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Abstract 

 Greenroofs are increasingly being recognized as an effective site level best management practice 

(BMP) to reduce the volume of stormwater runoff in urban environments. For some water quality 

constituents, greenroofs can improve runoff water quality but recent studies demonstrate greenroofs are 

sources rather than sinks of phosphorus (P).  Accordingly, further research is required to evaluate 

treatment technologies that improve the performance of these BMPs.  This study examined the use of two 

engineered media types to reduce phosphorus loadings from a greenroof located on the Archetype 

Sustainable House at Kortright in Vaughan, Ontario.   

A treatment system was installed to capture and remove P in stormwater runoff using sorptive 

properties of an engineered media. A mass balance approach was used to evaluate pre and post-treatment 

water quality.  Pre and post-treatment water samples were collected for 25 rainfall events from July 11, 

2009 to August 22, 2010 and analyzed for soluble reactive phosphorus (SRP), total phosphorus (TP), 

suspended solids (SS) and total dissolved solids (TDS).  Storm events ranged in return frequencies from < 

2 years to 35 year periods. The results show that the greenroof was a consistent source of P.  The volume 

weighted mean concentrations were 0.769 mg/L and 0.630 mg/L for 2009 and 2010 events, respectively.  

The media used in 2009 reduced SRP loadings by 32.0% and TP loadings by 25.4%.  The media 

evaluated in 2010, reduced SRP loadings by 82.4% and TP loadings by 86.6%.  The greater P removal 

demonstrated by the 2010 media is attributed to a higher specific surface area and increased P sorptive 

capacity.  Results of this study will help inform the use of sorptive materials in greenroof applications and 

a wider range of best management practices for stormwater quality treatment. 
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Chapter 1: Introduction 

1.1: Background 

There is increasing concern at the global scale regarding the impacts of urbanization on water 

quantity and quality. In urban areas vegetation is typically removed and replaced with impervious 

surfaces that dramatically alter natural hydrologic processes (Bernhardt and Palmer, 2007).  Impervious 

surface cover such as paved roadways and rooftops is a commonly used index of urban intensity and 

surrogate measure of aquatic health (Arnold and Gibbons, 1996; Schueler, 1994; Booth et al., 2005).  

Impervious surfaces decrease infiltration rates and subsequently increase the rates and magnitude of 

surface runoff (Dunne and Leopold, 1978).  Accordingly the increase in stormwater runoff can result in 

flooding (OME, 2003b; USEPA, 1999), contamination of drinking water supplies (Marsalek and 

Rochfort, 2004), alteration of the hydrology (Booth and Jackson, 1997), stream morphology (Paul and 

Meyer, 2001) and ecology (Walsh et al., 2005b) of receiving waters.  Stormwater has traditionally been 

viewed from a flood management perspective (Roy et al., 2008) but there is increasing recognition of its 

role in the transport of nonpoint pollution (Novotny and Olem, 1994; Carpenter et al., 1998).  Urban 

stormwater runoff often contains elevated levels of pollutants such as metals, nutrients, salts, sediments 

and organic contaminants such as pesticides (Schueler, 1987; Grapentine et al., 2004).  Furthermore, the 

increased peak flow of stormwater runoff can result in combined sewer overflows (CSOs) that release 

untreated sewage into the receiving waters (Bernhardt and Palmer, 2007). 

To mitigate the effects of impervious surfaces and stormwater runoff, stormwater management 

(SWM) programs have been implemented in many urban areas (OME, 2003b).  Early approaches to 

stormwater management were to direct runoff quickly and efficiently to rivers and streams (Roy et al., 

2008).  The subsequent increase in stream flow resulted in geomorphic changes such as bank erosion and 

destruction of pool and riffle zones which impact aquatic ecosystems (Bradford and Gharabaghi, 2004).  

Stormwater management has more recently evolved to include consideration of both the quantity and 

quality of stormwater. Recently the concept of sustainable urban drainage systems (SUDS) or low impact 

development (LID) which use a treatment train approach has been incorporated in the design of urban 

infrastructure to treat stormwater. This approach employs a range of source, conveyance and end of pipe 

treatment controls to reduce the volume of stormwater runoff while improving the water quality (Dietz, 

2007; Marsalek and Chocat, 2002).  These systems attempt to restore predevelopment hydrology by 

increasing pervious surface coverage and minimizing the connection between stormwater drainage and 

receiving waters (Dietz and Clausen, 2008; Walsh, 2005b).    
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A variety of structural and non-structural controls, or best management practices (BMPs) are used 

to mitigate the effects of stormwater runoff (Marsalek and Chocat, 2002).  One source control BMP that 

is quickly gaining recognition within North America is the use of greenroofs.  Greenroofs often consist of 

a growing media to support plant communities underlain with drainage materials which are incorporated 

into the roof membrane (Carter and Fowler, 2008).  Properly designed greenroofs can reduce stormwater 

runoff (Liu, 2003; VanWoert et al., 2005; TRCA, 2006; Carter and Rasmussen, 2006; DeNardo et al., 

2005).  Additional benefits of greenroofs include energy conservation through reduced heating and 

cooling of buildings (Del Barrio, 1998; Niachou et al., 2001), potential reduction of the urban heat island 

(Oberndorfer et al., 2007) and increased habitat (Lundholm, 2006).  Additionally, they offer a potential 

retrofit implementation in heavily urbanized areas which may not be able to incorporate other BMPs such 

as stormwater ponds due to available land constraints (Carter and Jackson, 2007). 

Germany has been at the forefront of greenroof technology, policy and research for several 

decades (Ngan, 2004).  These developments have helped promote European standards of greenroof use in 

stormwater management.  The adoption of this technology as a stormwater source control in North 

America has been slowed by barriers such as lack of quantifiable research, technical expertise, public 

awareness, financial incentives and industry standardization (Velazquez, 2005b; Getter and Rowe, 2006, 

Carter and Fowler, 2008).  In addition to reducing the volume of stormwater runoff, greenroofs have the 

potential to improve stormwater quality (Johnston and Newton, 1996; Peck et al., 1999).  German studies 

(Köhler et al., 2002) report an improvement of water quality from greenroof runoff. However results of 

recent studies in North American indicate that greenroofs act as a source of phosphorus (P) and are an 

ineffective technology for metals removal from stormwater (Van Seters et al., 2009; Vander Linden and 

Stone, 2009; Moran, 2004; Berndtsson et al., 2006).  The export of P is previously attributed to 

composition of the greenroof growing media, and the application of fertilizers (Emilsson et al., 2007). 

The leaching of nutrients such as P from greenroofs is problematic.  Because P is the limiting 

nutrient in fresh water bodies, the transfer of P in stormwater to surface waters may cause eutrophication, 

resulting in algal blooms and related ecological impacts (Carpenter et al., 1998).  Various P removal 

technologies have been developed for use in treating both wastewater and stormwater.  The mechanisms 

for P removal include adsorption, ion exchange and precipitation reactions (Zhang et al., 2008).  

Chemical precipitation using alum, lime, and ferric chloride is a widespread removal method, however 

the cost and production of sludge by-products make this unsuitable for stormwater treatment (Li et al., 

2006)    Several studies have explored the use of low-cost sorptive materials such as limestone, bauxite, 

zeolite, fly ash, shale, steel wool, gas concrete, red mud and cement for P removal (Drizo et al., 1999; 

Agyei et al., 2002, Erickson et al., 2007).  In recent years, the use of engineered media such as aluminum-
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oxide and iron-oxide coated media has been investigated for P removal (Ma and Sansalone, 2007; 

Boujelben et al., 2008) and these engineered media show promise as a technology for the treatment of 

stormwater quality.  However, most studies of engineered media for P removal have been conducted at 

the laboratory scale and there is a need to further examine these technologies at the field scale. Such 

information is required to measure the performance of engineered media to remove P in runoff from 

greenroofs and determine its utility for stormwater management programs.  

1.2: Study Objectives: 

The specific objectives of this study are to: 

1. Conduct a field scale study to investigate the water quantity (runoff retention, lag time) and water 

quality characteristics (soluble reactive phosphorus, total phosphorus, pH, total dissolved solids, 

suspended solids, grain size) of stormwater from greenroof runoff and evaluate the efficiency of a 

treatment system with engineered media to remove phosphorus. 

2:  Determine the phosphorus sorption capacity and predicted lifespan of the engineered media in a series 

of laboratory experiments.   

3.  Recommend design and logistical considerations for future implementation of engineered media for P 

removal in greenroof runoff. 
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1.3: Literature Review 

1.3.1: Stormwater Runoff Impacts 

  Urbanization alters the natural hydrologic cycle by increasing the magnitude of surface runoff 

and flow velocities (Walsh et al., 2005b).  Areas with high impervious surface cover (ISC) are often 

susceptible to flooding when the design capacity of drainage infrastructure is exceeded.  This occurs when 

rainfall rates exceed a critical value (typically the design storm) (OME, 2003b; Schueler, 1987).  In 

addition to flooding, storm runoff in urban systems can change stream geomorphology (Paul and Meyer, 

2001) and destabilize stream banks that often lead to a disconnection between riparian areas and streams 

(Booth and Jackson, 1997).   

Stormwater has increasingly been recognized as a major source of nonpoint pollution (Novotny 

and Olem, 1994).  Stormwater transports a wide range of pollutants and pathogens into receiving waters 

(Chocat et al., 2007; Tsihrintzis and Hamid, 1997).  The natural pollutant filtration processes of 

vegetation and soil are typically decreased because of the widespread use of asphalt and concrete (TRCA, 

2007).  Compared to pre-development levels, urban runoff typically contains increased levels of 

suspended solids (SS), nutrients, bacteria, oils, metals, organic contaminants and chlorides (Schueler, 

1987).  Suspended solids are an important water quality indicator as they are the primary vector for many 

of the other pollutants such as nutrients and metals which adhere to these particles (Arnold and Gibbons, 

1996).  The degraded water quality and resulting impacts on storm flow on stream geomorphology can 

severely impact the ecology of aquatic systems (Finkenbine et al., 2000; Walsh et al., 2005a).  

1.3.2: Stormwater Management in Urban Systems 

 The wide range of problems associated with stormwater runoff has necessitated the development 

of stormwater management (SWM) programs to effectively manage these problems (OME, 2003b).  

Traditionally stormwater was viewed as a flood risk.  Consequently, runoff was managed by a rapid 

removal from the land through sewer systems, curbs, and gutters and into receiving streams and rivers 

(Roy et al., 2008).  Many streams were lined with concrete and channelized, effectively transforming 

streams into extended gutter systems (Dunne and Leopold, 1978).  By the 1970s, Ontario had begun to 

incorporate stormwater ponds as a means of controlling runoff volume. While ponds did reduce flooding 

and infrastructure requirements, they did not fully address the water quality issues of stormwater runoff 

(Watt et al., 2003).  By the 1990s SWM had shifted towards mitigating water quality impacts through the 

use of best management practices (BMPs).  BMPs are defined by USEPA (1999) as a device, practice or 

method for removing, reducing, or preventing targeted storm water runoff quantity, constituents, 

pollutants and contaminants from reaching receiving waters.  BMPs can be classified into non-structural 



5 

 

and structural categories.  Non-structural BMPs include policies, education and public participation, 

urban planning and development and behavioral modifications that reduce stormwater impacts (Marsalek, 

2005).  Structural BMPs include many of the physical measures used to manage stormwater including 

ponds, catchbasins, oil/grit separators, porous pavements and grassed swales (Cameron et al., 1999).  

Currently Ontario‘s stormwater management recommends a treatment train approach as described in the 

Stormwater Management and Planning Design Manual (OME, 2003b).  The treatment train approach 

uses BMPs ordered in a series of source (lot level), conveyance and end-of-pipe controls (OME, 2003b).  

This approach directs stormwater through various structures, allowing for cumulative water quality 

improvement and an overall mitigation of peak flows (Bernhardt and Palmer, 2007).  While the benefits 

of a treatment train approach are recognized, there continues to be an over-reliance on stormwater ponds 

and end-of-pipe measures (Bradford and Gharabaghi, 2004).  The ponds are generally effective in 

controlling stormwater quantities, however at large volumes, overflow can still occur which reduces the 

effectiveness of some treatment processes such as sedimentation (Bäckström et al., 2002).  Additionally, 

ponds can be costly to implement and maintain and require large areas of land (Weiss et al., 2007).   

1.3.3: Use of Low Impact Development Techniques 

 The use of low impact development (LID) techniques represents a shift from reliance on end-of-

pipe structures.  LID is a recent stormwater practice which emphasizes better site design by minimizing 

impervious cover, reducing EIA and protecting natural vegetation and landscapes (Dietz, 2007; Walsh et 

al., 2005b).  Originating in the 1990s from the State of Maryland, LID is a movement towards a 

sustainable form of stormwater management (TRCA, 2007).  The use of small-scale controls in a 

uniformly decentralized manner attempts to restore the pre-development hydrology by using site level 

processes of infiltration, storage, evaporation and detention (USEPA, 2000).  Additionally, stormwater 

quality is improved through filtration, biodegradation and other natural processes (Marsalek, 2005).  

Graham et al. (2004) mentions the various benefits of LID including the protection of downstream 

geomorphology, improved water quality and ecology, reduced flooding and combined sewer overflow 

risks, and a reduction in the requirements for traditional end-of-pipe controls.  It should be noted that the 

use of end-of-pipe controls is still needed to capture runoff not treated by source controls and they also 

provide a means of flood protection.  The various advantages that LID techniques provide over traditional 

stormwater management appear to make them an attractive option for implementation into stormwater 

plans.  However, Roy et al. (2008) list several barriers to LID use.  These include performance 

uncertainties and cost, insufficient engineering standards, fragmented responsibilities, lack of institutional 

capacity and legislative mandate, a lack of market incentives and an overall resistance to change.  The 
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authors offer several solutions to these impediments with emphasis on increased research on performance 

and more wide-spread education to both professionals and the public. 

1.3.4: Greenroof Definition 

 Greenroofs are becoming increasingly popular source control processes within LID projects.  

Greenroofs involve the creation of a green space on top of an urban structure (Peck et al., 1999), allowing 

for infiltration and storage of stormwater.  Often referred to by a variety of names including vegetated 

roofs, ecoroofs, or rooftop gardens, these systems can be broadly defined as a specialized roof system 

which supports vegetation (Liu and Baskaran, 2005).  While the use of greenroofs is not a recent 

innovation, there has been increasing recognition of their potential application in stormwater management 

as well as various other benefits.  Modern greenroofs use various components (Fig. 1) which have been 

designed to increase the stormwater function (Scholz-Barth, 2001).  Collectively these systems are often 

referred to as greenroof technology (GRT).  

 

 

Figure 1: Extensive roof structural components (Carter and Rasmussen, 2006). 

1.3.5: Greenroof Application 

   The modern use of greenroofs can be traced to their adoption in Germany, Switzerland, Austria 

and Scandinavia in the 1960s.  In the following decades, a considerable amount of research was 



7 

 

conducted to advance knowledge and use of components such as vegetation, growing media and drainage 

technology (Peck et al., 1999).  By the 1980s, Germany was at the forefront of greenroof technology and 

policy.  The greenroof market was expanding by 15-20% annual growth, becoming a large financial 

opportunity (Peck et al., 1999).  By 2001, approximately 13.5 million m
2 
of greenroofs had been installed, 

which is equivalent to 14% of the total roof area in Germany (Ngan, 2004).  Comparatively, greenroof use 

in North America has been limited to individual building owners promoting construction efforts (Banting 

et al., 2005).  Several cities such as Toronto, Portland and Chicago have promoted research through 

demonstration projects and developed policies to increase their use (City of Toronto, 2008).  In 2008, the 

city of Chicago instituted a stormwater ordinance which requires new developments and redevelopments 

of a specific size to retain the first 1.27 cm of stormwater on site (City of Chicago, 2007).  The city 

Toronto has recently introduced a  by-law requiring the implementation of a greenroof on new 

developments, with varying size criteria for different building types such as industrial, commercial and 

residential (City of Toronto, 2008).   

1.3.6: Greenroofs: Classification, Components, Functions 

Greenroofs are most commonly classified as either intensive or extensive (Mentens et al., 2006).  

These classifications are largely based on growing media depth, substrate type and plant type.  Intensive 

greenroofs have a wide range of media depths but generally contain at least 15 cm of media.  The greater 

media depth supports larger vegetation such as shrubs and trees.  Intensive greenroofs are often used for 

public access to create a natural aesthetic environment for urban areas (Getter and Rowe, 2006).  The use 

of a deep substrate and heavier vegetation creates a greater structural load on the building.  Retrofit 

projects are often required to upgrade the roof structure resulting in increased costs (Lawlor, 2006).  

Intensive roofs provide a range of advantages such as greater biodiversity, accessibility and the largest 

capacity for stormwater retention and insulation properties.  However, their significant cost, maintenance 

and structural requirements often restrict widespread application.  Extensive roofs are much more 

commonly used in greenroof research and implementation.  These roofs use a substrate depth which 

ranges between 5 and 15 cm and typically weigh between 72.6 and 169.4 kg/m
2
 (Lawlor, 2006).  These 

roofs are lightweight and cost-effective, resulting in their use over much larger areas.  Generally, 

vegetation biodiversity is low and the roofs inaccessible to the public.  However, this also lowers the 

maintenance requirements (Carter and Fowler, 2008).  The typical greenroof consists of vegetation, 

growing medium, filter layer, drainage layer and a waterproof membrane (Liu and Baskaran, 2005; Peck 

et al., 1999). 
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 A variety of mosses, grasses and herbaceous plants are used with extensive greenroofs.  Succulent 

plants such as Sedum spp (Stone Crop) are the most commonly used vegetation.  Sedum spp are drought 

and frost tolerant, making them suitable for a North American climate.  The plants are appropriate for 

greenroof use due to their shallow-rooting system, ability to store water in the succulent portions above 

the soil and exhibit CAM photosynthesis which helps in drought conditions (Wolf and Lundholm, 2008).  

Monterusso et al. (2005) determined that a variety of Sedum spp was suitable for greenroof use in the 

Midwestern United States.  The typical green roof using Sedum spp can withstand drought periods for 

several months, although watering should occur approximately every 28 days (VanWoert et al., 2005b).  

Furthermore, Sedum spp can survive in substrates containing minimal organic matter and reduced 

fertilizer applications (Rowe et al., 2006).  The composition of the growing media depends on the 

vegetation (Liu and Baskaran, 2005).  A small amount of organic material may be mixed with lightweight 

aggregates such as perlite, to reduce structural loads (FLL, 2002).  The filter layer is composed of a 

geotextile material which prevents fine particles originating from the growing medium from clogging the 

drainage layer (Liu and Baskaran, 2005).  The drainage layer is composed of a lightweight composite 

material such as foam panels or a highly porous polymeric mat which allows excess water to drain from 

the growing medium.  The waterproof membrane acts a barrier to water and prevents root penetration into 

the building structure (Liu and Baskaran, 2005; Ngan, 2004).    

 The components are engineered to provide a variety of benefits to greenroof use.  The use of 

greenroofs for stormwater management has generated recent interest in LID literature (Dietz, 2007; 

Mentens et al., 2006; USEPA, 2000).  The reduction of stormwater runoff volume is a strategy for 

reducing the polluting effects associated with urban stormwater (VanWoert et al., 2005; Carter and 

Rasmussen, 2006).  In addition to managing stormwater quantities, greenroofs have been promoted for 

their use in improving water quality (Köhler et al., 2002; Berndtsson et al., 2006; Long et al., 2006).  

Additional benefits include decreased heating and cooling costs (Del Barrio, 1998; Kosareo, 2007; 

Niachou et al., 2001; Liu, 2004; Wong et al., 2003a), reduction in urban heat island (Getter and Rowe, 

2006; Oberndorfer et al., 2007), urban amenity through green space creation (Velazquez, 2005b; Pincetl 

and Gearin, 2005), extension of roof life (Peck et al., 1999; Wong et al., 2003b) and creation of habitat to 

improve biodiversity (Baumann, 2006; Grant, 2006; Köhler, 2006).  Only within the past five years have 

any North American research papers been published examining greenroofs performance as a stormwater 

management technology.  Previously, greenroof research was primarily focused on roof energy budget 

studies (Carter and Rasmussen, 2006).  Currently, there is a limited body of published research examining 

greenroof stormwater performance.  Continued research within this field is required to further the 

adoption of this technology into urban stormwater management policies.   
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1.3.7: Stormwater Volume Control Using Greenroofs 

 One of the most important aspects of stormwater management is controlling the quantity of 

stormwater runoff.  Many urban centres have combined sewer systems that convey both stormwater and 

wastewater (Semadeni-Davies et al., 2006).  The infrastructure capacity is often overwhelmed by large 

stormwater volumes moving at a high flow rate, resulting in combined sewer overflows (CSOs) which 

discharge untreated sewage into waterways (Marsalek, 2005).  Greenroofs represent a technology which 

decreases stormwater volumes and peak flow rates, lessening the harmful impacts of runoff and reducing 

the risk of CSOs.  Furthermore, greenroofs may be implemented through retrofit projects into heavily 

urbanized areas which are restricted by land constraints (Carter and Rasmussen, 2006; Marsalek and 

Chocat, 2002).  

The retention capacity of a greenroof is affected by several variables.  Various studies have 

examined the influence of storm size, storm frequency, seasonality, roof slope, substrate depth as well as 

vegetation type and coverage (Hathaway et al., 2008; Villarreal and Bengtsson, 2005; VanWoert et al., 

2005).  Storm size has been an important variable in greenroof research.  Carter and Rasmussen (2006) 

determined stormwater retention by greenroofs decreased with greater precipitation depth.  For storms 

under 25.4 mm, retention was approximately 90%.  Between 25.4 mm and 76.2 mm, retention was 54%.  

Beyond 76.2 mm, retention dropped to less than 48%.  Liu and Minor (2005) had 100% retention for 

storms less than 15 mm.  Similarly sized storm events of 15 mm demonstrated a much smaller percent 

reduction (> 20%) in a study by Bliss et al. (2009).  VanWoert et al. (2005) examined the performance of 

various substrate depths and roof slopes compared to different storm sizes.  For a 2% slope, 4.0 cm 

substrate depth roof had the highest mean percentage for all storm sizes. The roof retained 97.1% for light 

storms (< 2 mm), 85.5% for medium storms (2-6 mm) and 65.1% for heavy storms (> 6 mm).  The study 

also showed that vegetation did not have a large effect on retention, thus attributing the largest influence 

on the media.  The results show that media depth did not change the retention on the steepest slope of 6.5° 

but did at the most gradual slope of 2°.  The results were not statistically significant to draw any 

conclusions regarding the influence of media depth.   

When storm events occur, the greenroof substrate will eventually become saturated, reducing the 

retention abilities.  In soil, water retention is controlled by osmotic and capillary forces.  As saturation 

occurs, the force of gravity overcomes these adhesive forces, draining water from the soil.  The maximum 

amount of water that a freely drained soil can store is referred to as the field capacity of the soil (Dunne 

and Leopold, 1978).  The aforementioned studies quantify the field capacity of the greenroof substrate.  

Upon reaching field capacity, greenroofs exhibit largely reduced retention ability.  The field capacity of 

greenroof substrates has been examined through increased substrate depth, roof age and slope.  Jarrett et 

al. (2006) reported that a 3 mm substrate depth could retain 20-45% of annual rainfall and that increasing 
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substrate depth did not improve retention.  Liu and Minor (2005) examined two greenroofs with depths of 

75 mm and 100 mm, yet reported no difference with both roofs demonstrating a 57% average annual 

reduction.  Similarly, Hathaway et al. (2008) tested two roofs with depths of 75 mm and 100 mm and 

reported an equal retention of 64%; however, these two roofs were at separate locations and subjected to 

differing hydrologic conditions.  The effects of roof age and slope have shown conflicting results 

(Villarreal and Bengtsson, 2005; VanWoert et al., 2005).  A review by Mentens et al. (2006) reported that 

greenroof age and slope angle were not significantly correlated with the yearly runoff.  In contrast, a 

study by MHW Americas Inc., conducted for the City of Chicago (2006), concluded that a three year old 

greenroof absorbed approximately 40-50% of storm events, whereas a newly installed greenroof with 

identical characteristics absorbed 10-30%.  The authors attribute the establishment of the sedum root 

systems for the increase in retention.  A study conducted at Michigan State University demonstrated 

significant relationships between both roof age and slope and total retention.  A five year old substrate 

had almost twice the field capacity as compared to a new substrate (Getter et al., 2007).  The authors 

attribute increased porosity within the mature substrate for a higher field capacity.  This may be due to 

root growth and burrowing insects.  Roof slopes of 2°, 7°, 15°, and 25° were examined over various storm 

sizes.  Slope was significant when comparing 2° and 15°, as well as 2° and 25°.  Differing methodology 

and antecedent moisture conditions may have led to the conflicting results (Getter et al., 2007). 

 The frequency of storm events is an important variable for the field capacity and moisture 

conditions of a greenroof.  Hathaway et al. (2008) demonstrated the importance of an inter-event dry 

period on retention percentages.  As several rain events occurred over consecutive days, the percent 

precipitation retained quickly dropped to only 53%.  Bliss et al. (2009) also noted the effect of moisture 

saturation within the roof substrate.  The authors reported that when the roof was near field capacity (30% 

water by volume before a storm event) only 0.1 cm of rain was absorbed.  Reducing the water content to 

approximately 15% increased the absorption to 0.5 cm.  Liu and Minor (2005) reported that the two 

greenroofs used in their study retained 100% of a 15 mm storm event when preceded by six days of dry 

weather.  During warm seasons, evapotranspiration rates increase which regenerates the field capacity 

more rapidly than during cool seasons (Mentens et al., 2006).  Hathaway et al. (2008) noted the role of 

evapotranspiration in precipitation retention.  During the months of September, October and December, 

there was approximately 85 mm of rainfall.  During the first two months 78% retention occurred but in 

December it dropped to 62%.  The potential evapotranspiration rates (PET) were calculated as 96, 51, and 

6.9 mm / month matching the decrease in retention.  The winter performance of greenroofs has been 

addressed in only a few studies (VanWoert et al., 2005; Teemusk and Mander, 2007).  While retention 

percentages may be less than during summer months, greenroofs still act to reduce the runoff rates.   
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The reduction of peak flows and extension of time until runoff (lag time), has important 

implications for stormwater management that has been widely reported in the literature.  The reduction in 

peak flow can be influenced by storm size and frequency.  TRCA (2006) reported an average peak flow 

reduction of 87% for storm events between 10 and 29 mm and a 50% reduction for storm events greater 

than 40 mm.  Conversely, Vander Linden and Stone (2009) reported that storm size only affected the 

control roof peak flow, but not the greenroof rate.  Several papers have shown peak flow rate reductions 

of 50-70% (Hathaway et al., 2008; Liu and Minor, 2005; Bliss et al., 2009; Vander Linden and Stone, 

2009).  The reduction in peak flow rates can be partially attributed to the increase in lag time.  Carter and 

Rasmussen (2006) note that runoff lag times increased from 17.0 min from the control roof to 34.9 min 

for the greenroof.  Liu and Minor (2005) reported an increase in lag time of 20-40 min, while DeNardo et 

al. (2005) found that greenroof runoff for all rain events was delayed an average of 5.7 hours.  Bliss et al. 

(2009) also reported a runoff delay of several hours on the greenroof; however after the substrate became 

saturated, further precipitation would runoff at the same rate as the control roof (Fig. 2).  

 

 

 

 

 

 

 

 

 

 

Figure 2: Comparison of peak flow rates and lag time for greenroof and control roof (Bliss et al., 2009). 

 

Following a rainfall event, greenroofs may slowly release runoff over an extended period of time.  Getter 

et al. (2007) showed runoff extending from 4 h 20 min for light rain events (<2.0 mm) to 13 h 45 min for 

heavy rain events (>10.0 mm). 

 The use of greenroofs in stormwater management may represent a significant reduction in the 

volumes and flow rates of urban runoff.  Applying the wet weather performance to a larger scale 

emphasizes the possible benefits.  Getter et al. (2007) estimate that if the 1.1 km
2
 of flat roof surfaces at 

Michigan State University were converted to greenroofs, based on a mean retention of 80.2%,  377 041 
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of rainfall would have been retained during the course of 2005.  Using hydrologic simulations, the 

TRCA (2006) reported that if 100% of the roofs within the Highland Creek watershed were greened, there 

would be an overall 4% reduction in annual runoff volumes and 15% peak flow reduction for events 

between 20 and 30 mm.  A study conducted in Toronto by Banting et al. (2005) estimated the potential 

monetary savings associated with implementing greenroofs on a city-wide scale.  Based on 4 984 hectares 

of available roof area, the initial savings from complete coverage was estimated at $100,000,000 for 

stormwater costs alone.  This estimate included savings associated with pollution and erosion control as 

well as avoidance of other costly BMP use.  The reduction of CSOs was estimated to have an additional 

savings of over $46,000,000.  

