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Abstract 

In the field of proteomic mass spectrometry, proteins can be sequenced by two independent yet 

complementary algorithms: de novo sequencing which uses no prior knowledge and database search 

which relies upon existing protein databases. In the case where an organism’s protein database is not 

available, the software Spider was developed in order to search sequence tags produced by de novo 

sequencing against a database from a related organism while accounting for both errors in the 

sequence tags and mutations. 

This thesis further develops Spider by using the concept of reconstruction in order to predict the 

real sequence by considering both the sequence tags and their matched homologous peptides. The 

significant value of these reconstructed sequences is demonstrated. Additionally, the runtime is 

greatly reduced and separated into independent caching and matching steps.  

This new approach allows for the development of an efficient algorithm for search. In addition, the 

algorithm’s output can be used for new applications. This is illustrated by a contribution to a complete 

protein sequencing application.   
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Chapter 1 

Introduction 

It has been said that the “goal of proteomics is to identify and quantify all the proteins present in a 

cell at a specific moment.”[1] This concise description encapsulates two of the major challenges in 

the related tasks of protein identification and quantification by tandem mass spectrometry (MS/MS). 

While MS/MS is widely utilized in biology labs, the basic problems of identifying unknown proteins 

and how much of those unknown proteins are present in a biological sample are still challenges. 

Existing software tools and techniques can have very different approaches and there is strong 

competition for the best performance.  

This thesis will address the problem of identifying (and sequencing) unknown proteins which are 

not contained within a protein database but are homologous
1
 to proteins that are.    

1.1  Thesis Statement  

In protein identification, there are two main approaches to identifying peptides in MS/MS data. The 

first approach is to match the data directly to a protein sequence database. However, this approach 

requires the existence of relevant protein sequence databases. In this context, a relevant database is 

one that is derived from the same species that the biological sample came from. In the case that this is 

not possible, one approach is to use de novo sequencing in order to create the peptide sequence 

without the aid of a database. However, this results in peptide sequences that have no relationships to 

any proteins. Additionally, very often the de novo sequencing results are not completely accurate. 

The next step after this process, if a protein database for a related species is available, is the process 

of homology search. Spider [3] was a tool designed for this task, taking into account de novo 

sequencing errors and matching the de novo sequence tags with potentially homologous peptides. 

This allows us to identify (and provide coverage of) proteins that are homologous to proteins in our 

sample. 

This thesis will explore and evaluate the creation of a new version of Spider, referred to as Spider 

II, designed to reconstruct the “true” peptide sequence after taking into account sequencing errors and 

                                                      
1
 It has been noted that there is a distinction between sequence similarity and homology. Two sequences can be 

homologous but not similar. Conversely, they can be similar and not homologous [2]. Briefly, two sequences 

are homologous if they share a common ancestor and evidence of this is significant sequence similarity. 

However, similarity and homology are correlated. As there is no effective way to determine homology, 

bioinformatics researchers usually use similarities in lieu of homologies.  
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mutations. In addition, Spider II will also allow searching for variable PTMs (post-translational 

modifications). Finally, this thesis will also evaluate some applications of this process that can be 

used to sequence whole unknown proteins. 

The motivation for this thesis is analogous to the traditional reasons that researchers in 

bioinformatics or related fields use homology search, to characterize unknown proteins, to discover 

shared characteristics, and to put proteins in some kind of evolutionary context. Ultimately, it is our 

hope that Spider will enable and lead to tools that will allow researchers specifically in the field of 

mass spectrometry to do the same.  

1.2 Outline 

Chapter 2 will cover the basics of molecular biology and tandem mass spectrometry in order to 

provide the background for what we are trying to accomplish. Chapter 3 will define the homologous 

protein search, reconstruction, and protein sequencing problems. Existing approaches will also be 

reviewed. Chapter 4 will describe the methodology and the results respectively for the new 

reconstructive Spider search. Chapter 5 will describe the methodology and results for Champs, an 

extension of Spider reconstruction. Finally, Chapter 6 will give conclusions and outline suggestions 

for future work. 
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Chapter 2 

Background 

In this chapter, we will provide basic information on molecular biology, leading up to proteomics and 

mass spectrometry, allowing us to discuss tools like database search and de novo sequencing.  

2.1 Central Dogma of Molecular Biology 

The first statement of the central dogma of molecular biology was stated as follows by Francis Crick 

in 1958: 

The central dogma of molecular biology deals with the detailed 

residue-by-residue transfer of sequential information. It states that 

information cannot be transferred back from protein to either protein 

or nucleic acid.[4] 

This provides a good point of introduction into the molecular biology required to understand this 

thesis. In short, there are three types of biological sequences, DNA (Deoxyribonucleic Acid), RNA 

(Ribonucleic Acid), and proteins (amino acid sequences). As depicted in Figure 1, we can see that 

information flows forward from DNA, to RNA, and to proteins with the less common exception of 

viral reverse transcription.     

 

Figure 1: Central Dogma of Molecular Biology 
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DNA is composed of four nucleic acids (A, T, C, and G)
2
 which are transcribed into RNA (A, U, C, 

and G)
3
 which is subsequently translated into a peptide sequence.  In general, peptides are formed 

from 20 amino acids. Peptide sequences then fold into a three dimensional protein structure. This 

process is constantly occurring in the cell.  Thus, DNA and RNA respectively store information and 

act as a template for the construction of proteins which perform various functions in living organisms. 

By understanding which proteins (and how much of them)
4
 are functioning in a cell or in a human 

body at any given time, scientists hope to determine how proteins are responsible for particular 

conditions such as immune response to disease, cell growth, and so forth.  

One important concept to understand is that given a specific nucleotide sequence with a known 

reading frame, DNA is translated in a predictable way
5
 to specific amino acids. Each amino acid has a 

unique mass with the exception of Leucine (L) and Isoleucine (I) which share the same mass. This 

property will become important later when we explore mass spectrometry in the field of proteomics.  

Another complicating factor is that amino acids can be modified after translation in a process called 

post-translational modification (PTM). Common examples include phosphorylation, 

carboxymethylation, and oxidation. These PTMs often control the behaviour of proteins by affecting 

different biological tasks within the cell, such as triggering the regulation of transcription, protecting 

proteins from proteolytic enzymes, and so forth. From a computational perspective, this essentially 

creates additional amino acids which may or may not have unique masses which can complicate the 

process of analysis. The last complicating factor is that in majority of cases, protein databases do not 

include information on PTMs which makes it more difficult to analyze peptides when using a 

database to aid analysis.  

                                                      
2
 Adenine, thymine, cytosine, and guanine 

3
 Adenine, uracil, cytosine, and guanine 

4
 For those reading ahead, those two questions give rise to the problems of protein identification and protein 

quantification 
5
 Of course it can be difficult to find the genes in a first place and in eukaryote organisms, to predict splicing 
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2.2 Proteomics and Mass Spectrometry 

Traditionally, in order to sequence proteins, a chemical technique known as Edman degradation had 

to be used [5]. Unfortunately, this method was incompatible with certain post-translational 

modifications and was also quite slow since individual amino acids have to be labelled and cleaved 

one-by-one. 

As a result, tandem mass spectrometry has become a faster and more popular alternative. In this 

approach, we take a protein (or usually a mixture of proteins) in a sample obtained from the lab and 

digest it with an enzyme, breaking the proteins into many smaller peptides with endpoints that depend 

on the type of enzyme, its efficiency, and its specificity. These peptides are ionized and their 

movement measured in order to obtain a MS scan which reveals the mass of these smaller peptides
6
. 

These peptides are then fragmented in a number of different ways to yield a MS/MS scan which 

reveals the mass of different pieces of the individual peptides. MS/MS scans result in a mass 

spectrum indexed by mass and measuring intensity. The individual points in these scans are 

commonly referred to as "peaks." This means that a mass spectrometer will contain at least three 

components, an ionizer to create an ion source, a mass analyzer to differentiate between ions of 

different mass-to-charge ratios, and a detector to detect the ions. These ions are called precursor ions 

in the MS scans and fragment ions in the MS/MS scans.  

                                                      
6
 Technically, these instruments only measure the mass to charge ratios (m/z) of the ions associated with 

particular peptides. Luckily, we can decipher the charge state based on the distribution of the ions. 
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Figure 2: High-level workflow depicting mass spectrometry experiment [6] 

A summary of the whole process is depicted by Figure 2 although there are many subtleties and 

variations that have been introduced. For example, we can use multiple enzymes to obtain multiple 

overlapping peptides from each of the different enzymes. Trypsin cuts after a K (lysine) or R 

(arginine), but not before P (proline) while GluC cuts after D (aspartic acid) or E (glutamic acid), but 

not before P
7
. There are also methods to provide separation between the sample preparation and 

ionization stages. For example, liquid chromatography or high performance liquid chromatography 

(LC or HPLC) can be used to separate the sample mixture by the hydrophobicity of peptides within it. 

Another approach would be to use SDS-PAGE (Sodium Dodecyl Sulfate Polyacrylamide Gel 

Electrophoresis) which separates peptides by their electrophoretic mobility which is proportional to 

their ability to travel through the gel. This mobility is related to a particular peptide’s length and 

molecular weight. 

It should be noted that this is only a brief summary of the varieties of equipment that are used in the 

mass spectrometry process. There are a variety of ion sources, the most popular in this field being 

electrospray ionization (ESI) and matrix assisted laser desorption/ionization (MALDI), and a large 

variety of mass analyzers including time-of-flight (TOF), linear ion trap, Fourier transform mass 

spectrometry (FTMS), Orbitrap, and quadrupole mass analyzers.  

                                                      
7
 Past this point, please refer to Table 1 in order to map amino acid codes with their full names 
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There are a great number of variants in this overall process since detectors can be combined in 

rious ways to produce both a MS and MS/MS scan as shown in Figure 3. For example, a QTOF 

uses a quadrupole to do the MS and a TOF to do the MS/MS. The LTQ FT and LTQ Orbitrap use a 

FT and Orbitrap for the MS respectively and a LTQ (Linear Ion Trap) for the MS/MS scan. Peptides 

can also be fragmented in a number of different ways including collision-induced dissociation (CID), 

capture dissociation (ECD), and electron-transfer dissociation (ETD). The large nu

variations creates a large spectrum of possible results with different mass accuracies and cost

effectiveness. Different fragmentation types also produce different amounts of ions and different

: Relationship between MS and MS/MS scans 
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referred to as b-ion fragments 

when the charge is retained either 
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on the amino-terminal fragment or when the charge is retained by the carboxyl-terminal fragment 

respectively (It should be noted that an alternate popular name for these fragments or for the amino 

acids at these two terminals are "N-terminal" and "C-terminal" named for the NH3
+
 and COO

-
 groups 

at either end). Since we know we have some understanding of how the peptides fragment and create 

these peaks, we can deduce the sequence of the original peptide by two methods which will be 

detailed in the next section.  

Unfortunately, while sounding easy, this quick summary overlooks issues that may complicate the 

analysis such as expected or unexpected modifications, missed or unexpected enzyme cleavages, 

unusual fragmentation, sample contamination, and instrument noise [7]. Additionally, we can expect 

that even in the case where these kinds of problems are absent, individual peaks can be split into a 

group of isotopic peaks (due to different amounts of various isotopes of C being used) or different 

types of fragment ions ( a, c, x, or z fragments). Another difficulty is the possibility of internal 

cleavage ions when the ions that are created are caused by multiple cleavages and are not anchored at 

one of the two terminal ends. Figure 4 demonstrates how these ions are created as fragment ions from 

a full peptide. Y and b ions are labelled from the carboxyl-terminal end and the amino-terminal end 

respectively. They are numbered by the number of amino-acid R groups that are contained within the 

fragment ion.    

 

Figure 4: Depicting general chemical structure [8] 

Taking all these difficulties into account, much of the data that is generated by the mass 

spectrometer is not useful for identification and much of what is identified is of dubious confidence. 

From the perspective of mass spectrometer data, this problem is especially prominent when less 

reliable and less expensive instruments with lower mass tolerances and/or more noise are used. From 

the perspective of proteins, the result is that in many cases only a low percentage of the proteins in a 

sample are mapped by identified peptides. This leaves many proteins uncharacterized or inadequately 
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covered [9]. This gap explains the large number of competing software approaches to the problem 

which can compete based on improved sensitivity (while balancing specificity) and performance 

(CPU-time or memory usage). 

2.3 De Novo Sequencing  

The phrase de novo is Latin for “from the beginning” or “anew.” In the context of bioinformatics, it is 

used to describe computational approaches that do not require comparison with related data. De novo 

peptide sequencing indicates that we do not need the aid of a protein database. Another example 

would be de novo protein structure prediction where tertiary protein structure is modeled without the 

aid of a template structure. 

In any case, the first approach to characterizing proteins in tandem mass spectrometry data that we 

will cover is de novo sequencing. The program that we will be using is called PEAKS [10] which 

implements what it calls auto de novo sequencing (as opposed to an older approach known as manual 

de novo sequencing which is largely done by hand).  Other programs that also do auto de novo 

include PepNovo[11], Lutefisk[12], NovoHMM[13], and DirecTag[14]. 

