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Abstract

Near-resonant triad interactions and wave generation theory are investigated for contin-
uously stratified fluids. Interaction equations are derived for spatially-varying wave trains
under the inviscid Boussinesq approximation. Rotational effects are included, and proper-
ties of the underlying eigenvalue problem are explored. To facilitate a numerical study of
the near-resonant interactions, numerical methods are developed and an analysis of wave
generation on a periodic domain is performed.

Numerical experiments using laboratory and ocean-scale parameters are conducted, and
the simulations confirm the validity of the wave forcing theory. Interaction experiments
demonstrate a strong tendency for waves to exhibit nonlinear behaviour. While resonant
interactions are observed in the laboratory scale simulations, nonlinear steepening effects
and the formation of solitary-like waves dominate the ocean-scale experiments. The re-
sults suggest that the weakly-nonlinear interaction theory is only appropriate in a limited
parameter regime.

The problem of analyzing forced wave equations on an infinite domain is also considered.
Motivated by the results obtained on a periodic domain, asymptotic analysis is applied to
three important wave equations. The method of steepest descents is used to determine
the large-time behaviour for the linearized Korteweg-de Vries, Benjamin-Bona-Mahony,
and internal gravity wave equations. The asymptotic results are compared with numerical
experiments and found to agree to high precision.
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4.27 Hovmöller diagrams for test DC5. The simulation is run long enough that
waves pass through the boundary. In the right subplot, a magnified view is
shown, and the undular bores visible in the density contour diagram appear
as striations in the lines of constant phase. . . . . . . . . . . . . . . . . . . 105

4.28 Background density (left subplot) and buoyancy frequency (right subplot)
for the more realistic ocean scale simulations. The center of the pycnocline
lies at z = 1700 m, and 96% of the density jump occurs across the interval
1550 ≤ z ≤ 1850 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.29 The dispersion relation for DR experiments. The waves in triad D are
marked with circles (absolute values of wavenumbers and frequencies are
plotted). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.30 Density contour diagrams for tests DR1→ and DR2→. Wave steepening is
visible within just a few wavelengths of the forcing center for wave D1 in
the left subplot. Small undular bores are visible in the waves to the right.
In the right subplot, steepening of the mode-2 wave D2 is visible within just
one wavelength, and large undular bores are visible in the right portion of
the figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.31 Density contour diagrams for collision experiment DR3. In the left subplot,
t = 33.3 hours and slightly less than three M2 tidal periods have elapsed.
The small mode-2 wave is visible slightly to the right of the mode-1 waves.
In the right subplott = 166.7 hours, and the M2 wave train has passed
through wave D2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
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Chapter 1

Introduction

This chapter introduces the main problems to be addressed in this thesis and motivates
their study. First, the concept of internal waves is discussed and their importance is
explained. Then, an overview of internal wave instabilities and generating mechanisms is
given. This is followed by a statement of the problems that are to be investigated and a
description of the organization of the remainder of this dissertation.

1.1 Motivation

Wave-watching at the beach is a captivating experience. From fast-moving ripples to
crashing surf, waves instill a sense of awe and wonder in their audience. There is a strange
sensation that each wave is somehow different but familiar, and simple yet complex. Trying
to understand the intriguing properties of these marvelous creations is a rewarding pursuit
with significant scientific value.

Surface water waves are probably the most well-known wave phenomenon to the gen-
eral public. This is largely due to the abundance of water on earth, combined with the
differences in the optical properties of air and water that make the waves visible. Waves
are also commonly observed on other fluid surfaces, such as the interface between air and
oil or alcohol and water, and are accepted as the same phenomenon. Contrary to popular
belief, however, waves are not limited to the free surface of a liquid.

The physical mechanism responsible for surface water waves is the restoring force of
gravity. Under typical conditions, air has a density of roughly 1 kg/m3, and, depending on
its mineral content and temperature, water has a density of roughly 1000 kg/m3, resulting
in an abrupt jump in density at the water surface. The density difference entices the force
of gravity to adjust an uneven water surface, but the inertia of the moving water causes
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Figure 1.1: Clouds near Amsterdam Island. The island is located in the bot-
tom left (southwest) corner of the image. Airflow to the northeast generates
oscillations forming a pattern similar to a ship’s wake. Source: NASA earth
observatory [55].

the surface to overshoot the equilibrium position, leading to oscillations. Naturally this
mechanism could also generate waves in a fluid with density transitions that are not as
abrupt as the air-water interface. These waves, known as internal gravity waves, or simply
internal waves, exist within the body of a fluid instead of at its free surface.

The possibility of internal wave motion seems reasonable, but it is a fair question to ask
where the necessary density variations exist to support such a phenomenon. As it happens,
the earth’s atmosphere, oceans, and many lakes possess gradual density variations. This
gives rise to a wealth of interesting wave behaviour.

1.1.1 Observing Internal Waves

In nature, internal gravity waves are harder to observe than their surface-dwelling cousins.
Their presence is relatively unknown to the general public, but internal waves are abundant
in a diverse range of environments. Internal waves are no strangers to exotic locations, and
have even been detected in Titan’s atmosphere, among other places (see Hinson and Tyler
[33]). The discussion presented here is limited to their observation in the earth’s oceans
and atmosphere.

In earth’s atmosphere, density variations in clear air are not easily visible, but waves
can sometimes be viewed in cloud layers. This is demonstrated in Figure 1.1. The picture
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shows a wave pattern in the clouds near Amsterdam Island in the Indian Ocean. The
island is located in the bottom left, southwest corner of the image. Warm, moist air is
driven upwards as it blows past the island’s volcanic cone. As the warm air rises to its
peak, it cools and moisture condenses, forming clouds. The cool air then falls, the clouds
evaporate, and oscillations ensue. The “V” shape wave pattern is reminiscent of a ship’s
wake.

Water is relatively opaque to electromagnetic radiation, so events taking place below the
surface generally cannot be observed with optical instruments. This makes measurements
of internal gravity waves in the oceans particularly challenging. To counter this problem,
oceanographers use a combination of in situ and remote sensing measurements to detect
internal waves.

Internal waves leave a signature on the sea surface that is detectable by radar imaging.
In Figure 1.2 a radar image of the Gulf of Mexico sea surface northeast of the Yucatan
Peninsula is shown. A striped pattern is visible near the center of the image, indicating
alternating patches of surface roughness and smoothness. This pattern indicates the pres-
ence of internal gravity waves below. An explanation for this internal wave footprint is
given by Alpers [4]. Short surface waves largely determine the sea surface roughness, and
in turn, the surface reflectivity. The bright and dark streaks in the radar image indicate
regions of increased and decreased reflectivity. Surface films, carried by currents induced
by internal waves, accumulate in convergence zones and damp the short surface waves.
In addition, surface currents induced by internal waves directly modify the short surface
waves through interactions. Damping of the short waves by these two mechanisms causes
a reduction in reflectivity.

In situ measurements are another method used by scientists to detect internal waves
in the deep ocean. In a recent study, van Haren and Gostiaux [70] observed internal
waves breaking off the Great Meteor Seamount at depths exceeding 500 m. Using nearly
one hundred high-precision temperature sensors, they were able to infer the passage of
internal waves with amplitudes of 5-10 meters. Wave-overturning was also detected through
temperature intrusions and attributed to Kelvin-Helmholtz instability.

As an alternative to studying internal waves in nature, laboratory experiments and
numerical simulations are often used. These can be a cost-effective choice, requiring less
man-power and equipment. In addition, targeted studies of wave processes can be con-
ducted in isolation from uncontrollable external factors. Numerical simulations are used
throughout this thesis to study and visualize internal waves.

The inherent difficulties faced by scientists in their attempts to observe internal waves
does not detract from the importance of the phenomenon. As discussed below, researchers
from a diverse range of disciplines are actively involved in studies of internal waves and
their properties.
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Figure 1.2: A satellite radar image of the Gulf of Mexico’s surface northeast
of the Yucatan Peninsula. The bands of well-spaced parallel lines indicate the
presence of internal waves below the surface. Source: NASA earth observatory
[54].

1.1.2 Why Are Internal Waves Important?

The oceans and atmosphere are teeming with internal waves, and they play a significant
role in processes that range in scale from microscopic mixing to climate dynamics. As a
result, internal waves are an active area of research in many fields of science. To illustrate
this point, consider the following (non-comprehensive) list of research areas with examples
of how internal waves are important.

• Applied Mathematics. Internal waves pose interesting modelling challenges that
lead to complicated differential equations. This has driven the development of a
rich mathematical theory and a vast body of literature. In a recent review, Helfrich
and Melville [32] discuss the important weakly-nonlinear dispersive equations used
to model long internal waves. Other mathematical descriptions are given by Lighthill
[45, Chapter 4], Kundu and Cohen [37, Chapter 14], and LeBlond and Mysak [43],
among many others.

• Atmospheric Science. Internal waves in the atmosphere play an important role in
many different processes at various altitudes. In a review by Solomon [62], mixing
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and transport of CFCs due to atmospheric internal waves is discussed as a factor in
the depletion of the stratospheric ozone layer.

• Biology. The mixing and transport of nutrient-rich water by internal waves in lakes
and the oceans influences the concentrations of species throughout the water body.
For example, Leichter et al. [44] have studied how the zooplankton populations at
various depths on a coral reef are related to the presence of cool, chlorophyll-rich
water transported by breaking internal waves.

• Computer Science and Numerical Analysis. Simulating internal waves numer-
ically is a complicated task requiring advanced algorithms, parallel processing, and
novel data analysis techniques. A topic that is currently en vogue is the application
of spectrally-accurate methods to simulate internal wave processes. Recent software
packages developed by Subich [64] and Winters et al. [73] are examples of this.

• Physical Oceanography. As described in the recent review by Garrett and Kunze
[27], barotropic tidal flow past topography generates internal tides. Depending on
the flow geometry, these waves can have non-tidal frequencies and propagate great
distances from their generation sites. The internal tides are believed to be responsible
for roughly 30% of all tidal energy dissipated. Another problem of fundamental
importance to oceanographers is understanding the nature and cause of mixing in
the deep ocean. Polzin et al. [59] found enhanced mixing rates near rough topography
in the Brazil Basin, likely due to internal wave motion.

It is primarily in the areas of Applied Mathematics, Numerical Analysis, and Oceanog-
raphy that this thesis is concerned. In particular, resonant triad interactions and wave
generation theory are the focus of this investigation. These topics are introduced in the
next section.

1.2 Background and Related Work

A significant body of literature has been developed on many different aspects of internal
waves. This is not surprising considering the ubiquity of the phenomenon. In this section,
a simple model of the density stratification of the ocean is described, and basic terminol-
ogy is introduced. After that, some of the important contributions related to instability
mechanisms and internal wave generation theory are discussed.
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1.2.1 Density Stratification and the Buoyancy Frequency

It is important to understand the character of the density profiles that arise in the environ-
ment. The ocean is of primary interest in this investigation, so a basic ocean density model
is now presented. This discussion follows Kundu and Cohen [37, Chapter 14] closely, and
the interested reader is referred there for a description of atmospheric density profiles.

In the oceans, the density stratification is largely due to temperature variations with
depth, but salinity is also a factor. The depth-varying temperature is primarily caused by
increased solar absorption near the surface and large-scale circulation patterns. In many
places, the oceanic water column can be divided into three regions. Near the surface lies
a well-mixed layer. Turbulence from a combination of currents, waves, and convective
overturning maintain the mixed state. Below the surface layer lies the pycnocline (or
thermocline), a region of relatively strong stratification. Due to its stronger stratification,
the pycnocline is where much of the internal wave activity takes place. Finally, below the
pycnocline lies a weakly stratified mass of cold water.

A useful quantity known as the Brunt-Väisälä frequency helps to quantify the strength
of a stratification. Commonly referred to as the buoyancy frequency and denoted by N(z),
it has units s−1. Throughout this thesis, the Boussinesq approximation is used (see Chapter
2), and under this assumption the buoyancy frequency takes the form:

N2(z) = − g

ρ0

dρ̄

dz
. (1.1)

Here ρ0 defines the mean background density, ρ̄(z) is the small vertically-varying com-
ponent, and g is the gravitational constant. Physically, the buoyancy frequency specifies
the oscillation frequency that an infinitesimally vertically-displaced fluid parcel at depth z
would experience under gravity.

Based on the discussion above, Figure 1.3 presents a sample oceanic density profile
and the corresponding buoyancy frequency profile. Near the surface (z = 0) the density
is almost constant. Below that, the pycnocline is approximately located in the interval
−450 ≤ z ≤ −150 meters. Across the pycnocline the density increases by about 5 kg/m3.
Below the pycnocline the density grows very slowly with depth. These features are clearly
evident in the plot of the buoyancy frequency. The pycnocline is identifiable as the region
where N(z) is relatively large. The weak stratification below the pycnocline is also apparent
because the buoyancy frequency is noticeably positive.

Under the Boussinesq approximation, a fluid is said to be stably stratified if N2(z) ≥ 0.
A fluid is continuously stratified if N(z) is continuous. A uniformly stratified fluid is one
for which N(z) is constant, indicating that ρ̄(z) varies linearly with depth. Internal waves
in uniformly stratified fluids have particularly useful analytical properties (see Chapter
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Figure 1.3: A sample density profile (left subplot) and the corresponding buoy-
ancy frequency profile (right subplot) for an ocean of depth 2 km.

2). Many authors have used uniform stratifications as models of oceanic and atmospheric
density profiles, and much of the theory of internal waves is built upon this assumption.
Studying the effects of nonuniform stratification is a central theme of this thesis.

1.2.2 Internal Wave Instabilities and Resonant Interactions

The splendor of a massive surface breaking wave is rivaled by few events in nature. The
wave-breaking process is visually stimulating and vastly complex. Within the frothy foam-
pile air is entrained and turbulent mixing occurs. Strong currents are also induced by the
wave, and in coastal regions significant volumes of sand and rocks are scraped from the
sea-floor and relocated. Breaking waves play an important role in coastal geomorphology
where they erode beaches and sculpt cliff faces. In the open ocean the wave-breaking
process helps keep the upper water column in a well-mixed state.

Not to be outdone, internal gravity waves can also break. Their sub-surface location
makes them an important factor in the mixing and vertical flux of nutrients, heat, and
momentum within the ocean body. In the vicinity of the sea-floor, breaking internal waves
are also involved in the uptake of sediments.

Technically speaking, wave-breaking is defined as the production of turbulence and
irreversible mixing. Internal wave breaking has been studied through numerical simulations
and laboratory experiments. This includes work on uniform stratifications by Lombard
and Riley [47, 48], who found the breaking process to be dominated by a combination of
convective and shear instabilities. Fringer and Street [26] numerically forced progressive
internal waves on a thin density interface to the point of breaking, they also observed shear
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instabilities. In related laboratory studies, Troy and Koseff [68, 69] studied the breaking
of long internal waves in a two-layer miscible fluid. They also observed Kelvin-Helmholtz
instabilities in wave crests and troughs.

Thorpe [66] has shown that a necessary, but not sufficient, condition for wave-breaking
is the overturning of isopycnals (lines of constant density). For this to occur, breaking is
typically preceded by a steepening phase. In their excellent review, Staquet and Sommeria
[63] identify three important internal wave steepening mechanisms: wave-focussing by wall
reflections, wave-mean flow interactions, and resonant wave interactions. Each mechanism
is fascinating, but it is resonant interactions that are the focus of this study.

Resonant wave interactions have a broad importance in many different settings. In an
entertaining review by a pioneer in the field, Phillips [58] describes the origins of the idea
and how it was developed for phenomenon such as surface gravity waves, plasmas, electron-
ics, and capillary waves. Craik [14] also provides a description of the many applications of
the theory. Resonant wave interactions are not limited to continuous media, however, and
Drazin and Reid use the example of a double-pendulum to introduce the topic in their text
[21, Chapter 7]. In the present setting, it is interactions involving three waves, known as
a triad, that are of interest. Higher-order interactions are possible but they are typically
weaker. A common theme for all resonant triad interactions is that a set of resonance
conditions must hold. For horizontally-propagating waves, these take the form:

k1 + k2 + k3 = 0
ω1 + ω2 + ω3 = 0,

(1.2)

where kn and ωn denote the wavenumber and frequency of the nth wave, and negative
values are permitted. An explanation for these conditions is given by Phillips [58], Craik
[14], and Drazin and Reid [21], and is also presented in Chapter 2 of this thesis. If three
waves only meet these conditions to within a small error tolerance, they are said to be
near-resonant. As will be seen, internal waves meeting these resonant (or near-resonant)
constraints obey interesting evolution equations.

Conditions (1.2) limit the possible candidates for wave interactions in a given system.
This is because the frequency of a wave depends on the wavenumber through the dispersion
relation. For surface gravity waves on deep water, the dispersion relation takes the form
ω =

√
gk, so it is impossible to find three non-trivial waves satisfying (1.2). Phillips’

original derivation of resonant interactions for surface gravity waves involved a quartet of
waves for which the equivalent resonant condition can be satisfied [57].

An important early contribution to resonant triad interaction theory was made by
Davis and Acrivos [17]. In that study, the authors considered a non-rotating, inviscid fluid
under the Boussinesq approximation with a stable continuous density stratification. They
derived interaction equations for spatially invariant wave trains. Their work demonstrates

8



the possibility for interactions in practically all stratified fluids of interest, provided the
resonance condition can be met for the given stratification. Whether or not the resonance
condition can be satisfied for a particular stratification must be determined numerically
due to the complicated nature of the dispersion relation.

Several laboratory experiments have been carried out to directly observe resonant triad
interactions for internal waves. Martin et al. [49] conducted successful experiments on
resonant triad excitation in a uniformly stratified fluid. In addition to their analytical work,
Davis and Acrivos [17] were able to demonstrate resonant triad interactions experimentally
in a fluid with a thin density interface.

A number of numerical studies have also identified resonant interactions. For example,
the evolution of a standing internal wave in a uniformly stratified fluid in two dimensions
has been explored numerically by Bouruet-Aubertot et al. [9]. The authors found that the
primary wave destabilized by means of a parametric subharmonic instability. Disturbances
of half the primary wave frequency were found to grow at the vorticity extremes. It was
also found that breaking occurred regardless of the initial wave amplitude. The excitation
of lower frequency secondary waves growing on a primary wave can be interpreted as a
resonant triad interaction.

Staquet and Sommeria [63] point out that there is no clear evidence showing the pres-
ence of resonant triad interactions in measurements of oceanic internal waves. However,
in numerical experiments Lamb [41] recently observed the excitation of certain internal
waves via near-resonant triad interactions. Generating an internal wave field through tide-
topography interactions, Lamb detected a structure dominated by waves nearly coupled to
the tidal wave by the aforementioned resonance condition. Even without exact resonance,
the strength of the triad was significant. In a related thesis, Hu [34] also explored the
interactions of resonant triads in a fluid with constant buoyancy frequency. These works
appear to be the first to identify near-resonant triads in tide-topography interactions.

Resonant triad interactions for internal gravity waves have been studied from many
perspectives. The majority of research, however, has focussed on fluids with uniform
density stratifications. The analysis given by Davis and Acrivos, [17] is a notable exception,
but their work has not been extended to include near-resonance, spatially varying wave
trains, or the effects of rotation. There is also a dearth of literature on simulations of
resonant triad interactions in fluids with nonuniform stratifications. As a consequence of
this, many of the tools necessary for such simulations have not been developed.

1.2.3 Internal Wave Generation Mechanisms

Internal waves in nature are excited by a variety of sources. Some of these generating
mechanisms are now discussed for oceanic, atmospheric, laboratory, and numerical internal
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waves. The more theoretical topic of forcing responses for partial differential equations is
also considered.

In many instances, the interaction of stratified flow with topography is an important
source of internal gravity waves. This is true in the atmosphere, where wind blowing over
topography such as mountains is the dominant source of internal waves (see Wuertele et
al. [74]). This is the mechanism responsible for the wave pattern shown in Figure 1.1,
and the interested reader is directed to the NASA earth observatory homepage for other
impressive images [55].

In the oceans, barotropic tidal flow past topography is a strong source of internal
waves. The generated waves are not necessarily of tidal frequency, but are determined by
the geometry of the topography and tidal excursion length. The physical theory behind
this form of wave generation is reviewed by Garrett and Kunze [27]. In another review,
Helfrich and Melville [32] discuss the importance of topography in the production of long,
large-amplitude internal waves. Recent numerical and laboratory experiments quantifying
the process for a uniform stratification are given by Echeverri et al. [24].

An extension of the tide-topography model for wave generation has been explored by
Akylas et al. [3]. In their model, internal wave beams originating at steep topography sites
reflect off the thermocline. The wave beam may travel large distances before reflecting,
and the reflection generates finite-amplitude solitary waves on the thermocline. Their work
provides a possible explanation for the production of internal solitary waves in the deep
ocean.

The resonant wave interactions considered in the previous subsection are another mech-
anism that can generate internal waves. Waves coupled by the resonance condition (1.2)
transfer energy amongst themselves. If two of the waves in a triad are present, the inter-
action will produce the third wave. The growing parasitic wave disturbances observed in
numerical experiments by Bouruet-Aubertot et al. [9], and Koudella and Staquet [36] are
examples of wave generation through resonant interactions.

Like surface waves, internal waves can be generated in a wave tank with a paddle or
other oscillatory sources. The vertically-varying structure of the waves can make it difficult
to generate higher modes. As a result most experiments, even for uniform stratifications,
are limited to studying just the first few vertical modes. Martin et al. [49] used a vertically
oscillating single and triple-paddle assembly to generate mode one and three waves in
a uniformly stratified fluid. Echeverri et al. [24] generated internal waves in a uniform
stratification with a horizontally oscillating foam topography. Troy and Koseff [68, 69]
used lateral channel contractions to force progressive internal waves on a thin density
interface. In other recent experiments, Mathur and Peacock [50] studied the propagation
of higher-mode internal wave beams in a variety of nonuniform stratifications using a
generator consisting of twelve oscillating plates.
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The more abstract study of wave generation through the analysis of forced model partial
differential equations (PDEs) is also important. Numerical simulations of wave phenomena,
internal or otherwise, typically require the solution of underlying PDEs. An analysis
of forcing responses naturally facilitates the design of numerical experiments. This is
particularly true in wave interaction experiments where it is necessary to generate multiple
waves with relatively little transient noise. Lighthill [45, Chapter 4], [46], has laid the
foundation for the mathematical study of this problem in a uniformly stratified fluid on an
unbounded domain. The problem is also studied in detail by Voisin [71], who presents exact
and asymptotic solutions using the Green’s function. Voisin’s analysis of the impulsively
forced problem for Boussinesq fluids is particularly relevant to this study. Similar analysis
for internal gravity waves in a region confined by horizontal plane boundaries does not
appear to have been considered in the literature. Related problems for internal waves in
nonuniform stratifications have also received little attention thus far. In fact, a systematic
framework for analyzing the forcing response of dispersive wave equations would be useful
to a wide audience.

1.3 Problem Statement

In this thesis three major problems are addressed. These problems are closely related, and
each helps to answer questions that have not been fully resolved in the existing body of
literature. The problems under investigation are as follows.

Problem 1: Theory of Near-Resonant Triad Interactions. This problem involves per-
forming a weakly-nonlinear analysis to determine how internal wave trains are modified
through near-resonant triad interactions. The investigation concerns Boussinesq fluids in
bounded domains with rigid lids, rotation, and variable density stratifications. The govern-
ing interaction equations must be derived, and their properties characterized. In addition,
the properties of the underlying linear problem will be explored in detail.

Problem 2: Near-Resonant Triad Simulations. Given the resolution of Problem 1,
fully nonlinear resonant triad interactions will be simulated in laboratory and ocean-scale
numerical experiments. This requires the development of useful data analysis methods
and numerical wave generation techniques for fluids with variable density stratifications.
A major goal of this investigation is to determine the applicability of the weakly-nonlinear
theory.

Problem 3: Dispersive Wave Forcing Theory. A necessary ingredient for the resolu-
tion of Problem 2 is the ability to accurately force waves numerically in a stratified fluid.
This generalizes naturally to the problem of devising methods for generating a desired wave
for a linear dispersive equation using an oscillatory source. Asymptotic analysis will be
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used to determine the phase, frequency, and amplitude of forced waves. The mathematical
results will then be compared with numerical experiments.

The problems under consideration are quite technical in nature and their resolution
requires a diverse repertoire of mathematical methods. The close connection between the
problems is also apparent, and there is a significant overlap in the methods used to solve
them. This thesis is organized in an attempt to treat these problems sequentially, as
described in the next section.

1.4 Thesis Layout

The remainder of this thesis is divided into five chapters and four appendices. Chapters
2 – 4 primarily deal with problems of resonant wave interactions and their simulation.
Chapter 5 presents a study of impulsively forced wave equations. The appendices provide
some of the more laborious calculations.

The basic theory of resonant triad interactions for internal gravity waves is presented
in Chapter 2. This includes a derivation of the interaction equations, a survey of some
of their properties, and a technical discussion of the underlying linear eigenvalue problem.
The study of the eigenvalue problem provides a foundation for much of the mathematics
in the chapters that follow.

Before attempting to study resonant interactions through simulations, the necessary nu-
merical methods are presented in Chapter 3. A description of the techniques used to find
triads a priori is given, then two numerical models used for simulations are described. The
approach used in energy decompositions of simulation data is then presented, and inter-
esting properties of the energy spectrum are explored. The chapter ends with a discussion
of the method used to accurately generate internal gravity waves numerically.

Numerical simulations are presented in Chapter 4. Basic experiments are displayed, as
well as interaction experiments for laboratory and ocean-scale waves. Two different oceanic
stratifications are investigated, with experiments focussing on waves of tidal frequency.
The chapter closes with a general discussion to explain some of the interesting simulation
results.

In Chapter 5 the focus shifts to the asymptotic analysis of impulsively forced wave
equations. Motivated by the numerical forcing problem addressed in Chapter 3, problems
on an infinite domain are studied. After an introduction to solution techniques and a
review of the forced long-wave equation, asymptotic analysis is applied to the linearized
Korteweg-de Vries (KdV) equation, Benjamin-Bona-Mahony (BBM) equation, and internal
gravity wave (IGW) equation. The approximate results are compared against numerical
solutions for each equation.
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Finally, conclusions are drawn in Chapter 6. The important contributions are summa-
rized for each of the three major problems under consideration. Suggestions for interesting
future projects are also given. After Chapter 6 the appendices and references are given.
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Chapter 2

Near-Resonant Triad Interaction
Theory

This chapter presents the theory underlying near-resonant triad interactions for internal
waves in continuously stratified fluids. The interaction equations are derived in Section 2.1.
Some interesting properties of the interaction equations are described in Section 2.2. In
Section 2.3 important properties of the fundamental linear eigenvalue problem for internal
gravity waves are discussed in detail.

2.1 Deriving the Interaction Equations

Resonant triads interactions occur in many fields within the physical sciences. The interest
here is in how they arise and behave for inviscid, incompressible fluids with continuous
density stratifications. The natural approach starting with wave solutions to the equations
of motion is pursued here. The notation and methods used here are similar to those of
Lamb [40], and Hu [34].

2.1.1 The Boussinesq Equations

Consider an inviscid fluid governed by the Boussinesq equations in a rotating reference
frame. Suppose the fluid has depth H, and is confined between rigid, impermeable bound-
aries at z = 0, H. Using the f -plane model (constant Coriolis parameter f), and aligning
the x-axis along the direction of propagation so that all variables are independent of y, the
basic equations are

ut + uux + wuz − fv = −px
ρ0

(2.1a)
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vt + uvx + wvz + fu = 0 (2.1b)

wt + uwx + wwz = −pz
ρ0

− ρ

ρ0

g (2.1c)

ρt + uρx + wρz = 0 (2.1d)

ux + wz = 0 (2.1e)

−∞ < x, y <∞, 0 ≤ z ≤ H.

Subscripts are used to indicate partial derivatives. The vector field ~u = (u, v, w) defines
the velocity, p is the pressure, and g is the gravitational constant. The density ρ used
throughout this thesis generally takes the form

ρ = ρ0 + ρ̄(z) + ρ′(x, z, t), (2.2)

where ρ0 is the reference value, ρ̄(z) is the variable background state, and ρ′(x, z, t) is the
density perturbation. Typically, density profiles of the form ρ̄(z) = −∆ρ

2
tanh

(
z−z0
D

)
are

used to model a fluid consisting of a light fluid overlying a heavy fluid with a smooth
transition in density. This scenario is common in the oceans, for instance, where fresher
water lies over dense, salty water.

Boundary conditions must be imposed on w and ρ′ at the rigid, impermeable boundaries
at z = 0, H. The natural condition is that no normal flow to the boundaries can occur,
and this fixes w and ρ′ to be zero at z = 0, H. Since the fluid is inviscid, the horizontal
velocity components are not constrained at the vertical boundaries.

The main difference between the Boussinesq equations and the Euler equations is that
the full expression for density only appears when multiplied with g. The validity of this
approximation is discussed at length in Kundu [37, Chapter 4]. In general this set of
equations is appropriate for ocean-like flows which have relatively small density variations,
finite depth, and low Mach numbers. This approximation is also used for atmospheric flows
in certain cases but more care is required because of the large vertical length scales and
correspondingly large density variations.

Equations (2.1) specify the evolution of dimensional quantities. For use in both the per-
turbation analysis that follows and later numerical simulations, a non-dimensionalization
process is useful. For the moment, let variables with hats be dimensionless quantities, and
capitalized variables be dimensional. Define dimensionless length variables (x̂, ŷ, ẑ) =
(x, y, z)/H, where H is the height of the domain. Define a velocity scale U so that
(u, v, w) = U(û, v̂, ŵ) and the time scale T = H/U . The pressure is scaled like p = P p̂
where P = ρ0U

2, and the density is scaled by ρ = Rρ̂, and the dimensionless Coriolis
parameter is defined by f̂ = fT .

The appropriate velocity scale is defined by U2 = gH ∆ρ
4ρ0

is used. This is the phase

speed of a long wave in a two-layer fluid with equal depths of H/2, density jump ∆ρ
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and mean density value ρ0, as discussed in Appendix A. The appendix also demonstrates
how this choice of velocity scale is appropriate even when the pycnocline is not centered
in the domain, provided it does not lie extremely close to either boundary. The natural
interpretation of the time scale T = H/U is the time it would take a long internal wave
crest to traverse a distance equal to the fluid depth.

With the chosen velocity scale, it is natural to define the density scaling R = ∆ρ/4.
This makes the dimensionless density jump across the fluid roughly four. The buoyancy
frequency, expressed as N(z), is defined by N2(z) = −(g/ρ0)dρ̄/dz. The dimensionless
buoyancy frequency is then N̂2(ẑ) = T 2N2(z). In terms of the dimensionless background
density, N̂2(ẑ) = −d ˆ̄ρ/dẑ. The buoyancy b = (g/ρ0)ρ′ = U2

H2 ρ̂
′ has dimensionless equivalent

b̂ = ρ̂′.

Finally, for notational simplicity, all hats are dropped from the dimensionless variables.
It is understood that unless otherwise stated, in the equations immediately below and all
those that follow, the quantities are dimensionless. The Boussinesq equations become

ut + uux + wuz − fv = −px (2.3a)

vt + uvx + wvz + fu = 0 (2.3b)

wt + uwx + wwz = −pz − ρ (2.3c)

ρt + uρx + wρz = 0 (2.3d)

ux + wz = 0 (2.3e)

−∞ < x, y <∞, 0 ≤ z ≤ 1.

This dimensionless set of equations is the foundation upon which this thesis is built.

The y-independence of these equations allows for introduction of the streamfunction ψ
such that (u,w) = (−ψz, ψx). The incompressibility condition (2.3e) is then automatically
satisfied. Taking the curl of the x and z momentum equations yields the equation for the
streamfunction

∂

∂t
∇2ψ + J(ψ,∇2ψ) + fvz = −bx, (2.4)

where the Jacobian operator is defined by J(A,B) = AxBz − AzBx. The equation for
density can then be written

∂b

∂t
+ J(ψ, b)−N2(z)ψx = 0. (2.5)

Differentiating (2.4) with respect to t and simplifying reveals the following set of equations:

∇2ψtt + f 2ψzz +N2(z)ψxx = − ∂
∂t
J(ψ,∇2ψ) + f ∂

∂z
J(ψ, v) + ∂

∂x
J(ψ, b) (2.6a)
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vt + J(ψ, v)− fψz = 0 (2.6b)

bt + J(ψ, b)−N2(z)ψx = 0. (2.6c)

These equations are more convenient for the derivation of resonant triad interactions.

2.1.2 Multiple-Scales Analysis

Large amplitude wave interactions are highly nonlinear processes and difficult to analyze.
A more modest approach is to study the interactions of small amplitude waves. While
this seems quite restrictive, it turns out that with the present choice of dimensionless
parameters, small amplitude waves are still very interesting. With the analysis centered
on equation (2.6a), small amplitude waves are just those for which {|ψ|, |b|, |v|} � 1.
Physically, these are waves where the magnitudes of the induced velocity fields are small
compared with the phase speed of a long wave in the equivalent two-layer fluid.

To analyze the small waves, suppose ψ is O(ε), where ε � 1. Define slow space and
time variables {X,T} = {εx, εt}. The variables ψ, v, and b are expanded as power series
in ε so that

ψ = εψ(0) + ε2ψ(1) + ε3ψ(2) + · · ·
v = εv(0) + ε2v(1) + ε3v(2) + · · ·
b = εb(0) + ε2b(1) + ε3b(2) + · · ·

(2.7)

At any order j, the terms {ψ(j), v(j), b(j)} are functions of x,X, t, and T .

Substituting the series expansions into equations (2.6), carefully treating the deriva-
tives, and noting nonlinear terms such as J(ψ,∇2ψ) are O(ε2), simplifies the problem.
Collecting like powers of ε reveals the O(ε) problem:

∇2ψ
(0)
tt + f 2ψ

(0)
zz +N2(z)ψ

(0)
xx = 0

v
(0)
t − fψ(0)

z = 0

b
(0)
t −N2(z)ψ

(0)
x = 0.

(2.8)

The equation for ψ(0) admits wave-like solutions of the form ψ(0) = g(z) exp(i(kx − σt)),
provided g(z), k, and σ satisfy the equation

g′′(z) + k2
(
N2(z)−σ2

σ2−f2

)
g(z) = 0

g(0) = g(1) = 0.
(2.9)

The boundary conditions arise because w = ψx must be zero at the rigid boundaries.
Treating k as a parameter, this represents an eigenvalue problem that can be rewritten in
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Sturm-Liouville form (see Section 2.3). The eigenvalues are simply the admissible frequen-
cies σ, and when treated as a function of k, define the dispersion relation σ(k). Solving
the eigenvalue problem requires finding values of both σ and g(z).

When N2(z) − f 2 > 0 for 0 ≤ z ≤ 1, the problem is of regular Sturm-Liouville type
(see Zettl [78, Chapter 3]). This point is discussed carefully in Section 2.3, but for now
it is assumed. At each k there is a countable infinity of eigenvalues that can be ordered
σ2

1(k) > σ2
2(k) > · · · > 0. The corresponding eigenfunctions are real and continuous. These

ideas suggest rewriting the eigenvalue problem in the form

g′′n(z, k) + k2
(
N2(z)−f2

σ2
n(k)−f2 − 1

)
gn(z, k) = 0,

gn(0, k) = gn(1, k) = 0,
(2.10)

where the index n, known as the vertical mode number, has been associated with each
eigenvalue and eigenfunction. In addition, the parameter k has been included as an argu-
ment of gn to highlight the eigenfunction dependence on k.

The natural orthogonality condition for two eigenfunctions at the same value of k takes
the form ∫ 1

0

(N2(z)− f 2)gm(z, k)gn(z, k) dz =

{
1 if m = n

0 otherwise.
(2.11)

These properties, and many others, are discussed by Zettl [78]. In Section 2.3 additional
properties specific to the internal gravity wave problem are also developed.

Returning to (2.8) and the linear problem for ψ(0), consider a solution consisting of a
superposition of three waves in the form

ψ(0) =
3∑
p=1

(
ape

iθp+iπ
2 + a∗pe

−iθp−iπ2
)
gnp(z, kp), (2.12)

where p is a counting index, θp = kpx−ωpt, and ωp = σnp(kp) lies on the mode-np dispersion
curve. The factors of exp(iπ/2) are chosen for algebraic convenience. The slowly varying
complex-valued wave envelopes, denoted by ap, are functions of X and T . The asterisk is
used to denote the complex conjugate so that ψ(0) is real. In addition to satisfying (2.10),
the wavenumbers and frequencies are assumed to obey the resonance condition (Craik [14,
Chapter 5]):

k1 + k2 + k3 = 0
ω1 + ω2 + ω3 = 0,

(2.13)

so that θ1 + θ2 + θ3 = 0 for all x, t. It may be extremely rare or even impossible that waves
can be found satisfying (2.13) for a given stratification. For now this concern is simply
ignored. The restrictiveness of the resonance condition will be relaxed shortly.
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Given the proposed form of ψ(0), solutions for v(0) and b(0) can be readily obtained
through (2.8). The complete O(ε) solution is

ψ(0) =
3∑
p=1

(
ape

iθp+iπ
2 + a∗pe

−iθp−iπ2
)
gnp(z, kp)

v(0) = f
3∑
p=1

(
i ap
ωp
eiθp+iπ

2 − i a∗p
ωp
e−iθp−i

π
2

)
g′np(z, kp)

b(0) = −N2(z)
3∑
p=1

(
kp
ωp
ape

iθp+iπ
2 + kp

ωp
a∗pe
−iθp−iπ2

)
gnp(z, kp),

(2.14)

where g′np(z, kp) = dgnp(z, kp)/dz.

The next task is to consider the O(ε2) problem so that evolution equations can be
found for each wave envelope. Substituting the series form of each variable into (2.6) and
collecting like terms yields the O(ε2) equation:

∇2ψ
(1)
tt + f 2ψ

(1)
zz +N2(z)ψ

(1)
xx = −2

(
∂2

∂t2
∂2

∂x∂X
+∇2 ∂2

∂t∂T

)
ψ(0)

−2N2(z) ∂2

∂x∂X
ψ(0) − ∂

∂t
J(ψ(0),∇2ψ(0))

+f ∂
∂z
J(ψ(0), v(0)) + ∂

∂x
J(ψ(0), b(0)),

(2.15)

and
v

(1)
t − fψ(1)

z = −v(0)
T − J(ψ(0), v(0)),

b
(1)
t −N2(z)ψ

(1)
x = −b(0)

T +N2(z)ψ
(0)
X − J(ψ(0), b(0)).

(2.16)

At this point the analysis becomes tedious because the Jacobian terms lead to lengthy
expressions involving sums and differences of phases. The key observation, however, is
that for waves satisfying the resonance conditions (2.13), the right hand side of (2.15)
contains terms proportional to exp(iθp) and exp(−iθp) for p = 1, 2, 3. These terms could
resonantly force the O(ε2) solution, eventually breaking the ordering of the asymptotic
expansion. The envelope functions ap must be chosen to obey certain equations that
prevent the resonant forcing.

In Appendix B, the detailed calculations are presented. The end result is a set of
coupled partial differential equations that the envelope functions must satisfy to preserve
asymptotic ordering. The equations take the form

∂a1

∂T
+ v1

∂a1

∂X
= γ1a

∗
2a
∗
3,

∂a2

∂T
+ v2

∂a2

∂X
= γ2a

∗
1a
∗
3,

∂a3

∂T
+ v3

∂a3

∂X
= γ3a

∗
1a
∗
2.

(2.17)

These equations are henceforth referred to as the resonant triad interaction equations. It
is shown in Section 2.3 that the advection coefficients, vp exactly match the group velocity
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for the underlying waves. The interaction coefficients γp are real, and in Appendix B they
are shown to agree with the results of Hu [34] and Lamb [41] when N2(z) is constant.

In Section 2.2 many important properties of these equations will be explored. First,
however, the effects of relaxing the resonance condition (2.13) are considered.

2.1.3 Near-Resonant Interactions

The above theory describes the evolution of wave envelopes for three waves that satisfy
the resonance condition (2.13) exactly. For an arbitrary background density profile, it may
be impossible to find three waves obeying this condition. Even in situations where it is
possible, the wavenumbers and frequencies involved may not be of physical interest. To
counter these problems, a relaxed form of the resonance conditions is considered. Suppose
that

k1 + k2 + k3 = εk̂,
ω1 + ω2 + ω3 = εω̂,

(2.18)

where k̂, and ω̂ are at most O(1). Triads meeting these conditions are referred to as
near-resonant, or inexact triads. This loosening of the resonance condition significantly
increases the applicability of the theory.

Much like a pendulum forced at near-resonance, the relaxed condition (2.18) still leads
to growing waves. Like the exact case, wave envelopes must be chosen so that resonant
growth does not occur on the fast space and time scales. As shown in Appendix B, the
interaction equations for near-resonant triads take the form

∂a1

∂T
+ v1

∂a1

∂X
= γ1a

∗
2a
∗
3e
−i(k̂X−ω̂T ),

∂a2

∂T
+ v2

∂a2

∂X
= γ2a

∗
1a
∗
3e
−i(k̂X−ω̂T ),

∂a3

∂T
+ v3

∂a3

∂X
= γ3a

∗
1a
∗
2e
−i(k̂X−ω̂T ).

(2.19)

The reduction to equation set (2.17) when k̂ = ω̂ = 0 is apparent.

While the allowance for inexactness greatly improves the applicability of the theory,
it does lead to more complicated evolution equations. In addition to being nonlinear and
coupled, interactions now depend on variable coefficients. Even with this complication
many interesting properties of the wave envelopes can be found, as described in the next
section.

2.2 Properties of the Interaction Equations

The triad interaction equations (2.17) and their near-resonant cousins (2.19) determine the
rate of growth or decay of the wave envelopes in a particular interaction. The amplitude
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of a wave train is dictated by the shape of its envelope, so these equations describe the
stability of the underlying waves. This section presents some of the important properties
of the equations and their implications for stability of waves.

2.2.1 Preliminary Discussion

Informally, some features of the solutions to the evolution equations (2.17) and (2.19)
can be discerned. When all three γ values are zero or none of the wave envelopes are
overlapping, waves do not interact and the envelopes simply travel at a constant velocity
with speed and direction determined by the group velocity values. Wave energy must
travel with the envelopes, as there can only be waves where the envelope is non-zero. The
calculations presented in Section 2.3 and Appendix B confirm that the velocity coefficients
match the group velocity for the underlying waves. This matches the expected result that
wave energy travels with the group velocity.

The effect of two wave envelopes interacting is to increase or decrease the local ampli-
tude of the third envelope, depending on the sign of its γ value. The presence of the third
wave then leads to interactions that modify the first and second envelopes, and a compli-
cated process of energy transfers ensues. The initial behaviour of this energy transfer is
described in upcoming subsections.

Another observation is that the three interaction coefficients cannot all have the same
sign. If they did, unbounded growth could result for all three wave envelopes. Such
interactions are referred to as explosive resonant triads, and require an energy source
(such as a background sheared flow) to occur. Craik and Adam [16] have demonstrated
the possibility of explosive resonance in a three-layer Kelvin-Helmholtz flow. Becker and
Grimshaw [5] show that for explosive resonance to occur for a triad in a shear flow a critical
layer is required. Explosive resonance is also discussed by Craik [14].

When a triad consists of two relatively fast moving waves and a slow moving wave,
the slow wave will be present at locations beyond what could be achieved by a stationary
source. The two fast waves continually generate and interact with the third wave as they
propagate. In addition, two rightward propagating waves could interact to produce a
leftward propagating wave (provided the resonance condition can be met). In contrast,
under linear theory a given wave can only be found at distances dictated by its group
velocity.

A more exotic form of the above phenomenon occurs in the exact resonant case when
three solutions are locked together. Certain special envelope shapes have the remarkable
property that they remain unchanged through the continuous interaction process and travel
as a group. Such solutions are known as solitons, and are sometimes referred to as bright-
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bright-dark, or simulton solutions. Families of solutions possessing these properties are
described by Degasperis et al. [18], but this topic is not pursued further here.

2.2.2 Conservation Laws and Exact Solutions

A detailed discussion of conservation laws and exact solutions for the interaction equations
is given by Craik [14, Chapter 5]. The discussion given here is loosely based on that
presentation.

Both forms of the interaction equations (2.17) and (2.19) possess exact solutions and
conservation laws. Conservation laws are generally found by multiplying the equation for
an by the complex conjugate a∗n and integrating from X = −∞ to +∞. With minor
algebraic manipulations and the boundary conditions |an| → 0 as |x| → ∞, an energy
conservation law of the form

∂

∂T

∫ ∞
−∞

γ2γ3|a1|2 + γ1γ3|a2|2 − 2γ1γ2|a3|2 dX = 0 (2.20)

is immediately found. The fact that one of the interaction coefficients must have a different
sign from the other two ensures that each term in the above conservation law has the same
sign. This conservation law also explains how an explosive resonant triad could lead to
all three waves growing unboundedly. If one of the terms in (2.20) differs in sign from
the other two there is no bounding constraint on how large the envelope amplitudes can
become.

A set of three more conservation laws, known as the Manley-Rowe relations, are found
by taking differences of the interaction equations (see Craik [14, page 130]. The laws take
the form

∂
∂T

∫∞
−∞ γ2|a1|2 − γ1|a2|2 dX = 0,

∂
∂T

∫∞
−∞ γ3|a1|2 − γ1|a3|2 dX = 0,

∂
∂T

∫∞
−∞ γ3|a2|2 − γ2|a3|2 dX = 0.

(2.21)

An important special case occurs when the wave trains under analysis are assumed to be
spatially uniform. In this case the derivatives with respect to X vanish. The conservation
law (2.20) and the Manley-Rowe relations do not change in form except for the absence
of the integrals. For spatially uniform waves the exact interaction equations are solvable
in terms of Jacobi’s elliptic functions. As discussed by Craik [14], these equations were
actually first solved by Euler in his studies of rigid body motion.

The initial value problem for the exact interaction equations are also solvable by means
of the Inverse Scattering Transform (IST). The IST approach is discussed by Craik [14],
and considered in particular detail by Ablowitz and Segur [2]. It is unclear if the IST
could be extended to the near-resonant interaction equations, but this open question is not
addressed here.
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2.2.3 Near-Resonant Stability Conditions

A stability analysis for waves governed by the near-resonance interaction equations (2.19)
is now presented. The results found here are directly applicable to the exact resonance
case. To simplify analysis, the transformation ap = bp exp(−i∆/3) for p = 1, 2, 3 is used,

where ∆ = k̂X − ω̂T . This reduces the near-resonant interaction equations to a set of
coupled equations with constant coefficients:

∂b1
∂T

+ v1
∂b1
∂X
− i (k̂v1−ω̂)

3
b1 = γ1b

∗
2b
∗
3,

∂b2
∂T

+ v2
∂b2
∂X
− i (k̂v2−ω̂)

3
b2 = γ2b

∗
1b
∗
3,

∂b3
∂T

+ v3
∂b3
∂X
− i (k̂v3−ω̂)

3
b3 = γ3b

∗
1b
∗
2.

(2.22)

Let (p, q, r) denote the indices of three waves satisfying these equations and the near-
resonance conditions (2.18). Suppose the largest amplitude (primary) wave is indexed by
p, and small (parasitic) waves q and r perturb it. The linear stability of the primary wave
in the presence of this disturbance is determined by the growth or decay of the two smaller
waves. If the parasitic waves grow in time, the primary wave is unstable to their presence.

