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Abstract

Computations with polynomials are at the heart of any computer algebra system and also
have many applications in engineering, coding theory, and cryptography. Generally speaking,
the low-level polynomial computations of interest can be classified as arithmetic operations,
algebraic computations, and inverse symbolic problems. New algorithms are presented in
all these areas which improve on the state of the art in both theoretical and practical perfor-
mance.

Traditionally, polynomials may be represented in a computer in one of two ways: as a
“dense” array of all possible coefficients up to the polynomial’s degree, or as a “sparse” list of
coefficient-exponent tuples. In the latter case, zero terms are not explicitly written, giving a
potentially more compact representation.

In the area of arithmetic operations, new algorithms are presented for the multiplication
of dense polynomials. These have the same asymptotic time cost of the fastest existing ap-
proaches, but reduce the intermediate storage required from linear in the size of the input to
a constant amount. Two different algorithms for so-called “adaptive” multiplication are also
presented which effectively provide a gradient between existing sparse and dense algorithms,
giving a large improvement in many cases while never performing significantly worse than
the best existing approaches.

Algebraic computations on sparse polynomials are considered as well. The first known
polynomial-time algorithm to detect when a sparse polynomial is a perfect power is pre-
sented, along with two different approaches to computing the perfect power factorization.

Inverse symbolic problems are those for which the challenge is to compute a symbolic
mathematical representation of a program or “black box”. First, new algorithms are presented
which improve the complexity of interpolation for sparse polynomials with coefficients in
finite fields or approximate complex numbers. Second, the first polynomial-time algorithm
for the more general problem of sparsest-shift interpolation is presented.

The practical performance of all these algorithms is demonstrated with implementations
in a high-performance library and compared to existing software and previous techniques.
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This little polynomial should keep the computer so busy it doesn’t
even know we’re here.

—Chris Knight (Val Kilmer), Real Genius (1985)

Chapter 1

Introduction

This thesis presents new algorithms for computations with polynomials. Such computa-
tions form the basis of some of the most important problems in computational mathematics,
from factorization to solving nonlinear systems. We seek algorithms that give improvements
both in theoretical efficiency as well as practical performance. As the operations we consider
are important subroutines in a range of applications, our low-level performance gains will
produce improvements in a variety of problems.

A primary focus of this work is the issue of how polynomials are represented in memory.
Polynomials have traditionally been stored in the dense representation as an array of coeffi-
cients, allowing efficient computations with polynomials such as

f = x 5−2x 4+8x 3+3x 2−x +9.

By contrast, the sparse representation of a polynomial is a list of nonzero coefficient-exponent
tuples, a much more efficient representation when most of the coefficients are zero. This
allows compact storage of a much larger set of polynomials, for instance

f = x 5000−3x 4483−10x 2853+4x 21.

The types of polynomial computations we will examine fall into three general categories:
basic arithmetic operations, algebraic problems, and inverse symbolic computations.

Basic arithmetic includes operations such as addition, subtraction, multiplication, and
division. Optimal, linear-time algorithms for addition and subtraction of polynomials (in any
representation) are easily derived. Division, modular reduction, and a great many other op-
erations on densely-represented polynomials have been reduced to the cost of multiplication
(sometimes with extra logarithmic factors). In fact, almost any nontrivial computation with
polynomials in any representation uses multiplication as a subroutine. Hence multiplication
emerges as the most crucial low-level arithmetic operation to consider.

1



CHAPTER 1. INTRODUCTION

At a slightly higher level, understanding the basic algebraic structure of polynomials is
important for many applications in symbolic computation as well as cryptography. The fast
algorithms that have been developed for polynomial factorization have been identified as
some of the greatest successes of computer algebra. However, these algorithms are only effi-
cient when the polynomials under consideration are represented densely. Many polynomials
that arise in practice can only be feasibly stored using the sparse representation, but this more
compact representation demands more sophisticated algorithms. Understanding the effects
of sparsity on computational efficiency is fascinating theoretical work with important practi-
cal consequences.

The arithmetic and algebraic computations above involve manipulating and computing
with symbolic representations of mathematical objects. Said mathematical objects are often
not known explicitly, but rather given implicitly by a function or program that can be evalu-
ated at any chosen point. Inverse symbolic problems involve computing a symbolic formula
for a sampled function. Sparse polynomial interpolation in particular has a rich history as
well as important applications in factorization and nonlinear system solving.

Kaltofen (2010a) has recently proposed a taxonomy of the most significant mid-level and
high-performance computational tasks for exact mathematical computing, called the “seven
dwarfs” of symbolic computation. In terms of this classification, the current work falls under
the categories of the second and third dwarfs, exact polynomial algebra and inverse symbolic
problems. We will also briefly touch on the fifth dwarf, hybrid symbolic-numeric computa-
tion.

1.1 Overview

The remaining sections of this chapter introduce the basic concepts and definitions that will
be used for the remainder of the thesis. Our computational model has a carefully defined
memory layout and counts machine word operations as well as arithmetic operations over an
arbitrary algebraic domain. We show the implications of this model for the important basic
operation of integer multiplication.

Chapter 2 follows by discussing the architecture and design of a high-performance C++
library containing all the algorithm implementations that we will present. This library is used
to benchmark our algorithms against previous approaches and show how the theoretical im-
provements correspond to concrete practical gains.

The first algorithmic problem we turn to is also the most fundamental: multiplication of
dense univariate polynomials. Chapter 3 examines the problem of computing the so-called
Truncated Fourier Transform (TFT), which among other applications is used as a subroutine
in fast polynomial multiplication. While the normal radix-2 Fast Fourier Transform (FFT)
can be computed completely in-place, i.e., overwriting the input with the output, the TFT as
originally developed by van der Hoeven (2004) requires linear extra space in the general case.
Our new algorithm for an in-place TFT overcomes this shortcoming without sacrificing time
cost.

The in-place TFT algorithm is used as a subroutine in one of two new algorithms for dense
polynomial multiplication presented in Chapter 4. These new algorithms have the same time

2



CHAPTER 1. INTRODUCTION

complexity as the two most commonly used sub-quadratic “fast” algorithms for multiplica-
tion, but improve on the linear amount of extra space previously required. Our first algorithm
works over any ring, matches the O(n 1.59) time complexity of Karatsuba’s algorithm, and only
uses O(log n ) extra space. The second algorithm works in any ring that admits radix-2 FFTs
and matches the O(n log n ) time cost of usual FFT-based multiplication over such rings, but
uses only O(1) extra storage space. Under our model of space cost, these are the first algo-
rithms to achieve sub-quadratic time × space complexity for multiplication.

Next we turn to a broader view of polynomial multiplication, encompassing both dense
and sparse polynomial multiplication. Two new approaches to this problem are presented in
Chapter 5 which effectively provide a gradient between existing sparse and dense methods.
Specifically, the algorithms adapt to the case of dense “chunks” of nonzero coefficients in an
otherwise sparse polynomial, and to the opposite case of sparse polynomials in which the
nonzero terms are mostly evenly spaced. These algorithms provide advantages over previous
techniques by being more adaptive to the structure of the input polynomials, giving signifi-
cant improvement in many cases while never being more than a constant factor more costly
than any existing approach. We also show how to combine the two approaches into one algo-
rithm that simultaneously achieves both benefits.

Chapter 6 examines an important algebraic problem for sparse polynomials. Given a
sparse polynomial as input, we investigate how to determine whether it is a perfect power
of another (unknown) polynomial, and if so, to compute this unknown polynomial root. Per-
fect powers are a special case of both polynomial factorization and decomposition, and fast
algorithms for the problem are known when the input is given in the dense representation.
We give the first polynomial-time algorithms for detecting sparse polynomial perfect powers,
which are randomized of the Monte Carlo type, and work when the coefficients are rational
numbers or elements of a finite field with sufficiently large characteristic. We then turn to the
problem of actually computing the unknown polynomial root, and give two approaches to
that problem. The first is output-sensitive and provably polynomial-time, while the second is
much more efficient in practice but relies on a conjecture regarding the sparsity of interme-
diate results.

The third broad topic of this thesis is sparse polynomial interpolation. Chapter 7 gives a
brief overview of existing algorithms for sparse interpolation over various domains. We show
how to improve the polynomial-time complexity of the recent algorithm of Garg and Schost
(2009) over sufficiently large finite fields. We also present a related algorithm for approximate
sparse interpolation, where the coefficients are approximations to complex numbers, and
show that our algorithm improves the numerical stability over existing approaches.

Building on these sparse interpolation algorithms, in Chapter 8 we extend their domain
by presenting the first polynomial-time algorithm for the problem of sparsest-shift interpola-
tion. This problem seeks a representation of the unknown sampled polynomial in the shifted
power basis 1, (x −α), (x −α)2, . . ., with α chosen to minimize the size of the representation,
rather than the usual power basis 1,x ,x 2, . . .. By first computing this sparsest shift α and then
performing interpolation in that basis, we greatly expand the class of polynomials that can be
efficiently interpolated.

3



CHAPTER 1. INTRODUCTION

1.2 Polynomials and representations

The issue of polynomial representations is of central importance to much of this thesis. We
therefore pause to consider what a polynomial is and how one might be stored in a digital
computer.

First, we define some standard notation that we will use throughout. Big-O notation,
which has become standard in algorithmic analysis, is a convenient way to compare the
asymptotic behavior of functions. Unfortunately, the notation itself can be somewhat mis-
leading in certain situations, so we give a formal definition.

Given two k -variate functions f , g : Nk → R≥0, we say that f (n 1, . . . , n k ) ∈O(g (n 1, . . . , n k ))
if there exist constants N and c such that, whenever n i ≥N for every 1≤ i ≤ k , we have that
f (n 1, . . . , n k ) ≤ c g (n 1, . . . , n k ). This is really defining a partial order on functions, but we can
also think of O(g (n 1, . . . , n k )) as defining a set of all k -variate functions f which satisfy the
above conditions, and our notation follows the latter convention.

In most cases, the k variables n 1, . . . , n k will appear explicitly in g (n 1, . . . , n k ), but when
they do not, or when other symbols appear that are not variables, these distinctions must un-
fortunately be inferred from the context. An important example is O(1), which in the current
context represents all k -variate functions bounded above by a constant.

The notations Ω, Θ, o, and ω can all be derived from the definition of O in the standard
ways, and we will not list them here. Another common notation which we will use occasion-
ally is soft-O notation: f (n 1, . . . , n k )∈O (̃g (n 1, . . . , n k )) if and only if

f (n 1, . . . , n k )∈O
�

g (n 1, . . . , n k ) ·
�

log g (n 1, . . . , n k )
�c
�

,

for some positive constant c . Informally, soft-O notation means ignoring logarithmic fac-
tors of polynomial terms. Note for example that the univariate function log n · loglog n is in
O (̃log n ) but not O (̃1).

1.2.1 Functional representation

Consider a ring R (commutative, with identity) with binary operations ×,+,−, and a posi-
tive integer n . If only these three operations are allowed, say on a computer, then the set
R[x1,x2, . . . ,xn ] of n-variate polynomials is exactly the set of all computable functions on n
inputs. For instance, in a very simple view of modern digital computers operating directly
(and exclusively) on bits, every possible computation corresponds to a multivariate polyno-
mial over F2, the finite field with two elements.

With this fundamental connection between polynomials and computation in mind, we
begin with a functional definition of the set R[x1,x2, . . . ,xn ] of n-variate polynomials, and will
get to the more common algebraic definition later. Functionally, an n-variate polynomial f
is simply a finite sequence of ring operations on a set of n indeterminates x1,x2, . . . ,xn . This
function can be represented by a so-called straight line program or, somewhat more expres-
sively, by a division-free algebraic circuit.
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x1 x2 x3

+ × +

×

−2
53

−1

Figure 1.1: Algebraic circuit for (−2x1+3x3) · (x1 ·x2) · (5x1−x3)

For our purposes, such a circuit will be a directed acyclic graph with n source nodes la-
beled x1 through xn and a single sink node for the output. Each node is labeled with + or
×. Incoming edges to each + node are also labeled with constant elements from R, and the
value computed at that node is the R-linear combination of the values at its direct predeces-
sors, times the values on the incoming edges. The value at each × node is simply the product
of the values of its direct predecessor nodes. For instance, the algebraic circuit in Figure 1.1
represents the function

f (x1,x2,x3) = (−2x1+3x3) · (x1 ·x2) · (5x1−x3).

Computations on polynomials represented by algebraic circuits or straight-line programs
have been studied extensively (Freeman, Imirzian, Kaltofen, and Yagati, 1988; Kaltofen, 1989;
Kaltofen and Trager, 1990; Encarnación, 1997), and the main advantages of this representa-
tion are its potential for conciseness and connection to evaluation. Unfortunately, with the
important exception of computing derivatives (Baur and Strassen, 1983), very few operations
can be efficiently computed in polynomial-time in this representation. Even the most basic
operation, determining whether two circuits represent the same polynomial, is notoriously
difficult to solve, at least without randomization (Saxena, 2009). Because of these difficul-
ties, many algorithms parameterize their cost based on some algebraic property of the poly-
nomial(s) computed by the circuit. For instance, the best-known factorization algorithm by
Kaltofen requires polynomial time in the degree, which could be exponentially larger than the
circuit size.

5



CHAPTER 1. INTRODUCTION

1.2.2 Algebraic representations

A more typical way to represent polynomials is algebraically, as an R-linear combination of
monomials in some chosen basis. The most common choice is the standard power basis,
wherein each monomial is a product of the indeterminates, each raised to a nonnegative inte-
ger power. (Chapter 8 will consider an important alternate basis, namely the sparsest-shifted
power basis.)

We now pause briefly to define some useful terminology. Each product of a monomial
and a coefficient is called a term. We will typically focus on nonzero terms, i.e., terms with
a nonzero coefficient, and we will implicitly assume that each monomial appears at most
once. The highest exponent of a given indeterminate x i in any nonzero term is called the
partial degree in x i . The greatest partial degree is called the max degree. The greatest sum of
exponents in any nonzero term is called the total degree. The number of (distinct) nonzero
terms is called the sparsity of the polynomial, and the monomials with nonzero coefficients
make up its support.

For instance, the polynomial represented by the circuit in Figure 1.1 can be written al-
gebraically, in the standard power basis, as f = −3x1x2x 2

3 + 17x 2
1x2x3 − 10x 3

1x2. It has three
nonzero terms, max degree 3, and total degree 4.

The question remains how to actually represent such expressions in a computer. We will
briefly discuss the three most common representations, and refer to (Stoutemyer, 1984; Fate-
man, 2002) for a more in-depth comparison. The most straightforward choice is a multidi-
mensional d 1 × d 2 × · · · × d n array of coefficients, where each d i is greater than the partial
degree in x i . This we term the dense representation; its size is bounded by O(d 1d 2 · · ·d n ) ring
elements, or more simply as O(d n ), where d is the max degree. The dense representation typ-
ically admits very fast algorithms, but can be inefficient when the number of nonzero terms
in the polynomial is very small compared to d n .

More compact storage is afforded by the so-called recursive dense representation. The zero
polynomial is represented as a null pointer; otherwise, terms are collected by the last variable
and the representation is by a single length-d n array of recursive dense polynomials in n − 1
variables x1,x2, . . . ,xn−1. This representation has proven to be practically useful in a number of
situations, as it admits the use of dense univariate algorithms while being somewhat sensitive
to sparsity. A major drawback is its high sensitivity to the variable ordering. Despite this,
it is easy to see the size in the worst case is at most O(d nt ) ring elements, where t is the
sparsity, i.e., number of nonzero terms. Since t could be at most (d + 1)n , this would seem
to be potentially worse than the dense representation in cases where almost every term is
nonzero, but this is not actually true; a better bound on the number of ring elements required
for the recursive dense representation of O(min(d n , d nt )) is also easy to derive.

The most compact algebraic representation is the sparse representation (also called the
distributed sparse representation). In this representation, a polynomial is stored as a list of
coefficient-exponent tuples, wherein nonzero terms never need to be explicitly stored. This
also corresponds exactly to the way we naturally write polynomials when doing mathematics,
and for this reason it has become the standard and default representation in general-purpose
computer algebra systems such as Maple, Mathematica, and Sage. This representation always

6



CHAPTER 1. INTRODUCTION

uses exactly t ring elements for storage. However, in this case we also must take into account
storage space for the potentially large exponents. This exponent storage is bounded above by
O(nt log d ) bits.

Observe that there is potentially an exponential-size gap between the size of each of these
representations. For instance, assuming elements 0 and 1 in R are stored with a constant
number of bits, the size of the polynomial f = x d

1 x d
2 · · ·x d

n in each of the dense, recursive dense,
and sparse representations is Θ((d +1)n ), Θ((d +1)n ), and Θ(n log d ) bits, respectively.

1.2.3 Algorithms

Most published algorithms for polynomial computation do not explicitly discuss what repre-
sentation they have in mind, but nonetheless we can roughly categorize them based on those
representations mentioned above.

Generally, algorithms in the literature that make no mention of sparsity and whose cost
does not explicitly depend on t we will term dense algorithms. These algorithms are said to
be polynomial-time if their cost is (n d )O(1), i.e., polynomial in the size of the dense represen-
tation. Many important classical results in computer algebra fall into this class, including fast
multiplication algorithms (Karatsuba and Ofman, 1963; Schönhage and Strassen, 1971; Can-
tor and Kaltofen, 1991) and polynomial factorization (Berlekamp, 1967; Cantor and Zassen-
haus, 1981).

Some algorithms for so-called sparse polynomial computation have complexity (nd t )O(1).
Observe that this is polynomial-time in the size of the recursive dense representation. Richard
Zippel’s sparse interpolation algorithms (1979; 1990) are good examples of algorithms with
this sort of cost. Algorithms for straight-line programs whose cost depends partially on the
degree (e.g., Kaltofen and Trager, 1990) could also be considered of this type, as one can easily
construct a small circuit for evaluating a sparse polynomial.

The most difficult algorithms to derive are those whose cost is polynomial in the size of
the sparse representation defined above. These go by many names in the literature: “sparse”
(e.g., Johnson, 1974), “lacunary” (e.g., Lenstra, 1999), and “supersparse” (e.g., Kaltofen and
Koiran, 2005). To avoid any ambiguity, we will call any algorithm whose cost is polynomial
in the size of the sparse representation — that is, polynomial in n , t , and log d — a lacunary
algorithm. Observe that efficient lacunary algorithms automatically give efficient algorithms
for all three algebraic representations mentioned above; the blow-up in complexity from a la-
cunary algorithm to a dense one is at most O(n log d ). Lacunary algorithms also have advan-
tages related to the univariate case, as we will discuss shortly. However, despite the ubiquity
of the sparse representation in computer algebra systems, the development of lacunary algo-
rithms has been much less rapid than dense algorithms; see Davenport and Carette (2009) for
an overview of some of the specific algorithmic challenges that accompany the sparse repre-
sentation.

Another class of algorithms we will occasionally consider are those whose cost depends
even more strongly on one of the parameters, such as the sparsity t or the size of coeffi-
cients. These algorithms are polynomial-time in special cases, for instance when the number
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of terms or size of coefficients is constant, as in the recent examples by Filaseta, Granville, and
Schinzel (2008) and Pébay, Rojas, and Thompson (2010) on computing gcds and extrema, re-
spectively. However, observe that these are exponential-time algorithms no matter the choice
of representation.

1.2.4 Univariate polynomials

Univariate polynomials are an important special case for consideration. Algorithms are of
course easier to develop, describe, and implement in this case. But univariate polynomials
also arise frequently in practice and have a strong relationship with multiple-precision inte-
gers. For instance, algorithms for fast multiplication of dense univariate polynomials have
typically followed those for multiple-precision integers with the same complexity.

Observe that in the univariate case the recursive dense representation degenerates to the
dense representation and hence becomes useless. So for univariate problems we need only
consider two types of algebraic representations.

Fast algorithms for univariate polynomial computation can be applied to multivariate
polynomials via the well-known Kronecker substitution:

Fact 1.1. (Kronecker, 1882) Let R be a ring and n , d 1, d 2, . . . , d n ∈ N, For any polynomial f ∈
R[x ] with degree less than d 1d 2 · · ·d n , there exists a unique polynomial f̂ ∈ R[x1,x2, . . . ,xn ],
with partial degrees less than d 1, d 2, . . . , d n respectively, such that

f (x ) = f̂ (x ,x d 1 ,x d 1d 2 , . . . ,x d 1d 2···d n−1).

For many problems with multivariate polynomials, making this substitution (evaluating
at high powers of a single variable) often allows the use of univariate algorithms. For instance,
given the bivariate polynomial

f̂ (x , y ) = 5+6x 2y −3x y 10,

we could compute f̂ 2 by using the Kronecker substitution with bounds on the degrees in f̂ 2:

f (x ) = f̂ (x ,x 5) = 5+6x 7−3x 51.

We see that
f 2 = 25+60x 7+36x 14−30x 51−36x 58+9x 102,

and because we know that degx f̂ 2 < 5, we can then apply Fact 1.1 to write down the coef-
ficients of f̂ 2, by taking a quotient with remainder when each exponent in f 2 is divided by
5:

f̂ 2 = 25+60x 2y +36x 4y 2−30x y 10−36x 3y 11+9x 2y 20.

More generally, the Kronecker substitution corresponds to writing each exponent of the
univariate polynomial f in the mixed-radix representation with basis (d 1, d 2, . . . , d n ), and us-
ing the fact that every nonnegative integer less than the product d 1d 2 · · ·d n has a unique rep-
resentation as an n-tuple in the mixed-radix representation to that basis (see Knuth, 1981,
§4.1).
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A similar approach is used to convert a polynomial with coefficients in a finite field to an
integer. For a polynomial with coefficients in Z/mZ, for example, we can write each coeffi-
cient as its unique integer residue in the range 0, 1, . . . , m−1, then convert this to an integer (in
the binary representation) by evaluating the integer polynomial at a power of 2. If the power
of 2 is large enough, then this is an invertible map, as used for example by Harvey (2009b) for
the problem of multiplication.

This conversion between integers and univariate polynomials over finite fields can also
be used in the other direction, as we will see in Section 1.4. However, observe that not ev-
ery problem works as nicely as multiplication. For instance, to factor a bivariate polynomial
f̂ ∈R[x , y ], we could again use the Kronecker substitution to write f = f̂ (x ,x d ) for d > degx f̂ ,
and then factor the univariate polynomial f ∈ R[x ]. However, even though each factor of f̂
will correspond to a factor of f , observe that the converse is not true, so that recovering the
bivariate factors from the univariate ones is a non-trivial process. Reducing integer factoriza-
tion to polynomial factorization is even more problematic because of carries.

The Kronecker map is especially useful when polynomials are stored in the sparse repre-
sentation. If f ∈ R[x ] and f̂ ∈ R[x1,x2, . . . ,xn ] corresponding to the Kronecker substitution as
above, first notice that f and f̂ will have the same number of nonzero terms, and in fact the
same coefficients. Furthermore, if written in the sparse representation, these two polynomi-
als have essentially the same size. For simplicity, assume the partial degrees are all less than
d . Then each exponent in f is a single integer less than d n , and each exponent in f̂ is a vector
of integers each less than d . Writing these in binary, their bit-length in both cases is n log2 d ,
and so the representation size in the sparse model is identical, at least asymptotically.

This relationship will be useful for our purposes, as it means that algorithms for univariate
polynomials will remain polynomial-time under the Kronecker map. Roughly speaking, the
exponential increase in the degree only corresponds to a polynomial increase in the logarithm
of the degree, which corresponds to the size of the sparse representation. Hence algorithms
for univariate polynomials with very few terms and very high degree have an important ap-
plication. We will consider exactly this type of algorithm at various points throughout this
thesis.

1.3 Computational model

It is always important to carefully define the computational framework that will be used to
describe and analyse algorithms. In our case, this is more than an academic exercise, as the
choice of model will be crucially important for understanding our results in the first few chap-
ters.

1.3.1 Background

Countless descriptions of different abstract machines have been proposed over the last sev-
enty years as general models of mathematical computation. These models have a wide vari-
ety of motivations and goals; some are defined according to the functions they can compute,
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some according to the structure of the computation, and some according to properties of a
class of actual digital computers. In the present work, we will prefer this final category for
its (hopeful) connection between theoretical results and practical performance. However, we
will discuss some other models as well for comparison.

Turing (1937) developed the model of the first abstract computing machine, the so-called
Turing machine, which we still use today as the basis for computability and basic complex-
ity classes such as P and NP. The greatest strength of this model is its simplicity and com-
putational equivalence to other fundamental models such as Church’s lambda calculus and
pushdown automata.

The slight refinement of multi-tape Turing machines are of particular interest here. The
simplest such machine has three tapes, a read-only input tape, a write-only output tape, and
a single working tape. More sophisticated models such as the seven-tape Turing machine of
Schönhage, Grotefeld, and Vetter (1994) have shown some evidence of practicality for math-
ematical computations, despite bearing little resemblance to actual machines.

However, Turing machines are known to over-estimate the cost of certain operations on
modern digital computers, the difference owing primarily to the way memory is accessed. In
Turing machine models, each tape has a single head for reading and/or writing which is only
allowed to move one position at each step of the computation. By contrast, the structure of
internal memory in any modern computer allows random access to any location with essen-
tially the same cost.

This motivated the definition of the random access machine (or RAM) by Cook and Reck-
how (1973). Their model looks similar to a 3-tape Turing machine, except that the work mem-
ory is not a sequential-access tape but rather an array that allows random access and indirect
addressing. Another important difference is that every memory location in input, output, or
working space can hold an integer of unbounded size, as opposed to the finite alphabet re-
striction in Turing machines. In addition to the usual operations such as LOAD, STORE, and
BRANCH, the instruction set of a RAM also contains operations for basic arithmetic such as
addition and multiplication of integers.

While the RAM model has seen much success and seems to be very commonly used in al-
gorithm design and analysis, it still has significant differences from actual digital computers.
The most obvious is the RAM’s ability to manipulate and store unbounded-length integers
with unit cost. This is somewhat mitigated by the log-cost RAM, in which the cost of an op-
eration on integers with values less than n is charged according to their bit-length: O(log n )
for all operations except MUL and QUO, which cost O(log2 n ). A slightly more refined ap-
proach is presented by Bach and Shallit (1996, §3.6), where an interesting storage scheme is
also mentioned which would allow for sub-linear time algorithms. However, as pointed out
for instance by Grandjean and Robson (1991), these models still underestimate the cost of cer-
tain kinds of memory accesses and (at least for the log-cost RAM) define the cost of arithmetic
too bluntly.

Motivated by these shortcomings is the primary model we will rely on in this thesis, the
Random Access Computer (or RAC) of Angluin and Valiant (1979). This model bears some
similarity to pointer machines (Kolmogorov and Uspenskĭı, 1958; Schönhage, 1980; Schön-
hage et al., 1994) in that each memory location may hold a pointer to another memory loca-
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tion. Reconciling this with the RAM model, each “pointer” is actually an integer of bounded
size, and this “word size” is dependent upon the size of the input. The model supports mod-
ular arithmetic on word-size integers as well as indirect addressing. This seems to be most
closely aligned to machine instructions in modern (sequential) computing architectures, and
the model we propose in the next subsection is essentially an elaboration on the RAC.

Having described the evolution and motivation of our model of choice, we briefly men-
tion some other computational models that will be of interest. First, on the practical side, a
shortcoming still of the RAC is that every random memory access is assumed to have the same
cost. On any modern computer, the multi-level memory hierarchy of registers, cache, main
memory, and disk grossly violates this assumption. Especially in algorithms with close to
linear complexity, the dominant cost often becomes that of memory access (these are called
memory-bounded operations). Models which seeks to address this are the I/O model or “DAM
model” of Aggarwal and Vitter (1988) and its cache-oblivious extension by Frigo, Leiserson,
Prokop, and Ramachandran (1999).

Backing away from practicality, most of the models mentioned so far are notoriously re-
sistant to any lower bounds for interesting problems. Simpler models such as circuits (equiv-
alently, straight-line programs), described in the previous section, are more useful for these
purposes, while still being sufficiently general to describe many algorithms in practice. A spe-
cial type of circuit of note here is the bounded coefficients model, in which every constant
appearing on an edge in the circuit must be of constant size (Chazelle, 1998).

The most significant shortcoming of circuits is that they do not allow branching; this is
overcome by branching programs, an extension of binary decision trees to general domains
(Borodin and Cook, 1980). In such models, each node represents a “state”, of the computation,
which proceeds according to the values computed. The size complexity in such models is
defined as the number of bits required to store this state, which is the logarithm of the number
of nodes.

1.3.2 In-Memory Machine

As mentioned before, the model we will use in this thesis is the Random Access Computer
(RAC) of Angluin and Valiant (1979). The primary motivation for this model was to get a closer
connection between practical performance and theoretical complexity for low-level compu-
tations. While high-level computations or entire programs may often read a large input from
a file (similar to the read-once input tape in a RAM), low-level computations are often subrou-
tines within a program, and therefore their input, as well as space for the output, presumably
resides in main (random-access) memory at the beginning of the computation.

In the RAC model, this in-memory property is handled by making a special additional
instruction to those of a standard RAM that loads the entire input into working memory in a
single step. Hence the memory structure of a RAC looks identical to that of a RAM, with the
primary difference being that the integers stored in each memory location have bit-length —
that is, the size of machine words — bounded (in some way) by the size of the input.

The model we define here gives a more detailed memory layout that will allow a richer
discussion of space complexity in the algorithms we develop. Our variation will also give
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greater ease in composing algorithms, i.e., calling one algorithm as a subroutine of another.
It is computationally equivalent to the RAC, but for clarity, we will use the distinct name of
In-Memory Machine, or IMM for short.

Storage in the IMM is divided into four parts: constants (C ), input (I ), temporary working
space (T ), and output (O). Each of these is represented by a sequential array, which we will
refer to respectively as MC , M I , M T , and MO . All four arrays allow random read access at unit
cost, and the work space and output also allow for random write access at unit cost.

Instruction Description
COPY(A, i , B , j ) Copy the value of M A[M T [i ]] to M B [M T [j ]].

A must be one of C , I , T , or O.
B must be one of T or O.

BRANCH(i , L) Go to instruction labeled L iff M T [i ] = 0.
ADD(i , j , k ) M T [i ]←M T [j ]+M T [k ] mod 2w

SUB(i , j , k ) M T [i ]←M T [j ]−M T [k ] mod 2w

MUL(i , j , k ) M T [i ]←M T [j ] ·M T [k ] mod 2w

QUO(i , j , k ) M T [i ]←
�

M T [j ]
M T [k ]

�

HALT Stop execution

Table 1.1: Instruction set for IMM model

The instruction set for the IMM is given in Table 1.1. The parameter w gives the word size,
so that 2w−1 is the largest integer that can be stored in a single word of memory. Observe that
only the COPY instruction involves indirect addressing. We must also specify that M T [i ] = 0
initially for any i ≥ 0. For any instruction COPY(A, i , B , j )with B =O, i.e., a copy to the output
space, we also require that M T [j ] is less than the size of the output. More precisely, using the
notation of the following paragraph, 0≤M T [j ]<max(#O, #O ′).

A problem for IMM computation is described by a set S ⊆ (Z∗)3 of tuples (I ,O,O ′) indi-
cating the initial configurations of the input and output space, and the corresponding final
configuration of the output space. Most commonly, I will simply contain the input and O will
be empty, but the model allows for the output space to be wholly or partly initialized, for rea-
sons we will see. As O and O ′ will be stored in the same part of memory, the size of the output
space is defined to be max(#O, #O ′), and this also bounds the size of this part of memory at any
intermediate step in the computation, as detailed above. For the problem to be well-defined,
we of course require that any initial input and output configuration appears at most once in
S . That is, for any I ,O,O ′1,O ′2 ∈Z∗, if (I ,O,O ′1)∈S and (I ,O,O ′2)∈S , then O ′1 =O ′2.

The size n of a given instance (I ,O,O ′) ∈ S is defined as the size of the input and output,
n = #I +max(#O, #O ′). Every integer stored in memory must fit in a single word, but as in
the RAC model, this word size varies according to the size of the instance, as we will discuss
below.

An algorithm for an IMM problem consists of three components: a labeled list of instruc-
tions from the set in Table 1.1, a functionW : N→ N to define the word size, and a function
C :N→Z∗ to define the values stored in the array C of constants.
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The word-size functionW (n ) gives the number of bits w of a single word in memory for
any instance of size n . Consider the restrictions on the behaviour of W (n ). First, machine
words must be large enough to hold every integer that appears in the input or output. For
a given problem S , defineMS (n ) to be the largest integer appearing in any valid size-n in-
stance inS . Then we must haveW (n )≥ log2MS (n ).

Furthermore, machine words must be large enough to address memory. To address the
input and output, this immediately implies that we must have W (n ) ≥ log2 n . But the algo-
rithm may use more than n cells of memory in temporary storage. This is why the word-size
functionW (n )must be defined by the algorithm and not by the problem. However, we should
be careful in allowing the algorithm to set the word size, as settingW (n ) to be very large could
make many computations trivial.

This “cheat” is avoided by requiring that algorithms may only increase the word-size by a
constant factor. Specifically, we require

W (n )∈O
�

log2 n + log2MS (n )
�

.

A consequence is that the IMM model is sufficiently rich to describe the computation of any
function in PSPACE.

There is one more comment to be made on the word size. The boundMS (n ) comes from
the problem itself, but for some problems this is also flexible in a certain sense. For instance,
consider algorithms whose input or output contains arbitrary-precision integers. Encoding
every integer into a single word clearly violates the principle of the model, and eliminates
from discussion any algorithm for multiple-precision arithmetic. But how should a long inte-
ger be encoded into multiple words?

To address this issue, we say a problem is scalable if the size of integers in a length-n in-
stance are proportional to log2 n . More precisely, a problemS is scalable ifMS (n )∈O(log n ).
Roughly speaking, this means that if the problem can be encoded into any actual computer
with fixed machine precision, then the word-size and word operations in any algorithm for
that problem correspond to a constant number of words and word operations on that real
computer.

The third component of an algorithm solving a problem on an IMM is the constants com-
putation function C (n ). This gives the values stored in the array of constants C for any in-
stance size n . To avoid gratuitous cheats such as computing all possible answers as constants,
we also require that the number of constants, #C , be fixed for the algorithm independently of
the instance size. That is, #C does not vary according to the instance size, although the values
in C may. The C (n ) function must be computable, and in most practical situations will be
trivial.

What it means to say that a given IMM algorithm correctly solves a given IMM problem
should be clear. We now turn to the cost analysis of an algorithm A. The time complexity of A,
written T (n ), is the maximum over all instances of size n in S of the number of steps taken
by A to produce O ′ in the output space and halt. Importantly, this does not include the time
to compute W (n ) and C (n ). In the case that W (n ) and C (n ) can be computed in O(T (n ))
time by an IMM with word size exactly log2 n and absolutely fixed constants, we say that the
algorithm A is universal.

13



CHAPTER 1. INTRODUCTION

The space complexity of algorithm A, written S(n ), is based only on the size of M T , the
temporary working space. It is defined as the maximum i such that M T [i ] is accessed in any
instruction during the execution of any valid instance of size n . Note that this differs crucially
from most notions of space complexity, in models where the input and output exist in read-
once and write-once tapes, respectively. We will see how the ability to read from and write to
the output space breaks at least some lower bounds.

Some portions of this thesis examine in-place algorithms. Intuitively, this means that the
output is overwritten with the input. More precisely, we say a problem given byS is in-output
if I is empty for every (I ,O,O ′) ∈S . That is, the data used as input for the algorithm is stored
in the initial configuration of the read-write output space. An algorithm for such a problem
is said to be in-place if it uses only O(1) temporary space in M T . To our knowledge, ours is
the first abstract computational model that allows a formal description of such problems and
algorithms.

The reader is referred to Angluin and Valiant (1979) for connections between time com-
plexity in the IMM (equivalently RAC) model and the more common RAM model. In particu-
lar, an algorithm with time complexity T (n ) on a log-cost RAM can be simulated by an IMM
with the same cost, and an IMM algorithm with time complexity T (n ) can be simulated on a
log-cost RAM with at most O(T (n ) log2 n +n log n ) operations.

Finally, some algorithms will make use of randomization to improve performance. To
this end, define a randomized IMM to be equivalent to the normal IMM with an additional
instruction RAND(i ) that chooses an integer uniformly and randomly between 0 and 2W (n )−1
and stores its value in M T [i ].

1.3.3 Storage specification for elements in common rings

The subject of this thesis is computations with polynomials in R[x1, . . . ,xn ], where the sorts of
domains we have in mind for the ring R are the integers Z, rationals Q, finite fields Fq where
q is a prime power, and floating-point approximations to real and complex numbers in R
and C. For completeness, we discuss briefly how elements in these rings can be stored in the
memory of an IMM.

A natural number a ∈ N is stored in the 2w -adic representation as a list (a 0, a 1, . . . , a n−1)
with 0≤ a i < 2w for all i , and a = a 0+a 12w+a 222w+· · ·+a n−12(n−1)w . So each a i fits in a single
word of memory, and the entire representation of a may be stored either contiguously or (with
twice as much space) in a linked list. To extend this to all integers, we add an additional word
of storage for the sign. In any case, the size of the representation in memory is O( 1

w
log a )

words of storage.

In the case of scalable problems as defined in the previous subsection, we conclude that
O(n ) words in IMM (or RAC) memory can be used to represent any (n log2 n )-bit integer, and
conversely a single n-bit integer can always be represented in O(n/(log n )) words. (To be
more pedantic, we might additionally specify that the representation of a is preceded by a
single word indicating the length of the representation.)

14



CHAPTER 1. INTRODUCTION

A rational number inQ can always be written n/d with n , d ∈Z relatively prime and d > 0.
Such a number is simply represented as the pair (n , d ).

Elements in a modular ring Z/mZ are stored as integers in the range {0, 1, . . . , m −1}. This
handles the case of finite fields Fp with prime order. For extension fields of size p e , we will
work in the isomorphic fieldFp/〈Γ〉 for Γ∈Fp [x ] irreducible of degree e . Then we represent el-
ements in Fp e by polynomials in Fp [x ]with degree less than e using the dense representation,
as an array of e elements from Fp .

Consider a real number α ∈ R in the range (0, 1), and any chosen small ε > 0. To store
an ε-approximate representation of α, we use an integer a stored in k =

 

1
w

log2
1
ε

£

words,

satisfying
�

�α−2−k w a
�

� < ε. This can be extended to any real number β by adding an integer
exponent b such that

�

�β −2b−k w a
�

� < ε · 2b . An approximation to a complex number γ ∈ C is
stored as a pair of approximate real numbers, representing the rectangular coordinates for γ.

For any of these rings, and for an element u ∈R in the ring, we write size(u ) for the num-
ber of machine words required to represent u (where the parameter w for the word-size is
understood). So for instance if u ∈N is a nonnegative integer, size(u ) =

�

logw (u )
�

.

Observe that addition in any of these rings is easily accomplished in linear time in the size
of their representation. We will discuss the cost of multiplication in the next subsection. An
important subroutine is modular multiplication with word-sized operands: given a ,b , c ∈ N
with 0 ≤ a ,b , c < 2w , computing r ∈ N with 0 ≤ r < c such that a · b ≡ r mod c . First the
multiplication a ·b is performed to double-word precision, by splitting each a ,b in half via a
division with remainder by 2bw /2c, then performing four word-size multiplications and some
additions. The division with remainder by c can then be accomplished using similar tech-
niques. In summary, the modular multiplication subroutine can be performed in a constant
number of word operations in the IMM.

1.3.4 Algebraic IMM

The results in the previous subsection handle storage and manipulation of algebraic objects
of various types within the usual IMM model. However, it is often convenient to describe and
analyse an algorithm independently of the particular domain of computation. For instance,
the same algorithm might work over an arbitrary field, whether it be a prime field, an ex-
tension field, the rational numbers, or any number of other fields. To present the algorithm
concisely, it would be useful to perform basic arithmetic in an arbitrary algebraic domain.

The concept of an algebraic RAM was developed to handle mathematical computations
involving integers as well as elements from an arbitrary domain. The idea is a usual RAM with
a single program but duplicated storage: two input tapes, two output tapes, and two memory
banks. (Often the input and output are only on one side.) The arithmetic side of the RAM
is in the usual model and computes with arbitrary-length integers, while the algebraic side
computes with elements from the chosen algebraic domain. This seems to be the dominant
model (whether or not explicitly stated) in algorithms for symbolic computation.

Along these lines, we extend our concept of IMM to an algebraic IMM. The four mem-
ory banks are duplicated on the arithmetic and algebraic sides, albeit not necessarily of the
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same size. All instructions can be performed on either side of the IMM, but the two may
never be mixed. That is, it is impossible to (explicitly) copy values between the algebraic and
arithmetic sides. Furthermore, the specific arithmetic operations for the algebraic side might
differ from the ADD, SUB, MUL, and QUO of the arithmetic side, depending on the domain
and the specific problem.

An algorithm for an algebraic IMM consists of a single list of instructions, the two func-
tions W (n ) and C (n ), and a third functionA (n ) to generate the constants on the algebraic
side. This function may produce different values for different domains and different instance
sizes n , but the size of the constant array on the algebraic side must be fixed for any valid
domain and any instance size.

A universal algorithm for an algebraic IMM is similar to before, with the additional re-
quirement thatA (n ) can be computed in the same time and space complexity.

We could define an additional instruction for choosing random algebraic elements, but
this is problematic to define in a sensible generic way. Instead, a randomized algebraic al-
gorithm can define a subset of algebraic elements, stored in any part of the memory (input,
constants, output, or temporary working space), and then use a randomly-chosen integer to
index into the set. For all applications we are aware of, this will be sufficient to guarantee
performance, and also sufficiently general to be applicable in any domain.

Now consider the problem of representing a polynomial f ∈ R[x1, . . . ,xn ] in an algebraic
IMM. In the dense representation, the entire polynomial can be stored in the algebraic side,
perhaps with some word-sized integers for the size on the arithmetic side. The recursive
dense representation is actually the most intricate of the three, and will be stored mostly on
the arithmetic side, with pointers to ring elements on the algebraic side at the bottom level
of recursion only. Finally, the sparse representation of a t -sparse polynomial will consist of a
length-t array of nonzero coefficients on the algebraic side, coupled with a length-nt array of
exponents on the arithmetic side.

1.4 Warm-up: O(n log n )multiplication

We now show the implications of the IMM model with an example: multiplication of multiple-
precision integers in Z. This is undoubtedly one of the most well-studied problems in mathe-
matical computation, and dense multiplication algorithms also hold a central importance in
this thesis. It is therefore not only instructive but prudent for us to examine the problem in
our chosen model of computation. Furthermore, some of the number-theoretic tools we use
here will come up again later in this thesis.

1.4.1 Summary of previous algorithms

The traditional model of study for integer multiplication algorithms is that of bit complexity.
So consider the problem of multiplying two n-bit integers, that is, a ,b ∈N such that 0≤ a ,b <
2n .

16



CHAPTER 1. INTRODUCTION

The naïve algorithm for multiplication uses O(n 2)word operations. Karatsuba’s algorithm
(Karatsuba and Ofman, 1963) uses a divide-and-conquer approach to improve the complexity
to O(n log2 3), or O(n 1.59). A family of divide-and-conquer algorithms due to Toom (1963) and
Cook (1966) improves this to O(n 1+ε), for any positive constant ε. Schönhage and Strassen
(1971) make use of the Fast Fourier Transform algorithm to improve the bit complexity to
O(n log n loglog n ). Recently, this technique has been carefully refined by Fürer (2007) to
achieve O(n log n2log∗n ) bit complexity for multiplication 1.

Knuth (1981, §4.3.3) discusses most of these algorithms from both a practical and a theo-
retical viewpoint. Of note here is an idea presented by Knuth but attributed to Schönhage to
achieve O(n log n ) complexity in a log-cost RAM for multiplication. The idea is to use complex
number arithmetic and use the so-called Four Russians trick (Arlazarov, Dinic, Kronrod, and
Faradžev, 1970) to precompute all products under a certain size. In the storage modification
machine (SMM) model, Schönhage (1980, §6) shows how to achieve O(n ) time for n-bit inte-
ger multiplication, which is also similar to our result here. (By way of comparison, Schönhage
explicitly states that the goal of his model is not to correspond to any “physical realization”,
but rather to develop a flexible and general model for its own sake. Our IMM model has the
opposite motivation.)

1.4.2 Integer multiplication on an IMM

The algorithm presented here achieves a similar result to Schönhage’s O(n log n ) algorithm
for a RAM, but without the need for extensive precomputation, and using only modular arith-
metic. The idea is similar to the “Three primes FFT integer multiplication” algorithm of von
zur Gathen and Gerhard (2003, §8.3), extended to arbitrary word sizes. We now proceed to
describe the problem and our algorithm for the IMM model.

As is standard, for simplicity we restrict our attention to the case that both multiplication
operands are of roughly the same size. A valid instance inS will consist of input I containing
two integers a and b , each n words long, output O initially empty, and O ′ — the desired output
— consisting of the product ab written in 2n words of memory. The total instance size is
therefore 4n , and this completes the formal description of the problem.

Write m = log2 max(4n ,MS (n )), the lower bound on the word size implied by the problem
definition. We assume the input integers a and b are written in the 2m -adic representation as

a = a 0+a 1 ·2m +a 2 ·22m + · · ·+a n−1 ·2(n−1)m

b = b0+b1 ·2m +b2 ·22m + · · ·+bn−1 ·2(n−1)m .

Now define the polynomial A(x ) = a 0+ a 1x + · · ·+ a n−1x n−1 ∈ Z[x ] and B (x ) ∈ Z[x ] similarly.
Our approach is to compute the product A(x ) · B (x ) = C (x ) ∈ Z[x ], then evaluate C (2m ) to
compute the final result and write it again in the 2m -adic representation.

1The iterated logarithm, denoted log∗n , is the extremely slowly-growing function defined as the number of
times logarithm must be taken to reduce n to 1. So, for instance, if n > 1, log∗n = log∗(log n )+1.
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Let k be the least power of 2 greater than 2n , i.e., k = 2dlog2 n e+1. Our algorithm works by
first choosing a set of primes P such that for each p ∈ P , (p − 1) is divisible by k , and the
product of the primes inP is at least 23m .

From the fact that deg A, deg B < n and every coefficient of A and B is at less than 2m , we
can see that every coefficient in C is less than n ·22m , which is less than 23m from the definition
of m . Therefore computing the coefficients of C mod p for each p ∈ P , followed by Chinese
remaindering, will give the actual integer coefficients of C .

Furthermore, since the multiplicative group of integers modulo each prime p ∈ P is di-
visible by a power of 2 greater than degC , the coefficients of C mod p can be efficiently com-
puted using the Fast Fourier Transform, using O(n log n ) operations in Fp , assuming a k ’th
primitive root of unity modulo p (which must exist) is known in advance. Denote such a root
of unityωp for each p ∈P .

The crucial question that remains is how large each p must be to satisfy these conditions.
For this, we turn to analytic number theory, and in particular Linnik’s theorem (which we
somewhat simplify for our particular purposes):

Fact 1.2. (Linnik, 1944) There exist absolute constants qL , cL , L such that, for all q ≥qL , the least
prime p such that p ≡ 1 mod q satisfies p ≤ cLq L .

Unfortunately, despite the large body of work devoted to finding concrete values for the
exponent L, it appears that no proofs give explicit values for both qL and cL . Although the
exponent L has been improved recently by Xylouris (2009), the most useful result for us is from
Heath-Brown (1992), where it is proven that the inequality above holds for qL = 1, L = 5.5, and
cL is an effectively computable absolute constant.

From this, we have the following.

Lemma 1.3. There exists an absolute constant c such that, for any k , m ∈ N as above, there
exists a set of at most three primesP with

∏

p∈P p ≥ 23m and, for each p ∈P ,

1. k divides (p −1)
2. p ≤ c 216.5m .

Proof. Let cL be the (effectively computable) constant from the version of Linnik’s theorem
by Heath-Brown (1992).

Let p1 be the least prime congruent to 1 modulo 2m . We have that p1 < cL(2m )5.5 = cL ·25.5m .

If p1 ≥ 23m , then we simply setP = {p1}. Otherwise, let p2 be the least prime congruent to
1 modulo 2dlog2 p1e. Since p2 has a divisor greater than p1, clearly p2 6= p1, and furthermore we
see that 2m divides (p2−1). Finally, 2dlog2 p1e < 23m+1, and therefore p2 ≤ cL(23m+1)5.5 < 64cL ·216.5.

If p1p2 ≥ 23m , then set P = {p1, p2}. Otherwise, let p3 be the least prime congruent to 1
modulo 2dlog2 p2e as previously and observe that p3 < 64cL ·216.5 as well.

At this point, since each of p1, p2, p3 is greater than 2m , their product is at least 23m . So set
P = {p1, p2, p3} in this case.
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From the definition of m , 4n < 2m . Recalling also that k is the least power of two greater
than 2n , it must be the case that k | 2m , and therefore k divides each p i − 1. Letting c = 64cL ,
we get the stated result.

For our IMM integer multiplication algorithm, then, we setW (n )— the word size for in-
stance size n — to be W (n ) =

�

log2 c
�

+ 16.5m . This means that each p ∈ P will fit into a
single word in memory. ClearlyW (n ) is bounded by

W (n )∈O(log n + logMS (n )) =O(m ),

so this is allowable in the IMM model.

The constants defined byC (n ) for our algorithm will consist of the (at most three) primes
in P , along with the k ’th primitive roots of unity modulo each prime in P . For any n , this
consists of at most six words of memory, so the constants are also valid for the IMM model.

This completes the description of our algorithm for multiplication in the IMM model. Be-
cause arithmetic modulo a word-sized integer can be performed in a constant number of
steps, the cost of arithmetic operations in Fp is constant for each p ∈ P . Therefore the to-
tal cost of the algorithm is simply O(n log n ) word operations, the cost of the modular FFT
computations.

