
Tunnel Ionization in Strong Fields in
atoms and molecules and its

applications

by

Ryan Murray

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Physics

Waterloo, Ontario, Canada, 2011

c© Ryan Murray 2011



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

We look at the theory of ionization of atoms and molecules in the presence of a strong
laser field. The history of ionization of atoms is reviewed and the methods used to calculate
the ionization rates are examined in detail. In particular the quasi-classical methods used
to solve for atomic rates are examined in detail. Early work on the ionization of molecules is
also examined. A new method of calculating ionization rates is developed which allows for
clear, analytic descriptions of atoms and molecules in intense light fields. The results and
implications of this new theory are also examined in both atoms and molecules. The results
are compared against known analytic results in the case of atoms and against numerical
computation for molecules. Finally, applications of the study of atoms and molecules in
intense fields are examined. We show how processes such as high harmonic generation
and laser induced electron diffraction occur in strong fields and give an overview of the
current state of the art and likely goals for the future. The process of laser induced electron
diffraction is given close examination and ways of optimizing the diffraction patterns are
discussed. The use of two-color orthogonal fields is shown to greatly increase contrast and
efficiency when the carrier phases are tuned correctly.
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Chapter 1

Introduction

The invention of the laser over fifty years ago[1] has had a profound effect on the way we
live our lives. It has sparked revolutions in the fields of medicine and technology. Though
the invention of the laser is in itself a fantastic scientific step, the real revolution was caused
by the study of laser light interacting with matter. Without understanding the interaction
of light with matter the laser would be little more than a novelty.

Now that lasers are an every day item that can fit into small packages like laser pointers
and DVD players the attention of fundamental research has turned increasingly to ‘extreme’
lasers. The word ‘extreme’ here refers to ultra-short and ultra-strong.

Over the past several decades the duration of lasers pulses has dropped from on the
order of picoseconds (10−12s) to femtoseconds and recently to the attosecond (10−18s)[2]
regime. Pulse length is now on the order of electronic motion in atoms, which gives
unprecedented opportunities to observe electron dynamics in ‘real-time’.

Along with the exponential decrease in pulse duration there has been a similar increase
in pulse strength. Focused intensities now typically range from 1013 to greater than 1020

W/cm2, depending on the source. The strength of these pulses are strong enough to exceed
the fields binding electrons to atoms and to drive free electrons at relativistic speeds, Figure
1.1.

The extreme conditions created by the new generation of lasers open up a whole new
regime of light-matter interaction, along with many fundamental applications. The time
and spatial resolution which can be achieved using these new sources to image systems
provides the possibility of creating the molecular movie[4], among the most sought after
goals of light-matter interaction.

Before the molecular movie can be filmed though we must first understand the effect of
such short and intense fields on matter. Two things are likely to happen to matter in an
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Figure 1.1: Progress of peak laser intensity as a function of time, with important regimes
and innovations. Taken from: [3]

intense field: excitation and ionization. These two processes account for nearly all damage
and photo-chemical processes in matter. The most interesting of these two processes, from
the perspective of the strong field physics researcher, is ionization. The photo-ionization
of matter has been known for over a century[5] and it is this process that is the focus of
this work.

The contents of this work are mainly confined to the effects of lasers in the infrared(0.7
- 300 µm) consequentially we are concerned mainly with multi-photon ionization and more
specifically the regime where multi-photon ionization can be viewed as tunneling in an
oscillating laser field. This can occur when the light field suppresses the atomic or molecular
potential in such a way as to allow an electron to escape through tunneling. There are
several exciting processes that can occur through this mechanism which will be explored
in greater detail later.

Prior to discussing applications of tunneling ionization to further dynamics, in particu-
lar to making a molecular movie, the tunneling process must first be understood. Tunneling
rates have been calculated in atoms for at least fifty years and have been well understood
for forty. Chapter 2 will be focused on reviewing these results and putting them into a
modern context. There is also a modern derivation which sets the stage for work on larger
systems in 3. The content in Chapter 3 is the original work of the author, while the work
in Chapter 2 is an in depth review of the work of others in the field.

The ionization of complex systems such as molecules is complicated by the molecular
structure, extended electronic orbitals and multiple electrons. We use the semi-classical
ideas described in chapter 4 to derive many simple and intuitive results which give great
insight into the tunneling process in molecules. The work in this chapter also provides
a place to start for even more complex multi-electron theories which could be applied to
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laser-induced tunnel ionization in larger molecules. The theory presented in this chapter
is the sole work of the author.

Once the process of tunneling in strong fields is understood we turn our attention to
its uses. Chapter 5 deals with the processes that occur in strong fields after ionization.
High harmonic generation, laser induced electron diffraction, and non-sequential double
ionization each show separate and important aspects of the interaction between light and
matter. These processes are some of the tools which will be used in making the molecu-
lar movie. High harmonic generation allows for superb, though controversial, imaging of
molecular orbitals and electron dynamics in ions. Laser induced electron diffraction is at
the outset an extremely daunting task, but promise of sub-angstrom and sub-femtosecond
resolution of single molecules is too strong to dismiss the idea entirely. The content of this
chapter is split between the authors work and a review of the work of others. The author
is responsible for the content on laser induced electron diffraction.

Finally, we conclude with a summary of our work and some ideas for future work in
the field.
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Chapter 2

Strong Field Ionization of Atoms

2.1 Introduction: basic tunneling theory

The process of tunneling is among the most fundamental quantum processes; the con-
cepts of wave-particle duality and other intrinsically quantum ideas must be invoked to
understand and picture tunneling. The fundamental nature of tunneling means it is of
central importance in a variety of fields including solid state physics (scanning tunneling
microscope, various semiconductor devices), cosmology, nuclear physics, biophysics, and
atomic and molecular optical physics. There has been a large body of work dedicated to
understanding tunneling; though in complex systems it is a very non-trivial subject. See
for example [6, 7] for a good review of the state of the art.

We will focus strictly on tunneling processes in strong laser fields. The problem is
simplified by the addition of a strong field though it is still quite difficult. The goal of this
chapter is to survey the body of work on the problem of atomic ionization in the presence of
a laser field with particular interest on tunnel ionization. Prior to tackling atomic ionization
a theoretical groundwork must be laid. I will start by deriving quantum tunneling in the
most simple case of a plane wave tunneling through a square potential barrier. Then I will
introduce the Wentzel-Kramers-Brillouin(WKB) approximation, a vitally important and
sadly under studied analytic method of solving partial differential equations and a key to
solving tunneling problems in a general and often semi-analytic way.

Upon completion of the theoretical framework needed to understand tunneling in strong
fields I will give a historical review of theoretical efforts in tunneling. This starts with a
simple derivation by Landau. The work of Perelomov, Popov and Terent’ev(PPT) is the
next important piece of work, followed by some modern advancements and a new derivation
of strong field atomic ionization which paves the way for the molecular ionization studies
in the next chapter.
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Figure 2.1: A Square potential barrier with height V0. Taken from: [12]

2.2 Tunneling and the WKB Approximation

2.2.1 Tunneling through a square potential barrier

The most basic form of tunneling is that which occurs when a plane wave is incident on
a square potential barrier. This simple problem is seen in nearly every text on quantum
mechanics[8, 9, 10, 11]. The system under consideration is shown in Figure 2.1, here the
square barrier is from the origin to x = a and at a height of V0.

The Hamiltonian for a particle incident on the square well potential is as follows:

H = − ~
2

2m

d2

dx2
+ V (x) (2.1)

V (x) = V0[Θ(x)−Θ(x− a)]

where Θ(x) is the Heaviside step function. I wish to solve the time independent Schrödinger
equation for the Hamiltonian in equation 2.1. The barrier divides the solution space into
three parts: left of the barrier, right of the barrier and the barrier. In each of these regions
the particle is free or under a constant force and therefore quasi-free. The solution in each
of these regions can then be written as a superposition of incoming and outgoing plane
waves.

ΨL = A1e
ikx + A2e

−ikx

ΨB = A3e
κx + A4e

−κx

ΨR = A5e
ikx + A6e

−ikx (2.2)

The wave numbers are k =
√

2mE/~2 and κ =
√

2m(E − V0)/~2.
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What is interesting here is that even for E < V0 the wave function can exist inside
the barrier. In this case κ would be an imaginary number and the wave function would
exponentially decrease. This is contrasted to the classical case when the particle would fly
over the barrier for E > V0 and be fully reflected for E < V0.

The quantum case will not be fully transmitting or reflecting. To see how the quantum
case behaves I derive a transmission amplitude (the amplitude of the forward moving
particle on the right side of the barrier,A5) and a reflection amplitude (the amplitude of
the backward propagating particle on the left side of the barrier, A2).

To derive these amplitudes I need to specify boundary conditions. First the wave
functions must match at x = 0 and x = a and its derivative must also be continuous at
those points.

ΨL(0) = ΨB(0),
dΨL(0)

dx
=

dΨB(0)

dx
(2.3)

ΨB(a) = ΨR(a),
dΨB(a)

dx
=

dΨR(a)

dx
(2.4)

Inserting equations 2.2 into the above conditions I arrive at relations between the six
normalization constants. I also assume that the particle is incident from the left (A1=1),
and there is no particle incident from the right (A6=0). I call A2 the amplitude of reflection,
and A5 is the amplitude of transmission. To solve for the amplitudes I have a system of
four equations and four unknowns, I eliminate A3 and A4 to obtain equations for the
transmission and reflection amplitudes.

A2 =
4kκe−ia(k−κ)

(k + κ)2 − e2iaκ(k − κ)2
(2.5)

A5 =
(k2 − κ2) sin(aκ)

2ikκ cos(aκ) + (k2 + κ2) sin(aκ)
(2.6)

The above equations can now be used to calculate the transmission and reflection for
various values of V0. For E > V0 the transmission amplitude is not 1, but an oscillating
function of κa and there is a finite chance of reflection.

T = |A5|2 =
1

1 +
V 2
0 sin2(κa)

4E(E−V0)

(2.7)

R = 1− T (2.8)

This result is quite surprising when compared to the classical case. A classical particle
would be 100% transmitted with the same energy.

For a particle of energy E < V0 there is an exponentially decreasing chance that the
particle will tunnel through the barrier and emerge on the other side. This is the phe-
nomenon of quantum tunneling. There is a finite chance that the transmission will be
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non-zero. For the limiting case of a very high or wide barrier the transmission approaches
zero.

T = |A5|2 =
1

1 +
V 2
0 sinh2(κa)

1+4E(V0−E)

(2.9)

The simple fact that quantum particles can be found in classically forbidden regions leads
to much of the physics discussed below. The square barrier is a special case in that I
can actually calculate tunneling amplitudes analytically and exactly. For nearly all other
systems one must use clever approximate techniques to obtain tunneling amplitudes and
rates. I will discuss several of those techniques below. It is interesting that most of the
methods we present to calculate tunneling are rooted in classical pictures and explicitly use
classical mechanics to calculate tunneling rates which is an intrinsically quantum effect.

2.2.2 The WKB approximation

The Wentzel-Kramers-Brillouin (WKB) approximation, also known as the semi-classical
or quasi-classical approximation, is the most common method for approximating tunneling
rates in complex systems. A large portion of work has been devoted to expanding and
extending the WKB approximation to cover more and more complex systems[13, 14]. The
WKB theory was originally a 1-dimensional theory. A large body of the work cited above
has been devoted to either extending the WKB to n-dimensional systems or applying a
‘trick’ to make the problem one dimensional. Currently no complete theory exists for more
than one dimension though there are several theoretical efforts.

The WKB approximation can be traced back to Liouville[15] and Green[16] and is
sometimes known as the LG method. The modern version was created in 1926 jointly, and
independently, by Wentzel[17], Kramers[18], and Brillouin[19] as a method of solving the
Schrödinger equation. The method they use is to assume an exponential as the solution to
the time independent Schrödinger equation(TISE).

Ψ(x) = e−iS(x)/~ (2.10)

The argument of the exponent is expanded in a series in powers of ~. The reduced Plank
constant is considered a small parameter in the quasi-classic case. Let us first begin with
the TISE for the one-dimensional motion of a single particle.

− ~

2m

d2

dx2
Ψ(x) = (E − V (x))Ψ(x) (2.11)

We make the substitution Ψ(x) = e−iS(x)/~ and obtain the following equation for S.

1

2m

(

dS

dx

)2

− i~

2m

d2S

dx2
= E − V (x) (2.12)

7



The function S is expanded in a series in powers of ~.

S(x) = S0 +
~

i
S1 +

(

~

i

)2

S2 + ... (2.13)

In the first approximation I drop all terms containing ~ and insert equation 2.13 into 2.12:

1

2m

(

dS0

dx

)2

= E − V (x) (2.14)

Equation 2.14 is known as the Hamilton-Jacobi equation and can be solved for S0. The
result is the time independent part of the classical action.

S0 = ±
∫

√

2m(E − V (x))dx = ±
∫

p(x)dx (2.15)

The integrand is simply the classical momentum p(x). Lets take a look at the conditions
under which the approximation in equation 2.14 remains valid. This is the case when the
second term in equation 2.13 is much smaller than the first.

~

∣

∣

∣

∣

S ′′

S ′2

∣

∣

∣

∣

=

∣

∣

∣

∣

d(~/S ′)

dx

∣

∣

∣

∣

≪ 1 (2.16)

Where primes indicate differentiation with respect to x. From equation 2.15 I know that
S ′ = p(x), so I can rewrite the above as:

∣

∣

∣

∣

d~/p(x)

dx

∣

∣

∣

∣

=

∣

∣

∣

∣

d(λ/2π)

dx

∣

∣

∣

∣

≪ 1 (2.17)

Here λ is the de Broglie wave length of the particle. For the first order term to be valid
the wavelength of the particle must vary slowly over distances of order of itself. This is
the condition for quasi-classical motion. The above condition can be rewritten as follows

m~|F |
p3

≪ 1 (2.18)

Where F is the force on the particle. This shows that the 1st order WKB is not valid near
turning points, points where the momentum of the particle is zero as it reverses direction.

We now can derive the term to first order in ~ from Eqns 2.13 and 2.12 in the same
was as I found the zeroth order term. The first order term is as follows,

S ′
0S

′
1 +

1

2
S ′′
0 = 0 (2.19)

8



The solution to which is,

S1 = −1

2
log p(x) (2.20)

We now substitute this term and the zero-order term into the original guess for the wave
function to arrive at the following result.

Ψ =
C1

√

p(x)
ei

∫ x p(x′)dx′/~ +
C2

√

p(x)
e−i

∫ x p(x′)dx′/~ (2.21)

The above equation is for a particle in a classically allowed region. In classically forbidden
regions the momentum is imaginary so that the exponentials in equation 2.21 become real
and exponentially decreasing or increasing. This is the same result as the exponential
dependence of tunneling in the square barrier case.

Ψ =
C1

√

p(x)
e
∫

p(x)dx/~ +
C2

√

p(x)
e−

∫

p(x)dx/~ (2.22)

These two equations describe a quasi-classical particle in a potential in two different regions,
they need to be connected at the boundaries: the turning points. First I consider the WKB
wave function on both sides of the turning point. For the classically allowed region,

Ψ =
A

√

p(x)
ei

∫ x
a
p(x)dx/~ +

B
√

p(x)
e−i

∫ x
a
p(x)dx/~, x < a (2.23)

and for the classically forbidden region,

Ψ =
C

√

|p(x)|
e−

∫ a

x
p(x)dx/~, x > a (2.24)

We have made the assumption that the turning point is at x = a and to the left of the
turning point is classically allowed, see figure 2.2. The wave function on the left side only
has the damped solution as the exponentially increasing solution is unphysical. Equations
2.24 and 2.23 are valid only sufficiently far away from x = a. At values of x close to a I can
find an exact solution to the Schrödinger equation provided I am close enough to assume
that the potential is constant across the turning point. In that case the solution to the
Schrödinger equation is known and is given by[9] an Airy function,

Ψ(x) = CAi(−(2F )1/3(x+ E/F )) (2.25)

The Airy function has a well known asymptotic form for large argument.

Ai(x) =
1

2|x|1/4 exp(−
2

3
|x|3/2), |x| << 1 (2.26)

Ai(x) =
1

x1/4
sin(

2

3
x3/2 + π/4), |x| >> 1 (2.27)

9



Figure 2.2: The WKB wave function incident on a barrier at x = a to the left is the expo-
nentially damped solution and to the right is the oscillating solution. They are matched
at x = a with the exact solution to Schrödingers equation.
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By comparing equations (2.26) and (2.27) to equations (2.24) and (2.23) I can deduce
that the momentum is given by:

p(x) =
√

2mF (x− a) (2.28)

F = −dV (x)

dx
(2.29)

Finally, the momentum for x < a is imaginary so the constant in the WKB wave function
under the barrier gets a phase added to it from the i1/2 = eiπ/4 term.

C = Beiπ/4 = Ae−iπ/4 (2.30)

The full WKB wave function is thus:

C

2
√

|p(x)|
e−

1
~
|
∫ x

a
p(x)dx| → C

√

p(x)
cos

(

1

~
|
∫ x

a

p(x)dx| − π

4

)

(2.31)

This can be summed up as: when the particle passes through the barrier it acquires a
phase of π/4. The WKB wave function is thus known everywhere that the quasi-classical
approximation is valid.

2.3 Review of tunneling theories

The case of oscillating laser field is far less trivial than of a DC field, and although the
tunnel ionization of an atom has been under study for more than fifty years, it has proven
to be a stubborn problem. Figure 2.3 illustrates the idea behind tunnel ionization. When
an electric field is applied to an atom the atomic potential is skewed. If the field is strong
enough it can suppress the potential so much that it creates a barrier under which the
electron can tunnel.

The following sections will detail some of the major work on tunnel ionization in the
past fifty years. I will start with a derivation for the ionization rate of ground-state
atomic Hydrogen, put forth by Landau[9]. This derivation makes use of the quasi-classical
approximation and parabolic coordinates. The next key advancement was by Perelomov
et al.[20, 21, 22] who extended the work of Landau to general atomic states and oscillating
electric fields. Finally we review some recent advances in the detailed understanding of
ionization in atoms[23, 24].

2.3.1 Three dimensional static tunneling in atoms

The derivation used by Landau[9] is a straight-forward application of the quasi-classical
WKB approximation to the tunneling problem in a Hydrogen atom. The basic premise is
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Figure 2.3: Schematic of tunnel ionization. The atomic potential, in blue, is deformed by
the electric field, in green. The dotted red line represents the tunnel formed at a particular
energy.

to match the atomic wave function to an outgoing WKB solution and then calculate the
rate as the flux at the exit of the barrier. This is all done in parabolic coordinates. Before
I proceed with the derivation we will briefly introduce cylindrical parabolic coordinates.

