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Abstract 

In this thesis, we propose an optimization model to assist the Region of Waterloo Emergency Medical 

Services (EMS) to meet the new provincial land ambulance response time standard.  The new land 

standard requires multiple response time thresholds which are based on the acuity of the patient 

determined at the time the 911 call is made.   

The performance of an EMS system is affected by many factors, including the number of ambulances 

deployed, their locations, and the dispatching strategy that is employed.   The number of ambulances 

available over the course of the day varies when ambulance crews start and end their shifts, and when 

ambulance crews are called out or return from a call.   In order to maintain coverage, it is therefore 

desirable to locate ambulances in stations as a function of how many are available,  and the 

geography and frequency of  potential calls.  This may result in relocation of ambulances whenever 

there is a change in the number of available vehicles.   This research provides a compliance table 

indicating how many ambulances to locate at each station when the number of available ambulances 

is given.  We explore two main objectives: 1) maximizing the expected coverage for all patients, and 

2) maximizing the coverage for the most acutely ill patients.  Constraints include the number of 

available ambulances, the response time requirements, and service level constraints for each acuity 

level.   

In this study, we conducted an empirical analysis of ambulance response times, travel times to a 

hospital, and time spend at the hospital.  We used two years of EMS data from July 2006 to June 

2008 for the Region of Waterloo (ROWEMS).  Based on this study, we show that using the binomial 

distribution to represent the number of busy ambulances suggested by Gendreau et al. (2006) is only 

valid for low utilization rates.  

The problem of allocating available ambulances among candidate stations is formulated as a 

Mixed Integer Non-linear Problem (MINLP) model that includes the priority of calls and multiple 

daytime periods.  Computational results using the ROWEMS data will be presented. A detailed 

comparison shows that the predictions obtained from our model are often as good as the Approximate 

Hypercube (AH) model, but with a simpler and quicker procedure.  The model proposed in this thesis 

can also be used as a planning tool  to find promising candidate locations for new ambulance stations.  
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Chapter 1 
Introduction 

1.1 Objectives 

This thesis is concerned with exploring the impact of the new provincial land ambulance act on the 

Region of Waterloo Emergency Medical Services (ROWEMS).   Changes to the Land Ambulance 

Act that go into effect October 2013 include response time thresholds for patients that depend on their 

acuity level.  In particular, sudden cardiac arrest patients are to have a defibrillator on scene within 6 

minutes, and an ambulance within 8 minutes.  Other highly acute patients are to have an ambulance 

on scene by 8 minutes.  Lower acuity patients will have longer response time thresholds that the 

region can set, but are to report on annually.  

EMS providers often use a tool called a “Compliance Table” for day to day operations.  A 

compliance table is a pre-computed set of ideal locations to place available ambulances.  When the 

number of available ambulances changes due to events such as a new call, or a vehicle returning to 

service, the ideal set of locations may change, thus potentially requiring redeployment of ambulances.   

The redeployment is done to maximize coverage given the number of ambulances that are available to 

respond to a call. Coverage refers to the probability that EMS provider can get an ambulance to the 

scene of an emergency within a specified time threshold.   

This thesis provides a new formulation for the problem of optimally locating a given number of 

ambulances.  Its objective is to maximize the coverage that a given number of ambulances can 

provide, subject to a tiered set of response time coverage requirements for several levels of patient 

acuity. The formulation allows for probabilistic ambulance travel times as well as probabilistic 

ambulance availability.    

1.2 Background 

According to the Region of Waterloo Public Health Emergency Medical Services (EMS) Master Plan, 

the Region of Waterloo (ROW) has experienced a rapid growth in high priority ambulance call 

volumes since its assumption of the governance responsibility for land based Emergency Medical 

Services on December 3, 2000.   In response to this growth in EMS demand,  and in order to maintain 

and enhance the quality of their pre-hospital care services, regional council has invested considerably 

in the improvement and expansion of the Region’s EMS system.  Regional EMS management has 

been working closely with the Regional Planning Department and consulting companies, whose 
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research has determined that the Region’s ambulance call volume will more than double over the next 

twenty-five years (ROWEMS 25 Master Plan).  

In anticipation of this significant future growth in EMS demand, the region has concluded that the 

development of a more efficient ambulance dispatch strategy is essential.  In addition to predictions 

of population growth, the Region has been faced with a new provincial Land Ambulance Response 

Time Standard (MOHLTC(2009, 2010)).   Starting in May 2008, a group of researchers in the 

Management Sciences Department at the University of Waterloo carried out an analysis of 13 years 

(1995-2008) of EMS calls.  The most recent two years, July 2006 to June 2008, were selected for 

detailed analysis in order to reflect recent information.  Specifically, the call arrival rate and inter-

UTM travel times were computed for different patient CTAS levels and different times of the day. 

The CTAS (Canadian Triage Acuity Scale, Beveridge et al.(1999), see Table 1.1) is an international 

medical triage standard utilized by hospitals, ambulance communication services and paramedics to 

identify how urgently a patient requires medical care.  In addition, as is done in practice, we took into 

account the fact that firetrucks are supplementary responders for CTAS 1 calls. Finally, we were able 

to determine feasible response time commitments for each CTAS level for ROWEMS given current 

resource levels.   

Table 1.1 CTAS Level Description 

CTAS Level Description 

CTAS 1 Conditions that are a threat to life, requiring immediate intervention. 
 Examples: cardiac arrest, unconscious patients 

CTAS 2 Conditions that are a potential threat to life, requiring rapid medical intervention 
Examples: head injury, severe trauma, overdose 

CTAS 3 Conditions that could potentially progress to a serious problem requiring 
emergency intervention may be associated with significant discomfort. 
Examples: moderate trauma, asthma, acute pain. 

CTAS 4 Conditions that are related to patient age, distress that would benefit from 
intervention. Examples: headache, chronic back pain. 

CTAS 5 Conditions that may be acute but non-urgent. Examples: sore throat, mild 
abdominal pain, diarrhea. 

1.2.1 The Land Ambulance Response Times Standard 

According to the provincial government (MOHLTC 2009, updated in 2010), Ontario EMS 

systems will move to modernize the regulation of land ambulance response times in 2013.  Currently, 
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the regulation requires the land ambulance operator to achieve the response time levels that had been 

achieved by the ambulance sector in 1996: 10 minutes and 30 seconds for 90% of code 4 (potentially 

life threatening) calls.   Response time for this purpose is defined as the elapsed time from the 

notification of the ambulance crew by the ambulance dispatcher of a patient requiring emergency care 

to the arrival of the ambulance crew at the scene (“T2” to “T4” in Figure 1.1).   Response times are 

usually the key measure used to assess EMS system performance from the public perspective.  

Response times can depend on weather, road conditions and even geography.  In dense urban areas 

for example, the distance traveled are short, but traffic and other hindrances cause delays, while rural 

areas involve greater distances and longer travel times.   

Figure 1.1: The Chronology of an Emergency Ambulance Call (MOHLTC (2010)) 

 
 

 In Ontario, various stakeholders argued that that the EMS response times that each delivery agent 

was required to meet were more than a decade old, and they agreed these times were no longer 

relevant to the operation of a modern EMS system.  One of the main issues with the 1996 standard is 

that it mandates the same performance for all emergency calls, even in cases where there no proven 

medical benefit to a patient from receiving rapid ambulance response. The new response time 

standard provides for emergency ambulance response that is focused on making a difference to the 

health outcome of patients who are the most in need of receiving rapid pre-hospital care.   
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The new Ontario Land Ambulance Response Time Framework states that every upper tier 

municipality and delivery agent will, starting in October 2012, develop an annual response time 

performance plan and ensure that this plan is continually maintained and updated. The response time 

performance plans developed by the municipal sector should include the response time commitments 

for CTAS 1, 2, 3, 4, and 5 patients.  In addition, the plan has recognizes that the attendance of any 

person equipped to provide defibrillation (including a paramedic, fire fighter, police officer or other 

first responder) to a sudden cardiac arrest patient will “stop” the response-time clock.  Finally, each 

municipality must also report the following measurement in its performance reports to the ministry, 

besides identifying its performance specific to the targets identified in its submitted plan.  

• The percentage of times that sudden cardiac arrest patients received assistance from a person 

equipped to provide defibrillation (e.g., paramedic, fire, police, or other first responder) 

within six minutes from the notification of a call by an ambulance communication service.  

• The percentage of times that an ambulance crew has arrived on-scene to provide ambulance 

services to sudden cardiac arrest patients or other patients categorized as CTAS 1 within eight 

minutes of the of the time notice is received respecting such services. 

The above points are the two critical measurements of this new response time standard that we 

have emphasized in our model. A detailed explanation on how we model these two important 

requirements will be provided in Chapter 3. 

1.2.2 Municipal Land Ambulance Response Times 

According to the Region of Waterloo EMS Master Plan (ROWEMS 2007), its 2005 Code-4 (life-

threatening calls, Table 1.2) response times reached 13 minutes 43 seconds, 90% of the time, or 16 

minutes 04 seconds when dispatch processing time was included. Figure 1.2 gives the ROWEMS’s 

annualized 90th percentile response time to priority 4 ambulance calls for the period 1996 to 2006.  As 

shown by the figure, these values are both significantly higher than the Ministry standard. In the 

Region of Waterloo, as in most mixed urban/rural municipalities, call location is driven by 

population. Ninety percent of ambulance calls occur within the Region’s three cities and only 10% 

across the balance of the geography, similar to the population spread. Increasing traffic congestion, 

rail crossing delays, vertical response in high rise buildings, and traffic calming measures, all serve to 

slow response times even if an emergency vehicle is readily available.  
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Table 1.2: ONTARIO PROVINCIAL AMBULANCE PRIORITY CODES 

CODE 1   Any non-important call 
CODE 2 Scheduled call 
CODE 3   Prompt call, not life threatening, lights and siren optional 
CODE 4   Life Threatening, lights on, siren optional 
CODE 5   Obviously dead (Rigitity, Decomposition, Vivisection) 
CODE 6   Legally dead 
CODE 7   Unstaffed at station 
CODE 8   Standby at location 
CODE 9   Unit in for servicing (Not Usable) 
CODE 19 non-essential call 

Each traffic intersection or calming device can add 10 – 20 seconds to an emergency vehicle 

response, and high rise response can easily add two minutes through controlled access and elevator 

travel. “Other reasonable factors, such as the significant growth in Code-4 medical calls that has 

occurred over the past ten years, residential housing development spread, and most importantly the 

increasingly greater offload delay intervals are also driving the increase in ambulance response time.”  

Figure 1.2: Code 4 Call Response Times (ROWEMS, 2007) 
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1.2.3 Dispatch Model 

The current model has all 911 calls answered at a Public Service Answering Point (PSAP) operated 

by the Waterloo Region Police. As shown in Figure 1.3 (MOHLTC (2009)), any caller requesting an 

ambulance is transferred to the Central Ambulance Communication Center (CACC) with the police 

communicator staying on the line to determine whether a police response is also required. If the 

ambulance communicator determines the call meets tiered response criteria, they transfer the call to 

the appropriate Fire Dispatch Center, who determines which department and station are appropriate 

and alerts them.  

Up to the first two minutes of all calls for emergency ambulance response are utilized by the 

ambulance communication service call taker to elicit caller location and patient symptom information, 

provide preliminary medical care advice to ensure patient safety, and to identify available ambulance 

resources and appropriate deployment plans.  Ultimately, they will dispatch an ambulance to the call. 

And although not part of the current response time standard, this two minutes is part of the perceived 

response time of the ambulance as viewed from the patient’s perspective. 

Figure 1.3: Ambulance dispatch reaction/notification time (dispatch response time) MOHLTC 

(2009) 

 



 

 7 

1.2.4 Firetrucks 

New provincial response time standards require that for sudden cardiac arrest calls, the EMS need to 

report the percentage of times it gets a defibrillator on scene within 6 minutes.   The responding unit 

can be an ambulance or a firetruck or a qualified caregiver.  Regardless of who is the first responder, 

an ambulance must be on scene within 8 minutes.  This thesis assumes that the first responders are 

local fire departments or ambulances.  

There are several reasons for allowing firetrucks to respond to life threatening calls.  The first is 

that fire response units are also a public service resource geographically dispersed over the region so 

that they can provide short response times to emergencies.  Second, they have typically a low 

utilization rate and can provide high reliability response to calls for assistance. Especially in rural 

areas, firetrucks will be more likely to arrive on scene in advance of an ambulance, and will be able to 

respond quickly to a life threatening call.  Finally, professional fire fighters are highly trained in the 

provision of pre-hospital Cardio Pulmonary Resuscitation (CPR) and defibrillation within the context 

of the Ontario Pre-hospital Advanced Life Support study (OPALS).  

Within Waterloo Region, fire protection and prevention services are delivered by several fire 

departments operating out of 26 fire halls, as follows: 

• The 3 fire departments of the cities of Cambridge, Waterloo and Kitchener: these fire 

departments are staffed 24/7 with professional fire fighters. They operate from 5 fire halls 

based in Cambridge, 6 fire halls based in Kitchener and 3 fire halls based in Waterloo. 

• The 4 volunteer fire departments of the Townships of Wellesley, Wilmot, Woolwich and 

North Dumfries: they operate from 3 fire halls based in Wellesley, 3 fire halls based in 

Wilmot, 5 fire halls based in Woolwich and 1 fire hall based in North Dumfries. 

1.3 Service Overview 

ROWEMS is the sole licensed provider of pre-hospital emergency care in the region, running a 

central deployment model utilizing eight stations including the EMS headquarters and dispatch 

center. The EMS 2008 Activity Summary (ROWPH 2008) shows that a total at 34,517 calls were 

recorded in the Region during 2008. This represented a 4.6% increase over 2007 and 48.4% increase 

since 2000.   
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The current primary emergency fleet includes 18 ambulances, 5 emergency response units, 1 

emergency support unit and 3 multi-casualty incident (MCI) trailers.  In addition, a unique single-

paramedic Rural Emergency Response Unit (RERU) is used from noon to midnight daily. Single-

paramedic Emergency Response Units (ERUs) are not uncommon in EMS, but typically used to 

support ambulances in high call volume urban areas, i.e., to assess patients and to “call off” 

ambulance response if not needed.  In the Waterloo model, the RERU moves between the rural 

stations in St. Jacobs and Baden, depending on where coverage is needed, i.e., where the ambulance 

coverage has been depleted by call assignment.  If ambulances in both these rural towns are out of 

their stations, the RERU moves midway to provide coverage for both areas.  If both ambulances are 

in their stations, the RERU moves to provide coverage in Wellesley Township.  When a call comes 

in, both the RERU and an ambulance respond. The RERU is staffed by an Advanced Care paramedic 

(ACP) who is rapidly on-scene, determines the need for an ambulance, and then provides advanced 

care while awaiting arrival of the ambulance. “Little if any delay in transport to hospital exists as 

stabilization is conducted on-scene whether by a RERU or ambulance paramedic. It is expected that 

this new rural coverage initiative will reduce the need for Fire Department Tiered Response.”  

1.4 Motivation and Contribution 

The research in this thesis came about due to a project funded by the Region of Waterloo EMS to 

determine the degree to which the ROW can respond to the new Provincial Land Ambulance 

Response Time Standards.  While many ambulance location models exist, the new response time 

framework contains a tiered set of coverage requirements not captured in the literature.  This research 

has thus involved formulating and solving a new type of optimization problem in order to provide the 

ROWEMS manager with answers to questions like “Can we meet the new standards?”, “Where 

should we deploy our ambulances if X of our fleet are available?”   

There are several reasons why the design and operation of ambulance dispatching policies have 

attracted so much attention from the operations research community. On one hand these issues are 

very important to society. It is of prime importance to make sure that available resources get the best 

possible use. On the other hand, the problems are rich and interesting from the mathematical point of 

view, both to keep up with the subtleties and complexities inherent to them as well as to come up with 

approaches that can be implemented in practice given limitations in data availability and 

computational resources.  Early location optimization models focused on static and deterministic 

location used for strategic long term planning (Chapter 2 provides a literature review).  The set 
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covering location problem (SCLP) aims to minimize the number of ambulances needed to cover all 

demand points. The maximal covering location problem (MCLP) aims at maximize the covering area 

subject to a fixed number of ambulances.  However, these models have the disadvantage of being 

limited in applications because of unrealistic assumptions, such as deterministic travel times and no 

cooperation between ambulances.  More recent research has extended the problem to random travel 

times and systematic treatment of ambulance availability.  

This thesis provides the Region of Waterloo EMS (ROWEMS) with guidance in its response to 

the provincial government, and develops new compliance tables that indicate the optimal location for 

a given number of ambulances when there are multiple levels of response time goals. The models in 

this thesis seek to maximize the coverage over all patient triage levels while meeting pre-determined 

ambulance response time requirements.  They are programmed in the modeling language GAMS and 

solved within an acceptable computational time using data from the Region of Waterloo.   

Due to the sparseness of data in certain geographical areas of the region, approximations have 

been made to reduce the size of the network used in the optimization.  Computational results for 

ROWEMS are provided.  

The remainder of this is thesis is structured as follows: In Chapter 2, we briefly discuss the 

relevant literature and the operation of emergency medical services.  Our optimization model 

formulations are described in Chapter 3.  The empirical data analysis, which is to set up the 

parameters needed to solve the optimization models are presented in Chapter 4. Following that, the 

final results of for the EMS compliance tables are shown in Chapter 5.  Conclusions and suggestions 

for future work are discussed in Chapter 6. 
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Chapter 2 
Literature Review 

The design and operation of EMS systems has been intensely studied in MS/OR and practitioner 

literature over the past forty years.  As a result, the health planner at each municipal level has had a 

variety of models to guide the development of emergency services to its community.  In many areas, 

however, factors such as population growth, more elderly living at home, and increased population 

density have put additional pressures on EMS providers that are already resource constrained.  

Therefore, more and more researchers have recently devoted their effects in this area.  

Four major categories of analytical models have been developed to analyze the problem of EMS 

system design and ambulance dispatch strategy. The first category is so called Probabilistic Location 

models  which deal with the stochastic nature of real-world systems through the explicit consideration 

of the randomness of call arrivals.  The second category of models captures Server Availability.  The 

third uses Queuing Models as subroutines in optimization heuristics for evaluating a wide variety of 

output measures such as vehicle utilization. The last category, Dynamic Models, deal with the real-

time relocation of idle ambulances in an operating system.  

All of these types of models are closely related in that they deal with choosing optimal locations 

for ambulances as a function of demand for service. However, the first two are strategic in character 

and allow for careful off-line computational procedures that deal with stationary properties of the 

system to be applied, whereas the last two models require the implementation of procedures that can 

be used in real-time and can react promptly to transitory changes in the system. We review each of 

these four approaches separately.  

2.1 Probabilistic Location Models 

The earliest model in this category, to our knowledge, is Toregas et al. (1971). The authors aimed to 

minimize the number of ambulances needed to cover all demand points. The maximal covering 

location problem (MCLP) proposed by Church and ReVelle (1974) aims to maximize the area 

covered subject to a fixed number of ambulances.  These models are limited in that they assume 

deterministic travel times and no cooperation among ambulances.  A detailed survey can be found in 

Brotcorne, Laporte and Semet (2003).  In a later model (MEXCLP), Daskin (1983), attempts to 

capture some of the stochastic aspects of the problem under the assumption that the ambulances are 

statistically independent.  Daskin was the first to introduce a constant busy fraction ρ as the 
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probability that an ambulance is busy.  Assuming that the probability an individual unit is busy is 

independent from others, the probability of at least one of m ambulances is available is (1 − 𝜌𝑚). 

MEXCLP is clearly an extension of MCLP which allows location of multiple units at the same 

station.  Further, Daskin (1987) relaxed the other limitation of MCLP which assumes a call is covered 

if an ambulance is located within the pre-specified distance or response time. According to Erkut, 

Ingolfsson, and Erdoğan (2009), “MCLP is a black-and-white representation probabilistic coverage 

by explicitly of reality, where all demand points within some threshold distance are considered 

covered and all other points are not covered”. Thus, Daskin (1987) increases the model realism by 

incorporating probabilistic coverage that comes about due to response time uncertainty.  This thesis 

integrates both server availability and stochastic response times.  However, we are not the first to 

integrate these two separate sources of uncertainty into a single model.  Golberg and Paz (1991) were 

the first to formulate a mathematical program that addressed both uncertainties. They allowed the 

ambulance busy fraction to vary between stations and used pairwise exchange heuristics to optimize 

expected coverage, as evaluated by a queuing model, whereas we would like to incorporate them into 

a single probabilistic optimization model.   

TIMEXCLP as another extension of MEXCLP, introduced by Repede and Bernardo (1994).  It 

allows the ambulance travel speed to vary during a daytime period.  The busy probability (ρ) is the 

same for each ambulance, ρ=λ/µ and the probability that a demand node is covered given m 

ambulances are capable of covering the node equals 1 − 𝜌𝑚.  

2.2 Service Reliability Models 

There is another family of optimization models which emphasize the coverage with α-reliability level, 

starting with the pioneering work of Berlin and Liebmann (1974), and ending with the group of 

BACOP models of Hogan and ReVelle (1986).  The two back-up coverage problem (BACOP) 

formulation incorporates binary variables equal to one if and only if a demand point is covered twice 

by an ambulance within a coverage standard radius.  Following this, ReVelle and Hogan (1989) 

present two maximum availability location problems (MALP I & MALP II) which maximize the 

demand covered with a given probability α. The probability that at least one server is available to 

each demand node when a new emergency call arrives is forced to exceed a specified reliability level 

α. The busy fraction of each server is identical and assumed to be independent of the probability of 

other servers being busy.  The only constraint, 1 − 𝜌∑ 𝑥𝑗𝑗 ≥ 𝛼 , can be linearized by taking the 

logarithm on both sides of the equation and, consequently, the MALP I is a linear integer 
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programming model relatively easy to solve. The assumption of a system wide busy fraction is 

relaxed in MALP II at the expense of being unsolvable under the formulation of ReVelle and Hogan 

(1989). Instead of ρ, the authors compute the busy fraction 𝜌𝑖 associated with each station.  As 

indicated in Brotcorne, Laporte and Semet (2003), this value is a lower bound since some ambulance 

may be dispatched to calls from places outside of the response zone.  Another difficulty pointed out 

by ReVelle and Hogan is the values of specific busy fractions 𝜌𝑖 are in fact an output of the model 

and cannot be known priori. However, given an ambulance location plan, probabilities can be 

estimated using analytical tools such as the hypercube model, or an iterative optimization algorithm 

or a simulation.  In the model in this thesis, we also permit the system wide server busy fractions, and 

we use an iterative optimization algorithm to successively compute the busy fractions of the 

ambulances at each deployment until it converges to a static state.   

Generally, the dispatcher has some tools to make these decisions, based on the phone triage 

process and the state of the system.  There is usually a pre-determined time threshold, such that if the 

first rescue vehicle arrives on scene within T minutes, then the call is deemed “covered”.  However, 

the specific time thresholds may vary with the acuity of the patient.  Thus, we model a two-tier set of 

threshold times to accommodate the new provincial ambulance response time standard which states 

that sudden cardiac arrest patients should receive assistance from a person equipped to provide 

defibrillation within six minutes from the notification of a call by the ambulance communication 

service.  If the first responder is not an ambulance, then it should be the second responder on-scene 

within eight minutes.  

Our model is not the first one that incorporates multiple response time standards into mathematical 

programming models.  Hogan and ReVelle (1986) use constraints to model a secondary coverage 

criterion (for example 20 minutes)  so that all calls are covered within the secondary time limit while 

trying to maximize the number of calls covered within the shorter primary limit (for example 8 

minutes). Gendreau et al. (1997) developed a search algorithm for a model that uses two coverage 

criteria, 𝑟1 and 𝑟2, with 𝑟1 < 𝑟2. All demand must be covered by an ambulance located within 𝑟2 time 

units, and a proportion α of the demand must lie within 𝑟1 time units of an ambulance.  In our model, 

a code 4 call is considered to be covered if and only if ambulances arrive on scene by 6 minutes or 8 

minutes when firetrucks arrive within 6 minutes.  On the other hand, we don’t adopt the proportion α 

into our model as we simply want to be able to state the coverage provided by m ambulances.  
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Our model is also not the first one that integrates multiple vehicle types in an EMS system. 

Schilling et al. (1979) introduced the FLEET model to consider two types of responders (ALS and 

BLS for example) whose coverage standards are different.  Their objective was to maximize the 

percentage of demands covered by both types of vehicles.  This model was originally used to locate 

capacitated fire stations with required equipment, subject to constraints ensuring that each demand 

point is adequately covered by the right number of pumper and rescue ladders. Thus, both types of 

equipment were required to respond together.  However, one type of vehicle (ambulance) could cover 

any call independently in our model. Moore and ReVelle (1982) modified the FLEET model to 

consider a demand covered if it is responded to by either type of vehicle as opposed to both types in 

the original model.  The goal was to minimize the amount of demand that is not covered.   In 

adddition, in their model, one type of vehicle (firetruck) was not able to accomplish the service by 

itself.  For instance, our model requires that an ambulance arrive on scene within eight minutes if a 

firetruck arrives on scene first.   

