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Abstract

Physical distribution networks are integral parts of modern supply chains. When faced

with a question of which node in a network is more important, cost immediately jumps to

mind. However, in a world of uncertainty, there are other significant factors which should

be considered when trying to answer such a question. The integrity of a network, as well

as its robustness are factors that we consider, in making a judgement of importance.

We develop algorithms to measure several properties of a class of networks. To accel-

erate the optimization of multiple related linear programs, we develop a modification of

the revised simplex method, which exploits several key aspects to gain efficiency. We com-

bine these algorithms and methods, to give rankings of the relative importance of nodes in

networks.

In order to better understand the usefulness of our method, we analyse the effect

parameter changes have on the relative importance of nodes. We present a large, realistic

network, whose nodes we rank in importance. We then vary the network’s parameters and

observe the impact of each change.
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Chapter 1

Introduction

Distribution networks exist in all manner of companies, from large multinational retail

conglomerates, to local pizza delivery franchises. The purpose of each network is simple:

bring goods from one location to another. In an ideal world, all distribution networks

would be designed according to the best models and practices available at the time. There

exist very robust network design models that can help answer questions such as: ”How

many distribution centres should you have?” and ”How should we schedule replenishment

of inventory?”. With the aid of such models, it is possible to build and manage even the

largest networks in an efficient and cost-effective manner. Unfortunately, we do not live in

the ideal world, and the realities of expanding and contracting distribution networks can

lead to sub-optimal network configurations.

Were we to have an ideal network, however, a logical question to ask would be: ”Which

of our facilities is important to us?”. A naive answer would be those which generate the

most profits. However, considering only profits is not wise. When building our networks,

we took account not only of costs but locations, sizes, schedules, among a variety of factors.
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Reducing our definition of ”importance” to cost thus ignores those factors, and insights we

used while designing our networks.

Pertinent answers to the preceding question would permit network managers to make

more informed decisions with regards to network integrity, reliability, as well as longer term

strategic decisions. An example of such a long term strategic decision could be to choose

which of two possible facilities to close in a supply chain. Given an accurate measure

of importance, the choice could be made to close one and incur a much higher cost of

transportation for an interval of time, knowing that after that period, a possible expansion

of the network would be better served by temporarily keeping the less profitable facility

open. Such a decision to incur short term losses in light of a long term gain could not be

made with an importance measure that considered only the cost of removing a node. Our

goal, then, should be to find a more insightful answer to the question of importance.

We present, as an example, an imaginary pizza restaurant that focuses specifically on

delivering food to customers. Our hypothetical company would have several locations,

spread throughout its operating area, whether it be a whole city or simply a suburb.

We can equate a single ordered pizza to one unit of product, for simplicity. The general

procedure, then, would be for the customer to place the order with a central ordering

service, which would route the order to the appropriate location. That location would

then create the order and hand it to one of its delivery drivers, who would see the order

handed to a customer.

Ordering Location Driver Customer

The questions would then be ”How important are each of our locations?” and ”How
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important are each of the districts that we serve?”. This thesis aims to give a method

to answer those questions, for any distribution network, while considering aspects and

subtleties of the networks studied. The following section gives an overview of research

in network reliability and node importance, as well as other related considerations. A

formal problem statement, as well as the mathematical solution methodology, will then be

presented. We will conclude with applications, results and areas for further research.
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Chapter 2

Literature Review

There does exist research into the importance of nodes in networks. However, most of the

papers focus on information networks, or traffic networks. We present an overview of this

branch of research, which is closely related to network reliability, for which we also give an

overview. In this thesis, we study the importance of nodes in physical distribution networks.

These are distinct from those studied in the literature. The methods already presented are

thus not directly applicable to our subject matter, although they inform our decisions. We

conclude our overview of existing research with some additional considerations.

2.1 Node Importance

Node importance is an active field of research, especially where it pertains to “complex”

networks. A network is said to be “complex” when its topological features are non-trivial

(i.e. they do not resemble lattices or random graphs). The physical distribution networks

we study are not complex, since their structure is simple (although not trivial). The main
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reason these networks are currently studied in such great detail is that most computer and

social networks are complex networks. Dafermos (1982) gives formulations and solution

methods for a general class of complex networks.

Newman (2003) gives a very thorough review on the state of research into complex

networks. Most of the research is specific to complex networks, and as such is not entirely

relevant to our topic, due to our “simple” networks. However, when discussing properties of

networks, Newman mentions the concept of “betweeness centrality”. This is a measure of

centrality for a node in a complex network. In essence, “betweeness centrality” measures,

for a specified node A, the number of geodesic paths between all pairs of nodes which

pass through A. In our case, the simplified network structure we study lends itself to an

interpretation of the centrality of a node which counts the number of paths contributed

to the total. While Newman’s complex networks can see large changes in average path

lengths when certain nodes are removed, we simply see a reduction in number of paths

present. Regardless of the differences, the concept is transferable. This, along with other

concepts, suggests that the number of paths is an important aspect of a network.

Any discussion of importance with regards to computer networks mentions, first and

foremost, Brin and Page (1998), which famously gives the PageRank algorithm used by

Google. Page et al. (1999) further clarify the algorithm which lies as the foundation of

all searches made on the Google search engine. The main idea behind PageRank is that

the nodes which are important are those who receive links from other important nodes: A

link from an important node is thus more meaningful than a link from a less important

one. The PageRank algorithm assigns a rank to all the nodes based on the importance

of its neighbours. Interestingly, if node A has only one incoming link, but this link is

from a very important node, then node A is given a very high value of importance, based
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solely on that single link. This measure of importance is appropriate for information

networks where the relevance of information is likely to be gauged by the rate at which

other information refers to it. However, distribution networks do not have the reciprocal

properties of complex networks, and thus PageRank is not applicable.

Lianxiong et al. (2009) give an adapted PageRank algorithm for measuring the im-

portance of nodes in traffic networks. They propose using connectivity and traffic flows

inherent in road networks to measure the relative importance of intersections. Similarly

to the base PageRank, the bi-directionality of flow on edges is a key component of the

importance measure. That bi-directionality means that such an adaptation of PageRank

will not suit our type of network. (An additional example of PageRank adaptations can

be seen in the work of Dwyer (2007), where the author studies the effect of word-of-mouth

in marketing.)

Importance measures unrelated to PageRank have been studied in works such as White

and Smyth (2003), Hawick and James (2007), as well as Le and Hewei (2010). The authors

use many graph theoretic methods to compute importance measures for nodes in complex

networks. Of most interest are Hawick and James’ use of mean degree and Dijkstra’s

all pairs measures, which compute, respectively, the average degree of each node and the

average length of the shortest path for all pairs of nodes in the network. These two measures

strongly suggest that connectivity is significant for transportation networks, which leads

us to incorporate a similar measure in our own definition of importance.

Further evidence of the significance of connectivity in networks is given by Kobayashi

et al. (2009), who apply path counting algorithms to measure the importance of nodes and

edges. In counting the number of paths that are no longer valid when a node is removed,

Kobayashi et al. are measuring the “robustness” of a network, based on each individual
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node’s contribution to the whole. Although those authors are limited with respect to

counting paths in undirected networks, we can enumerate with much greater ease the

paths of a directed network. Section 3.2 deals with counting such paths.

In addition to connectivity, the concept of the damage done to a network is one which

we consider important. Li and Li (2004) study the integrity of graphs, which measures

the difficulty of separating a graph and the extent of the damage done to the graph once

separated. This concept, integrity, informs our decision to measure the disruptions created

when removing a node from a physical distribution network. We call such a disruption

a “rerouting”, since the flow of goods through the removed node must be routed to new

nodes to satisfy demands.

2.2 Network Reliability

Kelleher (1991), gives a broad overview of communication network reliability, as well as a

very detailed primer on graph theory concepts used in many models and analytical meth-

ods. It is important to note that Kelleher focuses on the graph properties of information

networks, with the major concern that the whole network remain connected when any

nodes or edges are removed. In supply chains, connectivity is essential to maintaining

service to customers. This suggests a high level of importance for nodes which lead to

disconnected graphs when removed from the network.

The research of Antikainen et al. (2009) gives an analysis of network reliability for

power distribution networks, and proposes a method for minimizing the negative impacts

of failures. This research focuses on the costs incurred when a failure is present in the

network infrastructure, be it a node or arc. The proposal to intentionally fragment the
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network into “islands” presents an insight into the usefulness of redundancy in networks.