The parabolic coordinates η,ξ,φ are defined by the following formulae

x =
√

ηξ cosφ, y =
√

ηξ sinφ, z =
1

2
(ξ − η)

r =
1

2
(η + ξ) (2.32)

or conversely

ξ = r + z, η = r − z, φ = tan−1(y/x) (2.33)

Here η and ξ vary from 0 to ∞ and φ from 0 to 2π. The surface of constant ξ,η is a
paraboloid along the z axis. This set of coordinates is very convenient for describing a
central potential in which there is a dominant direction: ionization along the z-axis. For
more detail on the properties of the cylindrical parabolic coordinates see[9, 25]. The final
important thing to mention is what the Hydrogen atomic wave function and potential look
like in parabolic coordinates. This is key to what follows. The wave function for the 1-s
state of Hydrogen is:

Ψ =
1√
π
e−(ξ+η)/2 (2.34)

and the potential,

V (η, ξ, φ) = − 2

η + ξ
(2.35)
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When considering an electron being ionized along the negative z-axis then, for large z,
η = −2z and ξ = 0. The ionization along the z-axis is then equivalent to movement only
along the η axis in parabolic coordinates.

We wish to calculate the rate of ionization of a Hydrogen atom in a static electric field.
The WKB approximation in equation2.31 can be employed to accomplish this. This is done
by matching the wave function in equation 2.34 with the WKB solution for the electron
under the barrier. The ionization corresponds to the electron moving in one dimension
along the η direction so I match at a point η0 which is much less than the exit point
η0 ≪ η1 = 1/F where F is the field strength. The WKB solution is then propagated to
the exit point, where the rate is calculated. The WKB wave function at the exit point is,

Ψ =

√

p0
πp

e
− ξ+η0

2
+
∫ η1
η0

pdη+iπ
4 (2.36)

Here p =
√

Fη/4 + 1/4η2 + 1/2η − 1/4 is the classical momentum and p0 is the momentum
at η0. The first term in the exponent is from the initial wave function, the second and
third are from the WKB approximation. We are interested in the amplitude square of the
wave function, so the phase is unimportant.

|Ψ|2 = |p0|
pπ

e−ξe
−2

∫ η1
η0

pdη−η0 (2.37)

Since the electron is far away along the η direction I can assume that η ≫ 1 and make the
following expansion

p =
1

2

√

Fη − 1− 1

2η
√
1− Fη

+ ... (2.38)

The first term in the above equation is enough for the p in the prefactor but the second
term should be kept in the exponential. The wave function then becomes:

|Ψ|2 = 1

π
√
Fη − 1

e−ξe
−

∫ η1
η0

√
Fη−1dη+

∫ η1
η0

1
η
√
Fη−1

dη−η0 (2.39)

The second term in the exponent is commonly known as the eikonal The integrals above
are straightforward and the result is,

|Ψ|2 = 4

πη0F
e−ξ−2/3F 1√

Fη − 1
(2.40)

With this I can now calculate the rate. The rate is defined as the probability current
through a plane perpendicular to the z-axis at the exit point.

Γ = 2π

∫ ∞

0

|Ψ|2vzρdρ (2.41)

13



Where ρ is the normal cylindrical polar coordinate. For large η the integral is simple and
the rate is finally

Γ =
4

F
e−2/3F (2.42)

This simple result gives the ionization rate of a Hydrogen atom in its ground state as a
function of field strength. This result holds for field strengths F ≪ 1. The rate derived
above is the basis for all other rate equations. The exponential factor is common to nearly
all tunnel ionization rates. The equation shows that for low field strength ionization is
low and it exponentially increases as the field strength grows until the ‘over the barrier’
region is reached and the electron is no longer bound by the barrier. This method can be
extended to handle time dependent fields and any atomic state by the methods of PPT.
There is an alternative derivation of the general time dependent case put forth by Keldysh.
This derivation, while very important for the field will not be covered here. I wish to focus
on the WKB based approaches and their consequences. For a detailed review of Keldysh,
see his original paper[26] and a review[27].

2.3.2 Three dimensional time-dependent tunneling in atoms

The extension of the work above to time dependent fields was first done by Perelomov,
Popov and Ter’entev in a series of three papers[20, 21, 22]. They applied theWKB theory to
the time dependent case and invented what is now called the imaginary time method used
for solving the Hamilton-Jacobi equation in the time dependent case[28, 29, 30, 31, 32, 33].

The derivation is similar to what is presented above, the major differences are that the
action is defined by the time dependent Hamilton-Jacobi equation and the calculation is
done in regular Cartesian coordinates. The eikonal approximation[9] is used to include
the Coulomb core perturbatively and the zero-range potential problem is solved exactly. I
start by defining the bound wavefunction in the asymptotic region.

Ψ(x, y, z) = Cκlκ
3/2e−κz (2.43)

Here κ =
√

2Ip is the characteristic momentum of the bound state and Ip is the ionization
potential of the bound state. This will be matched with the standard WKB wavefunction
at some point z0. The matched WKB wavefunction is then propagated to the exit point
ze where it is:

Ψ(ze) = Cκlκ
3/2 |pz(z0)|

|pz(ze)|
e
−κz+iS(z0,t0;ze,0)+

∫ t
t0

V (t′)dt′
(2.44)

For the case of z0 << ze I can approximate pz(z0) ≈ κ. The first term in the exponential
is due to the Coulomb asymptote, the second is the action from the point z0 to ze and the
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third term is the Coulomb correction due to the eikonal approximation, see [21, 34, 35].
The function V (z′) is the atomic potential. The action in equation 2.44 is defined by the
Hamilton-Jacobi equation as follows:

− dS

dt
=

1

2

(

dS

dz

)2

+ F (t)z (2.45)

The field F (t) = F cosωt is a linear, monochromatic laser field. The Hamilton-Jacobi
equation is non-trivial to solve in this form but as it is identical to Newton’s equation I can
solve those and calculate the action directly. Newton’s equation and the initial conditions
are (dots represent time differentiation):

z̈ = F cosωt (2.46)

z(t0) = z0, ż(t0) = i(κ2 + p2⊥)
1/2 = iκ′ (2.47)

This ordinary differential equation is trivial to solve and its solution is given below.

z(t) = z0 + pz(t− t0)−
F

ω2
(cosωt− cosωt0) (2.48)

ż(t) = pz +
F

ω
sinωt (2.49)

where pz = iκ′− F
ω
sinωt0 is the canonical momentum of the electron, a conserved quantity.

Knowing that the trajectory starts tunneling at t0 and emerges at the peak of the field
t = 0 I can use the canonical momentum to find the value t0.

sinωt0 =
ω

F
(iκ′ − px) (2.50)

which when simplified is:

(

pz +
F

ω
sinωt0

)2

+ p2⊥ = −κ2 (2.51)

We will only consider the most probable trajectory, which emerges from under the barrier
at the peak of the field with pz = p⊥ = 0, in this case the above equation simplifies
to ωt0 = i sinh−1 γ. Where γ = κω

F
is the Keldysh parameter. Here I can see that the

tunneling time t0 is purely imaginary. It is useful to introduce the imaginary time τ = it,
this makes the motion under the barrier quite clear and the derivation more intuitive. The
trajectory and velocity are now

z(τ) = z0 +
F

ω2
(coshωτ0 − coshωτ), ż(τ) = −F

ω
sinhωτ (2.52)
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The tunneling time τ0 is then the following

τ0 = τC
sinh−1 γ

γ
≈ τC

{

1− γ2/6, γ ≪ 1
log γ/γ, γ ≫ 1

(2.53)

Here τC is the tunneling time in the adiabatic limit. The tunneling time is given for
both limits of the Keldysh parameter. The adiabatic tunneling limit γ ≪ 1 where the
barrier is near stationary during the tunneling, and the multi-photon limit γ > 1 where
the ionization is ‘vertical’ in energy. For a discussion on these limits and their applicability
see eg [26, 23, 24].

Knowing the above form for the trajectory I can easily calculate the action as the time
integral of the Lagrangian(L = T − V )[36].

S(0, t0) =

∫ 0

t0

dt′L(t′) (2.54)

S(0, t0) =

∫ 0

t0

dt′
[

1

2
ż2 + Fx(t′) cosωt′ − κ2

2

]

(2.55)

= −iκz0 + i
Ip
ω

[

(1 +
1

2γ2
) sinh−1 γ −

√

1 + γ2

2γ

]

(2.56)

This expression for the action leads to the well known atomic ionization rates used by
Keldysh, PPT et al. when in the adiabatic regime the Keldysh parameter approaches zero
and in this limit the action returns to the standard expression for a static field S = iκ3

3F
.

Before I insert equation (2.56) into the equation for the wave function and calculate the
rate I will derive the Coulomb correction using the eikonal approximation. The correction
to the action from the Coulomb core is

∆S =

∫ t

t0

dt′V (z(t′)) (2.57)

Indeed, it is seen that the characteristic perpendicular momentum is p⊥ ∼
√

F/κ ≪ κ
(as long as F ≪ 1). Hence, tunneling proceeds along the z-axis, with x, y ≪ z in the
asymptotic region z > z0. This allows one to set x, y to zero in the above equation.
The integral in equation (2.57) is straightforward when the Coulomb potential is used
V (z) = Q/z.

∆S =
iQγ

κ
ln

(

tanhωt0/2 + tanhωt/2

tanhωt0/2− tanhωt/2

)

(2.58)

We now perform an asymptotic expansion on Eqn. (2.58). Such an expansion is just as
important for the Coulomb correction as for the zero-order contribution (i.e. corresponding
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to the short-range potential). The Coulomb correction simplifies to

∆S = −i
Q

κ
ln

2κ2

Fz0
(2.59)

Now I can insert equations (2.56,2.59) into equation (2.44) and calculate the rate

Ψ(ze) = Cκlκ
3/2 κ
√

|pz(ze)|
e
−κze+κze− Ip

ω

[

(1+ 1
2γ2

) sinh−1 γ−
√

1+γ2

2γ

]

+Q
κ
ln 2κ2

Fz0 (2.60)

Which gives the following rate

Γ(F, ω) ∝
∫

|Ψ|2pz(ze)dp⊥ (2.61)

=

(

2κ3

F

)2Q/κ−m−1

e−
2Ip
ω

f(γ) (2.62)

Where f(γ) = (1 + 1
2γ2 sinh

−1 γ −
√

1+γ2

2γ
). This is the key result of the PPT theory for

oscillating fields and is what appears in the ADK theory[37].

In this chapter I considered solutions to several problems in the ionization of atomic
targets. The solutions for any atom in a constant field and in an oscillating laser field were
found. The method used to solve these problems is related to the WKB approximation
and the method of trajectories. In particular the method of trajectories, or the imaginary
time method, makes a clear connection between the DC case and the oscillating case, and
the derivation for the latter is very similar to the former. Once the DC case is known it is
simply a matter of finding a different trajectory to compute the case of an oscillating field.

The next chapter introduces a new approach to the problems discussed here. This
approach gives results that are identical to the PPT results but are done in a much simpler
way. The simple method considered below allows for generalization to arbitrary systems.
Only the DC case is considered because generalizing to oscillating fields is done in the same
manner as above, just by changing the trajectory.
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Chapter 3

New partial Fourier transform based
approach

The tunnel ionization of an electron from an atom or molecule is at the core of nearly every
process in strong laser fields. It is the first step in the famous three-step model [38, 39,
40] of strong-field dynamics, and is a key ingredient in high-harmonic generation(HHG),
laser induced electron diffraction(LIED) and non-sequential double ionization(NSDI). For
a review of these processes and their applications see (e.g. [41]). The ionization of atoms
has been under investigation for over forty years and is well understood theoretically [26,
20, 21, 22, 37, 23, 42, 43, 44, 45] and experimentally[46, 47, 48]. The famous work of
Keldysh [26] ignited the field and Perelomov, Popov and Terent’ev (PPT) [20, 21, 22]
found a general theory of tunneling from atoms in an oscillating electric field based on the
quasi-classical approximation. While many other studies have been done, PPT remains
the most widely used tunneling theory for atoms.

The PPT theory is an asymptotic theory that, in the case of a static electric field,
matches the field-free bound wave function to the WKB (Wentzel-Kramers-Brillouin ap-
proximation) solution for a free electron in the static field. The ionic potential is included
in this WKB solution via the perturbation theory in action, effectively in the eikonal ap-
proximation, inside the classically forbidden region. Importantly, the two wave functions
are generally of different symmetry, and one of them (the bound wave function) does not
include the external electric field. Consequently, the matching is not exact and must be
done analytically, with care to ensure cancellation of errors (see e.g. [49] for a recent dis-
cussion). The matching is done in the classically forbidden region, sufficiently far from
both the entrance and the exit points of the tunneling trajectory. In the atomic case, the
use of analytic wave functions allows one to remove the dependence on the matching point,
giving accurate ionization rates.

Though the atomic case is well studied, only in the past decade have there been detailed
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experimental studies of tunneling in molecules. Most early studies focused on un-aligned
samples and comparing molecular rates to ‘companion’ atoms [50, 51, 52, 53] and are based
on the idea that molecular ionization rates may be comparable to those of atoms with
similar ionization potentials. Unsurprisingly, both theoretical and experimental studies
have shown there is little correlation between atoms and molecules with similar ionization
potentials [50, 54, 55, 56]. Recent experiments on aligned samples have produced angular
dependent rates allowing for detailed study of the effect of molecular orbitals [57, 58, 59, 60].
These studies give great insight into the dynamics of molecules in strong laser fields. The
theory needed to describe these studies must be done very carefully and currently there is
no theory as powerful as the atomic theories. The most common approaches in use today
are Molecular ADK(MO-ADK) [55] and molecular strong field approximation(MO-SFA).
The first approach relies on a single-center expansion of the ionizing molecular orbital in
a series of spherical harmonics, also assuming purely single-center Coulombic interaction
of the outgoing electron with the molecular core. This method has several limitations:
for large multi-center systems and delocalized orbitals with complex nodal structure the
expansion contains many terms and results lose physical transparency. The use of a purely
Coulomb potential is another important limitation. I also note a technical drawback of
the original derivation [55], related to rotations of the molecule relative to the direction
of the electric field. Such rotation mixes different m-components of the same angular
momentum state l, and the contributions of different m have to be added at the level of
amplitudes and not probabilities. For an atomic system there is a single m and this is not
an issue but in a molecule there are many m states contributing a single orbital and the m
dependent phase factors must be added coherently. The second common analytical model
is the molecular strong field approximation (MOSFA)(see e.g. [56]), which is based on
the Keldysh-Faisal-Reiss theory[43, 44, 45]. This method also has important limitations.
The first is the absence of the Coulomb potential – this drawback is corrected a-posteriori,
again assuming single-center Coulomb interaction with the core. The second problem is
gauge non-invariance.

A recent proposal by Fabrikant[49] aims to fix most of the problems common among
the current analytical theories by using a PPT-like method on molecular systems. The
authors use the imaginary time method[29] to derive analytical ionization rates for atoms
and small molecules in a strong field. The only issue with this method is a consequence of
using complex initial conditions on the particles classical trajectory, making the method
difficult for practical computation if the wave function is not known analytically, but is
given on the real-space grid.

Purely numerical approaches are very demanding computationally and are often hard
to interpret physically. Recently, breakthrough fully correlated calculations have been
done[61, 62] for H2. Extensions to larger systems rely on time-dependent density functional
theory (TD-DFT) or single active electron(SAE) type approximations[63]. These numerical
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studies provide important foundations for testing approximate analytical theories.

In this chapter I propose a simple and physically transparent analytical method ap-
plicable for atoms and molecules. Our approach resolves many of the problems outlined
above while maintaining an intuitive physical interpretation. The key aim (and advantage)
of our approach is that it can be generalized for arbitrary wave functions and arbitrary po-
tentials given on a numerical grid. Consequently, it avoids the use of imaginary time and,
more importantly, complex-valued trajectories. This property makes it directly adaptable
to fast numerical calculations for arbitrary wave functions and arbitrary potentials.

By drawing on the work of Maslov’s multi-dimensional WKB theory[14] I have found
an algorithm based on partial Fourier transforms that allows for separation of variables,
as long as the (arbitrary) core potential is included in the eikonal approximation. The
method allows one to maintain the physical transparency of our results for arbitrary wave
function and arbitrary core potential. In this chapter, I show that our approach allows one
to reproduce all analytical results of the PPT theory for the atomic case while avoiding any
need for a single-center expansion in the spherical harmonics. This makes our approach
naturally applicable to a general multi-center wave function and an arbitrary multi-center
potential. I also discuss straightforward generalization of the method, which avoids un-
certainty associated with the matching procedure, and what alternative calculations and
approximations it requires in this case. The method is broadly applicable to general wave
functions and arbitrary molecular potentials. The route to its generalization for oscillating
electric fields is discussed in the following chapter.

3.1 Description of the method

We will now develop an algorithm that is suitable for calculating both analytic and com-
putational ionization rates. I shall begin the discussion with the zero-range potential,
which always serves as a starting point for the eikonal-like treatment of an arbitrary core
potential.

We wish to solve the time-independent Schrödinger equation(TISE) for an electron in a
static electric field. The length-gauge Hamiltonian for such a system is as follows (atomic
system of units are used throughout):

ĤLG =
p̂2

2
− Fz, (3.1)

Ψ(z0) = Ψ0(z0)

Here p is the kinetic momentum, which in atomic units is equal to the electron velocity, F
is the field strength and z is the direction of the field. The boundary condition states that
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at some point z0 the WKB wave function must match with the wave function of the bound
system. I now introduce the mixed representation wave-function (a tool used by Maslov[14]
to express the WKB wave function near a caustic). I shall show that using this represen-
tation allows one to reproduce all known results while retaining physical transparency. I
write the bound wave function as

Ψ(x, y, z) =
1

2π

∫

dpx

∫

dpye
ixpx+iypyΦ(px, py, z) (3.2)

where,

Φ(px, py, z) =
1

2π

∫

dx

∫

dye−ixpx−iypyΨ(x, y, z) (3.3)

The physical motivation for this representation is that I can now derive the WKB solution
that reflects the symmetry of the tunneling process along the direction z of the external
field and matches the component Φ(px, py, z) of the total wave function Ψ(x, y, z). Mixed
representation makes such matching straightforward irrespective of the symmetry or com-
plexity of Ψ(x, y, z). For a short-range potential with the boundary condition Φ(px, py, z),
tunneling becomes a straightforward 1D problem. Another key feature of Eqn. 3.2 is that
the Fourier transform relates closely to the important physical picture associated with the
strong field approximation (SFA).

