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Abstract 

Agricultural census data have been identified to possess the potential to provide 

constraints on carbon uptake by croplands at the regional scale. In this study, we build on 

previous efforts and further assess this potential quantitatively by comparing 1) fractional 

cropland coverage in southwestern Ontario, Canada derived from agricultural statistics 

against three different remotely sensed land cover maps; and 2) carbon uptakes 

determined from agricultural data with simulations generated by a satellite data-driven 

biospheric model. In addition, we assimilated the census data-derived carbon uptakes 

with modeled estimates in a Bayesian inverse approach to determine if and by how much 

constrain the crop data can provide, as exhibited by uncertainty reductions. 

 Uncertainties in census data-derived gross primary production (GPP) estimates are 

carefully quantified using a Monte Carlo simulation. In general, results from the 

fractional cropland coverage comparison indicate significant value of the agricultural 

census data by revealing biases in the spatial distribution of croplands, as found in all 

three of the satellite land cover products. However, we find that the carbon uptake values 

derived from crop harvested records are still subject to significant uncertainties that have 

been underestimated or neglected altogether in past studies. The Monte Carlo simulation 

suggests that the largest source of uncertainty can be traced to errors in the growth 

efficiency, followed by harvest production records, and then the harvest index. As result, 

attention must be paid to such errors when using the agricultural census data for carbon 

accounting purposes or to provide constraints to simulations of crop carbon uptake. 
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Chapter 1 Introduction 

1.1  The importance of carbon cycle 

Carbon (C) is a key element for all life forms on Earth and circulates through the planet’s 

interior, land, ocean, and atmosphere. While carbon cycles through these individual 

reservoirs, the exchange is often in both directions. The carbon budget, an accounting of 

carbon within these various reservoirs, should be in quasi-equilibrium state under natural 

conditions. However, currently this is not the case because carbon is excessively 

accumulating in the form of atmospheric carbon dioxide (CO2) and methane (CH4) since 

the preindustrial era (circa 1750) [IPCC, 2007]. From a climatological standpoint, this is 

not desirable because it will lead to a disruption in the energy balance within the Earth’s 

atmosphere. 

 Energy that drives climate and weather on Earth originates from the Sun. At the 

Earth’s surface, this energy is absorbed, reflected, and redistributed by the atmospheric 

and oceanic circulation before it is radiated back to space as long-wave infrared radiation. 

For Earth as a whole, the incoming solar energy is balanced by the outgoing long-wave 

radiation. Therefore, any factor that alters this balance within Earth’s atmosphere will 

affect the climate [IPCC, 2007]. In the atmosphere, major constituent gases such as 

nitrogen (N2), oxygen (O2) and argon (Ar) are transparent to the outgoing long-wave 

radiation yet trace gases like CO2, CH4, nitrous oxide (N2O), water vapor and 

halocarbons (a group of gases containing fluorine, chlorine or bromine) are not. 

Consequently, increase in concentrations of the said trace gases, also known as 

greenhouse gases (GHGs), will reduce the efficiency at which the reflected long-wave 
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radiation transmits into space and thus cause the outgoing long-wave radiation from the 

surface to be absorbed by the atmosphere and re-emitted at higher altitude; eventually 

affecting the global energy budget and climate [Crowley, 2000; Karl and Trenberth, 

2003]. 

 The resulting change in energy balance is expressed as a positive radiative forcing 

which tends to warm the lower atmosphere and Earth’s surface. This “greenhouse effect” 

depends on the amount of increase in the concentration of each GHG, the radiative 

properties of the gases involved, and the concentrations of other GHGs already present in 

the atmosphere [IPCC, 2007]. The long-lived CO2, CH4, N2O and halocarbons can be 

produced from natural as well as anthropogenic activities. The combined radiative forcing 

due to increases in these GHGs is +2.3 ± 0.2 W·m-2 in 2005 and the CO2 radiative forcing 

had increased by 20% from 1995 to 2005 [IPCC, 2007]. Among all the GHGs, CO2 has 

been the most important contributing factor to the increased forcing [IPCC, 2007]. Global 

atmospheric concentration of CO2 is 379 ppm in 2005 and the annual CO2 concentration 

growth rate was larger during 1995 to 2005 (average: 1.9 ppm per year) than during 1960 

to 2005 (average: 1.4 ppm per year), although there is significant year-to-year variability 

in growth rates. Accordingly, the CO2 radiative forcing has increased by 20% from 1995 

to 2005, the largest change for any decade in at least the last 200 years [IPCC, 2007]. 

 From an oceanic standpoint, increase in atmospheric CO2 concentrations is also 

responsible for increased acidity in the surface ocean [Caldeira and Wickett, 2003], 

which in turn may lead to dreadful future consequences for corals and other marine 

organisms that build their skeletons and shells from calcium carbonate, a chemical 

compound that is dissolvable even in weak acid. Ocean acidification is therefore another 
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reason why we must study the carbon cycle and the accumulation of CO2 in the 

atmosphere [Orr et al., 2005]. 

 

1.2  Carbon cycle and croplands 

Primary production of a terrestrial ecological system refers to the rate at which 

autotrophic producers, mainly green plants, produce organic substances that are used to 

maintain and support growth through photosynthesis and chemosynthesis [Odum, 1971]. 

In both processes, CO2 from the atmosphere is converted into carbohydrate (CH2O) that 

is required for biochemical synthesis of new biomass in plants. The gross primary 

production (GPP) quantifies gross carbon fixed by vegetation in terrestrial ecosystems 

and is in effect the principal indicator of biospheric carbon fluxes. Given that the 

terrestrial biosphere is the prime bearer of plants, animals, soil microbes, and 

decomposing organic materials, it is therefore a large reservoir of organic carbon and 

facilitates the exchange of carbon between the biota and atmosphere. 

 Croplands play an important role in the terrestrial carbon cycle because they cover 

~15 million km2 of the planet [Ramankutty et al., 2008]. Naturally, organic carbons fixed 

by vegetation through photosynthesis and subsequent storage into soils can be regarded 

as a repository for atmospheric CO2. In particular, strategically managed agricultural 

lands that favor the accumulation of carbons in soils would be considered as an option for 

mitigating GHG emissions [Lal, 2004; Desjardins et al., 2005; Kroodsma and Field, 

2006; Hutchinson et al., 2007]. In view of that, carbon fluxes associated with croplands 

must be properly accounted for when quantifying carbon sources and sinks over the 

landscape. 
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1.3  Approaches to assess carbon budget 

Biospheric models [Potter et al., 1993; Ruimy et al., 1996; Sellers et al., 1996; 

Mahadevan et al., 2008] play a central role in helping us to learn and quantify flows of 

terrestrial carbon because they can account for the biophysical processes that determine 

the spatio-temporal variations of carbon fluxes [Cramer et al., 1999]. In the context of 

carbon cycle studies, there are various choices of data for constraining these biospheric 

model outputs. For example, inverse (“top down”) analyses of CO2 budgets on regional 

scales can utilize measurements of atmospheric CO2 concentrations on tall towers or by 

aircraft within the regions where sources and sinks are most active [Gerbig et al., 2003a, 

2003b; Matross et al., 2006]. However, inverse methods still require work in quantifying 

and understanding the error structure of both biospheric and atmospheric models [Lin and 

Gerbig, 2005; Gerbig et al., 2006; Lin et al., 2011]. Likewise, although eddy covariance 

measurements [Baldocchi et al., 2001] offer details about the dynamics of 

terrestrial-atmospheric CO2 exchange, their capability to estimate carbon sources and 

sinks at the regional scale is inadequate because the localized footprint (~101 km2 to 102 

km2) cannot be reliably scaled up to regional scales [Jenkins et al., 2001; Matross et al., 

2006]. For scaling up flux estimates in space using satellite data, significant obstacles 

arise when field measurements are not available at the >1-10 km-level scale for validation 

[Lobell et al., 2002]. Agricultural census data can be regarded as a possible exception and 

thus poses as a valuable dataset for constraining the biospheric models over the regional 

scale, as they provide two unique sources of information for carbon cycle science: 1) area 

covered by croplands at the >1-10 km scale; and 2) a partial measure of total plant 

production throughout the growing season and hence potential carbon uptake. 
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1.4  Project objective 

Agricultural census data have been identified to possess the potential to provide 

constraints on carbon uptake by croplands at the regional scale. While numerous studies 

recognized and attempted to take advantage of this potential, they did not do it in a 

comprehensive manner as they neither compared the census data against multiple satellite 

land cover datasets nor took into account the uncertainties of the census data. For 

example, Ramankutty and Foley [1998], Frolking et al. [1999], and Hurtt et al. [2001] 

compared cropland area estimates derived from ground-based census data against 

estimates created from one satellite-based land cover product developed using the 1-km 

Advanced Very High Resolution Radiometer (AVHRR). Malmström et al. [1997] and 

Lobell et al. [2002] used agricultural census data to test satellite-based biospheric models, 

but both studies only quantified inter-annual fit between census data-derived estimates 

and satellite-based modeled fluxes by examining correlation coefficients. Neither study 

considered a priori uncertainties in either of these agricultural data. When Prince et al. 