This result is summarized in Theorem 1.4 below. Unfortunately, as the constant cL is not
known explicitly, we have only shown the existence of an algorithm. Some more careful steps
and repeated doubling in the computation ofW (n ) and C (n ) could avoid this issue, but we
will not go into those details here.

Theorem 1.4. There exists an IMM algorithm for multiplying n-word integers that runs in time
O(n log n ).

Another unfortunate fact is that the algorithm is not universal, i.e., the word-size and con-
stants cannot be computed in the same time as the algorithm itself. This is because of the cost
of searching for each prime p ∈P , which could be avoided by either (1) using randomization
to randomly choose primes in the progression, or (2) assuming a more realistic bound on the
least prime in an arithmetic progression. The latter possibility will be discussed at length in
Chapter 8.

1.4.3 Implications

Observe that the problem as defined for integer multiplication in the previous subsection
is not scalable. That is, the size m of words in the input could be much larger than log2 n .
This actually means that our O(n log n ) algorithm is actually a stronger result, as it applies no
matter what the word size is.

To compare the result of Theorem 1.4 against previous work in the bit complexity model,
we should restrict the problem to be scalable. The word size for a size-n input is then re-
stricted to O(log n ), meaning that an n-bit integer requires exactly Θ(n/(log n ))words of stor-
age. Therefore the algorithm described can be used to multiply n-bit integers using O(n )word
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operations in the IMM model. This matches the algorithm of Schönhage (1980) in the SMM
model but (like that result) can be misleading, as it counts the input in bits but the cost in
word operations.

Simulating the algorithm described above on a log-cost RAM is a fairer comparison, and
gives bit complexity O(n log2 n ) for n-bit integer multiplication. This could be improved at
least to some extent with a more careful simulation, but we will not attempt that exercise.

The fast integer multiplication algorithm can be applied to other rings represented in
words in the IMM, as well as to polynomials with coefficients in such rings and stored in the
dense representation, using the Kronecker substitution.

For instance, consider the multiplication of two univariate integer polynomials A, B ∈Z[x ]
with degrees less than d and all coefficients stored in at most k words. Observe that the in-
stance size n isΘ(d k ). To compute A ·B ∈Z[x ], simply write down the integers a = A(2(2k+1)w )
and b = B (2(2k+1)w ), and multiply them. Since each integer is stored in O(d k ) =O(n ) words,
the cost of this multiplication is O(n log n ). Furthermore, each coefficient in A · B is at most
d · (2w k )2 ≤ 2(2k+1)w , so the coefficients of A ·B can simply be read off from the integer product
ab .

This same idea can be extended to any R[x1, . . . ,xm ], with R any of the rings mentioned
in subsection 1.3.3 to perform dense polynomial multiplication in time O(n log n ), where n is
the size of a single instance in the IMM. However, importantly, we do not have a O(n log n ) al-
gorithm for multiplication of dense polynomials over an arbitrary ring R in the algebraic IMM
model. This is because there is no way to encode the elements of an arbitrary ring into inte-
gers. In this case, the best result is still that of Cantor and Kaltofen (1991), giving an algorithm
for polynomial multiplication in an algebraic IMM using O(n log n loglog n ) ring operations.

In summary, we see that the IMM model can allow very slight improvements over the best
known bit complexity results. However, these differences are quite minor, and furthermore we
would argue that the IMM model gives a more accurate measure of the actual cost on actual
physical machines. In the remainder, the IMM model will form the basis of our discussions
and analysis, although the algorithms will not be presented so formally as they have been
here. Furthermore, most of our results will apply equally well to more common models such
as (algebraic) RAMs.
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I must Create a System, or be enslav’d by another Man’s.
I will not Reason & Compare; my business is to Create.

—William Blake, Jerusalem (1804)

Chapter 2

Algorithm implementations in a software
library

Owing to their central importance in mathematical computing, software for polynomial
computations exists in numerous programs and libraries that have been developed both in
academia and in industry. We will examine this existing software and show that, surprisingly,
no open-source high-performance library focusing on polynomial computation — including
multivariate and sparse polynomials — is currently available.

We then discuss our proposed solution, a new software library for computations with
polynomials, broadly defined, which we call the MVP library. We give an overview of the ar-
chitecture and aims of the software, and discuss how some low-level operations have been
implemented. Although the library is still in its infancy, we demonstrate that it is already
competitive in speed with other software, while being at least general enough to hold all the
algorithms that will be presented in this thesis.

The author extends his thanks to Clément Pernet for many fruitful discussions, and par-
ticular those which started the idea of this software project.

2.1 Existing software

Computations with polynomials are useful in a wide range of applications, from engineering
to mathematical research. It would therefore be impossible to discuss every piece of soft-
ware that includes polynomial computations at some level. Instead, we will attempt a broad
overview of existing software that either takes a comprehensive view including such compu-
tations as a key component, or that which focuses specifically on some aspect of polynomial
computation. Starting at the top level, we review existing and available software, and then
highlight the gap in such software that we are attempting to fill.

MACSYMA was first developed starting in 1968 at MIT as the first comprehensive computer
algebra system with the general goal of solving all manner of mathematical problems with the
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aid of a computer. Since then, numerous such systems have followed suit, albeit with varying
aims. The most successful of these today are the commercial products MAPLE, MATHEMAT-
ICA, and MAGMA, with open-source programs such as SAGE, MAXIMA, AXIOM, and REDUCE also
gaining popularity. Popular comprehensive numerical computation programs such as MAT-
LAB and OCTAVE also have some symbolic computation capabilities, either built-in or available
as an add-on package.

These programs have somewhat differing emphases, but they all include algorithms for
a wide variety of mathematical problems, from differential equations to linear algebra. Of
course also included are computations with polynomials, and these implementations are of-
ten highly optimized, as their speed affects the speed of many parts of the system. However,
by their general nature as comprehensive systems, these programs all have extensive over-
head costs incorporated, and are not well-suited for developing high-performance software
for particular applications.

Large but somewhat less comprehensive systems have also been developed for a variety
of mathematical problems, and some focus especially on polynomials. COCOA (Abbott and
Bigatti, 2011) and SINGULAR (Decker, Greuel, Pfister, and Schönemann, 2010) are compre-
hensive systems for commutative and non-commutative algebra. They include multivariate
polynomial arithmetic and focus specifically on Gröbner basis computations and algebraic
geometry. PARI/GP (PAR, 2010) is a program with similar breadth, and also with support for
polynomial arithmetic, but with a focus more on number theory. TRIP (Gastineau and Laskar,
2011) is a computer algebra system for celestial mechanics with very efficient sparse multi-
variate polynomial arithmetic over inexact domains. However, these programs are still quite
general, featuring support for a wide range of operations and each with their own program-
ming languages.

Finally, there are a few libraries for low-level computations with polynomials with a nar-
row focus on high performance for specific problems. A very popular and well-designed ex-
ample is Victor Shoup’s NTL, “a Library for doing Number Theory” (2009). This library con-
tains very efficient implementations for univariate polynomials with integer, rational, and
finite field coefficients, as well as basic algebraic operations such as factorization. NTL set
the standard for the fastest implementations of these operations, using asymptotically fast
algorithms along with simpler ones for small problem sizes, and making use of a variety of
low-level tricks and tweaks. However, development has mostly been limited to bug fixes since
2005.

More recently, the FLINT library has emerged as a successor to NTL with similar goals
but more active development (Hart, Johansson, and Pancratz, 2011). FLINT’s core focus is on
efficient arithmetic overZ[x ], but it also has support for other kinds of univariate polynomials
and some integer matrix computations as well, including lattice reduction algorithms. David
Harvey, one of the original developers of FLINT, has also released an extremely efficient library
for arithmetic in Z/mZ, where m is machine word-sized, called zn_poly (2008).

FLINT also contains implementations of multiple-precision integer arithmetic. Although
the current work is focused specifically on computations with polynomials, there is an in-
timate connection with integer computations, as we have already seen. Besides FLINT, the
Gnu Multiple Precision library (GMP) by Granlund et al. (2010) is certainly the most popular
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library for long integer arithmetic. It contains both C and C++ bindings and has highly-tuned
arithmetic routines, often written in assembly for a variety of different architectures.

The author is aware of only one software library focused on high-performance multivari-
ate polynomial arithmetic, the SDMP package by Roman Pearce and Michael Monagan. This
package features very efficient algorithms for sparse multiplication and division, and ap-
pears to be the fastest for some range of cases, even scaling to multi-cores (Monagan and
Pearce, 2009, 2010a,b). However, a major drawback is that the domain is limited mostly
to characteristic-zero rings and single-precision exponents. Furthermore, the software is
closed-source and is only incorporated into the general-purpose commercial computer al-
gebra system Maple.

Another high-performance library that is only available through Maple is modpn (Li, Maza,
Rasheed, and Schost, 2009a). This library is mainly designed as the back-end for polyno-
mial system solving via triangular decomposition, and it contains very efficient arithmetic for
dense multivariate polynomials.

Finally, there have been a few academic software packages developed for computations on
polynomials given in a functional representation. DAGWOOD is a Lisp-based system for com-
putations with straight-line programs made to interface with MACSYMA (Freeman et al., 1988).
The FOXBOX system allowed computations with polynomials represented by black boxes for
their evaluation, including sparse interpolation (Díaz and Kaltofen, 1998). It made use of C++
templates, relied on the use of NTL and GMP, and was built on top of the SACLIB library. Unfor-
tunately, SACLIB appears to no longer be actively supported, and both DAGWOOD and FOXBOX

are no longer maintained or even available.

2.2 Goals of the MVP library

Considering the great success of low-level, open-source libraries for dense univariate polyno-
mial arithmetic (namely NTL, FLINT, and zn_poly), it is surprising that no such library exists
for multivariate and/or sparse polynomials. We are very thankful to the authors of efficient
multivariate arithmetic libraries such as TRIP, SDMP, and modpn for publishing extensively on
the design and implementation of their software. However, since their programs are closed-
source, some details will always be hidden, and it will be difficult if not impossible to interface
with their libraries, either by writing new algorithms to be inserted, or by including their li-
braries in a larger system. On the latter point, it should be noted that the open-source licenses
and development of FLINT and PARI have led to their wide use as the back-end for polynomial
computations in SAGE.

Our goal therefore is a software library that is free and open-source and focuses on dense
and sparse multivariate polynomial arithmetic and computations. In design, the software
should be flexible enough to compare different algorithms, including interfacing with existing
software, while also achieving high performance. In addition, the development should be
open to allowing experimentation in new algorithms by researchers in symbolic computation.
To our knowledge, no such library currently exists.
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One consequence of this gap is that numerous algorithms developed over the past few
decades currently have no readily-available implementation for experimentation and com-
parison. For instance, the celebrated sparse interpolation algorithm of Ben-Or and Tiwari
(1988) and the sparse factorization algorithm of Lenstra (1999), while probably used as the
back-end in at least a few existing software packages, have no currently-maintained imple-
mentations. This hinders both the development and widespread use of sparse polynomial
algorithms.

In the remainder of this chapter, we describe the design and implementation of a new
software library for polynomial arithmetic, which we call MVP (for MultiVariate Polynomials
— also, we hope the library will be most valuable). The general goals are as described above,
and the scope of algorithms is the same as those outlined in Chapter 1: arithmetic operations,
algebraic computations, and inverse symbolic computation. The current state of the library
is very immature and covers only basic arithmetic and the algorithms of this thesis. However,
the architecture of the library is designed to allow significant additions in the coming years,
including both celebrated past results that are currently without implementations, as well as
(hopefully) future advances in algorithms for polynomial computation.

2.3 Library design and architecture

The design of the MVP library borrows heavily from FOXBOX as well as the popular exact linear
algebra package LINBOX (Dumas, Gautier, Giesbrecht, Giorgi, Hovinen, Kaltofen, Saunders,
Turner, and Villard, 2002). These packages organize data structures by mathematical signifi-
cance and make extensive use of C++ templates to allow genericity while providing high per-
formance. This genericity allows numerous external libraries to be “plugged in” and used for
underlying arithmetic or other functionality.

We briefly describe some architectural features of the MVP library, followed by an overview
of its contents and organization.

2.3.1 Library design

Template programming in C++ is essentially a built-in tool for compile-time code generation.
Hence template libraries can achieve the same run-time performance as any C library, but
have greater flexibility, composability, and maintainability.

For instance, an algorithm for multiplication of densely-represented univariate polyno-
mials over an arbitrary ring can be written once, then used in any situation. At compile-time,
the exact function calls for the underlying ring arithmetic are substituted directly, so that no
branches or look-up tables are required at run-time.

Of course, template programming also has its drawbacks. For instance, consider a recur-
sive polynomial representation using templates, so that an n-variate polynomial is defined
as a univariate polynomial with (n − 1)-variate polynomial coefficients. This could lead to
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a class definition such as Poly< Poly< Poly< Poly< Ring > > > >, which quickly be-
comes unwieldy and can result in tremendous code bloat. As compilers and hardware con-
tinue to improve, the cost of such expansive templates will decrease. However, the strain on
users of the library will still be severe, especially considering that they may no be expert pro-
grammers but mathematicians requiring moderate but not optimal performance.

For these reasons, the MVP library also allows for polymorphism. This is achieved through
abstract base classes for basic types such as polynomial rings, which then have a variety of im-
plementing subclasses. Using polymorphism instead of templates means that types must be
checked at run-time. This results in somewhat weaker performance, but potentially smaller
code, faster compilation, and much easier debugging. By making full use of templates but
also allowing polymorphism, the MVP library gives users more flexibility to trade off ease of
programming with performance.

2.3.2 Main modules

The MVP library is divided into six modules: misc, ring, poly, alg, test, and bench. The
coupling is also roughly in that order; for instance, almost every part of the library relies on
something in the misc module, whereas nothing outside of the bench module relies on its
contents. We now briefly describe the design and current functionality of each module.

misc: This module contains common utilities and other functionality that is useful in a vari-
ety of ways throughout the package. Functions for error handling and random number gener-
ation are two examples. Most functions in this module are not template functions and hence
can be pre-compiled.

Handling random number generation globally allows for easily repeatable computations,
by re-using the same seed. This is very important not only for benchmarking and debug-
ging, but also for algorithm development and mathematical understanding. As we will see in
later chapters of this thesis, the performance of some algorithms relies on unproven number-
theoretic conjectures, and a failure may correspond to a counter-example to said conjectures.

ring: The abstract class Ring is the superclass of all coefficient types in the library. Here we
follow the lead of LINBOX in separating the ring class from ring elements. It is tempting to write
a C++ class for elements, say of the ring Z/mZ for small integers m . Operator overloading
would then allow easy use of arithmetic in this ring. However, this requires that the modulus
m (and any other information on the ring) either be contained or pointed to by each field
element, massively wasting storage, or be globally defined. NTL takes the latter approach,
and as a result is inherently not able to be parallelized.

Rather, we have a C++ class for the ring itself which contains functions for all kinds of
arithmetic in the ring. Algorithms on ring elements must then be passed (or templatized on)
the ring type. Elements of the ring can be any built-in or user-defined type, allowing more
compact storage. The disadvantage to the user of not being able to use overloaded arithmetic
operators is the only drawback.
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Besides the abstract base class, the ring module also contains implementations for inte-
ger modular rings, arbitrary-precision integers and rational numbers, and approximate com-
plex numbers. There are also adaptor classes to link with existing software such as NTL.

poly: The abstract class Poly is a subclass of Ring and the superclass of all polynomial ring
types. The class is templatized over the coefficient ring, the storage type, and the number of
variables. Using the number of variables as a template parameter will allow for highly efficient
and easily maintainable recursive types, and specialisations for univariate and (perhaps in the
future) bivariate polynomials are easily defined.

Separating the polynomial rings from their storage is not as important as in the low-level
rings, but it will allow full composability, for instance defining a polynomial with polynomial
coefficients. Of course the Poly type also contains extended functionality that are not appli-
cable in general rings, e.g., for accessing coefficients,.

Implementations of polynomial rings include dense, sparse, and functional representa-
tions (i.e., black-box polynomials), as described in the previous chapter. It should be noted
that the black-box representation has no problem with basic arithmetic functions such as
multiplication and division, but other functions such as retrieving the coefficient of a given
monomial are not supported and will throw an error.

The poly class contains extensive implementations of efficient polynomial arithmetic,
and in particular multiplication. Most of these algorithms are specialized for certain polyno-
mial representations and in some cases certain coefficient rings as well, for maximum perfor-
mance.

alg: This module contains will contain algorithms for higher-level computations such as
factorization, decomposition, and interpolation. Current functionality is limited to the prob-
lems discussed in this thesis, but extending this should be quite easy. The hope is that this
module will become a testbed for new algorithmic ideas in polynomial computations.

test: Correctness tests are contained in this module. The goal of these tests is not to prove
correctness but rather to catch programming bugs. As with the rest of the library, the cor-
rectness tests are generic and in general consist of constructing random examples and test-
ing whether ring identities hold. For instance, in testing rings, for many triples of randomly-
chosen elements (a ,b , c ) from the ring, we confirm distributivity: that a · (b + c ) = a ·b +a · c .
This kind of correctness test would be easy to fool with an intentionally incorrect and dishon-
est implementation, but is quite useful in catching bugs in programming. Generic tests also
have the significant advantage of making it easy to add new rings without writing entirely new
testing suites.

bench: One of the main purposes in writing the MVP library is to compare the practical
performance of algorithms. Hence accurate and fair benchmarking is extremely important.

26



CHAPTER 2. ALGORITHM IMPLEMENTATIONS IN A SOFTWARE LIBRARY

Benchmarking, like correctness testing, is also handled generically, but in a slightly different
fashion as it is important to achieve the highest possible performance.

Rather than compiling a single program to benchmark every implementation of a given
data structure or algorithm, we generate two programs for each test case. One “dry run” ini-
tializes all the variables and in most cases makes two passes through the computation that is
to be tested. The “actual run” program does the same but makes one more pass through the
computation. In examining the difference between the performance of these two programs,
we see the true cost of the algorithm in question, subtracting any initialization and mem-
ory overhead for initialisation and (de)allocation. This also allows the use of excellent tools
such as valgrind to evaluate performance which can only be run externally on entire pro-
grams. Furthermore, the code generation, compilation, and timing is all handled automati-
cally by scripts, requiring only a single generic C++ program, and a simple text file indicating
the macro definitions to substitute in for each test case.

We have thus far used the benchmarking routines to manually tune performance, choos-
ing optimal crossover points between algorithms for our target architecture. In the future, this
process could be automated, allowing greater flexibility and performance on a wide variety of
machines.

2.4 Algorithms for low-level operations

The MVP library is designed to allow other packages to be plugged in for low-level arithmetic.
For instance, adaptor classes exist to use some of NTL’s types for modular and polynomial
rings. However, the highest levels of performance for the most important operations are
achieved with a bottom-up design and strong coupling between representations at all lev-
els. Furthermore, at least including core functionality without requiring too many external
packages will lead to more maintainable and (hopefully) longer-lasting code.

With this in mind, we now turn to the primitive operation of polynomial multiplication in
Fp [x ] for primes p that can be stored in a single machine word. This operation forms the basis
for a variety of other algorithms, including long integer multiplication and representations of
prime power fields. Furthermore, univariate polynomials of this kind will be used extensively
as a test case for the algorithms developed in this thesis, as this domain bears true the often-
useful algorithmic assumption that coefficients can be stored in a constant amount of space,
and coefficient calculations take constant time.

We first examine algorithms and implementations for the coefficient field Fp , and then
turn to univariate multiplication over that field.

2.4.1 Small prime fields

Let p be a machine word-sized prime. Using the terminology of the IMM model, this means
p < 2w for whatever problem size is under consideration. On modern hardware, this typi-
cally means p has at most 32 or 64 bits in the binary representation. For this discussion, we
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assume that arithmetic with powers of 2 is highly efficient. This is of course true on modern
hardware; multiplications, divisions, additions, and subtractions modulo a power of two can
be performed extremely quickly with shifts and bitwise logical instructions.

Most of the content here is well-known and used in many existing implementations. Fur-
ther references and details can be found in the excellent books by Brent and Zimmermann
(2010) and Hankerson, Menezes, and Vanstone (2004).

Addition and subtraction

The standard method for arithmetic modulo p is simply to perform computations over Z, re-
ducing each result modulo p via an integer division with remainder. This integer remainder
operation, given by the % operator in C++, is very expensive compared to other basic instruc-
tions, and the main goal of the algorithms we now mention is to avoid its use.

We immediately see how this can be done for the operations of addition of subtraction.
Let a ,b ∈ Fp , so that 0≤ a ,b < p under the standard representation. Then 0≤ a +b < 2p −1,
so after computing a +b over Z, we simply check if the sum is at least p , and if so subtract p ,
reducing into the desired range. We call this check-and-subtract a “correction”. Subtraction
reduces to addition as well since −a ∈ Fp is simply p − a , which always falls in the proper
range when a is nonzero.

Some modern processors have very long pipelines and use branch prediction to “guess”
which way an upcoming if statement will be evaluated. A wrong guess breaks the pipeline
and is very expensive. It turns out that, on such processors, the idea above is quite ineffi-
cient since it continually requires checking whether the result is at least p . Furthermore, this
branch will be impossible to reliably predict since it will be taken exactly one half of the time
(when the operands are uniformly distributed).

Victor Shoup’s NTL includes a very clever trick for avoiding this problem. First, the sum
(or difference) is put into the range −p + 1≤ s ≤ p − 1, so that we need to check whether s is
negative, and if so, add p to it. The key observation is that an arithmetic right shift of s to full
width (either 32 or 64 bits) results in either a word with all 1 bits, if s is negative, or all 0 bits, if
s is positive. By computing a bitwise AND operation with p , we get either p , if s is negative, or
0 otherwise. Finally, this is added to s to normalize into the range [0, p −1]. Hence a branch is
avoided at the cost of doing a single right shift and bitwise AND operation.

Despite these tricks, the modular reduction following additions is still costly. If the prime
modulus p is much smaller than word-sized, further improvements can be gained by delay-
ing modular reductions in certain algorithms. For instance, Monagan (1993) demonstrated
improvements using this idea in polynomial multiplication. Say p has ` fewer bits than the
width of machine words, i.e., 2`p < 2w . Then 2` integers mod p can be summed in a single
machine word, and the remainder of this sum modulo p can be computed with just ` “correc-
tion” steps, either using the branching or arithmetic right shift trick as discussed above.
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Barrett’s algorithm for multiplication

We now turn to the problem of multiplication of two elements a ,b ∈ Fp . The algorithm of
Barrett (1987) works for any modulus p and takes advantage of the fact that arithmetic with
powers of 2 is very efficient. The idea is to precompute an approximation for the inverse of p ,
which will enable a close approximation to the quotient when ab is divided by p .

Suppose p has k bits, i.e., 2k−1 ≤ p < 2k . Let µ= b22k/p c, stored as a precomputation. The
algorithm to compute ab mod p then proceeds in four steps:

1. c1←bab/2k c

2. q ←bc1µ/2k c

3. r ← ab −qp

4. Subtract p from r repeatedly until 0≤ r < p

If the algorithm is implemented over the integers as stated, we know that the value of
r computed on Step 3 is less than 4p , and hence Step 4 iterates at most 3 times. Thus the
reduced product is computed using three multiplications as well as some subtractions and
bitwise shift operations.

If p can be represented exactly as a single- or double-precision floating point number,
then we can precompute µ = 1/p as a floating-point approximation and perform the com-
putation on Steps 1 and 2 in floating point as well, without any division by powers of 2. This
will guarantee the initial value of r to satisfy −p < r < 2p , so only 2 “corrections” on Step 4
are required. This is in fact the approach used in NTL library on some modern processors
that feature very fast double-precision floating point arithmetic. The general idea of using
floating-point arithmetic for modular computations has been shown quite useful, especially
when existing numerical libraries can be employed (Dumas, Giorgi, and Pernet, 2008, e.g.,).

Montgomery’s algorithm

The algorithm of Montgomery (1985) is similar to Barrett’s and again requires precomputa-
tion with p , but gains further efficiency by changing the representation. This time, let k ∈ N
such that p < 2k , but where 2k can be much larger than p (unlike Barrett’s algorithm). The
finite field element a ∈ Fp is represented by the product 2k a mod p . Notice that the standard
algorithms for addition and subtraction can still be used, since 2k a +2k b = 2k (a +b ).

Now write s = 2k a and t = 2k b , and suppose we want to compute the product of a and b ,
which will be stored as 2k ab mod p , or s t /2k mod p . The precomputation for this algorithm is
µ=−1/p (mod 2k ), which can be computed using the extended Euclidean algorithm. Notice
this requires p to be a unit inZ/2kZ, which means p must be odd for Montgomery’s algorithm.

Given µ, s , t , the product s t /2k mod p is computed in three steps:

1. q ← (s t ) ·µ mod 2k
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2. r ← (s t +qp )/2k

3. If r < p return r , else return r −p

As with Barrett’s algorithm, the product is computed using only three integer multiplica-
tions. Montgomery’s form is more efficient, however, since the product on Step 1 is a “short
product” where only the low-order bits are needed, and there are fewer additions, subtrac-
tions, and shifts required. Of course, there is a higher overhead associated with converting
to/from the Montgomery representation, but this is negligible for most applications.

We have found a few more optimisations to be quite useful in the Montgomery represen-
tation, some of which are alluded to by Li, Maza, and Schost (2009b). First, the parameter k
should be chosen to align with the machine word size, i.e., k = w , typically either 32 or 64.
Using this, arithmetic modulo 2k is of course just single-precision arithmetic; no additional
steps are needed for example to perform the computation in Step 1 above.

We additionally observe that the high-order bits of a single-precision product are often
computed “for free” by machine-level MUL instructions. These bits correspond to quotients
modulo 2k , as is needed on Step 2 above. The high-order bits are not directly available in
high-level programming languages such as C++, but by writing very small inline assembly
loops they may be extracted. For instance, in the x86_64 architecture of popular contem-
porary 64-bit processors, any word-sized integer multiplication stores the high-order bits of
the product into the EDX register. We use this fact in our implementation of the Montgomery
representation in the MVP library, with positive results.

The Montgomery representation also lends itself well to delayed modular reduction in
additions and subtractions, as discussed above. Again, say p has ` fewer bits than the machine
word size, so that 2`p < 2w . Now consider two un-normalized integers s , t in the Montgomery
representation, satisfying 0≤ s , t ≤ 2b`/2cp . The result r computed as their product in Step 2 of
the Montgomery multiplication algorithm above is then bounded by

r =
s t +qp

2w
<

2`p 2+2w p

2w
< 2p .

Hence 2b`/2c elements in Fp can be safely summed without performing any extra normaliza-
tion.

In the MVP library, we embrace this by always storing finite field elements in the Mont-
gomery reduction redundantly, as integers in the range {0, 1, . . . , 2p}. When the modulus p is
not too large, this allows direct remainder operations or “normalizations” to be almost entirely
avoided in arithmetic calculations. The cost of comparisons is slightly increased, making this
representation more useful for dense polynomial arithmetic, as opposed to sparse methods
which frequently test for zero. Observe that zero testing is especially bad because there are
three possible representations of zero: 0, p , or 2p .

2.4.2 Univariate polynomial multiplication

The MVP library contains dense univariate polynomial multiplication routines incorporat-
ing the quadratic “school” method, Karatsuba’s divide-and-conquer method, as well as FFT-
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based multiplication. The choice of algorithm for different ranges of input size is based on
benchmarking on our test machine. We also implemented the well-known blocking algo-
rithm for unbalanced polynomial multiplication, when the degrees of the two operands differ
significantly. Roughly speaking, the idea is to break the larger polynomial into blocks equal in
size to that of the smaller polynomial, compute the products separately, and then sum them.
We will discuss all these algorithms for dense multiplication much more extensively in the
next two chapters.

Multiplication of sparse univariate polynomials in the MVP library is performed using the
algorithm of Johnson (1974), which has seen recent success in the work of Monagan and
Pearce (2007, 2009). We briefly explain the idea of this algorithm. Given two polynomials
f , g ∈R[x ] to be multiplied, write

f = a 1x d 1 +a 2x d 2 + · · ·+a s x d s

g =b1x e1 +b2x e2 + · · ·+b t x et .

As usual assume d 1 < d 2 < · · ·< d s = deg f , and similarly for the e i ’s.

The terms in the product f · g ∈ R[x ] are computed one term at a time, in order. To ac-
complish this, we maintain a min-heap of size s which initially contains the pairs (d i , e1) for
1≤ i ≤ s . The min-heap is ordered on the sum of the two exponents in each element, which
corresponds to the degree of the single term in f · g that is the product of the corresponding
terms in f and g . (For a refresher on heaps and other basic data structures, see any algorithms
textbook such as Cormen, Leiserson, Rivest, and Stein (2001).)

From this ordering, the top of the min-heap always represents the next term (in increasing
degree order) in the polynomial product we are computing. After adding the next term to a
running total for f · g , we update the corresponding pair in the heap by incrementing the
second exponent along the terms in g . So, for example, the pair (d 3, e5) is updated to (d 3, e6),
and then the heap is updated to maintain min-heap order, using d 3 + e6 for this updated
element’s key. As the second exponent in each pair goes past b t , it is removed from the heap,
until the heap is empty and we are done.

For the cost analysis, notice that the number of times we must examine the top of the
heap and update it is exactly s · t , the total number of possible terms in the product. Be-
cause the heap has size s , the total time cost is O(s t log s ) exponent operations and O(s t ) ring
operations. In the IMM model, assuming each exponent requires at most k words of stor-
age, this gives a total cost of O(k s t log s ) word operations. Observe that k is proportional to
log deg( f · g ).

This time cost matches other previously-known algorithms, for instance the “geobucket”
data structure (Yan, 1998). However, the storage cost for this heap-based algorithm is better
— only O(s )words of intermediate storage are required, besides the input and output storage.
In addition, since s and t are known, we can assume without loss of generality that s ≤ t ,
improving the cost in unbalanced instances.
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System component Version / Capacity
Processor AMD Phenom II
Processor speed 3.2 GHz
L1 Cache 512 KiB
L2 Cache 2 MiB
L3 Cache 8 MiB
Main memory (RAM) 8 GiB
Linux kernel 2.6.32-28-generic

Table 2.1: Properties of machine used for benchmarking

2.5 Benchmarking of low-level operations

We now compare our implementations of two low-level algorithms described above against
the state of the art in existing software. The goal is not to claim that we have the best imple-
mentation of every algorithm, but merely that our algorithms are comparable to existing fast
implementations. As these low-level routines are used in many of the higher-level algorithms
discussed later in this thesis, the results here provide a justification for developing such algo-
rithms in the MVP library.

All the timings given are on the 64-bit machine described in Table 2.1. We also used this
machine to benchmark all the other implementations discussed in later chapters.

First we examine algorithms for finite field arithmetic. The MVP library currently contains
a few implementations of finite field arithmetic for various purposes, but the fastest, at least
for dense algorithms, is the Montgomery representation described above. We compared this
representation against NTL’s zz_p type for integers modulo a single-precision integer.

For the benchmarking, we used the so-called “axpy” operation that is a basic low-level
operation for numerous algorithms in polynomial arithmetic as well as linear algebra. In this
context, the axpy operation simply means adding a product a x to an accumulator y . Hence
each axpy operation requires a single multiplication and addition in the ring.

NTL zz_p MVP ModMont Ratio
130.07 s 89.66 s .689

Table 2.2: Benchmarking for ten billion axpy operations modulo a word-sized prime

Table 2.2 compares the cost, in CPU seconds, of 1010 (that is, ten billion) consecutive axpy
operations using MVP’s ModMont class (Montgomery representation), and using NTL’s zz_p.
These were compared directly in the bench module of MVP, using the “dry run” and actual
run method described earlier to get accurate and meaningful results. We have also listed the
ratio of time in MVP divided by time in NTL. So a lower number (and, in particular, a value
less than one) means that our methods are outperforming NTL. This model will be repeated
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Degree Sparsity SDMP time MVP time Ratio
1 000 100 9.25×10−4 5.34×10−4 .577

10 000 100 1.15×10−3 6.47×10−4 .563
1 000 000 100 1.21×10−3 6.81×10−4 .563

1 000 500 1.80×10−2 1.03×10−2 .572
10 000 500 2.58×10−2 1.77×10−2 .686

1 000 000 500 3.75×10−2 2.08×10−2 .555
1 000 1 000 6.23×10−2 2.63×10−2 .422

10 000 1 000 9.49×10−2 6.99×10−2 .737
1 000 000 1 000 1.62×10−1 9.32×10−2 .575

10 000 2 000 .337 .274 .813
1 000 000 2 000 .624 .427 .684

10 000 5 000 1.82 1.36 .747
1 000 000 5 000 3.53 3.20 .907

Table 2.3: Benchmarks for sparse univariate multiplication in MVP and SDMP

for most timing results we give, always with the time for the method under consideration in
the numerator, and the time for the “standard” we are comparing against in the denominator.

The second problem we benchmarked is univariate sparse polynomial multiplication.
Since multivariate sparse polynomials are represented in univariate using the Kronecker sub-
stitution, the univariate multiplication algorithm is of key importance. In these benchmarks,
the coefficient ring is Fp for a single-precision integer p . Interestingly, we found that the
cost was nearly the same using our Montgomery representation or NTL’s zz_p representa-
tion. This is likely due in part to the fact that ring operations do not dominate the cost of
sparse multiplication, as well as the increased cost of equality testing in our redundant Mont-
gomery representation.

For comparison, we used the SDMP package for sparse polynomial arithmetic by Michael
Monagan and Roman Pearce that has been integrated into MAPLE 14. Benchmarking our C++
program against a general-purpose computer algebra system with a run-time interpreted lan-
guage such as MAPLE is inherently somewhat problematic. However, we tried to be as fair as
possible to SDMP. We computed the timing difference between a “dry run” and an actual run,
just as with the other benchmarking in MVP. We found that MAPLE spends a lot of time doing
modular reductions, and so just computed the product over the integers in MAPLE, although
our code took the extra time to do the modular reductions. Finally, we used the SDMPolynom
routine in MAPLE to convert to the SDMP representation, and did not write out or echo any
results. Since the SDMP library itself is (to our knowledge) written in C code linked with the
MAPLE system, we feel this gives a very fair comparison to the MVP software.

The results of the sparse univariate multiplication benchmarks are shown in Table 2.3. As
we can see, benchmarking sparse polynomial operations involves more parameters than just
the number of iterations. The times shown are for a single multiplication with the specified
degree and sparsity in each system, and in every test case both polynomials were randomly
generated using the same parameters. In the actual benchmarking, we increased the number
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of iterations appropriately to get at least four significant figures of timing information for each
example (on our machine, this meant at least ten seconds). As always, the ratio is the time of
our implementation divided by the standard, which in this case is SDMP. Inverting these, we
see that MVP is consistently between once and twice as fast as SDMP.

Conspicuously absent from this section is any discussion of dense polynomial arithmetic.
While this is a primitive operation at least as important as those discussed here, we will ex-
plore this topic more thoroughly in Chapter 4. The new algorithms we present there have
been implemented in the MVP library, and we show benchmarking comparisons against ex-
isting software in that chapter.

2.6 Further developments

The MVP library now contains fast implementations for basic arithmetic in a variety of poly-
nomial rings, sparse interpolation over certain domains, and a few algebraic algorithms for
sparse polynomials that will be presented later in this thesis. However, the software is still
quite young and there is much work to be done before it will be useful to a wide audience. We
mention now some of the most important tasks to improve the MVP library’s usefulness.

First, a greater variety of algebraic algorithms should be included for basic problems such
as factorization. One of our chief motivations in developing a new library was to give a good
implementation of the sparse factorization algorithms by Lenstra (1999); Kaltofen and Koiran
(2005, 2006), and this is certainly a key priority. Of course, dense factorization methods are
also important and should be included. For this, it would be useful to tie in with existing fast
dense multiplication algorithms implemented in NTL and FLINT.

Another major and important task for the future development of MVP is to build in paral-
lelization. This will of course require not just careful implementations but in many cases new
algorithmic ideas for a number of important, basic problems. Allowing for parallelization
without affecting the sequential performance of algorithms will also be an important consid-
eration and software engineering challenge. We have tried to design the library with thread
safety in mind, but in some cases using global or static variables can drastically improve per-
formance. Balancing this with the needs of parallel computation will present difficult and
interesting challenges.

Finally, the success and longevity of any software package is heavily dependent on build-
ing and maintaining a community of users and developers. While the library has been solo-
authored to begin with, it is hoped that more researchers and students will get involved with
developing the library along the lines mentioned above. Ultimately, we would like MVP to
be a popular venue to try and compare implementations of new algorithms for polynomial
computations. In addition, if the library is fast and solves a variety of problems, it may be
useful as an add-on package to larger systems such as SAGE or SINGULAR, further increasing
the visibility and user base.
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The great generality and simplicity of its rules makes arithmetic
accessible to the dullest mind.

—Tobias Dantzig, Numbers (1930)

Chapter 3

In-place Truncated Fourier Transform

The fast Fourier transform (FFT) algorithm is a crucial operation in many areas of signal
processing as well as computer science. Most relevant to our focus, all the asymptotically
fastest methods for polynomial and long integer multiplication rely heavily on the FFT as a
subroutine. Most commonly, particularly for multiplication algorithms, the radix-2 Cooley-
Tukey FFT is used. In the typical case that the transform size is not exactly a power of two, the
so-called truncated Fourier transform (TFT) can be used to avoid wasted computation. How-
ever, in using the TFT, a crucial property of the FFT is lost: namely, that it can be computed
completely in-place, with the output overwriting the input. Here we present a new algorithm
for the truncated Fourier transform which regains this property of the FFT and can be com-
puted completely in-place and with the same asymptotic time cost as the original method.

The main results in this chapter represent joint work with David Harvey of New York Uni-
versity. We presented some of these results at ISSAC 2010 (Harvey and Roche, 2010). We also
thank the helpful reviewer at that conference who pointed out the Devil’s convolution algo-
rithm of Crandall (1996).

3.1 Background

3.1.1 Primitive roots of unity and the discrete Fourier transform

Recall that an nth root of unity ω ∈ R is any element such that ωn = 1; furthermore, ω is
said to be an nth primitive root of unity, or n-PRU, if n is the least integer such that ωn = 1.
The only roots of unity in the real numbers R are −1 and 1, whereas the complex numbers C
contain an n-PRU for any n , for instance, e2πi/n . Finite fields are more interesting: the finite
field with q elements Fq contains an n-PRU if and only if n | (q − 1). If we have a generator α
for the multiplicative group of the field, the ring element α(q−1)/n gives one n-PRU.

The cyclic nature of PRUs is what makes them useful for computation. Mathematically, a
n-PRUω ∈R generates an order-n subgroup of R∗. In particular,ωk =ωk rem n for any integer
exponent k .
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The discrete Fourier transform (DFT) is a linear map that evaluates a given polynomial
at powers of a root of unity. Given a polynomial f ∈ R[x ] and an n-PRU ω ∈ R, the discrete
Fourier transform of f atω, written DFTω( f ), is defined as

DFTω( f ) =
�

f
�

ωi
��

0≤i<n
.

That is, the DFT at ω of f is the polynomial f evaluated at every power of ω. By writing the
polynomial f = a 0+a 1x +a 2x 2+ · · · in the dense representation as a list (a 0, a 1, a 2, . . .)∈R∗ of
its coefficients, the function DFTω is a map from R∗ to Rn .

If we restrict to polynomials f with degree strictly less than n , then such polynomials can
always be stored as an array of exactly n coefficients, and DFTω is a map from Rn to Rn . In
these cases the DFTω map is also invertible, from the uniqueness of polynomial interpolation,
using the fact that the valuesωi for 0≤ i < n are all distinct.

In fact, the inverse DFT is simply a DFT atω−1, scaled by n . To be precise,

DFTω−1 (DFTω (a 0, a 1, . . . , a n−1)) = (na 0, na 1, . . . , na n−1) .

This tight relationship between the forward and inverse DFT is crucial, especially for the
application to multiplication.

3.1.2 Fast Fourier transform

Naïvely, evaluating DFTω( f ) requires evaluating f at n distinct points, for a total cost of O(n 2)
ring operations. The fast Fourier transform (FFT) is a much more efficient algorithm to com-
pute DFTω( f ); for certain values of n , it improves the cost to O(n log n ).

The FFT algorithm has been hugely useful in computer science, and in particular in the
area of signal processing. For instance, it was named one of the top ten algorithms of the
twentieth century (Dongarra and Sullivan, 2000), where the authors cite it as “the most ubiq-
uitous algorithm in use today to analyze and manipulate digital or discrete data”. The FFT has
an interesting history: it was known to Gauss, but was later rediscovered in various forms by
a number of authors in the twentieth century (Heideman, Johnson, and Burrus, 1984). The
most famous and significant rediscovery was by Cooley and Tukey (1965), who were also the
first to describe how to implement the algorithm in a digital computer.

We now briefly describe Cooley and Tukey’s algorithm. If n can be factored as n = `m ,
then the FFT is a divide-and-conquer strategy that computes a size-n DFT by m size-` DFTs,
followed by ` size-m DFTs. Given f = a 0 + a 1x + · · ·+ a n−1x n−1, we define the polynomials
g i ∈R[x ], for 0≤ i <m , by

g i =
∑

0≤j<`

a i+m j x j = a i +a i+m x +a i+2m x 2+ · · ·+a i+(`−1)m x `−1.

Observe that every coefficient in f appears in exactly one g i , and each deg g j < `. In fact, we
can write f as

f =
∑

0≤i<m

x i g i (x m ) = g 0(x m )+x g 1(x m )+ · · ·x m−1 g m−1(x m ).
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Now let i , j ∈ N such that 0 ≤ i < ` and 0 ≤ j <m , and consider the (i + `j )th element of
DFTω( f ), which is f (ωi+`j ). From above, we have

f
�

ωi+`j
�

=
∑

0≤k<m

ω(i+`j )k g k

�

ω(i+`j )m
�

=
∑

0≤k<m

�

ω`
�j k
ωi k g k

�

(ωm )i
�

, (3.1)

with the second equality following from the fact that `m = n and ωn = 1. Now observe that
ωm is an `-PRU in R, so each g k (ωi m ) is simply the i th element of DFTωm (g k ). Once these
DFTs are known, for each i ∈ {0, 1, . . . ,`−1}, we can compute the polynomials

h i =
∑

0≤k<m

ωi k g k

�

(ωm )i
�

x k .

Each h i has degree less than m , and the coefficients of each h i are computed by multiplying
a power of ω with an element of DFTωm (g k ) for some k . (The powers of ω multiplied here,
which have the formωi k , are called “twiddle factors”.)

From (3.1), we can then write f (ωi+`j ) = h i ((ω`)j ). Sinceω` is an m -PRU, these values are
determined by a size-m DFT of h i . Specifically, (i + `j )th element of DFTω( f ) is equal to the
j th element of DFTω`(h i ).

This completes the description of the FFT algorithm. In summary, we first write down
the g i s (which requires no computation) and compute m size-`DFTs, DFTωm (g i ). These val-
ues are then multiplied by the twiddle factors to compute the coefficients of every h i . This
step only uses O(n ) ring operations, since we can first compute all powers ofω and then per-
form all the multiplications with elements of DFTωm (g i ). Finally, we compute ` size-m DFTs,
DFTω`(h i ), which give the elements in DFTω( f ).

3.1.3 FFT variants

The radix-2 Cooley-Tukey FFT algorithm, which we will examine closely in this chapter, works
when the size n of the DFT to be computed is a power of 2. This allows the FFT algorithm
to be applied recursively. When ` = n/2 and m = 2, the resulting algorithm is called the
decimation-in-time variant. Since ` is also a power of 2, the 2 initial size-` DFTs (on the g i s)
can be computed with recursive calls. The base case is when the size n = 2, in which case the
operation is computed directly with constant cost. This recursive algorithm has a total cost of
O(n log n ) ring operations.

The so-called decimation-in-frequency variant of the radix-2 FFT is just the opposite, set-
ting `= 2 and m = n/2. (Both of these terms come from the application of FFT to signal pro-
cessing.) Halfway between these two versions would be choosing ` to be the greatest power
of two less than

p
n , and m the least power of two greater than

p
n . This type of FFT was care-

fully studied by Bailey (1990) and Harvey (2009a) and shown to improve the I/O complexity
of FFT computation. However, all these variants still have time cost O(n log n ).

The idea of the radix-2 FFT can of course be generalised to radix-3 FFT or, more generally,
radix-k FFT for any k ≥ 2. This will require that the input size n is a power of k , and the cost
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a b

a +ωi b a −ωi b

i

Figure 3.1: Butterfly circuit for decimation-in-time FFT

of the radix-k algorithm will be O(k n logk n ) — the same cost as the radix-2 version if k is
constant.

Even more generally, any factorization of n can be used to generate an FFT algorithm. This
is the idea of the mixed-radix FFT algorithm, whose cost depends on the largest factor of n
used in the algorithm, but is at least O(n log n ).

Though these methods are quite popular in signal processing algorithms, the radix-2 ver-
sion (and sometimes radix 3) are used almost exclusively in symbolic computation. This is
partly due to the fact that, at least for the application to integer multiplication, FFTs are most
conveniently and commonly performed over fixed, chosen finite fields. Finding a prime p
such that p−1 is divisible by a sufficiently high power of 2 is not difficult, and this then allows
a radix-2 FFT of any smaller size to be performed in the field Fp of integers modulo p . This is a
fundamentally different situation than working over the complex numbers, where no special
construction or pre-computation is needed to find PRUs.

3.1.4 Computing the FFT in place

An important property of the FFT algorithm is that it can be computed in-place. Recall in the
IMM model that this means the input space is empty, and the output space is initialised with
the data to be transformed. An in-place algorithm is one which uses only a constant amount
of temporary storage to solve this sort of problem. Any formulation of the Cooley-Tukey FFT
algorithm described above can be computed in-place, as long as the base case of the recursion
has constant size. In particular, the radix-2 and radix-3 versions can be computed in-place.

Consider the radix-2 decimation-in-time FFT. Since the algorithm is recursive and the
base case has size 2, the entire circuit for this computation is composed of smaller circuits
for size-2 DFTs, with varying twiddle factors (powers ofω). Such a circuit is called a “butterfly
circuit”, and is shown in Figure 3.1. The circuit shown takes ring elements a ,b as input and
computes a +ωi b and a −ωi b , whereωi is the twiddle factor for this butterfly.

Figure 3.2 shows a circuit for the entire computation of a size-16 FFT (radix-2, decimation-
in-time variant), with input polynomial f = a 0+a 1x + . . .+a 15x 15. Though not shown, each
of the butterflies making up this circuit has an associated twiddle factor as well. Because the
size-2 butterfly can clearly be computed using at most one extra unit of storage, the entire
computation can be as well. At each of the log2 n steps through the algorithm, the elements
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a 0 a 1 a 2 a 3 a 15· · · · · · · · ·

f (ω0) f (ω8) f (ω4)f (ω12) f (ω15)· · · · · · · · ·

Figure 3.2: Circuit for radix-2 decimation-in-time FFT of size 16

stored in the size-n output space correspond to the nodes at one level of the circuit. Each step
uses O(n ) time and O(1) space to overwrite this array with the nodes at the next level of the
circuit, until we reach the bottom and are done.

The only complication with this in-place computation is that the order of the elements
is perturbed. In particular, if the i th position in the array holds the a i at the beginning of
the computation, the computed value in that position at the end of the algorithm will not
be f (ωi ) but rather f (ωrevk i ). Here k = log2 n and revk i is the k -bit reversal of the binary
representation of i . For instance, rev5(11) = 26, since 11 is written 01011 in base 2 and 26 is
11010. This permutation can easily be inverted in in-place to give the output in the correct
order. However, for our application, this will actually not be necessary.

3.1.5 The truncated Fourier transform

As mentioned above, symbolic computation algorithms typically use radix-2 FFTs. However,
the size of the input, for instance in the application to polynomial multiplication, will rarely
be exactly a power of two. In this case, the traditional approach has been to pad the input
with zeros so that the size is a power of two. However, this wastes not only memory space but
also time in performing unnecessary computations.

Numerous approaches have been developed to address this problem and adapt radix-2
FFTs to arbitrary sized inputs and outputs. The “devil’s convolution” algorithm of Crandall
(1996) tackles this issue in the higher-level context of multiplication by breaking the problem
into a large power-of-two size, solved with radix-2 FFTs, and a smaller arbitrary size, solved
recursively. However, there are still significant jumps in the time and space cost (though not
exactly at powers of two).
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a 0 a 1 a 2 a 3 a 10· · ·

f (ω0) f (ω8) f (ω4)f (ω12) f (ω5)· · ·

Figure 3.3: Circuit for forward TFT of size 11

At the lower-level context of DFTs, it has been known for some time that if only a subset
of the output is needed, then the FFT can be truncated or “pruned” to reduce the complexity,
essentially by disregarding those parts of the computation tree not contributing to the desired
outputs (Markel, 1971; Sorensen and Burrus, 1993). More recently, van der Hoeven took the
crucial step of showing how to invert this process by assuming a subset of input/output co-
efficients are zero, describing a truncated Fourier transform (TFT) and an inverse truncated
Fourier transform (ITFT), and showing that this leads to a polynomial multiplication algo-
rithm whose running time varies relatively smoothly in the input size (van der Hoeven, 2004,
2005).

Specifically, given an input vector of length n ≤ 2k , the TFT computes the first n coeffi-
cients of the ordinary Fourier transform of length 2k , and the ITFT computes the inverse of
this map. The running time of these algorithms smoothly interpolates the O(n log n ) complex-
ity of the standard radix-2 Cooley–Tukey FFT algorithm. One can therefore deduce an asymp-
totically fast polynomial multiplication algorithm that avoids the characteristic “jumps” in
running time exhibited by traditional FFT-based polynomial multiplication algorithms when
the output degree crosses a power-of-two boundary. This observation has been confirmed
with practical implementations (van der Hoeven, 2005; Li et al., 2009b; Harvey, 2009a), with
the most marked improvements in the multivariate case.