Equation (3.2) is now inserted into the Schrödinger equation−IpΨ(x, y, z) = ĤLGΨ(x, y, z),
where Ip is the ionization potential – the binding energy of the bound state. Note that
in the presence of the electric field the spectrum is, strictly speaking, continuous and all
energies are allowed. For a short-range potential, the 3D equation is reduced to a single
dimension:

− ∂2Φ(px, py, z)

∂z2
= 2(E ′ + Fz)Φ(px, py, z) (3.4)

Here E ′ = Ip + p2x/2 + p2y/2. That is, the perpendicular momentum increases the effective
ionization potential, making it harder to tunnel. Tunneling in the perpendicular direction
is exponentially suppressed; this is important for future approximations as tunneling can
be considered to occur predominately along the electric field, i.e. in the z direction. The
field-free motion in the x-y plane is separated from the motion in the z plane and the
regular 1D WKB approximation can be applied to eqn (3.4):

Φ(px, py, z) =
C

√

pz(z)
eiS(px,py,z)/~ (3.5)

Here pz(z) = |∂S(px, py, z)/∂z| is the kinetic momentum (equal to the electron velocity in
atomic units) in the z direction and S(px, py, z) is the classical action. In the classically
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forbidden region both the action and the electron velocity are imaginary, which is why
the absolute value is used for pz(z). This WKB solution is now matched to the initial
wave function at z0, determining the constant C and giving the following expression for
the mixed representation wave-function:

Φ(px, py, z) = Φ(px, py, z0)

√

pz(z0)

pz(z)
exp

(

i

~
(S(px, py, z)− S(px, py, z0))

)

(3.6)

It is important to note that as long as z0 is not a turning point the wave function and its
derivatives are continuous. Inserting this expression into equation (3.4) I get the familiar
Hamilton-Jacobi equation, for S(px, py, z)

1

2

(

∂S(px, py, z)

∂z

)2

− Fz = E ′ (3.7)

The Hamilton-Jacobi equation is immediately integrable, with the solution

S(px, py, z)− S(px, py, z0) =
1

3F
(2E ′ + 2Fz)3/2 − 1

3F
(2E ′ + 2Fz0)

3/2 (3.8)

The next standard step is the expansion of the expression on the right-hand side in powers
of z0 up to the first order. This expansion is not a mere convenience – it is the critical step
of the asymptotic theory since the original works of Perelomov, Popov and Terent’ev. The
key importance of this step and its physical meaning are illustrated in Fig. 3.1.

The WKB solution above includes electric field fully, while the bound wave function at
z < z0 is field-free. Correspondingly, the behavior of the field-free bound wave-function in
the classically forbidden region is different, and its exponential decay towards z0 is faster
than should have been for the proper in-field solution. The expansion of the in-field WKB
solution at z > z0 in powers of z0 up to the first order cures this difficulty, as shown in
Fig 3.1. This plot shows (i) the electric field-free potential that an electron in the bound
state moves in and (ii) the potential the electron sees in the field. The shaded region is
where the two differ for z < z0; exponential error is related to the action in this region
and is proportional to z20 . This is why dropping the terms O(z20) allows one to match the
two wave functions smoothly and remove the dependence of the result on the selection of
the matching point z0 (referred to as fortunate cancellation of two opposing terms in [49]).
This cancellation will be seen explicitly when I specify the wave function.

An alternative solution is to include polarization of the bound state at z < z0, but
ideally it has to be done to all orders in the electric field. Including such polarization nu-
merically, in a static field, is possible using standard quantum chemistry electronic structure
software packages.
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Figure 3.1: The Coulomb potential without a field(solid), with a constant electric
field(dotted) and z0(dashed). The shaded area is the difference between the potential with
and without a constant field. The shaded area is proportional to z20 . In the asymptotic
approximation terms of O(z0) are ignored and the effect of the constant field is removed
allowing the wavefunctions to be matched.

After the expansion, expression for the action at the exit point from the barrier ze =
Ip/F becomes

S(px, py, ze)− S(px, py, z0) = i
κ3

3F
+ i

κp2⊥
2F

− iκz0 (3.9)

We introduce p2⊥ = p2x + p2y here to simplify notation and highlight the importance of the

perpendicular momentum in tunneling; κ =
√

2Ip is the characteristic momentum of the
bound state. Inserting this expression into equation (3.5), I obtain the tunnel ionization
amplitude for a short range potential in a DC field:

aT(F, p⊥) =

√

pz(z0)

pz(z)
eiS(px,py,z)−iS(px,py,z0) =

√

κ

pz(z)
exp

(

− κ3

3F
− κp2⊥

2F
+ κz0

)

(3.10)

When going from the first term to the second term in equation 3.10 the asymptotic form
of the action is used in the exponent. Also, the momentum pz(z0) is replaced with κ, since
z0 ≪ ze.

The next step is to extend these results to long-range potentials. This is done using
perturbation theory in action, following the original prescription of the PPT theory [20,
21, 22]. The action for the short-range potential is used as the zero-order approximation in
the Hamilton-Jacobi equation, and corrections to the action is found in the first order in
the core potential V (z) (for details of the strong-field eikonal approximation see Ref.[34]).
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The resulting correction to the action is

∆S =

∫ z

z0

dz′
V (z′)

pz(z′)
(3.11)

where the momentum is pz(z) =
√
κ2 − 2Fz, i.e. calculated without the binding potential

V (z) of the core. Since dz/pz = dτ , I see that the integral is performed along the elec-
tron trajectory in the presence of the electric field only. Importantly, I take into account
exponential suppression of tunneling with nonzero perpendicular momenta p⊥. Indeed,
Eq.(3.10) shows that characteristic perpendicular momentum is p⊥ ∼

√

F/κ ≪ κ (as long
as F ≪ 1). Hence, tunneling proceeds along the z-axis, with x, y ≪ z in the asymptotic
region z > z0. This allows one to set x, y to zero in the above equation. The integral in
equation (3.11) is straightforward when the Coulomb potential is used V (z) = Q/z.

∆S =
Q

κ
ln

(

1 +
√

1− 2Fz0/κ2

1−
√

1− 2Fz0/κ2

)

(3.12)

We now perform the same asymptotic expansion on Eqn. (3.12), dropping the terms of
order z20 and higher. Such expansion is just as important for the Coulomb correction as for
the zero-order contribution (i.e. corresponding to the short-range potential). The Coulomb
correction simplifies to

∆S =
Q

κ
ln

2κ2

Fz0
(3.13)

The above term is now included in aT to get the final expression for the tunnel ionization
amplitude of a Hydrogen atom in a static field,

aT(F, p⊥) =

√

κ

pz(z)

(

2κ2

Fz0

)Q/κ

exp

(

− κ3

3F
− κp2⊥

2F
+ κz0

)

(3.14)

This concludes the calculation of the tunneling amplitude. Given the tunneling amplitude,
the only missing component is the bound wave function in the mixed coordinate-momentum
representation.

3.2 Mixed representation for a bound wave function

For a numerical wave function on the grid, mixed representation is obtained by simple
application of the numerical Fourier transform with respect to the two dimensions orthog-
onal to the direction of tunneling. Here, however, I want to demonstrate the applicability
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of the method analytically, and hence I need an analytical expression for the bound wave
function in mixed representation. We will find that now for an atom in a state with angular
momentum l and magnetic quantum number m.

The atomic wave function with quantum numbers l, m has a form

Ψ(x, y, z) =
1√
2π

eimφΨm(ρ, z) (3.15)

where φ, ρ and z are the usual cylindrical coordinates. Note that this expression does not
include the polarization of the field-free bound state. The wave function is ‘unaware’ of
the modified potential barrier – an effect that depends on z20 , as discussed above. I now
take the partial Fourier transform of equation (3.15):

Φ(px, py, z0) =
1

(2π)3/2

∫

dxdye−ipxx−ipyy+imφΨm(ρ, z) (3.16)

The double integral above can be transformed into polar coordinates.

Φ(px, py, z0) =
eimφ0

(2π)3/2

∫ ∞

0

ρdρΨm(ρ, z0)

∫ 2π

0

dφe−ip⊥ρ cos φ+imφ (3.17)

Here p⊥ is the perpendicular momentum
√

p2x + p2y and φ0 is the angle the perpendicular
momentum makes with the z axis. Recalling the integral expression for the Bessel function,

Jm(x) =
1

2π

∫ 2π

0

cos (mφ− x sinφ) dφ (3.18)

we calculate the φ integral to obtain

Φ(px, py, z0) =
eimφ0

(2π)3/2
(−i)m

∫ ∞

0

ρdρΨm(ρ, z0)Jm(ρp⊥) (3.19)

Exponential suppression of tunneling with non-zero p⊥ allows us to replace the Bessel
function with its limit for small arguments:

Φ(px, py, z0) =
eimφ0

(2π)3/2
(−i)m

m!

∫ ∞

0

ρdρΨm(ρ, z0)
(ρp⊥

2

)m

(3.20)

Indeed, given the characteristic values of the perpendicular momentum and the exponential
dependence of the bound wave function on r =

√

z2 + ρ2 (proportional to exp(−κr)), it is
straightforward to check that the product ρp⊥ is much less than unity. This fact enables
us to replace the Bessel function with its asymptotic expression for small arguments. The
Bessel functions with m 6= 0 will always be small, becoming smaller for larger m. This
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fact reflects the properties of the Fourier transform. Non-zero m implies a node the bound
state wave function along the direction of tunneling. It also means zero contribution from
zero p⊥ = 0 into Φ(px, py, z0) and hence higher characteristic perpendicular momentum.
Thus, higher m correspond to higher characteristic p⊥ and therefore a suppression of tun-
nel ionization. Thus, partial Fourier transform in combination with the Gaussian filter
for perpendicular momenta in Eq.(3.10) gives both transparent and quantitative physical
picture, connecting the nodal structure of the bound state to tunneling rates.

Using the asymptotic form of the Bessel function, I can now perform the remaining
integral over ρ for the Hydrogen wave function. Its asymptotic form is

Ψasymp(x, y, z) =
κ3/2eimφ

√
2π

CκlNlm(κr)
Q/κ−1e−κrPm

l (cos θ) (3.21)

Where,

Cκl =
(−1)n−l−12n

√

n(n + l)!(n− l − 1)!
(3.22)

Nlm =

√

(2l + 1)(l +m)!

2(l −m)!

1

2mm!
(3.23)

and κ =
√

2Ip where Ip is the ionization potential. The Legendre polynomial can be re-
placed with the limit for small angles, Pm

l (cos θ) ∝ sinm θ. Equation (3.21) can be simplified
by taking into account that ρ ≪ z in the asymptotic region z > z0 and hence sin θ ≈ ρ/z0
and r ≈ z + ρ2/2z. Inserting equation (3.21) into equation (3.20) and calculating the
integral I obtain:

Φ(px, py, z0) =
(−i)meimφ0

(2π)1/2
CκlNlme

−κz0
(p⊥
κ

)m

κQ/κ−1/2z
Q/κ
0 (3.24)

Now using the above equation for Φ(px, py, z0) and the equation for the tunneling amplitude
from z0 to z (see above), I can find the mixed representation wave function at any z with
a simple multiplication. In particular, using Eq.(3.14), I find the wave function just before
the exit point from the tunnel:

Φ(px, py, z → ze) = Φ(px, py, z0) ∗ aion(F, p⊥) =

=
1

√

2πpz(z)
(−i)meimφ0CκlNlm

(

2κ3

F

)Q/κ
(p⊥
κ

)m

e−κ3/3F−κp2⊥/2F (3.25)

Strictly speaking, this expression is not applicable right at the exit point where pz(z) is
equal to zero and the WKB approximation diverges. Finally, the rate can be calculated by
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going anywhere beyond the exit point, including just beyond it (the divergent term 1/
√
pz

cancels, providing continuity of current):

Γlm =

∫

dpxdpypz(z)|Φ(px, py, z)|2 =
κ2

2
|Cκl|2

2l + 1

2mm!

(l +m)!

(l −m)!

(

2κ3

F

)2Q/κ−m−1

e−2κ3/3F(3.26)

Equation (3.26) is identical to the static tunneling rate quoted by PPT[20].

3.3 Results & Discussion

There are important limitations to the application of asymptotic theory which uses field-
free bound wave functions. As I have shown, the tunnelling amplitude must be expanded
in powers of z0 until the first order, dropping the terms proportional to z20 and higher.
This is the key to canceling error introduced by using the field-free bound wave function
in the barrier region. Cancellation of large errors is smooth when calculations are analytic
and benefit from using analytical expression for the tunnelling amplitude that includes the
Coulomb field of the core. However, in the case of numerical implementation the correct
result, which requires cancellation of large errors, is prone to numerical artifacts.

In complex multi-electron systems corrections to the single-center purely Coulomb po-
tential are important. The exit point ze is often sufficiently close to make dipole and
higher-order multipole terms in the core potential significant. In practice, the potential is
given numerically on a grid, making the possibility of analytical expansions in powers of
z0 questionable. The best solution is to calculate the polarized bound wave function in a
finite basis set, making sure that the effect of the electric field at z < z0 is included.

Important aspect of the analytical calculation is also the use of the asymptotic expan-
sion of the wave function, which retains only the first-order corrections to action in powers
of the binding potential. This approximation to the wave function at z < z0 is important
since the exact same approximation is used at z > z0 for the tunnelling amplitude.

If the wave function is to be changed from its asymptotic field-free expansion to a nu-
merical field-dressed solution on the grid, its behavior at z = z0 will include corrections
beyond the eikonal asymptote. Then, one can and should also improve ionization ampli-
tudes beyond the eikonal approximation, calculating stationary action numerically. The
calculation may still rely on the approximation of small tunneling angles and small per-
pendicular momenta relative to the direction of the electric field. Such calculation would
naturally take into account the exact molecular potential.

By correcting the bound wave function to include the electric field and relaxing the
eikonal approximation for the tunneling amplitude, it is possible to approximately obtain
tunnel ionization rates for arbitrary molecules with two 2D Fourier transforms and a simple
multiplication.
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3.4 Conclusion

The method presented above has been shown to work for the simple case of an atom in a
static field. The classic results of PPT and others were re-derived. Clear routes to more
complicated systems have also been discussed. Both analytical and numerical schemes can
be pursued. In future work I will be elaborating on this method to obtain analytical and
computational ionization rates for several different molecules. I will also generalize our
approach to oscillating electric fields and to multielectron systems.
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Chapter 4

Strong Field Ionization of Molecules

4.1 Introduction

Ionization of an atom or a molecule is at the core of nearly every process in strong laser
fields, from high harmonic generation (HHG) to laser induced electron diffraction(LIED),
generation of high-energy electrons, correlated multiple ionization, etc. (see e.g. [41]).
The ionization of atoms in strong low-frequency laser fields has been studied theoretically
and experimentally over several decades, and now appears well understood. Among the
most important theoretical advancements are semi-analytical models providing adequate
quantitative description of the spectra of the so-called direct electrons, including the effects
of the ionic core during and after ionization [34, 35] and the sub-cycle dynamics of non-
adiabatic tunneling [20, 22, 21, 23, 24, 35] for moderate γ ∼ 1 Keldysh parameters [26].

General understanding of atomic ionization has been extrapolated to molecules[56,
55]. However, it has now become clear that straightforward extrapolation is insufficient,
stimulating theoretical efforts [61, 62, 64, 65, 63, 49, 66]. There are many important reasons
for the renewed interest, including the advent of high harmonic generation spectroscopy
of multi-electron dynamics in molecules [67, 68, 69]. This spectroscopy requires one to
accurately calculate relative contributions of several molecular orbitals (electronic states
of the molecular ion) participating in the high harmonic generation process[70, 71].

We propose simple and physically transparent upgrade of the existing theories. In
atoms, our approach gives results identical to the classic results of Perelomov, Popov and
co-workers [20, 22, 21] (see [72] for details), later popularized by Ammosov, Delone and
Krainov [37] and now commonly referred to as the ADK theory. In molecules, the well-
known molecular ADK theory (MO-ADK) [55] can be obtained as a limiting case of our
approach, within clearly defined approximations . However, our general approach does not
require spherical symmetry of the binding potential.
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In contrast to the standard tunnelling approach of Perelomov, Popov and co-workers
[20, 22, 21] and later work (ADK, MO-ADK) [37, 55], I explicitly keep track of the angle
between the direction of the electric field and the characteristic direction of electron tun-
nelling. The degree to which the tunnelling electron can deviate from the direction of the
electric field depends on the field strength, and is chiefly responsible for intensity-dependent
features in the angle-resolved ionization rates for aligned molecules.

Simple analytical formulas can be derived using the additional assumption of a purely
Coulombic asymptote of the core potential far from the nucleus. With this assumption, I
am able to approximate the ionization rate as a product of two factors. The first is the
tunneling factor, associated with the transmission amplitude during the electron motion
in the classically forbidden region. The second is the geometrical factor, which reflects the
geometry of the molecular orbital and the interference of tunnelling currents originating
from different lobes of the ionizing orbital.

We give a detailed derivation of the ionization rate for a general wave function and look
at the special cases of a multi-center linear combination of atomic orbitals(LCAO) wave
function, of a single center expansion used in MO-ADK, and finally the fitted asymptotic
wave function The important approximations used in each are examined in detail and
justified when neccessary. Many examples are given including multi-center H2, N2, and O2

and CO2 and several polar molecules using the fitted asymptotic wave function.

The important parameter z0 is discussed at length and a clear method for chosing this
value is given. This choice is justified through a numerical implementation of the theory
on simple molecular systems.

4.2 General Theory

Let z be the direction of the electric field that induces tunnel ionization. The ionization
rate is given by the total current through the plane orthogonal to z:

Γ =
1

2

∫

dx dy Ψ∗(x, y, z)p̂z(z)Ψ(x, y, z) + c.c. (4.1)

where atomic units e = me = ~ = 1 are used, p̂z is the electron momentum operator
orthogonal to the x-y plane, Ψ and Ψ∗ are the wave function of the tunneling electron
and its complex conjugate. The continuity equation ensures that the total current is z-
independent after the tunneling electron exits the potential barrier.

To calculate the rate, I use our approach described in the previous chapter and in the
following paper[72], where it has been verified for atomic systems. At some point z0 in the
classically forbidden region, sufficiently far from both the entrance zin and the exit zex from
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Figure 4.1: Schematic of tunneling, with zin and zex the entrance and the exit point from
the barrier; z0 is the matching point.
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the tunneling barrier (see Fig.4.2), I re-write the wave function of the tunneling electron
Ψ(x, y, z0) in the mixed coordinate-momentum representation

Ψ(x, y, z0) =
1

2π

∫

dpx

∫

dpye
−ixpx−iypyΦ(px, py, z0) (4.2)

where,

Φ(px, py, z0) =
1

2π

∫

dx

∫

dyeixpx+iypyΨ(x, y, z0) (4.3)

The mixed representation wave function Φ(px, py, z0) can be effectively propagated under
the barrier using the semi-classical (WKB) method. A key approximation, previously
used in the classic papers by Popov and coworkers [20, 22, 21], is that of small deviations
between the tunneling trajectories and the z axis. Then, the wave function at a point z is
approximated as [72]:

Φ(px, py, z) = Φ(px, py, z0)aT(z0, z)

aT(z0, z) =

√

|pz(z0)|
|pz(z)|

exp

[

−
∫ z

z0

pz(z
′)dz′ −

(p2x + p2y)τT

2

]

(4.4)

The tunnelling amplitude, which has been derived previously[20, 22, 21, 72] is the WKB
solution describing the motion of a particle under a 3D barrier, with the core (ionic)
potential treated perturbatively compared to the electric field. This approximation explains
the 1D-like form of the expression for aT(z0, z), with the 3D nature of the motion appearing
only through the momenta px, py.

