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Abstract

A base case modelling investigation was conducted to explore the chemical and physical

behaviour of ground-level ozone (O3) and its precursor nitrogen dioxide (NO2) in Ontario

using the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality

(CMAQ) model. Two related studies were completed to evaluate the performance of CMAQ

in reproducing the behaviour of these species in both rural and urban environments by

comparing to surface measurements collected by the Ontario Ministry of the Environment

(MOE) network of air quality stations. The first study was a winter examination and the

second study was conducted for a period during the summer of the same year. The

municipality of North Bay was used to represent a rural setting given its smaller population

relative to the city of Ottawa which was the base of the urban site.

Statistical and graphical analyses were used to validate the model output. CMAQ was found

to replicate the spatial variation of O3 and NO2 over the domain in both the winter and

summer, but showed some difficulty in simulating the temporal allocation of the species.

Validation statistics for North Bay and Ottawa showed overall O3 mean biases (MB) of 3.35

ppb and 2.25 ppb, respectively, and overall NO2 MB of -8.75 ppb and -4.37 ppb, respectively

for the winter. Summer statistics generated O3 MB of 4.66 ppb (North Bay) and 10.05 ppb

(Ottawa) while both MB for NO2 were between -2.20 ppb to -2.55 ppb. Graphical analysis

showed that the model was not able to reproduce the lower levels of O3, especially at night,

or the higher levels of NO2 during the day at the North Bay site for either season. This was

expected since the comparisons were made between point measurements and 36 km grid-

averaged model results. The presence of high amounts of NO2 emissions local to the

monitoring sites compared to the levels represented in the emissions inventory may also be a

contributing factor. The simulations for Ottawa demonstrated better agreement between

model results and measurements as CMAQ provided a more accurate reproduction of both
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the higher and lower mixing ratios of O3 and NO2 during the winter and summer seasons.

Results indicate that CMAQ is able to simulate urban environments better than rural ones.
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Chapter 1

Introduction

1.1 Objectives and Motivation

Air pollution in Ontario is a major concern due to its harmful effects on public health and

ecosystems. In 2005, the Ontario Medical Association attributed 5 800 premature deaths in

the province to poor air quality, as well as over 16 000 hospital admissions and 60 000

emergency room visits in 2005 (Ontario Medical Association, 2007). Though these figures

remain a topic of debate, they do point to a growing threat the province faces. The

government of Ontario currently implements a variety of programs and regulations which

aim to educate the public and reduce the economic and health impacts of air pollution on

society. For example, Ontario’s Clean Air Action Plan sets targets for pollution reductions,

while the Air Quality Index (AQI) reports the levels of several pollutants such as ground-

level ozone (O3) and nitrogen dioxide (NO2) which are both major contributors to

photochemical smog. To create, implement and monitor such programs air quality models

(AQMs) are relied upon to provide current and future predictions of the chemical and

physical behaviours of the pollutants of interest and related species.

The objective of this study was to assess the performance of the Models-3/Community

Multiscale Air Quality (CMAQ) Model, and its ability to simulate accurate summer and

winter levels of NO2 and O3 in 2005 over select municipalities. This year was chosen as the

base case modelling period because it was a particularly bad year for air quality in Ontario,

as the number of smog advisories issued by the province was the highest to date since 1995.

Fifteen advisories were issued in 2005 compared to thirteen in 2007, and two in the first half

2010. These fifteen advisories covered a period of fifty-three days in total, the most since

1995, and the majority were issued from June to August (Ontario Ministry of the

Environment, 2010) which are the prime ozone producing months in Canada and the United

States (H. Wang et al., 2009).
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This study provides direction for future air quality simulations by imparting a better

understanding of the distribution and concentration of smog-producing species in Ontario.

This was achieved by comparing the model output against surface measurements taken from

the Ministry of the Environment’s (MOE) network of AQI measuring stations located within

the cities of Ottawa and North Bay. The purpose of selecting these two municipalities was to

evaluate the performance of the model under urban and rural conditions. Though North

Bay’s monitoring site is listed as an urban site by the MOE due to its location within the

region, it was chosen to represent rural conditions for multiple reasons. Firstly, NO2

measurements were not available for any of the MOEs designated rural sites for 2005.

Secondly, Ottawa is a large urban centre with a population of over 1 million people (Urquizo,

Spitzer, Pugsley, & Robinson, 2009) and a population growth rate of 6.9 percent (Air &

Energy Initiatives Environmental Management Division, 2004). It is located within the

Windsor-Quebec corridor and is subject to pollution from local sources as well as from long-

range transport from Southern Ontario and the United States.

During the winter, from November to May, prevailing winds are from the northwest {{117

Air & Energy Initiatives Environmental Management Division 2004}}. Most of the air

pollution in Ottawa at this time is locally generated from idling, transportation and wood

burning. Conversely, from June to October the prevailing winds originate in the south

western United States {{117 Air & Energy Initiatives Environmental Management Division

2004}}, carrying polluted air masses from cities like Detroit, Cleveland and Chicago by

advection into Southern Ontario and then through the Ottawa region. Because these

summertime winds are often slow-moving or stagnant, pollutants have enough time to

collect, mix together and react. Conversely, North Bay’s population is just over fifty-three

thousand people and does not experience the same effects of long-range transport from the

Unites States that Ottawa experiences (Government of Ontario, 2010). Both sites have

similar seasonal temperatures and are relatively flat, although at the north end of Ottawa, the
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Gatineau Hills rise about 250 meters above the city and can impede the flow of air by

preventing natural dispersion from occurring {{117 Air & Energy Initiatives Environmental

Management Division 2004}}. Many CMAQ studies exist for urban areas or rural areas

alone (Sokhi et al., 2006), but direct studies comparing two such regions are not very

common (D. Tong & Mauzerall, 2006). Additionally, the majority of O3 and NO2 studies

take place over the summer (Appel, Gilliland, Sarwar, & Gilliam, 2007) when the conditions

for ozone production are optimal. By examining CMAQ simulations under ideal and non-

ideal ozone producing conditions, the seasonality of the O3 cycle can be observed.

