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Abstract

Quadriceps muscle weakness is a condition that can result from a wide variety of causes,
from diseases like polio and multiple sclerosis to injuries of the head and spine. Individuals
with weakened quadriceps often have difficulty supplying the knee-extension moments
required during common mobility tasks. Existing powered orthoses that provide an assistive
knee-extension moment are large and heavy, with power supplies that generally last less than
two hours. A new device that provides a knee-extension-assist moment was designed to aid
an individual with quadriceps muscle weakness to stand up from a seated position, sit from a
standing position, and walk up and down an inclined surface. The knee-extension-assist
(KEA) was designed as a modular component to be incorporated into existing knee-ankle-
foot-orthoses (KAFO). The KEA consists of three springs that are compressed, as the knee is
flexed under bodyweight, by cables that wrap around a sheave at the knee. The KEA returns
the stored energy from knee flexion as an extension moment during knee extension. During
swing or other non-weight bearing activities, the device is disengaged from the KAFO by
decoupling the sheave from the KAFO knee joint, allowing free knee joint motion. A
prototype was built and mechanically tested to determine KEA behaviour during loading and
extension and to ensure proper KEA function. For biomechanical evaluation, able-bodied
subjects used the prototype KEA while performing sit-to-stand, stand-to-sit, ramp ascent, and
ramp descent tasks. The KEA facilitated sitting and standing, providing an average of 53 %
of the required extension moment for the two participants, which allowed one participant to
reduce quadriceps usage by 38 % and the other to perform sit-to-stand in a slower and more
controlled manner that was not possible without the KEA. KEA use during ramp gait caused
an overall increase in quadriceps activation by 76 %, on average, with use. Future efforts will
be made to modify the design to improve functionality, especially for ramp gait, and to

reduce device size and weight.
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Chapter 1. Introduction

Lower limb weakness affects millions of individuals around the world, limiting their
mobility, and thus their independence and quality of life. Individuals whose impairments are
associated with weakened quadriceps often have great difficulty providing the necessary
knee extension moments for level-ground gait. Insufficient extension moments increase the
risk of knee collapse while weight-bearing. In the United States alone, more than 1.5 million
people use a full-leg or knee brace [1]. Typically, numbers for the Canadian population are
approximately one tenth of those from the United States. Weakness in the lower limbs can
have many causes: peripheral neurological diseases like poliomyelitis, post-polio syndrome,
spina bifida, and poly neuropathy; muscular diseases such as muscular dystrophy and
myasthenia gravis; central neurological diseases like multiple sclerosis, cerebral palsy, brain
or spinal cord injury, and stroke [2]; and muscle atrophy and loss of strength due to old age.
To provide stability to the leg during the weight-bearing or stance phase of gait, as well as
other body-weight-bearing activities, a conventional knee-ankle-foot orthosis (KAFO) is
often utilized. A KAFO is an assistive device that attaches to the user's affected leg and locks

the knee in full extension (Figure 1.1) [3].

Figure 1.1: Standard KAFO (from [3]).



KAFOs allow individuals to walk upright but do not fully restore able-bodied gait. Since
the knee joint is restricted from flexing, attempting to swing the leg forward in the normal
manner causes the foot to make contact with the ground. Therefore, the wearer must adopt an
abnormal method of moving the affected limb forward, such as swinging the leg laterally
outward while being swung forward, raising the ipsilateral hip to allow the braced leg to pass
underneath unhindered, or vaulting up with the contralateral leg during the contralateral
stance phase to provide the necessary clearance for the braced limb. These modifications

result in increased energy expenditure during gait, and can lead to hip and back injuries [4].

In an attempt to overcome this limitation, a new generation of KAFO, called a stance
control knee-ankle-foot orthosis (SCKAFO), has recently been developed to allow the knee
to flex during swing phase while still providing support during stance phase [2, 5-10]. A
SCKAFO can help to provide a more natural gait cycle and lower energy expenditure [4].
However, tasks that require high knee extension moments, such as standing up from seated,
walking up inclines, stepping up onto curbs, and ascending stairs, are still difficult if not
impossible for individual with weak quadriceps to perform without assistance. None of the

existing KAFOs provide power to the knee to aid in performing these tasks.

If a sufficiently high extensor moment were provided by a new device to a KAFO's
unlocked knee joint, tasks requiring high knee-extension moments would become possible. A
knee-extension-assist could provide greater mobility for individuals with quadriceps
weakness who could not previously perform these tasks independently, and may permit a

reduction in fatigue and risk of injury to those who perform these tasks with difficulty.

This thesis details the design, construction, and testing of a novel, modular, knee-
extension-assist. The goal of the new assistive device is to provide an external extension
moment to the human knee while the affected leg is weight-bearing for high knee-extension
moment tasks; namely, sit-to-stand, stair ascent, and ramp ascent. Ideally, the device would
have minimal weight and size, only be in operation when a knee-extension moment is
needed, and not impede free knee flexion and extension. The new knee-extension-assist

should assist the user without interfering with the function and detracting from the benefits of
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the KAFO or SCKAFO, during level gait.

The research performed for this thesis entailed the full design, prototype construction,
mechanical testing, and biomechanical functional evaluation of a knee-extension-assist
(KEA). In a first design, an electro-mechanical approach was taken, focussing on assisting
sit-to-stand and stair ascent. However, power sources and actively powered actuators would
be too heavy for widespread use by individuals with quadriceps muscle weakness. In a
second design, a passive approach, using springs to store and release energy as needed, was
taken to power the knee-extension-assist while minimizing size and weight. A passive device
requires a loading phase during knee flexion under bodyweight to supply an extension
moment during knee extension. Stair ascent, which does not have flexion during stance, was
eliminated from the device functional requirements. Ramp ascent, which does have knee
flexion during stance, replaced stair ascent as a principal focus for device function. In
addition, assistance for stand-to-sit and ramp descent, tasks that both have knee flexion
during stance, were added. Detailed design, prototype construction, and mechanical testing
were carried out on the second design. Finally, the KEA was attached to a KAFO and tested
biomechanically to determine its functionality and effectiveness in providing assistance for
sitting down from a standing position, standing up from a seated position, and ramp walking

in ascent and descent.

Chapter 2 reviews the literature relevant to designing a KEA device: sit-to-stand, stair
ascent, and ramp ascent biomechanics; relevant actuator technologies; and existing powered
assistive devices. Following this, the rationale for creating this device, research objectives,
design, development, and prototype fabrication processes are presented in Chapter 3. Chapter
4 presents mechanical testing while Chapter 5 presents the results and discusses the
biomechanical trials. A discussion of results from the mechanical and biomechanical tests, as
well as recommendations for future research is provided in Chapter 6. Research conclusions

are given in Chapter 7.



Chapter 2. Literature Review

In order to design a functional, novel extension-assist for a KAFO knee joint, background
knowledge in a variety of fields is required. The following literature review begins with a
review of sit-to-stand and stair ascent biomechanics, as they are common daily-living tasks
that require high knee-extension moments and design specifications were initially based on
these tasks. Ramp ascent is also briefly discussed since it was later included as an intended
KEA function. Following the biomechanics review, a brief overview of relevant actuator
technologies that could potentially be incorporated into the device is presented. The literature
review finishes with an examination of existing powered mobility and joint extension-

moment-assist devices currently available or in development.

2.1 Sit-to-Stand Movement

The sit-to-stand movement (STS) is a common every-day task that is essential for
independent living. STS is a precursor to walking and many other daily activities [11-13].
However, STS is difficult for those with quadriceps muscle weakness due to the knee-
extension moments required to straighten the leg and the need to move the body centre of
mass (BCM) forward so that the BCM is within the base of support, to maintain balance [12,
14, 15]. A successful STS task involves upward movement of the body centre of mass from

the seated position to one for standing, while maintaining balance [15].

2.1.1 Sit-To-Stand Conventions

STS is typically modeled as a two-dimensional, bilaterally symmetric movement [11, 16].
Since the body usually experiences the same kinematics and dynamics on both sides, STS is

often examined in the sagittal plane, as shown in Figure 2.1.



Figure 2.1: Sagittal plane view of joint angle definitions (from [15]). 6H = hip angle, 0K = knee angle, A =
ankle angle.

In this thesis, for hip and knee angles, joint flexion increases the joint angle, while joint
extension, or straightening the limb, decreases the angle. Hip and knee angles are zero when
the joint is straight. Ankle angle is between the foot and shank, with the angle set to zero for
an actual angle of 90° [14, 15, 17, 18]. Plantarflexion, when the angle between shank and
foot increases, is considered a positive rotation. Although these definitions are common,
some studies report joint angles as being the angle from each segment to the horizontal [12,
16], while others may use the angle between the shank and the vertical as the ankle angle

[19].

2.1.2 Sit-To-Stand Phases

Breaking down the STS task gives a better understanding of the sit-to-stand transfer
biomechanics. Roebroeck [15] divided the STS motion into three phases, based on BCM

motion (Figure 2.2):
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Figure 2.2: BCM Displacement over the full STS transfer (modified from [15]). Dashes on curve represent equal
time steps. Solid dots delineate phases; open dot is instant of seat off. Origin is the ankle joint. Dotted lines
indicate support base, i.e. foot length.
Phase 1 — Acceleration phase: In the first phase of STS, the BCM is accelerated horizontally
solely through hip flexion, which rotates the trunk forwards. Phase 1 begins with the onset of

trunk flexion and ends at the instant of maximal horizontal BCM velocity.

Phase 2 — Transition phase: BCM is decelerated horizontally and accelerated vertically.
Momentum from trunk rotation is transferred to the legs, causing a positive thigh rotation
through knee extension and slight negative ankle rotation. As a result, the BCM begins to
accelerate vertically. Seat-off occurs early in this phase when the buttocks lift from the seat
and the person becomes self-supported. Phase 2 begins at maximum BCM horizontal

velocity and ends at maximum BCM vertical velocity.

Phase 3 — Deceleration phase: Vertical BCM deceleration occurs during this phase. Knee
extension, hip extension, and ankle plantarflexion coordinate to raise the BCM while limiting
its horizontal motion. By the end of Phase 3, the joints have been extended and the body is
nearly vertical. Phase 3 begins at maximum BCM vertical velocity and ends at the

completion of STS.

The transition phase (Phase 2) can be further broken down into three phases: horizontal
trunk deceleration, the instant of momentum transfer to the legs causing seat-off, and the

vertical BCM acceleration through hip and knee extension [20]. However, dividing the



transition phase into three separate phases assumes that there is no further trunk flexion after

seat-off occurs, and this may not always be the case [11].

2.1.3 Body Centre of Mass and Base of Support

For successful STS, the BCM must be moved anteriorly via trunk flexion, as described in
Phase 1, prior to being raised. When sitting upright, the weight of the subject is mainly borne
by the seat and the BCM is therefore located behind the base of support provided by the feet.
If there is not sufficient anterior motion before attempting to raise the BCM vertically,
balance cannot be maintained because the line of action of the body weight through the BCM
passes posterior to the heel [12]. For STS transfers longer than 1.5 s in duration, angular
momentum from trunk rotation is small [18]. Therefore, for slower STS, the BCM must be
brought within the base of support before vertical acceleration can occur. For faster rises,
where trunk momentum plays a role in the STS motion, vertical BCM acceleration can begin
before the BCM is brought within the base of support. However the BCM must be brought

within the base of support as the trunk begins to decelerate for balance to be maintained [12].

2.1.4 Joint Moments

A range of STS joint moments have been reported in the literature. Even for healthy elderly
individuals, the moments necessary for STS are much lower than the maximum moments the
subjects can generate [12]. Net knee extension moments have been reported in the range of
0.3 to 1.4 Nm/kg (Table 2.1). Because the moments produced depend on how the motion is
performed, there is disagreement as to whether the knee or the hip experiences the higher
peak moment during STS [10, 12, 14-16, 18, 20].

Despite the hip and knee moment differences, general trends throughout STS motion are
relatively consistent across studies. Peak joint moments occur very shortly after seat-off [11,
15]. Also, STS duration has little effect on the peak moments, although the slower the
movement is performed, the longer the high moment values are sustained, which leads to

higher muscular effort to complete the task [11].



Table 2.1: STS knee-joint moments [11, 13-18, 21]

Study

Subjects* (female,male)

Knee Moment (Nm/kg)

Task Timing (s)

Sibella et al. (2003)

Shepherd, Gentile (1994)
Roy et al. (2007)

Roebroeck et al. (1994)
Rodosky et al. (1989)
Anan et al. (2008)
Hughes et al. (1996)

Bahrami et al. (1999)

40, 0 obese adults
3,7 adults
0,6 adults

3,9 hemiparetic adults

6,4 adults

5,5 young adults
13,1 elderly

5,5 young adults
6,5 impaired elderly
3,7 adults

0.75
0.38
1.06
1.04 healthy side
0.39 affected side
0.88
0.81
.301-.439
1.41
1.06
0.88

self selected

self selected

self selected 1.2 - 2
na

na

metronome 2.25
na

self selected 2.38
self selected

self selected

self selected 1.738

*healthy unless otherwise specified

2.2 Stair Ascent

Climbing stairs is another common activity that places a high demand on the lower limbs.
While efforts have been made to make buildings more accessible to people with disabilities,
there are still many instances in day-to-day life where ascending stairs is unavoidable. For
someone with quadriceps muscle weakness, performing step-over-step stair ascent (SA) is
not possible because a relatively large amount of knee extensor strength, compared to level
gait, is needed [22, 23]. The step-by-step method, in which both feet are placed on the same
step before ascending to the next, is often used as a replacement SA strategy. The non-
affected leg is always used to raise the body up to the next stair while the affected leg merely

provides support [24].

Normal SA involves reciprocal leg motion, in which the leading (stance) leg straightens,
raising the body, while the trailing leg swings up to the next step. The weight of the
individual is transferred to the previously swinging leg, which becomes the stance leg, while
the newly unloaded leg becomes the trailing leg. This pattern, shown in Figure 2.3, repeats

until all stairs have been mounted.



While the SA motion is not as accurately described by a two-dimensional analysis as
STS, only sagittal plane kinematics and dynamics will be discussed, since the motions of SA

mainly occur in the antero-posterior and vertical directions [25].

2.2.1 Stair Ascent Phases

The SA stride normally begins with the first foot contact and ends with the subsequent
contact of the same foot two stairs above (100%) [25] (Figure 2.3). The average time taken to
complete this cycle is approximately 1.4 to 1.45 s [26, 27]. There are two main phases of the
SA cycle: stance phase, where the leg is weight bearing, and swing phase, which occurs
when the leg is unloaded and swinging up to the next step [23]. Both can be broken down
further according to the different objectives for the progression of movement [23, 25, 26, 27].

However, the subphases are not relevant to the KEA design, and are thus not presented here.

2.2.2 Centre of Mass and Centre of Pressure

Over the course of the SA cycle, the BCM moves vertically and horizontally. BCM is
displaced anteriorly throughout the entire SA stride [25], and at no point is there substantial
vertical BCM motion without concurrent forward BCM motion [23]. However, at the end of
the stance phase, the BCM is displaced only anteriorly, with no vertical lift [25]. Sinusoidal
lateral BCM movement occurs in the frontal plane, but the magnitude of this medio-lateral

sway is small, approximately 4.4 cm at its maximum displacement from centre.

The centre of pressure (CP) during stair ascent remains within approximately 10 cm of
the foot’s metatarsal area. First contact with a stair occurs in the forefoot because the high

knee flexion angle at contact orients the foot such that a high ankle dorsiflexion angle would

X

/
L

POSITION 1 POSITION 2 POSITION 3

Figure 2.3: Normal mode of stair ascent (from [24]).
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be necessary to cause first contact with the heel [26]. The CP moves posteriorly after contact
during weight acceptance on the foot at the start of the stance phase, due to contralateral
ankle plantarflexion during the period of double leg support at the end of contralateral stance.
This is followed by anterior CP movement when only one leg supports weight, until the next

period with both legs supporting weight begins [25].

2.2.3 Joint Dynamics

Similarly to STS, larger joint moments are needed to successfully complete the SA cycle
than to perform level gait, especially at the knee [22]. The maximum knee-extension moment
is more than twice that involved in level walking [26]. However, the dynamics of ascending
stairs is not as consistent as that of level walking [28] due to variation in SA strategies
between subjects. In stair climbing, there is much variation in SA strategies between subjects,
and even within subjects over the course of climbing a flight of stairs [22, 23]. Reported
maximal knee extension moments vary widely in the literature (Table 2.2), from 0.51 Nm/kg
[27], a similar moment to that of level walking [29], to 1.24 Nm/kg [30]. Commonly reported
values are between 1.0 to 1.2 Nm/kg [24, 26, 29-31]. As an example of a strategy that may
lead to a wide range of joint moment values, the subject rotates the trunk further over the
support leg during SA, moving the BCM closer to the knee joint, thus reducing the knee
moment and increasing the necessary hip moment [31]. This movement pattern may allow
people with low knee extensor strength, but adequate hip strength, to ascent stairs unaided

[23, 32].

There was also disagreement as to moments during the swing phase. McFayden and
Winter [23] stated that successful swing is achieved through hip flexion paired with knee
flexion in early swing, knee extension in mid swing, and another period of flexion late in the
swing phase, with hip extension and foot dorsiflexion controlling foot placement at the very
end of swing. Andriacchi et al. [22] stated that there is no muscle activity between mid swing
and foot strike, while Reid et al. [24] wrote that there is zero moment at the knee for the

entire swing phase, and that knee flexion occurs passively as a result of hip flexion.
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Table 2.2: SA maximum knee joint moments for healthy individuals [22-24, 26, 27, 29-31, 33-36].

Study Subjects (female, male) Kn?ﬁlnhfﬁ(:)ent Ave;ztg:piamdis?ce*
Costigan et al. (2002) 20,15 young adults 1.16 80.6
Reid et al. (2007) 8,9 adults 0.96 na
Salsich et al. (2001) 5,5 adults 1.11 85.85
Riener et al. (2002) 0,10 young adults 1.15 85.1
Protopapadaki et al. (2006) 17,16 young adults 0.51 na
McFayden and Winter (1987) 0,3 adults 1.5 na
Andriacchi et al. (1980) 0,10 young adults 0.76 method not specified
Brechter and Powers (2001) 5,5 adults 1.16 142.1
Reeves et al. (2008) 8,5 elderly 0.9 92
Schmalz et al. (2006) 20** young adults 1.05 na
Nadeau et al. (2003) 5,6 adults 0.98 93.6
Spanjaard et al. (2008) 0,10 young adults 1.24 metronome 88

*cadence self selected unless otherwise specified
**participant gender not specified

However, certain gait patterns are common to all SA strategies. Maximum knee
extension moment is observed during knee extension at the beginning of single leg support
[26, 29, 30]. As the knee extends, the BCM moves past the knee joint, causing the extension
moment to decrease and eventually change to a slight flexion moment as the GRF passes
anterior to the knee [22-24, 26, 27]. A maximum ankle plantarflexion moment occurs at the
end of stance phase, just before knee extension begins for the contralateral leg [22, 23, 26,
27]. For all climbing strategies, stair ascent is a physically demanding task requiring high

quadriceps strength to provide a high knee-extension moment.

2.3 Ramp Ascent

Walking up an inclined surface is another high-quadriceps-demand task in which knee
flexion and extension occur while the leg is weight bearing (Figure 2.4) [37], and therefore is
a third task that could be aided by a KEA. During incline walking, the foot contacts the
ground with the knee at a slight flexion angle, dependant on the incline angle. In early stance,
the knee angle increases by 10 to 15 degrees. The knee then extends, and knee angle
decreases to approximately 10 degrees in late stance. The knee flexes again at the end of
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stance, in preparation for swing, during which the foot is raised and moved anteriorly to be in

position for the following stance phase.

Peak knee joint moment during ramp ascent is 0.64 Nm/kg for an 8.5° incline [37],
considerably lower than for STS or SA. In addition, the knee joint moment is only an
extension moment during the initial knee flexion and the first 15 degrees of the subsequent
knee extension. Therefore, knee extension moments only occur in the first half of the stance
phase (Figure 2.4). It would therefore be possible to provide an assistive extension moment
only in the first half of stance, for the initial flexion and the following extension of
approximately the same angle, since the knee joint moment becomes a flexion moment until
the end of the stance phase. Because of the good match between task and device dynamics,
providing an extension-assist for incline ascent was chosen to replace stair ascent as an

objective for device function.
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Figure 2.4: Knee joint angle and moment for incline walking (modified from [37]).

2.4 Relevant Technologies

Technologies that can provide the necessary extension moments for a KEA system were
examined. In the field of active orthoses, active prostheses, and powered exoskeletons,
actuators are used to apply moments to one or more device joints. A wide range of actuator
technologies are available to provide power to anthropomorphic assistive devices, from
traditional actuators like DC motors, to new, non-conventional actuators using technology
that is in the development or testing phase [38-43]. The most common actuators in active
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biomechanical devices are those conventionally used in robotics, DC motors, hydraulic
actuators, and pneumatic actuators. New non-conventional actuators exploit special material
properties of their components, such as a change in size, shape, or viscosity, to create a force
or moment. For example, piezoelectrics, shape memory materials, contractile polymers, and

electrorheological fluids.

Because assistive devices are worn by humans, actuators should be lightweight and
small in size, unnoticeable when the assistive device is in use, and require a small and light
power source, since entire device must be carried by the user. The actuator should provide a
high torque while creating minimal noise or heat, have a fast and predictable response, and

be easy to control.

The following sections briefly describe a number of actuator technologies, divided into

conventional and non-conventional actuators.

2.4.1 Conventional Actuators

Conventional actuators utilize electromagnetic induction, where a current flows through a
coil in the presence of a magnetic field to create an electromotive force (EMF) [44]. The
actuator either uses the EMF directly, such as in a DC motor, or indirectly, using a DC motor
to move a working fluid (i.e., hydraulics and pneumatics). However, other power sources,

such as combustion engines, can also be used to power pneumatic or hydraulic actuators [45].

2.4.1.1 DC Motors

DC motors are a well known, reliable, and longstanding technology that are available in
a wide range of sizes and ratings. For example, on the smaller end of the range, a 3 kg DC
motor can provide approximately 4.4 Nm at 5000 rpm [46], whereas a 2g coreless

micromotor can produce a 0.11 Nm moment at a speed of 13000 rpm [47].

To be suitable for active assistive devices, DC motors are often used in their smaller
forms, to minimize device weight. The smallest DC motors are predominately coreless DC
micromotors, in which the iron ‘core’ is removed from the rotor to reduce weight and inertial
properties, and brushless DC micromotors, where the field magnets are located in the rotor
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and the coil in the stator, eliminating the need for brushes and commutator. However, these
small motors provide very low torques at high rotation rates, and therefore require a gearbox
to obtain acceptable moments and operational speeds. Since conventional DC motors have
relatively low power densities, large, heavy motors are necessary for applications where
higher torques are needed, which would likely be too heavy for a person with a physical
disability. DC motors are also noisy, which is undesirable since noise will draw attention to

the assistive device or become irritating to the user [43].

A commonly used extension of the DC motor is the servomotor. This is a DC motor
coupled with a reduction system to convert high motor speeds into high torques and a control

system with a position sensor to monitor shaft rotation, allowing for precise positioning [43].

DC motors can also be used to create linear forces instead of torques through the use of a
lead screw or ball screw. The motor turns a threaded shaft connected to an output via a non-
rotating nut (lead screw) or ball bearing assembly (ball screw). The shaft rotation causes the
nut or ball bearing assembly to move up or down, exerting a linear force on the attached
output. Lead and ball screws greatly reduce DC motor’s very high efficiency (Table 2.3). The
efficiency losses for lead screws are mainly from friction between nut and shaft while, for the
ball screw, the loss is mainly from the ball bearing assembly’s relatively large weight [48].

Table 2.3: Efficiencies of DC motors with added components to convert rotational output to linear output [48].
cPy, is the corrected power to weight ratio, which takes into account the efficiency of each type of actuator.

P, cP,, Strength/Wi

Actuator Eff. (Wikg) (Wikgl  [KN/kg (kg f/kgl]
dc motor (190 312 281 —

+ gearbox 0.68 50 tl —

+ ballscrew 0.&l 130 122 1.2 (1200

+ leadscrew 0.27 150 41 1.2 (1200
Air muscle .40 SO0 10k 2004k 4.9-8.6 (500-875)
Human muscle 045 500 225 6.4 (658)

2.4 1.2 Hydraulic and Pneumatic Actuators

Hydraulic and pneumatic actuators use pumps to push a working fluid, usually oil or air, into
a closed cylinder containing a piston connected to an output shaft. The fluid is pumped into

one side of the cylinder, creating an internal pressure that forces the piston to move towards
14



the unpressurized end. As a result, the piston shaft exerts a linear pushing or pulling force on
the connected component. Hydraulic actuators can provide larger forces than a similar
pneumatic actuator. However, hydraulic actuators are normally quite heavy because they use
oil as a working fluid, and are therefore normally used in devices that actively support their
own weight, such as the BLEEX and Sarcos exoskeletons [49, 50], or are externally powered

and/or supported [51].

To provide a joint moment, hydraulic and pneumatic actuators are often connected
above and below the joint and offset from the joint centre, because they provide a linear force
and thus require a moment arm through which to act. As a result, the moment created at the
device joint is a function of joint angle, since the moment arm decreases as the joint extends
(Figure 2.5). This actuator offset can make prevent the user from sitting or wearing the
device under clothes [52, 53]. Traditional pneumatic cylinder actuators have been used in
assistive devices by pulling on a link coupled to a joint, creating a moment about that joint
[52]. While pneumatic cylinders have better power to weight ratios than electric actuators
[52], a portable compressor or compressed air tank would be necessary to run the pneumatic

cylinders in a wearable device. This would reduce the favorable power-to-weight ratio.
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Figure 2.5: Torque provided by a hydraulic actuator (modified from [45]). F is the force applied
by the hydraulic actuator.

15



2.4.2 Non-conventional Actuators

Non-conventional actuators typically exploit a component’s special material properties,
which can generate a force or moment. These special properties can be a change in size,
shape, or viscosity as a response to an external stimulus. The materials can be metal alloys,

piezoelectric materials, polymers, or fluids [39, 41, 43].

2.4.2.1 Non-Conventional Pneumatic Actuators

Non-conventional pneumatic actuators are extensively used in active orthoses, gait
rehabilitation devices, and powered exoskeletons [52, 54-60]. The most commonly used is
the pneumatic muscle actuator (PMA), or McKibben air muscle, a tubular rubber air bladder
surrounded by a reinforcing braided mesh of flexible, though inelastic, fibres or wires [55].

Figure 2.6 shows a PMA and its makeup.

When a pneumatic muscle is pressurized, the rubber tube expands in volume. However,
because the surrounding mesh cannot stretch, the tube can only expand radially. As a result,
the mesh angle changes from approximately 5-10° to 40-45° to accommodate the increase in
diameter (Figure 2.7), causing the length to shorten. Contraction upon pressurization can be
used to apply a pulling force by attaching the actuator ends to device fixtures. McKibben air

muscle can only produce contractile forces if it is in a stretched state when inactive [55, 61].
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Figure 2.6: McKibben air muscle (a) in situ in an orthosis (adapted from [56]) and (b) detailing air muscle
constitution (from [62]).

One attractive trait of pneumatic muscles is the lack of a catastrophic failure mode,

especially for assistive devices. As a ‘soft actuator’, the user has a low risk of injury if an air

16



muscle fails, and thus PMAs are deemed safer than electrical or hydraulic actuators when
providing similar forces [63]. PMAs are also compliant, allowing for use in non-linear
configurations, such as following the shape of the body [54]. In addition, air muscles are

relatively inexpensive compared to other actuator technologies [63].
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Figure 2.7: McKibben air muscle contraction showing the reduction in length and increase in fibre angle
(adapted from [61]).

Pneumatic muscles are also popular because of the excellent power to weight, power to
volume, and power to energy ratios. Repperger [64] reported that the 1 W/g pneumatic
muscle power/weight ratio is five times greater than hydraulic or electric actuators and the 1
W/cc PMA power/volume ratio far exceeds standard hydraulic or electric-motor technologies
[64]. As shown in Figure 2.8, McKibben air muscles can lift a 30 kg weight through a
contraction of almost 20% its original length when pressurized to 0.45 MPa [55]. However,
these favourable ratios do not take into account that the power supply and air pump must be
carried by the wearer [52, 54-58, 60]. Once the weights of the power supply and pumps are
added to the total actuator weight, pneumatic muscle measures of performance decrease

considerably. Without including the batteries to power the system, which would be necessary
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Figure 2.8: Contractile response of McKibben air muscles (from [55]).
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for any portable actuator, the extra components of controllers, tanks, and compressors can

weigh in excess of 4 kg [55].

Another problem with pneumatic muscle actuators is that they are less accurate and
more difficult to control than DC motors, due to their non-linear response (Figure 2.8) [65].
As the bladder is pressurized, it expands radially and shortens longitudinally, producing a
force that is proportional to the cross-sectional area of the bladder, a function of diameter
squared:

net force = pressure * A cross-sectional area (2-1)

Furthermore, the cross-sectional area is not constant over the length of the air muscle. The
PMA changes shape as the air muscle contracts, ballooning out more in the middle than at
the ends as pressure increases. Also, actuator length is related to cross-sectional area by
trigonometric functions, because the outer mesh dimensions, which define PMA length, are
determined by the angles between the crossing fibres. These factors all contribute to a highly

non-linear system that is difficult to control [63, 64].

As well as needing complex controls to use pneumatic air muscles effectively, PMAs
have large energy losses caused by friction between the expanding rubber tube and the
encasing fibre mesh. This friction causes heat and mechanical energy losses, causing
hysteresis and shortening actuator life due to wear [62]. To mitigate this problem, pneumatic
muscles have been created with the inextensible fibres arranged only longitudinally (Figure
2.9), essentially eliminating friction between the fibres and the rubber air bladder [62]. These
air muscles are still non-linear, but hysteresis is reduced, service life is increased, and
maximum force generated by the longitudinal pneumatic muscles is increased to
approximately five times that of traditional McKibben muscles [61, 62]. However, since
there is only longitudinal reinforcement, the actuator ruptures at much lower pressures than
the traditional McKibben air muscle. While a McKibben air muscle can withstand pressures
up to 0.8 MPa, the longitudinal air muscle can only withstand 0.2 MPa before the bladder
fails. This results in lower maximum contraction ratios for the longitudinal air muscles [61,

62]. Saga and Saikawa [62] created a longitudinal air muscle using carbon fibre bundles that
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can achieve similar contraction ratios at 0.2 MPA as McKibben muscles can at 0.6 MPa, but

no force data for the actuator was presented.

k_..

Figure 2.9: Longitudinal fibre pneumatic muscle actuator (from[62]).

A novel rotational pneumatic actuator was created by Yamamoto et al. [59] using
pressure cuffs from sphygmomanometers separated from each other by aluminum plates
(Figure 2.10). As the cuffs are inflated, they press apart on the plates, causing a moment
about the joint to which the actuator is connected. However, this actuator is extremely big

and bulky, and is therefore unsuitable for a small, discrete, and light full-leg orthosis.

Wire

" Aluminum plate

cutt —

Figure 2.10: Rotational pneumatic actuator for the knee joint (from [59]).
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2.4.2.2 Shape Memory Alloys

A shape memory alloy (SMA) is a metal alloy that undergoes deformations upon heating and
cooling. If the metal is heated above a characteristic transition temperature, the internal
atomic structure of the alloy transforms from martensite to austenite. Upon transition, the
SMA attempts to revert to the configuration the material had when last in the austenitic
phase. If there is resistance to this change in shape, the SMA can exert high forces to
complete the transition [66, 67]. Upon cooling, the SMA transitions back to martensite. Once
below the transition temperature, the specimen retains its austenitic shape until deformed by
an external force. This deformation in easily accomplished since the SMA has a very low

martensitic yield stress [66].

A number of SMAs have been discovered to date. However, nickel-titanium based
alloys, commonly known as Nitinol alloys, are the most practical because they can undergo
large amounts of strain upon transition relative to other SMAs [42], have good corrosion
resistance, and have good electrical and mechanical properties [43, 66]. These materials can
be used as actuators by attaching strained SMA wire to a load and passing an electric current
through the wire. The current causes resistive heating and elevates the temperature of the
material. Once passed the austenite transition temperature, the wire will contract and pull on
the load. When the current stops, the wire cools naturally, and can be restrained with a small

external load.