It is in principle possible to perform this derivation using a general ionization poten-
tial taking into account the full 3D motion in the full core potential. I consider this an
extension of the current theory and will return to it later when I discuss the numerical
implementation.

In the classically forbidden region the electron momentum is imaginary, which is why
the absolute value is used for pz. The matching point z0 is supposed to be chosen well
before the exit of the barrier, and hence I approximate |pz(z0)| ≃ κ =

√

2Ip, where Ip is
the ionization potential. Finally, τT is the tunneling time between z0 and z,

τT =

∫ z

z0

dz′

pz(z′)
(4.5)

Given that z0 ≪ zex, the tunneling time is approximately independent of z0 and for z = zex
one finds τT ≃ 2zex/κ ≃ κ/F . With the approximate expression for Φ(px, py, z) now at
hand, the wave function in the coordinate space becomes

Ψ(x, y, z) ≃
√

κ

|pz(z)|
e
−

∫ z
z0

pz(z′)dz′ 1

2π

∫

dpxdpy e−ixpx−iypyΦ(px, py, z0)e
− 1

2
p2⊥τT (4.6)
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with p2⊥ ≡ p2x + p2y. Thus, 3D tunnel ionization is the combination of what looks like 1D
tunneling along the electric field with Gaussian filtering in the momentum space orthogonal
to the direction of tunneling. This tunneling filter is G(p⊥) = exp[−p2⊥τT/2]. Using the
convolution theorem, I can write the wave function as

Ψ(x, y, z) ≃
√
κ

√

|pz(z)|τ
e
−

∫ z

z0
pz(z′)dz′

[

Ψ(x, y, z0) ∗ e−
1

2τT
ρ2
]

(4.7)

where ρ2 = x2 + y2 and I took into account that the inverse Fourier transform of the
Gaussian filter G(p⊥) is g(ρ) = (1/τ) exp[−ρ2/2τT ]. The convolution is defined as:

(f ∗ g)(t) =
∫ ∞

∞
f(τ)g(t− τ)dτ (4.8)

As always with asymptotic tunneling theories, one has to carefully deal with matching
the bound wave function Ψ(x, y, z0) at the point z0 to the in-field semi-classical tunneling
amplitude from z0 to z. The potential problems hidden in this approach have recently been
highlighted in [49, 66], and ways to correct for the potential errors outlined in Ref.[49, 66]
have been discussed in [72].

For atomic ionization, one has to match spherically symmetric bound state with the
cylindrically symmetric behaviour at large distances from the origin, imposed by the electric
field. The molecular case is less straightforward, as it lacks the spherical symmetry of the
bound wave function. The procedure I use generalizes the approach developed by Popov
and co-workers for the atomic case [20, 22, 21], and introduces additional corrections that
turn out to be important in the molecular case. These corrections are absent in the
direct generalization of the atomic theory for molecules, known as MO-ADK [55]. Their
essence is to incorporate the angular width of the tunnelling wavefunction in the direction
perpendicular to the direction of tunnelling z. If θ is the angle with the electric field (i.e.
with the laboratory z-axis), then standard approximation of the tunnelling theories is to
replace sin θ ≈ θ, cos θ ≈ 1 and 1−cos θ ≈ 0, while I attempt to keep all terms proportional
to θ2 and hence do not neglect 1− cos θ. More detailed discussion follows below.

Eq.(4.7) can now be substituted into the general expression for the tunneling rate
Eq.(4.1).

Γ =
κ

τ 2
e
−2|

∫ z
z0

pz(z′)dz′|
∫

dxdy|Ψ(x, y, z0) ∗ e−
ρ2

2τT |2 (4.9)

From this equation I am able to derive a series of results, all of which are dependent on
the choice of the wave function Ψ(x, y, z0). I will examine four different choices: first is
expanding Ψ(x, y, z0) as a series of spherical harmonics, second a multi-center expansion
using a linear combination of atomic orbitals, third using an approximate analytic expres-
sion for the wave function and finally a numerical scheme which uses the output of quantum
chemistry codes to calculate the ionization rate on a grid.
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4.2.1 Multi-center expansions and MO-ADK

The general form in equation 4.9 can be used in multiple ways. The key is choosing the
wave function Ψ(x, y, z) properly. I will proceed with a generic asymptotic form then
specialize later.

Ψ(x, y, z) =

√

κ

2π
(−1)

|m|−m

2 CnlNlm(κr)
Q/κ−1eimφe−κrunl(r) sin

|m| θ (4.10)

This equation is similar to the wavefunction used to calculate the atomic ionization rate in
the previous chapter, equation 3.21. The Legendre polynomial has already been expanded
for small θ. The factor Nlm was given in equation (3.23). Finally, unl(r) is the radial part of
the wave function that differs from the hydrogenic wave function. This term encapsulates
everything in the Dyson orbital that does not appear in the atomic form in equation
(3.21). The Dyson orbital is defined as the overlap between the neutral(N-dimensional)
and ionic(N-1 dimensional) wavefunctions. It is the one-electron wave function which
represents the outgoing electron.

We proceed with the calculation in the same way as in the previous chapter, by Fourier
transforming the wave function and propagating it to the exit with the WKB wave function.
The WKB term is identical to that given in equation (3.14) except for a correction for the
non-coulombic short range part of the molecular potential.

aT(F, p⊥) =

√

κ

pz(z)

(

2κ2

Fz0

)Q/κ

exp

(

− κ3

3F
− κp2⊥

2F
+ κz0

)

e
−

∫ ze
z0

VMol(z
′)

pz(z′)
dz′

(4.11)

The correction is the last term in the expression above, where VMol(z) is the short range
component of the molecular potential. The Fourier transform and propagation is straight
forward and the integrals have been performed in the previous chapter. I will show the
wave function in equation 4.10 at the exit of the barrier, prior to taking the rate.

√

pz(ze)Φnlm(p⊥, φ0, z) = CnlNl|m|(−1)|m|eimπ/2 e
imφ0

2π

(

2κ3

F

)Q/κ

e−κ3/3F−p2⊥τ/2
(p⊥
κ

)|m|
R(θ, φ)

(4.12)

The result is similar to the wave function calculated in the previous chapter, the main
difference is the term R(θ, φ); this is the combination of the two non-coulombic terms in

the wave function and the ionization rate: R(θ, φ) = u(z0)e
−
∫ ze
z0

VMol(z
′)

pz(z′)
dz′
. This term is,

in principle, dependent on the orientation of the molecule in the ionizing field and the
direction of tunneling. Since R(θ, φ) is dependent on φ it complicates the calculation of
the ionization rate. For now I will assume that R(θ, φ) is just a number, which it is in a
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purely coulombic potential, and can be taken out of the rate integral, I will come back to
this approximation later to discuss its validity.

We calculate the rate for a multi-center wave function; I take a sum of the wave function
above each at different centers and different n, l,m. The sum is weighted by the relative
amplitudes of the Slater orbitals in a Linear Combination of Atomic Orbitals(LCAO)
expansion of the molecular wave function. The wave function is defined as,

Φ(p⊥, φ0, z) =
∑

nlm

gnΦnlme
−ip⊥ρn (4.13)

Where the ρn are the distance in the x-y plane to the atomic center in question. Here
the sum is over all centers and quantum numbers. The exponential is a result of the shift
from the origin of the centers. The coefficient gn contains amplitudes from each term in the
LCAO and θL dependent factors from rotating the system to the lab frame. To calculate the
rate I must square the wave function above and integrate out the perpendicular momenta:

Γ =

∫ ∫

pz(ze)p⊥dp⊥dφ0|Φ|2 (4.14)

The actual integrals are straightforward and again were done in the previous chapter, the
difficult part is taking the norm of the multicenter wave function. The resulting rate can
be expressed as follows.

Γ = R2
∑

n

(

|gn|2Γn +
∑

k>n

|gk||gn|
√

ΓnΓk2 cos [(mn −mk)φnk + αnk]An,k(θ)

)

(4.15)

An,k(θ) =
(−1)|mn|+|mk|+|mn−mk|/2−(mn−mk)/2

√

|mn|!|mk|!

∫ ∞

0

2xdxe−x2

x|mn|+|mk|J|mn−mk |(
xρnk

√
F√

κ
)

(4.16)

Where φnk is the polar angle of ρnk = ρn − ρk and αnk = arg(gng
∗
k). The expression above

gives several interesting results. First, I am able to derive closed form expressions for
ionization rates in molecules with an arbitrary number of LCAO elements on any number
of sites. The result is just a sum of single center ionization rates with a ‘cross-term’ which
is an interference between single center ionization rates. I will see later that there is a
better way to compute these rates without the large sums.

The form above can be taken for a single center; it then reduces exactly to the MO-
ADK theory[55]. I can then see why the MO-ADK theory does not have any interference
between states of different ‘m’. The integral in An,k(θ) is zero unless mn = mk.
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The lack of interference terms is solely the result of assuming the Coulomb correction is
independent of angle, i.e. R(θ, φ) is a constant. This assumption is what directly leads to
the form of An,k. Had I not made that assumption then there would be cross terms from
the expansion of R(θ, φ) and states of different ‘m’ would then interfere. The validity of
this assumption will be tested in the next section.

Equation (4.15) shows the most general result for the molecular ionization rate, it also
can be reduced to MO-ADK. These are two important results. The form above is not
particularly easy to use though; in the next section I will rederive the rate with a carefully
chosen wave function that will allow for simple and intuitive rates to be calculated.

4.2.2 Analytic solution

We now derive simple, closed form analytical expressions for tunnel ionization of different
orbitals in a linear molecule, with the electric field aligned at an angle θL relative to the
molecular axis.

Let ionization create the molecular cation in some final electronic state. I shall denote
Ψ(x, y, z) the corresponding Dyson orbital, i.e. the overlap between the initial N -electron
wave function of the neutral and the final N − 1 electron wave function of the electronic
state of the ion. In the asymptotic region z0 ≫ zin I write Ψ(x, y, z0) as:

Ψ(x, y, z0) ≃ Cκκ
3/2 e

−κr0

κr0
(κr0)

Q/κfM(θM , φM) (4.17)

Here spherical angles θM and φM refer to the molecular frame, i.e. they are measured
relative to the molecular axis ZM ; z0 ≡ r0 cos θM . The function fM(θM , φM), also given in
the molecular frame, incorporates the geometry of the orbital that, in turn, also reflects
the shape of the binding potential. Deviations from the single-center Coulomb potential,
which are obviously very significant near the core, are responsible for how fM(θM , φM) looks
like in the asymptotic region. Apart from fM(θM , φM), the radial asymptotic behavior
corresponds to a purely Coulombic tail of the potential −Q/r, with Q the effective charge.
This asymptotic form is quite adequate for a large range of molecules and orbitals, including
H2, N2, O2, CO2, HCl, HF, etc [73]. For molecules lacking the inversion centre, the cation’s
dipole moment will no longer vanish, and the asymptotic form may emerge further away
from the nuclei than for the symmetric molecules.

The angle between the molecular axis and electric field is denoted as θL. The plane
φM = 0 (i.e. the X-Z plane) is set to coincide with the plane defined by the molecular and
laboratory axes ZM and ZL, see Fig.2. In what follows, angles θ and φ refer to the lab
frame, while θM , φM refer to the molecular frame.
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Figure 4.2: Schematic representation of a molecular orbital (shaded blue) and the two
Z-axes, molecular ZM and laboratory ZL, which define the plane of tunnelling (X-Z). The
tunnelling angle θ is relative to the lab axis.

The steps of the calculation are (i) transformation of fM (θM , φM) into the lab frame,
which yields fL(θ, φ) after rotation by θL in the X-Z plane, (ii) calculation of the convolution
between the transformed function and the tunneling ‘filter’ g(ρ), and (iii) calculation of
the tunneling current.

Substituting Eq.(4.17) into Eqs.(4.7,4.1), and calculating the tunneling integral between
z0 and z for the potential −Q/r following [20, 22, 21] (i.e. using the eikonal approximation
to match the asymptotic form of the radial wave function), I obtain the following expression
for the tunneling rate

Γ = ΓA,sR(θL)

(4.18)

Here the first term

ΓA,s =
π

τT
C2

κe
− 2κ3

3F

[

2κ3

F

]2Q/κ

(4.19)

is the standard tunneling rate for an atomic s-orbital with spherically symmetric angular
structure. The second term incorporates all aspects of the orbital geometry, including the
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interference of the tunneling currents coming from the different lobes of the orbital. It is
expressed as

R(θL) =
1

R(0)

∫ ∞

0

ρ dρ e−ρ2/τT

∫ 2π

0

dφ|f̃L(ρ, φ; f)|2 (4.20)

where ρ = r0 sin θ and f̃L is the result of tunnel-filtering the original fL(θ, φ) in the mo-
mentum space, which is expressed via the convolution integral:

f̃L =

∫ ∞

0

ρ′ dρ′ e−ρ2/2τT e−κρ′2/2z0 1

2π

∫ 2π

0

dφ′eρρ
′ cos(φ−φ′)/τT fL(θ

′, φ′) (4.21)

Finally, the normalization factor R(0) is obtained by performing the same calculation with
fL(θ, φ) = 1, i.e. for an atomic s-orbital.

In what follows, I focus on orbitals with Σ and Π symmetry. For the latter, ionization
is dominated by the Πx-orbitals. Orthogonal to it Πy orbital has a nodal plane in the x−z
plane and hence its ionization in that plane is suppressed.

For Σ and Πx orbitals, the angular dependence fM(θM , φM) has the following form

fM(θM , φM) = F (cos θM , sin θM cosφM) (4.22)

(while for the Πy orbital sin θM cosφM would be replaced with sin θM sinφM). For conve-
nience, I will use the notation F (u, v), where u = cos θM and v = sin θM cosφM .

The transformation between the molecular and the lab frame is

cos θM → cos θL cos θ − sin θL sin θ cosφ

sin θM cosφM → cos θL sin θ cos φ+ sin θL cos θ (4.23)

with θ and φ the angles in the lab frame, and θL the angle between the molecular axis
and the electric field. Substituting these expressions into F (u, v), I can calculate all the
integrals using the fact that the angle θ between the tunneling electron and the field is
small, and expanding F (u, v) in Taylor series up to the second order with respect to θ.

For the moment, in contrast to the standard approximation cos θ = 1 [20, 22, 21], we
shall keep the small parameter 1 − cos θ ≈ θ2/2. Small tunnelling angles also imply that
ρρ′/τT < 1, allowing one to use it as a small parameter while calculating the convolution
integral over φ′ in Eq.(4.21). The final result is

R(θL, z0) ≃
[

F0 − (1− cos θT (z0))F2 +
1

4
sin2 θT (z0)F3

]2

+
1

2τT

1

(κ+ z0/τT )2
F 2
1 (4.24)
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where

θT (z0) =

√

2

(κ+ z0/τT )z0
(4.25)

is the characteristic angular width of the tunnelling wave function at the matching point
z0. The coefficients Fk are related to the function F (u, v) and its derivatives taken with
respect to u, v and calculated at u = cos θL and v = sin θL:

F0 = F (cos θL, sin θL)

F1 = Fv cos θL − Fu sin θL

F2 = Fu cos θL + Fv sin θL

F3 = Fvv cos
2 θL + Fuu sin

2 θL − Fuv sin 2θL (4.26)

So far, our result for the geometrical factor maintains its dependence on the matching
point z0. However, I can simplify Eq.(4.24) further and remove this dependence using one of
several methods. The traditional way is to use the assumption that z0 ≪ zex which is valid
only for weak fields. Taking into account that κτT = 2zex, I see that, formally, z0/τT ≪ κ.
Then, the dependence of the coefficient in front of F1 (the last term in the expression
Eq.(4.24) on the matching point z0 disappears. Now, let us look at the terms 1−cos θT (z0)
and sin2 θT (z0). Since I expect z0/τT ≪ κ, we see that 1− cos θT ∼ sin2 θT ∼ θ2T ∼ 1/κz0.
Given that the matching point is supposed to be sufficiently far, κz0 ≫ 1, the terms
proportional to F2 and F3 have a small parameter 1/κz0 ≪ 1 compared to F0. This leads
to simplified expression

R(θL, z0) → R(θL) ≃ F 2
0 +

1

2τTκ2
F 2
1 (4.27)

where the dependence of R(θL, z0) on the matching point is removed, as common in the
asymptotic tunnelling theories. Applying the result Eq.(4.27) to the atomic s- and p-
orbitals leads to the results identical with standard expressions [20, 22, 21, 37, 49].

While Eq.(4.27) and the overall result for the molecular tunnelling ionization rate use
the same approximations as the standard tunnelling theories, our expressions are simpler
than the standard expressions of MO-ADK[55]. Instead of expanding the wavefunction
into the spherical harmonics, as done in the MO-ADK, all one needs in Eq.(4.27) is the
first derivative in the direction perpendicular to the electric field, which yields F1.

In relatively weak fields, where the requirement 1 ≪ z0 ≪ zex holds well, the term
proportional to F1 becomes important only near the zeroes (nodal planes) of F0. However,
in most practical situations I am interested in tunnel ionization for relatively strong fields
of a few Volts per Angstrom, with ionization lifetimes about 10 fsec, i.e. with substantial
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ionization probabilities during the few cycles of the laser pulse. Under such conditions
the rather strong requirement 1 ≪ z0 ≪ zex can no longer be met. The F1-term becomes
important in a broader range of angles, not only where F0 = 0. The terms proportional to
F2 and F3 are also no longer negligible. One can easily check by expanding 1−cos θT (z0) ≈
θT (z0)

2/2 and sin2 θT (z0) ≈ θT (z0)
2 that the terms proportional to F2 and F3 are of the

same order as that proportional to F1. The associated corrections are also of the same
order as long as F0 6= 0.

To calculate ionization rates in this case, I can no longer use the traditional method of
ignoring the terms proportional to θ2T (z0), which means that the z0-dependence in Eq.(4.24)
should be handled differently. To deal with this problem, I keep all the terms proportional
to θ2T (z0) and calculate the characteristic tunnelling angle θT (z0) at the exit point zex:

θT (zex) =

√

2

(κ+ zex/τT )zex
(4.28)

with zex ≈ Ip/F . The tunnelling angle approaches 20-30o as the field strength reaches
Volts per Å(intensity approaching 1014W/cm2).

Thus, setting z0 → zex in Eq.4.24, I obtain the final expression for the molecular orbital
geometry-dependent term, better suited for strong electric fields and high ionization rates

R(θL) = R(θL, zex) ≃
[

F0 −
θ2T (zex)

2
F2 +

θ2T (zex)

4
F3

]2

+
1

2τT

1

(κ+ zex/τT )2
F 2
1 (4.29)

Our result shows to what extent the alignment-dependent tunnelling rate Γ(θL) directly
maps the ionizing orbital. The leading term in R(θL) Eq.(4.29) is F

2
0 , and it is indeed given

by the wave function in the direction of tunnelling. Corrections to this simple picture are
determined by F1, F2, F3. These terms are particularly important in the vicinity of nodal
planes, where F0 ≈ 0.

