
Real-time Dynamic Simulation of

Constrained Multibody Systems

using Symbolic Computation

by

Thomas Kenji Uchida

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Systems Design Engineering

Waterloo, Ontario, Canada, 2011© Thomas Kenji Uchida 2011

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The main objective of this research is the development of a framework for the automatic

generation of systems of kinematic and dynamic equations that are suitable for real-time

applications. In particular, the efficient simulation of constrained multibody systems is

addressed. When modelled with ideal joints, many mechanical systems of practical interest

contain closed kinematic chains, or kinematic loops, and are most conveniently modelled

using a set of generalized coordinates of cardinality exceeding the degrees-of-freedom of the

system. Dependent generalized coordinates add nonlinear algebraic constraint equations

to the ordinary differential equations of motion, thereby producing a set of differential-

algebraic equations that may be difficult to solve in an efficient yet precise manner. Several

methods have been proposed for simulating such systems in real time, including index

reduction, model simplification, and constraint stabilization techniques.

In this work, the equations of motion are formulated symbolically using linear graph

theory. The embedding technique is applied to eliminate the Lagrange multipliers from

the dynamic equations and obtain one ordinary differential equation for each indepen-

dent acceleration. The theory of Gröbner bases is then used to triangularize the kinematic

constraint equations, thereby producing recursively solvable systems for calculating the de-

pendent generalized coordinates given values of the independent coordinates. For systems

that can be fully triangularized, the kinematic constraints are always satisfied exactly and

in a fixed amount of time. Where full triangularization is not possible, a block-triangular

form can be obtained that still results in more efficient simulations than existing iterative

and constraint stabilization techniques.

The proposed approach is applied to the kinematic and dynamic simulation of several

mechanical systems, including six-bar mechanisms, parallel robots, and two vehicle sus-

pensions: a five-link and a double-wishbone. The efficient kinematic solution generated for

the latter is used in the real-time simulation of a vehicle with double-wishbone suspensions

on both axles, which is implemented in a hardware- and operator-in-the-loop driving sim-

ulator. The Gröbner basis approach is particularly suitable for situations requiring very

efficient simulations of multibody systems whose parameters are constant, such as the plant

models in model-predictive control strategies and the vehicle models in driving simulators.

iii

Acknowledgements

Thank you to . . .

. . .my supervisor, John McPhee, for guiding and encouraging another little fish;

. . . the alumni and current members of the Motion Research Group,

for helping me navigate the occasionally turbulent waters;

. . .my numerous collaborators from all corners of the world,

for your reflections from diverse schools of thought;

. . . the University of Waterloo and the Governments of Ontario and Canada,

for the scholarships that have helped me stay afloat;

. . . and, of course, my parents, brother, and family, for their unwavering support,

and for teaching me the value of swimming against the current.

iv

Dedication

To my parents who, in cultivating the fruits of my labours,

have provided copious amounts of sunlight. And fertilizer.

v

Foreword

Entombed herein ideas slumber,

Buried under text and number,

Caged by bars of Times New Roman

Marching ’cross these pages woven.

Go henceforth, revive once more

These visions that my mind once bore;

And if thou art the curious kind,

Perhaps some interest thou shalt find

Amid the seeds and pith and rind,

As that’s the purpose of this lore.

T . K. U .

vi

Table of Contents

List of Tables x

List of Figures xii

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 2

1.3 Challenges . 3

1.4 Applications . 5

1.5 Thesis organization . 6

2 Literature Review 8

2.1 Differential-algebraic equations of motion 9

2.1.1 Numerical integration of index-3 DAEs 9

2.1.2 Reduction to index-2 or index-1 DAEs 10

2.1.3 Reduction to ODEs using stabilized constraints 11

2.1.4 Conversion to ODEs by modifying the system model 13

2.1.5 Reduction to ODEs by solving the constraints separately 15

2.2 Solving systems of nonlinear equations . 17

2.2.1 Goniometric equations . 17

2.2.2 Polynomial continuation . 18

2.2.3 Dialytic elimination . 19

vii

2.2.4 Resultant methods . 22

2.2.5 Exact Gröbner bases . 24

2.2.6 Approximate Gröbner bases . 29

2.3 Chapter summary . 34

3 Gröbner Basis Approach 35

3.1 Formulating equations of motion . 35

3.1.1 System description . 36

3.1.2 Graph-theoretic formulation . 37

3.2 Preparing constraints for triangularization 43

3.2.1 Goniometric equations . 43

3.2.2 Floating-point coefficients . 47

3.3 Triangularizing systems . 48

3.3.1 Triangularizability . 49

3.3.2 Triangular systems in kinematics 53

3.4 Generating dynamic simulation code . 55

3.4.1 Projecting dynamic equations . 55

3.4.2 Simplification and optimization . 57

3.5 Chapter summary . 58

4 Fully Triangular Systems 60

4.1 Single-loop mechanisms . 60

4.1.1 Planar slider-crank mechanism . 61

4.1.2 Spatial four-bar mechanism . 63

4.2 Multi-loop mechanisms . 70

4.2.1 Cascade of single-degree-of-freedom mechanisms 70

4.2.2 Stephenson-III six-bar mechanism 72

4.2.3 Aircraft landing gear mechanism 75

4.2.4 Planar parallel robot . 77

viii

4.2.5 Gough–Stewart platform . 82

4.3 Chapter summary . 87

5 Block-triangular Systems 89

5.1 Five-link suspension . 89

5.2 Double-wishbone suspension . 97

5.3 Chapter summary . 106

6 Driving Simulator 107

6.1 System description . 107

6.2 Double-wishbone vehicle model . 111

6.3 Chapter summary . 115

7 Conclusions 118

7.1 Contributions . 118

7.2 Recommendations for future research . 121

7.2.1 Full automation . 121

7.2.2 Reduction of computation time . 122

7.2.3 Applicability to large systems . 124

7.2.4 Other topics . 125

Permissions 126

References 127

AAppendix A: System Parameters 142

A.1 Aircraft landing gear mechanism . 142

A.2 Planar parallel robot . 144

A.3 Gough–Stewart platform . 145

A.4 Five-link suspension . 145

A.5 Double-wishbone suspension and vehicle model 146

ix

List of Tables

3.1 Comparison of triangular systems for planar slider-crank mechanism 46

3.2 Cost of evaluating dynamic equation for planar slider-crank mechanism . . 58

4.1 Cost of triangular systems for spatial four-bar mechanism when β0 = 0 . . 66

4.2 Cost of triangular systems for spatial four-bar mechanism when β0 6= 0 . . 68

4.3 Performance of spatial four-bar mechanism simulations in Maple 69

4.4 Performance of Stephenson-III six-bar simulations when β1 is driven 74

4.5 Performance of Stephenson-III six-bar simulations when θ1 is driven 74

4.6 Triangular system obtained for aircraft landing gear mechanism 77

4.7 Comparison of triangular systems obtained for planar parallel robot 80

4.8 Performance of planar parallel robot simulations with qi = {θ1, θ4, θ7} . . . 81

4.9 Performance of planar parallel robot simulations with q′

i = {xee, yee, θee} . . 81

4.10 Performance of Gough–Stewart platform simulations 86

5.1 Triangular system obtained for first link of five-link suspension 94

5.2 Performance of five-link suspension simulations 96

5.3 Complexity of constraint equations for five-link and double-wishbone . . . 98

5.4 Performance of double-wishbone suspension simulations 104

5.5 Performance of approximated double-wishbone suspension simulations . . . 104

6.1 Computational efficiency of double-wishbone vehicle simulations 116

6.2 Precision of double-wishbone vehicle simulations 116

A.1 Point locations in aircraft landing gear mechanism 143

x

A.2 Geometric and inertial parameters for planar parallel robot 144

A.3 Joint locations for Gough–Stewart platform 145

A.4 Inertial parameters for Gough–Stewart platform 145

A.5 Joint locations for five-link suspension . 146

A.6 Hardpoint locations for front-left double-wishbone suspension 147

A.7 Hardpoint locations for rear-left double-wishbone suspension 147

A.8 Parameters for double-wishbone vehicle model 148

xi

List of Figures

1.1 Topological nomenclature . 4

1.2 Unconstrained double-pendulum . 4

1.3 Constrained double-pendulum . 5

3.1 Planar slider-crank mechanism . 36

3.2 Linear graph representation of planar slider-crank mechanism 37

3.3 Spanning trees for joint coordinate formulation of planar slider-crank . . . 40

3.4 Planar multi-loop mechanism and corresponding solution flow 50

3.5 Two configurations of planar slider-crank mechanism for θ = π/4 [rad] . . 54

3.6 Two configurations of planar slider-crank mechanism for s = 0.551 [m] . . 54

3.7 Solution flow for dynamic simulation of planar slider-crank mechanism . . 57

4.1 Geometry of planar slider-crank mechanism 61

4.2 Body-fixed reference frames for planar slider-crank mechanism 62

4.3 Spatial four-bar mechanism . 63

4.4 Hydraulic excavator . 70

4.5 Deployment of synthetic aperture radar satellite antenna 71

4.6 Stephenson-III six-bar mechanism . 72

4.7 Kinematic solution flow for Stephenson-III six-bar when β1 is driven 73

4.8 Kinematic solution flow for Stephenson-III six-bar when θ1 is driven 73

4.9 Aircraft landing gear mechanism . 75

4.10 Topology of aircraft landing gear mechanism 76

xii

4.11 Planar parallel robot . 78

4.12 Gough–Stewart platform . 82

4.13 Solution flow for dynamic simulation of Gough–Stewart platform 86

5.1 Five-link suspension . 90

5.2 Kinematic response of five-link suspension 91

5.3 Vertical displacement of wheel carrier in five-link simulations 95

5.4 Solution flow for dynamic simulation of five-link suspension 96

5.5 Double-wishbone suspension . 97

5.6 Kinematic response of double-wishbone suspension 100

5.7 Kinematic solution flow for double-wishbone suspension 102

5.8 Motion drivers for kinematic simulation of double-wishbone suspension . . 103

5.9 Vertical displacement of wheel carrier in double-wishbone simulations . . . 103

5.10 Results from kinematic simulation of double-wishbone suspension 105

6.1 Hardware- and operator-in-the-loop driving simulator 108

6.2 14-degree-of-freedom branched-topology vehicle model 110

6.3 Rack displacement for dynamic simulation of double-wishbone vehicle . . . 112

6.4 Trajectory of double-wishbone vehicle . 113

6.5 Results from dynamic simulation of double-wishbone vehicle 114

A.1 Aircraft landing gear mechanism geometry 143

A.2 Planar parallel robot geometry . 144

A.3 Double-wishbone suspension hardpoints . 146

xiii

Chapter 1

Introduction

Multibody dynamics is the branch of physics concerned with the motion of interconnected

rigid or flexible bodies and the forces that are responsible for this motion. One of the

fundamental objectives in this field is the automatic generation of the equations governing

the motion of a multibody system, given a description of its components and the intercon-

nections between them, or its topology. The form of the governing dynamic equations can

vary greatly, depending on the characteristics of the system under investigation and the

procedure used to formulate the equations of motion. Though mathematically equivalent,

the various forms of these equations may be suitable for different simulation environments

and practical applications. The main objective of this research is the development of

a framework for the automatic generation of systems of equations that are suitable for

real-time applications.

1.1 Background

Real-time hardware-in-the-loop (HIL) simulation can be used to test electronic and me-

chanical components of a multibody mechatronic system in isolation, and its use in industry

has been firmly established for many years. A real-time model is characterized by its ability

to calculate the trajectory of a physical system faster than it would evolve in reality. HIL

simulation refers to the replacement of one or more components of a software model with

the analogous hardware components, which communicate with the remaining software el-

ements throughout the simulation. Operator-in-the-loop simulation is similar, except that

1

a human user provides some of the system inputs and observes or otherwise senses some

of the system outputs during the simulation. Since the transmission of signals between

the software model and the hardware components or human user is not instantaneous, it

is essential that the model operates faster than real time.

The governing dynamic equations for the software model in a real-time simulation can

be generated numerically or symbolically. In general, numerical formulation techniques

produce matrices that are only valid for a given instant of time, so the equations must be

reformulated at every time step of a simulation. Although numerical formulations are used

by many popular commercial simulation packages, the relatively slow process of repeat-

edly reformulating the system equations may prohibit their use in real-time applications.

Symbolic formulation techniques, on the other hand, produce sets of equations that are

eternally valid, so must only be generated once. Prior to simulation, the symbolic equa-

tions can also be greatly simplified in numerous ways, which can result in models that

simulate many times faster than those modelled using a purely numerical approach [110].

Despite their advantages, symbolic formulation techniques produce sets of equations that

can become prohibitively large for complex systems. An efficient symbolic computation

package and an intelligent formulation procedure can alleviate this difficulty [36].

1.2 Motivation

Multibody systems of practical interest are generally governed by differential and algebraic

equations that would be tedious to derive manually. Automated formulation procedures are

employed to ensure these equations are generated both quickly and correctly. Furthermore,

by automating this procedure, the analyst need not be concerned with the underlying com-

putational algorithms, and can instead focus on the design of the mechanical system [81].

In this sense, an automated formulation procedure serves the same purpose as a traction

control system in a vehicle, which allows the driver to focus on high-level tasks such as

navigating and obeying traffic signals rather than low-level tasks such as compensating

for a brief reduction in traction. An algorithmic approach to generating the equations of

motion also makes the modelling and simulation of multibody systems accessible to a wider

audience. An engineer developing a complex control strategy for a dynamic system may

2

not be familiar with the theory of Gröbner bases, but could benefit from the use of such

concepts when generating a model-predictive control strategy or HIL test platform.

There are several compelling reasons for using HIL simulation. In contrast to the use of

full physical prototyping, HIL simulation naturally isolates physical subsystems, which can

help identify interactions among the various components in a complex mechatronic system.

Simulations can also be performed relatively quickly and easily, even before the remaining

system components have been manufactured. Furthermore, the need to perform expensive

field tests in inconvenient or potentially hazardous environments can often be reduced or

eliminated altogether. In some situations, it may be logistically impractical to perform

experiments in the environment or under the conditions for which a device was designed,

as is often the case in aerospace and automotive safety applications. In addition, since

the testing is being performed in a virtual environment, extreme or unusual conditions

can be replicated at will, enabling the repeated simulation of cold-start engine tests in the

summer, for example [73]. Finally, HIL simulation can greatly reduce the cost of system

testing, as failure of the component under scrutiny will not endanger other components in

the physical system, and tests can be conducted without human interaction [114]. Thus,

HIL simulation isolates hardware components both physically and analytically, and allows

the engineer to perform repeatable simulations quickly, easily, safely, and with minimal

cost.

1.3 Challenges

The motion of a multibody system can be described using a set of pure ordinary differ-

ential equations (ODEs), provided the modelling coordinates are independent. In such

situations, the number of ODEs is equal to the number of degrees-of-freedom (DOF) of

the system, or the number of independent ways in which the mechanism can move. A

closed kinematic chain, or kinematic loop, is a chain of interconnected bodies where the

last body is connected back to the first body, as shown in Figure 1.1. Closed-kinematic-

chain systems are most readily described in terms of a set of generalized coordinates of

cardinality exceeding the DOF of the system. Dependent generalized coordinates add non-

linear algebraic constraint equations to the ODEs of motion, thereby producing a set of

3

Open-loop topology

(serial chain)

Branched topology

(tree structure)

Closed-loop topology

(closed kinematic chain)

Figure 1.1: Topological nomenclature

differential-algebraic equations (DAEs) that may be difficult to solve in real time. Alge-

braic constraints also appear in the equations governing the motion of open-loop systems

if the generalized coordinates are not independent.

The difference between the modelling of open-loop and constrained mechanisms is illus-

trated here with a simple example. Consider the unconstrained double-pendulum shown in

Figure 1.2. When modelled using joint coordinates q = {θ1, θ2}, the motion of this system

is described mathematically by two second-order ODEs:

Y

X

θ2
�1

�2

θ1

[]{ } { }Figure 1.2: Unconstrained double-pendulum


M11(q) M12(q)

M21(q) M22(q)







θ̈1

θ̈2



 =




F1(q, q̇, t)

F2(q, q̇, t)



 (1.1)

where the entries of the mass matrix (Mij) are functions of the position-level coordinates,

and the entries of the force vector (Fi) are functions of the positions and velocities; the

4

simulation time t may also appear explicitly in the force vector. If the end of the second

pendulum is constrained to slide in a horizontal track, as illustrated in Figure 1.3, and the

same modelling coordinates are used, we instead obtain a system of two ODEs coupled

with one algebraic constraint equation:

Y

X

θ2
�1

�2

θ1 d

[]{ } { } {
(
(

− d

−
{ }Figure 1.3: Constrained double-pendulum


M11(q) M12(q)

M21(q) M22(q)








θ̈1

θ̈2




 +





`1 cos(θ1) − `2 cos(θ1 + θ2)

−`2 cos(θ1 + θ2)




λ =





F1(q, q̇, t)

F2(q, q̇, t)




 (1.2)

`1 sin(θ1) − `2 sin(θ1 + θ2) − d = 0 (1.3)

where λ is referred to as a Lagrange multiplier, and corresponds to the vertical reaction

force at the end of the second pendulum. Although the same modelling coordinates have

been used in both systems, the numerical integration of the latter is more challenging

than that of the former: whereas the unconstrained double-pendulum has 2 DOF, the

constrained double-pendulum has only 1 DOF. Thus, the numerical integration of θ1 and

θ2 must proceed while ensuring that the constraint equation (1.3) is satisfied.

1.4 Applications

This work is particularly applicable to situations in which one requires very efficient simu-

lations of multibody systems whose parameters are constant. One application is computing

the inverse kinematics of parallel robots, such as the Gough–Stewart platform commonly

used in flight and driving simulators. Motion controllers for such systems must contin-

ually determine, in real time, the leg lengths and joint angles that result in the desired

5

position and orientation of the platform. A related application is the solution of the

constraint equations in the dynamic simulation of closed-kinematic-chain systems. Many

systems of practical interest contain closed kinematic chains, including vehicle suspensions

and deployable structures; hardware- and operator-in-the-loop simulations of such systems

require computationally efficient simulation code to maintain real-time performance. Al-

though branched-topology vehicle models are often used in real-time scenarios, it may be

desirable to evaluate the performance of a vehicle and its controllers using a more detailed

closed-kinematic-chain model. A third application is the development of plant models

for model-predictive controllers, where the demand for very efficient simulation code is

substantial—particularly if the control strategy is to be implemented on an embedded pro-

cessor. Improving the efficiency of a predictive vehicle model, for example, permits the use

of less powerful—and, therefore, less expensive—electronic control units. Alternatively,

more sophisticated models could be implemented on the existing hardware, potentially re-

sulting in more effective control strategies and safer vehicles. Further potential applications

include design optimization, sensitivity analysis, parameter identification, and controller

tuning tasks, which can require hundreds or thousands of simulations.

1.5 Thesis organization

A brief description of the contents of this thesis is provided here. The first half of Chap-

ter 2 focuses on the reduction of DAEs to ODEs, which are more amenable to numerical

integration; the second half introduces several techniques for solving systems of nonlin-

ear equations, such as the kinematic constraints encountered in the modelling of closed-

kinematic-chain systems. In Chapter 3, we propose the use of Gröbner bases for gen-

erating efficient systems of kinematic equations, using a simple example to demonstrate

each step in the formulation procedure. The three subsequent chapters further explore

the Gröbner basis approach through the kinematic and dynamic simulation of a series of

mechanisms of increasing complexity. We begin Chapter 4 by studying simple single-loop

and cascading-loop mechanisms, then proceed to six-bar mechanisms and parallel robots.

Efficient kinematic solutions for the five-link and double-wishbone vehicle suspensions are

generated in Chapter 5, the latter of which is used for the real-time simulation of a vehi-

6

cle with double-wishbone suspensions on both axles. This vehicle is implemented in the

hardware- and operator-in-the-loop driving simulator discussed in Chapter 6. The signifi-

cant contributions of this work are highlighted in Chapter 7, where recommendations for

future research are also provided.

7

Chapter 2

Literature Review

The equations of motion for multibody systems containing closed kinematic chains are

most readily derived using a set of redundant generalized coordinates. If an augmented

formulation [111] is used, a system of n second-order ODEs (one for each generalized

coordinate) and m nonlinear algebraic constraint equations is obtained for a multibody

system with f = n−m degrees-of-freedom (DOF):

Mq̈ + ΦT
q

λ = F (2.1)

Φ(q) = 0 (2.2)

where M is the mass matrix, q is the vector of generalized coordinates, λ is the vector of

Lagrange multipliers, F is a vector containing the external loads and gyroscopic terms, Φ

contains the constraint equations, and Φq = ∂Φ/∂q. This system of n + m DAEs is of

index 3 since, in addition to algebraic manipulations, three time differentiations would be

required to express it as a system of (2n+m) first-order ODEs. To improve the tractability

of numerical integration, it is desirable to reduce the index of DAE systems as much as

possible [13]. Note, however, that differentiating (2.2) can lead to the accumulation of

significant position-level constraint violations. Several techniques have been developed

for reducing the index of DAE systems while maintaining the integrity of the numerical

solution. A review of these approaches in the context of real-time simulation is provided

in Section 2.1. As described below, an efficient yet accurate simulation strategy can be

employed if the position-level constraint equations can be solved symbolically. Techniques

for solving systems of nonlinear equations are described in Section 2.2.

8

2.1 Differential-algebraic equations of motion

The equations of motion are rarely integrated using the index-3 differential-algebraic form

shown in (2.1) and (2.2). In this section, some existing solution approaches involving index

reduction, constraint stabilization, and system modification are presented. Two existing

strategies for solving the constraint equations separately from the dynamic equations are

also discussed.

2.1.1 Numerical integration of index-3 DAEs

The motivation for index reduction can be illustrated by considering the numerical solution

of an index-3 DAE system using the implicit Euler backward differentiation formula (BDF),

which transforms a set of nonlinear differential-algebraic equations into a set of nonlinear

algebraic difference equations using the following relationship [13]:

ẋ(t) =
x(t) − x(t− h)

h
=:

∆x

h
(2.3)

where x(t) are the unknown system states at time t, x(t − h) are the states from the

previous time step, and h is the integration step size. The dynamic equations (2.1) are

first converted into first-order form by introducing velocity variables p = q̇, which results

in the following system:

M(q) ṗ + Φ(q)T
q

λ − F(q,p) = 0 (2.4)

p− q̇ = 0 (2.5)

Φ(q) = 0 (2.6)

where the dependencies have been shown explicitly. This system can be solved by applying

difference relation (2.3) and using Newton’s method to determine the values of {q,p,λ},
which requires the following Jacobian matrix [89]:

J =




1
h
Mq ∆p + ΦT

qq
λ − Fq

1
h
M− Fp ΦT

q

− 1
h
I I 0

Φq 0 0


 (2.7)

where I is an identity matrix of dimension n. Similar Jacobians are obtained for higher-

order BDF methods. Two important observations can be made. First, note that Jacobian

9

J becomes ill-conditioned as the integration step size h is decreased, which can cause

instabilities in adaptive-step-size solvers. Also note that the integration error cannot be

monitored for the velocities p or Lagrange multipliers λ [89]. It is for these reasons that

index-2 and index-1 formulations are preferred.

2.1.2 Reduction to index-2 or index-1 DAEs

Replacing (2.2) with its time derivative results in an index-2 system of DAEs, which can

be integrated using a sufficiently sophisticated DAE solver, but the solution will drift away

from the constraint manifold linearly over time [3]. The stabilized index-2 (SI2) formulation

first proposed by Gear et al. [41] uses additional Lagrange multipliers µ in the kinematic

differential equations:

Mṗ + ΦT
q

λ = F (2.8)

p − q̇ + ΦT
q

µ = 0 (2.9)

Φ̇(p,q) = 0 (2.10)

Φ(q) = 0 (2.11)

The position- and velocity-level constraint violations remain bounded provided Lagrange

multipliers µ remain small. In this case, the Jacobian J does not become ill-conditioned

as the integration step size is decreased, and the integration error can be monitored for

both the positions q and velocities p. Even more tractable for numerical integration,

however, are approaches that result in index-1 DAEs. One form of the stabilized index-1

(SI1) formulation replaces (2.2) with its second time derivative, but a less computationally

expensive alternative involves introducing new variables χ̇ = λ and ν̇ = µ [89]:

Mṗ + ΦT
q

χ̇ = F (2.12)

p − q̇ + ΦT
q

ν̇ = 0 (2.13)

Φ̇(p,q) = 0 (2.14)

Φ(q) = 0 (2.15)

This system is of index 1 since only one differentiation of Φ̇ is required to obtain explicit

expressions for χ̇ and ν̇. Since the integration error can be monitored for all states, the

SI1 formulation can provide more accurate results than the SI2 formulation.

10

Although the index-2 and index-1 formulations address the issue of constraint violation,

a DAE or stiff ODE solver is required to numerically integrate the resulting equations.

In general, DAE solvers assemble implicit systems of nonlinear equations at each time

step, and use an iterative technique such as Newton’s method to calculate the new states.

DASSL is one such solver, and uses a variable-step-size, variable-order form of the BDF

methods [13], which have been proven to converge for index-2 problems [41]; RADAU is

another, and is based on the implicit Runge–Kutta methods [50]. Such numerical inte-

gration schemes pose two fundamental difficulties in the context of real-time simulation.

First, real-time applications—particularly those involving hardware- or operator-in-the-

loop components—typically require fixed sampling time intervals, which precludes the use

of variable-step-size solvers. Furthermore, it cannot be guaranteed that an iterative tech-

nique will maintain its real-time performance unless the number of iterations is limited,

in which case it cannot be guaranteed that the integration tolerances will be satisfied.

The real-time-capable linearly-implicit Euler method, for example, uses a single Newton

step for solving a system of implicit equations and projecting the resulting solution onto

the constraint manifold at each time step, but the constraint equations are never satis-

fied exactly [19]. Consequently, the DAEs governing the motion of constrained multibody

systems are often replaced with a system of pure ODEs that approximately describes the

motion of the original system. A low-order, fixed-step-size, non-stiff ODE solver, such as

the simple one-step explicit Euler scheme, is then often employed [3].

2.1.3 Reduction to ODEs using stabilized constraints

The objective of constraint stabilization techniques is to integrate the derivatives of the

kinematic constraints along with the ODEs of motion in a way that avoids the accumulation

of position-level constraint violations. Replacing (2.2) with its second time derivative lowers

the DAE index to 1, but the position-level constraint violations will grow quadratically over

time [3]. Baumgarte stabilization [7] prevents the accumulation of significant constraint

violations by replacing (2.2) with a linear combination of the position-, velocity-, and

acceleration-level constraints:

Φ̈ + 2αBΦ̇ + β2
BΦ = 0 (2.16)

11

Although it is relatively straightforward to implement, the effectiveness of Baumgarte’s

method relies heavily on the judicious selection of stabilization parameters αB and βB.

Parameters αB = 1/h and βB = 1/h2, where h is the integration step size, are theoretically

optimal but impractically large, as they introduce artificial stiffness into the system [31]. In

practice, αB and βB are usually chosen to be equal, thereby achieving critical damping and

providing the fastest error reduction [6], with values typically between 1 and 20 [40]. On

its own, twice differentiating (2.2) and applying Baumgarte stabilization only reduces the

index of the system equations by two, and index-1 DAEs are not suitable for the non-stiff

ODE solvers that are typically used in real-time applications. In order to obtain a system

of ODEs, Baumgarte’s method can be applied once the Lagrange multipliers have been

eliminated using, for example, the null space formulation [74]:



ΓT M

Φq



 q̈ =



ΓT F

γ̂



 (2.17)

where Γ is an orthogonal complement of the Jacobian Φq, and γ̂ is the right-hand side of

the Baumgarte-stabilized constraints:

Φq q̈ = γ − 2αBΦ̇ − β2
BΦ = γ̂ (2.18)

Alternatively, the Lagrange multipliers can be solved explicitly [141]:

λ =
(
Φq M−1 ΦT

q

)
−1 (

Φq M−1 F − γ̂
)

(2.19)

q̈ = M−1
(
F− ΦT

q
λ
)

(2.20)

Another constraint stabilization technique is the penalty formulation, which treats the

constraint equations as ideal mass-spring-damper systems that are penalized by large val-

ues, and are used in place of the Lagrange multipliers [9]:

Mq̈ + ΦT
q

ρ
(
Φ̈ + 2ωζΦ̇ + ω2Φ

)
= F (2.21)

where ρ, ω, and ζ are diagonal matrices containing, respectively, the penalty numbers, nat-

ural frequencies, and damping ratios associated with each penalty system. Larger penalty

numbers ρ enforce the constraints more strictly; Garćıa de Jalón and Bayo suggest using

values 107 times greater than the largest element of the mass matrix, which was found to

12

produce acceptable results in real-time simulations [8]. This approach is conceptually sim-

ilar to force coupling, and suffers from the same numerical ill-conditioning as the penalty

values are increased. To overcome this issue, Garćıa de Jalón and Bayo use the following

iterative process at each time step, which ensures that the constraints are satisfied to a

desired tolerance regardless of the size of the penalty values [40]:

q̈(0) = M−1 F (2.22)

q̈(k) =
(
M + ΦT

q
ρΦq

)
−1

{
Mq̈(k−1) −ΦT

q
ρ

(
Φ̇q q̇ + Φ̇t + 2ωζΦ̇ + ω2Φ

)}
,

k ≥ 1 (2.23)

where the parenthetic superscript indicates the iteration number. Although this strategy

iterates at each time step, using only a single iteration can considerably widen the range

of acceptable penalty values [40].

2.1.4 Conversion to ODEs by modifying the system model

A common approach used for obtaining a real-time-capable system of equations that ap-

proximately describes the motion of a constrained system is to adjust the system model.

Modifying the equations of motion directly (using a constant [114], linearized [19], or

only periodically updated [5] Jacobian, for example) is a technique that can reduce the

computational cost considerably. Perhaps the most common modification is replacing a

closed-loop multibody system with a similar open-loop system and superimposing the ef-

fects of the neglected components using tabulated data. For example, Sayers [106] predicts

the handling characteristics of passenger vehicles using a simplified branched-topology ve-

hicle model consisting of three main components: a sprung mass, representing the vehicle

body, drivetrain, and parts of the suspensions and front wheels; an unsprung mass, rep-

resenting the rear wheels and the remaining parts of the suspensions and front wheels;

and four tires, using a simple linear tire model that is valid only for the small deflections

typical of highway driving. This model was extended to include the effects of the most

significant components influencing the handling, braking, and acceleration performance of

a vehicle—such as the relationship between vertical displacement and tire camber caused

by the closed-loop suspension kinematics—and has evolved into the commercially-available

CarSim software package [107]. When exported into the Matlab/Simulink environment,

13

the simulation code generated by CarSim can be executed faster than real time on a 233-

MHz Intel Pentium processor, and has been used in hardware-in-the-loop simulations [107].

ADAMS/Car RealTime uses a similar vehicle model. Although these software packages are

capable of generating real-time simulation code with minimal user input, they are limited

in three fundamental ways:

1. Since the dynamic equations have been hand-derived, only specific vehicle topologies

and configurations can be simulated.

2. The amount of computation required during the simulation has been reduced using

modelling approximations, which may not be suitable for detailed dynamic analyses.

3. The tabulated data used to describe the nonlinear suspension kinematics must be

obtained either experimentally or through the simulation of a more detailed closed-

kinematic-chain model.

To avoid the use of tabulated data, Eichberger and Rulka [27] developed the macro joint

approach, which systematically reduces a detailed vehicle model containing flexible bodies

and compliant joints to one suitable for real-time applications by neglecting the masses

of suspension components. The macro joint approach retains the parameterization of the

original suspension model, adding kinematic equations that describe the jounce, rebound,

and steering behaviour to those that describe the quasi-static deformation behaviour of

the eliminated components.

Force coupling is another modification technique used for converting DAEs into ODEs.

In this case, one joint in each kinematic loop is replaced with a virtual spring, which acts

on the detached bodies to approximately satisfy the constraints that were enforced by the

removed joint. A damper can also be added to mitigate the oscillations induced by the

spring. In addition to obtaining a system of ODEs, the use of force coupling results in a

block-diagonal mass matrix, which facilitates the distribution of the simulation code over

multiple processors [136]. The stiffness of the virtual spring must be high enough to main-

tain an acceptably small distance between the detached bodies. As the stiffness increases,

however, high-frequency oscillations are introduced in the system, which necessitates the

use of a small integration step size to produce an accurate simulation [109]. Thus, as is

14

the case with Baumgarte’s method, the effectiveness of this technique relies on the judi-

cious selection of system-dependent parameters. The use of a compliant joint model [112]

accomplishes the same goal, and is hindered by the same practical difficulties.