ReVelle and Snyder (1995) constructed the FAST model to locate both fire and ambulance 

vehicles. The authors incorporated a multi-objective function that maximizes call coverage for 

firetrucks and call coverage for ambulances.  The authors fix the number of vehicles of each type and 

the uses the notion that each station site can only be for ambulance or firetrucks. Our model requires a 

combination of fire and ambulance services if the first responder is not an ambulance. Also, we are 

not the first who recognized this problem.  Serra (1996) had already defined the “coherent covering 

location model”.  The author allows that ALS vehicles can provide ALS and BLS service while BLS 

vehicles provide only BLS service.  The objective is to maximize the call coverage by ALS vehicles 

and maximize call coverage by an ALS or BLS vehicle.  The constraint limits the number ALS and 

BLS vehicles and a distance standard that ensures that BLS vehicles are locate near ALS vehicles. In 

our model, we don’t restrict the location of firetrucks with respect to ambulances.   

There is a common drawback in that that all of the above models used a unique response time 

standard for different types of vehicles.  In contrast, our model has a better practical application as we 

assume different response time standards according to the severity of patient’s symptoms. This 

drawback was first, to our knowledge, recognized in Jayaraman and Stinastava (1995), where the 

author enhanced the ReVelle and Snyder’s FAST model by introducing the concept of primary and 

secondary vehicles. The primary coverage is defined as a call is covered within the primary time 

standard and secondary coverage is similarly defined.  However, similar to FAST model, the 
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objective is to maximize the sum of calls that are covered by either primary or secondary vehicles. 

Instead of distinguishing vehicles by primary or secondary, we think it would be more natural to 

differentiate calls, as a same response unit can provide different levels of services in terms of 

response time constraints.  Therefore, in our setting, neither ambulances nor firetrucks are considered 

primary vehicles.   The system we model requires both types of vehicles respond to calls as fast as 

possible.   If a firetruck arrives first, the paramedics stabilize the patient, and the second-responder 

ambulances provide both healthcare and transport to the hospital.   If an ambulance is the first 

responder, the land ambulance regulations do not require attendance of a firetruck.  

The model most similar to ours is Schilling, ReVelle, Cohen and Elzinga (1980). The authors 

extend the Church and ReVelle’s MALP 1 by dividing demand in each zone into two call types, each 

with a different priority.  They then formulate two objectives to maximize the coverage of the highest 

priority calls and maximize the coverage of next lower priority of calls. They also consider two 

vehicle types, either of which could provide emergency service independently. The key deficiencies 

in this model for our purposes are: 

1. The inability to consider busy vehicles 

2. All demand, travel time, and service time data are assumed to be deterministic.  

3. Inability to analyze dynamic real-time decisions such as redeployment. 

Ball and Lin (1993) formulated a new version of MALP, called the Poisson Reliability Location 

Set Covering Problem (PRLSCP), in which a desired level of reliability is mandatory for each 

demand node. The model incorporates a linear constraint on the number of vehicles required to 

achieve a given reliability level.  An upper bound of the uncovered probability of each demand node 

is constrained to be less than a predetermined value. The assumptions of this maximum reliability 

model are that the demand calls have Poisson distribution and 𝑡̅ is an upper bound on service time. 

Marianov and ReVelle (1994) propose the queuing probabilistic location set covering problem 

(QPLSCP), in which they model the behavior in sites within a city as an M/M/p/loss queuing system 

(Poisson arrivals, exponentially distributed service time, p servers, loss system). Assuming site 

specific busy fractions, the authors compute the minimum number ambulances needed to cover a 

demand point in such a way that the probability of all ambulances being simultaneously busy does not 

exceed a given threshold.  Borras and Pastor (2002) compare four such maximum availability models 

that use the approximate hypercube model to evaluate solutions to idealized optimization models.  
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In Erkut et al. (2006), the objective function used is maximum availability.  This metric does not 

correspond directly to the performance measures normally used in EMS systems nor is it clear how to 

choose the reliability level α in a manner that is consistent with common EMS performance targets. 

However, the authors note that the maximum availability models require parameters that are common 

to real EMS systems, such as the partial coverage parameter β, but they would be difficult to explain 

and justify to EMS practitioners.  Given that there is no obvious way to determine the “right value” 

for the above parameters, the authors solve the model in Marianov and ReVelle (1996) parametrically 

with different values of α and β. The solutions were found to be quite sensitive to the values of α and 

β.  Coverage differences of more than 20% are observed from different choices of parameters values. 

In addition, the values for α and β vary depending on the value of number of ambulances. Learning 

from this study, we use in this thesis, a partial coverage value generated through the historical data 

analysis and a regression model instead of the parameter estimation. Also, we don’t incorporate 

reliability constraints directly in our model, but conduct a sensitivity analysis to show the coverage 

level under different reliability settings.   

Another strength of our model is that we consider a multiple time periods over the course of a day. 

The travel time, ambulance busy probability, and total number of ambulances on shift varies in each 

time period.  Schilling (1980) also presents a model that is divided into time periods. The work 

extends MALP 1 to consider a different location set for each time period. The model is multi-

objective in that there is an objective to maximize total demand covered in each period. It includes 

constraints that limit the total number of vehicles placed in each time period.  More recently, Tatick 

and ReVelle (1997) modelled the case of locating a set of vehicles over a long horizon when the total 

number of vehicles and facilities is uncertain. They concentrate on finding the locations for near-term 

decisions so that the system will be in a good situation when the next decision is to be made.  

Most recently, Rajagopalan et al. (2008) formulate the dynamic available coverage location 

(DACL) model to determine the minimum number of ambulances and their locations for each time 

cluster in which significant changes in demand pattern occur while meeting coverage requirements 

with a predetermined reliability.  However, we have already argued that the predetermined reliability 

is not feasible from the practical perspective in section 2.  The number of ambulances and locations 

for each time period are fixed in our model with the objective to maximize the service coverage.  The 

DACL model incorporates the hypercube model thus relaxing the simplifying assumptions that all 
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servers have the same busy probability and operate independently. The authors also improve Jarvis 

(1985) in that the model allows for server specific general service time distribution.  

2.3 Queuing Models 

A model considered by Berman and Larson (1982) assumes that demand occurs according to a 

Poisson process. A Poisson distribution is a standard process used to model arrivals to a system. It is 

the result of having a large number of potential customers, N, where each has a small probability, p, 

of using the system in a short time interval. The product N*p, denoted by λ, is called the intensity of 

the process and is the average number of arrivals per unit time.  Given λ, it is a simple matter to 

calculate the probability distribution on the number of arrivals in any time period, t, as this follows a 

Poisson distribution with a mean of λ*t. Services are random and follow a general distribution that is 

independent of vehicle location. The model incorporates the idea that more preferred vehicles are 

busy and hence a less preferred vehicle should be sent.  They also capture the possibility that the 

system is completely busy and a call must queue. The situation described above is essentially the 

“Hypercube model”, first introduced by Larson (1974) for evaluating the performance of a set of base 

locations.   In addition, the model of Berman and Larson (1982) requires the service time for each call 

follows an exponential distribution. The authors used these assumptions to formulate a larger model 

with a state for every possible combination of idle and busy ambulances. For instances, the state (1, 0, 

0, 1, 1) corresponds to vehicles 1, 4 and 5 being busy and vehicles 2 and 3 idle for a fleet with five 

vehicles.  At this state, vehicle 2 or 3 will serve next call if none of the busy vehicles finishes its 

service, depending on the preference of the available vehicles relative to the location of the call. The 

base-2 system will easily result a computation difficulty as the number of state combinations (2𝑁) 

grow exponentially, where N is the number of vehicles. Such a class of models is called a “Markov 

Model” due to the assumption that the probability of next state depends only on the current 

combination of busy and idle vehicles and the probability that next event occurs. And, the famous 

“Markov Property” states the manner in which we arrived at the current combination is not relevant in 

predicting future states.  The advantage of the way we formulate our model is that a large number of 

ambulances and firetrucks would be easily handled without worrying about the size of the emergency 

fleet. Worth noting, however, is the work of Birge and Pollock (1989), who give empirical evidence 

that the bias caused by the independence assumption is small enough to use the model for planning 

purposes.  
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2.3.1 Hypercube model 

The hypercube model, proposed by Larson in 1974, has been widely used for planning urban systems 

in which servers travel to offer some type of service to clients (server-to-customer service). The 

model assumes that each call requires one vehicle and each zone has unique preference ordering of 

the available vehicles.  The preference order simply indicates the dispatch preference order for any 

call. The dispatcher will go down the order and dispatch the first idle vehicle on the list. Generally, 

the preference is distance based, but this is not required in the model. However, the model treats 

dispatch policies as given, rather than including them as decision variable as they believe that the 

operators in the real systems apply the “dispatch the closest available vehicle” as the only policy in 

practice. By assuming this, a convex optimization objective function could be formulated so that the 

model is more compact and tractable and it would be used to solve problems of realistic size. The 

geographical and temporal complexities in the model employ the theory of spatially distributed 

queues.  Server dependence is modeled by expanding the description of the state space of a queuing 

system with multiple servers.  

Goldberg and Paz (1991) pointed out that the hypercube model is very useful to evaluate a wide 

variety of output measures such as vehicle utilization and average travel time.  Batta et al. (1989), 

employed the hypercube correction factor developed by Larson (1975) factor to the MEXCLP 

objective function leading to an “adjusted” model, called AMEXCLP. The correction factor depends 

on the average vehicle utilization, the number of vehicles, and the rank of vehicles j in the preference 

list of zone i.  This adjusted model could be solved by a heuristic, such as genetic algorithm or Tabu 

search, that iterates between MEXCLP with the hypercube in order to improve the accuracy of 

original model.  They further suggested that the model as a subroutine in optimization heuristics 

should be used in the congested median location model, the combined zoning and location model and 

stochastic queue p-median model.  Batta et al. (1989) also tried to embed the hypercube model into a 

single node vertex substitution heuristic procedure, seeking to determine a set of server locations the 

maximized expected coverage.  Galvao et al. (2003) used the same approach to relax the simplifying 

assumptions of the MALP I model, seeking to maximize the population covered with a predetermined 

reliability. In both cases, the extended models are able to deal with server co-operation and the unique 

busy fractions for each individual server, which reflects more precisely the situation in real-world 

systems. The idea of both papers is to reproduce conditions that are closer to those expected in 

practical applications.  
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2.3.2 Approximate Hypercube (AH) model 

The approximate hypercube models first introduced by Larson (1975) and later extended by Jarvis 

(1985), have more realistic assumptions about the behavior of the system than the original hypercube 

model.  In particular,  

• Demand from different demand nodes follows independent Poisson processes, 

• Each call is responded to by the closest available ambulance,  

• The service time depends on both the call location and the station location.  

The last assumption of AH model makes the adjustment factors for each ambulance no longer 

constant,  as the initial development of this value assumes that all calls have equal mean service time, 

and all vehicles have equal utilization.  These assumptions are generally not valid when service time 

depends on call location. Another key extension in this work is the development of factors called “Q-

factors” that can be used to relax the assumption that vehicle busy probabilities are independent.  This 

has been widely adopted in other research papers. Goldberg and Paz (1991) extend Jarvis’ model by 

adding the objective of maximizing the expected number of calls covered and by embedding the new 

model in a location heuristic.  Ingolfsson et al. (2006) discuss iterations between solving the 

mathematical program and estimating the specific busy fractions and correction factors.  Budge et al. 

(2010) show that the AH model outperforms exact hypercube model and simulation approaches, and 

in terms of computational time are relatively insensitive to system characteristics and they are 

sufficiently accurate for many practical purposes. The authors further claim that they believe it is 

appropriate to use an approximation to facilitate comparison of alternatives, such as part of an 

optimization heuristic for station location, vehicle allocation, or shift scheduling.  

Using the queuing formulation, their mathematical model computes the probability of reaching a 

demand point within this time standard, based on the following three probabilities: (1) the probability 

that an ambulance at the kth preferred site for a demand point will be able to reach this point within 8 

minutes; (2) the probability that this ambulance is available; (3) the probability that the ambulances 

located at the (𝑘 − 1)𝑡ℎ  less preferred site are not available.  This thesis employs a similar 

methodology, however with a different optimization model formulation. 
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2.4 Dynamic Models 

Dynamic models seek to relocate vehicles in real-time instead of seeking a unique solution in a static 

or probabilistic model.  Dynamic models usually have constraints on the number and type of vehicle 

moves, such as ones to avoid relocation too many vehicles at once or preventing the move of the same 

vehicle too often over a short period. The rationale is that relocation decisions must periodically be 

made in order not to leave areas unprotected.  

An early dynamic model was proposed by Kolesar and Walker (1974) for the relocation of 

firetrucks. The challenge of the ambulance relocation problem is more tactical since it has to be 

solved more frequently and on very short notice, thereby more powerful algorithms are required. 

Such algorithms are usually associated with the development of faster heuristics and advanced 

computer technologies. Gendreau et al. (2001) was the first this author is aware of to address this 

problem for ambulance relocation.  Their analysis is based on several restrictions on redeployment:  

1) successive redeployments for a single ambulance should be avoided;  

2) round trip deployment between any two stations should be prohibited;  

3) each redeployment distance should be minimized.  

In their model (DDSM), the arrival of new calls, and the return of ambulances to duty trigger 

redeployment. At these times, the ambulance relocation problem is solved and a redeployment of the 

available fleet may take place. The model is solved under a fast tabu search heuristic implemented on 

parallel processors.  Essentially, the algorithm pre-computes the best relocation strategy according to 

the current positions of ambulances, in response to each potential anticipated event happening next. 

Once an event occurs, the optimal redeployment plan can readily be found from the pre-calculated 

solutions. The time between any successive calls is a key factor in any dynamic model, as a suitable 

redeployment solution may not be available if the given elapsed time is not long enough.  

An alternative way to deal with ambulance redeployment is to compute the optimal locations for 

the ambulances as a preparatory phase. This approach provides a contingency table describing, for 

each number of available ambulances, where those ambulances should be deployed. It can then 

readily be applied whenever an event occurs. Gendreau et al. (2006) proposed the maximal expected 

coverage relocation problem (MECRP), which takes further step from their previous DDSM. 

Similarly, MECRP applies a priori methodology in which a unique solution is pre-calculated at the 

beginning of the planning period. A list of detail dispatch strategies waiting locations for each 
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possible event that may occur is included in this table solution. The authors pointed out that limited 

size of system states is the necessary condition for the feasibility of this approach as the 

computational time increases exponentially with the number of binary variables. As in the DDSM, 

this model also assumes zero redeployment time, thereby no repositioning costs. Also, the author only 

site ambulances to best serve the next call. Future calls after the next call are ignored, as they assume 

the system can instantly redeploy the ambulances after responding each call. 

Restrepo (2008) present an approximate dynamic programming (ADP) approach for making 

ambulance redeployment decisions in an EMS system. The model is to maximize the number of calls 

received within a threshold time by optimally redeploy idle ambulances. The author constructs 

approximations to the value functions that are parameterized by a small set of parameters.  The 

parameters are tuned for valuing function approximations through an iterative and simulation-based 

method. This model has several advantages, which makes it outperform other  approaches: 

• In contrast to all integer programming models, ADP captures the random evolution of the 

system over time since it is based on a stochastic dynamic programming formulation of the 

ambulance redeployment problem. In addition, the real-time solution can be calculated very 

quickly by this approach.  

• Instead of the unique plan in the priori approach, dispatchers have to make their own 

decisions since there is more than one way to redeploy ambulances so that the ambulance 

configuration over the transportation network matches the configuration suggested by the 

contingency table. On the other hand, this approach can fully automate the decision-making 

process. 

• The ADP can solve problem instances with realistic dimensions whereas traditional dynamic 

programming approaches are usually restricted by the problem size.  

This approach can further accommodate a variety of objective functions, such as 1) number of 

calls not served within a time threshold, 2) the total response time for the calls, 3) constraining the 

frequency and destinations of ambulance relocations.   The drawback to this approach is the large size 

of the state-space and the computational effort required to solve the optimization problem.  
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2.5 Travel Time Estimation 

The previous subsections outlined some of the variables and constraints of the redeployment problem 

and explained some of the simplifications that can be made to this complex problem. Along another 

branch of related work is the estimation of ambulance travel time.   A literature review of research in 

this area can be found in the MASc thesis of another Management Sciences student, Aladdini (2010). 

Examples of recent work include Erkut et al. (2008) who use an empirical relationship between 

response time and survival of cardiac arrest patients.  Their work uses the entire response time 

distribution as it very important at the planning level to have accurate travel time estimation as a key 

input for any mathematical model to find the best locations of each EMS station.  Aladdini’s travel 

time and coverage model, in parallel with this ambulance location model, is a significant contribution 

to the ROWEMS project. Therefore, the data analysis, model formulation and the important 

characteristics of this model will be outlined next. 

2.5.1 Travel Time Models  

This study assumes that ambulances respond to each call from their bases, and aims to estimate the 

coverage for all possible call locations. Travel time estimation models for EMS vehicles are 

thoroughly discussed in many previous papers.  Papers closely related to the model used in this thesis 

are noted here. 

Ratliff and Zhang (1999) conducted an empirical analysis on travel time in the routing context and 

Cook and Russell (1978) conducted a simulation study on performance of routes that are planned 

without taking travel time variability into account. Budge et al. (2008) pointed out two main 

approaches for estimating travel-time: 

1. Estimate a relationship between distance and travel time 

2. Estimate distances and average speeds on different road types through a road network.  

Under the first approach,  Hausner (1975) models the mean travel time between base j and zone i 

as a function of the travel distance as follows: 

𝑡𝑖𝑗 = 𝑏0 + 𝑏1𝐷𝑖𝑗 𝑓𝑜𝑟 𝐷𝑖𝑗 ≥ 𝑑

𝑡𝑖𝑗 = 𝑏2�𝐷𝑖𝑗 𝑓𝑜𝑟 𝐷𝑖𝑗 < 𝑑, 
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where 𝑡𝑖𝑗 is the estimate of the mean travel time from base j to zone i, 𝐷𝑖𝑗 is the distance from j to i, d 

is a distance tolerance that must be determined empirically, and 𝑏0, 𝑏1, 𝑏2  are constants to be 

determined from the data. This model is a form of piecewise linear regression and travel time 

variance can be estimated using residual analysis. 

Kolesar et al. (1975) improve the model by specifying the meaning of the parameters in the above 

two-part function. The authors assume that an ambulance accelerates from the origin at rate a until it 

reaches a cruising velocity 𝑣𝑐, which is maintained until it begins to decelerate and then stops at the 

destination (Figure 2.3). The median travel time T conditioned on distance d is: 

𝑚𝑒𝑑𝑖𝑎𝑛[𝑇|𝑑] = �
2�𝑑/𝑎 𝑑 ≤ 2𝑑𝑐
𝑣𝑐
𝑎

+
𝑑
𝑣𝑐

𝑑 > 2𝑑𝑐
� 

Figure 2.1: Speed-time profile for long trips 

 

Clearly, the speed profile will not follow exactly as in Figure 2.3 due to traffic lights, stop signs, or 

slowdowns for other reasons. However, the mean travel times appears a good agreement with the 

above model in Kolesar’s study on fire stations in New York City. The above model was proved to 

have a good fit to the average travel times for the entire city.  Budge et al. (2010) further investigate 

the validity of the above model using Automatic Vehicle Locator (AVL) data, which contains latitude 

and longitude information for every ambulance.  Their study supports the use of the above model as a 

reasonable approximation as the primary of the conditional function is to predict total travel time 

rather than the detailed speed profile.  
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2.5.2 The Empirical Travel Time Data 

The empirical data used for the ambulance travel time model of Aladdini (2010) was provided by the 

Region of Waterloo ARIS database.  A two year range, July 06 to June 08, was chosen as the 

modeling data as it was considered to be a large enough sample of recent data.  There were more than 

57,000 Code-4 (high priority) calls within that two year period.  Each call record contains different 

time stamps for the events illustrated in Figure 1.1. As the status of the call changes during the 

service, ambulance crews record stamps in order to ensure the integrity of the event data.  The data 

was studied to remove any obvious instances where record keeping errors could have been made.  

Budge et al. (2008) noted the underlying reason for errors such as the travel time to the scene being 

over 30 minutes, or the time spent on scene with the patient is less than 10 seconds. They explain that 

in these situations, the time stamp for the arrival of the ambulance at the scene was not recorded 

correctly. Paramedics may successively indicate two status changes in the system if the previous 

status change was not recorded immediately.  Further, Budge et al. (2008) provided guidance on how 

to remove errors in the event data.  This study identified and removed suspected records in the event 

data based on the following rules: 

• Unrealistic speed: average travel speed is below 5km/hr. or above 150km/hr. 

• Complementary recording errors: Budge et al. (2008) used log-transformed data to remove 

the potential outliers. They divided services time into pre-travel delay, chute time, travel time, 

or the on-scene time, and outliers could be indentified if any of them is more than one inter-

quartile range or below the first quartile.  

Aladdini’s study further excludes all the unfinished trips from the remaining data, such as 

cancelled calls or pre-emptied calls, as the purpose of this study is to estimate the point-to-point travel 

time. About 20,000 of the original calls were eliminated by these rules.  

The chute time, defined as the time elapsed between crew notification and the ambulance being 

enroute, is the time span T2 to T3 in Figure 1.1. If an ambulance is already in motion, this time is 

likely to be short.  However, if it is in an ambulance station, the crew will need to get into the 

ambulance and prepare for travel.  Aladini used a threshold of 20 seconds to divide the trips into those 

likely to have originated from a station, and those likely to have started when the ambulance was 

already on the road.  Figure 2.1 depicts the distribution of chute times, which clearly indicates 

thousands of calls were responded to by ambulances that were very likely to be already moving as no 
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pre-travel delay occurs.  Therefore, the data was further distilled by removing the calls responded by 

cruising ambulances.  This was done so that that the travel time model would capture more accurately 

travel times from ambulance stations. 

The remaining data was analyzed to determine the characteristics of travel times from ambulance 

stations to the location of calls.  Interested readers are referred to the details of Alladini’s thesis 

(Alladini (2010)).  In summary, Aladdini found that travel times were well represented by lognormal 

distributions, where the mean and variance depend on the distance between station and call location.  

Figure 2.2 provides a sample goodness of fit test for where the mean travel time is 411.06 seconds 

and standard deviation as 222.87 seconds. The goodness of fit shows 90.0% of input data is included 

in the fitted lognormal distribution.   

However, the travel time could be influenced by many factors, such as road conditions, weather 

condition, time of the day, drivers’ driving habits and so on.  

Figure 2.2: Chute Time Distribution 

 
 



 

 25 

Figure 2.3: Fitted Lognormal Distribution 

 

In Aladdini’s study, the time-of-day effect was surveyed so that if the travel time varies at the 

different period of a day. For example, 2 AM in the morning vs. 6 PM in the evening. This effect was 

also incorporated in Budge et al. (2008), and the authors found the peak estimated travel times were 

found during the afternoon rush hour at 5 PM and surprisingly, a higher peak at 5 AM. One possible 

explanation for this effect is that in the early morning hours, paramedics are more likely to record the 

travel time to have started before the ambulance has actually departed. Another explanation is if 

fewer ambulances are available, it more likely needs to travel a long distance to cover the next call. 

This finding indicates the means of travel time distribution are different during the day. On the other 

hand, we need to exam if the lognormal distribution is valid for any time of a day. The study initially 

divides a day into three periods, quiet/moderate busy/busy, according to the historical call density at 

each time period. The goodness-of-fitting test was conducted respectively within each period, and 

three test statics are all significant at the 90% confident interval. Therefore, we are confident to 

conclude that the Waterloo Region’s ambulance response time pattern follows a lognormal 

distribution with different means and standard deviations.  
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2.5.3 Estimating the Mean Travel Time 

The travel time model used in this thesis estimates the travel time based on travel distances on various 

road types as explanatory variables in linear regression, with coefficients that correspond to average 

speeds on different road type. Similar studies are Goldberg et al. (1990) who regressed actual average 

travel times on travel distances on four different road types;  Erkut et al. (2001) regressed travel times 

on distances along three road types, time of day (rush vs. non-rush), and season (wither vs. summer). 

Aladdini’s current model assumes pre-specified routes as in Goldberg et al. (1990). In his model, the 

route is chosen by using Google Maps System1

Much of the EMS data was recorded in terms of the Universal Transverse Mercator (UTM) 

mapping system.  The UTM system is a two dimensional  grid-based method of specifying locations 

on the surface of the earth.  It divides the N-S axis into zones, and latitude into different bands. A grid 

system results in which a location is indicated by how many meters east and north it is from a base 

point.   The EMS data is recorded in terms of a 1 km2 square regions, each assigned a code based on 

its UTM co-ordinates.  For simplicity, each is referred to as a “UTM”. It was therefore natural to 

represent the region using a graph theoretic approach, with each UTM a node (vertex) in the network.  

The arcs of the network then represent travel times between UTMs.   

.  A potential issue with this approach is that the 

navigation system on ambulance may have chosen a different route than Google Maps, however, the 

routes that Google Maps selected were inspected and appeared to be quite reasonable.  

Three types of roads that appear in the Google Maps, are municipal roads (M) with speed limit up 

to 40km/hr., regional roads (R) with speed limits between 50 to 70 km/hr., and highways (H) with 

speed limits greater than 70km/hr. This study regressed the actual distances on each type of road to 

actual travel times (station i to UTM j): 

𝜇𝑖𝑗 = 𝑏0 + 𝑏1𝐻 + 𝑏2𝑅 + 𝑏3𝑀 + 𝜀 

where 𝜇𝑖𝑗 is the expected travel time between i and j, b’s are estimated parameters in sec/km, ε is the 

estimation error. The weighted linear regression shows a reasonable fitting to our data, where 

𝑏0 = 162.06, 𝑏1 = 36.41, 𝑏2 = 48.01, 𝑏3 = 62.64. Converting these parameters into speeds, they 

represent an average vehicle travel speed of 99 km/hr. on highways, 75 km/hr. on regional roads and 

58 km/hr. on municipal roads. The 𝑅2  of this regression model was approximately 0.75 which 

indicates that approximately 75% of the variation in the data is explained by the model. Figure 2.4 
                                                      
1 Google Maps is a free web mapping service application and technology provided by Google that powers many 
map-based services,  http://maps.google.ca/maps?hl=en&tab=wl  

http://maps.google.ca/maps?hl=en&tab=wl�
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shows a comparison of the predicted versus the actual travel times  between Aladdini’s (2010) model 

to the model in Budge et al. (2010)  using the same data set. The vertical line of the graph is the 

“predicted travel time (sec.)”, and the horizontal line is the “actual travel time”. Therefore, the perfect 

prediction model should appear a 45 degree line. The black dots are actually the real fitting pattern. 