In terms of algorithms, there are many different approaches. One naive approach is to list all 

possible candidates available based on the precursor ion mass and then comparing those with the 

fragment mass spectrum. The most popular implementation is to use a spectrum graph approach (as 

shown in Figure 5) in which peaks in the fragment mass spectrum form nodes and potential 

relationships between the nodes correspond to particular ions. The sequence that will be sought is a 

traversal of the graph that maximizes the scores on each of the relationships in the traversal. The 

traversal starts at vertices that correspond to the N and C termini.  
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Figure 5: Spectrum graph approach 

An alternative approach used in PEAKS is a reward/penalty score implemented via dynamic 

programming which rewards or penalizes the presence of peaks in the mass spectrum corresponding 

to candidates generated by the parent mass.  Effectively, we simulate a mass spectrum for each 

possible candidate and reward peaks that match between the simulation and the real mass spectra and 

penalize peaks that do not match. Such an approach also has to take into account not only the 

dominant b and y ions (which are complimentary) but also has to take into account pairs of z and a 

ions as well as x and c ions which are also complementary respectively. The dynamic programming 

comes in when the algorithm attempts to grow from a partial sequence to cover the entire sequence.  

We can describe one potential problem that will particularly affect our work with de novo 

sequencing and homology search. Consider Figure 6 which depicts an attempt at assigning a 

particular peptide sequence to mass spectrum. As we can see, the spectrum is noisy (many peaks are 

not assigned to any amino acids) and there are clusters of peaks (created by different isotopes 

incorporated). Additionally, we can see that the c-ion sequence lacks a peak to distinguish between 

TL and LT. If the z-ion sequence had been missing a peak to split T and L as well, then there would 
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be no way to determine the true sequence and we would be left with a 50% chance of choosing the 

wrong sequence. This kind of error is very common in de novo sequencing. 

 

Figure 6: Sequence alignment 

We can see an example of this actually happening with the first and second ranked candidates for 

the spectrum depicted in Figure 7 and Figure 8 respectively. Here, we can see that due to the lack of a 

peak between A and G, there is no way to distinguish between the two candidates that are identical 

aside from that segment and thus they both receive the same score. 

 

Figure 7: De novo sequence for LFVAGK 

 

Figure 8: De novo sequence for LFVGAK 

Alternatively, if we think of the sequence LFVAGK as a sequence of mass tags, we can see that 

since the peak between A and G was missing, we essentially have an ambiguous sequence of 

LFV[128.1]K since mass(AG) = mass(GA) = 128.1. Other examples of mass replacement errors in 

other sequences would be mass (WD) ≈ mass (VMA) and mass (RDG) ≈ mass (VTK). We can see 

further examples of this in Table 1 which displays all amino acids along with their masses and some 
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selected duplicate mass values. The number of duplicates increases rapidly as we look at larger and 

larger mass values.  

Mass Sequence Name (For single 

AAs) 

57.0215 G Glycine 

71.0371 A Alanine 

87.0320 S Serine 

97.0528 P Proline 

99.0684 V Valine 

101.0477 T Threonine 

103.0092 C Cysteine 

113.0841 I, L Isoleucine, Leucine 

114.0429 N, GG Asparagine 

115.0269 D Aspartic Acid 

128.0586 Q, AG Glutamine 

128.0950  K Lysine 

129.0426 E Glutamic Acid 

131.0405 M Methionine 

137.0589 H Histidine 

147.0684 F Phenyalanine 

156.1011 R Arginine 

158.0691 AS, GT  

160.0307 C(+57), CG  

163.0633 Y Tyrosine 

170.1055 AV, GL  

171.0644 NG, GGG  

186.0793 W Tryptophan 

Table 1: Mass Table (All AAs and selected duplicated mass values up to the mass of 

tryptophan) 
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2.4 Peptide Identification with Database Search 

The second approach to characterizing proteins in tandem mass spectrometry data is called database 

search. Programs in the field that take this approach include PEAKS Protein ID[10], Omssa[16], 

Mascot [17], X!Tandem[18], and Sequest[19]. The database search approach actually pre-dates de 

novo sequencing and essentially reduces the scope of the de novo sequencing problem. By limiting 

possible sequence matches to those contained in existing protein databases, the scope of the problem 

is greatly reduced and more care/processing time can be taken to consider possible matches. The 

drawback is obvious. Only known protein sequences can be matched and any truly novel sequences 

will not be detected using this technique.  

These algorithms in general, identify a matching peptide sequence in a database for each spectrum 

and then group these peptides together to identify the specific proteins. The first step often involves 

generating a theoretical MS/MS spectrum for each potential peptide in the database which is then 

compared with the actual spectrum. After the peptide sequencing, the originating proteins have to be 

identified. This can be a difficult task since proteins usually are homologous to many other proteins 

which can be difficult to choose between.  

A de novo algorithm can handle PTMs by either adding additional amino acids as choices or 

modifying existing ones (called variable or fixed PTMs respectively). Since databases do not 

typically contain PTMs, one approach a database search algorithm can take is to consider variants of a 

database sequence with PTMs [20].   
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Chapter 3 

Survey of Related Work 

 Previously, we covered two complementary approaches to characterizing proteins in mass 

spectrometry data, de novo sequencing and protein database search, both with different drawbacks, 

and the possibility of sequencing error versus the inability to identify peptides that are not previously 

sequenced. The way of achieving some kind of middle ground between these two approaches is to 

consider additional information via an understanding of evolution. Consider the following quote from 

Theodosius Dobzhansky [21]:  

Nothing makes sense in biology except in the light of evolution, sub 

specie evolutionis. If the living world has not arisen from common 

ancestors by means of an evolutionary process, then the fundamental 

unity of living things is a hoax and their diversity is a joke. The unity 

is understandable as a consequence of common descent and of 

universal necessities imposed by common materials.  

Conversely, we can use an understanding of which organisms are homologous to one another (as in 

which organisms share common descent) to guide our characterization of mass spectrometry data and 

this is the approach used in a number of implementations of homology search.  

3.1 Homology Search 

On one hand, we have de novo sequencing algorithms that can directly create peptide sequences given 

the mass spectrum data but give no context. On the other hand, we have database search algorithms 

that can match mass spectrum data to known database peptides but cannot handle novel peptides. 

The obvious bridge between these two approaches was to modify general homology search tools 

for the task of searching with (relatively) short sequences from de novo sequencing. Homology search 

tools in general answer the question whether there are any other genes or proteins that are related to 

the query sequence provided. Some of these tools were subsequently modified for MS/MS such as 

MS BLAST [22] as a derivative of the well-known general BLAST [23] algorithm. 

The problem with this kind of approach is that these derivative tools were originally designed for 

much longer query sequences and do not take into account de novo sequencing error. As a simple 

example, a general homology search tool will heavily penalize a "mutation" in a sequence where two 

adjacent amino acids are swapped (which would look like an insertion followed by a deletion). 

However, a de novo-aware search tool will recognize that this is a common error resulting from a 
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missing peak as described in 2.3 and give a much lower penalty. In fact, certain errors such as the 

switching of isoleucine (I) and leucine (L) which have the same mass are impossible to resolve while 

the switching of lysine (K) and glutamine (Q) which have very similar masses cannot be 

distinguished except with high accuracy instruments (meaning greater than 0.03 Dalton accuracy). 

These errors can be completely ignored by a homology search tool which is de novo aware.  This 

way, a genuine match will not be thrown off by a relatively common error, de novo sequencing errors 

being much more common than real mutations. It is this awareness which gives rise to Spider. 

There are also a number of related approaches to Spider, which include TagRecon [24] which 

builds upon the work of DirecTag [14], and OpenSea [25]. In the sequence tagging approaches, a tag 

inference engine such as DirecTag creates a tag from a spectrum (which does not necessarily cover 

the entire spectrum and may have mass gaps). This tag filters candidate peptides that are obtained 

from theoretically digesting protein databases. It is worth noting that the combination of DirecTag 

and TagRecon is influenced by the older GutenTag [26] which produces short de novo sequences that 

are searched against a protein database, but without considering mutations or modifications. In 

particular, TagRecon identifies mutated peptides by considering various factors such as scoring based 

on number of reinforcing overlapping matches, the possibility of contaminants, a higher score for a 

mutation versus a non-mutant and enzyme information at the terminals. 

Sequence tagging approaches (such as TagRecon) make it possible to allow a mass error on one 

side of the tag match and explain it by mutating residues. This approach is actually somewhat similar 

to Spider segment match which will be covered later. The challenges here are that sequence tags are 

often shorter than de novo sequences due to allowing mass gaps which makes discrimination more 

difficult since a shorter or less specific tag can potentially match more possible candidates.  

Additionally, there are trade-offs in terms of sensitivity and specificity when it comes to the lengths 

of tags and the number of tags kept. 

Another alternative approach is to modify a database search algorithm from section 2.4.  Note that 

this does bypass the need for a de novo sequence or a sequence tag.  One implementation of the 

alternative is the Mascot error tolerant search [20]. This search attempts to compensate for a number 

of different failures that can lead Mascot to not return a match including systematic error, enzyme 

non-specificity, and post-translational modifications, in addition to the mutations that we are 

interested in.  The search is implemented in two passes, a standard first pass in which the standard 

database search algorithm is used and a second pass in which a number of constraints are loosened 
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and additional possibilities considered, but only against a selected number of proteins that were 

identified in the first pass.  

It is important to note that because the second pass considers such a large number of possible 

errors, it is not entirely comparable to Spider. It does, however, handle enzyme non-specificity by 

testing all possible sub-sequences of a possible database match; it handles precursor charge errors by 

trying multiple charge states, systemic error by calibrating via strong matches, and unsuspected 

modifications by testing against one modification at a time from a specific list.  These problems are 

often handled in the de novo sequencing or tag matching steps of other approaches. The approach to 

handling mutations is by considering possible mutation errors by allowing for one underlying nucleic 

acid mutation and considering all the possible amino acids that could result. This is basically 

equivalent to a PAM10 matrix at 72% identity with at a threshold of -8.27
8
.  

Mascot’s error-tolerant search is thus implemented in two versions, an automatic error tolerant 

search that chooses high-scoring peptides on which to base a second pass and a manual version in 

which the user will select proteins to be included in a second pass. In 4.4 we will use the first mode 

since it is recommended by its authors and in order to eliminate bias when choosing proteins for the 

second pass.  

3.2 Previous Spider Work 

Spider (Software Protein IDentifER) was initially developed in 2005[3] by Yonghua Han, Bin Ma, 

and Kaizhong Zhang. Additional details were provided in Yonghua Han’s thesis [27]. It will be useful 

to go over some of the previous research and implementation work covered in these works before 

going over the improvements that will be addressed in this thesis.  

First, a mathematical foundation for the matching task between de novo sequence and peptide 

sequence was created.  Briefly, let X, Y, and Z be the de novo sequence, the real sequence, and the 

database sequence, respectively. Given the function � which denotes the de novo sequencing error 

between two sequences and � which denotes the edit distance or mutation distance between two 

sequences, we can think of our general problem as determining the following score: 

 d(X, Z) = min�	(f(X, Y) + 	g(Y, Z)	)	 (3.1) 

                                                      
8
 PAM10 is a type of alignment matrix that scores potential pairs of amino acids based on their likelihood of 

being the result of mutation from one another.  
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Note that Y can be different from both X and Z since both de novo error and mutations respectively 

can occur. Furthermore, since the algorithm does not know Y at the beginning of the search, we have 

to find a sequence of potential de novo errors and homology mutations that minimizes both.  

Therefore, the core problem is really to find this sequence Y and we can think of the sequence tag 

search problem in terms of minimizing the distance across all possible matches. Once Y is found, the 

distance functions can be computed easily and Y is also likely to be the real peptide sequence since it 

is similar to a real database peptide Z and a partially correct sequence tag X computed by de novo 

sequencing. In Figure 9 we see that we can think of an optimal alignment of the three sequences as a 

merger between an alignment between (X, Y) and (Y, Z).  In a) we see that mass segment errors can 

occur in one column whereas b) demonstrates a mutation (substitutions/insertions/deletions) which 

can lead to our definition of “blocks.”  

 

Figure 9: Example of block-wise alignment for specific XXXX, YYYY, and ZZZZ 

Keeping in mind this concept of “blocks”, we can see that we can consider each block in isolation 

when calculating the solution to the general problem	�(�, �).  
 �(�, �) = 	��(��, ��)	� 	

= �min�(�(��, ��)) +	�min�(�(�� , ��))	� 	� 	
= �min� �(�� , ��) + �(�� , ��)!	�  

(3.2) 

When considering the cost of a particular block, we will need to consider a related cost, the cost of 

matching a particular block from a de novo sequence with a block from a protein sequence when there 

is sequencing error. We will define this as	"(�, �). However, due to the fact that de novo sequencing 

actually can be considered to return a mass segment when there is a sequencing error, we will in fact 

use a different cost, #($, �) where $ is defined  in terms of mass. The relationship between the two 

is shown below. 
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 "(�, �) = 	�($) + $%&':)(')*)	�(�, �) = �($) + 	#($, �) (3.3) 

In other words, when given a possible match, we need to determine a real block Y which minimizes 

the cost g between Y and Z (in reality, we will also need to consider the cost of a mass tolerance error 

when $(�) → $(�) ± 	-.  - would be a value representing the possible imprecision of the 

underlying instrument in determining the position of peaks). 

For the alignment cost of #($, �) as shown in Figure 10 there are three cases of the alignment. 

These cases involve the chance of a deletion in Z, a deletion in Y, or the chance of an amino acid 

match. 

 

Figure 10: Cases for β(m,Z) 

For the chance of an amino acid match, we will require one more building block of the Spider 

algorithm. This is the series of block substitution matrix (BLOSUM) [28]. These matrices were 

created by examining over 500 groups of multiple sequence alignments between proteins that were 

distantly related to one another. By keeping track of how aligned amino acids vary from alignment to 

alignment, it is possible to establish substitution frequencies which are also grouped by the degree of 

similarity that each aligned block displays. In this way, different matrices such as a BLOSUM62 or 

BLOSUM90 matrix can be created. The number indicates that it was created from proteins with less 

than 62% identity or less than 90% identity respectively. Spider uses a BLOSUM90 matrix with the 

90 reflecting the fact that we aim to work on proteins with little divergence.   