The effects of the higher order terms are particularly evident in the ionization rates of
carbon dioxide. It has recently been argued [74, 75, 65, 66, 76] that alignment dependent
molecular ionization rates map the geometry of the ionizing orbital, at least for relatively
simple orbitals. Intuitively, the rate of tunnel ionization in the strong infrared fields is
expected to (i) minimize when the ionizing laser field is aligned with the nodal plane of the
molecular orbital and (ii) maximize when the laser field is aligned along the most spatially
extended component of the orbital.

However in some cases experimental observations [59] strongly disagree with this intu-
itive picture. For the CO2 molecule, one expects that tunnel ionization from the highest
occupied molecular orbital (HOMO) should peak when the laser field is aligned at about
30◦ relative to the molecular axis, i.e. along the most spatially extended component of the
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HOMO. The same result is predicted by the standard tunnelling theory MO-ADK [55].
However, the experiment [59] observes sharply peaked ionization at about 45◦ .

We have performed numerical simulations using the technique described in Ref.[63]
which show agreement with experimental trends[59]. The calculation was done at a wave-
length of 1600nm for varying intensities and includes only a single channel, ionized from
the HOMO. Both the Πx and Πy components were included. Figure 4.3(a) clearly shows
the same peak location as the experimental results. The distribution is peaked in the 40-
45◦ range. The other trend in the numerical results is the peak position moving with field
strength. The general trend is for the peak to move closer to 45◦ as the intensity increases.

We use the function F (cos θM , sin θM cos φM) suggested in Ref.[73]):

F (cos θM , sin θM cosφM) = cosh(λ cos θM )(1 + c2 cos2 θ)(cos θM )n(sin θM cosφM)m (4.30)

where for Σ orbitals m = 0 and for Πx orbitals m = 1. For distances r0 = 6 − 8 a.u.
from the origin the parameters in Eq.(4.30) are λ = 2.5, n = 1, m = 1, c = 0, Cκ = 0.66,
for the Dyson orbital corresponding to the ionization from the CO2 ground state to the
CO+

2 ground state. The Dyson orbital was evaluated from the complete active space self-
consistent field (CASSCF) wavefunctions [77] using the GAMESS code with the modified
aug-cc-pV5Z basis [78, 79], where the L=5 functions were removed and 2 sets each of
uncontracted even-tempered S, P, and D functions with orbital exponents scales by factors
0.4 and 0.16, relative to the most diffuse functions of the same symmetry in the original
basis set were added. The CASSCF calculations use 16 (neutral) or 15 (cation) active
electrons in 11 orbitals. The (3x) 1s atomic orbitals were not included in the active space.

The resulting angle-dependent factor R(θL), calculated using Eq.(4.29) (for a static
field), is compared in Fig.4.3(b) with the results of ab-initio calculations for various field
strengths . They are consistent with recent numerical results of [64].

The general shape of the analytical result is in agreement with numerics, as well as the
fact that the peak is intensity dependent, but the details of the intensity-dependence of the
peak differs. The appearance of a local feature near θL = 0 for stronger intensities is also
present in both calculations and the experiment. This agreement confirms our analysis,
showing rotation of the maxima in the ionization rates with the field, though the exact
dependence of the peak on field strength is an ongoing question.

The rotation is dictated by maxima in the momentum-space representation of the or-
bital, which are located around 50-60◦ . As described above, the momentum space features
become progressively more important with increasing field strength. The interplay of co-
ordinate and momentum-space features manifests itself via the contribution of the terms
proportional to F2 and F3, which interfere with F0. The F1,2 terms arise from derivatives in
directions orthogonal to z and maximize near sharp coordinate-space features. Naturally,
such sharp features correspond to higher momentum components.
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Figure 4.3: Ionization of a CO2 molecule into the ground electronic state of the cation at
the equilibrium geometry of the neutral. Contributions from both Πx and Πy channels are
included. (a) Total ionization yield from numerical simulations including single ionization
channel. The yields for different intensities has been scaled to clearly show the change of
the peak vs intensity. (b) Angle-dependent factor R(θL) from the analytical analysis.

While our current analysis leaves out such intriguing effects as the interplay of different
orbitals (channels) in molecular ionization [67, 68, 69, 80], which may become important
in determining total strong-field ionization rates [64, 80], the first steps towards extension
to multi-channel case have already been done [80].

4.2.3 Numerical solution

The above process attempts several analytic and semi-analytic treatments of the general
equation (4.9). The analytic methods are quite successful and are designed specifically to
avoid performing computationally intensive simulations, though there are several approx-
imations made to allow for an analytical treatment. The benefit of a numerical approach
is to verify these approximations and to find limits to the region in which the analytical
methods are valid.

The numerical approach is done by solving equation (4.9) exactly after making use of
the convolution theorem. Any approximation made in the analytical treatment is then not
made and I get a solution that is closer to exact. The equation which is solved numerically
is:

Γ =
κ

2π2πτ 2
e
−2|

∫ z
z0

pz(z′)dz′|
∫

dpxdpy|Φ(px, py, z0)e−p⊥τ/2|2 (4.31)

The algorithm is straight forward, all that is needed is the Dyson orbital on a grid. The
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Dyson orbital is Fourier transformed then integrated with proper weights for the ionization
probability. The Dyson orbital is obtained in the same method as the previous section;
GAMESS is used to compute the complete active space self-consistent field (CASSCF) wave
functions with a modified aug-cc-pV5Z basis[78, 79, 77]. There is however an important
difference. The GAMESS orbitals here are polarized; they are calculated with a static
electric field. The reason this is done is to produce polarized Dyson orbitals, which are
slightly stretched in the direction of the field and are more suitable for matching the WKB
solution in the tunnel.

The method described above requires the GAMESS orbital at every laser polarization,
and since I am typically interested in angular ionization rates there can be many. For a full
angular distribution the GAMESS calculations end up taking on the order of the length
of time of an ab-initio numerical simulation. This means there is little or no benefit to
using this algorithm. However two important assumptions can be tested. First, the WKB
wave function is corrected for a coulombic potential and since the GAMESS orbitals can be
used to calculate self-consistent potentials I can quantitatively measure how different the
Coulomb potential is to the molecular potential inside the barrier. Second, the parameter
z0 is still present in the numerical calculation and must be chosen. The parameter formally
dropped out of the analytical calculation. The ionization rate can now be calculated as a
function of z0 and the way it changes studies. By proving that the ionization rate changes
slowly with the matching parameter I can justify the approximation used to remove z0
from the analytic solution.

The electron density can be found directly from the output of a GAMESS calculation.
This electron density is then used to solve Poission’s equation for the one-electron poten-
tial associated with the Dyson orbital. Figure 4.4 shows the Coulomb potential and the
potential calculated by GAMESS for H2 aligned and anti-aligned to the laser field. The
figure clearly shows that there is very little difference between the Coulomb potential and
either orientation of the H2 molecule. Indeed by 5 atomic units the difference between the
real potential and the Coulomb potential is almost insignificant. This justifies our choice
to approximate the true potential as coulombic.

The molecular potential can be approximated as a Coulomb potential only to a point.
For a larger molecule or even a diatomic with a large internuclear separation this approx-
imation will fail. It can be assumed that the approximation holds well enough to give
physically relevant results but it must be treated carefully for larger systems.

The other key approximation is how the parameter z0 is dealt with. In the theories above
I have simply set z0 to zex by analytically extending it to the exit of the barrier. In other
theories, such as PPT, approximations are made in such a way as to cause the quantity z0 to
formally drop out of the final equations. This process neglects some important corrections
which are kept in our more general derivation. However, it must be shown that the method
that we use to remove z0 dependence is valid.
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Figure 4.4: Comparison between the potential associated with the Dyson orbital of a
Hydrogen molecule and the Coulomb potential. The two potentials differ very little in the
under the barrier region.

We show that in the case of the Hydrogen and Nitrogen molecules the value of z0 indeed
doesn’t matter, from this I can infer that there is little dependence in the general case as
well.

First I compute the ionization rate numerically as described above. I perform this
calculation at several alignment angles and several intensities. The value of z0 is varied for
each angle and intensity and I can see how the rate changes as a function of z0.

Figure 4.5 shows the results of the numerical simulation for two alignment angles of
H2, aligned and anti-aligned. Each line represents a single intensity and the dotted line is
what is calculated using the analytical formula. It is immediately clear that for the range
of intensities that are of interest the rate is nearly flat across most of the tunneling region.
The only deviations are near the exits and entrance of the tunnel; this is totally expected
as the whole theory breaks down in these regions. The deviations also become more strong
with intensity, again this is expected as the theory is invalid for higher intensities. I can
conclude that the choice of z0 is arbitrary and any value sufficiently inside the barrier yields
the same result. This validates our choice of z0 in the analytical derivation.

The numerical version of our general theory has proven to be useful in verifying as-
sumptions made in the analytic derivation, though it is not very efficient on its own. I
have shown that the choice of z0 is not important and that the use of a Coulomb potential
is a good approximation in the case of small molecules.

To close this chapter I will briefly discuss the limitations of this theory. The theory is
limited in applicability in the same way as other quasi-static tunneling theories. The field
can’t be to strong or to high frequency. This translates to a Keldysh parameter of γ < 1.
The tunneling regime must still hold with no over the barrier or multi-photon ionization.
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(a) aligned Hydrogen molecule. (b) anti-aligned Hydrogen molecule

Figure 4.5: Ionization of a H2 molecule computed using the numerical algorithm. The
rate is nearly unchanged for most of the tunneling region. Lines are different intensities,
given by the values in the legend multiplied by 1014. The rate is plotted on a log scale and
the dotted lines represent the rate calculated using the analytical formulas of the previous
section.

Other key issues are related to complications relating to molecular systems. The theory
will not work if there are many low-lying levels out of which electrons can tunnel. The
multielectron nature of the process would override the simple tunneling picture used here.
Finally the system can not be to large spatially and the ionizing orbital should be well
localized.
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Chapter 5

Applications of Tunnel Ionization:
Laser Induced Electron Diffraction

The richness and complexity of tunneling in strong laser fields has been shown in the
previous two chapters. While interesting in its own right tunnel ionization’s real utility is
in its applications to other phenomenon in strong field physics. Tunnel ionization forms the
first step of the celebrated three step model[38, 40], this model which gives a fundamental
explanation to most strong field phenomenon is well known throughout the field. This
chapter will introduce the three step model and its applications in strong field physics.
The model itself and most applications will be briefly commented on while laser induced
electron diffraction will undergo a more thorough treatment.

5.1 Three - Step Model and selected applications

The three step model is a simple model which predicts the effect of an intense laser field
on an atom. It was first proposed by Corkum[38] and Lewenstein[40] nearly 20 years ago
and has its origins in work by Kuchiev[81]. The model uses a simple classical picture of the
ionized electron to describe the dynamics in the strong field. The first step is ionization;
this is tunnel ionization under the barrier created by the oscillating electric field of the
laser. The second step is propagation, where the classical electron is pushed away from
the ion then turned around by the field and accelerated back into the parent ion. The
final step is the recollision step where the electron collides with the parent ion and does
one of several things: recombines, leading to high harmonic generation(HHG), elastically
scatters, leading to diffraction or inelastically scatters which leads to non-sequential double
ionization. Figure 5.1 schematically shows the semi-classical three step model. The simple
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Figure 5.1: Schematic of the three step model. Showing 1. Tunneling, 2. Acceleration in
the field, and 3. Recombination. Taken from [82].

three step model is remarkably accurate and has enjoyed much success in the past two
decades.

We will now proceed with a derivation of the three-step model in the form of the
Strong field approximation(SFA) applied to High Harmonic Generation(HHG) then discuss
important discoveries and applications of the three-step model.

5.1.1 Derivation of SFA for HHG

The typical approach to laser matter interaction is to assume that the field is weak, this
allows for the standard perturbation theory approximations to be used[9, 83]. The pertur-
bation theory clearly breaks down when in the strong field regime. The reasonable thing
to do would be to use perturbation theory but with a different perturbation. This is the
essence of the Keldysh type theories; use the potential of the field free system as the per-
turbation and treat the laser field exactly. In this system I are able to derive an expression
for HHG and illustrate the three-step model. I start with the time-dependent Schrödinger
equation:

i|Ψ̇〉 = [Ĥ0 + V̂ (t)]|Ψ〉 = Ĥ0|Ψ〉+ |F (t)〉 (5.1)

Here V (t) describes the interaction with the laser field and H0 is the field-free Hamilto-
nian. I introduce the notation |F (t)〉 = V̂ (t)|Ψ〉 for a reason, I will treat equation 5.1
as an inhomogeneous differential equation where F (t) is the inhomogeneous part and the
homogeneous part is the field-free equation.

i|Ψ̇〉 = Ĥ0|Ψ〉 (5.2)
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The solution to equation 5.2 is trivial,

|Ψ(0)〉 = e−iĤ0t|Ψ(t = 0)〉 (5.3)

where |Ψ(t = 0)〉 is the initial wave function of the system and the superscript (0) designates
this as a solution to the field free case. The inhomogeneous equation 5.1 can be solved
using a standard approach. We look for Ψ(t) with the following form:

|Ψ(t)〉 = e−iĤ0t|C(t)〉 (5.4)

where C(t) is a trial function found by plugging equation 5.4 into equation 5.1. Solving
for C(t) I find:

|C(t)〉 = −i

∫ t

dt′eiĤ0t′ |F (t′)〉+ |Ψ(t = 0)〉 (5.5)

This can be used to find the formal solution of the Schrödinger equation.

|Ψ(t)〉 = −i

∫ t

dt′eiĤ0(t−t′)V̂ (t′)e−i
∫ t′ Ĥ(t′′)dt′′ |Ψ(t = 0)〉+ e−iĤ0t|Ψ(t = 0)〉 (5.6)

Where I used the full propagator of equation 5.1:

|F (t)〉 = V̂ (t)|Ψ(t)〉 = V̂ (t)e−i
∫ t Ĥ(t′)dt′ |Ψ(t = 0)〉 (5.7)

This solution is exact, without any approximations being made. The first term is the field
induced piece and the second term is the field free term. Though complicated and opaque
this equation is the starting point for some interesting approximations. First I will project
this state onto the final state of the system, called |Ψf〉. I will assume that this state was
not originally populated so that the field free term is zero. The transition amplitude is
then:

afi(t, ti) = −i

∫ t

ti

dt′〈Ψf |eiĤ0(t−t′)V̂ (t′)e−i
∫ t′ Ĥ(t′′)dt′′ |Ψ(t = 0)〉 (5.8)

The term above is called the direct S-matrix amplitude. It connects the initial state
|Ψ(t = 0)〉 to the final state |Ψf〉. The physical interpretation of the direct S-matrix term
is as follows; from time ti to some instant t′ the system evolves under the influence of both
the field free potential and the laser field. At t′ it is instantaneously kicked by the field
for the last time, then it evolves under the field free Hamiltonian until it is measured in
the final state at t. This means that from the moment t′ the system sits in the final state
accumulating phase and does not make any more transitions.
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Another more illuminating way to view equation 5.8 is to use the property of the
Schrödinger equation that makes it symmetric under time reversal. By performing this
time reversal I arrive at the time-reverse direct S-matrix amplitude:

afi(t, ti) = −i

∫ t

ti

dt′〈Ψf |e−i
∫ t′ Ĥ(t′′)dt′′ V̂ (t′)eiĤ0t′ |Ψ(t = 0)〉 (5.9)

It is from this equation that I can make the Strong Field Approximation(SFA) and derive
the three-step model. I must first look at the physical meaning of equation 5.9. It is similar
in concept but completely different in physical terms to the time-direct version. From the
initial time ti until some instant t′ the electron sits in the ground state acquiring phase,
then at t′ it is instantaneously kicked by the laser field into the continuum where it evolves
under the full Hamiltonian until the final time t. In this picture it is important to realize
that the ground state is the only bound state to take part in the evolution and all other
states are ignored. While the electron is in the continuum it is dominated by the effect
of the laser field. It is then plausible to replace the full propagator in equation 5.9 with
an approximate propagator that only accounts for the effect of the laser field, ignoring the
atomic potential. This is the Strong Field Approximation (SFA).

The reason this is useful is that the propagator for an electron in an oscillating field is
known analytically. It is called the Volkov propagator. The use of the Volkov propagator
significantly simplifies the S-matrix amplitude as we will see below; first I will sketch the
derivation of the Volkov propagator.

The free electron in the laser field follows a simple motion: it only oscillates in the
electric field of the laser. If at time t′ it has a kinetic momentum p(t′), then I know its
kinetic momentum at any later time t by the following equation

p(t) = p(t′)−A(t′) +A(t) (5.10)

where A(t) is the vector potential of the electric field defined as

E(t) = −∂A(t)

∂t
(5.11)

The instantaneous energy during these oscillations is

E(t) =
1

2
[p(t′)−A(t′) +A(t)]2 (5.12)

and the Volkov propagator is

e−i
∫ t
t′ Ĥ(t′′)dt′′ |p(t′)〉 = e−i

∫ t
t′ E(t′′)dt′′ |p(t)〉 (5.13)
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This propagator can then be used in equation 5.9 to simplify the amplitude of finding an
electron in state |p〉 at time t.

ap(t) = −i

∫ t

ti

dt′e−i
∫ t
t′ E(t′′)dt′′+iIp(t′−t0)〈p+A(t′)−A(t)|V̂ (t′)|g〉 (5.14)

The physical interpretation given above is even more clear in this form and we can now
look at high harmonic generation. First I should point out several major flaws with the
SFA and their consequences.

1. the ionization amplitude is incorrect as it doesn’t consider the core. This can be
mitigated by using well known tunneling theories (see Chapters 2 and 4).

2. propagation is also wrong as it does not include scattering off the core or the Coulomb
effects in the continuum.

3. the SFA is the first term in a perturbative expansion in terms of the atomic potential,
this series does not converge in general.

4. the SFA is not gauge invariant, this is a major drawback. The above derivation was
performed in the length gauge (V = dE), the other approach is to use the velocity
gauge (V = p̂A). Where p̂ is the canonical momentum. The gauge problem manifests
itself in the pre-factor so the theory is good to exponential accuracy and most of the
physics is preserved even when dropping the pre-factor.

5. The SFA uses Volkov waves (plane waves) which is complete and not orthogonal to
the initial state of the system so I end up with an overcomplete basis set. This again
only affects the pre-factor and I can maintain the important physics and ignore the
prefactor

Despite these problems the SFA works surprisingly well and it has broad applicability, I
will now apply it to HHG as an illustration of the three-step model.

High harmonics are generated when an electron is recaptured by its parent ion. The
electron releases all of the energy gained in the field as one big photon which will be a
harmonic of the incident field. The laser induced polarization can be defined as follows

P(t) = Nd(t) = N〈Ψ(x, t)|d|Ψ(x, t)〉 (5.15)

Where N is the number density. All that is needed is 〈Ψ(x, t)|d|Ψ(x, t)〉 and the wave
function is already known from the SFA:

Ψ(t) = ag(t)|g〉+
∫

dp|p〉ap (5.16)
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Figure 5.2: Graphical explanation of the harmonic component of the dipole d(Ω). The
electron is kicked into the continuum at time t′ with momentum p(t′), oscillates between
t′ and t finally reaching the state with momentum p(t) from which it emits a photon of
energy Ω.

