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Abstract

In this thesis we consider two classes of binary matroids, even cycle matroids and even
cut matroids. They are a generalization of graphic and cographic matroids respectively. We
focus on two main problems for these classes of matroids. We first consider the Isomor-
phism Problem, that is the relation between two representations of the same matroid. A
representation of an even cycle matroid is a pair formed by a graph together with a special
set of edges of the graph. Such a pair is called a signed graph. A representation for an even
cut matroid is a pair formed by a graph together with a special set of vertices of the graph.
Such a pair is called a graft. We show that two signed graphs representing the same even
cycle matroid relate to two grafts representing the same even cut matroid. We then present
two classes of signed graphs and we solve the Isomorphism Problem for these two classes.
We conjecture that any two representations of the same even cycle matroid are either in one
of these two classes, or are related by a local modification of a known operation, or form
a sporadic example. The second problem we consider is finding the excluded minors for
these classes of matroids. A difficulty when looking for excluded minors for these classes
arises from the fact that in general the matroids may have an arbitrarily large number of
representations. We define degenerate even cycle and even cut matroids. We show that
a 3-connected even cycle matroid containing a 3-connected non-degenerate minor has, up
to a simple equivalence relation, at most twice as many representations as the minor. We
strengthen this result for a particular class of non-degenerate even cycle matroids. We also
prove analogous results for even cut matroids.
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Chapter 1

Introduction

1.1 The graphic and cographic cases: two problems

Let G be a graph. For a set X ⊆ E(G), we write VG(X) to refer to the set of vertices
incident with an edge of X and G[X ] for the subgraph with vertex set VG(X) and edge set
X . A subset C of edges of G is a cycle if G[C] is a graph where every vertex has even
degree. An inclusion-wise minimal non-empty cycle is a circuit. We denote by cycle(G)

the set of all cycles of G. A cycle for a binary matroid M is the symmetric difference of
circuits of M. Since the cycles of G correspond to the cycles of the cycle matroid of G, we
identify cycle(G) with that matroid and say that G is a representation of that matroid. The
classes of matroids considered in this work all arise from graphs. Hence, when referring to
a representation of a matroid we will always mean a graphic representation of the matroid.
When referring to a matrix representing a matroid over some field (which will usually be
the binary field), we will refer to that matrix as the matrix representation of the matroid.

Cycle matroids are also referred to as graphic matroids. An example of a cycle matroid
is given in Figure 1.1. On the left we have the matrix representation of the matroid over
the binary field. Columns 1 to 10 represent elements 1 to 10 (in this order). Elements
1,2,3,4,5,6 form a basis of the matroid; the element 7 forms a fundamental circuit with 1
and 3. On the right we have a graph representation of the matroid. The matrix representa-
tion is the incidence matrix of the graph. Note that the basis {1,2,3,4,5,6} corresponds to
a spanning tree in the graph. Edges 1,3,7 form a circuit and edges 2,3,4,5,6,8,10 form a
cycle of the graph (hence of the cycle matroid).
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1
2

3 4

5

7
9

10

8

6





1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 0 0 0 0 0
0 0 1 0 0 0 1 1 0 0
0 1 0 1 1 1 0 0 0 0
0 0 0 1 0 0 0 1 1 0
0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 1 0 0 1 1





Figure 1.1: Example of a cycle matroid.

We may ask when two graphs represent the same cycle matroid. We define an operation
on graphs which preserves cycles as follows. Given sets A,B we denote by A−B the set
{a∈ A : a /∈ B}. Given a set of edges X of G, we define the boundary of X in G as BG(X) =

VG(X)∩VG(X̄), where X̄ = E(G)−X . Consider a graph G and let X ⊆ E(G). Suppose that
BG(X) = {u1,u2} for some u1,u2 ∈V (G). Let G� be obtained by identifying vertices u1,u2

of G[X ] with vertices u2,u1 of G[X̄ ] respectively. Then G� is obtained from G by a Whitney-
flip on X . We will also use the term Whitney-flip for the operation consisting of identifying
two vertices from distinct components, or the operation consisting of partitioning the graph
into components each of which is a block of G. An example of two graphs related by
Whitney-flips is given in Figure 1.2. In this example the set X is given by edges 5,6,9,10.

1
2

3 4

5

7
9

10

8

6

1
2

3 4

5
7

9

10

8

6

u2

u1

Figure 1.2: Example of a Whitney-flip.

It is easy to see that Whitney-flips preserve cycles. Hence, two graphs related by a
sequence of Whitney-flips have the same cycles; in particular they are representations of
the same cycle matroid. In [38] Whitney proved that the converse also holds.

Theorem 1.1 (Whitney ’33). Two graphs represent the same cycle matroid if and only if
they are related by Whitney-flips.
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In light of Theorem 1.1, we define two graphs to be equivalent if one can be obtained
from the other by a sequence of Whitney-flips.

Now we introduce another basic class of binary matroids. Given a set of vertices U , we
denote by δG(U) the cut induced by U , that is δG(U) := {(u,v)∈ E(G) : u ∈U,v �∈U}. An
inclusion-wise minimal cut is a bond. We denote by cut(G) the set of all cuts of G. Since
the cuts of G correspond to the cycles of the cut matroid of G, we identify cut(G) with that
matroid and say that G is a representation of that matroid. For example, in the graph in
Figure 1.1 edges 2,8 form a bond of the graph, hence a circuit of the cut matroid. Edges
1,3,5,8,10 form a cut of the graph, hence a cycle of the cut matroid. Cut matroids are also
referred to as cographic matroids, as they are duals of graphic matroids. In fact, for every
graph G every cycle has an even intersection with every cut, hence the matroid cycle(G) is
the dual of cut(G). Therefore Theorem 1.1 may be restated as follows.

Theorem 1.2 (Whitney ’33). Two graphs represent the same cut matroid if and only if they
are related by Whitney-flips.

An excluded minor for a minor closed class of matroids is a matroid M which is not in
the class, but such that every proper minor of M is in the class. The class of cycle matroids
is a minor closed class; in [34] Tutte found the excluded minors for this class. The matroids
in the following theorem are defined in Appendix B.

Theorem 1.3 (Tutte ’59). Let M be a binary matroid. Then M is a cycle matroid if and
only if M has no F7, F∗

7 , M(K5)∗ or M(K3,3)∗ minor.

Theorem 1.1 and Theorem 1.3 provide solutions to two problems for the classes of cycle
and cut matroids. The first one is the problem of determining when two graphs represent
the same matroid. We refer to this problem as the Isomorphism Problem. The Excluded
Minor Problem is the problem of finding all the excluded minors for a minor closed class
of matroids. Hence Theorem 1.3 provides an answer to the Excluded Minor Problem for
cycle matroids and, by duality, cut matroids. Note that in general a class of matroids may
have an infinite set of excluded minors. This happens, for example, for real representable
matroids (see [18]). However, this is not the case for binary matroids, as recently proved
by Geelen, Gerards and Whittle [11].
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1.2 Thesis overview

The first class of matroids that we consider in this work is a generalization of the class of
cycle matroids which arises from signed graphs. A signed graph is a pair (G,Σ) where
G is a graph and Σ ⊆ E(G). We call Σ a signature of G. A subset B ⊆ E(G) is Σ-even
(respectively Σ-odd) if |B∩Σ| is even (respectively odd). When there is no ambiguity we
omit the prefix Σ when referring to Σ-even and Σ-odd sets. Given a signed graph (G,Σ),
we denote by ecycle(G,Σ) the set of all even cycles of (G,Σ). It can be verified that
ecycle(G,Σ) is the set of cycles of a binary matroid, which we call the even cycle matroid.
We identify ecycle(G,Σ) with that matroid and say that (G,Σ) is a representation of that
matroid. Note that, if Σ is empty, all the cycles of (G,Σ) are even, hence ecycle(G,Σ) is a
cycle matroid. Hence the class of even cycle matroids contains the class of cycle matroids.

An example of an even cycle matroid is given in Figure 1.3. On the left we can see the
matrix representation of the matroid. Columns 1 to 10 represent elements 1 to 10 (in this
order). Elements 1,2,3,4,5,6,7 form a basis of the matroid. The fundamental circuits for
elements 8,9,10 are {1,2,4,7,8}, {1,3,4,6,7,9} and {5,6,10} respectively. On the right
we have a signed graph representation of the matroid. The bold edges form the signature
(we use this convention throughout this work). Edges {2,3,4,8} form an odd circuit of the
signed graph, hence not a circuit of the matroid. Sets {5,6,10} and {1,3,4,6,7,9} are both
even cycles of the signed graph, hence cycles of the even cycle matroid. Note that the basis
{1,2,3,4,5,6,7} corresponds to a spanning tree in the graph plus an edge forming an odd
circuit with the tree.

1
2

3 4

5

7
9

10

8

6





1 0 0 0 0 0 0 1 1 0
0 1 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1 1 0
0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 0 1 1 1 0





Figure 1.3: Even cycle matroid. Bold edges are odd.

The second class of matroids we consider is a generalization of the class of cut matroids.
A graft is a pair (G,T ) where G is a graph, T ⊆ V (G) and |T | is even. The vertices in T

4



are the terminals of the graft. A cut δ (U) is T -even (respectively T -odd) if |T ∩U | is even
(respectively odd). When there is no ambiguity we omit the prefix T when referring to
T -even and T -odd cuts. We denote by ecut(G,T ) the set of all even cuts of (G,T ). It can
be verified that ecut(G,T ) is the set of cycles of a binary matroid, which we call the even
cut matroid represented by (G,T ). We identify ecut(G,T ) with that matroid and say that
(G,T ) is a representation of that matroid. Note that, if T is empty, all the cuts of (G,T ) are
even, hence ecut(G,T ) is a cut matroid.

An example of the matrix representation and the graft representation of an even cut
matroid is given in Figure 1.4, where the white vertices of the graph are the terminals (we
use this convention throughout this work). The set of edges {1,2,6} forms an odd cut of
the graft, hence not a cycle of the even cut matroid. On the other hand, the sets {2,3,8}
and {1,2,3,4,6,10} form even cuts, hence cycles of the matroid. Some basic properties of
even cycle and even cut matroids are discussed in Chapter 2.

1

2 3

4

5

7 9 10

8

6





1 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 1 0 1
0 0 1 0 0 0 0 1 1 1
0 0 0 1 0 0 0 0 1 1
0 0 0 0 1 0 1 0 1 0
0 0 0 0 0 1 1 0 0 1





Figure 1.4: Even cut matroid. White vertices are terminals.

1.2.1 Problem 1: isomorphism

In the first part of this dissertation we focus on the following problem.

Isomorphism Problem for even cycles: What is the relation between two representations
of the same even cycle matroid?

The Isomorphism Problem has been solved for even cycle matroids which are graphic,
by Shih (in his doctoral disseration, see [30]) and independently by Gerards, Lovász, Schri-
jver, Seymour, Truemper (see [13]). We report the second result here, while Shih’s result,
which describes the structure of the graphs more precisely, is presented in Chapter 4.
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Theorem 1.4. Let (G,Σ) and (G�,Σ�) be signed graphs. Suppose that ecycle(G,Σ) =
ecycle(G�,Σ�) and that this matroid is a cycle matroid. Then (G,Σ) and (G�,Σ�) are re-
lated by a sequence of Whitney-flips, signature exchanges, and Lovász-flips.

We need to define the terms “signature exchange” and “Lovász-flip”. Given signed graphs
(G,Σ) and (G�,Σ�), where G and G� are equivalent, we say that Σ� is obtained from Σ by a
signature exchange if Σ�Σ� is a cut of G (where � denotes symmetric difference). Every
set Σ� which may be obtained from Σ by a signature exchange is a signature of (G,Σ).

Given a graph G we denote by loop(G) the set of all loops of G. Let (G,Σ) be a signed
graph. A vertex s is a blocking vertex of (G,Σ) if every odd circuit of (G,Σ)\ loop(G) uses
s. A pair of vertices s, t is a blocking pair if every odd circuit of (G,Σ) \ loop(G) uses
at least one of s, t. Note that s is a blocking vertex (respectively s, t is a blocking pair)
of (G,Σ) if and only if there exists a signature Σ� of (G,Σ) such that Σ� ⊆ δ (s)∪ loop(G)

(respectively Σ� ⊆ δ (s)∪δ (t)∪ loop(G)).

Consider a signed graph (G,Σ) and vertices v1,v2 ∈V (G) where Σ ⊆ δG(v1)∪δG(v2)∪
loop(G). So v1,v2 is a blocking pair of (G,Σ). We can construct a signed graph (G�,Σ)
from (G,Σ) by replacing the endpoints x,y of every odd edge e with new endpoints x�,y� as
follows:

(a) if x = v1 and y = v2, then x� = y� (i.e. e becomes a loop);

(b) if x = y (i.e. e is a loop), then x� = v1 and y� = v2;

(c) if x = v1 and y �= v1,v2, then x� = v2 and y� = y;

(d) if x = v2 and y �= v1,v2, then x� = v1 and y� = y.

Then we say that (G�,Σ) is obtained from (G,Σ) by a Lovász-flip on v1,v2. In Section 3.4
we show that Lovász-flips preserve even cycles. An example of two signed graphs related
by a Lovász-flip is given in Figure 1.5, where the white vertices represent the blocking
pairs.

Suppose that (G1,Σ1) and (G2,Σ2) are signed graphs where G1 and G2 are equivalent
and Σ2 is obtained from Σ1 by a signature exchange. Then we say that (G1,Σ1) and (G2,Σ2)

are equivalent signed graphs. Let D := Σ1�Σ2. As D is a cut of G1 (and G2), for every
cycle C of G1, |D∩C| is even. Hence |C∩Σ1| is even if and only if |C∩Σ2| is even. It
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Figure 1.5: Signed graphs related by a Lovász-flip. Bold edges are odd.

follows that equivalent signed graphs represent the same even cycle matroid. Now suppose
that for two signed graphs (G1,Σ1), (G2,Σ2) we have ecycle(G1,Σ1) = ecycle(G2,Σ2) and
cycle(G1) = cycle(G2). Then, by Theorem 1.1, G1 and G2 are equivalent. A cycle of G1

is Σ1-even if and only if it is Σ2-even and is Σ1-odd if and only if it is Σ2-odd. Hence, Σ2

is a signature of G1 and Σ1 is a signature of G2. It follows that (G1,Σ1) and (G2,Σ2) are
equivalent. We conclude that, if G1 and G2 are equivalent graphs and ecycle(G1,Σ1) =

ecycle(G2,Σ2) for some signatures Σ1 and Σ2, then (G1,Σ1) and (G2,Σ2) are equivalent.
Thus the Isomorphism Problem is easily solved for signed graphs having equivalent under-
lying graphs. Therefore we focus on the Isomorphism Problem for the case that the two
graphs are inequivalent. We say that two graphs G1 and G2 are siblings if G1 and G2 are
inequivalent and, for some signatures Σ1 and Σ2, we have ecycle(G1,Σ1) = ecycle(G2,Σ2).
We extend this terminology to the signed graphs and say that (G1,Σ1) and (G2,Σ2) are
siblings. We call the pair Σ1,Σ2 the matching signature pair for G1, G2. In Chapter 3 we
prove that, given siblings G1,G2, their matching signature pair is unique, up to signature
exchange.

The other Isomorphism Problem we consider is the following.

Isomorphism Problem for even cuts: What is the relation between two representations of
the same even cut matroid?

In Chapter 3 we show how the Isomorphism Problem for even cycles relates to the
Isomorphism Problem for even cuts. In particular we show that, if two graphs G1,G2 are
siblings, then there exist sets of terminals T1 and T2 such that ecut(G1,T1) = ecut(G2,T2).
In this case we also say that (G1,T1) and (G2,T2) are siblings and we call the pair T1,T2

the matching terminal pair for G1, G2. We show that the converse is also true, that is, if
two grafts (G1,T1) and (G2,T2) are siblings, then there exist signatures Σ1 and Σ2 such that
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(G1,Σ1) and (G2,Σ2) are siblings. We also show that the matching signature pair can be
obtained from the matching terminal pair and vice-versa. An example of two siblings is
given in Figure 1.6. The two graphs are not equivalent as, for example, the edge 1 is a
loop in the graph on the left and not a loop in the graph on the right. Given the signatures
(edges in bold), we have two signed graphs with the same even cycles. The terminals (white
vertices) determine two grafts with the same even cuts.
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Figure 1.6: Siblings. Bold edges are odd, white vertices are terminals.

We focus on the Isomorphism Problem for even cycles: in Chapter 4 we present two
classes of siblings and we characterize all the operations relating two siblings in the same
class, thus solving the Isomorphism Problem for these classes. We conjecture that, up
to Whitney-flips, signature exchanges, Lovász-flips and some reductions, every pair of
siblings is either contained in one of these two classes, or is a modification of an operation
for graphic matroids, or forms a sporadic example. We discuss this conjecture in more
details in Section 4.4.

An example of two siblings in the first class is given in Figure 1.7, where dotted lines
represent vertices that are identified (we use this convention throughout this work). A
signature for both graphs is α1�α2 (corresponding to the edges in darker grey in the figure).

An example of two siblings in the second class is given in Figure 1.8. Note that, even
though the underlying graphs are isomorphic, there is no isomorphism between the two
graphs which preserves the edge labels. These two signed graphs are related by a shuffle,
an operation defined in Chapter 4.
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Figure 1.7: Siblings in the first class.
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Figure 1.8: Siblings in the second class. Bold edges are odd.

1.2.2 Problem 2: bounding the number of representations

In the previous section we presented operations which relate signed graphs representing
the same even cycle matroid. With such operations we obtain signed graphs which are
not equivalent; thus an even cycle matroid may have inequivalent representations. The
situation may be quite complicated; in fact in general there is no bound on the number of
inequivalent representations that an even cycle matroid may have.

We say that a signed graph (G,Σ) is degenerate if some signed graph (G�,Σ�), equiv-
alent to (G,Σ), has a blocking pair. An even cycle matroid M is degenerate if some rep-
resentation (G,Σ) of M is degenerate; it is non-degenerate otherwise. Note that an even
cycle matroid may have both degenerate and non-degenerate representations. Degenerate
even cycle matroids may have an arbitrary number of inequivalent representations. As an
example, consider the construction in Figure 1.9. Each of the graphs G1, . . . ,G4 may be
any graph. As an example we chose G1 to be the graph with edges 1,2,3,4,5,6 given in
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the figure. The arrows indicate how each piece is flipped. The odd edges, in both graphs,
are 1,2,3. Note that, for every i ∈ [4], the two vertices in VGi ∩VGi+1 form a blocking pair
and it is possible to obtain the signed graph on the right from the signed graph on the left
by signature exchanges and Lovász-flips on these blocking pairs. In general we may have
an arbitrary number of graphs G1, . . . ,Gk and we may flip any subset of them. Thus a
degenerate even cycle matroid may have an exponential number of pairwise inequivalent
representations. We give a more precise description of this operation in Chapter 3.

We do not give a characterization of siblings with blocking pairs here. However, in
a paper in preparation (see [16]) we characterize the structure of signed graphs with two
distinct blocking pairs.

G2

G1 G3

G4

G2

G1 G3

G4

1
12 2

3
4

5
6

3

4
6

5

Figure 1.9: Inequivalent siblings.

In Chapter 8 we show that every 3-connected even cycle matroid containing a fixed 3-
connected non-degenerate even cycle matroid as a minor has, up to equivalence, a bounded
number of representations (where the bound depends on the minor). More specifically, we
prove the following.

Theorem. Let M be a 3-connected even cycle matroid which contains as a minor a non-
degenerate 3-connected matroid N. Then the number of equivalence classes of the repre-
sentations of M is at most twice the number of equivalence classes of the representations
of N.

The above result is an easy corollary of a stronger result, namely Theorem 8.1, which
is proved in Chapter 8.
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An example of an even cycle matroid which is non-degenerate is given by the matroid
R10, which was introduced by Hoffman in [17] and plays a central role in Seymour’s de-
composition of regular matroids [28] (see also [1]). A matrix representation of R10 is given
in Appendix B. R10 has six representations as an even cycle matroid, all isomorphic to the
signed graph (K5,E(K5)). This signed graph does not have a blocking pair, as the removal
of any two vertices leaves an odd triangle. Hence R10 is a non-degenerate even cycle ma-
troid and the theorem above implies that every 3-connected even cycle matroid containing
R10 as a minor has, up to equivalence, at most 12 representations. In fact, R10 has another
property, stronger than being non-degenerate. We discuss this property in Chapter 8 and
prove a result which implies that every connected even cycle matroid containing R10 as a
minor has, up to equivalence, at most six representations.

A similar situation occurs for even cut matroids. Given a graph H, we denote by
Vodd(H) the set of vertices of H of odd degree. Given a graft (G,T ) we say that J ⊆ E(G)

is a T -join of G if T =Vodd(G[J]). Note that, if J is a T -join of G, a cut C of G is T -even if
and only if |C∩J| is even. We say that two grafts (G1,T1) and (G2,T2) are equivalent if G1

and G2 are equivalent and a T1-join of G1 is a T2-join of G2. As G1 and G2 are equivalent,
cut(G1) = cut(G2). Moreover, for i = 1,2, a cut C of Gi is Ti-even if and only if |C∩ J| is
even. It follows that equivalent grafts represent the same even cut matroid. The converse
is also true: suppose that G1 and G2 are equivalent graphs and there exist sets of terminals
T1 for G1 and T2 for G2 such that ecut(G1,T1) = ecut(G2,T2). Let J be a T1-join of G1. As
(G1,T1) and (G2,T2) have the even cuts, J is also a T2-join of G2. Hence the grafts (G1,T1)

and (G2,T2) are equivalent. We conclude that, given equivalent graphs G1 and G2, for two
sets of terminals T1 for G1 and T2 for G2, we have ecut(G1,T1) = ecut(G2,T2) if and only
if (G1,T1) and (G2,T2) are equivalent. The example in Figure 1.6 shows that an even cut
matroid may have inequivalent representations.

In general, an even cut matroid may have an arbitrary number of inequivalent represen-
tations. By a path P of a graph G we mean a set of edges of G such that G[P] is a path in
the usual sense. We say that a graft (G,T ) has a covering path if |T | ≤ 2 and has a covering
pair if |T | ≤ 4. This terminology comes from the fact that if (G,T ) has a covering path
(respectively a covering pair) then there exists a path P (respectively disjoint paths P,P�) of
G such that P (respectively P∪P�) is a T -join of G. We say that a graft (G,T ) is degenerate
if some graft (G�,T �) equivalent to (G,T ) has a covering pair. An even cut matroid M is de-
generate if some representation (G,T ) of M is degenerate; it is non-degenerate otherwise.
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Note that an even cut matroid may have both degenerate and non-degenerate representa-
tions. There is no bound on the number of inequivalent representations that a degenerate
even cut matroid may have. An example is given in Figure 1.10, where white vertices are
terminals and dotted lines denote vertices that are identified. G1, . . . ,G4 may be any set of
graphs; the arrows indicate how every piece is flipped. In general we may have an arbitrary
number of graphs G1, . . . ,Gk and we may flip any subset of them.

G1

G2

G3

G4 G4

G3

G2

G1

Figure 1.10: Inequivalent representations of an even cut matroid. White vertices are termi-
nals, dotted lines denote vertices that are identified.

In Chapter 9 we show that every 3-connected even cut matroid containing a fixed 3-
connected non-degenerate even cut matroid as a minor has, up to equivalence, a bounded
number of inequivalent representations. More precisely, we show the following.

Theorem. Let M be a 3-connected even cut matroid which contains as a minor a 3-
connected matroid N which is non-degenerate. Then the number of equivalence classes
of the representations of M is at most twice the number of equivalence classes of the repre-
sentations of N.

The above result is an easy corollary of a stronger result, namely Theorem 9.1, which
is proved in Chapter 9.
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The matroid R10 is also an even cut matroid. R10 has, up to equivalence, 10 repre-
sentations as an even cut matroid, which are all isomorphic to the graft in Figure 1.11.
Hence R10 is a non-degenerate even cut matroid and the theorem above implies that every
3-connected even cut matroid containing R10 as a minor has, up to equivalence, at most 20
representations. R10 has a stronger property than being non-degenerate. We discuss this
property in Chapter 9 and we prove a result which implies that every connected even cut
matroid containing R10 as a minor has, up to equivalence, at most 10 representations.

Figure 1.11: Graft representation of R10. White vertices are terminals.

1.2.3 Problem 3: excluded minors

When working with other classes of matroids a first attempt to find excluded minors usually
involves proving results about the connectivity of such excluded minors. For example, the
proofs of the excluded minors for graphic [34], ternary [2, 27] and quaternary [9] matroids
all rely on the fact that every excluded minor for these classes is 3-connected. This is
not the case for the excluded minors for even cycle matroids. For example, any matroid
obtained by a 2-sum of a copy of R10 and a minimally non-graphic matroid is an excluded
minor for even cycle matroids which is not 3-connected. An explanation of why these are
excluded minors is given in Chapter 7.

Another difficulty when looking for excluded minors for even cycle and even cut ma-
troids arises from the fact that they may have many inequivalent representations. We give
an idea of why theorems bounding the number of representations, as the ones in the previ-
ous section, may help to find excluded minors. Given two even cycle matroids M and N,
where N is a minor of M, we say that a representation (H,Γ) of N extends to M if there
exists a representation (G,Σ) of M such that (H,Γ) is a minor of (G,Σ) (we define minors
for signed graphs in the next chapter). Suppose F is the set of signed graphs equivalent
to (H,Γ). Then we say that F extends to M if some signed graph in F extends to M. In
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Chapter 8 we prove a stronger result than the theorem stated in the previous section. In fact
we show the following.

Theorem. Let M be a 3-connected even cycle matroid which contains as a minor a non-
degenerate 3-connected matroid N. Then every equivalence class of representations of N
extends to at most two equivalence classes of representations of M.

Let N be an even cycle matroid which is a minor of a matroid M. Let F be an equiva-
lence class of representations of N. Suppose we can show that, if F does not extend to M,
then there exists a matroid M� such that:

(i) N is a minor of M�;

(ii) M� is a minor of M;

(iii) F does not extend to M�;

(iv) the size of M� is bounded by a function of N.

Now suppose M is a binary excluded minor for the class of even cycle matroids which
contains a minor N, where N is a non-degenerate even cycle matroid with k inequivalent
representations. Then no representation of N extends to M. Let F be an equivalence class
of representations of N and let M� be a matroid with the properties above. M� may still be an
even cycle matroid, but M� has at most 2k−2 inequivalent representations, by the theorem
above and by the fact that F does not extend to M. Thus we may repeat the same reasoning
with M� and M instead of N and M. After at most 2k steps we will obtain a matroid M̂
such that N is a minor of M̂, no representation of N extends to M̂ and the size of M̂ only
depends on N. This would show that every excluded minor for the class of even cycle
matroids containing N as a minor has bounded size. Moreover, a precise characterization
of the matroid M� with the properties (i)-(iv) above may lead to an algorithm to find such
excluded minors.

In Chapter 2 we introduce basic properties of even cycle and even cut matroids. In
Chapter 3 we consider the relation between two signed graphs representing the same even
cycle matroid and two grafts representing the same even cut matroid. Chapter 4 contains
results which provide a partial answer to the Isomorphism Problem for even cycle ma-
troids; such results are proved in Chapter 6. Chapter 5 contains results on 2-separations
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and Whitney-flips which are used in subsequent chapters. In Chapter 7 we discuss the
problem of finding the excluded minors for the classes of even cycle and even cut ma-
troids; we discuss stabilizer-type theorems, which are proved in Chapters 8 and 9. The
final Chapter 10 contains open problems and discussion on future work.

The results in Chapter 3 and Section 5.1 and an early version of the results in Chapters 4
and 8 (with respective proofs) are joint work with Paul Wollan.

1.3 Related results

In this section we survey recent results about the Isomorphism Problem and the Excluded
Minor problem for other classes of matroids arising from graphs. We start by introducing
a very general class of matroids arising from biased graphs and then present results for
two special subclasses of these matroids. A theta graph is a graph formed by two circuits
intersecting exactly in a path with at least one edge. A set B of circuits in a graph is linear
if for every C1,C2 ∈ B forming a theta graph, the third circuit in C1 ∪C2 is also in B. A
biased graph is a pair (G,B), where G is a graph and B is a linear set of circuits of G. The
circuits in B are called balanced. Biased graphs were introduced by Zaslavsky (see [40]
and [41]). A family of matroids arising from biased graphs is the family of frame matroids.
The frame matroid represented by a biased graph (G,B) has as ground set the set of edges
of the graph. The circuits of the matroid are the sets of edges of one of the following
four types: balanced circuits; two disjoint unbalanced circuits together with a minimal path
connecting them; two unbalanced circuits sharing exactly one vertex; a theta graph with
all circuits unbalanced. Frame matroids include a wide variety of matroids, for example
Dowling matroids [6]. We present results about two special classes of frame matroids.

Frame matroids arising from a biased graph (G, /0) (that is, all circuits are unbalanced)
are called bicircular matroids. Bicircular matroids were first introduced by Simões-Pereira
[31]. The Isomorphism Problem for bicircular matroids has been widely studied and a
complete characterization of when two graphs represent the same bicircular matroid is
known (see [37], [4] and [19]). The operations relating two graphs representing the same
bicircular matroid are relatively simple and they act locally on the graph. Recently Goddyn
and DeVos (see [5]) announced that they have found the excluded minors for this class.
The main part of their proof consists in showing that every excluded minor for the class of
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bicircular matroids has at most nine elements. This proof uses the above mentioned results
about representations of bicircular matroids.

A second important class of frame matroids arises from signed graphs. Let (G,Σ) be
a signed graph and B be the set of even circuits of (G,Σ). Then (G,B) is a biased graph.
The frame matroid represented by (G,B) is a signed-graphic matroid. Signed-graphic
matroids are in general very complicated objects, but there has been recent progress on
regular and near-regular signed-graphic matroids. A matroid is regular if it is representable
over every field and near-regular if it is representable over every field, except possibly
the binary field. There are 31 regular excluded minors for signed graphic matroids, as
recently proved in [24] by Slilaty et al. All but two of these excluded minors are excluded
minors for projective-planar graphs. Work on the isomorphism problem for this class has
been conducted by Pendavingh and Van Zwam [23], who studied a recognition algorithm
for near-regular signed-graphic matroids. They introduced three operations which relate
representations of the same near-regular signed-graphic matroid in the case in which the
signed graph is cylindrical. We will not define this term here; we just remark that for the
recognition algorithm it is sufficient to consider the cylindrical case.

Another general class of matroids arising from biased graphs is the class of lift matroids
(also defined in [41]). The circuits of the lift matroid represented by the biased graph (G,B)
are the sets of edges of one of the following three types: balanced circuits; two unbalanced
circuits sharing at most one vertex; a theta graph with all circuits unbalanced. Even cycle
matroids are a basic class of lift matroids. In fact, we already noted that, given a signed
graph (G,Σ) and the set B of even circuits of (G,Σ), (G,B) is a biased graph. Moreover,
given any two odd circuits C1,C2 of (G,Σ) which intersect exactly in a path, the third
circuit in C1 ∪C2 is even. Thus the lift matroid represented by (G,B) does not contain
any theta graph with all circuits unbalanced. Hence the circuits of the lift matroid are
exactly the circuits of ecycle(G,Σ). Note that even cycle matroids are different from the
signed-graphic matroids defined above. In fact, two vertex-disjoint odd circuits in a signed
graph (G,Σ) form a circuit of ecycle(G,Σ), but not a circuit of the signed-graphic matroid
represented by (G,Σ). Little is known about the Isomorphism Problem and the Excluded
Minor Problem for the class of lift matroids.
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1.4 Motivation

Even cycle and even cut matroids arise naturally in the literature. The class of even cycle
matroids is the smallest minor closed class of matroids which properly contains all single-
element co-extensions of cycle matroids. The class of even cut matroids is the smallest
minor closed class of matroids which properly contains all single-element co-extensions
of cut matroids. Hence these classes are the first natural generalization of cycle and cut
matroids. Even cycle and even cut matroids and their duals also seem to be good candidates
to be the building blocks for the class of binary matroids without an AG(3,2) minor.

Signed graphs have been fruitfully used to find shorter proofs of important results. A
first example is the proof of Theorem 1.3 given by Gerards in [12]; this proof is much
shorter than the original one and relies mainly on graph theoretical results. Signed graphs
have also been used by Geelen and Gerards (see [8]) to give an alternative proof of Sey-
mour’s decomposition of regular matroids.

Our original motivation for working with these classes of matroids was a conjecture by
Seymour about flows in matroids. Given a graph G, two vertices s, t ∈ V (G) and a vector
w ∈ RE(G)

+ , consider the following problems:

min wT x
s.t. x(P)≥ 1, ∀ (s, t)-path P (IP)

x ∈ {0,1}E(G)

max T y
s.t. ∑(yP : e ∈ P,P (s, t)-path)≤ we, ∀e ∈ E(G) (D)

y ≥ 0

Note that (D) is the dual of the LP relaxation of (IP). A solution to (IP) can be interpreted
as a minimum (s, t)-cut, while a solution to (D) gives a fractional maximal st-flow (for
undirected graphs). By the Max-Flow Min-Cut Theorem of Ford and Fulkerson (see [7]),
for all w ∈ RE(G)

+ the optimal value of (IP) is equal to the optimal value of (D). We can
generalize the concept of minimum cut and maximum flow to binary matroids. Given a
matroid M and f ∈ E(M), a set of the form C−{ f}, where C is a circuit of M using f , is
called an f -path. We can define the analogue of (IP) and (D) in terms of f -paths.
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Let M be a matroid, f ∈ E(M) and w ∈ RE(M)−{ f}
+ . Consider

min wT x
s.t. x(P)≥ 1, ∀ f -path P (IP’)

x ∈ {0,1}E(M)−{ f}

max T y
s.t. ∑(yP : e ∈ P,P f -path)≤ we, ∀e ∈ E(M)−{ f} (D’)

y ≥ 0

We say that M is f -flowing if, for all w ∈ RE(M)−{ f}
+ , the optimal values of (IP’) and

(D’) are the same. M is 1-flowing if it is f -flowing for all f ∈ E(M). An example of a
matroid that is not 1-flowing is U2,4. As being 1-flowing is closed under minors, it follows
that non-binary matroids are not 1-flowing. Seymour (see [26]) conjectured the following.

Conjecture 1.5 (Seymour 1977). A binary matroid M is 1-flowing if and only if it contains
no AG(3,2), T11 or T ∗

11 minor.

The matroids in Conjecture 1.5 are defined in Appendix B. In [26] Seymour solved the
analogous problem of determining when (D’) and its dual both have integer solutions for
all integral vectors w and all elements e. We will not state this result here, as the precise
statement would require a few definitions. A consequence of this result is that, for a binary
matroid M and a fixed element e ∈ E(M), (D’) and its dual both have integer solutions for
all integral vectors w if and only if M has no F∗

7 minor using the element e.

Guenin showed that Seymour’s conjecture holds for even cycle and even cut matroids
(see [14]). Hence finding the excluded minors for even cycle and even cut matroids would
be a first step toward solving Seymour’s Conjecture for general binary matroids.
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Chapter 2

Preliminaries

In this chapter we present some basic properties of even cycle and even cut matroids. In par-
ticular we specify what the matrix representation, the bases and co-cycles are, we illustrate
how minor operations on the matroids correspond to minor operations on the representa-
tions and we present some simple results about connectivity. In the second section we relate
degenerate signed graphs and grafts. We assume that the reader is familiar with the basics
of matroid theory. Our terminology generally follows that of Oxley [21]. Unless otherwise
specified, we will only consider binary matroids in the rest of this work. Thus the reader
should substitute the term “binary matroid” every time “matroid” appears in this text.

2.1 Basic properties

2.1.1 Matrix-representations

Even cycle and even cut matroids are binary matroids: we now explain how to obtain their
matrix representation from a signed graph or a graft representation. Let (G,Σ) be a signed
graph. Let A(G) be the incidence matrix of G, i.e. the columns of A(G) are indexed by
the edges of G, the rows of A(G) are indexed by the vertices of G and entry (v,e) of A(G)

is 1 if vertex v is incident to edge e in G and 0 otherwise. Let S be the transpose of the
characteristic vector of Σ; hence S is a row vector indexed by E(G) and Se is 1 if e ∈ Σ and
0 otherwise. Let A be the binary matrix obtained from A(G) by adding row S. Let M(A)
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be the binary matroid represented by A. Let C be a cycle of M(A). Then C intersects every
cut of G and Σ with even parity. The sets that intersect every cut of G with even parity are
exactly the cycles of G. Thus M(A) = ecycle(G,Σ). Note that in constructing A we may
replace A(G) with any binary matrix whose rows span the cut space of G.

Let (G,T ) be a graft and J a T -join of G. Let Â(G) be a binary matrix whose rows span
the cycle space of G. Let Ŝ be the transpose of the incidence vector of J; hence Ŝ is a row
vector indexed by E(G) and Ŝe is 1 if e ∈ J and 0 otherwise. Construct a matrix Â from
Â(G) by adding row Ŝ. Let M(Â) be the binary matroid represented by Â. Let C be a cycle
of M(Â). Then C intersects every cycle of G and J with even parity. The sets that intersect
every cycle of G with even parity are exactly the cuts of G. Moreover, a cut intersects J
with even parity if and only if it is T -even. Thus M(Â) = ecut(G,T ).

2.1.2 Bases and co-cycles

Consider a signed graph (G,Σ). What is a basis for ecycle(G,Σ)? A set F ⊆ E(G) is
dependent if and only if it contains an even cycle. As we consider graphs up to equivalence,
and identifying two vertices in distinct components of a graph is a Whitney-flip, we may
assume without loss of generality that G is connected. If (G,Σ) does not contain any odd
cycles, then ecycle(G,Σ) = cycle(G) and a basis is just formed by a spanning tree. If (G,Σ)
contains at least one odd cycle, every basis for ecycle(G,Σ) is formed by a spanning tree B
together with an edge f ∈ B̄ forming an odd cycle with edges in B.

The co-cycle space of ecycle(G,Σ) is the space spanned by the rows of A, where A
is the binary matrix representation of ecycle(G,Σ). From the construction in the previous
section we have the following.