1.3.8: Greenroof Influence on Stormwater Quality 

 Greenroofs have been thought to improve urban runoff water quality by absorbing pollutants of 

wet and dry atmospheric deposition (Berndtsson et al., 2006).  Through plant uptake or binding within the 

growing medium, contaminants such as metals, nitrogen and P are filtered out of the rainwater.  Earlier 

studies in Germany reported decreased concentrations of metals and nutrients from vegetated roofs 

(Köhler et al., 2002).  There are a limited number of studies which have investigated the water quality 

characteristics of greenroof runoff.  Conventional roofs have been shown to act as a source of pollutants 

during rain events (Zobrist et al., 2000; Schueler, 2000; Mason et al., 1999).  During a storm event, the 

initial concentrations of pollutants are elevated as accumulated pollutants are washed off the roof surface.  

This ―first flush‖ effect has been observed in various greenroof studies (Berndtsson et al., 2006; Van 

Seters et al., 2009).   

There have been conflicting results regarding greenroofs acting as a source of nitrogen.  Moran 

(2004) recorded significantly higher concentrations than both the rainfall and control roof runoff.  

However, Van Seters et al. (2009) noted that mean nitrogen levels were lower from the greenroof 

compared to the control roof.  In studies examining the effects of fertilization practices and use of slow 

release fertilizers, Monterusso et al. (2005) found that nitrogen levels were greater in greenroof runoff.  

Emilsson et al. (2007) showed that vegetated growing media retained more nitrogen than unvegetated 

substrates, likely due to uptake by the vegetation.  Several studies have noted 10 to 20 fold increases in  P 

concentrations in greenroof runoff compared to rainfall and control roof runoff (Van Seters et al., 2009; 

Bliss et al., 2009; Vander Linden and Stone, 2009; Moran 2004; Berndtsson et al., 2006; Hutchinson et 

al., 2003).  High rates of nutrient runoff are linked to roof age, substrate composition and fertilizer 

applications (Emilsson et al., 2007, Long et al., 2006).  As vegetated roofs mature in age, nutrient export 

tends to decrease (TRCA, 2006; Köhler et al., 2002). 
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1.3.9: Phosphorus: Freshwater Impacts, Forms and Sorption Mechanisms 

P export from greenroofs may be problematic in the context of surface water quality.  Ontario‘s 

Provincial Water Quality Objectives recommend total phosphorus (TP) levels <0.03 mg/L to avoid 

problematic plant growth in streams and rivers.  The concentrations of P in greenroof can be orders of 

magnitude higher than this guideline.  Runoff leaves the rooftops it is transported through a sewer system 

where it is eventually discharged into a receiving water body.  The loss of P to surface waters can result in 

environmental problems such as eutrophication (Correll, 1998).  As P is often the limiting nutrient in 

lentic bodies of water such as lakes and ponds, an excess input of P increases the productivity of the 

system (Schindler, 1977).  This increased productivity results in the rapid growth of algae as they 

consume bioavailable P. P levels as low as 0.01 to 0.05 mg/L may result in eutrophication (Smil, 2000).  

Algal blooms can be problematic because they decrease light penetration in the water and lower oxygen 

levels.  Bacterial decomposition of dead algae removes oxygen from the water column resulting in 

hypoxic conditions that adversely affecting aquatic fauna (Carpenter et al., 1998).  Certain algal species 

can release noxious metabolites which are harmful to humans and produce taste and odour problems in 

drinking water (Watson et al., 2008). 

P is most commonly separated into operationally defined forms as either particulate phosphorus 

(PP) or dissolved (DP).  DP is defined as the P fraction passing through a 0.45 µm filter (Logan, 1982).  

Total phosphorus (TP) is the sum of DP and PP (Reddy et al., 1999).  Both DP and PP have inorganic and 

organic fractions.  The inorganic fraction of DP includes the orthophosphate forms H2PO4
-
, HPO4

2-
, PO4

3-
, 

all of which are considered bioavailable.  Bioavailable P is defined as the sum of immediately available P 

and P that can be transformed into an available form by naturally occurring processes (Boström et al., 

1988).  Dissolved inorganic phosphate is immediately available for algal uptake.  Certain forms of PP are 

also considered bioavailable.  Inorganic P is highly immobile and adsorbs onto amorphous and crystalline 

forms of Fe, Al, Ca and other cationic elements.  These forms are labile and become available through 

dissolution or desorption processes (Logan, 1982). 

The phosphorus sorption capacity (PSC) of sediments is dependent on several factors such as clay 

content, organic matter content, pH, concentrations of Al, Fe, and Ca, reaction time and temperature. 

(Tisdale et al., 1985; Del Bubba et al., 2003; Reddy and DeLaune, 2008).  The anionic properties of 

soluble P result in electrostatic attraction to positively charged soil surfaces.  The soluble P forms are also 

attracted to the hydrous oxide surfaces of Al and Fe.  These surfaces carry a net positive charge in acidic 

soils due to their protonated surface sites and therefore have a high anion exchange capacity (vanLoon 

and Duffy, 2005).  

 The surfaces of particulate matter may also retain P through specific binding mechanisms which 

involve covalent bonding (vanLoon and Duffy, 2005).  Amorphous precipitates are formed as the P 
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anions form inner sphere ligand complexes with the metal ions (Hedley, 2008; Reddy and DeLaune, 

2008).  Ligands are anions, cations, or neutral molecules which bind to a central metal atom or ion.  Inner 

sphere complexes involve direct sharing of electrons between the metal and the ligand (Kasprzyk-

Hordern, 2004).  The formation of these precipitates is often due to high concentrations of either 

phosphate or metal cations.  In calcareous soils orthophosphates are adsorbed to the surface of CaCO3.  

With high concentrations of phosphate ions the calcium phosphate complex will form an insoluble 

precipitate (Reddy and DeLaune, 2008).  When phosphates are precipitated to Fe, Al, or Ca ions the 

structure is initially amorphous.  Over time the precipitate will become crystalline in nature, increasing 

the stability and reducing the potential for P desorption.  Increased temperature is a large factor in 

promoting the crystallization of the precipitate and is therefore a factor in P sorption (Reddy and 

DeLaune, 2008).   

1.3.10: Phosphorus Removal Techniques and Technologies 

The high level of P in urban stormwater has generated interest in developing P removal 

technologies to mitigate this problem.  P removal technologies have been developed and used in the 

wastewater industry for several decades, and this knowledge and experience is quickly being used to 

manage the stormwater field.  Conventional wastewater treatment technology uses a combination of 

biological (activated sludge processes) and physiochemical mechanisms (including chemical 

precipitation, ion exchange and membrane processes) (Ayoub and Kalinian, 2006).  Physiochemical 

mechanisms of treatment are favoured for stormwater, as the use of P storing bacteria requires various 

conditions such as anaerobic zones and the presence of biodegradable soluble organics (Zhang et al., 

2008). 

In stormwater runoff P is typically in both dissolved and particulate forms, removal technologies 

use a combination of chemical removal techniques such as adsorption and ion exchange and physical 

processes such as settling and filtration (Hatt et al., 2008; Hsieh et al., 2007).  P is preferentially bound to 

finer materials (<63 µm) but can associate with the entire size range of particulate matter that is 

transported through urban stormwater (1 – 10 000 µm) complicating removal procedures (Ma and 

Sansalone, 2007).  Particles can be operationally defined as sediment (>75µm), settleable (75-25 µm) and 

suspended (<25 µm) based on the 1 hour Imhoff settling test (Kim et al., 2008).  Many of the BMPs used 

in stormwater control and water treatment rely on settling processes to remove pollutants associated with 

larger particles.  However, ponds, basins and constructed wetlands may not effectively remove suspended 

and colloidal fractions which fail to settle, necessitating the use of sorption processes (Genҫ-Fuhrman et 

al., 2007).   
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Several studies have investigated the PSC of various media.  Most of the research has been 

focused on the use of different media in wastewater treatment, yet there remains a limited set of literature 

focused on media for stormwater application (Kandasamy et al., 2008; Erickson et al., 2007; Hatt et al., 

2008; Davis et al., 2001; Liu et al., 2001; Lucas and Greenway, 2008).  Several studies have explored the 

use of low-cost sorptive materials such as limestone, bauxite, zeolite, fly ash, slag, shale, steel wool, gas 

concrete, red mud and cement for P removal (Drizo et al., 1999; Johansson and Gustafsson, 1999; Agyei 

et al., 2002; Erickson et al., 2007).  Low-cost sorptive materials are an attractive option for financially 

constrained stormwater projects.  Furthermore, the use of industrial by-products such as fly ash and steel 

slags is a way in which to recycle waste products into a useful function.  However, the industrial by-

products are naturally variable and there remains a concern for metal leaching (Li et al., 2006).   In recent 

years the use of engineered media such as aluminum-oxide and iron-oxide coated media has been 

investigated for their efficiency in P removal (Ma and Sansalone, 2007; Boujelben et al., 2008).  

Engineered media are designed to maximize sorption potential by using characteristics such as large 

specific surface area (Liu et al., 2001), increased porosity (Khadhraoui et al., 2002) and materials with a 

high cation exchange capacity (>10 meq) (Hunt et al., 2006; Kasprzyk-Hordern, 2004; Mengel, 1982).   

Sorption processes can be categorized into electrostatic forces, physical forces and chemical 

bonding (Minton, 2002).  Ion exchange is a form of electrostatic forces.  As solution passes through the 

media, a pollutant ion (preferred ion) may be replaced with an ion from the media (less preferred ion).  

The media is exhausted when all the least preferred ions are exchanged for preferred ions (Minton, 2002).  

Adsorption is the process where matter (eg. molecules, ions, particles, polymers, colloids) is dispersed in 

solution and accumulates on the surface of an adsorbant (Kasprzyk-Hordern, 2004).  Adsorption may 

occur through weaker physisosorption processes and stronger chemisorption through the formation of 

bonds between the adsorbate and adsorbent.  The physical forces are due to van der Waal interactions as 

partial charges of the absorbate are attracted to the electrostatic charges of the absorbent (Minton, 2002).  

Chemisorption is a much stronger interaction but requires an available sorption site on the adsorbent.  

Once chemical bonds are formed, desorption becomes more difficult. Generally physical adsoption has 

rapid kinetics, followed by a slower diffusion of the adsorbed particle into the matrix of the adsorbent 

(Kim et al., 2008).  
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Metal oxides are ideal for engineered media due to their high affinity towards phosphate 

molecules.  Through ligand bonds the phosphate molecule (anion) form inner-sphere surface complexes 

with the metal ion (cation) (Fig. 3).   

 

Figure 3: Ligand exchange model illustrating an inner-sphere surface complex. (Adapted from Mengel, 

1982). 

 

Due to the surface interactions involved within adsorption processes, a higher surface area enhances 

sorption capacity and rates of removal as more sorption sites are available (Sansalone, 1999; Minton, 

2002).  Sorption reactions are affected by competing species which may impede the removal of 

pollutants.  Changes in temperature can also affect sorption processes.  Higher temperatures increase the 

vibration frequencies of sorbed molecules, making desorption more likely (Minton, 2002).  Georgantas 

and Grigoropoulou (2007) reported that as an aluminum hydroxide media aged the P removal 

performance was altered.  After six months the performance decreased 10-15%, which is attributed to the 

hydroxide undergoing polymerization leading to an increase in crystal size.  As the size increases, P 

sorption sites are lost due to structural bridging.  

The largest influence on sorption reactions is pH of the solution and this is best exemplified when 

considering the surface chemistry of metal oxides.  In the presence of water, the metal oxides are 

surrounded by hydroxyl groups, protons and coordinated water molecules (Liu et al., 2001b).  The metal 

oxides are amphoteric, allowing them to act as either an acid or base.  This property is influenced by the 

surface charge and therefore pH of the surrounding solution.  When a certain pH is attained and the 

surface charge of the metal oxide is zero, this is referred to as the point of zero net charge (PZC).  If the 

pH increases, the surface becomes negatively charged due to the increased prevalence of hydroxide ions 

(OH
-
) in solution.  Conversely, a decrease in pH results in a positively charged surface as more hydrogen 
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ions (H
+
) are in solution (Fig. 4).  Engineered media are designed to perform within a specific pH range.  

For example, an engineered media with a PZC of 11 has a high positive charge within the typical 

stormwater pH range of 6-8 (Liu et al., 2001a) and therefore would effectively bind anionic species, such 

as phosphates.    

 

Figure 4: Effect of pH on aluminum hydroxide surface chemistry (Kasprzyk-Hordern, 2004). 

1.3.11: Optimization of Sorptive Media 

 Much of the literature examining the removal of pollutants from stormwater has focused on heavy 

metals (Seelsaen et al., 2006; Genç-Fuhrman et al., 2007; Hatt et al., 2008; Liu et al., 2001a,b; Liu et al., 

2004; Liu et al., 2005; Sansalone and Teng, 2004).  Field studies examining P removal have focused 

primarily on the filtration technologies for the removal of particulate P.  These studies include a wide 

range of BMP structures such as: bioretention cells (Dietz and Clausen, 2006; Hunt et al., 2006; Hsieh et 

al., 2007; Lucas and Greenway, 2008), storage basins (Kandasamy et al., 2008), sedimentation tanks 

(Sonstrom et al., 2002), wet ponds (Wang et al., 2002), partial exfiltration reactors (Sansalone and Teng, 

2004) and constructed wetlands (Lüderitz and Gerlach, 2002).  Several lab studies have examined the 

sorption capacities of media for DP removal.  Erickson et al. (2007) examined the performance of sand 

amended with steel wool, calcareous sand and limestone enhancements.  Each enhancement significantly 

increased performance; however column tests made the issue of clogging apparent.  Often very fine sized 

media will have high P removal capacities due to its large surface area however clogging may result when 

particles become trapped on the surface of the filter.  An effective filter needs to maintain hydraulic 

conductivity, allowing for solution to move through the filter, yet have high sorption capacity to achieve 

removal objectives.  Hsieh et al. (2007) noted that media with large pore sizes are effective at preventing 

clogging from suspended solid inputs.  Maintenance and regeneration is an important consideration in the 

life-cycle analysis of filter systems.  As clogging of fine media filters occurs at the top of the filter, Hatt et 

al. (2008) recommend simply scraping off the clogged layer to regain removal performance but 

eventually the filter reaches a point where the desired effluent concentrations are not being maintained.  
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This concept is referred to as the operating capacity.  Accordingly, as the filter becomes saturated with 

pollutants, the performance reaches a breakpoint and effluent concentrations rapidly increase (Minton, 

2002). 

1.3.12: Summary 

There remains a need to examine the use of adsorptive filter media for application in a variety of 

stormwater BMPs.  Urban stormwater runoff has a multitude of adverse effects including flooding, 

erosion, water quality impairment and ecological degradation (Marsalek and Chocat, 2002).  Modern 

approaches to stormwater management use a treatment train approach that incorporates a sequence of 

BMPs to manage water quantities and improve water quality.  A review of available literature 

demonstrates the potential for greenroof implementation within LID projects.  Greenroofs provide a site-

level control of stormwater by increasing storage, thereby reducing runoff volumes and peak flow rates.  

However, the literature also indicates that vegetated roofs are a source of pollutants, particularly P.  Due 

to the risks associated with increased P loading to freshwaters, there has been increasing research activity 

developing technologies for P removal.  Many of these technologies act to filter PP, without removing the 

bioavailable dissolved forms.  The use of adsorptive media, such as engineered metal oxides, provides a 

means of attaining very low concentrations of P in stormwater runoff.  There are limited BMP field 

studies which have examined the use of an engineered media in pollutant removal performance.  

Currently, no study has integrated an engineered media component to treat the runoff of a greenroof 

system.  This study addresses this gap in knowledge and will provide valuable information for the 

management and implementation of greenroof systems. 
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Chapter 2: Methods 

2.1: Experimental Design 

The purpose of this research is to examine the utility of engineered media for P removal from 

greenroof runoff.  To achieve this goal the research was conducted at two scales; field scale (to assess the 

effectiveness of the engineered media to remove P in runoff) and laboratory scale (to evaluate the P 

sorption capacity of the engineered media). For the field scale study, a mass balance approach was used to 

assess the P removal performance of an engineered media treating stormwater runoff from a greenroof.  

Runoff was directed from the roof surface into a treatment system containing engineered media. Water 

samples were collected at the inlet and outlet of the treatment system for twenty five rainfall events from 

July 11, 2009 to October 28, 2009 and May 7, 2010 to August 22, 2010. The samples were analyzed for 

soluble reactive phosphorus (SRP), total phosphorus (TP), suspended solids (SS), total dissolved solids 

(TDS) and grain size (GS).  SRP is operationally defined as dissolved P in the form PO4
3- 

(passing 

through a 0.45 µm filter). 

The second objective was to assess the PSC of engineered media through a series of equilibrium 

batch tests.  Engineered media was exposed to a series of working solutions of varying P concentrations 

(0 – 100 mg/L).  The adsorption data were fitted to the Langmuir equation to determine the adsorption 

capacity of the media under specific chemistry conditions such as temperature and pH.  Isotherm tests 

also permit the media‘s functional lifetime expectancy to be estimated.   

To assess the ability of the greenroof to reduce the quantity of stormwater runoff, hydrologic data 

was collected for 68 rainfall events from June 11, 2009 to October 31, 2009 and May 7, 2010 to August 

22, 2010.  The flow data was used to examine the greenroof‘s stormwater retention capacity and calculate 

mass loadings of pollutants.  The influence of the hydrological parameters such as storm size, intensity 

and antecedent dry period were examined with regard to their influence on overall stormwater retention.  

2.2: Study Limitations 

 The design and location of the greenroof presented several technical and logistical limitations for 

the study.  Throughout the first six storm events, half of the Archetype House roof area was being drained 

onto the greenroof through a downspout (Figure 5). This increased the total drainage area to 

approximately 37.13 m
2
.  During the July 11, 2009 event, the volume of runoff exceeded the treatment 

system capacity due to the increased drainage area.  The downspout was eventually rerouted to decrease 

the excess runoff volumes. 
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  A variety of equipment problems occurred during the study.  Power outage during storm events 

resulted in the ISCO 6712 Automated Samplers® failing to complete sampling programs on several 

occasions.  Additionally, the samplers experienced equipment malfunctions.  On July 25
th
 2009, the post-

treatment sampler failed to trigger due to a malfunctioning in the distribution arm.  Continued problems 

with the distribution arm resulted in further loss of samples, and necessitated the replacement of the 

sampler.   The tipping bucket rain gauge malfunctioned from June 1 to June 16, 2010.  During this time 

precipitation data was used from a meteorological station located approximately 450 m from the 

greenroof.   

Due to the distance between the study site and the University of Waterloo, logistical constraints 

and equipment malfunction prevented 12 events from being monitored for water quality.  At times storm 

events would follow in quick succession.  The first storm would be sampled but the second storm would 

follow before the site could be visited and the programs reset.  Additionally, access to the greenroof was 

limited to Kortright‘s hours of operation resulting in further logistical problems.    Although there were 

technical and logistical problems associated with the study, hydrological data (precipitation input and 

greenroof runoff) was collected for 68 rainfall events from June 11
th
, 2009 to October 31

st
, 2009 and May 

7, 2010 to August 22, 2010.  Water quality monitoring was completed on 25 of 37 runoff producing storm 

events.  

 

Figure 5: Downspout connecting the Archetype House roof to the greenroof. 
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2.3: Study Site 

2.3.1: Greenroof Description 

The field study was conducted in Vaughan, Ontario on the greenroof of the Archetype 

Sustainable House at the Living Campus Centre at Kortright (-79.59° N, 43.83° E).  The Archetype 

Sustainable House is a proof-of-concept showcase of sustainable technologies and innovations for 

residential housing.  The greenroof on this building was designed to demonstrate the concept of low 

impact development and provide aesthetic appeal to visitors.  The roof was built in the summer of 2008 

and is located on top of the garage attached to the house (Figure 6). The extensive greenroof was designed 

with a slope of less than 5° and has a drainage area of 19 m
2
.  Runoff drains through two downspouts 

located at opposite corners of the garage.  In an effort to simplify sampling procedures, the downspout 

which drained the majority of the runoff was monitored.  The area of the greenroof that drains to the 

monitored downspout is 13.9 m
2
, which represents approximately 73% of the total greenroof area.  The 

area draining to the unmonitored downspout contains a section of the greenroof and a walkway for roof 

access.  Runoff from the unmonitored section of the roof area drained to an area adjacent to the garage.  

 

Figure 6: Archetype House at Kortright, Vaughan, Ontario. 

2.3.2: Greenroof Components 

The greenroof consists of a vegetation layer, growth medium, root barrier, water retention layer 

and drainage panel (Figure 7).  The vegetation layer is composed of a variety of native plant species 

selected by a Toronto and Region Conservation Authority botanist for their drought tolerance and ability 
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to grow in thin soils. A complete description of the plants is presented in Appendix C.  The vegetation 

was planted in the spring of 2009 and was slow to reach maximum growth and coverage.  

 

 

Figure 7: Components of the study greenroof (Soprema Inc.). 

 

The growth medium is 180 mm deep in a layer of SOPRAFLOR I®.  This media is designed to 

support wild flowers, perennials and grasses and was therefore recommended for the plants selected for 

the vegetation layer.  The media consists of mineral aggregates, blond peat, perlite, sand and vegetable 

based compost (Soprema Inc. Technical data sheet 087021CAN2E, 2009).  Beneath the growth medium 

is a Microfab® root barrier which is composed of a woven polyethylene fabric with micro-perforations 

that allows the flow of water and air while preventing root penetration (Soprema Inc. Technical data sheet 

081219CAN1E, 2009).  Beneath this layer is the Aquamat Jardin® irrigation layer.  This component can 

be used for integrated irrigation systems.  However, due to the drought tolerance of the vegetation layer 

no irrigation system was installed.  Therefore, the irrigation layer‘s primary function for this greenroof is 

a reservoir, holding 11.6 L/m
2
 of water (Soprema Inc. Technical data sheet 050428CAN1E, 2009).  The 

final component is the Sopradrain Eco-5® drainage panel to allow excess water to drain at a maximum 

flow rate of 109 L/min·m (Soprema Inc. Technical data sheet 080208CAN2E).   

2.3.3: Treatment System Description 

 Two different engineered media were examined during the study.  Both media were designed 

using a lightweight pumice substrate and modified with an oxide-coating to improve sorption capacity for 

dissolved P.  The media used during the 2009 monitoring season had a D50 of 1.18 ~ 2.00 mm, D90 2.36 ~ 

4.75 mm and a specific surface area of 75 – 100 m
2
/g.  The media used in 2010 had a D50 of 0.85 ~ 1.00 

mm, D90 of 1.0 mm ~ 1.18 mm and an approximate specific surface area of 300 m
2
/g (Figure 8). 
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Figure 8: Grain size distribution of engineered media. 

 

The media is housed within a cartridge structure (Figure 9) which is 0.558 m in height and 0.457 

m in diameter.  The cartridge has an outer surface area of 0.80 m
2
.  During 2009, the media in the 

cartridge was filled to a depth of 0.330 m, which represents a volume of 0.051 m
3
.  In 2010, the depth of 

media was increased to 0.550 m thus increasing the volume to 0.079 m
3
.  The entire cartridge structure is 

contained within a rain barrel 0.914 m high and 0.558 m in diameter (volume of 0.224 m
3
).  Subtracting 

the volume of the media, the total volume available for stormwater collection is approximately 0.173 m
3
 

and 0.145 m
3 

for 2009 and 2010, respectively.  The cartridge was designed to treat a maximum flow 

capacity of 1.14 L/s and a surface loading rate of 1.42 L/m
2
·s. 

Runoff from the greenroof was routed through a tipping bucket rain gauge then into the treatment 

system through radial flow (Figure 9).  The stormwater is treated by the engineered media and exits the 

cartridge with gravitational flow through a center tube.  The treated runoff moves through 30.5 cm of 

ABS piping before exiting through a 3 mm drain orifice.  A 50 mm diameter overflow pipe was installed 

at the same height of the media to manage for flows exceeding the rate of draindown.  Two HOBO® U20 
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Water Level Loggers were used to measure the runoff volumes within the rain barrel.  One logger was 

placed inside the barrel to record the absolute pressure.  The absolute pressure includes both water head 

and atmospheric pressure.  To avoid errors in water level measurements due to barometric variations a 

second logger was placed outside the barrel.  Data from the two loggers were analyzed using HOBOware 

Pro® version 2.7.3.1 software.  Accuracy of the water level measurement is +/- 0.3 cm.  The transducers 

were programmed to take measurements every 30 seconds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Flow pathways in the treatment system containing engineered media. 

2.4: Water Quantity 

2.4.1: Runoff 

 Greenroof runoff drained into a downspout and was then directed through piping into a storage 

hut containing the cartridge system and flow monitoring equipment (Figure 10).  Flows were measured by 

a VKWA 2000 tipping bucket flow meter with the data being recorded by an attached ISCO 6712 

Automated Sampler®.  The volume of the tipping bucket is 2.0 L with a maximum flow rate of 24 L/min.   

inflow 

rain barrel 

cartridge 

overflow 

outflow 
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Flow rates were recorded at 1 minute intervals.  Flow measurements were downloaded and analyzed with 

ISCO Flowlink® 5.10.101 software. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Tipping bucket flow meter and rain barrel containing treatment system. 

2.4.2: Precipitation 

Precipitation was recorded on the greenroof using a Hydrological Services tipping bucket rain gauge in 

0.2 mm increments (Figure 11).  Due to potential shadowing effects by the surrounding second story of 

the Archetype House, the rain gauge was positioned in a way to best represent the precipitation reaching 

the green roof surface.  Data from the rain gauge was recorded using an Onset Computer Data Logger at 5 

minute intervals and downloaded with HOBOware Pro® version 2.7.3.1 software.   

 

inflow sampling location 

tipping bucket flow gauge 

outflow sampling location 

treatment system 
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Total rainfall volume was calculated using the following equation:  

Vp  = R x D              (1) 

where: Vp = Volume of precipitation falling on the greenroof (L) 

 R = Rainfall depth (mm) 

 D = Drainage area (m
2
) 

 

The percent runoff retention of the greenroof relative to precipitation (%Rp) was calculated as: 

%Rp = 
     

  
 x 100             (2) 

Where:  Vp = Volume of precipitation falling on the greenroof (L) 

  Vr = Volume of runoff measured from the greenroof (L) 

 

 

 

Figure 11: Tipping bucket rain gauge located on the greenroof. 

 

Composite precipitation samples were collected in an acid washed triple rinsed 10 L carboy bottle 

connected to a rain gauge at the meteorological station located on site (Figure 12).    
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Figure 12: Meteorological station containing rain gauge located 450 m from greenroof. 

 

2.4.3: Sample Collection 

 Two ISCO 6712® automatic samplers were used to collect runoff at the inlet and outlet of the 

treatment cartridge at specified intervals during each rainfall event.   The samplers were housed inside the 

garage which provided security and a constant power source.  Pre-treatment runoff was collected from a 

pipe elbow that is approximately 350 mL in volume.  Initiation of pre-treatment sample collection was 

triggered by the first tip of the flow meter.  The pre-treatment sampler took twenty four 350 mL samples 

at regular time intervals throughout the storm event.  The post-treatment sampler was triggered using an 

ISCO 730 Bubble Module® that measured when water level in the rain barrel reached the point of contact 

with the media.  The module malfunctioned after the September 28
th
, 2009 event; for subsequent events a 

connection cable was used to trigger the post-treatment sampler after the pre-treatment sampler had 

collected its first sample.  The post-treatment sampler collected twenty four 500 mL samples from the 

drainage pipe at the bottom of the cartridge structure.  The post-treatment sampler was programmed to 

collect at the same time intervals as the pre-treatment sampler.  Samples were collected on 15 minute 

intervals for the first storm for a total 6 hour sampling time.  The sampling interval was shortened 

following this storm to provide a better representation of the hydrograph, most notably during the early 

stages of the runoff. 
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Stormwater sampling is ideally flow paced which allows for a larger percentage of samples 

during high flow, thus providing better representation of the pollutograph (Davis and McCuen, 2005).  

Based on the greenroof design and limited use of space in which to store the treatment system, a tipping 

bucket flow meter was selected to record flow measurements.  However, to initiate sampling the tipping 

bucket flow meter needed to be configured to act as a rain gauge.  Each tip of the flow gauge would send 

one pulse which would be recorded by the ISCO sampler, with the first pulse triggering the sampling 

program.  These pulses were then back calculated to determine flow rates.  Without the use of a weir, or 

area velocity flow logger, the sampling could not be flow paced.  Uniform time pacing was selected for 

the sampling program.  The uniform time pacing provided an overall representation of the hydrograph. 