Now, calculating the dipole moment I get

d(t) = −i

∫ t

ti

dt′
∫

dpe−i
∫ t

t′ E(t′′)dt′′+iIp(t′−t0)〈p+A(t′)−A(t)|V̂ (t′)|g〉〈g|d|p〉 (5.17)

We have assumed that the ionization is not too strong so that I can ignore the first term
in equation 5.16. Since the SFA is accurate only in the exponent they are incorrect and
are not needed, to simplify this equation I will drop all prefactor terms. I will also Fourier
transform the dipole as we are interested in the Fourier components of the dipole.

d(Ω) ≈ −i

∫

dt

∫ t

ti

dt′
∫

dpe−i
∫ t
t′ E(t′′)dt′′−iIp(t′−t0)+iΩtE cosωt′ (5.18)

The physical interpretation of the above equation is demonstrated graphically in Fig 5.2.
The electron can be born at any time t′ - thus the integral over t′. It can emit a harmonic
at any moment t - thus the integral over t and the electron can be in any |p〉 state at
the moment of emission hence the integral over p. The phase term Ωt corresponds to the
emission of a photon with energy Ω and the rest of the phase is from the propagation away
from and back to the parent ion. The Ip term is due to the energy being measured from
the ground state.

We will use the stationary phase method to perform the integrals in equation 5.18. This
is valid when the ponderomotive energy, the average energy of a free electron oscillating in
a laser field, is much larger than the frequency of the field.

Up = E2/4ω2 ≫ ω (5.19)
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For typical experimental parameters this inequality holds and the stationary phase method
is valid. To perform the integrals I must find the stationary phase points for all three
integrals in equation 5.18, below we define the phase and the three stationary phase points.

Φ(t, t′, p) =

∫ t

t′
E(t′′)dt′′ + Ip(t− t′)− Ωt (5.20)

∫ t

t′
dt′′[p+A(t′′)−A(t)] = 0 (5.21)

1

2
[p+A(t′)−A(t)]2 + Ip = 0 (5.22)

1

2
p2 + Ip = Ω (5.23)

The three stationary phase equations can be rewritten in a transparent way:

x(t) = x(t′) (5.24)
1

2
p2(t′) + Ip = 0 (5.25)

1

2
p2(t) + Ip = Ω (5.26)

The first equation specifies that the electron must return to where it was born in order to
emit a photon. This means that the electron has to return to its parent ion in order to
recombine. The second condition cannot be satisfied classically as the electron must have
negative energy. This can only happen in tunneling so that the time is complex. Finally
the third condition is a simple statement of energy conservation.

These three equations are the essence of the three step model. Step one the electron
must tunnel, step two the electron oscillates in the field and returns to its parent ion and
step three the electron recombines and emits a photon.

We will briefly present the result of the stationary phase integration and some of the
main features of the resulting spectrum. The integral above reduces to the following
amplitude which can be separated into three terms representing each step of the three step
model.

d(Ω) =
∑

t

aion(tb)aprop(tb, t)arec(t,Ω)e
−i

∫ t
tb

1
2
[A(t′′)−A(tb)]

2dt′′−iIp(t−tb)+iΩt
(5.27)

aprop ∝ 1

(t− tb)3/2
(5.28)

aresc ∝ E cosωtbdg(Ω) (5.29)
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Figure 5.3: Kinetic energy of the electron at the moment of first return to the nucleus, as
a function of the moment of return. Provided by David Hoffman.

The sum counts all the stationary phase trajectories that lead to the same energy, in
general there are many. In equation 5.28 the whole harmonic component of the HHG
spectrum is given by two of the three factors, the third factor is the ionization component
and is identical to the ADK/PPT formulas discussed in Chapter 2 for ions and Chapter
4 for molecules. The propagation factor aprop describes the spreading of the wave packet
with time and the recollision term describes the overlap between the returning electron
and the ground state — the probability of a specific frequency being emitted at a specific
time.

Figure 5.3 shows one of the most important results of this analysis of HHG: the en-
ergy of return is limited from above. Figure 5.3 shows the return energy in units of the
ponderomotive potential as a function of recollision time in cycles. The maximum return
energy is 3.17Up which occurs at nearly 0.75 cycles, which corresponds to a phase of 17
degrees at time of birth.

This upper limit means that the HHG spectrum cannot extend past Ip + 3.17Up. The
procedure to find this cut-off is to solve the stationary phase equations 5.24,5.25,5.26 for
all possible times of birth. This gives a unique connection to time of recollision and the
final momentum of the electron.

From figure 5.3 it is clear that for every possible energy there are two possible return
times. These are known as short and long trajectories and there is much interesting physics
surrounding them. Another important feature of this phenomenon is that the HHG pulse
is chirped, this also has major experimental implications which I will not discuss here.

Finally as a reference I have included a typical HHG spectrum obtained using the above
analysis. The cut-off can clearly be seen as well as the plateau region.

In this section I have introduced the three step model and derived it for the process
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Figure 5.4: A typical HHG spectrum for 800nm light and 1014W/cm2 intensity. The cut-off
and plateau region are clearly visible. Courtesy of David Hoffman.

of high harmonic generation. Next section will be devoted to illustrating recent results in
HHG and non-sequential double ionization(NSDI) followed by an in depth look at laser
induced electron diffraction(LIED).

5.1.2 Current status of HHG and NSDI

First I refer the reader to a recent review of strong field physics, this reviews the current
status of most strong field phenomena[41]. We will highlight some of the important results
contained in this review and explore the cutting edge of the field that is not contained in
the above review. The two topics I will pay particular attention to are attosecond streaking
and high harmonic spectroscopy.

Attosecond streaking

Attosecond streaking refers to the process of measuring an IR pulse using an attosecond
XUV pulse in a pump probe configuration. The idea is to generate an XUV pulse through
HHG then use that pulse to probe another process. First discussed here: [84, 85, 86], this
method accurately measures the electric field of the IR probe[87, 88, 2]. Recently there
have been several other applications of this concept to measure ‘tunneling time’[89], and
phase delays between states in solids[90] and gases[91] as well as valence electron motion
in gases[92].

The concept behind the attosecond streak camera is straight-forward. An attosecond
XUV pulse is used to single-photon ionize a gas which launches a wave packet directly into
the continuum. This is done in the presence of an IR field; the delay between the IR field
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Figure 5.5: Light wave oscillations of a phase stabilized few-cycle laser pulse recorded over
a delay interval of ± 7fs around the envelope maximum of the laser field for two different
phase settings of its CEP that differ by π. Taken from [87]

and the XUV field can be controlled. Once again we make use of the simple analysis of an
electron in the continuum presented above:

p(t) = p(tb)−A(tb) +A(t) (5.30)

This states that the momentum at some time t can be related to the momentum at some
other time tb by the vector potential. The final momentum is recorded in the experiment
and the initial momentum is known as the initial state is known. The vector potential at
the detector is zero so therefore the vector potential at the time of birth can be found. By
scanning the delay between the two fields the vector potential at any time can be found and
the vector potential of the IR pulse can be retrieved (both strength and phase). In principle
streaking is that simple, though in practice things are much harder. See for example[84]
for a complete description of the algorithms used to retrieve the vector potential using this
streaking method. Figure 5.5 shows the vector potential of a short pulse recorded using the
attosecond streak camera. The figure shows the resulting vector potential for two separate
CE phases.

Tomography and High harmonic spectroscopy

The original paper on tomography from the NRC group[93] has set off a huge wave of
research and caused a great stir in the community with over 500 citations in six years.
The principle behind this paper is to image the molecular orbitals, particularly the highest
occupied molecular orbital(HOMO) of a target molecular gas. This technique would enable
the coveted molecular movie to finally be produced.
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The idea of tomography comes from the structural minimum discovered by Lein et
al.[94, 95, 96]. They found that HHG from molecules is angle dependent and exhibits a
minimum at the photon energy which corresponds to a destructive interference from the
emission from different atoms in a molecule.

The idea that high harmonic spectra contains information on the target and the abil-
ity to align molecular samples to a high degree is what led to the first tomography
experiment[93]. In the experiment HHG spectra were taken from aligned molecular sam-
ples with many different polarizations. These ‘slices’ then contained information on the
molecule at a variety of angles. Standard tomographic reconstruction algorithms can then
be used to reconstruct the orbital from which the electron ionized.

Figure 5.6 shows the results obtained for N2. The agreement between the reconstruction
in the top frame and the ab-initio results in the bottom frame is remarkable. The beating
along the edges of the reconstruction arise from not sampling the high energy part of the
orbital (the cut-off of the HHG spectrum is too low). The shocking results obtained for
N2 has lead to a huge body of work to extend this to other molecules and to theoretically
confirm or refute the results shown in [93].

Theoretical studies led by Smirnova et al.[77, 97, 98, 99] have recently concluded that
the tomographic reconstruction of N2 was an outlier and that any other molecules would
not allow for such clean reconstructions. This theoretical evidence is based on several re-
alizations: first, the plane wave reconstruction used experimentally is not accurate (this
points to a breakdown in the SFA) and, second, multi-electron effects cannot be ignored,
specifically multiple ionization channels are present and therefore multiple molecular or-
bitals coherently interfere.

Despite the realization that molecular orbital tomography is not as straight forward
as once thought there is still much advancement in the field. The discovery of multiple
ionization channels has lead to the so called ‘dynamic minimum’ which competes with
the structural minimum of Lein has lead to several useful results and much research into
hole motion in molecular ions and new types of spectroscopy[100, 101, 102, 103, 104, 105].
There has also been attempts to adapt tomographic reconstructions to work for more than
just N2 for example see:[71, 70].

While the original tomographic reconstruction was not the molecular movie that it was
originally designed to be it has ignited a huge amount of research and many more exciting
methods are being developed which will hopefully lead to the elusive molecular movie.

Non-sequential double ionization

Non-sequential double ionization (NSDI) is the third process that can occur in strong
laser fields. It was discovered by Suran and Zapesochnyi[106, 107] and subsequently
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Figure 5.6: Molecular orbital wavefunction of N2. a) Reconstructed wavefunction of the
HOMO of N2. The reconstruction is from a tomographic inversion of the high harmonic
spectra taken at 19 projection angles. Both positive and negative values are present, so
this is a wavefunction, not the square of the wavefunction, up to an arbitrary phase. b)
The shape of the N2 2pσg orbital from an ab-initio calculation. The colour scales are the
same for both images. Taken from [93]
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Figure 5.7: Measured He ion yields for linear polarized, 100 fsec, 780nm light. Calculations
are shown as solid (SAE) and dashed (ac-tunneling) lines. The measured intensities are
multiplied by 1.15. The solid curve on the right is the calcuated sequential He2+ yield.
Taken from [108]

rediscovered[108] for strong IR fields. A resurgence of interest has followed new exper-
imental techniques which enable better detection and analysis of the electrons in coinci-
dence. The key lies in the COLd-Target Recoil Ion Momentum Spectroscopy (COLTRIMS)
technique[109] also known as the reaction microscope. This allows for the detection of the
ion fragments and any electrons in coincidence. The momentum of all the fragments are
recorded to give a clear picture of the non-sequential process.

NSDI can occur when the recolliding electron inelastically scatters off its parent ion,
in contrast to when it recombines(HHG) or elastically scatters(LIED). The recolliding
electron gives some of its energy to its parent ion leading to a second correlated ionization.
This process is among the simplest examples of electron-electron dynamics in strong fields.

The signature of the NSDI process is the so called ‘knee’[107] in the ionization yield as
a function of intensity, see figure 5.7. The knee occurs when the transition from sequen-
tial double ionization to non-sequential double ionization occurs. The sequential process
is when a second electron is tunnel ionized in seperate events later in the laser pulse.
The transition to NSDI occurs when the field becomes strong enough that the recolliding
electron has enough energy to cause a second ionization.
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The most recent results on NSDI relate to the understanding of the correlated momen-
tum spectra obtained by the COLTRIMS aparatus including the so called ‘fingers’ and
of below-threshold NSDI. Below-threshold NSDI occurs when the electron recollision does
not give sufficient energy to the parent ion to cause a second ionization. The energy is
enough to excite an electron to a high enough state that it is immediately field ionized.
For a full discussion see for example: [110].

5.2 Laser Induced Electron Diffraction (LIED)

Electron diffraction is one of key tools in studying structures. Modern electron diffraction
setups use an electron gun to image a target. The spatial and temporal resolution of the
setup are determined by the de Broglie wavelength of the electron and the duration of the
electron pulse. The combination of sub-Angstrom spatial and few hundred femtoseconds
temporal resolution are possible today [111, 112]. Given that electrons repel each other,
shortening of the electron pulse to 100 femtoseconds and below to improve the temporal
resolution requires significant reduction in the electron density. Maintaining strong signals
favours high densities, i.e. solid-state targets (see e.g. [111]).

It has recently been proposed that laser-induced electron re-scattering could be an al-
ternative to traditional electron diffraction [113]. In this approach the number of electrons
in the diffracting pulse is reduced to one (per molecule): the electron used for diffraction
is taken from the molecule itself. Hence, there are no space-charge effects to lengthen the
electron pulse, making sub-femtosecond temporal resolution possible. Since the electron
does not have to be transported from afar, the scattering probability is orders of mag-
nitude higher. The electron is detached from the parent molecule by an infrared laser
field. Oscillating in the laser field, it re-scatters on its parent ion [38], picking up diffrac-
tive information. In principle, it should be possible to obtain sub-Angstrom spatial and
sub-femtosecond temporal resolutions[95, 94, 114, 115, 116, 117, 118, 119, 120].

There have been several studies exploring the feasibility of laser-induced electron diffrac-
tion (LIED). Two and three-dimensional calculations have been carried out which show sig-
natures of diffraction [95, 94]. Analytical calculations [114] and numerical two-dimensional
[114] and three-dimensional [115, 116] simulations clearly show diffraction in H+

2 and give
recipes to measure and read diffraction patterns [121].

Recent advances in experimental technology have led to the first experimental studies
of LIED [74]. Angle and energy-resolved electron spectra appear to contain diffraction
patterns, when measured in coincidence with singly charged molecular ions. Coincidence
measurements allow one to effectively separate the elastic scattering channel from inelastic
channels. Indeed, in the presence of a strong laser field, excitation of the molecular ion
by the re-colliding electron almost inevitably leads to further ionization, i.e. production of
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doubly charged ions. The appearance of singly charged ion effectively rules out inelastic
channels.

So far, theoretical and experimental studies of LIED have concentrated on linearly
polarized laser fields. This restriction confines the motion of the recolliding electron along
the laser polarization axis, leading to extra complications in the diffraction pattern. Indeed,
each half cycle, an electron wavepacket is ejected from the molecular ion. In a linearly
polarized field, a train of several wavepackets recollides within one pulse. Overlap of
multiple diffraction events, each yielding different energy spectra due to changing laser
intensity, makes the already complicated task of analyzing diffraction pattern even more
difficult. In longer pulses, it is also possible for an electron wavepacket to make multiple
returns to its parent ion [122, 123], with different energies. The diffraction information it
retains from the first recollision is convoluted by several recollision and diffraction events.

The primary goal of LIED is to obtain structural information from the target molecule.
The retrieval of this information turns out to be extremely complicated; some of the prob-
lems are:

1. non-monochromatic electron pulse. The returning electron wave packet contains
energies ranging from 0ev → 100eV, the superposition of all these energies convolutes
the energy resolved spectrum in the presence of the laser field.

2. the presence of the laser field. The laser field distorts the spectrum and adds an
extra dependence on recollision time and the spectrum ends up being ‘stretched’ by
the field

3. multiple recollisions of the same wave packet. After a wave packet recollides it does
not go straight to the detector, instead it continues to oscillate in the field and in
principle is able to return to the core and elastically scatter several more times. This
is shown in Figure 5.8(b). This shows the current density seen by the parent ion
from a single electron wave packet. There are many recollisions from the same wave
packet with at least 2 of significance.

4. multiple ionization events from the same pulse. For nearly every pulse currently
available in a lab there are at least two ionization events that contribute to the LIED
spectrum, in most cases there are many more. This is illustrated in 5.8(a) where the
ionization events for a short pulse are circled in green.

It turns out that all of these problems can be overcome. Items 1 and 2 listed above can
be solved using the monochromatic cuts of [114] and items 3 and 4 can be minimized by
the use of orthogonal two color(OTC) fields as discussed below and in [124, 72].

Before beginning the discussion of OTC fields I will first outline the process of using
the monochromatic cuts. To understand the effect of the field on the spectrum I invoke the
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Figure 5.8: Illustrations of complications in determining structure from LIED. (a) Typical
short pulse used in LIED calculations, the two contributing ionization events are circled
in green. (b) Current density seen by parent ion for single electron wave packet. Showing
several recollision events from the same electron

semi-classical analysis of the previous section. It is clear that the velocity of a scattered
electron without the laser field is v2x + v2y = v2 where v is the incoming velocity and vx, vy
are the parallel and perpendicular components of the velocity after scattering. The effect
of the laser induced oscillation changes the elastic scattering condition to the following:

(vx − v0 sinωt)
2 + v2y = v2(t), v0 = E/ω (5.31)

Here vx, vy are the final components of the velocity and v(t) is the incoming velocity, which
is now a function of the time of recollision. This shows that the diffraction image taken
at a specific energy will lie on a circle of radius v(t) and will be shifted along the x-axis
by v0 sinωt (the vector potential at the time of recollision). The technique to recovering
the diffraction image is to take a cut along the circle described by equation 5.31. This is
then guaranteed to be a circle of constant energy of recollision and a meaningful diffraction
spectrum can be recovered from this monochromatic cut.

Figure 5.9 shows the results of an ab-initio calculation performed by Spanner et al.
[114]. These spectra highlight the important aspects of LIED spectra and serves as a test
case for reading diffraction images using the monochromatic cuts. The figures show the
electron momentum spectrum from diffraction from a Hydrogen molecular ion (H+

2 ) at an
internuclear distance of 4 atomic units. This diatomic should exhibit Young’s double slit
type diffraction peaks and minima. First let us describe the basic features of figure 5.9.
The strong signal in the center of the momentum spectra are the direct electrons, these
extend to 2Up and wash out the forward scattering part of the diffraction image. The back

61



Figure 5.9: (a) Electron spectrum |Ψ(vx, vy)| for a 1.25 cycle pulse with a constant ampli-
tude, E=0.14 a.u. (I≈ 6.9× 1014 W cm−2) and λ = 800nm, each new color represents the
order of magnitude; (b) spectral cut for a fixed moment of recollision (ωt ≈ 4.4);(c),(d)
same as (a), (b) but for a 5 fs pulse f(t) = cos2(πt/2T ), T=5fs. Taken from [114]
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scattering region extends to the higher energy part of the spectrum the peaks and valleys
are clearly caused by diffraction. The circular fringes are interference fringes between long
and short trajectories in the same ionization rate. The key elements for reading these
images is to have strong signal in the backscattering region (requires a lot of statistics
experimentally) and high contrast between peaks and minima. The cuts in figure 5.9(d)
show the monochromatic cuts for two ionization events. The red line corresponds to the
first circle in figure 5.9 and the black to the second circle. The peaks and minima can be
fitted to the expression for double slit diffraction and the fitting factor will correspond to
the internuclear separation.