The structure of the TFT is shown in Figure 3.3, for an input of size 11. The structure is
essentially the same as the size-16 decimation-in-time FFT, except that unnecessary compu-
tations — either those coming from inputs known to be zero, or those going to outputs that
are not needed — are “pruned” away. Observe that, unlike with the FFT, inverting the TFT
is completely non-trivial, and requires a more complicated algorithm, as shown by van der
Hoeven (2004). We will not discuss the details of the inverse TFT algorithm presented there,
but observe that it has roughly the same time cost as the forward TFT.
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One drawback of van der Hoeven’s algorithms is that while their time complexity varies
smoothly with n , their space complexity does not. We can observe from the circuit for the
size-11 TFT that 16 ring elements must be stored on the second step. In general, both the
TFT and ITFT require 2dlog2 ne −n units of extra storage space, which in the worst case is Ω(n ).
Therefore the TFT and ITFT are not in-place algorithms.

3.1.6 DFT notation

For the discussion of our new algorithms below, it will be convenient to have a simpler nota-
tion for power-of-two roots of unity and bit reversals. First, denote by ω[k ] a primitive 2k -th
root unity, for some integer k . Our algorithm will require that such a root of unity exists for all
k ≤

�

log2 n
�

.

We assume that these PRUs are chosen compatibly, so that ω2
[k+1] = ω[k ] for all k ≥ 0.

Define a sequence of roots ω0,ω1, . . . by ωs =ω
revk s
[k ] , where k ≥ dlg(s + 1)e and revk s denotes

the length-k bit-reversal of s . This definition is consistent because the PRUs were chosen
compatibly. This is because, for any i ∈N, revk+i s = 2i · revk s , and therefore

ω
revk+i s
[k+i ] =ω

2i revk s
[k+i ] =ω

revk s
[k ] .

Thus we have

ω0 =ω[0] (= 1) ω2 =ω[2] ω4 =ω[3] ω6 =ω3
[3]

ω1 =ω[1] (=−1) ω3 =ω3
[2] ω5 =ω5

[3] ω7 =ω7
[3]

and so on. Note that

ω2s+1 =−ω2s and ω2
2s =ω

2
2s+1 =ωs .

Let f ∈ R[x ] be a polynomial with deg f < n as before. The notation just introduced has
the convenient property that the i th element of DFTω( f ), for any power-of-two PRUω, when
written in the bit-reversed order as computed by the in-place FFT, is simply f (ωi ). If we again
write a i for the coefficient of x i in f , then we will also write â i = f (ωi ) for the i th term in the
DFT of f .

Algorithms 3.1 and 3.2 below follow the outline of the decimation-in-time FFT, and de-
compose f as

f (x ) = g (x 2)+x ·h(x 2),

where deg g < dn/2e and deg h < bn/2c. Write b0,b1, . . . ,b dn/2e−1 for the coefficients of g and
c0, c1, . . . , c bn/2c for the coefficients of h. Using the notation just introduced, the “butterfly rela-
tions” corresponding to the bottom level of the FFT circuit can be written

â 2s = b̂s +ω2s ĉs ,

â 2s+1 = b̂s −ω2s ĉs .
(3.2)
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3.2 Computing powers ofω

Both the TFT and ITFT algorithm require, at each recursive level, iterating through a set of
index-root pairs such as {(i ,ωi ), 0≤ i < n}. A traditional, time-efficient approach would be to
pre-compute all powers of ω[k ], store them in reverted-binary order, and then pass through
this array with a single pointer. However, this is impossible under the restriction that no aux-
iliary storage space be used.

One solution, if using the ordinary FFT, is to use a decimation-in-frequency algorithm
rather than decimation-in-time. In this version, at the k th level, the twiddle factors are ac-
cessed in normal order ω0

[k ],ω
1
[k ], . . .. Hence this approach can be used to implement the

radix-2 FFT algorithm in-place.

However, our algorithm critically requires the decimation-in-time formulation, and thus
accessing the twiddle factors in reverted binary order ω0,ω1,ω2, . . .. To avoid this, we will
compute the roots on-the-fly by iterating through the powers ofω[k ] in order, and through the
indices i in bit-reversed order. That is, we will access the array elements in reverted binary
order, but the powers ofω in the normal order.

Accessing array elements in reverted binary order simply requires incrementing an integer
counter through revk 0, revk 1, revk 2, . . .. Of course such increments will no longer be single
word operations, but fortunately the reverted binary increment operation can be performed
in-place and in amortized constant time. The algorithm is simply the same as the usual bit-
wise binary increment operation, but performed in reverse.

3.3 Space-restricted TFT

In this section we describe an in-place TFT algorithm that uses only O(1) temporary space (Al-
gorithm 3.1). First we define the problem formally for the algebraic IMM model. There is no
input or output in integers, so we denote an instance by the triple (I ,O,O ′) ∈ (R∗)3 containing
ring elements on the algebraic side. This is an in-output problem, so every valid instance has
I empty, O = (a 0, a 1, . . . , a n−1), and O ′ = (â 0, â 1, . . . , â n−1), representing the computation of a
size-n DFT of the polynomial f ∈R[x ]with coefficients a 0, . . . , a n−1. To be completely precise,
we should also specify that O contains a 2dlog2 ne-PRUω[dlog2 ne].

For the algorithm, we will use MO[i ] to denote the i th element of the (algebraic) output
space, at any point in the computation. The in-place algorithm we will present will use a
constant number of extra memory locations M T [i ], but we will not explicitly refer to them in
this way.

The pattern of the algorithm is recursive, but we avoid recursion by explicitly moving
through the recursion tree, avoiding unnecessary space usage. An example tree for n = 6
is shown in Figure 3.4. The node S = (q , r ) represents a sub-array of the output space with
offset q and stride 2r ; the i th element in this sub-array is Si =MO[q + i ·2r ], and the length of
the sub-array is given by

len(S) =
¡n −q

2r

¤

.

42



CHAPTER 3. IN-PLACE TRUNCATED FOURIER TRANSFORM

(0, 0) = {0, 1, 2, 3, 4, 5}

(0, 1) = {0, 2, 4} (1, 1) = {1, 3, 5}

(0, 2) = {0, 4}

(2, 2) = {2}

(1, 2) = {1, 5}

(3, 2) = {3}

(0, 3) = {0} (4, 3) = {4} (1, 3) = {1} (5, 3) = {5}

Figure 3.4: Recursion tree for in-place TFT of size n = 6

The root is (0, 0), corresponding to the entire input array of length n . Each sub-array of
length 1 corresponds to a leaf node, and we define the predicate IsLeaf(S) to be true if and
only if len(S) = 1. Each non-leaf node splits into even and odd child nodes.

To facilitate the path through the tree, we define a few functions on the nodes. First, for
any non-leaf node (q , r ), define

EvenChild(q , r ) = (q , r +1),

OddChild(q , r ) = (q +2r , r +1).

If (q , r ) is not the root node, define

Parent(q , r ) =

(

(q , r −1), if q < 2r−1,

(q −2r−1, r −1), if q ≥ 2r−1.

Finally, for any node S we define

LeftmostLeaf(S) =

(

S, if IsLeaf(S),

LeftmostLeaf(EvenChild(S)), otherwise.

So for example, in the recursion tree shown in Figure 3.4, let the node S = (1, 1). Then
OddChild(S) = (3, 2), the right child in the tree, Parent(S) = (0, 0), and LeftmostLeaf(S) = (1, 3).
We also see that len(S) = 3 and Si =MO[1+2i ].

Algorithm 3.1 gives the details of our in-place algorithm to compute the TFT, using these
functions to move around in the recursion tree.

The structure of the algorithm on our running example of size 11 is shown in the circuit
in Figure 3.5. The unfilled nodes in the diagram represent temporary elements that are com-
puted on-the-fly and immediately discarded in the algorithm, and the dashed edges indicate
the extra computations necessary for these temporary computations. Observe that the struc-
ture of the circuit is more tangled than before, and in particular it is not possible to perform
the computation level-by-level as one can for the normal FFT and forward TFT.

We begin with the following lemma.
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Algorithm 3.1: In-place truncated Fourier transform

Input: Coefficients a 0, a 1, . . . , a n−1 ∈R and PRUω∈R, stored in-order in the output
space MO

Output: â 0, â 1, . . . , â n−1, stored in-order in the output space MO

1 S← LeftmostLeaf(0, 0)
2 prev← null
3 while true do
4 m ← len(S)
5 if IsLeaf(S) or prev=OddChild(S) then
6 for (i ,θ )∈ {(j ,ω2j ) : 0≤ j < bm/2c} do

7

�

S2i

S2i+1

�

←
�

S2i +θS2i+1

S2i −θS2i+1

�

8 if S = (0, 0) then halt
9 prev←S

10 S← Parent(S)

11 else if prev= EvenChild(S) then
12 if len(S)≡ 1 mod 2 then

13 v ←
∑(m−3)/2

i=0 S2i+1 · (ω(m−1)/2)i

14 Sm−1←Sm−1+v ·ωm−1

15 prev←S
16 S← LeftmostLeaf(OddChild(S))

a 0 a 1 a 2 a 3 a 10· · ·

â 0 â 8 â 4 â 12 â 5· · ·

Figure 3.5: Circuit for Algorithm 3.1 with size n = 11
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Lemma 3.1. Let N be a node with len(N ) = `, and for 0≤ i < `, define αi to be the value stored
in position Ni before some iteration of line 3 in Algorithm 3.1. If also S = LeftmostLeaf(N ) at
this point, then after a finite number of steps, we will have S = N and Ni = α̂i for 0 ≤ i < `,
before the execution of line 8. No other array entries in MO are affected.

Proof. The proof is by induction on `. If ` = 1, then IsLeaf(N ) is true and α̂0 = α0 so we are
done. Therefore assume ` > 1 and that the lemma holds for all shorter lengths.

Consider the ring elements αi as coefficients, and decompose the resulting polynomial
into even and odd parts as

α0+α1x +α2x 2+ · · ·+α`−1x `−1 = g (x 2)+x ·h(x 2).

So if we write g =
∑

0≤i<d`/2eb i x i and h =
∑

0≤i<b`/2c c i x i as before, then each b i = α2i and each
c i =α2i+1.

Since S = LeftmostLeaf(N ) and N is not a leaf, S = LeftmostLeaf(EvenChild(N )) as well,
and the induction hypothesis guarantees that the even-indexed elements of N , corresponding
to the coefficients of g , will be transformed into

DFT(g ) = (b̂0, b̂1, . . . , b̂ d`/2e),

and we will have S = EvenChild(N ) before line 8. The following lines set p r e v = EvenChild(N )
and S =N , so that lines 12–16 are executed on the next iteration.

If ` is odd, then (`− 1)/2 ≥ len(OddChild(N )), so ĉ (`−1)/2 will not be computed in the odd
subtree, and we will not be able to apply (3.2) to compute α̂`−1 = b̂ (`−1)/2+ω`−1ĉ (`−1)/2. This is
why, in this case, we explicitly compute

v = h(ω(`−1)/2) = ĉ (`−1)/2

on line 13, and then compute α̂`−1 directly on line 14, before descending into the odd subtree.

Another application of the induction hypothesis guarantees that we will return to line 8
with S = OddChild(N ) after computing N2i+1 = ĉ i for 0 ≤ i < b`/2c. The following lines set
p r e v = OddChild(N ) and S = N , and we arrive at line 6 on the next iteration. The for loop
thus properly applies the butterfly relations (3.2) to compute α̂i for 0 ≤ i < 2b`/2c, which
completes the proof.

Now we are ready for the main result of this section.

Theorem 3.2. Algorithm 3.1 correctly computes DFT( f ). It is an in-place algorithm and uses
O(n log n ) algebraic and word operations.

Proof. The correctness follows immediately from Lemma 3.1, since the algorithm begins by
setting S = LeftmostLeaf(0, 0), which is the first leaf of the whole tree. The space bound is
immediate since each variable has constant size.

To verify the time bound, notice that the while loop visits each leaf node once and each
non-leaf node twice (once with prev= EvenChild(S) and once with prev=OddChild(S)). Since
always q < 2r < 2n , there are O(n ) iterations through the while loop, each of which has cost
O(len(S)+ log n ). This gives the total cost of O(n log n ).

45



CHAPTER 3. IN-PLACE TRUNCATED FOURIER TRANSFORM

3.4 Space-restricted ITFT

Next we describe an in-place inverse TFT algorithm (Algorithm 3.2). For some unknown poly-
nomial f = a 0+a 1x + · · ·+a n−1x n−1 ∈R[x ], the algorithm takes as input â 0, . . . , â n−1 and over-
writes these values with a 0, . . . , a n−1.

The path of the algorithm is exactly the reverse of Algorithm 3.1, and we use the same
notation as before to move through the tree. We only require one additional function:

RightmostParent(S) =

(

S, if S =OddChild(Parent(S)),

RightmostParent(Parent(S)), otherwise.

If LeftmostLeaf(OddChild(N1)) = N2, then Parent(RightmostParent(N2)) = N1. Therefore
RightmostParent computes the inverse of the assignment on line 16 in Algorithm 3.1.

Algorithm 3.2: In-place inverse truncated Fourier transform

Input: Transformed coefficients â 0, â 1, . . . , â n−1 ∈R and PRUω∈R, stored in-order in
the output space MO

Output: The original coefficients a 0, a 1, . . . , a n−1, stored in-order in the output space
MO

1 S← (0, 0)
2 while S 6= LeftmostLeaf(0, 0) do
3 if IsLeaf(S) then
4 S← Parent(RightmostParent(S))
5 m ← len(S)
6 if len(S)≡ 1 mod 2 then

7 v ←
∑(m−3)/2

i=0 S2i+1 ·ωi
(m−1)/2

8 Sm−1←Sm−1−v ·ωm−1

9 S← EvenChild(S)

10 else
11 m ← len(S)
12 for (i ,θ )∈ {(j ,ω−1

2j ) : 0≤ j < bm/2c} do

13

�

S2i

S2i+1

�

←
�

(S2i +S2i+1)/2
θ · (S2i −S2i+1)/2

�

14 S←OddChild(S)

We leave it to the reader to confirm that the structure of the recursion in Algorithm 3.2
is identical to that of Algorithm 3.1, but in reverse. From this, the following analogues of
Lemma 3.1 and Theorem 3.2 follow immediately:

Lemma 3.3. Let N be a node with len(N ) = `, and a 0, a 1, . . . , a n−1 ∈ R be the coefficients of
a polynomial in R[x ]. If S = N and Ni = â i for 0 ≤ i < ` before some iteration of line 2 in
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Algorithm 3.2, then after a finite number of steps, we will have S = LeftmostLeaf(N ) and Ni = a i

for 0≤ i < ` before some iteration of line 2. No other array entries in MO are affected.

Theorem 3.4. Algorithm 3.2 correctly computes the inverse TFT. It is an in-place algorithm that
uses O(n log n ) algebraic and word operations.

The fact that our in-place forward and inverse truncate Fourier transform algorithms are
essentially reverses of each other is an interesting feature not shared by the original formula-
tions in (van der Hoeven, 2004).

3.5 More detailed cost analysis

Our in-place TFT algorithm has the same asymptotic time complexity of previous approaches,
but there will be a slight trade-off of extra computational cost against the savings in space.
That is, our algorithms will perform more ring and integer operations than that of van der
Hoeven (2004). Theorems 3.2 and 3.4 guarantee that this difference will only be a constant
factor. By determining exactly what this constant factor is, we hope to gain insight into the
potential practical utility of our in-place methods.

First we determine an upper bound on the number of multiplications in R performed by
Algorithm 3.1, for an input of length n . In all the FFT variants, multiplications in the underly-
ing ring dominate the cost, since the number of additions in R is at most twice the number of
multiplications (and multiplications are more than twice as costly as additions), and the cost
of integer (pointer) arithmetic is negligible.

Theorem 3.5. Algorithm 3.1 uses at most

5

6
n
�

log2 n
�

+
n −1

3
(3.3)

multiplications in R to compute a size-n TFT.

Proof. When n > 1, the number of multiplications performed depends on whether n is even
or odd. If n is even, then the algorithm consists essentially of two recursive calls of size n/2,
plus the cost at the top level (i.e., the root node in the recursion tree). Since n is even, the only
multiplications performed at the top level are in lines 6–7, exactly n/2 multiplications.

For the second case, if n is odd, the number of multiplications are those used by two re-
cursive calls of size (n + 1)/2 and (n − 1)/2, plus the number of multiplications performed at
the top level. At the top level, there are again bn/2cmultiplications from lines 6–7, but since n
is odd, we must also count the (n +1)/2 multiplications performed on lines 13–14.

This leads to the following recurrence for T (n ), the number of multiplications performed
by Algorithm 3.1 to compute a transform of length n :

T (n ) =







0, n ≤ 1

2T
�

n
2

�

+ n
2

, n ≥ 2 is even

T
�

n−1
2

�

+T
�

n+1
2

�

+n , n ≥ 3 is odd

(3.4)

47



CHAPTER 3. IN-PLACE TRUNCATED FOURIER TRANSFORM

When n is even, we claim an even tighter bound than (3.3):

T (n )≤ (5n/6)
�

log2 n
�

−1/3, n even. (3.5)

We now prove both bounds by induction on n .

For the base case, if n = 1, then the bound in (3.3) equals zero, and T (1) = 0 also.

For the inductive case, assume n > 1 and that (3.3) and (3.5) hold for all smaller values. We
have two cases to consider: whether n is even or odd.

When n is even, from (3.4), the total number of multiplications is at most 2T (n/2) +n/2.
From the induction hypothesis, this is bounded above by

2
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5n

12
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n

2
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+
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6
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+
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2
=

5n

6
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log2 n
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−
2

3
<

5n

6

�

log2 n
�

−
1

3
,

as claimed.

When n is odd, (3.4) tells us that exactly T ((n − 1)/2) + T ((n + 1)/2) + n multiplications
are performed. Now observe that at least one of the recursive-call sizes (n+1)/2 and (n−1)/2
must be even. Employing the induction hypothesis again, the total number of multiplications
for odd n is bounded above by

5(n −1)
12

�

log2

n −1

2

�

−
1

3
+

5(n +1)
12

�

log2

n +1

2

�

+
n −1

6
+n

=
5n

6
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log2 n
�

−1
�

+
7n −3

6

<
5n

6

�

log2 n
�

+
n −1

3
.

Therefore, by induction, the theorem holds for all n ≥ 1.

Next we show that this upper bound is the best possible (up to lower order terms), by
giving an exact analysis of the worst case.

Theorem 3.6. Define the infinite sequence

Nk =
2k − (−1)k

3
, k = 1, 2, 3, . . . .

Then for all k ≥ 1, we have

T (Nk ) =
5

6
k Nk −

23

18
Nk +

(−1)k

18
k −
(−1)k

2
. (3.6)
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Proof. First observe that, since 4i ≡ 1 mod 3 for any i ≥ 0, Nk is always an integer, and further-
more Nk is always odd. Additionally, for k ≥ 3, we have

�

log2 Nk
�

= k −1.

We now prove the theorem by induction on k . The two base cases are when k = 1 and
k = 2, for which T (N1) = T (N2) = T (1) = 0, and the formula is easily verified in these cases.

Now let k ≥ 3 and assume (3.6) holds for all smaller values of k . Because Nk is odd and
greater than 1, from the recurrence in (3.4), we have T (Nk ) = T ((Nk −1)/2)+T ((Nk +1)/2)+n .
Rewriting −1 and 1 as (−1)k and −(−1)k (not necessarily respectively), we have

T (Nk ) = T

�

2k +2(−1)k

6

�

+T

�

2k −4(−1)k

6

�

+
2k − (−1)k

3

= T

�

2k−1− (−1)k−1

3

�

+T

�

2k−1−2(−1)k−2

3

�

+
2k − (−1)k

3

= T (Nk−1)+2T (Nk−2)+
5 ·2k−2−2(−1)k

3
.

Now observe that k−1 and k−2 are both at least 1, so we can use the induction hypothesis
to write

T (Nk ) =
5

6
(k −1)

Nk +(−1)k

2
−

23

18
·

Nk +(−1)k

2
−
(−1)k

18
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2

+
5

3
(k −2)

Nk − (−1)k

4
−

23

9
·

Nk − (−1)k

4
+
(−1)k

9
(k −2)− (−1)k

+
5

4
Nk −

(−1)k

4

=
5

6
k Nk −

23

18
Nk +

(−1)k

18
k −
(−1)k

2
.

Therefore, by induction, (3.6) holds for all k ≥ 1.

Let us compare this result to existing algorithms. First, the usual FFT algorithm, with
padding to the next power of 2, uses exactly 2dlog2 ne−1 �log2 n

�

multiplications for a size-n
transform, which in the worst case is n

�

log2 n
�

. The original TFT algorithm improves this
to (n/2)

�

log2 n
�

+O(n ) ring multiplications for any size-n transform.

In conclusion, we see that our in-place TFT algorithm gains some improvement over the
normal FFT for sizes that are not a power of two, but not as much improvement as the original
TFT algorithm.

3.6 Implementation

Currently implemented in the MVP library are our new algorithms for the forward and inverse
truncated Fourier transform, as well as our own highly optimized implementations of the
normal radix-2 FFT algorithm both forward and reverse. We ran a number of tests on these
algorithms, alternating between sizes that were exactly a power of two, one more than a power
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Forward FFT Inverse FFT Algorithm 3.1 Algorithm 3.2
Size (seconds) (ratio) (ratio) (ratio)

1024 7.50×10−5 s 1.17 1.62 2.36
1025 1.58×10−4 s 1.23 .949 1.23
1536 1.69×10−4 s 1.09 1.21 1.70
2048 1.62×10−4 s 1.17 1.60 2.83
2049 3.43×10−4 s 1.13 .930 1.24
3072 3.57×10−4 s 1.12 1.21 1.77
4096 3.61×10−4 s 1.14 1.52 2.34
4097 7.66×10−4 s 1.10 .877 1.17
6144 7.74×10−4 s 1.12 1.23 1.78

Table 3.1: Benchmarking results for discrete Fourier transforms

of two, and halfway between two powers of two. Of course we expect the normal radix-2
algorithm to perform best when the size of the transform is exactly a power of two. It would
be easy to handle sizes of the form 2k+1 specially, but we intentionally did not do this in order
to see the maximum potential benefit of our new algorithms.

The results of our experiments are summarized in Table 3.1. The times for the forward FFT
are reported in CPU seconds for a single operation, although as usual for the actual experi-
ments there were several thousand iterations. The times for the other algorithms are reported
only as ratios to the forward FFT time, and as usual a ratio less than one means that algorithm
was faster than the ordinary forward FFT. Our new algorithms are competitive, but clearly not
superior to the standard radix-2 algorithm, at least in the current implementation. While it
might be possible to tweak this further, we submit a few justifications for why better run-time
might not be feasible for these algorithms on modern systems.

First, observe that the structure of our in-place TFT algorithms is not level-by-level, as
with the standard FFT and the forward TFT algorithm of van der Hoeven (2004). Both of our
algorithms share more in common structurally with the original inverse TFT, which has an
inherent recursive structure, similar to what we have seen here. In both these cases, the more
complicated structure of the computation means in particular that memory will be accessed
in a less regular way, and the consequence seems to be a slower algorithm.

Also regarding memory, it seems that a key potential benefit of savings in space is the
ability — for certain sizes — to perform all the work at a lower level of the memory hierarchy.
For instance, if two computations are identical, but one always uses twice as much space
than the other, then for some input size the larger algorithm will require many accesses to
main memory (or disk), whereas the smaller algorithm will stay entirely in cache (or main
memory, respectively). Since the cost difference in accessing memory at different levels of the
hierarchy is significant, we might expect some savings here.

In fact, we will see some evidence of such a phenomenon occurring with the multiplica-
tion algorithms of the next chapter. However, for the radix-2 DFT algorithms we have pre-
sented, this will never happen, precisely because the size of memory at any level in any mod-
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ern architecture is always a power of two. This gives some justification for our findings here,
but also lends motivation to studying the radix-3 case in the future, as we discuss below.

3.7 Future work

We have demonstrated that forward and inverse radix-2 truncated Fourier transforms can be
computed in-place using O(n log n ) time and O(1) auxiliary storage. The next chapter will
show the impact of this result on dense polynomial multiplication.

There is much work still to be done on truncated Fourier transforms. First, we see that our
algorithm, while improving the memory usage, does not yet improve the time cost of other
FFT algorithms. This is partly due to the cost of extra arithmetic operations, but as Theo-
rem 3.5 demonstrates, our algorithm is actually superior to the usual FFT in this measure, at
least in the worst case. A more likely cause for the inferior performance is the less regular
structure of the algorithm. In particular, our in-place algorithms cannot be computed level-
wise, as can the normal FFT and forward TFT algorithms. Developing improved in-place TFT
algorithms whose actual complexity is closer to that of the original TFT would be a useful
exercise.

To this end, it may be useful to consider an in-place truncated version of the radix-3 FFT
algorithm. It should be relatively easy to adapt our algorithm to the radix-3 case, with the
same asymptotic complexity. However, the radix-3 algorithm may perform better in practice,
due to the nature of cache memory in modern computers.

Most of the cache in modern machines is least partly associative — for example, the L1
cache on our test machine is 8-way associative. This means that a given memory location can
only be stored in a certain subset of the available cache lines. Since this associativity is always
based on equivalence modulo powers of two, algorithms that access memory in power-of-
two strides, such as in the radix-2 FFT, can suffer in cache performance. Radix-3 FFTs have
been used in numerical libraries for many years to help mitigate this problem. Perhaps part of
the reason they have not been used very much in symbolic computation software is that the
blow-up in space when the size of the transform is not a power of 3 is more significant than
in the radix-2 version. Developing an in-place variant for the radix-3 case would of course
eliminate this concern, and so may give practical benefits.

Finally, it would be very useful to develop an in-place multi-dimensional TFT or ITFT al-
gorithm. In one dimension, the ordinary TFT can hope to gain at most a factor of two over
the FFT, but a d -dimensional TFT can be faster than the corresponding FFT by a factor of
2d , as demonstrated in (Li et al., 2009b). An in-place variant along the lines of the algorithms
presented in this paper could save a factor of 2d in both time and memory, with practical
consequences for multivariate polynomial arithmetic.
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The biggest difference between time and space is that you can’t
reuse time.

—Merrick Furst

Chapter 4

Multiplication without extra space

The multiplication of dense univariate polynomials is one of the most fundamental prob-
lems in mathematical computing. In the last fifty years, numerous fast multiplication algo-
rithms have been developed, and these algorithms are used in practice today in a variety of
applications. However, all the fast multiplication algorithms require a linear amount of in-
termediate storage space to compute the result. For each of the two most popular fast mul-
tiplication algorithms, we develop variants with the same speed but which use much less
temporary storage.

We first carefully define the problem under consideration, as well as the notation we will
use throughout this chapter. Consider two polynomials f , g ∈R[x ], each with degree less than
n , written

f = a 0+a 1x +a 2x 2+ · · ·+a n−1x n−1

g =b0+b1x +b2x 2+ · · ·+bn−1x n−1.

We consider algorithms for dense univariate polynomial multiplication in an algebraic IMM.
Formally, the input and output will all be on the algebraic side. The read-only input space will
contain the 2n coefficients of f and g , and correct algorithms must write the 2n − 1 coeffi-
cients of their product into the output space and halt. In all algorithms discussed, the cost of
ring operations dominates that of integer arithmetic with machine words, and so we state all
costs in terms of ring operations.

Some of the results in this chapter were presented at ISSAC 2009 and 2010 (Roche, 2009;
Harvey and Roche, 2010).

4.1 Previous results

Observe that the product f · g can be written

2n−2
∑

i=0







min(i ,n−1)
∑

j=max(0,i−n+1)

a j b i−j






x i .
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Using only a single temporary ring element as an accumulator, we can compute each inner
summation, one at a time, to determine all the coefficients of the product. This is called the
naïve or school method for multiplication. It works over any ring, uses O(n 2) ring operations,
and requires only a constant amount of temporary working space.

So-called fast multiplication algorithms are those whose cost is less than quadratic. We
now briefly examine a few such algorithms.

4.1.1 Karatsuba’s algorithm

Karatsuba was the first to develop a sub-quadratic multiplication algorithm (1963). This is a
divide-and-conquer method and works by first splitting each of f and g into two blocks with
roughly half the size. Writing k = bn/2c, the four resulting polynomials are

f 0 = a 0+a 1x + · · ·+a k−1x k−1 f 1 = a k +a k+1x + · · ·a n−1x n−k−1

g 0 =b0+b1x + · · ·+bk−1x k−1 g 1 =bk +bk+1x + · · ·bn−1x n−k−1.

We can therefore write f = f 0+ f 1x k and g = g 0+ g 1x k , so their product is f 0 g 0+( f 0 g 1+
g 1 f 0)x k + f 1 g 1x 2k . Gauss again was the first to notice (in the context of complex number
multiplication) that this product can also be written

f · g = f 0 g 0+
��

f 0+ f 1
��

g 0+ g 1
�

− f 0 g 0− f 1 g 1
�

x k + f 1 g 1x 2k .

Using this formulation, the product can be computed using exactly 3 recursive calls of
approximately half the size, followed byO(n ) additions and subtractions. The total asymptotic
cost is therefore O(n log2 3), which is O(n 1.59).

To be specific, label the three intermediate products as follows:

α= f 0 · g 0, β = f 0 · f 1, γ= ( f 0+ f 1) · (g 0+ g 1). (4.1)

So the final product of f and g is computed as

f · g =α+(γ−α−β ) ·x k +β ·x 2k . (4.2)

A straightforward implementation might allocate n units of extra storage at each recursive
step to store the intermediate product γ, resulting in an algorithm that uses a linear amount
of extra space and performs approximately 4n additions of ring elements besides the three
recursive calls.

There is of course significant overlap between the three terms of (4.2). To see this more
clearly, split each polynomial α,β ,γ into its low-order and high-order coefficients as with f
and g . Then we have (with no overlap):

f · g =α0+(γ0+α1−α0−β0)x k +(γ1+β0−α1−β1)x 2k +β1x 3k (4.3)
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Examining this expansion, we see that the difference α1 − β0 occurs twice, so the num-
ber of additions can be reduced to 7n/2 at each recursive step. Popular implementations of
Karatsuba’s algorithm already make use of this optimisation.

A few authors have also examined the problem of minimising the extra storage space re-
quired for Karatsuba’s algorithm. Maeder (1993) showed how to compute tight bounds on the
amount of extra temporary storage required at the top level of the algorithm, allowing tem-
porary space to be allocated once for all recursive calls. This bound is approximately 2n in
Maeder’s formulation, where the focus was specifically on long integer multiplication.

An improvement to this for polynomial multiplication was given by Thomé (2002), who
showed how to structure Karatsuba’s algorithm so that only about n extra ring elements need
to be stored.

It should be mentioned that both these algorithms are already working in essentially the
same model as an IMM, re-using the output space repeatedly in an attempt to minimise the
amount of extra space required. These approaches are also discussed by Brent and Zimmer-
mann (2010) in a broader context. Those authors, who have extensive experience in fast im-
plementations of multiplication algorithms, claim that “The efficiency of an implementation
of Karatsuba’s algorithm depends heavily on memory usage”. Our experiments, given at the
end of this chapter, help support this claim.

The first algorithm that we will present has the same asymptotic time complexity as Karat-
suba’s algorithm and the variants above, but only requires O(log n ) temporary storage.

4.1.2 FFT-based multiplication

The fastest practical algorithms for integer and polynomial multiplication are based on the
fast Fourier transform algorithm discussed in the previous chapter. These algorithms use
the FFT to evaluate the unknown product polynomial at a number of points, then apply the
inverse FFT to compute the coefficients of the product from these evaluation points.

To compute the product of f and g , two univariate polynomials with degrees less than n
as above, we use a 2m -PRU ω, where 2m ≥ 2n − 1. We need a PRU of this order because the
product polynomial has size at most 2n−1, and we need at least this many points to uniquely
recover it with polynomial interpolation.

The first step is to compute DFTω( f ) and DFTω(g ). Observe that each DFT has size 2m ,
which is at most 2(2n−1)−1= 4n−3. Since each input polynomial has degree at less than n ,
both coefficient vectors must be padded with zeroes to almost four times their width, at least
if the usual radix-2 FFT algorithm is used. Even making use of the output space, and using
in-place FFTs, this step requires extra temporary space for about 6n ring elements.

From the initial DFTs, we have f (ωi ) and g (ωi ) for 0 ≤ i < 2m . Write h = f · g for their
product in R[x ]. From the DFTs of f and g , we can easily write down DFTω(h) using exactly
2m multiplications in R, since h(ωi ) = f (ωi ) · g (ωi ) for any i . Finally, we compute the inverse
FFT of the evaluations of h to recover the coefficients of the product. Since 2m could be about
twice as large as deg h, we may have to trim some zeros from the end of this output before
copying the coefficients of h to the output space.
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In summary, we compute

f · g =
1

n
DFTω−1

�

DFTω( f ) ∗DFTω(g )
�

,

where ∗ signifies pairwise multiplication of vector elements. The last two steps (writing down
DFTω(h) and computing the inverse FFT) can be computed in-place in the storage already
allocated for the forward DFTs. Therefore the total amount of extra space required for the
standard FFT-based multiplication algorithm is approximately 6n ring elements.

This basic formulation of FFT-based multiplication has been unchanged for many years,
while the main focus of algorithmic development has been on the troublesome requirement
that R contains an n-PRU ω. When it does not, we can construct a so-called virtual root of
unity by working in a larger field and incurring a small multiplicative factor in the complexity.

For n-bit integer multiplication, Schönhage and Strassen (1971) showed how to achieve
bit complexity O(n log n loglog n ) for this problem. This has recently been improved by Fürer
(2007) and De, Kurur, Saha, and Saptharishi (2008) to O(n · log n ·2log∗n ), where log∗n indicates
the iterated logarithm, defined as the number of times logarithm must be taken to reach a
constant value. Recall from Section 1.4, however, that these subtleties of bit complexity are
not meaningful in the IMM model.

Schönhage and Strassen’s algorithm can also be applied to polynomial multiplication in
the algebraic IMM model, giving a cost of O(n log n loglog n ) ring operations for degree-n
polynomial multiplication, but only when the ring R admits division by 2. Schönhage (1977)
used radix-3 FFTs to extend to rings of characteristic 2, and Cantor and Kaltofen (1991) further
extended to arbitrary algebras, including non-commutative algebras, with the same asymp-
totic cost. It remains open whether the new improvements in the bit complexity of multipli-
cation can be applied to the polynomial case.

In any case, this work explicitly dodges these issues by simply assuming that the ring R
already contains an n-PRU ω. That is, we assume any of the above methods has been used
to add virtual roots of unity already, and optimise from there on. The second algorithm we
present reduces the amount of temporary storage required for FFT-based multiplication, over
rings that already contain the proper 2m -PRU, from 6n ring elements as in the standard algo-
rithm above, to O(1).

4.1.3 Lower bounds

There are a few lower bounds on the multiplication problem that merit mentioning here.
First, in time complexity, Bürgisser and Lotz (2004) proved that at least Ω(n log n ) ring op-
erations are required for degree-n polynomial multiplication over C[x ] in the bounded coef-
ficients model. This model encompasses algebraic circuits where the scalars (in our notation
from Chapter 1, edge labels) are all at most 2 in absolute value. In particular, their result im-
plies lower bounds for multiplication by universal IMM algorithms that contain no branch
instructions.

More to the point of the current discussion, a few time-space tradeoffs for multiplication
were given among the large number of such results that appeared a few decades ago. Savage
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and Swamy (1979) proved that Ω(n 2) time × space is required for boolean circuits computing
binary integer multiplication. Here space is defined as the maximum number of nodes in the
circuit that must reside in memory at any given point during the computation.

Algebraic circuits, or straight-line programs, are said to model “oblivious” algorithms,
where the structure of the computation is fixed for a given input size. In fact, all the multi-
plication algorithms discussed above have this property. However, branching programs are
more general in that they allow the computation path to change depending on the input. For
binary integers, these are essentially an extension of binary decision trees. In this model,
Abrahamson (1986) proved that at leastΩ(n 2/ log2 n ) time× space is required for integer mul-
tiplication. In this model, space is measured as the logarithm of the number of nodes in the
branching program, which corresponds to how much “state” information must be stored in
an execution of the program to keep track of where it is in the computation.

The algorithms we present will break these lower bounds for time times temporary space
in the algebraic IMM model. Our algorithms do not branch by examining ring elements, and
therefore can be modelled by algebraic circuits or straight-line programs. They break these
lower bounds by allowing both reads and writes to the output space. By re-using the out-
put space, we show that these time-space tradeoffs can be broken. Observe that this follows
similar results for more familiar problems such as sorting, which requires Ω(n 2) time × space
in these models as well, but of course can be solved in-place in O(n log n ) time, in the IMM
model.

4.2 Space-efficient Karatsuba multiplication

We present an algorithm for polynomial multiplication which has the same mathematical
structure as Karatsuba’s, and the same time complexity, but which makes careful re-use of
the output space so that only O(log n ) temporary space is required for the computation. The
description of the algorithm is cleanest when multiplying polynomials inR[x ]with equal sizes
that are both divisible by 2, so for simplicity we will present that case first. The corresponding
methods for odd-sized operands, different-sized operands, and multiple-precision integers
will follow fairly easily from this case.

4.2.1 Improved algorithm: general formulation

The key to obtaining O(log n ) extra space for Karatsuba-like multiplication is by solving a
slightly more general problem. In particular, two extra requirements are added to the algo-
rithm at each recursive step.

Condition 4.1. The low-order n coefficients of the output space are pre-initialized and must be
added to. That is, half of the product space is initialized with a polynomial h ∈ R[x ] of degree
less than n.

With Condition 4.1, the computed result should now equal h + f · g .
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Condition 4.2. The first operand to the multiplication f is given as two polynomials which
must first be summed before being multiplied by g . That is, rather than a single polynomial
f ∈R[x ], we are given two polynomials f (0), f (1) ∈R[x ], each with degree less than n.

With both these conditions, the result of the computation should be h +( f (0)+ f (1)) · g .

Of course, these conditions should not be made on the very first call to the algorithm, and
this will be discussed in the next subsection. We are now ready to present the algorithm in
the easiest case that f , g ∈R[x ] with deg f = deg g = 2k −1 for some k ∈N. If A is an array in
memory, we use the notation of A[i ..j ] for the sub-array from indices i to j (inclusive), with
0 ≤ i ≤ j < |A |. If array A contains a polynomial f , then the array element A[i ] is the coef-
ficient of x i in f . The three read-only input operands f (0), f (1), g are stored in arrays A, B ,C ,
respectively, and the output is written to array D. From the first condition, D[0..2k − 1] is
initialized with h.

In the notation of an algebraic IMM, we can think of the read-only arrays A, B ,C as residing
in the input memory M I on the algebraic side, and D is the output memory space MO on
the algebraic side. In some recursive calls, however, A, B ,C may actually reside in the output
space, although this does not change the algorithm. Incidentally, this is the first IMM problem
we have seen where valid instances (I ,O,O ′) have all three parts non-empty.

Algorithm 4.1: Space-efficient Karatsuba multiplication

Input: k ∈N and f (0), f (1), g , h ∈R[x ]with degrees less than 2k in arrays A, B ,C , D,
respectively

Output: h +( f (0)+ f (1)) · g stored in array D
1 D[k ..2k −1]←D[k ..2k −1]+D[0..k −1]
2 D[3k −1..4k −2]← A[0..k −1]+A[k ..2k −1]+ B [0..k −1]+ B [k ..2k −1]
3 Recursive call with A ′←C [0..k −1], B ′←C [k ..2k −1], C ′←D[3k −1..4k −2], and

D ′←D[k ..3k −2]
4 D[3k −1..4k −2]←D[k ..2k −1]+D[2k ..3k −2]
5 Recursive call with A ′← A[0..k −1], B ′← B [0..k −1], C ′←C [0..k −1], and

D ′←D[0..2k −2]
6 D[2k ..3k −2]←D[2k ..3k −2]−D[k ..2k −2]
7 D[k ..2k −1]←D[3k −1..4k −2]−D[0..k −1]
8 Recursive call with A ′← A[k ..2k −1], B ′← B [k ..2k −1], C ′←C [k ..2k −1], and

D ′←D[2k ..4k −2]
9 D[k ..2k −1]←D[k ..2k −1]−D[2k ..3k −1]

10 D[2k ..3k −2]←D[2k ..3k −2]−D[3k ..4k −2]

Table 4.1 summarizes the computation by showing the actual values (in terms of the input
polynomials and intermediate products) stored in each part of the output array D after each
step of the algorithm. Between the recursive calls on Steps 3, 5, and 8, we perform some
additions and rearranging to prepare for the next multiplication. Notice that a few times a
value is added somewhere only so that it can be cancelled off at a later point in the algorithm.
An example of this is the low-order half of h, h0, which is added to h1 on Step 1 only to be
cancelled when we subtract (α0+h0) from this quantity later, on Step 7.
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D[0..k −1] D[k ..2k −1] D[2k ..3k −2]∗ D[3k −1..4k −2]∗

0 h0 h1 — —
1 h0 h0+h1 — —
2 h0 h0+h1 — f (0)0 + f (0)1 + f (1)0 + f (1)1

3 h0 h0+h1+γ0 γ1 f (0)0 + f (0)1 + f (1)0 + f (1)1

4 h0 h0+h1+γ0 γ1 h0+h1+γ0+γ1

5 h0+α0 α1 γ1 h0+h1+γ0+γ1

6 h0+α0 α1 γ1−α1 h0+h1+γ0+γ1

7 h0+α0 h1+γ0+γ1−α0 γ1−α1 h0+h1+γ0+γ1

8 h0+α0 h1+γ0+γ1−α0 β0+γ1−α1 β1

9 h0+α0 h1+α1+γ0−α0−β0 β0+γ1−α1 β1

10 h0+α0 h1+α1+γ0−α0−β0 β0+γ1−α1−β1 β1

∗The last two sub-arrays shift by one to D[2k ..3k −1] and D[3k ..4k −2] at Step 8.

Table 4.1: Values stored in D through the steps of Algorithm 4.1

The final value stored in D after Step 10 is

(h0+α0)+ (h1+α1+γ0−α0−β0)x k

+(β0+γ1−α1−β1)x 2k +β1 ·x 3k , (4.4)

which we notice is exactly the same as (4.3) with the addition of h0 + h1x k as specified by
Condition 4.1.

The base case of the algorithm will be to switch over to the classical algorithm for multi-
plication; the exact size at which the classical algorithm should be preferred will depend on
the implementation. Even with the extra conditions of our problem, the classical algorithm
can still be implemented with O(1) space, using a single accumulator in temporary memory,
as discussed earlier. This proves the correctness of the following theorem:

Theorem 4.3. Let f (0), f (1), g , h ∈R[x ] be polynomials each with degree one less than n = 2b for
some b ∈ N, with all polynomials stored in read-only input memory except h, which is stored
initially in the output space. Algorithm 4.1 correctly computes h + ( f (0) + f (1)) · g using O(1)
temporary storage on the algebraic side and O(log n ) temporary storage of word-sized integers.
The time complexity is O(n log2 3), or O(n 1.59).

Proof. The size of the input polynomials n must be a power of 2 so that each recursive call is
on even-sized arguments. To be more precise, the algorithm should be modified so that it ini-
tially checks whether the input size is below a certain (constant) threshold, in which case the
space-efficient classical algorithm is called. Correctness follows from the discussion above.
We can see that there are exactly three recursive calls on input of one-half the size of the orig-
inal input, and this gives the stated time complexity bounds.

Finally, observe that the temporary storage required by the algorithm on a single recur-
sive call consists of a constant number of pointers, stored on the integer side of the algebraic
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IMM, and a single accumulator on the algebraic side. This accumulator can be re-used by
the recursive calls, but the pointers must remain, so that the algorithm may proceed when
the recursive calls terminate. Since the depth of recursion is log2 n , this means that O(log n )
temporary space is required on the integer side, as stated.

4.2.2 Initial calls

The initial call to compute the product of two polynomials f and g will not satisfy Conditions
4.1 and 4.2 above. So there must be top-level versions of the algorithm which do not solve the
more general problem of h +( f (0)+ f (1)) · g .

First, denote by SE_KarMult_1+2 Algorithm 4.1, indicating that both conditions 1 and 2
are satisfied by this version.

Working backwards, we then denote by SE_KarMult_1 an algorithm that is similar to Al-
gorithm 4.1, but which does not satisfy Condition 4.2. Namely, the input will be just three
polynomials f , g , h ∈ R[x ], with h stored in the output space, and the algorithm computes
h + f · g . In this version, two of the additions on Step 2 are eliminated. The function call on
Step 3 is still to SE_KarMult_1+2, but the other two on Steps 5 and 8 are recursive calls to
SE_KarMult_1.

Similarly, SE_KarMult will be the name of the top-level call which does not satisfy either
Condition 4.1 or 4.2, and therefore simply computes a single product f ·g into an uninitialized
output space. Here again we save two array additions on Step 2, and in addition Step 1 is
replaced with the instruction:

D[0..k −1]←C [0..k −1]+C [k ..2k −1].

This allows the first two function calls on Steps 3 and 5 to be recursive calls to SE_KarMult,
and only the last one on Step 8 is a call to SE_KarMult_1.

The number of additions (and subtractions) at each recursive step determine the hidden
constant in the O(n 1.59) time complexity measure. We mentioned that a naïve implementation
of Karatsuba’s algorithm uses 4n additions at each recursive step, and it is easy to improve
this to 7n/2. By inspection, Algorithm 4.1 uses 9n/2+O(1) additions at each recursive step,
and therefore both SE_KarMult_1 and SE_KarMult use only 7n/2+O(1) additions at each
recursive step. So SE_KarMult_1 and SE_KarMultmatch the best known existing algorithms
in the number of additions required, and SE_KarMult_1+2 uses only n+O(1)more additions
and subtractions than this.

Asymptotically, the cost of calls to SE_KarMult_1+2will eventually dominate, incurring a
slight penalty in extra arithmetic operations. However, most of the initial calls, particularly for
smaller values of n (where Karatsuba’s algorithm is actually used), will be to SE_KarMult_1 or
SE_KarMult, and should not be any more costly in time than a good existing implementation.
This gives us hope that our space-efficient algorithm might be useful in practice; this hope is
confirmed in Section 4.4.
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4.2.3 Unequal and odd-sized operands

So far our algorithm only works when both input polynomials have the same degree, and that
degree is exactly one less than a power of two. This is necessary because the size of both
operands at each recursive call to Algorithm 4.1, as stated, must be even. Special cases to
handle the cases when the input polynomials have even degree (and therefore an odd size)
or different degrees will resolve these issues and give a general-purpose multiplication algo-
rithm.

First consider the case that deg f (0), deg f (1), deg g , and deg h are all equal to 2k for some
k ∈ N, so that each polynomial has an odd number of coefficients. In order to use Algo-
rithm 4.1 in this case, we first pull off the low-order coefficients of each polynomial, writing

f (0) = a 0+x f̂ (0)

f (1) =b0+x f̂ (1)

g = c0+x ĝ

h = d 0+d 1x +x 2ĥ

Now we can rewrite the desired result as follows:

h +( f (0)+ f (1)) · g = d 0+d 1x +x 2ĥ +(a 0+b0+x f̂ (0)+x f̂ (1)) · (c0+x ĝ )

= d 0+d 1x +x (a 0+b0)ĝ +x c0 f̂ (0)+x c0 f̂ (1)+x 2(ĥ +( f̂ (0)+ f̂ (1)) · ĝ ).

Therefore this result can be computed with a single call to Algorithm 4.1 with even-length
arguments, ĥ +( ˆf (0)+ ˆf (1)) · ĝ , followed by three additions of a scalar times a polynomial, and
a few more scalar products and additions. Since we can multiply a polynomial by a scalar
and add to a pre-initialized result without using any extra space, this still achieves the same
asymptotic time and space complexity as before, albeit with a few extra arithmetic operations.

In fact, our implementation in the MVP library uses only n/2+O(1) more operations at
each recursive step than the power-of-two algorithm analysed earlier, by making careful use
of additional versions of these routines when the size of the operands differ by exactly one.
These “one-different” versions have the same structure and asymptotic cost as the routines
already discussed, so we will not give further details here.

If the degrees of f and g differ by more than one, we use the well-known trick of blocking
the larger polynomial into sub-arrays whose length equal the degree of the smaller one. That
is, given f , g ∈ R[x ] with n = deg f , m = deg g and n >m , we write n = qm + r and reduce
the problem to computing q products of a degree-m by a degree-(m −1) polynomial and one
product of a degree-m by a degree-(r −1) polynomial. The m by m −1 products are handled
with the “one-different” versions of the algorithms mentioned above.

Each of the q initial products overlap in exactly m coefficients (half the size of the output),
so Condition 4.1 actually works quite naturally here, and the q m -by-(m−1) products are calls
to a version of SE_KarMult_1. The single m -by-(r − 1) product is performed first (so that
the entire output is uninitialized), and this is done by a recursive call to this same procedure
multiplying arbitrary unequal-length polynomials.
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All these special cases give the following result, which is the first algorithm for dense uni-
variate multiplication to achieve sub-quadratic time times space.

Theorem 4.4. For any f , g ∈ R[x ] with degrees less than n, the product f · g can be computed
using O(n log2 3) ring operations, O(1) temporary storage of ring elements, and O(log n ) tempo-
rary storage of word-sized integers.

4.2.4 Rolling a log from space to time

In fact, the O(log n ) temporary storage of integers can be avoided entirely, at the cost of an
extra logarithmic factor in the time cost. The idea is to store the current position of the execu-
tion in the recursion tree, by a list of integers (r0, r1, . . .). Each ri is 0, 1, or 2, indicating which
of the three recursive calls to the algorithm has been taken on level i of the recursion. Since
the recursion depth is at most log2 n , this list can be encoded into a single integer R with at
most (log2 3) log2 n bits. This is bounded by O(log n ) bits, and therefore the IMM algorithm
can choose the word size w appropriately to store R in a single word. Each time the i th re-
cursive call is made, R is updated to 3R + i , and each time a call returns, R is reset to bR/3c.
With the position in the recursion tree thus stored in a single machine word, each recursive
call overwrites the pointers from the parent call, using only O(1) temporary space throughout
the computation.