Due to the greenroof‘s largely uniform release of pollutants, the loss of information gained with flow 

paced sampling was considered minimal.  A summary of the sampling time intervals for each monitored 

storm is provided in Table 1.   

Following each storm event, the samples were collected from the site.  Data from the samplers 

was downloaded and the sampling program reset for the next storm event.  The bottles were replaced for 

each event with acid washed triple rinsed bottles.  From the 68 rain events monitored, 26 produced no 

runoff, 25 were monitored and 5 occurred before the treatment system was installed.   
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Table 1: Monitoring period sampling times. 

Sample Date 

Start Time End Time 
Sampling 

Interval 
Influent Effluent Influent Effluent 

11-Jul-09 9:42 9:44 14:12 14:14 15 min 

23-Jul-09 11:11 11:13 15:01 15:03 10 min 

29-Jul-09 9:27 9:27 13:17 11:17 10 min 

9-Aug-09 20:27 20:32 0:17 0:22 10 min 

11-Aug-09 15:12 15:16 19:02 19:06 10 min 

20-Aug-09 17:40 17:46 21:30 21:36 10 min 

29-Aug-09 2:02 2:34 5:52 6:24 10 min 

28-Sep-09 18:42 18:42 20:37 20:37 10 min 

29-Sep-09 2:19 2:19 4:14 4:14 5 min 

2-Oct-09 13:09 13:09 15:04 15:04 5min 

9-Oct-09 2:25 2:25 6:15 6:15 10 min 

23-Oct-09 19:13 19:17 0:43 0:47 10 min*  

28-Oct-09 3:55 4:00 9:26 9:30 10 min*  

7-May-10 21:24 21:26 1:13 1:15 10 min 

13-May-10 19:45 19:47 23:35 23:37 10 min 

2-Jun-10 19:38 19:40 23:28 23:30 10 min 

3-Jun-10 13:50 13:52 17:40 17:42 10 min 

12-Jun-10 10:25 10:27 14:15 14:17 10 min 

16-Jun-10 9:25 9:27 13:15 13:17 10 min 

22-Jun-10 14:14 14:16 18:04 18:04 10 min 

24-Jun-10 4:11 4:13 8:01 8:03 10 min 

26-Jun-10 11:26 11:28 15:16 15:18 10 min 

24-Jul-10 15:07 15:09 18:57 18:59 10 min 

15-Aug-10 8:47 8:49 0:37 0:39 10 min 

22-Aug-10 3:56 3:58 7:46 7:48 10 min 

* 10 min (1-12 samples) 20 min (13-24 samples) 

    

2.5: Water Quality Analysis 

 Upon collection from the study site, water samples were returned to the University of Waterloo 

for analysis in the Sediment and Water Quality Lab of the Department of Geography and Environmental 

Management.   

 

 

 



30 

 

2.5.1: Conductivity and pH 

 Conductivity and temperature were measured with a regularly calibrated Orion 105A+ 

Conductivity Meter following Standard Method 2510B.  The pH was measured using a calibrated Orion 

250A pH meter (±0.02) following Standard Method 4500-H
+ 

(Eaton, 1995). 

2.5.2: Suspended Solids and Total Dissolved Solids 

 Suspended solids concentrations were determined by filtering the samples through pre-weighed 

0.45 µm glass microfiber filters.  The filters were then dried at 100°C for 24 hours (Standard Method 

2540 D) and weighed. The suspended solids concentrations (mg/L) were calculated with the following 

equation: 

 

TSS = 
(     )      

 
          (3) 

where: 

Fi = initial filter mass (g)  

Fd = dried filter mass (g) 

V = sample volume (L) 

 

 

Total dissolved solids concentrations (mg/L) were calculated with the formula: 

 

TDS =(
 

  (     (    ))
)) x 0.666        (4) 

where:  

C is conductivity (µS/cm)  

T (°C) is the sample temperature. 

2.5.3: Phosphorus 

 A 20 mL aliquot of each water sample was filtered through a 0.45 µm filter into glass scintillation 

vials then stored at 4°C for subsequent analysis of SRP (Standard Method 4500 P A).  Samples were 

preserved for TP analysis by adding 1 mL of 20% sulfuric acid (H2SO4) to 100 mL of sample.  TP 

samples were digested using a potassium persulfate method prior to analysis.  A Technicon Autoanalyzer 

II® and NAP analysis software were used to measure SRP and TP concentrations according to the 

stannous chloride ammonium molybdate colorimetric method (Environment Canada, 1979).  The 
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detection limit of this method is 1 µg/L.  The colorimeter and analysis software were configured for a 

range of P concentrations from 0 – 400 µg/L.  Samples with higher concentrations were diluted to a 

measurable range using de-ionized water.   

2.5.4: Grain Size Analysis 

 In order to characterize the nature of particulate matter collected pre and post treatment, 

suspended solids were collected and evaluated with an image analysis system.  For selected rainfall 

events, the grain size distribution of suspended solids were measured and compared. A 20 mL aliquot was 

pipetted from each sample bottle and filtered through a 0.45 µm Millapore HA nitrocellulose filter.  Each 

bottle was gently inverted (turned end to end) to ensure complete resuspension of the solids. Solids on the 

filters were examined using a Zeiss Axiovert S100 microscope and Northern Eclipse Image software.  

The filters were rendered semi-transparent using low viscosity microscope immersion oil (Richard-Allen 

Scientific).  A minimum of 2500 particles for each sample were measured for statistical significance. 

Images of representative particles were collected.  

2.5.5: Water Quality Data Analysis 

 Summary statistics including number of samples, mean, min, max, and standard deviation (SD), 

are reported for all water quality parameters.   Event mean concentrations (EMC), unit area loadings 

(UAL), volume weighted mean concentration (MCvw) and extrapolated unit area loading (UALex) were 

calculated for measured SRP, TP and TDS.  

The EMC is a flow-weighted average of the pollutant concentration for a storm event and 

provides a more representative estimate of the pollutant concentration than averaging the concentrations 

of multiple discrete samples (Davis and McCuen, 2005).  The equation used to calculate EMC is: 

 

EMC = 
∑ (         )
 
   

∑ (     ) 
   

         (5) 

where: 

Ci= concentration of discrete sample 

Qi = discharge at the time of discrete sample 

∆t = time interval between samples (Davis and McCuen, 2005). 

 

The unit area load (mg/m
2
) was calculated using the following equation: 

 

UAL = 
∑ (       )
 
   

 
          (6) 
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where:  

Vi = Total volume of runoff measured for event i (L) 

EMCi = Event mean concentration of the pollutant for event i (mg/L) 

A = Area of greenroof sampled (m
2
) 

 

Volume-weighted mean concentration (MCvw) was calculated using: 

 

MCvw = 
∑  (       )
 
   

∑ (  )
 
   

         (7) 

 

To account for storm events where water quality monitoring was not completed, an extrapolated load was 

calculated using the MCvw and the total volume of runoff measured.  The extrapolated load value is based 

on using the volume-weighted mean concentration as a best possible estimate for influent concentrations.  

Additionally, the extrapolated effluent load requires the assumption that all unmonitored effluent is 

treated with similar performance to monitored effluent.  The extrapolated load was calculated using: 

 

UALex = 
        

 
          (8) 

 

where: 

Vt = Total volume of greenroof runoff measured during the monitoring season. 

 

 

Treatment efficiency was calculated for both the UAL and UALex with the following equation: 

 

TE = (
              

      
)                     (9) 

 

where: 

UALpre = Unit area load (mg/m
2
) of greenroof runoff 

UALpost = Unit area load (mg/m
2
) of runoff after treatment (TRCA, 2006) 
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2.6:  Sorption Experiments 

A series of batch experiments were conducted on the two types of engineered media to determine 

the maximum sorptive capacity.  Triplicate samples of the media were weighed individually into 50 mL 

centrifuge tubes.  Each sample was coned and quartered in an attempt to minimize variation in particle 

size.   Twenty five mL aliquots of 0.00, 0.05, 0.100, 0.250, 0.500, 1.00, 2.00, 3.00, 4.00, 5.00, 10.0, 25.0 

and 50.0 mg P/L were added to each tube.  An additional 100 mg P/L aliquot was tested for the 2010 

media.  Although this concentration is much higher than the range of reported greenroof runoff P 

concentrations (0.6-3.0 mg/L TP), a high concentration was needed in order to saturate the media and 

establish a sorption isotherm (Zhu et al., 1997).  Ionic control was maintained by adding 0.25 mL of 1.0M 

KCl to each centrifuge tube.  The centrifuge tubes were capped and shaken at approximately 50 rpm for 

20 hours on a heavy-duty shaker (Eberbach 6000).  Twenty hours was considered sufficient time to allow 

the solution to reach equilibrium, after which the samples were filtered through 0.45 µm filter (Del Bubba 

et al., 2003).  Temperature remained constant at normal room temperature of 22ºC.  P concentrations were 

measured using methods previously described.  The mass of P sorbed per mass of media (q) was 

calculated using the following: 

 

  
(     )  

 
                    (10) 

 

where:  

q = mass of P sorbed per mass of media (mg/g) 

C0 = initial concentration of P in solution (mg/L) 

CE = concentration of P in solution after equilibrium (mg/L) 

V = volume of P aliquot (L)   

M = mass of media (g) 

 

The Langmuir isotherm was used to estimate the maximum sorption capacity.  The Langmuir 

isotherm assumes sorption has reached equilibrium as well as a monolayer of coverage on a uniform 

surface with no interaction between the adsorbed molecules (Islam et al., 2004).  The Langmuir isotherm 

is as follows: 

 

  
         

  (    )
      (11) 
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where:  

qmax = the maximum adsorption capacity of the media (mg/g) 

b = Langmuir equilibrium constant (unitless) 

 

 Following the sorption experiments, isotherm curves were generated to examine the sorptive 

capabilities of the media.  The Freundlich isotherm is an empirical model which does not require 

assumptions on the nature of the sorption such as mono-layer coverage of the media.  The Freundlich 

isotherm is as follows: 

              (12) 

where: 

K, n = Freundlich constants related to the strength of binding between the absorbant and absorbent 

material. 

The n coefficient describes the adsorptive capacity of the material.  Values close to 1 indicate a higher 

adsorptive capacity at high equilibrium concentrations.  If values are greater than 1, the binding affinity 

decreases (Heal et al., 2004).  The isotherm can be plotted linearly by log transforming the data and 

plotting logq vs logCE.  The experimental data was fit to the Langmuir model using non-linear regression 

analysis with the software program OriginPro 8.0. 

2.7: Quality Control 

 During chemical analysis at least 5% of the samples were run in duplicate to measure analytical 

precision.  Duplicate analysis reported precision of within 5% for measured values.  Reagent blanks were 

inserted after every three samples during analysis.  Prior to analysis, five P standards were used to 

generate a standard calibration curve.  Only if the software reported high correlation between the 

measured and expected values would analysis proceed.  To test for P contamination, laboratory blanks 

were prepared from equipment used in the sampling and analysis.  This included: 1L ISCO bottles, 25 mL 

glass bottles, and 20 mL filtering syringes.  Many samples required dilution to bring P concentrations into 

a detectable range.  Incomplete mixing of solutions can introduce dilution error during sample 

preparation.  Samples subject to dilution were tested at different dilution factors to ensure between at least 

10% agreement.   

2.8: Statistical Analysis 

Water quality and water quantity data analysis was completed with OriginPro 8.0.  The normality 

of the data was determined using one sample Kolmogorov-Smirnov tests.  The water quality and water 

quantity data were not normally distributed.  To determine significant differences in water quality 
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parameters between influent and effluent samples the Mann-Whitney U test was used.  The Mann-

Whitney U test compares two independent samples with non-normal distributions.  Due to the inherent 

time delay in the sampling procedure the samples are considered independent, making the Mann-Whitney 

test more appropriate than a paired t-test.  Linear regression was used to compare the treatment efficiency 

of the engineered media over the monitoring period.  Bivariate correlation analysis was used to determine 

significant relationships between water quantity parameters such as storm size, antecedent dry period and 

lagtime.  Spearman rank-order (rs) correlation was used as a non-parametric alternative to Pearson 

product-moment (r) correlation.  Boxplots are presented for water quality parameters SRP, TP, 

Conductivity, TDS and SS.  The boxplots were created using SPSS Statistics 17.0 software.  The software 

defined outlier values (°) as between 1.5 interquartile ranges and 3 interquartile ranges of the data.  

Extreme values (*) were defined as more than 3 interquartile ranges of the data. 
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Chapter 3: Results 

3.1: Introduction 

The following chapter addresses limitations of the study and presents sections on the greenroof 

hydrological response and water quality data for the field study.  Precipitation data collected on the 

greenroof is compared to data collected at the Buttonville Airport weather station and to long term 

average values compiled by Environment Canada.  Following the field study sections, lab data for the 

sorption experiments is reported.   

3.2: Precipitation Data 

Monthly total precipitation values for the study period are compared to a 30 year climate average 

in Table 2.  Monthly precipitation data was collected from the Buttonville Airport, located approximately 

18 km away from the study site.  Long-term averages are available from the AES station located at 

Pearson International Airport.  The Buttonville airport precipitation data demonstrate that 2009 had much 

higher rainfall amounts than the historical norms.  During 2009 July, August and October received higher 

than average precipitation amounts, while September was a dryer month than average.  During the 2010 

monitoring season May was the only month with lower than average precipitation levels.  July and 

August had slightly higher amounts, while June received three times the average rainfall.  With the 

exception of June, the 2010 monitoring period had lower monthly rainfall amounts than in 2009.  

Excluding August 2009 and July 2010, the greenroof rain gauge recorded less rainfall than the Buttonville 

airport.  The lower total rainfall volumes can be attributed to the shadowing effect caused by the 

Archetype House that partially blocked the eastern side of the greenroof.     

Table 2: Comparison of total monthly precipitation measured during the monitoring period. 

Precipitation (mm) 

Month 

Pearson Airport 

Climate 

Normals 1971-

2000 

Buttonville 

Airport 2009 

Archetype 

House 

Greenroof 2009 

Buttonville 

Airport 

2010 

Archetype 

House 

Greenroof 

2010 

May 72.5   63.2 25 

Jun 74.2 70.9 46.6 228.6 212.2 

Jul 74.4 110.2 56.2 76.6 83.4 

Aug 79.6 107.6 149.8 91 79 

Sep 77.5 47 39.2   

Oct 64.1 78.2 55.2   

Total 442.3 413.9 347 459.4 399.6 

Source: Environment Canada, 2010 
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Figure 13: Temporal distribution of precipitation events on the greenroof during 2009.  The numbers 1 

through 13 indicate storm events sampled for water quality analysis. 

 

Figure 14: Temporal distribution of precipitation events on the greenroof during 2010 monitoring season.  

The numbers 14 through 25 indicate storm events sampled for water quality analysis. 
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3.3: Characteristics of Storm Events 

Over the entire monitoring period, the greenroof received rainfall events that ranged from 1.0 to 

83.2 mm.  The 83.2 mm event occurred on August 20, 2009.  Due to the intensity of the storm this 

measurement is expected to be an overestimation.  It is probable that the rain gauge on the greenroof 

recorded water running off the surrounding roof of the Archetype House.  The rain gauge at the 

meteorological station recorded a rainfall volume of 56.8 mm which is a more realistic volume, and 

therefore this value was used to calculate the storm intensity and return period for this event.  However, 

for the calculation of the greenroof stormwater retention, the use of 83.2 mm is maintained.  Twenty five 

storm events were sampled throughout 2009 and 2010.  Based on storm intensity and storm duration, 

return periods were calculated from an Intensity Duration Frequency curve supplied by Environment 

Canada (Table 3).  The August 20, 2009 event had the highest storm intensity of 26.22 mm/hr and a 

return period of approximately 35 years.  The July 11, 2009 event had a return period of between 2 and 5 

years.  The June 24, 2010 event had a 2 year return period, and the remaining events had return periods of 

< 2 years.  It is important to have control practices that are effective at treating small storms due to their 

frequency and critical contribution to water quality problems (Pitt and Clark, 2008).  Summaries of 

hydrological parameters for each rainfall event including total rainfall (mm), total runoff outflow (L), 

mean flow (L/min), peak flow (L/min), rainfall intensity (mm/hr), previous dry hours (hrs) and rainfall 

duration (min) are found in Appendix B.   

The greenroof runoff volumes ranged from 2 to 1028 L per storm event and a total of 6140 L was 

generated over the 2009 and 2010 monitoring periods.  Peak runoff flow rates varied between 0.1 and 16 

L/min and the mean runoff flow rates between 0.02 to 4.4 L/min.  The highest peak flows and highest 

mean flow was observed during the August 20, 2009 event.  Previous dry hours spanned from 3 hours to 

605 hours.  Several days were considered to have multiple individual storm events resulting in lower 

previous dry hour values (August 4, 2009, August 9, 2009, September 28, 2009, September 29, 2009 and 

June 9, 2010).           
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Table 3: Rainfall amount, intensity and return period of water quality monitored events. 

Date 
Rainfall 

(mm) 
Intensity (mm/hr) 

Return Period 

(yrs) 

11-Jul-09 20.8 22.7 2--5 

23-Jul-09 14.2 1.16 <2 

29-Jul-09 5.4 2.59 <2 

09-Aug-09 17.6 9.60 <2 

11-Aug-09 8.4 4.38 <2 

20-Aug-09 56.8 26.2 ~35 

29-Aug-09 4.2 0.55 <2 

28-Sep-09 6.2 2.76 <2 

29-Sep-09 3.8 1.09 <2 

02-Oct-09 1.6 0.16 <2 

09-Oct-09 23.2 1.02 <2 

23-Oct-09 5 0.32 <2 

28-Oct-09 3.8 0.45 <2 

07-May-10 18.4 0.84 <2 

13-May-10 5.2 0.80 <2 

02-Jun-10 33 3.44 <2 

03-Jun-10 14.8 8.46 <2 

12-Jun-10 23.6 3.45 <2 

16-Jun-10 17.8 14.2 <2 

22-Jun-10 19.4 2.74 <2 

24-Jun-10 31.2 8.14 2 

26-Jun-10 11.8 1.46 <2 

24-Jul-10 12.2 2.19 <2 

15-Aug-10 17 1.62 <2 

22-Aug-10 27.8 1.01 <2 

 

3.4: Water Quantity 

3.4.1: Runoff Retention Rates 

The percent runoff retention relative to precipitation (%Rp) data for all monitored events is 

presented in Figures 15 and 16.  A complete summary of runoff retention data is found in Appendix B 

Table 1.  During the 2009 monitoring period, the greenroof retained approximately 41.5% (144 mm of 

347 mm) of the precipitation.  For the 2010 monitoring period the precipitation retained by the greenroof 

was 53.3% (213 mm of 400 mm).   Retention rates ranged from 0 – 100%.  A total of 27 storm event 

(<15.6 mm) produced no runoff.  The largest storm event that was completely retained was 15.6 mm on 

July 11
th
, 2010.  The largest overall storage of runoff occurred on June 25

th
, 2009 with the roof retaining 
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approximately 437 L of runoff (11.8 mm of 22.8 mm precipitation).  During the period with the smaller 

drainage area, the largest overall storage on June 2, 2010 was approximately 393 L (28.3 mm of 33 mm of 

precipitation).  

 

Figure 15: Greenroof stormwater retention (%) relative to precipitation – 2009 period. 
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Figure 16: Greenroof stormwater retention (%) relative to precipitation – 2010 period. 

 

The monthly retention percentages shown in Figure 17 demonstrate that retention rates were high 

during the summer months, before decreasing to a net negative value for October 2009.  Excluding the 

retention rates for October, the average retention is 71% for the summer months.  Negative values denote 

a larger volume of runoff outflow than precipitation inflow.  August 2009 and June 2010 had lower 

retention percentages than all other months, excluding October 2009.  During these months storm events 

were more numerous than other months with 11 and 13 events for August 2009 and June 2010 

respectively.  The increased frequency of storm events resulted in larger volumes of water falling on the 

greenroof during these months, and smaller antecedent dry periods.   
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Figure 17: Greenroof stormwater retention (%) for each month of monitoring period. 
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Table 4: Summary of monthly runoff retention (mm). 

Storm Event Total Rain (mm) 
Greenroof Runoff 

(mm) 

Greenroof 

Retention (mm) 

% Runoff 

retention (relative 

to precipitation) 

June 2009 46.6 21.8 24.8 53.3 

July 2009 56.2 23.7 32.5 57.8 

August 2009 150 83.7 66.1 44.1 

September 2009 39.2 10.4 28.8 73.6 

October 2009 55.2 63.3 0 -14.7 

Total 2009 347 203 144 41.5 

May 2010 25 11.9 13.1 52.2 

June 2010 212 136 75.9 35.8 

July 2010 83.4 19.9 63.5 76.2 

August 2010 79 18.6 60.4 76.5 

Total 2010 400 187 213 53.3 

 

3.4.2: Rainfall Size Influence on Retention 

The retention values vary considerably with differing storm sizes and are strongly affected by 

factors such as antecedent dry periods, storm intensity and duration.  The mean percent retention of 

storms (<5 mm) was 54.0%, with a mean absolute retention of 1.7 mm.  Storms >5 mm had a mean 

percent retention of 57.3% with a mean absolute retention of 7.1 mm.  The scatterplot in Figure 18 

displays the relationship between rain depth and the percent retention by the roof.  The data suggest a 

slight negative trend as the smaller events are clustered towards the higher percentages.  There is 

considerable spread within the data, indicating that the relationship between rain depth and runoff 

retention is complicated by other factors.  Figure 19 demonstrates a strong positive relationship between 

the absolute retention and the size of the rainfall event.   
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Figure 18: Influence of rainfall size on greenroof stormwater retention %. 
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Figure 19: Influence of rainfall size on greenroof stormwater retention (mm). 
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3.4.3: Influence of Antecedent Dry Period on Retention 

The antecedent dry period or previous dry hours (PDH) were measured for each storm event 

(Appendix B Table 2).  This parameter was calculated as the time between the last rain tipping bucket 

measurement and the start of the storm event.  The events were grouped into periods of less than 48 PDH 

and greater than 48 PDH.  For the entire monitoring period, events with less than or equal to 48 PDH had 

a mean retention of 34.0%.  Events with greater than 48 PDH had a mean retention of 77.7%, a 43.7% 

increase.  Excluding the month of October, the retention performance increase for both categories.  Events 

with less than 48 PDH have a mean retention of 52.0%, and events with equal or greater have 84.2%.   
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Figure 20: Influence of antecedent dry period on greenroof stormwater retention %. 

3.4.4: Lag Time Response 

The lag time is defined as the time between the peak rainfall intensity and the peak runoff flow.  

No control roof was monitored as part of this study.  Accordingly, the results are reported without an on-

site comparison.  The monthly average lag times are presented in Table 5.  The lag time for each storm 

event is presented in Appendix B, Table 2. 

The overall average lag time for all events monitored was 78.1 minutes.  The lowest monthly 

average lag time occurred in June 2010.  The high volume of total rain likely saturated the greenroof for 

the duration of the month, resulting in shortened runoff lag times for the individual events.  Higher 

average lag times were measured in October 2009 and August 2010.  While the greenroof experienced 



46 

 

lower evapotranspiration and overall stormwater retention during October, the low intensity rainfall 

events could have resulted in a longer delay to peak runoff.  Two events in August 2010 produced runoff; 

one which demonstrated no lag time and one which had a very long delay to peak runoff (Figure 21).  The 

data becomes biased by storms which had very long lag times, such as those found on October 28, 2009 

and August 22, 2010 (Appendix B, Table 2).  The median value of 35.0 minutes is a better representation 

of lag time performance.  The low number of runoff producing events throughout the monitoring period, 

make it difficult to discern a lag time trend.     

Table 5: Average monthly runoff lag times. 

Period Total 

Rain 

(mm) 

Average runoff 

lag time (min) 

2009   

June 46.6 40 

July 56.2 48.6 

August 150 48.5 

September 39.2 37.5 

October 55.2 167 

   

2010   

May 25 31 

June 212 10.2 

July 83.4 89 

August 79 354.5 

   

Monitoring 

Period 

746.6 91.8 
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Figure 21: Greenroof lag time response of August 22, 2010 event. 

 

There is a large range of lag time responses when compared to rainfall intensity (mm/hr) (Figure 

22).  Three events on October 9, 2009, October 28, 2009 and August 22, 2010 have much higher lag 

times of 431 minutes, 482 minutes and 709 minutes, respectively.  The rainfall durations for these events 

were higher than the average storm duration of 385 minutes at 1360 minutes, 510 minutes and 1645 

minutes, respectively.  Longer, low intensity storms produced an in increased lag time response.        

When the storm events are grouped into categories of intensity, the lag time response becomes clearer.  

During low intensity storms (0-2.0 mm/hr) the greenroof had a mean lag time of 119.0 minutes.  During 

moderate intensity storms (2.1-5.0 mm/hr) mean lag time decreased to 31.3 minutes.  At high intensity 

(>5.0 mm/hr), the mean lag time was lowest at 23.3 minutes.   
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Figure 22: Greenroof lag time response to rainfall intensity. 

3.5: Water Quality 

Water quality results for 25 monitored storms from June 11, 2009 to October 28, 2009 and May 

7, 2010 to August 22, 2010 are presented in this chapter.  Data and summary statistics for individual 

events are presented in Appendix A. 

3.5.1: Precipitation 

 During the monitoring period precipitation samples were collected for water quality analysis.  

Due to the logistical constraints related to visiting the site immediately after each rainfall event, it was 

difficult to sample each precipitation event discretely.  Therefore some were composite of multiple 

events.  The P concentrations in the precipitation are much lower than the concentrations observed in the 

greenroof runoff and constitute only a small fraction of the greenroof P export.  SRP concentrations 

ranged from 0.002 – 0.065 mg/L and TP concentrations ranged from 0.004 – 0.103 mg/L.  The mean pH 

was 5.26 and mean conductivity was 162 µS/cm. 
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3.5.2: Soluble Reactive Phosphorus 

During the 2009 monitoring season the SRP concentrations in runoff from the greenroof ranged 

from 0.244 to 1.43 mg/L (Figure 23).  The volume-weighted mean concentration was 0.769 mg/L.  The 

total unit area loading was 118 mg/m
2 
with a mean UAL of 9.08 mg/m

2 
for each storm.  The UALex was 

calculated as 196 mg/m
2
 based on total runoff volume of 3546 L.  After treatment, the SRP concentrations 

ranged from 0.005 to 0.816 mg/L and the volume-weighted mean concentration was 0.523 mg/L.  The 

treatment reduced the UAL to 80.2 mg/m
2
 with a mean UAL of 6.17 mg/m

2 
for each storm.  The UALex 

was calculated as 133.3 mg/m
2 

based on similar treatment efficiency for the unmonitored volumes.  

Overall, the SRP TE2009 was equal to 32.0%.     

During the 2010 monitoring season the SRP concentrations in the greenroof runoff ranged from 

0.211 to 6.16 mg/L (Figure 23).  Several events during the 2010 season contained outlier and extreme 

concentrations much higher than the 2009 events.  There was a decrease in influent SRP concentrations 

over the two monitoring seasons with median concentrations of 0.786 mg/L and 0.628 mg/L in 2009 and 

2010 respectively.  For 2010, the volume-weighted mean concentration was 0.630 mg/L.  The total UAL 

was 76.1 mg/m
2
 with a mean UAL of 6.92 mg/m

2
 for each storm.  The UALex was calculated as 117 

mg/m
2 

based on total runoff volume of 2592 L.  Following treatment by the media, the SRP 

concentrations ranged from 0.013 to 0.318 mg/L and the volume-weighted mean concentration was 0.110 

mg/L.  The UAL was reduced to 13.4 mg/m
2 
and a mean of 1.21 mg/m

2 
for each storm.  The UALex was 

calculated as 20.1 mg/m
2
.  SRP TE2010 was equal to 82.4%. 
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Figure 23: Distribution of SRP concentrations for influent and effluent samples (*=extreme value; 

°=outlier). 
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3.5.3: Total Phosphorus 

In 2009, influent TP concentrations ranged from 0.511 to 2.89 mg/L (Figure 24).  The volume-

weighted mean concentration was 1.30 mg/L.  The total unit area loading was 189 mg/m
2
 with a mean 

UAL of 17.2 mg/m
2 

for each storm.  The UALex was calculated as 333 mg/m
2
.  After treatment, the TP 

concentrations ranged from 0.021 to 1.90 mg/L and the volume-weighted mean concentration was 0.973 

mg/L.  The treatment reduced the UAL to 141 mg/m
2
 with and a mean UAL of 12.8 mg/m

2 
for each 

storm.  The calculated UALex was 248 mg/m
2 
and TP TE2009 was 25.4%.   

