney et al., Merck Rahway, 2001.665  
- Screened the Merck chemical collection and found some of these 

compounds to have IC50s of 2.7, 3.7, 9, and 13 nM against IMP-1.  
- X-ray of two of these compounds in IMP-1 (1JJE, 1JJT).  
- Later, in 2005, one of these compounds was reported to enhance the 

activity of meropenem against a carbapenem-resistant MBL-
producing strain of E. coli.821 

92 B 

- Olsen et al., 2006: “New leads” for MBL inhibitors from structure-
based pharmacophore design.822  

- IC50s against BcII from 7 to 100 M (for the compounds shown) and 
15–150 M against L1.  

93 

R1 R2

CO2NaNaO2C

maleic
acids

NaO2C

Et

CO2Na

Et
ME1071

 

B 

- Japanese group: Patents 2007.823  
- Patent 2008.824 Preparation. Compound with R1 = i-Pr, R2 = c-Hex 

had IC50s of 0.19 and 0.16 M against IMP-1 and VIM-2. 
- Patent 2009.825 Combination with ceftriaxone is effective against 

MBL-producing P. aeruginosa.   
- Ishii et al., 2010: Potentiation of carbapenems with ME0171.826  

94 

phthalic
acids

CO2H

CO2Hn-Bu

Me

IC50 = 16 M

CO2H

CO2H

Ph

IC50 = 0.97 M

B 

- Japanese group. Patent 2008.827 Bioorg Med Chem Lett., 2009.828  
- High M IC50s down to sub-M against IMP-1 (class B). 
- Increase the potency of biapenem against IMP-1-producing 

biapenem-resistant strains of P. aeruginosa. 

95 

NHN
N

N biphenyl
tetrazoles

NN

O

n-Bu

OH

L-159,061
 

B 

- Toney et al., Merck, 1988: Inhibition of the di-zinc MBL from 
Bacteriodes fragilis.829  

- X-ray of L-159,061 in the B. fragilis MBL (1A8T). 
- X-ray of MES (buffer molecule) bound to this same MBL (1A7T). 
- Toney et al., 1999: A series of biphenyl tetrazoles were not as potent 

against the B. fragilis MBL as L-159,061 (low to high M IC50s), 
only a few had IC50s <200 M against IMP-1, and most had high 
(100–800 M) IC50s against DHP-1.830  

96 B 

- Schofield group, 2007.831  
- Selectively inhibit FEZ-1 with surprisingly little inhibition of IMP-1, 

BcII, CphA, and L1.  
- Very modest inhibitors of FEZ-1 as well, except for the 

benzophenone derivative shown (Ki of 6.1 M). Several others with 
IC50 values around 100 M. 

97 B 

- Payne, GSK 2002: Screening of natural products for activity against 
BcII led to a small set of tricyclic natural products which had activity 
against IMP-1 and CfiA as well (low micromolar Ki values). But little 
inhibition of the MBL L1 and of serine -lactamases.832  

- Improve activity of meropenem against MBL-producing strains of B. 
fragilis and S. maltophilia, but not P. aeruginosa.  

- X-ray of SB236050 in the MBL from B. fragilis CfiA (1HLK, 
1KR3).  
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98 

 

C 

- Page group, 1996: The carboxy derivative is not an inhibitor of any of 
the -lactamases tested.833  

- Page, 2003: Rates of inactivation of P99 (class C) given for the N-
acyl sultam, but no IC50 values.527  

99 

CO2HHO2C
HO2C NH2·HCl

2-aminopropane-1,2,3-tricarboxylic acid

CO2HHO2C
HO2C OH

CO2HHO2C

CO2H

OHcitrate isocitrate  

A, C 

- Marchand-Brynaert, 2008: The amino derivative inhibit BS3 (class A 
enzyme from Bacillus licheniformis) and TEM-1 (class A) with IC50s 
of 250 M and 150 M, respectively – modest, but more potent than 
citrate and isocitrate.834 

- X-ray of aminocitrate in BS3 (3B3X); X-ray of isocitrate in BS3 
(1W7F, to be published); X-ray of citrate in the class C enzyme 
CMY-2 (1ZC2, to be published).  

- Galleni, 2010: X-ray of citrate in VIM-4 (2WHG).343   

100 

O

NHAc
O

OH

O
HO

S
O

OO

NH2

N
H

O

HO

S
O

O O

Bulgecin A

B 

- Simm, Walsh, Bennett, 2005.835  
- Competitive inhibition of the di-zinc form of BcII (Ki = 230 M), but 

not the mono-zinc form (Ki >900 M). 
- No inhibition of the ImiS, the mono-zinc MBL from Aeromonas 

veronii (Ki >900 M); Partial non-competitive inhibition of L1 from 
S. maltophilia (Ki = 2.5 M).   

- Models suggest that the sulfate could coordinate to the zincs.  

101 C 

- Shoichet, 2002: Non--lactam inhibitors of AmpC and X-ray 
structure with 1 (1L2S).836   

- Shoichet 2005: Several analogues with low micromolar Ki values and 
X-ray structures of AmpC with 10 (1XGJ) and 11 (1XGI).837  

- Shoichet, 2006: Deconstructing fragment-based inhibitor discovery: 
X-ray structures of AmpC with fragments 2-carboxythiophene 
(2HDQ), 4-amino-3-hydroxybenzoic acid (2HDR), 4-
methanesulfonylaminobenzoic acid (2HDS), 2-acetamidothiophene-
3-carboxylic acid (2HDU).838   

102 A,(C) 

- Shoichet, 2009: Fragment-based inhibitor discovery: These 2 
compounds showed Ki values of 21 and 12 M against CTX-M (class 
A) and 2.8 mM vs AmpC (class C).839  

- Strongest non-covalent inhibitors of class A enzymes.  

103 

N

O

O
Me

CO2H

1

N

H
N

O
Et

Me

N N

N
H
N

3

N

O

CO2H

5: R = 4-COMe
8: R = 2-OH

N

H
N

CO2H

12

22
S CO2H

NHAcCO2H

N NH

H
N

S
20

21
S

CO2H

NHAc

R

C 

- Shoichet, 2009: Docking for fragment inhibitors of AmpC.277  
- Docked >137,000 fragments, 48 of the highest ranked structures were 

purchased and tested. 23 had Ki values from 0.7 to 9.2 mM. 
- X-ray structures were determined for 8 complexes with AmpC: 1

(3GSG), 3 (3GR2), 5 (3GQZ), 8 (3GVB), 12 (3GRJ), 20 (3GTC), 21
(3GV9); 22 was done previously (2HDU).   

104 A? 

- Indian group, 2010:  Extracts from the plant Holoptelea integrifolia
inhibited a 30 kD enzyme (probably a -lactamase) isolated from 
amoxicillin-resistant S. aureus.840  

- No IC50 or Ki values given.   
- Naphthoquinone was identified by GCMS and IR only.  

105 

 

A -  Jaramillo et al., 2009: “Kmʹ 407 M” for the best inhibitor.841   
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106 

 

C 

- Shoichet and Italian groups, 2008: Analysis of hits from HTS and 
docking screens.842  

- Of the 1274 hits from a library of 70,563 compounds, 95% were 
found to be detergent-sensitive. Of the 70 remaining compounds, 25 
were -lactams (covalent-acting), 12 were promiscuous covalent 
inhibitors, and the last 33 were aggregators or irreproducible. Thus, 
the library produced 0 compounds that were specific reversible 
inhibitors (desired).     

- Analogues of a phthalimide hit improved Kis to 8 M.  
- X-ray structures of AmpC with an oxadiazole covalently bound 

(2PU4) and with phthalimides non-covalently bound (2PU2, 2R9W, 
2R9X).   

107 

 

A 

- Miyamura, Ochiai, 1974: A macromolecular -lactamase inhibitor 
(M-540) from a species of Streptomyces (see ref 396 and refs 
therein).    

- Strynadka, Nature 1994: Structure and kinetic characterization.843  
- Gretes, Strynadka, 2009: X-ray crystal structures of BLIP alone 

(3GMU), BLIP-I alone (3GMV), BLIP-I with TEM-1 (3GMW), BLP 
alone (3GMX), and a selenomethionine BLP (3GMY).844  

- Both BLIP (-lactamase inhibitory protein) and BLP (BLIP-like-
protein) have nanomolar affinities for TEM-1.  

- Wang et al., 2009.845  
- Bonomo, Handel groups, 2009: KPC-2 with BLIP (3E2L, 3E2K).846  

108 single-stranded DNA B 
- Kim et al., 2009: Nanomolar Ki values against B. cereus 5/B/6 

MBL.847  
- Rapid, reversible, non-competitive inhibition.   

109 B 
- Vella et al., 2011: Fragment-based screening for MBL inhibitors.848  
- Ki values as low as 400 M against IMP-1.  

110 

 

A,C 

- Hoffman La Roche, 1983: Antibacterial and -lactamase inhibiting 
properties.849  

- Roche, 1988: Interactions with PBPs.850 
- Roche, 1988: Antibacterial activity.851  

 CYCLOBUTANONES   

C1  

- Gordon, Pluščec, and Ondetti. Tetrahedron Lett. 1981.528  
- Compounds 2, 4, 11, and 13 were also tested for inhibition of R61 

transpeptidase and R-TEM -lactamase and “did not exhibit 
significant reversible or irreversible enzyme inhibition.”  

- No comments were made concerning the activity of 14.  

C2 

 

 

- Meth-Cohn, Reason, and Roberts. Chem. Commun. 1982.529  
- The authors describe only the synthesis of these compounds in the 

paper and write that “It is hoped that -lactamase inhibitory activity 
might be optimized in these derivatives as shown in scheme 3.”  

C3 

 

A 

- Lowe and Swain. Chem. Commun. 1983 and Perkin Trans. 1
1985.530,531  

- “The mixture of epimeric ketones 1 and 12 showed inhibition of 
Streptomyces R61 D,D-carboxypeptidase only at 260 g/mL and no 
significant activity against a range of bacteria at 128 g/mL. The 
chloroketone 6 and the epimeric mixture of ketones 1 and 12, 
however, showed time-dependent inhibition of E. coli R-TEM and B. 
cereus I -lactamases which may be associated with the slow 
formation of a tetrahedral adduct between the inhibitor and the 
enzyme.”  

- Lowe and Swain. In Recent Advances in the Chemistry of -Lactams, 
1985.  

- No antibacterial activity was observed at a maximum concentration of 



 

210 

Entry -Lactamase Inhibitor  
Structural Type 

Target 
Classes 

Comments 

128 mg/L.  
- The mixture of 1 and 27 did show weak inhibition of Streptomyces

R61 D,D -carboxypeptidase with 50% inhibition at 260 mg/L (MW = 
289.28; IC50 = 900 M).  

- The mixture of 1 and 27 and 2 each showed slow, time-dependent 
inhibition of E. coli RTEM-2 -lactamase and -lactamase type I 
from B. cereus strain 568/H.   

C4 

O H

H

CO2H

H
HO

S
NHAc

O H

H

CO2CHPh2

Z
BnNH2

H

CO2R

Z
BnHN

O

22

10: Z = SOPh
11: Z = SO2Ph  

 

- Cocuzza and Boswell (Du Pont). Tetrahedron Lett. 1985.532  
- Synthesis of a cyclobutanone analogue of N-acetylthienamycin.  
- Derivatives with electron-withdrawing groups at C3 were able to 

acylate benzylamine.  
- “While no cyclobutanone carboxylic acids (such as 22) of the present 

study demonstrated any antibacterial activity, we were pleased that 
sulfoxide and sulfone benzhydryl esters (such as 10, 11, 19, and 20) 
were active against Gram-positive bacteria (with typical MICs of 25–
50 g/mL vs S. aureus). Moreover, several sulfide, sulfone, and 
sulfone esters demonstrated anti--lactamase activity [as deduced 
from synergy with penicillin G against -lactamase-producing S. 
aureus].” 

C5 

O H CO2R

H
On
S

NHAc

O H

H

CO2R

H
HO

S
NHAc

O H

H

CO2R

X
X

O H

H

CO2R

SOnAr

R = H, CHPh2

A 

- Boswell and Cocuzza. US Patent 1985; Chem. Abstr. 1985.533  
- Synthetic and biological procedures are given with the tables of 

synergy data below.   
- None of the free acids showed synergy but many of the benzhydryl 

esters did show synergy with Penicillin G against S. aureus and B. 
cereus.  

C7 

 

PBP 

- Lange, Savard, Viswanatha, Dmitrienko. Tetrahedron Lett. 1985: 
Synthesis of the 7,7-dichloro-2-thiabicyclo[3.2.0]heptan-6-one-4-
carboxylate system described but no biochemical data given in the 
paper.534  

- No significant inhibition of TEM-1 or BcI was observed (unpublished 
results, Dmitrienko and Viswanatha groups).    

- Kelly, Knox, Moews, Hite, Bartolone, and Zhao. J. Biol. Chem. 1985: 
Reported weak competitive inhibition of R61 transpeptidase (Ki = 1 
mM); 4 Å resolution X-ray structure of a complex with R61 D-alanyl 
carboxypeptidas-transpeptidase.535 (Synthesis of this compound was 
done by Tomczuk).537  

C8  

- Johnson, Evanoff, Savard, Lange, Ramadhar, Assoud, Taylor, 
Dmitrienko. J. Org. Chem. 2008.568  

- Synthetic studies, conformational properties, and study of hydration 
and hemiketal formation, but no biochemical results described. 

C9 
A, B, 
C, D 

- Johnson, Gretes, Goodfellow, Marrone, Heynen, Strynadka, 
Dmitrienko. J. Am. Chem. Soc. 2010.640   

- Low-micromolar IC50s against KPC-2 (aESBL) and GC1 (cESBL).  
- Mid-micromolar IC50s against IMP-1 (MBL) and OXA-10 (class D). 
- Dichlorocyclobutanones are better inhibitors of serine enzymes than 

the dechlorinated compounds, but 2 was reasonable against IMP-1.  
- Compounds that favour the carboxylate in an equatorial orientation 

are better inhibitors that those with axial carboxylates.  
- X-ray structure of 4 bound to OXA-10 (3LCE).  
- The unsaturated acid 5 enhanced the antimicrobial activity of 

meropenem against carbapenem-resistant clinical isolates.  
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Appendix D 

Selected Spectral Data for Cyclobutanone Derivatives 

Selected 1H NMR, 13C NMR, and IR Data for Cyclobutanones.a  

 

 X COR  H1   H3   H3   H4   H5  IR ketone IR COR

   65b Cl CO2H 4.77 3.37 2.88 3.75 5.14 1810 1700 
154 Cl COCl 4.55 3.54 3.13 4.03 5.02 1809 1780
84 Cl CO2Et 4.52 3.45 3.05 3.66 5.07 1810 1732

149 Cl CO2CHPh2 4.50 3.50 3.09 3.76 5.07 1808 1738
110 H CO2Et 4.15 3.45 3.21 3.57 4.64 1784 1732

  111b H CO2H 4.17 3.44 3.19 3.55 4.64 1780 1705 

 
 X COR  C1  C3  C4  C5  C6  C7  COR 

 65b Cl CO2H 59.5 36.3 50.7 68.6 196.0 90.2 171.3 
154 Cl COCl 58.3 35.4 60.3 66.8 192.9 89.1 172.0
84 Cl CO2Et 58.9 35.6 50.1 67.4 194.8 89.2 169.8

149 Cl CO2CHPh2 58.9 35.6 50.3 67.4 194.6 89.3 169.0
110 H CO2Et 36.9 35.3 50.0 71.5 208.4 56.5 170.8

  111b H CO2H 37.5 35.6 50.3 72.3 208.4 56.6 172.4 

1
3

56
7

S

O H

HX
X

COR  

 X COR  H1  H3   H5  IR ketone IR COR 

118 Cl CO2Et 4.89 7.43 5.43 1812 1704 
 153b Cl CO2H 5.23 7.68 5.62 1807 1700 
126 H CO2Et 4.15 7.43 5.15 1790 1700 
156 H CO2H 4.39 7.59 5.15 nd nd 

 
 X COR  C1  C3  C4  C5  C6  C7  COR 

118 Cl CO2Et 59.6 144.4 122.1 71.3 187.4 93.7 161.1 
 153b  Cl CO2H 60.1 146.1 123.3 72.8 189.5 94.8 162.3
126 H CO2Et 37.0 143.2 121.2 76.0 200.0 60.7 161.8
156 H CO2H 38.1 144.6 122.5 77.0 201.1 61.6 163.0 

 

                                                      

 (a) NMR spectra were acquired in CDCl3 except where indicated. 

 (b) Acetone-d6 was the solvent used for NMR. 
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 -Z COR  H1   H3   H4   H5  IR ketone IR COR

117 Cl CO2Et 4.95 5.88 3.97 5.21 1815 1740 
150 Cl CO2CHPh2 4.93 5.94 4.08 5.18 nd nd
155 Cl COCl 4.99 6.03 4.37 5.13 nd nd

 119c OH CO2Et 4.79 5.83 3.71 5.09 na na
121 OMe CO2Et 4.66 5.32 3.75 5.17 1813 1739
151 OMe CO2CHPh2 4.66 5.39 3.91 5.21 1813 1744

 152b OMe CO2H 4.77 5.57 3.84 5.13 1813 1720
122 Oi-Pr CO2Et 4.69 5.54 3.73 5.20 1811 1739
123 Ot-Bu CO2Et 4.78 5.76 3.70 5.12 1808 1739
164 S-i-Pr CO2Et 4.70 4.67 3.75 4.90 nd nd
165 S-p-Tol CO2Et 4.57 4.90 3.85 4.95 nd nd
166 Allyl CO2Et 4.61 4.70 3.56 4.82 nd nd 

 -Z COR  H1   H3   H4   H5  IR ketone IR COR

117 Cl CO2Et 4.72 6.14 4.08 5.15 nd nd 
119 OH CO2Et 4.67 5.98 3.83 5.05 1815 1732
121 OMe CO2Et 4.60 5.46 3.82 5.02 1817 1734
151 OMe CO2CHPh2 4.58 5.51 3.93 5.03 1816 1741

  152b OMe CO2H 4.78 5.61 3.90 5.12 1814 1703
122 Oi-Pr CO2Et 4.59 5.71 3.76 5.03 1818 1734
123 Ot-Bu CO2Et 4.58 5.79 3.61 4.98 1818 1735
124 OAc CO2Et 4.62 6.51 3.79 5.10 1813 1740-7
125 OTFE CO2Et 4.64 5.76 3.93 5.08 1819 1738
164 S-i-Pr CO2Et 4.60 5.10 3.72 4.98 nd nd
165 S-p-Tol CO2Et 4.62 5.33 3.71 4.99 nd nd
166 Allyl CO2Et 4.56 3.95 3.47 4.95 nd nd 

 
 -Z COR  C1  C3  C4  C5  C6  C7  COR 

117 Cl CO2Et 60.0 74.1 59.8 65.5 192.0 85.0 166.2 
150 Cl CO2CHPh2 59.8 73.7 60.1 65.5 191.9 85.1 165.4
155 Cl COCl 60.0 72.9 69.4 64.1 190.5 84.7 167.2

 119c OH CO2Et 58.7 87.0 57.0 65.7 192.3 86.2 166.8
121 OMe CO2Et 58.7 97.4 57.4 66.4 193.4 85.3 167.3
151 OMe CO2CHPh2 58.6 97.3 57.4 66.3 193.1 85.2 166.4

 152b OMe CO2H 58.8 98.5 58.2 67.7 194.7 86.7 168.6
122 Oi-Pr CO2Et 58.7 93.4 57.6 66.7 193.7 85.3 167.3
123 Ot-Bu CO2Et 58.8 89.0 57.9 66.6 193.7 85.9 167.5 

 -Z COR  C1  C3  C4  C5  C6  C7  COR 

117 Cl CO2Et 61.4 71.5 62.3 65.9 192.7 89.7 167.1 
119 OH CO2Et 59.8 86.0 59.3 65.0 193.1 90.4 167.9
121 OMe CO2Et 59.4 95.2 57.9 64.9 192.7 90.4 167.8
151 OMe CO2CHPh2 59.4 95.0 58.1 64.9 192.5 90.5 167.0

  152b OMe CO2H 60.0 96.4 58.6 66.2 193.8 91.5 169.4
122 Oi-Pr CO2Et 59.5 90.1 57.9 65.3 192.3 90.2 168.2
123 Ot-Bu CO2Et 59.6 86.6 59.6 65.3 193.0 90.6 168.2
124 OAc CO2Et 59.6 85.8 56.3 65.6 192.9 90.1 167.2
125 OTFE CO2Et 59.7 94.2 57.9 65.1 191.6 90.0 167.2
165 S-p-Tol CO2Et   60.8*   61.0*   56.8* 66.3 193.9 89.8 168.8 



 

213 

 

 X7 X7 COR  H1  H3   H3  H4  H5 

 65b Cl Cl CO2H 4.77 3.37 2.88 3.75 5.14 
84 Cl Cl CO2Et 4.52 3.45 3.05 3.66 5.07

110 H H CO2Et 4.15 3.45 3.21 3.57 4.64
 111b H H CO2H 4.17 3.44 3.19 3.55 4.64

 183c Cl H CO2Et 4.09 3.50 3.20 3.61 4.94
    184b,c Cl H CO2H 4.18 3.55 3.37 3.74 4.9

183 H Cl CO2Et 4.46 3.36 3.01 3.60 4.68
  184b H Cl CO2H 4.57 3.38 2.97 3.65 4.79
  185d H Cl CO2CHPh2 4.46 3.38 2.98 3.74 4.73

187 CH2OH Cl CO2Et 4.35 3.38 3.02 3.58 4.69
 188b CH2OH Cl CO2H 4.48 3.41 2.96 3.64 4.70 

c,d 

                                                      

 (c) This compound was observed by NMR only, and was not isolated.  

 (d) CD3CN was the solvent used for NMR.  
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Selected 1H NMR and 13C NMR Data for Cyclobutanone Hemiketals.e 

6

-hemiketal

Cl

Cl
MeO

S
H

H

EH H
Z

5 3

OD

4

7

1

 

ketone Z  H1  H3β  H4  H5  C1  C3  C4  C5  C6  C7 

121 OMe 4.31 5.39 3.69 3.91 58.9 96.9 55.2 52.2 99.2 93.1 
122 Oi-Pr 4.34 5.64 3.68 3.93 58.9 92.8 55.2 52.5 99.3 93.1
123 Ot-Bu 4.39 5.90 3.60 3.91 59.2 88.5 55.5 53.0 99.4 93.6 

6

-hemiketal

Cl

Cl
DO

S
H

H

EH H
Z

5 3

OMe

4

7

1

 

ketone Z  H1  H3β  H4  H5  C1  C3  C4  C5  C6  C7 

121 OMe 4.28 5.40 3.63 3.79 58.2 97.0 55.3 55.9 97.8 93.9 
122 Oi-Pr 4.31 5.65 3.62 3.81 58.2 92.9 55.4 56.2 97.9 94.1
123 Ot-Bu 4.36 5.85 3.62 3.85 58.4 88.8 55.8 56.6 98.1 94.2 

 

ketone Z  H1  H3α  H4  H5  C1  C3  C4  C5  C6  C7 

121 OMe 4.47 5.70 3.72 4.15 61.6 97.2 55.6 57.6 - - 
122 Oi-Pr 4.45 5.90 3.65 4.13 61.5 92.5 55.8 57.4 100.8 95.6 
123 Ot-Bu 4.35 5.95 3.58 3.93 60.9 88.7 56.6 55.8 100.6 95.2 
124 OAc 4.34 6.47 3.79 3.86 61.5 88.6 56.3 63.9 - - 

-hemiketal

Cl

Cl
DO

S
Z

H

EH H
H

5 3

OMe

4

6

7

 

ketone Z  H1  H3α  H4  H5  C1  C3  C4  C5  C6  C7 

121 OMe 4.28 5.68 3.64 3.56 - - - - - - 
122 Oi-Pr 4.18 5.68 3.57 3.42 - - - - - -
123 Ot-Bu 4.16 5.79 3.53 3.37 58.4 90.3 54.9 55.0 98.4 94.2
124 OAc 4.31 6.45 3.82 3.62 58.5 88.9 53.5 60.8 - - 

 

                                                      

 (e) NMR spectra were acquired in methanol-d4 (
1H: 500 MHz; 13C: 125 MHz). 
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Appendix E 

Hemiketal Formation with Cyclobutanones in Methanol-d4 
f,g 

  

time     
(h) 

 
ketone     

65h 
-hemi-

ketal  
-hemi-

ketal 
 

%    
ketone 

% -
hemiketal

% -
hemiketal 

total % 
hemiketal

0  1.00 0.00 0.00  100 0.0 0.0 0.0 

0.17  1.00 0.43 0.00  69.9 30.1 0.0 30.1 

1.08  0.29 1.00 0.05  21.6 74.6 3.7 78.4 

25  0.18 1.00 0.16  13.4 74.6 11.9 86.6 

167  0.18 1.00 0.35  11.8 65.4 22.9 88.2 

284  0.18 1.00 0.37  11.6 64.5 23.9 88.4 

312  0.18 1.00 0.38  11.5 64.1 24.4 88.5 

  

time     
(h) 

 
ketone     

84 
-hemi-

ketal 
-hemi-

ketal 
 

%    
ketone 

% -
hemiketal

% -
hemiketal 

total % 
hemiketal

0  1.00 0.00 0.00  100 0.0 0.0 0.0 

0.83  1.00 2.55 0.00  28.2 71.8 0.0 71.8 

14  0.11 1.00 0.06  9.4 85.5 5.1 90.6 

194  0.13 1.00 0.31  9.0 69.4 21.5 91.0 

284  0.13 1.00 0.37  8.7 66.7 24.7 91.3 

 

                                                      

 (f) 1H NMR spectra were acquired at 500 MHz as overlapping peaks in the 300 MHz spectra made 

integrations unreliable.  

 (g) The data tabulated in this Appendix is also presented graphically in the supporting information for 

reference 568.   

 (h) The values listed for ketones, -hemiketals, and -hemiketals are integrations that were used for 

the calculation of relative percentages.   
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time     
(h) 

 
ketone    

110 
-hemi-

ketal 
-hemi-

ketal 
 

%    
ketone 

% -
hemiketal

% -
hemiketal 

total % 
hemiketal

0  1.00 0.00 0.00  100 0.0 0.0 0.0 

0.25  1.00 0.20 0.00  83.3 16.7 0.0 16.7 

16  1.00 0.18 0.03  82.6 14.9 2.5 17.4 

112  1.00 0.16 0.07  81.3 13.0 5.7 18.7 

142  1.00 0.16 0.09  80.0 12.8 7.2 20.0 

163  1.00 0.16 0.09  80.0 12.8 7.2 20.0 

324  1.00 0.16 0.09  80.3 12.9 6.8 19.7 

  

time     
(h) 

 
ketone    

111 
-hemi-

ketal 
-hemi-

ketal 
 

%    
ketone 

% -
hemiketal

% -
hemiketal 

total % 
hemiketal

0  1.00 0.00 0.00  100 0.0 0.0 0.0 

13  1.00 0.20 0.12  75.8 15.2 9.1 24.2 

25  1.00 0.20 0.12  75.8 15.2 9.1 24.2 

46  1.00 0.20 0.12  75.8 15.2 9.1 24.2 

192  1.00 0.20 0.12  75.8 15.2 9.1 24.2 

  

time     
(h) 

 
ketone    
121 

-hemi-
ketal 

-hemi-
ketal 

 
%    

ketone 
% -

hemiketal
% -

hemiketal 
total % 

hemiketal

0  1.00 0.00 0.00  100 0.0 0.0 0.0 

0.08  0.25 1.00 0.04  19.4 77.5 3.1 80.6 

0.17  0.06 1.00 0.04  5.5 90.9 3.6 94.5 

0.50  0.04 1.00 0.05  3.2 92.2 4.6 96.8 

2.4  0.03 0.96 0.08  2.8 89.7 7.5 97.2 

23  0.03 0.81 0.25  2.8 74.3 22.9 97.2 

163  0.03 1.00 0.82  1.6 54.1 44.3 98.4 

181  0.03 1.00 0.82  1.6 54.1 44.3 98.4 
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time     
(h) 

 
ketone    
121 

-hemi-
ketal 

-hemi-
ketal 

 
%    

ketone 
% -

hemiketal
% -

hemiketal 
total % 

hemiketal

0  1.00 0.00 0.00  100 0.0 0.0 0.0 

0.17  1.00 0.00 0.00  100 0.0 0.0 0.0 

3.0  1.00 0.03 0.00  97.1 2.9 0.0 2.9 

18  1.00 0.09 0.00  91.7 8.3 0.0 8.3 

168  1.00 0.13 0.03  86.2 11.2 2.6 13.8 

408  0.98 0.14 0.03  85.2 12.2 2.6 14.8 

  

time     
(h) 

 
ketone    
122 

-hemi-
ketal 

-hemi-
ketal 

 
%    

ketone 
% -

hemiketal
% -

hemiketal 
total % 

hemiketal

0  1.00 0.00 0.00  100 0.0 0.0 0.0 

1.0  0.05 0.96 0.07  4.6 88.9 6.5 95.4 

3.0  0.04 0.93 0.10  3.7 86.9 9.3 96.3 

18  0.04 0.80 0.25  3.7 73.4 22.9 96.3 

144  0.03 0.55 0.50  2.8 50.9 46.3 97.2 

168  0.025 0.55 0.50  2.3 51.2 46.5 97.7 

180  0.025 0.55 0.50  2.3 51.2 46.5 97.7 

  

time     
(h) 

 
ketone    
122 

-hemi-
ketal 

-hemi-
ketal 

 
%    

ketone 
% -

hemiketal
% -

hemiketal 
total % 

hemiketal

0  1.00 0.00 0.00  100 0.0 0.0 0.0 

0.50  1.00 0.00 0.00  100 0.0 0.0 0.0 

7.0  1.00 0.07 0.00  93.5 6.5 0.0 6.5 

24  1.00 0.18 0.00  84.7 15.3 0.0 15.3 

42  0.99 0.23 0.01  80.5 18.7 0.8 19.5 

168  0.96 0.23 0.03  78.7 18.9 2.5 21.3 

192  0.95 0.24 0.03  77.9 19.7 2.5 22.1 

2000  1.00 0.25 0.06  76.3 19.1 4.6 23.7 
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time     
(h) 

 
ketone    
123 

-hemi-
ketal 

-hemi-
ketal 

 
%    

ketone 
% -

hemiketal
% -

hemiketal 
total % 

hemiketal

0  1.00 0.00 0.00  100 0.0 0.0 0.0 

0.33  0.06 1.00 0.06  5.4 89.3 5.4 94.6 

0.50  0.04 1.00 0.06  3.6 90.9 5.5 96.4 

1.5  0.04 1.00 0.07  3.6 90.1 6.3 96.4 

23  0.04 1.00 0.32  2.9 73.5 23.5 97.1 

168  0.04 1.00 0.87  2.1 52.4 45.5 97.9 

288  0.04 1.00 0.87  2.1 52.4 45.5 97.9 

  

time     
(h) 

 
ketone    
123 

-hemi-
ketal 

-hemi-
ketal 

 
%    

ketone 
% -

hemiketal
% -

hemiketal 
total % 

hemiketal

0  1.00 0.00 0.00  100 0.0 0.0 0.0 

0.17  1.00 0.02 0.00  98.0 2.0 0.0 2.0 

1.0  1.00 0.05 0.00  95.2 4.8 0.0 4.8 

2.0  1.00 0.09 0.01  90.9 8.2 0.9 9.1 

24  1.00 0.41 0.12  65.4 26.8 7.8 34.6 

168  1.00 0.41 0.23  61.0 25.0 14.0 39.0 

360  1.00 0.42 0.24  60.2 25.3 14.5 39.8 

Cl

Cl
DO

S
OAc

H

EH H
H

5 3

OMe

-hemiketal -hemiketal

S

CO2Et

Cl
Cl

O H

H

124

MeOD
OAc

MeOD

Cl

Cl
MeO

S

H H

OAc

H
H

CO2Et

5 3

OD

  

time     
(h) 

 
ketone    
124 

-hemi-
ketal 

-hemi-
ketal 

 
%    

ketone 
% -

hemiketal
% -

hemiketal 
total % 

hemiketal

0  1.00 0.00 0.00  100 0.0 0.0 0.0 

1.0  0.96 0.07 0.00  93.2 6.8 0.0 6.8 

7.0  0.87 0.18 0.02  81.3 16.8 1.9 18.7 

119  0.98 0.22 0.14  73.1 16.4 10.4 26.9 

293  0.95 0.24 0.18  69.3 17.5 13.1 30.7 
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time     
(h) 

 
ketone    

118 
-hemi-

ketal 
-hemi-

ketal 
 

%    
ketone 

% -
hemiketal

% -
hemiketal 

total % 
hemiketal

0  1.00 0.00 0.00  100 0.0 0.0 0.0 

2.5  0.05 1.00 0.13  4.2 84.7 11.0 95.8 

18  0.05 1.00 0.30  3.7 74.1 22.2 96.3 

92  0.06 1.00 0.52  3.8 63.3 32.9 96.2 

144  0.06 1.00 0.55  3.7 62.1 34.2 96.3 

  

time     
(h) 

 
ketone    

126 
-hemi-

ketal 
-hemi-

ketal 
 

%    
ketone 

% -
hemiketal

% -
hemiketal 

total % 
hemiketal

0  1.00 0.00 0.00  100 0.0 0.0 0.0 

1.0  1.00 0.33 0.00  75.2 24.8 0.0 24.8 

2.8  1.00 0.34 0.00  74.6 25.4 0.0 25.4 

17  1.00 0.33 0.03  73.5 24.3 2.2 26.5 

162  1.00 0.35 0.16  66.2 23.2 10.6 33.8 

336  1.00 0.36 0.24  62.5 22.5 15.0 37.5 
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Appendix F 

Corrected IC50 Values for the Inhibition of -Lactamases by Cyclobutanonesa 

 

ketone 
inhibitor 

% hydrate 
in D2O

b 

 KPC-2 (class A)  IMP-1 (class B)  GC1 (class C)  OXA-10 (class D)

 obsd (corrd)c  obsd (corrd)  obsd (corrd)  obsd (corrd) 

65 74  76 (20)  >1000 (>260)  25 (6.5)  268 (70) 

111 0  117 (117)  235 (235)  44 (44)  1135 (1135) 

152 >98  58 (<1.2)  122 (<2.4)  6.5 (<0.13)  156 (<3.1) 

152 6  99 (93)  ndd nae  38 (36)  547 (514) 

153 93  26 (1.8)  213 (15)  4.5 (0.32)  370 (26) 

156 <2  170 (>167)  >500 (>490)  34 (>33)  >1000 (>980) 

a IC50 values (M). Inhibition was assayed by monitoring nitrocefin hydrolysis. b Acetone-d6 was used as a 

cosolvent for solubility purposes. c corrd = corrected. d nd = not determined. e na = not available.  
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Appendix G 

Tables of Crystallographic Data 

Crystal Data and Structure Refinement for Cyclobutanone 65.852  

 

 Empirical formula C7H6Cl2O3S 
 Formula weight 241.09 
 Temperature 180(2) K 
 Wavelength 0.71073 Å 
 Crystal system Triclinic 
 Space group P-1 
 Unit cell dimensions a = 6.0993(3) Å, b = 8.1188(4) Å, c = 10.5373(5) Å 
   = 73.8750(10)°,  = 77.5700(10)°,  = 71.4820(10)° 
 Volume, Z 470.67(4) Å3, 2 
 Density (calculated) 1.701 
 Absorption coefficient 0.879 mm–1 
 F(000) 244 
 Crystal size 0.44 mm × 0.30 mm × 0.15 mm 
  range for data collection 2.03 to 29.99 
 Limiting indices –8  h  8, –11  k  11, –14  l  14 
 Reflections collected 5854 
 Independent reflections 2745 (Rint = 0.0341) 
 Completeness to  = 29.99 99.6 % 
 Absorption correction Integration 
 Max. and min. transmission 0.888 and 0.671 
 Refinement method Full-matrix least-squares on F2 
 Data / restraints / parameters 2745 / 0 / 123 
 Goodness-of-fit on F2 1.062 
 Final R indices [I>2(I)] R1 = 0.0299, wR2 = 0.0784 
 R indices (all data) R1 = 0.0325, wR2 = 0.0800 
 Extinction coefficient 0.070(6) 
 Largest diff. peak and hole 0.320 and –0.460 e.Å–3 
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Crystal Data and Structure Refinement for Cyclobutanone 84. 