As Figure 2.4 shows, both models have a good fitness when the travel distance is small, whereas the 

fitting on larger distances is relatively weaker. The MSE of any estimation model is a significant 

indicator to quantify the difference between the predicted value and the true number. It measures the 

average of the square of the “error”. Due to the randomness of estimators or the imperfectness of the 

regression model, the “error” could not be completely eliminated. Therefore, MSE measures the 

average of the squared error loss, which the lower value of MSE the better the result a model can 

predict.  

𝑀𝑆𝐸�𝜃�� = 𝐸𝑥𝑝 ��𝜃 − 𝜃��
2� 

Using this measure,  Aladdini’s model slightly outperforms the model in Budge et al. (2010), as 

the MSE of the same data in their model is 17,841 versus 15,916 in Aladdini’s regression model.  

Figure 2.4: Comparison of Actual Travel Time vs Estimated Travel Time 
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2.5.4 Estimation of Travel Time Standard Deviation  

The analysis conducted by Aladdini (2010) showed that the historical station-UTM travel times are 

well described by a lognormal distribution.  The previous section dealt with estimating the mean 

travel time.  This section deals with estimating the travel time standard deviation.  With both these 

parameters estimated, use of the lognormal distribution will permit us to predict station-UTM 

coverage.  Guided by Budge et al. (2010)’s research, Aladdini (2010) further investigated the 

distribution of travel time conditional on travel distance by grouping the data into one-kilometer 

intervals.  Figure 2.5 indicates the frequency of the data within each distance range.   We observe that 

21.4% of trips are between 3km to 4km, and the whole histogram is highly skewed to the right which 

demonstrates that the majority of calls require an ambulance to travel less than 10km.  The 

conditional distribution of travel time within each distance band distribution parameters that result are 

shown in Table 2.1. 
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Figure 2.5: Histogram of Trip Distances 

 
The conditional distributions within each distance band show the standard deviation is reasonably 

large. This can be explained by variability in call location within a UTM, as well as variability in 

traffic conditions.   

Table 2.1: Distribution Parameters for Each Travel Distance Band 

Distance band Mean response time 
(sec) 

Standard deviation of response time 
(sec) 

Frequency of trips 

0-1 km 272 110 377 
1-2 km 296 98 719 
2-3 km 374 123 582 
3-4 km 450 116 793 
4-5 km 458 124 347 
5-6 km 475 138 144 
6-7 km 522 131 306 
7-8 km 507 198 77 
8-9 km 549 175 21 

9-10 km 566 179 78 
 

Aladdini regressed the log of the standard deviation against the mean, with the result shown in 

Figure 2.6.  The R-squared of this model is as high as 0.71, which indicates 71% of the variation data 

can be explained by this regression model.   
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Figure 2.6: The Regression line for the SD 

 

2.5.5 Estimating UTM Coverage 𝑪𝒊𝒋 

Given the mean and standard deviation of the lognormal distribution for point-to-point travel time, we 

now are able to predict the coverage for any station-UTM pair.  First, we find the road network and 

distance through the Google Maps system. Then, by using the two regression models of Aladdini, we 

can predict the probability (𝐶𝑖𝑗) of calls from UTM j that can be reached from station i within a given 

threshold time. This model is also useful to estimate the travel time between points without any 

previous travel information.  

𝑪𝒊𝒋 = �
1

𝑡𝜎𝑖𝑗√2𝜋 
𝑒
�ln 𝑡−𝜇𝑖𝑗�
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2𝜎𝑖𝑗
2

𝑑𝑡
t

0

for 𝒙 >  0 

2.6 Summary 

The advantage of our model is to design a compliance table, which helps EMS operators make 

ambulance location decisions, and then estimate the overall coverage for the whole region by using 

such dispatch strategy.  In general, it is not easy to incorporate this dynamic nature into the 

Hypercube model.  However, one may argue that our data set of vehicle busy fraction and travel time 

are all predetermined, whereas the Hypercube model has no such issues. First of all, the Hypercube 
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model has its own limitation as it requires the ambulance go back to its original zone after it finishes 

the service, which is not always true in practice. Secondly, the way we obtain the travel time data is 

based on an empirical study (see section 4). The travel time does consider both locations of the 

responding ambulance and the demand node. In other words, the travel time incorporated in our 

model is not constant inputs, but a set of probabilities of traveling from any two UTMs in Kitchener-

Waterloo region within certain time threshold. In addition, the way we obtain the vehicle utilization 

rate is not simply determined by historical data. As we introduce in Chapter 3, the binomial 

distribution provides the probability of being in any state combination of busy and idle vehicles, and 

this probability can then be used to compute the traditional criteria of utilization rate. In our model, 

we transfer this idea by calculating the probability of the states combination (m, N-m), where N is the 

total number of ambulances and m is the number of available ambulances. Then, a connection is 

established to iteratively compute the vehicle busy fraction until the result converges. 
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Chapter 3 
Model Formulation 

3.1 Introduction   

This research project started with a thorough assessment of the EMS system that included interviews 

with key managers and stakeholders, and a review of available documents so that we had a clear 

understanding of the EMS system. An initial optimization model was developed and then revised 

iteratively as we became more familiar with the problem setting.  Major assumptions were reviewed 

with the ROWEMS staff, and then implemented in the model. 

The new provincial response time standards involve several different service level categories 

(SLCs) depending on the severity of the patient’s symptoms.  The highest priority calls, those 

involving sudden cardiac arrest, require that either an ambulance or firetruck respond with a 

defibrillator within six minutes, and an ambulance within eight minutes, ninety percent of the time. 

The new standards allow the region to plan for longer response time thresholds for lower severity 

patients.   As a result, we needed to consider firetruck locations, ambulance locations, and a number 

of SLCs in the model construction. 

Much of the EMS data was recorded in terms of the Universal Transverse Mercator (UTM) 

mapping system.  The UTM system divides a geographical area into one square kilometer 

geographical pockets.  It was therefore natural to represent the region using a graph theoretic 

approach, with a node (vertex) in the network for each UTM.  The arcs of the network then represent 

travel times between UTMs.   

More formally, let D be the vertex set of demand points, S the vertex set of ambulance stations for 

K emergency vehicles, F be the (given) set of firetruck station locations, and A be the set of arcs 

defined on (𝑫 ∪ 𝑺 ∪  𝑭)2 . Thus, our model is defined on a directed graph 𝑮 = (𝑫 ∪ 𝑺 ∪ 𝑭 ,𝑨). 

Associated with each arc (𝑖, 𝑗)𝜖𝑨, is the ambulance response time between vertex i and vertex j.  Each 

UTM (vertex) has call arrival rate 𝜆𝑖 , 𝑖 ∈ 𝑫.  For each service level category,  𝑡𝑆𝐿𝐶  is the response 

time threshold, the time by which a set percentage of calls in that category must be responded to.  Our 

model uses the notion of probabilistic coverage:  the probability that an ambulance located at vertex 

𝑗 ∈ 𝑺  can respond to a call from vertex 𝑖 ∈ 𝑫  in time less than 𝑡𝑆𝐿𝐶  is denoted by 𝐶𝑖𝑗(𝑡𝑆𝐿𝐶) .  

Similarly, the probability that a firetruck located at vertex 𝑗 ∈ 𝑭 can respond to a call from vertex 

𝑖 ∈ 𝑫 in time less than 𝑡𝑆𝐿𝐶  is denoted by 𝐹𝑖𝑗(𝑡𝑆𝐿𝐶). 
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3.2 A Non-queuing Model  

Our initial model assumes that the utilization rate of each ambulance, ρ, is the same regardless of 

where the ambulance is stationed.  We follow an approach similar to Gendreau et al. (2006) but with 

some modification to the coverage constraints.   In order to elaborate on these modifications, we 

outline below how to compute the probability that a random call can be covered.   

Let 𝐶𝑖𝑗(𝑡𝑆𝐿𝐶)  be the coverage provided by an ambulance at station j to demand node i given a 

service level category time threshold 𝑡𝑆𝐿𝐶 , and let  𝜌 be the (common) ambulance utilization rate.   

Initially assuming a single station and a single ambulance, the long-run probability that an emergency 

call will be covered depends on two factors: first, whether the ambulance is available, and second, the 

probability that the response time from the station to the call is less than the threshold time.  There are 

four outcomes outlined in Table 3.1. 

Table 3.1 Probability of Coverage for a Single Ambulance  

Outcome Probability 

Busy serving another call 𝜌 

Ambulance is available, but cannot serve the call 

within the time threshold  
(1 − 𝜌)(1 − 𝐶𝑖𝑗(𝑡𝑆𝐿𝐶) ) 

Ambulance is busy and cannot serve the call within 

the time threshold 
𝜌(1 − 𝐶𝑖𝑗(𝑡𝑆𝐿𝐶) ) 

Ambulance is available and can serve the call within 

the time threshold  
𝐶𝑖𝑗(𝑡𝑆𝐿𝐶) (1 − 𝜌) 

 

Only in the last outcome can the ambulance respond within the threshold time.  Thus for this 

simple example,  𝑆𝑖𝑗𝑆𝐿𝐶 = 𝐶𝑖𝑗(𝑡𝑆𝐿𝐶) (1 − 𝜌) is the probability that an ambulance at node j can respond 

to a call from node i within the response time threshold.    

If we allow 𝑥𝑗 ambulances to be located at a single station j, the new formulas are listed in Table 

3.2. 
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Table 3.2 Probability of Coverage for 𝒙𝒋 Ambulances 

Outcome  Probability 

All ambulances are busy  𝜌𝑥𝑗  

At least one ambulance is available but it 

cannot serve the call within the time threshold  
(1 − 𝜌𝑥𝑗)(1 − 𝐶𝑖𝑗(𝑡𝑆𝐿𝐶) ) 

All ambulances are busy and cannot serve the 

call within the time threshold 
𝜌𝑥𝑗(1 − 𝐶𝑖𝑗(𝑡𝑆𝐿𝐶) ) 

At least one ambulance is available and it can 

serve the call within the time threshold  
𝐶𝑖𝑗(𝑡𝑆𝐿𝐶) (1 − 𝜌𝑥𝑗) 

 

Therefore, we have that 𝑆𝑖𝑗𝑆𝐿𝐶 = 𝐶𝑖𝑗(𝑡𝑆𝐿𝐶) (1 − 𝜌𝑥𝑗) , is the probability that an ambulance at 

station j can respond to a call from node i within the response time threshold when there are 𝑥𝑗 

ambulances located in station  j.  The assumption that the ambulances act independently, and have a 

common utilization rate, means that the number of busy ambulances at station j when 𝑥𝑗  are deployed 

follows a binomial distribution with mean 𝜌𝑥𝑗  . 

This analysis can be extended to m stations.   From Table 3.2, we have that the probability that a 

call can be covered by at least one ambulance from station j is 𝐶𝑖𝑗(𝑡𝑆𝐿𝐶) (1 − 𝜌𝑥𝑗).  Therefore,  

1 − 𝐶𝑖𝑗(𝑡𝑆𝐿𝐶) (1 − 𝜌𝑥𝑗) is the probability that a call cannot be covered by ambulances at station j.  

Assuming that stations are independent, and indexed from 1 to m: 

��1 − 𝐶𝑖𝑗(𝑡𝑆𝐿𝐶) (1 − 𝜌𝑥𝑗)�
𝑚

𝑗=1

 

is the probability that a call from node i cannot be covered by any ambulance from any of the stations, 

where 𝑥𝑗 is the number of ambulances located at node j.   This leads to     

𝑆𝑖𝑆𝐿𝐶 = 1 −��1 − 𝐶𝑖𝑗(𝑡𝑆𝐿𝐶) (1 − 𝜌𝑥𝑗)�
𝑚

𝑗=1

 

as the probability that at least one ambulance from all the stations is available to cover a call from 

node i and can reach the call within the service level category response time. 
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Again, we note that with the assumption that the ambulances act independently, and have a 

common utilization rate, the expected number of busy ambulances when 𝑲 =  ∑ 𝑥𝑗𝑚
𝑗=1   are deployed 

follows a binomial distribution with mean  𝜌𝑲. 

3.2.1 CTAS 1 (including SCA) Coverage 

The new provincial response time standard stipulates that sudden cardiac arrest (SCA) calls are to 

have a response unit with a defibrillator on scene within 6 minutes.  These are CTAS 1 patients, and 

have the highest service level category in our model, with SLC = H (for high).  The responder could 

be a firetruck or an ambulance (or other form of emergency responder carrying the appropriate 

equipment).  Most EMS models consider only ambulance resources.   However, our model will 

include firetrucks for the purposes of responding to life-threatening calls.    

 

To add firetrucks to our model as responders to SCA calls, we make the following assumptions: 

• There is a maximum of one firetruck per fire station;  

• Firetrucks are not always available; and 

• All firetrucks have a common utilization rate γ (e.g., 5% as suggested by EMS manager). 

If an ambulance is not the first responder to an SCA call, one has to be on-scene to provide 

ambulance services within 8 minutes.  According to this two-tier coverage standard for SCA calls, the 

probability a CTAS 1 patient can be responded to within the tiered response time thresholds stated 

above is:  

�1 −��1 − 𝐶𝑖𝑗(6) × (1 − 𝜌𝑥𝑗)�
𝑚

𝑗=1

� 

+(1 − 𝑓𝑖(6))�1 −��1 − 𝐶𝑖𝑗(8) × (1 − 𝜌𝑥𝑗)�
𝑚

𝑗=1

� 

−(1 − 𝑓𝑖(6))�1 −��1 − 𝐶𝑖𝑗(6) × (1 − 𝜌𝑥𝑗)�
𝑚

𝑗=1

� 

(3.1) 

where 𝐶𝑖𝑗(6) and 𝐶𝑖𝑗(8) are the coverage from an ambulance at station j to demand node i within 6 

minutes and 8 minutes respectively, and 𝑓𝑖(6) represents the probability of at least one firetruck being 

able to get to a CTAS 1 patient at node i within 6 minutes. Let 𝐶𝑖𝑓(6) be the coverage from a 

firetruck from a fire station f to demand node i within 6 minutes.  Then  𝑓𝑖(6) can be expressed as:  



 

 36 

𝑓𝑖(6) = 1 −� �1 − 𝐶𝑖𝑓(6)(1 − 𝛾)�
𝑓∈𝐹

, 𝑖 ∈ 𝑫 (3.2) 

As we discussed above, the event of a CTAS 1 call being covered can be viewed as a composition 

of two other events, which are (A) an ambulance arriving on-scene within 6 minutes and (B) a 

firetruck arriving on-scene within 6 minutes and an ambulance arriving within 8 minutes. Therefore, 

the probability of CTAS 1 coverage is the probability that event A or event B or both occur, which is 

denoted as 𝑃(𝐴 ∪ 𝐵). However, events A and B are not independent as both ambulance and firetruck 

can arrive on scene within 6 minutes. 

It is well known that the probability of the union of the two dependent events is  

P(𝐴 ∪  𝐵) = P(A) + P(B) − P(A ∩ B). (3.3) 

We have shown that the probability that at least one ambulance from all the stations is available to 

respond to a call within 6 minutes is 

P(A) = 1 −��1 − 𝐶𝑖𝑗(6)(1 − 𝜌𝑥𝑗)�
𝑚

𝑗=1

,     𝑖 ∈ 𝑫 (3.4) 

Similarly, the probability of event B can be obtained by applying probability theory. Event B can 

be further broken down into two independent events: Event (C) of a firetruck arriving on-scene within 

6 minutes and event (D) of an ambulance arriving within 8 minutes. Event B will occur only when 

both event C and D occur simultaneously. Thus the probability of event B is 

P(B) = P(C ∩ D) = (1 − 𝑓𝑖(6))�1 −��1 − 𝐶𝑖𝑗(8)(1 − 𝜌𝑥𝑗)�
𝑚

𝑗=1

� , 𝑖 ∈ 𝑫 (3.5) 

Lastly, the intersection of events A and B (𝐴 ∩ 𝐵) represents two types of vehicles arriving on the 

scene within 6 minutes. Thus the probability of this intersection is 

P(A ∩ B) = (1 − 𝑓𝑖(6))�1 −��1 − 𝐶𝑖𝑗(6)(1 − 𝜌𝑥𝑗)�
𝑚

𝑗=1

� , 𝑖 ∈ 𝑫 (3.6) 

Thus, the probability expression (3.1) for CTAS 1 coverage is obtained by substituting equation 

(3.4), (3.5) and (3.6) into equation (3.3).  

3.2.2 CTAS 2 Coverage 

CTAS 2 patients also require rapid medical intervention as they report conditions that are potentially 

life-threatening.   The Region would like to respond to 90% of these calls within a threshold time  tM  
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= 10:30 minutes.  CTAS 2 calls fall within a lower service level category, M, for medium (i.e. SLC = 

M).  

3.2.3 Coverage for Lower CTAS levels 

Municipalities and delivery agents are required by the provincial regulation to establish an annual 

response time performance plan that indicates a feasible ambulance service level for CTAS 3, 4, and 

5 patients.  While both firetrucks and ambulances are dispatched to CTAS 1 calls, ambulances play 

the primary role in responding to less urgent patients.  These patients make up about 80% of all EMS 

calls (see Table 3.3).  

In discussions with EMS staff, it was decided that it would be reasonable to aggregate CTAS 3, 4 

and 5 calls into a lower priority Service Level Category.  It is important to note that these patients are 

not of low absolute priority, but low in comparison to life-threatening calls. The response time 

thresholds for SLC = L (for Low) are longer than for the other two SLCs.  

Table 3.3: Proportion of EMS Calls, by CTAS Level 

 

SLC High (H) SLC Medium (M) SLC Low (L) 
CTAS 1 

(including SCA) 
CTAS 2 CTAS 3 CTAS 4 CTAS 5 

Percentage of 
calls 

1.49% 19.02% 51.61% 25.15% 2.73% 

 

The government has not set a required service level requirement for lower acuity calls.  Therefore, 

our analysis will be done for a variety of response time thresholds for  𝑡𝐿 .  A detailed comparison 

will be provided in a subsequent chapter.  

3.2.4 Model Formulation 

Assumptions 

• Ambulances share a system-wide utilization rate ρ 

• Ambulances are independently dispatched 

• Firetrucks respond to High and Medium service level category calls 

Input Data: 

D set of demand nodes         
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S set of ambulance stations 

F set of fire stations 

SLC set of service level categories (H, M, L) 

K total number of ambulances in the system 

𝛾 firetruck  system-wide utilization rate 

𝜌 ambulance system-wide utilization rate 

𝜆𝑖𝑆𝐿𝐶 arrival rate of calls from demand node i, SLC = H, M, L, 𝑖 ∈ 𝐷 

Λ  ∑ ∑ 𝜆𝑖𝑆𝐿𝐶𝑖∈𝐷𝑎𝑙𝑙 𝑆𝐿𝐶  the overall demand rate 

ΛSLC  ∑ 𝜆𝑖𝑆𝐿𝐶𝑖∈𝐷  the overall demand rate for each SLC, SLC = H, M, L 

𝑡𝑆𝐿𝐶  threshold time for calls of each SLC,  SLC = H, M, L 

𝑎𝑖(𝑡𝑆𝐿𝐶) probability an ambulance can respond to a call from node i within tSLC time units, 

SLC = H, M, L, 𝑖 ∈ 𝑫 

𝑓𝑖(𝑡𝑆𝐿𝐶) probability a firetruck can respond to a call from node i within tSLC time units, 

SLC = H, M, 𝑖 ∈ 𝑫 

𝐶𝑖𝑗(𝑡𝑆𝐿𝐶) coverage of node i by an ambulance from station j for each SLC,  

SLC = H, M, L, 𝑖 ∈ 𝑫, 𝑗 ∈ 𝑺 

𝐶𝑖𝑓(𝑡𝑆𝐿𝐶) coverage of node i by a firetruck from station f  for high priority calls,𝑖 ∈ 𝑫, 𝑓 ∈ 𝑭 

Decision Variables: 

𝑥𝑗   number of ambulances to locate at station j,  𝑗 ∈ 𝑺    

 

Formulation: 

 

Problem P1 maximizes the expected coverage s(P1), subject to a constraint on the total number of 

available ambulances in the system being equal to K. The system-wide coverage s(P1) is a weighted 

average over all nodes and service levels if coverage 𝑆𝑖𝑆𝐿𝐶. The variables  𝑎𝑖(𝑡𝑆𝐿𝐶) are calculated by 

the method described earlier. 

 

 (P1) 

Maximize 
𝑠(𝑃1) =

1
Λ
��𝜆𝑖𝑆𝐿𝐶

𝑖∈𝐷

𝑆𝑖𝑆𝐿𝐶

𝑆𝐿𝐶

 (1) 

Subject to  �𝑥𝑗
𝑗∈𝑆

≤ 𝐾 (2) 
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 1
ΛSLC�𝜆𝑖𝑆𝐿𝐶

𝑖∈𝐷

𝑆𝑖𝑆𝐿𝐶 ≥ 0.9,𝑺𝑳𝑪 = 𝐻,𝑀, 𝐿 (3) 

𝑎𝑖(𝑡𝑆𝐿𝐶) = 1 −��1 − 𝐶𝑖𝑗(𝑡𝑆𝐿𝐶)(1 − 𝜌𝑥𝑗)�
𝑗∈𝑆

, 𝑖 ∈ 𝑫,𝑺𝑳𝑪 = 𝐻,𝑀, 𝐿 

𝑓𝑖(𝑡𝑆𝐿𝐶) = 1 −� �1 − 𝐶𝑖𝑓(𝑡𝑆𝐿𝐶)(1 − 𝛾)�
𝑓∈𝐹

, 𝑖 ∈ 𝑫,𝑺𝑳𝑪 = 𝐻 

𝑆𝑖𝐻 = 𝑎𝑖(6) + 𝑓𝑖(6)𝑎𝑖(8) − 𝑓𝑖(6)𝑎𝑖(6), 𝑖 ∈ 𝑫 

𝑆𝑖𝑀 = 𝑎𝑖(𝑡𝑀), 𝑡𝑀 = 10.5,    𝑖 ∈ 𝑫 

𝑆𝑖𝐿 = 𝑎𝑖(𝑡𝐿), 𝑡𝐿 ∈ {10.5, 12, 14, 16 }, 𝑖 ∈ 𝑫 

𝑥𝑗 ≥ 0,   𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑗 ∈ 𝑺 

In P1, the objective function (1) maximizes the total expected demand covered accounting for the 

coverage probabilities 𝑪𝒊𝒋 and utilization rate 𝝆. Constraint (2) ensures that the sum of the allocated 

ambulances over all stations is at most K and constraint (3) guarantees the coverage for each service 

level category is above 90%.   

While this model is fairly accurate at a high level, it does not take into account that the number of 

ambulances available (K) varies over the course of the day, both due to shift changes, and due to on-

shift ambulances being called out to service.  This shortcoming is overcome by the approach in the 

next section.   

3.3 A State-Dependent Approach 

The state-dependent approach introduces the idea that the number of available ambulances over the 

course of the day changes as ambulances are dispatched to calls and as ambulances come onto shift or 

retire for the day. To help the ROWEMS update its current compliance table (Table 3.4), we 

formulate a state-dependent model that indicates where available ambulances should be located given 

the number available for service.  

About a decade ago, Gendreau et al. (2001) developed a dynamic ambulance relocation model which 

can be applied in real-time through the use of parallel computing.  However, one drawback of 

dynamic relocation algorithms is the need to compute a new solution whenever a vehicle is 

dispatched to a call.  This can be time consuming or even infeasible when calls arrive in quick 

succession throughout the day. Therefore, Gendreau et al. (2006) proposed an a priori methodology in 
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which several solutions are precomputed in anticipation of future events. Whenever an ambulance 

finishes its previous duty or an emergency call occurs randomly at discrete instants during the day, a 

fleet relocation may take place.  Each solution maximizes coverage given the number of available 

vehicles.  

Table 3.4: Existing ROWEMS Compliance Table 

ROWEMS 
Compliance 

Table 
Number of Available Ambulances (m) 

Xj(m) 1 2 3 4 5 6 7 8 9 10 11 12 
Station 0 1    1 or 0 1 or 0 1 or 0 1 1 1 1 2 
Station 1       1 1 1 1 1 1 

GRH/ Station 2  1 1 1 1 1 1 1 1 2 2 2 
Station 3    1 1 1 1 1 1 1 1 1 
Station 4     1 1 1 1 1 1 2 2 
Station 5     0 or 1 0 or 1 0 or 1 1 1 1 1 1 
Station 6      1 1 1 1 1 1 1 
Station 7   1 1 1 1 1 1 2 2 2 2 

CMH  1 1 1          

With this idea in mind, instead of solving P1 with a fixed K, we improve the formulation (2) by 

allowing ∑ 𝑥𝑗𝑗∈𝑆  to vary between 0 and K.   The expected coverage is then  

� 𝑞𝑚𝑠(𝑚)
𝐾

𝑚=0

 

where 𝑞𝑚 is the probability of having m available ambulances in the system and s(m) is the expected 

overall coverage when there are m available ambulances in the system.  For example, if we consider a 

case where we have 15 ambulance crews on shift, then 𝑞𝑚 is the probability of having m = 0, 1, 2 … 

15 available crews. This information was obtained using the EMS data. 