For the 2010 monitoring season the influent TP concentrations ranged from 0.229 to 10.2 mg/L.  

The volume-weighted mean concentration was 1.18 mg/L.  The total UAL was 142 mg/m
2
 with a mean 

UAL of 13.0 mg/m
2 

per storm.  The UALex was calculated as 220 mg/m
2
.  The effluent concentrations 

ranged from 0.048 to 0.373 mg/L with a volume-weighted mean concentration of 0.158 mg/L.  The total 

UAL was 19.1 mg/m
2 
with a mean 1.73 mg/m

2 
per storm.  The calculated UALex was 29.4 mg/m

2
 and TP 

TE2010 was 86.6%. 
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Figure 24: Distribution of TP concentrations for influent and effluent samples (*=extreme value; 

°=outlier). 
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3.5.4: Temporal Variation in Phosphorus Concentrations 

P concentrations varied during storm events for both the influent and effluent samples.  Generally 

the P concentrations remained consistent during the event.  Compared to SRP concentrations through the 

hydrograph, TP concentrations were often more variable between samples.  For some events the 

concentrations slightly increased through the sampling program (Figure 25), while others demonstrated a 

large decrease in concentrations over the sampling time, indicating the possibility of the first flush 

phenomenon (Figure 26). 
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Figure 25: Temporal variability of P concentrations for influent and effluent on October 9, 2009. 
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Figure 26: Temporal variability of P concentrations for influent and effluent on June 2, 2010. 

 

Over the two year monitoring period, SRP concentrations decreased in the greenroof runoff 

(Figure 27).  The highest SRP concentration of 1.44 mg/L occurred on the July 29, 2009 event.  The 

lowest SRP concentration of 0.19 mg/L was measured in runoff from an event on September 28, 2010.  

During 2009, the SRP concentration decreased to a low of 0.27 mg/L, before increasing towards the end 

of the monitoring season.  The start of the 2010 monitoring season had concentrations comparable to the 

end of the 2009 season.  In 2010, influent concentrations consistently decreased.  The final influent 

samples may indicate that the greenroof had leached the majority of the P from the growth substrate.  In 

Figure 27, four extreme values (2.9 mg/L, 2.0 mg/L, 3.9 mg/L and 6.1 mg/L) were removed from events 
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16, 18, and 22 to allow for a better visual comparison of influent concentrations.   

 

Figure 27: SRP influent concentrations measured over two monitoring periods. 

*Red line divides 2009 and 2010 measurements 

3.5.5: Phosphorus Treatment Efficiency 

The P treatment efficiency was initially very high for the 2009 media (Figure 28).  The lower 

percent removal shown in the first storm event monitored on July 11
th
 was likely due to ‗short-circuiting‘ 

of water (reduced contact time) that occurred within the system.  The first 9 post-treatment samples had a 

mean SRP concentration of 0.375 mg/L but the following 13 samples had concentrations below the 

method detection limit.  Due to the high intensity of the July 11
th 

storm the rain barrel filled to capacity 

very quickly.  Runoff may have entered the centre drainage tube without contacting the media.  Following 

this storm a plug was installed within this centre tube to prevent short-circuiting. 

For the next storm on July 23
rd 

much higher removal rates for both SRP and TP were achieved.  

SRP concentrations were reduced by 98.2%, to a mean concentration of 0.022 mg/L.  Similarly, TP 
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concentrations were reduced by 97.8%, attaining a mean concentration of 0.038 mg/L.  With the 

exception of the August 20
th
 event, the percent P removal decreased linearly (R

2
 = 0.947, y = -11.23x + 

111.9).  Based on a local rainfall Intensity Duration Frequency (IDF) curve, the August 20
th
 event was 

approximately a 35 year event.  The volume of runoff produced vastly exceeded the system design, 

making it difficult to characterize the low performance previously demonstrated.  The larger storms had 

lower percent removal in concentration, but removed larger loads (Figure 30).  The largest SRP load 

removed occurred during the first event on July 11
th
.  Although the treatment efficiency was lower due to 

the short-circuiting issues, the high runoff volume resulted in a load removal of 11.3 mg/m
2
.  In 

comparison, the July 23
rd

 event, while achieving over 98% percent removal, only removed 3.13 mg/m
2 

SRP load due to a 10 times smaller runoff volume.  Similarly, the largest TP load of 16.3 mg/m
2
 was 

removed on August 20
th
.  Overall percent removal was only 17.5%.  However, the total runoff volume 

was over 1000 L, three times greater than any other monitored storm event. By the end of the 2009 

monitoring season the percent removal rates were fell below 10%, demonstrating evidence of almost 

complete loss of P removal capacity.   

 

 

Figure 28: Percent P removal for each 2009 storm event. 
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 The 2010 monitoring season started with the 17.6 mm storm event on May 7.  Treatment 

efficiency was very high, achieving removal percentages of 95.7 and 94.8% for SRP and TP, respectively 

(Figure 29).  The lowest mean effluent concentrations of the 2010 monitoring season were recorded on 

this date measuring 0.036 mg/L and 0.082 mg/L for SRP and TP, respectively.  For the events on May 7
th
 

and May 13
th
, a problem occurred with the influent collection.  Sufficient volumes were collected for SRP 

analysis; however TP analysis could not be completed.  An estimate for TP concentrations was calculated 

based on the average SRP fractionation of 54.4% found in the other 2010 monitored events.  For example, 

an SRP concentration of 0.884 mg/L collected on May 7
th
 was equivalent to a TP concentration of 1.62 

mg/L.  Consequently, the TP loading values for these two storm events are based on calculated 

estimations.   

 The largest load removed for both SRP and TP occurred on June 24
th 

with 12.3 mg/m
2 
and 32.5 

mg/m
2
,
 
respectively (Figure 31).  Over the course of the monitoring period removal percentages remained 

high, with only three events falling below 80% removal for SRP and only one event for TP.  The 2010 

media did not appear to be exhibiting any evidence of loss of sorptive capacity which was apparent in the 

2009 media.   

 

Figure 29: Percent P removal for each 2010 storm event. 
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Figure 30: 2009 P mass removed by treatment system. 

Note: July 11
th, 2009 event had larger drainage area and runoff volumes. 
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Figure 31: 2010 P mass removed by treatment system. 

 

By the end of the 2009 monitoring season the sorption capacity of the media had decreased 

markedly.  Low removal performance may be as a result of diminishing sorptive capacity within sections 

of the treatment system.  The top of the media is located at 0.330 m of the total 0.914 m height of the 

barrel.  Water level data from the HOBO® level loggers demonstrate that during certain storm events the 

volumes and rate of runoff were too low to fully saturate the entire depth of media (Figure 32).  Water 

level data for each storm is presented in Table B3 in Appendix B.  Accordingly, the media located at the 

bottom of the filter cartridge is more frequently exposed to higher volumes of runoff over the monitoring 

period.  Runoff from low-intensity storms (October 23
rd

 and 28
th
) was likely treated by media which had 

lost the majority of its sorptive capacity.  The full depth of the media was utilized for events on July 11
th
, 

August 9
th
, August 11

th
, August 20

th
, October 6

th
, and October 9

th
.   

Due to a lack of barometric readings for the August 29
th
 event, and a lack of available memory 

for the September 28
th
 and 29

th
 events, water level readings are not available.  However, comparing 

similar peak flow values of other storms, a reasonable estimate of the runoff stage can be made.  All three 

events were unlikely to utilize the entire depth of media based on the runoff volumes of 22, 38, 40 L 

respectively.   
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During the 2010 monitoring season problems with the HOBO level loggers persisted. Data 

corruption prevented several storm events from being recorded.  Runoff stage data was recorded for 8 

storm events.  The monitored events in 2010 had a higher average peak stage of 0.465 m, than the 2009 

events which had an average peak stage of 0.339 m.  The 2010 value would likely decrease if the 

monitoring period extended later into the year and included more low-intensity storms.  As the system 

design remained the same between monitoring periods, the 2010 media would have experienced similar 

exhaustion in the lower depth of the cartridge.  However, the increased sorptive capacity of this media 

appeared to counteract this effect for the time in which the study occurred.    

3.5.6: pH 

 During 2009 the greenroof runoff pH ranged from 6.61 to 9.02 and had a mean pH of 7.86.  The 

effluent ranged from 6.32 to 8.93 and had a mean pH of 7.79.   For 2010 the influent pH ranged from 5.82 

to 9.02 with a mean of 8.22.  The effluent ranged from 4.65 to 8.63 with a mean of 7.56.  The greenroof 

runoff changed the pH of the acidic precipitation to a more neutral value.  Overall the greenroof runoff 

pH was slightly decreased after passing through the treatment system. 

3.5.7: Conductivity 

 During 2009, the greenroof runoff conductivity ranged from 175 to 1164 µS/cm with a mean 

value of 619 µS/cm.  After treatment the conductivity ranged from 232 to 982 with a mean value of 516 

µS/cm.  For the 2010 monitoring season the influent conductivity ranged from 210 to 792 µS/cm, with a 

mean value of 539 µS/cm (Figure 32).  The effluent concentrations ranged from 363 to 20 200 µS/cm, 

with a mean value of 1618 µS/cm.  The first 2010 samples displayed very high conductivity readings 

before decreasing to a consistent level.  Particulates bound to the media from the manufacturing process 

were likely washed off during the first storm events accounting for the higher initial conductivity readings 

(Figure 34).  The median conductivity value for the 2010 effluent samples was 615 µS/cm, a value similar 

to the mean effluent concentration in 2009.  Conductivity readings per storm event are presented in 

Appendix A.    

 Generally, both the pre influent and effluent samples demonstrated a slightly increasing 

conductivity measurement through the storm event (Figure 33).     
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Figure 32: Distribution of conductivity measurements during 2009 and 2010 monitoring period 

(*=extreme value; °=outlier). 
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Figure 33: Conductivity measurements for the storm event on July 23, 2009. 
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Figure 34: Conductivity measurements for the storm event on June 3, 2010. 
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3.5.8: Total Dissolved Solids 

 During 2009, TDS in the greenroof runoff ranged from 123 to 816 mg/ L with a mean of 408 

mg/L.  The post-treatment samples ranged from 162 to 648 mg/L and had a mean of 371 mg/L (Figure 

35).  The UAL values are essentially equal at 53 800 mg/m
2
 due to the volume-weighting of a larger 

storm where TDS concentrations were higher in the effluent samples.  The volume-weighted mean 

concentration is 420 mg/L for both the influent and effluent samples. The UALex was 107 000 mg/m
2
.  For 

2010 the TDS influent concentrations ranged from 149 to 548 mg/L and had a mean value of 374 mg/L.  

The effluent concentrations ranged from 248 to 14 100 mg/L and had a mean value of 11 300 mg/L.  The 

volume weighted mean concentration was 389 and 857 mg/L for the influent and effluent respectively.  

The UALex was 72 500 and 160 000 mg/L for the influent and effluent respectively.   
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Figure 35: Distribution of total dissolved solids concentrations during 2009 and 2010 monitoring periods 

(*=extreme value; °=outlier).  
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3.5.9: Suspended Solids Concentrations 

 The greenroof runoff contained low concentrations of SS.  Generally the first sample had the 

highest concentration and the quickly decreased in subsequent samples (Figure 36).  The range of SS was 

0.0 to 42.4 mg/L with a mean value of 7.6 mg/L (Figure 37).  After the runoff passed through the 

treatment system concentrations decreased, ranging from 0.0 to 27.4 mg/L with a mean of 3.5 mg/L.  SS 

measurements were only collected for the 2009 monitoring season.  
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Figure 36: Suspended solids concentrations for storm event on August 11, 2009. 
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Figure 37: Range of suspended solids concentrations during 2009 monitoring period (*=extreme value; 

°=outlier). 

3.5.10: Grain Size Distribution 

Grain size distribution of SS was determined for 4 storm events.  The size distribution of 

suspended solids for a storm event on September 28, 2009 is presented in Figure 40.  GS distributions for 

events on August 11, August 20 and August 29, 2009 are found in Appendix A. For each event, grain size 

distribution was analyzed for each sample to examine temporal variation over the hydrograph.  No 

temporal variation in GS distribution was evident (Figure 40).  The D90, D50 and D10 which represent the 

median grain size at the 90
th
, 50

th
 and 10

th
 percentiles of the grain size distribution were calculated for 

each event.  For the storms of August 11, August 20 and September 28, 2009, the D90 was slightly higher 

in the post-treatment samples (Table 6).  Photomicrographs show evidence of flocculation which likely 

accounted for the observed increase in particle size (Figure 38). 
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Figure 38: Grain size distribution of suspended sediment in influent and effluent samples of storm event 

on September 28, 2009.  Representative micrograph of particles with scale = 100 microns. 
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As the runoff passed through the treatment system the largest particles became trapped.  Figure 

39 demonstrates the largest particles were measured in the influent samples.  For September 28, the 

largest particle size in the influent was 662 µm, constituting 3.0% of the total volume of suspended 

sediment.  The largest particle in the effluent was 362.7 µm which was 1.5% of the total volume.  The 

particle size class of 94.8 µm represented the largest percentage of volume in the influent samples with 

9.6%.  In the effluent samples the particle size class of 127.6 µm constituted the majority of the total 

volume with 11.2%.  

 

 

Figure 39: Volumetric distribution of particle sizes measured in samples for storm event on September 

28, 2009. 
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Figure 40: D90 variability throughout September 28, 2009 storm event. 

 

Table 6: Grain size distribution results for 4 sampled storm events. 

 Influent Effluent 

2009 Date D90 D50 D10 D90 D50 D10 

Aug. 11 33.7 5.7 3.2 39.1 5.7 3.2 

Aug. 20 33.7 4.9 3.2 39.1 4.9 3.2 

Aug. 29 33.7 4.9 3.2 33.7 4.9 3.2 

Sep.28 16.2 4.9 3.2 21.6 4.9 3.2 

Overall 

Mean 
29.3 5.1 3.2 33.4 5.1 3.2 
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3.6: Isotherm Test for Engineered Media 

Batch tests were conducted to evaluate the sorptive behavior of the engineered media.  The 

sorption data are presented in Tables 7 and 8 and Figures 41, 42, 43 and 44.  The 2009 media was a better 

fit to the Freundlich plot, however the higher n values indicate a lower adsorption affinity.  The 2010 

media had n values indicating high adsorption affinity.  The K coefficient confidence intervals ranged in 

value from 2.937 to 21.38.  This range was much larger than the 2009 media, due to the lower R
2
 value 

that increased the range of confidence intervals.  The Freundlich coefficients support the observation of 

higher treatment efficiency in the 2010 media.  During the batch experiments the 2010 media was 

demonstrating almost complete P removal for most initial P solutions.  The initial P solutions had to be 

increased from 50 mg/L and 100 mg/L to fully determine the adsorptive capacity of the media.  In 

comparison, the 2009 media demonstrated signs of complete adsorption at the 25 mg/L initial 

concentration.   

Table 7: Freundlich isotherm data for the 2009 media. 

Media Species 

Isotherm 

Equation 

for 

Freundlich 

R
2
 1/n n LogK K (mg/g) 

2009 

Media 

orthophosphate 
y=0.494x-

1.055 
0.898 

0.494 2.024 -1.055 0.088 

UCL 0.551 1.815 -0.975 0.106 

LCL 0.437 2.288 -1.135 0.073 

 

Table 8: Freundlich isotherm data for the 2010 media. 

Media Species 

Isotherm 

Equation 

for 

Freundlich 

R
2
 1/n n LogK K (mg/g) 

2010 

Media 

orthophosphate 
y=1.011x+

0.899 
0.672 

1.011 0.989 0.899 7.925 

UCL 1.259 0.794 1.330 21.38 

LCL 0.762 1.312 0.468 2.937 
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Figure 41: Freundlich equilibrium isotherm for 2009 media. 

  

 

Figure 42: Freundlich equilibrium isotherm for 2010 media. 
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 To obtain a theoretical maximum sorption capacity, the batch experiment data was fit to the 

Langmuir isotherm.  The 2009 media had a qmaxvalue of 0.420 ± 0.031 mg/g, with an UCL of 0.483 mg/g 

and a LCL of 0.356 mg/g (Figure 43).  The 2010 media had a qmaxvalue of 7.71 ± 0.51 mg/g.  The UCL 

was 8.75 mg/g and the LCL 6.66 mg/g (Figure 44).  The isotherms demonstrate that with increased P 

concentrations applied in solution, the mass adsorbed to the engineered media also increases. As the 

media becomes saturated the Langmuir line fit becomes more horizontal.  The point in which the line 

becomes horizontal is the theoretical qmax value, indicating the maximum sorption capacity of the media.  

For the 2009 media the saturation is apparent as the curve noticeably flattens.  The 2010 media displayed 

much higher sorption capacity with the Langmuir plot demonstrating only a gradual saturation curve at 

higher q values.   

 

 

Figure 43: Langmuir equilibrium isotherm for 2009 media. 
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Figure 44: Langmuir equilibrium isotherm for 2010 media. 
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Chapter 4: Discussion 

4.1: Introduction 

 Stormwater is recognized as a significant nonpoint source of pollution (Pitt and Clark, 2008; 

Carpenter et al., 1998).  Urban stormwater management has evolved from a management of water 

quantity perspective to also addressing the quality of the stormwater.  Stormwater has been shown to be a 

vector of various pollutants, including nutrients, metals, suspended solids and toxicants such as 

polyaromatic hydrocarbons (Scheueler, 1987).  Berghage et al. (2009) estimated that the cost of wet 

weather flow pollution control in the United States is in the tens of billions of dollars.   The recognition of 

this pollutant source has led to the incorporation of water treatment principles of filtration, coagulation 

and flocculation, ion exchange and adsorption into stormwater BMPs.  As the field of stormwater 

treatment continues to evolve, researchers are investigating ways to optimize treatment applications that 

achieve the highest performance of stormwater treatment (Chang et al., 2010a).  The use of sorptive 

materials incorporated into LID and stormwater BMPs is one strategy to further reduce nutrient loadings 

and subsequent freshwater eutrophication. 

 Sorptive materials are being examined for use in various disciplines of engineering, including 

stormwater, wastewater, groundwater and drinking water treatment (Chang et al., 2010a).  A wide range 

of materials have been studied for the removal of nutrients using physical and chemical mechanisms such 

as sorption, sedimentation, filtration and precipitation (Hsieh and Davis, 2005).  These contact adsorption 

systems have been used extensively in wastewater treatment (McKay, 1996).  The materials used for 

sorptive materials are classified into three groups: natural materials, industrial by-products and 

manufactured products (Westholm, 2006).  The physical and chemical properties of these sorptive 

materials affect the ability of these materials to remove pollutants (Cucarella and Renman, 2009).  

Physical characteristics include surface area and porosity, while chemical characteristics are related to the 

content of metal ions such as Ca, Fe and Al.  The combination of the physical and chemical properties of 

these materials determines the abundance of sorption site and the affinity for which these sites will bind 

pollutants (Cucarella and Renman, 2009).      

 The use of greenroofs as effective stormwater source controls are well documented (DeNardo et 

al., 2005; Van Seters et al., 2009; Mentens et al., 2006).  Greenroofs provide an opportunity for 

retrofitting space-constrained urban areas and partially restoring the natural hydrologic processes of 

infiltration and decreased stormwater runoff during storm events.  Greenroofs have been reported to help 

improve water quality through the reduction of nutrients and metals (Peck et al., 1999; Köhler et al., 

2002).  Recent studies, however demonstrate that treatment of nutrients in greenroof runoff are more 
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problematic (Vander Linden and Stone, 2009; Van Seters et al., 2009; Moran, 2004; Berndtsson et al., 

2006; Hutchinson et al., 2003).  Consequently there has been a lack of studies addressing the treatment of 

greenroof runoff.  Berndtsson (2010) states that greenroof runoff quality is influenced by several factors 

including: substrate type, media depth, vegetation, maintenance and application of fertilizers, drainage, 

dynamics of precipitation and wind direction influencing dry deposition of pollutants. Characterizing 

greenroof runoff quality is difficult based on the various influencing factors that can change per 

individual greenroof.  The incorporation of sorptive materials is a potential improvement to the general 

use of greenroofs as stormwater quality BMPs.  However, before sorptive materials can be incorporated 

into greenroof design, operation and maintenance procedures, it is necessary to rigorously test and review 

the potential benefits and limitations of greenroofs.  The results of the present study are compared to 

previous literature in the following section.   

4.2: Water Quantity 

4.2.1: Retention Rates of the Greenroof 

Quantification of the hydrologic characteristics of a greenroof system is critical in its design and 

implementation for water treatment application.  This section examines the greenroof literature to help 

understand the hydrological responses to a range of environmental conditions.  The retention rate of the 

greenroof in the present study is compared to previous greenroof studies in Table 9.  

 

Table 9: Summary of literature on extensive vegetated roof stormwater retention performance. 

Study Location 
Area 

(m
2
) 

Monitoring 

Period 
Events 

Media 

depth 

(mm) 

Slope 

(°) 

Retention 

(%) 
Notes 

Camm, 2011 Vaughan, ON 13.9 

Jun. – Oct. 

2009 

May – Aug. 

2010 

39 

 

29 
180 <2 

41.5 

 

53.3 
 

Van Seters et 

al., 2009 
Toronto, ON 241 

Apr. 2003- 

Aug. 2005 

excluding 

winters 

- 140 10 65.3 

Summer 

retention 

rates were 

78-85% 

and 39 – 

64% in the 

spring 
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Vander Linden 

and Stone, 2009 
Waterloo, ON 450.5 

Jun. – Oct. 

2006 
19 20 <2 41.4  

Berndtsson et 

al., 2006 

Augustenborg, 

Sweden 
9500

1
 

Aug. 2001 – 

Aug. 2002 
- 30 1.5 49 

Nov. – 

Dec. 30-

40% 

retention.  

Apr. – 

Jun. 80% 

retention 

Bliss et al., 

2009 
Pittsburgh, PN 330 

Aug. 2006-

Jan. 2007 
13 140 - Up to 70 

Peak flows 

lower by 

5-70% 

Carter and 

Rasmussen, 

2006 

Athens, GA 42.64 
Nov. 2003-

Nov. 2004 
31 76.2 <2 78  

DeNardo et al., 

2005 

Rock Springs, 

PN 
4.65 

Oct.-Nov. 

2002 
7 89 <2 45  

Liu, 2003; Liu 

and Baskaran, 

2005 

Ottawa, ON 72 
Nov. 2000-

Sept. 2002 
- 150 2 54

2
  

VanWoert et 

al., 2005 
Lansing, MI 5.95 

Aug. 2002-

Nov. 2003 
83 40 2 87  

Liu and Minor, 

2005 
Toronto, ON 200 

Mar. 2003-

Nov. 2004 

(excluding 

winters) 

- 
100 

75 
<2 57

2
  

Moran, 2004 

Kingston, NC 27 

Jul.-Aug. & 

Nov.-Dec. 

2003 

11 102 3 63  

Goldsboro, 

NC 
70 

Apr. – Dec. 

2003 
39 

51 & 

102 
<2 62  

Teemusk and 

Mander, 2007 
Tartu, Estonia 120 

Jun. 2004-

Apr. 2005 

3 rain 

events / 

snowm

elt 

measur

ed for 2 

100 <2 85.7
3
 

Side of 

roof with 

less plant 

coverage 

released 

more 
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weeks 

 

runoff 

Hathaway et al., 

2008 

Goldsboro, 

NC 
70 

Apr. 2003-

Jun. 2004 
- 100 3 64  

1Multiple roofs 

2 Relative to control roof runoff, not precipitation 

3 Highest retention for light rain event (2.1mm) and initial dry conditions. Retention decreased with more intense rain events 

 

Based on a review of literature, greenroofs have been found to retain 41 to 85% of storm runoff.  

The current study found retention rates to be similar to those previously reported (Vander Linden and 

Stone, 2009; Berndtsson et al., 2006; DeNardo et al., 2005).  During the 2009 monitoring period, the 

absolute retention rate was among the lowest found in the literature.  During 2010, the absolute retention 

rate increased, although the monitoring period was shorter in length.  This retention rate may have 

decreased if the monitoring had continued into the fall months, as in the previous year.  The majority of 

the greenroof studies had absolute retention rates greater than either of the current study‘s findings (Van 

Seters et al., 2009; Bliss et al., 2009; Carter and Rasmussen, 2006; VanWoert et al., 2005; Moran, 2004; 

Teemusk and Mander, 2007; Hathaway et al., 2008).  The lower retention rates are unexpected 

considering the greenroof growth medium depth in the current study was greater than all other reported 

studies (Table 10).  Previous research has indicated that increased media depth results in greater retention 

rates (VanWoert et al., 2005).  A study by Buccola and Spolek (2010) compared pilot scale plots of 

greenroof materials.  Under medium rainfall conditions (3.0 cm/h), a 5 cm depth media retained 

approximately 36% of the applied rainfall, while a 14 cm depth media retained 64%.  During heavy 

rainfall conditions (34 cm/h), the 5 cm depth media retained 20% and the 14 cm depth media retained 

56%.  The authors state that it is reasonable to expect a 55-65% retention rate with a media depth of 

approximately 14 cm.  The media in the current study is slightly deeper but the retention rates are similar 

to this predicted percentage.  The lower than expected retention rates may be due to a potential 

underestimation of precipitation volumes by the monitoring equipment.  Due to the design and location of 

the greenroof, additional rainfall could have been directed onto the greenroof by the surrounding walls of 

the Archetype house.  This additional precipitation would not be recorded by the rain gauge situated on 

the greenroof.   

The retention rates during 2009 were lower than the 2010 monitoring period.  In 2009, the 

greenroof retained 41.5% compared to the 53.3% in 2010.  The difference between the two sampling 

periods is attributed to the seasonal performance of the greenroof.  In 2010, 399.6 mm of rainfall was 

recorded on the greenroof.  Although the 2009 monitoring period was longer, only 347 mm of rainfall 

was measured.  The increased retention rate during 2010 can be attributed to the majority of the rainfall 
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(212 mm) occurring during the month of June when evapotranspiration rates were higher.  Generally the 

summer period has short, high-intensity storms followed by longer dry periods.   The 2010 retention rates 

may also be higher without the inclusion of fall rainfall events. 

During October 2009, four events had negative retention rates.  The net export of runoff is 

indicative of low evapotranspiration rates and a consistent low-intensity rainfall throughout the month.  

Under these conditions the stormwater from previous events would remain in the greenroof substrate 

creating a larger runoff volume in subsequent storms.  During the 2010 monitoring season, three events 

had negative retention rates.  The events on May 13
th
 and Jun 27

th
 were following large storms in previous 

days and the greenroof would have still contained water from these storms.   Previous greenroof studies 

have reported similar lowered stormwater retention percentages through cooler months (Bengtsson et al., 

2005; Vander Linden and Stone, 2009; Van Seters et al., 2009; Carter and Rasmussen, 2006).  Vander 

Linden and Stone (2009) reported negative stormwater retention percentages occurring in October on a 

greenroof in similar climate conditions.  The negative retention rates demonstrated in this study may be 

due to a combination of physical processes and an underestimation of rainfall volumes by monitoring 

equipment as previously mentioned.  The four events with negative retention rates in October 2009 had a 

measured rain depth of 5 mm or less.  Any errors in measurement may account for the large relative 

differences in retention rates during these smaller events.   

4.2.2: Rainfall Size, Intensity, and Antecedent Dry Period Influence on Runoff Retention 

The rainfall size and runoff retention data were not normally distributed. Therefore the non-

parametric Spearman (rs) rank-order correlation was used to determine the relative strength of the linear 

relationship between rainfall size and retention rates.  Rainfall size and retention percentage are inversely 

related.  Throughout the monitoring periods of 2009 and 2010, there was a weak but significant negative 

association (rs= -0.300, p<0.05) between rainfall size and retention percentage.  This negative relationship 

has been reported in other greenroof studies (Bliss et al., 2009; Carter and Rasmussen, 2006; Getter et al., 

2007; VanWoert et al., 2005).  In the current study a very significant relationship existed between rainfall 

size and rain depth retained (rs= 0.443, p<0.01). Van Seters et al. (2009) noted that the greenroof runoff 

coefficient (percentage of rainfall converted to runoff) generally increased with event size.  Smaller 

events produced no runoff.  Seasonality was also shown to influence this trend, as smaller events during 

cooler months elicited lower runoff coefficients due to high soil moisture levels.  Bliss et al. (2009) and 

Carter and Rasmussen (2006) found no relationship between runoff retention and rainfall intensity (rs= 

0.0494, p = 0.689). 