Further to this idea, Carvalho and Ferreira (2004) present a model for power distribution

that considers the cost of reliability, in addition to the regular infrastructure costs, when

planning a distribution network. The inclusion in their model of un-reliability as a separate

penalty function reinforces our notion that there are important aspects of networks which

cannot be measured directly by cost, but which can be included in our decision making

by approximating them with a cost. Whereas Carvalho and Ferreira choose to incorporate

the approximate cost of reliability into their optimization model, we present methods with

which to calculate the factors that contribute to reliability, and use the result to give a

ranking of importance.

Qiang and Nagurney (2008) give a unified measure of performance and importance in

networks, with an eye on their vulnerability. The networks studied are closely related to our

physical distribution networks in that there are distinct origin-destination pairs. However,

Qiang and Ngurney study networks where the cost of an arc is dependent on the flow along

that arc. The assumption is that each origin and destination node is an individual entity

whose goal is to maximize its own utility. In contrast, our networks are assumed to be

owned by a single decision maker, who can make sub-optimal incremental decisions if they

lead to a globally optimal solution. Nagurney (2006) gives a method for converting supply

chain networks into transportation networks, which are themselves complex networks, but

our physical distribution networks are not convertible in such ways.

2.3 Additional Considerations

Min and Zhou (2002) give a review of supply chain modelling. They present the devel-
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opment of supply chain models that integrate all echelons of a supply chain, as well as

the exchanges of information that take place in networks. It is important to note that

our distribution network model resides in what Min and Zhou call “Outbound Logistics,”

since removing the inbound portion of the supply chain eliminates many stakeholders,

and greatly simplifies decision making. We assume that our models deal only with goods

that are already owned by the company, and thus we can ignore the requirements and

constraints of third party suppliers.

Hawick (2007) gives important insight into algorithms and computational tools avail-

able when handling and evaluating graph properties. Of particular interest is Hawick’s

algorithm for computing the Dijkstra all-pairs distance. Insights gained from this code are

used in our algorithms from Chapter 3.

The consensus, then, is that the importance of a node is not strictly tied to its cost, and

that other important factors are reliability and integrity of a network. We can measure

reliability in a network by counting paths. For integrity, measuring the disruptions created

by removing nodes is a good indicator. Chapter 3 gives algorithms to calculate these

factors, as well a method to rank the importance of nodes in a given network.

9



Chapter 3

Methodology

This chapter will deal with all of the models, algorithms and methods used to establish

our importance measure. We start by defining the basic model. The next sections deal

with specific algorithms to count paths, optimize sub-networks and count re-routings.

3.1 Directed Distribution Network Model

Suppose that a company has a set of customers, a set of inventory handling facilities (be

they warehouses, cross-docks or otherwise), and a set of source nodes. We arrange these sets

into a directed distribution network, such that goods travel from source nodes to facilities

and then to customers. It is the case that some networks will have multiple intermediate

layers of facilities, meaning that goods from the source node will travel through more than

one facility before arriving at the customer. To avoid needlessly-complicated exceptions,

we enforce a few restrictions on the networks.

• A source node may not be the end point of any arc.
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• There can be no directed cycles in the network.

• The net demand by an intermediate facility is zero.

The lack of cycles is why we call the networks directed, since the flow of goods is

directed from source nodes to customers. An arc between two nodes indicates that there

exists a shipping link between them; shipping costs are therefore modelled as arc costs. We

include arc capacities to reflect the fact that there is a limit on the amount of flow that

can be shipped between any two nodes. Similarly, we assume that a maximum amount of

flow can pass through any given facility. Note that in our model we do not include fixed

costs for any facility being open, since we assume that the networks we are studying are

currently in use, and therefore all facilities are in use. We consider this cost later when

discussing importance measures. The following are the list of sets, parameters and decision

variables in our model.

Sets:

• N : the set of nodes

• E : the set of arcs

Parameters:

• di : supply or demand at node i. This takes a negative value if the node is a supply

node, a positive value if it is a demand node, and 0 if it is an intermediate node.

• wi : capacity of node i

• fi : cost of node i

11



• mij : capacity of the arc linking node i to j

• cij : cost of one unit of flow going through the arc ij

Decision Variables:

• xij : quantity of flow along arc ij

This gives us the following linear programming model, LP1.

LP1:

min : z =
∑

pairs i,j

cijxij (3.1)

Subject to: (3.2)∑
k

xjk −
∑
i

xij + dj ≤ 0 ∀j (3.3)

∑
i

xij − wj ≤ 0 ∀j (3.4)

xij −mij ≤ 0 ∀i, j (3.5)

xij ≥ 0 ∀i, j (3.6)

A few assumptions are made that need to be explained in order to clarify this model.

For (3.1), we assume that there is no cost to process an item at the customer node, thus we

only count outgoing flow when calculating facility handling cost. In (3.3), we have negative

supply and positive outgoing flow. Nodes thus never send more flow than their supply.

We also enforce incoming flow to be greater than the demand plus the outgoing flow, so

that constraints on demand, as well as flow conservation, are met. (3.3) is important for
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intermediate nodes, and may be binding in that case. (3.3) is non-binding for a pure supply

or demand node, whose capacity is assumed to be sufficient to handle the respective supply

or demand.

Note that this is not a proper transhipment problem. We can easily formulate the prob-

lem as a transhipment problem by expanding each existing node into two nodes connected

by an arc. By assigning the old node’s capacity to the arc, we create a proper tranship-

ment problem. For our purposes, we continue to use the LP1 formulation, however we

acknowledge the benefits of using a proper transhipment formulation. These benefits are

discussed further in Section 5.2.

Figure 3.1 is a simple directed distribution network.

1

v1

d1

2

v2

w2

m12

c12

3

v3

w3

m13

c13

4

v4

d4

m24

c24

m34

c34

Figure 3.1: A simple network

Above each arc is its cost, and below its capacities. Below each supply and demand

node, the respective supply or demand is indicated. Only intermediate nodes are labelled

with their capacities below. (This is done to avoid labelling supply and demand nodes

with capacities and intermediate nodes with supply variables, since such data would give
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no additional information.) From now on, any figures of directed distribution networks

will use this labelling style, unless explicitly stated.

3.2 Path Counting

In this section, we give an algorithm for counting all the paths in a network, as well as

for counting the number of paths each node contributes to the total. To facilitate path

counting, we introduce the concept of “tiers of nodes”. Since in our networks, the flow of

commodities is directed from source nodes to customers, we can construct tiers of nodes,

with the following properties:

1. We define τ to be the set of all tiers, and Ti to be the tiers in τ . Note that the sets

Ti are subsets of N .

2. If ni is a supply node then ni ∈ T0.

3. For arbitrary tiers a and b and ∀ni ∈ Ta and ∀nj ∈ Tb if a ≤ b then @eji ∈ E.

4. For arbitrary tiers a and b and ∀ni ∈ Ta and ∀nj ∈ Tb if ∃eij ∈ E then a < b.

5. If ni ∈ Ta and nj ∈ Tb are customer nodes, then a = b.

Before we present Algorithm 1 that will sort the nodes of a network into the appropriate

tiers, a few definitions and clarifications must be made.

Definition We say a node ni feeds a node nj if ∃eij ∈ E.
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We will be using the adjacency matrix M∗ for our network. To obtain this, we simply

take the matrix of arc capacities M = [mij] and define all non-zero values to be 1. Thus if

we have M =

12 7

4 0

 our adjacency matrix would be M∗ =

1 1

1 0

.

Algorithm 1 Enumeration of tiers in a directed distribution network

Given a directed distribution network D = (N,E) and its adjacency matrix M∗, enumerate
the subsets T ∈ τ .

1. ∀ni ∈ N initialize its tier variable ti = 1. Start with the current tier equal to 1.

2. If there are no nodes in the current tier, end the algorithm.

3. For each node in the current tier, visit all the nodes that feed it and set their tier to
the current tier +1.

4. Increment the current tier by 1 and go to step 2.

Post processing: For each node ni, add its index i to the tier set Tj such that j = current
tier −1− ti, unless it has no nodes that feed it and it is set in a lower tier, then set it to 0
(this is to avoid the case where a supply node could skip a tier and be classed lower).
Output: τ = T0...Tk

Notice that this assigns nodes to the highest tier possible. There are situations where

you may have a node that could be in a lower tier, but the algorithm will assign it the

highest tier it can. As an example, Figure 3.2 is a simple network with two supply nodes

and two demand nodes. Node 2 could be in either tier 1 or 2, but Algorithm 1 will default

to assigning it to tier 2.

Having enumerated the subsets τ , we can now set up our path counting algorithm.