Suppose waves q and r have amplitudes of order µ, and let ap = A+O(µ), where µ� A
and A is constant. This mimics the physical situation where the parasitic waves perturb
the relatively uniform primary wave in some small region. To leading order, waves q and
r satisfy

∂bq
∂T

+ vq
∂bq
∂X
− i (k̂vq−ω̂)

3
bq = γqA

∗b∗r,
∂br
∂T

+ vr
∂br
∂X
− i (k̂vr−ω̂)

3
br = γrA

∗b∗q.
(2.23)

For the index n, define the operator Ln = ∂/∂T+vn∂/∂X−i (k̃vn−ω̃)
3

. Applying the complex
conjugate operator L∗r to the evolution equation for bq reduces the system to:

L∗r(Lq(bq)) = γqγrA
∗Abq. (2.24)

Next, consider how a plane wave component of bq evolves. Substituting bq = exp(i(KX−
ΩT )) into (2.24) reveals(

Ω−
(
vrK +

(k̂vr − ω̂)

3

))(
Ω−

(
vqK − (k̂vq − ω̂)

3

))
= −γqγr|A|2. (2.25)

This equation is quadratic in Ω, and its roots dictate whether or not wave q will grow in
time. Let dq = vqK − (vqk̂ − ω̂)/3 and dr = vrK + (vrk̂ − ω̂)/3. The polynomial in Ω can
be factored to yield

Ω =
(dq + dr)±

√
(dq − dr)2 − 4γqγr|A|2

2
. (2.26)
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Clearly Ω is complex when the discriminant is negative. It follows that γqγr > 0 is a
necessary condition for wave p to be unstable. The discriminant is negative whenever(

K −
(

(vq + vr)k̂ − 2ω̂

3(vq − vr)

))2

<
4γqγr|A|2
(vq − vr)2

. (2.27)

The results of this linear stability analysis are summarized in the following theorem.

Theorem 1. Consider waves p, q, r satisfying the near-resonance conditions (2.18) and
interaction equations (2.19). Suppose that the primary wave p is perturbed by parasitic
waves q and r. The following statements are true:

1. If γqγr ≤ 0 the primary wave p is linearly stable to disturbances of parasitic waves q
and r.

2. If γqγr > 0, the plane wave component exp(i(KX − ΩT )) of waves q and r grows in
time whenever condition (2.27) holds.

In view of this theorem, it is clear that if two of the waves in the triad have similar
velocities, a much broader range of K values for the third wave will lead to instabilities.
This demonstrates that triad interaction behaviour depends delicately on the shapes of the
underlying wave envelopes, not just their relative amplitudes.

2.2.4 Early Evolution of Parasitic Waves

The linear stability conditions derived in the previous subsection give no indication about
how the initial parasitic wave disturbances grow. In this subsection an interesting con-
nection between the early growth of the parasitic waves and the Klein-Gordon equation is
explored. Though the analysis and discussion presented here were derived independently,
the main results were later found to be a special case of the“pump-wave” analysis presented
by Craik and Adam [15].

As before, suppose that the primary wave is O(A) with parasitic waves that are O(µ)
where µ� A. To leading order the evolution of the two parasitic waves is governed by the
equations

∂
∂T
aq + vq

∂
∂X
aq = γqa

∗
rA
∗e−i(k̂X−ω̂T ),

∂
∂T
ar + vr

∂
∂X
ar = γra

∗
qA
∗e−i(k̂X−ω̂T ).

(2.28)

Using the transformations aq = B exp(−i(k̂X − ω̂T )/2) and a∗r = C exp(i(k̂X − ω̂T )/2),
these reduce to the set of equations

BT + vqBX + i∆qB = γqA
∗C,

CT + vrCX − i∆rC = γrAB,
(2.29)
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where ∆n = (−vnk̂ + ω̂)/2 for n = q, r. Subscripts of X and T are now used to indicate
partial derivatives.

Consider first the exact resonance case where ∆q = ∆r = 0. When vq = vr Fourier
transforms can be used. The result is a simple system of two ODEs that is directly
solvable. Generally vq 6= vr, so the resulting system of equations is too complicated to
invert, and more consideration is required. A helpful approach is to define a new coordinate
χ = X − (vq+vr

2

)
T . Then, in the new coordinate system, the equations reduce to

BT + vBχ = γqA
∗C,

CT − vCχ = γrAB,
(2.30)

where v = (vq − vr)/2. Applying the operator ∂T − v∂χ to the first equation yields

BTT − v2Bχχ = γqγr|A|2B. (2.31)

This is a form of the well-known Klein-Gordon equation (see Knobel [35, Chapter 6]). It is
important to note that the term on the right-hand side could have positive or negative sign.
Initial profile shapes for aq and ar are required to properly define the initial conditions on
B and BT . For this informal discussion these details are ignored.

It is natural to expect that a similar evolution equation will govern the initial growth
of a parasitic wave in a near-resonant interaction. Returning to equation (2.29), using the
transformation from X to χ as before, and applying the operator ∂T − v∂χ − i∆r to the
equation for B reveals the evolution equation

BTT + i(∆q −∆r)BT − iv(∆q + ∆r)Bχ − v2Bχχ + ∆q∆rB = γqγr|A|2B. (2.32)

Finally, the transformation B = B̂ exp
[
i
(
−(∆q+∆r)χ/v+(∆r−∆q)T

2

)]
reduces (2.32) to the

following Klein-Gordon equation for B̂:

B̂TT − v2B̂χχ =
(−2∆q∆r + γqγr|A|2

)
B̂. (2.33)

The above analysis shows that, in a coordinate frame moving at the average velocity
of the two parasitic waves, the underlying growth of the parasitic waves is governed by a
Klein-Gordon equation initial value problem. This is true for both exact and near-resonant
interactions.

These Klein-Gordon equations can be used to explain the conditions needed for solutions
to grow. To see this, multiply (2.31) by B(χ, T ), then integrate from χ = −∞ to χ =∞.
Note that BBTT = 1

2
∂TT (B2) − B2

T and BBχχ = 1
2
∂χχ(B2) − B2

χ. Then, after minor
manipulation, and assuming the initial disturbance is localized so that |B| → 0 as |χ| → ∞,
it follows that

∂2

∂T 2

∫ ∞
−∞

B2 dχ− 2γqγr|A|2
∫ ∞
−∞

B2 dχ = 2

∫ ∞
−∞

B2
T − v2B2

χ dχ. (2.34)
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This is an evolution equation for
∫∞
−∞B

2 dχ, a quantity that represents the size of the
parasitic disturbance. Both sides of the equation only depend on T , and the right-hand
side can be expanded as a power series about T = 0. The result is that, if γqγr > 0, then∫∞
−∞B

2 dχ must initially grow exponentially in T , with a growth rate of
√

2γqγr|A|. If, on

the other hand, γqγr < 0, solutions to (2.34) will be oscillatory, and
∫∞
−∞B

2 dχ will not
initially grow in time. This is in agreement with the statement of Theorem 1.

More elaborate methods could be used to study how the parasitic disturbances grow
under the Klein-Gordon equations (2.31) and (2.33). However, from a physical perspective
the exact initial conditions are usually not known, it is more important to understand the
conditions under which growth can occur.

2.3 The Linear Eigenvalue Problem

This section presents a technical discussion of the linear eigenvalue problem that arises
for internal gravity waves under the Boussinesq approximation. The linear eigenvalue
problem plays an essential role in the dynamics of internal gravity waves, determining
both the vertical shape of a linear wave and the dispersion relationship. The dispersion
relationship has great importance: it relates a wave’s frequency to its wavenumber, and
from it the phase speed and group velocity are derived.

Recall the eigenvalue problem (2.9) derived above. Minor rearrangement shows that
this eigenvalue problem is of Sturm-Liouville type. To demonstrate this, (2.9) can be
rewritten in the form

d

dz

(
p(z)

d

z
g(z)

)
− q(z)g(z) + λr(z)g(z) = 0 (2.35)

where p(z) = 1, q(z) = k2, r(z) = N2(z) − f 2, and λ = 1/(σ2(k) − f 2). This follows
the notation of Boyce and DiPrima [10, Chapter 11]. Sturm-Liouville theory has been
developed extensively, and many deep results that go far beyond the needs of this discussion
are known. The interested reader is referred to the more advanced treatments by Naylor
and Sell [53, Chapter 7], or Zettl [78] for a comprehensive discussion of the field including
an extensive set of references.

Provided N2(z) − f 2 > 0 for 0 ≤ z ≤ 1 and N2(z) is continuous, equation (2.35) is
one of the simplest types of Sturm-Liouville problems. The three most important results
needed here, interpreted for use with (2.9), are as follows.

1. For a given value of k, a countably infinite set of real, distinct eigenvalues σ2
1(k) >

σ2
2(k) · · · > f 2 exists. This comes from the standard result for (2.35) combined with

the definition λ = 1/(σ2 − f 2).
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2. The corresponding eigenfunctions gn are real and linearly independent, and they form
an orthonormal basis in the Hilbert space L2([0, 1], N2(z)− f 2, dz).

3. The eigenfunction gn has exactly n− 1 isolated zeros in the interval 0 < z < 1.

These properties suggest writing the problem in the form:

d2

dz2
gn(z, k) + k2

(
N2(z)−f2

σ2
n(k)−f2 − 1

)
gn(z, k) = 0,

gn(0, k) = gn(1, k) = 0.
(2.36)

The eigenfunctions are now expressed as functions of both z and k.

Many of the important properties of the eigenfunctions and dispersion relation are
illustrated by the special case N2(z) = N2

0 . In that instance, the (non-normalized) eigen-
functions are found to be

gn(z, k) = sin(nπz), (2.37)

which do not depend on k. The statements about the distributions of the zeros of gn(z, k)
are readily confirmed. The dispersion relation is found from

σ2
n(k) =

k2N2
0 + f 2n2π2

k2 + n2π2
. (2.38)

In what follows, important properties of the eigenfunctions, dispersion relation, group
velocity, and phase speed are discussed. Unless explicitly stated otherwise, the assumption
N2(z) − f 2 > 0 for 0 ≤ z ≤ 1 is made throughout this section. Some of the properties
described below are summarized by LeBlond and Mysak [43, page 74] and derived by Yih
[76, Chapter 2], [77, page 263-290]. Yanowitch [75] has also studied related phase speed
problems for heterogeneous fluids with a free surface.

2.3.1 An Alternative Formulation

A different approach to the eigenvalue problem has been suggested by Poulin [60]. Starting
from the equation for the leading order behaviour of the streamfunction (2.8), solutions of
the form ψ(0) = ψ exp(iσt) are sought. Substitution reveals

σ2∇2ψ = f 2ψzz +N2(z)ψxx (2.39)

Now consider two solution pairs (ψ1, σ1) and (ψ2, σ2) that satisfy the boundary con-
ditions ψ(x, 0) = 0 and ψ(x, 1) = 0. In addition assume that ψ1, ψ2, ∂xψ1, and ∂xψ2 are
periodic on 0 ≤ x ≤ L. Define the inner product

〈ψ1, ψ2〉 =

∫ 1

0

∫ L

0

ψ1ψ
∗
2 dx dz, (2.40)
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with the asterisk denoting the complex conjugate. The shorthand notation 〈ψ1, ψ2〉 =∫ ∫
A
ψ1ψ

∗
2 dA is used below. Define the self-adjoint operator L = ∂xx + ∂zz so that

〈Lψ1, ψ2〉 = −
∫ ∫

A

(∇ψ1) · (∇ψ∗2) dA, (2.41)

and

〈Lψ1, ψ1〉 = −
∫ ∫

A

|∇ψ1|2 dA. (2.42)

Define the self-adjoint operator M = f 2∂zz +N2(z)∂xx so that

〈Mψ1, ψ2〉 = −f 2

∫ ∫
A

(∇ψ1) · (∇ψ∗2) dA−
∫ ∫

A

(N2 − f 2)∂xψ1∂xψ
∗
2 dA. (2.43)

Then
σ2

1〈Lψ1, ψ2〉 − σ2
2〈ψ1, Lψ2〉 = (σ2

2 − σ2
1)
∫ ∫

A
(∇ψ1) · (∇ψ∗2) dA,

= 〈Mψ1, ψ2〉 − 〈ψ1,Mψ2〉,
= 0.

(2.44)

So, if σ1 6= σ2 then
∫ ∫

A
(∇ψ1) · (∇ψ∗2) dA = 0. Since L is self-adjoint, this implies that∫ ∫

A

(N2 − f 2)∂xψ1∂xψ
∗
2 dA = 0. (2.45)

This is a more general form of the orthogonality condition found below.

Next, since σ2
1〈Lψ1, ψ1〉 = 〈Mψ1, ψ1〉, it follows that

σ2

∫ ∫
A

|∇ψ1|2 dA = f 2

∫ ∫
A

|∂xψ1|2 dA+

∫ ∫
A

N2(z)|∂xψ1|2 dA. (2.46)

Each integral is strictly positive, so provided a solution exists, it satisfies σ2 > 0. When
N2(z)−f 2 > 0 everywhere, this expression implies that σ2 ≥ f 2. However, ifN2(z)−f 2 < 0
for some z then it is possible that σ2 < f 2.

2.3.2 The Eigenfunctions and Dispersion Relation

Even without explicit knowledge of their form, certain important properties of the eigen-
functions can be ascertained. For instance, an orthogonality condition can be derived with
ease. Holding k fixed, consider (2.36) for mode-m and mode-n solutions. Multiplying the
equation for gn by gm and vice-versa, then integrating both from z = 0 to z = 1 leads
to a pair of coupled equations. Applying integration by parts once on the first terms and
subtracting the result gives:

k2

(
1

σ2
m − f 2

− 1

σ2
n − f 2

)∫ 1

0

(
N2(z)− f 2

)
gm(z, k)gn(z, k) dz = 0. (2.47)
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The eigenvalues of the Sturm-Liouville problem are distinct, so if m 6= n, σm(k) 6= σn(k).
It is then natural to scale eigenfunctions so that∫ 1

0

(
N2(z)− f 2

)
gm(z, k)gn(z, k) dz =

{
0 if m 6= n

1 if m = n.
(2.48)

It is important to point out that this condition only holds for two eigenfunctions at the
same value of k. However, when N2(z) is constant the eigenfunctions do not depend on k,
so the orthogonality condition always holds.

An expression for the dispersion relation is found from the eigenvalue problem (2.36)
by multiplying both sides by gn(z, k), and integrating with respect to z. Using integration
by parts on the first term and applying the orthogonality condition (2.48) reveals the
expression

k2

σ2
n − f 2

= I1 + k2I2 (2.49)

where I1 =
∫ 1

0

(
∂
∂z
gn(z, k)

)2
dz, and I2 =

∫ 1

0
g2
n(z, k) dz. This expression can be directly

solved for σn to yield

σn(k) = ±
√
f 2 +

k2

I1 + k2I2

. (2.50)

Evidently the dispersion relation has two branches. By convention, the positive square
root is taken.

The above expression for σn(k) illustrates the intimate connection between the dis-
persion relation and the eigenfunctions gn(z, k). In general, the eigenvalue problem must
be solved numerically. The standard approach is to discretize the differentiation operator
and then solve for the eigenvalues and eigenfunctions simultaneously. This is explained in
detail in Chapter 3.

As an illustrative example, consider the buoyancy frequency

N2(z) = sech2

(
z − 0.25

0.2

)
. (2.51)

The resulting eigenvalue problem is considered with f = 0 and f = 0.01, so that in
both cases N2(z) − f 2 > 0 holds throughout the domain. The first three modes of the
dispersion relation (with f = 0) are plotted in Figure 2.1. Frequencies appear to increase
with wavenumber and decrease with vertical mode number. Plots with nonzero f values
are included later.

The mode one, two, and three eigenfunctions at k = 1 (dashed lines) and k = 100
(dotted lines) are plotted in Figure 2.2. Eigenfunctions are scaled to unit amplitude for

29



0 2 4 6 8 10 12 14 16 18 20
0

0.5

1
The Dispersion Relation

k

σ n(k
)

 

 

Mode 1

Mode 2

Mode 3

Figure 2.1: The mode 1–3 dispersion relation for N2(z) given by equation (2.51).
The dispersion relation appears to increase with k and decrease with vertical
mode number. For this plot f = 0.

aesthetic reasons. Included in each subplot is the corresponding eigenfunction for the
buoyancy profile N2(z) = 1 (solid lines). Not surprisingly, the oscillatory behavior of the
eigenfunctions for N2(z) is localized to the vicinity of z = 0.25. The dependence of the
eigenfunctions on k is clearly evident. The eigenfunctions for k = 100 are much more
localized about the point z = 0.25 where N2(z) achieves its maximum.

In this thesis, eigenfunctions are frequently referred to by their vertical mode number
(the subscript on σ). When N2(z) is constant the mode number has a very natural in-
terpretation, since a mode-n eigenfunction is of the form sin(nπz). When N2(z) is not
constant, the mode number still has an important meaning, it indicates how oscillatory
the eigenfunction is. More precisely, a mode-n eigenfunction has exactly n− 1 zeros in the
interval 0 < z < 1. This is evident in Figure 2.2.

2.3.3 The Group Velocity and Phase Speed

The group velocity for a mode-n plane wave is denoted by vn(k) and defined by

vn(k) :=
dσn
dk

. (2.52)

For the problems considered here, each mode of the dispersion relation σn(k) is in fact a
continuous and differentiable function of the wavenumber k (see Zettl [78, Chapter 4] and
the references therein).
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Figure 2.2: The mode one (left subplot), mode two (middle subplot), and mode
three (right subplot) eigenfunctions, re-scaled to unit-amplitude, for N2(z) given
in equation (2.51). Solid lines mark the eigenfunctions for the related linear
stratification N2(z) = 1, dashed lines depict the eigenfunctions for k = 1, and
dotted lines portray the eigenfunctions for k = 100. Note the localization of the
oscillatory behaviour as k increases.

The group velocity has an important physical meaning, it is the velocity at which energy
propagates for linear waves (see below). This is also demonstrated by the asymptotic
analysis of Chapter 5.

With the notation presented in the previous subsection, expressions for the group ve-
locity can be found. While not truly in closed form, the formulas given in the following
theorem are useful because I1 and I2 are strictly positive.

Theorem 2. The group velocity can be expressed in the equivalent forms

dσn
dk

=
(σ2

n − f 2)

σnk
− (σ2

n − f 2)2

σnk

∫ 1

0

g2
n(z, k) dz, (2.53)

and
dσn
dk

=
(σ2

n − f 2)2

σnk3

∫ 1

0

(
∂

∂z
gn(z, k)

)2

dz. (2.54)
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Proof. Differentiating expression (2.49) with respect to k and solving for dσn/dk leads to

dσn
dk

=
(σ2

n − f 2)

σnk
− (σ2

n − f 2)2

σnk
I2 − (σ2

n − f 2)2

2σnk2

(
dI1

dk
+ k2dI2

dk

)
. (2.55)

This reduces to (2.53) because dI1/dk + k2dI2/dk = 0. To see this, note that dI2/dk =

2
∫ 1

0
gn

∂gn
∂k

dz, and, after using integration by parts and the boundary conditions, dI1/dk =

−2
∫ 1

0
∂2gn
∂z2

∂gn
∂k

dz. Therefore

dI1
dk

+ k2 dI2
dk

= −2
∫ 1

0

(
∂2gn
∂z2
− k2gn

)
∂gn
∂k

dz

= − 2
σ2
n−f2

∫ 1

0
(N2(z)− f 2)gn

∂gn
∂k

dz

= − 1
σ2
n−f2

∂
∂k

∫ 1

0
(N2 − f 2)g2

n dz

= − 1
σ2
n−f2

∂
∂k

1

= 0.

(2.56)

The second expression for the group velocity is found by substituting the identity
I2 = 1/(σ2

n − f 2)− I1/k
2 into the first.

These expressions both reduce to the expected result when N2(z) is constant. In
addition, note that equation (2.53) matches the equation for the advection coefficient in
the triad interaction equations (derived in Appendix B). This proves that the energy of a
linear internal gravity wave train, which must travel with the wave envelope, travels at the
group velocity of the underlying wave. An immediate consequence of expression (2.54) is
the monotonicity of σn(k), as summarized in the following corollary.

Corollary 1. For each mode number n, the dispersion relation σn(k) is a monotonically
increasing function of k when k ≥ 0.

The monotonic nature of the frequency has been proved by Yih [77] for non-Boussinesq
fluids with or without an upper rigid boundary.

The phase speed of a mode-n wave is denoted by cn(k) and defined by

cn(k) :=
σn(k)

k
. (2.57)

The phase speed is an important physical quantity that describes the speed at which
wave crests propagate. An important property of the phase speed and its relation to the
magnitude of the group velocity is given in the next lemma.

Lemma 1. The phase speed for internal gravity waves is a strictly decreasing function of
k for k ≥ 0. At a fixed value of k, the phase speed cn(k) is an upper bound for the group
velocity.
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Proof. By definition, dcn(k)/dk = 1
k
dσn
dk
− σn

k2 . Using expression (2.53), it follows that

dcn(k)
dk

= σ2
n−f2

σnk2 − (σ2
n−f2)2

σnk2 I2 − σn
k2

= − f2

σnk2 − (σ2
n−f2)2

σnk2 I2

≤ 0,

(2.58)

which proves the first statement.

To show the phase speed is an upper bound for the magnitude of the group velocity,
write dcn/dk = 1

k

(
d
dk
σn(k)− cn(k)

)
, and since dcn/dk ≤ 0 it immediately follows that

cn(k) ≥ dσn/dk.

The above argument can be readily modified to show that when f 6= 0 the phase speed
is strictly decreasing when k ≤ 0, since cn(k) is an odd function. Likewise, if f = 0, cn(k)
is an even function, so the phase speed achieves its maximum at k = 0. The proof of
Lemma 1 is direct, but Yih [76, Chapter 2] has also derived this result using the Sturm
comparison theorem.

Figure 2.3 depicts the phase speeds for the mode 1–3 waves as a function of wavenumber
for N2(z) given by equation (2.51). The left subplot shows the phase speeds for f = 0, the
right subplot shows phase speeds for f = 0.01. The curves are qualitatively similar away
from k = 0. As k → 0+ the phase speed tends to +∞ for f 6= 0.
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Figure 2.3: Dimensionless phase speeds for the mode 1–3 waves for N2(z) give
by equation (2.51). In the left subplot f = 0, in the right subplot f = 0.01.
Note the phase speeds are strictly decreasing with wavenumber, in agreement
with Lemma 1. Phase speeds also decrease with vertical mode number. For
f 6= 0, the phase speed tends to ∞ as k → 0+.

Intuitively, one would expect that in the short wave limit (k → ∞) both the phase
speed and group velocity tend to zero. This is indeed true, and can be viewed as an
immediate consequence of Proposition 1 below.
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2.3.4 The Dispersion Relation Revisited

In this section several important properties of the dispersion relation are established. The
methods developed here provide a means for making comparisons of the dispersion relations
for internal waves in fluids with different stratifications. These techniques reveal properties
of σn(k) in important limits.

The definitions

N2
max = max

0≤z≤1
N2(z), and N2

min = min
0≤z≤1

N2(z) (2.59)

are useful in the analysis that ensues.

Proposition 1. Suppose N2(z)− f 2 > 0 for 0 ≤ z ≤ 1. For k ≥ 0, the dispersion relation
satisfies f ≤ σn(k) ≤ Nmax, and limk→0 σn(k) and limk→∞ σn(k) both exist.

Proof. Integrating the eigenvalue problem (2.36) against gn(z, k), using integration by parts
and rearranging reveals∫ 1

0

(
N2(z)− f 2

σ2
n(k)− f 2

− 1

)
g2
n(z, k) dz =

1

k2

∫ 1

0

(
∂

∂z
gn(z, k)

)2

dz. (2.60)

The right hand side of this equation is strictly positive. For the left hand side to be positive,
σn(k) must satisfy f ≤ σn(k) ≤ Nmax.

From Corollary 1, σn(k) is a strictly increasing function of k for k ≥ 0, and since it
is bounded above, limk→∞ σn(k) must exist. The analogous argument shows limk→0 σn(k)
also exists.

The bounded, monotonic nature of σn(k) implies that as k →∞ the phase speed and
group velocity tend to zero.

Proposition 1 ensures that the limits as k → 0 and k →∞ of σn(k) exist, but provides
no information about what the two limits in question actually are, or how to find them.
Determining the limits is somewhat challenging, and is the focus of the remainder of this
subsection. Some insight is gained by studying numerical examples. As seen in Figure
2.4, the dispersion curves for the buoyancy frequency N2(z) = sech2((z − 0.25)/0.2) (see
equation (2.51)) appear to be approaching the value Nmax = 1 as k increases. This hints
at the possible value of the short-wave limit. In Figure 2.5, the first three modes of the
dispersion relation are plotted for the same buoyancy frequency, with f = 0 in the left
subplot and f = 0.01 in the right subplot. As k → 0+ the curves appear to approach f ,
suggesting the long-wave limit.
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Figure 2.4: The mode 1–3 dispersion relation for N2(z) given by (2.51) at large
wavenumbers, with f = 0. All three dispersion curves appear to be approaching
the value Nmax = 1.

The approach used here for determining the limit of σn(k) as k → 0 and k →∞ is not
straightforward. The intermediate step of analyzing how the dispersion relation changes
with N2(z) is required first. This is developed in two different ways. First, a perturbation
argument is used to infer the result. Then, a more direct approach is used.

To understand the behaviour of the dispersion relation as N2(z) changes the perturba-
tion technique explained by Courant and Hilbert [13, Chapter 5] and Richards [61, Chapter
10]) can be used. Define the operator L = (1/k2)d2/dz2−1. The eigenvalue problem (2.36)
can be rewritten so that the eigenvalues σ2

n(k) and eigenfunctions gn(z, k) obey

Lgn +
N2(z)− f 2

σ2
n(k)− f 2

gn = 0 (2.61)

with the boundary conditions gn(0, k) = 0 = gn(1, k). Now consider the perturbed problem
by setting Ñ2(z) = N2(z) − εh(z), with 0 < ε � 1 and h(z) ≥ 0, such that h(z) is con-
tinuous. The corresponding eigenvalues are denoted by σ̃2

n(k) with eigenfunctions g̃n(z, k).
These perturbed quantities satisfy

Lg̃n +
Ñ2(z)− f 2

σ̃2
n(k)− f 2

g̃n = 0 (2.62)
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Figure 2.5: The dispersion relation at small wavenumbers when f = 0 (left
subplot) and f = 0.01 (right subplot). N2(z) is given by (2.51).

which can be rearranged to the form

Lg̃n +
N2(z)− f 2

σ2
n(k)− f 2

g̃n =

(
N2(z)− f 2

σ2
n(k)− f 2

− Ñ2(z)− f 2

σ̃2
n(k)− f 2

)
g̃n. (2.63)

Multiplying both sides by gn and integrating with respect to z from 0 to 1 leads to significant
simplifications. After using integration by parts twice, the left hand side is plainly zero.
Therefore

(d̃n − dn)

∫ 1

0

(N2(z)− f 2)gng̃n dz = εd̃n

∫ 1

0

h(z)gng̃n dz, (2.64)

where dn = 1/(σ2
n − f 2) and d̃n = 1/(σ̃2

n − f 2) for notational convenience. Now, on the

assumption that ε is small, expand d̃n = dn + εd
(1)
n + O(ε2) and g̃n = gn + εg

(1)
n + O(ε2).

Collecting terms to O(ε) and applying the orthogonality condition shows that

d(1)
n = dn

∫ 1

0

h(z)g2
n(z) dz. (2.65)

With h(z) ≥ 0, the immediate conclusion is that σ̃n(k) ≤ σn(k).

The above arguments motivate the statement of the following theorem, though the
proof used below is quite different and does not rely on perturbation arguments.

Theorem 3. Consider the continuous profile N2(z) > f 2 with corresponding mode-n dis-
persion relation σn(k), and a second continuous profile N̂2(z) > f 2 with corresponding
dispersion relation σ̂n(k). Suppose N̂2(z) ≤ N2(z) for all z ∈ [0, 1]. Then for each k ≥ 0
and mode number n, σ̂n(k) ≤ σn(k).

Proof. Consider the buoyancy frequency

Ñ2(z, s) = N2(z) + sp(z) (2.66)
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where the new variable s has been introduced. Assume p(z) is a continuous function.
Provided Ñ2(z, s) > f 2 and is continuous, the corresponding eigenvalue problem at a given
value of s is of Sturm-Liouville type and possesses the properties discussed in Section 2.3.2.
The corresponding eigenfunctions g̃n(z, k, s) must depend on k and s in addition to z, and
are normalized by the equation∫ 1

0

(Ñ2(z, s)− f 2)g̃2
n(z, k, s) dz = 1. (2.67)

Next, consider the corresponding eigenvalues σ̃2
n(k, s). Rearranging equation (2.49), these

are determined by the expression

σ̃2
n(k, s) = f 2 +

k2

Ĩ1 + k2Ĩ2

, (2.68)

where Ĩ1 and Ĩ2 must depend on k and s. Just as σn is a continuous and differentiable
function of k, the results stated in Zettl [78, Chapter 4] ensure that σn is a continuous,
differentiable function of s.

Differentiating with respect to s and simplifying reveals

∂σ̃n
∂s

= −(σ̃2
n − f 2)2

2σ̃nk2

(
∂Ĩ1

∂s
+ k2∂Ĩ2

∂s

)
. (2.69)

Next, expand

∂Ĩ1
∂s

+ k2 ∂Ĩ2
∂s

= 2
∫ 1

0

(
∂g̃n
∂z

∂2g̃n
∂z∂s

+ k2g̃n
∂g̃n
∂s

)
dz

= −2
∫ 1

0

(
∂2g̃n
∂z2
− k2g̃n

)
∂g̃n
∂s

dz

= k2

σ̃2
n−f2

∫ 1

0
(Ñ2(z, s)− f 2) ∂

∂s
g̃2
n dz

= k2

σ̃2
n−f2

[∫ 1

0
∂
∂s

(
(Ñ2(z, s)− f 2)g̃2

n

)
dz

− ∫ 1

0
∂Ñ2(z,s)

∂s
g̃2
n dz

]
= k2

σ̃2
n−f2

[
∂
∂s

1− ∫ 1

0
p(z)g̃2

n dz
]

= − k2

σ̃2
n−f2

∫ 1

0
p(z)g̃2

n(z, k, s) dz.

(2.70)

Therefore
∂σ̃n
∂s

=
σ̃2
n − f 2

2σ̃n

∫ 1

0

p(z)g̃2
n(z, k, s) dz. (2.71)

It follows that if p(z) ≤ 0 for all 0 ≤ z ≤ 1 then σ̃n(k, s) is a decreasing function of s.
Similarly, if p(z) ≥ 0 then σ̃n(k, s) is an increasing function of s.
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To complete the proof, set p(z) = N̂2(z) − N2(z) so that Ñ2(z, 0) = N2(z) and
σ̃n(k, 0) = σn(k). In addition, Ñ2(z, 1) = N̂2(z) and σ̃n(k, 1) = σ̂n(k). Clearly p(z) ≤ 0 and
is a continuous function, so for s increasing from 0 to 1, σ(k, s) must decrease. Therefore
σ̂n(k) ≤ σn(k).

As a simple check of the theorem, consider the case when N2 and N̂2 are constant. As
can be seen directly from the dispersion relation (2.38), if N2 ≥ N̂2 then σ2

n(k) ≥ σ̂2
n(k),

in confirmation of the theorem.
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Figure 2.6: The mode one (left subplot) and mode two (right subplot) dispersion
relations for the buoyancy frequencies N2

0 (z) = 1 (solid lines) and N2(z) given
by (2.51). For both plots f = 0.

To demonstrate Theorem 3, Figure 2.6 shows the modes one and two dispersion relations
for the the buoyancy frequencies N2

0 (z) = 1 and N2(z) = sech2((z−0.25)/0.2) (see equation
(2.51)). Since N2(z) ≤ N2

0 (z), Theorem 3 dictates that the dispersion curves for N2(z) lie
below those of N2

0 (z). This is evident in the figure.

Unfortunately, the dependence of ∂σ̃n/∂s is subtle, so directly applying formula (2.71)
is generally not possible. Even so, Theorem 3 provides the necessary result for determining
the limits as k →∞ and k → 0 of σn(k), as witnessed in the proof of the next theorem.

Theorem 4. Consider a stratified fluid with continuous profile N2(z) > f 2 and mode-n
dispersion relation σn(k). Then

lim
k→0

σn(k) = f, (2.72)

and
lim
k→∞

σn(k) = Nmax. (2.73)

Proof. This proof utilizes the notation developed in the proof of Theorem 3. Set p(z) =
N2

max −N2(z). Then Ñ2(z, 0) = N2(z) and Ñ2(z, 1) = N2
max is constant. Since p(z) ≥ 0 is
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continuous, σ̃n(k, 0) ≤ σ̃n(k, 1). The dispersion relation for a fluid with constant buoyancy
frequency is known:

σ̃2
n(k, 1) =

k2N2
max + f 2n2π2

k2 + n2π2
. (2.74)

It is then easy to verify that limk→0 σ̃n(k, 1) = f , so Theorem 3 implies f is an upper bound
for σn(k) as k → 0. By Proposition 1, f is also a lower bound for σn(k) = σ̃n(k, 0), so the
squeeze theorem implies that limk→0 σn(k) = f .

The proof of the second limit is more subtle and involves analyzing the zeros of the
mode-n eigenfunction for a different buoyancy frequency function. To proceed, let ε > 0,
but require that ε < N2

max −N2
min. First, suppose N2(z) does not achieve a unique global

maximum at z = 0 or z = 1. By the continuity of N2(z), it is possible to find a(ε) and
b(ε) where 0 ≤ a < b ≤ 1, such that N2(a) = N2(b) = N2

max − ε, and for a < z < b,
N2(z) ≥ N2

max − ε. If the maximum of N2(z) does occur at z = 0 or z = 1, a or b can
be replaced with that endpoint as appropriate. Define N̂2

ε (z) to be a continuous function
such that on the interval a ≤ z ≤ b, N̂2

ε (z) = N2
max − ε, while outside of this interval

f 2 < N̂2
ε (z) < N2(z). It is not necessary to explicitly define N̂2

ε (z) outside of the interval
a ≤ z ≤ b.

Denote the mode-n eigenfunctions corresponding toN2
ε (z) by ĝn(z, k) and the dispersion

relation by σ̂n(k). Since N̂2
ε (z) is strictly positive and continuous, the standard results of

Sturm-Liouville theory apply to the eigenfunctions and eigenvalues. Most importantly, ĝn
has exactly n− 1 simple zeros in the interval 0 < z < 1.

In the interval a ≤ z ≤ b the eigenfunctions satisfy

ĝ′′n + µ2
nĝn = 0 (2.75)

where differentiation is with respect to z, and µn = k
√

N2
max−ε−f2

σ̂2
n(k)−f2 − 1. In this interval,

the eigenfunctions must take the form ĝn(z, k) = d1 sin(µn(z − a)) + d2 cos(µn(z − a)),
where the constants d1 and d2 are determined by matching conditions at a and b. The
constants cannot both be zero because the zeros of Sturm-Liouville eigenfunctions are
discrete. Suppose d1 6= 0, the argument when d1 = 0 is analogous. The eigenfunction
ĝn(z, k) has zeros in the interval a ≤ z ≤ b whenever

tan(µn(z − a)) = −d2

d1

. (2.76)

In the interval [0,mπ), the function tan(z) intersects any horizontal line exactly m times.
Therefore, if µn > mπ/(b− a), ĝn(z, k) must have m zeros in a ≤ z ≤ b.

Now for the contradiction. Assume limk→∞ σ̂
2
n(k) = L < N2

max − ε. Then µn >
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k
√

N2
max−ε−f2

L−f2 − 1, so for any finite k satisfying

k >
mπ

(b− a)
√

N2
max−ε−f2

L−f2 − 1
, (2.77)

ĝn(z, k) must have at least m zeros in the interval a < z < b. Taking m > n, for
sufficiently large but finite k the mode-n eigenfunction must have more than n zeros in
the interval 0 < z < 1. This contradicts the fact that the mode-n eigenfunction of a
Sturm-Liouville problem should have exactly n − 1 zeros in the interval 0 < z < 1. The
assumption L < N2

max − ε must be false, so, with the aide of Proposition 1, it follows that
limk→∞ σ̂

2
n(k) = N2

max − ε.
The results of Theorem 3 can now be applied. Since N2(z) ≥ N̂2(z) and both functions

are continuous, at any k ≥ 0, σn(k) ≥ σ̂n(k). Therefore limk→∞ σ
2
n(k) ≥ N2

max − ε. The
limit exists and is bounded above by N2

max as proved in Proposition 1, and since ε > 0 is
arbitrary it follows that limk→∞ σ

2
n(k) = N2

max.

Theorem 4 holds for any finite mode number n. For the eigenvalue problem (2.36), if σ
is viewed as the parameter and k as the eigenvalue, Theorem 4 guarantees that an infinite
number of wavenumbers can be found, provided f < σ < Nmax. This is interesting because
from that perspective, the problem is no longer of regular Sturm-Liouville type, since the
weight function is indefinite.

The result that limk→∞ σn(k) = Nmax is intuitive from a physical perspective. The
buoyancy frequency has the interpretation of being the frequency at which an infinitesimally
displaced particle would oscillate. A particle at the z level where N(z) = Nmax should
oscillate at the peak buoyancy frequency, and displacing a single particle in a fluid column
is certainly a short-wave disturbance.

2.3.5 The Fastest Phase Speed Problem

In this subsection an original solution to an interesting problem related to long wave limits
is presented. The purpose of this discussion is to determine an upper bound for the phase
speed of internal waves in a fluid, as well as the stratification needed to achieve that bound.
This analysis is limited to the case f = 0, as phase speeds become infinite in the long wave
limit otherwise.

Consider the dimensional form of the Sturm-Liouville eigenvalue problem that defines
the dispersion relation:

d2

dz2
φn(z, k) + k2

(
N2(z)

σ2
n(k)

− 1

)
φn(z, k) = 0, (2.78)
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with boundary conditions φn(0, k) = 0 = φn(H, k). In this discussion the eigenfunctions
are written as φn instead of gn to emphasize the dimensional form and avoid confusion
with the gravitational constant g.

In the long wave limit, k → 0 and the differential equation reduces to the simpler
eigenvalue problem

φ′′n(z) +
N2(z)

c2
n

φn(z) = 0, (2.79)

where cn = limk→0 σn(k)/k is the mode-n long wave phase speed. This problem is also of
Sturm-Liouville type, and when N2(z) is continuous a countably infinite set of eigenfunc-
tions exists and forms an orthonormal basis for the Hilbert space L2([0, H], N2(z), dz). As
proved in Lemma 1, the long wave phase speed for a given mode is in fact the maximum
possible phase speed that a linear wave can attain.

Suppose the density jump ∆ρ across the fluid is fixed. Consider the density stratification
ρ(z) = ρ0 + ρ̄(z) satisfying the density jump constraint, so that the buoyancy frequency

satisfies
∫ H

0
N2(z) dz = (g/ρ0)(ρ(0)− ρ(H)) = g∆ρ/ρ0. It is assumed in this analysis that

the eigenfunctions are normalized such that
∫ H

0
N2(z)φ2

n(z) dz = 1.

While the optimal buoyancy frequency could perhaps be found through variational
arguments, little progress was made with that approach. The solution presented here relies
on a novel application of the Green’s function. Green’s functions can be a powerful tool
for studying linear differential equations in many different contexts, the reader is referred
to Duffy [22] for an introduction to their use. In this setting they are useful because they
allow the eigenfunctions to be expressed in the form of an integral equation.

It is necessary to construct the Green’s function G(z, ξ) for the simplified equation

d2

dz2
G(z, ξ) = −δ(z − ξ) (2.80)

with boundary conditions G(0, ξ) = 0 = G(H, ξ). The jump condition on the derivative of
the Green’s function is

d

dz
G(z, ξ)

∣∣∣∣z=ξ+
z=ξ−

= −1. (2.81)

It then follows that

G(z, ξ) =

{
(H−ξ)
H

z for 0 ≤ z ≤ ξ
ξ
H

(H − z) for ξ ≤ z ≤ H.
(2.82)

This function is illustrated in Figure 2.7.

The solution to the long wave eigenvalue problem (2.79) can then be expressed in the
form:

c2
nφn(z) =

∫ H

0

G(z, ξ)N2(ξ)φn(ξ) dξ. (2.83)
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Figure 2.7: The Green’s function G(z, ξ) for the long wave problem. Note the
maximum occurs at (z, ξ) = (H/2, H/2), as can be shown with simple calculus
arguments.

Multiplying both sides byN2(z)φn(z), integrating against z and using the normalization
condition reveals

c2
n =

∫ H

0

∫ H

0

G(z, ξ)N2(ξ)φn(ξ)N2(z)φn(z) dξ dz. (2.84)

Clearly |G(z, ξ)| ≤ H/4, with equality only holding when z = ξ = H/2. Therefore the
phase speed must satisfy the inequality

c2
n ≤

H

4

(∫ H

0

N2(z)|φn(z)| dz
)2

. (2.85)

The remaining integral can be bounded by the Cauchy-Schwarz inequality. The result is

c2
n ≤

H

4

∫ H

0

N2(z) dz

∫ H

0

N2(z)φ2
n(z) dz. (2.86)

Simplifying the first integral with the density jump condition and making use of the nor-
malization condition on the second integral reveals

c2
n ≤

H

4

g∆ρ

ρ0

. (2.87)

Notably, the right hand side of this equation is c2
LW , the square of the long wave phase

speed for a wave in a two-layer fluid with equal depths of H/2, density jump ∆ρ, and mean
density ρ0 (see Appendix A). The derivation of this inequality also makes it clear that no
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other stratification could yield phase speeds equal to cLW . This is because |G(z, ξ)| < H/4
away from z = H/2, so the buoyancy frequency must be localized at z = H/2 or the phase
speed is reduced. This analysis proves the following theorem.

Theorem 5. Consider a Boussinesq fluid with depth H, reference density ρ0, and density
jump ∆ρ. The long wave speed

cLW :=

√
H

4

g∆ρ

ρ0

(2.88)

is an upper bound for the phase speed of a linear wave in the fluid. This phase speed is
only achieved in a two-layer fluid with equal layer depths of H/2.

This upper bound on phase speeds could be useful for selecting bounds for time-steps
for numerical simulations of the Boussinesq equations. With the aid of Theorem 5 it is not
necessary to numerically solve the long wave eigenvalue problem prior to simulations. In
addition, this analysis supports the choice of the velocity scale chosen for the dimensional
analysis used throughout this thesis. The small parameter expansion used in the derivation
of the resonant interaction equations holds when the induced velocity values are small in
comparison with the fastest possible linear wave phase speed.

Theorem 5 provides a bound on the phase speed for any mode number, but it can only
be achieved by mode-1 waves in a limiting stratification. Following the approach used
by Yanowitch [75], a tighter, mode number dependent bound for the phase speed can be
derived. Yanowitch’s method requires some basic concepts from functional analysis. Define
the inner product of two functions a(z) and b(z) by

〈a(z), b(z)〉 =

∫ H

0

a(z)N2(z)b(z) dz. (2.89)

The operator trace is another important quantity that plays an essential role here. Naylor
and Sell [53, pages 389-392] present a discussion of the trace of a linear operator L using
the definition:

tr(L) =
∞∑
n=1

〈Lxn, xn〉, (2.90)

where {xn} is any set of functions forming an orthonormal basis for the underlying Hilbert
space. This definition bears a clear resemblance to the trace of a finite dimensional matrix.

As mentioned before, the Green’s function derived above allows for solutions to the long
wave eigenvalue problem to be written in the form of a linear integral equation. Notation
is simplified by defining the linear integral operator K such that

Kφ =

∫ H

0

G(z, ξ)N2(ξ)φ(ξ) dξ. (2.91)
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Now consider the trace of the linear operator K. For any eigenfunction φn(z), the equation
Kφn = c2

nφn holds. In addition, the set of eigenfunctions {φn} forms an orthonormal basis
for L2([0, H], N2(z), dz). So,

tr(K) =
∞∑
n=1

〈Kφn, φn〉 =
∞∑
n=1

〈c2
nφn, φn〉 =

∞∑
n=1

c2
n. (2.92)

On the other hand, this can be written in the form:

tr(K) =
∞∑
n=1

∫ H

0

∫ H

0

G(z, ξ)N2(ξ)φn(ξ)N2(z)φn(z) dz dξ. (2.93)

This expression can be simplified because G(z, ξ) is continuous and can be projected onto
the orthonormal basis. That is, G(z, ξ) =

∑∞
n=1〈G(z, ξ), φn(z)〉φn(z). This allows tr(K)

to be written in the form:

tr(K) =

∫ H

0

N2(ξ)

[
∞∑
n=1

(∫ H
0
G(z, ξ)N2(z)φn(z) dz

)
φn(ξ)

]
dξ,

=

∫ H

0

N2(ξ)

[
∞∑
n=1

〈G(z, ξ), φn(z)〉φn(ξ)

]
dξ,

=

∫ H

0

G(ξ, ξ)N2(ξ) dξ.

(2.94)

It follows that
∞∑
n=1

c2
n =

∫ H

0

G(ξ, ξ)N2(ξ) dξ,

≤ H
4

∫ H

0

N2(ξ) dξ,

≤ Hg∆ρ
4ρ0

.

(2.95)

Now, since nc2
n ≤

n∑
j=1

c2
j ≤

∞∑
j=1

c2
j , the above inequality implies that:

c2
n ≤

1

n

Hg∆ρ

4ρ0

. (2.96)

This derivation proves the following theorem.

Theorem 6. Consider a Boussinesq fluid with depth H, reference density ρ0, and density
jump ∆ρ. Suppose the buoyancy frequency N(z) is strictly positive and continuous. The
long wave mode-n phase speed cn is bounded by

cn ≤
√

1

n

H

4

g∆ρ

ρ0

. (2.97)
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It is interesting to note that, as shown by Bender and Orszag [6, Section 10.1], the
eigenvalues for a Sturm-Liouville problem of the form (2.79) decay like 1/n2 as n → ∞.
This implies that for a continuous stratification the long-wave phase speeds should decay
like 1/n. It is not immediately obvious if the method used in the derivation of Theorem
6 could be modified to derive a better bound. This discussion motivates a search for the
stratification that leads to the fastest mode-n phase speed.

2.3.6 Summary

Several properties of the linear eigenvalue problem (2.10) and the associated phase speed
and group velocity have been explored. Some of these are well-known and intuitive, but
others are novel. The analysis in this section has been based on the assumption that
N2(z) − f 2 > 0 for 0 ≤ z ≤ 1. Under that assumption, the major results of this section
are as follows.

1. The dispersion relation is monotonically increasing and satisfies f ≤ σn(k) ≤ Nmax.
These properties are well-known.

2. The phase speed of an internal wave decreases with wavenumber, and provides an
upper bound on the magnitude of the group velocity. This was derived in a very
different manner by Yih [76, Chapter 2].

3. Given two buoyancy profiles defined by N̂2(z) and N2(z) satisfying N̂2(z) ≤ N2(z),
the corresponding dispersion relations satisfy σ̂n(k) ≤ σn(k). This result is a direct
consequence of the Sturm comparison theorem.

4. In the long-wave limit k → 0, σn(k) → f . This is a well-known property, but the
proof given in Theorem 4 is original.

5. In the limit k →∞, σn(k)→ Nmax. The result is intuitive and should be well-known,
but the proof in Theorem 4 is original.

6. The fastest phase speed attainable in a Boussinesq fluid with f = 0 and rigid lids
is achieved in a two-layer fluid of equal layer depths. The derivation of Theorem
5 is original. Independently, Yanowitch [75] used an argument involving a Green’s
function to show that the fastest phase speed for a fluid of depth h with a free surface
is
√
gh. Yanowitch’s approach was used in the derivation of Theorem 6, showing that

cn ≤
√
gH∆ρ/(4nρ0).
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Chapter 3

Numerical Methods and Analysis

Studying the resonant interactions described in the previous chapter with numerical ex-
periments requires careful consideration. The numerical methods needed to simulate and
analyze the interactions are interesting in their own right and worthy of discussion. This
chapter provides that discussion, acting as the bridge between the theory discussed thus
far and the simulations presented in the next chapter.