In order to complete our proposed model, we need to find the probability distribution of the number 

of available ambulances. Due to the dynamic environment of the EMS system, this approach should 

be more representative of the real system rather than solving P1 for a fixed number of ambulances.  

3.3.1 The Relationship between 𝒒𝒎 and ρ 

Gendreau et al. (2006) suggested a relationship between 𝑞𝑚 and ρ through the binomial distribution. 

The authors expressed the probability of a vehicle being available as: 
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𝑝 = 1 − 𝜌, where 𝜌 = 𝜆
𝐾𝜇

. (3.7) 

In (3.7), λ is the arrival rate of calls per hour, μ is the average service rate (hours) and K is the 

number of ambulances on shift.  Formula (3.7) corresponds to the utilization rate in the MEXCLP of 

Daskin (1983), who estimates the utilization rate 𝜆
𝐾𝜇

 by dividing the length of time during which all 

ambulances are busy serving calls during a period of time (such as an hour) by the total duration of 

the period and by the number of ambulances that are deployed.   Using this estimation, Gendreau et 

al. (2006) computed the probability 𝑞𝑚 of finding m ambulances available by means of the binomial 

distribution: 

𝑞𝑚 = �𝐾𝑚�𝑝
𝑚(1 − 𝑝)𝐾−𝑚 (𝑚 = 0, … ,𝐾). (3.8) 

As described in Ross (1998), the binomial distribution is a discrete probability distribution of the 

number of successes in a sequence of n independent (Bernoulli) experiments, each of which yields 

success with the same probability p.  Although this relationship between 𝑞𝑚  and 𝑝  (3.7) seems 

reasonable at first glance, using the binomial distribution is only reasonable if the probability 𝑝 of an 

ambulance being available remains the same all the time.  

Ingolfsson et al. (2006) demonstrated that the utilization rate of an ambulance (also referred to as 

the “busy probability”) depends on the number and redeployment of ambulances between stations, 

whereas Equation (3.7) uses a fixed number (K) to generate the probability of ambulance availability.  

The state-dependent model in this thesis finds the optimal location of ambulances for each possible 

number of available ambulances.  It will thus provide a compliance table for any given number of 

available ambulances.   This maximizes the coverage by optimally deploying the available 

ambulances.     

3.3.2  Formulation of the State-Dependent Problem 

Taking into account that the number of available ambulances on shift changes over time when there 

are K on shift, (P1) can be improved by incorporating  𝑞𝑚  into the problem formulation.  Problem 

(P2) maximizes the expected coverage 𝑠(𝑃2), subject to a constraint on the total number of available 

ambulances in the system being equal to m, where m is an integer number between 0 and K. The 

system-wide coverage 𝑠(𝑃2) is a weighted average of the coverage overall demand nodes and service 

level categories.   The problem (P2) is now presented as follows: 
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Input Data: 

𝑞𝑚 probability there are m ambulances available given there are K on shift. 

𝑆𝑖𝑆𝐿𝐶(𝑚) probability that an ambulance (or a firetruck in the case of H calls) can arrive at a call 

from node i within the time threshold for  SLC = H,M,L. 

Decision Variables: 

𝑥𝑗(𝑚)  

 

the number of ambulances located at the jth station when there are m ambulances 

available in the system 

Auxiliary Variables: 

𝑦𝑗(𝑚) a binary variable equal to zero if there are no ambulances at station  j when there are m 

ambulances available, equal to 1 otherwise.   Therefore 𝑦𝑗(𝑚) ≤ 𝑥𝑗(𝑚) 𝑗 ∈ 𝑆,𝑚 =

1, … ,𝐾 

 

Note that 𝑞𝑚   can be determined empirically, or it can be computed using the binomial distribution 

where (1-ρ) = p is the probability that any random ambulance is available. (This assumes that the 

ambulances share a common “busy factor” or utilization rate ρ). 

 

With these new variable definitions, P2 can be stated: 

 

(P2) 

Maximize 𝑠(𝑃2) =
1
Λ
��𝜆𝑖𝑆𝐿𝐶 � 𝑞𝑚

𝐾

𝑚=1𝑖∈𝐷

𝑆𝑖𝑆𝐿𝐶

𝑆𝐿𝐶

(𝑚) 

Subject to  �𝑥𝑗(𝑚)
𝑗∈𝑆

= 𝑚,          𝑚 = 0, … ,𝐾 

𝑦𝑗(𝑚) ≤ 𝑥𝑗(𝑚) 𝑗 ∈ 𝑆,𝑚 = 0, … ,𝐾 

1
ΛH�𝜆𝑖𝐻

𝑖∈𝐷

� 𝑞𝑚

𝐾

𝑚=1

𝑆𝑖𝐻(𝑚) ≥ 0.9 

𝑎𝑖(𝑡𝑆𝐿𝐶 ,𝑚) = 1 −  ��1 − 𝐶𝑖𝑗(𝑡𝑆𝐿𝐶)𝑦𝑗(𝑚)�
𝑎𝑙𝑙 𝑗

,    𝑖 ∈ 𝑫, 𝑺𝑳𝑪 = 𝐻,𝑀, 𝐿 

𝑓𝑖(𝑡𝐻) = 1 −� �1 − 𝐶𝑖𝑓(𝑡𝐻)(1 − 𝛾)� ,
𝑓∈𝐹

 𝑖 ∈ 𝑫 
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𝑆𝑖𝐻(𝑚) = 𝑎𝑖(6) + 𝑓𝑖(6)𝑎𝑖(8) − 𝑓𝑖(6)𝑎𝑖(6),         𝑖 ∈ 𝑫 

𝑆𝑖𝑀(𝑚) = 𝑎𝑖(𝑡𝑀),          𝑡𝑀 = 10.5, 𝑖 ∈ 𝑫 

𝑆𝑖𝐿(𝑚) = 𝑎𝑖(𝑡𝐿),          𝑡𝐿 ∈ {10.5, 12, 14, 16}, 𝑖 ∈ 𝑫 

𝑥𝑗𝑚 ≥ 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑗 ∈ 𝑺,𝑚 = 0, … ,𝐾 

𝑦𝑗(𝑚) ≥ 0, 𝑏𝑖𝑛𝑎𝑟𝑦, 𝑗 ∈ 𝑺, 0 ≤ 𝑚 ≤ 𝐾 

 

This formulation is not concerned with which ambulance of the m available is sent to a call.  It 

simply computes the probability that there is an available ambulance and a call from node i can be 

reached within the necessary threshold time.   

One of the shortcomings of P2 is that it uses a single utilization rate.  In fact, the utilization rate of 

the ambulances will depend on where they are located.  A better formulation would take this into 

account and recompute the utilization rate as needed.  This will have an impact on the values of 𝑞𝑚  

used in the optimization.   

In the next section, we propose an iterative algorithm that takes into the account that the ambulance 

utilization rate will change as a function of the ambulance locations.  

3.3.3 An Iterative Algorithm 

As just noted, in (P2) the utilization rate ρ depends on how ambulances are located. This is because 

the utilization rate is a function of the average service time for an ambulance, as expressed in 

Equation (3.9) below.  The average service time is the sum of the average response time, time on 

scene, and if the ambulance goes to the hospital, also the average time spent travelling to and at the 

hospital.   

Some location models assume that the average service time is either independent of vehicle 

location, or independent of the location of the call, or both.   However, this is clearly not the case.   

The service time can, depend on a host of factors such as ambulance location, the call location 

(including whether the call comes from an apartment building or a low-rise), the time of day, weather,  

and the crowding level in the hospital ED.  A simple model of the expected ambulance service time, 

given m ambulances are deployed, is written in equation (3.9).   Define E(τ) as the expected service 

time of a random ambulance call: 
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E(τ) =   E(response time) + E(time on scene)  

           + Prob(travel to hospital)[E(time to hospital + time at hospital)]. 
(3.9) 

 

The formulation of P2 assumes that empirical values for 𝒒𝒎  are available, or they can be computed  

(e.g. via the binomial distribution).  If we use the binomial distribution, then the probability that a 

random ambulance is available is p = 1-ρ where ρ can be computed from: 

𝑞𝑚 = �𝐾𝑚�𝑝
𝑚(1 − 𝑝)𝐾−𝑚     m = 0,…,K 

and 

𝑝 = 1 − 𝜌 = 1 −  
𝛬𝐸(𝜏)
𝐾

. 

 

The expected response time, the first component of (3.9), depends on how the m ambulances are 

allocated to stations and can be calculated using the following equation: 

𝐸[𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒] = ��𝜆𝑖𝑆𝐿𝐶𝑆𝑖𝑆𝐿𝐶

𝑖∈𝐷𝑆𝐿𝐶

𝑇(𝑅𝑖𝑗) 

Where, as before: 

(3.10) 

𝑆𝑖𝐻(𝑚) = 𝑎𝑖(6) + 𝑓𝑖(6)𝑎𝑖(8) − 𝑓𝑖(6)𝑎𝑖(6),        𝑖 ∈ 𝑫 

𝑆𝑖𝑀(𝑚) = 𝑎𝑖(𝑡𝑀),      𝑖 ∈ 𝑫 

𝑆𝑖𝐿(𝑚) = 𝑎𝑖(𝑡𝐿),      𝑖 ∈ 𝑫 

 

𝑎𝑖(𝑡𝑆𝐿𝐶 ,𝑚) = 1 −  ��1 − 𝐶𝑖𝑗(𝑡𝑆𝐿𝐶)𝑦𝑗(𝑚)�
𝑎𝑙𝑙 𝑗

,    𝑖 ∈ 𝑫, 𝑺𝑳𝑪 = 𝐻,𝑀, (3.11) 

𝜌 = 𝜆𝑖𝑆𝐿𝐶
𝜏(𝑚)
𝐾

,       𝑖 ∈ 𝑫 (3.12) 

 

In Equation (3.10), 𝑇(𝑅𝑖𝑗) is the expected travel time from node i to the station closest to i when 

there are m ambulances in the system.  While the optimization solver is not able to compute  𝑇(𝑅𝑖𝑗)  

in the midst of solving P2, it can be computed it once we have a solution to P2. This is assumed to be 

a known parameter in our model.  

The proposed improvement to P2 is thus to compute ρ iteratively based on the idea that the 

ambulance location has an impact on the expected ambulance utilization rate, which then has an 

impact on the optimal location of the ambulances.  
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The algorithm to determine 𝜌 iteratively is as follows (Figure 3.1): 

 

Step 1: Initialize 𝜌 to 𝜌𝑖𝑛  and 𝑞𝑚  to 𝑞𝑖𝑛  ; both 𝑞𝑖𝑛 and 𝜌𝑖𝑛  can be determined from empirical data.  

Set the cnt=1 and choose a smoothing parameter β (0,1). 

Step 2: Solve the optimization problem P2 using 𝑞𝑖𝑛 and  𝜌𝑖𝑛. Denote the vector of 𝑥𝑗(𝑚)  variables 

in the solution by 𝑥𝑐𝑛𝑡∗ . If 𝑥𝑐𝑛𝑡∗ = 𝑥𝑐𝑛𝑡−1∗   and |𝜌𝑖𝑛 − 𝜌𝑜𝑢𝑡| < 𝜀 are satisfied, stop. 

Step 3: Estimate 𝜌𝑜𝑢𝑡  using the solution 𝑥𝑐𝑛𝑡∗  and equation (3.10) to (3.12). Set 𝜌𝑖𝑛 = 𝛽𝜌𝑜𝑢𝑡 +

(1 − 𝛽)𝜌𝑖𝑛 and 𝑐𝑛𝑡 = 𝑐𝑛𝑡 + 1, 𝑞𝑖𝑛 = 𝐵𝑖𝑛(𝑚,𝜌𝑖𝑛)  return to step 2. 

Figure 3.1: The Heuristic Approach 

 
 

 

In this chapter, a number of formulations have been proposed for solving the tiered ambulance 

location problem.  Each added features of the real-world problem that make the formulation closer to 

1. The initial ρ and qm
can be found from 

empirical data 

2.Solve P2 with qm
and  ρ to find a new 

compliance table 

3. The new 
compliance table will 

change the service 
time, and thus qm

4. Find the new ρ 
which  depends on 

the travel time to the 
new location

5. Calculate qm by 
the distribution 
function q=f(ρ) 

during the iteration
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the real situation.  The performance of (P2) and the suggested heuristic will be studied in more detail 

in Chapter 5, once the empirical data analysis presented in Chapter 4 is completed. 
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Chapter 4 
Empirical Analysis 

4.1 Introduction 

This chapter contains an empirical analysis of the Region of Waterloo EMS data so that the 

parameters of models P2 can be estimated.  The following sections will answer three main questions 

by analyzing the ROWEMS database.  

a) What is the system-wide utilization rate for ambulances using the current compliance table 
and ambulance schedules? 

b) What is the relationship between the utilization rate 𝜌 and 𝑞𝑚, the probability m ambulances 
are available given K are on shift? 

c) What are the average values for the various components of ambulance service time, T2 to 
T7? 

4.2 Data Description 

In order to estimate various parameters for our optimization model, we extracted a full year of data 

(05/01/2007 to 04/30/2008) for priority 3 and 4 responses from the ROWEMS database.   The 

dataset has 33,255 calls in total, but not all of them had the time on scene, time to hospital or time at 

hospital.  For example, a call will not have the “arrival on scene” (T4), “Departure Time” (T5), 

“Arrival in hospital” (T6), and “patient discharged” (T7), if it is pre-empted for a higher priority call.  

In addition, some patients were not sent to the hospital, in which case T6 and T7 in those rows were 

blank.  We used only the calls for which all of the data was available to compute the components of 

equation (3.10).  We began by analyzing each time component on an hourly basis (Figure 4.6).  

4.3 System-Wide Utilization rate and Ambulance schedules 

To find the system-wide utilization rate for ambulances, we computed the total busy ambulance-hours 

as a percentage of total available on-shift ambulance hours over a sample time period for the 

ROWEMS.   An ambulance is considered busy from the time crew members are notified of an 

emergency call (T2) until the patient is discharged (T7).  Therefore, the total number of busy 

ambulance-hours over a given time period can be found by summing  T2 and T7 for all calls during 

that time.   
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Figure 4.1 shows the number of ambulances on-shift over the course of a day for the ROWEMS, 

and the total available ambulance time is the area under the solid line.   From this information, the 

system-wide ambulance utilization rate, ρ, can be computed using: 

 

𝜌 =
𝑇𝑜𝑡𝑎𝑙 𝐴𝑚𝑏𝑢𝑙𝑎𝑛𝑐𝑒 𝐵𝑢𝑠𝑦 𝑇𝑖𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝐴𝑚𝑏𝑢𝑙𝑎𝑛𝑐𝑒 𝑇𝑖𝑚𝑒
 

 

Figure 4.1: ROWEMS Number of Ambulances on Shift 

 
 

The time period over which we compute the utilization rate is an important consideration.  Using a 

daily time period will not capture the large variations in call volumes that occur over the day.  An 

hourly time period may be somewhat too fine-grained (but could be considered in future work).  After 

close examination of the daily call arrival patterns, we decided to divide each day into three different 

periods with similar arrival rates.   The hourly call arrival rate is shown in Figure 4.2.  The vertical 

axis indicates the fraction of the total daily calls.  There are two extreme periods in this plot on a daily 

basis: one is from 9:00 am to 8:59 pm, a continuous 12-hour period, where the hourly arrival rate is 

greater than 4.8% of total calls.  Another is between 1:00 am and 6:59 am, where the total hourly 

arrival rate is below 3% of total calls.  We divided the day into three periods according to the 

following heuristic:  
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• The “Busy” period from 9:00 am to 8:59 pm has an hourly call arrival rate > 4.8% of total 

daily calls, 

• The “Quiet” period from 1:00 am to 6:59 am has an hourly call arrival rate < 3.0% of total 

daily calls, 

• The “Moderate” period from 7:00 am to 8:59 am and from 9:00pm to 00:59 am has an hourly 

call arrival rate between 3.0% and 4.8% of total daily calls. 

Figure 4.2: Hourly Call Arrival Rate 

 

The expected service time and utilization rate of each period are summarized in Table 4.1. 

Equation 3.9 shows that the total expected service time includes response time, time spent on scene, 

travel time between scene and hospital, and waiting time at hospital. All the un-cancelled services at 

least require the first two components from Equation 3.9.  However, an average of 70% of the calls 

need to be sent to hospital, which requires all the components of service time.  The total expected 

service time in the quiet, moderately busy and busy periods are respectively 53.22, 60.22 and 65.42 

minutes. The expected workload (rho) is calculated by Equation 3.12. 

Table 4.1 Summary Statistics for each time period 
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Number of ambulances that go to the hospital  3244 5247 14910 

 Prob(ambulance goes to hospital)  0.71 0.72 0.70 
   Expected travel time (mins) 10.51 11.55 12.39 
   Expected time at hospital (mins) 30.43 38.22 44.39 
   Total Expected Service Time (mins) 53.22 60.22 65.42 

  Expected number of ambulances on shift 7.83 10.00 14.08 
  Expected workload (rho) 23.65% 33.24% 37.71% 

 

In order to compute the average ambulance utilization rate in each period, we need to specify the 

number of ambulances on shift.  While the number of ambulances varies by hour over each time 

period, we were able to take a weighted average:   

• An average of 7.83 ambulances are available in the Quiet time period 

• An average of 10.00 ambulances are available in the Moderate time period 

• An average of 14.18 ambulances are available in the Busy time period 

4.3.1 Binomial distribution test 

We now address the second question: what is the relationship between 𝑞𝑚 and 𝜌? Following the same 

time periods in the day, we calculated the probability distribution of the number of available 

ambulances and then related this to the corresponding utilization rate.   We first started by identifying 

the number of busy ambulances, and then determined the number of available ambulances using 

Equation 4.1.  The probability the system has m available ambulances is one minus the probability of  

K-m ambulances being busy.  Both the numerator and denominator in Equation (4.1) can be found 

from an analysis of the EMS data. The shaded region in Figure 4.3 represents the total available 

ambulance time which is the denominator of Equation (4.1).   

𝑞𝑚 = 1 −
𝑇𝑖𝑚𝑒[(𝐾 −𝑚) 𝑎𝑚𝑏𝑢𝑙𝑎𝑛𝑐𝑒𝑠 𝑎𝑟𝑒 𝑏𝑢𝑠𝑦]

[𝑇𝑜𝑡𝑎𝑙 𝐴𝑚𝑏𝑢𝑙𝑎𝑛𝑐𝑒_𝑇𝑖𝑚𝑒]
 (4.1) 
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Figure 4.3: Daily Total Ambulances-Time 

 
 A snapshot of the actual number of busy ambulances on May 07, 2008 is shown in Figure 4.4. 

When a demand occurs,  an ambulance is dispatched and the graph goes up by one unit; whenever an  

ambulance crew finishes a call, the ambulance is considered available to go back into service, and the 

graph drops by one unit. Using such a graph makes it straightforward to compute the probability that 

0, 1, 2… K ambulances are busy.   

A period of 5 weeks, from March 30th, 2009 to May 3rd, 2009, was used to study ambulance 

utilization.  The empirical probability distribution for the number of busy ambulances is presented in 

Table 4.2, and the expected number of busy ambulances in the Busy, Moderately Busy and Quiet 

periods are 7.12, 4.50 and 2.89, respectively.   
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Figure 4.4: Snapshot of Real time Ambulance Dispatch 

 

Table 4.2: The Probability distribution of busy Ambulances 

# Busy Units  Quiet Moderate Busy  Busy 
0 7.67% 1.55% 0.17% 
1 11.76% 3.07% 0.43% 
2 25.35% 10.49% 1.80% 
3 22.44% 17.24% 4.56% 
4 14.80% 20.66% 9.86% 
5 11.36% 17.99% 12.87% 
6 4.43% 13.45% 15.04% 
7 1.11% 8.89% 15.51% 
8 0.83% 2.97% 12.28% 
9 0.09% 2.56% 8.26% 

10 0.17% 0.71% 6.22% 
11 N/A 0.32% 5.43% 
12 N/A 0.08% 3.58% 
13 N/A N/A 2.38% 
14 N/A N/A 0.86% 
15 N/A N/A 0.46% 
16 N/A N/A 0.14% 
17 N/A N/A 0.14% 

Expected Number 2.89 4.50 7.12 
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Gendreau et al (2006)  suggested that the number of available ambulances in an EMS system 

should follow a Binomial Distribution where the parameters are the number of ambulances on shift 

(K) and the probability of “success” is p = 1- ρ, where ρ is the system-wide utilization rate of the 

ambulances.   This implies that the probability distribution of the number of busy ambulances should 

follow a Binomial distribution with parameters K and ρ.   We used the chi-square Goodness-of-fit test 

to check if the empirical probability distribution of the number of available ambulances in each time 

period of a day follows a binomial distribution.  The chi-square goodness-of-fit test can be applied to 

discrete distributions such as the binomial and the Poisson.  

The probability distribution of the number of busy ambulances during each period of the day is 

shown in Figure 4.5.  From visual inspection, the binomial distribution is a plausible explanation of 

the data.  Using a 100-minute timeframe, the expected and observed number of minutes on-shift 

ambulances were busy is presented in Table 4.3. The problem is then to test whether the distribution 

of the sample data in each period is a 𝐵𝑖𝑛(𝐾,𝜌) distribution.  

Figure 4.5: PDF of the number of busy Ambulances  

 

For the Moderately Busy time period, the chi-square test is as follows:  

𝐻𝑂:  the data follows binomial distribution (𝐵𝑖𝑛(12,𝜌) for some ρ)  

𝐻𝑎:  the data does not follow the binomial distribution 
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The mean of the Binomial distribution with n trials and a probability ρ of success is n*ρ. From the 

empirical data, the expected number of busy ambulances is 4.50.  With 12 ambulances actually on 

shift during this period,  we infer that the average utilization rate should be 37.5%.  Our test then 

becomes whether the distribution follows a binomial distribution with n = 12 and ρ = 37.5%. Using 

these parameters, Table 4.3 compares the actual and hypothesized number of minutes that there are 0, 

1… 12 busy ambulances.  

Table 4.3: Observed Counts vs. Expected Counts when ρ=37.5% 

# busy 0 1 2 3 4 5 6 7 8 9 10 11 12 
Observed 
Counts 1.50 3.00 10.50 17.30 20.60 18.00 13.50 8.80 3.00 2.60 0.70 0.30 0.20 

Expected 
Counts 0.36 2.56 8.44 16.88 22.79 21.88 15.32 7.88 2.95 0.79 0.14 0.02 0.001 

Some of the expected counts are too small so we combing some of the categories to get Table 4.4. 

Table 4.4: Combined Observed Counts vs. Expected Counts when ρ =37.5% 

# busy 1 or less 2 3 4 5 6 7 8 or more 

Observed 
Counts 

4.5 10.5 17.3 20.6 18 13.5 8.8 6.8 

Expected 
Counts 

2.91 8.44 16.88 22.79 21.88 15.32 7.88 3.90 

For the chi-square goodness-of-fit computation, the data is divided into 8 bins and the test statistic is 

defined as 

𝜒2 = �
(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖

8

𝑖=1

 

where Oi is the observed frequency for bin i and  𝐸𝑖 is the expected frequency for bin i.  

Thus, the test statistic is 

𝜒2 = �
(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖

8

𝑖=1

 

=
(4.5 − 2.91)2

2.91
+ ⋯+

(6.8 − 3.9)2

3.9
 

= 4.76 
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The test statistic follows, approximately, a chi-square distribution with (k - c) degrees of freedom 

where k is the number of non-empty bins and c equals the number of estimated parameters.  c=1 in 

our case, as we want to estimate one parameter, namely ρ. The degrees of freedom are thereby k −c = 

8 − 1 = 7. With the significant level α, the hypothesis that the sample data are from a population with 

the binomial distribution is rejected if  

𝜒2 > 𝜒(𝛼,7)
2  

where 𝜒(𝛼,7)
2  is the chi-square percent point function with k - c degrees of freedom and a significance 

level of α.  The Chi-square critical value with 𝛼 = 0.1 significance level, is 12.02. When the ρ = 

37.5%, the test statistic value 𝜒2 is much smaller than the critical value. Therefore, we are not able to 

reject the null hypothesis that the sample data follows a binomial distribution.  

The same test was applied to the busy and quiet periods.   

For the quiet period, we wish to test:  

H0: the data follows binomial distribution (𝐵𝑖𝑛(10,𝜌) for some ρ)  

Ha: the data does not follow the binomial distribution 

The expected number of busy ambulances at quiet period is 2.89, which leads to 𝜌 = 𝐸(𝑥)
𝑛

= 2.89
10

=

28.9%.  Using a 100-minute timeline, the observed and expected counts are shown in Table 4.5. 