2.1.5 Reduction to ODEs by solving the constraints separately

Rather than using a simplified model or attempting to solve a system of DAEs, the con-

straint equations can be solved separately from the dynamic equations; since only the

latter must be integrated, a standard ODE solver can be used. To this end, Kecskeméthy

et al. [68] proposed the characteristic pair of joints approach, a three-step strategy in which

systems of algebraic equations are solved symbolically for a set of independent loops. The

first step of this approach involves identifying in the topological system graph the cycle

basis with the minimum total weight, where the edge weights are based on the number of

coordinates associated with the corresponding joint. The minimal cycle basis can be found

using standard graph-theoretic algorithms [58], and is similar to the notion of fundamental

circuits. The objective of the second step is to generate a triangular, or recursively solvable,

system—that is, a sequence of equations in which each successive equation contains ex-

actly one more unknown than its predecessor—for each independent kinematic loop. These

equations are obtained by projecting loop closure equations onto geometrically invariant

elements, such as the squared distance between two points [66]. By varying the form of

the loop closure equations and projecting onto the appropriate geometric elements, recur-

sively solvable systems can often be found. Expressions for velocities and accelerations

are obtained using loop closure equations at the velocity and acceleration levels. In the

final step of this approach, the local solutions are assembled into a global solution and the

optimal solution flow, or order in which the local solutions must be solved, is determined.

MOBILE is an object-oriented C++ implementation of this technique that uses symbolic

solutions generated in Mathematica [67].

Although the characteristic pair of joints technique has been used to generate effi-

cient simulation code for many mechanisms, the approach has several limitations. First,

minimizing the number of generalized coordinates does not always result in the fastest

simulations [75]. Furthermore, a purely joint coordinate formulation, as required by the

characteristic pair of joints approach, is often less efficient than a formulation using a

15

mixed set of joint and absolute coordinates. Finally, there may not be a sufficient supply

of suitable geometrically invariant elements in order to form recursively solvable systems

for all independent loops, in which case the algorithm resorts to an iterative procedure.

The characteristic pair of joints approach is discussed further in Section 4.1, where it is

used to generate recursively solvable kinematic solutions for two single-loop mechanisms.

Symbolic computation is also exploited in the embedding technique [111], which is a

form of projection and can be described as a symbolic analogue of the null space formula-

tion (2.17). First, virtual displacements δq are partitioned into independent and dependent

sets (δqi and δqd, respectively), and are transformed into the former as follows [83]:

δq =


−Φ−1

d Φi

I


δqi = B δqi (2.24)

where Φd = ∂Φ/∂qd, Φi = ∂Φ/∂qi, and I is an identity matrix of dimension f . Since

transformation matrix B is an orthogonal complement of the Jacobian Φq, pre-multiplying

(2.1) by BT eliminates the Lagrange multipliers from the dynamic equations:

BT Mq̈ = BT F (2.25)

The transformation equation (2.24) can be written at the velocity level:

q̇ =


−Φ−1

d Φi

I


q̇i +


−Φ−1

d Φt

0


 = B q̇i + C (2.26)

where Φt = ∂Φ/∂t, and differentiated with respect to time:

q̈ = B q̈i + Ḃ q̇i + Ċ (2.27)

The dependent accelerations can then be eliminated from (2.25):

BT MBq̈i = BT F− BT M
(
Ḃ q̇i + Ċ

)
(2.28)

Thus, the embedding technique produces a set of f second-order ODEs, one for each

independent coordinate. The generalized coordinate partitioning technique [103] is similar,

in that one ODE is obtained for each DOF, but the reduction is performed numerically

rather than symbolically. In either case, note that the resulting ODEs of motion (2.28) are

functions of q and q̇. The dependent velocities q̇d can be calculated from q̇i at each time

16

step using the velocity transformation (2.26); the dependent positions qd can be determined

by integrating q̇d and using constraint stabilization [101], or by iterating over the position

constraints using Newton’s method [37]. Depending on the structure of the Jacobian Φq,

it may be possible to iterate over subsets of qd; as will be demonstrated in Chapter 4,

this approach is generally faster than solving for all dependent coordinates simultaneously.

Simulation code that is even more efficient can be obtained if the position constraints can

be converted into a triangular form, which is the motivation of the next section.

2.2 Solving systems of nonlinear equations

Closed kinematic chains generally add nonlinear algebraic constraint equations to the ODEs

of motion, thereby producing a set of index-3 DAEs that may be difficult to solve in real

time. Even if the embedding technique is used to reduce the system to a minimal set of

ODEs, nonlinear equations relating the independent and dependent coordinates must be

solved. If Newton’s method is used and permitted to iterate until convergence is obtained,

real-time performance of the simulation cannot be guaranteed. On the other hand, if only

a fixed number of iterations is permitted, the precision of the simulation results cannot be

guaranteed. This section describes some of the existing techniques for obtaining recursively

solvable systems that can be used in place of the coupled nonlinear algebraic constraint

equations. Recursively solvable systems provide exact solutions in a fixed amount of time,

which is ideal for the real-time simulation of constrained multibody systems.

2.2.1 Goniometric equations

In general, the systems of equations obtained in the kinematic analysis of multibody sys-

tems are goniometric—that is, they involve trigonometric functions of the generalized coor-

dinates. Since goniometric equations are more difficult to solve than polynomial equations,

one of three methods is typically used to convert the former into the latter before any other

simplification techniques are applied. The first, referred to as the tangent-half-angle sub-

stitution, uses the following familiar trigonometric identities:

sin(ϑ) =
2 tan(ϑ/2)

1 + tan2(ϑ/2)
cos(ϑ) =

1 − tan2(ϑ/2)

1 + tan2(ϑ/2)
(2.29)

17

Polynomial equations can then be obtained in terms of a new variable x = tan(ϑ/2).

Once the denominators have been cleared, however, extraneous roots x = ±
√
−1 are

generated by the (1 + x2) terms. The second technique, called Euler substitution, applies

the following identities:

sin(ϑ) =
1 − y2

2y
j cos(ϑ) =

1 + y2

2y
(2.30)

where y = ejϑ and j =
√
−1. Although extraneous factors are introduced in this case as

well, they are of a simpler form since they originate from the linear factor y rather than

the quadratic term (1 + x2) [72]. The third substitution method uses the following simple

transformations:

sin(ϑ) = x cos(ϑ) = y (2.31)

which requires the introduction of auxiliary equations of the form x2 + y2 − 1 = 0 [100].

The application of these substitution techniques to a practical problem will be explored in

Section 3.2.1. For the remainder of this section, we shall assume that one of these three

methods has been employed to obtain a system of polynomial equations.

2.2.2 Polynomial continuation

Polynomial continuation is a numerical procedure that can be used to find all the solutions

to a system of polynomial equations. This technique is motivated by the fact that, in gen-

eral, small changes made to the coefficients of a system of equations will only change the

numerical values of the solutions by a small amount. Thus, if the roots of a suitable start

system are known, the unknown roots of a target system can be determined by tracking

the solution paths as the start system is gradually morphed into the target system [96].

Newton–Raphson iteration is typically used to determine the roots of each intermediate

system, using those found for the previous system as initial guesses. Provided the start

system and the transformation procedure (or homotopy) are chosen appropriately, poly-

nomial continuation is guaranteed to find all the solutions of the target system, and has

been applied to several problems in kinematics [86, 121]. In addition, since each solution

path can be tracked independently, this approach can be readily parallelized [120]. The

two shortcomings of polynomial continuation in the context of real-time simulation are its

use of iteration at each step in the morphing process, and the fact that it finds numerical

18

solutions for particular instants of time, not symbolic solutions that remain valid for an

entire simulation.

2.2.3 Dialytic elimination

The elimination methods were first proposed by Cayley in 1848 [20]. Dialytic elimination,

the most popular of these methods, yields all the solutions to a system of polynomial

equations, and consists of six steps [99]:

1. Rewrite the equations with one variable suppressed, or assumed known.

2. Define the remaining monomials, including “1”, as independent unknowns.

3. Generate new linearly independent homogeneous equations until the same number

of equations as unknowns is obtained.

4. Set the determinant of the coefficient matrix to zero to obtain a polynomial in the

suppressed variable.

5. Determine the roots of this polynomial to solve for all possible values of the suppressed

variable.

6. Substitute for the suppressed variable and solve for the remaining unknowns.

To illustrate this technique, we shall compute all real solutions of the following system of

polynomial equations:

f1 = x2 + y2 + z2 − 8x+ 2y − 8 = 0 (2.32)

f2 = 3x2 − 2xy − y2 + 2yz + 2z − 4 = 0 (2.33)

f3 = 2x− 10y − 3z = 0 (2.34)

which corresponds to finding the points of intersection of an ellipsoid, a hyperboloid, and

a plane in R3. Solving first for z, the system is rewritten as follows:

(1)x2 + (1) y2 + (−8) x+ (2) y +
(
z2 − 8

)
1 = 0 (2.35)

(3)x2 + (−2) xy + (−1) y2 + (2z) y + (2z − 4) 1 = 0 (2.36)

(2) x+ (−10) y + (−3z) 1 = 0 (2.37)

19

In this case, the independent unknowns are {x2, xy, y2, x, y, 1}, which are sometimes re-

placed with new variables to emphasize their independence. Note that there are six un-

knowns but only three equations. Two more linearly independent equations can be obtained

by multiplying (2.34) by x and y:

f3 × x → (2)x2 + (−10) xy + (−3z) x = 0 (2.38)

f3 × y → (2)xy + (−10) y2 + (−3z) y = 0 (2.39)

A sixth linearly independent equation cannot be generated in this fashion without intro-

ducing new independent unknowns. Multiplying (2.32) by x, for example, introduces x3

and xy2:

f1 × x → (1)x3 + (1)xy2 + (−8) x2 + (2)xy +
(
z2 − 8

)
x = 0 (2.40)

which necessitates the generation of two additional linearly independent equations. In this

example, we ultimately obtain a system of 10 equations in 10 unknowns, consisting of

(2.35) to (2.40) as well as the following:

f1 × y → (1)x2y + (1) y3 + (−8) xy + (2) y2 +
(
z2 − 8

)
y = 0 (2.41)

f2 × x → (3)x3 + (−2) x2y + (−1) xy2 + (2z) xy + (2z − 4)x = 0 (2.42)

f2 × y → (3) x2y + (−2) xy2 + (−1) y3 + (2z) y2 + (2z − 4) y = 0 (2.43)

f3 × x2 → (2) x3 + (−10)x2y + (−3z) x2 = 0 (2.44)

Recall that a homogeneous system of linear equations has nontrivial solutions if, and only

if, the determinant of its coefficient matrix is zero [2]. In this example, the determinant of

20

the coefficient matrix can be computed as follows:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 1 0 1 −8 2 z2 − 8

0 0 0 0 3 −2 −1 0 2z 2z − 4

0 0 0 0 0 0 0 2 −10 −3z

0 0 0 0 2 −10 0 −3z 0 0

0 0 0 0 0 2 −10 0 −3z 0

1 0 1 0 −8 2 0 z2 − 8 0 0

0 1 0 1 0 −8 2 0 z2 − 8 0

3 −2 −1 0 0 2z 0 2z − 4 0 0

0 3 −2 −1 0 0 2z 0 2z − 4 0

2 −10 0 0 −3z 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −279624z4 + 231680z3 + 4067584z2 − 3706880z + 6502400

= −8 (z − 4) (z + 4)
(
34953z2 − 28960z + 50800

)
(2.45)

Upon equating (2.45) to zero, two nontrivial solutions are obtained for z ∈ R: z1 = 4 and

z2 = −4; we shall ignore the two complex solutions. Note that the trivial solution of all

unknowns equal to zero is inadmissible, since “1” is among the unknowns. To determine

the values of x and y corresponding to the two solutions for z, we first substitute z1 into

f1, f2, and f3:

x2 + y2 − 8x+ 2y + 8 = 0 (2.46)

3x2 − 2xy − y2 + 8y + 4 = 0 (2.47)

2x− 10y − 12 = 0 (2.48)

Suppressing y and equating the determinant of the resulting coefficient matrix to zero, we

obtain two solutions for y; substituting back into the original system to solve for x, we

find one solution in R3: (x, y, z) = (1,−1, 4). Repeating the procedure for z2, we find

(x, y, z) = (4, 2,−4). As suggested by this example, problems can become impractically

large if new unknowns are introduced while generating additional linearly independent

equations. Dialytic elimination has been used for the analysis of several specific mecha-

nisms [134], but such procedures cannot be easily automated.

21

2.2.4 Resultant methods

Several methods of solving systems of polynomial equations are based on calculating the

resultant of two polynomials [64], and have been applied to a variety of problems in kine-

matics [139]. The motivation for this approach is to reduce a system of nonlinear equations

into an equivalent system for which the solutions can be easily obtained, and is roughly

analogous to Gaussian elimination [43]. Consider two polynomials A(x), B(x) ∈ R[x]:

A(x) =
da∑

k=0

akx
k B(x) =

db∑

k=0

bkx
k (2.49)

The Sylvester matrix of polynomials A(x) and B(x) is a square matrix of size da + db,

defined as follows (shown for da = 4, db = 3):

S =




a4 a3 a2 a1 a0 0 0

0 a4 a3 a2 a1 a0 0

0 0 a4 a3 a2 a1 a0

b3 b2 b1 b0 0 0 0

0 b3 b2 b1 b0 0 0

0 0 b3 b2 b1 b0 0

0 0 0 b3 b2 b1 b0




(2.50)

where the first db rows contain the coefficients of A(x) and the last da rows contain those

of B(x). The resultant is simply the determinant of the Sylvester matrix. For example,

the resultant, with respect to x, of (2.32) and (2.33) can be calculated as follows:

resx(f1, f2) =

∣∣∣∣∣∣∣∣∣∣∣

1 −8 y2 + z2 + 2y − 8 0

0 1 −8 y2 + z2 + 2y − 8

3 −2y −y2 + 2yz + 2z − 4 0

0 3 −2y −y2 + 2yz + 2z − 4

∣∣∣∣∣∣∣∣∣∣∣

= 20y4 − 16y3z + 24y3 + 32y2z2 − 72y2z − 444y2 − 12yz3

− 4yz2 + 408yz + 208y + 9z4 − 12z3 − 116z2 + 464z − 368 (2.51)

Note that (2.51) is a polynomial in y and z—that is, x has been eliminated. A system of

polynomial equations can be solved by eliminating variables in this manner, creating a new

22

set of polynomials following the elimination of each variable until a single univariate poly-

nomial remains. Using the example from the previous section, we define F1 = {f1, f2, f3}
as the first set of polynomials, which is in terms of x, y, and z. Resultants can then be

calculated pairwise to eliminate x:

f12 = resx(f1, f2) = 20y4 − 16y3z + 24y3 + 32y2z2 − 72y2z − 444y2 − 12yz3

− 4yz2 + 408yz + 208y + 9z4 − 12z3 − 116z2 + 464z − 368 (2.52)

f13 = resx(f1, f3) = 104y2 + 60yz − 152y + 13z2 − 48z − 32 (2.53)

The second set of polynomials, F2 = {f12, f13}, is in terms of only y and z. Finally, F3

consists of a single univariate polynomial in z:

resy(f12, f13) = 26746035600z8 − 153807171200z7 − 509155874048z6

+ 4842191929344z5 − 3082535620608z4 − 32918369501184z3

+ 67097262882816z2 − 82913048657920z + 48247183769600 (2.54)

The system can now be solved by back-substituting either symbolic or numeric solutions

from F3 into F2, and those from F2 into F1. The list of sets of polynomials [F1, F2, F3] is

called a reduced system.

There are two practical limitations associated with this method. First, a reduced

system can only be obtained if there exists a sufficient supply of nonzero resultants, but

this conclusion cannot be established until all possible resultant pairs have been exhausted.

The procedure may also fail for particular choices of resultants, requiring the selection of

different pairings at a previous step. The second practical issue is the introduction of

extraneous roots. Resultants identify the roots that are common to a pair of polynomials;

however, the roots common to a pair are not necessarily common to a triple. In the above

example, an eighth-degree univariate polynomial is obtained in (2.54), but by Bézout’s

Theorem, F1 can have at most four solutions [23]. In addition to polluting the problem

with inadmissible solutions, extraneous roots also increase both the number of terms and

the size of the coefficients in the intermediate expressions.

23

2.2.5 Exact Gröbner bases

Let F be a field (such as the rational numbers Q, the real numbers R, or the finite field

Zp, where p is prime) and R = F [x1, . . . , xv] be a polynomial ring in v variables over F .

Every finite set of polynomials {b1, . . . , bk} ⊂ R forms a basis of an ideal I:

I = 〈b1, . . . , bk〉 =

{
k∑

σ=1

rσbσ : rσ ∈ R
}

(2.55)

The variety of I is the set of all solutions to the polynomial equations bk = 0, which are

also solutions to b = 0 for all polynomials b ∈ I:

V (I) = {u ∈ F v : b1(u) = . . . = bk(u) = 0} = {u ∈ F v : b(u) = 0 for all b ∈ I} (2.56)

It is often of interest to determine the size of V (I), whether I = R, or whether a particular

r ∈ R belongs to I [133]. A Gröbner basis is a unique, canonical representation of I that

can be useful in such pursuits.

In contrast to polynomial continuation, dialytic elimination, and the resultant meth-

ods, a Gröbner basis can be obtained algorithmically, and generates a system of equations

with the same solutions as the original system. When generated in a particular way, a

Gröbner basis introduces indeterminates one after the other—that is, it triangularizes the

system in a way that is analogous to Gaussian elimination, but for nonlinear systems. The

notion of a Gröbner basis was first proposed in 1964, under the appellation standard basis,

as a canonical form for representing bases of ideals; however, it was the development of an

algorithm by Buchberger [17] for transforming an arbitrary set of polynomials into such

a form that made the concept practical. The utility of Gröbner bases was not immedi-

ately recognized, however, in part due to the disparity between the computational effort

required by Buchberger’s algorithm and the computational resources available at the time.

Although established in the 1980s as a potentially useful tool for solving systems of alge-

braic equations [11], Gröbner bases were considered to be too computationally expensive to

be of use in most practical problems, and retained this reputation well into the 1990s [96].

Algorithms based on Buchberger’s work have now been incorporated into almost every

modern computer algebra software package, including Maple and Mathematica, as well

as several non-commercial packages designed specifically for the efficient generation and

manipulation of Gröbner bases [54]. The theory of Gröbner bases will be described here

24

with the aid of a simple example; detailed mathematical introductions [23, 39] as well as

more application-oriented presentations [16, 54] are widely available.

Consider the set H = {h1, h2} comprised of the following bivariate polynomials:

h1 = 4x2y + 9xy + 4x− 7y − 4 (2.57)

h2 = xy − y + 3 (2.58)

where we wish to solve h1 = 0 and h2 = 0 for x and y. First, a term ordering must be

selected to determine the order in which power products are to be eliminated. A pure

lexicographic ordering with x � y orders power products involving indeterminates x and

y as follows:

1 ≺ y ≺ y2 ≺ . . . ≺ x ≺ xy ≺ xy2 ≺ . . . ≺ x2 ≺ x2y ≺ x2y2 ≺ . . . (2.59)

where order relations � and ≺ are used to indicate the relative weight of each indeterminate

or power product. The highest-weighted power product appearing in a polynomial is

referred to as the leading power product, and is eliminated first. The reduction procedure

begins by subtracting the smallest multiples of h1 and h2 such that their leading power

products cancel:

s1,2 = h1 − 4xh2

= 13xy − 8x− 7y − 4 (2.60)

where s1,2 is referred to as the S-polynomial (subtraction polynomial) of h1 and h2. Mul-

tiples of h1 and h2 are now subtracted from s1,2 so as to reduce the weight of its leading

power product as much as possible:

s′1,2 = s1,2 − 13h2

= −8x+ 6y − 43 (2.61)

Since the leading power product of s′1,2 cannot be further reduced by subtracting a mul-

tiple of h1 or h2, s
′

1,2 is said to be reduced modulo H . Set H is successively augmented

with reduced, nonzero S-polynomials until all reduced S-polynomials are congruent to zero

25

modulo H :

h3 = s′1,2 (2.62)

H ′ = H ∪ {h3} = {h1, h2, h3} (2.63)

s1,3 = 2h1 + xyh3 = 6xy2 − 25xy + 8x− 14y − 8 (2.64)

s′1,3 = s1,3 − 6yh2 = −25xy + 8x+ 6y2 − 32y − 8 (2.65)

s′′1,3 = s′1,3 + 25h2 = 8x+ 6y2 − 57y + 67 (2.66)

s′′′1,3 = s′′1,3 + h3 = 6y2 − 51y + 24 (2.67)

h4 = 1
3
s′′′1,3 = 2y2 − 17y + 8 (2.68)

H ′′ = H ′ ∪ {h4} = {h1, h2, h3, h4} (2.69)

Note that the greatest common divisor of the coefficients in s′′′1,3 is removed from h4 in

(2.68) to mitigate the growth of coefficients. All remaining S-polynomials are congruent

to zero modulo H ′′:

s1,4 = yh1 − 2x2h4 ≡ 0 (mod H ′′) (2.70)

s2,3 = 8h2 + yh3 ≡ 0 (mod H ′′) (2.71)

s2,4 = 2yh2 − xh4 ≡ 0 (mod H ′′) (2.72)

s3,4 = y2h3 + 4xh4 ≡ 0 (mod H ′′) (2.73)

H ′′ is a Gröbner basis of H with respect to the selected term ordering (2.59), and can be

simplified further by reducing all hk ∈ H ′′ modulo H ′′ − {hk}:

g1 = h1 − (4x+ 13) h2 − h3 = 0 (2.74)

g2 = 8h2 + yh3 − 3h4 = 0 (2.75)

g3 = h3 = −8x+ 6y − 43 (2.76)

g4 = h4 = 2y2 − 17y + 8 (2.77)

G = {g3, g4} is the completely reduced Gröbner basis, and has the same solutions as the

original system H .

Several general observations can be made about the Gröbner basis reduction technique.

First, note that completely reduced Gröbner basis G is comprised of polynomials that

introduce the indeterminates one after the other. Consequently, rather than use h1(x, y)

26

and h2(x, y) to solve for x and y simultaneously, g4(y) can be used to solve for y first, and

the solution can then be substituted into g3(x, y) to solve for x. The pure lexicographic

term ordering always triangularizes systems in this manner. Next, notice that Gröbner

basis H ′′ contains twice as many polynomials as H , and the coefficients are generally

larger. Intermediate expression swell and coefficient growth are well-known challenges

associated with the Gröbner basis technique, and will be discussed in more detail below.

Although the size of H doubled in this example, the number of intermediate polynomials

can be substantially larger in practice. In fact, the problem of computing a Gröbner basis

has a rather bleak complexity bound—exponential at best [133]—though, fortunately, the

current algorithms typically demonstrate far superior performance. Finally, note that the

algorithm presented above is the simplest form of the reduction procedure developed by

Buchberger [15]. More advanced Gröbner basis algorithms carefully select the order in

which S-polynomials are computed to avoid unnecessary reductions [14, 42, 46] and use

linear algebra to reduce polynomials simultaneously [32,33,124]. Another popular strategy

is to first generate a Gröbner basis using the graded reverse lexicographic ordering, which

orders power products involving indeterminates x and y as follows:

1 ≺ y ≺ x ≺ y2 ≺ xy ≺ x2 ≺ xy2 ≺ x2y ≺ x2y2 ≺ . . . (2.78)

where x � y. Although it does not generally result in a triangular system, this term

ordering typically results in the fastest Gröbner basis computation [22]. The resulting

basis can then be converted into one relative to the desired term ordering—often the

pure lexicographic ordering (2.59)—using, for example, the Faugère–Gianni–Lazard–Mora

(FGLM) algorithm [34].

We shall illustrate the difference between the pure lexicographic and graded reverse

lexicographic term orderings by revisiting the geometric example from Section 2.2.3. The

following Gröbner basis for {f1, f2, f3} is generated by Maple using a pure lexicographic

term ordering with x � y � z:

G1 =
[
34953z4 − 28960z3 − 508448z2 + 463360z − 812800,

272676096y + 803919z3 − 11291792z2 + 89390832z + 44330624,

272676096x+ 4019595z3 − 56458960z2 + 37940016z + 221653120
]

(2.79)

27

As in the dialytic elimination method, the fourth-degree polynomial in z can be factored:

34953z4 − 28960z3 − 508448z2 + 463360z − 812800

= (z − 4) (z + 4)
(
34953z2 − 28960z + 50800

)
(2.80)

which has the same solutions as (2.45). Since G1 contains polynomials that are linear in y

and x, these variables can be solved immediately once z has been determined:

y = − 267973

90892032
z3 +

705737

17042256
z2 − 1862309

5680752
z − 346333

2130282
(2.81)

x = − 1339865

90892032
z3 +

3528685

17042256
z2 − 790417

5680752
z − 1731665

2130282
(2.82)

A Gröbner basis is now generated for the same system of polynomials, but using a graded

reverse lexicographic term ordering with x � y � z:

G2 =
[
2x− 10y − 3z, 368yz − 65z2 + 4864y + 1640z + 816,

736y2 + 167z2 − 6688y − 2232z − 1168,

803919z3 − 11291792z2 + 272676096y + 89390832z + 44330624
]

(2.83)

Note that the coefficients in G2 are generally smaller than those in G1. In general, the

coefficients of an S-polynomial will be larger than those of the original polynomials; in

the worst case, they will be double the length. Since the graded reverse lexicographic

ordering typically requires fewer S-polynomial computations than the pure lexicographic

ordering [77], we expect smaller coefficients in the resulting basis. Note, however, that G2

is not triangular; further processing would be necessary to obtain a recursively solvable

system from this basis.

Gröbner bases have been applied to problems in a wide variety of areas, including

statistics, coding theory, and automated geometric theorem proving [18]. In the kinemat-

ics community, Gröbner bases have typically been used for performing off-line analyses of

specific mechanisms, including planar n-bar mechanisms [26], planar and spatial manip-

ulators [63], and spatial parallel robots [35, 87, 92]. A unique application was proposed

by Dhingra et al. [25], who generate Gröbner bases using a graded lexicographic term

ordering, which can be computed efficiently, and use the resulting polynomials as new

linearly independent equations for constructing the Sylvester matrix in the dialytic elim-

ination method. A hitherto unexplored application, and the topic of Chapter 3, is the

28

use of Gröbner bases for the automated generation of real-time-capable dynamic simula-

tion code, where the efficiency of triangular systems is particularly advantageous. We first

review a topic of relatively recent development: the computation of Gröbner bases using

floating-point arithmetic.

2.2.6 Approximate Gröbner bases

Until the mid-1990s, all Gröbner bases were exact—that is, they were computed from

polynomials with exact coefficients using exact arithmetic. As illustrated in the previous

section, however, the coefficients can grow substantially when exact arithmetic is used:

though given a system of polynomials with coefficients no larger than 10, the maximum

coefficient contained in Gröbner bases G1 and G2 is 272676096. Since the order in which

power products are eliminated is entirely governed by the term ordering, Buchberger’s

algorithm is analogous to Gaussian elimination without pivoting, and is numerically un-

stable. One method of addressing this issue is to truncate the coefficients to a desired

precision once an exact Gröbner basis has been generated. The primary concern, how-

ever, is the memory required for storing large coefficients, which is already burdened by

a large number of intermediate polynomials. Floating-point Gröbner bases were first pro-

posed in 1993 by Shirayanagi [115], who replaced each exact coefficient with a bracket

coefficient consisting of a floating-point number and an approximation of its absolute er-

ror. In contrast to integers or rational numbers, floating-point numbers can represent

very small and very large quantities using a fixed amount of memory, and are particularly

suitable for problems in which the coefficients are only known approximately. Although

Shirayanagi’s method is proven to converge provided the computation is performed using

a sufficient numerical precision, a method for determining a priori the precision required

for a given problem does not yet exist [117]. Instead, a sequence of floating-point Gröbner

bases is computed, incrementing the numerical precision until the resulting basis stabi-

lizes. To explore this approach further, the author developed a Maple implementation of

Buchberger’s improved algorithm [15] using bracket coefficients, following the approach of

Shirayanagi [116]; the implementation details are omitted here. Shown below are three

examples that demonstrate the application of floating-point Gröbner bases to the solution

of polynomial systems.

29

We first consider a perturbed version of set H from the previous section:

h1 = 4x2y + 9xy + 4x− 7y − 4 (2.84)

h̃2 = xy − y + 3.000001 (2.85)

where we wish to solve h1 = 0 and h̃2 = 0 for x and y. The slight numerical perturbation

in h2 merely shifts the solutions a small amount. One method of generating a Gröbner

basis for H̃ =
{
h1, h̃2

}
is to convert all coefficients into integers or rational numbers and

compute the Gröbner basis exactly. An exact representation of h̃2 is obtained using the

convert/rational function in Maple:

ĥ2 = xy − y +
3000001

1000000
(2.86)

which results in the following exact Gröbner basis, generated using a pure lexicographic

term ordering with x � y:

Ĝ =
[
1500000000000y2 − 12750004250000y+ 6000005000001,

8000004x− 6000000y + 43000013
]

(2.87)

Despite being mathematically correct, this solution is not entirely satisfying: since H and

H̃ are identical but for a single slightly perturbed coefficient, it would be preferable to

obtain a basis whose coefficients are more similar to those of the original basis, namely,

(2.76) and (2.77). Of course, we could simply divide each polynomial by the coefficient

of its leading term, but it would be advantageous to avoid large coefficients altogether.

Using our Maple implementation of Shirayanagi’s method, we first generate the following

sequence of floating-point Gröbner bases for the original system H :

G(2) =
[
y2 − 9.3y + 4.3, x− 0.70y + 5.5] (2.88)

G(3) =
[
y2 − 8.53y + 4.00, x− 0.750y + 5.40] (2.89)

G(4) =
[
y2 − 8.500y + 4.000, x− 0.7500y + 5.375] (2.90)

G(5) =
[
y2 − 8.5000y + 4.0000, x− 0.75000y + 5.3750] (2.91)

where the parenthetic superscript denotes the number of digits of precision used. Since

the progression from four digits of precision to five only serves to suffix each coefficient

30

with a zero, we can conclude—albeit, tentatively—that we need not proceed further. The

following sequence of bases is obtained for the perturbed system H̃ :

...
...

G̃(6) =
[
y2 − 8.50000y + 4.00000, x− 0.750000y + 5.37500] (2.92)

G̃(7) =
[
y2 − 8.500001y + 4.000003, x− 0.7499996y + 5.374997] (2.93)

G̃(8) =
[
y2 − 8.5000027y + 4.0000034, x− 0.74999962y + 5.3749988] (2.94)

where bases G(k) and G̃(k) are equal for k ≤ 6, which is expected since the perturbation in

h̃2 occurs in the seventh significant digit. Note that the coefficients are not permitted to

grow arbitrarily long, as they were in the exact Gröbner basis computation.

Now consider the following overdetermined system P = {p1, p2, p3}:

p1 = x2 + y2 − 6x− 2y + 5 (2.95)

p2 = x2 − 6x− y + 7 (2.96)

p3 = x− 4y + 3 (2.97)

which corresponds to finding the points of intersection of a circle, a parabola, and a line in

R2. In its exact form, P has one solution at (x, y) = (5, 2), which is identified by an exact

Gröbner basis computation. A small numerical perturbation is now introduced in p3:

p̃3 = x− 4y + 3.000001 (2.98)

In the previous example, the numerical perturbation merely shifted the solutions a small

amount. In this case, since the original system P is overdetermined, an exact Gröbner

basis algorithm will report that the system is inconsistent and no solution exists. Using

Shirayanagi’s method, the following sequence of floating-point Gröbner bases is obtained

for the perturbed system P̃ = {p1, p2, p̃3}, again using a pure lexicographic term ordering

with x � y:

Q̃(2) = [y − 2.0, x− 5.0] (2.99)

...
...

Q̃(6) = [y − 2.00000, x− 5.00000] (2.100)

Q̃(7) = [y − 2.000000, x− 4.999999] (2.101)

Q̃(8) = [y − 1.9999999, x− 4.9999986] (2.102)

31

which indicates that the perturbed system P̃ has the same solution as the original system

P when fewer than seven digits of precision are used, as expected.