The numerical methods described here can be loosely grouped into two categories; those
that are used to simulate the equations of interest, and those that are used to analyze the
resulting data. Naturally there is a large overlap between the two groups, and some of
the methods are essential in both areas. In Section 3.1 the method used to solve the
linear eigenvalue problem (2.10) is presented, along with a description of how candidate
triads are found for a given stratification. The two numerical models used for solving the
Boussinesq equations are described in Section 3.2. Section 3.3 explains how energy in a
stratified fluid is calculated. The definition of energy leads to a curious energy spectrum
shape that is explained in Section 3.4. The chapter ends with an introduction to numerical
forcing theory in Section 3.5. This is the final ingredient necessary for simulating waves in
variable density stratifications, and is the precursor to Chapter 5.

3.1 Preliminary Calculations

Designing resonant triad interaction experiments requires significant preliminary work.
Simple questions, such as what wavelengths will be produced by a given forcing frequency
must be answered. Knowing which waves to expect through resonant interactions also
necessitates a search for possible triad candidates. As discussed in Section 3.5, the shape
of the eigenfunction for a given forcing frequency is also needed to properly generate the
desired waves. Many of these issues are addressed through the numerical solution of the
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underlying linear eigenvalue problem, which is presented in the next subsection. Then, with
the dispersion relation and eigenfunctions in hand, candidate triads can be determined, as
explained in Section 3.1.2.

3.1.1 Solving the Linear Eigenvalue Problem

Recall the dimensionless linear eigenvalue problem (2.10) governing the dispersion relation
σn(k) and corresponding eigenfunctions gn(z, k):

∂2

∂z2
gn(z, k) + k2

(
N2(z)− f 2

σ2
n(k)− f 2

− 1

)
gn(z, k) = 0, (3.1)

with boundary conditions gn(0, k) = 0 = gn(1, k). Given N2(z), it is generally not possible
to solve this problem analytically, though many properties of the solutions are known (see
Section 2.3). Approximate solutions can be constructed numerically with relative ease,
however. The usual method of approximating the differential equation as a system of
algebraic equations is employed here.

The basic scheme is to split the interval 0 ≤ z ≤ 1 using M + 1 equi-spaced points
zj = j/M , with j = 0, 1, . . . ,M . The eigenfunction gn(z, k) is then approximated with the
vector ĝn defined at those points. The term ∂2

zgn(z, k) is approximated with the matrix-
vector product D2ĝn, where D2 is the second derivative matrix operator discussed below.
This approach converts the continuous eigenvalue problem into a generalized algebraic
eigenvalue problem of the form

(D2 − k2I)ĝ =
k2

σ2 − f 2
Diag(N2(z)− f 2)ĝ, (3.2)

where I is the (M+1)×(M+1) identity matrix and Diag(N2(z)−f 2) is the (M+1)×(M+1)
diagonal matrix whose jth diagonal entry is N2(zj)−f 2. The Dirichlet boundary conditions
on ĝ are imposed by deleting the first and last row and column of each matrix in (3.2).

Equation (3.2) is more easily recognized as a generalized eigenvalue problem by rewrit-
ing it in the form Aĝ = λBĝ, where A = D2 − k2I, B = k2Diag(N2(z) − f 2), and
λ = 1/(σ2 − f 2). In some instances it is preferable to solve the eigenvalue problem
(3.2) with σ treated as the parameter and k the eigenvalue. In that case, simple rear-
rangement reveals the new generalized eigenvalue problem Ãĝ = λ̃B̃ĝ, where Ã = D2,
B̃ = Diag(N2(z) − f 2)/(σ2 − f 2) − I, and λ̃ = k2. In both situations, the eigenfunctions
and eigenvalues are found simultaneously through the Matlab “eig” function, which makes
use of the QR algorithm (see Demmel [19, Chapters 4-5] for an introduction).

The result of this process is a collection of M − 1 eigenvectors and eigenvalues, sorted
by eigenvalue magnitude and assigned indices. To determine the full dispersion relation,
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or study the eigenfunction dependence on k, the problem must be solved over the desired
range of wavenumbers. This can be costly as the underlying factorization algorithm requires
O(M3) operations.

A variety of differentiation matrices D2 could be used to approximate the second deriva-
tive. Finite differences are an obvious choice, but for high precision the Fourier differentia-
tion methods provided in the Matlab toolbox by Weideman and Reddy [72], and discussed
extensively by Trefethan [67], are used.

The Fourier differentiation matrices require periodicity of the underlying functions and
continuity of the derivatives at the boundaries. A modification is therefore necessary to
compute the eigenfunctions with odd mode numbers. To understand why, recall from
Section 2.3 that a mode-n eigenfunction has precisely n − 1 zeros in the interval (0, 1).
It follows that if n is odd and gn(z, k) ≥ 0 as z → 0+ then gn ≥ 0 as z → 1−, so
∂zgn|z=0 6= ∂zgn|z=1.

This problem is corrected using the following process. First, the second derivative
matrix D̂2 is constructed for the interval 0 ≤ z ≤ 2 using the 2M+1 grid points zj = j/M ,
j = 0, 1, · · · 2M . Then, odd-symmetry about z = 1 is enforced for matrix-vector products.
This is done by defining the (M − 1) × (M − 1) matrix D∗2 = D̂2(2 : M, 2 : M) − D̂2(2 :
M, 2M − 1 : M + 1), where standard Matlab notation is being used. Using D∗2 in (3.2)
allows for computation of even and odd-numbered eigenmodes on 0 ≤ z ≤ 1.

3.1.2 Finding Candidate Triads

Once the dispersion relation has been constructed numerically, candidate triads can be
determined through a brute-force search. Looping over the wavenumbers, every possible
pair of waves is considered. If the sum of their wavenumbers and frequencies match another
wave in the data set (to within a desired tolerance), the data is saved as a candidate
triad. To save time, triads are only sought within the first few modes of the dispersion
relation. Even then, a data set consisting of m wavenumbers and frequencies requires
O(m2) calculations. Run-time is reduced in some cases by constraining one of the three
waves in the triad to have a fixed frequency (such as tidal frequency or a desired paddle
frequency).

Once all possible triad candidates of interest have been found it is necessary to compute
the group velocities and interaction coefficients . This is done using equation (B.23):

vp =
(ω2

p − f 2)

ωpkp
− (ω2

p − f 2)2

ωpkp

∫ 1

0

g2
p(z) dz, (3.3)
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and equation (B.25):

γp =

(
ω2
p − f 2

2k2
pωp

)∫ 1

0

(Fpqr +Gpqr +Hpqr) gp(z)dz, (3.4)

with the underlying quantities defined in the appendix. The integral expressions are ap-
proximated by Riemann sums over the same grids where the numerical eigenfunctions are
defined.

Finally, the strength of the candidate triads is evaluated by considering products of
the interaction coefficients. When the product is larger (in absolute value) the interaction
is stronger. This allows for the triads to be sorted by strength, which in turn guides the
design of numerical experiments.

3.2 Solving the Boussinesq Equations

Numerically solving the Boussinesq equations is essential to this study of resonant triad
interactions. Developing a code to solve the fully nonlinear equations is a significant
undertaking. Many subtle issues must be addressed, and a range of compromises must be
made to balance the needs of accuracy, stability, and running-time efficiency. Fortunately,
others have devoted significant time and effort to such endeavors. The SPINS model,
developed by Subich [64], is used for all of the nonlinear simulations.

Early experiments with the SPINS model demonstrated some unexpected behaviour.
Even at small amplitudes, efforts to force individual internal waves often resulted in noisy
wave fields, and the energy spectrum possessed a curious shape. These peculiarities moti-
vated the development of a linear solver for basic forcing and energy investigations. The
Matlab code used for this purpose is described in Section 3.2.1, and the SPINS model is
discussed in Section 3.2.2.

3.2.1 The Linear Matlab Solver

The Matlab solver described here works with the linearized version of the streamfunction
formulation of the Boussinesq equations (2.6a). Taking f = 0, the underlying equation
that must be solved is

∇2ψtt +N2(z)ψxx = F (x, z, t) (3.5)

with initial conditions ψ(x, z, 0) = 0, ψt(x, z, 0) = 0, periodic boundary conditions in x,
and ψ(x, 0, t) = ψ(x, 1, t) = 0. The forcing function F (x, z, t) must be chosen to be
compatible with the desired forcing for the nonlinear equations. As described in Section
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3.5, a forcing function F2(x, z, t) is used to force the vertical momentum equation for the
nonlinear problem. With that choice, it is necessary to take F (x, z, t) = ∂2

∂x∂t
F2(x, z, t). In

general, the linear solver uses

F (x, z, t) = A cos(ωF t+ ϑ)f(x)h(z), (3.6)

and care must be taken in the choice of f(x) and h(z) to compare against nonlinear
simulations.

Numerically solving the linearized streamfunction equation is advantageous because
it allows for easy use of the Fast Fourier Transform (FFT). From the solution ψ, the
linearized density perturbation ρ′ can be reconstructed by the relation ρ′t = −ψxdρ̄/dz.
The horizontal and vertical velocity components are found through (u,w) = (−ψz, ψx).

An approximate solution to (3.5) is sought in the form of a partial Fourier series. The
truncated solution is found with continuous x and z, then sampled on a discrete set of
evenly spaced grid points. Suppose the domain has horizontal length L, the discrete x
samples are given by xj = jL/Nx, j = 0, . . . Nx− 1, where Nx specifies the number of grid
points in the horizontal direction. Similarly, the vertical coordinate is given by zj = j/Nz,
where Nz defines the number of points used to discretize the vertical coordinate. The
approximate solution then takes the form

ψ(x, z, t) =

Nf−1∑
m=−Nf

NM∑
n=1

âm,n(t) exp(ikmx)gn(z, km). (3.7)

Here

km =
2πm

L
and Nf = Nx/2 (3.8)

define the resolvable wavenumbers for a domain of length L. In the approximate solution
(3.7) only the first NM vertical modes are kept as simulations of interest generally only
involve low vertical mode numbers. The unknown coefficients âm,n(t) must be determined
to construct the numerical solution.

Substituting the approximate form (3.7) into the governing linear equation (3.5) leads
to a sum of ODEs governing the growth of the unknown coefficients. With the assumed
forcing shape, the coefficients satisfy∑

m,n

[
k2
m

ω2
m,n

(
â′′m,n + ω2

m,nâm,n
)

exp(ikmx)

]
N2(z)gn(z, km) = −A cos(ωF t+ ϑ)f(x)h(z),

(3.9)
where ωm,n = σn(km). Suppose that f(x) decays to zero quickly enough at the bound-
aries so that it can be represented as a continuous periodic function. Then f(x) can be
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decomposed in the form:

f(x) =

Nf−1∑
m=−Nf

fm exp(ikmx). (3.10)

In addition, define

hm,n =

∫ 1

0

h(z)gn(z, km) dz, (3.11)

which can be computed numerically as a Riemann sum. It follows that

â′′m,n(t) + ω2
m,nâm,n(t) = −fmhm,n

ω2
m,n

k2
n

A cos(ωF t+ ϑ)). (3.12)

The initial conditions âm,n(0) = â′m,n(0) = 0 lead to the solution

âm,n(t) = −ω2
m,n

k2
m

Afmhm,n
ω2
m,n−ω2

F

(
cos(ωF t+ ϑ)− cos(ϑ) cos(ωm,nt)

+ ωF
ωm,n

sin(ϑ) sin(ωm,nt)
)
.

(3.13)

It is assumed that ωF 6= ωm,n for all m,n so that the above solution is valid. The transcen-
dental nature of the ωm,n makes this a reasonable assumption unless a pathological value
of ωF is chosen.

Using expression (3.13), the series solution (3.7) can be directly constructed. For the
applications of interest here, only small vertical mode numbers are considered. The sum
over the vertical modes is typically truncated to just the first three terms. With these
limitations the linear Matlab solver is primarily used as a diagnostic tool in this chapter.
Results generated with the code are discussed in the sections that follow.

3.2.2 The SPINS Solver

The SPINS solver is a C++ code developed by Chris Subich. The program is capable of
solving the full Navier-Stokes equations in two or three dimensions, and can also be used
to solve the Boussinesq equations. SPINS is specifically designed for studying geophysical
processes such as internal waves. Important features of the code are discussed here. A
complete description of SPINS is found in the associated thesis [64].

The SPINS model uses a mixed explicit-implicit time-stepping scheme. Diffusive and
viscous terms are treated implicitly, while advection and forcing terms are handled ex-
plicitly. The scheme used is globally third-order. The explicit terms are treated with
the third-order Adams-Bashforth method, a multi-step method involving data from the
current time level and previous two time levels. Multi-step methods are problematic for

51



initial time-steps because data from previous time levels does not exist. SPINS counters
this problem with a technique based on Richardson extrapolation. The method preserves
the overall third-order accuracy of the time-stepping procedure.

SPINS approximates continuous functions on a discrete set of grid points. Spectral col-
location methods are used to approximate derivatives, and functionality for both Cheby-
shev and Fourier differentiation is available (though only Fourier differentiation is used
in this investigation). This is advantageous because the differentiation operation simply
becomes an algebraic operation in Fourier space. With the assistance of the FFT, con-
versions to and from Fourier space are made at very low cost. Build-up of energy at high
wavenumbers is problematic for spectral solvers, and to counter this SPINS uses a 2/3
low-pass filter. Essentially, energy at all wavenumbers greater than 2/3 of the Nyquist
frequency are exponentially filtered out.

SPINS runs in parallel and makes use of the MPI protocol. Typical simulations pre-
sented here involved eight processors, though scaling tests have been performed by Subich
on much larger systems. SPINS creates a binary output file for the vertical and horizontal
velocity fields, as well as the density field, at pre-determined save times. In addition, the
x and z grid coordinates are stored. The code also creates a Matlab script that is used for
importing all of the necessary data into Matlab.

Setting up experiments with the SPINS model is also a simple process. All of the
necessary parameters are set in a single main-driver file. This seemingly minor detail is
actually a major convenience as it reduces errors that occur from modifying multiple input
files. The only externally-set parameter is the number of processors to use at runtime, but
this is simply set at the command line.

There are, of course, alternatives to the SPINS model. These include the spectral
flow solve model by Winters, Mackinnon, and Mills [73], and the IGW finite volume code
written by Lamb [38]. The IGW model would be particularly useful for simulations involv-
ing topography interactions, though topography functionality has recently been added to
SPINS as well.

3.3 The Energy Decomposition

Making effective use of the data collected with the SPINS model or linear Boussinesq solver
is critical to the understanding of resonant triad interactions. The key question that must
be answered from analyzing simulation data is: how much energy lies in each wave at a
given time? This section explains the energy decomposition approach necessary to resolve
that question.
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3.3.1 Energy in a Stratified Fluid

The energy in a stratified fluid can be decomposed into a sum of kinetic and potential
energy. However, a different quantity, known as the available potential energy (APE) is of
particular interest because it represents the amount of potential energy that can actually
be converted into useful work, such as mixing or heat (through dissipation). The sum
of kinetic and available potential energy is referred to as pseudo-energy, and the concept
and calculation of this quantity are discussed extensively by Lamb [39]. The linearized
expression for pseudo-energy density is given by

E =
ρ0

2

(
u2 + w2

)
+

1

2

g2

ρ0

ρ′2

N2(z)
(3.14)

see Gill [29, page 139] or Bühler [12, Chapter 6], for instance. This energy density depends
on x, z, and t, and must be integrated over the domain to determine the total energy.
The first term involving velocity components is the kinetic energy (KE) density. The
term involving ρ′ in (3.14) is the leading order contribution of the APE density, but it
is exact when N2(z) is constant. In essence, to calculate the APE contribution exactly
the difference between the disturbed and undisturbed state must be integrated over the
domain.

Expression (3.14) is in dimensional form. Using the scalings defined in Chapter 2, this
equation can be expressed in terms of dimensionless variables as

E = RU2

[
ρ̂0

2
(û2 + ŵ2) +

ρ̂0

2

ρ̂′2

N̂2(ẑ)

]
. (3.15)

Here R = ∆ρ/4, ρ̂0 = ρ0/R, and U2 = Hg∆ρ/(4ρ0). This dimensionless form must be
used for pseudo-energy computations with the Matlab solver.

As already mentioned, the total pseudo-energy of the fluid must be found by integrating
E over the domain. This could be done by directly integrating the SPINS (or linear
solver) output data with relative ease. However, to understand energy transfers in wave
interactions, it is necessary to project the total energy onto the different vertical modes at
each horizontal wavenumber. The method used for that projection is now described.

3.3.2 The Velocity and Density Fields

To make use of the energy formula above, the data u,w, ρ′ and ψ (if the Matlab solver
is used) must be projected onto horizontal wavenumbers and eigenfunctions. At each
wavenumber and frequency a sum of left and rightward propagating waves with different
phases is possible. The decomposition must account for this.
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Let
∑
m,n

Am,n =
Nf−1∑
m=−Nf

(
∞∑
n=1

Am,n

)
for a given quantity Am,n. Then the natural decom-

position for the vertical velocity field takes the form:

w(x, z, t) =
∑
m,n

am,n(t) exp (ikmx) gn(z, km). (3.16)

The incompressibility condition suggests the decomposition

u(x, z, t) = ū(z) + i
∑
m,n

am,n(t)

km
exp (ikmx)

d

dz
gn(z, km), (3.17)

where ū(z) is the background mean flow induced by the waves (the contribution from k =
0). Note that this expression involves the same coefficients am,n used in the decomposition
of u. This is important and useful; the dependence of u on the derivatives of the vertical
eigenmodes makes it difficult to directly decompose u. The incompressibility of the data
field allows for the decomposition to be done without actually working with the u data.
For decomposing the density, the linearized equation ∂ρ′/∂t + wdρ̄/dz = 0 suggests the
appropriate form:

ρ′(x, z, t) =
ρ0

g
N2(z)

∑
m,n

bm,n(t)

ωm,n
exp (ikmx) gn(z, km). (3.18)

When the linear Matlab solver is used, the streamfunction must be decomposed. This is
done using the expression

ψ(x, z, t) =
∑
m,n

âm,n(t) exp (ikmx) gn(z, km), (3.19)

where âm,n(t) is given explicitly by (3.13).

Since the underlying data fields are real, the coefficients in each decomposition satisfy
an important property. The coefficient corresponding to k−m is just the complex conjugate
of the coefficient for km. That is, a−m,n = a∗m,n, and similarly for bm,n and âm,n. Quick
inspection of the eigenvalue problem also reveals that the eigenfunctions satisfy gn(z, km) =
gn(z, k−m).

3.3.3 Expressions for the Total Pseudo-Energy

With the above decompositions it is possible to express the pseudo-energy in terms of the
coefficients am,n, bm,n, and âm,n. As mentioned earlier, (3.14) represents the pseudo-energy
density at a point, so integrations over the domain must be performed to find the total
pseudo-energy.
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A General Expression for Energy

To determine the total kinetic and available potential energy integration of the decomposed
signals is required. The total kinetic energy is given by

KE =
ρ0

2

∫ H

0

∫ L

0

(
u2 + w2

)
dx dz. (3.20)

For shorthand, the notation: δmn = 1 if m = n and 0 otherwise, is used. Suppose that km
and kn are among the resolvable frequencies. Direct integration reveals∫ H

0

∫ L

0

w2 dx dz = L
∑
m,n,q

[
am,na−m,q

∫ H

0

gn(z, km)gq(z, km) dz

]
. (3.21)

Similarly∫ H
0

∫ L
0
u2 dx dz = L

∫ 1

0
ū2(z) dz

+L
∑
m,n,q

[
am,na−m,q

∫ H
0

1
k2
m

d
dz
gn(z, km) d

dz
gq(z, km) dz

]
. (3.22)

Using integration by parts and the definition of the eigenfunction, it is possible to show
that

∫ 1

0
1
k2
m

d
dz
gn(z, km) d

dz
gq(z, km) dz = δnq

ω2
m,n
− ∫ H

0
gn(z, km)gq(z, km) dz. This simplifies the

expression for the total kinetic energy to:

KE =
ρ0L

2

∫ H

0

ū2(z) dz +
ρ0L

2

∑
m,n

|am,n|2
ω2
m,n

. (3.23)

The contribution from the mean flow ū(z) is discussed below.

The net contribution of available potential energy is

APE =
1

2

g2

ρ0

∫ H

0

∫ L

0

ρ′2

N2(z)
dx dz. (3.24)

Substituting in the series solution for ρ′ from equation (3.18), directly integrating, and
making use of the eigenfunction orthogonality condition reveals

APE =
ρ0L

2

∑
m,n,q

|bm,n|2
ω2
m,n

. (3.25)

Summing equations (3.23) and (3.25) reveals that the total linearized pseudo-energy in
the fluid is

E =
ρ0L

2

∫ H

0

ū2(z) dz +
ρ0L

2

Nf/2−1∑
m=−Nf/2

(
∞∑
n=0

|am,n|2 + |bm,n|2
ω2
m,n

)
. (3.26)
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This is the expression that is used to determine the pseudo-energy after a simulation is
complete. The equation can be immediately interpreted in terms of contributions of specific
vertical modes at different horizontal wavenumbers. The pseudo-energy of a mode-n wave
at a non-zero wavenumber km is

Em,n =
ρ0L

2

( |am,n|2 + |bm,n|2
ω2
m,n

)
. (3.27)

The Mean Flow Contribution

The first term in (3.26) represents the energy due to the mean flow. Decomposing this
into different vertical modes requires special attention. In the limit k → 0, the dominant
balance in the linear eigenvalue problem (2.10) is between g′′n and (k2/σ2

n)N2(z)gn, since
σ → 0. As discussed in Section 2.3.5, the resulting eigenvalue problem can be written as

g′′n(z) +
N2(z)

c2
n

gn(z) = 0, (3.28)

with boundary conditions gn(0) = gn(H) = 0. The eigenvalue cn is the phase speed
in the long-wave limit. The natural orthogonality condition on two eigenfunctions is
once again

∫ H
0
N2(z)gm(z)gn(z) dz = δmn. This suggests the decomposition ū(z) =∑∞

n=1 αnN(z)gn(z), so that ∫ H

0

ū2(z) dz =
∞∑
n=1

α2
n. (3.29)

This implies that the energy contribution from the mode-n mean flow component is
ρ0Lα

2
n/2.

The Streamfunction Calculation

For the Matlab solver, only the streamfunction ψ is computed. The density perturbation
field can be reconstructed for data visualization, but an exact expression for the total
pseudo-energy is possible directly from the streamfunction data.

When the streamfunction is decomposed as in (3.19) the expression for kinetic energy

becomes KE = ρ0L
2

∑
m,n

k2
m|âmn|2
ω2
mn

, with âm,n defined by (3.13). The density perturbation

field can be extrapolated from ψ, and written in the form (3.18) with b̂m,n in place of bm,n,

and no factor of ρ0/g. The coefficient b̂m,n is given by

b̂m,n(t) = −ω3
m,n

k2
m

Afmgm,n
ω2
m,n−ω2

F

(
sin(ωF t+ϑ)

ωF
− cos(ϑ)

ωm,n
sin(ωm,nt)

+ ωF
ω2
m,n

sin(ϑ)− ωF
ω2
m,n

sin(ϑ) cos(ωm,nt)
)
,

(3.30)
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where ρ′(x, z, 0) = 0 is assumed. The available potential energy is once again APE =
ρ0L

2

∑
m,n

|b̂m,n|2
ω2
m,n

. The total pseudo-energy in a mode-n wave at wavenumber km is then

Em,n =
ρ0L

2
k2
m

(
|âm,n|2 + |b̂m,n|2

ω2
m,n

)
, (3.31)

where each quantity in the expression is dimensionless.

While working with the Matlab linear solver no mean flow calculations are required.
This is because all of the simulations presented here are done with a quiescent background
state, and a mean flow can only be generated through nonlinear interactions.

3.3.4 Decomposing the Simulation Data

The discussion above suggests the useful features of the data that are needed in order to
determine the energy content of different flows. In particular, the determination of the
Fourier coefficients am,n and bm,n are required. This subsection describes the techniques
used to obtain the coefficients. The methods described here are specific to the analysis of
output from the SPINS model, analysis of data from the Matlab solver follows naturally.

Suppose a simulation is run with Nx horizontal grid points and Nz vertical grid points.
The computational domain has height H and length L. The data fields for velocity and
density at each time step consist of a Nx ×Nz array of data values.

The SPINS model collects data on a staggered grid at coordinates specified by x̂, ẑ.
The data points lie at

x̂i = (i− 1/2) L
Nx
, i = 1, . . . , Nx,

ẑj = (j − 1/2) H
Nz
, j = 1, . . . , Nz.

(3.32)

For analysis purposes, the vertical velocity and density data fields are interpolated onto
the new set of grid points aligned with the boundaries and given by

xi = i L
Nx
, i = 0, . . . , Nx − 1

zj = j H
Nz
, j = 0, . . . , Nz.

(3.33)

Dirichlet boundary conditions on w and ρ are imposed at z = 0, H. The set of resolvable
horizontal wavenumbers for the interpolated data take the form

kj =
2πj

L
, with −Nf ≤ j ≤ Nf − 1, and Nf =

Nx

2
. (3.34)

The Nyquist frequency, which is the largest resolvable frequency is 2πNf/L, or simply
πNx/L.
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Let W be the Nx ×Nz matrix such that Wi,j denotes the value of the vertical velocity
field at the coordinate (xi, zj) Applying the FFT to each column of W (that is, with respect
to x), yields a new matrix whose ith row gives the z-dependence of W at the wavenumber
ki. This must be further decomposed by projecting each row of Ŵ onto the vertical modes
associated with each wavenumber.

To accomplish the decomposition, a projection matrix is found beforehand. At each of
the resolvable wavenumbers, the eigenvalue problem (2.10) is solved numerically using the
methods of Section 3.1.1. The first Nmodes vertical modes are stored at each wavenumber,
and typically the value Nmodes = 5 is used. The vertical eigenmodes are used to construct
the block-diagonal matrix P of the form

P =


P (1) 0 . . . 0

0 P (2) . . .
...

... . . .
. . .

...
0 . . . . . . P (Nf )

 , (3.35)

where P is a (Nmodes ·Nf )× (Nz ·Nf ). The jth block matrix P (j) is the Nmodes×Nz matrix
whose element at index (m,n) is N2(zn)gm(zn, km).

For multiplication with P , the first Nf columns of W̃ are concatenated into a single
column vector of length Nf ·Nz. The product PW̃ creates a new column vector of length
Nmodes ·Nf , that is refolded into a Nmodex×Nf matrix of pseudo-energy values. The (i, j)
entry of this matrix is the pseudo-energy in the ith vertical mode number at wavenumber
kj.

3.4 Exploring the Pseudo-Energy Spectrum

Armed with the energy decomposition techniques described above, simulation data can
be effectively interpreted. However, a cursory glance at the energy spectrum for basic
simulations of forced waves suggests some peculiarities that are worth exploring. In this
section, the shape of the energy spectrum is explained. In addition, some difficulties in the
energy decomposition of modulated long waves are considered.

3.4.1 Holes in the Energy Spectrum

Figure 3.1 depicts the mode 1 pseudo-energy decomposition for a simple forced wave sim-
ulation at t = 10 and t = 50 seconds. The data was generated using the SPINS model,
and comes from test L1 described in Section 4.1. The experiment involves forcing a mode
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Figure 3.1: An example of holes in the mode 1 pseudo-energy spectrum at t = 10
seconds (top subplot) and t = 50 seconds (bottom subplot). Initially only a few
cusps are visible but even by t = 50 s, a substantial number of kinks are visible
in the pseudo-energy curve. This plot depicts data from test L1, described in
Section 4.1.

1 wave at k = 30.9 m−1 with period 2.8 seconds. Note the expected peak at the forced
wavenumber. At both values of t, the pseudo-energy spectrum appears to have sharp
trough-like cusps where the energy spikes downwards at select wavenumbers. The lower
subplot, corresponding to t = 50, has a much more complicated spectrum, and is riddled
with pseudo-energy spikes. Although Figure 3.1 only depicts the pseudo-energy for mode
1, similar results are visible in plots of the pseudo-energy for higher mode numbers.

When viewed as an animation, the troughs traverse the figure. The troughs appear from
both the left and right sides of the spectrum, and migrate towards the forced wavenumber.
As they approach the forced wavenumber some of the troughs appear to slow down and
accumulate. This accumulation is evident in the bottom subplot of Figure 3.1, where the
spacing between troughs is significantly decreased. Even after very long simulation times
new troughs are visible modifying the spectrum. These curious results are not limited
to nonlinear simulations. Consider Figure 3.2, which depicts the kinetic and available
potential energy contributions found with the linear Matlab solver. Although the variables
are dimensionless, the simulation was performed using the same stratification and forcing
frequency as the test L1. Both curves exhibit the trough structure seen in the nonlinear
simulation.

The key hypothesis for understanding the spectrum shape is that, if the KE and APE
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decompositions were performed over a continuum of wavenumbers, the spectrum troughs
would actually be zeros. If this is the case, then the troughs in the pseudo-energy spectrum
are simply the locations where the zeros of the KE and APE are approximately aligned.

To test this idea, consider the expression for the pseudo-energy in the mode-n com-
ponent at wavenumber km given in equation (3.31). This expression is valid in the limit
as wave amplitudes approach zero. For the mode-n pseudo-energy to be zero at a given
wavenumber it is necessary that âm,n = b̂m,n = 0. This requires

cos(ωF t+ ϑ)− cos(ϑ) cos(ωmnt) + sin(ϑ)
ωF
ωmn

sin(ωmnt) = 0, (3.36)

and

sin(ωF t+ ϑ)

ωF
− cos(ϑ)

ωm,n
sin(ωm,nt) +

ωF
ω2
m,n

sin(ϑ)− ωF
ω2
m,n

sin(ϑ) cos(ωm,nt) = 0. (3.37)
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Figure 3.2: The mode 1 KE (solid line) and APE (dashed line) spectrum. This
simulation was conducted with the linear Matlab solver. All variables are di-
mensionless. Note the energy troughs in the two curves do not line up perfectly.

To simplify the analysis, suppose ϑ = 0, the results for general ϑ are more complicated
algebraically. Now consider t to be a fixed value, and observe that the kinetic energy
contribution is zero at frequencies ω̃m,n satisfying

ω̃m,n = −ωF +
2πj

t
, or ω̃m,n = ωF +

2πj

t
, (3.38)

where j = 0,±1,±2,±3, . . . . These conditions hold at wavenumbers k̃± defined by

k̃+ = σ−1
n

(
ωF +

2πj

t

)
, and k̃− = σ−1

n

(
−ωF +

2πj

t

)
. (3.39)

60



These zeros, or holes, in the KE traverse the spectrum as time increases. In fact, simple
calculation shows that a zero at the wavenumber k∗ travels with velocity

v = − 2πj

t2vn(k∗)
(3.40)

where vn(k∗) is the mode-n group velocity. The speed of propagation of the zeros through
the spectrum decreases quickly with time and location. In addition, the holes defined
by k̃+ always lie to the right of the forced wavenumber. The holes defined by k̃− when
j > 0 do pass through the forced wavenumber and also cross k = 0. In Figure 3.3 the
predicted holes in the KE spectrum are marked. All of the troughs are accounted for, with
vertical dashed lines denoting holes of the form k̃+ and vertical dotted lines indicating the
wavenumbers k̃−.

Next, consider the APE. At fixed t, the energy is zero at the roots of the transcendental
equation

ω sin(ωF t) = ωF sin(ωt). (3.41)

This equation must be solved numerically for ω, and then the dispersion relation must be
inverted to find the corresponding wavenumbers. Provided that ωF > 1/t this equation
always has at least one root and as t increases so does the number of roots. For each root of
this equation, the corresponding discrete value ωm,n closest to ω will lead to a wavenumber
at which the APE is very small.

As time increases, the number of zeros (or near misses) in the KE and APE spectrum
must also increase, and their spacing decreases. The pseudo-energy is just the sum of KE
and APE, so as the holes in the two spectrums become more frequent the likelihood of them
overlapping also increases. It is the overlap of holes in the KE and APE spectrum that leads
to the troughs visible in the pseudo-energy spectrum. In Figure 3.4 the predicted positions
for holes in the pseudo-energy are marked with vertical lines. Holes in the pseudo-energy
are predicted by simply averaging the locations of nearby KE and APE holes.

The analysis for the problem with multiple forcing frequencies becomes substantially
more complicated. Transcendental equations for both the KE and APE spectrum zeros will
become increasingly difficult to solve as the number of forcing frequencies increases. In light
of this, it is only possible to apply this analysis heuristically for analyzing the spectrums of
nonlinear simulations. Nonlinear terms act as sources, and the spread of energy across the
spectrum means a vast number of forcing terms are present. The simple analysis presented
here can only help predict the early onset of zeros in the energy spectrum for nonlinear
simulations. Even without precise predictive power for the nonlinear case the analysis does
explain why these features are present.

For both linear and nonlinear simulations the zeros in the energy spectrum can cause
confusion. At certain times the zeros may pass through the forcing wavenumber which can
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Figure 3.3: The mode 1 kinetic energy spectrum, computed with the linear
Matlab solver. Vertical dashed lines mark the expected positions k̃+, vertical
dotted lines mark the positions of the expected zeros at k̃−. All variables are
dimensionless.
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Figure 3.4: The mode 1 pseudo-energy spectrum from the linear Matlab solver.
Vertical dashed lines mark the positions of expected zeros in the spectrum.
Predictions are made by averaging the locations of adjacent holes in the KE
and APE spectrums when both have similar zeros. Wavenumber, energy, and
time are dimensionless.
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Figure 3.5: The modulated short wave. In the top subplot several wavelengths
are visible within the wave packet. The absolute value of the Fourier coefficients,
plotted in the bottom subplot, contains two peaks at the expected wavenumbers
k/(2π) = ±15.

give the misleading impression that there is little or no energy in the forced wave. This
problem can be avoided by time-averaging the spectrum. The problem with the averaging
approach is that it may hide the presence of short-lived features of short duration. For
resonant interactions this could be particularly damaging as the source of an energy peak
may be averaged out.

3.4.2 Long Wave Energy Problems

Determining the energy content of long waves, whether forced directly, or generated through
other processes, can be a subtle problem. When the wave in question is modulated by an
envelope of relatively short width, Fourier decompositions are complicated because the
energy peaks may lie at unexpected wavenumbers. This idea is explained through a simple
analysis. The analysis used here involves Gaussian envelope functions. Numerically gen-
erated waves are modulated by a variety of envelope shapes, but the Gaussian is a useful
analytical tool that captures many of the properties of other modulating functions.

On the infinite domain, consider the wave s(x) = cos(mx + φ) on the domain −∞ <
x < ∞. Suppose that the wave is localized to some region near x = 0 by modulation
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with the Gaussian envelope g(x) = exp(−Dx2). The long wave, limited by the envelope,
is expressed as the signal f(x) = s(x)g(x). The size of D determines the extent of the
region where f(x) attains significant values. The Fourier transform of f(x) is given by
F (k) =

∫∞
−∞ f(x) exp(−ikx) dx (this is explained in detail in Chapter 5). Using similar

notation for the transforms of s(x) and g(x), it follows that:

S(k) = 2π [exp(−iφ)δ(k +m) + exp(iφ)δ(k −m)] ,

G(k) =
√

π
D

exp
(
− k2

4D

)
,

F (k) = 2π
√

π
D

[
exp(iφ) exp

(
− (k−m)2

4D

)
+ exp(−iφ) exp

(
− (k+m)2

4D

)]
.

(3.42)

Computing S(k) involves the convolution theorem (see Haberman [30, Chapter 10]).

For a spatially uniform wave (D → 0), all the wave energy lies at k = ±m. For finite
D, the energy peaks are shifted and depend on D and φ. The reason for the shift in energy
peaks is because the two Gaussians composing S(k) overlap when D is large and positive.
Depending on the value of φ, these could shift the peaks towards k = 0 or away from it.

These simple arguments are now used to explain the numerical results on a periodic
domain. Consider the domain −1/2 ≤ x ≤ 1/2. Periodic waves of the form described
above exist provided m = 2πn for integer values of n. The longest wave supported on
the domain is that corresponding to n = 1, with wavelength λ = 1. Continuous Fourier
transforms are replaced by their discrete analogues, and the decompositions still lead to
shifted peaks.

As a concrete example, consider the modulated short wave f1(x) and modulated long
wave f2(x) defined by:

f1(x) = cos(30πx+ π/2) exp(−20x2), f2(x) = cos(2πx+ π/2) exp(−20x2). (3.43)

The modulated short wave is depicted in the top subplot of Figure 3.5. The modulated
long wave is plotted in the top subplot of Figure 3.6. In the bottom subplot of each figure
the power spectrum is plotted against k/2π. The spectrum for the short wave has two
distinct peaks located at k = 30π. The peaks for the long wave, on the other had, do
not coincide with k = ±2π. Instead, they are shifted to k = 6π. Had the phase φ in
the underlying signal been set to zero, the long wave spectrum would have a single peak
centered at k = 0.

In numerical simulations the phase φ of a generated wave is unknown. This means the
presence of the modulated envelope could shift the energy peaks in either direction along
the k-axis. It is therefore impossible to determine exactly where the long wave energy lies.
To avoid these problems, D should be sufficiently small that exp(−m2/4D) is negligible.
It is not possible to simply set D, however, as it is the width measure of the wave packet
in a simulation. Instead, this analysis suggests that simulations must be run for significant
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Figure 3.6: The modulated long wave. The wavelength is comparable to the en-
velope width, as evident in the top subplot. In the bottom subplot the absolute
value of the Fourier coefficients are plotted against k/2π. The two visible peaks
lie at k/(2π) = ±3 instead of k/(2π) = ±1.
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amounts of time for the long wave energy decomposition to be trustworthy. For simulations
where the wave packet is of short extent the long wave energy decomposition is skewed,
and while the presence of long waves are assured it is not possible to determine their exact
wavenumber.

3.5 Numerical Forcing Theory

Initial attempts at numerically forcing waves led to some unexpected results. While energy
decompositions of the data did show a peak at the expected location, it was often found
that waves of different wavenumber and vertical mode number had significant energy levels,
in some cases even exceeding those of the forced wave. The reasons for this are connected
with the eigenvalue problem (2.10), and can be explained through linear analysis, as shown
below.

3.5.1 Forcing the Vertical Momentum Equation

Forcing the vertical momentum equation is a natural choice for generating internal gravity
waves. The reasons for this are twofold. First, forcing the vertical momentum equation
mimics the effects of a vertically oscillating paddle in a fluid. Second, for linear waves the
vertical velocity w of an internal wave depends on the eigenfunction solution of (2.10), not
its derivative. This provides some guidance as to how to choose the shape of the vertical
forcing function. There are, of course, alternatives to forcing the vertical momentum
equation. For instance, Fringer and Street [26] force the horizontal momentum equation
with a function that follows the wave. Their forcing approach was used to induce wave-
breaking, whereas the intent here is to generate clean waves of moderate amplitudes.

The basic strategy here is to force the vertical momentum equation with a spatially
localized signal that varies sinusoidally in time at a desired frequency ωF . Intuitively, this
should preferentially produce waves at the forcing frequency and corresponding wavenum-
bers. If the horizontal and vertical forcing shape are chosen appropriately, it should be
possible to generate a clean wave field dominated by waves of the desired frequency and
wavenumber. The issue is then reduced to choosing a forcing shape that generates the
desired wave.

Following these ideas, forcing functions of the form

F2(x, z, t) = A0 sin(ωF t+ ϑ)φ(x)h(z) (3.44)

are studied. The subscript on F reflects the fact that the vertical momentum equation
is forced. With reference to Section 3.2.1, the equivalent linear forcing in the vorticity
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Figure 3.7: An example of bad forcing results from two linear simulations. For
both simulations the forcing frequency ω = 2π/8 is used. In the top subplot, the
mode-1 wave at k ≈ 1.4 is forced, but significant energy resides in the mode-3
spectrum near k ≈ 14.6. In the bottom subplot, the mode-3 wave at k ≈ 14.6
is forced, but the mode-1 wave near k ≈ 1.4 has slightly more energy.

equation takes the form

∂2

∂x∂t
F2(x, z, t) = A cos(ωF t+ ϑ)f(x)h(z), (3.45)

where A = ωFA0 and f(x) = φ′(x).

The natural first guess for the horizontal forcing shape is to choose φ(x) to be some
localized function such as a Gaussian or sech profile. This is reasonable because it imitates
the action of a paddle of finite dimension. Choosing the appropriate vertical forcing shape
h(z) is a more subtle issue. A natural first guess is to set h(z) = gn(z, kF ), where n is the
vertical mode number and kF = σ−1

n (ωF ) is the desired wavenumber.

Early experiments with this horizontal and vertical forcing shape revealed a woeful
inadequacy. In particular, when forcing a mode one wave, the pseudo-energy observed in
other odd-numbered modes was undesirably large. Similar results were found for even-
numbered modes. In certain cases, it was even found that the peak energy in the system
did not always reside with the forced mode. To demonstrate this flaw, consider the forcing
shapes

f(x) = − 1

D
sech

( x
D

)
tanh

( x
D

)
, and h(z) = gn(z, kF ), (3.46)
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used with the linear solver on the stratification defined for the lab-scale experiments of
Chapter 4. The horizontal shape is derived from φ(x) = sech(x/D). In Figure 3.7 the
pseudo-energy decomposition from two simple experiments is depicted. In both experi-
ments the dimensionless frequency ωF = 2π/8 was used. In the top subplot, forcing with
h(z) = g1(z, kF ) was intended to primarily excite mode-1 waves at kF ≈ 1.4. The mode-3
energy at k ≈ 14.6 is comparable, however. In the bottom subplot, h(z) = g3(z, kF ) was
used in an attempt to generate mode-3 waves at kF ≈ 14.6. The mode-1 energy peak
at k ≈ 1.4 is actually larger than the intended mode-3 peak. In both cases an undesired
amount of energy was pumped into waves of the forcing frequency but at the wrong vertical
mode. This is explained through the linear analysis below.

3.5.2 Analysis on a Periodic Domain

A simple linear analysis explains the poor results illustrated above and suggests the nec-
essary fix. Consider the dimensionless streamfunction formulation of the Boussinesq equa-
tions (2.6a). Eliminating nonlinear terms and including the forcing term F2 in the vertical
momentum equation yields the linear equation

∂2

∂t2
∇2ψ +N2(z)ψxx =

∂2

∂x∂t
F2(x, z, t). (3.47)

The domain is bounded by 0 ≤ z ≤ 1, with boundary conditions ψ(x, 0, t) = ψ(x, 1, t) = 0.
The streamfunction is periodic in the x direction on a domain of length L. The initial
conditions are ψ(x, z, 0) = ψt(x, z, 0) = 0. From the discussion above, the right-hand side
becomes

∂2

∂x∂t
F2(x, z, t) = A cos(ωF t+ ϑ)f(x)h(z), (3.48)

with f(x) = φ′(x) and A = ωFA0.

Separation of variables provides the necessary insight into how to choose F2(x, z, t).
First, consider F2 = 0, and let ψ = X(x)Z(z)T (t). Minor manipulation reveals that

− T ′′Z ′′

T ′′Z + TN2(z)Z
=
X ′′

X
= −k2

m. (3.49)

This implies X(x) is a linear combination of exp(ikmx) and exp(−ikmx) where km = 2πn/L
so that the solution is periodic. Another manipulation reveals

k2
mN

2(z)Z

Z ′′ − k2
mZ

=
T ′′

T
= −ω2

m, (3.50)

where ωm must be a real eigenvalue depending on km such that

Z ′′ + k2
m

(
N2(z)

ω2
m

− 1

)
Z = 0, (3.51)
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and Z(0) = 0 = Z(1). This is, of course, the Sturm-Liouville problem discussed at length
in Chapter 2. At each km, a countably infinite set of solutions ωm,n = σn(km) exist. For
notational consistency, let Z(z) = gn(z, km) be the mode-n eigenfunction corresponding to
the frequency ωm,n and wavenumber km.

The separation of variables approach for the unforced problem extends naturally to the
forced case. The key idea is to use an eigenfunction expansion of the form

ψ =
∞∑

m=−∞

∞∑
n=1

Tm,n(t) exp(ikmx)gn(z, km). (3.52)

Substituting this into the governing equation (3.47) and using the definition of gn(z, km)
reveals

∞∑
m=−∞

∞∑
n=1

k2
m

ω2
m,n

(T ′′m,n + ω2
m,nTm,n) exp(ikmx)N2(z)gn(z, km)

= −A cos(ωF t+ ϑ)f(x)h(z).
(3.53)

The x-dependence is eliminated by integrating both sides against exp(−ikmx) from x =
−L/2 to x = L/2. The remaining z-dependence is removed by integrating both sides
against the eigenfunction gn(z, km) and making use of the orthogonality condition (2.48).
Next, suppose f(x) decays rapidly to zero by the domain boundaries so that a periodic

continuation f(x) =
∞∑

m=−∞
fm exp(ikmx) can be used, and define

hm,n =

∫ 1

0

h(z)gn(z, km) dz. (3.54)

It follows that

T ′′m,n + ω2
m,nTm,n = −Aω

2
m,n

k2
m

fmhm,n cos(ωF t+ ϑ), (3.55)

with Tm,n(0) = T ′m,n(0) = 0. This equation describes the temporal evolution of the mode-n
wave at wavenumber km, and some important observations can be made. First, note that
waves at each wavenumber km and corresponding frequency ωm,n experience some forcing
effects provided fm 6= 0 and hm,n 6= 0. Second, any waves with frequencies ωm,n close to
ωF will be forced in near-resonance.

In light of these simple observations, the goal of forcing a desired wave cleanly can be
achieved. Suppose the desired wave has wavenumber kF and vertical mode number nF ,
so that ωF = σnF (kF ). The functions f(x) and h(z) should be chosen using the following
guidelines:

1. The Fourier coefficients fm should only be large at indices m where the corresponding
km values are close to ±kF . Away from this range of indices the Fourier coefficients
should be as small as possible.
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2. The vertical shape h(z) should be designed so that, for wavenumbers km near ±kF ,
hm,nF is large. For the same range of wavenumbers, hm,n should be small when
n 6= nF .

To satisfy the first condition, some knowledge of the continuous Fourier transform
is helpful. Ideally, the function f(x) has a spectrum that is narrow-banded about the
wavenumber kF . A useful starting point is f(x) = exp(−x2/D). This is a Gaussian that
depends on a width parameter D, and has Fourier transform F (k) =

√
πD exp(−k2D/4).

Notably this is also a Gaussian in k with width measure inversely proportional to the width
in physical space. The function F (k) is centered about k = 0, but the peak can be shifted
to ±kF by using the modified function f̄(x) = cos(kFx) exp(−x2/D). To achieve a narrow
spectrum about k = kF , the parameter D must be relatively large. This is made more
precise below.

To satisfy the second condition, the choice h(z) = N2(z)gnF (z, kF ) is appropriate.
The orthogonality condition (2.48) ensures that near k = kF only the mode nF wave is
excited strongly. Since the orthogonality condition only holds exactly for eigenfunctions
corresponding to the same wavenumber, some waves near kF at undesired vertical mode
numbers will always be excited. This cannot be avoided unless N2(z) is constant so that
the eigenfunctions do not depend on the wavenumber.

With these considerations, numerical simulations are conducted with:

F2(x, z, t) = A sin(ωF t+ ϑ) sin(kFx)sech
( x
D

)
N2(z)gnF (z, kF ). (3.56)

The spatial oscillatory component sin(kFx) could be replaced with cos(kFx). The final
issue is to determine an appropriate value for the width parameter D. The answer lies
in equation (3.55). Clearly any wave of frequency ωm,n near ωF will be excited in near-
resonance when fm is non-zero. This is because hm,n will generally be non-zero due to the
non-orthogonality of eigenfunctions at different wavenumbers. Suppose the wavenumber
of the mode-n wave with frequency ωF is denoted by kF,n. The width D must be chosen
so that the spectrum of f(x) is extremely small at distances |kF,nF − kF,nF±1| away from
±kF,n. This ensures that for all the waves with frequency near ωF , only the one one with
vertical mode number nF will be strongly excited.