 

 Empirical formula C9H10Cl2O3S 
 Formula weight 269.13 
 Temperature 200(2) K 
 Wavelength 0.71073 Å 
 Crystal system Triclinic 
 Space group P-1 
 Unit cell dimensions a = 10.845(4) Å, b = 11.266(4) Å, c = 12.189(4) Å 
   = 107.842(4)°,  = 103.885(4)°,  = 113.162(4)° 
 Volume, Z 1187.6(7) Å3, 4 
 Density (calculated) 1.505   
 Absorption coefficient 0.706 mm–1 
 F(000) 552 
 Crystal size 0.46 mm × 0.40 mm × 0.02 mm 
  range for data collection 3.35 to 28.00 
 Limiting indices –14 ≤ h ≤ 14, –14 ≤ k ≤ 14, –16 ≤ l ≤ 16 
 Reflections collected 14463 
 Independent reflections 5699 (Rint = 0.0259) 
 Completeness to  = 28.00 99.5% 
 Absorption correction Empirical 
 Max. and min. transmission 0.9860 and 0.7373 
 Refinement method Full-matrix least-squares on F2 
 Data / restraints / parameters 5699 / 6 / 277 
 Goodness-of-fit on F2 1.250 
 Final R indices [I>2(I)] R1 = 0.0377, wR2 = 0.0772 
 R indices (all data) R1 = 0.0495, wR2 = 0.0826 
 Largest diff. peak and hole 0.397 and –0.439 e.Å–3 
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Atomic Coordinates ( 104) and Equivalent Isotropic Displacement Parameters (Å2  103) for 84.a,b 

 x/a y/b z/c Ueq 
C(1A) 5983(2) 9628(2) 7031(2) 29(1) 
S(2A) 4757(1) 7787(1) 5861(1) 37(1) 
C(3A) 3712(2) 7420(2) 6973(2) 37(1) 
C(4A) 4853(2) 8269(2) 8165(2) 32(1) 
C(5A) 5908(2) 9751(2) 8327(2) 31(1) 
C(6A) 5250(2) 10719(2) 8295(2) 33(1) 
C(7A) 5444(2) 10735(2) 7081(2) 30(1) 
C(8A) 5686(2) 7514(2) 8457(2) 35(1) 
O(9A) 6994(2) 8031(2) 8864(2) 48(1) 

O(11A) 4750(2) 6177(2) 8198(2) 54(1) 
C(12A) 5361(3) 5276(3) 8377(3) 68(1) 
C(13A) 4220(4) 3834(4) 7844(5) 76(1) 
C(13C) 4375(14) 4048(13) 6898(16) 76(1) 
Cl(1A) 6876(1) 12451(1) 7424(1) 44(1) 
Cl(2A) 3817(1) 10208(1) 5840(1) 38(1) 
O(16A) 4720(2) 11226(2) 8906(2) 50(1) 
C(1B) 1266(2) 1768(2) 3153(2) 34(1) 
S(2B) 1143(1) 798(1) 4079(1) 43(1) 
C(3B) –798(2) –480(2) 3097(2) 38(1) 
C(4B) –996(2) –730(2) 1744(2) 31(1) 
C(5B) –57(2) 746(2) 1825(2) 31(1) 
C(6B) –663(2) 1763(2) 2108(2) 35(1) 
C(7B) 703(2) 2866(2) 3374(2) 39(1) 
C(8B) –549(2) –1798(2) 1137(2) 32(1) 
O(9B) 294(2) –1595(2) 645(2) 45(1) 
O(11B) –1259(2) –3023(2) 1211(2) 42(1) 
C(12B) –965(3) –4170(2) 652(2) 46(1) 
C(13B) –1525(4) –5252(3) 1106(4) 87(1) 
Cl(1B) 291(1) 3333(1) 4702(1) 58(1) 
Cl(2B) 1817(1) 4446(1) 3282(1) 69(1) 
O(16B) –1771(2) 1731(2) 1612(2) 49(1) 

a Two crystallographically different molecules of cyclobutanone 84 are present in the unit cell. 

Atoms are labeled with either A or B to differentiate the two molecules. b Atoms C13A and C13C 

are disordered with 75% and 25% occupancy, respectively. 

Bond Lengths (Å) for Cyclobutanone 84. 

 Length [Å]   Length [Å] 

C(1A)–C(7A) 1.564(3) C(6A)–C(7A) 1.548(3) 
C(1A)–C(5A) 1.568(3)  C(7A)–Cl(2A) 1.7603(19) 
C(1A)–S(2A) 1.792(2)  C(7A)–Cl(1A) 1.776(2) 
S(2A)–C(3A) 1.813(2)  C(8A)–O(9A) 1.197(2) 
C(3A)–C(4A) 1.529(3)  C(8A)–O(11A) 1.323(3) 
C(4A)–C(8A) 1.517(3)  O(11A)–C(12A) 1.453(3) 
C(4A)–C(5A) 1.524(3)  C(12A)–C(13A) 1.407(4) 
C(5A)–C(6A) 1.525(3)  C(12A)–C(13C) 1.640(16) 

C(6A)–O(16A) 1.189(2)    
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Bond Lengths (Å) for Cyclobutanone 84 (continued). 

 Length [Å]   Length [Å] 

C(1B)–C(7B) 1.563(3) C(6B)–O(16B) 1.190(2) 
C(1B)–C(5B) 1.565(3)  C(6B)–C(7B) 1.549(3) 
C(1B)–S(2B) 1.788(2)  C(7B)–Cl(1B) 1.763(2) 
S(2B)–C(3B) 1.813(2)  C(7B)–Cl(2B) 1.771(2) 
C(3B)–C(4B) 1.531(3)  C(8B)–O(9B) 1.196(2) 
C(4B)–C(8B) 1.521(3)  C(8B)–O(11B) 1.334(2) 
C(4B)–C(5B) 1.526(3)  O(11B)–C(12B) 1.458(3) 
C(5B)–C(6B) 1.524(3)  C(12B)–C(13B) 1.466(4) 

 

Bond Angles () for Cyclobutanone 84. 

 Angle []   Angle [] 
C(7A)–C(1A)–C(5A) 89.88(14) C(7B)–C(1B)–C(5B) 89.97(15)
C(7A)–C(1A)–S(2A) 118.02(13)  C(7B)–C(1B)–S(2B) 118.36(15) 
C(5A)–C(1A)–S(2A) 108.40(13)  C(5B)–C(1B)–S(2B) 107.91(13) 
C(1A)–S(2A)–C(3A) 92.10(10)  C(1B)–S(2B)–C(3B) 92.70(10) 
C(4A)–C(3A)–S(2A) 105.15(14)  C(4B)–C(3B)–S(2B) 105.68(13) 
C(8A)–C(4A)–C(5A) 110.24(16)  C(8B)–C(4B)–C(5B) 111.03(16) 
C(8A)–C(4A)–C(3A) 111.20(17)  C(8B)–C(4B)–C(3B) 112.43(16) 
C(5A)–C(4A)–C(3A) 106.72(15)  C(5B)–C(4B)–C(3B) 106.41(16) 
C(4A)–C(5A)–C(6A) 114.76(16)  C(4B)–C(5B)–C(6B) 114.46(16) 
C(4A)–C(5A)–C(1A) 109.64(16)  C(4B)–C(5B)–C(1B) 110.79(16) 
C(6A)–C(5A)–C(1A) 89.15(14)  C(6B)–C(5B)–C(1B) 89.20(15) 

O(16A)–C(6A)–C(5A) 135.39(19)  O(16B)–C(6B)–C(5B) 135.4(2) 
O(16A)–C(6A)–C(7A) 132.44(19)  O(16B)–C(6B)–C(7B) 132.4(2) 
C(5A)–C(6A)–C(7A) 92.08(15)  C(5B)–C(6B)–C(7B) 92.03(15) 
C(6A)–C(7A)–C(1A) 88.46(14)  C(6B)–C(7B)–C(1B) 88.39(15) 
C(6A)–C(7A)–Cl(2A) 113.93(14)  C(6B)–C(7B)–Cl(1B) 114.36(15) 
C(1A)–C(7A)–Cl(2A) 118.90(14)  C(1B)–C(7B)–Cl(1B) 118.46(15) 
C(6A)–C(7A)–Cl(1A) 110.80(13)  C(6B)–C(7B)–Cl(2B) 111.26(15) 
C(1A)–C(7A)–Cl(1A) 112.28(13)  C(1B)–C(7B)–Cl(2B) 112.86(15) 
Cl(2A)–C(7A)–Cl(1A) 110.67(10)  Cl(2B)–C(7B)–Cl(1B) 109.97(12) 
O(9A)–C(8A)–O(11A) 124.08(19)  O(9B)–C(8B)–O(11B) 124.26(19) 
O(9A)–C(8A)–C(4A) 125.93(19)  O(9B)–C(8B)–C(4B) 125.78(18) 

O(11A)–C(8A)–C(4A) 109.99(18)  O(11B)–C(8B)–C(4B) 109.95(16) 
C(8A)–O(11A)–C(12A) 117.28(19)  C(8B)–O(11B)–C(12B) 116.70(16) 

C(13A)–C(12A)–O(11A) 109.8(3)  C(13B)–C(12B)–O(11B) 108.3(2) 
C(13A)–C(12A)–C(13C) 49.1(5)    
O(11A)–C(12A)–C(13C) 92.7(4)    
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Crystal Data and Structure Refinement for Cyclobutanone 109. 

 

 Empirical formula C9H10Cl2O3S 
 Formula weight 269.13 
 Temperature 296(2) K 
 Wavelength 0.71073 Å 
 Crystal system Triclinic 
 Space group P-1 
 Unit cell dimensions a = 5.316(12) Å, b = 14.52(3) Å, c = 14.90(3) Å 
   = 84.58(4)°,  = 89.84(4)°,  = 88.88(4)° 
 Volume, Z 1145(4) Å3, 4 
 Density (calculated) 1.562   
 Absorption coefficient 0.732 mm–1 
 F(000) 552 
 Crystal size 0.40 mm × 0.10 mm × 0.04 mm 
  range for data collection 2.97 to 25.00 
 Limiting indices –6 ≤ h ≤ 6, –17 ≤ k ≤ 17, –11 ≤ l ≤ 17 
 Reflections collected 5769 
 Independent reflections 3859 (Rint = 0.0168) 
 Completeness to  = 25.00 95.4% 
 Max. and min. transmission 0.9713 and 0.7583 
 Refinement method Full-matrix least-squares on F2 
 Data / restraints / parameters 3859 / 0 / 272 
 Goodness-of-fit on F2 1.131 
 Final R indices [I>2(I)] R1 = 0.0586, wR2 = 0.0864 
 R indices (all data) R1 = 0.0783, wR2 = 0.0930 
 Extinction coefficient 0.0006(3) 
 Largest diff. peak and hole 0.264 and –0.220 e.Å–3 
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Atomic Coordinates ( 104) and Equivalent Isotropic Displacement Parameters (Å2  103) for 109.a 

 x/a y/b z/c Ueq 
C(1A) 4985(7) 46(3) 1477(3) 47(1) 
S(2A) 6062(2) 1012(1) 728(1) 63(1) 
C(3A) 8007(8) 1452(3) 1560(3) 58(1) 
C(4A) 6617(7) 1247(3) 2425(3) 48(1) 
C(5A) 5569(7) 267(3) 2440(3) 46(1) 
C(6A) 7504(8) –504(3) 2499(3) 54(1) 
C(7A) 6662(7) –837(3) 1621(3) 49(1) 
Cl(8A) 8974(2) –981(1) 841(1) 68(1) 
Cl(9A) 4908(2) –1859(1) 1862(1) 72(1) 
O(8A) 9191(6) –706(2) 2990(2) 87(1) 
C(11A) 8165(9) 1361(3) 3245(3) 57(1) 
O(12A) 10335(6) 1527(3) 3227(3) 85(1) 
O(13A) 6792(6) 1280(3) 3958(2) 79(1) 
C(14A) 7969(11) 1400(5) 4813(4) 102(2) 
C(15A) 6082(12) 1391(5) 5472(4) 114(2) 
C(1B) –8(7) 4955(3) 3526(3) 46(1) 
S(2B) 1063(2) 3987(1) 4271(1) 64(1) 
C(3B) 2998(8) 3547(3) 3450(3) 59(1) 
C(4B) 1609(7) 3747(3) 2573(3) 49(1) 
C(5B) 577(7) 4739(3) 2562(3) 45(1) 
C(6B) 2516(8) 5497(3) 2494(3) 53(1) 
C(7B) 1656(7) 5832(3) 3374(3) 50(1) 
Cl(8B) –93(2) 6859(1) 3138(1) 72(1) 
Cl(9B) 3976(2) 5984(1) 4159(1) 68(1) 
O(8B) 4195(6) 5705(2) 2015(2) 85(1) 
C(11B) 3169(9) 3630(3) 1768(3) 58(1) 
O(12B) 5338(6) 3474(3) 1771(3) 86(1) 
O(13B) 1793(6) 3719(3) 1040(2) 80(1) 
C(14B) 2962(11) 3593(5) 198(4) 103(2) 
C(15B) 1080(13) 3617(5) –475(4) 118(2) 

a Two crystallographically different molecules of cyclobutanone 109 are present in the unit cell. 

Atoms are labeled with either A or B to differentiate the two molecules.  

Bond Lengths (Å) for Cyclobutanone 109. 

 Length [Å]   Length [Å] 

C(1A)–C(7A) 1.545(6) C(6A)–O(8A) 1.173(5) 
C(1A)–C(5A) 1.534(6)  C(6A)–C(7A) 1.510(6) 
C(1A)–S(2A) 1.809(5)  C(7A)–Cl(8A) 1.712(5) 
S(2A)–C(3A) 1.787(5)  C(7A)–Cl(9A) 1.775(5) 
C(3A)–C(4A) 1.492(6)  C(11A)–O(12A) 1.183(5) 
C(4A)–C(11A) 1.499(6)  C(11A)–O(13A) 1.284(6) 
C(4A)–C(5A) 1.537(6)  O(13A)–C(14A) 1.448(6) 
C(5A)–C(6A) 1.502(6)  C(14A)–C(15A) 1.402(8) 
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Bond Lengths (Å) for Cyclobutanone 109 (continued). 

 Length [Å]   Length [Å] 

C(1B)–C(7B) 1.563(6) C(6B)–O(8B) 1.168(5) 
C(1B)–C(5B) 1.529(6)  C(6B)–C(7B) 1.507(6) 
C(1B)–S(2B) 1.793(5)  C(7B)–Cl(8B) 1.749(5) 
S(2B)–C(3B) 1.755(5)  C(7B)–Cl(9B) 1.733(5) 
C(3B)–C(4B) 1.503(6)  C(11B)–O(12B) 1.171(5) 
C(4B)–C(11B) 1.478(6)  C(11B)–O(13B) 1.305(6) 
C(4B)–C(5B) 1.530(6)  O(13B)–C(14B) 1.425(6) 
C(5B)–C(6B) 1.519(6)  C(14B)–C(15B) 1.416(8) 

 

Bond Angles () for Cyclobutanone 109. 

 Angle []   Angle [] 
C(7A)–C(1A)–C(5A) 89.8(3) C(7B)–C(1B)–C(5B) 89.2(3) 
C(7A)–C(1A)–S(2A) 119.0(3)  C(7B)–C(1B)–S(2B) 119.5(3) 
C(5A)–C(1A)–S(2A) 106.8(3)  C(5B)–C(1B)–S(2B) 107.7(3) 
C(1A)–S(2A)–C(3A) 94.2(2)  C(1B)–S(2B)–C(3B) 93.3(2) 
C(4A)–C(3A)–S(2A) 104.6(3)  C(4B)–C(3B)–S(2B) 105.7(3) 

C(11A)–C(4A)–C(5A) 111.8(3)  C(11B)–C(4B)–C(5B) 111.1(3) 
C(11A)–C(4A)–C(3A) 113.6(4)  C(11B)–C(4B)–C(3B) 113.9(4) 
C(5A)–C(4A)–C(3A) 108.1(3)  C(5B)–C(4B)–C(3B) 106.3(3) 
C(4A)–C(5A)–C(6A) 115.4(4)  C(4B)–C(5B)–C(6B) 116.1(3) 
C(4A)–C(5A)–C(1A) 109.9(3)  C(4B)–C(5B)–C(1B) 109.4(3) 
C(6A)–C(5A)–C(1A) 88.5(3)  C(6B)–C(5B)–C(1B) 89.2(3) 
O(8A)–C(6A)–C(5A) 133.4(4)  O(8B)–C(6B)–C(5B) 135.7(4) 
O(8A)–C(6A)–C(7A) 133.7(4)  O(8B)–C(6B)–C(7B) 132.2(4) 
C(5A)–C(6A)–C(7A) 92.4(3)  C(5B)–C(6B)–C(7B) 91.7(3) 
C(6A)–C(7A)–C(1A) 87.8(3)  C(6B)–C(7B)–C(1B) 88.4(3) 
C(6A)–C(7A)–Cl(8A) 116.1(3)  C(6B)–C(7B)–Cl(8B) 108.4(3) 
C(1A)–C(7A)–Cl(8A) 117.3(3)  C(1B)–C(7B)–Cl(8B) 113.3(3) 
C(6A)–C(7A)–Cl(9A) 108.6(3)  C(6B)–C(7B)–Cl(9B) 116.6(3) 
C(1A)–C(7A)–Cl(9A) 113.0(3)  C(1B)–C(7B)–Cl(9B) 118.2(3) 
Cl(8A)–C(7A)–Cl(9A) 111.7(2)  Cl(8B)–C(7B)–Cl(9B) 110.2(3) 

O(12A)–C(11A)–O(13A) 125.2(5)  O(12B)–C(11B)–O(13B) 123.9(4) 
O(12A)–C(11A)–C(4A) 124.2(5)  O(12B)–C(11B)–C(4B) 125.4(5) 
O(13A)–C(11A)–C(4A) 110.6(4)  O(13B)–C(11B)–C(4B) 110.7(4) 

C(11A)–O(13A)–C(14A) 118.1(4)  C(11B)–O(13B)–C(14B) 118.7(4) 
C(15A)–C(14A)–O(13A) 108.2(5)  C(15B)–C(14B)–O(13B) 108.8(5) 
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Crystal Data and Structure Refinement for Cyclobutanone 111.852 

 

 Empirical formula C7H8O3S 
 Formula weight 172.20 
 Temperature 180(2) K 
 Wavelength 0.71073 Å 
 Crystal system Monoclinic 
 Space group C2/c 
 Unit cell dimensions a = 24.0534(13) Å, b = 6.8583(4) Å, c = 19.0432(10) Å
   = 102.8310(10)° 
 Volume, Z 3063.0(3) Å3, 16 
 Density (calculated) 1.494 
 Absorption coefficient 0.373 mm–1 
 F(000) 1440 
 Crystal size 0.37 mm × 0.30 mm × 0.20 mm 
  range for data collection 1.74 to 30.00 
 Limiting indices –32  h  33, –9  k  9, –26  l  26 
 Reflections collected 12193 
 Independent reflections 4468 (Rint = 0.0168) 
 Completeness to  = 30.00 99.8 % 
 Absorption correction None 
 Refinement method Full-matrix least-squares on F2 
 Data / restraints / parameters 4468 / 0 / 208 
 Goodness-of-fit on F2 1.074 
 Final R indices [I>2(I)] R1 = 0.0405, wR2 = 0.1111 
 R indices (all data) R1 = 0.0435, wR2 = 0.1135 
 Extinction coefficient 0.0031(4) 
 Largest diff. peak and hole 0.400 and -0.389 e Å–3 
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Crystal Data and Structure Refinement for Cyclobutanone 115a. 

 

 Empirical formula C7H9Cl2O4S ½ H2O 
 Formula weight 268.10 
 Temperature 295(2) K 
 Wavelength 0.71073 Å 
 Crystal system Triclinic 
 Space group P-1 
 Unit cell dimensions a = 5.5833(4) Å, b = 13.6105(9) Å, c = 14.7211(9) Å 
   = 96.940(1)°,  = 95.644(1)°,  = 95.335(1)° 
 Volume, Z 1098.85(13) Å3, 4 
 Density (calculated) 1.621   
 Absorption coefficient 0.772 mm–1 
 F(000) 548 
 Crystal size 0.40 mm × 0.29 mm × 0.13 mm 
  range for data collection 1.52 to 30.01 
 Limiting indices –7 ≤ h ≤ 7, –19 ≤ k ≤ 19, –20 ≤ l ≤ 20 
 Reflections collected 13507 
 Independent reflections 6349 (Rint = 0.0327) 
 Completeness to 2 = 30.01 99.1% 
 Max. and min. transmission 0.909 and 0.774 
 Refinement method Full-matrix least-squares on F2 
 Data / restraints / parameters 6349 / 0 / 271 
 Goodness-of-fit on F2 1.987 
 Final R indices [I>2(I)] R1 = 0.0608, wR2 = 0.1592 
 R indices (all data) R1 = 0.0675, wR2 = 0.1611 
 Largest diff. peak and hole 0.776 and –0.561 e.Å–3 
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Atomic Coordinates ( 104) and Equivalent Isotropic Displacement Parameters (Å2  103) for 115a. 

 x/a y/b z/c Ueq 
S(1) 825(1) 2180(1) 768(1) 36(1) 
C(2) 3135(6) 1817(2) 1565(2) 49(1) 
C(3) 4827(5) 2745(2) 2002(2) 32(1) 
C(4) 3301(4) 3623(2) 1975(2) 27(1) 
C(5) 4728(5) 4633(2) 2220(2) 31(1) 
C(6) 2933(4) 3949(2) 283(2) 31(1) 
C(7) 1731(4) 3503(2) 1043(1) 26(1) 
C(8) 5749(5) 2628(2) 2984(2) 35(1) 
O(9) 8029(4) 2522(2) 3108(1) 55(1) 

O(10) 4416(4) 2629(2) 3590(2) 67(1) 
O(11) 6918(4) 4725(1) 2463(2) 49(1) 
O(12) 3467(4) 5365(1) 2414(2) 55(1) 
Cl(13) 886(1) 3909(1) –723(1) 42(1) 
Cl(14) 5489(1) 3374(1) –39(1) 53(1) 
S(15) 9938(2) –235(1) 6660(1) 49(1) 
C(16) 7752(5) 384(2) 6005(2) 43(1) 
C(17) 8412(4) 1524(2) 6241(2) 30(1) 
C(18) 11080(4) 1685(2) 6604(2) 27(1) 
C(19) 12080(4) 2731(2) 7023(2) 29(1) 
C(20) 11162(5) 1141(2) 8251(2) 32(1) 
C(21) 11630(5) 898(2) 7249(2) 31(1) 
C(22) 7816(5) 1983(2) 5368(2) 34(1) 
O(23) 9344(4) 2239(2) 4882(1) 43(1) 
O(24) 5528(4) 2039(2) 5193(2) 65(1) 
O(25) 14193(4) 2859(1) 7397(1) 44(1) 
O(26) 10696(4) 3418(1) 6949(1) 45(1) 
Cl(27) 12183(2) 192(1) 8882(1) 56(1) 
Cl(28) 8103(1) 1248(1) 8400(1) 55(1) 
O(29) 1290(60) 4933(17) 4653(11) 310(20) 
O(30) 6040(100) 5130(14) 4833(11) 380(30) 

a Two crystallographically different molecules of cyclobutanone 115a are present in the unit cell. 

O29 and O30 represent disordered water molecules.  

Bond Lengths (Å) for Cyclobutanone 115a. 

 Length [Å]   Length [Å] 

S(1)–C(2) 1.802(3) C(5)–O(11) 1.230(3) 
S(1)–C(7) 1.809(2)  C(5)–O(12) 1.281(3) 
C(2)–C(3) 1.537(4)  C(6)–C(7) 1.519(3) 
C(3)–C(8) 1.518(3)  C(6)–Cl(13) 1.772(2) 
C(3)–C(4) 1.533(3)  C(6)–Cl(14) 1.767(3) 
C(4)–C(5) 1.508(3)  C(8)–O(9) 1.292(3) 
C(4)–C(7) 1.537(3)  C(8)–O(10) 1.217(3) 
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Bond Lengths (Å) for Cyclobutanone 115a (continued). 

 Length [Å]   Length [Å] 

S(15)–C(16) 1.813(3) C(19)–O(25) 1.240(3) 
S(15)–C(21) 1.807(2)  C(19)–O(26) 1.275(3) 
C(16)–C(17) 1.549(3)  C(20)–C(21) 1.525(3) 
C(17)–C(22) 1.518(3)  C(20)–Cl(27) 1.783(2) 
C(17)–C(18) 1.519(3)  C(20)–C(28) 1.760(3) 
C(18)–C(19) 1.513(3)  C(22)–O(23) 1.214(3) 
C(18)–C(21) 1.546(3)  C(22)–O(24) 1.290(3) 

 

Bond Angles () for Cyclobutanone 115a. 