For our final example, we consider a modified version of system P :

p̌1 = x2 + y2 − 6x− 3eπ − ϕ

12
y +

10
√

26 − 1

10
(2.103)

p̌2 = x2 − 21
√

3 − 3
√

17

4
x− y + 7 (2.104)

where ϕ is the golden ratio and the following expressions have been used in place of the

original coefficients:

3eπ − ϕ

12
= 2.00009738 . . . ≈ 2 (2.105)

10
√

26 − 1

10
= 4.99901951 . . . ≈ 5 (2.106)

21
√

3 − 3
√

17

4
= 6.00093752 . . . ≈ 6 (2.107)

Note that p3 has been removed, so system P̌ = {p̌1, p̌2} is not overdetermined. Although

all coefficients in system P̌ are known exactly, an exact Gröbner basis cannot be com-

puted without first eliminating all irrational numbers. Square roots can be eliminated

by introducing new variables zk =
√
k and appending auxiliary equations of the form

z2
k − k = 0; however, increasing the number of indeterminates can significantly increase

the Gröbner basis computation time. We also note that transcendental constants e and π

cannot be removed in this fashion. A common approach is to replace each coefficient with

a rational approximation, though accurately approximating irrational numbers generally

requires many digits which, again, has consequences in terms of both computation time

and memory use. Furthermore, rational approximations can make overdetermined systems

inconsistent. Using our Maple implementation of Shirayanagi’s method, we obtain the

following sequence of floating-point Gröbner bases, again using a pure lexicographic term

32

ordering with x � y:

Q̌(3) =
[
y2 − 1.00y − 2.00, x2 − 6.00x− 1.00y + 7.00

]
(2.108)

Q̌(4) =
[
y2 − 1.000y − 2.001, x2 − 6.000x− 1.000y + 7.000

]
(2.109)

Q̌(5) =
[
y4 − 2.0003y3 − 2.9964y2 + 3.9971y + 3.9933,

x+ 1111.1y2 − 1111.2y − 2223.3
]

(2.110)

Q̌(6) =
[
y4 − 2.00021y3 − 2.99611y2 + 3.99675y + 3.99264,

x+ 1063.83y2 − 1063.94y − 2128.70
]

(2.111)

Note that Q̌(4) and Q̌(5) differ in their coefficients as well as their power products, which

are the two main indicators that an insufficient numerical precision has been used.

As demonstrated in the above examples, floating-point Gröbner bases inhibit the growth

of coefficients, and are particularly useful for solving systems whose coefficients are irra-

tional or only known approximately. A fundamental challenge for all approximate Gröbner

basis approaches is determining, in a numerically stable way, whether a coefficient is zero.

Incorrectly identifying zeros can lead to erroneous cancellations during the reduction pro-

cess, in which case all ensuing computations, as well as the resulting Gröbner basis, will

be incorrect. The zero criterion used by Shirayanagi [116] is simple: if the absolute value

of the coefficient is less than the approximation of its error, then assume the coefficient is

zero. A weakness of interval arithmetic, however, is that it often overestimates the effect

of data inaccuracy, leading to erroneous cancellations. Sasaki and Kako [104] use bracket

coefficients in conjunction with other stabilization strategies. Traverso and Zanoni [129]

use two numerical precisions concurrently, defining zero coefficients to be those whose

single- and double-precision floating-point representations are sufficiently dissimilar. A

similar approach is used by Lichtblau [78], the developer of the GroebnerBasis function

in Mathematica, who also demonstrates that Gröbner bases can be computed significantly

faster when using approximate arithmetic that avoids large coefficients [79]. A related

approach uses modular, single-precision, double-precision, and interval arithmetic simulta-

neously [10]. Stetter [123] observed that small perturbations in the coefficients of the orig-

inal system can lead to Gröbner bases with entirely different structures, as demonstrated

by Q̌(4) (2.109) and Q̌(5) (2.110) above. This discontinuous behaviour can be addressed

by relaxing the term ordering in favour of preserving numerical stability. In particular,

33

polynomials whose leading power products have small coefficients should not be used for

generating or reducing S-polynomials. Kondratyev et al. [71] avoid such situations by ex-

plicitly encoding the magnitude of the coefficients into new variables, which are included

in the term ordering. This strategy is analogous to the use of pivoting in Gaussian elim-

ination to preserve numerical stability. The stable computation of approximate Gröbner

bases remains an active area of research.

2.3 Chapter summary

In this chapter, we have examined several techniques for solving the equations governing

the motion of closed-kinematic-chain systems, including index reduction, constraint sta-

bilization, and system modification approaches. A strategy of particular interest involves

solving the constraint equations separately from the dynamic equations, a task for which

Gröbner bases appear to be particularly suitable. Although approximate Gröbner bases

exhibit several advantages over exact Gröbner bases, only the latter is considered in the

remainder of this work for reasons of efficiency, simplicity, and convenience. First, whereas

very efficient algorithms have been developed for the computation of exact Gröbner bases,

the work on approximate Gröbner basis algorithms has focused primarily on maintaining

numerical stability, often at the expense of computational efficiency. Secondly, the use of

exact Gröbner bases avoids the need to determine a suitable numerical precision for each

system, which can involve repeating lengthy computations several times. Finally, since the

equations of motion are generated in this work using the Multibody library in MapleSim,

it is convenient to employ the efficient exact Gröbner basis algorithms already available in

Maple. As will be shown, the use of exact Gröbner bases is adequate for many practical

problems.

34

Chapter 3

Gröbner Basis Approach

In this chapter, we explore the use of Gröbner bases for generating triangular, or recur-

sively solvable, systems of kinematic equations. In contrast to other methods for solving

systems of polynomial equations, as discussed in Section 2.2.5, a Gröbner basis can be ob-

tained algorithmically, and generates a computationally efficient system of equations with

the same solutions as the original system. For systems that can be fully triangularized, the

kinematic constraints are always satisfied exactly and in a fixed amount of time, the latter

of which is a particularly advantageous property in real-time applications. Where full tri-

angularization is not possible, a block-triangular form can be obtained that still results in

more efficient simulations than existing iterative and constraint stabilization techniques.

Although traditionally used as a mathematical tool for the analysis of specific mechanisms,

the objective here is to propose a strategy for incorporating Gröbner bases into an auto-

mated formulation procedure. A simple planar mechanism will be used throughout this

chapter to demonstrate each step in the process, from formulating the equations of motion

to generating optimized dynamic simulation code. The chapter concludes with a summary

of the Gröbner basis approach.

3.1 Formulating equations of motion

In this section, we briefly describe the graph-theoretic formulation used throughout this

work. Although the Gröbner basis approach can be applied to systems generated using

any symbolic formulation procedure, familiarity with concepts from linear graph theory

35

will facilitate later discussion. We begin with a description of the system that will serve as

an example throughout the chapter, and then generate the differential-algebraic equations

governing its motion.

3.1.1 System description

The planar slider-crank mechanism, shown in Figure 3.1, consists of four bodies: a crank

of mass m1 and length `1, a connecting rod of mass m2 and length `2, a piston of mass m3,

and the ground. Revolute joints attach the crank to the ground, the connecting rod to the

crank, and the piston to the connecting rod; the piston is also attached to the ground with

a prismatic joint, which completes the closed kinematic chain. Gravity acts in the −Y

direction, and a time-varying force F (t) is applied to the piston, as shown. The number

of degrees-of-freedom (DOF) can be determined using the Chebychev–Grübler–Kutzbach

criterion [47]:

f = 3 (nb − 1) − 2nj (3.1)

where nb is the number of bodies and nj is the number of joints. Thus, this mechanism

has f = 1 DOF—that is, its motion can be controlled using only one actuator, such as a

motor mounted between the ground and the crank.

m3

m2m1

θ

β

F (t)
X

Y

s

g

Figure 3.1: Planar slider-crank mechanism

36

3.1.2 Graph-theoretic formulation

In this work, the graph-theoretic formulation proposed by McPhee [81] is used to generate

the equations of motion. The benefits of this approach include its ability to automati-

cally generate very efficient symbolic equations in terms of any desired set of modelling

coordinates, and its ability to model multi-domain systems seamlessly. In this section,

the equations of motion for the planar slider-crank mechanism are derived manually to

demonstrate the graph-theoretic formulation procedure. A Maple implementation of this

approach [82] has been incorporated into the Multibody library in MapleSim, which is used

in the remainder of this work to generate symbolic equations of motion automatically.

The first step in the procedure involves representing the topology of the system as a

linear graph, where the nodes represent body-fixed reference frames and the edges represent

the through and across variables associated with physical components such as rigid bodies,

joints, and external forces. Through variables include forces F and torques T , and represent

quantities that flow through components; across variables include displacements, velocities,

and accelerations. The linear graph corresponding to the planar slider-crank mechanism

is shown in Figure 3.2. Edges ~m1, ~m2, and ~m3 begin at the ground node and terminate

�m3

�w15

�f16

�w14�m2�w13�m1

�r4

�s12

�h11

�h10

�h9

�r5 �r8

�r7�r6

Figure 3.2: Linear graph representation of planar slider-crank mechanism

37

at nodes representing the mass centers of the other three bodies in the system. Rigid-arm

elements ~r4 to ~r8 represent kinematic transformations between nodes on these bodies, and

can involve both translations and rotations in general—though all rigid-arm elements are

purely translational in this example. The revolute (hinge) and prismatic (slider) joints are

represented by edges ~h9, ~h10, ~h11, and ~s12, where the displacement of the node at the head

is measured relative to that at the tail. Finally, edges ~w13, ~w14, ~w15, and ~f16 represent

external forces, the first three of which are gravitational.

The equations of motion are derived by combining linear topological equations with

nonlinear constitutive equations, the latter of which define the physical behaviour of the

corresponding component. For example, the translational and rotational motions of the

crank are governed by the following constitutive equations [81]:

F 1 = −m1a1 (3.2)

T 1 = −I1α1 − r5 × F 5 − r6 × F 6 (3.3)

where I1 is the inertia of the crank about its center of mass, a1 and α1 are its translational

and rotational accelerations, and the vector cross products in (3.3) are the torques about

the center of mass generated by the reaction forces applied to the ends of the crank. The

constitutive equations for rigid-arm elements ~r5 and ~r6 are determined geometrically:

r5 = −`1
2

cos(θ1) ı̂ −
`1
2

sin(θ1) ̂ (3.4)

r6 = +
`1
2

cos(θ1) ı̂ +
`1
2

sin(θ1) ̂ (3.5)

where ı̂ and ̂ are unit vectors along the X- and Y-axes. Ideal revolute joints permit the

relative rotation of two bodies, but prohibit their relative translation:

T h · k̂ = 0 (3.6)

rh = 0 (3.7)

where k̂ is the axis of rotation for all revolute joints in this planar system. Similarly, the

ideal prismatic joint in this system allows the piston to slide along the X-axis, but prohibits

all other motion:

F 12 · ı̂ = 0 (3.8)

ω12 = 0 (3.9)

38

In order to generate the topological equations, we must first select spanning trees for

the translational and rotational domains. A spanning tree is a set of edges, referred to

as branches, that connects all the nodes in a linear graph without creating closed loops;

the remaining edges, called chords, form the complement of the tree, or the cotree [12].

The tree selection step is critical, as the spanning trees determine the generalized coordi-

nates that will appear in the equations of motion. Guidelines for selecting spanning trees

that will result in the most efficient system of dynamic equations are provided by Léger

and McPhee [75]. In this example, we wish to obtain equations in terms of joint coordi-

nates q = {θ, β, s}, which can be accomplished by selecting the spanning trees shown in

Figure 3.3. Note that placing rigid body components in the trees results in an absolute

coordinate formulation, where the configuration of each body is described by its position

and orientation relative to the ground frame. Also shown in Figure 3.3 are the three fun-

damental cutsets (f-cutsets) that will be transformed into the equations of motion. Each

f-cutset consists of exactly one branch, and is the smallest set of edges required to cut the

graph into two parts [38]. The remaining f-cutsets are used to express the branch through

variables as linear combinations of the chord through variables, which are called chord

transformations. Once the spanning trees have been selected, we can also identify funda-

mental circuits (f-circuits), which are connected subgraphs consisting of exactly one chord

and passing through each node in the graph no more than once [38]. The f-circuits are

used to express the chord across variables in terms of the branch across variables, which are

called branch transformations. The branch across variables and chord through variables

are known as primary variables; the branch through variables and chord across variables

are called secondary variables, and can be expressed in terms of the primary variables using

the branch and chord transformations.

Once the system topology has been defined and the spanning trees have been selected,

the equations of motion can be generated entirely automatically using the three-step pro-

cedure described by McPhee [81]. First, the f-cutset equation for each branch is projected

onto the motion space associated with the corresponding component. Since the prismatic

joint permits translation along the X-axis and the revolute joints permit rotation about the

axis perpendicular to the plane, we project cut1 onto ı̂ and the other two f-cutset equations

39

�f16

cut1

�m3

�w15

�w14�m2�w13�m1

�r4

�s12

�h11

�h10

�h9

�r5 �r8

�r7�r6

(a) Translational domain

cut2 cut3

�f16
�m3

�w15

�w14�m2�w13�m1

�r4

�s12

�h11

�h10

�h9

�r5 �r8

�r7�r6

(b) Rotational domain

Figure 3.3: Spanning trees, shown in bold, for joint coordinate formulation of planar slider-

crank mechanism

40

onto k̂:

cut1 → (F 2 + F 3 + F 10 + F 12 + F 14 + F 15 + F 16) · ı̂ = 0 (3.10)

cut2 → (T 1 + T 9 − T 10 + T 13) · k̂ = 0 (3.11)

cut3 → (T 2 + T 10 + T 11 + T 14) · k̂ = 0 (3.12)

Note that the f-cutset equation associated with branch ~s12 in the rotational graph is pro-

jected onto ı̂ and ̂, which are both orthogonal to the rotational domain and, thus, result

in trivial equations; the f-cutset equations associated with branches ~h9 and ~h11 in the

translational graph are similarly null. Substituting the constitutive equations into (3.10),

(3.11), and (3.12) results in the following three second-order ODEs, one for each generalized

coordinate:

cut1 → −m2 (a2 · ı̂) −m3 (a3 · ı̂) + RX + F (t) = 0 (3.13)

cut2 → −I1
(
α1 · k̂

)
− (r5 × F 5) · k̂ − (r6 × F 6) · k̂ = 0 (3.14)

cut3 → −I2
(
α2 · k̂

)
− (r7 × F 7) · k̂ − (r8 × F 8) · k̂ = 0 (3.15)

where F 16 = F (t) ı̂ is the force applied to the piston, and F 10 = RX ı̂+RY ̂ is the reaction

force in the pin between the crank and the connecting rod.

Next, the f-circuit equations for all kinematic constraints are projected onto the reac-

tion space associated with the corresponding component, which produces the kinematic

constraint equations. The two f-circuits in this example traverse the perimeter of each

graph shown in Figure 3.3. Since the reaction space of ~h10 is orthogonal to the rotational

domain, only the f-circuit equation from the translational domain is nontrivial:

(r10 − r7 + r8 − r11 − r12 − r4 + r9 − r5 + r6) · ı̂ = 0 (3.16)

(r10 − r7 + r8 − r11 − r12 − r4 + r9 − r5 + r6) · ̂ = 0 (3.17)

where r5 and r6 are defined in (3.4) and (3.5), r7 and r8 are of an analogous form, r4 = 0

since the slider axis passes through the origin, and r9 = r10 = r11 = 0, as defined in (3.7).

Upon substitution of these expressions, we obtain the following two kinematic constraint

equations:

`1 cos(θ) + `2 sin(β) − s = 0 (3.18)

`1 sin(θ) − `2 cos(β) = 0 (3.19)

41

The constraints can be readily verified geometrically, as they simply ensure that the crank

and connecting rod meet at their common pin joint.

In the third and final step of the procedure, the branch and chord transformations are

used to eliminate secondary variables from (3.13), (3.14), and (3.15). First, the rigid-arm

forces are eliminated using f-cutset equations from the translational graph:

F 5 = F 1 − F 10 + F 13 = −m1a1 − (RX ı̂ +RY ̂) −m1g ̂ (3.20)

F 6 = F 10 = RX ı̂ +RY ̂ (3.21)

F 7 = −F 10 = − (RX ı̂ +RY ̂) (3.22)

F 8 = F 2 + F 10 + F 14 = −m2a2 +RX ı̂ +RY ̂ −m2g ̂ (3.23)

The rigid bodies in the translational cotree are then eliminated using f-circuit equations

from the translational graph:

a1 = −a5 + a9 = −
(
α1 × r5 + ω2

1r5

)
(3.24)

a2 = −a8 + a11 + a12 + a4 = −
(
α2 × r8 + ω2

2r8

)
+ s̈ ı̂ (3.25)

a3 = a12 + a4 = s̈ ı̂ (3.26)

Finally, the rigid bodies in the rotational cotree are eliminated using f-circuit equations

from the rotational graph:

α1 = −α5 + α9 = θ̈k̂ (3.27)

α2 = −α8 + α11 + α12 + α4 = β̈k̂ (3.28)

Upon eliminating all secondary variables from (3.13), (3.14), and (3.15), we obtain the fol-

lowing ODEs in terms of the generalized coordinates q = {θ, β, s} and system parameters:

cut1 → − (m2 +m3) s̈+ 1
2
m2`2cβ β̈ +RX − 1

2
m2`2sββ̇

2 + F (t) = 0 (3.29)

cut2 → −
(
I1 + 1

4
m1`

2
1

)
θ̈ + `1sθRX − `1cθRY − 1

2
m1`1gcθ = 0 (3.30)

cut3 → −
(
I2 + 1

4
m2`

2
2

)
β̈ + 1

2
m2`2cβ s̈− `2cβRX − `2sβRY + 1

2
m2`2gsβ = 0 (3.31)

where sin(ϕ) and cos(ϕ) have been abbreviated sϕ and cϕ. Assembling these ODEs with

42

constraint equations (3.18) and (3.19), we obtain the following system of index-3 DAEs:




I1 + 1
4
m1`

2
1 0 0

0 I2 + 1
4
m2`

2
2 −1

2
m2`2cβ

0 −1
2
m2`2cβ m2 +m3








θ̈

β̈

s̈





+




−`1sθ `1cθ

`2cβ `2sβ

−1 0







RX

RY



 =





−1
2
m1`1gcθ

1
2
m2`2gsβ

−1
2
m2`2sββ̇

2 + F (t)





(3.32)




`1cθ + `2sβ − s

`1sθ − `2cβ



 = 0 (3.33)

which are of the general form shown in (2.1) and (2.2). These equations govern the motion

of the planar slider-crank mechanism, and serve as the starting-point for the Gröbner basis

approach. The next two sections focus on triangularizing the constraint equations (3.33);

the further processing of the dynamic equations (3.32) is discussed in Section 3.4.1.

3.2 Preparing constraints for triangularization

In this section, we prepare the equations for which a Gröbner basis will be generated. In

particular, the goniometric kinematic constraint equations must be converted into polyno-

mial equations, and the presence of floating-point coefficients must be addressed.

3.2.1 Goniometric equations

As discussed in Section 2.2.1, goniometric equations are more difficult to solve than poly-

nomial equations. As such, one of three methods is typically employed to convert the

former into the latter. The resulting system of polynomial equations can then be solved

using a variety of techniques. In this section, we explore the application of each of the

three aforementioned substitution techniques to the kinematic constraint equations for the

planar slider-crank mechanism.

43

We first consider the tangent-half-angle substitution:

x1 = tan(θ/2) → sin(θ) =
2x1

1 + x2
1

, cos(θ) =
1 − x2

1

1 + x2
1

(3.34)

x2 = tan(β/2) → sin(β) =
2x2

1 + x2
2

, cos(β) =
1 − x2

2

1 + x2
2

(3.35)

Substituting into the constraint equations (3.33) and multiplying by (1 + x2
1) (1 + x2

2) to

clear the denominators, we obtain a system of degree 5 in {s, x1, x2}:

sx2
1x

2
2 + `1x

2
1x

2
2 + sx2

1 + sx2
2 − 2`2x

2
1x2 + `1x

2
1 − `1x

2
2 + s− 2`2x2 − `1 = 0 (3.36)

`2x
2
1x

2
2 + 2`1x1x

2
2 − `2x

2
1 + `2x

2
2 + 2`1x1 − `2 = 0 (3.37)

Using geometric parameters {`1 = 3/10, `2 = 2/5} and a pure lexicographic term ordering

with s � x1 � x2, we obtain the following exact Gröbner basis:

[
2x2

1x
2
2 + 3x1x

2
2 − 2x2

1 + 2x2
2 + 3x1 − 2,

10sx4
2 − 4x1x

4
2 − 3x4

2 + 20sx2
2 − 8x3

2 − 6x2
2 + 10s+ 4x1 − 8x2 − 3,

30sx1x
2
2 − 40sx2

1 + 16x2
1x2 + 9x1x

2
2 + 30sx1 − 12x2

1 + 12x2
2 − 40s+ 9x1 + 16x2

]
(3.38)

Note that (3.38) is triangular, since the first polynomial can be solved for x1 as a function

of x2, and the second and third polynomials can be solved for s as functions of x1 and x2:

∆1 =

[
x1 =

−3x2
2 − 3 ±

√
−7x4

2 + 50x2
2 − 7

4 (x2
2 − 1)

, s =
4x1x

2
2 + 3x2

2 − 4x1 + 8x2 + 3

10 (x2
2 + 1)

,

s =
16x2

1x2 + 9x1x
2
2 − 12x2

1 + 12x2
2 + 9x1 + 16x2

10 (−3x1x2
2 + 4x2

1 − 3x1 + 4)

]
(3.39)

Thus, given a numerical value for x2, the first expression in ∆1 can be used to determine

the corresponding value of x1, whereupon either of the other two expressions can be used

to calculate the slider displacement s.

Now consider the Euler substitution method, the application of which requires the

following definitions:

y1 = ejθ → sin(θ) =
1 − y2

1

2y1
j , cos(θ) =

1 + y2
1

2y1
(3.40)

y2 = ejβ → sin(β) =
1 − y2

2

2y2

j , cos(β) =
1 + y2

2

2y2

(3.41)

44

where j =
√
−1. Again substituting into the constraint equations (3.33) and clearing the

denominators, we obtain a system of degree 4 in {s, y1, y2, j}:

`2y1y
2
2j + 2sy1y2 − `1y

2
1y2 − `2y1j − `1y2 = 0 (3.42)

`1y
2
1y2j + `2y1y

2
2 − `1y2j + `2y1 = 0 (3.43)

j2 + 1 = 0 (3.44)

Note that j has been appended to the list of indeterminates, since all variables are treated

as such when generating a Gröbner basis, and a new equation has been added to the

system. Using the same parameters as before and a pure lexicographic ordering with

s � y1 � y2 � j, we obtain the following Gröbner basis:

[
j2 + 1, −4y1y

2
2j + 3y2

1y2 − 4y1j − 3y2, 4y3
2j + 10sy2

2 − 3y1y
2
2,

−30sy2j + 25y1y2j + 40sy1 − 12y2
1 + 12y2

2

]
(3.45)

from which triangular system ∆2 can be extracted:

∆2 =

[
y1 =

2y2
2j + 2j ±

√
−4y4

2 + y2
2 − 4

3y2
,

s = −2

5
y2j +

3

10
y1, s =

25y1y2j − 12y2
1 + 12y2

2

10 (3y2j − 4y1)

]
(3.46)

Although simpler equations are obtained in this case, they involve complex numbers and,

thus, may be more time-consuming to solve.

The third and final substitution method described in Section 2.2.1 employs the following

simple definitions:

sin(θ) = sθ, cos(θ) = cθ (3.47)

sin(β) = sβ, cos(β) = cβ (3.48)

Since these substitutions do not introduce rational functions, we need not multiply the

resulting equations by polynomials to clear denominators. As such, the system we obtain

in this case is only of degree 2:

`1cθ + `2sβ − s = 0 (3.49)

`1sθ − `2cβ = 0 (3.50)

s2
θ + c2

θ − 1 = 0 (3.51)

s2
β + c2

β − 1 = 0 (3.52)

45

though there are now five indeterminates. Nevertheless, the resulting Gröbner basis is far

simpler than the others:

[
s2
β + c2

β − 1, 3sθ − 4cβ, 9c2
θ − 16s2

β + 7, 10s− 3cθ − 4sβ
]

(3.53)

where we have used a pure lexicographic ordering with s � cθ � sθ � cβ � sβ. The

recursively solvable system ∆3 obtained in this case is clearly more efficient than those

obtained above, and agrees with the hand-derived geometric solution ✍3:

∆3 =

[
sθ =

4

3
cβ, cθ = ±1

3

√
16s2

β − 7, s =
3

10
cθ +

2

5
sβ

]
(3.54)

✍3 =

[
sθ =

`2
`1

cβ, cθ = ± 1

`1

√
`22s

2
β + `21 − `22, s = `1cθ + `2sβ

]
(3.55)

The results of this section are summarized in Table 3.1, and suggest that increasing

the number of indeterminates may be preferable to increasing the degree of the input

polynomials. A rough complexity bound for the computation of a Gröbner basis for a zero-

dimensional system—that is, a system with a finite number of solutions—is dn for a system

of maximal total degree d in n indeterminates [51]. Note that the bases being sought in this

work are positive-dimensional, for which the complexity bound is even less optimistic [80].

Fortunately, these rather bleak upper bounds are not generally experienced in practice;

however, they do indicate the importance of restraining the number of indeterminates as

well as the total degree of the system. As such, only the third substitution method is used

in the remainder of this work.

Table 3.1: Comparison of triangular systems for planar slider-crank mechanism

Substitution method
Complexity of original system Cost of Gröbner basis

Maximum degree Indeterminates Multiplications Additions

Tangent-half-angle 5 3 59 23

Euler 4 4 33 10

Sine-and-cosine 2 5 11 7

46

3.2.2 Floating-point coefficients

Since the ultimate objective is to develop an approach that can be applied to realistic engi-

neering systems, the appearance of floating-point quantities is inevitable. Indeed, all phys-

ical measurements are intrinsically approximate, and even some physical constants—most

notably, the gravitational constant [45]—are not known precisely. As such, many practical

engineering applications are content with three significant figures [56]; thus, it does not

appear to be necessary to compute Gröbner bases exactly in this context. The numerical

perturbation of 0.000001 in (2.85), for example, would represent a measurement error of

1 [µm], which can be safely ignored in all applications considered in this work. Perhaps

the most obvious way of proceeding is to use an algorithm that is capable of computing

Gröbner bases with inexact coefficients, such as those described in Section 2.2.6. Such an

algorithm appears to be a logical choice, as the coefficients appearing in the constraint

equations are generally computed from approximate physical measurements. Furthermore,

unlike integers or rational numbers, all floating-point numbers occupy the same amount

of space, which alleviates the practical memory issues associated with coefficient growth

during the elimination procedure. The computation of approximate Gröbner bases is still

an active area of research, largely due to the stability issues inherent in floating-point

arithmetic, which adds a level of uncertainty to the computed results. As such, several

other approaches have been proposed.

An interesting strategy, called the Gröbner trace [128], involves performing an exact

Gröbner basis computation over the finite field Zp—that is, using modular arithmetic.

Since all coefficients remain smaller than the prime modulus p, the Gröbner basis com-

putation is unhampered by the storage of large integers. By recording the sequence of

S-polynomials that leads to the final basis, unnecessary reductions can be avoided when

the computation is ultimately repeated using floating-point arithmetic with the original

coefficients. The trace computation can be repeated with prime moduli of increasing size

until the basis appears to have stabilized, an approach that is similar to that used by

Shirayanagi [116] in the computation of floating-point Gröbner bases. A related idea in-

volves replacing floating-point coefficients with small random integers [117], again with the

intention of avoiding unnecessary reductions when computing the actual basis. Although

intriguing, Gröbner trace algorithms are probabilistic in nature, and rely on the fortuitous

47

selection of random numbers. Another alternative is to replace each floating-point coeffi-

cient with a new variable. These variables can then be treated either as indeterminates,

appending them to the end of the term ordering, or as part of the coefficients. In the lat-

ter case, the coefficients become rational functions in terms of these new variables, which

results in a slower Gröbner basis computation but generally provides a simpler basis, since

it is devoid of polynomials relating only the symbolic coefficients [76].

The typical approach adopted by the kinematics community is to convert all coeffi-

cients into rational numbers [26,87], using either exact rational representations or rational

approximations. Since the kinematic constraint equations for mechanical systems involve

geometric parameters, such as lengths `1 and `2 in (3.33), the use of rational approxi-

mations can be interpreted as using exact measurements from a physical system of very

similar dimensions. Provided a sufficiently precise approximation is used, the resulting

Gröbner basis will be valid for systems manufactured within a particular tolerance. The

convert/rational function in Maple allows the user to control the precision of a rational

approximation, which is employed in this work to determine sufficiently precise approxi-

mations that use as few digits as possible.

3.3 Triangularizing systems

In this section, we examine the generation of triangular systems using Gröbner bases,

assuming that the kinematic constraint equations have been converted into a system of

polynomials with rational coefficients. We first discuss whether a given system can be

triangularized, which is dependent on the topology of the mechanism, the selection of

generalized coordinates, and the complexity of the kinematic equations. The computation

of a Gröbner basis has been discussed at length in Section 2.2.5; however, the resulting

triangular system has been given little attention. As such, the second half of this section

focuses on the unique characteristics intrinsic to triangular systems generated from systems

of kinematic equations.

48

3.3.1 Triangularizability

As discussed in Section 2.1.5, the embedding technique can be used to eliminate the de-

pendent accelerations from the symbolic dynamic equations, but the resulting second-order

ODEs (2.28) are functions of the independent and dependent positions (qi and qd) as well

as the independent and dependent velocities (q̇i and q̇d). The dependent velocities q̇d can

be calculated from q̇i at each time step using the linear velocity transformation equations

(2.26); however, the dependent positions qd are related to qi by the nonlinear kinematic

constraints, and are typically determined by iterating over these equations using Newton’s

method [37]. Although Newton–Raphson iteration converges quadratically, it is not guar-

anteed to converge to the solution that is closest to the initial guess. Consequently, the

computed trajectory may jump between adjacent solution branches, which can affect the

reliability of the simulation [94]. In many cases, the kinematic constraint equations can be

either fully or at least partially triangularized using Gröbner bases, thereby reducing the

use of iteration. Where full triangularization is possible, the constraints are always satis-

fied to machine precision, not simply to within a specified iteration tolerance—provided, of

course, the resulting equations are of degree no greater than four [140], which is generally

the case in this work. Furthermore, such fully triangular systems can be solved in a fixed

amount of time, which is particularly advantageous in real-time applications. Where full

triangularization is not possible, a block-triangular form can be obtained that still results

in more efficient simulations than existing iterative and constraint stabilization techniques.

Thus, the objective at this stage of the procedure is to obtain a maximally triangular

system of kinematic equations that can be used to determine qd given qi.

Whether a particular mechanism yields a fully triangular solution depends on a number

of factors, some of which may be beyond the control of the analyst. In the planar slider-

crank example, a pure lexicographic term ordering with s � cθ � sθ � cβ � sβ resulted in

system ∆3 (3.54), which computes qd = {θ, s} given qi = {β}. If the ordering s � sβ �
cβ � sθ � cθ is used instead, we obtain the following triangular system:

∆4 =

[
cβ =

3

4
sθ, sβ = ±1

4

√
9c2
θ + 7, s =

3

10
cθ +

2

5
sβ

]
(3.56)

✍4 =

[
cβ =

`1
`2

sθ, sβ = ± 1

`2

√
`21c

2
θ − `21 + `22, s = `1cθ + `2sβ

]
(3.57)

49

where q′

d = {β, s} is computed given q′

i = {θ}. In this 1-DOF single-loop case, the choice of

whether to drive the system with β or θ does not affect its triangularizability. Now consider

the 1-DOF planar multi-loop mechanism shown in Figure 3.4 [57]. This system consists of

L1
L2

L3 L4

a

b

c

θ1 θ2

θ3

θ4 L1 L2

L3

L4

a

b

c
θ1 θ2

θ3

θ4

Figure 3.4: Planar multi-loop mechanism and corresponding solution flow

four independent loops, each of which is a planar four-bar mechanism that can be solved by

specifying any one of its four interior angles. As shown in the adjacent solution flow block

diagram, specifying θ1 allows us to solve loop L1 immediately. Angles θ2 and θ3 can then be

determined and used to solve loops L2 and L3. Only once these two loops have been solved

can θ4 be computed, which drives the solution for the last loop. If θ4 were specified instead

of θ1, loop L4 could be solved immediately, but iteration would be required to determine

the other two angles at joint c. Thus, we can conclude that triangularizability is dependent

on the system topology as well as the solution flow, which is directly related to the choice

of kinematic inputs or, equivalently, independent coordinates. In a kinematic simulation,

the inputs to a system may be determined by factors other than simulation efficiency, such

as the location of actuators throughout a mechatronic system, in which case an iterative

solution may be unavoidable. In the context of forward dynamic simulation, however, no

limitation of this nature exists, so the most convenient set of independent coordinates can

be used.

Even if the choice of independent coordinates is unconstrained, only f such coordinates

can be selected, one for each degree-of-freedom. A procedure for determining the kinematic

solution flow for a fully triangularizable f -DOF mechanism can be summarized as follows:

1. Identify a loop L1 with f1 local DOF, where f1 ≤ f .

2. Assign f1 generalized coordinates from L1 to independent coordinate vector qi.

50

3. Since it is known that the local solution for L1 can be obtained given qi, all coordi-

nates q1 in loop L1 are now treated as known.