Table 4.5: Observed Counts vs. Expected Counts when ρ=28.9% 

# busy 0 1 2 3 4 5 6 or more 

Observed 
Counts 7.67 11.76 25.35 22.44 14.80 11.36 6.63 

Expected 
Counts 3.30 13.42 24.55 26.60 18.92 9.23 3.97 

 

For the chi-square goodness-of-fit computation, the data is divided into 7 bins, and the test statistic is 

𝜒2 = �
(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖

7

𝑖=1

= 4.05 

With the significance level α and degree of freedom 6, the hypothesis that the sample data are 

from a population with the binomial distribution is rejected if  
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𝜒2 > 𝜒(𝛼,6)
2  

The Chi-square critical value, at the 0.1 significance level, is 10.64. When the ρ=28.9%, the test 

statistic value 𝜒2 is much smaller than the critical value.  Therefore, we are not able to reject H0 at 

10% significance level and conclude that the sample data follows a binomial distribution.  

Finally, for the busy period, we test:  

H0: the data follows binomial distribution (𝐵𝑖𝑛(17,𝜌) for some ρ)  

Ha: the data does not follow the binomial distribution 

The expected number of busy ambulances in the busy period is 7.12, which leads the 𝜌 = 𝐸(𝑥)
𝑛

=

7.12
17

= 41.88%.  Using a 100-minute timeframe, the observed and expected number of minutes that 

there are n busy ambulances is shown in Table 4.6. 

Table 4.6: Combined Observed Counts vs. Expected Counts when ρ =41.88% 

# busy 3 or less 4 5 6 7 8 9 10 or more 

Observed 
Counts 7.10 9.30 12.90 15.00 15.50 12.30 8.30 19.60 

Expected 
Counts 3.33 6.32 11.84 17.07 19.33 17.41 12.55 12.16 

 

For the chi-square goodness-of-fit computation, the data is divided into 8 bins, and the test statistic is 

𝜒2 = �
(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖

8

𝑖=1

= 14.27 

With the significance level α and degrees of freedom 7, the hypothesis that the sample data are from a 

population with the binomial distribution is rejected if  

𝜒2 > 𝜒(𝛼,7)
2  

The Chi-square critical value, at the 0.1 significance level, is 12.02. When ρ=41.88%, the test statistic 

value 𝜒2 is greater than the critical value. Therefore, we should to reject H0 at 10% significance level 

and conclude that the sample data does not follow a binomial distribution with n = 17 and ρ = 

41.88%.  
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However, the system could still behave binomially with an unexpected value of n, when it is in the 

busy period. Instead of the 17 ambulances on shift in the busy period, we then test the hypothesis with 

n = 19. 

H0: the data follows binomial distribution (𝐵𝑖𝑛(19,𝜌) for some ρ)  

Ha: the data does not follow the binomial distribution 

The expected number of quiet period is 7.12, which leads the 𝜌 = 𝐸(𝑥)
𝑛

= 7.12
19

= 37.47%. For the 100-

minute timeline, the observed and expected counts are shown in Table 4.7. 

Table 4.7: Observed Counts vs. Expected Counts when ρ=37.5% 

# busy 0 1 2 3 4 5 6 7 8 9 
Observed 
Counts 0.20 0.50 1.80 4.60 9.30 12.90 15.00 15.50 12.30 8.30 

Expected 
Counts 0.36 2.56 8.44 16.88 22.79 21.88 15.32 7.88 2.95 0.79 

# busy 10 11 12 13 14 15 16 17 18 19 
Observed 
Counts 6.20 5.40 3.60 2.40 1.00 0.60 0.20 0.20 

  Expected 
Counts 7.37 3.61 1.44 0.47 0.12 0.02 3.58E-03 3.79E-04 2.52E-05 7.96E-07 

 

Table 4.8: Combined Observed Counts vs. Expected Counts when ρ =37.47% 

# busy 3 or less 4 5 6 7 8 9 10 or more 

Observed 
Counts 7.10 9.30 12.90 15.00 15.50 12.30 8.30 19.60 

Expected 
Counts 3.77 6.67 12.00 16.77 18.67 16.78 12.30 13.04 

 

For the chi-square goodness-of-fit computation, the data is divided into 8 bins (Table 4.8), and the 

test statistic is 

𝜒2 = �
(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖

8

𝑖=1

= 10.57 

With the significant level α and degree of freedom 7, the hypothesis that the sample data are from 

a population with the binomial distribution is rejected if  
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𝜒2 > 𝜒(𝛼,7)
2  

The Chi-square critical value, at the 0.1 significance level, is 12.02. When the ρ=37.47%, the test 

statistic value 𝜒2 is smaller than the critical value. Therefore, we cannot reject H0 at 10% significance 

level and conclude that the sample data follows a binomial distribution with n = 19.  

So far, we have proved that binomial distribution is the best fitted relationship between the 

utilization rate 𝝆 and 𝒒𝒎 using the empirical data from Busy, Moderate Busy and Quiet periods of a 

day. According to Equation (3.7) and (3.8), we are able to calculate the 𝒒𝒎 once we have the value of 

ρ (Table 4.9) from empirical study.  

Table 4.9: Value of probability of ambulances being available in each time period  

Time Period K ρ from Empirical Study 𝑝 = 1 − 𝜌 

Quiet 10 28.9% 𝑝 = 1 − 28.9% = 71.1% 

Moderate Busy 12 37.5% 𝑝 = 1 − 37.5% = 62.5% 

Busy 17 37.45% 𝑝 = 1 − 37.45% = 62.55% 

Table 4.10 shows the initial value of 𝒒𝒎 that will be used in (P2) model for different time periods. 

Using this data as a starting point, the model will generate the first compliance table.  This will lead to 

a revised ρ for each period (section 3.4.2). Following the iterative algorithm introduced in previous 

chapter, the convergent ρ will be found. 

Table 4.10: Initial Value of 𝒒𝒎 using p in Table 4.9 

 𝑞𝑚 = �𝐾𝑚�𝑝
𝑚(1 − 𝑝)𝐾−𝑚 (𝑚 = 0, … ,𝐾) 

m 𝑞𝑚 (Quiet Period) 𝑞𝑚 ( Moderate Busy ) 𝒒𝒎 (Busy ) 
0 0.0004% 0.0008% 0.0000% 
1 0.0100% 0.0155% 0.0002% 
2 0.1107% 0.1418% 0.0021% 
3 0.7262% 0.7877% 0.0178% 
4 3.1267% 2.9538% 0.1038% 
5 9.2308% 7.8767% 0.4509% 
6 18.9247% 15.3158% 1.5063% 
7 26.6049% 21.8797% 3.9535% 
8 24.5451% 22.7914% 8.2541% 
9 13.4191% 16.8825% 13.7862% 
10 3.3014% 8.4412% 18.4209% 
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11 N/A 2.5580% 19.5791% 
12 N/A 0.3553% 16.3507% 
13 N/A N/A 10.5036% 
14 N/A N/A 5.0124% 
15 N/A N/A 1.6744% 
16 N/A N/A 0.3496% 
17 N/A N/A 0.0343% 

4.4 Service Time Components 

An accurate measure of the ambulance service time is a very important component of the ambulance 

utilization rate.  As we showed in the previous section, the time on scene, time to hospital and time at 

hospital are a function of our health network design.  Generally, there is neither a traditional way to 

estimate the data, nor a predesigned benchmark. Therefore, we use an empirical analysis of the data to 

determine these components.  

Figure 4.6: Hourly Service Time Components 

 

4.4.1 Response time (T2 – T4) 

The diamond shaped line in Figure 4.6 is the average response time for priority 3 and 4 calls at 

various hours of the day. The response time is normally between 7.91 minutes and 9.32 minutes, with 

an average response time of 8.46 minutes.  Though we have stated that response time is affected by 

ambulance location, the average time is relatively consistent. We did find that the response time 
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reaches its maximum at 5AM.  Budge et al. (2010) also discovered peaks in median travel time during 

the afternoon rush hour at 5PM and a higher peak at 5AM in the city of Calgary.  The author explains 

this effect by the fact that paramedics are more likely to record the travel time to have started before 

the ambulance has actually departed.  The more likely explanation is the small number of ambulances 

on duty at 5AM in the morning, and thus the response time to a random call will be longer.  The other 

peak at 6PM can be simply categorized as the rush hour effect.   

We also used the empirical data to estimate the probability an ambulance located at a specific 

station can respond to a call within different threshold response times.  The full details of this study 

can be found in Aladdini (2010).  He found that the response time from a station to a random call was 

found to have a Lognormal Distribution.  Moreover, the mean response time did not appear vary 

significantly with the time of day. Using a regression model that captured the travel distances on 

municipal roads, regional roads and highways, Aladdini (2010) used a regression model to estimate 

mean travel time.  Further analysis of the data resulted in the development of a functional relationship 

between the mean and variance of the travel time.  This was used as the basis for establishing the 

probability that a call from node i could be responded to within an arbitrary given response time 

threshold. 

4.4.2 Time on Scene (T4 – T5) &Time to hospital (T5- T6) 

The time spent on scene is the most stable time component of the four components of the service 

time.  The mean time on scene averaged 15.75 minutes during the quiet period, and only slightly 

higher, 15.96 minutes during the busy and moderately busy periods of the day.  The standard 

deviation of these values was 0.20 minutes2 in quiet period, 0.19 minutes2 in the busy period. A 

paired-t test was conducted to show that the difference is not statistically significant (Table 4.11).  

The t statistic at a 90% confidence interval is much smaller than the two-tailed critical value.  The test 

indicates that we cannot reject the null hypothesis that the mean on scene times are the same.   

Therefore, we used the overall average response time for each time period in our model. 

H0:  the mean time (T4 –T5) in Quiet period (𝜇1) equals the one in MB period (𝜇2) 

Ha: 𝜇1 ≠ 𝜇2 
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Table 4.11: Paired t-Test  

 𝝁𝟏 𝝁𝟐 
Mean (minutes) 15.75 15.96 

Variance (minutes2) 0.04 0.05 
Observations 6 6 

Degrees of freedom 5  
t Statistic -1.65  

P(T<=t) two-tail 0.16  
t Critical two-tail 2.57  

 

In contrast with the time spent on scene, the travel time between the scenes to the hospital is quite 

variable.  The average travel time was 10.45 minutes in the quiet, 12.37 minutes in the busy period 

and 11.50 minutes in moderately busy period.  

The standard deviation of the travel time to hospital in each period of a day is (respectively) 1.17 

in the quiet period, 0.31 in the busy period, and 0.67 in the moderately busy period.  This underscores 

the fact that when there are a small number of ambulances on shift, there can be substantial variation 

in travel distances from the call site to the hospital.  For simplicity, we have used the average time to 

the hospital in our analysis: 10.45 minutes in the quiet, 12.37 minutes in busy period and 11.50 

minutes in moderately busy period.  

4.4.3 Time at hospital (T6 – T7) 

Lastly, Figure 4.7 shows the time the ambulance crew spent in the hospital emergency department 

waiting for hospital personnel to admit their patient and assume responsibility for their care. Usually, 

the time should not exceed 20 minutes2

                                                      
2 The time is defined in “AMBULANCE OFFLOAD DELAYS AT HOSPITALS IN WATERLOO REGION” 

 if the transferring process runs smoothly. However, in health 

care systems where the respective accountability for emergency departments and EMS reside in two 

different areas, the burden of triage wait times has predominantly shifted to EMS, requiring 

paramedics to stay with their patients while they wait to be admitted for care. This overloads the 

EMS, leading to red alerts (the term used to describe situations where no ambulances are available) 

and increased costs of EMS (through needing a surplus of ambulances and staff to compensate for the 

extra time spent waiting in the emergency departments).  
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Figure 4.7: Time Ambulance Crew Spent in Hospital ER 

 

We found the time of paramedics spent in hospital emergency room relates strongly to the number 

of calls at each hour of a day. The higher the number of calls per hour, the longer the average length 

of time spent at the hospital. The correlation between the times spends in hospital and number of calls 

per hour is 0.9034. A linear regression (Table 4.12 shows both the R squared and adjusted R squared 

are greater than 0.80 which means that most of the variation in the time spent at the hospital is 

explained by the call intensity at that hour of the day.   

Table 4.12: Linear Region Statistic 

Regression Statistics 
Multiple R 0.903416738 
R Square 0.816161803 
Adjusted R 
Square 0.807805521 
Standard Error 2.965092113 
Observations 24 

     
  Coefficients 

Standard 
Error t Stat P-value 

Intercept 20.54401108 1.969511009 10.43102 5.57E-10 
# of calls 0.013367596 0.001352607 9.882836 1.5E-09 
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Table 4.13 presents the hourly service performance of ROWEMS between 05/01/2007 and 

04/30/2008. The column “Units on shift” indicates the number of ambulances in the system 

at each hour; “total calls” indicates the number of calls received within the above time 

period; and the “calls per hour” is the average number of calls received on each day. The four 

components of service time and the expected utilization rate (e.g. E(Rho))were exactly the 

same as introduced in Table 4.1. 

Table 4.13: Hourly System wide Utilization Rate 

    
All Calls Units that go to the hospital 

 

Time 

Units 
on 
shift 

Total 
calls 

Calls 
per 
hour 

Expected 
response 
time 

Expected 
Time on 
scene 

Prob(units 
goes to 
hospital) 

Call 
went to 
Hospital 

E (travel 
time) 

E (time 
at 
hospital) E (Rho) 

0am 9 966 2.64 8.09 15.79 69.15% 668 12.38 31.26 26.42% 
1am 9 931 2.54 8.03 15.43 64.98% 605 9.20 31.63 23.55% 
2am 9 708 1.93 8.18 15.69 68.79% 487 9.56 31.05 20.88% 
3am 8 587 1.60 9.04 16.03 75.98% 446 11.18 31.63 21.99% 
4am 7 613 1.67 9.32 15.87 73.08% 448 9.95 25.69 20.43% 
5am 7 788 2.15 9.25 15.68 74.87% 590 10.44 30.45 28.48% 
6am 7 1784 4.87 8.66 16.24 76.07% 1357 11.79 42.66 44.89% 
7am 8 1904 5.20 8.55 16.02 75.42% 1436 12.25 44.08 48.45% 
8am 10 1833 5.01 8.52 16.25 72.12% 1322 12.06 47.37 47.04% 
9am 12 1859 5.08 8.66 16.00 71.11% 1322 12.03 46.96 40.28% 
10am 12 1941 5.30 8.40 16.14 70.22% 1363 13.38 48.02 42.72% 
11am 12 1838 5.02 8.34 15.91 71.49% 1314 12.34 50.17 41.22% 
12pm 14 1787 4.88 8.44 16.23 69.95% 1250 13.32 48.47 36.83% 
1pm 14 1737 4.75 8.37 16.26 69.26% 1203 13.55 45.12 32.26% 
2pm 14 1778 4.86 8.27 15.71 65.75% 1169 11.99 38.91 29.07% 
3pm 15 1767 4.83 8.74 15.63 57.61% 1018 11.82 36.82 26.35% 
4pm 16 1661 4.54 8.25 15.21 68.45% 1137 11.65 40.69 29.90% 
5pm 16 1505 4.11 8.11 16.10 67.71% 1019 12.30 39.72 31.33% 
6pm 16 1433 3.92 8.21 15.95 71.18% 1020 11.48 40.59 36.32% 
7pm 15 1196 3.27 8.26 16.07 71.91% 860 12.53 37.99 30.03% 
8pm 13 1122 3.07 7.91 15.60 66.93% 751 10.68 34.67 25.02% 
9pm 11 1102 3.01 8.75 15.80 80.04% 882 11.56 38.07 40.32% 
10pm 11 1409 3.85 8.51 16.24 73.74% 1039 11.85 41.64 41.19% 
11pm 11 1006 2.75 8.26 16.11 69.09% 695 10.89 33.92 28.16% 
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4.5 Aggregated Map 

This section describes how the EMS data has been related to a map of the Region of Waterloo. We 

began with a map of the Region found on its website.  As previously described, the Region is divided 

into one square kilometer areas called UTMs.  Each UTM has a unique number based on its longitude 

and latitude. In total, there were 1378 UTMs, or nodes, in the region.  However, many of the UTMs 

are sparsely populated and give rise to very few EMS calls.  The Ambulance Response Information 

System (ARIS), maintained by the Ministry of Health and Long Term Care (MOHLTC), indicates 

that 90% of total emergency calls are from less than 17% UTMs within the Region of Waterloo and 

70% of UTMs have less than 20 calls within two years (Table 4.14).  The large number of demand 

nodes (UTMs) makes the optimization problem very large.  We introduced a heuristic to aggregate 

the UTMs within the Waterloo Region according to the historical call demand so that the size of the 

optimization problem could be reduced. 

Table 4.14: Call Distribution 

Number of UTMs 216 (17.1%) UTMs 160 (12.6%) UTMs 890 (70.3%) UTMs 

Call Density Category X > 50 calls 10< X <50 calls X <20 calls 

 

The map is clustered according to the following rules: 

1. The aggregated map only contains the municipal partners including cities of Kitchener, 

Waterloo, Cambridge, and townships of Woolwich, Wellesley, Wilmot and North Dumfries. 

For example, the services provided to City of Guelph are completely ignored.  

2. For the sake of simplicity, all cluster UTMs have to be square shape, and the largest square 

contains at most 5x5 UTMs. For example, a Cluster could only be 1x1 UTM, 2x2 UTMs, 3x3 

UTMs, 4x4 UTMs or 5x5 UTMs. 

3. No more than 50 calls within the 2-year history are allowed in each cluster UTM. 

4. Instead of using the geographic center of each cluster, we use the weighted average location 

of the historical calls’ origin. The average location is a dummy longitude and latitude on the 

map which may not even be in a residential area.                                          

5. Let i be the index for each call demand. 

a. Find the longitude and latitude (𝐿𝐿𝑖) of the exact call location 

b. Each location will be weighted by its call density (𝐷𝑖) 
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c. The average location (AL) can be calculated by 

𝐴𝐿 = � (𝐿𝐿𝑖 × 𝐷𝑖
𝑖

) 

6. Each cluster center has its own map coordinate and the sum of historical calls from all 

inclusive UTMs.  

a. The expected travel time and the partial coverage rate (Cij) from each station to the 

cluster can be generated by the Lognormal Distribution (see Aladdini (2010)). 

Figure 4.8 presents a map of the spatial distribution of Waterloo Region historical emergency 

demands.  Each grid represents a single UTM, and the interior color denotes the range of historical 

call demand level. As indicating in the Figure 4.8, the center of the map, which is the busiest area, is 

the downtown of Waterloo, Kitchener and Cambridge. Starting from the central area, we keep 

aggregating the individual UTM with small historical demand into big clusters according to the above 

rules. The whole KW region can be expressed as the Figure 4.9 which contains 387 cluster UTMs in 

total. 

Figure 4.8: Spatial Distribution of Historical Calls 
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Figure 4.9: Aggregated MAP for ROW 

 

4.6 Data summary 

The aggregated map, as described in section 4.3, contains 387 UTM clusters, which will be the set of 

demand nodes D.  As we mentioned earlier in this paper, we consider the three regional hospitals as 

ambulance stations. The Tri-City infrastructure includes 8 ambulance stations, 3 hospitals, and 15 fire 

stations, which will form the set of ambulance stations and fire stations (see Appendix A).  

ROWEMS varies its number of on-duty ambulances from 7 to 16 at different hours of the day, which 

will be the K at each time period.  The initial probability of m available ambulances in the system is 

listed in Table 4.9. The utilization rate of firetrucks is fixed at 5%, and that of ambulances is shown in 

Table 4.2. The number of calls per hour of each SLC, 𝜆𝑖𝑆𝐿𝐶, determined from the historical data, is 

shown in Table 4.13. The overall demand rate is 𝛬 =  ∑ ∑ 𝜆𝑖𝑆𝐿𝐶𝑖∈𝐷𝑆𝐿𝐶 and overall demand rate for 

each SLC is 𝛬𝑆𝐿𝐶 = ∑ 𝜆𝑖𝑆𝐿𝐶𝑖∈𝐷 . According to the latest provincial regulation, 𝑡𝑆𝐿𝐶  is the threshold 

time for calls of each SLC. For example, 𝑡𝐻 is 6 minutes for CTAS H calls, 𝑡𝑀 is 10.5 minutes for 

CTAS M calls, and 𝑡𝐿 is from 10.5 minutes to 16 minutes for CTAS L calls. Substituting the above 
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variables into P1 & P2, the optimal compliance table will be calculated by the decision variable 𝑥𝑗𝑚 , 

which leads the result of overall coverage and the coverage of each SLC. 

 

Summary Data: 

Parameter Data 

D 387 UTMs           

S 8 stations, plus three hospitals, as listed in Appendix A 

F 15 stations,  as listed in Appendix A 

tH 6 mins for the first responder, 8 minutes for an ambulance 

tM 10:30 minutes 

tL 10:30, 12:00, 14:00 and 16:00 minutes 

𝜸 0.05  

ΛH/Λ 0.0149 

ΛM/Λ 0.1902 

ΛL/Λ 0.7949 

 

Parameter Quiet Period Moderate Busy 

K 10 12 16 

𝝆 0.2890 0.3750 0.3745 
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Chapter 5 
Computational Results 

5.1 Introduction 

Chapter 3 outlines two different mathematical formulations for the ambulance location problem, and 

a heuristic to improve the solutions obtained from the second formulation.   Chapter 4 presents the 

results of an empirical analysis of the Waterloo Regional EMS system data.  This data forms the basis 

of the parameter settings for the optimization models.  In this chapter, we conduct a computational 

comparison of the optimization models to determine how well they perform in terms of making 

meaningful recommendations to the region.  

Our first result is that with current resource levels, the region cannot attain a 90% service level for the 

highest acuity level patients.   Based on a trial and error analysis, we set the service level for H 

customers to 60% and then solved P2 with the objective of maximizing the overall expected 

coverage.  We refer to that problem as P2(1).  This led to one set of compliance tables.  We then 

revised the objective function to maximize the coverage of H calls (refer to this as Z*) and obtained a 

second set of compliance tables (call this problem P2(2)).  Finally, we solve P2 again (P2(3)), but 

with the objective of  maximizing expected coverage with a service level of Z*-0.05 for H calls.  The 

final compliance tables from these three objective functions are different from one another.  We will 

discuss how they are different in the next section.   

5.2 Data Description 

The aggregated map, as described in Chapter 4, contains 387 UTM clusters.  As mentioned earlier, 

Region of Waterloo EMS infrastructure includes 8 ambulance stations, 15 fire stations and 3 

hospitals.  We also included the three regional hospitals as ambulance stations.  The initial probability 

of m available ambulances in the system is listed in Table 4.2. Finally, the arrival rate of calls from 

each demand node, chute times and travel times were calculated using Aladdini (2010).  

Thus, the EMS system analyzed contains: 

• 378 demand nodes (Figure 4.9),  

• 8 ambulance stations and 15 fire stations, 

• 16 available ambulances  
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5.3 Computational Results 

We solved the Relaxed Mixed Integer Nonlinear Programming (RMINLP) with GAMS 22.0 using 

the SBB solver, which is the standard branch-and-bound algorithm in GAMS for solving Mixed 

Integer Nonlinear Programming. During the Branch-and-Bound process, the feasible region for the 

discrete variables is subdivided, and bounds on the discrete variables are tightened to new integer 

values to cut off the current non-integer solutions.  Each time a bound is tightened, a new Nonlinear 

Programming (NLP) submodel is solved by the built-in NLP solver CONOPT. The objective function 

values from the NLP submodel are assumed to be the lower bounds on the objective in the restricted 

feasible space, even though the local optimum found by the NLP solver may not be a global optimum. 

If the NLP solver returns a local infeasible status for a submodel, it is usually assumed that there is no 

feasible solution to the submodel, even though the infeasibility only has been determined locally.  

To find an optimal solution, it took, on average 64 seconds to solve (P2) for the busy period, 45 

seconds for moderate busy period and 30 seconds for the quiet period.  The computational times and 

the number of B&B nodes and of iterations to solve an optimization model with different initial 

settings of one data instance are shown in Table 5.1. The computational time does not include the 

iteration time between solving an optimization problem and estimating busy probabilities, which will 

be discussed shortly.   

The NLP submodel is not always solved with a guaranteed global optimum. Thus, we tried three 

different initial points in order to examine if different local optimal value would be found. We first 

used the default setting of CONOPT solver, which sets the zero value for all the decision variables.  

Secondly, we equally divide the number of ambulances into all stations. For example, if there is 1 

available ambulance, the initial value will assign 0.125 of an ambulance to each station. Using this 

initial setting, the problem can be solved with 18 seconds less than the default initial point as a result 

of visiting 6 B&B nodes less.  However, the objective value and the optimal solution are exactly the 

same through these two settings. This survey provide us a strong confidence to believe that our model 

has a convex characteristic, and the objective bound is thereby highly likely to be a global optimal.  

Table 5.1: Total CPU time and number of iterations 

Initial Method Number of 
iterations 

Number of 
B&B nodes 

CPU time 
(Sec.) Objective value 

Default Initial Value 191 32 98.141 0.974 
Initialize with Equally 

Distributed Ambulances 
172 29 95.392 0.974 
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5.3.1 Results of Model (P2) 

The formulation for P2 is restated below for convenience.  The first attempt at solving the problem 

failed because the service level constraint of 90% on H customers was infeasible with current 

resources, even with the support of the Fire Department. There are usually two ways to improve 

operational performance.  One is to increase the number of on-duty ambulances in each period, and 

the other one is to add more stations to reduce the service time.  Neither was a feasible alternative in 

the short term, and both will significantly increase the system operating costs. Table 5.2 shows the 

detailed results which indicates that the problem is infeasible. 