Because CMAQ was developed by the U.S. Environmental Protection Agency (EPA) as a

regulatory tool, the majority of CMAQ studies with a North American perspective focus on

the continental United States, or specific areas within the U.S.A. like the northeast or the

south where significant populations reside (Appel et al., 2007; Appel, Bhave, Gilliland,

Sarwar, & Roselle, 2008a; Byun, Kim, & Kim, 2007; Eder & Yu, 2006; C. Hogrefe et al.,

2006; J. Lin, Youn, Liang, & Wuebbles, 2008; S. C. Smyth, Jiang, Yin, Roth, & Giroux,

2006; D. Tong & Mauzerall, 2006). There are also a number of studies that concentrate on –

or include – parts of Central Canada (Brankov et al., 2003; Brulfert, Galvez, Yang, & Sloan,

2007; Galvez, 2007); though none are specific for Ottawa or North Bay.

Examining O3 and NO2 concentrations in multiple regions is important because the

concentrations of these species vary spatially and temporally from one region to the next.

Morning and evening rush traffic hours in urban centres release large concentrations of NO2

into the atmosphere. During the daytime NOx (NOx = NO2 + NO) photolysis generates O3

which can persist for many hours in the troposphere. This allows for O3 to accumulate in

urban air masses as it is transported downwind of major cities into neighbouring regions

(Sillman, 1993). Conversely, NO2 has a lifetime of approximately one minute, thus its peak

concentrations are measured close to its source of production. Local emissions such as these

are responsible for half of Ontario’s air pollution (Ontario Ministry of the Environment,
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2010). The other half originates from sources in the United States such as the Ohio River

Valley. According to the Ministry of the Environment (2010), enough pollutants are carried

by transboundary flow to warrant smog advisories even if all local sources were turned off.

This is of great concern to the province as it is home to approximately 13 million people, 85

percent of whom live in urban centres around the Great Lakes Basin.

1.2 Overview

The remaining content of this thesis is organized into 6 additional chapters:

Chapter 2 explains the chemistry of the troposphere as it relates to O3 and NO2. Their

nonlinear relationship is illustrated through the discussion of the null cycle and net ozone

production. The sources and sinks of O3 and NO2, as well as their intermediate and final

products are detailed. A brief discussion on the health effects of these species is also

presented.

In Chapter 3, a background description of the CMAQ model and all of its modelling

components is provided. I first describe the various types of air quality models available to

the modelling community, followed by my rational for choosing CMAQ for in this study. I

then move on to provide a detailed description of the internal components of CMAQ, as well

as concise descriptions of the external models needed to supply input for a simulation.

Chapter 4 presents modelling exercises that were conducted to learn and understand the

working of CMAQ, its inputs and outputs. These exercises included installing and compiling

various models in addition to CMAQ, such as the emissions model and meteorological

interface model. CMAQ benchmark cases were conducted to insure the compilations were

successful. Aspects like nesting, data extraction, spin-up methodology, the effects of
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emissions, creating vertical profiles, as well as the visualization and manipulation of output

were all performed.

Presented in Chapter 5 and Chapter 6 are two comprehensive evaluations of CMAQs ability

to reproduce ground-level O3 and NO2 in the winter and summer, respectively. The

methodology employed in this study and all modelling parameters in both the wintertime and

summertime modelling periods are provided. The domain for both episodes was the same,

covering southern Ontario and Quebec as well as the north eastern United States. Graphical

analysis like time series plots and diurnal cycles are employed to explain how accurately

CMAQ reproduces the spatial and temporal variation of these species compared to surface

measurements, as well as the causes for bias and discrepancies in the modelling results. The

winter modelling period extends from the beginning of January to the end of March, while

the summer period covers months of June, July and August. Statistical measures employed

to supplement the graphical analysis in order to fully examine the model’s performance and

to determine any bias that may exist.

The concluding remarks and future outlook of this thesis are contained in Chapter 7. The

main findings of this work are summarized along with their implications to the municipalities

of Ottawa and North Bay. The results of this study also have relevance in the modelling

community as whole as well as other urban and rural cities as this thesis applicable to them.

The chapter concludes with recommendations for improvements for future investigations.

For example, I suggest updating the emissions inventories and including other species like

volatile organic compounds (VOCs) and meteorological factors like temperature and cloud

cover in the modelling analysis is important to get a more inclusive outlook on the behaviour

of O3 and NO2 systems in the troposphere.
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Chapter 2

Tropospheric Chemistry

2.1 Ozone and Nitrogen Dioxide

Despite government efforts, ozone continues to exceed the Canada-Wide Standard 8-hour

average of 65 ppb (Geddes, Murphy, & Wang, 2009), and NO2 levels still remain high

despite indications that government abetment policies are working. These species have

strong implications on humans and ecosystems because they not only impact the atmosphere,

but the aquatic and terrestrial environments as well. Such effects include smog, secondary

particulate matter and acid deposition among others. Additionally, because they are green

house gases, they also affect climate change through altering the levels of other trace gases in

the troposphere. Chronic and acute exposure to either trace gas can have adverse health

effects on humans. Acute doses to both O3 and NO2 can result in minor bronchitis and a dry

cough (Mohsenin, 1994), while prolonged/chronic exposure is associated with asthma,

shortness of breath, pulmonary disease and premature death among other illnesses (Bell et

al., 2007; Ebi & McGregor, 2008; Environmental Monitoring and Reporting Branch of the

Ontario Ministry of the Environment, 2009); In fact, increases in ambient ozone

concentrations were correlated with increases in hospitalizations due to reduced lung

functions and other respiratory infections (Peel et al., 2005). The risk of such effects are

increased for children, the elderly (Buchdahl, Willems, Vander, & Babiker, 2000; Ontario

Medical Association, 2007; White, Etzel, Wilcox, & Lloyd, 1994; A. M. Wilson, Salloway,

Wake, & Kelly, 2004) and those with existing health conditions like asthma (Mudway &

Kelly, 2000). Evidence also exists to suggest a strong relationship between plant and

agricultural crop exposure to air pollution and growth reductions or visible injury (Cape,

2008). Given these health and environmental consequences, controlling levels of O3 and

NO2 are very important.
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2.2 The Null Cycle

The main daytime reaction that governs the O3-NO2 chemistry in the lower troposphere is the

catalytic cycling of NO2 and NO. In the clean troposphere, when NO2 photolyzes, it breaks

down into NO and atomic oxygen which subsequently reacts with molecular oxygen and a

third body molecule to form ozone (R. Atkinson, 2000)

NO2 + hv  → NO + O(3P)     (λ < 430 nm)  (1) 

O(3P) + O2 + M → O3 + M (M = N2, O2) (2)

However, the NO formed in Reaction 1 reacts almost instantaneously with the newly

generated O3 molecule to reform NO2 on the timescale of minutes.

