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Abstract

Under certain conditions, flow down an inclined plane destabilizes and a persistent series
of interfacial waves develop. An interest in determining under what conditions a flow be-
comes unstable and how the interface develops has motivated researchers to derive several
models for analyzing this problem.

The first part of this thesis compares three models for flow down a wavy, inclined plane
with the goal of determining which best predicts features of the flow. These models are the
shallow-water model (SWM), the integral-boundary-layer (IBL) model, and the weighted
residual model (WRM). The model predictions for the critical Reynolds number for flow
over an even bottom are compared to the theoretical value, and the WRM is found to
match the theoretical value exactly. The neutral stability curves predicted by the three
models are compared to two sets of experimental data, and again the WRM most closely
matches the experimental data. Numerical solutions of the IBL model and the WRM are
compared to numerical solutions of the full Navier-Stokes equations; both models compare
well, although the WRM matches slightly better. Finally, the critical Reynolds numbers
for the IBL model and the WRM for flow over a wavy incline are compared to experi-
mental data. Both models give results close to the data and perform equally well. These
comparisons indicate that the WRM most accurately models the flow.

In the second part of the thesis, the WRM is extended to include the effects of bottom
heating and permeability. Based on the results of the first part of the thesis, the WRM
is used, as it is expected to be the most realistic. The model is used to predict the effect
of heating and permeability on the stability of the flow, and the results are compared to
theoretical predictions from the Benney equation and to a perturbation solution of the
Orr-Sommerfeld equation from the literature. The results indicate that the model does
faithfully predict the theoretical critical Reynolds number with heating and permeability,
and both effects destabilize the flow. Finally, numerical simulations of the model equa-
tions are compared to full numerical solutions of the Navier-Stokes equations for the case
with bottom permeability. The results are found to agree, which indicates that the WRM
remains appropriate when permeability is included.
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Chapter 1

Introduction

1.1 Problem Description

Flow down an inclined plane has been studied extensively in the past, and yet there con-
tinue to be many interesting features of the flow to analyze [1, 2]. This type of flow is
a fascinating problem to investigate because, although the problem setup is simple, the
dynamics of an unstable flow are not. Furthermore, there are many applications, in both
engineering and nature, for this type of flow.

The problem is that of a thin fluid layer flowing down an inclined plane. The flow is driven
by gravity, and the gravitational force is balanced by the friction between the bottom sur-
face and the fluid. A stream-wise cross-section of the flow is shown in figure 1.1.

Figure 1.1: Problem setup for the case with an even bottom.
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This flow has a simple steady-state solution, called the Nusselt Solution, which is an exact
solution to the Navier-Stokes equations. The solution satisfying the conditions

∂u
∂z

= 0 at z = h , (1.1)

u = w = 0 at z = 0 , (1.2)

and

p = Pa at z = h , (1.3)

is

u(z) = g
ν

sin (β)z
(
h− z

2

)
, (1.4)

w = 0 , (1.5)

and

p(z) = patm + (z − h)ρg cos (β) , (1.6)

where u(z) is the stream-wise velocity, w is the cross-stream velocity, p(z) is the pressure,
and h is the fluid thickness, which is uniform. The angle of inclination is given by β, the
fluid density and kinematic viscosity are ρ and ν, respectively, and g is gravity. A cross-
section of this flow, with the velocity profile shown, can also be seen in figure 1.1.

Although a steady-state solution exists, it is unstable to long-wave disturbances under cer-
tain conditions. When the flow is unstable, perturbations grow, interact, and can form a
series of individual waves called roll waves, which maintain their shape as they move along
the free surface. The conditions under which the flow is stable and the shape of the inter-
face that develops when the flow destabilizes are the focus of this thesis. In the first part
of the thesis, the case where the flow is isothermal and the inclined plane is impermeable,
but can have topography, is considered. Three models that can be used to describe the
flow are compared by considering how well they predict the critical Reynolds number, the
neutral stability curve, and the time evolution of the free surface. In the second part of the
thesis, the most accurate of the three models is extended to include a wavy, heated, per-
meable, inclined plane, and the effect of heating and permeability are considered. The flow
setup with a wavy bottom is shown in figure 1.2, where ζ describes the bottom topography.
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Figure 1.2: Problem setup for the case with bottom topography.

Applications of this problem include environmental phenomena such as mudslides and rain
water flow over the ground; engineering applications such as aqueducts, manufacturing
coatings, and food processing also exhibit this type of flow [3–7]. Analytical models for
the flow are useful because they help predict key features of the flow, such as under what
conditions it will become unstable and how the shape of the surface will develop after this
happens. These are important predictions to make because the roll waves that are formed
when the flow becomes unstable can overflow channel walls or damage measuring equip-
ment in engineering situations. Alternatively, roll waves can be used to increase the heat
transfer from a surface by increasing the interface area. In environmental flows, the roll
waves result in more destructive surges of fluid due to the increased momentum associated
with the wave [3]. Hence, models that correctly predict features of the flow can be used
to determine when roll waves occur, and help prevent the destruction they might cause or
take advantage of the benefits of their existence.

Extending the problem to include bottom heating and permeability makes the model more
versatile to include flows such as rain water over the ground, where the ground is permeable,
and flows involved in food processing [8]. Including heating allows the model to be used to
predict the effectiveness of heat exchangers. Another application for the model including
heating and permeability is modelling tear film over a contact lens as investigated by Nong
and Anderson [9]. The contact lens is permeable and thus requires a model including
bottom permeability. Furthermore, since the eye is warmer than the surrounding air,
adding bottom heating will make the model more realistic.
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1.2 Outline

Chapter 2 introduces the governing equations, which are the two-dimensional Navier-Stokes
equations, and the corresponding boundary conditions. It also presents two stability analy-
ses for the even bottom case using the Orr-Sommerfeld equation and the Benney equation.
Chapter 3 presents the derivations of three models that describe the flow over a wavy
bottom and methods used to find their steady-state solutions. Further, the stability pre-
dictions made by each of the three models for the case of the even bottom are discussed.
The numerical solution procedure used to solve the model equations and compute the time
evolution of the free surface is detailed in Chapter 4. The use of the software package
CFX to solve the full Navier-Stokes equations for this problem is also discussed in Chapter
4. In Chapter 5, the three models are compared using the stability results and transient
simulations to determine which model best describes the flow. Also in Chapter 5, the
effects of bottom topography and surface tension on the stability of the flow are discussed.
In Chapter 6, the problem is extended to include the effects of bottom permeability and
bottom heating. The most accurate model, as determined in Chapter 5, is developed
for this extended problem, and the stability and interface evolution of this problem are
investigated.

1.3 Literature Review

The first experiments simulating the development of interfacial waves in thin film flow over
an inclined plane, conducted in a laboratory setting, were performed by Kapitza [10] in
1948, and additional work was then conducted by Kapitza and Kapitza [11] in 1949. The
problem was approached mathematically in 1949 by Dressler [12], who developed a periodic
mathematical solution describing roll waves that appear on the surface of unstable flows.
Dressler used the shallow-water equations and focused his study on the behaviour of the
fully developed interfacial waves. His solution is pieced together from continuous segments
through shocks, and he considers both laminar and turbulent flow.

In 1957, Benjamin [1] studied the stability of laminar thin film flow down an inclined
plane. He calculated the critical Reynolds number using a perturbation solution to the
Orr-Sommerfeld equation by assuming perturbations of small wavenumber are the most
unstable. This assumption, which has since been shown to be correct for an even bottom
incline [1, 13], was initially based on experimental evidence. Yih [2] confirmed Benjamin’s
long wave result in 1963, and also considered small Reynolds number and large wavenum-
ber flows. In 1966, Benney [14] developed a single equation that governs the fluid layer
thickness for stable flows and flows near the onset of instability. The equation becomes

4



invalid shortly after the onset of instability, and therefore cannot be used to predict how
roll waves develop. However, it can be used in conjunction with a linear stability analysis
to predict the critical Reynolds number. It also offers a simpler approach than the Orr-
Sommerfeld method for obtaining the critical Reynolds number.

Shkadov [15] developed the integral-boundary-layer model in 1967. This model, which
is one of the three considered in this work, uses the boundary-layer approximations and
assumes a parabolic velocity profile to eliminate the depth dependence of the equations.
The motivation for developing this model was to include non-linear effects in the mathe-
matical formulation of the problem with the goal of closely matching experimental data.
The model can be used to simulate the development of the fluid interface with time.

More recently, experimental data have been collected describing the stability of the flow.
Liu et al. [16] collected data describing two-dimensional instabilities, including points along
the neutral stability curve, which can be used to evaluate the validity of model predictions.
Liu et al. [17] also conducted experiments considering both three- and two-dimensional
instabilities, and collected additional data for the neutral stability curve of the flow. Ad-
ditionally, Wierschem et al. [18] collected critical Reynolds number values for various flows
while experimenting with thin film flow over a wavy bottomed inclined plane.

Numerical Simulations of flow down an inclined plane have been carried out by Ramaswamy
et al. [19] in 1996, who applied a finite element method to solve the full two-dimensional
governing equations of the problem, rather than considering a simplified model.

In a series of papers from 1998 to 2002, Ruyer-Quil and Manneville [20–22] developed the
weighted-residual model, which combines the idea of the integral-boundary-layer model
with the weighted residual method. They tested a variety of weight functions to determine
which one allows the model to predict the theoretical critical Reynolds number. Further,
they compare the neutral stability curve of this derived model to the experimental data
collected by Liu et al. [16] and Liu et al. [17] and they calculate the development of roll
waves using their model. In their second paper, they also extend the model to include
three-dimensional effects [21]. Ruyer-Quil and Manneville [20] also noted the importance
of including second-order terms in the model to reproduce important features of the flow.

Balmforth and Mandre [5] added bottom topography to the problem and studied this case
using a shallow-water model. The shallow-water model is developed from the shallow-water
equations with terms added to account for viscosity and bottom friction. Balmforth and
Mandre focus on the case with turbulence, but also repeat their analysis for laminar flow.
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They conduct a multiple-scales asymptotic analysis to investigate the effect of bottom to-
pography on the stability of the flow, although their result is incorrect due to limitations
of the shallow-water model [3]. They also develop an amplitude equation to establish
the stability of the fully developed interfacial waves. The effect of bottom topography on
the flow has also been investigated using the weighted residual model by D’Alessio et al. [3].

The effects of heating on thin film flow down a wavy incline have recently been consid-
ered. In 2003, Kalliadasis et al. [23] used a first-order integral-boundary-layer model to
study flow over a wavy incline having a constant bottom temperature that exceeds that
of the surrounding fluid. Ruyer-Quil et al. [24] and Scheid et al. [25] applied the second-
order weighted residual model to the problem, which more accurately predicts the critical
Reynolds number of the flow. Trevelyan et al. [7] considered both constant temperature
and constant heat flux bottom boundary conditions using the weighted residual model, and
conclude that in the long wave limit, heating has a destabilizing effect on the flow in both
cases. The problem with bottom heating, using the constant temperature bottom bound-
ary condition, and including bottom topography, was analyzed by D’Alessio et al. [13].

A thin film flow over a permeable inclined plane was considered by Pascal in 1999 [26],
who performed a series solution to the Orr-Sommerfeld equation to determine the effect of
bottom permeability on the stability of the flow. It was shown that bottom permeability
destabilizes the flow. Later, Pascal and D’Alessio [8] applied the weighted residual model
to flow over a permeable, wavy inclined plane to investigate the stability and interfacial
wave development. Both of these studies make use of the bottom boundary condition first
formulated by Beavers and Joseph [27], and extended it to uneven bottom topography
using the work by Saffman [28]. Nong and Anderson [9] present a different model for flow
over a permeable surface applied to the specific problem of a tear layer over a contact
lens, which highlights the applicability of this problem. Craster and Matar [29] give an
extensive review on thin film flows, including the basic problem of a gravity driven flow
down an inclined plane, the effects of heating and bottom permeability, as well as several
other related problems.

Very recently, Sadiq et al. [4] published a paper investigating the combined effects of heat-
ing and permeability. They perform a series solution to the Orr-Sommerfeld equation,
showing the combined effect of heating and permeability. Their work provides an impor-
tant comparison for the current study where the weighted residual model is applied to the
problem including both heating and permeability.
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Chapter 2

Governing Equations

The first problem considered is the two dimensional flow of a thin film down a wavy,
isothermal, impermeable, inclined plane. Although disturbances will be three-dimensional
in reality, this work will focus on two-dimensional instabilities. For the purposes of deter-
mining when the flow becomes unstable, considering only the two-dimensional case is justi-
fied because two-dimensional perturbations are more unstable than their three-dimensional
counterparts [21, 30].

The governing equations of the flow are the two-dimensional Navier-Stokes equations, which
are

∂u
∂t

+ u∂u
∂x

+ w ∂u
∂z

= −1
ρ
∂p
∂x

+ g sin (β) + ν
(
∂2u
∂x2 + ∂2u

∂z2

)
, (2.1)

∂w
∂t

+ u∂w
∂x

+ w ∂w
∂z

= −1
ρ
∂p
∂z
− g cos (β) + ν

(
∂2w
∂x2 + ∂2w

∂z2

)
, (2.2)

and the continuity equation,

∂u
∂x

+ ∂w
∂z

= 0 . (2.3)

The boundary conditions along an impermeable bottom are the no normal flow condition
given by

~v · N̂ = 0 , (2.4)

and the no slip condition given by
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~v · T̂ = 0 , (2.5)

where N̂ is the unit outward normal vector to the bottom surface, defined by

N̂ = (−ζ′,1)T√
1+(ζ′)2

, (2.6)

and T̂ is the unit tangent vector to the bottom surface, defined by

T̂ = (1,ζ′)T√
1+(ζ′)2

. (2.7)

These boundary conditions reduce to

u = w = 0 at z = ζ , (2.8)

for this problem.

At the fluid interface, the kinematic and dynamic boundary conditions are applied. The
dynamic conditions in vector form, which ensure continuity of normal and tangential stress
respectively, are

Pa + n̂ · τ · n̂ = −σ~∇ · n̂

n̂ · τ · t̂ = 0

 at z = η . (2.9)

The normal stress condition requires that the normal stress at the interface within the fluid
layer is balanced by the ambient pressure outside of the fluid layer and the normal force on
the interface due to surface tension and the curvature of the interface. The tangential stress
condition required that tangential stresses at the interface and within the fluid layer are
balanced by tangential stresses applied by surface tension; it is assumed that the ambient
gas does not apply tangential stresses on the fluid. Here, Pa is the ambient pressure outside
of the fluid flow, σ is the surface tension, η = h + ζ is the free surface location, and τ is
the symmetric stress tensor, defined by

τ =

(
−P + 2µux µ (uz + wx)
µ (uz + wx) −P + 2µwz

)
, (2.10)

where µ is the dynamic viscosity of the fluid and P is the pressure in the fluid. The vectors
n̂ and t̂ are the outward facing normal vectors at the fluid interface, defined by

n̂ =
(−( ∂η

∂x),1)
Tq

1+( ∂η
∂x)

2 , (2.11)
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and

t̂ =
(1, ∂η

∂x)
Tq

1+( ∂η
∂x)

2 . (2.12)

Substituting equations (2.10) to (2.12) into equation (2.9), these conditions become

2∂η
∂x

(
∂w
∂z
− ∂u

∂x

)
+
(
1−

(
∂η
∂x

)2) (∂u
∂z

+ ∂w
∂x

)
= 0 at z = η , (2.13)

which expresses continuity of tangential stress, and

σ
∂2η
∂x2 

1+

„
∂η
∂x

«2
!3

2

− Pa + P − 2µ 
1+

„
∂η
∂x

«2
! [∂u

∂x

(
∂η
∂x

)2
+ ∂w

∂z
− ∂η

∂x

(
∂u
∂z

+ ∂w
∂x

)]
= 0

at z = η ,

(2.14)
which expresses continuity of normal stress. In these equations, η is the free surface loca-
tion, which can be a function of position, x, and time, t.

The kinematic condition, which states that a fluid particle on the interface must remain
on the interface, is

w = ∂η
∂t

+ u∂η
∂x

at z = η . (2.15)

In determining the boundary conditions, the simplifying assumption that the ambient fluid
above the fluid layer is a gas and therefore has a negligible effect on the fluid flow, is made.
For this to be valid, the gas must have a much smaller viscosity, µ, and density than the
fluid of interest, which is true for most liquid-gas interfaces.

2.1 Non-Dimensionalization

The equations can be cast in dimensionless form and will involve dimensionless parameters
such as the Reynolds number, Re, the Weber number, We, and a small shallowness param-
eter δ. The Reynolds number characterizes the importance of the inertial forces, the Weber
number characterizes the importance of surface tension, and the parameter δ measures the
thinness of the fluid layer. It is assumed that the fluid layer thickness is much less than
the characteristic bottom length, making δ a small parameter; the other parameters are
assumed to be O(1). The parameters are defined as
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Re = Q
ν
, We = σH

ρQ2 , δ = H
l
, (2.16)

where Q is the characteristic volume flow rate, σ is the surface tension, H is the character-
istic fluid layer thickness, and l is a characteristic length in the flow direction. For a wavy
bottom, l can be taken to be the wavelength of the bottom topography.

If the characteristic fluid thickness for flow over an even bottom is chosen to be H, then
the scales for the flow rate, Q, and the velocity, U , are given by

Q = H3ρg sinβ
3µ

, U = Q
H

= H2ρg sinβ
3µ

. (2.17)

The scale for velocity, U , comes from the average of the velocity of flow over an even
bottom incline, which is given in equation (1.4). The scale for volume flow rate is given
by Q = UH. The non-dimensionalized continuity and x- and z- momentum equations are
then

∂u
∂x

+ ∂w
∂z

= 0 , (2.18)

δRe
(
∂u
∂t

+ u∂u
∂x

+ w ∂u
∂z

)
= −δRe∂P

∂x
+ 3 + δ2 ∂2u

∂x2 + ∂2u
∂z2

, (2.19)

δ2Re
(
∂w
∂t

+ u∂w
∂x

+ w ∂w
∂z

)
= −Re∂P

∂z
− 3 cot β + δ3 ∂2w

∂x2 + δ ∂
2w
∂z2

, (2.20)

respectively. Here, the pressure has been non-dimensionalized using ρU2.