With this in mind, we can develop the dynamic programming algorithm that follows: 
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The time complexity of this algorithm thus works out to /($	 × |�|2 × |∑|)	where |∑|	represents 

roughly the number of amino acids (and the number of alternative amino acids due to the possibility 

of PTMs).  Continuing on, we will go back to considering the full cost of computing 4(�, �). For the 

full cost of 4(�, �) we can do a similar analysis with four cases including the case where # cost 

comes into play. Figure 11 demonstrates these cases as when there is a deletion in Z, when there is no 

de novo error but y is removed in a match with x, when there is no de novo error and y is removed in 

a match with both x and y, and finally, when there is de novo error involving both x and z.   

 

Figure 11: Cases for the Cost of 
(�, �) 
These cases in turn give rise to the dynamic programming algorithm which can be used for search and 

to reconstruct the real sequence Y.  

Algorithm	for	computing	#($, �[%. . B])		
Where	�%FG(H, I)	refers	to	the	cost	of	a	BLOSUM	alignment	Where	indel	refers	to	the	cost	of	a	gap	penalty	in	the	case	of	an	insertion	or	deletion	
1. FOR	$	from	0	to	$(�)	step	Δ	 	 	 	 	 //~/($ × |�|2 × |∑|)	 	2. 			FOR	i	from	0	to	|�|	 	 	 	 	 	 //~/(|�| × |�| × |∑|)	3. 						FOR	j	from	0	to	|�|	 	 	 	 	 	 //~/(|�| × |∑|)	
4. 						#($, �[%. . B]) = $%& ] min^#($ −$(H), �[%. . B]) + 	%&�`a#($, �[%. . B]) + 	%&�`amin^#($ −$(H), �[%. . (B − 1)]) + 	�%FG(H, �[B])b			//	~/(|∑|)	
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After the algorithm is run, we can simply output 4(|�|, |�|)	as �(�, �) which gives us a score for 

this particular match between a given de novo sequence and a potential identification for a peptide 

from a homologous protein. Additionally, if during the algorithm, the block H� chosen in each step is 

recorded, we can use a backtracking algorithm in order to reconstruct the entire middle sequence Y.  

Combining the algorithm for computing �(�, �)and	� with the previous algorithm for computing #($, �[%. . B]) we get a total runtime of: 

 cdGea	fdFG = /($ × |�|2 × |∑|) + 	/(|�|2 × |�|2) = /(|�|g +	|�|2 ×$ × |∑|) (3.4) 

A straightforward naïve implementation of the Spider algorithm while polynomial in order and 

feasible for reconstruction would not be practical for searching. The reason for this difference is that 

reconstruction requires one run of the algorithm for each final match versus searching which requires 

one run of the algorithm for each possible match. An implementation of the naïve algorithm resulted 

in performance of roughly 5 de novo-peptide matches per second resulting in a runtime of over 14 

days over a dataset of 412 spectra due to the number of possible de novo-peptide matches. A more 

sophisticated algorithm took roughly 628 seconds over the same dataset in 4.3.2. 

 As a result, Spider implemented a number of heuristics and search modes in order to trade-off the 

complexity of the model against increased run-time. Users can pick different search modes depending 

on their needs. In the implementation, these heuristics come into play in order to evaluate possible 

matches after a hashing algorithm was used to generate potential matches from the query sequences 

by using 3-mer amino acid seeds. These seeds are used as entry points into the protein database and 

for each possible seed, one of the following Spider heuristic match modes was used to further 

evaluate the match and determine its score: 

Algorithm	for	computing	�(�, �)	and	�	 	 	 	 	 	
1. FOR	i		from	1	to	|�|		 	 	 	 	 	 //~/(|�|2 × |�|2)	 	2. 						FOR	j	from	1	to	|�|	 	 	 	 	 	 //~/((|�| × |�|) × |�|)	 	 	
3. 											4(%, B) = $%&

hi
j 4(% − 1, B) + 	%&�`a4(%, B − 1) + 	%&�`a4(% − 1, B − 1) + 	�%FG(�[%], �[B])mink’,m’ 4(%n − 1, Bn − 1) + #($(�[%n. . %], �[Bn. . B]) 	+ �($(�[%n. . %]))	

b	
	 	 	 	 	 	 	 	 	 //~/(|�| × |�|)	
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3.2.1 Exact Match 

This heuristic assumes that the de novo sequencing result has no errors beyond leucine and isoleucine 

or lysine and glutamine substitution. It also assumes that there is no mutation in the database. This 

was a fast reference mode for Spider and was not used in practice for homology search. However, this 

is still useful for tag matching as a different approach for database search in Peaks DB [10]. 

3.2.2 Segment Match 

Segment match allowed for de novo sequencing errors up to three amino acids but no mutations in the 

database. This mode acts as a quick search mode (linear per match) that allows for searching a 

database given de novo results, but is not a true homology match.  

 

Figure 12: Example of Segment Match 

An example is given in Figure 12, with de novo sequencing errors marked with square brackets.  As 

we can see, mass (WE) =315.122 ≈ mass (VDT) = 315.143 while mass (VP) = mass (PV) and mass 

(MW) = 513.241 ≈ mass (PGY) = 317.138.  

3.2.3 Non-gapped Homology Match Mode  

 This search mode allows for substitution mutations which do not exist in the same block as a de novo 

error. This is in addition to the cases covered by the previous search mode. A greedy heuristic is used 

to find a good alignment by extending up to three amino acids from an existing match and recording 

local maximum scores while extending. An example is shown in Figure 13 which demonstrates two 

locations with a substitution mutation, but no de novo errors.    

 

Figure 13: Example of Non-gapped Homology Match 
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3.2.4 Gapped Homology Search Mode 

This search mode was the most complex and most thorough. As a heuristic, Spider used what was 

called a S4 matrix to determine what were deemed "bad-blocks" and "good-blocks." This way, Spider 

could consider mutations that may occur in the same block as a de novo error.  Figure 14 

demonstrates the possibility of a de novo error occurring in the same block as a mutation since PY 

and FI have approximately the same mass. FI also is the most likely mutated block corresponding to 

CV with that mass.  

 

Figure 14: Example of Gapped Homology Match 

In terms of implementation details, Spider was implemented as a server-based Java application.  

3.2.5 Protein Re-sequencing 

This section will survey other instances of protein re-sequencing. Here, we will define protein re-

sequencing as any approach that allows for the complete sequencing of a novel protein from MS/MS 

data. 

Protein sequencing with Spider is possible due to some of the developments that have been covered 

in the previous sections. First, de novo sequencing has progressed to the point where it can compute 

highly accurate sequences of reasonable length. Second, database search (or homology search) 

algorithms can identify a likely candidate which is highly related to the novel protein in question and 

can be used for sequencing as a base. Third, Spider can be used to align de novo tags with the 

reference protein and reconstruct likely tags that more accurately characterize the real sequence. 

Finally, on the biological side, it is possible to use multiple overlapping peptides in order to align 

peptides to the extent that there is a complete non-broken series of Spider tags which characterize the 

full protein. This is the basic outline of how Spider and Champs will go about protein re-sequencing, 

but there have also been other approaches in the past and present that have tackled the problem in 

different ways.  
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One early example of determining the protein sequence via mass spectrometry is one approach in 

1989 on Glutaredoxin [29]. Two different enzymes (Trypsin and thermolysin) were used to create 

overlapping peptide sequences obtained by manual de novo sequencing. These were arranged together 

by the sections that were overlapping in order to yield the complete protein sequence. A similar 

approach was used to characterize carnocyclin A [5], a circular bacteriocin. However, in this case, 

manual de novo sequencing was verified with automated de novo sequencing in order to sequence 

peptides. These peptides were then assembled using their overlapping ends.  

However, the current aim is to yield actual programs that can be used for multiple proteins quickly. 

Two examples include an automated software tool that achieves 96% coverage with 90% accuracy 

[30] and a subsequent approach that improved coverage to 97% to 99% but without discussing 

accuracy [31]. In the first approach, called “shotgun protein sequencing” by its authors, multiple 

spectra are assembled using a technique called spectral alignment. These assembled spectra are 

subsequently de novo sequenced. The second approach adds known proteins as templates when 

considering the problem on monoclonal antibodies.  Its workflow consists of a three-stage approach 

involving alignment, assembly, and consensus. Again, the alignment stage is performed via spectral 

alignment into "spectral contigs" while the assembly stage assembles these spectral contigs into 

"protein contigs" which can be subsequently analyzed.  

One other competing approach is called "template proteogenomics [32]," which relies upon the 

detection of anchors and their extension using HMM (Hidden Markov Models) models of spectra that 

overlap with these anchors. This approach actually follows the first publication of Champs and differs 

in some important ways.  In their case, the work focused on re-sequencing highly variable 

immunoglobulins (antibodies). The high amount of variation was due to hyper-mutation owing to a 

large number of possible antigens.  

Their algorithm used a database search tool (InsPecT [33]) to identify possible anchors (and thus 

was vulnerable to mutated anchors). Anchor extension was done by recruiting overlapping spectra 

that could overlap both the anchor and part of the template
9
. In this way, the program could train a 

HMM to generate the exposed spectra on the section extending out from the anchor. This allowed the 

program to build a consensus sequence which could then be fed into a spectrum-graph based de novo 

algorithm in order to build a full sequence.  

                                                      
9
 The term template was used as their terminology for a homologous protein 
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Chapter 4 

Spider II 

4.1 Theory 

As detailed in 3.2, the initial implementation of Spider resulted in an algorithm that was 

theoretically /(|�|g +	|�|2 ×$ × |∑|)	in runtime. However, a straightforward implementation 

would be too slow and thus it was modeled in a number of heuristic algorithms. These heuristic 

algorithms vary based on whether they considered mutations and mutations overlapping with de novo 

sequencing errors. Thus, while there was an in-depth mathematical model for the algorithm, the actual 

scoring function used in Spider was largely empirical and much simpler. For example, the probability 

that an amino acid was correctly assigned was set to 80%, the gap penalty was set to 10, and many of 

the penalties associated with the S4 scoring matrix were empirically set. Therefore, some new ideas 

were considered in order to give a theoretical basis to the scoring function.   

In this section, we propose an upgrade to the algorithm that should result in a more accurate and 

efficient implementation which also downgrades the emphasis on heuristics in favour of a more 

rigorous algorithm. The upgrade that we propose will also improve performance by removing the 

dependence on the number of amino acids, denoted as |∑|, at runtime. Last, but not least, the final 

iteration of the new search algorithm will unify search with reconstruction ensuring that the 

reconstructed sequence reflects the sequence that the search algorithm implicitly calculated.  

Again, we let X, Y, and Z  be the de novo sequence, the real sequence, and the database sequence, 

respectively.  An alignment is defined by a series of blocks (X1,Y1,Z1), …, (Xk,Yk,Zk).  When a block 

involves only one letter for X and Y, de novo sequencing made a correct prediction on X in this block.  

Otherwise, the block involves a de novo sequencing error.  We will also add the limitation that the 

blocks of X and Z have at most three amino acids each. This is good enough for most practical cases.  

This is due to the fact that when Xi contains more than three amino acids, the large number of same-

mass combinations
10

 makes Xi almost useless in terms of providing useful information.  In such a 

case, we will arbitrarily separate Xi into several smaller blocks which will still be a usable 

approximation of having one large block. 

 

                                                      
10

 The start of this trend can be examined in the table of mass values and amino acids as shown in Table 1 
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Figure 15: Alignment with five blocks 

4.1.1 Alignment Score 

We will define the alignment score as follows. We will start with 
o(p^q)o(p)o(q) which is the ratio of 

observing x, y, and z	 together in an alignment such as Figure 15 and the probability of observing x 

and z independently. If y can be introduced in the middle to make the alignment x, y, and z together 

very likely then z  is likely to be the correct sequence.  

 �(r, I) = max^ log s(rHI)s(r)s(I)			 	
= max^ log s(r|HI)	s(HI)s(r)s(I) 				
= 	max^ logs(r|H)	s(HI)s(r)s(I) 	by	independence	of	x	and	z			
= 	max^ logs(H|r)	s(HI)s(H)s(I) 	 by	Bayesn	theorem	
= max^ ulogs(H|r)+ log s(HI)s(H)s(I)v 

(4.1) 

However, while this definition is mathematically correct. It is quite unwieldy since it is defined across 

the entire length of the match between the two sequences. Therefore, we will take inspiration from the 

preceding discussion on blocks and we will define a score function to evaluate the quality of an 

alignment when it is split up into smaller blocks. The score will be analogous to a sequence alignment 

score using BLOSUM matrices.  For each block, we will define the score to be 

 Ff �� , ��,��! = log s(����,��)s(��)s(��) (4.2) 

Then we define 

 Ff(�, �, �) = �Ff ��, ��,��! (4.3) 

and  
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 Ff(�, �) = max'(Ff(�, �, �)) (4.4) 

We can see that when (X1,Y1,Z1), …, (Xk,Yk,Zk) is an optimal alignment, then  

 Ff(�, �) = ��(�� , ��)�  (4.5) 

In other words, a score defined as the sum of alignment scores block by block is adequate for our 

needs. This gives us a definition for the alignment score which reflects the discussion on blocks in 

Section 3.2. 