The process by which Algorithm 1 arranges the nodes in tiers ensures that the set Tk

contains every node which does not feed others. Therefore, this algorithm looks at all the

parent nodes for a particular node, and sums their path contributions. This effectively

counts all paths from the origin to that current node. Thus, with the guarantee that every
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Tier 1 Tier 2

1 2 3

4 5 6 7

1 2 3

4 5 6 7

Figure 3.2: Showing how Algorithm 1 chooses tiers when multiple values are possible

Algorithm 2 Counting the number of paths in a directed network

Given a directed distribution network D = (N, E) and its adjacency matrix M∗, as well as
subsets τ = T0...Tk, count the number of paths in D.

1. ∀i ∈ T0, set the path variable pi = 1.

2. Set current tier ct = 1.

3. ∀i ∈ Tct, let pi =
∑
j

pj where nodes nj feed node ni.

4. Increment ct+ 1.

5. If ct = k, let P =
∑
i∈Tk

pi and end the algorithm. Otherwise, return to step 3.

Output P = total number of paths in the network.

customer node is in set Tk, the algorithm counts all paths in the network.

Since we want to count the total number of paths when we remove a node from the

network, we can modify algorithm 2 to also count the paths in all sub-networks Di where

Di = (N \ ni, E).

With these two algorithms, we are able to count the paths in any given directed dis-

tribution network, along with each of its sub-networks in which an intermediate node is

removed. To clearly illustrate how the algorithms work, we present a simple network on

which we use the algorithms to determine the tiers of nodes, as well as the number of

16



Algorithm 3 Counting the number of paths in all sub-networks of a given network

Using Algorithm 2 and appending the following steps:

6. ∀i ∈ [T1...Tk−1]

(a) Let Tj be the tier containing ni and assign the current tier ct = j + 1

(b) Assign pij = pj ∀j such that if j ∈ Ta then a < ct. pij is the path variable for nj

when ni is removed from the network.

(c) ∀l ∈ Tct, let pil =
∑
j

pij where nodes nj feed node nl.

(d) Increment ct+ 1.

(e) If ct = k, let Pi =
∑
l∈Tk

pil, otherwise return to (c).

Output P, [Pi, ...] ∀i ∈ [T1...Tk−1]

paths. Figure 3.3 is the layout of our network. The network has the following adjacency

matrix:

M∗ =



0 1 1 0 0 0

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


We now begin Algorithm 1 to identify the tiers in the network. Figure 3.4 shows how

the algorithm labels each node with a tier value, then searches through the nodes to find

parent nodes, and increments the tier value of these nodes. In this figure, the label above

each node is its current tier value.

With the tiers enumerated, we can now count the paths. In Figure 3.5, the labels above

the nodes are the current path variables.
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Figure 3.3: A five node network

As we can see from Figure 3.5, the final output of Algorithm 3 is P = 6, P2 = 3, P3 = 3.
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Figure 3.4: The tier enumeration algorithm
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Figure 3.5: The path counting algorithm. Note, for example, that when i = 2 (node 2 is
removed), the number of paths to node 4 changes from 2 to 1.20



3.3 A Modification of the Revised Simplex Method

for Optimizing Sub-Networks

We have stated that cost on its own is not an accurate representation of the importance

of a node to the network, but without cost, any importance measure is inadequate. Here,

we refer to the cost of a node as being the change in the objective value when we optimize

the base network and the sub-network with that node removed. Specifically, we define the

cost to the network of removing node i to be:

nci = z∗i − z∗ − fi (3.7)

Here, fi is the cost of keeping node i open, z∗ is the optimal solution when solving the

base network D = (N,E) and z∗i is the optimal solution when solving the network Di =

(N \ ni, E). Clearly, to calculate all the nci’s we need the optimal solutions z∗i for each

sub-network of D. We could simply run our preferred optimization algorithm on each of

the networks Di in succession, but it is easy to imagine cases where doing so would be very

inefficient; for example, the distribution network of WalMart Stores, Inc. includes over

8000 stores and 200 intermediate facilities. Even though we benefit from not requiring an

integer programming formulation, the time involved in calculating the optimal solutions of

many networks is very large. In this section, we give a brief outline of some modifications

made to the revised simplex method. Then we present some observations on which our

modifications are based, and finally we give the complete algorithm.
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3.3.1 Outline of Modifications

Throughout this section, we are dealing with arbitrary linear programs, rather than our

specific directed distribution network model. As such, it is important that the notation be

clearly laid out, in order to avoid confusion. Given an arbitrary linear program

LP2:

maximize cTx

subject to Ax = b

x ≥ 0

We denote B, a basis of A, in such a way that B contains the indices of the columns

which form a basis A (We assume that A has full rank). Likewise, we denote N to be

the non-basic columns of A. When we write AB, we refer to the square matrix composed

of the basic columns of A. Similarly AN is the matrix of non-basic columns of A. We

denote x̃ to be a feasible solution to LP2. Typically, each row of the matrix A represents

an original constraint of the program including a slack variable, added when necessary, so

that we have a program in standard equality form. Before outlining the modifications we

make to the revised simplex method, we present a standard statement of the method:

Statement of the Revised Simplex Method

1. Start with a feasible basis B and a corresponding basic feasible solution x∗.

2. Solve AT
By = cb for y.

3. Find k ∈ N such that c̄k = ck − AT
k y > 0. (If none exists, stop; x∗ is optimal.)

4. Solve ABd = Ak for d.
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5. If d ≤ 0, stop; the problem is unbounded.

6. Compute t = min
i∈B
di>0

x∗i
di

and choose r ∈ B such that dr > 0 and
x∗r
dr

= t.

7. Replace x∗i by x∗i − tdi for all i ∈ B and replace x∗k by t.

8. Replace B by (B ∪ {k}) \ {r} and go to step 2.

The main idea behind our modifications follows. We wish to identify that iteration during

which a constraint first becomes involved in the basis and basic feasible solution, keep

the information about that iteration’s basis and basic feasible solution on hand, and come

back to it later. When we say that “a constraint becomes involved in the basis”, we mean

that one of the variables which has a non-zero coefficient in the constraint enters the basis.

With the information about the basis and basic feasible solution, we can restart the revised

simplex method, beginning from a more advanced initial point, all the while setting the

right hand side of the desired constraint to 0. It is likely, however, that this will impact

the sequence of pivots in the simplex method. However, with the results of Section 3.3.2,

it will become clear that we can effectively modify the RHS of particular constraints that

are not yet active in the basis.

The second main idea is to run the revised simplex method once through on the base

LP. We will keep track of when specific constraints become active, and the state of the

algorithm at those points, and then restart the method from an advanced starting point

for each constraint we wish altered. Let us begin by presenting the observations necessary

for this method to work.
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3.3.2 Observations on the Revised Simplex Method

The first observation is related to the eligibility of slack variables to leave the basis.

Property 1. A slack variable sj cannot leave the basis unless at least one of the variables

with a non-zero coefficient in constraint j is in the basis, or one such variable is entering

the basis in the current iteration of the revised simplex method.

Proof. Set sj to be the slack variable for the j’th row of matrix A, the index of sj to be

the u’th element of B, and I to be the set of indices for which the coefficient in the j’th

row of A is non-zero.

Assume that B ∩ I = ∅, and k /∈ I. Then when solving ABd = Ak for d in step 4 of the

revised simplex method, we have that Ak,j = 0 and the j’th row of AB is all zero except

for one entry in the u’th column which is [AB]u,j = 1. Thus, dj = 0.

Now in step 6 of the revised simplex method, we choose the leaving variable by finding

the minimum over all basic variables i for which the associated di > 0, since dj is not

positive, sj is not the entering variable.

Notice that there are only four cases for k and I:

1. Either k ∈ I and I ∩B = ∅

2. Or k ∈ I and I ∩B 6= ∅

3. Or k /∈ I and I ∩B = ∅

4. Or k /∈ I and I ∩B 6= ∅.

In Cases 1, 2 and 4, at least one of the conditions necessary for the slack variable to leave

the basis is true. We have also shown that in Case 3, sj would not be the leaving variable,

thus we have shown the result.
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The next result uses the same argument in its proof, and relates to the value of slack

variables in the basic feasible solution.

Property 2. For a slack variable sj, its associated objective value x∗j will be equal to the

RHS of the constraint j at least until one of the variables with non-zero coefficient in

constraint j enters the basis for the first time.

Proof. In the proof of Property 1, we showed that there are four cases for k and I. Notice

that in a given iteration of the revised simplex method, cases two and four can only occur

when case 1 applied to a previous iteration. Therefore, since we are only concerned about

whether or not x∗j has changed before the first time case one occurs, we can simply show

that x∗j will not change during an iteration where case three is true.