[2001] and Bolinder et al. [2007] converted agricultural data into primary production, the 

authors only took into account the error sources in the root:shoot ratio and harvest index 

and neglected uncertainties contributed by other parameters that are required in the 

conversion process. 

 In this study, we build on previous efforts to further assess this potential 

quantitatively by using agricultural census data collected by the Canadian federal and 

provincial agencies to determine fractional cropland coverage (required for identifying 

where the field crops are grown) as well as primary production estimates. With the 

cropland fractions, we will compare them against three sets of satellite-based vegetation 
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classification maps for verification. Then, in estimating the primary production, we will 

apply a Monte Carlo simulation to calculate their associated uncertainties and their 

sensitivity to the assumed parameters required for their estimation. These carbon uptake 

estimates and their uncertainties will later be assimilated with outputs generated by a 

biospheric model in a Bayesian inversion to obtain “optimal” posterior estimates (i.e. 

expected values of the posterior) for all sub-provincial jurisdictions in southwestern 

Ontario. The reduction in uncertainties, presented as the percentage differences between 

prior and posterior uncertainties, will be analyzed to determine if and by how much the 

agricultural data constrained the modeled fluxes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 7

Chapter 2 Area of interest, agricultural census 

data and data pre-processing 

2.1  Area of interest 

According to the 2006 Canadian Census of Agriculture, Ontario is one of the major field 

crop production regions in the country, accounting for 55.2% of the total national 

production of corn and 60% of winter wheat [Statistics Canada, 2006]. Given such 

significance, understanding how Ontario's croplands contribute to the regional carbon 

cycle is of great importance to resource managers and policy makers when managing 

risks and opportunities arising from climate change. In this study, the area of interest is 

southwestern Ontario (Figure 1), the location where the majority of croplands are situated 

in the province. 

 

2.2  Agricultural census data 

To determine cropland fraction and carbon uptake, annual harvested field crop area and 

yield production information of each county in southwestern Ontario are retrieved from 

the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) 

(http://www.omafra.gov.on.ca/english/stats/crops/index.html). According to OMAFRA, 

these data are compiled from telephone, mail-in, and enumerative surveys of farmers, 

with additional information supplied by government field officers, agribusiness personnel, 

and farm marketing boards.  

 For comparing fractional cropland coverage, we used harvested area estimates 



 

 8

reported for all field crops listed on the OMAFRA field crop statistics webpage. However, 

when determining crop GPP, we only focused on the dominant field crops such as winter 

wheat, spring wheat, grain corn, fodder corn, soy, hay and barley because relevant 

datasets such as moisture content, harvest index and root:shoot ratio of other field crops 

required for the conversion process (eq. (7)) are not available. Nevertheless, the selected 

field crops represent over 90% of the total harvested area and over 95% of the total 

harvested production among all reported field crops in Ontario during 2004 [Statistics 

Canada, 2004]. 

 Data for uncertainty analysis (Section 4.2.3) are extracted from other Canadian 

government publications like the Field Crop Reporting Series [Statistics Canada, 2004] 

and the Census of Agriculture [Statistics Canada, 2006] because these records included 

essential data accuracy evaluations that are needed to determine sub-provincial level 

uncertainties. Every five years, the Census of Agriculture collects information on 

agricultural operations across Canada, including institutional farms, community pastures, 

Indian reserves, etc. The Census of Agriculture provides a list of farms and their crop 

areas from which a probability sample for production estimates is selected [Statistics 

Canada, 2004]. 

 County-level uncertainties associated with harvested area and production are 

calculated through downscaling the corresponding values reported at larger (higher level) 

jurisdictions (Section 4.2.3). For uncertainties associated with crop production, we used 

the Canadian national level uncertainty reported in the November 2004 issue of the Field 

Crop Reporting Series [Statistics Canada, 2004]. For uncertainties related to harvested 

area we used the provincial level uncertainty reported in the Census of Agriculture 2006 
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[Statistics Canada, 2006]. In the latter case, we assumed no significant differences in data 

quality between 2004 and 2006. 

 

Figure 1. Map of census divisions in southwestern Ontario. Region 1 - southern Ontario 
(in gray); Region 2 - western Ontario (in black). 
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2.3  Data pre-processing 

2.3.1 Creation of a raster map 

The final benchmark map that is responsible for constraining the satellite-based land 

cover maps is a raster image of Ontario at a resolution of 1/6°(latitude) by 1/4°(longitude) 

and is created by aggregating the pixels of a prior image of 1/96° by 1/96° through 

averaging. We created the initial finer image based on the OMAFRA agricultural land use 

dataset [OMAFRA, 1988] because it contains unique identification (UID) numbers for 

each municipality (census subdivision / subcounty (CSD)) and its parent legislated area 

(census division / county (CD)) that are described in geographic co-ordinates. Such 

features, when incorporated in a raster image, facilitate the mapping of any census data 

because we can easily replace the spatially defined UIDs with the corresponding census 

data in the matrix that describes the image. In constraining the land cover maps, the UIDs 

are eventually replaced by cropland fractions. Table 1 is an excerpt of the cross-reference 

table that we used in creating the final map. The UIDs in the original dataset are 

seven-digits long and are cumbersome to work with. For that reason, we substituted them 

with another set of UIDs that are one- to two-digits long. 
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Table 1. Excerpt of the cross-reference table used in creating the raster map of cropland fraction 
CSDNAME CSDUID COUNT CSDArea

[sqkm] CDNAME CDCODE CDUID CDArea 
[sqm] 

CDHarvArea
[sqm] HarvAreaFrac

South Glengarry 1 645 609.98 Stormont, Dundas and Glengarr STOR 1 3327032970 1437443401 0.43 
Akwesasne (Part) 59 2 16 15.18 Stormont, Dundas and Glengarr STOR 1 3327032970 1437443401 0.43 

South Stormont 3 477 451.97 Stormont, Dundas and Glengarr STOR 1 3327032970 1437443401 0.43 
Cornwall 4 63 59.73 Stormont, Dundas and Glengarr STOR 1 3327032970 1437443401 0.43 

South Dundas 5 549 521.32 Stormont, Dundas and Glengarr STOR 1 3327032970 1437443401 0.43 
North Dundas 6 532 503.97 Stormont, Dundas and Glengarr STOR 1 3327032970 1437443401 0.43 

North Stormont 7 548 518.05 Stormont, Dundas and Glengarr STOR 1 3327032970 1437443401 0.43 
North Glengarry 8 686 646.85 Stormont, Dundas and Glengarr STOR 1 3327032970 1437443401 0.43 
East Hawkesbury 9 264 248.23 Prescott and Russell PRES 2 2062102030 864813217 0.42 

Hawkesbury 10 13 12.20 Prescott and Russell PRES 2 2062102030 864813217 0.42 
Champlain 11 236 221.70 Prescott and Russell PRES 2 2062102030 864813217 0.42 

Alfred and Plantagenet 12 435 408.75 Prescott and Russell PRES 2 2062102030 864813217 0.42 
The Nation / La Nation 13 701 660.57 Prescott and Russell PRES 2 2062102030 864813217 0.42 

Clarence-Rockland 14 326 306.70 Prescott and Russell PRES 2 2062102030 864813217 0.42 
Casselman 15 4 3.77 Prescott and Russell PRES 2 2062102030 864813217 0.42 

Russell 16 212 200.18 Prescott and Russell PRES 2 2062102030 864813217 0.42 
Ottawa 17 3061 2889.21 Ottawa OTTA 3 2889206000 635356458 0.22 

Edwardsburgh/Cardinal 18 328 312.06 Leeds and Grenville LEED 4 3600557086 549158417 0.15 
Augusta 19 332 316.37 Leeds and Grenville LEED 4 3600557086 549158417 0.15 
Prescott 20 5 4.77 Leeds and Grenville LEED 4 3600557086 549158417 0.15 

Elizabethtown-Kitley 21 593 565.53 Leeds and Grenville LEED 4 3600557086 549158417 0.15 
Brockville 22 21 20.06 Leeds and Grenville LEED 4 3600557086 549158417 0.15 

Front of Yonge 23 136 130.09 Leeds and Grenville LEED 4 3600557086 549158417 0.15 
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2.3.2 Estimating the total land area of rasterized municipalities and 

counties 

A rasterized municipality’s and county’s total land area is estimated by the total grid cell 

area that a set of identical UIDs occupy. In turn, one grid cell area is simply the product 

of the lengths in latitude and longitude that a grid cell covers. In this study, we employed 

a simple geometric reasoning for determining the lengths: latitudinal distance (in 

kilometers) between two points is approximated as the radius of the Earth times the 

latitudinal difference in radians: 

( )
180

yyRd 12EARTHLAT
π

×−×=  (1)

where y1 and y2 are in degrees. Likewise, the longitudinal distance is approximated as: 

( ) ( )
180

xx
1802

yycosRd 12
12

EARTHLON
π

×−×⎥⎦
⎤

⎢⎣
⎡ π

×
+

×=  
(2)

where x1 and x2 are also in degrees and REARTH is assumed to be 6371 km. 