But when each recursive call returns, the algorithm will not know what parts of memory to
operate on, since the parent call’s pointers have been overwritten! This is solved by using the
encoded list of ri ’s, simulating the same series of calls from the top level to recover the pointers
used by the parent call. Such a simulation can always be performed, even though the values
in the memory locations are different than at the start of the algorithm, since the algorithm
is “oblivious”. That is, its recursive structure does not depend on the values in memory, but
only on their size. The cost of this simulation is O(log n ) at each stage, increasing the time
complexity to O(n log2 3 log n ). Somewhat dishonestly, we point out that this is still actually
O(n 1.59), since 1.59 is strictly greater than log2 3.

4.3 Space-efficient FFT-based multiplication

We now show how to perform FFT-based multiplication in O(n log n ) time and using only O(1)
temporary space, when the coefficient ring R already contains the necessary primitive root of
unity. A crucial subroutine will be our in-place truncated Fourier transform algorithm from
Chapter 3.

Recall the notation for PRUs introduced in subsection 3.1.6 of the previous chapter: ω[k ] is
a 2k -PRU in R for any k small enough that R actually contains such a PRU, andωi is defined
asωrevk i

[k ] .

For polynomials f , g ∈ R[x ], write n = deg f +deg g − 1 for the number of coefficients in
their product. The multiplication problem we consider is as follows. Given f , g , and a 2k -
PRU ω[k ], with k ≥ log2 n , compute the coefficients of the product h = f · g . As usual, the

62



CHAPTER 4. MULTIPLICATION WITHOUT EXTRA SPACE

coefficients of f and g are stored in read-only input space along with the PRU ω[k ], and the
coefficients of h must be written to the size-n output space.

A straightforward implementation of the standard FFT-based multiplication algorithm
outlined at the start of this chapter would require O(n ) temporary memory to compute this
product. Our approach avoids the need for this temporary memory by computing entirely in
the output space. In summary, we first compute at least one-third of DFT( f · g ), then at least
one-third of what remains, and so forth until the operation is complete. A single in-place
inverse TFT then completes the algorithm.

4.3.1 Folded polynomials

The initial stages of the algorithm compute partial DFTs of each of f and g , then multiply
them to obtain a partial DFT of h. A naïve approach to computing these partial transforms
would be to compute the entire DFT and then discard the unneeded parts, but this would
violate both the time and space requirements of our algorithm.

Instead, we define the folded polynomials as smaller polynomials determined from each of
f , g , h whose ordinary, full-length DFTs correspond to contiguous subsequences of the DFTs
of f , g , h.

Definition 4.5. For any u ∈ R[x ], and any i , j ∈ N, the folded polynomial u a ,b ∈ R[x ] is the
polynomial with degree less than 2b given by

u a ,b (x ) = u (ωa ·x )remx 2b −1.

To see how to compute the folded polynomials, first write u =
∑

i≥0 c i x i . Then

u a ,b = u (ωa x )remx 2b −1=
∑

i≥0

c iω
i
a x i rem 2b

.

Using this formulation, we can compute u a ,b using O(deg u ) ring operations, and using
only the storage space for the result, plus a single temporary ring element, an accumulator
for the powers ofωa .

The usefulness of the folded polynomials is illustrated in the following lemma, which
shows the relationship between DFT(u ) and DFT(u a ,b ).

Lemma 4.6. For any u ∈R[x ] and a ,b ∈N such that 2b |a , the elements of the discrete Fourier
transform of u a ,b atω[b ] are exactly

DFTω[b ](u a ,b ) = u (ωa ), u (ωa+1), . . . , u (ωa+2b−1).

Proof. Let s ∈ {0, 1, . . . , 2b − 1}. Thenωs can be written asωrevb s
[b ] , from the definitions. There-

fore, we see thatωs is a 2b -PRU, and furthermore,ω2b

s −1= 0 inR. This implies that u a ,b (ωs ) =
u (ωaωs ).
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Now since 2b | a , a and s have no bits in common, so for any k > log2 a , we have that
revk (a + s ) = revk a + revk s , and therefore, from the definitions,

ωaωs =ω
revk a+revk s
[k ] =ωa+s .

Putting this together, we see that

DFTω[b ](u a ,b ) = u a ,b (ω0), u a ,b (ω1), . . . , u a ,b (ω2b−1)

= u (ωa ), u (ωa+1), . . . , u (ωa+2b−1).

4.3.2 Constant-space algorithm

Our strategy for FFT-based multiplication with O(1) extra space is then to compute

DFTω[bi ]
(ha i ,b i )

for a sequence of indices a i and b i satisfying a 0 = 0 and a i = a i−1 + 2b i−1 for i ≥ 1. From
Lemma 4.6 above, this sequence will give the DFT of h itself after enough iterations. The b i ’s
at each step will be chosen so that the computation of that step can be performed entirely in
the output space.

This approach is presented in Algorithm 4.2. The input consists of two arrays A, B ∈ R∗,
where A[i ] is the coefficient of x i in f and B [i ] is the coefficient of x i in g . The algorithm
uses the output space of size deg f + deg g + 1 and ultimately writes the coefficients of the
product h = f g in that space. The subroutine FFT indicates the usual radix-2 in-place FFT
algorithm on a power-of-two input size, and the subroutine InplaceITFT is Algorithm 3.2
from the previous chapter.

Theorem 4.7. Algorithm 4.2 correctly computes the product h = f · g , using O(n log n ) ring
operations and O(1) temporary storage of ring elements and word-sized integers.

Proof. The main loop terminates since q is strictly increasing. Let m be the number of iter-
ations, and let q0 > q1 > · · · > qm−1 and L 0 ≥ L 1 ≥ · · · ≥ L m−1 be the values of q and L on each
iteration. By construction, the intervals [qi ,qi + L i ) form a partition of [0, r − 1), and L i is the
largest power of two such that qi +2L i ≤ r . Therefore each L can appear at most twice (i.e., if
L i = L i−1 then L i+1 < L i ) Furthermore, m ≤ 2 lg r , and we have L i |qi for each i .

At each iteration, lines 7–8 compute the coefficients of the folded polynomial f q ,`, placing
the result in MO[q , . . . ,q + L − 1]. From Lemma 4.6, we know that the FFT on Line 9 then
computes MO[q + i ] = f (ωq+i ) for 0≤ i < L. The next two lines similarly compute MO[q +L+
i ] = g (ωq+i ) for 0 ≤ i < L. (The condition q + 2L ≤ r ensures that both of these transforms
fit into the output space.) Lines 13–14 then compute MO[q + i ] = f (ωq+i ) · g (ωq+i ) = h(ωq+i )
for 0 ≤ i < L. These are the corresponding elements of the discrete Fourier transform of h,
written in reverted binary order.

After line 16 we finally have MO[i ] = h(ωi ) for all 0≤ i < n . Observe that the last element
is handled specially since the output space does not have room for both evaluations. The call
to Algorithm 3.2 on Line 17 then recovers the coefficients of h, in the normal order.
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Algorithm 4.2: Space-efficient FFT-based multiplication

Input: f , g ∈R[x ], stored in arrays A and B , respectively
Output: The coefficients of h = f · g , stored in output space MO

1 n← deg f +deg g −1
2 q ← 0
3 while q < n −1 do
4 `←blg(n −q )c−1
5 L← 2`

6 MO[q ,q +1, . . . ,q +2L−1]← (0, 0, . . . , 0)
7 for 0≤ i ≤ deg f do
8 MO[q +(i rem L)]←MO[q +(i rem L)]+ωi

q A[i ]

9 FFT(MO[q ,q +1, . . . ,q + L−1])
10 for 0≤ i ≤ deg g do
11 MO[q + L+(i rem L)]←MO[q + L+(i rem L)]+ωi

q B [i ]

12 FFT(MO[q + L,q + L+1, . . . ,q +2L−1])
13 for 0≤ i < L do
14 MO[q + i ]←MO[q + i ] ·MO[q + L+ i ]

15 q ←q + L

16 MO[n −1]← f (ωn−1) · g (ωn−1)
17 InplaceITFT(MO[0, 1, . . . , n −1])
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We now analyse the time and space complexity. Computing the folded polynomials in the
loops on lines 6, 7, 10 and 13 takes O(n ) operations per iteration, or O(n log n ) in total, since
m =O(log n ). The FFT calls contribute O(L i log L i ) per iteration, for a total of

O(
∑

i

L i log L i ) =O(
∑

i

L i log L) =O(n log n ).

Line 16 requires O(n ) ring operations, and line 17 requires O(n log n ). The space requirements
follow directly from the fact that the FFT and InplaceTFT calls are all performed in-place.

4.4 Implementation

These algorithms have been implemented in the MVP library for dense polynomial multipli-
cation over prime fields Fp [x ] with p a single machine word-sized prime. For the FFT-based
multiplication method, we further require that Fp contains 2k -PRU of sufficiently high order,
as mentioned above.

For benchmarking, we compared our algorithms with the C++ library NTL (Shoup, 2009).
This is a useful comparison, as NTL also relies on a blend of classical, Karatsuba, and FFT-
based algorithms for different ranges of input sizes, using the standard Karatsuba and FFT
algorithms we presented earlier. There are some faster implementations of modular multipli-
cation, most notably zn_poly (Harvey, 2008), but these use somewhat different algorithms
and methods. We also used the Mod<long> class in MVP for the coefficient arithmetic, as
opposed to the (faster) Montgomery representation mentioned earlier, because this is essen-
tially the same as NTL’s implementation for coefficient arithmetic. Our aim is not to claim
the “fastest” implementation but merely to demonstrate that the space-efficient algorithms
presented can compete in time cost with other methods that use more space. By comparing
against a similar library with similar coefficient arithmetic, we hope to gain insight about the
algorithms themselves.

Table 4.2 shows the results of some early benchmarking tests. For all cases, we multiplied
two randomly-chosen dense polynomials of the given degree, and the time per iteration, in
CPU seconds, is reported. NTL uses classical multiplication for degree less than 16 (and as
a base case for Karatsuba), Karatsuba’s algorithm for size up to 512, and FFT-based multipli-
cation for the largest sizes. Our crossover points, determined experimentally on the target
machine, are a little higher: 32 and 768 respectively. This is probably due to the slightly higher
complication of our new algorithms, but there could also be other factors at play.

We should also point out that we used the radix-2 not-in-place inverse FFT for the final
step of Algorithm 4.2, rather than the in-place truncated Fourier transform of the previous
chapter. This choice was made because of the especially bad performance of the in-place in-
verse TFT in our experiments before. Observe that when the size of the product is a power
of two, our algorithm is actually in-place, and even this is better than previously-known ap-
proaches in terms of space efficiency.
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Size NTL Low-space in MVP Ratio
100 4.00×10−5 3.00×10−5 .750
150 7.94×10−5 6.24×10−5 .786
200 1.26×10−4 8.70×10−5 .690
250 1.70×10−4 1.17×10−4 .688
300 2.35×10−4 1.88×10−4 .800
350 2.97×10−4 2.24×10−4 .754
400 3.61×10−4 2.60×10−4 .720
450 4.34×10−4 3.10×10−4 .714
500 5.02×10−4 3.50×10−4 .697
600 7.04×10−4 5.68×10−4 .807
700 8.32×10−4 6.96×10−4 .837
800 8.42×10−4 7.78×10−4 .924
900 8.48×10−4 8.24×10−4 .972

1000 8.74×10−4 8.34×10−4 .954
1200 1.70×10−3 1.54×10−3 .906
1400 1.77×10−3 1.59×10−3 .898
1600 1.80×10−3 1.70×10−3 .944
1800 1.90×10−3 1.76×10−3 .926
2000 1.95×10−3 1.88×10−3 .964
3000 4.07×10−3 3.58×10−3 .879
4000 4.22×10−3 4.04×10−3 .957
5000 1.05×10−2 7.38×10−3 .703
6000 1.06×10−2 8.00×10−3 .755
7000 1.09×10−2 8.44×10−3 .774
8000 1.10×10−2 8.80×10−3 .800
9000 2.28×10−2 1.59×10−2 .697

Table 4.2: Benchmarks versus NTL
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4.5 Conclusions

The two algorithms presented in this chapter match existing “fast” algorithms in asymptotic
time complexity, but need considerably less auxiliary storage space to compute the result.
Our algorithms are novel theoretically as the first methods to achieve less than quadratic time
× space for multiplication. This is achieved in part by working in the more permissive (and
realistic) IMM model.

Much work remains to be done on this topic. The most obvious question is how these al-
gorithms can be adapted to multi-precision integer multiplication. The FFT-based algorithm
can already be used directly as a subroutine, since integer multiplication algorithms that rely
on the FFT generally work over modular rings that contain the required PRUs. A straight-
forward adaptation of the space-efficient Karatsuba multiplication to the multiplication of
multi-precision integers is not difficult to imagine, but the extra challenges introduced by the
presence of carries, combined with the extreme efficiency of existing libraries such as GMP
(Granlund et al., 2010), mean that an even more careful implementation would be needed to
gain an advantage in this case. For instance, it would probably be better to use a subtractive
version of Karatsuba’s algorithm to avoid some carries. This is also likely the area of greatest
potential utility of our new algorithms, as routines for long integer multiplication are used in
many different areas of computing.

There are also some more theoretical questions left open here. One direction for further
research would be to see if a scheme similar to the one presented here for Karatsuba-like
multiplication with low space requirements could also be adapted to the Toom-Cook 3-way
divide-and-conquer method, or even their arbitrary k -way scheme (Toom, 1963; Cook, 1966).
Some of these algorithms are actually used in practice for a range of input sizes between Karat-
suba and FFT-based methods, so there is a potential practical application here. Another task
for future research would be to improve the Karatsuba-like algorithm even further, either by
reducing the amount of extra storage below O(log n ) or (more usefully) reducing the implied
constant in the O(n 1.59) time complexity.

Finally, a natural question is to ask whether polynomial or long integer multiplication can
be done completely in-place. We observe that the size of the input (counting the coefficients
of both multiplicands) is roughly the same as the size of the output, so asking for an in-place
transformation overwriting the input with the output seems plausible. Upon further reflec-
tion, it seems that the data dependencies will make this task impossible, but we have no proof
of this at the moment.
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Everybody who has analyzed the logical theory of computers has
come to the conclusion that the possibilities of computers are
very interesting — if they could be made to be more complicated
by several orders of magnitude. If they had millions of times as
many elements, they could make judgments. They would have
time to calculate what is the best way to make the calculation that
they are about to make.

—Richard Feynman, “There’s plenty of room at the bottom” (1959)

Chapter 5

Adaptive multiplication

As we have seen, the multiplication of univariate polynomials is one of the most important
operations in mathematical computing, and in computer algebra systems in particular. How-
ever, existing algorithms are closely tied to the standard dense and sparse representations. In
this chapter, we present new algorithms for multiplication which allow the operands to be
stored in either the dense or sparse representation, and automatically adapt the algorithm to
the sparse structure of the input polynomials (in some sense). The result is a method that
is never significantly slower than any existing algorithm, but is significantly faster for a large
class of inputs.

Preliminary progress on some of these problems was presented at the Milestones in Com-
puter Algebra (MICA) conference in 2008 (Roche, 2008). The algorithms presented here have
also been accepted to appear in the Journal of Symbolic Computation (Roche, 2010).

5.1 Background

We start by reviewing the dense and sparse representations, as well as corresponding algo-
rithms for multiplication that have been developed. Let f ∈ R[x ] with degree less than n
written as

f = c0+ c1x + c2x 2+ · · ·+ cn−1x n−1, (5.1)

for c0, . . . , cn−1 ∈R. Recall that the dense representation of f is simply an array [c0, c1, . . . , cn−1]
of length n containing every coefficient in f .

Now suppose that at most t of the coefficients are nonzero, so that we can write

f = a 1x e1 +a 2x e2 + · · ·+a t x et , (5.2)
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for a 1, . . . , a t ∈R and 0≤ e1 < · · ·< e t . Hence a i = ce i for 1≤ i ≤ t , and in particular e t = deg f .
The sparse representation of f is a list of coefficient-exponent tuples (a 1, e1), . . . , (a t , e t ). This
always requires O(t ) ring elements of storage (on the algebraic side of an algebraic IMM).
However, the exponents in this case could be multi-precision integers, and the total size of
their storage, on the integer side, is proportional to

∑

i (1+ log2 e i ) bits. Assuming every ex-
ponent is stored to the same precision, this is O(t log n ) bits in total. Since the integer expo-
nents are not stored in bits but in machine words, this can be reduced by a logarithmic factor
for scalable IMM problems, but we will ignore that technicality for the sake of clarity in the
present discussion.

The previous chapter discussed algorithms for dense polynomial multiplication in depth.
Recall that the O(n 2) school method was first improved by Karatsuba and Ofman (1963) to
O(n 1.59) with a two-way divide-and-conquer scheme, later generalized to k -way by Toom
(1963) and Cook (1966). Building on results of Schönhage and Strassen (1971) and Schön-
hage (1977), Cantor and Kaltofen (1991) developed an algorithm to multiply polynomials with
O(n log n loglog n ) operations in any algebra. This stands as the best asymptotic complexity
for polynomial multiplication.

In practice, all of these algorithms will be used in certain ranges, and so we employ the
usual notation of a multiplication time function M(n ), the cost of multiplying two dense poly-
nomials with degrees both less than n . Also define δ(n ) =M(n )/n . If f , g ∈R[x ]with different
degrees deg f < n , deg g < m , and n > m , by splitting f into dn/m e size-m blocks we can
compute the product f · g with cost O( n

m
M(m )), or O(n ·δ(m )).

Algorithms for sparse polynomial multiplication were briefly discussed in Chapter 2. In
this case, the school method also uses O(t 2) ring operations, but for sparse polynomials this
cannot be improved in the worst case. However, since the degrees could be very large, the cost
of exponent arithmetic becomes significant. The school method uses O(t 3 log n ) word oper-
ations and O(t 2) space. Yan (1998) reduces the number of word operations to O(t 2 log t log n )
with the “geobuckets” data structure. Finally, recent work by Monagan and Pearce (2007), fol-
lowing Johnson (1974), gets this same time complexity but reduces the space requirement to
O(t + r ), where r is the number of nonzero terms in the product.

The algorithms we present are for univariate polynomials. They can also be used for mul-
tivariate polynomial multiplication by using Kronecker substitution, as described previously
in section 1.2.4: Given two n-variate polynomials f , g ∈ R[x1, . . . ,xn ] with max degrees less
than d , substitute x i = y (2d )i−1 for 1 ≤ i ≤ n , multiply the univariate polynomials over R[y ],
then convert back. Of course there are many other ways to represent multivariate polynomi-
als, but we will not consider them further here.

5.2 Overview of Approach

The performance of an adaptive algorithm depends not only on the size of the input but also
on some inherent difficulty measure. Such algorithms match standard approaches in their
worst-case performance, but perform far better on many instances. This idea was first applied
to sorting algorithms and has proved to be useful both in theory and in practice (see Petersson
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and Moffat, 1995). Such techniques have also proven useful in symbolic computation, for
example the early termination strategy of Kaltofen and Lee (2003).

Hybrid algorithms combine multiple different approaches to the same problem to effec-
tively handle more cases (e.g., Duran, Saunders, and Wan, 2003). Our algorithms are also
hybrid in the sense that they provide a smooth gradient between existing sparse and dense
multiplication algorithms. The adaptive nature of the algorithms means that in fact they will
be faster than existing algorithms in many cases, while never being (asymptotically) slower.

The algorithms we present will always proceed in three stages. First, the polynomials are
read in and converted to a different representation which effectively captures the relevant
measure of difficulty. Second, we multiply the two polynomials in the alternate representa-
tion. Finally, the product is converted back to the original representation.

The second step is where the multiplication is actually performed, and it is this step alone
that depends on the difficulty of the particular instance. Therefore this step should be the
dominating cost of the entire algorithm, and in particular the cost of the conversion steps
must be linear in the size of the input polynomials.

In Section 5.3, we give the first idea for adaptive multiplication, which is to write a polyno-
mial as a list of dense “chunks”. The second idea, presented in Section 5.4, is to write a polyno-
mial with “equal spacing” between coefficients as a dense polynomial composed with a power
of the indeterminate. Section 5.5 shows how to combine these two ideas to make one algo-
rithm which effectively captures both difficulty measures. We examine how our algorithms
perform in practice with some benchmarking against existing algorithms in Section 5.6. Fi-
nally, a few conclusions and ideas for future directions are discussed in Section 5.7.

5.3 Chunky Polynomials

The basic idea of chunky multiplication is a straightforward combination of the standard
sparse and dense representations, providing a natural gradient between the two approaches
for multiplication. We note that a similar idea was noticed (independently) around the same
time by Fateman (2008, page 11), although the treatment here is much more extensive.

For f ∈R[x ] of degree n , the chunky representation of f is a sparse polynomial with dense
polynomial “chunks” as coefficients:

f = f 1x e1 + f 2x e2 + · · ·+ f t x et , (5.3)

with f i ∈ R[x ] and e i ∈N for each 1≤ i ≤ t . We require only that e i+1 > e i +deg f i for 1≤ i ≤
t −1, and each f i has nonzero constant coefficient.

Recall the notation introduced above of δ(n ) =M(n )/n . A unique feature of our approach
is that we will actually use this function to tune the algorithm. That is, we assume a subroutine
is given to evaluate δ(n ) for any chosen value n .

If n is a word-sized integer, then the computation of δ(n )must use a constant number of
word operations. If n is more than word-sized, then we are asking about the cost of multiply-
ing two dense polynomials that cannot fit in memory, so the subroutine should return∞ in
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such cases. Practically speaking, the δ(n ) evaluation will usually be an approximation of the
actual value, but for what follows we assume the computed value is always exactly correct.

Furthermore, we require δ(n ) to be an increasing function which grows more slowly than
linearly, meaning that for any a ,b , d ∈Nwith a <b ,

δ(a +d )−δ(a )≥δ(b +d )−δ(b ). (5.4)

These conditions are clearly satisfied for all the dense multiplication algorithms and corre-
sponding M(n ) functions discussed above, including the piecewise function used in practice.

The conversion of a sparse or dense polynomial to the chunky representation proceeds
in two stages: first, we compute an “optimal chunk size” k , and then we use this computed
value as a parameter in the actual conversion algorithm. The product of the two polynomials
is then computed in the chunky representation, and finally the result is converted back to the
original representation. The steps are presented in reverse order in the hope that the goals at
each stage are more clear.

5.3.1 Multiplication in the chunky representation

Multiplying polynomials in the chunky representation uses sparse multiplication on the outer
loop, treating each dense polynomial chunk as a coefficient, and dense multiplication to find
each product of two chunks.

For f , g ∈R[x ] to be multiplied, write f as in (5.3) and g as

g = g 1x d 1 + g 2x d 2 + · · ·+ g s x d s , (5.5)

with s ∈ N and similar conditions on each g i ∈ R[x ] and d i ∈ N as in (5.3). Without loss of
generality, assume also that t ≥ s , that is, f has more chunks than g . To multiply f and g , we
need to compute each product f i g j for 1 ≤ i ≤ t and 1 ≤ j ≤ s and put the resulting chunks
into sorted order. It is likely that some of the chunk products will overlap, and hence some
coefficients will also need to be summed.

By using heaps of pointers as in (Monagan and Pearce, 2007), the chunks of the result are
computed in order, eliminating unnecessary additions and using little extra space. A min-
heap of size s is filled with pairs (i , j ), for i , j ∈ N, and ordered by the corresponding sum of
exponents e i + d j . Each time we compute a new chunk product f i · g j , we check the new
exponent against the degree of the previous chunk, in order to determine whether to make a
new chunk in the product or add to the previous one. The details of this approach are given
in Algorithm 5.1.

After using this algorithm to multiply f and g , we can easily convert the result back to the
dense or sparse representation in linear time. In fact, if the output is dense, we can preallocate
space for the result and store the computed product directly in the dense array, requiring only
some extra space for the heap H and a single intermediate product hnew.
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Algorithm 5.1: Chunky Multiplication

Input: f , g as in (5.3) and (5.5)
Output: The product f · g = h in the chunky representation

1 α← f 1 · g 1 using dense multiplication
2 b ← e1+d 1

3 H ←min-heap with pairs (1, j ) for j = 2, 3, . . . , s , ordered by exponent sums
4 if i ≥ 2 then insert (2, 1) into H
5 while H is not empty do
6 (i , j )← extract-min(H )
7 β ← f i · g j using dense multiplication
8 if b +degα< e i +d j then
9 write αx b as next term of h

10 α←β ; b ← e i +d j

11 else α←α+βx e i+d j−b stored as a dense polynomial
12 if i < t then insert (i +1, j ) into H

13 write αx b as final term of h

Theorem 5.1. Algorithm 5.1 correctly computes the product of f and g using

O

�

∑

deg f i≥deg g j
1≤i≤t , 1≤j≤s

(deg f i ) ·δ(deg g j ) +
∑

deg f i<deg g j
1≤i≤t , 1≤j≤s

(deg g j ) ·δ(deg f i )
�

ring operations and O(t s · log s · log(deg f g ))word operations.

Proof. Correctness is clear from the definitions. The bound on ring operations comes from
Step 7 using the fact that δ(n ) =M(n )/n . The cost of additions on Step 11 is linear and hence
also within the stated bound.

The cost of word operations is incurred in removing from and inserting to the heap on
Steps 6 and 12. Because these steps are executed no more than t f t g times, the size of the heap
is never more than t g , and each exponent sum is bounded by the degree of the product, the
stated bound is correct.

Notice that the cost of word operations is always less than the cost would be if we had mul-
tiplied f and g in the standard sparse representation. We therefore focus only on minimizing
the number of ring operations in the conversion steps that follow.

5.3.2 Conversion given optimal chunk size

The general chunky conversion problem is, given f , g ∈ R[x ], both either in the sparse or
dense representation, to determine chunky representations for f and g which minimize the
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cost of Algorithm 5.1. Here we consider a simpler problem, namely determining an optimal
chunky representation for f given that g has only one chunk of size k .

The following corollary comes directly from Theorem 5.1 and will guide our conversion
algorithm on this step.

Corollary 5.2. Given f ∈R[x ] as in (5.3), the number of ring operations required to multiply f
by a single dense polynomial with degree less than k is

O

�

δ(k )
∑

deg f i≥k

deg f i + k
∑

deg f i<k

δ(deg f i )
�

For any high-degree chunk (i.e., deg f i ≥ k ), we see that there is no benefit to making
the chunk any larger, as the cost is proportional to the sum of the degrees of these chunks. In
order to minimize the cost of multiplication, then, we should not have any chunks with degree
greater than k (except possibly in the case that every coefficient of the chunk is nonzero), and
we should minimize

∑

δ(deg f i ) for all chunks with size less than k .

These observations form the basis of our approach in Algorithm 5.2 below. For an input
polynomial f ∈R[x ], each “gap” of consecutive zero coefficients in f is examined, in order. We
determine the optimal chunky conversion if the polynomial were truncated at that gap. This
is accomplished by finding the previous gap of highest degree that should be included in the
optimal chunky representation. We already have the conversion for the polynomial up to that
gap (from a previous step), so we simply add on the last chunk and we are done. At the end,
after all gaps have been examined, we have the optimal conversion for the entire polynomial.

Let a i ,b i ∈ Z for 0≤ i ≤m be the sizes of each consecutive “gap” of zero coefficients and
“block” of nonzero coefficients, in order. Each a i and b i will be nonzero except possibly for
a 0 (if f has a nonzero constant coefficient), and

∑

0≤i≤m (a i +b i ) = deg f +1. For example, the
polynomial

f = 5x 10+3x 11+9x 13+20x 19+4x 20+8x 21

has a 0 = 10,b0 = 2, a 1 = 1,b1 = 1, a 2 = 5, and b2 = 3.

Finally, reusing notation from the previous subsection, define d i to be the size of the poly-
nomial up to (not including) gap i , i.e., d i =

∑

0≤j<i (a j + b j ). And define e i to be the size
including gap i , i.e., e i = d i +a i .

For the gap at index `, for 1≤ `≤m , we store the optimal chunky conversion of f mod x d `

by a linked list of indices of all gaps in f that should also be gaps between chunks in the op-
timal chunky representation. We also store, in c`, the cost in ring operations of multiplying
f mod x d ` (in this optimal representation) by a single chunk of size k , scaled by 1/k . In par-
ticular, since from the discussion above we can conclude that every chunk in this optimal
representation has size at most k , and writing s i for the size of the i ’th chunk in the optimal
chunky representation of f mod x d ` , c` is equal to

∑

δ(s i ).

The conversion algorithm works by considering, for each `, the gap of highest degree that
should be included in the optimal chunky representation of f mod x d ` . If this gap has index
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i , then from above we have c` = c i +δ(d `− e i ). This is because the optimal chunky represen-
tation will consist exactly of the chunks in f mod x d i , followed by the last chunk, which goes
from gap i to gap ` and has size d `− e i .

Hence to determine the optimal chunky conversion of f mod xd ` we must find an index
i < ` that minimizes c i+δ(d `−e i ). To see how this search is performed efficiently, first observe
that, from the discussion above, we need not consider chunks of size greater than k , and
therefore at this stage indices i where d `− e i > k may be excluded. Furthermore, from (5.4),
we know that, if 1 ≤ i < j < ` and c i +δ(d `− e i ) < c j +δ(d `− e j ), then this same inequality
continues to hold as ` increases. That is, as soon as an earlier gap results in a smaller cost than
a later one, that earlier gap will continue to beat the later one.

Thus we can essentially precompute the values of mini<`(c i +δ(d ` − e i )) by maintaining
a stack of index-index pairs. A pair (i , j ) of indices on the top of the stack indicates that c i +
δ(d `− e i ) is minimal as long as `≤ j . The second pair of indices indicates the minimal value
from gap j to the gap of the second index of the second pair, and so forth up to the bottom
of the stack and the last gap. Observe that the first index decreases and the second index
increases as we move from the top of the stack to the bottom. The initial pair at the bottom of
the stack is (0, m +1), indicating that gap 0, corresponding to the power of x that divides f (if
any), is always beneficial to take in the chunky representation.

The details of this rather complicated algorithm are given in Algorithm 5.2.

For an informal justification of correctness, consider a single iteration through the main
for loop. At this point, we have computed all optimal costs c1, c2, . . . , c`−1, and the lists of gaps
to achieve those costs L 1, L 2, . . . , L `−1. We also have computed the stack S, indicating which of
the gaps up to index `−2 is optimal and when.

The while loop on Step 5 removes all gaps from the stack which are no longer relevant,
either because their cost is now beaten by a previous gap (when j < `), or because the size of
the resulting chunk would be greater than k and therefore unnecessary to consider.

If the condition of Step 7 is true, then there is no index at which gap (`−1) should be used,
so we discard it.

Otherwise, the gap at index `− 1 is good at least some of the time, so we proceed to the
task of determining the largest gap index v at which gap (`− 1)might still be useful. First, in
Steps 14–16, we repeatedly check whether gap (`− 1) always beats the gap at the top of the
stack S, and if so remove it. After this process, either no gaps remain on the stack, or we have
a range r ≤ v ≤ j in which binary search can be performed to determine v .

From the definitions, d m+1 = deg f + 1, and so the list of gaps L m+1 returned on the final
step gives the optimal list of gaps to include in f mod x deg f +1, which is of course just f itself.

Theorem 5.3. Algorithm 5.2 returns the optimal chunky representation for multiplying f by a
dense size-k chunk. The running time of the algorithm is linear in the size of the input repre-
sentation of f .

Proof. Correctness follows from the discussions above.
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Algorithm 5.2: Chunky Conversion Algorithm

Input: k ∈N, f ∈R[x ], and integers a i ,b i , d i for i = 0, 1, 2, . . . , m as above
Output: A list L of the indices of gaps to include in the optimal chunky representation

of f when multiplying by a single chunk of size k
1 L 0← (empty); L 1← 0
2 c0← 0; c1←δ(b0)
3 S← (0, m +1)
4 for `= 2, 3, . . . , m +1 do
5 while top pair (i , j ) from S satisfies j < ` or d `− e i > k do
6 Remove (i , j ) from S

7 if S is not empty and the top pair (i , j ) from S satisfies
c i +δ(d `− e i )≤ c`−1+δ(d `− e`−1) then

8 L `← L i , i
9 c`← c i +δ(d `− e i )

10 else
11 L `← L `−1, (`−1)
12 c`← c`−1+δ(d `− e`−1)
13 r ← `
14 while top pair (i , j ) from S satisfies c i +δ(d j − e i )> c`−1+δ(d j − e`−1) do
15 r ← j
16 Remove (i , j ) from S

17 if S is empty then (i , j )← (0, m +1)
18 else (i , j )← top pair from S
19 v ← least index with r ≤ v < j s.t. c`−1+δ(d v − e`−1)> c i +δ(d v − e i )
20 Push (`−1, v ) onto the top of S

21 return L m+1
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For the complexity analysis, first note that the maximal size of S, as well as the number of
saved values a i ,b i , d i , s i , L i , is m , the number of gaps in f . Clearly m is less than the number
of nonzero terms in f , so this is bounded above by the sparse or dense representation size. If
the lists L i are implemented as singly-linked lists, sharing nodes, then the total extra storage
for the algorithm is O(m ).

The total number of iterations of the two while loops corresponds to the number of gaps
that are removed from the stack S at any step. Since at most one gap is pushed onto S at
each step, the total number of removals, and hence the total cost of these while loops over all
iterations, is O(m ).

Now consider the cost of Step 19 at each iteration. If the input is given in the sparse
representation, we just perform a binary search on the interval from r to j , for a total cost
of O(m log m ) over all iterations. Because m is at most the number of nonzero terms in f ,
m log m is bounded above by the sparse representation size, so the theorem is satisfied for
sparse input.

When the input is given in the dense representation, a binary search is again used on
Step 19, but we start with a one-sided binary search, also called “galloping” search. This
search starts from either r or j , depending on which interval endpoint v is closest to. The
cost of this search is at a single iteration is O(log min{v − r, i 2 − v }). Notice that the interval
(r, j ) in the stack is then effectively split at the index v , so intuitively whenever more work is
required through one iteration of this step, the size of intervals is reduced, so future iterations
should have lower cost.

More precisely, a loose upper bound in the worst case of the total cost over all iterations is
O(
∑u

i=1 2i · (u − i +1)), where u = dlog2 m e. This is less than 2u+2, which is O(m ), giving linear
cost in the size of the dense representation.

5.3.3 Determining the optimal chunk size

All that remains is to compute the optimal chunk size k that will be used in the conversion
algorithm from the previous section. This is accomplished by finding the value of k that min-
imizes the cost of multiplying two polynomials f , g ∈ R[x ], under the restriction that every
chunk of f and of g has size k .

If f is written in the chunky representation as in (5.3), there are many possible choices for
the number of chunks t , depending on how large the chunks are. So define t (k ) to be the least
number of chunks if each chunk has size at most k , i.e., deg f i < k for 1 ≤ i ≤ t (k ). Similarly
define s (k ) for g ∈R[x ]written as in (5.5).

Therefore, from the cost of multiplication in Theorem 5.1, in this part we want to compute
the value of k that minimizes

t (k ) · s (k ) ·k ·δ(k ). (5.6)

Say deg f = n . After O(n ) preprocessing work (making pointers to the beginning and end
of each “gap”), t (k ) could be computed using O(n/k ) word operations, for any value k . This
leads to one possible approach to computing the value of k that minimizes (5.6) above: simply
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compute (5.6) for each possible k = 1, 2, . . . , max{deg f , deg g }. This naïve approach is too
costly for our purposes, but underlies the basic idea of our algorithm.

Rather than explicitly computing each t (k ) and s (k ), we essentially maintain chunky rep-
resentations of f and g with all chunks having size less than k , starting with k = 1. As k
increases, we count the number of chunks in each representation, which gives a tight approx-
imation to the actual values of t (k ) and f (k ), while achieving linear complexity in the size of
either the sparse or dense representation.

To facilitate the “update” step, a minimum priority queue Q (whose specific implemen-
tation depends on the input polynomial representation) is maintained containing all gaps in
the current chunky representations of f and g . For each gap, the key value (on which the pri-
ority queue is ordered) is the size of the chunk that would result from merging the two chunks
adjacent to the gap into a single chunk.

So for example, if we write f in the chunky representation as

f = (4+0x +5x 2) ·x 12+(7+6x +0x 2+0x 3+8x 4) ·x 50,

then the single gap in f will have key value 3+35+5= 43, More precisely, if f is written as in
(5.3), then the i th gap has key value

deg f i+1+ e i+1− e i +1. (5.7)

Each gap in the priority queue also contains pointers to the two (or fewer) neighboring
gaps in the current chunky representation. Removing a gap from the queue corresponds to
merging the two chunks adjacent to that gap, so we will need to update (by increasing) the
key values of any neighboring gaps accordingly.

At each iteration through the main loop in the algorithm, the smallest key value in the
priority queue is examined, and k is increased to this value. Then gaps with key value k are
repeatedly removed from the queue until no more remain. This means that each remaining
gap, if removed, would result in a chunk of size strictly greater than k . Finally, we compute
δ(k ) and an approximation of (5.6).

Since the purpose here is only to compute an optimal chunk size k , and not actually to
compute chunky representations of f and g , we do not have to maintain chunky represen-
tations of the polynomials as the algorithm proceeds, but merely counters for the number of
chunks in each one. Algorithm 5.3 gives the details of this computation. Note in particular
that Q f and Q g initially contain every gap — even empty ones — so that

�

�Q f

�

� = t f − 1 and
�

�Q g

�

�= t g −1 initially.

All that remains is the specification of the data structures used to implement the priority
queues Q f and Q g . If the input polynomials are in the sparse representation, we simply use
standard binary heaps, which give logarithmic cost for each removal and update. Because the
exponents in this case are multi-precision integers, we might imagine encountering chunk
sizes that are larger than the largest word-sized integer. But as discussed previously, such
a chunk size would be meaningless since a dense polynomial with that size cannot be repre-
sented in memory. So our priority queues may discard any gaps whose key value is larger than
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Algorithm 5.3: Optimal Chunk Size Computation

Input: f , g ∈R[x ]
Output: k ∈N that minimizes t (k ) · s (k ) ·k ·δ(k )

1 Q f ,Q g ←minimum priority queues initialized with all gaps in f and g , respectively
2 k , kmin← 1; cmin← t f t g

3 while Q f and Q g are not both empty do
4 k ← smallest key value from Q f or Q g

5 while Q f has an element with key value ≤ k do
6 Remove a k -valued gap from Q f and update neighbors

7 while Q g has an element with key value ≤ k do
8 Remove a k -valued gap from Q g and update neighbors

9 ccurrent← (|Q f |+1) · (|Q g |+1) ·k ·δ(k )
10 if ccurrent < cmin then
11 kmin← k ; cmin← ccurrent

12 return kmin

word-sized. This guarantees all keys in the queues are word-size integers, which is necessary
for the complexity analysis later.

If the input polynomials are dense, we need a structure which can perform removals and
updates in constant time, using O(deg f +deg g ) time and space. For Q f , we use an array with
length deg f of (possibly empty) linked lists, where the list at index i in the array contains all
elements in the queue with key i . (An array of this length is sufficient because each key value
in Q f is at least 2 and at most 1+deg f .) We use the same data structure for Q g , and this clearly
gives constant time for each remove and update operation.

To find the smallest key value in either queue at each iteration through Step 4, we simply
start at the beginning of the array and search forward in each position until a non-empty list
is found. Because each queue element update only results in the key values increasing, we
can start the search at each iteration at the point where the previous search ended. Hence the
total cost of Step 4 for all iterations is O(deg f +deg g ).

The following lemma proves that our approximations of t (k ) and s (k ) are reasonably tight,
and will be crucial in proving the correctness of the algorithm.

Lemma 5.4. At any iteration through Step 10 in Algorithm 5.3, |Q f |< 2t (k ) and |Q g |< 2s (k ).

Proof. First consider f . There are two chunky representations with each chunk of degree
less than k to consider: the optimal having t (k ) chunks and the one implicitly computed by
Algorithm 5.3 with |Q f |+1 chunks. Call these f̄ and f̂ , respectively.

We claim that any single chunk of the optimal f̄ contains at most three constant terms
of chunks in the implicitly-computed f̂ . If this were not so, then two chunks in f̂ could be
combined to result in a single chunk with degree less than k . But this is impossible, since all
such pairs of chunks would already have been merged after the completion of Step 5.
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Therefore every chunk in f̄ contains at most two constant terms of distinct chunks in f̂ .
Since each constant term of a chunk is required to be nonzero, the number of chunks in f̂ is
at most twice the number in f̄ . Hence |Q f |+ 1≤ 2t (k ). An identical argument for g gives the
stated result.

Now we are ready for the main result of this subsection.

Theorem 5.5. Algorithm 5.3 computes a chunk size k such that t (k ) · s (k ) ·k ·δ(k ) is at most 4
times the minimum value. The worst-case cost of the algorithm is linear in the size of the input
representations.

Proof. If k is the value returned from the algorithm and k ∗ is the value which actually min-
imizes (5.6), the worst that can happen is that the algorithm computes the actual value of
c f (k )c g (k )k δ(k ), but overestimates the value of c f (k ∗)c g (k ∗)k ∗δ(k ∗). This overestimation
can only occur in c f (k ∗) and c g (k ∗), and each of those by only a factor of 2 from Lemma 5.4.
So the first statement of the theorem holds.

Write c for the total number of nonzero terms in f and g . The initial sizes of the queues Q f

and Q g is O(c ). Since gaps are only removed from the queues (after they are initialized), the
total cost of all queue operations is bounded above by O(c ), which in turn is bounded above
by the sparse and dense sizes of the input polynomials.

If the input is sparse and we use a binary heap, the cost of each queue operation is O(log c ),
for a total cost of O(c log c ), which is a lower bound on the size of the sparse representations. If
the input is in the dense representation, then each queue operation has constant cost. Since
c ∈O(deg f +deg g ), the total cost linear in the size of the dense representation.

5.3.4 Chunky Multiplication Overview

Now we are ready to examine the whole process of chunky polynomial conversion and multi-
plication. First we need the following easy corollary of Theorem 5.3.

Corollary 5.6. Let f ∈ R[x ], k ∈ N, and f̂ be any chunky representation of f where all chunks
have degree at least k , and f̄ be the representation returned by Algorithm 5.2 on input k . The
cost of multiplying f̄ by a single chunk of size ` < k is then less than the cost of multiplying f̂ by
the same chunk.

Proof. Consider the result of Algorithm 5.2 on input `. We know from Theorem 5.3 that this
gives the optimal chunky representation for multiplication of f with a size-` chunk. But the
only difference in the algorithm on input ` and input k is that more pairs are removed at each
iteration on Step 5 on input `.

This means that every gap included in the representation f̄ is also included in the optimal
representation. We also know that all chunks in f̄ have degree less than k , so that f̂ must
have fewer gaps that are in the optimal representation than f̄ . It follows that multiplication
of a size-` chunk by f̄ is more efficient than multiplication by f̂ .
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To review, the entire process to multiply f , g ∈ R[x ] using the chunky representation is as
follows:

1. Compute k from Algorithm 5.3.

2. Compute chunky representations of f and g using Algorithm 5.2 with input k .

3. Multiply the two chunky representations using Algorithm 5.1.

4. Convert the chunky result back to the original representation.

Because each step is optimal (or within a constant bound of the optimal), we expect this
approach to yield the most efficient chunky multiplication of f and g . In any case, we know
it will be at least as efficient as the standard sparse or dense algorithm.

Theorem 5.7. Computing the product of f , g ∈ R[x ] never uses more ring operations than ei-
ther the standard sparse or dense polynomial multiplication algorithms.

Proof. In Algorithm 5.3, the values of t (k ) · s (k ) · k ·δ(k ) for k = 1 and k =min{deg f , deg g }
correspond to the costs of the standard sparse and dense algorithms, respectively. Further-
more, it is easy to see that these values are never overestimated, meaning that the k returned
from the algorithm which minimizes this formula gives a cost which is not greater than the
cost of either standard algorithm.

Now call f̂ and ĝ the implicit representations from Algorithm 5.3, and f̄ and ḡ the repre-
sentations returned from Algorithm 5.2 on input k . We know that the multiplication of f̂ by ĝ
is more efficient than either standard algorithm from above. Since every chunk in ĝ has size k ,
multiplying f̄ by ĝ will have an even lower cost, from Theorem 5.3. Finally, since every chunk
in f̄ has size at most k , Corollary 5.6 tells us that the cost is further reduced by multiplying f̄
by ḡ .

The proof is complete from the fact that conversion back to either original representation
takes linear time in the size of the output.

5.4 Equal-Spaced Polynomials

Next we consider an adaptive representation which is in some sense orthogonal to the chunky
representation. This representation will be useful when the coefficients of the polynomial are
not grouped together into dense chunks, but rather when they are spaced evenly apart.

Let f ∈R[x ]with degree n , and suppose the exponents of f are all divisible by some integer
k . Then we can write f = a 0+a 1x k +a 2x 2k + · · · . So by letting f D = a 0+a 1x +a 2x 2+ · · · , we
have f = f D ◦x k (where the symbol ◦ indicates functional composition).

One motivating example suggested by Michael Monagan is that of homogeneous polyno-
mials. Recall that a multivariate polynomial h ∈ R[x1, . . . ,xn ] is homogeneous of degree d if
every nonzero term of h has total degree d . It is well-known that the number of variables in a
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homogeneous polynomial can be effectively reduced by one by writing yi = x i/xn for 1≤ i < n
and h = x d

n · ĥ, for ĥ ∈ R[y1, . . . , yn−1] an (n − 1)-variate polynomial with max degree d . This
leads to efficient schemes for homogeneous polynomial arithmetic.

But this is only possible if (1) the user realizes this structure in their polynomials, and (2)
every polynomial used is homogeneous. Otherwise, a more generic approach will be used,
such as the Kronecker substitution mentioned in the introduction. Choosing some integer
` > d , we evaluate h(y , y `, y `2 , . . . , y `n−1), and then perform univariate arithmetic overR[y ]. But
if h is homogeneous, a special structure arises: every exponent of y is of the form d+i (`−1) for
some integer i ≥ 0. Therefore we can write h(y , . . . , y `n−1) = (h̄◦y `−1)·y d , for some h̄ ∈R[y ]with
much smaller degree. The algorithms presented in this section will automatically recognize
this structure and perform the corresponding optimization to arithmetic.

The key idea is equal-spaced representation, which corresponds to writing a polynomial
f ∈R[x ] as

f = ( f D ◦x k ) ·x d + fS , (5.8)

with k , d ∈N, f D ∈R[x ] dense with degree less than n/k −d , and fS ∈R[x ] sparse with degree
less than n . The polynomial fS is a “noise” polynomial which contains the comparatively few
terms in f whose exponents are not of the form i k +d for some i ≥ 0.

Unfortunately, converting a sparse polynomial to the best equal-spaced representation
seems to be difficult. To see why this is the case, consider the much simpler problem of ver-
ifying that a sparse polynomial f can be written as ( f D ◦ x k ) · x d . For each exponent e i of a
nonzero term in f , this means confirming that e i ≡ d mod k . But the cost of computing each
e i mod k is roughly O(

∑

(log e i )δ(log k )), which is a factor of δ(log k ) greater than the size of
the input. Since k could be as large as the exponents, we see that even verifying a proposed k
and d takes too much time for the conversion step. Surely computing such a k and d would
be even more costly!

Therefore, for this subsection, we will always assume that the input polynomials are given
in the dense representation. In Section 5.5, we will see how by combining with the chunky
representation, we effectively handle equal-spaced sparse polynomials without ever having
to convert a sparse polynomial directly to the equal-spaced representation.

5.4.1 Multiplication in the equal-spaced representation

Let g ∈ R[x ] with degree less than m and write g = (g D ◦ x `) · x e + gS as in (5.8). To compute
f · g , simply sum up the four pairwise products of terms. All these except for the product
( f D ◦x k ) · (g D ◦x `) are performed using standard sparse multiplication methods.

Notice that if k = `, then ( f D ◦x k ) · (g D ◦x `) is simply ( f D · g D) ◦x k , and hence is efficiently
computed using dense multiplication. However, if k and ` are relatively prime, then almost
any term in the product can be nonzero.

This indicates that the gcd of k and ` is very significant. Write r and s for the greatest
common divisor and least common multiple of k and `, respectively. To multiply ( f D ◦x k ) by
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(g D ◦ x `), we perform a transformation similar to the process of finding common denomina-
tors in the addition of fractions. First split f D ◦ x k into s/k (or `/r ) polynomials, each with
degree less than n/s and right composition factor x s , as follows:

f D ◦x k = ( f 0 ◦x s )+ ( f 1 ◦x s ) ·x k +( f 2 ◦x s ) ·x 2k · · ·+( f s/k−1 ◦x s ) ·x s−k

Similarly split g D ◦x ` into s/` polynomials g 0, g 1, . . . , g s/`−1 with degrees less than m/s and
right composition factor x s . Then compute all pairwise products f i · g j , and combine them
appropriately to compute the total sum (which will be equal-spaced with right composition
factor x r ).

Algorithm 5.4 gives the details of this method.

Algorithm 5.4: Equal Spaced Multiplication

Input: f = ( f D ◦x k ) ·x d + fS , g = (g D ◦x `) ·x e + gS ,
with f D = a 0+a 1x +a 2x 2+ · · · , g D =b0+b1x +b2x 2+ · · ·
Output: The product f · g

1 r ← gcd(k ,`), s ← lcm(k ,`)
2 for i = 0, 1, . . . , s/k −1 do
3 f i ← a i +a s+i x +a 2s+i x 2+ · · ·

4 for i = 0, 1, . . . , s/`−1 do
5 g i ←b i +bs+i x +b2s+i x 2+ · · ·

6 hD ← 0
7 for i = 0, 1, . . . , s/k −1 do
8 for j = 0, 1, . . . , s/`−1 do
9 Compute f i · g j by dense multiplication

10 hD ← hD +(( f i · g j ) ◦x s ) ·x i k+j `

11 Compute ( f D ◦x k ) · gS , (g D ◦x `) · fS , and fS · gS by sparse multiplication
12 return hD ·x e+d +( f D ◦x k ) · gS ·x d +(g D ◦x `) · fS ·x e + fS · gS

As with chunky multiplication, this final product is easily converted to the standard dense
representation in linear time. The following theorem gives the complexity analysis for equal-
spaced multiplication.