The dynamic boundary conditions when non-dimensionalized become

−4δ2 ∂η
∂x

∂u
∂x

+
(
1− δ2

(
∂η
∂x

)2) (∂u
∂z

+ δ2 ∂w
∂x

)
= 0 at z = η , (2.21)

for the tangential stress condition, and

δ2We
∂2η
∂x2 

1+δ2
„
∂η
∂x

«2
!3

2

+ p

= 2

Re

 
1+δ2

„
∂η
∂x

«2
! [δ3 ∂u

∂x

(
∂η
∂x

)2
+ δ ∂w

∂z
− δ ∂η

∂x

(
∂u
∂z

+ δ2 ∂w
∂x

)]
at z = η , (2.22)

for the normal stress condition, where p = P − Pa.
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Next, only terms to O(δ2) are retained so as to capture the essential physics of the problem.
Higher order terms do not make a significant difference in the predictions of the models
[3, 22]. To second order, the governing equations are

∂u
∂x

+ ∂w
∂z

= 0 , (2.23)

δRe
(
∂u
∂t

+ u∂u
∂x

+ w ∂u
∂z

)
= −δRe ∂p

∂x
+ 3 + δ2 ∂2u

∂x2 + ∂2u
∂z2

, (2.24)

δ2Re
(
∂w
∂t

+ u∂w
∂x

+ w ∂w
∂z

)
= −Re∂p

∂z
− 3 cot β + δ ∂

2w
∂z2

. (2.25)

The dynamic boundary conditions to second order are

p− 2δ
Re

∂w
∂z

+ δ2We∂
2(h+ζ)
∂x2 = 0

∂u
∂z
− 4δ2 ∂(h+ζ)

∂x
∂u
∂x

+ δ2 ∂w
∂x

= 0

 at z = η . (2.26)

Using η = h+ ζ, the non-dimensionalized kinematic condition takes the form

w = ∂h
∂t

+ u ∂
∂x

(h+ ζ) at z = η . (2.27)

The no-slip conditions remain

u = w = 0 at z = ζ . (2.28)

2.2 Stability

The conditions under which the flow is stable can be found by determining the critical
Reynolds number. When the Reynolds number is increased beyond this value, the flow
becomes unstable to perturbations of a particular wavenumber. It has been shown by
Yih [2] that, for flow over an even bottom, perturbations having long wavelengths are the
most unstable; this has been observed experimentally and shown by calculating neutral
stability curves for the flow [1, 2]. Because of this, the critical Reynolds number can be
found by allowing the perturbation wavenumber, k, to go to zero. These perturbations
then grow and combine, and can eventually form roll waves. The critical Reynolds number
for flow over an even bottomed incline can be found using the Orr-Sommerfeld equation or
by developing a Benney-type equation [14] and performing a linear stability analysis. The
details of these two methods are given in the following sections, and their results are then
compared.
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2.2.1 Orr-Sommerfeld Approach

The Orr-Sommerfeld equation for flow over an even incline is developed using the non-
dimensionalized governing equations and boundary conditions, equations (2.23) to (2.25)
and (2.26) to (2.28). These equations can be solved to find the steady-state solution for
streamwise velocity, ū(z), and pressure, p̄(z), given by

ū(z) = 3z
(
1− z

2

)
p̄(z) = (1− z)3 cotβ

Re
.

(2.29)

In the governing equations, each flow variable is replaced with the steady-state solution plus
a perturbation. The scaling is chosen so that the steady state solution for the fluid layer
thickness is h = 1. It follows from the continuity equation and the no-slip conditions that
the steady-state vertical velocity is w = 0. All other steady-state variables are functions
of only z because the physical setup does not change along the flow direction. Therefore,
the variables are replaced with the following:

h = 1 + η̂(x, t) ,

u = ū(z) + û(x, z, t) ,

w = ŵ(x, z, t) ,

p = p̄(z) + p̂(x, z, t) .

(2.30)

For small perturbations, the momentum equations can be linearized in the perturbed vari-
ables to give

∂û
∂t

+ ū∂û
∂x

+ ŵ dū
dz

= − ∂p̂
∂x

+ 1
δRe

∂2û
∂z2

,

∂ŵ
∂t

+ ū∂ŵ
∂x

= − 1
δ2
∂p̂
∂z

+ 1
δRe

∂2ŵ
∂z2

.

(2.31)

Substituting equations (2.29) and (2.30) into the boundary conditions, equations (2.26) to
(2.28), linearizing, and using the steady-state solution, the following boundary conditions
are found

δ2 ∂ŵ
∂x

+ ∂û
∂z

= 3η̂ ,

ŵ = ∂η̂
∂t

+ 3
2
∂η̂
∂x
,

p̂ = 3η̂ cotβ
Re
− 2 δ

Re
∂ŵ
∂z

+ δ2We∂
2η̂
∂x2

 at z = 1 . (2.32)
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Next, the stream function is introduced. It is defined by

û = ∂ψ
∂z

, ŵ = −∂ψ
∂x

. (2.33)

The form of ψ is assumed to be

ψ = φ(z)eik(x−ct) . (2.34)

Substituting this into equation (2.31) and combining the two momentum equations to
eliminate pressure gives the Orr-Sommerfeld equation,

1
δRe

φ(iv)+
(
ikc− δk2

Re
− 3z

(
1− z

2

)
ik
)
φ′′+

(
3z
(
1− z

2

)
ik3δ2 − 3ik + ik3δ2c

)
φ = 0 , (2.35)

where the primes denote derivatives with respect to z. The tangential stress boundary
condition, which is the first condition in equation (2.32), is used to find η̂, and the pressure is
found by integrating the x-momentum equation. These are then substituted into the other
two conditions in equation (2.32) to find the boundary conditions for the Orr-Sommerfeld
equation. The boundary conditions are

d2φ
dz2

+

(
k2δ2 − 3

c−3
2

)
φ = 0

1
iδRe

d3φ
dz3

+ k
(
c− 3

2
+ 2δik

Re

)
dφ
dz
− k

(
δ2Wek2

c−3
2

+ 3 cotβ

Re
“
c−3

2

”
)
φ = 0

 at z = 1 , (2.36)

and

φ = φz = 0 at z = 0 . (2.37)

The problem is now posed as an eigenvalue problem where the real part of c, <(c), denotes
the phase speed of the disturbances, and k=(c), where =(c) is the imaginary part of c, gives
the growth rate. Therefore, the critical Reynold number is found by setting =(c) = 0 and
allowing k to go to zero as previously explained. This motivates a perturbation solution
where φ and c are expanded in powers of the wavenumber k to give

φ = φ0 + kφ1 +O(k2)

c = c0 + kc1 +O(k2)
. (2.38)
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Substituting these into equations (2.35) to (2.37) leads to a hierarchy of problems at each
order of k. The O(1) problem is

φ
(iv)
0 = 0 ,

φ0(0) = 0 ,

φ′0(0) = 0 ,

φ′′0(1)− 3

c0−
3
2

φ0(1) = 0 ,

φ′′′0 (1) = 0 ,

(2.39)

which can be solved to give

φ0 = z2 ,

c0 = 3 .
(2.40)

This gives the phase speed of disturbances with wavenumbers approaching zero. However,
because information about the imaginary part of c is required to determine the critical
Reynolds number, the problem at the next order of k is considered. The O(k) problem
gives

φ
(iv)
1

δRe
+ i
(
c0 − 3z

(
1− z

2

))
φ′′0 − 3iφ0 = 0 ,

φ1(0) = 0 ,

φ′1(0) = 0 ,

φ′′1(1)− 3

c0−
3
2

φ1(1) + 3c1“
c0−

3
2

”2φ0(1) = 0 ,

φ′′′1 (1)

iδRe
+ 3− 3

2
cotβ
Re

= 0 .

(2.41)

This problem can be solved and yields

c1 = iδRe
(

6
5
− cotβ

Re

)
. (2.42)

Setting c1 = 0 gives the following critical Reynolds number,
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Recrit = 5
6
cot β . (2.43)

Next, another approach for determining the critical Reynolds number is presented.

2.2.2 Benney Approach

The Benney equation represents an evolution equation for the free surface of flow over an
even bottom; it is only valid near the onset of instability and can also be used to determine
the critical Reynolds number. The Benney equation can also be derived from the governing
equations (2.23) to (2.25) and boundary conditions (2.26) and (2.28). First, the variables
u, w, and p are expanded in powers of δ about the steady-state solutions us, ws, and ps:

u = us + δu1 + δ2u2 + ... ,

w = ws + δw1 + δ2w2 + ... ,

p = ps + δp1 + δ2p2 + ... .

(2.44)

These expansions are then substituted into the governing equations and boundary condi-
tions, which are then separated into problems at each order of δ. The O(1) problem is
given by

∂us

∂x
+ ∂ws

∂z
= 0 ,

∂2us

∂z2
+ 3 = 0 ,

Re∂ps

∂z
+ 3 cot β = 0 ,

(2.45)

with the bottom boundary conditions

us = ws = 0 at z = 0 , (2.46)

and the free surface conditions

ps = 0

∂us

∂z
= 0

 at z = h . (2.47)

This problem can be solved to find the solution
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us = 3
2
z(2h− z) ,

ws = −3
2
∂h
∂x
z2 ,

ps = 3 cotβ
Re

(h− z) ,

(2.48)

which gives the steady-state solution if h is constant. The kinematic condition at O(1)
then gives

∂h
∂t

+ 3h2 ∂h
∂x

= 0 at z = 0 . (2.49)

The O(δ) problem satisfies

∂u1

∂x
+ ∂w1

∂z
= 0 ,

∂2u1

∂z2
= Re∂ps

∂x
+Re

(
∂us

∂t
+ us

∂us

∂x
+ ws

∂us

∂z

)
,

Re∂p1
∂z

= ∂2ws

∂z2
,

(2.50)

together with the bottom boundary conditions

u1 = w1 = 0 at z = 0 , (2.51)

and the free surface conditions

p1 = 2
Re

∂ws

∂z

∂u1

∂z
= 0

 at z = h . (2.52)

This problem can be solved for u1 and w1. Evaluating these at the free surface and using
the O(1) kinematic condition to eliminate the time derivative of h, these can then be
substituted into the O(δ) kinematic condition to give the following O(δ) Benney equation:

∂h
∂t

+ ∂(h3)
∂x

+ δ
(

6
5
Re ∂

∂x

(
h6 ∂h

∂x

)
− cot β ∂

∂x

(
h3 ∂h

∂x

))
= 0 . (2.53)

Performing a linear stability analysis on this equation gives the critical Reynolds number
of the flow. The fluid height h is set equal to the steady state-solution plus a perturbation,
given by

h = 1 + h0e
ik(x−ct) . (2.54)

Linearizing the Benney equation in the perturbation gives
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− ikc+ 3ik − δk2
(

6
5
Re− cot β

)
= 0 . (2.55)

Solving for c and setting the imaginary part to zero gives the critical Reynolds number

ReBencrit = 5
6
cot β . (2.56)

This result matches the result obtained from the Orr-Sommerfeld equation. This method
is also simpler, and will be used instead of the Orr-Sommerfeld method when tackling the
problem with bottom heating and porosity. The real part of c gives the propagation speed
of the longest disturbances, which is c = 3; this also matches the Orr-Sommerfeld result.
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Chapter 3

Models

Three models for flow over a wavy, inclined plane will be compared. These are the shallow
water model (SWM), the integral-boundary-layer model (IBL), and the weighted residual
model (WRM), which is a modified integral-boundary-layer model. In this chapter, the
development of each model is described, steady-state solutions for each model with bottom
topography are obtained, and the even bottom stability predictions are drawn for each
model.

3.1 Shallow Water Model

The shallow-water model is the simplest model and is based on the shallow-water equa-
tions. It has empirical terms added to account for viscosity and bottom friction, and an
empirical coefficient multiplying the advective terms. The added viscosity is in the form
proposed by Gent [31] to ensure that the term is energetically consistent. The model has
been investigated thoroughly by Balmforth and Mandre [5], who used it to study flow down
a wavy inclined plane. Although the model is simple, it has serious limitations due to the
empirical development; these limitations will be discussed later.

As suggested by the name, the shallow-water model is based on shallow-water theory and
hence assumes that the fluid is incompressible and inviscid, and that the thickness of the
fluid is much smaller than the characteristic length in the flow direction. It then follows
that the pressure distribution is approximately hydrostatic and that the stream-wise ve-
locity is depth independent. This model is limited to gentle inclines.

After these simplifications are made, three modifications are added to make the model more
realistic. A flow factor multiplying the advective term is added; the value is empirically
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determined, and depends on whether the flow is laminar or turbulent. For the laminar
model, a value of 4

5
is used [5]. A term partially accounting for viscosity and a bottom

friction term are also added.

Two different forms of the shallow-water equations have been developed: one pertaining
to laminar flow and the other to turbulent flow. The difference between the two is in the
viscosity parameter of the added viscous term, the form of the bottom friction term, and
the coefficient of the advection term. Balmforth and Mandre [5] give a thorough description
of the two versions of the model. The laminar model is used in this study because flows
having a Reynolds number of order unity are considered, and because the other two models
to be developed assume laminar flow. The shallow-water model equations are

∂h
∂t

+ ∂(hu)
∂x

= 0 , (3.1)

∂u
∂t

+ 4
5
u∂u
∂x

= g cos β
(
tan β − ∂h

∂x
− ζ ′

)
− ν u

h2 + 1
h
∂
∂x

(
hν ∂u

∂x

)
+ σ

ρ
∂3

∂x3 (h+ ζ) . (3.2)

Non-dimensionalizing the equations using the same scaling as in section 2.1 and changing
the variables to h and q = uh, the equations become

∂h
∂t

+ ∂q
∂x

= 0 , (3.3)

∂q
∂t

+ ∂
∂x

(
4
5
q2

h
+ cotβ

2Re
h2
)

= −1
5
q
h
∂q
∂x
− cotβ

Re
hζ ′

+ 1
δRe

(
h− q

h2

)
+ δ2hWe ∂3

∂x3 (ζ + h)

+ δ
Re

(
∂2q
∂x2 − q

h
∂2h
∂x2 − 1

h
∂h
∂x

∂q
∂x

+ q
h2

(
∂h
∂x

)2)
. (3.4)

The non-dimensional flow variables are h, the height of the free surface from the bottom,
and q, the volume flow rate.

3.2 Integral-Boundary-Layer Model

The integral-boundary-layer model is derived more rigorously from the Navier-Stokes equa-
tions. The second order non-dimensionalized continuity and momentum equations, from
equations (2.23) to (2.25), are
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∂u
∂x

+ ∂w
∂z

= 0 , (3.5)

δRe
(
∂u
∂t

+ u∂u
∂x

+ w ∂u
∂z

)
= −δRe ∂p

∂x
+ 3 + δ2 ∂2u

∂x2 + ∂2u
∂z2

, (3.6)

0 = −Re∂p
∂z
− 3 cot β + δ ∂

2w
∂z2

. (3.7)

Here, the advective term in the z-momentum equation is neglected because it will become
third order in δ when the pressure is eliminated from the momentum equations. This
model more accurately accounts for the fluid viscosity since most of the viscous terms from
the Navier-Stokes equations are retained. It also accounts for a non-hydrostatic pressure
distribution by including a viscosity term in the z-momentum equation, and it is valid for
steeper inclines. These are improvements over the shallow-water model.

At the free surface, the dynamic and kinematic conditions are applied and are given in
non-dimensional form by

0 = p− 2δ
Re

∂w
∂z

+ δ2We ∂2

∂x2 (h+ ζ)

0 = ∂u
∂z
− 4δ2 ∂

∂x
(h+ ζ)∂u

∂x
+ δ2 ∂w

∂x

 at z = h+ ζ , (3.8)

w = ∂h
∂t

+ u∂(h+ζ)
∂x

}
at z = h+ ζ . (3.9)

As well, the following no-slip conditions are imposed at the bottom surface:

u = w = 0 at z = ζ . (3.10)

The pressure can be eliminated by integrating the z-momentum equation and using the
first condition in equation (3.8) to find an expression for the pressure, and then substituting
this expression into the x-momentum equation. This leaves the continuity equation and
a single momentum equation. The form of the streamwise velocity is then assumed based
on the known steady flow over an even-bottom inclined plane. The profile, modified to
account for bottom topography defined by ζ(x), is given by

u = 3q(x,t)
2h3

(
2 (h+ ζ) z − z2 − ζ2 − 2hζ

)
. (3.11)

The z dependence is then eliminated from the momentum and continuity equations by inte-
grating the equations across the fluid layer thickness and applying the boundary conditions.
The final form of the integral-boundary-layer model equations are
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∂h
∂t

+ ∂q
∂x

= 0 , (3.12)

∂q
∂t

+ ∂
∂x

(
6
5
q2

h
+ 3

2
cotβ
Re

h2
)

= δ2hWe ∂3

∂x3 (h+ ζ)− 3h cotβ
Re

ζ ′ + 3
δRe

(
h− q

h2

)
+ δ
Re

(
9
2
∂2q
∂x2 − 6

h
∂h
∂x

∂q
∂x
− 3

h
∂q
∂x
ζ ′ + 3 q

h2
∂h
∂x
ζ ′
)

+ δ
Re

(
6 q
h2

(
∂h
∂x

)2 − 6 q
h2 (ζ ′)

2 − 6 q
h
∂2h
∂x2 − 9

2
q
h
ζ ′′
)
. (3.13)

It should be noted that for both the integral-boundary-layer and weighted residual models,
the flow rate q is defined by q =

∫ ζ+h
ζ

u dz.

3.3 Weighted Residual Model

The weighted residual model is derived following a similar procedure to that used for the
integral-boundary layer model. However, before integrating in the cross-stream direction,
the equations are multiplied by a weighting function; in this case, a parabolic profile is
used as the weighting function. The parabolic profile is the shape of the velocity profile of
the Nusselt solution for flow over an even-bottomed incline, which is the assumed shape of
the velocity profile for the model. This was shown by Ruyer-Quil and Manneville [22] to be
the optimal weighting function in that it allows the model to reproduce the known critical
Reynolds number for the onset of instability for the even bottom case, and is therefore
assumed to give more realistic predictions for related flows as well. In this way, a weighted
average over the depth of the fluid is used. The resulting model equations are

∂h
∂t

+ ∂q
∂x

= 0 , (3.14)

∂q
∂t

+ ∂
∂x

(
9
7
q2

h
+ 5

4
cotβ
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h2
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= 5
6
δ2hWe ∂3

∂x3 (h+ ζ)

+ q
7h

∂q
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− 5h

2
cotβ
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2δRe

(
h− q

h2

)
+ δ
Re

(
9
2
∂2q
∂x2 − 9

2h
∂h
∂x

∂q
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− 5

2
q
h2

∂h
∂x
ζ ′ + 4 q

h2

(
∂h
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)2)
+ δ
Re

(
−5 q

h2 (ζ ′)
2 − 6 q

h
∂2h
∂x2 − 15

4
q
h
ζ ′′
)
. (3.15)
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3.4 Steady State Solutions

Constant steady-state solutions to equation 3.16 for h and q, the flow variables of interest,
can easily be found for the even bottom case. Choosing their values as the characteristic
value by which the equations are scaled gives non-dimensional steady state solutions of
qs = 1 and hs = 1.