SMAs have very good strength-to-weight ratios and high strength-to-area ratios [43]. A
0.05 mm diameter Nitinol wire can lift over 7.25 kg. SMAs are light, extremely strong, and
function silently. However, SMAs require temperatures between 55 and 100 °C to operate,
have low cycle rates (they can only cycle as fast as the wire can cool), have high hysteresis,
have a short service life, and can only achieve a 5% recovery strain, necessitating long

lengths of wire to produce a large range of motion [43, 66].

2.4.2.3 Piezoelectric Actuators

Piezoelectric actuators use piezoelectric materials to create mechanical movement from

electric fields [43]. In a piezoelectric material, an electric dipole is generated when the
20



material is strained. The opposite is also true, in that when a piezoelectric material is exposed
to a voltage, the charged specimen strains and undergoes a mechanical displacement, which
can be used to create piezoelectric motors. Due to the high forces from the piezoelectric
effect, piezoelectric motors have a high power density and can thus be of small size and
weight while still providing a high output torque [43]. There are two types of piezoelectric

motors: rotary and ultrasonic.

Rotary piezoelectric motors (Figure 2.11) are similar to DC motors in that they are
composed of a stator and a rotor. The stator is fabricated from a piezoelectric material, and is
thus the active component, while the rotor is passive. When a voltage is applied to the
contacts, the piezoelectric stator undergoes a strain and pushes on the rotor, which then
rotates due to the large amount of friction generated between the two components. When the
applied voltage is removed, the stator unstrains, but remains in contact with the rotor, though
at a lower force and thus with a smaller amount of friction, preventing the rotor from rotating
backwards. While able to provide large torques with small motor sizes, this actuator does not
provide constant output motion because the stator return stroke occurs while still in contact

with the rotor. Rotary piezoelectric motors are difficult to build and relatively expensive. [43]

For traveling wave ultrasonic motors, a propagating wave is generated in an elastic
piezoelectric stator ring, causing particles on the ring surface to follow an elliptical path.
Inside the ring is the rotor, which is turned by direct contact with the stator, through which

the wave is traveling [40]. Figure 2.12 presents a schematic diagram outlining this process.

Piezoelectric
Contacts Actuator
+

Figure 2.11: Rotary piezoelectric motor (from [43]).
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Figure 2.9: Stator and rotor of a traveling wave ultrasonic motor (from [43]).

Ultrasonic motors have a very high power density, and are able to provide high output
torques at low rotational speeds, reducing the size of or eliminating the need for a
transmission. These motors function silently, a very desirable trait for an actuator used in
prostheses and orthoses, and do not create magnetic fields as do conventional DC motors.
Ultrasonic motors have a fast response time due to low rotor inertia and are therefore easily
controlled. When unpowered, torque and position are maintained, although ultrasonic motors

are not back-driveable. [40, 43]

There are a number of disadvantages to ultrasonic motors. In order to create the
propagation wave in the stator ring, a high frequency power supply is needed. Efficiencies of
ultrasonic motors are lower than those of DC motors, and lifespans are shorter due to wear
from contact between the stator and rotor rings. Heat generated could cause discomfort as
well, due to close proximity of the motor to the skin for assistive devices. As with rotary

piezoelectric motors, ultrasonic motors are also quite expensive. [40, 43]

2.4.2 .4 Dielectric Elastomers

While still in the early development and testing phase, dielectric elastomers (DE) have
been suggested for use as artificial muscles in robotics and wearable devices [41]. DEs can
undergo large deformations, and have high energy densities, good efficiencies, and fast
response times [68]. They are also silent, and have mechanical properties similar to natural
muscle [41]. DEs function on the principle that like charges repel and opposites attract.
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Flexible electrodes are attached to either side of a soft elastomer, and opposite charges are
applied. This causes the two electrodes to be attracted to each other, compressing the
elastomer in between. In order to conserve volume, the elastomer expands in the
perpendicular directions. Repulsion of like charges within each flexible electrode serves to
further increase area in the perpendicular directions [41]. When the power supply is turned

off and the electrodes are short-circuited, the DE returns to its original shape [68].

There are a number of dielectric elastomer configurations for actuators. The most
promising for linear actuation has the DE rolled into a cylinder and exerting an elongation
force along its axis [41]. Use of this configuration for artificial muscles requires a
compression spring inside the DE cylinder. While activated, the DE keeps the spring in an
elongated state. The spring applies the contractile force when the DE is switched off [68].
This leads to a counter-intuitive and possibly inefficient actuator, because the ‘relaxed’
muscle state occurs when the DE is active. Even though they are lightweight, rolled DEs do
no generate much force. Each 25 cm long roll provides only 15 N of force [68], necessitating
a large number of DE rolls to create an actuator that can provide the high moments required
for a powered leg orthosis. Due in large part to fatigue and contamination during fabrication,
DEs also have a short and widely variable lifespan. DEs are vulnerable to numerous failure
modes and are difficult to control due to their viscoelastic properties like creep, stress
relaxation, and hysteresis [41]. Due to these and other issues, DEs are currently unsuitable

for use in biomechanical devices.

2.4.2.5 Contractile Polymer Gel

Contractile polymer gels (CPG) undergo a change in volume in response to an external
stimulus. CPG can be thermally, chemically, or electrically controlled, depending on the
polymer gel used. The gels are light, and do not require large amounts for actuation, allowing
CPG actuators to be small and compact [43]. However, the best properties are achieved when
using a chemically activated system, in which the gel is immersed in a solution whose pH is
altered to control contraction and expansion. This method creates hazardous waste in the

form of salts, which must be dealt with, and necessitates a complicated delivery system for
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the acidic and basic components that cause actuation [69]. CPGs are characterized by slow
response times, from seconds to days for full activation [69, 70]. Stresses upwards of 1MPa,
similar to that of natural muscle, can be generated with CPGs but they demonstrate very low

power output per unit volume [69], low cycle frequencies, and high cost [43].

2.4.2.6 Electrorheological and Magnetorheological Fluids

Electrorheological (ERF) and magnetorheological (MRF) fluids consist of particles dispersed
in an insulating fluid. These fluids can drastically change their viscosities or yield stresses
when exposed to electric or magnetic fields, respectively. They have very fast response times
and can create large, controllable resistive moments [39]. However, they are only able to

resist motion, and thus are not suitable when active moments are needed.

2.5 Existing Devices

Much research has been done since the 1960s in the field of active orthoses, active
prostheses, and powered exoskeletons, with similar difficulties and problems occurring in all
fields [50]. Issues of non-portability [2, 52], large sizes and weights [71, 72], and heavy or
fixed power supplies [52, 53, 73] are in the forefront of challenges that researchers are trying
to overcome. This is especially true for the field of active orthoses. Active prostheses have
the advantage over orthoses that they replace a body part and can replace the lost weight and
bulk with powerful actuators and sufficient batteries [74]. Most exoskeletons support their
own weight at all times, and therefore carry the heavy actuators and power supply necessary
to run them [59, 73, 75-77]. Active orthoses, however, provide assistance by attaching to an
existing limb, adding bulk and weight to a body part that does not function properly. As a
result, active orthoses are often used in a clinical setting for gait training in a lab or on a
treadmill, where a separate structure supports the device and body and a fixed power supply
can be used. [53, 54, 60, 78]. However, this makes these orthoses non-portable, and thus
unsuitable as a daily-use portable KAFO.

At times, there can be a blurring of lines between the categories of assistive

technologies, especially between active orthoses and powered exoskeletons. In general, for
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active orthoses, moments are applied to the device joints to cause or assist the user’s motion,
using a power source external to the human body [39, 50]. In the case of powered
exoskeletons, the joint moments are often supplied by a powered actuator, according to the

intended motion, to enhance moments generated by the user [50].

The following section is a review of powered assistive devices, including prostheses,
exoskeletons, and orthoses. Included in the scope of powered orthoses are non-portable
orthoses for rehabilitation and gait retraining. These large, heavy, and often fixed devices are
not intended for daily use, but many use technologies that are potentially relevant to the

design of a portable orthosis.

2.5.1 Active Prostheses

Several lower-limb prosthetic devices that use active components are available on the
market. However, the majority use passive components controlled by small actuators to
provide a variable resistive knee moment, but do not generate an extensor moment. This
allows for a more natural level gait for the amputee, and easier navigation down inclines,
down stairs, and across uneven ground [79, 80]. These devices weigh approximately one to
two kilograms [80, 81] and can have a battery capacity of 45 hours [79], since the active
components can have low power requirements (ex., open and close valves on hydraulic or
pneumatic dampers). However, these devices do not assist the user in stair ascent or sit-to-
stand tasks. The Otto Bock C-Leg, Freedom Innovations Pli¢ MPC knee, and DAW
Industries Self Learning Knee (SLK) [79, 82, 83] are prostheses that use actively controlled,

passive hydraulic or pneumatic dampers to provide variable resistive knee moments.

The Ossur RHEO KNEE [84] uses magnetorheological fluid to generate resistive moments.
Because the active component draws power to apply a charge to the MRF, to create resistive
moments, the power requirement is again low but must be active at all times to maintain joint
movement resistance. The RHEO KNEE cannot generate extension moments, as with

hydraulic and pneumatic active prostheses.
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The Power Knee (Figure 2.13), by Victhom Human Bionics, is an externally powered
prosthetic leg that actively provides a moment to extend the knee, as opposed to only
resisting knee flexion. In the initial version, data gathered from sensors strapped to the sound
foot and ankle were sent wirelessly to the prosthesis to help determine the type of movement
that should be provided. The current version uses embedded sensors in the device to provide
movement classification data. The Power Knee can actively perform level gait up to 7 km/h,
gait down and up inclines, stair descent and ascent, as well as sit-to-stand and stand-to-sit
tasks. DC motors powered by 42V batteries are used to generate moments at the device knee
joint, with a battery life of up to 6 hours continual use [74, 85, 86]. The prosthesis weighs 4.7
kg, and can support a 60 - 90 kg user. The sensors on the sound leg add another 90 g.
However, the Power Knee does have certain limitations. Because Bluetooth technology is
used in the system, the wearer should avoid utilizing the Power Knee while in close
proximity to microwaves, cellular telephones, and wireless phones in operation, or any other
Wi-Fi or Bluetooth device; which is something difficult to do in today’s world. The device
should not be used in bad weather, since the prosthesis is not allowed to come into contact
with water. Furthermore, in order to ensure that the prosthesis performs the correct task at the
correct times, the user must perform specific movements at the initiation of a new type of
motion. For example, to ascend stairs, the user must come to a complete stop at the base of

the stairs and begin ascending with the natural leg, exaggerating the height to which the

Figure 2.13: Victhom Power Knee (from [74]).
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sound leg is lifted before striking the step with the forefoot. After the final stair, the user
must either stop and stand on the sound leg, or strike the ground with the heel of the sound

leg to transition back to normal gait [85].

2.5.2 Powered Exoskeletons

Powered exoskeletons are developed to augment an individual’s load carrying abilities or
provide powered assistance for locomotion. A lower extremity exoskeleton, BLEEX (Figure
2.14), allows greater load carriage through the use of a backpack attached to the device frame
[45]. A full body exoskeleton, HAL-5 (Figure 2.15), allows the wearer to carry a larger load
in their arms [87]. Locomotor assist devices lessen the demands placed on the leg muscles to
aid people living with disabilities and reduce fatigue in workers who spend their time
standing and squatting [75, 77]. Examples include HAL-3 (Figure 2.16) and Honda’s
walking assist device with bodyweight support system (Figure 2.17). However, because
exoskeletons are bipedal, they have the advantage of supporting their own weight at all
times; therefore, these designs may not be suitable for unilateral orthotic devices that are
worn by the user. However, some insight can be gleaned on how the unilateral knee-extensor

muscle-weakness problem can be solved.

Figure 2.14: The Berkeley Lower Extremity Figure 2.15: Full body exoskeleton, Hybrid
Exoskeleton, BLEEX (modified from [73]). Assistive Limb 5, HAL-5 (from [87]).
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Figure 2.16: Hybrid Assistive Figure 2.17: Honda’s walking assist device
Limb 3, HAL-3 (from [87]). with bodyweight support system (from [77]).

2.5.2.1 BLEEX

The Berkeley Lower Extremity Exoskeleton, BLEEX (Figure 2.14), is a lower-limb
exoskeleton designed to aid the user in carrying heavy loads through the use of an attached
backpack. BLEEX can support an extra 34 kg beyond what the user can naturally carry [45].
The exoskeleton consists of two externally powered robotic legs that attach to the legs of the
operator, a power supply system located in a backpack attached to the device, and a central

controller, also located in the backpack [49].

BLEEX is controlled using ground reaction force, acceleration, position, and orientation
measurements taken from the exoskeleton. This information is used to determine exoskeleton
motion such that the user feels minimal force from the device [45, 88]. The BLEEX system
uses linear hydraulic actuators to provide moments to the device joints because hydraulic
actuators have high power-to-weight ratios and a high degree of controllability [88].
Bidirectional hydraulic actuators were used on all joints because both active flexion and
extension must be provided for tasks other than level walking [45]. During unloaded level
walking with the BLEEX, the hydraulic actuators consume 1.1-1.3 kW of power. For
comparison, the human body uses 165 W of power during level gait, giving a 14 % efficiency
to the hydraulic actuation system [45, 88]. The total power output necessary to run the

hydraulics and electrical control system safely is approximately 2.5 kW. Because a large
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amount of power is required to run the system and BLEEX must be re-fuelable in the field, a
special gasoline combustion power unit is used . Gasoline has a high energy to weight ratio
[49] and is widely available. Additional stores of gasoline are also easy to carry. However,
the power unit creates fumes and makes BLEEX a very noisy device. The BLEEX is
therefore not suitable for use as a mobility aid. Furthermore, BLEEX is designed to transmit
normal bodyweight loads to the wearer to give a natural feel [49], and would therefore not

provide support to an individual who lacks the strength for normal load bearing.

2.5.2.2 Sarcos’ Wearable Energetically Autonomous Robot

Sarcos Research Corporation also developed a lower body exoskeleton that uses a backpack
for load carrying. Sarcos is also developing a full body exoskeleton, although it is still
powered and controlled externally [89]. The lower body exoskeleton supports heavy loads,
upwards of 84 kg [90]. Like BLEEX, Sarcos’ exoskeleton uses hydraulic actuation.
However, rotational hydraulic actuators, located at the device joints, provide the joint
moments [50]. Ground reaction force is measured through sensors on a stiff metal plate,
attached to the base of the foot [50]. As a result, the metatarsal joints in the foot cannot flex,

which may result in unnatural and uncomfortable gait.

2.5.2.3 HAL
The Hybrid Assistive Limb 5 clinical type, also referred to as the HAL-5 Type-C (Figure

2.18), is another lower extremity exoskeleton. Instead of load carrying, this device is
intended to assist the elderly and people with lower-limb disabilities by supplying part of the
necessary joint moments for level walking, SA, or STS [91]. Hal-5 Type-C uses position,
force, and acceleration sensors to determine what movement is desired and then supplies up
to 60 Nm directly to the device joints using DC motors with harmonic drive transmissions
[75, 87]. However, the motors are somewhat bulky and, while smaller than those on the
previous generation device, HAL-3, the motors could impede arm swing during walking and
prevent a comfortable and natural gait pattern. A computer controlling the device and a
battery pack power supply are strapped to the user’s waist [87], as seen in Figure 2.18. In the

full body counterpart (HAL-5), a device meant for load carrying, the battery provides more
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than 160 min of use per charge. Total system weight is 15 kg [87], which is self-supported by
the exoskeleton [91]. For HAL-5, optimal device calibration for a given operator takes two
months [50], which is inconvenient for would-be users since this would mean many trips to
the clinic and a long period of unsteady gait before the user could benefit fully from the

system.

Figure 2.18: Controller and power supply placement for the HAL-5 Type-C (from [87]).

2.5.2.4 Honda Walking Assist Devices

Honda has developed two walk assist devices. The Stride Management Assist can only be
used by people still capable of walking unaided. This first walk assist device straps around
the waist and thighs of the user, and enhances hip flexion to increase stride length and
augment walking speed. This device uses flat brushless DC motors, weighs 2.8 kg, and uses a
22V lithium ion battery to provide upwards of 2 hr usage time before a recharge is necessary
[92]. The Stride Management Assist is not suitable for individuals with low quadriceps
strength, since no knee moment support is provided and the user would therefore be in

danger of collapse.

The Bodyweight Support System (Figure 2.19) is designed for people who are able to
walk on their own [93] but require more support than the Honda Stride Management Assist.
To use the Bodyweight Support System, the user wears shoes attached to the device and

straddles a seat that carries a portion of their weight. This walk assist device weighs 6.5 kg,
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and is driven by two DC motors powered by lithium ion batteries with a charge life of two
hours [93]. The Bodyweight Support System is designed to provide an increasing assistive
moment with increasing knee joint flexion angle [77]. In other words, when the user crouches
or climbs stairs, a larger percentage of bodyweight is supported by the device than when the
user performs level gait. However, the amount of aid would not be sufficient for people with
quadriceps weakness. The device can reduce muscle activity by up to 23% during squatting
and 19% during stair ascent [77]. Because the amount of support decreases with decreasing
knee flexion angle, the assistive knee moment during level walking would be low, since level
gait occurs with nearly straight legs, making the Bodyweight Support System more suited to
fatigue reduction in labourers than as a mobility aid for individuals with quadriceps
weakness. Another problem with the device is that because the design involves the use of a

seat between the legs, it is not possible to sit while using the device.

Figure 2.19: Honda’s walking assist device with bodyweight support system (from [77]).

2.5.2.5 Nurse Assisting Exoskeleton

Yamamoto et al. [59] developed a full body exoskeleton to assist nurses in handling and
lifting patients (Figure 2.20). The 13.4 kg device was designed with all components posterior
to the user, to not interfere with contact between the nurse and patient. The exoskeleton uses
pressure cuffs to create rotary pneumatic actuators. As the cuffs are inflated, they push

against one another and cause joint rotation as a result of actuator geometry [59]. Each cuff
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in each actuator is inflated by its own micro air pump, all of which are powered by two
nickel-cadmium batteries. The suit can support approximately half the weight of a patient, or
30 kg [94]. Muscle hardness sensors, strapped to the operator’s arms and legs, are used to
determine the desired motions for device control. Design deficiencies include: the air supply
system did not function properly, with the leg actuators not receiving sufficient pressures; the
shoulders are unpowered; and it is difficult to turn or kneel while wearing the suit [94]. Also,
the suit is entirely behind the user and is quite bulky, and thus the user would be unable to sit.
This also makes the exoskeleton inconvenient for use because the user might lose awareness

of the extent of equipment and accidentally strike people or obstacles with the device.

Figure 2.20: Full body exoskeleton for assisting nurses in lifting and maneuvering patients (from [50]).

2.5.3 Active Orthoses

Designing portable powered orthoses presents a large challenge to engineers due to
restrictions on size and weight of the orthosis and power supply, since everything must be
supported by the wearer instead of supported by the device, as with exoskeletons. Many
powered orthoses were designed for clinical rehabilitation settings. In this setting, the
orthoses do not need to be mobile or portable and can therefore be powered and supported by
separate, fixed systems. However, many use the same technologies and design ideas that

were considered for use in portable orthoses. The following section will be divided based on
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the type of actuator used in the device: electric motors, pneumatic air muscles, pneumatic or

hydraulic cylinders, and others.

2.5.3.1 Active Orthoses Using Electric Motors

One of the most common uses of electric motors in orthoses is in a lead screw or ball
screw actuator [78, 95-97]. These actuators provide a linear force but can be attached to span
a joint, thus providing a joint moment [53, 96, 97]. The motor can also be a part of a series

elastic actuator (SEA), quite common in ankle-foot orthoses [78, 95, 98].

The Active Leg Exoskeleton (ALEX), a unilateral, non-portable, gait retraining orthosi
that, uses lead screw actuators spanning the hip and knee to generate joint moments [96].
Because ALEX is a gait retraining device, its control scheme is based on assisting the patient
as needed. The device only provides joint moments when the patient deviates from normal
gait. This is achieved by resisting incorrect and assisting desired movements [99]. Device
weight is externally supported and power comes from an outside source. Because the device

is not very portable, ALEX can only be practically used on a treadmill (Figure 2.21).

Because a high transmission ratio was chosen, the lead screw actuators used by ALEX
cannot be back-driven. However, back-drivability is important, especially in a gait retraining

device, because back-drivability of a motor allows the user to generate the leg movement, if

Figure 2.21: The Active Leg Exoskeleton in use. Actuators are DC motors with lead screws (from [99]).
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they are able to provide the necessary joint moments, without much resistance from the
orthosis. In order to obtain device ‘back-drivability’, the research group had to use complex
compensation methods involving friction models and load cells on the lead screws. This level
of complexity is undesirable, and avoidable if a lead screw design that allows for back-

drivability is chosen.

Lokomat, another powered rehabilitation orthosis, meant for use on a treadmill by stroke
victims or spinal-cord injury patients, is similar to ALEX. However, Lokomat is bilateral,
and the weight of both the orthosis and the user are externally supported. Joint moments are

supplied by four externally powered linear actuators, one at each hip and knee joint [100].

Ohta et al. [97] designed a motorized reciprocating gait orthosis (RGO) for paraplegics.
The design used two 0.8 kg ball screw actuators (Figure 2.22) to provide a moment to each
knee while performing level gait. With a stroke length of 150 mm, the actuator was able to
permit a maximum flexion angle of 70°. Each actuator was powered by 12 nickel metal
hydride batteries, which would last for approximately one hour of continuous use. However,
the knee actuators only provided flexion and extension moments while the leg was in the
swing phase of gait, resulting in very little load on the motors, and allowing for smaller and
weaker motors to be used. This design would therefore not be capable of powering the stance

leg during mobility tasks without increasing actuator size.

Figure 2.22: Ball screw actuator spanning the RGO knee joint (from [97]).

34



The device closest to satisfying the design objectives of this thesis, the Roboknee, by
Yobotics (Figure 2.23) is a portable, unilateral, leg orthosis that provides a sufficient moment
to power knee extension during walking, stair climbing, and deep knee bends. Roboknee uses
a ball screw and compression springs to create a series elastic actuator (Figure 2.24),
weighing 1.13 kg, which attaches to the user’s thigh and calf. Actuator stroke is 30.5 cm and
can provide a continuous force of 565 N and a maximum force of 1330 N [53]. The springs
give some compliance to the actuator, resulting in more comfortable and less jarring knee
motion [53]. Roboknee uses GRF (force sensors in the shoe) and knee angle and velocity
(linear encoder that determines actuator stroke length), to determine what the desired motion

is, and adjusts the SEA length accordingly [53].

(2) (b)

Figure 2.24: The ball screw series elastic actuator (a) in the device and (b) actuator design (Modified from [53]).
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In order to be fully portable, the user must carry a backpack containing the computer
control system and 4 kg of nickel metal hydride batteries. Even with 4 kg of batteries, the
device can only be used for 30-60 min between charges [53] since the device is always
active, even during level walking. This is insufficient for an orthosis, as an assistive device
should provide a full day of support without the need for a recharge. The device also restricts
the user from running. Sitting while wearing the Roboknee is not possible because the
actuator spans from thigh to calf. In addition, the device is difficult to don and doff [53],
increasing the likelihood of rejection by the user. This device has also only been tested on

healthy individuals [101] so the benefit to those with weakened quadriceps is unclear.

Series elastic actuators are also used to create so-called robotic tendons. These often
span the ankle joint of an ankle-foot orthoses (AFO) to correct for dropfoot, a motor
deficiency condition that causes the foot to slap down when the heel makes contact with the
ground and causes the toes to drag on the ground while the leg swings forward [78]. SEAs
can also cushion the impact of heel-strike and provide plantarflexion assistance when the leg
pushes off [95]. Robotic tendon SEAs use a lead screw to control the level of compression or
extension of a spring to which a non-rotating nut is attached (Figure 2.25). The nut controls

the spring force, and thus the moment provided to the joint.

Figure 2.25: Lead screw and spring components of a robotic tendon SEA (from [48]).

Blaya and Herr [78] used a SEA in their AFO (Figure 2.26) to prevent dropfoot foot
motion by controlling the length of a compression spring in the actuator throughout the gait
cycle to produce varying dorsiflexion moments. The actuator, attached posterior to the leg, is

initially extended for heel strike in order to provide a resistive moment to stop the foot from
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slapping the ground upon heel impact. The joint moment is then removed to not impede
plantarflexion during pushoff. This is achieved through actuator shortening, which allows the
compression spring to elongate and return to its resting length. Finally, the SEA lengthens
again, causing the foot to dorsiflex, so that the foot does not drag during swing. This method

provides an active assistive moment only during swing.

Figure 2.26: Series elastic actuator in an ankle-foot orthosis (modified from [78]).

Another AFO was designed by Oymagil and collagues using a 0.95 kg robotic tendon to
provide a resistive moment at heel strike, similarly to Blaya and Herr, but also to provide an
active plantarflexion moment to aid in push-off at the end of stance [95]. This is achieved by
first extending a spring, through SEA shortening and natural ankle dorsiflexion that occurs
between foot flat and the late stance phase of gait. The spring then releases its stored energy
to provide a plantarflexion moment during push-off, producing positive work (Figure 2.27).
The robotic tendon design provides all necessary resistive and propelling power for normal
level walking [95]. However, this design relies on resistance from bodyweight to extend the
spring to provide the moment about the joint. The design would therefore not be suitable for
stair ascent, where there is no period of flexion while the affected limb is load-bearing before
the extension moment is required. Both this AFO and that of Blaya and Herr are powered by

a fixed source and, at this stage of development, are not portable devices [78, 95].
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Figure 2.27: Schematic of robotic tendon SEA action to provide plantarflexion moment (from [95]).

The ABLE system [102] is a powered lower-body orthosis, wheeled foot platform, and
telescoping crutch system for individuals with total lower body paralysis. The system does
not allow for level gait, but instead uses platforms with motorized rollers attached to the feet
to provide upright mobility to the user. During straight-line motion, the orthosis joints are
locked with knee fully extended and crutches are used for balance. Turning is possible, but
time consuming and complicated. Employing the telescoping crutches for additional lift, the
powered orthosis enables the wearer to perform STS and SA, as well as ramp ascent, ramp
descent, stand to sit, and stair descent, although the last two are performed with great
difficulty. The components are powered by DC motors. The crutches use a ball screw design
for linear actuation, while the orthosis joints and foot platforms use non-backdrivable worm
gears. The complete system weighs 17 kg. This device is portable if a backpack containing a
power supply is worn, but no information is given about use times or about the power supply
itself. The device is meant for individuals with total lower body paralysis, to be used in lieu

of a wheelchair.

Kong and Jeon [103] have designed a portable, bilateral lower-limb orthosis for the
elderly (Figure 2.28). Instead of designing the device that bears the active component weight,
the motors, controllers, and batteries were placed in a walker that drives on motorized castors
in front of the orthosis user. The walker provides additional support to the patient, and allows
for the orthosis itself to weigh under 3 kg. Cables and pulleys transmit torque from the four
motors in the walker to the hip and knee joints (Figure 2.29), assisting in level gait and
possibly ascent and descent for low grade inclines. The orthosis also aids in stand-to-sit and

sit-to-stand, with the walker handle lowering and raising via pneumatic actuators during
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these two tasks based on knee joint angle. The system uses potentiometers at the joints and
air bladder pressure sensors located in the shoes and strapped tightly to the thighs to
determine user intent through GRF and thigh muscle contraction. Because a cable and pulley
system transmits power from the motors to the orthosis, the walker must remain a fixed
distance from the user [50]. Also, the walker, which drives itself, could potentially lead the
user at a pace that they are uncomfortable with or unable to keep up with at a given time. The

walker also makes the system unsuitable for uneven surfaces, stairs, or the outdoors.

Tendon
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Figure 2.28: Portable bilateral walking assist Figure 2.29: Transmission of torque from
orthosis for the elderly (from [103]). castor motor to orthosis (from [103]).

The Lower-extremity Powered Exoskeleton (LOPES) is another gait rehabilitation
orthosis for use on a treadmill. The LOPES guides the legs through correct level walking gait
cycles while providing the minimum necessary assistance [104]. Since LOPES is designed
for rehabilitation-clinics, the driving motors are located external to the device. This device
controls the movement of both legs, providing degrees of freedom for knee and hip flexion
and hip abduction. External servomotors are attached to Bowden cables, where an inner wire
moves within an outer tube. The motor pulls the inner wire, which is wrapped around a
special actuator disc (Figure 2.30). The joint flexes or extends when the wire pulls on the
actuator disc, depending on which side of the Bowden cable is retracted by the servomotor.
Because the DC motors do not need to be on the orthosis, larger and stronger motors can be

used for better output torques and control. The device delivered joint moments from 25 to 60
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Nm, and a power up to 250 W [104]. However, a portable system based on LOPES may not
be feasible since smaller motors may not be sufficient to overcome the large power losses

from the friction between the wire and the actuator disc [104].

Figure 2.30: Bowden cable actuator for the LOPES rehabilitation orthosis (from [104]).

Ruthenberg et al. [71] designed the Powered Gait Orthosis (PGO) as an experimental
device to determine the forces between a powered orthosis and its wearer during use. The
device has one degree of freedom for each leg, since knee and hip joint movement is
controlled by a single mechanism. One 13.2 V DC motor powers each leg through a complex
8-bar linkage (Figure 2.31). The hip joint is rotated by a four-bar crank-rocker, links 1-4,
where link 1 is fixed to the torso and is thus the ground link. The knee is controlled by a cam-
follower mechanism. Link 2, which is directly driven by the motor input and rotates the hip,
also causes link 8 to turn, driving the knee through the proper angles for once cycle of gait.
Through this mechanism, one complete crank revolution (link 2) produces one full cycle of
gait for that leg. However, due to the linkage mechanism used to drive joint motion, only one
mode of gait is possible, making other tasks like SA, STS, navigating around or over
obstacles, or walking on uneven or inclined ground impossible. The orthosis is also
extremely heavy, weighing 26.75 kg, although the authors stated that the next generation
PGO will be approximately 10 kg. The control circuitry and battery pack can be fastened to
the back of the orthosis corset, making the device portable. However, the PGO would be an

impractical device for everyday use, due to the high weight and restricted joint motion.
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Figure 2.31: The Powered Gait Orthosis controlling hips and knees through 8-bar linkage (from [71]).

2.5.3.2 Active Orthoses Using Pneumatic Air Muscles

Pneumatic muscle actuators (PMAs) are popular for use in orthoses due to their high strength
and light weight. However, achieving portability and low device weight is difficult because
they require compressors or tanks to provide an ongoing pressurized air source. As a result,
PMAs are often used in non-portable rehabilitation devices. Because orthosis designs using

PMAs are often similar, only a few representative orthoses will be detailed in this section.

Researchers at the University of Michigan [54, 56, 60] have designed a number of ankle-
foot and knee-ankle-foot orthoses using McKibben air muscles as actuators. All devices are
meant for use in rehabilitation of individuals who have suffered neurological injuries, as well
as experimental investigation into neuromechanical lower limb control during walking. All
PMAs in these orthoses are powered by an external air source at pressures up to 6.2 bar. The
simplest design (Figure 2.32) consists of a 1.3-1.7 kg AFO, using one PMA, or two in
parallel, to provide powered plantarflexion [60]. A foot switch was placed inside the shoe at
the forefoot to determine when air should be supplied to the PMA. One PMA could provide
1700 N when activated at its maximum length. The force dropped to zero when activated at
71% of its max length. In order to obtain sufficient plantarflexion moment, a moment arm of

10 cm was used, providing 57% of the total plantarflexion moment. The authors determined
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that there were no significant differences in function between the AFO with one and with two
PMA, because patients tended to walk with more plantarflexion when using the two-PMA
AFO, leading to activation of the actuators at lower lengths, resulting in a lower contractile

force, similar to the single-PMA AFO [60].

(a) (b)
Figure 2.32: AFO for plantarflexion assist using (a) one and (b) two McKibben PMA (from [60]).