 Approximated grid cell areas are spatially defined and arranged in a matrix form that 

is identical to that of the UIDs. Therefore, to estimate the total grid cell area that a 

specific county take up, we can first overlap the two matrices to count all the grid cells 

that have the same UIDs and identify their corresponding latitudes and longitudes. Then 

we can use the identified co-ordinates from the UIDs matrix to set a boundary within 

which matching grid cell areas in the grid cell area matrix can be picked out. Finally, we 

sum up the selected grid cell areas and get the total land area. 

 

2.3.3 Creation of the K matrix 

In Chapters 3 and 4, a matrix denoted as K (following the notation used in Rodgers, 2000) 
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is used extensively and plays as an important role during the analyses. According to 

Rodgers [2000], under different circumstances the K matrix may also be referred to as the 

Jacobian, the kernel (hence K), the sensitivity kernel, the tangent linear model or the 

adjoint. In this study, K of size nm×  is responsible for transforming gridded results 

such as cropland fraction and biospheric model generated carbon uptake into “discrete 

observations” as seen at the separate census divisions; m represents the 20 individual 

census divisions within southwestern Ontario and n represents the total number of grid 

cells in a 1/6° by 1/4° within some desired domain. Accordingly, each element along m 

represents the fraction of cells of a particular census division, originally gridded at 1/96° 

by 1/96°, that is now present in a single 1/6° by 1/4° cell.  

 To help visualize this, consider three different regions (Region 1, 2 and 3) that are 

initially gridded within some domain at a resolution of 1/96° by 1/96° (Figure 2). Region 

1 is made up of 336 finer grid cells, Region 2 is made up of 812 finer grid cells and 

Region 3 is made up of 388 finer grid cells. If we conceptually alter the scale of 

resolution of the entire domain and look at it as if it is gridded at 1/6° by 1/4°, the domain 

would be characterized by four coarser grid cells. Now suppose we determined that each 

of the four coarser grid cells is associated with a cropland fraction estimate, defined as 

vector x: for Cell 1 (top left corner) it is 0.60, Cell 2 (top right corner) it is 0.50, Cell 3 

(bottom left corner) it is 0.70 and Cell 4 (bottom right corner) it is 0.90; then in order to 

deduce the actual cropland fraction in each of the three regions, defined as vector y, we 

can simply multiply K by x as follow: 



 

 14

yxK

3gionReFor
2gionReFor
1gionReFor

70.0
72.0
59.0

90.0
70.0
50.0
60.0

0388
3170388

71
812

384
812

67
812

351
812

10
00336

33
336

303

←
←
←

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

 

In this example, each element in K is equal to the number of finer grid cells representing 

a specific county located within one coarser grid cell divided by the total number of finer 

grid cells representing a specific county. 

 

Figure 2. Gridded Region 1, 2 and 3. Top left corner - Coarser Cell 1; Top right corner - 
Coarser Cell 2; Bottom left corner - Coarser Cell 3; and Bottom right corner - Coarser 
Cell 4. 
 

 In Chapter 3, K is applied to calculate cropland fractions estimated by four different 

datasets and in Chapter 4, K is used in a Bayesian inversion to help determine the value 

of agricultural census data. 
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Chapter 3 Validating satellite-based land cover 

classification maps 

3.1  Introduction 

Cropland area derived from the agricultural census data is used to evaluate the 

performance of three satellite-based land cover products: 1) a reclassified International 

Geosphere-Biosphere Programme Data and Information System land cover 

(IGBP-DISCover) map [Loveland et al., 2000; Mahadevan, et al., 2008]; 2) the 

SYNMAP [Jung et al., 2006] and 3) the Ontario Land Cover (OLC) database [Ontario 

Ministry of Natural Resources, 2002]. In particular, two of the datasets (IGBP-DISCover 

and SYNMAP) are commonly used in terrestrial carbon cycle modeling studies. A brief 

description for each product is provided below. Readers are encouraged to refer to the 

original publications for further details. 

 

3.1.1 IGBP-DISCover dataset 

The original IGBP-DISCover dataset, consisting of 17 classes, was developed from the 

monthly global normalized difference vegetation index (NDVI) composites taken from 

the 1-km AVHRR data covering 1992-1993 [Loveland et al. 2000]. During the creation of 

a new satellite-based biospheric model for estimating terrestrial carbon fluxes, 

Mahadevan et al. [2008] reclassified the original dataset into 12 classes because the 

calibration and validation data for that model were not available for each of the 17 classes. 

Accordingly, an important feature with the Mahadevan et al. [2008] land cover map was 

the lumping of the “cropland/natural vegetation mosaic” class into the “grasslands” class. 
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In this study, the reclassified IGBP-DISCover map is used because we use the 

Mahadevan et al. [2008] model (VPRM) in another section. For brevity’s sake we would 

refer to this land cover dataset as “IGBP” from this point on.  

 

3.1.2 SYNMAP 

SYNMAP is an enhanced 1-km land cover dataset that was developed through 

synthesizing the Global Land Cover Characterization Data Base (GLCC), the Global 

Land Cover 2000 (GLC2000) and the MODIS land cover product [Jung et al., 2006]. 

According to Jung et al. [2006], SYNMAP is a desirable dataset because it should be 

more accurate than existing global land cover products since it blends and makes use of 

their individual strengths to achieve a possibly better signal-to-noise ratio. Due to its 

possible better performance over IGBP, we included SYNMAP in this study. 

 

3.1.3 Ontario Land Cover database 

Finally, the Ontario Land Cover (OLC) database was initiated by the Ontario Ministry of 

Natural Resources (OMNR) and was derived from digital, multispectral LANDSAT 

Thematic Mapper (TM) data recorded on a range of dates between 1986 and 1997. It 

consists of 28 land cover classes mapped across the entire province of Ontario [Ontario 

Ministry of Natural Resources, 2002]. We included it in this study because it has a 30 

meters resolution, much higher than that of the previous two products, and should provide 

the best land cover description of Ontario. 
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3.2  Method 

3.2.1 Homogenization of the satellite-based land cover maps 

Developed from differing approaches and raw data, the three satellite products map 

vegetation in diverse resolutions. Therefore, in order to facilitate comparison of the 

different maps, we need to have a homogenized resolution among the satellite-based 

datasets. As mentioned earlier, since the outputs of the Mahadevan et al [2008] biospheric 

model are used and analyzed in another chapter, the model’s spatial resolution thus 

becomes the standard that the resizing of others are based upon. In this study, all 

satellite-based land cover maps are eventually resized to a spatial resolution of 1/6° 

(latitude) by 1/4° (longitude) and clipped to a subset with 96 rows and 104 columns to 

center in southwestern Ontario. 

 

3.2.2 Mapping census data-derived cropland fraction 

As mentioned in Chapter 2 (Section 2.3.1), a raster image of Ontario was prepared and 

census data can be mapped onto it by simply replacing the spatially gridded UIDs with 

the corresponding census data in the matrix that describes the image. To map cropland 

fraction, we first calculated the ratio by dividing the county-level harvested area of a 

particular county by its total land area, approximated by the total grid cell area it covers 

(Section 2.3.1). Subsequently, we changed the CDUIDs of that county, already mapped 

on a 1/96° by 1/96° resolution raster image, into estimated cropland fraction. In the end, 

we aggregated the resolution of this image into 1/6° by 1/4° through averaging the pixels 

in order to make it comparable with all other satellite-based land cover maps. Now, the 

census data-derived cropland fraction map becomes the benchmark to evaluate the 
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performance of the satellite products. Agreement between datasets is evaluated by 

comparing the derived cropland fractions among the various maps and each map is 

multiplied with the K matrix (Section 2.3.3) to determine the estimated cropland fraction 

for each census division. 

 

3.3  Results and discussions 

Table 2 tabulates the comparison of approximated and actual surveyed census division 

land areas given by Statistics Canada [Statistics Canada, 2006]. Results from this table 

indicate that our approximations of the land area are quite precise and thus our estimation 

of cropland fraction should be reasonable. Pictorially, Figure 3a displays the cropland 

distributions in southwestern Ontario as described by the agricultural census data. 