4.1.2 How to calculate �(�, �) 
The second term of the definition log o(^q)o(^)o(q) is the alignment score between H and	I using a 

BLOSUM [28] matrix. Recall the definition of BLOSUM in 3.2.4 as a substitution matrix used for 

the alignment of peptide sequences and computed from multiple sequence alignments of conserved 

protein families.  We will use BLOSUM90 as an approximation and denote this as	ea(r, H) =
log	 w(^q)w(^)w(q).	This also means that all log calculations will be in base 2 (ad�2) in order to match the 

base of the BLOSUM scores. Additionally, since the BLOSUM scores are calculated with a scaling 

factor of 2 in order to match an older type of alignment scores, we must also halve alignment scores 

in practice.  

The first term log	 s(H|r) has a few cases: 

Case 1: |$(H) − $(r)| > -. This means that the real sequence is out of the mass tolerance - of the 

de novo sequence which is impossible. Therefore, s(H|r) = 0, logs(H|r) = −∞, which corresponds 

to the probability that r cannot be the de novo sequencing result of H. Therefore 

 �(r, I) = 	−∞ (4.6) 

Case 2: H = r.  If the de novo sequencing is correct, then both r and H are one letter long and  s(H|r) = 1 then 	log	 s(H|r) = 0.  Therefore combining the two terms from (4.1), we get 

 �(r, I) = 		ea(H, I) (4.7) 

Note that in practice, while r and	H are only one letter long, in practice I may be longer (or even of 

length 0). In this case, we will use a gap penalty to compute the alignment score.  

Case 3: |$(H) − $(r)| ≤ -	e&�	H ≠ r 

This means that we have a sequencing error since the de novo sequence does not match the real 

sequence. We define the probability |($) as the sum of the probability of all the different blocks that 

result in approximately the same mass $. 
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 s($) = � s(}))(~)≈)  (4.8) 

We will define f(e)as the de novo sequencing confidence on amino acid e. In case 3, we can adjust 

the probability of a mass gap by the confidence score. In the case where the sequencing algorithm 

gave a very confident prediction, case 3 is very unlikely. However, if the algorithm is not particularly 

confident due to, for example, missing peaks, then case 3 is much more likely.  Therefore, we will 

define �(r) as the multiplication of (1 − f(e)) for every amino acid a in the block r, meaning the 

probability that we get every de novo sequenced amino acid wrong. 

 s(H|r) = �(r) × 	s(H)s $(r)!  (4.9) 

Therefore 

 logs(H|r) = log�(r) − log �	s $(r)!� + 	logs(H) (4.10) 

Thus combining the two terms of �(r, I)	again, we get 

�(r, I) = log�(r) − log �s $(r)!� +	$er)(^)≈)(p);^�p( logs(H) + ea(H, I)) (4.11) 

Combining the equations (4.6), (4.7), and (4.11), we have 

�(r, I) 	= max� ea(r, I)ad��(r) − log �s $(r)!� + max)(^)≈)(p);^�p( logs(H) + ea(H, I))b (4.12) 

4.1.3 How to calculate an alternate �(�, �) 
It should also be noted that during the course of our research we also derived the following equation 

for �(r, I). In this alternative formulation, we defined the alignment score as follows: 

 �(r, I) = max^ log s(rHI)s(r)s(H)s(I)			 	
= max^ logs(r|HI)	s(HI)s(r)s(H)s(I)				
= 	max^ log s(r|H)	s(HI)s(r)s(H)s(I) 	by	independence	of	x	and	z			
= 	max^ log s(H|r)	s(HI)s(H)s(H)s(I)	 by	Bayesn	theorem	
= max� �logs(H|r)s(H) + log s(HI)s(H)s(I)� 

(4.13) 
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Note the added term (H) . In the previous formulation, we considered that H was constructed from r 

and I making it non-random and thus unfair to divide by it. However, this derivation may also be 

valid.  

As before, the second term of the definition is unchanged with log o(^q)o(^)o(q) forming the alignment 

score between H and	I and denoted as ea(r, H) = log	 w(^q)w(^)w(q).	We	will	work	through	the	changed	
cases	of	the	first	term. 
Case 1: |$(H) − $(r)| > -.  Then s(H|r) = 0, log o(^|p)o(^) = −∞, which means r cannot be the de 

novo sequencing result of H. Therefore this case remains unchanged 

 �(r, I) = 	−∞ (4.14) 

Case 2: H = r.  Then log o(^|p)o(^) = − log s(r)!.  Therefore this case is now 

 �(r, I) = 	− log s(r)! + 	ea(H, I) (4.15) 

Case 3: |$(H) − $(r)| ≤ -	e&�	H ≠ r 

As before, we arrive at 

 s(H|r) = �(r) × 	s(H)s $(r)!  (4.16) 

However 

 logs(H|r)s(H) = log�(r) − log �	s $(r)!� (4.17) 

 

Thus  

�(r, I) = log�(r) − log �| $(r)!� +	max�(�)≈�(�);���( ea(H, I)) (4.18) 

Combining the new equations (4.14), (4.15), and (4.18) , we would now have 

�(r, I) 	= max � −logs(�) + 	ea(r, I)log�(r) − log �s $(r)!� + max�(�)≈�(�);���( ea(H, I))b (4.19) 

However, while this alternate formula is also mathematically valid, when this alternate formula was 

put through the testing that we will present in 4.3, we found that the results were less than desirable. 

In brief, while performance in terms of correct amino acids and correct matches was comparable to 

results derived from the previous formula, we found that this formula is significantly less capable of 

separating true positives from false positives. The empirical reason is that the term  −logs(�) adds 
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roughly the same amount to every amino acid in a potential match varying only by the prevalence of a 

particular amino acid in protein databases
11

. This skews the score toward favouring longer matches 

versus matches with good alignment score.  Therefore, it was decided to use the previous formula for �(r, I) for our final work. 	
4.1.4 Recurrence Relation 

We will combine the following recurrence relation with the final alignment score in order to compute 

the optimal alignment.  Ff(�[1. . %], �[1. . B])
= maxk���k′��;����m′�m	 �Ff ��1. . % ′�, ��1. . B ′�!
+ � ��% ′ + 1. . %�, ��B′ + 1. . B�!� 

(3.5) 

Let (�[1. . %], �[1. . B]) be the optimal alignment that results in the maximum alignment score. By the 

definition of our score, when we have an optimal alignment then the alignment score is equal to the 

sum of alignment scores calculated block-by-block. We will consider alignments involving a prefix of (�[1. . %′], �[1. . B′]) and an alignment score for  ��% ′ + 1. . %�, ��B ′ + 1. . B�!.  

 

Figure 16: Recurrence Relation with selected cases 

                                                      
11

 We used the NCBI nr database to calculate frequency data 
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In order to prove this recurrence relation, we will consider the possible cases while examining the 

Figure 16 which demonstrates some of the possibilities. Going clockwise from the upper right, in the 

trivial base case there is no prefix and we only have to consider the alignment provided by the final 

alignment score. In the base case, �(r, I) calculates the maximum score and there is only one 

possible alignment when there is only one amino acid in both parts of the alignment. Moving to the 

lower right, we examine one more border case when the new block is the smallest. We have one 

amino acid aligned with a gap. This corresponds to Case 2 of �(r, I). Moving to the lower left, we 

see the other extreme when the new block involves an alignment between the largest possible (≤ 3)-

mers. Finally, moving to the upper left, we see the general case. By examining the range of the 

indexes i − 3 ≤ i′ < %; B − 3 ≤ j′ ≤ j!, we see that all possible (≤ 3)-mers are considered for the last 

block (which falls between the last two cases in terms of size), and the max operation means that the 

optimal alignment which corresponds to the maximum alignment score will dominate.  

This highlights an important consequence of our decision to only consider (≤ 3)-mers. This allows 

us to only consider a small upper bounded set of possible blocks (12 combinations of i′ and	j′) within 

a small region near the last block in order to construct the optimal alignment.  

For the implementation, along with the BLOSUM table for all (≤ 3)-mers
12

, we will need to pre-

calculate: 

1.  log �s $(r)!� for all (≤ 3)-mers r 

2. max)(^)≈)(p);^�p( logs(H) + ea(H, I)) for all (≤ 3)-mer pairs	r and I. 

Finally, there is one note that will improve the resulting algorithms. If the confidence of amino acid 

sequencing is lower-bounded by a small constant (perhaps	 �2� as the output of a de novo sequencing 

cannot be worse than a random sequence), then it is probably fine in theory to remove H ≠ r  from max�(^)≈�(p);^�p ea(H, I). In practice, case 2 will take over the maximisation in the cases where r = H in case 3 making it a moot point.   

 So, instead of pre-calculating $er�(�)≈�(�);���(ad�s(H) + 	ea(H, I)) for all (≤ 3)-mer pairs r 

and	I, we can pre-calculate $er�(�) ea(H, I) for all pairs of mass value m and (≤ 3)-mer I.  This is 

both faster and more memory-efficient. This was in fact used in the implementation of Spider II.  

                                                      
12

 (≤3)-mers refer to all blocks with either one, two, or three amino acids in them 
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4.1.5 Algorithms 

We will next cover the various parts of the algorithms that are necessary to implement the theory 

introduced in 4.1. As in the initial Spider paper, many of the algorithms are implemented using 

dynamic programming. In dynamic programming, problems are expressed in terms of smaller sub-

problems, as in recursion. The results of calculating these sub-problems are stored, which saves 

computation time since these results are later used again.  

 Typically, in sequence alignment problems such as Spider, after formulating the problem 

recursively using our recurrence relations, we can lay out the terms of the sequence in the form of a 

matrix which stores sub-problems to save computation time. This matrix also allows us to traceback 

or record the path taken through the matrix in order to recover the sequence of steps that was taken.  

 

Figure 17: Example of dynamic programming in Needleman Wunsch [34] 

Specifically in the case of Spider, the first calculation is required to calculate Case 2 as outlined in 

theory. Case 2 is separated into two parts, a pre-calculation step that uses the Needleman-Wunsch[35] 

algorithm to calculate the alignment cost between all possible pairs of blocks and a quick runtime step 

that essentially involves a simple table lookup in the cache that is created by the first step. It should 

be noted that Needleman-Wunsch is itself a dynamic programming algorithm that uses a matrix as 

demonstrated by Figure 17.  

In practice, all blocks of length 1 to 3 are coded with integers both as indexes into the cache and in 

terms of their mass. This simplification can be used to save memory since the fractional part of the 

amino acid masses is always insufficient to sum over 1 Dalton across all choices of three amino acids.  
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The cost of the pre-calculation step is equal to iterating through all possible blocks of length 1 to 3 /(|∑| + |∑|2 + |∑|�) and performing one iteration of Needleman-Wunsch on each pair of blocks. 

Therefore we see that the pre-calculation step is a non-trivial /(|∑|�) runtime. However, this can be 

totally separated from the runtime calculation which is /(1).  
The second calculation is Case 3.  Case 3 is also separated into three parts, a pre-calculation step 

that also uses the lookup table resource from Case 2, and a more involved runtime step that still runs 

in constant time. The pre-calculation step will involve log(|($(r)))	for all (≤ 3)-mers which 

represents the log probability that we chose a combination of amino acids with the same mass as a 

particular n-mer and max�(�)≈�(�);���( logP(H) + 	ea(H, I)) for all (≤ 3)-mer pairs x and z.  

However, note that we simplify this as hypothesized in the previous section to all possible pairs of 

mass values m and (≤ 3)-mers z giving a real calculation of	max�(�)≈�(�)( logs(H) + 	ea(H, I)) .   

Algorithm:	Case	2	-	Calculate	ea(r, I)	
Input:	The	choice	of	amino	acids	∑	Output:	Cache	containing	alignment	score	ea(r, I)	for	all	pairs	of	blocks	with	length	1..3	

Pre-calculation	step:	
Where	NW	is	the	Needleman-Wunsch	algorithm	
1. FOR(∀	block	i	from	blocks	of	length	1..3)	DO	 		 	 //	~/(|∑|�)	 	2. 	 FOR(∀	block	j	from	blocks	of	length	1..3	<	block	i)	DO		 //	~/(|∑|�)	3. 	 	 lookupCacheMap(i,j)	←	NW(i,j)	 	 	 	

Runtime	step:	
Input:	One	peptide	block	and	one	protein	block	Output:	Score	for	the	match	
1. X	=	peptide	block	2. Z	=	protein	block	3. return	lookupCacheMap(X,Z)	 	 	 	 	 //	~/(1)		
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The proof of the pre-calculation runtimes is similar to the previous calculation. Each loop through 

all blocks of length 1 to 3 requires /(|∑| + |∑|2 + |∑|�). When iterating through all the potential 

blocks for a given mass, we have a worst cost runtime of the same. Each nested loop multiplies these 

resulting in the stated worst case runtimes of /(|∑|�)	and (|∑|¡) respectively. In practice, since most 

choices of amino acids do not result in many blocks of the same mass, the runtimes are much lower.  

Again, these pre-calculation steps can be isolated from the actual runtime calculations. It should be 

emphasized that in these three cases, the runtime is really dependent on |∑| which corresponds to the 

number of amino acids under consideration and which is independent of the de novo sequences and 

the protein sequences that we will need to consider.  