In the present study the antecedent dry period appeared to have more influence than event 

magnitude.  The distribution of previous dry hours between storm events was also non-normal.   There 
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was a very significant positive correlation (rs= 0.449, p<0.01) between the length of time between storm 

events and the stormwater retention performance of the greenroof.  Differing periods between storms 

would vary the soil moisture conditions and influence the adsorptive properties of the greenroof (Carter 

and Rasmussen, 2006). 

4.2.3: Lag Time Response 

In general the greenroof was effective in delaying the peak flow of runoff.  Over the two years of 

monitoring, 8 of 68 total events had no lag time.  During these events the peak runoff flow rate was 

measured at the same time as the maximum intensity of rainfall.  It is difficult to detect any seasonal trend 

occurring with lag time response due to the lack of rainfall events during certain months.  Several factors 

such as storm size, antecedent dry period and evapotranspiration combine to influence the greenroof 

response for each storm event (Van Seters et al., 2009).  The intensity of the rainfall had the largest effect 

on the lag time.  The maximum rainfall intensity (mm/5 min) was inversely correlated with lag time rs=-

0.582 (p<0.01).  This relationship is apparent in the rainfall events during the period of June 12
th
 – June 

24
th
, 2010 (Appendix B, Table B2).  Four successive events had no lag time effect.  The max rainfall 

intensities for these events were 6.4, 2.8, 5.0 and 4.2 mm/5 min; values much higher than the median 

value of 1.0 mm/5 min for all events.  The high volumes of rainfall delivered in a short period of time 

quickly exceed the greenroof‘s field capacity thus minimizing the lag time effect.  

The transverse dimension (distance that the runoff must travel to the drain) of a greenroof 

influences lag time responses. With increased greenroof area, the distance the runoff travels to the drain 

increases, creating longer lag times (Buccocla and Spolek, 2010).  In the current study, the greenroof area 

was very small, likely decreasing the potential lag time effect.  The median lag time value of 35.0 minutes 

is comparable to a study completed by Carter and Rasmussen (2006).  This study demonstrated that a 

greenroof had a median lag time of 23.1 minutes for 31 rainfall events.  In this study the greenroof was an 

area of 42.64 m
2
, so it would be expected that the lag time would also be greater due to a larger transverse 

dimension.  However, the growing media depth was thinner at 76 mm, compared to the 180 mm substrate 

in the present study.  Buccocla and Spolek (2010) noted increased lag times with greater substrate depth 

in their pilot-scale studies.  Studies by Van Seters et al. (2009) and Vander Linden and Stone (2009), 

found average lag times of 29.8 and 69.0 min, respectively.  Both of these studies defined the lag time as 

the difference between the start of rainfall and the initiation of greenroof runoff, thereby making direct 

comparisons to this study impossible.  
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4.3: Water Quality 

4.3.1: Phosphorus in Greenroof Runoff 

Throughout the study period the greenroof was a net source of P.  A summary of greenroof 

literature indicates the results of the current study are similar to other studies.  Concentrations were higher 

than those reported in some studies (Van Seters et al., 2009; Vander Linden and Stone, 2009; Berndtsson 

et al., 2006; Teemusk and Mander, 2007) but lower than those reported by Moran (2004) and Bliss et al. 

(2009) (Table 10).  

Table 10: Summary of literature on greenroof P export. 

Study Location Media type 
P 

form 

Mean P concentration 

in runoff % 

difference 
Notes 

Control 

(mg/L) 

Greenroof 

(mg/L) 

Camm, 2011 
Vaughan, 

ON 

Mineral 

aggregates, blond 

peat, perlite, sand 

and vegetable 

based compost 

TP 

 

 

-- 

 

 

1.24
1 

 

 

-- 

 

 
 

SRP -- 0.700
1
 -- 

Van Seters et 

al., 2009 

Toronto, 

ON 

Composite of 

crushed volcanic 

rock, compost, 

blonde peat, 

cooked clay, 

washed sand 

TP 0.071 0.629
2
 322 

Values in unit 

area loads. 

P levels in 

runoff 

significantly 

decreased 

over the 2 

year study 

SRP 0.033 0.539
2
 675 

Vander Linden 

and Stone, 

2009 

Waterloo, 

ON 

 

 

Composite of 

inert crushed 

brick, pumice, 

expanded slate, 

fine washed sand, 

organic compost, 

dolomite 

TP 0.0154 0.0998 548  

SRP 0.0038 0.040 953  
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Berndtsson et 

al., 2006 

Augustenb

org, 

Sweden 

Crushed lava, 

calcareous soil, 

clay, shredded 

peat 

TP 
-- 

 
0.6 – 1.2 -- 

Simulated 

rainfall events 

ranging from 

10 – 20 mm 
SRP -- 0.3-0.5 -- 

Bliss et al., 

2009 

Pittsburgh, 

PN 

Expanded shale, 

perlite, coconut 

husk 

TP 0.05 2.0-3.0 3500  

Moran, 2004 

Kingston, 

NC 

55% Perma Till 

(expanded slate), 

30% sand, 15% 

compost 

TP 0.0583 1.277 2090  

SRP 0.048 1.046 2079  

Goldsboro, 

NC 

55% Perma Till 

(expanded slate), 

30% sand, 15% 

compost 

TP 0.050 1.036 1980  

SRP 0.018 0.890 4844  

Teemusk and 

Mander, 2007 

Tartu, 

Estonia 

66% Lightweight 

aggregates (P, K, 

Ca, Mg, organic), 

30% humus, 4% 

clay 

TP 1.041 0.036 -188  

1Average of 2009 and 2010 volume-weighted mean concentrations 
2Volume-weighted mean concentrations 

 

Total phosphorus and soluble reactive phosphorus concentrations in the greenroof runoff 

decreased over the course of the two year study.  The water quality monitoring was initiated shortly after 

the construction of the greenroof.  The P contained in the growing media substrate quickly leached into 

the rainwater.  This trend has also been reported in other greenroof studies (Van Seters et al., 2009).  

Many greenroofs are fertilized after construction, and intermittently thereafter.  No fertilizers were 

applied to the study greenroof during construction or the monitoring period. A study by Emilsson et al. 

(2007) examined the use of conventional fertilizers and controlled release fertilizers (CRF) on greenroof 

substrates.  The authors note that as expected high concentrations of nutrients are found in greenroof 

runoff after fertilizer application.  They also reported that sustained elevated levels were measured after 

the course of the study.  Conventional fertilizers supply more nutrients than the total exchange capacity of 

the substrate and uptake rate of the plants, leading to elevated nutrient levels in the stormwater runoff 

(Emilsson et al., 2007).  CRF applications had lower nutrient concentrations in the runoff and were 

recommended for maintaining nutrient levels for plant growth over an extended period of time, yet 

reducing nutrient losses to surface water.  The use of CRF lowers nutrient leaching problems, but does not 
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eliminate them completely.  A pollution control layer may be required to reduce nutrient levels to 

recommended levels (TP< 0.03 mg/L).   

The current study did not demonstrate a consistent first-flush release of P occurring throughout 

storm events.  Only 9 of 26 monitored events had the highest concentrations of SRP and TP in the initial 

samples.  This finding is consistent with the variability of P export reported in other greenroof studies 

(Vander Linden and Stone 2009; Bliss et al., 2009).  Berndtsson et al. (2006) reported a first flush of TP 

but not phosphate which was consistent in concentration through the sampled event.   

4.3.2: Phosphorus Dynamics in Treatment System 

During 2009 and 2010, the treatment system significantly decreased the concentrations of SRP 

(p<0.001) and TP (p<0.001) from the greenroof runoff.  The media achieved very high removal rates 

however the effluent concentrations still exceeded the MOE Provincial Water Quality Objective (OMEE, 

1994) value of 0.03 mg/L for TP.  Achieving this water quality objective would require a more efficient 

use of the media.  Optimizing the sorption processes with increased contact time may achieve these 

effluent concentrations, however holding runoff for an extended period of time may not be possible based 

on design constraints and hydrologic responses of the greenroof. 

A linear regression model was used to analyze the TE of the media over the monitoring period.  

The null hypothesis of the model was that there was no change in TE over time.  This is reported as a 

coefficient (B), representing slope that is modifying the independent variable of time.   No trend (B = 0) 

would be represented as a straight line.  First examining the SRP TE, the model reported a downward 

trend for percent removal for both the 2009 and 2010 periods.  The 2009 data had a significant downward 

trend (p<0.001, B = -8.205) with a fit R
2 
= 0.570.  The 2010 data was initially a very poor fit (R

2
 = 0.089) 

due to outlier and extreme values measured on June 2, June 12 and June 26.  The very high P 

concentrations may be due to biofilm formation in the tubing equipment which is sloughed during 

sampling.  Without these values included in the analysis, the fit increased to R
2
 = 0.772 and a significant 

downward trend was also reported (p<0.001, B = -5.633).  The 2010 percent removal data had a smaller 

slope indicating the TE was decreasing at a slower rate than during 2009.  However, examining the 

influent and effluent data individually shows that the downward trend reported during 2010 is due to 

decreasing influent concentrations.  Analyzing the 2010 effluent data shows a slight downward trend 

(p=0.001, B = -0.602).  A positive trend would be expected for effluent concentrations, as the TE of the 

media decreases over time.  However, the small downward trend is due to the influence of high effluent 

concentrations measured during the second event of the season.  The influent concentrations demonstrate 

a significant downward trend (p<0.001, B = -6.385), R
2
 = 0.804.  Comparing the 2009 effluent 

concentrations, there is a significant increasing trend (p<0.001, B = 3.201).  Influent concentrations also 
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demonstrated a significant downward trend (p<0.001, B = -5.473), however this effect was not as severe 

in 2009.  The linear regression model demonstrates that the sorptive capacity of the 2010 media was 

greater than in the 2009 media.   

 Few studies have examined the use of sorptive materials for P removal in a stormwater field 

application (Table 11).  Results are highly variable and the use of different materials and treatment 

systems make comparisons difficult.  However, these studies may help inform better design for a variety 

of sorptive media applications.   

 

Table 11: Field results of sorptive media applied to stormwater treatment facilities. 

Study Sorptive material System Treatment Efficiency 

Camm, 2010 

Oxide-coated pumice 

(version 1) 

Oxide-coated pumice 

(version 2) 

 

Gravity flow filter 

cartridge treating 

greenroof runoff 

2009 media: 32.0% SRP, 

25.4% TP 

2010 media: 82.4% SRP, 

86.6% TP 

 

DeBusk et al., 1997 Sand 
Sand filters treating a wet 

detention pond 

57% TP summer 1995 

34% TP winter 1996 

25% TP summer 1996 

Hsieh and Davis, 2005 
100% sand 

 
6 bioretention sites 37 – 99 % 

Ádám et al., 2005 Filtralite P® 
Simulated constructed 

wetland 
23-53% 

 

Ádám et al. (2005) simulated a constructed wetland, applying daily volumes of 1.25 L, 2.5 L, and 5 L at a 

range of concentrations to each experimental setup.  They demonstrated that after a period without P 

loading, the media exhibited signs of sorptive capacity regeneration.  Media which was 70-90% saturated 

decreased P concentrations by 22-28% after 44 days of rest.  Media which was only 10% saturated did not 

improve noticeably.  An increase in the specific surface area from calcium phosphates was attributed for 

the increased sorption capacity after the resting period.  Regeneration of sorptive materials complicates 

lifespan estimates for field scale applications.  It is difficult to detect any recovery of sorptive capacity in 

the present study.  For example, the time between May 13
th
, 2010 and June 2

nd
, 2010 appears to improve 

sorption as SRP TE from 70.2 % to 94.9%.  However, between June 26
th
, 2010 and July 24

th
, 2010 the 

SRP TE decreases from 89.5% to 82.1%.  The hydrological characteristics of each rainfall event and 

variability in loadings to the treatment system prevent any clear evidence of regeneration of sorptive 

capacity.  Further laboratory testing would be required to characterize any potential regeneration effect 

within the media. 
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P removal capacities are often correlated to the chemical properties of sorptive media.  High Al, 

Fe and Ca content create larger CEC which favours anion bonding.  Debusk et al. (1997) tested a quartz 

sand media that had low mineral content and achieved only 38% P removal in a sand filter application.  

Comparative batch testing demonstrated that the same sand removed only 41% compared to Wollastonite, 

a media high in Fe and Ca content which removed 98%.  In contrast, Hsieh and Davis (2005) found no 

relationship between media with high CEC and P removal.  The lack of correlation was attributed to 

preferential flow paths and dynamic runoff processes preventing P complexation and removal.   

4.3.3: Phosphorus Treatment Efficiency 

 At the conclusion of the 2009 monitoring season, samples of used treatment media were collected 

with cores to evaluate differences in the vertical treatment efficiency of the media in the cartridge profile.  

A series of batch experiments were completed to examine the P sorption capacity of the used media.  

These sorption experiments clearly demonstrate that the media‘s sorption capacity had not been 

completely exhausted.  A full profile of the used media was removed, however compaction of the media 

was difficult to avoid while using the coring tubes.  The media samples which were included in the 

sorption tests are the closest representation of the ‗top‘ and ‗bottom‘ of the media profile.  Comparing the 

inner core to the outer core, the outer core had lower sorption capacity (Figures 45 and 46).  This result is 

expected as the media around the outside was exposed to runoff with the highest P concentrations because 

the runoff enters the perimeter of the cartridge.  As the media adsorbs P, the interior media will be subject 

to lower concentrations. Figures 45 and 46 also show that samples from the bottom of the cartridge (0-3 

cm depth) had a lower P sorption capacity than samples taken from the top (9-12 cm depth).  This 

difference is an indication that the full volume of media was not being fully utilized.  The HOBO level 

logger data shows that during smaller runoff volumes, the stage within the rain barrel was not sufficient to 

completely saturate the media (Appendix B).  Therefore the frequency of smaller events resulted in the 

media at the bottom of the cartridge being exhausted at an increased rate.  The low treatment efficiency 

observed at the end of the 2009 season is a result of the smaller rainfall events which were only treated by 

the most exhausted portion of the media.  To ensure more effective treatment, the full volume of the 

media needs to be used for each runoff event.  The scale of the greenroof may have been too small to 

produce the runoff needed to full test the design capacity of the system.  The maximum flow capacity of 

the cartridge is 1.14 L/s which is greater than the flows experienced in this study.  Designing a treatment 

system for a greenroof system becomes more complicated due to the difficulties predicting the runoff 

volumes for each event.   
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Figure 45: Used engineered media inner core sorption test.  Error bars indicate standard deviation.  
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Figure 46: Used engineered media outer core sorption test. Error bars indicate standard deviation. 

 

4.3.4: Treatment System Influence on Additional Water Quality Parameters 

The mean pH for the greenroof runoff was significantly higher than the rainfall pH for both 2009 

and 2010 (p<0.001).  The buffering of acidic rainfall by greenroof media has been reported in other 

studies (Long et al., 2006; Van Seters et al., 2009; Vander Linden and Stone, 2009).  Berghage (2009) 

considers the pH buffering effect of greenroofs one of the most consistent benefits to water quality.  

Neutralizing acidic precipitation through the widespread use of greenroofs could help improve surface 

water quality.  However, beneficial buffering effects by greenroofs are finite in nature as the media 
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eventually loses its buffering capacity.  A study conducted by Berghage et al. (2007) examined the pH 

buffering capacities of two greenroof media through an accelerated aging test.  Daily sulfuric acid 

treatments were applied to a slate-based media and clay-based media and the pH response curves were 

measured.  The test indicated that the buffering capacity could last approximately 13 and 19 years for the 

slate based and clay based media respectively.  A greenroof management and maintenance plan would be 

required for long-term acid rain mitigation.  The occasional application of lime to a greenroof may be 

required for recovery of pH buffering effects. During 2009 the pH of the runoff measured after passing 

through the treatment system was not significantly lower than the influent (p = 0.74).  During 2010 the 

post-treatment water had a significantly lower pH (p<0.001).  The engineered media is acidic in nature 

but did not lower the pH to a harmful level.   

Conductivity measurements for both influent and effluent samples were significantly higher than 

the rainfall (p<0.001).  Measurements from other greenroof studies have also reported higher conductivity 

levels in greenroof runoff (Berghage, 2009; Van Seters et al., 2009; Vander Linden and Stone, 2009).  

The conductivity reading is a measure of inorganic dissolved solids in the runoff.  Conductivity readings 

are a general water quality measure, and can indicate the presence of anions such as nitrates, chloride and 

P, as well as cations such as metals.  The composition of the greenroof media includes mineral aggregates 

and organic matter which contribute to these elevated levels.  The greenroof runoff decreased in 

conductivity levels from 2009 to 2010.  As the roof ages the inorganic dissolved solids leaching from the 

roof should decrease, an effect also reported in the Berghage (2009) study.  The conductivity levels were 

significantly decreased after passing through the treatment system during the 2009 season (p<0.001).  

During 2010, the very high initial conductivity readings in the effluent, resulted in a significant increase 

(p<0.001) overall.  Further water quality analysis on the initial samples would have elucidated the nature 

of the particulates washed from the media during this time.   

 Total dissolved solids (TDS) were significantly higher in both the influent and effluent 

measurements than measured in rainfall (p<0.001).  As with the conductivity measurements, TDS levels 

were significantly decreased by the treatment system during 2009, and significantly increased during 

2010 (p<0.001).  The TDS levels were approximately three times higher than in the study by Vander 

Linden and Stone (2009).  This study also measured much lower concentrations of P, which could 

partially explain the difference in TDS concentrations.  Greenroof runoff will vary in TDS concentrations 

based on individual greenroof composition and fertilization practices. 

 The concentrations of SS that were measured in the effluent samples were significantly different 

than the influent concentrations (p<0.001).  However, the median values were only 4.3 and 2.3 mg/L for 

the influent and effluent samples, respectively.  Often the SS concentrations were at the method detection 

limit of the lab analysis, making thereby introducing possible uncertainty in the results.  The treatment 
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system was primarily designed for the removal of dissolved fractions of P.  Treatment of areas with high 

SS concentrations, such as highway runoff, a filter component may be required to remove the particles 

before reaching the engineered media.  In addition to acting as a pre-treatment, a filter would help prevent 

clogging, a common concern in water treatment systems (Hatt et al., 2006).  With high concentrations of 

SS clogging an adsorbent bed, backwashing procedures would need to be performed.  These procedures 

add complexity to a water treatment system and disrupt the adsorptive processes in the system (Thomas 

and Crittenden, 1998).  The SS concentrations were very low in the runoff due to the use of components 

in the greenroof such as the root barrier.  Low concentrations of SS were also measured in the studies by 

Van Seters et al. (2009) and Vander Linden and Stone (2009).  These studies were conducted on much 

larger roofs, demonstrating the issue of clogging within a treatment system would be unlikely if integrated 

with a larger greenroof.   

 During the storm events of August 29, September 28 and September 29, 2009 further water 

quality testing was completed for metals.  The tests were completed to characterize if the engineered 

media was releasing any metal by-products.  Aluminum was the only metal to consistently increase in all 

post-treatment samples.  The mean concentration increased from 26 µg/L in the greenroof runoff to 96 

µg/L after passing through the treatment system.  The post treatment aluminum concentrations did exceed 

the PWQO of 75 µg/L.  The sample size was small so conclusions should be cautioned; however future 

use of this engineered media should be aware of potential metal release.   

4.4: Isotherm Test for Engineered Media 

The isotherm tests were completed to characterize the adsorptive capacity of the media.  An 

isotherm test is conducted under ideal conditions for sorption processes and may not accurately represent 

the complexities of a field-scale operation.  For example the isotherm test uses ultrapure water and is 

often completed at a time scale which may not represent the treatment times experienced within the field.  

Additionally, competing ions will be present in the stormwater, resulting in lowered P removal by the 

media.  The greenroof runoff had a very noticeable yellow colour.  This colour is evidence of inorganic 

and humic substances from the compost found in the greenroof media (Berghage, 2009).  After passing 

through the treatment system, the water was consistently lighter and clearer in colour.  Competitive 

adsorption may have been occurring with the engineered media adsorbing the negatively charged humic 

and fulvic acids.  Selectivity of contaminant removal is difficult when treating natural water systems due 

to the range of contaminants (Faust and Aly, 1987). 

  Sorptive processes are strongly influenced by pH values.  Several studies have reported 

increases in P removal as the pH becomes more acidic (Agyei et al., 2002; Arias et al., 2006; Hossain et 

al., 2010).  With more acidic pH values positive charges accumulate upon the adsorbent surface, thereby 
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favouring the adsorption of negatively charged phosphate ions.  The slightly alkaline nature of the 

greenroof runoff may reduce this effect.  A field-scale application also introduces the complicating factor 

of bacterial growth.  Biofilm formation on the sorptive media may interfere with sorption processes 

(Chang et al., 2010b).  Abiotic testing in batch experiments can determine whether nutrients are being 

removed via physicochemical processes rather than microbial processes (Hossain et al., 2010).  However, 

field-scale applications are more difficult to control and there may be a microbial influence that 

contributes to nutrient uptake or release.    

Estimate of P sorptive capacity becomes further complicated by differences in substrate 

characteristics such as grain size, shape, packing and porosity.  These influences are amplified as the 

quantities of media are increased to field-scale (Faust and Aly, 1987).  Furthermore, differential flow 

pathways are avoided in batch tests as the media is shaken allowing for potential maximum adsorbant 

coverage (Drizo et al., 1999; 2002). Differences in the grain size of the media may have resulted in large 

variation in sorption results.  The media was coned and quartered in an attempt to minimize the variation 

in grain size, however the differences could not be completely controlled (Figure 47).  The 2009 media 

had more variation in grain size than the 2010 media which complicates predicting the maximum sorption 

capacity. 

 

Figure 47: Representative photomicrographs of the engineered media.  2009 (left), 2010 (right). 

 

The isotherm tests showed that the PSC for the media used in 2009 and 2010 were approximately 

0.420 mg/g and 7.71 mg/g, respectively.  These results are compared to P sorption studies from the 

literature in Table 12.  Due to the wide range of materials and lack of standard batch experiment 

procedures, comparisons of results are difficult, however some general observations can be made.  

Cucarella and Renman (2009) note that several parameters of batch experiments can affect the PSC 

including: concentration of P solution, particle size of adsorbent, mass of adsorbent, material-to-solution 

ratio, pH of solution, length of contact time, degree of agitation and temperature.  Caution should be used 
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when applying batch experiment results to design estimates.  Jenssen and Krogstad (2003) used a 

conservative design capacity for a sorptive lightweight aggregrate that was 50% of the batch experiment 

results. 

Table 12: P sorption capacities of various sorptive materials tested in batch experiments. 

Study Sorptive material 
P sorption 

capacity (mg/g) 
Notes 

Camm, 2011 

Oxide-coated pumice (version 1) 

Oxide-coated pumice (version 2) 

 

0.420 

7.71 
 

Boujelben et al., 

2008 

Synthetic iron coated sand 

Naturally iron oxide coated sand 

Iron oxide coated crushed brick 

1.50 

0.88 

1.75 

Max sorption at pH 5 

Lower specific surface area 

Mann and 

Bavor, 1993 

Blast furnace slag 

Fly ash 

Granulated slag 

Gravel 

0.42 

0.26 

0.16 

0.03-0.05 

BFS considered for use in a 

constructed wetland system 

Del Bubba et al. 

2003 

13 sands ranging in Ca and Mg, grain 

size, porosity, bulk density 
0.014 – 0.266 

Sands with high Ca content (>60 

mg/g) had greatly increased sorption 

Chen et al., 

2007 
15 Chinese fly ashes 5.51-42.55 

Positively correlated to Ca & Fe 

content, but negatively correlated to 

total Si and Al. 

 

Cheung et al. 

1994 

Black oxide 

Fly ash (I/II) 

Red mud gypsum 

0.89 

1.19/3.08 

5.07 

Alkaline fly ash has better hydraulic 

conductivity making it more 

desirable for high infiltration rates 

Liu et al., 2008 Zirconium oxide 29.71 
Strong bonding indicated by lack of 

desorption 

Ádám et al., 

2007 

Filtralite P® (expanded clay) 

Shell sand 

2.50 

9.60 

 

High Ca concentration in shell sand 

Xu et al., 2006 

Bentonite 

Fly ash 

Furnace slag 

Sand (I-IV) 

0.93 

8.81 

8.89 

0.13-0.29 

Furnace slag considered the best 

substrate for constructed wetland 

Drizo et al., 

1999 

Bauxite 

Shale 

Burnt oil shale 

Limestone 

Zeolite 

LECA 

Fly ash 

0.61 

0.65 

0.58 

0.68 

0.46 

0.42 

0.86 

 

Zhu et al., 1997 

UTELITE™ 

Lehigh Cement VA 

LECA (I/II) 

Filtralite P® 

3.46 

2.91 

0.16/0.57 

1.39/2.21 

Total metal content was correlated 

highest to P sorption capacity 

Ca was the metal ion with highest 

correlation to P sorption capacity 
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Sand (I/II) 

 

0.43/0.44 

Golder et al., 

2006 
Chrome hydroxide sludge 23.30 Low pH (3.0) favours adsorption 

Khadhraoui et 

al., 2002 

Ca-based sorbent (bentonite, calcium 

hydroxide, Yalloun coal) 
10 - 17 

Increased sorption with greater pore 

volumes 

Lu et al., 2009 Fly ash 90-107.53 
Removal associated with calcium 

content of fly ash 

Sakadevan and 

Bavor, 1998 

Blast furnace slag 

Steel furnace slag 

Zeolite 

44.25 

1.43 

2.15 

Adsorption had higher correlation 

with Al than Fe 

Tanada et al., 

2003 
Aluminum oxide hydroxide 0.76  

Drizo et al., 

2002 
Electric arc furnace steel slag 

3.93 (batch exp.) 

1.35-2.35 

(column exp.) 

The material regenerated P sorption 

capacity after resting for 4 weeks 

Hossain et al., 

2010 

50% sand, 20% limestone, 15% 

sawdust, 15% tire crumb 

7.70 SRP 

7.30 TP 
 

Zhou and Li, 

2001 
Calcareous soils 

0.59-5.55 

 
 

Kostura et al., 

2005 

Amorphous slag (I/II) 

Crystalline slag 

6.47/8.50 

18.94 
 

 

4.5: Life Expectancy of Media 

A variety of physical, chemical and biological factors complicate the extrapolation of batch 

experiment data to a field-scale application.  The life expectancy calculations are based on ideal lab 

conditions and may vary according to fluctuations in pollutant concentrations and loads, residence times, 

treatment system design and hydrological conditions (Chang et al., 2010b).  Furthermore, caution must be 

used when applying Langmuir estimates to field studies due to bias created in the model and experimental 

data (Drizo et al., 2002). 

Based on the batch experiments, the qmax for the 2009 media was approximately 0.420 mg/g.  

Using the bulk density and volume of media, the total mass of media was 38 760 g.  Therefore the 

theoretical maximum P load the system could adsorb was 16.28 g (0.420 mg/g x 38 760 g).  The volume 

weighted mean concentration (VWMC) of SRP in the greenroof runoff during 2009 was 0.769 mg/L.  

Throughout the entire monitoring period the average runoff producing event exported 160 L of 

stormwater.  Assuming that during an entire year, 30 runoff events occur, then the total amount of SRP 

export is 3.69 g/yr ((30 x 160 x 0.769)/1000).  Therefore, the life expectancy for SRP removal can be 

estimated as 4.4 yr (16.28/3.69).  Substituting the UCL and LCL maximum sorption values, the lifespan is 
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calculated to be 5.07 yr and 3.74 yr, respectively.  Using the 2010 qmax of 7.71 mg/g and a mass of 60 040 

g, the theoretical max P load was 463.9 g.  Using the VWMC for 2010 of 0.630 mg/L and for the above 

conditions the SRP export is 3.02 g/yr.  The theoretical max life expectancy is then calculated to be 153 

yr, with an UCL of 173 yr and LCL of 132 yr.  These figures are based on the maximum theoretical 

adsorption and therefore an overestimation for field application.  As was demonstrated by the field 

results, complete nutrient removal was not accomplished during the monitoring period, indicating the 

problems inherent in these predictions.   

4.6: Implications to Stormwater Management 

 Stormwater management during the 1970s was primarily concerned with flood control, but has 

recently evolved to incorporate water quality treatment, protection of stream channels, maintenance of 

groundwater flow and the protection of aquatic habitat (Bradford and Gharabaghi, 2004).  Over the past 

decade the treatment train approach has become favoured for stormwater management plans.  The 

treatment train approach emphasizes a move from strict end-of-pipe controls, to treating stormwater from 

source, conveyance and finally at the end-of-pipe (OME, 2003b, Bradford and Gharabaghi, 2004).  This 

shift to a treatment train approach reflects the increased desire to incorporate LID and sustainable urban 

drainage design. 