 Angle []   Angle [] 
C(2)–S(1)–C(7) 95.21(11) C(21)–S(15)–C(16) 95.31(11)
C(3)–C(2)–S(1) 109.15(17)  C(17)–C(16)–S(15) 108.49(17) 
C(8)–C(3)–C(4) 111.2(2)  C(22)–C(17)–C(18) 113.7(2) 
C(8)–C(3)–C(2) 109.9(2)  C(22)–C(17)–C(16) 107.3(2) 
C(4)–C(3)–C(2) 105.9(2)  C(18)–C(17)–C(16) 106.6(2) 
C(5)–C(4)–C(3) 114.5(2)  C(19)–C(18)–C(17) 116.8(2) 
C(5)–C(4)–C(7) 113.45(18)  C(19)–C(18)–C(21) 112.82(18) 
C(3)–C(4)–C(7) 109.02(18)  C(17)–C(18)–C(21) 108.88(19) 

O(11)–C(5)–O(12) 124.2(2)  O(25)–C(19)–O(26) 124.9(2) 
O(11)–C(5)–C(4) 121.6(2)  O(25)–C(19)–C(18) 117.7(2) 
O(12)–C(5)–C(4) 114.2(2)  O(26)–C(19)–C(18) 117.4(2) 
C(7)–C(6)–Cl(14) 114.15(17)  C(21)–C(20)–Cl(28) 114.02(17) 
C(7)–C(6)–Cl(13) 111.75(17)  C(21)–C(20)–Cl(27) 108.89(17) 

Cl(13)–C(6)–Cl(14) 107.70(13)  Cl(28)–C(20)–Cl(27) 108.72(14) 
C(6)–C(7)–C(4) 114.80(19)  C(20)–C(21)–C(18) 116.80(19) 
C(6)–C(7)–S(1) 113.17(16)  C(21)–C(21)–S(15) 114.08(17) 
C(4)–C(7)–S(1) 105.24(14)  C(18)–C(21)–S(15) 103.84(15) 

O(10)–C(8)–O(9) 123.9(2)  O(23)–C(22)–O(24) 124.5(2) 
O(10)–C(8)–C(3) 121.8(2)  O(23)–C(22)–C(17) 123.2(2) 
O(9)–C(8)–C(3) 114.3(2)  O(24)–C(22)–C(17) 112.3(2) 
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Crystal Data and Structure Refinement for Cyclobutanone 117.852 

 

 Empirical formula C9H9Cl3O3S 
 Formula weight 303.59 
 Temperature 295(2) K 
 Wavelength 0.71073 Å 
 Crystal system Triclinic 
 Space group P-1 
 Unit cell dimensions a = 6.4915(15) Å, b = 9.542(2) Å, c = 11.396(3) Å 
   = 102.655(5)°,  = 103.497(5)°,  = 103.414(5)° 
 Volume, Z 639.2(3) Å3, 2 
 Density (calculated) 1.577 
 Absorption coefficient 0.868 mm–1 
 F(000) 308 
 Crystal size 0.40 mm × 0.38 mm × 0.20 mm 
  range for data collection 1.92 to 30.00 
 Limiting indices –9  h  9, –13 < k  13, –16  l  16 
 Reflections collected 7767 
 Independent reflections 3711 (Rint = 0.0367) 
 Completeness to  = 30.00 99.5 % 
 Absorption correction Integration 
 Max. and min. transmission 0.869  and 0.737 
 Refinement method Full-matrix least-squares on F2 
 Data / restraints / parameters 3711 / 0 / 147 
 Goodness-of-fit on F2 1.378 
 Final R indices [I>2(I)] R1 = 0.0494, wR2 = 0.0990 
 R indices (all data) R1 = 0.0601, wR2 = 0.1020 
 Extinction coefficient 0.090(5) 
 Largest diff. peak and hole 0.452 and –0.407 e Å–3 
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Crystal Data and Structure Refinement for Cyclobutanone 123.852  

 

 Empirical formula C13H18Cl2O4S 
 Formula weight 341.25 
 Temperature 100(2) K 
 Wavelength 0.71073 Å 
 Crystal system Triclinic 
 Space group P-1 
 Unit cell dimensions a = 6.3646(6) Å, b = 10.6579(10) Å, c = 11.9831(11) Å
   = 92.940(2)°,  = 104.377(2)°,  = 101.967(2)° 
 Volume, Z 765.74(12) Å3, 2 
 Density (calculated) 1.480 
 Absorption coefficient 0.569 mm–1 
 F(000) 356 
 Crystal size 0.38 mm × 0.23 mm × 0.08 mm 
  range for data collection 3.38 to 30.08 
 Limiting indices –8  h  8, –15  k  15, –16  l  16 
 Reflections collected 10709 
 Independent reflections 4302 (Rint = 0.0134) 
 Completeness to  = 30.08 96.2 % 
 Absorption correction Empirical 
 Max. and min. transmission 0.9559 and 0.8128 
 Refinement method Fullmatrix leastsquares on F2 
 Data / restraints / parameters 4302 / 0 / 185 
 Goodness-of-fit on F2 1.182 
 Final R indices [I>2(I)] R1 = 0.0227, wR2 = 0.00653 
 R indices (all data) R1 = 0.0238, wR2 = 0.0739 
 Largest diff. peak and hole 0.505 and 0.245 e.Å–3 
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Crystal Data and Structure Refinement for Cyclobutanone 124.852 
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 Empirical formula C11H12Cl2O5S 
 Formula weight 327.18 
 Temperature 295(2) K 
 Wavelength 0.71073 Å 
 Crystal system Monoclinic 
 Space group P21/c 
 Unit cell dimensions a = 6.6343(6) Å, b = 20.9581(17) Å, c = 10.6260(9) Å 
   = 102.039(2)° 
 Volume, Z 1445.0(2) Å3, 4 
 Density (calculated) 1.504 
 Absorption coefficient 0.605 mm–1 
 F(000) 672 
 Crystal size 0.50 mm × 0.13 mm × 0.13 mm 
  range for data collection 1.94 to 30.00 
 Limiting indices –9  h  8, –29  k  24, –14  l  14 
 Reflections collected 11763 
 Independent reflections 4208 (Rint = 0.0323) 
 Completeness to  = 30.00 99.9 % 
 Absorption correction Integration 
 Max. and min. transmission 0.944  and 0.814 
 Refinement method Full-matrix least-squares on F2 
 Data / restraints / parameters 4208 / 0 / 175 
 Goodness-of-fit on F2 1.039 
 Final R indices [I>2(I)] R1 = 0.0467, wR2 = 0.1153 
 R indices (all data) R1 = 0.0606, wR2 = 0.1224 
 Extinction coefficient 0.0071(15) 
 Largest diff. peak and hole 0.244 and –0.276 e.Å–3 
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Crystal Data and Structure Refinement for Cyclobutanone 149. 

 

 Empirical formula C20H16Cl2O3S 
 Formula weight 407.29 
 Temperature 200(2) K 
 Wavelength 0.71073 Å 
 Crystal system Triclinic 
 Space group P-1 
 Unit cell dimensions a = 5.4269(11) Å, b = 11.291(2) Å, c = 16.198(3) Å 
   = 97.757(3)°,  = 93.275(3) 
 Volume, Z 954.1(3) Å3, 2 
 Density (calculated) 1.418 
 Absorption coefficient 0.466 mm–1 
 F(000) 420 
 Crystal size 0.30 mm × 0.20 mm × 0.10 mm 
  range for data collection 3.55 to 26.00 
 Limiting indices –6  h  6, –13  k  12, –19  l  18 
 Reflections collected 5248 
 Independent reflections 3552 (Rint = 0.0398) 
 Completeness to  = 26.00 94.5 % 
 Absorption correction Empirical 
 Max. and min. transmission 0.9548  and 0.8727 
 Refinement method Full-matrix least-squares on F2 
 Data / restraints / parameters 3552 / 0 / 236 
 Goodness-of-fit on F2 1.074 
 Final R indices [I>2(I)] R1 = 0.0681, wR2 = 0.1008 
 R indices (all data) R1 = 0.1109, wR2 = 0.1214 
 Extinction coefficient 0.0068(10) 
 Largest diff. peak and hole 0.301 and –0.299 e.Å–3 
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Atomic Coordinates ( 104) and Equivalent Isotropic Displacement Parameters (Å2  103) for 149.  

 x/a y/b z/c Ueq 
C(1) 3468(8) 7645(4) 789(3) 31(1) 
S(2) 2611(3) 6143(1) 119(1) 44(1) 
C(3) 166(8) 6652(4) –547(3) 32(1) 
C(4) 1144(7) 7921(4) –606(3) 24(1) 
C(5) 2361(7) 8588(4) 288(3) 25(1) 
C(6) 564(8) 8886(4) 933(3) 30(1) 
C(7) 1879(8) 8115(4) 1512(3) 32(1) 
O(8) –1274(6) 9417(3) 967(2) 41(1) 
Cl(9) –31(2) 7075(1) 1850(1) 52(1) 
Cl(10) 3745(3) 9135(1) 2402(1) 58(1) 
C(11) 3008(8) 7860(4) –1226(3) 28(1) 
O(12) 5116(5) 8338(3) –1068(2) 36(1) 
O(13) 2002(5) 7165(3) –1999(2) 40(1) 
C(14) 3600(8) 6926(4) –2669(3) 37(1) 
C(15) 2969(9) 5612(5) –3124(3) 38(1) 
C(16) 4478(12) 4741(6) –2959(4) 65(2) 
C(17) 3893(14) 3512(6) –3359(5) 78(2) 
C(18) 1770(13) 3144(5) –3920(4) 61(2) 
C(19) 236(12) 3991(6) –4092(4) 74(2) 
C(20) 839(11) 5217(5) –3694(4) 68(2) 
C(21) 3154(8) 7797(4) –3247(3) 39(1) 
C(22) 1390(9) 8629(5) –3175(3) 46(1) 
C(23) 1100(10) 9407(5) –3725(4) 52(2) 
C(24) 2504(10) 9331(5) –4378(4) 54(2) 
C(25) 4264(11) 8491(5) –4464(4) 57(2) 
C(26) 4609(10) 7727(5) –3907(3) 49(1) 

Bond Lengths (Å) for Cyclobutanone 149. 

 Length [Å]   Length [Å] 

C(1)–C(7) 1.563(6) C(14)–C(15) 1.497(6) 
C(1)–C(5) 1.576(6)  C(14)–C(21) 1.512(7) 
C(1)–S(2) 1.792(5)  C(15)–C(16) 1.364(7) 
S(2)–C(3) 1.799(5)  C(16)–C(17) 1.390(8) 
C(3)–C(4) 1.527(5)  C(17)–C(18) 1.349(9) 

C(4)–C(11) 1.513(5)  C(18)–C(19) 1.354(8) 
C(4)–C(5) 1.514(6)  C(19)–C(20) 1.389(7) 
C(5)–C(6) 1.520(6)  C(20)–C(15) 1.362(7) 
C(6)–C(7) 1.551(6)  C(21)–C(22) 1.377(7) 
C(6)–O(8) 1.194(5)  C(22)–C(23) 1.386(7) 
C(7)–Cl(9) 1.749(4)  C(23)–C(24) 1.375(7) 
C(7)–Cl(10) 1.776(5)  C(24)–C(25) 1.383(8) 
C(11)–O(12) 1.206(5)  C(25)–C(26) 1.384(7) 
C(11)–O(13) 1.343(5)  C(26)–C(21) 1.404(6) 
O(13)–C(14) 1.467(5)    
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Bond Angles () for Cyclobutanone 149. 

 Angle []   Angle [] 
C(7)–C(1)–S(2) 118.0(3) O(12)–C(11)–O(13) 123.4(4) 
C(5)–C(1)–S(2) 107.8(3)  C(11)–O(13)–C(14) 118.0(3) 
C(1)–S(2)–C(3) 93.0(2)  O(13)–C(14)–C(15) 105.8(3) 
S(2)–C(3)–C(4) 105.5(3)  O(13)–C(14)–C(21) 109.7(4) 
C(3)–C(4)–C(5) 106.8(3)  C(15)–C(14)–C(21) 113.6(4) 
C(4)–C(5)–C(6) 114.7(3)  C(20)–C(15)–C(16) 116.7(5) 
C(5)–C(6)–C(7) 92.1(3)  C(20)–C(15)–C(14) 122.3(5) 
C(4)–C(5)–C(1) 109.7(3)  C(14)–C(15)–C(16) 121.0(5) 
C(6)–C(5)–C(1) 88.9(3)  C(15)–C(16)–C(17) 121.9(6) 
C(6)–C(7)–C(1) 88.3(3)  C(16)–C(17)–C(18) 120.4(6) 
C(7)–C(1)–C(5) 89.5(3)  C(17)–C(18)–C(19) 118.9(6) 
C(5)–C(6)–O(8) 135.2(4)  C(18)–C(19)–C(20) 120.5(6) 
C(7)–C(6)–O(8) 132.5(4)  C(19)–C(20)–C(15) 121.8(6) 
C(6)–C(7)–Cl(9) 116.9(3)  C(22)–C(21)–C(26) 118.6(5) 

C(6)–C(7)–Cl(10) 107.9(3)  C(14)–C(21)–C(26) 117.3(5) 
C(1)–C(7)–Cl(9) 119.8(3)  C(14)–C(21)–C(22) 124.2(4) 

C(1)–C(7)–Cl(10) 110.8(3)  C(21)–C(22)–C(23) 120.9(5) 
Cl(9)–C(7)–Cl(10) 111.0(3)  C(22)–C(23)–C(24) 120.6(6) 
C(3)–C(4)–C(11) 111.9(3)  C(23)–C(24)–C(25) 119.1(5) 
C(5)–C(4)–C(11) 110.3(3)  C(24)–C(25)–C(26) 120.9(5) 

C(4)–C(11)–O(12) 126.4(4)  C(25)–C(26)–C(21) 119.9(5) 
C(4)–C(11)–O(13) 110.2(3)    
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Crystal Data and Structure Refinement for Cyclobutanone 151.853 

 

 Empirical formula C21H18Cl2O4S 
 Formula weight 437.31 
 Temperature 200(2) K 
 Wavelength 0.71073 Å 
 Crystal system Triclinic 
 Space group P-1 
 Unit cell dimensions a = 9.6137(19) Å, b = 9.816(2) Å, c = 12.382(3) Å 
   = 72.737(4)°,  = 67.724(3)°,  = 70.553(4)° 
 Volume, Z 999.9(3) Å3, 2 
 Density (calculated) 1.453 g/cm3 
 Absorption coefficient 0.454 mm–1 
 F(000) 452 
 Crystal size 0.38 mm × 0.35 mm × 0.20 mm 
  range for data collection 2.82 to 29.99 
 Limiting indices –11 h  13, –11 k  13, –17  l  17 
 Reflections collected 10634 
 Independent reflections 5728 (Rint = 0.0208) 
 Completeness to  = 29.99 98.0 % 
 Max. and min. transmission 0.9146 and 0.8463 
 Refinement method Full-matrix least-squares on F2 
 Data / restraints / parameters 5728 / 0 / 253 
 Goodness-of-fit on F2 1.243 
 Final R indices [I>2(I)] R1 = 0.0361, wR2 = 0.0881 
 R indices (all data) R1 = 0.0393, wR2 = 0.0900 
 Largest diff. peak and hole 0.444 and –0.402 e Å–3 
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Crystal Data and Structure Refinement for Cyclobutanone 152.853 

 

 Empirical formula C21H18Cl2O4S 
 Formula weight 437.31 
 Temperature 200(2) K 
 Wavelength 0.71073 Å 
 Crystal system Triclinic 
 Space group P-1 
 Unit cell dimensions a = 9.6137(19) Å, b = 9.816(2) Å, c = 12.382(3) Å 
   = 72.737(4)°,  = 67.724(3)°,  = 70.553(4)° 
 Volume, Z 999.9(3) Å3, 2 
 Density (calculated) 1.453 g/cm3 
 Absorption coefficient 0.454 mm–1 
 F(000) 452 
 Crystal size 0.38 mm × 0.35 mm × 0.20 mm 
  range for data collection 2.82 to 29.99 
 Limiting indices –11 h  13, –11 k  13, –17  l  17 
 Reflections collected 10634 
 Independent reflections 5728 (Rint = 0.0208) 
 Completeness to  = 29.99 98.0 % 
 Max. and min. transmission 0.9146 and 0.8463 
 Refinement method Full-matrix least-squares on F2 
 Data / restraints / parameters 5728 / 0 / 253 
 Goodness-of-fit on F2 1.243 
 Final R indices [I>2(I)] R1 = 0.0361, wR2 = 0.0881 
 R indices (all data) R1 = 0.0393, wR2 = 0.0900 
 Largest diff. peak and hole 0.444 and –0.402 e Å–3 
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Crystal Data and Structure Refinement for Cyclobutanone 152.853 
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 Empirical formula C8H8Cl2O4S 
 Formula weight 271.10 
 Temperature 200(2) K 
 Wavelength 0.71073 Å 
 Crystal system Monoclinic 
 Space group P21/c 
 Unit cell dimensions a = 12.0074(17) Å, b = 9.2141(13) Å, c = 10.8132(16) 

Å   = 90°,  = 112.413(2)°,  = 90° 
 Volume, Z 1106.0(3) Å3, 4 
 Density (calculated) 1.628 g/cm3 
 Absorption coefficient 0.765 mm–1 
 F(000) 552 
 Crystal size 0.28 mm × 0.10 mm × 0.02 mm 
  range for data collection 2.87 to 30.00 
 Limiting indices –16  h  15, –12  k  12, –15  l  15 
 Reflections collected 11393 
 Unique reflections 3193 (Rint = 0.0370) 
 Completeness to  = 30.00 99.6 % 
 Absorption correction Empirical 
 Max. and min. transmission 0.9849  and 0.8143 
 Refinement method Full-matrix least-squares on F2 
 Data / restraints / parameters 3193 / 0 / 141 
 Goodness-of-fit on F2 1.165 
 Final R indices [I>2(I)] R1 = 0.0414, wR2 = 0.0736 
 R indices (all data) R1 = 0.0621, wR2 = 0.0819 
 Largest diff. peak and hole 0.298 and –0.286 e Å–3 
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Crystal Data and Structure Refinement for Cyclobutanone 153.853 
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 Empirical formula C7H4Cl2O3S 
 Formula weight 239.06 
 Temperature 200(2) K 
 Wavelength 0.71073 Å 
 Crystal system Monoclinic 
 Space group P21/c 
 Unit cell dimensions a = 7.464(3) Å, b = 10.568(4) Å, c = 11.510(4) Å 
   = 101.187(5)  
 Volume, Z 890.6(6) Å3, 4 
 Density (calculated) 1.783 g/cm3 
 Absorption coefficient 0.929 mm–1 
 F(000) 480 
 Crystal size 0.32 mm × 0.28 mm × 0.15 mm 
  range for data collection 3.39 to 27.99 
 Limiting indices –9  h  9, –13  k  13, –14  l  15 
 Reflections collected 7845 
 Unique reflections 2100 (Rint = 0.0284) 
 Completeness to  = 27.99 97.7 % 
 Max. and min. transmission 0.8732  and 0.7553 
 Refinement method Full-matrix least-squares on F2 
 Data / restraints / parameters 2100 / 0 / 123 
 Goodness-of-fit on F2 1.319 
 Final R indices [I>2(I)] R1 = 0.0316, wR2 = 0.0982 
 R indices (all data) R1 = 0.0352, wR2 = 0.1012 
 Largest diff. peak and hole 0.482 and –0.324 e Å–3 

 

 



242 

References 

                                                      

 (1) Walsh, C. T. Antibiotics: Actions, Origins, Resistance. ASM Press: Washington, D.C., 2003. 

  (2) Palumbi, S. R. Science 2008, 293, 1786–1790.   

 (3) Taubes, G. Science 2008, 321, 356–361.  

 (4) Moellering, R. C. Jr. Clin. Infect. Dis. 1998, 27, 135–140.  

 (5) Walsh, C. Nat. Rev. Microbiol. 2003, 1, 65–70.  

 (6) Walsh, C.; Wright, G. Chem. Rev. 2005, 105, 391–393. 

 (7) Projan, S. J. Curr. Opin. Microbiol. 2003, 6, 427–430.  

 (8) Wenzel, R. P. New Engl. J. Med. 2004, 351, 523–526.  

 (9) Payne, D. J.; Gwynn, M. N.; Holmes, D. J.; Pompliano, D. L. Nat. Rev. Drug Discov. 2007, 6, 29–

40.  

 (10) Neu, H. C. Science 1992, 257, 1064–1073.  

 (11) Talbot, G. H.; Bradley, J.; Edwards, J. E. Jr.; Gilbert, D.; Scheld, M.; Bartlett, J. G. Clin. Infect. 

Dis. 2006, 42, 657–668.  

 (12) Rice, L. B. J. Infect. Dis. 2008, 197, 1079–1081.  

 (13) Wise, R. J. Antimicrob. Chemother. 2004, 54, 306–310.  

 (14) Livermore, D. M. Antimicrob. Agents Chemother. 2009, 64 (Suppl. 1), i29–i36.  

 (15) Spellberg, B.; Powers, J. H.; Brass, E. P.; Miller, L. G.; Edwards, J. E. Jr. Clin. Infect. Dis. 2004, 

38, 1279–1286 and references therein.   

 (16) Payne, D. J. Science 2008, 321, 1644–1645.  

 (17) Spellberg, B.; Guidos, R.; Gilbert, D.; Bradley, J.; Boucher, H. W.; Scheld, W. M.; Bartlett, J. G.; 

Edwards, J. Jr. Clin. Infect. Dis. 2008, 46, 155–164.  

 (18) Boucher, H. W.; Talbot, G. H.; Bradley, J. S.; Edwards, J. E. Jr.; Gilbert, D.; Rice, L. B.; Scheld, 

M.; Spellberg, B.; Bartlett, J. Clin. Infect. Dis. 2009, 48, 1–12.  

  (19) Testero, S. A.; Fisher, J. F.; Mobashery, S. -Lactam Antibiotics. In Antiinfectives; Abraham, D. 

J.; Rotella, D. P. Eds.; Wiley: 2010; Vol. 7, pp 257–402.  

 (20) Hamad, B. Nat. Rev. Drug Discov. 2010, 9, 675–676.  

  (21) Llarrull, L. I.; Testero, S. A.; Fisher, J. F.; Mobashery. Curr. Opin. Microbiol. 2010, 13, 551–557.  

 (22) Koch, A. L. Clin. Microbiol. Rev. 2003, 16, 673–687.  

 (23) Buynak, J. D. ACS Chem. Biol. 2007, 2, 602–605.  

 (24) Poole, K. Antimicrob. Agents Chemother. 2005, 56, 20–51. 

 (25) Poole, K. Cell Mol. Life Sci. 2004, 61, 2200–2223.  

  (26) Fisher, J. F.; Meroueh, S. O.; Mobashery, S. Chem. Rev. 2005, 105, 395–424.  

 (27) Abraham, E. P.; Chain, E. Nature 1940, 146, 837.  

 (28) Essack, S. Y. Pharm. Res. 2001, 18, 1391–1399.  

 (29) Drawz, S. M.; Bonomo, R. A. Clin. Microbiol. Rev. 2010, 23, 160–201.  

 (30) Nobel Lectures and biographies of (a) Sir Alexander Fleming, (b) Ernst Boris Chain, and (c) Sir 

Howard Walter Florey are available via the Internet at http://nobelprize.org/nobel_prizes/ 



 

243 

                                                                                                                                                                     

medicine/laureates/1945/.  

 (31) Florey, H. W. Brit. Med. J. 1944, 2, 169–171.  

 (32) The Chemistry of Penicillin; Clarke, H. T., Johnson, J. R., Robinson, Sir R. Eds.; Princeton 

University Press: Princeton, NJ, 1949.   

 (33) Antibiotics; Florey, H. W.; Chain, E.; Heatley, N. G.; Jennings, M. A.; Sanders, A. G.; Abraham, 

E. P.; Florey, M. E. Eds.; Oxford University Press: New York, 1949. 

 (34) Chain, E. Trends Pharmacol. Sci. 1979, 1, 6–11.  

 (35) Abraham, E. P. Rev. Infect. Dis. 1980, 2, 140–141.  

 (36) Abraham, E. P. Nat. Prod. Rep. 1987, 4, 41–46.  

 (37) For examples of bacterial antagonism discovered before penicillin, see: Florey, H. W. In 

Antibiotics; Oxford University Press: Oxford, U.K., 1949; Vol. 1; pp 1–73. 

 (38) Crease, R. P. Science 1989, 246, 883–884.  

 (39) Fleming, A. Proc. R. Soc. London, B 1922, 93, 306–317.  

 (40) Sir Ernst Chain explained that Fleming was able to sub-culture the mould but was unable to 

reproduce the lytic effect. The nature of the effect was not fully understood until the early 1940s 

when it was realized that penicillin production by the mould and the penicillin sensitivity of the 

bacteria is non-uniform over time.  

  “Fleming had produced such conditions, not by design, but by accident, by a curious 

coincidence of external factors. He incubated his Petri dish at two different 

temperatures, at 37 C overnight, which allowed the staphylococcal colonies to develop 

(not completely but sufficiently to form visible colonies), and then for many days at 

room temperature when a contaminant mould, later recognized as Penicillium notatum, 

could develop producing penicillin. These two growth conditions were produced 

because, thank God, Fleming was not a tidy bacteriologist. In a tidy laboratory, 

penicillin could not have been discovered.”  – Sir Ernst Chain.34  

 (41) Fleming gave then name ‘penicillin’ to the lytic culture fluid to avoid repetition of the 

“cumbersome” phrase “mould broth filtrate”.43  

 (42) Growth inhibition was observed with staphylococci, streptococci, gonococci, meningococci, and 

Corynebacterium diptheria, but not with Bacillus coli, Haemophilus influenzae, Salmonella typhi, 

Pseudomonas pyocyanea, Bacillus proteus, or Vibrio cholerae. The growth of staphylococci was 

inhibited even after dilution of the penicillin 800- to 1000-fold. 

 (43) Fleming, A. Brit. J. Exp. Path. 1929, 10, 226–236 (reprinted in Rev. Infect. Dis. 1980, 2, 129–

139).  

 (44) Wainwright, M. Perspect. Biol. Med. 2002, 45, 529–538.  

 (45) Clutterbuck, P. W.; Lovell, R.; Raistrick, H. Biochem. J. 1932, 26, 1907–1918.  

 (46) Chain, E.; Florey, H. W.; Gardner, A. D.; Heatley, N. G.; Jennings, M. A.; Orr-Ewing, J.; Sanders, 

A. G. Lancet 1940, 236, 226–228. 

 (47) Abraham, E. P.; Chain, E.; Fletcher, C. M.; Gardner, A. D.; Heatley, N. G.; Jennings, M. A.; 

Florey, H. W. Lancet 1941, 238, 177–189.  



 

244 

                                                                                                                                                                     

 (48) Abraham and Chain, Brit. J. Exp. Path. 1942, 23, 103. 

 (49) Abraham, E. P.; Chain, E. Nature, 1942, 149, 328.   

 (50) Abraham, E. P.; Baker, W.; Chain, E.; Florey, H. W.; Holiday, E. R.; Robinson, R. Nature 1942, 

149, 356.  

 (51) Abraham, E. P.; Chain, E.; Baker, W.; Robinson, R. Nature 1943, 151, 107.   

 (52) Abraham, E. P.; Baker, W.; Chain, E.; Cornforth, J. W.; Cornforth, R. H.; Robinson, R. PEN 100; 

July 30, 1943 (as cited by Abraham in ref 36).53  

 (53) A ban on the publication of chemical research on penicillin was imposed in Britain and the U.S.A. 

early in 1943. British researchers submitted reports (PEN reports and CPS reports) to committees 

in the U.K. and American scientists sent reports to a committee in Washington.36  

 (54) Clarke, H. T.; Johnson, J. R.; Robinson, R. A Brief History of the Chemical Study of Penicillin. In 

The Chemistry of Penicillin; Clarke, H. T., Johnson, J. R., Robinson, R. Eds.; Princeton University 

Press: Princeton, NJ, 1949.  

 (55) Abraham, E. P.; Baker, W.; Chain, E.; Robinson, R. PEN 88; July 30, 1942 (as cited by Abraham 

in ref 36).53  

 (56) Woodward, R. B.; Neuberger, A.; Trenner, N. R. Other Physical Methods. In The Chemistry of 

Penicillin; Clarke, H. T., Johnson, J. R., Robinson, R. Eds.; Princeton University Press: Princeton, 

NJ, 1949. 

 (57) Kaczka, E.; Folkers, K. Desthiobenzylpenicillin and Other Hydrogenolysis Products of 

Benzylpenicillin. In The Chemistry of Penicillin; Clarke, H. T., Johnson, J. R., Robinson, R. Eds.; 

Princeton University Press: Princeton, NJ, 1949. 

 (58) Robinson remained unconvinced that penicillin was a -lactam, even after Hodgkin solved the X-

ray crystal structure. See: Bentley, R. J. Chem. Educ. 2004, 81, 1462–1470.   

 (59) Crowfoot, D.; Bunn, C. W.; Rogers-Low, B. W.; Turner-Jones, A. The X-Ray Crystallographic 

Investigation of the Structure of Penicillin. In The Chemistry of Penicillin; Clarke, H. T., Johnson, 

J. R., Robinson, R. Eds.; Princeton University Press: Princeton, NJ, 1949.  

 (60) Abraham, E. P. In Chemistry and Biology of -Lactam Antibiotics; Morin, R. B., Gorman, M. 

Eds.; Academic Press: New York, 1982; Vol. 1, pp xxi–xxxviii.  

 (61) Sheehan, J. C. The Enchanted Ring. The Untold Story of Penicillin; The MIT Press: Cambridge, 

MA, 1982.  

 (62) Sheehan “compared the problem of trying to synthesize penicillin by classical methods to that of 

attempting to repair the mainspring of a fine watch with a blacksmith’s anvil, hammer, and 

tongs”.61 

 (63) Sheehan, J. C.; Henery-Logan, K. R. J. Am. Chem. Soc. 1957, 79, 1262–1263.    

 (64) Sheehan, J. C.; Henery-Logan, K. R. J. Am. Chem. Soc. 1959, 81, 3089–3094.  

 (65) This synthesis was featured in: Nicolaou, K. C.; Sorensen, E. J. Classics in Total Synthesis; VCH 

Publishers, Inc.: New York, 1996.  

 (66) Sheehan, J. C.; Henery-Logan, K. R. J. Am. Chem. Soc. 1962, 84, 2983–2990. 

 (67) Abraham, E. P. Rev. Infect. Dis. 1979, 1, 99–105.  



 

245 

                                                                                                                                                                     

 (68) Abraham, E. P.; Loder, P. B. Cephalosporin C. In Cephalosporins and Penicillins; Flynn, E. H. 

Ed.; Academic Press: New York, 1972.  

 (69) Abraham, E. P.; Newton, G. G. F.; Hale, C. W. Biochem. J. 1954, 58, 94–102.  

 (70) Newton, G. G. F.; Abraham, E. P. Nature 1953, 172, 395.   

 (71) Newton, G. G. F.; Abraham, E. P. Biochem. J. 1954, 58, 103–111.  

 (72) Cephalosporin N, now known as penicillin N, was found to be identical to synnematin B, an 

antibiotic from Cephalosporium salmosynnematum that had undergone small clinical trials in the 

United States: Abraham, E. P.; Newton, G. G. F.; Crawford, K.; Burton, H. S.; Hale, C. W. Nature 

1953, 171, 343.   

 (73) The UV maximum near 260 nm was said to be “attributable to the O=C–N–C=C– chromophore of 

the ring” in ref 90 and studied in greater detail later by researchers at Eli Lilly. See: Nagarajan, R.; 

Spry, D. O. J. Am. Chem. Soc. 1971, 93, 2310–2312.   

 (74) Newton, G. G. F.; Abraham, E. P. Nature 1955, 175, 548.  

 (75) Newton, G. G. F.; Abraham, E. P. Biochem. J. 1956, 62, 651–658. 

 (76) Abraham, E. P.; Newton, G. G. F. Biochem. J. 1956, 62, 658–665. 

 (77) Abraham, E. P.; Newton, G. G. F. Biochem. J. 1961, 79, 377–393.  

 (78) Hodgkin, D. C.; Maslen, E. N. Biochem. J. 1961, 79, 393–402.  

 (79) For the Nobel lecture and a biography of Robert Burns Woodward, see: http://nobelprize.org/ 

nobel_prizes/chemistry/laureates/1965/.  

 (80) Woodward, R. B.; Heusler, K.; Gosteli, J.; Naegeli, P.; Oppolzer, W.; Ramage, R.; Ranganathan, 

S.; Vorbrüggen, H. J. Am. Chem. Soc. 1966, 88, 852–853.  

 (81) Batchelor, F. R.; Doyle, F. P.; Nayler, J. H. C.; Rolinson, G. N. Nature 1959, 183, 257–258. 

 (82) Rolinson, G. N. J. Antimicrob. Chemother. 1979, 5, 7–14.  

 (83) Rolinson, G. N. J. Antimicrob. Chemother. 1998, 41, 589–603.  

 (84) Rolinson, G. N.; Stevens, S.; Batchelor, F. R.; Wood, J. C.; Chain, E. B. Lancet 1960, 564–567. 

 (85) Larger aromatic amides at C6 of the penicillins, as in methicillin, nafcillin, and oxacillin, give the 

penicillins resistance to penicillinases but also lowers antimicrobial activity due to poorer binding 

to penicillin-binding proteins.86  

 (86) Neu, H. C. Structure–Activity Relationships: Biological. In The Chemistry of -Lactams; Page, M. 

I. Ed.; Blackie Academic and Professional: Glasgow, 1992; pp 101–128.  

 (87) Kammer, R. B. -Lactam Antibiotics in Clinical Medicine. In Chemistry and Biology of -Lactam 

Antibiotics; Morin, R. B., Gorman, M., Eds.’ Academic Press: New York, 1982; Vol. 3, pp 287–

301.  

