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Abstract

The conventional hidden Markov model (HMM) has achieved significant progress
in speech recognition area. However. it is far from perfect. To overcome the well-
known limitations of HMM. a new statistical dynamic model is developed and inves-
tigated in this dissertation. The main novelty of this new model is the introduction
of the vocal tract resonance (VTR) as the internal, structured hidden state for rep-
resenting phonetic reduction and target undershoot in human production of sponta-
neous speech and the incorporation of pre-knowledge about the VTR dynamics into

the model design. training, and likelihood computation processes.

The earliest nonlinear version of the model. originally proposed in [33], is first
evaluated and investigated on the Switchboard speech database. Compared with a
baseline HMM system it turns out better performance. Based on investigation on
the nonlinear version and in consideration of the systematic variations in speech. two
new versions are then developed. One is called a mixture linear dynamic model and
the other one a mixture linear dynamic model with switching parameters on measure-
ment equations. Both versions overcome the inefficiency in the parameter learning
and likelihood computation process of the nonlinear version. The later version uses
piece-wise linear functions rather than linear functions to alleviate the inaccuracy of
the former version in approximating the physically nonlinear relationship between the
hidden state space and the acoustic space. The later version is a more general case of
the former version. Evaluation experiments demonstrate that both versions produce
large improvements. Search. a challenging problem for the new dynamic model. is
finally addressed. Based on analyses of that problem. three decoding algorithms (a
path-stack decoding algorithm. a second-order generalized pseudo-Bayesian decod-
ing algorithm and an interacting multiple model decoding algorithm) are designed.

Experiment results show that they all are effective. Consistent improvements are

\'s



observed when the most efficient one is used on different versions of the dynamic

model.
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Chapter 1

Introduction

1.1 Automatic Speech Recognition

To date. automatic speech recognition(ASR) has achieved significant progress during
the past two decades. Although the success. as well as the huge commercial markets.
has attracted many companies and researchers into this area. many difficulties asso-
ciated with ASR. which are mostly unsolved at the present time. prevent them from
building a good practical recognition system of use in the real world. Two major

ones of them are

1. Coarticulation and phonetic reduction problems

Studies of the way in which language is organized provide strong evidence that
underlying the production and perception of speech is a sequence of discrete
segments that are concatenated in time [38]. These segments, called phonemes.
are assumed to have unique articulatory and acoustic correlates. For a spe-
cific language. the inventory of these basic sound units is remarkably limited.

However. speech is generated through the closely coordinated and continuous

1



CHAPTER 1. INTRODUCTION 2

movements of a set of articulators with different degrees of sluggishness. As a
result, the acoustic properties of a given phoneme can change as a function of
immediate phonetic context. This contextual effect, which is known as coar-
ticulation. causes the overlap of the acoustic information for the neighboring
segments. Coarticulation is also responsible for the smearing of the segmental
boundaries. It is very difficult to determine precisely the phoneme boundaries
which segment the time function of spectral envelopes. For example. it is hard
to segment a succession of voiced sounds. Furthermore, in continuous ASR it is
almost impossible to segment a sentence of speech into words merely based on
their acoustic features. Although the coarticulation problem can be avoided in
the case of isolated word recognition by using words as the reference templates.
the problem still remains in other speech recognition systems where phonemes
or smaller parts of the words are used as templates. With continuous speech
recognition. the difficulty is compounded by elision. where the speaker runs

words together and “swallows™ most of the syllables.

2. Individuality and other variation problems

Acoustic features vary from speaker to speaker. even when the same words are
uttered. according to differences in manner of speaking and articulatory organs.
Even for the same speaker, acoustic features vary due to the variations in the
speaker’s mode (relaxed, stressed, shouting, etc.) and due to the changes in

the environmental factors (e.g background noise).

How to tackle those problems still remains the biggest challenge in ASR today.
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1.2 Hidden Markov Model

The hidden Markov model (HMM) [7, 8, 9] has dominated the ASR field for many
years. The most successful speech recognition systems [10, 11, 12] today have been
based on HMM. The distinct strength associated with this method is the powerful
statistical formalisms based solidly on mathematical optimization principles. The
precise mathematical framework gives rise to ease of automatic parameter learn-
ing(training) and to optimal decision rules for speech-class discrimination. The sys-
tems can do the training automatically with little or no human supervision. It has
been shown [92] that for HMMs the decision rule that is used performs as well as the
optimal Bayesian decision rule(asymptotically with the number of observations) and
there exist efficient search algorithms that implement this decoding rule {29]. So. it

is not a surprise that it currently performs the best.

However. the powerful training and recognition algorithms are based on the i.i.d.
assumption of the observations. which itself, unfortunately, is not true [42. 62]. To
relax this assumption, differentials (first-order and second-order) of the observations
are used. But the simultaneous use of a feature vector and its derivative raises one
additional problem, which has been well demonstrated in [62]. In Fig. 1.1, the solid
curve is a sine wave, and the dotted curve is the differential of the solid one, which is
a cosine. As shown in the figure, the optimal HMM state partitioning of the feature
sequence and its differential are not consistent. To force them to be synchronous

must result in reduced quality of approximation.

To overcome the speech coarticulation problem (or context-sensitivity), all state-
of-the-art HMM systems adopt left and right context dependent phones (or tri-
phones) as their unit models. It is a reasonable way for some types of phonological

variations. But it results in very large amounts of training data required if the
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Figure 1.1: Piece-wise constant approximation of sinusoid and its derivative (cosine)

system wants to perform well with a large vocabulary because of the greatly increased

number of triphone units.

To deal with the speech variation (speaker. environment, etc.) problem. the
only choice for the HMM systems seems to increase the number of Gaussians. The
increased number of Gaussians not only again brings about the problem of large
amount of training data needed. but also increases the confusability (overlapping)
between the Gaussians. In order to reduce the requirement of a huge amount of
training data states or Gaussians must be tied. So how to tie states or Gaussians

becomes another important issue for HMM systems.

The stationarity in each HMM state is also a serious weakness for HMM systems.
It is well known that speech is a non-stationary process. The stationarity in HMM
states enforce HMM to approximate the trajectory of speech observations piece-
wise constantly. In theory HMM can unlimitedly increase the number of states
to approximate the trajectory accurately, but it brings up again the problem of

requirement of a large amount of training data. It is not realistic.

Another weakness of HMM is its data-driven mechanism. It totally ignores the

phonological and phonetic perspectives of speech. First, nearly all currently popular
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speech recognition strategies use triphones arranged in strictly linear sequences, like
“beads-on-a-string”. This, however, is not how human language faculty organizes
its phonological primitives. Second, the weak theoretical foundation of the current
speech recognition technology from phonetic perspective is reflected in the weak
structure of the HMM in use and in the simplistic strategy of surface data fitting
to the observable acoustics (equipped with virtually no underlying data generation
mechanisms). A consequence of this weakness is that the sample paths of the HMM
as a non-stationary stochastic process deviate significantly from true speech data

trajectories.

The above weaknesses associated with the current speech recognition technology
lead to speech recognizers which inherently lack robustness. and cannot generalize
from training data to mismatched test data. The problem is particularly serious when
little supervised adaptation data are available to recognizers. as in most real-world

speech recognition applications.

Therefore. although HMM has achieved many progresses in the ASR field. the
problems are far from being solved. The recognizers built from this method (mostly
built for a specific domain and a constrained task) perform poorly for unconstrained
tasks and other domains. and even break down easily when porting from one speaking
mode or environment to another, or from one language to another. Even for the best
recognition systems, performance degrades rapidly in more difficult test conditions.

such as spontaneous speech, noisy environment and non-cooperative speakers. This

situation results from the fundamental weakness of HMMs.
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1.3 Generalized Models

To relax the HMM's limitations of the i.i.d. assumption of observations and the
stationarity in each state. many generalized HMM models have been proposed [42,
44. 45. 49, 50. 51. 52, 53, 54. 55, 58. 59, 62, 63]. All those models were called
~segment” models in [60] (A detailed survey of those models was given).

To overcome the HMM s ignorance of the phonological and phonetic perspectives
of speech. several new speech models have been proposed and investigated recently
[64]. [65]. [66]. [68]. [69]. All those models try to introduce the speech produc-
tion mechanism into speech recognition process. By the introduction of a speech
production mechanism. they also expect to be able to tackle the speech coarticula-
tion (context-semsitivity) problem. The HMM's triphone solution is an extravagant
approach to coarticulation and ignores some well-known properties of real human

speech.

The following is a brief review of all the above models. To relax the i.i.d. as-
sumption of observations, a more reasonable and realistic i.i.d assumption, a Gauss-
Markov (the first or second order) assumption. has been tried. The models based on
the Gauss-Markov assumption was first investigated by Wellekens [42] and Brown
[43]. Then. more work along this direction was carried out by Deng [58]. More ex-
plicit modeling of the correlation of observations has also been investigated by Kenny

[45], Woodland [46] and Takahasi [47] et al.

To capture the dynamics in speech observations, non-parametric and paramet-
ric approaches have been used. The first non-parametric approach used was the
stochastic segment model proposed in {44]. It assigns a Gaussian distribution to the
entire segment time-warped to a fixed length. Ghitza and Sondhi [49] developed a

similar approach to model the non-stationarity, but this work was done under the
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HMM framework. HMM states were defined as diphones and a different way (dy-
namic time warping) was used to do time-warping. Kimball [56] extended the work
in [44] and suggested that each segment be modeled by a discrete mixture of non-
parametric mean trajectories. In [57] a mixture model on segment level was also
proposed. Most recently Goldberger et al. [62] proposed a new model which used
a continuous mixture of mean trajectories to model each segment. Deng et al. and
Gish and Ng separately introduced very similar parametric approaches to model the
mean trajectory in each HMM state. In both cases. the mean trajectory was modeled
by a polynomial function, g; = YF, a;ut' (L is the order of polynomial function).
However. they defined ¢ according to different ways. Deng et al. defined t as the
absolute time (the number of frames staying at HMM states). Gish and Ng defined
it as a normalized one (¢ € [0.1]). Russell. Holmes. Gales and Young extended the
above parametric models to the continuous mixture case. In [50] and [52] the mean
of the trajectories is modeled by a Gaussian distribution. In [59, 63] the coefficients
of the linear trajectory function were defined as random variables and they followed

Gaussian distributions.

Digalakis et al [54] introduced a stochastic linear dynamic model to model the
speech dynamics. The model comes directly from control area where it is used to

model non-stationary signals.

Z(k) = FZ(k—-1)+W(k—-1) (1.1)
Ok) = HZ(k)+ V(k) (1.2)

where O(k) is an observation vector, Z (k) is a hidden state vector. W(k) and V(k) are
Gaussian noises. F' and H are system parameters. Each phone segment is modeled
by one of the above systems, so the system parameters (F, H, and the means and

covariances of W and V) are phone-dependent. The hidden states are continuous, so

it can be treated as a continuous-state HMM. If F = [ and W = 0, HMM becomes
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a special case of this model. Eventually, most of the segment models mentioned
above can be considered as special cases of this model. The work in this thesis could
be viewed as the extension of this dynamic model, but there are some fundamental

changes which will be elaborated later.

To deal with speech coarticulaiion, which is an important characteristic in the
speech production process, one early attempt was made by Bridle et al. Bakis [64]
suggested a general system with targets, linear dynamics and nonlinear output map-
ping to model coarticulation. Blackburn et al [65] and Richards et al [68] both
incorporated speech synthesis processes into speech recognition. Both systems use
multi-layer perceptrons (MLPs) to describe the relationship between “articulatory”
(or dynamic ) space and acoustic space. The “articulators™ in both systems don't
have physical meanings (pseudo-ones). In [66] and [69] the “articulators” were given
physical meanings (real ones), which, however, makes the systems harder to be im-

plemented.

1.4 A New Statistical Dynamic Model

The fundamental nature of the acoustic modeling strategy HMM and the so-called
“segment” models use is such that they explore only the surface-level observation

data and not its internal structure or generative mechanisms.

All the “segment” models reviewed in [60] try to model speech dynamics at acous-
tic level, or they try to capture the mean trajectory in observations (Mel-frequency
cepstral coefficients (MFCCs)). However, the dynamics at the acoustic level is ap-
parently caused by some more fundamental dynamics in a human'’s vocal tract (the
generative mechanism). Hence it appears necessary to explore some underlying dy-

namics in the speech patterns, which is responsible for the overwhelming variability
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in the surface-level data. The so-called “articulatory” models try to do this. But
the dynamics in [65, 68] are pseudo and totally hidden, no pre-knowledge is allowed
to be added to those models. The dynamics in [66. 69] are physical ones and some
pre-knowledge (target asymptotic property) are able to be added to the model, but
the high dimensionality and the complicated behaviors of the articulators make the

systems infeasible.

In this thesis a new statistical coarticulatory dynamic model is proposed and
investigated. This model was already derived mathematically in [69], but a small
modification is made here. In this work the dynamics of vocal-tract-resonance (VTR)
is used to replace the original dynamics of articulators. The VTR domain is internal
to the domain of surface acoustic domain (such as MFCCs). The VTRs are pole
locations of the vocal tract configured to produce speech sounds. They have acoustic
correlates of formants which are directly measurable for vocalic sounds, but often are
hidden or perturbed for consonantal sounds due to the concurrent spectral zeros and
turbulence noises. Hence, formants and VTRs are related but distinct concepts: the
former is defined in the acoustic domain and the latter is associated with the vocal-
tract properties. According to the goal-based speech production theory. articulatory
structure and the associated VTRs necessarily manifest asymptotic behavior in their
temporally smooth dynamics. Therefore, by this replacement, not only is the target-
directed property of the dynamics kept, but also the model becomes feasible because
of the low dimensionality of VTR space (just the first several VTRs are used).

The coarticulation modeling in this new model is accomplished via two separate
but related mechanisms. First, the mechanism of duration-dependent phonetic re-
duction allows the VTR variables and the associated surface acoustic variables to be
modified automatically according to the varying speech rate and hence the duration
of the speech units (e.g., phones). This modification is physically established accord-
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ing to the structured dynamics assigned to the VTR, variables in the model. Second,
the “continuity” mechanism at the utterance level employed in the model constrains

the VTR variables so that they flow smoothly from one segmental unit to another.

This new dynamic model could be classified into the so-called “segment” models
ecause it does have the “segment” concept in its model design. The targets of the
dynamics are based on segments. But it has two fundamental differences with those

~segment” models.

1. All the “segment”™ models try to model the speech dynamics at the acoustic
level. but the new model tries to do it at the internal level (VTR domain).

2. Due to the first difference. the target-directed property in the internal dynamics

is able to be incorporated into the model design.

1.5 Thesis organization

In chapter 2 the original nonlinear version of the new dynamic model is introduced.
The mathematical formulation of the model is first derived. then the model parame-
ter training algorithm and model likelihood computation algorithm is derived using
the Maximum Likelihood (ML) method. Finally, the new model is evaluated on
Switchboard data under a N-best list re-scoring paradigm and some exploration ex-
periments carried out. In chapter 3, a new version of the dynamic model, a mixture
linear dynamic model, is developed. Model training and likelihood computation algo-
rithms are then derived for this version. Finally, evaluation experiments are carried
out for this new version and an analysis experiment is also performed to demonstrate
the success of incorporation of dynamics. In Chapter 4, a more general version, a

mixture linear dynamic model with switching parameters on measurement equations,
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is developed. The model parameter learning and likelihood computation algorithms
are derived, then evaluation experiments are done for it. In Chapter 5, three efficient
decoding algorithms are developed for the new dynamic models. They are first com-
pared on a small amount of data and the most efficient one is chosen. Then the most
efficient one is evaluated on different versions of the new dynamic model. Finally, in

Chapter 6. conclusions are made and future work is discussed.



Chapter 2

A Statistical Coarticulatory
Dynamic Model

The statistical coarticulatory model presented in this chapter is a drastic departure
from the conventional HMM-based approach to speech recognition. In the conven-
tional approach, the variability in observed speech acoustics is accounted for by a
large number of Gaussian distributions. each of which may be indexed by a discrete
“context” factor. The discrete nature of encoding the contextual (or coarticulatory)
effect on speech variability leads to explosive growth of free parameters in the rec-
ognizers, and when the true source of the variability originates from causes of a
continuous nature (such as in spontaneous speech), this approach necessarily breaks
down. In contrast, the new model developed here focuses directly on the continuous

nature of speech coarticulation and speech variability in spontaneous speech.

12



CHAPTER 2. A STATISTICAL DYNAMIC MODEL 13

2.1 Mathematical Formulation

2.1.1 State equation

In [32], a deterministic, continuous-time task-dynamic speech production model is
established. Starting with that original model but incorporating random noise w(t),
we end up with the following model:

d®z(t)
dt?

da(t)

O+ S)a(t) - 2°(1) = wlt),

+25(t)

where S? is normalized. gesture-dependent stiffness parameter (which controls fast or
slow movement of tract variable z(¢)). and Z° is gesture-dependent point-attractor
parameter of the dynamical system (which controls the target and hence direction

of the movement). Here. for generality., we assume that the model parameters are
(slowly) time-varying.

After discretization®. we get the following noisy. causal. and first-order “state”

equation.

Z(k) = ®Z(k = 1)+ (I - &)T + W(k — 1), (2.1)

where Z(k) represents the dynamics of vocal tract constriction variables, ® is the
system matrix or “time-constant”, which controls the speed of the movement of the
dynamics. and T is the goal (or target) of the dynamics, which attracts the dynamics

to go to it. W(k — 1) is a white noise with covariance Q.

The inclusion of T gives rise to the target-directed property of the dynamics.
This target-directed behavior of the dynamics can be seen by setting

k— o0,

1Gee a derivation of this discrete-time state equation from the continuous-time system in [69].
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which forces the system to enter the local, asymptotic region where
Z(k+1) = Z(k).

With the assumption of mild levels of noise W (k), Eqn. (2.1) then directly gives the
target-directed behavior in Z(k):

Z(k) — T.

The above model has been investigated before in our laboratory [66. 35. 34]. In the
work here. we move from modeling the vocal tract constriction dynamics to modeling
the vocal tract resonance dynamics. The late one has the same dynamic property
as the former one. So the hidden dynamics Z (k) become the VTR dynamics. This

modification offers several significant advantages.

In [66. 35. 34]. all models have the dynamic state variables completely hidden
(i.e.. unobservable). In the case of articulatory-dynamic model, the state variables
are articulatory parameters. and in the case of task-dynamic model, the state vari-
ables are vocal tract constriction parameters. The current model uses VTRs as the
hidden state variables. which are observable for vocalic sounds. In addition to the
smaller dimensionality in the dynamic system state (three versus a dozen or so), the
use of the partially observable VTRs as the system state has been critically impor-
tant in the model development (model learning and diagnosis) and in the recognizer

implementation.

Some background work which leads to the development of this particular version
of the model (i.e., with use of VTRs as the partially hidden dynamic states) has
been the extensive studies of spontaneous speech spectrograms and of the associated
speech production mechanisms. The spectrogram studies on spontaneous speech

have highlighted the critical roles of smooth, goal-directed formant transitions (in
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vocalic segments. including vowels, glides, and liquids) in carrying underlying pho-
netic information in the adjacent consonantal and vocalic segments. The smoothness
in formant movements (for vocalic sounds) and in VTR movements (for practically
all speech sounds 2) reflects the dynamic behavior of the articulatory structure in
speech production. The properties of the dynamic behavior change in a systematic
manner as a function of speaking style and speaking rate, and the contextual vari-
ations of phonetic units are linked with the speaking style and rate variations in a

highly predictable way.

The smoothness of VTR dynamics is not only confined within phonetic units
but also across them. This cross-unit smoothness or continuity in the VTR domain
becomes apparent after one learns to identify, by extrapolation, the “hidden” VTRs
associated with most consonants. where the VTRs in spectrograms are either masked
or distorted by spectral zeros, wide formant bandwidths, or by acoustic turbulence.
The cross-unit smoothness (or global smoothness) is realized by extending the lo-
cal smoothness in state vector Z(k) across each pair of adjacent dynamic regimes.
making Z(k) continuous or smooth across an entire utterance. This is an important
characteristics of this new model. However this constraint makes the search for the

new model infeasible, which will be coped with in Chapter 5.

2Some limited exceptions to this smoothness across vowel-consonant boundaries include nasal
consonants whose production involves sudden opening of nasal tract. In this case, the acoustic
resonances are determined by both nasal and oral tracts, and can be discontinuous across vowel-
nasal or nasal-vowel boundaries where the new nasal tract is suddenly introduced. To make the
model consistent for such an exceptional case, the hidden dynamic variables are defined to be the
acoustic resonances resulting from only the oral tract portion. Such variables then satisfy the cross-
segment continuity constraint applied to the normal cases since the movements of the articulators

responsible for forming the oral tract area function are smooth even while a nasal sound is produced.
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2.1.2 Measurement equation

The measurement equation is to describe the relationship between observations and
hidden dynamics. In this version we use the following nonlinear, noisy and static
equation for it.

O(k) = h(Z(k)) + V(k), (2.2)

where the acoustic observation O(k) is MFCC measurements, V' (k) is the additive
observation noise modeled by an i.i.d., zero-mean, Gaussian process with covariance

matrix R. ? intended to capture residual errors in the nonlinear mapping from Z(k)

to O(k). h(-) is a nonlinear function.

The nonlinearity is necessary because the physical mapping from VTR frequencies
to MFCCs is highly nonlinear in nature. The noise used in the model Eqn.(2.2)
captures the effects of VTR bandwidths (i.e.. formant bandwidths for vocalic sounds)
and relative VTR amplitudes on the MFCC values. These effects are secondary to
the VTR frequencies but they nevertheless contribute to the variability of MFCCs.
Such secondary effects are quantified by the determinant of matrix R. which. in
combination with the relative size of the state noise covariance matrix (. plays
important roles in determining relative amounts of state prediction and state update

in the state estimation procedure.

2.1.3 Summary of the new model

The two components. state equation and measurement equation, of the new coar-
ticulatory speech model have been presented. The two components accommodate

separate sources of speech variability. The first component. the state equation, has

3Diagonal covariance matrix R has been used in the current model and all the models developed

later.
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a smooth dynamic property, and is linear but non-stationary. It has a phonetic-
goal-directed linear dynamic process rather than an i.i.d. process in HMM to model
a phone segment. The second component, the observation equation, is static and
nonlinear. This lower-level component in the speech generation chain handles speech
variabilities including spectral tilts, formant bandwidths, relative formant magni-

tudes. frication spectra, and voice source differences.

The two components combined form a non-stationary. nonlinear dynamic system
whose structure and properties are well understood in terms of the general process

of human speech production.

This new dynamic model can be treated as a generalized HMM. If we set ® and

h(-) to identity matrices and W (k — 1) to zero. we have the following model.

Z(k) Z(k-1) (2.3)

O(k) = Z(k)+ V(k) (2.4)
It is a HMM with a single state.

Obviously. the model in Eqns.(2.3) and (2.4) is a stationary process, the model
in Eqns.(2.1) and (2.2) is a non-stationary process. The new model hence tries to

overcome the HMM s limitation of stationarity in each state.

For the new model. the parameters include: @ = {®,T,h(-),Q, R}.

2.2 Comparison with other models

The mathematical model described above can be viewed as a significant extension of
the linear dynamic system model as a thus-far most general formulation of stochastic
segment models for speech described in {54, 60]. The extension is in the following

major aspects.
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First, the continuous state variable is endowed with a physically meaningful en-
tity in the realistic speech process (i.e., VTRs), which allows special structures to be
built into the state equation and which has been instrumental in the model devel-
opment (especially in model initialization, learning, and diagnosis). In contrast. in
the linear dynamic system model described in {54, 60], the continuous state variable
was treated merely as a smoothed version of the noisy acoustic observation. Sec-
ond. special structures are built into the state equation to ensure the target-directed
property of the VTR dynamics. Third, while maintaining linearity in the state equa-
tion. the observation equation is extended to a nonlinear one with use of physically
motivated nonlinear functions. Finally, due to the introduction of nonlinearity in
the observation equation and of the structural constraints in the state equation. the
model learning and scoring algorithms described in [54. 60] have been substantially

extended.

The current model shares similar motivations and philosophies of other work aim-
ing at developing better, more compact coarticulatory models than the HMM. The
models described in [65. 64, 67] have all used fully hidden internal dynamics. similar
to the models described in [66. 34, 35]. Some models explicitly use articulatory pa-
rameters as the dynamic variable (e.g., [65]). others use more abstract, automatically
extracted variables for the purpose of modeling coarticulation (e.g., [64, 67]). One
main difference between these and the model described here lies in mathematical
formulation of the models. The models described in (65, 64, 67] are largely determin-
istic. where the output of the models need to be explicitly synthesized and compared
with the unknown speech in order to reach recognition decision. In contrast, the
statistical nature of the current model permits likelihood-score computation against
the unknown speech (similar to the conventional HMM formulation in this aspect)

directly from the model parameters where the model synthesis is only carried out
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implicitly. In addition, the deterministic and statistical natures render the modeis

with different learning criteria and hence different learning algorithms.