4. Identify a loop L2 with f2 local DOF, where |{q1} ∩ {q2}| ≥ f1 + f2 − f or, stated

more simply, no more than f − f1 coordinates must be appended to qi in order to

solve L2.

5. Assign the minimum number of coordinates from L2 to qi such that L2 can be solved

given qi and q1.

6. Proceed in this fashion until all independent loops have been solved.

Thus, in order to obtain a solution flow that is devoid of iteration, there must exist at

least one loop with as many knowns as DOF at each step in the solution. Note that there

is still some freedom in the choice of independent coordinates as well as the sequence in

which independent loops are solved. In general, it is advisable to choose a solution flow

that involves forming local solutions given n topologically adjacent coordinates, since the

corresponding Gröbner basis may be simpler and, therefore, take less time to compute.

One simple strategy used in this work is to begin at the ground node and traverse the

topological graph, placing the first f nodes in the independent coordinate vector. This

strategy is employed in the example of Section 4.2.4. Note that the order in which nodes are

encountered while traversing the topological graph can also be used to determine the order

in which terms are to be eliminated when generating a Gröbner basis. As demonstrated

above, a pure lexicographic term ordering with qd � qi results in a triangular system in

which the dependent coordinates can be solved given values of the independent coordinates.

Thus, a suitable elimination order is the reverse of the order in which the graph is traversed

to determine the independent coordinates. Unfortunately, since even a small change in

the original system of polynomials can have a dramatic influence on the Gröbner basis

computation time, determining the optimal elimination order is difficult. We also note

that Buchberger’s algorithm is nondeterministic—hence the development of various S-

polynomial selection strategies—and, as such, the Gröbner basis computation time may

vary even if the original system is unaltered. Finally, experience indicates that the decision

of whether to order sϑ � cϑ or cϑ � sϑ is inconsequential in most cases.

51

Whereas some multi-loop mechanisms can be triangularized if their independent loops

are solved in the correct order, some mechanisms are inherently untriangularizable. Block-

triangular solutions can be found using a strategy similar to that outlined above, with

modifications to ensure that the required iteration is performed over the minimum number

of coordinates possible. Although such an algorithm could be designed, the topologi-

cal graph is not generally complicated enough to warrant such an endeavour. In fact,

particularly for complex mechanisms, even an exhaustive search of the topological graph

would require considerably less computation time than would generating the corresponding

Gröbner bases. Furthermore, a system that is only block-triangularizable when modelled

using one set of generalized coordinates may be fully triangularizable using another—that

is, triangularizability is dependent on the choice of modelling coordinates themselves. An

effective strategy for parallel multi-loop mechanisms, or mechanisms whose independent

loops share more than one joint, is to use absolute coordinates to describe the position and

orientation of the end-effector. For mechanisms with full mobility, whose end-effectors can

be positioned and oriented independently in all coordinate directions [44], this strategy

can lead to a fully triangular solution, as will be demonstrated in Section 4.2. In the event

that full triangularization is still not possible, the use of absolute coordinates on one body

can result in an effective block-triangular form, as will be demonstrated by the examples

of Chapter 5. Although using absolute coordinates results in more independent loops than

if a purely joint coordinate formulation is used, the equations corresponding to each loop

are simpler and, therefore, more suitable for generating Gröbner bases.

The use of absolute coordinates highlights another important strategy when trian-

gularizing multi-loop mechanisms. Since the complexity of computing a Gröbner basis

grows roughly exponentially with the number of indeterminates, triangularizing the equa-

tions associated with each loop separately can decrease the Gröbner basis generation time

considerably. Kinematic equations are often decoupled in this manner to facilitate their

solution [26, 65]. For complex mechanisms, use of a decoupling strategy is essential to

ensure that the duration of the Gröbner basis computation is reasonable, and that it can

be performed using the available computational resources. Thus, from a practical perspec-

tive, we can state that triangularizability is dependent on the complexity of the equations

as well as the time and equipment available for performing the computation. As will be

52

discussed in Chapter 5, the Gröbner bases generated in this work approach the limits of

the computational resources available for this research. Although generating a Gröbner

basis can be computationally expensive, the resulting system of equations is both efficient

and eternally valid, requiring generation only once for a given set of system parameters.

3.3.2 Triangular systems in kinematics

Once a solution flow has been determined and all Gröbner bases have been generated,

the only remaining task at the position level is to solve the resulting polynomials for the

dependent coordinates in the correct order. In fact, this task is quite simple, since the order

in which the indeterminates must be solved is determined by the Gröbner basis elimination

order. In some cases, there may be more than one basis polynomial that could be used to

determine a particular indeterminate, as in ∆1 (3.39) and ∆2 (3.46) above. Except possibly

in some rare situations, discussed below, the most computationally efficient equation can

be selected. We also note that it is generally advisable to avoid equations of the form

s2
ϑ +c2

ϑ−1 = 0 to ensure that the corresponding angle ϑ is always resolved into the correct

quadrant. Two characteristics of triangular systems derived from kinematic equations

deserve further discussion: mechanism configurations and the specialization of Gröbner

bases.

We shall begin by returning to the planar slider-crank example. Using a pure lexico-

graphic term ordering with s � sβ � cβ � sθ � cθ, we obtain triangular system ∆4 (3.56).

Given a numerical value for θ, we can compute the corresponding values for β and s as

precisely as we wish, and can do so in a fixed amount of time. Note that each value of θ

corresponds to two values of sβ, which represent the two possible mechanism configurations

for the same crank angle, as shown for θ = π/4 [rad] in Figure 3.5. Recall that one of the

attractive properties of a Gröbner basis is that its solutions are the same as those of the

original system. Thus, all mechanism configurations are retained in the triangular solution

and, as is typically the case, the analyst must select the desired configuration. We now

generate a Gröbner basis for the planar slider-crank mechanism using a pure lexicographic

53

β

θ

s

θ

β

s

Figure 3.5: Two configurations of planar slider-crank mechanism for θ = π/4 [rad]

term ordering with sβ � cβ � sθ � cθ � s, which results in the following triangular system:

∆5 =

[
cθ =

100s2 − 7

60s
, sθ = ±

√
−c2

θ + 1, cβ =
3

4
sθ, sβ = −3

4
cθ +

5

2
s

]
(3.58)

✍5 =

[
cθ =

s2 + `21 − `22
2`1s

, sθ = ±
√

−c2
θ + 1, cβ =

`1
`2

sθ, sβ =
−`1cθ + s

`2

]
(3.59)

In this case, each value of s corresponds to two values of sθ, which correspond to the elbow-

up and elbow-down configurations shown in Figure 3.6. System ∆5 raises an important

issue: solving a Gröbner basis for the dependent coordinates can introduce denominators

that vanish during a simulation. The underlying issue is related to the behaviour of a

Gröbner basis under specialization, or upon substitution of numerical values for the vari-

ables [23]. Another example is shown in the hand-derived solution ✍5 (3.59), which can

also be obtained by treating `1 and `2 as symbolic parameters and appending them to the

term ordering list. Clearly, `1 = 0, `2 = 0, and s = 0 all result in vanishing denominators,

and all are non-physical. In this case, the geometry of the mechanism restricts s to the

ranges −`1 ± `2 ≤ s ≤ `1 ± `2, so the denominator of the expression for cθ never becomes

θ

β

s

θ

β

s

Figure 3.6: Two configurations of planar slider-crank mechanism for s = 0.551 [m]

54

zero. In theory, we could avoid such situations by computing a comprehensive Gröbner

basis [85, 138], which retains the properties of a Gröbner basis under all specializations;

however, experience has shown that vanishing denominators are almost never encountered

and, when they are, they can be eliminated using symbolic simplifications. The same

observation holds for the values of trigonometric variables: provided the solutions remain

physically valid, the values of sϑ and cϑ remain in the range [−1, 1]. As a final note, al-

though polynomials of high degree can be obtained for arbitrary systems, the triangular

systems generated in this work typically result in no more than two solutions for each

variable. The only exception that has been discovered is discussed in Section 4.2.3, where

a Gröbner basis must be generated for two independent loops simultaneously to avoid an

iterative kinematic solution.

3.4 Generating dynamic simulation code

If we were only interested in performing kinematic simulations, we could simply apply

motion drivers to the triangular systems generated in the previous section, and evaluate the

equations numerically at each time step of a desired interval. In order to perform dynamic

simulations, we use the embedding technique to eliminate the Lagrange multipliers from

the dynamic equations and obtain one ordinary differential equation for each independent

acceleration. Once written in first-order form, the resulting equations can be numerically

integrated from one time step to the next, thereby providing the independent positions

that drive the kinematic solution. As will be shown, this strategy results in very efficient

dynamic simulations that are suitable for real-time applications.

3.4.1 Projecting dynamic equations

As described in Section 2.1.5, the embedding technique produces a set of f second-order

ODEs for an f -DOF mechanism. In Section 3.1.2, we used a joint coordinate formulation

to derive the equations of motion for the planar slider-crank mechanism and obtained three

ODEs that describe its dynamic behaviour, which will now be reduced to a single second-

order ODE. Note that the choice of independent coordinate qi is arbitrary in this case,

since the kinematics of this mechanism can be solved recursively given β (3.55), θ (3.57),

55

or s (3.59). Selecting qi = {θ} and qd = {β, s}, we first rearrange (3.32) to agree with the

form shown in Section 2.1.5:



I2 + 1
4
m2`

2
2 −1

2
m2`2cβ 0

−1
2
m2`2cβ m2 +m3 0

0 0 I1 + 1
4
m1`

2
1








β̈

s̈

θ̈





+




`2cβ `2sβ

−1 0

−`1sθ `1cθ








λ1

λ2




 =






1
2
m2`2gsβ

−1
2
m2`2sββ̇

2 + F (t)

−1
2
m1`1gcθ





(3.60)

Φ =




`1cθ + `2sβ − s

`1sθ − `2cβ



 = 0 (3.61)

where λ1 = RX and λ2 = RY . Transformation matrix B is then computed as follows:

B =



−Φ−1
d Φi

1



 =




− `1cθ

`2sβ

−`1sθ − `1cθcβ

sβ

1


 (3.62)

which is an orthogonal complement of the Jacobian—that is, BT ΦT
q

= 0. Thus, pre-

multiplying (3.60) by BT eliminates the Lagrange multipliers λ and results in the form

shown in (2.25). Upon substitution of the acceleration-level transformation equation (2.27)

and simplifying, we obtain one second-order ODE for the independent acceleration:

θ̈ =
[
`21

(
4m2`

2
2sθcθsβc

2
β + 8m3`

2
2sθcθsβc

2
β + 4m2`

2
2c

2
θc

3
β + 8m3`

2
2c

2
θc

3
β − 3m2`

2
2sθcθsβ

− 4m3`
2
2sθcθsβ + 4I2sθcθsβ − 4m2`

2
2c

2
θcβ − 8m3`

2
2c

2
θcβ − 2m2`

2
2c

3
β − 4m3`

2
2c

3
β

+ 2m2`
2
2cβ + 4m3`

2
2cβ

)
θ̇2 + `21cθ

(
− 2m2`

2
2sθsβc

2
β − 2m2`

2
2cθc

3
β + 4m2`

2
2sθsβ

+ 4m3`
2
2sθsβ + 3m2`

2
2cθcβ + 4m3`

2
2cθcβ + 4I2cθcβ

)
θ̇β̇ + 2m2`1`

3
2

(
c2
β − 1

) (
sθc

2
β

− cθsβcβ − sθ
)
β̇2 + 2`1`

2
2

(
c2
β − 1

) (
2F sθsβ + 2F cθcβ +m1gcθsβ +m2gcθsβ

)] /

[
4`21`

2
2sθcθ

(
m2 + 2m3

)
s2
βcβ + `22

(
4m2`

2
1c

2
θ + 8m3`

2
1c

2
θ −m1`

2
1 − 4m2`

2
1 − 4m3`

2
1

− 4I1
)
sβc

2
β +

(
− 3m2`

2
1`

2
2c

2
θ − 4m3`

2
1`

2
2c

2
θ + 4I2`

2
1c

2
θ +m1`

2
1`

2
2 + 4m2`

2
1`

2
2

+ 4m3`
2
1`

2
2 + 4I1`

2
2

)
sβ

]
(3.63)

where the dependent positions qd can be calculated from qi at each time step using trian-

gular system ✍4 (3.57), and the dependent velocities q̇d can be calculated from q̇i using

56

the velocity transformation (2.26):

β̇ = −`1cθ
`2sβ

θ̇ (3.64)

ṡ =

(
−`1sθ −

`1cθcβ
sβ

)
θ̇ (3.65)

Note that the numerical singularity at sβ = 0 is never encountered when `1 < `2, as in this

example. The simulation process has been summarized in Figure 3.7. Note that only q̇i and

q̈i are numerically integrated. In real-time applications, the maximum integration step size

is bounded by the sampling rate, which is generally small: automotive electronic control

units, for example, typically operate with a 10-millisecond cycle time [29]. Consequently,

the relatively large numerical effort associated with high-order integration methods cannot

be compensated by taking large steps in time. Low-order, fixed-step-size, non-stiff ODE

solvers, such as the explicit Euler scheme, are often used in real-time and hardware-in-the-

loop applications [3].

q̇i, q̈i

q, q̇q, q̇iqi, q̇i
β̇ = f4

(
θ, β, s, θ̇

´

ṡ = f5

(
θ, β, s, θ̇

´

(

(

(

Velocity transformation

cβ = f1(sθ, cθ)

sβ = f2(cβ , sθ, cθ)

s = f3(sβ , cβ , sθ, cθ)

Triangular kinematic solution

∫
dt q̈i =

(
BT MB

)−1 {
BT F−BT M

(
Ḃ q̇i + Ċ

´ }

{(

Projected dynamic equation

BTBTBT

Figure 3.7: Solution flow for dynamic simulation of planar slider-crank mechanism

3.4.2 Simplification and optimization

We conclude this chapter with a brief discussion of computational efficiency. In the previ-

ous section, we found that the projected dynamic equation (3.63) was considerably more

complex than the original system of ODEs (3.60). In fact, a numerical formulation would

typically involve far more arithmetic operations, and would require reformulating the equa-

tions of motion at every time step of a simulation. Although numerical formulations are

57

used by many popular commercial simulation packages, such as MSC.ADAMS, the rela-

tively slow process of repeatedly reformulating the system equations may prohibit their

use in real-time applications. Symbolic formulation techniques, on the other hand, pro-

duce sets of equations that are eternally valid, so must only be generated once. Prior to

simulation, the symbolic equations can also be greatly simplified in numerous ways, such

as eliminating multiplications by 0 or 1, simplifying trigonometric expressions, and iden-

tifying and removing repeated calculations of sub-expressions [142]. Such simplifications

can result in models that simulate between five and ten times faster than those modelled

using a purely numerical approach [103]. As shown in Table 3.2, the code optimization

facilities available in Maple can further alleviate the computational burden associated with

lengthy symbolic expressions. Note that the dsolve/numeric/optimize routine generally

outperforms codegen/optimize, though the latter is currently more versatile than the for-

mer. Also note that the computation sequences generated by dsolve/numeric/optimize

recycle temporary variables when they are no longer needed, which can reduce the memory

requirements of the resulting simulation code considerably.

Table 3.2: Cost of evaluating dynamic equation (3.63) for planar slider-crank mechanism

Metric Original expression codegen/optimize dsolve/optimize

Multiplications 383 195 91

Additions 46 46 37

Functions 97 4 4

Temporary variables 0 47 18

3.5 Chapter summary

The approach described in this chapter employs existing symbolic computing and graph-

theoretic concepts to generate efficient kinematic and dynamic simulation code for multi-

body systems containing closed kinematic chains. The formulation procedure can be sum-

marized as follows:

1. Develop a model of the physical system of interest.

58

2. Determine the optimal kinematic solution flow and the corresponding set of modelling

coordinates.

3. Formulate the index-3 differential-algebraic equations of motion.

4. Triangularize the kinematic constraint equations.

5. Project the dynamic equations to obtain one ordinary differential equation for each

independent acceleration.

6. Export the optimized dynamic simulation code to the target simulation language.

Although the governing dynamic equations for the example presented above were gen-

erated using a graph-theoretic formulation, any symbolic formulation procedure can be

used. Furthermore, despite being convenient at present, the use of exact Gröbner bases for

triangularizing the kinematic constraint equations represents only one approach of many.

Nevertheless, as will be demonstrated by the examples presented in the next three chap-

ters, the approach presented herein can be used to generate real-time-capable dynamic

simulation code for relatively complex multibody systems.

59

Chapter 4

Fully Triangular Systems

In this chapter, we use the Gröbner basis approach described in Chapter 3 to generate

computationally efficient simulation code for several mechanisms, all of whose kinematic

equations can be fully triangularized. When full triangularization is possible and the

resulting equations are of degree no greater than four, a recursively solvable system is

obtained that can be evaluated exactly and in a fixed amount of time. Such a scenario

is ideal for real-time applications that demand efficient yet precise simulation code. Two

single-loop mechanisms—one planar and one spatial—are studied in Section 4.1, where we

also generate recursively solvable systems using the characteristic pair of joints approach.

In Section 4.2, we focus on multi-loop mechanisms, which can be described as the union

of two or more single-loop mechanisms. Among the mechanisms studied therein are a

Stephenson-III six-bar, a planar parallel robot, and a Gough–Stewart platform, all of which

have practical applications. Further discussion of block-triangularizable systems is deferred

until Chapter 5.

4.1 Single-loop mechanisms

The most readily triangularized systems of kinematic equations originate from constrained

mechanisms consisting of only one kinematic loop. This section contains the analysis of

two such mechanisms: a planar slider-crank and a spatial four-bar. We also compare the

triangular solutions generated using the Gröbner basis approach to those generated using

the characteristic pair of joints approach described in Section 2.1.5. As will be shown, the

60

ability to vary the elimination order when generating Gröbner bases can result in more

efficient systems of equations than those obtained using characteristic pairs of joints.

4.1.1 Planar slider-crank mechanism

We begin with a simple example to explain the characteristic pair of joints approach in

detail. Consider the 1-DOF planar slider-crank mechanism studied throughout Chapter 3,

the geometry of which is shown in Figure 4.1. Clearly, r1 is the vector sum of r3 and r2.

r1

�2�1

r3

r2

θ

β

X

Y

s

Figure 4.1: Geometry of planar slider-crank mechanism

Since the length of the crank is constant, so is the length of vector r1:

‖r1‖ = ‖r3 + r2‖ (4.1)

‖`1 cos(θ) ı̂ + `1 sin(θ) ̂‖ = ‖(s− `2 sin(β)) ı̂ + `2 cos(β) ̂‖ (4.2)

`21 = s2 − 2`2 sin(β)s+ `22 (4.3)

which can be verified geometrically using the law of cosines. Thus, the invariance of the

distance between the revolute joints on the crank—the characteristic pair of joints—is used

to obtain a solution for s as a function of β:

s = `2 sin(β) ±
√

−`22 cos2(β) + `21 (4.4)

Alternatively, the vector sum could be expressed as r2 = −r3 + r1, whereupon a solution

for s would be obtained as a function of θ. In either case, the remaining joint coordinates

are determined geometrically [57] which, although trivial for this mechanism, may be time-

consuming in general.

61

More formally, the loop-closure condition can be expressed as the product of six homo-

geneous transformation matrices [122]:

0H1
1H2

2H3
3H4

4H5
5H0 = I (4.5)

where iHk represents the transformation from frame Bi to frame Bk, as shown in Figure 4.2.

The loop-closure condition simply states that the start and end frames are coincident upon

traversal of the entire kinematic loop. Since we wish to exploit the invariance of the crank

length, we write (4.5) in the following equivalent form:

0H1
1H2 = 0H5

5H4
4H3

3H2 (4.6)



cθ −sθ 0

sθ cθ 0

0 0 1







1 0 `1

0 1 0

0 0 1


 =




1 0 s

0 1 0

0 0 1







sβ cβ 0

−cβ sβ 0

0 0 1







1 0 −`2
0 1 0

0 0 1







−sσ −cσ 0

cσ −sσ 0

0 0 1


 (4.7)




cθ −sθ `1cθ

sθ cθ `1sθ

0 0 1


 =




−sβsσ + cβcσ −sβcσ − cβsσ s− `2sβ

sβcσ + cβsσ −sβsσ + cβcσ `2cβ

0 0 1


 (4.8)

=




cθ −sθ s− `2sβ

sθ cθ `2cβ

0 0 1


 (4.9)

where sϕ = sin(ϕ), cϕ = cos(ϕ), and σ = θ − β. We now compute the position vector

emanating from the origin of frame B0 and terminating at the origin of frame B2 using

B

B3

B1

B2

B

B4
θ

β

�2�1

s

B0

B

B5

Figure 4.2: Body-fixed reference frames for planar slider-crank mechanism

62

each of these transformation matrices [66]:




cθ −sθ `1cθ

sθ cθ `1sθ

0 0 1








0

0

1





=




cθ −sθ s− `2sβ

sθ cθ `2cβ

0 0 1








0

0

1





(4.10)





`1cθ

`1sθ

1





=





s− `2sβ

`2cβ

1





(4.11)

Equating the magnitudes of these vectors results in the solution for s as a function of β

found previously (4.3). Note that the same solution can be obtained automatically by

generating a Gröbner basis using a pure lexicographic term ordering with sθ � cθ � s �
sβ � cβ. Unlike the characteristic pair of joints approach, however, a Gröbner basis can

be generated using any desired elimination order, and does not demand the use of joint

coordinates. As will be shown in the next example, varying the order in which coordinates

are solved can result in triangular systems that are more computationally efficient than

those obtained using the characteristic pair of joints technique.

4.1.2 Spatial four-bar mechanism

We now consider the 1-DOF spatial four-bar mechanism shown in Figure 4.3. This system

is modelled using 4 joint coordinates: β1, the angle of the crank as it is driven about the

β2β0

β4

β3

β1

X

Y

Z

Figure 4.3: Spatial four-bar mechanism

63

−Y-axis; β2, the angle of the follower as it rotates about the X-axis; and β3 and β4, the

angles associated with the universal joint between the connecting rod and the follower.

Parameter β0 is used to define the amount of twist in the follower. Note that the rotation

axes corresponding to angles β2 and β3 are parallel only when β0 = kπ, k ∈ Z. The

m = n− f = 3 constraint equations can be expressed as follows:

Lc sin(β1) − Lr

(
sin(β0) cos(β3) cos(β4) + cos(β0) sin(β4)

)
= 0 (4.12)

Lc cos(β1) − Lf cos(β2) − Lr sin(β0) sin(β2) sin(β4)

+ Lr cos(β4)
(
cos(β0) sin(β2) cos(β3) − cos(β2) sin(β3)

)
= 0 (4.13)

Lg − Lf sin(β2) + Lr sin(β0) cos(β2) sin(β4)

− Lr cos(β4)
(
cos(β0) cos(β2) cos(β3) + sin(β2) sin(β3)

)
= 0 (4.14)

where Lc, Lr, Lf , and Lg are the lengths of the crank, connecting rod, follower, and ground

link, respectively. The characteristic pair of joints technique [68] can be used to generate

the following triangular, or recursively solvable, system of equations when β0 = 0:

z1 = 6c1, z2 = z2
1 + 400, z3 = ±

√
z2 −

3721

16
, c2 =

61z1 + 80z3
4z2

,

s2 =
305 − z1z3

z2
, z1 = ±

√
9

4
c2
1 − 20s2 − z1c2 + 29, z2 =

3

2
c1,

c3 =
5c2 − z2s2

z1
, s3 =

5s2 + z2c2 − 2

z1
, c4 =

1

4
z1, s4 =

3

8
s1 (4.15)

where zk are temporary variables introduced by the dsolve/numeric/optimize routine

in Maple to avoid repeating calculations; sk = sin(βk), ck = cos(βk), and the system

parameters Lc = 1.5, Lr = 4, Lf = 2, and Lg = 5 have been substituted. The positive and

negative roots for z3 represent the two possible configurations of the mechanism: if the

former is chosen, the mechanism will be in the upright configuration shown in Figure 4.3;

if the latter is chosen, the follower will be below the XY-plane.

The first step in the Gröbner basis approach involves converting the constraint equa-

tions into polynomials using the substitution technique discussed previously. The system

parameters are then substituted and converted into rational numbers, which results in the

64

following system of polynomials when β0 = 0:

3
2
s1 − 4s4,

3
2
c1 − 2c2 + 4s2c3c4 − 4c2s3c4, 5 − 2s2 − 4c2c3c4 − 4s2s3c4,

s2
1 + c2

1 − 1, s2
2 + c2

2 − 1, s2
3 + c2

3 − 1, s2
4 + c2

4 − 1 (4.16)

A Gröbner basis is then generated. Since the crank is being driven in this example, β1 is

a known function of time and s1 and c1 are placed at the end of the term ordering list; the

unknown variables can be computed in any order. To illustrate the effect of the solution

order on the resulting kinematic equations, two Gröbner bases are generated using different

term orderings. We first use a pure lexicographic ordering with s4 � c4 � s3 � c3 � s2 �
c2 � s1 � c1 to solve for the unknowns in the same order as in the characteristic pair

of joints solution, starting with c2 and working backwards through the list. The Maple

Groebner:-Basis command produces the following triangular system:

s2
1 + c2

1 − 1, 576c2
1c2

2 − 2928c1c2 + 6400c2
2 − 2679, 24c1c2 + 80s2 − 61,

{
2928c1c2c3

2 − 2928c1c2 − 2880c2
2c3

2 + 3721c2
2 + 2679c3

2 − 2679
}
,

{
576c2

1c3
2 − 576c2

1 + 3520c3
2 − 2679

}
,

[
696c1c2c3 − 1920c1s3 + 4880c2s3 − 1769c3

]
,

[
2088c2

1c2c3 − 5760c2
1s3 − 5307c1c3 + 23200c2c3 − 26790s3

]
,

[
1464c1c

2
3 − 1464c1 − 2880c2c

2
3 + 3721c2 − 2320s3c3

]
,

72c2
1c2c3 − 183c1c3 + 800c2c3 + 290s3 − 640c4, 3s1 − 8s4 (4.17)

where the unknown variable at each stage in the solution process has been underlined.

Note that either of the two braced expressions can be used to solve for c3, and any one of

those enclosed in brackets can be used to solve for s3; the expression involving the fewest

arithmetic operations is selected in each case. The following equations have been extracted

from the above Gröbner basis and optimized using the dsolve/numeric/optimize routine:

z1 = 9c2
1 + 100, z2 =

183

8
c1, z3 = z1 −

3721

64
, c2 =

z2 ± 10
√
z3

z1
,

s2 =
61

80
− 3

10
c1c2, c3 = ±1

8

√
64 − 841

z1 − 45
, z2 =

1

80
c3(z1c2 − z2),

s3 =
29z2
z3

, c4 = z2 +
29

64
s3, s4 =

3

8
s1 (4.18)

In this case, the positive and negative roots for c2 and c3 represent the two possible config-

urations of the mechanism: if the same sign is used for both roots, the mechanism will be

65

in the upright configuration; if the roots have opposite signs, the follower will be below the

XY-plane. A second Gröbner basis is now generated for the same system of polynomials,

but using a pure lexicographic ordering with s2 � c2 � s3 � c3 � s4 � c4 � s1 � c1, which

again results in a triangular system:

s2
1 + c2

1 − 1, 9c2
1 − 64c4

2 + 55, 3s1 − 8s4, 576c2
1c3

2 − 576c2
1 + 3520c3

2 − 2679,

29s3 + 64c2
3c4 − 64c4,

{
1464c1c2c4 − 1830c1c3 + 3600c2c3 − 6400c2

3c4 + 2679c4

}
,

{
72c2

1c2 − 183c1 + 800c2 − 640c3c4

}
, 24c1c2 + 80s2 − 61 (4.19)

where either of the two braced expressions can be used to solve for c2. In this case, we

obtain a recursively solvable system of equations in which c4 is solved first:

z1 = 9c2
1 + 55, c4 = ±1

8

√
z1, s4 =

3

8
s1, c3 = ±1

8

√
64 − 841

z1
,

s3 =
64

29
c4

(
1 − c2

3

)
, c2 =

183c1 + 640c3c4

8 (z1 + 45)
, s2 =

61

80
− 3

10
c1c2 (4.20)

Note that triangular systems (4.18) and (4.20), both obtained using Gröbner bases, are

more computationally efficient than that obtained using the characteristic pair of joints

approach (4.15), as indicated in Table 4.1.

Similar results are obtained when the rotation axes corresponding to angles β2 and

β3 are not assumed to be parallel. The following triangular system is obtained using the

Table 4.1: Cost of triangular systems for spatial four-bar mechanism when β0 = 0

Approach
Computational cost of resulting triangular system

Multiplications Additions Square roots Temporary variables

Characteristic pair
21 10 2 3

of joints (4.15)

Gröbner basis, β2
16 8 2 3

solved first (4.18)

Gröbner basis, β4
16 6 2 1

solved first (4.20)

66

characteristic pair of joints technique when β0 is treated as a symbolic parameter:

z1 = 6c1, z2 = z2
1 + 400, z3 = ±

√
z2 −

3721

16
, z4 = s0s1, c2 =

61z1 + 80z3
4z2

,

s2 =
305 − z1z3

z2
, z1 = c2

0, z2 = 1 − z1, z3 = z2c
2
2, z5 = c1s2, z6 = c1c2,

z7 = c0(10c2 − 3z5), z1 =
9

4

(
c2
1 (2z1 + z3 − 1) − z1

)
+

3

2

(
z4z7 + z6 (10z2s2 − 4)

)
,

z3 = ±2

√
z1 − 20s2 − 25z3 +

125

4
, c3 =

3z4 + z7
z3

, s3 =
10s2 + 3z6 − 4

z3
,

c4 =
1

8
z3, s4 =

3

8
(c0s1 + z5s0) −

5

4
s0c2 (4.21)

Note that system (4.21) reduces to system (4.15) upon substitution of β0 = 0. The Gröbner

basis approach proceeds as before. We first convert the constraint equations into polyno-

mials and substitute the link lengths to obtain the following system:

3
2
s1 − 4s0c3c4 − 4c0s4,

3
2
c1 − 2c2 − 4s0s2s4 + 4c0s2c3c4 − 4c2s3c4,

5 − 2s2 + 4s0c2s4 − 4c0c2c3c4 − 4s2s3c4, s2
0 + c2

0 − 1, s2
1 + c2

1 − 1,

s2
2 + c2

2 − 1, s2
3 + c2

3 − 1, s2
4 + c2

4 − 1 (4.22)

Two Gröbner bases are generated using the same term orderings as before, but with s0

and c0 appended to the end of the lists. Using a pure lexicographic term ordering with

s4 � c4 � s3 � c3 � s2 � c2 � s1 � c1 � s0 � c0 results in the following recursively solvable

system:

z1 = 64
(
9c2

1 + 100
)
, z2 = 183c1, c2 =

8
(
z2 ± 10

√
z1 − 3721

)

z1
,

s2 =
61

80
− 3

10
c1c2, z3 = c0

(
1

8
z1c2 − z2

)
, z2 = z1 − 7817,

z4 = 3255c2
0, z5 = z4 − z2, z6 = 3072c0s1, z5 = z2

5 − z2
6 , z6 = s0s1,

c3 = ±
√

1

z5

(
841z2 −

1682

3255
z4 (z1 − 5348.5) + 4036.8z3z6 + z5

)
,

s3 =
29c3 (z3 − 240z6)

10 (z1 + z4 − 6976)
, z1 =

1

5120
z1c2 −

183

640
c1, z2 =

3

8
s1,

c4 = c3 (z1c0 + z2s0) +
29

64
s3, s4 = z2c0 − z1s0 (4.23)

67

A Gröbner basis is now generated for the same system of polynomials, but using a pure

lexicographic ordering with s2 � c2 � s3 � c3 � s4 � c4 � s1 � c1 � s0 � c0, which leads

to the following system of kinematic equations:

z1 = c0s1, z2 = 9s2
1, z3 = 64z2, s4 =

3

8
z1 ±

1

64
s0

√
3255 − z3,

z1 = 4096 − 3255s2
0 − 3072z1s4 + z3, c4 = ± 1

64

√
z1, s3 =

1856c4

z1
,

c3 =
8s3 (3s1 − 8c0s4)

29s0
, z1 = s0s4 − c0c3c4, s2 =

24z1c1 + 76.25

109 − z2
,

c2 =
3

10
c1s2 −

4

5
z1 (4.24)

Note that triangular systems (4.21) and (4.23) are of similar computational complexity,

while system (4.24) is significantly more efficient than the other two, as shown in Table 4.2.