Now, also from the proof of Property 1, we have shown that dj = 0 when case three is

true. Recall that in Step 7 of the revised simplex method, x∗i is replaced by x∗i − tdi. We

know that tdj = 0, therefore x∗j will remain unchanged during any iteration where case 3

is true. This is all that is necessary to prove the result.

Taken together, Properties 1 and 2 define the earliest point at which a slack variable is

eligible to leave the basis, and guarantee that the objective value of a slack variable will

not change until that point. The next property shows that making any change to the RHS

of a slack variable’s constraint will not have an effect on the revised simplex method before

the point at which that variable is eligible to enter the basis.

Property 3. The RHS of a constraint can be changed, without having an effect on the se-

quence of pivots in the revised simplex method, until any variable with a non-zero coefficient

in that constraint enters the basis.
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Proof. In order for a change in the RHS of a constraint to affect the pivot order of the

revised simplex method, either a different entering variable must be selected in an iteration,

or a different leaving variable must be selected. Let j be the constraint whose RHS is being

changed. For the sake of argument, assume that the first two variables to enter the basis

have zero coefficients in the j row; if this is not the case, the proof is trivial.

Let xE1 be the variable that would enter during the first iteration if the RHS is not

changed. Now, entering-variable selection is done during step three of the revised simplex

method. Note that c̄k = ck − AT
k y > 0 is not dependent on the vector x∗ or the RHS b.

Thus, xE1 would still be selected as an entering variable.

Let xL1 be the variable that would leave during the first iteration if the RHS is not

changed. Leaving-variable selection is done during step six of the revised simplex method.

Observe that since the first entering variable was the same, the vector d found in step four

will remain the same. Thus, regardless of the change to x∗j , the slack variable sj will not

leave the basis since we know from Proposition 1 that it cannot. Then, we have that xL1 is

still the leaving variable, since all other entries of x∗ are the same, and the ratio
x∗L1
dL1

will

be the minimum such ratio.

Next, assume that in the first (g − 1) iterations, the entering and leaving variables are

unchanged when the RHS of constraint j is changed, that none of the basic variables have

non-zero coefficients in the jth constraint, and that the next entering variable is not one

of these variables either. Let xEg be the variable that enters in iteration g if the RHS is

unchanged. Then solving for y in the second step of the revised simplex method, we obtain

the same value regardless of the change to bj, since the basis B is unchanged. Thus, in

Step 3, we select the same entering variable xEg. Let xLg be the variable that leaves the

basis in iteration g when the RHS is not changed. Then, solving for d in Step 4 will result
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in the same value, regardless of the change to the RHS.

Thus, the only way in which xLg will not be selected as the leaving variable is if the

ratio
x∗Lg
dLg

is no longer the minimum value of all such ratios. To show that this is untrue,

we must show that the vector x∗ does not change if the RHS is modified. We know that sj

will not enter the basis, since it is the slack variable for constraint j. We also know that

the vector x∗ is updated in Step 7 of the revised simplex method by subtracting xi − tdi.

From Property 2, x∗j will not change from its original value. Recall that at each previous

iteration, the d and t values found were identical, regardless of the change to the RHS.

This is because d depends only on the entering variable and t on the leaving variable of

that specific iteration. Thus, x∗ will remain unchanged despite the change to the RHS.

This implies that the same leaving variable will be selected in iteration g, regardless of the

change to the right hand side of constraint j.

Consequently, by induction, we have shown the result.

This last property is the key to our modification, because it implies that if we change

one of the bj values in the RHS before a certain point, we can be assured that the basis B

and the basic feasible solution x∗ are valid for the modified linear program (Note that the

x∗j is changed because of the change to bj, but this is the only change in x∗).

3.3.3 Modification of the Revised Simplex Method Algorithm

Having shown the properties in the previous section, we can now present our modifications

to the revised simplex method. Those modifications do not affect the normal steps of the

method, thus we present them as sub-steps.

1a For each constraint j that we wish to modify, create an index set Ij such that i ∈ Ij if
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Ai,j 6= 0. Indices of slack variables are not permitted for such values of i.

3a Once the index of the entering variable k is selected, verify for each j whether k ∈ Ij. If

it is, then save the basis B and current feasible solution x∗ as the pair Sj = {B, x∗}.

Additionally, set Ij = ∅.

3b Once the optimal solution has been found for the unmodified linear program, use the

regular revised simplex method to solve, for each j, the modified linear program

where bj = b′j, using the basis B from Sj and the basic feasible vector x∗ with x∗j = b′j

as initialization data.

Notice that in step 3b, we are assuming that the modified LP is feasible. This is not

guaranteed to be the case, thus we need to solve an auxiliary problem via the two-phase

method in order to obtain a feasibility certificate. We do not mention this step in our

method, since we assume that this is a first step of any optimization algorithm. In that

case, we have the guarantee that the information in Sj is a valid basis and basic feasible

solution, contingent on the fact that the LP is feasible when bj is modified. The output

of this modified method is an optimal value and optimal vector pair {z, x∗}j for the base

case, along with every modified constraint j.

Thus, if we want to calculate the network cost of a node i, which we defined as nci,

we need to remove node i from our program. In our model LP1, we have a node capacity,

which we call wi. This parameter is involved as the right hand side of constraint 3.4. We

now use a trick to remove the node from the network; by letting wi = 0, we guarantee

that no flow will be assigned to node i. This change has the same effect as removing the

node. Thus, solving the LP when wi = 0 is equivalent to solving the LP for the network

Di = (N \ni, E). Therefore, to calculate network cost, we simply use our modified simplex
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method, and choose the constraints which model the capacity of intermediate nodes as

those we wish to modify. The output of this method will be all the pairs {z, x∗}i we need.

We can thus calculate nci = z∗ − z∗i for each node i and we have our network cost.

3.4 Node Importance Algorithm

In the previous sections, we have described algorithms that permit us to calculate each

of our importance measures. This section will lay out how all of those algorithms will fit

together to form our node importance-algorithm. Remember that we are considering three

measures: the number of paths contributed by a node, the network cost of this node, as

well as the number of re-routings suffered when removing it. We have not given an explicit

algorithm for the number of re-routings, but our modified revised simplex method gives us

all the information we need to calculate it. Let us define the number of re-routings for a

given node i as:

ri =
∑
k

|x∗k − {x∗k}i| (3.8)

Let us also define the triplet of importance measures IMi = {Pi, nci, ri} and for ease of

use, when the index i = 0 we define IM0 = {P, z∗, |x∗|}. We now give the node importance

algorithm.

In order to properly convert the output IM into a ranking of nodes, we calculate the

change in values for each of our measures, and represent those in percentages. The number

of reroutings, when taken compared to the amount of flow through the base network

is represented as a percentage, even though it is not strictly a measure of the change
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Algorithm 4 Node Importance Algorithm

Given a directed distribution network D = (N,E).

1. Compute the adjacency matrix M∗ of D.

2. Enumerate the tiers τ of network D by using Algorithm 1.

3. Run Algorithm 3, store the output in IM .

4. Run the Modified Revised Simplex Method on network D and consider the changes:
bi = 0∀i ∈ [T1...Tk−1] where k is the highest tier. If a change bi results in an infeasible
network, let the particular {z∗, x∗} = {−1,−1}.

5. Compute nci and ri∀i ∈ [T1...Tk−1], store these values in IM . If the values {z∗, x∗} =
{−1,−1} for a particular i, let nci = −1 and ri = −1.

6. Assign IM0 = {P, z∗, x∗}.

7. Output IM .

in total flow. Once we have the percentages for each node, we can rank the nodes by

applying a weight to each measure’s percentage and summing them together to obtain an

“importance”. The nodes are then ranked from highest to lowest importance. We do not

compare nodes in different tiers, since these are intrinsically different.

Since we have determined that cost is the most important measure, we will weigh the

path and rerouting percentages at one tenth of the weight of cost. This ensures that

economical nodes are more important, and also that we are breaking ties between similarly

costly nodes by using our importance measures. Chapter 4 gives examples of how the

algorithms presented in the current chapter work, as well as the sensitivity of the measures

to parameter changes.
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Chapter 4

Application and Practical Examples

This chapter will present a simple example, showing how the node-importance algorithm

works on networks, in order to clarify what kind of information is gained from the algo-

rithm’s output. We then present a few cases where the results are either not obvious, or

some judgement is needed. We conclude with a large example that approximates a real

distribution network.