The steady-state solutions for a flow over an incline with bottom topography are more
complicated, and cannot be found exactly. However, solutions can be found numerically,
or analytically using a perturbation series solution. In all cases, the steady-state continuity
equation requires that q is constant, and the scaling is chosen so that q = 1. The momentum
equation then gives a single ordinary differential equation for h. For the integral-boundary-
layer model, for example, this differential equation is

6
5
h′

h2 − 3 cotβ
Re

h(h′ + ζ ′) + δ2hWe(h′′′ + ζ ′′′) + 3
δRe

(
h− 1

h2

)
+ δ
Re

(
3
h2h

′ζ ′ + 6
h2 ((h′)2 + (ζ ′)2)− 6

h
h′′ − 9

2h
ζ ′′
)

= 0 ,
(3.16)

and is solved subject to periodic boundary conditions applied at x = 0 and x = 1.

To find the perturbation series solution, h is expanded in powers of the shallowness pa-
rameter δ:

h = hs + δh1 + δ2h2 + δ3h3 +O(δ4) . (3.17)

By substituting this into equation (3.16) and separating into problems at each order of δ,
h1, h2, and h3 can be found; hs is the steady-state solution for the even bottom case, so
hs = 1. The approximate analytical steady-state solution for the integral-boundary-layer
model to O(δ2) has been found to be

h = 1 + δ
(

cotβ
3
ζ ′
)

+ δ2
(
−2
45
Re cot βζ ′′ + ζ′′

2
+ 2

3
(ζ ′)2 + (cot β)2

(
2
9
(ζ ′)2 + ζ′′

9

))
+O(δ3) .

(3.18)

Two numerical methods are used to find the steady-state solution; the first employs a
built-in Matlab routine. Using Matlab’s bvp4c algorithm requires re-writing the model
equations as a system of first order differential equations. For example, the third order
equation, (3.16), for the the case of the integral-boundary-layer model, is written as a
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system of three first order differential equations, which can be expressed as

y0(x) = h(x) ,

y1(x) = dh
dx
,

y2(x) = dy1
dx

= d2h
dx2 ,

y3(x) = dy2
dx

= d3h
dx3

= 1
δ2Wey21

[
−6
5
y2
y1

+ 3
y21
Re

cot β (y1 + ζ ′)− 3
δRe

(
y2

1 − 1
y1

)

− δ
Re

(
3ζ ′ y2

y1
+ 6

y22
y1
− 6 (ζ′)2

y1
− 6y3 − 9

2
ζ ′′
)]
−ζ ′′′ .

(3.19)

The bvp4c routine is then used to solve this system of equations. The routine is appli-
cable to boundary value problems and it uses a collocation method to solve the system
with fourth order accuracy. This method of finding the steady-state solution is simple
to program in Matlab, and it is effective for many sets of flow parameters. However, for
sufficiently small Weber number flows, difficulty in finding a steady-state solution can be
encountered as a result of a small quantity, δ2We, multiplying the highest derivative in
equation (3.16). For these flows, Newton’s method is used to find a numerical solution
for the weighted residual and integral-boundary-layer models. This method involves an
iterative approach to solving the differential equation for h.

Using the Newton’s method involves discretizing equation (3.16) using the central differ-
encing scheme on a grid of N points spanning x = 0 to x = 1. All terms are moved to the
same side of the equation and set equal to zero. A vector ~F is defined with components
fi equal to the discretized momentum equation about point i. For example, fi for the
integral-boundary-layer model is

fi = −2δ2We
h3

i

∆x
(hi+2 − 2hi+1 + 2hi−1 − hi−2) + 24 δ

Re
hi(hi+1 + hi− 1− 2hi)

− δ
Re
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2 + ∆x(6 cotβ

Re
h3
i − 6 δ

Re
ζ ′i − 12

5
)(hi+1 − hi−1) + 18∆x2 δ

Re
ζ ′′i hi

−4∆x2h3
i

[
3
δRe

− cotβ
Re

ζ ′i + δ2Weζ ′′′i
]
+ 12∆x2 cotβ

Re
+ 24∆x2 δ

Re
(ζ ′i)

2 ,

(3.20)

where ∆x is the uniform grid spacing.
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The Jacobian matrix J is defined such that Ji,j = ∂fi

∂hj
. An initial guess for ~h, which gives

the fluid layer thickness at each grid point along one bottom wavelength, is provided using
the even bottom steady-state solution. The wavy bottom steady-state solution is then
calculated iteratively using the formula

~hn+1 = ~hn + J−1(−~Fn) . (3.21)

Next, example steady-state solutions are presented for selected sets of parameters to il-
lustrate the dependence on the parameters, and also to show how the numerical solutions
compare with the perturbation expansion solutions. Figure 3.1 shows the numerical steady-
state solutions for all three models for the parameters Re = 1, δ = 0.1, cot β = 1, and
We = 5. The bottom topography is taken to be sinusoidal, and is expressed in non-
dimensional form as

ζ = ab cos (2πx) where ab = Ab

H
, (3.22)

with ab = 0.1 denoting the dimensionless bottom amplitude. The bottom wavelength
has been scaled to be unity. The top panel shows that the IBL model and the WRM
steady-state solutions match very closely, with the curves for the fluid thickness, h, almost
overlapping. For the SWM, however, the numerical and analytical solutions differ more
due to the weight of each term in the steady-state equation; the leading order term com-
pared to the O(δ) term is smaller in the SWM equation than in the other models, so the
higher order terms are more important. The effect of truncating the analytical solution is
therefore more significant for the SWM. The lower three panels of the figure show that the
approximate analytical solutions match the numerical solutions very closely for this set of
parameters, particularly for the integral-boundary-layer and weighted residual models.

Figure 3.2 shows, for the weighted residual model, how the approximate analytical solu-
tions match the numerical solutions when the parameters are changed. The top panel
shows the basic case again; the middle panel shows the solutions for the same parameters,
except with We = 75, and the bottom panel shows the basic case but with cot β = 5. Since
both We and cot β were assumed to be O(1) in the perturbation expansion solution, chang-
ing the order of magnitude of these, or other parameters, causes noticeable discrepancies
between the numerical and approximate analytical solutions.

In figure 3.3, numerical solutions are shown for the basic case with small parameters, and
for cases with a single parameter increased from the basic case. The top panel shows the
basic set of parameters for comparison. The second panel shows the effect of increasing the
bottom amplitude, which increases the variation in fluid layer thickness, and also increases
the variation in the height of the fluid interface. This is expected because the even bot-
tom solution has a constant fluid layer thickness and interface height, and adding bottom
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Figure 3.1: Numerical steady-state solutions for each model (top) for Re = 1, δ = 0.1,
cot β = 1, We = 5, and ab = 0.1, and numerical solutions for each model compared to the
corresponding approximate analytical solution.
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Figure 3.2: Numerical steady state-solutions compared with the approximate analytical
solutions for Re = 1, δ = 0.1, cot β = 1, We = 5, and ab = 0.1, top, and when one of the
parameters is changed.
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topography introduces variations, so increasing the bottom amplitude should increase the
variations of fluid layer thickness and interface height. In the third panel, the effect of
decreasing the angle of inclination is shown; the fluid thickness varies more than in the
basic case, but the location where the fluid layer is thickest shifts slightly such that the
free surface location is very similar to the basic case. This can be explained physically
by considering how the steady-state solution would develop; the fluid would build up in
the troughs of the bottom topography because, due to the small angle on inclination, it
would not have the momentum to overcome the bottom surface peaks. This accounts for
the greater variation in fluid layer thickness, as well as the location of the maximum fluid
layer thickness, which explains the relatively even free surface. In the fourth panel, the
Reynolds number is increased, and the effect is similar to that of the decreased angle of
inclination.

In the fifth panel of figure 3.3, the Weber number is increased, and in the last panel, the
shallowness parameter is increased; both of these changes have a similar effect, which is
to drastically increase the variation in fluid layer thickness, as well as to shift the location
of the maximum fluid layer thickness. The location of the maximum fluid layer thickness
is shifted toward the lowest point of the bottom surface, resulting in a relatively flat free
surface. An increased Weber number represents greater surface tension, which tends to
flatten the interface. A larger δ indicates that the fluid layer thickness is larger compared
to the wavelength of the bottom topography, resulting in a relatively even free surface
because the interface is farther from the bottom surface and therefore less influenced by it.
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Figure 3.3: Numerical steady-state solutions for the weighted residual model for Re = 1,
δ = 0.1, cot β = 1, We = 5, and ab = 0.1 (top), and numerical solutions showing the effect
of increasing one of the parameters. The left column shows the fluid layer thickness and
the right column shows the interface location and the bottom topography.

28



3.5 Model Stability

Each of the three models can be used to predict the stability of the flow. As a first approach,
the even bottom case is considered, so ζ in the model equations is set to zero. A linear
stability analysis is then performed on the model equations where each of the variables is
perturbed about the steady-state value:

h = hs + ĥ = 1 + h0e
ik(x−ct) , (3.23)

q = qs + q̂ = 1 + q0e
ik(x−ct) . (3.24)

Substituting these into the model equations and linearizing in the perturbation gives two
equations in terms of h0, q0, c, k, and the flow parameters. With the weighted residual
model, for example, the equations are

q0 = ch0 , (3.25)

− cq0 + 9
7
(2q0 − h0) = q0

7
− 5i

2δkRe
(3h0− q0)− 5

2
cotβ
Re

h0 + 5
6
δ2We(ik)2h0 + δ

Re
ik
(

9
2
q0 − 6h0

)
.

(3.26)
These two equations can be combined to give the dispersion equation:

c2 − c
(

17
7
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2Re

[
5
δk

+ 9δk
])

+
(

9
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2
cotβ
Re
− 5

6
We(δk)2 − 3i

Re

[
5

2δk
+ 2δk

])
= 0 . (3.27)

Solving for the imaginary part of c and setting it equal to zero gives the neutral stability
curve, which, for the weighted residual model is,

ReWRM
cr = 10 · cot β ·

(“
125
7·δk+

15
7
·δk
”2

“
5
δk

+9·δk
”2 − 37

49
− 10

3
· We (δk)2

)−1

. (3.28)

Repeating this to calculate the neutral stability curve for the integral-boundary-layer model
gives

ReIBLcr = 75 · cot β ·

( “
9
δk

+δk
”2

“
1
δk

+
3
2
·δk
”2 − 6− 25 · We (δk)2

)−1

, (3.29)

and for the shallow water model,

ReSWM
cr = 16 · cot β ·

(“
42

5·δk+
2
5
·δk
”2

“
1
δk

+δk
”2 − 4

25
− 16 · We (δk)2

)−1

(3.30)

is obtained.
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The critical Reynolds number for the even bottom case can then be found for each model
by allowing the wavenumber, k, to go to zero, giving

ReWRM
crit = 5

6
cot β ,

ReIBLcrit = cot β ,

ReSWM
crit = 5

22
cot β .

(3.31)

Only the weighted residual model results matches the theoretical result, given in equation
(2.56). These predicted critical Reynolds numbers will be discussed further in chapter 5.

30



Chapter 4

Numerical Solutions

The model equations, unlike the Benney equation, are valid for both stable and unstable
flows, and can therefore be solved numerically to find how the interface develops in time. In
cases where the flow is expected to be stable based on the linear stability analysis, imposed
perturbations should diminish, and the flow should recover to the steady state solution.
In flows that are unstable, however, perturbations grow into waves, which interact and
combine to form solitary waves, or roll waves. These roll waves eventually reach a stable
form, as shown by Balmforth and Mandre [5], and they simply move along the incline
without changing shape. To find the fully devloped shape of the interface, the fractional
step method is used to solve the model equations, following D’Alessio et al. [3].

The full Navier-Stokes equations can be solved for this problem using CFX, which is a
commercial CFD software package. This avoids making the same assumptions used to de-
velop the model equations, such as the assumed velocity profile and the truncation of the
equations to O(δ2); however, other approximations are made by modelling the flow with
CFX, as discussed in section 4.2. Setting up equivalent problems using the model equa-
tions and CFX, the results can be compared to determine how well the model equations
represent the unstable flow.

The numerical method used to solve the model equations, the numerical methods used in
CFX, and the problem setup required for the CFX simulations are discussed in this chapter.
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4.1 Numerical Solutions of Model Equations

The two equations for each model involve the two unknowns h(x, t), the fluid layer thick-
ness, and q(x, t), the volume flow rate. Unlike the Benney equation, these model equations
are valid beyond the onset of instability, and can therefore be used to predict the evolution
of the free surface after the flow destabilizes. In this way, the number and shape of roll
waves that will develop in a given flow can be predicted. The interface development as
predicted by the three models can therefore be computed.

The model equations are solved numerically using the fractional step method [32], as
outlined in D’Alessio et al. [3]. In this method, the model equations are rearranged into
flux form, separating the advective and diffusive terms, and solved in two steps. For
example, the IBL model equations are written as

∂h
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+ ∂q
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= 0 , (4.1)
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They are then solved in two steps. In the first step, a system of equations involving only
the advective terms is solved:

∂h
∂t

+ ∂q
∂x

= 0 , (4.3)

and

∂q
∂t

+ ∂
∂x

(
6
5
q2

h
+ 3

2
cotβ
Re

h2
)

= 0 . (4.4)

This system of hyperbolic conservation laws can also be written as

∂~U
∂t

+ ∂F (~U)
∂x

= 0 , (4.5)

where

~U =

[
h
q

]
, (4.6)
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and

F (~U) =

[
q

6
5
q2

h
+ 3

2
h2 cotβ

Re

]
. (4.7)

The system is solved using MacCormack’s explicit predictor-corrector scheme; in the pre-
dictor step, a forward differencing scheme is used, and a backward differencing scheme is
used in the corrector step [33,34]. The method can be expressed as

~U∗
j = ~Un

j − ∆t
∆x

[
F (~Un

j+1)− F (~Un
j )
]
, (4.8)

and

~Un+1
j = 1

2

(
~Un
j + ~U∗

j

)
− ∆t

2∆x

[
F (~U∗

j )− F (~U∗
j−1)

]
, (4.9)

where ~Un
j is ~U at grid point j at time step n, and ∆t is the time step and ∆x is the uniform

grid spacing.

In the second step, the diffusive terms are considered. For the integral-boundary-layer
model, the equation

∂q
∂t

= Ψ , (4.10)

is discretized using the Crank-Nicolson scheme and solved iteratively. This method of solv-
ing the model equations is second order accurate in x and first order accurate in t.

This method determines the fluid thickness and volume flow rate at each time step, show-
ing how the fluid interface develops with time. For a flow with a super-critical Reynolds
number, the numerical perturbations can be enough to destabilize the flow; the pertur-
bations grow into waves, which interact and eventually form a stable wave pattern. This
wave pattern circles through the domain due to the periodic boundary conditions applied
at the ends.

The volume flow rate and interface location for a particular flow setup are shown for the
integral-boundary-layer and weighted residual models in the following figures. The initial
conditions used are the steady state solution for h for the corresponding model, found
using Matlab’s bvp4c algorithm as described in chapter 3, and the steady-state solution
plus a perturbation for q, the volume flow rate. A perturbation is added to q to cause the
flow to destabilize faster and allow the flow to reach the final form of the interface more
quickly. For stable flows, the perturbation will die down, and the steady-state solution
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will be achieved. Periodic boundary conditions are imposed at the ends of the domain so
that the flow circulates through it; when roll waves develop, they too circulate through the
domain.

Figure 4.1 shows a flow modelled using the weighted residual model, with Re = 2.28,
ab = 0.1, δ = 0.1, cot β = 1.5, and with no surface tension, so We = 0. In the top panel,
the volume flow rate, calculated using the weighted residual model, is shown for various
times, illustrating how the free surface develops. The second, third, and fourth panels
show the final volume flow rate, fluid thickness, and bottom surface and free surface of the
flow, respectively. For the same case, simulation results using the integral-boundary-layer
model equations are shown in figure 4.2. The interface development is noticeably different,
although the final configuration is quite similar.

A case with the same parameters but with surface tension included through We = 20.04 is
shown in figure 4.3, using the weighted residual model, and in figure 4.4, using the integral-
boundary-layer model. A notable difference between these plots and those without surface
tension is in the shape of the volume flow rate profile; the peaks, representing roll waves in
the flow, are very sharp without surface tension and they are much smoother when surface
tension is added. They are also shorter and wider when surface tension is added.

