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Abstract

Ad hoc networks and bluetooth systems operating over the unlicensed ISM1 band are instances
of decentralized wireless networks. By definition, a decentralized network is composed of separate
transmitter-receiver pairs where there is no central controller to assign the resources to the users.
As such, resource allocation must be performed locally at each node. Users are anonymous to each
other, i.e., they are not aware of each other’s code-books. This implies that multiuser detection is
not possible and users treat each other as noise. Multiuser interference is known to be the main
factor that limits the achievable rates in such networks particularly in the high Signal-to-Noise
Ratio (SNR) regime. Therefore, all users must follow a distributed signaling scheme such that the
destructive effect of interference on each user is minimized, while the resources are fairly shared.

In chapter 2 we consider a decentralized wireless communication network with a fixed number
u of frequency sub-bands to be shared among N transmitter-receiver pairs. It is assumed that
the number of active users is a realization of a random variable with a given probability mass
function. Moreover, users are unaware of each other’s codebooks and hence, no multiuser detection
is possible. We propose a randomized Frequency Hopping (FH) scheme in which each transmitter
randomly hops over a subset of u sub-bands from transmission slot to transmission slot. Assuming
all users transmit Gaussian signals, the distribution of the noise plus interference is mixed Gaussian,
which makes calculation of the mutual information between the transmitted and received signals of
each user intractable. We derive lower and upper bounds on the mutual information of each user
and demonstrate that, for large SNR values, the two bounds coincide. This observation enables
us to compute the sum multiplexing gain of the system and obtain the optimum hopping strategy
for maximizing this quantity. We compare the performance of the FH system with that of the
Frequency Division (FD) system in terms of the following performance measures: average sum
multiplexing gain (η(1)) and average minimum multiplexing gain per user (η(2)). We show that
(depending on the probability mass function of the number of active users) the FH system can offer
a significant improvement in terms of η(1) and η(2) (implying a more efficient usage of the spectrum).
In the sequel, we consider a scenario where the transmitters are unaware of the number of active

1Industrial, Scientific and Medical.
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users in the network as well as the channel gains. Developing a new upper bound on the differential
entropy of a mixed Gaussian random vector and using entropy power inequality, we obtain lower
bounds on the maximum transmission rate per user to ensure a specified outage probability at a
given SNR level. We demonstrate that the so-called outage capacity can be considerably higher in
the FH scheme than in the FD scenario for reasonable distributions on the number of active users.
This guarantees a higher spectral efficiency in FH compared to FD.

Chapter 3 addresses spectral efficiency in decentralized wireless networks of separate transmitter-
receiver pairs by generalizing the ideas developed in chapter 2. Motivated by random spreading
in Code Division Multiple Access (CDMA), a signaling scheme is introduced where each user’s
code-book consists of two groups of codewords, referred to as signal codewords and signature code-
words. Each signal codeword for the ith user is a sequence of i.i.d. Gaussian random variables
xi[0],xi[1], · · · and each signature codeword is a sequence of i.i.d. random vectors ~si[0],~si[1], · · ·
constructed over a globally known alphabet. To represent a message, a unique codeword in each
group is selected and the sequence of vectors xi[0]~si[0],xi[1]~si[1], · · · is transmitted. Using a con-
ditional entropy power inequality and a key upper bound on the differential entropy of a mixed
Gaussian random vector, we develop an inner bound on the capacity region of the decentralized
network. To guarantee consistency and fairness, each user designs its signature codewords based
on maximizing the average (with respect to a globally known distribution on the channel gains)
of the achievable rate per user. It is demonstrated how the Sum Multiplexing Gain (SMG) in the
network (regardless of the number of users) can be made arbitrarily close to the SMG of a central-
ized network with an orthogonal scheme such as Time Division (TD). An interesting observation is
that in general the elements of the vectors in a signature codeword must not be equiprobable over
the underlying alphabet in contrast to the use of binary Pseudo-random Noise (PN) signatures in
randomly spread CDMA where the chip elements are +1 or −1 with equal probability. The main
reason for this phenomenon is the interplay between two factors appearing in the expression of the
achievable rate, i.e., multiplexing gain and the so-called interference entropy factor. In the sequel,
invoking an information theoretic extremal inequality, we present an optimality result by showing
that in randomized frequency hopping which is the main idea in the prevailing bluetooth devices in
decentralized networks, transmission of i.i.d. signals in consecutive transmission slots is in general
suboptimal regardless of the distribution of the signals.

Finally, chapter 4 addresses a decentralized Gaussian interference channel consisting of two
block-asynchronous transmitter-receiver pairs. We consider a scenario where the rate of data arrival
at the encoders is considerably low and codewords of each user are transmitted at random instants
depending on the availability of enough data for transmission. This makes the transmitted signals
by each user look like scattered bursts along the time axis. Users are block-asynchronous meaning
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there exists a delay between their transmitted signal bursts2. The proposed model for asynchrony
assumes the starting point of an interference burst is uniformly distributed along the transmitted
codeword of any user. There is also the possibility that each user does not experience interference
on a transmitted codeword at all. Due to the randomness of delay, the channels are non-ergodic
in the sense that the transmitters are unaware of the location of interference bursts along their
transmitted codewords. In the proposed scheme, upon availability of enough data in its queue, each
user follows a locally Randomized Masking (RM) strategy where the transmitter quits transmitting
the Gaussian symbols in its codeword independently from symbol interval to symbol interval. An
upper bound on the probability of outage per user is developed using entropy power inequality
and a key upper bound on the differential entropy of a mixed Gaussian random variable. It is
shown that by adopting the RM scheme, the probability of outage is considerably less than the
case where both users transmit the Gaussian symbols in their codewords in consecutive symbol
intervals, referred to as Continuous Transmission (CT).

2Users are synchronous at the symbol level.
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Chapter 1

Introduction

Increasing demand for wireless applications on one hand, and the limited available resources on
the other hand, provoke more efficient usage of such resources. Due to its significance, many
researchers have addressed the problem of resource allocation in wireless networks. One major
challenge in wireless networks is the destructive effect of multiuser interference, which degrades
the performance when multiple users share the spectrum. As such, an efficient and low complexity
resource allocation scheme that maximizes the quality of service while mitigating the impact of
the multiuser interference is desirable. The existing resource allocation schemes are either central-
ized, i.e., a central controller manages the resources, or decentralized, where resource allocation is
performed locally at each node. Due to the complexity of adapting the centralized schemes to the
network structure (e.g. number of active users), these schemes are usually designed for a fixed
network structure. This makes inefficient usage of resources because, in most cases, the number of
active users may be considerably less than the value assumed in the design process. On the other
hand, most of the decentralized resource allocation schemes suffer from the complexity, either in
the algorithm (e.g. game-theoretic approaches involving iterative methods) or in the hardware (e.g.
cognitive radio). Therefore, it is of interest to devise an efficient and low-complexity decentralized
resource allocation scheme, which is the main goal of this thesis.

1.1 Review of Existing Centralized and Decentralized Resource

Allocation Schemes

1.1.1 Centeralized Schemes

In recent years, many centralized power and spectrum allocation schemes have been studied in
cellular and multihop wireless networks [1, 2, 3, 4, 5, 6, 7, 8]. Clearly, centralized schemes perform
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better than the decentralized (distributed) approaches, while requiring extensive knowledge of the
network configuration. In particular, when the number of nodes is large, deploying such centralized
schemes may not be practically feasible.

Traditional wireless systems aimed to avoid the interference among users by using orthogonal
transmission schemes. The most common example is the Frequency Division (FD) system, in
which different users transmit over disjoint frequency sub-bands. The assignment of frequency
sub-bands is usually performed by a central controller. Despite its simplicity, FD is shown to
achieve the highest throughput in certain scenarios. In particular, [9] proves that in a wireless
network where interference is treated as noise (no multiuser detection is performed), if the crossover
gains are sufficiently larger than the forward gains, FD is Pareto-rate-optimal. Due to practical
considerations, such FD systems usually rely on a fixed number of frequency sub-bands. Hence,
if the number of users changes, the system is not guaranteed to offer the best possible spectral
efficiency because, most of the time, the majority of the potential users may be inactive.

1.1.2 Decentralized Schemes

In decentralized schemes, decisions concerning network resources are made by individual nodes
based on their local information. Two important classes of decentralized schemes reported in the
literature rely on either game-theoretic approaches or cognitive radios. Cognitive radios [10] have
the ability to sense the unoccupied portion of the available spectrum and use this information in
resource allocation. Fundamental limits of wireless networks with cognitive radios are studied in [11,
12, 13, 14]. Although cognitive radios avoid the use of a central controller, they require sophisticated
detection techniques for sensing the spectrum holes and dynamic frequency assignment, which add
to the overall system complexity [15]. Noting the above points, it is desirable to have a decentralized
frequency sharing strategy without the need for cognitive radios, which allows the users to coexist
while utilizing the spectrum efficiently and fairly.

Spread spectrum communications [16] offers techniques for sharing the same bandwidth by
several users. Historically, it was used as a means of low interception for military use. This area
has attracted tremendous attention during the past three decades in the context of centralized
uplink/downlink multiuser systems. Appealing characteristics of spread spectrum systems have
motivated researchers to utilize these schemes in networks without a fixed infrastructure, e.g.,
packet radio or ad-hoc networks [17]. In direct sequence spread spectrum systems, the signal of
each user is spread by a PN signature. The challenging point is that if two users pick the same
signature, they will not be capable of recovering the data at the receiver side due to the high
amount of interference. A distributed code assignment technique is developed in [18] for a certain
snapshot of an ad hoc network with an arbitrary communication topology. The main idea is to
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use signatures with variable spreading factors based on the local traffic in the network. Using a
greedy approximation algorithm and invoking graph theory, a distributed code assignment protocol
is suggested to maximize the throughput of the network.

Randomly spread direct sequence techniques proposed in [19, 20] represent practical CDMA
systems in the context of Multiple Access Channels (MAC). To generate its signature in practice,
each transmitter utilizes the output of a Linear Feedback Shift Register (LFSR). An LFSR generates
a maximum length sequence (m-sequence) of relatively large period over the alphabet {−1,+1}.
Thereafter, the transmitter breaks the m-sequence generated by its LFSR into a large number of
pieces (signatures) and utilizes these signatures to spread the symbols in its codeword. This can
be accurately modeled by random spreading where each transmitter generates a binary random
signature whose elements are +1 or −1 equally likely. Authors in [19] assess the capacity loss of
such a mechanism under various sub-optimum and low-complexity multiuser detection strategies
such as conventional matched filter, decorrelator and minimum mean square error estimator. An
important characteristic of this randomized signaling is that each transmitter runs its own LFSR
locally and there is no need to design the optimum capacity-achieving signatures and assign them
to the users. However, the common receiver is required to know the signatures of all users in order
to decode their messages.

Being a standard technique in spread spectrum communications and due to its interference
avoidance nature, hopping is the simplest spectrum sharing method to use in decentralized networks.
As different users typically have no prior information about the codebooks of the other users, the
most efficient method is avoiding interference by choosing unused channels. As mentioned earlier,
searching the spectrum to find spectrum holes is not an easy task due to the dynamic spectrum
usage. As such, Frequency Hopping (FH) is a realization of a transmission scheme without sensing,
while avoiding the collisions as much as possible. Frequency Hopping is one of the standard signaling
schemes [17] adopted in ad-hoc networks. In short range scenarios, bluetooth systems [21, 22, 23]
are the most popular examples of a Wireless Personal Area Network (WPAN). Using FH over
the unlicensed ISM band, a bluetooth system provides robust communication to unpredictable
sources of interference. A modification of Frequency Hopping, called Dynamic Frequency Hopping
(DFH), selects the hopping pattern based on interference measurements in order to avoid dominant
interferers. The performance of a DFH scheme when applied to a cellular system is assessed in
[24, 25, 26].

Although there has been a tremendous amount of work on the performance evaluation of
hopping-based decentralized networks, there are only a few information-theoretic results reflect-
ing the fundamental limits of such networks. We will offer a thorough analysis of a decentralized
network where all users follow a randomized hopping strategy to share the resources, while the
number of active users is a random variable with a given distribution. In one scenario, the channel
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gains and the number of active users are assumed to be static and known to the corresponding
transmitter-receiver nodes. This assumption makes the concept of achievable rate in the Shannon
sense meaningful. However, in case the channel gains and the number of active users are not known
to the transmitters, the concept of achievable rate may no longer be valid. A common setup for
such an assumption is a network where channel gains are quasi-static fading and unknown to the
transmitters, which is also addressed in the thesis.

Rayleigh fading is an unavoidable phenomenon in wireless networks that can affect the per-
formance of the system significantly. Traditionally, Rayleigh fading has been considered to be
harmful due to reducing the transmission reliability in wireless networks. However, recently, re-
searchers have been able to reduce this harmful effect by exploiting the so-called multiuser diversity
[27, 28]. This can be considered a scheduling gain by allowing the users with favorable channels
to be active. It is shown that multiuser diversity gain can be as large as log logN in broadcast
and multiple-access channels [29, 30, 31] and logN in single-hop ad hoc networks [32, 33], as N
grows to infinity. However, achieving this scheduling gain requires the fading channels to vary over
time such that all possible realizations of the fading process are covered. In the case that channel
gains are selected randomly at the start of the transmission and remain constant during the whole
transmission period (quasi-static fading), the channels do not have ergodic behavior. In this case,
a suitable performance measure is the so-called ε-outage capacity [34], denoted by R(ε), which is
defined as the maximum transmission rate per user, ensuring an outage probability below ε, i.e.,

R(ε) = sup{R : Pr{Outage} < ε}.

The reality of wireless channels is more complicated to be simply represented by the Rayleigh
fading model. A class of channel models considered in the literature is the one in which the signal
power decays according to a distance-based attenuation law [35, 36, 37, 38, 39, 40, 41, 42]. More-
over, the presence of obstacles adds some randomness (known as shadowing) to the received signal.
It is well known that the effects of such random phenomena can significantly affect the through-
put of a spectrum sharing network in both multi-hop [43, 44, 45, 46] and single-hop scenarios [47]
(Chapter 8), [48, 49, 50, 51, 52]. These features indeed increase the frequency reuse factor as they
will attenuate the interference caused by a given transmitter on its neighboring receivers. In spite
of the significance of the effects of distance-based attenuation and shadowing on the throughput of
a spectrum sharing system, unfortunately, there is not a single commonly accepted model to repre-
sent these factors. It should be emphasized that the inclusion of signal attenuation due to distance
and/or shadowing will indeed simplify the spectrum sharing as the multiuser interference will be
attenuated and consequently its harmful effect will be reduced. On the other hand, these factors
do not impact the performance of the orthogonal schemes in which the multiuser interference is
altogether avoided. In spite of this fact, as the actual model used to represent distance-based at-
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tenuation and shadowing can have a profound impact on the system throughput (to the advantage
of the randomized spectrum sharing schemes advocated in the current article), to avoid any confu-
sion, we have relied on a simple Rayleigh fading model which in some sense captures the minimum
advantage offered by the proposed scheme vs. those based on orthogonal separation of users.

Reference [53] studies a wireless network composed of a set of transmitter/receiver pairs in
which a given link can be off or transmit with a constant power. Both the case of Rayleigh fading
as well as a Rayleigh fading mixed with a proper distance-based attenuation are considered and a
comparison between the scaling (with respect to the number of links) of the throughput in these
two cases is provided.

In [54, 55], the authors study a decentralized wireless ad hoc network where different trans-
mitters are connected to different receivers through channels with a similar path loss exponent.
Assuming the transmitters are scattered over the two dimensional plane according to a Poisson
point process, a fixed bandwidth is partitioned into a certain number of sub-bands, such that the
so-called transmission intensity in the network is maximized, while the probability of outage per
user is below a certain threshold[54]. The transmission strategy is based on choosing one sub-band
randomly per transmission, which is a special case of Frequency Hopping. In [55], a non-iterative
and distributed power control scheme is introduced, for which the constant power and the channel
inversion schemes are extreme cases. It is observed that none of these cases are ideal in general. In
fact, it is shown that regulating the transmission power proportionally to the inverse square root
of the forward channel strength minimizes the outage probability.

Frequency hopping is also proposed in [14] in the context of cognitive radios, where each cog-
nitive transmitter selects a frequency sub-band but quits transmitting if the sub-band is already
occupied by a primary user.

The popularity of Frequency Hopping motivates us to consider this scheme operating over a
fixed bandwidth where due to practical constraints, the spectrum is divided to a number u of
frequency sub-bands.

It is worth mentioning that the long-known ALOHA system [56] is a potential candidate for
data communication in a decentralized network. In an ALOHA-like system, each user randomly
selects a number of frequency sub-bands upon activation and transmits the entire symbols in its
codeword through the selected sub-bands. Therefore, if two users overlap (partially or completely)
on their selected sub-bands, they lose (some or the entire) information in the transmitted packets.
However, in the randomized FH scheme, each user transmits the different symbols in its codeword
through randomly selected sub-bands which changes from transmission slot to transmission slot.
Overall, in an ALOHA-like system there is a nonzero probability that any user loses its entire
codeword regardless of the transmission rate, while in the randomized FH scenario, one can al-
ways transmit bellow a certain rate and recover its data completely for each transmission block.
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Although, the average throughput of an ALOHA-like system can be shown to be the same as that
of the randomized FH scheme in the high SNR regime, there are basic assumptions made in an
ALOHA system that are not necessary in the FH scheme:

1- The need to retransmit the lost packets in ALOHA-like systems demands the receiver to notify
its associated transmitter that a packet is lost. This leads to considerable delay and stability1 issues
regarding the backlogged packets [57, 58, 59]. Also, there must be a feedback link from any receiver
to its affiliated transmitter in order to report the lost packets. This decreases the overall spectral
efficiency.

2- In the ALOHA system, all users are assumed to be block and symbol synchronized. However,
in the proposed FH scheme, the assumption on block synchronization is either unnecessary (blocks
are transmitted without interruption) or the analysis can be easily generalized to include cases that
there are periods of silence between blocks.

Recently, researchers have aimed to improve the average throughput of an ALOHA network in
the context of random multiple access. For example, let there be at most two users in the network
where each user is active with a probability p. Inspired by the fact that the capacity region of a
two-user multiple access channel is a polytope with two corner points (r1, r2) and (r′1, r′2) where
r1, r2, r

′
1 and r′2 are nonzero rates, the authors in [60] propose that user 1 (user 2) selects r1 and r′1

(r2 and r′2) with probabilities q and 1 − q, respectively. As far as the pair of selected rates lies in
the capacity region of the corresponding multiple access channel, the messages sent by both users
can be received with arbitrarily small probability of error. Finally, q is selected to maximize the
average throughput. An elegant approach is proposed in [61] where users transmit over several data
streams (using message splitting) and the receiver decodes only certain data streams depending on
which users are active. This results in characterizing the capacity region of the Gaussian random
multiple access channel within a constant gap in a scenario where the activation status of both
users is only available at the receiver. We emphasize that these techniques do not apply in the
setup of a decentralized network as the capacity region of a decentralized interference channel is
unknown and multiuser detection is not possible.

1.1.3 Block-Asynchronous Decentralized Networks

Interference channels represent networks of separate transmitter-receiver pairs where encoding and
decoding are performed without any cooperation among the users. The capacity region of inter-
ference channels has been unknown for more than thirty years. Even the two-user case is only
partially solved [62, 63, 64, 65]. In fact, [62] proves that the classical random coding scheme devel-
oped by Han and Kobayashi [66] can achieve within one bit of the capacity region of the two-user

1An ALOHA system is called stable if the Markovian process of backlogged packets is ergodic.
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Figure 1.1: Asynchrony among the transmitted codes in a scenario where data traffic in each queue
is relatively low.

interference channel for all ranges of channel coefficients and SNR values.
Two pivotal assumptions made in [62, 63, 64, 65, 66] and the references therein are:
1- The network is centralized, i.e., there is a central controller that assigns the resources (such

as bandwidth) to the users. Moreover, users are aware of each other’s code-books. One drawback
of centralized scenarios is that the network is designed to service a certain number of users. Hence,
if the number of active users is less than what is considered in the design phase, spectral efficiency
will be very low, i.e, most of the bandwidth is not used.

2- Data is constantly available at the encoders for transmission. Also, all users are block-
synchronous, i.e., they start to transmit their codewords in the same symbol interval in a slotted
channel. This assumption is not necessarily valid in practice, because different users are not required
to become active or inactive simultaneously. In fact, if the rate of data arrival at the encoders is
relatively low, transmitters only transmit intermittently. In this case, codewords of different users
overlap partially or do not overlap at all. This is illustrated in fig. 1.1.

Information theoretic studies on a network of block-asynchronous users is already investigated
in [68, 69] in the context of centralized Multiple Access Channel (MAC) with two users. In case
the amount of mutual delay between the codewords of the users in negligible compared to the
length of codewords, it is shown in [68] that the capacity region of a MAC with block-asynchronous
users coincides with the capacity region of a MAC with block-synchronous users. On the other
hand, if the amount of delay is comparable with the block-length, the authors in [69] show that
the capacity region is still similar to the capacity region of a MAC with block-synchronous users
except for the fact that time-sharing is not possible anymore. In particular, it is concluded that
the capacity region of a Gaussian MAC with block-asynchronous users is the same as the capacity
region of block-syncronous Gaussian MAC regardless of the value of delay. The scheme consists of
rate splitting at the encoders and embedding preamble intervals of data at the beginning of each
codeword so that the receiver can estimate the delay between the two users’ transmission blocks
[70]. The collision MAC without feedback is introduced in [71] where it is shown how users can
jointly design their transmitters in order to reliably communicate in the presence of unknown delays
between any two users’ transmission blocks whether the users are synchronous at the symbol level
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or not.
An approach is taken in [72] to study a centralized interference channel with block-asynchronous

users. Using the general formula for capacity proposed in [73] and based on the concept of infor-
mation density, the authors derive an expression for the capacity region of such networks. This
expression is not a single-letter formulation of the capacity region and hence, it is not computable.
By deriving a single-letter inner bound, the authors present an analysis of the block-asynchronous
two-user interference channel where the main focus is to show that using Gaussian codewords is in
general suboptimal.

The schemes proposed in [68, 69, 70, 71, 72] can not be applied to a decentralized interference
channel with block-asynchronous users based on the model considered in the current article. This
is mainly due to the fact that in general joint transmitter design is not possible in decentralized
scenarios and users are unaware of each other’s code-books. Moreover, [68, 69, 70, 71, 72] assume
that the users have always enough data in their queues for transmission. This results in a similar
delay pattern between consecutive transmission blocks of the users. However, if users do not have
enough data for transmission, their transmission blocks look like scattered signal bursts along
the time axis. This results in different values for the mutual delay between any two overlapping
transmission blocks of the users. Therefore, it is of interest to devise an efficient and low-complexity
resource allocation scheme in a two-user decentralized interference channel in which the users
are block-asynchronous and the rate of data arrival at the encoders is relatively low, i.e., the
transmitters do not have always enough data for transmission.

1.2 Contributions

1.2.1 Chapter 2

In chapter 2, we consider a decentralized wireless communication network with a fixed number
u of frequency sub-bands to be shared among N transmitter-receiver pairs. It is assumed that
the number of active users is a realization of a random variable with a given probability mass
function. Moreover, users are unaware of each other’s codebooks, and hence, no multiuser detection
is possible. We propose a randomized Frequency Hopping scheme in which the ith transmitter
randomly hops over vi (the hopping parameter) out of u sub-bands from transmission slot to
transmission slot. Assuming i.i.d. Gaussian signals are transmitted over the chosen sub-bands, the
distribution of the noise plus interference becomes mixed Gaussian, which makes the calculation
of the achievable rate complicated. The main contributions of this chaper are presented in two
different cases:

Case I: Transmitters are aware of the number of active users and the channel gains.
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• We derive lower and upper bounds on the mutual information between the transmitted
and received signals of each user and demonstrate that, for large SNR values, the two bounds
coincide. Thereafter, we are able to show that the achievable rate of the ith user scales like
vi
2

∏N
j=1
j 6=i

(
1− vj

u

)
log SNR.

•We show that each transmitter only needs the knowledge of the number of active users in the
network, the forward channel gain and the maximum interference level at its associated receiver
to regulate its transmission rate. Knowing these quantities, we demonstrate how the ith user can
achieve a multiplexing gain of vi

2

∏N
j=1
j 6=i

(
1− vj

u

)
.

• We obtain the optimum design parameters {vi}Ni=1 in order to maximize various performance
measures.
• We compare the performance of the FH with that of the Frequency Division in terms of

the following performance measures: average sum multiplexing gain (η(1)) and average minimum
multiplexing gain per user (η(2)). We show that (depending on the probability mass function of
the number of active users) the FH system can offer a significant improvement in terms of η(1) and
η(2) (implying a more efficient usage of the spectrum).

Case II: Transmitters are unaware of the number of active users and the channel gains.
• Developing a new upper bound on the differential entropy of a class of mixed Gaussian

random vectors and using entropy power inequality, we offer three lower bounds on the ε-outage
capacity of each user denoted by R(1)

FH(ε), R(2)
FH(ε), and R(3)

FH(ε). To evaluate the system performance
analytically, we use R(3)

FH(ε), which can be computed easily. However, computation of R(1)
FH(ε) and

R
(2)
FH(ε) involves integrations that cannot be carried out in a closed form. In the simulation results,

we use the lower bounds R(1)
FH(ε) and R

(2)
FH(ε), which are tighter than R

(3)
FH(ε).

• We perform asymptotic analysis for the outage capacity in terms of ε and SNR. In the
asymptotically small ε regime, we observe that the maximum of outage capacity is obtained when
the hopping parameter for each user is either 1 or u. In the asymptotically small SNR regime,
we demonstrate that the system achieves the optimal performance regardless of the value of the
hopping parameter. For asymptotically large values of SNR, it is shown that the optimal hopping
parameter is

⌈
u

nmax

⌉
, where nmax is the maximum possible number of concurrently active users in

the network.
• We compare the outage capacity of the underlying FH scenario with that of the FD scheme

for various scenarios in terms of distributions on the number of active users, SNR and ε. It is
shown that FH outperforms FD in terms of outage capacity in many cases. We observe that in
the low SNR regime, FH and FD offer the same performance. In the low ε regime, FD is always
better than FH, however, for many practical scenarios there exists a threshold, εth, such that FH
outperforms FD as far as ε ≥ εth. Also, we have shown that supremacy of FH over FD in the high
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SNR regime occurs quite often.

1.2.2 Chapter 3

In chapter 3, we focus on a decentralized network of N transmitter-receiver pairs. It is assumed
that different transmitters are linked to different receivers through channels with static and non-
frequency selective gains that are realizations of i.i.d. complex Gaussian random variables repre-
senting Rayleigh fading. In a decentralized interference channel the knowledge of users over the
channel gains is only partial. In fact, each user is only aware of the channel gains from all trans-
mitters to its own receiver. Motivated by random spreading in CDMA, we assume that the ith

user generates two groups of code-books, referred to as the signal code-book and signature code-
book with rates Ri and R′i, respectively. The signal code-book is a collection of 2bTRic codewords
where each codeword consists of T i.i.d. Gaussian random variables xi[0],xi[1], · · · ,xi[T − 1]. The
signature code-book is a collection of 2bTR′ic codewords where each codeword consists of T i.i.d.
random vectors ~si[0],~si[1], · · · ,~si[T−1] with equal length K called signature vectors. The elements
in each signature vector are independently generated based on a globally known Probability Mass
Function (PMF) over a finite alphabet A. Letting each user have 2bTRic+bTR′ic possible messages
for transmission (message splitting), corresponding signal and signature codewords are picked and
the sequence of vectors xi[0]~si[0],xi[1]~si[1], · · · ,xi[T − 1]~si[T − 1] is transmitted. As an example,
let K = 8, the underlying alphabet for the signatures be A = {−1, 0,+1}, a typical symbol in the
signal codeword be xi and the corresponding signature vector in the signature codeword be

~si =
(

1 −1 0 1 0 −1 1 1
)t
.

Thereafter, the vector

xi~si =
(
xi −xi 0 xi 0 −xi xi xi

)t

is transmitted in 8 consecutive transmission slots.
Let us denote the received vector in the K transmission slots during which xi~si is transmitted

by ~yi. Then, any transmission rate Ri + R′i <
I(xi,~si;~yi)

K is achievable in the conventional sense by
applying typical decoding [80]. To calculate the quantity I(xi,~si;~yi)

K , the ith user needs to estimate
the number of users and the gains of the channels connecting the transmitters to its receiver and
send these data to its affiliated transmitter through a feedback link. The ith user aims to design
K and the underlying PMF used to generate the signature vectors such that E

{
I(xi,~si;~yi)

K

}
is as

large as possible. Here, the expectation is with respect to the channel gains. To motivate the use
of E {.}, note that in decentralized networks the knowledge of the users about the channel gains is
only partial due to the lack of a central controller or cooperation among users. For example, in a
network of N = 3 users, it is reasonable to assume that user 1 is aware of the channel gains from
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transmitters 2 and 3 to receiver 1, however, user 1 is completely unaware of the channel gain from
transmitter 2 to receiver 3. Since the quantity I(xi,~si; ~yi) depends on the gains of the channels
connecting all transmitters to the receiver of the ith user, maximizing I(xi,~si;~yi)

K by this user results
in possibly different solutions for K and the underlying PMF compared to the solutions obtained
for these parameters by other users. Assuming all the channel gains are realizations of i.i.d. complex
Gaussian random variables, the quantity E

{
I(xi,~si;~yi)

K

}
does not depend on the index i and it can

be used as the utility function to be maximized by any user. In fact, optimizing E
{

I(xi,~si;~yi)
K

}
leads to a consistent result for all users, i.e., all users come up with the same set of values for the
design parameters.

We are primarily interested in system design at a finite SNR level. Since different users are
unaware of each other’s signature vectors, the noise plus interference at each receiver is mixed
Gaussian. Appropriate tools such as conditional entropy power inequality and a key upper bound
on the differential entropy of a mixed Gaussian vector are applied to develop a lower bound on
I(xi,~si; ~yi). This lower bound is tight enough to guarantee the same SNR scaling as that of
I(xi,~si; ~yi) and a similar behavior in medium ranges of SNR as that of I(xi,~si; ~yi). The latter is
quite essential as it states that the derived lower bound on I(xi,~si; ~yi) mimics the plot of I(xi,~si; ~yi)
as a function of the design parameters. This enables us to design the signature code-books based
on the proposed lower bound.

Comparison With Prior Art

Our scheme is an instance of random spreading [19] in CDMA systems with the difference that the
spreading codes (signature vectors in our setup) also carry some information to the corresponding
receivers. It is long known in the context of CDMA-based Gaussian MAC that if the signature codes
of the users are ~s1, · · · ,~sN , the sum capacity of the network drops unless the matrix

[
~s1| · · · |~sN

]
has orthogonal rows [74]. This condition is certainly not satisfied in a randomly spread CDMA-
based Gaussian MAC. Hence, one expects that random spreading only achieves a fraction of the
sum-capacity of a Gaussian MAC as shown in [19].

The analysis given in [19] considers the asymptotic case of N,K →∞, while the fraction N
K is

a constant. It is shown that the spectral efficiency of the network in the randomly spread CDMA
depends on the empirical eigenvalue distribution of random matrices with particular structures.
Invoking results from random matrix theory [81] in the mentioned asymptotic case, this empirical
distribution tends to a deterministic distribution that makes the analysis tractable. In this work, we
are interested in the behavior of a decentralized network with any finite number of users. As such,
due to the finiteness of the number of active users, the Central Limit Theorem and its variants such
as Lindeberg-type Theorems [89] that are used in [19] are not applicable in our setup. Although

11



the emphasis is on finite N , we will also examine several asymptotic regimes.
The focus of [19] is on a MAC where the receiver is aware of the signatures of all users. The

signature of any user is randomly generated to spread a symbol in its codeword, where the common
receiver is assumed to be aware of the signatures of all users. However, in this work the focus
is on a decentralized interference channel where any user is unaware of the signatures of other
users. Moreover, the sequence of signatures used by any single user is already designed as part of
its code-book and it carries some information to the corresponding receiver. Since each signature
vector is a random vector with a finite number of possible realizations, the noise plus interference
at any receiver is a mixed Gaussian vector. As mentioned before, this makes I(xi,~si; ~yi) have no
closed expression.

Note that using the minimum distance decoder over a channel with additive non-Gaussian noise
is generally suboptimal. In fact, it is shown in [76] that Nearest Neighbor Decoding (NND) over an
additive white complex non-Gaussian noise channel, referred to as mismatched decoding, does not
achieve any rate beyond RNND , log

(
1 + P

σ2

)
where P is the average transmission power and 2σ2

is the noise spectral density. Treating interference as noise in our setup, σ2 is proportional to P ,
and hence, RNND saturates as the average transmission power tends to infinity. This in particular
shows that using the minimum distance decoder achieves no multiplexing gain in a decentralized
network where users apply the signaling proposed in this chapter. However, we will show that
I(x,~s;~y)
K scales like

(
1
N − δ

)
log SNR in the high SNR regime (for any finite number of users N and

arbitrary δ > 0) by designing the signature vectors appropriately. This is guaranteed as far as a
jointly typical decoder is adopted that is matched with the mixed Gaussian PDF of the noise plus
interference.