Although the characteristic pair of joints and Gröbner basis approaches both gener-

ate recursively solvable systems, three important differences should be noted. First, the

Gröbner basis approach is capable of generating equations that involve fewer arithmetic op-

erations and require fewer temporary variables for storing intermediate calculations, which

can be attributed to its flexibility in the solution order. Secondly, the characteristic pair

of joints approach requires the analyst to use joint coordinates, while the Gröbner basis

approach can be used with joint coordinates, absolute coordinates, or any combination

thereof. Finally, note that the characteristic pair of joints technique can accommodate

Table 4.2: Cost of triangular systems for spatial four-bar mechanism when β0 6= 0

Approach
Computational cost of resulting triangular system

Multiplications Additions Square roots Temporary variables

Characteristic pair
40 20 2 7

of joints (4.21)

Gröbner basis, β2
40 19 2 6

solved first (4.23)

Gröbner basis, β4
30 10 2 3

solved first (4.24)

68

symbolic system parameters (e.g., link lengths Lk). Although β0 was treated as a symbolic

parameter in the example above, a large number of indeterminates can make generating

a Gröbner basis computationally impractical, so numeric values must typically be sub-

stituted for the symbolic parameters before generating the basis. As a consequence, the

Gröbner basis must be recomputed if the system parameters are modified.

Kinematic simulations are performed in Maple to compare the computational efficiency

of the following four solution approaches when β0 = 0:

1. Solving the original constraint equations iteratively using the fsolve command.

2. Solving the original constraint equations iteratively using the LinearSolve command

and Newton’s method, with optimized procedures for evaluating the Jacobian and

constraint equations at each iteration, where the converged solution from the previous

time step is used as the initial guess for the current time step.

3. Solving triangular system (4.15) obtained using the characteristic pair of joints tech-

nique.

4. Solving triangular system (4.20) extracted from Gröbner basis (4.19).

The mechanism is simulated for 10 seconds using 1-millisecond time steps on a 3.00-GHz

processor, where the crank angle is defined as β1(t) = 2πt [rad]. The Digits environment

variable is set to 5 for all approaches, and Newton’s method iterates to a tolerance of 10−3;

the simulation results are summarized in Table 4.3. Not only is the Gröbner basis approach

faster than the other approaches, but it can be used to generate arbitrarily precise solutions

without increasing the required number of arithmetic operations.

Table 4.3: Performance of spatial four-bar mechanism simulations in Maple

Approach Simulation time Performance relative to fsolve

fsolve 79.06 s —

Newton’s method 44.91 s 1.8× faster

Characteristic pair of joints 5.46 s 14.5× faster

Gröbner basis 5.12 s 15.4× faster

69

4.2 Multi-loop mechanisms

In this section, we present several multi-loop mechanisms for which fully triangular solu-

tions can be obtained. The simplest such mechanisms are those consisting of a cascade

of single-degree-of-freedom loops, where the output of each loop drives the motion of the

subsequent loop. Two examples of this type are discussed in Section 4.2.1. In Section 4.2.2,

a Stephenson-III six-bar mechanism is used to illustrate the situations in which fully tri-

angular and block-triangular solutions can be expected; an exception is discussed in Sec-

tion 4.2.3, where a Gröbner basis is generated for two independent loops simultaneously to

avoid a block-triangular solution. A planar parallel robot is presented in Section 4.2.4 to

demonstrate the effectiveness of the proposed technique in the context of dynamic simu-

lation. Finally, the Gough–Stewart platform is used to demonstrate the application of the

Gröbner basis approach to a complex spatial mechanism in Section 4.2.5.

4.2.1 Cascade of single-degree-of-freedom mechanisms

We begin our analysis of multi-loop mechanisms with the hydraulic excavator shown in

Figure 4.4. The boom is pin-connected to the cab, and is raised and lowered by extending

and retracting a hydraulic piston; the stick is similarly actuated. A third piston rotates

the bucket indirectly through a pair of links, which provides a large range of motion while

maintaining a small workspace. This system can be described as a cascade of three planar

slider-crank mechanisms, all slider-actuated, followed by a planar four-bar mechanism.

For mechanisms of this type, we can employ a simple solution strategy: solve each loop in

series, starting from the ground frame.

Stick
Bucket

Boom

Cab

Figure 4.4: Hydraulic excavator

70

A similar strategy can be used to simulate the deployment of a synthetic aperture

radar satellite antenna that was launched on the European research satellite ERS-1 [57].

Each side of the folding truss holds two panels and is deployed in two stages, as shown

in Figure 4.5 for the right half of the satellite. Although this is a 2-DOF mechanism,

only one joint is actuated during each phase of deployment. In the first stage, the upper

panel is extended by a passive spring in joint A, which locks once straightened. A motor

in joint B is then activated to swing the panels into their final positions. This system

can be described as a cascade of two planar four-bar mechanisms during each phase of

deployment; thus, we can employ the same strategy as above, solving each loop in series.

In the remainder of this section, we consider mechanisms whose loops are not arranged in

a strictly cascading manner.

(e) Antenna fully deployed

(d) Motor in joint B actuated (c) Joint A locked

(b) Deployment of

(b) upper panel

(a) Panels stowed

A

B

Figure 4.5: Deployment of synthetic aperture radar satellite antenna

71

4.2.2 Stephenson-III six-bar mechanism

We now consider the 1-DOF Stephenson-III six-bar mechanism shown in Figure 4.6. If

joint coordinates q = {β1, β2, β3, β4, θ1} are used to model this system, m = n − f = 4

constraint equations are generated:

φ1(β1, β2, β3, β4) = 0 φ3(θ1, θ2, θ3) = 0

φ2(β1, β2, β3, β4) = 0 φ4(θ1, θ2, θ3) = 0
(4.25)

where constants relate θ2 and θ3 to β2 and β3, respectively. Note that φ1 and φ2 represent

the loop-closure constraints for loop Lβ, and φ3 and φ4 represent those for the second inde-

pendent loop, Lθ. Local solutions are generated by transforming the constraint equations

associated with each independent loop into Gröbner bases. Although it is often possible to

generate a single Gröbner basis for an entire system, processing the constraint equations

for each loop separately can reduce the total computation time considerably. In the present

example, we shall focus on determining the sequence in which the local solutions are to be

computed.

An important consideration in the Gröbner basis approach is the choice of independent

coordinates qi. In the context of kinematic simulation, the inputs to a system are specified

by the analyst. Since each step in the global solution flow must involve computing unknown

coordinates from known coordinates, the choice of inputs in a kinematic simulation is

directly related to the triangularizability of the system. If we were to use β1 = f(t) as the

θ3

θ2

θ1

β4

β3

β2

β1

LθLβ �4�3

�2

�1

Figure 4.6: Stephenson-III six-bar mechanism

72

driven angle in this mechanism, it is only possible to obtain a block-triangular solution in

general. This limitation can be explained kinematically by noting that loop Lβ is a closed

chain of five links and, therefore, has 2 local DOF; knowledge of β1 alone is insufficient

to solve this loop. Mathematically, note that knowledge of β1 leaves three unknowns in

φ1 and φ2 (β2, β3, and β4), and three unknowns in φ3 and φ4 (θ1, θ2, and θ3), so neither

of these pairs of equations can be solved immediately. Thus, if β1 is chosen as the driven

angle, the global solution will generally involve iteration over at least one coordinate, as

shown for β2 in Figure 4.7. Although iteration is used to determine β2, the remaining

θ2β′
2

β4

β3 θ3
θ1

Known:
�
1

Guess:
�
2

2-DOF

1-DOF

 Lθ

β1

β2 Lβ

Figure 4.7: Kinematic solution flow for Stephenson-III six-bar when β1 is driven

angles can be solved recursively once β2 has been found, so this global solution strategy

is said to have a block-triangular form. Note that the iterative procedure only involves

repeated computations of β3 given β2, and θ2 given θ3, so the remaining angles need not

be computed until convergence has been reached. By reducing the amount of computation

required for each iteration and computing the remaining angles recursively, the block-

triangular solution strategy shown in Figure 4.7 yields more efficient simulations than a

fully iterative approach. Of course, a fully triangular solution is even more efficient and, in

this case, can be obtained if θ1 = f(t) is used as the driven angle, as shown in Figure 4.8.

θ3

θ2

β3

β2 β1

β4
Known: � 1 2-DOF

1-DOF

 Lθ Lβ

θ1

Figure 4.8: Kinematic solution flow for Stephenson-III six-bar when θ1 is driven

To demonstrate the computational advantage associated with triangularizing the con-

straint equations, kinematic simulations are performed using the systems shown in Fig-

ures 4.7 and 4.8, and the simulation times are compared to those obtained using a typical

73

Newton–Raphson iterative approach. The initial configuration of the system is shown

in Figure 4.6. The leg lengths are chosen to be `1 = `2 = 0.295 [m], `3 = 0.26 [m],

and `4 = 0.51 [m], and the two shaded triangles are isosceles with base 0.5 [m] and height

0.125 [m]. All coefficients are converted into rational numbers using the convert/rational

function in Maple. The motion driver β1(t) = 2.09+sin(πt) [rad] is used to drive the block-

triangular solution; tabulated data for θ1(t) from the simulation of the block-triangular so-

lution is used to drive the fully triangular solution through the same trajectory. Simulations

are performed using optimized procedures generated with the codegen/optimize routine

in Maple, which are exported to the C programming language. Rather than compute

the Jacobian required for Newton–Raphson iteration, we simply use the secant method to

determine β2 in the block-triangular solution; Gaussian elimination with partial pivoting

is used to solve the linear system of equations in the Newton–Raphson approach. The

resulting simulation code is compiled using the default Lcc compiler in Matlab R14 (Lcc)

as well as the Microsoft Visual C/C++ compiler (MS). In each case, a 1-second simulation

is performed on a 3.00-GHz processor using 1-millisecond time steps; the average simula-

tion times are shown in Tables 4.4 and 4.5. Note that, while the block-triangular solution

outperforms the iterative approach, the fully triangular solution provides exact results in

even less time.

Table 4.4: Performance of Stephenson-III six-bar simulations when β1 is driven

Compiler
Gröbner basis Gröbner basis Newton–Raphson Newton–Raphson

· tolerance 10−3 · tolerance 10−6 · tolerance 10−3 · tolerance 10−6

Lcc 3.74 ms 5.96 ms 6.41 ms 9.27 ms

MS 1.50 ms 2.50 ms 2.71 ms 3.96 ms

Table 4.5: Performance of Stephenson-III six-bar simulations when θ1 is driven

Compiler
Gröbner basis Newton–Raphson Newton–Raphson

· exact · tolerance 10−3 · tolerance 10−6

Lcc 2.01 ms 6.61 ms 9.32 ms

MS 0.85 ms 2.71 ms 3.70 ms

74

4.2.3 Aircraft landing gear mechanism

In the previous section, we studied a 1-DOF mechanism with independent loops of 1 and

2 local DOF, and found that applying a kinematic input to the 2-DOF loop resulted in a

block-triangular solution. This observation is generally applicable to systems whose loops

are triangularized separately; however, it may be possible to obtain a fully triangular solu-

tion in such situations by triangularizing all loops simultaneously. Consider the mechanism

shown in Figure 4.9, which was designed for deploying and retracting landing gear at the

nose of an aircraft [52]; the topology of the system is shown in Figure 4.10. The main

strut is pin-connected to the fuselage at point A, the piston at point B, and the lower link

at point F. Revolute joints at points C, D, and E attach the drag strut to the base of

the hydraulic cylinder, the fuselage, and the lower link, respectively. When the piston is

extended, the main strut pivots about point A in a counterclockwise direction, while the

drag strut rotates about point D in a clockwise direction due to its attachment to the base

of the hydraulic cylinder.

F

E

D

C
B

A

Figure 4.9: Aircraft landing gear mechanism

75

pBCθB

θA

θC

θD

θEθF

Drag

strut
Fuselage

Lower link

Main

strut

Piston Cylinder

Figure 4.10: Topology of aircraft landing gear mechanism

The 1-DOF aircraft landing gear mechanism consists of two independent loops, and

has nearly the same topology as the Stephenson-III mechanism studied in the previous

section. The lower loop (ADEFA) is a 1-DOF planar four-bar mechanism, which could

be solved first if one of its angles were driven. In this case, the actuation is applied to

the upper loop (ABCDA), which is a 2-DOF five-bar mechanism; knowledge of the length

BC at a particular instant of time does not allow us to solve the upper loop in isolation,

since it effectively becomes a 1-DOF planar four-bar. Thus, we are faced with the same

situation as when β1 was used to drive the Stephenson-III mechanism; however, rather

than resort to a block-triangular solution, a single Gröbner basis can be generated for the

entire system of constraint equations. Although a triangular solution is obtained in this

case, the complexity of the Gröbner basis computation precludes the use of this strategy

in general. Furthermore, as will be shown, we obtain a sextic equation for one variable,

which is not generally solvable using a finite number of arithmetic operations.

Using joint coordinates q = {θA, θB, θD, θF, pBC} and substituting the geometric param-

eters given in Appendix A.1, we obtain the following four constraint equations:

sAsBpBC − cAcBpBC + 62sA − 42cA + 1697
100

sD + 152
25

cD + 231 = 0 (4.26)

sAcBpBC + cAsBpBC + 42sA + 62cA + 152
25

sD − 1697
100

cD − 62 = 0 (4.27)

892
5

sAsF − 892
5

cAcF − 212sA − 25cA − 822
5

cD + 231 = 0 (4.28)

892
5

sAcF + 892
5

cAsF + 25sA − 212cA − 822
5

sD − 62 = 0 (4.29)

where sk = sin(θk) and ck = cos(θk). Note that (4.26) and (4.27) represent the loop-closure

constraints for the upper loop, and (4.28) and (4.29) represent those for the lower loop.

76

Since knowledge of the piston length pBC leaves three unknowns in the upper loop (θA, θB,

and θD) and three unknowns in the lower loop (θA, θD, and θF), neither of these pairs of

equations can be solved immediately in isolation. Generating a Gröbner basis using a pure

lexicographic term ordering with cF � sF � cA � sA � cD � sD � cB � sB � pBC results in

the triangular system described in Table 4.6; similar results are obtained for other elimina-

tion orders. Although a triangular system has been obtained, its numerical evaluation still

requires iteration to solve the sextic equation g1(sB, pBC) = 0 for sB. Note that four of the

six solution branches are complex, the fifth describes the motion shown in Figure 4.9, and

the sixth describes a similar motion of the main strut, but where the drag strut rotates

counterclockwise. Finally, whereas the coefficients in the original constraint equations are

no more than four digits in length, those in the triangular system are substantially longer.

This observation indicates both the complexity of the Gröbner basis computation in this

case, as well as the danger of adopting such a strategy in general.

Table 4.6: Triangular system obtained for aircraft landing gear mechanism

Polynomial Degree Number of terms Longest coefficient

g1(sB, pBC) 6 in sB 28 62 digits

g2(cB, sB, pBC) 1 in cB 40 132 digits

g3(sD, cB, sB, pBC) 1 in sD 37 245 digits

g4(cD, sD, cB, sB, pBC) 1 in cD 6 9 digits

g5(sA, cD, sD, cB, sB, pBC) 1 in sA 37 264 digits

g6(cA, sA, cD, sD, cB, sB, pBC) 1 in cA 37 264 digits

g7(sF, cA, sA, cD, sD, cB, sB, pBC) 1 in sF 37 252 digits

g8(cF, sF, cA, sA, cD, sD, cB, sB, pBC) 1 in cF 37 254 digits

4.2.4 Planar parallel robot

The last two example systems presented in this chapter are parallel robots with full mo-

bility. A parallel robot is a multi-loop mechanism whose end-effector is connected to

the ground by two or more chains; robots whose end-effectors can be positioned and ori-

ented arbitrarily in all coordinate directions are said to have full mobility. Although a

77

parallel robot typically has a smaller workspace than a serial robot of similar size, the

closed-kinematic-chain topology of the former makes it more rigid and, therefore, more

accurate [49]. Furthermore, if all the actuators can be placed on the base, the resulting

robot will be both lighter and faster [84]. In addition to their many useful industrial

applications, full-mobility parallel robots also provide a convenient solution strategy for

multi-loop mechanisms with limited mobility, as will be shown in Chapter 5.

Consider the 3-DOF planar parallel robot shown in Figure 4.11, the design of which was

studied by Gosselin and Angeles [48]. If modelled using joint coordinates q = {θ1, . . . , θ7},
the following m = n− f = 4 constraint equations are obtained:

φ1(θ1, θ2, θ4, θ5, θ7) = 0 φ3(θ1, θ3, θ4, θ6, θ7) = 0

φ2(θ1, θ2, θ4, θ5, θ7) = 0 φ4(θ1, θ3, θ4, θ6, θ7) = 0
(4.30)

where φ1 and φ2 are the loop-closure constraints for the first loop, herein referred to as

loop L1, and φ3 and φ4 are those for the second loop, L2. Loops L1 and L2 are both closed

chains of six links and, therefore, each has 3 local DOF. Clearly, choosing qi = {θ1, θ2, θ3}
leads to an iterative solution, since each pair of constraint equations would involve three

unknowns. In a kinematic simulation, where θ1, θ2, and θ3 might be desired motor angles as

θ3

θ6

θ5

θ2

θ7

θ4

θ1

Y

X

Figure 4.11: Planar parallel robot

78

functions of time, we would be forced to use this iterative solution. In a forward dynamic

simulation, however, a more convenient set of independent coordinates can be chosen.

Selecting qi = {θ1, θ2, θ4}, for example, results in a triangular system, since φ1 and φ2 can

be used to determine θ5 and θ7 recursively, and θ1, θ4, and θ7 can then be used as the

inputs to loop L2. Selecting qi = {θ1, θ4, θ7} also triangularizes the system, but in this case

we have the ability to solve loops L1 and L2 in parallel, distributing the computation over

two processors.

As mentioned above, one of the benefits of the Gröbner basis approach is its indifference

to the generalized coordinates used to model a system. This flexibility is exploited here by

using absolute coordinates to describe the motion of the end-effector and joint coordinates

elsewhere. Using generalized coordinate vector q′ = {θ1, θ2, θ3, θ4, θ5, θ6, xee, yee, θee}, we

obtain the following m = n− f = 6 constraint equations:

φ′

1(θ1, θ4, xee, θee) = 0 φ′

3(θ2, θ5, xee, θee) = 0 φ′

5(θ3, θ6, xee, θee) = 0

φ′

2(θ1, θ4, yee, θee) = 0 φ′

4(θ2, θ5, yee, θee) = 0 φ′

6(θ3, θ6, yee, θee) = 0
(4.31)

Note that this choice of modelling coordinates results in three independent kinematic loops

and six constraint equations, but these equations are simpler than those obtained using

purely joint coordinates. Now, choosing as independent coordinates q′

i = {xee, yee, θee}, a

parallelizable triangular system is obtained that can be distributed over three processors.

Since the constraint equations are simpler in this case, the Gröbner bases are generated

much faster than before, as indicated in Table 4.7. Note that the projected dynamic

equations, described in Section 2.1.5, are also more efficient in this case.

We conclude this example with a comparison between the performance of the two

triangular systems described above and that of a typical approach using Newton–Raphson

iteration. The initial configuration of the mechanism is shown in Figure 4.11, which is

assumed to lie in a horizontal plane; the system parameters are given in Appendix A.2.

The approximation
√

3 ≈ 362/209 provided by the convert/rational function is used

to convert the coefficients in the constraint equations into rational numbers. Simulations

are performed using procedures generated with the codegen/optimize routine in Maple,

which are exported to the C programming language; Gaussian elimination with partial

pivoting is used to solve the linear system of equations in the Newton–Raphson approach.

The resulting simulation code is compiled using the default Lcc compiler in Matlab R14

79

Table 4.7: Comparison of triangular systems obtained for planar parallel robot

Metric qi = {θ1, θ4, θ7} q′

i = {xee, yee, θee}

Computational cost of original 112 multiplications 40 multiplications

kinematic constraint equations 47 additions 31 additions

Time to compute all Gröbner
11 minutes, 27 seconds 4.3 seconds

bases on a 3.00-GHz processor

Computational cost of 531 multiplications 293 multiplications

optimized triangular system 522 additions 286 additions

extracted from Gröbner basis 102 temporary variables 52 temporary variables

Computational cost of 1195 multiplications 642 multiplications

optimized dynamic equations 926 additions 268 additions

after applying projection 598 temporary variables 232 temporary variables

(Lcc) as well as the Microsoft Visual C/C++ compiler (MS). In each case, a 3-second

simulation is performed on a single 3.00-GHz processor using 1-millisecond time steps and

a first-order Euler integration scheme; the average simulation times are shown in Tables 4.8

and 4.9. Tabulated data for the independent coordinates from each dynamic simulation is

used to drive the corresponding kinematic simulation through the same trajectory; thus,

the “Kinematic” results shown in Tables 4.8 and 4.9 represent the amount of time required

to process the kinematic portion of each dynamic simulation. The Gröbner basis approach

clearly outperforms the iterative approach in all cases, providing dynamic simulation code

that executes up to 300 times faster than real time. Note that generalized coordinate vector

q′ provides a faster Gröbner basis solution than vector q, as expected. This observation

confirms that the reduced computational cost associated with the q′ solution, as shown

in Table 4.7, leads to a noticeable increase in performance. Also note that the Newton–

Raphson approach is slower when using q′, which is to be expected since a larger linear

system is being solved at each iteration. Finally, while parallel processing has not been

employed here, the parallelism inherent in the Gröbner basis solutions presented above can

be exploited to obtain further increases in performance.

80

Table 4.8: Performance of planar parallel robot simulations with qi = {θ1, θ4, θ7}

Compiler Simulation
Gröbner basis Newton–Raphson Newton–Raphson

· exact · tolerance 10−3 · tolerance 10−6

Lcc
Kinematic 8.75 ms 13.81 ms 25.21 ms

Dynamic 30.67 ms 34.89 ms 46.24 ms

MS
Kinematic 4.58 ms 5.62 ms 10.26 ms

Dynamic 15.00 ms 16.76 ms 21.35 ms

Table 4.9: Performance of planar parallel robot simulations with q′

i = {xee, yee, θee}

Compiler Simulation
Gröbner basis Newton–Raphson Newton–Raphson

· exact · tolerance 10−3 · tolerance 10−6

Lcc
Kinematic 7.48 ms 21.41 ms 40.00 ms

Dynamic 24.05 ms 38.13 ms 56.78 ms

MS
Kinematic 3.25 ms 9.22 ms 16.72 ms

Dynamic 9.70 ms 17.08 ms 23.44 ms

81

4.2.5 Gough–Stewart platform

The final fully triangular system we shall consider is the 6-DOF Gough–Stewart platform

shown in Figure 4.12, where the upper and lower leg segments are connected with prismatic

joints (P), and are connected to the platform and base with spherical (S) and universal

(U) joints, respectively. This spatial parallel robot was originally designed in 1947 for

P P

S S

U U

2 3

4

5 6

1

X

Y

Z

(x, y, z)

ϕ

Figure 4.12: Gough–Stewart platform

testing the wear of vehicle tires [84], and has since become known for its use as a motion

platform in flight and driving simulators [1, 113]. As such, the dynamic performance of

the Gough–Stewart platform has been a popular topic of study [135], as has the direct

kinematics problem [59]—that is, determining the position and orientation of the platform

given the leg lengths. As in the previous example, we use absolute coordinates to describe

the motion of the full-mobility end-effector (platform) and joint coordinates elsewhere,

thereby focusing on the inverse kinematics problem: given the position and orientation

of the platform, determine the corresponding leg lengths [35]. Generalized coordinates

{x, y, z} represent the position of the center of mass of the platform in the global reference

frame, and {φ, θ, ψ} represent the corresponding 3-2-1 Euler angles. The configuration of

universal joint k is specified by its angles of rotation about the global X-axis (αk) and

the rotated Y′-axis (βk), making each local Z′′-axis coincident with its respective leg; the

82

prismatic joint displacements are given by sk. In the dynamic simulations described below,

forces F1 = F3 = F5 = −0.1 sin (2πt/3) [N] and F2 = F4 = F6 = 0.1 sin (2πt/3) [N] are

applied at the prismatic joints (linear actuators) to rotate the platform about its vertical

axis, starting from the configuration shown in Figure 4.12.

Using a purely joint coordinate formulation with qjoint = {α1...6, β1...6, s1...6, ζ, η, ξ},
where {ζ, η, ξ} are the angles associated with one spherical joint, we obtain m = n− f =

15 constraint equations, three for each independent loop. If we instead use qmixed =

{x, y, z, φ, θ, ψ, α1...6, β1...6, s1...6}—that is, absolute coordinates to describe the motion of

the platform and joint coordinates elsewhere, as suggested by Geike and McPhee [44]—we

obtain m = n− f = 18 constraint equations, three for each leg k:

Φk =






x− Bx,k − Lk sin(βk) + fx,k

y −By,k + Lk sin(αk) cos(βk) + fy,k

z − Lk cos(αk) cos(βk) + fz,k





= 0, k = 1, . . . , 6 (4.32)

where Lk is the total length of the kth leg, Bk = (Bx,k, By,k, 0) is the position of the

corresponding universal joint on the base, and fx,k, fy,k, and fz,k are functions of φ, θ, ψ,

and Pk, the position of the kth spherical joint on the platform. Although the use of qmixed

results in more constraint equations and more independent loops than using qjoint, the

constraints are simpler [75] and, therefore, more suitable for generating a Gröbner basis.

Choosing as independent coordinates qi = {x, y, z, φ, θ, ψ}, the three constraint equations

associated with leg k involve three dependent coordinates: αk, βk, and sk. Thus, the

embedding technique is applied to eliminate the Lagrange multipliers from the dynamic

equations and obtain six second-order ODEs for q̈i, which are expressed in first-order

form. These equations can be integrated forward in time to determine the values of the

independent coordinates; given qi, the constraint equations can be used to determine

qd = {α1...6, β1...6, s1...6}.

Since the constraint equations associated with leg k can be solved independently of

the others, each independent loop is triangularized separately. The system parameters are

given in Appendix A.3 and are obtained from the work of Tsai [130], who provides geometric

quantities to three decimal places. As such, the floating-point coefficients in (4.32) can be

converted into rational numbers exactly using the convert/rational function in Maple.

We again use transformations of the form sϑ = sin(ϑ) and cϑ = cos(ϑ) to eliminate the

83

trigonometric functions, and introduce auxiliary equations s2
ϑ + c2

ϑ − 1 = 0 to preserve the

relationship between these variables. Once these substitutions have been performed, we

obtain the following five polynomial equations in five unknowns for the first leg:

x+ 17
100

cφcθ + 119
200

(cφsθsψ − sφcψ) − 2
5
(cφsθcψ − sφsψ) − (2 + s1) sβ1

+ 53
25

= 0 (4.33)

y + 17
100

sφcθ + 119
200

(sφsθsψ + cφcψ) − 2
5
(sφsθcψ − cφsψ) + (2 + s1) sα1

cβ1
− 687

500
= 0 (4.34)

z − 17
100

sθ + 119
200

cθsψ − 2
5
cθcψ − (2 + s1) cα1

cβ1
= 0 (4.35)

s2
α1

+ c2
α1

− 1 = 0 (4.36)

s2
β1

+ c2
β1

− 1 = 0 (4.37)

where the values of independent coordinates qi = {x, y, z, φ, θ, ψ} are known, and the

values of dependent coordinates qd1 = {sα1
, cα1

, sβ1
, cβ1

, s1} are unknown. Systems of the

same form are obtained for the other five legs.

The final preparation before generating a Gröbner basis is determining a suitable term

ordering with respect to which the basis is to be generated. By traversing the topological

graph of the system, we obtain the following term ordering for leg k:

sαk
� cαk

� sβk
� cβk

� sk � sψ � cψ � sθ � cθ � sφ � cφ � z � y � x

where qd � qi, thereby resulting in a triangular system in which the dependent coordinates

can be solved recursively, given values of the independent coordinates. Note that any term

ordering of the form qd � qi can be used, most of which result in systems of comparable

complexity. Each Gröbner basis is generated on one core of a 3.00-GHz Intel Xeon E5472

processor in about 2 hours using the 64-bit version of Maple 14. A recursively solvable

system of the following form is extracted from the kth Gröbner basis:

sk = g1,k(sψ, cψ, sθ, cθ, sφ, cφ, z, y, x) (4.38)

cβk
= g2,k(sk, sψ, cψ, sθ, cθ, sφ, cφ, z, y, x) (4.39)

sβk
= g3,k(cβk

, sk, sψ, cψ, sθ, cθ, sφ, cφ, z, y, x) (4.40)

cαk
= g4,k(sβk

, cβk
, sk, sψ, cψ, sθ, cθ, sφ, cφ, z, y, x) (4.41)

sαk
= g5,k(cαk

, sβk
, cβk

, sk, sψ, cψ, sθ, cθ, sφ, cφ, z, y, x) (4.42)

Note that g1,k and g2,k contain square roots; the analyst must determine whether the

positive or negative branches correspond to the desired configuration. In this case, the

84

two solutions for sk correspond to the configuration shown in Figure 4.12, where the lower

and upper leg segments are directed towards each other, and a non-physical configuration

in which the leg segments are directed away from each other; the two solutions for cβk

correspond to the two possible universal joint solutions that result in the same mechanism

configuration.

Although pre-generating Gröbner bases can be computationally expensive, the result-

ing simulation code outperforms existing iterative and constraint stabilization techniques.

In particular, we compare the computation time required to perform the same dynamic

simulation using five solution approaches. The first three approaches involve integrating

the projected dynamic equations obtained using the embedding technique, described in

Section 2.1.5, and solving the kinematics using the following methods:

1. Recursively solving k triangular systems—one for each leg—extracted from the Gröb-

ner bases described above.

2. Solving for all dependent coordinates in a single Newton–Raphson iterative proce-

dure.

3. Solving for the dependent coordinates associated with each leg in a separate Newton–

Raphson iterative procedure.

The dynamic solution flow for the Gröbner basis approach is shown in Figure 4.13. Note

that the Gröbner basis approach provides exact solutions for the dependent coordinates;

tolerances of 10−3 and 10−6 are used for the iterative approaches. The performance of the

Baumgarte stabilization and penalty formulation techniques, described in Section 2.1.3,

are also evaluated. We use Baumgarte stabilization parameters αB = 1 and βB = 18,

which result in a peak constraint violation of 9.5 × 10−6, the minimum that was found

for {αB, βB ∈ N : 1 ≤ αB, βB ≤ 20}. In the penalty formulation approach, we use one

iteration with ρ = 103 I, ζ = I, and ω = 18 I, which results in a peak constraint violation

of 1.3×10−5. Gaussian elimination with partial pivoting is used to solve the linear systems

of equations in the Newton–Raphson approaches to maintain numerical stability, and in

the two constraint stabilization approaches due to impractically large symbolic solutions.

The expressions for all solution approaches are generated and simplified symbolically in

Maple. Optimized simulation code is then generated using the dsolve/numeric/optimize

85

sk = g1,k(qi)

cβk = g2,k(sk,qi)

sβk = g3,k(cβk , sk,qi)

cαk = g4,k(sβk , cβk , sk,qi)

sαk = g5,k(cαk , sβk , cβk , sk,qi)

q̇d = −Φ
−1

d (Φi q̇i +Φt) q̈i =
(
BT MB

)−1 {
BT F−BT M

(
Ḃ q̇i + Ċ

´ }

{(

∫
dt

qi, q̇i q, q̇i q, q̇

q̇i, q̈i

Velocity transformation Projected dynamic equations

Triangular system extracted from

Gröbner basis for each leg k k

BT BTBT

Figure 4.13: Solution flow for dynamic simulation of Gough–Stewart platform using Gröbner basis approach

Table 4.10: Performance of solution approaches for dynamic simulation of Gough–Stewart platform

Compiler Simulation
Gröbner basis Separate Newton procedures Single Newton procedure Baumgarte Penalty

· exact · tol. 10−3 · tol. 10−6 · tol. 10−3 · tol. 10−6 stabilization formulation

Lcc
Kinematic 6.8 ms/s 11.9 ms/s 21.3 ms/s 91.7 ms/s 181.9 ms/s

79.2 ms/s 164.7 ms/s
Dynamic 19.4 ms/s 24.8 ms/s 34.0 ms/s 104.7 ms/s 193.8 ms/s

MS
Kinematic 2.7 ms/s 5.6 ms/s 9.2 ms/s 37.7 ms/s 73.8 ms/s

43.3 ms/s 85.7 ms/s
Dynamic 10.3 ms/s 13.3 ms/s 16.6 ms/s 45.3 ms/s 80.6 ms/s

86

routine (which generally outperforms codegen/optimize) and exported to the C program-

ming language. The resulting simulation code is compiled using the default Lcc compiler

in Matlab R14 (Lcc) as well as the Microsoft Visual C/C++ compiler (MS). In each case,

a 3-second dynamic simulation is performed on a single 3.00-GHz Intel Pentium 4 pro-

cessor using 1-millisecond time steps and a first-order explicit Euler integration scheme.