Uncertainties associated with these cropland fractions (σFrac in Table 3) are calculated by 

dividing the σHA (Section 4.2.3) by the total area of each county. From the values of σFrac, 

it is evident that the uncertainties in the cropland fractions derived from the agricultural 

census data are small. According to OMAFRA, counties including Chatham-Kent, Essex, 

Elgin, Middlesex, Lambton and Oxford of southern Ontario together with Huron, Perth 

and Waterloo of western Ontario can be regarded as agriculturally productive, since 

cropland fractions within these counties are at least 0.5 or above (Table 3). 

 However, this is not the case in the IGBP “croplands” map (Figure 3b), which shows 

severe underestimation in cropland areas in all of western Ontario and most of southern 

Ontario, except for Chatham-Kent, where a small overestimation is observed. Overall, the 

IGBP “croplands” map has an average of 70% underestimation in cropland fractions 

(Table 3). This outcome is likely due to the fact that “cropland/natural vegetation mosaic” 
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was combined into the “grasslands” class by Mahadevan et al. [2008] rather than the 

“croplands” class. In order to examine how Mahadevan et al.’s reclassification scheme 

affected land cover representation (Section 3.1.1), we merged the modified IGBP 

“croplands” class with the “grasslands” class to construct a new “croplands+grasslands” 

map. This new map (Figure 3d), when compared to the IGBP “croplands” map, seems to 

better capture the extent of cropland areas in the south and parts of the west but still 

significantly overestimates cropland fractions—by 76%, on average (Table 3). 

 

Table 2. Comparison of approximated and actual surveyed census division land areas 

Census Division Approximated 
Land Area [km2] 

Surveyed 
Land Area [km2] %Δ

BRAN 1101.72  1092.95  0.01
CHAT 2480.08  2470.66  0.00
ELGI 1877.00  1880.84  0.00
ESSE 1866.03  1851.34  0.01
HALD 2912.12  2894.15  0.01
HAMI 1149.22  1117.21  0.03
LAMB 3064.22  3001.70  0.02
MIDD 3338.57  3317.15  0.01
NIAG 1880.61  1854.17  0.01
OXFO 2049.18  2039.46  0.00
BRUC 4137.93  4079.17  0.01
DUFF 1494.88  1485.58  0.01
GREY 4542.94  4508.12  0.01
HALT 968.16  967.17  0.00
HURO 3407.48  3396.68  0.00
PEEL 1250.01  1242.40  0.01
PERT 2218.29  2218.41  0.00
SIMC 5323.37  4840.56  0.10
WATE 1389.70  1368.64  0.02
WELL 2692.68  2656.66  0.01
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Table 3. Comparison of cropland fractions derived from different sources. The first 4 letters of the counties’ names, as indicated in Figure 1, 
are used as abbreviations. σFrac is the uncertainty in cropland fractions (Section 3.1). 

OMAFRA IGBP Croplands IGBP 
Croplands+Grasslands SYNMAP Ontario Land Cover 

database Counties 
Cropland 
fractions σFrac 

Cropland 
fractions

%∆ from 
census data

Cropland 
fractions 

%∆ from 
census data

Cropland 
fractions 

%∆ from 
census data

Cropland 
fractions 

%∆ from 
census data

BRAN 0.45 1.01E-02 0.17 -62 0.9 100 0.93 107 0.72 60 
CHAT 0.72 7.58E-03 0.75 4 0.83 15 0.83 15 0.78 8 
ELGI 0.59 8.83E-03 0.26 -56 0.89 51 0.88 49 0.73 24 
ESSE 0.6 7.88E-03 0.6 0 0.73 22 0.72 20 0.7 17 
HALD 0.42 6.20E-03 0.09 -79 0.82 95 0.81 93 0.64 52 
HAMI 0.3 7.80E-03 0.07 -77 0.66 120 0.69 130 0.56 87 
LAMB 0.65 6.94E-03 0.29 -55 0.83 28 0.86 32 0.75 15 
MIDD 0.55 6.33E-03 0.23 -58 0.97 76 0.96 75 0.82 49 
NIAG 0.29 6.41E-03 0.01 -97 0.68 134 0.58 100 0.47 62 
OXFO 0.67 9.43E-03 0.15 -78 0.99 48 0.98 46 0.85 27 
BRUC 0.35 4.68E-03 0 -100 0.62 77 0.46 31 0.45 29 
DUFF 0.33 7.22E-03 0.02 -94 0.5 52 0.59 79 0.57 73 
GREY 0.25 3.26E-03 0 -100 0.67 168 0.26 4 0.46 84 
HALT 0.26 7.75E-03 0.01 -96 0.54 108 0.57 119 0.5 92 
HURO 0.64 7.06E-03 0.25 -61 0.88 38 0.9 41 0.78 22 
PEEL 0.25 7.18E-03 0.01 -96 0.45 80 0.39 56 0.46 84 
PERT 0.66 8.89E-03 0.38 -42 0.97 47 0.99 50 0.89 35 
SIMC 0.21 3.27E-03 0.01 -95 0.46 119 0.32 52 0.39 86 
WATE 0.53 9.76E-03 0.1 -81 0.91 72 0.87 64 0.73 38 
WELL 0.47 6.76E-03 0.05 -89 0.8 70 0.84 79 0.69 47 

Average 0.46  7.17E-03 0.17 -70.60  0.76  76.00  0.72  62.10  0.65  49.55  
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Figure 3. Fractional coverage of croplands and other vegetation derived from various 
datasets: (a) agricultural census data from OMAFRA; (b) IGBP-DISCover “Croplands”; 
(c) SYNMAP “Croplands”; (d) IGBP-DISCover “Croplands+Grasslands” 
 

 SYNMAP’s “croplands” map (Figure 3c) shows an improved performance over that 

of IGBP as it is capable of displaying which counties in the region are relatively more 

cultivated. Nevertheless, significant overestimations of cropland fractions also exist in 

this land cover map—on average by 62%. Finally, although the OLC database (Figure 3e) 
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gives the most comparable pattern of cropland distribution amongst all the examined 

satellite land cover datasets, it too overestimates cropland fractions by 50%. 

 Discrepancies between the satellite-based land cover maps and the census data can 

be attributed to numerous sources. For the IGBP “croplands” map, disagreements are 

likely a result of losing “croplands” pixels when the “cropland/natural vegetation mosaic” 

class, the least reliable land cover category [Jung et al., 2006], was originally 

incorporated within the “grassland” class.  Noises caused by the presence of aerosols 

and clouds may also interfere with the data retrieval procedure. Loveland et al. [2000] 

identified IGBP North American croplands to be highly affected by “noise 

contamination”, with dryland croplands and irrigated crop fields having ~27% and ~42% 

such contamination. Likewise, Vogelmann et al. [2001] proposed that hardware 

calibration errors might lead to the degradation of radiometric accuracy of the LANDSAT 

Thematic Mapper (TM) satellite data and cause the OLC database, which was derived 

from the LANDSAT data covering dates between 1986 and 1997, to have an accuracy of 

approximately 85% for agricultural lands [Ontario Ministry of Natural Resources, 2002]. 

The use of obsolete retrieved data might also lead to deviations in the fraction estimates 

as remotely sensed data acquired at different times may not correctly present the needed 

land cover status [Jung et al., 2006].  

Further, in heterogeneous landscapes where croplands are highly intermixed with 

other vegetation types such as grasslands or scrublands, the target pixel might not be 

correctly classified [Wulder et al., 2004; Jung et al., 2006; Herold et al., 2008; Wu et al., 

2008]. Loveland and Belward [1998] pointed out that in the IGBP dataset, a pixel would 

be classified as “cropland/natural vegetation mosaic” when “no single vegetation 
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component comprises more than 60% of the landscape”. As a result, some croplands may 

be disregarded and thus give an underestimated total cropland area. Such inability to 

correctly classify a target pixel that contains several vegetation types may be viewed as a 

general problem of optical remote sensing [Jung et al., 2006], and accordingly, we can 

expect higher accuracies for areas in with homogeneous cropland coverage and lower 

accuracies in areas with sparse patches of cropland [Jung et al., 2006; Wu et al., 2008]. 

Indeed, this phenomenon is evident in the current study, as the magnitude of the relative 

error in the cropland fraction decreases as the cropland fraction increases for all four 

satellite land cover maps examined here (Figure 4). 
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Figure 4. Comparison of relative uncertainties in cropland fractions. Relative 
uncertainties per county are calculated by dividing the differences in cropland fractions 
(i.e. satellite-derived fractions minus census data-derived fractions) with the census 
data-derived fractions. 
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Chapter 4 Constraining estimates generated by a 

biospheric model 

4.1  Introduction 

For this part of the study, carbon uptake estimates generated by a biospheric model are 

constrained by additional carbon cycle observations recorded by agricultural census data. 