 (88) Loder, B.; Newton, G. G. F.; Abraham, E. P. Biochem. J. 1961, 79, 408–416.   

 (89) Hale, C. W.; Newton, G. G. F.; Abraham, E. P. Biochem. J. 1961, 79, 403–408.   

 (90) (a) Morin, R. B.; Jackson, B. G.; Flynn, E. H.; Roeske, R. W. J. Am. Chem. Soc. 1962, 84, 3400–

3401. (b) Morin, R. B.; Jackson, B. G.; Flynn, E. H.; Roeske, R. W.; Andrews, S. L. J. Am. Chem. 

Soc. 1969, 91, 1396–1400.   

 (91) Since 1962, many different methods have been developed for the synthesis of 7-ACA: Huber, F. 



 

246 

                                                                                                                                                                     

M.; Chauvette, R. R.; Jackson, B. G. Preparative Methods for 7-Aminocephalosporanic Acid and 

6-Aminopenicillanic Acid. In Cephalosporins and Penicillins; Flynn, E. H. Ed.; Academic Press: 

New York, 1972.   

 (92) Chauvette, R. R.; Flynn, E. H.; Jackson, B. G.; Lavagnino, E. R.; Mueller, R. A.; Pioch, R. P.; 

Roeske, R. W.; Ryan, C. W.; Spencer, J. L.; Van Heyningen, E. J. Am. Chem. Soc. 1962, 84, 

3401–3402.   

 (93) (a) Morin, R. B.; Jackson, B. G.; Mueller, R. A.; Lavagnino, E. R.; Scanlon, W. B.; Andrews, S. 

L. J. Am. Chem. Soc. 1963, 85, 1896–1897. (b) Morin, R. B.; Jackson, B. G.; Mueller, R. A.; 

Lavagnino, E. R.; Scanlon, W. B.; Andrews, S. L. J. Am. Chem. Soc. 1969, 91, 1401–1407.  

 (94) Sammes, P. G. Chem. Rev. 1976, 76, 113–155.  

 (95) Cooper, R. D. G.; Koppel, G. A. The Chemistry of Penicillin Sulfoxide. In Chemistry and Biology 

of -Lactam Antibiotics; Morin, R. B., Gorman, M., Eds.; Academic Press: New York, 1982; Vol. 

1, pp 1–92.  

 (96) Colvin, E. W. Classical -Lactam Structures. In The Chemistry of -Lactams; Page, M. I. Ed.; 

Blackie Academic and Professional: Glasgow, 1992; pp 325–347.  

 (97) For reviews of -lactam biosynthesis, see: (a) Baldwin, J. E.; Schofield, C. The Biosynthesis of -

Lactams. In The Chemistry of -Lactams; Page, M. I. Ed.; Blackie Academic and Professional: 

Glasgow, 1992; pp 1–78. (b) Queener, S. W.; Neuss, N. The Biosynthesis of -Lactam 

Antibiotics. In Chemistry and Biology of -Lactam Antibiotics; Morin, R. B., Gorman, M., Eds.; 

Academic Press: New York, 1982; Vol. 3, pp 1–81.  

 (98) Gordon, E. M.; Sykes, R. B. Cephamycins. In Chemistry and Biology of -Lactam Antibiotics; 

Morin, R. B., Gorman, M., Eds.; Academic Press: New York, 1982; Vol. 1, pp 199–371.  

 (99) Dunn, G. L. J. Antimicrob. Chemother. 1982, 10 (Suppl. C), 1–10.  

 (100) (a) Nagarajan, R.; Boeck, L. D.; Gorman, M.; Hamill, R. L.; Higgens, C. E.; Hoehn, M. M.; Stark, 

W. M.; Whitney, J. G. J. Am. Chem. Soc. 1971, 93, 2308–2310. (b) Nagarajan, R. -Lactam 

Antibiotics from Streptomyces. In Cephalosporins and Penicillins; Flynn, E. H. Ed. Academic 

Press: New York, 1972.  

 (101) Albers-Schönberg, G.; Arison, B. H.; Smith, J. L. Tetrahedron Lett. 1972, 29, 2911–2914.    

 (102) Stapley, E. O.; Jackson, M.; Hernandez, S.; Zimmerman, S. B.; Currie, S. A.; Mochales, S.; Mata, 

J. M.; Woodruff, H. B.; Hendlin, D. Antimicrob. Agents Chemother. 1972, 2, 122–131. 

 (103) Miller, T. W.; Goegelman, R. T.; Weston, R. G.; Putter, I.; Wolf, F. J. Antimicrob. Agents 

Chemother. 1972, 2, 132–135.  

 (104) Selwyn, S. J. Antimicrob. Chemother. 1982, 9 (Suppl. B), 1–10.  

 (105) Carmine, A. A.; Brogden, R. N.; Heel, R. C.; Speight, T. M.; Avery, G. S. Drugs 1983, 25, 223–

289.  

 (106) The syn- (Z-) isomer of the oximino functionality is 10–50 times more potent against Gram-

positive and Gram-negative organisms than the anti- (E-) isomers.99  

 (107) In the case of moxalactam, the 7-methoxy group was shown to protect the compound from 

hydrolysis by penicillinases and the carboxy group of the 7-acylamino sidechain provided 



 

247 

                                                                                                                                                                     

protection from cephalosporinases. See: Murakami, K.; Yoshida, T. Antimicrob. Agents 

Chemother. 1981, 19, 1–7.  

 (108) For an early study concerned with substitution of the cephalosporin sulfur with carbon and 

oxygen, see: Firestone, R. A.; Fahey, J. L.; Maciejewicz, N. S.; Patel, G. S.; Christensen, B. G. J. 

Med. Chem. 1977, 20, 551–556.     

 (109) Bryskier, A. Clin. Microbiol. Infect. 1997, 3 (Suppl. 1), S1–S6.  

 (110) Pechère, J. C.; Wilson, W.; Neu, H. J. Antimicrob. Chemother. 1995, 36, 757–771.  

 (111) Hancock, R. E. W.; Bellido, F. J. Antimicrob. Chemother. 1992, 29 (Suppl. A), 1–6.  

 (112) Hebeisen, P.; Heinze-Krauss, I.; Angehrn, P.; Hohl, P.; Page, M. G. P.; Then, R. L. Antimicrob. 

Agents Chemother. 2001, 45, 825–836.  

 (113) Sader, H. S.; Fritsche, T. R.; Kaniga, K.; Ge, Y.; Jones, R. N. Antimicrob. Agents Chemother. 

2005, 49, 3501–3512.  

 (114) For other cephalosporins and -lactams currently in development, see ref 19. 

 (115) Widmer, A. F. Clin. Infect. Dis. 2008, 46, 656–658.  

 (116) Kosowaka-Shick, K.; McGhee, P. L.; Appelbaum, P. C. Antimicrob. Agents Chemother. 2010, 54, 

1670–1677.  

 (117) Ratcliffe, R. W.; Albers-Schönberg, G. The Chemistry of Thienamycin and Other Carbapenem 

Antibiotics. In Chemistry and Biology of -Lactam Antibiotics; Morin, R. B., Gorman, M., Eds.; 

Academic Press: New York, 1982; Vol. 2, pp 227–313.  

 (118) Basker, M. J. J. Antimicrob. Chemother. 1982, 10, 4–7.  

 (119) Cherry, P. C.; Newall, C. E. Clavulanic acid. In Chemistry and Biology of -Lactam Antibiotics; 

Morin, R. B., Gorman, M., Eds.; Academic Press: New York, 1982; Vol. 2, pp 361–402.  

 (120) Kamiya, T.; Aoki, H.; Mine, Y. Nocardicins. In Chemistry and Biology of -Lactam Antibiotics; 

Morin, R. B., Gorman, M., Eds.; Academic Press: New York, 1982; Vol. 2, pp 165–226. 

 (121) Ito, T.; Ezaki, N.; Ohba, K.; Amano, S.; Kondo, Y.; Miyadoh, S.; Shomura, T.; Sezaki, M.; Niwa, 

T.; Kojima, M.; Inouye, S.; Yamada, Y.; Niida, T. J. Antibiot. 1982, 35, 533–535 

 (122) Tsuji, N.; Nagashima, K.; Kobayashi, M.; Terui, Y.; Matsumoto, K.; Kondo, E. J. Antibiot. 1982, 

35, 536–540.  

 (123) (a) Kawamura, Y.; Yasuda, Y.; Mayama, M.; Tanaka, K. J. Antibiot. 1982, 35, 10–14. (b) Shoji, 

J.; Hinoo, H.; Sakazaki, R.; Tsuji, N.; Nagashima, K.; Matsumoto, K.; Takahashi, Y.; Kozuki, S.; 

Hattori, T.; Kondo, E.; Tanaka, K. J. Antibiot. 1982, 35, 15–23. (c) Tsuji, N.; Nagashima, K.; 

Kobayashi, M.; Shoji, J.; Kato, T.; Terui, Y.; Nakai, H.; Shiro, M. J. Antibiot. 1982, 35, 24–31. 

(d) Kimura, Y.; Motokawa, K.; Nagata, H.; Kameda, Y.; Matsuura, S.; Mayama, M.; Yoshida, T. 

J. Antibiot. 1982, 35, 32–38. 

 (124) Murakami, K.; Doi, M.; Yoshida, T. J. Antibiotics 1982, 35, 39–45.  

 (125) Albers-Schönberg, G.; Arison, B. H.; Hensens, O. D.; Hirshfield, J.; Hoogsteen, K.; Kaczka, E. 

A.; Rhodes, R. E.; Kahan, J. S.; Kahan, F. M.; Ratcliffe, R. W.; Walton, E.; Ruswinkle, L. J.; 

Morin, R. B.; Christensen, B. G. J. Am. Chem. Soc. 1978, 100, 6941–6949.   

 (126) Carbapenems such as thienamycin with 6S,8R stereochemistry (trans across C5–C6) have a 



 

248 

                                                                                                                                                                     

superior spectrum of antibiotic activity, antibiotic potency, and stability to -lactamases in 

comparison to carbapenems such as epithienamycin A (olivanic acid MM 22380) which have 

6R,8S stereochemistry and a cis relationship across C5–C6.132 With respect to -lactamase 

inhibition, however, the sulfate olivanic acids 4550, 13902, and 17880 (Appendix A), which have 

6R,8S stereochemistry and cis relationship, are said to be more potent inhibitors than 

thienamycin.118  

 (127) (a) Johnston, D. B. R.; Schmitt, S. M.; Bouffard, F. A.; Christensen, B. G. J. Am. Chem. Soc. 

1978, 100, 313–315. (b) Bouffard, F. A.; Johnston, D. B. R.; Christensen, B. G. J. Org. Chem. 

1980, 45, 1130–1135. (c) Schmitt, S. M.; Johnston, D. B. R.; Christensen, B. G. J. Org. Chem. 

1980, 45, 1135–1142. (d) Schmitt, S. M.; Johnston, D. B. R.; Christensen, B. G. J. Org. Chem. 

1980, 45, 1142–1148. 

 (128) Melillo, D. G.; Shinkai, I.; Liu, T.; Ryan, K.; Sletzinger, M. Tetrahedron Lett. 1980, 21, 2783–

2786.  

 (129) Kahan, F. M.; Kropp, H.; Sundelof, J. G.; Birnbaum, J. J. Antimicrob. Chemother. 1983, 12 

(Suppl. D), 1–35.  

 (130) Kropp, H.; Sundelof, J. G.; Kahan, J. S.; Kahan, F. M.; Birnbaum, J. Antimicrob. Agents 

Chemother. 1980, 17, 993–1000.    

 (131) Jones, R. N. Am. J. Med. 1985, 78, 22–32.  

 (132) Moellering, R. C., Jr.; Eliopoulos, G. M.; Sentochnik, D. E. J. Antimicrob. Chemother. 1989, 24, 

(Suppl. A.), 1–7.   

 (133) Rodloff, A. C.; Goldstein, E. J. C.; Torres, A. J. Antimicrob. Chemother. 2006, 58, 916–929. 

 (134) Kattan, J. N.; Villegas, M. V.; Quinn, J. P. Clin. Microbiol. Infect. 2008, 14, 1102–1111.  

 (135) Edwards, J. R.; Turner, P. J.; Wannop, C.; Withnell, E. S.; Grindey, A. J.; Nairn, K. Antimicrob. 

Agents Chemother. 1989, 33, 215–222.  

 (136) Edwards, J. R. J. Antimicrob. Chemother. 1995, 36 (Suppl. A), 1–17.  

 (137) Fukasawa, M.; Sumita, Y.; Harabe, E. T.; Tanio, T. Nouda, H.; Kohzuki, T.; Okuda, T.; 

Matsumura, H.; Sunagawa, M. Antimicrob. Agents Chemother. 1992, 36, 1577–1579.  

 (138) Goldstein, E. J. C. J. Antimicrob. Chemother. 2004, 53 (Suppl. S2), ii5–ii6.  

 (139) Fritsche, T. R.; Stilwell, M. G.; Jones, R. N. Clin. Microbiol. Infect. 2005, 11, 974–984.  

 (140) Nicolau, D. P. Expert Opin. Pharmacother. 2008, 9, 23–37.  

 (141) (a) Miyazaki, S.; Hosoyama, T.; Furuya, N.; Ishii, Y.; Matsumoto, T.; Ohno, A.; Tateda, K.; 

Yamaguchi, K. Antimicrob. Agents Chemother. 2001, 45, 203–207. (b) Kobayashi, R.; Konomi, 

M.; Hasegawa, K.; Morozumi, M.; Sunadawa, K.; Ubukata, K. Antimicrob. Agents Chemother. 

2005, 49, 889–894.  

 (142) Ueda, Y.; Kanazawa, K.; Eguchi, K.; Takemoto, K.; Eriguchi, Y.; Sunagawa, M. Antimicrob. 

Agents Chemother. 2005, 49, 4185–4196.  

 (143) Sader, H. S.; Fritsche, T. R.; Jones, R. N. Antimicrob. Agents Chemother. 2008, 52, 1153–1155.  

 (144) Di Modugno, E.; Erbetti, I.; Ferrari, L.; Galassi, G.; Hammond, S. M.; Xerri, L. Antimicrob. 

Agents Chemother. 1994, 38, 2362–2368. 



 

249 

                                                                                                                                                                     

 (145) Wise, R.; Andrews, J. M.; Brenwald, N. Antimicrob. Agents Chemother. 1996, 40, 1248–1253. 

 (146) Tamura, S.; Miyazaki, S.; Tateda, K.; Ohno, A.; Ishii, Y.; Matsumoto, T.; Furuya, N.; Yamaguchi, 

K. Antimicrob. Agents Chemother. 1998, 42, 1858–1861.  

 (147) For a first-hand account of Woodward’s research with penems, see: Woodward, R. B. Philos. 

Trans. R. Soc. Lond. B. 1980, 289, 239–250.  

 (148) Ernest, I. The Penems. In Chemistry and Biology of -Lactam Antibiotics; Morin, R. B., Gorman, 

M., Eds.; Academic Press: New York, 1982; Vol. 2, pp 315–360.  

 (149) Ernest, I.; Gosteli, J.; Greengrass, C. W.; Holick, W.; Jackman, D. E.; Pfaendler, H. R.; 

Woodward, R. B. J. Am. Chem. Soc. 1978, 100, 8214–8222.  

 (150) Lang, M.; Prasad, K.; Holick, W.; Gosteli, J.; Ernest, I.; Woodward, R. B. J. Am. Chem. Soc. 

1979, 101, 6296–6301.    

 (151) Ernest, I.; Gosteli, J.; Woodward, R. B. J. Am. Chem. Soc. 1979, 101, 6301–6305. 

 (152) Pfaendler, H. R.; Gosteli, J.; Woodward, R. B. J. Am. Chem. Soc. 1979, 101, 6306–6310. 

 (153) 6-Acylaminopenems were very labile in acid and neutral aqueous solution. In phosphate buffer 

(pH 7.4, 37 C), the half-life of 30 was <60 minutes and the half-life of 29 was <15 minutes.148   

 (154) Pfaendler, H. R.; Gosteli, J.; Woodward, R. B. J. Am. Chem. Soc. 1980, 102, 2039–2044.  

 (155) Sch 29482 was in Phase II clinical trials but was discontinued by Schering–Plough due to an 

odour problem.19  

 (156) (a) Ganguly, A. K.; Afonso, A.; Girijavallabhan, V. M.; McCombie, S. J. Antimicrob. Chemother. 

1985, 15 (Suppl. C), 1–4. (b) Piddock, L. J. V.; Wise, R. J. Antimicrob. Chemother. 1985, 15 

(Suppl. C), 5–14. (c) Shannon, K.; King, A.; Phillips, I. J. Antimicrob. Chemother. 1985, 15 

(Suppl. C), 15–23. (d) Neu, H. C.; Chin, N. X.; Labthavikul, P. J. Antimicrob. Chemother. 1985, 

15 (Suppl. C), 25–37.  

 (157) Dalhoff, A.; Thomson, C. J. Chemother. 2003, 49, 105–120.  

 (158) Mushtaq, S.; Hope, R.; Warner, M.; Livermore, D. M. J. Antimicrob. Chemother. 2007, 59, 1025–

1030.  

 (159) Katayama, N.; Nozaki, Y.; Okonogi, K.; Ono, H.; Harada, S.; Okazaki, H. J. Antibiot. 1985, 38, 

1117–1127.  

 (160) Hida, T.; Tsubotani, S.; Katayama, N.; Okazaki, H.; Harada, S. J. Antibiot. 1985, 38, 1128–1140.  

 (161) The formamido substituent has also been incorporated into penicillins and cephalosporins. See ref 

19 for an excellent description of penicillin and cephalosporin SAR.  

 (162) Imada, A.; Kitano, K.; Kintaka, K.; Muroi, M.; Asai, M. Nature 1981, 289, 590–591.  

 (163) Sykes, R. B.; Cimarusti, C. M.; Bonner, D. P.; Bush, K.; Floyd, D. M.; Georgopapadakou, N. H.; 

Koster, W. H.; Liu, W. C.; Parker, W. L.; Principe, P. A.; Rathnum, M. L.; Slusarchyk, W. A.; 

Trejo, W. H.; Wells, J. S. Nature 1981, 289, 489–491.   

 (164) Sykes, R. B.; Bonner, D. P.; Bush, K.; Georgopapadakou, N. H.; Wells, J. S. J. Antimicrob. 

Chemother. 1981, 8 (Suppl. E), 1–16.  

 (165) Sykes, R. B.; Bonner, D. P.; Bush, K.; Georgopapadakou, N. H. Antimicrob. Agents Chemother. 

1982, 21, 85–92.  



 

250 

                                                                                                                                                                     

 (166) While aztreonam has no activity against S. aureus, it should be noted that analogues of aztreonam 

with different oxime ether substituents (e.g. O-methyl, O-ethyl oximes) show reasonably potent 

activity against Gram-positive organisms such as S. aureus. In addition, other monobactams with 

acylamino sidechains of broad-spectrum penicillins also display anti-Gram-positive activity.168  

 (167) Sakurai, Y.; Yoshida, Y.; Saitoh, K.; Nemoto, M.; Yamaguchi, A.; Sawai, T. J. Antibiotics 1990, 

43, 403–410. 

 (168) Koster, W. H.; Cimarusti, C. M.; Sykes, R. B. Monobactams. In Chemistry and Biology of -

Lactam Antibiotics; Morin, R. B., Gorman, M., Eds.; Academic Press: New York, 1982; Vol. 3, 

pp 339–375. 

 (169) Page, M. G. P.; Dantier, C.; Desarbre, E. Antimicrob. Agents Chemother. 2010, 54, 2291–2302.  

 (170) Livermore, D. M.; Mushtaq, S.; Warner, M. J. Antimicrob. Chemother. 2010, 65, 2382–2395.  

 (171) For an early review of bacterial cell walls, see: Schleifer, K. H.; Kandler, O. Bacteriol. Rev. 1972, 

36, 407–477.  

 (172) For recent reviews of cell wall structure and biosynthesis, see: (a) Vollmer, W.; Blanot, D.; de 

Pedro, M. A. FEMS Microbiol. Rev. 2008, 32, 149–167. (b) Barreteau, H.; Kovač, A.; Boniface, 

A.; Sova, M.; Gobec, S.; Blanot, D. FEMS Microbiol. Rev. 2008, 32, 168–207. (c) Bouhss, A.; 

Trunkfield, A. E.; Bugg, T. D. H.; Megin-Lecreulx, D. FEMS Microbiol. Rev. 2008, 32, 208–233. 

(d) Vollmer, W. FEMS Microbiol. Rev. 2008, 32, 287–306.  

 (173) Waxman, D. J.; Strominger, J. L. -Lactam Antibiotics: Biochemical Modes of Action. In 

Chemistry and Biology of -Lactam Antibiotics; Morin, R. B., Gorman, M., Eds.; Academic Press: 

New York, 1982; Vol. 3, pp 209–285.  

 (174) For early reviews of the -lactam mode of action, see: (a) Tipper, D. J. Rev. Infect. Dis. 1979, 1, 

39–54. (b) Waxman, D. J.; Strominger, J. L. Annu. Rev. Biochem. 1983, 52, 825–869.    

 (175) Frère, J.-M.; Nguyen-Distèche, M.; Coyette, J.; Joris, B. Mode of Action: Interaction with the 

Penicillin-Binding Proteins. In The Chemistry of -Lactams; Page, M. I. Ed.; Blackie Academic 

and Professional: Glasgow, 1992; pp 148–197. 

 (176) For an excellent review of PBP structures and roles in cell wall biosynthesis, see: Sauvage, E.; 

Kerff, F.; Terrak, M.; Ayala, J. A.; Charlier, P. FEMS Microbiol. Rev. 2008, 32, 234–258.  

 (177) Zapun, A.; Contreras-Martel, C.; Vernet, T. FEMS Microbiol. Rev. 2008, 32, 361–385.   

 (178) Gardner, A. D. Nature 1940, 146, 837–838.  

 (179) Park, J. T.; Johnson, M. J. J. Biol. Chem. 1949, 179, 585–592.  

 (180) (a) Park, J. T. J. Biol. Chem. 1952, 194, 877–884. (b) Park, J. T. J. Biol. Chem. 1952, 194, 885–

895. (c) Park, J. T. J. Biol. Chem. 1952, 194, 897–904. 

 (181) Park, J. T.; Strominger, J. L. Science 1957, 125, 99–101.  

 (182) (a) Lederberg, J. Proc. Natl. Acad. Sci. U.S.A. 1956, 42, 574–577. (b) Lederberg, J. J. Bacteriol. 

1957, 73, 144.  

 (183) Hanh, F. E.; Ciak, J. Science 1957, 125, 119–120.  

 (184) There is variability in the composition of the bridging peptide strand among Gram-positive 

organisms.171,172d     



 

251 

                                                                                                                                                                     

 (185) Salton, M. R. J. Biochim. Biophys. Acta 1961, 52, 329–342.  

 (186) Wise, E. M. Jr.; Park, J. T. Proc. Natl. Acad. Sci. U.S.A. 1965, 54, 75–81.  

 (187) Tipper, D. J.; Strominger, J. L. Proc. Natl. Acad. Sci. U.S.A. 1965, 54, 1133–1141.  

 (188) Tipper and Strominger describe penicillins as substrate analogues of peptidoglycan. Lee and Boyd 

later described penicillins as transition state analogues of the D-Ala-D-Ala fragment. See: (a) Lee, 

B. J. Mol. Biol. 1971, 61, 463–469, and (b) Boyd, D. B. J. Med. Chem. 1979, 22, 533–537.  

 (189) For additional support for the Tipper–Strominger substrate analogue hypothesis, see: Waxman, D. 

J.; Yocum, R. R.; Strominger, J. L. Philos. Trans. R. Soc. London, Ser. B 1980, 289, 257–271.  

 (190) Schepartz, S. A.; Johnson, M. J. J. Bacteriol. 1956, 71, 84–90.  

 (191) Cooper, P. D. Bacteriol. Rev. 1956, 20, 28–48.  

 (192) Suginaka, H.; Blumberg, P. M.; Strominger, J. L. J. Biol. Chem. 1972, 247, 5279–5288.  

 (193) Blumberg, P. M.; Strominger, J. L. J. Biol. Chem. 1972, 247, 8107–8113.  

 (194) Blumberg, P. M.; Strominger, J. L. Bact. Rev. 1974, 38, 291–335.  

 (195) Ghuysen, J.-M. Annu. Rev. Microbiol. 1991, 45, 37–67.  

 (196) Low molecular weight PBPs have also been sub-classified into classes C1, C2, or C3. 

Alternatively, LMW PBPs have been divided into class A, B, or C.176,205 Each of these conflicting 

classifications are commonly used.   

 (197) Anderson, J. W.; Pratt, R. F. Biochemistry 2000, 39, 12200–12209.  

 (198) Josephine, H.; Kumar, I.; Pratt, R. F. J. Am. Chem. Soc. 2004, 126, 8122–8123. 

 (199) Silvaggi, N. R.; Josephine, H. R.; Kuzin, A. P.; Nagarajan, R.; Pratt, R. F.; Kelly, J. A. J. Mol. 

Biol. 2005, 345, 521–533. 

 (200) For a crystal structure of a non-covalent preacylation (Michaelis) complex of PBP6 of E.coli with 

a peptidoglycan-mimetic substrate, see: Chen, Y.; Zhang, W.; Shi, Q.; Hesek, D.; Lee, M.; 

Mobashery, S.; Shoichet, B. K. J. Am. Chem. Soc. 2009, 131, 14345–14354.  

 (201) Dzhekieva, L.; Rocaboy, M.; Kerff, F.; Charlier, P.; Sauvage, E.; Pratt, R. F. Biochemistry 2010, 

49, 6411–6419.  

 (202) Anderson, J. W.; Adediran, S. A.; Charlier, P.; Nguyen-Distèche, M.; Freèe, J.-M.; Nicholas, R. 

A.; Pratt, R. F. Biochem. J. 2003, 373, 949–955.  

 (203) Kumar, I.; Josephine, H. R.; Pratt, R. F. ACS Chem. Biol. 2007, 2, 620–624.  

 (204) Buynak, J. D. ACS Chem. Biol. 2007, 2, 602–605.  

 (205) Pratt, R. F. Cell. Mol. Life Sci. 2008, 65, 2138–2155.  

 (206) Wilke, M. S.; Lovering, A. L.; Strynadka, N. C. J. Curr. Opin. Microbiol. 2005, 8, 525–533.  

 (207) Massova, I.; Mobashery, S. Antimicrob. Agents Chemother. 1998, 42, 1–17.  

 (208) For discussion on the evolution of -lactamases from penicillin-binding proteins, see: (a) 

Adediran, S. A.; Zhang, Z.; Nukaga, M.; Palzkill, T.; Pratt, R. F. Biochemistry 2005, 44, 7543–

7552. (b) Meroueh, S. O.; Minasov, G.; Lee, W.; Shoichet, B. K.; Mobashery, S. J. Am. Chem. 

Soc. 2003, 125, 9612–9618.    

 (209) Fuda, C. C. S.; Fisher, J. F.; Mobashery, S. Cell. Mol. Life. Sci. 2005, 62, 2617–2633.  

 (210) Lu, W.-P.; Sun, Y.; Bauer, M. D.; Paule, S.; Koenigs, P. M.; Kraft, W. G. Biochemistry 1999, 38, 



 

252 

                                                                                                                                                                     

6537–6546.  

 (211) For similar kinetic studies of PBP2x from S. pneumoniae with -lactams, see: Lu, W.-P.; Kincaid, 

E.; Sun, Y.; Bauer, M. D. J. Biol. Chem. 2001, 276, 31494–31501.  

 (212) Lim, D.; Strynadka, N. C. Nat. Struct. Biol. 2002, 9, 870–876.  

 (213) Livermore, D. M. Clin. Microbiol. Infect. 2006, 12 (Suppl. 2), 11–16.  

 (214) Llarrull, L. I.; Fisher, J. F.; Mobashery, S. Antimicrob. Agents Chemother. 2009, 53, 4051–4063. 

 (215) Duthie, E. S. Brit. J. Exp. Path. 1944, 25, 96–100.   

 (216) Abraham, E. P.; Waley, S. G. -Lactamases from Bacillus cereus. In Beta-Lactamases; Hamilton-

Miller, J. M. T., Smith, J. T. Eds.; Academic Press: New York, 1979; pp 311–338. 

 (217) (a) Pollock, M. R. J. Gen. Microbiol. 1961, 26, 239–253. (b) Collins, J. F. The Bacillus 

licheniformis -Lactamase System. In Beta-Lactamases; Hamilton-Miller, J. M. T., Smith, J. T. 

Eds.; Academic Press: New York, 1979; pp 351–368.   

 (218) Sykes, R. B.; Smith, J. T. Biochemical Aspects of -Lactamases from Gram-Negative Organisms. 

In Beta-Lactamases; Hamilton-Miller, J. M. T., Smith, J. T. Eds.; Academic Press: New York, 

1979; pp 369–401. 

 (219) Salerno, A. J.; Lampen, J. O. J. Bacteriol. 1986, 166, 769–778.  

 (220) Zhu, Y. F.; Curran, I. H. A.; Joris, B.; Ghuysen, J.-M.; Lampen, J. O. J. Bacteriol. 1990, 172, 

1137–1141.  

 (221) Marrero, A.; Mallorquí-Fernández, G.; García-Castellanos, T. G.; Gomis-Rüth, F. X. J. Mol. Biol. 

2006, 361, 506–521.  

 (222) Cha, J.; Vakulenko, S. B.; Mobashery, S. Biochemistry 2007, 46, 7822–7831.  

 (223) Koch, A. L. Crit. Rev. Microbiol. 2000, 26, 205–220.  

 (224) Hall, B. G.; Barlow, M. Drug Resist. Updates 2004, 7, 111–123.  

 (225) Sykes, R. B.; Bush, K. Physiology, Biochemistry, and Inactivation of -Lactamases. In Chemistry 

and Biology of -Lactam Antibiotics; Morin, R. B., Gorman, M., Eds.; Academic Press: New 

York, 1982; Vol. 3, pp 155–207. 

 (226) Hamilton-Miller, J. M. T. An Historical Introduction to -Lactamase. In Beta-Lactamases; 

Hamilton-Miller, J. M. T., Smith, J. T. Eds.; Academic Press: New York, 1979; pp 1–16.  

 (227) According to Jacoby,269 the -lactamase described originally by Abraham and Chain27 was 

actually an E. coli AmpC enzyme, which is a cephalosporinase and not a penicillinase. Abraham 

and Chain were unable to make this distinction in 1940 as cephalosporins had not yet been 

discovered.   

 (228) Richmond, M. H.; Sykes, R. Adv. Microbiol. Physiol. 1973, 9, 31–38.  

 (229) In the Richmond and Sykes scheme, class I enzymes are cephalosporinases, class II are 

penicillinases, class III are broad-spectrum enzymes sensitive to inhibition by cloxacillin but 

resistant to p-chloromercuribenzoate, class IV are broad-spectrum enzymes resistant to inhibition 

by cloxacillin but sensitive to p-chloromercuribenzoate, and class V enzymes are penicillinases 

that hydrolyze cloxacillin and are resistant to inhibition by p-chloromercuribenzoate.   

 (230) Sykes, R. B.; Matthew, M. J. Antimicrob. Chemother. 1976, 2, 115–157.  



 

253 

                                                                                                                                                                     

 (231) Ambler, R. P. Philos. Trans. R. Soc. London, Ser. B 1980, 289, 321–331.  

 (232) “I apologize for proposing a new nomenclature. Unfortunately, Roman numerals have been used 

both for distinguishing between the two enzymes of Bacillus cereus and by Richmond & Sykes 

for the classification of Gram-negative -lactamases.”  – Ambler, 1980.231 

 (233) Jaurin, B.; Grundström, T. Proc. Natl. Acad. Sci., U.S.A. 1981, 78, 4897–4901.  