Remark 2.1. The co-cycles of ecycle(G,Σ) are the cuts of G and the signatures of (G,Σ).

Consider a graft (G,T ). What is a basis for ecut(G,T )? A set F ⊆ E(G) is dependent
if and only if it contains an even cut. Hence, if (G,T ) does not contain any odd cut then
ecut(G,T ) = cut(G) and a basis is just formed by the complement of a spanning tree. If
(G,T ) contains at least one odd cut, every basis for ecut(G,T ) is formed by the complement
B̄ of a spanning tree B together with an edge f ∈ B forming an odd cut with edges in B̄. The
co-cycle space of ecut(G,T ) is the space spanned by the rows of Â, where Â is the binary
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matrix representation of ecut(G,T ). Note that the symmetric difference of a cycle and a
T -join is a T -join. From the construction in the previous section we have the following.

Remark 2.2. The co-cycles of ecut(G,T ) are the cycles of G and the T -joins of (G,T ).

2.1.3 Minors

Let M be a matroid and e an element of M. We denote by M \ e the matroid obtained from
M by deleting e and by M/e the matroid obtained from M by contracting e.

Remark 2.3. Let M be a matroid and e ∈ E(M).

(1) The cycles of M \ e are the cycles of M not using e.

(2) The cycles of M/e are the cycles of M not using e and the cycles of M using e, with
the element e removed.

For any two disjoint subsets C,D of E(M), we denote by M/C\D the matroid obtained
from M by contracting the elements in C and deleting the elements in D. This is well
defined, as minor operations commute. Given a graph G and C,D disjoint subsets of E(G)

we denote by G/C \D the graph obtained from G by contracting C and deleting D. We
ignore isolated vertices in graphs.

Even cycle matroids

In this section we define minor operations for signed graphs. Let (G,Σ) be a signed graph
and let e ∈ E(G). Then (G,Σ)\ e is defined as (G\ e,Σ−{e}). This definition implies that
the even cycles of (G,Σ) \ e are the even cycles of (G,Σ) not using e. We define (G,Σ)/e
as (G \ e, /0) if e is an odd loop of (G,Σ) and as (G \ e,Σ) if e is an even loop of (G,Σ);
otherwise (G,Σ)/e is equal to (G/e,Σ�), where Σ� is any signature of (G,Σ) which does not
contain e. By definition, the even cycles of (G,Σ)/e are either even cycles of (G,Σ) not
using e or even cycles of (G,Σ) using e, with the element e removed. By Remark 2.3 we
conclude that

ecycle(G,Σ)/C \D = ecycle
�
(G,Σ)/C \D

�
.

Given two signed graphs (G,Σ),(H,Γ), we say that (H,Γ) is a minor of (G,Σ), denoted
(H,Γ)≤ (G,Σ), if (H,Γ) = (G,Σ)/C \D for some disjoint sets D,C ⊆ E(G).
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Even cut matroids

In this section we define minor operations for grafts. Let (G,T ) be a graft and let e ∈ E(G).
Then (G,T ) \ e is defined as (G \ e,T �), where T � = /0 if e is an odd bridge of (G,T ) and
T � = T otherwise. Note that the even cuts of (G,T ) \ e are either even cuts of (G,T ) not
using e or even cuts of (G,T ) with the element e removed. (G,T )/e is equal to (G/e,T �),
where T � is defined as follows. Let u,v be the ends of e in G and let w be the vertex
obtained by contracting e. If x �= w, then x ∈ T � if and only if x ∈ T ; w ∈ T � if and only if
|{u,v}∩T |= 1. Note that the cuts of (G,T )/e are the cuts of (G,T ) not using the element e.
Moreover a cut in (G,T )/e is even if and only if it is even in (G,T ). By Remark 2.3 we
conclude that

ecut(G,T )/C \D = ecut
�
(G,T )/D\C

�
.

Given two grafts (G,T ),(H,R), we say that (H,R) is a minor of (G,T ), denoted (H,R)≤
(G,T ), if (H,R) = (G,T )\D/C for some disjoint sets D,C ⊆ E(G).

2.2 Checking for isomorphism

It is easy to check whether two signed graphs (G1,Σ1) and (G2,Σ2) are siblings, that is,
checking whether ecycle(G1,Σ1) = ecycle(G2,Σ2). Let F be a set of edges forming a
spanning tree of G1. If (G1,Σ1) is bipartite, let B := F ; otherwise, let f be an edge in F̄
forming a Σ1-odd cycle in G1 with edges in F and let B := F ∪{ f}. Then B is a basis of
ecycle(G1,Σ1). For every e ∈ B̄, there is a unique subset Ce of B such that Ce ∪{e} is an
even cycle of (G1,Σ1) (these are the fundamental circuits of ecycle(G1,Σ1) with respect to
B). To check whether ecycle(G1,Σ1) = ecycle(G2,Σ2), it suffices to check that B is a basis
of ecycle(G2,Σ2) and that, for every e ∈ B̄, Ce is an even cycle in (G2,Σ2).

2.3 Connectivity

Let M be a matroid with rank function r. Given X ⊆ E(M) we define λM(X), the connec-
tivity function of M, to be equal to r(X)+ r(X̄)− r(E(M))+1. The set X is a k-separation
of M if min{|X |, |X̄ |} ≥ k and λM(X) = k. M is k-connected if it has no r-separations
for any r < k. Let G be a graph and let X ⊆ E(G). The set X is a k-separation of G if
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min{|X |, |X̄ |} ≥ k, |BG(X)|= k and both G[X ] and G[X̄ ] are connected. Note that with this
definition two parallel edges of G form a 2-separation of G. A graph G is k-connected if it
has no r-separations for any r < k. We relate graph connectivity with connectivity for even
cycle and even cut matroids. The proof of the next two results is given in the more general
setting of signed matroids.

2.3.1 Even cycle matroids

Recall that we denote by loop(G) the set of loops of G. A signed graph (G,Σ) is bipartite
if G has no Σ-odd cycle. Equivalently, (G,Σ) is bipartite if Σ is a cut of G.

Proposition 2.4. Suppose that ecycle(G,Σ) is 3-connected. Then:

(1) | loop(G)| ≤ 1 and if e ∈ loop(G) then e ∈ Σ;

(2) G\ loop(G) is 2-connected;

(3) if G has a 2-separation X then (G[X ],Σ∩X) and (G[X̄ ],Σ∩X̄) are both non-bipartite.

2.3.2 Even cut matroids

Given a separation X of G, we define the interior of X in G to be IG(X) =VG(X)−BG(X).
Given a graft (G,T ), we say that an edge e of G is a pin if e is an odd bridge of G incident
to a vertex of degree one, which we call the head of the pin. Hence the head of a pin is a
terminal. We denote by pin(G,T ) the set of pins of (G,T ).

Proposition 2.5. Suppose that ecut(G,T ) is 3-connected. Then:

(1) |pin(G,T )| ≤ 1;

(2) G/pin(G,T ) is 2-connected;

(3) if G has a 2-separation X then T ∩IG(X) and T ∩IG(X̄) are both non-empty.
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2.3.3 Signed matroids

Recall that we only consider binary matroids in this work. A pair (M,Σ) where M is a
matroid and Σ ⊆ E(M) is a signed matroid. A set C ⊆ E(M) is Σ-even if |C∩Σ| is even.
The set of all cycles of M that are Σ-even forms the set of cycles of a matroid which we
denote by ecycle(M,Σ). A signed matroid (M,Σ) is bipartite if all cycles of M are even.
We denote by M|X the restriction of M to the set X , i.e. the matroid M \ X̄ .

We denote by loop(M) the set of loops (i.e. one-element circuits) of the matroid M. We
may generalize Proposition 2.4 and Proposition 2.5 to the following result.

Proposition 2.6. Suppose that ecycle(M,Σ) is 3-connected. Then

(1) | loop(M)| ≤ 1 and if e ∈ loop(M) then e ∈ Σ;

(2) M \ loop(M) is 2-connected;

(3) if M has a 2-separation X then (M|X ,Σ∩X) and (M|X̄ ,Σ∩ X̄) are both non-bipartite.

Before proving Proposition 2.6, we show how it implies the two results for even cy-
cle and even cut matroids. Let (G,Σ) be a signed graph and let M := cycle(G). Then
ecycle(M,Σ) = ecycle(G,Σ) and Proposition 2.4 follows directly from Proposition 2.6.

Let (G,T ) be a graft and M := cut(G). Let J be a T -join of G. Then an even cycle of
(M,J) is a cut of G which intersects J with even parity. Hence ecycle(M,J) = ecut(G,T ).
Note that loops of M are bridges of G and an even bridge of G is a loop of ecycle(M,J).
Moreover, if X is a k-separation of G, then X is a k-separation of cycle(G), hence a k-
separation of M (because cycle(G) is the dual of M). For a set X ⊆ E(G), M|X = cut(G/X̄).
Hence the cuts of M|X are the cuts of G/X̄ . It follows that (M|X ,J ∩X) is bipartite if and
only if every cut of G/X̄ is J-even. This happens if and only if T ∩IG(X) is empty. Hence
Proposition 2.5 follows from Proposition 2.6.

To prove Proposition 2.6, we require a definition and a preliminary result. Let (M,Σ)
be a signed matroid and X ⊆ E(M). We say that X is a k-(i, j)-separation of (M,Σ), where
i, j ∈ {0,1}, if the following hold:

(a) X is a k-separation of M;

(b) i = 0 when (M|X ,Σ∩X) is bipartite and i = 1 otherwise;
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(c) j = 0 when (M|X̄ ,Σ∩ X̄) is bipartite and j = 1 otherwise.

Lemma 2.7. Let (M,Σ) be a non-bipartite signed matroid and MS := ecycle(M,Σ). For
every k-(i, j)-separation X of (M,Σ), we have λMS(X) = k+ i+ j−1.

Proof. Let r be the rank function of M and rS be the rank function of MS. As (M,Σ)
is non-bipartite, a basis for MS consists of a basis B for M plus an element e ∈ B̄ such
that the fundamental circuit of e in M is Σ-odd. Hence rS(MS) = r(M)+ 1. Similarly, if
(M|X ,Σ∩X) (respectively (M|X̄ ,Σ∩ X̄)) is non-bipartite, then the rank of X (respectively
X̄) in MS is one more that in M, otherwise the rank of X (respectively X̄) is the same in both
matroids. Thus rS(X) = r(X)+ i and rS(X̄) = r(X̄)+ j. Hence

λMS(X) = rS(X)+ rS(X̄)− rS(MS)+1

= r(X)+ i+ r(X̄)+ j− r(M)−1+1

= λM(X)+ i+ j−1.

Proof of Proposition 2.6. Let MS := ecycle(M,Σ). As MS is 3-connected, it has no loops,
no co-loops and no parallel elements. We may assume that (M,Σ) is non-bipartite, for
otherwise MS =M and M is 3-connected. (1) Let e be a loop of M. Then e∈ Σ for otherwise
e would be a loop of MS. There do not exist distinct loops e, f of M, for otherwise {e, f}
would be a circuit of MS and e, f would be in parallel in MS. (2) Suppose that X is a 1-(i, j)-
separation of (M,Σ). By Lemma 2.7, λMS(X) = 1+ i+ j− 1 ≤ 2. As MS is 3-connected,
X is not a 2-separation; hence either |X |= 1 or |X̄ |= 1. The single element in X (or X̄) is
not a co-loop of M, for otherwise it is a co-loop of MS. Hence X or X̄ is a loop of M. (3)
Suppose that X is a 2-(i, j)-separation of (M,Σ). As MS is 3-connected, λMS(X) ≥ 3. By
Lemma 2.7, 2+ i+ j−1 ≥ 3, hence i = j = 1.

2.4 Constructing even cuts from even cycles and vice versa

2.4.1 Matroids that are both even cycle and even cut

We give a simple construction that produces matroids that are both even cycle and even cut
matroids. Let (G,Σ) be a signed graph such that G is planar. Let G∗ be the planar dual
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of G. Then every edge of G corresponds to an edge of G∗ and cycle(G) = cut(G∗). Now
define T =Vodd(G∗[Σ]). By this definition, Σ is a T -join of G∗. Hence C is a Σ-even cycle
of G if and only if C is a T -even cut of G∗. It follows that ecycle(G,Σ) = ecut(G∗,T ).

Note that there are matroids which are both even cycle and even cut matroids and do
not arise from this construction. An example is given by the matroid R10. As discussed in
Section 1.2.2, R10 is both an even cycle and an even cut matroid. All representations of R10

as an even cycle matroid are isomorphic to the signed graph (K5,E(K5)), which is clearly
non-planar. All representations of R10 as an even cut matroid are isomorphic to the graft in
Figure 1.11. The algorithm we used to find these representations is given in Appendix A.

2.4.2 Folding and unfolding

In this section we define an operation that relates signed graphs with blocking pairs to grafts
with covering pairs. For our purpose the position of the loops is immaterial. Thus we will
assume that all loops form distinct components of the graph.

Consider a graph H with a vertex v and α ⊆ δH(v)∪ loop(H). We say that G is obtained
from H by splitting v into v1,v2 according to α if V (G) = V (H)−{v}∪{v1,v2} and for
every e = (u,w) ∈ E(H):

(a) if e �∈ α ∪δH(v), then e = (u,w) in G;

(b) if e ∈ loop(H)∩α , then e = (v1,v2) in G;

(c) if e ∈ δH(v)∩α and w = v then e = (u,v1) in G;

(d) if e ∈ δH(v)−α and w = v then e = (u,v2) in G.

Consider a signed graph (H,Γ) where Γ ⊆ δH(s)∪ δH(t)∪ loop(H) for two distinct
vertices s, t of H. Choose α,β ⊆ E(H), where α∆β = Γ, α ⊆ δ (s)∪ loop(H), β ⊆ δ (t)∪
loop(H), and α ∩β ∩ loop(H) = /0. Construct a graft (G,T ) as follows:

(a) split s into s1,s2 according to α;

(b) split t into t1, t2 according to β ;

(c) set T = {s1,s2, t1, t2}.
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Then (G,T ) is obtained by unfolding (H,Γ) according to vertices s, t and signature Γ (or
according to vertices s, t and α ,β ). Note that the resulting graft (G,T ) depends on the
choice of α,β , not only on Γ. Finally, we say that (H,Γ) is obtained by folding the graft
(G,T ) with the pairing s1,s2 and t1, t2. We denote by M∗ the dual of a matroid M.

Remark 2.8. Let (H,Γ) be a signed graph with Γ ⊆ δ (s)∪ δ (t)∪ loop(H) and let (G,T )
be a graft obtained by unfolding (H,Γ) according to s, t and Γ. Then:

(1) a set of edges is an even cycle of (H,Γ) if and only if it is a cycle or a T -join of G;

(2) ecycle(H,Γ) = ecut(G,T )∗.

Proof. Suppose we choose α and β as in the definition of unfolding. Suppose that C is
an even cycle of (H,Γ). For every v ∈ V (H)−{s, t}, |δH(v)∩C| = |δG(v)∩C|, which
is even. For i = 1,2 define d(s, i) = |C ∩ δG(si)| and d(t, i) = |C ∩ δG(ti)|. Since C is a
cycle d(s,1),d(s,2) have the same parity and so do d(t,1),d(t,2). Note that α = δG(s1),
β = δG(t1) and Γ = α∆β . Thus, as |C∩Γ| is even, d(s,1) and d(t,1) have the same parity.
Thus d(s,1), d(s,2), d(t,1), d(t,2) are either all even or all odd. In the former case C is a
cycle of G, in the later case it is a T -join of G. The converse is similar. Finally, (2) follows
from (1) and Remark 2.2.

In particular, it follows by Remark 2.8 that if M is an even cycle matroid represented
by a signed graph with a blocking pair, then M is also the dual of an even cut matroid. Vice
versa, if M is an even cut matroid represented by a graft with a covering pair, then M is the
dual of an even cycle matroid. Note that not all matroids which are both an even cycle and
the dual of even cut matroid arise from this construction. An example is given, once again,
by the matroid R10, which is both an even cycle and an even cut matroid and is self-dual.

2.4.3 Unbounded number of representations

Theorem 1.1 states that any two representations of the same cycle matroid are equivalent.
In light of this result, it is natural to ask whether we can bound the number of inequivalent
representations that even cycle and even cut matroids may have. Unfortunately this is not
the case, as the following two examples illustrate.
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Consider a signed graph (H,Γ) with Γ ⊆ δ (s)∪ δ (t)∪ loop(H) and let (G,T ) be a
graft obtained by unfolding (H,Γ) according to s, t and Γ. Let (G�,T �) be a graft which is
equivalent to (G,T ), where |T �|= 4. Let (H �,Γ�) be obtained by folding (G�,T �) according
to some arbitrary pairing of the vertices of T �. Then by Remark 2.8(2),

ecycle(H,Γ) = ecut(G,T )∗ = ecut(G�,T �)∗ = ecycle(H �,Γ�).

This construction gives rise to the example in Figure 2.1. Suppose for instance that we
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Figure 2.1: Inequivalent signed graphs.

choose G to be the graph with vertex set {v1, . . . ,vk}∪ {v�1, . . . ,v
�
k} and edges {(vi,vi+1),

(v�i,v
�
i+1),(vi,v�i+1),(v

�
i,vi+1)} for all i ∈ [k− 1]. Let T = {v1,v�1,vk,v�k} and let G� be any

graph obtained from G by a Whitney-flip on vertices vi,v�i for some i ∈ {2, . . . ,k−1}. Then
T � = T and (H,Γ),(H �,Γ�) are inequivalent representations. We conclude that an even
cycle matroid may have an arbitrary number of inequivalent representations.

We consider an analogous construction for grafts with a covering pair. Let (G,T ) be
a graft with |T | = 4. Let (H,Γ) be a signed graph obtained by folding (G,T ) with some
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pairing of the vertices in T . Let (H �,Γ�) be a signed graph equivalent to (H,Γ) and having
a blocking pair. Let (G�,T �) be obtained by some unfolding of (H �,Γ�) according to the
blocking pair. Then by Remark 2.8(2),

ecut(G,T ) = ecycle(H,Γ)∗ = ecycle(H �,Γ�)∗ = ecut(G�,T �).

This construction gives rise to the example in Figure 2.2. In general, consider any graft
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Figure 2.2: Inequivalent grafts.

(G,T ) with |T |= 4 such that E(G) can be partitioned into sets X1, . . . ,Xk with the properties
that BG(Xi) = T and G[Xi] is connected for every i ∈ [k]. Let (H,Γ) be obtained from
(G,T ) by folding. Let H � be any graph obtained from H by a Whitney-flip on Xi, for some
i ∈ [k−1]. Then BH �(X1) is a blocking pair of (H �,Γ�), where Γ� = Γ. It follows that (H,T )
and (H �,T �) are inequivalent representations of the same even cut matroid. We conclude
that an even cut matroid may have an arbitrary number of inequivalent representations.
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2.5 Lifts and projections

Let N and M be matroids where E(N) = E(M). We say that N is a lift of M if for some
matroid M�, where E(M�) = E(M)∪{Ω}, M = M�/Ω and N = M� \Ω. If N is a lift of
M then M is a projection of N. Lifts and projections were introduced in [10]. Every even
cycle matroid M is a lift of a cycle matroid; indeed, for any representation (G,Σ) of M
we may construct (G�,Σ�) by adding an odd loop Ω. Then ecycle(G�,Σ�)/Ω is a cycle
matroid. Every even cut matroid is a lift of a cut matroid. In fact, suppose M = ecut(G,T )
and (G�,T �) is obtained from (G,T ) by adding an odd bridge Ω. Then ecut(G�,T �)/Ω =

cut(G� \Ω) is a cut matroid. The following result shows that degenerate even cycle matroids
are projections of cycle matroids.

Remark 2.9. Let (H,Γ) be a signed graph.

(1) If (H,Γ) has a blocking vertex, then ecycle(H,Γ) is a cycle matroid.

(2) If (H,Γ) has a blocking pair, then ecycle(H,Γ) is a projection of a cycle matroid.

Proof. (1) Suppose that Γ ⊆ δH(s)∪ loop(H) for some vertex s of H. Let G be obtained
from H by splitting s according to Γ. Then cycle(G) = ecycle(H,Γ). (2) Suppose that
Γ ⊆ δH(s)∪ δH(t)∪ loop(H) for a pair of vertices s, t of H. Let G be obtained from H
by splitting s into s1,s2 according to δH(s)∩Γ and by adding an edge Ω = (s1,s2). Let
M� = ecycle(G,Γ). Then by construction (G,Γ)/Ω = (H,Γ), hence M�/Ω = M. Moreover,
ecycle(G,Γ)\Ω = M� \Ω is a cycle matroid, as t is a blocking vertex of (G,Γ)\Ω.

Next we show that degenerate even cut matroids are projections of cut matroids.

Remark 2.10. Let (G,T ) be a graft.

1. If |T |= 2, then ecut(G,T ) is a cut matroid.

2. If |T |= 4, then ecut(G,T ) is a projection of a cut matroid.

Proof. (1) Suppose that (G,T ) is a graft with T = {u,v}. Let H be obtained from G by
identifying u and v. Then cut(H) = ecut(G,T ). (2) Suppose that (G,T ) is a graft with
T = {a,b,c,d}. Let M := ecut(G,T ). Let H be obtained from G by adding an edge Ω
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with endpoints a and b. Let M� := ecut(H,T ). Then, by construction, (H,T )\Ω = (G,T ),
hence M�/Ω = M. Let N := M� \Ω. By construction, N = ecut((H,T )/Ω). As the graft
(H,T )/Ω has exactly two terminals, by (1) N is a cut matroid and M is a projection of
N.
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Chapter 3

Pairing isomorphism problems

In this chapter we study the relation between even cycle and even cut matroids. We present
results relating pairs of signed graph siblings to pairs of graft siblings. These results are
proved in the more general setting of signed matroids.

3.1 Results

The main result of this chapter shows how the Isomorphism Problems for even cycle and
even cut matroids are related.

Theorem 3.1. Let G1 and G2 be graphs such that cycle(G1) �= cycle(G2).

(1) Suppose there exists a pair Σ1,Σ2 ⊆E(G1) such that ecycle(G1,Σ1)= ecycle(G2,Σ2).
For i = 1,2, if (Gi,Σi) is bipartite define Ci := /0, otherwise let Ci be a Σi-odd cycle
of Gi. Let Ti :=Vodd(Gi[C3−i]). Then ecut(G1,T1) = ecut(G2,T2).

(2) Suppose there exists a pair T1 ⊆ V (G1),T2 ⊆ V (G2) (where |T1|, |T2| are even) such
that ecut(G1,T1) = ecut(G2,T2). For i = 1,2, if Ti = /0 let Σ3−i = /0, otherwise let
ti ∈ Ti and Σ3−i := δGi(ti). Then ecycle (G1,Σ1) = ecycle(G2,Σ2).

We illustrate this result with an example. Consider the signed graphs (Gi,Σi), for i= 1,2,3,
in Figure 3.1. The signed graph (G2,Σ2) is obtained from (G1,Σ1) by a Lovász-flip
on vertices b, f ; (G3,Σ3) is obtained from (G2,Σ2) first by a signature exchange Σ3 :=
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Σ2�δG2(b), then by moving loop 9 to vertex a (this is a Whitney-flip) and finally by
performing a Lovász-flip on vertices a, f . As Lovász-flips, Whitney-flips and signature
exchanges preserve even cycles, ecycle(G1,Σ1) = ecycle(G3,Σ3).
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Figure 3.1: Bold edges of Gi are in Σi, square vertices of G1,G3 are T1,T3.

In the same figure, consider the grafts (G1,T1) and (G3,T3) where T1 = {a,b} and
T3 = {b, f}. These grafts are obtained using the construction in Theorem 3.1(1). Pick an
odd cycle {4,7,9} of (G1,Σ1) and let T3 be the set of vertices of odd degree in G3[{4,7,9}].
Pick an odd cycle {1,8,9} of (G3,Σ3) and let T1 be the set of vertices of odd degree in
G1[{1,8,9}]. Then, ecut(G1,T1) = ecut(G3,T3). We can also consider the reverse construc-
tion, as in Theorem 3.1(2). Pick a ∈ T1, then δG1(a) = {1,2}. Now {1,2}�Σ3 is a cut of
G3, hence {1,2} is a signature of (G3,Σ3). Similarly, pick b ∈ T3, then δG3(b) = {1,6,7,8}
is a signature of (G1,Σ1).

Recall the definition of matching signature pairs and matching terminal pairs given in
Section 1.2.1. In Section 3.2 we show that, given siblings G1,G2, there exists exactly
one matching signature pair (up to signature exchange) and exactly one matching terminal
pair. Note that for uniqueness the condition that cycle(G1) �= cycle(G2) is necessary, as
otherwise any pairs Σ1 = Σ2 will yield the same even cycles.

Suppose that we can solve the Isomorphism Problem for even cycle matroids. Does
Theorem 3.1 then provide us with a solution to the Isomorphism Problem for even cut ma-
troids? Consider (G,T ),(G�,T �) such that ecut(G,T ) = ecut(G�,T �). Theorem 3.1 implies
that there exists Σ,Σ� such that ecycle(G,Σ) = ecycle(G�,Σ�). Suppose that we can trans-
form (G,Σ) into (G�,Σ�) by a sequence of operations that preserve even cycles at each step.
Can we transform (G,T ) into (G�,T �) by a sequence of operations that preserve even cuts
at each step? We have a sequence of signed graphs (Gi,Σi) for i = 1, . . . ,n which have all
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the same even cycles and where (G,Σ) = (G1,Σ1) and (G�,Σ�) = (Gn,Σn). Can we find
T1, . . . ,Tn such that ecut(Gi,Ti) = ecut(G j,Tj) for all i, j ∈ [n]? The example in Figure 3.1
shows that this is not always the case. The graphs G1 and G3 determine T1 and T3 uniquely.
But it is not possible to find a set T2 such that ecut(G1,T1) = ecut(G2,T2), because the edge
9 is a loop in G2 but is contained in the T1-even cut {6,7,8,9} of G1.

This leads to the following definition: a set of graphs {G1, . . . ,Gn} is harmonious if
for all i, j ∈ [n], i �= j, cycle(Gi) �= cycle(G j) and there exist Σ1, . . . ,Σn and T1, . . . ,Tn such
that ecycle(Gi,Σi) = ecycle(G j,Σ j) and ecut(Gi,Ti) = ecut(G j,Tj) for all i, j ∈ [n]. For
instance the set {G1,G2,G3} in Figure 3.1 is not harmonious. In fact, no large set of graphs
is harmonious.

Theorem 3.2. Suppose that {G1, . . . ,Gn} is a harmonious set of graphs. Then n ≤ 3.

The bound of 3 is best possible. A construction that yields a harmonious set of 3
graphs {G1,G2,G3} is as follows: let (G1,Σ1) be any signed graph with vertices u,v where
Σ1 ⊆ δG1(u)∪ δG1(v). Let (G2,Σ2) be obtained from (G1,Σ1) by a Lovász-flip on u,v,
and let (G3,Σ3) be obtained from (G1,Σ1�δG1(u)) by a Lovász-flip on u,v. Finally, let
T1 = {u,v} and for i = 2,3, let Ti be the vertices in Gi corresponding to u,v.

Theorem 3.1 and 3.2 are proved in the next section in the more general context of signed
matroids.

In Chapter 4 we define two special classes of siblings. We show that, for every pair of
siblings (G1,Σ1), (G2,Σ2) in one of the two classes, there exist equivalent signed graphs
(G�

1,Σ�
1) and (G�

2,Σ�
2) respectively such that (G�

1,Σ�
1) and (G�

2,Σ�
2) are related by exactly one

of a set of operations that we define. Thus the Isomorphism Problem is solved for these
classes of even cycle matroids and, by the results in this chapter, also for the corresponding
even cut matroids. This is in contrast with the discussion above about the three signed
graphs in Figure 3.1.

3.2 Generalization to signed matroids

In this section we will generalize to matroids the concepts introduced in the previous sec-
tion. Given a signed matroid (M,Σ), we say that Σ� is a signature of (M,Σ) if ecycle(M,Σ)=
ecycle(M,Σ�). It can be readily checked that Σ� is a signature of (M,Σ) if and only if
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Σ� = Σ�D for some co-cycle D of M. The operation that consists of replacing a signature
of a signed matroid by another signature is called signature exchange. When M = cycle(G)

for some graph G, then ecycle(M,Σ) = ecycle(G,Σ) and the aforementioned definitions for
signed matroids correspond to the definitions for signed graphs.

3.2.1 Pairs

Let (M1,Σ1),(M2,Σ2) be signed matroids such that ecycle(M1,Σ1) = ecycle(M2,Σ2). A
cycle (respectively co-cycle) of M1 is preserved if it is a cycle (respectively co-cycle) of
M2. A signature of (M1,Σ1) is preserved if it is a signature of (M2,Σ2). The main result of
this section is the following.

Theorem 3.3. Suppose that ecycle(M1,Σ1) = ecycle(M2,Σ2). Then there exists Γ1,Γ2 ⊆
E(M1) such that ecycle(M∗

1 ,Γ1) = ecycle(M∗
2 ,Γ2) and, for i = 1,2, the Γi-even co-cycles

of Mi are exactly the preserved co-cycles of Mi. Moreover, if (Mi,Σi) is bipartite, then so is
(M∗

3−i,Γ3−i).

The proof requires a number of preliminaries. Given a signed matroid (M,Σ), the co-cycles
of ecycle(M,Σ) are the sets that intersect every Σ-even cycle of M with even cardinality.
Thus we have the following.

Remark 3.4. The co-cycles of ecycle(M,Σ) are the co-cycles of M and the signatures of
(M,Σ),

which in turns implies the following.

Remark 3.5. Suppose that ecycle(M1,Σ1) = ecycle(M2,Σ2).

(1) If B is a non-preserved co-cycle of M1, then B is a signature of (M2,Σ2).

(2) If B is a non-preserved signature of (M1,Σ1), then B is a co-cycle of M2.

Proof. For both (1) and (2), Remark 3.4 implies that B is a co-cycle of ecycle(M1,Σ1),
hence B is a co-cycle of ecycle(M2,Σ2). Remark 3.4 implies that B is either a co-cycle
of M2 or a signature of (M2,Σ2). For (1), B is not a co-cycle of M2. For (2), B is not a
signature of (M2,Σ2).
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Lemma 3.6. Suppose that ecycle(M1,Σ1) = ecycle(M2,Σ2), for signed matroids (M1,Σ1),
(M2,Σ2). For i = 1,2, there exists Γi ⊆ E(Mi) such that, for every co-cycle D of Mi, D is
preserved if and only if it is Γi-even. Moreover, if (M3−i,Σ3−i) is bipartite, then Γi = /0.

Proof. Fix i ∈ {1,2}. Let B be a co-basis of Mi. For every e �∈ B, let De denote the unique
co-circuit in B∪ {e} (these are the fundamental co-circuits of Mi). Then we let e ∈ Γi

if and only if De is non-preserved. Consider now an arbitrary co-cycle D of Mi. D may
be expressed as the symmetric difference of a set of distinct fundamental co-circuits De,
where, say, s of these are non-preserved. By construction, |D∩Γi|= s. By Remark 3.5(1),
non-preserved co-cycles of Mi are signatures of (M3−i,Σ3−i). Moreover, the symmetric
difference of an even (respectively odd) number of signatures of (M3−i,Σ3−i) is a co-cycle
of M3−i (respectively a signature of (M3−i,Σ3−i)). It follows that D is a co-cycle of M3−i

when s is even and is a signature of (M3−i,Σ3−i) when s is odd. If (M3−i,Σ3−i) is non-
bipartite then signatures of (M3−i,Σ3−i) are not co-cycles of M3−i and the result follows. If
(M3−i,Σ3−i) is bipartite then every co-cycle of Mi is preserved. As a consequence, Γi = /0
and the result follows as well.

Proof of Theorem 3.3. Lemma 3.6 implies that, for i = 1,2, there exists Γi ⊆ E(M1) such
that the preserved co-cycles of Mi are exactly the Γi-even co-cycles of Mi. Therefore
ecycle(M∗

1 ,Γ1) = ecycle(M∗
2 ,Γ2). Again by Lemma 3.6, if (Mi,Σi) is bipartite, then Γ3−i =

/0, so (M∗
3−i,Γ3−i) is bipartite.

3.2.2 Uniqueness

The main observation in this section is the following.

Proposition 3.7. Suppose that (M1,Σ1) and (M2,Σ2) are signed matroids such that M1 �=
M2 and ecycle(M1,Σ1) = ecycle(M2,Σ2). For i = 1,2, the Σi-even cycles of Mi are exactly
the preserved cycles of Mi. In particular, Σ1 and Σ2 are unique up to signature exchanges.

Proposition 3.7 follows directly from the following remark.

Remark 3.8. Suppose that ecycle(M1,Σ1) = ecycle(M2,Σ2). If C is a Σ1-odd cycle of M1

which is preserved, then cycle(M1) = cycle(M2).
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Proof. Every odd cycle C� of (M1,Σ1) is of the form C� := C�B, where B is an even
cycle of (M1,Σ1). As B is an even cycle of (M2,Σ2), C� is a cycle of (M2,Σ2). Hence,
cycle(M1)⊆ cycle(M2). As C is a cycle of M1 and M2 and C is Σ1-odd, C is also a preserved
Σ2-odd cycle of M2. By symmetry, the reverse inclusion holds as well.

3.2.3 Odd cycles and signatures

Remark 3.9. Suppose that ecycle(M1,Σ1) = ecycle(M2,Σ2), for signed matroids (M1,Σ1),
(M2,Σ2), where M1 �= M2. If (M1,Σ1) is bipartite, let Σ := /0. Otherwise there exists a
non-preserved co-cycle D of M2; let Σ := D. Then Σ is a signature of (M1,Σ1).

Proof. We may assume that (M1,Σ1) is non-bipartite. By Theorem 3.3, there exists Γ1,Γ2

such that, for i = 1,2, the Γi-even co-cycles of Mi are exactly the preserved co-cycles
of Mi. If every co-cycle of M2 is preserved, then (M∗

2 ,Γ2) is bipartite. It follows, from
Theorem 3.3 applied to (M∗

1 ,Γ1) and (M∗
2 ,Γ2), and from Proposition 3.7, that (M1,Σ1) is

bipartite, a contradiction. Hence, some co-cycle D of M2 is non-preserved. The result then
follows by Remark 3.5(1).

The signature Σ of (M1,Σ1) in Remark 3.9 is called an M2-standard signature. When there
is no ambiguity we omit the prefix M2.

Theorem 3.10. Let (M1,Σ1), (M2,Σ2) be signed matroids such that M1 �= M2 and let Γ1 ⊆
E(M1), Γ2 ⊆ E(M2). Assume that ecycle(M1,Σ1) = ecycle(M2,Σ2) and ecycle(M∗

1 ,Γ1) =

ecycle(M∗
2 ,Γ2). If, for i = 1,2, Σi is an M3−i-standard signature, then for any D ⊆ E(M1)

the following hold:

(1) Suppose that (M1,Σ1) is non-bipartite. Then
D is a Σ1-odd cycle of M1 if and only if D is a Σ2-even signature of (M∗

2 ,Γ2).

(2) Suppose that (M1,Σ1),(M2,Σ2) are non-bipartite. Then
D is a Σ1-odd signature of (M∗

1 ,Γ1) if and only if D is a Σ2-odd signature of (M∗
2 ,Γ2).

Proof. We begin with the proof of (1). Let D be a Σ1-odd cycle of M1. Remark 3.8 implies
that D is non-preserved. Remark 3.5(1) implies that D is a signature of (M∗

2 ,Γ2). If Σ2 = /0,
then D is trivially Σ2-even. Otherwise, as Σ2 is a standard signature, Σ2 is a co-cycle of M1.
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Since M1 is a binary matroid, cycles and co-cycles have an even intersection, hence D is
Σ2-even. Conversely, let D be a Σ2-even signature of (M∗

2 ,Γ2). As (M1,Σ1) is non-bipartite,
there exists a Σ1-odd cycle C of M1. By the first part of the proof, C is a Σ2-even signature
of (M∗

2 ,Γ2). Therefore C�D is a Σ2-even cycle of M2, hence a Σ1-even cycle of M1. Thus
D is a Σ1-odd cycle of M1. We now proceed with the proof of (2). Let D be a Σ1-odd
signature of (M∗

1 ,Γ1). Moreover, let C be a Σ1-odd cycle of M1. Then D�C is a Σ1-even
signature of (M∗

1 ,Γ1). By part (1) and symmetry between M1 and M2, D�C is a Σ2-odd
cycle of M2. Also, by part (1), C is a Σ2-even signature of (M∗

2 ,Γ2). Hence D = (D�C)�C
is a Σ2-odd signature of (M∗

2 ,Γ2). Hence every Σ1-odd signature of (M∗
1 ,Γ1) is a Σ2-odd

signature of (M∗
2 ,Γ2). The other inclusion follows by symmetry between M1 and M2.

3.2.4 Harmonious sets

A set of matroids {M1, . . . ,Mn} is harmonious if Mi �=Mj, for all distinct i, j ∈ [n], and there
exist signatures Σ1, . . . ,Σn and Γ1, . . . ,Γn such that ecycle(Mi,Σi) = ecycle(Mj,Σ j) and
ecycle(M∗

i ,Γi) = ecycle(M∗
j ,Γ j), for all i, j ∈ [n]. An example of three matroids forming a

harmonious set was given at the end of Section 3.1.

Theorem 3.11. Suppose that {M1, . . . ,Mn} is a harmonious set of matroids. Then n ≤ 3.

Proof. Suppose for a contradiction that there exists a harmonious set {M1, . . . ,M4}. Note
that, by Proposition 3.7, Σ1, . . . ,Σ4, Γ1, . . . ,Γ4 are unique up to resigning. First suppose that
(Mk,Σk) is bipartite for some k ∈ [4]. Then, by Theorem 3.3, (M∗

i ,Γi) is bipartite for every
i ∈ [4]−{k}. Hence, for i, j ∈ [4]−{k}, i �= j, the matroids Mi,Mj have the same co-cycles,
hence Mi = Mj, a contradiction. Therefore, for every i ∈ [4], (Mi,Σi) is non-bipartite and
by duality (M∗

i ,Γi) is non-bipartite as well. By Theorem 3.3, a co-cycle C of M4 is non-
preserved if and only if it is Γ4-odd. We fix C to be an odd co-cycle of (M4,Γ4), and
conclude that C is non-preserved for Mi, for all i ∈ [3]. By definition, C is an M4-standard
signature for (Mi,Σi), for all i ∈ [3].