Low-order, fixed-step-size, non-stiff solvers, such as the explicit Euler integrator, are often

used in real-time and hardware-in-the-loop applications [3]. The average computation time

required for each simulated second is shown in Table 4.10. Where applicable, the amount

of time required to process the kinematic portion of each dynamic simulation is also re-

ported. The Gröbner basis approach clearly outperforms the other techniques, providing

dynamic simulation code that satisfies the constraints exactly and executes nearly 100

times faster than real time—over 20% faster than the most efficient iterative approach.

Note that a substantial improvement can be obtained using Newton–Raphson iteration

simply by calculating the dependent coordinates for each leg separately. Also note that

the penalty formulation is significantly slower than Baumgarte stabilization, as the former

involves solving a linear system of size n = 24 at each time step, while the size of the linear

system being solved in the latter case is m = 18. Finally, while parallel processing has not

been employed here, the calculation of qd could be distributed over six processors in the

Gröbner basis approach, if so desired.

4.3 Chapter summary

The focus of this chapter was the analysis of mechanisms whose kinematic equations can be

fully triangularized. As has been shown, the recursively solvable nature of fully triangular

solutions results in highly efficient simulation code, and outperforms many existing solution

techniques. Although it also produces triangular systems, the characteristic pair of joints

approach demands the use of joint coordinates. The Gröbner basis approach, on the

other hand, can accommodate the use of any desired generalized coordinates, which was

shown to be particularly useful in the analysis of the planar parallel robot and Gough–

Stewart platform. Furthermore, since a Gröbner basis can be generated relative to any

desired elimination order, it is capable of identifying more efficient triangular systems than

87

the characteristic pair of joints technique. Although additional computational effort is

required at the formulation stage, the triangular systems extracted from Gröbner bases

provide exact results in a fixed amount of time, which may be preferred over the simpler,

but generally slower, Newton–Raphson and constraint stabilization approaches.

The examples presented in this chapter demonstrate the applicability of the Gröbner

basis approach to the real-time simulation of real-world multibody systems, including ma-

chines, deployable structures, and parallel robots. In particular, the following closed-

kinematic-chain mechanisms were examined:� Single-loop: planar slider-crank and spatial four-bar mechanisms.� Cascading-loop: hydraulic excavator and synthetic aperture radar satellite antenna.� Six-bar: Stephenson-III and aircraft landing gear mechanisms.� Parallel: planar parallel robot and Gough–Stewart platform.

As shown in the last two examples, choosing as independent coordinates the position and

orientation of a full-mobility end-effector leads to a fully triangular solution. Such a se-

lection of independent coordinates requires the solution of the inverse kinematics problem

rather than the direct kinematics problem which, for constrained mechanisms, is the more

challenging of the two. As will be shown in the next chapter, the situation becomes some-

what more complicated—though not hopeless—when the end-effector has limited mobility.

88

Chapter 5

Block-triangular Systems

In the previous chapter, we studied several mechanisms whose kinematic equations can

be fully triangularized, and obtained highly efficient simulation code that outperforms

many existing solution techniques. Choosing as independent coordinates the position and

orientation of a full-mobility end-effector was found to be an effective strategy for parallel

robots. In this chapter, two popular vehicle suspension systems are studied: the five-link

and the double-wishbone. Although the wheel carrier has limited mobility in both cases—

one degree-of-freedom once the steering input has been specified—we use a strategy similar

to that employed in the analysis of the Gough–Stewart platform. As will be demonstrated,

the resulting block-triangular solutions are still more efficient than using existing solution

techniques. The efficient kinematic solution developed in Section 5.2 is used for the real-

time simulation of a vehicle with double-wishbone suspensions on both axles, which is

discussed in Chapter 6.

5.1 Five-link suspension

We first consider the 1-DOF five-link suspension system, a schematic of which is shown

in Figure 5.1. The relatively large number of design parameters enables the five-link

suspension to meet complex kinematic and dynamic performance requirements [118]. Each

of the five rigid links is connected to the ground (chassis) with a universal joint, and to

the end-effector (wheel carrier) with a spherical joint. The configuration of universal joint

k is specified by its angles of rotation about the global X-axis (αk) and the rotated Y′-

89

U

U

S

S

S

U

S

S

U

U

Y

Z

X

Figure 5.1: Five-link suspension

axis (βk); each local X′′-axis is coincident with its respective link. Generalized coordinates

{x, y, z} represent the position of the center of mass of the wheel carrier in the global

reference frame, and {φ, θ, ψ} represent the corresponding 3-2-1 Euler angles. This system

is topologically similar to the Gough–Stewart platform presented in Section 4.2.5, which

motivates the strategy for solving its kinematics. If placed on the front axle of a vehicle,

a steering rack could be included in the model to allow the wheel to steer. Since the rack

displacement would be an input to such a model, neither the degrees-of-freedom nor the

kinematic solution strategy presented below would change. All geometric parameters are

given in Appendix A.4 and describe a suspension used on the rear axle of Mercedes–Benz

vehicles in the 1980s. The longitudinal displacement (x), lateral displacement (y), and toe

(δ), camber (γ), and caster (τ) angles of the wheel carrier are shown as functions of its

vertical displacement (z) in Figure 5.2. These results were obtained simply by iterating

over the constraint equations described below, and agree with the results reported by

Knapczyk [70]. Since we are primarily interested in the kinematics of this mechanism, the

spring-damper and tire components are not included in the model. Dynamic parameters

are obtained by assuming the links are cylindrical with radii 0.015 [m], the wheel carrier is

cylindrical with radius 0.15 [m] and thickness 0.02 [m], and all components are of density

8.0 × 103
[
kg/m3].

Many existing strategies for simulating multi-link suspensions employ techniques that

modify the system model. Elmqvist et al. [28] discuss four common approaches:

90

−10 0 10 20
−100

−80

−60

−40

−20

0

20

40

60

80

100

z
[m

m
]

x [mm]
−20 −10 0

y [mm]
−0.5 0 0.5

δ [deg]
−2 0 2 4

γ [deg]
−5 0 5

τ [deg]

Figure 5.2: Kinematic response of five-link suspension

1. Replace the suspension with a single vertically-oriented prismatic joint, and use poly-

nomials to describe the camber and toe angles as functions of wheel vertical displace-

ment.

2. Replace the multi-link suspension with a suspension of similar performance for which

a kinematic solution can be more easily obtained.

3. Neglect the mass and inertia of small suspension components.

4. Replace all ideal joints with flexible bushings.

While an ideal-joint, rigid-link model is only an approximation of the actual physical

system, the first three of these approaches deviate even further from reality. The fourth

approach can provide more realistic simulations of passenger vehicles, whose suspensions

generally contain bushings, but involves solving a system of stiff ODEs and, therefore,

demands the use of an implicit integrator. Since low-order, fixed-step-size, non-stiff ODE

solvers are typically used in real-time applications [3], the use of bushings can present

difficulties in such contexts. A general complication with these techniques is the need

to maintain two separate models: a detailed model with stiff terms and constraints for

accurate off-line simulations, and a simplified real-time-capable model. When a closed-

kinematic-chain model is used, kinematic analyses are generally performed using iterative

91

techniques, such as those based on interval analysis [94], trust region methods [69], or

Newton–Raphson iteration.

Following the Gough–Stewart platform example, we use absolute coordinates to de-

scribe the motion of the wheel carrier and joint coordinates elsewhere—that is, q =

{x, y, z, φ, θ, ψ, α1...5, β1...5}. In this case, m = n − f = 15 constraint equations are ob-

tained, three for each link k:





x+ Lkcβk
− Cx,k

y + Lksαk
sβk

− Cy,k

z − Lkcαk
sβk

− Cz,k





+




cφcθ cφsθsψ − sφcψ cφsθcψ + sφsψ

sφcθ sφsθsψ + cφcψ sφsθcψ − cφsψ

−sθ cθsψ cθcψ








Wx,k

Wy,k

Wz,k





= 0 (5.1)

where Lk is the length of the kth link, Ck = (Cx,k, Cy,k, Cz,k) is the position of the corre-

sponding universal joint on the chassis, and Wk is the position of the kth spherical joint on

the wheel carrier. Note the similarity between (5.1) and the position constraints obtained

for the Gough–Stewart platform (4.32). A fundamental difference between these models,

however, is the number of degrees-of-freedom they possess or, equivalently, the number of

independent generalized coordinates we may choose. Since the end-effector of the Gough–

Stewart platform has full mobility, we were able to select six independent coordinates,

thereby obtaining a system of three constraint equations involving three dependent co-

ordinates for each kinematic loop. For the 1-DOF five-link suspension system, we select

qi = {z} since each value of z corresponds to a unique value of x, y, φ, θ, and ψ. The em-

bedding technique is applied to obtain one second-order ODE for z̈, which is expressed in

first-order form. We integrate forward in time to determine z at each time step, then solve

a system of five equations to determine qd1 = {x, y, φ, θ, ψ}. Finally, qd2 = {α1...5, β1...5}
is computed recursively using the equations extracted from the Gröbner bases described

below. The five equations used for calculating qd1 are obtained by isolating the terms

involving αk and βk on the left-hand side of (5.1) and squaring; the sum of these equations

is a constant-distance constraint [66] of the following form:

L2
k = fk(x, y, z, φ, θ, ψ), k = 1, . . . , 5 (5.2)

Since the complexity of the constant-distance constraints (5.2) precludes the generation of

a Gröbner basis, Newton–Raphson iteration is used to calculate qd1 given qi. Nevertheless,

the triangularization of qd2 results in a significant improvement in simulation time.

92

We triangularize the three constraint equations associated with each loop separately.

The convert/rational function in Maple is used to convert the floating-point coefficients

in (5.1) into rational numbers. In this case, an exact conversion of coefficients Lk would

result in rational numbers with many digits, which is impractical for Gröbner basis gener-

ation. Thus, the minimum number of digits is used in each rational approximation such

that the error associated with the conversion is less than 10−6. Since all coefficients are

geometric parameters, this approach represents a measurement error of less than 1 [µm].

The trigonometric functions are eliminated using the same transformations as before. Note

that auxiliary equations s2
ϑ + c2

ϑ − 1 = 0 need not be introduced for the known quantities

φ, θ, and ψ. We use the following pure lexicographic term ordering for loop k:

sαk
� cαk

� sβk
� cβk

� z � y � x � sψ � cψ � sθ � cθ � sφ � cφ (5.3)

We again note that any term ordering of the form qd � qi can be used. Each Gröbner basis

is generated on one core of a 3.00-GHz Intel Xeon E5472 processor in about 45 minutes

using the 64-bit version of Maple 14. A recursively solvable system of the following form

is extracted from the kth Gröbner basis:

cβk
= g1,k(z, y, x, sψ, cψ, sθ, cθ, sφ, cφ) (5.4)

sβk
= g2,k(cβk

, z, y, x, sψ, cψ, sθ, cθ, sφ, cφ) (5.5)

cαk
= g3,k(sβk

, cβk
, z, y, x, sψ, cψ, sθ, cθ, sφ, cφ) (5.6)

sαk
= g4,k(cαk

, sβk
, cβk

, z, y, x, sψ, cψ, sθ, cθ, sφ, cφ) (5.7)

In this case, g2,k contains a square root, which corresponds to the two possible universal

joint solutions that result in the same mechanism configuration. As shown in Table 5.1 for

k = 1, the coefficients in the Gröbner basis polynomials are of a reasonable length, despite

enforcing a rational approximation error of less than 10−6.

We compare the computational efficiency of six solution approaches: one involving the

use of Gröbner bases, three purely iterative approaches, and two constraint stabilization

techniques. The initial configuration of the mechanism is shown in Figure 5.1, where

z = 0. Kinematic simulations are performed by driving the vertical displacement of the

wheel carrier through the sinusoidal trajectory shown in Figure 5.3(a); forward dynamic

simulations are driven by applying to the wheel carrier the following C0-continuous, time-

93

Table 5.1: Triangular system obtained for first link of five-link suspension

Polynomial Degree Number of terms Longest coefficient

g1,1(cβ1
,qi,qd1) 1 in cβ1

8 15 digits

g2,1(sβ1
, cβ1

,qi,qd1) 2 in sβ1
28 29 digits

g3,1(cα1
, sβ1

, cβ1
,qi,qd1) 1 in cα1

6 15 digits

g4,1(sα1
, cα1

, sβ1
, cβ1

,qi,qd1) 1 in sα1
8 15 digits

varying vertical force (in Newtons):

Fz(t) = 183.6 +





1.84 sin(πt), if t < 1

−2.38 sin(π(t− 1)/3), if 1 ≤ t < 4

4.62 sin(πt/2), if 4 ≤ t < 5

−4.62 cos(πt), if 5 ≤ t < 5.5

6.50 sin(2πt), if t ≥ 5.5

(5.8)

which results in a similar trajectory, as shown in Figure 5.3(b). The first four solution

approaches involve integrating the projected dynamic equations obtained using the embed-

ding technique, described in Section 2.1.5, and solving the kinematics using the following

methods:

1. Solving for all dependent coordinates in a single Newton-Raphson iterative procedure.

2. Solving for qd1 iteratively using (5.2), then solving for qd2 using one of three methods:

(a) Recursively solving triangular systems extracted from the Gröbner bases de-

scribed above;

(b) Solving for the dependent coordinates associated with each loop in a separate

iterative procedure; or

(c) Solving for all remaining dependent coordinates in a single iterative procedure.

The dynamic solution flow for the Gröbner basis approach is shown in Figure 5.4. The

performance of the Baumgarte stabilization and penalty formulation approaches are also

evaluated. Baumgarte stabilization parameters αB = 7 and βB = 17 are used, which

94

0 0.5 1 1.5 2
−100

−50

0

50

100

z
[m

m
]

Time [s]
0 2 4 6

−100

−50

0

50

100

z
[m

m
]

Time [s]

(a) Kinematic simulation (b) Dynamic simulation

Figure 5.3: Vertical displacement of wheel carrier in five-link simulations

result in a peak constraint violation of 3.1 × 10−6, the minimum that was found for

{αB, βB ∈ N : 1 ≤ αB, βB ≤ 20}. In the penalty formulation approach, we use one iter-

ation with ρ = 103 I, ζ = 7 I, and ω = 17 I, which results in a peak constraint violation of

8.0 × 10−5. Tolerances of 10−6 are used for the iterative approaches, thereby providing a

similar level of precision as the constraint stabilization techniques. Gaussian elimination

with partial pivoting is used to solve the linear systems of equations in all iterative proce-

dures to maintain numerical stability, and in the constraint stabilization approaches due

to impractically large symbolic solutions.

The expressions for all solution approaches are generated and simplified symbolically

in Maple, and optimized simulation code is obtained using the dsolve/numeric/optimize

routine. Since the Microsoft Visual C/C++ compiler consistently outperforms the default

Lcc compiler in Matlab R14, the simulation code is only compiled with the former.

All simulations are performed on a single 3.00-GHz Intel Pentium 4 processor using 1-

millisecond time steps. The dynamic simulations use a first-order explicit Euler integration

scheme, which is often used in real-time and hardware-in-the-loop applications [3]. The

average computation time required for each simulated second is shown in Table 5.2 for

both kinematic and dynamic simulations. The kinematic simulation times provide an

approximate measure of the amount of time required to process the kinematic portion of

each dynamic simulation. Once again, we find that the Gröbner basis approach outperforms

the other techniques, providing dynamic simulation code that executes about 65 times

faster than real time, and over 15% faster than the most efficient iterative approach. Note

that a substantial improvement can be obtained using Newton–Raphson iteration simply

by calculating the dependent coordinates for each independent loop separately. In this

95

q̇d = −Φ
−1

d (Φi q̇i +Φt)

q̈i =
(
BT MB

)−1 {
BT F−BT M

(
Ḃ q̇i + Ċ

´ }

{(

∫
dt

qi, q̇i

q, q̇q̇i, q̈i

Velocity transformation

Projected dynamic equations

qi,qd1, q̇i

cβk = g1,k(qi,qd1)

sβk = g2,k(cβk ,qi,qd1)

cαk = g3,k(sβk , cβk ,qi,qd1)

sαk = g4,k(cαk , sβk , cβk ,qi,qd1)

Triangular system extracted from

Gröbner basis for each link k k

L2k = fk(x, y, z, φ, θ, ψ)

Newton–Raphson iteration

using symbolic Jacobian

generated with Maple

q, q̇i

BTBTBT

Figure 5.4: Solution flow for dynamic simulation of five-link suspension using Gröbner basis approach

Table 5.2: Performance of solution approaches for kinematic and dynamic simulations of five-link suspension

Compiler Simulation Gröbner basis
Separate iterations Single iteration Single iteration Baumgarte Penalty

for each loop in qd2 for solving qd2 for solving qd stabilization formulation

MS
Kinematic 5.5 ms/s 9.9 ms/s 28.1 ms/s 47.8 ms/s

28.5 ms/s 29.9 ms/s
Dynamic 15.5 ms/s 18.3 ms/s 32.6 ms/s 55.7 ms/s

96

case, the penalty formulation is only marginally slower than Baumgarte stabilization, since

the former involves solving a linear system of size n = 16 at each time step, while the size

of the linear system in the latter case is m = 15. We again note that, while parallel

processing has not been employed here, the calculation of qd2 could be distributed over

five processors.

5.2 Double-wishbone suspension

The final system we consider is the double-wishbone suspension, a schematic of which is

shown in Figure 5.5(a); the corresponding topological graph is shown in Figure 5.5(b).

The ability to adjust many aspects of its kinematics makes the double-wishbone suspen-

sion popular on high-performance vehicles [97]; its load-handling capabilities also make it

suitable for use on the front axle of medium- and heavy-duty vehicles [21]. The upper

and lower control arms are connected to the wheel carrier with spherical joints (S), and

to the chassis with revolute joints (R). One end of the tie rod is connected to the wheel

carrier with a spherical joint; a universal joint (U) at the other end connects it to either

the rack (on the front axle) or the chassis (on the rear axle). All geometric suspension

parameters are provided in Appendix A.5. The system is modelled using joint coordinates

q =
{
wθ, ζ, η, ξ, uθ, `θ, α, β, s

}
, as labelled in Figure 5.5(b). The configuration of the uni-

versal joint is specified by its angles of rotation about the global Z-axis (α) and the rotated

Y

Z

X

P

 S

U

S

S

(a) Schematic

Wheel

carrier
Tie rod Rack Chassis

s

P S

wθ

R

Wheel

and

Tire

U

α, β

Upper control arm

ζ, ´ , ξ
u

η

S R

uθ

Lower control arm

�θ

R S

(b) Topological graph

Figure 5.5: Double-wishbone suspension (front-left corner)

97

X′-axis (β); {ζ, η, ξ} represent the 3-2-1 Euler angles associated with the spherical joint

between the upper control arm and the wheel carrier. Neglecting the motion of the chassis,

this system has three degrees-of-freedom: the rotation of the wheel (wθ), the displacement

of the rack (s), and the vertical displacement of the wheel carrier (z). Note that rack

displacement s is an input to the model, which reduces the number of degrees-of-freedom

to two.

As in the previous example, the simulation of double-wishbone suspensions has been

approached in a number of ways, all of which have been discussed in Section 2.1. Perhaps

the simplest method is to satisfy the constraint equations using Newton–Raphson itera-

tion [55], which is not generally suitable for real-time applications. Constraint stabilization

techniques [101] and compliant joint models [21] have also been used, and require the tuning

of system-specific parameters. Another familiar approach involves replacing the double-

wishbone with a suspension of similar performance that has an open-loop topology [62],

but this strategy provides only an approximation of the true suspension kinematics; the use

of massless links [119] amounts to approximating the dynamic performance. The approach

adopted herein is, again, to triangularize the kinematic constraint equations; however, the

use of Gröbner bases in this case is beyond the capabilities of the computational resources

available for this research. As shown in Table 5.3, the constraint equations for the double-

wishbone suspension are significantly more complex than those obtained for the five-link

which, themselves, required nearly 4 hours of computation time. Furthermore, unlike the

Table 5.3: Complexity of constraint equations for five-link and double-wishbone

Suspension Loop
Maximum Number of Maximum

degree indeterminates number of terms

Five-link L1...5 3 13 8

Double-wishbone L1 4 10 26

(joint coordinates) L2 4 13 29

Double-wishbone L1 4 20 22

(absolute on carrier, L2 4 20 22

joint elsewhere) L3 5 23 35

98

previous example, the double-wishbone suspension is fixed to a moving chassis rather than

the ground; thus, describing the motion of the wheel carrier using absolute coordinates in-

troduces the coordinates of the chassis as well. We, therefore, triangularize the constraints

manually using Maple, as described below. Although labour-intensive, this approach re-

sults in an entirely parametric solution since, unlike a Gröbner basis solution, there is no

requirement to use purely numeric coefficients.

We proceed with a purely joint coordinate formulation to minimize the number of mod-

elling coordinates. The Multibody library in MapleSim is used to generate the following

six constraint equations, three for each independent kinematic loop:

φ1,2,3

(
ζ, η, ξ, uθ, `θ

)
= 0 φ4,5,6

(
ζ, η, ξ, uθ, α, β, s

)
= 0 (5.9)

Drawing from the results of the preceding examples, we employ the following strategy:

1. Assign one of {ζ, η, ξ} to the independent coordinate vector qi.

2. Compute the two remaining spherical joint angles iteratively using two of the six

constraint equations (5.9).

3. Compute the four remaining generalized coordinates
{
uθ, `θ, α, β

}
recursively by tri-

angularizing the remaining constraint equations.

We choose as independent coordinates qi = {wθ, ξ}—the former, out of necessity; the latter,

for its one-to-one correspondence with the vertical displacement of the wheel carrier (z), as

shown in Figure 5.6. Note that η cannot be used to uniquely determine the configuration

of the wheel carrier; the use of ζ may present difficulties around z = −100 [mm], since a

small error in the value of ζ could result in a large error in the vertical displacement of the

wheel carrier.

The first objective is to derive a triangular system to solve for qd1 =
{
uθ, `θ, α, β

}

recursively, given values of {ξ, ζ, η}. We begin by expressing φ1 in the following form:

A1 sin
(
`θ

)
+B1 cos

(
`θ

)
= C1 (5.10)

where coefficients A1, B1, and C1 are functions of {ξ, ζ, η, uθ}. The following solutions can

99

−5 0 5
−100

−80

−60

−40

−20

0

20

40

60

80

100

z
[m

m
]

ζ [deg]
−2 0 2 4 6

η [deg]
−20 0 20

ξ [deg]

Figure 5.6: Kinematic response of double-wishbone suspension

then be obtained for sin
(
`θ

)
and cos

(
`θ

)
:

sin
(
`θ

)
=
A1C1 ± B1

√
A2

1 + B2
1 − C2

1

A2
1 +B2

1

(5.11)

cos
(
`θ

)
=
B1C1 ∓ A1

√
A2

1 + B2
1 − C2

1

A2
1 +B2

1

(5.12)

Note that these solutions are functions of {ξ, ζ, η, uθ}, only the first three of which are

assumed to be known at this stage of the solution. We obtain an expression for uθ as a

function of {ξ, ζ, η} by substituting (5.11) and (5.12) into φ2 which, once simplified, can

be expressed in the following form:

A2 sin
(
uθ

)
+B2 cos

(
uθ

)
+D2 sin

(
uθ

)
cos

(
uθ

)
+ E2 cos2

(
uθ

)
= C2 (5.13)

where all coefficients are functions of {ξ, ζ, η}. Note that the second-order trigonometric

terms appear upon eliminating the square roots introduced by (5.11) and (5.12). Although

(5.13) can be solved for sin
(
uθ

)
and cos

(
uθ

)
, the solution is quartic and would require

iteration to evaluate numerically. Instead, we note that the coefficients in D2 and E2

are significantly smaller than those appearing elsewhere, so expect these terms to have

negligible effect on the numerical solution. Thus, we use the approximations D2 ≈ 0

and E2 ≈ 0 to obtain an equation analogous to (5.10), which results in solutions for uθ

of the form shown in (5.11) and (5.12). Evaluating numerically over the full range of

100

motion of the wheel carrier, we find that this approximation introduces an error of less

than 5.7 × 10−4 [rad] (0.1%) in the solution for uθ, which is deemed to be an acceptable

compromise given our real-time intentions.

A similar strategy can be employed to triangularize φ4 and φ5. In particular, φ4 can be

expressed as follows:

A4 sin(β) +B4 cos(β) = C4 (5.14)

where coefficients A4, B4, and C4 are functions of {ξ, ζ, η, uθ, α}. Solutions for sin(β) and

cos(β) can then be obtained as before. Upon substitution of these solutions into φ5, we

obtain an equation of the following form:

A5 sin(α) +B5 cos(α) +D5 sin(α) cos(α) + E5 cos2(α) = C5 (5.15)

where all coefficients are functions of {ξ, ζ, η, uθ}. In this case, the coefficients appearing

in D5 and E5 are not of negligible magnitude, so cannot be eliminated outright; however,

we note that α remains small over the full range of motion of the wheel carrier. Thus, we

apply the approximation cos(α) ≈ 1 to the third and fourth terms of (5.15) to arrive at

the following form:

(A5 +D5) sin(α) + (B5 + E5) cos(α) = C5 (5.16)

whereupon solutions of the form shown in (5.11) and (5.12) are obtained. As will be verified

below, the error introduced by this approximation—less than 4.5×10−4 [rad] (1.5%) in the

solution for α—does not significantly degrade the quality of the results. In summary, we

have generated the following triangular system to solve for qd1 =
{
uθ, `θ, α, β

}
recursively,

given values of {ξ, ζ, η}:

uθ = f1

(
ξ, ζ, η

)
(5.17)

`θ = f2

(
ξ, ζ, η, uθ

)
(5.18)

α = f3

(
ξ, ζ, η, uθ

)
(5.19)

β = f4

(
ξ, ζ, η, uθ, α

)
(5.20)

The only remaining task at the position level is to construct two equations to solve

for qd2 = {ζ, η} given qi = {ξ}. Unfortunately, the double-wishbone constraint equa-

tions (5.9) do not yield a form analogous to that found for the five-link suspension (5.2).

101

Although substituting the above symbolic solutions into φ3 and φ6 would result in two

equations in two unknowns, these expressions would be of considerable size and, therefore,

time-consuming to evaluate numerically. As such, we adopt the kinematic solution flow

shown in Figure 5.7, where the triangular system is evaluated each iteration. We obtain

equation g1 by solving φ1 for sin
(
`θ

)
and φ2 for cos

(
`θ

)
, and substituting these expressions

into φ3. Similarly, g2 is obtained by solving φ4 for sin(α) and φ5 for cos(α), and substi-

tuting the resulting expressions into φ6. In so doing, we avoid the computation of d`θ/ dζ ,

d`θ/ dη, dα/ dζ , and dα/ dη. We have, thus, reduced the kinematic processing from solving

six equations in six unknowns simultaneously, to solving two equations in two unknowns

simultaneously, preceded by the recursive solution of four equations each iteration.

d2

qi,q
(k)
d1 ,q

(k−1)
d2qi,q

(k−1)
d2 qi,q

(k)
d2

uθ = f1 (ξ, ζ, ´)η
�θ = f2 (ξ, ζ, ´ ,

uθ)

α = f3 (ξ, ζ, ´ ,
uθ)

β = f4 (ξ, ζ, ´ ,
uθ, α)

η

η

η

g1 (ξ, ζ, ´ ,
uθ) = 0

g2 (ξ, ζ, ´ ,
uθ, β) = 0

η

η

Newton step using

symbolic Jacobian

generated with Maple
Triangular system

Figure 5.7: Kinematic solution flow for double-wishbone suspension (kth iteration)

To conclude this example, kinematic simulations are performed by fixing the chassis

to the ground and applying motion drivers to the independent coordinate ξ and rack

displacement s, as shown in Figure 5.8. The input applied to spherical joint angle ξ drives

the wheel carrier through its full range of vertical motion, as shown in Figure 5.9; the input

applied to the rack corresponds to a steering wheel angle range of about ±270◦, which is

sufficient for maneuvers that evaluate the dynamic performance of this vehicle [61]. We

compare the computational efficiency of three solution approaches:

1. Computing qd1 and qd2 using the block-triangular solution shown in Figure 5.7.

2. Computing qd using Newton’s method, iterating over the original constraint equa-

tions (5.9) and using Gaussian elimination with partial pivoting to invert the 6 × 6

Jacobian matrix numerically.

3. Computing qd using Newton’s method, iterating over the original constraint equa-

tions (5.9) and using a symbolic Jacobian inverse.

102

0 1 2 3 4
−40

−20

0

20

40

ξ
[d

eg
]

Time [s]
0 1 2 3 4

−40

−20

0

20

40

s
[m

m
]

Time [s]

(a) Independent coordinate (b) Rack displacement

Figure 5.8: Motion drivers for kinematic simulation of double-wishbone suspension

0 1 2 3 4
−100

−50

0

50

100

z
[m

m
]

Time [s]

Figure 5.9: Vertical displacement of wheel carrier in double-wishbone simulations

103

Iteration tolerances of 10−3 are used throughout. The expressions for all solution ap-

proaches are generated and simplified symbolically in Maple, and optimized simulation

code is obtained using the dsolve/numeric/optimize routine. The resulting simulation

code is compiled using the default Lcc compiler in Matlab R14 (Lcc) as well as the

Microsoft Visual C/C++ compiler (MS). In each case, a 4-second kinematic simulation is

performed on a single 3.00-GHz Intel Pentium 4 processor using 1-millisecond time steps;

the average computation time required for each simulated second is shown in Table 5.4.

We again observe a computational advantage associated with triangularizing the kinematic

constraints, and anticipate a 13% reduction in computation time when using the block-

triangular solution in place of the fastest Newton–Raphson iterative approach. As will be

shown in Section 6.2, this reduction in computation time can be significant in real-time

applications. Approximating the equations used in the fully iterative approaches is also

considered. In particular, we apply the approximations sin(α) ≈ α and cos(α) ≈ 1 to the

original constraint equations (5.9), and eliminate the smallest terms from each equation

until the error is comparable to that of the block-triangular solution. As shown in Table 5.5,

the block-triangular approach remains computationally advantageous. Finally, we verify

that the approximations used to obtain the block-triangular solution do not significantly

degrade the quality of the results, as illustrated in Figure 5.10.

Table 5.4: Performance of double-wishbone suspension simulations

Compiler
Block-triangular Iterating over original constraint equations (5.9)

solution using symbolic inverse using numeric inverse

Lcc 16.6 ms/s 19.1 ms/s 23.7 ms/s

MS 13.8 ms/s 15.8 ms/s 17.3 ms/s

Table 5.5: Performance of approximated double-wishbone suspension simulations

Compiler
Iterating over approximate constraint equations

using symbolic inverse using numeric inverse

Lcc 18.4 ms/s 23.1 ms/s

MS 15.4 ms/s 17.2 ms/s

104

Original constraint equations
Block−triangular system

0 1 2 3 4
−20

−10

0

10

20

ζ
[d

eg
]

Time [s]
0 1 2 3 4

−6

−4

−2

0

2

4

6

η
[d

eg
]

Time [s]

(a) Spherical joint angles

0 1 2 3 4
−40

−20

0

20

40

u
θ

[d
eg

]

Time [s]
0 1 2 3 4

−30

−20

−10

0

10

20

30
`
θ

[d
eg

]

Time [s]

(b) Revolute joint angles

0 1 2 3 4
−2

−1

0

1

2

α
[d

eg
]

Time [s]
0 1 2 3 4

−30

−20

−10

0

10

20

30

β
[d

eg
]

Time [s]

(c) Universal joint angles

Figure 5.10: Results from kinematic simulation of double-wishbone suspension

105

5.3 Chapter summary

In this chapter, the kinematics of the five-link and double-wishbone suspensions were stud-

ied, both of which have only one degree-of-freedom once the steering input has been spec-

ified. Consequently, only one independent coordinate can be selected in each case, which

is insufficient for obtaining fully triangular solutions. Nevertheless, block-triangular solu-

tions are obtained, where subsets of the dependent generalized coordinates are calculated

recursively and the remaining coordinates are calculated iteratively. The solution flow

used for the five-link suspension was inspired by the analysis of the topologically similar

Gough–Stewart platform, which was the topic of Section 4.2.5. Whereas a purely joint

coordinate formulation leads to only four independent kinematic loops, describing the mo-

tion of the wheel carrier using absolute coordinates increases the number of loops to five.

The resulting constraint equations are suitable for generating Gröbner bases and, further,

can be readily reduced to a form suitable for the iterative component of the solution flow.