An improvement on this design used an AFO and two PMAs in an antagonistic pair
(Figure 2.33a), to provide both powered plantarflexion and powered dorsiflexion [54]. The
complete AFO weighed 1.7 kg. Instead of using footswitches, the PMAs were controlled
through electromyography (EMG), with activation strength proportional to level of muscle
contraction. The device was able to supply 36% of the peak plantarflexion moment and
123% of the peak dorsiflexion moment observed when a healthy individual walked in the
AFO without the use of the PMAs. Besides being non-portable, this design also has the

limitation of being somewhat bulky, and would be difficult to wear underneath clothing.

The device in Figure 2.33a was elaborated upon and converted into a full KAFO [56].
The KAFO (Figure 2.33b) can generate extension and flexion moments at the knee in
addition to the plantarflexion and dorsiflexion moments at the ankle. However, the device
was not tested, and so its performance and limitations are unknown. It is possible to see from
Figure 2.33b that the KAFO is somewhat bulky and, as with the previous device, would
likely not fit under clothing.
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Figure 2.33: (a) AFO with antagonistic PMA pair to provide plantar and dorsiflexion torque (from [54]).

(b) The PMA actuated KAFO provides antagonistic moments about the knee and ankle (from [56]).

Costa and Caldwell have designed a full, bilateral, lower body orthosis to augment joint
forces and assist in walking rehabilitation training for stroke and brain or spinal-cord injury
patients [58]. Using PMAs to provide the joint moments, the orthosis can supply flexion-
extension and abduction-adduction moments at the hips and flexion-extension moments at
the knees and ankles (Figure 2.34). The system weight is 12 kg, including electronics but
excluding external power and air supply. Experimental results showed that orthosis

performance was not at an acceptable level.
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Figure 2.34: Ten degree-of-freedom lower-body orthosis. Actuated by antagonistic PMA pairs (from [58]).
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2.5.3.3 Active Orthoses Using Other Actuation Methods

In addition to PMAs, pneumatic cylinders can also be used for joint actuation. Belforte et al.
[52] designed an active, bilateral, complete lower body orthosis for paraplegic individuals,
with the goal of providing the support and joint moments needed to walk upright. The device
was intended to be portable, for this design iteration, the orthosis was externally powered.
The orthosis used two different pneumatic cylinder setups to power the joints. At the knee, a
double end cylinder attached to a chain was used to create knee motion. The chain drove a
sprocket at the knee joint, such that the linear motion of the pneumatic cylinder rod created a
knee rotation (Figure 2.35a). At the hip, a pneumatic cylinder spanned the joint (Figure
2.35b). Moments above normal for gait were supplied to the knee to prevent collapse, with
mechanical stops added to avoid joint hyperextension, which would injure the user. Since a
large range of motion and high moments are required at the knee, having an actuator span the
joint becomes impractical since attachment points must be far enough away from the joint
centre to provide an adequate moment. This does not allow the orthosis to be worn under
clothing and makes sitting difficult. For this reason, the chain-driven knee actuator was
designed. However, placing the pneumatic cylinder distally on the leg greatly increases the
leg’s inertia. This is unfavorable in a unilateral orthosis or a device that would be passive and

free swinging.
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Figure 2.35: (a) The chain driven knee actuation system using a double-ended pneumatic cylinder and (b) the
hip actuation system using a bi-directional pneumatic cylinder to span the joint (from [52]).
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Saito et al. [51] designed a powered lower-limb orthosis for rehabilitation of paraplegic
and hemiplegic patients, using hydraulic cylinders for actuation [51]. The four bilateral
hydraulic actuators each span two joints, either hip and knee or knee and ankle (Figure 2.36),
to mimic the biarticular muscles found in the legs in an attempt to create an orthosis motion
that more closely resembles natural gait. As a result, when one actuator is active, both ends
either extend or retract and control the movement of two joints. Saito stated that biarticular
actuators also lead to control scheme simplification and weight savings due to the lower
number of actuators. The total orthosis weight is 7 kg, not including the hydraulic pump and
power supply that were both external to the device. Each actuator provides a standalone force
of 390 N but higher applied forces and segment velocities could be achieved by combining
multiple cylinders. However, due to the biarticular nature of the actuators, the two cylinders
controlling the knees and ankles had to be placed on the inner shank. This forces the user to
walk with splayed legs and introduces the danger of tripping if the inner actuators
accidentally make contact. This is especially dangerous because orthosis users would likely

lack the ability to recover from a stumble.

Figure 2.36: Biarticular hydraulic actuator placement (from [51]).
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Active orthoses have also been designed to use the residual muscle strength of the
wearer to power the orthosis [105, 106]. In functional electrical stimulation (FES), the thigh
muscles are stimulated by an electrical current to cause muscle contraction and leg extension.
This technique is normally employed during the swing phase of gait, and is intended for
individuals who still have quadriceps strength but are unable to control contraction
themselves, such as people with spinal cord injuries. However, FES is not suitable for
generating the power needed for STS, SA, or ascending inclines, since individuals with
weakened quadriceps muscles do not have the strength necessary for these movements. In
addition, FES leads to rapid muscle fatigue and is unable to precisely control joint moments,

making muscle stimulation a less favorable option.

While no information was found on shape memory alloys being used in lower limb
orthoic devices, there has been research into SMA use in artificial hands. Bunhoo et al. [38]
used SMA wires to create antagonistic actuators for flexion-extension and adduction-
abduction of the fingers. However, the wires showed low actuation strains and forces, and
were suggested as being better suited to a prosthetic hand for children. Because of these
limitations, and those described in the earlier section, SMA actuation is not viable for a knee-

ankle-foot orthosis knee-extension-assist.
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Chapter 3. Knee-Extension-Assist Design and Development

3.1 Rationale

Considering the diverse range of pathologies that can cause lower-extremity weakness
[2] and the mobility difficulties from quadriceps weakness [18, 21, 32], there is a need for
simple, inexpensive, effective leg orthoses to assist with high knee extension moment tasks.
An orthosis that aids sitting, standing, climbing stairs, and walking on ramps would reduce
reliance on others for assistance, ease the burden placed on family members or care-givers,

and enable the orthosis user to lead a more independent lifestyle.

Traditional and stance control KAFOs have improved the ability of those with weakened
quadriceps to perform level walking by providing lower limb support. Traditional KAFOs
help people stand upright and walk while supporting their bodyweight on their affected limb.
SCKAFOs give the wearer free knee motion during the swing phase of level walking,
allowing the user to walk more naturally. However, these devices are unable to help the user
complete common tasks that require a high level of quadriceps strength while the knee

extends or flexes.

This research provides an assistive knee-extension moment to help individuals with
weakened quadriceps to independently perform high knee-extension moment tasks; such as,

STS, stand-to-sit, SA, and ramp walking.

As outlined in the previous chapter, a number of assistive devices can provide additional
power to the knee to aid a user in completing tasks that require a higher knee moment than
they are capable of generating unaided. These devices use a wide range of actuator
technologies and power sources to provide external moments to a joint. Since these devices
require external sources of power and large actuators, which are usually bulky and heavy,
many are designed to be non-portable [51, 52, 54]. These devices therefore do not solve the
problem of increasing mobility by providing an assistive knee moment, since their use is
restricted to a fixed area, often a rehabilitation or gait training clinic. Other portable devices

are often large and heavy bilateral exoskeletons, intended to augment the abilities of healthy
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individuals [45, 59, 75, 90]. Because they are bilateral, these exoskeletons can support their
own large weight and that of their heavy power supply. A portable, powered, unilateral
orthosis has been previously designed [53], but, among other shortcomings, this device has a
heavy power supply, with a limited battery life, whose weight must be supported directly by

the orthosis user.

A small and light device that could provide an extension moment to the knee without
being cumbersome would allow greater mobility for an individual with weakened knee
extensor muscles. Being able to perform the previously difficult or impossible tasks of STS,
ramp ascent, and SA greatly increases confidence, independence, and quality of life for

individuals with a mobility disability.

3.2 Objectives
The goals of this research were to design, develop, and test a portable and fully wearable
extension-assist device that provides a knee-extension moment to a KAFO (including
SCKAFO) to aid the wearer in successfully performing high quadriceps demand tasks.

The thesis objectives were to:

1. Design a modular component to be attached to a KAFO capable of providing an
extension moment that would assist in sit-to-stand and stand-to-sit, incline ascent and
descent, and stair ascent without impedance to knee motion during the swing phase of
gait. The component size and weight should be minimal. Cost should be kept low.

(Detailed design criteria are given in Section 3.3).
2. Manufacture a functional prototype of the KEA.
3. Carry out mechanical tests on the KEA to determine device performance.

4. Perform biomechanical testing of the new KEA on a KAFO worn by healthy

individuals to determine device effectiveness in assisting the target tasks.
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3.3 Design Criteria

Based on the review of orthotic-devices and relevant-technology literature and through
discussions with rehabilitation professionals, the functional and structural requirements of a
KEA device were determined. A quality function deployment (QFD) chart [107] (Table 3.1)
lists and weights the importance (from 0 — least, to 10 — most) of the design requirements as
determined by the user, the orthotist, and from the manufacturing perspective. The centre of
the QFD chart shows the relationship between design requirements and quantitative
performance and the engineering parameters that can be controlled in the design process. The
strength of this relationship, determined by the investigator, is denoted by the letters a, b, c.
The bottom of the chart provides the engineering parameters of existing devices. The ability
of these devices to satisfy the design requirements is shown on the right. Target
specifications (chart bottom) were determined for an ideal extension-assist device. The chart

also provides insight into where other devices fail to fulfill the design criteria.

3.3.1 Functional Requirements

The ideal powered KEA would provide 100% of the required knee moment for sit-to-stand,
ramp gait, and stair ascent. This corresponds to a maximum required knee moment of 126
Nm (mean + 1 standard deviation) [30], for a 90 kg individual. Since the device should be a
modular component attached to a KAFO, total device weight should be below the maximum

permissible weight of a commercial KAFO.
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The ideal device would allow an individual with weak quadriceps to perform STS, ramp
gait, and stair ascent tasks comfortably at near-normal speeds. The device would quickly
sense when a knee-extension moment is required and automatically provide the appropriate
extension moment to the knee. When extension-assist is not required, the device would be
inactive, and provide no impedance to an individual’s movements (i.e. during the swing
phase of gait, knee extension and flexion would be unhindered). If the device were to impede
any portion of the gait cycle, the increase in effort required would likely negate the benefits
gained from the extension-assist, and the probability of device rejection would be high. The
device would also run quietly, function for a full day (at least 14 hours) before a power

supply recharge is needed, and be no more difficult to don and doff than a KAFO.

3.3.2 Structural Requirements

The device structural requirements dictate how well the functional requirements can be
fulfilled. Size and weight are of utmost concern in orthosis design. Cosmetics are an
extremely important issue for orthosis users. If a device is overly bulky, looks awkward, or
causes the user to move unnaturally, people may reject the device, regardless of the benefits.
Therefore, the ideal device would have minimal size, with power supply and electronics
concealed. Minimal size is especially important medio-laterally, to reduce the risk of
collision with external objects, the user’s own arms laterally, and the contralateral limb
medially. Bulkiness has been stated as a major reason for rejecting full-leg orthoses [108],
and it is unlikely that excessive bulkiness would be permitted for a brace equipped with an
extension-assist. Because there have not been studies that examine orthosis user tolerance to
increased size, target dimensions were based on the technical information available on
existing powered exoskeletons and the opinions of orthotics technicians and experts. Target
dimensions of 50 mm thickness medio-laterally, 70 mm width anterio-posteriorly, and 200

mm length were chosen as being reasonable values.

Since orthoses add weight to an individual’s already weak limb, only a very small device
weight is permitted. Additional weight, and the increased rotational moment-of-inertia on a

swinging limb caused by this weight, would increase the effort required to walk [109], which
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the individual would already have difficulty performing. Although no studies on orthosis user
tolerance to device weight were found, conversations with orthotists and experts in the field
revealed that 2.3 kg (5 1bs) is thought to be the upper limit of what orthosis users are willing
to don. Therefore, the ideal device should weigh less than 2.3 kg, with the mass concentrated

as proximally on the leg as possible to minimize added moment-of-inertia to the limb.

Though minimizing size and weight are important, the device must also resist
mechanical failure under the application of a 126 Nm knee-extension moment, the maximum
required moment. The KEA must also withstand a large number of cycles without requiring
servicing. Through an informal study conducted on one healthy individual over 10 days, the
average number of stair ascent cycles per leg and sit-to-stand motions performed daily was
91, with a maximum of 136. Therefore, to last a 10 year lifetime without requiring
replacement of components, the ideal device would be designed to perform approximately
300,000 cycles (91 cycles/day x 365 days x 10 years) without failing due to fatigue.
However, yearly maintenance is often performed on KAFOs, and so the KEA should be able
to perform approximately 30,000 cycles before it requires servicing. To increase device
versatility, the KEA would ideally be a modular component that could be incorporated into

an existing KAFO or SCKAFO.

3.3.3 Control Requirements

A control system is necessary to operate the actuator and to engage or disengage the
actuator from the knee joint when extension-assist or zero joint impedance is required,
respectively. The control system should use parameters from an individual’s motion or
involved forces to determine the required response, either measured on the device or body.
Unnatural movements should not be required for proper device functioning. Chairs, stairs of
varying sizes, and ramps of various grades must be able to be used. The best options for
control parameters are knee angle and ground reaction force, since starting knee angles for
the weight-bearing portions of STS, incline walking, and SA are much higher than for level
walking and are fairly predictable [14, 17, 26]. Ankle and hip angles, and foot, shank, thigh

and trunk accelerations are other measurable parameters, but these are either not unique to
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STS, SA, and ramp walking, or the parameters can diverge from predictable values
depending on the person’s condition. For example, an individual with weak plantarflexors or
dorsiflexors may require an orthosis with a rigid ankle joint and an elderly individual who

walks in a stooped position would have a permanently flexed trunk.

A purely mechanical sensing system, such as an air bladder underfoot, could be used to
realize a low-cost, simple, and lightweight control system. An electro-mechanical sensing
system could also be used to achieve a greater level of actuator and device engagement
system control. An electro-mechanical system could use pressure sensors, goniometers, and

accelerometers, in addition to mechanical sensors.

3.3.4 Summary of Important Design Criteria

Table 3.2 lists the important design criteria outlined in the above sections for the design of an

1deal knee-extension-assist device.

Table 3.2: Key Design Criteria

Design Criteria Target Value

Maximum weight 2.3 kg (5 lbs)

Maximum thickness (medio-lateral) 50 mm

Maximum width 70 mm

Maximum length 200 mm

Maximum extension moment 126 Nm

Resistive knee joint moment during swing or device inactivity | 0 Nm

Maximum user weight 90 kg

Power consumption 14 hours between recharging
Time between servicing 1 year

3.4 Electro-Mechanical Device Design

The initial KEA design consisted of an electro-mechanically powered system to generate the
extension moment. The design focused on providing full assistance for knee extension tasks,
principally STS and SA, since these two tasks required the highest knee extension moments.
Ramp ascent assistance would have been a secondary benefit of this design. Stand-to-sit and
ramp descent tasks were not included in the functional requirements for the initial design.

The following section outlines the initial design process.
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3.4.1 Design Concept Generation

In order to generate a wide variety of design ideas, a function-concept map of device
functions and actuators was created. A more detailed morphology table listed specific
mechanisms that could perform the device functions. A large number of conceptual designs
were created; each incorporating different actuators, mechanical linkages, or methods of
delivering the supplied moment to the knee. Specific STS, SA, and ramp ascent events and
measurable parameters that could be used to trigger and control the device were also

determined in this conceptual design process.

The eight most promising conceptual designs were refined and compared in a decision
matrix, which examines how well each device would satisfy the design requirements relative
to the other designs. The result is a ranking of the conceptual designs in terms of ability to
satisfy user needs. See Appendix A for the decision matrix and a brief description of the

design concepts under comparison.

Using the decision matrix, the best conceptual design consisted of a single DC motor
that would apply the extension-assist moment directly to the knee joint when required and
then load a spring while the device was inactive, so that the stored spring energy could later

augment the extension moment that is provided directly to the knee by the motor.

3.4.2 Design Concept Refinement

Once the best conceptual design was chosen, a final design refinement process was
carried out to examine different options for the motor, spring type and placement, and
method of torque transmission from the motor to the spring and knee joint. The optimal
device configuration (Figure 3.1) was a set of bevel gears at the knee, driven by a DC motor
attached to the upper support upright of the KAFO. The smaller bevel gear (pinion), attached
to the motor output shaft, would drive the larger bevel gear, which would rotate about the
orthosis knee joint pin. The large bevel gear would selectively engage the pin, and thus the
knee joint, through the use of a dog clutch on the knee joint pin. The clutch would be
pneumatically actuated through the application of pressure on an air bladder underneath the

user’s foot. A torsion spring that could be loaded through 90 deg would encircle the hub of
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the larger bevel gear, with one arm attached to the gear, and the other to the upper support

upright.

Motor %
™~

Y

Small bevel gear
P g

i /Knee joint pin

~Dog clutch

>

//Lorge bevel gear

s

g

-~
Upper support uprighf’/ __—Torsion spring

Figure 3.1: Powered device conceptual design sketch. Note: Not all parts shown.

With the dog clutch engaged, the larger gear would be coupled to the knee joint and the
motor would drive knee extension directly (direct drive). With the clutch disengaged, the
larger bevel gear would be free to rotate about the knee joint pin without impeding free knee
joint motion, and the motor would load the spring by rotating in the opposite direction from
that which drives knee extension. Because the clutch would only activate through pressure
applied to the bladder underfoot, the spring could be loaded by the motor whenever the foot
would not be load bearing, such as during the swing phase of stair climbing and incline
ascent or while seated. When the leg would be load bearing, the motor would directly drive
knee extension while the torsion spring would unload. The spring unloading would add to the
extension moment provided by the motor, because the direction of unloading would be the
same as that of knee extension. With the additional moment provided by the torsion spring, a
smaller motor than one that could provide the entire required knee moment could be used.
This design would allow use of space to be kept to a minimum. The bevel gears also allow
for the largest dimension to be in the direction with the lowest constraint on size, proximo-
distally along the thigh.
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Device control would be achieved through a force sensing resistor (FSR) underneath the
air bladder and a rotary encoder at the orthosis knee joint. Since tasks requiring an extension
moment are characterized by a knee angle at foot contact much larger than that of level
walking [15, 26], the device could be switched on any time the braced leg becomes load
bearing with a knee angle greater than a pre-set starting angle, such as first contact with a
stair, leg loading at initiation of STS, or the first stride of ramp ascent. The device would
remain active throughout the task until weight acceptance on the braced leg would occur
below the starting knee angle, for example the first stride on level ground after reaching the
top stair or after completing STS. Extension moment activation during stance would cease
upon weight acceptance at the smaller knee angle. In this way, the device would only
function when needed for knee extension tasks and would be inactive at all other times. This
would allow the orthosis to function passively, because it would have functioned without the
KEA when extension assist was not necessary. With the device inactive when a knee moment
is not required, power would not be supplied while using the orthosis, thus saving power as
compared with other active orthoses and powered exoskeletons. The rotary encoder would
also provide a signal to a controller that corresponds to the torsion spring angle. Matching the
spring loading angle with the knee angle would ensure that there would be no residual
moment from the spring acting on the gear at full knee extension. If there were to be residual

moments applied to the gear, friction would make dog clutch disengagement difficult.

3.4.3 Detailed Design

With the conceptual design finalized, a more in-depth design was undertaken to determine
the required motor specifications, spring stiffness, and part sizes necessary to meet the
extension moment requirement. Spring sizing was performed first because the maximum
moment a torsion spring within the size restrictions could provide would determine the motor

requirements.

Spring sizing was carried out using torsion spring moment and fatigue equations [110]
and finite life cycles-to-failure estimation calculations [110, 111]. The torsion spring moment

M is given by:
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M=k'o (3-1)
where @' is the angular deflection of the spring in number of turns, and &' is the spring rate:

_ d'E
" 10.8DN, ’

kl

(3-2)
in Nmm/turn. E is the elastic modulus of the wire, d is the wire diameter, D is the mean coil
diameter, and N, is the number of active coils in the spring:

Na:Nb+37tD .

(3-3)
Ny 1s the number of body turns or coils and /; and /, are the lengths of the two spring arms.

The torsion-spring fatigue factor of safety ny for infinite-life was found using:

ng = Sa , (3-4)

Oq

where S, and o, are the amplitude components of the spring fatigue strength and stress in the

spring, respectively as follows:

2g2 25, \?
Sa=r2—setl—1+ /1+(Fut) l (3-5)

32M
Oq = B nd;, (3-6)
where
_5/2
Se = —1_(Sr_/2)2 (3-7)
Sut
K = 4C2-C-1 3.8
L™ ac(c-1) (3-8)

Syt 1s the ultimate tensile strength of the wire, » = M, / M, is the slope of the load line where
M, and M,, are the amplitude and midrange components of the spring moment, respectively,
with M, = M, = M/2 for a torsion spring which loads and fully unloads. S. is the endurance
limit, and S; is the fatigue strength for helical torsion springs as determined by Associated

Spring. Kj is the inner-fiber stress correction factor and C = D/d is the spring index.

The number of cycles-to-failure was determined using the following equations:
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N = ("—R)l/b (3-9)
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b= —glog (fj—:‘t) (3-12)
f= ;—L(Z X 103)P (3-13)
Op = 345+ S, (3-14)
b = _M (3-15)

log(2N,)

where N is the number of cycles to failure for the spring and or is the equivalent fully-
reversed stress for combined loading cases with a midrange and amplitude stress, oy, and o,,
respectively. a and b are constants determined from the Stress-Life (S-N) diagram based on
Sut and S, of the material, and f'is the fraction of Sy that is equivalent to the fatigue stress at
the start of the high-cycle fatigue range. o'r is the true stress corresponding to fracture in one
stress reversal, b is the slope of the elastic-strain line in the Strain-Life (¢-N) graph, and N is

the number of cycles taken to reach the endurance limit of the material.

From the above equations, the maximum moment that could be applied in a quarter turn
to a torsion spring with dimensions close to the design size requirements was 34 Nm. Such a
spring would have a 6.6 mm wire diameter, an 83 mm outer coil diameter, a 28 mm coil
height, and a mass of 0.2 kg. Using Equations (3-4) to (3-8), the Gerber fatigue criterion
infinite-life factor of safety was calculated to be 0.82. Because of this low factor of safety for
infinite life, the finite number of cycles to failure was calculated using Equations (3-9) to (3-
15). The number of cycles to failure was approximately 2x10* cycles. The expected number
of cycles per year was approximately 3x10*, which would require the spring to be replaced
every six to eight months. A spring was sourced (Appendix B) that best matched these

characteristics, but fatigue tests would be required to determine the actual life of the spring.
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With the spring providing 34 Nm of the 126 Nm extension moment design target, the
maximum moment the motor would have to provide during direct drive would be 92 Nm.
The use of 3:1 reduction ratio bevel gears would reduce the torque requirement to 31 Nm.
The worst-case duty cycle that the motor would have to undergo would be during stair ascent
for a 90 kg individual. The motor would first provide a constant 11.3 Nm moment for 1 s to
load the spring. It would then provide 31 Nm, linearly reducing to 0 Nm in 2 s as the knee
extends. The cycle (Figure 3.2) would repeat, without rest, half as many times as the number

of stairs climbed (the sound leg of a unilateral orthosis user would be used for half the stairs).

The smallest motor that suited the output torque requirement was the Maxon RSF-14B
Mini Series, 24 V brushless DC motor with a Harmonic Drive 100:1 reduction ratio gear
head. Its maximum output torque with the gear head was 28 Nm at a max speed of 60 rpm,
which, when reduced by the bevel gears, would result in 84 Nm at a max speed of 120 deg/s;
less than the moment requirement, but deemed close enough to be sufficient. The motor and

gear head weighed 0.8 kg, had a maximum diameter of 50 mm, and a total length of 168 mm.

A single-axis Galil CDS-3310 controller and drive was recommended by the motor
supplier to control and drive the motor, as well as receive, process, and utilize data from the
rotary encoder at the knee and the FSR under the foot. The Galil controller and drive was
13.1 cm X 20.9 cm X 1.9 cm (5.15 in X 8.25 in X 0.75 in) in size, and weighed 0.78 kg. It

would be placed in a pouch worn around the user’s waist, along with the battery pack.

To change the moment axis from the motor to the knee joint, a set of bevel gears was

required. Commercially available bevel gears of different sizes and reduction ratios were
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Figure 3.2: Theoretical worst-case duty cycle for the DC motor.
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examined for size, weight, and moment requirements. However, no gear was sufficiently
small and had enough strength to meet all requirements. Therefore, the moment requirement
was sacrificed in order to not overly increase size and weight, a slightly more important
design parameter, as shown in the QFD chart (Table 3.1). A 3:1 reduction ratio provided the
best tradeoff between size and moment requirements. The closest match was a 38 mm/114
mm (1.5 in/4.5 in) pinion/gear set of steel bevel gears from Boston Gear. This set was able to
transmit 67 Nm through the gear teeth to the knee joint, plus the 34 Nm from the spring
through the gear hub for a total of 101 Nm, which was 80% of the total design target moment
126 Nm. The weight of the two gears was 0.89 kg (1.95 lbs). Using gears one size smaller, it
would only be possible to transmit 21 Nm through the teeth to the knee joint, well below the
92 Nm required from the motor. Gears one size larger weighed 2.98 kg (6.55 lbs). Both of
these gear sizes (one size smaller, and one size larger) resulted in unacceptable parameters

for at least one key design requirement.

At this stage of the in-depth design, a design review was performed. The combined
weight of the spring, motor, controller, and bevel gears (2.49 kg) was too great, especially
since there would be significant additional weight due to the battery pack, mounting brackets,
and the dog-clutch for engaging and disengaging the bevel gears with the KAFO knee joint.
The size, though to a lesser extent, was also deemed too great. The large bevel gear situated
at the knee was 114 mm in diameter and the assembly would be at least 70 mm wide medio-
laterally, due to the size of the bevel gears and motor. With current technologies and without
adding other means of handling the device weight, the electro-mechanical approach would
result in a unilateral knee-extension device that was not likely to be used by individuals with
weakened quadriceps. Therefore, instead of continuing the development of the motor and
spring hybrid powered device, the design was altered to use only passive power. Energy
would be stored in passive elements such as springs by loading under the user’s own body

weight and the energy could then be released to provide the extension-assist moment.
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3.5 Spring Powered Device — Preliminary Design

Because of the importance of low device size and weight to an orthosis user, a new spring-
powered device was designed with passive components that were lighter and smaller than the

electro-mechanical components of the motor-powered extension-assist design.

3.5.1 Revision of Objectives and Design Criteria

The passively powered knee-extension-assist was designed for high-knee-moment tasks
using only springs for actuation. Since the user’s bodyweight is a suitable way to load springs
without introducing an active power source, knee flexion under body weight could store
enough energy in the springs to provide a useful joint moment upon release of the spring
strain energy. Knee flexion during stand-to-sit occurs naturally. For STS, energy can be
stored in the springs as the knees flex and released when the individual is ready to stand up.

Extension-assist for STS would therefore remain as a primary objective of the device.

For stair ascent, it would be difficult to implement the STS design since knee flexion
during stair ascent occurs only while the leg is in swing. A ground reaction force acting on
the foot would be needed to provide the knee-flexion moment to load the springs. In swing,
energy can only be generated through the force of gravity acting on the shank and the
muscular force of the hamstrings, which flex the knee upon contraction. These forces would
not be sufficient to generate a knee flexion moment to load the springs such that, upon
energy release, meaningful extension assistance could be provided for SA. Therefore, stair

ascent was omitted as a target task.

Without SA extension-assist, assistance for incline ascent became a more important
functional feature of the passive design, since incline ascent would become the means of
moving between levels, such as on a ramp into a building. As was explained in Section 2.3,
during incline walking, knee flexion and extension occur while the leg is weight bearing
(Figure 2.4), making incline walking a task that can potentially be aided by the passive KEA.
The kinematics and kinetics of incline gait suit those of a passive device well, since the
springs would load as initial knee flexion occurs, and fully unload once the knee has

extended. The required moment then switches to a flexion moment, as described in Section
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2.3. The device would thus provide the extension moment only when required, dropping to
zero at the appropriate time in the gait cycle. Because of the good match between task and

device dynamics, providing an extension-assist for incline ascent was chosen as a target task.

Since the passive design would require the springs to be loaded during knee flexion, the
KEA would also be capable of providing an extension moment to resist knee flexion. As a
result, the passive KEA would be able to assist stand-to-sit and ramp descent, two tasks that
require a knee-extension moment to resist knee flexion. Therefore, assistance for stand-to-sit

and ramp descent were added as secondary device function objectives.

Size and weight requirements for the device were also re-examined. The 50 mm medio-
lateral thickness was considered too great, since it would be difficult to wear a device under
clothes. Therefore, 20 mm was recommended as a target thickness. Maximum weight

remained at 2.3 kg, but the device should ideally be less than 0.7 kg (1.5 Ibs).

To keep the size and weight within the target specifications, the knee-extension moment
requirement was also lowered. Using the torsion spring sourced for the motorized device as
an indicator of spring capabilities, the new design requirement for extension-assist was set to
50% of the STS knee joint moment for a 90 kg individual, plus one standard deviation. Based
on the highest STS knee-extension moment found in the literature, 1.41 Nm/kg [18], this

corresponds to approximately 39 Nm.

The device would still be designed as a modular component for installation onto a

custom KAFO or SCKAFO by a certified orthotist.

3.5.2 Design Concept Generation and Refinement

Several designs were investigated for the extension assist to provide the extension torque
from energy stored in passive components. An initial examination into spring suitability was
conducted on compression, extension, torsion, elastic rubber, and flat springs, to determine
the maximum extension moment achievable while remaining within the device size
restrictions. Through proprietary spring modeling software used by the spring manufacturing

company (Advanced Spring Design) and available spring specifications, it was determined
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that compression springs would provide the most appropriate stiffness-to-size ratio, and
therefore be capable of generating the largest knee-joint moment while complying with the
size restrictions of 20 mm width mediolaterally, 200 mm length, and 70 mm width
anteroposteriorly in the sagittal plane. The most promising design concept used 8088 N/m

spring-constant compression springs in parallel.

The final passive KEA design houses the springs mid-way up the thigh and compresses
the springs during knee flexion while the braced limb is weight bearing. The KEA converts
the linear spring force to a moment about the knee by providing a moment arm for the spring
force to act on. In STS mode, the springs can be locked in a compressed state to prevent
unwanted knee extension while the user is seated. By changing from STS mode to ramp
mode, the springs can be allowed to compress and extend to provide a moment during incline
walking. The KEA can also decouple from the KAFO knee joint to eliminate device

impedance on the knee during swing, or while the braced leg is otherwise unloaded.

3.6 Spring Powered Device — In-Depth Design

3.6.1 Device Structure

The KEA (Figure 3.3) derives its extension-assist from three compression springs in parallel,
housed in a rectangular aluminum case fastened to the lateral side of the upper KAFO
upright. The springs are oriented longitudinally along the thigh. The distal ends of the springs
press against the distal end of the case. The proximal ends of the springs are housed in the
trough of a U-shaped beam that is free to slide proximally and distally inside the case. The
springs are in a slightly preloaded state when the device is at full extension because the
length of the spring case is shorter than the free length of the springs. The U-beam is attached
to two steel proximal cables that run between the three springs and out of the case through
holes in its distal end. The distal ends of the proximal cables (2.4 mm, 3/32 in. diameter) are

attached to the distal cable (3.2 mm, 1/8 in. diameter) via a cable connector.

The distal cable is attached to the knee disk, located at the knee joint. The knee disk
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rotates on a bearing around a pin set in the knee disk support, attached to the lateral side of
the lower KAFO upright. The knee disk can be locked in place by extending the sliding lock
into the knee disk notch (Figure 3.4). Retracting the sliding lock allows the knee disk to spin
freely. The sliding lock is moved by a pneumatic actuator secured to the KAFO upright and
is held by the two square sliding lock supports fastened to the knee disk support. The actuator
is activated by applying bodyweight to an air-bladder underfoot

When the knee disk is locked in place and the knee is flexed, the U-beam is pulled
distally via the cables and the springs are compressed. When the knee is extended, the
springs extend and apply a force on the U-beam to move it proximally. The spring force is
transmitted to the knee disk via the cables and causes the extension-assist moment to be
applied to the knee joint. When the knee disk is able to spin freely, the cables do not pull on
the U-beam, and thus the knee is able to rotate without impedance. Details of device function

are provided in Section 3.6.3.