Specifically, we shall focus on: i) the conversion of census data into additional source of 

carbon cycle observations; and ii) the inversion that examines the value of census data in 

constraining the initial modeled outputs in this chapter. 

 

4.2  Method 

4.2.1 Calculating GPP from crop attributes and agricultural census 

data 

Several studies [Prince et al., 2001; Lobell et al., 2002; Hicke and Lobell, 2004; Huang et 

al., 2007; Bolinder et al., 2007] have used agricultural census data and crop attributes to 

study the spatial and temporal variations of primary production in croplands. In particular, 

an approach followed by Prince et al. [2001] and Hicke and Lobell [2004] translated 

harvested production and area to net primary production (NPP): 

NPP =
Pi × (1− MCi) × C

HIi × fAG i × HAii=1

N

∑  
(3)

where index i denotes different crops. Pi represents the harvested production (g) and HAi 

is the harvested area (m2). The crop attributes are as follows: MCi is the typical harvest 
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moisture content (mass water/mass harvest; g g-1); HIi is the harvest index which 

specifies the ratio of yield mass to above ground biomass (dimensionless); C converts 

harvested mass to carbon mass (approximately 0.45 g C g-1) and is assumed constant 

between different crops; fAGi is the fraction of production allocated above ground 

(dimensionless). Since fAGi is defined as the ratio shoot:(root + shoot), it is closely related 

to the root:shoot ratio: 
  
f AG =

shoot
root + shoot

=
1

(root : shoot + 1)
. 

By definition, NPP refers to the rate at which primary producers capture and 

accumulate phytomass, minus the rate at which they respire for growth and maintenance 

(autotrophic respiration, Ra): 

NPP = GPP − Ra  (4)

Because the biospheric model used in this study, VPRM, partitions net ecosystem 

exchange between gross ecosystem exchange (GEE) and total respiration (autotrophic + 

heterotrophic; Section 2.4), we must take an extra step to convert NPP into GPP when we 

compare the agricultural census-derived production estimates against simulated values. 

Growth efficiency (GE) is a parameter that quantifies the role of respiration to a 

crop’s carbon balance by accounting for the loss of CO2 during crop growth and 

maintenance [Amthor, 1989]: 

GE =1−
Ra

GPP
 (5)

By combining eqs. (4) and (5), GPP can be expressed as a function of NPP and GE: 

GPP =
NPP

(1− Ra

GPP
)
=

NPP
GE

 (6)

Combining eqs. (6) and (3): 
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GPP =
Pi × (1− MCi) × C

HIi × fAG i × HAi × GEii=1

N

∑  
(7)

The agricultural census data provide input for P and HA, and eq. (7) serves as the basis on 

which to quantify GPP. The values of crop attributes—MC, HI, fAG, and GE—are taken 

from the literature for crops grown in Canada and are summarized in Table 4. 

VPRM simulates hourly values of gross ecosystem exchange (GEE), details of 

which can be found in the next section. GPP estimates derived from eq. (7) can thus be 

compared against the model by summing GEE over an entire year: 

GPP = NPP + Ra

        ≈ GEEt

1year

∑  

(8)
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Table 4. Crop specific attributes used for calculating GPP estimates and their associated uncertainties 
Crop Attributes Values Source 
Winter wheat Moisture content (MC)(%) 13 to 23 OMAFRA, 2009 
 Harvest index (HI) 0.32 to 0.6 de Jong et al., 2001; Falk et al., 2007 
 Fraction of production allocated above ground (fAG) 0.82 to 0.87 Bolinder et al., 2007 
 Growth efficiency (GE) 0.37 to 0.79 Amthor, 1989 
    
Spring wheat Moisture content (MC)(%) 13 to 23 OMAFRA, 2009 
 Harvest index (HI) 0.32 to 0.6 de Jong et al., 2001; Falk et al., 2007 
 Fraction of production allocated above ground (fAG) 0.82 to 0.87 Bolinder et al., 2007 
 Growth efficiency (GE) 0.37 to 0.79 Amthor, 1989 
    
Grain corn Moisture content (MC)(%) 11 to 22 OMAFRA, 2009 
 Harvest index (HI) 0.45 to 0.55 O'Neill, 2005; Bolinder et al., 2007 
 Fraction of production allocated above ground (fAG) 0.89 to 0.92 Bolinder et al., 2007 
 Growth efficiency (GE) 0.31 to 0.83 Amthor, 1989 
    
Fodder corn Moisture content (MC)(%) 65 to 70 OMAFRA, 2009 
 Harvest index (HI) 0.55 to 1 O'Neill, 2005; Bolinder et al., 2007 
 Fraction of production allocated above ground (fAG) 0.89 to 0.92 Bolinder et al., 2007 
 Growth efficiency (GE) 0.31 to 0.83 Amthor, 1989 
    
Barley Moisture content (MC)(%) 15 to 20 OMAFRA, 2009 
 Harvest index (HI) 0.32 to 0.54 Bolinder et al., 2007 
 Fraction of production allocated above ground (fAG) 0.63 to 0.69 Bolinder et al., 2007 
 Growth efficiency (GE) 0.51 to 0.52 Amthor, 1989 
    
Soy Moisture content (MC)(%) 14 OMAFRA, 2009 
 Harvest index (HI) 0.23 to 0.4 Morrison et al., 1999; Rollefson et al., 2004; Bolinder et al., 2007 
 Fraction of production allocated above ground (fAG) 0.68 to 0.89 Bolinder et al., 2007 
 Growth efficiency (GE) 0.25 to 0.55 Amthor, 1989 
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Table 4. Cont’d 
Crop Attributes Values Source 
Hay Moisture content (MC)(%) 12 to 18 OMAFRA, 2009 
 Harvest index (HI) 1 Lobell et al., 2004 
 Fraction of production allocated above ground (fAG) 0.52 to 0.77 Bolinder et al., 2007 
  Growth efficiency (GE) 0.51 to 0.67 Amthor, 1989 
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4.2.2 Vegetation Photosynthesis and Respiration Model (VPRM) 

The Vegetation Photosynthesis and Respiration Model (VPRM) is a data-driven, 

diagnostic biospheric carbon flux model developed for regional to global-scale inverse 

analysis [Mahadevan et al., 2008]. It assimilates satellite information with meteorological 

data and eddy flux measurements to model variations in atmosphere-terrestrial biosphere 

carbon flux exchange. VPRM is chosen in this study because its simple structure required 

less parameterizations and parameters that vary with space and time, making it a 

straightforward yet useful tool for upscaling and regional carbon prediction [Mahadevan 

et al., 2008]. 

 VPRM calculates the net ecosystem exchange (NEE) for 12 main vegetation classes 

as the difference between GEE and total ecosystem respiration (R): RGEE NEE +−= . 

Note that R here includes both the autotrophic and heterotrophic components. Following 

sign convention, negative fluxes represent the removal of CO2 from the atmosphere by 

vegetation [Matross et al., 2006]. GEE is assumed to be a function of the MODIS 

Enhanced Vegetation Index (EVI): 

EVIPAR 
)

PAR
PAR(1

1 WPTλGEE

0

scalescalescale ××
+

××××=  (9)

where PAR is the photosynthetically active radiation; PAR0 is the half-saturation value; λ 

represents the overall light use efficiency of the ecosystem; Tscale, Pscale and Wscale are 

scalars ranging in value between 0 and 1 that signify the effect of temperature, leaf 

phenology and canopy water content, respectively.  

R is represented as a linear function of the ambient temperature given by: 
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βTαR +×=  (10)

where α captures the dependence of R on air temperature when air temperatures are above 

a minimum temperature Tmin; β represents the basal respiration rate; T = Tlow when T ≤ 

Tlow to account for the persistence of soil respiration in winter when air temperatures are 

very cold but soils remain warm.  

The resulting full VPRM model equation is: 

βTαEVIPAR 
)

PAR
PAR(1

1 WPTλNEE

0

scalescalescale +×+××
+

××××−=  (11)

The a priori estimates of the four calibration parameters λ, PAR0, α and β, one set per 

vegetation type, were calibrated by optimizing against un-gap-filled eddy covariance 

NEE measurements taken from their 11 corresponding AmeriFlux and Fluxnet-Canada 

sites, with a turbulent intensity filter applied to eliminate unrepresentative observations. 