Although the complexity of the double-wishbone constraint equations prevented the use

of Gröbner bases, a triangular solution was derived manually using approximations that

do not introduce a significant amount of error in the computed results. Furthermore,

since the resulting equations are both efficient and entirely parametric, they are suitable

for use in real-time and on-line suspension tuning applications. Kinematic and dynamic

simulation results indicate that the block-triangular solutions generated herein are more

computationally efficient than existing Newton–Raphson and constraint stabilization tech-

niques. The analysis of the double-wishbone suspension is resumed in Section 6.2, where

its implementation in a hardware- and operator-in-the-loop driving simulator is discussed.

106

Chapter 6

Driving Simulator

The focus of this chapter is the hardware- and operator-in-the-loop driving simulator that

has been developed by the author as a test platform for automotive research, and as a means

of confirming the real-time capability of the simulation code generated in Chapter 5. In

hardware- and operator-in-the-loop applications, hardware components and human users

interact with a simulated system as they would with the analogous physical system. Con-

sequently, the software components in such a system must be simulated faster than real

time, which generally involves the synchronized operation of several pieces of specialized

hardware. The equipment that has been used in the driving simulator is described in

Section 6.1. In Section 6.2, we discuss the real-time simulation of a vehicle with double-

wishbone suspensions on both axles, exploiting the efficiency of the kinematic solution

developed in the previous chapter.

6.1 System description

As the complexity of automotive systems continues to increase, so too does the need for the

testing of these systems early in the design stage—often before physical prototypes have

been manufactured. The many benefits of hardware-in-the-loop simulation include its abil-

ity to replace preliminary field tests with safer, faster, and more rigorous automated tests,

and its ability to replicate extreme or unusual conditions at will, enabling the repeated sim-

ulation of cold-start engine tests in the summer, for example [73]. Hardware-in-the-loop

testing has become an essential phase of the controller design process, and is used in the

107

PXI

ECU

Figure 6.1: Hardware- and operator-in-the-loop driving simulator

development and validation of low-level engine controllers [137] as well as high-level vehicle

stability controllers [61]. The simulator that has been developed in this work is shown in

Figure 6.1. The vehicle model and several of its controllers are simulated on a Periph-

eral Component Interconnect (PCI) Extensions for Instrumentation (PXI) system from

National Instruments. The PXI system contains a 2.26-GHz Intel Q9100 quad-core pro-

cessor, and uses the Laboratory Virtual Instrument Engineering Workbench (LabVIEW)

Real-Time operating system to maintain precise simulation timing. LabVIEW is a graphi-

cal programming language that expedites the development of multi-threaded applications,

and facilitates communication with external devices. A supervisory, or host, computer

running a Windows-based version of LabVIEW communicates with the PXI system over

Ethernet throughout the simulation. In addition to rendering three-dimensional graphical

feedback and updating plots in real time, the host processes universal serial bus interrupts

generated by the steering wheel and pedals, and relays the relevant information to the PXI

system for use as inputs to the vehicle model. An electronic control unit (ECU) from Mo-

toTron is used as a platform for prototyping dynamic controllers, and communicates with

108

the PXI system over a Controller Area Network (CAN) bus, which is a standard message-

based protocol used in vehicular networks [24]. The ECU contains an 80-MHz Motorola

MPC5554 microprocessor, and has capabilities similar to the hardware that would be used

for dynamic controllers in production vehicles. Programs for the ECU are developed on the

host using the MotoHawk blockset in Simulink, compiled using the Green Hills MULTI

compiler, and deployed to the ECU over the CAN bus. Since the Green Hills compiler

only supports the most basic Simulink blocks, system-function (S-function) blocks must

be either implemented in a Target Language Compiler (TLC) file, or translated into C++

code that is called by a TLC S-function wrapper [126].

The simultaneous use of hardware- and operator-in-the-loop functionalities enables the

testing of controller prototypes in realistic computational and operational circumstances.

The system shown in Figure 6.1 has been useful in validating the performance of traction

control, electronic stability control (ESC), active front steering (AFS) [61], and advanced

torque vectoring (ATV) [60] strategies. An ESC system automatically applies braking

torques to individual wheels in critical driving situations, which can help maintain the

stability and maneuverability of a vehicle [102]. ESC systems will be mandatory on all new

passenger vehicles and light trucks operated in Canada [127] and the United States [90] by

September, 2011. AFS and ATV controllers provide similar assistance by actively steering

the front wheels or redistributing the driving torque, but have less effect on the vehicle

speed [53]. Since the intervention of AFS and ATV controllers is generally imperceptible

to the driver, they are suitable for use in all driving situations [98]. The ability to test

drive a virtual vehicle equipped with such controllers can provide valuable insight into their

operation and effectiveness, as perceived by a human driver.

The development of dynamic controllers generally involves a large number of simula-

tions, particularly when parameter tuning is necessary. Consequently, a branched-topology

vehicle model is often used in place of a closed-kinematic-chain model for the initial de-

velopment of vehicle stability controllers. Such model simplification techniques are also

common in real-time simulation, as was discussed in Section 2.1.4. The 14-DOF model

shown in Figure 6.2 is recommended by Sayers and Han [108] for simulating the handling

and braking behaviour of a vehicle. Four lumped masses, each representing one-quarter

of all suspension components, are connected to the vehicle chassis by prismatic joints;

109

±L(t)±R(t)

τRL(t)τFL(t)

Front view Side view

Z

Y

Z

X

Figure 6.2: 14-degree-of-freedom branched-topology vehicle model

springs and dampers placed in parallel represent the suspension compliance. Each wheel

is connected to its corresponding lumped mass with a revolute joint, which allows the

wheel to spin. Vertically-oriented revolute joints on the front wheels (δR(t) and δL(t)) are

used to steer the vehicle through a trajectory that is either predetermined, calculated by

a driver model, or prescribed by a human driver; thus, these revolute joints do not add

any degrees-of-freedom to the system. In this work, the tire-road interaction is modelled

using the Pacejka 2002 Magic Formula [93], and torques τFL(t), τFR(t), τRL(t), and τRR(t)

are applied to the front-left, front-right, rear-left, and rear-right wheels by direct-drive

electric in-wheel motors [132]. Due to the amount of computation involved, the vehicle

model is implemented with a torque driver applied to each wheel, and is simulated on one

central processing unit (CPU) core of the quad-core PXI system; the four electric in-wheel

motor models are executed on a separate core. Cruise, traction, and torque vectoring con-

trollers occupy the third CPU core, receiving sensor signals from the vehicle model and

transmitting control signals (desired torques) to the low-level motor controllers at regular

intervals; the fourth core is used for communicating with the host over Ethernet and the

ECU over the CAN bus. Although a branched-topology model provides fast simulations, it

is often desirable to evaluate the performance of a vehicle and its controllers using a more

realistic closed-kinematic-chain model. The implementation of such a model in the driving

simulator is the topic of the next section.

110

6.2 Double-wishbone vehicle model

Since nearly all vehicle suspension systems contain closed kinematic chains, the real-time

simulation of high-fidelity vehicle models can be challenging. As discussed in Section 1.4,

one of the applications of this research is the development of computationally efficient

vehicle models that retain explicit representations of the actual kinematics and dynamics

of the suspension. In this section, we discuss the real-time simulation of a vehicle with

double-wishbone suspensions on both axles using the block-triangular kinematic solution

generated in Section 5.2. Since the vehicle is bilaterally symmetric, the block-triangular

solution generated earlier for the front-left (FL) corner can be readily applied to the front-

right (FR) corner upon substitution of symmetric parameters. Although the suspension

geometry on the rear axle differs from that on the front, the same strategy can be used to

obtain block-triangular solutions for the rear-left (RL) and rear-right (RR) corners. Model

parameters are provided in Appendix A.5.

Absolute coordinates are used to describe the position and orientation of the 6-DOF

chassis: {x, y, z} represent the position of the center of mass, and {φ, θ, ψ} represent the

corresponding 3-2-1 Euler angles which, in this context, are referred to as the yaw, pitch,

and roll of the vehicle. Joint coordinates
{
wθ, ζ, η, ξ, uθ, `θ, α, β, s

}
are used to model each of

the four suspensions, as in Section 5.2. Since each suspension has a separate steering rack,

Ackermann steering geometry and four-wheel steering [97] can be readily implemented.

In this example, we simply apply rack displacements sFL(t) = sFR(t) = s(t) to the two

front suspensions, and fix sRL(t) = sRR(t) = 0 on the rear axle. We choose the following

independent coordinates:

qi = {x, y, z, φ, θ, ψ, wθFL,
wθFR,

wθRL,
wθRR, ξFL, ξFR, ξRL, ξRR} (6.1)

and apply the embedding procedure as before. The kinematic solution flow shown in

Figure 5.7 is used for each corner of the suspension; the dynamic solution flow is analogous

to that shown in Figure 5.4. Although text-based programming scripts can be inserted into

LabVIEW programs using Formula Node structures, a programming syntax is used that is

similar to, but distinct from, the C programming language. As such, Microsoft Visual C++

is used to compile the optimized C code generated by Maple into a dynamic-link library

(DLL), which can then be imported into LabVIEW directly [91].

111

A single-lane-change maneuver with prescribed rack displacement s(t) is used to eval-

uate the performance of the same kinematic solution approaches that were considered in

Section 5.2:

1. Computing qd1 =
{
uθ, `θ, α, β

}
and qd2 = {ζ, η} for each corner using the block-

triangular solution shown in Figure 5.7.

2. Computing qd for each corner using Newton’s method, iterating over the original

constraint equations and using Gaussian elimination with partial pivoting to invert

the Jacobian matrix numerically.

3. Computing qd for each corner using Newton’s method, iterating over the original

constraint equations and using a symbolic Jacobian inverse.

All three approaches use the same set of projected dynamic equations. The vehicle is given

an initial speed of 20 [m/s], and coasts through the maneuver using the predefined rack

displacement shown in Figure 6.3. Although automotive ECUs typically operate with a

10-millisecond cycle time, the virtual vehicle in HIL applications is generally simulated

using 1-millisecond time steps to reduce the effects of synchronization and communication

delays [29]. Thus, we use a first-order Euler integration scheme with 1-millisecond time

steps, and confirm that smaller time steps produce nearly identical results. The trajectory,

roll, and pitch of the vehicle are shown in Figures 6.4 and 6.5(a); the upper control arm an-

gles and lateral tire forces at the front-left and rear-left corners are shown in Figures 6.5(b)

and 6.5(c). In all cases, an excellent agreement is observed between the block-triangular

0 1 2 3 4 5
−8

−4

0

4

8

s
[m

m
]

Time [s]

Figure 6.3: Rack displacement for dynamic simulation of double-wishbone vehicle

112

0 10 20 30 40 50 60 70 80 90
0

2

4

6

Y
[m

]

X [m]

Original constraint equations
Block−triangular system
Baumgarte stabilization
Branched−topology vehicle

Figure 6.4: Trajectory of double-wishbone vehicle

solution and the solutions involving iteration over the original constraint equations. The

two additional trajectories shown in Figure 6.4 are obtained as follows:

1. Using Baumgarte’s method with stabilization parameters αB = βB = 5, and simu-

lating in Maple using the Runge–Kutta–Fehlberg fourth-fifth-order integrator with

error tolerances of 10−6.

2. Using the 14-DOF branched-topology vehicle model illustrated in Figure 6.2 with

system parameters that provide an approximation of the double-wishbone model [62],

and simulating in LabVIEW using a first-order Euler integration scheme with 1-

millisecond time steps.

Aside from that of the branched-topology vehicle, all trajectories differ by less than 6 [cm]

in the lateral direction at the completion of the maneuver, or about 1% of the total lateral

displacement, which is insignificant in most applications.

We now compare the computational efficiency associated with each solution strategy.

Since this is a real-time application, where communication must occur at regular intervals,

the maximum cycle time required for each approach must be considered; one relatively

long cycle cannot be compensated by shorter subsequent cycles [3]. As such, the number

of Newton steps is fixed in each case. The maximum cycle times required for dynamic

simulations using the block-triangular and fully iterative solutions are shown in Table 6.1;

the same metric for the branched-topology vehicle model is also provided for comparison.

Note that two iterations of the block-triangular solution can be computed more rapidly

than one iteration of the fastest Newton–Raphson approach. This observation may be

113

Original constraint equations
Block−triangular system

0 1 2 3 4 5
−3

−2

−1

0

1

2

3

R
o
ll

[d
eg

]

Time [s]
0 1 2 3 4 5

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

P
it

ch
[d

eg
]

Time [s]

(a) Orientation of vehicle chassis

0 1 2 3 4 5
−12

−6

0

6

u
θ
f
l

[d
eg

]

Time [s]
0 1 2 3 4 5

−12

−6

0

6
u
θ
r
l

[d
eg

]

Time [s]

(b) Upper control arm angles at front-left and rear-left corners

0 1 2 3 4 5
−3

−2

−1

0

1

2

F
y
,f

l
[k

N
]

Time [s]
0 1 2 3 4 5

−3

−2

−1

0

1

2

F
y
,r

l
[k

N
]

Time [s]

(c) Lateral forces generated by front-left and rear-left tires

Figure 6.5: Results from dynamic simulation of double-wishbone vehicle

114

somewhat surprising; the kinematic simulation results obtained earlier, shown in Table 5.4,

suggest that the block-triangular solution outperforms the Newton–Raphson approaches

by a far narrower margin. We surmise that the overhead associated with executing DLLs

in LabVIEW Real-Time—such as the allocation of memory for temporary variables—is

significantly greater than the analogous overhead in Matlab. Also note that the kinematic

processing represents only a small portion of the total computation time, most of which is

required for evaluating the dynamic equations.

As a final comparison, the maximum absolute error in the computation of qd using

each approach is shown in Table 6.2, where the computed values are compared to those

obtained by iterating over the original constraint equations to a high tolerance. Note that

Gaussian elimination with partial pivoting results in a more precise Jacobian inverse than

that computed symbolically, thereby providing a more precise computation of qd. Since

approximations have been used to generate the block-triangular solutions, it is not possible

to obtain arbitrarily precise results by increasing the number of Newton steps. Nevertheless,

the block-triangular solution is both more efficient and marginally more precise than the

fastest Newton–Raphson approach when two iterations are used. Finally, although the

vehicle model has been implemented on a single CPU core in this work, the calculation

of qd for each corner of the suspension could be performed on a separate core to obtain

further increases in performance [95].

6.3 Chapter summary

The focus of this chapter was the hardware- and operator-in-the-loop driving simulator

that has been developed as a test platform for automotive research. This system has been

used to confirm the effectiveness of several dynamic control strategies, where its hardware-

and operator-in-the-loop capabilities have been exploited to evaluate the performance of

vehicle stability controllers in realistic computational and operational circumstances. Al-

though an approximate branched-topology vehicle model provides faster cycle times, it

is often desirable to use a closed-kinematic-chain model to obtain more accurate simu-

lation results. The kinematic solution strategy presented in Section 5.2 has been used

to simulate a vehicle with double-wishbone suspensions on both axles. The resulting real-

115

Table 6.1: Computational efficiency of double-wishbone vehicle simulations

Solution strategy
Temporary variables in Number of Maximum

kinematic solution Newton steps cycle time

Branched-topology model — — 0.360 ms

1 0.923 ms

Block-triangular solution 308 2 0.931 ms

3 0.943 ms

Symbolic Jacobian inverse 564 1 0.941 ms

Numeric Jacobian inverse 208 1 1.233 ms

Table 6.2: Precision of double-wishbone vehicle simulations

Solution strategy
Newton Maximum absolute error in qd [rad]

steps Front-left Front-right Rear-left Rear-right

1 8.73 e−3 8.74 e−3 6.04 e−3 6.07 e−3

Block-triangular solution 2 3.56 e−4 3.58 e−4 2.81 e−4 2.85 e−4

3 3.56 e−4 3.58 e−4 2.81 e−4 2.83 e−4

Symbolic Jacobian inverse 1 9.53 e−4 9.52 e−4 4.13 e−4 4.14 e−4

Numeric Jacobian inverse 1 3.37 e−4 3.36 e−4 1.66 e−4 1.66 e−4

116

time-capable block-triangular solution outperforms Newton–Raphson iterative approaches,

providing more precise computations of the dependent coordinates in less time. Although

the kinematic processing represents only a small portion of the total computation time,

the results presented in this chapter confirm the utility of a block-triangular kinematic

solution when highly efficient simulation code is desired, as is often the case in real-time

hardware- and operator-in-the-loop applications.

117

Chapter 7

Conclusions

In this work, we have explored the use of triangular, or recursively solvable, systems of

kinematic equations to facilitate the real-time simulation of constrained multibody systems.

In the ideal case, an exact Gröbner basis can be used to obtain a fully triangular system.

Such systems can be solved exactly and in a fixed amount of time, two properties that are

highly desirable in many applications. Where full triangularization is not possible, a block-

triangular form can be obtained that still results in more efficient simulations than existing

techniques. When coupled with the embedding technique, the proposed approach results

in computationally efficient dynamic simulation code that reduces the use of iteration. The

significant contributions of this work are highlighted in Section 7.1; recommendations for

future research are outlined in Section 7.2.

7.1 Contributions

The Gröbner basis approach yields simulation code with several advantageous properties.

Efficient In contrast to a fully iterative solution strategy, where more precise solu-

tions require more iterations, fully triangular systems can be solved using

a fixed number of arithmetic operations. As has been demonstrated, even

partial triangularization can result in more efficient simulation code. Al-

though considerable effort may be required at the formulation stage to

generate the necessary Gröbner bases, this one-time investment pays con-

118

tinual dividends, as all ensuing simulations are faster. We also note that

the Gröbner basis approach often yields a system of kinematic equations

that can be readily parallelized.

Precise Provided all equations are of degree no greater than four, fully triangular

solutions can be solved entirely recursively. In such situations, the cor-

responding kinematic constraint equations are satisfied to machine preci-

sion, providing arbitrarily precise solutions in a fixed amount of time.

Although it cannot always be eliminated entirely, reducing the use of

Newton–Raphson iteration may prevent unanticipated jumping between

adjacent solution branches. Furthermore, since a Gröbner basis has the

same solutions as the original system of polynomials, all mechanism con-

figurations are preserved in the resulting kinematic equations, and no ex-

traneous solutions are introduced.

Algorithmic Unlike many other methods for solving systems of polynomial equations, a

Gröbner basis can be obtained algorithmically and, as such, is suitable for

use in an automated formulation procedure. While an algorithmic method

for determining the optimal term ordering remains elusive, traversal of

the topological system graph—which is readily available when using a

graph-theoretic formulation procedure—has been found to be an effective

strategy.

Versatile In contrast to the characteristic pair of joints technique, the Gröbner basis

approach can be applied to systems modelled with any set of generalized

coordinates. Furthermore, there is often a great deal of latitude in the

sequence in which the dependent generalized coordinates must be solved.

Consequently, the Gröbner basis approach is capable of identifying more

efficient systems of kinematic equations than the characteristic pair of

joints technique. If only a subset of the dependent coordinates is of interest

in a kinematic simulation, the term ordering can be selected so as to avoid

the computation of unnecessary coordinates.

119

In addition to the development of the Gröbner basis approach, efficient kinematic so-

lutions have been generated for several closed-kinematic-chain mechanisms:� Single-loop: planar slider-crank and spatial four-bar mechanisms.� Cascading-loop: hydraulic excavator and synthetic aperture radar satellite antenna.� Six-bar: Stephenson-III and aircraft landing gear mechanisms.� Parallel: planar parallel robot and Gough–Stewart platform.� Vehicle suspensions: five-link and double-wishbone suspensions.

The Gröbner basis approach is particularly suitable for situations requiring very efficient

simulations of multibody systems whose parameters are constant, such as the plant models

in model-predictive control strategies and the vehicle models in driving simulators. In

such situations, the requirement for efficient simulation code outweighs the preference

for a rapid formulation procedure. Note that even small improvements in computational

efficiency can be of significant importance. Improving the efficiency of a predictive vehicle

model, for example, permits the use of less powerful—and, therefore, less expensive—

electronic control units. Alternatively, more sophisticated models could be implemented

on the existing hardware, potentially resulting in more effective control strategies and safer

vehicles.

The final significant contribution of this work is the development of a hardware- and

operator-in-the-loop driving simulator, whose modular design makes it suitable for a wide

range of automotive research. The simultaneous use of hardware- and operator-in-the-

loop functionalities has enabled the testing of several controller prototypes in realistic

computational and operational circumstances. In particular, the performance of traction

control, electronic stability control, active front steering, and advanced torque vectoring

strategies have been evaluated. Furthermore, a real-time-capable model of a vehicle with

double-wishbone suspensions on both axles has been implemented. As a final note, we add

that a Maple implementation of Buchberger’s improved algorithm [15] has been developed

using bracket coefficients, following the approach of Shirayanagi [116].

120

7.2 Recommendations for future research

In this work, we have explored the use of Gröbner bases for triangularizing the nonlinear

algebraic constraint equations that arise when modelling closed-kinematic-chain mecha-

nisms, in the pursuit of efficient simulation code for real-time applications. Real-time

simulation is not a new concept, and is widely used in the development and validation of

dynamic controllers, in virtual reality simulators, and in physics-based video games. Thus,

not surprisingly, many approaches to real-time simulation have already been developed,

and have been successfully applied to practical applications in many fields. The focus

of the present work has been the exploration of an approach using Gröbner bases. De-

spite its demonstrated advantages in the simulation of several practical mechanisms, three

challenges remain that may prevent the widespread use of the proposed technique: full

automation, reduction of computation time, and applicability to large systems.

7.2.1 Full automation

Ideally, an algorithm would exist to convert a set of differential-algebraic equations into a

set of ordinary differential equations supported by a maximally triangular system of kine-

matic equations. A fundamental challenge preventing the full automation of the Gröbner

basis approach is the interdependence of numerous factors on the triangularizability of a

given system. In particular, one must determine the optimal set of modelling coordinates

q and independent coordinates qi, as well as the optimal solution flow for the mechanism

and elimination order for each independent loop, which are nontrivial tasks in the general

case. In this work, we have presented some heuristics and several practical examples that

may be used to guide the application of the proposed approach to additional systems. Nev-

ertheless, it would be desirable to forge these elemental strategies into a fully automated

approach.

Kecskeméthy et al. [68] select independent loops by identifying in the topological system

graph the cycle basis with the minimum total weight, where the edge weights are based on

the number of coordinates associated with the corresponding joint. The minimum cycle

basis can be found using standard graph-theoretic algorithms [58]. Once the independent

loops have been selected, the optimal solution flow can be readily determined. Note,

121

however, that purely joint coordinates are used in this approach, which greatly reduces

the number of possible solution strategies. Since the use of absolute coordinates can be

advantageous in some situations, as has been demonstrated, it may be interesting to pursue

an extension of the ideas of Kecskeméthy et al. to arbitrary sets of modelling coordinates.

The Dymola modelling and simulation package processes models developed in the Mod-

elica object-oriented language, and employs two techniques that may be useful in developing

an automated triangularization algorithm. The first technique is Tarjan’s algorithm [125],

which partitions a set of algebraic equations into subsets that can be solved independently.

If applied to the kinematic constraints for a complex multibody system, Tarjan’s algorithm

could be used to automatically isolate the equations associated with each leg in a parallel

robot or each suspension in a vehicle, for example. The second potentially useful tech-

nique is called tearing [30], and is used for reducing the amount of iteration required to

solve the many sparse equations typical of Modelica models. Dymola also uses tearing to

generate the constraint equations in closed-kinematic-chain systems, which are then solved

iteratively. It may be possible to apply similar ideas to obtain block-triangular forms of

the constraints themselves.

Finally, we note that a prerequisite for generating each Gröbner basis is the determi-

nation of a suitable elimination order. Although the heuristics employed in this work have

been largely successful, the relationship between the elimination order and the complexity

of the resulting triangular system remains nebulous. Sawada [105] proposed some heuris-

tics for general systems of polynomials based on experimental results, but assumes that the

origin of the equations is unknown. Since each set of constraint equations in the present

work is known to originate from a multibody system whose topological system graph is

given, it is conceivable that a more effective strategy can be devised in this case.

7.2.2 Reduction of computation time

Although a fully automated algorithm for triangularizing kinematic constraints would be

desirable, a concern of practical significance is the amount of time required for generating

Gröbner bases. As has been demonstrated, generating a Gröbner basis for a relatively

small number of polynomials using an appropriate elimination order can provide results

in a reasonable amount of time; the use of floating-point coefficients can also alleviate the

122

computational burden associated with Gröbner basis generation. A heretofore unexplored

avenue is the use of triangular sets or regular chains in place of Gröbner bases. In the

present context, a triangular set can be interpreted as a finite set of triangular systems

that describes all possible mechanism configurations for all choices of system parameters;

a regular chain is one type of triangular set [4]. Consider, for example, the kinematic

constraints for the planar slider-crank mechanism discussed in Chapter 3, shown here after

applying the familiar trigonometric substitutions:

[
`1cθ + `2sβ − s, `1sθ − `2cβ , s2

θ + c2
θ − 1, s2

β + c2
β − 1

]
(7.1)

Using the RegularChains:-Triangularize command in Maple with the variable ordering

sβ � cβ � sθ � cθ � s � `1 � `2, we obtain a set of four triangular systems:

Θ1 =
[
`1cθ + `2sβ − s, `1sθ − `2cβ, s2

θ + c2
θ − 1,

s2 − 2`1cθs+ `21 − `22
]

if `2 6= 0 and 2`1s 6= 0 (7.2)

Θ2 =
[
s2
β + c2

β − 1, sθ, `1cθ − s, s2 − `21, `2
]

if `1 6= 0 (7.3)

Θ3 =
[
`1cθ + `2sβ, `1sθ − `2cβ , s2

θ + c2
θ − 1, s,

`21 − `22
]

if `2 6= 0 (7.4)

Θ4 =
[
`2sβ − s, cβ, s2

θ + c2
θ − 1, s2 − `22, `1

]
if `2 6= 0 (7.5)

Note that Θ1 results in the same recursively solvable system as that found using a pure

lexicographic Gröbner basis with the same elimination order (3.59). Triangular system Θ2

provides a solution for a planar slider-crank mechanism whose connecting rod is of zero

length (`2 = 0), Θ3 assumes the crank and connecting rod are of equal length (`21 − `22 = 0)

and the piston remains at the origin (s = 0), and Θ4 applies when the length of the crank

is zero (`1 = 0). Clearly, Θ1 is the only system of practical interest in this case; however, it

may be possible to use regular chains to avoid vanishing denominators under specialization

of a Gröbner basis. Furthermore, since the triangular system is partitioned into several

simpler branches, it may be more computationally efficient to compute regular chains than

Gröbner bases—though perhaps not with the algorithms currently available [32]. The

theory of border bases [88], which relaxes the rigid definition of a term ordering used to

generate Gröbner bases, may also be worth investigating.

Since triangularizing kinematic constraint equations is often time-consuming, it may

be worthwhile to instead store a library of triangular systems that can be assembled based

123

on the topological system graph. Kecskeméthy et al. [68] use this strategy to generate

efficient simulation code for mechanisms modelled with purely joint coordinates. Since

using absolute coordinates can be advantageous in some situations, it would be desirable

to retain this ability; however, the number of possible triangular systems dramatically

increases when an arbitrary set of modelling coordinates is permitted. Furthermore, it

would be necessary to compute all triangular systems with symbolic parameters, which

can be computationally expensive. Nevertheless, it would only be necessary to generate

such a library once, and the resulting systems could be evaluated efficiently using floating-

point arithmetic. Once such facilities have been established, it may be more reasonable

to pursue the full automation of the Gröbner basis approach. We also note that Gröbner

bases were originally considered to be too computationally expensive to be of use in most

practical problems, and retained this reputation well into the 1990s [96]; the computational

resources of the future will be even better equipped to handle these computations.

7.2.3 Applicability to large systems

The applicability of the Gröbner basis approach to large systems is primarily dependent

on reducing the computation time required to triangularize the constraints. Recall that

the Gough–Stewart platform required about 2 hours of computation time; the five-link

suspension, nearly 4 hours. Clearly, it may be difficult to apply the proposed approach to

larger systems—such as the double-wishbone suspension, for which a Gröbner basis could

not be generated. Also recall that the system parameters have generally been substituted

prior to triangularizing in order to reduce the number of indeterminates. While this strat-

egy facilitates the computation of Gröbner bases, retaining the original parameterization

of the system would be desirable in many applications, such as those involving design op-

timization, sensitivity analysis, and parameter tuning tasks. Finally, although converting

floating-point coefficients into rational numbers was suitable for the examples presented

herein, the computation of approximate Gröbner bases may be an interesting avenue of ex-

ploration, particularly in situations where exact coefficients would be prohibitively lengthy.

124

7.2.4 Other topics

In this work, we have focused on triangularizing the kinematic constraint equations as-

sociated with closed-kinematic-chain mechanisms, relying on the embedding procedure to

reduce the dynamic equations to a minimal set. Despite the many advantages of this ap-

proach, the dynamic equations are considerably more complex after projection than they

are in their original form. It is conceivable that, in some situations, the benefits of a

fully triangular kinematic solution would be outweighed by the computational cost of the

projected dynamic equations. Thus, it may be more advantageous to seek an efficient

set of dynamic equations first, and only then seek a maximally triangular kinematic solu-

tion. It would be interesting to investigate whether the heuristics proposed by Léger and

McPhee [75] could be extended to account for the additional complexity introduced by the

projection operation. Finally, it may be advantageous to apply the philosophy of trian-

gularization to multibody systems containing flexible bodies, to the evaluation of systems

of ordinary differential equations, and to systems of equations from electrical, hydraulic,

thermal, and other physical domains.

So here I sit,

My thesis writ,

With one thing more to do:

To say my thanks

Throughout the ranks,

And pass my pen to you.

T . K. U .

125

Permissions

Some of the content of this thesis, including part of Section 2.2.5 and much of Chapter 4,

has been published in Multibody System Dynamics [131], and is reproduced with permission

from Springer.

126

References

[1] J. Angeles. Fundamentals of Robotic Mechanical Systems: Theory, Methods, and

Algorithms. Mechanical Engineering Series. Springer Science+Business Media, New

York, 3rd edition, 2007.

[2] H. Anton and C. Rorres. Elementary Linear Algebra: Applications Version. John

Wiley & Sons, New York, 8th edition, 2000.

[3] M. Arnold, B. Burgermeister, and A. Eichberger. Linearly implicit time integra-

tion methods in real-time applications: DAEs and stiff ODEs. Multibody System

Dynamics, 17(2–3):99–117, 2007.

[4] P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of triangular sets.

Journal of Symbolic Computation, 28(1–2):105–124, 1999.

[5] D. S. Bae, J. K. Lee, H. J. Cho, and H. Yae. An explicit integration method for

realtime simulation of multibody vehicle models. Computer Methods in Applied Me-

chanics and Engineering, 187(1–2):337–350, 2000.

[6] O. A. Bauchau and A. Laulusa. Review of contemporary approaches for constraint

enforcement in multibody systems. ASME Journal of Computational and Nonlinear

Dynamics, 3(1):011005, 2008.

[7] J. Baumgarte. Stabilization of constraints and integrals of motion in dynamical

systems. Computer Methods in Applied Mechanics and Engineering, 1(1):1–16, 1972.

[8] E. Bayo, J. Garćıa de Jalón, A. Avello, and J. Cuadrado. An efficient computational

method for real time multibody dynamic simulation in fully cartesian coordinates.

Computer Methods in Applied Mechanics and Engineering, 92(3):377–395, 1991.

127

[9] E. Bayo, J. Garćıa de Jalón, and M. A. Serna. A modified Lagrangian formulation

for the dynamic analysis of constrained mechanical systems. Computer Methods in

Applied Mechanics and Engineering, 71(2):183–195, 1988.

[10] M. Bodrato and A. Zanoni. Numerical Gröbner bases and syzygies: an interval

approach. In D. Petcu, V. Negru, D. Zaharie, and T. Jebelean, editors, Proceedings of

the 6th International Symposium on Symbolic and Numeric Algorithms for Scientific

Computing, pages 77–89, Timisoara, Romania, 26–30 September 2004.

[11] W. Boege, R. Gebauer, and H. Kredel. Some examples for solving systems of algebraic

equations by calculating Groebner bases. Journal of Symbolic Computation, 2(1):83–

98, 1986.

[12] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. Elsevier Science

Publishing Co., New York, 1976.

[13] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of Initial-Value

Problems in Differential-Algebraic Equations. Society for Industrial and Applied

Mathematics, Philadelphia, 1996.

[14] B. Buchberger. A criterion for detecting unnecessary reductions in the construction

of Gröbner-bases. In E. Ng, editor, Symbolic and Algebraic Computation, volume 72

of Lecture Notes in Computer Science, pages 3–21. Springer Berlin, Heidelberg, 1979.

[15] B. Buchberger. Gröbner bases: an algorithmic method in polynomial ideal theory.

In N. K. Bose, editor, Multidimensional Systems Theory: Progress, Directions and

Open Problems in Multidimensional Systems, pages 184–232. D. Reidel Publishing

Company, Dordrecht, 1985.