Simulation results for the shallow water model are not included because the shallow water
model is meant for gentle inclines, whereas the integral-boundary-layer and weighted resid-
ual models are developed assuming cot β = O(1), which gives an incline that is steeper
than appropriate for the shallow water model. Furthermore, the disparity between the
critical Reynolds number of the shallow water model and that of the other two models
makes finding an appropriate simulation in which all models are unstable difficult. Finally,
as will be discussed in chapter 5, the shallow water model can be excluded as an accurate
model based on its performance in predicting the critical Reynolds number and the neutral
stability curve of the flow.
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Figure 4.1: Volume flow rate distribution for a case without surface tension, simulated
using the weighted residual model, at various times (top), and final volume flow rate,
(second from top), fluid thickness (third from top), and bottom and free surface (bottom),
shown fully developed. The flow parameters are Re = 2.28, ab = 0.1, δ = 0.1, cot β = 1.5,
and We = 0.
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Figure 4.2: Volume flow rate distribution for a case without surface tension, simulated
using the integral-boundary-layer model, at various times (top), and final volume flow
rate, (second from top), fluid thickness (third from top), and bottom and free surface
(bottom), shown fully developed. The flow parameters are Re = 2.28, ab = 0.1, δ = 0.1,
cot β = 1.5, and We = 0.
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Figure 4.3: Volume flow rate distribution for a case with surface tension, simulated using
the weighted residual model, for various times (top), and final volume flow rate, (second
from top), fluid thickness (third from top), and bottom and free surface (bottom), shown
fully developed. The flow parameters are Re = 2.28, ab = 0.1, δ = 0.1, cot β = 1.5, and
We = 20.04.
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Figure 4.4: Volume flow rate distribution for a case with surface tension, simulated using
the integral-boundary-layer model, for various times (top), and final volume flow rate,
(second from top), fluid thickness (third from top), and bottom and free surface (bottom),
shown fully developed. The flow parameters are Re = 2.28, ab = 0.1, δ = 0.1, cot β = 1.5,
and We = 20.04.
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4.2 Numerical Solutions of the Full Navier-Stokes Equa-

tions

The full Navier-Stokes equations for the free surface flow down an inclined plane have also
been solved by employing the CFD software package CFX. The numerical method used by
CFX to solve the governing equations is a combination of the finite volume and finite ele-
ment methods [35]. The domain is discretized into fluid elements, and control volumes are
formed around element nodes. Momentum and mass are conserved over each control vol-
ume [35]. Solution variables and fluid properties are stored at the nodes, which are located
within each control volume. The finite element method, using shape functions, is employed
to calculate properties within fluid elements at the edges of the control volumes [35]. The
High Resolution advection discretization scheme is used, which is a bounded second-order
upwind scheme. It is bounded through the use of the flux-limiting methods of Barth and
Jespersen [35]. A second-order backward Euler transient discretization scheme is used.

To locate the free surface, a volume-of-fluid method is used [36]. The volume fraction of one
of the fluids is tracked as a solution variable using a volume fraction advection scheme [36].
This causes a smearing of the interface due to numerical diffusion and the possibility of
multiple adjacent cells containing a volume fraction between zero and one; however, CFX
uses a compressive scheme to minimize this diffusion [36]. Despite this, the interface is
smeared over several mesh elements, rather than located at a discrete point. The inter-
face location in this study is chosen as the contour along which the volume fractions of
water and air are each 0.5. Additionally, a homogeneous multiphase model is used for the
simulation, meaning a single flow field is calculated and shared by both fluids; this is an
appropriate model for free-surface flows.

Surface tension is applied using the method described by Brackbill et al. [37]. A body
force that is proportional to the volume fraction gradient is applied, so that the force is
strong where the volume fraction of fluid is changing rapidly, which is near the surface.
The surface tension body force is zero where the volume fraction is constant, away from
an interface.

The setup and results for one particular case are shown here. The case has the following
non-dimensional parameters: Re = 2.28, cot β = 1.5, We = 0, δ = 0.1, and ab = 0.1; these
are the same parameter values used in the simulations for which results are shown in figures
4.1 and 4.2. Physically, the setup involves a 0.1 mm thick layer of fluid flowing over a plane
angled at 33.7◦ with bottom undulations of amplitude 0.01 mm and bottom wavelength 1
mm. The domain includes twenty bottom wavelengths with periodic boundary conditions
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at both ends. A no-slip condition is enforced on the bottom surface, and atmospheric
pressure is imposed at the top of the domain, with air allowed to enter or exit as required
by the flow field. The properties of water are used, although surface tension is neglected.
Due to the neglect of surface tension and evaporation, this case does not correspond to a
physical situation, but was modified to obtain the desired non-dimensional parameters.

A two-dimensional simulation is conducted by creating a domain one element thick and
enforcing symmetric boundary conditions on the sides. The domain is divided into 97926
hexahedral and wedge elements; an unstructured grid is used to conform the mesh to the
waviness of the bottom topography. A section of the mesh showing one end and a little
more than two bottom wavelengths is shown in figure 4.5.

The simulation is initialized using the steady-state fluid thickness calculated with the
weighted residual model and the velocity profile assumed in the model. The initial pres-
sure is hydrostatic. A time step of ∆t = 0.0005 s is used.

The computational time required to solve this problem is significant; this particular case
was solved on a single processor in approximately forty days. The same problem was solved
on a much coarser grid in only five days; although the results match, the resolution is very
poor. When surface tension is added, the computing time increases. A simulation identical
to the one described above, but with surface tension added through a Weber number of
about five, required over fifty days to complete. Finally, a simulation run in parallel on two
processors and with a domain length of only ten bottom wavelengths completed in only
about six days.

Figure 4.6 shows the non-dimensionalized volume flow rate and fluid interface after the
flow has destabilized and developed roll waves. A volume fraction contour plot of a section
of the domain is shown in figure 4.7, where one of the roll waves is visible. The smeared
interface is also visible in this figure.

Finally, figure 4.8 shows the velocity profile at a vertical section of the flow compared to
the profile assumed in the model development for two locations along the flow: one at the
peak of a wave and the other away from any peaks. These locations are chosen because
they represent the velocity profiles at the locations of minimum and maximum average
velocity along the domain. The shape of the profile is the same at the two locations; the
velocity profile within the wave but away from the peak would have the same shape and a
magnitude between the two shown in the figure. The plot shows that the velocity profile
predicted by CFX is very similar to the assumed profile; however there is a slight velocity
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Figure 4.5: A section of the mesh used for a CFX simulation of flow down an inclined
plane.
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Figure 4.6: Volume flow rate (top) and fluid interface and bottom surface (bottom) of fully
developed flow. The flow parameters are Re = 2.28, ab = 0.1, δ = 0.1, cot β = 1.5, and
We = 0.
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Figure 4.7: Volume fraction contour plot of a section of the domain for the fully developed
flow, showing one roll wave. The flow parameters are Re = 2.28, ab = 0.1, δ = 0.1,
cot β = 1.5, and We = 0.
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Figure 4.8: Velocity profile from CFX compared to model profile far from a wave (top) and
in a wave (bottom). The flow parameters are Re = 2.28, ab = 0.1, δ = 0.1, cot β = 1.5,
and We = 0.

gradient at the free surface, and a steeper decline in velocity near the surface in the CFX
results. Bottom topography does not appear impact the shape of the profile except to
shift it up or down so that the velocity is zero at the bottom surface; both profiles have
same shape, although the profile away from the wave was taken near a peak in the bottom
topography, and the profile at the peak of the wave was taken at a trough in bottom
topography.
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Chapter 5

Results and Comparisons

Four comparisons of the models are made to determine which best predicts key features of
the flow. First, the predictions of the critical Reynolds number, detailed in chapter 3, are
contrasted and compared to the accepted theoretical result. Then, the neutral stability
curves calculated from the model equations are compared to two sets of experimental
data. Also, numerical simulations predicting the form of the fully developed interface are
compared to those of the full Navier-Stokes equations. Finally, critical Reynolds number
predictions for a wavy bottom case are compared with experimental data. Based on all
of these results, the most realistic model that is able to faithfully predict key features of
the flow is determined. While comparing the models, the effect of bottom topography and
surface tension on the stability of the flow are also discussed in connection with the results
presented.

5.1 Model Comparison

The three models are compared to determine which best predicts features of the flow. To
evaluate and compare the performance of the models, four methods are employed. First,
the critical Reynolds number at which the flow becomes unstable is calculated for the flat
bottom case, and compared to the known theoretical value. Second, the neutral stability
curve for each model is compared to two sets of experimental data collected by Liu et
al. [16,17]. Next, the evolution of the flow rate q, as predicted by the models, is compared
to the solution of the full Navier-Stokes equations, which was obtained using the software
package CFX. Finally, critical Reynolds number predictions for the weighted residual model
for flow over a wavy bottom are compared to experimental results of Wierschem et al. [18].
Only the weighted residual and integral-boundary-layer models are included in the last two
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comparisons since it will be clear from the first two comparisons that the SWM is the least
realistic model.

5.1.1 Critical Reynolds Number for the Even Bottom Case

The critical Reynolds number for the case without bottom topography was calculated for
each model, and the results are given in section 3.5. Here, they are compared to the the-
oretical value. The critical Reynolds number for a thin film flow down an even bottomed
inclined plane has been determined by Benjamin [1]and Yih [2] using a perturbation so-
lution of the corresponding Orr-Sommerfeld equation; this is taken to be the theoretical
value. The result is that the critical Reynolds number is given by

Recrit = 5
6
cot β . (5.1)

Performing a linear stability analysis on the shallow-water model, the integral-boundary-
layer model, and the weighted residual model yields the following results:

ReSWM
crit = 5

22
cot β , (5.2)

ReIBLcrit = cot β , (5.3)

and

ReWRM
crit = 5

6
cot β , (5.4)

respectively.

These results show that, of the three models considered, only the weighted residual
model correctly predicts the critical Reynolds number. The integral-boundary-layer model
predicts a critical Reynolds number slightly higher than the correct value, although it is still
close. The shallow-water model gives a very poor prediction, significantly underestimating
the critical Reynolds number.

5.1.2 Neutral Stability Curves

To further evaluate the performance of the three models, the neutral stability curves for
each of the models are compared to experimental data. Two sets of experimental data are
considered. The first is from experiments conducted by Liu, Paul, and Gollub in 1993 [16].
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The experiment involved a glycerin-water film flowing down an incline at 5.6◦. The mate-
rial properties for the liquid include a kinematic viscosity of ν = (5.02± 0.05)× 10−6 m2

s
,

surface tension of γ = (69 ± 2) × 10−3 N
m

, and a density of ρ = 1.13 g
cm3 . The Reynolds

number at which the flow becomes unstable was measured for disturbances of various fre-
quencies. The results are compared to the neutral stability curves of each of the three
models in figure 5.1. The expressions for the neutral stability curves of the models are
given in equations (3.28) to (3.30). It is worth noting that, because the material properties
are set and the Reynolds number changes, the Weber number also changes along the curve.

As with the critical Reynolds number predictions, the weighted residual model most closely
matches the experimental data. The integral-boundary-layer model is a slightly poorer pre-
dictor of the experimental data, suggesting that the flow will be stable at slightly higher
Reynolds numbers than either the weighted residual model or the experimental data pre-
dict. The shallow water model again gives the poorest predictions, significantly underesti-
mating the Reynolds number at which the flow will become unstable, for all wavenumbers.
It should also be noted that the experimental data are for a very gentle incline, which is
much more appropriate for the shallow-water model than for the integral-boundary-layer
or weighted residual models; despite this, the weighted residual model gives the best pre-
dictions.

A second set of experimental data is compared to the model predictions in figure 5.2.
These data were published by Liu, Schneider, and Gollub in 1995 [17]. The data are for
a slightly different flow with a kinematic viscosity of ν = 2.3 × 10−6 m2

s
, surface tension

of γ = 67 × 10−3 N
m

, and a density of ρ = 1.07 g
cm3 down an incline of 4.0◦. Again, the

weighted residual model predicts a neutral stability curve closest to the experimental data.
For most of the experimental data points, the weighted residual model curve is within the
error bars; otherwise it is very close to the error bars. The integral-boundary-layer model
is reasonably close, and the shallow water model gives the poorest results. It should also
be noted that the experimental data in this case span a much larger range of Reynolds
numbers. Recall that the models were developed assuming that the Reynolds number is
O(1); despite this, the weighted residual model predicts a neutral stability curve that falls
within the error bars even at the highest Reynolds numbers for which experimental data
are available. The critical Reynolds number predictions and the neutral stability curves
compared with theoretical and experimental data show that the integral-boundary-layer
and weighted residual models are much more reliable than the shallow-water model. For
this reason, the shallow water model is excluded from further comparisons.
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Figure 5.1: Neutral stability curves for each model compared to experimental data,
reprinted from Advances in Fluid Mechanics VIII, Vol. 69, edited by M. Rahman and
C.A. Brebbia, “Modelling gravity-driven flow over uneven surfaces,” pp.299-309, Copy-
right 2010, with permission from WIT Press, Southampton, UK [38]. The flow parameters
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5.1.3 Simulation Results Compared to Full Navier-Stokes Nu-
merical Solutions

Numerical solutions of the model equations are compared to numerical simulations of the
full Navier-Stokes equations to determine whether the models make reasonable predictions
regarding the development of the fluid interface for unstable flows. The model equations
are solved using the fractional step method described in section 4.1. Results using the
weighted residual model and the integral-boundary-layer model are included; the shallow-
water model is not considered due to the poor results in the previous comparisons. Also,
the flow setup considered has a relatively steep incline that is appropriate for the integral-
boundary-layer and weighted residual models, but is less appropriate for the shallow-water
model. Numerical solutions to the full Navier-Stokes equations are obtained from the com-
mercial software package CFX; the relevant numerical methods it uses are briefly described
in section 4.2.

Results for each of the two models and from CFX are compared for a case having Re = 2.28,
cot β = 1.5, We = 0, δ = 0.1, and ab = 0.1; this is the case solved using CFX that was
presented in section 4.2. Figure 5.3 shows the volume flow rate along the domain for each
model and for CFX. Figure 5.4 shows the bottom topography and fluid interface.

The figures show that the number of peaks predicted by both models match the number of
peaks predicted by CFX. The height of the peaks predicted by CFX is also closely matched
by the weighted residual model; the integral-boundary-layer model predicts slightly shorter
peaks. The location of the peaks is not expected to match between the model and CFX re-
sults because the results are not shown for the same time; they are simply shown for a fully
developed interface in each case. However, the spacing between the peaks as predicted by
CFX is not consistent with either of the models, which could be a minor shortcoming of the
models. The reason for the discrepancy is unknown; however, Balmforth and Mandre [5]
developed an amplitude equation which they used to demonstrate that a fully developed
series of waves can be stable in two dimensions. They showed that if the distance between
waves is small enough, the waves will combine and coarsening will occur, and if the dis-
tance is too large, instabilities will grow causing new waves to develop between existing
waves. This indicates that the number of peaks and the spacing between them, of a fully
developed interface within a domain of a given length, should vary insignificantly or not
at all between occurrences of the same flow.

Comparisons between CFX and the model results are also made for a second case in which
surface tension is included. The non-dimensional parameters are the same as in the case
described above, with the exception of the Weber number, which is now non-zero so as
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Figure 5.3: Volume flow rate along the domain for IBL, WRM, and CFX, reprinted from
Advances in Fluid Mechanics VIII, Vol. 69, edited by M. Rahman and C.A. Brebbia,
”‘Modelling gravity-driven flow over uneven surfaces,” pp.299-309, Copyright 2010, with
permission from WIT Press, Southampton, UK [38]. The flow parameters are Re = 2.28,
ab = 0.1, δ = 0.1, cot β = 1.5, and We = 0.
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Figure 5.4: Free surface height and bottom position along the domain for IBL, WRM, and
CFX, reprinted from Advances in Fluid Mechanics VIII, Vol. 69, edited by M. Rahman and
C.A. Brebbia, ”‘Modelling gravity-driven flow over uneven surfaces,” pp.299-309, Copyright
2010, with permission from WIT Press, Southampton, UK [38]. The flow parameters are
Re = 2.28, ab = 0.1, δ = 0.1, cot β = 1.5, and We = 0.
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Figure 5.5: Volume flow rate along the domain for IBL, WRM, and CFX. The flow pa-
rameters are Re = 2.28, ab = 0.1, δ = 0.1, cot β = 1.5, and We = 5.05.

to include surface tension. In this case, surface tension characterized by We = 5.05 is
considered. The volume flow rate profile is shown in figure 5.5.

In this case, the number of peaks predicted by the weighted residual model matches the
number of peaks in the CFX results, although the integral-boundary-layer model predicts
one less peak. This suggests that the weighted residual model also predicts the interface
development well when surface tension is included.

The peaks are much shorter in the CFX results than in either of the model results. How-
ever, this is not a good measure for evaluating the accuracy of the models because the
CFX simulation is losing mass, which is causing the height of the peaks to decrease. The
mass loss appears to be due to the inclusion of surface tension, as the mass loss for CFX
cases with surface tension is approximately 6% after about 5 s of simulated time, whereas
the mass loss for the previously discussed case without surface tension is only about 1.5%
after almost 7 s of simulated time; these are the approximate times at which the results
are shown. However, the mass loss is not expected to have an impact on the number of
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peaks that develop because the number of peaks that develop by about 2 s stays constant
for the remainder of the simulation; only the spacing, height, and relative height of the
peaks change while most of the mass loss in the domain occurs. Therefore, the number of
peaks is established before the mass loss becomes significant.

Both comparisons of the model solutions to the full Navier-Stokes equations show that the
weighted residual model closely predicts the final shape of the interface calculated from
the full equations. The integral-boundary-layer model also gives reasonable predictions,
although the weighted residual model results are closer in the height of the peaks predicted
for the first case, and in the number of peaks predicted in the second case.

5.1.4 Critical Reynolds Number with Bottom Topography

As a final method of validating the integral-boundary-layer and weighted residual mod-
els, the critical Reynolds number of flow over a wavy bottom, as predicted by the model
equations, is compared to experimental results collected by Wierschem et al. [18]. To
consider the effect of bottom topography on the stability of the flow, a sinusoidal bottom
profile is assumed, which is consistent with the experiments performed by Wierschem et
al. [18]. The critical Reynolds number for flow over a wavy bottom can be found from the
model equations by applying Floquet theory to calculate the growth rate of disturbances
of a given wavenumber. The Reynolds number at which the growth rate is zero is then
determined for a sufficient selection of perturbation wavenumbers. The neutral stability
curve can then be constructed, thus revealing the smallest Reynolds number for the onset
of instability.

Floquet theory is applied to the linearized perturbation equations, which for the weighted
residual model take the form,

∂ĥ
∂t

+ ∂q̂
∂x

= 0 , (5.5)

∂q̂
∂t

+ f1
∂2q̂
∂x2 + f2

∂q̂
∂x

+ f3q̂ + f4
∂3ĥ
∂x3 + f5

∂2ĥ
∂x2 + f6

∂ĥ
∂x

+ f7ĥ = 0 , (5.6)

where the coefficients are given by f1 to f7 in Appendix A with Bi = Ma = δ1 = 0, and
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are periodic functions of x. The perturbations are assumed to be of the form

ĥ(x, t) = eiKx+σt
∞∑

n=−∞

ĥne
in2πx , (5.7)

(5.8)

q̂(x, t) = eiKx+σt
∞∑

n=−∞

q̂ne
in2πx . (5.9)

The coefficients f1 to f7 are also expanded in a similar series. Truncating the complex
Fourier series allows the problem to be re-written as a linear algebra problem; choosing a
set of parameters and a perturbation wavenumber, this system of equations can be solved
for the growth rate of the perturbation. The neutral stability curve is constructed by sys-
tematically searching for the Reynolds number at which the growth rate is zero for a set of
perturbation wavenumbers, and the critical Reynolds number is then found. This process
is described in detail in Appendix A.