For very short pulses the linear field works quite well. For longer pulses the effects
discussed above start to blur the clear diffraction image and another method has to be
used. Below I discuss the use of OTC fields to control rescattering and allow for the use of
longer pulses. Using OTC fields one can steer trajectories and prevent wave packets from
recolliding.

5.3 Orthogonal Two Color Fields

We analyze the use of orthogonally polarized two-colour (OTC) fields to eliminate the
problems associated with LIED. Two orthogonal polarizations drive the electron motion
in two dimensions. Classically, proper tuning of the frequencies, strenghts and the relative
phase of the two fields allows one to guide and shape the electron trajectories [125, 126, 127]
. These classical trajectories form the skeleton for the quantum propagation of the electron
wavepackets. Shaping the trajectories, one gains control not only over the recollision times,
angles, number and energy of the recollision events, but also over the sub-cycle ionization
rates which control populations of different continuum trajectories. Recent studies have
shown that controlling ionization rates and times by using laser fields with time-dependent
polarization one can control key aspects of attosecond pulse trains [128, 129, 130], which
result when the returning electron recombines to its original bound state. It has been
suggested that by controlling recollision angles and times one can select the polarization
of attosecond pulses and produce single-shot tomographic maps [125, 127].

Our goal is to control electron trajectories to limit the number of returning wavepackets.
The ultimate result is only a single recollision event by a shaped electron wavepacket. Not
only this makes the LIED pattern easier to read, but it also dramatically improves the
temporal resolution, which is determined by the duration of this single recollision event.

As mentioned above, I use two orthogonally polarized laser pulses to achieve control
of the re-collision event. The x axis is defined as the polarization of the primary field.
The primary field is the stronger of the two and is a few cycle pulse fixed at a central
wavelength of 800nm. The orthogonal field, defining the y axis, is a weaker field with
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a variable wavelength. For computational convenience the secondary field has the same
pulse length and envelope as the primary field. This restriction is for simplicity only as in
principle the envelopes could be completely arbitrary. For example, the orthogonal field
could be much longer than the primary field and the result would be similar to those shown
below as long as the orthogonal field is too weak to ionize on its own. I shall start with the
qualitative analysis, and then move to numerical simulations. For the qualitative analysis,
I explicitly assume that ionization occurs in the direction of the primary field, while the
weaker second color is responsible for steering the electronic wave packet. We do not make
such assumption in the full numerical simulations. The field strength of the secondary field
is fixed to one half the primary field, this ensures the validity of the above assumption.
There are three remaining tunable parameters: the frequency of the secondary field and
the carrier envelope phase of each field. Tuning of these parameters gives control over the
LIED spectra. Equations (5.32,5.33) give the general expression for the vector potentials.

Ax(t) =
Ex0

ωx
f(t) sin(ωxt + φx) (5.32)

Ay(t) =
ηEx0

κωx
f(t) sin(κωxt + φy) (5.33)

The associated electric field is defined as E(t) = −dA(t)
dt

. In Eqns (5.32,5.33) E0x is the
electric field strength of the primary field and η is the ratio of the strength of the two
fields, here fixed to 0.5. The frequency of the primary field is ωx and κ is the ratio of the
frequencies. I fix the frequency of the primary field and tune κ. The envelope function
is, f(t) = cos2(πt/2T ), T is the full-width half max of the pulse. The φi are the carrier
envelope phases of each pulse. In a previous paper[124] only the relative phase of the two
colors was investigated. The relative phase is ∆φ = φy − κφx; In the few-cycle regime,
the relative phase between the two colors is no longer sufficient to describe the two-color
control, the carrier-envelope phases of both colors have to be explicitly specified. This
statement is illustrated in Fig. 5.10. The top frame of Fig. 5.10(a) shows an OTC given
by equations (5.32,5.33) with CEP phases φx = π/3,φy = π/2 and the top frame of Fig.
5.10(b) is the same fields with CEP phases φx = φy = 0. Both frames have the same
∆φ = 0. The major differences between the figures is the height and location of the peaks.
This affects the ionization rate and the amount of energy an electron can gain while in the
continuum. The displacement of the electron in the orthogonal direction is also affected,
thereby changing the character of the re-collision.

We focus our study on two values of κ and vary the values of φx and φy. The two
values of κ illustrate two different types of control: short-wavelength and long-wavelength.
The types of control refer to the wavelength of the control field relative to the primary
field, which is fixed at 800nm. For the short-wavelength control field I set κ = 3/2, which
corresponds to the control field wavelength of 533 nm. For the long-wavelength control
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(a) φx = φy = 0 (b) φx = π/3 and φy = π/2

Figure 5.10: Classical simulations for two different configurations of CEPs. The ratio of
the frequencies is set to κ = 1.5 and the ratio of the field strengths is η = 0.5. Top
frame illustrates ionization(red) and re-collision(green) windows in the field. Middle frame
shows electron displacement in direction parallel to field(yellow) and perpendicular to the
field(blue). Bottom frame shows return energies for each ionization event.
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field, I set κ = 2/3, which gives the control field wavelength of 1200 nm. Non-integer values
of κ are used to break the spatial symmetry between consecutive ionization events, which
allows us to enhance a specific ionization/re-collision event compared to its neighbors,
separated by 1/2 of the laser cycle of the primary field. The 533nm field also allows for
sub-cycle control: the control field changes faster than the ionizing field, causing long and
short trajectories to see different strengths of the control field. Long and short trajectories
are affected differently, and with the right values of φx and φy one or the other will not
re-collide. The long-wavelength control has the opposite effect, the field changes little
over a single ionization event so it is less likely that suppression of either long or short
trajectories occurs. However, in this case, for short pulses the strength of the longer-
wavelength control field changes significantly over different ionization events, allowing for
the effective elimination of all but one ionization event as well as the interference between
multiple overlapping re-collision events.

Classical calculations are helpful to better understand the mechanism behind OTC
control described above. By using classical calculations it is simple to show why both CE
phases are important over just the relative phase. In the top panel of Fig 5.10, I show
the electric fields in both directions. Red dots represent the ionization window and green
dots the re-collision window. By fixing the relative phase ∆φ while changing the value of
both CEPs, the windows change position but not width. The same occurs with the shape
of the trajectories returning to the core, this can be observed in the middle panel of Fig
5.10 where the electron displacement in x and y as a function of time is shown for both
ionization events.

In contrast, the ionization yield and the energy of the re-collision does depend on
the position of the ionization window within the envelope of the field . In the case of
(φ1 = 0, φ2 = 0) shown in the left panel, the first ionization event re-collides with more
energy than the second event. This is due to the fact that the field envelope is growing
in the first event, while it decreases for the second ionization event; this means that the
electric field accelerating the electrons in the return to the core is weaker in the second
event.

The third panel shows a comparison of the energy of the returning electrons as function
of time for the two cases. In the case of (φ1 = π/3, φ2 = π/2) the main ionization window
is no longer in the middle of the pulse, but a bit earlier which allows the electrons to be
accelerated by a stronger field resulting in a higher re-collision energy as shown in the
panel. Therefore, both CEPs are important in the case of two colors in short pulses as
shown here. The right choice of CEPs will provide a better diffraction spectra by avoiding
interferences with the direct electrons signal.

A clean diffraction scenario is one that minimizes effects that degrade or complicate
the image. These effects, detailed before in Refs.[114, 124], include multiple ionization
events in a single laser pulse and multiple returns of the same liberated electron. The
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combination of ultrashort laser pulses and orthogonal fields allows one to effectively address
these problems. Under ideal conditions a single re-collision event occurs during the laser
pulse; the resulting diffraction pattern will be free of complicated interference patterns and
easier to interpret using prescriptions put forth by Refs.[115, 114]. Our calculations also
demonstrate that the application of OTC fields allow one to exert control over long versus
short trajectories from the same ionization event. For certain sets of field parameters it is
possible to suppress either long or short trajectories and remove complicated interferences
between the two sets of trajectories. This is particularly important for targets that are
weakly aligned.

There are several additional criteria for judging the fitness of a LIED spectra. Most
important is high population in the high energy part of the spectrum[114, 124, 121, 131],
which is best suited for extracting the molecular structure. Another important parameter
is the contrast between the fringes. This work analyzes how the control over the carrier-
envelope phases of the two orthogonally polarized laser fields can be used to improve the
quality of the LIED spectra, and I present the best optimized conditions for the production
of good spectra.

The control appears in two ways. First, the wavepacket is steered away from the core
by the second color. By optimizing the pulse, an electron wavepacket can be steered to
only partially collide with the ion or miss the ion completely. Second, the total electric
field which controls ionization is lowered during some ionization events and raised during
others by choosing κ,η, and φi.

We can see in Fig. 5.11(a) that the second color increases the total field strength
for the central ionization (near the peak at 5 femtoseconds in Fig. 5.11(a)) event but
contributes nothing to the event a half cycle earlier. These are the only two ionization
events that contribute to diffraction. The ionization rate, calculated using the Yudin-Ivanov
formula[23], is plotted in Fig. 5.11(b). The central ionization event is significantly stronger
than the event before. The presence of the second color contributes to this relationship.

The main control comes from steering the electron in two dimensions. A wavepacket
will hit or miss the core depending on the perpendicular drift velocity given to it by the
field. For weaker y-component of the field, this drift is controlled by the the vector potential
of the second color at the moment of ionization, v⊥ ∼ Ay(tb). Fig. 5.11(a) shows how the
chosen frequency ωy minimizes the y-drift for the central ionization event while maximizing
it for the ionization event before it. Indeed, for the central ionization event the y-field has
its maximum, and its vector-potential goes through zero. The ionization event before it
has the y−field equal to zero, and hence the Ay(t) passes through the maximum.

Fig. 5.12 shows examples of typical classical trajectories originating near the peaks
of the two ionization events. These trajectories are given zero initial velocities and thus
represent the center of the corresponding electronic wavepackets. The return for the central
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Figure 5.11: (a) Electric field of the field in the x direction (solid red), y direction(dashed
blue) and the total field (dotted blue). (b) ADK ionization rates for the linear x direction
field(solid red) and the two-color field(dotted blue).

ionization event (dashed blue curve (a)) and the miss for the previous event (purple dotted
curve (d) ) are evident.

Since the quantum wavepacket is spreading, it is possible that a part of it will re-collide
with the parent ion even if the center of the wavepacket misses the target. Classically, this
is possible for the trajectory with initial v⊥0 large enough to counter the perpendicular
drift v⊥ given by the field. Fig 5.12 shows the classical trajectories with the values of v⊥0

that make them return. For the ionization event near 4 femtoseconds the trajectory needs
a large ( 0.8au) initial velocity in order to return. Creating an electron with such velocity
by tunneling is unlikely: it corresponds to an increase in the effective ionization potential
Ip,eff = Ip + v2⊥0/2 [132]. Quantum-mechanically, this means that the recollision occurs
with the very edge of the wavepacket.

For the main ionization event, the trajectory that returns to the origin is nearly identical
to the trajectory starting with zero initial velocity. Hence, for this ionization event the
recollision is almost head on, with the center of the wavepacket.

The tunnel ionization rate recalculated with the effective ionization potential Ip,eff =
Ip+v2⊥0/2 is plotted in 5.11(b). The new ionization rate for the ionization event I are trying
to suppress is four orders of magnitude lower than the ionization rate at the peak. The
huge difference in ionization rates essentially reduces the pulse that leads to diffraction to
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Figure 5.12: Classical trajectories in a two color field. Red solid line shows trajectory for
the central ionization event, starting with zero vy. Blue dashed line is the trajectory that
starts with slightly non-zero vy that ensures return to the origin. Purple dashed line shows
the trajectory for the ionization event a half-cycle before the central event, starting with
zero vy. Green dashed line is the trajectory with a large vy that ensures return to the
origin.
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Figure 5.13: Angle of return versus time of return for a recolliding electron wavepacket.
Return time is measured from the maximum of the field

a single cycle or less, with associated increase in the time resolution. We can see from Fig.
5.12 that the wavepacket no longer recollides at a uniform angle. The angular dependence
of the diffraction image now becomes important. Fig 5.13 shows the angle of return as
a function of return time. The return angles range anywhere between zero and ninety
degrees. Importantly, the bulk of the wavepacket produced by the main ionization event
returns at nearly the same angle, ensuring simplicity of the diffraction pattern.

5.4 Control of LIED using OTC: Results

We will now discuss the results of using OTC to image molecules using LIED. The results
shown below are taken from [124, 72]. Two methods have been employed to calculate the
electron momentum spectra. First is a qualitative method based on an analytical analysis
of the S-Matrix, second is a much more quantitative ab-initio method. Both methods are
discussed below followed by key results.

5.4.1 S-Matrix Method

Consider a diatomic molecule in an intense two-color infrared (IR) laser field. The system
starts in its initial state |Ψ0〉 with an energy Eg = −Ip, where Ip is the ionization potential.
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The Hamiltonian is Ĥ = Ĥ0 + V̂L where Ĥ0 is the field free Hamiltonian and V̂L is the
electron-laser interaction. We work in the length gauge, resulting in V̂L = E(t) · x.

Using the strong-field S-matrix formalism[45], I can write the probability amplitudes to
find the system in the state with final momentum kf as (atomic units are used throughout):

ak(kf , t) = 〈kf |Ψ(t)〉 = aresc(kf ) + adir(kf) =

−
∫ tc

t0

dt′
∫ t

t0

dtc

∫

dk〈kf |e−i
∫ t
tc

Ĥ(τ)dτ V̂c(tc)|k〉

〈k|e−i
∫ tc
t′ ĤV (τ)dτ V̂L(t

′)e
−i

∫ t′
t0

Ĥ0(τ)dτ |Ψ0〉

− i

∫ t

t0

dt′〈kf |e−i
∫ t

t′ ĤV (τ)dτ V̂L(t
′)e

−i
∫ t′
t0

Ĥ0(τ)dτ |Ψ0〉 (5.34)

Here V̂c is the potential of the molecular core, time-ordering operator for the exponential
operators is implied.

This exact expression is known as the time-reversed S-matrix amplitude. Its particular
form allows one to attribute different physical processes to the various terms in this ex-
pression. The second term describes ionization and is usually associated with the so-called
‘direct’ electrons that do not recollide with the parent ion. The moment t′ is associated
with the moment of ionization. The first term describes the recolliding electron, which
interacts elastically with the ionic core at the moment tc after ionization at the moment
t′. Since this is the only term responsible for laser-induced diffraction, for the moment I
drop the ‘direct’ term from the further analysis.

Equation 5.34 can be derived from the S-Matrix equations described above. Equation
5.6 is the first term in a perturbative expansion of the atomic/molecular core. I can derive
the second term(equation 5.34) using the following identity:

|Ψ(t)〉 = e
i
∫ t
t0

Ĥ(t′′)dt′′ |Ψ(t = 0)〉 (5.35)

e
i
∫ t

t0
Ĥ(t′′)dt′′

= −i

∫ t

dt′eiĤ0t′ V̂ (t′)e−i
∫ t′ Ĥ(t′′)dt′′ + e−iĤ0t (5.36)

Using this identity and changing the partitioning scheme to Ĥ = ĤV + V̂c, where ĤV is
the Volkov propagator and V̂c is the core potential, and inserting equation 5.36 into 5.6
one arrives at equation 5.34.

For Eq.5.34 to be useful, something must be done to the final propagator from tc to
t, which uses the full Hamiltonian. The zero-order approximation is to ignore the ionic
potential after tc completely. This is commonly known as the strong field approximation
(SFA) corrected for single recollision. Already this approximation correctly captures key
qualitative features of the strong-field scattering. Since I are interested in the qualitative
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analysis of how control over the electron trajectories affects the global diffraction patterns,
this approximation is reasonable. Further improvement is possible using the Strong-Field
Eikonal-Volkov Approximation (SF-EVA), see [97, 34], and I hope to consider it elsewhere.

Once the ionic potential in the final propagator is dropped, the propagator from tc to
t becomes the Volkov propagator, yielding

〈kf |e−i
∫ t

tc
ĤV (τ)dτ = e−

i
2

∫ t

tc
[kf+A(τ)]2dτ 〈kf +A(tc)| (5.37)

Here ĤV = Ĥ − V̂c is the Hamiltonian for the free electron in the laser field. Correspond-
ingly, the continuum state characterized by the kinetic momentum kf , |kf〉 is a plane wave.
I have taken into account that after the end of the laser pulse A(t) = 0.

Now the rescattered amplitude in Eq.(5.34) becomes:

aresc(kf) = −
∫ tc

t0

dt′
∫ t

t0

dtc

∫

dk e−
i
2

∫ t

tc
[kf+A(τ)]2dτ− i

2

∫ tc
t′ [k+A(τ)−A(tc)]2dτ+Ip(t′−t0) ×

×〈kf +A(tc)|V̂c|k〉〈k−A(tc) +A(t′)|V̂L(tb)|Ψ0〉 (5.38)

For the two colors polarized orthogonally to each other, the vector-potential has two com-
ponents. The main component of the electric field, with the carrier frequency ω1 = ω, is
polarized along the x axis. The weaker component of the laser field, with the frequency
ω2 = 1.5ω, is polarized along the y-axis. I shall also assume that the laser-molecule in-
teraction is in the tunneling regime for the main x-component of the laser field. That is,
I assume that the corresponding Keldysh parameter is small, γ2

x = Ip/2Up,x < 1. Here
Up,x = E2

x/4ω
2 is the ponderomotive potential associated with the x-component of the

laser field.

The following steps are rather standard. First, I calculate the momentum integral
analytically in a standard way, using the stationary phase method (see e.g. [133]). The
stationary phase point with respect to the kinetic momentum k is

kc(t
′, tc) = A(tc)−

1

(tc − t′)

∫ tc

t′
A(τ)dτ (5.39)

In terms of the initial momentum at t′, kb(t
′, tc) = kc(t

′, tc)−A(tc) +A(t′), this equation
reads

∫ tc

t′
[kb(t

′, tc)−A(t′) +A(τ)]dτ = 0 (5.40)

As usual, it ensures that the electron born at t′ returns to its initial position at tc. For
each pair of t′ and tc, it yields the x and y components of the initial kinetic momenta
kb = kc −A(tc) +A(t′). The integral is performed by expanding the phase of the integral
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in powers of (k− kc) to the second order and assuming that the dipole transition matrix
elements are slow functions of momentum.

aresc(kf) ≈ −
∫ tc

t0

dt′
∫ t

t0

dtce
− i

2

∫ t
tc
[kf+A(τ)]2dτ− i

2

∫ tc
t′ [kc+A(τ)−A(tc)]2dτ+Ip(t′−t0)

(

2π

tc − t′ − iτ

)3/2

〈kf +A(tc)|V̂c|kc〉〈kc −A(tc) +A(t′)|V̂L(tb)|Ψ0〉

(5.41)

Moving to the integral over t′, I use the limit γ2 < 1 to simplify the derivation compared to
the more standard, straightforward saddle-point analysis, often referred to as the method
of ‘quantum trajectories’ [134]. The standard saddle point equation with respect to t′

reads:
[kc(t

′, tc) +A(t′)−A(tc)]
2 + 2Ip = 0 (5.42)

Instead of looking for complex-valued solutions of Eq.(5.42) in the two-color field, I are
taking a slightly different route. First, I note that the ionization is dominated by the x-
component of the driving laser field, and hence tunneling occurs primarily in that direction.
Second, I note that the small value of the Keldysh parameter γ2 = Ip/2Up < 1 means that
the saddle points for t′-integral are close to the real time axis.