A spring locking mechanism is included to resist proximal U-beam movement,
preventing unwanted spring extension, and to apply the extension-assist moment only when
desired. The locking mechanism (Figure 3.5) consists of a round rod with multiple ratchet
notches cut into one side and one long notch cut into the opposite side. The rod passes
through slots in the proximal case end, distal case end, and U-beam, and through the middle
of the centre spring. The rod is prevented from sliding axially by a nut on the threaded end of
the rod, on the outside of the distal case end. The notches in the rod, either the ratchet
notches or the single long notch, depending on the rod orientation about its longitudinal axis,
engage with the edge of the slot in the U-beam to prevent proximal U-beam movement. The
slots in the U-beam and case ends permit enough lateral locking rod travel to disengage the
notch from the U-beam. U-beam disengagement occurs when extension-assist is desired or
when the U-beam moves distally to the next ratchet notch during spring compression. The
locking rod is biased to notch engagement by the locking rod spring pin and locking rod

spring (Figure 3.5).
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Figure 3.3: Lateral (sagittal plane) view of the knee-extension-assist. Spring case cover and air bladder are not
shown.
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Figure 3.4: Knee disk assembly showing the sliding lock (a) engaged and (b) disengaged from the knee disk
notch.

The overall dimensions for the spring case assembly, the device component that attaches
to the upper orthosis support upright, were 106 mm in length, 69.5 mm in width
(anterioposterior), and 26.7 mm in thickness (mediolateral) (Figure 3.6). The knee disk
assembly (the device component that attaches to the lower orthosis support upright) was
149.7 mm long, 46.8 mm wide, and 19 mm thick (Figure 3.6). The thickness of the spring
case assembly was slightly above the target thickness but was deemed within acceptable
limits. Although the total length of the device was greater than the target specification, the
two assemblies were each well below the target length of 200 mm. Since the two assemblies

were located at different positions along the leg, the device length was deemed acceptable.

66



Locking rod spring pin

Locking rod Locking rod spring ‘ ﬁ ;i

[ ] I
Ratchet notches §E Edge of slot
in U-beam \
[T1

——0 - - \_t@ - ( Sf\‘_
U-beam engaged /QO § Q\‘:\D éﬁ
with ratchet notch O — S —e @ (S —

— —— ——=o S E—
Q—— —0 e — S —

— ——< n

Locking rod spring pin
retracted and locking rod
spring compressed

Locking rod spring pin
and locking rod spring
extended

U-beam engaged
with long notch

[
Edge of slot

in U-beam \[

[0
il

S E—
—
Long notch --(%

[
Z

|
|
I

|
il

i
g
l

I
i
il

I

(d)
Figure 3.5: Cross-section of the spring case assembly showing the locking rod (a) engaged with a ratchet notch

for STS, (b) disengaged from ratchet notch, (c) engaged with the long notch for ramp walking, and (d)
disengaged from the long notch.
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3.6.2 Device Performance

Early in the in-depth design phase, commercially available compression springs suitable to
the application were sourced. With the spring specifications, device performance was
calculated and optimized to provide a high extension-assist moment while attempting to keep
the device size under the design criteria. Linear spring forces that would produce STS
extension moments for a given knee disk radius and user weight were calculated (Appendix

C). The equation:
F=M,/R (3-16)

was used to determine the required spring force, F, from the moment corresponding to a
given percent assist, Mp, and disk radius, R. The calculated spring forces, along with the
maximum spring compression at 90° rotation (Appendix C), were compared to the springs
sourced. A maximum spring force of 500 N could be achieved from one spring in 90° of
knee flexion using a 2.5 cm radius knee disk (providing 4 cm of spring compression); a 10
cm long, 2.7 mm wire diameter spring (Appendix D); and an initial spring compression of 2
cm. Since the spring’s outer diameter is less than 2 cm, three springs could be used in parallel
to produce 1500 N of force and still remain within the size constraints. With the 2.5 cm knee
disk, 37.5 Nm could be provided, 47.3% of the 79.2 Nm required knee-joint extension
moment for STS for a 90 kg individual. This maximum moment was very close to the design
requirement of 50%. In the ramp walking mode, the maximum stance knee angle is
approximately 30°. The resulting spring compression would provide 36.5 % of the 57.6 Nm
moment required for a 90 kg individual (Appendix C). Table 3.3 shows the percent of
required knee-extension moment provided by the KEA to assist users of varying weights in

performing STS and ramp ascent.
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Table 3.3: Percent of required knee-extension moment provided by the KEA to users of different weights

User Weight (kg) | STS (%) | Ramp Ascent (%)
50 85 66
60 71 55
70 61 47
80 53 41
90 47 37

3.6.3 Device Function

The passively-powered KEA was designed to address two difficult tasks for people with
quadriceps muscle weakness: sit-to-stand, where the individual rises from a seated position
into a fully upright standing position and ramp ascent, where an individual walks up an
inclined surface. The devices should also assist, or at least permit, stand-to-sit and ramp
descent. To select between stand-to-sit/STS and ramp walking modes, the user should
manually rotate the locking rod 180°, to align the correct locking rod notch type, either the
multiple ratchet notches for stand-to-sit/STS or the single long notch for ramp walking, with
the edge of the slot in the U-beam, with which the notches engage (Figure 3.5). To prevent
the user from misaligning the locking rod during mode selection, the locking rod head has
stops (Figure 3.7) to prevent rod over-rotation and provide haptic feedback that the correct

amount of rotation has been reached.

The following sections explain how the KEA was designed to function for STS and
ramp walking assistance, respectively. Figure 3.8 illustrates the forces and moments acting

on the device during use.

N Locking rod head stops
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Figure 3.7: Proximal end view of the spring case assembly.
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Figure 3.8: Forces and moments acting on the device when (a) springs are loaded or unloaded and (b) when
springs are locked in place. Forces and moments are the same for STS and ramp walking. During ramp
walking, the locking rod is rotated 180° from position shown such that the long notch faces the edge of the
U-beam slot and engages with the U-beam. (The diagrams are not free-body diagrams).
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3.6.3.1 Sit-to-Stand Mode

3.6.3.1.1 Sit-to-Stand Mode Overview

The KEA uses the wearer’s own body weight as the force to compress the springs and thus
store energy. To provide the assistive knee-joint moment during sit-to-stand, the springs must
be pre-loaded prior to the user being in the seated position. As a result, there are two parts to
the STS extension-assist: a pre-loading phase during which the springs are loaded under the
bodyweight as they complete stand-to-sit and an extension phase, during which the energy

stored in the springs is returned as an assistive knee-joint moment.

3.6.3.1.2 Loading Phase

Once positioned in front of the seat in which the user will sit, and with the locking rod
rotated such that the ratchet notches face the edge of the slot in the U-beam (Figure 3.5a), as
described above, the user is ready to begin the loading phase. With the legs fully extended,
the user stands with weight distributed evenly on both feet. The user’s weight, Fw, on the air
bladder underneath the foot of the braced leg generates the linear pneumatic actuator force,
Fp (Figure 3.8a). The actuator force pushes the sliding lock upwards into the knee disk notch,
to prevent knee disk rotation. With the knee disk locked in place, a knee-flexion moment, M,
generates tension in the distal cable, Fr, at a moment arm equal to the knee disk radius, R,
since the distal cable wraps around the disk. The tensile force in the distal cable is
transmitted to the proximal cables via the cable connector. The proximal cables, in turn,
transmit Fr to the U-beam, and therefore to the springs. The result is that a flexion moment,
Mk, applies a compressive force to the three springs Fr= -3Fs. The force 3Fs from the three
springs, therefore, acts through the cables at a moment arm of R to generate the knee-
extension-assist moment, M, = FrR, that opposes the knee flexion moment, Mg, and provides

resistance to knee flexion during the loading phase.

The knee flexion moment, Mg, is generated when the force Fy due to user body weight
moves posterior to the knee joint. M increases as knee angle increases, because the distance
between the knee joint and the body-weight force vector Fy, i.e. the moment arm at which

Fw acts, grows with increasing knee angle. Whenever the knee flexion moment, Mg,
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generates a tensile force, Fr, that exceeds the total spring force (of all springs) exerted at that
knee angle, 3Fs, the knee flexes, the U-beam travels distally inside the spring case, and the
springs compress. Spring compression results in an increase in the spring extension force, Ff,
to maintain Ft = -3Fs. Therefore, as knee flexion occurs, the extension force from the
springs, 3Fs, increases, and consequently, the extension-assist moment provided by the KEA,
My, increases. Therefore, the lower the seat that the user sits on, the greater the knee flexion
angle reached, and thus the greater the extension-assist moment that can be released by the

device upon standing.

When the user becomes seated, body weight, Fy, is transferred from the legs to the seat,
and causes My to drop to zero (Figure 3.8b). With Mg = 0, the springs would be free to extend
from their compressed state. However, to store in the springs the energy added through the
compression introduced during stand-to-sit, the U-beam is prevented from moving
proximally while the user is seated by the ratchet notches in the locking rod. The locking rod
spring biases the rod to notch engagement by applying a force Fp to the locking rod spring
pin that pushes against the head of the locking rod. Therefore, during distal U-beam
movement during knee flexion, the edge of the slot in the U-beam automatically engages
with each subsequent notch in the locking rod as the edge of the U-beam slot aligns with
each notch. When My drops to zero, the spring force causes the U-beam to move proximally
(extending the knee) until further proximal movement is prevented by the force F, exerted by
the flat face of the last notch with which the U-beam engaged. In this way, energy is kept
stored in the springs until the user is ready to perform sit-to-stand. The resistive force from
the notch, F;, prevents the U-beam from moving and the springs from extending, and thus
eliminates cable tension, Fr. With cable tension Fp = 0, the extension-assist moment
Ma= F1R = 0, and the device provides no moment to the knee joint. Transfer of body weight
to the seat removes the pressure from the air bladder, and the pneumatic actuator force Fp
disappears. With Fp = 0, the small pneumatic actuator return-spring force, F;, pulls the
sliding lock away from the knee disk, and thus allows the knee disk to rotate freely. As a

result, while seated, the user is free to extend and flex their knee as desired without
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impedance from the device and without the device losing the energy that was stored during

stand-to-sit.

At the end of the loading phase, the springs are compressed and locked in position, the
user is fully supported by the seat, and the braced knee joint is free to extend and flex without

impedance to the knee joint from the KEA.

3.6.3.1.3 Extension Phase

To begin the extension phase of STS extension-assist (Figure 3.8a), the user’s centre of mass
must first be brought forward, such that a portion of their body weight is supported by the
feet. Forward CM movement can be achieved by anterior trunk displacement through hip
flexion. The portion of bodyweight acting through the affected leg on the air bladder returns
Fp and thus returns the sliding lock into the knee disk notch. The knee disk is maintained in
the proper position to reengage with the sliding lock because the cables have a slight
resistance to bending that holds the knee disk in place whenever the knee flexes and extends
freely. Once the sliding lock is engaged with the knee disk notch, the knee disk is prevented
from rotating about its pin and the KEA is thus coupled to the orthosis knee joint. When a
portion of body weight is supported by the user, a portion of force Fy from body weight is
applied to the device and generates a small knee-joint flexion moment, Mr. Since the knee
disk is not able to rotate freely, tension Fr is reintroduced into the cables. The cables, in turn,
apply Fr to the U-beam in the distal direction, and thus remove a portion of the spring force,
3Fs, from the notch face and thus reduce the force between the locking rod notch face and
the U-beam, F',. The tension generated in the cables also begins to apply the knee-extension
moment, Ma. In order to maintain the extension moment during knee extension, the user,
with partial body weight still borne by the feet, manually disengages the locking-rod notch
from the edge of the slot in the U-beam (Figure 3.5b). Disengagement is accomplished by
pulling the proximal end of the locking rod in the anterior direction; i.e. in the direction
opposing the locking rod spring force Fg. Disengagement of the locking rod from the U-
beam eliminates F,, and thus permits proximal U-beam motion and spring extension. With

the notch disengaged and F;, = 0, the full force from the springs, 3F%, is applied to the cables
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via the U-beam. The full spring force applied to the cables generates the maximal cable
tension, Fr, which acts at the moment arm R of the knee-disk radius, to generate the full

extension-assist moment My that will aid the user during STS.

With the assistive knee-extension moment applied by the KEA, the user can begin to
rise. However, the springs provide less than the full required knee joint moment for STS, and
consequently, the user must provide the remainder of the required extension moment. The
additional required moment can be generated through additional knee-joint moment from
quadriceps contraction in the unaffected leg, and the affected leg, if possible. If the additional
moment quadriceps contraction is insufficient, the user can also lower the required knee joint
moment for STS by rising with an increased hip angle. An increased hip angle (an increase in
hip flexion) moves the centre of mass closer to the knee joints, and thus decreases the
moment arm at which body weight acts about the knee. A smaller moment arm reduces the
knee flexion moment that must be opposed, and thus reduces the knee-joint moment required
for STS. Increased hip flexion does, however, increase the hip-extension moment required
for successful STS completion. If the user is unable to provide the increased hip extension
moment through an increase in muscle activation of the hip extensors, the hip-extension

moment could be augmented by pressing the hands into the thighs.

As the user rises and the knee angle decreases, the springs extend and return the stored
energy in the form of a linearly decreasing assistive knee joint moment, My, that closely
resembles the required knee joint moment. At the end of STS, the user is standing fully
upright and the springs are at their maximum allowable elongation, restricted from
elongating further by the spring case. The tension Fr in the cables drops to zero, and the
device provides no moment to the knee, M, = 0, as desired. If bodyweight is subsequently
removed from the braced leg, the pressure on the air bladder is removed, the pneumatic
actuator force Fp is eliminated, the sliding lock retracts from the knee disk notch due to the

return spring force, F;, and free knee motion is permitted.

Throughout the STS motion, the user must maintain manual disengagement of the

locking rod to oppose Fp, since the locking rod spring pin continually applies F to bias the
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locking rod to notch engagement. Continual manual disengagement ensures that the U-beam
does not reengage with a more proximal notch during STS. Reengagement would stop further
spring elongation and eliminate the assistive extension moment. The locking rod can be held
in the unlocked position with the hand placed on the thigh to allow the device user to
simultaneously apply a force on the thigh to increase the hip extension moment and thus aid

STS, as described above.

3.6.3.2 Ramp Mode

3.6.3.2.1.1 Ramp Mode Overview

Passively providing a useful knee extension-assist moment for ramp ascent using only
bodyweight to load the springs is a more challenging problem than for STS. In STS, knee
flexion often occurs from a 0° to 90° knee angle during the loading phase when the springs
are compressed. In ramp ascent, the relatively short loading phase, approximately the first
quarter of the ramp-ascent gait-cycle stance phase, involves only 10 to 15 degrees of knee
flexion during which the springs can be compressed. In order to store enough energy in the
springs to provide a useful extension-assist moment during ramp ascent, a high spring force
is required during the limited stance-phase knee flexion and extension. Exaggeration of knee
flexion at the start of stance phase in a ‘bounce’ type movement may also be necessary, to
increase the spring compression through increased knee flexion. The extra knee flexion
would increase the extension-assist moment that could be provided. For ramp descent, the
KEA would provide an extension moment to resist knee flexion and thereby assist the leg in
supporting body weight. The KEA would allow the knee to flex, but not collapse, during
stance, and permit the unaffected leg to swing forward in preparation for its next stance
phase. KEA ramp mode involves an initial preloading phase to achieve the high spring force
required, followed by cyclical stance and swing phases, and finally an unloading phase to

remove the preload. These phases are explained in more detail in the following sections.

3.6.3.2.2 Preloading Phase

The preloading phase is used to begin both ramp ascent and descent. With the user at either

the top or bottom of the incline, KEA ramp mode (for both ascent and descent) commences

76



with manual rotation of the locking rod to the ramp walk position, with the single long notch
of the locking rod facing the edge of the slot in the U-beam (Figure 3.5c¢), as described at the
start of Section 3.6.3. The user stands with both legs evenly supporting body weight. The
weight borne by the braced limb is transmitted to the air bladder under the foot of the braced
leg. The applied weight creates pressure in the air bladder that generates the pneumatic
actuator force, Fp. The pneumatic actuator force pushes the sliding lock into the notch in the
knee disk (Figure 3.4), and thereby couples the knee disk to the knee joint.

Before ramp ascent and descent begin, the user must apply a preload to raise the force
needed to compress the springs during early stance phase, and thus the energy stored in the
springs and the extension-moment provided to the user in mid-stance knee extension. To
generate the preload, the user flexes their knees while standing to generate tension Fr in the
cables and compresses the springs, as during the loading phase of STS mode. Once a knee
flexion angle that corresponds to the desired spring preload force is reached, the slot in the
U-beam engages with the long notch of the locking rod (Figure 3.5). The proximal face of the
long notch prevents the U-beam from moving proximally, and thus prevents the springs from
elongating when the knee angle decreases below the angle at which engagement between the
notch and U-beam occurred. As a result, the device provides zero knee-joint moment
between the knee angle at which the preload was set and full knee extension. Unimpeded
knee flexion for foot placement on the ramp is thus permitted. The distal face of the long
notch is 4 cm distal to the proximal face, and therefore the U-beam is not constrained from
moving distally (Figure 3.5¢). The knee flexion beyond the preload knee angle that occurs
during the slight knee flexion of early stance in ramp ascent and during the knee flexion of
ramp descent (Figure 2.4) thus compresses the springs beyond the preload length and creates
the tension Fr in the proximal and distal cables that generates the extension-assist moment,

M, required during ramp walking.

The knee angle at which the preload occurs can be changed by adjusting the proximal-
distal position of the notch using a nut on the distal end of the locking rod. The notch
position for ramp ascent should be set such that the flexion angle at which the preload occurs
corresponds to the starting knee angle of the ramp ascent gait cycle, when the heel comes
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into contact with the ramp. The initial setting would be for standard access ramps, and it
would be at the user’s discretion to change it for other inclines. If desired, for ramp descent,
the notch location could also be adjusted to correspond to the starting knee angle for ramp
descent. A change of notch location also changes the amount of preload force. A higher
notch engagement knee angle corresponds to a higher preload force, and thus energy stored,
for an equivalent amount of knee flexion during ramp ascent. Since a higher notch-
engagement knee-angle would be used for a steeper incline, the KEA provides more

assistance the greater the incline.

3.6.3.2.3 Ramp Ascent Stance Phase

With the preloading phase completed, the KEA provides zero knee-joint impedance and thus
permits free knee motion between full extension and the starting knee angle at ramp-ascent
heel strike. With the KEA preload knee angle ideally set to the natural ramp-ascent starting
knee flexion angle, the ramp-ascent gait cycle can therefore commence stance phase with the
foot placed in a natural position. As slight knee flexion begins at the start of ramp-ascent
stance, the body weight, Fy, that loads the braced leg, compresses the springs beyond the
preload length to generate the knee extension moment, M,. During flexion, the extension
moment resists knee flexion and protects against leg collapse at the knee. Knee flexion ends
by the start of the second quarter of stance. Knee extension follows flexion, and the springs
return the energy stored during flexion as an assistive knee-extension moment that helps the
user raise their body up and over their planted foot. Similarly to STS, the springs do not
provide 100% of the required knee extension moment for ramp ascent, and the user must
produce the remainder of the required moment. The additional moment can be provided by
using a handrail or by generating a muscle moment from the affected quadriceps, if possible.
Alternatively, an additional hip extension moment can be generated through increased hip
extensor muscle activity or by using the hands to push on the thigh. A ‘bounce’ type
movement could also be performed whereby the user would allow the affected knee to flex
beyond the normal angle for ramp ascent, and then push off quickly with the unaffected leg

at the end of its stance phase that precedes the bounce. The return of the additional energy
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stored in the springs, combined with the push from the unaffected leg, may provide the user

with the moment needed to extend the knee.

By 50% of stance, the knee is extended back to the preload angle and the springs are
returned to the preload length. Between the preload angle and full extension, the KEA does
not provide an assistive moment to extend the knee. An extension moment is not required
from the KEA in the second half of ramp-ascent stance, since a knee flexion moment is

normally generated by the leg in able-bodied ramp gait, as described in Section 3.5.1.

3.6.3.2.4 Ramp Descent Stance Phase

Similarly to ramp ascent, ramp-descent stance phase begins with weight acceptance on the
affected limb. In early stance, the knee angle surpasses the preload angle, and the KEA
provides the extension-assist moment, My, to resist knee flexion. For normal ramp descent,
knee flexion occurs until nearly the end of stance, and thus spring compression and knee
flexion resistance continues until late stance-phase. By late stance phase, though, the center
of mass of the user has moved in front of the knee joint. The anterior CM movement causes
the moment arm at which the body weight force vector Fy acts, to reduce to zero and then
increase in front of the knee. The change in moment arm would cause the flexion moment
from body weight, Mg, to decrease below that of the assistive moment, My, generated by the
total spring force, 3Fs. As a result, the springs would extend back to the preload length and

the knee would extend aided by the extension moment.

3.6.3.2.5 Swing Phase

As the braced leg begins swing phase, bodyweight is removed from the affected leg. As a
result, pressure is removed from the air bladder under the affected foot, and the sliding lock
retracts from the knee disk notch (Figure 3.4). With the sliding lock retracted, the knee disk
can rotate freely about the knee disk pin. When knee flexion occurs in early swing to permit
the foot to clear the ground as it swings forward, the cables pull on the knee disk. However,
because the knee disk is not coupled to the orthosis joint, the knee disk rotates around the

knee disk pin, and thus prevents tension from being generated in the cables. Free knee joint
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motion is thus possible during swing. Once swing-phase knee-flexion is complete, knee
extension occurs to bring the foot into position to accept body weight at the start of the next
stance phase. As the knee extends back to the preload angle, the intrinsic stiffness of the wire
cables allows the cables to return the knee disk to its preload angle position. At the preload
angle position, the knee disk can be locked by the sliding lock when weight is accepted by
the braced leg at the start of the next stance phase.

3.6.3.2.6 Unloading Phase

Once the end of the ramp or incline is reached, the user must remove the preload. The user
stands with body weight borne evenly by both legs. The knees are flexed slightly under
bodyweight to generate tension Fr in the cables. The cable tension reduces the force F,
between the locking rod notch and the U-beam, and thus reduces friction between the two
components to allow for easier manual disengagement of the locking rod from the U-beam.
The cable tension also prevents sudden extension of the compressed springs when the
locking rod is disengaged. Sudden spring extension could potentially put the user off-balance
or cause discomfort. With the knees flexed slightly, the proximal end of the locking rod is
manually pulled in the anterior direction, to separate the edge of the U-beam slot from the
notch (Figure 3.5d). The knees are then extended to return the U-beam to the proximal end of
the spring case and the springs to the maximum permitted extension allowed by the casing.
Once the springs are at maximum permitted extension, no tension exists in the proximal and

distal cables, and thus no extension-assist moment is provided by the KEA to the knee.

3.6.4 Structural Analysis

Once the springs were sourced and knee disk size determined, as described in Section 3.6.2,
the forces and moments that would act on the device were known, and therefore the stresses
the device would be subjected to during use could be determined. Static and dynamic stress
analyses under maximum loading conditions of 1500 N at 90° of knee flexion were carried
out in order to determine the optimal size and material for each component. The following
section describes the methods used to determine the size, material, and maximum stresses for

each device component.
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3.6.4.1 Static Stress Analysis

A static stress analysis was carried out to calculate the magnitude of the static stresses
experienced by the device components under maximal spring loading. Component
dimensions and materials were adjusted during the analysis process to obtain acceptable

stress levels and maintain low device size and weight.

3.6.4.1.1 Bending, Tensile, and Shear Stresses

Bending stresses under peak loading conditions were calculated for all components subjected

to a bending moment using the standard flexure formula for beams in bending [110]:

_ Mc
o=, (3-17)

where M is the max moment applied to the beam, c is the perpendicular distance from the
neutral axis to the farthest point from the neutral axis on which M acts, and / is the moment
of inertia of the cross-sectional area computed about the neutral axis with component features

that reduce cross-sectional area, such as notches and holes, taken into account.

To correct for stress concentrations, the stresses calculated for components with features
such as holes or cuts were then multiplied by a static stress concentration factor, K. Static
stress concentration factor values were based on component geometry and type of stress

concentration feature [110].

To calculate the moment of inertia, /, for the complex U-beam shape, the cross-sectional
area was broken down into three rectangles. Equation (3-18) [112] was used to determine the
location of the neutral axis for the U-beam. Equation (3-19) was then used to determine the
overall moment of inertia from the sum of / for each of the three rectangles, with the distance

from the neutral axis accounted for.

— _ Yi=1Vrphn
Yo =55t (3-18)
I= Y3 (I + A,d,%), (3-19)

where yy is the distance to the neutral axis from a chosen edge, y, is the location of the

neutral axis from that chosen edge, and A4 is the area of each component rectangle. I is the
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moment of inertia for the component rectangle, and d is the distance from the centroid of the

component rectangle to the neutral axis.

To determine maximum moments applied to KEA components, the graphical method for
the creation of shear, V, and moment, M, diagrams for a beam under a load w, was used

[112]. Change in shear and moment as a function of distance along the beam, x, is given by:
AV = — [w(x)dx (3-20)
AM = [V(x)dx . (3-21)

Assessment of bending stresses was important for the U-beam, the distal end of the
spring case, the KAFO attachment base, the notches in the locking rod, the cable connector,
and the knee disk support, because of the large applied bending moments. The static bending

stresses and the corresponding static factors of safety are listed in Table 3.4.

Table 3.4: Maximum bending stresses at important locations and corresponding static factors of safety.

Component Bending Stress (MPa) | Static Factor of Safety
U-beam 229 4.7
Distal spring case end 166 3.0
KAFO attachment base 404 2.6
Locking rod notch 490 2.2
Cable connector 372 2.9
Knee disk support 468 2.3

Shear, 7, and tensile stress, g, were calculated using the standard stress equations [110]:
T== ,0=— (3-22)

where F'is the applied force and A4 is the cross-sectional area of the member. The subscript s
applies to members loaded in shear, and # to members loaded in tension or compression.
Tensile and shear stresses were typically much lower than bending stresses. Shear
stresses were highest at the locking rod notches, the edge of the slot in the U-beam where the
locking rod notches engage, the sliding lock, and the knee disk notch. Table 3.5 outlines the

results of the shear stress calculations.
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Table 3.5: Shear stress analysis results at important locations

Component Shear Stress (MPa) | Static Factor of Safety
Locking rod notches 164 6.5
Edge of U-beam slot 135 7.9
Sliding lock 60 18
Knee disk notch 72 7.0

Tensile stresses were only significant for the locking rod and the proximal and distal
cables. Maximum tensile stress in the locking rod occurred at the thinnest sections, where the
single long notch and the ratchet notches both reduced the locking rod diameter by 3 mm.
The maximum stress was 113 MPa, for a factor of safety of 9.5. Tensile stresses on the cables
were not directly calculated. Commercially available cables are rated for a certain breaking
load, and it is recommended that a factor of safety of approximately 5 is used when
determining a working load. Cable size was therefore chosen based on the rated breaking
strength provided by the manufacturers. A load of 1500 N on the thicker distal cable and on

the two, thinner proximal cables resulted in factors of safety of 4.5 and 5.5 respectively.

3.6.4.1.2 Pin and Fastener Stresses

Bending, shear, and bearing stresses, owng, 7, and oy, respectively, for the knee disk pin, and

rupture stresses, o;, for connected members, were calculated using the equations [110]:

(Ft/2)c
Opq = L2E (3-23)
F
T=— (3-24)
Ap
F
Opr = = (3-25)
F
Or =0 (3-26)

where F'is the force applied to the pin and ¢ is the total thickness of parts connected by the
pin (grip). / and ¢ are moment of inertia and distance to the neutral axis, as described for
Equation (3-17). 4, is the cross-sectional area of the pin, ¢ is the thickness of the thinnest

connected member, d is the pin diameter, and A, is the net cross-sectional area of the
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thinnest connected member, with the holes required for the pin taken into account.

Fasteners used to secure the upper and lower device assemblies to the KAFO uprights
created shear joints. Therefore, only shear, bearing, and rupture stress calculations were
necessary [110]. Table 3.6 shows the stresses calculated and the corresponding factors of

safety. All values were deemed acceptable.

Table 3.6: Knee disk pin and fastener stresses and factors of safety (n). All stresses (64, T, 0ur, and o;) are in
MPa, while factors of safety (1pq, 71, Hor, and #1;) are dimensionless.

Component Obd | Mpa | T ne | Oue | By o n,

Knee disk pin 239 1451 60 | 179 | 125 | 8.6 | 18.6 | 57.5
KAFO attachment base screws - | - 160|163 98 [ 109 | 23 |473
Proximal knee disk support screw | -- | -- [249| 3.9 | 123 | 87 | 23 | 46.5
Distal knee disk support screw - | - | 8 |11.5] 84 | 128 | 16 | 68.4

3.6.4.2 Dynamic Stress Analysis

Determination of dynamic stresses of the various components was also required, because the

device would be loaded cyclically during use.

Each loading cycle could potentially load device components from an unstressed state
up to the maximum stress calculated in the static analysis. Therefore, for the dynamic
analysis, the minimum and maximum stresses applied to a given component, Gyin and omax,
were taken as zero and the maximum calculated static stress for that component, respectively.
Based on these minimum and maximum stresses, nominal midrange and amplitude

components of the cyclical stress, omo and a9, respectively, [110] were determined:

__ OmaxtOmin Omax—%min

Op = Zmetmin | g = [T (3-27)

Nominal midrange and amplitude stresses were then corrected for stress concentrations due
to features such as holes and notches. Some materials are not fully sensitive to the presence
of these features and so the static stress concentration factor, K;, was reduced to the fatigue
stress concentration factor, Ky. The fatigue stress concentration factor is calculated based on
K and the notch sensitivity of the material, g, according to Equation (3-28). K is then used to

determine the maximum midrange and amplitude stress components, oy, and o, respectively,
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applied to the device component, following Equation (3-29) [110].
Kr=1+q(K:—1) (3-28)

Om = KrOmo , 04 = Krogg (3-29)

The maximum midrange and amplitude stress components were used to determine the
fatigue factor of safety for infinite life, ns. The fatigue failure criterion used to determine ny

was the ASME-elliptic criterion [110], given by:
Oq 2 Om 2 1
(2) +(%) == (30
where S. and Sy are the material modified endurance limit and yield strength, respectively.

Since the KEA operates in close contact with a person, components were designed to
achieve a factor of safety for infinite life of at least two, even though the number of cycles
the KEA would undergo in its life was projected to be approximately 3.0 x 10° cycles, as
stated in Section 3.3.2. In cases where the factor of safety was close to two, the number of
cycles to failure, N, of the component was calculated to ensure that fatigue life was sufficient
to withstand at least twice the number of projected cycles. The method of calculation was the
same as that used for fatigue life of the torsion spring, described in Section 3.4.3 (Eq.s (3-9)
to (3-15)). Table 3.7 presents a summary of the infinite-life fatigue factors of safety, n¢, for
the highly stressed components and the number of cycles to failure for components with a

factor of safety of 2.5 or less.

Table 3.7: Infinite-life factor of safety for highly stressed components and cycles to failure where appropriate.

Component Infinite-life factor of safety (n) | Cycles to failure (V)
U-beam 34 --
Distal spring case end 2.5 28.2x 10°
KAFO attachment base 2.2 3.5x10°
Locking rod notch 23 12.3 x 10’
Edge of U-beam hole 2.2 3.5x 10’
Cable connector 3.6 --
Knee disk pin 3.7 --
Knee disk notch 4.2 --
Knee disk support 2.8 --
Proximal knee disk support screw 2.8 --
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3.6.5 Component Details

The following section presents the function, structure, and material of each KEA component
(Figure 3.3). A partial exploded view of the KEA, in which the spring case assembly

components can be more easily viewed, can be found in Appendix E.

3.6.5.1 Springs

The springs act as the ‘passive actuator’ of the device. Upon compression during knee
flexion under body weight, the springs store energy. The stored energy is released when the
springs extend during weight-bearing knee extension of the braced leg, at a time chosen by
the user. Three springs are used in parallel, and are compressed a maximum of 6 cm. An
initial compression is applied to the springs such that when the springs are fully extended
within the spring case, the springs are still compressed by 2 cm from their free length. When
the device is in use, a maximum additional compression of 4 cm can be applied. Maximum
compression corresponds to a total 1500 N spring force from the three springs, which

provides an extension-assist of 47 % for STS for a 90 kg individual, as described previously.