2.3 Model parameter learning

For notational clarity, we use O to denote the observation sequence,
0 ={0(1).0(2),....0(K)}.
and Z the corresponding hidden state sequence.
Z ={Z(1),....2(K)}.
where K is the total number of frames of the observation.

Because the hidden dynamics Z(k) is missing, the Expectation-Maximization

(EM) algorithm is adopted for the model parameter estimation.

2.3.1 The joint probability
The joint log likelihood of Z and O is defined as [39]:
1 & :
L(Z.O'@) = —§ Z{longl +ele—lelk}
k=1

K
--;- Y {log|R| + €2, R~'e2c} + comst. (2.5)
k=1

where el = Z(k) — Z(k — 1) — (I — &)T and €2, = O(k) — h(Z(k)).

2.3.2 E-step

According to the EM algorithm [36], the Q-function is equal to

Q(e|®) = E[L(Z.0|0)|0.0]
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K K 1 & ,
= ——-log|Q| — —-log|R| - 2 Y. Eolel,Q el
~ = k=1

1 & ,
—3 E Eole2,R™'e2] + const. (2.6)
k=1

where Eo denotes the conditional expectation E[-|0, ©].

2.3.3 M-step

In this step all parameters will be re-estimated. Let derivatives of the Q-function
with respect to all those model parameters equal to zeros, we can get estimates for

them.

Estimates for covariances ) and R:

Let's first estimate the two noise covariances, @ and R. (note: here Q is the covari-
ance of noise W(k-1). which is different from the Q-function in E-step). The partial

derivatives of Q-function with respect to them are:

0Q(2,.0.0) _ K 9 9 1ogl@- 1|__26Q_1 olel,Q el

Q! T 28Q!
= gQ -3 LS Boletel} (2.7)
k=1
0Q2.0.0) K & . .. 1 L
9R-1 = 9 BR1 log |R | 2 kgl _BR-I Eo[e2kR e2k]
K
= % R- %E Eole2ie2;] (2.8)
< k=1

Let them equal to zero. we can obtain the estimates for @ and R,

K
Q = 1 >, Eolelrel] (2.9)
K4
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1 & :
7 Y Eole2xe2;] (2.10)

Estimates for ® and T:

Since ® and T are just related to eli in the Q-function, the partial derivatives of

@-function with respect to ® and T are *:

aQOee) 19
a® T KO8%¢

Z Eo elkelk]O @ T]
= Q-1 Z Eo[-2(k)Z(k—1) + Z(K)T +TZ(k—1) =TT
+ (Z(k ~1)Z(k-1) = Z(k-1)T —TZ(k-1) + TT)](2.11)
and

0QO®) 18
oT = KOoT{

Z Eo elkekIIO &, T]
= Q-IK Z Eo{-2Z(k)+® Z(k) +®Z(k-1)-® ®Z(k-1)
+(I-8-8 —&'¢)T} (2.12)
Let them equal to zero. solve the two equations °. we obtain the estimates for ®

and T:

& = (D - TA' - BT + NTT')(C - TA' - AT" + NTT")™! (2.13)

and
(I —®)"Y(B—-dA)
K

F = (2.14)

+In the derivation. the following matrix calculus formulas are used: i‘&%ﬂ = zy' . i(ia_:_!'l = y:z:',

and a—‘-’—;—f—'lﬂ = B'Azy' + BAy:z:', where z and y are vectors, and A and B are matrices.
3To make the system stable and realistic. all roots of ¢ must be located within the umit circle

and not be equal to zero
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where
K K
A=) Eo[Z(k-1), B =Y Eo[Z(k)],
k=1 k=1
K K
C =) Eo[Z(k-1)Z(k-1)], D=3 Eo[Z(k)Z(k—1)].
k=1 k=1

In Eqn.(2.14) the previous ® value is used. which results in the generalized EM
algorithm. The calculation of those sufficient statistics, Eo[Z(k)], Eo[Z(k—1)Z(k -
1)’} and Ep[Z(k)Z(k —1)],in A, B,C. and D will be given later.

Estimate for the nonlinear function A(-)

In this version the nonlinear function A(-) is implemented by two different neural
networks. a multi-layer perceptron (MLP) and a radial-basis-function neural network

(RBFNN).

MLP case: For a multi-layer perceptron. three layers (input. hidden and output)
are used. Suppose w;; is used to denote the MLP weights from input to hidden units
and W;; the MLP weights from hidden to output units, where { is the input node
index. j the hidden node index and ¢ the output node index. Then the output at

node ¢ is equal to
J L
hi(Z) = Wi -gi(D_wa-Z). 1<i<l, (2.15)
ij=1 =1

where I. J and L are the numbers of nodes at output, hidden and input layers,
respectively. g; is the hidden unit’s activation function, which is the standard sigmoid
function

1

1+ ezp(—z) (2.16)

9(z) =
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with its derivative

g'(z) = g(z)(1 - g(=)). (2.17)

So in this case the estimation of A(-) is equivalent to the estimation of wj; and
Wi;. To estimate wj and W;;, we have to take partial derivatives of the Q-function
with respect to them. Since h(-) is only related to the e2; term in the @-function,

the derivatives become

9Q(018) _ ATL, Eol{O(k) - h(Z(k)}Y {O(k) — h(Z(k))})

S i (2.18)
9Q(0]0) o AT, Eo[{O(k) — h(Z(k))} {O(k) — R(Z(k))}]) (2.19)
Ow;y Owj .

The calculation of expectation of the nonlinear function {O(k)—h(Z(k))} {O(k)—
h(Z(k))} is very expemsive. To make the algorithm more feasible. we adopt the

following approximation,

Eo[{O(k) — h(Z(k))} {O(k) — h(Z(k))}]
~ {O(k) — h(Eo[Z(k)])} {O(k) — h(Eo[Z(k))}. (2.20)

The expectation is moved from the outside to the inside of the nonlinear function.
By this approximation the normal MLP training algorithm (back-propagation) can
be directly applied for the estimates of the weights.

Hence. for the calculation of the estimated R in Eqn.(2.10) the expectation is

also moved to the inside of the nonlinear function as well.

) K
= L 3{0() - A(BolZI)HOM) ~ h(BolZ(WDY (220
k=1

RBFNN case: If h(-) is implemented by a radial-basis-function neural network,

it can be expressed as:

h(Z(k)) = W - Y (k) (2.22)
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where W is a matrix which is organized by the weights connecting the middle layer
and the output layer. As depicted in Fig.(2.1), the (Z,7)-th element of W is the
connecting weight between node ¢ in the output layer and node j in the middle layer.

Y (%) is a vector, which is equal to
Y(k) = lyl(z(k”‘ yz(Z(k))v Tt yJ(Z(k”v vt ~yJ(Z(k”]v (223)

where y;(Z(k)) is the output of the j-th radial-basis-function (or kernel function) in
the middle layer.

Here Gaussians are chosen for the kernel functions.

1
yi(Z(k)) = exP{—§(Z(k) — ;)27 (Z(k) — p;)} (2.24)
Output layer h(Z(k)
//%\ w
Middlelayr QY1 QY2 .-+ O% Ot QYJ Y(k)
Input layer A O Zk)

Figure 2.1: A radial-basis-function neural network

Then. for the RBFNN three sets of parameters have to be estimated, they are
the weights W. the kernel centers p; and the kernel width £; (7 =1.2.....J).

To estimate W . set the partial derivative of the Q-function with respect it to zero

(Note: just the term e2; in the Q-function. Eqn.(2.6), is related to W)

9Q(Z.010) _ s~ po(p-1(0(k) ~ WY (k) Y(KY] = (2:25)
W&
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Solve it, we have

. K K -1
W= {Z O(k) Eo[Y(k)]'} {Z EO[Y(k)YUc)']} (2.26)
k=1

k=1

To estimate p; and X; (j = 1.2,---,J), we should follow the same way, letting
the derivatives of the Q-function with respect to them equal o zcros. solving the
equations and getting the solutions. However, the derivatives are high-order (more
than three) nonlinear functions, close-form solutions can not be obtained for u; and
¥;. To make the algorithm feasible. a separate EM algorithm is used for the training
of the centers and widths of RBFNNs, which is given in [74]. We make a similar
approximation to that in the MLP case. moving the expectation to the inside of the
nonlinear function. But in this case the nonlinear function is not the whole A(-)

function. it is just a part of the h(-) function. the radial-basis-functions.

Replacing the estimated W into Eqn.(2.10), we get

K K
R= (3 OK)O(KY — W Y- EolY (WIO(K)) (2.27)
k=1

k=1

The expectations in Eqn.(2.26) and (2.27), Eg[Y (k)] and Eo[Y (k)Y (k)] are
implementable. They are calculated according to the following equations (Deriva-

tions are given in appendix B).

Eoly;(Z(K))] = [Si/xl™7 - |Z7" + Z/gl ™7 -exp(d) (1 <5 <) (2.28)

where
1 rgi—-1 ! -1 5
djg = ‘5[#,'2,' Bi + ZiynZin LN
— (57% 85 + Zp/n Zn Y (571 + Sg) T (E7 05 + S Zayw )]
and

Eoly-(Z2(k)) yi(Z(k))] = [Br/k| ™% - |Cril? exp(rsu) (2.29)
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where

Coe = (57" +57" + T5f)™
1 - - 51 -1 5 -
drjie = 3(#:2r tpe + I‘Q'Ej “pi+ Zl,c/Nzk/lNZk/N - M:jkcrj]l;ijk)

Mje = (57 + 57 +50%) 7B e + 2505 + 2,;,1,,,Z'k,N)

where Zk/N and Ik are the smoothed mean and covariance at time k.

2.3.4 Calculation of the sufficient statistics

26

To estimate state variables from observations. Kalman-type filters {93, 94] can be

used. Because of the nonlinearity of function A(-) in Equation (2.2), the extended

Kalman filter is applied and the Jacobian matrix of A(:) will also be used.

For our estimation problem, the extended Kalman filter takes the following form:

Forward recursion (or Kalman filtering) :

Zipr = ®Zkypmr + (1 - ®)T
Zege-1 = Op 1@+ Q

O = O(k) = h(Zp)

5, = Hazk-1)Srtk-1 Hz 1) + B
Ki = Sup-rHzpp-n(Z6,)7"
Zye = Zie—r + KOy

ke = 2k|k-1—KkEo,,K1;

where O and L5, are the mean and covariance of the innovation sequence at time

k. Hz(kk—1) is the Jacobian matrix of k(-) at point Zklk_l.
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If h(-) is implemented by a three-layer MLP, its Jacobian matrix is computed as

follows. The (z,!)-th element of the Jacobian matrix is

J
Hz(i.l) = Y (Wi - gi(y)- (1 - gi(y)) - W}, 1<i<I, 1<I<SL, (237)

j=1

where y = $fi_, wir 2.

If h(-) is implemented by a RBFNN. its Jacobian matrix is equal to

[ (Z(k)) - (Z(k) — ) - 7" ]
vl Z(k)) - (Z(k) = pa)' - T3

| yr(Z(k)) - (Z(k) = ps)' - 27 |

Backward recursion (or Kalman smoothing) [93] :

A
Zuk

Yk

e ® (Sageor)
Zep + AelZipyx — Zierrit]

Depk + Ab[Zhp1ix — Setpem] Ar

(2.38)

(2.39)
(2.40)
(2.41)

Based on the Kalman smoothing results above, the three expectations needed for

the parameter estimates are equal to

Eo[Z(k - 1)]

Dk

Eo[Z(k-=1)Z(k —1)] = Zux + Zux(Zuk)
EolZ(k-1)Z(k-1)] = Zre-iix + Zax(Ze-1x)

where Zj 1 x is recursively calculated by [40]

Ser-1k = SkjeAro1 + Ak(Serrrix — BTup) Aer’

for k = K.---.2. where

Yrx-1yk = (I — KgH.)®Ek_yx-1-

(2.42)
(2.43)
(2.44)

(2.45)

(2.46)
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2.4 Parameter learning for multiple tokens

For multiple tokens, the joint log-likelihood is written as the summation of the log-
likelihoods of each individual token (assume the independence between them).
N
Li{z.0}"ie) = }_ L(Z",0"i®) (2.47)
n=1

where N is the total number of tokens, Z™ and O™ are the state-variables and ob-
servations corresponding to the n-th token, {Z, O}¥ is the joint set of all Z"s and
O™s

Following the same logic used for the single token case. we obtain the following

estimates:
For Q and R:
N K !
N *» Folelfell
o = ZemTi ?{[ gelt ] (2.48)
n=] **n
R N_ Kn E on 211'
s _ Zha = ?{[e Re2i | (2.49)
n=1 n
For ® and T:

N . N ..
®=(D-TA - BT + Y K.TT)C -TA - AT' + ) K., TT)™*  (2.50)

and _ _
- (I -®)"Y(B-2A)
T= Zﬁ’:; K. (2.51)
where
N Ka N Ka
A=Y Bolzn(k - 1), B=3 Y Eolz'(k)],
n=1 k=1 n=1 k=1

_ N Ka , . N Kan ,
C=3 % Eo[Z*k-1)2"k-1)], D=3 3% EolZ"(k)Z"(k-1)]

n=1 k=1 n=1 k=1
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2.5 Likelihood computation

The log-likelihood of a sequence of observations produced by a model © is defined
as [94. 93|

L0I®) = logp(0(1).0(2). - .0(K)\®) (2.52)

For HMM it is equal to the following summation because of the i.i.d. assumption
among observations,

K
L(0|®) = )" log p(O(k)|0) (2.53)
k=1

However. for our dynamic model the i.i.d. assumption doesn’t exist any more and
the observations are correlated with each other. How to calculate Eqn. (2.52)? It is
calculated from the innovation sequence. The innovation sequence is generated by
the Kalman filter. The Kalman filter can convert the correlated observation sequence
into the uncorrelated innovation sequence, so the likelihood can be calculated from
innovation sequence easily. As given in Eqns. (2.30) to (2.36), the Kalman filter is a
recursive algorithm. it recursively produces the innovation sequence. Input O(1), it
produces Oy: 0(2). O.; and so on, as illustrated in Fig. 2.2.

01 02 O3 Ok
t oo T

Kalman Filtering Process

T 1 o

O; O3 Os (T)IE

—_— —

Figure 2.2: A diagram to show how KF generates the innovation process

The innovations are usually Gaussians or approximated by Gaussians,
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So Eqn.(2.52) can be written as

L(o®) = -

[

K
> _{log S5, + 0,25 Oc} + const. (2.54)
k=1

where O and 35 are the mean and covariance of the innovation sequence at time

k.

The new model hence gets rid of the HMM's limitation of i.i.d. assumption of

observations.

2.6 Implementation of the continuity constraint

on the dynamics

The continuity of VTR dynamics is physically required for this new dynamic model.
For either training or recognition (re-scoring). the VIR dynamics in a whole utter-

rance must move continously from the beginning to the end.

In both the parameter training and likelihood compuation. the KF algorithm is
required. The KF is a recursive state estimation algorithm. As listed in Eqns. (2.30)
- (2.36), the state estimate at previous time point k — 1, Zk_1|k_1 and Xg_ypk-1. is

used as the initial values for state estimation at current time point k.

To implement the continuity property of VTRs, the following strategy is adopted.
When the dynamics switches from the previous phone to the current phone (model
parameters will change), the state estimates at the last point of previous phone is
used for the initial values for the state estimation at the first point of the current
phones. By this way. the dynamics is enfored to go continuously from one phone to

the next phone.
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This continuity constraint is of importance for the new dynamic model. To some
extent it is responsible for the phone context-dependence. It makes the search for

the dynamic model a big problem, which will be elaborated in Chapter 5.

2.7 Evaluation Experiments

In this section. a series of experiments for the evaulation of the new statistical dy-

namic model on Switchboard database will be reported.

2.7.1 Experiment design

In all the experiments we use the spontaneous Switchboard data to evaluate the new

dynamic model.

Experimental paradigm

We choose the N-best list re-scoring paradigm to evaluate the new recognizer in all
the following experiments. The reason why this re-scoring methodology has been
chosen is that efficient decoding algorithms are not available at this earlier stage. So
the integration of the new model’s scoring module into the lattice search paradigm

is impossible.

In order to focus on acoustic modeling issues we ignore language model(LM)
scores. LM itself is a research topic. Any improvements due to LM effects. should

however be equally applicable to the new system.

The 100-best list of word transcription hypotheses and their phone-level segmen-
tation (i.e., alignment) are obtained from a conventional triphone-based HMM



CHAPTER 2. A STATISTICAL DYNAMIC MODEL 32

Physically, a phone VTR dynamic boundary is ahead of its phonetic (or HMM)
boundary. In all the following experiments except specially mentioned, the phone
dynamic boundaries are sub-optimally derived from their HMM phone boundaries.
The derivation is carried out by setting the starting point of the current phone’s
VTR dynamics at the middle point of the previous phone’s HMM segment. By
investigating spectrograms of many Switchboard utterances, we found that the above
setting is accurate for most cases. In Chapter 5, We will specially deal with the

optimization of the dynamic regime boundaries.

Generation of the N-best lists

The 100-best hypotheses for each utterance in the Switchboard test set “test-ws97-
dev-1" are generated by a state-of-the-art HMM system. The HMM system was
developed for the Workshop'97 ©, we name it “ws97-baseline” system. It has been
described in some detail in [70, 67]. Briefly, the system has word-internal triphones
clustered by a decision tree, with a bigram language model. The system has been
trained on “train-ws97-a” Switchboard data set, which consists of about 160-hour

spontaneous data.

The total number of parameters in the HMM system is approximately 3.276.000
that can be broken down to the product of: 1) 39, which is the MFCC feature vector
dimension: 2) 12. which is the number of Gaussian mixtures for each HMM state: 3)
2. which includes Gaussian means and diagonal covariance matrices in each mixture
component; and 4) 3.500, which is the total number of the distinct HMM states

clustered by the decision tree.

With bi-gram language model used. the “ws97-baseline” system achieves about

Ssee http : //www.clsp.jhu.edu/wsI7/ws97 general.himl)
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48% word error rate (WER) on the Switchboard test set “test-ws97-dev-1". This
system will also serve as the benchmark system to gauge the recognizer performance
improvement via use of the new speech model in some of the experiments in later

chapters.

Selection of training and test data

For training, in these earlier experiments, we want to make the situation simple, so
just a single speaker’s data (speaker ID: 1028) is extracted from the Switchboard
training set “train-ws97-a” as training data. It consists of several telephone conver-
sations and a total of 30 minutes of the data. Due to the use of only a single speaker.
we avoid normalization problems for both the VTR targets and for the MFCC ob-
servations. On the other hand, the small amount of data enables the training to be
finished within an endurable time. It takes much time to train the nonlinear func-
tions. which occupies most of the training time. We name this training set “1/2

hour” training set.

A HMM system is also trained on this small amount of training set. We call
it “HMM baseline” system. which will serve as the benchmark system in all the

experiments.

For test. all the male speakers from the “test-ws97-dev-1" test data are selected.
It results in a total of 23 male speakers comprising 24 conversation sides (each side
has a distinct speaker), 1243 utterances (sentences), 9970 words, and 50 minutes of
speech as the test data. All the 100-best hypotheses for each of those utterances
have been generated by the “ws97-baseline” HMM system.

Without language model scores, the 100-best re-scoring results of the two HMM
systems on the above test set are listed in Table 2.1. The “Oracle” and “By chance”
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performances are also shown in the table to calibrate the recognizer’s performance.
The “Oracle” WER is calculated by always choosing the best one hypothesis and the
“By chance” WER is computed by randomly picking up one out of all hypotheses.
“100 best” column means re-scoring results on 100-best lists and “Ref+100" column

re-scoring results on 100-best lists and the reference.

systems Ref+100 | 100 best
Oracle 0.0 32.5
By chance 59.6 60.2
HMM-baseline 56.1 58.9
ws97-baseline 56.2 56.9

Table 2.1: Performance (WER) of the two HMM systems

2.7.2 Design parameters of the new recognizer

First. we choose a total of 42 distinct phone-like symbols, including 8 context de-
pendent phones, each of which is intended to be associated with a distinct three-
dimensional (F1, F2, and F3) vector-valued target (77) in the VTR domain. The
phone-like symbol inventory and the VTR target values used to initialize the model
training discussed in Section 3.1 are shown in Tables 1 and 2, one for context-

independent symbols and the other for context-dependent ones.

A total of eight phones in Table 2 are made context dependent in the recognizer
because their target VTRs are affected by the anticipatory tongue position associated
with the following phone. The targets of a phone with subscript f (such as by) are
conditioned on the following phones being front vowels (iy, ih, eh, ae, and y). The
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[ Units | VTR1(F1) | VTR2(F2) | VTR3( F3) || Units | VTRl | VTR2 | VTR3
aa 0.730 1.0e0 2.440 d 0.180 1.800 2.700
ae 0.6680 1.720 2.410 t 0.180 1.800 2.700
ah 0.640 1.190 2.390 3 0.250 1.900 2.700
ao 0.570 0.840 2.410 th 0.250 1.300 2.500
ax 0.500 1.500 2.500 % 0.250 1.900 2.700
eh 0.530 1.840 2.480 zh 0.250 1.900 2.500
uh 0.440 1.020 2.240 sh 0.250 1.900 2.500
uw 0.300 0.870 2.240 dh 0.250 1.300 2.500
er 0.490 1.350 1.690 n 0.250 1.800 2.700
ih 0.390 1.990 2.550 en 0.500 1.500 2.500
iy 0.270 2.290 3.010

1 0.450 1.060 2.640
el 0.450 1.000 2.700
r 0.460 1.240 1.720
w 0.350 7.70 2.340

0.360 2.270 2.920

Table 2.2: Context-independent units and their VTR target values (in unit of khz)

used to initialize model training

targets of a phone without the subscript are conditioned on the following phones
being the remaining phones. The initial VTR target values in Tables 1 and 2 are
based on the Klatt synthesizer setup [72], and are slightly adjusted by examining

some spectrograms of the Switchboard training data.

2.7.3 Experiment I: using class MLPs

This is the earliest version of the dynamic model which was evaluated in the Work-
shop'97 held in John Hopkins University. In this version we used tied MLPs to
implement the VTR-to-MFCC mapping. Unlike the target and system matrix pa-
rameters which are phone dependent, we tied the MLPs approximately according to
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| Units | VTR1 | VTR2 | F3 VTR3 || Units | VTR1 | VTR2 | F3 VTR3
b 0.180 1.100 2.300 by 0.180 1.800 2.300
g 0.180 1.500 2.200 g1 0.180 2.200 2.800
k 0.180 1.500 2.200 k; 0.180 2.200 2.800
P 0.180 1.100 2.300 py 0.180 1.800 2.300
f 0.250 1.100 2.300 fr 0.250 1.800 2.300
m 0.250 1.100 2.300 my 0.250 1.800 2.300
ng 0.250 1.500 2.200 ngy 0.250 2.200 2.800
v 0.250 1.100 2.300 vy 0.250 1.800 2.300

Table 2.3: Context-dependent units and their VTR target values (in unit of khz)

used to initialize model training

the distinct classes of manner of articulation (and voicing) 7 By not tying all phones
into one single MLP. we also ensure effective discrimination of phones using differ-
ential nonlinear mapping (from the smoothed physical VTR state variables to the
MFCCs) even if the VTR targets are identical for different phones (a few phones
have nearly identical VTR targets). The ten classes resulting from the tying and
used in this version are:

1) aw. ay. ey. ow, oy, aa, ae. ah. ao, ax. ih, iy, uh, uw, er. eh, el;

2)Lw.r.y: 3) f. th, sh; 4) s, ch;
5) v. dh, zh: 6) z. jh; ) p. t. ki
8) b. d. g; 9) m, n, ng, en; 10) sil, sp.

For each of the ten distinct MLPs, we used 100 (nonlinear) hidden units, three
(linear) input units, and 12 (linear) output units. This gives a total of 10 x 100 X
(3 +12) MLP weight parameters.

The results are listed in Table 2.4. For convenience. in Table 2.4, the “by chance”
and “HMM-baseline” results are also given.

"Why tied MLPs were used and How they were tied have been explained in detail in [67, 4]
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systems Ref+100 | 100-best
By chance 59.6 60.2
HMM baseline 56.1 58.9
tied MLP version (fixCov) 49.6 60.1
tied MLP version (trnCov) 55.5 59.1

Table 2.4: Performance (WER) comparison of the new model with tied MLPs and
benchmark HMM system

In Table 2.4. “fixCov” indicates that the system’s noise covariances. @) and R.
are fixed by experience and “trnCov” indicates that the covariances are trained from

data.