Main Observations

In the sequel, we are able to make several observations as follows:
Observation 1- There exists a tradeoff between the achievable rates in high and medium SNR:
Investigation of the lower bound reveals a tradeoff between the value of the achievable rate

in medium SNR and the multiplexing gain per user. In fact, the developed lower bound on the
achievable rate of each user can be roughly expressed as MG log SNR − IEF where MG is the
multiplexing gain per user and IEF is what we call the interference entropy factor. This factor
depends on the discrete entropy of a deterministic function of the signature vectors of the interferers.
For any two different alphabets A1 and A2 that are used to generate the signatures of users, if
MGA1 > MGA2 , then IEFA1 > IEFA2 as well. This implies that choosing A2 is more appropriate
for relatively smaller values of SNR, while choosing A1 results in larger values for the lower bound
at relatively larger SNR values. This is illustrated in fig. 1.2. Simulation results confirm that this
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Figure 1.2: The tradeoff between the slope (high SNR) and the values (medium SNR) of the rate.

behavior is a fundamental property of the achievable rate, i.e., the observation based on the lower
bound on I(xi;~yi|~si)

K holds for I(xi;~yi|~si)
K as well.

Observation 2- The elements of the signature vectors are not necessarily equiprobable over the
underlying alphabet:

A surprising observation is that the designed PMF used to generate the signature vectors is not
necessarily uniform. For example, let the underlying alphabet be {−1,+1} and the number of users
be N = 4. We show that the probabilities of +1 and −1 that maximize the achievable rate of each
user are not equal to 1

2 , i.e., the elements of the signatures are not equiprobable over the underlying
alphabet. This is in contrast to the customary use of binary PN signatures in conventional CDMA
systems where the chip elements are +1 or −1 with equal probability. This observation is confirmed
by calculating the exact value of the achievable rate for each user through simulations. Once again,
the developed lower bound on the achievable rate of each user is shown to mimic the lower bound
itself, i.e., it is maximized by letting +1 and −1 have unequal probabilities. The main reason for
this phenomenon is the interplay between the factors MG and IEF described in the preceding part.

Observation 3- It is possible to achieve the SMG of orthogonal schemes in decentralized net-
works:

One may consider a generalized version of our approach where each signature vector is randomly
generated to be one of the vectors in a globally known signature-book C. For example, if the
underlying alphabet is {−1,+1}, our signaling scheme reduces to selecting signatures in the set of

13



all K-tuples whose elements are either 1 or −1. Assuming the signatures in C are selected with equal

probability, we show that the SMG of the network is bounded from above by
(

1− 1
|C|
)N−1

where
|C| denotes the size of C. Moreover, given any natural number L, we construct a signature-book CL
of size L such that an SMG of

(
1− 1

L

)N−1 is in fact achievable. Therefore, regardless of the number
of users an SMG of 1 is approachable by increasing L and using the right signature-book CL. This
is the SMG of an orthogonal signaling scheme such as time division multiplexing. However, the
choice of CL is not unique. This implies that users are not able to agree upon CL without any
coordination, i.e., they must somehow agree on a global choice of the optimum CL.

Observation 4- The SMG of a decentralized network with matched filtering at the receivers
and hence, the SMG of random spreading CDMA-based MAC with matched filtering, is nonzero as
N tends to infinity:

We offer an analysis of the multiplexing gain if the receivers are equipped with suboptimal
detectors using matched filters. This detection method is widely used in conventional CDMA system
due to its low complexity [19]. In this approach, each receiver first decodes the sequence of signature
vectors ~si[0],~si[1], · · · ,~si[T − 1] and decides on the sequence of signals xi[0],xi[1], · · · ,xi[T − 1]
based on the inner products ~s†i [0]~yi[0],~s†[1]~yi[1], · · · ,~s†[T −1]~yi[T −1]. In the special case that the
signature vectors are generated over {−1,+1}, we demonstrate that the elements of the signatures
must not necessarily be +1 or −1 with equal probabilities. This particularly holds if the number
of users is larger than or equal to 5. It is shown that if all users select the right values for the
probabilities of +1 and −1, the SMG of the network settles on 0.182 as the number of users tends to
infinity. However, if all users construct their signatures by selecting each element in the signature
to be +1 or −1 with equal probabilities, the SMG in the network tends to 0 as the number of users
increases. Moreover, the optimum value for the length K of signatures is K = 2 regardless of the
value of N . The authors in [19] show that the sum rate in a randomly spread CDMA-based MAC
with matched filters utilized at the receiver side saturates in the asymptotic case where N , K and
SNR tend to infinity while the ratio N

K is a constant. However, our results demonstrate that by
appropriately selecting the probabilities of +1 and −1 (not equal to 1

2) and setting K = 2, the
sum rate in a randomly spread CDMA-based MAC exploiting matched filters scales with log SNR
instead of saturating.

1.2.3 Chapter 4

A network of two transmitter-receiver pairs is considered where the channel from each transmitter
to each receiver is modeled by static and non-frequency selective Rayleigh fading. The network is
decentralized, i.e., there is no central controller to assign the resources to the users and users do
not explicitly cooperate. In particular, each user is unaware of the other user’s code-book. Hence,
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multiuser detection is not possible at the receivers. We consider a scenario where the rate of data
arrival at the encoders is low such that the codewords of each user are transmitted at random
instants depending on the availability of data for transmission. As such, the transmitted signals by
each user look like scattered bursts along the time axis. Moreover, the users are block-asynchronous
meaning there exists a mutual delay between their transmitted codewords. There are two main
reasons for asynchrony:

1- Users do not become active simultaneously, i.e., the two queues start to accept data at
different instants. This entails a transient phase where one user is active and the other user becomes
active at a later time. Although we are not interested in this transient period and we focus on a
phase where both users are active, it is important to note that the length of the transient phase
is in general a random variable which adds to the randomness of delay between the transmitted
codewords of the two users.

2- The data streams entering the queues of the two users are independent. In fact, if one user
has enough data in its queue for transmission, the other user may be still waiting to receive more
data and will transmit at a later instant.

The proposed model for asynchrony assumes the starting point of an interference burst is
uniformly distributed along the transmitted codeword by each user. Also, users may not experience
any interference on a transmitted codeword at all.

Due to the randomness of delay, the communication channel for each user is non-ergodic in the
sense that the transmitters are unaware of the starting point of interference bursts. Outage analysis
is an appropriate computational tool to study the performance in this setup. Aside from the delay
pattern, it is also assumed that the transmitters are unaware of the channel gains in the network.
However, each receiver is able to measure (without error) the channel gains and the mutual delay
by the end of the transmission of its corresponding codeword.

Following the randomized resource allocation scenario proposed in chapter 2, we adopt a strategy
where each user transmits a Gaussian symbol in its codeword with a probability of θ and quits
transmitting with a probability of 1− θ independently from symbol interval to symbol interval in
a slotted channel2. We call this scheme Randomized Masking (RM) with activity factor θ. For
example, let us consider the scenario in fig. 1.1, and assume that both encoders randomly mask
their outputs. This is demonstrated in fig. 1.3 where the masked symbol intervals are shown in
black.

As no user is aware of the on-off pattern of the other user, the noise plus interference has a mixed
Gaussian distribution. As a result, one can not find a closed expression for the mutual information
between the channel input and channel output of any user. Hence, it is not possible to derive

2In fact, we assume the users are synchronous at the symbol level, i.e., they are symbol-synchronized. Throughout

the chapter, asynchrony only exists at the block level.
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Encoder 2

Encoder 1

Queue 2

· · · · · ·

· · ·· · ·

Queue 1

Figure 1.3: Each user masks its output independently from symbol interval to symbol interval.

a closed expression for the probability of outage. Instead, an upper bound on the probability
of outage is developed using entropy power inequality together with a key upper bound on the
differential entropy of a mixed Gaussian random variable. In the sequel, the activity factor θ is
designed to minimize the upper bound on the probability of outage. This upper bound has the
following properties:
• It is tight at θ = 1, i.e., setting θ = 1 in its expression yields the exact probability of outage

for the case when masking is not applied.
• The activity factor θ that minimizes the upper bound is in general less than 1.
Therefore, it is shown that the proposed RM strategy reduces the probability of outage compared

to the case where all transmitters keep transmitting their Gaussian signals in consecutive symbol
intervals (no masking applied), referred to as Continuous Transmission (CT). We emphasize that
even in the CT scheme, in case the users do not have enough data in their queues, they remain
silent and wait for more data to arrive. Hence, CT must not be interpreted as a scenario where
users have always data for transmisson.
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Chapter 2

Randomized Frequency Hopping

2.1 System Model and Assumptions

We consider a wireless network with N users1 operating over a spectrum consisting of u orthogonal
sub-bands. The number of active users is assumed to be a realization of a random variable with
a given distribution, however, it is fixed during the whole transmission once it is set first. The
transmission blocks of each user comprise of an arbitrarily large number of transmission slots. We
remark that the results of this chapter are valid regardless of having block synchronization among
the users, however, we assume synchronization at the symbol level. The ith user exploits vi(≤ u)
out of the u sub-bands in each transmission slot and hops randomly to another set of vi frequency
sub-bands in the next transmission slot. This user transmits independent real Gaussian signals
of variance P

vi
over the chosen sub-bands, in which P denotes the total average power for each

transmitter. Each receiver is assumed to know the hopping pattern of its affiliated transmitter.
It is assumed that the users are not aware of each other’s codebooks and hence, no multiuser
detection or interference cancelation is possible at the receiver sides. The static and non-frequency
selective channel gain of the link connecting the ith transmitter to the jth receiver is shown by
hi,j . As it will be shown in (2.50), the only information each transmitter needs in order to regulate
its transmission rate (focusing on the achieved multiplexing gain) is its forward channel gain, the
maximum interference level at its associated receiver and the number of active users in the network.
This information can be obtained at the receiver side and provided to the corresponding transmitter
via a feedback link2.

As all users hop over different portions of the spectrum from transmission slot to transmission
slot, no user is assumed to be capable of tracking the instantaneous interference level. This assump-

1Each user consists of a separate transmitter-receiver pair.
2This is addressed in section 2.4.
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tion makes the interference plus noise PDF at the receiver side of each user be mixed Gaussian.
In fact, depending on different choices the other users make to select the frequency sub-bands and
values of the crossover gains, the interference on each frequency sub-band at any given receiver
can have up to 2N−1 power levels. The vector consisting of the received signals on the frequency
sub-bands at the ith receiver in a typical transmission slot is

~yi = hi,i~xi + ~zi, (2.1)

where ~xi is the u× 1 transmitted vector and ~zi is the noise plus interference vector at the receiver
side of the ith user. One may write p~xi(.) as

p~xi(~x) =
∑
C∈C

1(
u
vi

)gu(~x,C), (2.2)

which corresponds to the mixed Gaussian distribution. In the above equation, the set C includes
all u × u diagonal matrices in which vi out of the u diagonal elements are P

vi
and the rest are

zero. Denoting the noise plus interference on the jth sub-band at the receiver side of the ith user
by zi,j (the jth component of ~zi), it is clear that pzi,j (.) is not dependent on j. This is due to
the fact that the crossover gains are not frequency selective and there is no particular interest in
a specific frequency sub-band by any user. We assume there are Li + 1 (Li ≤ 2N−1 − 1) possible
non-zero power levels for zi,j , say {σ2

i,l}Lil=0. Denoting the occurrence probability of σ2
i,l by ai,l,

pzi,j (.) identifies a mixed Gaussian PDF as

pzi,j (z) =
Li∑
l=0

ai,l√
2πσi,l

exp

(
− z2

2σ2
i,l

)
, (2.3)

where σ2 = σ2
i,0 < σ2

i,1 < σ2
i,2 < ... < σ2

i,Li
(σ2 is the ambient noise power). We notice that for each

l ≥ 0, there exists a ζi,l ≥ 0 such that σ2
i,l = σ2 + ζi,lP where 0 = ζi,0 < ζi,1 < ζi,2 < ... < ζi,Li . One

may write

zi,j =
N∑
k=1
k 6=i

hk,ick,jxk,j + νi,j (2.4)

where ck,j is a Bernoulli random variable showing if the kth user has utilized the jth sub-band, xk,j
is the signal of the kth user sent on the jth sub-band (assuming it has utilized the jth sub-band),
and νi,j is the ambient noise which is a zero-mean Gaussian random variable with variance σ2. The
ratio P

σ2 is taken as a measure of SNR and is denoted by γ throughout the chapter.
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2.2 Analysis of the Achievable Rate

Let us denote the achievable rate of the ith user by Ri. It can be observed that the communication
channel of this user is a channel with state si, the hopping pattern of the ith user, which is
independently changing over different transmission slots, and is known to both the transmitter and
the receiver. The achievable rate of such a channel is given by

Ri = I(~xi; ~yi|si) =
∑
si∈Si

Pr(si = si)I(~xi; ~yi|si = si), (2.5)

where I(~xi; ~yi|si = si) is the mutual information between ~xi and ~yi for the specific sub-band
selection corresponding to si = si. The set Si denotes all possible selections of vi out of the u
sub-bands. As p~zi(.) is a symmetric density function, meaning all its components have the same
PDF given in (2.3), we deduce that I(~xi; ~yi|si = si) is independent of si. Therefore, to calculate
Ri, we may assume any specific sub-band selection for the ith user in Si, say the first vi sub-bands.
Denoting this specific state by s∗i , we get

Ri = I(~xi; ~yi|si = s∗i ). (2.6)

In this case, we denote ~yi and ~xi by ~yi(s∗i ) and ~xi(s∗i ), respectively. Obviously, we have

Ri = I(~xi(s∗i ); ~yi(s
∗
i )) = h(~yi(s

∗
i ))− h(~zi). (2.7)

Because ~yi(s∗i ) and ~zi have mixed Gaussian distributions, there is no closed expression for the
differential entropy of these vectors. As such, we provide an upper bound and a lower bound on
the achievable rate of each user in the following subsections and show that these bounds coincide
in the asymptotically high SNR regime.

2.2.1 Upper Bound on The Achievable Rates

In this section, we develop an upper bound R
(ub)
i on the achievable rate of the ith user that is

tight enough to ensure that R
(ub)
i −Ri does not increase unboundedly as SNR increases. The idea

behind this upper bound is the convexity of Ri in terms of p~yi(s∗i )|~xi(s∗i )(.|.).
Theorem 1. There exists an upper bound on the achievable rate of the ith user given by

R
(ub)
i =

1
2
vi

N∏
k=1
k 6=i

(
1− vk

u

)
log
(

1 +
|hi,i|2γ
vi

)
+ R̃

(ub)
i (2.8)

where limγ→∞ R̃
(ub)
i <∞, i.e.,

R
(ub)
i

γ∼ 1
2
vi

N∏
k=1
k 6=i

(
1− vk

u

)
log γ. (2.9)
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Proof. Let ~wi be the u × 1 interference vector where its jth component wi,j is a random variable
showing the interference term on the jth frequency sub-band at the receiver of the ith user. We
have wi,j =

∑N
k=1
k 6=i

hk,ick,jxk,j . Clearly, ~wi is a mixed Gaussian random vector where the Gaussian

components in its PDF represent different choices the other users make in selecting their sub-
bands. In fact, we have p~wi(~w) = 1

Mi

∑Mi
m=1 gu(~w,Di,m), where Mi =

∏
k 6=i
(
u
vk

)
and Di,m =

diag(d(1)
i,m, · · · , d(u)

i,m), in which3 d
(j)
i,m =

∑N
k=1
k 6=i
|hk,i|2c2

k,j,m
P
vk

denotes the variance of wi,j for the

mth realization of {ck,j}k 6=i out of Mi possible realizations that is denoted by {ck,j,m}k 6=i. If the
probability density function of the interference vector consisted only of gu(., Di,m), the forward link
of the ith user would be converted into an additive Gaussian channel. The achievable rate of such
a virtual channel is given by

Ri,m =
1
2

log
det
(
Cov(~xi(s∗i )) +Di,m + σ2Iu

)
det (Di,m + σ2Iu)

=
1
2

log

∏vi
j=1

( |hi,i|2P
vi

+ d
(j)
i,m + σ2

)
∏vi
j=1(d(j)

i,m + σ2)

=
1
2

vi∑
j=1

log
(

1 +
|hi,i|2P

vi(d
(j)
i,m + σ2)

)
. (2.10)

One may also state this as follows. Let

Ti,m ,
{
j : 1 ≤ j ≤ vi, d(j)

i,m = 0
}
. (2.11)

Then,

Ri,m =
|Ti,m|

2
log
(

1 +
|hi,i|2γ
vi

)
+ R̃i,m, (2.12)

where

R̃i,m =
1
2

∑
1≤j≤vi:d(j)i,m 6=0

log
(

1 +
|hi,i|2P

vi(d
(j)
i,m + σ2)

)
(2.13)

and |Ti,m| denotes the cardinality of the set Ti,m. As each nonzero d(j)
i,m is proportional to P , it is clear

that limγ→∞ R̃i,m < ∞. We know that Ri is convex in terms of p~yi(s∗i )|~xi(s∗i )(~y|~x) = p~zi(~y − hi,i~x)

3Note that as each user transmits independent Gaussian signals over its chosen sub-bands, the matrices {Di,m}Mi
m=1

are diagonal.
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[80]. Noting this and the fact that p~zi(~z) = 1
Mi

∑Mi
m=1 gu(~z,Di,m + σ2Iu),

Ri ≤ 1
Mi

Mi∑
m=1

Ri,m

=

(
1
Mi

Mi∑
m=1

|Ti,m|
)

1
2

log
(

1 +
|hi,i|2γ
vi

)
+ R̃

(ub)
i ,

(2.14)

where R̃
(ub)
i = 1

Mi

∑Mi
m=1 R̃i,m. As each R̃i,m saturates by increasing γ, one has limγ→∞ R̃

(ub)
i <

∞. Intuitively, 1
Mi

∑Mi
m=1 |Ti,m| is the average size of the set of frequencies where the ith user is

transmitting and all other users are not transmitting. Since that the users choose the sub-bands
independently, the probability of only the ith user choosing a particular sub-band is given by
vi
u

∏
k 6=i
(
1− vk

u

)
. Since there are a total of u sub-bands, the average size is vi

∏
k 6=i
(
1− vk

u

)
. This

is proved formally in the following Lemma:

Lemma 1.
1
Mi

Mi∑
m=1

|Ti,m| = vi

N∏
k=1
k 6=i

(
1− vk

u

)
. (2.15)

Proof. Defining Ai,j , {m : 1 ≤ m ≤Mi, |Ti,m| = j} for each 1 ≤ i ≤ N and 1 ≤ j ≤ vi, one may
express the left side of (2.15) as

1
Mi

Mi∑
m=1

|Ti,m| = 1
Mi

vi∑
j=1

j|Ai,j |. (2.16)

Let F i be a random variable showing the number of interference-free sub-bands among the vi

sub-bands selected by the ith user. Using (2.16) and noting that Pr{F i = j} = |Ai,j |
Mi

,

1
Mi

Mi∑
m=1

|Ti,m| =
vi∑
j=1

j Pr{F i = j} = E{F i}. (2.17)

Let us define

F i,j ,

{
1 W i,j = 0
0 W i,j 6= 0

(2.18)

for any 1 ≤ i ≤ N and 1 ≤ j ≤ vi. Obviously, F i =
∑vi

j=1 F i,j . As such,

E{F i} =
vi∑
j=1

E{F i,j} =
vi∑
j=1

Pr{wi,j = 0}. (2.19)
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Since Pr{ck,j = 1} = vk
u ,

Pr{wi,j = 0} = Pr{zi,j contains no interference} =
N∏
k=1
k 6=i

Pr{ck,j = 0} =
N∏
k=1
k 6=i

(
1− vk

u

)
.

(2.20)

This yields

E{F i} = vi

N∏
k=1
k 6=i

(
1− vk

u

)
, (2.21)

which completes the proof of Lemma 1.

Using this in (2.14), the proof of Theorem 1 is complete.

2.2.2 Lower Bound on the Achievable Rates

In this section, we derive a lower bound on the achievable rates of users. The idea behind deriving
this lower bound is to invoke the classical Entropy Power Inequality (EPI). As we will see, this
initial lower bound is not in a closed form as it depends on the differential entropy of a mixed
Gaussian random variable. In appendix A, we obtain an appropriate upper bound on such an
entropy that leads us to the final lower bound on Ri.

Theorem 2. There exists a lower bound R
(lb)
i on the achievable rate of the ith user which can be

written as

R
(lb)
i =

1
2
vi

N∏
k=1
k 6=i

(
1− vk

u

)
log γ + R̃

(lb)
i , (2.22)

such that limγ→∞ R̃
(lb)
i <∞, i.e.,

R
(lb)
i

γ∼ 1
2
vi

N∏
k=1
k 6=i

(
1− vk

u

)
log γ. (2.23)

Proof. We define ~x′i to be the vi × 1 signal vector corresponding to the first vi elements of ~xi(s∗i ).
Clearly, ~x′i is a Gaussian vector with covariance matrix P

vi
Ivi . Let ~y′i = hi,i~x

′
i + ~z′i where ~z′i is the

noise plus interference vector at the receiver side of the ith user on the first vi sub-bands. Using
EPI,

2
2
vi

h(~y′i) ≥ 2
2
vi

h(hi,i~x
′
i) + 2

2
vi

h(~z′i). (2.24)
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Dividing both sides by 2
2
vi

h(~z′i), we get

h(~y′i)− h(~z′i) ≥
vi
2

log
(

2
2
vi

(h(hi,i~x
′
i)−h(~z′i)) + 1

)
. (2.25)

On the other hand, since ~y′i is a subvector of ~yi(s∗i ), we have

Ri = I(~xi(s∗i ); ~yi(s
∗
i )) ≥ I(~x′i; ~y

′
i) = h(~y′i)− h(~z′i). (2.26)

Comparing (2.25) and (2.26) yields

Ri ≥ vi
2

log
(

2
2
vi

(h(hi,i~x
′
i)−h(~z′i)) + 1

)
. (2.27)

Clearly, h(hi,i~x′i) = vi
2 log

(
2πe |hi,i|

2P
vi

)
. As ~z′i is a mixed Gaussian random vector, there is no

closed formula for h(~z′i). Hence, we have to find an appropriate upper bound on h(~z′i) to further
simplify (2.27). Using the chain rule for the differential entropy,

h(~z′i) ≤
vi∑
j=1

h(zi,j). (2.28)

Recalling the definitions of {ai,l}Lil=0 and {ζi,l}Lil=0 in the system model, the following Lemma yields
an upper bound on h(zi,j) for each 1 ≤ j ≤ vi.
Lemma 2. For every 1 ≤ j ≤ vi and for all values of γ, there exists an upper bound on h(zi,j)
given by

h(zi,j) ≤ 1− ai,0
2

log(ζi,Liγ + 1) + log(
√

2πeσ)−
Li∑
l=0

ai,l log ai,l. (2.29)

Proof. In appendix A, we derive an upper bound on the differential entropy of a complex mixed
Gaussian random variable in (5.11). Modifying the result in appendix A appropriately for the real
mixed Gaussian random variable zi,j , we have

h(zi,j) ≤ 1
2

Li∑
l=0

ai,l log(2πeσ2
i,l)−

Li∑
l=0

ai,l log ai,l. (2.30)

Noting that σi,0 = σ and σ2
i,l ≤ σ2(ζi,Liγ + 1) for any 1 ≤ l ≤ Li,

h(zi,j) ≤ 1− ai,0
2

log(ζi,Liγ + 1) + log(
√

2πeσ)−
Li∑
l=0

ai,l log ai,l. (2.31)
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By (2.27), (2.28) and (2.29),

Ri ≥ R
(lb)
i ,

vi
2

log
(

22
PLi
l=0 ai,l log ai,l |hi,i|2γ

vi(ζi,Liγ + 1)1−ai,0 + 1
)

=
vi
2

log

(
22
PLi
l=0 ai,l log ai,l |hi,i|2

vi(ζi,Li + γ−1)1−ai,0 + γ−ai,0
)

+
1
2
viai,0 log γ. (2.32)

Defining R̃
(lb)
i , vi

2 log

(
2
2

PLi
l=0

ai,l log ai,l |hi,i|2
vi(ζi,Li+γ

−1)1−ai,0
+ γ−ai,0

)
, we note that limγ→∞ R̃

(lb)
i < ∞. Combin-

ing this with the fact that ai,0 =
∏N
k=1
k 6=i

(
1− vk

u

)
, the proof of Theorem 2 is complete4.

One may consider the following generalization of the FH scheme. Let us assume that the users
are not restricted to choose a fixed number of frequency sub-bands in each transmission slot. In
fact, in each transmission slot the number of selected sub-bands can be any integer between 0 and u,
and the probability of choosing v ∈ [0, u]∩Z sub-bands by the ith user is denoted by µi,v. Therefore,
the ith user has two random generators. The first random generator selects a number v ∈ [0, u]∩Z
according to the probability mass function {µi,v}uv=0, while the other generator selects v sub-bands
among the whole available u sub-bands. This repeats independently from transmission slot to
transmission slot. Based on the arguments made at the beginning of this section, the achievable
rate of the ith user can be written as

Ri =
u∑
v=0

µi,vI(~xi(s∗i,v); ~yi(s
∗
i,v)), (2.33)

where s∗i,v denotes the state where the ith user selects the first v sub-bands. Clearly, I(~xi(s∗i,0); ~yi(s∗i,0)) =

4In [78], we address another approach to propose a lower bound (looser than R(lb)
i ) on the achievable rate of the

ith user with the same SNR scaling as R(lb)
i .
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0 for any 1 ≤ i ≤ N . Furthermore,

ai,0 = Pr {zi,1 is interference-free}

=
u∑

v1=0

· · ·
u∑

vi−1=0

u∑
vi+1=0

· · ·
u∑

vN=0

N∏
k=1
k 6=i

µk,vk

(
1− vk

u

)

=
N∏
k=1
k 6=i

u∑
vk=0

µk,vk

(
1− vk

u

)

=
N∏
k=1
k 6=i

u∑
v=0

µk,v

(
1− v

u

)

=
N∏
k=1
k 6=i

(
1− ṽk

u

)
(2.34)

where ṽk ,
∑u

v=0 vµk,v. Applying the results of this section, we get

I(~xi(s∗i,v); ~yi(s
∗
i,v))

γ∼ 1
2
vai,0 log γ. (2.35)

By (2.33), (2.34) and (2.35),

Ri
γ∼

u∑
v=0

1
2
µi,vv

N∏
k=1
k 6=i

(
1− ṽk

u

)
log γ

=
1
2
ṽi

N∏
k=1
k 6=i

(
1− ṽk

u

)
log γ. (2.36)

In fact, (2.36) demonstrates that the generalized FH scheme is equivalent to the FH scheme through
substituting {vi}Ni=1 by {ṽi}Ni=1. However, it is remarkable that in contrast to the FH scheme in
which {vi}Ni=1 are integer values, in the generalized FH scheme {ṽi}Ni=1 are real values. This provides
more flexibility in system design. The above observation motivates us to use this generalized
scenario in the rest of the chapter and we simply refer to it as the FH scheme. In this scheme, the
ith user has a parameter ṽi, which can be chosen to be any real number in the interval [0, u].

2.3 System Design

In this section, we find the optimum operation point for the FH scheme. This requires finding the
optimum values of {ṽi}Ni=1. Based on the results established in the previous section, there exist
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upper and lower bounds on the achievable rate of each user that coincide in the high SNR regime.
As such, the achievable rate itself must be asymptotically equivalent to each of these bounds, i.e.,

Ri
γ∼ 1

2
ṽi

N∏
k=1
k 6=i

(
1− ṽk

u

)
log γ, (2.37)

where, based on the conclusion made at the end of section 2.2, the parameters {ṽi}Ni=1 can be
adjusted to be any real number in the range [0, u]. By (2.37), the network sum rate can be
asymptotically written as

N∑
i=1

Ri
γ∼ SMG (ṽ1, · · · , ṽN ) log γ, (2.38)

where

SMG (ṽ1, · · · , ṽN ) ,
N∑
i=1

1
2
ṽi

N∏
k=1
k 6=i

(
1− ṽk

u

)
. (2.39)

We call SMG (ṽ1, · · · , ṽN ) the sum multiplexing gain of the system. SMG (ṽ1, · · · , ṽN ) is a symmet-
ric function of (ṽ1, · · · , ṽN ) and has a saddle point at ṽi = u

N for 1 ≤ i ≤ N . In a fair FH system,
it is required that ṽi = v for all 1 ≤ i ≤ N where v is any real number in the interval [0, u]. We
call v the hopping parameter in the randomized FH scenario. Hence, we define

SMG(v,N) , SMG (ṽ1, · · · , ṽN )
∣∣∣
∀i:evi=v

=
N

2
v
(

1− v

u

)N−1
. (2.40)

Maximizing this in terms of v yields5

vopt =
u

N
. (2.41)

Setting v = vopt, the highest sum multiplexing gain of the fair FH scheme is given by

sup
v

SMG(v,N) =
1
2
u

(
1− 1

N

)N−1

. (2.42)

It is remarkable that u
N may not be an integer. If we do not adopt the generalized FH scheme, then

all users must hop randomly over sets of v̂ = max
{b uN c, 1} frequency sub-bands. This results in a

sum multiplexing gain of N
2 v̂
(
1− v̂

u

)N−1
. This is generally less than 1

2u
(
1− 1

N

)N−1. By adopting
the generalized FH scheme in case u

N /∈ Z, each user only needs to hop randomly over different sets
of frequency sub-bands of cardinality b uN c or d uN e. In fact, each user has two random generators.

5Computation of vopt requires that all transmitters know the number of active users N in the network. This is

more discussed in section 2.4.
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The first random generator selects one of the numbers b uN c and d uN e with probabilities µ and µ,
respectively, such that µb uN c + µd uN e = u

N or equivalently µ = d uN e − u
N . Let us assume the first

random generator has selected a number a ∈ {b uN c, d uN e}. Then, the second random generator
selects a subset of cardinality a among the u frequency sub-bands. Doing this independently from
transmission slot to transmission slot, the sum multiplexing gain given in (2.42) is achieved.

Observation 1 - One might suggest another well-known utility function that is popular in the
game theory context, namely the proportional fair function, which is defined as

∑N
i=1 log Ri . We

have

n∑
i=1

log Ri
γ∼

N∑
i=1

log

1
2
ṽi

N∏
k=1
k 6=i

(
1− ṽk

u

)
log γ



=
N∑
i=1

log

1
2
ṽi

N∏
k=1
k 6=i

(
1− ṽk

u

)+N log log γ.

(2.43)

It can be easily verified that
∑N

i=1 log
(

1
2 ṽi
∏N
k=1
k 6=i

(
1− evk

u

))
has an absolute maximum at ṽi = u

N

for 1 ≤ i ≤ N .
Observation 2 - As we will discuss in more detail in the next section, the number of active users

in the system is in general a random variable N with realization N . Although users in the FH
system can use their knowledge about the number of active users to adjust the hopping parameter
(as explained earlier in this section), one may devise a sub-optimal rule to fix v = v∗ given by

v∗ = arg max
v∈[0,u]

E {SMG(v,N)} , (2.44)

where the expectation is with respect to the number of active users in the network. This selection
of v by all users makes the system robust against changes in the number of active users in the
network6. We call this version of the FH system the robust randomized Frequency Hopping. We
remark that the rule in (2.44) is a particular design approach for the robust FH system. In the
next section, we consider another design rule based on maximizing the average of the minimum
multiplexing gain per user in term of the number of active users in the network.

6In fact, the transmitters use their knowledge about the instantaneous number of active users only to regulate

their transmission rates. This is explained in (2.50).
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2.4 Comparison of the robust FH scenario with the FD scheme

In a centralized setup, under the condition that no user is aware of the other users’ codebooks
and the number of users is fixed and known to the central controller, it is shown in [9] that if the
crossover channel gains are sufficiently larger than the forward channel gains, then every Pareto
optimal rate vector is realized by Frequency Division for all ranges of SNR. However, in realistic
scenarios, the number of active users is not fixed. This degrades the performance of the FD scheme
as it is designed for a specified number of users. In particular, if the number of active users is less
than the designed target of the FD scheme, a considerable portion of the spectrum may remain
unused. This encourages us to compare the performance of the proposed robust FH scheme with
that of the FD scheme in a setup where the number of active users is a random variable N with a
given distribution7. The realization of N is denoted by N as before.

To perform the comparison, we introduce three different performance measures. In the following
definitions, the sup operation is over possible adjustable parameters in the system, e.g., the hopping
parameter in the robust randomized FH scenario. All expectations are taken with respect to N .
We define qn , Pr{N = n} for all n ≥ 0. It is assumed that the maximum number of active users
in the network is nmax, i.e., Pr{N > nmax} = 0. We usually take q0 = 0 unless otherwise stated.

• Average Sum Multiplexing Gain, which is defined as

η(1) , sup lim
γ→∞

E
{∑N

i=1 Ri

}
log γ

= sup E {SMG} , (2.45)

where SMG = limγ→∞
PN
i=1 Ri
log γ is the sum multiplexing gain.

• Average Minimum Multiplexing Gain per User, which is defined as

η(2) , sup lim
γ→∞

E {min1≤i≤N Ri}
log γ

. (2.46)

• Minimum nonzero multiplexing gain per user, which is defined as

η(3) , min
n:qn 6=0

min
N serv=n
1≤i≤n

lim
γ→∞

Ri

log γ
(2.47)

where N serv denotes the number of active users receiving service (i.e., their multiplexing gain
is strictly positive).