The experimental results are compared to the model predictions in table 5.1. The experi-
mental data collected by Wierschem et al. have the nondimensional parameters abδ = 0.05,
9.7× 10−7 ≤ We ≤ 6.2× 10−5, and a domain length of three bottom wavelengths. For the
calculations of the models’ critical Reynolds numbers, the parameters used are ab = 0.5,
δ = 0.1, and We = 3.15 × 10−5. The data include three angles of inclination, indicated in
the first column on the left. The second column from the left gives the critical Reynolds
number for flow over an even bottom incline at the given angle of inclination. The third
column gives the experimental results of Wierschem et al. In the fourth column, the critical
Reynolds number of the flow, according to transient solutions of the model equations, is
given. To obtain this value, transient simulations with the appropriate parameters were run
for various Reynolds numbers to determine at which Reynolds number the flow becomes
unstable; a domain of ten bottom wavelengths was used because, for shorter domains, the
results were found to vary with the domain length [13]. These data were collected by
D’Alessio et al. [13]. The second column from the right gives the critical Reynolds number
as predicted from the weighted residual model equations using a linear stability analysis
with Floquet theory; these data were also collected by D’Alessio et al. [13]. Finally, on
the far right, results of the linear stability analysis using Floquet theory with the integral-
boundary-layer model are presented.

The table shows several results worth noting. First, it indicates that bottom topography
stabilizes the flow, as the critical Reynolds numbers with bottom topography are greater
than the corresponding even bottom case. This is discussed further in section 5.2. The
comparison also shows that the linear stability analysis predictions for both models match
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Table 5.1: Comparison between experimental, numerical and theoretical values of Recrit
for a wavy-incline case with δ = 0.1.

Recrit Recrit Theoretical
θ Reevencrit Experimental [18] WRM Numerical [13] WRM [13] IBL
15◦ 3.1 5.1± 0.4 (5.5,5.6) 5.6 6.3
30◦ 1.4 2.2± 0.2 (1.8,1.9) 1.7 2.4
40.7◦ 0.97 1.3± 0.1 (1.1,1.2) 1.1 1.5

the experimental results fairly well, with the integral-boundary-layer model performing
slightly better for moderate inclines and the weighted residual model giving better results
for gentle inclines. For steep inclines, the two models perform equally well. Finally, the
critical Reynolds number found numerically, which includes non-linear effects, matches the
experimental data extremely well, falling within 0.1 of the experimental error; this shows
that even when the linear theoretical result is not within the error of the experiment, the
model, which incorporates non-linear effects, closely predicts the experimental result.

In each of the first three comparisons, the weighted residual model yielded the best agree-
ment with the corresponding reference solution; it best matched the theoretical value of the
critical Reynolds number, the experimental neutral stability curves, and the numerical sim-
ulations of the full Navier-Stokes solutions. This shows that the weighted residual model
is the most realistic of the three models considered. Further, it was found to perform quite
well and on par with the integral-boundary-layer model in predicting the critical Reynolds
number for flow over a wavy bottom. As such, it will be the only model used to consider
the problem including bottom heating and porosity, which is the focus of chapter 6.

5.2 Effect of Surface Tension and Bottom Amplitude

on Stability of Flow

To determine the effect of surface tension and bottom topography on the stability of the
flow, an asymptotic analysis is conducted. This analysis shows how bottom topography,
through ab, and surface tension, through the Weber number, affect the steady state volume
flow rate. More details of this analysis are provided in Appendix B. Each of the steady-
state flow variables are expanded in a perturbation series about the small shallowness
parameter, δ:
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us(x, z) = u0(x, z) + δu1(x, z) + δ2u2(x, z) + · · · ,

ws(x, z) = w0(x, z) + δw1(x, z) + δ2w2(x, z) + · · · ,

ps(x, z) = p0(x, z) + δp1(x, z) + δ2p2(x, z) + · · · ,

hs(x) = h0 + δh1(x) + δ2h2(x) + · · ·

. (5.10)

The steady-state series solution for h is found using the weighted residual model equations.
The continuity equation requires that q is constant; assuming q = 1, the series for h is
substituted into the steady-state model equation,

5δ2We
6
h3
sh

′′′
s − 6δ

Re
hsh

′′
s + 4δ

Re
(h′s)

2 −
[

5 cotβ
2Re

h3
s + 5δ

2Re
ζ ′ − 9

7

]
h′s − 15δ

4Re
ζ ′′hs

+
[

5
2δRe

− 5 cotβ
2Re

ζ ′ + 5δ2We
6
ζ ′′′
]
h3
s = 5

2δRe
+ 5δ

Re
(ζ ′)2

. (5.11)

This is separated into a closed problem at each order of δ and each of these is solved to
find h0, h1, h2, h3, and h4. For example, h0, h1 and h2 are found to be

h0 = 1 ,

h1(x) = cotβ
3
ζ ′(x) ,

h2(x) = 2
3

(
1 + cot2β

3

)
[ζ ′(x)]2 +

(
1
2
− 2Re cotβ

35
+ cot2β

9

)
ζ ′′(x) .

(5.12)

The expansions for us, ws, and ps are substituted into the governing equations and bound-
ary conditions, equations (2.23) to (2.25) and (2.26) to (2.28), resulting in a closed problem
at each order of δ. For example, the leading order problem is found to be

∂p0
∂z

= −3 cotβ
Re

, ∂2u0

∂z2
= −3 , ∂w0

∂z
= −∂u0

∂x
, (5.13)

with boundary conditions

u0 = w0 = 0 at z = ζ(x) and p0 = ∂u0

∂z
= 0 at z = 1 + ζ(x) . (5.14)

The problem can be solved to find

p0(x, z) = 3 cotβ
Re

(1 + ζ − z) ,

u0(x, z) = −3
2
(z − ζ)2 + 3(z − ζ) ,

w0(x, z) = −3
2
ζ ′(z − ζ)2 + 3ζ ′(z − ζ) .

(5.15)
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These problems are solved to find solutions up to O(δ4), which is where the Weber number
first appears in the expression for the average volume flow rate. The streamwise velocity
us can be evaluated at the free surface, which gives the even bottom value plus a mean
surface drift that results from the wavy bottom [13]. To O(δ2), this drift is,

ūs − 3
2
≈ −

(
2 + 7

18
cot2β

)
π2a2

bδ
2 . (5.16)

The deviation from the even bottom steady state velocity is a decrease in the overall
velocity, which stabilizes the flow, as shown in the critical Reynolds number comparison
to experimental data in section 5.2. This confirms that the effect of bottom topography
and negligible surface tension is to stabilize the flow. To find the effect of surface tension,
the volume flow rate is considered. The series solution for u is integrated in z through the
fluid layer thickness and in x across one bottom wavelength to find the average volume
flow rate. The resulting expression for the average volume flow rate is

Q̄s ≈ −
(
2 + 7

18
cot2β

)
π2a2

bδ
2 + f(We,Re, ab, cotβ)π4a2

bδ
4 , (5.17)

where

f(We,Re, ab, cotβ) =
(
38− 1193

8
a2
b

)
cot4β

81
− 152

315
Re cot3β +

(
66 + 63139

53900
Re2 − 4a2

b

)
cot2β

9

−
(

59
60

+ 76
27
We
)
Re cotβ + 51

10
+ 16

3
a2
b .

(5.18)

This analysis, valid for We = O(1), shows that surface tension has a stabilizing effect
on the flow, as the volume flow rate of the fluid is decreased by increasing the Weber
number. Decreasing the volume flow rate gives a lower Reynolds number for an otherwise
similar flow of the same fluid layer thickness; however, since the Reynolds number is
calculated assuming flow over an even bottom and is therefore not reduced by presence
of surface tension and bottom topography, the critical Reynolds number must instead
increase to correctly predict the onset of instability. This result is confirmed by D’Alessio et
al. [13], using a linear stability analysis of the weighted residual model equations. However,
D’Alessio et al. [13] also show that for larger surface tension, the effect of surface tension is
reversed, and actually destabilizes the flow. These effects are discussed further in chapter
6.
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Chapter 6

Thermoporous Problem

Although the basic problem addressed in Chapters 1 to 5 provides insight into the dynam-
ics of thin film flow over an inclined plane, further details of the problem can be uncovered
by considering the effects of other factors that would likely influence the flow. For example,
heat transfer could affect the dynamics of the flow by causing variations in the flow proper-
ties, such as the surface tension. Furthermore, alternative bottom surface conditions such
as a permeable, wavy bottom surface could also impact characteristics of the flow such as
the flow rate and stability.

Bottom heating has been considered by Kalliadasis et al. [23], who studied flow over an
even bottom using the integral-boundary-layer approach, by Scheid et a. [25], who used a
specified flux rather than a constant temperature for the bottom boundary condition, and
by Trevelyan et al. [7], who looked at flow over an even incline and analyzed the case of a
constant temperature bottom and a bottom with a specified heat flux, using the weighted
residual model.

Bottom porosity has been investigated in relation to this problem by Pascal [26], who
studied the stability of the flow using the Orr-Sommerfeld equation, and by Pascal and
D’Alessio [8], who applied the weighted residual model to the problem and also considered
bottom topography. Similar problems have also been considered for particular applications,
such as by Nong et al. [9], who have developed a model for tear flow over a permeable con-
tact lens. Recently, Sadiq et al. [4] studied flow over an even bottom surface with both
bottom heating and permeability. In this chapter, bottom heating, permeability, and bot-
tom topography are all considered together, and a weighted residual model that describes
this flow is developed. A specified bottom temperature condition is used, and a saturated
permeable bottom surface is modelled using the Beavers and Joseph slip condition [27].
Removing bottom topography from the problem will enable comparisons to be made with

59



the results of Sadiq et al. [4].

6.1 Governing Equations and Boundary Conditions

The governing equations for the problem including heating and bottom permeability are the
same as those for the isothermal, impermeable problem, with the addition of an equation
describing the conservation of energy. The non-dimensional governing equations are

∂u
∂x

+ ∂w
∂z

= 0 , (6.1)

the continuity equation,

δRe
(
∂u
∂t

+ u∂u
∂x

+ w ∂u
∂z

)
= −δRe∂P

∂x
+ 3 + ∂2u

∂z2
, (6.2)

which describes conservation of x-momentum,

δ2Re
(
∂w
∂t

+ u∂w
∂x

+ w ∂w
∂z

)
= −Re∂P

∂z
− 3 cot β + δ ∂

2w
∂z2

, (6.3)

which describes conservation of z-momentum, and

δPe
(
∂T
∂t

+ u∂T
∂x

+ w ∂T
∂z

)
= ∂2T

∂z2
, (6.4)

which describes the conservation of energy. The equations are non-dimensionalized using
the same non-dimensional parameters and scaling as those used in section 2.1, with the
addition of T , the fluid temperature, and Pe = PrRe, which is the Peclet number that
quantifies the strength of advection compared to thermal diffusion. Temperature is non-
dimensionalized so that the non-dimensional bottom temperature is unity and the ambient
temperature outside of the flow is zero.

The interface boundary conditions are similar to those for the isothermal, impermeable
problem, although there are additional terms due to the heating. As well, there are added
boundary conditions at both the bottom surface and the interface to describe the tem-
perature or heat transfer at these boundaries. Finally, the boundary conditions must be
modified to deal with the porous interface along the bottom surface. Three additional
non-dimensional parameters are required for the boundary conditions. These are the Biot
and Marangoni numbers, which describe the heating, and a parameter to describe the
permeability of the bottom. The permeability parameter is another small parameter, as
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shown by Beavers and Joseph [27], and is assumed to be O(δ). These non-dimensional
parameters are defined as

Bi = αgH

ρcpκT
, Ma = γ∆T

ρU2H
, δ1 =

√
κ

αH
, (6.5)

where αg is the convective heat transfer coefficient at the free surface, cp is the specific
heat capacity at constant pressure, κT is the thermal diffusivity, γ describes the decrease in
surface tension with increase in temperature, κ is the permeability of the bottom surface,
∆T = Tb − Ta is the change in temperature from the ambient surroundings to the bottom
surface, and α is a dimensionless parameter related to the permeable bottom properties,
described by Beavers and Joseph [27].

At the free surface, the dimensional dynamic conditions are

Pa + n̂ · τ · n̂ = −σ(T )~∇ · n̂ ,

n̂ · τ · t̂ = ~∇σ(T ) · t̂ .
(6.6)

The normal and tangential vectors at the interface are given by

n̂ =

(
−∂(ζ+h)

∂x

1

)
1s

1+

„
∂(ζ+h)
∂x

«2
, (6.7)

and

t̂ =

(
1

∂(ζ+h)
∂x

)
1s

1+

„
∂(ζ+h)
∂x

«2
, (6.8)

respectively. The surface tension is assumed to vary linearly with temperature according
to the equation

σ = σ0 − γ(T − T0) , (6.9)

where σ0 is the surface tension at T0, and γ quantifies the change in surface tension with
temperature. The dynamic boundary condition can then be non-dimensionalized and writ-
ten in the following way for the specific problem of flow down an inclined, wavy plane:

P − Pa = 2δ

Re

 
1+δ2

„
∂(h+ζ)
∂x

«2
! (∂w

∂z
− ∂h+ζ

∂x
∂u
∂z

)
− δ2 We−MaT 

1+δ2
„
∂(h+ζ)
∂x

«2
!3

2

∂2(h+ζ)
∂x2 , (6.10)
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which ensures continuous normal stress across the interface [13], and

(
∂u
∂z

+ δ2 ∂w
∂x

)(
1− δ2

(
∂(h+ζ)
∂x

)2
)
− 4δ2 ∂(h+ζ)

∂x
∂u
∂x

= −MaReδ

√(
1 + δ2

(
∂(h+ζ)
∂x

)2
)(

∂T
∂x

+ ∂(h+ζ)
∂x

∂T
∂z

)
,

(6.11)

which describes continuous tangential stress across the interface [13]. Retaining only terms
to O(δ2), these conditions become

p− 2δ
Re

∂w
∂z

+ δ2(We−MaT )∂
2(h+ζ)
∂x2

∂u
∂z
− 4δ2 ∂(h+ζ)

∂x
∂u
∂x

+MaReδ
(
∂T
∂x

+ ∂(h+ζ)
∂x

∂T
∂z

)
= 0

 at z = η . (6.12)

The kinematic condition at the interface remains unchanged from the isothermal and im-
permeable problem, and is given non-dimensionally by

∂h
∂t

= w − u
(
ζ ′ + ∂h

∂x

)
. (6.13)

Finally, the heat transfer at the interface occurs through convection, and is described in
dimensional form by

~∇T · n̂ = −αg

ρcpκT
(T − Ta) . (6.14)

Temperature is non-dimensionalized using

T̂ = T−Ta

Tb−Ta
, (6.15)

the Biot number given in equation (6.5) is used, and the normal vector at the surface defined
by equation (6.7) is used to simplify and non-dimensionalize the boundary condition to

−BiT

√
1 + δ2

(
∂(h+ζ)
∂x

)2

= ∂T
∂z
− δ2 ∂(h+ζ)

∂x
∂T
∂x

at z = η , (6.16)

where the hats on the non-dimensional temperature have been dropped. To O(δ2), this
becomes

−BiT

(
1 + δ2

2

(
∂(h+ζ)
∂x

)2
)

= ∂T
∂z
− δ2 ∂(h+ζ)

∂x
∂T
∂x

at z = η . (6.17)
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The bottom boundary conditions include two expressions that come from the Beavers and
Joseph slip condition, which has been extended by Saffman [28] to apply to uneven bottom
topography. The bottom slip condition, derived by Saffman [28] and used by Pascal and
D’Alessio [8], is given in dimensional vector form by

∂v‖

∂n̂
= ~∇v‖ · n̂ = α√

κ

(
v‖ − v‖p

)
, (6.18)

where v‖ is the tangential part of the velocity along the bottom surface, n̂ is the normal
vector along the bottom surface, given in equation (2.6), and the subscript p indicates a
quantity in the permeable medium. The tangential velocity is given by

v‖ = u+ζ′w√
1+(ζ′)2

. (6.19)

Equation (6.18) can be evaluated to find

1
(1+(ζ′)2)2

[(1 + (ζ ′)2) (uz + ζ ′wz − ζ ′ux − ζ ′ζ ′′w − (ζ ′)2wx) + (ζ ′)2ζ ′′(u+ ζ ′w)] =

α√
κ

1√
1+(ζ′)2

(u+ ζ ′w − (up + ζ ′wp)) .

(6.20)
This expression is non-dimensionalized using the previously given scales as well as some
additional information. First, the characteristic velocity in the porous medium compared
to that in the fluid layer is assumed to be O(δ3). This is because the characteristic velocity
scale in the porous medium is given by

Up = O(κ
µ
ρg sin β) . (6.21)

Using the velocity scale given in equation (2.17), the order of magnitude of the ratio of the
two scales is found to be

Up

U
= O

((√
κ
H

)2
)

= O
(
α2δ2

1

)
. (6.22)

From the experiments of Beavers and Joseph [27], it can be assumed that α2 = O(δ); also,
δ1 is assumed to be O(δ), so Up

U
= O(δ3). In this way, the velocities in the porous medium

can be neglected since the model will only be second order. Equation (6.20) can therefore
be non-dimensionalized and, neglecting higher order terms, simplified to

δ1
∂u
∂z

= u+ δ2ζ ′w . (6.23)
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Figure 6.1: Models for flow over a porous layer, adapted from LeBars and Worster [39],
reprinted with permission from Cambridge University Press.

The other bottom boundary condition comes from the requirement that the normal velocity
out of the porous medium equals the normal velocity into the fluid layer, which simply
comes from conservation of mass. This condition can be expressed as

v⊥ = v⊥p . (6.24)

where v⊥ is the normal velocity at the bottom surface given by

v⊥ = uζ′−w√
1+(ζ′)2

. (6.25)

This condition can be non-dimensionalized in the same way as equation (6.18). To second
order, the boundary condition is

w = uζ ′ . (6.26)

These boundary conditions come from the idea that there is a difference, or ‘slip-velocity’,
between the flow through the porous layer and the flow at the porous interface. The phys-
ical interpretation of this model, along with three others, is shown in figure 6.1.