Each spring, made from round music wire, has an outer diameter of 19.6 mm, a wire
diameter of 2.6 mm, a resting length of 102 mm, and a closed length of 39.6 mm, and weighs
35 g. The manufacturer-predicted fatigue life for the springs is 100,000 cycles. The life of the
KEA was estimated at 30,000 cycles per year for 10 years (Section 3.3.2). Therefore, spring
replacement should occur yearly when the KAFO is brought in for servicing, to achieve a

spring-life factor of safety greater than two.

3.6.5.2 Spring Case and KAFO Attachment Base

The spring case houses the springs and holds the distal ends of the springs in place. The
spring case is machined from a single 7075-T651 aluminum plate and has shallow circular
recesses in the distal end into which the springs fit. To secure the spring case to the KAFO
uprights, the KAFO attachment base, cut from 0.05 in. 17-4 precipitation hardened (PH)
stainless steel sheet, is fastened to the underside of the spring case by four UNC 4-40, SAE
grade 8 screws. The KAFO attachment base is fastened to the KAFO upright through the tabs
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protruding from the ends of the base by four UNC 10-32, SAE grade 8 screws (Appendix E).

3.6.5.3 U-Beam

The U-beam fits around the proximal ends of the springs. The springs sit in the trough of the
‘U’ shape and the legs of the ‘U’ extend above and below the springs. The U-beam is not
fixed to the device, and can therefore move both proximally and distally within the spring
case. The U-beam has three main functions: to act as a moving surface that can compress the
three springs in unison, to provide a location for proximal cable attachment so that the cable
tension force can be transmitted to the springs, and to engage with the notches of the locking
rod to prevent undesired spring extension. A slot in the middle of the U-beam with one end
rounded and one end straight (Figure 3.9) allows the locking rod to pass through. The straight
edge of the slot engages with the locking rod notches and is chamfered to 45° to allow for

full engagement with the 45° ratchet notches.

Slot cut into U-beam —{[

Straight edge of slot
chamfered to 45°

Holes for proximal —=]
cables

Figure 3.9: An isolated view of the U-beam showing the holes for cable attachment, the slot for the locking rod,
and the chamfered straight edge of the slot

The shape of the U-beam was chosen because of its ability to resist bending with
minimal material, and thus with minimal component size and weight. 17-4 PH stainless steel
was used. Wall thickness of 1.3 mm and segment lengths of 20 mm were sufficient to
withstand the applied forces. The ‘U’ shape also constrains the proximal ends of the springs

to help prevent the springs from shifting perpendicular to their axis during KEA use.

3.6.5.4 Locking Rod

The locking rod locks the U-beam in place when knee flexion stops to prevent unwanted

spring extension. On one side of the rod are the multiple, 45° ratchet notches that create the
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ratcheting locking mechanism for STS. Notch width is 3 mm, which causes the notches to
engage with the U-beam at every 6.75° of knee flexion. On the opposite side of the locking
rod is the single, square, long notch, used to maintain the ramp walk preload. All notches are
3 mm deep in the 10 mm diameter, 17-4 PH stainless steel locking rod. A nut on the threaded
distal end of the locking rod prevents the locking rod from moving proximally when the
springs are locked in a compressed state. The proximal head on the locking rod prevents the
rod from moving distally. When spring extension is desired, the locking rod head is manually
moved anteriorly, as described in Section 3.6.3, to disengage the notch from the U-beam and

allow the springs to extend.

3.6.5.5 Locking Rod Spring, Spring Pin, and Spring Pin Support

The mechanism that automatically engages the locking rod notches with the edge of the slot
in the U-beam consists of a small compression spring, a stepped pin, and a support to hold
the pin and spring in place (Figures 3.3, 3.5, and 3.8). The locking rod spring pushes the
locking rod spring pin into the locking rod to bias the rod to the locked position. The locking
rod spring and spring pin allow sufficient lateral displacement of the locking rod to disengage

a notch from the U-beam when the locking rod is moved anteriorly.

The locking rod spring pin and locking rod spring pin support were designed around the
springs found in common ‘click-top’ pens, because of the pen spring availability and
suitability to the task. Because of the low forces acting on the subassembly, the locking rod
spring pin and locking rod spring pin support are lightweight and inexpensive 6061

aluminum.

3.6.5.6 Proximal Cables, Distal Cable and Cable Connector

Two sets of cables transmit the force between the springs and the knee joint (Figure 3.3). The
two proximal cables attach to the U-beam, pass between the three springs, and exit the spring
case through holes in the distal case end. The proximal cables also prevent the springs from
moving laterally, which would result in the entanglement of one spring in another. The distal

ends of the proximal cables attach to the two outer holes of the cable connector. The distal
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cable runs from the middle hole of the cable connector, around the knee disk, to the knee disk
cable support. During weight-bearing knee flexion, the distal cable wraps around the knee
disk and moves the U-beam distally, to compress the springs via the cable connector and

proximal cables.

The proximal cables are 3/32 in. diameter, 7 X 19 strand, stainless steel aircraft cables.
The distal cable is a 1/8 in. diameter, 19 X 7 strand, stainless steel aircraft cable. The 19 x 7
wire strand configuration increases cable flexibility but slightly decreases the cable strength
relative to the 7 X 19 strand equivalent. The added flexibility is desired since the distal cable
must wrap around the knee disk. Cables are secured to other components by end stops, small
cylinders of aluminum or copper compressed onto the ends of the cables, to prevent the
cables from pulling through holes when under tension. The cable connector is made from a

rectangular piece of 17-4 PH stainless steel.

3.6.5.7 Knee Disk, Knee-Disk Bearing, and Knee-Disk Cable Support

The knee disk transforms the linear spring force into a knee-joint moment by providing a
moment arm with which the spring force can act (Figure 3.8). To achieve a linear moment
response that follows the natural linear decrease of the knee moment for STS, the segment of
the disk around which the cable wraps is circular, with a 25 mm radius. The disk has a
groove cut into the edge to guide the cable as it wraps around the disk, as described in section
3.6.2, to prevent the cable from slipping off the disk edge. The knee disk rotates freely about
the knee joint pin on a bearing (KG 698Z), and therefore a mechanism is required to couple
the knee disk to the orthosis joint. The mechanism that locks the knee disk into place fits into
a notch cut into the bottom of the knee disk. The knee disk notch is rectangular, but is
extended to the anterior end of the disk. To facilitate ease of locking, the notch has a 5°
tolerance on the knee angle position for locking, and thus allows the knee disk to be coupled
to the KAFO for any knee angle within the range of 0° to 5°. The posterior side of the knee
disk, which does not bear high stresses or support the cable, was cut away to reduce knee-

disk size and weight.
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The notch also allows the knee-disk cable support to be fastened easily to the knee disk
because it provides a flat surface on which to secure the flat cable support. The hole of the
knee-disk cable support, through which the distal cable passes, is aligned with the knee disk
such that when the cables are under tension, the distal cable pulls perpendicularly to the knee
disk cable support, and thus avoids introducing a sharp bend in the cable at the attachment

point that would generate higher local stresses in the cable.

The knee disk is made of 7075-T651 aluminum. To produce a small and thin knee disk
cable support, 2.54 mm thick 17-4 PH stainless steel sheet was used.

3.6.5.8 Sliding Lock, Sliding-Lock Supports and Sliding-Lock Bracket

The function of the sliding lock subassembly (Figures 3.3 and 3.4) is to prevent the knee disk
from rotating about the knee disk pin and therefore temporarily fix the knee disk to the lower
upright. Any moment applied to the knee disk with then be transmitted to the lower orthosis
upright, and will thus generate a knee extension moment, the primary function of the device.
When the sliding lock is engaged with the knee disk notch, the lower and upper assemblies
are coupled. With the two assemblies coupled, the springs can be compressed and extended
with knee flexion and extension, respectively. Three identical 5 mm square rods make up the
sliding lock and its supports. The sliding lock is prevented from moving laterally by the two
sliding lock supports and outwards, away from the body, by the thin sliding lock bracket that
is secured to the two sliding lock supports using stainless steel screws. The sliding lock can

therefore only move proximally and distally.

The sliding lock and sliding lock supports were fabricated from 17-4 PH stainless steel.
The sliding lock supports are fastened to the knee disk support using UNC 4-40, SAE grade 8
screws. A small tapped hole in the distal end of sliding lock is used to link the sliding lock
with the piston of the pneumatic actuator that controls the position of the sliding lock. The
sliding lock bracket does not experience significant loads and is therefore made from light,

inexpensive, 6061 aluminum sheet.
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3.6.5.9 Knee-Disk Support and Knee-Disk Pin

The knee disk support (Figure 3.3) has two main functions. Primarily, it provides a base for
the components of the knee disk assembly for fastening to the lower KAFO upright. Because
of the high bending moments in the knee disk support due to the applied loads to the lower
assembly by the cables, the knee disk support is made from 17-4 PH stainless steel. The
fasteners are also larger in diameter than the others used; UNC 10-32, SAE grade 8 high

strength screws.

The knee-disk pin, press fit into a hole in the knee disk support, resists the loads from the
knee disk, while permitting knee-disk rotation when the knee disk is unlocked. The pin, made
of 17-4 PH stainless steel, is fit with a circlip to prohibit the knee disk bearing from moving
axially along the pin.

3.6.5.10 Pneumatic Actuator, Actuator Support Bracket, and Air Bladder

A single-action pneumatic actuator (Bimba 3/8” air cylinder) with return spring is used to
control the sliding lock position. When the orthosis is load bearing, the plunger extends to
move the sliding lock proximally into the notch in the knee disk and thus lock the knee disk
in place. When the orthosis is unloaded, the actuator retracts the sliding lock distally away

from the knee-disk notch to allow the knee disk to rotate about the knee disk pin.

The actuator is powered by a custom-made, heat-sealed plastic air bladder placed under
the foot of the braced leg, and is connected to the actuator by nylon series 32-4 mm high
pressure tubing. The pressure on the air bladder from body weight generates an actuator force
that overcomes the actuator return-spring force and engages the sliding lock with the notch in
the knee disk. When pressure is removed from the air bladder, the return spring force created

during piston extension retracts the piston and sliding lock.

The actuator support bracket secures the pneumatic actuator to the knee disk support.
More importantly, the bracket maintains alignment between the pneumatic actuator and the
sliding lock. Slight misalignments between the lines of action of the actuator and the sliding

lock inhibit smooth piston extension when pressure is applied to the air bladder. The actuator
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support bracket does not experience large loads and was therefore fabricated from 18 Ga.

6061 aluminum sheet.

3.6.6 Failure Mode Analysis

A failure mode analysis was performed on the KEA design (Appendix F). The analysis

indicated which device components would lead to the most severe consequences in the event

of failure. The results showed that failure of the fasteners used to secure the device to the

KAFO and failure of the spring locking mechanism, either from locking rod notch failure, U-

beam failure, or poor engagement between notch and U-beam, could result in the most

serious failure modes, with the possibility of user injury. Considerations for the development

and testing of the KEA that arose from the analysis are as follows:

I.

All fasteners bearing high loads should be high strength, UNC grade 8 or metric
class 12.9 fasteners, to achieve low stresses while maintaining low fastener size and
weight. Extra fasteners were used to provide redundancy. Conservative fastener use

would not greatly affect the overall size and weight of the device.

Locking rod notches and the edge of the slot in the U-beam that engages with the
notches should be designed for a very high number of cycles to failure (Table 3.7).

If necessary, the wall thickness of the area around the slot in the U-beam can be

reinforced to 3 mm and still fit inside the locking-rod ratchet-notches.

If poor notch engagement occurs during testing, a stiffer locking rod spring should

be used.

Should the end stops slip during testing, stainless steel end stops, which provide a
gripping strength greater than the breaking strength of the cable to which the stop is
secured, are available as an alternative to aluminum and copper. However, stainless
steel end stops are larger and heavier than the aluminum or copper counterpart and
the equipment required for installation is costly. Accordingly, stainless steel stops

would only be used if necessary.
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3.7 Prototype Development
After completion of the design phase, a prototype was constructed and mounted onto KAFO
uprights for mechanical and biomechanical testing (Figure 3.10). Additional prototype photos

are provided in Appendix G.

Hex bolt locking rod

Spring beam
(mostly hidden)

Brass plate

== Aluminum strips to secure
springs

Spring case assembled from
separate pieces for sides, bottom,
and ends.

Figure 3.10: KEA device prototype.
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3.7.1 Design Modifications for Prototype Development

To facilitate prototype construction and minimize cost, a number of modifications were
made to the KEA design. For safety, all modifications were designed more conservatively

than the original component through the use of stronger materials or increased dimensions.

To avoid machining out a large block of aluminum for the spring case, the case was
assembled from several separate pieces (Figure 3.10). Case sides and bottom were made
from 0.05 in. thick 17-4 PH stainless steel sheet and were fastened to the proximal and distal
case ends. The case ends were cut from 3/8 in. thick 7075-T651 aluminum bar. The KAFO
attachment base was made from three sheets of 0.05 in. thick 17-4 PH stainless steel. The
first sheet was also the spring case bottom. To permit visual examination of the functioning
of the device during use, the case cover was replaced by only two strips of 6061 aluminum
(Figure 3.10) secured above the two outer springs to safeguard against spring buckling; the
inner spring was prevented from buckling by the locking rod. Fasteners were all high

strength class 12.9 M3 screws.

17-4 PH stainless steel sheet requires intermediate heat treatments in order to be bent
without losing mechanical integrity. However, heat treatment equipment was not available
where the prototype was made. To avoid the need for heat treatment, the U-beam was
replaced by an aluminum bar with a backing of 17-4 PH stainless steel (Figure 3.10). The
aluminum provides the required resistance to bending while the stainless steel backing
engages with the locking rod notches. The modified U-beam will be called the spring beam

from this point on.

For the locking rod, a class 12.9 M10 hex cap bolt was used instead of 17-4 PH stainless
steel (Figure 3.10). Class 12.9 bolts have a higher yield stress than 17-4 PH stainless steel,
and come threaded on one end and with a head on the other. The head was not machined to
include the stops for the locking rod spring pin. Instead, a mark was placed on the locking

rod head to provide a visual cue for proper alignment.

The dimensions of the cable connector, knee disk support, sliding lock, and sliding lock
supports were all increased so all pieces could be cut from the same 17-4 PH bar without
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requiring subsequent machining to reduce sizes to the original design specifications.

A single-action Bimba 3/8” diameter pneumatic actuator was available from a previous
device. The available actuator was modified with a return spring fashioned from an extension

spring attached to the actuator support bracket and the sliding lock.

Following initial testing where spring beam rotation occurred within the spring casing, a
30 mm X 30 mm X 1.5 mm brass plate (Figure 3.10) was fastened to the spring beam to slide
between the two aluminum strips covering the outer springs. The brass plate acted as a linear

bearing and stopped spring beam rotation when the springs were compressed and locked.

3.7.2 Prototype Size and Weight

The prototype weighed 0.668 kg (1.47 1b), meeting the 0.68 kg design requirement for
weight. The spring case assembly measured 158 mm long, due to the length of the locking
rod. The spring case measured 111 mm long. The majority of the additional prototype spring
case length was caused by the increased thickness of the spring beam and proximal end of the
spring case. Little width and thickness were added to the spring case assembly from
modifications for the prototype. The width was 70 mm and the medio-lateral thickness was
27 mm, very close to the values of the original design, 69 mm and 25 mm, respectively. The
knee disk assembly was 167 mm long, 48 mm wide, and 20 mm thick. The extra length was a
result of the pneumatic actuator quick-connect fitting that permitted easy connection of the
air bladder. The quick connect fitting was not included in the original design and would be

excluded in the final design.

3.7.3 Prototype Cost

Prototype fabrication took place at the Ottawa Hospital Rehabilitation Centre machine
shop, at a total estimated cost of at $3114. The major expense was the cost of the skilled
labour. Fabrication took an estimated total of 37.5 hours at a cost of $80 per hour, totaling
$3000. Materials used in fabrication cost an estimated total of $114. A bill of materials can
be found in Appendix H. For future one-off prototypes, fabrication cost could be reduced to

$1427 by outsourcing the machining.

95



Chapter 4. Mechanical Evaluation

Mechanical evaluation of the KEA prototype was conducted to determine the extension-
assist moment provided, as well as to ensure proper device function before testing the KEA
on human participants. The prototype was mounted on % in. X 3/16 in., % hard 304-2B
stainless steel KAFO uprights (Becker Orthotics), the strongest available KAFO uprights, in
preparation for mechanical testing. The uprights were connected by a single axis rear-offset
knee joint, which is an orthosis knee joint with the joint centre slightly posterior to the

centerline of the uprights.

Tests were conducted using a tensile testing machine (Instron 4482 universal tester).
First, the distal cable was detached from the knee disk, the entire knee disk assembly along
with the lower KAFO upright was removed, and the upper KAFO upright with the spring
case assembly attached was mounted in the Instron. The tensile testing machine was then
used to pull the distal cable, to measure the spring force exerted during spring compression.
The KEA and KAFO uprights were then reassembled, and the uprights were mounted onto
the tensile testing machine. The tensile testing machine was then used to flex and extend the
joint with the KEA providing the extension-assist moment, to measure the amount of force
resisted during joint flexion and supplied during joint extension, in order to determine the

moments provided by the device during use.

The testing machine was controlled via a computer running Instron 9 Series software.
Data was sampled at the maximum measuring frequency of the testing machine, 20 Hz. Due
to intrinsic error in the testing machine, four consecutive data points were missed

approximately every 10 s.

4.1 Spring Response Tests

To empirically test the response of the springs, the spring case assembly was mounted in the

tensile testing machine and the distal cable was pulled to compress the springs.
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4.1.1 Purpose

Although the specifications for the springs purchased were supplied by the manufacturer, the
actual response of the system would likely differ from that stated by the manufacturer due to
variance in the spring constants among the different springs, as well at the presence of some
undesired motion in the system due to cable lengthening and shifting of components upon
loading, and friction. To determine the actual response of the spring case assembly as a

whole, the springs were compressed in situ.

4.1.2 Procedure

For the spring response test, the lower KAFO support upright and the knee disk assembly
were detached from the upper KAFO support upright and spring case assembly. The upper
KAFO upright was secured to the tensile testing machine and the distal cable was held from
below by a serrated grip clamp (Figure 4.1). The test consisted of raising the tensile testing
machine crosshead (tensile testing machine extension) which raises the spring case while the
distal cable is held by the fixed lower grip. This generates tension in the cables and pulls on

the spring beam (Appendix G), thereby compressing the springs.

A low clamping force was used such that the load was transmitted to the cable through
the end stop, and not through a large clamping force on the cable. The locking rod was
removed from the device so that, upon return of the tensile testing machine crosshead to its
original position, the springs would elongate without locking. The tensile testing machine
crosshead was raised at 300 mm/minute, after a number of prior trials at varying extension
rates revealed that there was no difference in measured spring response with changing
crosshead speed. At the starting position for the test, there was no slack, but minimal tension,
in the cables. Each trial was set to end after an extension of 40 mm, the amount of spring
compression that would occur in 90° of knee flexion. The forces exerted over the functional
range of the KEA could thus be measured. Ten trials were performed and the mean and
standard deviation of the spring extension force exerted on the tensile testing machine via the

proximal and distal cables were calculated.
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Figure 4.1: Photograph of the spring-response test setup.

4.1.3 Results

The results from the ten trials are presented in Figure 4.2. The force response increased
linearly with spring compression starting from an initial preload force of 331 N. The force
curve had very little variation across trials. Average standard deviation across the trials was
4.2 N, and only 2.8 N if the force curve before the preload was reached is ignored. In all
trials, the crosshead traveled 2 mm before the 331 N preload was reached. In the first 2 mm
of the first trial, there was adjustment and alignment of components within the system and

stretch of the wire cables as the force exerted by the tensile testing machine increased to 331
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N. For the remaining nine trials, there was no further adjustment or alignment of
components. Instead, the 1 mm of slack in the cables produced from the system adjustments
in the first trial was taken up with no measurable force, followed by 1 mm of cable stretch as
the force from the tensile testing machine increased the cable tension to the spring preload
force. Once cable tension exceeded the preload, the springs began to compress. The
generated spring force was lower than the manufacturer specifications for a given spring
compression. The average measured preload of 331 N was 69 % of the 480 N theoretical
preload that should have existed in the springs at full extension within the spring case. The
average spring rate was calculated from the linear portion of the ten trials, and was found to
be 8405 N/m, slightly higher than the 8088 N/m rate specified by the manufacturer. Even
with the elevated spring rate, at 42 mm of tensile testing machine extension (reached with 2
mm of tensile testing machine overshoot) which corresponded to 40 mm of actual spring

compression, the spring force was 1334.6 +£2.7 N, or 89% of the rated 1500 N.

Although the force response from the springs was lower than expected, at 40 mm of
spring compression the springs were not quite fully compressed, as was expected from the
manufacturer specifications, indicating that higher forces could potentially be reached at

further compression.
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Figure 4.2: Spring response results for ten mechanical testing trials. Note that although the test was set to stop at
40 mm extension, 1-2 mm of system overshoot occurred in each trial. The ten curves drawn have the same line
thickness. The lines appears thicker due to line overlap.
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4.1.4 High Load Spring Response Test

In the initial mechanical test, the springs did not reach their closed length after 40 mm of
compression. It was therefore possible to achieve higher return forces using the same springs
with additional spring compression. A second test of five trials was carried out using the
same setup as described above, but with the trials set to end when 1500 N was reached,
instead of at a specified extension. Results would indicate if it was possible to attain the
desired 1500 N spring force before reaching the closed length (full compression) of the

springs, and at what amount of system extension.

4.1.4.1 Results

Results from the high load spring response test are shown in Figure 4.3. A linear response
after an initial loading phase to reach the spring preload and low variability (average standard
deviation of 7.2 N) again characterized the system response. The spring force reached
1500 N at 46.6 mm of extension, 4.6 mm greater than expected. The slight upturn at the end
of each curve (Figure 4.3) represents the beginning of the rapid increase in force seen when a
spring reaches its closed length, since the spring cannot compress any further. This test
indicated that the maximum total return force obtainable from the three springs was
approximately 1500 N, as indicated by the manufacturer, but at a compression that exceeded

the specifications.
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Figure 4.3: High load spring response test results for the five trials.
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4.2 KEA Loading Response Test

For the second stage of testing, the KEA and KAFO uprights were reassembled and mounted
onto the tensile testing machine (Figure 4.4). The setup used permitted linear testing machine
compression to be converted into a flexion moment applied to the KAFO joint. The linear
compressive force required from the tensile testing machine to flex the joint could then be

used to calculate the extension moment provided by the KEA to the joint during loading.

Figure 4.4: Photograph of the test setup used for the KEA loading response test.
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4.2.1 Purpose

The loading response test was conducted to determine the actual resistive joint moment
provided by the KEA during knee joint flexion for comparison to the theoretical values. The
test would also reveal whether the device loaded properly, and if there were design flaws that

needed to be addressed with respect to spring loading during flexion.

4.2.2 Procedure

The KEA and the KAFO uprights were mounted into the tensile testing machine with a
starting position as shown in Figure 4.4. Custom machined steel clevises were used to secure
the ends of the uprights to the tensile testing machine mounts while allowing rotation about
an axis parallel to the joint axis. A protractor with a plumb line hanging from its centre was
adhered to the lower KAFO upright to indicate joint angle. The locking rod was removed
from the KEA to allow the springs to return to full extension as the tensile testing machine
crosshead returned to its starting position after each trial. For convenience, the pneumatic
actuator return spring was also removed so that between tests the sliding lock would remain
engaged with the knee disk, and thus the actuator would not have to be activated before each

trial through manual application of pressure to the air bladder.

Before each trial commenced, the tensile testing machine crosshead was positioned such
that there was slight flexion of the KAFO joint. The initial flexion was to ensure that the joint
would not remain locked in full extension, which would cause the uprights to buckle upon
loading. The initial flexion angle corresponded to the angle at which the cables were taut, but
not under tension. The angle was measured as being 5° using the protractor. To determine the
end point of the test, the crosshead was lowered under manual control until a joint flexion
angle of 90° was reached. The crosshead travel required to reach 90° was then input into the

tensile testing machine control software as the compression to be applied during the test.
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The joint was then flexed to 90° ten times. For each trial, the compressive force applied
by the crosshead to the KAFO uprights during compression was measured and recorded by
the tensile testing machine software. Each trial ended with the joint at 90° (Figure 4.5). When
each trial ended, the tensile testing machine crosshead returned to the starting position. The
crosshead speed was kept at 300 mm/min, as prior tests on the entire KEA at varying speeds
had again shown that device response was independent of crosshead speed. The resistive
moment to flexion supplied by the KEA during loading was calculated from trial results.
Instantaneous moment arms and knee angles were calculated using the measured starting
angle and the crosshead travel at a given time. The moment arm was then multiplied by the
compressive force exerted by the tensile testing machine to determine the resistive moment at

the corresponding joint angle.

Figure 4.5: Photograph of the KEA at the completion of a KEA loading response test
trial. Trials were complete when a 90° joint angle was reached, as shown.
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4.2.3 Results

The force-displacement results from the KEA loading response test are shown in Figure 4.6.
At the beginning of each trial, there was a sharp peak in the force exerted by the tensile
testing machine of approximately 1230 N. The spike in applied force occurred when the joint
angle was low, and thus the moment arm that the force acted on was very small. Force was
expected to increase with little displacement at the start of the test until a joint moment large
enough to overcome the initial spring preload was reached. Once the initial spring preload
was reached, it would be expected that the rate of increase of the force provided by the
tensile testing machine would drop and the moment arm would begin to increase. This is
because the moment arm is an exponential function of KAFO compression (Figure 4.7), and
therefore the moment arm would increase faster at the start of the trial than during the later
stages. As a result, early on in the trial, the force required from the tensile testing machine to
flex the joint would drop, as the moment arm increased faster than the increase of spring

force, according to:
FsR=Ftd 4-1)

where Fs is the force from the springs, R is the knee disk radius, Fr is the force from the

tensile testing machine, and d is the moment arm.

The drop in force from the tensile testing machine spike would appear in the applied force
curve. Once the rate of increase of moment arm more closely resembled the rate of increase
of spring force, the measured loading response would be expected to flatten out, and this was
observed during the tests. However, this explanation does not explain the high 1230 N value
of the spike observed, since, based on the preload measured in the spring response tests, the
force required to generate a moment that could overcome the preload at the initial knee angle
should have been 419 N. The peak observed was approximately three times that magnitude.
What likely occurred was that the initial knee angle was not set at a sufficiently large value,
and this therefore caused much of the tensile testing machine force at the beginning of each
trial to be transmitted through the KAFO uprights to the joint. At 1.3 mm compression,

which corresponded to a 9.2° joint angle, the applied force peaked, and then decreased
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rapidly for the next 6 mm (Figure 4.6), to levels closer to expected values. The force required
to flex the joint reduced to below 250 N for the last three-quarters of each trial, and leveled
off by the end of the trials at 208.1 + 2.1 N, on average (Figure 4.6). As was the case with the
previous tests, the KEA response exhibited low variability across the ten trials, with the
exception of during the spike in force. Ignoring the force measurements from 1 mm of
compression on either side of the force peak, where there was an average standard deviation

of 46.7 N, average standard deviation for the ten trials was 2.0 N.
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Figure 4.6: Force-displacement results from ten trials of 90° KAFO joint flexion.
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Figure 4.7: Moment arm increase as a function of vertical KAFO compression during loading.
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The load-displacement measurements were then used to calculate joint moments and
angles (Figure 4.8) to determine the moment supplied by the KEA during spring loading. The
spike in force observed in the force-displacement data resulted in a spike in joint moment at a
low knee angle. The moment peaked to 28.9 + 1.0 Nm at the 9.2° knee angle and then
decreased. Afterwards, the moment increased linearly until the end of the trial, as expected.
The final extension moment provided was 42.9 = 0.46 Nm at 87° of joint flexion, 5.4 Nm
larger than the theoretical maximum moment provided by the KEA and 8 % more than the
design requirement target value. The discrepancy between calculated and observed moments
was most likely due to friction between the proximal cables and the holes in the distal spring
case end through which they passed. From visual inspection of the KEA during the trials, the
springs appeared to compress properly, the spring beam moved smoothly through the spring
case, and the distal cable wrapped easily around the knee disk. All of this indicated that there

were no major problems associated with loading the device.
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Figure 4.8: Extension moment provided by the KEA during loading, as a function of joint angle.
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4.3 KEA Extension-Assist Response Test

The KEA extension-assist response test was performed to determine the assistive extension
moment provided by the KEA during extension. The test measured the vertical force exerted
by the KAFO uprights on the tensile testing machine during joint extension. The results were

used to calculate the extension-assist moment provided by the KEA.

4.3.1 Purpose

The purpose of the test was to determine the actual extension-assist moment provided by the
device during joint extension for comparison with the theoretical value. The test would also

uncover any problems that may exist with KEA function during extension.

4.3.2 Procedure

The test procedure followed the loading response test procedure (Section 4.2) closely, but in
reverse. The device remained installed in the tensile testing machine as shown in Figure 4.4.
The crosshead was manually controlled and lowered until a 90° joint angle had been reached.
This position (Figure 4.5) was the starting point of the extension-assist response test. The
tensile testing machine extension to occur during the test was set at 5 mm less than the
crosshead travel that was required to reach a 90° joint angle. The 5 mm reduction was to
ensure that the tensile testing machine did not extend beyond full joint extension due to

system overshoot and damage the KEA.

From the initial position, the tensile testing machine underwent the prescribed extension
at 300 mm/min. The force exerted by the KAFO uprights on the mounts, caused by the KEA
extension-assist moment, was measured. The empirical extension-assist moment was then
calculated from the force-displacement measurements, as was performed for the loading

response test. The process was repeated for ten trials.

4.3.3 Results

The force-displacement curves obtained during the ten extension-assist response trials are
shown below in Figure 4.9. The curves contain characteristics similar to those obtained

during the loading response test: a flat, approximately constant component, and a component
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with a sharp rise in force near full joint extension. However, the extension-assist response
exhibited a large decrease in force at the start of each trial, before the flat component began.
The drop in force averaged 77.5 N, with the initial force equal to the force observed at the
end of the loading response test trials. Since the extension-assist response trials began in the
same position that the loading response trials finished, the drop in force was most likely a
result of the same friction that caused the higher flexion-resistance moment in the loading
test, as described in Section 4.2.3; i.e. during joint extension, the friction between the
proximal cables and the distal spring case end opposes the spring extension force, reducing

the extension moment provided.

The rise in force at the end of the trial was small in comparison to that observed during
the previous test. The extension-assist response test ended before the peak in force was
reached, but the peak would most likely have been much lower in magnitude, since the large
spike in the loading response test was caused mainly by loading downward directly through
the KAFO uprights and joint, and was thus a phenomenon that would only be observed
during loading. In the extension test, what was observed was the expected peak due to the

high rate of moment arm change at low joint angles, as was explained in Section 4.2.3.
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Figure 4.9: Force-displacement results from extension-assist response trials.
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The results of the test were used to calculate the extension-assist moment supplied by the
KEA during joint extension (Figure 4.10). It can be seen that the drop in force due to friction
caused an initial drop of 16.4 Nm, and reduced the moment to 28.4 Nm, 76 % of the
theoretical device performance and a 36% extension-assist for a 90 kg individual. The shape
of the moment-angle curve was as expected, with a linear decrease through the full range of
joint extension; the small rise in force that commenced at the end of the trial (Figure 4.9) was

not large enough to cause a spike in extension-assist moment.
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Figure 4.10: Extension-assist moment provided by the KEA during joint extension.

4.4 KEA Function Tests

For the KEA function tests, the locking rod and pneumatic actuator return spring were

reinstalled, and the KEA was tested as a whole to ensure that it was safe to use.