NO + O3 → NO2 + O2 (3)

This dinural cycling between NO and NO2 is a (quasi) steady-state cycle called the null cycle

which establishes an equilibrium between O3, NO and NO2 in the absence of additional

pathways (Cape, 2008; Finlayson-Pitts & Pitts, 2000). It is controlled by the NO2 photolysis

rate constant and the [NO2]/[NO] ratio (W. Carter, 1994).

The destruction of NO2 occurs when it reacts with available O3 that exists within the same air

mass, forming nitrate radicals which are known NOx reservoirs. This property is attributed

to their stability (R. Atkinson, 2000; Huie, 1994)

NO2 + O3 → NO3 + O2 (4)

This reaction is the primary source of NO3 in the troposphere (Jimenez, Baldasano, &

Dabdub, 2003) and has a rate constant of k8 = 1.9 x 104 L mol-1 s-1 (Huie, 1994) which is

significantly lower than that for the formation of NO2 (Reaction 3). Nitrate radicals have a

lifetime of about five seconds during the daytime when they photolyze rapidly, following two

possible pathways whose relative yields of either NO or NO2 depend on the wavelength of

radiation (Table 1) (Jimenez et al., 2003). The photodissociation of NO3 occurs over a wider

absorption spectrum than does the photolysis of O3 (R. Atkinson, 2000)

NO3 + hv → NO + O2 (10%) (5)
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NO3 + hv → NO2 + O(3P) (90%) (6)

These degradation reactions are typical of polluted atmospheres due to the abundance of

available NOx. During the night, nitrate radicals react with NO and NO2 by the following

reactions

NO3 + NO → 2NO2 (7)

NO3 + NO2 → N2O5 (8)

N2O5 then reacts with water vapour to produce HNO3 which is removed by deposition.

While the diurnal nature of the OH radical allows it to dominate the daytime chemistry of the

troposphere, at night time, NO3 becomes the prevailing oxidizing agent and removes NO2

from the ozone cycle by Reaction 8 (Jimenez et al., 2003).

Table 1 Absorption wavelengths for O3, NO2 and NO3 photolysis

Reaction Wavelength (nm)

O3 + hv O (1D) + O2 (1Δg) < 335

NO2 + hv NO + O (3P) 250-400

NO3 + hv NO2 + O (3P) 400-625

NO3 + hv NO + O2 585-625

Other reactions involving NO2 and NO include reaction with OH radicals to form HONO and

nitric acid via Reactions 9 and 10, respectively (Huie, 1994)

NO + OH → HONO (M = N2, O2) (9)

NO2 + OH → HONO2 (M = N2, O2) (10)

The HONO2 acts as a sink for NOx, while the HONO can undergo photolysis to regenerate

OH
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OH can also react with NO2 to form HNO3 which is the principal sink for NO2 (J. Lin et al.,

2008)

NO2 + OH → HNO3 (12)

Given that nitric acid is another NO2 sink, its subsequent chemical and physical reactions can

affect the net concentration of O3 in the troposphere. When a molecule of HNO3 is removed

by wet and dry deposition, it effectively eliminates a NO2 molecule, an O3 precursor, from

the ozone cycle.

2.3 Net Ozone Production

The equilibrium created by the null cycle assumes that under idealized conditions, the

following relationship should apply

O3 =
ହ



[ேைଶ]

[ேை]
(13)

where k5 and k7 are the reaction rates for Reactions 5 and 7, respectively. While k5 is

dependent on the amount and energy of incoming solar radiation, k7 has been determined

experimentally to be 1.1 x 10-7 L∙mol-1s-1 (Huie, 1994). However, this equilibrium is often

disturbed by fast changes in light intensity as well as changes in species concentrations

(Altshuller, 1986) due to emissions from anthropogenic and biogenic sources into the

troposphere.

According to observations by Madronich (1993), the concentration of O3 is normally much

higher than that of NO in the troposphere, indicating that an additional method of ozone

production must exist where the NO-NO2 conversion can take place without consuming

ozone. These pathways do exist in the presence of reactive volatile organic compounds

(VOCs) which either consume NO or become degraded to form organic peroxy radicals

(RO2), providing a route for NO to form NO2 (Altshuller, 1986; R. Atkinson, 2000;
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Finlayson-Pitts & Pitts, 2000). This process drives the equilibrium away from the steady-

state conditions so that the null cycle cannot be completed.

OH + VOC → RO2 (R = CnHm) (14)

These VOCs consist of alkanes such as methane (CH4) and biogenic non methane organic

compounds (NMOCs) and originate from both anthropogenic and biogenic sources (R.

Atkinson, 2000; Cape, 2008). These emitted species do not directly influence the production

or destruction of ozone; instead they indirectly affect ozone by altering the NO-NO2 ratio.

The relationship between O3, NOx and VOCs can be described by initiation, propagation and

termination reactions which result in an overall increase in ozone concentrations (R.

Atkinson, 2000; Cape, 2008; X. Xie et al., 2008). The initiation reactions for O3 production

are those which generate intermediate OH, HO2 or RO2 free radicals, which are collectively

known as HOx, through photolysis and ozonolysis. The photolysis of nitrous acid (HONO),

formaldehyde (H2CO) and hydrogen peroxide (H2O2), are all examples of HOx production.

The photolysis of HONO and H2O2 are sources of HOx in polluted regions

HONO + hv  → OH + NO (15)

H2CO + hv  → 2HO2 (16)

H2O2 + hv  → HO2 (17)

Once HOx radicals are formed, the propagation steps can proceed as OH oxidizes VOCs to

the radical species RO2 and HO2 (Reaction 14) (X. Xie et al., 2008). In low NOx

environments, RO2 species react with themselves or with ozone, potentially decreasing ozone

levels. In high NOx environments RO2 almost solely reacts with NO which increases NO2

concentrations.

RO2 + NO → NO2 + HO2 + intermediate VOC (18)

HO2 + NO → NO2 + OH (19)
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From here, NO2 can photolyzes to generate O3 completing the ozone cycle by Reactions 1

and 3, respectively. This shifts the NO-NO2 equilibrium toward NO2, (Cape, 2008;

Finlayson-Pitts & Pitts, 2000) resulting in an overall increase in ozone formation.