The figure shows four models for flow over porous surfaces. On the far left, a standard
model of matching the flow at the interface to the flow through the porous layer is shown [9].
Shown second from the left is the Darcy-Brinkman model, which comes from a set of equa-
tions that model both the flow in the liquid layer and the flow in the porous layer in a single
domain [39]. This model reveals a thin boundary layer in the porous region at the edge
of the liquid layer, which causes the fluid at the liquid-porous interface to have a velocity
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higher than the fluid in the bulk of the porous layer; however, since the Darcy-Brinkman
equations model both the porous and liquid layers in one domain, they cannot be used
directly to obtain a boundary condition at the interface for the current problem. Instead,
this idea is reflected in the Beavers and Joseph model, shown on the far right, which defines
a slip velocity between the flow through the porous medium and the flow in the liquid layer
at the porous boundary. This slip velocity models the effect of the boundary layer in the
porous medium, and also gives a specific boundary condition for the liquid layer at the
porous interface. Third from the left of figure 6.1, the recent LeBars and Worster model
is shown. This model matches the liquid velocity to the velocity through the porous layer
at a point slightly below the porous interface, where this distance is approximately the
thickness of the viscous boundary layer in the porous region [39]. This model is not used
for the current problem because it does not give a boundary condition at the liquid-porous
interface. The Beavers and Joseph model is used here because it provides the most accurate
boundary condition at the porous interface, so the liquid layer can be modelled separately
from the porous layer, and it is more accurate than the standard model [27].

A condition on the heat transfer at the bottom surface is also required, and a constant
temperature condition is imposed using

T = 1 . (6.27)

Trevelyan et al. [7] consider both constant temperature and specified heat flux boundary
conditions, noting that the specified heat flux is more accurate when modelling the flow
using a wall that loses heat to both the fluid and the ambient air. However, in certain
applications, the constant temperature boundary condition may be more appropriate, such
as in the application considered by Nong et al. [9], which was a tear layer flowing over a
contact lens. In that case, the eye would be maintained at a constant temperature as a
result of the body heating the eye. Furthermore, for small Pe = PrRe and in the long
wave limit, Trevelyan et al. [7] note that the critical conditions are identical, so in this
case, either condition could be used to investigate the impact of heating on the stability
of the flow. In the current problem, only the constant temperature boundary condition is
used, as it is the simplest to implement and it is also relevant to some applications.

6.2 Model Development

The weighted residual model, which was shown to be the most accurate in making pre-
dictions about the flow over a wavy, isothermal, impermeable surface, is developed for the
problem including heating and bottom permeability. The model is developed in a way that
is very similar to the basic problem discussed in Chapter 3. The pressure is eliminated
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from equations (6.2) and (6.3) by integrating the z-momentum equation from z to the free
surface and applying the normal stress dynamic boundary condition for the pressure at
the free surface. The expression for P (x, z, t) is then used in the x-momentum equation
to eliminate pressure. This leaves the continuity equation, a single momentum equation,
and the energy equation. Velocity and temperature profiles are then assumed; the velocity
profile is chosen to be

u(x, z, t) = 3q
2(h3+3δ1h2)

b+ δMaRe
4h

∂θ
∂x
b1 where

b = (z − ζ)(2h+ z − ζ) + 2δ1h and

b1 = (z − ζ) (2h− 3 (z − ζ)) .

(6.28)

It is chosen to satisfy the boundary conditions to O(δ) and to satisfy

∫ h+ζ

ζ

u(x, z, t)dz = q(x, t) . (6.29)

It is not possible to satisfy the bottom slip condition involving u to O(δδ1) while also
satisfying equation (6.29), so the boundary condition is only satisfied to O(δ); this is
acceptable because δ1 is assumed to be O(δ), so the error is approximately O(δ2). The
temperature profile, chosen to be linear to match the steady state solution, is

T = 1 + θ−1
h

(z − ζ) , (6.30)

where θ is the temperature at the interface. This profile satisfies the bottom temperature
boundary condition, but not the surface temperature boundary condition. However, the
surface temperature boundary condition is used in the development of the model when the
equations are integrated in z, so its effect is accounted for in the model. The momentum
and energy equations are then multiplied by weight functions before integrating in z. The
weight functions used are b from equation (6.28) for the momentum equation, and (z − ζ)
for the energy equation, which is the shape of the temperature profile. The equations are
then integrated through the fluid layer thickness to eliminate the z-dependence. The final
model equations are
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∂h
∂t

+ ∂q
∂x

= 0 ,

δ (h+ 2δ1)
∂q
∂t

= δ3hWe
(
ζ ′′′ + ∂3h

∂x3

)
+ δ2

Re
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9
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4
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4
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∂h
∂x

)2 − 5 (ζ ′)2 − 5
2
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∂x
ζ ′
))

+δ2hReMa
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48
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224
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Peh
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(6.31)

Although the equations appear more complicated than the original governing equations,
they are useful in analytical and numerical analyses such as calculating the critical Reynolds
number over a wavy bottom and conducting transient simulations to compute the devel-
opment of interfacial waves.

6.3 Steady-State Solutions

The steady-state solutions for the even bottom case can be found from the model equations
by setting ζ and all x and t derivatives to zero. From the continuity equation, q is constant,
and the scaling for q must be chosen; two logical options exist. If qs = 1 is chosen, the
momentum and energy equations give

hs = 1− δ1 + δ2
1 +O(δ3

1) , θs = 1
1+Bi

+ Bi
(1+Bi)2

δ1 − Bi
(1+Bi)3

δ2
1 +O(δ3

1) . (6.32)

Alternatively, qs can be chosen so that hs = 1; in this case, the steady-state solution for
flow over an even bottom is

hs = 1 , qs = 1 + 3δ1 , θs = 1
1+Bi

. (6.33)
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The scalings hs, qs, and θs give the steady-state solutions for flow over an even bottom
incline. When bottom topography is included, the steady-state solution for q is given by
either q = 1 or q = 1 + 3δ1. The steady-state solutions for h and θ vary with position
due to bottom topography; however, the average of these quantities across one bottom
wavelength is given by the corresponding scale of the even bottom solution.

The steady-state solution for flow over a wavy bottom is found using the Matlab bvp4c
algorithm in the same way as the steady-state solutions for the isothermal, impermeable
case were found. Because the model includes one additional equation and variable, the
setup is slightly different; however, the problem is again re-written as a system of first
order differential equations and solved using Matlab’s bvp4c routine. The steady-state
model equations for the problem including heating, permeability, and bottom topography
are

0 = δ3hWe
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(6.34)

Steady-state solutions over one bottom wavelength show the effect on fluid layer thick-
ness and interface temperature of bottom heating and permeability in figures 6.2 and 6.3.
All parameters are kept constant except the permeability parameter and the Biot and
Marangoni numbers, which are varied to show the effect of heating and permeability.

Figure 6.2 shows the steady-state solutions for the scaling when qs = 1. The top panel
shows that adding bottom porosity reduces the fluid layer thickness. This occurs because
the velocity throughout the fluid layer is increased due to the bottom slip velocity, and
since the volume flow rate remains constant, the fluid height must decrease. The second
panel shows that adding heating has very little effect on the fluid layer thickness; adding
heating to the case with porosity similarly has little effect on the fluid layer thickness.
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Figure 6.2: Fluid thickness h and interface temperature θ over one bottom wavelength for
ab = 0.1, δ = 0.1, cot β = 1, We = 5, and Re = 1; for cases with porosity, δ1 = 0.1, and for
cases with heating, Bi = Ma = 1. The scaling qs = 1 is used.

Finally, in the bottom panel, it is shown that adding bottom permeability increases the
magnitude and variation in the surface temperature. The increase in magnitude is due to
the thinner fluid layer, which brings the interface closer to the heated bottom surface.
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Figure 6.3 compares steady-state solutions using the scaling hs = 1. The top panel shows
the effect of adding porosity on fluid layer thickness, which is to increase the overall vari-
ation; this occurs because the fluid can cross the bottom boundary, and tends to flow
into the boundary near the minimum of the fluid layer thickness, and out of the bottom
boundary near the maximum of the fluid layer thickness, thus exaggerating these extremes.
This also explains why the temperature variation is greater for the porous bottom case,
shown in the bottom panel of both figures 6.2 and 6.3. Since bottom porosity increases the
variation of fluid layer thickness, the interface temperature will also vary more across one
bottom wavelength. As with the other scaling, the second panel of figure 6.3 also shows
that adding heating has a negligible effect on the fluid layer thickness.

Figure 6.4 and 6.5 show the effect of permeability on the alignment of the peaks and
troughs of the fluid layer thickness and interface temperature. If the fluid were stationary,
the interface temperature would be greatest where the fluid layer is thinnest because this
is where the interface is closest to the heated bottom. Similarly, the interface temperature
would be lowest at a peak in fluid layer thickness. Due to the movement of the fluid,
the curves are shifted slightly so that the peak in interface temperature occurs slightly
after the trough in fluid thickness, as seen in figure 6.4. Adding permeability, however,
shifts the interface temperature curve even more, resulting in a greater gap between the
point at which the fluid layer is thickest and the point at which the interface temperature
is smallest, as seen in figure 6.5. In this case, the gap increases by about 0.12 bottom
wavelengths. This is also seen in the numerical solutions of the model equations, shown in
section 6.6.
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Figure 6.3: Fluid thickness h and interface temperature θ over one bottom wavelength for
ab = 0.1, δ = 0.1, cot β = 1, We = 5, Bi = Ma = 1, and Re = 1; for cases with porosity,
δ1 = 0.1. The scaling hs = 1 is used.
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Figure 6.5: Fluid layer thickness and interface temperature over one bottom wavelength
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scaling qs = 1 is used.
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6.4 Linear Stability with an Even Bottom

The linear stability analysis for determining the critical Reynolds number for the even
bottom problem with both bottom heating and permeability is approached using two
different methods. First, the Benney equation is developed, and a linear stability analysis
is performed on the resulting equation. An alternative stability method making use of the
WRM equations is also employed. The results from the two methods are compared to
each other and to the results obtained by Sadiq et al. [4]. From these comparisons, the
performance of the weighted residual model can be assessed. The expressions for the critical
Reynolds number are also used to determine the effect of heating and bottom permeability
on the stability of the flow.

6.4.1 Linear Stability using the Benney Equation

To develop the Benney equation, the governing equations and boundary conditions are used
directly. Each of the primitive variables, u, w, p, and T , is expanded in a perturbation
series about the shallowness parameter δ, as shown below:

u = u0 + δu1 +O(δ2) ,

w = w0 + δw1 +O(δ2) ,

p = p0 + δp1 +O(δ2) ,

T = T0 + δT1 +O(δ2) .

(6.35)

By substituting these expansions into the governing equations and the dynamic and bottom
boundary conditions, problems at each order of δ can be formulated. The solutions from
the O(1) and O(δ) problems are used in the derivation of the Benney equation; the O(1)
problem is solved below. The governing equations at leading order are

∂u0

∂x
+ ∂w0

∂z
= 0 ,

3 + ∂2u0

∂z2
= 0 ,

Re∂p0
∂z

+ 3 cot β = 0 ,

∂2T0

∂z2
= 0 .

(6.36)
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The dynamic condition at the free surface gives

p0 = 0

∂u0

∂z
= 0

 at z = 1 + ζ , (6.37)

and the free surface heat transfer condition gives

∂T0

∂z
= −BiT0 at z = 1 + ζ . (6.38)

Finally, the bottom boundary conditions are

w0 = ζ ′u0

u0 = δ1
∂u0

∂z

T0 = 1

 at z = ζ . (6.39)

Equations (6.36) to (6.39) can be solved to find u0, w0, p0, and T0. The solutions are

u0 = −3
2

(z2 + ζ2) + 3z(h+ ζ)− 3hζ + 3hδ1 ,

w0 = −3
2

(
ζ ′ + ∂h

∂x

)
(z − ζ)2 + 3

(
ζ ′h− δ1

∂h
∂x

)
(z − ζ) + 3ζ ′hδ1 ,

p0 = 3 cotβ
Re

(z − ζ − h) ,

T0 = 1 + (ζ − z) Bi
1+hBi

.

(6.40)

The O(δ) problem is then considered, and u1 and w1 are found. The ∂h
∂t

terms from u1 and
w1 are eliminated using the O(1) kinematic condition. The following Benney equation is
then obtained from the kinematic condition at O(δ):

∂h
∂t

= w0 − (u0 + δu1)
[
∂h
∂x

+ dζ
dx

]
+ δw1 . (6.41)

The final Benney equation for the even bottom problem including both heating and bottom
permeability is

∂h
∂t

+ 6δ1h
∂h
∂x

+ ∂h3

∂x
+ δ ∂

∂x

(
6
5
Re
(
h6 ∂h

∂x
+ 6δ1h

5 ∂h
∂x

+ 25
2
δ2
1h

4 ∂h
∂x

))
+δ ∂

∂x

(
MaReBi
(1+hBi)2

h∂h
∂x

(
h
2

+ δ1
)
− cot β (3δ1h

2 + h3) ∂h
∂x

)
= 0

(6.42)
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The Benney equation is an evolution equation for the fluid layer thickness, h(x, t). It is
valid when the flow is close to the steady-state. Therefore, it accurately describes the flow
for a short time after the flow destabilizes, and can thus be used to find the Reynolds
number at which the flow becomes unstable. To find the critical Reynolds number for the
flow, a linear stability analysis is performed on the Benney equation. The fluid thickness h
is perturbed about the steady-state value as follows: h = hs + ĥ, and the perturbation, ĥ,
is assumed to have the form, ĥ = h0e

ik(x−ct). This is substituted into the Benney equation,
which is then linearized in the perturbation. The critical Reynolds number is found by
requiring that =(c) = 0. This leads to

ReBencrit = 5
6
cot β 3δ1h2

s+h3
s

h6
s+6δ1h5

s+
25
2
δ21h

4
s+

5
6

MaBi
(1+hsBi)2

hs

„
hs

2
+δ1

« . (6.43)

For the scaling qs = 1, the expression is

ReBencrit = 5
6
cot β 1

1+
5
12

MaBi

(1+Bi(1−δ1+δ21))
2 (δ21+1)+

7
2
δ21

, (6.44)

while for the scaling hs = 1, the critical Reynolds number is given by

ReBencrit = 5
6
cot β 1+3δ1

1+6δ1+
25
2
δ21+

5
12

MaBi
(1+Bi)2

(1+2δ1)
. (6.45)

This result has a similar form to equation (2.42), which gives the critical Reynolds number
for flow over an isothermal, impermeable surface. Further, this expression accounts for the
influence of permeability through the parameter δ1, and heating through the parameters
Bi and Ma. It can be seen from equation (6.43) that both heating and permeability
individually cause the critical Reynolds number to fall below the value of 5

6
cot β, and

hence destabilize the flow. Also, the combined effect of heating and permeability is to
further destabilize the flow; this can be seen from the term in the denominator in which
the heating and permeability parameters multiply each other. This term further decreases
the critical Reynolds number of the flow.

6.4.2 Linear Stability using the Model Equations

An alternative method for determining the critical Reynolds number, which takes advan-
tage of the WRM equations, was also carried out. Each variable in the model equations,
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h, q, and θ, are perturbed about the steady-state value as follows:

q = qs + q0e
ik(x−ct) , (6.46)

h = hs + h0e
ik(x−ct) , (6.47)

θ = θs + θ0e
ik(x−ct) . (6.48)

The variables are substituted into the model equations, which are then linearized in the
perturbations. The three equations are then combined to yield a dispersion equation
involving c and k. For neutral stability, the phase speed is set to c = s + 0i where s, the
phase speed of the disturbances, is given by s = 3hs(hs + 2δ1). The phase speed is close to
three, which is the value for isothermal impermeable flow; however, it is modified slightly
to account for permeability. The critical Reynolds number can then be found and is given
by

ReWRM
crit = 5

6
cot β h2

s(hs+3δ1)

h3
s(hs+2δ1)3+

1
7
q2s−

17
7
hs(hs+2δ1)(hs+δ1)qs+

5
12
MaBi(hs+2δ1)

1+hsBi
hsθs

. (6.49)

For the scaling qs = 1, the critical Reynolds number is

ReWRM
crit = 5

6
cot β 1

1+
5
12

MaBi
(1+Bi)2

„
1+

2Bi
1+Bi

δ1+
1+2Bi2

(1+Bi)2
δ21

«
+

29
7
δ21

, (6.50)

while for the scaling hs = 1, the critical Reynolds number is

ReWRM
crit = 5

6
cot β 1+3δ1

1+6δ1+
92
7
δ21+

5
12
MaBi(1+2δ1)

(1+Bi)2

. (6.51)

The critical Reynolds number obtained using this method is again of a similar form to
equation (2.42), with a correction term to account for heating and permeability. It is also
very similar to the expression for the critical Reynolds number obtained using the Benney
approach; the terms agree to O(δ1), where δ1 is assumed to be a small parameter.

6.4.3 Comparison of Linear Stability Results

The expressions for the critical Reynolds number obtained from the two methods can be
compared to theoretical values for various limiting cases. This is done in table 6.1. The
theoretical values have been obtained from perturbation expansion solutions of the Orr-
Sommerfeld equation from previously published studies. The scaling hs = 1 is used for the
case with permeability because the theoretical results were found using this scaling [4,26].
The table shows that in the isothermal, impermeable limit, both the Benney method and
the weighted residual model stability method reproduce the theoretical result. Also, both
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Table 6.1: Comparison of critical Reynolds number for limiting cases to Orr-Sommerfeld
result

Limiting Case ReWRM
crit ReBencrit ReTheorcrit

Isothermal and
5
6
cot β 5

6
cot β

5
6
cot β

Impermeable
Bi = Ma = δ1 = 0 [1,2]
Impermeable 5

6
cot β 1

1+
5
12

MaBi
(1+Bi)2

5
6
cot β 1

1+
5
12

MaBi
(1+Bi)2

5
6
cot β 1

1+
5
12

MaBi
(1+Bi)2

δ1 = 0 [7]

Isothermal 5
6
cot β 1+3δ1

1+6δ1+
92
7
δ21

5
6
cot β 1+3δ1

1+6δ1+
25
2
δ21

5
6
cot β 1+3δ1

1+6δ1+
25
2
δ21

Bi = Ma = 0 [8,26]

methods give the theoretical result in the impermeable limit. In the isothermal limit, the
Benney method gives the same result as that found by Pascal [26] and by Sadiq et al. [4]
from the Orr-Sommerfeld equation; this is expected since both methods derive the result
from the governing equations and boundary conditions, without making the assumptions
used to derive the model. However, the weighted residual model stability method differs
slightly atO(δ2

1). All methods agree toO(δ1) where δ1 is a small parameter, so the difference
is small, indicating that the weighted residual model predicts the critical Reynolds number
reasonably well. For the combined thermal and permeable case, the weighted residual
model stability method and the Benney methods also agree with the Orr-Sommerfeld
result to O(δ1), although this is not listed in the table.