Algorithm:	Case	3	–	Pre-calculation	steps	
Pre-calculate			log(s($(r)))	

Input:	The	choice	of	amino	acids	∑	Output:	Cache	containing	log(s($(r)))	for	all	blocks	with	length	1..3	
Where	freq(block)	calculates	the	probability	that	we	see	a	block	in	the	full	NCBI	nr	database		
1. FOR(∀	block	i	from	blocks	of	length	1..3)	DO	 	 	 //	~/(|∑|�)	 	
2. 			x_blocks	←	∀	blocks	where	m(block)	≈	m(i)	based	on	mass	tolerance 

3. 		score	←	0	 
4. 		FOR(block	x	:	x_blocks)	 	 	 	 	 	 //	~/(|∑|�) 5. 									score	←	freq(x)	+	score	6. 			cache3a(i)	←	score	

Pre-calculate		$er�(�)≈�( ad�s(H) + 	ea(H, I))	
Input:	The	choice	of	amino	acids	∑	Output:	Cache	containing	max�(�)≈�( ad�s(H) + 	ea(H, I))	for	all	pairs	of	possible	block	masses	with	blocks	with	length	1..3	
1. FOR(∀	blocks	of	length	1..3	with	unique	mass	i			)	DO	 	 //	~/(|∑|¡)	 	
2. 			z_blocks	←	∀	blocks	where	m(block)	≈	m(i)	based	on	mass	tolerance 3. 			FOR(∀	block	y	from	blocks	of	length	1..3)	DO	 	 	 //	~/(|∑|�)	4. 						FOR(block	z	:	z_blocks)		 	 	 	 	 //	~/(|∑|�)	5. 									score	←	freq(x)	+	lookupCacheMap(y,z)	6. 									IF	(score	>	maxScore)	7. 												cache3b(i,z)		←	maxScore		
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However, one consequence is that runtime changes depending on the number of PTMs under 

consideration as does the amount of memory required to store these caches. In the case of fixed 

PTMs, the cache does change due to the change in mass but the number of entries remains very 

similar. In the case of variable PTMs, the cache size grows rapidly since each modified amino acid is 

treated as an additional amino acid by the algorithm.  

For example, the normal set of twenty amino acids results in a cache of 41.3MB. Adding three 

amino acids for Oxidation grows the cache to 46.6MB (12.8% growth) while adding seven amino 

acids for phosphorylation grows the cache to 62.2MB (50.6% growth).  

 

Therefore, Case 3 becomes a simple case of multiple /(1) lookups and which can be combined 

with Case 2 to give us the final algorithm that we will use for search and reconstruction.  

Algorithm:	Case	3	–	Runtime	Step	
Input:	One	peptide	block	X	with	positional	confidence,	one	protein	block	Z	Output:	Score	for	the	match	and	the	best	reconstructed	block	
Where	w(block)	calculates	the	log	prob	sum	of	all	(1-positional	confidences)	in	a	block		Where	$(�)	is	the	mass	of	X		 	 	 	 	 	 Corresponding	part	of	the	overall	formula	
1. X	=	peptide	block	2. Z	=	protein	block	3. score	←	-cache3a(X)	 	 	 	 //	−log(s($(r)))	 	4. score	←	score	+	cache3b(m(X),Z)	 	 	 //	max�(�)( logs(H) + 	ea(H, I))	5. score	←	score	+	w(Z)	 	 	 	 //	log�(r)	
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The resulting algorithm is /(|�||�|) and can be compared with the previous naive implementation 

of Spider that had a runtime of /(|�|g +	|�|2 ×$ × |∑|). 
4.2 Software Implementation 

We will now describe how the theoretical polynomial search was implemented as an actual program. 

First, it is possible to pre-calculate certain lookup tables that contain elements of our alignment score 

in order to improve performance. The first pre-calculated matrix is a lookup table that allows us to 

look up the alignment score between y and z using a BLOSUM90 matrix. This matrix matches all 1-

mers, 2-mers, and 3-mers with all other possible n-mers and remains fixed regardless of PTM 

selection since the BLOSUM matrix does not contain information on the mutation likelihood of 

PTMs. The second pre-calculated matrix caches the calculated value of log(|($(r))) for all n-mers. 

In other words, we cache the log probability that that we chose a combination of amino acids with the 

same mass as a particular n-mer. This allows us to quickly calculate case 2 of our scoring function. 

The last pre-calculated matrix stores max	)(^)	(logs(H) + ea(H, I)) for all pairs of mass value y and 

n-mer z. In other words, this maps between a potential mass segment
13

 and database block to the best 

                                                      
13

 Note that when calculating potential mass values, we use the simplifying trick of calculating the mass of all 

amino acid blocks by summing the integer mass of the amino acids (or PTMs) involved. This allows us to 

quickly group together blocks with roughly the same mass 

Algorithm:	Overlap	Match	
Input:	One	de	novo	X	peptide	sequence	and	a	suspected	protein	peptide	sequence	Z	match	Output:	Score	for	the	match,	matrix	allowing	for	one-the-fly	traceback	
1. X	=	de	novo		peptide	sequence	2. Z	=	potential	protein	sequence	match	3. initialize	matrix	M	of	size	©(|�|, |�|)	where	M(0,0)	=	0,	M(i,0)	=	0	where	1	 ≤ 	%	 ≤	|�|,	©(0, B) 	= 	0	where	1	 ≤ 	B	 ≤ 	 |�|	4. FOR(i	from	1	to	|�|)	DO	 		 	 	 	 	 //	~/(|�||�|)	5. 	 FOR(j	from	1	to	|�|)	DO	 	 	 	 	 //	~/(|�|)	6. 	 	 maxScore	←	-∞	7. 	 	 FOR(i'	from	i-3	to	i)	DO	 	 	 	 //	~/(1)	8. 	 	 	 FOR(j'	from	j-3	to	j)	DO	9. 	 	 	 	 compute	score1	using	lookup	table	for	Case	2	10. 	 	 	 	 compute	score2	by	formula	for	Case	3	11. 	 	 	 	 score	=	M[i',j']	+	max(score1,score2)	12. 	 	 	 	 maxScore	←	max(maxScore,score)	13. 	 	 M[i,j]	←	maxScore	
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possible real block and its score. While the first matrix is insensitive to PTMs, the latter two are 

highly dependent in terms of size and processing time on the number of possible PTMs. These three 

pre-calculated matrices are stored on disk to save on calculation time.  

When performing the actual search, as with the previous iteration of Spider, a three amino-acid 

seed hash structure based on the query sequence was created. Next, we go through the protein 

database and identify potential hits based on the hash hits. 

For performance reasons, these hash hits are examined via a number of heuristics which have to be 

passed before we assess hits using the new model. These include using a minimum threshold for 

relevant candidates from the previous non-gapped homology match mode (set empirically at 27), for 

longer peptides (with length greater than 12) two seed matches are required, and a small LRU (Least 

Recently Used) cache that stores de novo sequence and database matches (since certain combinations 

will show up repeatedly, typically in a small m/z range).  

After passing these heuristics, a segment of the protein corresponding to the hash hit is matched to 

the de novo sequence by mass and passed off to the overlap matching algorithm which takes 

advantage of the pre-calculated matrices. We align a de novo sequence and a peptide sequence using a 

combination of ideas from the pre-calculated matrices and what is called an overlap alignment [28] as 

shown in Figure 18. This can also be called a fit-alignment since the entirety of one sequence, the de 

novo sequence, is expected to be contained within the larger protein sequence. 

 

Figure 18: Example of overlap alignment from Durbin et al. [28] 
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 As with the other types of pair-wise alignment, the algorithm works using a dynamic programming 

approach. Reconstruction of the "real" sequence is done by iterating through the matrices using a 

trace-back approach.   

4.2.1 Software Details 

The classes that are involved with Spider in the current implementation are SpiderWrapper, 

BlockMatch, HeuristicHomology, Reconstructor, SpiderAlign, OnTheFlyReconstructor, 

RealHomologyMatch, OverlapMatch, and PreCalculator. 

The following classes are mainly relevant for the new search mode and reconstruction 

• RealHomologyMatch: This class implements a full naive approach to reconstruction which 

ends up being relatively slow since it is an /(|�|g +	|�|2 ×$ × |∑|)	algorithm. 

Historically, this was used as both a baseline (for example, to demonstrate the utility of 

reconstruction in 4.3.1) for comparing the performance of SPIDER II for search and for 

reconstruction. In the final version of Spider II, the following classes replace all of its 

functions.  

• PreCalculator: This class pre-calculates the three lookup tables required to implement the 

new polynomial homology match algorithm. Specifically, it first creates a BLOSUM 

lookup matrix for 1-mers, 2-mers, and 3-mers. It then creates a lookup table that stores the 

log probability that we choose a combination of amino acids with the same mass as an 

input n-mer. Lastly, there is a third lookup table that allows us to look up the maximum 

possible score in the case that we chose the wrong amino acid for a mass segment.  

• OverlapMatch: Implements the overlap match at the core of the algorithm. Reconstruction 

of the "real" sequence is done by iterating through the matrices using a trace-back 

approach. 

• BlockMatch: Implements the actual search algorithm by tying together the OverlapMatch 

algorithm with heuristics for finding appropriate seeds for further investigation.  

• Reconstructor: Support class which manages the trace-back feature of OverlapMatch 

allowing for recording reconstructed sequences 
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• SpiderWrapper handles the integration of Spider with the rest of the PEAKS Studio 

software, HeuristicHomology handles part of the heuristics for evaluating potential seeds, 

and SpiderAlign stores potential results  

One measure we will be using to evaluate our results is RSD (Relative Sequence Distance) [36]. 

RSD allows us to evaluate the distance between a de novo sequence and the true sequence with 0 

indicating a perfect match and 1 indicating a sequence which is completely different.  

4.3 Experimental Procedure 

4.3.1 Preliminary Results from Prior ASMS Posters 

The author demonstrated a preliminary version of the new scoring function as an ASMS (American 

Society of Mass Spectrometry) poster, "Novel Scoring Function Improves Homology Searches Using 

MS/MS de novo Sequencing Results [37]." This poster demonstrated the ability of a preliminary 

version of our new scoring system to discriminate between correct and incorrect matches. We were 

also able to demonstrate that reconstruction substantially improves the average score by selecting the 

correct real amino acid sequence without significantly changing the runtime of the search. This 

implementation was relatively quick since reconstruction was only used to reconstruct the match for 

each final match. 

The experiments were conducted in the following manner. First, a dataset was created from a 

sample of bovine serum albumin, a sample of 18 purified proteins, and a sample of S. cerevisiae. 

Spider searches were done against the human genome and S. pombe respectively in order to 

determine the effectiveness of the search and the reconstructed sequence when compared with 

matches of high confidence when searching with a traditional database search algorithm on the 

"correct" database.   

As a visual, we can consult Figure 19 which depicts this workflow in general.  Similar workflows 

will be used for all the evaluations of Spider II. However, we will use a number different pairs of real 

samples and homologous samples in this thesis including respectively S. cerevisiae (yeast)-S. pombe 

(fission yeast) here and B. taurus (cow)-H. sapiens (human) for Spider II. Champs in Chapter 5 will 

use a very similar workflow with B. taurus (cow)-O. aries (sheep) and G. gallus (chicken)-C. 

japonica (Japanese quail) as pairs. 
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Figure 19: Spider II experimental workflow 

At that time, the original Spider modes were used for the search and a precursor to the new score 

was applied as a post-search step to make returned matches from each of the Spider modes 

comparable. We found that the new score was very successful at distinguishing between incorrect and 

correct matches with approximately 30% of matches being correct between a score of 20 to 25, about 

60% of the time between 25 and 30, and 80% above that. The result was a superior ROC (Receiver 

Operator Characteristic) curve which demonstrated a superior ability to choose a threshold that could 

balance between true positives and false positives. One example is the improvement shown in Figure 

20 when going from non-gapped homology (ngap) to non-gapped homology rescored with the new 

scoring function (ngap-r).  



 

 40 

 

Figure 20: Non-gapped homology search rescored 

4.3.2 Heuristics for Polynomial Search 

Unfortunately, while the new search alignment algorithm is faster than previous heuristic methods for 

determining the score of a possible match, it is still not possible to use it to analyze every possible 

peptide-sequence match in the database. Therefore, we have developed a number of algorithms to 

remove matches that should be of less interest based on quicker and simpler analyses of their 

attributes. We will present a few example runs while varying the parameters in these heuristics to 

demonstrate how sensitive the scoring scheme and performance is to these changes.  

It is also important to note the importance of separating the pre-calculation of the various matrices 

from the runtime. Performance benchmarking indicated that the newer strategy of pre-calculating the 

three pre-calculated matrices in 4.2 resulted in a significant runtime reduction to only 0.18% to 1.69% 

of the older on-the-fly reconstruction technique used in 4.3.1. This further works out to an average of 

0.54% of the previous runtime when not including the pre-calculation time and 6.55% when including 

it. In practice, the first runtime is more common since the pre-calculated data can be cached on disk, 

is retrieved with trivial runtime, and only needs to be calculated once for each specific selection of 

PTMs.    
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The first dataset used is from a LTQ-Orbitrap instrument running against BSA (Bovine Serum 

Albumin) with multiple enzymes used. A subset of matches identified with high confidence (> 85%) 

in PEAKS Protein ID was searched against a homologous database in order to simulate a typical run 

of Spider when the real database is not available. Further details on this dataset are available in 5.3. 

In Table 2, we demonstrate the changes in runtime as we vary the score threshold that is used to 

filter out possible seeds when running Spider in one of its simpler modes as a first pass. We can see 

that there is no significant change in the number of correct amino acids as we increase the score 

threshold used until we reach 45. This seems to indicate that this threshold is relatively robust while 

having a very significant effect on the runtime.  

In Table 3, a LRU (Least Recently Used) cache is introduced for recently encountered de novo 

sequence/database sequence pairs. This cache should not and does not have any effect on the results 

but does lead to a substantial performance boost.  

Table 4 displays the effect of varying the threshold at which we require two seeds of three amino 

acids when considering “long” matches. Experiments were performed using between six amino acids 

and fourteen amino acids. This showed that there is no real effect on the accuracy of results while 

greatly influencing the runtime. 

In each table, the most important measurement is the last column which indicates the number of 

possible seed matches that make it past the particular heuristic we are currently examining.  Other 

columns that may require explanation: “threshold” indicates the number of seed matches that make it 

past the heuristic homology threshold and “pre-cache” indicates the number of seed matches that 

make it to the LRU cache.  