In the termination steps, radicals are removed from the cycle through reactions with NOx or

with other radicals. Some common examples are as follows

RO2 + NO → Organic Nitrate (24)

CH3CO3 + NO2 → PAN (25)

The reactions in this section demonstrate the importance of knowing the amount and

distribution of NO and NO2 present at a given time for accurate simulation of O3 by an air

quality model. Nitrogen oxides directly and indirectly influence the chemistry of the

troposphere through participation in a multitude of chemical reactions, all of which yield

species that bare their own consequences on the atmosphere. The photolysis of NO2 leading

to the formation of ozone is particularly important due to its direct impact on air quality, as

well as the intricate nature of the relationship since the concentration of ozone depends on

that of NO2. The sensitivity of O3 to NOx in general, depends heavily on the NOx-VOC

ratio in a given region and production can be limited by either precursor species. This means

that a decline in the concentration of the limiting precursor would cause a subsequent

decrease in ozone production rate. An example of a NOx-limited scenario is a forested rural

region which generates large amounts of biogenic VOCs. Here, the production rate of O3

would decrease as NOx levels declined. Conversely, VOC-limited ozone production is most

often observed in urban areas where the abundance of NOx from motor vehicles works to

scavenge the O3 from the atmosphere. Reducing NOx emissions would then result in less

ozone being consumed. To properly replicate NOx and O3 levels over a given region, it is

necessary for an AQM to be able to calculate all of the major chemical reactions involving

these species, in addition to the governing transport mechanisms. This is why CMAQ was

employed, as it is capable of calculating all these important factors. Further details about

CMAQ and its internal processors and external components will be provided in Chapter 3.
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Chapter 3

CMAQ Modelling System

3.1 Introduction

The concentration of pollutants in the troposphere is affected by many different processes

including, but not exclusive to, chemical transformations, meteorology, wet and dry

deposition and emissions. Understanding these complex relationships is made easier by the

use of air quality models (AQMs) whose goals are to assess the spatial and temporal

distribution and evolution of tropospheric pollutant concentrations generated from both local

emissions and long range transport. They do this by establishing (numerical) relationships

between meteorology and transport processes, emissions, chemical deposition and chemical

transformations (Jacob, 1999). There are three basic types of air quality models. The first

type is called a box model which represents the area of interest as a stationary box where

transport moves species X, in and out of the box. The production of X inside the box

includes contributions from emissions and chemical production, while the loss of X is due to

deposition and chemical loss (Jacob, 1999). The spatial distribution of X in the box is not

resolved because it is assumed that the box is well mixed. The second type of air quality

model is a Lagrangian or trajectory model where, in contrast to a box model, the selected

domain (i.e. urban or country) is an air parcel that moves with the speed of the wind along

the surface. Here too, the air parcel is taken to be well mixed. Lastly, the third type of model

is a 3-dimensional Eulerian model which employs a fixed model grid, overlain with a series

of three-dimensional grid cells in the horizontal and vertical directions. The advantages and

disadvantages of each type of model are summarized in Table 2.
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Table 2. The advantages and disadvantages of different types of air quality models.

Box Model Lagrangian Model Eulerian Model
Advantages  Easy to use, low

complexity
 Often sufficient

enough for most
air quality issue

 Basis of
conservation laws

 Equations are
computationally
simple to resolve

 Provides a more
complete
characterization of
physical processes
in the atmosphere
compared to
Lagrangian models
 Can predict species

concentrations
throughout the
entire model
domain

Disadvantages  Chemistry is often
oversimplified

 Does not resolve
the concentration
gradient of species
‘X’ inside the box
(i.e. assumes the
box is well-mixed)

 3-D applications
of the equations
of motion are
difficult to apply

 The physical
processes it
describes are
somewhat
incomplete

 Highly complex,
requires extensive
parameterizations

In these Eulerian models, coupled differential equations – the conservation equations –

derived from the fundamental laws of physics, are used to calculate a mass balance within

each grid cell by solving the transport across each cell boundary and chemical

transformations within each cell during a specified period of time. The changes in

concentration of pollutants in each grid cell are affected by the following processes:

emissions from sources (Ec), horizontal and vertical advection (Adv) and diffusion (Diff),

chemical transformations (Rc) and deposition/loss processes (Sc). Mathematically, they
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relate to the concentration in each grid cell through the continuity equation (Russell &

Dennis, 2000)

ௗୡi
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where ci is the concentration of species i, Ū is the wind velocity vector, ρ is the air density, Di

is the molecular diffusivity of species i, Ri is the rate of concentration change of species i by

chemical reaction, n is the number of predicted species and Si(x, t) is the source/sink of i at

location x.

Because the chemical and physical processes of the atmosphere are so complex and variable,

these equations cannot be solved exactly (Jacob, 1999; Pielke, 2002). Thus valid

approximations and assumptions of the complex chemical and physical processes of the

atmosphere must be made. It should be noted that the concept of assumptions is one major

source of error in all air quality models. Because these equations are applicable to

infinitesimal distances, they can relate to spatial scales close to approximately 1 cm and time

scales of about 1 second in the atmosphere (Pielke, 2002). To apply them to synoptic or

subsynoptic scale processes, they have to be integrated over the entire domain of the model.

For the purpose of simplicity, the individual terms in the conservation equations are normally

condensed in AQMs to make the equations easier to work with (Pielke, 2002).

3.2 Model Selection Rationale

In this study, the air quality model used for all simulations was the US EPAs Models-3

CMAQ Modelling System (Byun, Pleim, Tang, & Bourgeois, 1999). There were many

reasons for choosing CMAQ over other air quality models, as it was purposely designed to

account for, and improve upon the operational and scientific failures of early AQMs, as

outlined in Dennis et al. (1996), and was to be used primarily by two different groups: policy

makers and scientists. Policy makers need models which can make relatively rapid
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predictions on numerous scenarios for comparison. In 2004, the provincial government used

CMAQ to study the transboundary flow of ozone, particulate matter and their precursors, as

part of the federal-provincial Canada Wide Standards initiative. The US EPA also routinely

operates CMAQ to gauge the level of attainment of its own federal policies (Eder & Yu,

2006) and emission control strategies such as the National Ambient Air Quality Standards.