Therefore, instead of expanding the phase of the integrand around the saddle point
Eq.(5.42), I can begin by looking for the real-valued solutions t′ = tb of the simpler equation

kc,x(tb, tc) + Ax(tb)−Ax(tc) = 0 (5.43)

This equation means that the x-component of the kinetic momentum of the electron at
the moment of birth t′ = tb is equal to zero, kb,x(tb, tc) = 0. Together with the condition of
return Eq.(5.39) for the motion along the x-axis

kc,x(t
′, tc) = Ax(tc)−

1

(tc − tb)

∫ tc

tb

Ax(τ)dτ , (5.44)

it connects the moment of birth t′ and the moment of return tc in the exact same way as
for the usual classical trajectories in the one-color problem.

The main idea of this approach is to expand the t′-dependent phase in the integrand in
Eq. (5.38) in Taylor series around the point tb given by Eqs.(5.44,5.43) and not around the
exact saddle point given by Eqs.(5.39,5.42). As a price for this simplification, the Taylor
expansion has to be done up to the third order for the x-component of the phase in the
integral Eq. (5.38). Indeed, Eq.(5.43) ensures that the second derivative of the Volkov
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phase for the x-component of the motion is equal to zero. The resulting integral can be
expressed in terms of the Airy functions, and then the asymptotic limit of the Airy function
for large arguments can be used to simplify the expression. For weaker y field, the result
is

aresc(kf ) ∝
∑

tb

∫ t

t0

dtce
− i

2

∫ t

tc
[kf+A(τ)]2dτ− i

2

∫ tc
tb

[kb(tc,tb)+A(τ)−A(tb)]
2dτ+Ip(t′−t0)

(

2π

tc − t′ − iτ

)3/2

〈kf +A(tc)|V̂c|kc〉aion(tb, kb,y(tb, tc)) (5.45)

Where the ionization amplitude is

aion(tb, kb,y(tb, tc)) ∝ exp

(

−23/2

3

I
2/3
p,eff

|E(t′b)|

)

(5.46)

and the effective ionization potential is

Ip,eff(tb, tc) = Ip +
1

2
[kb,y(tb, tc)]

2 (5.47)

Ip,eff takes into account that the electron has to leave the tunnel with non-zero initial
momentum in order to return to the origin. The dipole matrix element between the ground
state and the kb state has been absorbed into Eq (5.46) along with the prefactor resulting
from the t′ integration. The moment of birth tb is defined by Eq. (5.44) and the nonzero
y-component of the initial kinetic momentum, kb,y(tb, tc) is defined by the condition that
at the moment tc the electron returns to its initial position not only for x- but also for the
y-motion, after starting at the moment tb:

kb,y(tb, tc) = Ay(tb)−
1

tc − tb

∫ tc

tb

Ay(τ)dτ (5.48)

The sum in 5.45 is over all trajectories that can return to the core at the given moment tc.
In our pulse, multiple returns are suppressed and hence there is only one essential term in
the sum.

As discussed in the previous section, the presence of the y-field enters via the effective
ionization potential, which is higher if the electron has to start with non-zero velocity in
the y-direction. This velocity is high for the first ionization event at 4 femtoseconds and
is negligible for the main ionization event.

Finally, the last integral is calculated using the stationary phase method. For a given fi-
nal momentum kf , the corresponding stationary phase equation for the moment of collision
tc is

1

2
[[kf +A(tc)]

2 =
1

2
kc(t

′
b, tc)

2 − Ip
∂t′b
∂tc

|tc (5.49)
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We note that for each ionization event (i.e. each half-cycle of the laser field), there are two
solutions to Equation (5.49).

The result of the integration is

aresc ∝
∑

tc,tb

−eiφ(k0,tb,tc)acoll(tb, tc)aion(Ip, tb)
2π

(tc − tb − iτ)3/2
(5.50)

where the summation is over all collision moments tc that yield the same final momentum
kf (two for each half-cycle), and over all ionization moments tb that could yield collision
at the same instant tc. In our pulse, where multiple returns are suppressed, there is only
one important tb for each tc.

The collision amplitude in the equation Eq. (5.50) is

acoll(tb, tc) ∼
√

2π

E(tc)[kf +A(tb)−A(t)]
〈kf −A(t) +A(tc)|V̂c(tc)|k0〉 (5.51)

The phase in the equation Eq. (5.50) is given by the classical action of the stationary
phase trajectory:

φ(kb, tb, tc) = −1

2

∫ t

tc

[kf +A(τ)−A(t)]2dτ − 1

2

∫ tc

tb

[k0 +A(τ)−A(tc)]
2dτ + Ip(tb − t0)

(5.52)

Since for each ionization event (i.e. each half-cycle of the laser field), there are two solutions
to Equation (5.49) (the long and short trajectories) this phase does not disappear when I
calculate the probabilities |aresc|2. It produces an interference between the (in our case two)
essential trajectories leading to the same final momentum of the electron. This interference
results in the ring structures in the electron spectrum.

To generate spectra from Eq. (5.50) I have to first solve the stationary phase equations
Eq’s. (5.43,5.44,5.49). For each kf there are two sets of (kb, tb, tc) which correspond to the
long and short trajectories discussed in the previous paragraph. The resulting amplitudes
for each set of stationary phase points are summed coherently to give a total recollision
amplitude for all possible kf . This way the entire angle and energy resolved spectrum
can be calculated. The calculations were done by solving the stationary phase equations
numerically, then using these solutions to calculate the total spectrum from Eq. (5.50).
The results are given below.

5.4.2 ab-initio Method

The second method makes use of the integration of the Time Dependent Schrödinger
Equation (TDSE) in 2D, in the polarization plane of the two fields. The TDSE includes
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the effects from the core exactly, all bound states, and the entire momentum spectrum,
however it lacks the physical insight to the process that the SFA-based method gives. I
integrate the TDSE numerically using the split operator technique implemented in the
qFishbowl[135] code. The Hamiltonian in 2D is.

H =
p2x
2

+
p2x
2

−
∑

±

Zeff
√

a2 + (x± R0 cos(θ)/2)
2 + (y ±R0 sin(θ)/2)

2
+ pxAx(t) + pyAy(t)

(5.53)
Soft core parameter a2 = 0.5 and R0 = 4.0 a.u. is the internuclear distance. The angle θ
defines the alignment of the molecule with respect to the x axis, Zeff = −1. The energy
for the ground state in this configuration is E0 = −0.96 a.u.

The momentum distribution is obtained by projecting out the bound states and then
making a Fourier transform for the free electrons. The final momentum distribution is
taken at the end of the pulse and therefore, electrons colliding later than this time are not
considered.

5.4.3 533 nm

We now show results of SFA-based and ab-initio quantum calculations on the model H+
2

molecule described above. The primary field is centered at 800 nm and the control field
is centered at 533 nm. The intensities are 7 × 1014 W cm−2 for the primary field and
1.75 × 1014 W cm−2 for the control field. The pulses are 5 femtoseconds in duration.
Figure 5.14 shows four angle and energy resolved momentum spectra calculated with the
SFA-based formalism. Each frame corresponds to different combinations of CE phases.
Here, the molecule is aligned parallel to the primary laser pulse (θ = 0). The top two
frames of fig. 5.14 have the same relative phase ∆φ = 0. While the location and strength
of the diffraction peaks are the same in both frames there is substantially more signal in
the high energy backscattering region of fig 5.14(b). The difference is nearly one atomic
unit in momentum. This is clear evidence that the CEP of both fields is important in short
pulses. The effect of changing the CEP phases while holding the relative phase constant
is to change the energy of the returning electron. The variations in the return energy seen
in the figures are not due to the presence of the control field; they are determined by the
CEP phase of the primary field. At the same time it is the relative orientation of the two
colors that is responsible for the quality and location of the diffraction peaks.

The four panes in fig 5.14 highlight the power of using OTC fields for LIED. Each
exhibits an important feature of OTC fields and each one has a single good re-collision.
Figures 5.14(a) and 5.14(b) both have a relative phase of zero, fig 5.14(a) is for the same
parameters as shown in [124] while fig 5.14(b) is the same relative phase but optimized for
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(a) φx = 0 and φy = 0 (b) φx = π/3 and φy = π/2

(c) φx = π/2 and φy = π/2 (d) φx = −π/4 and φy = 0

Figure 5.14: Angle and energy resolved momentum spectra of LIED in OTC fields with
κ = 1.5 and T = 5fs. Frame (a) and frame (b) have the same relative phase ∆φ = 0.
The color scale is logarithmic; the numbers on the scale are orders of magnitude. The
momentum is measured in atomic units.

a higher return energy. Both demonstrate a single strong re-collision and good signal in the
backscattering region. The returning electron wave packet responsible for this spectrum
is a fraction of a femtosecond in length and only includes short trajectories. Indeed,
the absence of interference fringes along the peaks indicates that the long trajectories
are not present. The isolation of short or long trajectories is very important for weakly
aligned samples, as the diffraction fringes are different for long and short trajectories.
The difference comes from the varying angle of re-collision across the wave packet and
the varying time spent in the continuum leads to different phases for the long or short
trajectories and therefore different diffraction criteria. The changing angle of re-collision
adds to the complexity of the resulting photo-electron spectrum because the recollision
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(a) φx = 0 and φy = 0 (b) φx = π/3 and φy = π/2

(c) φx = π/2 and φy = π/2 (d) φx = −π/4 and φy = 0

Figure 5.15: ab-initio angle and energy resolved LIED spectra with κ = 1.5 and T =
5fs. Frame (a) and frame (b) have the same relative phase ∆φ = 0. The color scale is
logarithmic; the numbers on the scale are orders of magnitude. The momentum is measured
in atomic units.

matrix element is dependent on recollision angle. For the type of fields considered here the
angle of recollision is constant for the bulk of the recollision[124]. Figure 5.14(c) is another
good example of strong backscattering signal and suppression of long trajectories. The
significant feature in this plot is that a large portion of the overall signal is outside of the
2Up region(Up = E2

x0/4ω
2
x is the ponderomotive energy, the average energy of an electron

in an oscillating field, in this case Up=1.53a.u. or 41eV. The 2Up region is then roughly
2.5 a.u. in momentum on the figures). Since the direct electrons are confined to the 2Up

region[136] it is important to look in the high energy region to avoid interference from
the direct electrons. The high signal outside the direct electron region and the absence of
long trajectories make this spectrum ideal for analyzing the LIED pattern. Figure 5.14(d)
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carries the attempt to achieve high backscattering signal to the extreme. In this spectra
only the signal above 2Up was considered in optimization. Nearly all the population lies in
areas which can be easily read at the expense of having the interference fringes from the
presence of both long and short trajectories. The SFA-based calculation leads to a good
qualitative understanding of what is possible with OTC fields but ab-initio calculations
are needed for a complete understanding of LIED in OTC fields.

These results can be compared to the results of studies of the effect of ellipticity on
high harmonic generation. Mairesse et al.[137] observed a modulation on the relative
amplitudes of individual harmonics which depended on ellipticity. This ability to control
which harmonics are created is identical to the results shown here, where high energy
electrons are allowed to rescatter and low energy electrons are suppressed. In both cases
the ellipticity is what provides the control over the returning electron wavepacket. The
effect of ellipticity on LIED spectra will in general have an analogous effect on the XUV
radiation emmited in high harmonic generation.

We now show the ab-initio calculations for the same field setup. Figure 5.15 shows
the same field configurations as the SFA-based plots above. The qualitative similarities
between the two methods validate the SFA-based approach as a tool for a quick analysis
of the degree of control exerted by the selected configuration of the laser fields. The high
population in the center of the plots is the contribution of the direct electrons, which is
underestimated in the SFA based calculations as a result of the saddle point analysis. The
main differences from Fig. 5.15 is the contribution of the direct electrons to the total
spectrum, which covers a substantial part of the LIED pattern. Apart from the direct
electron contributions the figures are in qualitative agreement, with the same energies and
fringe patterns. The differences arise for several reasons, most important of which is the
effects of the core on the continuum electron. The ab-initio calculations account for this
exactly and the SFA calculations only perturbatively. The effect of the Coulomb core
is in general to make the isolation of short or long trajectories less complete. The SFA
calculations show strong suppression of the fringes caused by interference between long and
short trajectories which are much less obvious in the ab-initio results. This is an indirect
observation of Coulomb focusing[138] which is pulling more short and long trajectories
back to the core to recollide.

5.4.4 1200 nm

We now turn to the second control scheme: long-wavelength control. The purpose of this
scheme is to maximize the return energy and to maximally suppress all but one ionization
event. The longer wavelength of the control field allows for both long and short trajectories
to see the same field resulting in uniform behavior over an entire pulse. Each ionization
event then experiences different parts of the control field leading to a suppression of all
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Figure 5.16: ab-initio: φx = π/6 and φy = π/3. Angle and energy resolved LIED spectra.
The pulse is 5 fs FWHM at 7× 1014W/cm2 for the primary field.

but one re-colliding electron wave packet. The higher re-collision energy due to the long
wavelength control field is another important benefit of long-wavelength control. For these
simulations I used the same field and molecule configuration as above. Figure 5.16 shows
ab-initio calculations for two interesting CE phase combinations and is an example of a
very high energy re-collision event. The backscattering region is at six atomic units of
momentum (nearly 0.5keV in energy). The ring structure from the interference of long and
short trajectories is particularly prominent in these plots, which means the entire electron
wave packet is allowed to re-collide. The high signal in the backscattering region combined
with good contrast and high energy make this set of CE phases particularly appealing.

5.4.5 Outlook

The results presented above show the flexibility of OTC fields. The three control param-
eters: κ, the ratio of frequencies and φx,φy the CE phases of the ionization and control
fields combine to give a high degree of control over the LIED spectra. In principle the
ratio of the fields can be used as another control parameter; the degree of control pro-
vided by this parameter is not as great as the ratio of frequencies and the carrier envelope
phases and so it was not considered here. Configurations to maximize return energies,
suppress all but a single returning ionization wave packet, suppress long or short trajec-
tories in a single ionization event, or to maximize the signal in the backscattering region
can all be prepared. The strong backscattering signal is important for reading the LIED
spectra[114, 124, 121, 139]. The suppression of long or short trajectories is important when
the molecule is not aligned perpendicular to the ionization field. Indeed, in this case the
long and short trajectories produce different diffraction fringes that interfere and obscure
the diffraction pattern.
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There are many uses for OTC fields in LIED spectroscopy, some of which the authors
hope to explore in the future. These include tailoring the OTC fields to produce more
monochromatic returning electron wave packets, studying rotating or vibrating molecules
to measure motion between re-colliding electron wave packets and manipulating the Volkov
phase of the ejected electron to eliminate or reduce the chirp of the electron wave packet
thereby removing the intrinsic chirp on HHG emission. The polarization gating of Corkum
et al [140] could be combined with OTC fields to produce a single re-collision event with
much longer pulses.
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Chapter 6

Conclusion

Through the past three chapters we have examined the effects of intense laser fields on
atoms and small molecules. We have discussed how atoms and molecules ionize in strong
fields. The theories of atomic ionization have been in existence for several decades so
a thorough and newer treatment of these theories was given in the context of modern
applications. The theories of PPT and Landau were derived in the classical fashion and
the exponential dependence of the field strength and ionization potential is emphasized.
The importance of the prefactor in the expression was also briefly mentioned. Finally the
derivation of PPT was redone using the modern Fourier transform approach developed by
the author.

In the next chapter the Fourier transform based approach to tunnel ionization rates
was applied to small molecules. First we apply our theory to the theory of molecular
ADK. We are able to show that under specific assumptions our theory goes into MO-ADK
as a limiting case. This key result shows that this new theory is inherently better than
MO-ADK as it is exactly derivable from the general theory. Next we extend MO-ADK to
multiple centers. This theoretical exercise showed the importance of the magnetic quantum
number and how different magnetic quantum numbers mix. A much more intuitive method
of calculating rates was then presented, which gives accurate and physically transparent
rates for a variety of molecules. Finally, a numerical implementation of the molecular
ionization theory was presented with discussions on the importance of the matching point,
z0, and the possibility of a time dependent theory.

In the final chapter we reviewed the state of the art in the strong field community. This
includes recent results in high harmonic generation and laser induced electron diffraction.
The current work being performed in this field mostly centers around imaging techniques
and that is where the future work will lie. The most promising techniques are those related
to high harmonic generation: tomographic reconstruction and imaging hole dynamics.
While the possibility of tomographic reconstruction of molecular orbitals is controversial

82



it is an extremely promising tool for imaging dynamics in small molecules. The imaging
of hole dynamics is much more exciting and it potentially can be used in a wide range of
larger molecules, giving insight into the rearrangement processes and electronic motion in
molecules.

There is also great momentum building in the high frequency laser field, the use of
attosecond pulses from high harmonic generation along with the completion of X-ray free
electron lasers gives a number of new tools with which the fundamentals of light matter
interactions can be further understood. More important these new x-ray sources allow
for unprecedented looks inside biomolecules and proteins. The brightness of these sources
can in theory lead to atomic resolution, three dimensional x-ray diffraction images of large
biomolecules and viruses. Indeed, with the technologies described above the molecular
movie is a near possibility. The advance of our understanding of light matter interaction
in the recent decade and the resulting technology is what will soon make it possible.

83



Bibliography

[1] T. H. Maiman. Stimulated Optical Radiation in Ruby. Nature, 187(4736):493–494,
August 1960. ISSN 0028-0836. URL http://dx.doi.org/10.1038/187493a0.

[2] E Goulielmakis, M Schultze, M Hofstetter, V S Yakovlev, J Gagnon, M Uiber-
acker, A L Aquila, E M Gullikson, D T Attwood, R Kienberger, F Krausz, and
U Kleineberg. Single-cycle nonlinear optics. Science (New York, N.Y.), 320(5883):
1614–7, June 2008.

[3] Laser - Wikipedia, the free encyclopedia. URL http://en.wikipedia.org/wiki/

Laser.

[4] R Neutze, RWouts, D van der Spoel, EWeckert, and J Hajdu. Potential for biomolec-
ular imaging with femtosecond X-ray pulses. Nature, 406(6797):752–7, August 2000.
ISSN 0028-0836. URL http://dx.doi.org/10.1038/35021099.
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