Specifically, they were optimized via nonlinear least squares (Newton-Raphson, tangent 

linear approximation) and estimated confidence intervals assuming Gaussian error for 

both model and tower data [Mahadevan et al., 2008]. At each calibration site, Mahadevan 

et al. [2008] generated hourly data from the smoothed time series of vegetation indices 

(EVI and LSWI) and obtained measurements of air temperature and PAR from the tower 

sites. For calibration results of the model parameters, please refer to Table 2 of the 

Mahadevan et al. [2008] paper. For validation results, please refer to Table 3 of the same 

paper. In general, cropland parameters were calibrated at a maize-soybean agroecosystem 

from Mead, Nebraska and modeled NEE estimates were validated at a maize-soybean 

cropland from Champaign, Illinois [Mahadevan et al., 2008]. 

 NEE, GEE, and R estimates generated by the VPRM are gridded on a grid of 1/4º 
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longitude by 1/6º latitude for every hour [Matross et al., 2006]. Sub-grid-scale 

contributions from different vegetation types are preserved as grid-scale carbon fluxes by 

weighing contributions from various vegetation types k: 

∑ +−=+−=
k

kkk )RGEE(fRGEENEE  (12)

where fk is the fractional areal coverage by vegetation type k and is currently determined 

from the IGBP 1-km resolution land cover scheme (Section 3.1.1). In this study, we 

extracted carbon fluxes solely from croplands in VPRM and ignored flux contributions 

from other vegetation types by considering croplands as the only land cover input. 

 

4.2.3 Uncertainty analysis of GPP estimated from crop attributes and 

agricultural census data 

Monte Carlo simulation (MCS) is one of the most common stochastic methods used for 

uncertainty analysis [IPCC, 2000; Winiwarter and Rypdal, 2001; Ogle et al., 2003; 

Ramirez et al., 2008; Del Grosso et al., 2010]. In a simulation that generates results from 

a model, values of input parameters are randomly varied and selected according to each 

parameter’s own unique probability distribution function (PDF). For many runs, each 

time with a different set of inputs, many possible output values can in turn be described 

by a PDF; and from which associated uncertainties of the model can be estimated. When 

compared to the conventional analytical approach for uncertainty analysis, the MCS has 

several additional attributes [IPCC, 2000]: i) it can deal with PDFs of any physically 

possible shape and width; ii) it can handle varying degrees of correlation and co-variation 

between parameters; and iii) it can be easily implemented for both simple or complex 

models. 
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In calculating carbon uptake in crops from agricultural census data and crop 

attributes with eq. (3), we adopted a Monte Carlo approach to assess the GPPs’ 

associated uncertainties and their sensitivity to the assumed parameters in eq. (7), as 

recommended by the IPCC Good Practice Guidance [IPCC, 2000].  For each parameter 

we assigned a probability density function (PDF) from which 10,000 random values are 

selected and used to calculate the carbon uptakes for each county in southwestern Ontario.  

The underlying PDF was chosen depending on our prior knowledge: if we can identify a 

range of probable values for a parameter but cannot decide which value is most likely to 

occur, a uniform distribution was assumed to maximize information entropy (i.e., 

minimal prior knowledge) [Jaynes, 1968]. As such, HI, fAG, MC and GE are assigned 

uniform distributions because we do not have adequate information on the standard 

deviations associated with the crop specific attributes to appropriately generate Gaussian 

random values. Table 4 summarizes the ranges of values for the uniform distributions for 

each crop-specific attribute. After generating 10,000 random values for each parameter 

and calculating the GPP estimates, an average is determined along with the standard 

deviation that quantifies the associated uncertainty. 

 For HA and P, their uncertainties are associated with errors in gathering the 

agricultural census data. Since we do not have uncertainty estimates at the county level, 

our only option is to scale the associated variance of the provincial estimates down to the 

county levels through the following steps. To begin, we considered that the harvested area 

(HA) for county i is a multiple of an arbitrary unit harvested area (a): 

HAi = nia (13)

where ni is the number of unit harvested areas in a particular county. Applying the same 
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logic, the total provincial harvested area (HAprov) can be considered as a sum of numerous 

county harvested areas. 

HAprov = HAi
i
∑ = ni

i
∑ a = Na  

(14)

where the total provincial harvested area is comprised of N units. Since a larger 

agricultural area is more difficult for the census to capture exhaustively, it is reasonable to 

expect that the estimation error increases with the area. Assuming that the 

uncertainty-induced variance for a unit area can be characterized statistically byσ2 and 

the uncertainties from unit to unit are statistically independent, then the individual 

variances would simply add [Taylor, 1997], and the resultant variance for HAi would be: 

σHAi

2 = niσ
2  (15)

while the variance at the provincial level would be: 

σHA prov

2 = σHAi

2

i
∑ = niσ

2

i
∑ = Nσ2  

(16)

Combining eqs. (13) and (14): 

2
HA

i2
HA provi N

n
σ=σ  

(17a)

σHAi
= (

ni

N
)σHA prov

 
(17b)

Thus the uncertainty in harvested area at the county level is simply the uncertainty at the 

provincial level multiplied by the square root of the ratio in the areas. For the value of 

σHA prov
, we used the uncertainty estimate reported in the Census of Agriculture [Statistics 

Canada, 2006], which stated the standard error of farmland area in Ontario as 0.3%. 

For harvested production P, we first assumed that the provincial level uncertainty, 



 

 34

reported as the coefficient of variation (CV), is equivalent to the national level 

uncertainty reported in the November 2004 issue of Field Crop Reporting Series 

[Statistics Canada, 2004]. According to Statistics Canada, the potential error introduced 

by probabilistic sampling for crop production estimates was given by the CV, which 

ranged from 1% to 5% for the major crops at the national level [Statistics Canada, 2004]. 

Since the CV is calculated by
prov

prov

Prod

Prod

x
σ

 , where 
provProdx  is taken to be the provincial crop 

production, the uncertainty (standard deviation) of the county level crop production is, 

therefore: 

provprov

provi

ProdProd

Prod
natl

i
Prod

xCV=  where

)
N
n(

×σ

σ=σ
 

(18)

In this study, an average of 3% error was used, and eq. (16) follows the same logic that 

led to eq. (17b) above. 

 

4.2.4 Bayesian inversion to optimize GPP estimates 

When modeling physical systems, model parameters and observations go hand in hand. If 

we are making predictions of what should be observed in the system using given 

parameters, we are dealing with a forward problem. In contrast, if we are making 

inferences about the model parameters using actual observations, we are working on an 

inverse problem [Tarantola, 1987]. To further clarify this concept, consider an outburst of 

a seismic event. As geophysicists, if we are interested in determining the arrival times of 

seismic waves at a particular seismic station, given that the location of the epicenter, the 

time of the event and the wave velocities are perfectly known, we are then tackling a 
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forward problem. On the other hand, if we wish to determine the location of the epicenter 

from the wave arrival times at a particular seismic station, we are then dealing with an 

inverse problem [Tarantola, 1987]. 

 Rodgers [2000] pointed out that by applying the Bayesian approach in an inverse 

problem, in which we have some prior understanding about some quantity, we can then 

update our understanding in light of new information. Thus, in order to acquire insights 

on how the agricultural census data-derived GPP improves knowledge about the 

VPRM-modeled GPP, we performed a Bayesian inversion [Rodgers, 2000]. With 

notations borrowed from Rodgers [2000], census data-derived GPP can be linearly 

related to the VPRM-modeled GPP through: 

εKxy +=  (19)

where y is the vector of census data-derived GPP, with each element representing a value 

for each census division; x is the vector of VPRM GPP, with each element signifying the 

modeled GPP estimated in each 1/6o by 1/4o grid cell; K is the matrix that relates the 

census data GPP with VPRM GPP and has elements that denotes the fraction of a census 

division covered by each 1/6o by 1/4o grid cell; ε is an error vector accounting for 

uncertainties in both the census-based estimates and VPRM simulations.  

 Following Bayes’ theorem, generalized for the vector case, prior understanding of 

GPP from the VPRM and new information of GPP from the census data can be linked as: 

( ) ( ) ( )
( )y

xxyyx
P

PPP || =  
(20) 

If we assume that all probabilities above are Gaussian, then P(y | x), P(x) and P(x | y) can 

be expressed as: 
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( ) ( ) ( ) 1
1|ln2 cP ε

T +−−=− − KxySKxyxy  (21a)

( ) ( ) ( ) 2
1ln2 cP priorprior

T
prior +−−=− − xxSxxx  (21b)

( ) ( ) ( ) 3
1|ln2 cP postpost

T
post +−−=− − xxSxxyx  (21c)

where Sε is the error covariance matrix of inventory-based estimates with diagonals 

corresponding to variances calculated from the Monte Carlo simulation for each census 

division (Section 4.2.3, Table 4); xprior refers to the a priori GPP estimates simulated by 

the VPRM; Sprior is the associated error covariance matrix of the VPRM estimates whose 

diagonals are derived by multiplying VPRM generated flux in each model grid cell to 

percentage uncertainties determined from comparing modeled and observed fluxes for 

soy and corn reported in Table 3 of Mahadevan et al. [2008]. Then an average is taken 

between the soy and corn percentage uncertainties and multiplied with the VPRM- 

generated primary productions to determine the diagonals of the Sprior matrix. 