 (234) Ouellette, M.; Bissonnette, L.; Roy, P. H. Proc. Natl. Acad. Sci., U.S.A. 1987, 84, 7378–7382.   

 (235) Bush, K. Rev. Infect. Dis. 1988, 10, 681–690.   

 (236) (a) Bush, K. Antimicrob. Agents Chemother. 1989, 33, 264–270. (b) Bush, K. Antimicrob. Agents 

Chemother. 1989, 33, 271–276.  

 (237) Bush, K.; Jacoby, G. A.; Medeiros, A. A. Antimicrob. Agents Chemother. 1995, 39, 1211–1233. 

 (238) Bush, K.; Jacoby, G. A. Antimicrob. Agents Chemother. 2010, 54, 969–976.  

 (239) For -lactamase nomenclature, see: Jacoby, G. A. Antimicrob. Agents Chemother. 2006, 50, 

1123–1129.  

 (240) Hamilton-Miller, J. M. T. J. Antimicrob. Chemother. 1982, 9 (Suppl. B), 11–19.  

 (241) Neu, H. C. Am. J. Med. 1985, 79 (Suppl. 5B), 2–12.    

 (242) Moellering, R. C. Jr. J. Antimicrob. Chemother. 1993, 31 (Suppl. A), 1–8.  

 (243) Sirot, D. J. Antimicrob. Chemother. 1995, 36 (Suppl A), 19–34.  

 (244) Jacoby, G. A.; Munoz-Price, L. S. N. Engl. J. Med. 2005, 352, 380–391.  

 (245) Babic, M.; Hujer, A. M.; Bonomo, R. A. Drug Resist. Updates 2006, 9, 142–156. 

 (246) Bradford, P. A. Clin. Microbiol. Rev. 2001, 14, 933–951.  

 (247) For a complete list, see: http://www.lahey.org./studies.  

 (248) Bush, K.; Jacoby, G. J. Antimicrob. Chemother. 1997, 39, 1–3.  

 (249) Bonnet, R. Antimicrob. Agents Chemother. 2004, 48, 1–14.  

 (250) Pratt, R. F.; Loosemore, M. J. Proc. Natl. Acad. Sci. U.S.A. 1978, 75, 4145–4149.  

 (251) Knott-Hunziker, V.; Waley, S. G.; Orlek, B. S.; Sammes, P. G. FEBS Lett. 1979, 99, 59–61.  

 (252) Fisher, J.; Charnas, R. L.; Knowles, J. R. Biochemistry 1978, 17, 2180–2184.  

 (253) Charnas, R. L.; Fisher, J.; Knowles, J. R. Biochemistry 1978, 17, 2185–2189.  

 (254) Fisher, J.; Belasco, J. G.; Khosla, S.; Knowles, J. R. Biochemistry 1980, 19, 2895–2901.  

 (255) Pratt, R. F. -Lactamase Inhibition. In The Chemistry of -Lactams; Page, M. I. Ed.; Blackie 

Academic and Professional: Glasgow, 1992.  

 (256) Adachi, H.; Ohta, T.; Matsuzawa, H. J. Biol. Chem. 1991, 266, 3186–3191.  

 (257) Strynadka, N. C. J.; Adachi, H.; Jensen, S. E.; Johns, K.; Sielecki, A.; Betzel, C.; Sutoh, K.; 

James, M. N. G. Nature 1992, 359, 700–705.  

 (258) Stec, B.; Holtz, K. M.; Wojciechowski, C. L.; Kantrowitz, E. R. Acta Crystallogr. 2005, D61, 

1072–1079.  

 (259) Queenan, A. M.; Bush, K. Clin. Microbiol. Rev. 2007, 20, 440–458.  

 (260) Minasov, G.; Wang, X.; Shoichet, B. K. J. Am. Chem. Soc. 2002, 124, 5333–5340.  

 (261) Chen, Y.; Shoichet, B. K.; Bonnet, R. J. Am. Chem. Soc. 2005, 127, 5423–5434.  

 (262) Chen, Y.; Bonnet, R.; Shoichet, B. K. J. Am. Chem. Soc. 2007, 129, 5378–5380.  



 

254 

                                                                                                                                                                     

 (263) Díaz, N.; Sordo, T. L.; Merz, K. M. Jr.; Suárez, D. J. Am. Chem. Soc. 2003, 125, 672–684. 

 (264) Hermann, J. C.; Hensen, C.; Ridder, L.; Mulholland, A. J.; Höltje, H.-D. J. Am. Chem. Soc. 2005, 

127, 4454–4465.  

 (265) Golemi-Kotra, D.; Meroueh, S. O.; Kim, C.; Vakulenko, S. B.; Bulychev, A.; Stemmler, A. J.; 

Stemmler, T. L.; Mobashery, S. J. Biol. Chem. 2004, 279, 34665–34673.  

 (266) Meroueh, S. O.; Fisher, J. F.; Schlegel, B.; Mobashery, S. J. Am. Chem. Soc. 2005, 127, 15397–

15407.  

 (267) The following mechanistic details of Mobashery’s computational work266 should be noted. (a) 

Deprotonation of Lys73 is proposed to occur only after the formation of the Michaelis complex. 

(b) Deprotonation of Lys73 by Glu166 does not occur directly but occurs instead through Ser70 

and the catalytic water molecule with an energy barrier of 5 kcal/mol. (c) Complex A (Figure 

10A) is 4 kcal/mol higher in energy than complex B (Figure 10B).  

 (268) While the distance between Glu166 and Ser130 is too great in most class A -lactamases for 

Lys73 to hydrogen-bond with both simultaneously, Lys73 has been observed in two different 

conformations in several X-ray structures of class A enzymes (e.g. CTX-M-9).261,262 This 

flexibility is likely required for Lys73 to participate in both of the proton shuttle events of the 

acylation half-reaction in most class A enzymes.   

 (269) Jacoby, G. A. Clin. Microbiol. Rev. 2009, 22, 161–182. 

 (270) Li, J.-B.; Cheng, J.; Yin, J.; Zhang, X.-N.; Gao, F.; Zhu, Y.-L.; Zhang, X.-J. Curr. Bioinformat. 

2009, 4, 218–225.  

 (271) Philippon, A.; Arlet, G.; Jacoby, G. A. Antimicrob. Agents Chemother. 2002, 46, 1–11.  

 (272) Nukaga, M.; Haruta, S.; Tanimoto, K.; Kogure, K.; Taniguchi, K.; Tamaki, M.; Sawai, T. J. Biol. 

Chem. 1995, 270, 5729–5735.  

 (273) Nukaga, M.; Taniguchi, K.; Washio, Y.; Sawai, T. Biochemistry 1998, 37, 10461–10468.  

 (274) Lobkovsky, E.; Moews, P. C.; Liu, H.; Zhao, H.; Frère, J.-M.; Knox, J. R. Proc. Natl. Acad. Sci. 

U.S.A. 1993, 90, 11257–11261.  

 (275) Oefner, C.; D’Arcy, A.; Daly, J. J.; Gubernator, K.; Charnas, R. L.; Heinze, I.; Hubschwerlen, 

Winkler, F. K. Nature 1990, 343, 284–288.  

 (276) Kato-Toma, Y.; Iwashita, T.; Masuda, K.; Oyama, Y.; Ishiguro, M. Biochem. J. 2003, 371, 175–

181.  

 (277) Teotico, D. G.; Babaoglu, K.; Rocklin, G. J.; Ferreira, R. S.; Giannetti, A. M.; Shoichet, B. K. 

Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 7455–7460.  

 (278) Trehan, I.; Morandi, F.; Blaszczak, L. C.; Shoichet, B. K. Chem. Biol. 2002, 9, 971–980.  

 (279) Dubus, A.; Normark, S.; Kania, M.; Page, M. G. P. Biochemistry 1994, 33, 8577–8586.  

 (280) Gherman, B. F.; Goldberg, S. D.; Cornish, V. W.; Friesner, R. A. J. Am. Chem. Soc. 2004, 126, 

7652–7664.  

 (281) Chen, Y.; Minasov, G.; Roth, T. A.; Prati, F.; Shoichet, B. K. J. Am. Chem. Soc. 2006, 128, 2970–

2976.  

 (282) Bulychev, A.; Massova, I.; Miyashita, K.; Mobashery, S. J. Am. Chem. Soc. 1997, 119, 7619–



 

255 

                                                                                                                                                                     

7625.  

 (283) Patera, A.; Blaszczak, L. C.; Shoichet, B. K. J. Am. Chem. Soc. 2000, 122, 10504–10512.  

 (284) Matthew, M. J. Antimicrob. Chemother. 1979, 5, 349–358.  

 (285) Huovinen, P.; Huovinen, S.; Jacoby, G. A. Antimicrob. Agents Chemother. 1988, 32, 134–136.  

 (286) Golemi, D.; Maveyraud, L.; Vakulenko, S.; Tranier, S.; Ishiwata, A.; Kotra, L. P.; Samama, J.-P.; 

Mobashery, S. J. Am. Chem. Soc. 2000, 122, 6132–6133.  

 (287) Brown, S.; Amyes, S. J. Antimicrob. Chemother. 2006, 57, 1–3.  

 (288) Poirel, L.; Naas, T.; Nordmann, P. Antimicrob. Agents Chemother. 2010, 54, 24–38.  

 (289) Walther-Rasmussen, J.; Høiby, N. J. Antimicrob. Chemother. 2006, 57, 373–383.  

 (290) Héritier, C.; Poirel, L.; Lambert, T.; Nordmann, P. Antimicrob. Agents Chemother. 2005, 49, 

3198–3202.   

 (291) Paetzel, M.; Danel, F.; de Castro, L.; Mosimann, S. C.; Page, M. G. P.; Strynadka, N. C. J. Nat. 

Struct. Biol. 2000, 7, 918–925.   

 (292) Maveyraud, L.; Golemi, D.; Kotra, L. P.; Tranier, S.; Vakulenko, S.; Mobashery, Samama, J.-P. 

Structure 2000, 8, 1289–1298.  

 (293) Golemi, D.; Maveyraud, L.; Vakulenko, S.; Samama, J.-P.; Mobashery, S. Proc. Natl. Acad. Sci. 

U.S.A. 2001, 98, 14280–14285.  

 (294) Tien, M.; Berlett, B. S.; Levine, R. L.; Chock, P. B.; Stadtman, E. R. Proc. Natl. Acad. Sci. U.S.A. 

1999, 96, 7809–7814.  

 (295) (a) Danel, F.; Hall, L. M. C.; Gur, D.; Livermore, D. M. Antimicrob. Agents Chemother. 1998, 42, 

3117–3122. (b) Danel, F.; Hall, L. M. C.; Duke, B.; Gur, D.; Livermore, D. M. Antimicrob. 

Agents Chemother. 1999, 43, 1362–1366.  

 (296) Danel, F.; Frère, J.-M.; Livermore, D. M. Biochim. Biophys. Acta 2001, 1546, 132–142.  

 (297) Danel, F.; Paetzel, M.; Strynadka, N. C. J.; Page, M. G. P. Biochemistry 2001, 40, 9412–9420.  

 (298) Li, J.; Cross, J. B.; Vreven, T.; Meroueh, S. O.; Mobashery, S.; Schlegel, H. B. Proteins 2005, 61, 

246–257.  

 (299) Santillana, E.; Beceiro, A.; Bou, G.; Romero, A. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 5354–

5359.  

 (300) Docquier, J.-D.; Calderone, V.; De Luca, F.; Benvenuti, M.; Giuliani, F.; Bellucci, L.; Tafi, A.; 

Nordmann, P.; Botta, M.; Rossolini, G. M.; Mangani, S. Chem. Biol. 2009, 16, 540–547.  

 (301) Sabath, L. D.; Abraham, E. P. Biochem. J. 1966, 98, 11c–13c.  

 (302) Kuwabara, S.; Abraham, E. P. Biochem. J. 1967, 103, 27c–30c.  

 (303) Saino, Y.; Kobayashi, F.; Inoue, M.; Mitsuhashi, S. Antimicrob. Agents Chemother. 1982, 22, 

564–570.  

 (304) Shannon, K.; King, A.; Phillips, I. J. Antimicrob. Chemother. 1986, 17, 45–50.  

 (305) Cuchural, G. J.; Malamy, M. H.; Tally, F. P. Antimicrob. Agents Chemother. 1986, 30, 645–648.  

 (306) Watanabe, M.; Iyobe, S.; Inoue, M.; Mistsuhashi, S. Antimicrob. Agents Chemother. 1991, 35, 

147–151.  

 (307) Laraki, N.; Franceschini, N.; Rossolini, G. M.; Santucci, P.; Meunier, C.; De Pauw, E.; 



 

256 

                                                                                                                                                                     

Amicosante, G.; Frère, J.-M.; Galleni, M. Antimicrob. Agents Chemother. 1999, 43, 902–906.  

 (308) Osano, E.; Arakawa, Y.; Wacharotayankun, R.; Ohta, M.; Horii, T.; Ito, H.; Yoshimura, F.; Kato, 

N. Antimicrob. Agents Chemother. 1994, 38, 71–78.  

 (309) Walsh, T. R.; Toleman, M. A.; Poirel, L.; Nordmann, P. Clin. Microbiol. Rev. 2005, 18, 306–325. 

 (310) Walsh, T. R. Clin. Microbiol. Infect. 2005, 11 (Suppl. 6), 2–9.  

 (311) Oelschlaeger, P.; Ai, N.; DuPrez, K. T.; Welsh, W. J.; Toney, J. H. J. Med. Chem. 2010, 53, 

3013–3027.  

 (312) Lauretti, L.; Riccio, M. L.; Mazzariol, A.; Cornaglia, G.; Amicosante, G.; Fontana, R.; Rossolini, 

G. M. Antimicrob. Agents Chemother. 1999, 43, 1584–1590.  

 (313) Toleman, M. A.; Simm, A. M.; Murphy, T. A.; Gales, A. C.; Biedenbach, D. J.; Jones, R. N.; 

Walsh, T. R. J. Antimicrob. Chemother. 2002, 50, 673–679.  

 (314) Castanheira, M.; Toleman, M. A.; Jones, R. N.; Schmidt, F. J.; Walsh, T. R. Antimicrob. Agents 

Chemother. 2004, 48, 4654–4661.  

 (315) Lee, K.; Yum, J. H.; Yong, D.; Lee, H. M.; Kim, H. D.; Docquier, J.-D.; Rossolini, G. M.; Chong, 

Y. Antimicrob. Agents Chemother. 2005, 49, 4485–4491.  

 (316) Sekiguchi, J.-i.; Morita, K.; Kitao, T.; Watanabe, N.; Okazaki, M.; Miyoshi-Akiyama, T.; 

Kanamori, M.; Kirikae, T. Antimicrob. Agents Chemother. 2008, 52, 4194–4197.  

 (317) Poirel, L.; Rodríguez-Martínez, J.-M.; Al Naiemi, N.; Debets-Ossenkopp, Y. J.; Nordmann, P. 

Antimicrob. Agents Chemother. 2010, 54, 2420–2424.  

 (318) Yong, D.; Bell, J. M.; Ritchie, B.; Pratt, R.; Toleman, M. A.; Walsh, T. R. A novel sub-group 

metallo--lactamase (MBL), AIM-1 emerges in Pseudomonas aeruginosa (PSA) from Australia. 

In Abstr. 47th Intersci. Conf. Antimicrob. Agents Chemother. American Society for Microbiology, 

Washington, DC, 2007. Abstr. C1-593, p. 75 (as cited by Poirel et al.317). 

 (319) Yong, D.; Toleman, M. A.; Giske, C. G.; Cho, H. S.; Sundman, K.; Lee, K.; Walsh, T. R. 

Antimicrob. Agents Chemother. 2009, 53, 5046–5054.  

 (320) Kumarasamy, K. K.; Toleman, M. A.; Walsh, T. R.; Bagaria, J.; Butt, F.; Balakrishnan, R.; 

Chaudhary, U.; Doumith, M.; Giske, C. G.; Krishnan, P.; Kumar, A. V.; Maharjan, S.; Mushtaq, 

S.; Noorie, T.; Paterson, D. L.; Pearson, A.; Perry, C.; Pike, R.; Rao, B.; Ray, U.; Sarma, J. B.; 

Sharma, M.; Sheridan, E.; Thirunarayan, M. A.; Turton, J.; Upadhyay, S.; Warner, M.; Welfare, 

W.; Livermore, D. M.; Woodford, N. Lancet Infect. Dis. 2010, 10, 597–602.  

 (321) Poirel, L.; Lagrutta, E.; Taylor, P.; Pham, J.; Nordmann, P. Antimicrob. Agents Chemother. 2010, 

54, 4914–4916.  

 (322) Pitout, J. D. D. Lancet Infect. Dis. 2010, 10, 578–579.  

 (323) Poirel, L.; Revathi, G.; Bernabeu, S.; Nordmann, P. Antimicrob. Agents Chemother. 2011, 55, 

934–936.    

 (324) Samuelsen, Ø.; Thilesen, C. M.; Heggelund, L.; Vada, A. N.; Kümmel, A.; Sundsfjord, A. J. 

Antimicrob. Chemother. 2011, 66, 670–672.   

 (325) Pfeifer, Y.; Witte, W.; Holfelder, M.; Busch, J.; Nordmann, P.; Poirel, L. Antimicrob. Agents 

Chemother. 2011, 55, 1318–1319.  



 

257 

                                                                                                                                                                     

 (326) Rasmussen, B. A.; Bush, K. Antimicrob. Agents Chemother. 1997, 41, 223–232.  

 (327) Bush, K. Clin. Infect. Dis. 1998, 27 (Suppl. 1), 48–53.  

 (328) Hall and Barlow have noted that the sequences of class B3 metallo--lactamases are much 

different than the class B1 and B2 MBLs and have suggested that subclass B3 should be renamed 

Ambler class E.329 However, this reclassification is not supported by Frère, Galleni, Bush, and 

Dideberg, who argue that class B2 MBLs are not more related to class B1 enzymes than class B3s 

from a functional and mechanistic perspective.330  

 (329) Hall, B. G.; Barlow, M. J. Antimicrob. Chemother. 2005, 55, 1050–1051.  

 (330) Frère, J.-M.; Galleni, M.; Bush, K.; Dideberg, O. J. Antimicrob. Chemother. 2005, 55, 1051–

1053.  

 (331) Galleni, M.; Lamotte-Brasseur, J.; Rossolini, G. M.; Spencer, J.; Dideberg, O.; Frère, J.-M. 

Antimicrob. Agents Chemother. 2001, 45, 660–663.  

 (332) Garau, G.; Garcia-Sáez, I.; Bebrone, C.; Anne, C.; Mercuri, P.; Galleni, M.; Frère, J.-M.; 

Dideberg, O. Antimicrob. Agents Chemother. 2004, 48, 2347–2349. 

 (333) Tioni, M. F.; Llarrull, L. I.; Poeylaut-Palena, A. A.; Martí, M. A.; Saggu, M.; Periyannan, G. R.; 

Mata, E. G.; Bennett, B.; Murgida, D. H.; Vila, A. J. J. Am. Chem. Soc. 2008, 130, 15852–15863.  

 (334) Davies, R. B.; Abraham, E. P.; Melling, J. Biochem. J. 1974, 143, 115–127.  

 (335) Davies, R. B.; Abraham, E. P. Biochem. J. 1974, 143, 129–135.   

 (336) Baldwin, G. S.; Galdes, A.; Hill, H. A. O.; Smith, B. E.; Waley, S. G.; Abraham, E. P. Biochem. J. 

1978, 175, 441–447.  

 (337) Hernandez Valladares, M.; Felici, A.; Weber, G.; Adolph, H. W.; Zeppenzauer, M.; Rossolini, G. 

M.; Amicosante, G.; Frère, J.-M.; Galleni, M. Biochemistry 1997, 36, 11534–11541.  

 (338) Crowder, M. W.; Walsh, T. R.; Banovic, L.; Pettit, M.; Spencer, J. Antimicrob. Agents Chemother. 

1998, 42, 921–926.  

 (339) Paul-Soto, R.; Hernandez-Valladares, M.; Galleni, M.; Bauer, R.; Zeppezauer, M.; Frère, J.-M.; 

Adolph, H.-W. FEBS Lett. 1998, 438, 137–140.  

 (340) Paul-Soto, R.; Bauer, R.; Frère, J.-M.; Galleni, M.; Meyer-Klaucke, W.; Nolting, H.; Rossolini, G. 

M.; de Seny, D.; Hernandez-Valladares, M.; Zeppezauer, M.; Adolph, H.-W. J. Biol. Chem. 1999, 

274, 13242–13249.   

 (341) Wommer, S.; Rival, S.; Heinz, U.; Galleni, M.; Frère, J.-M.; Franceschini, N.; Amicosante, G.; 

Rasmussen, B.; Bauer, R.; Adolph, H.-W. J. Biol. Chem. 2002, 277, 24142–24147.  

 (342) Siemann, S.; Brewer, D.; Clarke, A. J.; Dmitrienko, G. I.; Lajoie, G.; Viswanatha, T. Biochim. 

Biophys. Acta 2002, 1571, 190–200.  

 (343) Lassaux, P.; Traoré, D. A. K.; Loisel, E.; Favier, A.; Docquier, J.-D.; Sohier, J. S.; Laurent, C.; 

Bebrone, C.; Frère, J.-M.; Ferrer, J.-L.; Galleni, M. Antimicrob. Agents Chemother. 2011, 55, 

1248–1255.  

 (344) Murphy, T. A.; Simm, A. M.; Toleman, M. A.; Jones, R. N.; Walsh, T. R. Antimicrob. Agents 

Chemother. 2003, 47, 582–587.   

 (345) Murphy, T. A.; Catto, L. E.; Halford, S. E.; Hadfield, A. T.; Minor, W.; Walsh, T. R.; Spencer, J. 



 

258 

                                                                                                                                                                     

J. Mol. Biol. 2006, 357, 890–903.  

 (346) Carfi, A.; Pares, S.; Duée, E.; Galleni, M.; Duez, C.; Frère, J.-M.; Dideberg, O. EMBO J. 1995, 

14, 4914–4921.  

 (347) A low-resolution X-ray crystal structure of BcII was reported in 1987. See: Sutton, B. J.; 

Artymiuk, P. J.; Cordero-Borboa, A. E.; Little, C.; Phillips, D. C.; Waley, S. G. Biochem. J. 1987, 

248, 181–188.  

 (348) Concha, N. O.; Rasmussen, B. A.; Bush, K.; Herzberg, O. Structure 1996, 4, 823–836.  

 (349) Fabiane, S. M.; Sohi, M. K.; Wan, T.; Payne, D. J.; Bateson, J. H.; Mitchell, T.; Sutton, B. J. 

Biochemistry 1998, 37, 12404–12411.  

 (350) Crowder, M. W.; Spencer, J.; Vila, A. J. Acc. Chem. Res. 2006, 39, 721–728.  

 (351) Ullah, J. H.; Walsh, T. R.; Taylor, I. A.; Emery, D. C.; Verma, C. S.; Gamblin, S. J.; Spencer, J. J. 

Mol. Biol. 1998, 284, 125–136.  

 (352) García-Sáez, I.; Mercuri, P. S.; Papamicael, C.; Kahn, R.; Frère, J.-M.; Galleni, M.; Rossolini, G. 

M.; Dideberg, O. J. Mol. Biol. 2003, 325, 651–660.   

 (353) Garau, G.; Bebrone, C.; Anne, C.; Galleni, M.; Frère, J.-M.; Dideberg, O. J. Mol. Biol. 2005, 345, 

785–795.  

 (354) Dal Peraro, M.; Vila, A. J.; Carloni, P. Proteins 2004, 54, 412–423.  

 (355) Dal Peraro, M.; Llarrull, L. I.; Rothlisberger, U.; Vila, A. J.; Carloni, P. J. Am. Chem. Soc. 2004, 

126, 12661–12668.  

 (356) Rasia, R. M.; Vila, A. J. Biochemistry 2002, 41, 1853–1860.  

 (357) Bounaga, S.; Laws, A. P.; Galleni, M.; Page, M. I. Biochem. J. 1998, 331, 703–711.  

 (358) Wang, Z.; Benkovic, S. J. J. Biol. Chem. 1998, 273, 22402–22408.  

 (359) Wang, Z.; Fast, W.; Benkovic, S. J. J. Am. Chem. Soc. 1998, 120, 10788–10789.  

 (360) Wang, Z.; Fast, W.; Benkovic, S. J. Biochemistry 1999, 38, 10013–10023.  

 (361) Fast, W.; Wang, Z.; Benkovic, S. J. Biochemistry 2001, 40, 1640–1650.  

 (362) Dal Peraro, M.; Vila, A. J.; Carloni, P. Inorg. Chem. 2003, 42, 4245–4247.  

 (363) Garrity, J. D.; Carenbauer, A. L.; Herron, L. R.; Crowder, M. W. J. Biol. Chem. 2004, 279, 920–

927.  

 (364) Yamaguchi, Y.; Kuroki, T.; Yasuzawa, H.; Higashi, T.; Jin, W.; Kawanami, A.; Yamagata, Y.; 

Arakawa, Y.; Goto, M.; Kurosaki, H. J. Biol. Chem. 2005, 280, 20824–20832.  

 (365) Llarrull, L. I.; Fabiane, S. M.; Kowalski, J. M.; Bennett, B.; Sutton, B. J.; Vila, A. J. J. Biol. 

Chem. 2007, 282, 18276–18285.  

 (366) Crisp, J.; Conners, R.; Garrity, J. D.; Carenbauer, A. L.; Crowder, M. W.; Spencer, J. 

Biochemistry 2007, 46, 10664–10674.  

 (367) Garrity, J. D.; Bennett, B.; Crowder, M. W. Biochemistry 2005, 44, 1078–1087.  

 (368) Spencer, J.; Read, J.; Sessions, R. B.; Howell, S.; Blackburn, G. M.; Gamblin, S. J. J. Am. Chem. 

Soc. 2005, 127, 14439–14444.  

 (369) de Seny, D.; Heinz, U.; Wommer, S.; Kiefer, M.; Meyer-Klaucke, W.; Galleni, M.; Frère, J.-M.; 

Bauer, R.; Adolph, H.-W. J. Biol. Chem. 2001, 276, 45065–45078.  



 

259 

                                                                                                                                                                     

 (370) Abriata, L. A.; González, L. J.; Llarrull, L. I.; Tomatis, P. E.; Myers, W. K.; Costello, A. L.; 

Tierney, D. L.; Vila, A. J. Biochemistry 2008, 47, 8590–8599.   

 (371) Llarrull, L. I.; Tioni, M. F.; Vila, A. J. J. Am. Chem. Soc. 2008, 130, 15842–15851.  

 (372) Breece, R. M.; Hu, Z.; Bennett, B.; Crowder, M. W.; Tierney, D. L. J. Am. Chem. Soc. 2009, 131, 

11642–11643.  

 (373) González, J. M.; Buschiazzo, A.; Vila, A. J. Biochemistry 2010, 49, 7930–7938.  

 (374) González, J. M.; Marín, F. J. M.; Costello, A. L.; Tierney, D. L.; Vila, A. J. J. Mol. Biol. 2007, 

373, 1141–1156.  

 (375) Hu, Z.; Periyannan, G.; Bennett, B.; Crowder, M. W. J. Am. Chem. Soc. 2008, 130, 14207–14216.  

 (376) Dal Peraro, M.; Vila, A. J.; Carloni, P.; Klein, M. L. J. Am. Chem. Soc. 2007, 129, 2808–2816.  

 (377) Scrofani, S. D. B.; Chung, J.; Huntley, J. J. A.; Benkovic, S. J.; Wright, P. E.; Dyson, H. J. 

Biochemistry 1999, 38, 14507–14514.  

 (378) Huntley, J. J. A.; Scrofani, S. D. B.; Osborne, M. J.; Wright, P. E.; Dyson, H. J. Biochemistry 

2000, 39, 13356–13364.  

 (379) Huntley, J. J. A.; Fast, W.; Benkovic, S. J.; Wright, P. E.; Dyson, H. J. Protein Sci. 2003, 12, 

1368–1375.    

 (380) Moali, C.; Anne, C.; Lamotte-Brasseur, J.; Groslambert, S.; Devreese, B.; Van Beeumen, J.; 

Galleni, M.; Frère, J.-M. Chem. Biol. 2003, 10, 319–329.  

 (381) Salsbury, F. R. Jr.; Crowley, M. F.; Brooks, C. L. III Proteins 2001, 44, 448–459.  

 (382) Suárez, D.; Brothers, E. N.; Merz, K. M. Jr. Biochemistry 2002, 41, 6615–6630.  

 (383) Suárez, D.; Díaz, N.; Merz, K. M. Jr. J. Comput. Chem. 2002, 23, 1587–1600.  

 (384) Concha, N. O.; Janson, C. A.; Rowling, P.; Pearson, S.; Cheever, C. A.; Clarke, B. P.; Lewis, C.; 

Galleni, M.; Frère, J.-M.; Payne, D. J.; Bateson, J. H.; Abdel-Meguid, S. S. Biochemistry 2000, 

39, 4288–4298.   

 (385) Crawford, P. A.; Yang, K.-W.; Sharma, N.; Bennett, B.; Crowder, M. W. Biochemistry 2005, 44, 

5168–5176.  

 (386) Costello, A. L.; Sharma, N. P.; Yang, K.-W.; Crowder, M. W.; Tierney, D. L. Biochemistry 2006, 

45, 13650–13658.  

 (387) Bebrone, C.; Delbrück, H.; Kupper, M.; B.; Schlömer, P.; Willmann, C.; Frère, J.-M.; Fischer, R.; 

Galleni, M.; Hoffmann, K. M. V. Antimicrob. Agents Chemother. 2009, 53, 4464–4471.   

 (388) Bebrone, C.; Anne, C.; De Vriendt, K.; Devreese, B.; Rossolini, G. M.; Van Beeumen, J.; Frère, 

J.-M.; Galleni, M. J. Biol. Chem. 2005, 280, 28195–28202.  

 (389) Xu, D.; Xie, D.; Guo, H. J. Biol. Chem. 2006, 281, 8740–8747.  

 (390) Simona, F.; Magistrato, A.; Dal Peraro, M.; Cavalli, A.; Vila, A. J.; Carloni, P. J. Biol. Chem. 

2009, 284, 28164–28171.  

 (391) Wu, S.; Xu, D.; Guo, H. J. Am. Chem. Soc. 2010, 132, 17986–17988.  

 (392) Sharma, N. P.; Hajdin, C.; Chandrasekar, S.; Bennett, B.; Yang, K.-W.; Crowder, M. W. 

Biochemistry 2006, 45, 10729–10738.  

 (393) Sharma, N.; Hu, Z.; Crowder, M. W.; Bennett, B. J. Am. Chem. Soc. 2008, 130, 8215–8222.  



 

260 

                                                                                                                                                                     

 (394) Knowles, J. R. Acc. Chem. Res. 1985, 18, 97–104.  

 (395) Behrens, O. K.; Garrison, L. Arch. Biochem. 1950, 27, 94–98.  

 (396) Cole, M. Inhibition of -Lactamases. In Beta-Lactamases; Hamilton-Miller, J. M. T.; Smith, J. T. 

Eds.; Academic Press: London, 1979; pp 205–289.   

 (397) Cole, M.; Elson, S.; Fullbrook, P. D. Biochem. J. 1972, 127, 295–308.  

 (398) Reading, C.; Cole, M. Antimicrob. Agents Chemother. 1977, 11, 852–857.  

 (399) Cole, M. Philos. Trans. R. Soc. Lond. B 1980, 289, 207–223.  

 (400) Sykes, R. B.; Bush, K. Physiology, Biochemistry, and Inactivation of -Lactamases. In Chemistry 

and Biology of -Lactam Antibiotics; Morin, R. B., Gorman, M., Eds.; Academic Press: New 

York, 1982; Vol. 3, pp 155–207. 