For the system with noise covariances fixed by hand. for the "Ref+100” case, the
VTR recognizer performs significantly better than the benchmark HMM recognizer.
which is slightly better than the chance performance. For the “100-best” case. the
VTR recognizer performs nearly the same as the chance. and slightly worse than the
benchmark HMM recognizer. This contrasts sharply with the superior performance

of the VTR recognizer when it is exposed to references.

A reasonable explanation for this phenomenon is that the long-span context-
dependence property of the VTR model naturally endows the model with the capa-
bility to “lock-in” to the correct transcription and it at the same time increases the
tendency for the model to “break-away” from partially correct transcriptions due to
the influence of wrong contexts. Since nearly all the hypotheses in the N-best list
contain a large proportion of incorrect words. they affect the matching of the model
to the remaining correct words in the hypotheses through the context-dependence

mechanism much stronger than the conventional triphone HMM. It is an error prop-
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agation problem for the new dynamic model.

For the system with noise covariances trained, for the cases with references in-
cluded the performances are worsened significantly, but for the cases without refer-
ences included the performances are improved slightly. It demonstrates that the new
model is sensitive to the noise level. That is why the noises are fixed by hand during
the earlier work [67, 3]. To make the new model more realistic, the noise covariances

will be automatically trained in all the following experiments.

2.7.4 Experiment II: using more MLPs

During the earlier evaluation experiments we found that the prediction errors of
the MLPs were much larger than we originally expected. In Fig. 2.3 the solid line
shows the average MLP prediction error of the tied MLP version changing with EM
training iterations. After training (4 EM iterations) the average prediction error is
about 220. It is large. ® It means that we didn't have an accurate function to

describe the relation between the hidden dynamic space and the observation space.

How does the prediction accuracy affect the system performance? To investigate
it. we have carried out the following experiments to gradually increasing the number
of MLPs used, hoping to decrease the prediction error. First, we get rid of those
tied MLPs and build one MLP for each individual phone. We name it “phone MLP
version”. The dashed line in Fig. 2.3 showes its prediction error changing with EM

iterations. Compared with “tied MLP version”, the average error, as expected, goes

$The prediction error is calculated according to

N TR |0alk) — h(Za (k)2
Z:’:l K"

where N is the number of tokens and K, is the length (frames) of the n-th token. 12 MFCC

pred_err =

coefficients are used here, so one can guess what the prediction difference is on each coefficient.
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Figure 2.3: Average MLP prediction errors for different versions

down from 220 to about 160 after training. At the same time the system performance,

which is listed in Table 2.5, is improved, but very limitedly (about 1%).

Table 2.5: Re-scoring performance (WER) of the systems with multiple MLPs

systems Ref+100 | 100-best
tied MLP version 55.5 59.1
phone MLP version 54.1 58.2
256 sub-MLP version 54.5 57.9
512 sub-MLP version 55.7 58.9

Second, we go further step to separate, using VQ algorithm, the whole observation

space into 256 and 512 sub-spaces. Each of these sub-spaces is described by one MLP.

By this way we are expecting much less prediction errors. However, on the other

hand. we are also taking the risk of losing some distinguishable information because

we are separating the space by a data-driven approach rather than accoring to the

phonetic property (or the articulation manner). We name these two versions “256

sub-MLP version” and “512 sub-MLP version”.

The dashed-dotted line in Fig. 2.3 showes the average prediction error for the
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256 sub-MLP version” and the dotted line for the “512 sub-MLP version”. The
average prediction error is further decreased to about 110 in the “256 sub-MLP
version” and to about 85 in the “512 sub-MLP version” version. However, compared
with the “phone MLP version”, the system performances, which are listed in Table
2.5. are not improved at all, they are even worsened. The reason is probably that
more distinguishable information has been lost during the data-driven sub-space
separation process, which is not able to be compensated by the reduced prediciton

error. Therefore, it is not the direction we are going to explore farther.

By this set of experiments. we conclude:

o The relation between the hidden dynamic space and the acoustic space is highly
complicated. Even with 512 sub-space MLPs we still have a large prediction

error (about 85).

¢ A more accurate description of the nonlinear relationship between the hidden
space and acoustic space is not the most important issue for the new model at

current stage.

2.7.5 Experiment III: using phone RBFNNs

In experiment II, we have observed that the MLP prediction error is not an im-
portant issue for the new model at current stage. So, in this experiment we go to
investigate another issue, using other kinds of nonlinear functions rather than MLPs

to implement the h(-) in the measurement equation.

Radial-basis-function neural networks(RBFNN) are considered to be able to ap-
proximate nonlinear functions more smoothly than MLPs [74]. So Jacobian matrices

of RBFNN s should vary more smoothly than those of MLPs. In the extended Kalman
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filter algorithm listed in section 2.3.4 the Jacobian matrix is an important factor. So
in this experiment we replace the MLPs with RBFNNs to check how it affects the
system behavior. Since the “phone MLP version” turns out the best performance
among all the former experiments, we build one RBFNN for each individual phone
in this experiment. We call it “phone RBFNN version”.

The re-scoring results are listed in Table 2.6. For convenience, the results for
“phone MLP version” and “HMM-baseline” are also listed in the table. Compared
with the “phone MLP version”. limited improvement (less than 1%) is obtained. It
implies that the smoothness of nonlinear functions indeed affects the system behavior.
but the influence is again limited.

systems Ref+100 | 100-best
phone RBFNNs 53.4 57.9
phone MLPs 54.1 58.2
HMM baseline 56.1 58.9

Table 2.6: Re-scoring performance (WER) of the systems with phone RBFNNs and
phone MLPs

Compared “phone MLP version” and “phone RBFNN version” with the HMM
baseline system, they both turn out better performance no matter if the references are
included or not. Although the improvement is limited, it demonstrates the promise

of this new model.

From this experiment, we observe:

¢ The new dynamic model is promising.
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¢ Different nonlinear versions do not turn out much difference on the system

performance. It motivates the work in the following chapter.

2.8 Conclusions

The spontaneous speech process is a combination of cognitive (linguistic or phono-
logical) and physical (phonetic) sub-processes. The new statistical coarticulatory
dynamic model presented in this chapter focuses on the physical aspect of the spon-
taneous speech process. where a main novelty is the introduction of the VTR as
the internal. structured model state (continuous-valued) for representing phonetic

reduction and target undershoot in human production of spontaneous speech.

The continuity constraint imposed on the VTR state across speech units as im-
plemented in the model is physically motivated. Such continuity is not valid in the
acoustic domain because of the nonlinear, “quantal” nature of the distortion in the
peripheral speech production process (73], and in order for the model to ultimately
score on the acoustic domain, we explicitly represent the nonlinear distortion as a
model component integrated with the VTR dynamic component. With the complex
model structure formulated mathematically as constrained, nonstationary, and non-
linear dynamic system, a version of the generalized EM algorithm has been developed

and implemented for automatically learning the compact set of model parameters.

A series of evaluation experiments have been carried out using the recognizer
built from the new speech model and using the spontaneous speech data from the
Switchboard corpus. The promise of the new recognizer is demonstrated by showing
its superior performance, over a benchmark HMM system under similar experimental

conditions.

The impact of accuracy and smoothness of the nonlinear function A(-) on the new
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model’s performance has been investigated by running a series of experiments. The
results show that the impact is limited and imply that they are not the important

aspects we should focus on at current stage. It motivates the work in next chapter.



Chapter 3

A New Version of the Statistical
Dynamic Model: A Mixture

Linear Dynamic Model

In this chapter. a new version for the dynamic model, a mixture linear dynamic
model (MLDM), is developed and evaluated, where several linear dynamic models
are combined to represent different VTR dynamic behaviors and the mapping re-
lationship between the VTRs and the observations. Each linear dynamic model is
formulated as a state-space model, where the state equation is the same as before,
but the measurement equation becomes a linear regression function that approxi-
mates the nonlinear relationship between the VTRs and the observations. A version
of the generalized EM algorithm [37] has been developed for the learning of the model
parameters, where a constraint that the VTR targets change at the segmental level
(not at the frame level) is imposed on the parameter learning algorithm. A set of
speech recognition experiments are carried out to evaluate the new model using the

N-best re-scoring paradigm in a Switchboard task.

44
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3.1 Motivation

Physically the relation between the hidden dynamic (VTR) space and acoustic space
(MFCC) is nonlinear. That is why we used the nonlinear functions (MLPs and
RBFNNs) to approximate it in the previous chapter. However, by running a series
of experiments we found: first, the relation between the two spaces is a highly com-
plicated one, it is difficult to approximate it accurately; second, the accuracy and
smoothness of the nonlinear function just have limited influence on the new model’s
performance. Different nonlinear models don’t turn out much difference. This ob-

servation makes me to try a linear model to check what we benefit from the use of

nonlinear models.

A most straightforward linear method is to use a linear regression function to
implement the A(-) function in the measurement equation. while keeping the target-
directed, linear state dynamics of the state equation intact. This gives the measure-

ment equation of the state-space model as follows:
O(k) =a+ HZ(k) + V (k) (3.1)
which can be re-written as
O(k) = H Z(k) + V(k) (3.2)

where H = [a, H] and Z(k) = [1,2(k), a is a vector and H a matrix. ( Note: the
dot here doesn’t denote differential sign.)
Hence. each phone is modeled by the following linear dynamic model (LDM).
Zk) = @Z(k-1)+(I-@)T+W(k-1) (3.3)
O(k) = HZ(k)+ V(k) (3.4)
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The re-scoring results for this version, named “phone LDM version”, are listed in
the bottom line of Table 3.1. Compared with those of the versions using MLPs and
RBFNNs (also shown in the table), the performance of the LDM version is worsened.
It implies that we do benefit from the using of the nonlinear models, MLP version
and RBFNN version. But the benefit is very limited (1% or 2%)

;

systems Ref+100 | 100-best
phone MLP version 54.1 58.2
phone RBFNN version 53.4 57.9
phone LDM version 55.7 58.9

Table 3.1: Performance (WER) Comparison of nonlinear and linear systems

This comparison result surprises us somewhat in terms of the improvement on the
system performance. The main reasons are probably due to the approximations made
in the nonlinear system design. The use of the nonlinear function causes difficulties
in state estimation. and specifically, in computation of the conditional expectation
of the nonlinear function. One approximation was made in the M-step of the EM

algorithm for the estimation of the A(-) (Eqn.(2.20)):
E{h(Z(k))] ~ h(E[Z(K)])

which moves the expectation from the outside to the inside of the nonlinear func-
tion. The other one is the nonlinear filtering algorithm used due to the nonlinearity.
While there are many nonlinear filtering approaches already developed to cope with
the nonlinearity by employing approximation, the effect of approximation has been
poorly understood, especially for the current model of speech. In the previous chapter
we adopted the iterated extended Kalman filtering (EKF) algorithm to approximate
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the sufficient statistics of the hidden states, as was required in the M-step of the EM
algorithm. However. once the nonlinear observation equation is replaced by a linear
one, we no longer need the above two approximations. Nevertheless, the relationship
between the VTR hidden space and the acoustic (MFCC) space, which is physically
nonlinear. is approximated by a linear function.

It appears that the effectiveness in learning the linear model parameters has
adequately compensated for its weakness in representing the nonlinear relationship
between the VTR and the MFCC spaces by the linear approximation with apparent

low accuracy.

One way of improving modeling accuracy while maintaining effectiveness in model
learning is to extend the linear dynamic system model discussed above to its mixture
version. That is. rather than using one single set of model parameters to characterize
each phone, we can use multiple sets of model parameters. The multiple mixtures
will be responsible for speech systematic variations. This gives rise to the mixture

linear dynamic model reported in this chapter.

3.2 A Mixture Linear Dynamic Model (MLDM)

The VTR dynamics and the resulting measurable acoustic dynamics. whose pa-
rameters are distinct for each separate phone, are represented mathematically by a
combination of a set of linear dynamic models (LDM). This is called the mixture
linear dynamic model, which can be written succinctly in the following form:
M
Y Tm:LDMn (3.5)
m=1
where M is the total number of linear dynamic models (or mixtures) for each phone,

T is the mixture weight and LDM,, is the m-th LDM, which is expressed in the
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same state-space form as given in Eqn.(3.3) and (3.4) except that the parameters are

indexed by m,

Z(k) = ®mZ(k—1)+ I - 8p)Tm + Wn(k —1) (3.6)
Ok) = HnZ(k)+ Viu(k) (3.7)

where W, (k) and Vj,(k) have covariances @, and R,, respectively.

For this version. the model parameters include:
O = {Tm: Bms Ty Qs Bns Hyk m = 1.2,.... M},

where each of the parameters is indexed by the mixture component m.

3.3 An Important Constraint

An important constraint, which we call mixture-path constraint. must be imposed
on the above mixture linear dynamic system model. That is. for each sequence of
acoustic observation associated with a phone, being either a training token or a test
token. it is constrained to be produced from a fixed mixture component. m. of the
dynamic model. This means that the target of the VTR in a phone is not permitted
to switch from one mixture component to another at the frame level *. The constraint
of such a type is motivated by the physical nature of the speech model — the target
which correlates with the phonetic identity is defined at the segment (phone) level.
not at the frame level. For example. suppose there are two mixtures for a phone,
each has different targets and “time constants”. So they turn out different dynamics
which are depicted in Fig. 3.1. If a sequence of observations chooses mixture 1 at
the beginning, it must follow the dynamics of mixture 1 to the end of the segment.

it is not allowed to switch to mixture 2 during that segment.

1This same mixture-path constraint has been imposed on the mixture trended HMM; see [55].
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Figure 3.1: An example to show the mixture-path constraint

Use of segment-level mixtures is intended to represent the sources of speech vari-
ability including speakers’ vocal tract shape differences and speaking-habit differ-
ences, etc. This constraint must be imposed on both the model training and likeli-

hood computation processes.

3.4 Parameter Estimation Algorithm

One principal contribution of this chapter is the development of the parameter esti-
mation (or learning) algorithm, which allows automatic determination of all parame-
ters of the mixture linear dynamic system model discussed above from a given set of
training data. The algorithm developed is based on the Expectation-Maximization
(EM) principle for maximum likelihood.

To proceed the development of the parameter estimation algorithm, we first define
a discrete variable X, which indicates the observation-to-mixture assignment for
every sequence of observation. For example, for a give sequence of observation of a
phone. if X =m, (1 < m < M), it means the m-th mixture model is the true one to

generate that observation. For simplicity purposes, we will use m to denote X = m.

To impose the mixture-path constraint on the training algorithm, we must define
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the joint variable at segment level. Suppose there are N training tokens for a phone.

We define a joint variable as
{0,2,X}N = {(0, 2}, X1), (0%, 2%, XY, ..., (O™, 2", X™), ..., (OV, 2N XV}

where O™, Z™ and X™ are the n-th training token, its corresponding hidden state se-
quence, and its corresponding mixture assignment, respectively. All discrete random
variables X™, (1 < n < N) are assumed to have an identical distribution. We assume

further that the N tokens are independent of each other.

The EM algorithm described in this section treats Z and X as missing data. and
treat measurements O as observation or training data. The development of the EM
algorithm described below consists of several steps. First. we develop an explicit
expression for the joint probability density function (PDF) of the observation and
missing data. We also develop an expression for the mixture weighting factor. These
expressions are then used to compute the conditional expectation as required in the
E-step of the EM algorithm. This conditional expectation is expressed as a function
of a set of sufficient statistics computed from the linear Kalman filter. Finally, re-
estimation formulas are derived using the conditional expectation in the M-step of

the EM algorithm.

3.4.1 The joint PDF of observation and missing data

Due to the token-independence assumption, the joint PDF of observation and missing
data {O. Z, X}V, given the parameter set O, can be written as
N
p({0.2,X}"10) = []p(0".2".X"|0)
n=1

N
= [[ (0" 2" X".0) P(X"|O) (3.8)

n=1
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In Eqn.(3.8), p(O™, Z™|X™,©) is the conditional joint PDF of O™ and Z" given
that mixture component is fixed. It can be further expressed as [39]

Kn
p(0". 2" X".0) = p(Z51X",0) [] p(2F|2L_,. X", ©) p(O} |27, X", ©)  (3.9)
k=1

where K, is the total number of frames of the nth training token (MFCC sequence),
p(Z7|X™. @) is the distribution of initial value of the hidden dynamics at time k& = 0
given the mixture component. Let X™ = m", (1 < m® < M), and for nota-
tional clarity, we drop © and use p(ZZ,.n|Zf_; mn) and p(OF|ZE n) to represent
p(Zp|Zp_,. X", ©) and p(O%|Z2. X™.O), respectively. We then have
Kn
p(0™. 2™ X", 0) = p(Zg|m") [] P(Z%mn | Zi-1.mn) P(ORI ZE mn) (3.10)
k=1
Substituting this into Eqn.(3.8), we obtain the conditional joint PDF {0.Z. X W
of the explicit form:

p({0.2.X}"V|0)
N

Kn
_ H{mza'lm") [Hp( n B ) 8l L‘IZL‘.mn)] P(m"IG)} (3.11)
k=1

n=1
3.4.2 Computation of the mixture weighting factor

The conditional joint PDF for {O, X} is

N
p({0, X}"10) = IIp(0"X" ©)P(X"|O)

n=1

N
= ]I p(0"Im",0)P(m"|O) (3.12)
n=1
The PDF for the observation sequence is

N M
p({O}"1@) = I X p(O"|X".©)P(X"O©)

n=1 Xn=1

N M
= I 3 p(0"|.0)P(1]©) (3.13)

n=1 [=1



CHAPTER 3. A MLDM 52

In the above equation, all X*(1 < n < N) follow an identical distribution so we use

one common variable [ to replace them.

The conditional PDF of {X}¥ given {O}" is

p({X}"I{O}".0)
r{0,X}7i0)

p({0}"]0)
[,-, p(O"|m", ©) P(m"|O)
[a-, T, p(O™1,0)P(1]0)

N
= ][I «an (3.14)
n=1

where we define the (token-dependent) mixture weighting factors to be

o = PO m. ©)P(m"[6)
™ T CEp(0".8)PIIO)

(3.15)

The mixture weighting factors have two notable properties which we will use

later. First. they sum to unity: Z,A,fn=1w",. = 1. Second, they satisfy:

m

Y. p({XH{O}N.0) =uw}a, (3.16)
{xyy/xn

where {X}¥/X™ means the set of {X}" excluding X".

3.4.3 E-step

Given the various PDF’s computed above. we are now in a position to derive an
iterative EM algorithm for parameter estimation. For the MLDM presented in this
chapter. both {Z}" and {X}¥ are treated as missing data. The Q-function in the
E-step of the EM algorithm is computed below as the conditional expectation over
the missing data [36, 41]:
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Q(0]0)
= ¥ [1085({0. 2. X}"|0) - pl{Z. X} I{O}", 6) d{2}"
(X~
= % [1gp({0.2.X}¥10) - p{Z}VI{O. X}, ) d{Z}¥
{X}"

p({X}V|{0}".0) (3.17)

where © denotes the model parameters associated with the immediately previous

iteration of the EM algorithm.

Substituting Eqn.(3.11) into Eqn.(3.17), using the independence between tokens,

we have

Qel8) = ¥ {/Z { log p(Zg|m")

{X}¥

ns (108 P(ZE in | 21 o) + 108 P(OF| 2 )]
+fc:g1p m"|0)
} 'P({Z}Nl{O-X}N- 0)-d{Z}"
}p{X}I{O}'.0

- S (3] {loe(Zlm

{(X}¥ n=1
+Z[logp(z::mn| E-1.mn) +10g (O} 127
}-p(Z710" ", 6) dZ"
+Zlogp m"|0)
} -p(n{-)lf}Nl{O}N-, 0) (3.18)

Substituting Eqn.(3.14) into the above equation, using the property shown in

Eqn.(3.16), changing the order of the summations, and using the common variable
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m to replace all m™’s, we can have (derivation is given in appendix C)

e’ = 23 { [ { ogalziim)

n=1m=l
+ Z [log p(27 | 271 m) + 08 P(OF 1 2.0
} p(Zu On m, 6) dzr } -n
N M
+ Z E log p(m|®) - @}, (3.19)
n=1lm=l

where @? has the same expression as w}, except that the © in the expression is

replaced by © of the previous EM iteration.

We can express Q(©|0) above as

Q(010) = Qz + Q5. (3.20)
where
0z = 32 31/ (g p(Z5im) + Y108 H(ZEm 20 ,.m) + 08 POFIZEm )}
n=1m=1 k=1
. p(Z"|0™.m.®) dZ" } - &, (3.21)
and
N M
=Y. Y logp(m|©) - ap,. (3.22)
n=1lm=1

From the model definition by Equs. (3.6) and (3.7), p(Z¢ .| 2% ) is a Gaussian
with mean &,2Z2"(k — 1) + (I — ®,)T,» and covariance Qn, and p(O%|Z¢,,) is a
Gaussian as well with mean H,Z"(k) and covariance R,,. Fixing p(Z3|lm) as a
Gaussian with zero mean and a given covariance, we simplify @z to

Qz = —-—Z Z{K log |@Qm| + Kn log | Rm|

n_l m=1

+ Z Em[elz,m,(Qm)-lelz.m]
k=1
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Kn
+ Y Enle2R (Rm) 28 m] }om,
k=1

+const. (3.23)

where el?, = Z"(k) = 8, 2"k — 1) — (I — 8)Ton and €2}, = O™(k) — HnZ"(k).
En[] represents E[-|O™. m,©).

3.4.4 M-step

All parameters will be re-estimated in this step.

Re-estimating 7,

Tm. m = 1.2..... M. is the mixture weighting probability, which is equal to P(m|®).
Since in the Q-function only @Q, is related to 7. we can obtain the re-estimation
formula by setting the partial derivative of @, with respect to mm to zero. and then
solving it subject to the constraint:

M

z Tm = L.

m=1

To proceed, we define the Lagrangian equation of

M
Ly=Qp+M1= ) mm). (3.24)

m=1

Taking the derivative of L, with respect to 7,,, we obtain

X1
gﬂﬁ =Y —ah - (3.25)
m n=1 'm

Setting the derivative equal to zero, we have the re-estimate for m,:

1
fom = 3 Soan. (3.26)
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Taking E,A,;‘zl on both sides of Eqn. (3.26) and using the property of ¥M_ . =1,

we obtain

A= Z Z il (3.27)

n=1m=1

This gives the re-estimation formula for 7p,:

Zn_l C)n — Zrly_ —n
Zn—l =19 N

-
-

“m

for 1<m< M (3.28)

Re-estimating ®,, and T},

Before deriving the re-estimation formula for these new parameters, we adopt the

following notations first for notational simplicity:

Aoz;,=z"" W27k - 120k - 1)], ALY = TK° E.[Z7(k)Z7(k)],
A2 =y K B Z8k) 2k - 1)), Cm=(I—<I>,,.)Tm,

B0, = Tir, En[Z7(k — 1)), 1 =Z£‘_" En[2™(k)].

D" = i O™ (k)(O™(K)) . Fr =YK O k)En[Z™(k))
G, = T En[Z™(R)(Z™(K))]-

where ., and T, stand for the newly re-estimated values,
En(2"(k)] = (1. En[Z"(K)]T
and
T | Em;:([:):(zkji;cn'l

To re-estimate ®,, and T), we note that they are related only to @ z. Furthermore.

only ey includes ®,, and Trn. The relevant partial derivatives are 2

gg == Q) Z ~A20, + BIAT,, + T BOL, — KT T,,) - 7,

m

N
+ Q7 n 3 (A0 — BOLT, — TwBOZ, + KuTnT,) - @5 (3.29)

2In deriving the derivatives, we use the same matrix calculus formulas listed in Chapter 2.
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and

N
092 QI =) Y BY, ~ 00 — Knll - )T} 55 (330)
m n=1

Setting the above derivatives to zero, we obtain the re-estimates for ®,, and T,:

6, = {Z(Az;; _ BILF, — T B0 + KaTT) -a,’;,}

n=1
N -1
: {Z(Aog, - BOT" — TBO™, + K TnT%) -w:;,} (3.31)
n=1
and

7 U=%n) S {BI} - 2nBOL}-ap
" Eg:x Kn-op, '

(3.32)

Note that in the above, the parameters ®,, and T,, are updated alternatively at
separate EM iterations. This gives rise to the generalized EM algorithm. i.e., local

optimization in the M-step, rather than global optimization.