Despite the availability of numerous AQMs, CMAQ has been increasingly chosen as the

model of choice for government regulators and agencies.

The scientific community, however, is mostly interested in understanding the chemistry and

physics of the atmosphere, such as how pollutants interact with each other, and how they are

produced and removed from the system (Dennis et al., 1996). The favouring of CMAQ by

the scientific community has been observed by its extensive use within academic institutions

to study various facets of the atmosphere, from the fate of mercury in North America (Wen,

2006) and the evaluation of the deposition of acidifiying species on the air quality in East

Asia (M. Lin et al., 2008), to the operation of CMAQ in forecasting systems in Europe (San

José, Pérez, Morant, & González, 2008).

A sound air quality model must have the ability to be updated and tested as new scientific

information is made available (Dennis et al., 1996). Since CMAQs release in 1998, it has

been evaluated more extensively than any other chemistry transport model. Frequent

scientific peer reviews of all atmospheric processes – chemical and physical – within the

model (Arnold & Dennis, 2006; Byun & Schere, 2006; S. C. Smyth et al., 2006; Y. Zhang et

al., 2006; Y. Zhang, Liu, Pun, & Seigneur, 2006a; Y. Zhang, Liu, Pun, & Seigneur, 2006b),

in addition to the release of publicly available updates to ensure the model sensitivity and

performance in modeling spatio-temporal processes are of the highest quality. For example,

in 2008 CMAQ version 4.7 was publicly released. Thorough investigation led to changes to

scientific algorithms based on laboratory, field and numerical studies being incorporated into

the cloud and chemistry modules, emissions processing and dry deposition velocities (Foley
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et al., 2010). These improvements were implemented sequentially followed by a diagnostic

evaluation of each individual update so that the effects of each modification could be

understood (Foley et al., 2010).

CMAQ also has the ability to address a multitude of air quality issues simultaneously on a

variety of spatial and temporal scales making it a ‘one atmosphere’ model which is highly

beneficial to the modelling community because it negates the need to use separate models for

urban and regional simulations or for individual pollutant species (Byun & Schere, 2006;

Dennis et al., 1996). CMAQs spatial scale ranges from local to hemispheric, and its temporal

flexibility can be used to evaluate short term transport from localized sources (days to weeks)

or longer term climatological changes (months to years) (US EPA, 2006). The ‘one

atmosphere’ concept also applies to tropospheric air quality issues such as, but not exclusive

to, acid deposition, relative humidity and temperature. Multi-pollutant capabilities also allow

for the simultaneous examination of an array of pollutant species such as ozone, particulate

matter (of various components and sizes), toxics and trace gases to name a few. This is in

contrast to early 3-dimensional AQMs which treated air quality issue separately. For

example, the Regional Oxidant model (ROM) was used to explicitly simulate ozone, whereas

the purpose of the Sulphur Transport and Emissions model (STEM/STEM II) and the

Regional Acid Deposition model (RADM) were to investigate acid deposition (Byun &

Schere, 2006). Because the chemical and physical processes which occur in the atmosphere

are all interconnected with one another, they cannot be dealt with on an individual basis.

These aspects of the model allow it to be easily adapted to meet the needs of many users in

the air quality community, from research and regulatory modellers, to science module

developers to air quality forecasters and policy makers.

Modularity is an additional feature which adds to the strength of CMAQ, giving users the

ability to choose between multiple configurations when running the model. Because the user

is not responsible for changing the code or declaring variables within the program modules,
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possible errors relating to these matters are greatly reduced. Additionally, its open source

code allows any user with internet access to download and compile the model making it

widely available and inexpensive.

While some may argue that these aforementioned benefits are applicable to many AQ

models, direct comparison of CMAQ with other regional models have provided convincing

evidence of the benefits of using CMAQ for numerous species under a variety of scenarios.

When modelling long term scenarios for sulphate aerosols CMAQs performance was

superior to the Regional Modeling System for aerosols and Deposition (REMSAD), though

both models performed equally well for nitrate aerosols. When compared to other models

like the Comprehensive Air Quality Model with Extension (CMAx) which is also broadly

used, it was found that the models performed moderately well though CMAx generates

higher ozone levels overall than CMAQ possible due to the more up-to-date dry deposition

science in CMAQ, or its more robust vertical transport (Liang, Martien, Soong, & Tanrikulu,

2001).

Despite its usefulness, CMAQ is not without its drawbacks. Its grid-based structure causes it

to be much more computationally intensive compared to box models and Lagrangian models

(Russell & Dennis, 2000). Similar to all scientific analysis, CMAQ is subject to the limits

and drawbacks of the numerical algorithms on which its operation is based. For example, the

issue of numerical instability of the transport equations has been investigated within the

model. It has been found that studies which analyze the influence of small changes in

emissions on particulate matter can be subject to great numerical instability, such as severe

over prediction in remote or far downwind regions (D. Tong & Mauzerall, 2005). Though

more recent updates to the aerosol and transport modules in the CCTM have helped to limit

these issues, they are still matters that need further attention.



18

3.3 Model Descriptions

3.3.1 CMAQ

CMAQ employs three main types of components to operate, namely a meteorological

modelling system which describes the physical states and motions of the atmosphere, an

emissions model which processes anthropogenic and biogenic emissions, and a chemistry-

transport model (CTM) which is responsible for simulating the chemical reactions,

transformations and transport processes of the atmosphere. Because the CMAQ CTM

(CCTM) requires a great deal of input data from multiple sources to function correctly,

CMAQ contains four internal processors to prepare, convert and provide the necessary data

to the CCTM. These processors link the meteorology, emissions and chemistry transport

components of a simulation (Byun & Schere, 2006). The clear sky photolysis rate calculator

(JPROC) computes the photolysis rates used when simulating photochemical reactions in the

CCTM, and the initial conditions (ICON) and boundary conditions (BCON) processors were

used to generate the initial and boundary conditions for a CCTM simulation, respectively.