 Greenroofs are considered an important stormwater technology that can be used in the treatment 

train at the source control level.  The widespread adaptation of greenroofs in North America has been 

previously limited by a lack of technical information on how to incorporate this practice into stormwater 

planning (Getter and Rowe, 2006; Banting et al., 2005).  The recent research and prevalence of greenroofs 

has resulted in increased public awareness and a movement towards their increased use in urban 

development. 

 This study adds to the body of knowledge for greenroof research.  As reported in this research 

and several other studies greenroofs are an important source control BMP for the reduction of stormwater 

volumes, the delay of peak flow rates and increase of lag times (VanderLinden and Stone, 2009; Van 

Seters et al., 2009; Carter and Rasmussen, 2006; VanWoert et al., 2005; Bliss et al., 2009; Moran, 2004).   

Urban areas are often space limited, making the implementation of SW BMPs very difficult.  Greenroofs 

may be a more realistic retrofit option as they can be built onto existing buildings which have sufficient 

structural integrity.  The use of greenroofs in urban areas will decrease the stormwater runoff volumes 

and reduce the overwhelming of sewer facility capacities.   

 Recent studies have shown greenroofs to be a source of P (VanderLinden and Stone, 2009; Van 

Seters et al., 2009; Bliss et al., 2009).  The export of P from the roofs represents an issue to freshwater 
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quality (Berndtsson et al., 2006).  While the OME focuses on treatment of stormwater runoff for 

suspended solids, the sediment associated P may be removed but not the SRP load (OME, 2003b).  The 

SRP has been considered more bioavailable and possibly presents a larger impact to freshwaters.  The 

current study investigated the use of an adsorptive media designed to remove the SRP from the greenroof.  

In an EPA greenroof report it was recommended that any greenroof runoff be directed to another LID 

system such as a vegetated filter strip, rain garden or stormwater collection system (Berghage, 2009).  

The authors recommend that greenroof runoff not be directly discharged directly to any receiving waters 

without first being treated.  For suburban or agricultural areas the greenroof runoff may simply be 

directed to a vegetated area or collected in rain barrels for reuse.  Hardin and Wanielista (2007) also 

recommend that greenroof runoff is collected in cisterns for reuse.  The authors suggest the use of a 

pollution control media to be placed underneath the growth media.  New greenroof developments may 

benefit from the addition of an adsorptive media layer in the construction stage.  While this would 

increase the structural load of the greenroof, the implementation may be simpler than a post-runoff system 

used in the current study.  The use of adsorptive media within the greenroof matrix would prevent 

replacement of the media, however as the majority of P tends to leach from the growth substrate during 

the first years after construction, continual replacement may not be required (Camm, 2010; Van Seters et 

al., 2009).   

 The use of an additional layer of adsorptive media will increase the costs associated with 

greenroof construction.  The cost of greenroof implementation has been a continued barrier to 

implementation.  Carter and Keeler (2008) suggest greenroofs becoming more economically attractive 

with rising energy costs and increased public awareness of stormwater issues.  A detailed cost-benefit 

analysis needs to be completed to assess the cost of implementing treatment systems to further treat 

greenroof runoff.  Stormwater financing has been used in the past to help develop and maintain 

stormwater facilities (Cameron et al., 1999).   

 Emilsson et al. (2007) note the lack of regulations or guidelines for P content of greenroof 

substrates or fertilization in the industry standard German greenroof practices.  For nitrogen, 5g 

N/year/m
2
 is recommended as a nutrient requirement.  The P demand of greenroof vegetation is less well 

understood and no guidelines have been set. In North America, the ASTM has created a Green Roof Task 

Force to create greenroof standards; however these standards are concerned with structural requirements, 

retention and water capture, and selection of vegetation.    

The focus of this study was removing P from greenroof runoff using an adsorptive media.  

Greenroofs represent only a small fraction of the technologies employed for stormwater BMPs.  The use 

of this media could be extended into a much larger stormwater context.  Opportunities for improved water 

quality exist as stormwater moves through the treatment train.  BMPs such as rain gardens, road swales 
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and stormwater ponds could easily be optimized to improve P removal with the addition of a sorptive 

media (Chang et al., 2010a).  A study by the Centre for Watershed Protection in Maryland compiled 

results from various studies on conventional stormwater treatment methods, to create a National Pollutant 

Removal Performance Database (CWP, 2007).  The findings for TP and SRP are presented in Table 13.  

Most of these practices exhibited very low removal rates for SRP, with dry ponds, bioretention and open 

channels demonstrating a net export of SRP.  There represents a clear need to address these water quality 

issues for this range of SWBMPs.  The use of sorptive media is one possibility for the improvement of 

these practices.   

 

Table 13: Range of BMP median P removal performances (CWP, 2007). 

Median 

Treatment 

Performance 

n = number of 

studies 

Dry 

Ponds 

Wet 

Ponds 
Wetland 

Filtering 

Practices
1
 

Bioretention 
Infiltration 

Practices
2
 

Open 

Channels
3
 

TP % 
20 

n = 10 

52 

n = 45 

48 

n = 37 

59 

n = 17 

5 

n = 10 

65 

n = 8 

24 

n = 16 

SRP % 
-3 

n = 6 

64 

n = 28 

25 

n = 26 

3 

n = 7 

-9 

n = 5 

84 

n = 4 

-38 

n = 14 

1. organic filters and sand filters 

2. infiltration trenches and porous pavement 

3. grass channels and dry swales 
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Chapter 5: Conclusions and Further Research 

The main objective of this thesis was to investigate the treatment efficiency of a sorptive material 

for the removal of P from greenroof runoff.  The study results are intended to provide information that 

will assist the planning and management of greenroof policy, construction and optimization of this 

important source control BMP for water quantity and quality control.  Conclusions and recommendations 

for further research are presented in the following sections.  

 

5.1: Water Quantity 

 68 rainfall events were monitored from June 2009 – October 2009, and May 2010 – August 2010. 

 Rainfall events ranged from 1.0 mm to 56.8 mm.  The majority of the events had <2 year return 

periods and the largest event had a return period of approximately 35 years. 

 

 The greenroof retained 41.5% (144 mm of 347 mm) of runoff volumes for 39 rainfall events 

during the 2009 monitoring period.  During 2010, 53.3% (213 of 400 mm) of precipitation was 

retained.   

 

 The highest monthly retention rates of 76.5% occurred in August, 2010 and the lowest of -14.7% 

occurred in October, 2009.  The net export of runoff during October is attributed to low 

evapotranspiration rates and an underestimation of rainfall depths.   

 

 The mean retention for storms <5 mm was 54.0%, with a mean absolute retention of 1.7 mm.  

Storms >5 mm had a mean retention of 57.3% with a mean absolute retention of 7.1 mm. 

 

 For the entire monitoring period, events with less than 48 PDH had a mean retention of 34.0%.  

For events with greater than or equal to 48 PDH had a mean retention of 77.7%. 

 

 The greenroof was effective at extending the lag time.  The median lag time for all events was 

35.0 minutes.  The lag time effect of the greenroof was strongly influenced by the intensity of the 

rainfall event.  High intensity events resulted in the largest decrease in lag time. 

 

5.2: Water Quality 

2009 Media 

 The treatment system reduced the SRP volume-weighted mean concentration from 0.769 mg/L to 

0.523 mg/L.  Total UAL of 118 mg/m
2 
was reduced to 80.2 mg/m

2
 (32.0% load reduction).  

 

 The treatment system reduced the TP volume-weighted mean concentration from 1.30 mg/L to 

0.973 mg/L.  Total UAL of 189 mg/m
2
 was reduced to 141 mg/m

2
 (25.4% load reduction).   

 

 There was a downward trend for treatment efficiency over the monitoring period.   
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 The mean pH of the greenroof runoff was 7.90, after passing through the treatment system the pH 

decreased to 7.82. 

 

 The mean conductivity of the greenroof runoff was 611 µS/cm, after passing through the 

treatment system the conductivity decreased 11% to 544 µS/cm. 

 

 The volume-weighted mean concentration of TDS was is 420 mg/L for both pre and post-

treatment samples. 

 

 The suspended solids concentrations for the greenroof runoff averaged 7.6 mg/L and 3.5 mg/L 

after passing through the treatment system.  

 

 The grain size distribution did not significantly change between the pre and post treatment 

samples for the 4 storm events analyzed.   There was also no indication of a change in the D90 

throughout the hydrograph.   

 

2010 Media 

 

 The treatment system reduced the SRP volume-weighted mean concentration from 0.630 mg/L to 

0.110 mg/L.  Total UAL of 76.1 mg/m
2 
was reduced to 13.4 mg/m

2
 (82.4% load reduction).  

 

 The treatment system reduced the TP volume-weighted mean concentration from 1.18 mg/L to 

0.158 mg/L.  Total UAL of 142 mg/m
2
 was reduced 19.1 mg/m

2
 (86.6% load reduction).   

 

 The treatment efficiency of the engineered media did not show a decreasing trend in treatment 

efficiency over the monitoring period 

 

 The mean pH of the greenroof runoff during 2010 was 8.22 and 7.56 after passing through the 

treatment system. 

 

 The mean conductivity of the greenroof runoff was 539 µS/cm, after passing through the 

treatment system the conductivity increased to a mean value of 1618 µS/cm.  The new media 

initially produced high conductivity readings, as particulates were washed off the media.  The 

conductivity readings rapidly decreased after the first few storms. 

 

 The volume-weighted mean concentration of TDS was 389 mg/L and 857 mg/L for influent and 

effluent samples, respectively. 
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5.3: Further research 

The present study focused on characterizing the water quality of greenroof runoff and the use of an 

engineered media to reduce P export.  The study raised a number of questions concerning the design and 

application of the treatment system.  The issue of greenroof stormwater quality requires further research.  

The following recommendations are based on findings in the literature and the current study.  

 

 Previous studies have reported initially high loads of P export followed by decreased loading as 

the greenroof ages.  The monitoring for this study occurred shortly after construction of the 

greenroof and planting.  Further research needs to be completed on greenroofs that have aged for 

several years.  Decreasing P export would have implications for the utility of treatment systems in 

older greenroof systems. 

 

 The influence of greenroof vegetation on P behavior needs to be investigated.  How much P can 

be expected to be used by the vegetation during growing season and consequently is there a 

release of this P during senescence?  Understanding this behavior will help control P export from 

the greenroof. 

 

 The P removal performance of the engineered media decreased over the monitoring period.  The 

variable stage depth within the rain barrel for each storm event makes it difficult to discern how 

effectively the entire volume of media was utilized.  The design of the treatment system needs to 

ensure entire usage of the media for each runoff event.   

 

 Performance metrics need to be developed to identify the cost per unit mass of P removed.  

Practical and economic considerations need to be given to the installation, potential maintenance 

and removal of a treatment system. 

 

 Pilot-scale studies using sorptive media incorporated into the greenroof matrix could examine the 

treatment efficiency under a range of controlled hydrological conditions.  The lifespan of the 

sorptive media could be tested quickly using rainfall simulations.  

 

 Further isotherm testing of engineered media would benefit from a closer representation of field-

scale conditions.  Simulating the composition of greenroof runoff for the batch experiments 

would help characterize the adsorptive behavior with effects of pH and competing ions. 

 

 Key parameters affecting P removal need to be standardized for each batch of media to allow for 

treatment predictability.  These parameters include: grain size, surface chemistry, bulk density, 

hydraulic conductivity and porosity. 

 

 Microbial influence on nutrient removal needs to be characterized for future treatment systems.  

Batch testing of sorptive materials with bacterial dosing could characterize any microbial 

influence on nutrient removal. 

 

 

 



97 

 

References 

Ádám, K., Krogstad, T., Suliman, F.R.D., Jenssen, P.D. 2005. Phosphorus sorption by Filtralite P – small 

scale box experiment. Journal of Environmental Science and Health, Part A 40(6): 1239-1250. 

Agyei, N.M. Strydom, C.A., Potgieter, J.H. 2002. The removal of phosphate ions from aqueous solution 

by fly ash, slag, ordinary Portland cement and related blends. Cement and Concrete Research 32: 

1889-1897. 

Arias, M., Silva-Carballal, J.D., García-Río, L., Mejuto, J., Núñez, A. 2006. Retention of phosphorus by 

iron and aluminum oxides-coated quartz particles. Journal of Colloid and Interface Science 295: 

65-70. 

Arnold Jr., C.L, Gibbons, J.C. 1996. Impervious surface coverage: the emergence of a key environmental 

indicator. Journal of the American Planning Association 62(2): 243-258. 

Ayoub, G.M., Kalinian, H. 2006. Removal of low-concentration phosphorus using a fluidized raw 

dolomite bed. Water Environmental Research 78: 353-361. 

Bäckström, M., Malmqvist, P-A., Viklander, M. 2002. Stormwater management in a catchbasin 

perspective—best practices or sustainable strategies? Water Science and Technology 46(6 – 7): 

159-166.  

Banting, D., Doshi ,H., Li, J., Missios, P., Au, A., Currie, B.A., Verrati M. 2005. Report on the 

Environmental Benefits and Costs of Green Roof Technology for the City of Toronto: Prepared 

For City of Toronto and Ontario Centres of Excellence—Earth and Environmental Technologies 

(OCE-ETech). Not Published, Ryerson University. 

Baumann, N. 2006. Ground-nesting birds on green roofs in Switzerland: Preliminary observations. Urban 

Habitats 4(1): 37-50. 

Bengtsson, L, Grahn, L., Olsson, J. 2005. Hydrological function of a thin extensive green roof in southern 

Sweden. Nordic Hydrology 36(2): 259-268. 

Berghage, R., Jarrett, A., Beattie, D., Kelly, K, Husain, S., Razaei, F., Long, B., Negassi, A., Cameron, 

R., Hunt, W. 2007. ―Quantifying evaporation and transpirational water losses from green roofs 

and green roof media capacity for neutralizing acid rain‖. National Decentralized Water 

Resources Capacity Development Project (NDWRCDP) Research Project, 2007, available at 

http://www.epa.gov/region8/greenroof/pdf/Green%20Roofs%20and%20acid%20rain.pdf 

Berndtsson, J.C. 2010. Green roof performance towards the management of runoff water quantity and 

quality: A review. Ecological Engineering 36: 351-360. 

Berndtsson, J.C., Emilsson, T., Bengtsson, L. 2006. The influence of extensive vegetated roofs on runoff 

water quality. Science of the Total Environment 355: 48-63. 

Bernhardt, E.S., Palmer, M.A. 2007. Restoring streams in an urbanizing world. Freshwater Biology 52: 

738-751. 

Bliss, D.J., Neufeld, R.D., Ries, R.J. 2009. Storm water runoff mitigation using a green roof. 

Environmental Engineering Science 26(2): 407-417. 

Booth, D.B. 2005. Challenges and prospects for restoring urban streams: a perspective from the Pacific 

Northwest of North America. The North American Benthological Society 25(3): 724-737. 

Booth, D.B., Jackson, C.R. 1997. Urbanization of aquatic systems: degradation thresholds, stormwater 

detection, and the limits of mitigation. Journal of the American Water Resources Association 

33(5): 1077-1090. 

http://www.epa.gov/region8/greenroof/pdf/Green%20Roofs%20and%20acid%20rain.pdf


98 

 

Boström, B., Persson, G., Broberg, B. 1988. Bioavailability of different phosphorus forms in freshwater 

systems. Hydrobiologia 170: 133-155. 

Boujelben, N., Bouzid, J., Elouear, Z., Feki, M., Jamoussi, F., Montiel, A. 2008. Phosphorus removal 

from aqueous solution using iron coated natural and engineered sorbents.  Journal of Hazardous 

Materials 151: 103-110 

Bradford, A., Gharabaghi, B. 2004. Evolution of Ontario‘s stormwater management planning and design 

guidance. Water Quality Restoration Journal of Canada 39(4): 343-355. 

Buccola, N. Spolek, G. 2010. A pilot-scale evaluation of greenroof runoff retention, detention, and 

quality. Water, Air, & Soil Pollution. Available online at http://dx.doi.org/10.1007/s11270-010-

0516-8. 

Cameron, J., Cincar, C., M. Trudeau., Marsalek, J., Schaefer, K. 1999. User pay financing of stormwater 

management:  A case-study in Ottawa-Carleton, Ontario. Journal of Environmental Management 

57: 253-265. 

Carpenter, S.R., Caraco, N.F., Correll, D.L., Howarth, R.W., Sharpley, A.N. Smith, V.H. 1998. Nonpoint 

pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8(3): 559-568. 

Carter, T., Fowler, L. 2008. Establishing green roof infrastructure through environmental policy 

instruments. Environmental Management 42: 151-164. 

Carter, T., Jackson, C.R. 2007. Vegetated roofs for stormwater management at multiple spatial scales. 

Landscape and Urban Planning 80: 84-94. 

Carter T., Keeler, A. 2008. Life-cycle cost-benefit analysis of extensive vegetated roof systems. Journal 

of Environmental Management 87: 350-363. 

Carter, T., Rasmussen, T.C. 2006. Hydrologic behavior of vegetated roofs. Journal of the American 

Water Resources Association 42(5): 1261-1274. 

Chang, N.B., Hossain, F., Wanielista, M. 2010a. Filter media for nutrient removal in natural systems and 

built environments: I – previous trends and perspectives. Environmental Engineering Science 

27(9): 689-706. 

Chang, N.B., Wanielista, M., Daranpob, A. 2010b. Filter media for nutrient removal in natural systems 

and built environments: II – design and application challenges.  Environmental Engineering 

Science 27(9): 707-720. 

Chen, J., Kong, H., Wu, D., Chen, X., Zhang, D., Sun, Z. 2007. Phosphate immobilization from aqueous 

solution by fly ashes in relation to their composition. Journal of Hazardous Materials B139: 293-

300. 

Chocat, B., Ashley, R., Marsalek, J., Matos, M.R., Rauch, W., Schilling, W., Urbonas, B. 2007. Toward 

the sustainable management of urban storm-water. Indoor and Built Environment 16(3): 273-285. 

City of Chicago. 2007. City of Chicago Green Roof Test Project Plot Project: 2006 Annual Project 

Summary Report.  Prepared by MWH Americas Inc. for City of Chicago Department of 

Environment. 

City of Toronto. 2008. By-law to Require and Govern the Construction of Green Roofs in Toronto: 

Prepared For City of Toronto Planning and Growth Management Committee – Chief Building 

Official and Executive Director, Toronto Building and Executive Planner, Executive Director, 

City Planning. 



99 

 

Correll, D.L. 1998. The role of phosphorus in the eutrophication of receiving waters: a review. Journal of 

Environmental Quality 27: 261-266. 

Cucarella, V., Renman, G. 2009. Phosphorus sorption capacity of filter materials used for on-site 

wastewater treatment determined in batch experiments – A comparative study. Journal of 

Environmental Quality 38: 381-392. 

CWP, Centre for Watershed Protection. 2007. National Pollutant Removal Performance Database 

Version 3. Ellicott City, MD.  

Davis, A. P., McCuen, R.H. 2005. Stormwater Management for Smart Growth. Springer Science + 

Business Media, Inc. New York, NY. 

DeBusk, T.A., Langston, M.A., Schwegler, B.R., Davidson, S. 1997. An evaluation of filter media for 

treating storm water runoff. Proceedings of the Fifth Biennial Storm Water Research Conference, 

pp. 82-89.   

Del Barrio, E.P. 1998. Analysis of the green roofs cooling potential in buildings. Energy and Buildings 27 

(2): 179-193. 

Del Bubba, M.D., Arias, C.A., Brix, H. 2003. Phosphorus adsorption maximum of sands for use as media 

in subsurface flow constructed reed beds as measured by the Langmuir isotherm.  Water 

Research 37: 3390-3400. 

DeNardo, J.C., Jarrett, A.R., Manbeck, H.B., Beattie, D.J., Berghage, R.D. 2005. Stormwater mitigation 

and Surface Temperature Reduction By Green Roofs. American Society of Agricultural Engineers 

48 (4): 1491-1496. 

Dietz, M.E. 2007. Low impact development practices: a review of current research and recommendations 

for future directions. Water, Air, and Soil Pollution 186: 351-363. 

Dietz, M.E., Clausen, J.C. 2006. Saturation to improve pollutant retention in a rain garden. Environmental 

Science & Technology 40: 1335-1340. 

Dietz, M.E., Clausen, J.C. 2008. Stormwater runoff and export changes with development in a traditional 

and low impact subdivision. Journal of Environmental Management 87: 560-566. 

Drizo, A., Frost, C.A., Grace, J., Smith, K.A. 1999. Physico-chemical screening of phosphate-removing 

substrates for use in constructed wetland systems. Water Restoration 33(17): 3595-3602. 

Drizo, A., Comeau, Y., Forget, C., Chapuis, R.P. 2002. Phosphorus saturation potential: a parameter for 

estimating the longevity of constructed wetland systems.  Environmental Science & Technology 

36 (21): 4642-4648. 

Dunne, T., Leopold, L.B. 1978. Water in Environmental Planning. W.H. Freeman and Company, San 

Francisco. pp. 275. 

Dunnett, N., Kingsbury, N. 2008. Planting green roofs and living walls. Timber Press, Inc. Portland, OR. 

Eaton, A.D., Clesceri, L.S., Greenberg, A.E. (eds.) 1995. Standard Methods for the Examination of Water 

and Wastewater. Washington D.C.: American Public Health Association, American Water Works 

Association & Water Environment Federation. 

 

Emilsson, T., Berndtsson, J.C., Mattsson, J.E., Rolf, K.  2007. Effect of using conventional and controlled 

release fertilizer on nutrient runoff from various vegetated roof systems.  Ecological Engineering 

29: 260-271. 



100 

 

Environment Canada. 1979. Analytical methods manual. Water quality branch, Ottawa, Canada. 

Erickson, A.J., Gulliver, J.S., Weiss, P.T. 2007. Enhanced sand filtration for storm water phosphorus 

removal. Journal of Environmental Engineering 133(5): 485-497. 

Faust, S.D., Aly, O.M. 1987. Adsorption Processes for Water Treatment. Butterwort Publishers, 

Stoneham, MA. 

Finkenbine, J.K., Atwater, J.W., Mavinic, D.S. 2000. Stream health after urbanization. Journal of the 

American Water Resources Association 36(5): 1149-1160. 

FLL (Guidelines for planning execution and upkeep of greenroof sites). 2002. Bonn, Forschungs-

gesellschaft Landschaftsentwicklung Landschaftsbau EV. 

Genç-Fuhrman, H., Mikkelsen, P.S., Ledin, A. 2007. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn 

from stormwater: experimental comparison of 11 different sorbents. Water Research 41: 591-602. 

Georgantas, D.A., Grigoropoulou, H.P. 2007. Orthophosphate and metaphosphate ion removal from 

aqueous solution using alum and aluminum hydroxide. Journal of Colloid and Interface Science 

315: 70-79. 

Getter, K.L., Rowe, D.B. 2006. The role of extensive green roofs in sustainable development. 

HortScience 41(5): 1276-1285.   

Getter, K.L., Rowe, D.B., Andresen, J.A. 2007. Quantifying the effect of slope on extensive green roof 

stormwater retention. Ecological Engineering 31: 225-231. 

Golder, A.K., Samanta, A.N., Ray, S. 2006. Removal of phosphate from aqueous solutions using calcined 

metal hydroxides sludge waste generated from electrocoagulation. Separation and Purification 

Technology 52: 102-109. 

Graham, P., Maclean, L., Medina, D., Patwardhan, A., Vasarhelyi, G. 2004. The role of water balance 

modeling in the transition to low impact development. Water Quality Research Journal of 

Canada 39(4): 331-342. 

Grant, G. 2006. Extensive green roofs in London. Urban Habitats 4(1): 51-65. 

Grapentine, L. Rochfort, Q., Marsalek, J. 2004. Benthic responses to wet-weather discharges in urban 

streams in southern Ontario. Water Quality Research Journal of Canada 39(4): 374-391. 

Hardin, M.D., Wanielista, M. 2007. Designing cisterns for green roofs in Florida. Unpublished. 

Stormwater Management Academy. University of Central Florida. 

Hathaway, A.M, Hunt, W.F., Jennings, G.D. 2008. A field study of green roof hydrologic and water 

quality performance. Transactions of the ASABE 51(1): 37-44. 

Hatt, B.E., Fletcher, T.D., Deletic, A. 2008. Hydraulic and pollutant removal performance of fine media 

stormwater filtration systems. Environment Science & Technology 42(7): 2535-2541. 

Hatt, B.E. Siriwardene, N., Deletic, A., Fletcher, T.D. 2006.  Filter media for stormwater treatment and 

recycling: the influence of hydraulic properties of flow on pollutant removal. Water Science & 

Technology 54(6-7): 263-271. 

Heal, K.V., Smith, K.A., Younger, P.L., McHaffie, H., Batty, L.C. 2004. Removing phosphorus from 

sewage effluent and agricultural runoff using recovered ochre. In: E, Valsami-Jones (ed.) 

Phosphorus in Environmental Technology: Principles and Applications. IWA Publishing, 

London. 



101 

 

Hedley, M.J. 2008. Techniques for assessing nutrient bioavailability in soils: current and future issues. 

Developments in Soil Science 32: 283-327. 

Hossain, F, Chang, N., Wanielista, M. 2010. Modeling kinetics and isotherms of functionalized filter 

media for nutrient removal from stormwater dry ponds. Environmental Progress & Sustainable 

Energy 29(3): 319-332. 

Hsieh, C., Davis, A.P. 2005. Evaluation and optimization of bioretention media for treatment of urban 

storm water runoff. Journal of Environmental Engineering 131(11): 1521-1531. 

Hsieh, C., Davis, A.P., Needelman, B.A. 2007. Bioretention column studies of phosphorus removal from 

urban stormwater runoff.  Water Environment Research 79(2): 177-184. 

Hutchinson, D., Abrams, P., Retzlaff, R., Liptan, T. 2003. Stormwater monitoring two ecoroofs. 

Proceedings of Greening Rooftops for Healthy Cities Conference, Chicago, Illinois, 2003. 

Islam, A., Khan, M.R., Mozumder, S.I. 2004. Adsorption equilibrium and adsorption kinetics: a unified 

approach. Chemical Engineering Technology 27(10): 1095-1098.  

Jarrett, A.R., Hunt, W.F. Beghage, R.D. 2006. Annual and individual-storm green roof stormwater 

response models. Conference Paper # 062310, 2006 ASAE Annual Meeting, Portland Oregon, 

USA, July 9 – 12, 2006. 

Jenssen, P.D., Krogstad, T. 2003. Design of constructed wetlands using phosphorus sorbing Lightweight 

Aggregate (LWA). In: Mander Ü, Jenssen P.D. (eds.) Constructed wetlands for wastewater 

treatment in cold climates, Advances in ecological sciences, Vol. 11. WIT Press, Southampton. 

Johansson, L., Gustafsson, J.P. 1999. Phosphate removal using blast furnace slags and opaka-

mechanisms. Water Research 34(1): 259-265. 

Johnston, J., Newton, J. 1993. Building Green, A Guide for Using Plants on Roofs, Walls and Pavements. 

The London Ecology Unit, London. 

Kandasamy, J., Beecham, S., Dunphy, A. 2008. Stormwater sand filters in water-sensitive urban design.  

Proceedings of the Institution of Civil Engineers Water Management 161 (WM2): 55-64. 

Kasprzyk-Holdern, B. 2004. Chemistry of alumina, reactions in aqueous solution and its application in 

water treatment. Advances in Colloid and Interface Science 110: 19-48. 

Khadhraoui, M., Watanabe, T., Kuroda, M. 2002. The effect of the physical structure of a porous Ca-

based sorbent on its phosphorus removal capacity. Water Research 36: 3711-3718. 

Kim, J., Ma, J., Howerter, K., Garofalo, H., Sansalone, J. 2008. Interactions of Phosphorus with 

Anthropogenic and Engineered Particulate Matter as a Function of Mass, Number and Surface 

Area.  In: W. James, K.N., Irvine, E.A., McBean, R.E., Pitt, S.J., Wright (eds.) Reliable Modeling 

of Urban Water Systems, Monograph 16. CHI, Guelph, Ontario. 

Köhler, M. 2006. Long-term vegetation research on two extensive green roofs in Berlin. Urban Habitats 

4(1): 3-26. 