7As explicitly mentioned in the system model, the number of users is assumed to be fixed for the whole transmission

period of interest.
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The FD system is designed to service a certain number of active users. We denote this design
target in the FD scheme by ndes. Therefore, the spectrum is divided to ndes bands where each
band contains u

ndes
frequency sub-bands. This requires that u is divisible by ndes, which is assumed

to be the case to guarantee fairness. Each user that becomes active occupies an empty band. If
there is no empty band, no service is available. In case nmax ≤ u, the central controller in the
FD system sets ndes = nmax to ensure that all users can receive service upon activation8. In case
nmax > u, the central controller sets ndes = u to guarantee that as many users receive service as
possible. Therefore, ndes = min{nmax, u}. In fact, one can show that selecting ndes = min{nmax, u}
maximizes the service capability in the FD system. Service capability is measured by E

{
N serv
N

}
.

Due to the nature of the randomized FH scheme, as far as the hopping parameter v is strictly
less than u, all users receive service, while if v = u and N > 1, no user receives service, i.e., the
multiplexing gain achieved by any active user is zero. As such, to get the largest service capability
in the FH scenario, we require v ∈ (0, u). As an example, if v∗ in (2.44) is equal to u, the service
capability will be less than 1. To avoid this, we set the hopping parameter v = v∗ − δ = u− δ for
sufficiently small δ such that the performance of the robust FH is still above the performance of
the FD scenario.

Note that the comparison between the robust FH and the FD schemes is a fair comparison
based on the following facts:

1- Both schemes are required to achieve the largest possible service capability. This is enforced
by setting v ∈ (0, u) and ndes = min{nmax, u} in the robust FH and FD scenarios, respectively.

2- The hopping parameter v in robust FH and the number of bands ndes in FD are both designed
based on the distribution of the number of active users rather than the realization of the number
of active users itself.
• Average Sum Multiplexing Gain
This measure is a meaningful tool of comparison if nmax <∞. Hence, we assume nmax is a finite

number and u is a multiple of nmax in this subsection. It is easily seen that the sum multiplexing
gain in the FD scenario is

SMGFD(ndes,N) =

{
N
2

u
ndes

N ≤ ndes

u
2 N > ndes

. (2.48)

By (2.40), SMGFH(v,N) is given by

SMGFH(v,N) =
1
2
Nv

(
1− v

u

)N−1
. (2.49)

As mentioned earlier, a candidate for robust hopping strategy against changes in the number of
active users is the one given in (2.44). It is notable that although the value of v is fixed at v∗,

8We assume u is divisible by nmax in this case.
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any user regulates its transmission rate based on the instantaneous number of active users to avoid
transmission failure. Using the lower bound on the achievable rate of the ith user given in (2.32),
it is shown in appendix B that the ith user may select its transmission rate Ri as

Ri = E


vi
2

log

 2−2(N−1)
“
ϑv∗+

H (dv∗e−v∗)
vi

”
γ|hi,i|2

vi

(
γ
P
j 6=i |hj,i|2
bv∗c + 1

)1−(1− v∗
u )N−1 + 1


 (2.50)

where vi is a random variable taking the values bv∗c and dv∗e with probabilities dv∗e − v∗ and
v∗ − bv∗c, respectively. The quantity ϑv∗ is defined as

ϑv∗ ,

{
H
(
v∗

u

)
v∗ ∈ N

(v∗ − bv∗c) H
( dv∗e

u

)
+ (dv∗e − v∗))H

( bv∗c
u

)
v∗ /∈ N

. (2.51)

It is seen that the quantities the ith transmitter needs to evaluate Ri are |hi,i|,
∑

j 6=i |hj,i|2 and N .
The ith receiver sends these required data to its transmitter via a feedback link. It is shown in
appendix B in [78] how the ith receiver can estimate N and {hj,i}j 6=i using a combined technique
based on the method of moments and maximum likelihood estimation [83]. In this work we as-
sume the ith user has perfect knowledge of N and the channel gains {hj,i}Nj=1. In section 2.6, we
relax this assumption partially by not requiring any knowledge about the channel gains and the
number of active users at the transmitters. Moreover, regulating the transmission rate at Ri by
the ith user for any realization N of N , one may observe that an average sum multiplexing gain of
E
{
Nv∗

(
1− v∗

u

)N−1
}

is achievable.

We present an example to compare the performance of FH with that of FD in terms of η(1).
Example 1 - Let us consider a network where nmax = 2. The central controller in the FD system

sets ndes = 2, and according to (2.48), η(1)
FD = E{SMGFD(2,N)} = q1

u
4 + q2

u
2 = q1+2q2

4 u. Based on
(2.49), E{SMGFH(v,N)} = 1

2q1v + q2v
(
1− v

u

)
. Using this in (2.44),

v∗ = arg max
v∈[0,u]

E{SMGFH(v,N)} =

{
q1+2q2

4q2
u q1 ≤ 2q2

u q1 > 2q2

. (2.52)

Therefore,

η
(1)
FH = sup

v∈[0,u]
E{SMGFH(v,N)} = E{SMGFH(v∗,N)} =

{
(q1+2q2)2

16q2
u q1 ≤ 2q2

q1
2 u q1 > 2q2

. (2.53)

It is easy to see that η(1)
FH > η

(1)
FD if and only if q1 > 2q2, or equivalently, q1 >

2
3 . We note that in this

case v∗ = u, i.e., all users spread their power on the whole spectrum and no hopping is performed.
This makes service capability be strictly less than %100 because, if both users are active, none of
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them receive service. As such, we take v = u − δ. To ensure that the performance of the robust
FH scenario is above that of the FD system, we require

1
2
q1(u− δ) + q2(u− δ)

(
1− u− δ

u

)
>
q1 + 2q2

4
u. (2.54)

As far as δ < u
2 , (2.54) is equivalent to q1 > 2q2

1− 2δ
u (1− δ

u)
1− 2δ

u

. This is a more restrictive condition
than q1 > 2q2 which is the cost paid for having full service capability. �
• Average Minimum Multiplexing Gain per User
This measure can also be written as

η(2) = sup E
{

SMG
N

I {N serv = N}
}
. (2.55)

In fact, if N serv 6= N , there exists at least one user that achieves no multiplexing gain. Therefore,
the minimum multiplexing gain per user is zero in this case. However, if N serv = N , all users
achieve a nonzero multiplexing gain. This measure can be used whether nmax is finite or infinite.

In case of the FH scenario, the rule to choose the optimum value of the hopping parameter v,
denoted by v∗, is given by

v∗ = arg max
v∈[0,u]

E
{

SMGFH(v,N)
N

I {N serv = N}
}
. (2.56)

In this case, the transmission rate of the ith user is given by (2.50) where v∗ is replaced by v∗.
In general, it is hard to determine v∗ or v∗ analytically for nmax ≥ 3. Therefore, one can not ob-

tain a closed characterization for the regions
{
{qn}nmax

n=1 : η(1)
FH > η

(1)
FD

}
and

{
{qn}nmax

n=1 : η(2)
FH > η

(2)
FD

}
.

We aim to derive sufficient conditions on {qn}nmax
n=1 (inner bounds to the mentioned regions) such

that η(1)
FH > η

(1)
FD or η(2)

FH > η
(2)
FD. Our conditions only involve E{N} and nmax.

Proposition 1. If

E{N} < 1
2

ln
(
(e2 − 1)nmax

)
, (2.57)

then, η(1)
FD < η

(1)
FH. Also, As far as

1
E{N}

(
1− 1

E{N}
)E{N}−1

>
1

nmax
, (2.58)

we have η(2)
FD < η

(2)
FH.

Proof. See appendix C.
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For example, if nmax = 10, q1 = 0.22, q2 = q3 = q4 = 0.24 and q5 = q6 = · · · = q10 = 0.01,
one has E{N} = 2.78, which satisfies (2.58). Therefore, we conclude η(2)

FH > η
(2)
FD. Computing these

quantities directly, we get η(2)
FD = u

16 and

η
(2)
FH =

1
2

max
v∈[0,u]

{
v

10∑
n=1

qn

(
1− v

u

)n−1
}

(a)
=

1
2
u max
ωv∈[0,1]

(1− ωv)
(

0.22 + 0.24
3∑

n=1

ωnv + 0.01
9∑

n=4

ωnv

)
(b)
= 0.1121u (2.59)

where in (a), we define ωv , 1 − v
u and (b) is obtained by setting ωv = 0.28, or equivalently

v = v∗ = 0.72u. This yields η
(2)
FH

η
(2)
FD

= 1.7936.

We consider an example where nmax is not finite.
Example 2 - We assume a Poisson distribution on the number of active users, i.e., qn = e−λλn

n!

for n ≥ 0 and λ > 0. We have

E
{

SMGFH(v,N)
N

I {N serv,FH = N}
}

(a)
= E

{
SMGFH(v,N)

N

}
=

1
2

∞∑
n=1

e−λλn

n!

(
v
(

1− v

u

)n−1
)

=
1
2

v

1− v
u

∞∑
n=1

e−λλn

n!

(
1− v

u

)n
(b)
=

1
2

v

1− v
u

(
e
λ
“
eln(1− vu )−1

”
− e−λ

)
=

e−λ(1− ωv)
(
eλωv − 1

)
2ωv

u. (2.60)

In the above equation, (a) results from the fact that I {N serv,FH = N} = 0 whenever v = u and
N > 1, however, SMGFH(v,N) = 0 in this case. Also, (b) follows by the fact that E{etN} = eλ(et−1)

for any t ∈ R and we have defined ωv , 1− v
u . It can be easily seen that the optimal v = v∗ satisfies

the nonlinear equation e−λωv∗ = 1− λωv∗ (1− ωv∗). Solving this for v∗, we find out that v∗ is not
equal to u for all λ > 2. The following table lists the values of ωv∗ , the values of v∗ and also the
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corresponding average minimum multiplexing gain per user η(2)
FH for λ ∈ {3, 4, 5, 6}.

λ 3 4 5 6

ωv∗ 0.4536 0.6392 0.7347 0.7912

v∗ 0.5464u 0.3608u 0.2653u 0.2088u

η
(2)
FH 0.0869u 0.0615u 0.0467u 0.0374u

. (2.61)

The FD system aims to serve as many users as it can. Since it is not possible to serve more than
u users, the number of bands is set at ndes = u. Therefore, N serv,FD < N if and only if N > u.
Using this and by (2.48),

η
(2)
FD = E

{
SMGFD(ndes,N)

N
I {N serv,FD = N}

}
= E

{
SMGFD(u,N)

N

∣∣∣∣∣N ≤ u
}

Pr{N ≤ u}

=
1
2

u∑
n=1

e−λλn

n!
. (2.62)

We have sketched η
(2)
FH and η

(2)
FD in terms of λ in fig. 2.1 for u = 7. It is noticeable that η(2)

FH scales
linearly with u. However, η(2)

FD is always less than 1
2 no matter how large u is. As u increases, the

advantage of FH over FD becomes more apparent. �
• Minimum nonzero multiplexing gain per user
The minimum nonzero multiplexing gain per user is the smallest nonzero multiplexing gain

that a user in the network attains for different realizations in terms of the number of active users.
Assuming nmax < ∞, this happens when there are exactly nmax active users in the system. As
the FD system is already designed to handle the case where nmax users are present in the network,
the minimum multiplexing gain per user is automatically higher in FD as compared to FH. Setting
ndes = nmax, we have η(3)

FD = SMGFD(u,nmax)
nmax

= u
2nmax

. In the case of FH, we assume that all users

select v = u
nmax

. Hence, η(3)
FH =

SMGFH

“
u

nmax
,nmax

”
nmax

= u
2nmax

(
1− 1

nmax

)nmax−1
. Clearly, 1

e ≤
η
(3)
FH

η
(3)
FD

≤ 1

as
(

1− 1
nmax

)nmax−1
approaches 1

e from above by increasing nmax. Therefore, the loss incurred in

terms of η(3) for the FH system is always less than 1
e .

2.5 Adaptive Frequency Hopping

The results of the previous section are obtained based on the assumption that the hopping parameter
v is fixed and is not adaptively changed based on the number of active users. The performance of
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Figure 2.1: Curves of η(2)
FH and η

(2)
FD in terms of λ in a network with u = 7 sub-bands.

the FH system can be improved by letting the transmitters adapt their hopping parameter based on
the number of active users using (2.41). We refer to this scenario as Adaptive Frequency Hopping
(AFH). In the following example, we study the performance improvement offered by AFH over FH
in terms of η(1) and η(2).

Example 3 - Let us assume that the number of active users is a Poisson random variable with
parameter λ > 1. To compute v∗ in the FH scenario, we have

E{SMGFH(v,N)} =
1
2

∞∑
n=1

e−λλn

n!

(
nv
(

1− v

u

)n−1
)

=
1
2
v
∞∑
n=1

e−λλn

(n− 1)!

(
1− v

u

)n−1

=
1
2
λv

∞∑
n=0

e−λλn

n!

(
1− v

u

)n
(2.63)

=
1
2
λve−

λv
u . (2.64)

Therefore,
v∗ = arg max

v
E{SMGFH(v,N)} =

u

λ
. (2.65)
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Figure 2.2: Plots of η(1)
AFH and η

(1)
FH in terms of λ for u = 10.

Since λ 6= 1, we get v∗ 6= u. Thus, choosing v = v∗ guarantees a %100 service capability. Finally,

η
(1)
FH =

u

2e
. (2.66)

By (2.42),

η
(1)
AFH =

u

2

∞∑
n=1

e−λλn

n!

(
1− 1

n

)n−1
. (2.67)

Figure 2.2 shows the plots of η(1)
FH and η

(1)
AFH versus λ for u = 10. It is observed that η(1)

FH does not
change with λ, while η(1)

AFH decreases by increasing λ. This indicates that in a crowded network
(large λ), AFH does not provide any significant advantage over FH in terms of η(1).

We have already calculated η
(2)
FH in example 2 in a system where 3 ≤ λ ≤ 10. Also,

η
(2)
AFH =

u

2

∞∑
n=1

e−λλn

n!
1
n

(
1− 1

n

)n−1
. (2.68)

Figure 2.3 presents the plots of η(2)
FH and η(2)

AFH versus λ for u = 10. Both η(2)
FH and η(2)

AFH decrease by

increasing λ. However, the ratio η
(2)
AFH

η
(2)
FH

decreases as λ increases. This indicates that for large values

of λ, AFH does also not provide any significant advantage over FH in terms of η(2). �
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Figure 2.3: Plots of η(2)
AFH and η

(2)
FH in terms of λ for u = 10.

2.6 Analysis of the Outage Capacity

As shown in section 2.4, the transmitter of the ith user requires N , |hi,i| and
∑

j 6=i |hj,i|2 to regulate
its transmission rate. Assuming the transmitters are not aware of the channel gains and the number
of active users in the network, the Shannon capacity is not meaningful anymore. In this case, a
suitable performance measure is the ε-outage capacity, denoted by R(ε), which is defined as the
maximum transmission rate per user ensuring an outage probability below ε. Throughout the rest
of the chapter, N is considered to be a realaization of the random variable N . Also, we assume
the channel gains {hi,j}Ni,j=1 are realizations of independent and circularly symmetric zero-mean
complex Gaussian random variables with unit variances denoted by {hi,j}Ni,j=1. Accordingly, ζi,l
and ai,l are realizations of the random variables ζi,l and ai,l for 1 ≤ i ≤ N and 0 ≤ l ≤ 2N−1 − 1.
Since the channel gains are complex, we consider the randomized FH scheme in the complex setup
where users transmit independent and circularly symmetric complex Gaussian signals. This causes
minor changes in the formulation of the bounds developed earlier. For tractability reasons, we
only deal with the primary version of randomized FH, i.e., all users only hop over a fixed number
v1 = v2 = · · · = vN = v of frequency sub-bands from transmission slot to transmission slot where
0 ≤ v ≤ u is an integer. Moreover, Li = 2N−1 − 1 is a realization of Li = 2N−1 − 1.
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Let ~hi contain the channel coefficients concerning the ith user, i.e., ~hi =
(
h1,i · · · hN ,i

)t
. In

this case, we denote the achievable rate of the ith user by Ri(~hi). The outage event for this user is

Oi(R) , {~hi : Ri(~hi) < R}, (2.69)

where R is the transmission rate. Hence,

R(ε) = sup
{
R : Pr {Oi(R)} < ε

}
. (2.70)

We emphasize that the randomness of the number of active users is involved in the outage event,
as N represents the size of ~hi. Moreover, due to symmetry, the ε-outage capacity is the same for
all users.

Since there is no closed formula for Ri(~hi), we need to provide a lower bound R
(lb)
i (~hi) on

Ri(~hi). Subsequently, using R
(lb)
i (~hi), we derive a lower bound on the outage capacity of the ith

user as sup
{
R : Pr

{
~hi : R

(lb)
i (~hi) < R

}
< ε
}

, and show that this lower bound is higher than the
actual outage capacity in the FD scheme in many scenarios.

We have already developed a lower bound on Ri(~hi) in Theorem 2. In the following, we improve
this lower bound to obtain better results in terms of outage capacity at a certain finite SNR level.

2.6.1 Lower Bounds on Ri(~hi)

Following the same lines as in the proof of Theorem 2,

Ri(~hi) ≥ v log
(
πe|hi,i|2P

v
2−h(zi,1) + 1

)
. (2.71)

We start with the following Lemma.

Lemma 3. There exists an upper bound on h(zi,1) given by

h(zi,1) ≤
Li∑
l=0

ai,l log
(
πe(ζi,lP + σ2)

)
+ Hi −Gi, (2.72)

where

Hi , −
Li∑
l=0

ai,l logai,l (2.73)

and

Gi ,
1

ζi,Liγ + 1

Li∑
l=1

ai,l log

(
1 +

(ζi,Liγ + 1)
∑l−1

m=0 ai,m

ai,l

)
. (2.74)
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Proof. See appendix A.

Applying Lemma 2 to (2.71), we obtain a lower bound on Ri(~hi) as

R
(1)
i (~hi) , v log

(
2−Hi2Gi |hi,i|2γ

v
∏Li
l=1(ζi,lγ + 1)ai,l

+ 1

)
. (2.75)

We make the following observations:
Observation 3- It can be immediately verified that Hi does not depend on the crossover gains.

However, Gi is implicitly a function of all crossover gains as the partial sums
∑l−1

m=1 ai,m for
2 ≤ l ≤ Li depend on the ordering of the crossover gains. This will be investigated more in Lemma
3.

Observation 4- Since
∏Li
l=1(ζi,lγ+1)ai,l ≤∏Li

l=1(ζi,Liγ+1)ai,l = (ζi,Liγ+1)(1−ai,0), one obtains
a looser version of R

(1)
i (~hi) given by

R
(2)
i (~hi) , v log

(
2−Hi2−Gi |hi,i|2γ
v(ζi,Liγ + 1)1−ai,0 + 1

)
. (2.76)

We note that R
(2)
i (~hi) still has the same asymptotic expression as that of R

(1)
i (~hi) in the high

SNR regime. As we will see later, the computational complexity of the lower bound on the outage
capacity obtained by using R

(2)
i (~hi) is much lower than that of R

(1)
i (~hi).

As explained before, Gi depends on the ordering of {ζi,l}Lil=0, which requires analyzing the order
statistics of the channel gains. To avoid this, the following Lemma introduces a lower bound on Gi

that only depends on ζi,Li .

Lemma 4. Let B be a Binomial random variable with parameters (N − 1, p) where p = v
u . Then,

Hi = (N − 1)H (p) (2.77)

and Gi ≥G
(lb)
i where

G
(lb)
i ,

1
ζi,Liγ + 1

(
EB

{
log
(
1 +

(
1− pB) ζi,Liγ)}− (N − 1)p log p

)
.

(2.78)

Proof. As Li = 2N−1 − 1 with probability 1 and each user selects a certain frequency sub-band
with probability p, the collection {ai,l}Lil=0 consists of the numbers pj(1− p)N−1−j repeated

(
N−1
j

)
times for 0 ≤ j ≤N − 1. Hence,

Hi = −
N−1∑
j=0

Pr {B = j} log
(
pj(1− p)N−1−j)

= −(N − 1)p log p− (N − 1− (N − 1)p) log(1− p)
= −(N − 1) (p log p+ (1− p) log(1− p)) . (2.79)
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As for Gi, computation of
∑l−1

m=0 ai,m is not an easy task. In fact, it depends on the ordering of
the crossover gains. For example, if N = 4, l = 4 and i = 1,

3∑
m=0

a1,m =

{
(1− p)3 + 2p(1− p)2 + p2(1− p) |h2,1|2 < |h3,1|2 < |h2,1|2 + |h3,1|2 < |h4,1|2

(1− p)3 + 3p(1− p)2 |h2,1|2 < |h3,1|2 < |h4,1|2 < |h2,1|2 + |h3,1|2
.

(2.80)
To avoid this difficulty in describing Gi, we derive a lower bound on this quantity, which is not
sensitive to the ordering of crossover gains. Taking each ai,l, there exists a 0 ≤ n ≤ N − 1
such that ai,l = pn(1 − p)N−1−n. This implies that ai,l corresponds to the interference plus noise

power level
Pn
k=1 |hjk,i|2

v P + σ2 for some 1 ≤ j1 < · · · < jn ≤ N where jk 6= i for 1 ≤ k ≤
n. Since

Pn
k=1 |hjk,i|2

v P + σ2 >
P
t∈A({1,2,··· ,n} |hjt,i|2

v P + σ2 for any set A ( {1, 2, · · · , n}, andP
t∈A({1,2,··· ,n} |hjt,i|2

v P + σ2 is itself a power level in the PDF of the noise plus interference on each
frequency sub-band, we conclude that its associated probability p|A|(1 − p)N−1−|A| is an element
in the sequence (ai,0,ai,1, · · · ,ai,l−1). Therefore, we come up with the following lower bound,

l−1∑
m=0

ai,m ≥
∑

A({1,2,··· ,n}
p|A|(1− p)N−1−|A|

=
n−1∑
n′=0

(
n

n′

)
pn
′
(1− p)N−1−n′ . (2.81)

Using (2.81) in (2.74), one can develop a lower bound on Gi as in (2.82).

Gi ≥ 1
ζi,Liγ+1

∑N−1
n=1

(
N−1
n

)
pn(1− p)N−1−n log

(
1 +

(ζi,Liγ+1)
Pn−1
n′=0 (nn′)pn

′
(1−p)N−1−n′

pn(1−p)N−1−n

)
= 1

ζi,Liγ+1

∑N−1
n=1

(
N−1
n

)
pn(1− p)N−1−n log

(
1 +

(ζi,Liγ+1)
Pn−1
n′=0 (nn′)pn

′
(1−p)n−n′

pn

)
=

1
ζi,Liγ + 1

N−1∑
n=1

(
N − 1
n

)
pn(1− p)N−1−n log

(
1 +

(1− pn)(ζi,Liγ + 1)
pn

)

= − 1
ζi,Liγ + 1

N−1∑
n=0

(
N − 1
n

)
npn(1− p)N−1−n log p

+
1

ζi,Liγ + 1

N−1∑
n=0

(
N − 1
n

)
pn(1− p)N−1−n log

(
1 + (1− pn)ζi,Liγ

)
=

EB
{

log
(
1 + (1− pB)ζi,Liγ

)}− (N − 1)p log p
ζi,Liγ + 1

. (2.82)

This concludes the Lemma.
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From now on, we replace Gi by G
(lb)
i defined in (2.78) in all expressions offered for the

lower bounds on Ri(~hi). We denote ai,0, Hi and G
(lb)
i by a(v,N) =

(
1− v

u

)N−1, H(v,N) and
G

(lb)
i (v,N) respectively9, to emphasize their dependence on v,N .

As a special case, let us assume v = u, i.e., all users spread their power on the whole spectrum.
This scheme is called Full-Band Spreading (FBS). In this case, it can be observed that ai,l = 0 for
l ≤ Li − 1 and ai,Li = 1. This yields a(u,N) = H(u,N) = G

(lb)
i (u,N) = 0. In fact, R

(2)
i (~hi) is

tight for v = u, i.e., R
(2)
i (~hi) is exactly the achievable rate of the ith user when all users transmit

over the whole spectrum. We denote this rate by Ri,FBS(~hi), which is given by

Ri,FBS(~hi) = u log

 |hi,i|2γ
u
(
ζi,Liγ

u + 1
) + 1

 . (2.83)

Observation 5 - A straightforward method to develop a lower bound on the achievable rate in
an additive white non-Gaussian noise channel is to replace the noise with a Gaussian noise of the
same covariance matrix [82]. Following this approach, it is easy to derive the following lower bound
on Ri(~hi),

Ri,g(~hi) , v log

 |hi,i|2γ
v
(
ζi,Liγ

u + 1
) + 1

 (2.84)

where the index “g” stands for Gaussian. There are two facts that are worth mentioning about
Ri,g(~hi). First, it is seen that limγ→∞Ri,g(~hi) <∞. Another point is that Ri,g(~hi) is an increas-
ing function of v. However, setting v = u in the expression of Ri,g(~hi) yields the expression of
Ri,FBS(~hi). Therefore, for all realizations of the channel gains and all ranges of γ,

Ri,g(~hi) ≤ Ri,FBS(~hi). (2.85)

This indicates that using Ri,g(~hi) as a lower bound on the achievable rate of users in the FH scheme
provides no proof of advantage for FH over FBS.

2.6.2 Lower Bounds on RFH(ε) and System Design

Based on the preceding discussion, we can derive lower bounds on RFH(ε), namely R
(1)
FH(ε) and

R
(2)
FH(ε) associated with the lower bounds R

(1)
i (~hi) and R

(2)
i (~hi) respectively. Consequently, we can

obtain estimates of the optimum hopping parameter10 by maximizing R(1)
FH(ε) or R(2)

FH(ε) over v. In
the following subsections, we separately compute R(1)

FH(ε) and R
(2)
FH(ε).

1- Computation of R(1)
FH(ε)

9We note that ai,0 and Hi are similar for different i, however, G
(lb)
i depends on i through

P
j 6=i |hj,i|

2.
10The optimum hopping parameter is the value of v that maximizes RFH(ε).
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We start with the following definitions.
Definition 1- Let n ∈ N. For p ∈ [0, 1] and b > 0, the function αn(.; b, p) : R+ → R+ is defined

by

αn(θ; b, p) ,
EB

{
log
(
1 + (1− pB)bθ

)}− (n− 1)p log p
bθ + 1

, (2.86)

where B is a Binomial random variable with parameters (n− 1, p). �
Definition 2- Let n ≥ 2 be an integer. For b1 < 0, b2 > 0 and p ∈ [0, 1], we define ψn(b1, b2, p)

as

ψn(b1, b2, p) ,
∫

[0,∞)n−1

exp
(
b12−αn(θn−1,1;b2,p)

n−1∏
m=1

(n−1
m )∏

m′=1

(b2θm,m′ + 1)βm,n(p) − θn−1,1

)
dθ1 · · · dθn−1

(2.87)

where for each m, {θm,m′}(
n−1
m )

m′=1 consists of all possible summations of m elements in the set of
dummies {θi}n−1

i=1 and βm,n(p) , pm(1− p)n−1−m. �
For example,

ψ2(b1, b2, p) =
∫ ∞

0
exp

(
b12−α2(θ;b2,p)(b2θ + 1)p − θ

)
dθ, (2.88)

and

ψ3(b1, b2, p) =
∫
θ1,θ2>0

exp
(
b12−α3(θ2,1;b2,p)

(
(b2θ1 + 1)(b2θ2 + 1)

)p(1−p)(b2θ2,1 + 1)p
2 − θ2,1

)
dθ1dθ2,

(2.89)
where θ2,1 = θ1 + θ2 by definition.

The following Proposition offers an expression to compute R(1)
FH(ε).

Proposition 2.
R

(1)
FH(ε) = sup {R : Ξ1(R) > ε} (2.90)

where

Ξ1(R) = q1e
v
γ

“
1−2

R
v

”
+
nmax∑
n=2

qnψn
(
b1,n, b2, p

)
, (2.91)

b1,n =
2H(v,n)

“
1−2

R
v

”
v

γ , b2 = γ
v and p = v

u .

Proof. See appendix D.

The expression given in (2.90) is quite complicated. On one hand, the multiple integrals do
not have a closed form. On the other hand, the maximization maxv R

(1)
FH(ε) must be computed
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numerically. However, R(1)
FH(ε) is the best lower bound on RFH(ε) as R

(1)
i (~hi) is the best lower

bound we have found on the achievable rate of the ith user in the FH scenario.
2- Computation of R(2)

FH(ε)
We start with the following definition.
Definition 3- Let n ≥ 2 be an integer. For b1 < 0, b2 > 0 and p1, p2 ∈ [0, 1], we define

φn(b1, b2, p1, p2) as

φn(b1, b2, p1, p2) ,
1

(n− 2)!

∫ ∞
0

θn−2 exp
(
b1(b2θ + 1)p12−αn(θ;b2,p2) − θ)dθ. (2.92)

Using this class of functions, the following Proposition yields R(2)
FH(ε).

Proposition 3.
R

(2)
FH(ε) = sup {R : Ξ2(R) > ε} , (2.93)

where

Ξ2(R) = q1e
v
γ

“
1−2

R
v

”
+
nmax∑
n=2

qnφn
(
b1,n, b2, p1,n, p2

)
, (2.94)

p1,n = 1− a(v, n), p2 = v
u and b1,n and b2 are given in Proposition 2.

Proof. The proof follows from similar steps along the lines of the proof for Proposition 2.

Comparing the expressions for R(1)
FH(ε) and R

(2)
FH(ε), it can be observed that computation of

R
(2)
FH(ε) involves only single integrations, while the computation of R(1)

FH(ε) involves iterated inte-
grations that are not tractable for many cases. To further reduce the complexity of computation, the
following Corollary yields another lower bound on RFH(ε) that involves no numerical integrations.
We denote this lower bound by R(3)

FH(ε).

Corollary 1. Let
R

(3)
FH(ε) , sup {R : Ξ3(R) > ε} (2.95)

where

Ξ3(R) =
nmax∑
n=1

qn exp
(
b1,n
(
(n− 1)b2 + 1

)1−a(v,n)
)

(2.96)

and b1,n and b2 are given in Proposition 2. Then,

RFH(ε) ≥ R(1)
FH(ε) ≥ R(2)

FH(ε) ≥ R(3)
FH(ε). (2.97)

Proof. See appendix E.
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Figure 2.4: Sketch of maxv R
(k)
FH(ε) (bits/transmission slot) for k = 1, 2, 3 in a setup where

(q1, q2, q3, q4) = (0.4, 0.2, 0.2, 0.2), u = 8 and γ = 20dB.

Figure 2.4 shows the three lower bounds maxv R
(k)
FH(ε) on maxv RFH(ε) for k = 1, 2, 3 in a system

where, at most, four users become active simultaneously with (q1, q2, q3, q4) = (0.4, 0.2, 0.2, 0.2),
u = 8 and γ = 20dB. As can be observed from this figure, maxv R

(2)
FH(ε) and maxv R

(3)
FH(ε) are

pretty close to each other while they are within a considerable gap to maxv R
(1)
FH(ε), especially for

larger values of ε. It is notable that the maximization over v is performed separately for each ε.

2.6.3 Asymptotic Analysis

Having the expression for the ε-outage capacity, we can find the best operational point of the system
in terms of v, the number of selected sub-bands. For this purpose, we consider some asymptotic
cases in terms of ε and γ and discuss the optimum value of v in these regimes. As the expressions of
R

(1)
FH(ε) and R

(2)
FH(ε) are not analytically tractable, we use R(3)

FH(ε) for our analysis. For simulation
purposes, we use R(1)

FH(ε) or R(2)
FH(ε).
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Asymptotically Small ε

In this case, one can easily show that limε→0R
(3)
FH(ε) = 0. Therefore, in (2.95), we can approximate“

1−2
R
v

”
v

γ by −R ln 2
γ and hence,

e
v
γ

“
1−2

R
v

”
≈ 1− R ln(2)

γ
. (2.98)

By the same token, the term on the right side of (2.95) can be approximated as

nmax∑
n=1

qn exp
(
b1,n
(
(n− 1)b2 + 1

)1−a(v,n)
)

≈
nmax∑
n=1

qn exp

(
−R ln 2

γ
2H(v,n)

(
n− 1
v

γ + 1
)1−a(v,n)

)
(a)≈

nmax∑
n=1

qn

(
1− R ln 2

γ
f(v, n, γ)

)
, (2.99)

where (a) follows from the fact that the term

f(v, n, γ) , 2H(v,n)

(
n− 1
v

γ + 1
)1−a(v,n)

(2.100)

does not depend on ε. Using (2.99) in (2.95) yields

R
(3)
FH(ε) ≈ εγ(∑nmax

n=1 qnf(v, n, γ)
)

ln 2
. (2.101)

One can observe that the function f(v, n, γ) is concave in terms of v for all n ≥ 1. Hence, the
function g(v) ,

∑nmax
n=1 qnf(v, n, γ) is concave as well. As such, the minimum of g(v) occurs either

at v = 1 or v = u. In partiular, for v = 1 to be the optimum value, we must have g(1) < g(u) or
equivalently,

nmax∑
n=1

qnu
n−1
(
(n− 1)γ + 1

)1−(1− 1
u)n−1

(u− 1)(1− 1
u)(n−1)

<

nmax∑
n=1

qn

(
1 +

(n− 1)γ
u

)
= 1 +

E{N} − 1
u

γ, (2.102)

where we have used the fact that 2H(1,n) =
(

u

(u−1)1−
1
u

)n−1

.