For every i ∈ [3], let Ci be a C-odd signature of (M∗
i ,Γi). Note that such signatures

exist because (Mi,Σi) is non-bipartite, hence an odd circuit of (Mi,Σi) can be added to the
signature of (M∗

i ,Γi) to change its parity. By Theorem 3.10(2), Ci is a signature of (M∗
4 ,Γ4)

for every i ∈ [3]. The symmetric difference of two signatures of (M∗
4 ,Γ4) is a cycle of M4.

Moreover, for some j,k ∈ [3], j �= k, Cj and Ck have the same parity with respect to Σ4.

38



Hence D :=Cj�Ck is a Σ4-even cycle of M4, so D is a Σi-even cycle of Mi for every i ∈ [4].
Therefore Cj = D�Ck is a C-odd signature of both (M∗

j ,Γ j),(M∗
k ,Γk). Now let C� be a Σ4-

odd cycle of M4. By Theorem 3.10(1), C� is a C-even signature of (M∗
j ,Γ j) and (M∗

k ,Γk).
Therefore Cj�C� is a C-odd cycle of both Mj and Mk. Hence, by Remark 3.8, Mj = Mk, a
contradiction.

3.3 Applications to signed graphs and grafts

In this section we show how the results for signed matroids apply to signed graphs and
grafts.

Remark 3.12. Let (G,T ) be a graft, let Γ be a T -join of G and let M = cut(G).

(1) A cut of G is T -even if and only if it is Γ-even. In particular, ecut(G,T )= ecycle(M,Γ).

(2) A set of edges is a T -join of G if and only if it is a signature of (M,Γ).

Proof of Theorem 3.1. We begin with the proof of (1). We omit the cases when (G1,Σ1)

or (G2,Σ2) is bipartite. For i = 1,2, let Mi := cycle(Gi). By Theorem 3.3 there exists
Γ1,Γ2 such that ecycle(M∗

1 ,Γ1) = ecycle(M∗
2 ,Γ2). Since Bi is an odd cycle of (Mi,Σi) it

is non-preserved. It follows from Remark 3.5(1) that Bi is a signature of (M∗
3−i,Γ3−i).

Hence, ecycle(M∗
1 ,B2) = ecycle(M∗

2 ,B1). Let Ti be the vertices of odd degree in Gi[B3−i].
Remark 3.12(1) implies that ecut(G1,T1) = ecut(G2,T2).

We proceed with the proof of (2). We omit the cases when T1 = /0 or T2 = /0. For i = 1,2
let Mi = cut(Gi) and let Γi be a Ti-join of Gi. Remark 3.12(1) implies that ecycle(M1,Γ1) =

ecycle(M2,Γ2). By Theorem 3.3 there exist Σ̃1, Σ̃2 such that ecycle(M∗
1 , Σ̃1)= ecycle(M∗

2 , Σ̃2).
As Σi = δG3−i(t3−i) is a T3−i-odd cut of G3−i, by Remark 3.12(1), Σi is a Γ3−i-odd cycle of
(M3−i,Γ3−i). It follows from Remark 3.5(1) that Σi is a signature of (M∗

i , Σ̃i). We conclude
that ecycle(G1,Σ1) = ecycle(M∗

1 ,Σ1) = ecycle(M∗
2 ,Σ2) = ecycle(G2,Σ2).

Let G1 and G2 be inequivalent graphs. Suppose that ecycle(G1,Σ1) = ecycle(G2,Σ2)

and ecut(G1,T1) = ecut(G2,T2). If (G1,Σ1) is bipartite, let Σ := /0. Otherwise, by Re-
mark 3.9, there exists a T2-odd cut D of (G2,T2); let Σ := D. Then Σ is a standard signature
of (G1,Σ1). Given a signature Σ̃i of (Gi,Σi), Σi�Σ̃i is a cut D of Gi. We say that Σ̃i is
Ti-even (respectively Ti-odd) if D is a Ti-even (respectively Ti-odd) cut.
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Proposition 3.13. Let G1 and G2 be inequivalent graphs. Suppose that ecycle(G1,Σ1) =

ecycle(G2,Σ2) and ecut(G1,T1) = ecut(G2,T2). If Σ1,Σ2 are standard signatures then the
following hold.

(1) Suppose that (G1,Σ1) is non-bipartite. Then
D is a Σ1-odd cycle of G1 if and only if D is a Σ2-even T2-join of G2;

(2) Suppose that (G1,Σ1),(G2,Σ2) are non-bipartite. Then
D is a Σ1-odd T1-join of G1 if and only if D is a Σ2-odd T2-join of G2;

(3) Suppose that T1 �= /0. Then
D is a T1-odd cut of G1 if and only if D is T2-even signature of (G2,Σ2);

(4) Suppose that T1,T2 �= /0. Then
D is a T1-odd signature of (G1,Σ1) if and only if D is T2-odd signature of (G2,Σ2).

We illustrate Proposition 3.13 on the example in Figure 3.1. We have that Σ�
1 := δG3( f ) =

{1,9} is a standard signature of (G1,Σ1) and Σ�
3 := δG1(a) = {1,2} is a standard signature

of (G3,Σ3). Then the odd cycle {4,7,9} of (G1,Σ�
1) is a Σ�

3-even T3-join of G3. The set {1}
is a Σ�

1-odd T1-join of G1 and a Σ�
3-odd T3-join of G3. Moreover {1,3,5}= δG1({a,c}) is a

T1-odd cut of G1. As {1,3,5}�Σ�
3 = {2,3,5}= δG3(c), {1,3,5} is a T3-even signature of

(G3,Σ�
3). Finally, {2,9} is a T1-odd signature of (G1,Σ�

1) which is also a T3-odd signature
of (G3,Σ�

3).

Proof of Proposition 3.13. We prove parts (1) and (3) only, as statements (2) and (4) follow
similarly from Theorem 3.10(2). We begin with the proof of (1). For i = 1,2, let Mi :=
cycle(Gi). Clearly, D is a cycle of G1 if and only if D is a cycle of M1. Let Γ2 be a T2-join
of G2. Remark 3.12(2) implies that D is a T2-join of G2 if and only if D is a signature of
(M∗

2 ,Γ2). The result now follows from Theorem 3.10(1). We proceed with the proof of (3).
For i = 1,2, let Mi := cut(Gi) and let Γi be a Ti-join of Gi. Remark 3.12(1) implies that D is
a T1-odd cut of G1 if and only if D is a Γ1-odd cycle of M1. Since Σ2 is a standard signature
of (M∗

2 ,Σ2), Σ2 is a Γ1-odd cycle of M1. It follows from Theorem 3.10(1) that Σ2 is Γ2-even.
D is a T2-even signature of (G2,Σ2) if and only if D is a signature of (M∗

2 ,Σ2) such that
Σ2�D is T2-even. Equivalently, by Remark 3.12(1), Σ2�D is Γ2-even. As Σ2 is Γ2-even,
this occurs if and only if D is Γ2-even. The result now follows from Theorem 3.10(1).
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3.4 A matroid operation

Consider a graft (H,T ) with |T | = 4. Let T = {t1, t2, t3, t4}. Suppose that H has a 2-se-
paration X such that t1, t2 ∈VH(X) and t3, t4 ∈VH(X̄). Construct a graph H � from H[X ] and
H[X̄ ] by identifying vertex t1 with t3 and identifying vertex t2 with t4. Let C be a circuit of
H where both C∩X and C∩ X̄ are non-empty. Define T � :=Vodd(H �[C]). Then we say that
(H �,T �) is obtained from (H,T ) by a simple shift on X with pairing t1, t3 and t2, t4. In this
section we show how Whitney-flips, Lovázs-flips and simple shifts all arise from the same
matroid construction. We require the following observation.

Lemma 3.14. Let M be a matroid and let a,b,c,d denote distinct elements of M. Sup-
pose that {a,b,c,d} is both a cycle and a co-cycle of M. Then M/{a,b} \ {c,d} = M \
{a,b}/{c,d}.

Proof. Let M1 := M/{a,b}\{c,d} and let M2 := M \{a,b}/{c,d}. We want to show that
the cycles of M1 are exactly the cycles of M2. By symmetry between M1 and M2, it suffices
to show that every cycle of M1 is a cycle of M2. Let C be any cycle of M1. Then there exists
a cycle D of M such that C ⊆ D ⊆ C∪{a,b}. Since {a,b,c,d} is a co-cycle of M and M
is binary, |D∩{a,b,c,d}| is even. Hence, none of a,b are in D or both of a,b are in D. In
the former case, D =C and C is cycle of M2 as required. In the latter case, D =C∪{a,b}.
Since {a,b,c,d} is a cycle of M, D�{a,b,c,d}=C∪{c,d} is a cycle of M. It follows that
C is cycle of M2.

Consider a graph G which consists of components G[X1],G[X2] for some partition X1,X2

of E(G). For i = 1,2, pick vertices si, ti ∈ G[Xi]. Denote by C the set of edges {a,b,c,d}
where a = (s1, t1),b = (s2, t2),c = (s1, t2),d = (s2, t1). Let H be the graph obtained from G
by adding the edges in C. Since C is a circuit and a cut of H, it is a cycle and a co-cycle of
cycle(H). Lemma 3.14 implies that cycle(H) \ {a,b}/{c,d} = cycle(H)/{a,b} \ {c,d}.
It follows that cycle(H \ {a,b}/{c,d}) = cycle(H/{a,b} \ {c,d}). It can now be easily
verified that H \{a,b}/{c,d} and H/{a,b}\{c,d} are related by a Whitney-flip and that
any two graphs related by a single Whitney-flip can be obtained in that way. In particular,
graphs related by Whitney-flips have the same set of cycles.

Consider a graph G. Pick vertices s1, t1,s2, t2 of G. Denote by C the set of edges
{a,b,c,d} where a = (s1, t1),b = (s2, t2),c = (s1, t2),d = (s2, t1). Let H be the graph
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obtained from G by adding edges in C. Since C is an even cycle of the signed graph
(H,C), it is a cycle of ecycle(H,C). Since C is a signature of (H,C), by Remark 2.1
it is a co-cycle of ecycle(H,C). Lemma 3.14 implies that ecycle(H,C) \ {a,b}/{c,d} =

ecycle(H,C)/{a,b}\{c,d}. It follows that ecycle
�
(H,C)\{a,b}/{c,d}

�
= ecycle

�
(H,C)

/{a,b}\{c,d}
�
. It can now be easily verified that (H,C)\{a,b}/{c,d} and (H,C)/{a,b}\

{c,d} are related by a Lovász-flip (and possibly signature exchanges) and that any two
signed graphs related by a single Lovász-flip can be obtained in that way. In particular,
graphs related by Lováz-flips have the same set of even cycles.

Consider a graph G which consists of components G[X1],G[X2] for some partition X1,X2

of E(G). For i = 1,2, pick vertices si, ti,ui,vi ∈ V (G[Xi]) (where these vertices are not
necessarily all distinct). Denote by C the set of edges {a,b,c,d} where a = (s1,s2),b =

(t1, t2),c = (u1,u2),d = (v1,v2). Let H be the graph obtained from G by adding the edges
in C. Let T := {s1,s2, t1, t2,u1,u2,v1,v2}. Since C is an even cut of (H,T ), it is a cycle
of ecut(H,T ). Moreover, C is a T -join of H. It follows from Remark 2.2 that C is a
co-cycle of ecut(H,T ). Lemma 3.14 implies that ecut(H,T ) \ {a,b}/{c,d} = ecut(H,T )
/{a,b}\{c,d}. It follows that ecut

�
(H,T )/{a,b}\{c,d}

�
= ecut

�
(H,T )\{a,b}/{c,d}

�
.

Hence, the two grafts (H,T )\{a,b}/{c,d} and (H,T )/{a,b}\{c,d} have the same even
cuts. It can now be easily verified that (H,T )\{a,b}/{c,d} and (H,T )/{a,b}\{c,d} are
related by a simple shift.
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Chapter 4

Even cycle isomorphism

In this chapter we provide a partial answer to the Isomorphism Problem for even cycle
matroids. First we present a result by Shih that solves the Isomorphism Problem for even
cycle matroids which are graphic. We show, as a direct consequence of the results in
Chapter 3, that this also solves the Isomorphism Problem for even cut matroids which are
cographic. In Sections 4.2 and 4.3, we introduce two classes of even cycle siblings: Shih
siblings and quad siblings. For each one of these classes, we provide a list of operations
and we show that any two siblings in the class are related by Whitney-flips and exactly
one of these operations, thus solving the Isomorphism Problem for these two classes; these
results are presented in Secions 4.5 and 4.6. In Section 4.4 we present a conjecture for the
Isomorphism Problem for even cycle matroids.

4.1 The graphic and cographic case

In this section we consider the Isomorphism Problem for graphic even cycle matroids. Sup-
pose that for a signed graph (H,Γ), ecycle(H,Γ) is a graphic matroid. Hence there exists
a graph G such that ecycle(H,Γ) = cycle(G). If (H,Γ) does not contain any odd cycles,
then cycle(H) = cycle(G), the two graphs are equivalent and the Isomorphism Problem is
solved. Thus we assume that (H,Γ) contains an odd cycle C. Every odd cycle of H can
be generated by C and a basis for the even cycles of H. Thus cycle(G) is a subspace of
cycle(H) and dim(cycle(G)) = dim(cycle(H))−1. Moreover, if we know the structure of
G and H, then we can determine the signature Γ by Theorem 3.1, as the signature pair is

43



unique in this case. Therefore the following result (proved by Shih in his doctoral disser-
tation, see [30]) provides an answer to the Isomorphism Problem for graphic even cycle
matroids.

Theorem 4.1. Suppose G,H are graphs such that cycle(G) is a subspace of cycle(H) and
dim(cycle(G)) = dim(cycle(H))− 1. Then there exist graphs G�,H �, equivalent to G,H
respectively, such that one of the following holds.

(1) H � is obtained from G� by identifying two distinct vertices.

(2) There exist graphs G1, . . . ,G4 (not necessarily all non-empty) and distinct vertices
xi,yi,zi ∈ V (Gi) such that G� is obtained by identifying xi,y3−i,z2+i to a vertex wi,
for i = 1, . . . ,4 (where the indices are modulo 4). Moreover, H � is obtained by iden-
tifying x1,x2,x3,x4 to a vertex x, identifying y1,y2,y3,y4 to a vertex y and identifying
z1,z2,z3,z4 to a vertex z.

(3) There exist graphs G1, . . . ,Gk, with k ≥ 3, and distinct vertices xi,yi,zi ∈ V (Gi) for
i = 1, . . . ,k, such that G� is obtained by identifying z1, . . . ,zk to a vertex z and for
i = 1, . . . ,k identifying yi−1 and xi to a vertex wi (where the indices are modulo k).
Moreover, H � is obtained by identifying yi−1, zi, xi+1 to a vertex w�

i, for i = 1, . . . ,k
(where the indices are modulo k).

An example of outcome (2) is given in Figure 4.1, where dotted lines represent vertices
that are identified. G� is the graph on the left and H � the graph on the right. Let P1 be a
(y,z)-path in G1 and P2 be a (y,z) path in G2. Then P1∪P2 is a cycle of H � and not a cycle of
G�. Let T :=Vodd(G�[P1 ∪P2]) = {w1,w2,w3,w4}. By Theorem 3.1, ecut(G�,T ) = cut(H �)

and we may choose Γ := δG�(w1) (shaded in the figure).

An example of outcome (3) is given in Figure 4.2, where the graph on the left is G� and
the one on the right is H �. In this example we chose G1 to be the graph with edges 1,2,3 as
in the figure. The arrows indicate how each piece is flipped. We may choose Γ := δG�(w1)

(shaded in the figure).

Note that Theorem 4.1 also answers the Isomorphism Problem for even cut matroids
in the case that the even cut matroid represented by a graft (G,T ) is cographic. In fact,
by Theorem 3.1, we have cycle(G) = ecycle(H,Γ) if and only if ecut(G,T ) = cut(H), for
some set of terminals T of G.
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Figure 4.2: Shih operation 3.

As the Isomorphism Problem is solved for graphic matroids, we will mostly consider
non-graphic matroids in this chapter. Moreover, the case in which the graphs are equivalent
is trivial, hence we will only consider the Isomorphism Problem for representations that are
not equivalent.
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4.2 The class of Shih siblings

Let signed graphs (G1,Σ1),(G2,Σ2) be siblings and let T1,T2 be the matching terminal pair.
If |T1|= 2 or |T2|= 2, we say that (G1,Σ1),(G2,Σ2) are Shih siblings.

Suppose |T2|= 2 and let H2 be the graph obtained from G2 by identifying the two ver-
tices in T2. Then ecut(G2,T2) = cut(H2). It follows that ecut(G1,T1) = cut(H2). Therefore
Theorem 4.1 gives a characterization of Shih siblings. For example, the graphs G1 and H2

may be as in Figure 4.2 and we may obtain G2 from the graph on the right by splitting a
vertex (for example, w�

1) into vertices v+ and v−. Then, up to resigning, Σ1 = δG2(v
+) and

Σ2 is still δG1(w1).

Note that Theorem 4.1 completely characterizes the structure of G1 and H2 in cases
(2) and (3) and G2 is obtained from H2 by simply splitting any vertex. Moreover, the
matching signature pair is uniquely determined, by the results in Chapter 3. However,
if |T1| = |T2| = 2, case (1) of the theorem occurs. What Theorem 4.1 states in this case
is that there exist equivalent graphs H1,H2 such that, for i = 1,2, Hi is obtained from
Gi by identifying two vertices. Hence Theorem 4.1 does not characterize the structure
of the graphs in this case. Therefore we treat this type of siblings separately from the
other Shih siblings and we provide an explicit characterization of them. Let signed graphs
(G1,Σ1),(G2,Σ2) be siblings and let T1,T2 be the matching terminal pair, where |T1| =
|T2|= 2. For i = 1,2, let Hi be obtained from Gi by identifying the two vertices in Ti. Then
cut(H1) = ecut(G1,T1) = ecut(G2,T2) = cut(H2). By Theorem 1.2, H1,H2 are equivalent.
This justifies the following definition.

Consider a pair of equivalent graphs H1 and H2. Suppose that, for i = 1,2, we have
αi ⊆ δHi(vi)∪ loop(Hi) for some vi ∈ V (Hi). Then, for i = 1,2, let Gi be obtained from
Hi by splitting vi into v−i ,v

+
i according to αi and let Ti := {v−i ,v

+
i }. Since H1 and H2 are

equivalent, cut(H1) = cut(H2). Thus

ecut(G1,T1) = cut(H1) = cut(H2) = ecut(G2,T2).

In particular, if G1,G2 are not equivalent, (G1,T1),(G2,T2) are siblings. Let Σ1,Σ2 be the
matching signature pair for G1,G2. If (G1,Σ1),(G2,Σ2) are inequivalent we say that the
tuple T= (H1,v1,α1,H2,v2,α2) is a split-template and that (G1,Σ1),(G2,Σ2) (respectively
(G1,T1),(G2,T2)) are split siblings which arise from T. Split siblings are a special type
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of Shih siblings, namely the type arising from outcome (1) in Theorem 4.1. An explicit
characterization of split siblings representing a 3-connected matroid is given in Section 4.5.

4.3 The class of quad siblings

Let (H1,Γ1) and (H2,Γ2) be a pair of equivalent signed graphs. Suppose that, for i = 1,2,
Γi ⊆ δHi(vi)∪δHi(wi)∪ loop(Hi) for some vi,wi ∈V (Hi). Then, for i = 1,2, let (Gi,Ti) be
the graft obtained by unfolding (Hi,Γi) according to vi,wi and αi,βi (where Γi = αi∆βi). It
follows from Remark 2.8(2) that

ecut(G1,T1) = ecycle(H1,Γ1)
∗ = ecycle(H2,Γ2)

∗ = ecut(G2,T2).

In particular, if G1,G2 are not equivalent, then (G1,T1),(G2,T2) are siblings. Let Σ1,Σ2

be the matching signature pair for G1,G2. If G1,G2 are not equivalent, we say that the tu-
ple T = (H1,v1,w1,α1,β1,H2,v2,w2,α2,β2) is a quad-template and that (G1,Σ1),(G2,Σ2)

(respectively (G1,T1),(G2,T2)) are quad siblings which arise from T. An explicit char-
acterization of quad siblings representing a 3-connected non-graphic matroid is given in
Section 4.6.

4.4 Isomorphism Conjecture

In this section we present a conjecture about the relation between signed graphs siblings.
We are not very precise in the definitions of the outcomes of the conjecture. However,
these outcomes arose in a sketch of the proof of this conjecture with some connectivity
hypothesis.

Conjecture 4.2. Suppose (G1,Σ1) and (G2,Σ2) are siblings and ecycle(G1,Σ1) is non-
graphic. Then there exist signed graphs (G�

1,Σ�
1), (G

�
2,Σ�

2) such that, for i = 1,2, (G�
i,Σ�

i) is
obtained from (Gi,Σi) by a sequence of Whitney-flips, Lovász-flips and signature exchanges
and one of the following occurs:

(1) (G�
1,Σ�

1) = (G�
2,Σ�

2);

(2) (G�
1,Σ�

1) and (G�
2,Σ�

2) are either Shih siblings or quad siblings;
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(3) (G�
1,Σ�

1) and (G�
2,Σ�

2) may be reduced;

(4) (G�
1,Σ�

1) and (G�
2,Σ�

2) belong to a sporadic set of examples;

(5) (G�
1,Σ�

1) and (G�
2,Σ�

2) are obtain by a local modification of one of the operations in
Shih’s Theorem.

The reductions in part (3) are similar to, and include, the reductions described in Sec-
tions 4.2 and 4.3. The small set of examples in part (4) arise from a construction like the
one in Figure 4.3.
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Figure 4.3: Sporadic example. Bold edges are odd.

Outcome (5) is constructed as follows. Let G be a graph and (H,Γ) be a signed graph
such that cycle(G) = ecycle(H,Γ). Suppose e, f ,g are edges forming an odd triangle in
(H,Γ). Let ve f be the vertex in H incident to e and f ; define v f g and veg similarly. Construct
a graph H � by adding a new vertex v and three new edges ē, f̄ , ḡ to H as follows: {ē, f̄ , ḡ}
form a triad in H � incident to the new vertex v. The other end of ē (respectively f̄ , ḡ) in H � is
v f g (respectively veg,ve f ). Now construct a graph G� from G by adding edges ē, f̄ , ḡ, where
ē is parallel to e, f̄ is parallel to f and ḡ is parallel to g. Then ecut(H �,{v,ve f ,veg,v f g}) =
ecut(G�,T �), where T � := Vodd(G[{e, f ,g}]). Hence the graphs G� and H � are siblings. An
example of this construction is given in Figure 4.4.
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Figure 4.4: Modification of Shih’s operation. Bold and shaded edges are odd, white vertices
are terminals.

4.5 Isomorphism for Shih siblings

Let signed graphs (G1,Σ1),(G2,Σ2) be Shih siblings and let T1,T2 be the matching terminal
pair. Suppose |T2| = 2, and let H2 be the graph obtained from G2 by identifying the two
vertices in T2. Then ecut(G1,T1) = ecut(G2,T2) = cut(H2) and some graphs G�

1 and H �
2,

equivalent to G1 and H2 respectively, satisfy one of the outcomes of Theorem 4.1. Out-
comes (2) and (3) completely characterize the structure of G1 and H2. The aim of this
section is to provide a structural characterization of outcome (1). Recall that if outcome (1)
occurs, then (G1,Σ1),(G2,Σ2) are split siblings. The proof of the following result is given
in Chapter 6.

Theorem 4.3. Let M be a 3-connected even cycle matroid. If (G1,Σ1) and (G2,Σ2) are
representations of M which are split siblings, then they are either:

(1) simple siblings, or

(2) nova siblings, or

(3) reducible.

We say that (G1,Σ1) and (G2,Σ2) are simple (respectively nova) siblings if, for i = 1,2,
there exists (G�

i,Σ�
i) equivalent to (Gi,Σi) such that (G�

1,Σ�
1) and (G�

2,Σ�
2) are simple (re-

49



spectively nova) twins. It remains to define the terms “simple twins”, “nova twins” and
“reducible”. We need some preliminary definitions.

By a sequence (X1, . . . ,Xk) we mean a family of sets {X1, . . . ,Xk} where Xi precedes
Xj when i < j. We say that S = (X1, . . . ,Xk) is a w-sequence of G if, for all i ∈ [k], Xi is a
2-separation of the graph obtained from G by performing Whitney-flips on X1, . . . ,Xi−1 (in
this order). We denote by Wflip[G,S] the graph obtained from G by performing Whitney-
flips on X1, . . . ,Xk (in this order). For our purpose the position of loops is irrelevant. Hence
we will assume that loops form distinct components of the graph. Therefore, if G,G� are
equivalent graphs that are 2-connected, except for possible loops, then G� = Wflip[G,S] for
some w-sequence S of G.

A family S= {X1, . . . ,Xk} of sets of edges of a graph G is a w-star if

(a) Xi ∩Xj = /0, for all i, j ∈ [k], where i �= j;

(b) there exist distinct z,v1, . . . ,vk ∈V (G) such that BG(Xi) = {z,vi}, for all i ∈ [k];

(c) no edge with ends z,vi is in Xi, for all i ∈ [k].

Vertex z is the center of the w-star S.

Consider a split-template (H1,v1,α1,H2,v2,α2). If H1,H2 are 2-connected, except for
possible loops, we have that H2 = Wflip[H1,S] for some w-sequence S. In this case we
slightly abuse terminology and say that (H1,v1, α1, H2, v2, α2,S) is a split-template. (This
is only well defined for the case where H1,H2 are 2-connected up to loops).

Remark 4.4. Let T = (H1,v1,α1,H2,v2,α2) be a split-template and let (G1,Σ1), (G2,Σ2)

be split siblings that arise from T. Then, up to signature exchange, we have Σ1 = Σ2 =

α1�α2.

Proof. For i = 1,2, vertex vi of Hi gets split into vertices v−i ,v
+
i of Gi. By construction,

αi = δGi(v
−
i ), for i = 1,2. As v−1 ∈ T1, Theorem 3.1 implies that α1 is a signature of

(G2,Σ2). As α2 is a cut of G2, α1�α2 is a signature of (G2,Σ2). By symmetry, α1�α2 is
also a signature of (G1,Σ1).
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4.5.1 Simple twins

Consider a split-template T = (H1,v1,α1,H2,v2,α2,S). If S = /0, i.e. H1 = H2, then T is
simple and (G1,Σ1),(G2,Σ2) arising from T are simple twins. By Remark 4.4, we may
assume that Σ1 = Σ2 = α1�α2. Suppose that vertex v1 of H1 gets split into vertices v−1 ,v

+
1

of G1. Then α1 ⊆ δG1(v
−
1 ) and α2 ⊆ δG1(v2). Hence, v−1 and v2 form a blocking pair of

(G1,Σ1). Thus we have the following.

Remark 4.5. Simple twins have blocking pairs.

It can easily be verified that two simple twins are related by Lovász-flips.

4.5.2 Nova twins

Let (G,Σ) be a signed graph with distinct vertices s1 and s2. For i = 1,2, let Ci denote a
circuit of Hi using si and avoiding s3−i. Suppose that C1 and C2 are either vertex disjoint
or that C1 and C2 intersect exactly in a path. In the former case let P denote a path with
ends ui ∈ VG(Ci)−{si}, for i = 1,2, such that VG(P)∩

�
VG(C1)∪VG(C2)

�
= {u1,u2}. In

the latter case, define P to be the empty set. We say that the triple (C1,C2,P) form {s1,s2}-
handcuffs. We say that X ⊆ G is a handcuff-separation if X is a 2-separation of G and there
exist {s1,s2}-handcuffs of (G[X ],Σ∩X), where s1,s2 are the vertices in BG(X).

A split-template T= (H1,v1,α1,H2, v2,α2,S) is nova if, for i = 1,2:

(N1) S is a w-star of Hi with center vi, and

(N2) all X � ⊆ X ∈ S with BHi(X
�) = BHi(X) are handcuff-separations of (Hi,α1�α2).

We say that (G1,Σ1),(G2,Σ2) arising from T are nova twins. We could have defined nova
twins omitting condition (N2). This would yield a weaker version of Theorem 4.3. How-
ever, the stronger version is needed for the stabilizer theorem for even cycle matroids dis-
cussed in Chapter 8.

4.5.3 Reduction

Consider grafts (G1,T1) and (G2,T2) where, for i = 1,2, Ti consists of vertices v−i ,v
+
i . We

write (G1,T1)⊕ (G2,T2) to indicate the graft (G,T ) where G is obtained from G1 and G2
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Figure 4.5: Example of nova twins with |S|= 2.

by identifying vertex v−1 with v−2 and by identifying vertex v+1 with vertex v+2 . Denote
by v− (respectively v+) the vertex in G corresponding to v−1 ,v

−
2 (respectively v−2 ,v

+
2 ) and

let T = {v−,v+}. Note that (G,T ) is defined uniquely from (G1,T1) and (G2,T2) up to a
possible Whitney-flip on E(G1).

Consider split siblings (G1,Σ1),(G2,Σ2) and let T1,T2 be the matching terminal pair.
Suppose that there exists X ⊆ E(G1) such that BG1(X) = T1. For i = 1,2, let Hi be ob-
tained from Gi by identifying the vertices in Ti to a single vertex vi. Then H1[X ] is a block
of H1 attached to vertex v1. As (G1,T1),(G2,T2) are split siblings, H2[X ] is also a block
of H2 attached to v2. It follows that BG2(X) = T2. For i = 1,2, define G�

i := Gi[X ] and
G��

i := Gi[X̄ ]. Let T �
i and T ��

i denote the vertices corresponding to Ti in G�
i and G��

i respec-
tively. Then, for i = 1,2, (Gi,Ti) = (G�

i,T
�

i )⊕ (G��
i ,T

��
i ). Observe that (G�

1,T
�

1),(G
�
2,T

�
2) are

split siblings and so are (G��
1,T

��
1 ),(G

��
2,T

��
2 ). We say in that case that (G1,Σ1),(G2,Σ2) are

reducible.

4.6 Isomorphism for quad siblings

The main result of this section is the following.

Theorem 4.6. Let M be a 3-connected non-graphic even cycle matroid. If (G1,Σ1),(G2,Σ2)

are representations of M which are quad siblings, then they are either:

(1) shuffle siblings,
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(2) tilt siblings,

(3) twist siblings,

(4) widget siblings,

(5) gadget siblings, or

(6) ∆-reducible.

The proof of Theorem 4.6 is in Chapter 6.

We say that (G1,Σ1),(G2,Σ2) are shuffle (respectively tilt, twist, widget, gadget) sib-
lings if, for i = 1,2, there exists (G�

i,Σ�
i) equivalent to (Gi,Σi) such that (G�

1,Σ�
1),(G

�
2,Σ�

2)

are shuffle (respectively tilt, twist, widget, gadget) twins. The terms “shuffle twins”, “tilt
twins”, “twist twins”, “widget twins”, “gadget twins” and “∆-reducible” are defined in the
next sections.

4.6.1 Shuffle twins

Consider a graph G and let {a,b,c,d} ⊆ V (G). Suppose that E(G) can be partitioned
into sets X1, . . . ,X4 (not necessarily all non-empty) such that, for all i ∈ [4], BG(Xi) ⊆
{a,b,c,d}. For all i ∈ [4], denote by ai (respectively bi,ci,di) the copy of vertex a (respec-
tively b,c,d) of G[Xi]. Then construct G� by:

• identifying vertices a1,b2,c3,d4 to a vertex a�;

• identifying vertices b1,a2,d3,c4 to a vertex b�;

• identifying vertices c1,d2,a3,b4 to a vertex c�;

• identifying vertices d1,c2,b3,a4 to a vertex d�.

We say that G and G� are shuffle twins. We will show that they are siblings with matching
terminal pair {a,b,c,d} and {a�,b�,c�,d�}. Shuffle twins were introduced by Norine and
Thomas [20].

Let H (respectively H �) be obtained by folding (G,{a,b,c,d}) (respectively (G�,{a�,b�,
c�,d�})) with the pairing a,b and c,d (respectively a�,b� and c�,d�). Let α := δG(a), β :=
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δG(c), α � := δG�(a�) and β � := δG�(c�). Then (H1,α�β ) and (H2,α ��β �) are equivalent,
hence G and G� are quad siblings with matching terminal pair {a,b,c,d} and {a�,b�,c�,d�}.

d

a b
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a b

cd

a b

cd

a b

cd

X1

X2

X3

X4 X4ab

c d
c

ab

d

a b

cd

X3

X2

X1

Figure 4.6: Shuffle twins.

4.6.2 Tilt twins

Consider a graph G with distinct edges e, f ,g,h∈E(G) and distinct vertices a1, a2, b1, b2, c,
d. Suppose e, f have ends a1,a2 and g,h have ends b1,b2. Suppose we can partition E(G)

into X1,X2,{e, f ,g,h}, such that VG(X1)∩VG(X2) = {c,d} and a1,b1 ∈ VG(X1), a2,b2 ∈
VG(X2). For all i ∈ [2], denote by ci (respectively di) the copy of vertex c (respectively d)
in G[Xi]. Construct G� from G[X1],G[X2] by:

• identifying vertices a1 and a2;

• identifying vertices b1 and b2;
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• joining c1,c2 with edges e,g;

• joining d1,d2 with edges f ,h.

We say that G and G� are tilt twins. In general, we say that G,G� are tilt twins even if
not all edges e, f ,g,h in the above construction are present. Tilt twins were introduced by
Gerards [13] .

Let H (respectively H �) be obtained by folding (G,{a1,a2,b1,b2}) (respectively (G�,{c1,
c2,d1,d2})) with the pairing a1,a2 and b1,b2 (respectively c1,c2 and d1,d2). Let α :=
δG(a1), β := δG(b1), α � := δG�(c1) and β � := δG�(d1). Then (H1,α�β ) and (H2,α ��β �)

are equivalent, hence G and G� are quad siblings with matching terminal pair {a1,a2,b1,b2}
and {c1,c2,d1,d2}.

a1 a2

b2b1

c1 c2

d1 d2

e
f

g
h

X1 X2

a1 a2

b2b1

c1 c2

d1 d2

e

f

g

h

X1 X2

Figure 4.7: Tilt twins.

4.6.3 Twist twins

Consider a graph G with distinct edges e, f ,g,h and distinct vertices a1,a2,b,c,d. Sup-
pose e, f have ends a1,a2 and g,h have ends b,c. Suppose we can partition E(G) into
X1,X2,{e, f ,g,h} such that VG(X1)∩VG(X2) = {b,c,d} and a1 ∈ V (X1), a2 ∈ V (X2). For
all i ∈ [2] let bi (respectively ci,di) denote the copy of vertex b (respectively c,d) in G[Xi].
Construct G� from G[X1],G[X2] by:

• identifying vertices a1 and a2;
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• identifying vertices b1 and c2, calling the resulting vertex b̃;

• identifying vertices c1 and b2, calling the resulting vertex c̃;

• joining b̃, c̃ with edges e,g;

• joining d1,d2 with edges f ,h.

We say that G and G� are twist twins. In general, we say that G,G� are twist twins even if
not all edges e, f ,g,h in the above construction are present.

Let H (respectively H �) be obtained by folding (G,{a1,a2,b,c}) (respectively (G�,{b̃, c̃,
d1,d2})) with the pairing a1,a2 and b,c (respectively b̃, c̃ and d1,d2). Let α := δG(a1),
β := δG(b), α � := δG�(b̃) and β � := δG�(d1). Then (H1,α�β ) and (H2,α ��β �) are equiv-
alent, hence G and G� are quad siblings with matching terminal pair {a1,a2,b,c} and
{b̃, c̃,d1,d2}.

g

h

e

f

X1 X2
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b1

c1

d1 d2

c2

b2

a2f
ea1

b1

c1

d1 d2

c2

b2

a2

h g
X1 X2

Figure 4.8: Twist twins.

4.6.4 Widget twins

Consider a graph H1 with distinct edges a,b,c,d,e, f , �1, �2, �3, �4 and distinct vertices
v1,z1,w1,w2. Suppose a,b have ends v1,w2; c,d have ends z1,w2; e, f have ends v1,w1 and
loop(H1)= {�1, �2, �3, �4}. Suppose we can partition E(H1) into X ,{a,b,c,d,e, f}, loop(H1)

such that δH1(w2) = {a,b,c,d} and BH1(X) = {v1,z1,w1}. Let H2 = Wflip[H1,{a,b,c,d}].
Let the vertices in H2 which are not in BH2({a,b,c,d}) be labeled as in H1. Let v2 ∈
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V (H2) be the endpoint of c distinct from w2. Let γ ⊆ δH1(v1)∩ X . Define α1 := γ ∪
{a,e, �1, �2}; β1 := {e, f , �3, �4}; α2 := γ ∪{ f ,c, �1, �3} and β2 := {a,c, �2, �4}. Let T =

(H1,v1,w1,α1,β1,H2,v2,w2,α2,β2). Note that T is a quad-template. Let (G1,Σ1) and
(G2,Σ2) be the quad siblings arising from T. We say that G1 and G2 are widget twins.