Theorem 5.8. Let f , g be as above such that n >m , and write t f , t g for the number of nonzero
terms in fS and gS , respectively. Then Algorithm 5.4 correctly computes the product f · g using

O
�

(n/r ) ·δ(m/s )+nt g /k +m t f /`+ t f t g

�

ring operations.

Proof. Correctness follows from the preceding discussion.

The polynomials f D and g D have at most n/k and m/` nonzero terms, respectively. So
the cost of computing the three products in Step 11 by using standard sparse multiplication is
O(nt g /k+m t f /`+t f t g ) ring operations, giving the last three terms in the complexity measure.
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The initialization in Steps 2–5 and the additions in Steps 10 and 12 all have cost bounded
by O(n/r ), and hence do not dominate the complexity.

All that remains is the cost of computing each product f i · g j by dense multiplication on
Step 9. From the discussion above, deg f i < n/s and deg g j < m/s , for each i and j . Since
n > m , (n/s ) > (m/s ), and therefore this product can be computed using O((n/s )δ(m/s ))
ring operations. The number of iterations through Step 9 is exactly (s/k )(s/`). But s/`= k/r ,
so the number of iterations is just s/r . Hence the total cost for this step is O((n/r )δ(m/s )),
which gives the first term in the complexity measure.

It is worth noting that no additions of ring elements are actually performed through each
iteration of Step 10. The proof is as follows. If any additions were performed, we would have

i 1k + j1`≡ i 2k + j2` (mod s )

for distinct pairs (i 1, j1) and (i 2, j2). Without loss of generality, assume i 1 6= i 2, and write

(i 1k + j1`)− (i 2k + j2`) =qs

for some q ∈Z. Rearranging gives

(i 1− i 2)k = (j2− j1)`+qs .

Because `|s , the left hand side is a multiple of both k and `, and therefore by definition must
be a multiple of s , their lcm. Since 0≤ i 1, i 2 < s/k , |i 1− i 2|< s/k , and therefore |(i 1− i 2)k |< s .
The only multiple of s with this property is of course 0, and since k 6= 0 this means that i 1 = i 2,
a contradiction.

The following theorem compares the cost of the equal-spaced multiplication algorithm to
standard dense multiplication, and will be used to guide the approach to conversion below.

Theorem 5.9. Let f , g , m , n , t f , t g be as before. Algorithm 5.4 does not use asymptotically more
ring operations than standard dense multiplication to compute the product of f and g as long
as t f ∈O(δ(n )) and t g ∈O(δ(m )).

Proof. Assuming again that n >m , the cost of standard dense multiplication is O(nδ(m )) ring
operations, which is the same as O(nδ(m )+mδ(n )).

Using the previous theorem, the number of ring operations used by Algorithm 5.4 is

O ((n/r )δ(m/s )+nδ(m )/k +mδ(n )/`+δ(n )δ(m )) .

Because all of k ,`, r, s are at least 1, and since δ(n ) < n , every term in this complexity
measure is bounded by nδ(m )+mδ(n ). The stated result follows.
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5.4.2 Converting to equal-spaced

The only question when converting a polynomial f to the equal-spaced representation is how
large we should allow tS (the number of nonzero terms in of fS) to be. From Theorem 5.9
above, clearly we need tS ∈δ(deg f ), but we can see from the proof of the theorem that having
this bound be tight will often give performance that is equal to the standard dense method
(not worse, but not better either).

Let t be the number of nonzero terms in f . Since the goal of any adaptive method is to
in fact be faster than the standard algorithms, we use the lower bound of δ(n ) ∈ Ω(log n ) and
t ≤ deg f +1 and require that tS < log2 t .

As usual, let f ∈R[x ]with degree less than n and write

f = a 1x e1 +a 2x e2 + · · ·+a t x et ,

with each a i ∈R\{0}. The reader will recall that this corresponds to the sparse representation
of f , but keep in mind that we are assuming f is given in the dense representation; f is written
this way only for notational convenience.

The conversion problem is then to find the largest possible value of k such that all but at
most log2 t of the exponents e j can be written as k i +d , for any nonnegative integer i and a
fixed integer d . Our approach to computing k and d will be simply to check each possible
value of k , in decreasing order. To make this efficient, we need a bound on the size of k .

Lemma 5.10. Let n ∈N and e1, . . . , e t be distinct integers in the range [0, n ]. If at least t − log2 t
of the integers e i are congruent to the same value modulo k , for some k ∈N, then

k ≤
n

t −2 log2 t −1
.

Proof. Without loss of generality, order the e i ’s so that 0≤ e1 < e2 < · · ·< e t ≤ n . Now consider
the telescoping sum (e2− e1) + (e3− e2) + · · ·+ (e t − e t−1). Every term in the sum is at least 1,
and the total is e t − e1, which is at most n .

Let S ⊆ {e1, . . . , e t } be the set of at most log2 t integers not congruent to the others modulo
k . Then for any e i , e j /∈ S, e i ≡ e j mod k . Therefore k |(e j − e i ). If j > i , this means that
e j − e i ≥ k .

Returning to the telescoping sum above, each e j ∈ S is in at most two of the sum terms
e i − e i−1. So all but at most 2 log2 t of the terms are at least k . Since there are exactly t − 1
terms, and the total sum is at most n , we conclude that (t − 2 log2 t − 1) · k ≤ n . The stated
result follows.

We now employ this lemma to develop an algorithm to determine the best values of k and
d , given a dense polynomial f . Starting from the largest possible value from the bound, for
each candidate value k , we compute each e i mod k , and find the majority element — that is,
a common modular image of more than half of the exponents.

85



CHAPTER 5. ADAPTIVE MULTIPLICATION

To compute the majority element, we use a now well-known approach first credited to
Boyer and Moore (1991) and Fischer and Salzberg (1982). Intuitively, pairs of different ele-
ments are repeatedly removed until only one element remains. If there is a majority element,
this remaining element is it; only one extra pass through the elements is required to check
whether this is the case. In practice, this is accomplished without actually modifying the list.

Algorithm 5.5: Equal Spaced Conversion

Input: Exponents e1, e2, . . . , e t ∈N and n ∈N such that 0≤ e1 < e2 < · · ·< e t = n
Output: k , d ∈N and S ⊆ {e1, . . . , e t } such that e i ≡ d mod k for all exponents e i not in S,

and |S| ≤ log2 t .
1 if t < 32 then k ← n
2 else k ←bn/(t −1−2 log2 t )c
3 while k ≥ 2 do
4 d ← e1 mod k ; j ← 1
5 for i = 2, 3, . . . , t do
6 if e i ≡ d mod k then j ← j +1
7 else if j > 0 then j ← j −1
8 else d ← e i mod k ; j ← 1

9 S←{e i : e i 6≡ d mod k }
10 if |S| ≤ log2 t then return k , d , S
11 k ← k −1

12 return 1, 0, ;

Given k , d ,S from the algorithm, in one more pass through the input polynomial, f D and
fS are constructed such that f = ( f D ◦x k ) ·x d + fS . After performing separate conversions for
two polynomials f , g ∈R[x ], they are multiplied using Algorithm 5.4.

The following theorem proves correctness when t > 4. If t ≤ 4, we can always trivially set
k = e t − e1 and d = e1 mod k to satisfy the stated conditions.

Theorem 5.11. Given integers e1, . . . , e t and n, with t > 4, Algorithm 5.5 computes the largest
integer k such that at least t − log2 t of the integers e i are congruent modulo k , and uses O(n )
word operations.

Proof. In a single iteration through the while loop, we compute the majority element of the
set {e i mod k : i = 1, 2, . . . , t }, if there is one. Because t > 4, log2 t < t /2. Therefore any element
which occurs at least t−log2 t times in a t -element set is a majority element, which proves that
any k returned by the algorithm is such that at least t − log2 t of the integers e i are congruent
modulo k .

From Lemma 5.10, we know that the initial value of k on Step 1 or 2 is greater than the
optimal k value. Since we start at this value and decrement to 1, the largest k satisfying the
stated conditions is returned.

For the complexity analysis, first consider the cost of a single iteration through the main
while loop. Since each integer e i is word-sized, computing each e i mod k has constant cost,
and this happens O(t ) times in each iteration.
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If t < 32, each of the O(n ) iterations has constant cost, for total cost O(n ).

Otherwise, we start with k = bn/(t − 1− 2 log2 t )c and decrement. Because t ≥ 32, t /2 >
1+ 2 log2 t . Therefore (t − 1− 2 log2 t ) > t /2, so the initial value of k is less than 2n/t . This
gives an upper bound on the number of iterations through the while loop, and so the total
cost is O(n )word operations, as required.

Algorithm 5.5 can be implemented using only O(t ) space for the storage of the exponents
e1, . . . , e t , which is linear in the size of the output, plus the space required for the returned set
S.

5.5 Chunks with Equal Spacing

The next question is whether the ideas of chunky and equal-spaced polynomial multiplica-
tion can be effectively combined into a single algorithm. As before, we seek an adaptive com-
bination of previous algorithms, so that the combination is never asymptotically worse than
either original idea.

An obvious approach would be to first perform chunky polynomial conversion, and then
equal-spaced conversion on each of the dense chunks. Unfortunately, this would be asymp-
totically less efficient than equal-spaced multiplication alone in a family of instances, and
therefore is not acceptable as a proper adaptive algorithm.

The algorithm presented here does in fact perform chunky conversion first, but instead
of performing equal-spaced conversion on each dense chunk independently, Algorithm 5.5 is
run simultaneously on all chunks in order to determine, for each polynomial, a single spacing
parameter k that will be used for every chunk.

Let f = f 1x e1+ f 2x e2+· · ·+ f t x et in the optimal chunky representation for multiplication by
another polynomial g . We first compute the smallest bound on the spacing parameter k for
any of the chunks f i , using Lemma 5.10. Starting with this value, we execute the while loop
of Algorithm 5.5 for each polynomial f i , stopping at the largest value of k such that the total
size of all sets S on Step 9 for all chunks f i is at most log2 t f , where t f is the total number of
nonzero terms in f .

The polynomial f can then be rewritten (recycling the variables f i and e i ) as

f = ( f 1 ◦x k ) ·x e1 +( f 2 ◦x k ) ·x e2 + · · ·+( f t ◦x k ) ·x et + fS ,

where fS is in the sparse representation and has O(log t f ) nonzero terms.

Let k ∗ be the value returned from Algorithm 5.5 on input of the entire polynomial f . Using
k ∗ instead of k , f could still be written as above with fS having at most log2 t f terms. There-
fore the value of k computed in this way is always greater than or equal to k ∗ if the initial
bounds are correct. This will be the case except when every chunk f i has few nonzero terms
(and therefore t is close to t f ). However, this reduces to the problem of converting a sparse
polynomial to the equal-spaced representation, which seems to be intractable, as discussed

87



CHAPTER 5. ADAPTIVE MULTIPLICATION

above. So our cost analysis will be predicated on the assumption that the computed value of
k is never smaller than k ∗.

We perform the same equal-spaced conversion for g , and then use Algorithm 5.1 to com-
pute the product f · g , with the difference that each product f i · g j is computed by Algo-
rithm 5.4 rather than standard dense multiplication. As with equal-spaced multiplication,
the products involving fS or gS are performed using standard sparse multiplication.

Theorem 5.12. The algorithm described above to multiply polynomials with equal-spaced
chunks never uses more ring operations than either chunky or equal-spaced multiplication,
provided that the computed “spacing parameters” k and ` are not smaller than the values re-
turned from Algorithm 5.5.

Proof. Let n , m be the degrees of f , g respectively and write t f , t g for the number of nonzero
terms in f , g respectively. The sparse multiplications involving fS and gS use a total of

t g log t f + t f log t g +(log t f )(log t g )

ring operations. Both the chunky or equal-spaced multiplication algorithms always require
O(t gδ(t f )+t f δ(t g )) ring operations in the best case, and sinceδ(n )∈Ω(log n ), the cost of these
sparse multiplications is never more than the cost of the standard chunky or equal-spaced
method.

The remaining computation is that to compute each product f i · g j using equal-spaced
multiplication. Write k and ` for the powers of x in the right composition factors of f and g
respectively. Theorem 5.8 tells us that the cost of computing each of these products by equal-
spaced multiplication is never more than computing them by standard dense multiplication,
since k and ` are both at least 1. Therefore the combined approach is never more costly than
just performing chunky multiplication.

To compare with the cost of equal-spaced multiplication, assume that k and ` are the
actual values returned by Algorithm 5.5 on input f and g . This is the worst case, since we
have assumed that k and ` are never smaller than the values from Algorithm 5.5.

Now consider the cost of multiplication by a single equal-spaced chunk of g . This is the
same as assuming g consists of only one equal-spaced chunk. Write d i = deg f i for each
equal-spaced chunk of f , and r, s for the gcd and lcm of k and `, respectively. If m > n ,
then of course m is larger than each d i , so multiplication using the combined method will
use O((m/r )

∑

δ(d i/s )) ring operations, compared to O((m/r )δ(n/s )) for the standard equal-
spaced algorithm, by Theorem 5.8.

Now recall the cost equation (5.6) used for Algorithm 5.3:

c f (b ) · c g (b ) ·b ·δ(b ),

where b is the size of all dense chunks in f and g . By definition, c f (n ) = 1, and c g (n )≤m/n , so
we know that c f (n )c g (n )n δ(n )≤m δ(n ). Because the chunk sizes d i were originally chosen
by Algorithm 5.3, we must therefore have m

∑t
i=1δ(d i ) ≤ mδ(n ). The restriction that the δ

function grows more slowly than linear then implies that (m/r )
∑

δ(d i/s ) ∈O((m/r )δ(n/s )),
and so the standard equal-spaced algorithm is never more efficient in this case.
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When m ≤ n , the number of ring operations to compute the product using the combined
method, again by Theorem 5.8, is

O



δ(m/s )
∑

d i≥m

(d i/r )+ (m/r )
∑

d i<m

δ(d i/s )



 , (5.9)

compared with O((n/r )δ(m/s )) for the standard equal-spaced algorithm. Because we al-
ways have

∑t
i=1 d i ≤ n , the first term of (5.9) is O((n/r )δ(m/s )). Using again the inequal-

ity m
∑t

i=1δ(d i ) ≤ mδ(n ), along with the fact that mδ(n ) ∈ O(nδ(m )) because m ≤ n , we
see that the second term of (5.9) is also O((n/r )δ(m/s )). Therefore the cost of the combined
method is never more than the cost of equal-spaced multiplication alone.

5.6 Implementation and benchmarking

We implemented the full chunky conversion and multiplication algorithm for dense polyno-
mials in MVP. We compare the results against the standard dense and sparse multiplication
algorithms in MVP. Previously, in sections 2.5 and 4.4, we saw that the multiplication rou-
tines in MVP are competitive with existing software. Therefore our comparison against these
routines is fair and will provide useful information on the utility of the new algorithms.

Recall that the chunky conversion algorithm requires a way to approximate δ(n ) for any
integer n . For this, we actually used the timing results reported in Section 4.4 for dense
polynomial multiplication in MVP on our testing machine. Using this data and the known
crossover points, we did a least-squares fit to the three curves

nδ1(n ) = a 1n 2+b1n + c1

nδ2(n ) = a 2n log2 3+b2n + c2

nδ3(n ) = a 32dlog2 ne �log2 n
�

+b3n + c3,

for the ranges of classical, Karatsuba, and FFT-based multiplication, respectively. Clearly this
could be automated as part of a tuning phase, but this has not yet been implemented. How-
ever, observe that as only the relative times are important, it is possible that some default
timing data could still be useful on different machines.

Choosing benchmarks for assessing the performance of these algorithms is a challenging
task. Our algorithms adapts to chunkiness in the input, but this measure is difficult to quan-
tify. Furthermore, while we can (and do) generate examples that are more or less chunky, it is
difficult to justify whether such polynomials actually appear in practice.

With these reservations in mind, we proceed to describe the benchmarking trials we per-
formed to compare chunky multiplication against the standard dense and sparse algorithms.
First, to generate random polynomials with some varying “chunkiness” properties, we used
the following approach. The parameters to the random polynomial generation are the usual
degree n and desired sparsity t , as well as a third parameter c , which should be a small pos-
itive integer. The polynomials were then generated by randomly choosing t exponents, suc-
cessively, and for each exponent choosing a random nonzero coefficient. To avoid trivially
easy cases, we always set the constant coefficient and the coefficient of x d to be nonzero.
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Chunkiness c Standard sparse Chunky multiplication
0 .981 1.093

10 .969 1.059
20 .984 1.075
25 .899 .971
30 .848 1.262
32 .778 .771
34 .749 .313
36 .729 .138
38 .646 .084
40 .688 .055

Table 5.1: Benchmarks for adaptive multiplication with varying chunkiness

However, to introduce “chunkiness” as c grows larger, the exponents of successive terms
were not always chosen independently. With probability proportional to 1/c , the next ex-
ponent was chosen independently and randomly from {1, 2, . . . , d − 1}. However, with high
probability proportional to (c − 1)/c , the next successive exponent was chosen to be “close”
to the previous one. Specifically, in this case the next exponent was chosen randomly from
a set of size proportional to n/2c surrounding the previously-chosen exponent. This devia-
tion from independence has the effect of creating clusters of nonzero coefficients, when the
parameter c is sufficiently large.

We make no claims that this randomization has any basis in a particular application, but
point out that it does provide more of a challenge to our algorithms than the simplistic ap-
proach of clustering nonzero terms into completely dense chunks with no intervening gaps.
Also observe that when c = 0, we simply have a sparse polynomial with randomly-chosen
support and no particular chunky structure. Furthermore, when c is on the order of log2 n ,
the generated polynomial is likely to consist of only a few very dense chunks. So by varying
c in this range, we see the performance of the chunky multiplication algorithm on a range of
cases.

Specifically, for our benchmarks we fixed the degree d at one million and the sparsity t at
3000. With these parameters, the usual dense and sparse algorithms in MVP have roughly the
same cost. We then ran a number of tests varying the chunkiness parameter c between 0 and
40. In every case, the dense algorithm used close to 1.91 CPU seconds for a single operation.
The timings reported in Table 5.1 are relative to this time, the cost of the dense multiplication
algorithm. As usual, a number less than one means that algorithm was faster than the dense
algorithm for the specified choice of c . Observe that although the sparsity t was invariant for
all test cases, the normal sparse algorithm still derives some benefit from polynomials with
high chunkiness, simply because of the reduced number of terms in the output.

With the slight anomaly at c = 30 (probably due to some algorithmic “confusion” and in-
accuracy in δ(n )), we see that the algorithm performs quite well, and as expected according
to our theoretical results. In particular, the chunky multiplication algorithm is always either
very nearly the same as existing methods, or much better than them. We also report, per-
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haps surprisingly, that the overhead associated with the chunky conversion is negligible in
nearly every case. In fact, we can see this in the first few benchmarks with small c , where the
chunky representation produced is simply the dense representation; the performance hit for
the unnecessary conversion, at least in these cases, is less than 10 percent.

5.7 Conclusions and Future Work

Two methods for adaptive polynomial multiplication have been given where we can compute
optimal representations (under some set of restrictions) in linear time in the size of the input.
Combining these two ideas into one algorithm inherently captures both measures of diffi-
culty, and will in fact have significantly better performance than either the chunky or equal-
spaced algorithm in many cases.

However, converting a sparse polynomial to the equal-spaced representation in linear
time is still out of reach, and this problem is the source of the restriction of Theorem 5.12.
Some justification for the impossibility of such a conversion algorithm was given, due to the
fact that the exponents could be long integers. However, we still do not have an algorithm for
sparse polynomial to equal-spaced conversion under the (probably reasonable) restriction
that all exponents be word-sized integers. A linear-time algorithm for this problem would
be useful and would make our adaptive approach more complete, though slightly more re-
stricted in scope.

On the subject of word size and exponents, we assumed at the beginning that O(t log n )
words are required to store the sparse representation of a polynomial. This fact is used to jus-
tify that some of the conversion algorithms with O(t log t ) complexity were in fact linear-time
in the size of the input. However, the original assumption is not very good for many prac-
tical cases, e.g., where all exponents fit into single machine words. In such cases, the input
size is O(t ), but the conversion algorithms still use O(t log t ) operations, and hence are not
linear-time. We would argue that they are still useful, especially since the sparse multipli-
cation algorithms are quadratic, but there is certainly room for improvement in the sparse
polynomial conversion algorithms.

Yet another area for further development is multivariate polynomials. We have mentioned
the usefulness of Kronecker substitution, but developing an adaptive algorithm to choose the
optimal variable ordering would give significant improvements. An interesting observation
is that using the chunky conversion under a dense Kronecker substitution seems similar in
many ways to the recursive dense representation of a multivariate polynomial. Examining
the connections here more carefully would be interesting, and could give more justification
to the practical utility of the algorithms we have presented.

Finally, even though we have proven that our algorithms produce optimal adaptive rep-
resentations, it is always under some restriction of the way that choice is made (for example,
requiring to choose an “optimal chunk size” k first, and then compute optimal conversions
given k ). These results would be significantly strengthened by proving lower bounds over
all available adaptive representations of a certain type, but such results have thus far been
elusive.
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The essence of being human is that one does not seek perfec-
tion,. . . that one is prepared in the end to be defeated and bro-
ken up by life, which is the inevitable price of fastening one’s love
upon other human individuals. No doubt alcohol, tobacco, and
so forth, are things that a saint must avoid, but sainthood is also
a thing that human beings must avoid.

—George Orwell, “Reflections on Gandhi” (1949)

Chapter 6

Sparse perfect powers

We examine the problem of detecting when a given sparse polynomial f is equal to hr

for some other polynomial h and integer r ≥ 2. In this case we say f is a perfect power, and
h is its r th root. We give randomized algorithms to detect when f is a perfect power, by re-
peatedly evaluating the polynomial in specially-chosen finite fields and checking whether the
evaluations are themselves perfect powers. These detection algorithms are randomized of the
Monte Carlo type, meaning that they are always fast but may return an incorrect answer (with
small probability). In fact, the only kind of wrong answer ever returned will be a false positive,
so we have shown that the perfect power detection problem is in the complexity class coRP.
As a by-product, these decision problems also compute an integer r > 2 such that f is an r th
perfect power, if such an r exists.

Once the power r is known, we turn to the problem of actually computing the perfect r th
root of f , and give two different algorithms. In the case of rational number coefficients, we ex-
hibit a deterministic algorithm that is output-sensitive; i.e., the cost of the algorithm depends
on the size of the perfect root h in the sparse representation. The algorithm relies on poly-
nomial factorization over algebraic extension fields to achieve output-sensitive polynomial
time.

The second algorithm we consider for computing the perfect root is inspired by the New-
ton iteration algorithm that is most efficient for dense polynomials. Our modified Newton
iteration is more sensitive to the sparsity of the problem, and carefully avoids blow-up of
intermediate results, but only if a certain conjecture regarding the sparsity of intermediate
powers is true. We have evidence to believe this conjecture, and under that assumption our
algorithm is very efficient and practical.
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A preliminary version of this work appeared at ISSAC 2008 (Giesbrecht and Roche, 2008),
and further progress has been presented in an article accepted to appear in the Journal of
Symbolic Computation (Giesbrecht and Roche, 2011). We are very grateful to the helpful dis-
cussions of these topics with Erich Kaltofen and Igor Shparlinski, and particularly to Pascal
Koiran for pointing out the perfect power certification idea using logarithmic derivatives that
we will discuss in Section 6.3.1.

6.1 Background

This chapter and its sequel focus on computational problems where the input polynomial is
given in the sparse representation. Recall that this means we write

f =
∑

1≤i≤t

c i x e i ∈R[x1, . . . ,x`], (6.1)

where c1, . . . , c t ∈ R∗, e 1, . . . , e t ∈ N` are distinct exponent tuples with 0 ≤ ‖e 1‖1 ≤ · · · ≤ ‖e t ‖1 =
deg f , and x e i is the monomial x e i 1

1 x e i 2
2 · · ·x

e i`

` of total degree ‖e i‖1 =
∑

1≤j≤` e i j . We say f is
t -sparse and write τ( f ) = t . We present algorithms which require time polynomial in τ( f )
and log deg f .

6.1.1 Related work

Computational work on sparse polynomials has proceeded steadily for the past three decades.
We briefly pause to examine some of the most significant results in this area.

David Plaisted (1977; 1984) initiated the study of computational complexity for sparse
polynomial computations. His early work showed, surprisingly, that some basic problems
that admit fast algorithms for densely-represented polynomials are NP-hard when the input
is sparse. In particular, Plaisted gives a reduction from 3-SAT to relative primality testing, the
problem of determining whether a pair of sparse polynomials f , g ∈ Z[x ] has any non-trivial
common factor. This implies for instance that a polynomial-time greatest common divisor
algorithm for sparse polynomials is unlikely to exist.

A number of other researchers have investigated complexity-theoretic problems relating
to sparse polynomials as well. Recall that #P is the class of problems that counts accepting
inputs for problems in NP, and important examples of a #P-complete problems are counting
the number of satisfying assignments for a boolean formula or computing the permanent of a
matrix. Quick (1986) and von zur Gathen, Karpinski, and Shparlinski (1996) followed Plaisted
by proving (among other results) that the sparse gcd problem is actually #P-complete, when
the problem is defined to determine the degree of the greatest common divisor of two given
sparse polynomials.

Observe that relative primality of two polynomials corresponds to their gcd having min-
imal degree, while divisibility of sparse polynomials corresponds to the degree of their gcd
being maximal. It is not yet known whether sparse divisibility testing can be performed in
polynomial time, but Grigoriev, Karpinski, and Odlyzko (1996) showed the existence of short

94



CHAPTER 6. SPARSE PERFECT POWERS

proofs of non-divisibility, meaning the problem is in coNP. Later, Karpinski and Shparlinski
(1999) showed that testing square-freeness of sparse polynomials is also NP-hard, via a reduc-
tion from relative primality testing.

But not every computational problem with sparse polynomials is hard. In fact, there has
been significant progress in developing polynomial-time algorithms for sparse polynomial
computation over the years. While some operations, such as computing derivatives, are triv-
ially polynomial-time in the sparse representation, many problems require non-trivial algo-
rithms. One major area of research in this direction regards sparse polynomial interpolation,
the topic of the next two chapters.

Computing low-degree factors and in particular roots of sparse polynomials is another
area of rapid progress in algorithmic development (Cucker, Koiran, and Smale, 1999; Lenstra,
1999; Kaltofen and Koiran, 2005, 2006). These algorithms generally take a degree bound d and
a sparse polynomial f and compute all factors of f with degree at most d , in polynomial-time
in d and the sparse representation size of f . Since the number of terms in high-degree factors
may be exponentially larger than the size of the input, this is in some sense the best that can
be hoped for without considering output-sensitive algorithms.

We now turn to the topic of this chapter, namely detecting and computing perfect power
factorizations of sparse polynomials. The algorithm we present for perfect powers is interest-
ing in that, unlike the factorization methods mentioned above, the sparse factors it produces
may have exponentially high degree in the size of the input.

Two well-known techniques can be applied to the problem of testing for perfect powers,
and both are very efficient when f = hr is given in the dense representation. We can compute
the squarefree decomposition of f as in (Yun, 1976), and determine whether f is a perfect
power by checking whether the greatest (integer) common divisor of the exponents of all non-
trivial factors in the squarefree decomposition is at least 2. An even faster method (in theory
and practice) to find h given f = hr is by a Newton iteration. This technique has also proven to
be efficient in computing perfect roots of (dense) multi-precision integers (Bach and Soren-
son, 1993; Bernstein, 1998). In summary however, we note that both these methods require
at least linear time in the degree of f , which may be exponential in the sparse representation
size.

Newton iteration has also been applied to finding perfect polynomial roots of lacunary (or
other) polynomials given by straight-line programs. Kaltofen (1987) shows how to compute a
straight-line program for h, given a straight-line program for f = hr and the value of r . This
method has complexity polynomial in the size of the straight-line program for f , and in the
degree of h, and in particular is effective for large r . Our algorithms, which require input in
the sparse representation, are not as general, but they do avoid the dependence on the degree
of h. Interestingly, we will show that the case of large r , which is important for straight-line
programs, cannot happen for sparse polynomials, at least over the rings that we will consider.

Closest to this current work, (Shparlinski, 2000) shows how to recognize whether f = h2 for
a lacunary polynomial f ∈Fq [x ]. Shparlinski uses random evaluations and tests for quadratic
residues. How to determine whether a lacunary polynomial is any perfect power is posed as
an open question; our Algorithm 6.4 demonstrates that this problem can be solved in ran-
domized polynomial-time.
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6.1.2 Overview of results

We will always assume that the sparsity τ( f )≥ 2. Otherwise f = x n , and determining whether
f is a perfect power is equivalent to determining whether n ∈N is composite. This is of course
tractable, but producing an r ≥ 2 such that f is a perfect r th power is then equivalent to long
integer factorization, a notoriously difficult problem in number theory that we do not solve
here. Surprisingly, the intractability of computing such an r is avoided when τ( f )≥ 2.

We first consider the problem of detecting perfect powers and computing the power r for
the univariate case, where we write

f =
∑

1≤i≤t

c i x e i ∈R[x ], (6.2)

with integer exponents 0≤ e1 < e2 < · · ·< e t = deg f .

Two cases for the ring R are handled: the integers and finite fields of characteristic p
greater than the degree of f . When f has integer coefficients, our algorithms also require
time polynomial in the size of those integers in the IMM model.

To be precise about this definition of size, first recall from Chapter 1 that size(a ) for a ∈Z is
the number of machine words needed to represent a in an IMM. So, if w is the size of machine
words, size(a ) = dlog2(|a |+1)/w e+1. For f ∈Z[x ]written as in (6.2), define:

size( f ) =
t
∑

i=1

size(c i )+
t
∑

i=1

size(e i ). (6.3)

We will often employ the following upper bound for simplicity:

size( f )≤ t
�

H ( f )+ size(deg f )
�

, (6.4)

where H ( f ) is defined as max1≤i≤t size(c i ).

For the analysis, as in the previous chapter, we will write M(r ) for the number of ring oper-
ations required for degree-r dense polynomial multiplication. For a ∈N, We also define N(a )
to be the number of IMM operations required to multiply two integers at most a in absolute
value. From Section 1.4, we know that N(a ) ∈ O(size(a ) log size(a )). Our motivation for the
N(a ) notation is purely for clarity and brevity, not to reflect the possibility of improved algo-
rithms for this problem in the future. One consequence is that, if the finite field elements are
represented in machine words on a normal IMM, multiplication of degree-r dense polynomi-
als in Fp [x ] is performed with

O(N (p r ))∈O(r size(p ) · log(r + size(p )))∈O(rN(p ) log r )

IMM operations, by encoding the whole polynomial into an integer, as discussed in Chapter 1.

Notice that the algorithm for integer polynomials will also cover those with rational co-
efficients, since if f ∈ Q[x ], we can simply work with f = c f ∈ Z[x ] for the smallest possible
c ∈Z∗.

We present polynomial-time algorithms for polynomials over finite fields and over the
integers. Efficient techniques will also be presented for reducing the multivariate case to the
univariate one, and for computing a root h such that f = hr .
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6.2 Testing for perfect powers

In this section we describe a method to determine if a sparse polynomial f ∈R[x ] is a perfect
power. That is, do there exist h ∈ R[x ] and r > 1 such that f = hr ? Importantly, the cost does
not depend on the sparsity of h. That is, the root h could have exponentially more nonzero
coefficients than the input polynomial f . However, some widely-believed conjectures indi-
cate that this will never happen, as we will discuss later. In any case, our algorithms in this
section will only compute the power r ∈N, not the polynomial root h.

We first describe algorithms to test if an f ∈ R[x ] is an r th power of some polynomial
h ∈R[x ], where f and r are both given and r is assumed to be prime. We present and analyse
variants that work over finite fields Fq and over Z. In fact, these algorithms for given r are
for black-box polynomials: they only need to evaluate f at a small number of points. That
this evaluation can be done quickly is a very useful property of sparse polynomials over finite
fields.

For a sparse polynomial f we then show that, in fact, if h exists at all then r must be small
unless f = x n . (By “small”, we mean bounded in value by the size of the sparse representation
of f .) If f is a non-trivial perfect power, then there certainly exists a prime r such that f is
an r th power. So in fact the restrictions that r is small and prime are sufficient to cover all
interesting cases, and our method is complete.

6.2.1 Detecting given r th powers

Our main tool in this work is the following theorem which says that, with reasonable prob-
ability, a polynomial is an r th power if and only if the modular image of an evaluation in a
specially constructed finite field is an r th power. Put another way, if f is not an r th power,
then the finite field will have sufficiently many witnesses to this fact.

Theorem 6.1. Let % ∈ Z be a prime power and r ∈ N a prime dividing % − 1. Suppose that
f ∈F%[x ] has degree n ≤ 1+p%/2 and is not a perfect r th power in F%[x ]. Then

R (r )f = #
¦

c ∈F% : f (c )∈F% is an r th power
©

≤
3%

4
.

Proof. The r th powers in F% form a subgroup H of F∗% of index r and size (% − 1)/r in F∗%.

Also, a ∈ F∗% is an r th power if and only if a (%−1)/r = 1. We use the method of “completing the
sum” from the theory of character sums. We refer to (Lidl and Niederreiter, 1983), Chapter
5, for an excellent discussion of character sums. By a multiplicative character we mean a
homomorphism χ : F∗% → C which necessarily maps F% onto the unit circle. As usual we
extend our multiplicative characters χ so that χ(0) = 0, and define the trivial character χ

0
(a )

to be 0 when a = 0 and 1 otherwise.

For any a ∈F∗%,

1

r

∑

χr=χ0

χ(a ) =

(

1, if a ∈H ,

0, if a 6∈H ,
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where χ ranges over all the multiplicative characters of order r on F∗% — that is, all characters
that are isomorphic to the trivial character on the subgroup H . Thus

R (r )f =
∑

a∈F∗%







1

r

∑

χr=χ0

χ( f (a ))






=

1

r

∑

χr=χ0

∑

a∈F∗%

χ( f (a ))

≤
%

r
+

1

r

∑

χr=χ0
χ 6=χ0

�

�

�

�

�

�

∑

a∈F%

χ( f (a ))

�

�

�

�

�

�

.

Here we use the obvious fact that
∑

a∈F∗%

χ
0
( f (a ))≤

∑

a∈F%

χ
0
( f (a )) =%−d ≤%,

where d is the number of distinct roots of f in F%. We next employ the powerful theorem
of (Weil, 1948) on character sums with polynomial arguments (see Theorem 5.41 of (Lidl and
Niederreiter, 1983)), which shows that if f is not a perfect r th power of another polynomial,
and χ has order r > 1, then

�

�

�

�

�

�

∑

a∈F%

χ( f (a ))

�

�

�

�

�

�

≤ (n −1)%1/2 ≤
%

2
,

using the fact that we insisted n ≤ 1+p%/2. Summing over the r −1 non-trivial characters of
order r , we deduce that

R (r )f ≤
%

r
+

r −1

r
·
%

2
≤

3%

4
,

since r ≥ 2.

6.2.2 Certifying specified powers over Fq [x ]

Theorem 6.1 allows us to detect when a polynomial f ∈F%[x ] is a perfect r th power, for known
r dividing %− 1: choose random α ∈ F% and evaluate ξ= f (α)(%−1)/r ∈ F%. Recall that ξ= 1 if
and only if f (α) is an r th power.

Then we have two cases to consider. If f is an r th power, then clearly f (α) is an r th power
as well, and for any α∈F%, we always have ξ= 1.

Otherwise, if f is not an r th power, Theorem 6.1 demonstrates that for at least 1/4 of the
elements of F%, f (α) is not an r th power. Thus, for α chosen randomly from F% we would
expect ξ 6= 1 with probability at least 1/4.

This idea works whenever the size of the multiplicative group is a multiple of the power r .
For coefficients in an arbitrary finite field Fq , where q − 1 is not divisible by r , we work in a
suitably chosen extension finite extension field. First, the requirement that the characteristic
of Fq is strictly greater than deg f means that q = p e for some prime p greater than deg f .
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Since r must be less than deg f , this implies that r - p , and therefore that r - q . Then from
Fermat’s Little Theorem, we know that r | (q r−1 − 1) and so we construct an extension field
Fq r−1 over Fq and proceed as above. Algorithm 6.1 gives a more formal presentation of this
idea.

Algorithm 6.1: Perfect r th power over Fq

Input: A prime power q , f ∈Fq [x ] of degree n such that char(Fq )< n ≤ 1+pq/2, r ∈N
a prime dividing n , and ε∈R>0

Output: true if f is the r th power of a polynomial in Fq [x ]; otherwise false with
probability at least 1−ε.

1 Find an irreducible Γ∈Fq [z ] of degree r −1, successful with probability at least ε/2
2 %←q r−1

3 Define F% =Fq [z ]/(Γ)
4 m ← 2.5(1+

�

log2(1/ε)
�

)
5 for i from 1 to m do
6 Choose random α∈F%
7 ξ← f (α)(%−1)/r ∈F%
8 if ξ 6= 1 then return false

9 return true

To accomplish Step 1, a number of fast probabilistic methods are available to find irre-
ducible polynomials. We employ the algorithm of (Shoup, 1994). This algorithm requires
O((r 2 log r + r logq ) log r log log r ) operations in Fq . It is probabilistic of the Las Vegas type,
meaning always correct and probably fast. We modify this in the trivial way to a Monte Carlo
algorithm that is always fast and probably correct. That is, we allow the algorithm to execute
the specified number of operations, and if no answer has been returned after this time, the
algorithm is halted and returns “fail”. From the run-time analysis of the Las Vegas algorithm,
the probability of failure is at most 1/2, and the algorithm never returns an incorrect answer.
This modification allows us to use Shoup’s algorithm in our Monte Carlo algorithm. To obtain
an irreducible Γ with failure probability at most ε/2 we run (our modified) Shoup’s algorithm
1+

�

log2(1/ε)
�

times.

The restriction that n ≤ 1+pq/2 (or equivalently that q ≥ 4(n−1)2) is not at all limiting. If
this condition is not met, simply extend Fq with an extension of degree ν =

 

logq (4(n −1)2)
£

and perform the algorithm over Fqν . At worst, each operation in Fqν requires O(M(log n ))
operations in Fq , which will not be significant in the overall complexity.

Theorem 6.2. Let q , f , n , r,ε be as in the input to the Algorithm 6.1. If f is a perfect r th power
the algorithm always reports this. If f is not a perfect r th power then, on any invocation, this is
reported correctly with probability at least 1−ε.

Proof. It is clear from the above discussion that the algorithm always works when f is perfect
power. When f is not a perfect power, each iteration of the loop will obtain ξ 6= 1 (and hence a
correct output) with probability at least 1/4. By iterating the loop m times we ensure that the
probability of failure is at most ε/2. Adding this to the probability that Shoup’s algorithm (for
Step 1) fails yields a total probability of failure of at most ε.
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Theorem 6.3. On inputs as specified, Algorithm 6.1 requires

O((rM(r ) log r logq ) · log(1/ε))

operations in Fq , plus the cost to evaluate f (α) at O(log(1/ε)) points α∈Fq r−1 .

Proof. As noted above, Shoup’s 1994 algorithm requires O((r 2 log r+r logq ) log r log log r ) field
operations per iteration, which is within the time specified. The main cost of the loop in
Steps 5–8 is computing f (α)(%−1)/r , which requires O(log%) or O(r logq ) operations in F% using
repeated squaring, plus one evaluation of f at a point in F%. Each operation in F% requires
O(M(r )) operations in Fq , and we repeat the loop O(log(1/ε)) times.

Combining these facts, we have that our Monte Carlo algorithm for perfect power testing
is correct and works over any finite field of sufficiently large characteristic.

Corollary 6.4. Given f ∈Fq [x ] of degree n with τ( f ) = t , and r ∈N a prime dividing n, we can
determine if f is an r th power with

O
��

rM(r ) log r logq + tM(r ) log n
�

· log(1/ε)
�

operations in Fq , provided n > char(Fq ). When f is an r th power, the output is always correct,
while if f is not an r th power, the output is correct with probability at least 1−ε.

The results here are counting field operations on an algebraic IMM. However, since the
field is specified carefully as Fq , and we know how to represent such elements on the integer
side, we could demand all computation be performed on a normal IMM and count word op-
erations. The consequences for the complexity would be that the cost as stated is increased
by a factor of O(N(q )), but every M(r ) can be written simply as O(r log r ), as discussed above.

6.2.3 Certifying specified powers over Z[x ]

For an integer polynomial f ∈ Z[x ], we proceed by working in the homomorphic image of
Z in Fp (and then in an extension of that field). We must ensure that the homomorphism
preserves the perfect power property we are interested in, at least with high probability. For
any polynomial g ∈ F[x ], let disc(g ) = res(g , g ′) be the discriminant of g (the resultant of g
and its first derivative). It is well known that g is squarefree if and only if disc(g ) 6= 0 (see e.g.,
von zur Gathen and Gerhard, 2003, §15.2). Also define lcoeff(g ) as the leading coefficient of
g , the coefficient of the highest power of x in g . Finally, for g ∈Z[x ] and p a prime, denote by
g rem p the unique polynomial in Fp [x ]with all coefficients in g reduced modulo p .

Lemma 6.5. Let f ∈ Z[x ] and f̃ = f /gcd( f , f ′) its squarefree part. Let p be a prime such that
p -disc( f̃ ) and p - lcoeff( f ). Then f is a perfect power in Z[x ] if and only if f rem p is a perfect
power in Fp [x ].
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Proof. Clearly if f is a perfect power, then f rem p is a perfect power in Z[x ]. To show the
converse, assume that f = f s1

1 · · · f sm
m for distinct irreducible f 1, . . . , f m ∈ Z[x ], so f̃ = f 1 · · · f m .

Clearly f ≡ f s1
1 · · · f sm

m mod p as well, and because p - lcoeff( f ) we know deg( f i rem p ) = deg f i

for 1≤ i ≤m . Since p -disc( f̃ ), f̃ rem p is squarefree (see (von zur Gathen and Gerhard, 2003),
Lemma 14.1), and each of the f i rem p must be pairwise relatively prime and squarefree for
1≤ i ≤m . Now suppose f rem p is a perfect r th power modulo p . Then we must have r |s i for
1≤ i ≤m . But this immediately implies that f is a perfect power in Z[x ] as well.

Given any polynomial g = g 0+ g 1x + · · ·+ g m x m ∈Z[x ], we define the height or coefficient
∞-norm of g as





g






∞ =maxi |g i |. Similarly, we define the coefficient 1-norm of g as




g






1
=

∑

i |g i |, and 2-norm as




g






2
=
�
∑

i |g i |2
�1/2

. With f , f̃ as in Lemma 6.5, f̃ divides f , so we can
employ the factor bound of (Mignotte, 1974) to obtain





 f̃






∞ ≤ 2n




 f






2
≤ 2n

p

n +1 ·




 f






∞ .

Since disc( f̃ ) = res( f̃ , f̃ ′) is the determinant of matrix of size at most (2n − 1) × (2n − 1),
Hadamard’s inequality implies

|disc( f̃ )| ≤
�

2n (n +1)1/2




 f






∞

�n−1 �
2n (n +1)3/2





 f






∞

�n
< 22n 2

(n +1)2n ·




 f






2n

∞ .

Also observe that | lcoeff( f )| ≤




 f






∞. Thus, the product disc( f̃ ) · lcoeff( f ) has at most

µ=











l

log2

�

22n 2 (n +1)2n




 f






2n+1

∞

�m

�

log2

�

4 (n −1)2
��











prime factors greater than 4(n−1)2 (we require the lower bound 4(n−1)2 to employ Theorem
6.1 without resorting to field extensions). Choose an integer γ≥ 4(n−1)2 such that the number
of primes between γ and 2γ is at least 4µ+ 1. By (Rosser and Schoenfeld, 1962), Corollary 3,
the number of primes in this range is at least 3γ/(5 lnγ) for γ≥ 21.

Now let γ ≥ max{21µ lnµ, 226}. It is easily confirmed that if µ ≤ 6 and γ ≥ 226, then
3γ/(5 lnγ)> 4µ+1. Otherwise, if µ≥ 7, then ln(21 lnµ)< 2 lnµ, so

γ

lnγ
≥

21µ lnµ

lnµ+ ln(21 lnµ)
> 7µ,

and therefore 3γ/(5 lnγ)> 21µ/5> 4µ+1.

Thus, if γ ≥ max{21µ lnµ, 226}, then a random prime not equal to r in the range γ . . . 2γ
divides lcoeff( f ) ·disc( f ) with probability at most 1/4. Primes p of this size have only log2 p ∈
O(log n + log log





 f






∞) bits.

Theorem 6.6. Let f ∈Z[x ] of degree n, r ∈N dividing n and ε∈R>0. If f is a perfect r th power,
then Algorithm 6.2 always reports this. If f is not a perfect r th power, on any invocation of the
algorithm, this is reported correctly with probability at least 1−ε.
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Algorithm 6.2: Perfect r th power over Z
Input: f ∈Z[x ] of degree n ; r ∈N a prime dividing n ; ε∈R>0;
Output: true if f is the r th power of a polynomial in Z[x ]; false otherwise

1 µ←
ll

log2

�

22n 2 (n +1)2n




 f






2n+1

∞

�m

/
�

log2

�

4 (n −1)2
��

m

2 γ←max{
�

21µ lnµ
�

, 4(n −1)2, 226}
3 for i from 1 to

�

log2(1/ε)
�

do
4 p ← random prime in the range γ . . . 2γ
5 if Algorithm 6.1 returns false on input (p , f rem p , r , 1/4) then return false

6 return true

Proof. If f is an r th power then so is f rem p for any prime p , and so is any f (α) ∈ Fp . Thus,
the algorithm always reports that f is an r th power. Now suppose f is not an r th power.
If p | disc( f ) or p | lcoeff( f ) it may happen that f rem p is an r th power. This happens with
probability at most 1/4 and we will assume that the worst happens in this case. When p -
disc( f ) and p - lcoeff( f ), the probability that Algorithm 6.1 incorrectly reports that f is an r th
power is also at most 1/4, by our choice of parameter ε in the call on step 5. Thus, on any
iteration of steps 3–5, the probability of finding that f is an r th power is at most 1/2. The
probability of this happening

�

log2(1/ε)
�

times is at most ε.

Theorem 6.7. On inputs as specified, Algorithm 6.2 requires

O
�

r 2 log2 r · (log n + loglog




 f






∞)
2 · (loglog n + logloglog





 f






∞) · log(1/ε)
�

or O (̃r 2 · (size( f ))2 · log(1/ε)) word operations in the IMM model, plus the cost to evaluate
f (α)mod p at O(log(1/ε)) points α∈Fp for primes p with log p ∈O(log n + log log





 f






∞).

Proof. The number of operations required by each iteration is dominated by Step 5, for which
O(rM(r ) log r log p ) operations in Fp are sufficient by Theorem 6.3. Since log p ∈ O(log n +
log log





 f






∞), and using the multiplication algorithm of Section 1.4, we obtain the final com-
plexity as stated.

The cost of evaluating a t -sparse polynomial f ∈Z[x ]modulo a prime p is

O(t · size(




 f






∞) · size(p )+ t log n ·N(p ))

word operations, which is O (̃size( f ) · size(p )). Furthermore, from the theorem, we see that
each prime has size bounded by size( f ). We then obtain the following corollary for t -sparse
polynomials in Z[x ].

Corollary 6.8. Given f ∈Z[x ] of degree n and r ∈N a prime dividing n, we can determine if f
is an r th power with

O˜
�

r 2 ·
�

size f
�2 · log (1/ε)

�

machine word operations. When f is an r th power, the output is always correct, while if f is
not an r th power, the output is correct with probability at least 1−ε.
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6.2.4 An upper bound on r

The algorithms we have seen so far require the power r to be known in advance. To adapt
these to the general situation that r is not known, we show that r must be small compared to
the sparse representation size of f , and therefore there are not too many “guesses” of r that
we must make in order to solve the problem.

Specifically, we show in this subsection that if f = hr and f 6= x n then the value of r is
polynomially bounded by τ( f ). Over Z[x ] we show that ‖h‖2 is small as well. A sufficiently
strong result over many fields is demonstrated by (Schinzel, 1987), Theorem 1, where it is
shown that if f has sparsity t ≥ 2 then t ≥ r +1 (in fact a stronger result is shown involving the
sparsity of h as well). This holds when either the characteristic of the ground field of f is zero
or greater than deg f .

Here we give a (much) simpler result for polynomials in Z[x ], which bounds ‖h‖2 and is
stronger at least in its dependency on t though it also depends upon the size of coefficients
in f .

Theorem 6.9. Suppose f ∈ Z[x ] with deg f = n and τ( f ) = t , and f = hr for some h ∈ Z[x ] of

degree s and r ≥ 2. Then ‖h‖2 ≤




 f






1/r

1
.

Proof. Let p > n be prime and ζ∈C a p th primitive root of unity. Then

‖h‖2
2 =

∑

0≤i≤s

|h i |2 =
1

p

∑

0≤i<p

|h(ζi )|2.

(this follows from the fact that the Discrete Fourier Transform (DFT) matrix is orthogonal).
In other words, the average value of |h(ζi )|2 for i = 0 . . . p − 1 is ‖h‖2

2, and so there exists a
k ∈ {0, . . . , p −1} with |h(ζk )|2 ≥ ‖h‖2

2. Let θ = ζk . Then clearly |h(θ )| ≥ ‖h‖2. We also note that
f (θ ) = h(θ )r and | f (θ )| ≤





 f






1
, since |θ |= 1. Thus,

‖h‖2 ≤ |h(θ )|= | f (θ )|1/r ≤




 f






1/r

1
.