P2 

Maximize 𝑠(𝑃2) =
1
Λ
��𝜆𝑖𝑆𝐿𝐶 � 𝑞𝑚

𝐾

𝑚=1𝑖∈𝐷

𝑆𝑖𝑆𝐿𝐶

𝑆𝐿𝐶

(𝑚) 

Subject to  �𝑥𝑗(𝑚)
𝑗∈𝑆

= 𝑚,    𝑚 = 0, … ,𝐾 

𝑦𝑗(𝑚) ≤ 𝑥𝑗(𝑚) 𝑗 ∈ 𝑆,𝑚 = 0, … ,𝐾 

1
ΛH�𝜆𝑖𝐻

𝑖∈𝐷

� 𝑞𝑚

𝐾

𝑚=1

𝑆𝑖𝐻(𝑚) ≥ 0.9 

1
ΛM�𝜆𝑖𝑀

𝑖∈𝐷

� 𝑞𝑚

𝐾

𝑚=1

𝑆𝑖𝑀(𝑚) ≥ 0.9 

1
ΛL�𝜆𝑖𝐿

𝑖∈𝐷

� 𝑞𝑚

𝐾

𝑚=1

𝑆𝑖𝐿(𝑚) ≥ 0.9 

𝑎𝑖(𝑡𝑆𝐿𝐶 ,𝑚) = 1 −  ��1 − 𝐶𝑖𝑗(𝑡𝑆𝐿𝐶)𝑦𝑗(𝑚)�
𝑎𝑙𝑙 𝑗

, 𝑖 ∈ 𝑫,𝑺𝑳𝑪 = 𝐻,𝑀, 𝐿,𝑚 = 1, … ,𝐾 

𝑓𝑖(𝑡𝐻) = 1 −� �1 − 𝐶𝑖𝑓(𝑡𝐻)(1 − 𝛾)�
𝑓∈𝐹

, 𝑖 ∈ 𝑫 

𝑆𝑖𝐻(𝑚) = 𝑎𝑖(6) + 𝑓𝑖(6)𝑎𝑖(8) − 𝑓𝑖(6)𝑎𝑖(6) ,      𝑖 ∈ 𝑫,𝑚 = 1, … ,𝐾 

𝑆𝑖𝑀(𝑚) = 𝑎𝑖(𝑡𝑀),         𝑡𝑀 = 10.5 

𝑆𝑖𝐿(𝑚) = 𝑎𝑖(𝑡𝐿),          𝑡𝐿 ∈ {10.5, 12, 14, 16} 

𝑥𝑗(𝑚) ≥ 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑗 ∈ 𝑺, 1 ≤ 𝑚 ≤ 𝐾 

𝑦𝑗(𝑚) ≥ 0, 𝑏𝑖𝑛𝑎𝑟𝑦, 𝑗 ∈ 𝑺, 1 ≤ 𝑚 ≤ 𝐾 
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Table 5.2: Solution Summary for the initial P2 

SOLVE SUMMARY 
MODEL dispatch OBJECTIVE cg 
TYPE MINLP DIRECTION MAXIMIZE 
SOLVER SBB FROM Line 3627 
**** SOLVER STATUS 1 Normal Completion 
**** MODEL STATUS 5 Locally Infeasible 
**** Infeasible solution Reduced gradient less than tolerance. 

5.3.2 Results for P2 with lower coverage for H calls --- P2(1) 

After finding that P2 was infeasible with a service level of 90% for H calls, we solved P2 without 

requiring H calls to have a 90% service level (we removed the constraint).  The results indicated that 

the coverage of H calls was at least 60% for each of the three time periods.  We next ran P2 with the 

H service level requirements at 60%, and maintained the service levels for M and L calls at 90%. We 

refer to this problem as P2(1). The only change to the formulation was to have  ∑ 𝜆𝑖𝐻𝑖∈𝐷 𝑆𝑖𝐻 ≥ 𝟎.𝟔. 

The results for P2(1) are in Table 5.3. 

P2(1) 

Maximize 𝑠(𝑃2) =
1
Λ
��𝜆𝑖𝑆𝐿𝐶 � 𝑞𝑚

𝐾

𝑚=1𝑖∈𝐷

𝑆𝑖𝑆𝐿𝐶

𝑆𝐿𝐶

(𝑚) 

Subject to  1
ΛH�𝜆𝑖𝐻

𝑖∈𝐷

� 𝑞𝑚

𝐾

𝑚=1

𝑆𝑖𝐻(𝑚) ≥ 𝟎.𝟔 

𝑎𝑛𝑑 

⋮ 

The compliance tables (Table 1 – Table 12) that correspond to P2(1) are found in the Appendix B.  

In Table 5.3, we note that coverage for M and L priority calls is well above the 90% service level.  

What was initially counter-intuitive was that the coverage for H calls dropped when the time 

threshold for L customers was increased.  With some consideration, we hypothesize that with higher 

time thresholds for L priority calls, ambulances will be dispatched to more L priority calls, thus 

occupying ambulances that could otherwise be responding to H calls.  We also noted that coverage 

for H calls was worst during the quiet time period, and better for the moderately busy and busy time 

periods.  This is a reflection of having more ambulances on shift, thereby reducing the average travel 

distance to respond to a call. 
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While the coverage for H calls is generally above 75%, we were then motivated to determine what 

maximum service level could be attained for H calls. are low, especially for Moderate and Quiet 

periods, we are then motivated to see what the maximum coverage for H calls is given the current 

resource in Waterloo Region EMS department, which will be shown in section 5.2.3.  

Table 5.3: Results for P2(1) 

Quiet Time Period 
Threshold 
Time for L 

calls 

L 
Coverage 

M 
Coverage 

H 
Coverage Overall 

Coverage 
Compliance 

Table 10:30 mins 6/8 mins 
10:30 mins 94.50% 94.50% 76.50% 94.20% Table 1 

12 mins 96.70% 94.50% 75.70% 96.00% Table 2 
14 mins 98.10% 93.90% 74.00% 96.90% Table 3 
16 mins 98.70% 93.80% 73.90% 97.40% Table 4 

Moderately Busy Time Period 
10:30 mins 95.10% 95.10% 78.30% 94.80% Table 5 

12 mins 97.00% 94.90% 77.30% 96.30% Table 6 
14 mins 98.20% 94.50% 76.10% 97.20% Table 7 
16 mins 98.80% 94.50% 76.00% 97.70% Table 8 

Busy Time Period 
10:30 mins 96.50% 96.50% 82.60% 96.30% Table 9 

12 mins 97.60% 96.50% 82.60% 97.40% Table 10 
14 mins 98.70% 96.50% 82.50% 98.00% Table 11 
16 mins 99.10% 96.10% 82.40% 98.30% Table 12 
 

5.3.3 Result of P2 with objective function maximizing H calls --- P2(2) 

In order to better determine how well the current ROWEMS resource is able to cover the CTAS H 

calls within 6 mins, we first looked at a reformulation of the objective function to maximizing the 

coverage of H calls. 

P2(2) 

Maximize 𝑍∗ =
1

ΛH�𝜆𝑖𝐻

𝑖∈𝐷

� 𝑞𝑚

𝐾

𝑚=1

𝑆𝑖𝐻(𝑚) 

Subject to  �𝑥𝑗(𝑚)
𝑗∈𝑆

= 𝑚,   𝑚 = 0, … ,𝐾 

𝑦𝑗(𝑚) ≤ 𝑥𝑗(𝑚) 𝑗 ∈ 𝑆,𝑚 = 0, … ,𝐾 
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1
Λ
��𝜆𝑖𝑆𝐿𝐶 � 𝑞𝑚

𝐾

𝑚=1𝑖∈𝐷

𝑆𝑖𝑆𝐿𝐶

𝑆𝐿𝐶

(𝑚) ≥ 0.8 

1
ΛM�𝜆𝑖𝑀

𝑖∈𝐷

� 𝑞𝑚

𝐾

𝑚=1

𝑆𝑖𝑀(𝑚) ≥ 0.9 

1
ΛL�𝜆𝑖𝐿

𝑖∈𝐷

� 𝑞𝑚

𝐾

𝑚=1

𝑆𝑖𝐿(𝑚) ≥ 0.9 

 𝑥𝑗𝑚 ≥ 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑗 ∈ 𝑺, 0 ≤ 𝑚 ≤ 𝐾 

𝑦𝑗(𝑚) ≥ 0, 𝑏𝑖𝑛𝑎𝑟𝑦, 𝑗 ∈ 𝑺, 0 ≤ 𝑚 ≤ 𝐾 

𝑎𝑖(𝑡𝑆𝐿𝐶 ,𝑚) = 1 −  ��1 − 𝐶𝑖𝑗(𝑡𝑆𝐿𝐶)𝑦𝑗(𝑚)�
𝑎𝑙𝑙 𝑗

, 𝑖 ∈ 𝑫,𝑺𝑳𝑪 = 𝐻,𝑀, 𝐿 

𝑓𝑖(𝑡𝐻) = 1 −� �1 − 𝐶𝑖𝑓(𝑡𝐻)(1 − 𝛾)�
𝑓∈𝐹

, 𝑖 ∈ 𝑫 

𝑆𝑖𝐻(𝑚) = 𝑎𝑖(6) + 𝑓𝑖(6)𝑎𝑖(8) − 𝑓𝑖(6)𝑎𝑖(6), 𝑖 ∈ 𝑫 

𝑆𝑖𝑀(𝑚) = 𝑎𝑖(𝑡𝑀), 𝑡𝑀 = 10.5 

𝑆𝑖𝐿(𝑚) = 𝑎𝑖(𝑡𝐿), 𝑡𝐿 ∈ {10.5, 12, 14, 16} 

Table 5.4 shows an example of how 𝜌𝑖𝑖𝑛  and 𝜌𝑖𝑜𝑢𝑡  evolved over 6 iterations for one problem 

instance based on ROW data for different periods of times within a day. In this instance, 𝛾 was set to 

0.9, and initial system utilization rate was estimated as 28.9% for quiet period, 37.5% for moderate 

busy period and 40.0% for busy period. Budge et al. (2010) demonstrates that different values for 

these parameters will not impact final convergent result. As shown in Figure 5.1, the longer service 

time for less urgent service calls has little influence on the final system utilization rates for each 

period. Another important finding is that the utilization rates produced from our model are very 

consistent with what happens in the real life situation.  

Table 5.4: Iterative Results for the Optimization Model (Utilization rates) 

  Iteration 
 Quiet Time 

Period 1 2 3 4 5 6 

10:30 minutes 28.90% 23.00% 22.90% 22.90% 22.90% 22.90% 
12 minutes 28.90% 22.90% 22.90% 22.90% 22.90% 22.90% 
14 minutes 28.90% 22.90% 22.90% 22.90% 22.90% 22.90% 
16 minutes 28.90% 22.90% 22.90% 22.90% 22.90% 22.90% 
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Moderately Busy 
Time Period 1 2 3 4 5 6 

10:30 minutes 37.50% 31.90% 31.90% 31.90% 31.90% 31.90% 
12 minutes 37.50% 31.80% 31.80% 31.80% 31.80% 31.80% 
14 minutes 37.50% 31.70% 31.70% 31.70% 31.70% 31.70% 
16 minutes 37.50% 31.70% 31.80% 31.80% 31.80% 31.80% 
 Busy Time 

Period 1 2 3 4 5 6 

10:30 minutes 37.45% 36.70% 36.70% 36.70% 36.70% 36.70% 
12 minutes 37.45% 36.60% 36.60% 36.60% 36.60% 36.60% 
14 minutes 37.45% 36.50% 36.50% 36.50% 36.50% 36.50% 
16 minutes 37.45% 36.60% 36.60% 36.60% 36.60% 36.60% 

Figure 5.1: Graph of Iterative Results for the Optimization Model 

 

Table 5.5 shows the final coverage of each level of service and overall coverage when the model is 

set to maximize the H calls coverage in the different time periods. Given the current resource and 

planning, the model predicts the maximum CTAS1 coverage is 81.30% in the quiet period, 82.30% in 

moderate period and 84.60% in busy period, which is close to the 90% coverage required in the recent 

provincial regulation. On the other hand, the coverage of less urgent services is all above 90%.  The 
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longer service time threshold for less urgent calls increases the coverage of L level call, so does the 

overall coverage in each period.   

Table 5.5: Coverage Result with objective function set as Maximizing H Coverage 

 Quiet Time Period 
t(L) 

Minutes 
Initial 
Rho 

Result 
Rho 

Max (H 
Coverage) 

Compliance 
Tables 

Overall 
Coverage  

M 
Coverage  

L 
Coverage  

10:30 28.93% 22.90% 81.30% Table 13 94.40% 94.50% 94.50% 
12 28.93% 22.90% 81.30% Table 14 94.10% 94.50% 94.20% 
14 28.93% 22.90% 81.30% Table 15 94.50% 94.50% 94.80% 
16 28.93% 22.90% 81.30% Table 16 94.80% 94.50% 95.10% 

 Moderately Busy Time Period 
t(L) 

Minutes 
Initial 
Rho 

Result 
Rho 

Max (H 
Coverage) 

Compliance 
Tables 

Overall 
Coverage  

M 
Coverage  

L 
Coverage  

10:30 37.50% 31.90% 82.10% Table 17 94.70% 94.90% 94.90% 
12 37.50% 31.80% 82.20% Table 18 94.50% 94.90% 94.60% 
14 37.50% 31.70% 82.20% Table 19 94.90% 94.90% 95.20% 
16 37.50% 31.80% 82.30% Table 20 95.20% 95.00% 95.50% 

 Busy Time Period 
t(L) 

Minutes 
Initial 
Rho 

Result 
Rho 

Max (H 
Coverage) 

Compliance 
Tables 

Overall 
Coverage  

M 
Coverage  

L 
Coverage  

10:30 37.45% 36.70% 84.60% Table 21 96.50% 96.70% 96.70% 
12 37.45% 36.60% 84.60% Table 22 96.10% 96.70% 96.20% 
14 37.45% 36.50% 84.60% Table 23 96.60% 96.70% 96.80% 
16 37.45% 36.60% 84.60% Table 24 96.80% 96.70% 97.00% 

 

Given the coverage results provided in Table 5.5, the ultimate compliance tables of all periods based 

on different time threshold are shown Appendix B from Table 13 to Table 24. The deployment plans 

are similar but not exactly same for the length of service time threshold in each time period. The 

number in each cell indicates exactly how many ambulances should be placed at each station (y-axis) 

when there are m available ambulances in the system (x-axis). The dispatch table indicates that Grand 

River Hospital is the most preferred station and station 1 and station 6 are the least preferred stations.  

These locations are reasonable if one looks carefully on Figure 5.2. For instance, Grand River 

Hospital is the closest location for serving the busiest area of the region. On the other hand, Station 1 

is the one at 99 Foundry St. Baden and station 6 is at 30 Parkside Drive, St. Jacobs, which are both 

located at relatively smaller population density areas. Table 5.6 provides you the address of other 



 

 76 

stations. Instead of spreading the available ambulances across the region, the model attempts to place 

available ambulances in the busy area, which further demonstrate that the current setting of RERU 

service between St. Jacob area and Baden area is a very reasonable means of providing coverage to 

outlying rural areas.  Given that our current model does not take account of the existing RERU 

service, the real coverage for H level calls would be slightly higher than what we predicted. 

Therefore, studying the effect of RERU service would be a valuable extension for the future model.  

Figure 5.2: ROWEMS Stations Map 

 

Table 5.6: Ambulance Station Reference 

Station Address 
Station 0 120 Maple Grove Road, Cambridge 
Station 1 99 Foundry Street, Baden 
Station 2 90 Westmount Road N., Waterloo 
Station 3 1700 Queens Blvd., Kitchener 
Station 4 91 St. Andrews Street, Cambridge 
Station 5 25 Struck Court, Cambridge 
Station 6 30 Parkside Drive, St. Jacobs 
Station 7 1035 Ottawa Street N., Kitchener 
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5.3.4 Result of P2 with (Z*- 0.05) coverage for H calls --- P2(3) 

Next, we are solving the Model P2 with the constraint for H calls coverage to be at least (Z* - 0.05) 

percent of the time. Z* for each time period can be found from the result of P2(2) in last section, and 

the value, 0.05, is arbitrary which could be adjusted by EMS practitioners at any time. Table 5.7 

illustrates the new constraint for H calls at each time period.  

Table 5.7: New Constraint for H calls in P2(3) 

Time Periods Constraints 

Quiet Time 
Period 

1
ΛH�𝜆𝑖𝐻

𝑖∈𝐷

� 𝑞𝑚

𝐾

𝑚=1

𝑆𝑖𝐻(𝑚) ≥ 0.763 

Moderate Busy 
Time Period 

1
ΛH�𝜆𝑖𝐻

𝑖∈𝐷

� 𝑞𝑚

𝐾

𝑚=1

𝑆𝑖𝐻(𝑚) ≥ 0.773 

Busy Time 
Period 

1
ΛH�𝜆𝑖𝐻

𝑖∈𝐷

� 𝑞𝑚

𝐾

𝑚=1

𝑆𝑖𝐻(𝑚) ≥ 0.796 

 

Adding the above constraints, P2(3) shows an improved coverage result in all three time period as 

that in P2(1). As the number of assigned ambulances increasing from quiet time period to busy time 

period, the coverage for H calls is more closed to its maximum level. This indicates that the arbitrary 

value (e.g. 0.05) is more sensitive to the model in the quiet period than that in the busy period. Table 

5.8 presents the detail coverage result, and the final compliance tables (Table 25 – Table 36) 

correspond to P2(3) could also be found in Appendix B. The set of compliance tables shows a 

significantly different pattern as that in P2(2). First, P2(3) frequently allocated an ambulance in 

station 1, which is the least preferred station in P2(2); second, the home base (e.g. station 0) becomes 

more popular in P2(3). However, the GRH is still one of the busiest stations in the system. The above 

three patterns could be found in P2(1) as well. Especially when the threshold time for L calls is long, 

the system tries to spread out the ambulances to cover the whole region, even for those areas with 

relatively smaller population density. 
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Table 5.8: Coverage Result with (Z*- 0.05) coverage for H calls 

Quiet Time Period 
t(L) 

Minutes 
Result 
Rho 

Overall 
Coverage 

Compliance 
Tables 

H 
Coverage 

M 
Coverage 

L 
Coverage 

10:30 22.90% 94.40% Table 25 77.90% 96.00% 96.00% 
12 22.90% 96.50% Table 26 77.40% 95.90% 96.90% 
14 22.90% 97.30% Table 27 77.00% 95.80% 98.10% 
16 22.90% 97.80% Table 28 77.10% 95.80% 98.60% 

 Moderate Busy Time Period 
t(L) 

Minutes 
Result 
Rho 

Overall 
Coverage 

Compliance 
Tables 

H 
Coverage 

M 
Coverage 

L 
Coverage 

10:30 31.90% 96.00% Table 29 79.70% 96.30% 96.30% 
12 31.80% 96.60% Table 30 79.30% 95.70% 97.10% 
14 31.70% 97.50% Table 31 78.50% 96.00% 98.10% 
16 31.80% 97.90% Table 32 78.70% 96.00% 98.60% 

 Busy Time Period 
t(L) 

Minutes 
Result 
Rho 

Overall 
Coverage 

Compliance 
Tables 

H 
Coverage 

M 
Coverage 

L 
Coverage 

10:30 36.70% 97.00% Table 33 83.60% 97.30% 97.30% 
12 36.60% 97.40% Table 34 83.20% 97.20% 97.70% 
14 36.50% 98.00% Table 35 83.10% 97.20% 98.40% 
16 36.60% 98.20% Table 36 83.10% 97.20% 98.80% 

5.4 Sensitivity Analysis 

Using the Compliance from previous section, the coverage level for both urgent and non-urgent 

demands could be examined by checking the number of available ambulances at each time period.  

5.4.1 Result in problem P2(2) 

Table 5.9 illustrates the coverage result in P2(2) for each CTAS level in the busy period as the 

number of available ambulances varies. For example, when there is one available ambulance in the 

system, the coverage is 35.5% for CTAS H calls, 53.5% for CTAS M calls and 66.3% for CTAS L 

calls if the threshold time for L calls in 16 minutes. Figure 5.3, 5.4 and 5.5 plot the coverage of each 

CTAS level respectively when there are m available ambulances in the system.  In other word, the 

maximum coverage of CTAS H calls of current system is 86.0% when there are 16 available 

ambulances. We understand that ROWEMS has a target to always preserve 5 available ambulances in 

the system.  Thus, the lower bound of the system coverage is 73.4% for CTAS H calls, 91.3% for 
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CTAS M calls and 94.2% for CTAS L calls.  The different threshold times of CTAS L only affect the 

coverage for CTAS L patients. For CTAS H and M calls, the coverage is quite consistent at different 

threshold time of CTAS L calls.  

Table 5.9: Coverage Level in P2(2) at different number of available ambulances in busy period 

Busy 
  

L M H 
10:30 
mins 

12 
mins 

14 
mins 

16 
mins 

10:30 
mins 

12 
mins 

14 
mins 

16 
mins 

10:30 
mins 

12 
mins 

14 
mins 

16 
mins 

1 53.5% 59.1% 63.6% 66.3% 53.5% 53.5% 53.5% 53.5% 35.5% 35.5% 35.5% 35.5% 
2 76.4% 83.4% 88.6% 91.3% 76.4% 76.4% 76.4% 76.4% 51.0% 51.0% 51.0% 51.0% 
3 85.0% 89.3% 91.7% 93.3% 85.0% 85.0% 85.0% 85.0% 63.2% 63.2% 63.2% 63.2% 
4 87.6% 89.6% 92.6% 93.0% 87.6% 87.6% 87.6% 87.6% 69.5% 69.5% 69.5% 69.5% 
5 91.3% 92.2% 93.6% 94.2% 91.3% 91.3% 91.3% 91.3% 73.4% 73.4% 73.4% 73.4% 
6 91.3% 93.2% 94.1% 94.4% 91.3% 91.3% 91.3% 91.3% 77.3% 77.3% 77.3% 77.3% 
7 92.7% 93.8% 94.5% 94.8% 92.7% 92.7% 92.7% 92.7% 80.5% 80.5% 80.5% 80.5% 
8 94.4% 94.4% 94.8% 95.1% 94.4% 94.4% 94.4% 94.4% 82.7% 82.7% 82.7% 82.7% 
9 96.5% 94.5% 94.9% 95.1% 96.5% 96.5% 96.5% 96.5% 84.2% 84.2% 84.2% 84.2% 

10 97.6% 96.1% 96.6% 96.9% 97.6% 97.6% 97.6% 97.6% 85.4% 85.4% 85.4% 85.4% 
11 97.8% 98.0% 98.5% 98.9% 97.8% 97.8% 97.8% 97.8% 86.0% 86.0% 86.0% 86.0% 
12 97.8% 98.0% 98.5% 98.9% 97.8% 97.8% 97.8% 97.8% 86.0% 86.0% 86.0% 86.0% 
13 97.8% 98.0% 98.5% 98.9% 97.8% 97.8% 97.8% 97.8% 86.0% 86.0% 86.0% 86.0% 
14 97.8% 98.0% 98.5% 98.9% 97.8% 97.8% 97.8% 97.8% 86.0% 86.0% 86.0% 86.0% 
15 97.8% 98.0% 98.5% 98.9% 97.8% 97.8% 97.8% 97.8% 86.0% 86.0% 86.0% 86.0% 
16 97.8% 98.0% 98.5% 98.9% 97.8% 97.8% 97.8% 97.8% 86.0% 86.0% 86.0% 86.0% 
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Figure 5.3: P2(2) - Coverage of CTAS L in Busy Time Period 

 
Figure 5.4: P2(2) - Coverage of CTAS M in Busy Time Period 
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Figure 5.5: P2(2) - Coverage of CTAS H in Busy Time Period 

 

5.4.2 Result in problem P2(3) 

Table 5.10 illustrates the coverage result in P2(3) for each CTAS level in the busy period as the 

number of available ambulances varies. For example, when there is one available ambulance in the 

system, the coverage is 19.4% for CTAS H calls given the threshold time for L calls in 16 minutes, 

which is as half as the 35.5% obtained from P2(2) (Table 5.9). Figure 5.6, 5.7 and 5.8 plot the 

coverage of each CTAS level respectively when there are m available ambulances in the system. One 

observation in P2(3) is that the different threshold time of CTAS L calls affect the coverage of all the 

CTAS level calls. Alternatively, the maximum coverage of each CTAS level of current system is the 

same as what shown in P2(2). This could be explained as the response time for CTAS H and M calls 

is fixed by the regulation. Thus, the compliance table and the coverage of CTAS H and M calls would 

not vary while the t(L) changes, when P2(2) tries to maximize the coverage of CTAS H calls. On the 
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the coverage for CTAS H and M calls are slightly lower than that in t(L) = 10:30 minutes, but the 

coverage for CTAS L calls are higher.  