Sadiq et al. [4] also consider the problem with both heating and permeability, and find the
following expression for the critical Reynolds number:

ReSadcrit = 5
6
cot β (1+3δ1)

1+6δ1+
25
2
δ21+

15
2
δ31+

5
12

1+2δ1
(1+Bi)2

MaBi
. (6.52)

They derive this result from a perturbation solution to the Orr-Sommerfeld equation and
use the scaling hs = 1. This expression also matches equations (6.45) and (6.51) to O(δ1),
indicating that the weighted residual model is able to predict the critical Reynolds number
with the combined effects of heating and bottom permeability to second-order. This level
of agreement is to be expected since the WRM is a second-order model.

6.4.4 Effect of Heating and Porosity on Stability

The effects of heating and permeability on the critical Reynolds number are illustrated in
figures 6.6 to 6.9. Plotted in the diagrams are the critical Reynolds numbers using the scal-
ing qs = 1 as obtained from equations (6.44) and (6.50). Figure 6.6 shows how increasing
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Figure 6.6: Effect of increasing δ1 on the critical Reynolds number.

the permeability of the bottom surface affects the critical Reynolds number. The curves
correspond to a case with bottom heating, although the same trend would be observed for
other values of the Biot and Marangoni number, as well as for the isothermal case. The
plot reveals that increasing the permeability of the bottom destabilizes the flow and hence
decreases the critical Reynolds number. Increasing the permeability allows for slip along
the bottom and therefore increases the overall velocity and volume flow rate; an increased
volume flow rate has the opposite effect of the decreased volume flow rate discussed in
section 5.2, and the flow is therefore destabilized.

It can be seen from figure 6.7 that increasing the Marangoni number also decreases the
critical Reynolds number. The Marangoni number measures the variation in surface ten-
sion due to the temperature difference between the bottom surface and the surroundings.
This result indicates that heating causes a variation in surface tension, which results in a
less stable flow. The variation in surface tension causes fluid to be drawn to areas of higher
surface tension. Since surface tension increases with decreasing temperature, the peaks of
the disturbances will have higher surface tension since they are further from the bottom.
Hence fluid in drawn toward the peaks, causing the disturbances to grow and therefore
destabilizing the flow.

Figure 6.8 shows how the critical Reynolds number changes when the Biot and Marangoni
numbers are varied simultaneously. Again, it shows that increasing these two parameters
together destabilizes the flow. Figure 6.9 shows how varying the Biot number, while holding
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Figure 6.7: Effect of increasing Ma on the critical Reynolds number.
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Figure 6.8: Effect of increasing Ma and Bi together on the critical Reynolds number.

the Marangoni number and permeability parameter constant, affects the stability of the
flow. In this case, there is a specific Biot number at which the flow is most unstable;
increasing the Biot number from zero to that value destabilizes the flow, but increasing it
beyond that value brings the critical Reynolds number closer to the isothermal limit.

The effect of heating and permeability on the stability of the flow can also be realized
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by differentiating the expression for the critical Reynolds number with respect to the
parameters. Since

∂Recr

∂Ma
= − 5

12

Bi(δ21+1)0@1+
5
12

MaBi(δ21+1)

(1+Bi(1−δ1+δ21))
2
+

7
2
δ21

1A2

(1+Bi(1−δ1+δ21))
2

< 0 , (6.53)

increasing the Marangoni number clearly decreases the critical Reynolds number. Similarly,

∂Recr

∂δ1
= −

5
6

MaBiδ1

(1+Bi(1−δ1+δ21))
2−

5
6

MaBi2(δ21+1)(2δ1−1)

(1+Bi(1−δ1+δ21))
3 +7δ10@1+

5
12

MaBi(δ21+1)

(1+Bi(1−δ1+δ21))
2
+

7
2
δ21

1A2 < 0 , (6.54)

provided δ1 < 0.5; because δ1 is assumed to be small and of order δ, this is expected
to hold. Considering changes in the Biot number, however, it is easily shown that, for
equation (6.50),

∂Recr

∂Bi
= 0 when Bi = 1

1−δ1+δ21
. (6.55)

This agrees with figure 6.9, which shows a minimum occurring near Bi = 1.

The critical Reynolds number is a minimum for a Biot number near one because the
interface temperature changes the most with changes in fluid layer thickness for that value.
When the Biot number is much less than one, the interface temperature is very close to
the bottom surface temperature; therefore, changes in fluid layer thickness result in small
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interface temperature variations. When the Biot number is much larger than one, the
interface temperature is close to the ambient temperature, and again, changes in the fluid
layer thickness cause only small changes in the interface temperature. Thus, in both of
these cases, the surface tension variation is small, and the destabilizing Marangoni effect
is minimized. However, for a Biot number near one, the temperature variation is largest,
so the surface tension also varies the most along the interface, and the Marangoni effect is
most pronounced.

6.5 Linear Stability with Bottom Topography

The method for determining the critical Reynolds number for flow over a wavy bottom
described in section 5.1.4 is used here to calculate neutral stability curves for various sets
of parameters. Because heating and permeability are included, a slightly different set of
equations are used; more details on the application of Floquet theory for the linear stability
analysis of flow over a wavy inclined plane with heating and bottom permeability can be
found in Appendix A. Figures 6.10 to 6.15 show the effect of varying the flow parameters
on the neutral stability curve with the scaling qs = 1. The neutral stability curves are
plotted as K, the Bloch wavenumber, versus Re, the Reynolds number. Here, the Bloch
wavenumber is used because Floquet theory is required to deal with the bottom waviness,
and it represents the wavenumber of the perturbation.

In figure 6.10, neutral stability curves are shown for various angles of inclination, for three
bottom amplitudes. The curves show that decreasing the angle of inclination, which cor-
responds to increasing cot β, increases the critical Reynolds number, and shifts the entire
curve to the right, toward higher Reynolds numbers. This is expected based on the expres-
sion for the critical Reynolds number for an even bottom, Reevencr = 5

6
cot β. Furthermore,

increasing cot β, combined with a large bottom amplitude, changes the shape of the neutral
stability curve, as seen in the bottom two panels of the figure. The critical Reynolds num-
ber is shifted from the long-wave limit up to a non-zero wavenumber, resulting in shorter
waves being the most unstable. This is most pronounced in the curve corresponding to
cot β = 5 in the bottom panel of figure 6.10; here the critical Reynolds number occurs for
a perturbation having a wavelength approximately equal to twice the bottom wavelength,
which is equal to one.

The effect of bottom topography is shown in figure 6.11, in which the curves from figure
6.10 are arranged to highlight the impact of varying the bottom topography. It can be
seen that for each of the inclinations shown, increasing the bottom amplitude stabilizes
the flow by shifting the curve to the right and therefore increasing the critical Reynolds
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number. The plots also show how increasing both the bottom amplitude and cot β changes
the shape of the curve, as mentioned above.

The combined effect of surface tension and bottom topography on the stability of the flow
is shown in figure 6.12. Shown in the top panel is a case with an even bottom; it is clear
that surface tension does not affect the critical Reynolds number in the absence of bot-
tom topography. However, the shape of the neutral stability curve is altered when surface
tension is increased; for shorter wavelengths, the flow becomes stable as surface tension is
increased. The two cases with bottom topography show that increasing the surface tension
from We = 5 to We = 10 shifts the neutral stability curve to the right, which increases
the critical Reynolds number and stabilizes the flow. This agrees with the predictions of
the asymptotic analysis discussed in section 5.2, which indicated that when bottom to-
pography and weak surface tension are combined, the flow rate is decreased and therefore
the flow is stabilized. However, further increasing the surface tension actually reverses
the combined effect of bottom topography and surface tension and thus destabilizes the
flow. This result is consistent with the reversal in stability reported by D’Alessio et al. [13].

Figure 6.13 shows the effect of increasing the shallowness parameter δ, or increasing the
fluid thickness relative to the characteristic length of the bottom topography. Results are
shown for two different values of bottom amplitude. The even bottomed case is not shown
because the shallowness parameter, δ, is arbitrary for the even bottomed case; the neutral
stability curve should be plotted as kδ versus Re in this case, as seen in the earlier com-
parisons to the experimental data. For both amplitudes shown in the figure, increasing
the thickness relative to the bottom wavelength stabilizes the flow; that is, bottom topog-
raphy having a shorter wavelength stabilizes the flow compared to that having a longer
bottom wavelength. However, it must be remembered that the underlying asumption that
δ � 1 puts a restriction on the bottom wavelength allowed; it requires that the bottom
wavelength must be long compared to the fluid layer thickness.

The effect of bottom permeability on the stability of the flow is shown in figure 6.14. Two
cases are shown: one with heating in the top panel, and one without heating in the bottom
panel. In each case, the neutral stability curves with and without permeability are both
shown, and in each case, it can be seen that adding permeability decreases the critical
Reynolds number and thus destabilizes the flow. Adding permeability also changes the
shape of the neutral stability curve by increasing the wavenumber corresponding to the
most unstable disturbance.

Finally, the effect of bottom heating on the stability of the flow is shown in figure 6.15.
Two sets of neutral stability curves are shown; in the top panel, the bottom topography
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characterized by ab = 0.3 is used, and in the bottom panel, the bottom topography is
described by ab = 0.4. The curves show that increasing heating while holding other pa-
rameters constant destabilizes the flow, even when bottom topography is included. Also,
varying the Marangoni number can alter the value of the most unstable wavenumber, as
seen in the top panel of figure 6.15. For flows with a large bottom amplitude and a small
angle of inclination, the the shape of the curve can change such that the critical Reynolds
number occurs for a non-zero wavenumber, as seen in figure 6.10. Increasing the Marangoni
number, however, causes the shape of the curve to take on a form similar to that observed
when the bottom amplitude is small; thus the critical Reynolds number can occur for a
perturbation wavenumber of zero if the Marangoni number is sufficiently large, as seen in
figure 6.15.

The neutral stability curves for flow over a wavy bottom show that most of the trends
seen for an even bottom persist when bottom topography is added. The exception is that
bottom waviness can change the wavenumber of the most unstable perturbations. Further,
the plots confirm that adding bottom topography and weak surface tension stabilizes the
flow, while the combination of strong surface tension and bottom topography destabilizes
the flow.
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Figure 6.10: Effect of increasing cot β for the isothermal, impermeable case where δ = 0.05
and We = 5, with even bottom (top), ab = 0.3 (middle), and ab = 0.4 (bottom).

84



2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
0

1

2

3

4

5

6

Re

K

 

 

a
b
=0.0

a
b
=0.3

a
b
=0.4

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
0

1

2

3

4

5

6

Re

K

 

 

a
b
=0.0

a
b
=0.3

a
b
=0.4

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
0

1

2

3

4

5

6

Re

K

 

 

a
b
=0.0

a
b
=0.3

a
b
=0.4

Figure 6.11: Effect of increasing ab for the isothermal, impermeable case where δ = 0.05
and We = 5, with cot β = 3 (top), cot β = 4 (middle), and cot β = 5 (bottom).
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Figure 6.12: Effect of increasing We for the isothermal, impermeable case where δ = 0.05
and cot β = 4, with ab = 0.0 (top), ab = 0.3 (middle), and ab = 0.4 (bottom).
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Figure 6.13: Effect of increasing δ for the isothermal, impermeable case where We = 5 and
cot β = 4, with ab = 0.3 (top), and ab = 0.4 (bottom).
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Figure 6.14: Effect of increasing δ1 for the case where δ = 0.05, We = 5, ab = 0.4, cot β = 4,
Pr = 7, and Bi = 1, with Ma = 0.2, (top) and Ma = 0, (bottom).
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Figure 6.15: Effect of increasing Ma for the case where δ = 0.05, We = 5, cot β = 4,
Pr = 7, Bi = 1, and δ1 = 0.1, with ab = 0.3, (top) and ab = 0.4, (bottom).
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6.6 Numerical Simulation Results

The weighted residual model including heating and permeability is solved numerically us-
ing the fractional step method in a similar manner as described in section 4.1. The main
difference is in the inclusion of the energy equation. The development of the interface with
time is shown for one case in figure 6.16. The case includes bottom topography, surface
tension and heating. A perturbation with a wavelength equal to the length of the domain
is initially imposed; because the flow is unstable, the perturbation grows into a wave that
eventually maintains its shape and continuously cycles through the domain.

The fully developed results for the same case are compared to results for the corresponding
isothermal, impermeable case in figure 6.17. The two simulations are started with the
steady-state solutions as the initial conditions. The resulting fully-developed volume flow
rate, height, and interface temperature along the domain are shown in the figure with
the scaling qs = 1. The volume flow rate, shown in the top panel, indicates that the
wave formed for the thermal permeable case is slightly more pronounced than that for the
isothermal impermeable case. This is to be expected since it has already been shown that,
in general, heating and permeability tend to destabilize the flow. The wave is also more
pronounced due to the variation in surface tension; the surface tension is greater when the
fluid temperature is lower and is therefore greatest at the peak of the wave. Fluid tends
to be drawn to areas of higher surface tension, increasing the height of the wave.

The middle panel shows the fluid layer thickness. Near the middle of the domain, away
from the q-waves in the panel above, the fluid layer thickness is greater for the isothermal
impermeable case. This is simply because the bottom slip results in higher velocity for the
permeable case, so because the volume flow rate is the same, the fluid layer is thinner for
the permeable case. The fluid layer thickness at the peak of the q-wave for the thermal
permeable case is greater than that for the isothermal impermeable case for the same rea-
sons that the wave is more pronounced in the top panel.

The surface temperature, plotted in the bottom panel, shows the constant temperature in
the isothermal case compared to the varying interface temperature in the case with bottom
heating. The temperature varies with the bottom topography, and a dip in temperature
coincides with the wave crest, where the much thicker fluid layer results in a temperature
closer to the ambient temperature. The shift between the locations of the local maximum
fluid layer thickness and minimum interface temperature that occur periodically with the
bottom topography is also apparent in these results; the minimum temperature occurs
further downstream than expected, based on the results of D’Alessio et al. [13], due to the
bottom permeability.
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Figure 6.16: Volume flow rate evolution in time for a case with heating and permeability.
Re = 1.0, δ = 0.1, cot β = 0.5, We = 100, ab = 0.2, Bi = Ma = 1, and δ1 = 0.1. The
WRM with the scaling qs = 1 is used.
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Figure 6.17: Comparison between a case with heating and bottom permeability and an
impermeable, isothermal case at t=200. Both have Re = 1.0, δ = 0.1, cot β = 0.5,
We = 100, ab = 0.2, and a domain length of ten bottom wavelengths. The case with
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qs = 1 is used.
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6.6.1 Comparison to Full Navier-Stokes Numerical Solutions

Finally, the numerical results from the weighted residual model for a case with bottom
permeability are compared to CFX results for the corresponding case. Heating is not
included because the Marangoni effect requires surface tension, and CFX simulations with
surface tension were problematic due to mass loss, as discussed in section 5.1.3. The flow
considered is isothermal with surface tension being neglected, and an even bottom is used;
however, bottom permeability is included. The flow parameters are Re = 1.75, δ = 0.089,
δ1 = 0.14, cot β = 1.38. The permeability parameter value is based on the values of
Foametal A used in the experiments by Beavers and Joseph [27, 40]. In CFX, the porous
bottom is simulated by including a porous layer in the domain, which is saturated with
fluid. A momentum loss term is included in the governing equations to model the porous
layer; this term is based on the permeability of the material and the volume fraction of solid
material. Figure 6.18 compares the CFX and weighted residual model results. The figure
shows that the number of peaks match. The spacing is similar as are the height of the peaks,
although the peaks in the weighted residual model results are slightly taller and farther
apart. Other model simulations of the porous bottom problem match the corresponding
CFX results fairly well; the results indicate that the weighted residual model continues to
predict the flow well, even when permeability is added.
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Figure 6.18: CFX and WRM results for a case with bottom porosity. The flow parameters
are Re = 1.75, δ = 0.089, δ1 = 0.14, cot β = 1.38, and We = Ma = Bi = ab = 0.
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Chapter 7

Conclusions

In the first part of this study, three models for flow down a wavy inclined plane were
compared. The development of each model and the assumptions made were described.
The models were then compared by considering the predictions they make regarding the
critical Reynolds number for flow over an even bottom, the neutral stability curve, the
interface development in unstable flows, and the critical Reynolds number for flow over a
wavy bottom. Based on the origins of the models, the SWM is expected to give the poorest
results due to the assumptions inherent in its development; empirical terms were added
to the shallow-water equations to account for viscosity and bottom friction, whereas these
effects are properly included in the governing equations of the other two models. The IBL
model is expected to perform better than the SWM because it is derived directly from
the governing equations. However, it is known to erroneously predict the critical Reynolds
number, whereas the weighted residual model, which is specifically developed to correct
this shortfall, is expected to give the best results.

Comparing the critical Reynolds number predictions of the models to the theoretical re-
sult, which has been determined by others [1,2,14] using the Orr-Sommerfeld equation, it
was found that only the WRM reproduces the theoretical value. The IBL model comes
close, slightly over-predicting the correct result, and the shallow water model significantly
under-predicts the correct value. Neutral stability curves were then compared to two sets
of experimental data collected by Liu et al. [16] and Liu et al. [17]. Again, the WRM gives
the best results, the IBL model predicts a curve shifted slightly to the right, while the
SWM predicts a curve shifted significantly to the left. Based on these results, only the
IBL model and the WRM were included in the remaining comparisons.

The IBL model and WRM were then solved numerically, using the fractional step method,
for unstable cases. The results were compared to numerical solutions of the full Navier-
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Stokes equations, obtained using the commercial software package CFX. Two cases were
compared; the first excludes surface tension, and the second includes it. In both cases, the
models gave results similar to those obtained using CFX; however, the WRM results were
slightly better. In the first case, both models predicted the same number of peaks as CFX,
although the height of the CFX peaks was better matched by the WRM. In the case with
surface tension, the WRM correctly predicted the number of peaks calculated by CFX,
whereas the IBL model predicted one less peak.