The last program to be run is the CMAQ chemistry transport model (CCTM) which receives

all the information generated from the other models and processors to replicate each of the

atmospheric processes that affect the transport, transformation and deposition of participating

pollutants. Several internal process modules also aid in the simulation. These include:

horizontal and vertical diffusion and advection including mass-conservation adjustments for

advection processes, aerosol dynamics and size distributions, aerosol deposition velocity

estimation, aqueous-phase reactions and cloud mixing, gas-phase chemical reaction solver

and process analysis. A schematic diagram of the internal and external components needed

for the correct operation of CMAQ, as well as the flow of data between them, can be seen in

Figure 1. Each of these components will be discussed in further detail in the following

sections starting with the internal processors of CMAQ followed by the external models.
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Figure 1. The internal and external components of the CMAQ modelling system. Red arrows
illustrate the flow of data from the CMAQ pre-processor to the CCTM. Green arrows show
the data feedback from the CCTM is used to create initial and boundary conditions for nested
simulations. Black arrows indicate the external data flow, while the blue arrow shows that the
output from MCIP is used to drive the emissions model, SMOKE.

3.3.2 MCIP

The Meteorology-Chemistry Interface Processor (MCIP) evolved from the meteorology pre-

processor of the Regional Acid Deposition Model (RADM). Its primary role in air quality

modelling is to translate the meteorological parameters generated from the meteorology

model into I/O API formatted files that are readable by the CMAQ chemistry modules (Byun

et al., 1999; Byun & Schere, 2006; US EPA, 2006). This step in air quality simulations is

essential because consistency must exist between the meteorological output and the way it is

used in the CCTM. It has the added capability to switch coordinate systems and use

generalized vertical coordinates; this allows MCIP to support either the MM5 or the Weather

Research Forecast (WRF) model for a given simulation. Another responsibility of MCIP is

to process and gap fill the meteorological data since many meteorology models often omit
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some of the parameters required by the CCTM. Dry deposition velocities and radiation fields

are calculated within MCIP, while the user can opt to recalculate the provided planetary

boundary layer (PBL) heights as well (Byun et al., 1999).

3.3.3 JPROC

The Clear-Sky Photolysis Rate Calculator (JPROC) generates daily photolysis rates for all

photochemical reactions based on physical properties of photoreactive molecules, at every 10

degrees in latitude for 10-60 degrees north. The accuracy of the calculated rates is vital to

the accuracy of the CMAQ simulation because photolysis is the primary source of radicals in

the troposphere. These rates are determined for a selected gas-phase photochemical

mechanism at varying altitudes in meters, latitudes in degrees and zenith angles. Equation 27

is the equation for the photolysis rate for a given photochemical reaction

ܬ݅ ൌ ሻɐߣሺ	 ሺ݅ߣሻԄ ሺ݅ߣሻߣ� (27)

where Ji(min-1) is the photolysis rate, F(λ) is the actinic flux (photons cm-2 min-1nm-1), σi(λ)

is the absorption cross section for a given photodissociating molecule, ϕi(λ) is the quantum

yield of the photolysis reaction (molecules photon-1) and λ is the wavelength (nm) (Byun &

Schere, 2006). All of these variables are required as input for each species defined in the

selected gas-phase chemical mechanism.

Temperature profiles, optical depth and aerosol extinction coefficients are all included in the

input in addition to molecular absorption cross-sections and quantum yield data for molecular

oxygen and ozone, both as a function of wavelength. Ozone column measurements are

derived from the NASA Total Ozone Mapping Spectrometer (TOMS) on the Nimbus satellite

(Spak, 2009). The correct absorption cross-section and quantum yield data files for the

selected chemical mechanism must be provided to ensure consistency. These values are also

corrected to account for temperature and pressure effects by using seasonal vertical profiles

of these parameters. This information as well as extraterrestrial radiation, Rayleigh
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scattering in for clouds and surface albedo is then used to determine the actinic flux for clear

sky conditions and photolysis rates (Byun & Schere, 2006).

3.3.4 BCON and ICON

The Initial Conditions (ICON) and Boundary Conditions (BCON) Processors provide the

chemical concentration fields for individual species at the start of a simulation and for those

that lie in the grid cells outside of the modelling domain. They are compulsory in a

simulation, and both utilize either time-independent vertical concentration profiles which

represent the clean atmosphere, or existing CCTM output to generate the initial and boundary

conditions (ICs and BCs). With BCON, users have the additional option of utilizing a larger-

scale (i.e. global-scale) output file from an external CTM. Whichever option is used, BCs

influence surface-O3 concentrations on the interior of the domain through transport and

vertical advection (Tang et al., 2009), while the impact of the ICs is more prevalent in short

term simulations. To minimize or eliminate their effects, a period called a ‘start up’ period is

run prior to the simulation of interest so that errors can be averaged out over a longer period

of time.

3.3.5 CMAQ Chemistry Transport Model (CCTM)

The last program to run in the CMAQ model is the CCTM which is the Eulerian component

of CMAQ. It uses the output from the emissions and meteorological models as well as the

other CMAQ programs and to address the chemistry and transport of pollutant species. It is

where the simulation of all dynamical processes including advection, dispersion, deposition

and reactions take place. Figure 2 shows the internal components of the CCTM.
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Figure 2. The internal modules of the CMAQ Chemistry Transport Model (CCTM).

In the CCTM, pollutants are transported by various physical processes such as advection,

diffusion and convection, all of which are subject to the principal of mass conservation.

Advection moves pollutants either vertically or horizontally, though mean atmospheric

motion is predominantly in the horizontal direction. Movement in the vertical direction is

largely referred to as convection which depends wholly on meteorological conditions. The

CCTM uses a globally mass conserving scheme for horizontal motion, while the vertical

velocity component is derived at each grid cell that satisfies teh mass continuity equation.

Diffusion which occurs on a sub-grid scale results in quick mixing closer to the pollutant

source which can produce large changes to pollutant concentrations. This is particularly

important when individual sources are directly added to the grid as point sources since

instantaneous mixing is assumed and thus must be corrected for using parameterizations (US

EPA, 2006). The CCTM implements horizontal diffusion with a single eddy diffusion

algorithm that is dependent on the model’s grid size and is based on local wind deformation.

The diffuseness is assumed to be uniform but is higher for higher resolutions.