Table 5.10: Coverage Level in P2(3) at different number of available ambulances in busy period 

Busy 
  

L M H 
10:30 
mins 

12 
mins 

14 
mins 

16 
mins 

10:30 
mins 

12 
mins 

14 
mins 

16 
mins 

10:30 
mins 

12 
mins 

14 
mins 

16 
mins 

1 53.5% 49.0% 57.8% 63.7% 53.5% 31.0% 31.0% 31.0% 35.5% 19.4% 19.4% 19.4% 
2 72.9% 83.4% 78.8% 83.0% 72.9% 76.4% 25.2% 25.2% 36.7% 51.0% 38.4% 38.4% 
3 84.0% 88.1% 91.7% 93.7% 84.0% 78.9% 84.4% 83.7% 62.0% 59.5% 59.4% 52.2% 
4 87.7% 91.1% 93.1% 94.0% 87.7% 87.7% 87.4% 87.4% 60.4% 66.9% 66.5% 66.5% 
5 92.9% 93.9% 96.8% 97.9% 92.9% 90.3% 91.7% 91.7% 69.9% 70.2% 63.0% 63.0% 
6 94.3% 95.9% 97.7% 98.4% 94.3% 93.7% 93.7% 93.7% 73.4% 70.7% 70.7% 70.7% 
7 95.6% 97.0% 98.2% 98.7% 95.6% 95.6% 95.6% 95.6% 75.3% 75.3% 75.3% 75.3% 
8 96.5% 97.3% 98.3% 98.7% 96.5% 96.3% 96.1% 96.3% 81.0% 79.4% 78.6% 79.4% 
9 97.2% 97.7% 98.4% 98.8% 97.2% 97.2% 97.2% 96.9% 83.6% 82.0% 82.0% 81.9% 

10 97.6% 97.9% 98.5% 98.8% 97.6% 97.6% 97.6% 97.6% 84.2% 84.5% 84.5% 84.2% 
11 97.8% 98.0% 98.5% 98.9% 97.8% 97.8% 97.8% 97.8% 86.0% 86.0% 86.0% 86.0% 
12 97.8% 98.0% 98.5% 98.9% 97.8% 97.8% 97.8% 97.8% 86.0% 86.0% 86.0% 86.0% 
13 97.8% 98.0% 98.5% 98.9% 97.8% 97.8% 97.8% 97.8% 86.0% 86.0% 86.0% 86.0% 
14 97.8% 98.0% 98.5% 98.9% 97.8% 97.8% 97.8% 97.8% 86.0% 86.0% 86.0% 86.0% 
15 97.8% 98.0% 98.5% 98.9% 97.8% 97.8% 97.8% 97.8% 86.0% 86.0% 86.0% 86.0% 
16 97.8% 98.0% 98.5% 98.9% 97.8% 97.8% 97.8% 97.8% 86.0% 86.0% 86.0% 86.0% 
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Figure 5.6: P2(3) - Coverage of CTAS L in Busy Time Period 

 

Figure 5.7: P2(3)  - Coverage of CTAS M in Busy Time Period 
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Figure 5.8: P2(3)  - Coverage of CTAS H in Busy Time Period 
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Chapter 6 
Conclusions and Future Research 

We introduced a probabilistic model to solve the problem of locating ambulances on a network in 

order to maximize coverage of overall calls and high priority calls, while providing an acceptable 

coverage to lower acuity calls.  The model considers the fact that the number of ambulances available 

over the course of the day varies with the number on shift and those serving a call.  As the day 

evolves ambulances must be relocated in order to rebalance coverage.   The model also captures 

cooperation with the fire department, and different conditions over the day.  Therefore, our model is 

particularly suitable when analyzing multi-region systems managed by a central planner, such as 

Region of Waterloo EMS system.  

We test the binomial assumption made in MECRP (Gendreau et al. (2006)). The author assumes the 

probability of m ambulances being busy follows the Binomial Distribution function of total number 

of ambulances and a system-wide utilization rate.  Our empirical study demonstrates that the 

assumption is only valid when ambulance utilizations are low in ROWEMS system, for example 

during quiet and moderate busy period.   

In contrast of the unique utilization rate used in MECRP, our model iteratively calculated the 

ambulance utilization rate whenever relocation takes place.  Computational experiments suggest that 

the predications of our model are quite accurate, and the model is more powerful than MECRP for 

evaluating a large set of possible ambulance allocations.  Another advantage of our model is that we 

incorporate the fact that the average service time for an ambulance stationed at a base is affected by 

the location of the demand assigned to it. It would be interesting to investigate whether our model can 

incorporate the “Q-factor” that is used in hypercube model to relax the assumption that vehicle busy 

probabilities are independent. However, the “Q-factor” is derived from an M /M / s / s system with 

arrival rate λ and average service time τ. Whether this “Q-factor” could be obtained without using a 

queuing model or not is an open question. In particular, if the new factor for our probability model is 

known, it would be straightforward to tackle the independent assumption and test whether this feature 

improves the accuracy of computational results.  

An important assumption underlying our model is that all ambulances share a system-wide utilization 

irrespective of vehicles’ home stations. One could argue this is unrealistic because spatial variation in 

demand and transport network characteristics will tend to create imbalances in workload. All the 

queuing models believe that ambulance utilization rates at different stations are in proportion to the 
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loads offered from the locations, as it requires ambulances go back to their original station after they 

finish the service. But in practice, on-duty ambulances would dispatch from stations to stations. On 

the other hand, this assumption seems reasonable from the EMS practitioner’s point of view that 

balancing the workload of paramedics is of the same importance as enhancing the response time. 

Nonetheless, we agree that maintaining the workload of all the paramedics at exact same level is also 

very challenge. Therefore, we believe the realistic ambulance utilization should locate between our 

model and queuing model.  

A default setting of our model is that the relocation time is zero, which is another major area needed 

to be tackled in the future. Another area in daily EMS operation that has had almost no attention is 

offload delay. It is not difficult to estimate the required number of vehicles needed per hour, however 

one must make sure all the patients could be hospitalized in time. In health care systems where the 

respective accountability for emergency departments and EMS reside in two different areas, the 

burden of triage wait times has predominantly shifted to EMS, requiring paramedics to stay with their 

patients while they wait to be admitted for care. The final area involves the hospital Speciality. The 

mathematical programming work in this area has problem in that the hospital speciality is hardly 

modeled as the arrival rate of different symptoms are not modeled. This is difficult to do with 

analytical queuing models as well.  

Another interesting area is to identify the impact of difference demanding pattern between day time 

and night time. One of the key discrepancies is that CTAS H calls will contribute a higher percentage 

of total calls during night time than that in the day time, which is considered as identical between 

different time periods in our model. We have seen that the overall arrival rate of CTAS H patients to 

the emergency room does not change much over the day. However, from the percentage perspective, 

they are much lower during the day because there are a lot more of CTAS L calls arrivals. Similarity, 

the percentage of CTAS H calls could vary for different UTMs. And, all of the above phenomenon 

could affect the final deployment plan.  

In summary, this project provides the Region of Waterloo EMS with guidance in its response to the 

provincial government, and develops a new contingency table that indicated the optimal location for a 

given number of ambulances, when there are multiple levels of response time goals. We believe our 

model will be most valuable in pointing out the promising ambulance allocations. 
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Appendix A 
EMS Related Facilities Address 

Fire Station Address UTM City 
1 216 Weber St. N. 5384813 Waterloo 
2 470 Columbia St. W. 5344812 Waterloo 
3 150 Northfield Dr. 5384816 Waterloo 
4 270 Strasburg Rd 5414807 Kitchener 
5 187 Lancaster St. W. 5414812 Kitchener 
6 1035 Ottawa St N. 5444811 Kitchener 
7 25 Fairway Rd. N. 5454808 Kitchener 
8 1700 Queens Blvd. 5384808 Kitchener 
9 149 Pioneer Dr. 5454804 Kitchener 
10 1440 Huron Rd 5454803 Kitchener 
11 1625 Bishop St. N. 5564805 Cambridge 
12 11 Tannery St. E. 5554809 Cambridge 
13 525 King St. 5514805 Cambridge 
14 91 St. Andrews Street 5544800 Cambridge 
15 490 Main Street E. 5584800 Cambridge 

 

Ambulance Station Address UTM 
Station 0 120 Maple Grove Road, Cambridge 5494807 
Station 1 99 Foundry Street, Baden 5264805 
Station 2 90 Westmount Road N., Waterloo 5384814 
Station 3 1700 Queens Blvd., Kitchener 5384808 
Station 4 91 St. Andrews Street, Cambridge 5544802 
Station 5 25 Struck Court, Cambridge 5544807 
Station 6 30 Parkside Drive, St. Jacobs 5364820 
Station 7 1035 Ottawa Street N., Kitchener 5464811 

 

Hospital  
(Institution ID) 

Address UTM 

GRH  (03734) 835 King St. Kitchener 5394811 
SMH  (01921) 911 Queen's Boulevard, Kitchener 5404809 
CMH (01905) 700 Coronation Blvd., Cambridge 5544802 
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Appendix B 
Compliance Tables 

Compliance Table of Model P2(1) 

Table 1: P2(1) Compliance Table in Quiet Period when t(L) = 10:30 

P2(1) Number of Available Ambulances (m) 
Xj(m) 1 2 3 4 5 6 7 8 9 10 

Station0 1     1 1   1 1 1 1 
Station1         1 1 1 1 1 1 
Station2   1 1   1 1   1 1 1 
Station3               1   1 
Station4               1 1 1 
Station5   1       1 1   1 1 
Station6             1 1 1 1 
Station7                 1 1 

CMH     1 1 1 1 1 1   1 
GRH       1 1 1 1 1 1 1 
SMH     1 1   1 1   1   

Table 2: P2(1) Compliance Table in Quiet Period when t(L) = 12 

P2(1) Number of Available Ambulances (m) 
Xj(m) 1 2 3 4 5 6 7 8 9 10 

Station0 1     1 1 1 1 1 1 1 
Station1         1 1 1 1 1 1 
Station2   1 1 1 1 1   1 1 1 
Station3               1 1   
Station4   1         1   1 1 
Station5               1 1 1 
Station6           1 1 1 1 1 
Station7                 1 1 

CMH     1 1 1 1 1 1   1 
GRH         1   1 1 1 1 
SMH     1 1   1 1     1 
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Table 3: P2(1) Compliance Table in Quiet Period when t(L) = 14 

P2(1) Number of Available Ambulances (m) 
Xj(m) 1 2 3 4 5 6 7 8 9 10 

Station0 1  1 1 1 1 1 1 1 1 
Station1     1 1 1 1 1 1 
Station2  1 1   1 1 1 1 1 
Station3        1   
Station4  1     1 1 1 1 
Station5     1    1 1 
Station6    1 1 1 1 1 1 1 
Station7         1 1 

CMH   1 1  1 1 1  1 
GRH       1 1 1 1 
SMH    1 1 1   1 1 

Table 4: P2(1) Compliance Table in Quiet Period when t(L) = 16 

P2(1) Number of Available Ambulances (m) 
Xj(m) 1 2 3 4 5 6 7 8 9 10 

Station0 1   1   1 1 1 1 1 1 
Station1       1 1 1 1 1 1 1 
Station2   1 1   1 1   1 1 1 
Station3                     
Station4     1     1 1 1 1 1 
Station5   1     1   1   1 1 
Station6       1 1 1 1 1 1 1 
Station7                 1 1 

CMH       1       1   1 
GRH             1 1 1 1 
SMH       1   1 1 1 1 1 
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Table 5: P2(1) Compliance Table in Moderate Busy Period when t(L) = 10:30 

P2(1) Number of Available Ambulances (m) 
Xij(m) 1 2 3 4 5 6 7 8 9 10 11 12 

Station0 1     1 1     1   1 1 1 
Station1             1 1 1 1 1 2 
Station2   1 1     1 1 1   1 1 1 
Station3                 1   1 1 
Station4       1 1 1 1 1 1 1 1 1 
Station5   1       1 1 1 1 1 1 1 
Station6         1 1 1 1 1 1 1 1 
Station7           1 1   1 1 1 1 

CMH     1           1 1 1 1 
GRH       1 1     1 1 1 1 1 
SMH     1 1 1 1 1 1 1 1 1 1 

Table 6: P2(1) Compliance Table in Moderate Busy Period when t(L) = 12 

P2(1) Number of Available Ambulances (m) 
Xij(m) 1 2 3 4 5 6 7 8 9 10 11 12 

Station0 1   1 1 1         1 1 2 
Station1           1 1 1 1 1 1 1 
Station2   1 1       1 1 1 1 1 1 
Station3                     1 1 
Station4   1   1 1 1 1 1 1 1 1 1 
Station5           1 1 1 1 1 1 1 
Station6         1 1 1 1 1 1 1 1 
Station7           1 1   1 1 1 1 

CMH     1         1 1 1 1 1 
GRH       1 1     1 1 1 1 1 
SMH       1 1 1 1 1 1 1 1 1 

 

 

 

 

 



 

 91 

Table 7: P2(1) Compliance Table in Moderate Busy Period when t(L) = 14 

P2(1) Number of Available Ambulances (m) 
Xij(m) 1 2 3 4 5 6 7 8 9 10 11 12 

Station0 1     1 1 1       1 1 2 
Station1         1 1 1 1 1 1 1 1 
Station2   1 1     1 1 1 1 1 1 1 
Station3                     1 1 
Station4   1   1 1 1 1 1 1 1 1 1 
Station5           1 1 1 1 1 1 1 
Station6       1 1 1 1 1 1 1 1 1 
Station7             1   1 1 1 1 

CMH     1         1 1 1 1 1 
GRH       1       1 1 1 1 1 
SMH         1 1 1 1 1 1 1 1 

Table 8: P2(1) Compliance Table in Moderate Busy Period when t(L) = 16 

P2(1) Number of Available Ambulances (m) 
Xij(m) 1 2 3 4 5 6 7 8 9 10 11 12 

Station0 1   1 1 1         1 1 1 
Station1         1 1 1 1 1 1 1 2 
Station2   1 1   1   1 1 1 1 1 1 
Station3                     1 1 
Station4         1 1 1 1 1 1 1 1 
Station5           1 1 1 1 1 1 1 
Station6       1 1 1 1 1 1 1 1 1 
Station7           1 1   1 1 1 1 

CMH   1 1 1       1 1 1 1 1 
GRH       1       1 1 1 1 1 
SMH           1 1 1 1 1 1 1 
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Table 9: P2(1) Compliance Table in Busy Period when t(L) = 10:30 

P2(1) Number of Available Ambulances (m) 
Xij(m) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Station0 1     1 1 1 1 1 1 1 1 1 2 2 2 2 
Station1           1 1 1 1 1 1 2 1 2 2 1 
Station2   1           1 1 1 1 1 2 2 1 2 
Station3         1     1   1 1 1 1 1 2 1 
Station4         1   1 1 1 1 1 1 1 1 1 1 
Station5                 1 1 1 1 1 1 1 2 
Station6         1 1 1 1 1 1 1 1 1 1 2 1 
Station7               1 1 1 1 1 1 1 1 1 

CMH   1 1 1   1 1 1   1 1 1 1 1 1 2 
GRH     1 1 1 1 1   1 1 1 1 1 1 1 1 
SMH     1 1   1 1   1   1 1 1 1 1 2 

Table 10: P2(1) Compliance Table in Busy Period when t(L) = 12 

P2(1) Number of Available Ambulances (m) 
Xij(m) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Station0 1     1 1 1 1 1 1 1 1 1 2 2 2 1 
Station1           1 1 1 1 1 1 2 1 2 2 2 
Station2   1 1 1       1 1 1 1 1 2 2 1 2 
Station3         1         1 1 1 1 1 2 1 
Station4         1 1 1 1 1 1 1 1 1 1 1 2 
Station5   1 1           1 1 1 1 1 1 1 1 
Station6         1 1 1 1 1 1 1 1 1 1 1 1 
Station7               1 1 1 1 1 1 1 2 2 

CMH       1     1 1   1 1 1 1 1 1 1 
GRH       1 1 1 1 1 1 1 1 1 1 1 1 2 
SMH     1     1 1   1   1 1 1 1 1 1 
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Table 11: P2(1) Compliance Table in Busy Period when t(L) = 14 

P2(1) Number of Available Ambulances (m) 
Xij(m) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Station0 1     1 1 1 1 1 1 1 1 1 2 2 2 2 
Station1         1 1 1 1 1 1 1 2 1 2 2 1 
Station2   1 1         1 1 1 1 1 2 2 1 2 
Station3                   1 1 1 1 1 2 1 
Station4   1       1 1 1 1 1 1 1 1 1 1 2 
Station5                 1 1 1 1 1 1 2 1 
Station6       1 1 1 1 1 1 1 1 1 1 1 1 2 
Station7               1 1 1 1 1 1 1 1 1 

CMH     1 1 1   1 1   1 1 1 1 1 1 1 
GRH     1 1   1 1 1 1 1 1 1 1 1 1 2 
SMH         1 1 1   1   1 1 1 1 1 1 

Table 12: P2(2) Compliance Table in Busy Period when t(L) = 16 

P2(1) Number of Available Ambulances (m) 
Xij(m) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Station0 1     1 1 1 1 1 1 1 1 1 2 1 2 2 
Station1         1 1 1 1 1 1 1 2 1 2 2 1 
Station2   1 1         1 1 1 1 1 2 2 1 2 
Station3         1     1     1 1 1 1 2 1 
Station4     1 1 1   1 1 1 1 1 1 1 1 1 2 
Station5   1             1 1 1 1 1 1 1 1 
Station6       1 1 1 1 1 1 1 1 1 1 1 2 1 
Station7       1       1 1 1 1 1 1 1 1 1 

CMH           1 1 1   1 1 1 1 1 1 2 
GRH           1 1   1 1 1 1 1 2 1 2 
SMH     1     1 1   1 1 1 1 1 1 1 1 

 

 

 

 



 

 94 

Compliance Table of Model P2(2) 

Table 13: P2(2) Compliance Table in Quiet Period when t(L) = 10:30 

P2(1) Number of Available Ambulances (m) 
Xj(m) 1 2 3 4 5 6 7 8 9 10 

Station0 
   

1 1 
 

1 
 

1 1 
Station1 

          Station2 
  

1 
 

1 1 1 1 1 1 
Station3 

  
1 

    
1 1 1 

Station4 
     

1 1 1 1 1 
Station5 

       
1 1 1 

Station6 
         

1 
Station7 

     
1 1 1 1 1 

CMH 
 

1 1 1 1 1 1 1 1 1 
GRH 1 1 

 
1 1 1 1 1 1 1 

SMH 
   

1 1 1 1 1 1 1 

Table 14: P2(2) Compliance Table in Quiet Period when t(L) = 12 

P2(1) Number of Available Ambulances (m) 
Xj(m) 1 2 3 4 5 6 7 8 9 10 

Station0 
   

1 1 
 

1 
 

1 1 
Station1 

          Station2 
  

1 
 

1 1 1 1 1 1 
Station3 

  
1 

    
1 1 1 

Station4 
     

1 1 1 1 1 
Station5 

       
1 1 1 

Station6 
         

1 
Station7 

     
1 1 1 1 1 

CMH 
 

1 1 1 1 1 1 1 1 1 
GRH 1 1 

 
1 1 1 1 1 1 1 

SMH 
   

1 1 1 1 1 1 1 
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Table 15: P2(2) Compliance Table in Quiet Period when t(L) = 14 

P2(1) Number of Available Ambulances (m) 
Xj(m) 1 2 3 4 5 6 7 8 9 10 

Station0 
   

1 1 
 

1 
 

1 1 
Station1 

          Station2 
  

1 
 

1 1 1 1 1 1 
Station3 

  
1 

    
1 1 1 

Station4 
     

1 1 1 1 1 
Station5 

       
1 1 1 

Station6 
         

1 
Station7 

     
1 1 1 1 1 

CMH 
 

1 1 1 1 1 1 1 1 1 
GRH 1 1 

 
1 1 1 1 1 1 1 

SMH 
   

1 1 1 1 1 1 1 

Table 16: P2(2) Compliance Table in Quiet Period when t(L) = 16 

P2(1) Number of Available Ambulances (m) 
Xj(m) 1 2 3 4 5 6 7 8 9 10 

Station0 
   

1 1 
 

1 
 

1 1 
Station1 

          Station2 
  

1 
 

1 1 1 1 1 1 
Station3 

  
1 

    
1 1 1 

Station4 
     

1 1 1 1 1 
Station5 

       
1 1 1 

Station6 
         

1 
Station7 

     
1 1 1 1 1 

CMH 
 

1 1 1 1 1 1 1 1 1 
GRH 1 1 

 
1 1 1 1 1 1 1 

SMH 
   

1 1 1 1 1 1 1 
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Table 17: P2(2) Compliance Table in Moderate Busy Period when t(L) = 10:30 

P2(1) Number of Available Ambulances (m) 
Xij(m) 1 2 3 4 5 6 7 8 9 10 11 12 

Station0 
   

1 
    

1 1 1 2 
Station1 

          
1 1 

Station2 
     

1 1 1 1 1 1 1 
Station3 

       
1 1 1 1 1 

Station4 
    

1 
 

1 1 1 1 1 1 
Station5 

     
1 1 1 1 1 1 1 

Station6 
         

1 1 1 
Station7 

    
1 1 1 1 1 1 1 1 

CMH 
 

1 1 1 1 1 1 1 1 1 1 1 
GRH 1 

 
1 1 1 1 1 1 1 1 1 1 

SMH 
 

1 1 1 1 1 1 1 1 1 1 1 

Table 18: P2(2) Compliance Table in Moderate Busy Period when t(L) = 12 

P2(1) Number of Available Ambulances (m) 
Xij(m) 1 2 3 4 5 6 7 8 9 10 11 12 

Station0 
   

1 
    

1 1 1 2 
Station1 

          
1 1 

Station2 
  

1 
  

1 1 1 1 1 1 1 
Station3 

       
1 1 1 1 1 

Station4 
    

1 
 

1 1 1 1 1 1 
Station5 

     
1 1 1 1 1 1 1 

Station6 
         

1 1 1 
Station7 

    
1 1 1 1 1 1 1 1 

CMH 
 

1 1 1 1 1 1 1 1 1 1 1 
GRH 1 

  
1 1 1 1 1 1 1 1 1 

SMH 
 

1 1 1 1 1 1 1 1 1 1 1 
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Table 19: P2(2) Compliance Table in Moderate Busy Period when t(L) = 14 

P2(1) Number of Available Ambulances (m) 
Xij(m) 1 2 3 4 5 6 7 8 9 10 11 12 

Station0 
   

1 
    

1 1 1 2 
Station1 

          
1 1 

Station2 
  

1 
  

1 1 1 1 1 1 1 
Station3 

       
1 1 1 1 1 

Station4 
    

1 
 

1 1 1 1 1 1 
Station5 

     
1 1 1 1 1 1 1 

Station6 
         

1 1 1 
Station7 

    
1 1 1 1 1 1 1 1 

CMH 
 

1 1 1 1 1 1 1 1 1 1 1 
GRH 1 1 

 
1 1 1 1 1 1 1 1 1 

SMH 
  

1 1 1 1 1 1 1 1 1 1 

Table 20: P2(2) Compliance Table in Moderate Busy Period when t(L) = 16 

P2(1) Number of Available Ambulances (m) 
Xij(m) 1 2 3 4 5 6 7 8 9 10 11 12 

Station0       1          1  1  1  2  
Station1                     1  1  
Station2           1  1  1  1  1  1  1  
Station3               1  1  1  1  1  
Station4         1  0  1  1  1  1  1  1  
Station5           1  1  1  1  1  1  1  
Station6                   1  1  1  
Station7         1  1  1  1  1  1  1  1  

CMH   1  1  1  1  1  1  1  1  1  1  1  
GRH 1    1  1  1  1  1  1  1  1  1  1  
SMH   1  1  1  1  1  1  1  1  1  1  1  
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Table 21: P2(2) Compliance Table in Busy Period when t(L) = 10:30 

P2(1) Number of Available Ambulances (m) 
Xij(m) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Station0         1        1  1  1  1  2  2  2  2  
Station1                     1  2  1  2  2  1  
Station2               1  1  1  1  1  2  2  2  2  
Station3       1  1  1  1  1  1  1  1  1  1  1  1  1  
Station4           1  1  1  1  1  1  1  1  1  1  1  
Station5             1  1  1  1  1  1  1  1  1  2  
Station6                   1  1  1  1  1  1  1  
Station7       1  1  1  1  1  1  1  1  1  1  1  1  2  

CMH   1  1  1  1  1  1  1  1  1  1  1  1  1  2  2  
GRH 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  
SMH     1      1  1  1  1  1  1  1  1  1  1  1  

Table 22: P2(2) Compliance Table in Busy Period when t(L) = 12 

P2(1) Number of Available Ambulances (m) 
Xij(m) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Station0         1        1  1  1  1  2  2  2  2  
Station1                     1  2  1  2  2  1  
Station2               1  1  1  1  1  2  2  2  2  
Station3       1  1  1  1  1  1  1  1  1  1  1  1  1  
Station4       1      1  1  1  1  1  1  1  1  1  2  
Station5           1  1  1  1  1  1  1  1  1  1  2  
Station6                   1  1  1  1  1  1  1  
Station7       1  1  1  1  1  1  1  1  1  1  1  2  1  

CMH   1  1    1  1  1  1  1  1  1  1  1  1  1  1  
GRH 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  
SMH     1      1  1  1  1  1  1  1  1  1  1  2  
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Table 23: P2(2) Compliance Table in Busy Period when t(L) = 14 

P2(1) Number of Available Ambulances (m) 
Xij(m) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Station0     1    1 1 1 1 2 2 2 1 
Station1           1 2 1 2 2 2 
Station2   1     1 1 1 1 1 2 2 2 1 
Station3    1 1 1 1 1 1 1 1 1 1 1 1 2 
Station4       1 1 1 1 1 1 1 1 1 1 
Station5      1 1 1 1 1 1 1 1 1 1 2 
Station6          1 1 1 1 1 2 1 
Station7   1 1 1 1 1 1 1 1 1 1 1 1 1 2 

CMH  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
GRH 1 1  1 1 1 1 1 1 1 1 1 1 1 1 1 
SMH      1 1 1 1 1 1 1 1 1 1 2 