4.6.5 Gadget twins

Consider a graph H1 with distinct edges a1,b1,c1,d1,a2,b2,c2,d2, �1, �2, �3, �4 and distinct
vertices v1,z1,u1,w1,w2. Suppose ai,bi have ends v1,wi, for i = 1,2; c1,d1 have ends
z1w1; c2,d2 have ends u1w2 and loop(H1) = {�1, �2, �3, �4}. Suppose we can partition
E(H1) into sets X ,{a1,b1,c1,d1,a2,b2,c2,d2}, loop(H1) such that δH1(wi) = {ai,bi,ci,di},
for i= 1,2, and BH1(X) = {v1,z1,u1}. Let H2 =Wflip[H1,({a1,b1,c1,d1},{a2,b2,c2,d2})].
Let the vertices in H2 which are not in BH2({ai,bi,ci,di}) be labeled as in H1. Let v2 ∈
V (H2) be the endpoint of c1 distinct from w1. Let γ ⊆ δH1(v1)∩ X . Define α1 := γ ∪
{a1,a2, �1, �2}, β1 := {a1,c1, �3, �4}, α2 = γ ∪{c1,c2, �1, �3} and β2 := {a2,c2, �2, �4}. Let
T = (H1,v1,w1,α1,β1, H2, v2, w2,α2,β2). Note that T is a quad-template. Let (G1,Σ1)

and (G2,Σ2) be the quad siblings arising from T. We say that G1 and G2 are gadget twins.

4.6.6 ∆-reduction

Consider siblings (G1,Σ1),(G2,Σ2) and suppose that edges {e1,e2,e3} form a triangle of
both G1 and G2 and (after possibly resigning) {e1,e2,e3}∩Σi = /0, for i = 1,2. Let H be
a graph with distinct vertices v12,v13,v23. For i = 1,2, let G�

i be the graph obtained from
Gi by (for all distinct j,k ∈ [3]) identifying the vertex of Gi incident to both e j,ek with the
vertex v jk of H, and by then deleting the edges e1,e2,e3. We say that (G�

1,Σ1) and (G�
2,Σ2)

are obtained by a ∆-substitution from (G1,Σ1) and (G2,Σ2) and that (G1,Σ1) and (G2,Σ2)

are obtained by a ∆-reduction from (G�
1,Σ1) and (G�

2,Σ2). By possibly omitting some of
the edges of the triangle, we will make sure to not create parallel edges of the same parity
when applying a ∆-reduction. Note that in this case (G�

1,Σ1) and (G�
2,Σ2) are also siblings.

We say that siblings (G1,Σ1), (G2,Σ2) are ∆-irreducible if no ∆-reduction is possible in
(G1,Σ1), (G2,Σ2), otherwise we say that the siblings are ∆-reducible. We mainly consider
∆-reductions to simplify the definitions of the various types of quad siblings. For example,
suppose (G1,Σ1) and (G2,Σ2) are tilt twins, with the same notation as in the definition of
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tilt twins in Section 4.6.2. Suppose that G1 contains edges e1,e2 with ends a1,c and a2,c
respectively. Then {e,e1,e2} is an even triangle of both G1 and G2 and such a triangle may
be substituted by any graph H.
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Chapter 5

Whitney-flips

In this chapter we provide results about equivalent graphs and grafts which will be used
in the subsequent chapters. The results in Section 5.1 are used in Chapter 6 (to prove the
theorems stated in Chapter 4) and in Chapter 8. The results in Sections 5.2 and 5.6 are used
to prove the results in Chapter 9. A difficulty when dealing with Whitney-flips comes from
crossing 2-separations. We show how, in the cases we are interested in, we can reduce
to considering only Whitney-flips on non-crossing separations. Throughout this chapter
graphs are 2-connected. However, the notions of w-sequences, the operation Wflip and the
results in this chapter extend naturally to the class of graphs that are 2-connected except for
possible loops.

5.1 Whitney-flips avoiding vertices

Recall the definitions of w-sequence and w-star given in Section 4.5. We say that two sets
X ,Y are crossing if all of X ∩Y,X −Y,Y −X and X ∩Y are non-empty. A family of sets (or
sequence) S is non-crossing if X ,Y are non-crossing for every X ,Y ∈ S.

Remark 5.1. Let G be a graph and let S= (X1, . . . ,Xk) be a non-crossing w-sequence for
G. Then for any permutation i1, . . . , ik of 1, . . . ,k, S� = (Xi1 , . . . ,Xik) is a w-sequence and
Wflip[G,S] = Wflip[G,S�].

In light of the previous remark, given a non crossing w-sequence (X1, . . . ,Xk), we call the
family S := {X1, . . . ,Xk} a w-sequence and the notation Wflip[G,S] is well defined.
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We can now state the first of the two main technical results of this section.

Proposition 5.2. Let G,G� be 2-connected equivalent graphs and let Z ⊆ V (G), where
|Z| ≤ 2. There exist a w-sequence S1 of G and a graph H with a non-crossing w-sequence
S2 such that:

(1) H = Wflip[G,S1], where Z ∩BG(X) = /0 for all X ∈ S1; and

(2) G� = Wflip[H,S2], where Z ∩BG(X) �= /0 for all X ∈ S2.

Note that we cannot replace |Z| ≤ 2 by |Z| ≤ k for any k > 2 in the previous proposition,
as the following example illustrates. Suppose that G consists of edges e1,e2,e3,e4,e5 that
form a circuit with edges appearing in that order. Let G� be the graph obtained from G by re-
arranging the edges to form a circuit with edges appearing in order e1,e3,e5,e2,e4. Suppose
that Z consists of 3 consecutive vertices of the circuit in G. Then every 2-separation of G
contains a vertex of Z but there is no non-crossing w-sequence S for which G� = Wflip[G,S].
The other result in this section is the following.

Proposition 5.3. Consider 2-connected equivalent graphs G,G� and let z ∈ V (G),z� ∈
V (G�). There exist w-sequences L of G, L� of G� and graphs H and H � such that:

(1) H = Wflip[G,L], where z �∈ BG(X) for all X ∈ L;

(2) H � = Wflip[G�,L�], where z� �∈ BG�(X) for all X ∈ L�; and

(3) H � = Wflip[H,S],

where S is a w-star of H with center z and a w-star of H � with center z�.

Recall that w-stars were defined in Section 4.5. The proofs of Propositions 5.2 and 5.3
are postponed until Section 5.4.

5.2 Whitney-flips preserving paths

A sequence (X1, . . . ,Xk) is nested if Xi ⊂ Xi+1, for i = 1, . . . ,k − 1. In particular, nested
sequences are non-crossing. Let G be a graph and P a path in G. We say that a Whitney-
flip on a 2-separation X preserves P if P is a path of Wflip[G,X ]. Note that this occurs if
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and only if the ends of P are both in VG(X) or both in VG(X̄). Similarly, we say that a
w-sequence S of G preserves P if P is a path in Wflip[G,S]. The main result of this section
is the following.

Proposition 5.4. Let G and G� be equivalent graphs and let P be a path in G. Then there
exists a graph H such that:

(1) H = Wflip[G,S1], for some w-sequence S1 which preserves P, and

(2) G� = Wflip[H,S2], for some nested w-sequence S2, where no X ∈ S2 preserves P.

The next section contains results needed to prove Propositions 5.2, 5.3 and 5.4. The
proofs follow in Sections 5.4 and 5.5. Section 5.6 provides two results about Whitney-flips
on grafts which will be used in Chapter 9.

5.3 Flowers

For a graph H, we say that a partition F = {B1, . . . ,Bt} of E(H), with t ≥ 2, is a flower if
there exist distinct u1, . . . ,ut ∈V (H) such that (after possibly relabeling B1, . . . ,Bt),

(a) H[Bi] is connected, for every i ∈ [t], and

(b) BH(Bi) = {ui,ui+1}, for every i ∈ [t] (where t +1 = 1).

For i ∈ [t], Bi (or H[Bi]) is a petal with attachments ui,ui+1. We say that the flower is max-
imal if no petal has a cut-vertex separating its attachments. Maximal flowers correspond
to generalized circuits as introduced by Tutte in [36]. The term flower was introduced to
describe crossing 3-separations in matroids (see [22]).

Given two partitions F1,F2 of the same set, we say that F1 is a refinement of F2 if
every set in F2 is the union of sets in F1. Note that, for every flower F, there is a maximal
flower that is a refinement of F. Let S1,S2 be families of sets over the same ground set.
We say that S1,S2 are independent if for every X ∈ S1 and Y ∈ S2, X and Y do not cross.
This definition extends to sequences of sets. Thus we can talk about pairs of independent
w-sequences and pairs of independent flowers.

For a graph H, we say that a partition F= {B1, . . . ,Bt} of E(H), with t ≥ 2, is a leaflet
if there exist distinct u1,u2 ∈V (H) such that:
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(a) H[Bi] is connected for every i ∈ [t], and

(b) BH(Bi) = {u1,u2} for every i ∈ [t].

Remark 5.5. Let G be a 2-connected graph and let X ,Y be 2-separations of G that cross.
Then F := {X ∩Y,X −Y,Y −X , X̄ ∩ Ȳ} is either a flower or a leaflet.

Let F be a flower of G. We say that a 2-separation X of G, where X is the union of petals of
F, is a 2-separation of F. The following lemma characterizes pairs of independent flowers.

Lemma 5.6. Let F1,F2 be distinct maximal flowers of G. The following are equivalent.

(1) F1,F2 are independent.

(2) The set of all 2-separations of F1 is independent from the set of all 2-separations
of F2.

(3) There exist petals B1 of F1 and B2 of F2 such that B̄1 ⊂ B2 and B̄2 ⊂ B1.

(4) There is no leaflet {B1,B2,B3,B4} with F1 = {B1 ∪ B2,B3 ∪ B4} and F2 = {B1 ∪
B3,B2 ∪B4}.

Proof. It is easy to see that (3) ⇒ (2) and that (2) ⇒ (1). Let us show that (1) ⇒ (3).

Claim 1. For i = 1,2, no petal of Fi can be partitioned into a set S of petals of F3−i with
|S|> 1.

Proof. Suppose for a contradiction that Bi ∈ Fi can be partitioned into a set S of petals of
F3−i, where |S| > 1. Let F� := S∪{B̄i}. Then F3−i is a refinement of F�, hence F� is a
flower. It follows that the sets in S are petals of Fi, a contradiction as Fi is maximal. ✸

It follows from the claim that there exists a petal B1 ∈ F1 that is not included in any petal
of F2 and that there exists a petal B2 ∈ F2 such that B2∩B1 and B2−B1 are non-empty. As
B1 −B2 is non-empty and B1,B2 do not cross, by (1) we must have that B1 ∪B2 = E(G),
i.e. (3) holds. Let us show that (1) ⇔ (4). Clearly, if (4) does not hold then neither
does (1). Suppose (1) does not hold, i.e. some petals X ∈ F1 and Y ∈ F2 cross. Let
F= {X ∩Y,X −Y,Y −X , X̄ ∩ Ȳ}. Remark 5.5 implies that F is either a flower or a leaflet.
The former case contradicts the fact that F1 is maximal, and the latter case shows that (4)
does not hold.
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Given sequences S= (S1, . . . ,Sk) and S� = (S�1, . . . ,S
�
r) we denote by S⊙S� the concate-

nated sequence (S1, . . . ,Sk,S�1, . . . ,S
�
r). Consider a flower F of G and let S be a w-sequence

(X1, . . . ,Xk) such that, for every i ∈ [k], Xi is a 2-separation of the flower F in the graph
Wflip[G,(X1, . . ., Xi−1)]. We then say that S is a w-sequence for the flower F of G.

Remark 5.7. Let S be a w-sequence of G and suppose that S = S1 ⊙ S2 for some in-
dependent sequences S1,S2. Let S� be obtained from S by rearranging the order of sets
in S such that, for i = 1,2 and every X ,Y ∈ Si, if X precedes Y in Si it does so in S�

as well. Then S� is a w-sequence of G and Wflip[G,S] = Wflip[G,S�]. In particular, if
F1,F2 are independent flowers and, for i = 1,2, Si is a w-sequence for flower Fi, then
Wflip[G,S1 ⊙S2] = Wflip[G,S2 ⊙S1].

Lemma 5.8. Let G and H be equivalent 2-connected graphs. Then there exists a set of
maximal independent flowers F1, . . . ,Fk and there exists, for each i ∈ [k], a w-sequence Si

of Fi such that
H = Wflip[G,S1 ⊙ . . .⊙Sk].

Proof. Since G and H are equivalent and 2-connected, there exists a w-sequence S of G
for which H = Wflip[G,S]. Let us proceed by induction on the cardinality � of S. Let
X be the last set in S and let S� be the sequence for which S = S� ⊙ (X). Let F� be the
maximal flower that refines {X , X̄}. If � = 1, then F� and (X) are the required flower
and corresponding sequence. Otherwise, by induction, there exists a set of maximal in-
dependent flowers F1, . . . ,Fr and there exists, for each i ∈ [r], a w-sequence Si of Fi such
that H = Wflip[G,S1 ⊙ . . .⊙Sr ⊙ (X)]. Suppose F� = Fi for some i ∈ [r]. Because of Re-
mark 5.7, we may assume that F�=Fr. Then F1, . . . ,Fr and S1, . . . ,Sr⊙(X) are the required
flowers and corresponding w-sequences. Thus we may assume that F� is distinct from Fi

for all i ∈ [r]. Suppose that F� is independent from F1, . . . ,Fr. Then F1, . . . ,Fr,F� and
S1, . . . ,Sr,(X) are the required flowers and corresponding w-sequences. Hence, we may
assume that for some i ∈ [k], F� and Fi are not independent. Because of Remark 5.7, we
may assume that F� and Fr are not independent. It follows from Lemma 5.6 that there exists
a leaflet {B1,B2,B3,B4} of H � := Wflip[G,S1 ⊙ . . .⊙Sr−1], where Fr = {B1 ∪B2,B3 ∪B4}
and F� = {B1 ∪ B3,B2 ∪ B4}. Hence Sr = (B1 ∪ B2) and X = B1 ∪ B3. It follows that
Wflip[H �,Sr ⊙ (X)] = Wflip[H �,(B2∪B3)]. Then F1, . . . ,Fr and S1, . . . ,Sr−1,(B2∪B3) are the
required flowers and corresponding w-sequences.
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Let G be a graph and let F = {B1, . . . ,Bt} be a flower of G. If H = Wflip[G,(Bi)] for some
i ∈ [t], then we say that H is obtained from G by reversing petal Bi. We say that petals
Bi,B j are consecutive in G if VG(Bi)∩VG(B j) �= /0.

Lemma 5.9. Let F be a flower of a graph G and let B1,B2,B3,B4 be petals of F. We can
find a non-crossing w-sequence S of F such that, for H := Wflip[G,S], both B1,B2 and B3,B4

are consecutive petals of F in H.

Proof. There exists a flower F� = {B�
1,B

�
2,B

�
3,B

�
4} such that:

• F is a refinement of F�;

• Bi ⊆ B�
i for i = 1,2,3,4;

• BG(Bi)∩BG(B�
i) �= /0.

Since F� has only 4 petals, there is a non-crossing w-sequence S� of F� such that, for H � =

Wflip[G,S�], B�
1,B

�
2,B

�
3,B

�
4 appear consecutively in H �. As H can be obtained from H � by

possibly reversing some of the petals of F�, the result follows.

5.4 Proof of Propositions 5.2 and 5.3

Lemma 5.10. Let F be a flower of G, let L be a w-sequence for flower F, and let H =

Wflip[G,L]. Consider Z ⊆V (G), where |Z| ≤ 2. Then there exists a w-sequence L� ⊙L�� of
G such that:

(1) H = Wflip[G,L� ⊙L��];

(2) Z ∩BG(X) = /0 for all X ∈ L�;

(3) L�� is non-crossing.

Proof. We only consider the case where Z = {z1,z2} and where both z1,z2 are attachments
of F in G, as the other cases are similar. For i = 1,2, there exist consecutive petals Bi,B�

i in
G such that zi ∈ BG(Bi)∩BG(B�

i). Note that H is obtained from G by first permuting the
petals of F and then by reversing a subset of the petals. Since the petals are 2-separations
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that do not cross any 2-separation of F, we may assume that H is obtained from G by
only permuting the petals of F. It follows from Lemma 5.9 that there is a non-crossing
w-sequence L�� of H such that, in H � := Wflip[H,L��], B1,B�

1 and B2,B�
2 are consecutive.

Moreover, we can assume (by possibly reversing petals) that zi ∈ BH �(Bi)∩BH �(B�
i) for

i = 1,2. Let F� be the flower obtained from F by replacing, for i = 1,2, petals Bi,B�
i by

a unique petal Bi ∪B�
i. Then let L� be a w-sequence for flower F� such that Wflip[G,L�] =

H �.

We are now ready for the proof of the first main result.

Proof of Proposition 5.2. We say that a set of sequences S1,S2,L satisfies property (P) if
there exist graphs H,H �, where S1,S2,L are w-sequences of G,H �,H respectively, and

(1’) H = Wflip[G,S1], where Z ∩BG(X) = /0 for all X ∈ S1;

(2’) H � = Wflip[H,L];

(3’) G� = Wflip[H �,S2] and S2 is non-crossing.

As we can choose S1 = S2 = /0 and since G,G� are equivalent, a set of sequences S1,S2,L
satisfying (P) exists. Lemma 5.8 implies that there exist maximal independent flowers
F1, . . . ,Fk and there exists, for all i∈ [k], a w-sequence Li for Fi such that H �=Wflip[H,L1⊙
·· ·⊙Lk].

Among all choices of S1,S2,L1, . . . ,Lk where S1,S2,L1⊙·· ·⊙Lk satisfy property (P),
choose one that minimizes k. Suppose k > 0. Apply Lemma 5.10 to the sequence L1 and
let L�

1 and L��
1 correspond to L� and L�� in the statement of the Lemma. Define

Ŝ1 := S1 ⊙L�
1, Ŝ2 := L��

1 ⊙S2.

Since flowers F1, . . . ,Fk of H are independent, L��
1 is independent from L2 ⊙·· ·⊙Lk (see

Proposition 5.6). Therefore, by Remark 5.7,

G� = Wflip[G, Ŝ1 ⊙L2 ⊙·· ·⊙Lk ⊙ Ŝ2].

Then Ŝ1, Ŝ2,L2 ⊙ ·· ·⊙Lk contradict our choice of S1,S2,L1,L2. Thus k = 0. Note that,
if Z ∩BG(X) = /0 for some X ∈ S2, then we can redefine S1 to be S1 ⊙ (X) and S2 to be
S2 −{X} (S2 can be viewed as a set). Hence we may assume that Z ∩BG(X) �= /0 for all
X ∈ S2 and the result follows.
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Remark 5.11. Let G be a graph, let S be a non-crossing w-sequence of G, and let G� =

Wflip[G,S]. Suppose that there exist X1,X2,X3 ∈ S, where X1 ⊂ X2 ⊂ X3 and X1,X2,X3 have
distinct boundaries. Suppose that for some vertex z we have z ∈ BG(Xi) for i = 1,2,3.
Then BG�(X1)∩BG�(X2)∩BG�(X3) = /0.

Proof. Because of Remark 5.1, we may assume that X1,X2,X3 appear first in S. Let H =

Wflip[G, (X1,X2,X3)]. Then BH(X1)∩BH(X2)∩BH(X3) = /0. The result now follows as S
is non-crossing.

Lemma 5.12. Let H,H � be equivalent graphs with H � = Wflip[H,S] for some non-crossing
w-sequence S. Suppose that there exist vertices z in V (H) and z� in V (H �) such that z ∈
BH(X) and z� ∈ BH �(X) for every X ∈ S. Then H � = Wflip[H,S�] for some S� which is a
w-star of H with center z and a w-star of H � with center z�.

Proof. Note that we may swap any X in S with its complement and maintain the properties
of S. Since S is non-crossing we may assume (after possibly replacing some sets S by their
complement) that S is laminar, i.e. every two sets in S are either disjoint or one contains the
other. First suppose there exist X1,X2 ∈ S with BH(X1) = BH(X2). Then we may remove
X1,X2 from S and add X1�X2. This keeps the w-sequence non-crossing and gives rise to the
same graph H �. Hence we may assume that, for every X1,X2 ∈ S, BH(X1)∩BH(X2) = {z}
and BH �(X1)∩BH �(X2) = {z�}, and condition (b) in the definition of w-star holds. Suppose
that for some X1,X2 ∈ S we have X1 ⊂ X2. By Remark 5.11, there is no set X3 ∈ S where
X3 ⊇ X2 or X̄3 ⊇ X2. After replacing X2 by X̄2 the sets in S satisfy condition (a) of the
definition of w-stars. Finally, if any X ∈ S contains an edge e where the ends of e are
BH(X), we may replace X by X −{e}. Then property (c) of w-stars holds.

We are now ready for the proof of the second main result.

Proof of Proposition 5.3. Proposition 5.2 implies that there exist a w-sequence L of G and
a graph H with a non-crossing sequence S0 such that (1) holds in the statement of the
proposition, G� = Wflip[H,S0] and z ∈ BH(X) for all X ∈ S0. Because of Remark 5.1, we
can view S0 as a set. Hence, H = Wflip[G�,S0]. Let L� = {X ∈ S0 : z� �∈ BG�(X)} and let
S1 := S0−L�. Let H � := Wflip[H,S1]. Then condition (2) in the statement of the proposition
holds. Finally, by Lemma 5.12, there exists a w-sequence S for H that is a w-star of H with
center z and a w-star of H � with center z� and such that H � = Wflip[H,S].
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5.5 Proof of Proposition 5.4

Let F = {B1, . . . ,Bt} be a flower in a graph G. If the petals of F appear in the order
B1, . . . ,Bt in G, we denote by F(G) the sequence (B1, . . . ,Bt). Note that this sequence is
not uniquely defined, but we will fix one such sequence for each one of the graphs we are
interested in.

To prove Proposition 5.4 we require the following result.

Lemma 5.13. Let G and G� be equivalent graphs and let P be a path in G. Then there
exists a graph H such that:

(1) H = Wflip[G,S1], for some w-sequence S1 which preserves P, and

(2) G� = Wflip[H,S2], for some non-crossing w-sequence S2.

Proof. By Lemma 5.8, there exists a set of maximal independent flowers F1, . . . ,Fk and
there exists, for all i ∈ [k], a w-sequence Li of Fi such that

G� = Wflip[G,L1 ⊙ . . .⊙Lk].

By Remark 5.7, it suffices to prove the statement for the case when the graphs G and G�

are related by Whitney-flips on a sequence for a flower F= {B1, . . . ,Bt} of G. By possibly
relabeling the petals of F, we may assume that F(G) = (B1, . . . ,Bt) and {i ∈ [t] : P∩Bi �=
/0}= {1, . . . ,q}, for some q ∈ [t].

The idea for the proof is the following: first we rearrange the order of the petals B2, . . .,
Bq−1 and the petals Bq+1, . . . ,Bt independently (using Whitney-flips which preserve P) and
we obtain an appropriate graph H. Then we show that we can obtain G� from H by a
sequence of pairwise non-crossing Whitney-flips.

Let F(G�) be a sequence corresponding to F in G�, where the first petal in F(G�) is B1.
We define the following index sets:

(a) I1 := {i ∈ [q−1]−{1} : Bq precedes Bi in F(G�)};

(b) J1 := {i ∈ [q−1]−{1} : Bi precedes Bq in F(G�)};

(c) I2 := {i ∈ [t]− [q] : Bi precedes Bq in F(G�)};
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(d) J2 := {i ∈ [t]− [q] : Bq precedes Bi in F(G�)}.

By definition I1,J1, I2,J2 partition [t]−{1,q}. We now define the graph H by defining
the order in which the petals of F appear in H. That is, we define the sequence F(H)

corresponding to F in H, where the first petal in F(H) is B1. We are not concerned with
reversing some of the petals, as all the Whitney-flips we consider are sequences for F. We
define F(H) such that, for k = 1,2:

(a) Bi precedes Bq in F(H), for every i ∈ I1 ∪ J1;

(b) Bq precedes Bi in F(H), for every i ∈ I2 ∪ J2;

(c) Bi precedes B j in F(H), for every i ∈ Ik and j ∈ Jk;

(d) the order in F(H) of petals Bi, for i ∈ Ik, is the reverse of their order in F(G);

(e) the order in F(H) of petals B j, for j ∈ Jk, is the same as their order in F(G).

First note that H may be obtained from G by a sequence S1 which preserves P. In fact, we
may rearrange petals B2, . . . ,Bq−1, so that they satisfy the conditions above, by applying
Whitney-flips on a w-sequence L1 such that, for every X ∈ L1, X is the union of petals
from {Bi : i ∈ I1∪J1}. Similarly , we may rearrange petals Bq+1, . . . ,Bt , so that they satisfy
the conditions above, by applying Whitney-flips on a w-sequence L2 such that, for every
X ∈ L2, X is the union of petals from {Bi : i ∈ I2∪J2}. Then, for k = 1,2, for every X ∈ Lk

the ends of P are in VG(X̄), hence X preserves P. Thus S1 := L1 ⊙L2 is the required
w-sequence.

It remains to show that G� may be obtained from H by a sequence of non-crossing
Whitney-flips. For every i ∈ I1, let Xi be the union of B1 and all petals succeeding Bi

in F(G�) and let Yi := Xi ∪Bi. For every i ∈ I2, let Xi be the union of Bq and all petals
succeeding Bi and preceding Bq in F(G�); let Yi := Xi ∪Bi. Note that, for every i ∈ I1 ∪ I2,
both Xi and Yi are formed by petals of F that are consecutive in H. Consider distinct i, j ∈ I1

or i, j ∈ I2 such that Bi precedes B j in F(H); by definition of I1 and I2, B j precedes Bi in
F(G�). Hence Bi ∈ Xj,Yj and Xi,Yi ⊂ Xj,Yj. Moreover, for all i ∈ I1 and j ∈ I2, B j precedes
Bq and Bq precedes Bi in F(G�) (by definition of the sets I1 and I2). Thus Xi,Yi ⊂ X̄ j,Ȳj.
It follows that the sequence S2 formed by the concatenation of (Xi,Yi), for i ∈ I1 ∪ I2, is a
non-crossing w-sequence for H.
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Now we show by induction on |I1 ∪ I2| that G� = Wflip[H,S2] (plus possibly reversing
some of the petals of F, but these Whitney-flips are not relevant for the proof). If both
I1 and I2 are empty, then we are trivially done. Now suppose I1 is non-empty; we may
assume this is the case, by symmetry between I1 and I2. Let Bi be the first petal in F(H)

such that i ∈ I1. Let H � := Wflip[H,(Xi,Yi)], I�1 := I1 −{i} and J�2 := J2 ∪{i}. Then H � and
I�1,J1, I2,J�2 satisfy properties (a)-(e) above. Thus, given the sequence S�2 := S2 − (Xi,Yi),
G� = Wflip[H �,S�2].

Proof of Proposition 5.4. Among all graphs H as in Lemma 5.13, pick one such that |S2|
is minimized. As S2 is non-crossing, every X ∈ S2 is a 2-separation in H. If there exists
X ∈ S2 that preserves P, then S�1 = S1 ∪ X and S�2 = S2 − X satisfy Wflip[G,S�1 ⊙ S�2] =
Wflip[G,S1 ⊙S2] = G� and violate our choice of H. Thus every X ∈ S2 does not preserve P.
It follows that, if u,v are the ends of P in H, |IH(X)∩{u,v}|= 1 and |IH(X̄)∩{u,v}|= 1
for every X ∈ S2. Let Su := {X ∈ S2 : u ∈ IH(X)} and Sv := {X ∈ S2 : v ∈ IH(X)}. Note
that Su,Sv partition S2. Define S�2 := Su∪{X̄ : X ∈ Sv}. Then the sets in S�2 may be ordered
to form a nested w-sequence and, for every X ∈ S�2, X does not preserve P, as required.

5.6 Whitney-flips on grafts

The results in this section are exclusively used in Section 9.6.

5.6.1 Flowers in grafts

Lemma 5.14. Let (H,T ) be a graft and F= {B1, . . . ,Bt} be a flower of H with attachments
u1, . . . ,ut . Suppose T = Ta ∪Tb, where Ta ⊆ {u1, . . . ,ut}, |Tb| ≤ 4 and, for every v,w ∈ Tb,
we have v∈IH(Bi) and w∈IH(B j), for distinct i, j ∈ [t]. Then there exists a graft (H �,T �)

equivalent to (H,T ) with |T �| ≤ 4.

Proof. Note that every graft obtained from (H,T ) by Whitney-flips on a sequence for F
satisfies the same hypothesis as (H,T ). Let |T | = 2k for some integer k. We may choose
a T -join J = P1�P2�·· ·Pk where P1, . . . ,Pk are pairwise vertex-disjoint paths of H. Let
B := {B ∈ F : B∩Pi �= /0, for some i ∈ [k]}. Let H � be obtained from H by rearranging the
petals of F so that the petals in B are consecutive in H �. By possibly reversing some of
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the petals in H � we may obtain a graph H �� where J is the union of at most two paths. Let
T �� :=Vodd(H ��[J]). Then |T ��| ≤ 4 and (H ��,T ��) is equivalent to (H,T ).

5.6.2 Caterpillars

A caterpillar is a tree obtained by taking a path and adding edges which have exactly one
end in common with the path. Let G be a graph and let S = (X1, . . . ,Xk) be a nested w-
sequence for G. We denote by Cat(G,S) the graph defined on the vertex set ∪k

i=1BG(Xi)

with edge set {e1, . . . ,ek}, where the ends of ei are the vertices in BG(Xi). Note that
Cat(G,S) is a vertex-disjoint union of caterpillars. Given a graft (G,T ) and a w-sequence
S for G, we denote by Wflip[(G,T ),S] the graft (G�,T �), where G� = Wflip[G,S] and (G,T )
and (G�,T �) are equivalent.

Lemma 5.15. Let G be a graph and let S = (X1, . . . ,Xk) be a nested w-sequence for G.
Let s, t ∈ V (G) with s ∈ IG(X1) and t ∈ IG(X̄k). Let (G�,T ) := Wflip[(G,{s, t}),S]. Then
T = {s, t}∪Vodd(Cat(G�,S)).

Proof. Let us proceed by induction on k. The result is trivially true for k = 0. Thus let us
assume that k ≥ 1 and that the result holds for k−1.

Let S� = (X1, . . . ,Xk−1) and define (H,T �) := Wflip[(G,{s, t}),S�]. By induction

T � =Vodd(Cat(H,S�))∪{s, t}. (5.1)

We have (G�,T ) = Wflip[(H,T �),(Xk)]. Let u,v denote the vertices in BH(Xk) = BG�(Xk).
Since Cat(G�,S) is obtained from Cat(H,S�) by adding vertices u,v (if not already in it)
and edge uv,

Vodd(Cat(G�,S)) =Vodd(Cat(H,S�))�{u,v}. (5.2)

We claim that it suffices to prove that T�T � = {u,v} as this implies that

T =T ��{u,v}
=(Vodd(Cat(H,S�))∪{s, t})�{u,v} by (5.1)

=(Vodd(Cat(H,S�))�{u,v})∪{s, t}
=(Vodd(Cat(G,S))∪{s, t}, by (5.2)
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as required. Let J be a T �-join of H. Then T is defined as Vodd(G�[J]), hence J is a T -join
of G�. Therefore

T � =Vodd(H[J∩Xk])�Vodd(H[J \Xk]), and (5.3)

T =Vodd(G�[J∩Xk])�Vodd(G�[J \Xk]). (5.4)

As H[Xk] = G�[Xk], (5.3), (5.4) imply that

T�T � =Vodd(H[J \Xk])�Vodd(G�[J \Xk]). (5.5)

Since T � \ {t} ⊂ VH(Xk) we may assume (after possibly interchanging the role of u and v)
that

Vodd(H[J \Xk]) = {u, t}. (5.6)

As G� = Wflip[H,(Xk)], it follows that

Vodd(G�[J \Xk]) = {v, t}. (5.7)

Then (5.5), (5.6) and (5.7) imply that T�T � = {u,v}, as required.
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Chapter 6

Proofs of the even cycle isomorphism
results

In this chapter we prove the results about split siblings and quad siblings stated in Chapter 4
using results from Chapter 5.

6.1 Proof of Theorem 4.3 - split siblings

We say that split-templates

T= (H1,v1,α1,H2,v2,α2,S) and T� = (H �
1,v

�
1,α �

1,H
�
2,v

�
2,α �

2,S�) (6.1)

are compatible if:

(a) Hi,H �
i are equivalent, for i = 1,2, and

(b) αi�α �
i forms a cut of H1, for i = 1,2.

Note that, by Theorem 1.1, cut(H1) = cut(H2) = cut(H �
1) = cut(H �

2).

Lemma 6.1. Let T and T� be compatible split-templates. Let (G1,Σ1), (G2,Σ2) be the
siblings arising from T and (G�

1,Σ�
1), (G

�
2,Σ�

2) be the siblings arising from T�. Then, for
i = 1,2, (Gi,Σi) and (G�

i,Σ�
i) are equivalent.
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Proof. Let us assume that T,T� are as described in (6.1). Then, by construction,

cut(G1) = span
�
cut(H1)∪{α1}

�
and cut(G�

1) = span
�
cut(H1)∪{α �

1}
�
.

By hypothesis, α1�α �
1 ∈ cut(H1). Hence, cut(G1) = cut(G�

1). It follows from Theo-
rem 1.1 that G1 and G�

1 are equivalent. Similarly, G2 and G�
2 are equivalent. It follows

that (G�
1,Σ1),(G�

2,Σ2) are siblings. As the matching signature pair for G�
1,G

�
2 is unique up

to signature exchange, (Gi,Σi) and (G�
i,Σ�

i) are equivalent, for i = 1,2.

Lemma 6.2. Every split-template has a compatible split-template which is simple or nova.

Proof. Suppose that T := (H1,v1,α1,H2,v2,α2,S) is a split-template.

Claim 1. There is a template (H �
1,v1,α1,H �

2,v2,α2,S�) which is compatible with T and has
the property that S� is a w-star of H �

1,H
�
2.

Proof. The proof follows easily from Proposition 5.3, since H1 and H2 are equivalent. ✸

Choose a split-template T� = (H �
1,v

�
1,α �

1,H
�
2,v

�
2,α �

2,S�) with the following properties:

(M1) T� is compatible with T;

(M2) for i = 1,2, S� is a w-star of H �
i with center v�i;

(M3) |∪{X : X ∈ S�}| is minimized among all split-templates satisfying (M1) and (M2).

Such a split-template exists because of Claim 1. We may assume that S� �= /0 for otherwise
T� is simple and we are done. We will show that T� is nova. As (N1) (from the definition
of nova) holds, it suffices to prove (N2). Let X � ⊆ X ∈ S�, where BH �

1
(X �) = BH �

1
(X) =

{v�1,w}, for some vertex w. Let us assume that we chose X � to be an inclusion-wise minimal
subset with that property. It suffices to show for (N2) (as we can interchange the role of H �

1
and H �

2) that there exists {v�1,w}-handcuffs included in X � in (H �
1,α �

1�α �
2).

Claim 2. None of the following holds:

(1) δH �
1
(v�1)∩X � ∩α �

1 is empty;

(2) (δH �
1
(v�1)∩X �)−α �

1 is empty;
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(3) we can partition X � into Z,Z� such that BH �
1
(X �) =BH �

1
(Z) =BH �

1
(Z�) and α �

1∩X � =

δH �
1
(v�1)∩Z.

Proof. Define

D :=






/0 if (1) holds

δH �
1
(v�1) if (2) holds

δH �
1
(IH �

1
(Z)) if (3) holds.

Let α̃ = α �
1�D, let H̃ := Wflip[H �

1,(X
�)] and let S̃= S� −{X}∪{X −X �}. There is a vertex

ṽ of H̃ where δH̃(ṽ)⊇ α̃ . Since S is non-crossing, H �
2 = Wflip[H̃, S̃]. Hence, (M2) holds for

T̃ := (H̃, ṽ, α̃, H �
2,v

�
2,α �

2, S̃). Since D is a cut of H �
1, (M3) holds for T̃. As |∪{X : X ∈ S̃}|<

|∪{X : X ∈ S�}|, this contradicts our choice (M3). ✸

Claim 3. There exists a circuit C ⊆ X � of H �
1 avoiding w with |C∩α �

1| odd.

Proof. We claim that otherwise (1),(2), or (3) of Claim 2 must hold, giving a contradiction.
Let G be the graph obtained from H �

1[X
�] by splitting v�1 into v�+1 ,v�−1 according to α �

1. Every
(v�−1 ,v�+1 )-path P of H[X �] avoiding w is a required circuit. Hence, we may assume that no
such path exists. It follows that w is a cut-vertex separating v�−1 and v�+1 in G[X �]. Let Z,Z�

be the partition of X � such that VG[X �](Z)∩VG[X �](Z�) = {w} and v�−1 ∈ G[Z], v�+1 ∈ G[Z�].
Then (3) holds. ✸

By Claim 3 and by reversing the role of H �
1 and H �

2, we deduce that there exists an odd
circuit C1 (respectively C2) included in X � using v�1 (respectively w) and avoiding w (re-
spectively v�1). Consider first the case where C1 and C2 have at least one common vertex
in H �

1. As α �
1 ⊆ δH �

1
(v�1) and α �

2 ⊆ δH �
1
(w), we may assume, after possibly redefining C1,

that C1 and C2 intersect in exactly one vertex or intersect in a path. Hence, in that case
(C1,C2, /0) form {v�1,w}-handcuffs included in X � in (H �

1,α �
1�α �

2), as required. Consider
now the case where C1 and C2 have no common vertex in H �

1. As X � was selected to be
inclusion-wise minimal, there exists a path P⊂X � joining C1 and C2 which avoids v�1 and w.
For an inclusion-wise minimal such P, (C1,C2,P) form {v�1,w}-handcuffs in (H �

1,α �
1�α �

2)

as required.

Proof of Theorem 4.3. By definition, (G1,Σ1) and (G2,Σ2) arise from a split-template
(H1,v1,α1,H2,v2,α2). Let T1,T2 be the matching terminal pair for G1,G2. Lemma 2.4
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implies that G1 and G2 are 2-connected, except for possible loops. Consider first the
case where H1 \ loop(H1) is not 2-connected. Then for some X ⊆ E(G1), BG1(X) = T1.
It follows, from the argument in Section 4.5.3, that (G1,Σ1),(G2,Σ2) can be reduced.
Hence, H1 is 2-connected, except for possible loops, and so is H2. It follows that T =

(H1,v1,α1,H2,v2,α2,S) is a split-template for some w-sequence S of H1, where H2 =

Wflip[H1,S]. Lemma 6.2 implies that there exists a split-template T� which is simple or nova
and compatible with T. Let (G�

1,Σ�
1),(G

�
2,Σ�

2) arise from T�. By definition (G�
1,Σ�

1),(G
�
2,Σ�

2)

are simple twins or nova twins. By Lemma 6.1, for i= 1,2, (G�
i,Σ�

i) is equivalent to (Gi,Σi).
It follows that (G1,Σ1),(G2,Σ2) are simple or nova siblings.