To demonstrate the effects of using the appropriate forcing function, recall the example
of Figure 3.7. The calculations were repeated using

f(x) = − 1

D
sin(kFx)sech

( x
D

)
tanh

( x
D

)
+ kF cos(kFx)sech

( x
D

)
, (3.57)

and h(z) = N2(z)gn(z, kF ) for n = 1, 3. The results are shown in Figure 3.8. In the top
subplot, the intended mode-1 wave at kF ≈ 1.4 is nearly five orders of magnitude larger
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Figure 3.8: An example of improved forcing results. In both linear solver ex-
periments the frequency ωF = 2π/8 was used. In the top subplot, the mode-1
wave at k ≈ 1.4 is forced. In the bottom subplot, the mode-3 wave at k ≈ 14.6
is forced. Contrast this with Figure 3.7.
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than the peaks in the higher modes. Similarly, in the bottom subplot the intended peak
in the mode-3 spectrum at kF ≈ 14.6 is dominant.

The structure of the forcing function for the vertical momentum equation (3.56) suggests
that unidirectional waves can be generated with only minor modifications. This is seen
from the simple trigonometric identity

sin(ωF + ϑ) sin(kFx) =
cos(kFx− ωF t− ϑ)

2
− cos(kFx+ ωF t+ ϑ)

2
. (3.58)

This is a sum of leftward and rightward-propagating waves (depending on the signs of kF
and ωF ). To generate unidirectional waves, then, the term sin(ωF + ϑ) sin(kFx) in (3.56)
can be replaced by cos(kFx − ωF t − ϑ). This is useful as it reduces the computational
domain size needed to investigate a propagating wave. However, the theory is linear so it
must be tested to evaluate its practicality for the fully nonlinear Boussinesq equations.

3.5.3 A Force Scaling Rule

The form of the forcing function (3.56) leads to a simple but useful scaling law for generating
waves. The horizontal forcing dependence can be written in the general form φ(x) =
sin(kFx)p(x/D), where p(x/D) = sech (x/D). More generally p could be any localized
function, not necessarily centered at the origin, but the result is the same. For linear
analysis, the forcing function f(x) = φ′(x) is used. The growth of the forced wave is
dependent on the Fourier coefficient fm, where

fm =

∫ L/2

−L/2
exp(−ikmx)φ′(x) dx. (3.59)

Assume p(x) is localized so that |φ(x)| � 1 as |x| → L/2. Integration by parts reveals
that

fm = exp(−ikmx)φ(x)
∣∣L/2
−L/2 + ikm

∫ L/2
−L/2 exp(−ikmx)φ(x) dx,

≈ ikm
∫ L/2
−L/2 exp(−ikmx)φ(x) dx,

≈ ikm
∫∞
−∞ exp(−ikmx)φ(x) dx.

(3.60)

The final step of extending the integration bounds to ±∞ does not significantly affect the
value of the integral because it is assumed that |φ(x)| � 1 for |x| > L/2. The final integral
in (3.60) is just Φ(km), the continuous Fourier transform of φ(x) evaluated at k = km (see
Section 5.1.1). Since φ(x) = sin(kFx)p(x/D) the convolution theorem can be applied to
show that

Φ(k) = iπ (δ(k + kf )− δ(k − kF )) ? F{p(x/D)}
= iπD [P (−DkF )− P (DkF )] ,

(3.61)
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where P (k) is the Fourier transform of p(x). This shows that the Fourier coefficient fm
with km closest to kF is approximately proportional to D. Therefore, if two experiments
are conducted with forcing widths D1 and D2, the forcing amplitudes A1 and A2 must be
scaled so that

D1A1 = D2A2 (3.62)

in order to generate waves of the same amplitude. This scaling rule is important for
nonlinear simulations where the forcing width in Fourier space affects which nonlinear
interactions can occur. The rule is verified for nonlinear simulations in Chapter 4.
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Chapter 4

Numerical Simulations

In this chapter, numerical simulations of resonant triad interactions are presented. The
simulations described here were performed using the SPINS model (see Section 3.2.2).
There are two main objectives of these experiments. First, to observe fully nonlinear
resonant wave interactions, and second, to test the validity of the linear forcing theory.
Simulations involving laboratory scale parameters are presented in Section 4.1. A set of
simulations with ocean-like parameters are described in Section 4.2. Some of the interesting
features observed in the simulation data are explained in Section 4.3, and insights on the
applicability of linear theory are given.

All of the simulations presented in this chapter were performed on a Mac Pro with two
2.8 GHz Intel Xeon Quad-core processors, and a total of 4 GB of RAM. Experiments were
designed to illustrate interesting phenomena in relatively short run-time. Most experiments
were performed on a grid consisting of 4096 points in the horizontal and 256 points in the
vertical. The lab-scale experiments typically took less than 3 hours. The ocean-scale
simulations were usually completed in less than 6 hours, with the collision experiments
lasting roughly 18 hours.

4.1 Lab-Scale Simulations

In this section simulations involving lab-scale parameters are presented. The intention
is that, if so inclined, an experimentalist could repeat these experiments in a tank of
reasonable length using a stratification of fresh and salty water. For the experiments
conducted here, the tank is taken to be 20 cm deep, and 10, 20, or 40 meters long. These
values are feasible in light of existing lab equipment used by Martin et al. [49] or Troy and
Koseff [68].
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For the lab-scale experiments, the background density stratification:

ρ0(z) = ρ0 − ∆ρ

2
tanh

(
z − zp
Lp

)
(4.1)

is used. The reference density value is set to ρ0 = 1020 kg/m3, and the top-to-bottom
density jump is fixed at ∆ρ = 40 kg/m3. The vertical coordinate lies in the interval
0 ≤ z ≤ 0.2 m, and the pycnocline center is set at zp = 0.14 m. The width parameter
is taken to be Lp = 4.72 · 10−3 m so that 99% of the density jump occurs over a distance
of 2.5 cm. This stratification models a thin density interface separating well-mixed layers
of fresh and salty water, and is quite similar to the stratification used by Troy and Koseff
[68].

The lab-scale experimental parameters are summarized in Table 4.1. In Figure 4.1
the density profile and buoyancy frequency are plotted. The pycnocline is identifiable as
the transition zone in the density subplot and the region near the peak of N2(z) in the
buoyancy subplot. The maximum value of the buoyancy frequency is N(0.14) ≈ 6.38 s−1,
and at the boundaries N(0.2) ≈ 3.9 · 10−5 s−1, and N(0) ≈ 1.7 · 10−12 s−1.

Lab-scale Experimental Parameters
Parameter Value

H 0.2 m
ρ0,∆ρ 1020, 40 (kg/m3)
zp, Lp 0.14, 0.00472 (m)

maxN(z) 6.375 s−1

Nx, Nz 4096, 256
U 0.13916 m/s

Table 4.1: Simulation parameters for the lab-scale experiments. Tank lengths
are specified for each experiment. The number of horizontal and vertical grid
points is specified by Nx and Nz. The velocity U is used for the dimensional
analysis.

Preliminary calculations showed that a vast number of near-resonant interactions are
possible for the chosen stratification. To illustrate some of the important concepts, two
of these triads have been selected for demonstration purposes. To simplify the discussion
that follows, the waves in triads A and B are referred to by their index in the table where
they are defined. Triad A consists of two mode-1 waves interacting with a mode-2 wave, all
propagating in the same direction. Waves A2 and A3 have wavelengths of about 3− 4 cm,
which is comparable to the pycnocline width. Triad B also consists of two mode-1 waves
and a mode-2 wave, but the long mode-1 wave (B1) propagates in the opposite direction of
B2 and B3. The wavelengths of all three waves in triad B are significantly longer than the
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Figure 4.1: Background density (left subplot) and buoyancy frequency (right
subplot) for the lab-scale simulations. The pycnocline is centered at z = 0.14
m, and has a 99% density jump width of 2.5 cm.

pycnocline width, and the longest wavelength is about three times as long as the depth of
the fluid.

Important data for triad A is summarized in Table 4.2, and the data pertaining to triad
B is summarized in Table 4.3. Data for triads A and B is plotted along with the dispersion
relation in Figure 4.2. The differences in scales between the two triads is apparent in the
figure. From Figure 4.2 and the data tables, it is clear that the wavelengths and periods
could readily be generated in the laboratory.

Triad A
Wave Mode ω (s−1) T (s) k (m−1) λ (cm) v (cm/s) γ
A1 1 2.24 2.8 30.9 20.3 3.6 −2.92 · 103

A2 2 2.24 2.8 166.0 3.8 0.86 −1.17 · 102

A3 1 -4.42 1.42 -195.2 3.2 0.59 5.83 · 102

δω = 7 · 10−2 (s−1) δk = 1.7 (m−1)

Table 4.2: Physical data for triad A. From left-to-right, the columns are as
follows: wave name, vertical mode number, frequency, period, wavenumber,
wavelength, group velocity, interaction coefficient. Error in the frequency reso-
nance condition is given by δω, and error in the wavenumber resonance condition
is given by δk.

Experiments with triads A and B were conducted by forcing one or two of the waves in
the triad using the approach described in Section 3.5. In particular, the vertical momentum
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Triad B
Wave Mode ω (s−1) T (s) k (m−1) λ (cm) v (cm/s) γ
B1 1 1.05 6.0 9.47 66.4 9.0 126.3
B2 1 -1.63 3.85 17.48 36.0 −5.9 -124.3
B3 2 0.545 11.54 -28.22 22.3 −1.8 -39.2

δω = −4.2 · 10−2 (s−1) δk = −1.3 (m−1)

Table 4.3: Physical data for triad B. From left-to-right, the columns are as fol-
lows: wave name, vertical mode number, frequency, period, wavenumber, wave-
length, group velocity, interaction coefficient. Error in the frequency resonance
condition is given by δω, and error in the wavenumber resonance condition is
given by δk.
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Figure 4.2: The dispersion relation for lab-scale experiments. Waves from triad
A are marked with circles, waves from triad B are marked with squares.
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equation is forced with a function of the form

F2(x, z, t) = a0sech

(
x− x0

w0

)
cos(kx) cos(ωt)N2(z)φn(z; k). (4.2)

Here φn(z; k) is the dimensionless mode-n eigenfunction at wavenumber k, and ω = σn(k).
The forcing amplitude, center, and width measure are given by a0, x0, and w0, respec-
tively. To generate multiple waves simultaneously, a superposition of these forcing func-
tions is used, with forcing centers, amplitudes, and width regions defined as needed. Since
N2(z) has dimensions of s−2, the forcing amplitude a0 has units of meters for dimensional
consistency.

A range of experiments performed on triads A and B are now described. Some of the
experiments were conducted simply to test the usefulness of the bidirectional forcing theory
and width scaling rule. Other experiments give a detailed picture of how the resonant
interactions unfold.

4.1.1 Preliminary Tests

A large number of preliminary tests were conducted to study the basic dynamics of internal
waves. As an initial study, consider the problem of generating wave A1 and A2. It is prudent
to check the force scaling rule of Section 3.5.3, and it is worth verifying that density contour
diagrams, energy decompositions, and wave propagation speeds match expected results.
Tests L1 – L4 are used as simple benchmark tests for this purpose, and each test uses a
tank of length 20 m. The necessary parameters are found in Table 4.4.

Tests L1 – L3 consist of forcing wave A1 at different forcing amplitudes and widths,
chosen so that w0a0 remains constant. From the theory of Section 3.5.3, each test should
produce a wave train of the same amplitude and wavenumber. In Figure 4.3, the density
contours are plotted for test L1 at t = 60 s. With a group velocity of roughly 3.6 cm/s, the
wavefront is expected to have traveled slightly less than 2.2 m. This is in visual agreement
with the plot, when leading transients and the non-compact forcing shape are accounted
for. The plotted contours appear to be smooth, suggesting very little short-wave noise is
present. The peak-to-trough isopycnal displacements in the main body of the wave train
are about 1.1 cm. The magnitude of the maximum induced velocity in the flow is about 1.4
cm/s. As shown in the final column of Table 4.1), the ratio of maximum induced velocity
to phase speed of the underlying wave satisfies max(u)/c ≤ 0.23 for each of tests L1 – L3.
These relatively small steepness measures suggest the waves are within the linear regime.

As a test of the force scaling rule of Section 3.5.3, the pseudo-energy decomposition for
tests L1 – L3 is shown in Figure 4.4. The pseudo-energy depicted in the plot was found by
averaging over 20 data sets in the time interval 50.5 ≤ t ≤ 60 s. From the mode-1 energy
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Lab-scale Preliminary Experiments
Test Wave a0 (m) w0 (m) max(u)/c
L1 A1 0.5 0.1 0.20
L2 A1 0.25 0.2 0.19
L3 A1 1.0 0.05 0.23
L4 A2 0.01 0.1 0.24

Table 4.4: Data for the preliminary lab-scale experiments. Each experiment
involves forcing the single specified wave. The forcing amplitude and forcing
width are defined in the third and fourth column. For each of these tests a tank
length of 20 m was used, and 4096 horizontal and 256 vertical grid points were
used.
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Figure 4.3: Density contours for test L1 at t = 60 s. It is expected that the
waves reach a distance of v · t ≈ 2.16 m. The forcing function is not compact
in x and there are transients to consider, but the predicted result is consistent
with the plot. The peak-to-trough isopycnal displacements in the main body of
the wavetrain are about 1.1 cm.
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decomposition (top subplot), the peak for each test is seen to lie at the expected forced
wavenumber of k = 30.9 m−1. The amplitudes of the energy peaks at that wavenumber are
in agreement to several digits, supporting the result in Section 3.5.3. The expected result
that increasing the forcing width in physical space decreases the width of the spectrum
about the forced peak is also apparent.

In the mode-2 pseudo-energy decomposition (bottom subplot) certain features are com-
mon to all three tests. For each test, a large peak in the mode-2 spectrum lies near k = 62
m−1. This is double the forced wavenumber and hence this is likely the result of a self-
interaction of the forced mode-1 wave. For the lab-scale stratification σ2(61.8) ≈ 1.05 s−1

is far from the required value of 4.48 s−1 needed for resonance, so the self-interaction is
not resonant. The largest peak in the mode-2 spectrum for each of tests L1 – L3 lies at
k ≈ 0.31 m−1. A possible explanation for this is a form of resonant interaction that is
classified as the induced diffusion mechanism (see Müller et al. [51]). This mechanism
involves two waves of similar frequency and wavenumber interacting to produce a third
wave of much smaller frequency and wavenumber. Calculations revealed that resonant
interactions for waves near the forced mode-1 peak are possible. However, the different
forcing widths used in L1 – L3 ensure that if induced diffusion were responsible for the
buildup of low wavenumber mode-2 energy, then the peaks at k ≈ 0.31 m−1 would have
different amplitudes. In fact, these long-wave mode-2 peaks have the same amplitude to
several digits of agreement, thus ruling out induced diffusion interactions as the source. A
more likely cause for this energy peak is discussed in Section 4.3.

To further study the energy contributions, the kinetic and linear available potential
energy decompositions in mode-1 and mode-2 are plotted for test L1 in Figure 4.5. The
plotted signals are again averaged over 20 data sets spaced evenly in the interval 50.5 ≤
t ≤ 60 s. The magnitudes of the energy components are rather small, but this is expected
because the maximum induced speed in the fluid is roughly 1.4 cm/s, and the fast-moving
fluid only occupies a small portion of the domain. The kinetic and available potential
energy curves in the figure, marked by solid and dashed lines respectively, closely follow
each other in shape. In the mode-1 decomposition the two components of energy are almost
indistinguishable for moderate wavenumbers. A peak is clearly visible in both curves at
the expected wavenumber k = 30.9 m−1.

Test L4 is similar to test L1, except wave A2 (a mode-2 wave) is forced. The group
velocity of the forced wave is 0.86 cm/s, so after 60 seconds the wave is expected to have
traveled slightly more than 50 cm. This is visible in Figure 4.6, where the density contours
appear smooth and have the expected wavelength of 3.8 cm. The waves are clearly mode-2,
as troughs in the lower half of the pycnocline align with crests in the upper half. The waves
are very small in amplitude, with peak-to-trough isopycnal displacements of about 1 mm.
The aspect ratio of the plot should be emphasized: the wavelength of the forced wave is
actually less than twice the width of the pycnocline. Only a small wave is illustrated here,
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Figure 4.4: The mode-1 and mode-2 pseudo-energy decomposition for tests L1
– L3. Data is averaged over twenty data sets in the interval 50.5 ≤ t ≤ 60 s.
The solid line corresponds to a forcing width of 0.05 m (test L3), the dashed line
involves a forcing width of w = 0.1 m (test L1), and the dashed line corresponds
to a forcing width of w = 0.2 m (test L2). Note the narrower forcing width
creates a broader mode-1 spectrum, but all three tests have the same peak
amplitude at the expected wavenumber k = 30.9 m−1. There is also a buildup
of energy in the low-wavenumber range of mode-2 for each test. Wave A1 is
marked with the vertical dashed line.

81



0 20 40 60 80 100 120 140 160 180 200
10

−15

10
−10

10
−5

10
0

Test L1 Mode−1 KE And APE

k (m−1)

E
ne

rg
y 

(J
)

A
1

0 20 40 60 80 100 120 140 160 180 200
10

−15

10
−10

10
−5

10
0

Test L1 Mode−2 KE And APE

k (m−1)

E
ne

rg
y 

(J
)

Figure 4.5: The mode-1 and mode-2 kinetic energy (solid lines) and linear avail-
able potential energy (dashed lines) for test L1. Data is averaged over twenty
data sets in the interval 50.5 ≤ t ≤ 60 s. Only minor differences exist in the
mode-1 spectrum. More significant differences are visible in the mode-2 spec-
trum but the curves follow each other qualitatively. The vertical dashed line in
the top subplot indicates the location of wave A1.
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and a discussion of some of the difficulties involved in forcing larger-amplitude mode-2
waves is given in Section 4.3.
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Figure 4.6: Density contours for experiment L4. The expected mode-2 wave
appears to be a clean sinusoid, but is small, with peak-to-trough isopycnal dis-
placements of about 1 mm. The expected wavelength of 3.8 cm matches the
picture.

The mode-2 pseudo-energy decomposition for experiment L4 is shown in Figure 4.7.
The dominant peak lies at k ≈ 166 m−1, the expected forced wavenumber for A2. A
secondary peak is also visible at twice this value, due to a non-resonant self-interaction of
the forced wave, and there is a buildup of energy at low wavenumbers as well. Comparing
orders of magnitude, however, shows that the forced wave is by far the dominant signal in
the system.

4.1.2 Wave Collison Experiments

In this subsection experiments are presented for triad A and B to demonstrate how a
resonant interaction unfolds as wave trains pass through each other. The experiments are
facilitated by the differences in group velocities of the underlying waves, allowing collisions
to take place in reasonable computational time. For these experiments, two of the waves
in a triad were forced at different locations for specified time intervals. The forcing width
used for each wave is 0.1 m. The precise details are provided in Table 4.5. The second
from last column of the table indicates the start and stop time for the forcing of each wave.

Test L5. Experiment L5 involves a train of wave A1 (a mode-1 wave) passing through a
train of A2 (a mode-2 wave). To achieve this, a small packet of wave A2 is forced for 30
seconds and allowed to propagate away from the forcing region. After 50 seconds without
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Figure 4.7: The pseudo-energy decomposition for test L4, averaged over 50.5 ≤
t ≤ 60 s. The vertical dashed line marks the location of wave A2. The dominant
peak lies at the expected wavenumber k = 166.0 m−1, corresponding to wave
A2. A secondary peak near k = 332 m−1 is visible, as is an accumulation of
energy at low wavenumbers.

Lab-scale Collision Experiments
Test Waves a1, a2 (m) x1, x2 (m) [t1i, t1f ], [t2i, t2f ] (s) L (m)
L5 A1, A2 0.5, 0.01 0, 0 [80, 120], [0, 30] 10.0
L6 B1, B2 1.5, 0.5 2.5, -2.5 [0, 45], [0, 45] 40.0

Table 4.5: Data for lab-scale collision experiments. From left-to-right, the
columns specify: the name of the experiment, waves being forced, forcing am-
plitudes, forcing centers, time intervals of forcing, and tank length. For each
experiment 4096 horizontal and 256 vertical grid points were used. Forcing
widths of w0 = 0.1 m were used for each wave.
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any forcing, wave A1 is forced at moderate amplitude for 40 seconds. Forcing is switched
off at t = 120 seconds, and the A1 waves passes through the A2 waves.
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Figure 4.8: Evolution of isopycnals for experiment L5. In panel (a), at t = 80 s,
a small-amplitude mode-2 wave train of A2 lies between x = 0.4 m and x = 0.75
m. In panel (b), at t = 120 s, the forced mode-1 wave A1 is passing through A2.
In panel (c), t = 160 s and wave A1 has almost passed through A2, but minor
distortions are visible. In panel (d), at t = 200 s, wave A1 has passed through
A2 and a coherent wake is apparent.

In Figure 4.8, the density contours are plotted for L5 at four different times. In panel
(a), contours are shown at t = 80 s, immediately before wave A1 is forced. Wave A2 is
small, with peak-to-trough isopycnal displacements of about 1 mm, and its trailing edge
has travelled about 43 cm. The forcing width is 0.1 m, so wave A2 lies outside of the
forcing region. For 80 ≤ t ≤ 120 s, wave A1 is forced, and in panel (b) the density contours
are shown at t = 120 s. The peak-to-trough isopycnal displacements of A1 are about 1.1
cm. In panel (c), the contours are shown at t = 160 s. Minor distortions are visible in the
contours, but the presence of A2 is mostly hidden. Finally, density contours at t = 200 s
are shown in panel (d). Wave A1 has passed through A2, and clearly visible in the noisy
wake is a regular mode-1 signal of short wavelength.

A magnified view of the contours at t = 200 s is shown in Figure 4.9. The waves
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visible in the figure are mostly of mode-1 vertical structure and appear to have a regular
wavelength of slightly more than 3 cm. This matches the expected wavelength of wave A3.
The peak-to-trough isopycnal displacements of this regular mode-1 wave are greater than
2 mm.
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Figure 4.9: A magnified view of the resonantly generated wave train for test L5.
Towards the right side of the contour plot a very regular mode-1 wave is visible,
with the expected wavelength of about 3.2 cm, indicating it is in fact wave A3.

An energy decomposition for test L5 is plotted in Figure 4.10. In the top subplot the
dominant peak lies at k = 30.9 m−1, and corresponds to wave A1. The second largest
peak in the mode-1 spectrum corresponds to wave A3 and lies at k ≈ 195 m−1. It is the
result of the near-resonant interaction. In the bottom subplot of Figure 4.10 the mode-2
energy decomposition is shown. A peak near k ≈ 166 m−1 indicates the presence of wave
A2, but there is more energy in the peaks near k = 62 m−1 and k ≈ 0.3 m−1. The peak
near k = 62 m−1 was observed in tests L1 – L3 and is likely due to the self-interaction of
forced wave A1. The shift to long wave energy is an important effect that occurs in many
of the experiments presented here. Possible mechanisms explaining the shift are discussed
in Section 4.3.

As a final illustration of the resonant interaction occurring in L5, consider the Hovmöller
diagrams shown in Figure 4.11. To construct each diagram, the density field is sampled
at a fixed z value at each time step. The amplitudes of the density are then plotted as
a contour diagram with time running on the vertical axis. A different shading scheme is
used in each plot to emphasize the desired features. This style of plot cleanly visualizes
the propagation of wave crests and wave packets. In the left subplot, the weakly forced
wave A2 is visible as a beam emanating from the origin. The forcing of the large amplitude
wave A1 for 80 ≤ t ≤ 120 seconds is also visible. The two beams intersect and the resonant
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Figure 4.10: The pseudo-energy decomposition for test L5 averaged over 190.5 ≤
t ≤ 200 seconds. Vertical dashed lines mark the locations of A1, A2, and A3.
In the mode-1 decomposition the dominant peaks lie near k = 30.9 m−1and
k = 195 m−1, corresponding to waves A1 and A3. Another large peak near
k = 90 m−1 is visible, though it is unaccounted for. In the bottom subplot the
mode-2 decomposition is shown. Wave A2 has a moderate, broad energy peak
but there is actually more energy in long waves near k ≈ 0.3 m−1.
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interaction occurs. In the right subplot a magnified view near the end of simulation time is
shown. Clearly leaving the main A1 packet is a new packet of A3. The slopes of the stripes
in the wavepackets indicate phase speeds, and the group velocities can be estimated by the
position of the packet as a whole at different times.

Figure 4.11: Hovmöller diagrams for test L5. Wave A2 is visible as the weak
beam stemming from the origin in the left subplot. Wave A1 is the large beam
visible in both plots, originating in the interval 80 ≤ t ≤ 120 on the vertical axis.
In the right subplot a magnified view shows that a small packet of waves has
separated from the wave A1, this is the expected wave A3. A different shading
scheme is used in the two subplots to emphasize the presence of the waves.

Test L6. In experiment L6 waves B1 and B2 are forced simultaneously for 45 seconds at
a distance of 5 meters apart. The forcing is then shut off, and the mode-1 wave trains pass
through each other. Both waves are generated with a forcing width of w0 = 0.1 m. An
important difference between test L5 and L6 is that test L6 involves waves propagating in
opposite directions, so the interaction occurs over a shorter time period. Another important
difference between L5 and L6 is that the waves involved in L6 (from triad B) are much
longer than those used in L5 (from triad A). The expected result for L6 is that B1 and B2

will interact to produce B3, a rightward-propagating mode-2 wave.

Density contours for experiment L6 are plotted at four different times in Figure 4.12.
In panel (a), at t = 20 s, the forcing of waves B1 and B2, centered at x = 2.5 m and
x = −2.5 m respectively, is visible. The wavefronts are still more than 1 meter apart. The
wave source is switched off at t = 45.0 s for both waves. In panel (b), at t = 60 s, the wave
packets have left the forcing sites and are overlapping near x = 0. In panel (c), t = 120
s, and the two wave trains have almost fully separated, but it appears a wave field has
been excited between them. Panel (d) depicts the contours at t = 180 s. There, wave B1

has fully passed through B2 and a wake involving regular structure is visible. The excited
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Figure 4.12: Isopycnals for the collision experiment L6 at four different times.
In panel (a), t = 20.0 s, and mode-1 waves B1 and B2 are visible, centered
at x = +2.5 m and x = −2.5 m, respectively. The forcing is switched off at
t = 45.0 s, and the waves are allowed to pass through each other. In panel (b),
at t = 60.0 s, the waves are seen to overlap. In panel (c), at t = 120.0 s, the wave
trains have almost passed through each other. Panel (d) shows the isopycnals
at t = 180 s, and the wave trains have separated. A coherent packet of mode-2
waves is visible.

waves lying approximately in the interval 0 ≤ x ≤ 3 m appear to be primarily mode-2.
Comparing the subplots for t = 120 s and t = 180 s, it appears that the excited waves are
moving rightward. This is confimed when the evolution of density contours is viewed as an
animation. The group velocity of the excited waves must be less than that of B2 because
they have been left behind.

A magnified view of the resonantly generated waves is provided in Figure 4.13. From
the figure, the excited waves are mostly of mode-2 structure, with a wavelength of about
22 cm towards the right edge of the plot. This is the expected wavelength for B3. Closer
inspection reveals a small component of short mode-1 waves towards the left side of the
plot. In addition, the mode-2 waves at the left edge of the wave train appear to be smaller
in amplitude and have a wavelength of roughly 30 cm. Under linear theory these longer
waves should travel faster than the B3 waves to their right. However, the waves are clearly
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Figure 4.13: A magnified view of the resonantly generated waves in experiment
L6. The wave field is mostly of mode-2 structure, but not sinusoidal. Troughs
are significantly broadened, and crests are steep. The wavelength of the mode-2
waves near the right side of the plot is about 22 cm, but towards the left side
it is closer to 30 cm. A small-amplitude short mode-1 wave is visible in the left
side of the wave train. The pycnocline appears to be compressed by the mode-2
waves.

not sinusoidal in shape and may be closer in structure to solitary waves. For solitary waves,
it is expected that larger amplitude waves travel faster, which would explain the relative
locations of the two groups of mode-2 waves in the figure. The complicated horizontal
structure of these waves is problematic because the energy decompositions that are used,
as well as the underlying interaction theory, are based on the assumption of sinusoidal
shape. The shape of these mode-2 waves and the impact on the energy decomposition are
investigated in more detail in Section 4.3.

A Hovmöller diagram for test L6 is shown in Figure 4.14. The B1 and B2 wave trains
are visible as beams originating from x = ±2.5 m. The forcing functions generate waves in
both directions, as is visible in the plot. The forced waves intersect near x = 0, and from
the intersection region a third beam is visible, extending upwards and to the right. The
third beam is traveling in the positive x direction, and has a slower speed than the two
forced waves. This resonantly generated beam corresponds to wave B3 and other smaller
excited waves.

The pseudo-energy decomposition for test L6 is depicted in Figure 4.15. The energy
decomposition is plotted for t = 200 s after averaging over ten data sets in the interval
191 ≤ t ≤ 200 s. The two dominant peaks in the mode-1 spectrum, near k = 9.5 m−1

and k = 17.5 m−1, correspond to the forced waves B1 and B2, respectively. In the mode-
2 spectrum, the dominant peak is expected to be due to wave B3 and should lie near
k = 28.2 m−1. A peak does lie near k = 27 m−1, but is actually the third largest peak in
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Figure 4.14: A Hovmöller diagram for test L6. The forced mode-1 waves are
generated at sites centered at x = ±2.5 m. The waves collide near x = 0 and
pass through each other. A third beam is visible emanating from the interaction
site, and travels more slowly than wave B1 or B2. It corresponds to wave B3

and the other excited waves.
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Figure 4.15: The pseudo-energy decomposition for test L6 averaged over 191 ≤
t ≤ 200 s. In the top subplot the mode-1 decomposition demonstrates the two
peaks at the forced wavenumbers k = 9.47 m−1 (wave B1) and k = 17.47 m−1

(wave B2). In the bottom subplot the mode-2 decomposition shows peaks near
k ≈ 28 m−1 and k ≈ 19.3 m−1, but the strongest energy signal lies in long
mode-2 waves near k ≈ 0.63 m−1.
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the mode-2 spectrum. The largest mode-2 peak is found near k = 0.628 m−1, and another
peak at k = 19.1 m−1 also exceeds the energy content of wave B3. Forcing experiments
involving just wave B1 also produced a peak near k = 19.1 m−1, and as it is nearly twice
the wavenumber of wave B1 it is likely due to a self-interaction. The peak at k = 19.1 m−1

corresponds to a wave with wavelength 32.9 cm. This is the wave that was identified in
the left edge of the magnified view of Figure 4.13, but its source is unaccounted for. It is
interesting that the mode-2 peak that should lie at k = 28.2 m−1(corresponding to wave
B3) lies closer to k = 27 m−1. This could be a result of a slightly different triad interaction
occuring, or an artifact of the non-sinusoidal nature of the underlying wave.
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Figure 4.16: The evolution of the amplitude of energy in waves B1 – B3 as the
forcing amplitude a2 of wave B2 is varied. The forcing amplitude of wave B1 is
held fixed at a1 = 1.5 m. Energy data is averaged over twenty data sets in the
interval 181 ≤ t ≤ 200 s.

Experiment L6 was repeated with different forcing amplitudes a2 for wave B2, while
the forcing amplitude a1 = 1.5 m for B1 was held fixed. The energy content for each of
waves B1 – B3 is shown in Figure 4.16. The energy was computed by averaging data over
the interval 181 ≤ t ≤ 200 s. As seen in the plot, the energy of wave B1 remains relatively
unchanged as a2 varies. Wave B2 grows with the forcing amplitude a2 as expected, and
wave B3 grows in a very similar fashion, but the energy level is lower.

Experiments L5 and L6 demonstrate that resonant interactions can occur for waves
travelling in the same direction, or in opposite directions. Both experiments were successful
in generating the expected third wave in the triad. However, the wave field generated by
the interactions is much more complicated than the weakly-nonlinear theory predicts. Not
only are unexpected waves present in the wake of interactions, the expected waves do not
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have a clean sinusoidal shape. The presence of unexpected waves could be the result of
interactions taking place that were not considered in the a priori calculations, or could
involve higher-order interactions. The finite-amplitude effects observed for the small wave
amplitudes is a problem that limits the applicability of the weakly-nonlinear resonant
interaction theory. Confidence in the energy decomposition, which uses sinusoidal basis
functions, is also diminished by the finite-amplitude effects.

4.2 Deep Ocean Simulations

In this section numerical experiments involving deep ocean-like parameters are presented.
Two different models of the oceanic stratification are used. The first is a simple model
analogous to the one used for lab-scale experiments. The second model is similar, but
the pycnocline lies slightly deeper and the bottom layer of fluid is uniformly (but weakly)
stratified.

In many of the tests conducted here a wave of M2 tidal frequency is used (see Mellor
[52]). The M2 tidal frequency is ω2 = 1.4075 ·10−4 s−1, and corresponds to a period of 12.4
hours. The generation of internal waves through interactions of barotropic tidal flow with
topography is an important source of internal waves (see Garrett and Kunze [27]), which
motivates this choice.

4.2.1 A Continuous Two-Layer Model

Now consider the background density profile defined by

ρ0(z) = ρ0 − ∆ρ

2
tanh

(
z − zp
Lp

)
, (4.3)

with ρ0 = 1025 kg/m3, and density jump ∆ρ = 10 kg/m3. This models seawater with a
moderate density variation across its depth. The fluid depth is taken to be H = 2 km,
and the pycnocline is centered 200 meters below the surface, at zp = 1800 m. The density
width parameter Lp ≈ 56.7 m is chosen so that the 99% density jump occurs across a
distance of 300 m in the interval 1650 ≤ z ≤ 1950 m. The peak buoyancy frequency is
0.0289 s−1, corresponding to a period of roughly 216.7 seconds.

Simulations involving this stratification were performed on domains with lengths of 2000
– 4000 km. The parameters for these ocean simulations are summarized in Table 4.6. The
density profile and buoyancy frequency are plotted in Figure 4.17. Simulations performed
using this stratification are assigned names with the prefix “DC”, an abbreviation for“Deep
Ocean Continuous Two-Layer Model”.
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DC Experimental Parameters
Parameter Value

H 2 km
ρ0,∆ρ 1025, 10 kg/m3

zp, Lp 1800, 56.7 m
maxN(z) 0.0289 s−1

Nx, Nz 4096, 256
U 6.91 m/s

Table 4.6: Simulation parameters for the continuous two-layer ocean experi-
ments.
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Figure 4.17: Background density (left subplot) and buoyancy frequency (right
subplot) for the DC simulations. The center of the pycnocline lies at zp = 1800
meters, and has a 99% density jump width of 300 meters.

As discussed above, M2 tidal frequency waves play a fundamental role in the ocean
scale simulations presented here. For the DC stratification, the mode-1 M2 tidal wave has
a wavelength of approximately 172.1 km. Only triads involving this wave were sought.
Another constraint on the triads under consideration was that the second and third waves
must be of a similar scale to the M2 wave. While it may be possible for the M2 tidal
wave to interact with waves of significantly different scales, such interactions are difficult
to simulate. Even with these constraints, a large number of candidates were found, and
one was chosen for demonstration purposes here.

A triad involving waves of roughly the same scale as the M2 wave, and with relatively
strong interaction coefficients, is presented in Table 4.7. The triad is referred to as triad
C, and involves an interaction between a mode-1, 2, and 3 wave. Waves C1 and C2 are
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Triad C
Wave Mode ω (s−1) T (hr) k (m−1) λ (km) v (m/s) γ
C1 1 1.4 · 10−4 12.4 3.65 · 10−5 172.1 3.86 −0.015
C2 2 −1.07 · 10−4 16.3 −1.06 · 10−4 59.5 1.01 0.0027
C3 3 −3.9 · 10−5 44.3 6.43 · 10−5 97.6 0.61 −0.0012

δω = −5.6 · 10−6 (s−1) δk = −4.8 · 10−6 (m−1)

Table 4.7: Parameters for triad C, investigated for the DC experiments. From
left-to-right, the columns are as follows: wave name, vertical mode number, fre-
quency, period, wavenumber, wavelength, group velocity, interaction coefficient.

rightward-propagating, and C3 is leftward-propagating. The triad, along with the first
three modes of the dispersion relation for the DC model, is plotted in Figure 4.18. All
three waves in triad C are long relative to the fluid depth and pycnocline width, and in
this regime the dispersion curves are almost linear.
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Figure 4.18: The dispersion relation for the DC experiments. The absolute
values of the k and ω values for the waves in triad C are marked with circles.
The dispersion relation is almost linear in this regime.

Monochromatic Forcing Experiments

It turns out that the simple problem of forcing a single wave from triad C yields interesting
results, so monochromatic forcing experiments are considered before an attempt is made
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at producing a resonant interaction. In addition to using bidirectional forcing shapes like
that described by equation (4.2), unidirectional forcing is also tested here. Unidirectional
forcing is achieved by forcing the vertical momentum equation using the technique proposed
in Section 3.5. In particular, the forcing shape is taken to be

F2(x, z, t) = ansech

(
x− xn
wn

)
cos(kx− ωt)N2(z)φn(z; k). (4.4)

The simple experiments conducted on the DC model are described in Table 4.8. Experi-
ments involving unidirectional forcing are marked explicitly in the table with a superscript
right-arrow, such as DC3→.

DC Monochromatic Forcing Experiments
Test Wave a0 (m) x0 (km) w0 (km) L (km) max(u)/c
DC1 C1 2.0 0.0 30.0 4000.0 0.019
DC2 C1 5.0 0.0 30.0 4000 0.099

DC3→ C1 1.0 -1000 30.0 3000 0.026
DC4→ C2 0.2 -1000 30.0 3000 0.12

Table 4.8: Monochromatic forcing experiments with the DC model. The domain
length L, forcing width w0, and forcing center x0 are specified in km. The final
column, max(u)/c, gives the ratio of the maximum magnitude of the velocity
to the phase speed of the underlying wave, and is a measure of wave steepness.
The maximum velocity is computed over the duration of the experiment.

In tests DC1 – DC3→, wave C1 (the M2 wave) is forced at various amplitudes on a
domain of two different lengths. The forcing amplitudes were chosen so that the resulting
wave amplitudes would be small relative to the fluid depth, pycnocline width, and wave-
length. In experiment DC4 wave C2 was forced so that the behaviour of a mode-2 wave
can be studied. The ratio of the maximum induced velocity to the phase speed of the un-
derlying forced wave, denoted by max(u)/c, is given in the rightmost column of Table 4.8.
In each experiment this dimensionless steepness parameter is significantly smaller than the
equivalent parameter for the waves in the lab-scale experiments.

Density contours for DC1 and DC2 are displayed in Figure 4.19 at t = 62.2 hours
(slightly more than five forcing periods). Test DC2 is identical to DC1 except that the
forcing amplitude is 2.5 times larger. In the left subplot a regular wave train is visible,
but the waves have clearly steepened, particularly towards the wavefront (right edge). The
troughs in the M2 wave outpace the crests and the waves steepen from behind. This is
even more pronounced in the right subplot, which illustrates the density contours for DC2
at the same time. In addition to steepening, a series of oscillations has developed on the
back sides of the waves near the leading edge. When viewed as an animation, the waves
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appear to steepen from behind until they are almost vertical, then small oscillations grow.
These oscillations actually significantly alter the peak-to-trough isopycnal displacements.
For comparison purposes, the peak-to-trough isopycnal displacements are about 8 m for
DC1 and roughly 18 m for DC2 away from the oscillations. In steep oscillatory regions,
the peak-to-trough isopycnal displacements are about 23 m for DC2. In Figure 4.20 a
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Figure 4.19: Isopycnal contour diagrams for DC1 and DC2 after 62.2 hours.
Steepening is visible in both plots. The horizontal plot length is 1000 km, the
vertical plot length is 180 m.

magnified view of a single isopycnal at t = 62.2 hours is plotted for DC2. The shape
bears striking resemblance to the undular bores studied by Lamb and Yan [42], and is
discussed further in Section 4.3. The oscillations in the right portion of Figure 4.20 have
had one extra M2 period to develop and, as a result, are larger and there are more of them.
Further investigation reveals the wavelength of the oscillations to be about 7 km. These
experiments indicate that there will be a difficulty studying resonant wave interactions
involving the mode-1 M2 tidal wave in the DC stratification. Even at modest amplitudes
and wave steepness (for DC2 max(u)/c ≈ 0.099), the M2 wave of interest loses its sinusoidal
shape within just a few periods (about 2.5 days).

An energy decomposition for DC2 is shown in Figure 4.21. The peak at the forced
wavenumber kM2 = 3.65 · 10−5 m−1 is dominant, but a regular set of peaks at higher
harmonics is also evident. The undular bores visible in Figure 4.20 have a wavelength of
about 7 km, corresponding to a wavenumber of k ≈ 9 · 10−4 m−1. No distinct peak is
evident at that location but there is a broad rise of the spectrum in that region.

Experiment DC3→, like DC1 and DC2, involves forcing the M2 tidal wave, but unidi-
rectional forcing is tested. The resulting density contour plot at t = 111.1 hours is shown
in Figure 4.22. The forcing center for DC3→ is at x0 = −1000 km, and there does not
appear to be any significant wave motion to the left of that point. The peak-to-trough
isopycnal displacements in this experiment are about 6-7 meters, which is very small in
comparison with the wavelength and pycnocline width. Even so, the M2 waves have visibly
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DC2 Isopycnal at t=62.22 hr
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Figure 4.20: Wave steepening in experiment DC2. The troughs move faster
than the crests so the waves steepen from behind. Eventually the backs of the
waves become so steep that undular bores form. The oscillations visible in this
figure are well-resolved, there are about 7 points per wavelength.
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Figure 4.21: The mode-1 pseudo-energy decomposition for DC2. The expected
peak lies at k = 3.6 · 10−5 m−1, corresponding to wave C1. Data is averaged
over 8 data sets in the interval 54.4 ≤ t ≤ 62.2 hr. Wave C1 is marked with a
vertical dashed line.
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steepened towards the leading edge, and some small undular bores appear to be growing.
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Figure 4.22: Isopycnal displacements for test DC3→ after 111 hours. Unidirec-
tional forcing is used and only a small amount of leftward-propagating waves
are created. Peak-to-trough isopycnal displacements are about 6-7 meters, but
even for these small waves steepening is noticeable. Small undular bores are
forming in the troughs near the wavefront.

As a further illustration of the propagation characteristics of the M2 wave, consider Fig-
ure 4.23. Hovmöller diagrams are shown for tests DC2 and DC3→. The unidirectional na-
ture of the forcing is evident in the right subplot, where only a trace of leftward-propagating
waves are visible. In the left subplot the lines of constant phase extend from the forcing
center in both directions. For both subplots, these lines of constant phase are visually
parallel to the propagation of the wave beam as a whole. This is because in the long-wave
limit the phase speed tends to the group velocity. As shown in Section 2.3, the phase speed
is an upper bound for the group velocity, so it can be expected that the lines of constant
phase for shorter waves will be rotated clockwise from the direction of propagation of the
beam as a whole. The short wavelength undular bores seen in the contour plots for DC2
are not visible in the Hovmöller diagram.

Test DC4→ involves small amplitude, unidirectional forcing of wave C2 (a mode-2 wave).
A plot of density contours for DC4→ is shown in Figure 4.24. The isopycnal displacements
for the mode-2 waves are very small, about 4 meters in peak-to-trough amplitude. Towards
the right edge of the figure oscillations are visible in the waves. These are similar to those
observed for test DC2, however they have a shorter wavelength of about 2.7 km. With the
parameters used for this experiment there are about 4 grid points per wavelength in the
oscillations, so they are not well-resolved. Mode-2 wave steepening effects related to test
DC4→ are discussed in more detail in Section 4.3.
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Figure 4.23: Hovmöller diagrams for tests DC2 and DC3→. Test DC3→ involves
unidirectional forcing so only rightward propagating waves are visible. The
stripes indicate lines of constant phase. The undular bores seen in Figure 4.20
are not visible here.

A Collision Experiment

In experiment DC5 an attempt is made to resonantly generate wave C3 by allowing a packet
of wave C1 to pass through a packet of wave C2. Waves C1 and C2 are forced simultaneously
at the same location for 0 ≤ t ≤ 83.2 hours. The forcing is then switched off so that any
resonantly generated waves are more visible. Waves C1 and C2 are rightward-propagating,
and are expected to produce a leftward-propagating C3 wave. The basic data for the
experiment is given in Table 4.9.

Interaction Experiment DC5
Test Waves a1, a2 (m) x0 (km) w0 (km) L (km) Forcing Interval
DC5 C1, C2 1.5, 0.3 -666.7 30.0 2000.0 0 ≤ t ≤ 83.2 hr

Table 4.9: Interaction experiment DC5. Waves C1 and C2 are forced at the
same location, and for the same time interval. The domain length L, forcing
center x0, and width measure w0 are given in kilometers.

Density contour diagrams are shown for DC5 at t = 13.9 and t = 111.1 hours in Figure
4.25. In the left subplot the contours are depicted after slightly more than one M2 tidal
period. Wave C2 is only visible as a minor distortion in the body of wave C1. In the right
subplot, contours are shown at t = 111.1 hours. Wave C1 has fully passed through C2, and
both exhibit strongly nonlinear characteristics. There is no obvious presence of wave C3

visible.
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Figure 4.24: Isopycnal displacements for test DC4→ after 111 hours. Unidirec-
tional forcing is used and only a small amount of leftward-propagating waves are
created. Peak-to-trough isopycnal displacements are about 4-5 meters. Steep-
ening and oscillations are noticeable near the right edge of the mode-2 wave
train.

Figure 4.26 depicts the modes 1 – 3 pseudo-energy decompositions for test DC5. In the
top subplot, mode-1 is shown, and the dominant peak lies at 3.6 · 10−5 m−1, corresponding
to wave C1. There are many other peaks, however, and these are the signature of the
nonlinear wave shape. The mode-2 spectrum (middle subplot) has its dominant peak near
k = 1 · 10−4 m−1, corresponding to wave C2, but many other peaks are visible due to
the nonlinear nature of the waves. In the bottom subplot, there is a broad mode-3 peak
centered at k = 6.2 ·10−5 m−1 (wave C3 has a wavenumber of k = 6.4 ·10−5 m−1). However,
this wave signal is not visible in the associated contour diagrams.

Figure 4.27 shows a Hovmöller diagram for DC5 in the left subplot. The domain is
short enough that waves have passed through the right edge by the final plot time. In the
right subplot a magnified view of the mode-1 waves that have passed through the boundary
is shown. At this point the undular bores are so well developed that they are clearly visible
in the plot. They appear as small striations in the major lines of constant phase.

While this experiment shows that an energy signal is present for the resonantly gener-
ated wave C3, the wave is not visible in contour diagrams. Its energy is several orders of
magnitude smaller than either wave C1 or C2. The nonlinear developments in the waves
C1 and C2 appear to influence the progress of the interaction.
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Figure 4.25: Density contours for test DC5 at t = 11 hours and t = 111 hours.
Waves C1 and C2 are forced at the same location but separate due to the dif-
ference in group velocity.

4.2.2 A More Realistic Stratification Model

The oceanic stratification considered in the previous subsection uses a hyperbolic tangent
density profile as a model of a continuous two-layer fluid. Each layer is nearly homogeneous,
as the buoyancy frequency values decay exponentially away from the pycnocline. As a first
approximation this model is acceptable, but some simple modifications can make it a more
accurate representation of the oceanic stratification. The main flaw in the DC model is
that it represents the deep ocean as a nearly homogeneous fluid. In reality, the buoyancy
frequency in the deep ocean is about N(z) ≈ 10−3 s−1 (see Kundu and Cohen [37] or
LeBlond and Mysak [43]).