The following corollary is particularly useful.

Corollary 6.10. If f ∈Z[x ] is not of the form x n , and f = hr for some h ∈Z[x ], then

(i) r ≤ 2 log2





 f






1
,

(ii) τ(h)≤




 f






2/r

1
.

Proof. Part (i) follows since ‖h‖2 ≥
p

2. Part (ii) follows because ‖h‖2 ≥
p

τ(h).

These bounds relate to the sparsity of f since




 f






1
≤τ( f )





 f






∞.
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Algorithm 6.3: Perfect power detection over Z
Input: f ∈Z[x ] of degree n and sparsity t ≥ 2, ε∈R>0

Output: true and r if f = hr for some h ∈Z[x ]; false otherwise.
1 P ←{primes r |n and r ≤ 2 log2(t





 f






∞)}
2 for r ∈P do
3 if Algorithm 6.2 returns true on input (f , r , ε/#P ) then return true and r

4 return false

6.2.5 Perfect Power Detection Algorithm

We can now complete the perfect power detection algorithm, when we are given only the
t -sparse polynomial f (and not r ).

Theorem 6.11. If f ∈Z[x ] = hr for some h ∈Z[x ], then Algorithm 6.3 always returns “True” and
returns r correctly with probability at least 1−ε. Otherwise, it returns “False” with probability
at least 1−ε. The algorithm requires O (̃(size( f ))4 · log(1/ε))word operations.

Proof. From the preceding discussions, we can see that if f is a perfect power, then it must be
a perfect r th power for some r ∈P . So the algorithm must return true on some iteration of the
loop. However, it may incorrectly return true too early for an r such that f is not actually an
r th power; the probability of this occurring is the probability of error when f is not a perfect
power, and is less than ε/#P at each iteration. So the probability of error on any iteration is
at most ε, which is what we wanted.

The complexity result follows from the fact that each r ∈O (̃size( f )) and using Corollary
6.8.

We now turn to the case of finite fields. Here we rely on Schinzel’s bound that r ≤ t − 1,
and obtain the following algorithm.

Algorithm 6.4: Perfect power detection over Fq

Input: A prime power q , f ∈Fq [x ] of degree n and sparsity t such that n < char(Fq ),
and ε∈R>0

Output: true and r if f = hr for some h ∈Fq [x ]; false otherwise.
1 P ←{primes r |n and r ≤ t }
2 for p ∈P do
3 if Algorithm 6.1 returns true on input (f , r , ε/#P ) then
4 return true and r

5

6 return false

Theorem 6.12. If f = hr for h ∈ Fq [x ], then Algorithm 6.4 always returns “True” and returns
r correctly with probability at least 1−ε. Otherwise, it returns “False” with probability at least
1−ε. The algorithm requires O (̃t 3(logq + log n )) operations in Fq .
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Proof. The proof is equivalent to that of Theorem 6.11, using the complexity bounds in Corol-
lary 6.4.

6.2.6 Detecting multivariate perfect powers

In this subsection we examine the problem of detecting multivariate perfect powers. That is,
given a lacunary f ∈ F[x1, . . . ,x`] of total degree n as in (6.1), we want to determine if f = hr

for some h ∈ F[x1, . . . ,x`] and r ∈N. This is done simply as a reduction to the univariate case.

First, given f ∈ F[x1, . . . ,x`], define the squarefree part f̃ ∈ F[x1, . . . ,x`] as the squarefree
polynomial of highest total degree which divides f .

Lemma 6.13. Let f ∈ F[x1, . . . ,x`] be of total degree n > 0 and let f̃ ∈ F[x1, . . . ,x`] be the square-
free part of f . Define

∆= discx ( f̃ (y1x , . . . , y`x )) = resx ( f̃ (y1x , . . . , y`x ), f̃ ′(y1x , . . . , y`x ))∈ F[y1, . . . , y`]

and
Λ= lcoeffx ( f (y1x , . . . , y`x ))∈ F[y1, . . . , y`]

for independent indeterminates x , y1, . . . , y`. Assume that a 1, . . . , a ` ∈ F with ∆(a 1, . . . , a `) 6= 0
and Λ(a 1, . . . , a n ) 6= 0. Then f (x1, . . . ,x`) is a perfect power if and only if f (a 1x , . . . , a `x ) ∈ F[x ] is
a perfect power.

Proof. Clearly if f is a perfect power, then f (a 1x , . . . , a `x ) is a perfect power. To prove the
converse, assume that

f = f s1
1 f s2

2 · · · f
sm
m

for irreducible f 1, . . . , f m ∈ F[x1, . . . ,x`]. Then

f (y1x , . . . , ym x ) = f 1(y1x , . . . , ym x )s1 · · · f m (y1x , . . . , ym x )sm

and each of the f i (y1x , . . . , ym x ) are irreducible. Now, since Λ(a 1, . . . , a m ) 6= 0, we know the
deg( f (a 1x , . . . , a `x )) = deg f (the total degree of f ). Thus, deg f i (a 1x , . . . , a `x ) = deg f i for 1 ≤
i ≤ ` as well. Also, by our assumption, disc( f (a 1x , . . . , a `x )) 6= 0, so all of the f i (a 1x , . . . , a `x )
are squarefree and pairwise relatively prime for 1≤ i ≤ k , and

f (a 1x , . . . , a `x ) = f 1(a 1x , . . . , a `x )s1 · · · f m (a 1x , . . . , a `x )sm .

Assume now that f (a 1x , . . . , a `x ) is an r th perfect power. Then r divides s i for 1≤ i ≤m . This
immediately implies that f itself is an r th perfect power.

It is easy to see that the total degree of ∆ is less than 2n 2 and the total degree of Λ is less
than n , and that both ∆ and Λ are non-zero. Thus, for randomly chosen a 1, . . . , a ` from a set
S ⊆ F of size at least 8n 2 + 4n we have ∆(a 1, . . . , a `) = 0 or Λ(a 1, . . . , a `) = 0 with probability
less than 1/4, by the famous Schwartz-Zippel lemma (Demillo and Lipton, 1978; Zippel, 1979;
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Schwartz, 1980). This can be made arbitrarily small by increasing the set size and/or by repe-
tition. We then run the appropriate univariate algorithm over R[x ] (depending upon the ring)
to identify whether or not f is a perfect power, and if so, to find r .

For integer polynomials, f (a 1x , . . . , a `x ) will not be explicitly computed over Z[x ], as the
size of the coefficients in this univariate polynomial could be exponentially larger than the
sparse representation size of f itself. Instead, we pass f (a 1x , . . . , a `x ) unevaluated to Algo-
rithm 6.2, which only performs the computation once a small finite field has been chosen.
This preserves polynomial-time for sparse multivariate integer polynomials.

6.3 Computing perfect roots

Once we have determined that f ∈ F[x ] is equal to hr for some h ∈ F[x ], the next task is to
actually compute h. Unfortunately, as noted in the introduction, there are no known bounds
on τ(h)which are polynomial in τ( f ).

The question of how sparse the polynomial root of a sparse polynomial must be (or equiv-
alently, how dense any power of a dense polynomial must be) relates to some questions first
raised by Erdös (1949) on the number of terms in the square of a polynomial. Schinzel ex-
tended this work to the case of perfect powers and proved that τ(hr ) tends to infinity as τ(h)
tends to infinity (Schinzel, 1987). Some conjectures of Schinzel suggest that τ(h) should be
O(τ( f )). A recent breakthrough of Zannier (2007) shows that τ(h) is bounded by a function
which does not depend on deg f , but this bound is unfortunately not polynomial in τ( f ).

However, our own (limited) investigations, along with more extensive ones by Copper-
smith and Davenport (1991), and later Abbott (2002), suggest that, for any h ∈ F[x ], where
the characteristic of F is not too small, τ(h)∈O(τ(hr )+ r ). The first algorithm presented here
avoids this problem by being output-sensitive. That is, the cost of the algorithm is propor-
tional to τ(h), whatever that might be. We then present different algorithm for this problem
that will be much more efficient in practice, but whose analysis relies on a modest conjecture.

6.3.1 Computing r th roots in output-sensitive polynomial time

In this subsection we present an algorithm for computing an h such that f = hr given f ∈Z[x ]
and r ∈ Z or showing that no such h exists. The algorithm is deterministic and requires time
polynomial in size( f ) as well as a given upper bound µ on m = τ(h). Neither its correctness
nor complexity is conditional on any conjectures. We will only demonstrate that this algo-
rithm requires polynomial time, as the (conjecturally fast) algorithm of the next chapter will
be the obvious choice in practical situations.

The basic idea of the algorithm here is that we can recover all the coefficients in Q as
well as modular information about the exponents of h from a homomorphism into a small
cyclotomic field overQ. Doing this for a relatively small number of cyclotomic fields yields h.

Assume that (the unknown) h ∈Z[x ] is written as

h =b1x d 1 +b2x d 2 + · · ·+bm x d m ,
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for b1, . . . ,bm ∈Z∗, and 0≤ d 1 < d 2 < · · ·< d m ,. Also assume that p > 2 is a prime distinct from
r such that

p -
∏

1≤i<j≤m

(d j −d i ), and p -
∏

1≤i≤m

(d i +1). (6.5)

Let ζp ∈ C be a p th primitive root of unity, and Φp = 1+ z + · · ·+ z p−1 ∈ Z[z ] its minimal
polynomial, the p th cyclotomic polynomial (which is irreducible in Q[z ]). Computationally
we represent Q(ζp ) as Q[z ]/(Φp ), with ζp ≡ z remΦp . Observe that ζk

p = ζ
k rem p
p for any k ∈ Z,

where k rem p is the least non-negative residue of k modulo p . Thus, if we define

hp =
∑

1≤i≤m

b i x d i rem p ∈Z[x ],

then h(ζp ) = hp (ζp ), and hp is the unique representation of h(ζp ) as a polynomial of degree
less than p −1. This follows from the conditions (6.5) on our choice of prime p because

• No pair of distinct exponents d i and d j of h is equivalent modulo p (since p - (d i −d j )),
and

• All the exponents reduced modulo p are strictly less than p − 1 (since our conditions
imply d i 6≡ (p −1)mod p for 1≤ i ≤m ).

This also implies that the coefficients of hp are exactly the same as those of h, albeit in a
different order.

Now observe that we can determine hp quite easily from the roots of

Γp (y ) = y r − f (ζp )∈Q(ζp )[y ].

These roots can be found by factoring the polynomial Γp (y ) in the algebraic extension field
Q(ζp )[y ], and the roots inCmust beωi h(ζp )∈C for 0≤ i < r , whereω is a primitive r th root
of unity. When r > 2hp =

∑

1≤i≤m b i x d i rem p ∈ Z[x ],, and since we chose p distinct from r , the
only r th root of unity inQ(ζp ) is 1. Thus Γp (y ) has exactly one linear factor, and this must be
equal to y −h(ζp ) = y −hp (ζp ), precisely determining hp . When r = 2, we have

Γp (y ) = (y −h(ζp ))(y +h(ζp )) = (y −hp (ζp ))(y +hp (ζp )),

and we can only determine hp (ζp ) (and hp and, for that matter, h) up to a factor of ±1. How-
ever, the exponents of hp and −hp are the same, and the ambiguity is only in the coefficients
(which we resolve later).

Finally, we need to repeatedly perform the above operations for a sequence of cyclotomic
fieldsQ(ζp1),Q(ζp2), . . . ,Q(ζpk ) such that the primes inP = {p1, . . . , pk } allow us to recover all
the exponents in h. Each prime p ∈ P gives the set of exponents of h reduced modulo that
prime, as well as all the coefficients of h in Z. That is, from each of the computations with
p ∈P we obtain

C = {b1, . . . ,bm } and Ep =
�

d 1 rem p , d 2 rem p , . . . , d rem p
	

,
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but with no clear information about the order of these sets. In particular, it is not obvious
how to correlate the exponents modulo the different primes directly. To do this we employ
the clever sparse interpolation technique of (Garg and Schost, 2009) (based on a method of
Grigoriev and Karpinski (1987) for a different problem), which interpolates the symmetric
polynomial in the exponents:

g = (x −d 1)(x −d 2) · · · (x −d m )∈Z[x ].

For each p ∈P we compute the symmetric polynomial modulo p ,

g p = (x − (d 1 rem p ))(x − (d 2 rem p )) · · · (x − (d m rem p ))≡ g (mod p ),

for which we do not need to know the order of the exponent residues. We then determine
g ∈ Z[x ] by the Chinese remainder theorem and factor g over Z[x ] to find the d 1, . . . , d m ∈ Z.
Thus the product of all primes in p ∈P must be at least 2





g






∞ to recover the coefficients of

g uniquely. It is easily seen that 2




g






∞ ≤ 2n m .

As noted above, the computation with each p ∈P recovers all the exponents of h in Z, so
using only one prime p ∈P , we determine the j th exponent of h as the coefficient of x d j rem p

in hp for 1 ≤ j ≤m . If r = 2 we can choose either of the roots of Γp (y ) (they differ by only a
sign) to recover the coefficients of h.

Finally, once we have a candidate root h, we certify that f = hr by taking logarithmic
derivatives to obtain

f ′

f
=

r h ′hr−1

hr
,

which simplifies to f ′h = r h ′ f . This equation only involves two sparse multiplications and is
therefore confirmed in polynomial time, and along with checking leading coefficients implies
that in fact f = hr .

The above discussion is summarized in the following algorithm.

Theorem 6.14. Algorithm 6.5 works as stated. It requires a number of word operations polyno-
mial in size( f ) and µ.

Proof. We assume throughout the proof that there does exist an h ∈Z[x ] such that f = hr and
τ(h)≤µ. If it does not, this will be caught in the test in Steps 22–24 by the above discussion, if
not before.

In Steps 1–2 we construct a set of primes P which is guaranteed to contain sufficiently
many good primes to recover g , where primes are good in the sense that for all p ∈P

β = r ·
∏

1≤i<j≤m

(d j −d i ) ·
∏

1≤i≤m

(d i +1) 6≡ 0 mod p .

It is easily derived that β < nµ2 , which has fewer than log2β ≤µ2 log2 n prime factors, so there
are at most µ2 log2 n bad primes. We also need to recover g in Step 16, and





g






∞ ≤ nµ, for

which we need at least 1+ log2





g




 ≤ 2µ log2 n good primes. Thus if P has at least (µ2 +
2µ) log2 n primes, there are a sufficient number of good primes to reconstruct g in Step 16.

108



CHAPTER 6. SPARSE PERFECT POWERS

Algorithm 6.5: Algebraic algorithm for computing perfect roots

Input: f ∈Z[x ] as in (6.2) with deg f = n , and r,µ∈N
Output: h ∈Z[x ] such that f = hr and τ(h)≤µ, provided such an h exists

1 γ← smallest integer ≥ 21 such that 3γ/(5 lnγ)≥ (µ2+2µ) log2 n
2 P ← {p ∈ {γ, . . . , 2γ} and p prime}
3 for p ∈P do
4 RepresentQ(ζp ) byQ[x ]/(Φp ), where Φp ← 1+ z + · · ·+ z p−1 and ζp ≡ z modΦp

5 Compute f (ζp ) =
∑

1≤i≤t c iζ
e i rem p
p ∈Z[ζp ]

6 Factor Γp (y )← y r − f (ζp )∈Q(ζp )[y ] overQ(ζp )[y ]
7 if Γp (y ) has no roots in Z[ζp ] then
8 return “f is not an r th power of a µ-sparse polynomial”

9 Let hp (ζp )∈Z[ζp ] be a root of Γp (y )
10 Write hp (x ) =

∑

1≤i≤mp
b i p x d i p , for b i p ∈Z and distinct d i p ∈N for 1≤ i ≤mp

11 if deg hp = p −1 then
12 mp ← 0; Continue with next prime p ∈P at Step 3

13 g p ← (x −d 1p )(x −d 2p ) · · · (x −d mp p )∈Zp [x ]

14 m ←max{mp : p ∈P }
15 P0←{p ∈P : mp =m }
16 Reconstruct g ∈Z[x ] from {g p}p∈P0 by the Chinese Remainder Algorithm
17 {d 1, d 2, . . . , d k }← distinct integer roots of g
18 if k <m then
19 return “f is not an r th power of a µ-sparse polynomial”

20 Choose any p ∈P0. For 1≤ j ≤m , let b j ∈Z be the coefficient of x d j rem p in hp

21 h←
∑

1≤j≤m b j x d j

22 if f ′h = r h ′ f and lcoeff( f ) = lcoeff(h)r then
23 return h

24 else
25 return “f is not an r th power of a µ-sparse polynomial”
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By (Rosser and Schoenfeld, 1962), Corollary 3, for γ ≥ 21 we have that the number of
primes in {γ, . . . , 2γ} is at least 3γ/(5 lnγ), which is at least (µ2 + 2µ) log2 n by our choice of
γ in Step 1, and γ∈O (̃µ2 log(n )). Numbers of this size can easily be tested for primality.

Since we assume that a root h exists, Γp (y ) will always have exactly one root hp ∈ Z[ζp ]
when r > 2, and exactly two roots in Z[ζp ]when r = 2 (differing only by sign).

Two conditions cause the primes to be identified as bad. If the map h 7→ h(ζp ) causes some
exponents of h to collide modulo p , this can only reduce the number of non-zero exponents
mp in hp , and so such primes will not show up in the list of good primes P0, as selected in
Step 15. Also, if any of the exponents of h are equivalent to p − 1 modulo p we will not be
able to reconstruct the exponents of h from hp , and we identify these as bad in Step 12 (by
artificially marking mp = 0, which ensures they will not be added toP0).

Correctness of the remainder of the algorithm follows from the previous discussion.

The complexity is clearly polynomial for all steps except for factoring inQ(ζp )[y ] (Step 6).
It is well-established that factoring dense polynomials over algebraic extensions can be done
in polynomial time, for example using the algorithm of Landau (1985).

As stated, Algorithm 6.5 is not actually output-sensitive, as it requires an a priori bound µ
onτ(h). To avoid this, we could start with any small value forµ, sayτ( f ), and after each failure
double this bound. Provided that the input polynomial f is in fact an r th perfect power, this
process with terminate after a number of steps polynomial in the sparse size of the output
polynomial h. There are also a number of other small improvements that could be made to
increase the algorithm’s efficiency, which we have omitted here for clarity.

6.3.2 Faster root computation subject to conjecture

Algorithm 6.5 is output sensitive as the cost depends on the sparsity of the root h. As discussed
above, there is considerable evidence that, roughly speaking, the root of a sparse polynomial
must always be sparse, and so the preceding algorithm may be unconditionally polynomial-
time.

In fact, with suitable sparsity bounds we can derive a more efficient algorithm based on
Newton iteration. This approach is simpler as it does not rely on advanced techniques such
as factoring over algebraic extension fields. It is also more general as it applies to fields other
than Z and to powers r which are not prime.

Unfortunately, this algorithm is not purely output-sensitive, as it relies on a conjecture
regarding the sparsity of powers of h. We first present the algorithm and prove its correctness.
Then we give our modest conjecture and use it to prove the algorithm’s efficiency.

Our algorithm is essentially a Newton iteration, with special care taken to preserve spar-
sity. We start with the image of h modulo x , using the fact that f (0) = h(0)r , and at Step
i = 1, 2, . . . , dlog2(deg h +1)e, we compute the image of h modulo x i .

Here, and for the remainder of this section, we will assume that f , h ∈ F[x ]with degrees n
and s respectively such that f = hr for r ∈N at least 2, and that the characteristic of F is either
zero or greater than n . As usual, we define t =τ( f ).
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Algorithm 6.6: Sparsity-sensitive Newton iteration to compute perfect roots

Input: f ∈ F[x ], r ∈N such that f is a perfect r th power
Output: h ∈ F[x ] such that f = hr

1 u ← highest power of x dividing f
2 f u ← coefficient of x u in f
3 g ← f /( f u x u )
4 h← 1, k ← 1
5 while k r ≤ deg g do
6 `←min{k , (deg g )/r +1−k }

7 a ←
(h g −hr+1)remx k+`

r x k

8 h← h +(a/g mod x `) ·x k

9 k ← k + `

10 b ← any r th root of f u in F
11 return b hx u /r

Theorem 6.15. If f ∈ F[x ] is a perfect r th power, then 6.6 returns an h ∈ F[x ] such that hr = f .

Proof. Let u , f u , g be as defined in Steps 1–3. Thus f = f u g x u . Now let ĥ be some r th root of
f , which we assume exists. If we similarly write ĥ = ĥv ĝ x v , with ĥv ∈ F and ĝ ∈ F[x ] such that
ĝ (0) = 1, then ĥr = ĥ r

v ĝ r x v r . Therefore f u must be a perfect r th power in F, r |u , and g is a
perfect r th power in F[x ] of some polynomial with constant coefficient equal to 1.

Denote by h i the value of h at the beginning of the i th iteration of the while loop. So
h1 = 1. We claim that at each iteration through Step 6, hr

i ≡ g mod x k . From the discussion
above, this holds for i = 1. Assuming the claim holds for all i = 1, 2, . . . , j , we prove it also holds
for i = j +1.

From Step 8, h j+1 = h j +(a/g mod x l )x k , where a is as defined on the j th iteration of Step
7. We observe that

h j hr
j ≡ hr+1

j + r hr
j (a/g mod x l )x k (mod x k+`).

From our assumption, hr
j ≡ f mod x k , and l ≤ k , so we have

h j hr
j+1 ≡ hr+1

j + r a x k ≡ hr+1
j +h j f −hr+1

j ≡ h j f (mod x k+`).

Therefore hr
j+1 ≡ f mod x k+`, and so by induction the claim holds at each step. Since the

algorithm terminates when k r > deg g , we can see that the final value of h is an r th root of g .
Finally,

�

b hx u /r
�r = f u g x u = f .

Algorithm 6.6 will only be efficient if the low-order terms of the polynomial power hr−1

can be efficiently computed on Step 7. Since we know that h and the low-order terms of hr−1

are sparse, we need only a guarantee that the intermediate powers will be sparse as well. This
is stated in the following modest conjecture.
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Conjecture 6.16. For r, s ∈ N, if the characteristic of F is zero or greater than r s , and h ∈ F[x ]
with deg h = s , then

τ(h i mod x 2s )<τ(hr mod x 2s )+ r, i = 1, 2, . . . , r −1.

This corresponds to intuition and experience, as the system is still overly constrained with
only s degrees of freedom. Computationally, the conjecture has also been confirmed for all
of the numerous examples we have tested, and for the special case of r = 2 and s ≤ 12 by
Abbott (2002), although a more thorough investigation of its truth would be interesting. A
weaker inequality would suffice to prove polynomial time, but we use the stated bounds as
we believe these give more accurate complexity measures.

The application of Conjecture 6.16 to Algorithm 6.6 is given by the following lemma, which
essentially tells us that the “error” introduced by examining higher-order terms of hr

1 is not too
dense.

Lemma 6.17.2 Let k ,` ∈N such that `≤ k and k + `≤ s , and suppose h1 ∈ F[x ] is the unique
polynomial with degree less than k satisfying hr

1 ≡ f mod x k . Then

τ(hr+1
l mod x k+`)≤ 2t (t + r ).

Proof. Let h2 ∈ F[x ] be the unique polynomial of degree less than ` satisfying h1 + h2x k ≡
h mod x k+`. Since hr = f ,

f ≡ hr
1+ r hr−1

1 h2x k mod x k+`.

Multiplying by h1 and rearranging gives

hr+1
1 ≡ h1 f − r f h2x k mod x k+`.

Because h1 mod x k and h2 mod x ` each have at most τ(h) terms, which by Conjecture 6.16 is
less than t − r , the total number of terms in hr−1

1 mod x k+` is less than 2t (t − r ).

We are now ready to prove the efficiency of the algorithm, assuming the conjecture.

Theorem 6.18.2 If f ∈ F[x ] has degree n and t nonzero terms, then Algorithm 6.6 uses

O
�

(t + r )4 log r log n
�

operations in F and an additional O
�

(t + r )4 · size(r ) · log2 n
�

word operations, not counting
the cost of root-finding in the base field F on Step 10.

Proof. First consider the cost of computing hr+1 in Step 7. This will be accomplished by re-
peatedly squaring and multiplying by h, for a total of at most 2blog2(r +1)cmultiplications. As
well, each intermediate product will have at most τ( f )+r < (t +r )2 terms, by Conjecture 6.16.
The number of field operations required, at each iteration, is O

�

(t + r )4 log r
�

, for a total cost
of O

�

(t + r )4 log r log n
�

.

2Subject to the validity of Conjecture 6.16.
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Furthermore, since k + ` ≤ 2i at the i ’th step, for 1 ≤ i < log2 n , the total cost in word
operations is less than

∑

1≤i<log2 n

(t + r )4 · size(r i )∈O
�

(t + r )4 size(r ) log2 n
�

.

In fact, this is the most costly step. The initialization in Steps 1–3 uses only O(t ) operations
in F and on integers at most n . And the cost of computing the quotient on Step 8 is propor-
tional to the cost of multiplying the quotient and dividend, which is at most O(t (t + r )).

When F = Q, we must account for coefficient growth. Observe that the difference in the
number of word operations on an IMM and the number of bit operations for the same algo-
rithm is at most a factor of the word size w . From the definition of an IMM, we know that this
is logarithmic in the size of the input, and therefore does not affect the O (̃· · · ) complexity.

So for ease of presentation, and in particular in order to make use of Theorem 6.9, we
will count the cost of the computation in bit complexity. First we define the height of a poly-
nomial in terms of bit length: For α ∈ Q, write α = a/b for a ,b relatively prime integers.
Then define H (α) = max{|a |, |b |}. And for f ∈ Q[x ] with coefficients c1, . . . , c t ∈ Q, write
H ( f ) =maxH (c i ).

Thus, the size of the lacunary representation of f ∈Q[x ] is proportional to τ( f ), deg f , and
logH ( f ). Now we prove the complexity of our algorithm is polynomial in these values, when
F=Q.

Theorem 6.19.2 Suppose f ∈Q[x ]has degree n and t nonzero terms, and is a perfect r th power.
Algorithm 6.6 computes an r th root of f using O˜

�

t (t + r )4 · log n · logH ( f )
�

bit operations.

Proof. Let h ∈Q[x ] such that hr = f , and let c ∈ Z>0 be minimal such that c h ∈ Z[x ]. Gauß’s
Lemma tells us that c r must be the least positive integer such that c r f ∈ Z[x ] as well. Then,
using Theorem 6.9, we have:

H (h)≤ ‖c h‖∞ ≤ ‖c h‖2 ≤ (t




c r f






∞)
1/r ≤ t 1/rH ( f )(t+1)/r .

(The last inequality comes from the fact that the lcm of the denominators of f is at most
H ( f )t .)

Hence logH (h)∈O
�

(t logH ( f ))/r
�

. Clearly the most costly step in the algorithm will still
be the computation of hr+1

i at each iteration through Step 7. For simplicity in our analysis, we
can just treat h i (the value of h at the i th iteration of the while loop in our algorithm) as equal
to h (the actual root of f ), since we know τ(h i )≤τ(h) andH (h i )≤H (h).

Lemma 6.17 and Conjecture 6.16 tell us that τ(h i )≤ 2(t + r )2 for i = 1, 2, . . . , r . To compute
hr+1, we will actually compute (c h)r+1 ∈ Z[x ] by repeatedly squaring and multiplying by c h,
and then divide out c r+1. This requires at most blog2 r +1c squares and products.

2Subject to the validity of Conjecture 6.16.
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Note that




(c h)2i






∞ ≤ (t +r )2




(c h)i






2

∞ and




(c h)i+1






∞ ≤ (t +r )2




(c h)i






∞ ‖c h‖∞. Therefore





(c h)i






∞ ≤ (t + r )2r ‖c h‖r
∞ , i = 1, 2, . . . , r,

and thus log




(c h)i






∞ ∈O
�

r (t + r )+ t logH ( f )
�

, for each intermediate power (c h)i .

Thus each of the O
�

(t + r )4 log r
�

field operations at each iteration costs O(M(t logH ( f )+
log r (t + r ))) bit operations, which then gives the stated result.

Again, observe that the bit complexity in general is an upper bound on the number of IMM
operations, and when we use the blunt measure of O (̃· · · ) notation, the costs are exactly the
same.

The method used for Step 10 depends on the field F. For F =Q, we just need to find two
integer perfect roots, which can be done in “nearly linear” time by the algorithm of (Bernstein,
1998). Otherwise, we can use any of the well-known fast root-finding methods over F[x ] to
compute a root of x r − f u .

6.3.3 Computing multivariate roots

For the problem of computing perfect polynomial roots of multivariate polynomials, we again
reduce the problem to a univariate one, this time employing the well-known Kronecker sub-
stitution method.

Suppose f , h ∈ F[x1, . . . ,x`] and r ∈ N such that f = hr . It is easily seen that each partial
degree of f is exactly r times the corresponding partial degree in h, that is, degx i

f = r degx i
h,

for all r ∈ {1, . . . ,`}.

Now suppose f and r are given and we wish to compute h. First use the relations above
to compute d i = degx i

h +1 for each i ∈ {1, . . . ,`}. (If any degx i
f i is not a multiple of r , then f

must not be an r th power.)

Now use the Kronecker substitution and define

f̂ = f
�

y , y d 1 , y d 1d 2 , . . . , y d 1···d `−1
�

and ĥ = h
�

y , y d 1 , y d 1d 2 , . . . , y d 1···d `−1
�

,

where y is a new variable. Clearly f̂ = ĥr , and since each d i > degx i
h, h is easily recov-

ered from the sparse representation of ĥ in the standard way: For each non-zero term c y e in
ĥ, compute the digits of e in the mixed radix representation corresponding to the sequence
d 1, d 2, . . . , d `−1. That is, decompose e (uniquely) as e = e1+ e2d 1+ e3d 1d 2+ · · ·+ e`d 1 · · ·d `−1

with each e i ∈N such that e i < d i . Then the corresponding term in h is c x e1
1 · · ·x

e`
` .

Therefore we simply use either algorithm above to compute ĥ as the r th root of f̂ over
F[y ], then invert the Kronecker map to obtain h ∈ F[x1, . . . ,x`]. The conversion steps are
clearly polynomial-time, and notice that log deg f̂ is at most ` times larger than log deg f .
Therefore the lacunary sizes of f̂ and ĥ are polynomial in the lacunary sizes of f and h, and
the algorithms in this section yield polynomial-time algorithms to compute perfect r th roots
of multivariate lacunary polynomials.
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6.4 Implementation

To investigate the practicality of our algorithms, we implemented Algorithm 6.3 using NTL
(Shoup, 2009), for dense univariate polynomials with arbitrary-precision integers as their co-
efficients. The only significant difference between our implementation and the algorithm
specified above is our choice of the ground field. Rather than working in a degree-(r − 1) ex-
tension of Fp , we simply find a random p in the same range such that (r − 1) | p . Proving
good complexity bounds is more difficult in this situation, as it requires bounds on primes
in arithmetic progressions. That issue in particular will be discussed much more thoroughly
in Chapter 8, but for now we simply point out that this is extremely efficient in practice, as it
avoids working in extension fields.

To our knowledge, all existing algorithms which could be used to test for perfect powers
actually compute the root h. We implemented the fastest method for densely-represented
polynomials, both in theory and in practice, which is a standard Newton iteration. This algo-
rithm uses dense polynomial arithmetic in its implementation, and also requires the power
r to be given explicitly. This Newton iteration method is adapted to the case when r is not
known by simply trying all possible powers r , and then checking with a single evaluation
whether the computed candidate h is actually an r th root of f . This technique is not provably
correct, but in all of our trials it has never failed. Furthermore, since this is the algorithm we
are comparing against, we graciously give it every possible advantage.

The results of these experiments were reported in (Giesbrecht and Roche, 2008). We found
that, when the given polynomial f was not a perfect power, our algorithm detected this ex-
tremely quickly, in fact always with just one random evaluation. Even when the inputs had
mostly nonzero coefficients, we found that our algorithm performed competitively with the
dense Newton iteration approach. This is due to the black-box nature of the algorithm — it
requires only a way to quickly evaluate a polynomial at a given point, which is of course pos-
sible whether the polynomial is sparsely or densely represented. Much more on the black box
representation and what other kinds of information can be learned from it will be discussed
in the next two chapters.

6.5 Conclusions

Given a sparse polynomial over the integers, rational numbers, or a finite field, we have shown
polynomial-time Monte Carlo algorithms to determine whether the polynomial is a perfect
r th power for any r ≥ 2. In every case, the error is one-sided, i.e., the algorithm may produce
false positives but never true negatives. Therefore we have shown that these problems are in
the complexity class coRP.

Actually computing h such that f = hr is a somewhat trickier problem, at least insofar
as bounds on the sparsity of h have not been completely resolved. We presented an output-
sensitive algorithm that makes use of factorization over algebraic extension fields, and also a
conjecturally-fast sparse Newton iteration.

115



CHAPTER 6. SPARSE PERFECT POWERS

There are many interesting potential connections from our algorithms to other related
problems. First, polynomial perfect powers are a special case of the functional decomposition
problem. Given a polynomial f ∈ R[x ], the univariate version of this problem asks for a pair
of polynomials g , h ∈ R[x ] such that f (x ) = g (h(x )). This connection is made more explicit
in our discussion of Algorithm 6.6 in the next chapter. For now, it suffices to say that it is not
known whether decomposition can be solved in polynomial time for sparse polynomials.

Perfect powers are also a special case of factorization. As mentioned in the beginning of
this chapter, existing algorithms for factorization of sparse polynomials, for example those
by Lenstra (1999); Kaltofen and Koiran (2006), require polynomial-time in the degree of the
computed factors. Because the degree of a sparse polynomial can be exponential in the sparse
representation size, this precludes the computation of high-degree factors which have few
nonzero terms. The combination of Algorithms 6.3 and 6.5 gives the first polynomial-time
algorithm to compute any sparse, high-degree factors of a sparse polynomial. A rich topic of
further investigation would be the development of further algorithms of this type, with the
ultimate goal being an either an algorithm to compute all t -sparse factors in t O(1) time, or a
reduction showing the general problem to be intractable.
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I do not pretend to start with precise questions. I do not think you
can start with anything precise. You have to achieve such preci-
sion as you can, as you go along.

—Bertrand Russell, The Philosophy of Logical Atomism (1918)

Chapter 7

Sparse interpolation

The next two chapters examine methods to determine the sparse representation of an
unknown polynomial, given only a way to evaluate the polynomial at chosen points. These
methods are generally termed black-box sparse interpolation.

First, we examine a new approach to the standard sparse interpolation problem over large
finite fields and approximate complex numbers. This builds on recent work by Garg and
Schost (2009), improving the complexity of the fastest existing algorithm over large finite
fields, and the numerical stability of the state of the art for approximate sparse interpola-
tion. The primary new tool that we introduce is a randomised method to distinguish terms
in the unknown polynomial based on their coefficients, which we term diversification. Us-
ing this technique, our new algorithms gain practical and theoretical efficiency over previous
methods by avoiding the need to use factorization algorithms as a subroutine.

We gratefully acknowledge the helpful and useful comments by Éric Schost as well as the
Symbolic Computation Group members at the University of Waterloo on preliminary versions
of the work in this chapter.

7.1 Background

Polynomial interpolation is a long-studied and important problem in computer algebra and
symbolic computation. Given a way to evaluate an unknown polynomial at any chosen point,
and an upper bound on the degree, the interpolation problem is to determine a representa-
tion for the polynomial. In sparse interpolation, we are also given an upper bound on the
number of nonzero terms in the unknown polynomial, and the output is returned in the
sparse representation. Generally speaking, we seek algorithms whose cost is polynomially-
bounded by the size of the output, i.e., the sparse representation size of the unknown polyno-
mial.
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Sparse interpolation has numerous applications in computer algebra and engineering.
Numerous mathematical computations suffer from the problem of intermediate expression
swell, whereby the size of polynomials encountered in the middle of a computation is much
larger than the size of the input or the output. In such cases where the output is known to
be sparse, sparse interpolation can eliminate the need to store large intermediate expressions
explicitly, thus greatly reducing not only the intermediate storage requirement but also the
computational cost. Important examples of such problems are multivariate polynomial fac-
torization and system solving (Canny, Kaltofen, and Yagati, 1989; Kaltofen and Trager, 1990;
Díaz and Kaltofen, 1995, 1998; Javadi and Monagan, 2007, 2009).

Solving non-linear systems of multivariate polynomials with approximate coefficients has
numerous practical applications, especially in engineering (see for example Sommese and
Wampler, 2005). Homotopy methods are a popular way of solving such systems and related
problems by following the paths of single solution points from an initial, easy system, to the
target system of interest. Once enough points are known in the target system, sparse inter-
polation methods are used to recover a polynomial expression for the actual solution. These
techniques generally fall under the category of hybrid symbolic-numeric computing, and in
particular have been applied to solving non-linear systems (e.g., Sommese, Verschelde, and
Wampler, 2001, 2004; Stetter, 2004) and factoring approximate multivariate polynomials (e.g.,
Kaltofen, May, Yang, and Zhi, 2008).

Sparse interpolation is also of interest in theoretical computer science. It is a non-trivial
generalisation of the important problem of polynomial identity testing, or PIT for short. Gen-
erally speaking, the PIT problem is to identify whether the polynomial represented by a given
algebraic circuit is identically zero. Surprisingly, although this question is easily answered
using randomisation and the classical results of Demillo and Lipton (1978); Zippel (1979);
Schwartz (1980), no deterministic polynomial-time algorithm is known. In fact, even de-
randomising the problem for circuits of depth four would have important consequences (Ka-
banets and Impagliazzo, 2004). We will not discuss this problem further, but the point the
reader to the excellent recent surveys of Saxena (2009) and Shpilka and Yehudayoff (2010).

7.1.1 Problem definition

Let f ∈ F[x1, . . . ,xn ] have degree less than d . A black box for f is a function which takes as
input a vector (a 1, . . . , a n ) ∈ Fn and produces f (a 1, . . . , a n ) ∈ F. The cost of the black box is the
number of operations in F required to evaluate it at a given input.

Clausen, Dress, Grabmeier, and Karpinski (1991) showed that, if only evaluations over the
ground field F are allowed, then for some instances at least Ω(n log t ) black box probes are re-
quired. Hence if we seek polynomial-time algorithms, we must extend the capabilities of the
black box. To this end, Díaz and Kaltofen (1998) introduced the idea of an extended domain
black box which is capable of evaluating f (b1, . . . ,bn ) ∈ E for any (b1, . . . ,bn ) ∈ En where E is
any extension field of F . That is, we can change every operation in the black box to work over
an extension field, usually paying an extra cost per evaluation proportional to the size of the
extension.
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Motivated by the case of black boxes that are division-free algebraic circuits, we will use
the following model which we believe to be fair and cover all previous relevant results. Again
we use the notation of M(m ) for the number of field operations required to multiply two
dense univariate polynomials with degrees less than m , and O (̃m ) to represent any function
bounded by m (log m )O(1).

Definition 7.1. Let f ∈ F[x1, . . . ,xn ] and ` > 0. A remainder black box for f with size ` is a
procedure which, given any monic square-free polynomial g ∈ F[y ] with deg g =m , and any
h1, . . . , hn ∈ F[y ] with each deg h i < m , produces f (h1, . . . , hn )rem g using at most ` ·M(m )
operations in F.

This definition is general enough to cover the algorithms we know of over finite fields, and
we submit that the cost model is fair to the standard black box, extended domain black box,
and algebraic circuit settings. The model also makes sense over complex numbers, as we will
see.

7.1.2 Interpolation over finite fields

We first summarize previously known univariate interpolation algorithms when F is a finite
field with q elements and identify our new contributions here. For now, let f ∈ Fq [x ] have
degree less than d and sparsity t . We will assume we have a remainder black box for f with
size `. Since field elements can be represented with O(logq ) bits, a polynomial-time algorithm
will have cost polynomial in `, t , log d , and logq .

For the dense output representation, one can use the classical method of Newton, Waring,
and Lagrange to interpolate in O (̃`d ) time (von zur Gathen and Gerhard, 2003, §10.2).

The algorithm of Ben-Or and Tiwari (1988) for sparse polynomial interpolation, and in
particular the version developed by Kaltofen and Yagati (1989), can be adapted to arbitrary
finite fields. Unfortunately, these algorithms require t discrete logarithm computations in F∗q ,
whose cost is small if the field size q is chosen carefully (as in Kaltofen (2010b)), but not in
general. For arbitrary (and potentially large) q , we can take advantage of the fact that each
discrete logarithm that needs to be computed falls in the range [0, 1, . . . , d −1]. The “kangaroo
method” of Pollard (1978, 2000) can, with high probability, compute such a discrete log with
O(
p

d ) field operations. Using this algorithm makes brings the total worst-case cost of Ben-Or
and Tiwari’s algorithm to O(t `+ t 2+ t

p
d ).

This chapter builds most directly on the work of (Garg and Schost, 2009), who gave the
first polynomial-time algorithm for sparse interpolation over an arbitrary finite field. Their
algorithm works roughly as follows. For very small primes p , use the black box to compute f
modulo x p − 1. A prime p is a “good prime” if and only if all the terms of f are still distinct
modulo x p − 1. If we do this for all p in the range of roughly O(t 2 log d ), then there will be
sufficient good primes to recover the unique symmetric polynomial over Z[y ] whose roots
are the exponents of nonzero terms in f . We then factor this polynomial to find those expo-
nents, and correlate with any good prime image to determine the coefficients. The total cost
is O (̃`t 4 log2 d )field operations. Using randomization, it is easy to reduce this to O (̃`t 3 log2 d ).
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Probes Probe degree Computation cost Total cost
Dense d 1 O (̃d ) O (̃`d )

Ben-Or & Tiwari O(t ) 1 O(t 2+ t
p

d ) O (̃`t + t 2+ t
p

d )
Garg & Schost O (̃t 2 log d ) O (̃t 2 log d ) O (̃t 4 log2 d ) O (̃`t 4 log2 d )

Randomized G & S O (̃t log d ) O (̃t 2 log d ) O (̃t 3 log2 d ) O (̃`t 3 log2 d )
Ours O(log d ) O (̃t 2 log d ) O (̃t 2 log2 d ) O (̃`t 2 log2 d )

Table 7.1: Sparse univariate interpolation over large finite fields,
with black box size `, degree d , and t nonzero terms

Observe that the coefficients of the symmetric integer polynomial in Garg & Schost’s al-
gorithm are bounded by O(d t ), which is much larger than the O(d ) size of the exponents
ultimately recovered. Our primary contribution over finite fields of size at least Ω(t 2d ) is a
new algorithm which avoids evaluating the symmetric polynomial and performing root find-
ing over Z[y ]. As a result, we reduce the total number of required evaluations and develop
a randomized algorithm with cost O (̃`t 2 log2 d ), which is roughly quadratic in the input and
output sizes. Since this can be deterministically verified in the same time, our algorithm (as
well as the randomized version of Garg & Schost) is of the Las Vegas type.

The relevant previous results mentioned above are summarized in Table 7.1, where we
assume in all cases that the field size q is “large enough”. In the table, the “probe degree”
refers to the degree of g in each evaluation of the remainder black box as defined above.

7.1.3 Multivariate interpolation

Any of the univariate algorithms above can be used to generate a multivariate polynomial
interpolation algorithm in at least two different ways. For what follows, write ρ(d , t ) for the
number of remainder black box evaluations required by some univariate interpolation algo-
rithm,∆(d , t ) for the degree of the remainder in each evaluation, andψ(d , t ) for the number
of other field operations required besides black box calls. Observe that these correspond to
the first three columns in Table 7.1.

The first way to adapt a univariate interpolation algorithm to a multivariate one is Kro-
necker substitution: given a remainder black box for an unknown f ∈ F[x1, . . . ,xn ], with each
partial degree less than d , we can easily construct a remainder black box for the univariate
polynomial f̂ = f (x ,x d ,x d 2 , . . . ,x d n−1) ∈ F[x ], whose terms correspond one-to-one with terms
of f . This is the approach taken for instance in Kaltofen (2010b, §2) for the interpolation of
multivariate polynomials with rational coefficients. The cost is simply the cost of the chosen
underlying univariate algorithm, with the degree increased to d n .

The other method for constructing a multivariate interpolation algorithm is due to Zip-
pel (1990). The technique is inherently probabilistic and works variable-by-variable, at each
step solving a number of t̂ × t̂ transposed Vandermonde systems, for some t̂ ≤ t . Specifically,
each system is of the form Ax = b , where A is a t̂ × t̂ matrix of scalars from the coefficient
field Fq . The vector v consists of the output of t̂ remainder black box evaluations, and so its
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Kronecker Zippel
Dense O (̃`d n ) O (̃`nt d )

Ben-Or & Tiwari O (̃`t + t 2+ t d n/2) O (̃nt 3+nt 2
p

d + `nt 2)
Garg & Schost O (̃`n 2t 4 log2 d ) O (̃`nt 5 log2 d )

Randomized G & S O (̃`n 2t 3 log2 d ) O (̃`nt 4 log2 d )
Ours O (̃`n 2t 2 log2 d ) O (̃`nt 3 log2 d )

Table 7.2: Sparse multivariate interpolation over large finite fields,
with black box size `, n variables, degree d , and t nonzero terms

elements are in Fq [y ], and the system must be solved modulo some g ∈ Fq [y ], as specified
by the underlying univariate algorithm. Observe however that since A does not contain poly-
nomials, computing x = A−1b requires no modular polynomial arithmetic. In fact, using the
same techniques as Kaltofen and Yagati (1989, §5), employing fast dense bivariate polynomial
arithmetic, each system can be solved using

O
�

M
�

t ·∆(d , t )
�

· log
�

t ·∆(d , t )
�

�

field operations.

Each transposed Vandermonde system gives the remainder black box evaluation of each
of t̂ univariate polynomials that we are interpolating in that step. The number of such systems
that must be solved is thereforeρ(d , t ), as determined by the underlying univariate algorithm.
Finally, each of the t̂ univariate interpolations proceeds with the given evaluations. The total
cost, over all iterations, is

O˜
�

`nt ·∆(d , t ) ·ρ(d , t )
�

field operations for the remainder black box evaluations, plus

O˜
�

ntψ(d , t )+ `nt ·∆(d , t )
�

field operations for additional computation. Zippel (1990) used the dense algorithm for uni-
variate interpolation; using Ben-Or and Tiwari’s algorithm instead was studied by Kaltofen
and Lee (2003).

Table 7.2 summarizes the cost of the univariate algorithms mentioned above applied to
sparse multivariate interpolation over a sufficiently large finite field, using Kronecker’s and
Zippel’s methods.

For completeness, we mention a few more results on closely related problems that do not
have a direct bearing on the current study. Grigoriev, Karpinski, and Singer (1990) give a par-
allel algorithm with small depth but which is not competitive in our model due to the large
number of processors required. A practical parallel version of Ben-Or and Tiwari’s algorithm
has been developed by (Javadi and Monagan, 2010). (Kaltofen, Lakshman, and Wiley, 1990)
and (Avendaño, Krick, and Pacetti, 2006) present modular algorithms for interpolating poly-
nomials with rational and integer coefficients. However, their methods do not seem to apply
to finite fields.
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7.1.4 Approximate Polynomial Interpolation

In Section 7.4 we consider the case of approximate sparse interpolation. Our goal is to pro-
vide both a numerically more robust practical algorithm, but also the first algorithm which is
provably numerically stable, with no heuristics or conjectures. We define an “ε-approximate
black box” as one which evaluates an unknown t -sparse target polynomial f ∈ C[x ], of de-
gree d , with relative error at most ε > 0. Our goal is to build a t -sparse polynomial g such
that





 f − g




≤ ε




 f




. A bound on the degree and sparsity of the target polynomial, as well as
ε, must also be provided. In Section 7.4 we formally define the above problem, and demon-
strate that the problem of sparse interpolation is well-posed. We then adapt our variant of
the (Garg and Schost, 2009) algorithm for the approximate case, prove it is numerically accu-
rate in terms of the relative error of the output, and analyze its cost. We also present a full
implementation in Section 7.5 and validating experiments.

Recently, a number of numerically-focussed sparse interpolation algorithms have been
presented. The algorithm of (Giesbrecht, Labahn, and Lee, 2009) is a numerical adaptation
of (Ben-Or and Tiwari, 1988), which samples f at O(t ) randomly chosen roots of unityω ∈C
on the unit circle. In particular, ω is chosen to have (high) order at least the degree, and
a randomization scheme is used to avoid clustering of nodes which will cause dramatic ill-
conditioning. A relatively weak theoretical bound is proven there on the randomized condi-
tioning scheme, though experimental and heuristic evidence suggests it is much better in
practice. (Cuyt and Lee, 2008) adapt Rutishauser’s qd algorithm to alleviate the need for
bounds on the partial degrees and the sparsity, but still evaluate at high-order roots of unity.
Approximate sparse rational function interpolation is considered by (Kaltofen and Yang, 2007)
and (Kaltofen, Yang, and Zhi, 2007), using the Structured Total Least Norm (STLN) method
and, in the latter, randomization to improve conditioning. Approximate sparse interpolation
is also considered for integer polynomials by (Mansour, 1995), where a polynomial-time al-
gorithm is presented in quite a different model from ours. In particular the evaluation error
is absolute (not relative) and the complexity is sensitive to the bit length of the integer coeffi-
cients.

Note that all these works evaluate the polynomial only on the unit circle. This is necessary
because we allow and expect f to have very large degree, which would cause a catastrophic
loss of precision at data points of non-unit magnitude. Similarly, we assume that the complex
argument of evaluation points is exactly specified, which is again necessary because any error
in the argument would be exponentially magnified by the degree.