Figure 2.5 offers the curves of R(1)
FH(ε) in terms of v for ε = 0.01, 0.05 and 0.15. The underlying

network is characterized with q1 = q2 = 0.5, u = 10 and γ = 20dB. It is seen that for ε = 0.01,
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Figure 2.5: Sketch of R(1)
FH(ε) (bits/transmission slot) for different values of ε in a network with

(q1, q2) = (0.5, 0.5), u = 10 and γ = 20dB.

taking v = 1 yields the best performance. As far as q1 = q2 = 0.5 and for sufficiently small ε,
the equation (2.102) simplifies to uu

(u−1)u−1 <
1

1+γ

(
1 + γ

u

)u. Setting u = 10 yields 7.052dB as the
minimum SNR value that guarantees v = 1 is the best choice. Since γ = 20dB > 7.052dB, we
expect v = 1 is the best choice, which is confirmed in the plot. However, as ε increases, we move
away from the asymptotically small ε region and v = 1 is no longer an optimal choice.

Asymptotically Small γ

In this case, one can easily show that limγ→0R
(3)
FH(ε) = 0. Therefore, similar to the previous case,

we can use the approximation (
1− 2

R
v

)
v

γ
≈ −R ln 2

γ
. (2.103)

Defining τ , exp
(
−R ln 2

γ

)
, one can rewrite (2.95) as

R
(3)
FH(ε) ≈ sup

{
R :

nmax∑
n=1

qnτ
f(v,n,γ) > ε

}
, (2.104)
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where f(v, n, γ) is given in (2.100). As τ is a decreasing function in terms of R, we can write

R
(3)
FH(ε) = −γ ln(τ∗)

ln 2
, (2.105)

where

τ∗ = inf

{
τ :

nmax∑
n=1

qnτ
f(v,n,γ) > ε

}
. (2.106)

Therefore,

max
v
R

(3)
FH(ε) ≈ − γ

ln 2
ln
(

min
v
τ∗
)
. (2.107)

It can be shown that minv τ∗ occurs when f(v, n, γ) takes its minimum value over v for each n.
But, as γ � 1, the term

(
n−1
v γ + 1

)1−a(v,n) ≈ 1 and hence, f(v, n, γ) ≈ 2H(v,n), which is uniformly
minimized for all values of n by taking v = u. This gives τ∗ = ε, and hence,

R
(3)
FH(ε) ≈ −γ log ε. (2.108)

This is exactly the outage capacity of a point-to-point system without interference. Therefore, in
the low SNR regime, interference has no destructive effect on the outage capacity justifying the
optimality of v = u.

Figure 2.6 presents the plot of R(1)
FH(0.1) versus v for γ = −10dB in a system with q1 = q2 = 0.5

and u = 10. It is seen that v = u = 10 is the best choice, which is expected by our analysis. Also,
we observe that the outage capacity is not very sensitive to the value of v.

Asymptotically High γ

Recalling the expression of R(3)
FH(ε) given in (2.95), we have

R
(3)
FH(ε) = sup

{
R :

nmax∑
n=1

qne
− v
γ
f(v,n,γ)(2R/v−1) > ε

}
. (2.109)

As γ →∞, the term f(v, n, γ) grows polynomially with γ for any n ≥ 1. The outage event is deter-
mined by the term with the maximum f(v, n, γ). In fact, since f(v, n, γ) is an increasing function in
terms of n, it follows that

∑nmax
n=1 qne

− v
γ
f(v,n,γ)(2R/v−1) ≈∑nmax−1

n=1 qn + qnmaxe
− v
γ
f(v,nmax,γ)(2R/v−1).

Therefore, (2.109) simplifies to

R
(3)
FH(ε) ≈ sup

{
R : e−

v
γ
f(v,nmax,γ)(2R/v−1) > 1− ε

qnmax

}
, (2.110)
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Figure 2.6: Sketch of R(1)
FH(0.1) (bits/transmission slot) in a network with (q1, q2) = (0.5, 0.5),

γ = −10dB and u = 10.

which gives

R
(3)
FH(ε) ≈ v log

1−
γ ln

(
1− ε

qnmax

)
vf(v, nmax, γ)


= v log

1−
γ2−H(v,nmax) ln

(
1− ε

qnmax

)
v
(
1 + nmax−1

v γ
)1−(1− v

u)nmax−1


(a)≈ v log

(
1− κvγ(1− v

u)nmax−1

ln
(

1− ε

qnmax

))
,

(2.111)

where

κv ,
2−H(v,nmax)

v

(
nmax − 1

v

)(1− v
u)nmax−1−1

(2.112)

and (a) follows from the assumption that γ lies in the high SNR range. It is observed that the
maximization of the above expression with respect to v is equivalent to the maximization of the
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Figure 2.7: Sketch of R(1)
FH(0.2) (bits/transmission slot) at different SNR levels in a network with

nmax = 2, (q1, q2) = (0.5, 0.5) and u = 10.

term v
(
1− v

u

)nmax−1 with respect to v, as SNR tends to infinity. This yields

v =
⌈

u

nmax

⌉
. (2.113)

Figure 2.7 shows the curves of R(1)
FH(0.2) versus v for different values of SNR in a system with

parameters nmax = 2, (q1, q2) = (0.5, 0.5) and u = 10. In general, for a sufficiently large, however
finite, value of SNR, one can obtain the optimum value for v as

v = arg max
1≤v≤u

{
v log

(
1− κvγ

(1− v
u)nmax−1

ln
(

1− ε

qnmax

))}
. (2.114)

For example, it is easy to verify that in a system with the above parameters at γ = 40dB, one gets
v = 4, while

⌈
u

nmax

⌉
=
⌈

10
2

⌉
= 5. This is in agreement with the plot of R(1)

FH(0.2) given in fig. 2.7
for γ = 40dB.

2.6.4 Comparison with other Schemes

In this section, we compare the performance of the proposed FH scenario with that of the FD
scheme in terms of the ε-outage capacity. In the FD scheme, the spectrum is primarily divided
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into ndes = min{nmax, u} bands and each active user only occupies one band. If nmax ≤ u and
all the nmax users are active all the time, i.e., qnmax = 1, this scheme results in the most efficient
usage of the bandwidth. This makes the FD scenario superior to other schemes proposed in the
literature, especially in the high SNR regime. However, in a practical situation, the number of
concurrently active users is smaller than ndes with a nonzero probability. This makes FD highly
inefficient on the heels that a considerable portion of the sub-bands is unused. In addition to FD,
we also study the ε-outage capacity of the FBS scenario, which is a special case of FH. In fact,
FD and FBS can be considered as two extreme spectrum management schemes where the former
avoids any interference among the users, while the latter makes all users share the same spectrum
all the time. In the sequel, we compute RFD(ε) and RFBS(ε).

Computation of RFD(ε)

In the FD scenario, the spectrum is already divided into ndes non-overlaping bands each containing
u
ndes

sub-bands. Each user that becomes active occupies one of the units. As there is no interference
among users, the outage event for the ith user can be written as

Oi,FD(R) =
{
hi,i :

u

ndes
log
(

1 +
ndes|hi,i|2γ

u

)
< R

}
. (2.115)

As hi,i is a complex Gaussian random variable with variance 1
2 per dimension, |hi,i|2 is an expo-

nential random variable with parameter 1. Thus,

Pr{Oi,FD(R)} = 1− exp

(
u(1− 2

ndesR

u )
ndes

1
γ

)
, (2.116)

and

RFD(ε) = sup {R : Pr {Oi,FD(R)} < ε}

= sup

{
R : exp

(
u(1− 2

ndesR

u )
ndes

1
γ

)
> ε

}

=
u

ndes
log
(

1− ndesγ ln ε
u

)
. (2.117)

Computation of RFBS(ε)

Using (2.83), the following Proposition yields RFBS(ε).

Proposition 4.

RFBS(ε) = sup

{
R : e

u
γ

“
1−2

R
u

” nmax∑
n=1

qn2−
(n−1)R

u > ε

}
. (2.118)

Proof. The proof follows from similar steps along the lines of the proof for Proposition 2.
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Comparison of RFH(ε), RFD(ε), and RFBS(ε) in The Asymptotically Small ε Regime

Noting that ln ε ≈ −ε, we get log
(

1− ndesγ ln ε
u

)
≈ ndesγε

u ln 2 . Therefore,

RFD(ε) ≈ γε

ln 2
, (2.119)

which is the maximum achievable ε-outage capacity in the underlying network for small values of
ε. As for FBS, using (2.118) and noting that R

u � 1, we get

RFBS(ε) ≈ εγ(
1 + E{N}−1

u γ
)

ln 2
. (2.120)

Comparing (2.101) and (2.120) reveals that R(3)
FH(ε) is larger than RFBS(ε) in the low ε regime as

far as (2.102) is satisfied. Furthermore, in the case that E{N} � u
γ , the above equation implies

that the FBS scheme, and consequently the FH scenario, achieves the optimal performance of the
FD scheme.

Comparison of RFH(ε), RFD(ε), and RFBS(ε) in The Asymptotically Small γ Regime

Using (2.117) and (2.118), it can be realized that for the asymptotically small γ,

RFD(ε) = RFBS(ε) = −γ log ε, (2.121)

which is the same value obtained in the previous section for RFH(ε) (by setting v = u) and is the
maximum achievable outage capacity in the network. Therefore, in this regime, spectrum division
and spectrum sharing both achieve the optimal performance. Furthermore, the Gaussian lower
bound given in (2.84) implies that the FH scheme is optimal in the low SNR regime, regardless of
v. However, if we use the proposed lower bounds (e.g., R(3)

FH(ε)), due to the presence of the term
2H(v,n) in the expression of such lower bounds, taking v < u does not yield this conclusion.

Comparison of RFH(ε), RFD(ε), and RFBS(ε) in The Asymptotically High γ Regime

From (2.117),

RFD(ε) ≈ u

ndes
log γ +

u

ndes
log
(
−ndes

u
ln ε
)

≈ u

ndes
log γ, (2.122)

as γ → ∞. Also, (2.118) indicates that RFBS(ε) saturates as γ tends to infinity and as such, FBS
is highly inefficient in this regime. In fact,

lim
γ→∞RFBS(ε) = sup

{
R :

nmax∑
n=1

qn2−
(n−1)R

u > ε

}
. (2.123)
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To show the supremacy of FH over FD, we consider a practical scenario with u = nmax sub-
bands. Each user can be active with some probability p independently of other users. It is assumed
that nmax � 1 and p � 1 such that λ , pnmax is a constant. Let us assume that the ith user
is active. The number of users, other than the ith user, which are simultaneously active together
with the ith user is a Binomial random variable with parameters (nmax − 1, p). This random
variable, denoted by Ñ , can be well approximated11 by a Poisson random variable with parameter
(nmax − 1)p ≈ λ.

For some n̂ ≥ 1 where u is divisible by n̂, the outage probability in the FH system can be
written as

Pr{Oi,FH(R)} = Pr{Oi,FH(R)|N ≤ n̂}Pr{N ≤ n̂}
+ Pr{Oi,FH(R)|N > n̂}Pr{N > n̂}

≤ Pr{Oi,FH(R)|N ≤ n̂}+ Pr{N > n̂}
≤ Pr{Oi,FH(R)|N = n̂}+ Pr{N > n̂}.

(2.124)

The last line follows from the fact that for a fixed R the outage probability is an increasing function
of the number of active users. Choosing v = u

n̂ in (2.111) and selecting the transmission rate as

R̂ =
u

n̂
log
(

1− κu
n̂
γ(1− 1

n̂)n̂−1

ln
(

1− ε

2

))
(2.125)

results in Pr{Oi,FH(R̂)|N = n̂} ≤ ε
2 where κu

n̂
= 2

−h(un̂ ,n̂)n̂
u

(
n̂(n̂−1)

u

)(1− 1
n̂)n̂−1−1

. Furthermore, we
select n̂ such that

Pr{N > n̂} ≤ ε

2
. (2.126)

Noting that

Pr{N > n̂} = Pr{Ñ ≥ n̂}

≈
∞∑
n=n̂

e−λλn

n!
, (2.127)

it is shown in appendix F that for small enough ε, selecting n̂ = −λ ln ε guarantees Pr{N > n̂} ≤ ε
2 .

11We note that fN = N − 1.
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Hence, using (2.125),

RFH(ε)
(a)

≥ R̂

≥ u

n̂
log
(
−κu

n̂
γ(1− 1

n̂)n̂−1

ln
(

1− ε

2

))
=

u

n̂

(
1− 1

n̂

)n̂−1

log γ

+
u

n̂
log
(
−κu

n̂
ln
(

1− ε

2

))

≈ u

n̂

(
1− 1

n̂

)n̂−1

log γ

(b)

≥ − u

eλ ln ε
log γ, (2.128)

as γ → ∞. In (2.128), (a) follows by the fact that setting the transmission rate at R̂, we get
Pr{Oi,FH(R̂)} ≤ ε. This can be easily seen by (2.124) for the particular choice of n̂ = −λ ln ε. Also,
(b) holds since

(
1− 1

n̂

)n̂−1 is greater or equal to 1
e .

By (2.122) and setting ndes = u,

RFD(ε) ≈ log γ. (2.129)

The above equations imply that as long as u > −eλ ln ε, FH is superior to FD. This condition can
be alternatively written as p < − 1

e ln ε .

2.6.5 Numerical Results

We consider a practical scenario where each user operates in two different environments with distinct
distributions on the number of active users. To describe the distribution of N , let B1 and B2 be
two independent Binomial random variables with parameters (n1, p1) and (n2, p2), respectively. For
some p0 ∈ (0, 1), we set

qn = p0 Pr{B1 = n|B1 ≥ 1}+ p0 Pr{B2 = n|B2 ≥ 1}

= p0

(
n1

n

)
pn1 (1− p1)n1−n

1− (1− p1)n1
+ p0

(
n2

n

)
pn2 (1− p2)n2−n

1− (1− p2)n2
(2.130)

where 1 ≤ n ≤ max{n1, n2}. In fact, the number of active users is a Binomial random variable with
parameters (n1, p1) for a fraction p0 of the time and a Binomial random variable with parameters
(n2, p2) for the rest of the time. We have made the assumption that there is always at least one
active user in the network.
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Figure 2.8: Comparison of FH, FD and FBS in terms of outage capacity (bits/transmission slot)
for u = nmax = 10 and {qn}nmax

n=1 given in (2.130). The probability of outage is not allowed to exceed
0.05.

Let us set n1 = 3, n2 = 10, p1 = 0.1, p2 = 0.2 and p0 = 0.8. Therefore, nmax = max{n1, n2} =
10. We assume there are u = 10 frequency sub-bands. Figure 2.8 depicts maxv R

(2)
FH(ε), RFD(ε)

and RFBS(ε) in terms of SNR for ε = 0.05. It is seen that for γ > 29dB the FH scenario offers a
better outage capacity compared to the FD scheme. It is also observed that the FBS scheme offers
a poor performance compared to both FD and FH.
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Chapter 3

Randomized Signature-Based

Transmission

3.1 System Model and The Signaling Scheme

We consider a decentralized wireless communication network of N separate transmitter-receiver
pairs. The static and non frequency-selective gain of the channel from the ith transmitter to the
jth receiver is shown by hi,j ∈ C. There is no central controller to assign the resources to the
users. Moreover, users do not explicitly cooperate and they are unaware of each other’s code-
books. Hence, multiuser detection is not possible, i.e., users treat interference as noise. Due to
the fact that the network has no fixed infrastructure, resource allocation and rate assignment must
be performed locally at every transmitter-receiver pair. To realize this, we propose a distributed
signaling scheme motivated by the randomly spread CDMA systems.

Fixing 1 ≤ i ≤ N and for T ∈ N and Ri, R
′
i > 0, a code-book of rate Ri + R′i for the ith user

consists of two groups of codewords, i.e., a collection of 2bTRic signal codewords and a collection of
2bTR′ic signature codewords. Each signal codeword is a sequence (xi[t])T−1

t=0 of i.i.d. Gaussian signals
with zero mean and variance P . Each signature codeword is a sequence (~si[t])T−1

t=0 of i.i.d. vectors
with length K called the signature vectors. The elements of each signature vector are generated
independently over an underlying alphabet A according to a globally known PMF (qa)a∈A where
qa is the probability that an element in a signature vector is equal to a ∈ A. For technical reasons,
we let

q0 = ε (3.1)

and
qa = εpa ; a ∈ A\{0} (3.2)
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where ε ∈ (0, 1] and pa ≥ 0 for any a ∈ A\{0} such that
∑

a∈A\{0} pa = 1.
The ith user has 2bTRic+bTR′ic messages where each message is uniquely represented by a pair

of integers (message splitting) in the set
{

1, 2, · · · , 2bTRic} × {1, 2, · · · , 2bTR′ic
}

. For any message
(Wi,W′

i), the corresponding signal and signature codewords are selected and the sequence of vectors
(xi[t]~si[t])T−1

t=0 is transmitted. We assume the channel from each transmitter to each receiver is a
slotted channel. Moreover, the slots on different channels perfectly overlap, i.e., they start and end
at the same time instants. This implies that all users are slot-synchronized. For each 0 ≤ t ≤ T −1,
the ith user transmits xi[t]~si[t] in K consecutive transmission slots, referred to as a signature
interval. Denoting the received vector at the receiver side of the ith user during a typical signature
interval by ~yi and dropping the index t for simplicity of notation, we have

~yi = αhi,ixi~si +
∑
j 6=i

αhj,ixj~sj + ~zi (3.3)

where ~zi is a CN (~0K , IK) random vector representing the ambient noise. The expression for ~yi
in (3.3) implies that in addition to being slot-synchronized, we require the users to be signature-
synchronized, i.e., the signatur intervals of all users coincide. The parameter α is a normalization
factor that ensures the average transmitted power per transmission slot of the ith user is γ, i.e.,

α2 =
K

E {‖~si‖2}
γ

P
. (3.4)

Since the elements of ~zi have unit variance, the parameter γ is considered as the measure of
SNR.

The interference vector in a signature interval at the receiver side of the ith user is denoted by
~wi, i.e., ~wi =

∑
j 6=i αhj,ixj~sj . One can state ~wi as

~wi = αSiΞi
(
x1 · · · xi−1 xi+1 · · · xN

)t
(3.5)

where
Si ,

(
~s1 · · · ~si−1 ~si+1 · · · ~sN

)
(3.6)

and
Ξi , diag(h1,i, · · · , hi−1,i, hi+1,i, · · · , hN,i). (3.7)

Using joint typicality decoding at the receiver side of the ith user, any data rate Ri+R′i < Ri(~hi)
is achievable in the conventional sense where1

Ri(~hi) ,
I(xi,~si; ~yi)

K
(3.8)

1Note that, in general, the pair (Ri, R
′
i) must lie in a multiple access channel rate region defined by Ri ≤ I(xi;~yi|~si)

K
,

R′i ≤
I(~si;~yi|xi)

K
and Ri + R′i ≤

I(xi,~si;~yi)

K
.
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and ~hi ,
(
h1,i · · · hN,i

)t
is a vector that contains the channel gains related to the ith user.

We conclude this section by mentioning that the ith receiver is assumed to be able to estimate
(without error) the channel gains {hj,i}Nj=1 and the number of active users N and transmit these
data to its corresponding transmitter through a feedback link. In [78], using a combined technique
based on the method of moments and maximum likelihood estimation [83, 84], we demonstrate how
each user can perform this task in practice.

3.2 A Lower Bound on I(xi,~si; ~yi)

One can write I(xi,~si; ~yi) as

I(xi,~si; ~yi) = I(~si; ~yi) + I(xi; ~yi|~si). (3.9)

The ith user can successfully decode ~si as far as R′i <
I(~si;~yi)
K . Thereafter, using its knowledge of

~si, this user decodes xi successfully if Ri <
I(xi;~yi|~si)

K .
Due to the fact that the signature codeword of any user is not known to the other users, the

noise plus interference at any receiver has a mixed Gaussian PDF. As a result, the terms I(~si; ~yi)
and I(xi; ~yi|~si) do not have closed expressions. The term I(~si; ~yi) is bounded from above by H(~si)
which is not a function of SNR. Therefore, I(xi; ~yi|~si) and I(xi,~si; ~yi) have similar SNR scalings,
i.e.,

I(xi,~si; ~yi)
γ∼ I(xi; ~yi|~si). (3.10)

Motivated by (3.10), we ignore the term I(~si; ~yi) in this work and focus our attention on I(xi; ~yi|~si).
We are able to develop a lower bound on I(xi; ~yi|~si) that is tight in the sense that:

1- It achieves the same SNR scaling as that of I(xi; ~yi|~si).
2- Its behavior in terms of the design parameters mimics that of I(xi; ~yi|~si).
As such, system design is performed only based on the term I(xi; ~yi|~si).
To develop a lower bound on I(xi; ~yi|~si), our major tools are linear processing of the channel

output based on writing the SVD for the signature ~si, a conditional entropy power inequality and
a key upper bound on the differential entropy of a mixed Gaussian random vector.

We have
I(xi; ~yi|~si) =

∑
~s∈supp(~si)\{~0K}

Pr{~si = ~s}I(xi; ~yi|~si = ~s ) (3.11)

In the following, we find a lower bound on I(xi; ~yi|~si = ~s ) for any ~s ∈ supp(~si)\{~0K}.
Step 1- The matrix ~s~s † has two eigenvalues, namely, 0 and ‖~s ‖2. The eigenvector corresponding

to ‖~s ‖2 is ~s and the eigenvectors corresponding to 0 are K − 1 orthonormal vectors denoted by
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~g1, · · · , ~gK−1 which together with ~s
‖~s ‖ make an orthonormal basis for RK . Let us define

Gi(~s ) ,
(
~gi,1 · · · ~gi,K−1

)
, (3.12)

Ui(~s ) ,
(

~s

‖~s ‖ Gi(~s )
)

(3.13)

and
~d(~s ) ,

(
‖~s ‖ ~0 t

K−1

)t
. (3.14)

Writing the SVD for ~s,
~s = Ui(~s )~d(~s ). (3.15)

The ith receiver constructs the vector U †i (~s )~yi(~s ) where ~yi(~s ) has the same expression as ~yi in
which ~si is replaced by ~s, i.e.,

~yi(~s ) , αhi,ixi~s+
∑
j 6=i

αhj,ixj~sj + ~zi. (3.16)

We have

U †i (~s )~yi(~s ) = αhi,ixi~d(~s ) + U †i (~s ) (~wi + ~zi) . (3.17)

Define

ϕi ,
[
U †i (~s ) (~wi + ~zi)

]
1

=
α~s † (~wi + ~zi)

‖~s ‖ , (3.18)

ωi ,
[
U †i (~s )~yi(~s )

]
1

= αhi,i‖~s ‖xi +ϕi (3.19)

and

~ϑi ,
[
U †i (~s )~yi(~s )

]K
2

= G†i (~s ) (~wi + ~zi) .

(3.20)

We have the following thread of equalities,

I(xi; ~yi|~si = ~s )
(a)
= I

(
xi;U

†
i (~s )~yi(~s )

)
= I(xi;ωi, ~ϑi)

= I(xi; ~ϑi) + I(xi;ωi|~ϑi)
(b)
= I(xi;ωi|~ϑi) (3.21)

where (a) holds since Ui(~s ) is a unitary matrix and (b) is by the fact that xi and ~ϑi are independent,
i.e., I(xi; ~ϑi) = 0.

Step 2- We need the following Lemma which is a conditional entropy power inequality [70] in
the complex setup.

57



Lemma 5. Let z1 and z2 be complex random variables and z3 be any random quantity (scalar or
vector) with densities. Also, assume that the conditional densities pz1|z3(.|.) and pz2|z3(.|.) exist. If
z1 and z2 are conditionally independent given z3, then

2h(z1+z2|z3) ≥ 2h(z1|z3) + 2h(z2|z3). (3.22)

Proof. A straightforward application of the non-conditional entropy power inequality leads to
(3.22). The proof is omitted here.

We have

I(xi;ωi|~ϑi) = h(ωi|~ϑi)− h(ωi|xi, ~ϑi)
= h(ωi|~ϑi)− h

(
αhi,i‖~s ‖xi +ϕi

∣∣xi, ~ϑi)
(a)
= h(ωi|~ϑi)− h(ϕi|~ϑi) (3.23)

where (a) is by independence of xi and (ϕi, ~ϑi). On the other hand, we know that ωi = αhi,i‖~s ‖xi+
ϕi. Defining z1 , αhi,i‖~s ‖xi and z2 , ϕi, it is clear that z1 and z2 are conditionally independent
given z3 , ~ϑi. As the conditional densities pz1|z3(.|.) and pz2|z3(.|.) exist, by Lemma 5,

2h(ωi|~ϑi) ≥ 2h(αhi,i‖~s ‖xi|~ϑi) + 2h(ϕi|~ϑi)
(a)
= 2h

(
αhi,i‖~s ‖xi

)
+ 2h(ϕi|~ϑi) (3.24)

where (a) is by the fact that the xi is independent of ~ϑi. Dividing both sides of (3.24) by 2h(ϕi|~ϑi),

h
(
ωi|~ϑi

)
− h

(
ϕi|~ϑi

)
≥ log

(
2
“

h
(
αhi,i‖~s ‖xi

)
−h(ϕi|~ϑi)

”
+ 1
)
.

(3.25)

By (3.21), (3.23) and (3.25),

I(xi; ~yi|~si = ~s ) ≥ log
(

2
“

h
(
αhi,i‖~s ‖xi

)
−h(ϕi|~ϑi)

”
+ 1
)
. (3.26)

Step 3- We need the following Lemma to proceed.

Lemma 6. Let ~z be a t× 1 complex and circularly symmetric mixed Gaussian random vector with
PDF

p~z(~z) =
L∑
l=1

al
πt det Ωl

exp
(
−~z†Ω−1

l ~z
)

(3.27)

where al ≥ 0 for 1 ≤ l ≤ L and
∑L

l=1 al = 1. Then,

L∑
l=1

al log
(
(πe)t det Ωl

) ≤ h(~z) ≤
L∑
l=1

al log
(
(πe)t det Ωl

)
+ H((al)Ll=1) (3.28)
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Proof. Let us define the random matrix Ω ∈ {Ωl : 1 ≤ l ≤ L} such that Pr{Ω = Ωl} = al and
let ~x be a CN (~0t, It) random vector. Then, one can easily see that ~z =

√
Ω~x in which

√
Ω is the

conventional square root of a positive semi-definite matrix. Using the inequalities

h(~z|Ω) ≤ h(~z) ≤ h(~z,Ω)

= h(~z|Ω) + H(Ω)

= h(~z|Ω) + H((al)Ll=1) (3.29)

and noting that h(~z|Ω) =
∑L

l=1 al log
(
(πe)t det Ωl

)
, the result is immediate.

By (3.5), the interference vector ~wi has a mixed Gaussian distribution where the covariance ma-
trices of its Gaussian components correspond to different realizations of the matrix α2PSiΞiΞ

†
iS
†
i .

This together with Lemma 6 yields

h(~wi + ~zi) ≤ h(~wi + ~zi|Si) + H
(
SiΞiΞ

†
iS
†
i

)
(3.30)

where we have used the fact that H
(
α2PSiΞiΞ

†
iS
†
i

)
= H

(
SiΞiΞ

†
iS
†
i

)
. One has

h(ϕi|~ϑi) = h(ϕi, ~ϑi)− h(~ϑi)

= h
(
U †i (~s ) (~wi + ~zi)

)
− h

(
G†i (~s ) (~wi + ~zi)

)
(a)
= h (~wi + ~zi)− h

(
G†i (~s ) (~wi + ~zi)

)
(b)

≤ h (~wi + ~zi|Si) + H
(
SiΞiΞ

†
iS
†
i

)
−h
(
G†i (~s ) (~wi + ~zi)

)
(c)

≤ h (~wi + ~zi|Si) + H
(
SiΞiΞ

†
iS
†
i

)
−h
(
G†i (~s ) (~wi + ~zi) |Si

)
(3.31)

where (a) follows by noting that the matrix Ui(~s ) is unitary, i.e., log | det(Ui(~s ))| = 0, (b) follows
from (3.30) and (c) is a direct consequence of Lemma 6. On the other hand, for any realization of
Si, the vector ~wi + ~zi turns into a complex Gaussian vector. Hence,

h (~wi + ~zi|Si) = K log(πe) +
∑

S∈supp(Si)

Pr{Si = S} log det
(
IK + α2PSΞiΞ

†
iS
†
)
. (3.32)

By the same token,

h
(
G†i (~s ) (~wi + ~zi) |Si

)
= (K − 1) log(πe)

+
∑

S∈supp(Si)

Pr{Si = S} log det
(
IK−1 + α2PG†i (~s )SΞiΞ

†
iS
†G†i (~s )

)
. (3.33)
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Using (3.32) and (3.33) in (3.31),

h(ϕi|~ϑi) ≤ log(πe) + H
(
SiΞiΞ

†
iS
†
i

)
+

∑
S∈supp(Si)

Pr{Si = S} log det
(
IK + α2PSΞiΞ

†
iS
†
)

−
∑

S∈supp(Si)

Pr{Si = S} log det
(
IK−1 + α2PG†i (~s )SΞiΞ

†
iS
†G†i (~s )

)
. (3.34)

Moreover, h
(
αhi,i‖~s ‖xi

)
= log

(
πeα2|hi,i|2‖~s ‖2P

)
. Hence, h

(
αhi,i‖~s ‖xi

)−h
(
ϕi|~ϑi

)
appearing in

(3.26) can be bounded from below as

h
(
αhi,i‖~s ‖xi

)− h
(
ϕi|~ϑi

)
≥ log

(
α2|hi,i|2‖~s ‖2P

)−H
(
SiΞiΞ

†
iS
†
i

)
−

∑
S∈supp(Si)

Pr{Si = S} log det
(
IK + α2PSΞiΞ

†
iS
†
)

+
∑

S∈supp(Si)

Pr{Si = S} log det
(
IK−1 + α2PG†i (~s )SΞiΞ

†
iS
†G†i (~s )

)
. (3.35)

Substituting (3.35) in (3.26),

I(xi; ~yi|~si = ~s ) ≥ log
(

2−H
“
SiΞiΞ

†
iS
†
i

”
%i(P ;~s,Ξi) + 1

)
(3.36)

where

%i(P ;~s,~hi) , α2|hi,i|2‖~s ‖2P
∏

S∈supp(Si)

det
(
IK−1 + α2PG†i (~s )SΞiΞ

†
iS
†G†i (~s )

)
det
(
IK + α2PSΞiΞ

†
iS
†
)

Pr{Si=S}

.(3.37)

Finally, we get a lower bound on Ri(~hi) given by

R
(lb)
i (~hi) ,

1
K

∑
~s∈supp(~si)\{~0K}

Pr{~si = ~s} log
(

2−H
“
SiΞiΞ

†
iS
†
i

”
%i(P ;~s,~hi) + 1

)
. (3.38)

3.3 Analysis of Sum Multiplexing Gain

An important observation is the SNR scaling of R
(lb)
i (~hi) that is presented in the following Propo-

sition:

Proposition 5. Regulating its transmission rate at R
(lb)
i (~hi), the ith user achieves an SNR scaling

of

lim
γ→∞

R
(lb)
i (~hi)
log γ

=
Pr{~si /∈ csp(Si)}

K
. (3.39)
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Proof. See appendix G.

Finally, the following Corollary proves that R
(lb)
i (~hi) achieves the SNR scaling of Ri(~hi).

Corollary 2. R
(lb)
i (~hi)

γ∼ Ri(~hi).

Proof. See Appendix H.

Since all users utilize the same PMF to construct their signature vectors, the achievable SMG
can be written as

SMGN =
N Pr {~s1 /∈ csp ([~s2|~s3| · · · |~sN−1|~sN ])}

K
. (3.40)

Computing Pr {~s1 /∈ csp ([~s2|~s3| · · · |~sN−1|~sN ])} is a tedious task for N ≥ 3. Using the so-called
Marc̆enko-Pastur law2 in random matrix theory [81], it is easily seen that ~s1 /∈ csp ([~s2|~s3| · · · |~sN−1|~sN ])
holds almost surely in the asymptotic case where K = N →∞. As such, a sum multiplexing gain
of 1 is achievable if the number of active users is large. In this work, our focus is on a finite number
of users. To get a rough idea about the behavior of SMGN , we present some examples.

Example 1- Effects of The Underlying Alphabet A on SMGN .
In this example, we compare four different types of signature vectors by computing the achiev-

able SMG via Monte-Carlo simulations. The following cases are considered:
1- A = {−1, 1}, q−1 = q1 = 1

2 , K = N .
2- A = {0, 1}, q0 = q1 = 1

2 , K = N .
3- A = {−1, 0, 1}, q−1 = q0 = q1 = 1

3 , K = N

4- A = {0, 1}, q0 = q1 = 1
2 , K = 1.