4.4.1 Purpose

The purpose of this series of tests was to observe the function of the device as a whole, as it
would be used when worn by an individual. The function of the locking rod, locking rod
spring pin and locking rod spring, the sliding lock, pneumatic actuator, actuator return spring,
and air bladder were tested. Although force response data were gathered automatically by the
tensile testing machine during certain portions of the test, the test was mainly qualitative,

since the purpose was to observe whether the KEA functioned properly as a system. The
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compression and return of the springs through joint flexion and extension, respectively, had
already been tested in the previous tests. The main goal of the KEA function tests was to
determine whether the locking rod successfully held the spring beam in place while the
springs were compressed, and whether the sliding lock successfully engaged with, and

disengaged from, the knee-disk notch at the desired times.

4.4.2 Procedure

The function tests were performed using the same setup as the loading response and
extension-assist response tests (Figures 4.4 and 4.5), but with the locking rod and actuator
return spring reinstalled. The entire procedure resulted in twelve flexion-extension cycles.
The twelve cycles mimicked three cycles of KEA STS mode use, since one full STS mode
cycle (stand-to-sit and sit-to-stand) would involve four parts. For a full STS cycle, the user:
1) loads the device during stand-to-sit; 2) is free to extend the leg when seated, while the
spring beam is locked in place; 3) returns the leg to the flexed position and places a portion
of body weight on the braced leg to reengaged the knee disk; and 4) manually disengages the
locking rod during STS to obtain the extension-assist from the KEA.

To simulate stand-to-sit (1), with the KEA in the same starting position as in the loading
response test (Figure 4.4), i.e. with the KEA slightly flexed to remove slack from the cables,
the air bladder was manually compressed to engage the sliding lock with the knee disk. The
KEA was then flexed to 90°. To simulate free extension (2), the KEA was automatically
returned by the mechanical testing machine to the starting position with the spring beam
locked in place by the locking rod and the knee disk disengaged (Figure 4.11). To simulate
return to the flexed position (3) in preparation for STS, the protocol for (1) was
recommenced, and the KEA was flexed again to 90° with the air bladder compressed to
engage the knee disk. To simulate STS (4), during the second extension, the locking rod was

manually disengaged so that the spring beam and springs were free to return to full extension.

Once the tensile testing machine test had demonstrated device functionality, the upper
KAFO upright was placed in a vice and the joint was manually flexed and extended to mimic
another ten cycles of KEA STS-mode use. The ramp walking mode was then tested as
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follows: the locking rod was rotated 180° to align the single, long notch in the locking rod
with the straight edge of the spring beam slot. A preload spring compression force that
corresponded to 20° of knee flexion was applied. The joint was then cycled through ten
flexions and extensions between 45° and 0°. With each extension, the sliding lock was free to
be retracted once the joint angle fell below the preload angle, and was extended into the knee

disk notch with every flexion by compression of the air bladder.

Figure 4.11: Photograph of the KEA during the function tests after undergoing extension with the springs
locked in a compressed state. The knee disk is automatically unlocked by the actuator return spring when
extension occurs with the springs locked in a compressed state.
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4.4.3 Results

The test revealed that the sliding lock, pneumatic actuator, actuator return spring, and air
bladder functioned as designed, but the locking rod did not function properly for all cycles.
During the first joint extension with the spring beam locked, part (2) of the function test
procedure described above, the locking rod notch did not fully engage, and as a result, when
extension commenced, the spring beam slipped off of the locking rod notch, and the springs
rapidly returned to their full length. Because the notch had partially engaged before the beam
slipped, the cables had briefly returned to zero tension. With the cables at zero tension, the
sliding lock was retracted by the actuator return spring and thus unlocked the knee disk. As a
result, when the spring beam slipped off the locking rod notch, the sudden extension of the
springs to maximum length within the case caused a loud noise as the spring beam made
contact with the case end, as well as a rapid rotation of the knee disk, but did not cause an
unwanted joint moment because the knee disk was unlocked. The improper engagement
could have been due to poor locking rod alignment, since locking rod orientation was not
checked by the tester prior to commencing the first cycle. It could also have been due to
insufficient stiffness in the locking rod spring that biases the locking rod to the locked
position. A stiffer spring would have exerted a larger engagement force, and may have
resulted in full engagement. The remainder of the trials worked properly, with loading and
unloading response of the springs (Figure 4.12 and 4.13) very similar to those seen in the
previous two tests. By the end of each joint flexion trial, the force leveled off at 199.2 N, a
4 % difference from the 208.1 N observed during the KEA loading response test. During
joint extension, the force dropped in a similar way to the extension-assist response test
results, down to 148 N, instead of 136 N. However, the KEA function test was not designed
for quantitative analysis, since manual disengagement of the locking rod from the spring
beam was provided during extension-assist. The direction of the manual force applied to the
locking rod to prevent engagement between a notch and the spring beam was such that the

manual disengagement force slightly raised the measured force during extension-assist.

The force-displacement curves from extension and flexion of the joint while the spring

beam was locked in a compressed state are presented in Figure 4.14 and Figure 4.15,
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respectively. Spring beam locking (Figure 4.14) was characterized by a period of proximal
spring beam movement at the start of extension, from 0 to 20 mm vertical KAFO extension,
during which the full extension-assist moment was provided until the face of the spring beam
came into contact with the nearest proximal locking rod notch face, at 20 mm vertical KAFO
extension. As a worst case, the distance traveled by the beam before coming into contact with
a notch would be 3 mm, the distance between two locking rod notches, which corresponds to
6.8° of joint extension. Furthermore, full engagement of the beam was not instantaneous.
There was an additional range of joint extension over which the extension-assist moment
decreased to zero, from 20 to 50 mm vertical KAFO extension. As a consequence, when the
braced limb was extended with the locking rod in place, the joint extended 7.2° before the

spring beam was fully locked and cable tension was zero.

The possible range of joint extension before the full spring force was borne exclusively
by the locking rod was determined from Figure 4.14 and the locking rod inter-notch distance.
The range was between 7.2° of extension, if joint flexion were to end with the spring beam
aligned with a notch face, and 14° (7.2° + 6.8°), if flexion were to end with the beam slightly

proximal to the next most distal notch face.

Figure 4.15 shows the force required to flex the joint with the spring beam locked. The
response is as expected, the reverse of that observed during locking, but with the final
applied force, 207.8 N, higher than the initial force of 143 N in Figure 4.14. The difference

was due to friction between the cables and the spring case, as explained earlier.

Because the locking mechanism did not function properly for all tensile testing machine
trials, the upper KAFO upright was placed in a vice and the KEA was manually flexed and
extended to determine if improper function was a regular occurrence. In ten STS-mode and
ten ramp walk mode cycles, there was no occurrence of the spring beam slipping off of the
locking rod notch. However, in three of the STS-mode trials, the tester was able to push the
locking rod slightly laterally in the posterior direction, indicating that, though sufficiently

engaged, the spring beam face was not entirely engaged with the locking rod notch face.
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Figure 4.12: KEA loading response during joint
flexion simulating stand-to-sit (1).
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Figure 4.14: KEA extension with spring beam
locked in place by the locking rod, simulating free
knee extension (2).
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Chapter 5. Biomechanical Evaluation

To determine whether the extension-assist provided by the KEA to a user was beneficial for
STS and ramp walking, an evaluation of the effects of the KEA on an individual during use
was required. Tests were perfomed to determine whether the KEA effectively provided an
extension moment to the knee to assist an individual during stand-to-sit, sit-to-stand, ramp
ascent, and ramp descent. The tests also permitted verification of the proper functioning of
the device when worn by a user and helped determine if modifications to the design for
proper functioning were needed. The biomechanical evaluation was approved by The Ottawa
Hospital Council of Research Ethics Board (COREB) and The University of Waterloo Office
of Research Ethics (UWORE) Research Ethics Board (Appendix I).

5.1 KEA Preparation for Biomechanical Evaluation

The KEA prototype, KAFO uprights, and the single axis KAFO joint used in the mechanical
evaluations were incorporated by a certified orthotist into an existing KAFO for use in
biomechanical testing (Figure 5.1). The existing KAFO was meant for use on the right leg.
The KAFO had a thermoplastic thigh cuff, shank cuff, and foot plate. The thigh and shank
cuffs were connected by single-axis joints mounted on 19.0 mm X 4.8 cm X 6.3 cm (3/4 in X
3/16 in X, 1/4 in) hard 304-2B stainless steel KAFO uprights from Becker Orthotics, the same
uprights used for the mechanical tests. The shank cuff and foot plate were connected by
Tamarack articulating ankle joints to allow for dorsiflexion and plantarflexion, and resist

ankle rotation in the transverse (inversion/eversion) and frontal (coronal) planes.

5.2 Purpose

The biomechanical evaluation conducted on the KEA was a proof-of-concept pilot study on

able-bodied subjects. The goals of the biomechanical evaluation were to:
1. Determine the moment provided by the KEA during STS and ramp walking.

2. Determine the effect of the KEA on STS and ramp-walking kinematics.
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3. Determine whether the KEA allowed an able-bodied user to reduce quadriceps use for

STS and ramp walking.

4. Determine whether the KEA functioned properly during use for STS and ramp-
walking tasks and if there were any design issues associated with the device being
incorporated into a KAFO and worn by a user, and if any modifications to the design

were required for proper functioning.

Figure 5.1: KEA prototype mounted on a preexisting right-leg KAFO for biomechanical trials.

5.3 Methods

Biomechanical evaluations on the KEA were carried out at The Gait and Motion Analysis
(GAMA) Laboratory at The Ottawa Hospital Rehabilitation Centre (OHRC). Participants
were requested to perform STS and stand-to-sit tasks as well as ramp walking upwards and
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downwards using the KEA, and they were given time to practice the tasks with the KEA
before the tests commenced. The participants were instructed to practice using quadriceps
muscles as little as possible to complete the tasks. The purpose of the participant using as
little quadriceps as possible was to show the difference in quadriceps muscle activation levels
with and without the extension-assist. Two separate tests, each with two components, were
conducted. The first test examined the effect of the KEA as participants performed the stand-
to-sit and sit-to-stand tasks. The tasks were first executed while wearing the KAFO, but
without assistance from the KEA. The movements were then repeated with assistance from
the KEA. Ground reaction forces, body segment kinematics, and electromyographic signals
from the rectus femoris, vastus medialis, biceps femoris, and gluteus maximus were
recorded. The data gathered were used to determine the joint dynamics and muscle use for
the above tasks performed with and without aid from the KEA. Effects of the device on
stand-to-sit and sit-to-stand kinematics were also assessed. The second test examined the
effect of the KEA on ramp gait. Participants performed ramp ascent and descent while
wearing the KAFO, both tasks with and without assistance from the KEA. Body segment
kinematics and rectus femoris, vastus medialis, biceps femoris, and gluteus maximus muscle
activation levels were recorded to compare kinematics and muscle use in ramp ascent and

descent between tasks performed with and without assistance from the KEA.

5.3.1 Participants

Participants were recruited from the students and staff of the University of Waterloo and the
staff of the OHRC. A convenience sample of two able-bodied male participants (Table 5.1)
was recruited for the pilot study. The two participants were selected based on leg size, length,

and knee height, such that proper KAFO fit could be achieved with little to no modification.

Table 5.1: Relevant Participant Characteristics

Participant | Sex | Weight (kg) | Height (cm)

P1 M 70 176

P2 M 64 168
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5.3.2 Instrumentation, Equipment, and Measurements

Kinematic data from lower limb and trunk movement was recorded using a seven-camera,
infra-red Vicon motion analysis system (MX3+). The Vicon system recorded data at 120 Hz.
Thirty-nine reflective, 14 mm diameter, spherical markers were attached to the participant’s
feet, lower and upper legs, and torso (Figure 5.2). A six degree-of-freedom (6-DOF) marker
set was used to track the participant’s motion. Use of a 6-DOF marker set allowed for the
tracking of each segment in three-dimensions, and thus resulted in a more accurate
determination of segment kinematics and joint dynamics. Of the 39 markers, sixteen were
used as calibration markers to denote the endpoints of segments. Calibration markers were
only required during the standing calibration trials to determine segment lengths. The
remaining markers acted as tracking markers and were worn during all trials, with sets of
three or four markers used to define the position and orientation of each segment. A list of

the anatomical locations of the markers can be found in Appendix J.

Figure 5.2: Participant equipped with motion capture markers and EMG equipment.

Two force-plate load cells (Advanced Mechanical Technologies Inc.), embedded side-
by-side in the floor, were used to measure the overall force acting between each foot and the

ground during the stand-to-sit and STS trials. The force plates obtained measurements with a
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frequency of 120 Hz. The use of two force plates permitted ground reaction force from each
foot to be measured, and therefore allowed joint moments to be calculated for each leg
individually. However, the force plates were only utilized for STS trials, since the ramp was
not outfitted with a recess in which to embed a force plate. For this reason, during ramp gait
trials, only kinematics and muscle activation levels were examined.

Muscle activation levels were measured using surface electromyography (EMG), which
measures the electrical impulses sent to the muscles. The strength of the signals recorded by
the EMG electrodes relate to the level of muscle contraction. Electrodes were placed
bilaterally on the quadriceps and buttocks, on the vastus medialis, rectus femoris, and gluteus
maximus, three of the principal muscles involved in knee and hip extension [15], as well as
on the left biceps femoris to monitor antagonistic contractions. The right biceps femoris
could not be monitored, because the muscle was covered by the KAFO thigh cuff. The cuff
would have contacted the EMG sensors and amplifier and cause the EMG readings to be
inaccurate. The Surface Electromyography for the Non-Invasive Assessment of Muscles
(SENIAM) electrode placement protocol [113] was followed. SENIAM is a European
concerted action in the Biomedical Health and Research Program (BIOMED II) of the
European Union. A single ground/reference electrode was placed on the fibular head to

capture a base reading. All signals were recorded at a rate of 1000 Hz.

For the STS trials, a wooden stool was placed directly behind the force plates. The stool
had no arms or backrest so as to not obscure the tracking markers during kinematic data
collection. The seat and legs of the stool were thin to provide the least obstruction of the
markers located on the heels and ankles from the rear camera views. The height of the stool,
46 cm, corresponded to a seated position with a knee angle of 90°. Figure 5.2 shows the
experimental setup and a participant with motion tracking markers and EMG electrodes

applied.

For the ramp walk trials, a 6 m long ramp inclined at an 8° angle was used (Figure
5.3). The top end of the ramp was connected to a 1.5 m long platform so that the ramp ascent
trials could end comfortably on a level surface. Railings were provided on both sides of the

ramp and platform, in case the participant were to stumble. The ramp was positioned in the
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centre of the room during ramp walking tests to allow for all Vicon cameras to track the

motion of the participant during the trials.

Figure 5.3: Ramp used for ramp gait trials.

5.3.3 Data Collection Procedure
5.3.3.1 Equipment Calibration

Before trials commenced for a given participant, there were several equipment calibration
procedures that were followed. The Vicon cameras were first calibrated using a calibration
tool in Vicon’s Nexus software package. The program tracks the movement of a set of
markers on a T-shaped wand as it is waved around the capture volume to determine the
location of each camera relative to the others. The wand was then placed at the user-chosen
origin of the capture volume to determine the spatial orientation of the cameras relative to the

room. Finally, the force plate readings with no load applied were set to zero.

After all trials were completed (as detailed in the following subsection), EMG readings
were taken for maximal voluntary contractions (MVC) of each of the four muscles involved
in the trials. The MVC signals were later used to normalize the EMG signals recorded during
the trials. The MVC tests consisted of an isometric contraction of a given muscle as
forcefully as possible against infinite resistance. Maximal contractions were repeated three
times for each muscle, and were held for three seconds each time. Patient positions during

the MVC tests followed the SENIAM guidelines [113].
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5.3.3.2 Stand-to-Sit and Sit-to-Stand

After camera calibration was completed, the stand-to-sit and sit-to-stand tests were conducted

as follows:

e The participant stood in front of the stool, with arms crossed over the abdomen to

minimize marker obstruction.

e Feet were positioned beside each other spaced comfortably apart in a natural standing
postion, and with heels approximately in-line with each other, with each foot on a
separate force plate and the stool placed at a comfortable distance behind the

participant, as judged by the participant.

e The participant then sat down onto the stool. When equipped with the KAFO with the
KEA deactivated, the participant was instructed to sit at a self-selected speed. When
the KEA was active, the instruction was to sit with minimal quadriceps muscle usage,
to allow the device to do as much work as possible while still completing the task
successfully. A trial was completed when the participant was fully seated with a

vertical torso, with the KEA spring beam locked in position.

e The participant could then move around and adjust their seated position, as desired.
Before commencing the sit-to-stand trial, the participant was instructed to return the
feet to a similar position as when stand-to-sit ended, if they had shifted, and to
transfer a portion of their bodyweight onto the feet, in preparation for the sit-to-stand

task.

e The participant then rose from the chair until standing upright, arms crossed over
abdomen to minimize marker obstruction. Again, when rising with the KEA
deactivated, the participant was instructed to perform sit-to-stand at a self-selected
speed. When the KEA was active, the instruction was to unlock the spring beam by
pulling on the locking rod and to rise with minimal quadriceps usage, to allow the

device to provide as much of the joint extension moment as possible, while still
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completing the task successfully. A trial was completed when the participant was

standing fully erect.

e This process was repeated until a total of 20 successful trials were recorded for the
STS test. Five successful trials were recorded for each case: with and without the
device active, for stand-to-sit and sit-to-stand. Subjects rested as needed between
trials. A successful trial was one in which the individual was able to transition from
standing to seated or seated to standing in one motion, without assistance from the
examiner, with both feet remaining in constant contact with the force plate, without

the feet moving or slipping.

5.3.3.3 Ramp Ascent and Descent

For the ramp ascent and descent tests, the ramp was moved into the middle of the testing
area, after completion of the stand-to-sit and sit-to-stand tests. The cameras were re-oriented
and re-calibrated to provide a taller capture volume so that the system could track the
markers when the participant was on the higher portion of the ramp. The participant was then
asked to apply the ramp mode preload to the KEA by rotating the locking rod into the ramp
mode position and flexing the knees until the locking rod engaged with the spring beam. The

ramp gait test was then conducted, according to the following protocol:
e The participant began the test standing still, at the bottom of the ramp.

e The participant ascended to the top of the ramp onto the platform and stopped, thus

ending the ramp ascent trial.

e The participant then completed a ramp descent trial by descending the ramp and

stopping when the foot of the ramp was reached.

e For trials with the KEA deactivated, participants were instructed to ascend or descend
the ramp at a self-selected pace. For trials with the KEA active, the participant was
instructed to ascend the ramp with minimal quadriceps usage, to allow the device to

provide as much of the required moment as possible, while still completing the task
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successfully. The participant was also instructed to use a hand-bladder to actuate the

pneumatic actuator to engage and disengage the knee disk during gait.

e Trials were continued until five successful trials were recorded for each condition:
ascent and descent, with and without assistance from the device. Subjects were
allowed to rest as needed. A successful trial was one in which the individual was able
to ascend to the top platform or descend to the foot of the ramp without stopping and

without assistance from the examiner.

5.3.4 Data Processing

The marker position, ground-reaction force, and EMG data captured during testing were first
post-processed using the Vicon Nexus software package. A model of the participants was
created and the markers positions captured in the trial video sequences were mapped to the
model. Timing events were manually labelled to indicate when STS, stand-to-sit, or ramp
gait stance phase for the braced right leg began and ended. The processed data from the five
successful trials for each test condition (STS, stand-to-sit, ramp ascent, and ramp descent,
each performed with and without the KEA activated) were then exported to Visual3D, a
modeling software program for kinematic and dynamic analysis of human movement.
Visual3D was used to calculate joint angles, joint angular velocities, and joint moments from
the marker position and ground-reaction force data. The data were then normalized to 100 %
of the STS, stand-to-sit, or ramp stance-phase time to allow for comparison between trials
and subjects of parameters as a function of percent gait cycle. Data from Visual3D were then

exported to Microsoft (MS) Excel for analysis.

Raw EMG signal data from the trials and the MVC tests were exported to MS Excel,
where the signals were rectified, then smoothed using a moving average with a 50 ms

window size.

5.3.5 Data Analysis

In MS Excel, the normalized data were ensemble averaged across the five trials for each test

condition of each subject. Average ankle angle, knee angle, hip angle, ankle angular velocity,
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knee angular velocity, and hip angular velocity were plotted for each test condition, as was
ankle moment, knee moment, and hip moment for the STS and stand-to-sit test conditions.
Critical points along these curves were subsequently determined. Critical points were points
at which a relevant event occurred or an important piece of information could be extracted.
For example, initial and final angles, maximum flexion or extension angular velocities, and
maximum moments were often chosen as critical points. The critical points chosen for each
test condition are listed and described in Table 5.2. Figure 5.4a and Figure 5.4b contains
representative averaged curves for STS and stand-to-sit, and ramp gait, respectively, in order
to show the locations of the critical points. Critical point values were extracted from the
individual trials and subsequently averaged across the trials from the same test condition for

each participant (P1 and P2).

The extension-assist moment provided by the KEA was interpolated from the moment
versus angle data derived from the mechanical testing, using the knee angle curves calculated
in Visual3D for trials that used the extension-assist. When the knee underwent flexion, the
loading response test results were used (Section 4.2.3), while the extension-assist response
test results (Section 4.3.3) were used when the knee underwent extension. Thus, extension-
assist moment vs. normalized task time data were created for all trials that involved KEA use
(Appendix L). The important values from the device moment curves are presented with the
kinematic and dynamic critical points in the following section. For stand-to-sit and STS,
device moment at the start and end of the motion are reported as SDM1 and SDM2,
respectively. For ramp gait, the initial moment when the preload knee angle is reached is
presented as RDMI, the maximum resistive moment during knee flexion as RDM2, the
maximum assistive moment during knee extension as RDM3, and the final moment as

RDM4.

For evaluation of the EMG data, the maximum single peak, the mean value, and the
integral (the area under the EMG curve, which takes task duration into account) were

calculated in MS Excel from the smoothed EMG signals.
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Table 5.2: Critical points for STS and stand-to-sit, and ramp ascent and descent test curves

STS and Stand-to-Sit Test Critical Points

Point Description

SAA1 Initial ankle angle

SAA2 Maximum dorsiflexion angle

SAA3 Final ankle angle

SKA1 Initial knee angle

SKA2 Final knee angle

SHA1 Initial hip angle

SHA2 Maximum hip flexion angle

SHA3 Final hip angle

SAAV1 | Maximum ankle dorsiflexion angular velocity (AV)

SAAV2 | Maximum ankle plantarflexion AV

SKAV1 | Maximum knee flexion AV during stand-to-sit

SKAV2 | Maximum knee extension AV during STS

SHAV1 | Maximum hip flexion AV

SHAV2 | Maximum hip extension AV

SAMI | Maximum ankle plantarflexion moment

SKM1 Maximum knee extension moment

SHM1 | Maximum hip extension moment

Ramp Ascent and Descent Test Critical Points

Point Description

RAA1 | Ankle angle at start of stance

RAA2 | Ankle angle at end of stance

RKAI Knee angle at start of stance (ascent only)

RKA2 | Knee angle after weight acceptance

RKA3 | Maximum knee extension angle after weight acceptance (ascent only)

RKA4 | Final knee angle

RHA1 Hip angle at start of stance

RHA2 | Hip angle at end of stance

RAAV1 | Maximum ankle dorsiflexion AV

RKAV1 | Knee flexion AV during initial flexion

RKAV2 | Knee AV during subsequent knee extension (ascent only)

RKAV3 | Maximum pre-swing knee flexion AV

RHAVI1 | Maximum hip extension AV
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5.4 Results

Biomechanical test results are presented in this section in tabular form to highlight the
differences in kinematics, dynamics, and muscle activation caused by KEA use. Graphs of
the kinematic and dynamic data from both participants are presented in Appendix K. Curves
of the moments generated by the device can be found in Appendix L. EMG parameter values
for the different test conditions expressed as a percent of maximal voluntary contraction

appear in Appendix M.

5.4.1 Stand-to-Sit and STS

Table 5.3 presents the critical point values of both participants (P1 and P2) for stand-to-sit
and STS with right-leg KEA assistance (assist) and without KEA assistance (normal), as well
as the moment provided by the KEA. Table 5.4 presents the percent difference between the
EMG parameter values for normal task completion and for completion with the extension-

assist.

The extension-assist provided by the KEA allowed the participants to perform both
stand-to-sit and STS in a slower and more controlled manner, while maintaining similar joint
angles. Participant 1 (P1) was able to reduce hip and knee angular velocities by an average of
21 % as a result of the extension-assist. Maximum knee angular velocity (SKAV2 and
SKAV1) for P1 was 26.2 and 10.5 deg/s slower, while maximum hip angular velocity
(SHAV2 and SHAV1) was 33.3 and 27 deg/s slower, for STS and stand-to-sit, respectively,
with KEA use.

Maximum knee moments (SKM1) of the right leg varied little for P1 between the normal
and assisted trials, with a 7 % increase to 55 Nm for stand-to-sit and a 1 % decrease to 50.5
Nm for STS due to the extension-assist. These values were compared to the extension-assist
moment values from the knee angle versus extension-assist moment curves (Appendix L) to
determine the amount of assistance provided by the KEA. For stand-to-sit, the KEA provided
a maximum extension moment (SDM?2) of 45.5 Nm. Therefore, the KEA provided 82 % of
the 55 Nm right knee moment (SKM1 Right), or 36 % of the 125.5 Nm total knee moment
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(SKM1 Right + Left, 55.2 + 70.3 Nm). For STS, the KEA was able to provide a maximum
assistance (SDM1) of 28.5 Nm, 56 % of the 50.5 Nm moment required by the right knee
(SKM1 Right) and 22 % of the 129.4 Nm total knee moment (SKM1 Right + Left, 50.5 +
78.9 Nm).

The effect of the extension-assist on the quadriceps of P1 can be seen in the EMG
parameters. The average of the maximum, mean, and integral EMG parameters of the right
quadriceps (vastus medialis and rectus femoris) was calculated to determine the effect of the
extension-assist on the right quadriceps. KEA use caused a decrease in quadriceps muscle
activation levels of 38 % in the right leg, while the average of the left quadriceps muscle
activation parameters was nearly equal with and without the assist. The average of the left

quadriceps EMG parameters increased only 3 % with KEA use.

For P2, the effect of the extension-assist was more immediately visible than for P1. P2
had difficulty in successfully completing STS without the extension-assist, and was forced to
generate extra momentum through a ballistic forward and upward arm movement, involving
an upward swing of the arms that were folded across the chest, in order to rise successfully
without the extension-assist. Even with the additional momentum from the arms, P2 still had
difficulty rising, with six trials discarded due to unsuccessful STS attempts. With the KEA
active, P2 was able to rise in a slow and controlled manner, without arm movement, and with

no unsuccessful attempts.
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Table 5.4: Percent difference between normal task completion and completion with extension-assist for STS
and stand-to-sit tasks . Negative values indicate a reduction in muscle activation with KEA use.

RIGHT (with KAFO) LEFT (without KAFO)

Vastus medialis  Rectus femoris  Gluteus maximus | Vastus medialis  Rectus femoris  Gluteus maximus  Biceps femoris

P1 STS

Maximum -27.6 -24.0 36.1 -12.5 -11.3 -8.6 -15.8
Mean -49.3 -42.9 37.7 1.3 -6.2 8.0 13.6
Integral -41.0 -34.0 59.4 17.5 8.4 25.6 32.9
P2 STS

Maximum 29.8 27.9 27.4 30.2 66.2 -34.5 31.1
Mean 19.1 22.4 55 45.5 48.3 7.2 0.0

Integral 92.0 93.1 50.4 134.8 138.7 49.5 60.1
P1 Stand-to-sit

Maximum -3.7 -55.6 49.3 1.6 1.7 -28.5 -9.3
Mean -41.0 -45.8 13.0 11.6 13.7 -6.5 6.2

Integral -40.9 -45.6 13.1 11.1 124 -6.2 6.5

P2 Stand-to-sit

Maximum -32.0 -41.9 -35.2 19.7 6.4 -8.9 10.6
Mean -12.1 -25.3 47.3 69.6 48.0 162.0 81.8
Integral -16.7 -29.7 39.9 60.3 40.2 146.6 71.3

As was the case with P1, P2 had similar joint angles for stand-to-sit and STS with and
without KEA use. Angular velocities also decreased with KEA use for P2, as they had for P1.
Stand-to-sit was only slightly slower with the assist than without, but STS knee and hip
angular velocities (SKAV2 and SHAV2) were 44 and 40 % slower, respectively. The large

reduction of angular velocities was expected because of the change in STS strategy.

The knee moments (SKM1) for P2 with the device were reduced by 12 % to 60.0 Nm for
stand-to-sit and 10 % to 57.1 Nm for STS. The KEA provided 44.9 Nm of the knee extension
moment (resistance to knee flexion) during stand-to-sit (SDM?2), corresponding to 75 % of
the 60.0 Nm right knee moment (SKM1 Right) and 40 % of 112.1 Nm total knee moment
(SKM1 Right + Left, 60.0 + 72.1 Nm). A maximum extension-assist (SDM1) by the KEA of
28.3 Nm was supplied for STS, providing 50 % of the required 57.1 Nm extension moment
for the right knee (SKM1 Right), and 21 % of the 133.3 Nm total knee moment (SKM1 Right
+ Left, 57.1 + 76.2 Nm).

EMG results for P2 did not show the same reductions as for P1. KEA use only caused a

reduction in the average of the maximum, mean and integral EMG parameters of the right
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quadriceps (rectus femoris and vastus medialis) for stand-to-sit, by 26 %. Nearly all other
parameters were seen to increase, including an increase of the average of the maximum,
mean, and integral EMG parameters during stand-to-sit of 41 % for the left quadriceps and
100 % for the left gluteus maximus. The increase in activation levels were likely caused by
the change in sit-to-stand task completion strategy, slower task completion with the
extension-assist, and the participant not being completely at ease with device use. Causes for

the increases seen are presented more fully in Chapter 6.

5.4.2 Ramp Ascent and Descent

Table 5.5 presents the critical point values for participants P1 and P2 for the ramp ascent and
ramp descent tests with the KEA (assist) and without the KEA (normal), as well as the
moments supplied by the KEA to the right knee at key instances. Table 5.6 presents the
percent difference between EMG parameter values for normal and assisted task completion

for ramp walking.

Ankle and hip angles and velocities were found to be similar for trials with and without
the device for both ramp ascent and descent. However, KEA use considerably altered knee
joint kinematics. At the initiation of ramp ascent stance, P1 and P2 both adopted nearly fully
extended knee angles (RKAT), 5.9° and 6.8°, respectively, to ensure engagement of the
sliding lock with the knee disk. During the trials without the extension-assist, P1 and P2
initiated stance with 23.2° and 41° knee angles. However, it should be noted that the 41°
knee angle for P2 is abnormally high, recalling from Figure 3.3 regarding ramp ascent
kinematics that the average starting knee angle for 8° ramp ascent is approximately 20°.
Though the starting knee angles were much lower with the extension-assist, the maximum
flexion angles (RKA2) during ramp ascent with and without the assist were similar; 35.1°
and 38.2°, and 45.8° and 50.2° for P1 and P2, respectively. Therefore, the KEA required the
leg to rotate through a much larger knee flexion range while weight-bearing during ramp
ascent than occurred without the extension-assist. Accompanying the increased range of knee
flexion caused by KEA use was an increase in knee flexion angular velocity due to KEA use

of 29 % for P1 and 92 % for P2 as the knee flexed rapidly until the preload angle was passed
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and the springs provided resistance to further flexion. There was also a slight change in the

shape of the knee angle curve for both participants as a result of the extension-assist, as can

Table 5.5: Critical point values for ramp gait tests. Note: angles are presented in (deg), angular velocities in
(deg/s), and moments in (Nm).