The primary contribution of our work in Section 7.4 below is to provide an algorithm with
both rigorously provable relative error and good practical performance. Our algorithm typi-
cally requires O (̃t 2 log2 d ) evaluations at primitive roots of unity of order O (̃t 2 log d ) (as op-
posed to order d in previous approaches). We guarantee that it finds a t -sparse polynomial
g such that





g − f




≤ 2ε




 f




. An experimental demonstration of the numerical robustness is
given in Section 7.5.
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7.2 Sparse interpolation for generic fields

For the remainder, we assume the unknown polynomial f is always univariate. This is with-
out loss of generality, as we can use the Kronecker substitution as discussed previously. The
exponential increase in the univariate degree only corresponds to a factor of n increase in
log deg f , and since our algorithms will ultimately have cost polynomial in log deg f , polyno-
mial time is preserved.

Assume a fixed, unknown, t -sparse univariate polynomial f ∈ F[x ]with degree at most d .
We will use a remainder black box for f to evaluate f rem(x p −1) for small primes p . We say p
is a “good prime” if the sparsity of f rem(x p − 1) is the same as that of f itself — that is, none
of the exponents are equivalent modulo p .

The minimal bit length required so that a randomly chosen prime is with high probability
a good prime is shown in the following lemma.

Lemma 7.2. Let f ∈ F[x ] be a t -sparse polynomial with degree d , and let

λ=max

�

21,

�

5

3
t (t −1) ln d

��

.

A prime chosen at random in the range λ, . . . , 2λ is a good prime for f with probability at least
1/2.

Proof. Write e1, . . . , e t for the exponents of nonzero terms in f . If p is a bad prime, then p
divides (e j − e i ) for some i < j . Each e j − e i ≤ d , so there can be at most logλd = ln d / lnλ
primes that divide each e j − e i . There are exactly

�t
2

�

such pairs of exponents, so the total
number of bad primes is at most (t (t −1) ln d )/(2 lnλ).

From Rosser and Schoenfeld (1962, Corollary 3 to Theorem 2), the total number of primes
in the range λ, . . . , 2λ is at least 3λ/(5 lnλ) when λ ≥ 21, which is at least t (t − 1) ln d / lnλ, at
least twice the number of bad primes.

Now observe an easy case for the sparse interpolation problem. If a polynomial f ∈ F[x ],
has all coefficients distinct; that is, f =

∑

1≤i≤t c i x e i and c i = c j ⇒ i = j , then we say f is
diverse. To interpolate a diverse polynomial f ∈ F[x ], we first follow the method of Garg
and Schost (2009) by computing f rem(x p i − 1) for “good primes” p i such that the sparsity
of f rem(x p i −1) is the same as that of f . Since f is diverse, f rem(x p i −1) is also diverse and in
fact each modular image has the same set of coefficients. Using this fact, we avoid the need to
construct and subsequently factor the symmetric polynomial in the exponents. Instead, we
correlate like terms based on the (unique) coefficients in each modular image, then use sim-
ple Chinese remaindering to construct each exponent e i from its image modulo each p i . This
requires only O(log d ) remainder black box evaluations at good primes, gaining a factor of t
improvement over the randomized version of Garg and Schost (2009) for diverse polynomials.

In the following sections, we will show how to choose an α ∈ F so that f (αx ) — which
we can easily construct a remainder black box for — is diverse. With such a procedure, Algo-
rithm 7.1 gives a Monte Carlo algorithm for interpolation over a general field.
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Algorithm 7.1: Generic interpolation

Input: µ∈R>0, T, D,q ∈N, and a remainder black box for unknown T -sparse f ∈ F[x ]
with deg f <D

Output: t ∈N, e1, . . . , e t ∈N, and c1, . . . , c t ∈ F such that f =
∑

1≤i≤t c i x e i

1 t ← 0

2 λ←max
�

21,
 

5
3

T (T −1) ln D
£�

3 for dlog2(3/µ)e primes p ∈ {λ, . . . , 2λ} do
4 Use black box to compute f p = f (x )rem(x p −1)
5 if f p has more than t terms then
6 t ← sparsity of f p

7 %← p

8 α← element of F such that Pr[ f (αx ) is not diverse]<µ/3
9 g%← f (αx )rem(x% −1)

10 c1, . . . , c t ← nonzero coefficients of g%
11 e1, . . . , e t ← 0
12 for d2 ln(3/µ)+4(ln D)/(lnλ)e primes p ∈ {λ, . . . , 2λ} do
13 Use black box to compute g p = f (αx )rem(x p −1)
14 if g p has exactly t nonzero terms then
15 for i = 1, . . . , t do Update e i with exponent of c i in g p modulo p via Chinese

remaindering

16 for i = 1, . . . , t do c i ← c iα−e i

17 return f (x ) =
∑

1≤i≤t c i x e i
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Theorem 7.3. With inputs as specified, Algorithm 7.1 correctly computes the unknown poly-
nomial f with probability at least 1−µ. The total cost in field operations (except for step 8)
is

O

�

` ·
�

log D

log T + loglog D
+ log

1

µ

�

·M
�

T 2 log D
�

�

.

Proof. The for loop on line 3 searches for the true sparsity t and a single good prime %. Since
each prime p in the given range is good with probability at least 1/2 by Lemma 7.2, the prob-
ability of failure at this stage is at most µ/3.

The for loop on line 12 searches for and uses sufficiently many good primes to recover the
exponents of f . The product of all the good primes must be at least D, and since each prime
is at least λ, at least (ln D)/(lnλ) good primes are required.

Let n = d2 ln(3/µ) + 4(ln D)/(lnλ)e be the number of primes sampled in this loop, and
k = d(ln D)/(lnλ)e the number of good primes required. We can derive that (n/2 − k )2 ≥
(ln(3/µ) + k )2 > (n/2) ln(3/µ), and therefore exp(−2(n

2
− k )2/n ) < µ/3. Using Hoeffding’s In-

equality (Hoeffding, 1963), this means the probability of encountering fewer than k good
primes is less than µ/3.

Therefore the total probability of failure is at most µ. For the cost analysis, the dominating
cost will be the modular black box evaluations in the last for loop. The number of evaluations
in this loop is O(log(1/µ)+ (log D)/(logλ)), and each evaluation has cost O(` ·M(λ)). Since the
size of each prime is Θ((log D)/(log T + loglog D)), the complexity bound is correct as stated.

In case the bound T on the number of nonzero terms is very bad, we could choose a
smaller value of λ based on the true sparsity t before line 8, improving the cost of the re-
mainder of the algorithm.

In addition, as our bound on possible number of “bad primes” seems to be quite loose. A
more efficient approach in practice would be to replace the for loop on line 12 with one that
starts with a prime much smaller than λ and incrementally searches for larger primes, until
the product of all good primes is at least D. We could choose the lower bound to start search-
ing from based on lower bounds on the birthday problem. That is, assuming (falsely) that the
exponents are randomly distributed modulo p , start with the least p that will have no expo-
nents collide modulo p with high probability. This would yield an algorithm more sensitive
to the true bound on bad primes, but unfortunately gives a worse formal cost analysis.

7.3 Sparse interpolation over finite fields

We now examine the case that the ground field F is the finite field with q elements, which we
denote Fq . First we show how to effectively diversify the unknown polynomial f in order to
complete Algorithm 7.1 for the case of large finite fields. Then we show how to extend this to
a Las Vegas algorithm with the same complexity.

125



CHAPTER 7. SPARSE INTERPOLATION

7.3.1 Diversification

For an unknown f ∈ Fq [x ] given by a remainder black box, we must find an α so that f (αx ) is
diverse. A surprisingly simple trick works: evaluating f (αx ) for a randomly chosen nonzero
α∈Fq .

Theorem 7.4. For q ≥ T (T −1)D+1 and any T -sparse polynomial f ∈Fq [x ]with deg f <D, if
α is chosen uniformly at random from F∗q , the probability that f (αx ) is diverse is at least 1/2.

Proof. Let t ≤ T be the exact number of nonzero terms in f , and write f =
∑

1≤i≤t c i x e i , with
nonzero coefficients c i ∈F∗q and e1 < e2 < · · ·< e t . So the i th coefficient of f (αx ) is c iαe i .

If f (αx ) is not diverse, then we must have c iαe i = c jαe j for some i 6= j . Therefore consider
the polynomial A ∈Fq [y ] defined by

A =
∏

1≤i<j≤t

�

c i y e i − c j y e j
�

.

We see that f (αx ) is diverse if and only if A(α) 6= 0, hence the number of roots of A over Fq is
exactly the number of unlucky choices for α.

The polynomial A is the product of exactly
�t

2

�

binomials, each of which has degree less
than D. Therefore

deg A <
T (T −1)D

2
,

and this also gives an upper bound on the number of roots of A. Hence q −1≥ 2 deg A, and at
least half of the elements of F∗q are not roots of A, yielding the stated result.

Using this result, given a black box for f and the exact sparsity t of f , we can find anα∈Fq

such that f (αx ) is diverse by sampling random values α∈Fq , evaluating f (αx )remx p−1 for a
single good prime p , and checking whether the polynomial is diverse. With probability at least
1−µ, this will succeed in finding a diversifying α after at most dlog2(1/µ)e iterations. Therefore
we can use this approach in Algorithm 7.1 with no effect on the asymptotic complexity.

7.3.2 Verification

So far, Algorithm 7.1 over a finite field is probabilistic of the Monte Carlo type; that is, it may
give the wrong answer with some controllably-small probability. To provide a more robust
Las Vegas probabilistic algorithm, we require only a fast way to check that a candidate answer
is in fact correct. To do this, observe that given a modular black box for an unknown T -sparse
f ∈ Fq [x ] and an explicit T -sparse polynomial g ∈ Fq [x ], we can construct a modular black
box for the 2T -sparse polynomial f − g of their difference. Verifying that f = g thus reduces
to the well-studied problem of deterministic polynomial identity testing.

The following algorithm is due to (Bläser, Hardt, Lipton, and Vishnoi, 2009) and provides
this check in essentially the same time as the interpolation algorithm; we restate it in Algo-
rithm 7.2 for completeness and to use our notation.
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Algorithm 7.2: Verification over finite fields

Input: T, D,q ∈N and remainder black box for unknown T -sparse f ∈Fq [x ]with
deg f ≤D

Output: ZERO iff f is identically zero
1 for the least (T −1) log2 D primes p do
2 Use black box to compute f p = f rem(x p −1)
3 if f p 6= 0 then return NONZERO

4 return ZERO

Theorem 7.5. Algorithm 7.2 works correctly as stated and uses at most

O
�

`T log D ·M
�

T log D ·
�

log T + loglog D
���

field operations.

Proof. For correctness, notice that the requirements for a “good prime” for identity testing
are much weaker than for interpolation. Here, we only require that a single nonzero term
not collide with any other nonzero term. That is, every bad prime p will divide e j − e1 for
some 2 ≤ j ≤ T . There can be log2 D distinct prime divisors of each e j − e1, and there are
T −1 such differences. Therefore testing that the polynomial is zero modulo x p−1 for the first
(T − 1) log2 D primes is sufficient to guarantee at least one nonzero evaluation of a nonzero
T -sparse polynomial.

For the cost analysis, the prime number theorem (Bach and Shallit, 1996, Theorem 8.8.4),
tells us that the first (T −1) log2 D primes are each bounded by O(T · log D · (log T + loglog D)).
The stated bound follows directly.

This provides all that we need to prove the main result of this section:

Theorem 7.6. Given q ≥ T (T − 1)D + 1, any T, D ∈ N, and a modular black box for unknown
T -sparse f ∈ Fq [x ] with deg f ≤ D, there is an algorithm that always produces the correct
polynomial f and with high probability uses only O˜

�

`T 2 log2 D
�

field operations.

Proof. Use Algorithms 7.1 and 7.2 with µ = 1/2, looping as necessary until the verification
step succeeds. With high probability, only a constant number of iterations will be necessary,
and so the cost is as stated.

For the small field case, when q ∈O(T 2D), the obvious approach would be to work in an
extension E of size O(log T + log D) over Fq . Unfortunately, this would presumably increase
the cost of each evaluation by a factor of log D, potentially dominating our factor of T savings
compared to the randomized version of (Garg and Schost, 2009) when the unknown polyno-
mial has very few terms and extremely high degree.

In practice, it seems that a much smaller extension than this is sufficient in any case to
make each gcd(e j − e i ,q − 1) small compared to q − 1, but we do not yet know how to prove
any tighter bound in the worst case.
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7.4 Approximate sparse interpolation algorithms

In this section we consider the problem of interpolating an approximate sparse polynomial
f ∈C[x ] from evaluations on the unit circle. We will generally assume that f is t -sparse:

f =
∑

1≤i≤t

c i x e i for c i ∈C and e1 < · · ·< e t = d . (7.1)

We require a notion of size for such polynomials, and define the coefficient 2-norm of f =
∑

0≤i≤d f i x i as




 f




=
r

∑

0≤i≤d

| f i |2.

The following identity relates the norm of evaluations on the unit circle and the norm of
the coefficients. As in Section 7.2, for f ∈ C[x ] is as in (7.1), we say that a prime p is a good
prime for f if p - (e i − e j ) for all i 6= j .

Lemma 7.7. Let f ∈C[x ], p a good prime for f , andω∈C a p th primitive root of unity. Then





 f






2
=

1

p

∑

0≤i<p

�

� f (ωi )
�

�

2
.

Proof. See Theorem 6.9 in the previous chapter.

We can now formally define the approximate sparse univariate interpolation problem.

Definition 7.8. Let ε > 0 and assume there exists an unknown t -sparse f ∈ C[x ] of degree at
most D. An ε-approximate black box for f takes an input ξ∈C and produces a γ∈C such that
|γ− f (ξ)| ≤ ε| f (ξ)|.

That is, the relative error of any evaluation is at most ε. As noted in the introduction, we
will specify our input points exactly, at (relatively low order) roots of unity. The approximate
sparse univariate interpolation problem is then as follows: given D, T ∈ N and δ ≥ ε > 0, and
an ε-approximate black box for an unknown T -sparse polynomial f ∈C[x ] of degree at most
D, find a T -sparse polynomial g ∈C[x ] such that





 f − g




≤δ




g




.

The following theorem shows that t -sparse polynomials are well-defined by good evalua-
tions on the unit circle.

Theorem 7.9. Let ε> 0 and f ∈C[x ] be a t -sparse polynomial. Suppose there exists a t -sparse
polynomial g ∈ C[x ] such that for a prime p which is good for both f and f − g , and p th
primitive root of unityω∈C, we have

| f (ωi )− g (ωi )| ≤ ε| f (ωi )| for 0≤ i < p .

Then




 f − g




 ≤ ε




 f




. Moreover, if g 0 ∈ C[x ] is formed from g by deleting all the terms not in
the support of f , then





 f − g 0





≤ 2ε




 f




.
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Proof. Summing over powers ofωwe have
∑

0≤i<p

| f (ωi )− g (ωi )|2 ≤ ε2
∑

0≤i<p

| f (ωi )|2.

Thus, since p is a good prime for both f − g and f , using Lemma 7.7, p ·




 f − g






2 ≤ ε2 ·p ·




 f






2

and




 f − g




≤ ε




 f




.

Since g − g 0 has no support in common with f




g − g 0





≤




 f − g




≤ ε




 f




 .

Thus




 f − g 0





=




 f − g +(g − g 0)






≤




 f − g




+




g − g 0





≤ 2ε




 f




 .

In other words, any t -sparse polynomial whose values are very close to f must have the
same support except possibly for some terms with very small coefficients.

7.4.1 Computing the norm of an approximate sparse polynomial

As a warm-up exercise, consider the problem of computing an approximation for the 2-norm
of an unknown polynomial given by a black box. Of course we this is an easier problem than
actually interpolating the polynomial, but the technique bears some similarity. In practice,
we might also use an approximation for the norm to normalize the black-box polynomial,
simplifying certain computations and bounds calculations.

Let 0 < ε < 1/2 and assume we are given an ε-approximate black box for some t -sparse
polynomial f ∈C[x ]. We first consider the problem of computing





 f




.

Algorithm 7.3: Approximate norm

Input: T, D ∈N and ε-approximate black box for unknown T -sparse f ∈C[x ]with
deg f ≤D

Output: σ ∈R, an approximation to




 f






1 λ←max
�

21,
 

5
3

t (t −1) ln d
£�

2 Choose a prime p randomly from {λ, . . . , 2λ}
3 ω← exp(2πi/p )
4 w ← ( f (ω0), . . . , f (ωp−1))∈Cp computed using the black box
5 return (1/pp ) · ‖w ‖

Theorem 7.10. Algorithm 7.3 works as stated. On any invocation, with probability at least 1/2,
it returns a valueσ ∈R≥0 such that

(1−2ε)




 f




<σ< (1+ε)




 f




 .
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Proof. Let v = ( f (ω0), . . . , f (ωp−1)) ∈ Cp be the vector of exact evaluations of f . Then by the
properties of our ε-approximate black box we have w = v + ε∆, where |∆i | < | f (ωi )| for 0 ≤
i < p , and hence ‖∆‖ < ‖v ‖. By the triangle inequality ‖w ‖ ≤ ‖v ‖+ ε‖∆‖ < (1+ ε)‖v ‖. By
Lemmas 7.2 and 7.7, ‖v ‖=pp





 f




 with probability at least 1/2, so (1/pp ) · ‖w ‖< (1+ε)




 f






with this same probability.

To establish a lower bound on the output, note that we can make error in the evaluation
relative to the output magnitude: because ε < 1/2, | f (ωi )−w i |< 2ε|w i | for 0≤ i < p . We can
write v = w + 2ε∇, where ‖∇‖ < ‖w ‖. Then ‖v ‖ ≤ (1+ 2ε)‖w ‖, and (1− 2ε)





 f




 < (1/pp ) ·
‖w ‖.

7.4.2 Constructing an ε-approximate remainder black box

Assume that we have chosen a good prime p for a t -sparse f ∈ F[x ]. Our goal in this subsec-
tion is a simple algorithm and numerical analysis to accurately compute f remx p −1.

Assume that f remx p − 1 =
∑

0≤i<p b i x i exactly. For a primitive p th root of unity ω ∈ C,
let V (ω) ∈ Cp×p be the Vandermonde matrix built from the points 1,ω, . . . ,ωp−1. Recall that
V (ω) · (b0, . . . ,bp−1)T = ( f (ω0), . . . , f (ωp−1))T and V (ω−1) = p ·V (ω)−1. Matrix vector product by
such Vandermonde matrices is computed very quickly and in a numerically stable manner by
the Fast Fourier Transform (FFT).

Algorithm 7.4: Approximate Remainder

Input: An ε-approximate black box for the unknown t -sparse f ∈C[x ], and p ∈N, a
good prime for f

Output: h ∈C[x ] such that




( f remx p −1)−h




≤ ε




 f




.
1 w ← ( f (ω0), . . . , f (ωp−1))∈Cp computed using the ε-approximate black box for f
2 u ← (1/p ) ·V (ω−1)w ∈Cp using the FFT algorithm
3 return h =

∑

0≤i<p u i x i ∈C[x ]

Theorem 7.11. Algorithm 7.4 works as stated, and






�

f remx p −1
�

−h




≤ ε




 f




 .

It requires O(p log p ) floating point operations and p evaluations of the black box.

Proof. Because f and f remx p − 1 have exactly the same coefficients (p is a good prime for
f ), they have exactly the same norm. The FFT in Step 2 is accomplished in O(p log p ) floating
point operations. This algorithm is numerically stable since (1/pp )·V (ω−1) is unitary. That is,
assume v = ( f (ω0), . . . , f (ωp−1))∈Cp is the vector of exact evaluations of f , so ‖v −w ‖ ≤ ε‖v ‖
by the black box specification. Then, using the fact that ‖v ‖=pp





 f




,





( f remx p−1)−h




=













1

p
V (ω−1)v −

1

p
V (ω−1)w













=
1
p

p













1
p

p
V (ω−1) · (v −w )













=
1
p

p
‖v −w ‖ ≤

ε
p

p
‖v ‖= ε





 f




 .
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7.4.3 Creating ε-diversity

First, we extend the notion of polynomial diversity to the approximate case.

Definition 7.12. Let f ∈ C[x ] be a t -sparse polynomial as in (7.1) and δ ≥ ε > 0 such that
|c i | ≥ δ





 f




 for 1 ≤ i ≤ t . The polynomial f is said to be ε-diverse if and only if every pair of
distinct coefficients is at least ε





 f




 apart. That is, for every 1≤ i < j ≤ t , |c i − c j | ≥ ε




 f




.

Intuitively, if (ε/2) corresponds to the machine precision, this means that an algorithm can
reliably distinguish the coefficients of a ε-diverse polynomial. We now show how to choose a
random α to guarantee ε-diversity.

Theorem 7.13. Let δ ≥ ε > 0 and f ∈ C[x ] a t -sparse polynomial whose non-zero coefficients
are of magnitude at least δ





 f




. If s is a prime satisfying s > 12 and

t (t −1)≤ s ≤ 3.1
δ

ε
,

then for ζ= e2πi/s an s -PRU and k ∈N chosen uniformly at random from {0, 1, . . . , s−1}, f (ζk x )
is ε-diverse with probability at least 1

2
.

Proof. For each 1 ≤ i ≤ t , write the coefficient c i in polar notation to base ζ as c i = riζθi ,
where each ri and θi are nonnegative real numbers and ri ≥δ





 f




.

Suppose f (ζk x ) is not ε-diverse. Then there exist indices 1≤ i < j ≤ t such that
�

�riζ
θiζk e i − rjζ

θjζk e j
�

�≤ ε




 f




 .

Because min(ri , rj ) ≥ δ




 f




, the value of the left hand side is at least δ




 f




 ·
�

�ζθi+k e i −ζθj+k e j
�

�.
Dividing out ζθj+k e i , we get

�

�ζθi−θj −ζk (e j−e i )
�

�≤
ε

δ
.

By way of contradiction, assume there exist distinct choices of k that satisfy the above in-
equality, say k1, k2 ∈ {0, . . . , s −1}. Since ζθi−θj and ζe j−e i are a fixed powers of ζ not depending
on the choice of k , this means

�

�ζk1(e j−e i )−ζk2(e j−e i )
�

�≤ 2
ε

δ
.

Because s is prime, e i 6= e j , and we assumed k1 6= k2, the left hand side is at least |ζ−1|.
Observe that 2π/s , the distance on the unit circle from 1 to ζ, is a good approximation for this
Euclidean distance when s is large. In particular, since s > 12,

|ζ−1|
2π/s

>

p
2
�p

3−1
�

/2

π/6
,

and therefore |ζ−1| > 6
p

2(
p

3− 1)/s > 6.2/s , which from the statement of the theorem is at
least 2ε/δ. This is a contradiction, and therefore the assumption was false; namely, there is at
most one choice of k such that the i ’th and j ’th coefficients collide.

Then, since there are exactly
�t

2

�

distinct pairs of coefficients, and s ≥ t (t −1) = 2
�t

2

�

, f (ζk x )
is diverse for at least half of the choices for k .
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Algorithm 7.5: Adaptive diversification

Input: ε-approximate black box for f , known good prime p , known sparsity t
Output: ζ, k such that f (ζk x ) is ε-diverse, or FAIL

1 s ← 1, δ←∞, f p ← 0
2 while s ≤ t 2 and #{coeffs c of f s s.t. |c | ≥δ}< t do
3 s ← least prime ≥ 2s
4 ζ← exp(2πi/s )
5 k ← random integer in {0, 1, . . . , s −1}
6 Compute f s = f (ζk x )remx p −1
7 δ← least number s.t. all coefficients of f s at least δ in absolute value are pairwise

ε-distinct

8 if δ> 2ε then return FAIL
9 else return ζk

We note that the diversification which maps f (x ) to f (ζk x ) and back is numerically stable
since ζ is on the unit circle.

In practice, the previous theorem will be far too pessimistic. We therefore propose the
method of Algorithm 7.5 to adaptively choose s , δ, and ζk simultaneously, given a good prime
p .

Suppose there exists a threshold S ∈ N such that for all primes s > S, a random s th prim-
itive root of unity ζk makes f (ζk x ) ε-diverse with high probability. Then Algorithm 7.5 will
return a root of unity whose order is within a constant factor of S, with high probability. From
the previous theorem, if such an S exists it must be O(t 2), and hence the number of iterations
required is O(log t ).

Otherwise, if no such S exists, then we cannot diversify the polynomial. Roughly speaking,
this corresponds to the situation that f has too many coefficients with absolute value close to
the machine precision. However, the diversification is not actually necessary in the approxi-
mate case to guarantee numerical stability. At the cost of more evaluations, as well as the need
to factor an integer polynomial, the algorithm of (Garg and Schost, 2009) for finite fields can
be adapted quite nicely for the approximate case. This is essentially the approach we outline
below, and even if the diversification step is omitted, the stated numerical properties of the
computation will still hold true.

7.4.4 Approximate interpolation algorithm

We now plug our ε-approximate remainder black box, and method for making f ε-diverse,
into our generic Algorithm 7.1 to complete our algorithm for approximate interpolation.

Theorem 7.14. Let δ > 0, f ∈C[x ] with degree at most D and sparsity at most T , and suppose
all nonzero coefficients c of f satisfy |c | > δ





 f




. Suppose also that ε < 1.5δ/(T (T − 1)), and
we are given an ε-approximate black box for f . Then, for any µ < 1/2 we have an algorithm
to produce a g ∈ C[x ] satisfying the conditions of Theorem 7.9. The algorithm succeeds with
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probability at least 1−µ and uses O (̃T 2 · log(1/µ) · log2 D) black box evaluations and floating
point operations.

Proof. Construct an approximate remainder black box for f using Algorithm 7.4. Then run
Algorithm 7.1 using this black box as input. On step 8 of Algorithm 7.1, run Algorithm 7.5,
iterating steps 5–7 dlog2(3/µ)e times on each iteration through the while loop to choose a di-
versifying α= ζk with probability at least 1−µ/3.

The cost comes from Theorems 7.3 and 7.11 along with the previous discussion and The-
orem 7.13.

Observe that the resulting algorithm is Monte Carlo, but could be made Las Vegas by com-
bining the finite fields zero testing algorithm discussed in Section 7.3.2 with the guarantees of
Theorem 7.9.

7.5 Implementation results

We implemented our algorithms in the MVP library, using GMP (Granlund et al., 2010) and
NTL (Shoup, 2009) for the exponent arithmetic. For comparison with the algorithm of Garg
and Schost (2009), we also used NTL’s squarefree polynomial factorization routines. We note
that, in our experiments, the cost of integer polynomial factorization (for Garg & Schost) and
Chinese remaindering were always negligible.

In our timing results, “G&S Determ” refers to the deterministic algorithm as stated in Garg
and Schost (2009) and “Alg 7.1” is the algorithm we have presented here over finite fields,
without the verification step. We also developed and implemented a more adaptive, Monte
Carlo version of these algorithms, as briefly described at the end of Section 7.2. The basic
idea is to sample modulo x p − 1 for just one prime p ∈ Θ(t 2 log d ) that is good with high
probability, then to search for much smaller good primes. This good prime search starts at
a lower bound of order Θ(t 2) based on the birthday problem, and finds consecutively larger
primes until enough primes have been found to recover the symmetric polynomial in the
exponents (for Garg & Schost) or just the exponents (for our method). The corresponding
improved algorithms are referred to as “G&S MC” and “Alg 7.1++” in the table, respectively.

Table 7.3 summarizes some timings for these four algorithms on our benchmarking ma-
chine. Note that the numbers listed reflect the base-2 logarithm of the degree bound and the
sparsity bound for the randomly-generated test cases. The tests were all performed over the fi-
nite field Z/65521Z. This modulus was chosen for convenience of implementation, although
other methods such as the Ben-Or and Tiwari algorithm might be more efficient in this par-
ticlar field since discrete logarithms could be computed quickly. However, observe that our
algorithms (and those from Garg and Schost) have only poly-logarithmic dependence on the
field size, and so will eventually dominate.

The timings are mostly as expected based on our complexity estimates, and also confirm
our suspicion that primes of size O(t 2) are sufficient to avoid exponent collisions. It is satis-
fying but not particularly surprising to see that our “Alg 7.1++” is the fastest on all inputs, as
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log2 D T G&S Determ G&S MC Alg 7.1 Alg 7.1++
12 10 3.77 0.03 0.03 0.01
16 10 46.82 0.11 0.11 0.08
20 10 — 0.38 0.52 0.33
24 10 — 0.68 0.85 0.38
28 10 — 1.12 2.35 0.53
32 10 — 1.58 2.11 0.66
12 20 37.32 0.15 0.02 0.02
16 20 — 0.91 0.52 0.28
20 20 — 3.5 3.37 1.94
24 20 — 6.59 5.94 2.99
28 20 — 10.91 10.22 3.71
32 20 — 14.83 16.22 4.24
12 30 — 0.31 0.01 0.01
16 30 — 3.66 1.06 0.65
20 30 — 10.95 6.7 3.56
24 30 — 25.04 12.42 9.32
28 30 — 38.86 19.36 13.8
32 30 — 62.53 68.1 14.66
12 40 — 0.58 0.01 0.02
16 40 — 8.98 3.7 1.54
20 40 — 30.1 12.9 8.42
24 40 — 67.97 38.34 16.57
28 40 — — 73.69 36.24
32 40 — — — 40.79

Table 7.3: Finite Fields Algorithm Timings
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Noise Mean Error Median Error Max Error
0 4.440 e−16 4.402 e−16 8.003 e−16
±10−12 1.113 e−14 1.119 e−14 1.179 e−14
±10−9 1.149 e−11 1.191 e−11 1.248 e−11
±10−6 1.145 e−8 1.149 e−8 1.281 e−8

Table 7.4: Approximate Algorithm Stability

all the algorithms have a similar basic structure. Had we compared to the Ben-Or and Tiwari
or Zippel’s method, they would probably be more efficient for small sizes, but would be easily
beaten for large degree and arbitrary finite fields as their costs are super-polynomial.

The implementation of the approximate algorithm uses machinedoubleprecision (based
on the IEEE standard), the built-in C++ complex<double> type, and the popular Fastest
Fourier Transform in the West (FFTW) package for computing FFTs (Frigo and Johnson, 2005).
Our stability results are summarized in Table 7.4. Each test case was randomly generated with
degree at most 220 and at most 50 nonzero terms. We varied the precision as specified in the
table and ran 10 tests in each range. Observe that the error in our results was often less than
the ε error on the evaluations themselves.

7.6 Conclusions

We have presented two new algorithms, using the basic idea of Garg and Schost (2009), plus
our new technique of diversification, to gain improvements for sparse interpolation over large
finite fields and approximate complex numbers.

There is much room for improvement in both of these methods. For the case of finite
fields, the limitation to large finite fields of size at leastΩ(t 2d n ) is in some sense the interesting
case, since for very small finite fields it will be faster to use Ben-Or and Tiwari’s algorithm and
compute the discrete logs as required. However, the restriction on field size for our algorithms
does seem rather harsh, and we would like to reduce it, perhaps to a bound of size only t O(1).
This would have a tremendous advantage because working in an extension field to guarantee
that size would only add a logarithmic factor to the overall complexity. By contrast, working
an extension large enough to satisfy the conditions of our algorithm could add a factor of
O (̃log d ) to the complexity, which is significant for lacunary algorithms.

Over approximate complex numbers, our algorithm provides the first provably numeri-
cally stable method for sparse interpolation. However, this improved numerical stability is at
the expense of extra computational cost and (more significantly) extra black-box probes. For
many applications, the cost of probing the unknown function easily dominates the cost of
the interpolation algorithm, and therefore reducing the number of probes as much as possi-
ble is highly desirable. Ideally, we would like to have an approximate interpolation algorithm
with the numerical stability of ours, but using only O(t ) probes, as in Ben-Or and Tiwari’s
algorithm.
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Another area for potential improvement is in the bounds used for the number of possible
bad primes, in both algorithms. From our experiments and intuition, it seems that using
primes of size roughly O(t 2+ t log d ) should be sufficient, rather than the O(t 2 log d ) size our
current bounds require. However, proving this seems quite challenging. These and other
related bounds will be discussed at greater length in the next chapter.
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The original paraphernalia for the lottery had been lost long ago,
and the black box now resting on the stool had been put into use
even before Old Man Warner, the oldest man in town, was born.
Mr. Summers spoke frequently to the villagers about making a
new box, but no one liked to upset even as much tradition as was
represented by the black box. There was a story that the present
box had been made with some pieces of the box that had pre-
ceded it, the one that had been constructed when the first people
settled down to make a village here. Every year, after the lottery,
Mr. Summers began talking again about a new box, but every year
the subject was allowed to fade off without anything’s being done.
The black box grew shabbier each year: by now it was no longer
completely black but splintered badly along one side to show the
original wood color, and in some places faded or stained.

—Shirley Jackson, The Lottery (1948)

Chapter 8

Sparsest shift interpolation

The interpolation algorithms presented in Chapter 7 produce a representation of the un-
known f ∈ R[x ] as a sparse polynomial in the standard power basis 1,x ,x 2, . . .. Here we con-
sider instead interpolation in the shifted power basis 1, (x − α), (x − α)2, . . ., for some α ∈ R.
This is useful because even polynomials with many nonzero coefficients in the standard ba-
sis may have very few terms in the shifted basis, for some very carefully chosen shift α. The
algorithm we present works overQ[x ] and produces the sparsest shift α, as well as the sparse
representation in the α-shifted power basis, in polynomial-time in the size of the output.

The basic idea of our algorithm was first presented at the MACIS 2007 conference (Gies-
brecht and Roche, 2007). Significant improvements to those methods were later made and
published in the journal Computational Complexity (Giesbrecht and Roche, 2010). We are
indebted to Igor Shparlinski for pointing out a few very useful references on analytic num-
ber theory that we will discuss, as well as to Erich Kaltofen and Éric Schost for sharing some

137



CHAPTER 8. SPARSEST SHIFT INTERPOLATION

pre-prints and for other useful discussions on these topics.

8.1 Background

In the last chapter, we saw that for polynomial interpolation algorithms, the choice of repre-
sentation of the output is absolutely crucial. The sparse interpolation algorithms we reviewed
computed the representation of an unknown f in the sparse representation, written as

f (x ) =b0+b1x d 1 +b2x d 2 + · · ·+bs x d s . (8.1)

In this chapter, we will present a new algorithm that instead interpolates into the sparse
representation in the α-shifted power basis as in

f (x ) = c0+ c1(x −α)e1 + c2(x −α)e2 + · · ·+ c t (x −α)et . (8.2)

With f as in (8.2), we say that α is a t -sparse shift of f because the representation has ex-
actly t non-zero and non-constant terms in this basis. Whenα is chosen so that t is absolutely
minimal in (8.2), we call this the sparsest shift of f .

8.1.1 Previous results

The most significant challenge here is computing the sparsest shift α ∈ Q. Computing this
value from a set of evaluation points was stated as an open problem by Borodin and Tiwari
(1991). Actually, their problem concerned the decidability of the problem for an unchosen
set of evaluation points. This question is still open; all algorithms that we know of for sparse
interpolation require a black box for evaluation so that the interpolated points can be chosen
by the algorithm, and we do not depart from this general approach.

Grigoriev and Karpinski (1993) presented the first non-trivial algorithm to compute the
sparsest shift of a polynomial. Their algorithm actually computes the sparsest shift from a
black box for evaluation, but the complexity of the method is greater than the cost of dense
interpolation. Therefore without loss of generality we can assume for their problem that the
dense representation of f is known in advance, and they show how to compute the sparsest
shift α of f . The authors admit that their algorithm’s dependence on the degree is probably
not optimal. Our result confirms this by giving a sparsest-shift interpolation whose cost is
polynomial in the logarithm of the degree.

A more efficient algorithm to compute the sparsest shift of a polynomial given in the dense
representation was developed by Lakshman and Saunders (1996). Although our method is
entirely different, we crucially rely on their theorem on the uniqueness and rationality of the
sparsest shift (Fact 8.1 below).

Using the early interpolation version of Ben-Or and Tiwari’s interpolation algorithm from
Kaltofen and Lee (2003), but treating f (x+α) as a polynomial with indeterminate coefficients,
Giesbrecht, Kaltofen, and Lee (2003) give even more efficient algorithms for computing the
sparsest shift of a given polynomial.
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In all these cases, the size of the output in the sparsest-shifted representation could be
exponentially smaller than the size of the input, represented in the standard power basis. To
see that this is true, one need only polynomials such as f (x ) = (x + 1)n . The sparsest-shifted
representation size of this polynomial is proportional to log n , but the size using the standard
power basis — even in the sparse representation — is proportional to n itself.

This motivates our problem of computing the sparsest shift directly from a black box for
evaluating f at chosen points, avoiding the need to ever write down f in the standard power
basis. Surprisingly, even though we are solving a seemingly more difficult problem, the cost of
our new algorithm is competitive with the previous results just mentioned, as we will discuss
later.

8.1.2 Problem statement and black box model

We present new algorithms to interpolate f ∈ Q[x ], given a black box for evaluation, in time
proportional to the size of the sparsest-shift representation corresponding to (8.2).

The black box model we use is somewhat different from those of the previous chapter:

p ∈N,θ ∈Fp
- - f (θ )mod p

f (x )∈Q[x ]

Given a prime p and an element θ in Fp , the black box computes the value of the unknown
polynomial evaluated at θ over the fieldZp . (An error is produced exactly in those unfortunate
circumstances that p divides the denominator of f (θ ).) We generally refer to this as a modular
black box. To account for the reasonable possibility that the cost of black box calls depends on
the size of p , we define κ to be an upper bound on the number of field operations in Fp used
in black box evaluation, for a given polynomial f ∈Q[x ]. As with the remainder black box, our
motivation for this definition really comes from the idea of an algebraic circuit for f . Given
such a circuit (overQ), we could easily construct our modular black box, and the parameter κ
would correspond to the size of the circuit (which was called ` in the previous chapter).

Some kind of extension to the standard black box, such as the modular black box proposed
here, is in fact necessary, since the value of a polynomial of degree n at any point other than
0,±1 will typically have n bits or more. Thus, any algorithm whose complexity is proportional
to log n cannot perform such an evaluation overQ or Z. Other possibilities might include al-
lowing for evaluations on the unit circle in some representation of a subfield ofC, or returning
only a limited number of bits of precision for an evaluation. A similar model and approach to
ours is employed by Bläser et al. (2009) for deterministic identify testing of polynomials.

To be precise about our notion of size, we extend the definition of size( f ) from Chapter 6
to cover shifted-sparse polynomials. Recall that size(q ) for q ∈ Q is the number of machine
words needed to represent q in an IMM. So if we write q = a

b
with a ∈Z, b ∈N, and gcd(a ,b ) =
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1, and if the machine word size is w , then size(q ) = dlog2(|a |+1)/w e+ dlog2(b +1)/w e+1. For
a rational polynomial f as in (8.2), define:

size( f ) = size(α)+
t
∑

i=0

size(c i )+
t
∑

i=1

size(e i ). (8.3)

The upper bound we will use for simplicity is:

size( f )≤ size(α)+ t
�

H ( f )+ size(n )
�

, (8.4)

where H ( f ) is defined as max0≤i≤t size(c i ). Also, recall as in previous chapters that M(r ) is
the cost in ring operations of a dense degree-r multiplication, and N(a ) is the cost in word
operations on an IMM of computing the product of two integers, both with absolute value at
most a .

Our algorithms will have polynomial complexity in the smallest possible size( f ).

The remainder of this chapter is structured as follows. In Section 8.2 we show how to find
the sparsest shift from evaluation points in Fp , where p is a prime with some special proper-
ties provided by some “oracle”. In Section 8.3 we show how to perform sparse interpolation
given a modular black box for a polynomial. In Section 8.4 we show how to generate primes
such that a sufficient number satisfy the conditions of our oracle, and discuss the effect of
some number-theoretic conjectures on our algorithms. Section 8.5 provides the complexity
analysis of our algorithms. We conclude in Section 8.6, and introduce some open questions.

8.2 Computing the Sparsest Shift

For a polynomial f ∈Q[x ], we first focus on computing the sparsest shiftα∈Q so that f (x+α)
has a minimal number of non-zero and non-constant terms. This information will later be
used to recover a representation of the unknown polynomial.

8.2.1 The polynomial f (p)

Here, and for the remainder of this paper, for a prime p and f ∈ Q[x ], define f (p ) ∈ Fp [x ] to
be the unique polynomial with degree less than p which is equivalent to f modulo x p − x
and with all coefficients reduced modulo p . Observe that this is very similar to what could be
produced by the remainder black box of Chapter 7, but not quite the same. The key difference
is that we simultaneously reduce the coefficients and the polynomial itself. Essentially, the
remainder black box allows us to work in larger domains (when the unknown polynomial has
coefficients in finite fields, for example), whereas our modular black box here allows us to
work in the smaller domain of integers modulo p .

From Fermat’s Little Theorem, we see immediately that f (p )(α)≡ f (α)mod p for all α∈Fp .
Hence f (p ) can be found by evaluating f at each point 0, 1, . . . , p−1 modulo p and using dense
interpolation over Fp [x ].
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Notice that, over Fp [x ], (x −α)p ≡ x −α mod x p −x , and therefore (x −α)e i ≡ (x −α)k for
any k 6= 0 such that e i ≡ k mod (p−1). The smallest such k is in the range {1, 2, . . . , p}; we now
define this with some more notation. For a ∈ Z and positive integer m , define a rem1 m to
be the unique integer in the range {1, 2, . . . , m } which is congruent to a modulo m . As usual,
a rem m denotes the unique congruent integer in the range {0, 1, . . . , m −1}.

If f is as in (8.2), then by reducing term-by-term we can write

f (p )(x ) = (c0 rem p )+
t
∑

i=1

(c i rem p )(x −αp )e i rem1(p−1), (8.5)

where αp is defined as αrem p . Hence, for some k ≤ t , αp is a k -sparse shift for f (p ). That is,
the polynomial f (p )(x +αp ) over Fp [x ] has at most t non-zero and non-constant terms.

Computing f (p ) from a modular black box for f is straightforward. First, use p black-box
calls to determine f (i )rem p for i = 0, 1, . . . , p − 1. Recalling that κ is the number of field
operations in Fp for each black-box call, the cost of this step is O(pκN(p )) word operations.
Second, we use the well-known divide-and-conquer method to interpolate f (p ) into the dense
representation (see, e.g., Borodin and Munro, 1975, Section 4.5). Since deg f (p ) < p , this step
can be performed in O(p log2 p N(p ))word operations.

Furthermore, for any α ∈ Fp , the dense representation of f (p )(x +α) can be computed in
exactly the same way as the second step above, simply by shifting the indices of the already-
evaluated points by α. This immediately gives a naïve algorithm for computing the sparsest
shift of f (p ): compute f (p )(x + γ) for γ = 0, 1, . . . , p − 1, and return the γ that minimizes the
number of non-zero, non-constant terms. The cost in word operations of this approach is
O(p 2 log2 p N(p )), which for our applications will often be less costly than the more sophisti-
cated approaches of, e.g., Lakshman and Saunders (1996) or (Giesbrecht et al., 2003), precisely
because p will not be very much larger than deg f (p ).

8.2.2 Overview of Approach

We will make repeated use of the following fundamental theorem from Lakshman and Saun-
ders (1996):

Fact 8.1. Let F be an arbitrary field and f ∈ F[x ], and suppose α ∈ F is such that f (x +α) has t
non-zero and non-constant terms. If deg f ≥ 2t +1 then α is the unique sparsest shift of f .

From this we can see that, if α is the unique sparsest shift of f , then αp = αrem p is the
unique sparsest shift of f (p ) provided that deg f (p ) ≥ 2t +1. This observation provides the basis
for our algorithm.

The input to the algorithms will be a modular black box for evaluating a rational polyno-
mial, as described above, and bounds on the maximal size of the unknown polynomial. Note
that such bounds are a necessity in any type of black-box interpolation algorithm, since oth-
erwise we could never be sure that the computed polynomial is really equal to the black-box
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function at every point. Specifically, we require BA , BT , BH , BN ∈N such that

size(α)≤ BA ,

t ≤ BT ,

size(c i )≤ BH , for 0≤ i ≤ t ,

size(n )≤ BN .

By considering the following polynomial:

c (x −α)n +(x −α)n−1+ · · ·+(x −α)n−t+1,

we see that these bounds are independent — that is, none is polynomially-bounded by the
others — and therefore are all necessary.

We are now ready to present the algorithm for computing the sparsest shift α almost in its
entirety. The only part of the algorithm left unspecified is an oracle which, based on the values
of the bounds, produces primes to use. We want primes p such that deg f (p ) ≥ 2t + 1, which
allows us to recover one modular image of the sparsest shift α. But since we do not know the
exact value of t or the degree n of f over Q[x ], we define some prime p to be a good prime
for sparsest shift computation if and only if deg f (p ) ≥min{2BT + 1, n}. For the remainder of
this section, “good prime” means “good prime for sparsest shift computation.” Our oracle
indicates when enough primes have been produced so that at least one of them is guaranteed
to have been a good prime, which is necessary for the procedure to terminate. The details of
how to construct such an oracle will be considered in Section 8.4.

Our algorithm for computing the sparsest shift is presented in Algorithm 8.1.

Theorem 8.2. With inputs as specified, Algorithm 8.1 correctly returns a sparsest shift α of f .

Proof. Let f , BA , BT , BH , BN be the inputs to the algorithm, and suppose t ,α are as specified
in (8.2).

First, consider the degenerate case where n ≤ 2BT , i.e., the bound on the sparsity of the
sparsest shift is at least half the actual degree of f . Then, since each f (p ) can have degree
at most n (regardless of the choice of p ), the condition of Step 6 will never be true. Hence
Steps 10–14 will eventually be executed. The size of coefficients over the standard power basis
is bounded by 2BT BA + BH since deg f ≤ 2BT , and therefore f will be correctly computed on
Step 5. In this case, Fact 8.1 may not apply, i.e., the sparsest shift may not be unique, but the
algorithms from Giesbrecht et al. (2003) will still produce a sparsest shift of f .

Now suppose instead that n ≥ 2BT +1. The oracle eventually produces a good prime p , so
that deg f (p ) ≥ 2BT +1. Since t ≤ BT and f (p ) has at most t non-zero and non-constant terms
in the (αrem p )-shifted power basis, the value computed as αp on Step 8 is exactly αrem p , by
Fact 8.1. The value of P will also be set to p > 1 here, and can only increase. So the condition
of Step 10 is never true. Since the numerator and denominator of α are both bounded above
by 2BA , we can use rational reconstruction to compute α once we have the image modulo P
for P ≥ 2α2. Therefore, when we reach Step 15, we have enough images αp to recover and
return the correct value of α.
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Algorithm 8.1: Computing the sparsest shift

Input: A modular black box for an unknown polynomial f ∈Q[x ], bounds
BA , BT , BH , BN ∈N as described above, and an oracle which produces primes
and indicates when at least one good prime must have been produced

Output: A sparsest shift α of f .
1 P← 1, G ←;
2 while size(P)≤ 2BA +1 do
3 p ← new prime from the oracle
4 Evaluate f (i )rem p for i = 0, 1, . . . , p −1
5 Use dense interpolation to compute f (p )

6 if deg f (p ) ≥ 2BT +1 then
7 Use dense interpolation to compute f (p )(x +γ) for γ= 1, 2, . . . , p −1
8 αp ← the unique sparsest shift of f (p )

9 P← P ·p , G ←G
⋃

{p}

10 else if P = 1 and oracle indicates ≥ 1 good prime has been produced then
11 q ← least prime such that size(q )> 2BT BA + BH (computed directly)
12 Evaluate f (i )remq for i = 0, 1, . . . , 2BT

13 Compute f ∈Q[x ]with deg f ≤ 2BT by dense interpolation in Fq [x ] followed by
rational reconstruction on the coefficients

14 return A sparsest shift α computed by a univariate algorithm from Giesbrecht
et al. (2003) on input f

15 return The unique α= a/b ∈Q such that |a |,b ≤ 2BA and a ≡bαp mod p for each p ∈G ,
using Chinese remaindering and rational reconstruction
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We still need to specify which algorithm to use to compute the sparsest shift of a densely-
represented f ∈Q[x ] on Step 14. To make Algorithm 8.1 completely deterministic, we should
use the univariate symbolic algorithm from Giesbrecht et al. (2003, Section 3.1), although this
will have very high complexity. Using a probabilistic algorithm instead gives the following,
which follows directly from the referenced work.

Theorem 8.3. If the “two projections” algorithm of Giesbrecht et al. (2003, Section 3.3) is used
on Step 14, then Steps 10–14 of Algorithm 8.1 can be performed with

O(B 2
TM(B

4
T BA + B 3

T BH ))

word operations, plus O(κBTM(BT BA + BH ))word operations for the black-box evaluations.

The precise complexity analysis proving that the entire Algorithm 8.1 has cost polynomial
in the bounds given depends heavily on the size and number of primes p that are used, and
so must be postponed until Section 8.5.1, after our discussion on choosing primes.

Example 8.4. Suppose we are given a modular black box for the following unknown polyno-
mial:

f (x ) = x 15−45x 14+945x 13−12285x 12+110565x 11−729729x 10

+3648645x 9−14073345x 8+42220035x 7−98513415x 6+

177324145x 5−241805625x 4+241805475x 3−167403375x 2

+71743725x −14348421,

along with the bounds BA = 4, BT = 2, BH = 4, and BN = 4. Under the simplistic assumption of
single bit-length words, i.e., w = 1, one may easily confirm that f (x ) = (x −3)15−2(x −3)5, and
hence these bounds are actually tight.

Now suppose the oracle produces p = 7 in Step 3. We use the black box to compute each
f (0), f (1), . . . , f (6) in F7, and dense interpolation to compute

f (7)(x ) = 5x 5+2x 4+3x 3+6x 2+x +4.

Since deg f (7) = 5 ≥ 2BT + 1, we move on to Step 8 and compute each f (7)(x + γ) with γ =
1, 2, . . . , 6. Examining these, we see that f (7)(x +3) = 5x 5+x 3 has the fewest non-zero and non-
constant terms, and so setα7 to 3 on Step 8. This means the sparsest shift must be congruent to 3
modulo 7. This provides a single modular image for use in Chinese remaindering and rational
reconstruction on Step 15, after enough successful iterations for different primes p .