 (401) Cartwright, S. J.; Waley, S. G. Med. Res. Rev. 1983, 3, 341–382.  

 (402) Bush, K.; Sykes, R. B. J. Antimicrob. Chemother. 1983, 11, 97–107.  

 (403) Bush, K. Clin. Microbiol. Rev. 1988, 1, 109–123.  

 (404) Rolinson, G. N. Rev. Infect. Dis. 1991, 13 (Suppl. 9), S727–S732.  

 (405) Massova, I.; Mobashery, S. Acc. Chem. Res. 1997, 30, 162–168.  

 (406) Page, M. G. P. Drug Resist. Updates 2000, 3, 109–125. 

 (407) Therrien, C.; Levesque, R. C. FEMS Microbiol. Rev. 2000, 24, 251–262.  

 (408) Georgopapadakou, N. H. Expert Opin. Invest. Drugs 2004, 13, 1307–1318. 

 (409) Phillips, O. A. Expert Opin. Ther. Patents 2006, 16, 319–331.  

 (410) Silver, L. L. Expert Opin. Ther. Patents 2007, 17, 1175–1181.  

 (411) Mansour, T. S.; Bradford, P. A.; Venkatesan, A. M. Ann. Rep. Med. Chem. 2008, 43, 247–268.  

 (412) Buynak, J. D. Biochem. Pharmacol. 2006, 71, 930–940.  

 (413) Shahid, M.; Sobia, F.; Singh, A.; Malik, A.; Khan, H. M.; Jonas, D.; Hawkey, P. M. Crit. Rev. 

Microbiol. 2009, 35, 81–108.   

 (414) Bebrone, C.; Lassaux, P.; Vercheval, L.; Sohier, J.-S.; Jehaes, A.; Sauvage, E.; Galleni, M. Drugs 

2010, 70, 651–679.  

 (415) Abraham, E. P.; Newton, G. G. F. Biochem. J. 1956, 63, 628–634.  

 (416) Sutherland, R.; Batchelor, F. R. Nature 1964, 201, 868–869.  

 (417) Kiener, P. A.; Waley, S. G. Biochem. J. 1977, 165, 279–285.  

 (418) Persaud, K. C.; Pain, R. H.; Virden, R. Biochem. J. 1986, 237, 723–730.  

 (419) Fink, A. L.; Behner, K. M.; Tan, A. K. Biochemistry 1987, 26, 4248–4258.  

 (420) Faraci, W. S.; Pratt, R. F. Biochemistry 1985, 24, 903–910.  

 (421) Faraci, W. S.; Pratt, R. F. Biochemistry 1986, 25, 2934–2941.  

 (422) Vilanova, B.; Donoso, J.; Frau, J.; Muñoz, F. Helv. Chim. Acta. 1999, 82, 1274–1288.  

 (423) Fonzé, E.; Vanhove, M.; Dive, G.; Sauvage, E.; Frère, J.-M.; Charlier, P. Biochemistry 2002, 41, 

1877–1885.  

 (424) Fisher, J. -Lactams Resistant to Hydrolysis by the -Lactamases. In Antimicrobial Drug 

Resistance; Bryan, L. E. Ed. Academic Press: New York, 1984; pp 33–79.  

 (425) Monks, J.; Waley, S. G. Biochem. J. 1988, 253, 323–328.  



 

261 

                                                                                                                                                                     

 (426) Charnas, R. L.; Knowles, J. R. Biochemistry 1981, 20, 2732–2737.  

 (427) Easton, C. J.; Knowles, J. R. Biochemistry 1982, 21, 2857–2862.  

 (428) Zafaralla, G.; Mobashery, S. J. Am. Chem. Soc. 1992, 114, 1505–1506.  

 (429) Taibi, P.; Mobashery, S. J. Am. Chem. Soc. 1995, 117, 7600–7605.  

 (430) Maveyraud, L.; Mourey, L.; Kotra, L. P.; Pedelacq, J.-D.; Guillet, V.; Mobashery, S.; Samama, J.-

P. J. Am. Chem. Soc. 1998, 120, 9748–9752.  

 (431) Nukaga, M.; Bethel, C. R.; Thomson, J. M.; Hujer, A. M.; Distler, A.; Knox, J. R.; Bonomo, R. A. 

J. Am. Chem. Soc. 2008, 130, 12656–12662.  

 (432) Beadle, B. M.; Shoichet, B. K. J. Am. Chem. Soc. 2002, 46, 3978–3980.  

 (433) Vilar, M.; Galleni, M.; Solmajer, T.; Turk, B.; Frère, J.-M.; Matagne, A. Antimicrob. Agents 

Chemother. 2001, 45, 2215–2223.  

 (434) Copar, A.; Prevec, T.; Anžič, B.; Mesar, T.; Selič, L.; Vilar, M.; Solmajer, T. Bioorg. Med. Chem. 

Lett. 2002, 12, 971–975.  

 (435) Plantan, I.; Selič, L.; Mesar, T.; Anderluh, P. Š.; Oblak, M.; Preželj, A.; Hesse, L.; Andrejašič, M.; 

Vilar, M.; Turk, D.; Kocijan, A.; Prevec, T.; Vilfan, G.; Kocjan, D.; Čopar, A.; Urleb, U.; 

Solmajer, T. J. Med. Chem. 2007, 50, 4113–4121. 

 (436) Paukner, S.; Hesse, L.; Preželj, A.; Šolmajer, T.; Urleb, U. Antimicrob. Agents Chemother. 2009, 

53, 505–511. 

 (437) Miyashita, K.; Massova, I.; Taibi, P.; Mobashery, S. J. Am. Chem. Soc. 1995, 117, 11055–11059.  

 (438) Maveyraud, L.; Massova, I.; Birck, C.; Miyashita, K.; Samama, J.-P.; Mobashery, S. J. Am. Chem. 

Soc. 1996, 118, 7435–7440.  

 (439) Mourey, L.; Miyashita, K.; Swarén, P.; Bulychev, A.; Samama, J.-P.; Mobashery, S. J. Am. Chem. 

Soc. 1998, 120, 9382–9383.  

 (440) Maveyraud, L.; Golemi-Kotra, D.; Ishiwata, A.; Meroueh, O.; Mobashery, S.; Samama, J.-P. J. 

Am. Chem. Soc. 2002, 124, 2461–2465. 

 (441) Nagase, T.; Golemi, D.; Ishiwata, A.; Mobashery, S. Bioorg. Chem. 2001, 29, 140–145. 

 (442) Pratt, R. F. Bioorg. Med. Chem. Lett. 1992, 2, 1323–1326.  

 (443) Howarth, T. T.; Brown, A. G.; King, T. J. J. Chem. Soc., Chem. Commun. 1976, 266–267.  

 (444) Wenz, C. Nature 1981, 293, 178.  

 (445) White, A. R.; Kaye, C.; Poupard, J.; Pypstra, R.; Woodnutt, G.; Wynne, B. J. Antimicrob. 

Chemother. 2004, 53 (Suppl. S1), i3–i20.  

 (446) English, A. R.; Retsema, J. A..; Girard, A. E.; Lynch, J. E.; Barth, W. E. Antimicrob. Agents 

Chemother. 1978, 14, 414–419.  

 (447) (a) Lees, L.; Milson, J. A.; Knirsch, A. K.; Greenhalgh, K. Rev. Infect. Dis. 1986, 8 (Suppl. 5), 

S644–S650. (b) Kass, E. H.; Lode, H. Rev. Infect. Dis. 1986, 8 (Suppl. 5), S465–S469.  

 (448) Donowitz, G. R.; Mandell, G. L. New Engl. J. Med. 1988, 318, 419–426.  

 (449) Bush, K.; Macalintal, C.; Rasmussen, B. A..; Lee, V. J.; Yang, Y. Antimicrob. Agents Chemother. 

1993, 37, 851–858.  

 (450) Fisher, J.; Belasco, J. G.; Charnas, R. L.; Khosla, S.; Knowles, J. R. Philos. Trans. R. Soc. Lond. B 



 

262 

                                                                                                                                                                     

1980, 289, 309–319.  

 (451) Durkin, J. P.; Viswanatha, T. J. Antibiot. 1978, 31, 1162–1169.  

 (452) Reading, C.; Hepburn, P. Biochem. J. 1979, 179, 67–76.  

 (453) Charnas, R. L.; Knowles, J. R. Biochemistry 1981, 20, 3214–3219.  

 (454) Rizwi, I.; Tan, A. K.; Fink, A. L.; Virden, R. Biochem. J. 1989, 258, 205–209.  

 (455) Chen, C. C. H.; Herzberg, O. J. Mol. Biol. 1992, 224, 1103–1113.  

 (456) Imtiaz, U.; Billings, E.; Knox, J. R.; Manavathu, E. K.; Lerner, S. A.; Mobashery, S. J. Am. Chem. 

Soc. 1993, 115, 4435–4442.  

 (457) Brown, R. P. A.; Aplin, R. T.; Schofield, C. J. Biochemistry 1996, 35, 12421–12432.  

 (458) Guo, R.; Dmitrienko, G. I.; Clarke, A. J.; Viswanatha, T. Microb. Drug Resist. 1996, 2, 261–268. 

 (459) Sulton, D.; Pagan-Rodriguez, D.; Zhou, X.; Liu, Y.; Hujer, A. M.; Bethel, C. R.; Helfand, M. S.; 

Thomson, J. M.; Anderson, V. E.; Buynak, J. D.; Ng, L. M.; Bonomo, R. A. J. Biol. Chem. 2006, 

280, 35528–35536.  

 (460) Labia, R.; Lelievre, V.; Peduzzi, J. Biochim. Biophys. Acta 1980, 611, 351–357.  

 (461) Fisher, J.; Charnas, R. L.; Bradley, S. M.; Knowles, J. R. Biochemistry 1981, 20, 2726–2731.  

 (462) Brenner, D. G.; Knowles, J. R.; Rihs, G. Biochemistry 1981, 20, 3680–3687.  

 (463) Kemal, C.; Knowles, J. R. Biochemistry 1981, 20, 3688–3695.  

 (464) Brenner, D. G.; Knowles, J. R. Biochemistry 1984, 23, 5833–5839.  

 (465) Imtiaz, U.; Billings, E. M.; Knox, J. R.; Mobashery, S. Biochemistry 1994, 33, 5728–5738. 

 (466) Padayatti, P. S.; Sheri, A.; Totir, M. A.; Helfand, M. S.; Carey, M. P.; Anderson, V. E.; Carey, P. 

R.; Bethel, C. R.; Bonomo, R. A.; Buynak, J. D.; van den Akker, F. J. Am. Chem. Soc. 2006, 128, 

13235–13242.  

 (467) Kalp, M.; Bethel, C. R.; Bonomo, R. A.; Carey, P. R. Biochemistry 2009, 48, 9912–9920.   

 (468) Kalp, M.; Buynak, J. D.; Carey, P. R. Biochemistry 2009, 48, 10196–10198.   

 (469) Cartwright, S. J.; Coulson, A. F. W. Nature 1979, 278, 360–361.  

 (470) Mezes, P. S. F.; Clarke, A. J.; Dmitrienko, G. I.; Viswanatha, T. J. Antibiot. 1982, 35, 918–920.  

 (471) Mezes, P. S. F.; Clarke, A. J.; Dmitrienko, G. I.; Viswanatha, T. FEBS Lett. 1982, 143, 265–267.  

 (472) Clarke, A. J.; Mezes, P. S.; Vice, S. F.; Dmitrienko, G. I.; Viswanatha, T. Biochim. Biophys. Acta 

1983, 748, 389–397.  

 (473) Hilhorst, I. M.; Dmitrienko, G. I.; Viswanatha, T.; Lampen, J. O. J. Protein Chem. 1984, 3, 275–

286.   

 (474) Dmitrienko, G. I.; Copeland, C. R.; Arnold, L.; Savard, M. E.; Clarke, A. J.; Viswanatha, T. 

Bioorg. Chem. 1985,, 13, 34–46.  

 (475) Aronoff, S. C.; Jacobs, M. R.; Johenning, S.; Yamabe, S. Antimicrob. Agents Chemother. 1984, 

26, 580–582.  

 (476) Richter, H. G. F.; Angehrn, P.; Hubschwerlen, C.; Kania, M.; Page, M. G. P.; Specklin, J.-L.; 

Winkler, F. K. J. Med. Chem. 1996, 39, 3712–3722.  

 (477) Phillips, O. A.; Reddy, A. V. N.; Setti, E. L.; Spevak, P.; Czajkowski, D. P.; Atwal, H.; Salama, 

S.; Micetich, R. G.; Maiti, S. N. Bioorg. Med. Chem. 2005, 13, 2847–2858; Bioorg. Med. Chem. 



 

263 

                                                                                                                                                                     

2005, 13, 6276.  

 (478) Padayatti, P. S.; Helfand, M. S.; Totir, M. A.; Carey, M. P.; Hujer, A. M.; Carey, P. R.; Bonomo, 

R. A.; van den Akker, F. Biochemistry 2004, 43, 843–848.  

 (479) Loosemore, M. J.; Pratt, R. F. J. Org. Chem. 1978, 43, 3611–3613.  

 (480) Loosemore, M. J.; Cohen, S. A.; Pratt, R. F. Biochemistry 1980, 19, 3990–3995.  

 (481) Wise, R.; Andrews, J. M.; Patel, N. J. Antimicrob. Chemother. 1981, 7, 531–536.  

 (482) Pratt, R. F.; Cahn, D. J. J. Am. Chem. Soc. 1988, 110, 5096–5104.  

 (483) Sauvage, E.; Zervosen, A.; Dive, G.; Herman, R.; Amoroso, A.; Joris, B.; Fonzé, E.; Pratt, R. F.; 

Luxen, A.; Charlier, P.; Kerff, F. J. Am. Chem. Soc. 2009, 131, 15262–15269.  

 (484) Brenner, D. G.; Knowles, J. R. Biochemistry 1984, 23, 5839–5846. 

 (485) (a) Arisawa, M.; Then, R. L. J. Antibiot. 1982, 35, 1578–1583. (b) Angehrn, P.; Arisawa, M. J. 

Antibiot. 1982, 35, 1584–1589. (c) Arisawa, M.; Adam, S. Biochem. J. 1983, 211, 447–454. (d) 

Arisawa, M.; Then, R. L. J. Antibiot. 1983, 36, 1372–1379. (e) Adam, S.; Then, R.; Angehrn, P. J. 

Antibiot. 1986, 39, 833–838. (f) Adam, S.; Then, R. L.; Angehrn, P. J. Antibiot. 1987, 40, 108–

109. (g) Adam, S.; Then, R.; Angehrn, P. J. Antibiot. 1992, 45, 587–588. 

 (486) Chen, Y. L.; Chang, C.-W.; Hedberg, K. Tetrahedron Lett. 1986, 27, 3449–3452.   

 (487) Chen, Y. L.; Chang, C.-W.; Hedberg, K.; Guarino, K.; Welch, W. M.; Kiessling, L.; Retsema, J. 

A.; Haskell, S. L.; Anderson, M.; Manousos, M.; Barrett, J. F. J. Antibiot. 1987, 40, 803–822.  

 (488) Buynak, J. D.; Borate, H. B.; Lamb, G. W.; Khasnis, D. D.; Husting, C.; Isom, H.; Siriwardane, U. 

J. Org. Chem. 1993, 58, 1325–1335.  

 (489) Buynak, J. D.; Khasnis, D.; Bachmann, B.; Wu, K.; Lamb, G. J. Am. Chem. Soc. 1994, 116, 

10955–10965.  

 (490) Buynak, J. D.; Geng, B.; Bachmann, B.; Hua, L. Bioorg. Med. Chem. Lett. 1995, 5, 1513–1518.  

 (491) Eby, P.; Cummings, M. D.; Phillips, O. A.; Czajkowski, D. P.; Singh, M. P.; Spevak, P.; Micetich, 

R. G.; Maiti, S. N. Heterocycles 1996, 42, 653–668.   

 (492) Buynak, J. D.; Wu, K.; Bachmann, B.; Khasnis, D.; Hua, L.; Nguyen, H. K.; Carver, C. L. J. Med. 

Chem. 1995, 38, 1022–1034.  

 (493) Buynak, J. D.; Doppalapudi, V. R.; Rao, A. S.; Nidamarthy, S. D.; Adam, G. Bioorg. Med. Chem. 

Lett. 2000, 10, 847–851.  

 (494) Kalp, M.; Sheri, A.; Buynak, J. D.; Bethel, C. R.; Bonomo, R. A.; Carey, P. R. J. Biol. Chem. 

2007, 282, 21588–21591.  

 (495) Bou, G.; Santillana, E.; Sheri, A.; Beceiro, A.; Sampson, J. M.; Kalp, M.; Bethel, C. R.; Distler, 

A. M.; Drawz, S. M.; Pagadala, S. R. R.; van den Akker, F.; Bonomo, R. A.; Romero, A.; Buynak, 

J. D. J. Am. Chem. Soc. 2010, 132, 13320–13331.  

 (496) Sandanayaka, V. P.; Prashad, A. S.; Yang, Y.; Williamson, R. T.; Lin, Y. I.; Mansour, T. S. J. 

Med. Chem. 2003, 46, 2569–2571.   

 (497) Coleman, K.; Griffin, D. R. J.; Page, J. W. J.; Upshon, P. A. Antimicrob. Agents Chemother. 1989, 

33, 1580–1587.  

 (498) Bennett, I.; Broom, N. J. P.; Bruton, G.; Calvert, S.; Clarke, B. P.; Coleman, K.; Edmondson, R.; 



 

264 

                                                                                                                                                                     

Edwards, P.; Jones, D.; Osborne, N. F.; Walker, G. J. Antibiot. 1991, 44, 331–337.  

 (499) Bennett, I. S.; Brooks, G.; Broom, N. J. P.; Calvert, S. H.; Coleman, K.; François, I. J. Antibiot. 

1991, 44, 969–978.   

 (500) Broom, N. J. P.; Farmer, T. H.; Osborne, N. F.; Tyler, J. W. J. Chem. Soc., Chem. Commun. 1992, 

1663–1664.  

 (501) Farmer, T. H.; Page, J. W. J.; Payne, D. J.; Knowles, D. J. C. Biochem. J. 1994, 303, 825–830.  

 (502) Bulychev, A.; Massova, I.; Lerner, S. A.; Mobashery, S. J. Am. Chem. Soc. 1995, 117, 4797–

4801.  

 (503) Nukaga, M.; Abe, T.; Venkatesan, A. M.; Mansour, T. S.; Bonomo, R. A.; Knox, J. R. 

Biochemistry 2003, 42, 13152–13159.  

 (504) Michaux, C.; Charlier, P.; Frère, J.-M.; Wouters, J. J. Am. Chem. Soc. 2005, 127, 3262–3263.  

 (505) Matagne, A.; Ledent, P.; Monnaie, D.; Felici, A.; Jamin, M.; Raquet, X.; Galleni, M.; Klein, D.; 

François, I.; Frère, J.-M. Antimicrob. Agents Chemother. 1995, 39, 227–231.  

 (506) Venkatesan, A. M.; Agarwal, A.; Abe, T.; Ushirogochi, H.; Yamamura, I.; Kumagai, T.; Petersen, 

P. J.; Weiss, W. J.; Lenoy, E.; Yang, Y.; Shlaes, D. M.; Ryan, J. L.; Mansour, T. S. Bioorg. Med. 

Chem. 2004, 12, 5807–5817.  

 (507) Tabei, K.; Feng, X.; Venkatesan, A. M.; Abe, T.; Hideki, U.; Mansour, T. S.; Siegel, M. M. J. 

Med. Chem. 2004, 47, 3674–3688.  

 (508) Weiss, W. J.; Petersen, P. J.; Murphy, T. M.; Tardio, L.; Yang, Y.; Bradford, P. A.; Venkatesan, 

A. M.; Abe, T.; Isoda, T.; Mihira, A.; Ushirogochi, H.; Takasake, T.; Projan, S.; O’Connell, J.; 

Mansour, T. S. Antimicrob. Agents Chemother. 2004, 48, 4589–4596.  

 (509) Venkatesan, A. M.; Gu, Y.; Dos Santos, O.; Abe, T.; Agarwal, A.; Yang, Y.; Petersen, P. J.; 

Weiss, W. J.; Mansour, T. S.; Nukaga, M.; Hujer, A. M.; Bonomo, R. A.; Knox, J. R. J. Med. 

Chem. 2004, 47, 6556–6568.  

 (510) Venkatesan, A. M.; Agarwal, A.; Abe, T.; Ushirogochi, H.; Ado, M.; Tsuyoshi, T.; Dos Santos, 

O.; Li, Z.; Francisco, G.; Lin, Y. I.; Petersen, P. J.; Yang, Y.; Weiss, W. J.; Shlaes, D. M.; 

Mansour, T. S. Bioorg. Med. Chem. 2008, 16, 1890–1902.  

 (511) Venkatesan, A. M.; Agarwal, A.; Abe, T.; Ushirogochi, H.; Yamamura, I.; Ado, M.; Tsuyoshi, T.; 

Dos Santos, O.; Gu, Y.; Sum, F.-W.; Li, Z.; Francisco, G.; Lin, Y.-I.; Petersen, P. J.; Yang, Y.; 

Kumagai, T.; Weiss, W. J.; Shlaes, D. M.; Knox, J. R.; Mansour, T. S. J. Med. Chem. 2006, 49, 

4623–4637.  

 (512) Bethel, C. R.; Distler, A. M.; Ruszczycky, M. W.; Carey, M. P.; Carey, P. R.; Hujer, A. M.; 

Taracila, M.; Helfand, M. S.; Thomson, J. M.; Kalp, M.; Anderson, V. E.; Leonard, D. A.; Hujer, 

K. M.; Abe, T.; Venkatesan, A. M.; Mansour, T. S.; Bonomo, R. A. Antimicrob. Agents 

Chemother. 2008, 52, 3135–3143.  

 (513) Pratt, R. F.; Anderson, E. G.; Odeh, I. Biochem. Biophys. Res. Commun. 1980, 93, 1266–1273.  

 (514) Bush, K.; Freudenberger, J. S.; Sykes, R. B. Antimicrob. Agents Chemother. 1982, 22, 414–420.  

 (515) Oefner, C.; D’Arcy, A.; Daly, J. J.; Gubernator, K.; Charnas, R. L.; Heinze, I.; Hubschwerlen, C.; 

Winkler, F. K. Nature 1990, 343, 284–288.  



 

265 

                                                                                                                                                                     

 (516) Heinze-Krauss, I.; Angehrn, P.; Charnas, R. L.; Gubernator, K.; Gutknecht, E.-M.; Hubschwerlen, 

C.; Kania, M.; Oefner, C.; Page, M. G. P.; Sogabe, S.; Specklin, J.-L.; Winkler, F. J. Med. Chem. 

1998, 41, 3961–3971.  

 (517) Livermore, D. M.; Chen, H. Y. J. Antimicrob. Chemother. 1997, 40, 335–343. 

 (518) Blizzard, T. A.; Chen, H.; Kim, S.; Wu, J.; Young, K.; Park, Y.-W.; Ogawa, A.; Raghoobar, S.; 

Painter, R. E.; Hairston, N.; Lee, S. H.; Misura, A.; Felcetto, T.; Fitzgerald, P.; Sharma, N.; Lu, J.; 

Ha, S.; Hickey, E.; Hermes, J.; Hammond, M. L. Bioorg. Med. Chem. Lett. 2010, 20, 918–921.  

 (519) Jungheim, L. N.; Ternansky, R. J. Non--Lactam Mimics of -Lactam Antibiotics. In The 

Chemistry of -Lactams; Page, M. I. Ed.; Blackie Academic and Professional: Glasgow, 1992; pp 

306–324. 

 (520) Baldwin, J. E.; Lynch, G. P.; Pitlik, J. J. Antibiot. 1991, 44, 1–24.  

 (521) Harada, S.; Tsubotani, S.; Hida, T.; Ono, H.; Okazaki, H. Tetrahedron Lett. 1986, 27, 6229–6232.  

 (522) Macheboeuf, P.; Fischer, D. S.; Brown, T. Jr.; Zervosen, A.; Luxen, A.; Joris, B.; Dessen, A.; 

Schofield, C. J. Nat. Chem. Biol. 2007, 3, 565–569.  

 (523) Brown, T.; Charlier, P.; Herman, R.; Schofield, C. J.; Sauvage, E. J. Med. Chem. 2010, 53, 5890–

5894.  

 (524) Kiener, P. A.; Waley, S. G. Biochem. J. 1978, 169, 197–204.  

 (525) Beesley, T.; Gascoyne, N.; Knott-Hunziker, V.; Perursson, S.; Waley, S. G.; Jaurin, B.; 

Grundström, T. Biochem. J. 1983, 209, 229–233.   

 (526) Pratt, R. F. Science 1989, 246, 917–919. 

 (527) Page, M. I.; Hinchliffe, P. S.; Wood, J. M.; Harding, L. P.; Laws, A. P. Bioorg. Med. Chem. Lett. 

2003, 13, 4489–4492.  

 (528) Gordon, E. M.; Pluščec, J.; Ondetti, M. A. Tetrahedron Lett. 1981, 20, 1871–1874.  

 (529) Meth-Cohn, O.; Reason, A. J.; Roberts, S. M. J. Chem. Soc., Chem. Commun. 1982, 90–92.   

 (530) Lowe, G.; Swain, S. J. Chem. Soc., Chem. Commun. 1983, 1279–1281.  

 (531) Lowe, G.; Swain, S. J. Chem. Soc., Perkin Trans. 1 1985, 391–398. 

 (532) Cocuzza, A. J.; Boswell, G. A. Tetrahedron Lett. 1985, 26, 5363–5366. 

 (533) (a) Boswell, G. A.; Cocuzza, A. J. Cyclobutanone Antibacterials. U.S. Pat. Appl., US 4,505,905 

A, March 19, 1985. (b) Boswell, G. A.; Cocuzza, A. J. Chem. Abstr. 1985, 103, 141731.  

 (534) Lange, G.; Savard, M. E.; Viswanatha, T.; Dmitrienko, G. I. Tetrahedron Lett. 1985, 26, 1791–

1794.  

 (535) Kelly, J. A.; Knox, J. R.; Moews, P. C.; Hite, G. J.; Bartolone, J. B.; Zhao, H. J. Biol. Chem. 1985, 

260, 6449–6458. 

 (536) The sample of cyclobutanone 65 was prepared by Tomczuk.537  

 (537) Tomczuk, B. E.; Ph.D. Thesis, University of Connecticut, 1980; Diss. Abstr. Int. B 1980, 41, 576–

577. 

 (538) Walter, M. W.; Felici, A.; Galleni, M.; Soto, R. P.; Adlington, R. M.; Baldwin, J. E.; Frère, J.-M.; 

Gololobov, M.; Schofield, C. J. Bioorg. Med. Chem. Lett. 1996, 6, 2455–2458.  

 (539) Kumar, S.; Pearson, A. L.; Pratt, R. F. Bioorg. Med. Chem. 2001, 9, 2035–2044.  



 

266 

                                                                                                                                                                     

 (540) Bonnefoy, A.; Dupuis-Hamelin, C.; Steier, V.; Delachaume, C.; Seys, C.; Stachyra, T.; Fairley, 

M.; Guitton, M.; Lampilas, M. J. Antimicrob. Chemother. 2004, 54, 410–417. 

 (541) Livermore, D. M.; Mushtaq, S.; Warner, M.; Miossec, C.; Woodford, N. J. Antimicrob. 

Chemother. 2008, 62, 1053–1056.  

 (542) Stachyra, T.; Levasseur, P.; Péchereau, M.-C.; Girard, A.-M.; Claudon, M.; Miossec, C.; Black, 

M. T. J. Antimicrob. Chemother. 2009, 64, 326–329.  

 (543) Endimiani, A.; Choudhary, Y.; Bonomo, R. A. Antimicrob. Agents Chemother. 2009, 53, 3599–

3601.  

 (544) Endimiani, A.; Hujer, K. M.; Hujer, A. M.; Pulse, M. E.; Weiss, W. J.; Bonomo, R. A. 

Antimicrob. Agents Chemother. 2011, 55, 82–85.  

 (545) Mushtaq, S.; Warner, M.; Livermore, D. M. J. Antimicrob. Chemother. 2010, 65, 2376–2381.  

 (546) Livermore, D. M.; Mushtaq, S.; Warner, M.; Zhang, J.; Maharjan, S.; Doumith, M.; Woodford, N. 

Antimicrob. Agents Chemother. 2011, 55, 390–394.  

 (547) Docquier, J.; Stachyra, T.; Benvenuti, M.; Rossolini, G. M.; Mangani, S.; Pechereau, M. C.; 

Bruneau, J. M.; Claudon, M.; Barbosa, F.; Miossec, C.; Black, M. T. High resolution crystal 

structure of CTX-M-15 in complex with the new -lactamase inhibitor NXL104. Abstr. 49th 

Intersci. Conf. Antimicrob. Agents Chemother., San Francisco, CA, Sept 13, 2009; Abstr. C1-

1098.  

 (548) Stachyra, T.; Péchereau, M.-C.; Bruneau, J.-M.; Claudon, M.; Frère, J.-M.; Miossec, C.; Coleman, 

K.; Black, M. T. Antimicrob. Agents Chemother. 2010, 54, 5132–5138. 

 (549) Bush, K.; Macielag, M. J. Expert Opin. Ther. Patents 2010, 20, 1277–1293.   

 (550) Mushtaq, S.; Warner, M.; Williams, G.; Critchley, I.; Livermore, D. M. J. Antimicrob. Chemother. 

2010, 65, 1428–1432.   

 (551) (a) Jarvis, L. M. Big pharma’s year-end spree. Chem. Eng. News, January 4, 2010, p 9. (b) Jarvis, 

L. M. Antibiotics yo-yo. Chem. Eng. News, February 8, 2010, pp 30–33. (c) Jarvis, L. M. 

Biocitech thrives. Chem. Eng. News, March 15, 2010, pp 35–36.    

 (552) Siemann, S.; Clarke, A. J.; Viswanatha, T.; Dmitrienko, G. I. Biochemistry 2003, 42, 1673–1683.  

 (553) Lassaux, P.; Hamel, M.; Gulea, M.; Delbrück, H.; Mercuri, P. S.; Horsfall, L.; Dehareng, D.; 

Kupper, M.; Frère, J.-M.; Hoffman, K.; Galleni, M.; Bebrone, C. J. Med. Chem. 2010, 53, 4862–

4876.  

 (554) Siemann, S.; Evanoff, D. P.; Marrone, L.; Clarke, A. J.; Viswanatha, T.; Dmitrienko, G. I. 

Antimicrob. Agents Chemother. 2002, 46, 2450–2457.   

 (555) Dmitrienko, G. I.; Viswanatha, T.; Johnson, J. W.; Ramadhar, T. R. Inhibitors of Class B and 

Class D -Lactamases. PCT Int. Pat. Appl., WO 2009/114921 A1, September 24, 2009.  

 (556) Buynak, J. D.; Chen, H.; Vogeti, L.; Gadhachanda, V. R.; Buchanan, C. A.; Palzkill, T.; Shaw, R. 

W.; Spencer, J.; Walsh, T. R. Bioorg. Med. Chem. Lett. 2004, 14, 1299–1304.  

 (557) Nagano, R.; Adachi, Y.; Imamura, H.; Yamada, K.; Hashizume, T.; Morishima, H. Antimicrob. 

Agents. Chemother. 1999, 43, 2497–2503.  

 (558) Nagano, R.; Adachi, Y.; Hashizume, T.; Morishima, H. J. Antimicrob. Chemother. 2000, 45, 271–



 

267 

                                                                                                                                                                     

276.  

 (559) Quiroga, M. I.; Franceschini, N.; Rossolini, G. M.; Gutkind, G.; Bonfiglio, G.; Franchino, L.; 

Amicosante, G. Chemother. 2000, 46, 177–183.  