Re-estimating H,

To re-estimate H,,, we note that it is included only in e m term of the Qz in

Eqn.(3.23). The relevant partial derivative is

an N - Xn - . 4 : '
—= ==Y @n Y R En[(HnZ™(k) — OFNZ"(K))] (3.33)
aH‘m n=1 k=1

Setting the above to zero, we have the re-estimate:

. N N -1
Hn={3on m}{3 on anf (334

n=1
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Re-estimating Q,, and R,

Since the noise covariances @, and R,, are included only in @z, we compute the

following derivatives:

0Qz; 1K 1 K ,
%2 S K.Qnal — = Bolel? el? '1.a0, (3.35)
0 2.3 2 ,.gkz::l -
and N B
9Qz 1 . 1 X o
dR=! _ 3 Y. KaRnop, — ) YY) Emle2; €28 ] @n (3.36)
m n=1 n=1 k=1

Let the derivatives equal to zero, we obtain the estimates for @, and R,.

K noo-
_ Zrl:;l ket Em{elg melim | - @

3.37
Yoy Kndp, (3.97)

Qm

and « ’
N i Em [622.m622.m ] . ‘D:x

Rm _ n=1 Lsk=1

3.38
Zﬁr:l K"‘D:! ( )

In Q. above. Ui~ E,.[e1? .el?,.'] is calculated according to

Kn 2 2 >
> Enlelpelf,] = AlL + &, A0S, — A2; 0,
k=1

~&n(A27) - BI(Cm) — Cm(B17)
+8, BO™ (Cra) + Cm(BOZ) &, + K.CC., (3.39)

In R, above, T, En[e20 €22 ,'] is calculated according to

-~ -
.

Kn S , 3 ' k] ]
> Enmlefine2in] = D" = Fo(Hn) — Hu(Fp) + HaGr(Hn)  (3.40)
k=1

3.4.5 Calculation of the sufficient statistics

In order to obtain the re-estimates for the model parameters according to the formu-

las derived above as the M-step of the EM algorithm, a set of conditional expectations
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need to be calculated. Essentially, three conditional expectations (all conditioned on
the observation sequences), Em[2™(k)|, Em[2™(k)Z"™(k)] and En[Z7(k)Z™(k - 1)],

are required by the M-step.

The conditional expectation E,[-], which denotes E[-|O™,m, @], is precisely the

Kalman smoother for the m-th mixture and for the n-th observation (token). All

conditional expectations required in the M-step can be calculated by using the results

of the Kalman smoothing algorithm. We now list the computational steps of the
Kalman smoothing algorithm in the following below. 3

Forward recursion (or Kalman filtering) :

Zﬁk-l.m
Zkjk-1.m
O.;cl,m
Zoum
Kk.m
Z.l'cllk,m

n
2klk.m

= Ol jjporm + ([ = ®m)Tm
= ®mIi o1 ®m + Om

= 0"(k) = HnZgp 1m

= HuZPpoimHn + Bm

= DRecrmHm(ZG, )7

= Z’:'ik-l,m + Kim -L‘.m

_ n n 4
= kik—1.m — Kk.mzo'k'm Kk.m

Backward recursion (or Kalman smoothing) :

n
k.m

n
Zk|Kn,m

7 —
ki Knm —

-1

n ' n

klk.m(pm(zklk—l.m)
71 n [(on on
Zikam + AkmlZisyik, — Zis1jem)

n n n n !
klean T ARl Zhkam — 2k+1|k.m]Ak

(3.41)
(3.42)
(3.43)
(3.44)
(3.45)
(3.46)
(3.47)

(3.48)
(3.49)
(3.50)

Based on the Kalman smoothing results above, the three required conditional

3Details of the algorithm and the derivations can be found in ([94], {84], (93], [77], [89])-
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expectations are computed as follows:

E.[Z™k)] = z‘;;,Km,,, (3.51)
En[Z™Kk)2"(k)] = MKam t ZRkm ZRiknm) (3.52)
EalZ*k)Z™k-1)] = St ikom + Zoknm(ZEsigam) (3.53)

where IF ;) k. » is recursively calculated by [40]

n _vn n ! n n n n '
kk-11Knm = SkkmAb-1m T Aem(BEr1kKam — BmEEkm) Ak—1m (3.54)

for k = K,.---.2. where

?(.,.K,.-llK,.,m = ([ - KKn.mHm)‘pmzn,,_uK"-Lm (3.55)

3.4.6 Updating w

To update @” according to Eqn.(3.15), p(O™|m.©) must be calculated. It is calcu-
lated from the innovation sequence.
Kn

p(0"m.0) = [[(2m)*

k=1

% 1 An (e -1An
e:z:p{—g( k.m) [Edk'm] 1‘Ok,m}' (356)

n
Eok.m

where Ok and Sgk are the mean and covariance of the innovation at time K.

respectively. They are computed directly from Kalman Filter described earlier. d is
the dimension of Ok,m.

3.5 Likelihood-Scoring Algorithm

The speech model presented so far combines M different linear dynamic models
(mixture models), according to the mixture weighting probabilities, to describe the
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VTR dynamics. After the weighting probabilities and all other models’ parameters
are trained as described in the previous section, the likelihood of the model for each
phone, given a sequence of observations, can be computed directly. We describe this

computation below.

The likelihood 1(010®) is equal to

ljoje) = ;p(aXl@) =Y p(0|X.0)p(X|0)
X
M

= Z Tm + I (0]O) (3.57)
m=1

Based on the estimation theory for dynamic systems ([94], [93], [54], etc.), the

likelihood function for each individual mixture model is calculated from its innovation

sequence Ok.m according to
1 & - =)
2 (0|0) = K, -exp [—5 Z{log lzo-ml + Ok-m[gég,m]_lokm}l . (3.58)
k=1
where the innovation sequence O.k,m and its covariance 2(,,”“ are computed from the

Kalman filtering recursion. K. is a constant.

Then log-likelihood for the entire mixture model becomes:
M
L{0|®) = log [z Tm -lm(OIG)] (3.59)
m=1
For a speech utterance which consists of a sequence of phones with the phones’
dynamic regimes given, the log-likelihood for each phone in the sequence as defined in
Eqn.(3.59) are summed to give the total log-likelihood score for the entire utterance.

3.6 Evaluation Experiments

As before, in all the experiments reported in this section. we use a N-best list re-

scoring paradigm to evaluate the new recognizer on the Switchboard spontaneous
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telephony speech data.

3.6.1 Speech model trained with one speaker’s data

In this set of experiments, the “1/2 hour” training set is used for model training.
We gradually increase the number of mixtures in the MLDM. The results (WER.) are
listed in Table (3.2). From one mixture to two mixtures, there are large improvements
in the performance. The WER drops from “55.7%” to “50.7%" (about 10% relative
error reduction) for the “Ref+100” case. There is about two percents absolute error

reduction for the “100-best” case (without references included).

When we further increase the number of mixtures to four, we don’t observe fur-
ther decrease in the WER from the results shown in Table (3.2). Two factors might
account for this observation. First, the amount of training data is not enough for
the increased number (4) of mixtures. We had some warning information during the
training, which said some models suffer from under-training. Second, the confusabil-
ity among the different phones are increased with the increasing number of mixtures.
In order to pin down the more likely cause between the two possibilities, we used

more training data to train the models in the next set of experiments.

Under identical conditions, compared with the “HMM-baseline” system, the
MLDM with two mixtures achieves about 2% absolute WER reduction for 100 best”
case and much more reduction for “Ref+100” case. As analyzed before, this situation

is caused by the error propagation problem in the new model.

3.6.2 Speech model trained with multiple speakers’ data

To investigate how the amount of training data and number of mixtures affect the

recognizer performance, we extracted more data from the Switchboard “train-ws97-
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systems Ref+100 | 100-best
MLDM:1-mix 55.7 58.9
MLDM:2-mix 50.7 57.0
MLDM:4-mix 50.7 87.7

HMM-baseline 56.1 58.9

Table 3.2: Performance (WER) of mixture linear dynamic system model with half

an hour of training data

a” training set for training the new model.

In Table 3.3, “1 hour” means that we added another half an hour data to the
original half an hour of training set, where the new half an hour of the training data
comes from 30 different speakers. We name it “1 hour” training set. “2 hour”
means that we added one more hour of training data to the “1 hour” training set.
The additional one hour of data comes from 50 different speakers. We name it *“2

hour” training set. Both training sets will be used again in the next chapter.

The re-scoring results are listed in Table 3.3. With one hour training data. from
two mixtures to four mixtures, improvement is observed. It testifies the conclusion

that half an hour training data is not enough.

Comparing the results shown in Table (3.3) and Table (3.2), the MLDM with
two mixtures does not make substantial performance differences by doubling the
amount of training data. That is because the number of mixtures is not enough. the
MLDM with four mixtures turns out better performance from half an hour training
data to one hour data, about 1% absolute WER reduction for both the 100 best”
and “Ref+100 cases, It produces further WER reduction when trained on two hour

training data. Therefore, more improvement should be expected with more training
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data coming.

From this set of experiments, we conclude that using more mixtures is able to
improve the model’s performance even though it may have simultaneously increased
the confusions among the phones. More training data is needed for the training of

the modcls with an increasing number of mixture componeants.

systems Ref+100 | 100-best
MLDM:2-mix (1 hour) 51.0 57.1
MLDM:4-mix (1 hour) 49.8 56.6
MLDM:4-mix (2 hour) 49.5 56.0
ws97-baseline (160 hour) 56.2 56.9

Table 3.3: Performance (WER) of mixture linear dynamic system model with in-

creased amounts of training data

Compared with the “ws97-baseline” HMM system (not under identical con-
ditions), given in Table (3.3) as well, the MLDM with four mixtures trained on 2
hour data outperforms the HMM system for all cases, with and without including
the references in the N-best list. Especially, in the situation with references included,
the new model gives more than 10% relative error reduction for the “Ref+100” case.
This means that the new model is able to score the correct reference hypotheses with
higher likelihoods than the HMM system. For the case without references included,
the new model achieves about 1.0% absolute WER reduction.
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3.7 An Analysis Experiment

Why is the new dynamic system model able to achieve the better performance than
HMM system ? We believe the main reason is that some key aspects of true dynamic
properties of speech has been explicitly incorporated into the new system. In order to
examine this belief, we have performed a set of analysis experiments by deliberately
modifying the dynamic property in the model. To do this. we set the “time-constant”

parameter, ®, for all models to zero. This changes the state equation to

Z(k)=Tn+Wn(k—1), m=12...M (3.60)

Now. the hidden state dynamics is modified to be a flat one with noise added. All
other parts of the speech model were kept identical to the system described earlier.
We carried out the speech recognition experiments using the same training data (1-
hour) and using the same N-best re-scoring paradigm. The linear dynamic system

model with 4 mixture components was used.

The log-likelihoods during the model training are plotted in Fig(3.2), as a function
of the EM iteration number. The solid line is associated with the model without the
state dynamics being modified (i.e. with the trained parameter &), and the dashed
line is associated with the model with the state dynamics modified (i.e. setting
® = 0). The log-likelihood of the model after modifying the state dynamics is
observed to be uniformly lower than that of the original model. This is especially so
at the early iteration of the EM algorithm.

The N-best re-scoring results using the speech model with the state dynamics
modified are listed in Table (3.4). For comparison purposes, the results using the
original model are also shown in the same table. We observe from Table (3.4) that
when the dynamic property is modified by setting ® = 0, the system performance is

worsened greatly.
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Figure 3.2: Comparison of log-likelihoods of the speech model with and without the

state dynamics being modified

systems Ref+100 | 100-best
MLDM:4-mix ($ =0) 53.3 57.9
MLDM:4-mix (& trained) 49.8 56.6

Table 3.4: Comparison of recognizer WERs using the speech model with and without
the state dynamics being modified
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Compared with the “ws97-baseline” HMM system, the system with the state
dynamics modified still performs better. It may be due to the use of Kalman filter.
On one hand, it enables the new model to compute likelihood without the i.i.d.
assumption of observations (which is a limitation for HMM). On the other hand,
note that during the Kalman filtering process, due to the noises added to the state
and observation equations, the estimated hidden states, Zklk—l is still varying with
time k. This causes the estimated mean of observation, H Z klk—1, and its covariance,
HEy-1 H'. to change with time as well. Such changes are more desirable than the

constant means and variances associated with individual states in the conventional

HMM.

3.8 Conclusion

In this chapter a new version of the target-directed dynamic model, a mixture lin-
ear dynamic model for speech recognition has been developed. This new version
originates from the work in the previous chapter (more details in 3. 33]). where
a nonlinear form of the observation equation was used to represent the nonlinear

relationship between the hidden VTR space and the acoustic space (MFCC).

To improve the approximation accuracy by use of linear functions, we have devel-
oped a mixture linear dynamic model. The basic idea underlying this development
is that within limited input and output spaces, a global nonlinear relation can be
relatively accurately approximated by combining a set of linear regression functions.
Applying this idea to the speech modeling problem. we approximate the nonlinear
relation between the VTR space and the MFCC space for each separate phone by a
mixture of static, linear regression functions. The division of the input-output spaces

is achieved in two ways. First, phone-dependent linear mapping characterized by the



CHAPTER 3. A MLDM 68

regression matrix parameter H allows the VTR space to limit itself to only a narrow
range of the variation specific to the phone. Second, further limitation of the VTR
changes in a phone is achieved by using a set of regression matrices Hy,'s, each of

which further narrows the range of the VTR variation.

A series of speech recognition experiments have been carried out on the Switch-
board database to evaluate the new model. Under identical conditions, compared
with the “HMM-baseline” system, With use of two mixture components and of
half an hour for model training, the new model is able to achieve better performance,
about 2% WER reduction for the case without references included and much more
reduction for the case with reference included. When the number of mixtures is
increased to four and the amount of training data increased to two hours (about 81
different speakers), the new model also outperforms the “ws97-baseline” HMM

system trained on 160 hour data in all cases (with and without references included).

Those experiment results are consistent with the observation by other researchers
[60]. Our new model is a segmental-level discrete mixture model as those in [53],
[57], etc.. In [60] the authors observed that “If the advantage of frame-level mizture
distributions stems from systematic variation in speech, then segmental miztures may
be able to represent the systematic component via a framework that keeps the mizture
mode constant across the segment. In contrast, the frame-level mizture model allows
mizture modes to change randomly at each time step. Of course, if the advantage
of frame-level miztures is simply that Gaussian models do not fit the data well, then
frame-based miztures will be a more efficient representation than segmental miztures.
This question must be answered empirically and remains open at this point, although
our intuition and preliminary ezperiments favor the systematic variation interpreta-

tion.” Our experiments also favor the speech systematic variation interpretation.

It shows that the target-directed, mixture linear dynamic system model proposed
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in this chapter is a promising new approach to spontaneous speech recognition.
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Chapter 4

A Mixture Linear Dynamic Model
with Switching Parameters on the

Measurement Equations

4.1 Introduction

In the previous chapter the mixture linear dynamic model was developed and evalu-
ated. It turned out promising results. However, it used a linear function in the mea-
surement equations to approximate the physically nonlinear relationship between the
hidden dynamic space (VTR) and the observation space (MFCC). That approxima-
tion is mot accurate. especially for some consonants. For example, stop consonants
have closures followed by explosives, each period has different phonetic and acoustic
property. Using a single linear function to represent those two different periods is

apparently not accurate.

As analyzed in the previous chapter, linearity is of importance for the dynamic

70
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model because it gives rise to efficiency in the model training and likelihood com-
putation processes. To overcome MLDM's weakness in representing the nonlinear
relationship and keep the linearity of the model simultaneously, a more general ver-
sion of the dynamic model is developed in this chapter . In this version the H, in
the measurement equation of the MLDM version (Eqn.(3.7)) is allowed to vary with
time k, but not continuously, it is confined to take values from a set of different H
values. Therefore, a piece-wise linear function is used to approximate the physically

nonlinear relationship. Obviously, the new version is a more general case of the

MLDM version.

Since a piece-wise linear function is able to approximate a nonlinear function more
accurately than a single linear one, we hope to improve the system’s performance

further by developing this new version.

4.2 Model Formulation

In this new version each phone is still modeled by a combination of several linear
dynamic models.

M
> Tm LDMn (4.1)

m=1

where M is the total number of linear dynamic models (or mixtures), 7, is the com-
bining weights. However, the m-th linear dynamic model LDM,, becomes different

from that in the MLDM version. it is formulated as follows:

Z(k) = OnZ(k-1)+(I—=35)Tm + Wn(k-1) (4.2)
Ha(k)Z(k) + Via(k) (4.3)

O(k)

where the state equation is identical to that in MLDM, but the measurement equation

is different. Here Hy(k) changes with time k, but it is confined to take values from
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aset of {H', I = 1,2,..,L}, L is the total number of H valnes. Note that the

subscript m indicates different mixtures have different sets of H values.

We call this new version a mixture linear dynamic model with switching param-

eters on measurement equations (MLDM-SM). Each MLDM-SM has model param-

aters
O = {Tm B+ Tons Qs Rens H: o Ymt, m=1,2,.... M, 1 =1,2,.... L}

where ., represents the mixture weight probability P(m|®) and ym, the H,, value
weight probability P(I|m,®). How those parameters are estimated will be derived

in the next section.

In this model, two levels of parameter switching have been designed. First. the
mixture indexed by m switches at the segment (phone) level. Second, the H,, values
indexed by ! switch at the time frame level. The first level of switching corresponds
to the target property of the VTR dynamics, which therefore must be at the segment
level. The second level of parameter switching is designed to provide the flexibility for
using multiple linear functions to approximate the nonlinear relationship between the
VTR and the measurement variables. The parameter switching in the second level
should happen at the frame level because the relationship can change at different time
periods. We call the former switching misture switching and the later one H-value

switching.

As in MLDM. the mixture-path constraint must be imposed on the mizture
switching. This constraint must be imposed on both the model training and likeli-
hood computation algorithms.
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4.3 Model Parameter Learning

Due to data incompleteness, Expectation-Maximization (EM) algorithm is adopted

for model parameter estimation.

As in MLDM version. we define a discrete random variable X to indicate the
observation-to-mixture assignment for a sequence of observation. For this new MLDM-
SM version, we need one additional discrete variable to represent the H value switch-
ing on the measurement equation. We defineit as Y = {y1.y2,.... yx} (K is the length
of the observation), yx(1 < k < K) is a discrete random variable which indicates
which one of H! (1 < I < L) is chosen (or is switched onto) at time frame k. For
example. if yr = i. it means the i th value, H,‘,, is chosen at time k. Finally. we

define a discrete variable. S = {X.Y}, to represent the combination of X and Y.

As in MLDM. to impose the mixture-path constraint a joint variable must be
defined at segment level. Suppose we have N training tokens for a phone, we define

a joint variable as
{0.2,5} = {(0*. 2", §"),(0%. 2%.§%),....(0™, 2™, §™). ..., (ON. Z¥ . SM)},

where O™ = {O™(1),0™(2),---.0™(K,)} is the n-th observation sequence and Z™
the corresponding hidden state sequence. S™ = {X™,Y"}, where X" indicates the
observation-to-mixture assignment and Y™ = {y?,y3,- -, yk, } describes the H value
switching. Here, X™ and Y™ are working together to determine how the observation

sequence is generated.

The following assumptions are made in the development of the learning algorithm:

e The N tokens are independent of each other. So, S™ (1 < n < N) are inde-

pendent of each other.
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o The discrete random variables X™ ( 1 < n < N) have an identical distribution.

e y7, y7, ---, and yk are independent of each other. That is, the parameter

switching does not depend on the history, nor on the future.

¢ y? (1 <k < K,) have an identical distribution.

4.3.1 The PDF of the joint variable

With the assumptions made above, the conditional PDF of the joint variable
{0.2.S}V given © can be written as

N
[ p(0. 2", 5™ O)

n=1

»({0.2,5}"1@)

N
= [[p(0".2"|5".0) P(5"|O) (4.4)

n=1

In Eqn.(4.4) p(O™, Z2"|S™, ©) is the conditional joint PDF of O™ and Z™ given the
condition that model parameter © is known and the mixture and H value switchings
designated. According to [39], the conditional PDF p(O™, Z"|5",0) is defined as

Kn
p(O". Z"|5".0) =P(ZSIS",@),}:IIP(ZZIZL‘_u5"~,@)P( #26,5™.09) (49
where p(Z2|S™, ©) is the conditional distribution of the initial value for the hidden
dynamics. We assume all tokens and mixtures have the same initial value distribu-
tions, so p(2Z3|S™. ©) is simplified to p(Zo|®). At time k, only X™ in S™ affects the
conditional PDF p(Z}|Z2_,, 5™, ©) and only X™ and yi affects p(OF|Zf, S™. @), so
Eqn.(4.5) can be further written as

Kn
p(O", Z"|S™.©) = p(%10) [] p(Z¢1Z¢_,. X™. ©) p(OF|ZE. X", 48, ©)  (46)
k=1
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On the other hand, in Eqn.(4.4), P(S™|©) is equal to

P(S"®) = P(Y"|X™,0)P(X"|0)
Kn

= [I P(y;1X", 0)P(X"|0) (4.7)
k=1

where the independence between switchings at different time points has been nsed

in the last step.

Then, substituting Eqn.(4.6) and (4.7) into (4.4), we obtain

#{0.2.5}"|0)
N Kn

= Te(Zl®) LH D Z71Z0. X", ©) p(OF1 20 X™ 7. O) Py X" ©)
n=1

=1

. P(X™©) (4.8)

4.3.2 Several useful conditional PDFs

To calculate the Q-function in the E-step, we need several conditional PDF's. which

we will derive here.

Firstly, p({0. S}V|©) can be factorized to

N
p({0,5}"10) = [ p(O"|S",0) P(5"0) (4.9)

n=1

In the above, p(O™|S™, ©) can be further decomposed to
Kn
p(0"|8™.0) = [T p(0™(K)|OT 1, X" y£. ©) (4.10)
k=1
where O7,_, = {0"(1),0™(2),--.0"(k — 1)} and we assume
p(0"(1)|05, X™.y7. ©) = p(O™(1)| X", 4T, ©).
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Plugging Eqn.(4.10) and (4.7) into (4.9), we get

p{0,5}"|0)
N [Ka
II | II p(0™(K)|Os_1, X", 42, ©) P(yi]X™, ©)| P(X™©)  (4.11)

n=1 Lk=1
Secondly, to obtain p({O,X}"|0) we take integration of p({0,S}"|®) over
{v.

p({0.X}10) = ¥ p({0,5}¥|0)
(rH¥

DIDILE ZHLHp(o" 1071, X" yp, ©) P(y;*lX“,e)] P(X"|©)

Yyl v? YN n=1

N
= ]I [H S p(O™(k)|OF 4y, X™ 42, @) P(y2|X™.0©)| P(X"|O)  (4.12)

n=1 jk=1yp=1

where the independence between tokens and between switchings at different time

points have been used.

Thirdly, to obtain p({O}"|©), we take integration of p({0, X}"V|0) over {X}¥,

r{0}"1@) = 3 p({0.X}"|0)
x>

N M Ki
=12l X:po" |07 4-15 X" 4. ©) P(y7| X", ©) | P(X"|©]4.13)

Then, by PDF’s property, p({X}¥)|{O}".0) can be derived to be equal to
p({0.X}"19)
r({0}¥]©)
Y, [, S5, p(O™(K)|OFy_y, X", 47,0) P(y7|X",0)] P(X"|0)
I oo [T, S5, PO™(R)IO%4 . X4, ©) P(s2|X".0)] P(X"[0)

= 1‘[ W™ (4.14)

p{XY{OY. 0) =




CHAPTER 4. A MLDM-SM 4

where
2 Tk, p(O"(K)|0F4sm, 1, ©) PUIm, O)] P(m]®)
"M [ &, Sk, (07 (k)[04 m, 1,0) P(l|m, )] P(m|®)
In the above, because X™’s have the identical distributions, they are replaced by a

(4.15)

common variable m for notational simplicity. For the same reason, yg’s are replaced

by a common . Apparently, ¥™_ w? = 1. Because of the independence assumption

between tokens, we can get

p(X"|0™.0) = w™ (4.16)

and

> p({X}|{o}N.0) =], (4.17)

{X}¥ /X
where {X}¥/X™ means the set of {X}" but X".

Finally, the conditional PDF p({Y}¥|{X}¥.{0}".0) is equal to
p({0.5}"]0)

p({0.X}¥|0)

ol [ Kn p(O™(K)|074_,. X" 4. ©) P(y}|X".0)] P(X"|O)

e [ o S, PO (K)OF4_y, X747, ©) P(yp1 X", ©)] P(X"(O)

p{YYHX}V.{0}".0) =

N Kn
= [I I1 &m. (4.18)
n=1 k=1
where
o?._,,m,l,0) P(ljm,0)
f;:_m‘, — )l 1,k-1 | (4.19)

Zl=1P O" (k)|0T -1, m. 1, 0) P(l|m.O)
where as before X™ is replaced by m and y by { for notational simplicity. Apparently.