6.2 Proof of Theorem 4.6 - quad siblings

To prove Theorem 4.6 we require some preliminary results. Similarly to the proof for split
siblings, we define compatible quad-templates. The different types of quad siblings arise
from different types of templates.

6.2.1 Templates

Remark 6.3. Suppose that T = (H1,v1,w1,α1,β1,H2,v2,w2,α2,β2) is a quad-template
and (G1,Σ1), (G2,Σ2) are the quad siblings arising from T. Then α3−i and β3−i are signa-
tures of (Gi,Σi), for i = 1,2.

Proof. For i = 1,2, vertex vi of Hi gets split into vertices v−i ,v
+
i of Gi. By construction,

αi = δGi(v
−
i ), for i = 1,2. As v−1 ∈ T1, Theorem 3.1 implies that α1 is a signature of

(G2,Σ2). Similarly β1 is a signature of (G2,Σ2). By symmetry, α2,β2 are signatures of
(G1,Σ1).

We say that two quad-templates

T= (H1,v1,w1,α1,β1,H2,v2,w2,α2,β2)

and (6.2)

T� = (H �
1,v

�
1,w

�
1,α �

1,β �
1,H

�
2,v

�
2,w

�
2,α �

2,β �
2)

are compatible if, for i = 1,2:
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(a) Hi is equivalent to H �
i ;

(b) αi∆α �
i is a cut of H1;

(c) βi∆β �
i is a cut of H1.

Note that, by Theorem 1.1, cut(H1) = cut(H2) = cut(H �
1) = cut(H �

2).

Lemma 6.4. Let T and T� be compatible quad-templates. Let (G1,Σ1), (G2,Σ2) and
(G�

1,Σ�
1), (G

�
2,Σ�

2) be quad siblings arising from T and T� respectively. Then (Gi,Σi) and
(G�

i,Σ�
i) are equivalent, for i = 1,2.

Proof. Let T, T� be compatible quad-templates defined as in (6.2). Fix i ∈ [2]. Let v−i ,v
+
i ∈

V (Gi) be obtained by splitting vi according to αi in Hi. We first show that Gi is equivalent
to G�

i by showing that cut(Gi) = cut(G�
i). Let C = αi∆α �

i . By definition of compatible
templates, C is a cut of H �

i , hence it is a cut of G�
i. Moreover, by construction, δGi(v

−
i ) = αi.

Thus δGi(v
−
i ) =C∆α �

i is a cut of G�
i. Similarly, we can show that δGi(v

+
i ) is a cut of G�

i. By
symmetry between vi and wi, we have that δGi(w

−
i ), δGi(w

+
i ) are cuts of G�

i. Moreover, for
every u ∈ V (Gi), if u �= v−i ,v

+
i ,w

−
i ,w

+
i , then δGi(u) is a cut of Hi, hence a cut of H �

i and a
cut of G�

i. Thus δGi(u) is a cut of G�
i for every u ∈ V (Gi). As the cuts of Gi are generated

by its fundamental cuts (i.e. the cuts of the form δGi(u), for u ∈ V (Gi)), this shows that
cut(Gi) ⊆ cut(G�

i). By symmetry between T and T�, we have that cut(G�
i) = cut(Gi), thus

Gi and G�
i are equivalent. As Gi is equivalent to G�

i, Σ1,Σ2 is a matching signature pair
for G�

1,G
�
2. By Proposition 3.7, the matching signature pair is unique up to resigning, thus

(Gi,Σi) and (G�
i,Σ�

i) are equivalent.

Let (H1,v1,w1,α1,β1,H2,v2,w2,α2,β2) be a quad-template. If H1,H2 are 2-connected,
except for possible loops, we have that H2 = Wflip[H1,S] for some w-sequence S. We
abuse terminology slightly and say that (H1,v1,w1,α1,β1,H2,v2,w2,α2,β2,S) is a quad-
template. (This is only well defined for the case where H1,H2 are 2-connected up to loops).

Consider a template T=(H1,v1,w1,α1,β1,H2,v2,w2,α2,β2,S), where S=(X1, . . ., Xk)

for some k ≥ 0 and Xi �= /0 for every i ∈ [k]. We say that T is of type I if:

(TIa) Xi ∩Xj = /0, for every i, j ∈ [k], i �= j;

(TIb) Hi[Xj]\BHi(Xj) is non-empty and connected, for every i = 1,2 and j ∈ [k];
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(TIc) BHi(Xj) = {vi,wi}, for i = 1,2 and j ∈ [k].

We say that T is of type II if:

(TIIa) k = 1 or k = 2;

(TIIb) if k = 2, X1 is disjoint from X2;

(TIIc) vi ∈ BHi(Xj), for i = 1,2 and j ∈ [k];

(TIId) w1 ∈ IH1(X1);

(TIIe) if k = 1, w2 ∈ IH2(X̄1 − loop(H2));

(TIIf) if k = 2, w2 ∈ IH2(X2).

6.2.2 The proof

A signed graph (G,Σ) is ec-standard if ecycle(G,Σ) is 3-connected and, for every (G�,Σ�)

equivalent to (G,Σ), (G�,Σ�) does not contain a blocking vertex. To prove Theorem 4.6 we
require the following four results, which will be proved at the end of the chapter.

Lemma 6.5. Suppose that (G1,Σ1),(G2,Σ2) are quad siblings arising from a quad-template
T of type I. Suppose that ecycle(G1,Σ1) is 3-connected. Then (G1,Σ1), (G2,Σ2) are either
shuffle, tilt or twist twins.

Lemma 6.6. Suppose that (G1,Σ1),(G2,Σ2) are ∆-irreducible ec-standard quad siblings
arising from a quad-template T of type II. Then (G1,Σ1),(G2,Σ2) are either widget or
gadget twins.

Lemma 6.7. Suppose that (G1,Σ1),(G2,Σ2) are ∆-irreducible ec-standard quad siblings
arising from a quad-template T= (H1,v1,w1,α1,β1,H2,v2,w2,α2,β2,S). Then there exists
a template T� which is compatible with T and is of type I or type II.

Lemma 6.8. Let T=(H1,v1,w1,α1,β1,H2,v2,w2,α2,β2) be a quad-template. Let (G1,Σ1),
(G2,Σ2) be the quad siblings arising from T. If (G1,Σ1) and (G2,Σ2) are ec-standard and
∆-irreducible, then either (G1,Σ1),(G2,Σ2) are shuffle, tilt, twist, gadget or widget siblings
or H1,H2 are 2-connected, except for the possible presence of loops.
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Proof of Theorem 4.6. Let M be a 3-connected non-graphic matroid and (G1,Σ1),(G2,Σ2)

be quad siblings representating M. By Remark 2.9, (G1,Σ1),(G2,Σ2) are ec-standard. If
they are ∆-reducible we are done. Thus in the remainder of the proof we will assume that
(G1,Σ1), (G2,Σ2) are ∆-irreducible quad siblings. Suppose that they arise from a quad-
template (H1,v1,w1,α1,β1,H2,v2,w2,α2,β2). By Lemma 6.8, either (G1,Σ1), (G2,Σ2) fall
into one of the cases (1)− (5) in the statement of the theorem, or H1,H2 are 2-connected,
except for the presence of loops. Therefore we may assume that H2 = Wflip[H1,S] for some
w-sequence S of H1 and (G1,Σ1),(G2,Σ2) arise from a quad-template T with w-sequence
S. By Lemma 6.7, there exists a quad-template T� compatible with T which is of type
I or of type II. Let (G�

1,Σ�
1) and (G�

2,Σ�
2) be the quad siblings arising from T�. If T� is

of type I then, by Lemma 6.5, (G�
1,Σ�

1) and (G�
2,Σ�

2) are shuffle, tilt or twist siblings. If
T� is of type II then, by Lemma 6.6, (G�

1,Σ�
1) and (G�

2,Σ�
2) are widget or gadget twins.

Finally, by Lemma 6.4, (Gi,Σi) and (G�
i,Σ�

i) are equivalent for i = 1,2. Therefore the result
follows.

The proofs of Lemma 6.5, Lemma 6.6, Lemma 6.7 and Lemma 6.8 are given in Sec-
tion 6.2.4. First we require some technical results.

6.2.3 Technical lemmas

Recall that a set X is a 3-(0,1)-separation of a signed graph (G,Σ) if X is a 3-separation of
G such that (G[X ],Σ∩X) is bipartite and (G[X̄ ],Σ−X) is non-bipartite.

Lemma 6.9. Let (G1,Σ1), (G2,Σ2) be ec-standard siblings. Let X be a 3-(0,1)-separation
in both (G1,Σ1) and (G2,Σ2). Then (G1,Σ1), (G2,Σ2) are ∆-reducible.

Proof. Let BG1(X) = {u1,u2,u3} and BG2(X) = {u�1,u
�
2,u

�
3}. We claim that we can relabel

the vertices in BG1(X) so that every (ui,u j)-path in G1[X ] is a (ui,� u�j)-path in G2[X ], for
every choice of i, j ∈ [3], i �= j. Consider i, j ∈ [3], i �= j. Let P be a (ui,u j)-path in G1[X ].
Let Q be a (ui,u j)-path in G1[X̄ ] of the same parity as P. Note that some such Q exists
as ecycle(G1,Σ1) is 3-connected and (G1[X̄ ],Σ1 ∩ X̄) is non-bipartite. By the choice of
Q, C := P∪Q is an even circuit of ecycle(G1,Σ1), hence a circuit of ecycle(G2,Σ2). As
(G2[X ],Σ2∩X) is bipartite, every cycle in G2[X ] is even, hence G2[P] does not contain any
cycle. Therefore P is a (u�s,u�t)-path in G2[X ] for some s, t ∈ [3],s �= t. The same argument
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holds for every choice of i, j ∈ [3], i �= j. Now, if P1 is a (ui,u j)-path and P2 is a (u j,uh)-path
in G1[X ], for distinct i, j,h ∈ [3], then P1 is a (u�s,u�t)-path in G2[X ] and P2 is a (u�q,u�r)-path
in G2[X ]. We cannot have {s, t} = {q,r}, as otherwise P1 ∪P2 would be an even cycle in
(G2,Σ2) and a path in G1. Therefore P1,P2 share exactly one end in G2[X ], say u�t . Thus,
we can reindex u j as ut . Similarly we can reindex all the vertices in BG1 [X ] as desired.
Note that, in particular, G1[X ] = G2[X ]. For i = 1,2, let Σ�

i be a resigning of (Gi,Σi) such
that Σ�

i ∩X = /0. Define Y := X ∪{e ∈ E(G1) : e /∈ Σ�
i,e = (ui,u j) for some i, j ∈ [3]}. Now

we can apply a ∆-reduction to Y .

Lemma 6.10. Let H be a graph and let s1,s2 be distinct vertices of H. Let ϕi ⊆ δH(si),
for i = 1,2. Suppose that ϕ1∆ϕ2 is a non-empty cut of H such that ϕ1∆ϕ2 �= δH(s2). Then
there exists Y ⊆ E(H) such that the following hold:

(1) BH(Y )⊆ {s1,s2};

(2) IH(Y ) �= /0;

(3) δH(s1)∩Y = ϕ1 −ϕ2;

(4) for ϕ̂2 := ϕ2 or ϕ̂2 := ϕ2∆δH(s2), δH(s2)∩Y = ϕ̂2 −ϕ1.

Proof. As ϕ1∆ϕ2 is a non-empty cut of H, ϕ1∆ϕ2 = δH(U) for some U ⊂ V (H), where
U �= /0,V (H). If s1 ∈ U , we can pick V (H)−U instead of U . Thus we may assume that
s1 /∈U . If s2 /∈U , let ϕ̂2 := ϕ2 and W :=U , otherwise let ϕ̂2 := ϕ2∆δH(s2) and W :=U −
{s2}. Thus s1,s2 /∈W and δH(W ) = ϕ1∆ϕ̂2. Define Y := {(u,v) ∈ E(H) : {u,v}∩W �= /0}.
Conditions (3) and (4) in the statement are satisfied by construction. Note that U �= {s2},
as ϕ1∆ϕ2 �= δH(s2). Hence W is non-empty and IH(Y ) is non-empty. For every v ∈ W ,
δH(v)⊆ Y , hence v /∈ BH(Y ). Moreover, for every v /∈W ∪{s1,s2}, δH(v)∩Y = /0, hence
v /∈ BH(Y ). Hence BH(Y )⊆ {s1,s2}.

Lemma 6.11. Let H be a graph and s1,s2,s3 be distinct vertices of H. Let ϕi ⊆ δH(si),
for i = 1,2,3. Suppose that ϕ1∆ϕ2∆ϕ3 is a non-empty cut of H. Suppose moreover that
ϕ1∆ϕ2∆ϕ3 is not equal to any of the sets δH(s2),δH(s3),δH({s2,s3}). Then there exists
Y ⊆ E(H) such that the following hold:

(1) BH(Y )⊆ {s1,s2,s3};
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(2) IH(Y ) �= /0;

(3) δH(s1)∩Y = ϕ1 − (ϕ2 ∪ϕ3);

(4) for ϕ̂2 := ϕ2 or ϕ̂2 := ϕ2∆δH(s2), δH(s2)∩Y = ϕ̂2 − (ϕ1 ∪ϕ3);

(5) for ϕ̂3 := ϕ3 or ϕ̂3 := ϕ3∆δH(s3), δH(s3)∩Y = ϕ̂3 − (ϕ1 ∪ϕ2).

Proof. As ϕ1∆ϕ2∆ϕ3 is a non-empty cut of H, ϕ1∆ϕ2∆ϕ3 = δH(U) for some U ⊂ V (H),
where U �= /0,V (H). If s1 ∈U , we can pick V (H)−U instead of U . Thus we may assume
that s1 /∈ U . For i = 2,3, define ϕ̂i := ϕi if si /∈ U and ϕ̂i = δH(si)∆ϕi otherwise. Let
W := U −{s2,s3}. Thus s1,s2,s3 /∈ W and δH(W ) = ϕ1∆ϕ̂2∆ϕ̂3. Define Y := {(u,v) ∈
E(H) : {u,v} ∩W �= /0}. By construction, δH(s1)∩Y = ϕ1 − (ϕ2∆ϕ3). If e ∈ ϕ2 ∩ ϕ3,
then e = (s2,s3) and e /∈ ϕ1. Thus ϕ1 − (ϕ2∆ϕ3) = ϕ1 − (ϕ2 ∪ϕ3) and condition (3) holds.
Conditions (4) and (5) follow similarly. It follows from the hypothesis of the lemma that
U is not contained in {s2,s3}. Hence W is non-empty and IH(Y ) is non-empty. For
every v ∈ W , δH(v) ⊆ Y , hence v /∈ BH(Y ). Moreover, for every v /∈ W ∪ {s1,s2,s3},
δH(v)∩Y = /0, hence v /∈ BH(Y ). It follows that BH(Y )⊆ {s1,s2,s3}.

Remark 6.12. Let T = (H1,v1,w1,α1,β1,H2,v2,w2,α2,β2,S) be a quad-template. Sup-
pose that S = (X1, . . . ,Xk) and BH1(X1)∩{v1,w1} = /0. Let T� = (Wflip[H1,S],v1,w1,α1,
β1, H2, v2, w2, α2, β2,S�), where S� = (X2, . . . ,Xk). Then T� is a quad-template and T and
T� are compatible.

Suppose that T= (H1,v1,w1,α1,β1,H2,v2,w2,α2,β2,S) is a quad-template. If we sub-
stitute αi (respectively βi) with δHi(vi)∆αi (respectively δHi(wi)∆βi) for i = 1 or i = 2 we
obtain a quad-template T� giving rise to the same quad siblings as T. We say that T� is
obtained from T by a swap on vi (respectively wi). We will make repeated use of swaps in
the next section.

Lemma 6.13. Let (G1,Σ1), (G2,Σ2) be ec-standard and ∆-irreducible quad siblings aris-
ing from a quad-template T=(H1,v1,w1,α1,β1,H2,v2,w2,α2,β2). Let X be a k-separation
of H1 and H2, for k ≤ 2. Let Y := E(H1)−(X ∪ loop(H1)). Suppose that IHi(X),IHi(Y ) �=
/0 and vi,wi ∈V (Hi[X ]), for i = 1,2. Suppose moreover that, for h = 1 or h = 2, IHh(X)∩
{vh,wh} �= /0. Let j = 3− h. Then BHj(X) = {v j,w j} and all the sets α j ∩Y , (δHj(v j)−
α j)∩Y , β j ∩Y and (δHj(w j)−β j)∩Y are non-empty. In particular, X is a 2-separation in
H1 and H2.
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Proof. To simplify the notation we prove the result for the case h = 1. Thus we may
assume that v1 ∈V (H1[X ]), w1 ∈IH1(X) and v2,w2 ∈V (H2[X ]). Suppose for contradiction
that w2 ∈ IH2(X) or that w2 ∈ BH2(X) but one of the sets β2 ∩Y , (δH2(w2)−β2)∩Y is
empty. If w2 ∈ IH2(X), then β2 ∩Y = /0. Thus either β2 ∩Y = /0 or w2 ∈ BH2(X) and
δH2(w2)∩Y ⊆ β2. In the second case, we may substitute β2 with δH2(w2)∆β2 (this is just a
swap), reducing to the case β2 ∩Y = /0. As w1 ∈ IH1(X), we have β1 ∩Y = /0. For i = 1,2,
let vi be split into vertices v−i and v+i of Gi. Define w−

i ,w
+
i similarly. Recall that βi is

a signature of (G3−i,Σ3−i) for i = 1,2. Every edge in βi ∩ loop(Hi) is also in α3−i∆β3−1

(by definition of unfolding). Thus every edge in βi ∩ loop(Hi) is either a (v−3−i,v
+
3−i) edge

or a (w−
3−i,w

+
3−i) edge in G3−i. This implies that, for i = 1,2, (Gi[Y ],Σi ∩Y ) is bipartite

and Y is a ki-separation of Gi for ki ≤ 3. As ecycle(G1,Σ1) is 3-connected, Y is not a
1- or a 2-separation in G1 or G2, by Lemma 2.4. Thus k1 = k2 = 3. Moreover, Y is
not a 3-(0,0)-separation in (Gi,Σi), for i = 1,2, for otherwise (Gi,Σi) would contain a
blocking vertex. Thus Y is a 3-(0,1)-separation in (G1,Σ1) and (G2,Σ2). By Lemma 6.9,
(G1,Σ1) and (G2,Σ2) are ∆-reducible, a contradiction. This implies that w2 ∈ BH2(X) and
the sets β2 ∩Y and (δH2(w2)−β2)∩Y are non-empty. By symmetry between v2 and w2,
v2 ∈ BH2(X) and the sets α2 ∩Y and (δH2(v2)−α2)∩Y are non-empty.

6.2.4 Proofs of Lemmas 6.5, 6.6, 6.7 and 6.8

Proof of Lemma 6.5. Let T = (H1,v1,w1,α1,β1,H2,v2,w2,α2,β2,S) be a quad-template
of type I, where S= (X1, . . . ,Xk) for some k ≥ 0. For i = 1,2, let Γi := αi∆βi. By definition
of quad siblings, (H1,Γ1) and (H2,Γ2) are equivalent. Thus Γ1∆Γ2 = α1∆β1∆α2∆β2 is a
cut of H1. Let Γ1∆Γ2 = δH1(U) for some U ⊆ V (H1). By possibly swapping on v1 or w1,
we may assume that v1,w1 /∈U .

Case 1: Suppose k ≥ 1. Let Xk+1, . . . ,Xt be a partition of E(H1)− (X1 ∪ . . .∪Xk ∪
loop(H1)) into minimal 2-separations having as boundary {v1,w1} plus possibly edges with
ends v1,w1. Let Uj =U ∩VH1(Xj), for every j ∈ [t]. As v1,w1 /∈U and Xj,Xh are disjoint
for every distinct j,h ∈ [t], the sets U1, . . . ,Ut are all disjoint. Suppose that Uj �= /0 for some
j ∈ [t]. Thus (Γ1∆Γ2)∩Xj is a non-empty cut of H1[Xj]. By Lemma 6.10, there exists a set
Y ⊆ Xj such that BH1(Y )⊆ {v1,w1}; IH1(Y ) �= /0; δH1(v1)∩Y = (Γ1∆Γ2)∩δH1(v1)∩Xj;
δH1(w1)∩Y = (Γ1∆Γ2)∩ δH1(w1)∩ Xj. As H1[Xj] \ {v1,w1} is connected, Y = Xj and
Uj = IH1(Xj). Thus for every j ∈ [t], either Uj = /0 or Uj = IH1(Xj). Therefore U =
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∪i∈IIH1(Xi), for some I ⊆ [t]. Define the following index sets: I1 := ([t]− [k])∩ I; I2 :=
[k]− I; I3 := [k]∩ I; I4 := [t]−([k]∪ I). Note that I1, I2, I3, I4 partition [t]. The idea is that for
each 2-separation Xj with BHi(Xj) = {vi,wi}, there are four possible choices, depending
whether, when going from H1 to H2, we resign, flip, resign and flip or do not perform any
operation in H1[Xj]. Now partition the edges in loop(H1)∩Γ1 as L1 ∪ L2, where e ∈ L1

if e ∈ α1 ∩α2 or e ∈ β1 ∩ β2 and e ∈ L2 otherwise. Finally define Y1 := ∪ j∈I1(Xj)∪ L1;
Y2 := ∪ j∈I2(Xj); Y3 := ∪ j∈I3(Xj)∪L2; Y4 := ∪ j∈I4(Xj). Then (G1,Σ1) and (G2,Σ2) form a
shuffle with partition Y1,Y2,Y3,Y4.

Case 2: Suppose k = 0. This implies that H1 = H2. In this case we may also assume
that v2,w2 /∈U (by possibly swapping on v2,w2). We now have different cases depending
on the cardinality of {v1,w1}∩{v2,w2}.

Case 2.1: Suppose {v1,w1} = {v2,w2}. Then, similarly to case 1, we obtain a shuffle
(where the sets Y2 and Y3 are empty).

Case 2.2: Suppose {v1,w1} ∩ {v2,w2} = {v1} = {v2}. This implies that δ (U) ⊆
δ (v1)∪δ (w1)∪δ (w2). Moreover, δ (w1)∩δ (U)= δ (w1)∩Γ1 and δ (w2)∩δ (U)= δ (w2)∩
Γ2. Define Y1 := E(H1[U ])∪ δ (U) and Y2 := E(H1)− (Y1 ∪ loop(H1)). If e ∈ loop(Hi)−
(αi ∪βi), then e is an even loop of (Gi,Σi), contradicting the fact that ecycle(Gi,Σi) is 3-
connected. Thus every loop of Hi is either in αi or in βi (but not both, by definition of
unfolding). Moreover (Gi,Σi) do not have parallel edges of the same parity. It follows that
| loop(Hi)| ≤ 4 and every edge in loop(H1) is in exactly one of α1,β1 and in exactly one of
α2,β2. If loop(H1)∩β1 ∩α2 is non-empty, let e ∈ loop(H1)∩β1 ∩α2. Similarly, if they
exist, define edges f ,g,h ∈ loop(H1) as follows: f ∈ β1 ∩ β2; g ∈ α1 ∩α2; h ∈ α1 ∩ β2.
Then (G1,Σ1) and (G2,Σ2) are related by a twist with partition Y1,Y2,{e, f ,g,h}.

Case 2.3: Suppose {v1,w1}∩{v2,w2}= /0. This implies that δ (U)⊆ δ (v1)∪δ (w1)∪
δ (v2)∪ δ (w2). Moreover, δ (vi)∩ δ (U) = δ (vi)∩Γi and δ (wi)∩ δ (U) = δ (wi)∩Γi for
i = 1,2. Define Y1 := E(H1[U ])∪ δ (U),Y2 := E(H1)− (Y1 ∪ loop(H1)) and, if they exist,
edges e, f ,g,h ∈ loop(H1) as follows: e ∈ α1 ∩α2; f ∈ α1 ∩β2; g ∈ β1 ∩α2; h ∈ β1 ∩β2.
Then (G1,Σ1) and (G2,Σ2) are related by a tilt with partition Y1,Y2,{e, f ,g,h}.

Proof of Lemma 6.6. Let T = (H1,v1,w1,α1,β1,H2,v2,w2,α2,β2,S) be a quad template
of type II. Fix i = 1 or i = 2. If e ∈ loop(Hi)− (αi ∪βi), then e is an even loop of (Gi,Σi),
contradicting the fact that ecycle(Gi,Σi) is 3-connected. Thus every loop of Hi is either in
αi or in βi (but not both, by definition of unfolding). Moreover, for i = 1,2, (Gi,Σi) do
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not have parallel edges of the same parity. It follows that | loop(Hi)| ≤ 4 and every edge in
loop(H1) is in exactly one of α1,β1 and in exactly one of α2,β2. Thus we will not consider
the behavior of the loops of H1 any further in this proof. Now we consider two cases,
depending on whether |S|= 1 or |S|= 2.

Case 1: Suppose that |S| = 1. We will show that (G1,Σ1) and (G2,Σ2) are widget
twins. In this case, H2 = Wflip[H1,X ] for some 2-separation X of H1, and vi ∈ BHi(X), for
i = 1,2. Moreover, w1 ∈ IH1(X) and, for Y := X̄ − loop(H1), w2 ∈ IH2(Y ). For i = 1,2,
let zi be the vertex in BHi(X) distinct from vi. By swapping the role of X and Y and of
H1 and H2, we may assume that δH1(v1)∩X = δH2(v2)∩X . Define ϕ1 := (α1∆α2)∩X
and ϕ2 := β1 ∩X . Let H := H1[X ]. We have ϕ1 ⊆ δH(v1) and ϕ2 ⊆ δH(w1). Moreover,
ϕ1∆ϕ2 = (α1∆α2∆β1)∩X . By definition of quad siblings, α1∆α2∆β1∆β2 is a cut of H1.
As β2 ∩X is empty, C1 := (α1∆α2∆β1)∩X is a cut of H. First suppose that C1 is empty.
Then all the edges in β1 − loop(H1) are either in α1 or in α2 (but not both). As (G1,Σ1)

does not contain parallel edges of the same parity, there cannot be two edges in β1 ∩α1 or
in β1 ∩α2. If H1 contains a (v1,w1) edge in β1 ∩α1 (respectively in β1 ∩α2) call such an
edge e (respectively f ). Let γ = (X ∩α1)−{e}. As C1 is empty, α2 ∩X = γ ∪{ f}.

Now suppose that C1 is non-empty. If δH(w1) =C1, we may swap on w1 and reduce to
the case where C1 = /0 (as δH(w1) = δH1(w1)). Thus we may assume that C1 �= δH1(w1).
By Lemma 6.10, there exists Z ⊆ X such that BH(Z)⊆ {v1,w1}, IH(Z) �= /0, δH(v1)∩Z =

ϕ1 −ϕ2 and for ϕ̂2 = ϕ2 or ϕ̂2 = ϕ2∆δH(w1), we have δH(w1)∩Z = ϕ̂2 −ϕ1. Note that
Z is a 2-separation in H1, because BH(Z) ⊆ {v1,w1} and H1 is 2-connected except for
loops. Let Ẑ := E(H1)− (loop(H1)∪{(v1,w1) ∈ E(H1)}). The condition δH(w1)∩Z =

ϕ̂2−ϕ1 implies that either δH(w1)∩Z ⊆ β2 or δH(w1)∩Z ⊆ δH(w1)−β2. Hence Ẑ violates
Lemma 6.13.

We conclude that, by possibly swapping on w1, β1 − loop(H1) = {e, f}, α1 ∩X = γ ∪
{e} and α2 ∩X = γ ∪{ f}. Now we proceed to consider the structure of H1[Y ]. We assume
that every edge with endpoints v1,z1 in H1 is in X . Define sets ϕ1 = α1 ∩Y , ϕ2 = α2 ∩Y
and ϕ3 = β2 ∩Y . As β1 does not intersect Y , C2 := (α1∆α2∆β1∆β2)∩Y = ϕ1∆ϕ2∆ϕ3. As
α1∆α2∆β1∆β2 is a cut of H1, we have that C2 is a cut of H1[Y ]. If C2 = /0, then every
edge in β2 is either contained in α1 or in α2. Similarly for the edges in α1 ∩Y and in
α2 ∩Y . As there are no (v1,z1) edges in Y , we have β2 − loop(H1) = {a,c} for two edges
a = (v1,w2) and c = (z1,w2) in H1 (if they exist). Moreover, α1 ∩Y = {a} and α2 ∩Y =

{c}. Let Z = Y −{a,c}−{(v1,w2),(z1,w2) ∈ E(H1)}. Then all the sets α1 ∩Z, α2 ∩Z,
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β1 ∩Z, β2 ∩Z, are empty. Therefore, if IH1(Z) is non-empty, Z is a 3-(0,1)-separation of
(G1,Σ1) and (G2,Σ2) and (G1,Σ1), (G2,Σ2) are ∆-reducible by Lemma 6.9, contradiction.
Hence Z is empty and Y = {a,b,c,d}, where b = (v1,w2), d = (z1,w2) (if they exist) and
b,d /∈ α1 ∪α2 ∪β2. We conclude that, in the case C2 = /0, (G1,Σ1) and (G2,Σ2) are widget
twins.

Now suppose that C2 �= /0. Let H :=H1[Y ]. If C2 is equal to one of the sets δH(w2),δH(z1),
δH({z1,w2}), we may swap on w2 or v2 and reduce to the case where C2 = /0 (as δH(z1)⊂
δH2(v2)). Therefore we may assume that ϕ1,ϕ2,ϕ3 satisfy the hypotheses of Lemma 6.11.
Hence there exists a set W ⊆ Y such that BH(W )⊆ {v1,z1,w2}, IH(W ) �= /0, and

(a) δH(v1)∩W = α1 − (α2 ∪β2);

(b) either δH(z1)∩W = α2 − (α1 ∪β2), or δH(z1)∩W = δH(z1)− (α1 ∪α2 ∪β2);

(c) either δH(w2)∩W = β2 − (α1 ∪α2), or δH(w2)∩W = δH(w2)− (α1 ∪α2 ∪β2).

Therefore W is a 3-(0,1)-separation of (G1,Σ1) and (G2,Σ2). By Lemma 6.9, (G1,Σ1) and
(G2,Σ2) are ∆-reducible, a contradiction.

Case 2: |S| = 2. We will show that (G1,Σ1) and (G2,Σ2) are gadget twins. In this
case H2 = Wflip[H1,(Y,Z)] for some disjoint 2-separations Y,Z of H1, where vi ∈ BHi(Y )∩
BHi(Z), for i = 1,2, w1 ∈ IH1(Y ) and w2 ∈ IH2(Z). For i = 1,2, let zi be the ver-
tex in BHi(Y ) distinct from vi and ui the vertex in BHi(Z) distinct from vi. For X :=
E(H1)− (Y ∪Z ∪ loop(H1)), BHi(X) = {vi,ui,zi}, for i = 1,2. Moreover, we can choose
Y and Z so that all the edges in H1 with both ends in {v1,z1,u1} are contained in X .
By construction, δH1(v1)∩ X = δH2(v2)∩ X . Moreover δH1(z1)∩Y = δH2(v2)∩Y and
δH1(u1) ∩ Z = δH2(v2) ∩ Z. Define ϕ1 = α2 ∩Y , ϕ2 = α1 ∩Y and ϕ3 = β1 ∩Y . Let
H := H1[Y ]. So ϕ1 ⊆ δH(z1), ϕ2 ⊆ δH(v1) and ϕ3 ⊆ δH(w1). Note that C := ϕ1∆ϕ2∆ϕ3 =

(α1∆α2∆β1∆β2)∩Y . As α1∆α2∆β1∆β2 is a cut of H1, we have that C is a cut of H.

If C = /0, then every edge in β1 is either contained in α1 or in α2. Similarly for the
edges in α1∩Y and in α2∩Y . As there are no (v1,z1) edges in Y , we have β1− loop(H1) =

{a1,c1} for two edges a1 = (v1,w1) and c1 = (z1,w1) in H1 (if they exist). Moreover,
α1 ∩Y = {a1} and α2 ∩Y = {c1}. Let W = Y −{a1,c1}−{(v1,w1),(z1,w1) ∈ E(H1)}.
Then all the sets α1 ∩W , α2 ∩W , β1 ∩W , β2 ∩W , are empty. Therefore, if IH1(W ) is
non-empty, W is a 3-(0,1)-separation of (G1,Σ1) and (G2,Σ2) and (G1,Σ1), (G2,Σ2) are
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∆-reducible by Lemma 6.9, a contradiction. Hence W is empty and Y = {a1,b1,c1,d1},
where b1 = (v1,w1), d1 = (z1,w1) (if they exist) and b1,d1 /∈ α1 ∪α2 ∪β1.

Now suppose that C �= /0. If C is equal to one of the sets δH(v1),δH(w1),δH({v1,w1}),
we may swap on v1 or w1 and reduce to the case C = /0. Therefore we may assume that
ϕ1,ϕ2,ϕ3 satisfy the hypothesis of Lemma 6.11. Hence there exists a set W � ⊆ Y such that
BH(W �)⊆ {v1,z1,w1}, IH(W �) �= /0, and

(a) δH(z1)∩W � = (α2 ∩Y )− (α1 ∪β1);

(b) either δH(v1)∩W � = (α1∩Y )−(α2∪β1), or δH(v1)∩W � = δH(v1)−(α1∪α2∪β1);

(c) either δH(w1)∩W � = (β1 ∩Y )− (α1 ∪α2), or δH(w1)∩W � = δH(w1)− (α1 ∪α2 ∪
β1).

Therefore W � is a 3-(0,1)-separation of (G1,Σ1) and (G2,Σ2). By Lemma 6.9, (G1,Σ1)

and (G2,Σ2) are ∆-reducible, a contradiction. We deduce that, up to swaps on v1,w1,
Y = {a1,b1,c1,d1}, with the conditions on α1,β1,α2,β2 established before. Now consider
the structure of H1[Z]. Define ϕ1 = α1 ∩ Z, ϕ2 = α2 ∩ Z and ϕ3 = β1 ∩ Z. Then with
an argument similar to the one above, we conclude that, up to possible swaps on v2,w2,
Z = {a2,b2,c2,d2}, where the ends of a2,b2 are v1,w2 and the ends of c2,d2 are u1,w2.
Moreover, β2 − loop(H1) = {a2,c2}, α1 ∩Z = {a2} and α2 ∩Z = {c2}.

Let γ := α1 ∩X . As (α1∆α2)∩X is a cut of H1[X ], either α2 ∩X = γ or α2 ∩X =

(δH2(v2)∩X)− γ . In the second case, α1∆β1∆α2∆β2 = δH2(v2)∩X , which is not a cut of
H2, contradiction. It follows that α2 ∩X = γ and (G1,Σ1) and (G2,Σ2) are gadget twins.

Proof of Lemma 6.7. Let T=(H1,v1,w1,α1,β1,H2,v2,w2,α2,β2,S) and S=(X1, . . . ,Xk).
By Proposition 5.2 applied to H1 and Z = {v1,w1}, there exists a graph H such that:

• H = Wflip[H1,S1] for some w-sequence S1 of H1, where {v1,w1}∩BH1(X) = /0 for
all X ∈ S1, and

• H2 = Wflip[H,S2] for some non-crossing w-sequence S2 such that, for all X ∈ S2,
{v1,w1}∩BH1(X) �= /0.
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Let T�=(H,v1,w1,α1,β1,H2,v2,w2,α2,β2,S2). By Remark 6.12, T� is a quad-template
and T, T� are compatible. Thus we may assume that (G1,Σ1),(G2,Σ2) arise from a tem-
plate T = (H1,v1,w1,α1,β1,H2,v2,w2,α2,β2,S), where S = (X1, . . . ,Xk) is non-crossing,
and for all X ∈ S, {v1,w1}∩BH1(X) �= /0. Similarly we may assume that, for all X ∈ S,
{v2,w2}∩BH2(X) �= /0. We will also assume that every Whitney-flip in S is non-trivial,
that is, IH1(X) �= /0 for every X ∈ S.

First suppose that, for every X ∈ S, BHi(X) = {vi,wi}, for i = 1,2. We show that in this
case we can find a w-sequence S� for H1 such that T� := (H1,v1,w1,α1,β1,H2,v2,w2,α2,
β2,S�) is a quad-template of type I. As T� is trivially compatible with T, this would prove
the statement for this case. Suppose that there exists X ∈ S such that Hi[X ]\BHi(X) is not
connected. Since S is non-crossing, we may rearrange the sets in S in any order. Hence we
may assume that X = X1. As H1 is 2-connected except for loops, there exists a partition
Y1, . . . ,Ys of X such that BHi(Yj) = {vi,wi} and Hi[Yj] \BHi(Yj) is connected for every
i = 1,2 and j ∈ [s]. Therefore, we can replace S with (Y1, . . . ,Ys,X2, . . . ,Xk). Hence we
may assume that Hi[Xj]\BHi(Xj) is connected for every i = 1,2 and j ∈ [k]. If there exist
i, j ∈ [k], i �= j such that Xi ∩Xj �= /0, then Xi = Xj. Thus we may just remove Xi and Xj

from S. This will lead to a w-sequence S� with the required properties.

Now suppose that there exists X ∈ S with BHi(X) �= {vi,wi}, for i = 1 or i = 2. We will
show that in this case we can find a compatible quad-template of type II.

Claim 1. Let X ∈ S such that |BHi(X)∩{vi,wi}|= 1 and |IHi(X)∩{vi,wi}|= 1 for i = 1
or i = 2. Then for j = 3− i and Y := X̄ − loop(Hi), |BHj(X)∩{v j,w j}|= 1 and |IHj(Y )∩
{v j,w j}|= 1.