4.1 Simple Applications

In order to clearly demonstrate the output of our node-importance algorithm, we construct

a small network and apply our method. We discuss the steps taken and give interpretations

for the resulting data. For our purpose, we create a small network based on some cities

in eastern Canada. We select ten cities, and assign demands based on the population of

those cities, arc costs based on the driving distance between cities, and intermediate node

capacities are picked randomly, in such a way as to satisfy demand even if one of the nodes
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is removed. Note that for this simple example, we omit using a facility cost, and as such

the network cost of a node is simply the difference in optimal solutions. Figure 4.1 gives

the layout of the network, with relevant demands, node capacities and arc costs labelled

below the respective arcs and nodes.

Quebec

3600

Toronto

3600

Moncton

3600

520

Sherbrooke

5550

160

470

Kingston

4500

360

180

Halifax

370

330

917

Fredericton

85

270

657

Montreal

3600

810

297

422
Ottawa

1100

417

352

Sudbury

1100

797

662

Figure 4.1: Layout of the simple Eastern Canada example

32



Node Removed x∗ nci Paths Reroutings
Base Case 2 811 061 0 19 10 626

Sherbrooke 3 689 710 878 649 31% 9 52.6% 12 580 118%
Moncton 2 897 346 86 285 3% 16 15.7% 1 820 17%
Kingston 3 343 786 532 725 19% 13 31.5% 6 852 65%

Table 4.1: The output IM when Algorithm 4 is used on the simple East Canada network

In Table 4.1 the output IM is presented, with the relevant entries shown as numerical

values, as well as percentage changes from the base case. The Base Case row gives the

optimal solution, the number of paths as well as the amount of flow along all arcs for the

base case. Before any weights are associated to the values, a ranking is obvious, since

the Sherbrooke node has the largest changes for all three measures, and Moncton has the

smallest changes for each measure. We thus get a ranking of:

1. Sherbrooke

2. Kingston

3. Moncton

The Eastern Canada example does not lend itself to further analysis, due to the sim-

plicity of the network. Adjusting the parameters for any of the nodes or arcs does not

alter the ranking unless an unrealistic, or infeasible, change is made. An unrealistic change

would be to vary the cost of arcs leaving a facility to values which are orders of magnitude

higher than their original values. An infeasible change is made when the network demands

can no longer be met, after the removal of a node. In the Eastern Canada example, if

we drop the capacity of the Kingston node by a very large amount, the linear program

becomes infeasible when the Moncton node is removed. We would thus have to assign
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the status “Critical” to the Moncton node. This would consequently make it the most

important node in the network, along with any other nodes with the “Critical” status.

What this example gives us, then, is a simple and straightforward application of the

method, and the resulting data. For in-depth analysis, we require a larger, more realistic

network.

4.2 Analysis of a Realistic Problem

In this section, we analyse a full size, realistic problem. We first construct the problem,

then use the method on the basic network. Next we vary the parameters of the problem

in order to analyse the impact such changes have on the rankings of nodes.

4.2.1 Generating a Large Realistic Problem

We generate a large problem by approximating the needs of an arbitrary retail company

operating in the United States. We assume that our company sources some of its products

from overseas and a portion locally. As such, we set three supply nodes to represent

two marine ports, and one factory in the mainland United States. We assume that the

cost of sourcing parts from each supply nodes is equal, for the sake of convenience. We

select New Orleans and Newark as representative ports, based on the ranking of ports with

highest international trade by volume. Kansas City is selected as the mainland factory,

mainly for its central location. We next choose to separate our distribution network into

regional distribution centres and local distribution centres. The selection of four regional

distribution centres and eleven local distribution centres is somewhat arbitrary, spreading
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the centres to cover the geographic layout of the United States. We finally select customer

nodes by picking the sixty most populous cities in the mainland United states, utilizing

the population of each as a guide for the respective demands of the sixty nodes.

Parameters for the distribution centres are selected by referring to The Boyd Company

Inc. (2010), a study of distribution warehousing costs. Boyd suggests the value of $1.93

per mile, which we round to $2 per mile, for transporting one 30 000 lb. truckload using a

private carrier. We use this truckload value as our unit for supply and demand. Boyd also

gives the costs of operating distribution centres, which we adjust for our needs by scaling

them to the capacity we assign each of our warehouses. To determine the arc costs, we

use the common road distance between the two nodes in question, collected from Google

maps on February 27th, 2011. Quantities at source nodes, as well as the capacities of

distribution centres, are selected semi-randomly in such a way that capacities reflect local

demand fairly closely as well as a moderate level of surplus demand. We choose the set

of arcs in light of the geographic closeness of customers and distribution centres, adding

some long arcs in cases where customers are far from multiple centres. The complete data

set for this problem is given in Appendix A. Figure 4.2 gives a map of the network, with

arcs excluded. Each type of node is represented by a different icon.

The network produced for this example is not optimized; it serves only as an example.

We do not consider several possible refinements, such as would be obtained from location

models. Nor do we try to eliminate redundant shipments, since these are outside the scope

of this example. Our assumption is that in a real-world case, the network would have

already been optimized before attempting to rank the nodes with our method. The aim of

this particular network is to demonstrate and analyse the output of the ranking method.

The fact that our network is not optimized is irrelevant to this goal, since we give a ranking
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Figure 4.2: Map of the Large Realistic Example
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of relative importances for our nodes. We are able to answer the question: Is node 1 more

important than node 2? The fact that nodes 1 and 2 are a part of an unrefined network

does not affect that question. This is to say, our method gives a ranking of importance,

regardless of the state of the network.

4.2.2 Base Analysis

Table 4.2 gives the IM output of Algorithm 4 for the large network.

Node Removed x∗ nci Paths Reroutings
Base Case 5 803 801 0 1 176 15 438

Indianapolis 6 337 184 414 546 7% 261 22% 2 950 19%
Pensecola 7 012 197 1 084 152 19% 360 31% 8 030 52%

Tucson 7 062 503 1 093 649 19% 294 25% 9 728 63%
Meadowlands 7 194 073 1 192 337 21% 261 22% 8 112 53%

Springfield 6 143 591 231 684 4% 60 5% 4 242 27%
Rochester 5 821 808 -76 951 -1% 72 6% 530 3%
Richmond 5 827 932 -2 163 0% 108 9% 1 148 7%

Atlanta 5 879 255 38 111 1% 132 11% 1 532 10%
Jacksonville 5 846 518 22 077 0% 90 8% 632 4%

Columbus Infeasible
Memphis 6 076 690 228 613 4% 84 7% 3 260 21%

Dallas 6 285 127 431 742 7% 96 8% 4 620 30%
San Bernardino 6 413 704 546 623 9% 96 8% 3 314 21%

San Jose 5 998 852 130 329 2% 102 9% 2 484 16%
Salt Lake City 5 814 316 -34 669 -1% 120 10% 590 4%

Table 4.2: The output IM when Algorithm 4 is used on the large example

This produces the following ranking:
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Critical

Columbus

Regional Distribution Centres

1 Meadowlands

2 Tucson

3 Pensacola

4 Indianapolis

Local Distribution Centres

1 San Bernardino

2 Dallas

3 Springfield

4 Memphis

5 San Jose

6 Atlanta

7 Richmond

8 Jacksonville

9 Salt Lake City

10 Rochester

The rankings are separated into three categories, one for each tier of intermediate

nodes as well as the critical category. In this base case, there is only one node in the

critical category. However, were there more, all of the critical nodes together would be

considered of equal importance. Regional and local distribution centres are seperated due

to their differences in roles. We are ranking nodes relative to each other, therefore only

those nodes that are “similar” should be ranked in the same way. A detailed analysis of a
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few cases is given for each of the three categories.

Critical Nodes

Memphis is the only critical node in our program. Inspecting the layout of the network as

well as its incidence matrix, we notice that Columbus is centrally located and contributes

the largest number of paths amongst the local distribution centres. Observe also that a

few customers served by Columbus, namely Minneapolis and Chicago, do not have many

incident arcs. Together, these factors contribute to the infeasibility of the network, once

Columbus is removed. Excess capacity of nearby nodes is not large enough to meet demands

of all client nodes served by Columbus, and thus that node is deemed critical.