Y&, & .., = 1. Because of the independence among tokens, we can get
Kn
P(Y"|X™.07.0) = [] & (4.20)
k=1

Here. using the independence assumption among H value switchings at different time

points. we obtain

p(ye| X", 0%.0) = & my (4.21)
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and

Y p(Y™X™,0%0) =& ma (4.22)
Yo /up

where Y™ /yp denotes the full set of Y™ but yg.

4.3.3 E-step

Given all the conditional PDF computations discussed above, we are now in a position

to describe the EM algorithm.

Since both {Z}¥ and {S}" are missing, we take integrations over both of them
to get the @-function. The @-function becomes

S [l08p({0. 2.5}10) - p({Z. SYVI{O}". ©) d{2}"
(s}

= % [10g5({0.2.5}18) - p{Z}"I{O. S}".8) d{Z}"
{s}v

Q(0]0)

-p({S}'I{O}". ) (4.23)

where O indicates the parameter value at the immediately previous step.

Substituting Eqn.(4.8) into Eqn.(4.23), we simplify the @-function to (derivation
is given in Appendix C.1):

Q(e16)
N
= > [ { lgp(Zl0)

n=1 §n

Kn
+ Y [log (271271, X", ©) + log p(OF 127, X" 47, ©)
k=1

}-p(27|0", 57.0) dZ" - p(S"|O". ©)

N Kn _
LY (3 log PIXT, e)] P(5°|O". )

n=1 $" lk=1
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N
+ Z Z log P(X™|@©) p(S™|0",0)

n=1 §n

= Qz+Qr +Qx (4.24)

where the Q-function is shown to be separated into three disjoint terms: @z, Qv

and Qx. As before, we use m and [ to denote X™ and yi, respectively. These three

terms can be simplified to (derivations are given in Appendix C.2)

Qz =

Qr

Qx

>3 [ { ogaizile)

n=1 §»
+ 3" [log p(Z2123.,, X", 6) + log pOF 22 X" 47.O)]
k=1
}-p(Z™|O™, $.8) dZ™ - p(S™|O™. ©)
Kn
3 log p( 27| ,:‘_l,m,G] (Z"0".m.0) dZ" - &

=1
Kn L

+ /{Z 3" log p(O}1 27 . m. 1, ©) & 1y P(Z7O™, m, L. C:))} dz™ - af
1
+ const. (4.25)

% Z Zlog P(ljm.©)- (4.26)

=1 I=1
Z log P(X™|©) p(5™|0".©
1 8n
zbgp X™|@) p(Y"|X", 0", 0) p(X"|0", O

log P(m|©) @y, (4.27)

M= iM= fl"]z
i M= "F’J

where @7, and &, ; have the same expressions as w], and &, respectively, except

that the © in the earlier expressions is replaced by ©.
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By the definition of the speech model in Eqns. (4.2) and (4.3), p(Z2|Z¢_,,m,©)
is a Gaussian with mean: ®,2"(k — 1) + (I — $,,)T,» and covariance: Q. And
p(O|Z2,m,1,0) is also a Gaussian with mean: I-:T,’,‘Z"‘(k) and covariance: R,,.

Therefore, @z can be re-written as

1 4 <l . 3
“3 2 ';1{;{ 1°8|le+ZE ek (er‘elz.mj} L@
1 N M K" L / )
3 Zl 2 {Kn log | Bm| + ,,Z lz Bt €27y (Bom) 7 €27 s - f,'c"m_,}} ¥
m=1 =1 l=1
+const. (4.28)

where el? . and e27, ; are equal to

elp . = Z™k)=®n2Z™k-1) = (I - &) Tom,
2 my = O"(k)— HoLZ"(k).

E..[-] denotes the conditional expectation E[-|O™ m,©)] and E;[] denotes the con-
ditional expectation E[-|O™,m.l.©)]. These conditional expectations. En[] and
Eu[-]. will be computed from the Kalman smoothing algorithm that will be dis-
cussed in detail later.

4.3.4 M-step

With the @-function computed above. we now go to the M-step of EM-algorithm.

Re-estimate for w,, Let’s first derive the re-estimate for the mixture probability
m = P(m|©), where m = 1,2, ..., M. Since in the @-function only Qx is related to
P(m|®). we can derive the re-estimation formula by maximizing Q) x with respect to

m Subject to the constraint:
M

Eﬂ'm=1.

m=1
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Define the Lagrangian:

M
Ly =Qx + M1 - )_ 7m)

m=1

and take derivative of Lx with respect to m,, to obtain

oLy X1
=1 = 5" — )\
O m ,; nmw"‘

Setting the above derivative to zero. we have the re-estimate for mp,:

N
> an,
n=1

T =

> | b=

Take TM_ over both sides of Eqn. (4.3.4) and use the property of TM tm=1
to get

o = NZ“;;"'" for 1<m<M (4.29)

Re-estimate for v,,; Note in the Q-function, only Qy is related to the “switch-
ing” probability yms = P({|m,®) and ym; has a constraint, EzL=1 Ymi = 1. So the
Lagrangian is defined as

L
Ly = Qv + A(1 = )_ Ymi)
[
Take derivative of Ly with respect to ¥, and let it be zero,

N K. g
BLY H f'l:.m.l

=20

Om 4 n=1 k=1 Iml

&% — A

Solving the above for vy 1, we have

.—l
=
e

Ymg = X D &milan
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Taking summation Y7 over both sides gives
N
A=Y K.ap,
n=1
It gives the final form of the re-estimation formula:

<! —Kn = Mt
s = Ln=112k=1 Skmt] Ym
ml = -
Zrlxvzl Kn w:‘:‘l

(4.30)

Re-estimates for ®,,, T,, and @Q,, Before going to estimate these parameters.

we adopt the following notations for simplicity.

A0%, =YK B (27K - 1)27(k - 1)], AlR = $K En[27(k) 27 (k) ],
A2 =K B (27k)ZMk = 1)],  Cm=(-&)Tn
BO® =YK E 20k - 1)), B1? = Tk E.[27(k)]

Note that in the Q-function only the first term of Q) 7 is related to these parameters
in the state equation. The derivatives of @z with respect to &, and T}, are computed
according to:

N
gg—z = Q.1 Y (—A2 + BIAT, + Tn B0, — K. T.T,,) - op,
m n=1

N
+ Q7 8. 3 (AR — BONT,, — TrBOZ, + KoTnT,,) - @5, (4.31)

n=1
and
aQZ -1 & n n ~n
T —Q:HI = @m) Y _{B1}, — 8 B0, — Ku([ = ®)Tw} - oopy (4.32)
m n=1
Setting the derivatives to zero and solving the equations (note that @ must be

full rank and ®,, # I by definition), we obtain the estimates for &, and Tr,,

R _ m—l N_ Bln_(meon .o
T = (I @ ) n_l{ m m} wm. (4.33)

m N py
Zn:l K" * w:rll
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{Z(AT‘ — BIAT!, — T.BOY + K, T 1) - a2}

n=1

{Z A0® — BORT. — TmBO® + K, .T.T") -}t (4.34)

n=1
The derivative of @z with respect to @} is

ggi =3 Z KaQm, — = Z Z Enlelf nelpn |- @ (4.35)

n=1 n_l k=1

Setting it to zero, we have the estimate for Qn,,

D DD 3L o 123 | L
Qm = Zn:l K,.w;:, (4.36)

where YK~ E,.[el} .el? 'l is calculated according to

Kn
Z Em[el;:,melz,m’]
= Al" +&,A0"d — A7 — &, (A2") — B1%(Cn)’
Cm(B1%) + & B0 (Cm) + Cm(BOR)' &, + K,CC. (4.37)

Re-estimates for H,’n and R, Finally, we derive the re-estimation formulas
for the parameters, Hm_z and R,., contained in the measurement equation. In the

Q-function, only the second term in @z is related to these parameters.

The derivative of Q7 with respect to HY, is

6QZ _ -1 Y (& ‘il on n
—= =R} Y Enil(H,27(k) — OF) N1 &mi) on (4.38)
aHyln n=1 \k=1

Setting the derivative to zero and solving it, we get the re-estimate for H,
N Kn . o
{Z @7, Y O"(k) Em(Z"(K)] -s;:.m‘,}
n=1 k=1

N Kn . . ) _ -1
' {Z @p Y En[Z(K)(Z™(K)]- é};m.z} (4.39)

n=1 k=1
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where En[Z™(k)] = (1, Emi[2™(K)]] and

Bl )] = | EwlZ7R
B2 Emi{27(k)(Z7(K))]

The derivative of Qz with respect to R} is

0Q; 1K {K" L

BR=1 ~ 2 ; g (Rm — Emi [82Z,m,z(€22,m.z)’]) . f-z.m,z} - W, (4.40)

n=1
Let it be zero. we obtain the re-estimate for R,,,

- ( o Ty Bmi(€2 mi(€2hma) ] f“mz) A

= 4.41
R, ¥ K. on (4.41)
where Eny[e2? (€22 ,.,)] is calculated according to
Eml[522m1(322mz),]
= O"(k)O"(k) — EmlZ"(k)|(H)
— B B Z7(R)] + HY Bt 27(R)27(k) |(HL,) (4.42)

4.3.5 Calculation of the sufficient statistics

As we show earlier, in order to obtain the re-estimates for the model parameters, a
set of conditional expectations, which form the sufficient statistics for the estimation
problem, need to be calculated during the M-step of the EM algorithm. These suffi-
cient statistics include Ep[27(k)], Bm[2™(k)Z2™(k) |, Em[Z"(k)Z7(k - 1)'], Em[27(k)]
and E.(Z2"(k)Z™(k) 1.

The conditional expectation En[-] = E[-|O™ m, 0] is the Kalman smoother of the
m~th mixture(or LDM) for the n-th observation. However, the conventional Kalman

smoother can not be directly applied here because the current model has param-

eter switching occurring on the measurement equation. This situation (parameter
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switching on measurement equation) is exactly the same as that presented in [40],
where the filtering and smoothing algorithms were derived. Then the conditional
expectation En[-] = E[-|O™,m,l, ©] becomes the smoother of the m-th mixture for
the n-th observation under an extra condition that Hn,(k) = H?, (recall that we use

I to represent yp =1).

The basic theory about filtering and smoothing can be found in ([94], [84], [93].
[77], etc.). In the following we list the filtering and smoothing algorithms (for one
mixture) for our special model with parameter switching on the measurement equa-

tions.

Forward recursion (or filtering) :

Ztm = ®nZp i+ ([ = ¥n)Tn (4.43)
tk-tm = PaZiik-1.m®m + Qm (4.44)
Seoy = OMk) = B Zg i 1=1,2.0L (4.45)
=3, = H.Ih . HYL +Fnm (4.46)
Kimi = S imHh (55, )7 (4.47)
Zﬁk.m,z = Zak—l.m+Kk.m.lO:.m.l (4.48)
kemd = :Uc—l.m—Kkvazgk'mJKllz,m (4.49)
oy = N<0"<k)—H,',;.Zk.,:l.,,.,zgk,m_,) 50
Yie1 Yt N(O™(k) — HyZppe_1m: T, )

Zem = szpk,m,, Zkemi (4.51)
:L'I

Mkm = g%.m Elem (4.52)

where Zg_, ., is the predictor and Ly _; its error covariance. 2y, is the filter

. an
and X}, , its error covariance. N(O™k)-HLZ kk—1,m: E’C‘jk'm") is a Gaussian density



CHAPTER 4. A MLDM-SM 86

with mean H! Z kk—1,m and covariance T3 | which is the density of the innovation

sequence at time k.

Backward recursion (or smoothing) :

;:,m = ZZIk,mQLn(Ezlk—l.m)-l (453)
I?|Kn.m = .I?lk,m + Az.m[zl:‘+1|Kn - Zlf:+1[k,m] (454)
:lKn.m = Zlk,m + Az.m[22+1lKn.m - z;c‘-f-llk.m]A;c (455)

Note that the above smoothing is for the computation of E[-|O™ m.®)]. For the
computation of E[-|O" m.l, @] at the given time point k, Zﬁk.m and X3, ., in the
above smoothing algorithm are simply replaced by Zﬁk,m.t and BF, -, respectively.
and correspondingly. Z,:‘l K.m Decomes Z,';I Koy 30d ZRig . becomes T .. At

other points. the smoothing keeps unchanged.

Using the above Kalman smoothing results, the conditional expectations as suf-

ficient statistics are computed by,

-

En(Z"(k)] = Zikm (4.56)
En[Z"(K)2*(k)] = ZRigom + L Ziinm) (4.57)
Em[Z"(k)Z"k-1)] = ZRa-ijgam + Zhkam(Zootikam)  (458)
EmZ™(k)] = Ziig,m (4.59)
Ea[Z*(K)Z*(k)] = Zigmi+ Goiamil Zikamad) (4.60)

where 3%, _, k. m iS recursively calculated by [39]

1}

n __+n n ! n n _ n n
R ko1iknim = ShkmAr-1m T Aem(ErikiKam — BmIkem) Ak_1m (4.61)

for k = K,,---.2, where

L
Z?(n,Kn—IIK...m = Z¢Kn.m,l([ - KKn.m,ngln)szr[‘{n-n}'{n_l'm'[ (462)
=1
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4.3.6 The calculation of @ and ¢

To compute &7 and &, it suffices to know p(O2|07,_,,m, 1, ©). It is computed
according to:

A= 1

n o -dlsin -7 1 An 'ren -1/n
p(OFI0%, ;. m.1.8) = (2m)~3[z3 | Yerp{~(00n,) (85, ) '0%a} (463)

where O.E.m.z and I3, , are computed from the Kalman filter given earlier. d is the

. - ~n
dimension of OF ;.

4.4 Likelihood computation

We combine M different linear dynamic models (mixture models) according to differ-
ent weights to describe a phone’s VTR dynamics. After the weights and all models’
parameters are trained as described in the preceding section, the likelihood of a phone

for a sequence of observations is computed by,

i0l@) = Y.p(0.510)

S
= Y3 p(0IY.X.0) pYIX.0) plX[6)

M K
= 3 {1'[ > p(O710% -1, m, 1. ©) -7,,..,} T (4.64)

m=1 \k=1Il=1
The log-likelihood is then
L(0]|0) =log {(0}09) (4.65)

For a speech utterance consisting of a sequence of phones with the phones’ dy-
namic regimes (boundaries) given, the log-likelihoods for all phones in the sequence
as defined in Eqn.(4.65) are summed to give the total log-likelihood score for the

entire utterance.
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4.5 Ewvaluation on Switchboard Data

The same experimental paradigm (N-best list re-scoring paradigm) as in the previous
chapters is used for the evaluation of this new version, which has been introduced in

details in Chapter 2.

4.5.1 Experiment I: Models trained with one speaker’s data

In these experiments, the “1/2 hour” training set (see Section 2.7.1) is used for

model training.

First. we use a single mixture (l-mix) for the mixture-linear dynamic model
(MLDM) with switching parameters and we increase the number of H-switching
values from one to three. The percentage-WER results are tabulated in Table 4.1.
It is observed that the use of H-switching (two or three H values) reduces errors

compared with no use of H-switching (one H value only).

systems Ref+100 | 100-best
MLDM-SM:1-mix, 1-H 55.7 58.9
MLDM-SM:1-mix, 2-H 55.0 57.7
MLDM-SM:1-mix, 3-H 55.1 57.2

Table 4.1: Performance (WER) of MLDM-SM with a single mixture and different
numbers of H switching values

We then use two mixtures (2-mix) while again gradually increasing the number of
H-switching values. The WER results are listed in Table 4.2. We observe a similar
pattern of error reduction to the previous experiment while uniformly raising the

overall recognizer performance level somewhat.
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systems Ref+100 | 100-best
MLDM-SM:2-mix, 1-H 50.7 57.0
MLDM-SM:2-mix, 2-H 50.4 56.6
MLDM-SM:2-mix, 3-H 50.5 56.8

HMM-baseline 56.2 58.9

Table 4.2: Performance (WER.) of MLDM-SM with two mixtures and different num-
bers of H switching values (trained with “1/2 hour” training set)

Compared with the “HMDM-baseline” trained on the same data. the new
switching dynamic system model with 2 mixtures and 2 H switching values achieves
2.3% absolute WER reduction on the “100-best” case and more than 10% relative
WER reduction on the “Ref+100” case.

4.5.2 Experiment II: Models trained with multiple speakers’
data

In these experiments. the amount of training data is increased. First, the “1 hour”
training data set is used. The results are listed in Table 4.3. For the two-mixture
(2-mix) case. we observe a WER reduction from the use of one H value to the use of
more than one H values. Similar observations are made for the four-mixture (4-mix)

case, although the WER reduction is of less magnitude.

Then, for the four-mixture (4-mix) case, we further experimented with using *“2
hour” training set. The WER results are shown in Table 4.4. A greater error
reduction is observed moving from one H value to two H values when compared

with the earlier result of Table 4.3 with use of fewer training data.



CHAPTER 4. A MLDM-SM 90

systems Ref+100 | 100-best
MLDM-SM:2-mix, 1-H 51.0 57.1
MLDM-SM:2-mix, 2-H 50.1 56.4

MLDM-SM:2-mix, 4-H 50.0 56.4
MLDM-SM:4-mix, 1-H 49.8 56.6
MLDM-SM:4-mix, 2-H 49.6 56.5

Table 4.3: Performance (WER) of MLDM-SM with two mixtures and different H

values (trained with “1 hour” training set)

systems Ref+100 | 100-best
MLDM-SM:4-mix, 1-H 49.5 56.0
MLDM-SM:4-mix, 2-H 48.8 55.8

Table 4.4: Performance (WER) of MLDM-SM with two mixtures and different H

values (trained with “2 hour” training set)
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4.5.3 Some analyses of model behavior and experimental re-

sults

In the previous subsection I showed how the system performance is impacted by
the increasing of the number of H switching values. Some limited improvements
have been obtained. However, from those results in the previous subsection it is
hard to see if our original design objective (improving the mapping accuracy on the
measurement equation) is achieved or not. So, in this subsection I provide some

analyses on this.

The analyses here are based on the fact that the noise covariance matrix R on the
measurement equation (Eqn.(4.3)) (or the noise variance if R is treated as diagonal
as in our model implementation) is estimated according to Eqn.(4.41), where €2 is
the difference of the actual MFCC and the output of the h(-) function. Thus, if
the function h(-) accurately describes the relation between the VTR space and the
MFCC space. the estimated R will be small. Otherwise, the estimated R will be
large. Therefore, the accuracy of approximating the physically nonlinear relation
between the VTR space and the MFCC space using a piece-wise linear function as
implementing by switching-H values can be assessed by examining the size of the
estimated noise variance, R.

As typical examples, the diagonal values of the estimated R for phone models
“aa”. *d”, and “n” are shown in Table 4.5, 4.6 and 4.7, respectively. (Column
three lists the average values of these diagonal elements.) We observe that these
estimated variance values are strictly decreasing with the increasing number of H-
switching values. When the number of H-switching values is increased from one
to four. the average R value is decreased from 22.1 to 18.6 for “aa”, from 22.2 to
19.6 for “d”, and from 20.0 to 17.6 for “n”, respectively. This suggests that the
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accuracy of approximation to the nonlinear mapping on the measurement equation
by using the piece-wise linear function is improved with the use of piece-wise linear
functions. Therefore, our original design objective of improving the approximation

to the nonlinear mapping is achieved.

no.of H diagonal elements of R average
1H 10.0 14.6 17.1 22.5 21.7 18.9 32.3 28.4 29.4 23.5 24.4 21.8 221
2H 8.87 13.4 14.6 20.0 21.3 20.1 29.7 27.5 30.9 21.7 23.4 21.8 | 21.1
4 H 6.92 11.5 13.4 18.6 17.8 19.2 26.9 19.7 27.9 23.4 17.6 19.7 18.6

Table 4.5: Values of diagonal elements of R noise variance for the phone model “aa”

as a function of the number of H switching values.

no_of H diagonal elements of R average
1H 8.9 17.5 18.8 16.9 19.8 25.6 27.4 27.2 30.2 27.2 26.7 20.7 | 22.2
2H 5.6 16.8 16.4 15.1 18.8 24.9 26.4 23.4 31.4 23.6 24.4 19.8 | 20.6
4 H 5.2 17.0 16.7 15.0 17.0 24.8 24.9 22.9 27.4 21.8 24.7 19.6 | 19.6

Table 4.6: Values of diagonal elements of R noise variance for the phone model “d”
as a function of the number of H switching values.

It is interesting to note that the improvement in the linear piece-wise approxima-
tion accuracy as reflected by the reduced R value is correlated with the mild WER
reduction in the speech recognition results presented earlier in this section. How-
ever, the system’s performance (WER) was not improved (less than 1%) as much as
that in the noise covariances (more than 10/This phonemenon is consistent with our

observation in Chapter 2 when we were trying to decrease prediction errors of the
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no-of H diagonal elements of R average
1H 6.0 15.9 16.8 15.5 18.7 20.7 18.9 27.2 31.0 26.3 21.4 22.0 | 20.0
2H 6.1 15.6 15.0 16.6 18.1 21.1 17.8 26.9 24.1 24.4 20.8 19.6 18.8
4 H 5.5 14.5 13.9 16.4 18.4 17.9 16.0 26.1 20.9 23.9 18.7 19.0 17.6

Table 4.7: Values of diagonal elements of R noise variance for the phone model “n”

as a function of the number of H switching values

nonlinear function MLPs. From the observation obtained from both Chapter 2 and
this chapter. we would like to make the following conclusion: the relation between
the hidden space (VTR) and acoustice space (MFCC) is highly complicated. not a
qualitative improvement on the approzimation accuracy doesn't impact the system's

performance much.

4.6 Conclusion

A more general version of the mixture linear dynamic model, the mixture linear
dynamic model with switching parameters on the measurement equations, has been
developed in this chapter. The novelty of the model is the use of piece-wise lin-
ear functions to approximate the physically nonlinear function between the partially
observable VTR space and the observable MFCC space. This approximation is ac-
complished by introducing frame-dependent, discrete switching parameters (H pa-

rameters) in the observation equation in the state-space formulation of the model.

A series of speech recognition experiments have been carried out to evaluate
this new model. The experimental results show that the approximation accuracy is

improved with an increasing number of H-switching values (about a 10% reduction
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in the estimated measurement noise variances). The new version recognizer using
the N-best rescoring evaluation paradigm also show some varying degrees of WER
reduction compared with using no switching H parameters (number of H values = 1)

in the otherwise identical speech model.

It has also been observed that the system’s performance (WER) was not improved
as much as that in the noise covariances or approximation accuracy. Because of the
high complexity of the nonlinear relationship between VTR and MFCC spaces, it will
not impact the system's performance much if the increasing on the approximation

accuracy is not qualitative. This phenonemon is consistent with our observation in

Chapter 2.



Chapter 5

Efficient Decoding Strategies for
the New Dynamic Model

In the previous chapters we didn’t touch the decoding problem for our new dynamic
models, in all the experiments there we fixed the model dynamic boundaries sub-
optimally from HMM phone boundaries during both the training and recognition
processes. Due to the continuity constraint imposed on the hidden dynamics(VTR),
local likelihood computations become dependent on past path histories. It doesn’t
allow any path deletion during search if the global optimality is needed. So the
search space grows exponentially with time, it makes the search infeasible. That is
why we avoided this problem in the previous chapters. But from experiment results
we found that the dynamic boundaries are of importance to the dynamic model. So,
in this chapter we deal with the decoding problem for the new dynamic model. An
analysis of the search problem is first provided, then based on the analysis three

efficient approximate decoding approaches are developed.

95
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5.1 Introduction and Motivation

It is well known that search is a challenging problem for all those so-called “seg-
ment” models [60]. Because likelihood computations are based on segments for
those models, to calculate models’ likelihoods segmentations must be known first.
This requirement is reflected on the dynamic programming (DP) search algorithm
for “segment” models as that an additional set, segmentation set, must be added to
the path deletion process. In [60] the DP search algorithm was given as follows,

Iterate: t =2.3.--- , T:Vi € Sy, =t — 7, p(t,t) is segmentation set.

8e(i) = mazjes, repei){0r(5) + log(p(yrsr, -« yellr, §) pU-]3) (LS} (5:1)

Pe(i) = argmazjes,repen{dr(7) + loglp(yrsirs -+ yellr.3) p(i-[3) p(i]5)]}(5.2)
In the above algorithm p(t,7) is added to the most likely path choosing process.
which is the set of all possible segmentations up to time ¢ at node i. Apparently

p(t, 1) becomes larger and larger with time increasing, it makes the search costly. For

HMMs p(t. ) shrinks to a single point, ¢ — 1.