Proof. To simplify the notation we prove the claim for the case i = 1. Thus we may assume
that v1 ∈ BH1(X) and w1 ∈ IH1(X). As BH2(Z)∩{v2,w2} �= /0 for every Z ∈ S, we have
BH2(X)∩{v2,w2} �= /0. Thus we may assume that v2 ∈BH2(X). Suppose for contradiction
that X violates the statement, that is, w2 ∈V (H2[X ]). Note that we may choose X such that
for no other X � ∈ S do we have X ⊆ X � or X ∩ X̄ � = /0. By this choice, H1[Y ] = H2[Y ]. If
there exists an edge e with ends BH1(X), we will assume that such an edge is in X . By
Lemma 6.13, w2 ∈ BH2(X) and the sets β2 ∩Y and (δH2(w2)− β2)∩Y are non-empty.
Thus BH2(X) = {v2,w2}. By symmetry between v2 and w2, we may assume that δH1(v1)∩
Y = δH2(v2)∩Y . Define ϕ1 = (α1∆α2)∩Y and ϕ2 = β2 ∩Y . Then ϕ1 ⊆ δH2(v2) and
ϕ2 ⊆ δH2(w2). Moreover, C := ϕ1∆ϕ2 is a cut of H2[Y ]. As there is no (v2,w2) edge in
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Y , the sets ϕ1,ϕ2 are disjoint. Moreover, the sets β2 ∩Y and (δH2(w2)−β2)∩Y are non-
empty, thus C is non-empty and C �= δH2(w2). Let H :=H2[Y ]. By Lemma 6.10, there exists
a set Z ⊂ Y such that BH(Z) ⊆ {v2,w2}; IH(Z) �= /0; δH(v2)∩Y = ϕ1; and for ϕ̂2 = ϕ2

or ϕ̂2 = ϕ2∆δH(w2), δH(w2)∩Y = ϕ̂2. Define W := E(H1)− (Z ∪ loop(H1)). Then W
contradicts Lemma 6.13. ✸

Now we can conclude the proof. We have already considered the case in which, for
every X ∈ S, BHi(X) = {vi,wi}, for i = 1,2. Thus we have that for some X ∈ S and i = 1
or i = 2, |BHi(X)∩{vi,wi}| = 1 and |IHi(X)∩{vi,wi}| = 1. Let Y := X̄ − loop(Hj), for
j = 3− i. By Claim 1, |BHj(X)∩{v j,w j}|= 1 and |IHj(Y )∩{v j,w j}|= 1. Thus we may
assume that v1 ∈ BH1(X), w1 ∈ IH1(X), v2 ∈ BH2(X) and w2 ∈ IH2(Y ). Now suppose
that there exists X � ∈ S such that w1 ∈BH1(X

�). Let Y � := X̄ � − loop(H1). As w1 ∈IH1(X),
X is not contained in X � and X � is not disjoint from X . As S is non-crossing, by possibly
swapping X � with Y �, we may assume that X � ⊂ X . Thus v1 /∈ IH1(X

�). Moreover, as w2 ∈
IH2(Y ) and Y ⊂ Y �, we have w2 ∈ IH2(Y

�). Therefore, by the choice of S, v2 ∈ BH2(X
�).

Hence X � violates Claim 1. This shows that for every X ∈ S, w1 /∈ BH1(X). By symmetry
between H1 and H2, for every X ∈ S, w2 /∈BH2(X). Moreover, as BHi(X)∩{vi,wi} �= /0, for
i = 1,2, we have vi ∈ BHi(X) for every X ∈ S and i = 1,2. Lemma 5.12 implies that there
exists a w-sequence S� of H1 with H2 = Wflip[H1,S�] and that S� is a star of Hi with center vi,
for i= 1,2. Let S� = (Y1, . . . ,Yh). For distinct Y,Y � ∈ S�, Y and Y � are disjoint. It follows that
if h ≥ 3, then for some Y ∈ S, wi /∈ IHi(Y ), for i = 1,2. Hence Ȳ − loop(H1) contradicts
Lemma 6.13. Therefore h = 1 or h = 2 and (H1,v1,w1,α1,β1,H2,v1,w2,α2,β2,S�) is a
quad-template of type II, as required.

Proof of Lemma 6.8. Suppose that H1 \ loop(H1) is not 2-connected. This is equivalent to
H2 \ loop(H2) not being 2-connectred, as H1 and H2 are equivalent. For i = 1,2, let τi be
the tree of blocks of Hi \ loop(Hi). So the vertices of τi are partitioned into sets Ai and Bi,
where Ai is the set of the cut-vertices and Bi is the set of blocks of Hi \ loop(Hi). Note that,
as H1,H2 are equivalent, there is a bijection between the vertices in B1 and the vertices
in B2. By Lemma 2.4(2), for i = 1,2, Gi \ loop(Gi) does not contain 1-separations. Thus
Ai ⊆ {vi,wi}, for i = 1,2. In particular this implies that at most one vertex in Bi is not a leaf
of τi, for i = 1,2. Hence there exists X ∈ B1 which is a leaf of both τ1 and τ2. By symmetry
between v1 and w1, we may assume that BH1(X) = {v1}. Similarly we may assume that
BH2(X) = {v2}. Note that |X | ≥ 2, as otherwise X would be a bridge of G1.
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If for i = 1 or i = 2, wi ∈VHi(Y ), for Y = X or Y = E(H1)− (X ∪ loop(H1)), we derive
a contradiction by Lemma 6.13. Therefore, by symmetry between H1 and H2, we may
assume that w1 ∈ IH1(X) and w2 /∈VH2(X).

Claim 2. H1[X ] = H2[X ].

Proof. As H1 and H2 are equivalent and H1[X ],H2[X ] are 2-connected, by Lemma 5.2 there
exists a graph H such that:

• H = Wflip[H1[X ],S1] for some w-sequence S1, where v1,w1 /∈ BH1(Y ) for all Y ∈ S1,
and

• H2[X ] = Wflip[H,S2] for some non-crossing w-sequence S2 such that, for all Y ∈ S2,
BH1(Y )∩{v1,w1} �= /0.

Suppose that S1 = (Y1, . . . ,Yk). Then either Y1 or X −Y1 is a 2-separation in H1 and
(Wflip[H1,Y1], v1,w1,α1,β1,H2,v2,w2,α2,β2) is a quad-template which is compatible with
T. By Lemma 6.4, proving the statement for a compatible quad-template leads to a proof
for the original template. Thus, by repeating this reasoning on Y2, . . . ,Yk, we may assume
that S1 = /0. Therefore H2[X ] = Wflip[H1[X ],S] for a non-crossing w-sequence S, where
for every Y ∈ S, BH1(Y )∩ {v1,w1} �= /0. Consider Y ∈ S. If v2 /∈ BH2(Y ), then either
Y or X −Y is a 2-separation of H2 and (H1,v1,w1,α1,β1,Wflip[H2,Y ], v2, w2,α2,β2) is a
quad-template which is compatible with T. Thus we may assume that v2 ∈ BH2(Y ), for
every Y ∈ S. In particular, this implies that for every Y ∈ S, both Y and X −Y are 2-
separations in H2. As w2 /∈ H2[X ], we have w2 /∈ VH2(Y ),VH2(X −Y ), for every Y ∈ S.
Note that we may assume that, for every Y ∈ S, IHi(Y ),IHi(X −Y ) �= /0, for i = 1,2, oth-
erwise the Whitney-flip on Y is trivial and may be omitted. As BH1(Y )∩ {v1,w1} �= /0
and v1,w1 ∈ VH1(X), either v1,w1 ∈ VH1(Y ) or v1,w1 ∈ VH1(X −Y ). By Lemma 6.13,
v1,w1 ∈ BH1(Y ) and all the sets α1 ∩Y,(δH1(v1)−α1)∩Y,β1 ∩Y,(δH1(w1)−β1)∩Y are
non-empty. Fix a minimal Y ∈ S. We may assume that no edge (v1,w1) is in Y . Either
α2 ∩Y ⊆ δH1(v1) or α2 ∩Y ⊆ δH1(w1). In the first case, define ϕ1 = (α1∆α2)∩Y and
ϕ2 = β1 ∩Y . In the second case, define ϕ1 = α1 ∩Y and ϕ2 = (β1∆α2)∩Y . In both cases,
ϕ1 ⊆ δH1(v1) and ϕ2 ⊆ δH1(w1). By definition of quad siblings, α1∆β1∆α2∆β2 is a cut of
H1. As β2 ∩Y = /0, this implies that C := (α1∆β1∆α2)∩Y is a cut of H1[Y ]. As all the sets
α1 ∩Y,(δH1(v1)−α1)∩Y,β1 ∩Y,(δH1(w1)−β1)∩Y are non-empty and there is no edge
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with ends v1,w1 in Y , C is a non-empty cut. Moreover, C �= δH1(w1) and ϕ1 ∩ϕ2 = /0. By
Lemma 6.10, there exists Z ⊆ Y such that the following hold:

• BH1(Z)⊆ {v1,w1};

• IH1(Z) �= /0;

• δH1(v1)∩Z = ϕ1;

• for ϕ̂2 = ϕ2 or ϕ̂2 = ϕ2∆δH1(w1), δH1(w1)∩Z = ϕ̂2.

Therefore, for i = 1,2, (Gi[Z],Σi ∩ Z) is bipartite and Z is a ki-separation of Gi, where
ki ≤ 3. By Lemma 2.4, k1 = k2 = 3 and Z is a 3-(0,1)-separation in both (G1,Σ1) and
(G2,Σ2). By Lemma 6.9, (G1,Σ1), (G2,Σ2) are ∆-reducible, a contradiction. We conclude
that S= /0 and H1[X ] = H2[X ]. ✸

As X is a leaf of τ1 and w1 ∈IH1(X), no block of H1 \ loop(H1) has as boundary {w1}.
Thus for every Y ∈ B1, BH1(Y ) = {v1}. Suppose that, for some Y ∈ B2, BH2(Y ) = {w2}.
Thus v2 �∈VH2(Y ), BH1(Y ) = {v1} and w1 /∈VH1(Y ), contradicting Lemma 6.13. It follows
that, for every Y ∈ Bi, BHi(Y ) = {vi}, for i = 1,2. If |B1| ≥ 3, then for some Y ∈ B1,
wi /∈ IHi(Y ), for i = 1,2, contradicting Lemma 6.13. Thus B1 = {X ,Y} for some set Y ,
w1 ∈ IH1(X), w2 ∈ IH2(Y ) and BHi(X) = {vi}, for i = 1,2. By Claim 2, H1[X ] = H2[X ].
By symmetry between H1 and H2, we also have H1[Y ] = H2[Y ]. In particular this implies
that w2 is a vertex of H1 and H2 \ loop(H2) is obtained by identifying a vertex x ∈V (H1[X ])

with a vertex y ∈V (H1[Y ]). Define paths Px and Py as follows. If x = v1, let Px be a (w1,v1)-
path in H1[X ], otherwise let Px be an (x,v1)-path in H1[X ]. If y= v1, let Py be a (w2,v1)-path
in H1[Y ], otherwise let Py be a (y,v1)-path in H1[Y ]. It follows that Px,Py are non-empty and
P := Px ∪Py is a path of H1. As x is an end of Px and y is an end of Py, P is also a path of
H2. For i = 1,2, construct a graph H �

i by adding to Hi an edge Ω with ends the ends of P in
Hi. Note that H �

1 is now 2-connected, except for the possible presence of loops. We show
that H �

1 and H �
2 are equivalent by showing that they have the same cycles. By construction,

P∪Ω is a cycle in both H �
1,H

�
2. Let C be a cycle of H �

1. If Ω /∈C, C is a cycle of H1 and H2

and we are done. If Ω ∈C, then C� :=C∆(P∪Ω) is a cycle of H �
1 not using Ω, hence it is a

cycle of H �
2. It follows that C =C�∆(P∪Ω) is a cycle of H �

2. We conclude that H �
1,H

�
2 are
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equivalent. Define a w-sequence for H �
1 as follows:

S :=






/0 if x = v1 and y = v1

(X) if x �= v1 and y = v1

(Y ) if x = v1 and y �= v1

(X ,Y ) if x �= v1 and y �= v1.

Then H �
2 = Wflip[H �

1,S]. For i = 1,2, if P is (αi∆βi)-even, define α �
i := αi, other-

wise set α �
i := αi∆δHi(IHi(Y )). With this choice, P ∪ Ω is an (α �

i ∆βi)-even cycle in
H �

i , for i = 1,2. Therefore (H �
1,α �

1∆β1), (H �
2,α �

2∆β2) have the same even cycles. More-
over, αi ⊆ δH �

i
(vi). It follows that T� := (H �

1,v1,w1,α �
1,β1,H �

2,v2,w2,α �
2,β2,S) is a quad-

template. Moreover T� is of type I if S = /0 and of type II in the other three cases. Let
T�� := (H1,v1,w1,α �

1,β1,H2,v2,w2,α �
2,β2). Then T�� and T are compatible quad-templates.

Let (G�
1,Σ�

1), (G
�
2,Σ�

2) (respectively (G��
1,Σ��

1), (G
��
2,Σ��

2)) be the quad siblings arising from
T� (respectively T��). By Lemma 6.5 and Lemma 6.6, (G�

1,Σ�
1), (G

�
2,Σ�

2) are either shuf-
fle, tilt, twist, widget or gadget siblings. For i = 1,2, (G��

i ,Σ��
i ) = (G�

i,Σ�
i) \Ω, therefore

(G��
1,Σ��

1), (G
��
2,Σ��

2) are either shuffle, tilt, twist, widget or gadget siblings. As T and T�� are
compatible, the statement follows by Lemma 6.4.
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Chapter 7

Finding excluded minors

7.1 Excluded minors with low connectivity

Recall that we only consider binary matroids in this work. It is easy to find the disconnected
excluded minors for the classes of even cycle and even cut matroids. We say that a matroid
M is the 1-sum of two matroids M1 and M2 if:

(a) E(M1) and E(M2) are disjoint;

(b) E(M) = E(M1)∪E(M2);

(c) C is a circuit of M if and only if C is a circuit of M1 or a circuit of M2.

We denote the 1-sum of M1 and M2 by M1 ⊕1 M2. Note that, if X is a 1-separation of a
matroid M, then M = M|X ⊕1 M|X̄ (where M|X denotes the restriction of M to X , i.e. the
matroid M \ X̄).

Lemma 7.1. A disconnected matroid M is an excluded minor for the class of even cycle
matroids if and only if M = M1⊕1 M2 for two minimally non-graphic matroids M1 and M2.

Proof.

Claim 1. If M = M1 ⊕1 M2, where M1 is an even cycle matroid and M2 is graphic, then M
is an even cycle matroid.
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Proof. Suppose that M = M1 ⊕1 M2, where M1 is an even cycle matroid and M2 is graphic.
Then M1 has a signed graph representation (G1,Σ1) and M2 has a graph representation G2.
Construct a graph G by identifying one vertex of G1 with one vertex of G2. Then for every
circuit C of G either C ⊆ E(G1) or C ⊆ E(G2). Every circuit of ecycle(G,Σ1) is either a
Σ1-even circuit of G or the union of two Σ1-odd circuits of G sharing at most one vertex.
As E(G2)∩Σ1 is empty, every Σ1-odd circuit of G is contained in G1. It follows that C is a
circuit of ecycle(G,Σ1) if and only if C is a circuit of M1 or a circuit of M2. Hence (G,Σ1)

is a signed graph representation of M and M is an even cycle matroid. ✸

Claim 2. If M = M1 ⊕1 M2 for two minimally non-graphic matroids M1 and M2, then M is
not an even cycle matroid.

Proof. Suppose that M = M1 ⊕1 M2 for two minimally non-graphic matroids M1 and M2.
Suppose for contradiction that M is an even cycle matroid, with a signed graph representa-
tion (G,Σ). For i = 1,2, let Gi := G[E(Mi)] and Σi := Σ∩E(Mi). Then (Gi,Σi) is a signed
graph representation of Mi, for i = 1,2. If there exist a Σ1-odd circuit C1 in G1 and a Σ2-odd
circuit C2 in G2, then C1 ∪C2 is a circuit of M, contradicting the fact that M = M1 ⊕1 M2.
Hence for some i ∈ [2], (Gi,Σi) is bipartite. It follows that Mi = cycle(Gi), contradicting
the fact that Mi is non-graphic. ✸

Let M be a disconnected matroid which is an excluded minor for the class of even cycle
matroids. Then M = M1 ⊕1 M2 for some matroids M1,M2. Moreover, by minimality of M,
M1 and M2 are even cycle matroids. By Claim 1 and by symmetry between M1 and M2, M1

and M2 are not graphic, hence they each contain one of the excluded minors for graphic
matroids. By Claim 2 and by minimality of M, M1 and M2 are minimally non-graphic
matroids. The other direction of the statements follows immediately from Claim 2.

Lemma 7.2. A disconnected matroid M is an excluded minor for the class of even cut
matroids if and only if M = M1 ⊕1 M2 for two minimally non-cographic matroids M1, M2.

We omit the proof of Lemma 7.2, as it is similar to the proof of Lemma 7.1.

We now briefly discuss excluded minors for the class of even cycle matroids which are
connected but not 3-connected. We do not have a complete list of excluded minors that are
not 3-connected, we just give an example in Lemma 7.3.
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We say that a matroid M is the 2-sum of two matroids M1 and M2 on an element e,
where e is not a loop of M1 and M2, if:

(a) E(M1)∩E(M2) = {e};

(b) E(M) = E(M1)�E(M2);

(c) C is a circuit of M if and only if one of the following holds: C is a circuit of M1 \ e;
C is a circuit of M2 \ e; (C−E(Mi))∪{e} is a circuit of M3−i, for i = 1,2.

We denote the 2-sum of M1 and M2 by M1 ⊕2 M2. Note that M1 ⊕2 M2 contains a minor
isomorphic to M1 and a minor isomorphic to M2. If X is a 2-separation of a matroid M, then
M is the 2-sum of two matroids with ground sets X ∪{e} and X̄ ∪{e} respectively, for some
element e /∈ E(M). The following two constructions provide a signed graph representation
of a matroid which is the two sum of two even cycle matroids, provided that the two even
cycle matroids have some special properties.

Construction 1: Suppose that M1 is an even cycle matroid and M2 is a graphic matroid
such that E(M1)∩E(M2) = {e}. Suppose that there exist representations (G1,Σ1) and G2

of M1 and M2 respectively, such that e is neither a loop of G1 nor of G2. Let G be the graph
obtained from G1 and G2 by identifying the endpoints of e in G1 with the endpoints of e in
G2 and then deleting both copies of e. Let Σ be any signature of (G1,Σ1) such that e /∈ Σ.
Then ecycle(G,Σ) = M1 ⊕2 M2.

Construction 2: Suppose that M1 and M2 are even cycle matroids such that E(M1)∩
E(M2) = {e}. Suppose that there exist representations (G1,Σ1) and (G2,Σ2) of M1 and M2

respectively, such that e is an odd loop in both G1 and G2. Let G be the graph obtained
by identifying a vertex of G1 with a vertex of G2 and then deleting both copies of e. Let
Σ := Σ1�Σ2. Then ecycle(G,Σ) = M1 ⊕2 M2.

Lemma 7.3. The 2-sum of R10 and a minimally non-graphic matroid is an excluded minor
for the class of even cycle matroids.

Proof. Let M := M1 ⊕2 R10, where M1 is a minimally non-graphic matroid. First we show
that every minor of M is an even cycle matroid. Let f be any element of M. If f ∈ E(M1),
then both M1 \ f and M1/ f are graphic matroids; moreover M \ f = (M1 \ f )⊕2 R10 and
M/ f = (M1/ f )⊕2 R10. As M1 is 3-connected (every minimally non-graphic matroid is), no
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graph representing M1 \ f and no graph representing M1/ f contains any loops. Moreover,
no signed graph representation of R10 contains a loop. Hence, by Construction 1, M \ f
and M/ f are even cycle matroids. The same argument holds for M \ f if f ∈ E(R10), as
R10 \ f is isomorphic to cycle(K3,3), for every f ∈ E(R10). For every f ∈ E(R10), R10/ f is
isomorphic to cut(K3,3). As discussed in Appendix B, for every element e of K3,3, cut(K3,3)

has a signed graph representation where e is an odd loop. Moreover, again by the results in
Appendix B, so does M1. It follows, by Construction 2, that M/ f is an even cycle matroid.

Now we show that M is not an even cycle matroid. Suppose for contradiction that M has
a signed graph representation (G,Σ). Let X := E(M1)−E(R10). Define graphs G1 := G[X ]

and G2 := G[X̄ ]. For i = 1,2, let Σi := Σ∩E(Gi). Then (G1,Σ1) is a representation of
M1 \ e, for some element e ∈ E(M1) and (G2,Σ2) is a representation of R10 \ e, for some
element e ∈ E(R10). Note that both M1 \ e and R10 \ e are connected. By Lemma 2.7, X is
a k-separation of G, for some k ≤ 3, and one of the following occurs:

(1) k = 3 and both (G1,Σ1), (G2,Σ2) are bipartite;

(2) k = 2 and exactly one of (G1,Σ1), (G2,Σ2) is bipartite;

(3) k = 1 and both (G1,Σ1), (G2,Σ2) are non-bipartite.

If case (1) occurs, then one of the vertices in BG(X) is a blocking vertex of (G,Σ). By
Remark 2.9, M is a graphic matroid, contradicting the fact that M1 is a minor of M. If case
(2) occurs, then (G,Σ) is obtained from (G1,Σ1) and (G2,Σ2) by Construction 1, but this
is not possible as neither M1 nor R10 is graphic. If case (3) occurs, then (G,Σ) is obtained
from (G1,Σ1) and (G2,Σ2) by Construction 2, but again this is not possible, as no signed
graph representation of R10 contains an odd loop.

7.2 Disjoint odd circuits do not fix the representation

We already discussed the fact that degenerate even cycle matroids may have a large number
of inequivalent representations. Degenerate even cycle matroids have representations with
blocking pairs, which have at most two disjoint odd circuits. One might hope that having
many disjoint odd circuits implies uniqueness of representation. This is, for example, the
case for signed-graphic matroids (which were defined in Chapter 1). Slilaty [32] proved
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that if any representation (G,Σ) of a signed-graphic matroid M has three vertex-disjoint
odd circuits, then (G,Σ) is the unique representation of M. This is not the case for even
cycle matroids.

Remark 7.4. For every integer k, there exists a signed graph (G,Σ) with the property that:

(1) every signed graph equivalent to (G,Σ) has k vertex-disjoint odd circuits, and

(2) ecycle(G,Σ) has at least two inequivalent representations.

Proof. Let T = (H1,v1,α1,H2,v2,α2,S) be a split-template which is nova. Let (G1,Σ1),
(G2,Σ2) be the siblings arising from T. Because of Remark 4.4, we may assume that
Σ1 = Σ2 = α1�α2. Suppose S = {X1, . . . ,Xk} for some integer k. Because of (N2) (in the
definition of nova), for every j ∈ [k], there exists an odd circuit Cj ⊆ Xj of (H1,Σ1) avoiding
v1. In particular, Cj remains an odd circuit of (G1,Σ1). Thus odd circuits C1, . . . ,Ck of
(G1,Σ1) are pairwise vertex disjoint. Moreover, it is easy to select H1 so that the only 2-
separations of H1 are given by S. Then G1 is 3-connected. Hence, (1) holds with (G,Σ) =
(G1,Σ1). Moreover, ecycle(G1,Σ1) = ecycle(G2,Σ2), thus (2) holds as required.

7.3 Stabilizers

We now discuss stabilizers, a concept introduced by Whittle in [39]. Stabilizers were intro-
duced in the setting of matroids representable over some field F, to deal with inequivalent
matrix representations over F. Let M be a class of matroids representable over some field
F. A matroid N ∈ M stabilizes M if, for every 3-connected matroid M ∈ M containing
N as a minor, a matrix representation (over F) of M is determined uniquely by a matrix
representation of N. For example, for every field F, the matroid U2,4 stabilizes the class of
F-representable matroids with no U2,5 or U3,5 minor. In our context, representations are not
matrices, but signed graphs and grafts. We define a notion of stabilizers, similar to the one
introduced by Whittle, for even cycle and even cut matroids.

7.3.1 Stabilizers for even cycle matroids

Consider a matroid M and let N := M \ I/J be a minor of M. Then M is a major of N.

95



Let M be an even cycle matroid with a representation (G,Σ). Then

ecycle(G,Σ)\ I/J = ecycle(H,Γ)

where (H,Γ) = (G,Σ)\ I/J. We say that (G,Σ) is an extension to M of the representation
(H,Γ) of N, or alternatively that (H,Γ) extends to M.

Let N be a k-connected even cycle matroid. Suppose that, for all k-connected majors M
of N and for every equivalence class F of representations of N, the set F � of extensions
of F to M is the union of at most � equivalence classes. Then we say that N is a stabilizer
of order � for k-connected matroids.

In Chapter 8 we prove that every 3-connected non-degenerate even cycle matroid is a
stabilizer of order 2 for 3-connected matroids (Theorem 8.1). This implies, in particular,
the following.

Corollary 7.5. Let M be a 3-connected even cycle matroid which contains as a minor a
non-degenerate 3-connected matroid N. Then the number of equivalence classes of the rep-
resentations of M is at most twice the number of equivalence classes of the representations
of N.

Note that order 2 is the best we can hope for. In fact, consider split siblings (G1,T1) and
(G2,T2) where, for i = 1,2, Ω is an edge of Gi with ends Ti. Let Σ1,Σ2 be a corresponding
signature pair. Let M = ecycle(G1,Σ1) and let N = M/Ω. Let F be the set of representa-
tions equivalent to (G1,Σ1)/Ω. Then, if F � is the set of extensions of F to M, F � contains
the inequivalent signed graphs (G1,Σ1) and (G2,Σ2).

There is, however, a condition that ensures that an even cycle matroid is a stabilizer of
order 1 for 2-connected matroids. Consider a signed graph (G,Σ) and suppose there exists
a partition C1,C2 of the odd circuits of (G,Σ) and graphs G1,G2 equivalent to G such that,
for i = 1,2, vi ∈ V (Gi) intersects all circuits in Ci. Then we call the pair (G1,v1) and
(G2,v2) an intercepting pair for (G,Σ). If (G,Σ) has a blocking pair v1,v2, then (G,v1),
(G,v2) is an intercepting pair for (G,Σ). Hence having no intercepting pair is a stronger
property than being non-degenerate. In Chapter 8 we prove that even cycle matroids that
have no representations with an intercepting pair are stabilizers of order 1 for 2-connected
matroids (Theorem 8.2). In particular, this implies the following.

Corollary 7.6. Let M be a 2-connected even cycle matroid which contains as a minor a
2-connected matroid N for which none of the representations have an intercepting pair.
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Then the number of equivalence classes of the representations of M is at most the number
of equivalence classes of the representations of N.

Note that, if a representation (G,Σ) has no blocking pair and G is 3-connected, then (G,Σ)
has no intercepting pair. As an application of Corollary 7.6, consider the class of even
cycle matroids which contain R10 as a minor. All 6 representations of R10 are of the form�
K5,E(K5)

�
, thus none of them contain an intercepting pair. Hence, 2-connected even cycle

matroids which contain R10 as a minor have at most 6 inequivalent representations.

7.3.2 Stabilizers for even cut matroids

Let M be an even cut matroid with a representation (G,T ). Then

ecycle(G,T )\D/C = ecycle(H,R)

where (H,R) = (G,T )/D\C. We say that (G,T ) is an extension to M of the representation
(H,R) of N, or alternatively that (H,R) extends to M.

Let N be a k-connected even cut matroid. Suppose that, for all k-connected majors M
of N and for every equivalence class F of representations of N, the set F � of extensions
of F to M is the union of at most � equivalence classes. Then we say that N is a stabilizer
of order � for k-connected matroids.

In Chapter 9 we prove that every 3-connected non-degenerate even cut matroid is a
stabilizer of order 2 for 3-connected matroids (Theorem 9.1). This implies, in particular,
the following.

Corollary 7.7. Let M be a 3-connected even cut matroid which contains as a minor a 3-
connected matroid N which is non-degenerate. Then the number of equivalence classes of
the representations of M is at most twice the number of equivalence classes of the repre-
sentations of N.

In Chapter 9 we will introduce an operation on grafts that shows that order 2 is the best
we can hope for. As for even cycle matroids, excluding a particular configuration assures
that an even cut matroid is a stabilizer of order 1 for 2-connected matroids. Consider
a graft (G,T ) and suppose there exist graphs G1,G2 equivalent to G and paths P1,P2 in
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G1,G2 respectively, such that T =Vodd(G[P1�P2]). We call the pair (G1,P1) and (G2,P2) a
reaching pair for (G,T ). When G1 = G2 = G, |T | ≤ 4 and ecut(G,T ) is degenerate. Hence
having no reaching pair is a stronger property than being non-degenerate. In Chapter 9 we
show that even cut matroids that have no representations with a reaching pair are stabilizers
of order 1 for 2-connected matroids (Theorem 9.2). In particular, we have the following.

Corollary 7.8. Let M be a 2-connected even cut matroid which contains as a minor a 2-
connected matroid N for which none of the representations have a reaching pair. Then
the number of equivalence classes of the representations of M is at most the number of
equivalence classes of the representations of N.

As an application of Corollary 7.8, consider the class of even cut matroids which contain
R10 as a minor. Recall that every representation of R10 is isomorphic to the graft in Fig-
ure 1.11 and the representations of R10 partition into 10 equivalence classes. The graft
obtained by contracting the pin in the graft in Figure 1.11 is 3-connected and has six termi-
nals, hence has no reaching pair. We will show that the property of having a reaching pair
is closed under minors; it follows that no representation of R10 has a reaching pair. Hence
every 2-connected even cut matroid containing R10 as a minor has at most 10 inequivalent
representations.

7.3.3 Use of stabilizers

Why are we interested in stabilizer theorems? Suppose M is a 2-connected minimally non-
even cycle matroid containing, for example, R10 as a minor. Then no representation of R10

extends to M. Suppose we can show that, for any representation (G,Σ) of R10, there exists
a 2-connected matroid N such that:

(P1) R10 is a minor of N;

(P2) N is a minor of M;

(P3) (G,Σ) does not extend to N;

(P4) |E(N)| is small (compared to R10).
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The stabilizer theorem implies that N has one fewer representation than R10. Thus we
may repeat this process until we eliminate all the representations and conclude that M is
small, compared with R10. If the stabilizer theorem didn’t hold, N might have had more
representations than R10; thus we wouldn’t be gaining anything by eliminating (G,Σ).
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Chapter 8

Stabilizer theorem for even cycle
matroids

8.1 Main results

In this chapter we prove the following two results.

Theorem 8.1. Let N be a 3-connected non-degenerate even cycle matroid. Let M be a
3-connected major of N. For every equivalence class F of representations of N, the set of
extensions of F to M is the union of at most two equivalence classes.

Theorem 8.2. Let N be a 2-connected even cycle matroid with the property that no rep-
resentation of N has an intercepting pair. Let M be a 2-connected major of N. For every
equivalence class F of representations of N, the set of extensions of F to M is contained
in one equivalence class.

8.2 The proof

Consider a matroid M and let N := M \ I/J be a minor of M. If J = /0 and |I|= 1 then M is
a column major of N. If I = /0 and |J|= 1 then M is a row major of N.

A set F of representations of an even cycle matroid is closed under equivalence if, for
every (H,Γ) ∈ F and (H �,Γ�) equivalent to (H,Γ), we have that (H �,Γ�) ∈ F . Note that,
if (G,Σ) and (G�,Σ�) are equivalent, then so are (G,Σ)\ I/J and (G�,Σ�)\ I/J.
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Remark 8.3. Let F be a set of representations of an even cycle matroid N and let M be
a major of N. If F is closed under equivalence, then so is the set F � of extensions of F

to M.

Proof. Let (G,Σ) ∈ F � and let (G�,Σ�) be equivalent to (G,Σ). We have N = M \ I/J,
for some I,J ⊆ E(M). Note that (H,Γ) := (G,Σ) \ I/J and (H �,Γ�) := (G�,Σ�) \ I/J are
equivalent. Since (G,Σ) ∈ F �, (H,Γ) ∈ F . As F is closed under equivalence, (H �,Γ�) ∈
F . Hence, by definition, (G�,Σ�) ∈ F �.

Let F be an equivalence class of signed graphs and let N be the corresponding even
cycle matroid. We say that F is stable if for all row and column majors M of N which
satisfy the following properties:

(a) M is non-graphic;

(b) M has no loop or co-loop,

the set of extensions of F to M is an equivalence class. If in the previous definition we
consider only row (respectively column) majors M of N, then we say that F is row stable
(respectively column stable). Hence, an equivalence class is stable if and only if it is both
row and column stable.

Lemma 8.4. Equivalence classes of signed graphs are column stable.

We postpone the proof until Section 8.3.

Consider split siblings (G1,T1),(G2,T2) where, for i= 1,2, Ω is an edge of Gi with ends
Ti. Let Σ1,Σ2 be a corresponding signature pair. Let M = ecycle(G1,Σ1) and let N = M/Ω.
Let F be the set of representations equivalent to (G1,Σ1)/Ω. Then (G1,Σ1) and (G2,Σ2)

are two inequivalent representations of M which extend representations of F . In particular,
F is not row stable. Thus, equivalence classes are not row stable in general. Moreover,
Remark 7.4 shows that equivalence classes need not be row stable, even if there are an
arbitrary number of vertex disjoint odd circuits in every signed graph in the equivalence
class. However, in the previous example, (G1,Σ1)/Ω has an intercepting pair. To have an
inductive argument on signed graphs with no intercepting pair, we need to know that, if a
signed graph (H,Γ) has no intercepting pair, so does every major of (H,Γ).
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Remark 8.5. If (G,Σ) has an intercepting pair, then so does every minor (H,Γ) of (G,Σ).

Proof. Since (G,Σ) has an intercepting pair, there exists a partition of the odd circuits of
(G,Σ) into C1,C2 and there exists, for i = 1,2, a graph Gi equivalent to G with a vertex
vi ∈ V (Gi) that intersects all circuits in Ci. We have (H,Γ) = (G,Σ) \ I/J for some I,J ⊆
E(G). For i = 1,2: let Hi = Gi \ I/J, let Di := {C− J|C ∈ Ci and C∩ I = /0}, and let wi be
the vertex of Hi which corresponds to the component of G[J] containing vi. Since G1,G2

are equivalent to G, H1,H2 are equivalent to H. The odd circuits of (H,Γ) are contained in
D1 ∪D2 and, for i = 1,2, vertex wi of Hi intersects all circuits in Di. Hence, (H,Γ) has an
intercepting pair.

By definition, if a signed graph has intercepting pair, then so does every equivalent
signed graph. Hence, we may talk about equivalence classes having an intercepting pair.

Lemma 8.6. Equivalence classes without intercepting pairs are row stable.

We postpone the proof until section 8.3. The last two results we require are the following.

Lemma 8.7. Let N be an even cycle matroid and let F be an equivalence class of repre-
sentations of N. Let M be a row major of N with no loops or co-loops. Suppose that the set
F � of extensions of F to M is non-empty. Then F � is either an equivalence class or the
union of two equivalence classes F1, F2 and any (G1,Σ1) ∈ F1, (G2,Σ2) ∈ F2 are split
siblings which arise from a split-template (H1,v1,α1,H2,v2,α2), where (Hi,α1�α2) ∈ F ,
for i = 1,2.

Lemma 8.8. Let (G1,Σ1),(G2,Σ2) arise from a nova-template T=(H1,v1,α1,H2,v2,α2,S).
Suppose that, for i = 1,2, ecycle(Hi,α1�α2) and ecycle(Gi,Σi) are 3-connected. Suppose
also that, for i = 1,2, there exists Ω ∈ E(Gi) such that (Gi,Σi)/Ω = (Hi,α1�α2). Sup-
pose finally that no signed graph equivalent to (H1,α1�α2) has a blocking pair. Then, for
i = 1,2, (Gi,Σi) has no intercepting pairs.

We postpone the proofs until section 8.4.

Assuming correctness of Lemmas 8.4, 8.6, 8.7 and 8.8, we can now prove Theorem 8.1
and Theorem 8.2.
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Proof of Theorem 8.2. Let N be a 2-connected even cycle matroid, where none of the
representations of N has an intercepting pair. Let M be a 2-connected major of N. Then
there exists a sequence of 2-connected matroids N1, . . . ,Nk, where N = N1, M = Nk and,
for i ∈ [k− 1], Ni+1 is a row or column major of Ni (see [25], page 290; see also [3]). In
particular, Ni has no loops or co-loops, for every i ∈ [k]. Let F be an equivalence class of
the representations of N that extends to M and, for every j ∈ [k], define F j to be the set of
extensions of F to Nj. It suffices to show that, for all j ∈ [k], F j is an equivalence class.
Let us proceed by induction. As N1 = N, the result holds for j = 1. Suppose that the result
holds for j ∈ [k−1]. By Remark 8.5, F j does not have an intercepting pair. Therefore, by
Lemma 8.4 and Lemma 8.6, F j is stable. It follows that F j+1 is an equivalence class.

Proof of Theorem 8.1. Let N be a 3-connected non-degenerate even cycle matroid. Let M
be a 3-connected major of N. It follows (see [28]) that there is a sequence of 3-connected
matroids N1, . . . ,Nk, where N = N1, M = Nk and, for every i ∈ [k − 1], Ni+1 is a row or
column major of Ni. In particular, Ni has no loops or co-loops for any i ∈ [k]. Let F be an
equivalence class of representations of N that extends to M. For every j ∈ [k], define F j to
be the set of extensions of F to Nj. It suffices to show that, for all j ∈ [k], F j is either

(a) an equivalence class, or

(b) the union of two equivalence classes without intercepting pairs.

Let us proceed by induction. As N1 = N, the result holds for j = 1. Suppose that the result
holds for j ∈ [k−1].

Consider the case where Nj+1 is a column major of Nj. If (a) holds for F j, then
Lemma 8.4 implies that (a) holds for F j+1. If (b) holds for F j, then Lemma 8.4 and
Remark 8.5 imply that either (a) or (b) holds for F j+1.