The elements of the signature vectors are generated uniformly over the underlying alphabet in
all the schemes. This is not the best one can do as we will see in example 2. The achieved SMG
for each scheme is sketched in fig. 3.1. We are able to make the following observations:
• SMGN is an increasing function of N as far as K = N . Moreover, it approaches 1 as N

increases. This is in agreement with the Marc̆enko-Pastur law.
• Increasing the size of the underlying alphabet A leads to a larger SMG.
• The alphabet {0, 1} yields a slightly better SMG compared to the alphabet of the same size

{−1, 1}.
Let us investigate the case A = {0, 1} and K = 1 in more detail. For each 1 ≤ i ≤ N ,

2A central result in random matrix theory states that when the entries of a random matrix A of size n × n are

i.i.d., then rank(A)
n

→ 1 as n→∞. A more general statement of this result is the so-called Marc̆enko-Pastur law.
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Figure 3.1: Effects of the choice of the underlying alphabet A on SMG.

~si = si ∈ {0, 1} is simply a Ber(ε) random variable. Hence,

Pr {~s1 /∈ csp ([~s2|~s3| · · · |~sN−1|~sN ])} = Pr
{
s1 /∈ span

( {s2, s3, · · · , sN−1, sN}
)}

= εPr
{

0 /∈ span
( {s2, s3, · · · , sN−1, sN}

)}
+εPr

{
1 /∈ span

( {s2, s3, · · · , sN−1, sN}
)}

(a)
= εPr

{
1 /∈ span

( {s2, s3, · · · , sN−1, sN}
)}

(b)
= εPr {s2 = s3 = · · · = sN−1 = sN = 0}
= εεN−1 (3.41)

where (a) is by the fact that Pr
{

0 /∈ span
( {s2, s3, · · · , sN−1, sN}

)}
= 0 and (b) is by the fact that

1 /∈ span
( {s2, s3, · · · , sN−1, sN}

)
if and only if si = 0 for 2 ≤ i ≤ N . Maximizing εεN−1 over ε, a

sum multiplexing gain of
(
1− 1

N

)N−1 is achieved for ε = 1− 1
N . This is sketched in fig. 3.1 as the

only decreasing curve. As N increases, SMGN settles on 1
e . �

Example 2- The Elements of The Signatures Are Not Necessarily Equiprobable Over A.
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Let us fix A = {−1, 0, 1} and N = 2. For i = 1, 2, the elements of ~si are i.i.d. random variables
taking the values 0, 1 and −1 with probabilities ε, εp1 and εp−1 respectively. We have

Pr{~s1 /∈ csp([~s2])} = 1− Pr{~s1 ∈ csp([~s2])}
= 1− Pr{~s1 = ~0K} − Pr{~s1 6= ~0K ,~s1 = ±~s2}
= 1− εK − Pr{~s1 6= ~0K ,~s1 = ~s2} − Pr{~s1 6= ~0K ,~s1 = −~s2}. (3.42)

However,

Pr{~s1 6= ~0K ,~s1 = ~s2} =
∑

~s∈supp(~s1)\{~0K}

(
Pr
{
~s1 = ~s

})2

=
K−1∑
k=0

K−k∑
l=0

(
K

k

)(
K − k
l

)
ε2k(εp1)2l(εp−1)2(K−k−l)

=
(
ε2 + ε2(p2

1 + p2
−1)
)K − ε2K . (3.43)

Similarly,
Pr{~s1 6= ~0K ,~s1 = ~s2} =

(
ε2 + 2ε2p1p−1

)K − ε2K . (3.44)

Therefore,

SMG2 =
2 Pr{~s1 /∈ csp([~s2])}

K

=
2
K

(
1− εK + 2ε2K − (ε2 + ε2(p2

1 + p2
−1)
)K − (ε2 + 2ε2p1p−1

)K)
. (3.45)

This expression is maximized at p1 = p−1 = 1
2 for any ε and K. Thus,

sup
p1,p−1

SMG2 =
2
(

1− εK + 2ε2K − 2
(
ε2 + ε2

2

)K)
K

. (3.46)

Finally, the expression in the right side of (3.46) is maximized for K = 2 and ε = 0.756 where a
sum multiplexing gain of 0.7091 is achieved. Although one expects that ε = 2

3 is the best choice, it
is not the case. The SMG is 0.6914 for ε = 2

3 which is slightly less than 0.7091. �
Remark 1- For any matrix A, let (λ(l)

A )rank(A)
l=1 be the nonzero eigenvalues of the matrix AA†.

Writing the eigenvalue decomposition [85] for IK−1+α2PG†i (~s )SΞiΞ
†
iS
†G†i (~s ) and IK+α2PSΞiΞ

†
iS
†
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appearing in the expression of %i(P ;~s,~hi) in (3.37), we get

%i(P ;~s,~hi) = α2|hi,i|2‖~s ‖2P
∏

S∈supp(Si)

∏rank(G†i (~s )S)
l=1

(
1 + α2Pλ

(l)

G†i (~s )SΞi

)Pr{Si=S}

∏rank(S)
l=1

(
1 + α2Pλ

(l)
SΞi

)Pr{Si=S}

= α2|hi,i|2‖~s ‖2Pµi(~s )
∏

S∈supp(Si)

∏rank(G†i (~s )S)
l=1

(
1
P + α2λ

(l)

G†i (~s )SΞi

)Pr{Si=S}

∏rank(S)
l=1

(
1
P + α2λ

(l)
SΞi

)Pr{Si=S}

(3.47)

where

µi(~s ) = 1−
∑

S∈supp(Si)

Pr {Si = S} rank(G†i (~s )S)−
∑

S∈supp(Si)

Pr {Si = S} rank(S)

= 1− E
{

rank(G†i (~s )Si)
}
− E {rank(Si)} . (3.48)

On the other hand, using (3.38),

R
(lb)
i (~hi) ≥ 1

K

∑
~s∈supp(~si)\{~0K}

Pr{~si = ~s} log
(

2−H
“
SiΞiΞ

†
iS
†
i

”
%i(P ;~s,~hi)

)

=
1
K

∑
~s∈supp(~si)\{~0K}

Pr{~si = ~s} log %i(P ;~s,~hi)−
Pr{~si 6= ~0K}H

(
SiΞiΞ

†
iS
†
i

)
K

.

(3.49)

Combining (3.47) and (3.49),

R
(lb)
i (~hi) ≥ MG log γ − IEF + CSFi (3.50)

where the three terms appearing in the right side of (3.50) are the Multiplexing Gain defined by

MG ,
1
K

∑
~s∈supp(~si)\{~0K}

Pr{~si = ~s}µi(~s), (3.51)

the Interference Entropy Factor defined by

IEF ,
Pr{~si 6= ~0K}H

(
SiΞiΞ

†
iS
†
i

)
K

(3.52)
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and the Channel-Signature Factor defined by

CSFi ,
1
K

∑
~s∈supp(~si)\{~0K}

Pr{~si = ~s} log
(
α2|hi,i|2‖~s ‖2

)

+
1
K

∑
~s∈supp(~si)\{~0K}

Pr{~si = ~s}
∑

S∈supp(Si)

log

∏rank(G†i (~s )S)
l=1

(
1
P + α2λ

(l)

G†i (~s )SΞi

)Pr{Si=S}

∏rank(S)
l=1

(
1
P + α2λ

(l)
SΞi

)Pr{Si=S} .

(3.53)

By (3.48), (3.51) and the identity (5.58) appearing in the proof of Proposition 5 in appendix
G, it is seen that

MG =
Pr{~si /∈ csp(Si)}

K
(3.54)

which is in agreement with the result of Proposition 5.
In general, MG does not depend on the user index. Moreover, assuming the channel gains are

realizations of i.i.d. and continuous random variables, the discrete entropy H
(
SiΞiΞ

†
iS
†
i

)
is not a

function of the user index. In fact, a simple argument shows that

H
(
SiΞiΞ

†
iS
†
i

)
= (N − 1)H

(
~s1~s

†
1

)
. (3.55)

The interplay between MG, IEF and CSFi determines the behavior of the achievable rate. As
we will see in the next section, a larger MG is achieved at the cost of a larger IEF. This can be
in particular understood if we study the effect of the underlying alphabet A on these two factors.
If A increases, IEF becomes larger as the randomness of the signature vectors rises. At the same
time, the chance for the signature vector of a user to be spanned by signature vectors of other
users drops implying a larger MG as shown in fig. 3.1. By (3.50), a larger IEF reduces the rate
and a larger MG increases the rate. Due to the fact that MG identifies the scaling of rate with
logP , these opposing effects identify a tradeoff between the achievable rates in moderate and high
SNR regimes. Note that R

(lb)
i (~hi) is only a lower bound to Ri(~hi). Monte-Carlo simulations (to be

offered in section 3.4) verify that the same tradeoff holds for Ri(~hi), i.e., R
(lb)
i (~hi) is tight enough

to mimic the behavior of Ri(~hi). �
In the next two subsection we address the following two questions, respectively:
1- Let all users have access to a globally known signature-book C and each user selects a

signature in C uniformly and independently from signature interval to signature interval. What is
the ultimate SMG in this scenario and how can one design C to achieve this SMG?

2- Let all users utilize matched filters at their receiver side as a low-complexity detection tech-
nique. What is the effect of matched filtering on SMG?
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3.3.1 A Modified Approach To Generate The Signatures

The expression for SMGN given in (3.40) is valid for other classes of randomized algorithms in
generating the signature vectors. One can consider a general scheme where the ith user generates
its signature vector ~si by randomly selecting a vector in a globally known set of L signatures
CL = {~c1, · · · ,~cL} ⊂ RK . For example, generating the signature vectors over some alphabet
A = {−1,+1} is equivalent to setting L = 2K and C2K = AK .

We determine the largest achievable SMG in a network of N users under the following assump-
tions:

1- All users have access to a globally known signature-book CL ⊂ RK containing L nonzero and
non-parallel vectors.

2- The signature vectors are selected with equal probability in CL.
For each 1 ≤ l ≤ L and 1 ≤ m ≤ L − 1, let us denote by rl,m the number of distinct

subsets B of CL such that |B| = m and ~cl /∈ span(B). We denote these subsets explicitly by
B(1)
l,m, · · · ,B

(rl,m)
l,m .Then,

Pr {~s1 /∈ csp ([~s2|~s3| · · · |~sN−1|~sN ])} =
1
L

L∑
l=1

Pr {~cl /∈ csp ([~s2|~s3| · · · |~sN−1|~sN ])} (3.56)

where for each 1 ≤ l ≤ L,

Pr {~cl /∈ csp ([~s2|~s3| · · · |~sN−1|~sN ])} =
L−1∑
m=1

rl,m∑
r=1

Pr
{
{~s2, · · · ,~sN−1,~sN} = B(r)

l,m

}
. (3.57)

It is easy to see that3

Pr
{
{~s2, · · · ,~sN−1,~sN} = B(r)

l,m

}
=
φN,m
LN−1

(3.58)

where
φN,m ,

∑
n1+···+nm=N−1
n1,··· ,nm≥1

(N − 1)!
n1! · · ·nm!

(3.59)

for any 1 ≤ l ≤ L, 1 ≤ m ≤ L− 1 and 1 ≤ r ≤ rl,m. By (3.56), (3.57) and (3.58),

Pr {~s1 /∈ csp ([~s2|~s3| · · · |~sN−1|~sN ])} =
1
LN

L∑
l=1

L−1∑
m=1

rl,mφN,m (3.60)

Therefore,

SMGN =
N
∑L

l=1

∑L−1
m=1 rl,mφN,m
KLN

. (3.61)

3Assuming the 1st, · · · , (m− 1)th and mth elements of B(r)
l,m are chosen by n1, · · · , nm−1 and nm users respectively

(each user selects one signature), this can happen in
P
n1+···+nm=N−1
n1,··· ,nm≥1

(N−1)!
n1!···nm!

different ways.

66



There is no closed expression for φN,m. However, one can use the recursion

mN−1 = φN,m +
m−1∑
v=1

(
m

v

)
φN,m−v (3.62)

to compute this quantity4. The following Proposition shows that SMGN given in (3.61) can be
made arbitrarily close to 1 for any finite N .

Proposition 6. For any number of users N and any integer L ≥ N , there exists a signature-book
CL ⊂ RN of size L such that

SMGN =
(

1− 1
L

)N−1

. (3.63)

Moreover, this is the highest sum multiplexing gain one can achieve in a decentralized network with
N users where each user selects its signatures uniformly in a globally known signature-book of size
L.

Proof. Noting that φN,m = 0 for m ≥ N , we can write

SMGN =
N
∑L

l=1

∑N−1
m=1 rl,mφN,m
KLN

. (3.64)

It is seen that SMGN is maximized if rl,m is as large as possible for each 1 ≤ l ≤ L and 1 ≤ m ≤
N − 1. The quantity rl,m can not be larger than

(
L−1
m

)
. For the moment, let us assume that there

exists a signature-book CL ⊂ RK such that any N elements of CL are linearly independent. We
will soon provide the constructive proof for the existence of this signature-book. Obviously, one
requires K ≥ N . In this case, rl,m =

(
L−1
m

)
for any 1 ≤ l ≤ L and 1 ≤ m ≤ N − 1. Hence,

SMGN =
N
∑N−1

m=1

(
L−1
m

)
φN,m

KLN−1
. (3.65)

To proceed, we need the following Lemma.

Lemma 7.
N−1∑
m=1

(
L− 1
m

)
φN,m = (L− 1)N−1. (3.66)

Proof. We offer a combinatorial proof. There are (L − 1)N−1 different ways to distribute N − 1
distinct balls in L − 1 distinct boxes. If the balls were similar and we put vi balls in the ith box,
the number of different ways is the number of non-negative solutions in {vi}L−1

i=1 for the equation

4We omit the proof of (3.62) for brevity.
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v1 + · · ·+ vL−1 = N − 1. Fixing {vi}L−1
i=1 and recalling that the balls are distinct, one gets (N−1)!

v1!···vL−1!

different distributions. Hence,

(L− 1)N−1 =
∑

v1+···+vL−1=N−1
v1,··· ,vL−1≥0

(N − 1)!
v1! · · · vL−1!

. (3.67)

A simple counting argument shows that

∑
v1+···+vL−1=N−1
v1,··· ,vL−1≥0

(N − 1)!
v1! · · · vL−1!

=
L−2∑

m′=L−N

(
L− 1
m′

) ∑
v1+···+vL−m′−1=N−1
v1,··· ,vL−m′−1≥1

(N − 1)!
v1! · · · vL−m′−1!

. (3.68)

By (3.59), (3.67) and (3.68),

L−2∑
m′=L−N

(
L− 1
m′

)
φN,L−m′−1 = (L− 1)N−1. (3.69)

Replacing the dummy variable m′ by L−m− 1 yields

N−1∑
m=1

(
L− 1
m

)
φN,m = (L− 1)N−1. (3.70)

This is the desired result.

Using (3.66) in (3.65),

SMGN =
N

K

(
1− 1

L

)N−1

. (3.71)

To get the largest SMG, one may set K = N . Then,

SMGN =
(

1− 1
L

)N−1

. (3.72)

This can be made arbitrarily close to one by increasing L.
To complete the proof, we must show the existence of the signature-book CL with the given

properties. Let K = N and b1, · · · , bL be L ≥ N distinct and nonzero real numbers. We define

CL =
{
~cl =

(
1 bl b2l · · · bN−1

l

)t
: 1 ≤ l ≤ L

}
. (3.73)

Let us take any N elements in CL, say ~cl1 , · · · ,~clN−1
and ~clN . Assume there are real numbers

a1, · · · , aN−1 and aN such that

a1~cl1 + · · ·+ aN−1~clN−1
+ aN~clN = ~0N . (3.74)
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Figure 3.2: The tradeoff between multiplexing gain per user and interference entropy factor achieved
by the construction in the proof of Proposition 6.

This yields, 

1 1 · · · 1 1
bl1 bl2 · · · blN−1

blN
b2l1 b2l2 · · · b2lN−1

b2lN
...

...
. . .

...
...

bN−1
l1

bN−1
l2

· · · bN−1
lN−1

bN−1
lN




a1

...
aN−1

aN

 = ~0N . (3.75)

The matrix appearing in (3.75) is a Vandermonde matrix. The determinant of this matrix is∏
1≤i<j≤N

(
bli − blj

)
which is a nonzero number. This proves that any N elements in CL are

linearly independent. The proof of Proposition 6 is complete.

By Proposition 6, SMGN = 1− δ can be achieved in a network of N users for any δ > 0. This
is at the expense of an interference entropy factor equal to −(N − 1) log

(
1− (1− δ) 1

N−1

)
. The

corresponding tradeoff between multiplexing gain per user and the interference entropy factor is
sketched in fig. 3.2 for several values of N .

Note that this scheme requires all users to select their codes in an appropriately designed and
globally known set of signatures. This might be a restriction in a decentralized network where there
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is no explicit cooperation among users.

3.3.2 Effect of Matched Filtering on SMG

In order to reduce the computational complexity in the decoder, a suboptimal detector such as
single-user Matched Filter (MF) is frequently used in conventional CDMA systems. For a detailed
analysis, we refer the reader to [19]. Next, we investigate how the presence of such a detector affects
the SMG in a decentralized network of users.

The output of the MF at the receiver side of the ith user is the inner product of ~yi and ~si. We
have

~s†i~yi = αhi,iηi,ixi + α
∑
j 6=i

hi,jηi,jxj + ~s†i~zi (3.76)

where
ηi,j , ~s

†
i~sj (3.77)

for 1 ≤ j ≤ N . Following the same analysis that led us to (3.40), the achievable SMG denoted by
SMG(MF)

N is given by

SMG(MF)
N =

N

K
Pr
{
η1,1 /∈ span({η1,2, · · · ,η1,N})

}
(a)
=

N

K
Pr
{
η1,1 6= 0,η1,2 = · · · = η1,N = 0

}
=

N

K

∑
~s∈supp(~si)\{~0K}

Pr
{
~si = ~s,η1,2 = · · · = η1,N = 0

}
(b)
=

N

K

∑
~s∈supp(~si)\{~0K}

Pr
{
~s †~s2 = · · · = ~s †~sN = 0

}
Pr{~si = ~s }

(c)
=

N

K

∑
~s∈supp(~si)\{~0K}

(
Pr
{
~s †~s2 = 0

})N−1
Pr{~si = ~s }. (3.78)

In 3.78, (a) is due to the fact that η1,j is a scalar for 1 ≤ j ≤ N , (b) holds by independence of
~si and the collection (~sj)j 6=i, and (c) is due to the fact that (~sj)j 6=i is a collection of i.i.d. random
variables.

As a working example, let A = {−1, 1}, p1 = ν and p−1 = ν. Then,

SMG(MF)
N =

N

K

K∑
k=0

∑
~s:k elements of ~s are +1

(
Pr
{
~s †~s2 = 0

})N−1
Pr{~si = ~s }

=
N

K

K∑
k=0

(
K

k

)
νkνK−k

(
Pr
{
~s †~s2 = 0, k elements of ~s are 1

})N−1
. (3.79)
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In appendix I, it is shown that

Pr
{
~s †~s2 = 0, k elements of ~s are 1

}
=
(
K
K
2

)
ν
K
2
−kν

K
2

+k E
{(ν

ν

)2κ
}

(3.80)

where κ is a Hypergeometric random variable with PMF

Pr{κ = l} =

(
k
l

)(K−k
K
2
−l
)

(K
K
2

) . (3.81)

It can be verified that SMG(MF)
N is maximized for K = 2 for all values of ν ∈ [0, 1]. In this case,

Pr
{
~s †~s2 = 0,no element of ~s is −1

}
= 2νν, (3.82)

Pr
{
~s †~s2 = 0,both elements of ~s are −1

}
= 2νν, (3.83)

and
Pr
{
~s †~s2 = 0, only one element of ~s is −1

}
= ν2 + ν2. (3.84)

Therefore,

SMG(MF)
N =

N

2
(
(ν2 + ν2)(2νν)N−1 + 2νν(ν2 + ν2)N−1

)
. (3.85)

Fig. 3.3 sketches SMG(MF)
N in terms of ν for different values of N . It is seen that:

• supν∈(0,1] SMG(MF)
2 = 1

2 which is equal to the SMG of the optimal detector (no matched
filtering). This holds in spite of the fact that ~yi and ~s†i~yi are not the same from an information
theoretic point of view, i.e., I(xi; ~yi|~si) > I(xi;~s

†
i~yi|~si) or equivalently, ~s†i~yi is not a sufficient

statistic. However, for N ≥ 3, the SMG of MF is considerably lower than that of the optimal
scenario5.
• The optimum value of ν is not equal to 0.5 in general. This happens for any N ≥ 5, while for

N ≤ 4, the optimum value of ν is 0.5.
• As the number of users increases, SMG(MF)

N decreases and settles on 0.182. Selecting ν = 0.5
in (3.85) yields an SMG of N

2N
that tends to 0 as N becomes large.

3.4 System Design in Finite SNR

An important issue in a decentralized network is to propose a globally known utility function to be
optimized by all users without any cooperation. As mentioned earlier, there is no closed expression
for Ri(~hi). However, we have developed a lower bound R

(lb)
i (~hi) on Ri(~hi) which is tight enough

to guarantee R
(lb)
i (~hi)

γ∼ Ri.
5Refer to fig. 3.1 for the SMG of the optimal scheme.
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Figure 3.3: Plots of SMG(MF)
N for different number of users. The signatures are only based on

randomized spreading over {−1,+1}. It is seen that the elements of the signatures are not in
general equiprobable over the underlying alphabet.

Let the channel gains hi,j be realizations of independent CN (0, 1) random variables hi,j repre-
senting Rayleigh fading. We propose that the ith user selects K, ε and (pa)a∈A\{0} (or a subset of
these parameters) based on

(K̂, ε̂, (p̂a)a∈A\{0}) = arg sup
(K,ε,(pa)a∈A\{0})

E
{

R
(lb)
i (~hi)

}
. (3.86)

Thereafter, the ith user regulates the actual transmission rate of its signal code-book at Ri =
R

(lb)
i (~hi) using the realization ~hi of ~hi.
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Example 3- Spreading vs. No Spreading: A Win-Win Situation.
Let us consider a network with N = 2 users. We use (3.37) to compute %1(P ;~s, ~h1). It is seen

that
1- Ξ1 = h2,1.
2- Since S1 = ~s2, for each ~t ∈ supp(S1)\{~0K}, we have rank(~t) = 1 and λ

(1)
~tΞ1

= |h2,1|2‖~t ‖2.

3- For each ~s ∈ supp(~s1) and ~t ∈ supp(S1), we have rank(G†1(~s )~t ) ≤ 1. Indeed, G†1(~s )~t ∈ R
and if G†1(~s )~t 6= 0, then λ

(1)

G†1(~s )~tΞ1
= |h2,1|2|G†1(~s )~t |2.

Therefore,

%1(P ;~s, ~h1) = α2|h1,1|2‖~s ‖2P
∏

~t∈supp(~s2)

(
1 + α2P |h2,1|2|G†1(~s )~t |2

1 + α2P |h2,1|2‖~t ‖2

)Pr{~s2=~t }
. (3.87)

In this example, we only consider the optimization in (3.86) with respect to ε and (pa)a∈A\{0}.
In fact, we assume K is globally known. We consider two different schemes corresponding to two
different values of K, i.e., K = 2 and K = 1, respectively.

Scheme A- Let K = 2, A = {−1, 0, 1}, p1 = ν and p−1 = ν for some ν ∈ (0, 1]. To simplify the
expression for %1(P ;~s, ~h1) in (3.87), we make the following observations:

1- If ~s has only one nonzero element,

|G†1(~s )~t |2 =

{
0 ~t = ~02 or ~t = ±~s
1 oth.

. (3.88)

2- If every element of ~s is nonzero,

|G†1(~s )~t |2 =


0 ~t = ~02 or ~t = ±~s
2 ~t t~s = 0,~t 6= ~02

1
2

~t t~s 6= 0

. (3.89)

Noting that α2 = γ
εP , we get

1- If ~s has only one nonzero element,

%1(P ;~s, ~h1) =
|h1,1|2γ

ε
(

1 + |h2,1|2γ
ε

)εε−ε2 (
1 + 2|h2,1|2γ

ε

)ε2 . (3.90)

2- If ~s ∈ {(1 1)t, (−1 − 1)t},

%1(P ;~s, ~h1) =
2|h1,1|2γ

(
1 + |h2,1|2γ

2ε

)2εε

ε
(

1 + |h2,1|2γ
ε

)2εε (
1 + 2|h2,1|2γ

ε

)ε2(ν2+ν2)
. (3.91)
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3- If ~s ∈ {(1 − 1)t, (−1 1)t},

%1(P ;~s, ~h1) =
2|h1,1|2γ

(
1 + |h2,1|2γ

2ε

)2εε

ε
(

1 + |h2,1|2γ
ε

)2εε (
1 + 2|h2,1|2γ

ε

)2ε2νν
. (3.92)

Moreover, it is shown in appendix J that

H
(
~s1~s

†
1

)
= 2H (ε) + ε2H (ν2 + ν2). (3.93)

It is not hard to see that setting ν = 0.5 maximizes R
(lb)
i (~hi). Hence, we come up with

sup
ν∈(0,1]

R
(lb)
1 (~h1) = εε log

1 +
2−2H (ε)−ε2 |h1,1|2γ

ε
(

1 + |h2,1|2γ
ε

)εε−ε2 (
1 + 2|h2,1|2γ

ε

)ε2


+
ε2

2
log

1 +
21−2H (ε)−ε2 |h1,1|2γ

(
1 + |h2,1|2γ

2ε

)2εε

ε
(

1 + |h2,1|2γ
ε

)2εε (
1 + 2|h2,1|2γ

ε

) ε2
2

 .

(3.94)

It is seen that

MGA =
1
2
− ε2

2
− (εε)2 − ε4

4
(3.95)

and

IEFA = ε

(
H (ε) +

ε2

2

)
. (3.96)

Scheme B- Let K = 1 andA = {0, 1}. Noting that supp(~s1) = supp(~s2) = {0, 1} and G1(1) = 0,

%1(P ; 1, ~h1) =
|h1,1|γ

ε
(

1 + |h2,1|2γ
ε

)ε . (3.97)

Evidently, H(~s1~s
†
1) = H (ε). Therefore,

R
(lb)
1 (~h1) = ε log

1 +
2−H (ε)|h1,1|2γ
ε
(

1 + |h2,1|2γ
ε

)ε
 . (3.98)

Also,
MGB = εε (3.99)

and
IEFB = εH (ε). (3.100)
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Figure 3.4: Comparison between supε,ν∈(0,1] E
{

R
(lb)
1 (~h1)

}
in the schemes A and B for different

SNR values.

Fig. 3.4 sketches supε,ν∈(0,1] E
{

R
(lb)
1 (~h1)

}
for both schemes at different SNR values. This figure

also demonstrates the best ε chosen by the users. It is seen that there is a tradeoff between the
rates at medium and high SNR values. As discussed in remark 1, this happens as a result of
the interplay between MG and IEF. This observation is based on the formulation for R

(lb)
1 (~h1)

which is only a lower bound on R1(~h1). To show that this tradeoff is an intrinsic behavior of
R1(~h1) itself, let the channel gains related to user 1 be given by h1,1 = −0.3059− 1.1777

√−1 and
h2,1 = 0.0886+0.2034

√−1. Assuming that user 1 utilizes the plots given in fig. 3.4 to regulate ε, fig.
3.5 sketches R1(~h1) (using Monte-Carlo simulation) for both schemes. It is seen that the tradeoff
between the rate at medium and high SNR regimes is a fundamental property of decentralized
networks.
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Figure 3.5: Plots of R1(~h1) (using Monte-Carlo simulation) for schemes A and B. The channel
gains are h1,1 = −0.3059− 1.1777

√−1 and h2,1 = 0.0886 + 0.2034
√−1.

Example 4- A Non-Uniform PMF on The Underlying Alphabet Leads To A Rise in Rate.
In this example, we let A = {−1, 1}, p1 = ν and p−1 = ν for some ν ∈ (0, 1]. This coincides

with the random spreading technique used in CDMA systems [19, 20]. The purpose of this example
is to show that in contrast to example 3 (where N = 2), the optimum value of ν is surprisingly not
1
2 in a network with N = 4 users.

Before proceeding, let us consider a different and common approach to obtain a lower bound
on R1(~h1). It is well-known that in an additive noise channel with a stationary and ergodic noise
process, as far as the correlation function6 of the noise process is fixed and SNR is sufficiently large,
a Gaussian noise process yields the smallest mutual information between the input and output [77].
Using this fact, one can obtain a lower bound on I(x1; ~y1|~s1) as

I(x1; ~y1|~s1) ≥ log
det Cov(~y1)

det Cov(~w1 + ~z1)
. (3.101)

6The correlation function of a zero-mean process x[t] is the function E{x[t1]x†[t2]} for t1, t2 ∈ R.
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It is easy to see that

Cov(~y1) = IK + γ
N∑
i=1

|hi,1|2
(
1− (2ν − 1)2

)
IK (3.102)

and

Cov(~w1 + ~z1) = IK + γ

N∑
i=2

|hi,1|2
(
1− (2ν − 1)2

)
IK . (3.103)

Therefore,

I(x1; ~y1|~s1)
K

≥ log

(
1 +

γ|h1,1|2(1− (2ν − 1)2)

1 + γ
∑N

i=2 |hi,1|2(1− (2ν − 1)2)

)
(3.104)

One can see that this lower bound is maximized for ν = 1
2 . Also, it is not sensitive to the value of

K. Hence,

sup
ν,K

I(x1; ~y1|~s1)
K

≥ log

(
1 +

γ|h1,1|2
1 + γ

∑N
i=2 |hi,1|2

)
. (3.105)

Let us define

τN , sup
γ

E

{
log

(
1 +

γ|h1,1|2
1 + γ

∑N
i=2 |hi,2|2

)}

=
1

(N − 2)!

∫
h∈R

∫
h′∈R

h′N−2 log
(

1 +
h

h′

)
e−h−h

′
dhdh′ (3.106)

where we have used the fact that |h1,1|2 is an exponential random variable with parameter 1 and
2
∑N

i=2 |hi,1|2 is a χ2
2(N−1) random variable. We call τN the Gaussian bounding threshold. It is the

average with respect to channel gains of the bound given in (3.105) as SNR goes to infinity.
We demonstrate that if N = 4, taking K > 1 and ν 6= 1

2 makes E
{

R
(lb)
1 (~h1)

}
be considerably

larger than τN at finite SNR values. This implies that there exists a set of nonzero measure for the
realizations of ~h1 such that R

(lb)
1 (~h1) is larger than log

(
1 + γ|h1,1|2

1+γ
PN
i=2 |hi,1|2

)
.

In order to calculate R
(lb)
1 (~h1), one needs to find H

(
SiΞiΞ

†
iS
†
i

)
. In appendix K, it is shown

that

H
(
SiΞiΞ

†
iS
†
i

)
= −3

K∑
k=0

(
K

k

)(
νk+1νK−k + νK−kνk+1

)
log
(
νk+1νK−k + νK−kνk+1

)
. (3.107)

In contrast to example 3, writing the expressions for the eigenvalues involved in the formula
for R

(lb)
1 (~h1) is a tedious task. As such, we finish the calculation of E

{
R

(lb)
1 (~h1)

}
by generating

the complete list of these eigenvalues via computer simulation. Setting the SNR at γ = 60dB, fig.
3.6 sketches E

{
R

(lb)
1 (~h1)

}
in terms of p1 = ν for different values of K. It is seen that the average
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Figure 3.6: Plots of E
{

R
(lb)
1 (~h1)

}
in terms of p1 = ν for different values of K. The value of SNR

is 60dB.

achievable rate per user has two humps and is not maximized at ν = 1
2 . The best performance is

obtained for K = 3 and ν = 0.09 or ν = 0.91.
To show that R1(~h1) has the same property, i.e., it is not maximized for ν = 1

2 , let us consider
a special case where the channel gains related to user 1 are given by h1,1 = 0.8409 − 0.0266

√−1,
h2,1 = −0.3059−1.1777

√−1, h3,1 = −0.8107+0.8421
√−1 and h4,1 = 0.0886+0.2034

√−1. Setting
K = 3, fig. 3.7 presents the plot of R1(~h1) in terms of ν for SNR=60dB. The maximum of R1(~h1)
is 1.577 bits/sec/hz that occurs for ν = 0.2 or 0.8. We have also sketched the Gaussian lower bound
log
(

1 + γ|h1,1|2
1+γ(|h2,1|2+|h3,1|2+|h4,1|2)

)
that is equal to 0.3155 bits/sec/hz.

The explanation for the existence of the humps is that for any K the MG and IEF factors7 are
both maximized at ν = 1

2 . Since a larger MG yields a larger rate and a larger IEF leads to smaller
values for the rate, the competition between these factors is settled at some ν that is not equal to
1
2 . �

7See remark 1.
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Figure 3.7: Plot of R1(~h1) in terms of p1 = ν for h1,1 = 0.8409 − 0.0266
√−1, h2,1 = −0.3059 −

1.1777
√−1, h3,1 = −0.8107 + 0.8421

√−1 and h4,1 = 0.0886 + 0.2034
√−1. The value of SNR is

60dB and K = 3.