For our new dynamic model, the situation becomes different. it is even worsened.

The DP search algorithm for the new dynamic model is as follows.

Iterate: t =2,3,---,T;Vi € 4;, v is path set at time t.

0(3) = {8e-1(7) + log[p(yels. Sie) P(SielSse-1)]} 7€ (5.3)
Pe(t) = argmazjey,_, {0e-1(5) + loglp(yels, Sie) p(SielSje-1)1} (5.4)

where S;, is the state where path i stays at time t.

In the algorithm ¢ and j become path indexes instead of node indexes in the
earlier case. Because the local likelihood p(y:|j, S::) is dependent on the past path
7. the path deletion is not allowed any more, the “maz” term in Eqn.(5.3) has gone .
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Obviously, the number of paths grows exponentially, which make the search for the

new model impossible.

Why do we touch this challenging problem? The motivation is this: in the ear-
lier investigation work on the nonlinear version of this new dynamic model given
in Chapter 2 [67] and (3], we found that a very important factor affecting the new
recognizer’s performance is the boundaries of the dynamic regimes in the VIR dy-
namic model of speech. When the boundaries were manually ' adjusted from those
automatically (often with gross errors) determined from an HMM system so as to
conform to the dynamic regimes expected from the model, drastic reduction of recog-
nition error in the Switchboard task was consistently observed. This motivates the
current work aiming to develop efficient (segmentation) algorithms which can auto-
matically determine the optimal dynamic regimes in training the recognizer and in

scoring spontaneous speech utterances.

The optimality criterion. chosen to be the likelihood on the observation data
(MFCC sequences), is based on the dynamic VTR model used to represent the
dynamic patterns of speech, rather than based on other inconsistent forms of model
such as HMM. This achieves the desirable goal of consistency modeling in the entire

speech recognition system.

5.2 Analysis of the Problem

Let’s explain first in this section why the standard dynamic programming approach
(Viterbi algorithm) can not be applied directly to search for optimal dynamic regimes
in the hidden dynamic model of speech. This is so no matter how small the number of

I This work was done during the Workshop 1998 held in John Hopkins University. See the website
http://www.clsp.jhu.edu/ws98/ for details.
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the dynamic regimes is. In short, the difficulty for the search efficiency arises because
of the continuity constraint imposed across dynamic regimes in the hidden variable
domain. A consequence of this continuity constraint is this: at any fixed node in
the trellis search diagram, the local likelihood scores, into a fixed future node will in

2

general be different depending on the past history arriving at the current node.

As stated in Chapter 2 , the log-likelihood of the new model producing a sequence
of observations is computed from the innovation sequence. Let’s re-write Eqn.(2.54)

here.

L(0{'|®) = logp(O(1),0(2),---.O(N)|O)

1Y sy A
- T3 Z{log 126, | + Okzgiok} + const. (5.5)
k=1

where O and L5, are the mean and covariance of the innovation at time k.

Ok and X5, are calculated from Kalman filtering process. Kalman filter is a
recursive state estimation algorithm. It is illustrated in Table 5.1. At each time

recursion, it runs prediction, innovation and filtering processes.

From the filtering algorithm one can see that the calculation of the mean and
covariance of innovation sequence at current time k, used for the local score compu-
tation. is dependent on the prediction values Zklk—l and Y-, and the predictor
is is initialized by the filtered state values Zk—uk—l and Xji-jjk-1 at the previous
time k — 1. So the local score computation depends on the previous recursion. Fur-
thermore, the previous recursion is initialized by those filtered state values at the

one further previous time point k — 2, and so on. The continuity constraint of the

1t is the difficulty of such a type which prevents further development of a model that is also
substantially different from the conventional HMM [64]. Note also that the computational com-
plexity associated with most versions of stochastic segment models [60] arises from very different

causes where no explicit constraints across segments are imposed.
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time k — 1

L

Prediction:
Zypr =82y + (I - 8)T
| Sepe-1 = Bpo1p1®@ +Q |

+
Innovation:
Or =O(k) - h(Zklk—1) N local-score at k:
S6, = Hikm1Sik-1 Heppoy + B —3{log|Z5,| + 0,50}
K = Sije-1 Hge_, B,
l
Filtering:

Zyp = Zyypr + KOk
Sk = Zik-1 — KiZp, Ky
X
time k + 1

Table 5.1: An illustration of Kalman filtering algorithm

hidden dynamics enforces this initialization process is carried out even at the phone
boundaries, by setting the filtered values at the last time point of previous phone
to be the initial values for the innovation calculation at first time point of current
phone. Therefore, the likelihood computation at current time becomes dependent on

the whole past path. Let’s give an simple example to illustrate this.

In the trellis depicted in Fig.(5.1), we show three left-to-right dynamic regimes
(81,52, and S3) for simplicity reasons. At time frame ¢ = 3, there are two possible

paths entering regime S: “b11 — 422 — 523", and “bl1 — b12 — b23”. Note that
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at time ¢ = 2 these two paths have an identical value, Zlu, Z1j1, to initialize the Ex-
tended Kalman Filter (EKF). But since the two paths use distinct model parameters
(T, ®), one from S; and the other from S5, they generate different likelihood scores,
L,(t = 2) and Ly(t = 2), as well as different filtered values, Zm[g, 2,252 and Zz,z|2,
the EKF (in likelihood computation) when they enter into regime S,, but their initial
points, Zl,glg, L2 and Z~2'2|2, ¥,2j2, for the EKF are different. Therefore, these two
paths will generate distinct regime-bound, local scores, Ly (t = 3) and Lo(t = 3), and
distinct filtered values Zmp, 21353 and 22,3;3, L,.313, at frame ¢t = 3 and for regime
(S2).

In Viterbi algorithm for the conventional HMM, at this point the path with lower
likelihood of among the two (i.e., the smaller one of Ly(t = 1)+ Ly (t = 2)+ Ly (t = 3)
and Ly(t = 1)+ Ly(t = 2)+ La(t = 3)) can be dropped for future path growth without
losing global optimality. This is so because the two paths would give an identical
score when entering node “b34” (or *b24”) and would behave identically in the future

path expansion.®

However, if we were to drop the low-score path at node *b23” as in the Viterbi
algorithm for HMM, we would lose global optimality. This is so because both paths
emanating from “b23” will generate different local scores while entering node *b34”
(due to different initial values, 21'3|3,21,3|3 and 22,3!3, 2,33 for EKF) and would hence
behave differently in the future path growth.

The problem exemplified above associated with the dynamic model and with use
of the KF algorithm applies to essentially all nodes in the trellis. That is, due to the

continuity constraint in the VTR domain from one dynamic regime to the next.* no

3This is the essence of dynamic programming or Viterbi algorithm.
+This is implemented by forcing the end value of the earlier regime to initialize the KF for the
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path drop shall be allowed without losing global optimality. In theory, the search
space expands exponentially with time.

A b33 b34
$ 0 0 0—=0 o

b2 // b2} /;24

2 0 QL= 0=—20 e

bll/ bi2 / bls/bm

S1 O——bo —-—DO—DO ........

Figure 5.1: An example trellis diagram to show that the conventional trellis search
is not applicable in theory because local scores into a future node depend on the

history into the current node

Two strategies, path deletion and path merging, can be used to reduce the search
space. Either of them makes the search not optimal. What we can do is to de-
sign efficient path deletion and merging strategies to make the search undermined to
the least extent. Based on path deletion strategy, a path-stack decoding algorithm
(PS-D) has been developed. Based on path merging strategy, two approaches, a
second-order general pseudo-Bayesian decoding algorithm (GPB2-D) and an inter-
acting multiple model decoding algorithm (IMM-D), have been developed. All the
three approaches successfully convert the original problem which is exponential in
time to one which is only linear in time. The PS-D algorithm will be elaborated in
Section 5.3, the GPB2-D and IMM-D algorithms will be addressed in Section 5.4.

newly entered regime.
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5.3 Path deletion strategy: the PS-D algorithm

The PS-D algorithm uses an intuitive way to do path deletion, the essence of this
algorithm is to use a path-stack at each node in the trellis to maintain a sufficient
but limited number of the promising paths (details can be found in [2]).

Essential to this “path-stack” algorithm is our discovery that the initial filter
error covariance, Y, is of much less importance in determining likelihood scores
than the initial filter value, Zklk' It was also discovered that if the filtered values
of two paths are close to each other then the behavior of these two paths in the
future will be very similar. In the example of Fig.(5.1), when the filtered values,
ZI,3|3 and Zz'3|3 (corresponding to the two paths at node *“b23” at frame t = 3),
are not far apart from each other, then they will produce similar likelihood scores
(using the same model parameters of S3) when they enter node “b34” at time frame
t = 4. Further, due to the asymptotic, target-directed property of the VIR dynamics
modeled by Eqn.(2.1), the filtered values of the two paths at time ¢ = 4, Zm..; and
Zg,4|4, will become more similar in value. This will guarantee the similarity of scores
at future time frames associated with these distinct two paths occurring at an earlier
time frame. Therefore. if we drop one (with a lower score) of these paths with similar

filtered values at an early time frame, the loss of global optimality would be minimal.

In order to prevent the number of paths from increasing exponentially with time,
we add a path stack at each node and time frame, and limit the size of the path
stack to a fixed value. The size of the path-stack defines how many paths are kept
for the node. If the size is small, the path dropping becomes heavy. By adjusting
the stack size, we strike a balance between the degrees of optimization and of search

efficiency.

Based on the above observation and computational constraint, we have developed
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the following operation on the path-stacks: At time t = k and node b, calculate the
path likelihood of the m-th path ending at node b, L(b,m,t = k), and calculate
the filtered (by EKF) values, Zm.k|k and X, ki (They are denoted by Z(m,k) and
P(m, k) respectively in Fig.(5.2) for convenience). Then, compute the distance, Dp,;,
between Zm,kgk and Z;,k!k of the i-th path already in the path-stack of node b. Choose
the path whose filter value is closest to Zm‘k"c (say j-th path). If the path-stack of
node b is not full and the distance Dn; is greater than a preset threshold. insert
the new path into the path-stack. Otherwise, if the new path has higher path score.
substitute it for the early stored j-th path, if not, drop the new path.

The entirety of the path-stack algorithm as we have implemented in this work
for optimizing dynamic regimes and for (approximate) maximum likelihood scoring
is shown in Fig.(5.2). K is the utterance length, N is the total number of nodes in a
lattice or in an N-best list, and S5 is the maximum number of paths allowed to be

kept in a path stack.

The computation complexity of this algorithm is proportional to S§ * K, where
SS is the size of the path-stack (pre-determined) that need to be processed at each
node in the search trellis. This algorithm turns the original search problem which is
exponential in K (tree search) into one which is only linear in K.

The path-stack algorithm described above avoids the exponentially growing com-
putation inherent in the exhaustive search by keeping only a limited but sufficient
number of promising paths at each trellis node. It extends the earlier search al-
gorithms and ideas developed mainly for the HMM-based recognizers, including
the stack idea, the N-best search idea, and the idea of limiting the stack growth
[22. 21. 20]. Our specific contribution lies in applying these ideas to the specific
speech model where different types of information are used to determine whether

to grow, to maintain, or to delete the stack entries during the trellis search. The
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For each frame , O(k), in the observation squence of an utterance(0 < k < K+1)
best_score(k) = negative_infinity;
For each node (phone) i in the lattice (or in a N-best list) of the utterance (0 <i <N+1)
Let n_path_in_stack_of node_i = 0;
For each node j (not pruned) which can enter node i (0 <j <N+1)
For each path m existing in the path stack of node j at time k-1 (0 <m <S8S+1)
Calculate acoustic score L1(O(k)| i, m), filtered dynamics Z(m,k) and its error covariance P(m.k);
Let min_distance = infinity and min_path_index = 0;
For each path | existing in the path stack of node i attime k (0 <! <S88+1)
Let distance =] Z(i, 1, k) - Z{m.k) | ;
if ( distance < min_distance )
min_distance = distance;
min_path_index = I;
endif
End
Let path_likelihood = L(j, m, k-1) + LI(O(k)| i, m);
if ( (n_path_in_stack_of node_i < SS) and (min_distance/ | Z(m k)| > Thres_deletion) )
L( i, n_path_in_stack_of_node_i, k) = path_likelihood;
Z( i, n_path_in_stack_of_node_i, k)= Z(m,k );
P(i, n_path_in_stack_of_node_j,k)= P(m,k);
n_path_in_stack_of_node_i ++;
Remeber the back pointer from (i, n_path_in_stack_of node_i)to (j.m )
else if ( L(i, min_path_index, k) < path_likelihood )
L (i, min_path_index, k) = path_likelihood;
Z (i, min_path_index, k) = Z(m,k);
P (i, min_path_index, k) = P(m,k);
Re-set the back pointer for node (i, n_path_in_stack_of_node_i) to (j, m)
else
Drop the new path and keep the stack untouched;
endif
if ( path_likelihood > best_score (k) )
Let best_score (k) = path_likelihood;
endif
End
End

End
Do the following path pruning if needed.
For each node i in the latticeand each path k in the path stack of node i
if (| (best_score (k) - L(i, m, k))/best_score(k)| > Thres_pruning)
Prune path (i, m) from the search space;
endif

End
End

Choose the path with maximum likelihoood. maxpathlikelihood = max L( i, m, K) overnode i and path k in the stacks.
Trace back to abtain the segmentation of dynamics and its associated speech units.

Figure 5.2: The Path-Stack Search Algorithm
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algorithm has been kept within the time-synchronous, dynamic programming frame-

work.

5.4 Path merging strategy: the GPB2-D algorithm
and the IMM-D algorithm

The path merging strategies in the GPB2-D and the IMM-D algorithms are both
borrowed from control area [77, 78] . So before going to elaborate them, I would like

to give a brief background introduction.

5.4.1 Background Introduction

In control area there is a special model called a model with switching parameters.
The model parameters are not time-invariant, neither do they vary continuously with
time. The parameters switch among a number of sets of fixed values from time to
time. So sometimes it is also called a switching model. One example of this type
of model is given in Eqn.(5.6) and (5.7) [78], where s(k) denotes the mode of the
model at time k. which is assumed to be one of M possible modes, s(k) € {s;}},.

Apparently the parameter switching could happen at any time.

Z(k) = F[s(k)]Z(k—1)+ W(k - 1,3(k)) (5.6)
Ok) = HIs(k)|Z(k)+ V(k,s(k)) (5.7)

This switching phenomenon is similar to the node transition during the trellis
search in speech recognition, where the paths could transit from one node to other

nodes at any time point. Therefore, the merging strategies in the former case may be
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transplanted to the trellis search for the new dynamic model. In our case each node

of the trellis represents a phone, which is described by one of the dynamic models.

Z(k) = ®9Z(k—-1)+ (I -eTH + wh(k) (5.8)
Ok) = RY(Z(k)) + V() (5.9)

The properties of this new dynamic model have been introduced in Chapter 2.
they will not be repeated here. The only difference is the node (or phone) index
added to the model. The index ¢ also indicates the dynamic regime which corresponds
to node or phone ¢ (or a unique set of model parameters). As the speech utterance
traverses, during the trellis search, from left to right in time, phone-sized dynamic
regimes switch from one to another, which induces the switching process among M
parameter sets O = {@() TW RO QW p(} where ¢ = 1,2,...,M and M is the

total number of phones.

The model parameters are discrete at the dynamic regime boundaries (i.e.. no
constraints), However, the underlying dynamics, as analyzed before, is constrained

to be continuous at the dynamic regime boundaries.

5.4.2 State estimation for the model with switching param-

eters

In control area engineers are more interested in the hidden state estimation given
observations. For a conventional state-space model with fized parameters, the goal of
optimal (in both the Bayesian sense [94] and the minimum mean square error sense
(93]) state estimation (filtering) is to calculate the conditional mean and covariance
of Z(k) given the observations up to time k. Let’s use Of to denote the observa-

tion sequence {01, Oz, ..., Ok}, Zklk the conditional mean, and X the conditional
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covariance, then

Zuy = E[2(k)|O%]

and

Sue = Cov[Z(K)|0}]

Generalizing from the fixed-parameter case to the case where the state-space
model parameters switch with time, since how the model parameters switch is un-
known, the mean and covariance of Z(k) will be conditioned not only on the ob-
servations up to time k but also on the evolution history of the model parameter

switching. Therefore, the conditional mean and covariance will become
E[Z(k)|Sk, 8k-1, ..., 81, OF] (5.10)
and
CO’U[Z(k)lsk, Sk=1y 04451, Olf] (511)

where s, is a discrete variable indicating which of the M modes (or nodes in the

trellis search) is switched at time frame k.

If the switching evolution process were known, the conventional state estimation
techniques would directly apply [93, 76]. Suppose sg = ik, Sk-1 = tk-1,.... 81 = i1,
where i (1 < i < M) is the index to the mode which the dynamics in the system

switches to at time k, then the state estimates become
E[Z(k)|8k = tky Skm1 = Gk, oen 81 = 11, OF] (5.12)

and

Cov[Z(k)|sk = ik, Sk=1 = tk1, ..., $1 = 21, 0% (5.13)

Eqn.(5.12) and (5.13) is referred to as the elemental estimator [75, 85] in the overall

state estimation procedure to be discussed.
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However, either in the switching model or in the trellis search of speech recogni-
tion, the switching evolution process is unknown. In principle, all the possibilities of
the evolution (or paths) have to be considered during the estimation. At each time
point, any one of the M modes (or nodes) could be chosen, and such as, there are
potentially as many as M* paths for the switching evolution up to time k. Each of
these paths forms an elemental estimator based on the conventional state estimation,
and hence there are a prohibitively large number (MF) of the elemental estimators at
time k. Therefore, the overall state estimation has to sum up over all this possibilities

according to their probabilities.

For simplicity purpose, we adopt the following notation:

P,: all paths of the switching evolution up to time k.

¥e(n): the n-th (out of M*) path of ¥;. This can be explicitly written as ¥(n) =

{8nk = fnksSnk-1 = fnk-ls-sSnt = in1} = {Snk = ink, Yr-1(m)} where

Yr—1(m) is the m-th path of ¥_;, from which ¢ (n) stems. That is, Yr_1(m) =

{sm.k-l =imk-1 = lnk-11--28m1l = lm1 = "'n,l}'

P.(n): the probability of ¢(n) being true given O¥; that is, P(n) = Pr(¢x(n)|Of).

Using the above notation, the following state estimation algorithm, by applica-
tions of Bayes’ rule, can be obtained (see the derivation in Appendix E).

Estimates for the state (continuous) and its covariance:

Zue = Y Pe(n)Znip (5.14)
ne¥,
e = . Pe(n){Znkik + (Zniie — Zuwl(Zakie — Zrk] } (5.15)

neE¥,



CHAPTER 5. DECODING ALGORITHMS 109

where Zn'k”c and ¥, i is the elemental estimate for the fixed n-th evolution:

-

Zn,k[lc = E[Z(k)lsn.k = 'in,ky Snk-1 = in,k-—ly ceey 81 = iﬂ.lv 01{] (516)

z:n,lellc = CW[Z(k)lsn.k = in,kv Snk-1 = in.k-h ey 8n 1 = in,lv O,f] (517)

The probability Pi(n) is recursively updated according to:

Py = POWIm).0F

p(O(k)|OF 1) (Snk = ink|tr1(m),0F 1) P_y(m) (5.18)

where the normalizing factor p(O(k)|0¥™!) is computed from

> P(O(k)(n), OF 1) P(snk = inkltpe-1(m), OF ") Pecr(m), (5.19)

nE¥,

where p(O(k)|¥x(n). O¥!) is the density of the innovation (or residual) process of
the n-th elemental estimator and is calculated during the elemental estimation. and
P(3nk = ingltr-1(m), OF~!) characterizes the evolution of the switching, which is
assumed to follow a first-order Markov chain and to be known in advance. The

first-order Markov chain can be expressed by the following transition probability

matrix:
Pu D2 - DPiM
p= P?1 P?z Pz.M (5.20)
PMr PM2 - DPMM

where p;; = P(sk = j|8k-1 = i) and ZJ-M=1 pi; = 1 for all i. P(sx = j|sg—1 = 1) is the
probability of the system dynamics which switches from discrete state (i.e., phone) ¢
to discrete state j at time k. For this Markov chain, the current state depends only
on the previous state, so P(Snk = tnk|tr-1(m), O0%~1) becomes P(snk = tnk|Snk-1 =
ink—1). Therefore. Eqn.(5.18) can be drastically simplified to

p(O(F)4x(n), 01"
p(O(K)|OT™)

Pi(n) P($nk = inklSnk-1 = tnk-1) Pe-1(m). (5.21)
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However, even under this Markovian assumption, the elemental estimator is still
conditioned on the entire switching history, ¥(n). As such, the number of the
elemental estimators grows exponentially with time. To make the state-estimation
algorithm computationally feasible, approximations have to be made which would
make the estimation suboptimal as a price paid for alleviating computation burden.
Two typical approximate approaches have been invented for this case. Both are
based on merging the evolution hypotheses in a time-synchronous manner. The two
merging strategies and the associated suboptimal state estimation algorithms will be

discussed below.

5.4.3 Approximation I: A generalized pseudo-Bayesian

approach

The general pseudo-Bayesian approach (GPB) has been used for state estimation in
the target-tracking and econometrics literature for general dynamic systems (78. 75,
85. 82. 91]. We extended this approach, which has been developed specifically for
speech recognition applications, to our specially constrained dynamic system model

described in the previous chapters for the speech dynamics.

First-order GPB (GPB1) and second-order GPB (GPB2) for general linear dy-
namic systems have been available in the literature [78]. In the first-order GPB, the
state estimate is carried out under each possible current model at each time k. In the
switching evolution history ¥x(n) = {Snk = tnk: Snk-1 = tnk-1, -+ 9n1 = in1}, ODly
the most recent term s, = tnk is kept, while the other terms are dropped. That
is, ¥i(n) is approximated by {sns = tni}. Therefore, only M out of MF paths are
considered by merging all “older” paths for all models at time k — 1. This approach

is very efficient in computation, but the price for loss of accuracy would be too great
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to be used for implementing our speech recognition decoding algorithms because of
the heavy merging.

In the second-order GPB which we use for implementing one of the speech recog-
nition decoding algorithms, the state estimate is carried out under each possible pair

of current and previous model at each time k. In the switching evolution history:
1I’Ic(n) = {sn.k = in.Im Spnk-1 = in,k—ls ey 8pn1 = 'in,l}v

the most recent two terms, s, x = ink and S, k-1 = ink-1, are considered and earlier
terms are dropped. That is, ¥x(n) is approximated by {spx = ink:Snk—1 = ink-1}
Therefore, a total of M2 paths for the path combination are considered at each time
frame. For this case, all the paths for each model at time k — 1 are merged. The
merging in GPB2 is not as heavy as GPB1 and its estimation accuracy is substantially
higher. We describe and derive GPB2 in detail for the new constrained switching

dynamic model of speech.
Given the GPB2 approximation, the precise elemental estimator Eqns.(5.16) and
(5.17) has now been approximated by

E[Z(k)lsﬂ'k = iﬂ.kv Spk-1 = in,k—lw O,f]

and

CW[Z(k)!sn,k = in,kv Snk-1 = tnk-1, O,f]

For simplicity purposes, in the following derivation of the state estimate, we will
use Sk. Sk—1, j and ¢ to represent Sp k. Snk-1, tnk a0d ink—1, respectively ., and will

adopt the following notation:

Z,(J,:l = E[Z(k)|sk = ], k-1 = i, 0! (elemental predictor)

Thely = Cov[Z(K)|sk = jrsk-1 =14,077"]
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Z~ISI=J) = E[Z(k)|sk = J, k-1 = 1, O’f] (elemental filter)
56D = Coo[Z(k)|sk = , sp-y = 4,0}
Zl(c]’ll = E[Z(k)|sk = j, 0’1‘] (merged state estimate)

Cov[Z(k)|sk = j, Of]-

(3)
EkJ[k
Merging and state estimate

With use of the above notation. the state estimate, Eqn.(5.14) and (5.15), has become

M M .
Zipe = lelp(sk = j, sk-1 = i|OF) 257 (5.22)
j=li=
M M
See = 30 P(sk = j,sk-1 =i|0F)
j=li=1
A + 12857 - Zuwl(25) - Zue] Y- (5.23)

In GPB2, the merging takes place at each model (discrete state), and the merged

estimate at node j is calculated according to
Zg = ElZ(R)se=3.01]

M
= 3 Plsioy = ilse = 3.0%) - E[Z(k)|sk = j. u1 = i, 04]

=l
M aprr

= Y P(skr =ilse = 5,08) - 2 (5.24)
=1

S8 = CoulZ(k)|sk = j,0%]

M
= Y P(sk-1 =ilsk = 5,05)

=1

{2 + (26 - 202D - 2 (5.29)

That is, the merged quantities are obtained by summing up all the possibilities at

each model according to their individual posterior probabilities, P(s¢-; = i|sx =
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3. OF). It is easy to show that the state estimate, Eqn.(5.22) and (5.23), is equivalent

to
I = ZP (s = jl0%)25) (5.26)
=1
S k (7) (4) ’ (7) '
Tpe = ZP(s =IO {Z5 + er]’k Zax [Zkfk - Zial'} (5.27)
J=1

The posterior probability P(si_; = i|sx = j,OF) is called merging probabil-
ity and P(sg = j|O¥) called mode probability. They are calculated recursively
according to Bayes rule and by straightforward conditional probability manipulation:

p(O(k), sk = j, sk—1 = §|OF ™)
vM, p(O(k), sk = j, sk =4|OF )

P(sk-1 =ilsp = j,0f) = (5.28)

and
_1 p(O(k), s = J, k1 = i|OF™Y)

121—11’( ( ) Sk =j',3k—1 =1‘|O,f-1)

In Eqn. (5.28) and Eqn.(5.29), p(O(k), s = 7, k-1 = i|O%™!) is computed by

P(s = j|O}) = (5.29)

p(O(K), sk = j,sk_y = i|O%™Y)
= p(O(k)|se = j, k-1 = 14,087

- P(sk = j|sk—y = &, 08 Y) P (8-, = i|O¥7Y) (5.30)
where p(O(k)|sk = 7, 8k-1 = ¢, 0%1) is the density of innovation (residual) sequence
obtained during the elemental estimation, P(sx = jlsx-1 = %, O 1y = P(s =

jlsk—1 = 1) is the transition probability and is known,® and P(s¢-, = i|0% 1) is
recursively calculated according to Eqn.(5.29) and (5.30) with the initial value given

at time 0.