Off-diagonal elements of both error covariance matrices are assumed to be zero. 

 Given that the probability of the observed census data-derived data is constant we 

can ignore P(y) and determine P(x | y) alternatively by substituting eqs. (21a) and (21b) 

into eq.(20): 

( ) 4
11 )()()()(|ln2 cP priorprior

T
prior

T +−−+−−=− −− xxSxxKxySKxyyx ε  (22) 

Now, if we relate eq. (21c) and eq. (22) by equating the quadratic terms xTx in x, we 

would arrive at: 

xSxxSxKxSx 111 -
post

T
a

T
ε

T =+ −−  

111 )( −−− += prior
T

post SKSKS ε  

(23) 

Likewise, if we relate eq. (21c) and eq. (22) via equating xT in x, we would get: 
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)()()()()( 11
a

1
postpost

T
prior

T
ε

T xSxxSxySKx −=−+− −−−  

postpriorε
T

priorpriorε
T xSKSKxSySK )( 1111 −−−− +=+  

(24) 

Eventually, the expected values of the posterior GPP estimates expressed as xpost is 

therefore: 

)()( 11111 xSySKSKSKx −−−−− ++= prior
T

priorε
T

post ε  (25)

and accordingly, the uncertainty of xpost, expressed as the posterior error covariance 

matrix Spost, is eq.(23): 

 

4.3  Results and discussions 

4.3.1 Monte Carlo uncertainty analysis for agricultural 

census-derived GPP estimates 

Several sources of uncertainties are present when estimating GPP from agricultural 

census data and crop attributes. Figure 5 illustrates results from a Monte Carlo analysis. 

In this analysis, we randomized one attribute at a time to evaluate the sensitivity of the 

estimated GPP to uncertainties in the individual variables. Finally, all of the variables are 

randomized to examine the aggregate effect of their errors. The average error resulting 

from all of the variables was ~20% of the GPP value (Table 5). As seen in Figure 5, the 

growth efficiency (GE), harvested production (P), and harvest index (HI)—in decreasing 

order of significance—are the three largest sources of uncertainties in estimating GPP. 

Here we discuss each in turn.  



 

 38

 

Figure 5. Results of Monte Carlo analysis of uncertainties in census data-derived GPP 
for southwestern Ontario. Different colors illustrate how randomizing different 
parameters in the crop attribute-based model influence the uncertainties in GPP estimates. 
“Prod” represents harvested production; “GE” represents growth efficiency; “HI” 
represents harvest index; “fAG” represents fraction allocated above ground; “MC” 
represents moisture content; and “HA” represents harvested area. Green error bars 
explain how uncertainties in GPP would change when only the uncertainty in provincial 
harvested production changes from 1% to 5% discretely. The lower limit of the green 
error bar illustrates the associated uncertainty when standard errors were at 1%; the upper 
limit of the green error bar illustrates the associated uncertainty when standard errors 
were at 5%. 
 

 Amthor [1989] pointed out that estimating GE requires accurate but difficult 

measurements of respiration and photosynthesis (or changes in dry phytomass). For 

instance, measuring GE based on 14C-labelling is dependent on the time of day the 

labeling takes place because crops would re-fixate respired CO2 depending on time. In 

addition, the crop’s stage of development matters as well. “Labeling with 14C later in the 
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development of a crop will tend to underestimate the actual loss of carbon to respiration 

over the course of a growing season while labeling early in the season will tend to 

overestimate total respiratory losses” [Amthor, 1989]. Under such limitations, large 

discrepancies in GE values can therefore be expected. When randomizing GE alone in eq. 

(3), the average uncertainty in GPP across all counties is 127 g C m-2 yr-1. 

 As for P, potential errors are introduced by probabilistic sampling and are described 

by the coefficient of variation (CV), which ranges from 1% to 5% for all major crops at 

the national level [Statistics Canada, 2004]. In this study, when randomizing P alone 

while adopting CV=3% (halfway between 1% and 5%), the mean uncertainty in GPP is 

70 g C m-2 yr-1.  

By definition, HI is equal to the seed yield divided by above ground biological yield 

[Donald and Hamblin, 1976], where biological yield “includes the total dry matter the 

plant produces above ground” [Prince et al., 2001]. Physiologically, variability in HI 

depends on several factors such as cultivar and the geographical features surrounding the 

growing crop [Hay, 1995; Hay and Gilbert, 2001; Prince et al., 2001; de Jong et al., 

2001; Falk et al., 2007; Bolinder, et al., 2007]. For instance, small changes in HI can be 

seen during stressed conditions as decreases in yield are generally accompanied by 

reductions in crop biomass [Prince et al., 2001]. When randomizing HI alone, the 

average uncertainty in GPP over all counties is 54 g C m-2 yr-1. 

 

4.3.2 Comparison of estimated GPP 

 In general, GPP estimates determined from both the agricultural census data and 

VPRM fall into the lower end of the range of results produced from other studies (Table 
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6).  

 Comparisons between the agricultural data-derived GPP and VPRM-modeled GPP 

are shown in Table 5 and Figure 6. In Figure 6a, the small Pearson correlation coefficient 

relating the two sets of GPP values signifies some capability for the VPRM to model 

agricultural GPP in southwestern Ontario. A few probable explanations for the 

overestimation of GPP by VPRM include: a) model parameters such as λ, PAR0, α, and β 

may not be applicable to Ontario croplands because they are calibrated among crop fields 

(soy and corn) in the American Midwest; b) the current version of land cover dataset used 

by the model is not representative of the landscape; and c) the types of crops used in 

calibrating VPRM parameters may not fully resemble those grown on Ontario’s 

croplands.  

To investigate point c), we examined the sensitivity of crop-based GPP on the crop 

types included in the calculation. As seen in Table 7, the highest GPP is found when only 

corn and soy are considered. This higher GPP is closer to VPRM’s, likely because VPRM 

was calibrated against eddy covariance data collected over corn and soy. Winter wheat 

and hay lower the GPP further—to almost the same value as the “all crop” case. Clearly, 

the mismatch in crop types explains a significant portion of the observed bias in VPRM 

GPP.
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Table 5. Comparison of GPP estimates and their associated uncertainties over southwestern Ontario. Uncertainties in agricultural 
census-derived GPP were determined by randomizing all parameters in a Monte Carlo analysis and assuming 3% uncertainty in provincial 
harvest production. See Section 4.2.3 of the main text for details. The first 4 letters of the counties’ names, as indicated in Figure 1 are used 
as abbreviations. 

GPP [g C m-2 yr-1] Associated uncertainties [g C m-2 yr-1] Counties 
Crop data VPRM Optimal Crop data VPRM  Optimal ∆% (Optimal relative to VPRM)

BRAN 839 1354 1179 194 242 232 -4.53 
CHAT 1102 836 853 233 193 191 -1.04 
ELGI 1027 1416 1324 203 263 257 -2.28 
ESSE 952 743 759 242 175 173 -1.14 
HALD 782 753 740 169 188 184 -2.13 
HAMI 720 1429 1196 182 262 250 -4.58 
LAMB 1016 1184 1163 212 231 229 -0.87 
MIDD 978 1460 1369 179 261 259 -0.77 
NIAG 700 295 324 172 128 122 -4.69 
OXFO 995 1442 1319 182 257 252 -1.95 
BRUC 727 NA* NA* 116 NA* NA* NA* 
DUFF 620 613 572 102 171 159 -7.02 
GREY 506 NA* NA* 73 NA* NA* NA* 
HALT 762 893 790 211 208 196 -5.77 
HURO 1018 1297 1241 183 252 250 -0.79 
PEEL 626 1367 1028 125 254 235 -7.48 
PERT 936 1514 1335 161 269 264 -1.86 
SIMC 662 596 601 107 167 164 -1.8 
WATE 852 1627 1255 149 290 273 -5.86 
WELL 749 1372 1135 116 263 254 -3.42 

Average 828  1122  1010  166  226  219  -3.22 
*Removed due to a lack of croplands in the IGBP-DISCover satellite land cover map linked to the VPRM (Figure 3b) 
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Table 6. Reported GPP estimates in oilseeds and grain crops from this study and other studies. 
Source Study 

location 
Study 
Period 

Crop types Approach applied Average GPP [g C m-2 yr-1] 

This study 
- Ontario, 

Canada† 
 

2004 Grain corn, hay, 
soybean, winter 
wheat 

Integrated surface flux 
modeling - VPRM 
 

~1122 (range: 295-1627) 
 