Regional Distribution Centres

The data suggest a very close ranking os the top three regional distribution centres, with

Indianapolis a very distant fourth. Inspecting the parameters, we can infer that Indi-

anapolis is not important to the network. The total flow through Indianapolis, 600 units,

is all then routed directly to the Columbus node. Interestingly, Columbus does not supply

some of its closest neighbours, such as Cleveland and Cincinnati; Columbus rather supplies

nodes, such as Milwauke and Chicago, which are furthest from other local distribution cen-

tres. This suggests that sending goods through Indianapolis is more expensive than other

alternatives. Therefore, Indianapolis is not an effective supplier for most nodes, and thus

handles very little flow. This contributes to the low network cost ri as well as the small

number of reroutings when compared to other regional distribution centres. Combine those

points with the fact that the Indianapolis node contributes fewer paths to the network than
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other regional distribution centres, and we can say that this node is less important than

each of Pensecola, Tucson, and Meadowlands.

Local Distribution Centres

At the local distribution centre level, the ranking of the first six nodes is evident without

analysis. The decision between Jacksonville and Richmond is one that is not as obvious,

and bears some thought. In terms of network cost both nodes are very close. However the

path and rerouting values are quite different, placing Richmond ahead of Jacksonville in the

ranking. Upon closer inspection, we observe that the number of reroutings for Jacksonville

is equal to four times the total flow going through this node. That is the smallest amount

of reroutings that can occur when a node is deleted: we count the difference in flow along

arcs, so redirecting one unit of flow to pass through a different local distribution centre

involves four changes.

The same cannot be said of Richmond, where the number of reroutings is greater than

four times the total flow. This larger value is due to the fact that Newark, the supplier

from which Richmond’s flow originates, is at capacity. When Richmond is removed, its

former customers are now being supplied by flows which do not originate in Newark. That

means Newark now has available capacity. This excess is used to supply Detroit with less

costly flows. In essence, when removing Richmond, the nearby nodes are not adequately

able to handle the new demands from customers. This means there is a lack of excess

capacity supporting Richmond. Richmond is thus more important than other nodes, e.g.

Jacksonville, with similar network costs.
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4.2.3 Impact of Parameter Changes on Rankings

This section contains the analysis of several versions of the base problem where param-

eters have been changed, in order to understand the impact each parameter has on the

importance of a node.

Node Cost

Recall that we defined the network cost of a node i as nci = z∗i − z∗ − vi. If we vary vi

for a node, the results of optimization are the same, since vi is not included in our linear

programming formulation. Thus, the only effect of changing the vi for a node will be that

its network cost will also change by that same value in the opposite direction. If we take

the Jacksonville node and decrease its vi by 40 000. Table 4.3 gives the new Jacksonville

row for Table 4.2.

Node Removed x∗ nci Paths Reroutings
Jacksonville 5 846 518 62 077 1% 90 8% 632 4%

Table 4.3: The new Jacksonville row for Table 4.2 when the cost of Jacksonville is increased
by 40 000.

The only effect this would have on the rankings is to move Jacksonville ahead of Rich-

mond. Even though Jacksonville’s network cost is now higher than Atlanta’s, Atlanta still

handles much more flow and contributes a much larger number of paths to the network.

Jacksonville is thus less important than Atlanta.

Varying the cost, fi, of a node can have a direct impact on the ranking of that node.

The impact of such a change is, however, restricted to the node in question. Any change in

ranking will occur due to node i moving up or down in the rankings. The relative ranking
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of all other nodes in reference to each other will be maintained (i.e. if the cost of node A

is changed, the order of nodes B and C will remain the same in relation to each other).

Node Capacity

We identify several different types of changes to node capacity and observe each in turn,

to understand the impact these have on the rankings of nodes.

We first consider a node whose capacity constraint is not currently binding. An increase

in that capacity does not have any effect on the importance measures of the node in

question. However it can have an impact on the importance measures of neighbouring

nodes. Whenever we increase capacity for one node, we essentially increase the amount

of excess capacity that other nodes have available to them. This leads to the possibility

that by increasing the capacity of a “non-binding” node, its neighbouring nodes will lose

importance due to the greater amount of excess capacity. Neighbouring nodes may have

their importance decrease, and the other nodes in that tier may have a different relative

ranking, but the importance of the altered node does not change.

To illustrate this point, we consider the case of increasing the capacity for Pensecola

from 1 900 units to 2 300 units. Table 4.4 gives the resulting measures for the four regional

distribution centres. Notice that the the values for Pensecola are unchanged but all the

other nodes have had their measures decreased. Due to these changes, Pensecola now

becomes more important than Tucson, yet still less important than Meadowlands.

The next change we consider is to lower the capacity of a non-binding node, to a level

which is also non-binding. In essence, this change reduces the amount of excess capacity

available to neighbouring nodes, which may lead to their importance increasing. The fact
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Node Removed x∗ nci Paths Reroutings
Base Case 5 803 801 0 1 176 15 438

Indianapolis 6 266 342 343 704 6% 261 22% 3 476 22%
Pensecola 7 012 197 1 084 152 19% 360 31% 8 030 52%

Tucson 6 886 863 918 009 16% 294 25% 8 636 56%
Meadowlands 7 194 073 1 192 337 21% 261 22% 7 896 51%

Table 4.4: The new importance measures for regional distribution centres, when Pensecola’s
capacity is increased to 2300 units.

that the new capacity constraint is non-binding means that the importance measures for

the node in question do not change. The net effect of lowering the capacity of a non-

binding node to a similarly non-binding level is that neighbouring nodes may become more

important relative to the altered node, and that the relative ranking of all other nodes in

that tier may change.

As an example of this type of change, we decrease the capacity of Meadowlands to 1 900

units, which yields the data in Table 4.5. Even though this does not lead to a change in

ranking, from the base, we see a clear increase in values for Tucson. This increase puts

Tucson very near Meadowlands in importance.

Node Removed x∗ nci Paths Reroutings
Base Case 5 803 801 0 1 176 15 438

Indianapolis 6 337 184 414 546 7% 261 22% 2 950 19%
Pensecola 7 012 197 1 084 152 19% 360 31% 8 030 52%

Tucson 7 062 503 1 093 649 19% 294 25% 8 636 63%
Meadowlands 7 194 073 1 192 337 21% 261 22% 7 896 51%

Table 4.5: The new importance measures for regional distribution centres, when Meadow-
lands’ capacity is decreased to 1900 units.

We next consider increasing the capacity of a node which is at capacity. The direct

impact to the altered node is that it may handle more flow, which would mean a greater
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network cost and an increase in the number of reroutings, which would increase the node’s

importance. Since the altered node may be handling more flow, other neighbouring nodes

may have had their flows reduced. In that case, the importance measures for those nodes

would decrease. Some neighbouring nodes having their importance decreased can affect

the relative ranking of all other nodes in that tier. Note that if the increased capacity

is completely used by the network, there is no increase in excess capacity, thus there is

no increase in importance to neighbouring nodes. However, in the case where the altered

capacity is no longer binding, there may be a conflicting effect due to the increase in excess

capacity and a decrease in flow handled by neighbouring nodes.

In Table 4.6, we present the data for local distribution centres when the capacity of

the Columbus node is increased to 900. The change does not affect the ranking, however

we can see that other nodes in the network have their importance measures reduced. Note

that since the new capacity is no longer binding, there are a few values which are actually

increased, namely the number of reroutings for Rochester. The effect is too small to impact

the ranking, but it is noteworthy.

The last modification considered is to decrease the capacity of a node where the capacity

constraint is already binding. Such a change has no effect on excess capacity; the altered

node just handles less flow. That node thus has a lower network cost, and with a potentially

smaller number of reroutings, its importance will decrease. Neighbouring nodes which

handle the diverted flow have an increased network cost and a potentially increased number

of reroutings. Decreasing a binding capacity lowers the importance of the altered node.

Diminishing that capacity can increase the importance of neighbouring nodes, which can

alter the relative ranking of all other nodes in the tier.

To illustrate this change, the capacity of the Dallas node was lowered to 550 units. The
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Node Removed x∗ nci Paths Reroutings
Base Case 5 791 237 0 1 176 15 438
Springfield 6 131 0601 219 153 4% 60 5% 4 236 27%
Rochester 5 797 117 -101 642 -2% 72 6% 866 6%
Richmond 5 822 001 -8 094 0% 108 9% 1 230 8%

Atlanta 5 822 369 -18 775 0% 132 11% 1 310 8%
Jacksonville 5 833 954 9 513 0% 90 8% 632 4%

Columbus Infeasible
Memphis 6 039 784 195 355 3% 84 7% 2 812 18%

Dallas 6 249 865 396 480 7% 96 8% 4 262 28%
San Bernardino 6 401 140 534 059 9% 96 8% 3 314 21%

San Jose 5 986 288 117 765 2% 102 9% 2 484 16%
Salt Lake City 5 801 752 -47 233 -1% 120 10% 590 4%

Table 4.6: The new importance measures for local distribution centres, when Columbus’
capacity is increased to 900 units.

results in Table 4.7 show that Memphis joins Columbus as an infeasible node, and that

Jacksonville passes Richmond in the ranking. Apart from those changes, most nodes see

increases to their values. The Dallas node itself sees a drop in the number of reroutings,

since it now handles less flow.