Ascent assist | Ascent normal | Descent assist | Descent normal
P1 avg SD avg SD avg SD avg SD
RAA1 -78.8 1.8 -84.5 1.5 -72.8 2.2 -72.3 1.5
RAA2 -1081 1.1 | 1034 14 | -106.5 1.6 -103.5 0.7
RKA1 5.9 1.9 23.2 6.6 - - - -
RKA2 35.1 34 38.2 5.4 32.5 2.2 29.8 3.7
RKA3 8.5 1.9 4.4 2.6 - - - -
RKA4 28.7 4.9 374 1.7 33.5 2.9 63.2 3.2
RHA1 -56.6 1.3 -61.3 34 -33.0 1.6 -31.6 2.0
RHA2 0.0 1.6 0.5 2.0 0.8 1.8 -5.8 2.1
RAAV1 | -846 150 | -729 165 | -785 124 -84.4 8.4
RKAV1 | -127.7 116 | -988 159 | -156.8 -20.0 | -153.7 22.3
RKAV2 | 89.6 112 | 1044 374 - - - -
RKAV3 | -217.9 281 | -2489 419 | -232 -153 | -2356 264
RHAV1 86.9 8.3 1264 40.2 | 7041 8.8 66.2 5.1
RDM1 20.5 0.5 - - 20.3 0.8 - -
RDM2 243 1.2 - - - - - -
RDM3 14.3 0.9 - - - - - -
RDM4 11.1 0.6 - -- 23.9 1.0 -- -
P2
RAA1 -80.4 2.9 -90.7 1.8 -70.4 1.3 -76.4 0.8
RAA2 -1195 23 | 1048 15 | -106.9 45 -106.9 1.9
RKA1 6.8 3.6 41.0 4.2 - - - -
RKA2 45.8 2.6 50.2 2.7 40.5 4.0 34.0 2.2
RKA3 23.6 4.6 8.2 2.2 - - - -
RKA4 26.6 1.8 36.4 4.5 45.5 2.1 55.7 4.4
RHA1 -60.9 2.9 -63.0 1.5 -34.0 24 -29.1 4.5
RHA2 -3.0 24 5.0 1.5 -2.1 25 7.9 3.7
RAAV1 | -956 118 | -985 128 | -97.0 14.3 | -1089 19.9
RKAV1 | -153.6 180 | -80.0 148 | -1624 -183 | -1859 -33.3
RKAV2 | 134.7 193 | 116.6 7.8 - - - -
RKAV3 | -52.3 298 | -258.6 230 | -73.0 -341 | -2119 -34.6
RHAV1 | 107.7 119 | 1346 9.1 78.9 20.2 96.4 16.4
RDM1 23.5 0.8 - - 20.4 0.7 - -
RDM2 26.6 1.5 - - - - - -
RDM3 16.2 1.1 - - - - - -
RDM4 12.8 1.8 - - 27.9 0.9 - -
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be seen in Figure 5.5. Instead of knee flexion occurring for the first quarter of stance, as it did
in the normal trials, it occurred for the first half of stance for P1, and the first three-quarters
for P2. This was, in part, a result of the larger knee flexion range as explained above. It was
also due to the reduction of the rate of knee flexion caused by the springs as the preload angle
was passed and the springs began to compress further. The rate change was seen as a change
of slope in the knee angle graphs at approximately 20 % stance time. P2 maintained a flexed
knee through to the end of stance while using the KEA, with RKA3 and RKA4 values of
23.6° and 26.6°, approximately the angle at which the springs begin to provide an extension
moment. In normal trials, P2 extended the knee to 8.2° by the end of stance (RKA3) before

flexing again in preparation for swing.

50

Normal
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3
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Figure 5.5: Ramp ascent knee angle with and without assistance for P1.

During ramp ascent, the device was able to provide a maximum extension moment
(RDM2) of 24.3 Nm for P1 and 26.6 Nm for P2. The KEA provided a maximum extension-
assist moment (RDM3) of 14.3 Nm for P1 and 16.2 Nm for P2, which corresponds to 32 %
and 36 % of the required extension moment as expressed in the literature [37]. These levels

fall short of the 47 % ramp ascent assistance that the KEA was designed to supply.

Because of the low extension moments provided by the KEA, and the larger knee angle
flexion range and increased angular velocity associated with KEA use, as described above,
most EMG parameters for ramp ascent increased greatly with KEA use. However, the KEA
did allow P1 to slightly decrease the mean quadriceps activation levels, and P2 to slightly

reduce gluteus maximus activation.
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Table 5.6: Percent difference between normal task completion and task completion with extension-assist for
ramp walking. Negative values indicate a reduction in muscle activation with KEA use.

Vastus medialis  Rectus femoris  Gluteus maximus

P1 Ascent

abs max 58.2 68.2 106.5
abs mean -4.9 -0.8 11.5
abs int 112.1 124.4 154.6
P2 Ascent

abs max 23.1 215.6 -15.1
abs mean 58.0 123.4 -10.3
abs int 39.6 97.7 -20.5
P1 Descent

abs max 65.4 34.7 40.0
abs mean -7.9 1.3 -2.6
abs int 25.0 38.4 32.8
P2 Descent

abs max 166.6 205.4 78.1
abs mean 113.4 101.3 25.3
abs int 199.1 184.2 75.8

The effect of the KEA on ramp descent was similar to that of ascent. Ankle and hip
angles and velocities varied only slightly between trial conditions, but knee angles were
greatly affected by the extension moment provided by the device (Figure 5.6). During normal
ramp descent, knee angle was characterized by an initial knee flexion at the beginning of
stance, followed by a plateau where knee angle remained constant from approximately 25 %
to 75 % of stance, and a second period of knee flexion at the end of stance to lower the body
and allow for easy transference of weight to the contralateral leg. The KEA resisted knee
flexion and only permitted the first period of knee flexion. The extension moment stopped
the second flexion period from occurring or greatly reduced its magnitude, and resulted in a
much more extended knee joint at the end of stance than was desired, thus forcing the
participant to lift their body up and over the braced leg. During normal ramp descent, P1
flexed the right knee 29.7° further than during assisted ramp descent, while P2 flexed the
right knee 10.2° further during normal descent trials than during assisted descent trials
(RKA4). The device provided 23.9 Nm and 27.9 Nm for P1 and P2, respectively (RDM4).
The moments provided by the KEA corresponded to 39 % and 45 % of the required knee

moment in early to mid-stance, but 95 and 110 % of the required moment in late stance [37].
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The high moments provided by the KEA in late stance inhibited knee flexion angles from
reaching the knee angles observed at the end of ramp descent stance without the extension-
assist (Figure 5.6). The changes in kinematics from KEA use generally caused an increase in
EMG muscle activation parameters. For P1, the mean EMG activation level for vastus
medialis and gluteus maximus decreased slightly with KEA extension assist compared to no
assist, but all other EMG values rose considerably. For P2, the increases in EMG activation

levels were much greater, with increases of upwards of 205 % for the quadriceps.
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Figure 5.6: Ramp descent knee angle with and without assistance for P1.

5.4.3 KEA Performance

During KEA use, the pneumatic actuation system for engaging the knee disk was found to
leak due to the high pressure exerted on it by the participant’s bodyweight. The leak quickly
left the air bladder deflated. As a result, the air bladder underfoot was removed, and a
manually operated air bladder was connected to the pneumatic actuator. The hand-held air
bladder was used to manually activate the pneumatic actuator to lock the knee disk.
Participants were given time to adjust to manual actuation, but even with time to adjust,
correct manual activation timing was challenging, and participants occasionally failed to
engage the knee disk before a given stride was commenced. The rate of failure lessened as
the participant became more accustomed to using the device, but missed engagements still
occurred sporadically. Disengaging the knee disk prior to swing did not seem to pose a
problem; failure to disengage before swing rarely occurred. Any trial in which failure to

engage or disengage occurred was considered unsuccessful and discarded.
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Both participants initially found the KEA intimidating, and used the device cautiously as
they began to learn how to use it to assist STS. However, both participants quickly learned
how to use the KEA effectively for stand-to-sit and STS, and soon felt fairly comfortable
with its use. For ramp walking, though, the two participants initially found the KEA difficult
to use. With practice, both participants improved, but P2 never looked entirely comfortable
using the device, and as stated above, both participants occasionally had to catch their
bodyweight when engagement of the knee disk didn’t occur due to improper manual
activation of the air bladder. As stated previously, trials in which this occurred were

considered unsuccessful and were discarded.

Device failure occurred once during testing. Towards the end of the ramp gait test for
P2, the knee disk pin came out of the hole in the knee disk support into which it was press-fit.
The failure caused a loud noise as the knee disk came loose and the springs were permitted to
rapidly extended back to full length within the spring case and caused the spring beam to
impact the proximal end of the spring case. The participant had to quickly react to the loss of
the extension moment by providing the knee extension moment himself, but there were no
major consequences. The knee disk pin was re-pressed into the hole, and testing was
finished. There was no damage caused by the failure, nor was there a change in function of

the device after the pin was reinserted.
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Chapter 6. Discussion

6.1 Comparison of the KEA with Existing Devices

The KEA was designed as a modular component that could be incorporated into any KAFO
to provide an assistive knee-extension moment for aiding sit-to-stand and ramp ascent. It was
also designed to allow for normal function of the KAFO when the extension-assist provided
by the KEA is not required. Through an extensive search of the literature, no other purely-
mechanical knee extension-assist device for high-quadriceps-strength tasks was found, and
only several portable devices capable of providing active knee extension moments during
stance were found. Most portable devices found were powered exoskeletons, which tend to
be bulky and heavy and require large amounts of energy to operate. As a result, exoskeletons
have a battery life per charge of less than a few hours. This is an undesirable trait for a daily
use orthosis, since it is inconvenient for a user to only be able to use an assistive device for a
portion of the day before the power supply must be recharged. Only one of the portable
devices in the literature was a unilateral extension-assist KAFO. That unilateral device also
suffered from a very short battery life, and had a design that prevented the user from sitting.
The KEA described in this thesis, on the other hand, can be used for, at minimum, its 10 year
lifespan with only yearly spring replacement required, since the final design was powered by
springs instead of electro-mechanically. The use of springs avoids the issue of power supply
life, since only yearly spring replacement is required. However, a spring-powered design is
only able to provide an extension-assist if there is an initial knee flexion under bodyweight.
Therefore, the KEA is unable to provide a moment for tasks that commence with the knee

flexed and that undergo no further flexion before extension begins, such as stair ascent.

The KEA was relatively small and light when compared to other devices that provide an
assistive knee-extension moment. The Honda Bodyweight Support system, which provides
bilateral assistance but does not provide 100 % of the required joint moment, weighs 6.5 kg.
However, bilateral devices can support their own weight during use. The unilateral powered
orthosis Roboknee, which can provide 100 % of the required moment for stair ascent, but

only for 30-60 min per charge, weighs 5.13 kg. The KEA prototype weighed only 0.67 kg, 13
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% of the Roboknee weight, and does not require recharging. The maximum medio-lateral
thickness of the prototype was 27 mm and the maximum width was 70 mm, both occurring at
the spring case. Total prototype length proximo-distally was 423 mm, where this length was
only composed of an upper assembly 158 mm long and a lower assembly 167 mm long, with
the space between assemblies spanned by the proximal and distal cables. Though information
about dimensions of other existing devices is not readily available, the dimensions of the
KEA in this research appear to be smaller than the existing powered devices, based on

photographs provided in the literature and videos available on the internet.

High cost was an issue with the prototype, at approximately $3114. However, the
majority of this cost was due to the skilled labour involved in machining a one-off prototype.
Cost would be greatly reduced if a high-volume production run were to be carried out, since
the materials themselves were inexpensive. Materials valuing $114 sufficed for all parts. An
estimate of 2 days/unit was given for a run of 100 units carried out by The Ottawa Hospital
Rehabilitation Centre machinist on the equipment available at the hospital, resulting in a
fabrication cost of $1200 per unit and a total device cost of $1314, without taking into
account reduced material costs associated with higher quantity purchases. From the rates
provided by local machine shops, the KEA fabrication cost could be as low as $639. Cost

could be reduced further by fabrication in a facility specialized for high-volume production.

The KEA cost would be in addition to that of the orthosis. According to the orthotists at
The Ottawa Hospital Rehabilitation Centre, a traditional KAFO can cost approximately
$2000, while a SCKAFO can cost upwards of $4500. However, since the KEA is modular, it
would be purchased separately from the KAFO or SCKAFO, and therefore a potential user
would not be required to buy a new orthosis in order to use a KEA. Price comparison is
difficult, since there are currently no extension-assist devices for high quadriceps-strength
demand tasks on the market, and research groups developing powered orthoses and
exoskeletons do not make information regarding cost widely known, but at $639 plus the cost
of the orthosis, the KEA would be approximately 5 % to 10 % of the cost of the HAL 5
exoskeleton [114]. Though the KEA doesn’t have the same strength as the powered

exoskeletons, the cost alone could make it an attractive option.
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6.2 Mechanical Evaluation

6.2.1 Implications of Results

Mechanical testing of the KEA was performed to quantify the assistance the device could
provide, as well as test the device function to ensure its safety before trials with human
participants began. The major finding of the mechanical tests was the actual moment
provided by the KEA for extension-assist was 24 % less than the moment the KEA was
designed to generate. The spring response tests showed that one factor in the lower device
moment was a lower spring extension force than what was specified by the manufacturer.
The springs did not achieve the return force expected for a given compression, since they
only reached 89 % of the 1500 N predicted spring force at 40 mm of compression, the

compression that occurs due to 90° of knee flexion.

In addition to a reduced extension-assist moment due to lower spring extension forces
than expected for a given compression, there was also slightly less compression occurring for
a given flexion angle than was designed. The loading response test showed that an initial
angle of 5° was necessary before spring compression began. This was due to knee disk notch
location, slight stretch in the wire cables, and loose tolerances in the assembly of the sliding
lock and sliding lock supports. Loss of 5° of knee flexion with which to compress the springs
results in 2.2 mm less spring compression, a loss of approximately 40 N of spring force. The
tolerance in the angles at which the sliding lock can engage, however, was essential for ease
of device use. Without the 5° tolerance, the user would be required to extend the knee to, or
slightly beyond, full extension in order to lock the knee disk. The result would be a greater
number of missed knee disk engagements because of insufficient knee extension. Therefore,

the angle tolerance was an important feature to keep.

The problems of the lower-than-theoretical spring extension force for a given
compression observed in the direct pull tests and the 2.2 mm reduction in spring compression
observed in the KEA loading response test caused approximately half of the reduction in
extension-assist moment from the expected value. If the spring case length were reduced by
6.2 mm, 90° of knee flexion would correspond to the desired spring force of 1500N.
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However, the springs would bottom out at an angle just beyond 90°, meaning further flexion
would not be able to occur. If a user were to sit in a low seat, knee flexion on the braced leg
would be halted by the device when 90° was reached. If the seated knee angle were much
beyond 90°, the user could potentially have difficulty using the KEA to aid STS, since it
would likely be difficult to place the braced leg properly on the floor in front of the chair.

The other half of the reduction in extension-assist moment was due to friction within the
system. The major source of friction was rubbing between the cables and the distal end of the
spring case, as described in Section 4.2.3. The friction was caused by misalignment between
the direction of pull of the cables and the centerline of the spring case. However, the method
of device attachment to the uprights causes the misalignment, and so complete elimination of
the misalignment would not be possible in the current design. However, a reduction in the
severity of the friction could be achieved by adding brass guides or small rollers to the device

on the distal side of the distal spring case end.

The KEA function tests revealed some shortcomings with the locking mechanism of the
device. The locking mechanism did not function properly for all trials. Though it was likely
due to user error in not ensuring proper locking rod orientation, the device should be robust
enough to function properly even when mistakes are made by the user. When attention was
paid to the locking of the device, it locked without fail, indicating that the device was
sufficiently safe for initial biomechanical testing on healthy individuals. The locking
mechanism also has the innate characteristic of allowing the spring beam to be locked in only
certain discrete positions. Ideally, the locking mechanism would lock at any knee flexion
angle, so that the user is not forced to adopt a certain knee angle, most likely one that is
slightly extended from the greatest flexion angle reached during stand-to-sit. Having the
spring beam lock at the maximum knee angle that occurred during stand-to-sit would
facilitate STS by allowing a more natural placement of the braced leg on the ground. This
would, in turn, bring the base of support nearer to the centre of mass for the start of STS, and
thus make STS easier to perform. The slight increase in knee flexion angle would also give a

slightly higher extension-assist during STS.
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6.2.2 Sources of Error

The tensile testing machine (Instron 4482 Universal Tester) had an intrinsic error that caused
it to miss four consecutive data points for approximately every 10 s of testing carried out. As
a result, all trials had gaps in the data collected. However, the gaps were small and did not
always occur at the same time in each trial. As a result, across the trials for each test
performed, there was data collected for all positions reached. Since each test exhibited such
small variance across the trials and, with the exception of the force spike seen during device
flexion, the curves obtained were smooth and changed slowly, it was deemed that the data
from the other trials would accurately represent the information missed by the Tensile testing

machine.

The Tensile testing machine had a maximum sampling rate of 20 Hz. The testing speed
used was 300 mm/min. The Tensile testing machine therefore obtained one load
measurement every 0.25 mm of vertical crosshead displacement. The accuracy of the
measurements was thus limited by the sampling accuracy. The accuracy of the peak value of
the spike seen during the loading test was limited by the device resolution, since the actual
peak may have occurred between sampling points and the high rate of change of force may
have resulted in a significant error. However, the actual value of the peak was not a critical

result of the test, and thus the sampling rate error was not deemed important.

The protractor used to determine initial and final knee angles had an uncertainty of +
0.5°. The uncertainty resulted in a maximum possible moment error of + 0.4 Nm at

maximum knee flexion.

6.3 Biomechanical Evaluation

6.3.1 Implications of Results

Biomechanical evaluation was performed to determine the performance of the KEA and the
effect it has on a user. The biomechanical evaluation showed that the KEA was beneficial for

STS and stand-to-sit, but did not provide a beneficial extension moment for ramp walking.
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For STS and stand-to-sit, the benefits of the extension-assist were fairly clear. The KEA
permitted these motions to be performed in a slower and more controlled manner. P1 was
able to decrease quadriceps muscle usage in the right leg, with little change in muscle
activation levels in the left leg, while reducing the angular velocities at the knee and hip.
KEA use did cause a slight increase the right gluteus maximus activation levels for P1. This

is thought to have provided stability to the leg that the quadriceps normally provide.

For P2, the expected reduction in EMG levels due to KEA assistance compared to no
assistance of the right quadriceps was only seen for the stand-to-sit trials. The increase in
quadriceps activation during STS does not indicate poor device performance. P2 performed
STS differently as a result of KEA use. Without the aid provided by the KEA, P2 was only
able to rise from seated using a tactic that relied on ballistic arm movements and fast joint
rotations to generate enough momentum to reach a stable position over the base of support.
Such a tactic could be difficult and/or dangerous for individuals with disabilities. With the
extension-assist, P2 was able to rise using a slow and controlled STS motion that was not
possible without the extension-assist. It is important to note that with the extension assist, P2
did not have to use the folded arm swing that was required when no KEA assist was used.
The task completed with the KEA assist was therefore a much harder task to complete:
standing up from sitting without use of arm swing, compared to the easier task without the
KEA assist: standing up from sitting with use of arm swing. Since the tests were not
controlled for arm swing for participant P2, a fair comparison to determine benefit of the
KEA cannot be made based on muscle activation levels. It must be emphasized that P2 was
not able to stand from sitting without arm swing without the KEA assist, but was able to

stand from sitting without arm swing, with the KEA assist.

During STS, the KEA was able to provide 56 % and 50 % of the required knee moment
for P1 and P2, respectively. This was less than the theoretical 61 % for a 70 kg individual
that the device was designed to provide. Reduction of friction in the system, as described in
Section 6.2, may raise the percent-assist values to or above the theoretical values. However,
the friction did help the KEA achieve very high percent-assist values for stand-to-sit; 82 %

and 75 % of the moment acting on the right knee of P1 and P2, respectively.
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For ramp gait, results of the biomechanical evaluation were not able to indicate that the
device provided useful assistance. For both ascent and descent, quadriceps muscles were not
able to appreciably reduce activation levels when the KEA was used, with increases in the
EMG parameters common for both ascent and descent. During ascent with KEA assist, the
knee was nearly fully extended prior to the initiation of stance to ensure knee disk
engagement. The extra knee extension resulted in a large increase in the range of knee
flexion undergone during stance over normal ramp ascent. The extra extension also resulted
in an increase in maximum knee flexion velocity, since the KEA provided no assistance
before reaching the preload angle, and thus the knee essentially buckled until resistance from
the device was met. The increased joint velocity may have been the cause of the higher
muscle activation levels, forcing the quadriceps to work harder, even with the assistance
from the device, to stop the faster knee flexion and commence extension, since the assistance
during ramp ascent was only 34 % of the normal moment requirement. The results lend
evidence to this hypothesis, since the increase in knee joint velocity was greater for P2 than
for P1, by 63 %, as was the increase in EMG parameters, by 33 %. P1 did manage to produce
very slight reductions in the mean quadriceps EMG signals. Since P1 appeared to be more
comfortable with device use than P2, this may suggest that with more practice, a user may be
able to learn how to use the extension moment provided for ramp walking in a beneficial
way, and thus learn how to reduce quadriceps activation levels. Since angular velocity was
not controlled for, the participants were able to choose between using less muscle activation
for the same angular velocity in their ramp gait with and without KEA assist, or using similar
muscle activation and achieving a faster higher angular-velocity ramp ascent. It seems that
P1 and P2 may have been unable to “turn off” their muscle activity when using the KEA, and
instead selected the “more energetic” gait at higher angular velocity with the KEA assist
rather than reducing their muscle activity. Clinical testing with participants that have weak

quadriceps may demonstrate the advantages of the KEA in ramp walking.

For ramp descent, the device limited knee flexion to a lower maximum value than was
observed during normal ramp descent. As a result, the participants moved their trunks up and
over the braced leg, instead of allowing the knee to flex further to lower the body down to a
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desirable level for initiation of contralateral stance. Because the device prohibited the knee
from flexing during descent by providing the full extension moment required during descent,
participants should theoretically have been able to completely relax the right quadriceps
while descending. However, muscle activation levels increased. Therefore, issues not related
to the extension moment provided must have caused the muscle activation level increases
observed. One likely explanation is that there was not a sufficient level of comfort with
device use. Ideally, the participants would have had a practice period spanning several days
or weeks to become completely comfortable with device use. However, the participants only
took 20 to 40 minutes to practice device use for ramp gait. Therefore, the participants were
not entirely comfortable with KEA use, and muscles were likely being tensed out of caution
and for added stability during ramp walking. This is likely especially true for ramp ascent.
During ramp ascent, missed knee disk engagement occurred sporadically. The fear of a
missed engagement would likely have caused the leg muscles to tense as a precautionary
measure in order to be prepared to support body weight in the event of a failed knee disk

engagement.

6.3.2 Limitations and Sources of Error

A major limitation of the biomechanical evaluation was the short time each participant had to
learn how to use the device. As described above, the participants would have ideally had
several days or weeks of practice with the KEA to become completely comfortable using the
device, and therefore be able to use it to its fullest potential. Instead, the participants took
between forty minutes and one hour to practice stand-to-sit, STS, ramp ascent, and ramp
descent. It is unlikely that the participants were completely at ease during KEA use, and as a
result, the muscles would have been instinctively tensed to provide stability during use and
reassurance to the participants that they would not collapse if the device were to not work as
expected. This would have been especially true for ramp walking, since it was a more

difficult and complex task.

Another limitation was the low number of participants. Because the biomechanical

evaluation was for proof-of-concept, two participants were deemed sufficient to provide an
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initial evaluation of the KEA. However, with two subjects, it is difficult to determine whether

the results are representative of a larger population.

The comparison of the different tasks performed with and without the device was made
using able-bodied individuals capable of completing all tasks without assistance. Therefore,
the effects of KEA use on the participant and the results of the tests may not be consistent
with what would be observed using participants with quadriceps weakness. As mentioned
earlier, able-bodies subjects may not have been able to “turn-off” their muscle activity when

using the KEA assist, as they were instructed to attempt.

Marker movement artifact, movement of the tracking markers relative to the body the
marker is attached to, creates an inaccurate measurement of body motionand thus errors in
joint kinematics and dynamics. Markers placed on clothes are especially prone to movement
artifact. Both participants agreed to perform the tests in small shorts and no shirt, such that
the majority of markers were placed on skin or rigid KAFO surfaces to reduce movement
error. However, skin still moves relative to bone and a KAFO shifts during use, and error

caused by movement artifact was not completely eliminated.

In addition to marker movement, the Vicon motion analysis system used did not have a
sufficient number of cameras to track every marker for the entirety of every trial, and
markers would disappear from the motion capture recording when obstructed from the view
of at least two cameras. The path of the hidden marker would have to be estimated by the
Nexus software package during post-processing, potentially creating small discrepancies
between actual and recorded marker paths. However, marker path estimation was likely only

a very small source of error.

Model accuracy was also a source of error. The model used to calculate joint dynamics
relied on anthropometrics to determine body segment sizes and shapes, and used only subject
weight to determine body segment parameters. Since it is highly unlikely that the subject
perfectly matched the model generated, the use anthropometric data for model creation

would have generated some error in the dynamic analysis results for STS and stand-to-sit.
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6.4 Future Work

6.4.1 Recommended Design Improvements

Several modifications are recommended for the KEA design in order to improve the function

and increase the safety and reliability of the device.

6.4.1.1 Spring Case Length Reduction

As was explained in Section 6.2.1, the device produced a lower extension moment compared
to the expected extension-assist due to reduced spring force and compression. A reduction in
the length of the spring case by 6.2 mm would result in a 1500 N force from the springs at
90° of knee flexion, as designed. This change, however, would cause the springs to reach
their compressed length at 90° of knee flexion, and prevent the KAFO or SCKAFO joint
from flexing beyond 90°, in the event that the user sits in a low seat. Further biomechanical
assessment would have to be carried out to determine if a knee angle limitation to 90° was

deemed acceptable by users with quadriceps weakness.

6.4.1.2 Addition of Rollers or Guides

Friction within the system accounted for half of the moment loss observed during mechanical
evaluation. A set of rollers or brass sleeves on the distal spring case end to act as guides
would reduce rubbing of the cables on the case end and would greatly reduce frictional
losses. With rollers, the cables could be guided to the knee disk with almost no frictional
losses. The guides could be attached to the spring case end or directly to the KAFO upright.
Because the distal spring case end was made of aluminum, guides would also reduce or
eliminate wear that would eventually occur as a result of rubbing from the stainless steel wire
cables. The friction did aid stand-to-sit and the flexion phases of ramp gait by adding to the
extension moment during knee flexion. However, device assistance is more desirable for
knee extension than for flexion, and the loss in resistance to flexion would be more than

offset by the gains in the extension-assist moment.
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6.4.1.3 Knee Disk Pin

During the biomechanical evaluation, device failure occurred when the knee disk pin came
loose from the knee disk support. The knee disk pin was simply press-fit into a hole in the
knee disk support and the loading and unloading of the pin caused it to work its way out of
the hole. To avoid this in the future, the pin will need to be secured to the knee disk support.

Since both components are steel, welding or brazing could be a simple option for fixation.

6.4.1.4 Pneumatic Actuation System

The pneumatic actuation system that was supposed to be used to engage the sliding lock with
the knee disk was unable to handle the high pressures caused by body weight on the air
bladder underfoot, and the bladder was quickly left deflated. The system leaked at the quick-
connect input of the pneumatic actuator. For biomechanical trials, a hand-held air bladder
was used to control the pneumatic actuator manually. In future iterations, the pneumatic
system should be replaced by a micro-servomotor and a foot switch. Since very little power
is required to move the sliding lock into place, a very small motor and battery would suffice,
and would not add much to device size and weight. An electro-mechanical actuator with foot

switches would also allow for better knee-disk engagement control.

6.4.1.5 Knee Disk Return Mechanism

During the ramp ascent trials, participants felt it necessary to fully extend the knee before the
initiation of stance, to ensure that the sliding lock engaged with the knee disk. The additional
knee extension resulted in a large knee angle range and knee angle velocity increase during
flexion from normal ramp ascent, and may have led to the difficulty in using the KEA for
ramp walking. The KEA does not provide a moment for ramp walking until the preset angle
is reached. Therefore, there is no reason that the knee should have to fully extend for knee
disk engagement to occur. The issue that arose was that the knee disk was not sufficiently
rotated for the notch to be in the proper position for engagement when the knee was at the
preload angle. This occurred because the knee disk relied on the resistance to bending of the

cables to return it to its original position. Although the cables were stiff, they still bent
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slightly while rotating the knee disk. The knee disk was thus not at a lockable position at the

preload angle, and the participants were forced to further extend the knee.

To avoid this problem, future KEA designs should include a small, light coil spring,
attached to the knee disk and knee disk pin, to ensure that the knee disk returns to its original
position as the knee extends during swing. The coil spring would properly align the knee disk

and would allow users to initiate stance at the ramp gait preload angle.

6.4.1.6 Locking Mechanism Redesign

The locking mechanism used in the prototype fulfilled the major design requirements
effectively; the locking rod prevented the spring beam from moving proximally, maintained
the ramp ascent preload, and allowed for easy manual release of the springs for delivery of
the STS extension-assist. However, it did not permit locking at any knee angle. Instead, a
potential 14° difference could develop between the maximum angle reached during stand-to-
sit and the angle at which the springs became fully locked. In addition, the slight offset of the
notch from the case centreline caused the beam to rotate when locked, as described in Section
3.7.1, and necessitated the addition of the brass linear bearing. The locking mechanism was
not ideal, and a new method of locking the spring beam should be developed. A mechanism
that clamps the cables at the distal spring case end may be a solution to this problem, but
could cause problems of cable wear and reduce the service life of the device. Cable clamps
could also cause sticking of the clamping mechanism to the cable due to the large loads
placed on the cable. The large loads would tighten the clamp grip force and increase the force
required for clamp disengagement, and could cause difficulties when trying to unlock the

device at the commencement of knee extension.

An electro-mechanical locking mechanism could also be a possible solution that would
allow the springs to be locked at any knee angle. The function of an electro-mechanical
locking mechanism would be to lock the springs in place, and not to provide the extension
moment. As a result, the power requirement could be kept quite low, and would only require
a small motor and battery. A non-backdriveable lead screw actuator that follows the
movement of the spring beam and holds it in place when required may be a good candidate
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for the new locking mechanism. Such an actuator would be able to prevent spring extension

and allow for further spring compression, as desired for the KEA locking mechanism.

6.4.1.7 Cable Material

Stainless steel aircraft cables were used to transfer the force from the springs at the thigh to
the knee disk. Other materials should be examined for use, since there is potential for
reduced friction, reduced weight, and more reliable fixation methods through the use of other
materials. Composite belts have been used in other orthotic devices designed at The Ottawa
Hospital, and may be of use in the KEA. The aramid fibres used in the composite belts may
also be potential candidates for use, since they are very light, very strong in tension, and

sufficiently flexible to accommodate bending around the knee disk.

6.4.1.8 Size and Weight Optimization

Size and weight are of utmost concern in the design of any orthotic device, and are two of the
most important factors in the decision of whether or not to use a given device. Even though
the KEA was small and light relative to other powered devices that provide an extension-
assist, it may still be difficult to fit the KEA under clothing. The KEA also added noticeable
weight to the orthosis. Future efforts should be made to reduce the size and weight of the
KEA, since neither was fully optimized during the design phase. The stress analysis carried
out in the design phase was very conservative, and all components may have been over-
engineered to ensure device safety. For future design iterations, more sophisticated analysis
tools such as finite element analysis could be used to determine the smallest and lightest
components that would withstand the applied forces, as well as determine where low stresses
occur, so that weight saving techniques, like introducing holes or slots into unstressed areas,
could be utilized. Furthermore, when the prototype was built, certain components were
changed to facilitate fabrication. These changes increased the size and weight of the device.
As an example, spring case length could be reduced by using a thinner proximal spring case
end, as there is very little stress on that component. The spring beam could also be replaced
by the original U-beam design. These two modifications alone would reduce the spring case

length by over 20 mm. The knee disk support, made from heavy 17-4 PH stainless steel, was
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s in. wider than necessary. Due to the design changes for the prototype, there were many
small size and weight increases that could be eliminated for the creation of a second

prototype.

6.4.2 Cyclic Testing

Once the design modifications are carried out, cyclic tests should be performed to determine
the fatigue life of the KEA. A setup similar to that used in the loading response test could be
used, with cycles from full extension to 90° joint flexion carried out until failure. However,
the tensile testing machine available is not meant for cyclic testing, and cyclic tests would
have to be carried out using other equipment. To satisfy the design requirements, the device

would have to withstand at least 3 x 10° cycles, the estimated life of the KEA.