This motivates the study of a slightly different stratification. The background density
profile ρ0 + ρ̄(z) is used with ρ0 = 1027.5 kg/m3 and:

ρ̄(z) =

−
∆ρ
2

tanh
(
z∗−zp
Lp

)
− ρ0

g
10−6(z − z∗) for z ≤ z∗,

−∆ρ
2

tanh
(
z−zp
Lp

)
for z∗ ≤ z ≤ H.

(4.5)

The corresponding buoyancy frequency N(z) satisfies

N2(z) =

{
10−6 for z ≤ z∗,
g
ρ0

∆ρ
2Lp

sech2
(
z−zp
Lp

)
for z∗ ≤ z ≤ H.

(4.6)

The ocean depth H = 2 km is used again, the pycnocline is centered at zp = 1700 m (100
meters deeper than in the previous model), and the same pycnocline width measure of
Lp = 56.7 m is used. The parameter z∗ ≈ 1489.5 m is chosen so that N2(z) is continuous
at z∗. A more modest density jump, measured roughly by ∆ρ = 5 kg/m3, is used. The
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Figure 4.26: Pseudo-energy decomposition for DC5. The mode-1 peak (top
subplot) lies near k = 2.4 ·10−5 m−1, corresponding to wave C1, but many other
peaks are present due to the non-sinusoidal shape of the wave. In the middle
subplot, the mode-2 energy peak lies near k = 10−4 m−1, corresponding to wave
C2. In the bottom subplot, the dominant mode-3 peak lies near k = 6.2 · 10−5

m−1, corresponding to wave C3. The vertical dashed lines mark the k values
corresponding to waves C1, C2, and C3.
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Figure 4.27: Hovmöller diagrams for test DC5. The simulation is run long
enough that waves pass through the boundary. In the right subplot, a magnified
view is shown, and the undular bores visible in the density contour diagram
appear as striations in the lines of constant phase.

addition of a linearly varying term alters the top-to-bottom density change. With the
parameters used here, the background density varies from 1025 kg/m3 to 1030.15 kg/m3,
with 96% of the density jump occurring in the interval 1550 ≤ z ≤ 1850 m. In Figure
4.28 the density profile and buoyancy frequency are plotted. The center of the pycnocline
is seen to lie at z = 1700 meters, and the uniform stratification below z = 1490 m is
apparent. Experiments using this stratification are prefixed by “DR”, an abbreviation for
“Deep Ocean Realistic Stratification”.

Using the methods described in Section 3.1, a large number of candidate resonant triads
were found. The list of possible candidates was reduced by using the same constraints as
for the DC model. Table 4.10 provides the data for triad D, a triad that is investigated
here. In triad D, the mode-1 M2 wave (D1) has a wavelength of roughly 147.4 km, about
25 km shorter than the wavelength of wave C1. Unlike triad C, triad D consists of two
mode-1 waves and a mode-2 wave. Waves D1 and D2 are rightward-propagating, and wave
D3 is leftward propagating. The first two modes of the dispersion relation for the DR
stratification are plotted in Figure 4.29. Waves D1 – D3 are marked on the figure. Like
triad C investigated above, the waves in triad D are very long relative to the pycnocline
width and fluid depth.

Experiments with triad D cannot be directly compared against experiments with triad
C because the underlying waves are of different mode numbers and wavelengths. However,
if triad C had been chosen as a triad consisting only of mode-1 and 2 waves, it is likely the
results would not have changed significantly. As described below, the steepening effects
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Figure 4.28: Background density (left subplot) and buoyancy frequency (right
subplot) for the more realistic ocean scale simulations. The center of the pycno-
cline lies at z = 1700 m, and 96% of the density jump occurs across the interval
1550 ≤ z ≤ 1850 m.

Triad D
Wave Mode ω (s−1) T (hr) k (m−1) λ (km) v (m/s) γ
D1 1 1.4 · 10−4 12.4 4.3 · 10−5 147.4 3.3 −7.2 · 10−4

D2 2 −5.2 · 10−5 33.5 −7.0 · 10−5 90.33 0.75 1.9 · 10−4

D3 1 −8.7 · 10−5 20.0 2.6 · 10−5 237.8 3.3 −3.2 · 10−3

δω = 1.4 · 10−6 (s−1) δk = 5.1 · 10−10 (m−1)

Table 4.10: Parameters for triad D, investigated for the DR experiments. From
left-to-right, the columns are as follows: wave name, vertical mode number, fre-
quency, period, wavenumber, wavelength, group velocity, interaction coefficient.

that plagued the DC experiments are due to the length of the waves and the proximity
of the pycnocline to the surface. Therefore, experiments involving the M2 tidal wave but
different modes would have given similar results.

Monochromatic Forcing Experiments

Two monochromatic forcing experiments are included here. These are important because
they give some insight into the basic evolution of the underlying waves in triad D. The
experimental parameters are summarized in Table 4.11. Test DR1→ is used to demonstrate
the evolution of wave D1, and DR2→ is used to study the evolution of wave D2. Test
DR2→ has four times the horizontal resolution of DR1→, and, due to the smaller time
steps required, took about 2.5 days to complete.
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Figure 4.29: The dispersion relation for DR experiments. The waves in triad
D are marked with circles (absolute values of wavenumbers and frequencies are
plotted).

DR Monochromatic Forcing Experiments
Test Wave a0 (m) x0 (km) w0 (km) L (km) max(u)/c

DR1→ D1 0.25 -500 30.0 2000 0.048
DR2→ D2 0.1 -150 30.0 500 0.43

Table 4.11: Monochromatic forcing experiments for triad D with the DR model.
The final column, max(u)/c, gives the ratio of the maximum magnitude of the
velocity to the phase speed of the underlying wave, and is a measure of wave
steepness. Both experiments use 4096 horizontal grid points and 256 vertical
grid points.
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Figure 4.30: Density contour diagrams for tests DR1→ and DR2→. Wave steep-
ening is visible within just a few wavelengths of the forcing center for wave D1

in the left subplot. Small undular bores are visible in the waves to the right.
In the right subplot, steepening of the mode-2 wave D2 is visible within just
one wavelength, and large undular bores are visible in the right portion of the
figure.

In Figure 4.30, density contour diagrams are shown for tests DR1→ and DR2→ at
t = 111 hours. The peak-to-trough isopycnal displacements for the mode-1 wave D1 in test
DR1→ are about 11 meters (away from the undular bores). Near the leading edge of the
wave train small undular bores are forming on the steepened waves. The undular bores
have a wavelength of about 11 km and are well-resolved. In test DR2→ the mode-2 wave
D2 was forced, and the resulting isopycnal contours are displayed in the right subplot of
Figure 4.30. Away from the short-wavelength oscillations, the peak-to-trough isopycnal
displacements for wave D2 are about 8 – 9 meters. In the oscillatory regions the peak-to-
trough isopycnal displacements are about 20 m. The wavelength of these undular bores
varies from about 1.6 km to 2.6 km, and they have mode-2 vertical structure.

In the rightmost column of Table 4.11, the wave steepness parameter max(u)/c is
given. For test DR1→ this value is very small. However, for test DR2→ the steepness
measure is about 0.43. This relatively large value is due to the short wavelength oscillations.
Away from these undular bores, max(u)/c is about 0.12. Further discussion of the wave
steepening process for tests DR1→ and DR2→ is given in Section 4.3 below.

A Collision Experiment

Like test DC5, experiment DR3 is an attempt to observe a resonant wave interaction. The
important parameters for the experiment are listed in Table 4.12. The forcing amplitudes
were chosen to avoid the formation of undular bores in wave D2.

Density contours for DR3 are plotted at t = 33.3 hours (left subplot) and t = 166.7
hours (right subplot) in Figure 4.31. The steepening effects are visible in the latter plot.
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Collision Experiment for DR Stratification
Test Waves a1, a2 (m) x1, x2 (km) w0 (km) L (km) Forcing Interval
DR3 D1, D2 0.2, 0.03 -1000, -500 30.0 3000.0 0 ≤ t ≤ 55.5 hr

Table 4.12: Experiment DR3. Waves D1 and D2 are forced with amplitudes a1

and a2, centered at locations x1 and x2. Both waves are forced with the same
width measure w0.

There is no visible evidence of a leftward-propagating wave resulting from an interaction.
In Figure 4.32, a Hovmöller diagram for test DR3 is shown. The diagram shows the
passage of waves D1 through D2, and the two waves overlap in the time interval given
approximately by 40 ≤ t ≤ 120 hours. Even with the long duration of overlapping, no
evidence of wave D3 is present. If D3 were generated, a leftward-propagating beam would
be seen emanating from the interaction region.
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Figure 4.31: Density contour diagrams for collision experiment DR3. In the
left subplot, t = 33.3 hours and slightly less than three M2 tidal periods have
elapsed. The small mode-2 wave is visible slightly to the right of the mode-1
waves. In the right subplott = 166.7 hours, and the M2 wave train has passed
through wave D2.

A pseudo-energy decomposition for DR3 is depicted in Figure 4.33. The dominant
peaks in the mode-1 and mode-2 spectrum correspond to waves D1 and D2. There is a
small peak near 2.6 · 10−4 m−1 in the mode-1 spectrum that corresponds to wave D3. The
failure to generate a strong copy of wave D3 through a resonant interaction is likely due
to the steepening effects altering the underlying sinusoidal structure of waves D1 and D2.
This is also what was observed in test DC5. In the next section this and other problems
are investigated further.
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Figure 4.32: A Hovmöller diagram for test DR3. Wave D1 starts to the left of
wave D2, they pass through each other, but no third wave is visible emanating
from the interaction region.
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Figure 4.33: Energy decomposition for test DR3. The largest mode-1 peak lies
at k = 4 · 10−5 m−1, and the mode-2 peak corresponds to the forced wave
D2. There is only a small peak near 2.6 · 10−5 m−1in in the mode-1 spectrum
corresponding to wave D3. The wavenumbers of D1, D2, and D3 are marked
with vertical dashed lines.
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4.3 Discussion

In this section some of the interesting results observed through simulations with the SPINS
model are explored in more detail. Finite-amplitude effects are the focus of this discussion
as they played an important role in many of the simulations presented above. Two different
variants of finite-amplitude effects are considered, and some general conclusions about
resonant interactions in the deep ocean are drawn.

4.3.1 Mode-2 Cnoidal Waves and Energy

In experiment L6, the interaction of waves B1 and B2 produced wave B3, but the result
was not a clean sinusoidal wave train. The troughs in Figure 4.13 are much broader than
the crests. In the lone lab-scale test devoted to producing a mode-2 wave (L4), the desired
result was achieved but the wave amplitude was very small. Other simulations not included
above revealed that generating moderate amplitude mode-2 waves with clean sinusoidal
shape is difficult if not impossible.

To further emphasize this point, consider Figure 4.34. The figure illustrates density
isopycnals in an experiment attempting to generate wave B3 with forcing amplitude a3 =
0.1 N. The wavelength for B3 is about 22 cm, and the amplitude of the generated waves is
less than 2 mm peak-to-trough but the waves do not have a sinusoidal shape. The wave
steepness measure for this experiment is max(u)/c≈ 0.36. The difficulty of generating
mode-2 waves does not appear to be a flaw in the linear forcing theory. Figures 4.6 and
4.7 demonstrate that, at small enough amplitudes, it is possible to generate the desired
waves. The observed waveforms at larger amplitudes must be the result of finite-amplitude
effects.

In fact, the waves observed in Figure 4.13 and Figure 4.34 bear resemblance to the
cnoidal wave sketched in the top subplot of Figure 4.35. The cnoidal waves plotted in that
figure are defined by

s(x) = −1

2
+ cn2

(
x

2K(m)λ

)
, where K(m) =

∫ π/2

0

dx√
1−m2 sin2(x)

. (4.7)

Here cn is the Jacobian elliptic function, and λ is the wavelength. For an introduction to
these functions the reader is referred to Drazin and Johnson [20, Chapter 2]. In Figure
4.35, the values λ = 2π and m = 0.995 are used. These values were chosen so that the
relative widths of the crests and troughs in the cnoidal wave train appear similar those in
Figure 4.34. The power spectrum for the cnoidal wave is plotted in the bottom subplot of
the figure. In contrast to the equivalent spectrum for a cosine wave of the same period, the
cnoidal wave spectrum involves a shift of energy to the mean, as well as higher harmonics.
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Figure 4.34: An example of B3 waves formed from small amplitude mode-2
forcing. The waves appear to have a similar shape to the resonantly generated
waves in Figure 4.13.

For a cnoidal wave train modulated by a long envelope, these sharp energy peaks become
smeared out, and a significant portion of the energy may lie at low wavenumbers.

The energy shift to long waves, and eventually a mean flow, can be partially explained
by a Stokes drift analysis. Stokes drift is well-known for surface waves, and is described
by Kundu and Cohen [37, Chapter 7]. The essence of Stokes drift is that, on average, fluid
particles in finite amplitude waves experience a non-zero horizontal Lagrangian velocity.
The actual calculations are somewhat complicated for internal waves in nonuniform strat-
ifications. Appendix C contains a detailed derivation. The analysis given there is similar
to early work done by Thorpe [65], and the interested reader is also referred to research by
Bretherton [11]. The mathematics reveals that within a train of monochromatic internal
waves of amplitude a the mean Eulerian velocity is zero. However, the average height of an
isopycnal is modified at O(a2). In particular, the averaged height of an isopycnal initially
at z0 in the undisturbed fluid is located at

〈z〉 = z0 + a2 1

4ω2N2(z0)

d(φ2
nN

2)

dz

∣∣∣∣
z0

. (4.8)

As a result of this, in the body of the wave train the stratification appears different from
the quiescent background state. The time-averaged, modified stratification takes the form

〈ρ0(z)〉 = ρ0 + ρ̄(z) + a2ρ0

g

1

4ω2

d(φ2
nN

2)

dz
. (4.9)

Therefore, when a wave train impinges on a quiescent region of fluid, the average isopycnal
locations and stratification in front of and behind the wave are different. The isopycnals
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Figure 4.35: A cnoidal wave and its spectrum. The elliptic parameterm = 0.995,
and the period is 2π. Note the broadened troughs and observe the spread of
energy in the spectrum.

must then, on average, be tilted, and a flow ensues. When the wavy region is of finite
extent the modified isopycnal heights will appear as long waves in the energy spectrum.
The modal structure of the wave will determine the mode numbers at which the long wave
energy appears. This discussion provides a possible explanation for the bottom subplot of
Figure 4.4, where there is a clear indication of long mode-2 wave energy.

4.3.2 The Long Wave Steepening Process

The wave steepening observed in the ocean-scale simulations is the result of a different
mechanism than that described above. Long wave steepening was observed for mode-1
and mode-2 waves, and instead of a cnoidal wave shape, undular bores (short wavelength
oscillations) were observed. The reasons for this are now considered.

The shapes of steep long waves from different parts of the pycnocline are illustrated
in Figure 4.36. In the left panels, isopycnals from test DC2 are plotted. Panel (a) shows
an isopycnal from near the top of the pycnocline, and panel (b) shows an isopycnal from
near the bottom of the pycnocline. The mode-1 wave has steepened along the leading edge
of each trough. In panels (c) and (d), similar plots show isopycnals from DC4 (a mode-2
experiment). In contrast to the mode-1 case, the mode-2 wave travels as a bulge on the
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pycnocline. The outer edges of the mode-2 bulge appear to travel fastest, so the waves are
steepening on the front side.
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Figure 4.36: Mode-1 (panels (a) and (b)) and mode-2 (panels (c) and (d)) long
wave steepening. Panels (a) and (b) are taken from test DC2 at t = 62.2 hours,
panels (c) and (d) are taken from DC4 at t = 111.1 hours. The top panels show
an isopycnal from the upper portion of the pycnocline, the bottom panels show
an isopycnal from the lower portion of the pycnocline. Mode-1 waves appear to
steepen from behind. The mode-2 waves propagate as a bulge on the pycnocline.

An explanation for the left portion of Figure 4.36 is as follows. When the pycnocline
lies above the mid-depth of the fluid, internal solitary waves are waves of depression, and
their speed increases with amplitude. As a result of this, mode-1 troughs travel faster than
crests, so the waves steepen along the leading edge of the troughs.

The isopycnals illustrated in Figure 4.36 are taken prior to the onset of undular bores
(see Figure 4.20). To convince the reader that the bores that arise are not due to Gibbs
phenomena, consider Figure 4.37. In that figure, a magnified view of the isopycnal contours
is shown for test DR1→. The contours are smooth, and there are about 22 horizontal grid
points per bore wavelength, so the bores are very well-resolved.

In Figure 4.38, a magnified view of the isopycnals from test DR2→ is presented. The
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Figure 4.37: A magnified view of the isopycnals for test DR1→. The short undu-
lar bore oscillations are well-resolved with about 22 grid points per wavelength.

undular bores possess a mode-2 vertical shape and are strongly cnoidal in their horizontal
structure. The cnoidal waves have a wavelength of about 1.6 km at the left of the undular
bores, and about 2.6 km at the right. The horizontal grid spacing is about 122 m, so the
bores are well-resolved. The narrow peaks of the cnoidal waves do cause resolution issues,
and simulations involving grid spacings of 250 m fell victim to Gibbs oscillations. This
demonstrates a difficulty in simulating large-amplitude, long mode-2 waves. The number
of grid points required to resolve the sharp cnoidal peaks to avoid numerical instabilities
may lead to prohibitively slow computations.

Lamb and Yan [42] compared mathematical theory with numerical simulations of un-
dular bore formation in long internal waves. Their work shows that accurate modeling of
the bores requires inclusion of all second-order nonlinear and dispersive terms in the model
equations. Such an undertaking is beyond the scope of the present work, the interested
reader is directed to their paper.

Physical causes for the nonlinear behaviour observed in the ocean simulations can be
found by comparing the lab and ocean-scale experiments. One factor that can be ruled
out is the relative thickness of the pycnocline. The ratio of the 99% width measure to
the fluid depth for the lab and ocean-scale experiments is 0.125 and 0.15, respectively.
These values are quite similar, and thus not likely to be a major factor in steepening
and bore formation. Other possible factors include the Froude number, wave steepness,
wavelength of the forced waves, and proximity of the pycnocline to the surface. These
possibilities are now considered. A comparison of dimensionless wave parameters for the
lab and ocean-scale experiments is presented in Tables 4.13 and 4.14. In Table 4.13 mode-
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Figure 4.38: A magnified view of isopycnals for test DR2→. The undular bores
have a mode-2 vertical structure and have a cnoidal horizontal shape. The
cnoidal waves do not have a constant wavelength, with longer waves appearing
on the right. There are at least 12 horizontal grid points per undular bore.

Comparison of Mode-1 Dimensionless Wave Parameters
Experiment Wave ka kδ Fr

L1 A1 0.16 0.77 0.2
DC2 C1 4 · 10−4 0.01 0.099

DR1→ D1 2.5 · 10−4 7.5 · 10−3 0.025

Table 4.13: Comparison of dimensionless steepness parameters of representa-
tive mode-1 experiments. The wavenumber k corresponds to that of the wave
specified in each row. The wave amplitude a is taken to be half the observed
peak-to-trough value, and the pycnocline thickness δ is taken as the 99% width
measure (96% in DR experiments). In the final column, the Froude number
Fr=max(u)/c gives the ratio of the maximum induced velocity to the phase
speed of the underlying wave during the simulation.
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1 experiments are compared. In each of the three dimensionless parameters reported in
the table, the lab-scale experiment L1 has the largest value. However, waves in test L1
were observed to be sinusoidal. In Table 4.14 the dimensionless parameters for mode-2
experiments are presented. The large Froude number for DR2→ is somewhat misleading
because it is due to the high velocities in the vicinity of the short-wavelength undular bores.
Prior to the onset of undular bores, the Froude number was about 0.13 for test DR2→.
Taking this into account, dimensionless parameters for the lab-scale experiment L4 exceed
those of both ocean-scale experiments in the table. No steepening or bore formation was
observed for either of the lab-scale experiments in the tables. This suggests that the major
factors controlling steepening and bore formation must be a combination of wavelength
and pycnocline proximity to the surface.

Comparison of Mode-2 Dimensionless Wave Parameters
Experiment Wave ka kδ Fr

L4 A2 0.08 4.15 0.24
DC4→ C2 2.7 · 10−4 0.032 0.12
DR2→ D2 3.2 · 10−4 0.02 0.43

Table 4.14: Comparison of dimensionless wave parameters of representative
mode-2 experiments. The wavenumber k corresponds to that of the wave spec-
ified in each row. The wave amplitude a is taken to be half the observed
peak-to-trough value, and the pycnocline thickness δ is taken as the 99% width
measure (96% in DR experiments). In the final column, the Froude number
Fr=max(u)/c gives the ratio of the maximum induced velocity to the phase
speed of the underlying wave during the simulation.

Indeed, in a given stratification longer waves generally experience weaker dispersion.
This is expected because dispersive models describing long internal waves involve high-
order derivatives in the spatial coordinate. As the wavelength increases, nonlinear effects
will deform a wave to a much greater degree before dispersion becomes important. The
nonlinear effects are further enhanced when the pycnocline lies close to the surface. To
illustrate this point, consider Figure 4.39. The figure depicts the density isopycnals at
t = 66.7 hours for a wave with wavelength 172 km in a stratification identical to the DC
model, except that the pycnocline is centered at zp = 1400 m. The chosen wavelength
is the same as that of wave C1, and the relative depth of the pycnocline is equivalent to
that used for the lab-scale experiments. Peak-to-trough isopycnal displacements are about
10-11 m for the mode-1 wave, about 60% larger than those seen in experiment DC1. The
steepening effects observed in experiment DC1 are not as pronounced in Figure 4.39 even
though the waves are of larger amplitude. Using the KdV equation as the model for long
dispersive internal waves in the DC stratification, it is found that moving the pycnocline
depth from 200 m to 600 m decreases the nonlinearity coefficient by about a factor of three.
Similarly, the dispersive coefficient increases by a factor of about three.
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Figure 4.39: Density contours for a mode-1 wave with wavelength 172 km on a
pycnocline 600 m below the surface in a fluid of depth 2 km. Steepening effects
are visible in the sixth period and onwards.

The KdV equation can be used to construct estimates for the wave steepening time.
Since only a rough approximation is desired, the KdV equation for interfacial waves in a
two-layer fluid is used here:

ηt + c0η +
3

2

(
h1 − h2

h1h2

)
c0ηηx +

1

6
c0h1h2ηxxx = 0. (4.10)

This equation is derived and discussed in detail by Gerkema and Zimmerman [28, Chapter
8], for instance. Here η(x, t) gives the interface height, g′ is the reduced gravity, h1 and
h2 are the layer depths, and c0 =

√
g′h1h2/(h1 + h2) is the long-wave phase speed (see

Appendix A). To estimate breaking times, a gradient catastrophe analysis is performed.
The analysis closely follows Knobel [35, Chapter 18]. To simplify the calculation, the
dispersive term in (4.10) is ignored and the coefficient of the nonlinear term is denoted by
v. Thus the inviscid Burger’s equation

ηt + c0η + vηηx = 0, (4.11)

is considered, and the initial condition η(x, 0) = A sin(kx) = η0(x) is taken. Analyzing the
characteristic curves provides the estimate for the breaking time of the initially sinusoidal
wave train. The characteristic curves are defined implicitly by x(t) = (c0 + vη0(x0))t+ x0,
and wave breaking occurs when characteristics intersect, so that ηx becomes infinite. Since
the exact solution to (4.11) is simply η(x, t) = η0(x0), it follows that ηx = η′0(x0)∂x0/∂x,
where:

∂x0

∂x
=

1

1 + vtη′0(x0)
. (4.12)
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From this, it is clear that breaking first occurs for an initially sinusoidal wave at time

tB = − 1

vAk
. (4.13)

As expected, this suggests that larger amplitude waves break more rapidly.

For the DC stratification, the M2 tidal wave of 9 meter amplitude (corresponding to
test DC1) has a breaking time of about tB = 32 hours. For the interaction experiment
DC5, the expected breaking time for the M2 tidal wave is about 41 hours. Following the
discussion in Chapter 2, waves q and r perturbing wave p in a triad grow like exp(

√
γqγrεt).

For experiment DC5 wave C3 then has an e-folding time of about 5 hours. Similarly, for
experiment DR3→, the breaking time for the M2 wave is about 100 hours, while the e-
folding time for the interaction is about 5 hours. In both experiments the interaction time
scale is significantly shorter than the steepening time scale.

4.3.3 Implications

The strong tendency for waves to demonstrate nonlinear behaviour, through the forma-
tion of cnoidal waves or undular bores, is problematic for the resonant interaction theory
developed in this thesis. The theory presented in Chapter 2 was derived using sinusoidal
functions to describe the horizontal shape of waves. Clearly this is not the case for waves
of modest amplitudes on the stratifications considered in this chapter. In addition, the
pseudo-energy decomposition that was developed in Chapter 3, and used extensively above,
is based on a decomposition onto sinusoidal basis functions. The complicated horizontal
structure of the finite amplitude waves diminishes the value of this pseudo-energy analy-
sis. As a result, the energy plots presented in this chapter should only be used as rough,
approximate descriptions of wave energy content.

These problems highlight a shortcoming of the weakly-nonlinear theory, and motivate
the study of a more descriptive model. Work done by Osborne [56] suggests that it may be
possible to extend the weakly-nonlinear analysis to a theory for triad interactions among
cnoidal waves. Similarly, improved data decompositions, based on nonlinear Fourier trans-
form techniques, could be of benefit. These extensions would involve considerable mathe-
matical challenges, and they are not pursued here.

The simulations involving the DC and DR stratifications suggest that long internal
waves (near M2 tidal wavelength) of modest amplitude steepen rapidly, hindering the
progress of near-resonant interactions. At smaller amplitudes nonlinear effects are reduced,
but the time scale of wave interactions increases. Numerical experiments conducted by
Lamb [41] show that in regions of the ocean where the stratification is weaker or more
uniform, and hence nonlinear effects are less pronounced, resonant interactions can play a
strong role.
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The significance of the ocean-scale simulations must be tempered by the fact that
rotational effects were not included. The importance of rotation in the experiments can
be estimated by considering the Rossby number, U/fL. For instance, using the maximum
induced flow velocity for U and the wavelength of wave C1 for L, the Rossby number
for test DC1 at 30◦ latitude is O(10−2). This small value demonstrates that rotation is
very important. As discussed by Farmer et al. [25], Helfrich and Grimshaw [31]), and
others, rotational dispersive effects tend to inhibit the steepening process. This reduction
in steepening could enable the expected interactions to unfold as predicted. To properly
quantify the importance of near-resonant interactions among long waves in the ocean it is
therefore necessary to conduct further experiments using the f -plane model.

As mentioned above, in the absence of rotation the weakly-nonlinear theory is not
appropriate for describing long wave interactions. In certain regions of the oceans, however,
the theory may still provide important insights. In shallow waters where the pycnocline
lies closer to the mid-depth level, the strength of the nonlinear coefficient for long wave
models is reduced (see equation (4.10)). In addition, the M2 tidal wavelength decreases as
water depth decreases, increasing the importance of dispersion. It can be expected that
wave trains of tidal frequency propagating through shallow water would not steepen so
dramatically. In such regions the desired resonant interactions might unfold as predicted
by the weakly nonlinear-theory.

Finally, it might be profitable to analyze interactions involving the undular bores asso-
ciated with the long waves. These bores are of moderate wavelength, and their modification
through resonant triad interactions would in turn alter the balance of dispersion and non-
linearity in the accompanying long wave. The ensuing wave evolution process would be
very interesting to observe.
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Chapter 5

Asymptotic Analysis of Forced Wave
Equations

In this chapter analytical techniques for studying forced wave problems are presented.
This investigation was initially inspired by the early failures in attempts to numerically
force internal gravity waves. The solution described in Section 3.5 produced satisfactory
results in numerical tests, but a broader question remained. Given a wave equation on
an infinite domain and an oscillatory source localized in a region, what waves can be
expected to propagate from the forcing zone? What amplitude, phase, and wavelength do
the waves possess? Even for simple wave equations these questions are difficult to answer,
and asymptotic methods become essential tools.

While the initial goal was to analyze forced internal gravity waves, the problem was
found too difficult, and a sequence of easier problems was tackled. The study of simpler
problems allows for the development of a repertoire of useful techniques. In Section 5.1 the
notation and asymptotic analysis used to study the wave equations is presented. As a first
illustration of the solution method, the forced linear Korteweg-de Vries (KdV) problem
is studied in Section 5.2. Then the linear Benjamin-Bona-Mahony (BBM) equation is
studied in Section 5.3. The asymptotic methods are then applied to investigate the internal
gravity wave (IGW) problem in Section 5.4. The intricate details of the steepest descents
analysis for each wave equation is found in Appendix D. This chapter concludes with a
brief discussion in Section 5.5.

5.1 Solution Techniques and Notation

In this section the methods and notation used to analyze forced wave equations are pre-
sented. After briefly discussing the Fourier transform, a discussion of how to deform
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integration contours that pass through singularities is presented. An introduction to some
useful techniques for the asymptotic expansions of integrals is then provided.

5.1.1 The Fourier Transform

The Fourier transform plays a vital role in the analysis of partial differential equations and
wave phenomena. It has many applications, and a broad range of examples are given by
Duffy [23]. Slight variants and different notation for the transform are used in different
branches of Mathematics. In this document, the following conventions are used. A function
G(k) is defined as the Fourier transform of g(x) when

G(k) = F{g(x)} =

∫ ∞
−∞

g(x) exp(−ikx) dx. (5.1)

The function g(x) is determined from G(k) by the inverse Fourier transform formula

g(x) = F−1{G(k)} =
1

2π

∫ ∞
−∞

G(k) exp(ikx) dk. (5.2)

The operator F is used to represent the transform, and g(x) and G(k) are said to be a
Fourier transform pair.

The Fourier transform is generally used to decompose a function of a physical variable,
such as the position, x, into its constituent wave components. The variable k represents
the wavenumber, and is related to the wavelength λ of the corresponding wave by the
relation k = 2π/λ.

It frequently occurs that the integrand in the inverse Fourier transform has singularities
lying on the real axis. Since integration cannot be carried out directly through a singularity,
a modified definition of the inverse Fourier transform is required. The inverse formula takes
the more general form

g(x) =
1

2π

∫
C

G(k) exp(ikx) dk, (5.3)

where C is a contour whose real part ranges from −∞ to +∞ and traverses the real line,
but is deformed around the singularities of the integrand. The procedure for determining
how to indent the contour C is now discussed.

5.1.2 Avoiding Poles on the Path of Integration

The contours of integration that arise from inverting Fourier solutions to PDEs must be
chosen so as to avoid directly passing through singularities of the integrand. Physical
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arguments dictate how the contour must be indented around any poles lying on the real k
axis. Once it has been determined that the contour should be indented below (above) a
given pole, the pole will only contribute a residue to integrals closed in the upper (lower)
half-plane.

To determine whether to indent a contour above or below a particular pole, two lines
of physical reasoning are considered here, both are discussed briefly by Voisin [71]. In the
first approach the wave equation is modified with a dissipative term, and the behaviour
of the pole is studied in the dissipative limit. In the second approach, following a method
constructed by Lighthill [45], the behaviour of the pole is studied for the related forced
problem where the forcing amplitude is ramped up from t = −∞ . Both methods express
the same physical constraint, known as the Sommerfeld radiation condition, that waves
cannot propagate inwards from infinity. As a rule, contours are deformed below poles that
approach the real axis from the upper half-plane, and above poles that approach from the
lower half-plane.

As will be seen, the Fourier-space solutions to forced wave equations have poles that
lie at wavenumbers k satisfying

σ(k) + ω = 0. (5.4)

Here ω is the forcing frequency and σ(k) is the dispersion relation. In the analysis that
follows, the poles on the real k axis are assumed to be roots of (5.4).

The Dissipative Approach

Consider a function u(x, t) governed by a linear PDE with constant coefficients, represented
by the operator L. Then

Lu = A exp(iωt)f(x) (5.5)

is the forced problem of interest. Only t ≥ 0 is considered, but for this analysis, boundary
and initial conditions are not important. Substituting u = exp(i(kx− σt)) into the homo-
geneous problem (A = 0) leads to the dispersion relation σ(k). This is defined implicitly
through the algebraic equation

D(σ, k) = 0, (5.6)

and multiple roots for σ(k) may exist.

Now restrict attention to operators that are first-order in time. If a dissipative term is
added to the homogeneous problem then

Lu = εuxx. (5.7)

This leads to a modified dispersion relationship σ̂(k) defined through the equation

D(σ̂, k) = −εk2. (5.8)
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For ε sufficiently small, the expansion

σ̂(k) = σ(k) + εσ1(k) +O(ε2) (5.9)

is assumed valid. Substituting this expansion into D(σ̂, k) = −εk2 and collecting like terms
reveals

D(σ, k) + ε

(
σ1
∂D

∂σ
+ k2

)
+O(ε2) = 0, (5.10)

where ∂D/∂σ = Dσ for shorthand. For equality to hold, the coefficient of each power of ε
must be zero. Then, setting the coefficient of ε to zero requires

σ1(k) = − k2

Dσ

. (5.11)

Now turn to the solution of the equation σ(k) + ω = 0, whose roots define the poles
of the integrand. Suppose k = k0 is a root. The corresponding root k̂ for the dissipative
problem must satisfy

σ̂(k̂) + ω = 0. (5.12)

The dissipation is assumed so small that k̂ and k0 are close, so that the expansion k̂ =
k0 + εk1 + O(ε2) is valid. Substituting this series into (5.12), expanding σ̂, and collecting
like powers of ε yields

σ(k0) + ω + ε
(
k1σ

′(k0) + σ1(k0)
)

+O(ε2) = 0, (5.13)

where the prime symbol represents differentiation with respect to k. By the definition of
σ and k0, the leading order term is zero. Equating the coefficient of ε to zero requires

k1 =
k2

0

Dσσ′(k0)
. (5.14)

A few observations are in order. Under the assumption that the PDE is first-order in
time, the derivative Dσ = −i. The first-order correction to the root at k0 is then

k1 = i
k2

0

σ′0(k0)
. (5.15)

Since the root behaves like k0 + εk1 in the dissipative limit, the sign of the group velocity
at k0 dictates how the corresponding pole is approached in the complex plane. When the
group velocity is positive, the pole is approached from the upper half-plane. When the
group velocity is negative, the pole is approached from the lower half-plane. By considering
the underlying PDE as the limit of a dissipative system, it is logical to deform contours of
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integration to pass below poles that approach the real k axis from the upper half-plane,
and above those that approach from the lower half-plane.

This approach to finding the proper way to deform integration contours can be difficult
to apply for more complicated equations. When the underlying PDE involves higher order
derivatives in time, special care must be taken in the form of the dissipative term that is
used. Simply analyzing Lu = εuxx is not appropriate. For example, if L consists of only
even ordered derivatives then D and all of its derivatives with respect to σ will be real,
as will group velocities at the roots of σ(k) + ω = 0. The higher-order corrections to the
roots will then always be real, so the contour deformation cannot be determined.

Lighthill’s Method

Lighthill presents an alternative means of determining how poles approach the real axis in
a physical limit [45, Chapter 4]. Instead of modifying the dispersion relationship through
dissipation, an alternative, ramped forcing problem is considered. The basic idea is to
adjust the forcing frequency ω to include a small imaginary component, and consider the
problem starting from t = −∞. This shifts the poles off the real axis in a manner that is
now described in more detail.

Once again, consider the general form of the impulsively forced problem given by equa-
tion (5.5). Suppose the solution is to be expressed as an integral and the contour must
be determined near a pole. Assume that the pole of interest lies at k = k0 and satisfies
σ(k0) +ω = 0. The analysis proceeds by considering the related problem where the forcing
begins at t = −∞, but is ramped-up from zero initial amplitude by the use of a complex
frequency ω − iε, where 0 < ε � 1. The corresponding pole k̂ for the modified problem
satisfies

σ(k̂) + ω − iε = 0. (5.16)

Using the expansion k̂ = k0 + εk1 +O(ε2), substituting it in to (5.16), performing a Taylor
expansion, and collecting like powers of ε reveals

σ(k0) + ω + ε (k1σ
′
0(k0)− i) +O(ε2) = 0. (5.17)

The leading order term is zero by the definition of k0. Equating the coefficient of ε to zero
requires

k1 =
i

σ′(k0)
. (5.18)

Note that k1 represents the first-order correction to the pole at k0 as ε → 0+. Therefore
the pole k0 approaches the real axis from the upper half-plane when the group velocity
of the forced wave is positive, and from the lower half-plane when the group velocity is
negative.
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The modified problem can be used to determine how to deform contours as follows. If
the forced problem were ramped up from t = −∞, at t = 0, only rightward-propagating
waves should be found to the right of the forcing region, and only leftward-propagating
waves should be found to the left of the forcing region. Therefore contours of integration
must be deformed below poles at wavenumbers with positive group velocity and above
poles at wavenumbers with negative group velocity.

Lighthill’s approach agrees with the dissipative argument presented above, however it
requires less effort. Unlike the dissipative argument, the modified problem does not change
the dispersion relation σ(k), so the required expansions are easier to perform. In addition,
Lighthill’s method can also be applied to equations with higher-order time derivatives with
ease.

Discussion

Both the dissipative argument and Lighthill’s approach suggest the appropriate criteria for
deforming the contour of integration when expressing the solution to impulsively forced
wave equations with the inverse Fourier transform. The integration contour must be de-
formed below poles corresponding to wavenumbers with positive group velocity and above
poles corresponding to wavenumbers with negative group velocity.

A problem arises when a pole of the integrand corresponds to a wave with zero group
velocity. In that situation both techniques discussed here can lead to a pole that approaches
from both the top and bottom half of the complex plane. However, if the intent is to study
traveling waves far from the forcing region such pathological cases are not a problem: the
contribution from the pole can simply be ignored. Waves with zero group velocity cannot
escape the forcing region. Parameter choices that lead to such waves may be of interest,
however, as the build-up of waves in the forcing region would cause the breakdown of the
validity of the linearized model.

5.1.3 Forcing with Point Sources

The Dirac-delta function is used throughout this chapter to represent point sources. This
generalized function is denoted by δ(x) and is particularly useful in Fourier analysis. More
general forcing functions f(x) introduce difficulties because their Fourier transforms can be
poorly behaved in the complex plane. For instance, the Fourier transform of the Gaussian
f(x) = exp(−x2) is F (k) =

√
π exp(−k2/4). Although f(x) is well behaved on the real

line, F (k) grows super-exponentially in the sectors of the complex k-plane bounded by
angles π/4 < θ < 3π/4 and 5π/4 < θ < 7π/4.
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While point sources are useful for analysis, they are difficult to work with numerically.
This leads to problems when comparing numerical and asymptotic solutions. There is,
however, a simple way to use the point source solution to determine the leading order
behaviour for a more general forced problem. The method works when f(x) is a localized
function, as seen below.

Suppose u satisfies the linear PDE Lu = exp(iωt)δ(x). Then the solution of Lv =
exp(iωt)f(x) is given by v = f ? u, where ‘?’ denotes the convolution operator. This is
apparent by applying L to the convolution integral. The function u is actually the Green’s
function in the spatial coordinate (see Duffy [22]).

Now consider the situation when the problem is so difficult that only an asymptotic
solution ua can be found as t→∞. With u ∼ ua, it follows that v ∼ f ?ua. In general, the
convolution cannot be computed directly because ua(x, t) may involve complicated terms
with ratios of x/t. It is often the case, however, that the leading order behaviour of ua is
given by ua(x, t) ∼ A exp(i(k0x − ωt)), valid in the interval 0 ≤ x ≤ a, as t → ∞. It is
then possible to determine a simple expression and region of validity for the leading-order
behaviour of v.

To show this, assume

ua(x, t) = A exp(i(k0x− ωt)) +O(t−α) (5.19)

holds for 0 < x < a, with α > 0, as t→∞. For x > a, assume that ua is O(t−α). Rewrite
ua as

ua(x, t) = A exp(i(k0x− ωt)) (1−H(−x)−H(x− a)) +O(t−α), (5.20)

where H(x) is the Heaviside step function. The leading-order behaviour of v is found by
taking the convolution of f(x) with ua(x, t). Using the definition of the convolution integral
(see Haberman [30, Chapter 10]) implies that

v ∼ f(x) ? ua(x, t)
∼ AF (k0) exp(i(k0x− ωt))
−A exp(i(k0x− ωt))

∫∞
−∞ f(X) exp(−ik0X)H(X − x) dX

−A exp(i(k0x− ωt))
∫∞
−∞ f(X) exp(−ik0X)H(x− a−X) dX

+O(t−α).

(5.21)

Now assume that f(x) is localized in the interval c < x < d, centered about c0 = (c+d)/2.
To be precise, suppose that |f(x)| is O(e−µ|x−c0|) for some µ > 0, whenever x < c or x > d.
In addition, assume that enough time has passed so that a+ c > d. Then∫ ∞

−∞
f(X) exp(−ik0X)H(X − x) dX =

∫ ∞
x

f(X) exp(−ik0X) dX (5.22)
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must be O(e−µ|x−c0|) for x > d. Similarly∫ ∞
−∞

f(X) exp(−ik0X)H(x− a−X) dX =

∫ x−a

−∞
f(X) exp(−ik0X) dX, (5.23)

must be O(e−µ|x−c0|) when x < a+ c.

The above argument shows that, provided f(x) is sufficiently small outside of c < x < d,
the leading-order solution for the point source problem and the more general forced problem
only differ by the multiplicative constant F (k0). That is,

v(x, t) ∼ AF (k0) exp(i(k0x− ωt)) +O(e−µ|x−c0|) +O(t−α), (5.24)

valid in d < x < a + c as t → ∞. In essence, the forcing shape function only alters the
character of the asymptotic solution in the forcing region and at the wavefront as t→∞.

5.1.4 Asymptotic Expansions of Integrals

The field of asymptotic analysis can be loosely described as a collection of techniques
used to approximate solutions to problems involving small or large parameters. Within
that field, the study of asymptotic expansions of integrals represents an important sub-
discipline. This is true in part because a broad range of physical problems have solutions
that can be represented in integral form. Standard methods for solving differential equa-
tions, such as Green’s functions, Laplace, Fourier, or Hankel transforms, all lead to solu-
tions that are expressed as integrals (see Duffy [23] or any introductory text on transform
methods for solving PDEs).

While some integrals can be computed analytically, in many cases this is not possible.
Even if an integral can be computed exactly, the expressions that are found may be so
complicated that they obscure the meaning of the result. In addition, for many physical
processes an approximate solution for a limited parameter range is adequate.

In this very brief introduction to the asymptotic expansion of integrals, the important
aspects of Laplace’s method and the method of steepest descents are provided. The key
feature of these methods is that the difficult global problem of integrating a function over
an interval or contour is reduced to the study of the local behaviour of the function near
a few critical points.

This discussion is largely an adaptation of the excellent presentation given by Ablowitz
and Fokkas [1]. Other useful references include Bender and Orszag [6], and Bleistein and
Handelsman [8]. The purpose of this section is simply to provide a quick reference and
brief overview of the techniques that will be used in the analysis of forced wave equations
in this chapter.
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Laplace’s Method

Integrals of the form

I(t) =

∫ b

a

f(s)e−φ(s)t ds, (5.25)

where φ(s) and f(s) are real, are known as integrals of Laplace-type. These arise frequently
in applications such as the Laplace transform. The stipulation that f(s) be real is not
limiting, if f(s) were complex then (5.25) could be split into two integrals of Laplace type.

Laplace’s method reduces the integration problem to the study of the integrand in the
neighborhood of points where φ(s) achieves its minimum. This is intuitively reasonable
because away from such points the factor exp(−φ(s)t) is so small as t → ∞ that the
contributions to the integral are negligible. If the minimum is not unique, it is the set of
points where φ achieves its minimum that provide the dominant contributions to I(t).

Once the minimum of φ(s) has been determined, say at s = c, series expansions of φ(s)
and f(s) are found in the neighborhood of c. These series are then substituted into the
integral (5.25), and an approximation is found. How this is actually performed in practice
depends on the nature of φ(s).

An important special case is φ(s) = s. In this situation the source of dominant con-
tributions to I(t) is the left endpoint s = a. A very useful result, known as Watson’s
lemma, can then be used. The following statement of Watson’s lemma is taken directly
from Ablowitz and Fokkas [1, page 427-8], with only minor notation modifications.

Lemma 2. (Watson’s Lemma)

Let

I(t) =

∫ b

0

f(s)e−st ds, with b > 0. (5.26)

Suppose f(s) is integrable in (0, b) and has the series expansion

f(s) = sα
∞∑
n=0

ans
βn, as s→ 0+ (5.27)

where α > −1, β > 0. Then

I(t) ∼
∞∑
n=0

an
Γ(α + βn+ 1)

tα+βn+1
as t→∞. (5.28)

This lemma has important implications for a broad class of functions φ(s), and is
the foundation for Laplace’s method and the method of steepest descents. The proof of
Watson’s lemma is not difficult but is omitted here.
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To see how Watson’s lemma can be used, suppose φ(s) is monotonically increasing in
a ≤ s ≤ b. Defining the new variable ψ = φ(s)− φ(a), the inverse of φ can be used to find
s(ψ) = φ−1(ψ + φ(c)) and I(t) can be expressed as

I(t) = e−φ(a)t

∫ φ(b)−φ(a)

0

f̂(ψ)e−ψt dψ, (5.29)

where

f̂(ψ) =
f(s)

φ′(s)

∣∣∣∣
s(ψ)

. (5.30)

Provided f and φ are sufficiently smooth, a series expansion for f̂(ψ) can be found as
ψ → 0+ and Watson’s Lemma can be applied. A similar argument treats the situation
when φ(s) is monotonically decreasing.

Next, suppose φ(s) has a unique minimum at c where a < c < b, and φ′′(c) > 0. As
shown by Ablowitz and Fokkas [1], when ε is a small but finite positive number such that
a < c− ε and c+ ε < b,

I(t) ∼
∫ c+ε

c−ε
f(s)e−φ(s)t ds as t→∞, (5.31)

with error that is small beyond all orders. With ε chosen sufficiently small, φ(s) ≈ φ(c) +
φ′′(c)(s− c)2/2 and f(s) ≈ f(c) can be substituted into the integrand. Then

I(t) ∼ f(c)e−φ(c)t

∫ c+ε

c−ε
exp

(
−1

2
φ′′(c)(s− c)2t

)
ds. (5.32)

Substituting ψ =
√

t
2
φ′′(c)(s− c) into the integral reveals

I(t) ∼ f(c)e−φ(c)t

√
2

φ′′(c)t

∫ ε
√

t
2
φ′′(c)

−ε
√

t
2
φ′′(c)

exp
(−ψ2

)
dψ. (5.33)

Finally, in the limit t→∞, the remaining integral is just
√
π. Thus

I(t) ∼ f(c)e−φ(c)t

√
2π

φ′′(c)t
. (5.34)

This result, known as Laplace’s formula, is very useful. It can be derived rigourously
by splitting the integral

∫ b
a

=
∫ c
a

+
∫ d
c

. In each of these intervals of integration, φ(s) is
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monotonic and thus, after a suitable transformation of variables, Watson’s lemma can be
applied. The rigorous approach also determines the error term, and it turns out that

I(t) ∼ f(c)e−φ(c)t

√
2π

φ′′(c)t
+O

(
e−φ(c)t

t3/2

)
. (5.35)

Through its grounding in Watson’s lemma, Laplace’s method can in principle be used
to determine the full asymptotic expansion for I(t). Deriving higher-order terms, however,
requires a more careful treatment of the series expansions for f(s) and φ(s).