Arc Costs

Here we consider altering one or multiple arc costs for a node.

Lowering the cost of incoming or outgoing arcs for a particular node may make that

node more attractive to the network, which could lead to increased flow through the node.

This increase leads to a higher network cost and a greater number of reroutings, which

enhances the importance of that node. Neighbouring nodes may now handle a reduced flow,

which lowers their network cost and number of reroutings. Additionally for neighbouring

nodes, the cost of excess capacity is diminished, thus their network cost may be further
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Node Removed x∗ nci Paths Reroutings
Base Case 5 847 594 0 1 176 15 438
Springfield 6 187 343 275 436 5% 60 5% 4 236 27%
Rochester 5 866 243 -32 516 -1% 72 6% 926 6%
Richmond 5 868 149 38 054 1% 108 9% 908 6%

Atlanta 5 982 964 141 820 2% 132 11% 1 866 12%
Jacksonville 5 891 389 66 948 1% 90 8% 764 5%

Columbus Infeasible
Memphis Infeasible

Dallas 6 285 127 431 742 7% 96 8% 3 666 23%
San Bernardino 6 457 497 590 416 10% 96 8% 3 314 21%

San Jose 6 042 645 174 122 3% 102 9% 2 484 16%
Salt Lake City 5 858 109 9 124 0% 120 10% 590 4%

Table 4.7: The new importance measures for local distribution centres, when Columbus’
capacity is increased to 900 units.

reduced. Therefore, lowering the cost of arcs for a given node can increase its importance

and decrease the importance of neighbouring nodes, which can change the relative rankings

of other nodes in the tier.

Raising the cost of incoming or outgoing arcs for a particular node can have the exact

opposite effect (which is expected). The increased cost can lead to diminished flow through

the altered node, which lowers the network cost and the number of reroutings. Neighbour-

ing nodes may become more attractive, and thus may now handle enhanced flow. Raising

the cost of arcs for a particular node can decrease its importance and increase the impor-

tance of neighbouring nodes, which may alter the relative rankings of the other nodes in

the tier.

Here we decrease the cost of incoming arcs to the Indianapolis node by roughly 25%,

in order to illustrate this type of change. Table 4.8 gives the data for the regional distribu-

tion centres. Although the ranking does not change, there is a significant increase in the
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importance of the Indianapolis node, as well as noticeable decrease for all other nodes.

Node Removed x∗ nci Paths Reroutings
Base Case 5 803 801 0 1 176 15 438

Indianapolis 6 337 184 414 546 7% 261 22% 2 950 19%
Pensecola 7 012 197 1 084 152 19% 360 31% 8 030 52%

Tucson 7 062 503 1 093 649 19% 294 25% 9 728 63%
Meadowlands 7 194 073 1 192 337 21% 261 22% 8 112 53%

Table 4.8: The new importance measures for regional distribution centres, when incident
arcs to Indianapolis have their costs reduced by 25%

Arc Addition and Removal

Adding or removing arcs leading to or away from a particular node directly impacts the

number of paths contributed by that node. Additionally, the total number of paths is

altered as well, thus the path contribution measure for all nodes in the network is changed

in every case.

When removing arcs, the path contribution of the affected node is lowered, and the total

flow going through that node may decrease. The altered node is therefore less important

to the network. Excess capacity is lost when arcs are removed, since the altered node is no

longer capable of supplying certain other nodes. This can lead to an increase in network cost

for neighbouring nodes. Moreover, neighbouring nodes will have their path contributions

increase relative to the altered node, and may handle more flow, thus becoming more

important.

Adding arcs has the opposite effect. The altered node can become more important, and

all other nodes in the tier could become less so. As with previous variations, the relative

ranking of nodes in the altered node’s tier can change.
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Supply and Demand

We inspect the effect of altering the supply or demand of suppliers and customers. The

result can vary greatly based on circumstance. Here we present two examples which give

contradictory outcomes when we alter the demand of customer nodes.

To illustrate the contradictory outcomes, we increase the supply for the Newark node.

Table 4.9 shows the importance measures for the regional distribution centres. Notice that

the Meadowlands and Pensecola nodes have a larger amount of reroutings, and that all

other nodes have less reroutings and lower network costs, despite the fact that the ranking

has not changed. Investigating the optimal solution, we see that Meadowlands is handling

more flow, due to its proximity to the Newark node. This increases the importance of Mead-

owlands at the expense of the other regional distribution centres. It is important to note

that spending this much effort identifying why Meadowlands’ importance has increased

while the other nodes have seen decreases is equivalent to calculating the importance of

nodes by hand.

Node Removed x∗ nci Paths Reroutings
Base Case 5 803 801 0 1 176 15 438

Indianapolis 5 861 184 5 669 0% 261 22% 2 788 18%
Pensecola 6 707 184 846 262 15% 360 31% 8 468 55%

Tucson 6 827 837 926 106 16% 294 25% 9 548 62%
Meadowlands 7 194 073 1 259 460 22% 261 22% 10 262 66%

Table 4.9: The new importance measures for regional distribution centres, when Newark’s
supply is increased to 1 815 units.

In fact, analysing this kind of change is closely related to trying to determine the impact

a change has on the other tiers in the network. In previous analyses, we have mentioned that

the ranking in the altered node’s tier may be revised, but we omitted the impact on other
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tiers. This is because of the phenomenon observed above: Some nodes in different tiers

may have their importance increased, while others may have their importance decreased.

Outlining simple rules that explain the impact of a change in tier Y on nodes in tier X is

therefore too complex. The rules would need too many clauses, hence we simply state that

most rankings for the rest of the network will change, without explaining those changes.

Review of Impacts

Table 4.10 gives a summary of all the parameter changes, and the impacts they have on

the rankings. It is important to note that in most cases, there is no guarantee that the

change’s impact will be reflected on all nodes. We can only say that any impact is possible

with each parameter change.

We have given clear applications of the node-importance algorithm, as well as analysis

of the effect of each parameter on the importance of a node. Chapter 5 explores some ideas

for furthering research and applications of our node-importance algorithm.
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Parameter
Change

Importance of the al-
tered node

Importance of neigh-
bouring nodes

Relative ranking of
other nodes

Increasing Node
Cost

Decreases No change No reordering

Decreasing Node
Cost

Increases No change No reordering

Increasing Node
Capacity (non-
binding)

No change Decreases Reordered

Decreasing Node
Capacity (non-
binding)

No change Increases Reordered

Increasing Node
Capacity (bind-
ing)

Increases Decreases Reordered

Decreasing Node
Capacity (bind-
ing)

Decreases Increases Reordered

Increasing Arc
Cost

Decreases Increases Reordered

Decreasing Arc
Cost

Increases Decreases Reordered

Adding Arcs Increases Decreases Reordered
Removing Arcs Decreases Increases Reordered

Table 4.10: Summary of the possible impacts each parameter change has on the altered
node, as well as neighbouring nodes, and whether or not the nodes are reordered in the
ranking. Each impact can cause the listed change, but is not guaranteed to do so.
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Chapter 5

Conclusion

5.1 Summary of Results

We developed a ranking method for the nodes in physical distribution networks. Our

method measures three metrics for each intermediate node in the network, which are com-

bined to rank the nodes. In Chapter 3 we gave algorithms to compute each of our measures.

Combining the algorithms from Chapter 3, we presented Algorithm 4 which gives the im-

portance measures for all nodes in a network. Applying weights to the data from this

algorithm, we rank nodes. We developed supporting algorithms to enumerate our net-

works, as well as solve large numbers of similar optimization problems, using the revised

simplex method.

We demonstrated how the ranking method is used, as well as the impact each parameter

has on the ranking of a node, in Chapter 4. By varying each parameter in turn, we showed

that the impact of a parameter change is most often not restricted to the node directly

affected by the parameter. Of particular interest is the difference between increasing the
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capacity of a node when the new capacity constraint is either binding or not. In Table

4.10 we see that altering the capacity of a node to a new, non-binding, value has no

effect on the node itself, whereas a change to a binding value has a direct impact on the

importance of the node. Both of these changes affect the neighbouring nodes in similar

ways. Alternatively, changing the cost of a node has no impact on the neighbouring nodes,

but directly affects the importance of the node in question.