[16] B. Buchberger. Gröbner bases and systems theory. Multidimensional Systems and

Signal Processing, 12(3–4):223–251, 2001.

[17] B. Buchberger. Bruno Buchberger’s PhD thesis 1965: An algorithm for finding

the basis elements of the residue class ring of a zero dimensional polynomial ideal

(translated by M. P. Abramson). Journal of Symbolic Computation, 41(3–4):475–511,

2006.

128

[18] B. Buchberger and F. Winkler, editors. Gröbner Bases and Applications. London

Mathematical Society Lecture Note Series, volume 251. Cambridge University Press,

Cambridge, 1998.

[19] B. Burgermeister, M. Arnold, and B. Esterl. DAE time integration for real-time ap-

plications in multi-body dynamics. Journal of Applied Mathematics and Mechanics,

86(10):759–771, 2006.

[20] A. Cayley. On the theory of elimination. Cambridge and Dublin Mathematics Journal,

3:116–120, 1848.

[21] V. Cherian, N. Jalili, and V. Ayglon. Modelling, simulation, and experimental ver-

ification of the kinematics and dynamics of a double wishbone suspension configu-

ration. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of

Automobile Engineering, 223(10):1239–1262, 2009.

[22] S. Collart, M. Kalkbrener, and D. Mall. Converting bases with the Gröbner walk.

Journal of Symbolic Computation, 24(3–4):465–469, 1997.

[23] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms: An Intro-

duction to Computational Algebraic Geometry and Commutative Algebra. Springer

Science+Business Media, New York, 3rd edition, 2007.

[24] V. Denner, J. Maier, D. Kraft, and G. Spreitz. Data processing and communication

networks in motor vehicles. In Bosch Automotive Handbook. Robert Bosch GmbH,

Plochingen, 6th edition, 2004.

[25] A. K. Dhingra, A. N. Almadi, and D. Kohli. A Gröbner-Sylvester hybrid method

for closed-form displacement analysis of mechanisms. ASME Journal of Mechanical

Design, 122(4):431–438, 2000.

[26] A. K. Dhingra, A. N. Almadi, and D. Kohli. Closed-form displacement and coupler

curve analysis of planar multi-loop mechanisms using Gröbner bases. Mechanism

and Machine Theory, 36(2):273–298, 2001.

129

[27] A. Eichberger and W. Rulka. Process save reduction by macro joint approach: the key

to real-time and efficient vehicle simulation. Vehicle System Dynamics, 41(5):401–

413, 2004.

[28] H. Elmqvist, S. E. Mattsson, H. Olsson, J. Andreasson, M. Otter, C. Schweiger, and

D. Brück. Real-time simulation of detailed automotive models. In P. Fritzson, editor,

Proceedings of the 3rd International Modelica Conference, pages 29–38, Linköping,

Sweden, 3–4 November 2003.

[29] H. Elmqvist, S. E. Mattsson, H. Olsson, J. Andreasson, M. Otter, C. Schweiger, and

D. Brück. Realtime simulation of detailed vehicle and powertrain dynamics. Paper

No. 2004-01-0768, Society of Automotive Engineers, 2004.

[30] H. Elmqvist and M. Otter. Methods for tearing systems of equations in object-

oriented modeling. In A. Guasch and R. M. Huber, editors, Proceedings of the 1994

European Simulation Multiconference, pages 326–332, Barcelona, Spain, 1–3 June

1994.

[31] B. Esterl and T. Butz. Simulation of vehicle-trailer combinations by real-time capable

DAE solvers. Paper No. 2006-01-0802, Society of Automotive Engineers, 2006.

[32] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4). Journal

of Pure and Applied Algebra, 139(1–3):61–88, 1999.

[33] J.-C. Faugère. A new efficient algorithm for computing gröbner bases without re-

duction to zero (F5). In M. Giusti, editor, Proceedings of the 2002 International

Symposium on Symbolic and Algebraic Computation, pages 75–83, Lille, France, 7–

10 July 2002.

[34] J.-C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of zero-

dimensional Gröbner bases by change of ordering. Journal of Symbolic Computation,

16(4):329–344, 1993.

[35] J.-C. Faugère, J.-P. Merlet, and F. Rouillier. On solving the direct kinematics prob-

lem for parallel robots. Technical Report 5923, Institut National de Recherche en

Informatique et en Automatique, May 2006.

130

[36] P. Fisette, T. Postiau, L. Sass, and J.-C. Samin. Fully symbolic generation of complex

multibody models. Mechanics Based Design of Structures and Machines, 30(1):31–

82, 2002.

[37] P. Fisette and J.-C. Samin. Symbolic generation of a multibody formalism of order

N—extension to closed-loop systems using the coordinate partitioning method. In-

ternational Journal for Numerical Methods in Engineering, 39(23):4091–4112, 1996.

[38] L. R. Foulds. Graph Theory Applications. Springer–Verlag, New York, 1992.

[39] R. Fröberg. An Introduction to Gröbner Bases. John Wiley & Sons, Chichester,

1997.

[40] J. Garćıa de Jalón and E. Bayo. Kinematic and Dynamic Simulation of Multibody

Systems: The Real-Time Challenge. Springer–Verlag, New York, 1994.

[41] C. W. Gear, B. Leimkuhler, and G. K. Gupta. Automatic integration of Euler–

Lagrange equations with constraints. Journal of Computational and Applied Mathe-

matics, 12–13:77–90, 1985.

[42] R. Gebauer and H. M. Möller. On an installation of Buchberger’s algorithm. Journal

of Symbolic Computation, 6(2–3):275–286, 1988.

[43] K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for Computer Algebra.

Kluwer Academic Publishers, Dordrecht, 1992.

[44] T. Geike and J. McPhee. Inverse dynamic analysis of parallel manipulators with full

mobility. Mechanism and Machine Theory, 38(6):549–562, 2003.

[45] G. T. Gillies. The Newtonian gravitational constant: recent measurements and re-

lated studies. Reports on Progress in Physics, 60(2):151–225, 1997.

[46] A. Giovini, T. Mora, G. Niesi, L. Robbiano, and C. Traverso. “One sugar cube,

please” or Selection strategies in the Buchberger algorithm. In S. M. Watt, editor,

Proceedings of the 1991 International Symposium on Symbolic and Algebraic Com-

putation, pages 49–54, Bonn, Germany, 15–17 July 1991.

131

[47] G. Gogu. Chebychev–Grübler–Kutzbach’s criterion for mobility calculation of multi-

loop mechanisms revisited via theory of linear transformations. European Journal of

Mechanics A/Solids, 24(3):427–441, 2005.

[48] C. M. Gosselin and J. Angeles. The optimum kinematic design of a planar three-

degree-of-freedom parallel manipulator. Journal of Mechanisms, Transmissions, and

Automation in Design, 110(1):35–41, 1988.

[49] C. M. Gosselin and J. Angeles. Singularity analysis of closed-loop kinematic chains.

IEEE Transactions on Robotics and Automation, 6(3):281–290, 1990.

[50] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff and

Differential-Algebraic Problems. Springer–Verlag, Berlin, 1991.

[51] A. Hashemi and D. Lazard. Sharper complexity bounds for zero-dimensional Gröbner

bases and polynomial system solving. Technical Report 5491, Institut National de

Recherche en Informatique et en Automatique, February 2005.

[52] W. M. Hawkins, Jr. Aircraft landing gear mechanism. United States Patent No.

2,690,888, 5 October 1954.

[53] J. He, D. A. Crolla, M. C. Levesley, and W. J. Manning. Integrated active steering

and variable torque distribution control for improving vehicle handling and stability.

Paper No. 2004-01-1071, Society of Automotive Engineers, 2004.

[54] A. Heck. Introduction to Maple. Springer–Verlag, New York, 3rd edition, 2003.

[55] S. Hegazy, H. Rahnejat, and K. Hussain. Multi-body dynamics in full-vehicle han-

dling analysis under transient manoeuvre. Vehicle System Dynamics, 34(1):1–24,

2000.

[56] R. C. Hibbeler. Engineering Mechanics: Statics & Dynamics. Prentice–Hall, Upper

Saddle River, 9th edition, 2001.

[57] M. Hiller, A. Kecskeméthy, and C. Woernle. A loop-based kinematical analysis of

complex mechanisms. In Proceedings of the ASME Design Engineering Technical

Conference, Paper No. 86-DET-184, Columbus, Ohio, 5–8 October 1986.

132

[58] J. D. Horton. A polynomial-time algorithm to find the shortest cycle basis of a graph.

SIAM Journal on Computing, 16(2):358–366, 1987.

[59] M. L. Husty. An algorithm for solving the direct kinematics of general Stewart–Gough

platforms. Mechanism and Machine Theory, 31(4):365–379, 1996.

[60] K. Jalali. Stability Control of Electric Vehicles with In-wheel Motors. PhD thesis,

University of Waterloo, 2010.

[61] K. Jalali, T. Uchida, S. Lambert, and J. McPhee. Development of an advanced slip

controller and an active steering system for an electric vehicle with in-wheel motors

using soft computing techniques. Awaiting publication, 2011.

[62] K. Jalali, T. Uchida, J. McPhee, and S. Lambert. Integrated stability control system

for electric vehicles with in-wheel motors using soft computing techniques. SAE In-

ternational Journal of Passenger Cars—Electronic and Electrical Systems, 2(1):109–

119, 2009.

[63] C. M. Kalker-Kalkman. An implementation of Buchberger’s algorithm with applica-

tions to robotics. Mechanism and Machine Theory, 28(4):523–537, 1993.

[64] D. Kapur and T. Saxena. Comparison of various multivariate resultant formulations.

In A. H. M. Levelt, editor, Proceedings of the 1995 International Symposium on

Symbolic and Algebraic Computation, pages 187–194, Montreal, Québec, 10–12 July

1995.

[65] A. Kecskeméthy. On closed form solutions of multiple-loop mechanisms. In J. Ange-

les, G. Hommel, and P. Kovács, editors, Computational Kinematics, pages 263–274.

Kluwer Academic Publishers, Dordrecht, 1993.

[66] A. Kecskeméthy and M. Hiller. Automatic closed-form kinematics-solutions for re-

cursive single-loop chains. In G. Kinzel, C. Reinholtz, L. W. Tsai, G. R. Pennock,

R. J. Cipra, and B. B. Thompson, editors, Flexible Mechanisms, Dynamics, and

Analysis: Proceedings of the 22nd Biennial ASME Mechanisms Conference, pages

387–393, Scottsdale, Arizona, 13–16 September 1992.

133

[67] A. Kecskeméthy and M. Hiller. An object-oriented approach for an effective formu-

lation of multibody dynamics. Computer Methods in Applied Mechanics and Engi-

neering, 115(3–4):287–314, 1994.

[68] A. Kecskeméthy, T. Krupp, and M. Hiller. Symbolic processing of multiloop mecha-

nism dynamics using closed-form kinematics solutions. Multibody System Dynamics,

1(1):23–45, 1997.

[69] J. Knapczyk and M. Maniowski. Elastokinematic modeling and study of five-rod

suspension with subframe. Mechanism and Machine Theory, 41(9):1031–1047, 2006.

[70] J. Knapczyk and M. Maniowski. Stiffness synthesis of a five-rod suspension for

given load-displacement characteristics. Proceedings of the Institution of Mechanical

Engineers, Part D: Journal of Automobile Engineering, 220(7):879–889, 2006.

[71] A. Kondratyev, H. J. Stetter, and F. Winkler. Numerical computation of Gröbner

bases. In V. G. Ganzha, E. W. Mayr, and E. V. Vorozhtsov, editors, Proceedings of

the 7th International Workshop on Computer Algebra in Scientific Computing, pages

295–306, Saint Petersburg, Russia, 12–19 July 2004.

[72] P. Kovács and G. Hommel. On the tangent-half-angle substitution. In J. Angeles,

G. Hommel, and P. Kovács, editors, Computational Kinematics, pages 27–39. Kluwer

Academic Publishers, Dordrecht, 1993.

[73] H. Krisp, K. Lamberg, and R. Leinfellner. Automated real-time testing of electronic

control units. Paper No. 2007-01-0504, Society of Automotive Engineers, 2007.

[74] A. Laulusa and O. A. Bauchau. Review of classical approaches for constraint en-

forcement in multibody systems. ASME Journal of Computational and Nonlinear

Dynamics, 3(1):011004, 2008.

[75] M. Léger and J. McPhee. Selection of modeling coordinates for forward dynamic

multibody simulations. Multibody System Dynamics, 18(2):277–297, 2007.

[76] D. Lichtblau. Gröbner bases in Mathematica 3.0. The Mathematica Journal, 6(4):81–

88, 1996.

134

[77] D. Lichtblau. Solving finite algebraic systems using numeric Gröbner bases and eigen-

values. In Proceedings of the 4th World Multiconference on Systemics, Cybernetics

and Informatics, Orlando, Florida, 23–26 July 2000.

[78] D. Lichtblau. Approximate Gröbner bases and overdetermined algebraic systems.

In Applications of Computer Algebra, Symbolic and Numeric Computation session,

Linz, Austria, 27–30 July 2008.

[79] D. Lichtblau. Exact computation using approximate Gröbner bases. In Applications

of Computer Algebra, Symbolic and Numeric Computation session, Linz, Austria,

27–30 July 2008.

[80] E. W. Mayr and S. Ritscher. Degree bounds for Gröbner bases of low-dimensional

polynomial ideals. In W. Koepf, editor, Proceedings of the 2010 International Sym-

posium on Symbolic and Algebraic Computation, pages 21–27, Munich, Germany,

25–28 July 2010.

[81] J. McPhee. Automatic generation of motion equations for planar mechanical sys-

tems using the new set of “branch coordinates”. Mechanism and Machine Theory,

33(6):805–823, 1998.

[82] J. McPhee, C. Schmitke, and S. Redmond. Dynamic modelling of mechatronic multi-

body systems with symbolic computing and linear graph theory. Mathematical and

Computer Modelling of Dynamical Systems, 10(1):1–23, 2004.

[83] J. McPhee, P. Shi, and J.-C. Piedbœuf. Dynamics of multibody systems using vir-

tual work and symbolic programming. Mathematical and Computer Modelling of

Dynamical Systems, 8(2):137–155, 2002.

[84] J.-P. Merlet. Parallel Robots. Solid Mechanics and Its Applications, volume 128.

Springer, Dordrecht, 2nd edition, 2010.

[85] A. Montes. A new algorithm for discussing Gröbner bases with parameters. Journal

of Symbolic Computation, 33(2):183–208, 2002.

135

[86] A. Morgan and A. Sommese. Computing all solutions to polynomial systems us-

ing homotopy continuation. Applied Mathematics and Computation, 24(2):115–138,

1987.

[87] B. Mourrain. The 40 “generic” positions of a parallel robot. In M. Bronstein, ed-

itor, Proceedings of the 1993 International Symposium on Symbolic and Algebraic

Computation, pages 173–182, Kiev, Ukraine, 6–8 July 1993.

[88] B. Mourrain. Pythagore’s dilemma, symbolic-numeric computation, and the border

basis method. In D. Wang and L. Zhi, editors, Symbolic-Numeric Computation,

Trends in Mathematics, pages 223–243. Birkhäuser Verlag Basel, Switzerland, 2007.

[89] MSC.Software Corporation. ADAMS/Solver Manual: Integrator, 2005.

[90] National Highway Traffic Safety Administration. Electronic Stability Control Sys-

tems. Federal Motor Vehicle Safety Standard No. 126, 2007.

[91] National Instruments Corporation. Using External Code in LabVIEW. Part No.

370109B-01, 2003.

[92] J. Nielsen and B. Roth. On the kinematic analysis of robotic mechanisms. The

International Journal of Robotics Research, 18(12):1147–1160, 1999.

[93] H. B. Pacejka. Tire and Vehicle Dynamics. SAE International, Warrendale, 2nd

edition, 2002.

[94] Y. A. Papegay, J.-P. Merlet, and D. Daney. Exact kinematics analysis of a car’s sus-

pension mechanisms using symbolic computation and interval analysis. Mechanism

and Machine Theory, 40(4):395–413, 2005.

[95] T. Postiau, L. Sass, P. Fisette, and J.-C. Samin. High-performance multibody models

of road vehicles: fully symbolic implementation and parallel computation. Vehicle

System Dynamics, 35(Suppl.):57–83, 2001.

[96] M. Raghavan and B. Roth. Solving polynomial systems for the kinematic analysis

and synthesis of mechanisms and robot manipulators. ASME Journal of Mechanical

Design, 117(B):71–79, 1995.

136

[97] J. Reimpell, H. Stoll, and J. W. Betzler. The Automotive Chassis: Engineering

Principles. Butterworth–Heinemann, Oxford, 2nd edition, 2001.

[98] P. E. Rieth and R. Schwarz. ESC II—ESC with active steering intervention. Paper

No. 2004-01-0260, Society of Automotive Engineers, 2004.

[99] B. Roth. Computations in kinematics. In J. Angeles, G. Hommel, and P. Kovács,

editors, Computational Kinematics, pages 3–14. Kluwer Academic Publishers, Dor-

drecht, 1993.

[100] B. Roth. Computational advances in robot kinematics. In J. Lenarčič and B. Ravani,

editors, Advances in Robot Kinematics and Computational Geometry, pages 7–16.

Kluwer Academic Publishers, Dordrecht, 1994.

[101] W. Rulka and E. Pankiewicz. MBS approach to generate equations of motions for

HiL-simulations in vehicle dynamics. Multibody System Dynamics, 14(3–4):367–386,

2005.

[102] M. K. Salaani, C. Schwarz, G. J. Heydinger, and P. A. Grygier. Parameter determi-

nation and vehicle dynamics modeling for the National Advanced Driving Simulator

of the 2006 BMW 330i. Paper No. 2007-01-0818, Society of Automotive Engineers,

2007.

[103] J.-C. Samin and P. Fisette. Symbolic Modeling of Multibody Systems. Kluwer Aca-

demic Publishers, Dordrecht, 2003.

[104] T. Sasaki and F. Kako. Floating-point Gröbner basis computation with ill-

conditionedness estimation. In D. Kapur, editor, Computer Mathematics, volume

5081 of Lecture Notes in Computer Science, pages 278–292. Springer Berlin, Heidel-

berg, 2008.

[105] H. Sawada. Automatic generation of ranking of variables for efficient computation of

Gröbner bases in engineering applications. In V. G. Ganzha, E. W. Mayr, and E. V.

Vorozhtsov, editors, Proceedings of the 6th International Workshop on Computer

Algebra in Scientific Computing, pages 319–328, Passau, Germany, 20–26 September

2003.

137

[106] M. W. Sayers. Symbolic Computer Methods to Automatically Formulate Vehicle Sim-

ulation Codes. PhD thesis, University of Michigan, 1990.

[107] M. W. Sayers. Vehicle models for RTS applications. Vehicle System Dynamics,

32(4–5):421–438, 1999.

[108] M. W. Sayers and D. Han. A generic multibody vehicle model for simulating handling

and braking. Vehicle System Dynamics, 25(Suppl.):599–613, 1996.

[109] W. Schiehlen, A. Rükgauer, and T. H. Schirle. Force coupling versus differential

algebraic description of constrained multibody systems. Multibody System Dynamics,

4(4):317–340, 2000.

[110] C. Schmitke, K. Morency, and J. McPhee. Using graph theory and symbolic com-

puting to generate efficient models for multi-body vehicle dynamics. Proceedings of

the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics,

222(4):339–352, 2008.

[111] A. A. Shabana. Dynamics of Multibody Systems. Cambridge University Press, New

York, 3rd edition, 2005.

[112] L. Shih, A. A. Frank, and B. Ravani. Dynamic simulation of legged machines using a

compliant joint model. The International Journal of Robotics Research, 6(4):33–46,

1987.

[113] T. Shiiba and Y. Suda. Development of driving simulator with full vehicle model of

multibody dynamics. JSAE Review, 23(2):223–230, 2002.

[114] T. Shiiba and Y. Suda. Evaluation of driver’s behavior with multibody-based driving

simulator. Multibody System Dynamics, 17(2–3):195–208, 2007.

[115] K. Shirayanagi. An algorithm to compute floating point Gröbner bases. In T. Lee,

editor, Mathematical Computation with Maple V: Ideas and Applications, pages 95–

106. Birkhäuser, Boston, 1993.

[116] K. Shirayanagi. Floating point Gröbner bases. Mathematics and Computers in Sim-

ulation, 42(4–6):509–528, 1996.

138

[117] K. Shirayanagi and H. Sekigawa. A new Gröbner basis conversion method based on

stabilization techniques. Theoretical Computer Science, 409(2):311–317, 2008.

[118] P. A. Simionescu and D. Beale. Synthesis and analysis of the five-link rear suspension

system used in automobiles. Mechanism and Machine Theory, 37(9):815–832, 2002.

[119] J.-H. Sohn, W.-S. Yoo, K.-S. Kim, and J.-N. Lee. Force element formulation of

bushed massless links for numerical efficiency. Mechanics Based Design of Structures

and Machines, 29(4):477–497, 2001.

[120] A. J. Sommese and I. Charles W. Wampler. The Numerical Solution of Systems of

Polynomials Arising in Engineering and Science. World Scientific Publishing Co.,

Singapore, 2005.

[121] A. J. Sommese, J. Verschelde, and C. W. Wampler. Advances in polynomial con-

tinuation for solving problems in kinematics. ASME Journal of Mechanical Design,

126(2):262–268, 2004.

[122] M. W. Spong and M. Vidyasagar. Robot Dynamics and Control. John Wiley & Sons,

New York, 1989.

[123] H. J. Stetter. Stabilization of polynomial systems solving with Groebner bases. In

W. W. Küchlin, editor, Proceedings of the 1997 International Symposium on Symbolic

and Algebraic Computation, pages 117–124, Maui, Hawaii, 21–23 July 1997.

[124] A. Suzuki. Computing Gröbner bases within linear algebra. In V. P. Gerdt, E. W.

Mayr, and E. V. Vorozhtsov, editors, Computer Algebra in Scientific Computing,

volume 5743 of Lecture Notes in Computer Science, pages 310–321. Springer Berlin,

Heidelberg, 2009.

[125] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Com-

puting, 1(2):146–160, 1972.

[126] The MathWorks, Inc. Matlab R2007a Help: Real-Time Workshop → Target Language

Compiler → Getting Started → Inlining S-Functions, 2007.

139

[127] Transport Canada. Electronic Stability Control Systems. Technical Standards Doc-

ument No. 126, 2009.

[128] C. Traverso. Gröbner trace algorithms. In P. Gianni, editor, Symbolic and Algebraic

Computation, volume 358 of Lecture Notes in Computer Science, pages 125–138.

Springer Berlin, Heidelberg, 1989.

[129] C. Traverso and A. Zanoni. Numerical stability and stabilization of Groebner basis

computation. In M. Giusti, editor, Proceedings of the 2002 International Symposium

on Symbolic and Algebraic Computation, pages 262–269, Lille, France, 7–10 July

2002.

[130] L.-W. Tsai. Solving the inverse dynamics of a Stewart–Gough manipulator by the

principle of virtual work. ASME Journal of Mechanical Design, 122(1):3–9, 2000.

[131] T. Uchida and J. McPhee. Triangularizing kinematic constraint equations us-

ing Gröbner bases for real-time dynamic simulation. Multibody System Dynamics,

25(3):335–356, 2011.

[132] H. S. Vogt, C. Schmitke, K. Jalali, and J. McPhee. Unified modelling and real-

time simulation of an electric vehicle. International Journal of Vehicle Autonomous

Systems, 6(3–4):288–307, 2008.

[133] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University

Press, Cambridge, 2nd edition, 2003.

[134] C. W. Wampler. Displacement analysis of spherical mechanisms having three or

fewer loops. ASME Journal of Mechanical Design, 126(1):93–100, 2004.

[135] J. Wang and C. M. Gosselin. A new approach for the dynamic analysis of parallel

manipulators. Multibody System Dynamics, 2(3):317–334, 1998.

[136] J. Wang, C. M. Gosselin, and L. Cheng. Modeling and simulation of robotic systems

with closed kinematic chains using the virtual spring approach. Multibody System

Dynamics, 7(2):145–170, 2002.

140

[137] A. Wanpal, M. G. Babu, N. Kankariya, K. Mundhra, S. A. Sundaresan, and A. S.

Deshpande. ECU testing and verification using hardware-in-the-loop. Paper No.

2006-01-1444, Society of Automotive Engineers, 2006.

[138] V. Weispfenning. Comprehensive Gröbner bases. Journal of Symbolic Computation,

14(1):1–29, 1992.

[139] J. Weiss. Resultant methods for the inverse kinematics problem. In J. Angeles,

G. Hommel, and P. Kovács, editors, Computational Kinematics, pages 41–52. Kluwer

Academic Publishers, Dordrecht, 1993.

[140] D. Wells. The Penguin Dictionary of Curious and Interesting Numbers. Penguin

Group, London, 1986.

[141] J. Wittenburg. Dynamics of Systems of Rigid Bodies. B. G. Teubner, Stuttgart,

1977.

[142] A. Wittkopf. Automatic code generation and optimization in Maple. Journal of

Numerical Analysis, Industrial and Applied Mathematics, 3(1–2):167–180, 2008.

141

Appendix A

System Parameters

The parameters used for the modelling and simulation of the aircraft landing gear mech-

anism, planar parallel robot, Gough–Stewart platform, five-link suspension, and double-

wishbone suspension and vehicle model are given below.

A.1 Aircraft landing gear mechanism

Shown in Figure A.1 are the geometric parameters used to model the aircraft landing gear

mechanism presented in Section 4.2.3. The location of each point on a body is given relative

to the body-fixed reference frame shown. No units are stated since the geometry for this

mechanism was obtained by measuring an undimensioned figure drawn by the designer [52].

For the purposes of generating a Gröbner basis, the measurements shown in Figure A.1

are treated as exact quantities. The locations of all points relative to the fuselage frame

are given in Table A.1.

142

A

D

Dx = 231

Dy = 62

E F

Ex = 178.4

Ey = 0

C

D E

Cx = 170.48

Cy = 16.97

Dx = 164.4

Dy = 0

F

A

B

W

Bx = 42

By = 62

Fx = 25

Fy = −212

Wx = 18

Wy = −530

Figure A.1: Aircraft landing gear mechanism geometry

Table A.1: Point locations in aircraft landing gear mechanism relative to fuselage frame

Point
Landing gear deployed Landing gear stowed

X coordinate Y coordinate X coordinate Y coordinate

A 0.0 0.0 0.0 0.0

B 42.0 62.0 −46.4 58.8

C 221.2 77.1 237.5 78.8

D 231.0 62.0 231.0 62.0

E 131.2 −68.6 66.7 66.3

F 25.0 −212.0 209.6 −40.4

W 18.0 −530.0 510.6 −143.3

143

A.2 Planar parallel robot

The geometry of the planar parallel robot presented in Section 4.2.4 is shown in Figure A.2.

Dynamic simulations are performed by applying torques τ1(t) = 0.5 sin(t) [N·m], τ2(t) =

−0.25 cos(t) [N·m] and τ3(t) = 0.5 sin(2t) [N·m] to joints θ1, θ2 and θ3, respectively; all

other system parameters are obtained from the work of Geike and McPhee [44], and are

shown in Table A.2. Note that the end-effector is equilateral, as is the triangle defined by

the three ground-fixed revolute joints, which are 1.0 [m] apart.

�7

�5

�2

�6

�3

�4

�1

θ3

θ2

θ1

Figure A.2: Planar parallel robot geometry

Table A.2: Geometric and inertial parameters for planar parallel robot

Body Length `k [m] Mass [kg] Inertia [kg·m2]

1, 2, 3 0.4 3.0 0.04

4, 5, 6 0.6 4.0 0.12

7 0.4 8.0 0.0817

144

A.3 Gough–Stewart platform

The geometric and inertial parameters used to model the Gough–Stewart platform pre-

sented in Section 4.2.5 are obtained from the work of Tsai [130]. Each of the six legs

consists of upper and lower segments of length 1.0 [m], which are attached to the base and

platform at the points listed in Table A.3. All inertial parameters are given in Table A.4.

Table A.3: Joint locations for Gough–Stewart platform

Leg
Universal joint Bk (in base frame) Spherical joint Pk (in platform frame)

X [m] Y [m] Z [m] X [m] Y [m] Z [m]

1 −2.120 1.374 0 0.170 0.595 −0.4

2 −2.380 1.224 0 −0.600 0.150 −0.4

3 −2.380 −1.224 0 −0.600 −0.150 −0.4

4 −2.120 −1.374 0 0.170 −0.595 −0.4

5 0 −0.150 0 0.430 −0.445 −0.4

6 0 0.150 0 0.430 0.445 −0.4

Table A.4: Inertial parameters for Gough–Stewart platform

Body Mass [kg]
Moments of inertia [kg·m2] Products of inertia [kg·m2]

Jxx Jyy Jzz Jxy Jxz Jyz

Platform 1.5 0.08 0.08 0.08 0 0 0

Leg segments 0.1 0.00625 0.00625 0 0 0 0

A.4 Five-link suspension

All geometric parameters are obtained from the description of suspension “S1” in the work

of Knapczyk [70]. The links are attached to the chassis and wheel carrier at the points

listed in Table A.5, which are provided relative to the wheel hub frame; link lengths Lk

are computed from these values.

145

Table A.5: Joint locations for five-link suspension relative to wheel hub frame

Link
Universal joint Ck on chassis Spherical joint Wk on wheel carrier

X [mm] Y [mm] Z [mm] X [mm] Y [mm] Z [mm]

1 −103.2 −490.6 −65.6 −47.8 −50.1 −87.9

2 309.3 −204.6 −49.6 34.9 −77.3 −133.8

3 200.8 −283.6 −11.6 139.1 −47.4 −42.1

4 205.8 −269.6 95.4 76.9 −59.7 85.9

5 −1.7 −349.6 118.4 6.3 −52.2 119.9

A.5 Double-wishbone suspension and vehicle model

All system parameters for the double-wishbone vehicle model are obtained from the work

of Jalali [60]. The suspension hardpoint locations, labelled in Figure A.3, are given for the

front-left and rear-left corners in Tables A.6 and A.7, respectively; those for the front-right

and rear-right corners can be obtained by noting the bilateral symmetry of the vehicle.

Additional geometric and inertial parameters are given in Table A.8.

Y

Z
X

A

B

C

D

E

F

G

I

J K

M

H

L

Figure A.3: Double-wishbone suspension hardpoints

146

Table A.6: Hardpoint locations for front-left double-wishbone suspension

Point Description X [mm] Y [mm] Z [mm]

A Upper control arm on wheel carrier −18.3 540.7 428.5

B Upper control arm on chassis, aft −86.9 360.0 412.6

C Upper control arm on chassis, fore 52.2 360.0 428.5

D Lower control arm on wheel carrier 17.3 615.5 159.5

E Lower control arm on chassis, aft −79.3 352.0 191.6

F Lower control arm on chassis, fore 119.0 352.0 165.9

G Wheel center 0.0 635.0 290.5

H Drive shaft, inner −0.1 579.0 290.0

I Tie rod on wheel carrier 149.9 579.0 290.0

J Tie rod on steering rack 40.0 303.3 298.5

K Center of steering cylinder 40.0 0.0 298.6

L Spring-damper on lower control arm 14.6 543.5 180.5

M Spring-damper on chassis −37.5 340.5 562.5

Table A.7: Hardpoint locations for rear-left double-wishbone suspension

Point Description X [mm] Y [mm] Z [mm]

A Upper control arm on wheel carrier 0.0 578.2 428.5

B Upper control arm on chassis, aft −70.5 397.5 428.5

C Upper control arm on chassis, fore 68.6 397.5 412.6

D Lower control arm on wheel carrier 0.0 653.0 159.5

E Lower control arm on chassis, aft −101.7 389.5 165.9

F Lower control arm on chassis, fore 96.7 389.5 191.6

G Wheel center 0.0 672.5 290.5

H Drive shaft, inner −0.1 616.6 290.0

I Tie rod on wheel carrier −150.1 616.6 290.0

J Tie rod on chassis −40.0 334.8 297.3

L Spring-damper on lower control arm 0.0 581.0 180.5

M Spring-damper on chassis 0.0 378.0 562.5

147

Table A.8: Parameters for double-wishbone vehicle model

Parameter Value Unit

Wheelbase 1.8 m

Front track width 1.275 m

Rear track width 1.35 m

Chassis mass 882 kg

Front suspension stiffness 58.122 kN/m

Rear suspension stiffness 84.530 kN/m

Front suspension damping 9.250 kN·s/m

Rear suspension damping 11.801 kN·s/m

Tire mass 21.18 kg

Tire radius (unloaded) 0.2905 m

Tire width 0.175 m

Tire radial stiffness 132.724 kN/m

Tire radial damping 50 N·s/m

148