The Method of Steepest Descents

The method of steepest descents can be viewed as an extension of Laplace’s method to
integrals of complex variables. The method is used to approximate integrals of the form

I(t) =

∫
C

f(k)eφ(k)t dk, (5.36)

in the limit t → ∞. The contour C lies in the complex k-plane and f(k) and φ(k) are
assumed to be analytic functions in some open neighborhood containing C.

The fundamental idea behind the steepest descents approach is to make use of the
analyticity of f(k) and φ(k) to deform C onto a new contour Ĉ along which asymptotic
contributions can be readily computed. The most natural means of accomplishing this is
to choose Ĉ so that the imaginary part of φ(k) remains constant. Letting k = η + iξ,
and splitting φ(k) = φR(η, ξ) + iφI(η, ξ), written as φR(k) + iφI(k) for shorthand, equation
(5.36) becomes

I(t) = eiφI t
∫
Ĉ

f(k)eφR(k)t dk. (5.37)

The new contour Ĉ is a level curve of the function φI(η, ξ). At any point along Ĉ, ∇φI
is orthogonal to the tangent at that point. By the Cauchy-Riemann equations, ∇φI =
(−∂ξφR, ∂ηφR), which is orthogonal to ∇φR. It follows that the contour Ĉ represents the
curve of most rapid descent or ascent for the function φR, depending on which direction
it is traversed. In general, a path of steepest descent from a point k0, refers to a path
emanating from k0 along which φR(k) decreases most rapidly (there may be many such
paths).

Saddle points, defined as points where φ′(k) = 0, play an important role in steepest
descents analysis. Along a path of steepest descent, these are the locations where ∇φR = 0
and thus φR achieves its maximum (or minimum). When possible, the deformed contour
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Ĉ is chosen as a steepest descents path through one or more saddle points. The reason
for this is, as with the analysis of Laplace-type integrals, that I(t) can then be studied
through the local behaviour of the integrand about the saddle point.

To analyze the integrand of (5.36) and the structure of the steepest descents path near
a saddle point, some discussion is required. A saddle point k0 is said to be of order N when

dm

dkm
φ(k)

∣∣∣∣
k=k0

= 0 for m = 1, . . . , N, (5.38)

or referred to as a simple saddle point if N = 1. In the immediate neighborhood of k0, the
steepest descents paths can be determined by setting k = k0 + |k−k0|eiθ, with |k−k0| � 1,
and analyzing how u(k) and v(k) behave for different values of θ. Expanding

φ(k)− φ(k0) ∼ 1

(N + 1)!

dN+1

dkN+1
φ(k)

∣∣∣∣
k=k0

(k − k0)N+1 (5.39)

and writing
1

(N + 1)!

dN+1

dkN+1
φ(k)

∣∣∣∣
k=k0

=
|φ(N+1)(k0)|

(N + 1)!
eiα (5.40)

(which implicitly defines α) shows that

φ(k)− φ(k0) ∼ |φ
(N+1)(k0)|
(N + 1)!

|k − k0|ei(α+(N+1)θ). (5.41)

As discussed above, along a steepest descents path leaving k0, the imaginary part of φ must
remain constant to yield the maximum rate of decrease in the real part of φ. To meet this
condition,

sin(α + (N + 1)θ) = 0, and cos(α + (N + 1)θ) < 0. (5.42)

Therefore, the angles θ corresponding to steepest descent paths from the saddle point k0

are given by

θ =
−α + (2m+ 1)π

N + 1
, for m = 0, 1, 2, . . . N, (5.43)

where α is defined in equation (5.40). In the case of a simple saddle point there are
evidently two directions of steepest descent, θ = −α/2 + π/2 and θ = −α/2 + 3π/2.

Now suppose the initial integration contour C has been deformed onto a new contour
Ĉ which is a path of steepest descent passing through a saddle point at k = k0. The
saddle point could be an endpoint of the contour, or Ĉ could enter k0 along one path of
steepest descent and leave along another. Let the contribution to I(t) along a sub-contour
Ĉn corresponding to the steepest descent angle θn passing through k0 be given by

In(t) =

∫
Ĉn

f(k)eφ(k)t dk. (5.44)
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Since u(k) is monotonically decreasing along Ĉn and v(k) = v(k0) remains constant, φ(k)−
φ(k0) is real and must be monotonically decreasing along Ĉn, and hence has an inverse.
Letting φ(k) − φ(k0) = −κ and transforming the variable of integration, it is possible to
show that In(t) can be approximated by the integral

In(t) ∼ −eφ(k0)t

∫ ∞
0

f̂(κ)e−κt dκ, (5.45)

where

f̂(κ) =
f(k)

1
(N+1)!

φ(N+1)(k)

∣∣∣∣∣
k(κ)

, (5.46)

with an error that is asymptotically small beyond all orders as t → ∞. In fact, upon
comparing the two formulas for In(t) it is clear that the only error introduced in (5.45)
is through the use of ∞ as the upper bound of integration. As argued in the discussion
of Laplace’s method, however, this is warranted because the dominant contribution to the
integral come from the neighborhood of κ = 0.

All that remains to be done is a careful expansion of f̂(κ) as κ → 0+ so that (5.45)
can be estimated using Watson’s lemma. This is done explicitly here so that an error
bound on the estimate for In(t) is clear. The analysis also serves as a demonstration of
how steepest descents approximations can be used to find an infinite asymptotic series.
Therefore, suppose that k0 is a N th order saddle point so that as k → k0,

φ(k) ∼ φ(k0) + φ(N+1)(k0)
(N+1)!

(k − k0)N+1 + φ(N+2)(k0)
(N+2)!

(k − k0)N+2

+O
(
(k − k0)N+3

)
.

(5.47)

In the neighborhood of k0, φ′(k) can be found by differentiating (5.47):

φ′(k) ∼ φ(N+1)(k0)

N !
(k − k0)N +

φ(N+2)(k0)

(N + 1)!
(k − k0)N+1 +O

(
(k − k0)N+2

)
. (5.48)

Further, assume that f(k) is sufficiently smooth so that

f(k) ∼ f0(k − k0)β−1 + f1(k − k0)β +O
(
(k − k0)β+1

)
(5.49)

as k → k0, where Re(β) > 0. If follows that for k near k0,

f(k)
φ′(k)

∼ f0(k−k0)β−1+f1(k−k0)β+O((k−k0)β+1)

φ(N+1)(k0)
N !

(k−k0)N+
φ(N+2)(k0)

(N+1)!
(k−k0)N+1+O((k−k0)N+2)

∼ f0(k−k0)β−N−1+f1(k−k0)β−N

φ(N+1)(k0)
N !

×
[
1− φ(N+2)(k0)

(N+1)φ(N+1)(k0)
(k − k0)

]
+O

(
(k − k0)β−N+1

)
,

(5.50)
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where after a simple factoring, the denominator has been expanded to leading order as a
geometric series. Multiplication yields

f(k)
φ′(k)

∼ f0N !
φ(N+1)(k0)

(k − k0)β−N−1

+

(
f1N !

φ(N+1)(k0)
− N !φ(N+2)(k0)

(N+1)(φ(N+1)(k0))
2

)
(k − k0)β−N

+O
(
(k − k0)β−N+1

)
.

(5.51)

To use this in the evaluation of f̂(κ) as κ → 0+, k − k0 must be expressed in terms of κ.
This is done through the relation −κ = φ(k)− φ(k0), which implies

− κ ∼ φ(N+1)(k0)

(N + 1)!
(k − k0)N+1 +

φ(N+2)(k0)

(N + 2)!
(k − k0)N+2 +O

(
(k − k0)N+3

)
. (5.52)

From this, k−k0 can be found as a power series in κ. Expanding k−k0 = eiθ (c0κ
µ + c1κ

µ+γ +O(κµ+2γ))
reveals that µ = γ = 1/(N + 1) and

c0 =

(
(N + 1)!

|φ(N+1)(k0)|
) 1

N+1

, c1 =
c2

0φ
(N+2)(k0)ei(N+2)θ

(N + 1)(N + 2)|φ(N+1)(k0)| . (5.53)

Substituting the expansion for k− k0 back into equation (5.51), the binomial theorem can
be used to show that as κ→ 0+,

f̂(κ) = a0κ
β

N+1
−1 + a1κ

β+1
N+1
−1 +O

(
κ
β+2
N+1
−1
)

(5.54)

where

a0 = − f0e
iβθ

N + 1

(
(N + 1)!

|φ(N+1)(k0)|
) β

N+1

, (5.55)

and
a1 = (N + 1− β) f0N !

|φ(N+1)(k0)|e
βθ

+

(
f1N !

φ(N+1)(k0)
− N !φ(N+2)(k0)

(N+1)(φ(N+1)(k0))
2

)
cβ−N0 ei(β−N)θ.

(5.56)

Finally, using the series expansion for f̂(κ) in equation (5.54), Watson’s lemma can be
directly applied to the definition of In(t) in (5.45). The result is

In(t) ∼ f0((N + 1)!)
β

N+1 eiβθ

N + 1

eφ(k0)tΓ
(

β
N+1

)
(|φ(N+1)(k0)|t) β

N+1

+O

(
eφ(k0)t

t
β+1
N+1

)
(5.57)

In most of the applications of the method considered here, β = 1 and N = 1. Even
with those values, the determination of higher-order terms in the asymptotic solution is
algebraically challenging.
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The final asymptotic expansion for I(t) is found by summing all of the contributions
from steepest descent paths through saddle points on Ĉ. In addition, residue contributions
from poles encircled in the contour deformation process must also be included. The steepest
descents analysis process is summarized in the following steps:

1. Determine the critical points of the integrand. These include saddle points k0 where
φ′(k0) = 0, endpoints of the integration contour, and singularities.

2. Determine the paths of steepest descent through critical points of interest.

3. Ensure it is possible to deform the original contour C onto one or more of the paths
of steepest descent. Take special care to determine if the deformation of C introduces
any singularities.

4. Approximate the integral along the new contour Ĉ using equation (5.57) and any
residue contributions that resulted from the deformation process.

These steps have been adapted from Bleistein and Handelsman [8, Chapter 7]. The ap-
plication of these steps is a somewhat flexible. Interestingly, the final step is typically the
easiest to apply since equation (5.57) is known. Determining which critical points to use,
qualitative behaviour of the steepest descents paths emanating from them, and ensuring
the deformation process is possible are the most time-consuming steps.

5.2 The Forced Linear KdV Equation

Consider the dispersive wave equation

ut + c0ux + νuxxx = A exp(iωt)f(x),
−∞ < x <∞, t ≥ 0,

(5.58)

with initial condition
u(x, 0) = u0(x), (5.59)

and far-field conditions
{u, ux, uxx} → 0 as x→ +∞, (5.60)

and assume c0 > 0, ν > 0. The partial differential equation (5.58) is a linearized form
of the well-known Korteweg de Vries equation (see Drazin and Johnson [20]). Among its
many applications, it is used to model long surface waves propagating on a shallow channel.
The KdV equation is often introduced as a first model of a dispersive partial differential
equation.
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In this analysis it is the impulsively-forced response that is of primary interest. More
specifically, the goal of this investigation is to determine the properties of the waves that
are generated by the oscillatory source. The solution method used here is based on the
Fourier transform. After discussing the dispersion relation, group velocity, and phase speed
the solution in Fourier space is derived. The inverse Fourier transform is then applied, and
the solution is seen to be quite complicated. A simpler, more intuitive solution is then
derived using the method of steepest descents, and it is compared against a numerical
solution.

5.2.1 The Dispersion Relation and Group Velocity

The dispersion relation is found by substituting u = exp(i(kx−σt)) into the homogeneous
KdV problem and solving for σ(k). This yields

σ(k) = c0k − νk3. (5.61)

The phase speed depends on k, and is given by

c =
σ

k
= c0 − νk2. (5.62)

The group velocity also depends on k, and satisfies

cg =
dσ

dk
= c0 − 3νk2. (5.63)

Both the phase speed and group velocity become unbounded in the short-wave limit (k →
∞). This is apparent in Figure 5.1, where the dispersion relation and group velocity are
plotted. In general, the KdV equation is only an accurate model for long dispersive waves.
The unbounded nature of the phase speed and group velocity is important and problematic
for numerical solutions of the KdV equation. Numerical solvers often work with modified
forms of the KdV equation, such as the BBM equation (see Section 5.3), to counter this
problem. In what follows, the impulsively-forced KdV equation (5.58) is studied using
exact and asymptotic approaches.

5.2.2 The Spectral Solution

Letting U(k, t) = F{u(x, t)}, and F (k) = F{f(x)}, the continuous Fourier transform of
the linear KdV equation reduces the problem to the ordinary differential equation

Ut(k, t) + iσ(k)U(k, t) = A exp(iωt)F (k). (5.64)
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Figure 5.1: The dispersion relation (top subplot) and group velocity (bottom
subplot) for the KdV equation.

Then, by use of the integrating factor exp(iσt), the solution in Fourier space satisfies

d

dt

(
exp

(
iσ(k)t

)
U(k, t)

)
= A exp

(
i(σ(k) + ω)t

)
F (k). (5.65)

Integrating equation (5.65) with respect to time from 0 to t and making use of the initial
condition U(k, 0) = U0(k) = F{u0(x)}, leads to

U(k, t) = U0(k)e−iσ(k)t + AF (k)

(
eiωt − e−iσ(k)t

i(σ(k) + ω)

)
. (5.66)

This is the solution in Fourier space. The solution (5.66) is concise, but it does not provide
much insight into how waves in the system behave in physical coordinates. It is unclear
how transients might decay, and if a regular wave train is produced its frequency and
wavenumber are not immediately obvious.

5.2.3 The Physical Solution

The physical solution to the forced linear KdV equation is found by applying the inverse
Fourier transform to the spectral solution in equation (5.66). It is important to emphasize
that the first term in (5.66) can be attributed to the initial condition, and the second
term to the forcing. Linearity of the equations allows for the isolated discussion of each
component.
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Evolution of the Initial Condition

First, consider the term involving the initial condition:

F−1
{
U0(k)e−iσ(k)t

}
= F−1

{
U0(k)e−ikc0t

}
? F−1

{
eiνtk

3
}

= u0(x− ct) ? F−1
{
eiνtk

3
}
.

(5.67)

This shows that the evolution of an initial condition governed by the linear KdV equation is
described by the convolution of a traveling copy of the initial profile with an undetermined
function. The undetermined function F−1{exp(iνk3t)} can be computed analytically. To
see this, consider the integral form of the Airy function (Haberman [30, Chapter 14]):

Ai(x) =
1

2π

∫ ∞
−∞

exp(i(kx+ k3/3)) dk. (5.68)

Letting k = s/(3νt)1/3 so that dk = ds/(3νt)1/3, it follows from the definition of the inverse
Fourier transform that

F−1 {exp(iνtk3)} = 1

(3νt)
1
3

1
2π

∫∞
−∞ exp

(
i

(
s x

(3νt)
1
3

+ s3

3

))
ds

= 1

(3νt)
1
3

Ai

(
x

(3νt)
1
3

)
.

(5.69)

Thus the inverse Fourier transform of the initial condition in (5.66) is

F−1
{
U0(k) exp(iνtk3)

}
= u0(x− c0t) ?

1

(3νt)
1
3

Ai

(
x

(3νt)
1
3

)
, (5.70)

or equivalently,

F−1
{
U0(k) exp(iνtk3)

}
=

1

(3νt)
1
3

∫ ∞
−∞

u0(X − c0t)Ai

(
x−X
(3νt)

1
3

)
dX. (5.71)

This complicated formula explains how the initial condition for the linear KdV equation
evolves in time and space. It could serve as the basis for the asymptotic analysis of the
long-term evolution of an initial disturbance. Since the interest here is primarily in the
forced response of the system this idea is not pursued further.

Evolution of the Forced Terms

Consider now the computation of F−1
{
AF (k)

(
eiωt−e−iσ(k)t

i(σ(k)+ω)

)}
. Appealing to the convolu-

tion theorem, this expression can be simplified to

Af(x) ? F−1 {G1(k) +G2(k)} , (5.72)
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where

G1(k) =
exp(iωt)

i(σ(k) + ω)
, G2(k) = −exp(−iσ(k)t)

i(σ(k) + ω)
. (5.73)

Inverting these terms with the inverse Fourier transform requires careful consideration.
The number and nature of the real roots of σ(k) + ω = 0 determine the contour of inte-
gration required for the inverse transform. Since both G1(k) and G2(k) possess the same
singularities the same integration contour is used for both inversions.

The integration contour C needed for the inverse Fourier transforms of G1(k) and G2(k)
is determined by an analysis of the real poles of the integrand. These poles coincide with
the roots of σ(k) + ω = 0. With c0 > 0, ν > 0, and ω > 0, the polynomial σ(k) + ω could
have one, two, or three distinct real roots.

By expanding σ(k) + ω = −νk3 + c0k + ω, it is clear that the local extremes occur at
k = ±√c0/(3ν). Note that σ(0) + ω > 0 and σ′(0) > 0. Also, σ′(k) < 0 for k >

√
c0/(3ν)

and σ(k) → −∞ as k → ∞. It follows that σ(k) + ω must always have exactly one real
positive root. As ω is decreased from a large positive value, negative roots of σ(k) + ω
first occur when σ(k) + ω and σ′(k) have a common zero. This double root must occur at
k = −√c0/(3ν). The corresponding critical frequency ω = ωc, is given by

ωc =
2

3
c0

√
c0

3ν
. (5.74)

Physically, the critical cut-off frequency is significant because it corresponds to the forcing
frequency required to produce waves with zero group velocity. The exact nature of the
generated waves for ω > ωc and ω < ωc will become apparent through asymptotic analysis.
For ω values below this critical frequency σ(k) + ω has two distinct first-order negative
roots and a first-order positive root. The possible root configurations for σ(k) + ω = 0 are
summarized in the following three cases:

• Case 1: ω < ωc. Here σ(k)+ω has one positive real zero r1 and two distinct negative
zeros r2 and r3. These roots are ordered such that r3 < −

√
c0/(3ν) < r2 < 0 and√

c0/(3ν) < r1. Each zero is simple, and σ′(r3) < 0, σ′(r2) > 0, and σ′(r1) < 0.

• Case 2: ω = ωc. Here σ(k)+ω has one real positive zero denoted by r1 and satisfying
r1 >

√
c0/(3ν), and a double zero on the negative axis at r2 = −√c0/(3ν). The

group velocities of waves at these zeros satisfy σ′(r1) < 0, σ′(r2) = 0.

• Case 3: ω > ωc. Here σ(k)+ω has one real positive zero r1 satisfying r1 >
√
c0/(3ν),

and a pair of complex conjugate roots r2, r
∗
2. Roots are labeled so that Im(r2) > 0.

The group velocity at the real zero satisfies σ′(r1) < 0.
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Figure 5.2: Possible root configurations for σ(k) + ω. When ω < ωc (dashed
line) σ(k) intersects −ω three times. When ω = ωc (dash-dotted line) there are
two intersections. When ω > ωc (dotted line) there is just one root. This plot
is a magnified view around the origin of Figure 5.1.

A qualitative demonstration of these three cases is given in Figure 5.2. Clearly the regime
ω belongs to determines the number and nature of the zeros of σ(k)+ω. The group velocity
σ′(k) at each of the possible roots is also apparent upon consideration of the slopes of the
curves.

The above analysis, combined with the discussion in Section 5.1.2, is sufficient to de-
termine the integration contour C needed for the inverse Fourier transforms of G1(k) and
G2(k). In general, the contour C must traverse the real k-axis from −∞ to +∞. With
ω < ωc (Case 1), C must be deformed below the pole at k = r2 and above the poles at
k = r1 and k = r3. Case 2 is special because the pole at r2 corresponds to waves with
zero group velocity. With ω = ωc, the forcing produces waves that cannot propagate out
of the forcing region, therefore the contour C is deformed below the pole at r2 with the
understanding that the residue is not to be included in the analysis of traveling waves. The
contour is deformed above the pole at k = r1. When ω > ωc (Case 3), the contour C need
only be deformed above the pole at k = r1, since the poles at r2 and r∗2 lie off the real axis.

The integration contour C for the case 1 scenario is depicted in Figure 5.3. The inte-
gration contour lies along the real axis with deformations about the three poles along the
axis. As indicated by the arrowheads, the contour is traversed from left to right.

Computing the Inverse Transforms

In finding the exact inverse transforms of (5.72), it is first assumed that ω < ωc (Case 1).
The results for Cases 2 and 3 are discussed in the next section. First, consider g1(x, t) =
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Figure 5.3: The integration contour C when ω < ωc (Case 1). The poles at
r1, r2, r3 are marked by ‘x’ symbols. The direction of the contour is from left to
right, indicated by the arrowheads.

F−1{G1(k)}. With the integration contour C described above, g1(x, t) is defined by

g1(x, t) =
1

2π

∫
C

exp(i(kx+ ωt))

i(σ(k) + ω)
dk. (5.75)

This integral can be computed exactly using residue theory. When x ≥ 0, the contour of
integration can be closed with a semicircular arc in the upper half-plane. The integral along
the arc segment tends to zero by Jordan’s lemma. In this situation, the closed contour
only encloses the pole at k = r2, therefore when x ≥ 0:

g1(x, t) = −1

ν

exp(i(r2x+ ωt))

(r2 − r1)(r2 − r3)
. (5.76)

Similarly, when x < 0 the contour of integration C can be closed with a semicircular arc
in the lower half-plane. The integral along the arc is again zero, but the closed contour
contains the two poles at r1 and r3. Therefore when x < 0:

g1(x, t) =
1

ν

(
exp(i(r1x+ ωt))

(r1 − r2)(r1 − r3)
+

exp(i(r3x+ ωt))

(r3 − r1)(r3 − r2)

)
. (5.77)

Observe that these leftward-propagating waves must have a smaller amplitude than the
rightward propagating wave found above. This is because r3 < r2 < r1, so |r1 − r3| >
max (|r1 − r2|, |r2 − r3|). The general solution g1(x, t) can be found by combining the
above two results with use of the Heaviside function. That is,

g1(x, t) = − 1
ν

(
exp(i(r1x+ωt))
(r1−r2)(r1−r3)

+ exp(i(r2x+ωt))
(r2−r1)(r2−r3)

+ exp(i(r3x+ωt))
(r3−r1)(r3−r2)

)
H(x)

+ 1
ν

(
exp(i(r1x+ωt))
(r1−r2)(r1−r3)

+ exp(i(r3x+ωt))
(r3−r1)(r3−r2)

)
.

(5.78)
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Finding g2(x, t) = F−1{G2(k)} is more complicated. The exact expression for g2(x, t)
is

g2(x, t) = − 1

2π

∫
C

exp(i(kx− σ(k)t))

i(σ(k) + ω)
dk. (5.79)

The contour C cannot be closed with semicircular arcs in the upper or lower half-plane,
regardless of the sign of x. This is apparent because with k = R cos(θ) and R large, the
exponent behaves like | exp(i(kx− σ(k)t))| ≈ exp

(− νR3 sin(3θ)t
)
. This is only bounded

in the three sectors of the complex plane defined by 0 ≤ θ ≤ π/3, 2π/3 ≤ θ ≤ π, and
4π/3 ≤ θ ≤ 5π/3. An exact solution for g2(x, t) can still be found in terms of convolutions,
however. By the convolution theorem

g2(x, t) = −F−1

{
exp(−ic0kt)

i(σ(k) + ω)

}
? F−1{exp(iνk3t)}. (5.80)

The first term is closely related to g1 and the second term has already been discussed for
the evolution of the initial condition. So, it is possible to write

g2(x, t) = −g1(x− c0t, 0) ?
1

(3νt)
1
3

Ai

(
x

(3νt)
1
3

)
, (5.81)

where the convolution integral is with respect to x. The forced terms can now be combined
to yield the full solution.

Summary and Interpretation of the Exact Solution

Combining the results from above reveals the full solution to the forced linear KdV equa-
tion. The solution can be written as:

u(x, t) = u0(x− c0t) ?
1

(3νt)
1
3

Ai

(
x

(3νt)
1
3

)
+Af(x) ?

[
g1(x, t)− g1(x− c0t, 0) ? 1

(3νt)
1
3

Ai

(
x

(3νt)
1
3

)] (5.82)

where g1(x, t) is defined in equation (5.78). Though exact, (5.82) is cumbersome and
difficult to interpret. The primary difficulty lies in the presence of the convolutions. The
complicated nature of the Airy function, compounded by the complexity of its argument,
further obscures the understanding of how the solution evolves. The only part of (5.82)
that can be understood with basic intuition is the first component of the forced response,
f(x) ? g1(x, t). This term is just the convolution of the forcing shape with regular leftward
and rightward-propagating waves.
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The solution for more general forcing frequencies is now discussed. These expressions
for g1(x, t) and g2(x, t) are valid even when ω > ωc (Case 3). In that event, the poles
at r2, r3 in the above solution are replaced by the complex poles r2, r

∗
2. As a result, the

corresponding waves associated with these poles decay exponentially with space. The
leftward-propagating waves associated with the pole r1 do not decay in space, as r1 remains
real.

The solution when ω = ωc (Case 2) can also be inferred from the above calculations.
Away from the forcing region f(x) = 0, so only the leftward propagating waves with
wavenumber k = r1 can be found. These must lie to the left of the forcing region. Since
the forcing produces waves of zero group velocity, the solution in the forcing region grows
as more energy is transferred in, as there is no mechanism to extract it. Eventually, this
must lead to the breakdown of the linear model as the wave amplitude increases.

The complicated nature of the exact solution is a strong motivation for seeking an
approximate solution. A gain in the meaningfulness of the solution at the cost of a small
degree of accuracy is certainly an acceptable compromise.

5.2.4 Asymptotic Analysis

As mentioned above, the exact solution derived for the linear KdV equation is difficult
to interpret. A much more understandable, approximate, solution can be found through
asymptotic expansion techniques. The method of steepest descents is well-suited to the
analysis of the problem, and provides a useful solution in the limit as t→∞. The details
of the calculation are quite technical and can be found in Appendix D.1.

While the method of steepest descents could be used to study the evolution of the initial
condition for the KdV problem, the analysis in the appendix is limited to the approximation
of the forced response. In fact, the appendix only deals with the approximate inversion
of G2(k) because the form of g1(x, t) is so simple. To further facilitate the analysis, the
restriction f(x) = δ(x) is made, but in the next section the leading-order solution is verified
for a more general f(x).

The steepest descents analysis provides estimates for u(x, t) in different regimes de-
pending on the ratio x/t. When 0 < x/t < cF , where cF = c0 − 3νr2

2 is the group velocity
of the forced wave, the approximate solution takes the form:

u(x, t) ∼ −A
ν

exp
(
i(r2x+ ωt)

)
(r2 − r1)(r2 − r3)

+O

(
1√
t

)
. (5.83)

Likewise, when cF < x/t < c0 the approximate solution is O(t−1/2), and when x/t > c0,
the asymptotic solution is exponentially small in comparison with t−1/2.
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The asymptotic solution makes sense physically. After a large amount of time, a sta-
tionary observer located at x < cF t should expect to witness a wave field dominated by
the forced wave. In addition to the forced wave, the observer would measure transient
signals as a result of the impulsive forcing. If the observer were located in the interval
cF t < x < c0t, beyond the leading edge of the forced wave, only transients would be ob-
servable. Similarly, at a location x > c0t, no measurable signals could have reached the
observer.

In contrast with the exact solution described in Section 5.2.3, the approximate solution
(5.83) is simple to understand and useful. The amplitude, phase, and frequency of the
forced waves are immediately obvious, and the decay rate of transients is apparent. In
the next section the leading-order solution when x/t < cF is verified using a numerical
comparison.

5.2.5 Verifying the Asymptotic Solution

0 100 200 300 400 500 600 700 800 900 1000
−40

−20
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40
KdV Numerical Solution, t= 500

x

u(
x,

t)

Figure 5.4: The numerical solution to the KdV equation. Even after just five
forcing periods a regular wave train is visible in the main body of the wave
packet. The forcing center lies at x = 200.

In this section the validity of the leading-order component of the asymptotic solution
is confirmed by direct comparison against a numerical solution. The numerical solution
used for comparison is computed by applying the inverse FFT to equation (5.66). This is
used for comparison instead of the exact solution simply because it is easier to construct.
All quantities described below and used in the simulation are dimensionless.

For the comparison shown here, the KdV parameters c0 = 1 and ν = 1/2. A unit
forcing amplitude is used, and the forcing shape f(x) and its Fourier transform F (k) are

145



given by

f(x) = exp(−a(x− x0)2), F (k) =

√
π

a
exp(−ikx0) exp

(
−k

2

4a

)
. (5.84)

with a = 1/400 and x0 = L/5. The forcing function satisfies |f(x| < 10−6 for x > 274.6
and x < 125.6. The forcing frequency is taken to be ω = ωc/8 ≈ 0.068, corresponding
to a period of T ≈ 92.3. The wavenumber of the rightward-propagating forced wave is
then r2 ≈ −0.0682, corresponding to a wavelength of λ ≈ 92.1 and a group velocity of
cF ≈ 0.99.

The numerical solution is plotted in Figure 5.4 at t = 500. Note the regular shape of
the waves in the main body of the wave train. At t = 500, about 5.4 forcing periods have
elapsed. Even with so few waves the regular shape of the numerical solution suggests the
asymptotic approximation could provide an accurate description.

The discussion in Section 5.1.3, combined with the above description of f(x), suggests
that at t = 500 the leading-order asymptotic approximation

ua(x, t) ∼ Re

{
−AF (r2)

ν

exp
(
i(r2x+ ωt)

)
(r2 − r1)(r2 − r3)

}
+O(t−1/2) (5.85)

should be accurate in the interval 275 < x < 625. This is apparent in Figure 5.5. In the top
subplot the asymptotic and numerical solution appear to agree very well in the expected
interval. This is further confirmed in the bottom subplot, where the absolute difference is
plotted and it is clear that the two solutions agree to machine precision in the main body
of the wave train. In this instance the asymptotic solution is an excellent representation
of the exact solution in the interval where it is valid. The accuracy of the solution is many
orders of magnitude better than the predicted O(t−1/2).

5.3 The Forced Linear BBM Equation

The KdV equation models the dispersive behaviour of long waves, but it exhibits unde-
sirable behaviour for shorter waves. In particular, as the wavelength decreases the phase
speed and group velocity becomes unbounded. This property makes simulations involving
the KdV equation difficult, and led to the development of alternative dispersive models.
One such model, known as the Benjamin-Bona-Mahony (BBM) equation [7], is derived
from the KdV equation by considering the leading order approximation

ux = − 1

c0

ut. (5.86)
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Figure 5.5: In the top subplot, the numerical solution (solid line) and asymptotic
solution (dashed line) for the KdV equation are plotted. The curves are only
visibly different near the forcing region at x = 200, and near the leading edge
of the wave at x = 700. In the bottom subplot, the absolute difference between
the numerical and asymptotic solutions, denoted by |ua − un| is plotted in log
scale. The difference is on the order of machine precision in the center of the
wave train.
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Using this approximation in the dispersive term of the forced KdV equation leads to the
forced linear BBM equation:

ut + c0ux − µuxxt = A exp(iωt)δ(x),
−∞ < x <∞, t ≥ 0,

(5.87)

with initial condition
u(x, 0) = u0(x), (5.88)

and far-field conditions
u(x, t)→ 0 as x→ ±∞,
ux(x, t)→ 0 as x→ ±∞. (5.89)

where µ = ν/c0 > 0. As shown below, this modified equation has favourable properties
in the short-wave limit. However, the introduction of the term uxxt does complicate the
Fourier analysis.

Unlike the analysis for the KdV problem, only a point source forcing function is studied.
The implications for more general forcing terms are considered later. The general solution
process followed here is very similar to that taken for the impulsively-forced KdV problem.
After discussing the group velocity and dispersion relation, the solution is found in Fourier
space. The difficulties involved in inverting the spectral solution are described, and an
asymptotic solution is then calculated and verified numerically.

5.3.1 The Dispersion Relation and Group Velocity

The dispersion relation for the BBM equation is found by substituting u = exp(i(kx−σt))
into the homogeneous problem. The result is

σ(k) =
c0k

1 + µk2
. (5.90)

The group velocity for the BBM equation, cg = dσ/dk is given by

cg = c0
1− µk2

(1 + µk2)2
. (5.91)

The group velocity is zero at wavenumbers k = ±1/
√
µ. For |k| < 1/

√
µ, the group velocity

is positive, and for |k| > 1/
√
µ the group velocity is negative. The group velocity achieves

extreme values when dcg/dk = 0. Since

d

dk
cg(k) = 2c0µk

µk2 − 3

(1 + µk2)3
, (5.92)
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the maximum group velocity occurs at k = 0, with cg(0) = c0. The minimum group

velocity occurs at wavenumbers k = ±√3/µ, with cg(±
√

3/µ) = −c0/8. Like the group
velocity, the phase speed is bounded above by c0. This is in contrast to the KdV problem
where the group velocity and phase speed are unbounded in the limit k →∞.

In the top subplot of Figure 5.6 the BBM dispersion relation is plotted. The group
velocity cg(k) is plotted against wavenumber in the bottom subplot. Clearly visible are
regions where the group velocity is positive and negative. For the plot c0 = 1, and µ = 1/2
are used.
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Figure 5.6: The dispersion relation (top subplot) and group velocity (bottom
subplot) plotted against wavenumber k for the BBM equation.

5.3.2 The Spectral Solution

It is relatively simple to find a solution for the BBM problem in Fourier space. Defin-
ing U(k, t) = F{u(x, t)}, the Fourier transform of (5.87) reveals the ordinary differential
equation

Ut(k, t) + σ(k)U(k, t) = A
eiωt

1 + µk2
, (5.93)

with the initial condition U(k, 0) = U0(k) = F{u0(x)}. This first-order equation can be
solved using the integrating factor exp(iσ(k)t). The result is

U(k, t) = U0(k) exp(−iσ(k)t) + A
1

1 + µk2

(
exp(iωt)

i(σ(k) + ω)
− exp(−iσ(k)t)

i(σ(k) + ω)

)
. (5.94)

This is the solution to (5.87) in Fourier space. This spectral solution is important, especially
for use with numerical approximations, but it does not clearly reveal the behaviour of the
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forced BBM waves. To determine the physical characteristics of the generated waves a
transformation into physical coordinates is needed.

5.3.3 The Physical Solution

Determining the solution to (5.87) in physical space can, in theory, be achieved by applying
the inverse Fourier transform to (5.94). While this is a suitable approach when numerical
inverse Fourier transforms are used, an analytical solution may be impossible to find.

Finding the evolution of an initial profile under the BBM equation is harder than for
the KdV equation. This is because exp(−iσ(k)t) does not appear to have a simple inverse
in terms of special functions. Since the evolution of forced waves is of primary interest,
the assumption u0(x) = 0 is made for the remainder of the analysis. The asymptotic
techniques used to study the forced response could be applied to determine the evolution
of the initial condition, but that problem is not pursued in this chapter.
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k

BBM Root Configurations

σ(
k)

 

 
ω<ω

c

ω=ω
c

ω>ω
c

Figure 5.7: Possible root configurations of σ(k) + ω are determined by the
intersections of σ(k), the solid line, with the horizontal lines. When ω < ωc

two negative roots exist, when ω = ωc one real negative root exists, and when
ω > ωc no real roots are present.

Finding the integration contour needed for the inverse Fourier transform requires an
analysis of the real poles of the integrand. Returning to equation (5.94), consider the
polynomial denominator (1 + µk2)(σ(k) + ω), which has the same real roots as σ(k) + ω.
Based on the values of ω, c0, and µ the poles of the integrand, lying at the roots of (1 +
µk2)(σ(k) + ω) = 0, differ qualitatively. These roots are located at

k = − c0

2µω
± c0

2µω

√
1− 4ω2µ

c2
0

. (5.95)
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Considering the discriminant, the critical frequency

ωc =
c0

2
√
µ

(5.96)

is apparent. This suggests that there are three important cases for the roots of σ(k)+ω = 0,
they are:

• Case 1: |ω| < ωc. Two distinct real roots k = r1 and k = r2 exist with r2 < −1/
√
µ <

r1 < 0. The group velocities at these wavenumbers satisfy cg(r1) > 0, and cg(r2) < 0.

• Case 2: |ω| = ωc. A single real root exists at k = r1. The group velocity at this
wavenumber is cg(r1) = 0.

• Case 3: |ω| > ωc. Two complex roots exist at k = r1 and k = r∗1. The corresponding
poles do not lie on the real k-axis.

In Figure 5.7 the three possible root configurations for σ(k) + ω = 0 are illustrated. The
group velocities of the corresponding poles are evident from the slopes of the curves. The
BBM root configurations are different from those of the KdV equation, where at least one
real root is always present.
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Figure 5.8: The integration contour C for the BBM problem. The contour is
directed from left to right.

Based on the discussion in Section 5.1.2 and the description of the group velocities
at the poles, the integration contour C needed for the inverse Fourier transform can be
determined. When |ω| < ωc, the contour C must traverse the real axis with a deformation
above the pole at r2 and below the pole at r1. This contour is illustrated in Figure 5.8.
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When |ω| = ωc, the pole at r1 has zero group velocity so it is not possible to determine
how to deform the contour around it. However, since these forced waves cannot escape the
forcing region the integration contour can be made to pass through the pole provided the
residue contribution is ignored. Finally, when |ω| > ωc, the two poles lie off the real axis
so no contour deformations are required. For the remainder of this discussion, the most
physically relevant case where |ω| < ωc is assumed, remarks on the other two cases are
given later.

With zero initial conditions and the above definition of C, the physical space solution
can be expressed as

u(x, t) =
A

2πiµω

(∫
C

ei(kx+ωt)

(k − r1)(k − r2)
dk −

∫
C

ei(kx−σ(k)t)

(k − r1)(k − r2)
dk

)
. (5.97)

The first integral in (5.97) can be computed exactly. When x ≥ 0, C can be closed
with a semicircular arc in the upper half-plane. When x < 0, C can be closed with a
semicircular arc in the lower half-plane. Jordan’s lemma dictates that the contribution
from the semicircular arcs is zero in both cases as the radius tends to infinity. Since the
integrand is otherwise analytic, there will only be residue contributions from the poles at
r1 when x ≥ 0 and r2 when x < 0. Thus∫

C

ei(kx+ωt)

(k − r1)(k − r2)
dk =

{
2πi exp(i(r1x+ωt))

r1−r2 when x ≥ 0

2πi exp(i(r2x+ωt))
r1−r2 when x < 0.

(5.98)

In order to evaluate
∫
C

exp(i(kx− σ(k)t))/((k− k+)(k− k−)) dk observe that for fixed
t, c0tk/(1 + µk2))→ 0 as |k| → ∞. Therefore, whether the contour C should be closed in
the upper or lower half-plane depends entirely on the sign of x. When x ≥ 0, C can be
closed with a semicircular arc in the upper half-plane and when x < 0 it can be closed with
a semicircular arc in the lower half-plane. Jordan’s lemma ensures that the integrals along
the semicircular arcs are zero. With the contour closed in the upper half-plane, residue
contributions from the essential singularity at k = i/

√
µ and the simple pole at r1 must be

included. When the contour is closed in the lower half-plane, the essential singularity at
−i/√µ and pole at r2 contribute. Therefore when x ≥ 0:∫

C

ei(kx−σ(k)t)

(k − r1)(k − r2)
dk = 2πi

exp (i(r1x+ ωt))

r1 − r2

+ 2πiRes(i/
√
µ), (5.99)

and when x < 0:∫
C

ei(kx−σ(k)t)

(k − r1)(k − r2)
dk = −2πi

exp (i(r2x+ ωt))

r2 − r1

− 2πiRes(−i/√µ), (5.100)
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where Res(±i/√µ) is the residue of the integrand evaluated at k = ±i/√µ. Substituting
these results back into (5.97) and using the definition of the residue reveals that, when
x ≥ 0

u(x, t) = − A

2πiµω

∮
C+

exp(i(kx− σ(k)t))

(k − r1)(k − r2)
dk, (5.101)

where C+ is the small circular contour, oriented counter-clockwise, enclosing i/
√
µ but not

r1 or r2. Figure 5.9 depicts the circular contour C+. Similarly, when x < 0

u(x, t) =
A

2πiµω

∮
C−

exp(i(kx− σ(k)t))

(k − r1)(k − r2)
dk, (5.102)

where C− is the small circular contour, oriented counter-clockwise, centered around−i/√µ,
but not enclosing r1 or r2.
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Figure 5.9: The integration contour C+ for the BBM problem. The contour is
directed in counter-clockwise fashion.

At this point, exactly solving for u(x, t) requires direct evaluation of the residues of the
integrand at the essential singularities k = ±i/√µ. This is no easy task, and motivates
the decision to apply asymptotic techniques and only consider the limit t→∞.

5.3.4 Asymptotic Analysis

Equations (5.101) and (5.102) are exact expressions for u(x, t), valid for any positive t in
their respective range of x values. Exactly how these solutions behave is unclear because
of the difficult problem of evaluating the residues at the essential singularities of the inte-
grands. Headway can be made by applying the method of steepest descents to approximate
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the residue at the essential singularities, and ultimately u(x, t) in the large t limit. While
the analysis is similar for both cases, only x ≥ 0 is discussed here. It is further assumed
that |ω| < ωc, since this range of forcing frequencies leads to traveling waves.

The analysis for the BBM problem is substantially harder than that for the KdV prob-
lem, owing to the more complicated integrand. The full details are presented in Appendix
D.2 for the interested reader. The steepest descents analysis yields different estimates for
the solution depending on the ratio x/t as t → ∞. Letting cF = σ′(r1) denote the group
velocity of the forced wave, the appendix shows that if 0 < x/t < cF then

u(x, t) ∼ A

µω

exp(i(r1x+ ωt))

r1 − r2

+O

(
1√
t

)
(5.103)

as t→∞. Similarly, when cF < x/t < c0, the leading order solution decays like t−1/2, and
for x/t > c0 the asymptotic solution is exponentially small in comparison with t−1/2.

The asymptotic solution can be justified with physical reasoning. At a large value of
t, a stationary observer located at a position x < cF t should expect to see a wave field
dominated by the forced wave. Similarly, an observer situated in the interval cF t < x < c0t
would lie beyond the leading edge of the forced wave, and could only expect to observe
transients. Finally, a stationary observer located at x > c0t lies beyond the maximum
distance reached by waves in the system, and should not observe any disturbances.

The asymptotic analysis presented in the appendix also extends to the case |ω| ≥ ωc
with ease. When |ω| = ωc, the group velocity of the forced wave is zero, so at any distance
from the forcing region only transient waves are observable. When |ω| > ωc the forced
waves are evanescent, as they have a complex wavenumber resulting in exponential decay
in space. For a stationary observers located sufficiently far from the forcing region, only
decaying transients are observable.

5.3.5 Verifying the Asymptotic Solution

In this section, the validity of the asymptotic solution is confirmed through comparisons
with numerical simulations. Forcing with a δ-function poses numerical challenges that are
not addressed here. Instead, guided by the discussion in Section 5.1.3, a continuous forcing
function is used. The difficulties of working with an infinite domain are circumvented by
using a periodic domain and stopping simulations before waves reach the boundary. To
simplify matters, all variables described here are dimensionless.

Consider the forced BBM equation with µ = 1/3, ω = 1/3, c0 = 1 (note |ω| < ωc). The
group velocity of the rightward-propagating forced wave is cF ≈ 0.89, with corresponding
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Figure 5.10: The numerical solution to the BBM equation. Notice how the solu-
tion involves a very regular wave train, except near the forcing region (centered
at x = 250), and the leading edge.

wavenumber r1 ≈ −0.347. The computational domain is taken to be periodic with length
L = 1000. The horizontal forcing shape

f(x) = exp(−a(x− x0)2) (5.104)

with a = 1/200, x0 = L/4 is used. For these parameters, |f(x)| < 10−6 for x < 197 or
x > 303. In Fourier space, the forcing function takes the form

F (k) =

√
π

a
exp(−ikx0) exp(−k

2

4a
). (5.105)

The unit-amplitude temporal forcing dependence cos(ωt) is used, so for comparison only
the real part of the asymptotic solution found above is taken. According to the discussion
in Section 5.1.3 and the preceding analysis, the leading-order solution to the problem is

u(x, t) ∼ Re

{
A

F (r1)

µω(r1 − r2)
exp(i(r1x+ ωt))

}
+O(t−1/2), (5.106)

and it can be expected to be valid in the interval 300 < x < cF t+ 200 as t→∞.

The numerical method used to solve the BBM equation is based on the FFT and is
similar to that used in the linear Matlab solver described in Section 3.2.1. In the plots
given here, data is presented at t = 500, corresponding to about 26.5 forcing periods. In
Figure 5.10 the numerical solution to the forced BBM problem is plotted. Clearly evident
is a regular wave train sandwiched between a transient leading edge and the forcing region.
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Figure 5.11: In the top subplot, the numerical solution (solid line) and asymp-
totic solution (dashed line) are plotted. The curves are indistinguishable near
the edge of the forcing region. In the bottom subplot, the absolute difference
between the numerical and asymptotic solutions, denoted by |un−ua| is plotted
in log scale.
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In Figure 5.11 the difference between the numerical and leading order asymptotic solution
are plotted at t = 500. Note the logarithmic scale of the vertical axis. The leading order
asymptotic solution matches the numerical solution to machine precision away from the
forcing region and leading edge of the wave train. Even at the edge of the forcing region,
near x = 300, the solutions agree to roughly 10−5. This is somewhat remarkable as the
error in the asymptotic solution is O(t−1/2). The two solutions agree to a much greater
degree of accuracy than predicted by the analysis, even at the relatively small time value
shown.

5.4 The Forced Linear IGW Equation

In Chapter 2, an evolution equation for the streamfunction for internal gravity waves
(IGW) was derived. The basic assumptions of the Boussinesq approximation and rigid lids
were made. In this section the additional restriction of a constant buoyancy frequency is
also assumed. The impulsively-forced, oscillatory source problem is then:

∇2ψtt +N2ψxx = A exp(iωt)δ(x)h(z),
−∞ < x <∞, 0 ≤ z ≤ 1, t ≥ 0,

(5.107)

subject to initial conditions
ψ(x, z, 0) = 0,
ψt(x, z, 0) = 0,

(5.108)

and far-field conditions
ψ(x, 0, t) = 0, ψ(x, 1, t) = 0,
ψ(x, z, t)→ 0 as x→ ±∞. (5.109)

The Laplacian operator is defined by ∇2 = ∂2/∂x2 + ∂2/∂z2.

The related source problem for an unbounded fluid with a spherically symmetric source
has been studied by Lighthill [45] and Voisin [71]. In addition, Duffy [22] presents an
exact Green’s function solution for the problem with a point source in time and space.
A comparison with the exact solution presented by Duffy is given in Section 5.4.6. The
approach used here is quite different, however, and follows the same strategy that was
applied to the KdV and BBM equations.

5.4.1 The Dispersion Relation and Group Velocity

The dispersion relation for the IGW equation is found by substituting ψ(x, z, t) = exp(i(kx−
σt))g(z) into the homogeneous version of (5.107). The result is the eigenvalue problem

g′′(z) + k2

(
N2

σ2
− 1

)
g(z) = 0, (5.110)

157



with boundary conditions g(0) = 0 = g(1). This is a simplified form of the problem
discussed at great length in Section 2.3.