Aerosols are calculated by the CCTM through the CMAQ aerosol module. There are two

different versions of the module, aero3 and aero4. The difference between the two versions

is that aero4 includes calculations of sea salt aerosols which are speciated into sodium,

chloride and sulphate and are distributed by size. The CCTM is capable of simulating both



23

fine and coarse particles which generally follow different production mechanisms and

chemical characteristics (Binkowski, 1999), and includes both primary emissions and

secondary species. Particle sizes are equal to or less than 2.5 microns in diameter (PM2.5),

greater than 2.5 microns and equal to or less than 10 microns in diameter (coarse particulate

matter) as well as those of size equal to 10 microns in diameter or less (PM10), where PM10

is the sum of PM2.5 and coarse particulate matter. The fine group (PM2.5) are sulphates,

nitrates, ammonium, water, and organic and elemental carbon among others. They are

divided into two subgroups, Aitken and accumulation modes, and are generated by one of

three processes: nucleation, combustion processes or condensation upon existing particles.

The coarse particulate matter (PM10) is represented by wind-blown dust and generic

anthropogenic species mostly associated with industrial processes. All cloud and aqueous-

phase chemistry are modelled by the cloud and aqueous chemistry modules, and include

processes such as wet deposition, the vertical redistribution of pollutants for sub-grid clouds

and the calculation of in-cloud scavenging via precipitation. Cloud droplets themselves, are

formed by heterogeneous nucleation on aerosols, and grow via collision, condensation and

coalescence. The cloud module is divided into sub-grid and resolved cloud modules which

are employed according to the grid size. Horizontal grid resolutions of 12 km or more

require the sub-grid module because the size of a convective cloud is assumed to be smaller

than the grid cell and must be parameterized. Depending on whether the meteorological

model indicates the occurrence of convective precipitation, the sub-grid module in CMAQ

will simulate either precipitating or non-precipitating clouds accordingly. The resolved cloud

module however, is used in CMAQ for grid cells of 4 km or less for clouds that are resolved

by the meteorological model and occupy the entire grid cell (Roselle & Binkowski, 1999).

The simulated clouds can include stratus, cumulus or cirrus clouds.
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3.3.6 Photochemical Gas-Phase Chemical Mechanisms

Photochemical gas-phase chemical mechanisms mathematically describe photochemical

processes through simplified sets of chemical reactions involving both primary and

secondary compounds; whereby primary pollutants interact to form secondary pollutants.

The species represented in chemical mechanisms are inorganic compounds such as NOx, Ox,

HOx and SOx, as well as organic compounds which consist primarily of VOCs (Dodge,

2000). Because the number of represented inorganic species is limited and their kinetic

parameters are generally well understood, they are characterized in a similar manner in all

mechanisms, with explicit representation. Conversely, the organic species in a mechanism

are simplified (condensed) because it would be computationally impractical to represent the

complete chemistry of the (polluted) atmosphere (R. Atkinson, 2000), as this would require

over twenty thousand different reactions, several thousand species and their reaction

products, and the integration of all the rate equations (W. Carter, 2000b; Dodge, 2000;

Russell & DennisOn assignment to the Atmospheric Research and Exposure Assessment

Laboratory, U.S. Environmental Protection Agency, Research Triangle Park,NC 27711.,

Robin, 2000). Condensed mechanisms are particularly necessary for grid based AQMs

which call for chemical concentrations to be calculated over every grid point (Dodge, 2000;

Jimenez et al., 2003).

Condensing these compounds and their reactions can be accomplished by several different

methods. Some of the more frequently employed methods are as follows: The first type is

the ‘lumped structure’ approach which groups (organic) compounds according to the types of

carbon bonds in each species. Secondly, the’ lumped molecule’ approach groups organic

compounds, specifically VOCs, with species that have comparable chemical structures and

each group is represented by a generalized – or surrogate – species (W. Carter, 2000b; Faraji,

Kimura, McDonald-Buller, & Allen, 2008)(W. Carter, 2000b; Faraji et al., 2008). A third

approach is called the’ variable lumped parameter condensation’ groups VOCs having

similar rate constants with a surrogate; the kinetic and product yield parameters of the
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surrogates are weighted averages of the mixture of VOCs they represent (W. Carter,

2000b)(W. Carter, 2000b). Lastly, the ‘morphecule’ approach has also been developed

where the composition, concentration and rate of reaction for surrogate species called

morphecules, is updated after every time step in the simulation (Dodge, 2000). Examples of

gas-phase chemical mechanisms that include each type of lumping are Carbon Bond-IV

(CB4), State-wide Air Pollution Center (SAPRC-99), Regional Acid Deposition Model 2

(RADM-2) and Morphecule mechanism (MM), respectively.

3.3.6.1 SAPRC-99

To date, numerous chemical mechanisms have been developed for AQ modelling. SAPRC-

99, the gas-phase chemical mechanism chosen for use in this study, was developed and

modified by Carter et al. (1999) and is one of the most commonly utilized mechanisms for

urban air quality modelling. It was specifically designed to assess VOC activity in more

detail than other mechanism used in Eulerian modelling. It uses a lumped molecule approach

to calculate chemical concentrations for 80 species in 214 reactions (W. Carter, 2000b;

Jimenez et al., 2003; Luecken, Phillips, Sarwar, & Jang, 2008)(W. Carter, 2000b; Jimenez et

al., 2003). A list of the reactions in the mechanism can be found in Appendix B. For base

case and ambient simulations, the hydrocarbons are lumped into five alkane groups (ALK1-

5), two aromatic groups (ARO1 and 2), two alkene groups (OLE1 and 2) and 1 group for

terpenes (TRP1) (W. Carter, 2000b). The main building block of SAPRC-99 is the base

mechanism which contains the reactions of generic VOCs as well as inorganic species,

common organic products and the intermediate radicals these products produce. Other key

components include the estimation methods used to determine which VOC reactions are not

in the base mechanism and the lumping procedures which characterize the mixtures or VOCs

for which no estimations are available (W. Carter, 2000b). The reactions of VOCs can be

added to the mechanism for individual VOCs or for lumped (surrogate) species, depending

on the application. The addition of such species or classes of species would be necessary if,

for example, the model predictions of a particular species that would otherwise be lumped
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with similar compounds needed to be compared with experimental measurements (W. Carter,

2000b). For example, isobutene, which is normally represented by the alkene surrogate,

OLE2, can instead be represented by four different chemical reactions with HO, O3, NO3 and

O(3P).