5.2 A Transhipment Formulation and the Network

Simplex Method

When doing our computations, we used a formulation that was not a proper transhipment

problem. Through the use of a simple transformation, we can restate our problem as a

transhipment problem. This gives the advantage of being able to use the network simplex

method. The network simplex method is much more efficient at solving transhipment

problems than the simplex method. Our stated interest in modifying the revised simplex

method in order to warm start the optimization of each sub-network, was efficiency. We

concede that using a formulation other than the transhipment problem is not ideal since

the network simplex method is much more efficient than the simplex method.

Further work should be done to restate the problem as a transhipment problem, and to

utilise the network simplex method to obtain optimal solutions. It would also be interesting

to adapt the idea of a warm start to the network simplex method. It is not possible to

directly apply the same concepts we developed in Section 3.3, since we used the point

at which a constraint becomes active in the basis as the restarting point of the simplex

method. This works because the initial basic feasible solution is made up entirely of slack
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variables. In the case of the network simplex method, the initial basic feasible solution is a

spanning tree of all nodes in the network, along with flows. Many, although not all, nodes

will be active in this initial solution, thus a warm start would be equivalent to restarting

the network simplex method.

Adapting the network simplex method to exploit the similarity of each of our sub-

networks is an area that could yield interesting results, with further research.

5.3 Future Research

In this work we were able to incorporate the importance of cost, network structure (through

path counting) and disruptions (through reroutings). With a basic ranking method estab-

lished, we can attempt to expand on the existing importance measures by including more

complexity in our model. An example would be to consider lead time as a constraint,

and measure the average lead time in the network when a node is present, and when it is

removed. Another possible addition could be to incorporate multiple shipment methods,

which would be represented as multiple arcs between certain nodes.

Since facility location is a large decision, due to the heavy cost of opening a new facility,

incorporating the ideas of this importance algorithm into facility location models is another

aspect that can be considered. Whereas the questions we asked were in relation to removing

a node from a network, we can turn the question into adding a node to a network with

some minor adjustments. Incorporating such an adjusted importance measure into facility

location models could be beneficial to a company whose main concern is not just the strict

economic gains of a certain expansion, but also the gains in integrity and robustness such

an expansion would permit.
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A related question would be whether it is better to have many somewhat important

nodes in the network, or a small number of very important nodes. Even though our method

gives relative importance, we still get an idea of absolute importance by looking at the

spread of values obtained when compiling the final ranking. In cases where the reliability

of a network is desired, it might be preferable to have a diffused network structure, where

no one node is most important. Designing networks with this idea in mind could yield

more secure structures with a high resilience to breakdowns or failures.
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Appendix A

Data for the Large Example

Here we present the data that makes up the large realistic problem from Section 4.2. Any

data that has a value of 0 is omitted, to save space. We give the supply and demand values,

the node capacity values, and the arc incidence and cost matrix. This constitutes all the

data used for the realistic problem.

A.1 Supply and Demand

Negative values represent supply, positive values represent demand.

Node Value

KCT -3500

NOR -2085

continued on next page
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continued from previous page

Node Value

NWK -1415

NY 839

LA 383

CH 285

HO 226

PH 159

PI 155

SA 137

SD 131

DA 130

SJ 96

DT 91

SF 82

JC 81

IN 81

AU 79

CO 77

FW 73

CR 71

ME 68

BO 65

continued on next page
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continued from previous page

Node Value

BA 64

EP 62

SE 62

DE 61

NA 61

MI 61

WA 60

LV 57

LO 57

PO 57

OK 56

TU 54

AT 54

AL 53

KC 48

FR 48

MS 47

SM 47

LB 46

OM 45

VB 43

continued on next page
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continued from previous page

Node Value

MM 43

CL 43

OA 41

RA 41

CS 40

TL 39

MN 39

AG 38

WI 37

SL 36

NO 35

TA 34

ST 34

AH 34

CI 33

BK 32

AO 32

TD 32

PT 31

Table A.1: Supply and demand of nodes in the realistic example
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A.2 Node Capacity

Here the capacity of source and customer nodes is assumed to be greater than their re-

spective supply or demand value.

Node Value

IND 1800

PEN 1900

TUC 2500

MED 2300

SPR 1300

ROC 1200

RIC 400

ATL 550

JAC 325

COL 600

MEM 650

DAL 750

SBR 800

SJO 750

SLC 700

Table A.2: Capacity of nodes in the realistic example
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A.3 Arc incidence and cost

Here, we give the cost of arcs, only if they exist in the network. We break it down into

three tables, to cut down on excess space. Note that an entry of 0 indicates a zero arc cost

and not the absence of an arc. We denote absent arcs by a hyphen.

A.3.1 Source nodes to regional distribution centres

Source
Destination KCT NOR NWK

IND 482 818 698
PEN 900 200 1198
TUC 1 237 1 407 2428
MED 1 190 1 300 0

Table A.3: Arc costs from source nodes to regional distribution centres
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A.3.2 Regional distribution centres to local distribution centres

Source
Destination IND PEN TUC MED

SPR 893 - - 152
ROC 569 - - 324
RIC 619 854 - 328
ATL 533 322 1 733 877
JAC 849 356 - 931
COL 175 - - 524

MEM 464 459 1 402 1 085
DAL - 696 955 -
SBR - 2 017 436 -
SJO - 2 407 826 -
SLC - 1 985 773 -

Table A.4: Arc costs from regional distribution centres to local distribution centres

A.3.3 Local distribution centres to customer nodes
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Source

Destination SPR ROC RIC ATL JAC COL MEM DAL SBR SJO SLC

NY 150 314 332 - - - - - - - -

LA - - - - - - - - 60 340 689

CH - 603 - - - 356 - - - - -

HO - - - - 871 - 570 242 - - -

PH - - - - - - - - 321 713 658

PI 245 321 243 - - - - - - - -

SA - - - - - - 727 278 - - -

SD - - - - - - - - 107 460 750

DA - - - - - - 451 0 - - -

SJ - - - - - - - - 394 0 769

DT - 338 - - - 191 - - - - -

SF - - - - - - - - 435 48 736

JC - - - 317 0 - - - - - -

IN - - - - - 176 - - - - -

continued on next page
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continued from previous page

Source

Destination SPR ROC RIC ATL JAC COL MEM DAL SBR SJO SLC

AU - - - - - - 648 199 - - -

CO 687 395 477 - - 0 - - - - -

FW - - - - - - 485 36 - - -

CR - - 292 244 383 - 620 - - - -

ME - - - 384 697 589 0 - - - -

BO 90 393 - - - - - - - - -

BA 336 343 146 - - - - - - - -

EP - - - - - - - 638 - - 863

SE - - - - - - - - - 838 840

DE - - - - - - - 797 - - 536

NA - - - 250 566 379 211 - - - -

MI - - - - - 442 - - - - -

WA 375 388 107 - - - - - - - -

LV - - - - - - - - 221 522 425

LO - - - 422 - 206 - - - - -

PO - - - - - - - - - 665 766

continued on next page
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continued from previous page

Source

Destination SPR ROC RIC ATL JAC COL MEM DAL SBR SJO SLC

OK - - - - - - 466 208 - - -

TU - - - - - - - - 436 829 773

AT - - 532 0 317 - 383 - - - -

AL - - - - - - - 648 742 - -

KC - - - - - - 451 509 - - -

FR - - - - - - - - 273 152 818

MS - - - - - - - - 337 729 675

SM - - - - - - - - 438 118 649

LB - - - - - - - - 67 363 702

OM - - - - - - 646 661 - - -

VB 508 - 110 - 630 - - - - - -

MM - - - 663 345 - - - - - -

CL 556 258 - - - 143 - - - - -

OA - - - - - - - - 424 41 730

RA - - 157 409 - - 753 - - - -

CS - - - - - - - 726 - - 603

continued on next page
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continued from previous page

Source

Destination SPR ROC RIC ATL JAC COL MEM DAL SBR SJO SLC

TL - - - - - - 402 256 - - -

MN - - - - - 762 829 - - - -

AG 390 - 105 - - - - - - - -

WI - - - - - - 578 365 - - -

SL - - - - - 420 285 - - - -

NO - - - 469 546 - 396 509 - - -

TA - - - 458 201 - - - - - -

ST - - - - - - - - 50 373 -

AH - - - - - - - - 47 366 682

CI - 501 519 461 - 107 - - - - -

BK - - - - - - - - 165 242 704

AO - - - - - - - 795 - - 541

TD - 373 - - - 144 - - - - -

PT 496 284 326 - - 183 - - - - -

Table A.5: Arc costs from local distribution centres to customer nodes
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