3.5 Optimality Results

In chapter 2, we studied a decentralized network of users sharing a number of frequency sub-bands
where each user transmits independent Gaussian signals over a randomly selected frequency sub-
bands and repeats this process independently from transmission slot to transmission slot. Using
the time-frequency duality, this is equivalent to the randomized Time Hopping (TH) scenario where
each user remains silent randomly from transmission slot to transmission slot so that other users
have the opportunity of transmission without interference. Let the ith user transmit the signals
ui,1,ui,2, · · · consecutively during the slots that it is active. This is shown in fig. 3.8 where the
transmission slots during which a user remains silent are shown in black.

Let each user quit transmitting its signal from transmission slot to transmission slot with a
probability of 1 − θ. Dropping the index t in ui,t for the sake of notational simplicity, the signal
received at the receiver side of user 1 in a typical transmission slot can be written as

y1 = θ−
1
2h1,1c1u1 + θ−

1
2

N∑
i=2

hi,2ciui + z1 (3.108)
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RX3

u1,1 u1,2 · · ·

· · ·u2,2u2,1

u3,1 u3,2 · · ·

TX1

TX2

TX3

RX1

RX2

Figure 3.8: A typical decentralized network with N = 3 users based on randomized TH. Each user
is independently and randomly active and silent with probabilities θ and θ respectively.

where ci is a Ber(θ) random variable that determines if the ith user is active, i.e.,

ci =

{
1 The ith user is active.
0 Oth.

. (3.109)

Each ui satisfies the power constraint E{|ui|2} ≤ γ, and the factors θ−
1
2 in (3.108) are incorporated

to guarantee an average transmission power of less than or equal to γ per user.
For any 1 ≤ i ≤ N , if the ith user transmits i.i.d. signals (ui,t)t≥0 with PDF pu(.), the highest

achievable rate for user 1 is given by

C1(~h1; θ) , sup
u1,··· ,uN are i.i.d with PDF pu(.)

E{|u1|2}≤γ

I(u1, c1;y1). (3.110)

In case N = 2, one might think that selecting θ = 1
2 , the highest achievable rate one can

guarantee for user 1 is C1(~h1; 1
2). It turns out that this is not the case.
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The main result of this section is the following Theorem.

Theorem 3. In a decentralized network of N = 2 users operating based on randomized TH, for any
h1,1, h2,1 ∈ C and θ ∈ (0, 1), user 1 can achieve rates that are larger than C1(~h1; θ) for sufficiently
large values of γ. Equivalently, transmission of i.i.d. signals in consecutive transmission slots that
the users are active is suboptimal in the high SNR regime.

To prove Theorem 3, we need the following Lemma.

Lemma 8. Let z1 and z2 be circularly symmetric complex Gaussian random variables with variances
σ2

1 and σ2
2 respectively and x be independent of (z1, z2). Then, the answer to the optimization

problem
sup

x:E{|x|2}≤σ2

h(x + z1)− ξh(x + z2)

is a circularly symmetric complex Gaussian x for any σ2 and any ξ ≥ 1. Also, if σ2
1 ≤ σ2

2, the same
conclusion holds for any ξ ∈ R.

Proof. This is a direct consequence of Theorem 1 in [75].

Our strategy is to find an upper bound on C1(~h1; θ) for arbitrary θ ∈ (0, 1] and propose an
achievable rate that is larger than this upper bound. Our main tool is the signaling proposed in
this chapter based on random spreading. Throughout the rest of this section, we assume N = 2.
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3.5.1 An Upper Bound on C1(~h1; θ)

One can write

I(u1, c1;y1) = I(u1;y1|c1) + I(c1;y1)

≤ I(u1;y1|c1) + H(c1)

= I(u1; θ−
1
2h1,1c1u1 + h2,1c2u2 + z1|c1 = 1) Pr{c1 = 1}

+I(u1; θ−
1
2h1,1c1u1 + θ−

1
2h2,1c2u2 + z1|c1 = 0) Pr{c1 = 0}+ H (θ)

(a)
= θI(u1; θ−

1
2h1,1u1 + θ−

1
2h2,1c2u2 + z1) + H (θ)

(b)

≤ θI(u1; θ−
1
2h1,1u1 + θ−

1
2h2,1c2u2 + z1|c2) + H (θ)

= θI(u1; θ−
1
2h1,1u1 + θ−

1
2h2,1c2u2 + z1|c2 = 0) Pr {c2 = 0}

+θI(u1; θ−
1
2h1,1u1 + θ−

1
2h2,1c2u2 + z1|c2 = 1) Pr {c2 = 1}+ H (θ)

= θθ I(u1; θ−
1
2h1,1u1 + z1) + θ2I(u1; θ−

1
2h1,1u1 + θ−

1
2h2,1u2 + z1) + H (θ)

= θθ
(

h(θ−
1
2h1,1u1 + z1)− h(z1)

)
+θ2

(
h(θ−

1
2h1,1u1 + θ−

1
2h2,1u2 + z1)− h(θ−

1
2h2,1u2 + z1)

)
+ H (θ)

(c)
= θθ

(
h(θ−

1
2h1,1u1 + z1)− θ

θ
h(θ−

1
2h2,1u1 + z1)

)
+θ2h(θ−

1
2h1,1u1 + θ−

1
2h2,1u2 + z1)− θθ log(πe) + H (θ)

(d)
= θθ

(
h(u1 + z′1)− θ

θ
h(u1 + z′′1)

)
+ θ2h(θ−

1
2h1,1u1 + θ−

1
2h2,1u2 + z1)

+θθ log(θ−1|h1,1|2)− θ2 log(θ−1|h2,1|2)− θθ log(πe) + H (θ) (3.111)

where (a) follows due to I(u1;h1,1c1u1 + h2,1c2u2 + z1|c1 = 0) = 0, (b) is by the fact that the
mutual information between the input and output of the channel increases if a “genie” provides
the receiver side of user 1 with c2, (c) follows by the fact that u1 and u2 are identically distributed
and h(z1) = log(πe) and finally (d) follows by the fact that for any complex random variable x

and a ∈ C, we have h(ax) = h(x) + log |a|2. Also, z′1 and z′′1 are CN
(

0, θ
|h1,1|2

)
and CN

(
0, θ
|h2,1|2

)
random variables in the last equality in (3.111), respectively. By (3.110) and (3.111), we conclude
that

C1(~h1; θ) ≤ θθ sup
u1,u2 are i.i.d
E{|u1|2}≤γ

(
h(u1 + z′1)− θ

θ
h(u1 + z′′1)

)

+θ2 sup
u1,u2 are i.i.d
E{|u1|2}≤γ

h(θ−
1
2h1,1u1 + θ−

1
2h2,1u2 + z1)

+θθ log(θ−1|h1,1|2)− θ2 log(θ−1|h2,1|2)− θθ log(πe). (3.112)
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By the Maximum Entropy Lemma[80], it is trivial that

sup
u1,u2 are i.i.d
E{|u1|2}≤γ

h(θ−
1
2h1,1u1 + θ−

1
2h2,1u2 + z1) = log

(
πeθ−1

(|h1,1|2 + |h2,1|2
)
γ + 1

)
(3.113)

Invoking Lemma 8, if θ
θ
≥ 1 or |h1,1| > |h2,1|, or equivalently, θ ≥ 1

2 or |h1,1| > |h2,1|, the answer

to the optimization maxu1,u2 are i.i.d
E{|u1|2}≤γ

(
h(u1 + z′1)− θ

θ
h(u1 + z′′1)

)
is a complex Gaussian u1 whose

variance is possibly less than γ. Let the optimum u1 for this optimization problem be a CN (0, σ2)
random variable. We distinguish the following cases.

Case 1- If θ ≥ 1
2 and |h1,1|

|h2,1| <
(
θ
θ

) 1
2 , then σ2 = 0.

Case 2- If θ > 1
2 , |h1,1|
|h2,1| >

(
θ
θ

) 1
2 and γ > θ2θ

2θ−1

(
1

|h2,1|2 − θ
θ|h1,1|2

)
, then

σ2 = θθ
2θ−1

(
1

|h2,1|2 − θ
θ|h1,1|2

)
.

Case 3- If θ ≤ 1
2 and |h1,1|

|h2,1| > 1, then σ2 = γ
θ .

Verification of these cases is a straightforward task which is omitted for the sake of brevity.
Therefore, as far as θ ≥ 1

2 , the term supu1,u2 are i.i.d
E{|u1|2}≤γ

(
h(u1 + z′1)− θ

θ
h(u1 + z′′1)

)
saturates by

increasing γ. Using this fact together with (3.112) and (3.113),

C1(~h1; θ)
γ

. θ2 log γ. (3.114)

as far as θ ≥ 1
2 and for any h1,1, h2,1 ∈ C.

On the other hand, if θ < 1
2 and |h1,1|

|h2,1| > 1,

sup
u1,u2 are i.i.d
E{|u1|2}≤γ

(
h(u1 + z′1)− θ

θ
h(u1 + z′′1)

)
γ∼ θ − θ

θ
log γ. (3.115)

Using this together with (3.112) and (3.113),

C1(~h1; θ)
γ

. θθ log γ (3.116)

as far as θ < 1
2 and |h1,1|

|h2,1| < 1. However, we can remove the condition |h1,1|
|h2,1| > 1 by noting that

C1(~h1; θ) is an increasing function of |h1,1|. Hence, (3.116) holds for all θ < 1
2 regardless of the

values of h1,1 and h2,1.
To recap,

C1(~h1; θ)
γ

. max{θ2, θθ} log γ. (3.117)
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3.5.2 Achieving Rates Larger Than C1(~h1; θ)

A variant approach for signaling by any user is to not transmit i.i.d. signals in consecutive activ-
ity intervals (transmission slots where the user is not silent). Let each user apply the signaling
scheme presented in this chapter where the signature vectors ~s1 and ~s2 have length K = 2 and are
generated according to the PMF (qa)a∈A over an alphabet A such that 0 /∈ A. Since the output
of the transmitter for each user is automatically nulled independently from transmission slot to
transmission slot, one can think of the signature vectors at the output of the switch for user 1 and
user 2 as vectors ~̃s1 and ~̃s2 being constructed over the augmented alphabet Ã = A ∪ {0} where
based on our previous notation q0 = ε = θ. By Proposition 5, the achievable rate of user 1 scales
like

R1(~h1)
γ∼ 1

2
Pr
{
~̃s1 /∈ span{~̃s2}

}
. (3.118)

We are interested in values of θ so that C1(~h1; θ)
γ

. R1(~h1) is satisfied strictly. By (3.117) and
(3.118), it is sufficient to explore the values of θ in the set IA defined by

IA ,
{
θ ∈ (0, 1] :

1
2

Pr
{
~̃s1 /∈ span{~̃s2}

}
> max{θ2, θθ}

}
. (3.119)

Let A = {−1, 1} and q1 = q−1 = 1
2 . By (3.46) in example 2, one can see that

Pr
{
~̃s1 /∈ span{~̃s2}

}
= 1− θ2 − 2(θθ)2 − θ4

2
. (3.120)

By (3.119), we require that

1− θ2 − 2(θθ)2 − θ4

2
> 2 max{θ2, θθ}. (3.121)

Solving this inequality yields
I{−1,1} =∈ (0.31, 0.566). (3.122)

Next, we show through an example that for any two alphabets A1 and A2 with the property
A1 ( A2, we have IA1 ( IA2 .

Let A = {−2,−1, 1, 2} and q−2 = q−1 = q1 = q2 = 1
4 . Then, the elements of ~̃s1 and ~̃s2 are

i.i.d. random variables taking the values 0, −2, −1, 1 and 2 with probabilities θ, θ
4 , θ

4 , θ
4 and θ

4

respectively. The event ~̃s1 ∈ span{~̃s2} occurs if and only if ~̃s1 = ~02 or ~̃s1 6= ~02 and ~̃s1 = ±~̃s2 or
~̃s1 = ±2~̃s2 or ~̃s1 = ±1

2~̃s2. It is easy to see that

Pr
{
~̃s1 /∈ span{~̃s2}

}
= 1− θ2 − 2(θθ)2 − 3θ4

16
. (3.123)
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By (3.119), characterization of I{−2,−1,1,2} requires

1− θ2 − 2(θθ)2 − 3θ4

16
> 2 max{θ2, θθ}. (3.124)

Solving this inequality yields
I{−2,−1,1,2} = (0.297, 0.588). (3.125)

Therefore, I{−1,1} ( I{−2,−1,1,2} as desired. This completes the proof of Theorem 3, because by
expanding the alphabet, one can cover the whole interval (0, 1) for θ.
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Chapter 4

Block-Asynchronous Decentralized

Networks

4.1 System Model

We consider an interference channel with two users of separate transmitter-receiver pairs. The
network is assumed to be decentralized, i.e., there is no explicit cooperation among users. In par-
ticular, users are not aware of each other’s code-books. This implies that interference cancellation
is not possible and users treat each other’s signal as noise. The channel from transmitter i to
receiver j is modeled by a static and non-frequency selective gain hi,j . For simplicity of analysis,
we assume the channel from each transmitter to each receiver is slotted and the symbol intervals
on any of the four channels from different transmitters to different receivers coincide. Therefore,
the two users are symbol-synchronized, i.e., they are synchronous at the symbol level. Both users
utilize codewords of length T , i.e., any codeword has T symbols and each symbol is transmitted
in one symbol interval. User 1 (similar notation is applied for user 2) chooses its message in a
set of size 2bTRc where R is the transmission rate1 in bits/symbol. User 1 assigns a codeword
(x1,t)T−1

t=0 = (x1,0, · · · ,x1,T−1) consisting of zero-mean random variables2 to each of its messages.
Thereafter, (x1,t)T−1

t=0 is transmitted in T consecutive symbol intervals called a transmission block.
We assume

1
T

T−1∑
t=0

E
{|x1,t|2

} ≤ γ, (4.1)

i.e., the average transmission power per code symbol is less than or equal to γ.
1For fairness, we assume the transmission rates of both users are the same.
2We define x1,t = 0 for t ≥ T and t < 0. Also, the PDF of x1,t for any 0 ≤ t ≤ T − 1 is not Gaussian in general.
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We assume the rate of data arrival for both users is such that they may not have enough data
in their buffers and hence, the transmitted codewords by any user look like intermittent bursts
along the time axis. Whether a user is transmitting a codeword or not, a number of k bits arrive
in its buffer with a probability of q or no new data is received with a probability of 1 − q during
each symbol interval3. As soon as the number of bits in the buffer exceeds or is equal to bTRc,
a codeword representing bTRc bits is transmitted. Afterwards, the user remains silent until, once
again, enough data is accumulated in its queue. It is shown in [70] that the probability of data
loss with a finite buffer size can be made arbitrarily small if and only if R > kq. Users are block-
asynchronous in the sense that there exists a delay between their transmitted codewords. This is
due to the fact that the data streams of the two users are independent, i.e., if one user has enough
data for transmission, the other user may still need to wait to receive more data in its buffer.
Another reason is the mismatch between the activation instants of the users. In practice, one user
may become active before the other user joins the network.

Noting that the codewords are of equal length, the transmitted codeword by any user can at
most overlap with two transmitted codewords of the other user. For simplicity of analysis and in
order to get insight into the behavior of the system, we assume that the rate of data arrival is low
enough to ensure each transmitted codeword by any user overlaps with at most one transmitted
codeword by the other user. This can be guaranteed if the gap between any two consecutive
transmitted codewords by each user is larger than or equal to T symbol intervals4. This certainly
holds if R ≥ 2k. For R < 2k and as far as R

k is a rational number, we are able to find a range for q
such that for sufficiently large T , the gap between any two consecutive codewords is greater than
or equal to T almost surely. The following Proposition states our result.

Proposition 7. Let R
k = a

b < 2 where a, b ∈ N and the greatest common divisor of a and b is 1.
For sufficiently large codeword length T , the gap between any two consecutive codewords is greater
than or equal to T if

∞∑
m=1

(1− I1−q ((2b− a)m− 1, am)) <∞ (4.2)

where

Ic(c′, c′′) ,
∫ c

0 τ
c′−1(1− τ)c

′′−1dτ∫ 1
0 τ

c′−1(1− τ)c′′−1dτ
(4.3)

is the regularized incomplete beta function [86] for c′, c′′ ∈ N and c ∈ (0, 1).
3The same stochastic model for the input data streams is considered in [70] and references therein.
4It is straightforward to extend our analysis to include the general case. To fulfill this purpose, one must compute

the distribution of the gap between any two consecutive transmitted codewords by each user. This distribution

depends on the parameters k, q, T and R.
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Proof. Let bTRc be divisible by k, i.e., bTRc = nk for some n ∈ N. As soon as the number of
bits in the queue of user 1 is bTRc, a codeword is sent in T symbol intervals. Let AT be the
event that the number of bits received in the queue of user 1 during 2T − 2 consecutive symbol
intervals is greater than or equal to bTRc. In this case, the number of symbol intervals that user
1 remains silent and waits for enough bits in its queue in order to transmit the next codeword is
less than or equal to T − 1. Therefore, a codeword transmitted by user 2 may overlap with these
two consecutively transmitted codewords by user 1. We have

Pr {AT } =
2T−2∑
l=n

(
2T − 2

l

)
ql(1− q)2T−2−l

= 1−
n−1∑
l=0

(
2T − 2

l

)
ql(1− q)2T−2−l

= 1− I1−q(2T − n− 1, n) (4.4)

where the last step is by the properties of the regularized incomplete beta function [86] defined in
(4.3).

For fixed R and k, let T1, T2, T3, · · · be an increasing sequence of values for T such that bTmRc
is divisible by k for m ≥ 1. If R, k and q are such that

∞∑
m=1

Pr{ATm} =
∞∑
m=1

(
1− I1−q

(
2Tm − bTmRc

k
− 1,

bTmRc
k

))
<∞, (4.5)

we conclude by the Borel-Cantelli Lemma [89] that there is m0 ∈ N such that Pr{ATm} = 0 for
m ≥ m0. Assuming R

k = a
b , we let Tm = bm in (4.5). The result of the Proposition is immediate.

As an example, let R
k = 4

5 . By (4.2), we are interested in values of q such that

∞∑
m=1

(1− I1−q(6m− 1, 4m)) <∞. (4.6)

Simulation results show that (4.6) holds for any q < 0.4 and does not hold for any q ≥ 0.4.
Therefore, if R

k = 4
5 and q < 0.4, our assumption is valid for sufficiently large T .

Let x1,0 be transmitted at time instant t = 0. The signal received at the receiver side of user 1
at time instant t ≥ 0 is

y1[t] = h1,1x1,t + h2,1x2,t−dT + z1[t] (4.7)

where dT ∈ Z is a random integer representing the asynchrony between the users and z1[t] ∼
CN (0, 1) is the ambient noise5 at the receiver side of user 1 at time instant t. Since the ambient

5Similarly, z2[t] ∼ CN (0, 1).
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x2,T−dT−1

· · · · · ·

· · ·x2,0 · · ·

x1,0 x1,dT
x1,T−1

x2,T−1

Figure 4.1: There is a mutual delay dT between the transmitted codewords of the two users. Users
are assumed to be synchronous at the symbol level.

noise has unit variance, the parameter γ is a measure of SNR throughout the chapter. It is seen
that if |dT | ≥ T , there is no interference between the two users. On the other hand, if |dT | ≤ T −1,
the codewords of the two users overlap.

In order to model the asynchrony, we define an auxiliary random variable α with support
supp(α) =

[
0, 1

2

]
called the asynchrony random variable whose PDF, pα(.), is globally known to

all users. This random variable is used to describe the distribution of dT . Given a realization α of
α, we assume dT is uniformly distributed over the set of integers in the interval [1− T, T − 1]. Let
us define

λT (α) , Pr
{
dT = t

∣∣α = α
}

(4.8)

for all t ∈ [1− T, T − 1]∩Z. Since Pr {|dT | ≥ T} = 1− (2T − 1)λT (α) ≥ 0, we have λT (α) ≤ 1
2T−1 .

This yields
lim
T→∞

λT (α) = 0. (4.9)

Moreover, we assume limT→∞ TλT (α) exists and is equal to α, i.e.,

lim
T→∞

TλT (α) = α. (4.10)

Since limT→∞ TλT (α) ≤ limT→∞ T
2T−1 = 1

2 , the assumption made in (4.10) is consistent with the
definition of the support of α. If α = 0, the probability that there is no overlap between the
codewords of the users tends to 1 by increasing T . On the other hand, if α = 1

2 , the codewords
overlap (partially or completely) with a probability that approaches 1 as T tends to infinity.

Let us denote the interference at the receiver side of user 1 caused by user 2 at time instant t
by

w1[t] , h2,1x2,t−dT . (4.11)

From the viewpoint of receiver 1, if the knowledge about the realization of dT is not available,
the sequence (w1[t])T−1

t=0 is not an ergodic process in the sense that the Entropy Ergodic Theorem
[87] does not hold for (w1[t])T−1

t=0 , i.e., − log pw1[0],··· ,w1[T−1](w1[0],··· ,w1[T−1])

T does not converge (with
probability 1) to the entropy rate of (w1[t])T−1

t=0 as T tends to infinity. This is true even if (x2,t)T−1
t=0
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is entropy ergodic. We assume the receivers are able to measure (without error) the realization of
dT by the end of the transmission block (consisting of T symbol intervals) and perform the decoding
procedure afterwards. On the other hand, even if the receivers are aware of dT , due to the fact that
the transmitters are unaware of the realizations of α and dT , the channel is non-ergodic from the
transmitters’ standpoint6. In this setup, a commonly used computational tool to assess the system
performance is the probability of outage which is the subject of the next section.

4.2 Outage Analysis

In this section we assume the channel gains hi,j are realizations of i.i.d. random variables hi,j
representing Rayleigh fading, i.e., hi,j ∼ CN (0, 1). As mentioned before, transmitters are unaware
of the realizations of α and dT . We assume the transmitters are unaware of the realizations of the
channel gains as well. The receivers are assumed to be capable of estimating dT and the channel
gains. In fact, the decoders need to know the true amount of delay and the values of channel gains
for successful maximum likelihood or joint typicality decoding.

Let ~h1 ,
(
h1,1 h2,1

)t
be the vector containing the channel gains related to user 1. The outage

event for user 1 is defined by

O1,T ,
{
~h1,dT ,α : R1,T < R

}
(4.12)

where

R1,T , sup
I
(

(x1,t)T−1
t=0 ; (y1,t)

T−1
t=0

)
T

(4.13)

is the highest achievable rate of user 1 as if this user was aware of ~h1,dT and α. The sup is taken
over the set of all joint PDFs for (x1,t)T−1

t=0 that satisfy the Entropy Ergodic Theorem. We note
that the mutual information I

(
(x1,t)T−1

t=0 ; (y1,t)
T−1
t=0

)
is a function of the random quantities ~h1, dT

and α, i.e., these quantities are treated as parameters in order to calculate I
(

(x1,t)T−1
t=0 ; (y1,t)

T−1
t=0

)
.

Hence, R1,T is a function of ~h1, dT and α and therefore, it is a random variable. In general, finding
R1,T is an open problem. In fact, the optimum joint distribution of (x1,t)T−1

t=0 is unknown. Our
strategy is to assume a particular choice for the joint PDF of (x1,t)T−1

t=0 that yields a lower bound
R

(lb)
1,T on R1,T . These constitute the materials to be offered in this section.

Let us define the event O(lb)
1,T by

O(lb)
1,T ,

{
~h1,dT ,α : R

(lb)
1,T < R

}
. (4.14)

6In the context of compound channels[88], the achievable rate of each user corresponds to the worst case where

both users always overlap completely.
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Noting that Pr {O1,T } ≤ Pr
{
O(lb)

1,T

}
, we develop an upper bound on the probability of outage by

computing limT→∞ Pr
{
O(lb)

1,T

}
in the limit as T tends to infinity. In part 3 of the current section,

invoking the celebrated Lebesgue Dominated Convergence Theorem (LDCT) [89] in Proposition 8,
we find an expression for limT→∞ Pr

{
O(lb)

1,T

}
. The main problem that rises at this point is that

computing Pr
{
O(lb)

1,T

}
is a difficult task. Therefore, one can not compute Pr

{
O(lb)

1,T

}
in closed form

and find its limit directly as T tends to infinity. A way around this difficulty is to write Pr
{
O(lb)

1,T

}
as E

{
I
{

R
(lb)
1,T ≤ R

}}
. Hence, if one can show that limT→∞ I

{
R

(lb)
1,T ≤ R

}
exists almost surely,

then LDCT can be applied to yield limT→∞ Pr
{
O(lb)

1,T

}
= E

{
limT→∞ I

{
R

(lb)
1,T ≤ R

}}
.

Next, we introduce our signaling scheme called Randomized Masking (RM).

4.2.1 Randomized Masking

Following the randomized resource allocation strategies introduced in the previous chapters, we
assume each transmitter transmits a Gaussian symbol in each symbol interval with a probability
of θ ∈ (0, 1] and remains silent with a probability of θ. This process repeats independently from
symbol interval to symbol interval. This scheme is called Randomized Masking with activity factor
θ. In fact, (x1,t)T−1

t=0 is an i.i.d. sequence where the PDF of x1,t for any 0 ≤ t ≤ T − 1 is given by
θδ(.) + θg(c)

1

(
., γθ
)
. The codeword of user 1 can be written as

(x1,0, · · · ,x1,T−1) = (βc1,0s1,0, · · · , βc1,T−1s1,T−1) (4.15)

where (c1,t)T−1
t=0 are independent Ber(θ) random variables, (s1,t)T−1

t=0 are independent Gaussian ran-
dom variables with variance γ, and β = 1√

θ
is a scaling factor that is included in order to guarantee

(4.1). Note that taking θ = 1 is equivalent to continuous transmission of Gaussian signals.
By (4.7), the signal received at the receiver side of user 1 at time instant t ≥ 0 can be written

as
y1[t] = βh1,1c1,ts1,t + βh2,1c2,t−dT s2,t−dT + z1[t]. (4.16)

Since user 1 is unaware of the on-off pattern of user 2, the noise plus interference at receiver
1 has a mixed Gaussian PDF. As such, the mutual information (assuming user 1 is aware of
the realizations of delay and channel gains) has no closed formulation. Invoking entropy power
inequality [80] and developing a new upper bound on the differential entropy of a complex and
circularly symmetric mixed Gaussian random variable, we obtain an achievable rate for user 1 as

if this user knew the realizations ~h1 =
(
h1,1 h2,1

)t
, dT and α.
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4.2.2 Developing R(lb)
1,T

Let us define
T , {0 ≤ t ≤ T − 1 : c1,t = 1} (4.17)

and
S , {dT , dT + 1, · · · , dT + T − 1} . (4.18)

The random set T contains the time instants that masking is not performed by user 1, while S is
the set of time instants that the codeword of user 2 may overlap7 with the codeword of user 1. We
can write

I
(

(x1,t)T−1
t=0 ; (y1[t])T−1

t=0

)
= I

(
(c1,ts1,t)T−1

t=0 ; (y1[t])T−1
t=0

)
(a)
= I

(
(s1,t)t∈T ,T ; (y1[t])T−1

t=0

)
= I ((s1,t)t∈T ,T ; (y1[t])t∈T )

+I
(
(s1,t)t∈T ,T ; (y1[t])t/∈T

∣∣(y1[t])t∈T
)

(b)

≥ I ((s1,t)t∈T ,T ; (y1[t])t∈T )

= I (T ; (y1[t])t∈T ) + I
(
(s1,t)t∈T ; (y1[t])t∈T

∣∣T )
(c)

≥ I
(
(s1,t)t∈T ; (y1[t])t∈T

∣∣T )
(d)
= I

(
(s1,t)t∈T \S ; (y1[t])t∈T \S

∣∣T )
+I
(
(s1,t)t∈T ∩S ; (y1[t])t∈T ∩S

∣∣T )
(4.19)

where (a) holds since the two collections (c1,ts1,t)T−1
t=0 and ((s1,t)t∈T ,T ) are equivalent, i.e., one

yields the other, (b) and (c) are due to I
(
(s1,t)t∈T ,T ; (y1[t])t/∈T

∣∣(y1[t])t∈T
) ≥ 0 and I (T ; (y1[t])t∈T ) ≥

0, respectively, and finally, (d) follows from the fact that for each realization T of T , the collection of
random variables

(
(s1,t)t∈T \S , (y1[t])t∈T \S

)
is independent of the collection ((s1,t)t∈T ∩S , (y1[t])t∈T ∩S).

We compute the two terms on the right side of (4.19) separately.
7Overlap happens if and only if |dT | ≤ T − 1.
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Computation of I
(
(s1,t)t∈T \S ; (y1[t])t∈T \S

∣∣T )
We have

I
(
(s1,t)t∈T \S ; (y1[t])t∈T \S

∣∣T ) =
∑

T ∈supp(T )

Pr {T = T } I
(
(s1,t)t∈T \S ; (y1[t])t∈T \S

∣∣T = T )
(a)
=

∑
T ∈supp(T )

Pr {T = T } I
(
(s1,t)t∈T \S ; (y1[t])t∈T \S

)
(b)
=

∑
T ∈supp(T )

Pr {T = T } |T \S| log
(

1 +
|h1,1|2γ

θ

)
= E {|T \S|}u(~h1) (4.20)

where

u(~h1) , log
(

1 +
|h1,1|2γ

θ

)
. (4.21)

In (4.20), (a) holds by independence of T and the collection
(
(s1,t)t∈T \S , (y1[t])t∈T \S

)
for any

T ∈ supp(T ). Also, (b) is due to the fact that for any T ∈ supp(T ),

(y1[t])t∈T \S = (βh1,1s1,t)t∈T \S + (z1[t])t∈T \S . (4.22)

Finally, it is easy to verify that

E {|T \S|} =

{
θT |dT | ≥ T
θ|dT | |dT | ≤ T − 1

. (4.23)

Computation of I
(
(s1,t)t∈T ∩S ; (y1[t])t∈T ∩S

∣∣T )
We have

I
(
(s1,t)t∈T ∩S ; (y1[t])t∈T ∩S

∣∣T ) =
∑

T ∈supp(T )

Pr {T = T } I
(
(s1,t)t∈T ∩S ; (y1[t])t∈T ∩S

∣∣T = T )
=

∑
T ∈supp(T )

Pr {T = T } I ((s1,t)t∈T ∩S ; (y1[t])t∈T ∩S) .

(4.24)

For any T ∈ supp(T ),

(y1[t])t∈T ∩S = (βh1,1s1,t)t∈T ∩S + (w1[t] + z1[t])t∈T ∩S . (4.25)

This yields

I ((s1,t)t∈T ∩S ; (y1[t])t∈T ∩S) = h ((y1[t])t∈T ∩S)− h ((w1[t] + z1[t])t∈T ∩S) . (4.26)
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Applying the entropy power inequality8 to (4.25),

2
1

|T ∩S|h((y1[t])t∈T ∩S) ≥ 2
1

|T ∩S|h((βh1,1s1,t)t∈T ∩S) + 2
1

|T ∩S|h((w1[t]+z1[t])t∈T ∩S)
. (4.27)

Dividing both sides by 2
1

|T ∩S|h((w1[t]+z1[t])t∈T ∩S),

h ((y1[t])t∈T ∩S)− h ((w1[t] + z1[t])t∈T ∩S)

≥ |T ∩ S| log
(

2
1

|T ∩S| (h((βh1,1s1,t)t∈T ∩S)−h((w1[t]+z1[t])t∈T ∩S)) + 1
)

= |T ∩ S| log

(
2

1
|T ∩S|

„
|T ∩S| log

„
πe|h1,1|

2γ

θ

«
−h((w1[t]+z1[t])t∈T ∩S)

«
+ 1

)
(4.28)

where the last step follows by h ((βh1,1s1,t)t∈T ∩S) = |T ∩ S| log πe|h1,1|2γ
θ . However, (w1[t] +

z1[t])t∈T ∩S is a mixed Gaussian sequence. As a result, its differential entropy does not have a
closed expression. Using the following Lemma, we obtain an upper bound on this quantity.

Lemma 9. Let x be a circularly symmetric and complex mixed Gaussian random variable with
PDF

px(x) = p1g(c)
1 (x;σ2

1) + p2g(c)
1 (x, σ2

2) (4.29)

where σ2
1 < σ2

2 and p1 and p2 are positive numbers such that p1 + p2 = 1. Then,

h(x) ≤ −p1 log p1 − p2 log p2 + p1 log
(
πeσ2

1

)
+ p2 log

(
πeσ2

2

)
−p1 log

(
1 +

p2

p1

σ2
1

σ2
2

)
− p2σ

2
1

σ2
2

log
(

1 +
p1

p2

σ2
2

σ2
1

)
. (4.30)

Proof. This is a special case of the bound developed in appendix A for a mixed Gaussian random
variable with two variance levels.

Since the elements of the sequence (w1[t] + z1[t])t∈T ∩S are i.i.d.,

h ((w1[t] + z1[t])t∈T ∩S) = |T ∩ S|h (w1[t0] + z1[t0]) (4.31)

where t0 is an arbitrary element of T ∩ S. The PDF of w1[t0] + z1[t0] is a mixed Gaussian PDF
consisting of two Gaussian PDFs with variances 1 and 1 + |h2,1|2γ

θ and corresponding probabilities
θ and θ, respectively. Applying Lemma 9,

h (w1[t0] + z1[t0]) ≤ log(πe) + H (θ) + θ log
(

1 +
|h2,1|2γ

θ

)
−θ log

(
1 +

θ

θ

1

1 + |h2,1|2γ
θ

)
− θ

1 + |h2,1|2γ
θ

log
(

1 +
θ

θ

(
1 +
|h2,1|2γ

θ

))
.