In summary, it can be concluded that that the various heuristics that we use are relatively robust to 

changes in the arbitrary parameters, which indicates performance can be tuned a great deal without 

sacrificing too much sensitivity.   
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# Correct AAs
14

 Exact 

Matches
15

 

Number of 

Matches
16

 

Heuristic 

Threshold
17

 

Time (s) # Seeds Passing 

Threshold
18

 

% Seeds Passing 

Threshold 

3669 129 401 21 625 30,131,162 28.71% 

3666 129 401 27 150 5,914,602 5.64% 

3666 129 401 30 90 2,368,712 2.26% 

3656 130 400 35 54 529,996 0.51% 

2563 86 261 45 46 40,524 0.04% 

1061 52 91 55 48 18,981 0.02% 

Table 2: Heuristic threshold comparison 

# Correct AAs  Exact Matches  Number of 

Matches 

Cache size Time (s) # Seeds After 

cache
19

 

% Seeds Passing 

Cache 

3666 129 401 10 cache 150 1,239,761 72.96% 

3666 129 401 100 cache 144 1,152,362 67.82% 

3666 129 401 1000 cache 136 1,014,549 59.71% 

3666 129 401 5000 cache 119 797,881 46.96% 

3666 129 401 10000 cache 111 664,741 39.12% 

Table 3: Cache size comparison 

                                                      
14

 Correct AAs refers to the number of amino acids correctly sequenced 
15

 Exact matches refers to the number of matches that were totally correctly sequenced 
16

 Number of matches refers to the total number of matches returned 
17

 Heuristic Threshold refers to the threshold chosen to restrict possible seeds before the main polynomial search 
18

 The last two columns refer to the number of seeds that past the threshold both as a # and as a percentage 
19

 Here, the last two columns refer to the number of seeds that make it past the cache. 
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# Correct AAs  Exact Matches  Number of 

Matches 

Two hit 

threshold
20

 

Time (s) # Seeds after two-hit 

threshold
21

 

% Seeds Passing two-hit 

threshold 

3655 125 401 6 59 373,834 6.33% 

3655 125 401 8 60 393,479 6.66% 

3657 125 401 10 63 594,818 10.07% 

3666 129 401 12 116 1,699,392 28.76% 

3797 127 415 14 294 4,871,340 82.44% 

Table 4: Two-hit threshold comparison 

                                                      
20

 Two hit threshold refers to the length of peptide that requires two seeds 
21

 Here, the last two columns refer to the number of seeds that make it past the two-hit threshold 
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4.4 Results 

4.4.1 Spider II vs. Spider 

Our main experiments will compare the results of Spider (comprising the segment, non-gapped and 

gapped match search modes) and the results of Spider II (using the new homology search mode). We 

will use de novo sequences from PEAKS Studio 4.5 in both cases in order to hold the de novo 

sequences constant
22

.  

Due to changes in the software over the years, a slightly convoluted testing procedure was 

implemented in order to determine the differences between the old Spider search modes and the new 

Spider II search modes due to changes in file formats and output. Thus, the procedure will be similar 

to the following: 

1. Run de novo in PEAKS Studio 4.5 

2. Run Spider in PEAKS Studio 4.5 and store the results to anz file format 

3. Import de novo results and run Spider II in a modified version of PEAKS Studio 5.2 

4. Export all results to pepXML 

5. An automated testing framework was created and modified to handle Spider results 

specially, by parsing reconstructed sequences in addition to the reported database match. 

This will give us overall performance characteristics including number of correct amino 

acids, correct matches, etc. 

6. Output both sets of results to Excel using a modified version of Peaks (Modified to allow 

for output in old file formats) including homolog and reconstructed results. This will allow 

us to examine individual results and differences for evaluation 

For comparison purposes, it is also possible to run DirecTag and then TagRecon for comparison 

purposes. This software is run with charge state from the data (UseChargeStateFromMS = true) and 

the appropriate mass tolerance (PrecursorMzTolerance = x) to make the results comparable to Spider.  

In the two cases, the testing framework will evaluate the top scoring and first result respectively for 

                                                      
22

 If we did not hold de novo sequences constant, we would be comparing the results of Spider on de novo 

sequences from different versions of Spider which would be unfair due to improvements in the de novo 

sequencing algorithms 
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each result. The comparison also includes Mascot error-tolerant search with the equivalent 

parameters.    

MS-BLAST was also considered for this comparison. However, it was only available as a web 

interface online and it also did not have the required protein databases, therefore it was excluded in 

the following high-throughput comparisons. However, a performance evaluation was done on a 

smaller data sample in the original Spider paper[3] as shown in Table 5. In this evaluation, 144 ion 

trap spectra were obtained from multiple proteins contained in the SwissProt database. However, the 

human database did contain proteins that were homologous. Therefore, the segment match mode was 

most effective for the SwissProt database (since it does not consider mutations) whereas the gapped 

homology search was most successful on the human database. In all cases except for the exact match 

mode, Spider outperformed MS-BLAST. This gives us an idea as to the performance difference 

before we start to consider the improvements made in Spider II.   

 SwissProt Human 

SPIDER exact 35 13 

SPIDER segment 90 36 

SPIDER non-gapped homology 76 49 

SPIDER gapped homology 78 52 

MS-BLAST 52 24 

Table 5: Comparison of SPIDER and MS-BLAST 

 In the following experiments, plain de novo results are also presented to give an idea of what a 

pure de novo result would yield as a baseline. In some cases, we will expect the correction of a 

"noisy" related species database to make the result worse by introducing error (coming from too many 

mutations). Hopefully in more cases, the database will provide the correct information to "correct" de 

novo error.  

4.4.2 ABRF sPRG2006 Dataset 

The first result from this procedure would be from the ABRF_FT-TRAP dataset. This dataset is part 

of a larger data set provided by the Proteomics Standards Research Group at the ABRF (Association 

of Biomolecular Facilities) [38].  The mixture contains 49 human proteins and was used as an 
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objective standard to evaluate around 120 research laboratories that processed the data on various 

instruments (and with different levels of expertise).   

In the following example, the dataset was searched against a bovine database in order to simulate 

the normal operation of Spider when the real database is unavailable (but a related database is 

available). Results are benchmarked against the correct answers as determined by a high quality 

database search run against a human database.  
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Correct AA 

AVG
23

 

Correct AA 

SUM 

Edit Distance 

AVG
24

 

Edit Distance 

SUM 

Exact Matches 

SUM 

Incorrect 

AA SUM 

Number of 

Matches SUM 

RSD 

AVG 

 De novo baseline 7.41 3325 4.53 2036 138 1698 449 0.33 

H. sapiens PEAKS DB  8.59 3857 0.96 429 329 391 381 0.09 

          

B. taurus 

PEAKS DB 3.67 1648 1.39 624 127 585 211 0.13 

Tag Recon 1.2.34 3.57 1602 7.41 3325 42 3161 409 0.61 

Mascot 2.3.01 4.72 2118 2.90 1302 119 1199 319 0.27 

         

Spider Segment 

Match 
5.46 2453 6.45 2896 117 2611 449 0.51 

Spider Non-gapped 

Homology 
6.85 3076 4.90 2200 101 1550 449 0.39 

Spider Gapped 

Homology 
6.91 3102 4.83 2168 93 1884 449 0.38 

         

Spider II: Tag Match 5.68 2551 6.35 2851 125 2579 449 0.50 

Spider II: Homology 

Match 
6.37 2861 5.15 2314 91 2053 436 0.40 

Spider II: Homology 

Match with Recon.
25

 
7.44 3341 4.01 1801 164 1516 436 0.30 

Table 6: ABRF FT-TRAP Result Comparison

                                                      
23

 AVG refers to an average of the statistic in question across all reported peptides while SUM is the sum 
24

 Edit distance refers to the number of steps/residues that would need to be taken to change from the result to the control sequence 
25

 Short for reconstruction 
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Table 6 gives us a comparison between Spider I and Spider II as well as a leading database search 

technique. 

One observation that can be made in this initial analysis is that not many of the approaches do 

better than the de novo baseline reported at the top in terms of exact match, RSD, or number of 

correct amino acids. This seems to indicate that the database is misleading (as we might expect due to 

it being from a different species). In fact, only Spider reconstruction manages to use the homologous 

database to manage a modest drop in RSD and a modest increase in the number of correct amino 

acids (and a decrease in the number of incorrect amino acids).  

We calculate the number of exact matches by doing a straight string comparison between the 

sequence returned (whether it is a tag, de novo, database sequence, or reconstructed sequence) while 

ignoring I and L or K and Q substitutions. We calculate the number of correct amino acids by 

building an optimal alignment and counting the correct amino acids.  

Another trend is that the number of exact matches increases as we move from tag matching to 

homology approaches. As one might expect, when the search space is expanded to include the 

possibility of mutations, the number of exact matches may drop as compared to a more conservative 

algorithm. One interesting counterpoint is that the Mascot error-tolerant approach returns relatively 

fewer matches but has better accuracy on the matches that are returned. By contrast, Spider II returns 

significantly more correct amino acids with both reconstruction or without while returning 

significantly fewer complete matches. This seems to indicate that Spider II is much less conservative, 

returning a match with some correct amino acids even if they are incomplete. 

Indeed, when we examine the percentage of correctly identified peptide matches (sorted by score) 

across the dataset in Figure 24, we find that the conventional methods like tag search and database 

search have an advantage in this dataset. However, this advantage is much reduced in later datasets 

which are more difficult in terms of data quality, especially in LTQ2448 which is data from an ion 

trap. Note that de novo sequencing correctly sequences roughly 31% of matches in this dataset as 

opposed to 11% in LTQ2448. Another promising result is that the Spider II homology match 

performs significantly better than the previous homology match with a better ratio of correctly 

identified peptides at high scores. This indicates that we have a better measure that can separate less 

confident peptides from those with high confidence. This was part of the reason we chose the current 

scoring formula rather than the alternate scoring scheme described in 4.1.3 which was unable to make 

this distinction. In that scoring scheme, high scores were disproportionately given to longer peptides 
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rather than correct peptides due to its version of Case 2 and the term – logs(�) which was added to 

all correct amino acid matches.  

4.4.3 BSA Champs Dataset 

Another dataset that we will benchmark Spider on will be the dataset that was used for testing 

Champs (and is covered in detail in section 5.3). In this experiment, BSA (Bovine Serum Albumin) 

was digested with three different enzymes (GluC, LysC, and trypsin) in order to obtain overlapping 

peptides. The digested sample was then analyzed with an LTQ-Orbitrap hybrid instrument from 

Thermo Scientific in order to generate our data. 

By using a subset of matches with greater than 85% confidence in traditional database search on 

the correct BSA database, we were able to separate out only those spectra (and de novo sequences) 

that correspond to real database matches. These resulting 423 spectra (out of a possible 5154) were 

used for a further test of Spider in its various incarnations.  

Table 7 illustrates some further trends between the various approaches. On the face of it, this 

dataset displays some different trends for all the various algorithms. Despite the equivalent size of the 

dataset, the number of exact matches for all approaches is as small as or smaller than in the previous 

dataset. Since the RSD numbers are comparable, this is probably due to the presence of much longer 

peptides. As confirmed by both the de novo baseline and a PEAKS database search on the “correct” 

species, the average peptide is roughly 1.3 amino acids longer in this dataset when compared with the 

previous dataset. Again, many of the search methods return a lower number of matches than the de 

novo baseline which indicates that the database matches are returning sequences that are not very 

informative. 
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  Correct AA 

AVG 

Correct 

AA 

SUM 

Edit Distance 

AVG 

Edit Distance 

SUM 

Exact Matches 

SUM 

Incorrect 

AA 

SUM 

Number of 

Matches SUM 

RSD 

AVG 

 De novo baseline 8.72 3698 3.38 1435 94 1292 422 0.26 

B. 

taurus 
PEAKS DB  

9.90 4196 0.50 211 346 199 373 0.04 

          

 PEAKS DB 2.02 858 3.31 1402 18 1313 188 0.27 

H. 

sapiens 

Tag Recon 1.2.34 1.47 622 2.63 1114 10 1062 147 0.22 

Mascot 2.3.01 2.71 1145 6.60 2792 11 2699 321 0.52 

         

Spider Segment 

Match 4.57 1938 8.08 3425 21 3189 421 0.61 

Spider Non-gapped 

Homology 7.09 3007 4.98 2112 18 1568 421 0.39 

Spider Gapped 

Homology 7.02 2975 5.04 2137 18 1955 417 0.39 

         

Spider II: Tag Match 4.27 1811 8.22 3486 21 3375 421 0.64 

Spider II: Homology 

Match 6.85 2903 4.71 1997 17 1820 401 0.37 

Spider II: Homology 

Match with Recon. 8.65 3666 2.87 1216 129 1054 401 0.21 

           

Table 7: BSA85 Comparison
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However, in this dataset we again see a large bump in the number of successfully reconstructed 

sequences as measured by number of correct amino acids, exact matches, and average RSD. In fact, it 

should be emphasized that reconstruction manages to return the highest number of exact matches 

while maintaining the lowest RSD and a very low number of incorrect amino acids. In other words, 

despite returning more matches than a number of other approaches, Spider II still manages to return a 

lot of useful information. 

The second row of the table shows the theoretical maximum when a database search algorithm is 

run against the "correct" database. This is then compared to all the other results which are run on the 

"incorrect" homologous human database. This unfair comparison effectively gives an upper limit on 

the theoretical performance of our homology search algorithms. No matter how good a homology 

search algorithm is, it should not outperform a standard search on the real database. Spider II 

reconstruction does very well on this baseline attaining 87% as many correct amino acids. 