Finally, the critical Reynolds number for flow over a wavy bottom, as predicted by the
WRM and the IBL model, were compared to experimental data. In this comparison, both
models provided reasonable predictions, and both performed reasonably well. The results
of this comparison also indicate that bottom topography has a stabilizing effect on the
flow. To investigate this, an asymptotic analysis was conducted to determine the com-
bined effect of bottom topography and weak surface tension, and it was found that bottom
topography and weak surface tension acting together stabilize the flow. However, by con-
structing neutral stability curves for flow over a wavy bottom, it was later shown that
the combination of strong surface tension and bottom topography destabilizes the flow, as
found by D’Alessio et al. [13]. From these comparisons, it can be concluded that, overall,
the WRM best predicts the features of flow over a wavy inclined plane. Based on this con-
clusion, the WRM was developed to include the effects of heating and bottom permeability.

The weighted residual method was extended to include both the effects of bottom heating
and bottom permeability. A constant bottom temperature was applied, and a variation of
the Beavers and Joseph slip condition [26–28] was used to model the bottom permeability.
The results obtained from a linear stability analysis of the model equations were compared
to those from the corresponding Benney equation and the two were found to agree; they
also agree with the results of Sadiq et al. [4], who used the Orr-Sommerfeld equation to
predict the critical Reynolds number. This confirms that the WRM continues to make
accurate predictions regarding the stability of the flow, even when the model is extended
to include bottom heating and permeability. The expression for the critical Reynolds num-
ber indicates that both heating and permeability destabilize the flow, as reported in the
literature [7, 26], and that the interaction of the two effects is to further destabilize the
flow. It was also found that increasing the bottom permeability or the Marangoni number
monotonically destabilizes the flow for relevant values of the parameters. However, there
is a specific Biot number for which the flow is most unstable. This is because, when the
interface temperature is halfway between the bottom and the ambient temperatures, the
interface temperature varies the most with changes in fluid layer thickness, thus enhancing
the Marangoni effect; this occurs for a Biot number near one, at which the flow is most
unstable.
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As a final test of the WRM, numerical solutions of the full Navier-Stokes equations were
compared to the model predictions for the case with bottom permeability without heat-
ing. A comparison with CFX for the case with heating is problematic due to the mass
loss that occurs in CFX as a result of surface tension. However, the results with bottom
permeability showed that the model does closely predict the CFX results, confirming that
the WRM, when extended to include permeability, does predict the features of the flow well.

Future work on this problem could include investigating whether the Beavers and Joseph
slip condition is the most appropriate for flow over a wavy bottom, or whether another
condition, such as the LeBars and Worster model [39], should be applied. As well, simula-
tions of the full Navier-Stokes and energy equations should be conducted for comparison to
the WRM predictions to confirm that the model, including both of these effects, accurately
predicts the development of the interface. Finally, three-dimensional instabilities and flows
could be considered.
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Appendix A

Linear Stability over a Wavy Bottom
with Heating and Porosity

A linear stability analysis of the model equations, (6.31), for flow over a wavy inclined
plane with bottom heating and permeability is conducted by using Floquet theory. This
procedure is outlined here. A similar analysis using the IBL model, equations (3.12) and
(3.13), for isothermal impermeable flow was also performed. The linearized perturbation
equations corresponding to equation (6.31) are

∂ĥ
∂t

+ ∂q̂
∂x

= 0 , (A.1)

∂q̂
∂t

+ f1
∂2q̂
∂x2 + f2

∂q̂
∂x

+ f3q̂ + f4
∂3ĥ
∂x3 + f5

∂2ĥ
∂x2 + f6

∂ĥ
∂x

+ f7ĥ+ f8
∂2θ̂
∂xt

+ f9
∂2θ̂
∂x2 + f10

∂θ̂
∂x

= 0 , (A.2)

∂θ̂
∂t

+ g1
∂2θ̂
∂x2 + g2

∂θ̂
∂x

+ g3θ̂ + g4
∂q̂
∂x

+ g5q̂ + g6
∂2ĥ
∂x2 + g7

∂ĥ
∂x

+ g8ĥ = 0 , (A.3)

where the hats denote perturbations. The coefficients f1 - f10 and g1 - g8 are
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f1 = 1
qt(h+2δ1)δh2

[
−9
2
δ2

Re
h3
]
,

f2 = 1
qt(h+2δ1)δh2

[
−19
336
δ2MaReh4θx + 17

7
δδ1h+ 9

2
δ2

Re
h2hx + 17

7
δh2
]
,

f3 = 1
qt(h+2δ1)δh2

[
6 δ2

Re
h2hxx− 18

7
δhhx + 45

8
δδ1ζ

′ − 4 δ2

Re
h(hs)

2 + 5
2
h
Re

+ 15
4
δ2

Re
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2
δ2

Re
hhxζ

′
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224
δ2ReMah4θxx − 5

112
δ2ReMah3θxhx + 5 δ2

Re
(ζ ′)2h

]
,

f4 = 1
qt(h+2δ1)δh2

[−5
6
δ3Weh3(3δ1 + h)

]
,

f5 = 1
qt(h+2δ1)δh2

[
6 δ2

Re
h2
]
,

f6 = 1
qt(h+2δ1)δh2

[
5
2
δ
Re

cot βh4 − 8 δ2

Re
hhx − 5

112
δ2ReMah3θx + 15

2
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Re

cot βδ1h
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7
δh+ 5

2
δ2

Re
hζ ′
]
,

f7 = 1
qt(h+2δ1)δh2
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2
δ1 − 10

3
h
)
h2δ3We(hxxx + ζ ′′′) + 10 δ

Re
cot βh3(hx + ζ ′) + 12 δ2

Re
hhxx

− 10H
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Re
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Re
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δMah2θx
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Re
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Re
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Re
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Re
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Re
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112
δ2ReMah2θxhx + 45

2
δ
Re

cot βδ1h
2hx

]
,

f8 = 1
qt(h+2δ1)δh2

[−1
48
δ2ReMah5

]
,

f9 = 1
qt(h+2δ1)δh2

[−15
224
δ2ReMah4

]
,

f10 = 1
qt(h+2δ1)δh2

[
5
4
h+ 5

2
δ1 − 5

112
δRehhx

]
Maδh2 , (A.4)
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g1 = δ
[

3
80
MaReh(1− θ)− 1

Pe

]
,

g2 = 1
δPeh3

[
1
20
δPeh(27h− 21δ1) + 3

40
δ2PeMaReh3 (hx(1− θ)− 2hθ)− δ2h2hx

]
,

g3 = 1
δPeh3

[
− 3δ2ζ ′hhx + 3δ2Biζ ′h2hx − 3

80
δ2PeMaReh3θxx + 3Bih2 + δ2h2hxx

+ 3
2
δ2Bih2hx − 2δ2h(hx)

2 + 3h+ 3
2
δ2ζ ′′h2
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@
δ2Bi(ζ ′)2h2 + 21
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δPeδ1hx − 9
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δPeδ1ζ
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40
δ2PeMaReh3θxhx
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7
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2
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40
hx
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δ1hθx + 27
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h2θx

]
,

g6 = 1
Peh

[δ(θ − 1)] ,

g7 = 1
δPeh3hx

[
(1− θ)

(
3
40
δ2PeReMah3θx + 4δ2hhx

+ 3δ2ζ ′h− 21
20
δPeδ1

)
+ 3δ2Bih2θ(ζ ′ + hx)− δ2h2θx

]
,

g8 = 1
δPeh3

[(
3
20
δ2PeMaReh3θxx − 2δ2hhxx − 3δ2ζ ′′h+ 9

40
δ2PeMaReh2θxhx

+ 2δ2(hx)
2 + 3δ2ζ ′hx − 3

)
(1− θ) + 3δ2Bihθ (ζ ′ + hx)

2
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10
δPehθx − 3δ2h2θxx

− 3
10
δ2PeMaReh3(θx)

2 + 6Bihθ − 2δ2hθxhx

]
, (A.5)

where subscripts indicate partial derivatives. Setting Ma = Bi = δ1 = 0 reproduces
equation (5.6), which applies to the isothermal impermeable problem for the weighted
residual model. The perturbations are expanded in a complex Fourier series as follows:

ĥ = eσt+iKxΣ∞
n=−∞ĥne

in2πx ,

q̂ = eσt+iKxΣ∞
n=−∞q̂ne

in2πx ,

θ̂ = eσt+iKxΣ∞
n=−∞θ̂ne

in2πx .

(A.6)

Since the coefficients, equations (A.4) and (A.5), are periodic functions due to the periodic
nature of the bottom topography, they can also be expanded in a complex Fourier series
given by

fk = Σ∞
n=−∞f̂k,ne

in2πx where k = 1, 2, ..., 10 . (A.7)
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The same is done for g1 - g8. The series are then truncated, and only terms from −N to
N are included, where N is taken to be sufficiently large so as not to influence the results.

When these series are substituted into equations (A.1) to (A.3), a system of equations
results, which can be expressed as a generalized eigenvalue problem given by

A~V = σB~V , (A.8)

where

A =

 A1 A2 A3

A4 0 0
A7 A8 A9

 , (A.9)

B =

 I 0 B3

0 I 0
0 0 I

 , (A.10)

and

~V =



q−N
...
qN
h−N

...
hN
θ−N

...
θN


. (A.11)

The sub-matrices A1 - A9 and B3 are each (2N + 1)× (2N + 1) square matrices with the
elements given by
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A1
l,m = f3,l−m + i[K + 2π(m− 1−N)]f2,l−m − [K + 2π(m− 1−N)]2f1,l−m ,

A2
l,m = f7,l−m + i[K + 2π(m− 1−N)]f6,l−m − [K + 2π(m− 1−N)]2f5,l−m

− [K + 2π(m− 1−N)]3f4,l−m ,

A3
l,m = i[K + 2π(m− 1−N)]f10,l−m − [K + 2π(m− 1−N)]2f9,l−m ,

A4
l,m = δl,mi[K + 2π(m− 1−N)] ,

A7
l,m = g5,l−m + i[K + 2π(m− 1−N)]g4,l−m ,

A8
l,m = g8,l−m + i[K + 2π(m− 1−N)]g7,l−m − [K + 2π(m− 1−N)]2g6,l−m ,

A9
l,m = g3,l−m + i[K + 2π(m− 1−N)]g2,l−m − [K + 2π(m− 1−N)]2g1,l−m ,

B3
l,m = i[K + 2π(m− 1−N)]f8,l−m , (A.12)

where δl,m in A4
l,m is the Kronicker Delta. Matrices A1 - A3 and B3 come from the mo-

mentum equations, A4 comes from the conservation of mass equation, and A7 - A9 come
from the energy equation. The vector ~V has length (6N + 3).

It is clear from the form of matrix B, which is upper-triangular with ones along the
diagonal, that B is non-singular and hence equation (A.8) can be converted to the standard
eigenvalue problem. For a given set of parameters and perturbation wavenumber, σ can be
found using the matrix system equation (A.8) and the Matlab routine eig(A,B). In the
absence of heating and permeability, B = I, and equation (A.8) reduces to the standard
eigenvalue problem; σ can then be found using the Matlab routine eig(A). A number of σ
values equal to 6N+3 will be found; the appropriate value is determined by examining the
phase speed given by c = =(σ)

K
. The phase speed should be near c = 3, which is the exact

value for the even bottom impermeable case, as noted in sections 2.2.1 and 2.2.2; further,
adding permeability only modifies this value slightly, as shown in section 6.4.2. Only few
eigenvalues, typically one or two, were found to satisfy this criterion, and of these, the
value with the largest growth rate determines the stability of the flow.
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Appendix B

Effect of Surface Tension on Flow
Stability

The effect of surface tension on the stability of the flow is investigated by conducting
an asymptotic analysis of the governing steady-state equations. The steady-state flow
variables are expanded in power series of δ as follows:

us(x, z) = u0 + δu1 + δ2u2 + ... ,

ws(x, z) = w0 + δw1 + δ2w2 + ... ,

ps(x, z) = p0 + δp1 + δ2p2 + ... ,

hs(x, z) = 1 + δh1 + δ2h2 + ... .

(B.1)

These expansions are substituted into the steady-state, isothermal governing equations,
given by

∂u
∂x

+ ∂w
∂z

= 0 ,

δRe
(
u∂u
∂x

+ w ∂u
∂z

)
= −δRe ∂p

∂x
+ 3 + δ2 ∂2u

∂x2 + ∂2u
∂z2

,

δ2Re
(
u∂w
∂x

+ w ∂w
∂z

)
= −Re∂p

∂z
− 3 cot β + δ3 ∂2u

∂x2 + δ ∂
2u
∂z2

.

(B.2)

The series expansions are also substituted into the boundary conditions given by
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p− 2δ
Re

∂w
∂z

+ δ2We∂
2(h+ζ)
∂x2 = 0

∂u
∂z
− 4δ2 ∂(h+ζ)

∂x
∂u
∂x

+ δ2 ∂w
∂x

= 0

 at z = h+ ζ , (B.3)

and

u = 0

w = 0

 at z = ζ . (B.4)

The surface boundary conditions are expanded in a Taylor series about z = 1 + ζ. This
allows problems at each order of δ to be formulated. The leading order problem is

∂u0

∂x
+ ∂w0

∂z
= 0 ,

3 + ∂2u0

∂z2
= 0 ,

3 cot β +Re∂p0
∂z

= 0 ,

(B.5)

subject to the boundary conditions

p0 = 0

∂u0

∂z
= 0

 at z = 1 + ζ , (B.6)

and

u0 = 0

w0 = 0

 at z = ζ . (B.7)

This problem can be solved to find

u0 = 3
2
(z − ζ)(ζ − z + 2) ,

w0 = 3
2
(z − ζ)(ζ − z + 2) dζ

dx
,

p0 = 3 cotβ
Re

(ζ − z + 1) .

(B.8)

The order δ problem is
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∂u1

∂x
+ ∂w1

∂z
= 0 ,

Re
(
u0

∂u0

∂x
+ w0

∂u0

∂z
+ ∂p0

∂x

)
= ∂2u1

∂z2
,

Re∂p1
∂z

= ∂2w0

∂z2
,

(B.9)

subject to the boundary conditions

p1 + h1
∂p0
∂z

+ 2
Re

dζ
dx

∂u0

∂z
= 2

Re
∂w0

∂z

∂u1

∂z
+ h1

∂2u0

∂z2
= 0

 at z = 1 + ζ , (B.10)

and

u1 = 0

w1 = 0

 at z = ζ . (B.11)

For this problem, a series expansion solution for the steady fluid layer thickness, hs, is
required. The series solution of the weighted residual model, as described in section 3.4 is
used. The steady-state WRM equation,

5δ2We
6
h3
sh

′′′
s − 6δ

Re
hsh

′′
s + 4δ

Re
(h′s)

2 −
[

5 cotβ
2Re

h3
s + 5δ

2Re
ζ ′ − 9

7

]
h′s − 15δ

4Re
ζ ′′hs

+
[

5
2δRe

− 5 cotβ
2Re

ζ ′ + 5δ2We
6
ζ ′′′
]
h3
s = 5

2δRe
+ 5δ

Re
(ζ ′)2

, (B.12)

is used to find a series solution for hs up to O(δ4). The first few terms are

hs = 1 + δ cotβ
3
ζ ′(x)

+δ2
(

2
3

(
1 + cot2β

3

)
[ζ ′(x)]2 +

(
1
2
− 2Re cotβ

35
+ cot2β

9

)
ζ ′′(x)

)
+O(δ3) .

(B.13)

The order δ problem from the governing equations can then be solved to find

u1 = 1
2
cot βζ ′(ζ − z)(3ζ − 3z + 4) ,

w1 = 1
2
cot β(ζ − z)

(
(ζ − z)2ζ ′′ +

(
2ζ ′′ + 3 (ζ ′)2) (ζ − z) + 4 (ζ ′)2) ,

p1 = 1
Re
ζ ′(3ζ − 3z + 3 + cot2 β) .

(B.14)
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This process is continued to find solutions up to order δ4. The free-surface velocity, us(z =
1+ζ), and from this the average value across one bottom wavelength, ūs, is computed. The
mean surface drift, Us, is then defined as the difference between ūs and the corresponding
value for the even bottom, steady-state problem [13]. The mean surface drift is given by
the expression

Us = ūs − 3
2

=
∫ 1

0
us(x, z = 1 + ζ)dx−

∫ 1

0
u0(x, z = 1 + ζ)dx

= −
(
2 + 7

9
cot2β

)
π2a2

bδ
2 −

(
f(Re, ab, cotβ) + 152

27
cot βReWe

)
π4a2

bδ
4 ,

(B.15)

where

f(Re, ab, cotβ) = 286
105
Re cot β + 304

315
Re cot3 β − 12113

44100
Re2 cot2 β − 14− 136

9
cot2 β

−76
81

cot4 β + 8
9
a2
b cot2 β + 298

81
a2
b cot4 β − 5

3
a4
b .

(B.16)
The first term on the right-hand-side of equation (B.15) indicates that bottom topography
decreases the average surface velocity, and the second term indicates that surface tension
also decreases this quantity. This result shows that bottom topography and weak surface
tension stabilize the flow, as it slows down the flow. This result can also be reached by
considering the average volume flow rate. This is found by integrating the fluid velocity
us(x, z) across one bottom wavelength, from x = 0 to x = 1, and through the depth of the
fluid, from z = ζ to z = 1 + ζ, as follows:

Q̄s =

∫ 1

0

∫ 1+ζ

ζ

us(x, z)dzdx = 1−
(
2 + 7

18
cot2β

)
π2a2

bδ
2 + g(We,Re, ab, cotβ)π4a2

bδ
4 ,

(B.17)
where

g(We,Re, ab, cotβ) =
(
38− 1193

8
a2
b

)
cot4β

81
− 152

315
Re cot3β +

(
66 + 63139

53900
Re2 − 4a2

b

)
cot2β

9

−
(

59
60

+ 76
27
We
)
Re cotβ + 51

10
+ 16

3
a2
b .

(B.18)
This shows that the volume flow rate is also decreased by bottom topography and weak
surface tension, and hence stabilizes the flow.
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