(4.32)
8We note that all sequences are complex, i.e., they have 2|T ∩ S| real dimensions.
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As such,

h ((w1[t] + z1[t])t∈T ∩S) ≤ |T ∩ S|
(

log(πe) + H (θ) + θ log
(

1 +
|h2,1|2γ

θ

))
−|T ∩ S|θ log

(
1 +

θ

θ

1

1 + |h2,1|2γ
θ

)

− |T ∩ S|θ
1 + |h2,1|2γ

θ

log
(

1 +
θ

θ

(
1 +
|h2,1|2γ

θ

))
. (4.33)

Substituting this in (4.28),

h ((y1[t])t∈T ∩S)− h ((w1[t] + z1[t])t∈T ∩S) ≥ |T ∩ S|v(~h1) (4.34)

where

v(~h1) , log


2−H (θ)|h1,1|2γ

(
1 + θ

θ
1

1+
|h2,1|2γ

θ

)θ (
1 + θ

θ

(
1 + |h2,1|2γ

θ

)) θ

1+
|h2,1|2γ

θ

θ
(

1 + |h2,1|2γ
θ

)θ + 1

 . (4.35)

By (4.24) and (4.34),

I
(
(s1,t)t∈T ∩S ; (y1[t])t∈T ∩S

∣∣T ) ≥ E {|T ∩ S|} v(~h1). (4.36)

Finally, E {|T ∩ S|} can be calculated as

E {|T ∩ S|} =

{
0 |dT | ≥ T

θ(T − |dT |) |dT | ≤ T − 1
. (4.37)

Note that I
(
(s1,t)t∈T \S ; (y1[t])t∈T \S

∣∣T ) is computed in closed form, however, we have only
relied on a lower bound on I

(
(s1,t)t∈T ∩S ; (y1[t])t∈T ∩S

∣∣T ).
According to (4.19), (4.20) and (4.36),

I
(

(x1,t)T−1
t=0 ; (y1[t])T−1

t=0

)
≥ E {|T \S|}u(~h1) + E {|T ∩ S|} v(~h1). (4.38)

Recalling the definition of R1,T in (4.13), the expression in (4.38) motivates us to define R
(lb)
1,T as

R
(lb)
1,T , u(~h1)ϕT + v(~h1)ψT (4.39)

where the random variables ϕT and ψT are given by

ϕT ,
E {|T \S|}

T
=

{
θ |dT | ≥ T

θ|dT |
T |dT | ≤ T − 1

(4.40)

and

ψT ,
E {|T ∩ S|}

T
=

{
0 |dT | ≥ T

θ(1− |dT |T ) |dT | ≤ T − 1
. (4.41)
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4.2.3 Computation of limT→∞ Pr
{
O(lb)

1,T

}
For any t ∈ [1− T, T − 1] ∩ Z, let

νT , Pr {dT = t}

=
∫ 1

2

0
Pr
{
dT = t

∣∣α = α
}
pα(α)dα

=
∫ 1

2

0
λT (α)pα(α)dα. (4.42)

For simplicity of notation, we show the event
{
~h1,dT ,α : R

(lb)
1,T < R

}
by
{

R
(lb)
1,T < R

}
. Using the

tower property for conditional expectations [89],

Pr
{
O(lb)

1,T

}
= E

{
I
{

R
(lb)
1,T < R

}}
= E

{
E
{

I
{

R
(lb)
1,T < R

} ∣∣∣~h1

}}
. (4.43)

As such, we need to compute E
{

I
{

R
(lb)
1,T < R

} ∣∣∣~h1

}
. We have

E
{

I
{

R
(lb)
1,T < R

} ∣∣∣~h1

}
= E

{
I
{
u(~h1)ϕT + v(~h1)ψT < R

} ∣∣∣~h1

}
= E

{
I
{
u(~h1)ϕT + v(~h1)ψT < R

}
I
{|dT | ≥ T}∣∣∣~h1

}
+

T−1∑
d=−(T−1)

E
{

I
{
u(~h1)ϕT + v(~h1)ψT < R

}
I
{
dT = d

}∣∣∣~h1

}
(4.44)

where the last step is due to the fact that I
{|dT | ≥ T

}
+
∑T−1

d=−(T−1) I
{
dT = d

}
= 1. To compute

the first term on the right side of (4.44), we note that as long as |dT | ≥ T , then ϕT = θ and
ψT = 0. Therefore,

E
{

I
{
u(~h1)ϕT + v(~h1)ψT < R

}
I
{|dT | ≥ T}∣∣∣~h1

}
= E

{
I
{
θu(~h1) < R

}
I
{|dT | ≥ T}∣∣∣~h1

}
(a)
= E

{
I
{
θu(~h1) < R

} ∣∣∣~h1

}
E
{
I
{|dT | ≥ T}}

(b)
= I

{
θu(~h1) < R

}
Pr
{|dT | ≥ T}

(c)
= I

{
θu(~h1) < R

}
(1− (2T − 1)νT ) (4.45)

where (a) follows by independence of dT and ~h1, (b) is due to the fact that I
{
θu(~h1) < R

}
is a

deterministic function of ~h1, and (c) is by definition (4.42).
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To compute the second term on the right side of (4.44), we need the following Lemma.

Lemma 10. The inequality u(~h1) > v(~h1) holds almost surely.

Proof. See appendix L.

We can write∑T−1
d=−(T−1) E

{
I
{
u(~h1)ϕT + v(~h1)ψT < R

}
I
{
dT = d

}∣∣∣~h1

}
=

∑T−1
d=−(T−1) E

{
I
{
θ|d|
T
u(~h1) + θ

(
1− |d|

T

)
v(~h1) < R

}
I
{
dT = d

}∣∣∣~h1

}
=

∑T−1
d=−(T−1) E

{
I
{
θ|d|
T
u(~h1) + θ

(
1− |d|

T

)
v(~h1) < R

} ∣∣∣~h1

}
E
{
I
{
dT = d

}}
=

∑T−1
d=−(T−1) I

{
θ|d|
T
u(~h1) + θ

(
1− |d|

T

)
v(~h1) < R

}
Pr
{
dT = d

}
(a)
= νT

∑T−1
d=−(T−1) I

{
|d| < R−θv(~h1)

θ(u(~h1)−v(~h1))
T
}

(b)
= I

{
θv(~h1) < R

}
νT
∑T−1

d=−(T−1) I
{
|d| < R−θv(~h1)

θ(u(~h1)−v(~h1))
T
}

= I
{
θv(~h1) < R

}
νT
∑T−1

d=−(T−1) I
{
|d| ≤

⌊
R−θv(~h1)

θ(u(~h1)−v(~h1))
T
⌋}

(c)
= I

{
θv(~h1) < R

}
νT

(
1 + 2 min

{
T − 1,

⌊
R−θv(~h1)

θ(u(~h1)−v(~h1))
T
⌋})

(d)
= I

{
θv(~h1) < R

}
I
{

R−θv(~h1)

θ(u(~h1)−v(~h1))
≥ 1− 1

T

}
(2T − 1)νT

+I
{
θv(~h1) < R

}
I
{

R−θv(~h1)

θ(u(~h1)−v(~h1))
< 1− 1

T

}(
1 + 2

⌊
R−θv(~h1)

θ(u(~h1)−v(~h1))
T
⌋)

νT (4.46)

where (a) follows by Lemma 10, (b) is due to the fact that ifR ≤ θv(~h1), then we have I
{
|d| < R−θv(~h1)

θ(u(~h1)−v(~h1))
T
}

=

0, (c) is a consequence of
∑T−1

d=−(T−1) I
{
|d| ≤

⌊
R−θv(~h1)

θ(u(~h1)−v(~h1))
T
⌋}

being equal to the size of the set{
d ∈ Z : |d| ≤ min

{
T − 1,

⌊
R−θv(~h1)

θ(u(~h1)−v(~h1))
T
⌋}}

, and (d) holds by noting that T−1 ≤
⌊

R−θv(~h1)

θ(u(~h1)−v(~h1))
T
⌋

if and only if R−θv(~h1)

θ(u(~h1)−v(~h1))
≥ 1− 1

T .

By (4.44), (4.45) and (4.46), one can write E
{

I
{

R
(lb)
1,T < R

} ∣∣∣~h1

}
as

E
{

I
{

R
(lb)
1,T < R

} ∣∣∣~h1

}
= (1− (2T − 1)νT )I

{
θu(~h1) < R

}
+I
{
θv(~h1) < R

}
I

{
R− θv(~h1)

θ(u(~h1)− v(~h1))
≥ 1− 1

T

}
(2T − 1)νT

+I
{
θv(~h1) < R

}
I

{
R− θv(~h1)

θ(u(~h1)− v(~h1))
< 1− 1

T

}(
1 + 2

⌊
R− θv(~h1)

θ(u(~h1)− v(~h1))
T

⌋)
νT .

(4.47)
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The following Proposition yields limT→∞ Pr
{
O(lb)

1,T

}
. It is shown that limT→∞ Pr

{
O(lb)

1,T

}
depends

on the PDF of α only through E{α}.
Proposition 8. Let

χ(R, γ, θ) , Pr
{
θu(~h1) < R

}
(4.48)

and

ω(R, γ, θ) , 2E

(R− θv(~h1))I
{
θv(~h1) < R < θu(~h1)

}
θ(u(~h1)− v(~h1))

 . (4.49)

Then,

lim
T→∞

Pr
{
O(lb)

1,T

}
= χ(R, γ, θ) + ω(R, γ, θ)E{α}. (4.50)

Proof. To prove the Proposition, we need to verify

lim
T→∞

νT = 0 (4.51)

and
lim
T→∞

TνT = E {α} . (4.52)

For now, let us take these facts for granted. We will get back to the verification of (4.51) and (4.52)
after proving the result of the Proposition.

The key idea is to use the Lebesgue Dominated Convergence Theorem (LDCT) [89]. By (4.43),

lim
T→∞

Pr
{
O(lb)

1,T

}
= lim

T→∞
E
{

E
{

I
{

R
(lb)
1,T < R

} ∣∣∣~h1

}}
(a)
= E

{
lim
T→∞

E
{

I
{

R
(lb)
1,T < R

} ∣∣∣~h1

}}
(4.53)

where (a) is due to LDCT. To justify the use of LDCT, we need to check the following. Firstly, we
need to show that limT→∞ E

{
I
{

R
(lb)
1,T < R

} ∣∣∣~h1

}
exists almost surely. To verify this existence, we

use (4.47), (4.51) and (4.52). It is clear that

lim
T→∞

Pr {|dT | ≥ T} I
{
θu(~h1) < R

}
= (1− 2E {α}) I

{
θu(~h1) < R

}
(4.54)

and

lim
T→∞

I
{
θv(~h1) < R

}
I

{
R− θv(~h1)

θ(u(~h1)− v(~h1))
≥ 1− 1

T

}
(2T − 1)νT

(a)
= 2E {α} I

{
θv(~h1) < R

}
I
{
θu(~h1) < R

}
= 2E {α} I

{
θmax

{
u(~h1), v(~h1)

}
< R

}
(b)
= 2E {α} I

{
θu(~h1) < R

}
. (4.55)
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where (a) is due to the fact that limT→∞ I
{

R−θv(~h1)

θ(u(~h1)−v(~h1))
≥ 1− 1

T

}
= I

{
θu(~h1) < R

}
and (b) is a

consequence of Lemma 10. Also, using a− 1 ≤ bac ≤ a for any a ∈ R, it is easily seen that

lim
T→∞

I
{
θv(~h1) < R

}
I

{
R− θv(~h1)

θ(u(~h1)− v(~h1))
< 1− 1

T

}(
1 + 2

⌊
R− θv(~h1)

θ(u(~h1)− v(~h1))
T

⌋)
νT

=
2E {α} (R− θv(~h1))

θ(u(~h1)− v(~h1))
I
{
θv(~h1) < R < θu(~h1)

}
. (4.56)

By (4.47), (4.54), (4.55) and (4.56),

lim
T→∞

E
{

I
{

R
(lb)
1,T < R

} ∣∣∣~h1

}
= I

{
θu(~h1) < R

}
+

2E {α} (R− θv(~h1))

θ(u(~h1)− v(~h1))
I
{
θv(~h1) < R < θu(~h1)

}
.

(4.57)

Secondly, there must exist a random variable (or a constant) Υ such that

E
{

I
{

R
(lb)
1,T < R

} ∣∣∣~h1

}
≤ Υ (4.58)

for any T ≥ 1 and E {Υ} <∞. Clearly, one can take Υ = 1.
This concludes the proof of (4.50).
Finally, we need to verify (4.51) and (4.52). By (4.42), νT = E {λT (α)}. However, λT (α) ≤ 1

for any T ≥ 1 and limT→∞ λT (α) = 0 almost surely. Hence, by LDCT,

lim
T→∞

νT = lim
T→∞

E {λT (α)}

= E
{

lim
T→∞

λT (α)
}

= 0. (4.59)

The expression in (4.52) can be proved similarly. This concludes the Proposition.

The following Corollary yields the exact (not an upper bound) probability of outage for contin-
uous transmission (θ = 1) of Gaussian codewords known as the CT scheme.

Corollary 3. In the CT scheme, the exact value of the probability of outage is given by χ(R, 1) +
ω(R, 1)E{α}.

Proof. By Proposition 8, χ(R, 1) +ω(R, 1)E{α} is an upper bound on the probability of outage for
the CT scheme. To prove that this upper bound is tight, it suffices to show that R

(lb)
1,T is in fact the

exact achievable rate attained by transmitting Gaussian codewords without adopting the masking
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scenario. We already know that I
(
(s1,t)t∈T \S ; (y1[t])t∈T \S

∣∣T ) is exactly equal to E {|T \S|}u(~h1).
However, I

(
(s1,t)t∈T ∩S ; (y1[t])t∈T ∩S

∣∣T ) is only an upper bound to E {|T ∩ S|} v(~h1). By (4.39),
it is sufficient to show that setting θ = 1 implies that I

(
(s1,t)t∈T ∩S ; (y1[t])t∈T ∩S

∣∣T ) is equal to
E {|T ∩ S|} v(~h1). The only steps that make I

(
(s1,t)t∈T ∩S ; (y1[t])t∈T ∩S

∣∣T ) be an upper bound
to E {|T ∩ S|} v(~h1) are in (4.27) (use of entropy power inequality) and (4.32) (the upper bound
on the differential entropy of a complex mixed Gaussian random variable). Setting θ = 1 makes
the sequences (x1,t)T−1

t=0 and (x2,t)T−1
t=0 be Gaussian. Since the entropy power inequality is tight for

Gaussian vectors and the upper bound given in Lemma 9 is tight for Gaussian random variables,
the proof of the Corollary is complete.

The upper bound on the probability of outage given in Proposition 8 is not tight for θ < 1. In
the next section, we demonstrate that the minimum of χ(R, γ, θ) +ω(R, γ, θ)E{α} occurs for some
θ that is less than 1. Since setting θ = 1 results in the exact probability of outage, we conclude
that the RM scheme in fact decreases the probability of outage per user. Equivalently, through
using the RM scheme, it is possible to transmit at higher transmission rates, while the probability
of outage is kept below a certain threshold.

4.3 System Design and Simulation Results

In the previous section we have developed an upper bound on the probability of outage given by

lim
T→∞

Pr {O1,T } ≤ χ(R, γ, θ) + ω(R, γ, θ)E{α} (4.60)

Our goal is to find θ that minimizes this upper bound on the probability of outage. As such, we
set θ = θ̂(R, γ) where

θ̂(R, γ) , arg min
θ∈(0,1]

(
χ(R, γ, θ) + ω(R, γ, θ)E{α}

)
. (4.61)

The design criteria in (4.61) only depends on E {α}. In the following, we refer to E {α} as α0.
The performance evaluation is based on fixing a threshold ε ∈ (0, 1) and finding the largest

transmission rate R(ε) such that the probability of outage does not exceed ε. However, since we
only have an upper bound on the probability of outage, we can only obtain a lower bound on R(ε)
as far as θ < 1. Also, by Corollary 3 we have the exact value of R(ε) for θ = 1.

In practice, the users may not have any knowledge about α0. In this case, the design rule in
(4.61) is applied for the extreme case where α0 = 0.5. Figure 4.2 (the leftmost plot) demonstrates
the performance of the RM strategy designed for α0 = 0.5 compared to the performance achieved
by CT that is designed for various actual values of α0. The curves show the highest transmission
rates in terms of SNR to guarantee a probability of outage less than ε = 0.01. Note that the RM
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scheme would offer a better performance if it was designed for the actual value of α0. It is seen that
even though the RM scheme is designed to handle the worst case, its performance is still superior
to that of the CT scenario for a wide range of α0. For example, it is seen that if α0 = 0.1, the
RM scheme (designed for α0 = 0.5) offers a better performance than CT (designed for the actual
value α0 = 0.1) for at least all values of SNR larger than 36dB. In fig. 4.2 (the middle plot), the
corresponding activity factors used in the RM scheme designed for α0 = 0.5 at different SNR values
are shown. In case the actual value of α0 is less than 0.5, one expects the probability of outage be
less than 0.01 by regulating the transmission rate and the activity factor in the RM scheme at the
values given in fig. 4.2 (the leftmost and middle plots, respectively). This is confirmed in fig. 4.2
(the rightmost plot).

In another scenario, we let both RM and CT be designed for the actual values of α0. Figure
4.3 compares the performance of the RM and CT schemes in terms of the transmission rate vs.
SNR for different values of α0. The probability of outage is not allowed to exceed ε = 0.01. The
supremacy of RM over CT becomes more apparent for larger values of α0. This is because the
probability that the codewords of the two users overlap increases as α0 becomes larger.
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Figure 4.2: The leftmost plot presents sketch of transmission rate vs. SNR for RM and CT. The
RM scheme is designed for α0 = 0.5. However, the curves related to the CT scheme are sketched
for actual values of α0 = 0.1, 0.3 or 0.5. The probability of outage is not allowed to exceed 0.01, i.e.,
ε = 0.01. The middle plot demonstrates the activity factor (θ) related to the RM scheme designed
for α0 = 0.5 and ε = 0.01. The rightmost plot shows the upper bound on the probability of outage
for the RM scheme (designed in terms of transmission rate and activity factor for α0 = 0.5 and
ε = 0.01) in case the actual value of α0 is 0.1 or 0.3.

102



Figure 4.3: Plots of transmission rate vs. SNR for the RM and CT schemes for different values of
the delay parameter. The probability of outage is not allowed to exceed 0.01.
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Chapter 5

Conclusion and Future Research

5.1 Conclusion

In chapter 2, we have addressed a decentralized wireless communication network with a fixed
number u of frequency sub-bands to be shared among N transmitter-receiver pairs. It is assumed
that the number of active users is a realization of a random variable with a given distribution.
Moreover, users are assumed to be unaware of each other’s codebook and hence, no multiuser
detection is possible. We proposed a randomized Frequency Hopping (FH) scheme in which each
transmitter randomly hops over subsets of the u sub-bands from transmission slot to transmission
slot. Assuming all users transmit Gaussian signals, the distribution of noise plus interference is
mixed Gaussian, which makes the calculation of the mutual information between the input and
output of each user intractable. We derived lower and upper bounds on this mutual information
and demonstrated that for large SNR values, the two bounds coincide. This observation enabled us
to compute the sum multiplexing gain of the system and obtain the optimum hopping strategy for
maximizing this value. We compared the performance of the FH with that of the FD in terms of
the following performance measures: average sum multiplexing gain (η(1)) and average minimum
multiplexing gain per user (η(2)). We showed that (depending on the probability mass function
of the number of active users) the FH system can offer a significant improvement in terms of η(1)

and η(2) (implying a more efficient usage of the spectrum). In the sequel, we considered a scenario
where the channel gains are quasi-static Rayleigh fading. The transmitters are assumed to be
unaware of the number of active users in the network as well as the channel gains. Developing a
new upper bound on the differential entropy of a mixed Gaussian random vector and via entropy
power inequality, we offered three lower bounds on the ε-outage capacity for each user in the
proposed scheme. Asymptotic analysis was presented in terms of SNR and outage threshold. In
the asymptotically small ε regime, we observed that the maximum outage capacity is obtained for
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either v = 1 or v = u; in the asymptotically small SNR regime, we demonstrated that for all values
of v the system achieves the optimal performance; for asymptotically large SNR, it is shown that
vopt =

⌈
u

nmax

⌉
, where nmax is the maximum number of concurrently active users in the network.

We compared the outage capacity of the underlying FH scheme with that of the FD scenario for
various setups in terms of distributions on the number of active users, SNR and ε and showed that
FH outperforms FD in many cases.

In chapter 3, spectral efficiency in decentralized wireless networks of separate transmitter-
receiver pairs was studied. A signaling scheme was introduced where the code-book for each user
consisted of two groups of codewords, referred to as signal codewords and signature codewords.
Utilizing a conditional version of entropy power inequality and a key Lemma on the differential
entropy of a random vector with mixed PDF an inner bound in the capacity region of the network
was developed. For consistency reasons, each user designs its signature codewords based on maxi-
mizing the average (with respect to a globally known PDF for the channel gains) of the achievable
rate per user. It was demonstrated how the SMG in the network (regardless of the number of
users) can be made arbitrarily close to the SMG of a TD system. A pivotal observation was that
the elements of the signature vectors are not equiprobable over the underlying alphabet in contrast
to the customary use PN signatures in randomly spread CDMA where the chip elements are +1 or
−1 with equal probability. Based on this observation, we showed how to achieve a nonzero SMG
in a randomly spread CDMA-based multiple access channel equipped with matched filters at the
common receiver. In the sequel, invoking an extremal inequality, we presented an optimality result
by showing that in bluetooth systems, transmission of i.i.d. signals in consecutive transmission slots
is suboptimal regardless of the PDF of the signals.

Finally, in chapter 4 a decentralized Gaussian interference channel consisting of two block-
asynchronous users is studied. The network is decentralized, i.e., there is no central controller to
assign the resources to the users and users do not explicitly cooperate. In particular, no user is
aware of the other user’s code-book. As such, multiuser detection is not possible at the receivers.
We considered a scenario where the rate of data arrival at the encoders is considerably low and
codewords of each user are transmitted at random instants depending on the availability of data
for transmission. Users are block-asynchronous meaning there exists a mutual delay between their
transmitted signal bursts. Due to the randomness of delay, no user is aware of the location of
interference bursts on its transmitted data. A model for delay was suggested in which the starting
point of an interference burst is uniformly distributed along the transmitted codeword. We also
included the possibility that with a certain probability each user might not experience interference
on a transmitted codeword at all. Since this model is non-ergodic, probability of outage was
used as a computational tool to study the performance. It was proposed that each user follows a
locally Randomized Masking (RM) scheme where the transmitter quits transmitting the Gaussian
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symbols in its codeword independently from transmission to transmission. An upper bound on
the probability of outage per user was developed using entropy power inequality and a key upper
bound on the differential entropy of a mixed Gaussian random variable. It was shown that by
adopting the RM scheme, the probability of outage is strictly lower than the case where both users
continuously transmit the Gaussian symbols in their codewords.

5.2 Future Research Directions

5.2.1 Sum Multiplexing Gain

In chapter 3, we have shown how an SMG of 1 is achievable in a decentralized interference channel
with N users for any N ≥ 2. The signature-book that achieves this SMG does not depend on the
channel gains, i.e., our result holds for realization of the channel gains. As it is already pointed
out, the knowledge of users about the channel gains is only partial and each user is only expected
to know the gains of the channels from all transmitters to its own receiver. This raises the question
if an SMG larger than 1 can be attained by incorporating the partial knowledge of users about the
channel gains. Showing that an SMG larger than 1 is not achievable in a decentralized network
of arbitrary number of users and for almost any realization of the channel gains would also be an
interesting direction to investigate.

5.2.2 Coexistence Through Cognition

An alternative is to consider a network of one primary and N secondary users modeled by an
interference channel with N+1 users. We assume Pr{N = 0} > 0, i.e., it is likely that the primary
user is the only user in the network. The primary user is “dumb” in the sense that:

1- The primary transmitter is unaware of the channel gains.
2- The primary transmitter is unaware of the realization of N .
3- The primary user is unaware of the code-books of the secondary users.
The secondary users are “smart” in the sense that:
1- Each secondary user is aware of its forward channel gain and the gains of the channels

connecting all transmitters to its receiver.
2- Each secondary user is aware of the realization of N .
3- Each secondary user is aware of the code-book of the primary user. However, the secondary

users are unaware of each other’s code-book, i.e., they are anonymous to each other.
Note that we only assume the secondary users are aware of the primary user’s code-book and not

its message. This is in contrast to the assumption made in the literature on cognitive radios that the
secondary transmitter is aware of the primary user’s message. Therefore, the secondary transmitter
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in our setup is unable to perform dirty paper coding, however, the secondary receiver is capable of
multiuser detection (decoding its message and message of the primary user simultaneously, while
treating other secondary users as noise).

This setup for the cognitive network is a decentralized setup where the secondary users only
sneak into the network and have to make sure the primary user’s performance is always maintained
at a satisfactory level, while the quality of service for each secondary user is convincing as well. The
strategy for the primary user is to continuously transmit Gaussian codewords as if the secondary
users were not present at all. On the other hand, the secondary users perform the RM scenario
proposed in chapter 4 in order to provide the primary user and each other with partially interference-
free reception.

As the primary transmitter is unaware of the channel gains and the presence of the secondary
users, outage probability is an appropriate measure to assess the quality of service for this user. We
propose that the transmission rate Rp of the primary user and the activity factor θ of the secondary
users must be such that the probability of outage for the primary user is kept less than a threshold
ε. We define the ε-admissible region Aε as

Aε , {(θ,Rp) : Pr{Outage for The Primary User} ≤ ε} .

The primary receiver treat the interference as noise. However, the secondary receiver has two
options, i.e., treating interference as noise and multiuser detection. Let us denote the rate region
associated with the ith secondary user by Ri(θ) and the transmission rate of this secondary user
by Rs,i. Fixing Rp and θ, we define ωi(θ,R1) by

ωi(θ,Rp) , sup{Rs,i : (Rp, Rs,i) ∈ Ri(θ)}.

Thereafter, assuming U(Rp, Rs,1, · · · , Rs,N ) is a globally known utility function of the rates of
the users, the rate Rp and the activity factor θ are selected based on the rule

(θ̂, R̂p) = arg max
(θ,Rp)∈Aε

E
{

U
(
Rp, ω1(θ,Rp), · · · , ωN (θ,Rp)

)}
where the expectation is with respect to the channel gains and the number of secondary users.
Hence, the primary user regulates its transmission rate at R̂p and each secondary transmitter
regulates its activity factor at θ̂. Moreover, the ith secondary user sets its transmission rate at
ωi(θ̂, R̂p) using its knowledge of N and the channel gains from all transmitters to its receiver.

In the sequel, one may consider a different strategy where each secondary transmitter listens to
transmission of the primary transmitter and forwards this data towards the primary receiver in the
next transmission slot. It is clear that the secondary receiver also experiences more interference as
a result of this scheme. We can repeat the previous design technique again with the slight difference
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that the power splitting performed at each secondary transmitter in order to forward the signal of
the primary transmitter and its own signal is also part of the optimization rule.
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Appendix A; Proof of Lemma 1

Let us consider a t × 1 complex vector ~z with mixed Gaussian distribution p~z(~z) with different
covariance matrices {Cl}Ll=1 and associated probabilities {pl}Ll=1 given by

p~z(~z) =
L∑
l=1

plg
(c)
t (~z, Cl), (5.1)

where g(c)
t (~z, Cl) = 1

πt detCl
exp

(−~z†C−1
l ~z
)

and it is assumed that Cl = %2
l It and %2

1 < %2
2 < · · · < %2

L.
One can write ∫

p~z(~z) log p~z(~z)d~z =
L∑
l=1

Jl (5.2)

where Jl = pl
∫
g

(c)
t (~z, Cl) log p~z(~z)d~z for 1 ≤ l ≤ L. To find a proper lower bound on each Jl, we

proceed as follows. We have

Jl = pl

∫
g

(c)
t (~z, Cl) log

(
L∑

m=1

pmg
(c)
t (~z, Cm)

)
d~z. (5.3)

On the other hand, one can write log
(∑L

m=1 pmg
(c)
t (~z, Cm)

)
as

log

(
L∑

m=1

pmg
(c)
t (~z, Cm)

)
= log

(
plg

(c)
t (~z, Cl)

)
+ log

(
1 +

l−1∑
m=1

pm
pl

g
(c)
t (~z, Cm)

g
(c)
t (~z, Cl)

+
L∑

m=l+1

pm
pl

g
(c)
t (~z, Cm)

g
(c)
t (~z, Cl)

)
.

(5.4)
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However, the term
∑L

m=l+1
pm
pl

g
(c)
t (~z,Cm)

g
(c)
t (~z,Cl)

=
∑L

m=l+1
pm
pl

%2tl
%2tm

exp−(( 1
%2m
− 1

%2l
)~z†~z

)
is always greater

than
∑L

m=l+1
pm
pl

%2tl
%2tm

. Hence, we arrive at

log

(
L∑

m=1

pmg
(c)
t (~z, Cm)

)
≥ log

(
plg

(c)
t (~z, Cl)

)
+ log

(
1 +

L∑
m=l+1

pm
pl

%2t
l

%2t
m

+
l−1∑
m=1

pm
pl

g
(c)
t (~z, Cm)

g
(c)
t (~z, Cl)

)
. (5.5)

On the other hand, the term
∑l−1

m=1
pm
pl

g
(c)
t (~z,Cm)

g
(c)
t (~z,Cl)

=
∑l−1

m=1
pm
pl

%2tl
%2tm

exp−(( 1
%2m
− 1

%2l
)~z†~z

)
is always

less than
∑l−1

m=1
pm
pl

%2tl
%2tm

. Now, we use the following inequality1, which is valid for any b > 0 and
0 ≤ x ≤ a,

log(1 + b+ x) ≥
(

1− x

a

)
log(1 + b) +

x

a
log(1 + a+ b). (5.6)

Utilizing this in the expression on the right side of (5.5), we get

log

(
L∑

m=1

pmg
(c)
t (~z, Cm)

)
≥

(
1− 1

νl

l−1∑
m=1

pm
pl

g
(c)
t (~z, Cm)

g
(c)
t (~z, Cl)

)
log(1 + µl)

+
1
νl

l−1∑
m=1

pm
pl

g
(c)
t (~z, Cm)

g
(c)
t (~z, Cl)

log(1 + νl + µl). (5.7)

where µl =
∑L

m=l+1
pm
pl

%2tl
%2tm

and νl =
∑l−1

m=1
pm
pl

%2tl
%2tm

. Using this in (5.3) yields

Jl ≥ pl

∫
g

(c)
t (~z, Cl) log(plg

(c)
t (~z, Cl))d~z +

(
pl −

∑l−1
m=1 pm
νl

)
log(1 + µl)

+
∑l−1

m=1 pm
νl

log(1 + νl + µl). (5.8)

The first term on the right side can be calculated as

pl

∫
g

(c)
t (~z, Cl) log

(
plg

(c)
t (~z, Cl)

)
d~z = pl log (pl)

∫
g

(c)
t (~z, Cl)d~z

+pl

∫
g

(c)
t (~z, Cl) log g(c)

t (~z, Cl)d~z

= pl log pl + pl

∫
g

(c)
t (~z, Cl) log g(c)

t (~z, Cl)d~z

(a)
= pl log pl − pl log

(
(πe)t detCl

)
= pl log pl − tpl log(πe%2

l ) (5.9)
1One may verify this using Jensen’s inequality and concavity of the log(.) function.
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where in (a) we have used the fact that the differential entropy of a t× 1 complex Gaussian vector
with covariance matrix Cl is log

(
(πe)t detCl

)
. Thus,

h(~z) = −
∫
p~z(~z) log p~z(~z)d~z = −

L∑
l=1

Jl

≤ −
L∑
l=1

pl log pl + t

L∑
l=1

pl log
(
πe%2

l

)
−

L∑
l=1

(
pl −

∑l−1
m=1 pm
νl

)
log(1 + µl)

−
L∑
l=1

∑l−1
m=1 pm
νl

log(1 + νl + µl).

(5.10)

Briefly,

h(~z) ≤ t
L∑
l=1

pl log(πe%2
l ) + H−G′′ (5.11)

where

H = −
L∑
l=1

pl log pl (5.12)

and

G′′ =
L∑
l=1

(
pl −

∑l−1
m=1 pm
νl

)
log(1 + µl) +

L∑
l=1

∑l−1
m=1 pm
νl

log(1 + νl + µl).