Consider the case where Nj+1 is a row major of Nj. Suppose first that (a) holds for F j.
Then Lemma 8.7 implies that either (a) holds for F j+1 or F j+1 =F � ∪F ��, where F �,F ��

are equivalence classes which satisfy the following: any (G1,Σ1) ∈ F �, (G2,Σ2) ∈ F �� are
split siblings which arise from a template (H1,v1,α1,H2,v2,α2), where (Hi,α1�α2) ∈ F j

for i = 1,2. Remark 4.4 implies that Nj = ecycle(Hi,α1�α2), for i = 1,2. Lemma 2.4
implies that H1,H2 are 2-connected, except for possible loops. Theorem 4.3 implies that
(G1,Σ1) and (G2,Σ2) are simple siblings or nova siblings. Because of Remark 8.3, we
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may assume that (G1,Σ1) and (G2,Σ2) are either simple twins or nova twins. However, the
former case does not occur, for otherwise Remark 4.5 implies that (G1,Σ1) has a blocking
pair. Lemma 8.8 implies that F and F � have no intercepting pair. Hence, (b) holds for
F j+1. Suppose now that (b) holds for F j. Then Lemma 8.6 implies that either of (a) or
(b) holds for F j+1.

8.3 Proof of Lemmas 8.4 and 8.6

As a consequence of Remark 3.8 we obtain the following.

Remark 8.9.

(1) Suppose that ecycle(G1,Σ1) = ecycle(G2,Σ2). If an odd cycle of (G1,Σ1) is a cycle
of G2, then G1 and G2 are equivalent.

(2) Suppose that ecut(G1,T1) = ecut(G2,T2). If any odd cut of (G1,T1) is a cut of G2,
then G1 and G2 are equivalent.

Lemma 8.10. Let (G1,Σ1),(G2,Σ2) be signed graph siblings and let Ω ∈ E(G1). For
i = 1,2, let (Hi,Γi) := (Gi,Σi) \Ω. Suppose that (H1,Γ1) and (H2,Γ2) are equivalent.
Then, for i = 1,2, Ω is either a bridge of Gi or a signature of (Gi,Σi). In particular, Ω is a
co-loop of ecycle(G1,Σ1).

Proof. We prove the statement for i = 1. Remark 8.9(1) implies that no odd cycle of
(G1,Σ1) is a cycle of G2. Since H1 and H2 are equivalent, cycle(H1) = cycle(H2). It
follows that all odd cycles of (G1,Σ1) use Ω. Hence, after possibly a signature exchange,
Σ1 ⊆ {Ω}. Similarly, we may assume that Σ2 ⊆ {Ω}. If Ω is a bridge of G1, we are done.
Suppose otherwise. If Σ1 = /0, then there exists an even cycle C of (G1,Σ1) using Ω; hence
Ω is not a bridge of G2 and Σ2 �= {Ω}. But then Σ1 = Σ2 = /0 and cycle(G1) = cycle(G2),
a contradiction.

Lemma 8.10 has a counterpart for even cuts. We shall omit the proof of the following
observation as the proof is analogous to that of Lemma 8.10.
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Lemma 8.11. Let (G1,T1),(G2,T2) be graft siblings and let Ω ∈ E(G1). For i = 1,2, let
(Hi,Ri) := (Gi,Ti)/Ω. Suppose that (H1,R1) and (H2,R2) are equivalent. Then, for i= 1,2,
either Ω is a loop of Gi or |Ti| = 2 and Ti are the ends of Ω in Gi. In particular, Ω is a
co-loop of ecut(G1,T1).

The last two lemmas imply the following result,

Lemma 8.12. Let N be an even cycle matroid and F an equivalence class of representa-
tions of N. Let M be a row or column major of N which is not graphic. Suppose that the
unique element Ω in E(M)−E(N) is not a loop or a co-loop of M. Let F � be the set of
extensions of F to M and consider (G1,Σ1),(G2,Σ2) ∈ F �.

(1) If M is a column major of N, then (G1,Σ1),(G2,Σ2) are equivalent.

(2) If M is a row major of N, then (G1,Σ1),(G2,Σ2) are either equivalent or split sib-
lings. Moreover, in the latter case, let T1 (respectively T2) denote the ends of Ω in G1

(respectively G2). Then T1,T2 is the matching terminal pair for G1,G2.

Proof. (1). Follows from Lemma 8.10 as M has no co-loop. (2). We may assume that
G1 and G2 are not equivalent. Then there exists a unique matching terminal pair T1,T2 for
G1,G2. For i= 1,2, let (Hi,Ri) = (Gi,Ti)/Ω. Then ecut(H1,R1) = ecut(H2,R2). Moreover,
(G1,Σ1) and (G2,Σ2) are both in F �, hence H1 = G1/Ω and H2 = G2/Ω are equivalent.
It follows that (H1,R1) and (H2,R2) are equivalent. Lemma 8.11 implies that, for i = 1,2,
either Ω is a loop of Gi or Ti are the ends of Ω in Gi. If the latter case occurs for both
i = 1,2, then (G1,T1),(G2,T2) are split siblings and we are done. Now suppose that Ω is a
loop of Gi, for i = 1 or i = 2. Then every cut of Gi is a cut of Hi, hence a cut of H3−i (as H1

and H2 are equivalent). It follows that every cut of Gi is a cut of G3−i. By Remark 8.9(2),
every cut of (Gi,Ti) is even. Therefore Ti is empty. By Theorem 3.1, Σ3−i is empty and M
is graphic, a contradiction.

Proof of Lemma 8.4. It follows immediately from Lemma 8.12(1).

Proof of Lemma 8.6. Let N be an even cycle matroid and let M be a row extension of N,
i.e. N = M/Ω for some Ω ∈ E(M). Let F be an equivalence class of representations of N
and let F � be the extension of F to M. Suppose for a contradiction that there exist inequiv-
alent signed graphs (G1,Σ1),(G2,Σ2)∈F �. Lemma 8.12(2) implies that (G1,Σ1),(G2,Σ2)
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are split siblings which arise from a split-template (H1,v1,α1,H2,v2,α2) where, for i= 1,2,
Hi = Gi/Ω. Remark 4.4 states that α1�α2 is a signature of (Gi,Σi) for i = 1,2. Hence,
(Hi,α1�α2) ∈ F , for i = 1,2. It follows that (H1,v1) and (H2,v2) form an intercepting
pair of (H1,α1�α2), a contradiction.

8.4 Proof of Lemmas 8.7 and 8.8

Proof of Lemma 8.7. For some Ω ∈ E(M), we have N = M/Ω. Suppose for a contradic-
tion that there exist, for i= 1,2,3, (Gi,Σi)∈F �, where G1,G2,G3 are inequivalent. For any
distinct i, j ∈ [3], let Ti,Tj be the matching terminal pair for Gi and G j. Lemma 8.12(2) im-
plies that the ends of Ω in Gi are Ti. It follows that (G1,T1),(G2,T2),(G3,T3) are pairwise
siblings.

For i = 1,2, let vi ∈ Ti and let Bi = δGi(vi). Theorem 3.1 implies that B1 and B2 are
signatures of (G3,Σ3). Hence, B1�B2 is a cut of G3. As Ω �∈B1�B2, the cut B1�B2 is even
in (G3,T3). It follows that B1�B2 is an even cut of (G1,T1). Hence, B1�(B1�B2) = B2 is
a cut of G1. But now Remark 8.9(2) implies that G1 and G2 are equivalent, a contradiction.

Before we proceed to prove Lemma 8.8 we shall need a preliminary definition and an
observation. An edge of a graph G that is a petal of a flower of G with at least four petals
is said to be a petal edge.

Remark 8.13. Let (G,Σ) be a signed graph and let (H,Γ) be obtained from (G,Σ) by
contracting a petal edge.

(1) If no signed graph equivalent to (G,Σ) has a blocking pair, then no signed graph
equivalent to (H,Γ) has a blocking pair.

(2) If ecycle(G,Σ) is 3-connected, then so is ecycle(H,Γ).

(3) If (G,Σ) has a handcuff-separation and ecycle(G,Σ) is 3-connected, then (H,Γ) has
a handcuff-separation.

Proof. (1) Suppose some signed graph (H �,Γ�) equivalent to (H,Γ) has a blocking pair.
As e is a petal edge, there exists a signed graph (G�,Σ�) equivalent to (G,Σ) such that
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(H �,Γ�) = (G�,Σ�)/e. Let F be the maximal flower of G� containing e. Let u,v be the ends of
e in G�. As (H �,Γ�) has a blocking pair, Σ� − loop(G�)⊆ δG�(u)∪δG�(v)∪δG�(w), for some
w ∈V (G�). Let x be a connector of F distinct from u,v,w (x exists because, by definition of
petal edge, F has at least four petals). Let G�� be obtained from G� by inserting e between
the two petals of F incident with x and leaving the order of the other petals unchanged.
Then Σ� − loop(G��) is incident to two vertices in G��, so (G��,Σ�) has a blocking pair and is
equivalent to (G,Σ). (2) Follows from Lemma 2.4. (3) Let X be a handcuff-separation of
(G,Σ). In particular, |X | ≥ 3. As e is a petal edge, the ends of e in G are not BG(X). Thus,
if e ∈ X , then X −{e} is a handcuff-separation of (H,Γ) and, if e �∈ X and |E(H)−X | ≥ 2,
then X is a handcuff-separation of (H,Γ). If e �∈ X and E(H)−X = { f} for some edge f ,
then e, f are series edges in G, hence ecycle(G,Σ) is not 3-connected.

Proof of Lemma 8.8. We will prove that (G1,Σ1) has no intercepting pair. Suppose for
a contradiction that this is not the case and that (G1,Σ1) has an intercepting pair (G,v)
and (G�,v�), i.e. G and G� are equivalent to G1 and every odd circuit of (G1,Σ1) either
uses the vertex v in G or uses the vertex v� in G�. It follows that (G1,Σ1) \

�
δG(v)∪

δG�(v�)
�

is bipartite. Hence, we can find α ⊆ δG(v) and α � ⊆ δG�(v�) such that α�α � is
a signature of (G1,Σ1). Lemma 2.4 implies that G and G� are 2-connected, up to loops.
By Proposition 5.3 we may assume that, for some w-star S� of G, G� = Wflip[G,S�] and
T := (G,v,α,G�,v�,α �,S�) is a split-template. Lemma 6.2 implies that there exists a split-
template T̂ := (Ĝ, v̂, α̂, Ĝ�, v̂�, α̂ �) compatible with T which is simple or nova. Since T̂ is
compatible with T, both α�α̂ and α ��α̂ � are cuts of G and Ĝ. It follows that α̂�α̂ � is
a signature of (Ĝ,Σ1). Observe that T̂ is not simple, for otherwise v̂ is a blocking vertex
of (Ĝ,Σ1), contradicting our hypothesis. Hence, T̂ is nova and, in particular, (Ĝ,Σ1) must
have a handcuff-separation.

Recall that, by hypothesis, (G1,Σ1) and (G2,Σ2) arise from a nova-template (H1,v1,α1,

H2,v2,α2,S). Lemma 2.4 implies that H1 is 2-connected, up to loops. The remainder of the
proof is organized as follows: we first describe the set of all possible 2-separations of H1,
then we deduce the set of all possible 2-separations of G1, and we conclude that no signed
graph equivalent to (G1,Σ1) has a handcuff-separation, which provides us with the desired
contradiction. Because of Remark 8.13, we can assume that (G1,Σ1) has no petal edge.

Let X1, . . . ,Xk denote the sets in S and let X0 := E(H1)− (X1 ∪ . . .∪Xk). For every
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i ∈ [k], BH1(Xi) = {v1,wi}, for some vertex wi. For i ∈ [2] and v ∈VH1 , we define

µi(v) := δH1(v)∩αi and µ i(v) := δH1(v)−αi.

Recall that Σ1 = α1�α2 and that, for i = 1,2, αi ⊆ δHi(vi)∪ loop(Hi). This implies the
following.

Claim 1. Σ1 ⊆
��

i∈[k] µ2(wi)∩Xi
�
∪µ1(v1)∪µ2(v1)∪ loop(H1).

In particular, Claim 1 implies that k ≥ 2, for otherwise v1,w1 is a blocking pair of (H1,Σ1),
contradicting our hypothesis. Let Z be a 2-separation of H1, where Z /∈ S. Denote by z1,z2

the vertices in BH1(Z). As X1, . . . ,Xk are pairwise disjoint sets, after possibly replacing Z
by Z̄, Z has to be a separation of one of the following types:

(T1) for all i ∈ [k], either Z ⊇ Xi or Z̄ ⊇ Xi;

(T2) for some i1 ∈ [k] and every i2 ∈ [k] such that i1 �= i2, we have

Z ∩Xi1 �= /0 Z̄ ∩Xi1 �= /0 Z̄ ⊇ Xi2;

(T3) for some i1, i2, i3 ∈ [k] we have

Z ∩Xi1 �= /0 Z̄ ∩Xi1 �= /0 Z ⊇ Xi2 Z̄ ⊇ Xi3;

(T4) for some distinct i1, i2 ∈ [k], we have

Z ∩Xi1 �= /0 Z̄ ∩Xi1 �= /0 Z ∩Xi2 �= /0 Z̄ ∩Xi2 �= /0.

Claim 2. There is no 2-separation Z of type (T3) or (T4).

Proof. Suppose for a contradiction that Z is of type (T4). Without loss of generality, we
may assume that z1 ∈ IH1(Xi1) and z2 ∈ IH1(Xi2). It follows that (after possibly replacing
Z with Z̄) there is a flower with petals Z ∩ Xi2 , Z̄ ∩ Xi2 ,X0, Z̄ ∩ Xi1 ,Z ∩ Xi1 in that order
and with attachments v1,z2,w2,w1,z1, in that order as well. Claim 1 implies that Σ1 ⊆
µ1(v1)∪µ2(w1)∪µ2(w2). Then after rearranging the petals we obtain a signed graph with
a blocking pair, a contradiction. Suppose for a contradiction that Z is of type (T3). Since
H1 is 2-connected, H1[X0] is connected. In particular, there exists a circuit C of H1 such
that C∩Xi1 = /0 and C∩Xi2 ,C∩Xi3 �= /0. We may assume that z1 ∈IH1(Xi1). Because of C,
Xi2 ,Xi3 are either both contained in Z or both contained in Z̄, a contradiction. ✸
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Claim 3. Let Z be a 2-separation of H1. Then (after possibly replacing Z by Z̄) one of the
following holds:

(1) Z ⊆ Xi, for some i ∈ [k];

(2) for all i ∈ [k], either Z ⊇ Xi or Z̄ ⊇ Xi.

Proof. By Claim 2, Z is of type (T1) or (T2). In the former case we have outcome (2),
hence we may assume that Z is of type (T2). Let i := i1. Suppose that outcome (1) does
not hold. Then Z ∩ X̄i �= /0. It follows that H1 has a flower with petals Xi ∩Z,Xi −Z,Z −
Xi,E(H1)− (Xi∪Z). Moreover, BH1(Z−Xi) = {wi,z1}, where z1 �= v1. Note that µ1(z1)∩
Z = µ2(z1)∩Z = /0 and µ1(wi) = /0,µ2(wi) ⊆ Xi. Hence Z −Xi contains no odd cycle of
(H1,Σ1). It follows, from Lemma 2.4, that Z −Xi consists of a single edge e. But then e is
a petal edge of (H1,Σ1), hence also of (G1,Σ1), contradicting our assumption that (G1,Σ1)

has no petal edge. ✸

Recall that Ω is the edge in E(G1)−E(H1). Denote by v−1 ,v
+
1 the ends of edge Ω in G1.

Claim 4. Let Z� be a 2-separation of G1. Denote by z�1,z
�
2 the vertices in BG1(Z

�). Then (af-
ter possibly replacing Z� by Z̄� and interchanging the role of z�1 and z�2) one of the following
holds:

(1) Z� = {Ω,e}, where e,Ω are parallel edges of G1;

(2) Z� ⊂ Xi, for some i ∈ [k], and z�1 = w1,z2 �∈ {v−1 ,v
+
1 };

(3) for all i ∈ [k], Z̄� ⊇ Xi and z�1 ∈ {v−1 ,v
+
1 }.

Proof. Let Z := Z�−{Ω}. Suppose |Z|= 1; then Z = {Ω,e} for some e∈E(H1). As G1 has
no series edges, e and Ω are in parallel in G1 and (1) holds. Otherwise Z is a 2-separation of
H1 (recall that H1 is 2-connected, except for possible loops). Consider first the case where
Z satisfies outcome (1) of Claim 3, i.e. Z ⊆ Xi for some i ∈ [k]. Let z1,z2 be the vertices
in BH1(Z), where, for j = 1,2, vertex z j of H1 corresponds to vertex z�j of G1. It follows
from Claim 1 and Lemma 2.4 that {z1,z2} ∩ {wi,v1} �= /0. Suppose that wi �∈ {z1,z2}.
Lemma 2.4 implies that µ1(v1)∩Xi, µ̄1(v1)∩Xi are both non-empty. This implies that Z�

is not a 2-separation of G1, a contradiction. Thus we may assume that z1 = w1. Suppose
for a contradiction that z�2 ∈ {v−1 ,v

+
1 }. Then z2 = v1. By the property (N2) of novae, Z
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must be a handcuff-separation of (H1,Σ1). It follows that µ1(v1)∩Xi, µ̄1(v1)∩Xi are both
non-empty. But this implies that Z� is not a 2-separation of G1, a contradiction. Hence,
Z satisfies outcome (2) of Claim 3. Since Z� is a 2-separation of G1, there do not exist
i1, i2 such that Xi1 ⊆ Z and Xi2 ⊆ Z̄. Finally it follows, from Claim 1 and Lemma 2.4, that
v1 ∈ {z1,z2}, and we obtain outcome (3). ✸

It can now be readily checked from Claim 4 that no signed graph equivalent to (G1,Σ1) has
a handcuff-separation, completing the proof.
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Chapter 9

Stabilizer theorem for even cut matroids

9.1 Main results

In this chapter we prove the following two results.

Theorem 9.1. Let N be a 3-connected non-degenerate even cut matroid. Let M be a 3-
connected major of N. For every equivalence class F of representations of N, the set of
extensions of F to M is the union of at most two equivalence classes.

Theorem 9.2. Let N be a 2-connected even cut matroid with the property that every rep-
resentation of N has no reaching pair. Let M be a 2-connected major of N. For every
equivalence class F of representations of N, the set of extensions of F to M is contained
in one equivalence class.

The proof of Theorem 9.2 is given in the next section. To prove Theorem 9.1 we need to
introduce and characterize an operation on grafts. This is done in Section 9.3. The proof of
the Theorem 9.1 follows (in Section 9.4). The last two sections of the chapter are dedicated
to proving Lemmas that are needed to prove the two main theorems.

9.2 Proof of Theorem 9.2

A set D of representations of an even cut matroid is closed under equivalence if, for every
(H,R)∈D and (H �,R�) equivalent to (H,R), we have that (H �,R�)∈D . Note that, if (G,T )
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and (G�,T �) are equivalent then so are (G,T )/D\C and (G�,T �)/D\C.

Remark 9.3. Let D be a set of representations of an even cut matroid N and let M be a
major of N. If D is closed under equivalence, then so is the set D � of extensions of D to M.

Proof. Let (G,T ) ∈ D � and let (G�,T �) be equivalent to (G,T ). We have N = M \D/C for
some D,C ⊆ E(M). Moreover, (H,R) := (G,T )/D \C and (H �,R�) := (G�,T �)/D \C are
equivalent. Since (G,T )∈D �, (H,R)∈D . As D is closed under equivalence, (H �,R�)∈D .
Hence, by definition, (G�,T �) ∈ D �.

Let D be an equivalence class of grafts and let N be the corresponding even cut matroid.
We say that D is stable if, for all row and column majors M of N which satisfy the following
properties:

i. M is not cographic;

ii. M has no loop or co-loop,

the set of extensions of D to M is an equivalence class. If in the previous definition we
consider only row (respectively column) majors M of N, then we say that D is row stable
(respectively column stable). Hence, an equivalence class is stable if and only if it is both
row and column stable.

Lemma 9.4. Equivalence classes of grafts are column stable.

We postpone the proof until Section 9.5.

In general, equivalence classes are not row stable. We will show how this follows from
the operation we introduce in the next section. Recall the definition of reaching pair given
in Section 7.3.2. By definition, if a graft has a reaching pair then so does any equivalent
graft. Hence, we may talk about an equivalence class having a reaching pair.

Remark 9.5. If (G,T ) has a reaching pair, so does every minor (H,R) of (G,T ).

Proof. Since (G,T ) has a reaching pair, there exists, for i = 1,2, a graph Gi equivalent to
G and a path Pi in Gi such that T =Vodd(G[P1�P2]). By induction, it suffices to prove the
statement for the cases (H,R) = (G,T )\ e and (H,R) = (G,T )/e, for some e ∈ E(G).
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First, suppose that (H,R) = (G,T )\ e. If e is an odd bridge of G, then R is empty and
the statement is trivially true (taking as reaching pair (H, /0),(H, /0)). If e is not an odd
bridge of G, then R = T . If e is an even bridge of G, then e �∈ P1�P2 and e is a bridge of
G1 and G2. Thus in this case we may assume that e �∈ P1,P2 (if e ∈ P1 ∩P2, we may replace
G1,G2 with some equivalent graphs and Pi with Pi − e, for i = 1,2). For i = 1,2, let vi,wi

be the ends of Pi in Gi and Hi := Gi \e. Let Qi be a (vi,wi)-path in Hi (Qi exists, as either e
is not a bridge of G or e /∈ P1,P2). Then Vodd(G[Pi]) =Vodd(G[Qi]), for i = 1,2. Therefore
T =Vodd(H[Q1�Q2]) and (H1,Q1), (H2,Q2) is a reaching pair for (H,T ).

Now suppose that (H,R) = (G,T )/e. Note that, if J is a T -join of G, then J −{e} is
an R-join of H. For i = 1,2, define Hi := Gi/e and Qi := Pi − e. Then Qi is a {vi,wi}-join
of Hi, for some vi,wi ∈ V (Hi). Let Q�

i be a (vi,wi)-path in Hi. As H1,H2 are equivalent
to H, Vodd(H[Q�

1�Q�
2]) = Vodd(H[Q1�Q2]). As Q1�Q2 = (P1�P2)−{e}, the statement

follows.

We introduced reaching pairs because of the following result.

Lemma 9.6. Equivalence classes without reaching pairs are row stable.

We postpone the proof until section 9.5.

Proof of Theorem 9.2. Let N be a 2-connected non-degenerate even cut matroid. Let M be
a 2-connected major of N. Then there exists a sequence of 2-connected matroids N1, . . . ,Nk,
where N =N1, M =Nk and, for all i∈ [k−1], Ni+1 is a row or column major of Ni (see [25],
page 290; see also [3]). In particular, Ni has no loops or co-loops, for any i ∈ [k]. Let D

be an equivalence class of representations of N which extends to M and, for every j ∈ [k],
define D j to be the set of extensions of D to Nj. It suffices to show that, for all j ∈ [k], D j

is an equivalence class. Let us proceed by induction. As N1 = N, the result holds for j = 1.
Suppose that the result holds for j ∈ [k−1]. By Remark 9.5, D j does not have a reaching
pair. Therefore, by Lemma 9.4 and Lemma 9.6, D j is stable. It follows that D j+1 is an
equivalence class.

9.3 Clip siblings

We now introduce an operation on grafts which preserves even cuts. Consider a pair of
equivalent graphs H1 and H2. Suppose that Pi ⊂ E(Hi) is a path in Hi, for i = 1,2. For
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i = 1,2, let Gi be obtained from Hi by adding an edge Ω with endpoints the ends of Pi.
Since H1 and H2 are equivalent, cycle(H1) = cycle(H2). Moreover,

ecycle(G1,{Ω}) = cycle(H1) = cycle(H2) = ecycle(G2,{Ω}).

In particular, (G1,{Ω}),(G2,{Ω}) are either equivalent or siblings. Let T1,T2 be a match-
ing terminal pair for G1,G2. If (G1,T1),(G2,T2) are inequivalent we say that the tuple
T = (H1,P1,H2,P2) is a clip-template and that (G1,T1),(G2,T2) (respectively (G1,{Ω}),
(G2,{Ω})) are clip siblings which arise from T. An explicit characterization of clip sib-
lings is given in Section 9.3.1.

Remark 9.7. Let T = (H1,P1,H2,P2) be a clip-template and let (G1,T1), (G2,T2) be clip
siblings that arise from T. Then, for i = 1,2, we have Ti =Vodd(Gi[P1∆P2]).

Proof. As Pi ∪Ω is an odd cycle of (Gi,{Ω}) for i = 1,2, by Theorem 3.1, we have Ti =

Vodd(Gi[P3−i ∪Ω]) = Vodd(Gi[P3−i])∆Vodd(Gi[Ω]). As Ω and Pi have the same ends in Gi,
we have Vodd(Gi[Ω]) = Vodd(Gi[Pi]). It follows that Ti = Vodd(Gi[P3−i])∆Vodd(Gi[Pi]) =

Vodd(Gi[P1∆P2]).

Consider clip siblings (G1,T1),(G2,T2) arising from a clip-template (H1,P1,H2,P2).
Let Ω be the edge in E(G1)− E(H1). Let M = ecut(G1,T1) and let N = M/Ω. Then
(H1,T1) is a representation of N. Let D be the set of representations equivalent to (H1,T1).
Then (G1,T1) and (G2,T2) are two inequivalent representations of M which extend repre-
sentations of D . In particular, D is not row stable. Thus, equivalence classes of grafts are
not row stable in general.

9.3.1 A characterization of clip siblings

The main result of the section is the following.

Theorem 9.8. Let M be a 3-connected even cut matroid with representations (Gi,Ti) for
i = 1,2. Suppose that (G1,T1),(G2,T2) are clip siblings arising from a clip-template T =

(H1,P1,H2,P2), where ecut(H1,T1) is 3-connected and is not cographic. Then (G1,T1),
(G2,T2) are either basic siblings or strip siblings.
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It remains to define the terms “basic siblings” and “strip siblings”. Consider a clip-template
(H1,P1,H2,P2). If H2 = Wflip(H1,S) for some w-sequence S, we slightly abuse notation and
say that (H1,P1,H2,P2,S) is a clip-template. We will always assume that S is a w-sequence
in this case.

Consider a clip-template T = (H1,P1,H2,P2,S). If S = /0 (that is H1 = H2) then T is
a basic template and (G1,T1),(G2,T2) arising from T are basic twins. By Remark 9.7,
Ti = Vodd(Hi[P1�P2]), for i = 1,2. As P1,P2 are both paths in H1,H2, this implies that
|T1|, |T2| ≤ 4. Therefore:

Remark 9.9. Basic twins are degenerate.

We say that a clip-template T = (H1,P1,H2,P2,S) is a strip-template if the following
hold:

(a) S= (X1, . . . ,Xk) is a nested w-sequence for H1;

(b) Pi has one end in IHi(X1) and the other end in IHi(X̄k), for i = 1,2.

In this case we say that the grafts (G1,T1),(G2,T2) arising from T are strip twins.

We say that (G1,T1),(G2,T2) are basic (respectively strip) siblings if, for i = 1,2, there
exists (G�

i,T
�

i ) equivalent to (Gi,Ti) such that (G�
1,T

�
1),(G

�
2,T

�
2) are basic (respectively strip)

twins.

9.3.2 Proof of Theorem 9.8

We say that clip-templates:

T= (H1,P1,H2,P2,S) and T� = (H �
1,P

�
1,H

�
2,P

�
2,S�) (9.1)

are compatible if:

(a) Hi,H �
i are equivalent, for i = 1,2, and

(b) Pi�P�
i is a cycle of H1, for i = 1,2.

Note that, by Theorem 1.1, cycle(H1) = cycle(H2) = cycle(H �
1) = cycle(H �

2).
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Lemma 9.10. Let T and T� be compatible templates. Let (G1,T1), (G2,T2) arise from
T and let (G�

1,T
�

1), (G
�
2,T

�
2) arise from T�. Then, for i = 1,2, (Gi,Ti) and (G�

i,T
�

i ) are
equivalent.

Proof. Let us assume that T,T� are as described in (9.1). Then, by construction, cycle(G1)=

span
�
cycle(H1)∪{P1∪Ω}

�
and cycle(G�

1) = span
�
cycle(H1)∪{P�

1∪Ω}
�
. By hypothesis,

(P1 ∪Ω)�(P�
1 ∪Ω) = P1�P�

1 ∈ cycle(H1). Hence, cycle(G1) = cycle(G�
1). It follows from

Theorem 1.1 that G1 and G�
1 are equivalent. Similarly, G2 and G�

2 are equivalent. It follows
that (G�

1,Vodd(G�
1[J1])) and (G�

2,Vodd(G�
2[J2])) (where Ji is a Ti-join of Gi, for i = 1,2) are

siblings. As the matching terminal pair for G�
1,G

�
2 is unique (by Proposition 3.7), (Gi,Ti)

and (G�
i,T

�
i ) are equivalent, for i = 1,2.

Lemma 9.11. Let T = (H1,P1,H2,P2,S) be a clip-template. Then T has a compatible
clip-template which is basic or strip.

Proof. Suppose that T = (H1,P1,H2,P2,S) is a clip-template. By Proposition 5.4, there
exists a graph H such that

(1) H = Wflip[H1,S1], for some w-sequence S1 which preserves P1, and

(2) H2 = Wflip[H,S2], for some nested w-sequence S2, where every X ∈ S2 does not
preserve P1.

Now let S3 :=(X ∈ S2 : X preserves P2) and S4 := S2−S3. Then T�=(H,P1,Wflip[H2,S3],P2,

S4) and T are compatible clip-templates. Moreover, S4 = (X1, . . . ,Xk) is nested (as it is a
subsequence of S2) and every X ∈ S4 does not preserve P1 and P2. This implies that, for
i = 1,2 and for every j ∈ [k], Pi has one end in IHi(Xj) and one end in IHi(X̄ j). As
X1 ⊂ X2 ⊂ ·· · ⊂ Xk, this implies that T� is a clip-template, if S4 is non-empty. If S4 is
empty, then T� is basic and we are done.

Proof of Theorem 9.8. Proposition 2.5 implies that H1 and H2 are 2-connected, except for
the possible presence of a single pin. Suppose that e is a pin of H1 (and H2). Let vi be the
head of e in Hi and Ω the edge in E(G1)−E(H1). If e is a pin neither in G1 nor in G2, then,
for i = 1,2, Ω is incident to vi in Gi and δGi(vi) = {e,Ω}. Thus e ∈ P1∩P2. By Remark 9.7,
Ti =Vodd(Gi[P1�P2]), hence vi /∈ Ti. Therefore δGi(vi) is an even cut of (Gi,Ti) and e,Ω are
parallel elements of ecut(G1,T1), a contradiction. It follows that e is not a pin in one of G1,
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G2. As a pin can be moved anywhere by a Whitney-flip, we will ignore the position of e.
Hence we may assume that there exists a w-sequence S for H1 such that H2 =Wflip[H1,S]. It
follows that T= (H1,P1,H2,P2,S) is a clip-template. Lemma 9.11 implies that there exists
a clip-template T� which is basic or strip and compatible with T. Let (G�

1,T
�

1),(G
�
2,T

�
2) arise

from T�. By definition (G�
1,T

�
1),(G

�
2,T

�
2) are basic twins or strip twins. By Lemma 9.10, for

i = 1,2, (G�
i,T

�
i ) is equivalent to (Gi,Ti). It follows that (G1,T1),(G2,T2) are basic or strip

siblings.

9.4 Proof of Theorem 9.1

The last two results we require to prove Theorem 9.1 are the following.

Lemma 9.12. Let N be an even cut matroid and let D be an equivalence class of repre-
sentations of N. Let M be a row major of N with no loops or co-loops. Suppose that the
set D � of extensions of D to M is non-empty. Then D � is either an equivalence class or the
union of two equivalence classes D1, D2 and any (G1,T1) ∈D1, (G2,T2) ∈D2 are clip sib-
lings which arise from a clip-template (H1,P1,H2,P2), where (Hi,Vodd(Hi[P1�P2])) ∈ D ,
for i = 1,2.

Lemma 9.13. Let (G1,T1),(G2,T2) arise from a strip-template T= (H1,P1,H2,P2,S). Sup-
pose that ecut(H1,T1) and ecut(G1,T1) are 3-connected and (H1,T1) is non-degenerate.
Then (G1,T1), (G2,T2) have no reaching pair.

We postpone the proofs of these lemmas until Section 9.6.

Proof of Theorem 9.1. Let N be a 3-connected non-degenerate even cut matroid. Let M be
a 3-connected major of N. It follows [28] that there is a sequence of 3-connected matroids
N1, . . . ,Nk, where N = N1, M = Nk and, for all i ∈ [k−1], Ni+1 is a row or column major of
Ni. In particular, Ni has no loop or co-loop, for any i ∈ [k]. Let D be an equivalence class
of representations of N which extends to M and, for every j ∈ [k], define D j to be the set of
extensions of D to Nj. It suffices to show that, for all j ∈ [k], D j is either

(a) an equivalence class, or

(b) the union of two equivalence classes without reaching pairs.
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Let us proceed by induction. As N1 = N, the result holds for j = 1. Suppose that the result
holds for j ∈ [k−1].

Consider the case where Nj+1 is a column major of Nj. If (a) holds for D j, then
Lemma 9.4 implies that (a) holds for D j+1. If (b) holds for D j, then Lemma 9.4 and
Remark 9.5 imply that either (a) or (b) holds for D j+1.

Consider the case where Nj+1 is a row major of Nj. Suppose first that (a) holds for D j.
Lemma 9.12 implies that either (a) holds for D j+1 or D j+1 = D1 ∪D2, where D1,D2 are
equivalence classes. Moreover, any (G1,T1) ∈ D1, (G2,T2) ∈ D2 are clip siblings which
arise from a clip-template (H1,P1,H2,P2), where (Hi,Vodd(Hi[P1�P2])) ∈ D j, for i = 1,2.
Remark 9.7 implies that Nj = ecut(Hi,Vodd(Hi[P1�P2])), for i = 1,2. Theorem 9.8 implies
that (G1,T1) and (G2,T2) are basic siblings or strip siblings. Because of Remark 9.3, we
may assume that (G1,T1) and (G2,T2) are either basic twins or strip twins. The former
case does not occur, for otherwise Remark 9.9 implies that |T1| ≤ 4 and ecut(H1,T1) is
degenerate. Lemma 9.13 implies that D1,D2 have no reaching pair. Hence, (b) holds for
D j+1. Suppose now that (b) holds for D j. Then Lemma 9.6 and Remark 9.5 imply that
either (a) or (b) holds for D j+1.

9.5 Proof of Lemmas 9.4 and 9.6

Lemma 9.14. Let N be an even cut matroid and D be an equivalence class of representa-
tions of N. Let M be a row or column major of N that is not cographic. Suppose that the
unique element Ω in E(M)−E(N) is not a loop or a co-loop of M. Let D � be the set of
extensions of D to M and (G1,T1),(G2,T2) ∈ D �.

(1) If M is a column major of N, then (G1,T1),(G2,T2) are equivalent.

(2) If M is a row major of N, then (G1,T1),(G2,T2) are either equivalent or clip siblings.
Moreover, in the latter case, Σ1 =Σ2 = {Ω} is the matching signature pair for G1,G2.

Proof. (1). Follows from Lemma 8.11, as M has no co-loop. (2). We may assume that
G1,G2 are not equivalent. Then there is a unique (up to signature exchange) matching
signature pair Σ1,Σ2 for G1,G2. For i= 1,2, let (Hi,Γi) = (Gi,Σi)\Ω. As ecycle(H1,Γ1) =

ecycle(H2,Γ2) and H1,H2 are equivalent, it follows that (H1,Γ1),(H2,Γ2) are equivalent.

118



Lemma 8.10 implies that, for i = 1,2, either Ω is a bridge of Gi or a signature of (Gi,Σi).
If the latter case occurs for both i = 1 and i = 2, then (G1,T1),(G2,T2) are clip siblings and
we are done. Now suppose that Ω is a bridge of Gi, for i = 1 or i = 2. Then every cycle
of Gi is a cycle of Hi, hence a cycle of H3−i (as H1 and H2 are equivalent). It follows that
every cycle of Gi is a cycle of G3−i. By Remark 8.9(1), every cycle of (Gi,Σi) is even.
Therefore Σ�

i = /0 is a signature of (Gi,Σi). By Proposition 3.7 and Theorem 3.1, T3−i is
empty and M is cographic, a contradiction.

Proof of Lemma 9.4. It follows from part (1) of Lemma 9.14.

Proof of Lemma 9.6. Let N be an even cut matroid and let M be a row extension of N, i.e.
N = M/Ω for some Ω ∈ E(M). Suppose that M is not cographic and Ω is not a loop or
co-loop of M. Let D be an equivalence class of representations of N with no reaching pair
and let D � be the extension of D to M. Suppose for a contradiction that there exist inequiv-
alent grafts (G1,T1),(G2,T2) ∈ D �. Lemma 9.14(2) implies that (G1,T1),(G2,T2) are clip
siblings which arise from a clip-template (H1,P1,H2,P2), where, for i = 1,2, Hi = Gi \Ω.
Remark 9.7 states that Ti =Vodd(Gi[P1�P2]), for i = 1,2. Hence, (Hi,Ti) ∈ D , for i = 1,2.
It follows that (H1,P1) and (H2,P2) form a reaching pair of (H1,T1), a contradiction.

9.6 Proof of Lemmas 9.12 and 9.13

Proof of Lemma 9.12. For some Ω ∈ E(M), we have N = M/Ω. Suppose for a con-
tradiction that there exist, for i = 1,2,3, (Gi,Ti) ∈ D �, where G1,G2,G3 are inequiva-
lent. For any distinct i, j ∈ [3], let Σi j,Σ ji be the matching signature pair for Gi and G j.
Lemma 9.14(2) implies that Ω is a signature of (G1,Σi j), for every i, j. It follows that
(G1,{Ω}),(G2,{Ω}),(G3,{Ω}) are pairwise siblings. For i = 1,2, let Pi be a path in Gi

forming a cycle with Ω. Let Ci := Pi ∪Ω. Theorem 3.1 implies that C1 and C2 are T3-joins
of (G3,T3). Hence, C1�C2 is a cycle of G3. As Ω /∈ C1�C2, the cycle C1�C2 is even in
(G3,{Ω}). It follows that C1�C2 is an even cycle of (G1,{Ω}). Hence, C1�(C1�C2) =C2

is a cycle of G1. But now Remark 8.9(1) implies that G1 and G2 are equivalent, a contra-
diction.