Since N2(z) is constant, the eigenvalue problem is exactly solvable, and the nth eigen-
function is given by gn(z) = sin(nπz) and

σ2
n(k) =

k2N2

k2 + n2π2
. (5.111)

There are two branches of the dispersion relation for a mode-n wave, corresponding to
leftward and rightward-propagating waves. This introduces a complication not seen in the
analysis of the KdV and BBM equations. The dispersion relation is plotted in the top
subplot of Figure 5.12. The group velocity is defined by

dσn(k)

dk
= ± n2π2N

(k2 + n2π2)3/2
, (5.112)

where the sign determined by the branch of σn. Long waves (k → 0) have the fastest group
velocity, while the short wave limit gives the slowest waves. These ideas are evident in the
bottom subplot of Figure 5.12. In the remainder of this analysis σn(k) is taken to be the
positive root of (5.111).
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Figure 5.12: The dispersion relation (top subplot) and group velocity (bottom
subplot) for the first three vertical modes of the IGW equation. Modes one,
two, and three are drawn with the solid, dashed, and dotted lines, respectively.
Only one branch of the dispersion relation is plotted.
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5.4.2 The Spectral Solution

The natural approach to solving the problem with Fourier transforms is to first decompose
ψ(x, z, t) into vertical modes. That is, let

ψ(x, z, t) =
∞∑
n=1

ψn(x, t) sin(nπz). (5.113)

The vertically-varying term in the right-hand side of (5.107) can be decomposed as

h(z) =
∞∑
n=1

hn sin(nπz), where hn =

∫ 1

0

h(z) sin(nπz) dz. (5.114)

Substituting the series (5.113) into (5.107), projecting onto the nth vertical mode, then
taking the Fourier transform reveals

∂2

∂t2
Ψn(k, t) + σ2

n(k)Ψn(k, t) = −σ
2
n(k)

k2
Aeiωthn, (5.115)

where Ψn(k, t) = F{ψn(x, t)}. This is the evolution equation for the nth vertical mode
of the streamfunction in Fourier space. The initial conditions specified in (5.107) imply
Ψn(k, 0) = ∂tΨn(k, 0) = 0, so solving the ordinary differential equation is straightforward.
The result is:

Ψn(k, t) = Aσnhn
2k2(σn−ω)

exp(iσnt) + Aσnhn
2k2(σn+ω)

exp(−iσnt)
− Aσ2

nhn
k2(σ2

n−ω2)
exp(iωt).

(5.116)

Equation (5.116) is the exact solution to the IGW problem (5.107) in Fourier space. Com-
paring against the Fourier space solutions for the BBM and KdV equations, the presence
of the extra term is clearly a result of the higher-order derivatives and initial conditions.

5.4.3 The Physical Solution

The solution ψ(x, t) is found by summing the different vertical mode contributions. Each
of these contributions is found by inverting the corresponding Fourier solution (5.116). The
physical solution of the mode-n streamfunction is

ψn(x, t) = 1
2π

∫
C1

Aσnhn
2k2(σn−ω)

exp
(
i(kx+ σnt)

)
dk

+ 1
2π

∫
C2

Aσnhn
2k2(σn+ω)

exp
(
i(kx− σnt)

)
dk

− 1
2π

∫
C3

Aσ2
nhn

k2(σ2
n−ω2)

exp
(
i(kx+ ωt)

)
dk

= I1 + I2 + I3,

(5.117)
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where the contours C1, C2, and C3 must be determined from an analysis of the poles of
the integrands using the discussion in Section 5.1.2.

The integrands of I1 and I2 posses branch cuts and essential singularities owing to the
presence of the terms exp(±iσn(k)t). The essential singularities lie at k = ±inπ, and the
branch cuts are chosen to lie along the imaginary axis directed away from the origin. While
these features play a critical role in the end result, they do not affect the form of the inverse
Fourier transform contours.

Considering equation (5.117), the integrands also appear to have poles wherever σn(k)±
ω = 0. In addition, a removable second-order pole at k = 0 appears in each integrand. For
I3 it is easy to see that the pole is removable because σn(0) = 0 and σ′n(0) is bounded. To
show that the pole is removable for I1 and I2, return to expression (5.116) and add the
first two terms using the common denominator σ2

n(k)− ω2 to find

Ψn(k, t) = Ahn
2(σ2

n−ω2)
σ2
n

k2 (exp(iσnt) + exp(−iσnt))
+ Ahn

2(σ2
n−ω2)

ωσn
k2 (exp(iσnt)− exp(−iσnt))

− Aσ2
nhn

k2(σ2
n−ω2)

exp(iωt).

(5.118)

The term on the first line of (5.118) involves the factor σ2
n(k)/k2, which has a remov-

able singularity at k = 0. The second line of (5.118) has the factor σn(k) · (exp(iσnt) −
exp(−iσnt))/k2. Again, since σn(0) = 0, the singularity is removable. This discussion
shows that the inversion contours need not be deformed about k = 0, and no residues from
that point contribute in the computation of ψn(x, t).

In (5.117), the poles stemming from the roots of σn(k)± ω = 0 require special consid-
eration. Depending on the forcing frequency, these poles may be real or complex. Since
−N < σn(k) < N , the natural critical forcing frequency is

ωc = N. (5.119)

Unlike the previous examples, no finite value of k will satisfy the equation σn(k) = ωc,
therefore only two cases are necessary.

• Case 1: |ω| < ωc. A single root for the equations σn(k) + ω = 0 and σn(k) − ω = 0
exists. With

r =
nπω√
N2 − ω2

. (5.120)

it follows that σn(−r) + ω = 0 and σn(r)− ω = 0.

• Case 2: |ω| ≥ ωc. No real roots exist for the equations σn(k) ± ω = 0. Two purely
imaginary roots do exist, but they can only give rise to spatially decaying (evanescent)
waves.
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Since the primary focus of this study is understanding the traveling waves produced
by the forcing, only Case 1 is considered. The group velocity σ′n(k) is strictly positive,
therefore the integration contours used must be deformed below the pole at k = −r. To
understand how to deform the contour about the root of σn(k)−ω = 0, a modified version of
the approaches outlined in Section 5.1.2 must be used. It is simple to show with Lighthill’s
approach that since σ′n(r) > 0, the integration contours must be deformed above the pole
at k = r.
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Figure 5.13: The integration contour C3 in the complex k−plane.The poles at
k = ±r are marked by ‘x’ symbols. The contour traverses the entire real axis.

The results of this discussion lead to the inversion contour C3 depicted in Figure 5.13.
This contour traverses the real axis with deformations above k = r and below k = −r.
The integration contours C1 and C2 follow immediately. Since I1 has no pole at k = −r,
the contour is only deformed above k = r. Likewise, the contour C2 traverses the real line
with a deformation below k = −r.

While expression (5.116) is suitable for use in the numerical inversion of the Fourier
transform, the actual solution (5.117) involves terms that are difficult to evaluate analyti-
cally. Certainly I3 can be computed, and for x ≥ 0

I3 =
iAhnω

2r2σ′n(−r) exp(−irx+ iωt). (5.121)

The presence of essential singularities and branch cuts in I1 and I2 make their inversion
difficult. Some simplifications can be made by expressing I1 and I2 in an alternative form.
Using Jordan’s lemma, integration along quarter-circular arcs at large radius yield no net
contributions. It follows that I1 and I2 can be expressed in terms of a simpler branch cut
integral. Let C0 denote the contour that traverses the imaginary axis in the first quadrant
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from +i∞ to inπ, encircles the branch point at inπ and proceeds up the imaginary axis
on the other side of the branch cut to +i∞. The contour C0 is illustrated in Figure 5.14,
and it can be used to derive the expressions:

I1 = −Ahn
4π

∫
C0

σn(k) exp(i(kx+ σnt))

k2(σn(k)− ω)
dk, (5.122)

and
I2 = − iAhnω

2r2σ′n(−r) exp(−irx+ iωt))

−Ahn
4π

∫
C0

σn(k) exp(i(kx−σnt))
k2(σn(k)+ω)

dk.
(5.123)
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Figure 5.14: The integration contour C0 in the complex k−plane. The branch
cut along the imaginary axis is marked by a dashed line emanating from inπ
and continues to +i∞. The integration contour is marked by the solid line, and
traversed in the direction marked by the arrowheads.

Using these expressions for I1 and I2, and the definition of ψn(x, t) from equation
(5.117), it is possible to write

ψn(x, t) = −Ahn
4π

∫
C0

σn(k) exp(i(kx+σnt))
k2(σn(k)−ω)

dk − Ahn
4π

∫
C0

σn(k) exp(i(kx−σnt))
k2(σn(k)+ω)

dk,

= Î1 + Î2.
(5.124)

This is an exact expression, but it offers little physical insight into the nature of the IGW
solution. It is not clear what the frequency, phase, or amplitude of waves emanating from
the forcing region might be. However, the form of the solution in (5.124) is a sound starting
point for asymptotic analysis, as discussed in the next section.
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5.4.4 Asymptotic Analysis

The method of steepest descents can be applied to approximate the solution to ψn(x, t) for
x ≥ 0 in the limit as t → ∞. The method must be applied to both Î1 and Î2 separately.
The details are rather involved because of the branch cuts that arise from the dispersion
relation, and the interested reader is referred to Appendix D.3 for the full calculations.
Here only the important points are discussed.

The analysis in the appendix shows that Î1 is sub-dominant to Î2. As t → ∞, the
estimation of the dominant term Î2 requires consideration of several cases depending on
the ratio x/t. The case of most physical interest occurs when x/t < cF , where cF = σ′n(r)
is the group velocity of the forced wave. In that situation, the asymptotic solution takes
the form:

ψn(x, t) ∼ −A hnω

2r2σ′n(−r) exp(−i(rx− ωt) + iπ/2) +O(t−1/2). (5.125)

Letting cL = N/(nπ) denote the maximum group velocity for a mode-n wave (achieved
in the long-wave limit), it is shown in the appendix that if cF < x/t < cL, the dominant
contribution to the streamfunction decays like t−1/2. This decaying term is not surpris-
ing, the impulsively forced system should generate transients that must diminish in time.
Finally, when x/t > cL the analysis shows that the approximate streamfunction solution
must be small beyond all orders in comparison with t−1/2. This is also physically plausible,
as waves could not reach an observer at that distance in t units of time.

The above approximation describes the behaviour of the mode-n streamfunction. The
full streamfunction is found by summing the asymptotic contributions. That is,

ψ(x, t) ∼
∞∑
n=1

ψn(x, t). (5.126)

Typically the forcing function of interest only produces one, or at most a few, vertical
modes. In the verification of the solution demonstrated below, only the mode-1 contribu-
tion is considered.

5.4.5 Verifying the Asymptotic Solution

A closed-form solution to the forced IGW equation is not known so verification of the
asymptotic solution requires comparison with a numerical solution. The numerical solution
presented here is found by direct application of Matlab’s inverse FFT to the spectral
solution (5.116), with special treatment for k = 0. The numerical solution is found for
a periodic domain, and can only be compared against the asymptotic solution provided
waves are not near the boundary and the forcing region decays sufficiently quickly to zero.
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Figure 5.15: Numerical solution to the IGW equations for ψ1(x, t). Only a
subset of the right half of the domain is shown. Note the uniform wave train in
the interior of the wave packet.

The dimensionless computational domain is taken to be −40 ≤ x ≤ 40. The domain
depth is set to H = 0.2 so that the dispersion relation is of the form σ2

n = k2N2/(k2 +
n2π2/H2). The buoyancy frequency is set to N2 = 1, and the projection term hn = 1 is
fixed. The forcing function

f(x) = −2a(x− x0) exp(−a(x− x0)2) (5.127)

is used with a = 12.5 and x0 = 0. With these choices, |f(x)| ≤ 10−6 whenever |x| ≥ 1.2.
Since this forcing function is just the derivative of the Gaussian, its Fourier transform is
simply

F (k) = ik

√
π

a
exp(−ikx0) exp

(
−k

2

4a

)
. (5.128)

The unit-amplitude temporal forcing component cos(ωt+π/4) is used with dimension-
less frequency ω = 2π/20. This is achieved by setting A = exp(iπ/4) and taking the
real part of the final solution for both the numerical and asymptotic computations. The
wavenumber of the forced wave is −r ≈ −5.2 and its group velocity is cF ≈ 0.054. The
numerical solution ψ1(x, t) for x ≥ 0 at t = 400, corresponding to 20 forcing periods, is
plotted in Figure 5.15. A regular wave train is visible in the interior of the wave packet,
with transient regions at the far left and leading right edge of the signal. The forced wave
is predicted to travel a distance of 21.8 units.

With these parameters, and using the discussion in Section 5.1.3, the leading-order
asymptotic solution is given by:

ψa1 ∼ Re

{
F (−r) ω

2r2cF
exp(iπ/4) exp(−i(rx− ωt) + iπ/2)

}
+O(t−1/2). (5.129)

Since the forcing amplitude is negligible outside |x| < 1.2, the discussion in Section 5.1.3
suggests that the asymptotic solution should be a good approximation in the interval
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Figure 5.16: In the top subplot the numerical solution ψn
1 (solid line) and asymp-

totic solution ψa
1 (dashed line) are displayed. Visible differences between the

solutions only occur at the far left and right edges of the plot. The absolute
difference between the two solutions is plotted in the bottom subplot. The two
solutions are very similar away from the forcing region and leading-edge region
of the wave train.

1.2 ≤ x ≤ 20.6. A direct comparison between the asymptotic solution, denoted by ψa1 and
the numerical solution ψn1 is shown in Figure 5.16. In the top subplot, the two waves are
plotted together. Differences between the two curves are only noticeable in the forcing
region (near x = 0) and towards the right edge of the plot. In the bottom subplot, the
absolute difference between the two approximate solutions is plotted with log-scale on the
vertical axis. The error is small in comparison with the signal amplitudes.

This simple experiment suggests that the predicted amplitude, phase, and frequency
of the waves described by the leading-order asymptotic solution provide an accurate de-
scription of the forced waves being approximated. The comparison is being made against
a numerical solution that is not an exact solution to the IGW equation, so the relatively
minor difference between it and the asymptotic solution is not a major concern. The ac-
curacy witnessed in the approximation for the KdV and BBM equation is not reproduced
here, but the asymptotic and numerical solutions are still in strong agreement.
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5.4.6 Comparison with an Exact Solution

An exact representation for the Green’s function for the IGW equation is known. This is
reported by Duffy [22, pages 165-167] and the references therein. The Green’s function in
question satisfies the equation:

∂tt∇2g +N2gxx = δ(x− ξ)δ(z − ζ)δ(t− τ), (5.130)

where g = g(x, z, t|ξ, ζ, τ) and −∞ < x, ξ < ∞, 0 < z, ζ < L and t, τ > 0. The Green’s
function satisfies the condition g(x, 0, t|ξ, ζ, τ) = g(x, L, t|ξ, ζ, τ) = 0 and initial conditions
g(x, z, 0|ξ, ζ, τ) = gt(x, z, 0|ξ, ζ, τ) = 0. The solution, after correcting a small error, takes
the form

g(x, z, t|ξ, ζ, τ) = H(t−τ)
4Nπ2

∫ π/2

0

sin[N(t−τ) sin(ϕ)]
sin(ϕ)

× log
[∣∣∣ cos(η)−cos(π(z−ζ)/L)

cos(η)−cos(π(z+ζ)/L)

∣∣∣] dϕ, (5.131)

where η = |x − ξ|π tan(ϕ)/L. While arriving at this solution is certainly an admirable
feat of algebra, the usefulness of the overall result is questionable. To make matters
more complicated, studying the response of the system to an oscillatory source requires an
additional convolution integral.

Expression (5.131) is difficult to interpret in the limit of large x or t values, especially
for an oscillatory source. It is unclear how an asymptotic expansion of the exact form would
be undertaken. Compare this with the simple approximate solution given by (5.125). The
solution found by steepest descents is much more insightful as to how waves are generated
and propagate; it gives the amplitude, frequency, and phase of the dominant wave train
and specifies how transients decay. The verification of the approximate solution in Section
5.4.5 strengthens the argument that the leading-order approximate solution is adequate.

5.5 Discussion

In this chapter a sequence of forced wave equations has been studied with asymptotic
techniques. In this section some of the difficulties involved in extending steepest descents
analysis to variable coefficient problems are discussed. In addition, causality principles are
considered for the equations under study.

5.5.1 Difficulties Extending the IGW Analysis

In this section the possibility of applying steepest descents analysis to the linear IGW
equations for nonconstant N2(z) is considered. It is shown that significant roadblocks are
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present and an entirely new approach may be required. The forced problem under study
is now

∇2ψtt +N2(z)ψxx = A exp(iωt)δ(x)h(z)
−∞ < x <∞, 0 ≤ z ≤ 1, t ≥ 0,

(5.132)

with the same boundary conditions as (5.107). It is assumed that N2(z) is strictly positive
and continuous. The dispersion relation and eigenfunctions for this problem have been
discussed at length in Chapter 2. For general N2(z) the dispersion relation does not have
an analytical form, nor do the eigenfunctions.

The Spectral Solution

In Fourier space, the streamfunction can be decomposed in a similar manner to that used
when N2(z) is constant:

ψ(k, z, t) =
∞∑
n=1

Ψn(k, t)gn(z, k). (5.133)

Here gn(z, k) is the mode-n eigenfunction satisfying

g′′n + k2

(
N2(z)

σ2
n(k)

− 1

)
gn = 0, gn(0) = 1, gn(1) = 0. (5.134)

It is not difficult to show that the functions Ψn(k, t) satisfy

∂2

∂t2
Ψn(k, t) + σn(k)2Ψn(k, t) = −σ

2
n

k2
Aeiωthn(k), (5.135)

where

hn(k) =

∫ 1

0

h(z)gn(z, k) dz. (5.136)

The solution in Fourier space is then

Ψn(k, t) = Aσnhn(k)
2k2(σn−ω)

exp(iσnt) + Aσnhn(k)
2k2(σn+ω)

exp(−iσnt)
− Aσ2

nhn(k)
k2(σ2

n−ω2)
exp(iωt).

(5.137)

This is identical to the result for constant N2(z), except that the precise forms of hn(k)
and σn(k) are unknown.
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The Physical Solution

The solution in physical space is found through the definition of the inverse Fourier trans-
form. That is,

ψ(x, z, t) =
1

2π

∑
n

(∫
C

Ψn(k, t)gn(z, k) exp(ikx) dk

)
, (5.138)

where C must be determined. Notice how the eigenfunctions gn(z, k) must be kept inside
the integral, in contrast to the case when N2(z) is constant.

The integration contour C must traverse the real line with indentations about the poles
of Ψn(k, t). Like the case of constant N2(z), the pole at k = 0 is removable. From the
arguments of Chapter 2, it is clear that when |ω| < maxN(z) the equations σn(k)±ω = 0
will have a single real root for any vertical mode number n.

With N2(z) nonconstant the extension of σn(k) and hn(k) to the greater complex
plane becomes problematic. In fact, the very notion of a vertical mode number becomes
ambiguous when k takes on complex values. In addition, because their analytical form
is unknown, it is difficult to know where the poles or branch points of σn(k) and hn(k)
lie in the complex plane. It is true, however, that these functions are continuous and
differentiable on the real k line.

The application of the method of steepest descents to the problem is hindered by the
above issues. To further complicate matters, without an analytical form for σn(k) the
nature of a steepest descents path cannot be discerned and therefore asymptotic contri-
butions cannot be determined. Lighthill [45, Chapter 4] has suggested that a possible
solution to this problem may be found through a hybrid method involving ray-tracing. As
an alternative, the leading order solution for the constant N2(z) case could serve as a guess
for the asymptotic behavior but this would have to be verified experimentally.

5.5.2 Causality

Causality principles for each of the equations studied in this chapter can be inferred from
the asymptotic analysis presented. The basic question is, how long will it take for a distant
observer to witness the forced waves passing by? To understand the causality principle for
a given equation, consider two observers; one traveling faster than the maximum group
velocity and one traveling slower. For the KdV, BBM, and IGW equations the observer
traveling faster than the maximum (rightward) group velocity will witness a signal that is
small beyond all orders compared to that witnessed by the other observer. Similarly, only
decaying transients can exist ahead of the front of the forced wave train for each of these
equations.
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These ideas confirm the expected result that information must travel at the group
velocity of the underlying wave. This concept, however, is not immediately obvious from
the underlying equations. Take the BBM equation, for instance. Since causality results
are often understood through a Laplace transform the technique is used here (see Duffy
[23] for an introduction to the Laplace transform). Taking the Fourier transform in x and
the Laplace transform in t for the BBM equation defines a new function U(k, s) such that

U(k, s) =
A

µs(s− iω)(k2 + ic0
µs

+ 1
µ
)
. (5.139)

The inverse Fourier transform, taken for x ≥ 0, gives

U(x, s) =
A

(s− iω)

exp

((
c0

2µs
− 1

2

√
c20
µ2s2

+ 4
µ

)
x

)
√
c2

0 + 4µs2
(5.140)

The final solution in physical space is found by inverting this function using the Bromwich
integral:

u(x, t) = A

∫ γ+i∞

γ−i∞

exp

(
st+

(
c0

2µs
− 1

2

√
c20
µ2s2

+ 4
µ

)
x

)
(s− iω)

√
c2

0 + 4µs2

 ds. (5.141)

All of the singularities lie on the imaginary axis so γ can be any positive real number. Note
there is an essential singularity at s = 0. Using Jordan’s lemma, this integral must always
be closed in the left half-plane. Therefore even when x > c0t and the solution is expected
to be zero, the difficult residues must be evaluated. The solution can only be zero because
the contributions from the essential singularity must exactly cancel the contributions from
the other poles. This is not an obvious idea and shows how causality for the BBM equation
is not a simple matter.
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Chapter 6

Conclusions

In this dissertation problems involving internal gravity waves have been investigated. In
particular, the problems of near-resonant triad interaction theory, simulations of resonant
interactions, and forcing theory of dispersive wave equations have been the central focus.
The major results are now summarized, and possible future projects are suggested. The
contributions and future projects are organized by the three problems under investigation
in this thesis.

6.1 Theory of Near-Resonant Triad Interactions

6.1.1 Contributions

1. The derivation of the near-resonant interaction equations for spatially-varying wave
trains with nonuniform stratifications and rotational effects is novel. The analysis
presented in Chapter 2 and Appendix B provides a general framework for predicting
and explaining near-resonant interactions in a general class of fluids. The results are
an extension of the work done by Davis and Acrivos [17], Lamb [41], and Hu [34].

2. In Section 2.3 a number of properties of the eigenvalue problem for horizontally-
propagating internal waves were found. Several of these properties were derived by
Yih [76], but the proofs presented in Section 2.3 are original. Although the result is
physically intuitive, the mathematical proof of Theorem 4 is new. The derivation of
the upper bounds for phase speeds in Boussinesq fluids with rigid lids (Theorem 5
and Theorem 6) are also new results.

The derivation of the near-resonant interaction equations is important because it ex-
tends the applicability of resonant triad theory to a broad class of interesting flows. Future
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researchers can use the calculations to predict triad interactions and design numerical and
laboratory experiments. The properties of the dispersion relation, group velocity, and
phase speed, as derived in Section 2.3, are important because they provide a mathematical
foundation for discussions of internal waves in continuously stratified fluids.

6.1.2 Future Projects

1. The simulations in Chapter 4 demonstrated that the applicability of the weakly-
nonlinear analysis is limited because, even at very small amplitudes, waves take on
a nonlinear shape. Perhaps a resonant interaction theory could be constructed for
cnoidal waves. The analysis would undoubtedly be complicated, but progress may
be possible using techniques developed by Osborne [56] to study a superposition
of nonlinear waves. The development of such a theory would be very useful for
comparisons with numerical experiments where wave amplitudes are of moderate
size.

6.2 Near-Resonant Triad Simulations

6.2.1 Contributions

1. The modal decomposition of the pseudo-energy in Section 3.3, along with the expla-
nation of the shape of the resulting spectrum in Section 3.4 is original. The analysis
illustrates the need for care in the interpretation of pseudo-energy spectra. The
results could serve as a useful guide for investigators studying energy transfers in
internal wave simulations.

2. The simulations of internal wave phenomena and resonant wave interactions in Chap-
ter 4 are original. An important feature of these experiments was the use of variable
buoyancy frequencies. Resonant interactions were observed in lab-scale experiments,
but at the ocean-scale the dominance of nonlinear steepening effects prevented the
interactions from developing. Rotational effects were not included in the simulations.

Future investigations of wave interactions and numerical simulations of internal waves
may find these contributions to be valuable. The data decomposition method could provide
a convenient approach for studying internal wave dynamics. The results of the numerical
simulations are particularly interesting and emphasize the importance of nonlinear effects,
even at small wave amplitudes. This may stimulate a more advanced study of wave in-
teractions among nonlinear waves. In addition, to better understand the role of resonant
interactions in the ocean the inclusion of rotational effects is necessary.
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6.2.2 Future Projects

1. The simulations in Chapter 4 reveal that even small-amplitude internal waves possess
a complicated shape. The modal decomposition onto sinusoidal basis functions for
energy calculations is not always appropriate as a result. A more general nonlinear
Fourier decomposition, possibly based on work done by Osborne [56], would provide
a better understanding of energy transfer in triad interactions.

2. The nonlinear steepening observed in the ocean-scale experiments affected the res-
onant interaction process. In the oceans, the effects of rotation can reduce internal
wave steepening (see Helfrich and Grimshaw [31], or Farmer et al. [25]). The length
and velocity scales involved in the ocean-scale simulations were such that the cor-
responding physical flows would have small Rossby numbers. Revisiting the experi-
ments of Chapter 4 with rotational effects included through the f -plane model would
provide valuable insight into the importance of resonant interactions in the oceans.

3. Tide-topography interactions are a strong source of internal waves in the oceans (see
Garrett and Kunze [27], or Helfrich and Melville [32]). A natural extension of the
simulations shown in Chapter 4 would be to look for near-resonant triads in flow past
topography. This would also extend the work done by Lamb [41] and Hu [34], who
considered the problem for uniform stratifications.

6.3 Dispersive Wave Forcing Theory

6.3.1 Contributions

1. In Section 3.5 a systematic analysis of the forcing problem for the IGW equations with
nonuniform stratification on a periodic domain is given. The analysis presented there
provides a clear explanation for how the vertical momentum equation can be forced
to generate desired internal waves. The theory was tested extensively in Chapter 4
for the nonlinear problem, and found to be successful.

2. In Section 5.2 and Appendix D.1, the steepest descents analysis of the impulsively-
forced, linear KdV equation is novel. The comparison with a numerical solution
shows that, for the parameters being demonstrated, the asymptotic solution agrees
very well with the numerical result.

3. In Section 5.3 and Appendix D.2, the steepest descents analysis of the impulsively-
forced linear BBM equation is novel. Numerical experiments confirm that the asymp-
totic solution gives an excellent approximate solution to the problem even at moder-
ate values of time.
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4. In Section 5.4 and Appendix D.3, the steepest descents analysis of the impulsively-
forced linear IGW equation with uniform stratification in a vertically bounded domain
is novel. Lighthill [45] and Voisin [71] have studied the problem on an unbounded
domain, and Duffy [22] presents an exact solution for a related Green’s function.
However, the exact solution presented by Duffy has limited practical value. The
approximate solution found in Section 5.4 is easy to interpret and agrees well with
numerical experiments.

The systematic approach to forcing on a periodic domain, as described in Section 3.5,
may serve as a useful starting point for researchers attempting to generate internal waves
numerically. The forcing approach could be beneficial to researchers studying a range of
internal wave phenomena, not just resonant interactions. The asymptotic analysis used in
Chapter 5 provides a framework for studying the forced response of a broad class of PDEs.
The analysis presented there may prove useful to investigators studying wave generation
or heat conduction from many different disciplines.

6.3.2 Future Projects

1. The framework used to find approximate solutions for the linearized KdV, BBM, and
IGW equations could be adapted to any number of other equations with constant
coefficients. For instance, an immediate, albeit minor, extension could be made by
repeating the IGW analysis with a non-zero Coriolis parameter.

2. The major question of how to apply asymptotic analysis techniques to the IGW equa-
tion with nonuniform stratification remains open. The underlying variable-coefficient
eigenvalue problem has subtle properties in the complex k-plane that hinder the anal-
ysis. Lighthill [45] has suggested that a possible solution may be found through a
hybrid method involving ray-tracing, and that may be the best starting point for this
problem.
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Appendix A

Waves in a Two-Layer Fluid

In this appendix some basics of waves in two-layer fluids are presented. The results given
here are standard exercises in the study of waves.

Consider a two-layer incompressible, inviscid fluid. Suppose the interface lies at z = 0,
and solid impermeable boundaries lie at z = H1 and z = −H2. Suppose the density of the
upper fluid is ρ1, and ρ2 is the density for the lower fluid, with ρ1 < ρ2.

Suppose a wave on the surface is of the form η = A exp(i(kx− σt)), with the real part
being taken. The unknown frequency σ is defined by the unknown dispersion relation.

Assuming the flow is irrotational, a velocity potential can be defined in each layer.
Using indices matching those for density, the fluid satisfies the following set of equations
and boundary conditions:

∇2φ1 = 0, ∇2φ2 = 0 (A.1a)

∂φ1

∂z
=
∂φ2

∂z
=
∂η

∂t
at z = 0 (A.1b)

ρ1
∂φ1

∂t
+ ρ1gη = ρ2

∂φ2

∂t
+ ρ2gη at z = 0 (A.1c)

∂φ1

∂z

∣∣∣∣
z=H1

=
∂φ2

∂z

∣∣∣∣
z=−H2

= 0. (A.1d)

Equations (A.1a) come from incompressibility. Equation (A.1b) is the kinematic boundary
condition at the fluid interface. Equation (A.1c) is the dynamic boundary condition at the
fluid interface. The boundary conditions (A.1d) ensure fluid cannot flow through the rigid
boundaries at z = H1,−H2.

The solutions for the potentials take the form

φ1 = B cosh(k(z −H1)) exp(i(kx− σt))
φ2 = C cosh(k(z +H2)) exp(i(kx− σt)). (A.2)
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The relations between η, φ1 and φ2 define a set of three equations of the form −iσ k sinh(kH1) 0
−iσ 0 −k sinh(kH2)

(ρ1 − ρ2)g −iσρ1 cosh(kH1) iσρ2 cosh(kH2)

AB
C

 =

0
0
0

 . (A.3)

Denoting the first matrix by M , the dispersion relation is found by solving det(M) = 0.
The result is

σ2(k) = (ρ2 − ρ1)gk
tanh(kH1) tanh(kH2)

ρ1 tanh(kH2) + ρ2 tanh(kH1)
. (A.4)

The phase speed c = σ/k is then

c(k) =
√

(ρ2 − ρ1)g

√
tanh(kH1) tanh(kH2)

k(ρ1 tanh(kH2) + ρ2 tanh(kH1))
. (A.5)

In the long wave limit k → 0 and the phase speed has the limit

cLW =

√
(ρ2 − ρ1)g

H1H2

ρ1H2 + ρ2H1

. (A.6)

The Boussinesq approximation makes for minor simplifications. In the denominator ρ1 and
ρ2 are replaced by their mean ρ0, and ∆ρ = ρ2 − ρ1 is defined.

An important special case arises when the two fluids have equal depths of H/2 (so that
the entire fluid is contained within the depth H). In that event,

cLW =

√
∆ρ

4ρ0

gH. (A.7)

Throughout this thesis two-layer fluids are approximated using continuous stratifica-
tions, in particular a tanh profile is used. For analytical purposes, the long wave phase
speed is used for non-dimensionalization. How appropriate is this when the pycnocline is
not centered in the domain? To determine this, consider the function

f(z) =

√
z(H − z)

H
, (A.8)

which describes the behavior of cLW . Clearly f(H/2) =
√
H/2, and f(H/4) =

√
3H/4 ≈

0.43H. Indeed, f(z) does not decay very quickly, as evident in Figure A.1. It is also
apparent from the figure that even at z = 0.9, f(z) > H/4. This plot suggests that as long
as the pycnocline is not located extremely close to the fluid boundaries, the centered long
wave phase speed is an appropriate value for non-dimensionalization.
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Figure A.1: Demonstrating the decay of f(z) with z. Note how slowly it de-
cays, it is only in the immediate neighborhood of z = 0, H that f(z) differs
significantly from f(H/2).
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Appendix B

Detailed Triad Calculations

In this appendix the triad interaction equations are derived in detail. This involves ex-
panding the right hand side of equation (2.15) and eliminating secular forcing terms. Exact
formulas for the velocity and interaction coefficients are found.

B.1 The Linear Terms

There are three linear terms on the right hand side of (2.15). Based on the structure of
ψ(0), these are easily found.

First,

∂2

∂t2
∂2

∂x∂X
ψ(0) = −

3∑
p=1

(
ikpω

2
papXe

iθp+iπ
2 − ikpω2

pa
∗
pXe

−iθp−iπ2
)
gp(z). (B.1)

The repeated occurrences of ∇2ψ leads to terms proportional to g′′p(z)− k2
pgp(z) which are

rewritten as
g′′p(z)− k2

pgp(z) = k2
p

(
f2−N2(z)
ω2
p−f2

)
gp(z)

= αp(z)gp(z).
(B.2)

Note αp(z) is real and g′′p(z) = (αp(z) + k2
p)gp(z).

The second linear term can then be written

∇2 ∂2

∂t∂T
ψ(0) =

3∑
p=1

(−iωpapT eiθp+iπ
2 + iωpa

∗
pT e
−iθp−iπ2

)
αp(z)gp(z). (B.3)
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Finally, the third linear term is

N2(z)
∂2

∂x∂X
ψ(0) =

3∑
p=1

(
ikpapXe

iθp+iπ
2 − ikpa∗pXe−iθp−i

π
2

)
N2(z)gp(z). (B.4)

The coefficient of eiθp from the linear terms on the right hand side of equation (2.15) is
then

i2ωpαp(z)gp(z)ei
π
2
∂ap
∂T

+ i2kp(ω
2
p −N2(z))gp(z)ei

π
2
∂ap
∂X

, (B.5)

The rationale for the use of the factor exp(iπ/2) in the definition of ψ(0) is also apparent,
it cancels the complex factor i in each term.

B.2 The Nonlinear Terms

Assume the triad being studied satisfies the following near-resonance conditions

k1 + k2 + k3 = εk̂
ω1 + ω2 + ω3 = εω̂.

(B.6)

This implies
θ1 + θ2 + θ3 = ∆ = k̂X − ω̂T. (B.7)

The nonlinear terms involved in the right hand side of equation (2.15) are rather com-
plicated. Since the arguments of the Jacobian operator are each sums of three elements,
a total of nine terms are produced. Based on the structure of (ψ(0), b(0), v(0)), however,
not all of these terms are of interest. In this analysis, all of the terms that do not lead to
secular forcing are ignored. The rationale for this is that if a term on the right-hand-side
of (2.15) is not resonant, it only modifies the solutions ψ(1), v(1), b(1) in a small way. Terms
that are resonant generate temporal growth and eventually destroys the ordering of the
asymptotic expansion.

Considering the near-resonance conditions, only terms involving sums of exponents are
retained. The notation f |∝eiθp and the symbol “'” to indicate the terms in f proportional
to eiθp .

In this section function arguments are dropped and the prime symbol is used to denote
differentiation with respect to z. Notation is further simplified with the definition of the
set Sp = {(q, r), (r, q))}, where p, q, r are distinct and p, q, r ∈ {1, 2, 3}. For example
S1 = {(2, 3), (3, 2)}.

178



Write

J(ψ(0),∇2ψ(0)) = i
3∑

m=1

3∑
n=1

[(
kmgm(z) d

dz
(αn(z)gn(z))

− kn dgm(z)
dz

αn(z)gn(z)
)
amane

iθm+iθn+iπ

+C.C.]

(B.8)

where “C.C.” is used to denote the complex conjugate terms.

Letting

cmn(z) = kmgm(z)
d

dz
(αn(z)gn(z))− kndgm(z)

dz
αn(z)gn(z), (B.9)

which is real, it follows that

− ∂
∂t
J(ψ(0),∇2ψ(0)) =

3∑
m=1

3∑
n=1

[
(ωm + ωn) (cmn(z)) amane

iθm+iθn

+C.C.] .
(B.10)

Defining
Fpqr = −(ωp − εω̂)(cqr(z) + crq(z)) (B.11)

the resonance conditions are used to find

− ∂

∂t
J(ψ(0),∇2ψ(0))

∣∣∣∣
∝eiθp

' Fpqra
∗
qa
∗
re
iθpe−i∆.

where (q, r) ∈ Sp.
Next consider

J(ψ(0), b(0)) = −i
3∑

m=1

3∑
n=1

[(
kmkn
ωn

gm(z) d
dz

(N2(z)gn(z))

− k2
n

ωn

dgm(z)
dz

N2(z)gn(z)
)
amane

iθm+iθn+iπ

+C.C.] .

(B.12)

Defining the real quantity

dmn(z) =
kmkn
ωn

gm(z)
d

dz
(N2(z)gn(z))− k2

n

ωn

dgm(z)

dz
N2(z)gn(z) (B.13)

so that
∂
∂x
J(ψ(0), b(0)) = −

3∑
m=1

3∑
n=1

(km + kn)
[
dmn(z)amane

iθm+iθn

+C.C.] ,
(B.14)
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and letting
Gpqr = (kp − εk̂)(dqr(z) + drq(z)), (B.15)

leads to
∂

∂x
J(ψ(0), b(0))

∣∣∣∣
∝eiθp

' Gpqra
∗
qa
∗
re
iθpe−i∆.

The final term required is f∂zJ(ψ(0), v(0)). This is found by considering

J(ψ(0), v(0)) = −f
3∑

m=1

3∑
n=1

[(
km
ωn
gm(z)d

2gn(z)
dz2

− kn
ωn

dgm(z)
dz

dgn(z)
dz

)
amane

iθm+iθn+iπ

+C.C.] .

(B.16)

Define the real quantity

emn(z) =
km
ωn
gm(z)

d2gn(z)

dz2
− kn
ωn

dgm(z)

dz

dgn(z)

dz
, (B.17)

so that

f ∂
∂z
J(ψ(0), v(0)) = f 2

3∑
m=1

3∑
n=1

[
d
dz
emn(z)amane

iθm+iθn + C.C.
]
. (B.18)

From this it is natural to write

f
∂

∂z
J(ψ(0), v(0))

∣∣∣∣
∝eiθp

' Hpqra
∗
qa
∗
re
iθpe−i∆ (B.19)

where

Hpqr = f 2 d

dz
(eqr(z) + erq(z)). (B.20)

Note that

d
dz
eqr(z) = kq

ωr

(
dgq(z)

dz
(k2
r + αr(z))gr(z) + gq(z) d

dz
(αr(z)gr(z))

)
− kr
ωr

(
(k2
q + αq(z))gq(z) d

dz
gr(z) + d

dz
gm(z)(k2

r + αr(z))gr(z)
)
.

(B.21)

The combination of linear and nonlinear terms in equation (2.15) can now be examined.
Adding the linear and nonlinear terms discussed above shows that the coefficient of eiθp on
the right hand side of equation (2.15) is

−2ωpαpgp
∂ap
∂T

+−2kp(ω
2
p −N2)gp

∂ap
∂X

+ (Fpqr +Gpqr +Hpqr) a
∗
qa
∗
re
−i∆,

while the complex conjugate of this equation gives the coefficient of e−iθp .
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B.3 Removing Resonant Forcing Terms

Consider the O(ε2) problem that is satisfied by ψ(1), the solution is determined by equation
(2.15). Consider the behaviour of a solution of the form g(z) exp(iθp), where θp is defined
in the O(ε) problem. How do the inhomogeneous terms affect the evolution of the solution?
The structure of the equation leads to the standard eigenvalue problem for g(z). Integrating
both sides of the resulting equation by gp(z), the eigenfunction corresponding to eigenvalue
ωp for parameter kp, the left hand side becomes zero. It follows that the integral of the
produce of gp(z) with the coefficient of eiθp on the right-hand side of (2.15) must also be
zero. This means

2ωp

(∫ 1

0
αp(z)g2

p(z)dz
)
∂ap
∂T

+2kp

(∫ 1

0
(ω2

p −N2(z))g2
p(z)dz

)
∂ap
∂X

+
(∫ 1

0
(Fpqr +Gpqr +Hpqr) gp(z)dz

)
a∗qa

∗
re
−i∆ = 0.

(B.22)

For the Sturm-Liouville problem (2.10), orthogonality of eigenfunctions gm(z) and gn(z)
with frequencies ωm, ωn at the wavenumber k is defined by the condition∫ z2

z1

(N2(z)− f 2)gm(z)gn(z)dz =

{
1 if m = n

0 otherwise.

With this normalization equation (B.22) becomes

−2ωp
k2
p

ω2
p−f2

∂ap
∂T

+ 2kp
∫ 1

0
(ω2

p −N2(z))g2
p(z)dz ∂ap

∂X

+
(∫ 1

0
(Fpqr +Gpqr +Hpqr) gp(z)dz

)
a∗qa

∗
re
−i∆ = 0.

This can be rewritten as
∂ap
∂T

+ vp
∂ap
∂X

= γpa
∗
qa
∗
re
−i∆,

where
vp = −

(
ω2
p−f2

kpωp

)
· ∫ 1

0
(ω2

p −N2(z))g2
p(z)dz

=
(ω2
p−f2)

ωpkp
− (ω2

p−f2)2

ωpkp

∫ 1

0
g2
p(z) dz.

(B.23)

From Theorem 2 in Section 2.3, it is clear that

vp =
dσnp
dk

∣∣∣∣
kp,ωp

(B.24)

is the group velocity of a wave at wavenumber kp and frequency ωp (this implicitly defines
the mode number).
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The interaction coefficient γp is defined by

γp =

(
ω2
p − f 2

2k2
pωp

)∫ 1

0

(Fpqr +Gpqr +Hpqr) gp(z)dz, (B.25)

for p = 1, 2, 3. Recall that Fpqr, Gpqr, and Hpqr are all real-valued functions of z. In general
the advection and interaction coefficients must be computed numerically, but when N2(z)
is constant significant simplifications can be made, as discussed next.

B.4 Special Case: Linear Stratification

An important special case arises for fluids with linear density stratifications. The resulting
buoyancy frequency is constant, and direct comparisons can be made with the formulas
presented in Hu [34] and Lamb [41]. Since the advection coefficient has already been shown
to equal the group velocity, which holds for N2(z) constant, only the interaction coefficients
are considered here.

The formula

γpqr =

∫ 1

0
(Fpqr +Gpqr +Hpqr) gp(z)dz

2ωp
∫ 1

0
αp(z)g2

p(z) dz
(B.26)

is used as the starting point because it does not assume that the eigenfunctions are normal-
ized. Integrals can be computed exactly because the eigenfunctions are explicitly known
and simple. To compare results, wave amplitudes are set as

gp(z) = Ap sin(mpz), (B.27)

with Ap = 1/(2mp). The normalization conditions for the eigenfunctions must be recon-
sidered.

Assume the additional constraint

m1 +m2 +m3 = 0, (B.28)

where mp = jpπ, jp is an integer. The more general case does not have such a condition
because the vertical wavenumbers depend on z. Under this constraint∫ 1

0

sin(mpz) sin(mqz) cos(mrz) dz = −1/4. (B.29)

When N2(z) is constant, the coefficient αp simplifies to

αp = −(k2
p +m2

p) = −κ2
p. (B.30)
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The first integral in γpqr becomes∫ 1

0

Fpqr(z)gp(z) dz = −Apωp
∫ 1

0

(cqr + crq) sin(mpz) dz (B.31)

with
cqr(z) = AqArmqmr

(
− kq
mq
κ2
r sin(mqz) cos(mrz)

+ kr
mr

cos(mqz) sin(mrz)
) (B.32)

the integral is found to be∫ 1

0

Fpqrgp dz = ωp
ApAqAr

4
mqmr

(
kq
mq

− kr
mr

)(
κ2
q − κ2

r

)
. (B.33)

Next observe that

dqr = N2AqAr

(
kqkr
ωr
mr sin(mqz) cos(mrz)

− k2
r

ωr
mq cos(mqz) sin(mrz)

)
.

(B.34)

So
∫ 1

0
Gpqrgp dz can be written

− kpN2ApAqAr
4

(
kqkr
ωr

mr − k2
r

ωr
mq +

kqkr
ωq

mq −
k2
q

ωq
mr

)
(B.35)

which simplifies to∫ 1

0

Gpqrgp(z) dz = −kpN2mqmr
ApAqAr

4

(
kq
mq

− kr
mr

)(
kr
ωr
− kq
ωq

)
. (B.36)

Next, consider
∫ 1

0
Hpqrgp dz. Observe that

eqr = AqAr

(
− kq
ωr
m2
r sin(mqz) sin(mrz)

− kr
ωr
mqmr cos(mqz) cos(mrz)

) (B.37)

from this it follows that

d
dz
eqr(z) = AqAr

(
− kq
ωr
m2
r (mq cos(mqz) sin(mrz) +mr sin(mqz) cos(mrz)]

− kr
ωr
mqmr (−mq sin(mqz) cos(mrz)−mr cos(mqz) sin(mrz))

)
.

(B.38)
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Using this, the integral
∫ 1

0
Hpqrgp dz becomes

− f 2ApAqAr
4

(mq +mr)

(
−kq
ωr
m2
r +

kr
ωr
mqmr − kr

ωq
m2
q +

kq
ωq
mqmr

)
(B.39)

this can be factored to reveal∫ 1

0

Hpqrgp dz = f 2ApAqAr
4

mpmqmr

(
kq
mq

− kr
mr

)(
mq

ωq
− mr

ωr

)
. (B.40)

The final integral required for a comparison with Hu and Lamb’s result is

2ωp

∫ 1

0

αp(z)g2
p(z) dz = −ωpκ2

p. (B.41)

Combining these results together yields

γpqr = AqAr
4Apκ2

pωp
mqmr

(
kq
mq
− kr

mr

)
[ωp(κ

2
q − κ2

r)

−kpN2
(
kr
ωr
− kq

ωq

)
+mpf

2
(
mq
ωq
− mr

ωr

)
].

(B.42)

This can be simplified further by using κ2
q = (k2

qN
2 +m2

qf
2)/ω2

q and likewise for κ2
r. Then

γpqr = − AqAr
4Apκ2

p
mqmr

(
kq
mq
− kr

mr

)
×[

N2
(
k2
q

ω2
q
− k2

r

ωwr
+ kp

ωp

(
kq
ωq
− kr

ωr

))
+f 2

(
m2
q

ω2
q

+ m2
r

ω2
r
− mp

ωp

(
mq
ωq
− mr

ωr

))]
.

(B.43)

Now it is easy to factor what is left to find

γpqr = −AqArN2

4Apκ2
p
mqmr

(
kq
mq
− kr

mr

)
×[(

kq
ωq
− kr

ωr

)(
k1
ω1

+ k2
ω2

+ k3
ω3

)
+ f2

N2

(
mq
ωq
− mr

ωr

)(
m1

ω1
+ m2

ω2
+ m3

ω3

)]
.

(B.44)

Finally, with the choice for amplitudes, this reduces to

γpqr = −mpN2

8κ2
p

(
kq
mq
− kr

mr

)
×[(

kq
ωq
− kr

ωr

)(
k1
ω1

+ k2
ω2

+ k3
ω3

)
+ f2

N2

(
mq
ωq
− mr

ωr

)(
m1

ω1
+ m2

ω2
+ m3

ω3

)]
.

(B.45)
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This agrees with the results of Hu [34] and Lamb [41], except for the minus sign in front
and the use of a dimensionless parameter for the Coriolis term. The minus sign is readily
accounted for upon comparing the definition of the streamfunction. In this document
(u,w) = (−ψz, ψx), while Hu and Lamb use (u,w) = (ψz,−ψx). Each of the nonlinear
Jacobian terms then has an extra minus sign present. The presence of the minus sign does
not affect the dynamics since it is the products of the interaction coefficients that govern
the system.
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Appendix C

Stokes Drift for Internal Waves

Stokes drift calculations for monochromatic internal waves are presented here. This pro-
vides a quantitative explanation for some of the behaviour witnessed in the simulations
of Chapter 4. Two arguments are considered here. First, the averaged Lagrangian ve-
locity of a fluid particle in an internal wave is calculated. Then, the averaged isopycnal
displacements within a wave are computed. It is shown that when wave amplitude is a,
the isopycnals are modified at O(a2). The method used here is similar to an approach
used by Thorpe [65], who considered similar problems for interfacial waves and waves in
continuously stratified fluids. Bretherton [11] has also studied this problem.