 (560) Bush, K. Clin. Microbiol. Infect. 2006, 14, 134–143.  

 (561) Dancer, S. J. J. Antimicrob. Chemother. 2001, 48, 463–478.  

 (562) Masterton, R. G. Int. J. Antimicrob. Agents 2009, 33, 105–110.  

 (563) Livermore, D. M.; Woodford, N. Curr. Opin. Microbiol. 2000, 3, 489–495.  

 (564) Walsh, T. R. Curr. Opin. Infect. Dis. 2008, 21, 367–371.  

 (565) Miller, L. A.; Ratnam, K.; Payne, D. J. Curr. Opin. Pharmacol. 2001, 1, 451–458.   

 (566) Toney, J. H. Curr. Opin. Invest. Drugs 2003, 4, 115–116.  

 (567) Toney, J. H.; Moloughney, J. G. Curr. Opin. Invest. Drugs 2004, 5, 823–826.  

 (568) Johnson, J. W.; Evanoff, D. P.; Savard, M. E.; Lange, G.; Ramadhar, T. R.; Assoud, A.; Taylor, 

N. J.; Dmitrienko, G. I. J. Org. Chem. 2008, 73, 6970–6982.  

 (569) Wolfenden, R. Acc. Chem. Res. 1972, 5, 10–18.  

 (570) Lienard, G. E. Science 1973, 180, 149–154.  

 (571) (a) Westerik, J. O.; Wolfenden, R. J. Biol. Chem. 1972, 247, 8195–8197. (b) Thompson, R. C. 

Biochemistry 1973, 12, 47–51. (c) Chen, R.; Gorenstein, D. G.; Kennedy, W. P.; Lowe, G.; Nurse, 

D.; Schultz, R. M. Biochemistry 1979, 18, 921–926. (d) Gorenstein, D. G.; Shah, D. O. 

Biochemistry 1982, 21, 4679–4686. (e) Shah, D. O.; Gorenstein, D. G. Biochemistry 1983, 22, 

6096–6101. (f) Stein, R. L.; Strimpler, A. M. Biochemistry 1987, 26, 2611–2615.  

 (572) Grudzinski, Z.; Roberts, S. M. Tetrahedron Lett. 1978, 19, 389–392.   

 (573) Raman, J. V.; Nielsen, K. E.; Randall, L. H.; Burke, L. A.; Dmitrienko, G. I. Tetrahedron Lett. 

1994, 35, 5973–5976.  

 (574) Thandi, M. S. M.Sc. Thesis, University of Waterloo, 1981.  

 (575) Krismanich, A. P. Ph.D. Thesis, University of Waterloo, 2006.  

 (576) McIntosh, J. M.; Sieler, R. A. J. Org. Chem. 1978, 43, 4431–4433. 

 (577) McIntosh, J. M.; Sieler, R. A. Can. J. Chem. 1978, 56, 226–231. 

 (578) Agathocleous, D.; Buckwell, S.; Proctor, P.; Page, M. I. In Recent Advances in the Chemistry of 

-Lactam Antibiotics; Brown, A. G., Roberts, S. M. Eds.; Royal Society of Chemistry: London, 

1985; pp 18–31.  

 (579) Agathocleous, D.; Cox, G.; Page, M. I. Tetrahedron Lett. 1986, 27, 1631–1634. 

 (580) Martyres, D. H.; Baldwin, J. E.; Adlington, R. M.; Lee, V.; Probert, M. R.; Watkin, D. J. 

Tetrahedron 2001, 57, 4999–5007.  

 (581) Ferguson, A. C.; Adlington, R. M.; Martyres, D. H.; Rutledge, P. J.; Cowley, A.; Baldwin, J. E. 

Tetrahedron 2003, 59, 8233–8243.  

 (582) Stewart, A. C.; Clifton, I. J.; Adlington, R. M.; Baldwin, J. E.; Rutledge, P. J. ChemBioChem 

2007, 8, 2003–2007.  

 (583) Evanoff, D. P. M.Sc. Thesis, University of Waterloo, 2004.  

 (584) Chenier, P. J. J. Chem. Educ. 1978, 55, 286–291. 



 

268 

                                                                                                                                                                     

 (585) Ali, S. M.; Lee, T. V.; Roberts, S. M. Synthesis 1977, 155–166. 

 (586) Belluš, D.; Ernst, B. Angew. Chem. Int. Ed. Engl. 1988, 27, 797–827. 

 (587) Namyslo, J. C.; Kaufmann, D. E. Chem. Rev. 2003, 103, 1485–1537.  

 (588) Newton, R. F.; Roberts, S. M. Tetrahedron 1980, 36, 2163–2196.  

 (589) Tidwell, T. T. In Ketenes, 2nd ed.; Wiley: New York, NY, 2006.  

 (590) Lange, G. M.Sc. Thesis, University of Waterloo, 1984. 

 (591) Wolinsky, J.; Erickson, K. L. J. Org. Chem. 1965, 30, 2208–2211. 

 (592) (a) Michaelis, A.; Kaehne, R. Ber. 1898, 31, 1048–1055. (b) Arbuzov, A. E. J. Russ. Phys. Chem. 

Soc. 1906, 38, 687. For a review of the Michaelis–Arbuzov Rearrangement, see: (c) Bhattacharya, 

A. K.; Thyagarajan, G. Chem. Rev. 1981, 81, 415–430. 

 (593) Care should be taken in the initial heating period of the Michaelis–Arbuzov reaction since the 

evolution of ethyl- or methyl bromide causes vigorous bubbling, especially on larger scales.  

 (594) Small amounts of the methyl ester 94 were generated in the dehydration reaction to follow if 

methanol was not fully removed from the crude primary alcohol intermediate.  

 (595) Dean, E. W.; Stark, D. D. Ind. Eng. Chem. 1920, 12, 486–490. 

 (596) (a) Horner, L.; Hoffmann, H.; Wippel, H. G.; Klahre, G. Chem. Ber. 1959, 92, 2499–2505. (b) 

Wadsworth, W. S., Jr.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733–1738. 

 (597) (a) Ozeki, T.; Kusaka, M. Bull. Chem. Soc. Jpn. 1966, 39, 1995–1998. (b) Ozeki, T.; Kusaka, M. 

Bull. Chem. Soc. Jpn. 1967, 40, 1232–1239. (c) Ozeki, T.; Kusaka, M. Bull. Chem. Soc. Jpn. 

1967, 40, 2686–2688.  

 (598) Ghosez, L.; Montaigne, R.; Mollet, P. Tetrahedron Lett. 1966, 7, 135–139.  

 (599) Krepski, L. R.; Hassner, A. J. Org. Chem. 1978, 43, 3173–3179.  

 (600) Brady, W. T.; Lloyd, R. M. J. Org. Chem. 1979, 44, 2560–2564.  

 (601) Karplus, M. J. Chem. Phys. 1959, 30, 11–15.  

 (602) O’Callaghan, C. H.; Morris, A.; Kirby, S. M.; Shingler, A. H. Antimicrob. Agents Chemother. 

1972, 1, 283–288. 

 (603) Gelb, M. H.; Svaren, J. P.; Abeles, R. H. Biochemistry 1985, 24, 1813–1817.  

 (604) Imperiali, B.; Abeles, R. H. Biochemistry 1986, 25, 3760–3767. 

 (605) Reiter, L. A.; Martinelli, G. J.; Reeves, L. A.; Mitchell, P. G. Bioorg. Med. Chem. Lett. 2000, 10, 

1581–1584 and references therein. 

 (606) Grudzinski, Z.; Roberts, S. M. J. Chem. Soc. Perkin Trans. 1 1975, 1767–1773.   

 (607) Glen, R. C.; Murray-Rust, P.; Riddell, F. G.; Newton, R. F.; Kay, P. B. J. Chem. Soc. Chem. 

Commun. 1982, 25–26. 

 (608) Isaacs, N. S.; Rzepa, H. S.; Sheppard, R. N.; Lobo, A. M.; Prabhakar, S. J. Chem. Soc. Perkin 

Trans. 2 1987, 1477–1482. 

 (609) Corey, E. J.; Suggs, J. W. Tetrahedron Lett. 1975, 16, 2647–2650.  

 (610) Corey, E. J.; Schmidt, G. Tetrahedron Lett. 1979, 5, 399–402.  

 (611) (a) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155–4156. (b) Dess, D. B.; Marin, J. C. J. 

Am. Chem. Soc. 1991, 113, 7277–7287.   



 

269 

                                                                                                                                                                     

 (612) (a) Ireland, R. E.; Liu, L. J. Org. Chem. 1993, 58, 2899. (b) Meyer, S. D.; Schreiber, S. L. J. Org. 

Chem. 1994, 59, 7549–7552. (c) Frigerio, M.; Santagostino, M.; Sputore, S. J. Org. Chem. 1999, 

64, 4537–4538.  

 (613) (a) Omura, K.; Sharma, A. K.; Swern, D. J. Org. Chem. 1976, 41, 957–962. (b) Huang, S. L.; 

Omura, K.; Swern, D. J. Org. Chem. 1976, 41, 3329–3331. (c) Huang, S. L.; Omura, K.; Swern, 

D. Synthesis 1978, 297–299. (d) Mancuso, A. J.; Huang, S.-L.; Swern, D. J. Org. Chem. 1978, 43, 

2480–2482.   

 (614) Paquette, L. A.; Fabris, F.; Gallou, F.; Dong, S. J. Org. Chem. 2003, 68, 8625–8634.  

 (615) Anomeric effect: (a) Deslongchamps, P. Stereoelectronic Effects in Organic Chemistry; Pergamon 

Press: New York, 1983. (b) Kirby, A. J. The Anomeric Effect and Related Stereoelectronic Effects 

at Oxygen; Springer Verlag: Berlin, 1983. (c) Juaristi, E.; Cuevas, G. The Anomeric Effect; CRC 

Press: Boca Raton, 1995. (d) Juaristi, E. Conformational Behaviour of Six-Membered Rings; VCH 

Publishers: New York, 1995. 

 (616) (a) Romers, C.; Altona, C.; Buys, H. R.; Havinga, E. Topics Stereochem. 1969, 4, 39–97. (b) 

Pericas, M. A.; Riera, A.; Guilera, J. Tetrahedron, 1986, 42, 2717–2724. 

 (617) For examples of X-ray crystal structures of -aza derivatives, see: Koole, L. H.; Plavec, J.; Liu, 

H.; Vincent, B. R.; Dyson, M. R.; Coe, P. L.; Walker, R. T.; Hardy, G. W.; Rahim, S. G.; 

Chattopadhyaya, J. J. Am. Chem. Soc. 1992, 114, 9936–9943.  

 (618) Watts, J. K.; Sadalapure, K.; Choubdar, N.; Pinto, M. B.; Damha, M. J. J. Org. Chem. 2006, 71, 

921–925.  

 (619) Delaney, P. A.; Johnstone, R. A. W. Tetrahedron 1985, 41, 3845–3851.  

 (620) Delaney, P. A.; Johnstone, R. A. W.; Leonard, P. A.; Regan, P. J. Chem. Soc. Perkin Trans. 1 

1991, 285–289. 

 (621) Wilson, G. E., Jr.; Albert, R. J. Org. Chem. 1973, 38, 2156–2159. 

 (622) (a) Schleyer, P. v. R.; Jemmis, E. D.; Spitznagel, G. W. J. Am. Chem. Soc. 1986, 107, 6393–6394. 

(b) Salzner, U.; Schleyer, P. v. R. J. Am. Chem. Soc. 1993, 111, 10231–10236. (c) Trapp, M. L.; 

Watts, J. K.; Weinberg, N.; Pinto, B. M. Can. J. Chem. 2006, 84, 692–701.  

 (623) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; 

Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, 

J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; 

Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; 

Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; 

Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; 

Ochterski, J. W.; Ayala, P. Y.; Morokuma, K; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; 

Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, Ö.; Malick, D. K.; Rabuck, 

A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; 

Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komáromi, I.; Martin, R. L.; 

Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. 

M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople J. A. Gaussian-03, Revision 



 

270 

                                                                                                                                                                     

B.04.; Gaussian Inc.: Pittsburg, PA, 2003.  

 (624) It should be noted, however, that the distances measured between the 3-Z atom and the 7-X 

atom were longer than van der Waals contacts in each of the optimized structures. For van der 

Waals radii, see ref 625: Carbon: 1.70 Å; Oxygen: 1.52 Å; Sulfur: 1.80 Å; Chlorine: 1.75 Å. 

 (625) Bondi, A. J. Phys. Chem. 1964, 68, 441–451. 

 (626) Dexter, D. D.; van der Veen, J. M. J. Chem. Soc. Perkin Trans. 1 1978, 185–190.  

 (627) (a) Cohen, N. C. J. Med. Chem. 1983, 26, 259–264. (b) Balsamo, A.; Domiano, P.; Macchia, B.; 

Nardelli, M. Eur. J. Med. Chem. 1980, 15, 559–562.   

 (628) Koch, A.; Kühne, R.; Franke, R. Pharmazie 1990, 45, 694–695.    

 (629) Dobson, C. M.; Ford, L. O.; Summers, S. E.; Williams, R. J. P. J. Chem. Soc., Faraday Trans. 2 

1975, 71, 1145–1153.  

 (630) Clayden, N. J.; Dobson, C. M.; Lian, L.-Y.; Twyman, J. M. J. Chem. Soc. Perkin Trans 2 1986, 

1933–1940.  

 (631) Twyman, J. M.; Fattah, J.; Dobson, C. M. J. Chem. Soc. Perkin Trans. 2 1991, 647–649.  

 (632) A spin-labeled penicillin was also found to adopt an exo envelope conformation in solution: 

Mustafi, D.; Makinen, M. W. J. Am. Chem. Soc. 1995, 117, 6739–6746.  

 (633) Díaz, N.; Suárez, D.; Sordo, T. L. J. Comput. Chem. 2003, 24, 1864–1873.   

 (634) (a) Peña-Gallego, A.; Cabaleiro-Lago, E. M.; Fernández-Ramos, A.; Hermida-Ramón, J. M.; 

Martínez-Núñez, E. J. Mol. Struct. (Theochem) 1999, 491, 177–185. (b) Frau, J.; Coll, M.; 

Donoso, J.; Muñoz, F. J. Mol. Struct. (Theochem) 1991, 231, 109–124. (c) Joshi, N. V.; 

Virudachalam, R.; Rao, V. S. R. Curr. Sci. 1978, 47, 933–936. 

 (635) Oliva, M.; Dideberg, O.; Field, M. J. Proteins 2003, 53, 88–100. 

 (636) Fenollar-Ferrer, C.; Frau, J.; Donoso, J.; Muñoz, F. Proteins 2003, 51, 442–452.  

 (637) Delmas, J.; Leyssene, D.; Dubois, D.; Birck, C.; Samama, J.-P.; Robin, F.; Bonnet, R. X-ray 

crystallographic structure of CTX-M-9 S70G in complex with benzylpenicillin. (DOI:10.2210/ 

pdb3huo/pdb). 

 (638) Wiberg, K. B.; Morgan, K. M.; Maltz, H. J. Am. Chem. Soc. 1994, 116, 11067–11077.  

 (639) For plots of hemiketal formation vs time for each ketone, see Table S8 in the Supporting 

Information for ref 568.  

 (640) Johnson, J. W.; Gretes, M.; Goodfellow, V. J.; Marrone, L.; Heynen, M. L.; Strynadka, N. C. J.; 

Dmitrienko, G. I. J. Am. Chem. Soc. 2010, 132, 2558–2560.  

 (641) Pillai, D. R.; Melano, R.; Rawte, P.; Lo, S.; Tijet, N.; Fuksa, M.; Roda, N.; Farrell, D. J.; Krajden, 

S. Emerg. Infect. Dis. 2009, 15, 827–829.  

 (642) Toye, B.; Krajden, S.; Fuksa, M.; Low, D. E.; Pillai, D. R. Can. Med. Assoc. J. 2009, 180, 1225–

1226.  

 (643) Ke, W.; Bethel, C. R.; Thomson, J. M.; Bonomo, R. A.; van den Akker, F. Biochemistry 2007, 46, 

5732–5740.  

 (644) Petrella, S.; Ziental-Gelus, N.; Mayer, C.; Renard, M.; Jarlier, V.; Sougakoff, W. Antimicrob. 

Agents Chemother. 2008, 52, 3725–3736.  



 

271 

                                                                                                                                                                     

 (645) Poirel, L.; Naas, T.; Nicolas, D.; Collet, L.; Bellais, S.; Cavallo, J.-D.; Nordmann, P. Antimicrob. 

Agents Chemother. 2000, 44, 891–897.  

 (646) Crichlow, G. V.; Kuzin, A. P.; Nukaga, M.; Mayama, K.; Sawai, T.; Knox, J. R. Biochemistry 

1999, 38, 10256–10261.  

 (647) Lee, J. H.; Jeong, S. H.; Cha, S.-S.; Lee, S. H. PLoS Pathog. 2009, 5, e1000221.  

 (648) Toleman, M. A.; Rolston, K.; Jones, R. N.; Walsh, T. R. Antimicrob. Agents Chemother. 2003, 47, 

2859–2863.  

 (649) See Table S1 in the Supporting Information for ref 640.  

 (650) Serine hemiketals of -ketoheterocycles in fatty acid amide hydrolase (FAAH)651 and a 

trifluoromethyl ketone in elastase652 are not protonated.  

 (651) Mileni, M.; Garfunkle, J.; Ezzili, C.; Kimball, F. S.; Cravatt, B. F.; Stevens, R. C.; Boger, D. L. J. 

Med. Chem. 2010, 53, 230–240.  

 (652) Tamada, T.; Kinoshita, T.; Kurihara, K.; Adachi, M.; Ohhara, T.; Imai, K.; Kuroki, R.; Tada, T. J. 

Am. Chem. Soc. 2009, 131, 11033–11040.  

 (653) Petrova, T.; Lunin, V. Y.; Ginell, S.; Hazemann, I.; Lazarski, K.; Mitschler, A.; Podjarny, A.; 

Joachimiak, A. J. Mol. Biol. 2009, 387, 1092–1105 and references therein.  

 (654) Raag, R.; Li, H.; Jones, B. C.; Poulos, T. L. Biochemistry 1993, 32, 4571–4578.  

 (655) Intermolecular Cl···O contacts shorter than 3.0 Å were observed in the following CSD structures: 

BAGHIA (2.954), CLPCCS (2.990), CLPYRM (2.936), CPXMAM (2.898), EVIHIA (2.901), FILMUI 

(2.986), HEXPEF (2.951), JORFIF (2.951), MAYXAL (2.958), NAFBUR (2.703, 2.556), SEZMIT 

(2.995), TUDTUH (2.983), UCAQUK (2.956), VAVZAT (2.999), VEDNUO (2.972), YASSUH (2.971), 

YOHDII (2.995), YURSEJ (2.974).  

 (656) For intermolecular Cl···C contacts shorter than 3.0 Å, see: BCARPC (2.709, 2.760), CLMEDN 

(2.966), CLMPMO (2.463), NAFBUR (2.888), OBUWEN (2.947). 

 (657) Stam, C. H. Acta Cryst. 1980, B36, 729–730.  

 (658) Zhang, W.; Dowd, P. Tetrahedron Lett. 1994, 35, 5161–5164.  

 (659) Dowd, P.; Zhang, W.; Geib, S. J. Tetrahedron 1995, 51, 3435–3454.  

 (660) SYBYL Molecular Modeling Software; Tripos Inc.: St. Louis, MO, 63144.  

 (661) Intermolecular Cl···C contacts shorter than 2.7 Å were observed in the following PDB structures: 

1DVX (2.38, 2.60), 1PHA (2.49), 1YY4 (2.40), 2G9K (2.51), 2GUB (2.62), 2HVX (2.54), 2HWD 

(2.41), 2JKM (2.64), 2OP1 (2.69).  

 (662) An intermolecular Cl···N contact of 2.67 Å was observed in PDB entry 1GRQ.   

 (663) Intermolecular Cl···O contacts shorter than 2.7 Å were observed in the following PDB structures: 

1PHA (2.49), 1PHB (2.69), 1XVF (2.22), 2VNT (2.25), 2ZJU (2.71), 3CFL (2.63), 3DGA (2.64), 

3E7C (2.61).  

 (664) Lu, Y.; Shi, T.; Wang, Y.; Yang, H.; Yan, X.; Luo, X.; Jiang, H.; Zhu, W. J. Med. Chem. 2009, 

52, 2854–2862 and references therein.  

 (665) Toney, J. H.; Hammond, G. G.; Fitzgerald, P. M. D.; Sharma, N.; Balkovec, J. M.; Rouen, G. P.; 

Olson, S. H.; Hammond, M. L.; Greenlee, M. L.; Gao, Y.-D. J. Biol. Chem. 2001, 276, 31913–



 

272 

                                                                                                                                                                     

31918.  

 (666) Nukaga, M.; Kumar, S.; Nukaga, K.; Pratt, R. F.; Knox, J. R. J. Biol. Chem. 2004, 279, 9344–

9352.  

 (667) Wiegand, I.; Hilpert, K.; Hancock, R. E. W. Nat. Protocols 2008, 3, 163–175. 

 (668) García-Sáez, I.; Hopkins, J.; Papamicael, C.; Franceschini, N.; Amicosante, G.; Rossolini, G. M.; 

Galleni, M.; Frère, J.-M.; Dideberg, O. J. Biol. Chem. 2003, 278, 23868–23873.  

 (669) (a) Pauls, H. W.; Cheng, B.; Reid, L. S. Bioorg. Chem. 1992, 20, 124–134. (b) Lall, M. S.; 

Ramtohul, Y. K.; James, M. N. G.; Vederas, J. C. J. Org. Chem. 2002, 67, 1536–1547. (c) 

Armoush, N.; Syal, P.; Becker, D. P. Synth. Commun. 2008, 38, 1679–1687. (d) Yang, G.; 

Ghosez, L. Eur. J. Org. Chem. 2009, 11, 1738–1748. 

 (670) Leung, D.; Abbenante, G.; Fairlie, D. P. J. Med. Chem. 2000, 43, 305–341.  

 (671) Abbenante, G.; Fairlie, D. P. Med. Chem. 2005, 1, 71–104.  

 (672) (a) Loughlin, W. A.; Tyndall, J. D. A.; Glenn, M. P.; Fairlie, D. P. Chem. Rev. 2004, 104, 6085–

6118. (b) Loughlin, W. A.; Tyndall, J. D. A.; Glenn, M. P.; Hill, T. A.; Fairlie, D. P. Chem. Rev. 

2010, 110, PR32–PR69.  

 (673) While substitutions with thiols were typically achieved through the slow addition of SnCl4 to a 

solution of 117 and RSH, a substitution with p-Tol-SH was also accomplished with the slow 

addition of the -chloro substrate 117 to a solution of the thiol and SnCl4.   

 (674) For the preparation of (trimethylsilyl)allenes and additions to ketones and aldehydes, see: 

Danheiser, R. L.; Carini, D. J.; Kwasigroch, C. A. J. Org. Chem. 1986, 51, 3870–3878 and 

references therein.   

 (675) Nishide, K.; Ohsugi, S.-i.; Shiraki, H.; Tamakita, H.; Node, M. Org. Lett. 2001, 3, 3121–3124.  

 (676) (a) Tiwari, K. N.; Messini, L.; Montgomery, J. A.; Secrist, J. A. III Nucleosides, Nucleotides, and 

Nucleic Acids 2005, 24, 1895–1906. (b) Choo, H.; Chong, Y.; Choi, Y.; Mathew, J.; Schinazi, R. 

F.; Chu, C. K. J. Med. Chem. 2003, 46, 389–398. (c) Brȧnalt, J.; Kvarnström, I.; Niklasson, G.; 

Svensson, S. C. T.; Classon, B.; Samuelsson, B. J. Org. Chem. 1994, 59, 1783–1788.   

 (677) Brands, K. M. J.; Marchesini, G.; Williams, J. M.; Dolling, U.-H.; Reider, P. J. Tetrahedron Lett. 

1996, 37, 2919–2922.  

 (678) Keller, O.; Keller, W. E.; van Look, G.; Wersin, G. Org. Synth., Coll. Vol. 7 1990, 70.  

 (679) Greene, T. W.; Wuts, P. G. M. Protective Groups In Organic Synthesis, 3rd ed; John Wiley & 

Sons, Inc.: New York, 1999.  

 (680) Gottlieb, H. G.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512–7515. 

 (681) Mercury is available free of charge from www.ccdc.cam.ac.uk/products/mercury.  

 (682) Dennington, R., II; Keith, T.; Millam, J.; Eppinnett, K.; Hovell, W. L.; Gilliland, R. GaussView, 

Version 3.08; Semichem, Inc.: Shawnee Mission, KS, 2003. 

 (683) SYBYL Molecular Modeling Software; Tripos Inc.: St. Louis, MO, 63144. 

 (684) DeLano, W. L. PyMOL Molecular Graphics System; DeLano Scientific LLC: Palo Alto, CA, 

2008. (http://pymol.sourceforge.net). 

 (685) The 3-acetoxy derivative 124 was not isolated by chromatography and could only be identified 



 

273 

                                                                                                                                                                     

by three signals in the 1H NMR of the crude reaction mixture: 2.03 (s, 3H, COCH3), 3.84 (dd, H4), 

6.52 (d, 1H, H3). 

 (686) The 3-trifluoroethoxy derivative 125 could not be isolated after chromatography but three 

signals could be observed in the 1H NMR of the crude reaction mixture: 4.69 (d, J1,5 = 8.2 Hz, 1H, 

H1), 5.22 (dd, J5,1 = 8.2 Hz, J5,4 = 5.5 Hz, 1H, H5), 5.58 (d, J3,4 = 4.5 Hz, 1H, H3).  

 (687) Smith, L. I.; Howard, K. L. Org. Syn. Coll. Vol. 3, 1955, 351. 

 (688) Chemical shifts are reported relative to TMS with calibration to acetone in D2O (H: 2.22; C: 

30.89 and 215.94) according to values reported by Gottlieb et al.680  

 (689) Signals corresponding to C6, C7, and C8 of the hydrate of 152 could not be observed in the 13C 

spectrum or by HMBC.  

 (690) The signal for C7 could not be observed by either of the 13C or HMBC NMR spectra.  

 (691) The signals for C6 and C7 could not be observed by 13C or HMBC NMR experiments. 

 (692) The signals for the remaining protons of 122 could not be observed in CD3OD by 1H or COSY 

NMR experiments. 

 (693) The residual solvent peaks of CF3CD2OD were calibrated to H 3.88 (qt); C 61.5 (m) and 126.3 

(q).  

 (694) None of the remaining protons of the - or -(trifluoroethyl)hemiketals of 118 or the -(t-

butyl)hemiketal of 118 could be observed.  

 (695) The residual solvent peaks of (CD3)2CDOD were calibrated to H 1.10 (d) and 3.89 (m); C 24.2 

(m) and 62.9 (t).  

 (696) The residual solvent peak of (CD3)3COD was calibrated arbitrarily to H 1.17 (s).  

 (697) Queenan, A. M.; Shang, W.; Flamm, R.; Bush, K. Antimicrob. Agents Chemother. 2010, 54, 565–

569.  

 (698) Tremblay, L. W.; Hugonnet, J.-E.; Blanchard, J. S. Biochemistry 2008, 47, 5312–5316. 

 (699) Padayatti, P. S.; Helfand, M. S.; Totir, M. A.; Carey, M. P.; Carey, P. R.; Bonomo, R. A.; van den 

Akker, F. J. Biol. Chem. 2005, 280, 34900–34907. 

 (700) Totir, M. A.; Padayatti, P. S.; Helfand, M. S.; Carey, M. P.; Bonomo, R. A.; Carey, P. R.; van den 

Akker, F. Biochemistry 2006, 45, 11895–11904. 

 (701) Livermore, D. M.; Hope, R.; Mushtaq, S.; Warner, M. Clin. Microbiol. Infect. 2006, 14 (Suppl. 1), 

189–193.  

 (702) Totir, M. A.; Helfand, M. S.; Carey, M. P.; Sheri, A.; Buynak, J. D.; Bonomo, R. A.; Carey, P. R. 

Biochemistry 2007, 46, 8980–8987.  

 (703) Akova, M. Clin. Microbiol. Infect. 2008, 14 (Suppl. 1), 185–188.  

 (704) Totir, M. A.; Cha, J.; Ishiwata, A.; Wang, B.; Sheri, A.; Anderson, V. E.; Buynak, J.; Mobashery, 

S.; Carey, P. R. Biochemistry 2008, 47, 4094–4101. 

 (705) Kuzin, A. P.; Nukaga, M.; Nukaga, Y.; Hujer, A.; Bonomo, R. A.; Knox, J. R. Biochemistry 2001, 

40, 1861–1866. 

 (706) Sun, T.; Bethel, C. R.; Bonomo, R. A.; Knox, J. R. Biochemistry 2004, 43, 14111–14117. 

 (707) Kemp, J. E. G.; Closier, M. D.; Narayanaswami, S.; Stefaniak, M. H. Tetrahedron Lett. 1980, 21, 



 

274 

                                                                                                                                                                     

2991–2994.  

 (708) Daehne, W. v. J. Antibiot. 1980, 33, 451–452.   

 (709) Danelon, G. O.; Laborde, M.; Mascaretti, O. A.; Boggio, S. B.; Roveri, O. A. Bioorg. Med. Chem. 

1993, 1, 447–455.  

 (710) Changov, L. S.; Naydenova, E. D.; Ivanova, G. I.; Gergova, R. T.; Keuleyan, E. E.; Aleksiev, B. 

V. Bioorg. Med. Chem. 1999, 7, 2899–2904.  

 (711) Bycroft, B. W.; Shute, R. E.; Begley, M. J. J. Chem. Soc., Chem. Commun. 1988, 274–276.  

 (712) Sandanayaka, V. P.; Prashad, A. S. 6-(Spirocycloropyl) Penicillanic Acid 4,4-dioxides. U.S. Pat. 

Appl., US 6,489,316 B2, December 3, 2002.  

 (713) Sandanayaka, V. P.; Yang, Y. Org. Lett. 2000, 2, 3087–3090.  

 (714) Buynak, J. D.; Ghadachanda, V. R.; Vogeti, L.; Zhang, H.; Chen, H. J. Org. Chem. 2005, 70, 

4510–4513.  

 (715) (a) Buynak, J. D.; Rao, A. S.; Doppalapudi, V. R.; Adam, G.; Petersen, P. J.; Nidamarthy, S. D. 

Bioorg. Med. Chem. Lett. 1999, 9, 1997–2002. (b) Buynak, J. D.; Rao, A. S. Preparation of 2-

Substituted-6-alkylidenepenicillanic Acid Derivatives as -Lactamase Inhibitors. PCT Int. Pat. 

Appl., WO 99/33838 A1, July 8, 1999.   

 (716) Beharry, Z.; Chen, H.; Gadhachanda, V. R.; Buynak, J. D.; Palzkill, T. Biochem. Biophys. 

Research Commun. 2004, 313, 541–545.  

 (717) Pattanaik, P.; Bethel, C. R.; Hujer, A. M.; Hujer, K. M.; Distler, A. M.; Taracila, M.; Anderson, 

V. E.; Fritsche, T. R.; Jones, R. N.; Pagadala, S. R. R.; van den Akker, F.; Buynak, J. D.; Bonomo, 

R. A. J. Biol. Chem. 2009, 284, 945–953.  

 (718) Drawz, S. M.; Bethel, C. R.; Doppalapudi, V. R.; Sheri, A.; Pagadala, S. R. R.; Hujer, A. M.; 

Skalweit, M. J.; Anderson, V. E.; Chen, S. G.; Buynak, J. D.; Bonomo, R. A. Antimicrob. Agents 

Chemother. 2010, 54, 1414–1424.  