Köhler, M, Schmidt, M., Grimme, F.W., Laar, M., Paiva, V.L, Tavares, S. 2002. Green roofs in temperate 

climates and in the hot-humid tropics – far beyond the aesthetics. Environmental Management 

and Health 13(4): 382-391. 

Kosareo, L.M. 2007. The thermal performance and life cycle assessment of a green roof in Pittsburgh, 

Pennsylvania. Master‘s Thesis. University of Pittsburgh. 



102 

 

Lawlor, G., Currie, B.A., Doshi, H. Wieditz, I. 2006. Canada Mortgage and Housing Corporation 

(CMHC): Green Roofs: A Resource Manual for Municipal Policy Makers. Retrieved February 2, 

2009, at http://commons.bcit.ca/greenroof/download/Resource_Manual.pdf. 

Li, Y., Liu, C., Luan, Z., Peng, X., Zhu, C., Chen, Z., Zhang, Z., Fan, J., Jia, Z. 2006. Phosphate removal 

from aqueous solutions using raw and activated red mud and fly ash. Journal of Hazardous 

Materials B137: 374-383. 

Liu, D., Teng, Z., Sansalone, J., Cartledge, F.K. 2001a. Surface characteristics of sorptive-filtration storm 

water media. I: Low-density (ρs< 1.0) oxide-coated buoyant media. Journal of Environmental 

Engineering 127(10): 868-878. 

Liu, D., Teng, Z., Sansalone, J., Cartledge, F.K. 2001b. Surface characteristics of sorptive-filtration storm 

water media. II: Higher specific gravity (ρs> 1.0) oxide-coated buoyant media. Journal of 

Environmental Engineering 127(10): 879-888. 

Liu, D., Teng, Z., Sansalone, J., Cartledge, F.K. 2004. Adsorption characteristics of oxide coated buoyant 

media (ρs< 1.0) for storm water treatment. I: Batch equilibria and kinetics. Journal of 

Environmental Engineering 130(4): 374-382. 

Liu, D., Teng, Z., Sansalone, J., Cartledge, F.K. 2005. Comparison of sorptive filter media for treatment 

of metals in runoff. Journal of Environmental Engineering 131(8): 1178-1186. 

Liu, H., Sun, X., Yin, C., Hu, C. 2008. Removal of phosphate by mesoporous ZrO2. Journal of Hazardous 

Materials 151: 616-622. 

Liu, K. 2003. Engineering performance of rooftop gardens through field evaluation, NRCC-46294. 

Institute for Research in Construction. Ottawa, Canada: National Research Council. 

Liu, K. 2004. Sustainable building envelope—garden roof system Performance, NRCC-47354. Institute 

for Research in Construction. Ottawa, Canada: National Research Council. 

Liu, K., Baskaran, A. 2005. Using garden roof systems to achieve sustainable building envelopes, 

National Research Council. Construction Technology Update 65: 1-6. 

Liu, K., Minor, J. 2005. Performance evaluation of an extensive green roof. NRCC-48204. Institute for 

Research in Construction. Ottawa, Canada: National Research Council. 

Logan, T.J. 1982. Mechanism for release of sediment-bound phosphate to water and the effects of 

agricultural land management on fluvial transport of particulate and dissolved phosphate. 

Hydrobiologia 92: 519-530. 

Long, B., Clark, S.E., Baker, K.H., Berghage, R. 2006. Green roof media selection for the minimization 

of pollutant loadings in roof runoff. Water Environment Foundation: 5528-5548. 

Lu, S.G., Bai, S.Q., Zhu, L., Shan, H.D. 2009. Removal mechanism of phosphate from aqueous solution 

by fly ash. Journal of Hazardous Materials 161: 95-101. 

Lucas, W.C., Greenway, M. 2008. Nutrient retention in vegetated and nonvegetated bioretention 

mesocosms. Journal of Irrigation and Drainage Engineering 134(5): 613-623. 

Lüderitz, V., Gerlach, F. 2002. Phosphorus removal in different constructed wetlands. Acta 

Biotechnologica 22: 91-99. 

Lundholm, J.T. 2006. Green roofs and facades: a habitat template approach. Urban Habitats 4(1): 87-101. 

Ma, J., Sansalone, J., 2007. Mass transfer behavior of media for the treatment of stormwater phosphorus. 

World Environmental and Water Resources Congress. 

http://commons.bcit.ca/greenroof/download/Resource_Manual.pdf


103 

 

Mallin, M.A. Ensign, S.H., Wheeler, T.L., Mayes, D.B. 2002. Surface water quality: pollutant removal 

efficacy of three wet detention ponds. Journal of Environmental Quality 31: 654-660. 

Marsalek, J. 2005.  Evolution of Urban Drainage: From Cloaca Maxima to Environmental Sustainability.  

Acqua E Città. I Convgeno Nazionale Di Idralica Urbana, Sant’Agnello (NA), September 28 -30, 

2005. 

Marsalek, J., Chocat, B. 2002. International report: stormwater management. Water Science and 

Technology 46: 1-17. 

Marsalek, J., Rochfort, Q. 2004. Urban wet-weather flows: sources of fecal contamination impacting 

recreational waters and threatening drinking-water sources. 2004. Journal of Toxicology and 

Environmental Health, Part A 67: 1765-1777. 

Mason, Y., Amman, A.A., Ulrich, A., Sigg, L. 1999. Behavior of heavy metals, nutrients, and major 

components during roof runoff infiltration. Environmental Science & Technology 33(10): 1588-

1597. 

Mengel, K., Kirkby, E.A. 1982. Principles of Plant Nutrition 3
rd

 ed. International Potash 

Institute.Worblaufen-Bern, Switzerland. 

Mentens, J., Raes, D., Hermy, M. 2006. Green roofs as a tool for solving the rainwater runoff problem in 

the urbanized 21
st
 century? Landscape and Urban Planning 77: 217-226. 

Minton, G.R. 2002. Stormwater Treatment: Biological, Chemical, and Engineering Principles. Resource 

Planning Associates. Seattle, Washington. 

Monterusso, M., Rowe, D.B. Rugh, C. L. 2005. Establishment and persistence of Sedum spp. and native 

taxa for green roof applications. HortScience 40(2): 391-396.   

Moran, A.C.  2004. A North Carolina field study to evaluate greenroof runoff quantity, runoff quality, and 

plant growth. Master‘s thesis, North Carolina State University. 

Ngan, G. 2004. Green Roof Policies: Tools For Encouraging Sustainable Design. Retrieved January 21, 

2009. www.gnla.ca. 

Niachou, A., Papakonstantinou, K., Santamouris, M., Tsangrassoulis, A., Mihalakakou, G. 2001. Analysis 

of the green roof thermal properties and investigation of its energy performance. Energy and 

Buildings 33: 719-729. 

Novotny, V., Olem, H. 1994. Water Quality: Prevention, Identification, and Management of Diffuse 

Pollution. Van Nostrand Reinhold. New York, NY. 

Oberndorfer, E., Lundholm, J., Bass, B., Coffman, R.R., Doshi, H. Dunnett, N., Gaffin, S., Köhler, M., 

Liu, K.K.Y, Rowe, B. 2007. Green roofs as urban ecosystems: ecological structures, functions, 

and services. Bioscience 57(10): 823-833. 

OMEE, Ontario Ministry of Environment and Energy. 1999. Water Management Policies, Guidelines and 

Provincial Water Quality Objectives of the Ministry of Environment and Energy. Ontario: 

Queen‘s Printer for Ontario. 

OME, Ontario Ministry of Environment. 2003b. Stormwater Management Planning and Design Manual. 

Queen‘s Printer for Ontario. 

Osmundson, T. 1999. Roof Gardens: History, Design, and Construction. New York: W.W. Norton & 

Company. 

http://www.gnla.ca/


104 

 

Paul, M.J., Meyer, J.L. 2001. Streams in the urban landscape. Annual Review of Ecology and Systematics 

32: 333-365. 

Peck, S.W., Callaghan, C., Bass, B., Kuhn, M.E. 1999. Greenbacks From Green Roofs: Forging A New 

Industry In Canada, CMHC. Toronto. 

Pincetl, S., Gearin, E. 2005. The reinvention of public green space. Urban Geography 26(5): 365-384. 

Pitt, R., Clark, S.E. 2008. Integrated storm-water management for watershed sustainability. Journal of 

Irrigation and Drainage Engineering 134(5): 548-555. 

Reddy, K.R., DeLaune, R.D. 2008. Biogeochemistry of Wetlands: Science and Applications. CRC Press 

Taylor & Francis Group. Boca Raton, FL. 

Reddy, K.R., Kadlec, R.H., Flaig, E., Gale, P.M. 1999. Phosphorus retention in streams and wetlands: a 

review. Critical Reviews in Environmental Science & Technology 29(1): 83-146. 

Rowe, D.B., Monterusso, M.A., Rugh, C.L. 2006. Assessment of heat-expanded slate and fertility 

requirements in green roof substrates. HortTechnology 16(3): 471-477. 

Roy, A.H., Wenger, S.J., Fletcher, T.D., Walsh, C.J., Ladson, A.R., Shuster, W.D., Thurston, H.W., 

Brown, R.R. 2008. Impediments and solutions to sustainable, watershed-scale urban stormwater 

management: lessons from Australia and the United States. Environmental Management 42: 344-

359. 

Sansalone, J. 1999. Adsorptive-infiltration of metals in urban drainage-media characteristics. Science and 

the Total Environment 235: 179-188. 

Sansalone, J., Teng, Z. 2004. In situ partial exfiltration of rainfall runoff. I: quality and quantity 

attenuation. Journal of Environmental Engineering 130(9): 990-1007. 

Schindler, D.W. 1977. Evolution of phosphorus limitation in lakes. Science 195(4275): 260-262. 

Scholz-Barth, K. 2001. Green Roofs:  Stormwater Management From the Top Down. Journal of 

Environmental Design & Construction, January/February: 71-81. 

Schueler, T.R. 1987. Controlling Urban Runoff: A Practical Manual for Planning and Designing Urban 

BMPs. Washington Metropolitan Water Resources Planning Board. 

Schueler, T.R. 1994. The importance of imperviousness. Watershed Protection Technology 3: 551-596. 

Schueler, T.R. 2000. Is rooftop runoff really clean? In:  The Practice of Watershed Protection. T.R. 

Schueler and H.K. Holland, (eds). Ellicott City, MD: Center for Watershed Protection. p. 41. 

Seelsaen, N., McLaughlan, R., Moore, S., Ball, J.E., Stuetz, R.M. 2006. Pollutant removal efficiency of 

alternative filtration media in stormwater treatment. Water Science & Technology 54(6-7): 299-

305. 

Semadeni-Davis, A., Hernebring, C., Svensson, G., Gustafsson, L. 2008. The impacts of climate change 

and urbanisation on drainage in Helsingborg, Sweden: combined sewer system. Journal of 

Hydrology 350: 100-113. 

Sonstrom, R.S., Clausen, J.C., Askew, D.R. 2004. Treatment of parking lot stormwater using a 

StormTreat system. Environmental Science & Technology 36(20): 4441-4446. 

Smil, V. 2000. Phosphorus in the environment: natural flows and human interferences. Annual Review of 

Environment and Resources 25: 53-88. 



105 

 

Tanada, S., Kabayama, M., Kawasaki, N., Sakiyama, T., Nakamura, T., Araki, M., Tamura, T. 2003. 

Removal of phosphate by aluminum oxide hydroxide. Journal of Colloid and Interface Science 

257: 135-140. 

Teemusk, A., Mander, U. 2007. Rainwater runoff quantity and quality performance from a greenroof: the 

effects of short-term events. Ecological Engineering 30: 271-277. 

Thomas, W.J., Crittenden, B.D. 1998. Adsorption Technology & Design. Reed Educational and 

Professional Publishing Ltd. Woburn, MA. 

Tisdale, S.L, Nelson, W.L., Beaton, J.D. 1985. Soil Fertility and Fertilizers. Macmillan Publishing 

Company, New York, NY. 

TRCA, Toronto Regional Conservation Authority. 2006. Evaluation of an Extensive Green Roof, York 

University, Toronto, Ontario, Final Draft. Toronto, ON. 

TRCA, Toronto Regional Conservation Authority. 2007. Water Budget Discussion Paper. Submitted by 

Gardner Lee Limited. Toronto, ON: Not Published. 

Tsihrintzis, V.A., Hamid, R. 1997. Modeling and management of urban stormwater runoff quality: a 

review. Water Resources Management 11: 137-164. 

USEPA. United States Environmental Protection Agency. 1999. Determining Urban Stormwater Best 

Management Practice (BMP) Removal Efficiencies. Office of Water, Washington, D.C. 

USEPA. United States Environmental Protection Agency. 2000. Low Impact Development (LID): A 

Literature Review. Office of Water, Washington, D.C. 

Vander Linden, K., Stone, M. 2009. Wet weather performance of a green roof in Waterloo, Ontario. 

Water Quality Research Journal of Canada 44(1): 26-32. 

 

vanLoon, G.W., Duffy, S.J. 2005. Environmental Chemistry: A Global Perspective. Oxford University 

Press Inc., New York, NY. 

VanWoert, N.B., Rowe, B.D., Andresen, J.A., Rugh, C.L., Fernandez, T.R., Xiao, L. 2005. Green Roof 

Stormwater Retention: Effects of Roof Surface, Slope, and Media Depth. Journal of 

Environmental Quality 34: 1036-1044. 

Van Seters, T., Rocha, L., Smith, D., MacMillan, G. 2009. Evaluation of green roofs for runoff retention, 

runoff quality, and leachability. Water Quality Research Journal of Canada 44(1): 33-47. 

Velazquez, L.S. 2005b. Organic greenroof architecture: sustainable design for the new millennium.  

Environmental Quality Management Summer: 73-85. 

Villarreal, E.L., Bengtsson, L. 2005. Response of a Sedum green-roof to individual rain events. 

Ecological Engineering 25: 1-7. 

Walsh, C.J., Roy, A.H., Feminella, J.W., Cottingham, P.D., Groffman, P.M., Morgan II, R.P. 2005b. The 

urban stream syndrome: current knowledge and the search for a cure. Journal of the North 

American Benthological Society 24(3): 706-723. 

Walsh, C.J., Fletcher, T.D., Ladson, A.R. 2005a. Stream restoration in urban catchments through 

redesigning stormwater systems: looking to the catchment to save the stream. Journal of the 

North American Benthological Society 24(3): 690-705. 

Wang, G., Chen, S., Barber, M.E., Yonge, D.R. 2002. Modeling flow and pollutant removal of wet 

detention pond treating stormwater runoff. Journal of Environmental Engineering 130(11): 1315-

1321. 



106 

 

Watson, S.B., Ridal, J., Boyer, G.L. 2008. Taste and odour and cyanobacterial toxins: impairment, 

prediction and management in the Great Lakes. Canadian Journal of Fisheries and Aquatic 

Sciences 65: 1779-1796. 

Watt, W.E., Waters, D., McLean, R. 2003. Climate Change and Urban Stormwater Infrastructure in 

Canada:  Context and Case Studies. Toronto-Niagara Region Study on Atmospheric Change: 

Report & Working Paper Series. Kingston: Queen‘s University Press. 

Weiss, P.T., Gulliver, J.S., Erickson, A.J. 2007. Cost and pollutant removal of storm-water treatment 

practices. Journal of Water Resources Planning and Management 133(3): 218-229. 

Westholm, L.J. 2006. Substrates for phosphorus removal – Potential benefits for on-site wastewater 

treatment. Water Research 40: 23-36. 

Wolf, D., Lundholm, J.T. 2008. Water uptake in green roof mesocosms: effects of plant species and water 

availability. Ecological Engineering 33: 179-186. 

Wong, N.H., Cheong, D.K.W., Yan, H., Soh, J. Ong, C.L., Sia, A. 2003a. The effects of rooftop garden 

on energy consumption of a commercial building in Singapore. Energy and Buildings 35: 353-

364. 

Wong, N.H., Tay, S., Wong, R., Ong, C.L., Sia, A. 2003b. Life cycle cost analysis of rooftop gardens in 

Singapore. Building and Environment 38: 499–509. 

Zhang, W., Brown, G.O., Storm, D.E., Zhang, H. 2008. Fly-ash-amended sand as filter media in 

bioretention cells to improve phosphorus removal. Water Environment Research 80: 507-516. 

Zobrist, J., Müller, S.R., Ammann, A., Bucheli., T.D. , Mottier, V., Ochs, M., Schoenenberger, R., 

Eugster, J., Boller, M. 2000. Quality of roof runoff for groundwater infiltration. Water 

Restoration 34(5): 1455-1462. 

 

 



107 

 

Appendix A: Water Quality 

 

Table A1:  Soluble reactive phosphorus concentrations for the 2009 monitoring period. 

 

 

 Influent (mg/L) Effluent (mg/L) 

Date N total Mean Minimum Median Maximum EMC N total Mean Minimum Median Maximum EMC 

11-Jul 19 0.824 0.708 0.815 0.919 0.803 22 0.154 0 0 0.482 0.356 

23-Jul 24 1.23 1.14 1.23 1.35 1.23 24 0.0303 0.00524 0.0352 0.0452 0.0216 

29-Jul 24 1.25 1.08 1.24 1.44 1.18 9 0.134 0.0797 0.122 0.217 0.119 

09-Aug 23 0.769 0.244 0.92 1.05 0.868 22 0.196 0.0300 0.213 0.368 0.0405 

11-Aug 23 0.91 0.745 0.925 1.02 0.896 23 0.503 0.213 0.525 0.763 0.408 

20-Aug 16 0.805 0.681 0.797 0.954 0.799 17 0.598 0.149 0.611 0.816 0.669 

29-Aug 23 0.893 0.758 0.88 1.03 0.919 23 0.444 0.248 0.491 0.557 0.324 

28-Sep 24 0.344 0.274 0.343 0.381 0.354 24 0.202 0.172 0.197 0.243 0.193 

29-Sep 24 0.466 0.362 0.486 0.564 0.476 24 0.286 0.263 0.287 0.301 0.287 

02-Oct 24 0.491 0.444 0.498 0.527 0.485 24 0.372 0.252 0.381 0.429 0.373 

09-Oct 24 0.755 0.588 0.796 0.890 0.679 24 0.517 0.404 0.530 0.596 0.481 

23-Oct 23 0.603 0.546 0.581 0.917 0.601 23 0.577 0.549 0.575 0.612 0.567 

28-Oct 21 0.675 0.606 0.667 1.04 0.683 24 0.614 0.526 0.619 0.69 0.623 
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Table A2:  Soluble reactive phosphorus summary statistics for 2009 monitoring period. 

 
Influent (mg/L) 

Date 
N 

total 
Mean 

Standard 

Deviation 

SE of 

mean 

Lower 95% CI of 

Mean 

Upper 95% CI of 

Mean 
Median 

11-Jul 19 0.824 0.06 0.01 0.794 0.853 0.815 

23-Jul 24 1.23 0.04 0.009 1.22 1.25 1.23 

29-Jul 24 1.25 0.08 0.02 1.21 1.28 1.24 

09-Aug 23 0.769 0.3 0.07 0.632 0.906 0.92 

11-Aug 23 0.910 0.08 0.02 0.876 0.944 0.925 

20-Aug 16 0.805 0.07 0.02 0.769 0.841 0.797 

29-Aug 23 0.893 0.05 0.01 0.869 0.917 0.88 

28-Sep 24 0.344 0.03 0.006 0.333 0.356 0.343 

29-Sep 24 0.466 0.06 0.01 0.439 0.493 0.486 

02-Oct 24 0.491 0.02 0.005 0.480 0.501 0.498 

09-Oct 24 0.755 0.1 0.02 0.712 0.799 0.796 

23-Oct 23 0.603 0.08 0.02 0.569 0.638 0.581 

28-Oct 21 0.675 0.09 0.02 0.633 0.717 0.667 

 

 
Effluent (mg/L) 

Date 
N 

total 
Mean 

Standard 

Deviation 

SE of 

mean 

Lower 95% CI of 

Mean 

Upper 95% CI of 

Mean 
Median 

11-Jul 19 0.154 0.2 0.04 0.0658 0.242 0 

23-Jul 24 0.0303 0.01 0.002 0.0252 0.0353 0.0352 

29-Jul 24 0.101 0.07 0.02 0.0539 0.147 0.104 

09-Aug 23 0.196 0.1 0.02 0.151 0.241 0.213 

11-Aug 23 0.503 0.2 0.03 0.431 0.575 0.525 

20-Aug 16 0.598 0.2 0.04 0.507 0.689 0.611 

29-Aug 23 0.444 0.1 0.02 0.395 0.493 0.491 

28-Sep 24 0.202 0.02 0.004 0.193 0.210 0.197 

29-Sep 24 0.286 0.01 0.002 0.282 0.291 0.287 

02-Oct 24 0.372 0.04 0.009 0.353 0.390 0.381 

09-Oct 24 0.517 0.05 0.01 0.494 0.540 0.530 

23-Oct 23 0.577 0.01 0.003 0.570 0.584 0.575 

28-Oct 21 0.614 0.04 0.009 0.595 0.632 0.619 
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Table A3:  Total phosphorus concentrations for the 2009 monitoring period. 

 

 
Influent (mg/L) Effluent (mg/L) 

Date N total Mean Minimum Median Maximum EMC N total Mean Minimum Median Maximum EMC 

11-Jul 18 1.82 1.50 1.79 2.27 1.81 22 0.708 0.0501 0.114 1.90 1.41 

23-Jul 24 1.74 1.52 1.74 2.05 1.72 24 0.0484 0.0209 0.052 0.0724 0.0375 

29-Jul 23 2.01 1.66 1.92 2.89 2.09 12 0.208 0.102 0.19 0.343 0.193 

09-Aug 22 1.39 1.12 1.42 1.78 1.37 22 0.717 0.411 0.701 1.17 0.301 

11-Aug 23 1.41 0.959 1.40 1.64 1.36 23 0.693 0.391 0.693 0.961 0.487 

20-Aug 16 1.24 0.867 1.31 1.47 1.26 17 0.939 0.403 0.966 1.28 1.04 

29-Aug 23 1.73 1.35 1.70 2.16 1.83 18 1.03 0.621 1.08 1.47 0.813 

28-Sep 24 1.21 0.799 1.19 1.85 1.27 24 0.586 0.425 0.583 0.865 0.562 

29-Sep 23 0.910 0.726 0.881 1.36 0.908 23 0.564 0.425 0.571 0.673 0.552 

02-Oct 20 0.630 0.563 0.627 0.773 0.614 20 0.569 0.434 0.571 0.628 0.573 

09-Oct 24 0.904 0.816 0.902 0.988 0.876 24 0.791 0.700 0.811 0.876 0.754 
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Table 4:  Total phosphorus summary statistics for the 2009 monitoring period. 

 
Influent (mg/L) 

Date 
N 

total 
Mean 

Standard 

Deviation 

SE of 

mean 

Lower 95% CI of 

Mean 

Upper 95% CI of 

Mean 
Median 

11-Jul 18 1.82 0.2 0.06 1.70 1.94 1.79 

23-Jul 24 1.74 0.1 0.02 1.69 1.79 1.74 

29-Jul 23 2.01 0.3 0.06 1.88 2.15 1.92 

09-Aug 22 1.39 0.2 0.03 1.32 1.47 1.42 

11-Aug 23 1.41 0.1 0.03 1.36 1.47 1.40 

20-Aug 16 1.24 0.2 0.04 1.15 1.33 1.31 

29-Aug 23 1.73 0.2 0.05 1.64 1.83 1.70 

28-Sep 24 1.21 0.3 0.05 1.09 1.32 1.19 

29-Sep 23 0.910 0.1 0.03 0.848 0.972 0.881 

02-Oct 20 0.630 0.05 0.01 0.608 0.653 0.627 

09-Oct 24 0.904 0.05 0.01 0.881 0.927 0.902 

 

 
Effluent (mg/L) 

Date 
N 

total 
Mean 

Standard 

Deviation 

SE of 

mean 

Lower 95% CI of 

Mean 

Upper 95% CI of 

Mean 
Median 

11-Jul 22 0.708 0.7 0.1 0.397 1.02 0.114 

23-Jul 24 0.0484 0.01 0.003 0.0425 0.0543 0.052 

29-Jul 12 0.208 0.08 0.02 0.156 0.260 0.190 

09-Aug 22 0.717 0.2 0.05 0.618 0.817 0.701 

11-Aug 23 0.693 0.2 0.04 0.619 0.767 0.693 

20-Aug 17 0.939 0.2 0.05 0.828 1.05 0.966 

29-Aug 23 1.03 0.2 0.05 0.915 1.15 1.08 

28-Sep 24 0.586 0.09 0.02 0.546 0.626 0.583 

29-Sep 24 0.564 0.07 0.01 0.536 0.593 0.571 

02-Oct 24 0.569 0.04 0.01 0.549 0.590 0.571 

09-Oct 24 0.791 0.06 0.01 0.766 0.816 0.811 
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Table A5:  Soluble reactive phosphorus concentrations for the 2010 monitoring period. 

 
Influent (mg/L) Effluent (mg/L) 

Date N total Mean Minimum Median Maximum EMC N total Mean Minimum Median Maximum EMC 

07-May 1 0.851 0.851 0.851 0.851 0.851 12 0.0337 0.0134 0.0323 0.0583 0.0364 

13-May 1 0.884 0.884 0.884 0.884 0.884 12 0.251 0.0939 0.260 0.318 0.263 

02-Jun 12 1.10 0.714 0.825 2.90 1.27 12 0.0576 0.0247 0.0539 0.103 0.0647 

03-Jun 12 0.678 0.631 0.674 0.773 0.672 12 0.117 0.0983 0.110 0.177 0.128 

12-Jun 12 0.985 0.651 0.711 3.93 1.07 12 0.0933 0.0467 0.0745 0.257 0.101 

16-Jun 12 0.644 0.598 0.633 0.728 0.649 12 0.113 0.0971 0.103 0.144 0.121 

22-Jun 12 0.557 0.488 0.533 0.716 0.566 12 0.082 0.0606 0.0659 0.231 0.0892 

24-Jun 12 0.531 0.497 0.517 0.613 0.528 12 0.128 0.0941 0.113 0.205 0.142 

26-Jun 12 1.13 0.610 0.669 6.16 0.814 12 0.103 0.0500 0.0651 0.280 0.0854 

24-Jul 12 0.457 0.298 0.458 0.681 0.438 12 0.0752 0.0299 0.0493 0.185 0.0783 

15-Aug 4 0.244 0.223 0.240 0.273 - 12 0.0682 0.0324 0.0664 0.129 - 

21-Aug 12 0.222 0.211 0.223 0.228 0.218 12 0.0598 0.0453 0.0585 0.0757 0.0582 
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Table A6:  Soluble reactive phosphorus summary statistics for 2010 monitoring period. 

 
Influent (mg/L) 

Date 
N 

total 
Mean 

Standard 

Deviation 

SE of 

mean 

Lower 95% CI of 

Mean 

Upper 95% CI of 

Mean 
Median 

07-May 1 0.851 -- -- -- -- 0.851 

13-May 1 0.884 -- -- -- -- 0.884 

02-Jun 12 1.10 0.7 0.2 0.675 1.53 0.825 

03-Jun 12 0.678 0.04 0.01 0.655 0.701 0.674 

12-Jun 12 0.985 0.9 0.3 0.395 1.57 0.711 

16-Jun 12 0.644 0.04 0.01 0.617 0.671 0.633 

22-Jun 12 0.557 0.07 0.02 0.511 0.603 0.533 

24-Jun 12 0.531 0.04 0.01 0.507 0.554 0.517 

26-Jun 12 1.13 2 0.5 0.118 2.14 0.669 

24-Jul 12 0.457 0.08 0.02 0.403 0.511 0.458 

15-Aug 4 0.244 0.02 0.01 0.211 0.277 0.240 

21-Aug 12 0.222 0.006 0.002 0.218 0.225 0.223 

 

 

 

 

 

 

 
Effluent (mg/L) 

Date 
N 

total 
Mean 

Standard 

Deviation 

SE of 

mean 

Lower 95% CI of 

Mean 

Upper 95% CI of 

Mean 
Median 

07-May 12 0.0337 0.01 0.004 0.0249 0.0425 0.0323 

13-May 12 0.251 0.06 0.02 0.213 0.289 0.260 

02-Jun 12 0.0576 0.02 0.006 0.0451 0.070 0.0539 

03-Jun 12 0.117 0.02 0.006 0.103 0.131 0.110 

12-Jun 12 0.0933 0.06 0.02 0.0556 0.131 0.0745 

16-Jun 12 0.113 0.02 0.005 0.101 0.125 0.103 

22-Jun 12 0.082 0.05 0.01 0.0515 0.113 0.0659 

24-Jun 12 0.128 0.04 0.01 0.104 0.153 0.113 

26-Jun 12 0.103 0.08 0.02 0.0541 0.152 0.0651 

24-Jul 12 0.0752 0.05 0.01 0.042 0.108 0.0493 

15-Aug 12 0.0682 0.03 0.009 0.0492 0.0872 0.0664 

21-Aug 12 0.0598 0.008 0.002 0.0545 0.0652 0.0585 
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Table A7: Total phosphorus concentrations for the 2010 monitoring period. 