5This is the transition probability of the discrete Markov switching process. In our phone-based
model construction, this probability gives the bi-phone “language model”, which we fixed to be 0.5

in our recognizer implementation.
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Elemental estimator

Many possible approaches are available for elemental estimate (i.e., conditional state
estimation given the path history). The simplest approach we have adopted in the
current recognizer implementation is the Kalman-type filter algorithms. In our rec-
ognizer implementation, the exiended Kalman filier (EKF) algorithm ({94}, [84],
[93].[76], [77]) and the Kalman filter (KF) algorithm are used for the nonlinear ver-
sions and linear versions of our dynamic models, respectively. The Kalman-type
filters have been adapted to suit the special structure of the speech model incorpo-
rating target-directed constraint and cross-regime continuity constraint. Use of the
tailored Kalman-type filter algorithm for the elemental estimator here consists of the

following steps:

Z;(j;fll - (I,(J)Z(r)llk (I_q,(j))T(J‘) (5.31)
Egﬂl - @(j)zi'lllk_l@(j)'+Q(j) (5.32)
(.)}:'j) — O(k)—h(Z,:,:ll) (5.33)
257 = Huer D42, (Her) + RO (5.34)
K& = 58 (Hieos) [2(‘1')]-1 (5.35)
Z,(:U:) = 28 +K KFNOE) (5.36)
P = s - KR o

where, K,(:'j) is the (elemental) Kalman gain, Hgx-, is the Jacobian matrix of func-
tion AY)(-) at point Z,:,;’ll .

While using the Kalman-type filters for the elemental estimator implementation,
an assumption is made that the density p(O(k)|sk = j, sk—1 = %, 0% ') in Eqn.5.30

is Gaussian and computed by

p(O(K)[sk = j, sk = 4,017
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4| w(id) T L =Gd)y rslidl=1 5
= (2m) 2|2(o-:) e:z:p{—E(Ofc ) [2(0-:)] 106 (5.38)

where 0,(:'j ) and Eg;j) are obtained from the Kalman filter given in Eqn.(5.31)-(5.37),
d is the dimension of O.,(:'j ),

Algorithm summary

Each recursion of the GPB2 algorithm, tailored for our specially constrained. nonlin-
ear switching state-state model of speech. as detailed above in this sub-section can

be summarized below for each time step:

1). Calculate elemental estimates, Z,(J,:) and Ef:l'kj), fori.j =1.2,.... M, using the
EKF listed in Eqn.(5.31)-(5.37), using the merged state estimates at the previous

time step. Z,iilllk_l and Ef:luk_l as initial values.

2). Calculate the merging probabilities, p(sx—; = i|sx = j, OF), according to Eqn.
(5.28), (5.30) and (5.38).

3). Merge states for each model at the current time step using the merging
probabilities according to Eqn.(5.24) and (5.25). (These will be used for the next

time-step recursion).

4). Calculate model probabilities, P{si = j|O%), according to Eqn.(5.29). (5.30)
and (5.38) .

5). Calculate the state estimate, ZHk and X, according to Eqn.(5.26) and
(5.27).

This algorithm is illustrated in Fig. 5.3
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Step | Step?2 Step 3 Step 4 Step §

ele(. @;timatz)r:) merging mzif)ge States: | [mode state estimates:
) 56— wonabiis 1z 70 | probablity|—>

L

Figure 5.3: A flow chart of GPB2 state estimation algorithm

5.4.4 Approximation II: An interacting multiple model

approach

In the general interacting multiple model (IMM) approach (77, 78], the state estimate
is carried out under each possible current model at each time step k. However. each
possibility has its own initial value obtained by a weighted sum over all the estimates
at the previous time k — 1. This differs from the GPB1 approach [78] in which all
possibilities are initialized by the same value. The merging in the IMM approach
takes place just before the estimation begins at each current model, which differs
from GPB2 in which the merging takes place after the estimation is completed at
each current model. Like GPB1, the IMM approach has the same M possibilities
considered at each time step, and hence have the same computational complexity.
IMM is more accurate than GPB1. Compared with GPB2, the IMM approach has
significantly lower computational complexity (a factor of M), but since the merging

is more aggressive, it is expected to have a lower estimation accuracy.

In this subsection, we adapt the general IMM approach to suit the special need
of our specially constrained state-space model of speech dynamics. In this approach,
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the elemental estimator is approximated by
E[Z(K)|sx = 5,01

and

ConlZ(k)ay = 5, OF]

. Different from the GPB2 approach, each elemental estimator in the IMM approach
now has its own initial condition. The Kalman-type filter algorithm for this case

becomes
Z3 . = 89z + (-89 (5.39)
50, = e8P, 80 1+ QW (5.40)
0P = O(k)-h(Z5)_)) (5.41)
29 = Hye-1Zfh ) (Hip-1) + RY (5.42)
K@ = @ (Hger) (B9 (5.43)
Zi = 28 +K70) (5.44)
S = S - KUK (5.45)

where, Z-I(i)nk—l and ifj_)“k_l are initial values for the jth elemental estimator. These

initial values are obtained by merging according to:

Z9 ey = E[Z(k—1)|sk = 35,087

M .
= Y P(ser =ilse =5, 0822, (5.46)

i=1

E;ej)llk—x = Cov[Z(k—1)lsi = 5,07"]

M .
= 3 Pskor = ilse = 5, 05 ey

i=1

(3 (3 ~>(1 (3 '
+ (28 s = 220 ) B0 e - 20 )Y (5.47)
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In the above Eqns.(5.46) and (5.47), P(sk_y = i|se = 7,0%7!) is called the
mixing probability, and is computed recursively from Bayes’ rule:

P(st = jlsr-1 =%, 07 ") Pk = 607 7")
=¥, Pt = jlsk-r =4, 0F ) P(s-y = i|OF7)

P(s = j|si_1 = ¢)P(sk-, =3|0F})
SH, P(se = Jlsko1 = 1) P(8k-1 = 4j01 ")

P(‘sk—l = 1:|8]¢ = jv Olf-l)

(5.48)

where the model probability P(sg_; = j|O¥"!) is updated as in GPB2 (given by
Eqn.(5.29) ). However, the density of the innovation sequence p(O(k){sk = 7, $k—1 =
i.0%!) has been changed to

-4
2

) . _ _d . 1 =i Ny =(F
PO(R)|si = joses = 4, 087) = (20)73[2F)| ewp{—5(0F) (£ 'O} (5.49)

where O.fcj ) and E(O-jz are obtained from the Kalman filter given in Eqns.(5.39) - (5.45).

Algorithm summary

The entire IMM algorithm for state estimation can be summarized as follows (each
time step):
1). Calculate mixing probabilities, P(si—; = i|sx = 7, 0¥!), using Eqn.(5.48).

2). Calculate merged initial conditions, Z,?_)llk_l and 2;e]21|k—1? for each current
model according to Eqn.(5.46) and (5.47), given the estimates at the previous time
step k — 1.

3). Calculate the estimates, Z,(;l’,l and Eg}‘, by running the KF listed in Eqn.(5.39)
- (5.45).

4). Update model probabilities, P(si = j|O¥), according to Eqn.(5.29), (5.30)
and (5.49).

5). Calculate the state and its covariance estimates, Zk;k and Y, according to

according to Eqn.(5.26) and (5.27).
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This algorithm is illustrated in Fig. 5.4.

Step | Step 2 Step 3 Step 4 Step 3

g Stz;ﬁt #10d.]  [model state estimates:
7170 5() () probability
oty |1 2% 201 "l 2 || 7 T

Figure 5.4: A flow chart of IMM state estimation algorithm

5.4.5 Analysis and comparison of GPB2 and IMM approxi-

mations

The essence or the commonplace of the merging in GPB2 and IMM is to approximate
a Gaussian sum using a single Gaussian. The difference of them is the places they

take place. The merging precedes KF in IMM but follows KF in GPB2. This is

elaborated in a brief analysis in this subsection below.

To obtain the state estimates at node j, Z,(;i’,l and E{’l,)c in Eqn.(5.26) and (5.27),
which are used for both GPB2 and IMM but calculated according to different ways
in each approach, is eventually to calculate the conditional PDF p(Z(k)|sx = j, 0%).
This conditional PDF can be shown to be equal to [94]:

. oh _ POWls = 208,08
PERI =200 = o0k = 5,06

e

p(Z(k)|se = 7,0871)
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where p(Z(k)|sk = j, O¥7!) can be expressed as (see proof in Appendix):

P(Z(F)\se = j,05)
[ (22, - 1), 50 = 5,05
M
N p(Z(k = Dseoy =i, 0¥ 1) P(smy = ilse = §,0F")] dZ(k — 1)

i=1

(5.51)

Let’s examine Eqns.(5.51) and (5.50) in some detail. First, it is not hard to find
out that the PDF p(Z(k)|sk = j,0%) is recursively computed because its value at
the previous time point p(Z(k — 1)|sk_y = i,0F!) is needed in Eqn.(5.51). Sec-
ond. in Eqn. (5.51) p(Z(k)|Z(k — 1), sx = 7,0%!) and p(Z(k — 1)|sk—1 = i.0F7})
are Gaussians and P(sg_; = i|$¢ = j,0%7!) is a constant. So the component,
M p(Z(k = 1)|sk-y = 1,05 1) P(sp_y = i|sx = j,0F '), is a Gaussian sum, and
this makes the entire integral of Eqn.(5.51) to be also a Gaussian sum. In Eqn.(5.50)
p(O(k)|sk = J.Z(k)) is a Gaussian and the denominator p(O(k)[sk = j. 01y is
a constant independent of Z(k). Hence, this further makes p(Z(k)|si = J, OF) in
Eqn.(5.50) to be a Gaussian sum.

Usually the initial value at time 0, Z(0), is assumed to follow a Gaussian distri-
bution, or p(Z(0)|se = i) is a Gaussian. At the first time point p(Z(1)|s; = j. O(1))
becomes a Gaussian sum with M mixtures after the calculation in Eqn. (5.51) and
(5.50) (actually filtering process). At the second time point, p(Z(1)|sy = 3, 0(1)) will
be plugged into Eqn.(5.50) to compute p(Z(2)|s; = j,0(2)). Because p(Z(1)[s1 =
j,0(1)) is a mixture Gaussian with M mixtures, it will make p(Z(2)|s; = 3, 03%)
a mixture Gaussian with M * M mixtures after the filter processing. At the third
time point. following the same procedure, p(Z(3)|ss = j, 03) will become a mixture
Gaussian with M = M = M mixtures. If it keeps going, the number of mixtures will
grow exponentially with time. This also demonstrates, from another point of view,
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infeasibility of the original state estimation. To prevent the number of mixtures
from expanding exponentially, the merging strategies are doing this: at each time
point, the mixture Gaussian p(Z(k)|sr = j,O%) is approximated by a single Gaus-
sian, then it is used for the next recursion. By this way the number of mixtures of

p(Z(k)|s, = j. O%) is always kept to be M.

Therefore, the essence of the merging in GPB2 and IMM is the use of approxi-
mations of a Gaussian sum by a unimodal Gaussian (the Gaussian sum, p(Z(k)|sk =
j.0%), is approximated by a unimodal Gaussian). However, there are two places
where the approximation can be completed. In the IMM approximation. the Gaus-

sian sum in Eqn.(5.51),
M
Zp(Z(k - 1)|8g-1 =4, O'f‘l)P(sk_l =i|sk = 7. O’f‘l)
i=1

is approximated by a single Gaussian before KF, which results in the approximate
unimodal Gaussian for p(Z(k)|sx = j, OF). In contrast, for the GPB2, the Gaussian
sum. p(Z(k)|sk = j. O%), is approximated directly by a single Gaussian after KF.

Certainly, those two approaches result in different approximation accuracies and
computational tradeoffs. Since the approximation is done after KF process in GPB2
and before KF process in IMM, GPB2 approach is more accurate than IMM. On the
other hand, since the mixture Gaussian

M

Y p(Z(k = 1)|sk-1 = 4,08 ) Pskr = ilse = 4,077

i=1
is approximated by one single Gaussian before KF in IMM, IMM only need run one
KF at each time step. On the contrary, GPB2 has to run M KF's at each time step.
So IMM is faster than GPB2.
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5.4.6 Decoding algorithms incorporating the merging strate-

gies

The state estimation methods described in the preceding section have been adapted
from the methods well established in the control engineering, econometrics. and
time series analysis, where the interest has been mainly focused on the accuracy of
the (continuous) state estimate confined within each individual and local discrete
state. Our contribution therein has been to tailor the methods to suit our special
speech model’s structure. In this section, we incorporate these methods into a new
speech recognition decoding strategy, aiming to search (time-synchronous) for the
global optimal path through all discrete states (i.e., the entire parameter switching
history). Once the global path is found, the recognizer produces the text output
according to this global path.

Before we present the two global decoding algorithms (incorporating the GPB2
and IMM merging strategies, respectively), we briefly explain why a straightforward
use of the state estimation methods described in Section 3 is not desirable. For both
the GPB2 and the IMM, at each time step the posterior probability, P(sx = j|OF),
can be computed for each discrete state (7) or phone (Eqn.(5.29)). Therefore, at each
time step, if we were to “decode” the discrete state based on the highest posterior
probability (argmazicjem P(sk = j|OF)), we would have a global “maximum a
posterior” path. However, this will not be consistent with the decoding criterion for

the maximum joint likelihood of the observation and path: mazy,ce, L(OT.¥7).

We use an example to show inadequacy of the decoding criterion:
argmazici<m P(sk = 7l0%)

. In our left-to-right structure for the discrete-state or phone sequence, we have a

sequence of observations that belong to an earlier discrete state. If there is an outlier



CHAPTER 5. DECODING ALGORITHMS 123

frame within the observations which makes the dynamics switch to a later discrete
state, the left-to-right constraint will not allow the dynamics to switch back to the
earlier (correct) discrete state. This is so even if the observations after the outlier
are correctly consistent with the earlier state. That is, the earlier state would not be
allowed to be chosen even if it had the highest posterior probability (P(se = j|O%)
after the outlier. This is clearly not desirable.

To implement a desirable decoding rule. mazy,ce, L(OT,9¥r), which embeds
a desirable mechanism of imposing the left-to-right constraint, we have developed
a new dynamic programming based strategy. For the new speech dynamic model
the standard Viterbi algorithm used for HMM cannot be applied directly to search
for optimal dynamic regimes. This is so because different paths entering one node
j in the trellis bring different initial values (due to different path histories) to the
local score calculation at node j. For example, in Eqn.(5.31)-(5.37), the filtered
values and score calculation at state j and time k of the path coming from state ¢
depend on the initial values Z,ii_)llk_l and Ef-)-uk-r These differential initial values
will produce different filtered values and scores, which will be again used, due to the
dynamics’ continuity imposed across the adjacent discrete states, as initial values for

the expansion of those paths at the next time k + 1.

However, the GPB2 and IMM state estimation algorithms have provided effective
ways to prevent the above problem of exponential growth of paths. The GPB2 uses
Eqn.(5.24) and (5.25) to merge the different filtered values of those paths entering
node j at time k. Q,S,:) and Z‘fl'kj) are merged to a single point, Z,if,l and Eg}c,
according to their a posterior probabilities after the filtering at the current model.
The IMM uses Eqn.(5.46) and (5.47) to merge the different initial values of those
paths entering node j, Zl(ei-)-uk-l and 2;:11[1:—17 to a single initial point, Zl(cj-)1|k-1 and

2;32“1:-1: according to a posterior probabilities before the filtering begins at the
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current model. Both the GPB2 and IMM force all those paths to start off from the

same point (have identical initial values) for their expansion at next time k + 1. .

With incorporation of the GPB2 and IMM merging strategies into the dynamic
programming search mechanism, two decoding algorithms are developed, one is the
GPB2-D algorithm, the other is IMM-D algorithm. The GPB2-D algorithm is listed
in Fig.(5.5) and the IMM-D algorithm listed in Fig. 5.6.

In GPB2-D algorithm the first step of GPB2 state estimation algorithm is inserted
inside the previous node loop. So different local scores are calculated for different
paths coming from previous nodes because of the different initial conditions brought
in. Those local scores are added to their corresponding path scores, then path dele-
tions are carried out. The second, third and fourth steps of GPB2 state estimation
algorithm are inserted outside the previous node loop and inside the current node
loop. So different paths ending at each of the current nodes are merged to a single
one. At the end of each time step there is only one merged path coming out of each

node.

In IMM-D algorithm the first four steps of IMM state estimation algorithm are all
inserted before the previous node loop. So for each of the current node all different
initial conditions brought by different paths coming from the previous nodes are
merged to one initial condition. Then one common local score is computed for all
different paths, the common score is added to different path scores and then path
deletions are carried out. Similarly, after each time step only one merged path comes

out of each of the current nodes.

Note that in both algorithms the last steps of GPB2 and IMM state estimation
algorithms are discarded. That is because we are just borrowing GPB2’s and IMM's
merging strategies and we don’t care about the state estimates at each local time

step.
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For each frame, O(k), in the observation sequence of an utterance (0 <k <K+1)
Initialize Best_score(k) to be negative infinity.
For each node (model or phone) j in the lattice (or n-best list) (0 <j <M+1)
[nitialize max. path log-likelihood L(k,j ) to be negative infinity.
For each node 1 which can enter into node j
Run step 1 of GPB2 state estimation algorithm to obtain local score L(O(k) | j, 1 )
and filtered values.
Let path log-likelihood L(k,i)=L(k-1,i)+L (O(k)|j,1);
if (L(kyg,i) > Liky))
Lk )= L(kj,i);
Remeber the tracking-back pointer from node j to node i .
endif
if (L(k,j ) > Best_score(k))
Best_score(k) = L(k, );
endif
End
Run step 2, 3 and 4 of GPB2 state estimation algorithm to obtain the merged states
and other updates for the next time step.
End
Impose path constraints here if needed.
Do path pruning here if needed.
[if (| (L(k,n ) - Best_score(k)) / Best_score(k) | > Pruning_thres ), delete node n
for next expansion. (0<n<M+1)]
End
Find the path with the highest likelihood.
Backtrack to obtain segment boundaries if needed.

Figure 5.5: The GPB2-D algorithm



CHAPTER 5. DECODING ALGORITHMS 126

For each frame, O(k), in the observation sequence of an utterance ( 0 <k<K+1)
Initialize Best_score(k) to be negative infinity.
For each node (model or phone) ; in the lattice (or n-best list) (0 <j < M+1)
Initialize max. path log-likelihood L(k,j) to be negative infinity.
Run step 1,2,3,4 of IMM state estimation algorithm to obtain local score L(O(k) |} )
and other updates for the next time step.
For each node 1 which can enter into node j
Let path log-likelihood L(k,j,i ) = L(k-1,1) + L(O(k) | j ).
if (L(kg,i) > Lk,j))
Lk ) =Likysi),
Remeber the tracking-back pointer from node j to i.
endif
if (L(k, ) > Best_score(k) )
Best_score(k) =L(k,) );
endif
End
End
[mpose boundary constraints here if needed.
Do path pruning here if needed.
[if (] (L(k,n) - Best_score(k))/ Best_score(k) | > Pruning thres ), delete node n
for next expansion (0 <n<M+l).
End

Find the path with the highest likelihood.
Backtrack to obtain segment boundaries if needed.

Figure 5.6: The IMM-D algorithm
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A trellis search example is depicted in Fig.5.7. Let’s use this diagram to illustrate
the path merging mechanisms in the two decoding algorithms. There are many paths
entering each node at each time point (suppose time ¢ and at node M — 1), each
path brings different dynamics (or initial conditions). At each node, the path merging
mechanisms in GPB2-D and IMM-D algorithms are illustrated in Fig. 5.8. From
the picture we can see clearly how the two types of merging take place. In GPB2
algorithm different dynamics and different local scores are calculated for different
paths which bring different dynamics (they are denoted by (Z.Z);_; ;. 1 <i < M
in Fig.5.8), then those dynamics are merged to a single one and path deletion is done
simultaneously. Only the path with highest score is kept. In IMM algorithm all the
different dynamics are first merged to a single one, then a common local score and
dynamics are calculated for all those paths. So path deletion can be done before the
local score computation. Similarly, only the most likely path is kept. Therefore. only

one path comes out of each node after merging in the two decoding algorithms.

1 oé:o-— ..... o _Z.o ..... -0
1 2 t-l t T

Figure 5.7: A trellis search diagram to show how the two merging strategies in
GPB2-D and IMM-D algorithms work
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Figure 5.8: A diagram to illustrate the GPB2 and IMM merging strategies
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5.5 Comparison experiments on simulation data

and a small amount of speech data

In this section, the three decoding algorithms, PS-D algorithm, GPB2-D algorithm
and IMM-D algorithm, are tested and compared on both simulated data and real

speech data. In all the experiments in this section all phones share a single global
MLP.

The test results for the simulated data are presented as comparisons of accuracy
in the estimated dynamic regime boundaries among the various methods. The test
results for the real speech data (from the Switchboard corpus) are presented as
the utterance-likelihood comparisons among the decoding algorithms based on the

various approximate state estimation methods.

5.5.1 Experiments on simulated data

In these experiments, five different models are chosen, they share a common MLP. All
the model parameters and MLP weights are fixed to generate simulation data. Then
the simulated data is used to estimate the dynamic regime boundaries. Finally the
estimated boundaries are compared with those real ones to check if the algorithms
are able to pick up the optimal dynamic boundaries.

The results [1, 5] show that with a lower noise level, all three decoding algorithms
are able to recover the true boundaries between the five models. This demonstrates
that the algorithms are effective and that they have been implemented correctly.
With a higher noise level, all the decoding algorithms began to produce some small
errors in the optimized boundaries in comparison with the true ones. It appears that

the level of noises (state noise and measurement noise) is crucial for the accuracy
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in the boundary estimation (equivalent problem to the estimation of discrete state

sequence as required by speech recognition). More details can be found in (1, 5).

5.5.2 Comparison experiment on a sub-set of Switchboard

database

In this simple experiment, all phone models share a common MLP (or A®’s, 1 <
it < M. are implemented by a common MLP). The “1/2 hour” training data set

is used for model training.

The test set consists of 240 utterances extracted randomly out of the male side
of “test-ws97-dev-1" test set (a total of 23 male speakers, 24 conversation sides, and

50 minutes of speech).

Table (5.2) lists the re-scoring results (WERs) for four recognizers based on the
same VTR state-space model with different methods of computing acoustic likeli-
hoods. The “Baseline” recognizer computes the likelihoods of utterances using the
sub-optimally fixed dynamic regimes provided by a separate HMM system. Recog-
nizers labeled by “PS-D”, “GPB2-D” and “IMM-D" represent the systems using the
optimized dynamic regimes obtained by the PS-D, GPB2-D, and IMM-D methods,
respectively. In these new recognizers, the computation of the acoustic likelihoods
for each hypothesis transcription in the N-best list is carried out using the dynamic

programming based decoding strategy for optimizing the dynamic regimes.