In Figure 25, we also see another success of this approach. Reconstruction retains a superior % of 

correct peptides over and above all other search engines when results are sorted by score. 

Additionally, the search mode of Spider II again does a better job than the previous homology match 

in assigning high scores to correct matches.  

4.4.4 LTQ2448 

Another dataset that we will benchmark Spider on is the LTQ2448 dataset from the MSNovo paper 

[39]. It contains protein hits from the MSDB Saccharomyces cerevisiae database. We will perform a 

search against Schizosaccharomyces pombe. LTQ2448 appears to be a more challenging dataset since 

the divergence happens at a subphylum classification as opposed to the divergence on the order 

classification as in the previous datasets.  
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  Correct 

AA AVG 

Correct 

AA SUM 

Edit 

Distance 

AVG 

Edit Distance 

SUM 

Exact Matches 

SUM 

Incorrect 

AA 

SUM 

Number of 

Matches SUM 

RSD 

AVG 

 De novo 

baseline 6.87 16812 6.34 15526 269 13048 2448 0.44 

S. 

cerevisiae 
PEAKS DB  

9.88 24188 0.25 621 1875 556 1955 0.02 

          

S. pombe 

PEAKS DB 0.67 1629 0.30 743 103 639 230 0.03 

Tag Recon 

1.2.34 1.58 3880 3.91 9582 54 8690 1040 0.29 

Mascot 2.3.01 2.70 6602 7.00 17130 96 15900 1954 0.56 

         

Spider Segment 

Match 
3.85 9419 9.41 23038 89 20643 2438 0.67 

Spider Non-

gapped 

Homology 5.23 12793 7.73 18925 82 13166 2448 0.56 

Spider Gapped 

Homology 5.45 13338 7.67 18768 76 16570 2445 0.55 

         

Spider II: Tag 

Match 
3.78 9260 9.51 23274 87 20909 2438 0.68 

Spider II: 

Homology 

Match 
5.29 12949 8.01 19614 75 17359 2422 0.56 

Spider II: 

Homology 

Match with 

Recon. 
7.54 18448 5.77 14124 430 11604 2422 0.38 

Table 8: LTQ2448 Result Comparison
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First, looking at Table 8, we also see that reconstruction clearly excels in terms of the number of 

correct amino acids and RSD.  Spider II manages to return more results while maintaining a low RSD 

and a high number of correct amino acids while limiting the number of incorrect amino acids. In 

particular, 76% of correct amino acids can be found when comparing to the artificial best-case of 

searching on the correct database while the RSD is significantly lower than the de novo baseline 

indicating that the homologous database is very helpful in this dataset. In Figure 26, we see the 

acceptance curves are somewhat in the middle of the two previous datasets. While tag searching and 

database search has an initial advantage at the highest scores, Spider manages to overtake the other 

approaches with roughly 10% of peptides accepted. It also levels off with roughly 30% of peptides 

successfully reconstructed as opposed to 10% for other approaches. 

Looking at all the datasets at once, we see that reconstruction adds valuable information to the de 

novo sequencing with few drawbacks in terms of the results. Many more amino acids can be correctly 

identified and incorrect amino acids ruled out. Additionally, the score gives us a good indication of 

how correct the reconstructed sequence is in each case. Unfortunately, there does not seem to be a 

significant change in the performance of the actual homology match against the old homology match 

in terms of absolute results. While the new algorithm is better at separating unlikely matches from 

likely matches, the number of correct amino acids, exact matches, and the average RSD is very 

similar between the two approaches. It is possible that by optimizing for the reconstructed sequence, 

we were unable to significantly improve the quality of the matches.  

It is also possible to consider how much overlap there is between the various groups of matches. 

Grouping the matches returned spectrum-by-spectrum between Mascot, Peaks, and Spider, we can 

examine a series of Venn diagrams that visualize which correct matches are returned by which search 

engine.  Figure 23 demonstrates a high level of overlap between Mascot (even in error-tolerant mode) 

and Peaks, both database search algorithms. On the other hand, we see that Spider has a relatively 

minor overlap with the other search engines and contributes a large number of unique matches. This 

seems to indicate that Spider II results may complement other search methods by providing a lot of 

additional information. This observation is repeated in Figure 21 and Figure 22. 
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Figure 21: ABRF FT-TRAP Venn diagram (RSD ≤ 0.2) 

 

Figure 22: BSA85 Venn diagram (RSD ≤ 0.2) 

 

Figure 23: LTQ2448 Venn diagram (RSD ≤ 0.2) 
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The following charts have been analysed one-by-one as we discussed each dataset. However, we 

also wish to make a number of observations looking at all the charts at once. The most obvious 

observation is that Spider reconstruction clearly has an advantage at all but the lowest number of 

accepted peptides. At a very low score threshold, the Protein ID and Mascot algorithms have an 

advantage possibly because they are less likely to force an interpretation for a noisy spectrum. 

(TagRecon was not included since it does not return a comparable score) But it should be noted that 

Spider II retains a curve similar to error-tolerant Mascot while returning many more matches. We can 

also see that the Spider II search is highly competitive with the older version of Spider in both 

datasets, outperforming all prior search modes.  

One interesting note is that the data quality score for each dataset parallels the effectiveness of 

Spider. Data quality can be calculated by a number of factors such as the noise to signal ratio, the 

number of peaks, the longest continuous sequence tag available via a simple computation that 

matches single residues to mass differences, and the number of sequence tags that can be assigned to 

a spectrum [40]. Using this measure, Spider works best relative to simpler database searching options 

on the dataset with the lowest data quality (BSA85) and worst on the dataset with the highest data 

quality (FT-TRAP). This makes sense because you would expect that there will always be some 

peptides that are not mutated and are relatively easy to match with data of sufficient quality while 

Spider and de novo should outperform on data that database search finds harder to match. 
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Figure 24: ABRF FT-TRAP - % Correct vs. Accepted Peptides 
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Figure 25: BSA85 - % Correct vs. Accepted Peptides 
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Figure 26: LTQ2448 - % Correct vs. Accepted Peptides 
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Finally, we can also average the counts of exact matches and correct amino acids from all three 

datasets. Then we will display these as a percentage of the results from the best case, running 

database search on the “correct” database in Table 9. Again, we see that there is a drop-off in the 

number of exact matches going from database search to most homology searches while the number of 

correct amino acids increases. The most significant result is that reconstruction manages to return 

more than double the number of exact matches (to 37%) and gives a significant boost in the number 

of correct amino acids when compared to the previous approaches.       

 

Table 9: Exact matches and AAs correct as % of best case

0% 20% 40% 60% 80% 100%

PEAKS DB (Homology)

Tag Recon 1.2.34

Mascot 2.3.01

Spider Segment Match

Spider Non-gapped Homology

Spider Gapped Homology

Spider II: Tag Match

Spider II: Homology Match

Spider II: Reconstruction

% Exact Matches

% AAs correct
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Chapter 5 

CHAMPS 

5.1 Theory 

We covered the need for protein sequencing technology in section 3.2.5. In short, while a homologous 

database can be used to identify the function of proteins, simply knowing the function
26

 of a protein is 

not as complete as protein sequencing which can characterize the possibility of mutations between 

species and between individuals as well as the possibility of characterizing PTMs. 

Our approach to the problem takes advantage of Spider reconstruction and homology search via the 

Champs application. Its development was inspired by a Chinese saying, “兼聽則明，偏聽則暗” 

which roughly translates to “listen to both sides to find out the truth.” This is the philosophy behind 

the development of Spider reconstruction which relies upon both an inaccurate de novo sequence and 

an inaccurate database sequence to reconstruct a suspected real sequence. It is also the philosophy 

that will be expanded in order to cover a whole protein.   

The approach in Champs is an automated protein sequencing approach (some previous approaches 

reviewed in 3.2.5 were manually assembled) using both a homologous database and tandem mass 

spectra. This chapter is devoted to a broad analysis of Champs while putting it in context with the 

procedure of reconstruction. The algorithm and some alternate results have been previously published 

in a co-authored paper entitled “Automated protein (re)sequencing with MS/MS and a homologous 

database yields almost full coverage and accuracy.”[41] 

 In terms of preparation on the biological side, we will require a protein that is cut with multiple 

enzymes. This gives us multiple overlapping peptides which increases coverage and also allows for 

the use of peptide overlaps to assemble the final peptides together. For example, in Figure 27 we can 

see peptides ending at position 212 with lysine (K) indicating that they are cut with trypsin 

overlapping with peptides ending at position 208 with glutamic acid (E) indicating that they are cut 

with GluC.  Additional overlapping peptides are seen ending at positions 209 (trypsin) and 206 

(GluC). 

                                                      
26

 More specifically, the probable function of a protein as suspected due to the function of a known homologous 

protein 
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Figure 27: Overlapping peptides 

On the computational side, our approach uses a selected reference protein, performs de novo 

sequencing on all spectra, selects high-scoring sequences for tag mapping via Spider and then 

assembles high-scoring alignments onto the reference protein.  An overview of the algorithmic steps 

is as follows and visualized in Figure 28:   

First, de novo peptide sequencing is run on the entire dataset and the results are filtered for the 

highest scoring peptide in each spectrum. These sequences are kept if they pass certain filters which 

will be further discussed later.  

Second, the identification of the reference protein is relatively straightforward. Either a database 

search or a Spider homology search can be used since the reference protein and the real protein will 

likely share at least some identical peptides.  

Third, Spider is used to match the de novo sequences with the reference protein while taking into 

account mass tag errors and likely mutations. As discussed earlier, Spider creates reconstructed 

sequences which are essential for Champs to sequence proteins. However, Spider also contributes 

potential alignments between these sequences and the reference protein.  Champs refers to these 

potential alignments as de novo tag mapping.  

The last step is to use dynamic programming to process the alignments column by column in order 

to output a predicted protein based on the Spider tags and the reference protein. This step is also 
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referred to as Spider tag assembly. It is worth highlighting that Champs assembles interpreted spectra 

in the form of reconstructed sequences rather than assembling spectra into consensus spectra as in 

some previous approaches. 

 

Figure 28: Champs workflow 

5.1.1 De novo Tag Mapping 

For de novo sequencing, we will continue to use PEAKS auto de novo. However, in order to map 

these sequences to the reference protein, we will need to consider two factors, de novo sequencing 

errors and mutations in the target sequence as compared to the reference sequence. These concerns 

are taken care of by Spider which maps the de novo tags while taking these factors into account. 

Additionally, with Spider II we get reconstructed sequences which can be aligned with the reference 

sequence.  
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Past this point, to avoid confusion, we will refer to reconstructed sequences as “Spider tags” for 

simplicity. Several filters are used to remove Spider tags that are either too unreliable or that are 

redundant. First, tags do not pass the following conditions, a score ≥ 10, with a length ≥ 5, and a score 

≥ 0.9 times its length, are removed. Another filter is that Spider tags that are strict substrings of other 

tags are removed if they map to different locations. Finally, if two different tags map to the same 

peptide in the reference protein, we keep only the higher scoring one.     

5.1.2 Spider Tag Assembly 

As in Spider, we will develop a score for a predicted sequence based on the reference and Spider tags. 

We will hold Y consistent from Spider as the reconstructed sequence and let Z	correspond to the 

reference sequence provided.  S­®¯ is the predicted sequence that we are trying to construct. In other 

words, S­®¯ is the sequenced protein that we want to compute as our final output. As a parallel to our 

previous work, we can think of our general problem as: 

 d(Y, Z) = max°±²³ 	(sc(A) + 	α	 × 	�sc(Yk)µ
k*� 	)	 (5.1) 

We are trying to determine a predicted sequence that maximizes a score based on the de novo tag 

mapping provided by Spider involving n Spider tags, a simple sequence alignment score between � 

and S­®¯ designated as sc(A), and a BlockScore defined on the Spider tags designated as sc(Yi). 

Additionally, we will add a tuning parameter denoted as " chosen depending on our confidence in 

either the reference sequence (which implies a lower " which favours  Ff(¶)) or the Spider tags 

(which implies a higher " which favours the Spider tags). In practice, the algorithm appears relatively 

robust when choosing	". Other factors such as the score thresholds of the de novo and Spider tags 

used seem much more relevant.  

The BlockScore that we see as Ff(��) is calculated based on the alignment between the Spider tags, 

the reference sequence, and the predicted sequence. Spider naturally creates an alignment as 

previously shown in Figure 9 for sequences X (de novo), Y (reconstructed), and Z (homologous 

protein). This alignment naturally (by aligning mass tags) lends itself to a block-wise alignment along 

with a global predicted sequence across all Spider tags as in Figure 29. 
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Figure 29: Contrasting reconstruction with sequencing 

The reconstructed sequence Y is used along with the reference sequence (which is the same as Z) to 

create the predicted sequence. As for the composition of the blocks involved, we can see five blocks 

as displayed, the retention of T in block 4 as identified via reconstruction and the possibility of other 

overlapping Spider tags causing a different amino acid at block 1 to be predicted instead of either the 

reference or Spider tag.  

This block-wise alignment is used to create Ff(��)	which is defined as a fairly simple score below: 

 

This score has several features. The length constraint matches the reasoning for that given in Spider 

II. As the mass of a block increases, the number of other random blocks with the same mass grows at 

an increasing rate. Past a length of three amino acids, the tag provides little evidence. This trend can 

be partially seen in Table 1. By restricting our calculations to a block of three amino acids, this also 

aids us with a definition for the recurrence relation.  