(5.13)

G′′ is a complicated function of {%l}Ll=1. To simplify it, one may notice that G′′ is an increasing
function of µl. Hence, using µl ≥ 0, we get a lower bound on G′′, namely G′ given by

G′ =
L∑
l=2

log(1 + νl)
νl

l−1∑
m=1

pm. (5.14)

On the other hand, using the fact that log(1+x)
x is a decreasing function of x, one may obtain a lower

bound on G′ by finding an upper bound on νl for each l. One option is νl ≤ %2tL
%2t1

Pl−1
m=1 pm
pl

. Thus, we
come up with the following lower bound on G′

G′ ≥ G ,
%2t

1

%2t
L

L∑
l=2

pl log

(
1 +

%2t
L

%2t
1

∑l−1
m=1 pm
pl

)
. (5.15)
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Appendix B; Proof of (2.50)

Let us consider the generalized FH scheme with hopping parameter v = v∗. The number of
frequency sub-bands chosen by the ith user in a typical transmission slot is denoted by the random
variable vi. This number changes independently from transmission slot to transmission slot. In
fact, Pr {vi = bv∗c} = dv∗e − v∗ and Pr {vi = dv∗e} = v∗ − bv∗c. We mention that {vj}Nj=1 are
independent random variables. As before, we denote the set of frequency sub-bands selected by
the ith user by si where |si| = vi. To be more clear, we use the notation si(vi) instead of si. The
achievable rate of the ith user is given by

Ri = I(~xi; ~yi|vi, si(vi)) =
∑

vi∈{dv∗e,bv∗c}
Pr{vi = vi}I(~xi; ~yi|vi = vi, si(vi) = s∗i (vi)) (5.16)

where s∗i (vi) denotes the selection of the first vi sub-bands by the ith user. Following the same lines
that led to the lower bound in Theorem 2,

I(~xi; ~yi|vi = vi, si(vi) = s∗i (vi)) ≥
vi
2

log
(

2
2
vi

(h(~xi(s
∗
i (vi)))−h(~z′i))

)
(5.17)

where ~z′i consists of the first vi elements of ~zi. On the other hand,

h(~z′i) ≤ h(~z′i, {vj}j 6=i)
= h(~z′i|{vj}j 6=i) + H({vj}j 6=i)
= h(~z′i|{vj}j 6=i) +

∑
j 6=i

H(vj)

= h(~z′i|{vj}j 6=i) + (N − 1)H (dv∗e − v∗).
(5.18)

Let us define

v′j =

{
vj 1 ≤ j ≤ i− 1
vj+1 i ≤ j ≤ N − 1

. (5.19)
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Then, we have the thread in (5.20).

h(~z′i|{vj}j 6=i) = h(~z′i|{v′j}N−1
j=1 )

=
∑

v′1,··· ,v′N−1∈{dv∗e,bv∗c}

N−1∏
j=1

Pr{v′j = v′j}h(~z′i|v′1 = v′1, · · · ,v′N−1 = v′N−1)

≤ vi
∑

v′1,··· ,v′N−1∈{dv∗e,bv∗c}

N−1∏
j=1

Pr{v′j = v′j}h(zi,1|v′1 = v′1, · · · ,v′N−1 = v′N−1).

(5.20)

Using Lemma 1,

h(zi,1|v′1 = v′1, · · · ,v′N−1 = v′N−1) ≤ 1− ai,0(v′1, · · · , v′N−1)
2

log(ζi,Li(v
′
1, · · · , v′N−1)γ + 1)

−
Li∑
l=0

ai,l(v′1, · · · , v′N−1) log ai,l(v′1, · · · , v′N−1)

+ log(
√

2πeσ).

(5.21)

Assuming the channel gains are realizations of independent and continuous random variables, then
Li = 2N−1−1. The set {ai,l(v′1, · · · , v′N−1)}2N−1−1

l=0 consists of the numbers
∏n
k=1

v′mk
u

∏
1≤m≤N−1
m/∈{mk}nk=1

(
1− v′m

u

)
for 1 ≤ n ≤ N − 1 and 1 ≤ m1 < · · · < mn ≤ N − 1. Also,

ai,0(v′1, · · · , v′N−1) =
N−1∏
j=1

(
1− v′j

u

)
(5.22)

and

ζi,Li(v
′
1, · · · , v′N−1) =

∑
j 6=i

|hj,i|2
v′j

. (5.23)

Clearly,

ζi,Li(v
′
1, · · · , v′N−1) ≤

∑
j 6=i |hj,i|2
bv∗c . (5.24)
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The equations (5.20) to (5.24) yield (5.25).

h(~zi|{vj}j 6=i) ≤ vi
2

1−
N−1∏
j=1

1−
E
{
v′j
}

u

 log

(
γ
∑

j 6=i |hj,i|2
bv∗c + 1

)
+ vi log(

√
2πeσ)

−vi
N−1∑
n=0

∑
{mk}nk=1

E


n∏
k=1

v′mk
u

∏
1≤m≤N−1
m/∈{mk}nk=1

(
1− v

′
m

u

)
log

 n∏
k=1

v′mk
u

∏
1≤m≤N−1
m/∈{mk}nk=1

(
1− v

′
m

u

)
 .

(5.25)

It is straightforward to show that the last term in (5.25) is equal to (N −1)viϑv∗ where ϑv∗ is given
in (2.51). Finally, by (5.16), (5.17), (5.18) and (5.25),

Ri ≥ E


vi
2

log

 2−2(N−1)
“
ϑv∗+

H (dv∗e−v∗)
vi

”
γ|hi,i|2

vi

(
γ
P
j 6=i |hj,i|2
bv∗c + 1

)1−(1− v∗
u )N−1 + 1


 . (5.26)
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Appendix C; Proof of Proposition 1

We have that η(1)
FD = E{N}u

2nmax
and η

(1)
FH = 1

2 maxv
{
vE
{
N
(
1− v

u

)N−1
}}

. Let

Ω(v,N) ,NωN−1
v (5.27)

where ωv = 1 − v
u . Thinking of N as a real parameter for the moment, we have ∂2

∂N2 Ω(v,N) =

ωN−1
v

(
N (lnωv)

2 + 2 lnωv
)

. As N ≥ 1, then ∂2

∂N2 Ω(v,N) ≥ ωN−1
v

(
(lnωv)

2 + 2 lnωv
)

. But,

(lnωv)
2 + 2 lnωv ≥ 0 if and only if ωv ≤ 1

e2
or ωv ≥ 1. Since ωv ≤ 1, we get ωv ≤ 1

e2
. This implies

that the function Ω(v,N) is a convex function of N as far as ωv ≤ 1
e2

. Therefore, by Jensen’s
inequality,

E
{
N
(

1− v

u

)N−1
}

= E{Ω(v,N)}
≥ Ω (v,E{N})
= E{N}

(
1− v

u

)E{N}−1
(5.28)

which is valid as far as v ≥ (1− 1
e2

)
u. Hence,

η
(1)
FH =

1
2

max
v

{
vE
{
N
(

1− v

u

)N−1
}}

≥ 1
2

max
v∈
h“

1− 1
e2

”
u,u
i
{
vE
{
N
(

1− v

u

)N−1
}}

≥ 1
2

E{N} max
v∈
h“

1− 1
e2

”
u,u
i
{
v
(

1− v

u

)E{N}−1
}
.

(5.29)

The function v
(
1− v

u

)E{N}−1 is a concave function in terms of v that achieves its absolute maximum
at u

E{N} . Therefore,

max
v∈
h“

1− 1
e2

”
u,u
i
{
v
(

1− v

u

)E{N}−1
}

= Q (1−Q)E{N}−1 u (5.30)
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where Q , max
{

1− 1
e2
, 1

E{N}
}

. Using (5.29) and (5.30),

η
(1)
FH ≥

1
2
Q (1−Q)E{N}−1 E{N}u. (5.31)

Hence, a sufficient condition for η(1)
FH > η

(1)
FD to hold is that

Q (1−Q)E{N}−1 >
1

nmax
. (5.32)

If E{N} ≥ e2

e2−1
, we have Q = 1 − 1

e2
. Hence, (5.32) reduces to the inequality E{N} <

1
2 ln

(
(e2 − 1)nmax

)
. Therefore, if e2

e2−1
≤ E{N} < 1

2 ln
(
(e2 − 1)nmax

)
, then (5.32) is satisfied.

On the other hand, if E{N} ≤ e2

e2−1
= 1.1565, we get Q = 1

E{N} . Thus, (5.32) reduces to the

inequality 1
E{N}

(
1− 1

E{N}
)E{N}−1

> 1
nmax

. For each nmax ≥ 2, this yields an upper bound on

E{N}. Since 1
E{N}

(
1− 1

E{N}
)E{N}−1

is a decreasing function of E{N}, the smallest of these up-
per bounds is obtained for nmax = 2 and is equal to 1.2938. This means that for E{N} ≤ 1.1565,
(5.32) is automatically satisfied. Thus, (5.32) is equivalent to

E{N} < 1
2

ln
(
(e2 − 1)nmax

)
. (5.33)

To prove the second part, we note that η(2)
FD = u

2nmax
and η

(2)
FH = 1

2 maxv
{
vE
{(

1− v
u

)N−1
}}

.

The function
(
1− v

u

)N−1 is convex in terms of N . Using Jenson’s inequality,

η
(2)
FH ≥ 1

2
max
v

{
v
(

1− v

u

)E{N}−1
}

=
u

2E{N}
(

1− 1
E{N}

)E{N}−1

. (5.34)

Hence, a sufficient condition for η(2)
FH > η

(2)
FD to hold is

1
E{N}

(
1− 1

E{N}
)E{N}−1

>
1

nmax
. (5.35)
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Appendix D; Computation of R
(1)
FH(ε)

By (2.75),

Pr
{

R
(1)
i (~hi) < R

}
= Pr

v log

 2−H(v,N)2αN (IN−1,1; γ
v
, v
u

)|hi,i|2γ
v
∏N−1
m=1

∏(N−1
m )

m′=1

(γ
vIm,m′ + 1

)βm,N( vu)
+ 1

 < R

 (5.36)

where βm,N
(
v
u

)
= ( vu)m

(
1− v

u

)N−1−m and for each m, {Im,m′}(
N−1
m )

m′=1 consists of all possible sum-

mations of m elements in the set {|hj,i|2}Nj=1,j 6=i, such that
∏N−1
m=1

∏(N−1
m )

m′=1 (γvIm,m′ + 1)βm,N( vu) =∏Li
l=1(ζi,lγ + 1)ai,l . We have also substituted Gi by G

(lb)
i (v,N) = αN (IN−1,1; γv ,

v
u). Since N

itself is a random variable, the outage probability can be written as

Pr{R(1)
i (~hi) < R} = q1ξ1 +

nmax∑
n=2

qnξn, (5.37)

where

ξ1 = Pr{R(1)
i (~hi) < R|N = 1}

= Pr
{
v log

(
1 +
|hi,i|2γ
v

)
< R

}

= 1− exp


(

1− 2
R
v

)
v

γ

 . (5.38)
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Denoting the collection of random variables {Im,m′} 1≤m≤n−1
1≤m′≤(n−1

m )
by I n, the quantity ξn is calculated

as

ξn = Pr{R(1)
i (~hi) < R|N = n}

= Pr

v log

 2−H(v,n)2αn(In−1,1; γ
v
, v
u

)|hi,i|2γ
v
∏n−1
m=1

∏(n−1
m )

m′=1 (γvIm,m′ + 1)βm,n( vu)
+ 1

 < R


= E

Pr

v log

 2−H(v,n)2αn(In−1,1; γ
v
, v
u

)|hi,i|2γ
v
∏n−1
m=1

∏(n−1
m )

m′=1 (γvIm,m′ + 1)βm,n( vu)
+ 1

 < R
∣∣∣I n




(a)
= E

1− exp

2H(v,n)
(

1− 2
R
v

)
v

γ
2−αn(In−1,1; γ

v
, v
u

)
n−1∏
m=1

(n−1
m )∏

m′=1

(γ
v
Im,m′ + 1

)βm,n( vu)



= 1− E

exp

2H(v,n)
(

1− 2
R
v

)
v

γ
2−αn(In−1,1; γ

v
, v
u

)
n−1∏
m=1

(n−1
m )∏

m′=1

(γ
v
Im,m′ + 1

)βm,n( vu)



(b)
= 1− ψn

2H(v,n)
(

1− 2
R
v

)
v

γ
,
γ

v
,
v

u

 (5.39)

where (a) follows from the fact that after conditioning on I n, the only random quantity is |hi,i|2,
which is exponentially distributed. Also, (b) holds by the definition of ψn. This yields the desired
result.
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Appendix E; Proof of Corollary 1

As b1 < 0 and 0 < 2−αn(z;b2,p2) < 1 for all z > 0, we have

φn(b1,n, b2, p1,n, p2) ≥ 1
(n− 2)!

∫ ∞
0

zn−2 exp
(
b1,n(b2z + 1)p1,n − z

)
dz. (5.40)

One may easily check that zn−2

(n−2)! exp(−z)I{z > 0} is a PDF for some nonnegative random variable
z. Thus, (5.40) can be written as

φn(b1,n, b2, p1,n, p2) ≥ E {exp (b1,n(b2z + 1)p1,n)} . (5.41)

However, as b1,n < 0 and 0 < p1,n < 1, the function exp
(
b1,n(b2z + 1)p1,n

)
is a convex function of

z. Hence, applying Jensen’s inequality yields

φn(b1,n, b2, p1,n, p2) ≥ exp
(
b1,n(b2E{z}+ 1)p1,n

)
= exp

(
b1,n
(
(n− 1)b2 + 1

)p1,n),
(5.42)

where we have used E{z} = n − 1. Using (5.42) in (2.93) and noting that b1,n =

“
1−2

R
v

”
v

γ 2H(v,n),
b2 = γ

v , and p1,n = 1− a(v, n), we get the desired lower bound.
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Appendix F

Setting n̂ = −λ ln ε, we have

Pr{Ñ ≥ n̂} ≈
∞∑
n=n̂

e−λλn

n!

= e−λ
λn̂

n̂!

1 +
∞∑
j=1

j∏
k=1

λ

n̂+ k


≤ e−λ

λn̂

n̂!

 ∞∑
j=0

(
λ

n̂

)j
= e−λ

λn̂

n̂!
1

1− λ
n̂

(a)≈ e−λ√
2πn̂

(
λe

n̂

)n̂ 1
1− λ

n̂

=
e−λ√
2πn̂

(
e

− ln ε

)n̂ 1
1 + 1

ln ε

(5.43)

where (a) follows by stirling approximation for n̂!. The term
(

e
− ln ε

)n̂
can be written as

(
e

− ln ε

)n̂
= e−n̂(ln(− ln ε)−1)

= eλ(ln(− ln ε)−1) ln ε

(a)

≤ eln ε

= ε. (5.44)

where (a) is valid if λ(ln(− ln ε)− 1) ≥ 1, which is the case for sufficiently small ε. Combining this
with the fact that e−λ√

2πn̂
1

1+ 1
ln ε

< 1
2 gives the desired result.
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Appendix G; Proof of Proposition 5

To prove the desired result, we need some preliminary facts in linear analysis [85]. Let E be an
Euclidean space over C with inner product function 〈., .〉 : E × E → C.

Definition 1 - Let U be a subspace of E . The orthogonal complement of U is defined by

U⊥ , {v ∈ E : 〈u, v〉 = 0, ∀u ∈ U}. (5.45)

Fact 1- If U is a subspace of E , then for each v ∈ E , there are unique elements v1 ∈ U and
v2 ∈ U⊥ such that v = v1 + v2.

Definition 2- In the setup of Fact 1, v1 is called the projection of v in U and is denoted by
proj(v;U). By the same token, v2 = proj(v;U⊥).

Definition 3- Let U1 and U2 be subspaces of E . We define

proj(U1;U2) , span{proj(v;U2) : v ∈ U1}. (5.46)

Fact 2- Let U1 and U2 be subspaces of E . Then,

dim(U1 ∪ U2) = dim(U1) + dim(proj(U2;U⊥1 )). (5.47)

Fact 3- Let X be a p× q matrix such that rank(X) = q. Then, for any q× r matrix Y , we have
rank(XY ) = rank(Y ).

Using the fact that for any matrix X, rank(XX†) = rank(X), it is easy to see that for any
~s ∈ supp(~si) and S ∈ supp(Si), we have log det

(
IK−1 + α2PG†i (~s)SΞiΞ

†
iS
†G†i (~s)

)
scales like

rank(G†iS) logP and log det
(
IK + α2PSΞiΞ

†
iS
†
)

scales like rank(S) logP . Applying these ob-
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servations to (3.38) and noting that P and γ are proportional, we get

K lim
γ→∞

R
(lb)
i (~hi)
log γ

=
∑

~s∈supp(~si)\{~0K}
Pr{~si = ~s}

+
∑

S∈supp(Si)

~s∈supp(~si)\{~0K}

Pr{Si = S}Pr{~si = ~s}rank(G†i (~s)S)

−
∑

S∈supp(Si)

~s∈supp(~si)\{~0K}

Pr{Si = S}Pr{~si = ~s}rank(S)

= Pr{~si 6= ~0K}+
∑

S∈supp(Si)
~s∈supp(~si)

Pr{Si = S}Pr{~si = ~s}rank(G†i (~s)S)

−
∑

S∈supp(Si)

Pr{Si = S}Pr{~si = ~0K}rank(G†i (~0K)S)

−E{rank(Si)}Pr{~si 6= ~0K}
(a)
= Pr{~si 6= ~0K}+ E

{
rank(G†i (~si)Si)

}
− E{rank(Si)}Pr{~si = ~0K}

−E{rank(Si)}Pr{~si 6= ~0K}
= Pr{~si 6= ~0K}+ E

{
rank(G†i (~si)Si)− rank(Si)

}
(5.48)

where (a) is by the fact that Gi(~0K) = IK . To complete the proof, we show that

I{~si 6= ~0K}+ rank(G†i (~si)Si) = rank ([Si|~si]) (5.49)

holds almost surely.
Let us write

rank([Si|~si]) = dim(span(~si) ∪ csp(Si)). (5.50)

By Fact 2,

rank([Si|~si]) = dim(span(~si)) + dim(proj(csp(Si); (span(~si))⊥))

= I{~si 6= ~0K}+ dim(proj(csp(Si); (span(~si))⊥)). (5.51)

On the other hand, by the definition of Gi(~si),

(span(~si))⊥ = csp(Gi(~si)). (5.52)

It is easily seen that for any 1 ≤ k ≤ K−1, the kth column of the matrix G†i (~si)Si yields the proper
linear combination of the columns of Gi(~si) that constructs the projection of the kth column of Si
into the space csp(Gi(~si)), i.e.,

Gi(~si)[G
†
i (~si)Si]k = proj ([Si]k; csp(Gi(~si))) . (5.53)
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Therefore,

span
({
Gi(~si)[G

†
i (~si)Si]k

}K−1

k=1

)
= proj

(
span

({
[Si]k

}K−1

k=1

)
; csp(Gi(~si))

)
= proj(csp(Si); csp(Gi(~si))). (5.54)

However,

span
({
Gi(~si)[G

†
i (~si)Si]k

}K
k=1

)
= csp(Gi(~si)G

†
i (~si)Si). (5.55)

By (5.54) and (5.55),

proj(csp(Si); csp(Gi(~si))) = csp(Gi(~si)G
†
i (~si)Si). (5.56)

Using (5.56) and (5.52) in (5.51),

rank([Si|~si]) = I{~si 6= ~0K}+ dim(csp(Gi(~si)G
†
i (~si)Si))

= I{~si 6= ~0K}+ rank(Gi(~si)G
†
i (~si)Si)

(a)
= I{~si 6= ~0K}+ rank(G†i (~si)Si) (5.57)

where (a) follows by Fact 3 as Gi(~si) has independent columns. Taking expectation from both
sides,

E {rank([Si|~si])} = Pr{~si 6= ~0K}+ E
{

rank(G†i (~si)Si)
}
. (5.58)

Using this in (5.48),

K lim
γ→∞

R
(lb)
i (~hi)
log γ

= E {rank([Si|~si])− rank(Si)}
= Pr {~si /∈ csp(Si)} . (5.59)

This completes the proof.
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Appendix H; Proof of Corollary 2

By Proposition 5,

lim
γ→∞

Ri(~hi)
log γ

≥ Pr {~si /∈ csp(Si)}
K

. (5.60)

In this appendix, we prove that

lim
γ→∞

Ri(~hi)
log γ

≤ Pr {~si /∈ csp(Si)}
K

. (5.61)

By (3.10), it suffices to show that limγ→∞
I(xi;~yi|~si)

log γ ≤ Pr {~si /∈ csp(Si)}. Let us consider the
informed ith user where the receiver is aware of ~si and Si. The achievable rate of this virtual user
is I(xi;~yi|si,Si)

K . It is clear that I(xi; ~yi|~si) ≤ I(xi; ~yi|~si,Si). However,

I(xi; ~yi|~si,Si) =
∑

~s∈supp(~si)
S∈range(Si)

Pr{~si = ~s}Pr{Si = S}I(xi; ~yi|~si = ~s,Si = S)

(a)
=

∑
~s∈supp(~si)
S∈range(Si)

Pr{~si = ~s}Pr{Si = S} log
det (cov (~yi|~si = ~s,Si = S))
det (cov (~wi + ~zi|Si = S))

=
∑

~s∈supp(~si)
S∈range(Si)

Pr{~si = ~s}Pr{Si = S} log det (cov (~yi|~si = ~s,Si = S))

−
∑

S∈range(Si)

Pr{Si = S} log det (cov (~wi + ~zi|Si = S)) (5.62)

where (a) follows by the fact that fixing Si = S converts the channel of the ith informed user to an
additive Gaussian channel. On the other hand,∑

~s∈supp(~si)
S∈range(Si)

Pr{~si = ~s}Pr{Si = S} log det (cov (~yi|~si = ~s,Si = S))

=
∑

~s∈supp(~si)
S∈range(Si)

Pr{~si = ~s}Pr{Si = S} log det
(
IK + α2P |hi,i|2~s~s† + α2PSΞiΞ

†
iS
†
)
.

(5.63)
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Noting that log det
(
IK + α2P |hi,i|2~s~s† + α2PSΞiΞ

†
iS
†
)

scales like rank ([~s |S]) logP , we conclude
that the first term on the right side of (5.62) scales like E {rank ([~si |Si])} logP . By the same token,
the second term on the right side of (5.62) scales like E {rank(Si)} logP . Therefore, I(xi; ~yi|~si) is
upper bounded by a quantity which scales like

(
E{rank ([~si |Si])} − E{rank(Si)}

)
logP . Noting

that P and γ are proportional, the result of the Corollary is immediate.
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Appendix I; Proof of (3.80)

Let ~s be
(

1 1 · · · 1︸ ︷︷ ︸
k times

−1 − 1 · · · − 1︸ ︷︷ ︸
K−k times

)t

and ~s2 =
(
s2,1 s2,2 · · · s2,K

)t
. Then,

Pr
{
~s †~s2 = 0

}
= Pr {s2,1 + · · ·+ s2,k = s2,k+1 + · · ·+ s2,K} . (5.64)

If l of s2,1, · · · , s2,k are +1 and l′ of s2,k+1, · · · , s2,K are also +1, then for s2,1 + · · · + s2,k =
s2,k+1 + · · · + s2,K to happen, we must have l′ = l − k + K

2 and therefore, K must be an even
integer. Hence,

Pr {s2,1 + · · ·+ s2,k = s2,k+1 + · · ·+ s2,K}

=
k∑
l=0

K−k∑
l′=0

(
k

l

)(
K − k
l′

)
νl+l

′
νK−l−l

′
I
{
l′ = l − k +

K

2

}
. (5.65)

The constraints 0 ≤ l′ ≤ K − k and 0 ≤ l ≤ k yield max
{
k − K

2 , 0
} ≤ l ≤ min

{
k, K2

}
. Therefore,

Pr {s2,1 + · · ·+ s2,k = s2,k+1 + · · ·+ s2,K}

= ν
K
2
−kν

K
2

+k

min{k,K2 }∑
l=max{k−K2 ,0}

(
k

l

)(
K − k

l − k + K
2

)(ν
ν

)2l

= ν
K
2
−kν

K
2

+k

min{k,K2 }∑
l=max{k−K2 ,0}

(
k

l

)(
K − k
K
2 − l

)(ν
ν

)2l

=
(
K
K
2

)
ν
K
2
−kν

K
2

+k E
{(ν

ν

)2κ
}

(5.66)

where κ is a Hypergeometric random variable with PMF

Pr{κ = l} =

(
k
l

)(K−k
K
2
−l
)

(K
K
2

) . (5.67)
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Appendix J; Proof of (3.93)

Let ~s1 =
(
s1,1 s1,2

)t
. Therefore,

H
(
~s1~s

†
1

)
= H

(|s1,1|2, |s1,2|2, s1,1s1,2

)
= H

(|s1,1|2, |s1,2|2
)

+ H
(
s1,1s1,2

∣∣|s1,1|2, |s1,2|2
)

= H
(|s1,1|2

)
+ H

(|s1,2|2
)

+ H
(
s1,1s1,2

∣∣|s1,1|2, |s1,2|2
)

= H (|s1,1|) + H (|s1,2|) + H
(
s1,1s1,2

∣∣|s1,1|, |s1,2|
)

= 2H (ε) + H
(
s1,1s1,2

∣∣|s1,1|, |s1,2|
)
. (5.68)

To compute H
(
s1,1s1,2

∣∣|s1,1|, |s1,2|
)
, we have

H
(
s1,1s1,2

∣∣|s1,1|, |s1,2|
)

= H
(
s1,1s1,2

∣∣|s1,1| = 1, |s1,2| = 1
)

Pr{|s1,1| = 1, |s1,2| = 1}
+H

(
s1,1s1,2

∣∣|s1,1| = 0, |s1,2| = 1
)

Pr{|s1,1| = 0, |s1,2| = 1}
+H

(
s1,1s1,2

∣∣|s1,1| = 1, |s1,2| = 0
)

Pr{|s1,1| = 1, |s1,2| = 0}
+H

(
s1,1s1,2

∣∣|s1,1| = 0, |s1,2| = 0
)

Pr{|s1,1| = 0, |s1,2| = 0}
(a)
= H

(
s1,1s1,2

∣∣|s1,1| = 1, |s1,2| = 1
)

Pr{|s1,1| = 1, |s1,2| = 1}
(5.69)

where (a) is due to H
(
s1,1s1,2

∣∣|s1,1| = 0, |s1,2| = 1
)

= H
(
s1,1s1,2

∣∣|s1,1| = 1, |s1,2| = 0
)

= H
(
s1,1s1,2

∣∣|s1,1| = 0, |s1,2| = 0
)

=
0. On the other hand, it is easy to see that Pr{s1,1s1,2 = 1

∣∣|s1,1| = 1, |s1,2| = 1} = ν2 + ν2. This
implies H

(
s1,1s1,2

∣∣|s1,1| = 1, |s1,2| = 1
)

= H (ν2 + ν2). Therefore,

H
(
s1,1s1,2

∣∣|s1,1|, |s1,2|
)

= H (ν2 + ν2) Pr{|s1,1| = 1, |s1,2| = 1} = ε2H (ν2 + ν2). (5.70)

Using (5.68) and (5.70),
H
(
~s1~s

†
1

)
= 2H (ε) + ε2H (ν2 + ν2). (5.71)
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Appendix K; Proof of (3.107)

Let ~s1 =
(
s1,1 · · · s1,K

)t
. We have

H(~s1~s
†
1) = H ((s1,ks1,l)1≤k,l≤K)

(a)
= H

((
s1,ks1,l

)
1≤k,l≤K,k 6=l

)
(b)
= H (s1,1s1,2, s1,1s1,3, · · · , s1,1s1,K)

(5.72)

where (a) is by the fact that s2
1,k = 1 for any 1 ≤ k ≤ K and (b) is by the fact that for any

two distinct numbers k, l ∈ {2, · · · ,K}, the knowledge about s1,ks1,l can be obtained by knowing
s1,1s1,k and s1,1s1,l as s1,1s1,ks1,1s1,l = s1,ks1,ls

2
1,1 = s1,ks1,l. Let us define

~s =
(
s1,2 · · · s1,K

)t
. (5.73)

By (5.72), H(~s1~s
†
1) = H(s1,1~s ). Let F be the event where s1,1 = 1, while k of the elements of ~s,

namely, s1,l1 , · · · , s1,lk−1
and s1,lk are 1 and the rest are −1 for some 0 ≤ k ≤ K and 2 ≤ l1 <

l2 < · · · < lk ≤ K. Also, let G be the event where s1,1 = −1, s1,l = −1 for l ∈ {l1, l2, · · · , lk} and
s1,l = 1 for l /∈ {l1, l2, · · · , lk}. It is clear that

s1,1~s I{F} = s1,1~s I{G}. (5.74)

We know that Pr{F} = νk+1νK−k and Pr{G} = νK−kνk+1. Hence, using (5.74),

H(~s1~s
†
1) = −

K∑
k=0

(
K

k

)(
νk+1νK−k + νK−kνk+1

)
log
(
νk+1νK−k + νK−kνk+1

)
. (5.75)
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Appendix L; Proof of Lemma 10

Intuitively speaking, u(~h1) is the capacity of a channel with forward gain h1,1 and additive ambient
noise CN (0, 1), while v(~h1) is an achievable rate in the same channel where in addition to the
ambient noise, a mixed Gaussian interference is present. Therefore, one expects u(~h1) to be larger
than v(~h1).

To give a precise proof, we note that v(~h1) < u(~h1) holds if and only if

2−H (θ)

(
1 +

θ

θ

1

1 + |h2,1|2γ
θ

)θ (
1 +

θ

θ

(
1 +
|h2,1|2γ

θ

)) θ

1+
|h2,1|2γ

θ ≤ 1. (5.76)

This is equivalent to

θ log

(
1 +

θ

θ

1

1 + |h2,1|2γ
θ

)
+

θ

1 + |h2,1|2γ
θ

log
(

1 +
θ

θ

(
1 +
|h2,1|2γ

θ

))
≤H (θ). (5.77)

To prove (5.77), let x be a complex mixed Gaussian random variable with PDF given in (4.29). By
the concavity property of differential entropy [80],

h(x) ≥ p1 log
(
πeσ2

1

)
+ p2 log

(
πeσ2

2

)
. (5.78)

Combining (5.78) with the result of Lemma 9 given in (4.30),

−p1 log p1 − p2 log p2 − p1 log
(

1 +
p2

p1

σ2
1

σ2
2

)
− p2σ

2
1

σ2
2

log
(

1 +
p1

p2

σ2
2

σ2
1

)
≥ 0. (5.79)

Setting p1 = θ, p2 = θ, σ2
1 = 1 and σ2

2 = 1 + |h2,1|2
θ in (5.79) yields (5.77) which is the desired

result.
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[58] S. Ghez, S. Verdú and S. C. Schwartz, “Optimal decentralized control in the random access
multipacket channel”, IEEE Trans. on Automatic Control, vol. 34, no. 11, pp. 1153-1163, Nov.
1989.

134



[59] B. Hajek and T. Loon, “Decentralized dynamic control of a multiaccess broadcast channel”,
IEEE Trans. on Automatic Control, vol. 27, no. 3, pp. 559-569, June 1982.

[60] T. Cui and T. Ho, “On multiple access random medium access control”, International Sym-
posium on Inf. Theory, ISIT09, Seoul, Korea, June 2009.

[61] P. Minero, M. Franceschetti and D.N.C. Tse, Random access: an information-theoretic per-
spective, submitted to IEEE Trans. on Inf. Theory, December 2009.

[62] R. H. Etkin, D. N. C. Tse and H. Wang, “Gaussian interference channel capacity to within
one bit”, IEEE Trans. Inf. Theory, vol. 54, no. 12, pp. 5534-5562, Dec. 2008.

[63] A. Motahari and A.K. Khandani, “Capacity bounds for the Gaussian interference channel”,
IEEE Trans. Inf. Theory, vol. 55, no. 2, pp. 620-643, Feb. 2009.

[64] X. Shang, G. Kramer, and B. Chen, “A new outer bound and the noisy-interference sum-rate
capacity for Gaussian interference channels”, IEEE Trans. Inf. Theory, vol. 55, no. 2, pp.
689-699, Feb. 2009.

[65] V.S. Annapureddy and V.V. Veeravalli, “Gaussian Interference Networks: Sum Capacity in
the Low Interference Regime and New Outer Bounds on the Capacity Region”, Submitted to
the IEEE Trans. Inf. Theory, Feb. 2008.

[66] T. S. Han and K. Kobayashi, “A new achievable rate region for the interference channel, IEEE
Trans. Inf. Theory, vol. 27, no. 1, pp. 4960, Jan. 1981.

[67] M. Costa, “Writing on a dirty paper”, IEEE Trans. Inf. Theory, vol. 29, no. 3, pp. 439-441,
May 1983.

[68] T. M. Cover, R. J. Mceliece and E.C. Posner, “Asynchronous multiple-access channel capacity”,
IEEE Trans. Inf. Theory, vol. 27, no. 4, pp. 409-413, July 1981.

[69] J. Y. N. Hui and P. A. Humblet, “The capacity region of the totally asynchronous multiple
access channel”, IEEE Trans. Inf. Theory, vol 31, no. 2, pp. 207-216, March 1985.

[70] A. El Gamal and Y. H. Kim, “Lecture notes on network information theory”, Available online
at http://arxiv.org/pdf/1001.3404.

[71] J. L. Massey and P. Mathys, “The collision channel without feedback”, IEEE Trans. Inf.
Theory, vol. 31, no. 2, pp. 192-204, March 1985.

135



[72] E. Calvo, J. R. Fonollosa and J. Vidal, “On the totally asynchronous interference channel with
single-user receivers”, International Symp. Inf. Theory, ISIT 2009, Seoul, Korea, June 2009.
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