 (719) Buynak, J. D.; Rao, A. S.; Adam, G. C.; Nidamarthy, S. D.; Doppalapudi, V. R. Synthesis, 

Antibacterial Activity and Formulations of -Lactamase Inhibiting Cephalosporins. PCT Int. Pat. 

Appl., WO 00/63213 A1, October 26, 2000.  

 (720) Buynak, J. D.; Doppalapudi, V. R.; Adam, G. Bioorg. Med. Chem. Lett. 2000, 10, 853–857.   

 (721) Buynak, J. D.; Doppalapudi, V. R.; Frotan, M.; Kumar, R.; Chambers, A. Tetrahedron 2000, 56, 

5709–5718.  

 (722)  Crichlow, G. V.; Nukaga, M.; Doppalapudi, V. R.; Buynak, J. D.; Knox, J. R. Biochemistry 2001, 

40, 6233–6239.  

 (723) Buynak, J. D.; Vogeti, L.; Doppalapudi, V. R.; Venkata, R.; Solomon, G. M.; Chen, H. Bioorg. 

Med. Chem. Lett. 2002, 12, 1663–1666.   

 (724) Buynak, J. D.; Vogeti, L. Preparation of 7-Alkylidene-3-Substituted-3-Cephem-4-Carboxylates as 

-Lactamase Inhibitors. PCT Int. Pat. Appl. WO 03/020732 A2, March 13, 2003.  

 (725) Buynak, J. D.; Vogeti, L.; Chen, H. Org. Lett. 2001, 3, 2953–2956. 

 (726) Buynak, J. D.; Chen, H. Preparation of Penicillin Derivatives as Inhibitors of Serine and Metallo-

-Lactamases. PCT Int. Pat. Appl. WO 03/087105 A1, October 23, 2003.  



 

275 

                                                                                                                                                                     

 (727) Buynak, J. D.; Chen, H. Cephalosporin-Derived Mercaptans as Inhibitors of Serine and Metallo-

-Lactamases. U.S. Pat. Appl. US 2006/0178357 A1, August 10, 2006.  

 (728) Ganta, S. R.; Perumal, S.; Pagadala, S. R. R.; Samuelsen, Ø.; Spencer, J.; Pratt, R. F.; Buynak J. 

D. Bioorg. Med. Chem. Lett. 2009, 19, 1618–1622. 

 (729) (a) Sutton, L.; Yu, S. Broad spectrum -lactamase inhibitors. PCT Int. Pat. Appl., WO 

2009/049086 A1, April 16, 2009. (b) Sutton, L.; Yu, S. Broad spectrum -lactamase inhibitors. 

U.S. Pat. Appl., US 2009/0131394 A1, May 21, 2009. (c) Sutton, L.; Yu, S.; Fountain, K. R. 

Antimicrobial -lactamase inhibitors. PCT Int. Appl., WO 2010/118361 A1, October 14, 2010.   

 (730) Phillips, O. A.; Czajkowski, D. P.; Spevak, P.; Singh, M. P.; Hanehara-Kunigita, C.; Hyodo, A.; 

Micetich, R. G.; Maiti, S. N. J. Antibiot. 1997, 50, 350–356.  

 (731) Mansour, T. S.; Venkatesan, A. M.; Bradford, P.; Petersen, P. J.; Projan, S. J. Bicyclic 6-

Alkylidene-penem -Lactamase Inhibitors and -Lactam Antibiotic Combination: A Broad 

Spectrum Antibiotic. PCT Int. Appl. WO 2007016134 A1, February 8, 2007.  

 (732) Mansour, T. S.; Venkatesan, A. M. Bicyclic 6-Alkylidene-penems as Class D -Lactamase 

Inhibitors. PCT Int. Pat. Appl. WO 2006/130588 A1, December 7, 2006.  

 (733) Endimiani, A.; Bethel, C.; Choudhary, Y.; Bonomo, R. A. Antimicrob. Agents Chemother. 2010, 

54, 1650–1651.  

 (734) Cherry, P. C.; Newall, C. E.; Watson, N. S. J. Chem. Soc., Chem. Commun. 1978, 469–470.  

 (735) Wild, H.; Metzger, K.-G. Bioorg. Med. Chem. Lett. 1993, 3, 2205–2210. 

 (736) Pfaendler, H. R.; Weisner, F.; Metzger, K. Bioorg. Med. Chem. Lett. 1993, 3, 2211–2218.  

 (737) Jamieson, C. E.; Lambert, P. A.; Simpson, I. N. Antimicrob. Agents Chemother. 2003, 47, 2615–

2618.  

 (738) Hugonnet, J. E.; Tremblay, L. W.; Boshoff, H. I.; Barry, C. E.; Blanchard, J. S. Science 2009, 323, 

1215–1218.  

 (739) Čopar, A.; S̅olmajer, T.; Anžič, B.; Kuzman, T.; Mesar, T.; Kocjan, D. Ethylidene Derivatives of 

Tricyclic Carbapenems. U.S. Pat. Appl., US 6,489,318 B1. December 3, 2002. 

 (740) (a) Plantan, I.; Preželj, A.; Urleb, U.; Mohar, B.; Stephan, M. New Trinem Antibiotics and 

Inhibitors of -Lactamases. PCT Int. Pat. Appl. WO 2009/153297 A1, December 23, 2009. (b) 

Preželj, A.; Urleb, U.; Vilfan, G. Use of Inhibitor of -Lactamases and its Combination with -

Lactam Antibiotics. PCT Int. Pat. Appl., WO 2009/095387 A1, August 6, 2009. 

 (741) Mansour, T. S.; Venkatesan, A. M. Preparation of Bicyclic and Tricyclic Substituted 6-

Methylidene Carbapenems as Broad Spectrum -Lactamase Inhibitors. U.S. Pat. Appl., US 

2010/0063023 A1. March 11, 2010.  

 (742) Bitha, P.; Li, Z.; Francisco, G. D.; Rasmussen, B. A.; Lin, Y.-I. Bioorg. Med. Chem. Lett. 1999, 9, 

991–996.  

 (743) Bitha, P.; Li, Z.; Francisco, G. D.; Yang, Y.; Petersen, P. J.; Lenoy, E.; Lin, Y.-I. Bioorg. Med. 

Chem. Lett. 1999, 9, 997–1002. 

 (744) Nishimura, S.; Yasuda, N.; Sasaki, H.; Matsumoto, Y.; Kamimura, T.; Sakane, K.; Takaya, T. J. 

Antibiot. 1989, 42, 159–162.  



 

276 

                                                                                                                                                                     

 (745) Teng, M.; Miller, M. J.; Nicas, T. I.; Grissom-Arnold, J.; Cooper, R. D. G. Bioorg. Med. Chem. 

1993, 1, 151–154. 

 (746) Bulychev, A.; O’Brien, M. E.; Massova, I.; Teng, M.; Gibson, T. A.; Miller, M. J.; Mobashery, S. 

J. Am. Chem. Soc. 1995, 117, 5938–5943. 

 (747) Swarén, P.; Massova, I.; Bellettini, J. R.; Bulychev, A.; Maveyraud, L.; Kotra, L. P.; Miller, M. J.; 

Mobashery, S.; Samama, J.-P. J. Am. Chem. Soc. 1999, 121, 5353–5359. 

 (748) Bulychev, A.; Bellettini, J. R.; O’Brien, M.; Crocker, P. J.; Samama, J.-P.; Miller, M. J.; 

Mobashery, S. Tetrahedron 2000, 56, 5719–5728.  

 (749) Nishida; K.; Kunigita, C.; Uji, T.; Higashitani, F.; Hyodo, A.; Unemi, N.; Maiti, S. N.; Phillips, O. 

A.; Spevak, P.; Atchison, K. P.; Salama, S. M.; Atwal, H.; Micetich, R. G. Antimicrob. Agents 

Chemother. 1999, 43, 1895–1900. 

 (750) Page, M. G. P.; Dantier, C.; Desarbre, E. Antimicrob. Agents Chemother. 2010, 54, 2291–2302.  

 (751) Russo, T. A.; Page, M. G. P.; Beanan, J. M..; Olson, R.; Hujer, A. M.; Hujer, K. M.; Jacobs, M.; 

Bajaksouzian, S.; Endimiani, A.; Bonomo, R. A. J. Antimicrob. Chemother. 2011, 66, 867–873. 

 (752) Charnas, R.; Gubernator, K.; Heinze, I.; Hubschwerlen, C. Beta-Lactames. Eur. Pat. Appl., EP 

0508234 A2, 1992.  

 (753) Bellettini, J. R.; Miller, M. J. Tetrahedron Lett. 1997, 38, 167–168.  

 (754) Blizzard, T. A.; Chen, H.; Gude, C.; Hermes, J. D.; Imbriglio, J. E.; Kim, S.; Wu, J. Y.; Ha, S.; 

Mortko, C.; J.; Mangion, I. Preparation of Sulfooxydiazabicyclooctanecarboxamide Derivatives 

and Analogs for Use as -Lactamase Inhibitors. PCT Int. Pat. Appl., WO 2009091856 A2, July 

23, 2009.   

 (755) Ledoussal, B.; Gourdel, M.-E. Preparation of Azabicycles as Inhibitors of -Lactamases and Their 

Use in Pharmaceutical Compositions Containing -Lactam Antibiotics. PCT Int. Pat. Appl., WO 

2009/133442 A1, November 5, 2009. 

 (756) Chen, A.; Liang, G. Preparation of Tricyclic Compound Used as -Lactamase Inhibitor. Chin. Pat.  

Appl., CN 1727334 A, February 1, 2006.  

 (757) Singh, R.; Cooper, R. D. G. Tetrahedron 1994, 50, 12049–12064.  

 (758) Buynak, J. D. Rao, A. S.; Adam, G.; Nidamarthy, S. D.; Zhang, H. J. Am. Chem. Soc. 1998, 120, 

6846–6847.  

 (759) Martin, R.; Gold, M.; Jones, J. B. Bioorg. Med. Chem. Lett. 1994, 4, 1229–1234. 

 (760) Usher, K. C.; Blaszczak, L. C.; Weston, G. S.; Shoichet, B. K.; Remington, S. J. Biochemistry 

1998, 37, 16082–16092.  

 (761) Weston, G. S.; Blazquez, J.; Baquero, F.; Shoichet, B. K. J. Med. Chem. 1998, 41, 4577–4586.  

 (762) Powers, R. A.; Blázquez, J.; Weston, G. S.; Morosini, M.-I.; Baquero, F.; Shoichet, B. K. Protein 

Sci. 1999, 8, 2330–2337.  

 (763) Powers, R. A.; Shoichet, B. K. J. Med. Chem. 2002, 45, 3222–3234.  

 (764) Venturelli, A.; Donatella, T.; Cancian, L.; Morandi, F.; Cannazza, G.; Segatore, B.; Prati, F.; 

Amicosante, G.; Shoichet, B. K.; Costi, M. P. J. Med. Chem. 2007, 50, 5644–5654.  

 (765) Chen, Y.; McReynolds, A.; Shoichet, B. K. Protein Sci. 2009, 18, 662–669.  



 

277 

                                                                                                                                                                     

 (766) Tondi, D.; Calò, S.; Shoichet, B. K.; Costi, M. P. Bioorg. Med. Chem. Lett. 2010, 20, 3416–3419.  

 (767) Martin, R.; Jones, J. B. Tetrahedron Lett. 1995, 36, 8399–8402.  

 (768) Strynadka, N. C. J.; Martin, R.; Jensen, S. E.; Gold, M.; Jones, J. B. Nat. Struct. Biol. 1996, 3, 

688–695.    

 (769) Ness, S.; Martin, R.; Kindler, A. M.; Paetzel, M.; Gold, M.; Jensen, S. E.; Jones, J. B.; Strynadka, 

N. C. J. Biochemistry 2000, 39, 5312–5321. 

 (770) Caselli, E.; Powers, R. A.; Blasczcak, L. C.; Wu, C. Y. E.; Prati, F.; Shoichet, B. K. Chem. Biol. 

2001, 8, 17–31.  

 (771) Ke, W.; Sampson, J. M.; Ori, C.; Prati, F.; Drawz, S. M.; Bethel, C. R.; Bonomo, R. A.; van den 

Akker, F. Antimicrob. Agents Chemother. 2011, 55, 174–183.  

 (772) Roth, T. A.; Minasov, G.; Morandi, S.; Prati, F.; Shoichet, B. K. Biochemistry 2003, 42, 14483–

14491.  

 (773) Morandi, F.; Caselli, E.; Morandi, S.; Focia, P. J.; Blázquez, J.; Shoichet, B. K.; Prati, F. J. Am. 

Chem. Soc. 2003, 125, 685–695.  

 (774) Shoichet, B. K.; Prati, F. Nanomolar -Lactamase Inhibitors. U.S. Pat. Appl., US 7,271,186 B1, 

September 18, 2007.  

 (775) Morandi, S.; Morandi, F.; Caselli, E.; Shoichet, B. K.; Prati, F. Bioorg. Med. Chem. 2008, 16, 

1195–1205.  

 (776) (a) Burns, C. J.; Jackson, R. W. -Lactamase Inhibitors. PCT Int. Pat. Appl., WO 2009/064413 

A1, May 22, 2009. (b) Burns, C. J.; Jackson, R. W.; Goswami, R.; Xu, H. -Lactamase Inhibitors. 

PCT Int. Pat. Appl., WO 2009/064414 A1, May 22, 2009.  

 (777) Burns, C. J.; Goswami, R.; Jackson, R. W.; Lessen, T.; Li, W.; Pevear, D.; Tirunahari, P. K.; Xu, 

H. -Lactamase Inhibitors. PCT Int. Pat. Appl., WO 2010/130708 A1, November 18, 2010.  

 (778) Tan, Q.; Ogawa, A. M.; Painter, R. E.; Park, Y.-W.; Young, K.; DiNinno, F. P. Bioorg. Med. 

Chem. Lett. 2010, 20, 2622–2624.   

 (779) Eidam, O.; Romagnoli, C.; Caselli, E.; Babaoglu, K.; Pohlhaus, D. T.; Karpiak, J.; Bonnet, R.; 

Shoichet, B. K.; Prati, F. J. Med. Chem. 2010, 53, 7852–7863. 

 (780) Xia, Y.; Cao, K.; Zhou, Y.; Alley, M. R. K.; Rock, F.; Mohan, M.; Meewan, M.; Baker, S. J.; Lux, 

S.; Ding, C. Z.; Jia, G.; Kully, M.; Plattner, J. J. Bioorg. Med. Chem. Lett. 2011, 21, 2533–2536.  

 (781) Adediran, S. A.; Pratt, R. F. Biochemistry 2008, 47, 9467–9474. 

 (782) (a) Besterman, J. M.; Rahil, J.; Vaisburg, A. Novel Inhibitors of -Lactamase. U.S. Pat. Appl., US 

2006/0105999 A1, May 18, 2006. (b) Dininno, F.; Hammond, M. L.; Dykstra, K.; Kim, S.; Tan, 

Q.; Young, K.; Hermes, J. D.; Raeppel, S.; Mannion, M.; Zhou, N. Z.; Gaudette, F.; Vaisburg, A.; 

Rahil, J.; Georgopapadakou, N. Novel Sulfonylamidomethylphosphonate Inhibitors of -

Lactamases for Decreasing of Bacterial Resistance to Antibiotics. PCT Int. Appl., WO 

2007/139729 A1, December 6, 2007. (c) Dininno, F.; Hammond, M. L.; Dykstra, K.; Kim, S.; 

Tan, Q.; Young, K.; Hermes, J. D.; Chen, H.; Raeppel, S.; Mannion, M.; Gaudett, F.; Vaisburg, 

A.; Rahil, J.; Georgopapadakou, N.; Zhou, N. Z. Novel Inhibitors of -Lactamase. PCT Int. Pat. 

Appl., WO 2008/073142 A2, June 19, 2008.   



 

278 

                                                                                                                                                                     

 (783) Rahil, J.; Pratt, R. F. Biochemistry 1992, 31, 5869–5878.  

 (784) Rahil, J.; Pratt, R. F. Biochemistry 1994, 33, 116–125.  

 (785) Chen, C. C. H.; Rahil, J.; Pratt, R. F.; Herzberg, O. J. Mol. Biol. 1993, 234, 165–178. 

 (786) Lobkovsky, E.; Billings, E. M.; Moews, P. C.; Rahil, J.; Pratt, R. F.; Knox, J. R. Biochemistry 

1994, 33, 6762–6772. 

 (787) Maveyraud, L.; Pratt, R. F.; Samama, J.-P. Biochemistry 1998, 37, 2622–2628.  

 (788) Silvaggi, N. R.; Anderson, J. W.; Brinsmade, S. R.; Pratt, R. F.; Kelly, J. A. Biochemistry 2003, 

42, 1199–1208.  

 (789) Bateson, J. H.; Gasson, B. C.; Khushi, T.; Neale, J. E.; Payne, D. J.; Tolson, D. A.; Walker, G. 

Bioorg. Med. Chem. Lett. 1994, 14, 1667–1672.  

 (790) Perumal, S. K.; Pratt, R. F. J. Org. Chem. 2006, 71, 4778–4785.  

 (791) Perumal, S. K.; Adediran, S. A.; Pratt, R. F. Bioorg. Med. Chem. Lett. 2008, 16, 6987–6994.  

 (792) Li, N.; Pratt, R. F. J. Am. Chem. Soc. 1998, 120, 4264–4268.  

 (793) Pratt, R. F.; Hammar, N. J. J. Am. Chem. Soc. 1998, 120, 3004–3006.  

 (794) Kaur, K.; Lan, M. J. K.; Pratt, R. F. J. Am. Chem. Soc. 2001, 123, 10436–10443.  

 (795) Silvaggi, N. R.; Kaur, K.; Adediran, S. A.; Pratt, R. F.; Kelly, J. A. Biochemistry 2004, 43, 7046–

7053.  

 (796) Majumdar, S.; Adediran, S. A.; Nukaga, M.; Pratt, R. F. Biochemistry 2005, 44, 16121–16129.  

 (797) Adediran, S. A.; Nukaga, M.; Baurin, S.; Frère, J.-M.; Pratt, R. F. Antimicrob. Agents Chemother. 

2005, 49, 4410–4412.  

 (798) Majumdar, S.; Pratt, R. F. Biochemistry 2009, 48, 8285–8292.  

 (799) Adediran, S. A.; Cabaret, D.; Flavell, R. R.; Sammons, J. A.; Wakselman, M.; Pratt, R. F. Bioorg. 

Med. Chem. 2006, 14, 7023–7033.  

 (800) Wyrembak, P. N.; Babaoglu, K.; Pelto, R. B.; Shoichet, B. K.; Pratt, R. F. J. Am. Chem. Soc. 

2007, 129, 9548–9549. 

 (801) Pelto, R. B.; Pratt, R. F. Biochemistry 2008, 47, 12037–12046. 

 (802) Walter, M. W.; Adlington, R. M.; Baldwin, J. E.; Schofield, C. J. Tetrahedron 1997, 53, 7275–

7290. 

 (803) Walter, M. W.; Adlington, R. M.; Baldwin, J. E.; Schofield, C. J. J. Org. Chem. 1998, 63, 5179–

5192. 

 (804) Yamaguchi, Y.; Jin, W.; Matsunaga, K.; Ikemizu, S.; Yamagata, Y.; Wachino, J.-i.; Shibata, N.; 

Arakawa, Y.; Kurosaki, H. J. Med. Chem. 2007, 50, 6647–6653.  

 (805) Liénard, B. M. R.; Garau, G.; Horsfall, L.; Karsisiotis, A. I.; Damblon, C.; Lassaux, P.; 

Papamicael, C.; Roberts, G. C. K.; Galleni, M.; Dideberg, O.; Frère, J.-M.; Schofield, C. J. Org. 

Biomol. Chem. 2008, 6, 2282–2294.   

 (806) Bounaga, S.; Galleni, M.; Laws, A. P.; Page, M. I. Bioorg. Med. Chem. Lett. 2001, 9, 503–510.  

 (807) Sun, Q.; Law, A.; Crowder, M. W.; Geysen, H. M. Bioorg. Med. Chem. Lett. 2006, 16, 5169–

5175.  

 (808) Payne, D. J.; Bateson, J. H.; Gasson, B. C.; Proctor, D.; Khushi, T.; Farmer, T. H.; Tolson, D. A.; 



 

279 

                                                                                                                                                                     

Bell, D.; Skett, P. W.; Marshall, A. C.; Reid, R.; Ghosez, L.; Combret, Y.; Marchand-Brynaert, J. 

Antimicrob. Agents Chemother. 1997, 41, 135–140.  

 (809) Payne, D. J.; Bateson, J. H.; Gasson, B. C.; Khushi, T.; Proctor, D.; Pearson, S. C.; Reid, R. 

FEMS Microbiol. Lett. 1997, 157, 171–175.  

 (810) Greenlee, M. L.; Laub, J. B.; Balkovec, J. M.; Hammond, M. L.; Hammond, G. G.; Pompliano, D. 

L.; Epstein-Toney, J. H. Bioorg. Med. Chem. Lett. 1999, 9, 2549–2554.   

 (811) Hammond, G. G.; Huber, J. L.; Greenlee, M. L.; Laub, J. B.; Young, K.; Silver, L. L.; Balkovec, 

J. M.; Pryor, K. D.; Wu, J. K.; Leiting, B.; Pompliano, D. L.; Toney, J. H. FEMS Microbiol. Lett. 

1999, 459, 289–296. 

 (812) Mollard, C.; Moali, C.; Papamicael, C.; Damblon, C.; Vessilier, S.; Amicosante, G.; Schofield, C. 

J.; Galleni, M.; Frère, J.-M.; Roberts, G. C. K. J. Biol. Chem. 2001, 276, 45015–45023.   

 (813) Damblon, C.; Jensen, M.; Ababou, A.; Barsukov, I.; Papamicael, C.; Schofield, C. J.; Olsen, L.; 

Bauer, R.; Roberts, G. C. K. J. Biol. Chem. 2003, 278, 29240–29251.  

 (814) Goto, M.; Takahashi, T.; Yamashita, F.; Koreeda, A.; Mori, H.; Ohta, M.; Arakawa, Y. Biol. 

Pharm. Bull. 1997, 20, 1136–1140.  

 (815) Jin, W.; Arakawa, Y.; Yasuzawa, H.; Taki, T.; Hashiguchi, R.; Mitsutani, K.; Shoga, A.; 

Yamaguchi, Y.; Kurosaki, H.; Shibata, N.; Ohta, M.; Goto, M. Biol. Pharm. Bull. 2004, 27, 851–

856.  

 (816) Kurosaki, H.; Yamaguchi, Y.; Yasuzawa, H.; Jin, W.; Yamagata, Y.; Arakawa, Y. 

ChemMedChem 2006, 1, 969–972.  

 (817) Kurosaki, H.; Yamaguchi, Y.; Higashi, T.; Soga, K.; Matsueda, S.; Yumoto, H.; Misumi, S.; 

Yamagata, Y.; Arakawa, Y.; Goto, M. Angew. Chem. Int. Ed. 2005, 44, 3861–3864.  

 (818) Horsfall, L. E.; Garau, G.; Liénard, B. M. R.; Dideberg, O.; Schofield, C. J.; Frère, J.-M.; Galleni, 

M. Antimicrob. Agents Chemother. 2007, 51, 2136–2142.  

 (819) Minond, D.; Saldanha, S. A.; Subramaniam, P.; Spaargaren, M.; Spicer, T.; Fotsing, J. R.; Weide, 

T.; Fokin, V. V.; Sharpless, K. B.; Galleni, M.; Bebrone, C.; Lassaux, P.; Hodder, P. Bioorg. Med. 

Chem. Lett. 2009, 17, 5027–5037. 

 (820) Weide, T.; Saldanha, S. A.; Minond, D.; Spicer, T. P.; Fotsing, J. R.; Spaargaren, M.; Frère, J.-M.; 

Bebrone, C.; Sharpless, K. B.; Hodder, P. S.; Fokin, V. V. ACS Med. Chem. Lett. 2010, 1, 150–

154.    

 (821) Moloughney, J. G.; Thomas, J. D.; Toney, J. H. FEMS Microbiol. Lett. 2005, 243, 65–71.  

 (822) Olsen, L.; Jost, S.; Adolph, H.-W.; Pettersson, I.; Hemmingsen, L.; Jørgensen, F. S. Bioorg. Med. 

Chem. Lett. 2006, 14, 2627–2635.  

 (823) Chikauchi, K.; Kurazono, M.; Abe, T.; Hiraiwa, Y.; Morinaka, A.; Kudo, T. Metallo--Lactamase 

Inhibitor. PCT Int. Pat. Appl., WO 2007/034924 A1, March 29, 2007.  

 (824) Chikauchi, K.; Ida, M.; Abe, T.; Hiraiwa, Y.; Morinaka, A.; Kudo, T. Metallo--Lactamase 

Inhibitors. U.S. Pat. Appl. US 2008/0090825 A1, April 17, 2008. 

 (825) Morinaka, A.; Konnai, T.; Ida, M.; Abe, T.; Hiraiwa, Y.; Kudo, T. Pharmaceutical Compositions 

Containing Maleic Acid Derivatives and Cephem Antibiotics. Jap. Pat. Appl. JP 2009/040743, 



 

280 

                                                                                                                                                                     

February 26, 2009.  

 (826) Ishii, Y.; Eto, M.; Mano, Y.; Tateda, K.; Yamaguchi, K. Antimicrob. Agents Chemother. 2010, 54, 

3625–3629.  

 (827) Hiraiwa, Y.; Ida, M.; Kudo, T.; Morinaka, A.; Chikauchi, K.; Mori, K. Metallo--Lactamase 

Inhibitor. PCT Int. Pat. Appl., WO 2008/016007 A1, February 7, 2008. 

 (828) Hiraiwa, Y.; Morinaka, A.; Fukushima, T.; Kudo, T. Bioorg. Med. Chem. Lett. 2009, 19, 5162–

5165. 

 (829) Toney, J. H.; Fitzgerald, P. M. D.; Grover-Sharma, N.; Olson, S. H.; May, W. J.; Sundelof, J. G.; 

Vanderwall, D. E.; Cleary, K. A.; Grant, S. K.; Wu, J. K.; Kozarich, J. W.; Pompliano, D. L.; 

Hammond, G. G. Chem. Biol. 1998, 5, 185–196.   

 (830) Toney, J. H.; Cleary, K. A.; Hammond, G. G.; Yuan, X.; May, W. J.; Hutchins, S. M.; Ashton, W. 

T.; Vanderwall, D. E. Bioorg. Med. Chem. Lett. 1999, 9, 2741–2746.  

 (831) Liénard, B. M. R.; Horsfall, L. E.; Galleni, M.; Frère, J.-M.; Schofield, C. J. Bioorg. Med. Chem. 

Lett. 2007, 17, 964–968.  

 (832) Payne, D. J.; Hueso-Rodríguez, J. A.; Boyd, H.; Concha, N. O.; Janson, C. A.; Gilpin, M.; 

Bateson, J. H.; Cheever, C.; Niconovich, N. L.; Pearson, S.; Rittenhouse, S.; Tew, D.; Díez, E.; 

Pérez, P.; de la Feunte, J.; Rees, M.; Rivera-Sagredo, A. Antimicrob. Agents Chemother. 2002, 46, 

1880–1886.  

 (833) Baxter, N. J.; Laws, A. P.; Rigoreau, L.; Page, M. I. J. Chem. Soc., Perkin Trans. 2 1996, 2245–

2246.  

 (834) Beck, J.; Sauvage, E.; Charlier, P.; Marchand-Brynaert, J. Bioorg. Med. Chem. Lett. 2008, 18, 

3764–3768.  

 (835) Simm, A. M.; Loveridge, E. J.; Crosby, J.; Avison, M. B.; Walsh, T. R.; Bennett, P. M. Biochem. 

J. 2005, 387, 585–590.  

 (836) Powers, R. A.; Morandi, F.; Shoichet, B. K. Structure 2002, 10, 1013–1023.  

 (837) Tondi, D.; Morandi, F.; Bonnet, R.; Costi, M. P.; Shoichet, B. K. J. Am. Chem. Soc. 2005, 127, 

4632–4639.  

 (838) Babaoglu, K.; Shoichet, B. K. Nat. Chem. Biol. 2006, 12, 720–723.  

 (839) Chen, Y.; Shoichet, B. K. Nat. Chem. Biol. 2009, 5, 358–364. 

 (840) Vinod, N. V.; Shijina, R.; Dileep, K. V.; Sadasivan, C. Appl. Biochem. Biotechnol. 2010, 160, 

1752–1759.  

 (841) Jaramillo, M. C.; Mora, C.; Vélez, L. E.; Quijano, J. Med. Chem. 2009, 5, 434–439.  

 (842) Babaoglu, K.; Simeonov, A.; Irwin, J. J.; Nelson, M. E.; Feng, B.; Thomas, C. J.; Cancian, L.; 

Costi, M. P.; Maltby, D. A.; Jadhav, A.; Inglese, J.; Austin, C. P.; Shoichet, B. K. J. Med. Chem. 

2008, 51, 2502–2511.  

 (843) Strynadka, N. C. J.; Jensen, S. E.; Johns, K.; Blanchard, H.; Page, M.; Matagne, A.; Frère, J.-M.; 

James, M. N. G. Nature 1994, 368, 657–660.  

 (844) Gretes, M.; Lim, D. C.; de Castro, L.; Jensen, S. E.; Kang, S. G.; Lee, K. J.; Strynadka, N. C. J. J. 

Mol. Biol. 2009, 389, 289–305.  



 

281 

                                                                                                                                                                     

 (845) Wang, J.; Palzkill, T.; Chow, D.-C. J. Biol. Chem. 2009, 284, 595–609.  

 (846) (a) Hanes, M. S.; Jude, K. M.; Berger, J. M.; Bonomo, R. A.; Handel, T. M. Biochemistry 2009, 

48, 9185–9193. (b) Harel, M.; Spaar, A.; Schreiber, G. Biophys. J. 2009, 96, 4237–4248. (c) 

Reynolds, K. A.; Hanes, M. S.; Thomson, J. M.; Antczak, A. J.; Berger, J. M.; Bonomo, R. A.; 

Kirsch, J. F.; Handel, T. M. J. Mol. Biol. 2008, 382, 1265–1275. (d) Reynolds, K. A.; Thomson, J. 

M.; Corbett, K. D.; Bethel, C. R.; Berger, J. M.; Kirsch, J. F.; Bonomo, R. A.; Handel, T. M. J. 

Biol. Chem. 2006, 281, 26745–26753.  

 (847) Kim, S.-K.; Sims, C. L.; Wozniak, S. E.; Drude, S. H.; Whitson, D.; Shaw, R. W. Chem. Biol. 

Drug Des. 2009, 74, 343–348.  

 (848) Vella, P.; Hussein, W. M.; Leung, E. W. W.; Clayton, D.; Ollis, D. L.; Mitić, N.; Schenk, G.; 

McGeary, R. P. Bioorg. Med. Chem. Lett. 2011, 21, 3282–3285.  

 (849) Keith, D. D.; Tengi, J.; Rossman, P.; Todaro, L.; Weigele, M. Tetrahedron 1983, 39, 2445–2458.  

 (850) Georgopapadakou, N. H.; Russo, D. A.; Liebman, A.; Burger, W.; Rossman, P.; Keith, D. 

Antimicrob. Agents Chemother. 1987, 31, 1069–1074.  

 (851) Christenson, J. G.; Pruess, D. L.; Talbot, M. K.; Keith, D. D. Antimicrob. Agents Chemother. 

1988, 32, 1005–1011.  

 (852) For additional tables of crystallographic data for cyclobutanones 65, 111, 117, 123, and 124, 

see the Supporting Information for ref 568. 

 (853) For additional tables of crystallographic data for cyclobutanones 151, 152, 152, and 153, see 

the Supporting Information for ref 640. 