6.4.3 Further Biomechanical Testing

The biomechanical evaluation of the KEA was an initial proof-of-concept pilot test that
involved a small sample of able-bodied participants. Before the device can eventually be
brought to market, further rounds of biomechanical trials are necessary. After the next design
iteration of the KEA, biomechanical trials involving a larger number of participants, first
able-bodied and then those with weakened quadriceps, should be carried out to determine the
changes resulting from the design revision, as well as the effects of the device when used by
the target market. Individuals with varying levels of quadriceps weakness and causes of
weakness should be recruited for the trials in order to determine the groups that would
benefit most from KEA use. Following the second round of biomechanical evaluations and
another design iteration, if necessary, a longer-term biomechanical evaluation should be
carried out to determine if the benefits provided by the extension-assist are great enough to
outweigh the increase in size and weight caused by the attachment of the device to the
previously used orthosis. If either size or weight were too great, the participants would find
the device more of a hindrance than a help, and device rejection would likely occur. This is

an important issue to study before attempting to market the device.
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Chapter 7. Conclusions

A new knee-extension-assist device for individuals with quadriceps muscle weakness was
designed and developed. The device, called the KEA, was designed as a modular component
for integration into existing knee-ankle-foot orthoses, and was smaller, lighter, and less
expensive than existing powered extension-assist devices. The KEA was passively powered
by springs, and did not require large, heavy, and expensive components such as motors and
power supplies. The KEA successfully provided a knee extension moment during the sit-to-
stand and ramp ascent tasks, and also provided the secondary benefit of an extension moment

to knee flexion during stand-to-sit and ramp descent.

Mechanical evaluation of the KEA showed that the device supplied 76 % of the
extension moment than it was designed to provide. The loss of moment was due in part to
reduced spring extension forces from the manufacturer specifications and reduced spring
compression due to loose tolerances and play in the system. More importantly, though, the
loss was due to friction. In addition to a drop in extension moment, the friction would also
cause wear on the device. Wear would shorten the lifespan of the KEA. The major cause of
the friction was rubbing between the proximal cables and the spring case. A simple design
change that would provide a low-friction surface to guide the cables, such as small rollers,

would greatly reduce system friction.

The locking rod mechanism used to hold the springs in a compressed state permitted the
springs to be locked in discrete positions for sit-to-stand. Mechanical evaluation showed the
discrete locking positions to be separated by upwards of 14° of joint rotation due to cable
stretch and shifting of components within the KEA, as opposed to the theoretical 7° based on
the inter-notch spacing. Instead of a locking system with discrete locking positions, further

design iterations should look into mechanisms with continuous locking position capabilities.

Biomechanical evaluation of the KEA showed promising results for STS and stand-to-
sit. The device supplied over 50 % of the required knee moment for STS. KEA assistance

allowed one participant to reduce quadriceps muscle activation levels from those seen during
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STS without the extension-assist, while it allowed the other participant to rise in a slow and
controlled manner that was not possible without the KEA assistance. The level of assistance
was slightly lower than the predicted 61% assistance from the design calculations, but
elimination of the system friction may increase the value to the theoretical levels. For stand-
to-sit, very high assistance values were attained, with assistance reaching 82 % for one
participant. The high values were due in part to the system friction, and would decrease upon
the addition of low-friction guides. The gain in extension assistance would offset the loss of

flexion resistance.

Ramp gait results were not able to show benefits of KEA use as did those of STS and
stand-to-sit. The knee angle range increased with the assist compared to without, the device
provided a lower percent-assist for ascent than it did for STS and stand-to-sit, and knee
flexion angle decreased with the assist than without due to high percent assist values for
descent. These factors may have contributed to the difficulty in reducing muscle activity
levels when using the device for ramp walking. The KEA was able to provide 34 %
assistance to ramp ascent, instead of the theoretical 47 % assistance. It is possible that this
level of assistance was too low for either participant to gain useful assistance for ramp ascent
under current conditions. During KEA use for ramp ascent, the participants fully extended
the knee before the initiation of stance. Full knee extension seemed to be an important factor
in the difficulty of using the device for ramp ascent. The biomechanical study participants
did not have sufficient time to fully acquaint themselves with device use, and as a result,
were not fully comfortable with its use, especially in the case of ramp walking.
Consequently, participants were likely unable to relax their muscles during device use
because of discomfort and muscle tension that resulted from the use of a device that the
participants did not fully trust. Had a longer practice period of days or weeks been given, the
participants would likely have been more at ease and skilled with the device, and thus able to

gain greater benefit from the KEA.

Biomechanical evaluation uncovered several minor shortcomings of the design. The
pneumatic actuation system was found to be insufficient for knee disk engagement because

the high pressures generated by applying body weight to the air bladder created leaks in the
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system. An electro-mechanical solution may be more suitable for the application, since high
power is not required and therefore electro-mechanical components could be kept small and
light. Electro-mechanical actuators also have increased control capabilities that could
improve the function of the knee disk locking mechanism. Another minor shortcoming found
was that a simple press-fit of the knee disk pin into the knee disk support was not adequate,

and a method of fixation or joining must be used to prevent pin movement.

Once the design recommendations outlined in the previous section are addressed in the
next design iteration, cyclic load testing will need to be carried out to determine the lifespan
of the device to ensure safety for long-term use. Following the cyclic testing, a second round
of biomechanical trials should be conducted involving individuals with weakened

quadriceps, to determine the effects of the device on the KEA end-users.

Several changes will need to be made to the KEA for future design iterations in order to
create a reliable and commercially viable extension-assist device for individuals with
weakened quadriceps. Most important are those described in this section, along with
reduction of overall size and weight, two of the major deciding factors for a potential user as
to whether or not a given assistive device will be used. Providing simple and innovative
solutions to the design issues that arose during testing will eventually lead to an extension-
assist device with the potential to provide greater mobility and independence to individuals

afflicted by weakened quadriceps, thus improving their quality of life.
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Appendix A: Decision Matrix
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Design Concepts

1. Differential drive: using a mechanism similar to a car differential, torque from the
motor could be delivered to the knee joint by attaching one side of the differential gear
train to the knee, while keeping the opposite side locked via a clutch. During swing, or
when the device is inactive, the motor would shut off and the clutch would be released,

and thus the previously locked gear would spin freely during knee flexion or extension,
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removing impedance from the knee joint.

Figure A.1: Differential drive mechanism concept sketch.

2. Timing belt replacement in Yakimovic design: For a device that would function
exclusively with the Ottawalk orthosis [5], a timing belt would replace the smooth belt
of the current design. A motor would be placed below the locking mechanism, attached
to a gear which fit the timing belt. Torque from the motor would pull on the timing

belt, attached to the upper SCKAFO support, thus providing a knee extension moment.
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Figure A.2: Timing belt Ottawalk orthosis concept sketch.

3. Cable pull from thigh: A cable attached to the lower SCKAFO upright and passing

over a sheave at the knee would be directly wound by a motor attached to the upper

upright.

L

Figure A.3: Cable pull from thigh concept sketch.

4. Varying thickness flat spring: A flat spring of increasing thickness would be forced
through guides below and above the knee joint. While the thin portion of the spring
was between the guides, very little restorative force, and therefore extension moment,
would be present. As a linear motor forced the flat spring through the guides, the
thickness of the spring would increase, thus increasing spring stiffness of the segment

between the guides, and therefore increasing the knee extension moment.
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Figure A.4: Varying thickness flat spring concept sketch.

5. Dual cable pull: A cable passing over a sheave at the knee would be attached at either
end to a motor; one on the upper leg, one on the lower leg. This is similar to the Cable
pull from thigh design, but using two motors to increase the moment provided, without

greatly increasing bulkiness in one specific location.

Figure A.5: Dual cable pull concept sketch.

6. Continuously varying transmission pulleys: This design would use two sheaves that
could change their groove width. Connected by a V-belt, with one sheave on the thigh
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driven by a motor, the other at the knee connected to the knee joint, the sheaves would
change their groove width in a coordinated manner to either increase speed of rotation,
or increase moment provided to the knee. When the device was inactive, or during
swing, the sheave at the knee would widen its groove to a point where there was no

tension in the belt, and thus the knee would be able to rotate freely.

Wo- |

Figure A.6: Continuously varying transmission pulleys concept sketch.

7. Spring energy storage direct cable pull: In a similar setup as the Cable pull, a motor at
the thigh would wind a cable attached to the lower KAFO support upright. On the
other side of the motor would be an extension spring, which would be loaded by
driving the motor in the opposite direction as for cable retraction. In other words, the
spring would be extended when the cable was unwound during knee flexion. Thus,
when the device was providing a knee extension moment, the force from the spring

would assist the winding by returning its stored energy as the motor wound the cable.
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Figure A.7: Spring energy storage direct cable pull concept sketch.

Spring energy storage and bevel gear direct drive: In this design, a motor on the thigh
would drive a set of bevel gears, the larger of which being attached to the knee joint of
the KAFO. A spring would be attached to the gear at the knee, which would wind when
driven the direction opposite that of rotation for knee extension. Thus, when the gear
was driven for knee extension, the spring would unwind and return the energy stored in
the form of added knee extension moment. In order to allow the gear to be driven in the
opposite direction, and to remove impedance during swing and device inactivity, the
gear at the knee would be coupled to the KAFO joint using a clutch which could be

engaged and disengaged at appropriate times.

Figure A.8: Spring energy storage and bevel gear direct drive concept sketch.
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Appendix B: Torsion Spring Specification Sheet

Pharne (B00)-424-0244

Mid-West Spring & Stamping

105 Etna St, Mentone, IN 46533

SMI

Spring
Marufaciumrs
| Irslitse

Part Number -262x 3.300

: | Rewision |NO B/P

Date 091042009 | paterial  Chrome Silicon

Drawing Moles

| Mext Sm. Available Next Lg. Tensile

| 80 | Mo | &5 172 |
-—EL'n'rta Metric | Siress: Off

; G Mod E Mod Density
. ' | 0.000008
s apT [ 70
SpringRate | 448.813 Index _ 11595
Stress 1396 Torque 40393
Min. 1D _ T0.510 Body Length 28,284
Max. QD  B3.E20 Wire Length 727813
Bin. Fot, 1D B4.574 Weight 0.20253

Frea Torque 1 Torqua 2 NPS
Cols | 300 ~A[ 325 323
Arm angle 0| L . 53

Spring Diagnostics

| == May not be suitable for cyclic service -
* Mote: Torsion angle convention

Designer  |DEFORD. | Customer |ALEX SPRING
Wire Dia. | 6655  Max Rolation | 90.000] Shafl Dia
Total Cells | 3.000 Max B Length |
| Diameter 53.820 5 |DType QD | Arm Length 1 |
Arm Length 2 |
Add. Fead
Hand Right
B Excessive Slress
2K — e 156 B5%
(o] | ] (e 8% |
= | |
4K | n = 12K 68% ‘
8K | lemm 51y
17K | |58 day |
| agm - =R F
oF 16.65 13 19.96 .61 gaz? % ol
Load Daleclion Strass Tsnsile_,_ ol
6,855
[ '
21620
=L
-I T 28,284
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Appendix C: Spring Force Requirement Spreadsheets

Table E.1: Spring Force Requirements for STS for a Given Knee Disk Radius and User Weight

Linear force required for STS knee extension

bodyweight (kg) 90
knee disk radius (m)
assist (%) moment (Nm/kg) moment (Nm) 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06
1] 0.88 79.2 7920 5280 3960 3168 2640 2262.857 1980 1760 1584 1440 1320
0.95 0.836 75.24 7524 5016 3762 3009.6| 2508 2149.714 1881 1672 1504.8 1368 1254
0.9 0.792 71.28] 7128 4752 3564 2851.2] 2376| 2036.571 1782 1584 1425.6 1296 1188
0.85 0.748 67.32] 6732 4488 3366 2692.8, 2244) 1923.429 1683 1496 1346.4 1224 1122
0.8 0.704 63.36) 6336 4224 3168 2534.4, 2112| 1810.286 1584 1408| 1267.2 1152 1056
0.75 0.66 59.4] 5940 3960 2970 2376 1980| 1697.143 1485 1320 1188 1080 990
0.7 0.616 55.44 5544 3696 2772] 2217.6) 1848 1584 1386 1232 1108.8 1008| 924
0.65 0.572 51.48| 5148 3432 2574 2059.2] 1716| 1470.857 1287 1144 1029.6 936 858
0.6 0.528 47.52 4752 3168 2376 1900.8 1584 1357.714 1188 1056 950.4 864 792
0.55 0.484 43.56 4356 2904 2178| 1742.4 1452| 1244.571 1089 968 871.2 792 726
0.5 0.44 39.6 3960 2640 1980 1584 1320| 1131.429 990 880 792 720 660
0.45 0.396 35.64] 3564 2376 1782] 1425.6 1188| 1018.286 891 792 712.8] 648 594
0.4 0.352 31.68| 3168 2112] 1584 1267.2 1056 905.1429 792 704 633.6) 576 528
0.35 0.308 27.72] 2772] 1848 1386 1108.8 924 792 693 616 554.4] 504 462
0.3 0.264 23.76 26.4] 1584 1188| 950.4 792| 678.8571 594 528 475.2 432 396

*table valuesin (N)

Table E.2: Spring Compression for Varied Knee Disk Radii
Amount of spring compression for 90° flexion
disk rad (m) 1/4 perimeter (m)

0.01] 0.016
0.015 0.024
0.02] 0.031
0.025 0.039
0.03 0.047
0.035 0.055
0.04 0.063
0.045 0.071
0.05) 0.079
0.055 0.086
0.06) 0.094

Table E.3: Spring Force Requirements for Ramp Ascent for a Given Knee Disk Radius and a 90 kg individual

Linear force required for 100% ramp walk knee extension

knee disk radius
0.01 0.015 0.02 0.025 0.03 0.035 0.04

0.045

0.05

0.055

0.06

angle moment (Nm)

26.66667| 12.85714( 1285.714 857.1429 642.8571 514.2857 428.5714 367.3469 321.4286
30 45 4500 3000 2250 1800 1500 1285.714 1125
30 57.6 5760 3840 2880 2304 1920 1645.714 1440

28.33333| 48.21429| 4821.429 3214.286 2410.714 1928.571 1607.143 1377.551 1205.357

25.83333| 30.53571| 3053.571 2035.714 1526.786 1221.429 1017.857 872.449 763.3929

21.66667| 12.85714| 1285.714 857.1429 642.8571 514.2857 428.5714 367.3469 321.4286

*table values in (N)
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285.7143
1000
1280

1071.429

678.5714

285.7143

257.

964.
610.7143
257.

1429 233.7662
900 818.1818
1152 1047.273
2857 876.6234

555.1948

1429 233.7662

214.2857
750
960
803.5714
508.9286
214.2857




Table E.4: Percent Assist Provided for Ramp Walking

so, max force for 100% ramp as

at aknee angle of

with a knee disc radius of

meaning, with alinear ext'n of

but max for STS springs

at knee angle of
with disk radius

ie extension of
giving STS assist of

80kg
70kg
60kg
50kg

2304 N
30 deg
2.5 cm
1.3 cm

840 N

30 deg

2.5 cm

1.3 cm
36.45833 %
41.01563 %
46.875 %
54.6875 %
65.625 %
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Appendix D: Compression Spring Specification Sheet

Developed for: Developed by:
; . ="
My Customer Advanced Spring Design €= =
My Customer Addess 1, Address 2 Advanced, Spring :-— -
Customer City, lllinois. 81101, United States Design, Alabama, 12345, United States
Phone: 1-800-800-B000 Phone:
Cylindrical Compression Spring, Round Wire Material: Music Wire
End Type: Closed/Ground Condition: Preset/Mot Peened
Grade: Commercial Buckling Constaints: End fixation not known
Wire Dia. [in] 0.105 Cail Mean Dia [in] 0665 Active Coils 12.865
Wire Tolerance [in] +-0.0008  Caoil 1D [im] 0.56 Taotal Coils 14.865
Rate [Ibffin] 46,1858 Cail OD [in] 077 Dead Coils i]
Spring Index £.3333 Diameter Tol. [in] +- 0.028 Pitch [in] 02046
Mat. Frequency [Hz] 250,737 Shaft OD [in] Pitch Angle [deg] 80268
Wire Length [in] 31.3108 Min. 1D [in] 0532 Free Len. Tol. [in] +-0.1168
Wire Weight [Ib] 0077 Hale 1D [in] Allowable Solid HL [in]
Expanded QD [in] 0.8037
Free Point 1 Point 2 Solid Buckle
Load [Ibf 1] 25 112 112.857
Load Tolerance [1b4 ] +/- 50044 +i- B.0E28
Length [in] 4 34587 1.575 1.5008
Deflection [in] 1] 0541205 2425 2.4382
% of Max. Deflection ] 22 oo4 100
Caomected Stress [psi] 1] 45285 202786 203875
% of Tensile Stress 1] 16.9 5.5 75O
Design Status: Direction of Coiling: Optional Estimated Cycle Life: <1ES

Stress = G0% Safety Limit

010
! L | @ﬁﬂ
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Appendix E: Partial Exploded View of the KEA

Locking rod spring pin support

Springs Lock~ing rod spr.ing .
Locking rod spring pin

U-beam
Long notch
Ratchet notches / g
Spring case /
Locking rod nut =
Proximal cables
Cable connector / -
Distal cable UT
KAFO attachment
base
Knee disk
Knee disk cable support
Knee disk pin
Sliding lock bracket \ Knee disk support
Sliding lock
Sliding lock supports

Actuator support bracket

Pneumatic actuator /T

)

Note: Air bladder and knee disk bearing are not shown
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Appendix F: Failure Mode Analysis

Event

Result

Consequence

Cables pull out from
end stops

No resistance to spring
extension or knee flexion.
Springs extend to full length
rapidly

Possibility of user collapse. Loud noise as spring
beam makes contact with proximal case end

Improper notch

Spring beam may slip off

(1) Knee disk disengaged: loud noise as spring

engagement notch. Springs extend rapidly, beam makes contact with proximal case end or
either caught by next notch, or | next notch. Knee disk spins about knee-disk pin
full spring extension rapidly.
(2) Knee disk engaged: little weight borne on leg:
quick, unexpected knee extension
Locking rod notch Same as above Same as (1) and (2) above
yields

U-beam notch
engagement area fails

Springs extend to full length
rapidly

Same as (1) and (2) above

Spring case or knee
disk support fasteners
fail

Spring case or support comes
loose from KAFO, moves
violently as springs extend

Case or support may contact the user skin as it
moves, injuring the user

KAFO attachment
base fails

Spring case comes loose from
KAFO, moves violently as
springs extend

Case may contact user as it moves, injuring the
user

Springs fail from
fatigue

Springs fracture but are
contained within the case

No extension moment is provided, user may
stumble

Knee disk pin fails
under load

Knee disk comes free from the
KEA

Cables do not provide tension to keep springs
compressed. Springs extend rapidly and cause loud
noise as spring beam makes contact with proximal
case end or locking rod notch. Possibility of user
collapse.

Knee disk notch

Knee disk rotates as far as

Extension-assist moment decreases

yields yielding occurs, springs extend
slightly
Sliding lock yields Same as above Same as above

Pneumatic actuator
fails

Sliding lock will not engage
with knee disk notch

Springs elongated: springs will not compress
because no tension created in distal cable

Springs compressed: user must manually slide lock
into knee disk notch so that springs can be safely
released and extended
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Appendix G: Additional Prototype Photographs

Case bottom and KAFO

attachment base \
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Bill of Materials

Appendix H: Bill of Materials

Qty
Component Material Shape Dimensions (inches) Dimensions (mm) [(/device) [provider [cost ($)
Spring beam backing 17-4 PH stainless sheet 18 Ga./0.050" |0.886 x 2.6 22.5x 66 2|MC 22.03
Knee disk cable support 17-4 PH stainless sheet 18 Ga./0.050" |[1x 1/4 25.4x 6.35 1|MC |
Case - sides 17-4 PH stainless sheet 18 Ga. / 0.050" |4.375x 1.125 111.125 x 28.575 2|MC |
Case - bottom 17-4 PH stainless sheet 18 Ga./0.050" [4.375 x 2.638 111.125 x 67 3|MC \Y
Knee disk support bar 17-4 PH stainless rectangular bar 14 x 1+1/4 x 3 - 1|MC 8.69
Cable connector piece 17-4 PH stainless rectangular bar 1/4 x 3/8 x 1+1/4 6.35 x 9.525 x 31.7] 1|MC |
Knee disk lock piece 17-4 PH stainless rectangular bar 1/4 x 1/4 x 1+1/4 6.35x 6.35x 25.4 1|MC |
Knee disk lock piece supports|17-4 PH stainless rectangular bar 1/4 x 1/4 x 1+1/5 6.35x 6.35x 25.5 2|MC \%
Knee disk pin 17-4 PH stainless round bar ®5/16 x 3/4 8x19 1{MC 0.95
Lock rod Class 12.9 bolt steel metric socket cap bolt | -- M10x 1.5 - 150 1IMC 2.06
Lock rod nut Class 8.8 bolt steel metric hex nut -- M10 x 1.5 nut 1|OF 0.22
Compression springs custom from Trakar - - - 3| Trakar 12.84
Case - proximal end 7075-T651 Al rectangular bar 3/8x 1x2.638 9.5x 254 x 67 1|RC 11.713
Case - distal end 7075-T651 Al rectangular bar 3/8 x 1x2.638 9.5x 254 x 67 1|RC/MC |
Spring beam 7075-T651 Al rectangular bar 3/8 x 1x2.638 9.5x 254 x 67 1|RC \
Knee disk 7075-T651 Al round bar P2+1/4 x 1/4 -- 1|RC/MC 8.525
Knee disk bearing steel ball bearing dble shielded ID5/16 OD 3/4 W 1/4 8x19x6 1|GBS 5.58
Proximal (thin) cable 7x19 stainless aircraft | -- P3/32x 7 - 2IMC 11.80
Distal (thick) cable 19x7 stainless aircraft | -- P1/8 x 5+1/2 - 1{MC 4.55
Proximal stop sleeves Aluminum - ID 3/32 OD 11/32 W 5/16 | -- 4|0F 1.32
Distal stop sleeves Copper - ID1/8 OD 11/32 W 5/17 | -- 2|OF 1.10
Actuator support bracket 6061 Al sheet 18 Ga.
Lock rod spring pin support  |6061 Al sheet 22 Ga. 1.2x0.24 1|RC
Lock rod spring pin 6061 Al round bar P3/16 x 1.142 ®5x 29 1|RC
Spring cover strips 6061 Aluminum sheet 18 Ga. 111 x 14 2|RC
Linear bearing Brass sheet 18 Ga. 30x 32 1|RC
Lock rod spring from 'click’ pen - - - 1]--
Pneumatic actuator P3/8 1|Bimba 16.7
Socket head cap screw s class 12.9 M3 x 12 20|OF 4.00
Socket head cap screw s grade 8 4-40x 1/2 4 0.80
Socket head cap screw s grade 8 10-32 x 3/8 2 0.40
Button head cap screw s grade 8 10-32 x 3/8 2 0.40
Flat head cap screw s grade 8 10-32x 5/8 3 0.60
Retaining ring for knee disk  |stainless steel - ID0.281 W 0.025 - 1|RC
Air bladder 1
Air bladder tubing nylon 32-4mm D4 x 30 1 0.50
MC = McMaster-Carr Total
GBS = General Bearing Service 114.28

RC = Rehab Centre machine shop

OF = Ottaw a Fasteners
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Appendix I: Ethics Approval Documentation

RSV ). THE T
ERAt Y A e
Ottawa Hospital Research Ethics Boards / Conseils d'éthique en recherches

761 Parkdale Avanug Sulte 108, Oltawa, Ontarip K1Y 107 €13-798-5655 ext. 14802 Pax: 613-761-4311
httpdfwvean.chtl.calohrel

September 22, 2010

Dr. Edward Lemaire

The Ottawa Hospital Rehabilitation Centre

Institute for Rehabilitation Research and Development
Room 1402

505 Smyth Road

Cttawa, ON K1H 8M2

Dear Dr. Lemaire:

Re: Protocol # 2010496-01H Pilot Test of a Knee-Extensicon-Assist Device for Knee-Ankle-Foot
Orthoses

Protocol approval valid until -  September 21, 2011

Thank you for the letter from Alex Spring dated September 10, 2010. | am pleased to inform you that this
protocol underwent expedited review by the Ottawa Hospital Research Ethics Board (OHREB) and is approved.
No changes, amendments or addenda may be made to the protocol or the consent form without the OHREB's
review and approval.

Approval is for the following:

- COREB Application

- English Recruitment Nofice received August 30, 2010

- English Information Sheet and Consent Form dated April 21, 2010
- French Recruitment Notice received September 10, 2010

- French Information Sheet and Consent Form dated April 21, 2010

The validation date should be indicated on the bottom of all consent forms and information sheets {see copy
attached). If the study is to continue beyond the expiry date noted ahove, a Renewal Form should be submitted
to the OHREB approximately six weeks prior to the current expiry date. If the study has been completed by this
date, 2 Termination Report should be submitted.

The Ottawa Hospital Research Ethics Board is constituted in accordance with, and operates in compliance with
the requirements of the Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans,; Health
Canada Good Clinical Practice: Consolidated Guideline; Part C Divisicn 5 of the Food and Drug Regulations of
Health Canada; and the provisions of the Ontario Health Information Protection Act 2004 and its applicable
Regulations. '

Q@é\mlv,

Raphae! Saginur, M.D.

Chairman

Ottawa Hospital Research Ethics Board
Encl.

RS/
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University of Waterloo — Research Ethics Board Approval

Dear Researcher:

The recommended revisions/additional information requested in the ethics review of
your ORE application:

Title: Pilot Test of a Knee-Extension-Assist Device for Knee-Ankle-Foot Orthoses
ORE #: 16700

Faculty Supervisor: Dr. Jonathan Kofman (jkofman@engmail.uwaterloo.ca)

Faculty Supervisor: Dr. Edward Lemaire (elemaire@ottawahospital.on.ca)

Student Investigator: Alexander Spring (anspring@engmail.uwaterloo.ca)

have been reviewed and are considered acceptable. As a result, your application
now has received full ethics clearance.

A signed copy of the Notification of Full Ethics Clearance will be sent to the
Principal Investigator or Faculty Supervisor in the case of student research.

RLRTR

ESRTE

Note 1: This clearance is valid for four years from the date shown on the
certificate and a new application must be submitted for on-going projects
continuing beyond four years.

Note 2: This project must be conducted according to the application description
and revised materials for which ethics clearance have been granted. All subsequent
modifications to the protocol must receive prior ethics clearance through our
office and must not begin until notification has been received.

Note 3: Researchers must submit a Progress Report on Continuing Human Research
Projects (ORE Form 105) annually for all ongoing research projects. In addition,
researchers must submit a Form 105 at the conclusion of the project if it
continues for less than a year.

Note 4: Any events related to the procedures used that adversely affect
participants must be reported immediately to the ORE using ORE Form 106.

Best wishes for success with this study.

susanne Santi, M. Math.,
Senior Manager

office of Research Ethics
NH 1027

519.888.4567 x 37163
ssanti@uwaterloo.ca
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Appendix J: Marker Placement

Code Segment/joint Location Type

RTOE right foot 2nd metatarsal tracking

RHEEL right foot calcaneus tracking

RMA right foot/ankle | medial malleolus calibration

RLA right foot/ankle | lateral malleolus tracking/calibration
RSK1-4 | right shank lateral side of shank cuff tracking

RMK right knee medial epicondyle calibration

RLK right knee lateral epicondyle calibration

RTH1-4 | right thigh lateral side of thigh cuff tracking

RGT right hip greater trochanter calibration

LTOE left foot 2nd metatarsal tracking

LHEEL left foot calcaneus tracking

LMA left foot/ankle medial malleolus calibration

LLA left foot/ankle lateral malleolus tracking/calibration
LSK1-4 | left shank rigid plate bound to lateral side of shank | tracking

LMK left knee medial epicondyle calibration

LLK left knee lateral epicondyle calibration

LTH1-4 | left thigh rigid plate bound to lateral side of thigh | tracking

LGT left hip greater trochanter calibration

RPSI pelvis posterior superior iliac spine tracking/calibration
RIC pelvis iliac crest tracking/calibration
LPSI pelvis posterior superior iliac spine tracking/calibration
LIC pelvis iliac crest tracking/calibration
XSTRN trunk xiphoid process tracking

MSTRN | trunk manubrium tracking

RAC trunk acromion process tracking/calibration
LAC trunk acromion process tracking/calibration
c7 trunk 7th cervical vertebra tracking
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Appendix L: Device Moment Graphs
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Figure L.1: Device moment curves for (a) STS, (b) stand-to-sit, (c) ramp ascent, and (d) ramp descent
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Appendix M: EMG % MVC Values

Table M.1: EMG parameter values for STS and Stand-to-sit as a percent of maximum voluntary contraction

RIGHT

LEFT

Vastus medialis

Rectus femoris

Gluteus maximus

Vastus medialis

Rectus femoris

Gluteus maximus

Biceps femoris

P1 STS Normal

abs max 30.7 6.1 134 58.9 20.5 17.3 9.1

abs mean 8.3 2.5 4.9 9.8 3.8 5.2 2.3
abs int 21.7 6.7 13.0 254 9.9 13.6 6.0
P1 STS With Assist

abs max 222 4.6 18.2 51.5 18.2 15.8 7.6
abs mean 4.2 1.4 6.8 9.9 3.6 5.6 2.7
abs int 12.8 4.4 20.7 29.9 10.7 17.1 8.0
P1 Stand to Sit Normal

abs max 24.4 7.5 11.0 45.0 20.0 12.3 104
abs mean 5.5 1.9 3.4 7.9 3.5 3.2 23
abs int 16.0 5.6 10.0 22.7 10.3 9.4 6.8
P1 Stand to Sit With Assist

abs max 235 3.3 16.5 45.7 184 8.8 9.4
abs mean 3.3 11 3.9 8.8 4.0 3.0 2.5
abs int 9.5 3.1 11.3 25.3 11.5 8.8 7.2
P2 STS Normal

abs max 23.0 25.6 15.3 74.6 40.9 20.9 9.8

abs mean 7.1 5.6 4.9 15.9 8.2 7.7 3.4

abs int 20.7 16.5 14.5 46.6 24.2 22.9 10.1
P2 STS With Assist

abs max 29.8 32.8 19.5 97.1 68.0 13.7 12.9
abs mean 8.5 6.9 4.6 23.1 12.2 7.2 3.4

abs int 39.8 31.9 21.7 109.4 57.7 34.2 16.2
P2 Stand to Sit Normal

abs max 22.8 29.8 11.9 50.7 35.9 8.5 5.6

abs mean 6.1 4.6 1.8 11.0 7.2 21 14

abs int 23.8 17.9 7.0 42.5 27.9 8.1 5.5
P2 Stand to Sit With Assist

abs max 15.5 17.3 7.7 60.7 38.2 7.7 6.1

abs mean 5.4 3.4 2.7 18.6 10.6 5.4 2.6

abs int 19.8 12.6 9.8 68.2 39.1 19.9 9.5
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Table M.2: EMG parameter values for ramp gait as a percent of maximum voluntary contraction

Right
Vastus Medialis Rectus Femoris Gluteus Maximus

P1 Ramp Ascent Normal

abs max 9.5 8.0 7.0
abs mean 6.8 5.3 4.1
abs int 3.4 2.6 2.0
P1 Ramp Ascent With Assist

abs max 15.0 134 14.4
abs mean 6.4 5.3 4.6
abs int 7.2 5.9 5.1
P1 Ramp Descent Normal

abs max 9.9 71 2.3
abs mean 11.1 7.2 1.4
abs int 3.8 2.5 0.5
P1 Ramp Descent With Assist

abs max 16.4 9.6 3.2
abs mean 10.3 7.3 1.4
abs int 4.8 3.4 0.7
P2 Ramp Ascent Normal

abs max 14.8 4.3 10.5
abs mean 8.2 2.8 4.0
abs int 4.5 1.5 2.2
P2 Ramp Ascent With Assist

abs max 18.2 13.6 8.9
abs mean 13.0 6.3 3.6
abs int 6.3 3.1 1.7
P2 Ramp Descent Normal

abs max 9.7 4.6 2.0
abs mean 7.1 3.9 1.1
abs int 2.7 1.4 0.4
P2 Ramp Descent With Assist

abs max 26.0 14.2 3.6
abs mean 15.2 7.8 1.4
abs int 8.0 4.1 0.7
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