8.2.3 Conditions for Success

We have seen that, provided deg f > 2BT , a good prime p is one such that deg f (p ) > 2BT . The
following theorem provides (quite loose) sufficient conditions on p to satisfy this require-
ment.
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Theorem 8.5. Let f ∈ Q[x ] as in (8.2) and BT ∈ N such that t ≤ BT . Then, for some prime p ,
the degree of f (p ) is greater than 2BT whenever the following hold:

• c t 6≡0 mod p ;

• ∀i ∈ {1, 2, . . . , t −1}, e t 6≡ e i mod (p −1);

• ∀i ∈ {1, . . . , 2BT }, e t 6≡ i mod (p −1).

Proof. The first condition guarantees that the last term of f (p )(x ) as in (8.5) does not vanish.
We also know that there is no other term with the same degree from the second condition.
Finally, the third condition tells us that the degree of the last term will be greater than 2BT .
Hence the degree of f (p ) is greater than 2BT .

For purposes of computation it will be convenient to simplify the above conditions to two
non-divisibility requirements, on p and p −1 respectively:

Corollary 8.6. Let f , BT , BH , BN be as in the input to Algorithm 8.1 with deg f > 2BT . Then
there exist C1,C2 ∈N with size(C1)≤ 2BH and size(C2)≤ BN (3BT − 1) such that deg f (p ) > 2BT

whenever p -C1 and (p −1) -C2.

Proof. Write f as in (8.2). We will use the sufficient conditions given in Theorem 8.5. Write
|c t | = a/b for a ,b ∈ N relatively prime. In order for c t rem p to be well-defined and not zero,
neither a nor b can vanish modulo p . This is true whenever p - ab . Set C1 = ab . Since
size(a ), size(b )≤ BH , size(C1) = size(ab )≤ 2BH .

Now write

C2 =
t−1
∏

i=1

(e t − e i ) ·
2BT
∏

i=1

(e t − i ).

We can see that the second and third conditions of Theorem 8.5 are satisfied whenever (p−1) -
C2. Now, since each integer e i is distinct and positive, and e t is the greatest of these, each
(e t − e i ) is a positive integer less than e t . Similarly, since e t = deg f > 2BT , each (e t − i ) in the
second product is also a positive integer less than e t . Therefore, using the fact that t ≤ BT , we
see C2 ≤ e 3BT−1

t . Furthermore, size(e t )≤ BN , so we know that size(C2)≤ BN (3BT −1).

A similar criteria for success is required in (Bläser et al., 2009), and they employ Lin-
nik’s theorem which gives a polynomial-time algorithm, with a high exponent. Linnik’s the-
orem was also employed in (Giesbrecht and Roche, 2007) to yield a much more expensive
polynomial-time algorithm for finding sparse shifts than the one presented here.
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8.3 Interpolation

Once we know the value of the sparsest shift α of f , we can trivially construct a modular black
box for the t -sparse polynomial f (x +α) using the modular black box for f . Therefore, for the
purposes of interpolation, we can assume α = 0, and focus only on interpolating a t -sparse
polynomial f ∈Q[x ] given a modular black box for its evaluation.

The approach we use is very similar to the techniques of the previous chapter, except that
the modular black box differs from a remainder black box in a subtle way, that the coefficients
and the exponents are both reduced (although not modulo the same integer!). This complica-
tion makes our analysis much more involved here. Also, the fact that we must use very small
primes means that the diversification techniques of Chapter 7 will not work.

For convenience, we restate the notation for f and f (p ), given a prime p :

f = c0+ c1x e1 + c2x e2 + · · ·+ c t x et , (8.6)

f (p ) = (c0 rem p )+ (c1 rem p )x e1 rem1(p−1)+ · · ·+(c t rem p )x et rem1(p−1). (8.7)

Again, we assume that we are given upper bounds BH , BT , and BN on maxi size(c i ), t , and
size(deg f ), respectively. We also re-introduce the notation τ( f ), which as in previous sec-
tions is defined to be the number of distinct non-zero, non-constant terms in the univariate
polynomial f .

This algorithm will again use the polynomials f (p ) for primes p , but now rather than a
degree condition, we need f (p ) to have the maximal number of non-constant terms. So we
define a prime p to be a good prime for interpolation if and only if τ( f (p )) = t . Again, the term
“good prime” refers to this kind of prime for the remainder of this section.

Now suppose we have already used modular evaluation and dense interpolation (as in Al-
gorithm 8.1) to recover the polynomials f (p ) for k distinct good primes p1, . . . , pk . We therefore
have k images of each exponent e i modulo (p1− 1), . . . , (pk − 1). Write each of these polyno-
mials as:

f (p i ) = c (i )0 + c (i )1 x e (i )1 + · · ·+ c (i )t x e (i )t . (8.8)

Note that it is not generally the case that e (i )j = e j rem1(p i −1). Because we don’t know how to
associate the exponents in each polynomial f (p i ) with their pre-image in Z, a simple Chinese
remaindering on the exponents will not work. Possible approaches are provided by (Kaltofen,
1988), (Kaltofen et al., 1990) or (Avendaño et al., 2006). However, the most suitable approach
for our purposes is the clever technique of (Garg and Schost, 2009), based on ideas of Grig-
oriev and Karpinski (1987), as we saw in the previous chapter. We interpolate the polynomial

g (z ) = (z − e1)(z − e2) · · · (z − e t ), (8.9)

whose coefficients are symmetric functions in the e i ’s. Given f (p i ), we have all the values of
e (i )j rem1(p i − 1) for j = 1, . . . , t ; we just don’t know the order. But since g is not dependent on
the order, we can compute g mod (p i −1) for i = 1, . . . , k , and then find the roots of g ∈Z[x ] to
determine the exponents e1, . . . , e t . Of course, this is exactly the step that our diversification
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technique avoided in the last chapter, but again this is not possible in this case because the
primes p that we use are too small.

Once we know the exponents, we recover the coefficients from their images modulo each
prime. The correct coefficient in each f (p ) can be identified because the residues of the expo-
nents modulo p − 1 are unique, for each chosen prime p . This approach is made explicit in
the following algorithm.

Algorithm 8.2: Sparse Polynomial Interpolation overQ[x ]
Input: A modular black box for unknown f ∈Q[x ], bounds BH and BN as described

above, and an oracle which produces primes and indicates when at least one
good prime must have been returned

Output: f ∈Q[x ] as in (8.6)
1 Q← 1, P← 1, k ← 1, t ← 0
2 while size(P)≤ 2BH +1 or size(Q)< BN

3 or the oracle does not guarantee a good prime has been produced do
4 pk ← new prime from the oracle
5 Compute f (pk ) by black box calls and dense interpolation
6 if τ( f (pk ))> t then
7 Q← pk −1, P← pk , t ←τ( f (pk )), p1← pk , f (p1)← f (pk ), k ← 2

8 else if τ( f (pk )) = t then
9 Q← lcm(Q , pk −1), P← P ·pk , k ← k +1

10 for i ∈ {1, . . . , k −1} do
11 g (p i )←

∏

1≤j≤t (z − e (i )j ) mod p i −1

12 Construct g = a 0+a 1z +a 2z 2+ · · ·+a t z t ∈Z[x ] such that g ≡ g (p i ) mod p i −1 for
1≤ i < k , by Chinese remaindering

13 Factor g as (z − e1)(z − e2) · · · (z − e t ) to determine e1, . . . , e t ∈Z
14 for 1≤ i ≤ t do
15 for 1≤ j ≤ k do
16 Find the exponent e (j )`j

of f (p j ) such that e (j )`j
≡ e i mod p j −1

17 Reconstruct c i ∈Q by Chinese remaindering from residues c (1)`1
, . . . , c (k )`k

18 Reconstruct c0 ∈Q by Chinese remaindering from residues c (1)0 , . . . , c (k )0

The following theorem follows from the above discussion.

Theorem 8.7. Algorithm 8.2 works correctly as stated.

Again, this algorithm runs in polynomial time in the bounds given, but we postpone the
detailed complexity analysis until Section 8.5.2, after we discuss how to choose primes from
the “oracle”. Some small practical improvements may be gained if we use Algorithm 8.2 to
interpolate f (x+α) after running Algorithm 8.1 to determine the sparsest shift α, since in this
case we will have a few previously-computed polynomials f (p ). However, we do not explicitly
consider this savings in our analysis, as there is not necessarily any asymptotic gain.
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Now we just need to analyze the conditions for primes p to be good. This is quite similar
to the analysis of the sparsest shift algorithm above, so we omit many of the details here.

Theorem 8.8. Let f , BT , BH , BN be as above. There exist C1,C2 ∈N with size(C1)≤ 2BH BT and
size(C2)≤ 1

2
BN BT (BT −1) such that τ( f (p )) is maximal whenever p -C1 and (p −1) -C2.

Proof. Let f be as in (8.6), write |c i |= a i/b i in lowest terms for i = 1, . . . , t , and define

C1 =
t
∏

i=1

a i b i , C2 =
t
∏

i=1

t
∏

j=i+1

(e j − e i ).

Now suppose p is a prime such that p - C1 and (p − 1) - C2. From the first condition, we
see that each c i mod p is well-defined and nonzero, and so none of the terms of f (p ) vanish.
Furthermore, from the second condition, e i 6≡ ek mod p − 1 for all i 6= j , so that none of the
terms of f (p ) collide. Therefore f (p ) contains exactly t non-constant terms. The bounds on C1

and C2 follow from the facts that each size(a i ), size(b i )≤ BH and each difference of exponents
(e j − e i ) has size at most BN .

8.4 Generating primes

We now turn our attention to the problem of generating primes for the sparsest shift and
interpolation algorithms. We first present our algorithm for generating suitable primes, and
we make use of powerful results from analytic number theory to estimate its running time.
However, experience suggests that the true complexity of our algorithm is even better than we
can prove. We briefly examine some related mathematical problems and indications towards
the true cost of our method.

8.4.1 Prime generation algorithm

Recall that the algorithms above for sparsest shift computation and interpolation assumed we
had an “oracle” for generating good primes, and indicating when at least one good prime must
have been produced. We now present an explicit and analyzed algorithm for this problem.

The definition of a “good prime” is not the same for the algorithms in Section 8.2 and Sec-
tion 8.3. However, Corollary 8.6 and Theorem 8.8 provide a unified presentation of sufficient
conditions for primes being “good”. Here we call a prime which satisfies those sufficient con-
ditions a useful prime. So every useful prime is good (with the bounds appropriately specified
for the relevant algorithm), but some good primes might not be useful.

We first describe a set P of primes such that the number and density of useful primes
within the set is sufficiently high. We will assume that there exist numbers C1,C2, and useful
primes p are those such that p -C1 and (p−1)-C2. The numbers C1 and C2 will be unknown, but
we will assume we are given bounds β1, β2 such that log2 C1 ≤ β1 and log2 C2 ≤ β2. Suppose
we want to find ` useful primes. We construct P explicitly, of a size guaranteed to contain
enough useful primes, then enumerate it.
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The following fact is immediate from (Mikawa, 2001), though it has been somewhat sim-
plified here, and the use of (unknown) constants is made more explicit. This will be important
in our computational methods.

For q ∈Z, let S(q ) be the smallest prime p such that q | (p −1).

Fact 8.9 (Mikawa 2001). There exists a constant µ > 0, such that for all n > µ, and for all
integers q ∈ {n , . . . , 2n}with fewer than µn/ log2 n exceptions, we have S(q )<q 1.89.

Our algorithms for generating useful primes require explicit knowledge of the value of the
constant µ in order to run correctly. So we will assume that we know µ in what follows. To get
around the fact that we do not, we simply start by assuming that µ= 1, and run any algorithm
depending upon it. If the algorithm fails we simply double our estimate for µ and repeat.
At most a constant number of doublings is required. We make no claim this is particularly
practical.

For convenience we define

Υ(x ) =
3x

5 logx
−
µx

log2 x
.

Theorem 8.10. Let log2 C1 ≤ β1, log2 C2 ≤ β2 and ` be as above. Let n be the smallest integer
such that n > 21, n >µ and Υ(n )>β1+β2+ `. Define

Q = {q prime : n ≤q < 2n and S(q )<q 1.89}, P = {S(q ) : q ∈Q}.

Then the number of primes inP is at least β1+β2+ `, and the number of useful primes inP ,
such that p -C1 and (p − 1) -C2, is at least `. For all p ∈ P we have p ∈ O((β1 + β2 + `)1.89 ·
log1.89(β1+β2+ `)).

Proof. By (Rosser and Schoenfeld, 1962), the number of primes between n and 2n is at least
3n/(5 log n ) for n ≥ 21. Applying Fact 8.9, we see #Q ≥ 3n/(5 log n )− µn/ log2 n when n ≥
max{µ, 21}. Now suppose S(q1) =S(q2) for q1,q2 ∈Q. If q1 <q2, then S(q1)>q 2

1 , a contradiction
with the definition ofQ. So we must have q1 =q2, and hence

#P = #Q ≥Υ(n )>β1+β2+ `.

We know that there are at most log2 C1 ≤ β2 primes p ∈P such that p |C1. We also know that
there are at most log2 C2 ≤ β2 primes q ∈Q such that q |C2, and hence at most log2 C2 primes
p ∈P such that p =S(q ) and q | (p −1) |C1. Thus, by constructionP contains at most β1+β2

primes that are not useful out of β1+β2+ ` total primes.

To analyze the size of the primes in P , we note that to make Υ(n ) > β1+β2+ `, we have
n ∈Θ((β1+β2+`) · log(β1+β2+`)) and each q ∈Q satisfies q ∈O(n ). Elements ofP will be of
magnitude at most (2n )1.89 and hence p ∈O((β1+β2+ `)1.89 log1.89(β1+β2+ `)).

Given β1, β2 and ` as above (where log2 C1 ≤ β1 and log2 C2 ≤ β2 for unknown C1 and C2),
we generate the primes inP as follows.

Start by assuming that µ= 1, and compute n as the smallest integer such thatΥ(n )>β1+
β2+ `, n ≥ µ and n ≥ 21. List all primes between n and (2n )1.89 using a Sieve of Eratosthenes,
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and store these primes in a data structure that allows constant-time membership queries. For
instance, we could simply use a length-(2n )1.89 bit array where the i th bit is set iff i is prime.
In practice, it would be more efficient to use a hash table for this purpose.

For each prime q between n and 2n , determine S(q ), if it is less than q 1.89, by simply check-
ing if kq + 1 is prime for k = 1, 2, . . . ,

�

q 0.89
�

. If we find a prime p = S(q ) < q 1.89, add p to P .
This is repeated until P contains β1 + β2 + ` primes. If we are unable to find this number
of primes, we have underestimated µ (since Theorem 8.10 guarantees their existence), so we
double µ and restart the process. Obviously in practice we would not redo primality tests
already performed for smaller µ, so really no work need be wasted.

Theorem 8.11. For log2 C1 ≤ β1, log2 C2 ≤ β2, `, and n as in Theorem 8.10, we can generate
β1+β2+ ` elements ofP with

O((β1+β2+ `)1.89 · log1.89(β1+β2+ `) · logloglog(β1+β2+ `))

word operations. At least ` of the primes inP will be useful.

Proof. The method and correctness follows from the above discussion. The Sieve of Eratos-
thenes can be run with O(n 1.89 logloglog n ) bit operations (see Knuth, 1981, §4.5.4), including
the construction of the bit-array as described above. Each primality test of kq + 1 then takes
constant time, and there are at most n 1.89 such tests. Since

n ∈O((β1+β2+ `) · log(β1+β2+ `)),

the stated complexity follows.

8.4.2 Using smaller primes

The analysis of our methods will be significantly improved when more is discovered about the
behavior of the least prime congruent to one modulo a given prime, which we have denoted
S(q ). This is a special case of the more general question of the least prime in an arbitrary
arithmetic progression, a well-studied problem in the mathematical literature. Recall from
Section 1.4 that Linnik’s theorem guarantees us that S(q )� qC for some constant C . A series
of results has sought explicit bounds for C , with the most recent progress by Xylouris (2009)
giving C ≤ 5.2.

Assuming the extended Riemann hypothesis (ERH), this can be reduced unconditionally
to S(q )� q 2 ln2 q , as reported by Bach (1990) and Heath-Brown (1992). The result of Mikawa
(2001) that we employed above is even stronger, and does not require the ERH. However, recall
that Mikawa’s bound of S(q )� q 1.89 is not shown to hold for all q , and this is why we had to
handle exceptions.

What is the true asymptotic behaviour of S(q )? No one knows for certain, but it seems that
the answer is S(q ) ∼ q ln2 q . Granville and Pomerance (1990) conjecture this as an asymp-
totic lower bound for S(q ), and earlier Heath-Brown (1978) conjectured a upper bound of the
same form. Today this is known as Wagstaff’s conjecture, after the more general statement
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by Wagstaff (1979), which was also supported by an extensive (at that time) computational
search, confirming the conjecture for q < 106. He also gave a heuristic argument that this
should be the true asymptotic growth rate of the least prime in arithmetic progressions.

We conducted our own computational search to investigate the size of S(q ) and have
found that S(q ) < 2q ln2 q for all primes q such that 2q ln2 q < 264 — that is, all q for which
S(q ) fits in a 64-bit machine word. As a point of reference, this limit is approximately q < 1016.
In fact, this search was the original motivation for some of the tricks in modular arithmetic
discussed in Chapter 2. Our computation also used the result of Jaeschke (1993) which shows
that only 9 Miller-Rabin trials are necessary to deterministically check primality for integers
of this size.

The results of our computational search make a strong statement about the true complex-
ity of our algorithms. On machines with at most 64-bit words (which is to say, nearly any
modern computer), our algorithms cannot possibly use primes p larger than 264, since in this
case the dense polynomial f (p ) would not fit into addressable memory. (Recall the lengthy
discussion of word-size in the IMM model from Chapter 1.) This means that, at least on mod-
ern hardware, the true cost of our algorithms will be given by assuming S(q ) ∈O(q log2 q ). In
any case, the actual cost of the algorithms discussed — on any machine — will be a reflection
of the true behavior of S(q ), even before it is completely understood by us.

Even more improvements might be possible if this rather complicated construction is
abandoned altogether, as useful primes would naturally seem to be relatively plentiful. In
particular, one would expect that if we randomly choose primes p directly from a set which
has, say, 4(β1+β2+ `) primes, we might expect that the probability that p |C1 or (p −1) |C2 to
less than, say, 1/4. Proving this directly appears to be difficult. Perhaps most germane results
to this are lower bounds on the Carmichael Lambda function (which for the product of dis-
tinct primes p1, . . . , pm is the LCM of p1−1, . . . , pm −1), which are too weak for our purposes.
See (Erdös, Pomerance, and Schmutz, 1991).

8.5 Complexity analysis

We are now ready to give a formal complexity analysis for the algorithms presented in Sec-
tion 8.2 and Section 8.3. For all algorithms, the complexity is polynomial in the four bounds
BA , BT , BH , and BN defined in Section 8.2.2, as well as the word-size w in the IMM model.
Since these are each bounded above by size( f ), our algorithms will have polynomial com-
plexity in the size of the output if these bounds are sufficiently tight.

It may be surprising to see the word-size w appear in the complexity, so we briefly give
an intuitive explanation for this phenomenon. Recall that the bounds BA , BH , and BN above
are bounds on the number of words used to store the relevant values in the output. And
our algorithm analysis of course will count word operations. Because of this, doing integer
computations on very small integers much smaller than 2w is wasteful in some sense. That is,
in order to get the best complexity in word operations, we should always make sure to get the
most computational power out of those word operations that we can.
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Now observe that our algorithms will definitely be wasteful in this sense, because of the
primes p that drive the cost of the whole algorithm. We are doing many computations in the
field Fp , and so to maximize the value of word operations, we would normally want every
p to be close to the maximum value that will fit in a machine word, 2w . However, the cost
of our algorithm depends not only on the size of p , but on the value of p as well, since the
algorithm repeatedly generates dense polynomials with degrees bounded by p . So the p s
must be chosen as small as possible to avoid making the whole algorithm intractable. This
inevitably means that computations modulo p will be wasteful, and the parameter w that
appears in the complexity measures indicates the degree of this wastefulness.

As a comparative illustration, suppose we were given an instance of the long integer mul-
tiplication problem, encoded in words, but chose to operate only on bits. Then the size-n
input would have bit-length w n , and our cost (in word operations) would be proportional to
the latter value, reflecting the fact that every word operation was wasteful by only computing
with single bits. A similar phenomenon is happening here. Observe, however, that as w must
be bounded by the logarithm of the input size, the effect of factors of w in the complexity will
not be very significant.

8.5.1 Complexity of Sparsest Shift Computation

Algorithm 8.1 gives our algorithm to compute the sparsest shift α of an unknown polynomial
f ∈Q[x ] given bounds BA , BT , BH , and BN and an oracle for choosing primes. The details of
this oracle are given in Section 8.4.

To choose primes, we set `= 2BA w +1, and β1 = 2BH w and β2 = BN (3BT −1)w (according
to Corollary 8.6 and the definitions of β1,b e t a 2,` in the previous section). i For the sake of
notational brevity, define BΣ = (BA + BH + BN BT )w so that β1+β2+ `∈O(BΣ).

Theorem 8.12. Suppose f ∈Q[x ] is an unknown polynomial given by a black box, with bounds
BA ,BT ,BH , and BN given as above. If deg f > 2BT , then the sparsest shift α ∈ Q of f can be
computed deterministically using

O
�

w BA B 3.78
Σ · log5.78 BΣ

�

word operations, plus O(κB 2.89
Σ log1.89 BΣ)word operations for the black-box evaluations.

Proof. Algorithm 8.1 will always satisfy the conditions of Step 2 and terminate after 2BA w +1
good primes have been produced by the oracle.

Using the oracle to choose primes, and because β1+β2+ `∈O(BΣ),

(B 1.89
Σ · log1.89 BΣ · logloglog BΣ)

word operations are used to compute all the primes on Step 3, by Theorem 8.11. This cost
does not dominate the complexity. Also, by Theorem 8.10, each chosen p is bounded by
O(B 1.89

Σ log1.89 BΣ).
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All black-box evaluations are performed on Step 4. There are p evaluations at each iter-
ation, and O(BΣ) iterations, and observe that p < BO(1)

Σ , and we can safely assume this latter
value is word-sized, since BΣ is polynomially-related to the instance size. Therefore every op-
eration in Fp takes O(1) word operations, a total cost of O(κBΣp ) word operations. Using the
fact that p ∈O(B 1.89

Σ log1.89 BΣ) gives the stated result.

Steps 10–14 are never executed when deg f > 2BT . Step 15 is only executed once and never
dominates the complexity.

Dense polynomial interpolation over Fp is performed at most O(BΣ) times on Step 5 and
O(p ) times at each of O(w BA) iterations through Step 7. Since p � BΣ, the latter step domi-
nates. Using asymptotically fast methods, each interpolation of f (p )(x +γ) uses O(M(p ) log p )
field operations in Fp , each of which again uses just a constant number of word operations.
Also, from Chapter 1, recall that we can assume M(p ) ∈ O(p log p ) by encoding the polyno-
mials in Fp [x ] into long integers. This gives a total cost over all iterations of O(w BA p 2 log2 p )
(a slight abuse of notation here since the value of p varies). Again, using the fact that p ∈
O(B 1.89

Σ log1.89 BΣ) gives the stated result.

To simplify the discussion somewhat, consider the case that we have only a single bound
on the size of the output polynomial, say B f ≥ size( f ). By setting each of BT , BH , and BN equal
to B f , and because w ∈O(log size( f )), we obtain the following comprehensive result:

Corollary 8.13. If an unknown polynomial f ∈Q[x ] has shifted-lacunary size bounded by B f ,

then the sparsest shift α of f can be computed using O
�

B 8.56
f log10.56 B f

�

word operations, plus

O
�

κB 5.78
f log4.78 B f

�

word operations for the black-box evaluations.

Proof. The stated complexities follow directly from Theorem 8.12 above, using the fact that
BΣ ∈O(w B 2

f ). Using the single bound B f , we see that these costs always dominate the cost of
Steps 10–14 given in Theorem 8.3, and so we have the stated general result.

In fact, if we have no bounds at all a priori, we could start by setting B f to some small value
(perhaps dependent on the size of the black box or κ), running Algorithm 8.1, then doubling
B f and running the algorithm again, and so forth until the same polynomial f is computed
in successive iterations. This can then be tested on random evaluations. Such an approach
yields an output-sensitive polynomial-time algorithm which should be correct on most input,
though it could certainly be fooled into early termination.

Somewhat surprisingly, our algorithm is competitive even with the best-known sparsest
shift algorithms which require a (dense) f ∈ Q[x ] to be given explicitly as input. By care-
fully constructing the modular black box from a given f ∈ Q[x ], and being sure to set BT <
(deg f )/2, we can derive from Algorithm 8.1 a deterministic sparsest-shift algorithm with bit
complexity close to the fastest algorithms in Giesbrecht et al. (2003); the dependence on de-
gree n and sparsity t will be somewhat less, but the dependence on the size of the coefficients
size( f ) is greater.

To understand the limits of our computational techniques (as opposed to our current un-
derstanding of the least prime in arithmetic progressions) we consider the cost of our algo-
rithms under the assumption that S(q ) ∈O(q log2 q ), as discussed in the previous section. In
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this case the sparsest shift α of an unknown polynomial f ∈Q[x ], whose size in the sparsest-
shifted representation is bounded by B f , can be computed using O (̃B 5

f ) word operations. As

noted in the previous section, we have verified computationally that S(q ) ≤ 2q ln2 q for all
64-bit primes p = S(q ). This would suggest the above complexity for all sparsest-shift inter-
polation problems that we would expect to encounter.

8.5.2 Complexity of Interpolation

The complexity analysis of the sparse interpolation algorithm given in Algorithm 8.2 will be
quite similar to that of the sparsest shift algorithm above. Here, we need

`=w ·max{2BH +1, BN }

good primes to satisfy the conditions of Step 3, and from Theorem 8.8, we set β1 = 2w BH BT

and β2 = 1
2

w BN BT (BT −1). Hence for this subsection we set

BS =w BT (BH + BN BT ),

so that β1+β2+ `∈O(BS).

Theorem 8.14. Suppose f ∈ Q[x ] is an unknown polynomial given by a modular black box,
with bounds BT , BH , BN , and BS given as above. The sparse representation of f as in (8.2) can
be computed with O(B 2.89

S log3.89 BS) word operations, plus O(κB 2.89
S log1.89 BS) word operations

for the black-box evaluations.

Proof. As in the sparsest-shift computation, the cost of choosing primes in Step 4 is

O(B 1.89
S log1.89 BS · logloglog BS)

word operations, and each chosen prime pk satisfies pk ∈O(B 1.89
S log1.89 BS).

The cost of Step 5 is O(p log2 p ) word operations at each of the O(BS) iterations, for a total
cost of O(p BS log2 p ) word operations. The black-box evaluations all occur on this step, and
their total cost is O(κp BS)word operations, which gives the stated cost.

We can compute each g (p i ) in Step 11 using O(M(t ) log t ) ring operations modulo p i − 1.
Note that k is bounded by O(`), which in turn is O(w · (BH + BN )). This gives the total cost in
word operations for all iterations of this step as O(w · (BH + BN )BT log2 BT ).

Step 12 performs t Chinese Remainderings each of k modular images, and the size of each
resulting integer is bounded by BN , for a cost of O(BT BN log2 BN )word operations.

To factor g in Step 13, we can use Algorithm 14.17 of von zur Gathen and Gerhard (2003),
which has a total cost in word operations of

O
�

B 3
T B 2

N log2 BT ·
�

log BT + log BN
�2
�

because the degree of g is t , g has t distinct roots, and each coefficient has size bounded by
O(BT BN ).
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In Step 16, we must first compute the modular image of e i mod p j − 1 and then look
through all t exponents of f (p j ) to find a match. This is repeated t k times. We can use fast
modular reduction to compute all the images of each e i using O(BN log2 BN ) bit operations,
so the total cost is O(w B 2

T (BH + BN )+ BT BN log2 BN )word operations.

Finally, we perform Chinese remaindering and rational reconstruction of t + 1 rational
numbers, each of whose size is bounded by BH , for a total cost of O(BT BH log2 BH ) word op-
erations.

Therefore we see that the complexity is always dominated by the dense interpolation in
Step 5.

Once again, by having only a single bound on the size of the output, the complexity mea-
sures are greatly simplified.

Corollary 8.15. If the lacunary representation size of an unknown polynomial f ∈ Q[x ] is
bounded by B f , then that representation can be interpolated from a modular black box using

O
�

B 8.67
f log6.78 B f

�

word operations, plus O
�

κB 8.67
f log4.78 B f

�

word operations for the black box

evaluations.

Similar improvements to those discussed at the end of Section 8.5.1 can be obtained under
stronger (but unproven) number theoretic assumptions.

8.6 Conclusions and Future Work

Here we provide the first algorithm to interpolate an unknown univariate rational polynomial
into the sparsest shifted power basis in time polynomial in the size of the output. The main
tool we have introduced is mapping down modulo small primes where the sparse shift is also
mapped nicely. This technique could be useful for other problems involving sparse polyno-
mials as well, although it is not clear how it would apply in finite domains where there is no
notion of “size”.

The complexity of our algorithm is now fairly good compared to previous approaches (that
required f to be given explicitly as input). However, as mentioned, improved results bounding
the size of primes in arithmetic progressions could improve the provable complexity of our
algorithm a bit further. A different approach suggested by the result of Baker and Harman
(1996) might also be useful to us in choosing smaller primes. Rather than start with primes
q and find larger primes p congruent to 1 modulo q , as we have done, they start with the
larger prime p and give lower bounds on the greatest prime divisor of p −1. It is possible that
this type of result could improve our complexity, but we have not yet fully investigated the
possibility.

There are many further avenues to consider, the first of which might be multivariate poly-
nomials with a shift in each variable (see, e.g., Grigoriev and Lakshman (2000)). It would be
easy to adapt our algorithms to this case provided that the degree in each variable is more
than twice the sparsity (this is called a “very sparse” shift in Giesbrecht et al. (2003)). In such
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cases, we could just choose random fixed values for all variables but one, then perform the
univariate sparsest shift algorithm to find the sparsest shift of that variable, and proceed to all
other variables.

Finding multivariate shifts in the general case seems more difficult. The precise difficult
case here is actually similar to the “Zippel sparse” complexity model, when the sparsity of the
sparsest shift is proportional to the partial degrees in each variable. Since the shifts may not
even be unique in such situations, it seems that a new approach will be necessary for this
problem.

Even more challenging would be allowing multiple shifts, for one or more variables — for
example, finding sparse g 1, . . . , g k ∈Q[x ] and shiftsα1, . . . ,αk ∈Q such that the unknown poly-
nomial f (x ) equals g 1(x −α1)+ · · ·+ g k (x −αk ). The most general problem of this type, which
we are very far from solving, might be to compute a minimal-length formula or minimal-size
algebraic circuit for an unknown function. We hope that the small step taken here might pro-
vide some insight towards this ultimate goal.
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in progress, Vol. 1 (Zakopane-Kościelisko, 1997), pages 267–276. de Gruyter, Berlin, 1999.
Referenced on pages 7, 24, 34, 95 and 116.

Xin Li, Marc Moreno Maza, Raqeeb Rasheed, and Éric Schost. The modpn library: Bring-
ing fast polynomial arithmetic into MAPLE. ACM Commun. Comput. Algebra, 42:172–174,
February 2009a. ISSN 1932-2240.
doi: 10.1145/1504347.1504374. Referenced on page 23.

Xin Li, Marc Moreno Maza, and Éric Schost. Fast arithmetic for triangular sets: From theory
to practice. Journal of Symbolic Computation, 44(7):891–907, 2009b. ISSN 0747-7171.
doi: 10.1016/j.jsc.2008.04.019. International Symposium on Symbolic and Algebraic
Computation. Referenced on pages 30, 40 and 51.

Rudolf Lidl and Harald Niederreiter. Finite fields, volume 20 of Encyclopedia of Mathematics
and its Applications. Addison-Wesley Publishing Company Advanced Book Program, Read-
ing, MA, 1983. ISBN 0-201-13519-1. Referenced on pages 97 and 98.

U. V. Linnik. On the least prime in an arithmetic progression. II. The Deuring-Heilbronn phe-
nomenon. Rec. Math. [Mat. Sbornik]N.S., 15(57):347–368, 1944. Referenced on page 18.

Roman Maeder. Storage allocation for the Karatsuba integer multiplication algorithm. In Al-
fonso Miola, editor, Design and Implementation of Symbolic Computation Systems, volume
722 of Lecture Notes in Computer Science, pages 59–65. Springer Berlin /Heidelberg, 1993.
doi: 10.1007/BFb0013168. Referenced on page 55.

Yishay Mansour. Randomized interpolation and approximation of sparse polynomials. SIAM
Journal on Computing, 24(2):357–368, 1995.
doi: 10.1137/S0097539792239291. Referenced on page 122.

John D. Markel. FFT pruning. Audio and Electroacoustics, IEEE Transactions on, 19(4):305–
311, December 1971. ISSN 0018-9278.
doi: 10.1109/TAU.1971.1162205. Referenced on page 40.

M. Mignotte. An inequality about factors of polynomials. Math. Comp., 28:1153–1157, 1974.
ISSN 0025-5718. Referenced on page 101.

Hiroshi Mikawa. On primes in arithmetic progressions. Tsukuba Journal of Mathematics, 25
(1):121–153, June 2001.
URL http://hdl.handle.net/2241/100471. Referenced on pages 149 and 150.

Michael Monagan. In-place arithmetic for polynomials over z n . In John Fitch, editor, De-
sign and Implementation of Symbolic Computation Systems, volume 721 of Lecture Notes in
Computer Science, pages 22–34. Springer Berlin /Heidelberg, 1993.
doi: 10.1007/3-540-57272-4_21. Referenced on page 28.

Michael Monagan and Roman Pearce. Polynomial division using dynamic arrays, heaps, and
packed exponent vectors. In Victor Ganzha, Ernst Mayr, and Evgenii Vorozhtsov, editors,

168

http://dx.doi.org/10.1145/1504347.1504374
http://dx.doi.org/10.1016/j.jsc.2008.04.019
http://dx.doi.org/10.1007/BFb0013168
http://dx.doi.org/10.1137/S0097539792239291
http://dx.doi.org/10.1109/TAU.1971.1162205
http://hdl.handle.net/2241/100471
http://dx.doi.org/10.1007/3-540-57272-4_21


Computer Algebra in Scientific Computing, volume 4770 of Lecture Notes in Computer Sci-
ence, pages 295–315. Springer Berlin /Heidelberg, 2007.
doi: 10.1007/978-3-540-75187-8_23. Referenced on pages 31, 70 and 72.

Michael Monagan and Roman Pearce. Parallel sparse polynomial multiplication using heaps.
In Proceedings of the 2009 international symposium on Symbolic and algebraic computa-
tion, ISSAC ’09, pages 263–270, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-609-0.
doi: 10.1145/1576702.1576739. Referenced on pages 23 and 31.

Michael Monagan and Roman Pearce. Sparse polynomial division using a heap. Journal of
Symbolic Computation, In Press, Corrected Proof, 2010a. ISSN 0747-7171.
doi: 10.1016/j.jsc.2010.08.014. Referenced on page 23.

Michael Monagan and Roman Pearce. Parallel sparse polynomial division using heaps. In Pro-
ceedings of the 4th International Workshop on Parallel and Symbolic Computation, PASCO
’10, pages 105–111, New York, NY, USA, 2010b. ACM. ISBN 978-1-4503-0067-4.
doi: 10.1145/1837210.1837227. Referenced on page 23.

Peter L. Montgomery. Modular multiplication without trial division. Math. Comp., 44(170):
519–521, 1985.
doi: 10.2307/2007970. Referenced on page 29.

PARI/GP, version 2.3.5. The PARI Group, Bordeaux, February 2010.
URL http://pari.math.u-bordeaux.fr/. Referenced on page 22.

Philippe Pébay, J. Maurice Rojas, and David C. Thompson. Optimizing n-variate (n + k )-
nomials for small k . Theoretical Computer Science, In Press, Corrected Proof, 2010. ISSN
0304-3975.
doi: 10.1016/j.tcs.2010.11.053. Referenced on page 8.

Ola Petersson and Alistair Moffat. A framework for adaptive sorting. Discrete Applied Mathe-
matics, 59(2):153–179, 1995. ISSN 0166-218X.
doi: 10.1016/0166-218X(93)E0160-Z. Referenced on page 70.

David A. Plaisted. New NP-hard and NP-complete polynomial and integer divisibility prob-
lems. Theoret. Comput. Sci., 31(1-2):125–138, 1984. ISSN 0304-3975.
doi: 10.1016/0304-3975(84)90130-0. Referenced on page 94.

David Alan Plaisted. Sparse complex polynomials and polynomial reducibility. J. Comput.
System Sci., 14(2):210–221, 1977. ISSN 0022-0000. Referenced on page 94.

J. M. Pollard. Monte Carlo methods for index computation (mod p ). Math. Comp., 32(143):
918–924, 1978. ISSN 0025-5718.
doi: 10.1090/S0025-5718-1978-0491431-9. Referenced on page 119.

J. M. Pollard. Kangaroos, monopoly and discrete logarithms. Journal of Cryptology, 13:437–
447, 2000. ISSN 0933-2790.
doi: 10.1007/s001450010010. Referenced on page 119.

169

http://dx.doi.org/10.1007/978-3-540-75187-8_23
http://dx.doi.org/10.1145/1576702.1576739
http://dx.doi.org/10.1016/j.jsc.2010.08.014
http://dx.doi.org/10.1145/1837210.1837227
http://dx.doi.org/10.2307/2007970
http://pari.math.u-bordeaux.fr/
http://dx.doi.org/10.1016/j.tcs.2010.11.053
http://dx.doi.org/10.1016/0166-218X(93)E0160-Z
http://dx.doi.org/10.1016/0304-3975(84)90130-0
http://dx.doi.org/10.1090/S0025-5718-1978-0491431-9
http://dx.doi.org/10.1007/s001450010010


Andrew Quick. Some GCD and divisibility problems for sparse polynomials. Master’s thesis,
University of Toronto, 1986. Referenced on page 94.

Daniel S. Roche. Adaptive polynomial multiplication. In Proc. Milestones in Computer Algebra
(MICA), pages 65–72, 2008. Referenced on page 69.

Daniel S. Roche. Space- and time-efficient polynomial multiplication. In ISSAC ’09: Proceed-
ings of the 2009 international symposium on Symbolic and algebraic computation, pages
295–302, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-609-0.
doi: 10.1145/1576702.1576743. Referenced on page 53.

Daniel S. Roche. Chunky and equal-spaced polynomial multiplication. Journal of Symbolic
Computation, In Press, Accepted Manuscript:–, 2010. ISSN 0747-7171.
doi: 10.1016/j.jsc.2010.08.013. Referenced on page 69.

J. Barkley Rosser and Lowell Schoenfeld. Approximate formulas for some functions of prime
numbers. Ill. J. Math., 6:64–94, 1962.
URL http://projecteuclid.org/euclid.ijm/1255631807. Referenced on pages
101, 110, 123 and 149.

John Savage and Sowmitri Swamy. Space-time tradeoffs for oblivious integer multiplication.
In Hermann Maurer, editor, Automata, Languages and Programming, volume 71 of Lecture
Notes in Computer Science, pages 498–504. Springer Berlin /Heidelberg, 1979.
doi: 10.1007/3-540-09510-1_40. Referenced on page 56.

Nitin Saxena. Progress on polynomial identity testing. Bull. EATCS, 99:49–79, 2009. Refer-
enced on pages 5 and 118.

A. Schinzel. On the number of terms of a power of a polynomial. Acta Arith., 49(1):55–70,
1987. ISSN 0065-1036. Referenced on pages 103 and 106.

A. Schönhage. Storage modification machines. SIAM Journal on Computing, 9(3):490–508,
1980.
doi: 10.1137/0209036. Referenced on pages 10, 17 and 20.

A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing, 7:281–292,
1971. ISSN 0010-485X.
doi: 10.1007/BF02242355. Referenced on pages 7, 17, 56 and 70.

Arnold Schönhage. Schnelle Multiplikation von Polynomen über Körpern der Charakteristik
2. Acta Informatica, 7:395–398, 1977. ISSN 0001-5903.
doi: 10.1007/BF00289470. Referenced on pages 56 and 70.

Arnold Schönhage, Andreas F. W. Grotefeld, and Ekkehart Vetter. Fast algorithms. Bibli-
ographisches Institut, Mannheim, 1994. ISBN 3-411-16891-9. A multitape Turing machine
implementation. Referenced on page 10.

170

http://dx.doi.org/10.1145/1576702.1576743
http://dx.doi.org/10.1016/j.jsc.2010.08.013
http://projecteuclid.org/euclid.ijm/1255631807
http://dx.doi.org/10.1007/3-540-09510-1_40
http://dx.doi.org/10.1137/0209036
http://dx.doi.org/10.1007/BF02242355
http://dx.doi.org/10.1007/BF00289470


J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM,
27:701–717, October 1980. ISSN 0004-5411.
doi: 10.1145/322217.322225. Referenced on pages 106 and 118.

Victor Shoup. Fast construction of irreducible polynomials over finite fields. Journal of Sym-
bolic Computation, 17(5):371–391, 1994. ISSN 0747-7171.
doi: 10.1006/jsco.1994.1025. Referenced on pages 99 and 100.

Victor Shoup. NTL: A Library for doing Number Theory. Online, August 2009.
URL http://www.shop.net/ntl/. Version 5.5.2. Referenced on pages 22, 66, 115 and
133.

Igor E. Shparlinski. Computing Jacobi symbols modulo sparse integers and polynomials and
some applications. Journal of Algorithms, 36(2):241–252, 2000. ISSN 0196-6774.
doi: 10.1006/jagm.2000.1091. Referenced on page 95.

Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open
questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010.
Referenced on page 118.

A. J. Sommese and C. W. Wampler. Numerical solution of polynomial systems arising in engi-
neering and science. World Scientific, Singapore, 2005. Referenced on page 118.

Andrew J. Sommese, Jan Verschelde, and Charles W. Wampler. Numerical decomposition
of the solution sets of polynomial systems into irreducible components. SIAM Journal on
Numerical Analysis, 38(6):2022–2046, 2001.
doi: 10.1137/S0036142900372549. Referenced on page 118.

Andrew J. Sommese, Jan Verschelde, and Charles W. Wampler. Numerical factorization of
multivariate complex polynomials. Theoretical Computer Science, 315(2-3):651–669, 2004.
ISSN 0304-3975.
doi: 10.1016/j.tcs.2004.01.011. Referenced on page 118.

Henrik V. Sorensen and C. Sidney Burrus. Efficient computation of the DFT with only a subset
of input or output points. Signal Processing, IEEE Transactions on, 41(3):1184–1200, March
1993. ISSN 1053-587X.
doi: 10.1109/78.205723. Referenced on page 40.

Hans J. Stetter. Numerical Polynomial Algebra. Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA, USA, 2004. ISBN 0898715571. Referenced on page 118.

David R. Stoutemyer. Which polynomial representation is best? Surprises abound! In Proc.
1984 Macsyma users’ conference, pages 221–243, Schenectady, New York, 1984. Referenced
on page 6.

Emmanuel Thomé. Karatsuba multiplication with temporary space of size ≤ n . Online,
September 2002.
URL http://www.loria.fr/~thome/publis/. Referenced on page 55.

171

http://dx.doi.org/10.1145/322217.322225
http://dx.doi.org/10.1006/jsco.1994.1025
http://www.shop.net/ntl/
http://dx.doi.org/10.1006/jagm.2000.1091
http://dx.doi.org/10.1137/S0036142900372549
http://dx.doi.org/10.1016/j.tcs.2004.01.011
http://dx.doi.org/10.1109/78.205723
http://www.loria.fr/~thome/publis/


A. L. Toom. The complexity of a scheme of functional elements simulating the multiplication
of integers. Doklady Akademii Nauk SSSR, 150:496–498, 1963. ISSN 0002-3264. Referenced
on pages 17, 68 and 70.

A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proc. London Math. Soc., s2-42(1):230–265, 1937.
doi: 10.1112/plms/s2-42.1.230. Referenced on page 10.

Jr. Wagstaff, Samuel S. Greatest of the least primes in arithmetic progressions having a given
modulus. Math. Comp., 33:1073–1080, 1979.
doi: 10.1090/S0025-5718-1979-0528061-7. Referenced on page 151.

André Weil. On some exponential sums. Proc. Nat. Acad. Sci. U. S. A., 34:204–207, 1948. ISSN
0027-8424. Referenced on page 98.

Triantafyllos Xylouris. On Linnik’s constant. Technical report, arXiv:0906.2749v1 [math.NT],
2009.
URL http://arxiv.org/abs/0906.2749. Referenced on pages 18 and 150.

Thomas Yan. The geobucket data structure for polynomials. Journal of Symbolic Computa-
tion, 25(3):285–293, 1998. ISSN 0747-7171.
doi: 10.1006/jsco.1997.0176. Referenced on pages 31 and 70.

David Y. Y. Yun. On square-free decomposition algorithms. In Proceedings of the third ACM
symposium on Symbolic and algebraic computation, SYMSAC ’76, pages 26–35, New York,
NY, USA, 1976. ACM.
doi: 10.1145/800205.806320. Referenced on page 95.

Umberto Zannier. On the number of terms of a composite polynomial. Acta Arith, 127(2):
157–167, 2007.
doi: 10.4064/aa127-2-5. Referenced on page 106.

Richard Zippel. Probabilistic algorithms for sparse polynomials. In Edward Ng, editor, Sym-
bolic and Algebraic Computation, volume 72 of Lecture Notes in Computer Science, pages
216–226. Springer Berlin /Heidelberg, 1979.
doi: 10.1007/3-540-09519-5_73. Referenced on pages 7, 105 and 118.

Richard Zippel. Interpolating polynomials from their values. Journal of Symbolic Computa-
tion, 9(3):375–403, 1990. ISSN 0747-7171.
doi: 10.1016/S0747-7171(08)80018-1. Computational algebraic complexity editorial.
Referenced on pages 7, 120 and 121.

172

http://dx.doi.org/10.1112/plms/s2-42.1.230
http://dx.doi.org/10.1090/S0025-5718-1979-0528061-7
http://arxiv.org/abs/0906.2749
http://dx.doi.org/10.1006/jsco.1997.0176
http://dx.doi.org/10.1145/800205.806320
http://dx.doi.org/10.4064/aa127-2-5
http://dx.doi.org/10.1007/3-540-09519-5_73
http://dx.doi.org/10.1016/S0747-7171(08)80018-1

	Table of Contents
	List of Algorithms
	List of Tables
	List of Figures
	Introduction
	Overview
	Polynomials and representations
	Functional representation
	Algebraic representations
	Algorithms
	Univariate polynomials

	Computational model
	Background
	In-Memory Machine
	Storage specification for elements in common rings
	Algebraic IMM

	Warm-up: O(n log n) multiplication
	Summary of previous algorithms
	Integer multiplication on an IMM
	Implications


	Algorithm implementations in a software library
	Existing software
	Goals of the MVP library
	Library design and architecture
	Library design
	Main modules

	Algorithms for low-level operations
	Small prime fields
	Addition and subtraction
	Barrett's algorithm for multiplication
	Montgomery's algorithm

	Univariate polynomial multiplication

	Benchmarking of low-level operations
	Further developments

	In-place Truncated Fourier Transform
	Background
	Primitive roots of unity and the discrete Fourier transform
	Fast Fourier transform
	FFT variants
	Computing the FFT in place
	The truncated Fourier transform
	DFT notation

	Computing powers of omega
	Space-restricted TFT
	Space-restricted ITFT
	More detailed cost analysis
	Implementation
	Future work

	Multiplication without extra space
	Previous results
	Karatsuba's algorithm
	FFT-based multiplication
	Lower bounds

	Space-efficient Karatsuba multiplication
	Improved algorithm: general formulation
	Initial calls
	Unequal and odd-sized operands
	Rolling a log from space to time

	Space-efficient FFT-based multiplication
	Folded polynomials
	Constant-space algorithm

	Implementation
	Conclusions

	Adaptive multiplication
	Background
	Overview of Approach
	Chunky Polynomials
	Multiplication in the chunky representation
	Conversion given optimal chunk size
	Determining the optimal chunk size
	Chunky Multiplication Overview

	Equal-Spaced Polynomials
	Multiplication in the equal-spaced representation
	Converting to equal-spaced

	Chunks with Equal Spacing
	Implementation and benchmarking
	Conclusions and Future Work

	Sparse perfect powers
	Background
	Related work
	Overview of results

	Testing for perfect powers
	Detecting given rth powers
	Certifying specified powers over finite fields
	Certifying specified powers over Z[x]
	An upper bound on r
	Perfect Power Detection Algorithm
	Detecting multivariate perfect powers

	Computing perfect roots
	Computing rth roots in output-sensitive polynomial time
	Faster root computation subject to conjecture
	Computing multivariate roots

	Implementation
	Conclusions

	Sparse interpolation
	Background
	Problem definition
	Interpolation over finite fields
	Multivariate interpolation
	Approximate Polynomial Interpolation

	Sparse interpolation for generic fields
	Sparse interpolation over finite fields
	Diversification
	Verification

	Approximate sparse interpolation algorithms
	Computing the norm of an approximate sparse polynomial
	Constructing an approximate remainder black box
	Creating approximate diversity
	Approximate interpolation algorithm

	Implementation results
	Conclusions

	Sparsest shift interpolation
	Background
	Previous results
	Problem statement and black box model

	Computing the Sparsest Shift
	The polynomial f(p)
	Overview of Approach
	Conditions for Success

	Interpolation
	Generating primes
	Prime generation algorithm
	Using smaller primes

	Complexity analysis
	Complexity of Sparsest Shift Computation
	Complexity of Interpolation

	Conclusions and Future Work

	Bibliography