Consider a monochromatic, horizontally-propagating wave in a stratified fluid. The
vertical velocity takes the form:

w = a cos(kx− ωt)φn(z) +O(a2), (C.1)

where φn is the dimensional mode-n eigenfunction at wavenumber k, with frequency ω =
σn(k). Incompressibility demands that

u = −a
k

sin(kx− ωt) d
dz
φn(z) +O(a2). (C.2)

The notation used in the following analysis is consistent with that developed in Chapter
2.

C.1 The Average Lagrangian Velocity

Consider the horizontal and vertical velocity components given above. It is clear that, after
time-averaging over one period, the average horizontal and vertical Eulerian velocity are
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zero. The time-averaged Lagrangian horizontal velocity is not zero, however. To see this,
let uL(x0, z0, t) be the Lagrangian velocity of a fluid particle initially at (x0, z0). Then,
following the method used by Kundu and Cohen [37, Chapter 7] for surface waves, the
velocity satisfies:

uL(x0, z0, t) ≈ u(x0, z0, t) + (x− x0)
∂u

∂x

∣∣∣∣
x0,z0,t

+ (z − z0)
∂u

∂z

∣∣∣∣
x0,z0,t

. . . , (C.3)

where the velocities on the right-hand side are Eulerian. For small waves x−x0 =
∫ t
u dt =

−(a/kω)φ′n(z0) cos(kx0 − ωt), and similarly z − z0 = −(a/ω)φn(z0) sin(kx0 − ωt). Then,
taking the time-average over one period of both sides of (C.3) reveals:

〈uL(x0, z0, t)〉 =
a2

2ωk
(φ′2n (z0) + φn(z0)φ′′n(z0)). (C.4)

The term in brackets on the right-hand side can be simplified to show that

〈uL(x0, z0, t)〉 =
a2

4ωk

d2

dz2
φ2
n

∣∣∣∣
z0

. (C.5)

This demonstrates the leading-order velocity experienced by a particle initially at
(x0, z0). The velocity is only zero at inflection points of φ2

n. More information about the
underlying stratification and eigenfunction φn is needed to make precise predictions about
regions where the drift velocity will be positive or negative, but these can be computed
numerically.

C.2 The Average Isopycnal Displacements

In the presence of the wave, the background density field is found from ρt+uρx+wρz = 0.
Expanding ρ = ρ0 + ρ̄(z) + aρ1(x, z, t) + a2ρ2(x, z, t) + O(a3), simple calculation reveals
that

ρ1 = − ρ0

ωg
sin(kx− ωt)φn(z)N2(z) (C.6)

where N2(z) = −(g/ρ0)dρ̄/dz. The next term is

ρ2 =
1

ωk
cos(kx− ωt) d

dz
φn +

ρ0

2ω2g
cos(2(kx− ωt))φn d

dz

(
N2(z)φn

)
. (C.7)

Next, expand z = z0+az1+a2z2+O(a3), the goal is to find the average value of a particular
isopycnal height. Substituting this in and collecting like powers of a shows that

ρ = ρ0 + ρ̄(z0)

+a
(
z1

dρ̄
dz

(z0) + ρ1(x, z0, t)
)

+a2
(
z2

dρ̄
dz

(z0) +
z21
2
d2ρ̄
dz2

(z0) + z1
∂ρ1
∂z

(x, z0, t) + ρ2(x, z0, t)
)
.

(C.8)
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This can be solved for the components of z. The result is

z0 = ρ̄−1(ρ− ρ0), (C.9)

so

z1 = −ρ1(x, z0, t)
dρ̄
dz

(z0)
=

g

ρ0

ρ1(x, z0, t)

N2(z0)
, (C.10)

and

z2 =

z21
2
d2ρ̄
dz2

(z0) + z1
∂ρ1
∂z

(x, z0, t) + ρ2(x, z0, t)
ρ0
g
N2(z0)

. (C.11)

Next, time-averages over one period are taken. Since 〈ρ1(x, z0, t)〉 = 〈ρ2(x, z, t)〉 = 0, it
follows that 〈z1〉 = 0 and 〈z2

1〉 = φ2
n/(2ω

2), so

〈z2〉 =
− ρ0

g

φ2
n

4ω2
dN2

dz
+
ρ0
g

1
2ω2 φn

d
dz (φnN2)

ρ0
g
N2(z0)

= 1
4ω2

d(φ2
nN

2)

dz

∣∣
z0

N2(z0)

(C.12)

so

〈z〉 = z0 + a2 1

4ω2

d(φ2
nN

2)
dz

∣∣
z0

N2(z0)
. (C.13)

This averaged isopycnal displacement can be used to reverse-engineer the correspond-
ing background density stratification. Taking the averaged z value to be the height of
an isopycnal in a quiescent fluid, perturbation theory is used to find the corresponding
stratification. This is done by expanding ρ = ρ(0) + aρ(1) + a2ρ(2) +O(a3), with each term
being a function of z. To avoid confusion, let q(z) = ρ̄−1(z), so that z0 = q(ρ− ρ0). This
can be expanded to show

z0 = q(ρ(0) − ρ0) + (aρ(1) + a2ρ(2))q′(ρ(0) − ρ0) +O(a3). (C.14)

This reveals that ρ(0) = ρ0 + ρ̄(z), which should be expected as waves with amplitude O(a)
should not alter the O(1) nature of the background stratification. This also shows that
to leading-order z0 = q(ρ̄(z)) = z. Considering the O(a) term in the expansion reveals
ρ(1) = 0. Also, since q′(ρ(0) − ρ0) = 1/(dρ̄/dz),

ρ(2) =
ρ0

g

1

4ω2

d(φ2
nN

2)

dz
(C.15)

readily follows. The final result is

ρ = ρ0 + ρ̄(z) + a2ρ0

g

1

4ω2

d(φ2
nN

2)

dz
+O(a3). (C.16)
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This shows how the stratification is altered, on average, in the presence of a monochro-
matic wave. Considering a wave train impinging on a quiescent fluid, it is then clear that
there must on average be a slope in the isopycnals between the two regions of fluid. This
will induce a mean flow, or if the wavy regions is of finite extent, will appear as a long
wave disturbance.
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Appendix D

Steepest Descents Analysis

In this appendix some of the laborious calculations involved in the steepest descents analysis
of Chapter 5 are presented. This appendix is divided into sections for each of the KdV,
BBM, and IGW problems.

D.1 KdV Calculations

The main purpose of this analysis is to better understand the impulsively-forced response
to the linear KdV equation. To that end, the initial condition

u0(x) = 0 (D.1)

is taken. To further simplify the analysis, only the point source f(x) = δ(x) is considered.
Under these restrictions, the KdV solution in Fourier space becomes

U(k, t) = A

(
eiωt − e−iσ(k)t

i(σ(k) + ω)

)
, (D.2)

which leads to the physical solution

u(x, t) = A
(F−1{G1(k)}+ F−1{G2(k)}). (D.3)

The inverse Fourier transform of G1(k) requires no special treatment, it simply consists
of leftward and rightward-propagating wave trains, (see equation (5.78)). This component
of the forced response is well understood for all values of x and t.
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Due to the complicated nature of the dispersion relation, it is the inverse Fourier trans-
form of G2(k) that benefits most from the application of approximation techniques. The
exact integral form of g2(x, t) = F−1{G2(k)} is

g2(x, t) = − 1

2π

∫
C

exp(i(kx− σ(k)t))

i(σ(k) + ω)
dk, (D.4)

where the contour C is shown in Figure 5.3. Letting v = x/t be a fixed quantity, the
integral can be rewritten as

g2(x, t) = − 1

2πi

∫
C

exp(φ(k)t)

σ(k) + ω
dk, (D.5)

where
φ(k) = i((v − c0)k + νk3). (D.6)

It is equation (D.5) that is amenable to treatment by the method of steepest descents. The
process followed below is outlined at the end of Section 5.1.4.

D.1.1 Description of the Critical Points

The set of critical points of the integrand G2(k) consists of the poles at k = r1, r2, r3 and
saddle points of φ. Provided |ω| < ωc, the poles are first order and lie on the real axis.
When |ω| = ωc, the second order pole at k = r2 corresponds to waves of zero group velocity
and thus the residue from that pole does not contribute to the asymptotic analysis.

Saddle points of φ occur where φ′(k) = 0. For every v, two saddle points exist. These
are labeled s± and are given by

s± = ±
√
c0 − v

3ν
. (D.7)

For v 6= c0 these saddle points are distinct and first order. When v < c0 the saddle points
lie on the real axis, when v > c0 they lie on the imaginary axis.

The directions of steepest descent emanating from the saddle points can be determined
from φ′′(s±). Clearly

φ′′(s±) = i6νs±. (D.8)

Using equation (5.43), the angles of steepest descent are easily found. These are presented
in Table D.1. The qualitative change in the steepest descent paths as v passes through c0

is abrupt. When v = c0, the saddle point lies at the origin and is of second order, but this
special case is not considered here.

Finally, note that for 0 < v < c0, the saddle point s+ must lie strictly to the left of the
pole r1 and the saddle point s− must lie strictly to the right of the pole r3. Because the
initial contour C lies above r1, r3, the deformed contour will never include contributions
from those poles when v > 0.
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Range θ(s+) θ(s−)
0 < v < c0

π
4
, 5π

4
3π
4
, 7π

4

v > c0 0, π π
2
, 3π

2

Table D.1: Steepest descent directions for the KdV problem. The angles of
steepest descent from the saddle point s± is denoted by θ(s±).

D.1.2 The Paths of Steepest Descent

For the KdV problem the dispersion relation is simple enough that an exact description
of the steepest descent paths is possible. This is accomplished by splitting k and φ into
their real and imaginary components. With k = η + iξ, and φ(η, ξ) = φR(η, ξ) + iφI(η, ξ),
it follows that

φR(η, ξ) = (c0 − v)ξ − 3νη2ξ + νξ3

φI(η, ξ) = (v − c0)η + νη3 − 3νη2ξ.
(D.9)

Along paths of steepest descent through s±, φI(η, ξ) must remain constant, so ξ(η) can be
found explicitly. It turns out that

ξ2
±(η) =

v − c0

3ν
+

1

3
η2 − φI(s±)

3νη
. (D.10)

where the subscript on ξ determines which saddle point the path crosses through. Note
that when 0 < v < c0

φ(s±) = ∓i2
3

√
c0 − v

3ν
(c0 − v) (D.11)

so φI(s+) = −φI(s−) < 0. Also, observe that if v > c0 then φ(s±) is real. This suggests
the steepest descent paths are qualitatively different when 0 < v < c0 and v > c0, so these
cases are discussed separately.

When 0 < v < c0, the steepest descent path emanating from s+ at the angle θ = π/4
proceeds along a trajectory that approaches the line ξ = η from below as η →∞. Leaving
s+ along the path at angle θ = 5π/4, ξ → −∞ as η → 0+. Likewise, from the saddle point
s−, the path of steepest descent leaving at θ = 3π/4 asymptotically approaches the line
ξ = −η from below as η → −∞. Leaving s− at the angle 7π/4 the steepest descent path
has ξ → −∞ as η → 0−. Since φI(s+) = −φI(s−) 6= 0, the two paths of steepest descent
do not meet in the finite complex plane, though they become arbitrarily close along the
negative imaginary axis.

When v > c0, the steepest descent paths are described by the parametric equation

ξ2
±(η) =

v − c0

3ν
+

1

3
η2. (D.12)
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The path of steepest descent leaving s+ is just the upper branch of the hyperbola ξ+(η) =√
(v − c0)/(3ν) + η2/3. From s− the path of steepest descent lies along the imaginary axis,

proceeding upward to s+ and downward to −i∞.

D.1.3 The Integration Contours

The above discussion of the saddle points and steepest descents contours provides enough
information to select appropriate contours for approximating g2(x, t). For he discussion
presented here, |ω| < ωc, (Case 1),is assumed. Extensions are discussed later.

To facilitate this discussion, let

cF = c0 − 3νr2
2. (D.13)

By definition, this is the group velocity of the forced wave at wavenumber r1.

For 0 < v < cF , the deformed contour Ĉ is depicted in Figure D.1. The new path
of integration is formed by stretching C onto the two steepest descent paths through the
saddle points s+ and s−. Because the saddle point s− lies to the left of r2 in this regime
and the initial contour C is deformed below the pole at k = r2, the deformation process
does not introduce a residue contribution from any of the poles.

KdV Integration Contour v<c
F

Re(k)

Im
(k

)

r
3

r
2

r
1

0

0

Figure D.1: Steepest descents contour when 0 < v < cF in the complex k-plane.
Poles are marked by ‘x’ symbols. The two saddle points lie at the intersections
of the contour with the real k-axis. No residue contributions are introduced
in the deformation process. The two halves of the curve follow the negative
imaginary axis and meet at −i∞.

For cF < v < c0, the deformed integration contour is shown in Figure D.2. This contour
consists of the steepest descent paths through s+ and s−, with an additional contribution
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from the encirclement of the pole at k = r2. This additional contribution occurs because
for v in this range the saddle point s− lies to the right of r2. Integration is performed in
both directions along the segment connecting the saddle point and the circle around r2, so
no weight is contributed from that segment.

KdV Integration Contour c
F
<v<c

0

Re(k)

Im
(k

)

r
3 r

2

r
1

0

0

Figure D.2: Steepest descents integration contour when cF < v < c0 in the
complex k-plane. Poles are marked by ‘x’ symbols. The two saddle points lie at
the intersection of the contours with the real k-axis. The direction of integration
is marked by the arrowheads. Deforming the contour requires encirclement of
the pole at k = r2. Since integration along the segment connecting the steepest
descents path and the circle enclosing the pole is performed in both directions
it contributes no weight.

When v > c0, the steepest descents contour used to evaluate g2(x, t) is shown in Fig-
ure D.3. The depicted contour is the hyperbolic arc passing through s+ on the positive
imaginary axis. The deformation process involves an encirclement of the pole at k = r2.
The short segment joining the steepest descent path to the small circle integrated in both
directions so it contributes no weight.

D.1.4 The Asymptotic Solution

With the deformed integration contours presented above, it is a relatively simple matter
to determine the asymptotic saddle point contributions using equation (5.57). Because the
steepest descent paths enter and leave each saddle point along two different directions care
must be taken to account for both contributions.

When v < cF , the asymptotic behaviour is dominated by the two saddle point contri-
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KdV Integration Contour v>c
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0
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Figure D.3: Steepest descents contour when v > c0 in the complex k-plane.
Poles are indicated by the ‘x’ symbols. The saddle point lies on the positive
imaginary axis. Deforming C onto the steepest descents path introduces the
residue contribution from the pole at r2. Integration is performed along the
contour in the direction of the arrowheads.

butions, thus

g2(x, t) ∼ − 1
2πi

√
π

3νs+t

exp(i(π4 +(c0s+−νs3+)t))
c0s+−νs3++ω

+ 1
2πi

√
π

−3νs−t

exp(i( 3π
4

+(c0s−−νs3−)t))
c0s−−νs3−+ω

+O
(

1
t

)
.

(D.14)

The identities eiπ/4 − ei5π/4 = 2eiπ/4 and ei3π/4 − ei7π/4 = 2ei3π/4 have been used. When
cF < v < c0, the saddle point contributions remain unchanged in form. The dominant
contribution to g2(x, t) comes from the residue of the pole at k = r2. Then

g2(x, t) ∼ 1
ν

exp
(
i(r2x+ωt)

)
(r2−r1)(r2−r3)

− 1
2πi

√
π

3νs+t

exp(i(π4 +(c0s+−νs3+)t))
c0s+−νs3++ω

+ 1
2πi

√
π

−3νs−t

exp(i( 3π
4

+(c0s−−νs3−)t))
c0s−−νs3−+ω

+O
(

1
t

)
.

(D.15)

Finally, when v > c0, the asymptotic behaviour of g2(x, t) is determined by the residue
contribution at r2 plus the lone saddle point contribution at s+. The result is

g2(x, t) ∼ 1
ν

exp
(
i(r2x+ωt)

)
(r2−r1)(r2−r3)

− 1
2πi

√
π

3ν|s+|t
exp(−(c0|s+|+ν|s+|3)t)

c0s+−νs3++ω

+O
(

1
t

)
.

(D.16)
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Since u(x, t) = A(g1(x, t) + g2(x, t)), these formulas can be substituted in to reveal the
asymptotic behaviour of u in the large t limit. In particular,

u(x, t) ∼ −A
ν

exp
(
i(r2x+ωt)

)
(r2−r1)(r2−r3)

− A
2πi

√
π

3νs+t

exp(i(π4 +(c0s+−νs3+)t))
c0s+−νs3++ω

+ A
2πi

√
π

−3νs−t

exp(i( 3π
4

+(c0s−−νs3−)t))
c0s−−νs3−+ω

+O
(

1
t

)
(D.17)

when x < cF t, and

u(x, t) ∼ − A
2πi

√
π

3νs+t

exp(i(π4 +(c0s+−νs3+)t))
c0s+−νs3++ω

+ A
2πi

√
π

−3νs−t

exp(i( 3π
4

+(c0s−−νs3−)t))
c0s−−νs3−+ω

+O
(

1
t

) (D.18)

when cF t < x < c0t, and

u(x, t) ∼ − A
2πi

√
π

3ν|s+|t
exp(−(c0|s+|+ν|s+|3)t)

c0s+−νs3++ω

+O
(

1
t

) (D.19)

when x > c0t. In each of these asymptotic formulas, s+ and s− are dependent on v and
defined in equation (D.7).

The asymptotic solution can be used to describe the wave behaviour when the forcing
frequency |ω| ≥ ωc. When |ω| = ωc, the forced waves are trapped in the forcing region as
they have zero group velocity. Only the transient component, decaying like t−1/2 would
be seen by an observer at some distance away from the forcing region. At higher forcing
frequencies |ω| > ωc, and the pole corresponding to rightward-propagating waves lies off
the real axis. The forced waves are then evanescent, and decay exponentially away from
the forcing region. The KdV equation is intended as a model of long, low-frequency waves,
so the higher frequency limits are of less physical significance.

D.2 BBM Calculations

Here a detailed steepest descents analysis of the BBM problem is given. Only rightward-
propagating waves are considered in the large time limit. To facilitate the analysis, u(x, t)
is written in a more suitable form. Let x/t = v be a fixed positive quantity, and rewrite
(5.101) as

u(x, t) = − A

2πiµω

∮
C+

g(k) exp(φ(k)t) dk, (D.20)
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where

g(k) =
1

(k − r1)(k − r2)
, (D.21)

and

φ(k) = ikv − ic0
k

1 + µk2
. (D.22)

The contour C+ is the small circular contour enclosing the essential singularity at k = i/
√
µ,

as defined at the end of Section 5.3.3. In what follows, the steps outlined in Section 5.1.4
are executed to determine how u(x, t) behaves as t→∞.

D.2.1 Description of the Critical Points

The set of critical points of the integrand in (D.20) consists of the saddle points of φ,
the simple poles of g(k) and the essential singularities located at k = ±i/√µ. Since the
integration contour C+ is circular, there are no endpoints to consider. Away from the poles
and essential singularities the integrand is analytic.

The saddle points of φ(k) satisfy φ′(k) = 0. That is, they lie at the roots of the equation
cg(k) = v. This leads to a fourth-order polynomial in k with roots satisfying

k2 =
−(2v + c0)±

√
c2

0 + 8c0v

2µv
. (D.23)

Evidently there can be at most four distinct saddle points. These are labeled s1, s2, s3,
s4, with

s1 =

√
−(2v+c0)+

√
c20+8c0v

2µv
, s2 = −s1

s3 =

√
−(2v+c0)−

√
c20+8c0v

2µv
, s4 = −s3.

(D.24)

Computing the directions of steepest descent for the saddle point sn requires knowledge
of where sn lies in the complex plane and the evaluation of φ′′(sn). Differentiating shows
that

φ′′(k) = i2c0µk
3− µk2

(1 + µk2)3
, (D.25)

which is an odd function of k.

When v > 0, s1 and s2 are real provided (2v + c0) ≤
√
c2

0 + 8c0v, which holds when
v ≤ c0. With minor algebra, it can be shown that Arg (φ′′(s1)) = π/2. Using equation
(5.43), the angles of descent from s1 are θ = π/4, 5π/4. Since φ′′(k) is odd, the angles of
descent from s2 are θ = 3π/4, 7π/4 when 0 < v < c0. As v → c−0 , the saddle points s1 and
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Range θ(s1) θ(s2) θ(s3) θ(s4)
0 < v < c0

π
4
, 5π

4
3π
4
, 7π

4
π
2
, 3π

2
0, π

v > c0 0, π π
2
, 3π

2
π
2
, 3π

2
0, π

Table D.2: Summary of the steepest descent directions from the saddle points
for the BBM problem.

s2 tend to the origin, s2 approaches from the negative real axis, and s1 approaches from
the positive real axis.

When v > c0, s1 and s2 lie on the positive and negative imaginary axis, respectively.
A little algebra reveals that φ′′(s1) is a positive real number, so the angles of descent from
s1 are given by θ = π/2, 3π/2. The angles of descent from s2 are then easily found to be
θ = 0, π. As v > c0 increases s1 crawls up the imaginary axis but never reaches the essential

singularity. This is because when v > c0, s1 = (i/
√
µ)
√

1 + (c0 −
√
c2

0 + 8c0v/(2v), so

Im(s1) < 1/
√
µ.

For v > 0, s3 lies on the positive imaginary axis above i/
√
µ. As v → 0+ s3 tends to

+i∞. As v →∞ s3 approaches the essential singularity at i/
√
µ from above. With v > 0,

φ′′(s3) is a positive real number, so the angles of steepest descent from s3 are θ = π/2, 3π/2.
It immediately follows that for v > 0 the angles of steepest descent from s4 are θ = 0, π.
The angles of steepest descent from the saddle points for the two important ranges of v
values are summarized in Table D.2.

Finally, note that if v > cF , where cF = cg(r1) is the group velocity of the rightward-
propagating wave at the forcing frequency, then s2 lies to the right of r1 on the negative
real axis. It is easy to show that limv→0+ s2 = −1/

√
µ from the right, so there will always

be v values for which s2 lies to the left of r1.

D.2.2 Steepest Descent Paths and Integration Contours

Parametric equations describing the paths of steepest descent can be found by splitting
k = η + iξ and φ(k) = φR(η, ξ) + iφI(η, ξ), where

φR(η, ξ) = −vξ + c0ξ
1− µ(η2 + ξ2)

1 + 2µ(η2 − ξ2) + µ2(η2 + ξ2)2
(D.26)

and

φI(η, ξ) = vη − c0η
1 + µ(η2 + ξ2)

1 + 2µ(η2 − ξ2) + µ2(η2 + ξ2)2
. (D.27)

For convenience, the notation φ(k) = φR(k) + iφI(k) is also used. The analysis is now split
into two major cases, v < c0 and v > c0.
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Case v < c0

When 0 < v < c0, the paths of steepest descent through s1 and s2 are of most interest.
Clearly φR(s1) = φR(s2) = 0. Along the steepest descent paths from s1, φI(η, ξ) = φI(s1) 6=
0 remains constant. Similarly, along the steepest descent path from s2, φI(η, ξ) = φI(s2) =
−φI(s1) remains constant. The two paths are symmetric about the ξ axis, but they cannot
intersect in the finite complex plane except, perhaps, at an essential singularity.

It is possible to solve for ξ(η) along paths where φI(η, ξ) is constant. Along such a path
passing through s1, at a given η there are at most four possible ξ values given by

ξ±±(η) = ±
√
−2µη2 + 2 + p±√p2 + 8p− 16µη2

2µ
, (D.28)

where
p =

c0η

vη − φI(s1)
. (D.29)

The four possible configurations of plus or minus signs (read from left to right) define the
four possible curves where φI(η, ξ) remains constant.

Note that as η → 0+, ξ±+ → ±1/
√
µ from above. Differentiating shows that ξ±+(η)

approaches ±1/
√
µ with a vertical asymptote as η → 0+. In a similar manner, it is easy to

see that the steepest descent paths through s2 also approach the essential singularities with
vertical asymptotes. Therefore the steepest descent paths through s1 and s2 do intersect
at the essential singularities at ±i/√µ. This is problematic because it means C+ cannot
be deformed directly onto these paths. Instead, a modified steepest descents contour is
required.

To avoid integration through an essential singularity, C+ can be deformed onto a path
that follows the steepest descent paths for a time, and is then deflected onto a contour along
which φR(k) remains negative and constant. This is possible because φR(s1) = φR(s2) = 0
and φR(k) is strictly decreasing along the paths of descent from s1 and s2. The simplest
choice is to deflect the steepest descent paths from s1 and s2 onto the contour of constant
φR passing through s3. Consider that, along a contour passing through s3 and satisfying
φR(η, ξ) = φR(s3), it is possible to solve for η(ξ) explicitly. The result is

η±±(ξ) = ±
√
−2µξ2 − 2− q ±√q2 + 8q + 16µξ2

2µ
(D.30)

where

q =
c0ξ

vξ + φR(s3)
, (D.31)
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and the different combinations of plus or minus signs (read from left to right) define the
four possible values of η at a given ξ. Note that φR(s3) < 0. Even as v → 0+, s3 → i∞
and φR(s3)→ 0− like −√c0v/µ.

The deformed contour of integration can now be described accurately. In the first
quadrant, C+ is deformed onto the path of steepest descent originating at s1 and leaving at
the angle θ = π/4. This curve is defined by ξ+−(η) until a vertical asymptote is reached, at
which point p2 +8p−16µη2 changes sign. The curve continues along ξ++(η), until reaching
(η1, ξ1), where φR(η1, ξ1) = φR(s3) < 0. From this point the contour C+ is deformed onto
the path of constant φR passing through s3, governed by η++(ξ). The deformed contour
proceeds from (η1, ξ1) all the way up to s3, where η++(ξ) crosses the ξ axis.

In the fourth quadrant, C+ is deformed onto the path of steepest descent leaving s1 at
the angle 5π/4. This path is followed until (η2, ξ2), where φR(η2, ξ2) = φR(s3). From this
intersection point C+ is deformed onto η+−(ξ), which crosses the ξ axis at a point above
(0,−1/

√
µ).

The deformed contour of integration in the second and third quadrants is simply the
reflection of the contour fin the right half-plane across the ξ axis. This is possible because
φI(s2) = −φI(s1). The only problem arises when v < cF , so that s2 lies to the left of
k+. In that situation the process of deforming the contour into the left half-plane requires
encirclement of the simple pole at r1. The pole is enclosed with a small clockwise oriented
circle, connected to s2 with a straight line segment.

In Figure D.4 the deformed contour of integration when v < cF is illustrated. In
Figure D.5 the contour of integration for v > cF is shown. Qualitatively the two plots
are very similar, except for the encirclement of the pole at k = r1 when v < cF . To ease
the analysis the contour segments are labelled in the plots. The segment of the contour
connecting (η2, ξ2) to (η1, ξ1) is labelled C1. The bridging contour connecting (η1, ξ1) to
(−η1, ξ1) across s3 is labelled C2. The contour C3 joins (−η1, ξ1) to (−η2, ξ2). The bridging
contour C4 connects (−η2, ξ2) to (η2, ξ2). In Figure D.4 the circle enclosing r1 is denoted
by C5. No label is assigned to the straight line connecting C3 and C5 as the integral is
conducted in both directions and therefore does not contribute.

Case v > c0.

In this situation, since s1 lies on the positive imaginary axis below i/
√
µ, C+ is simply

deformed onto the steepest descent path through s1 and s3. This path remains entirely in
the upper half-plane. Along this contour φI(η, ξ) = 0 so it is possible to find a relatively
simple description for the closed loop. The path is described by the equation

µ2v(η2 + ξ2)2 + µ(2v − c0)η2 − µ(2v + c0)ξ2 + v − c0 = 0, (D.32)

which is just a quadratic in η2 and ξ2. The path passes through s1 and s3 at angles 0, π.
Figure D.6 depicts the contour of integration when v > c0. Like C+, the deformed path is
traversed in counter-clockwise fashion.
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Figure D.4: Steepest descents contour of integration for v < cF . The pole at
r1, enclosed with a circle by the deformation process, is marked by an ‘x’. The
saddle points s1 and s2 lie at the intersections of C1 and C3 with the real axis,
respectively.

0

0

Re(k)

Im
(k

)

BBM Integration Contour, c
F
<v<c

0

(0, 1/
√

µ)

(η1, ξ1)

r
1

C
4

C
1

C
2

C
3

Figure D.5: Steepest descents integration contour for the BBM problem when
cF < v < c0. The pole at r1, marked by the ‘x’, is not enclosed by the defor-
mation process. The contour C4 is so short it is difficult to visualize on this
scale.
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Figure D.6: BBM steepest descents integration contour when v > c0. The
saddle points s1 and s3 lie at the intersection of C1 with the imaginary axis.

D.2.3 The Asymptotic Solution

With the above descriptions of the integration contours, u(x, t) can be approximated by
summing the relevant residue and saddle point contributions. Different contributions arise
depending on the range v lies in.

Case v < c0.

When v < cF , Figure D.4 can be used to show
∫
C+

=
∫
C1

+
∫
C2

+
∫
C3

+
∫
C4

+
∫
C5

, where
integrands have been dropped for shorthand. Since the integral is conducted in both
directions along the line segment joining C3 and C5, there is no additional contribution.
When v > cF , Figure D.5 shows that

∫
C+

=
∫
C1

+
∫
C2

+
∫
C3

+
∫
C4

.

The decomposition of
∫
C+

is useful because each of the integrals involved can be eval-
uated approximately. Consider the saddle point contributions from the integrals along C1

and C3. Making use of the basic identities eiπ/4−ei5π/4 = 2eiπ/4 and ei7π/4−ei3π/4 = 2ei7π/4,
Laplace’s method reveals∫

C1

∼ 2eiπ/4

(s1 − r1)(s1 − r2)
eφ(s1)t

√
π

2t|φ′′(s1)| (D.33)

and ∫
C3

∼ 2ei7π/4

(s2 − r1)(s2 − r2)
eφ(s2)t

√
π

2t|φ′′(s2)| . (D.34)
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Next, consider the bridging contours C2 and C4. These contribute asymptotically neg-
ligible terms. This is evident because along these curves, φR(k) = φR(s3) < 0 can be
factored out of the integral, and the remaining integrand is bounded.

The final contribution to consider, only needed when v < cF , is from C5. Since r1 is a
simple pole, this is easily found to be∫

C5

= −2πi
exp(i(r1x+ ωt))

r1 − r2

, (D.35)

the minus sign arises because C5 is oriented clockwise.

Combining these results and substituting them into (5.101) reveals that as t→∞, with
x < cF t, the solution behaves like:

u(x, t) ∼ A
µω

exp(i(r1x+ωt))
r1−r2 − A

2πiµω
eiπ/4

(s1−r1)(s1−r2)
eφ(s1)t

√
2π

t|φ′′(s1)|

− A
2πiµω

ei7π/4

(s2−r1)(s2−r2)
eφ(s2)t

√
2π

t|φ′′(s2)| .
(D.36)

It should be recognized that s1 and s2 are functions of v = x/t when using this formula.
Similarly, when cF < v < c0

u(x, t) ∼ − A
2πiµω

eiπ/4

(s1−r1)(s1−r2)
eφ(s1)t

√
2π

t|φ′′(s1)|

− A
2πiµω

ei7π/4

(s2−r1)(s2−r2)
eφ(s2)t

√
2π

t|φ′′(s2)| .
(D.37)

Comparing these expressions, it is apparent that the solution transitions from being O(A)
to O(t−1/2) as v exceeds cF . A uniform approximation could be obtained using more
advanced methods described by Bleistein and Handelsman [8, Chapter 9].

Case v > c0.

The path of integration, illustrated in Figure D.6, is just a simple closed loop passing
through s1 and s3. Neither of the poles r1, r2 are introduced in the deformation of C+ onto
the loop. Since φR(s3) < φR(s1) < 0 the dominant saddle point on the loop is s1. The
asymptotic contributions from s1 are then readily found and yield

u(x, t) ∼ − A

πiµω

eφ(s1)t

(s3 − r1)(s3 − r2)

√
π

2t|φ′′(s3)| . (D.38)

Since φ(s1) = φR(s1) < 0, this solution is small beyond all orders in comparison with the
solution for v < c0 as t→∞. This is not surprising since the fastest possible group velocity
supported by the system is v = c0.
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D.3 IGW Calculations

Here the method of steepest descents is applied to approximate the integrals Î1 and Î2 from
equation (5.124), and ultimately the streamfunction solution to the IGW equation. The
method must be applied to each integral separately, and both integrands must be written
in a suitable form. Rewrite

Î1 = −Ahn
4π

∫
C0

f1(k) exp(φ1(k)t) dk (D.39)

where φ1(k) = i(kv + σn(k)), f1(k) = σn(k)/
(
k2(σn(k)− ω)

)
, and

Î2 = −Ahn
4π

∫
C0

f2(k) exp(φ2(k)t) dk, (D.40)

where φ2(k) = i(kv − σn(k)) and f2(k) = σn(k)/
(
k2(σn(k) + ω)

)
, and C0 is the contour

depicted in Figure 5.14. The parameter v = x/t is considered to be a positive fixed quantity
for both integrals. The full solution is found by considering the full range of v values. The
analysis procedure employed below closely follows the steps outlined in Section 5.1.4.

D.3.1 Description of the Critical Points for Î1

In order to establish the asymptotic contribution to ψn(x, t) from Î2, a critical point analysis
is needed. From that analysis the integration contour must then be determined. The
splitting φ1(k) = φ1R(k) + iφ1I(k) is used.

The set of critical points for the integral Î1 consists of the saddle points of φ1, the
essential singularity and branch cut in exp(φ1(k)t), and the simple poles of f1(k). Only
the saddle points are needed for the deformation of C0, so they are the focus of this
discussion.

Saddle points are found by solving φ′1(k) = 0. Since

φ′1(k) = i

(
v +

n2π2N

(k2 + n2π2)3/2

)
, (D.41)

there are four saddle points; one in each quadrant of the complex k-plane. The saddle
points in the first and second quadrants are of primary interest. These lie at

s1+ =

√(
n2π2N
v

)2/3
exp(i2π/3)− n2π2

s1− = −
√(

n2π2N
v

)2/3
exp(−i2π/3)− n2π2.

(D.42)
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Clearly s1− = −s∗1+, and the other two saddle points are given by −s1+, s
∗
1+,.

To determine directions of steepest descent through the saddle points φ′′1(s1±) is re-
quired. With

φ′′1(k) = − i3n2π2Nk

(k2 + n2π2)5/2
, (D.43)

and the fact that (s2
1± + n2π2)3/2 = −n2π2N/v, it follows that

φ′′1(s1+) = 3v5/3

N2/3n4/3π4/3 s1+e
iπ/2,

φ′′1(s1−) = 3v5/3

N2/3n4/3π4/3 s1−e
iπ/2.

(D.44)

Since s1+ lies in the first quadrant, π/2 < Arg(φ′′1(s1+)) < π, and since s1− lies in the
second quadrant, π < Arg(φ′′1(s1−)) < 3π/2. The angles of steepest descent are given by

θ1(s1±) = −Arg(s1±)+π/2

2
+ π

2

θ2(s1±) = −Arg(s1±)+π/2

2
+ 3π

2
,

(D.45)

both of which depend on v. Now consider φ1(s1±). With

φ1(s1+) = is1+v + iN
2/3v1/3

n2/3π2/3 s1+ exp(−iπ/3)

= s1+v exp(iπ/2) + N2/3v1/3

n2/3π2/3 s1+ exp(iπ/6)
(D.46)

and the relation s1− = −s∗1+,

φ1(s1−) = −is∗1+v − iN
2/3v1/3

n2/3π2/3 s
∗
1+ exp(iπ/3)

= s∗1+v exp(−iπ/2) + N2/3v1/3

n2/3π2/3 s
∗
1+ exp(−iπ/6).

(D.47)

Clearly φ1(s1−) = (φ1(s1+))∗, so φ1I(s1+) = −φ1I(s1−). It follows that the paths of steepest
descent through the two saddle points cannot intersect. In addition, φ1R(s1+) = φ1R(s1−) <
0 can be proven for positive v. To see this write s1+ = reiϑ where 0 < ϑ < π/2. A better
lower bound on ϑ is needed, and after careful consideration the formula

ϑ =
π

2
− 1

2
Atan

( √
3(n2π2N)2/3

(n2π2N)2/3 + 2v2/3n2π2

)
(D.48)

is apparent. Since ϑ is an increasing function of v its minimum occurs as v → 0+. This
yields the tighter lower bound ϑ > π/3. Returning to φ1R(s1+),

φ1R(s1+) = −vr sin(ϑ+ π/2) +

(
N2v

n2π2

)1/3

r cos(ϑ+ π/6). (D.49)

Since s1 lies in the first quadrant of the complex plane, sin(ϑ+π/2) is positive. In addition,
since π/3 < ϑ < π/2, cos(ϑ+ π/6) must be negative. Therefore φ1R(s1+) is negative.
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D.3.2 The Integration Contour for Î1

For Î1, the contour C0 is deformed onto the paths of steepest descent through s1±. A
departure from the steepest descent paths is required to prevent deforming C0 through the
essential singularity at inπ. Since these paths are symmetric about the imaginary axis in
the complex k-plane, only the behaviour in the right half-plane is discussed.

Proceeding upward from s1+ along the steepest descent path with initial angle θ =
−Arg(s1+)/2 +π/4, a vertical asymptote is approached. This occurs because |σn(k)| → N
as |k| → ∞. The vertical asymptote lies along Re(k) = (φ1I(s1+)−N)/v.

Proceeding from s1+ along the steepest descent path with initial angle θ = −Arg(s1+)/2+
5π/4, the contour approaches the essential singularity at k = inπ. This is the only direct
connection to the steepest descent path through s1−. To avoid integrating through an
essential singularity the integration contour must be adjusted. Note that along this de-
scent path from s1+, φ1R(k) is a strictly negative, decreasing value. Orthogonal to the
descent path lie contours of constant φ1R(k) < φ1R(s1+) that pass through the imaginary
axis below inπ. At any finite distance from s1+ such a path can be followed to cross the
imaginary axis and proceed into the left half-plane until the steepest descent path from
s1− is intersected.

Along this bridging contour, φ1(k) has a constant, strictly negative real part, which is
less than φ1R(s1+). The constant φ1R(k) can be factored out of the integrand. Evidently,
the contribution to Î1 must be small beyond all orders in comparison with the saddle point
contributions from s1± because the nonconstant part of the integrand remains bounded
along the bridge.

Finally, considering the locations of the poles of f1(k) and the branch cuts and singu-
larities of φ1(k), it is clear that the deformation process does not introduce any additional
residue contributions.

The path of integration described above is illustrated in Figure D.7.

D.3.3 Asymptotic Contributions to Î1

From the discussion above, the asymptotic behaviour of Î1 is determined wholly from the
saddle point contributions at s1±. Therefore

Î1 ∼ Ahn
4π
eφ1(s1+)t

[
σn(s1+)

s21+(σn(s1+)−ω)

√
π

2t|φ′′1 (s1+)|(e
iθ1(s1+) − eiθ2(s1+))

]
+Ahn

4π
eφ1(s1−)t

[
σn(s1−)

s21−(σn(s1−)−ω)

√
π

2t|φ′′1 (s1−)|(e
iθ1(s1−) − eiθ2(s1−))

]
+O

(
exp(φ1R(s1+)t)

t

)
.

(D.50)
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Re(k)
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)

IGW Integration Contour For Î1

nπ
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1+

s
1−

−r 0 r

0

Figure D.7: Steepest descents contour for Î1. The algebraic singularity at (r, 0)
is marked by a ‘x’. The branch cut lies along the dashed line and the essential
singularity at (o, nπ) is marked by a ‘*’. The saddle points s1± are marked by
the square symbols.

Note the leading factors of exp(φ1(s1±)t), and recall φ1R(s1±) is strictly negative for v > 0.
As demonstrated in the next section, the integral contribution to ψn(x, t) from Î1 turns
out to be asymptotically negligible compared to that of Î2.

D.3.4 Description of the Critical Points of Î2

The asymptotic analysis of Î2 closely follows that of Î1, though in some ways it is simpler.
The analysis is based on the saddle points of

φ2(k) = ikv − i kN√
k2 + n2π2

. (D.51)

As usual, the analysis requires φ′2, φ
′′
2; these are given by

φ′2(k) = iv − in2π2N

(k2 + n2π2)3/2
(D.52)

and

φ′′2(k) =
i3n2π2Nk

(k2 + n2π2)5/2
. (D.53)

The critical points include the algebraic singularity of f2(k) at k = −r, the essential
singularities at ±inπ, and the branch cuts along the imaginary axis. There are also two
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real saddle points found by solving the equation φ′2(k) = 0 provided v < N/(nπ). The
critical speed cL = N/(nπ) is the group velocity in the long wave limit k → 0, and is an
upper bound for the group velocity of a wave governed by the linear IGW equations. The
two saddle points are of order one and are given by

s2± = ±
√(

n2π2N

v

)2/3

− n2π2. (D.54)

As v approaches the maximum possible group velocity cL, the first-order saddle points
coalesce to a saddle point of order two at the origin of the complex k-plane, then proceed
along the upper and lower imaginary axis as v continues to increase. This is much like the
situation in the analysis of the BBM equation, and suggests splitting the problem into two
cases.

The directions of steepest descent from the saddle points are found by evaluating
φ′′2(s2±) and using the discussion in Section 5.1.4. The angles differ depending on the
range where v lies, and are summarized in Table D.3.

Range θ(s2+) θ(s2−)
0 < v < cL

π
4
, 5π

4
3π
4
, 7π

4

v > cL 0, π π
2
, 3π

2

Table D.3: Steepest descent directions from the saddle points of Î2.

D.3.5 The Integration Contours for Î2

To compute asymptotic contributions, the integration contour C0 must be deformed onto
steepest descent paths passing through the saddle points. The paths used are qualitatively
different depending on v.

With the splitting φ2(k) = φ2R(k)+ iφ2I(k), it is clear that φ2I(s2−) = −φ2I(s2+), while
φ2R(s2−) = φ2R(s2+) = 0. As was the case for φ1 the contours of steepest descent through
s2± cannot intersect, except at the essential singularities. Observe, however, that along
the steepest descents paths in the lower half-plane φ2R(k) decreases continuously from 0 to
−∞. In particular, each point along the steepest descents curve lies on a different curve
of constant φ2R that crosses the imaginary k-axis above −inπ. Any of these contours
is a suitable curve to bridge the steepest descents paths in the two half-planes. The
contribution of integrating along such a curve is small beyond all orders in comparison
with the contributions from the steepest descents paths.

The asymptotic integration contour used is found by deforming C0 onto the paths of
steepest descent through s2+ and s2−, with a bridging contour joining the steepest descent
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IGW Integration Contour For Î2, v < cF

Re(k)

Im
(k

)

nπ

−nπ

−r 0 r

0

Figure D.8: Steepest descents contour used for Î2 when v < cF . The simple
pole at −r is enclosed by a clockwise-oriented circle and marked by a ‘x’ symbol
The branch cuts are indicated by dashed lines and the essential singularities are
illustrated with ‘*’ symbols. Saddle points are marked with square symbols.

IGW Integration Contour For Î2, cF < v < cL

Re(k)

Im
(k

)

nπ

−nπ

−r 0 r

0

Figure D.9: Steepest descents contour used for Î2 when cF < v < cL. The
simple pole at −r is marked by a ‘x’ symbol The branch cuts are indicated
by dashed lines and the essential singularities are illustrated with ‘*’ symbols.
Square symbols mark the locations of the saddle points on the real line.

209



paths above−inπ. In the upper half-plane, the steepest descent paths through s2± proceeds
upwards and tends to a vertical asymptote at Re(k) = (φ2I(s2±) + N)/v. When v < cF ,
the deformation process also enclose the simple pole at k = −r. This is because s2− lies to
the left of −r on the real axis. The pole is enclosed with a circle connected by a straight
line to the steepest descent path through s2−.

The deformed path of integration when v < cF is illustrated in Figure D.8. Note the
encirclement of the pole at k = −r. The integration contour for cF < v < cL is shown
in Figure D.9, noticeably the saddle point s2− lies to the right of −r so the pole is not
enclosed.

When v > cL, the contour C0 is deformed directly onto the steepest descent path
through s2+ with no modifications. The path lies strictly in the upper half-plane and does
not enclose the pole at k = −r. Figure D.10 illustrates the integration path.

IGW Integration Contour For Î2, v > cL

Re(k)

Im
(k

)

nπ

−r 0 r
0

Figure D.10: Steepest descents contour used for Î2 when v > cL. The simple
pole at −r is marked by a ‘x’ symbol The branch cuts are indicated by dashed
lines and the essential singularities are illustrated with ‘*’ symbols. The square
on the imaginary axis indicates the location of the saddle point s1+.

D.3.6 Asymptotic Contributions to Î2

With the discussion and diagrams above, the asymptotic contributions to Î2 are readily
found. When 0 < v < cF the dominant contribution is from the simple pole encircled in
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the deformation process, so:

Î2 ∼ A hnω
2r2σ′n(−r) exp(−i(rx− ωt) + iπ/2)

+Ahn
2π
eφ2(s2+)t+iπ/4

(
σn(s2+))

s22+(σn(s2+)+ω)

√
π

2t|φ′′2 (s2+)|

)
−Ahn

2π
eφ2(s2−)t+i3π/4

(
σn(s2−))

s22−(σn(s2−)+ω)

√
π

2t|φ′′2 (s2−)|

)
+O

(
1
t

)
.

(D.55)

The result is similar when cF < v < cL, except there is no residue contribution from
the simple pole in the deformation process. Therefore the solution decays like t−1/2. In
particular:

Î2 ∼ Ahn
2π
eφ2(s2+)t+iπ/4

(
σn(s2+))

s22+(σn(s2+)+ω)

√
π

2t|φ′′2 (s2+)|

)
−Ahn

2π
eφ2(s2−)t+i3π/4

(
σn(s2−))

s22−(σn(s2−)+ω)

√
π

2t|φ′′2 (s2−)|

)
+O

(
1
t

)
.

(D.56)

This is reasonable; an observer moving at speed v > cF should not witness the slower
forced waves at sufficiently large times. Finally, when v > cL the integral contributions
come entirely from the saddle point s2+. The result is

Î2 ∼ Ahn
2π
eφ2(s2+)t

(
σn(s2+))

s22+(σn(s2+)+ω)

√
π

2t|φ′′2 (s2+)|

)
+O

(
exp(φ2R(s2+)t)

t

)
.

(D.57)

Note that when v > cL, φ2R(s2+) < 0, so this solution is small beyond all orders compared
with that for v < cL. Once again, this is reasonable because an observer traveling at v > cL
is moving faster than the fastest possible waves in the system. After a sufficient amount
of time has elapsed no signal would be observable.

D.3.7 Solution Summary

The full asymptotic solution for the streamfunction is found by summing over all of the
mode contributions. That is,

ψ(x, z, t) ∼
∞∑
j=1

ψn(x, t) sin(nπz). (D.58)

The contribution from each mode is found by summing the asymptotic contributions from
Î1 and Î2. Precise formulas for these contributions have been derived, here the leading-order
behaviour is summarized.
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Direct comparison shows that for v < cL, Î1 is subdominant to Î2. Therefore when
v < cF , ψn(x, t) behaves like:

ψn(x, t) ∼ −A hnω

2r2σ′n(−r) exp(−i(rx− ωt) + iπ/2) +O(t−1/2). (D.59)

When cF < v < cL the dominant contribution to the streamfunction is O(t−1/2), and
when v > cL the streamfunction must be small beyond all orders in comparison with t−1/2.
The most important feature of the solution is its regular sinusoidal nature when v < cF .
This enables the prediction of wave amplitudes, phases, and frequencies for a given forcing
function, and can guide experimental design.
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