 

 
Influent (mg/L) Effluent (mg/L) 

Date N total Mean Minimum Median Maximum EMC N total Mean Minimum Median Maximum EMC 

07-May 1 1.57 1.57 1.57 1.57 1.57 12 0.0804 0.0482 0.0700 0.166 0.0815 

13-May 1 1.63 1.63 1.63 1.63 1.63 12 0.298 0.0968 0.312 0.373 0.311 

02-Jun 12 1.84 1.28 1.41 5.43 1.99 12 0.105 0.0628 0.0802 0.343 0.116 

03-Jun 12 1.45 1.31 1.41 1.64 1.46 12 0.159 0.130 0.144 0.232 0.171 

12-Jun 12 1.38 0.940 1.00 5.44 1.56 12 0.171 0.110 0.173 0.284 0.169 

16-Jun 12 0.909 0.845 0.902 1.01 0.892 12 0.137 0.107 0.125 0.184 0.158 

22-Jun 12 1.16 0.904 1.12 1.73 1.21 12 0.130 0.0880 0.113 0.308 0.157 

24-Jun 12 1.21 1.03 1.17 1.55 1.24 12 0.201 0.159 0.181 0.302 0.218 

26-Jun 12 2.00 0.952 1.24 10.2 1.85 12 0.143 0.0823 0.109 0.314 0.155 

24-Jul 12 0.909 0.810 0.876 1.30 0.864 12 0.112 0.0596 0.0842 0.250 0.114 

21-Aug 12 0.250 0.229 0.252 0.255 0.244 12 0.0802 0.0526 0.0781 0.104 0.076 
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Table A8:  Total phosphorus summary statistics for the 2010 monitoring period. 

 
Influent (mg/L) 

Date 
N 

total 
Mean 

Standard 

Deviation 

SE of 

mean 

Lower 95% CI of 

Mean 

Upper 95% CI of 

Mean 
Median 

07-May 1 1.57 -- -- -- -- 1.57 

13-May 1 1.63 -- -- -- -- 1.63 

02-Jun 12 1.84 1 0.3 1.10 2.59 1.41 

03-Jun 12 1.45 0.1 0.03 1.38 1.53 1.41 

12-Jun 12 1.38 1 0.4 0.568 2.19 1.00 

16-Jun 12 0.909 0.04 0.01 0.881 0.938 0.902 

22-Jun 12 1.16 0.2 0.06 1.03 1.29 1.12 

24-Jun 12 1.21 0.1 0.04 1.11 1.30 1.17 

26-Jun 12 2.00 2 0.7 0.349 3.66 1.24 

24-Jul 12 0.909 0.1 0.04 0.828 0.990 0.876 

21-Aug 12 0.250 0.007 0.002 0.245 0.254 0.252 

 

 Effluent (mg/L) 

Date 
N 

total 

Mean Standard 

Deviation 

SE of 

mean 

Lower 95% CI of 

Mean 

Upper 95% CI of 

Mean 

Median 

07-May 12 0.0804 0.03 0.01 0.0586 0.102 0.0700 

13-May 12 0.298 0.07 0.02 0.252 0.345 0.312 

02-Jun 12 0.105 0.08 0.02 0.0563 0.154 0.0802 

03-Jun 12 0.159 0.03 0.009 0.139 0.179 0.144 

12-Jun 12 0.171 0.05 0.01 0.138 0.204 0.173 

16-Jun 12 0.137 0.02 0.007 0.121 0.153 0.125 

22-Jun 12 0.130 0.06 0.02 0.0935 0.167 0.113 

24-Jun 12 0.201 0.05 0.01 0.170 0.233 0.181 

26-Jun 12 0.143 0.08 0.02 0.0934 0.193 0.109 

24-Jul 12 0.112 0.06 0.02 0.0716 0.153 0.0842 

21-Aug 12 0.0802 0.01 0.004 0.0722 0.0882 0.0781 
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Table A9:  Conductivity measurements for the 2009 and 2010 monitoring periods. 

 

 

 
Influent (µS/cm) Effluent (µS/cm) 

2009 Date N total Mean Std. Dev. Minimum Median Maximum N total Mean Std. Dev. Minimum Median Maximum 

11-Jul 24 644 31 596 639 718 24 442 75 287 476 506 

23-Jul 19 942 57 893 934 1160 12 802 37 744 824 845 

29-Jul 23 706 101 515 745 800 22 603 56 521 604 683 

09-Aug 24 955 60 771 971 1020 24 855 66 712 880 924 

11-Aug 24 609 86 452 615 842 24 605 97 549 563 982 

20-Aug 23 732 53 671 714 878 22 700 18 666 705 721 

29-Aug 24 236 21 175 241 263 24 246 8.1 232 248 266 

28-Sep 23 293 26 270 287 395 23 273 7.6 262 272 291 

29-Sep 23 375 19 344 378 408 24 351 14 330 348 386 

02-Oct 21 681 50 605 703 739 24 590 22 553 594 625 

09-Oct 24 479 65 419 466 747 24 547 101 471 493 764 

23-Oct 22 678 26 637 678 727 16 537 14 515 538 567 

 
Influent (µS/cm) Effluent (µS/cm) 

2010 Date N total Mean Std. Dev. Minimum Median Maximum N total Mean Std. Dev. Minimum Median Maximum 

07-May -- -- -- -- -- -- 12 10200 5200 5940 7920 20200 

13-May 1 460 -- 460 460 460 12 2640 1400 1270 2100 5110 

02-Jun 12 337 160 210 269 774 12 943 400 621 780 1970 

03-Jun 12 378 32 304 384 410 12 1020 610 609 823 2790 

12-Jun 12 574 55 468 579 661 12 529 46 479 510 600 

16-Jun 12 724 21 696 722 771 12 568 15 555 564 613 

22-Jun 12 503 41 440 491 594 12 579 33 550 563 646 

24-Jun 12 686 43 643 668 792 12 643 18 610 652 657 

26-Jun 12 751 29 692 763 782 12 680 11 664 680 697 

24-Jul 12 424 30 347 424 459 12 469 44 363 471 512 

21-Aug 12 543 38 437 549 587 12 462 5.4 453 463 472 
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Table A10:  Total dissolved solids measurements for the 2009 and 2010 monitoring periods. 

 

 
Influent (mg/L) Effluent (mg/L) 

2009 Date N total Mean Std. Dev. Minimum Median Maximum N total Mean Std. Dev. Minimum Median Maximum 

11-Jul 24 451 22 418 448 503 24 310 52 201 334 355 

23-Jul 19 661 40 626 655 816 12 562 26 522 578 592 

29-Jul 23 495 71 361 522 561 22 423 39 365 424 479 

09-Aug 24 670 42 541 681 715 24 599 47 499 617 648 

11-Aug 24 427 61 317 431 590 24 424 68 385 395 688 

20-Aug 23 513 37 470 501 616 22 491 13 467 494 505 

29-Aug 24 165 14 123 169 184 24 172 5.6 163 174 186 

28-Sep 23 206 18 189 201 277 23 192 5.3 184 191 204 

29-Sep 23 263 14 241 265 286 24 246 10 231 244 271 

02-Oct 21 477 35 424 493 518 24 414 15 388 417 438 

09-Oct 24 330 45 288 321 514 24 377 69 324 339 526 

23-Oct 22 467 18 438 466 500 16 369 9.8 354 370 390 

 
Influent (mg/L) Effluent (mg/L) 

2010 Date N total Mean Std. Dev. Minimum Median Maximum N total Mean Std. Dev. Minimum Median Maximum 

07-May 0 -- -- -- -- -- 12 7110 3600 4140 5520 14100 

13-May 1 325 -- 325 325 325 12 1870 1020 897 1490 3610 

02-Jun 12 239 110 149 191 548 12 668 280 440 553 1400 

03-Jun 12 268 23 215 272 290 12 723 430 431 583 1980 

12-Jun 12 402 39 327 405 462 12 370 32 335 357 420 

16-Jun 12 507 15 487 505 539 12 398 11 388 395 429 

22-Jun 12 348 28 305 340 411 12 401 23 381 390 447 

24-Jun 12 472 29 442 459 545 12 442 12 420 449 452 

26-Jun 12 517 20 476 525 538 12 468 7.7 457 468 480 

24-Jul 12 290 21 237 290 314 12 320 30 248 322 350 

21-Aug 12 383 27 308 387 414 12 326 3.7 320 327 333 
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Table A12: Suspended sediment concentrations for the 2009 monitoring period. 

 

 

 
Influent (mg/L) Effluent (mg/L) 

2009 Date N total Mean Std. Dev. Minimum Median Maximum N total Mean Std. Dev. Minimum Median Maximum 

11-Jul 5 10.3 18 0 0 40.9 5 3.68 5.0 0 0 9.40 

23-Jul 8 5.00 7.6 0 0 20.0 8 6.25 7.4 0 5 20.0 

29-Jul 6 16.0 13 8.70 9.25 42.4 7 10.5 8.1 0 9.20 27.2 

09-Aug 9 7.23 7.0 0 5.00 24.7 9 4.76 1.7 2.40 4.80 7.10 

11-Aug 9 8.34 2.9 4.20 8.20 13.2 9 3.89 1.6 0 4.70 4.90 

20-Aug 9 12.1 13 0 6.50 36.1 6 7.92 8.4 2.40 4.65 24.2 

29-Aug 9 4.98 5.8 0 3.20 14.1 9 1.71 3.1 0 0 9.20 

28-Sep 11 3.64 3.3 0 3.80 8.20 11 1.50 2.1 0 0 6.60 

29-Sep 9 4.37 5.0 0 3.90 15.8 9 1.80 1.0 0 2.30 2.40 

02-Oct 9 8.60 9.7 2.60 3.60 30.2 9 0.289 0.87 0 0 2.60 

09-Oct 9 8.11 7.3 0 7.40 23.0 9 0.289 0.87 0 0 2.60 

23-Oct 9 2.52 2.2 0 2.90 5.90 9 1.68 1.4 0 0 4.10 
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Table A13: pH measurements for the 2009 and 2010 monitoring periods. 

 

 
Influent Effluent 

2009 Date N total Mean Std. Dev. Minimum Median Maximum N total Mean Std. Dev. Minimum Median Maximum 

11-Jul 24 8.02 0.19 7.51 8.05 8.27 24 7.54 0.11 7.37 7.53 7.73 

23-Jul 19 8.23 0.17 7.90 8.20 8.59 12 8.41 0.22 8.10 8.38 8.93 

29-Jul 24 7.84 0.12 7.64 7.87 8.04 24 7.56 0.15 7.23 7.57 7.93 

09-Aug 24 8.16 0.16 7.54 8.19 8.31 24 8.13 0.071 7.95 8.16 8.23 

11-Aug 24 7.81 0.13 7.50 7.83 8.06 24 7.73 0.22 7.44 7.68 8.42 

20-Aug 16 7.99 0.19 7.35 8.06 8.13 16 7.91 0.092 7.68 7.92 8.06 

29-Aug 24 6.98 0.16 6.61 6.95 7.27 23 7.42 0.10 7.25 7.42 7.63 

28-Sep 24 7.29 0.20 6.91 7.29 7.81 23 7.10 0.24 6.32 7.08 7.57 

29-Sep 23 7.43 0.24 7.05 7.44 7.80 22 7.55 0.21 7.13 7.58 7.86 

02-Oct 21 7.89 0.24 6.94 7.92 8.10 24 7.90 0.20 7.38 7.95 8.32 

09-Oct 24 8.07 0.19 7.77 8.03 8.41 24 8.23 0.21 7.77 8.33 8.49 

23-Oct 23 8.75 0.17 8.48 8.68 9.02 18 8.41 0.19 7.97 8.40 8.79 

 
Influent Effluent 

2010 Date N total Mean Std. Dev. Minimum Median Maximum N total Mean Std. Dev. Minimum Median Maximum 

07-May 0 -- -- -- -- -- 11 6.74 1.0 4.65 7.07 7.57 

13-May 1 7.51 -- 7.51 7.51 7.51 12 7.59 0.19 7.14 7.63 7.84 

02-Jun 10 6.84 0.59 5.82 6.94 7.54 7 5.82 0.78 5.11 5.54 7.13 

03-Jun 12 8.14 0.45 6.74 8.30 8.40 12 7.24 0.20 6.72 7.28 7.55 

12-Jun 12 8.77 0.18 8.31 8.78 9.02 12 8.24 0.16 8.04 8.21 8.63 

16-Jun 12 8.45 0.13 8.25 8.45 8.67 12 8.03 0.15 7.63 8.04 8.25 

22-Jun 12 8.15 0.16 7.89 8.16 8.38 12 7.65 0.30 7.22 7.60 8.50 

24-Jun 12 7.97 0.30 7.61 7.88 8.51 12 7.68 0.13 7.54 7.65 7.99 

26-Jun 12 8.55 0.12 8.21 8.57 8.66 12 7.72 0.33 7.43 7.59 8.47 

24-Jul 12 8.75 0.14 8.39 8.76 8.98 12 7.68 0.19 7.29 7.64 7.95 

21-Aug 12 8.19 0.16 7.72 8.22 8.33 12 7.95 0.21 7.58 7.99 8.21 
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Grain size distribution of suspended sediment in influent and effluent samples of storm event on August 

29, 2009.  Representative micrograph of particles with scale = 100 microns. 

 

 

 

 

 

 

 

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

Influent

n = 17

D
90

: 16.2 m - 52.6 m

D
50

:  4.9 m - 6.7 m

P
e

rc
e

n
t 

F
in

e
r 

b
y
 N

u
m

b
e

r

Grain Size Diameterm) 

Effluent

n =13

D
90

: 25.1 m - 39.1 m

D
50

:  4.9 m - 6.7 m



120 

 

 

 

 

 

Grain size distribution of suspended sediment in influent and effluent samples of storm event on August 

20, 2009.  Representative micrograph of particles with scale = 100 microns. 
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Grain size distribution of suspended sediment in influent and effluent samples of storm event on August 

11, 2009.  Representative micrograph of particles with scale = 100 microns. 
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Appendix B: Water Quantity 

 

Table B1: Summary of runoff retention based on calculated precipitation inflows and observed runoff 

volumes.   

Storm 

Event 

Total 

Rain 
Inflow Outflow 

Outflow per 

unit area 

% Runoff 

retention (relative 

to precipitation) 

Average 

runoff 

coefficient 

 
mm L L L/m2 

  

11-Jun-09 5.4 200 34 0.92 83.0 0.170 

15-Jun-09 1.6 59.4 0 0.00 100 0.000 

18-Jun-09 5.4 200 32 0.86 84.0 0.160 

20-Jun-09 11.4 423 332 8.94 21.6 0.784 

25-Jun-09 22.8 847 410 11.0 51.6 0.484 

11-Jul-09 20.8 772 352 9.48 54.4 0.456 

21-Jul-09 2.4 33.4 0 0.00 100 0.000 

23-Jul-09 14.2 197 36 2.59 81.8 0.182 

25-Jul-09 4.2 58.4 48 3.45 17.8 0.822 

26-Jul-09 8.0 111 90 6.47 19.1 0.809 

29-Jul-09 1.2 16.7 0 0.00 100 0.000 

29-Jul-09 5.4 75.1 24 1.73 68.0 0.320 

04-Aug-09 4.6 63.9 0 0.00 100 0.000 

04-Aug-09 2.4 33.4 0 0.00 100 0.000 

08-Aug-09 3.6 50.0 0 0.00 100 0.000 

09-Aug-09 10.4 145 0 0.00 100 0.000 

09-Aug-09 17.6 245 32 2.30 86.9 0.131 

10-Aug-09 5.6 77.8 0 0.00 100 0.000 

11-Aug-09 8.4 117 82 5.90 29.8 0.702 

18-Aug-09 7.0 97.3 0 0.00 100 0.000 

20-Aug-09 83.2 1160 1030 74.0 11.1 0.889 

26-Aug-09 2.8 38.9 0 0.00 100 0.000 

29-Aug-09 4.2 58.4 22 1.58 62.3 0.377 

23-Sep-09 1.6 22.2 0 0.00 100 0.000 

27-Sep-09 5.0 69.5 0 0.00 100 0.000 

28-Sep-09 20.4 284 40 2.88 85.9 0.141 

28-Sep-09 6.2 86.2 38 2.73 55.9 0.441 

29-Sep-09 3.8 52.8 40 2.88 24.3 0.757 

29-Sep-09 2.2 30.6 26 1.87 15.0 0.850 

02-Oct-09 1.6 22.2 38 2.73 -70.9 1.71 

03-Oct-09 2.6 36.1 36 2.59 0.400 0.996 

04-Oct-09 5.2 72.3 68 4.89 5.90 0.941 
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06-Oct-09 5.0 69.5 168 12.09 -141.7 2.417 

09-Oct-09 23.2 322 322 23.17 0.000 1.00 

22-Oct-09 1.4 19.5 0 0.00 100.0 0.000 

23-Oct-09 5.0 69.5 100 7.19 -43.9 1.439 

28-Oct-09 3.8 52.8 18 1.29 65.9 0.341 

30-Oct-09 1.4 19.5 44 3.17 -126.1 2.261 

31-Oct-09 6.0 83.4 86 6.19 -3.10 1.031 

Total 2009 365 7040 3550 5.2 (Mean) 47.2 (Mean) 0.562 (Mean) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

07-May-10 18.4 256 86 2.32 66.4 0.336 

11-May-10 1.4 19.5 0 0.00 100.0 0.000 

13-May-10 5.2 72.3 80 2.15 -10.7 1.11 

Jun-01-10 6.6 91.7 0 0.00 100.0 0.000 

02-Jun-10 33.0 459 66 4.75 85.6 0.144 

03-Jun-10 14.8 206 190 13.7 7.60 0.924 

04-Jun-10 1.8 25.0 0 0.00 100.0 0.000 

06-Jun-10 22.2 309 290 20.9 6.0 0.940 

09-Jun-10 3.0 41.7 0 0.00 100.0 0.000 

09-Jun-10 2.8 38.9 0 0.00 100.0 0.000 

12-Jun-10 23.6 328 146 10.5 55.5 0.445 

16-Jun-10 17.8 247 148 10.6 40.2 0.598 

22-Jun-10 19.4 270 96 6.91 64.4 0.356 

24-Jun-10 31.2 434 442 31.8 -1.90 1.02 

26-Jun-10 11.8 164 86 6.19 47.6 0.524 

27-Jun-10 24.2 336 430 30.9 -27.8 1.28 

09-Jul-10 11.4 158 0 0.00 100.0 0.000 

11-Jul-10 15.6 217 0 0.00 100.0 0.000 

15-Jul-10 1.0 13.9 0 0.00 100.0 0.000 

19-Jul-10 5.2 72.3 0 0.00 100.0 0.000 

23-Jul-10 29.4 409 192 13.8 53.0 0.470 

24-Jul-10 12.2 170 84 6.04 50.5 0.495 

28-Jul-10 8.6 120 0 0.00 100.0 0.000 

02-Aug-10 13.8 192 0 0.00 100.0 0.000 

08-Aug-10 3.8 52.8 0 0.00 100.0 0.000 

09-Aug-10 10.8 150 0 0.00 100.0 0.000 

15-Aug-10 17.0 236 2 0.14 99.2 0.008 

19-Aug-10 5.8 80.6 0 0.00 100.0 0.000 

22-Aug-10 27.8 386 256 18.4 33.8 0.662 

Total 2010 400 5550 2590 6.2 (Mean) 67.9 (Mean) 0.321 (Mean) 
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Table B2: Summary of flow, antecedent dry period, and rainfall characteristics   

Storm Event 
Total 

Rain 

Mean 

Flow 

Peak 

Flow 
Lag time 

Previous 

Dry Hours 

Max 

Intensity 

Mean 

Intensity 

Rainfall 

Duration 

 mm L/min L/min min hrs mm/5 min mm/hr min 

11-Jun-09 5.4 0.208 0.667 20 -- 0.80 1.20 270 

15-Jun-09* 1.6 -- -- -- 70 0.6 0.22 430 

18-Jun-09 5.4 0.041 0.5 17 39 0.2 0.26 1235 

20-Jun-09 11.4 0.227 4 114 39 1.4 0.62 1100 

25-Jun-09 22.8 0.644 10 9 110 6.4 3.42 400 

11-Jul-09 20.8 1.54 12 4 218 10.8 22.7 55 

21-Jul-09* 2.4 -- -- -- 240 1.2 0.25 570 

23-Jul-09 14.2 0.157 0.5 109 29 0.8 1.16 735 

25-Jul-09 4.2 0.226 0.667 85 40 0.6 2.10 120 

26-Jul-09 8.0 0.086 0.667 10 18 1.2 0.69 700 

29-Jul-09* 1.2 -- -- -- 52 0.6 3.60 20 

29-Jul-09 5.4 0.103 0.4 35 5 0.6 2.59 125 

4-Aug-09* 4.6 -- -- -- 146 1.4 11.0 25 

4-Aug-09* 2.4 -- -- -- 3 1.8 14.4 10 

8-Aug-09* 3.6 -- -- -- 101 0.4 0.54 400 

9-Aug-09* 10.4 -- -- -- 10 3.8 13.9 45 

9-Aug-09 17.6 0.151 2 11 8 4.6 9.60 110 

10-Aug-09* 5.6 -- -- -- 5 1.0 3.20 105 

11-Aug-09 8.4 0.358 2 2 39 2.8 4.38 115 

18-Aug-09* 7.0 -- -- -- 179 2.0 21.0 20 

20-Aug-09 83.2 4.38 16 61 61 11.2 38.4 130 

26-Aug-09* 2.8 -- -- -- 80 0.6 0.84 200 

29-Aug-09 4.2 0.076 0.333 120 62 0.4 0.55 462 

23-Sep-09* 1.6 -- -- -- 605 0.6 0.24 405 

27-Sep-09* 5.0 -- -- -- 72 0.4 0.39 760 

28-Sep-09 20.4 0.349 1 52 27 2.4 6.12 200 

28-Sep-09 6.2 0.314 1 24 3 0.6 2.76 135 

29-Sep-09 3.8 0.150 0.667 39 6 0.4 1.09 210 

29-Sep-09 2.2 0.197 0.333 35 6 0.4 1.89 70 

2-Oct-09 1.6 0.196 1 188 21 0.4 0.16 610 

3-Oct-09 2.6 0.132 0.5 19 10 0.8 0.21 735 

4-Oct-09 5.2 0.121 1 5 15 2.4 0.96 325 

6-Oct-09 5.0 0.178 2 94 48 0.4 0.45 660 

9-Oct-09 23.2 0.202 1 431 42 0.4 1.02 1360 

22-Oct-09* 1.4 -- -- -- 297 0.2 0.07 1280 

23-Oct-09 5.0 0.105 1 38 16 0.4 0.32 950 

28-Oct-09 3.8 0.015 0.1 482 98 0.2 0.45 510 

30-Oct-09 1.4 0.108 0.286 79 49 0.2 0.56 150 

31-Oct-09 6.0 0.165 0.5 0 10 0.6 0.77 470 
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07-May-10 18.4 0.136 0.667 60 39 1.4 0.84 1320 

11-May-10* 1.4 -- -- -- 77 0.2 0.13 628 

13-May-10 5.2 0.149 2 2 33 1.0 0.80 390 

Jun-01-10 6.6 0.149 0  426 0.6 1.07 370 

02-Jun-10 33.0 0.178 2 11 30 2.8 3.44 575 

03-Jun-10 14.8 0.687 4 35 10 1.6 8.46 105 

04-Jun-10* 1.8 -- -- -- 31 0.4 0.50 215 

06-Jun-10 22.2 0.495 2 0 21 0.8 1.93 690 

09-Jun-10* 3.0 -- -- -- 69 0.4 0.77 235 

09-Jun-10* 2.8 -- -- -- 10 0.6 2.58 65 

12-Jun-10 23.6 0.097 2 0 54 6.4 3.45 410 

16-Jun-10 17.8 0.579 4 0 64 2.8 14.2 75 

22-Jun-10 19.4 0.389 4 0 61 5.0 2.74 425 

24-Jun-10 31.2 0.924 6 0 36 4.2 8.14 230 

26-Jun-10 11.8 0.310 1 46 48 0.8 1.46 485 

27-Jun-10 24.2 0.440 4 0 26 2.0 3.68 395 

09-Jul-10* 11.4 -- -- -- 268 0.6 1.63 420 

11-Jul-10* 15.6 -- -- -- 52 7.0 3.17 295 

15-Jul-10* 1.0 -- -- -- 97 0.2 0.33 180 

19-Jul-10* 5.2 -- -- -- 71 3.6 2.60 120 

23-Jul-10 29.4 0.830 4 79 95 3.6 3.56 495 

24-Jul-10 12.2 0.185 1 99 27 2.2 2.19 335 

28-Jul-10* 8.6 -- -- -- 85 3.2 0.97 530 

02-Aug-10* 13.8 -- -- -- 117 8.0 82.8 10 

08-Aug-10* 3.8 -- -- -- 81 1.8 0.63 360 

09-Aug-10* 10.8 -- -- -- 26 1.8 7.20 90 

15-Aug-10 17.0 2 2 0 137 3.8 1.62 630 

19-Aug-10* 5.8 -- -- -- 88 3.8 34.8 10 

22-Aug-10 27.8 0.139 1 709 50 1.8 1.01 1645 

Note: Italicized events had larger drainage area.* denotes no runoff. 
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Table B3: Runoff stage depth values within the rain barrel. 

Storm Event Peak Flow (L/min) Highest Level (m) Average Stage (m) 
Approximate contact 

time with media (min) 

11-Jul-09 12 0.916 0.359 270 

23-Jul-09 0.5 0.163 0.108 228 

25-Jul-09 0.67 0.22 0.132 327 

26-Jul-09 0.33 0.12 0.089 167 

26-Jul-09 0.67 0.184 0.123 374 

26-Jul-09 0.2 0.102 0.084 185 

29-Jul-09 0.4 0.14 0.095 217 

9-Aug-09 2.0 0.355 0.224 302 

9-Aug-09 2.0 0.327 0.182 352 

11-Aug-09 2.0 0.329 0.128 681 

20-Aug-09 16 0.922 0.4 398 

29-Aug-09 0.33 HOBO logger malfunction 

28-Sep-09 1.0 0.177 0.105 200 

29-Sep-09 0.67 0.184 0.159 144 

29-Sep-09 0.33 0.192 0.163 155 

2-Oct-09 1.0 0.269 0.148 331 

4-Oct-09 1.0 0.319 0.231 423 

6-Oct-09 2.0 0.452 0.336 496 

9-Oct-09 1.0 0.392 0.278 1020 

23-Oct-09 1.0 0.189 0.149 303 

28-Oct-09 0.10 0.153 0.144 103 

31-Oct-09 0.50 0.2 0.166 296 

7-May-10 0.67 0.413 0.229 1179 

13-May-10 2.0 0.32 0.171 486 

2-Jun-10 2.0 

HOBO logger malfunction 3-Jun-10 4.0 

6-Jun-10 2.0 

12-Jun-10 2.0 0.575 0.257 1843 

16-Jun-10 4.0 0.422 0.313 268 

22-Jun-10 4.0 0.463 0.183 1438 

24-Jun-10 6.0 0.632 0.360 896 

26-Jun-10 1.0 0.35 0.148 1604 

27-Jun-10 4.0 0.548 0.326 1504 

24-Jul-10 1.0 

HOBO logger malfunction 15-Aug-10 2.0 

22-Aug-10 1.0 
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Appendix C: Plant List 

 

Table C1: Greenroof vegetation 

Plant Species Common name 

Allium schoenoprasum var. sibiricum wild chives 

Allium cernuum nodding wild onion 

Penstemon hirsutus hairy beardtongue 

Saxifraga virginiana Virginia saxifrage 

Packera paupercula prairie ragwort 

Minuartia stricta rock sandwort 

Geum triflorum prairie smoke 

Ranunculus fascicularis early buttercup 

Carex eburnea ebony sedge 

Panicum acuminatum hairy panic grass 

Opuntia humifusa prickly pear 

Scutellaria parvula dwarf skullcap 

Verbena simplex slender vervain 

Isanthus brachiatus false pennyroyal 

Solidago nemoralis grey goldenrod 

 

 

 

 