From the recognition accuracy results shown on Table (5.2), we observe that
all three PS-D, GPB2-D, and IMM-D based recognizers outperform the baseline
recognizer. It shows the effectiveness of the three decoding algorithms.

Comparing those three approaches, we find that the three algorithms turn out

close performance. But the computational requirements for the three algorithms are
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Recognizers || Ref+100 | 100-best
Baseline 53.2 60.6

PS-D 51.1 60.2
GPB2-D 50.1 60.1
IMM-D 49.5 59.7

Table 5.2: Word error rates (%) for four recognizers with different methods of likeli-

hood computation using the N-best re-scoring paradigm

very different. The numbers of KFs needed at each time step for three algorithms

are listed as follows:

PS—-D : SxM=+«M
GPB2-D : MxM
IMM-D : M
where S is the path-stack size (> 1). So IMM decoding algorithm is the fastest one.

Based on those comparisons the IMM decoding algorithm is chosen the most

efficient one. Then it is used on different versions of the dynamic model.

5.6 Evaluation experiments of the IMM decoding

algorithm

In this section, the IMM decoding algorithm is used on three different versions of
the new dynamic model. The first one is the “phone MLP version”, the second one

is the “MLDM-2mix” version, the mixture linear dynamic model with two mixtures,
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and the last one is the “MLDM-4mix” version, the mixture linear dynamic model
with four mixtures. The first and second versions are trained with the “1/2 hour”

training data set and the last version trained with the “2 hour” training data set.

The HMM phone boundaries are available ( marked by the “ws97-baseline”
HMM system). On the other hand. we know that physically the phone VTR dynamic
boundaries must be located between the corresponding two consecutive HMM phone

6. Therefore, this boundary constraint can be imposed on the search.

boundaries
In case that the HMM phone segmentations are not accurate sometimes, the HMM
phone boundaries are relaxed by one or two frames (starting boundaries are moved
forward and ending ones backward by one or two frames) when they are imposed on

the search. By this constraint the search can be speeded up by 5-10 times.

The N-best re-scoring results (WERs) of the three versions and the two HMM
systems are listed in Table 5.3. In the table “fix” means that the recognizers compute
the likelihoods of utterances using the sub-optimally fixed dynamic regimes provided
by the “ws97-baseline” HMM system, “IMM-D" means that the recognizers are
using the dynamic regime boundaries optimized by the IMM decoding algorithm.

From the results listed in Table 5.3, we observe that by using the IMM-D al-
gorithm to optimize the dynamic regime boundaries for different versions of the
dynamic model consistent improvements (WER reductions) are obtained, especially

for the cases with references included (about 5% - 10% WER reduction relatively).

Under identical conditions, compared with the “HMM-baseline” HMM sys-
tem, by using the IMM-D algorithm the “MLDM-2mix” version achieves more than
15% relative WER. reduction for the “Ref+100” case and more than 3% absolute

SPhysically a phone’s VTR dynamic boundary is ahead of its HMM (acoustic) boundary. So in
an utterance the starting point of VTR dynamics of the current phone must be within the HMM

segment of the previous phone
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systems Ref+100 | 100-best
phone MLP version: fix (1/2 hour) 55.6 58.3
phone MLP version: IMM-D (1/2 hour) 51.5 57.1
MLDM-2mix: fix (1/2 hour) 50.0 56.9
MLDM-2mix: IMM-D (1/2 hour) 47.7 55.7
HMM-baseline (1/2 hour) 56.1 58.9
MLDM-4mix: fix (2 hour) 49.5 56.0
MLDM-4mix: IMM (2 hour) 47.4 55.8
ws97-baseline (160 hour) 56.2 56.9

Table 5.3: WER of different systems using IMM for their dynamic regime optimiza-

tion

WER reduction for the “100-best” case. Compared with the “ws97-baseline”
HMM system, even with only two hour training data, the *MLDM-4mix” version
decrease the WER by over 15% relatively for the “Ref+100” case and over 1% abso-
lutely for the “100-best” case. It demonstrates that the IMM-D decoding algorithm
is an efficient approach to optimize the dynamic regime boundaries for the new dy-

namic model.

5.7 Lattice Re-scoring

With the efficient IMM decoding algorithm at hand, we can move to a more realistic
evaluation paradigm, lattice re-scoring. Eventually, each hypothesis in the N-best
lists can be treated as a simple lattice, where paths are only allowed to either stay

in the current phone or enter the next phone at each time point. So the IMM-D
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decoding algorithm can be directly used for lattice re-scoring. The only difference is
that the number of possible extensions for each path are greatly enlarged. This will

be our future work.

5.8 Conclusion and Discussion

5.8.1 Conclusion

In this chapter three decoding algorithms, the PS-D algorithm, the GPB2-D algo-
rithm and the IMM-D algorithm, have been developed for the optimization of the
dynamic regime boundaries of our dynamic model. The PS-D algorithm is using
a path deletion strategy and GPB2-D and IMM-D algorithms using path merging
strategies to reduce the search space. All the three algorithms have successfully over-
come the formidable exponential growth in the original search and turned it into a

linear one.

All the algorithms are first tested on simulated data, it is shown that they are all
efficient in finding out the real dynamic regime boundaries, then they are compared
on a small amount of Switchboard data and the IMM-D algorithm is chosen the most
efficient one. Finally the IMM-D algorithm is further evaluated on different versions
of the dynamic model, consistent improvements on different versions are observed.
Compared with the “HMM-baseline” system, the MLDM with two mixtures
achieves about 20% relative WER reduction for the case exposed to references and
more than 3% absolute WER reduction for the case not exposed to references when

the IMM-D algorithm is used for optimizing the dynamic regime boundaries.
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5.8.2 Further discussion

The PS-D algorithm attaches a path stack to each node during the trellis search to
maintain a limited number of promising paths. It use an intuitive way to do path

deletion.

Both the GPB2-D and IMM-D algorithms use merging strategies to limit the
exponential growth of the search space. The two mergings take place at different
time, the GPB2-D method merges for each node all paths after the local score com-
putation is complete for each path. In contrast, the IMM-D method merges for
each node all paths first to create the combined initial values before the local score
computation. The merging formulas for both the GPB2 and IMM methods are theo-
retically motivated, being derived from Bayes’ rule. The consequence of the merging
is direct applicability of the dynamic programming principle to recognizer decoding,
which would otherwise be impossible due to the essential VTR continuity constraint
imposed across speech units in the very construction of the speech model. A spe-
cific contribution of this work is establishment of a solid Bayesian strategy for the
decoding problem of the new dynamic model.

The GPB2-D and IMM-D algorithms developed for our specialized, switching
state-space model for the speech dynamics have been partly motivated by some
earlier work on the various versions of the switching state-space model developed in
control engineering, neural network, time series analysis, and in econometrics [75, 85,
83, 40, 82, 91, 78, 95, 81]. Such earlier work typically dealt with several simplified
cases of the model, and focused only on the state estimation but not the decoding
problem. For example, in [40] and [85], the state estimation problem for only linear
state-space models was considered. In the former, switching only happens on the
linear measurement equation (to trace the trajectories of multiple targets), while in

the latter the switching is allowed for both linear state and measurement equations.
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Both pieces of the work appear to be special cases of a more general approach to state
estimation given in [75], where Bayes’ rule is used when the parameter switching of
the state-space model follows an arbitrary and in particular Markovian processes.

The work of [83] allows the parameter switching to happen in the error covariances.

The physical motivations for constructing our switching state-space model for
the speech dynamics, which determine the special structure of the model and the
needed decoding algorithm, are also different from those of the earlier work in the
target-tracking and econometrics literature. The earlier motivations arise from the
difficulty with which exact mathematical models can be derived for the physical
dynamic processes. One main cause of the difficulty is the random, unknown change
of the model structures or parameters over time. However, the structure or parameter
variations can often be narrowed down to where only a finite number of possibilities
for the variations are allowed to be chosen. For example, sensors tracking multiple
targets and plants having multiple modes of behavior can be dealt with in this way.
For solving the multiple-target tracking problems, use of the switching state-space
model is appropriate and a comprehensive review has been provided in [77. 78].
Another example for which the switching state-space model is appropriate is the
statistical description of recession and booming stages in the economy, which has
been modeled in the work of {82, 85]. A detailed review of the application of the

switching state-space model to econometrics has been provided in [91].

Moving beyond the applications in target tracking and in econometrics, the re-
search reported in this chapter represents our novel contribution of applying the
specially constructed switching state-space model to functional modeling of speech
production and speech recognition. The speech production process can be well fitted
into the switching state-space model since each phone in a finite number of phones

in a language can be associated with a largely distinct target vocal-tract shape and
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its related acoustic resonance structure. When a speech utterance is produced, the
vocal tract shape or resonance (continuous state in the model) changes relatively
smoothly from one target phone to another, where the target shapes determined
by the model parameters are modeled to be switching from one target phone to its

temporally adjacent one.

Taking into account the special temporal-flow properties in speech production
and special requirements in speech recognition, we have developed two innovative
ways of applying the switching state-space model, both distinct from the traditional

approaches developed in the control-engineering and econometrics applications.

First, in the traditional applications, no constraints were imposed on the model
switching process; i.e., the model parameters can arbitrarily switch from one discrete
state to another with non-zero probability at any time. For example, in the models
of [82] and [85], the modeled economy may relatively freely switch from recession to
booming and vice versa. In the model of [40], the measurement of the sensor may be
the trajectory of any one of the multiple targets at each time. For these cases. the
transition matrix for the discrete state switching is a full matrix. However, for our
applications to speech production and recognition only the left-to-right structure in
the transition matrix is sensible. That is, once the model switches to a new stage,
it will not return to the old stages. In this case, the transition matrix becomes

constrained to be an upper-triangle one.

Second, as a direct consequence of the left-to-right structural constraint for the
switching process, the search for the “global” optimal discrete-state sequence (i.e., the
switching history) based on the observation data becomes significantly more complex
than the case without such a structural constraint. In the traditional applications [75,
85. 83. 40, 82, 91, 78], exclusive attention was paid to obtain the optimal “local” state

estimation under the switching condition. In contrast, for the speech recognition
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application as our subject of study, the interest is in how the optimal switching
process develops or how to find the global optimal discrete-state transition path
(i.e., the optimal phone or word sequence). It is interesting to note that if there
were no structural constraints for the switching process, the objectives in both of
the above cases would be identical because the “global” optimal solution must be
achieved by selecting the best estimate at each “local” point. However. once the
constraints arc imposed as essential for our current speech recognition application,
the traditional approaches must be extended because the constraints may prevent
the “global” solution from choosing the best estimates at some “local” points. One
main contribution of the work presented in this chapter is to accomplish such an

extension based on the dynamic programming principle.



Chapter 6

Summary and Future Work

6.1 Summary of this thesis

In this thesis. a new statistical coarticulatory dynamic model for speech recognition
is developed and evaluated. As analyzed, this new model can be treated as an
extension of the work dome in [54, 60], but there are some fundamental difference
from them. The main novelty of this new model is the introduction of the vocal
tract resonance as the internal, structured model hidden state (continuous-valued)
for representing phonetic reduction and target undershoot in human production of
spontaneous speech and the incorporation of knowledge about the dynamic, target-
directed behavior in the vocal tract resonance into the model design, training, and

likelihood computation.

In Chapter 2, the earliest version of the dynamic model, which was proposed by
Deng [33], was presented and evaluated. In this version the model is formulated math-
ematically as a nonlinear dynamic system, where different neural networks (MLPs

and RBFNNs) are used to approximate the physically nonlinear relationship between

139
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the hidden dynamic (VTR) space and observation (MFCC) space in the measurement
equation. A version of the generalized EM algorithm was developed and implemented
for automatically learning the model parameters. Evaluation experiments were done
using the spontaneous speech data from the Switchboard corpus. The promise of the
new model was demonstrated by showing its superior performance over a benchmark
HMM system under identical experimental conditions. It was found that different

neural networks (or different nonlinear versions) did not produce much difference.

Therefore, in Chapter 3, the nonlinear versions were first compared with a linear
version. it was observed that there was not much benefit from the use of nonlinear
models. To keep the efficiency of a linear model in model training and likelihood
computation. and to be responsible for the systematic variations in speech. a mix-
ture linear dynamic model was developed in which several linear dynamic models
are combined to describe a phone. A version of the generalized EM algorithm was
derived for the model parameter learning and likelihood computation, where an im-
portant constraint, “mixture-path” constraint, was imposed. A series of experiments
were carried out to evaluate this version. It was shown that, with the use of multi-
ple mixture components, the model achieved a significant improvement. It was also
demonstrated that the model performance was gradually improved with the increas-
ing of the number of mixtures and the amount of training data. Further to this, an
analysis experiment was carried out. It indicated that the incorporation of speech
dynamics into the new model design contributes to a major part of the improvement,
and hence the dynamic property is of importance for speech recognition. Those ex-
periment results are consistent with the observations from other researchers working
on the “segment” models [60]. That is, the increasing of the number of mixtures at

the segment level is due to speech systematic variations.

In Chapter 4, a more general version of the MLDM, a mixture linear dynamic
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model with switching parameters on measurement equations, was developed. This
version aims at alleviating the inefficiency of the mixture linear dynamic model in
representing the physically nonlinear relation between the hidden dynamic space
and acoustic space. It uses piece-wise linear functions, rather than linear functions
in the MLDM version, to approximate the nonlinear relation on the measurement
equation, which was realized by allowing parameters on the measurement equation to
switch among a fixed set of values. The corresponding model training and likelihood
computation algorithms were derived as well. Furthermore, a series of evaluation
experiments were performed. The results showed that the accuracy in modeling the
nonlinear relation of hidden state space and acoustic space was indeed increased and

the model performance was also improved.

In Chapter 5, the challenging decoding problem for the dynamic model was dealt
with. Because of the continuity constraint imposed on the hidden VTR dynamics,
no path deletion is allowed during the trellis search if a global optimality is required.
It makes the search infeasible. By analyses, three approximate solutions were pro-
vided: PS-D, GPB2-D and IMM-D algorithms. The first one is based on a path
deletion strategy while the other two are based on path merging strategies. All the
three algorithms successfully turn the original search problem exponential in time
into one linear in time. A series of experiments were done on both simulated data
and Switchboard data. It was observed that all the three decoding algorithms are
efficient in searching for the real dynamic boundaries. The IMM-D algorithm is the
most efficient one. Consistent improvements for different versions of the dynamic
model can be obtained when the IMM-D algorithm was used to optimize their phone

dynamic regime boundaries.
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6.2 Summary of contributions

The contributions of this thesis are summarized as follows:

e The introduction of the VTR dynamics as the hidden state dynamics:
The use of VTR dynamics renders the model with not only the incorporation of
pre-knowledge about target-directed behavior in the VTR dynamics into the
model design, training, and likelihood computation, but also the implemen-
tation feasibility because of the lower dimensionality in the VTR dynamics.
It is also helpful in the model learning and diagnosis because of the partial
observability of the VTR dynamics.

o The development of the mixture linear dynamic model:
The mixture concept at segment level has been used by other researchers [53].
An important contribution in this dissertation is the rigorous derivation of
the parameter learning and likelihood computation equations for this mixture
linear model, where the important “mixture-path” constraint (VTR targets

switch at segment level) is imposed.

¢ The development of the mixture linear dynamic model with switching param-
eters on the measurement equations:
This model is totally new. There are two levels of switching in this version,
one is at segment level while the other one is at frame level. The state equa-
tion, Eqn.(4.2), switches at segment level because of the physical property of
VTR targets (they are defined at segment level), the measurement equation,
Eqn.(4.3), switches not only at segment level (synchronous with the switching of
state equation) but also at frame level because physically the relation between
the hidden and acoustic spaces can change from frame to frame. Even in a con-

trol area this situation has not been met. Again, the parameter learning and
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likelihood computation algorithms are rigorously derived with the “mixture-

path” constraint imposed on the mixture switching at segment level.

¢ The development of three efficient decoding algorithms (PS-D, GPB2-D and
IMM-D):
Search is a challenging problem for all “segment” models |60}, and no researcher
has looked into this problem seriously before. The path stack concept in the
PS-D algorithm is not new (it has been used in [21],etc.), the new thing is the
design of an efficient operation algorithm on the maintenance of path stacks.
The two path merging strategies in GPB2-D and IMM-D algorithms, borrowed
from the control area, are first used in the speech recognition area. Both the
merging strategies efficiently reduce the search space to the same level as Viterbi
algorithm does. They enable the dynamic model to do real speech recognition,

which is their most important contribution.

6.3 Future work

6.3.1 Error propagation problem

In all the experimental results, much better results have been observed when the
references were added to 100-best hypothesis lists. This phenomenon is caused by
the error propagation problem in the new dynamic model. When one error occurs it
can propagate into the future, which is caused by the continuity constraint imposed
on the hidden VTR dynamics. As illustrated in Fig. 6.1, the solid line is the true
VTR dynamics and the dashed line the estimated dynamics. If phone “phn2” is
incorrectly recognized as phone “phn2”’, then it pulls the dynamics to a wrong
direction. Even if the following phones are recognized correctly, they must start
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from a wrong place due to the continuity constraint on the dynamics. So the error

propagates into the following phones as the dashed line shows.

4
VTR

phnl phn2 phn3 phnd phn5

time
Figure 6.1: An example of error propagation problem in the new dynamic model

This constraint is physically required, and it can not be simply got rid of. There-

fore. how to overcome this problem will be an important issue in the future work.

All the experiment results showed that the new dynamic model is able to pick
up the correct hypotheses much more frequently than a HMM system if the correct
hypotheses exist in the 100-best hypothesis lists (the “Ref+100” case). Usually
lattices have much higher chances to include the correct hypotheses than 100-best
lists. Hence, by doing lattice re-scoring the error propagation problem would be
alleviated and more improvements be expected. Fortunately, the developed decoding

algorithms enable the dynamic model to do lattice re-scoring.

6.3.2 Distribution of model parameters

Different speakers have somewhat different targets in the VIRs and different speak-
ing rates (due to vocal tract geometric differences, for example) or even the same
speaker may have different speaking rates at different times. To account for the sys-
tematic variations in speech, like speaker, gender, speaking style, and speaking rate
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variations, it is natural to use multiple points or a distribution, rather than a single
point, for the model parameters when multiple-speaker data are used (such as the
switchboard data). That is why big improvements were obtained from a single linear
dynamic model to mixture linear dynamic model in Chapter 3 and 4. From multiple
points to a continuous distribution, more improvements should be expected. To do
it. appropriate parametric forms for the distribution have to be designed and the
corresponding effective and efficient algorithms should be developed for parameter

estimation.

One possible way is to augment the state space and treat all model parameters
as hidden states as well, then apply Kalman filter to estimate them, like what was
done in [6]. However. some constraints have to be imposed on the model parameter

distributions.

6.3.3 Non-uniqueness of phone target

In all the versions developed, It is assumed that for each phone segment there is
an unique target. That is true for vowels and semi-vowels, but not true for some
consonants. For example, a stop consonant has a closure followed by an explosive.
Each period has a different target. How to deal with those special cases would be

another issue in the future.

One possible way is to concatenate multiple dynamic models, where each model

is responsible for a different period.

6.3.4 Left context dependency

During all the experiments, it was found that the estimated noises ( and R) were

at a high level. More work is apparently required to improve the accuracy of the new
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model. One way is to use left-context dependent phones. At the current stage, only
context-independent phones are used. However, a phone’s VTR dynamics is influ-
enced by its left context, because different left contexts make the VTR dynamics go
along different curves due to different time constants, & (although it has the identical
target). It is expected that the use of left-context dependent phones produces more

improvements.

6.3.5 Combination with HMM

Another more practical consideration is to combine the new dynamic model with the
conventional HMM. HMM has its strong advantages, for instance. its efficient training
and recognition algorithms. From the evaluation and comparison experiments. the
new model also show superiority in some aspects, especially the incorporation of
speech dynamic property. Another advantage of HMM is its dominance in the speech
recognition area after more than two decades of development. Currently almost all
the best speech recognition systems are developed on this basis. Those facts make

it reasonable to consider combining the two approaches.

As analyzed in Section 2.1.3, if we set special values for the model parameters.
the new dynamic model becomes a special HMM. Actually the dynamic model can
be treated as a HMM with continuous states (the conventional HMM has discrete
states). There exist commonplaces between the new dynamic model and the HMM,

so the combination of them might be able to be done at a deeper level, not just at a

surface level (like voting).
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Derivations for Chapter 2

A.1 Derivation of Eqn.(2.28)

The derivation of Eqn.(2.28):
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Let’s just consider the exponents in the above equation,
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Therefore,
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A.2 Derivation of (2.29)
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Again, let’s just consider the exponents in the above equation.
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where

Ceite = (57" + 57 + Bif) ™ and b =27 + 275 + Sife Zskc
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Derivations for Chapter 3

B.1 Derivation of Eqn.(3.19)

From Eqn.(3.18). we have
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B.2 Derivation of Eqn.(3.51), (3.52) and (3.53)

Eqn.(3.51) is straight-forward,

En[2"(k)] = E[Z"(K)|0" m, 8] = Z{k, m (B.2)
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Eqn.(3.52) is derived as follows,
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For Eqn.(3.53), it is not so easy.
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time k — 1. so they are uncorrelated. Then we have
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In the second term of Eqn.(B.7) ZLliKn,m — Z,:]k_l'm is equal to

[Z(k) — Z2y_1m] — [Z(K) — 20k, (B.9)
By smoothing Eqn.(2.41),
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Notice that Z(k) — Z2._,  depends on innovation up to time k — 1 and remaining
kjk-1,m 94€P
part on innovation from time k to the end. Z (k) — Zak-l.m is uncorrelated with the

remaining part. Therefore. the second term of Eqn.(B.7) becomes
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Plug Eqn.(B.8) and (B.11) into Eqn.(B.7), we have
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Then.
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Derivations for Chapter 4

C.1 Derivation of Eqn.(4.24):

Using the assumption of independence between different tokens. we have
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C.2 Derivation of Eqn.(4.25):

N
Qz = ¥ ¥ [{logp(Zl®)

n=1 {S}~¥

Kn
+Y [log p(Z2|Zp_,. X™. ©) + log p(O7| 2, X™. y5. ©)]
k=1

}-p(2"|0™. ™. 0) dZ" - p({S}¥|0".0)

N
= Y _logp(Z|0)

n=1
N Kn ~
+Y [T 3 Slogn(Z12, X7, 0) - p{Y}{X}.0". )
n=1? (X} (Y} k=1
'p(anOnsxﬂ* Ync:)) dz" 'p({X}”IO“,C:))

N Kn _
+Z/ Y Y. D logp(OFlZg. X™.yz. ©)] - p(Z7|0". X7, YTO) dZ7
n=1" (X}n {Y}" k=1



APPENDICES 156

p{Y}"[{X}",0".0) - p({X}"|0",0)}
N
Zlogp(ZOIG))

n.-.l

+>: 7> > log p(ZE1 200, X7, O] - p(27[0", X", Y"8) dz”
(X} k=1

p( fX}nlon @)

+Z/{§n;k§_ﬁ[logp(0klz" X", yr.0)]-p(Z"|O", X", Y"O) dZ"

-p(Y™X™.0" 0) - p({X}"|0", ©)

N
= ) logp(Z|0)

n=1

Kn _
+ Z/Z > [log p(Z7|27_,. X™.09)] - p(Z"|O". X, Y"O) dZ"
X7 {X}n/Xr k=1
p({X}"|0",0)
Kn
+Z T T % 5 3 losn(081ar X 47 0)

X" {X}"/X" y,, Yo /iyl k=1
-p(Z™|0™. X".Y"0) dZ"

p(Y™|X™.0". 0) - p({X}"|0".8) (C.8)
N M Kn _
= ) Z/[Zlogp(zi‘l n .m.0)] p(Z2"0", m,0) dZ" - a",
n=1m=1
N M _ ~
+X Y f 13° S log (0712 m.1,©) &L, PLZ7IO" m, 1. O)} 2™ -,
n=1m=l k=1l1l=1
+ const. (C.9)

From step (C.8) to (C.9), the properties in Eqn.(4.17) and (4.22) are used. On the
other hand. p(Zy|®) is fixed for all tokens, so it is treated as a constant.
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Derivations for Chapter 5

D.1 Derivation of Eqn.(5.14) and (5.15)

By total probability theorem.
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D.2 Derivation of Eqn.(5.18)

By Bayes' rule,
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D.3 Derivation of Eqn.(5.28), (5.29) and (5.30)

By Bayes' rule.
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and
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D.4 Derivation of Eqn.(5.51)

By total probability theorem.
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