Another piece that we will need is a way of looking at the problem of how to align multiple Spider 

tags to the reference sequence by inserting gaps. One example is presented below in Figure 30. This 

example shows an alignment between the reference sequence FGK and the Spider tag ATFR. In this 

representation, each e� is a letter from the reference sequence while each ·� is either a letter from the 

Spider tag or a gap. Each �� can represent a gap inserted in the alignment while each �� represents a 

possible empty substring of Y.   

BlockScore:		
Input:	A	block	Bj	which	has	as	its	components,	Spre|Bj,	Z|Bj,	and	Yj|Bj	as	the	three	parts	of	the	alignment	Output:	A	block	score	
Where	m(Bj)	gives	the	mass	of	a	block	
1. If	(|Bj|	>	3)	then	f(Bj)	=	0	2. ELSE	IF	Spre|Bj	=	Yj|Bj	≠empty	string	then	f(Bj)	=	|Bj|	3. ELSE	IF	m(Spre|Bj)	≈	m(Yj|Bj)	then	f(Bj)	=	1	4. ELSE	f(Bj)	=	0	
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Figure 30: Sample alignment 

5.1.3 Algorithm 

With all these pieces in place, we can start describing the algorithm for the Champs problem. We 

should consider the problem as follows, given a reference sequence Z, n Spider tags  Y1,	Y2,...	Yn, and 

the alignments of those Spider tags with a reference sequence of size m, we wish to construct an 

optimal sequence Spre and an alignment A with Z so that sc(Spre, A) is maximised. 

As with Spider II, we can calculate this by using dynamic programming.  Going back to our block 

concept, we will also denote ¹�� for 1≤j≤m and  1≤i≤n to represent the blocks of the alignment. For 

simplicity, we will use ¹� to denote all the blocks in the Spider tags aligned at position j in the 

reference sequence. Moving through the reference sequence by iterating through the set of blocks at 

each position, we will examine each set of blocks ¹�. We will build up our solution by considering a 

prefix of Spre predicted from Z[1..k] and all blocks that that end before Z[k], which we will denote as ¹�<k. Similar to our proof of Spider II in 4.1.4, we will be able to restrict our computation at each 

step by keeping in mind that we only have to consider  (≤ 3)-mers. This is reflected by our definition 

of the BlockScore. Thus, we will let E be a (≤ 3)-amino acid alignment between a portion of a 

potential Spider tag and the reference sequence as shown in Figure 31. As in the previous section Z 

and Y denote the potential gaps that may be inserted in order to establish an alignment.  

  

 

Figure 31: Illustration of E 

We can now define what our algorithm should compute.  
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 4s[º, »] = 	 max¼½¾¿ÀÁ	Â�ÃÄ	ÅÆFf(¶n) + " × � �(¹�)ÇÈ�É Ê (5.2) 

Given this definition, the final solution for the general problem defined by (5.1) will be equal to maxE4s[$, »].  In other words, the maximum score will end with all possible E and at the end of the 

reference sequence. This gives us both the maximum score and an optimal alignment if we either 

store our computation at each step or use a traceback procedure. We will now create a recurrence 

relation that can compute 4s[º, »] efficiently. In order to do this, we will consider the last few 

columns of the alignment.

 

Figure 32: Alignments in recurrence relation 

Thus, we can see that E can be broken up as E′ and e′ which are preceded by e in the optimal 

solution. Thus, we can assemble DP[k,E] from DP[k-1,eE’] given the block score of ¹� where k-1≤ ¹�≤ k and the alignment score for the alignment of e′.   This gives us the following recurrence 

relation.  

 4s[º, »] = 	max¾ Æ4s[º − 1, `»n] + Ff(`n) + � �(¹�)É���ÇÈ�É Ê (5.3) 

We can lookup DP[k-1,eE′] and sc(e′) can be calculated using BLOSUM. The value �(¹�) can be 

calculated from eE since due to our definition of BlockScore, we do not need to look back further 

than three letters since a block greater than length 3 has a BlockScore of 0. 

Finally, we can note that when we choose an optimal e, we can introduce as a parameter, at most f 

insertions into Zk-3. As each insertion can be one of 20 amino acids, we get a possible 

(20+20
2
+...+20

c
)×21 choices where the last column corresponding to ak-3 can be one of 20 amino 

acids or a gap. This gives /(21ËÌ�) for the number of possible E while a similar analysis gives a 

bound of /(21�ËÌ�) for possible alignments of E.  
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Therefore, since we control c, we can establish a solution of the form /(|∑| + 1) or /(1) for each 

step and a /($) linear time solution for the problem as a whole.  

5.2  Software Details 

Champs was implemented as a Java program, implementing the classes that calculate the assembly 

problem and a wrapped version of Spider that tackles the alignment and reconstruction problems. The 

core algorithm is implemented in seven packages, algn (handles pair alignment), assm (assembly of 

alignments to the reference using dynamic programming), enzy (enzyme), ion, mat (handles the 

BLOSUM 90 matrix used for scoring), pep (peptide), and res (amino acid residue). Two packages for 

utilities and the wrapper finish the implementation.  

• The following classes are particularly relevant 

o ChampsFacade: This class co-ordinates input from a pepXML parser that reads de 

novo sequences, the reference protein, and manages the alignment algorithm 

o DP: Standing for dynamic programming, this class assembles chosen pair-aligned 

de novo sequences  with the protein and calculates via back-tracking, an optimal 

sequence for the entire protein 

o RefAlign: Given a homolog segment and a Spider tag, this class gets the optimal 

alignment between the Spider tag and the reference tag.  

5.3 Experimental Procedure 

A programming interface was created for testing Champs. This interface would allow Champs to 

write out the reconstructed sequence and compare it with a known sequence. Champs will be tested in 

ways that are parallel to the testing of Spider peptide-by-peptide. We will compare the number of 

successfully identified amino acids versus the number of unsuccessfully identified amino acids as a 

measurement of accuracy. It might also be useful to track whether a missing mutation is possible to 

recover in a block from aligned peptides. If the correct amino acid appears in a particular column of a 

block, the mutation is possible to recover. This measurement can be compared to the number of extra 

mutations that are incorrectly assigned.  We will also keep track of how many amino acids are 

verified by Spider tags that we use in the assembly. This measurement will be deemed coverage. 

The testing of Champs was done by using two protein samples that were digested with three enzymes, 

GluC, LysC, and trypsin, creating many overlapping peptides as required. This process can be run on 
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a LTQ-Orbitrap hybrid instrument. The result spectra were sequenced via de novo sequencing on 

PEAKS 5.2 software and de novo sequences would only be used if they were both the highest scoring 

sequence for a given spectra and had a confidence score > 30%.  

The proteins used were ALBU_BOVIN (Serum albumin precursor from Bos taurus (Cow)) and 

LYS_CHICK (Lysozyme C from Gallus gallus (Chicken)). During the process of testing, these 

proteins were removed from a SwissProt database and a new search is conducted using regular 

database search to find a homologous protein. ALBU_SHEEP (ALBU_BOVIN's counterpart from 

sheep) and LYSC_COTHA (Lysozyme C from Japanese quail) were picked as references 

respectively.   

5.4 Results 

The results are as displayed in Table 10 and Table 11 which also display the results of the algorithm 

at varying " values. We can verify that accuracy is upwards of 98% and 99% respectively while both 

proteins have 100% coverage. We can also see that the algorithm is relatively robust with little 

variation when varying α. 
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Total Correct
27

 Found 

mutations
28

 

Incorrect 

AAs 

Extra 

mutations
29

 

Missed 

mutations
30

 

Correctable 

AAs
31

 

Covered 

AAs
32

 

Accuracy 

(%)
33

 

Coverage 

(%) 
" 

583 558 23 25 2 23 22 583 95.7 100.0 1 

583 570 35 13 3 10 10 583 97.8 100.0 2 

583 573 38 10 3 7 7 583 98.3 100.0 3 

583 573 38 10 3 7 7 583 98.3 100.0 4 

583 572 38 11 4 7 8 583 98.1 100.0 5 

583 573 39 10 4 6 7 583 98.3 100.0 6 

583 573 39 10 4 6 7 583 98.3 100.0 7 

583 573 39 10 4 6 7 583 98.3 100.0 8 

583 573 39 10 4 6 7 583 98.3 100.0 9 

583 573 39 10 4 6 7 583 98.3 100.0 10 

Table 10: BSA dataset - variable 
  

 

 

                                                      
27

 “Correct” refers to the number of columns that reconstructed the correct amino acid out of the total 
28

 “Found mutations” refers to the number of mutations (from the reference) that we successfully reconstructed 
29

 “Extra mutations” refers to the number of mutations that we falsely reported 
30

 “Missed mutations” refers to the number of mutations that we did not successfully reconstruct 
31

 “Correctable AAs” refers to the number of missed mutations where we had a chance of recovery 
32

 “Covered AAs” and “Coverage” refers the number of amino acids which were matched to a Spider tag  
33

 “Accuracy” refers to the portion of the protein that was successfully sequenced 
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Total Correct Found 

mutations 

Incorrect 

AAs 

Extra 

mutations 

Missed 

mutations 

Correctable 

AAs 

Covered 

AAs 

Accuracy 

(%) 

Coverage 

(%) 
" 

129 126 3 3 0 3 3 129 97.7 100.0 1 

129 127 4 2 0 2 2 129 98.4 100.0 2 

129 127 4 2 0 2 2 129 98.4 100.0 3 

129 128 5 1 1 0 1 129 99.2 100.0 4 

129 128 5 1 1 0 1 129 99.2 100.0 5 

129 128 5 1 1 0 1 129 99.2 100.0 6 

129 128 5 1 1 0 1 129 99.2 100.0 7 

129 128 5 1 1 0 1 129 99.2 100.0 8 

129 128 5 1 1 0 1 129 99.2 100.0 9 

129 128 5 1 1 0 1 129 99.2 100.0 10 

Table 11: LysC dataset - variable 
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Chapter 6 

Conclusion 

6.1 Author’s Contributions 

While several heuristic approximations of the Spider homology search algorithm have been 

previously implemented for solving the searching problem, this thesis contributes an algorithm, 

referred to as Spider II that unifies reconstruction with the search problem. This new algorithm also 

contributes a method for caching the calculation of intermediate results, thus reducing a combined 

polynomial runtime of the search algorithm from /($ + |�|2 × |∑|) 	×	 |X|2)  to a /(|∑|¡)	runtime,	independent	from	the	data,	which	can	be	cached	from	run	to	run	and	a	smaller	polynomial /(|�||�|)	search	runtime.	This	separation	also	removed	the	dependency	of	the	runtime	on	the	number	of	variable	PTMs	chosen	(|∑|).	This	allows	for	a	realistic	runtime	with	variable	PTMs	while	being	comparable	in	performance	with	the	most	thorough	variant	of	the	previous	version	of	Spider	(which	could	not	handle	variable	PTMs).	
Several	heuristics	for	investigating	the	selection	of	seeds	for	further	investigation	with	the	search	algorithm	were	also	investigated	and	found	to	be	relatively	robust.		
Reconstruction	has	proven	to	provide	a	rich	source	of	additional	information	performing	significantly	better	than	both	the	baseline	de	novo	approach	and	an	error-tolerance	database	search	approach,	delivering	a	significant	number	of	exact	matches	and	correct	amino	acids.	Additionally,	it	has	been	shown	that	Spider’s	fairly	unique	approach	delivers	matches	that	are	largely	complimentary	to	the	competing	approaches.	

6.2 Collaborative Aspects 

As	noted	earlier,	the	original	Spider	algorithm	was	implemented	and	evaluated	by	Yonghua	Han	and	subsequently	integrated	by	BSI	staff	into	PEAKS	Studio.	The	author	built	on	top	of	this	framework	to	implement	Spider	II.					
While	the	author	was	primarily	responsible	for	the	development	of	Spider	II,	the	work	on	Champs	was	done	in	collaboration	with	Xiaowen	Liu	with	Spider	reconstruction	allowing	for	the	development	of	the	Champs	full	protein	sequencing	application.	Xiaowen	Liu	was	responsible	for	the	development	and	initial	benchmarking	of	the	Champs	algorithm	while	the	author	was	responsible	for	its	interface	with	Spider	II	and	subsequent	evaluation.		
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6.3 Future Work 

There are a number of possible avenues for future research. The performance of the new Spider II 

algorithm for search could use some improvement. One approach would be to try to fine-tune the 

heuristics that select possible seeds for further investigation.  

There are also a number of choices in the equations used to model the alignment score. Some of 

these choices could be further explored in order to yield a better model. For example, experiments 

could be done with different BLOSUM matrices to see if it is worthwhile using different matrices 

when it is known how divergent the homologous database is from the original species.  

As for the Champs algorithm for full protein sequencing, there are also a number of possible next 

steps. One possible step would be to develop a method for the characterization of PTMs. De novo 

sequencing and Spider can identify PTMs, but the Champs algorithm strips out this information. This 

could potentially be improved for the purposes of identifying unexpected mutations. Another avenue 

of possible investigation would be to determine the efficacy of using Champs to verify the sequence 

of known proteins with high confidence rather than the characterization of novel proteins.  
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Appendix A 

List of Software and Hardware Used 

This section lists the software programs and hardware used. 

Software List 

• PEAKS Studio 5.2, PEAKS Studio 5.1, PEAKS Studio 4.5 

o de novo sequencing, database search and Spider homology search 

• DirecTag 1.3.24 (2010-7-21) 

• TagRecon 1.2.34 (2010-6-21) 

• MASCOT 2.3.01 

• Groovy 1.7.0 

• Java 1.6.0_18 

Hardware List 

• Personal Computer: Windows 7 64-bit, Intel(R) Core(TM) i7 CPU 860 @ 2.80 GHz 

(8CPUs) with 8192MB RAM 
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