The proof of Lemma 9.13 is quite complicated and requires some results and defini-
tions. Given a graft (G,T ), we say that a 2-separation X of G is simple if IG(X) = {u},

119



for some u ∈ T such that u has degree two in G. We say that a graft (G,T ) is well behaved
if (G,T ) is non-degenerate, G is 2-connected and, for every 2-separation X of G, either X
or X̄ is simple.

Lemma 9.15. If (G,T ) is well behaved, then (G,T ) does not have a reaching pair.

Proof. Suppose for contradiction that (G,T ) has a reaching pair (G1,P1),(G2,P2). Thus
T =Vodd(G[P1�P2]). For i = 1,2, let Si be a w-sequence for G such that Gi = Wflip[G,Si].
As (G,T ) is well behaved, we may assume that X is simple for every X ∈ Si. It follows
that, for i = 1,2, every X ∈ Si is a 2-separation in G3−i. We may assume that every X ∈ Si

does not preserve Pi. Consider X ∈ S1; let {u}=IG(X). As X does not preserve P1, u is an
end of P1. As T =Vodd(G[P1�P2]) and u ∈ T , u is not an end of P2, hence X preserves P2.
It follows that both P1 and P2 are paths in G1, hence |Vodd(G1[P1�P2])| ≤ 4. As P1�P2 is a
T -join of G, the graft (G1,Vodd(G1[P1�P2]) is equivalent to (G,T ), so (G,T ) is degenerate,
a contradiction.

Recall that X is a 2-(0,0)-separation (respectively a 2-(0,1)-separation) of a graft (G,T )
if X is a 2-separation of G, IG(X)∩ T is empty and IG(X̄)∩ T is empty (respectively,
IG(X̄)∩T is non-empty). We say that a graft (G,T ) is nice if the following hold:

(a) G is 2-connected;

(b) every graft (G�,T �) equivalent to (G,T ) contains no 2-(0,0) or 2-(0,1)-separation.

Note that, in particular, nice grafts do not contain even cuts of size two.

A graft (G,T ) is a clean strip if the following hold:

(a) there exists an edge Ω of G such that (H,T ) := (G,T ) \ {Ω} is nice and non-
degenerate;

(b) there exists a nested sequence S= (X1, . . . ,Xk) in H;

(c) T = T � ∪Tc, where Tc ⊆ ∪k
i=1BH(Xi) and v2,w2 ∈ T � ⊆ {v1,v2,w1,w2}, for distinct

vertices v1,v2 ∈ IH(X1) and w1,w2 ∈ IH(X̄k);

(d) the ends of Ω are v1,w1.
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Lemma 9.16. Let T = (H1,P1,H2,P2,S) be a strip-template. Let (G1,T1), (G2,T2) be the
strip siblings arising from T. If (H1,T1) is nice and non-degenerate, then (G1,T1) and
(G2,T2) are clean strips.

Proof. To simplify the notation we prove the statement for i = 1. Let S = (X1, . . . ,Xk)

and, for i = 1,2, let vi,wi be the ends of Pi in Hi. By definition of strip-template, we
have v1 ∈ IH1(X1) and w1 ∈ IH1(X̄k). Let Ω be the edge in E(G1)−E(H1). Then the
ends of Ω are v1,w1. Note that IH1(X1) = IH2(X1) and IH1(X̄k) = IH2(X̄k), thus v2,w2

are vertices of H1. By Lemma 5.15, Vodd(H1[P2]) = {v2,w2}∪Vodd(Cat(H1,S)). There-
fore T1 = {v1,w1}�({v2,w2}∪Vodd(Cat(H1,S))). Hence T1 ∩IH1(X1) = {v1}�{v2}. As
(H1,T1) is nice, T1∩IH1(X1) is non-empty. It follows that v1 and v2 are distinct vertices of
H1 and v1,v2 ∈ T1. Similarly, w1 and w2 are distinct vertices of H1 and w1,w2 ∈ T1.

Lemma 9.17. Let (G,T ) be a clean strip. Then (G,T ) contains a well behaved graft as a
minor.

We postpone the proof of Lemma 9.17 until the end of the section. We are now ready
to prove Lemma 9.13.

Proof of Lemma 9.13. Let (G1,T1),(G2,T2) arise from a strip-template T=(H1,P1,H2,P2,

S), where ecut(H1,T1) and ecut(G1,T1) are 3-connected and ecut(H1,T1) is non-degenerate.
By symmetry between (G1,T1) and (G2,T2), it suffices to show that (G1,T1) has no reach-
ing pair. If H1 is 2-connected, then, by Proposition 2.5, (H1,T1) is nice. By Lemma 9.16,
(G1,T1) is a clean strip. By Lemma 9.17, (G1,T1) contains a well behaved graft as a minor.
By Lemma 9.15, such a minor does not have a reaching pair, hence the result follows by
Remark 9.5.

Now suppose that H1 is not 2-connected. By Proposition 2.5, (H1,T1) contains a pin
e and H1/e is 2-connected. If (H1,T1)/e is nice and non-degenerate, we may apply Lem-
mas 9.16, 9.17 and 9.15 to (G1,T1)/e and deduce that (G1,T1)/e has no reaching pair.
By Remark 9.5 it follows that (G1,T1) has no reaching pair. Thus it suffices to show that
(H1,T1)/e is non-degenerate and nice.

Suppose for contradiction that (H1,T1)/e is degenerate. Then there exists a graft (Ĥ, T̂ )
equivalent to (H1,T1)/e with |T̂ | ≤ 4. As e is a pin of (H1,T1), it follows that there exists
a graft (H,T ) equivalent to (H1,T1) such that (Ĥ, T̂ ) = (H,T )/e. As (H1,T1) is non-
degenerate, |T | ≥ 6. Moreover, |T̂ | = |T | or |T̂ | = |T |− 2, thus |T | = 6, |T̂ | = 4 and both
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ends of e in H are in T . Let t be a vertex of T which is not an end of e. Consider the graft
(H �,T �) obtained from T by a Whitney-flip moving e to be incident to t. Then |T �|= 4 and
(H �,T �) is equivalent to (H1,T1), a contradiction.

It remains to show that (H1,T1)/e is nice. We already showed that H1/e is 2-connected.
Now suppose that X is a 2-(0,0) or a 2-(0,1)-separation in (H1,T1)/e. By Proposition 2.5,
X is not a 2-(0,0) or a 2-(0,1)-separation in (H1,T1). It follows that X ∪{e} is a 2-(1,1)-
separation in (H1,T1) and the vertices in T1 ∩IH1(X) are the ends of e. Thus X is a 2-
(0,1)-separation in the graft obtained from (H1,T1) by moving e to a vertex in BH1(X), a
contradiction.

To conclude the chapter it remains to prove Lemma 9.17. To obtained the desired minor
for Lemma 9.17, we require the following reduction. Consider a nice graft (G,T ) and a
2-separation X of G with the following properties:

(i) either G[X ] is 2-connected or G[X −{e}] is 2-connected for some e ∈ X ; in the
second case, the end of e in IG(X) is not in T ;

(ii) |IG(X)∩T |= 1.

The graft (H,R) is obtained from (G,T ) by cleaning X if H is obtained from G by replacing
X with a triangle { f ,g,h}, where the ends of f are BG(X) and the vertex that g,h share
has degree two. If there are any edges parallel to f in H, we delete all such edges. We let
R := T −IG(X)∪IH({g,h}). Note that, by this definition, (H,R) is also nice and (H,R)
is a minor of (G,T ).

Lemma 9.18. Suppose that (H,R) is obtained from (G,T ) by cleaning X. If (G,T ) is
non-degenerate, then so is (H,R).

Proof. Suppose for contradiction that (H,R) is degenerate. Let f ,g,h be the edges in H
substituting X . Let (H �,R�) be equivalent to (H,R) with |R�| ≤ 4. Then { f ,g,h} is also a
triangle in H �. Consider the graft (G�,T �) obtained by substituting such a triangle with X ,
so that (H �,R�) is obtained from (G�,T �) by cleaning X . Then |T �| = |R�| ≤ 4 and (G�,T �)

is equivalent to (G,T ), a contradiction.

The following is easy.
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Remark 9.19. Let (G,T ) be a graft and X be a 2-separation of G. Let (G�,T �)=Wflip[(G,T ),
X ]. Then IG(X)∩T =IG�(X)∩T � and IG(X̄)∩T =IG�(X̄)∩T �. Moreover, if |IG(X)∩
T | is odd, then the following hold:

(1) if BG(X)⊂ T , then BG�(X)∩T � is empty;

(2) if BG(X)∩ T = {v}, then BG�(X)∩ T � = {v�}, where v� is the vertex in BG�(X)

incident to δG(v)∩X.

Proof of Lemma 9.17. Let (G,T ) be a clean strip. Let (H,T ), Ω, Tc, v1,v2,w1,w2 and
S = (X1, . . . ,Xk) be defined as in the definition of clean strip. We prove the statement by
induction on the number of non-simple 2-separations in (G,T ). If every 2-separation in
(G,T ) is simple, then we are trivially done.

Claim 1. We may assume that every 2-separation Y of G, with Y ⊂ X1, is simple.

Proof. Suppose that Y is a non-simple 2-separation of G with Y ⊂ X1. Pick Y to be minimal
with this property. Then v1 /∈IH(Y ), as the edge Ω is incident to v1. As T ∩IH(Y ) is non-
empty, it follows that T ∩IH(Y ) = {v2}. If v2 is a cut-vertex of G[Y ], then Y partitions into
sets Y1,Y2 with {v2}=VH(Y1)∩VH(Y2). As IH(Yi)∩T is empty, for i = 1,2, it follows that
Y1,Y2 are each formed by a single edge and Y is simple. As Y is not simple, v2 is not a cut-
vertex of G[Y ]. Now suppose that G[Y ] has a cut-vertex x �= v2. Then Y partitions into sets
Y1,Y2, with {x} = VH(Y1)∩VH(Y2) and v2 ∈ IH(Y1). It follows that IG(Y2)∩T is empty,
hence Y2 is a single edge. Moreover, G[Y1] is 2-connected, for otherwise we contradict the
choice of Y (Y1 cannot be formed by two series edges, for otherwise these edges would be
in series with Y2 and (H,T ) would contain an even cut of size two). Hence we may clean
Y . The resulting graft is a clean strip, hence the result follows by induction. ✸

By symmetry between X1 and X̄k, we may also assume that every 2-separation Y of G
with Y ⊂ X̄k is simple.

Claim 2. If Y is a 2-separation of G with Y ⊂ Xk−X1, then Y = {e, f}, for two series edges
e, f of G.

Proof. Suppose that Y is a 2-separation of G with Y ⊂ Xk −X1. Thus x ∈ IH(Y ) for some
x ∈ Tc. By definition of clean strip, x ∈ BH(Xp) for some p ∈ [k]. Note that p �= 1,k,
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as x ∈ IH(Y ) and Y ⊂ Xk − X1. As x ∈ IH(Y ), the sets Xp ∩Y and Y − Xp are non-
empty. Moreover X1 ⊂ Xp and Y ∩X1 is empty, so Xp −Y is also non-empty. Finally X̄k

is contained in both X̄p and in Ȳ , hence X̄p ∩ Ȳ is non-empty. It follows that Y and Xp

cross. By Remark 5.5, there exists a partition Z1,Z2,Z3,Z4 of E(H) such that Xp = Z1∪Z2,
Y = Z2 ∪Z3 and one of the following occurs:

(1) BH(Zi) = BH(Xp), for every i ∈ [4];

(2) {Z1,Z2,Z3,Z4} is a flower of H.

The first case cannot occur, as x ∈ BH(Xp)−BH(Y ). Hence we have X1 ⊆ Xp −Y = Z1

and X̄k ⊆ X̄p ∩ Ȳ = Z4. If both Z2 and Z3 are single edges, then they are in series in G and
we are done. Now suppose that one of them, say Z2, has non-empty interior. It follows that
y ∈ IH(Z2), for some y ∈ Tc. Let q ∈ [k] such that y ∈ BH(Xq). Then y is a cut-vertex of
H[Z2] and not a cut-vertex of H, as BH(Xq) separates v1 from v2 in H. Hence Z2 partitions
into sets W1,W2 where (Z1,W1,W2,Z3,Z4) is a flower of H and VH(W1)∩VH(W2) = {y}. A
similar argument holds for every z ∈ Tc∩IH(Z3). It follows that Z2∪Z3 partitions into sets
B1, . . . ,B�, where (Z1,B1, . . . ,B�,Z4) is a flower of H and, for every i ∈ [�], IH(Bi)∩T is
empty. It follows that B1, . . . ,B� are series edges in H. Hence, if �≥ 3, two of these edges
form an even cut, a contradiction. The result follows. ✸

Note that, in particular, Claim 2 implies that every 2-separation in Xk−X1 is simple. By
Claims 1 and 2 and by symmetry between X1 and X̄k, we conclude that every 2-separation
Y of G with either Y ⊂ X1, or Y ⊂ X̄k, or Y ⊂ Xk −X1, is simple. Hence every non-simple
2-separation Y of G crosses either X1 or X̄k. By symmetry between X1 and X̄k we may
assume that there exists a non-simple 2-separation Y in G1 which crosses X1. Choose Y to
be inclusion-wise minimal with such properties. We conclude the proof by showing that
we can clean Y and obtain a clean strip. We will assume that H[X1] does not partition into
sets U1,U2, where v1,v2 ∈ IH(U1) and {U1,U2, X̄1} is a flower of H, as otherwise we may
redefine X1 to be X1 −U2. The same holds for X̄k. Moreover, we may assume that X1 and
Y1 cross in a non-trivial way, i.e. every set X1 ∩Y , X1 −Y , Y −X1, X̄1 ∩ Ȳ is not an edge
with endpoints BH(Y ) (otherwise we may clean Y as in Claim 1). Therefore there exists a
partition Z1,Z2,Z3,Z4 of E(H) such that X1 = Z1∪Z2, Y = Z2∪Z3 and one of the following
occurs:
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(1) BH(Zi) = BH(X1) and IH(Zi) is non-empty, for every i ∈ [4];

(2) {Z1,Z2,Z3,Z4} is a flower of H.

As X1 = Z1 ∪Z2, we have v1 ∈ IH(Z1 ∪Z2) and w1 ∈ IH(Z3 ∪Z4). As Y is a 2-separation
in G1, either v1 ∈ VH(Z1) and w1 ∈ VH(Z4) or v1 ∈ VH(Z2) and w1 ∈ VH(Z3). By possibly
swapping Y with its complement, we may assume that v1 ∈VH(Z1) and w1 ∈VH(Z4).

We first show that case (1) does not occur. As each set Zi has a non-empty interior, it
is a 2-separation in H. Hence IH(Zi)∩T is non-empty for every i ∈ [4]. It follows that
v2 ∈ IH(Z2). Suppose that k ≥ 2, i.e. there is a 2-separation X2 in S with X1 ⊂ X2. We
may assume that X1 and X2 have distinct boundaries. Let {a1,a2} be the boundary of X2.
As X1 ⊂ X2, a1,a2 ∈ VH(Z3 ∪Z4). If a1,a2 ∈ VH(Z4), then Z3 ⊂ X2 −X1 and T ∩IH(Z3)

is empty, a contradiction. Hence a1 ∈ IH(Z3); then there exists a (v1,v2)-path in H \
{a1,a2}, a contradiction. It follows that S= (X1), hence Tc ⊆BH(X1). As |T | ≥ 6 (because
ecut(H,T ) is non-degenerate), we have T = {v1,v2,w1,w2}∪BH(X1). By Remark 9.19,
it follows that Wflip[(H,T ),X1] has four terminals, contradicting the fact that ecut(H,T ) is
non-degenerate.

We conclude that, for every 2-separation Y which crosses X1, case (2) occurs. We
claim that Y does not cross Xk. Suppose it does. Then, by a similar argument to the one
above (applied to X̄k), there exists a flower (W1,W2,W3,W4) of H with X̄k = W1 ∪W2 and
Y =W2 ∪W3. Let F be a maximal flower that is a refinement of (Z1,Z2,Z3,Z4) and F� be a
maximal flower that is a refinement of (W1,W2,W3,W4). As Y crosses both X1 and X̄k, we
have F = F�. Hence F is a flower of H and X1 and X̄k are each the union of at least two
petals of F. As (by the assumption above) H[X1] does not partition into sets U1,U2 with
v1,v2 ∈ IH(U1) and {U1,U2, X̄} a flower of H, we have that v1,v2 are not in the interior
of the same petal of F. Similarly, w1,w2 are not in the interior of the same petal of F.
Moreover, as F is a refinement of (Z1,Z2,Z3,Z4), v1 and w1 are in distinct petals of F. For
every X ∈ S, the vertices in BH(X) are attachments of F, as there is no (v1,w1)-path in
H −BH(X). Hence Tc is contained in the set of attachments of F. By Lemma 5.14, (H,T )
is degenerate, a contradiction. We conclude that Y does not cross X̄k, hence X̄k ⊂ Z4.

Now suppose that IH(Z3) is non-empty. It follows that Z3 is a 2-separation of G with
Z3 ⊂ Xk −X1. By Claim 2, Z3 is formed by two series edges {e, f}. In this case let e be the
edge with one end in VH(Z2). If IH(Z3) is empty, then Z3 is composed of a single edge;
call this edge e. It follows that IH(Z2) is not a singe edge, as otherwise either Z2 ∪Z3 are
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three series edges (and (H,T ) contains an even cut of size two), or Y is simple. Hence
T ∩IH(Z2) = {v2}. By minimality of Y , Z3 = {e}. Let x be the end of e in VH(Z2). If
x /∈ T , then we may clean Y in (G,T ) and, by induction, obtain a clean strip. If x ∈ T ,
let (G�,T �) = Wflip[(G,T ),(Z2,Y )]. Then, by Remark 9.19, we may clean Y in (G�,T �) and
obtain a clean strip.
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Chapter 10

Future work and open problems

10.1 Isomorphism Problem

For the Isomorphism Problem, we started by relating even cut siblings with even cycle sib-
lings. We defined two classes of even cycle siblings (Shih siblings and quad siblings) and
solved the Isomorphism Problem for these classes. The next step would be to prove the
Isomorphism Conjecture 4.2. The results in Chapter 3 imply that a proof of the Isomor-
phism Conjecture would solve the Isomorphism Problem for both even cycle and even cut
matroids. However, we would like to have a solution to the Isomorphism Problem for even
cut matroids where all the operations involved preserve the even cuts. This is not the case
for sequences of Lovász-flips, as discussed in Section 3.1.

Consider the following basic operation on graft with four terminals: let (G,T ) be
a graft with |T | = 4; let (H,Γ) be obtained from (G,T ) by folding with some pairing.
Let (H �,Γ�) be obtained from (H,Γ) by either one Whitney-flip or a signature exchange,
where Γ� ⊆ δH �(u)∪ δH �(v)∪ loop(H �), for some vertices u,v ∈ V (H �). Let (G�,T �) be
obtained from (H �,Γ�) by unfolding on u,v. Then (G,T ) and (G�,T �) are quad siblings
and ecut(G,T ) = ecut(G�,T �); we say that (G,T ) and (G�,T �) are related by a basic op-
eration. For example, tilt and twist twins are related by a simple operation and shuffle
twins are related by a sequence of basic operations. In Section 4.4 we conjecture that, up
to Whitney-flips, Lovász-flips, signature exchanges and reductions, signed graphs siblings
are related by one of a set of possible operations. The following asks which operations we
need to describe the relation between graft siblings.
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Open Problem 1. Up to Whitney-flips, basic operations and reductions, what are the op-
erations needed to define the relation between two grafts representing the same even cut
matroid?

Note that sequences of Lovász-flips on signed graphs give rise to examples like the one
described in Section 2.4.3 (and represented in Figure 2.1); sequences of basic operations
on grafts gives rise to examples like the one described in Section 2.4.3 and represented in
Figure 2.2. To answer Open Problem 1 we will have to take into account pairs of siblings
like the ones in Figure 2.1, which, for even cut matroids, arise in pairs.

10.2 Excluded Minor Problem

The work in Chapters 8 and 9 provides tools toward solving the following problems.

Open Problem 2. What are the excluded minors for the class of even cycle matroids?

Open Problem 3. What are the excluded minors for the class of even cut matroids?

However, an answer to these two problems will certainly be quite hard to attain. We
may instead focus on a more specific problem.

Let E be the class of even cycle matroids that contain R10 as a minor. Theorem 8.2
implies that, for every matroid M in E and any fixed R10-minor in M, every equivalence
class of representations of M arises uniquely from an equivalence class of representations
of the minor. This makes the following problem more approachable than Problem 2.

Open Problem 4. What are the excluded minors for the class E ?

In other words, we are asking which are the matroids M such that every proper minor
of M is either an even cycle matroid or does not contain R10 as a minor. Note that this does
not imply that M itself is an excluded minor for the class of even cycle matroids.

When looking for excluded minors for a class of matroids, it is often useful to first
consider only excluded minors which contain a specific matroid (in our case, R10) as a
minor. We may then focus on finding excluded minors for the class of even cycle matroids
which do not contain R10 as a minor. The tools needed to solve Problem 4 would likely

128



also be useful in applying Theorem 8.2 or Theorem 8.1 to other classes of non-degenerate
even cycle matroids, to solve the analogue of Problem 4 for them.

As R10 is also an even cut matroid and every graft representation of R10 has no reaching
pair, we may ask the analogous question for even cut matroids. Let E � be the class of even
cut matroids which contain R10 as a minor.

Open Problem 5. What are the excluded minors for the class E �?

Our initial motivation to study even cycle and even cut matroids was to prove Seymour’s
Conjecture 1.5. Guenin showed that Seymour’s conjecture holds for even cycle and even
cut matroids (see [14]). Seymour (see [29]) showed that the property of being 1-flowing
is closed under duality. Hence Seymour’s conjecture also holds for duals of even cycle
matroids and duals of even cut matroids. Therefore, to prove Seymour’s conjecture we
need to know something about the matroids that are not even cycle, duals of even cycle,
even cut or duals of even cut matroids. This is in general a very hard problem; even knowing
the excluded minors for the basic classes, finding the excluded minors for their union will
not be easy.

We may focus on a more specific problem, like solving Seymour’s conjecture for ma-
troids containing R10 as a minor. Let E ∗ be the class of matroids that are duals of matroids
in E and (E �)∗ be the class of matroids that are duals of matroids in E �. Let EU be the union
of E , E �, E ∗ and (E �)∗. The matroid R10 is self-dual; thus any matroid in EU contains R10

as a minor. To prove Seymour’s conjecture for matroids containing R10 as a minor, we
would want to know which are the binary matroids outside the class EU .

Open Problem 6. What are the excluded minors for the class EU ?

10.3 More Open Problems

In Section 2.5 we proved that degenerate even cycle matroids are projections of graphic
matroids and degenerate even cut matroids are projections of cographic matroids. We do
not know whether the converse is true. We do not have any evidence for either a positive
or negative answer to this question.

Open Problem 7. Let M be an even cycle matroid which is the projection of a graphic
matroid. Is M degenerate?
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Open Problem 8. Let M be an even cut matroid which is the projection of a cographic
matroid. Is M degenerate?

Theorem 8.1 implies that, if M is a 3-connected even cycle matroid which contains as a
minor a 3-connected non-degenerate even cycle matroid N, then the number of inequivalent
representations of M is at most twice the number of inequivalent representations of N. By
the work of Geelen, Gerards and Whittle [11], we know that every minor closed class
of binary matroids has a finite number of excluded minors. It follows that there exists
a constant c such that every non-degenerate even cycle matroid contains a non-degenerate
minor of size at most c. However, we would like a more precise result, with a small constant
and possibly a characterization of the minimally non-degenerate even cycle matroids.

Open Problem 9. Which are the excluded minors for the class of degenerate even cycle
matroids?

Note that, if (G,Σ) is a signed graph with no blocking pair, it is very likely true that
(G,Σ) contains a small minor (H,Γ) with no blocking pair. However, this does not neces-
sarily imply that every other representation of ecycle(H,Γ) has no blocking pair.

We conclude this section with the analogue of Problem 9 for even cut matroids.

Open Problem 10. Which are the excluded minors for the class of degenerate even cut
matroids?
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Appendix A

Recognition

In this appendix we present an algorithm to find signed graph representations of a given
binary matroid. Given a matrix representation over GF(2) of a binary matroid M, the
algorithm returns the list of all representations of M as an even cycle matroid. If M is not an
even cycle matroid, the algorithm returns an empty list. The running time of the algorithm
is exponential in the rank of the matroid. We also present an analogous algorithm for even
cut matroids.

A.1 Even cycle matroids

Let A be a binary matrix with r rows and x be a non-zero column of A. Let M be the binary
matroid with matrix representation A. Let e be the element of M corresponding to column
x of A. Then a matrix representation of M/e is the matrix A/x, where A/x is obtained from
A by:

(a) row reducing A so that column e has exactly one non-zero element in row r;

(b) deleting row r and column e.

Let y be row r at the end of step (a) (i.e. the row that is deleted); then we denote Sx(A) :=
{ f ∈ E(M)−{e} : y f = 1}. We have the following algorithm for recognizing even cycle
matroids, based on the fact that even cycle matroids are lifts of graphic matroids.
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- Input: Binary matrix representation A of a binary matroid M of rank r.

- Output: All representations of M as an even cycle matroid, up to equivalence.

- Algorithm:

(i) Set L := /0.

(ii) For all non-zero binary vectors x of size r do:

(1) add x to A to obtain a matrix A�;

(2) check if M(A�/x) is graphic: if so, L := L∪ (G,Sx(A�)), where G is a
graph representation of M(A�/x).

(iii) Return L.

We claim that the above algorithm returns an empty set if M is not an even cycle matroid,
and returns all representations of M, up to equivalence, if M is an even cycle matroid.

Suppose that M is a binary matroid with matrix representation A. Let M� be obtained
from M by adding a binary non-zero element e. Let A� be the matrix representing M�,
where column e of A� has exactly one non-zero element, in row r. Suppose M�/e is graphic
with representation G. Then M� is an even cycle matroid represented by (G�,Se(A�)∪{e}),
where G� is obtained from G by adding a loop e. It follows that M is an even cycle matroid
with representation (G,Se). Hence if the algorithm returns a non-empty list, then M is an
even cycle matroid and each signed graph in the list is a representation of M.

Now suppose M is an even cycle matroid with representations (G1,Σ1), . . . ,(Gk,Σk).
For every i ∈ [k], we may obtain a signed graph (G�

i,Σ�
i) from (Gi,Σi) by adding an odd

loop ei; let Mi := ecycle(Gi,Σi). Then, for every i ∈ [k], Mi \ ei = M and Mi/ei is a graphic
matroid represented by Gi. By Whitney’s Theorem, all the representations of Mi are equiv-
alent to Gi. Hence the algorithm returns, up to equivalence, all the representations of M.

In Appendix B we present some even cycle matroids with their representations. The
representations were obtained with the above algorithm (implemented in maple).

The algorithm above is exponential in the rank, as there are 2r − 1 binary vectors to
check. Step (2) in the algorithm is polynomial, as proved by Tutte in [35].
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A.2 Even cut matroids

The algorithm for recognizing even cut matroids is analogous to the algorithm for even
cycle matroids and relies on the fact that, if (G,T ) is a graft and e is an odd bridge of
(G,T ), then ecut(G,T )/e is cographic with representation G/e.

- Input: Binary matrix representation A of a binary matroid M of rank r.

- Output: All representations of M as an even cut matroid, up to equivalence.

- Algorithm:

(i) Set L := /0.

(ii) For all non-zero binary vectors x of size r do:

(1) add x to A to obtain a matrix A�;

(2) check if M(A�/x) is cographic: if so, L := L∪ (G,T ), where G is a graph
representation of M(A�/x) and T =Vodd(G[Sx(A�)]).

(iii) Return L.

This algorithm returns an empty set if M is not an even cut matroid, and returns all repre-
sentations of M, up to equivalence, if M is an even cut matroid.

Suppose that M is a binary matroid with matrix representation A. Let M� be obtained
from M by adding a binary non-zero element e. Let A� be the matrix representing M�, where
column e of A� has exactly one non-zero element, in row r. Suppose M�/e is cographic
with representation G. Then M� is an even cut matroid represented by (G�,T �), where G�

is obtained from G by adding a bridge e and T � =Vodd(G�[Se(A)∪{e}]). It follows that M
is an even cut matroid with representation (G,T ), where (G,T ) = (G�,T �)/e. We conclude
that, if the algorithm returns a non-empty list, then M is an even cut matroid and each graft
in the list is a representation of M.

Let M be an even cut matroid with representations (G1,T1), . . . ,(Gk,Tk). For every
i ∈ [k], we may obtain a graft (G�

i,T
�

i ) from (Gi,Ti) by uncontracting an odd bridge ei; let
Mi := ecut(Gi,Ti). Then, for every i ∈ [k], Mi \ ei = M and Mi/ei is a cographic matroid
represented by Gi. By Whitney’s Theorem, all the representations of Mi are equivalent to
Gi. Hence the algorithm returns, up to equivalence, all the representations of M.
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In Appendix B we present some even cut matroids with their representations. The
representations were obtained with the above algorithm (implemented in maple).
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Appendix B

Some interesting matroids

In this appendix we define some interesting matroids, namely the minimally non-graphic
and minimally non-cographic matroids, the matroids in Conjecture 1.5 and R10, which is
repeatedly used as an example in this work.

F7. The Fano plane. It has the following partial matrix representation.



0 1 1 1
1 0 1 1
1 1 0 1





F7 is minimally non-graphic and minimally non-cographic. It is both an even cy-
cle and an even cut matroid. It has 7 inequivalent representations as an even cycle
matroid, all isomorphic to the signed graph in Figure B.1. Each one of these rep-
resentation arises from a different choice for the element to be an odd loop. It has
7 inequivalent representations as an even cut matroid, all isomorphic to the signed
graph in Figure B.2. Each one of these representation arises from a different choice
for the element to be a pin. Note that every representation of F7 arises from a planar
graph, as every graph with 7 edges is planar. It follows that we may obtain every graft
representation of F7 from a signed graph representation of F7 by the construction in
Section 2.4.1.

F∗
7. Dual of F7. It is minimally non-graphic and minimally non-cographic. It is both an

even cycle and an even cut matroid. It has 14 inequivalent representations as an even
cycle matroid, represented in Figure B.3; 7 of the representations are isomorphic to
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the signed graph (a) and the other 7 to (b). It has 14 inequivalent representations as an
even cut matroid, represented in Figure B.4; 7 of the representations are isomorphic
to the graft (a) and the other 7 to (b).

M(K5). Cycle matroid of K5. It has the following partial matrix representation.




1 0 0 1 0 1
1 0 1 1 1 1
1 1 1 0 1 1
1 1 0 0 1 0





It is a minimally non-cographic matroid. It is an even cut matroid with 10 inequiva-
lent graft representations, all isomorphic to the graft in Figure B.5. Each one of these
representation arises from a different choice for the element to be a pin.

M(K5)∗. Dual of M(K5). It is a minimally non-graphic matroid. M(K5)∗ is an even
cycle matroid which has 52 inequivalent representations as an even cycle matroid,
represented in Figure B.6; 15 representations are isomorphic to the signed graph (a),
15 to , 10 to (c) and the remaining 12 to (d).

M(K3,3). Cycle matroid of K3,3. It has the following partial matrix representation.




1 1 1 1
0 1 0 1
1 0 1 0
0 0 1 1
1 1 0 0





It is a minimally non-cographic matroid. It is an even cut matroid with 22 inequiv-
alent graft representations, represented in Figure B.7; 9 of the representations are
isomorphic to the graft (a), 6 to (b), 6 to (c) and the remaining one to (d).

M(K3,3)
∗. The dual of M(K3,3). It is a minimally non-graphic matroid. M(K3,3)∗ is an

even cycle matroid with 15 inequivalent representations, represented in Figure B.8;
9 representations are isomorphic to the signed graph (a) and the other 6 to the signed
graph (b).

R10. Both an even cycle and an even cut matroid. R10 is self-dual, hence it is also the dual
of an even cycle matroid and the dual of an even cut matroid. It has 6 representations
as an even cycle matroid, all isomorphic to the signed graph (K5,E(K5)). It has 10
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inequivalent representations as an even cut matroid, all isomorphic to the graft in
Figure B.9.

AG(3,2). It has the following partial matrix representation.




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0





It is minimally non-1-flowing. AG(3,2) is both an even cycle and an even cut ma-
troid. There are, up to equivalence, 7 signed graphs representing AG(3,2), all isomor-
phic to the signed graph in Figure B.10(a). By the construction in Section 2.4.1 and
the fact that every graph with 8 edges is planar, AG(3,2) also has 7 representations
as an even cut matroid, all isomorphic to the graft in Figure B.10(b).

T11. It has the following partial matrix representation.




1 1 0 0 1
1 0 1 0 1
1 0 0 1 1
0 1 1 0 1
0 1 0 1 1
0 0 1 1 1





It is minimally non-1-flowing. It is not an even cycle matroid. T11 is an even cut
matroid with, up to equivalence, 10 representations, all isomorphic to the graft in
Figure B.11.

T∗
11. Dual of T11. It is minimally non-1-flowing. It is an even cycle matroid with, up to

equivalence, one representation as in Figure B.12. It is not an even cut matroid.
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Figure B.1: Even cycle representation of F7. Bold edges are odd.

Figure B.2: Even cut representation of F7. White vertices are terminals.

(a) (b)

Figure B.3: Even cycle representations of F∗
7 . Bold edges are odd.

(a) (b)

Figure B.4: Even cut representations of F∗
7 . White vertices are terminals.

Figure B.5: Even cut representation of M(K5). White vertices are terminals.
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(b)(a)

(c) (d)

Figure B.6: Even cycle representations of M(K5)∗. Bold edges are odd.

(a) (b)

(c) (d)

Figure B.7: Even cut representations of M(K3,3). White vertices are terminals.
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(b)(a)

Figure B.8: Even cycle representations of M(K3,3)∗. Bold edges are odd.

Figure B.9: Even cut representation of R10. White vertices are terminals.

(b)(a)

Figure B.10: Even cycle and even cut representations of AG(3,2). Bold edges are odd,
white vertices are terminals.

Figure B.11: Even cut representation of T11. White vertices are terminals.
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Figure B.12: Even cycle representation of T ∗
11. Bold edges are odd.
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compatible
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pair, 11
path, 11

crossing sets, 59
cut, 3
cut matroid, 3

representation, 3
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representation, 1
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petal, 61
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independent
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intercepting pair, 96
interior, 23

leaflet, 61
lift matroid, 16
linear set of circuits, 15
Lovász-flip, 6
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matching signature pair, 7
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matrix representation, 1
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graft, 22
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near-regular matroid, 16
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quad siblings, 47
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even cut matroid, 112
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sequence, 50
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shift
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Shih siblings, 46
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matroid, 34

signed graph, 4
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ec-standard, 77

signed matroid, 24
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split siblings, 46
split-template

compatible, 72
splitting vertex, 26
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even cut matroid, 97
order, 97

even cycle matroid, 96
order, 96

stable
even cut matroid, 112
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template, 115
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template
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split, 46
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siblings, 53
twins, 56

unfolding, 27
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center, 50

well behaved graft, 120
Whitney-flip, 2
widget

siblings, 53
twins, 57

150


	List of Figures
	Notation
	Introduction
	The graphic and cographic cases: two problems
	Thesis overview
	Problem 1: isomorphism
	Problem 2: bounding the number of representations
	Problem 3: excluded minors

	Related results
	Motivation

	Preliminaries
	Basic properties
	Matrix-representations
	Bases and co-cycles
	Minors

	Checking for isomorphism
	Connectivity
	Even cycle matroids
	Even cut matroids
	Signed matroids

	Constructing even cuts from even cycles and vice versa
	Matroids that are both even cycle and even cut
	Folding and unfolding
	Unbounded number of representations

	Lifts and projections

	Pairing isomorphism problems
	Results
	Generalization to signed matroids
	Pairs
	Uniqueness
	Odd cycles and signatures
	Harmonious sets

	Applications to signed graphs and grafts
	A matroid operation

	Even cycle isomorphism
	The graphic and cographic case
	The class of Shih siblings
	The class of quad siblings
	Isomorphism Conjecture
	Isomorphism for Shih siblings
	Simple twins
	Nova twins
	Reduction

	Isomorphism for quad siblings
	Shuffle twins
	Tilt twins
	Twist twins
	Widget twins
	Gadget twins
	-reduction


	Whitney-flips
	Whitney-flips avoiding vertices
	Whitney-flips preserving paths
	Flowers
	Proof of Propositions 5.2 and 5.3
	Proof of Proposition 5.4
	Whitney-flips on grafts
	Flowers in grafts
	Caterpillars


	Proofs of the even cycle isomorphism results
	Proof of Theorem 4.3 - split siblings
	Proof of Theorem 4.6 - quad siblings
	Templates
	The proof
	Technical lemmas
	Proofs of Lemmas 6.5, 6.6, 6.7 and 6.8


	Finding excluded minors
	Excluded minors with low connectivity
	Disjoint odd circuits do not fix the representation
	Stabilizers
	Stabilizers for even cycle matroids
	Stabilizers for even cut matroids
	Use of stabilizers


	Stabilizer theorem for even cycle matroids
	Main results
	The proof
	Proof of Lemmas 8.4 and 8.6
	Proof of Lemmas 8.7 and 8.8

	Stabilizer theorem for even cut matroids
	Main results
	Proof of Theorem 9.2
	Clip siblings
	A characterization of clip siblings
	Proof of Theorem 9.8

	Proof of Theorem 9.1
	Proof of Lemmas 9.4 and 9.6
	Proof of Lemmas 9.12 and 9.13

	Future work and open problems
	Isomorphism Problem
	Excluded Minor Problem
	More Open Problems

	APPENDICES
	Recognition
	Even cycle matroids
	Even cut matroids

	Some interesting matroids
	Bibliography
	Index