- Ontario, 
Canada† 

2004 Grain corn, hay, 
soybean, winter 
wheat, spring wheat, 
barley, fodder corn 
 

Crop inventory conversion 
 

~828 (range: 620-1102) 

Other studies 
Xiao et al., 
2010 

Conterminous 
United States 
 

2001-2006 Corn, soybean Integrated regression 
modeling 

~1500 
 

Yan et al., 
2009 

Shandong, 
China 
 

2003-2004 Winter wheat, corn Eddy covariance flux 
measurements; Integrated 
surface flux modeling - 
VPM 
 

EC flux measurements 
~1410 [2003] 
~2132 [2004] 
 
Model estimates 
~1624 [2003] 
~1745 [2004] 
 

Moureaux 
et al., 2008 

Namur, 
Belgian 
 

2004-2005 Winter wheat Eddy covariance flux 
measurements 
 

~1580 

Suyker et 
al., 2005 

Nebraska, 
United States 
 

2002 Corn, soybean Eddy covariance flux 
measurements 
 

~1744 [corn] 
~966 [soybean] 
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Table 6. Cont’d 
Turner et 
al., 2005 

Illinois, 
United 
States 

2000 Corn, soybean Integrated surface flux 
modeling - Biome-BGC; 
Remote sensing 
measurements - MODIS 
MOD17 
 

Model estimate 
>900 
 
MODIS estimate 
~600 
 

Gilmanov 
et al., 2003 

Oklahoma, 
United 
States 

1997 Winter wheat Eddy covariance flux 
measurements 
 

~2853 

†Only southwestern Ontario was considered in this study. Census divisions in southwestern Ontario (Figure 1) include: Hamilton, Niagara, 

Haldimand-Norfolk, Brant, Oxford, Elgin, Chatham-Kent, Essex, Lambton, Middlesex, Peel, Dufferin, Wellington, Halton, Waterloo, Perth, 

Huron, and Simcoe. Bruce and Grey were removed due to a lack of croplands in the IGBP-DISCover satellite land cover map linked to the 

VPRM (Figure 3b) 
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Table 7. Comparison of average GPP estimates when a subset of crops is selected from the crop census data. Note that VPRM parameters 
from the “cropland” class were fitted against eddy covariance fluxes conducted over just two crops: corn and soy [Mahadevan et al., 2008] 

Average GPP [g C m-2 yr-1] Average associated uncertainties [g C m-2 yr-1] Crop type combinations in 
calculating crop 

data-derived GPP Crop data VPRM Optimal ∆% (Optimal relative to 
VPRM) Crop data VPRM Optimal ∆% (Optimal relative to 

VPRM) 
Corn+Soy 1030  1122 1092 -1.64  266  226 223 -1.40  
Winter wheat+corn+soy 999  1122 1080 -2.41  230  226 222 -1.76  
Winter wheat+corn+soy+hay 825  1122 1016 -7.42  171  226 220 -3.01  
All crops 828  1122 1010 -7.63  166  226 219 -3.22  
 
 

 

 

 

 

 

 

 

 

 

 

 



 

 45

Therefore, we expect consideration of winter wheat and hay during parameter 

calibration for VPRM to improve its simulation of GPP in Ontario’s croplands.  

However, eddy covariance flux measurements for these crops are lacking, and this 

observational gap will need to be addressed in the future. 

 

4.3.3 Bayesian inversion to optimize GPP estimates 

In order to acquire insights into how the agricultural census data-derived GPP 

improves knowledge about the VPRM-modeled GPP, we performed a Bayesian inversion, 

and results of this exercise are displayed in both Table 5 and Figure 6. After the inversion, 

the average optimized GPP over all counties is 1010 g C m-2 yr-1, and its associated mean 

uncertainty is 219 g C m-2 yr-1. This translates to a mere 3% reduction when compared to 

the average uncertainty associated with the VPRM-modeled GPP (226 g C m-2 yr-1). 

Furthermore, the optimized GPP values are almost identical to the prior values simulated 

by the VPRM (Figure 6c). This result is perhaps not surprising, given the fact that 

uncertainties in the census data-derived GPP are comparable to those in VPRM (Figure 6, 

Table 5). Hence the “measured” GPP values from the agricultural census provide only 

minimal constraint on the simulations. It is worth noting, however, that the exact 

constraint provided by the agricultural data depends upon the VPRM model’s a priori 

uncertainties (Sprior; Section 4.2.2). We have already pointed out in the previous section 

specific deficiencies of the VPRM simulations used in this study. Due to uncertainties in 

the land cover dataset and the model parameters, the model’s prior uncertainties should 

be larger, in which case there would be a greater uncertainty reduction after the inversion.   
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Figure 6. Comparison of GPP values with varying degrees of uncertainties in the 
harvested production data (a) With a 0.01% error; (b) With a 1% error; and (c) With a 3% 
error; and d) With a 5% error. The correlation coefficient (r) is also shown. Error bars 
associated with the crop census-derived GPP are constructed from Monte Carlo analysis 
(Section 4.2.3; Figure 5). The error bars associated with VPRM simulations are 
constructed via a method described in Section 4.2.2. 
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Chapter 5 Summary and future studies 

5.1  Summary and conclusion 

The objective of this study is to highlight and examine the potential value and 

information content of agricultural census data for carbon cycle studies. Specifically, two 

pieces of information that can be extracted from agricultural census data are examined 

here: 1) the areal coverage of croplands and 2) carbon uptake by field crops.  
Census data provide a valuable source of information on the areal coverage of crops. 

Cropland fractions calculated from the census data reveal that all three satellite-based 

land cover datasets provide severely biased estimates of cropland fraction over 

southwestern Ontario, Canada. Since relative errors between census data-derived versus 

satellite-based cropland fraction decrease when the cropland cover increases (Figure 3), 

this suggests that the error may be attributed largely to the difficulty of satellite data in 

distinguishing croplands embedded within a heterogeneous landscape [Wulder et al., 

2004; Jung et al., 2006; Herold et al., 2008; Wu et al., 2008] As a result, synthetic maps 

developed from merging land cover maps and agricultural census data [Cardille et al., 

2002; Kerr and Cihlar, 2003; Ramankutty et al., 2008] should be considered for use in 

providing more reliable maps of crop coverage. 

On the other hand, carbon uptake estimates (GPP) based on the agricultural census 

data are subject to large uncertainties. The biggest sources of uncertainty are (in order of 

significance) the growth efficiency (GE), harvested production (P), and harvest index 

(HI). Although adopting NPP rather than GPP removes a large source of uncertainty 

(GE), significant errors are still present due to imperfect knowledge of HI and P (Figure 
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4).  

Previous studies that only addressed the uncertainties associated with HI and 

root:shoot ratio and their effects on the overall uncertainty in estimating primary 

production [Prince et al., 2001; Bolinder et al., 2007] have underestimated the errors 

because they did not consider the possible impact imposed by uncertainties associated 

with harvested production estimates from agricultural census data.  

If the agricultural data are subject to large uncertainties, they simply cannot provide 

tight constraints to biospheric carbon models. As the minimal reduction in uncertainty 

from the Bayesian inversion suggests, there is limited information content in the 

agricultural data. We point out, however, that this result may be partly attributed to 

deficiencies in the VPRM parameters and land cover data that were not considered in the 

model’s a priori uncertainties. If the model uncertainties were in fact larger, one could 

expect a greater reduction in uncertainty and thus more “information gain” due to use of 

the agricultural data.  

Ultimately, the uncertainties in agricultural production data stem from the fact that 

primary production—whether NPP or GPP—is not directly measurable and must be 

estimated based on a suite of measurements and various underlying assumptions 

[Scurlock et al., 1999; Clark et al., 2001].  Exactly how losses due to herbivory and 

diseases are accounted for is another potential source of uncertainty in these calculations 

[Ciais et al., 2010]. 

Undoubtedly, agricultural census data have a significant role in monitoring crop 

production, security and sustainability. In the context of carbon cycle studies, they are 

likewise important because these spatially explicit data are crucial in helping to identify 
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the areas where the various crops are actually grown. In this way, they provide valuable 

validation data for satellite land cover maps to enhance cropland identification and 

classification [Carille et al., 2002]. However, if the census data were used for carbon 

accounting purposes, one must be aware of the sources of errors as well as the underlying 

assumptions necessary to estimate the carbon fluxes.  

 

5.2  Future studies 

Based on what we learned from this study, issues below can be addressed in future 

follow-up studies: 

- Assess how different prior PDFs would affect the inversion process; 

- Re-calibrate and re-validate of the VPRM parameters within the Canadian landscape 

and re-run the model for a more in-depth terrestrial carbon cycle study; 

- Run an array of regional-scale biospheric models that simulate the carbon exchange 

among Canadian cropland; and 

- Determine the critical threshold uncertainty in the census data that best constrains 

outputs from the different models. 
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