Table 24: P2(2) Compliance Table in Busy Period when t(L) = 16 

P2(1) Number of Available Ambulances (m) 
Xij(m) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Station0     1    1 1 1 1 2 2 2 2 
Station1           1 2 1 2 2 1 
Station2        1 1 1 1 1 2 2 2 2 
Station3    1 1 1 1 1 1 1 1 1 1 1 1 1 
Station4    1   1 1 1 1 1 1 1 1 1 2 
Station5      1 1 1 1 1 1 1 1 1 1 2 
Station6          1 1 1 1 1 1 1 
Station7    1 1 1 1 1 1 1 1 1 1 1 2 1 

CMH  1 1  1 1 1 1 1 1 1 1 1 1 1 1 
GRH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
SMH   1   1 1 1 1 1 1 1 1 1 1 2 
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Compliance Table of Model P2(3) 

Table 25: P2(3) Compliance Table in Quiet Period when t(L) = 10:30 

P2(1) Number of Available Ambulances (m) 
Xj(m) 1 2 3 4 5 6 7 8 9 10 

Station0 
   

1 1 1 1 1 1 1 
Station1 

 
1 1 

 
1 1 1 1 1 1 

Station2 
        

1 1 
Station3 

 
1 

     
1 1 1 

Station4 
     

1 1 1 1 1 
Station5 

      
1 1 1 1 

Station6 
      

1 1 1 1 
Station7 

       
1 1 1 

CMH 
  

1 1 1 1 
   

1 
GRH 1 

 
1 1 1 1 1 1 1 1 

SMH 
   

1 1 1 1 
   Table 26: P2(3) Compliance Table in Quiet Period when t(L) = 12 

P2(1) Number of Available Ambulances (m) 
Xj(m) 1 2 3 4 5 6 7 8 9 10 

Station0 1 
  

1 1 1 1 1 1 1 
Station1 

    
1 1 1 1 1 1 

Station2 
  

1 
    

1 1 1 
Station3 

        
1 

 Station4 
     

1 1 1 1 1 
Station5 

       
1 1 1 

Station6 
     

1 1 1 1 1 
Station7 

        
1 1 

CMH 
 

1 1 1 1 
 

1 
  

1 
GRH 

 
1 1 1 1 1 1 1 1 1 

SMH 
   

1 1 1 1 1 
 

1 
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Table 27: P2(3) Compliance Table in Quiet Period when t(L) = 14 

P2(1) Number of Available Ambulances (m) 
Xj(m) 1 2 3 4 5 6 7 8 9 10 

Station0 1 
 

1 1 1 1 1 1 1 1 
Station1 

    
1 1 1 1 1 1 

Station2 
        

1 1 
Station3 

       
1 1 1 

Station4 
     

1 1 1 1 1 
Station5 

       
1 1 1 

Station6 
   

1 1 1 1 1 1 1 
Station7 

        
1 1 

CMH 
 

1 1 1 1 
 

1 
  

1 
GRH 

 
1 1 

 
1 1 1 1 1 1 

SMH 
   

1 
 

1 1 1 
  Table 28: P2(3) Compliance Table in Quiet Period when t(L) = 16 

P2(1) Number of Available Ambulances (m) 
Xj(m) 1 2 3 4 5 6 7 8 9 10 

Station0 1 
   

1 1 1 1 1 1 
Station1 

  
1 1 1 1 1 1 1 1 

Station2 
        

1 1 
Station3 

       
1 1 

 Station4 
     

1 1 1 1 1 
Station5 

       
1 1 1 

Station6 
   

1 1 1 1 1 1 1 
Station7 

       
1 1 1 

CMH 
 

1 1 1 1 
 

1 
  

1 
GRH 

 
1 1 

 
1 1 1 1 1 1 

SMH 
   

1 
 

1 1 
  

1 
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Table 29: P2(3) Compliance Table in Moderate Busy Period when t(L) = 10:30 

P2(1) Number of Available Ambulances (m) 
Xij(m) 1 2 3 4 5 6 7 8 9 10 11 12 

Station0 
   

1 1 1 1 1 1 1 1 2 
Station1 

 
1 1 1 1 1 1 

  
1 1 1 

Station2 
        

1 1 1 1 
Station3 

 
1 

        
1 1 

Station4 
    

1 1 1 1 1 1 1 1 
Station5 

       
1 1 1 1 1 

Station6 
      

1 1 1 1 1 1 
Station7 

       
1 1 1 1 1 

CMH 
  

1 1 
 

1 1 1 1 1 1 1 
GRH 1 

 
1 1 1 1 1 1 1 1 1 1 

SMH 
    

1 1 1 1 1 1 1 1 

Table 30: P2(3) Compliance Table in Moderate Busy Period when t(L) = 12 

P2(1) Number of Available Ambulances (m) 
Xij(m) 1 2 3 4 5 6 7 8 9 10 11 12 

Station0 1 
  

1 1 
  

1 1 1 1 2 
Station1 

    
1 1 1 1 1 1 1 1 

Station2 
 

1 1 
     

1 1 1 1 
Station3 

          
1 1 

Station4 
     

1 1 1 1 1 1 1 
Station5 

 
1 

   
1 1 

 
1 1 1 1 

Station6 
     

1 1 1 1 1 1 1 
Station7 

      
1 1 1 1 1 1 

CMH 
  

1 1 1 
  

1 
 

1 1 1 
GRH 

  
1 1 1 1 1 1 1 1 1 1 

SMH 
   

1 1 1 1 1 1 1 1 1 
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Table 31: P2(3) Compliance Table in Moderate Busy Period when t(L) = 14 

P2(1) Number of Available Ambulances (m) 
Xij(m) 1 2 3 4 5 6 7 8 9 10 11 12 

Station0 1 
 

1 1 
  

1 1 1 1 1 2 
Station1 

   
1 1 1 1 1 1 1 1 1 

Station2 
 

1 
     

1 1 1 1 1 
Station3 

          
1 1 

Station4 
     

1 1 1 1 1 1 1 
Station5 

 
1 

   
1 1 

 
1 1 1 1 

Station6 
    

1 1 1 1 1 1 1 1 
Station7 

        
1 1 1 1 

CMH 
  

1 1 1 
  

1 
 

1 1 1 
GRH 

  
1 1 1 1 1 1 1 1 1 1 

SMH 
    

1 1 1 1 1 1 1 1 

Table 32: P2(3) Compliance Table in Moderate Busy Period when t(L) = 16 

P2(1) Number of Available Ambulances (m) 
Xij(m) 1 2 3 4 5 6 7 8 9 10 11 12 

Station0 1 
  

1 
  

1 1 1 1 1 2 
Station1 

  
1 1 1 1 1 1 1 1 1 1 

Station2 
 

1 
     

1 1 1 1 1 
Station3 

          
1 1 

Station4 
 

1 
 

1 
 

1 1 1 1 1 1 1 
Station5 

     
1 

  
1 1 1 1 

Station6 
    

1 1 1 1 1 1 1 1 
Station7 

        
1 1 1 1 

CMH 
  

1 
 

1 
 

1 1 
 

1 1 1 
GRH 

  
1 1 1 1 1 1 1 1 1 1 

SMH 
    

1 1 1 1 1 1 1 1 
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Table 33: P2(3) Compliance Table in Busy Period when t(L) = 10:30 

P2(1) Number of Available Ambulances (m) 
Xij(m) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Station0 
    

1 1 1 1 1 1 1 1 2 2 2 2 
Station1 

 
1 

 
1 1 1 1 

  
1 1 2 1 2 2 1 

Station2 
        

1 1 1 1 2 2 2 2 
Station3 

  
1 1 

   
1 1 1 1 1 1 1 1 1 

Station4 
   

1 
 

1 1 1 1 1 1 1 1 1 1 1 
Station5 

       
1 1 1 1 1 1 1 2 2 

Station6 
      

1 1 1 1 1 1 1 1 1 1 
Station7 

       
1 1 1 1 1 1 1 1 2 

CMH 
  

1 
 

1 1 1 1 1 1 1 1 1 1 1 1 
GRH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 
SMH 

    
1 1 1 

   
1 1 1 1 1 1 

Table 34: P2(3) Compliance Table in Busy Period when t(L) = 12 

P2(1) Number of Available Ambulances (m) 
Xij(m) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Station0 1 
   

1 1 1 1 1 1 1 1 2 2 2 2 
Station1 

     
1 1 1 1 1 1 2 1 2 2 1 

Station2 
  

1 
     

1 1 1 1 2 2 2 2 
Station3 

    
1 

  
1 1 

 
1 1 1 1 1 1 

Station4 
   

1 
 

1 1 1 1 1 1 1 1 1 1 2 
Station5 

   
1 

    
1 1 1 1 1 1 1 1 

Station6 
    

1 1 1 1 1 1 1 1 1 1 2 2 
Station7 

   
1 

   
1 1 1 1 1 1 1 1 1 

CMH 
 

1 1 
 

1 
 

1 1 
 

1 1 1 1 1 1 1 
GRH 

 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

SMH 
     

1 1 
  

1 1 1 1 1 1 2 
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Table 35: P2(3) Compliance Table in Busy Period when t(L) = 14 

P2(1) Number of Available Ambulances (m) 
Xij(m) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Station0 1 
 

1 
 

1 1 1 1 1 1 1 1 2 2 2 1 
Station1 

    
1 1 1 1 1 1 1 2 1 2 2 2 

Station2 
 

1 
     

1 1 1 1 1 2 2 2 1 
Station3 

   
1 

    
1 

 
1 1 1 1 1 2 

Station4 
 

1 
 

1 
 

1 1 1 1 1 1 1 1 1 1 1 
Station5 

   
1 

    
1 1 1 1 1 1 2 1 

Station6 
    

1 1 1 1 1 1 1 1 1 1 1 2 
Station7 

       
1 1 1 1 1 1 1 1 1 

CMH 
  

1 
 

1 
 

1 1 
 

1 1 1 1 1 1 1 
GRH 

  
1 1 1 1 1 1 1 1 1 1 1 1 1 2 

SMH 
     

1 1 
  

1 1 1 1 1 1 2 

Table 36: P2(3) Compliance Table in Busy Period when t(L) = 16 

P2(1) Number of Available Ambulances (m) 
Xij(m) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Station0 1 
   

1 1 1 1 1 1 1 1 2 2 2 2 
Station1 

  
1 

 
1 1 1 1 1 1 1 2 1 2 2 1 

Station2 
 

1 
      

1 1 1 1 2 2 2 2 
Station3 

   
1 

   
1 1 1 1 1 1 1 1 2 

Station4 
 

1 
 

1 
 

1 1 1 1 1 1 1 1 1 1 1 
Station5 

   
1 

     
1 1 1 1 1 1 1 

Station6 
    

1 1 1 1 1 1 1 1 1 1 2 1 
Station7 

       
1 1 1 1 1 1 1 1 2 

CMH 
  

1 
 

1 
 

1 1 1 1 1 1 1 1 1 2 
GRH 

  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 

SMH 
     

1 1 
   

1 1 1 1 1 1 
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Appendix C 
GAMS Codes 

Part 1: decision variable and coverage 

Scalars  K total number of ambulances in the system /12/ 

         rho system-wide busy fraction /0.375/ 

         gamma busy fraction of firetruck /0.05/; 

Sets 

        s ambulance station /s1*s11/ 

        j demand nodes /j1*j378/ 

        f fire departments /f1*f15/ 

        m available ambulances /0*12/ 

        c CTAS levels /CTAS1, CTAS2, CTASx/; 

 

parameters 

        myord(m) constrain set 

/0 0 

1 1 

2 2 

3 3 

4 4 

5 5 

6 6 

7 7 

8 8 

9 9 

10 10 

11 11 

12 12 

/ 

        

q(m) the probability of m ambulances are available 

 

/0        7.73348E-06 

1        0.00015467 

2        0.001417805 

3        0.007876697 

4        0.029537614 

5        0.078766971 

6        0.153157998 

7        0.21879714 
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8        0.227913688 

9        0.168824954 

10        0.084412477 

11        0.025579538 

12        0.003552714/; 

 

$CALL GDXXRW lambda.xlsx par=lambda rng=A1 Rdim=1 Cdim=1 

$GDXIN lambda.gdx 

 

parameter lambda(j,c) the arrival rate of calls from dmand nodes j of ctas 

level c 

$load lambda 

$CALL GDXXRW AmbFeb.xlsx par=w1 rng=6min!A1 Rdim=1 Cdim=1 

$GDXIN AmbFeb.gdx 

 

parameter w1(j,s) the coverage rate to node j by ambulances from station s 

within 6mins 

$load w1 

$CALL GDXXRW AmbFeb.xlsx par=w2 rng=8min!A1 Rdim=1 Cdim=1 

$GDXIN AmbFeb.gdx 

 

parameter w2(j,s) the coverage rate to node j by ambulances from station s 

within 8mins 

$load w2 

$CALL GDXXRW AmbFeb.xlsx par=w3 rng=1030min!A1 Rdim=1 Cdim=1 

$GDXIN AmbFeb.gdx 

 

parameter w3(j,s) the coverage rate to node j by ambulances from station s 

within 1030mins 

$load w3 

$CALL GDXXRW AmbFeb.xlsx par=w4 rng=12min!A1 Rdim=1 Cdim=1 

$GDXIN AmbFeb.gdx 

 

parameter w4(j,s) the coverage rate to node j by ambulances from station s 

within 12mins 

$load w4 

$CALL GDXXRW AmbFeb.xlsx par=w5 rng=14min!A1 Rdim=1 Cdim=1 

$GDXIN AmbFeb.gdx 

 

parameter w5(j,s) the coverage rate to node j by ambulances from station s 

within 14mins 

$load w5 
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$CALL GDXXRW AmbFeb.xlsx par=w6 rng=16min!A1 Rdim=1 Cdim=1 

$GDXIN AmbFeb.gdx 

 

parameter w6(j,s) the coverage rate to node j by ambulances from station s 

within 16mins 

$load w6 

$CALL GDXXRW FireFeb.xlsx par=w rng=A1 Rdim=1 Cdim=1 

$GDXIN FireFeb.gdx 

 

parameter w(j,f) the coverage rate to node j by fire department f of ctas level 

1 only 

$load w 

$gdxin 

 

parameter  fd(j) probability no firetruck is available to cover node j; 

 fd(j) = 1-prod(f,1-(1-gamma)*w(j,f)); 

 

Variable cg coverage; 

Positive variables 

 

        ff1(j,m) probability of node j is not coverred within 6mins 

        ff2(j,m) probability of node j is not coverred within 8mins 

        ff3(j,m) probability of node j is not coverred within 10:30mins 

        ff4(j,m) probability of node j is not coverred within 12mins 

        ff5(j,m) probability of node j is not coverred within 14mins 

        ff6(j,m) probability of node j is not coverred within 16mins 

 

        ctas1c(j,m) probability of a 6mins call is covered when m units are 

available 

        ctas2c(j,m) probability of a 8mins call is covered when m units are 

available 

        ctas3c(j,m) probability of a xmins call is covered when m units are 

available 

 

        actas1(m)   ctas1 call has to be covered within 90% for each m 

        actas2(m)   ctas1 call has to be covered within 90% for each m 

        actasx(m)   ctas1 call has to be covered within 90% for each m 

 

        aactas1     ctas1 call has to be covered within 90% averagely 

        aactas2     ctas2 call has to be covered within 90% averagely 

        aactasx     ctasx call has to be covered within 90% averagely; 
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integer variable x(s,m) 

binary variable y(s,m) 

 

Equations 

        coverage define objective function 

        carnum(m)   limits the number of ambulances equal to m 

        actstat(s,m) bianary variable indicate if a station is non-empty 

 

        ambcover1(j,m) probability of at least on ambulance is available for 

6mins 

        ambcover2(j,m) probability of at least on ambulance is available for 

8mins 

        ambcover3(j,m) probability of at least on ambulance is available for 

1030mins 

        ambcover4(j,m) probability of at least on ambulance is available for 

12mins 

        ambcover5(j,m) probability of at least on ambulance is available for 

14mins 

        ambcover6(j,m) probability of at least on ambulance is available for 

16mins 

 

        ctas1cover(j,m)  probability of 6mins call is covered 

        ctas2cover(j,m)  probability of 8mins call is covered 

        ctas3cover(j,m)  probability of xmins call is covered 

 

        pctas1(m)      ctas1 call has to be covered within 90% for each m 

        pctas2(m)      ctas2 call has to be covered within 90% for each m 

        pctasx(m)      ctasx call has to be covered within 90% for each m 

 

        ppctas1      ctas1 call has to be covered within 90% averagely 

        ppctas2      ctas2 call has to be covered within 90% averagely 

        ppctasx      ctasx call has to be covered within 90% averagely; 

 

coverage.. cg =e= sum(m,q(m)*sum(j,lambda(j,'CTAS1')*ctas1c(j,m)))/0.0149; 

 

ambcover1(j,m)..  ff1(j,m)=e= 1 - prod(s,1-w1(j,s)*y(s,m)); 

ambcover2(j,m)..  ff2(j,m)=e= 1 - prod(s,1-w2(j,s)*y(s,m)); 

ambcover3(j,m)..  ff3(j,m)=e= 1 - prod(s,1-w3(j,s)*y(s,m)); 

ambcover4(j,m)..  ff4(j,m)=e= 1 - prod(s,1-w4(j,s)*y(s,m)); 

ambcover5(j,m)..  ff5(j,m)=e= 1 - prod(s,1-w5(j,s)*y(s,m)); 

ambcover6(j,m)..  ff6(j,m)=e= 1 - prod(s,1-w6(j,s)*y(s,m)); 
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ctas1cover(j,m).. ctas1c(j,m) =e= ff1(j,m)+fd(j)*(ff2(j,m)-ff1(j,m)); 

ctas2cover(j,m).. ctas2c(j,m) =e= ff3(j,m); 

ctas3cover(j,m).. ctas3c(j,m) =e= ff4(j,m); 

 

*constrain 2 

pctas1(m)..   actas1(m) =e= sum(j,lambda(j,'CTAS1')*ctas1c(j,m))/0.0149; 

pctas2(m)..   actas2(m) =e= sum(j,lambda(j,'CTAS2')*ctas2c(j,m))/0.1902; 

pctasx(m)..   actasx(m) =e= sum(j,lambda(j,'CTASx')*ctas3c(j,m))/0.7949; 

 

*constraint 3 

ppctas1..   aactas1 =e= sum(m,sum(j,q(m)*(lambda(j,'CTAS1')*ctas1c(j,m) 

+lambda(j,'CTAS2')*ctas2c(j,m)+lambda(j,'CTASx')*ctas3c(j,m)))); 

ppctas2..   aactas2 =e= 

sum(m,q(m)*sum(j,lambda(j,'CTAS2')*ctas2c(j,m)))/0.1902; 

ppctasx..   aactasx =e= 

sum(m,q(m)*sum(j,lambda(j,'CTASx')*ctas3c(j,m)))/0.7949; 

 

*constraint 5 

actstat(s,m).. y(s,m) - x(s,m) =L= 0; 

carnum(m)..   sum(s,x(s,m)) - myord(m) =e= 0; 

 

model dispatch /all/; 

 

option MINLP = SBB; 

OPTION RESLIM=100000; 

 

solve dispatch using minlp maximizing cg; 

 

Display x.L; 

display y.l; 

display cg.L; 

 

execute_unload 'result_MB.gdx', x, y; 

execute 'gdxxrw.exe result_MB.gdx var=x.L rng=Sheet1!A1' ; 

execute 'gdxxrw.exe result_MB.gdx var=y.L rng=Sheet1!A15' ; 

 
 

 

Part II: Rho Calculation and Iteration 

scalars  K total number of ambulances in the system /12/ 

         rho system-wide busy fraction /0.375/ 
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         gamma busy fraction of firetruck /0.05/; 

Sets 

        s ambulance station /s1*s11/ 

        j demand nodes /j1*j378/ 

        f fire departments /f1*f15/ 

        m available ambulances /0*12/ 

        c CTAS levels /CTAS1, CTAS2, CTASx/; 

parameters 

        q(m) the probability of m ambulances are available 

/0        7.73348E-06 

1        0.00015467 

2        0.001417805 

3        0.007876697 

4        0.029537614 

5        0.078766971 

6        0.153157998 

7        0.21879714 

8        0.227913688 

9        0.168824954 

10        0.084412477 

11        0.025579538 

12        0.003552714/; 

 

$CALL GDXXRW lambda.xlsx par=lambda rng=A1 Rdim=1 Cdim=1 

$GDXIN lambda.gdx 

 

parameter lambda(j,c) the arrival rate of calls from dmand nodes j of ctas 

level c 

$load lambda 

 

$CALL GDXXRW AmbFeb.xlsx par=w1 rng=6min!A1 Rdim=1 Cdim=1 

$GDXIN AmbFeb.gdx 

 

parameter w1(j,s)  

$load w1; 

   $CALL GDXXRW AmbFeb.xlsx par=w2 rng=8min!A1 Rdim=1 Cdim=1 

$GDXIN AmbFeb.gdx 

 

parameter w2(j,s)  

$load w2; 

$CALL GDXXRW AmbFeb.xlsx par=w3 rng=1030min!A1 Rdim=1 Cdim=1 

$GDXIN AmbFeb.gdx 
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parameter w3(j,s)  

$load w3; 

$CALL GDXXRW AmbFeb.xlsx par=w4 rng=12min!A1 Rdim=1 Cdim=1 

$GDXIN AmbFeb.gdx 

 

parameter w4(j,s)  

$load w4; 

$CALL GDXXRW AmbFeb.xlsx par=w5 rng=14min!A1 Rdim=1 Cdim=1 

$GDXIN AmbFeb.gdx 

 

parameter w5(j,s)  

$load w5; 

$CALL GDXXRW AmbFeb.xlsx par=w6 rng=16min!A1 Rdim=1 Cdim=1 

$GDXIN AmbFeb.gdx 

 

parameter w6(j,s)  

$load w6; 

$CALL GDXXRW FireFeb.xlsx par=w rng=A1 Rdim=1 Cdim=1 

$GDXIN FireFeb.gdx 

 

parameter w(j,f)  

$load w; 

$gdxin 

 

parameter  fd(j) probability no firetruck is available to cover node j; 

 fd(j) = 1-prod(f,1-(1-gamma)*w(j,f)); 

 

parameters 

        ff1(j,m) probability of node j is not coverred within 6mins 

        ff2(j,m) probability of node j is not coverred within 8mins 

        ff3(j,m) probability of node j is not coverred within 10:30mins 

        ff4(j,m) probability of node j is not coverred within 12mins 

        ff5(j,m) probability of node j is not coverred within 14mins 

        ff6(j,m) probability of node j is not coverred within 16mins 

 

        ctas1c(j,m) probability of a 6mins call is covered when m units are 

available 

        ctas2c(j,m) probability of a 8mins call is covered when m units are 

available 

        ctas3c(j,m) probability of a xmins call is covered when m units are 

available 
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        actas1(m)   ctas1 call has to be covered within 90% for each m 

        actas2(m)   ctas1 call has to be covered within 90% for each m 

        actasx(m)   ctas1 call has to be covered within 90% for each m 

 

        aactas1         ctas1 call has to be covered within 90% averagely 

        aactas2         ctas2 call has to be covered within 90% averagely 

        aactasx         ctasx call has to be covered within 90% averagely 

 

    expresp  the expected response time 

    rhoout  the output rho; 

 

*load x(s,m) 

$CALL GDXXRW result_MB.xlsx par=x rng=A1 Rdim=1 Cdim=1 

$GDXIN result_MB.gdx 

parameter x(s,m) 

$load x 

display x; 

 

*load y(s,m) 

$CALL GDXXRW result_MB.xlsx par=y rng=A15 Rdim=1 Cdim=1 

$GDXIN result_MB.gdx 

parameter y(s,m) 

$load y 

display y; 

$gdxin 

 

ff1(j,m)= 1 - prod(s,1-w1(j,s)*y(s,m)); 

ff2(j,m)= 1 - prod(s,1-w2(j,s)*y(s,m)); 

ff3(j,m)= 1 - prod(s,1-w3(j,s)*y(s,m)); 

ff4(j,m)= 1 - prod(s,1-w4(j,s)*y(s,m)); 

ff5(j,m)= 1 - prod(s,1-w5(j,s)*(1-rho**x(s,m))); 

ff6(j,m)= 1 - prod(s,1-w6(j,s)*(1-rho**x(s,m))); 

 

*ctas1c(j,m) = (1-fd(j)*ff1(j,m)); 

ctas1c(j,m) = ff1(j,m)+fd(j)*(ff2(j,m)-ff1(j,m)); 

ctas2c(j,m) = ff3(j,m); 

ctas3c(j,m) = ff3(j,m); 

*ctas3c(j,m) = ff4(j,m); 

*ctas3c(j,m) = ff5(j,m); 

*ctas3c(j,m) = ff6(j,m); 
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*Expected Respond Time 

*load t1(j,m) from excel 

$CALL GDXXRW.EXE travel_MB.xlsx par=tra rng=A1 Rdim=1 Cdim=1 

*=== Now import data from GDX 

$GDXIN travel_MB.gdx 

parameter tra(j,m) 

$LOAD tra 

display tra; 

$GDXIN  

 

expresp =  

sum(m,sum(j,q(m)*(tra(j,m))*(lambda(j,'CTAS1')*ctas1c(j,m)+lambda(j,'CTAS2')*ctas

2c(j,m)+lambda(j,'CTASx')*ctas3c(j,m)))); 

*New busy fraction 19.56 is the total number of calls during the period,51.9 is 

T4-T7 

rhoout = 19.56*(51.9+expresp)/(3600); 

*3600 is the real available time ( Amb_Hours) 

 

display rhoout; 

display expresp; 
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