Like all chemical mechanisms, SAPRC-99 has been extensively peer-reviewed (Stockwell,

1999) and updated to represent the most recent advances in atmospheric chemistry. It has

been evaluated against approximately 1700 environmental smog chamber experiments

carried out at the University of California at Riverside (W. Carter, 2008; Dodge, 2000) to

assess how accurately it represents ambient conditions. Smog chambers are used for analysis

because they are closed systems and so are not influenced by factors like meteorology,

making analysis easier (Faraji et al., 2008); though smog chambers are not, themselves,

without error. Changes to the original base mechanism centred on evaluations by IUPAC

and NASA in the late 1990s and led to revised absorption cross sections, quantum yields,

reaction mechanisms and rate constants for various reactions including a 20 percent change

in the rate constant for the reaction of OH with NO2 (W. Carter, 2008). Updates to the

kinetic parameters for ARO1 and AEO2 lumped species were more recently added to the

mechanism; the treatment of low-NOx conditions was also addressed. Since the report by

Carter (2000b), a total of 19 additional compounds were added to SAPRC-99 including

highly branched alkanes (C ≥ 11) and several oxygenated compounds (W. Carter, 2000a).   

Comprehensive reviews comparing SAPRC-99 with other commonly employed gas-phase

chemical mechanisms for a variety of chemical species and conditions are also available

(Luecken et al., 2008). An alternate mechanism which is commonly used to describe urban

atmospheric chemistry is the carbon bond mechanism, of which two main versions exist,

Carbon Bond IV (CB4) (Gery, Whitten, Killus, & Dodge, 1989)and the newer Carbon Bond

V (CB05) (Yarwood, Rao, Yocke, & Whitten, 2005). The points of divergence among the

three mechanisms centre on how they process unknown reaction rates and their dependence
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on factors like time, temperature and pressure, as well as how they condense reactions and

organic compounds (Luecken et al., 2008). A comparison of these condensed mechanisms

with SAPRC-99 can be seen in Table 3. Many studies have compared SAPRC-99 with the

CB mechanisms (Byun, 2002; Faraji et al., 2008; Luecken et al., 2008; Yarwood,

Stoeckenius, Heiken, & Dunker, 2003). With respect to NOx, SAPRC-99 predictions are

more similar to those of CB05 than the older CB4 mechanism. This is partly because

SPARC-99 and CB05 include the recycling of short-lived, oxidized nitrogen species like NO,

NO2, HONO and N2O5, while CB4 does not. By including these recycling reactions,

compounds which were treated as termination products in CB4, can regenerate reactive

species. For example, HNO3 which is a sink for NO2 can photolyze, as can organic nitrate, to

produce HOx and NO2 , resulting in higher ozone levels (Byun, 2002; Faraji et al., 2008;

Luecken et al., 2008). Urban areas and areas with a high NOx/VOC ratio provide the largest

difference (Luecken et al., 2008). From this it is evident that changing the mechanism can

have an impact on predictions of nitrogen containing compounds – and thus ozone – in urban

and rural environments.

Table 3. A comparison of SAPRC-99, CB4 and CB05 chemical mechanisms as used by
Luecken et al. (2008).

CB4 CB05 SAPRC-99

Type of lumping Lumped structure Lumped structure Lumped molecule

Total number of

species

46 59 80

Number of organic

species

30 41 64

Total number of

reactions

96 156 214

Number of

inorganic reactions

45 63 45
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3.3.7 Weather Research and Forecasting Model (WRF)

The meteorological fields for the air quality simulations were generated by the Weather

Research and Forecasting Model (WRF) which is a mesoscale numerical weather prediction

system. WRF has scales ranging from a few meters to thousands of kilometres. Its

framework supports non-hydrostatic conditions, but also has a hydrostatic option where the

force of gravity balances out the atmosphere’s pressure gradient, and uses terrain-following

vertical pressure coordinates. Another commonly used meteorology model is the Fifth-

generation NCAR/Penn State Mesoscale Model (MM5). Though MM5 has been more

frequently used in past operational applications, recent improvements to WRF have made its

performance is comparable to that of MM5. WRF not only has the same capabilities as

MM5, it also includes updated physics schemes like those for the land-surface model (LSM),

planetary boundary layer (PBL), cloud microphsyics and radiation in addition to high quality

mass conservation characteristics (Appel, Roselle, Gilliam, & Pleim, 2009; Challa et al.,

2007) .

3.3.8 Emissions Model

Emissions inventories are processed by the Sparse Matrix Operator Kernel Emissions

(SMOKE) Modelling System which prepares them for input into the CMAQ chemistry

transport model (CCTM). The SMOKE modelling system was developed by the MCNC

Environmental Modelling Center in 1996 for emissions processing in both urban and regional

applications. It continues to be reviewed and improved at the University of North Carolina at

Chapel Hill’s Carolina Environmental Program and is highly versatile in that it can create

input for 3D and 2D AQMs. For use in CMAQ, the emissions must be speciated,

temporalized and gridded for each individual or lumped species defined in the chemical

mechanism. SMOKE does this by performing temporal allocation, spatial allocation,

speciation and merging. Temporal Allocation uses factors based on source characteristics,

such as temporal profiles, to transform the inventory data to the time scale required by the
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AQM. These factors are listed by the US EPA (http://www.epa.gov/ttn/chief). Spatial

Allocation is the process by which the emissions data are distributed over the simulation

domain according to the grid specifications, from the geographical units which they are

available. Speciation is employed to convert the classes of species reported in the inventory

to those defined by the AQM photochemical mechanism by applying source specific mass or

mole factors. Lastly, a single 3-D output file of the emissions is created for the AQM from

all sources by Merging. The sources include point, area, mobile and biogenic sources.

3.3.8.1 Emission Inventories

Emission inventories are the main input files to SMOKE. They contain different data types

called inventory pollutants which can be modified according to the application of the AQM.

The different data types are criteria, particulate, toxics and activity data. Criteria inventories

contain carbon monoxide (CO), NOx and VOCs or total organic gases (TOG), ammonia

(NH3) and sulphur dioxide (SO2). Particulate inventories include particulate matter of size 10

microns or less (PM10) and 2.5 microns or less (PM2.5). The toxics inventories are obtained

from the US National Emission Inventory (NEI) for hazardous air pollutants (HAPs), and are

composed of several hundred compounds that represent pollutant groups like polycyclic

organic matter (POM), cyanide compounds and metal compounds such as manganese and

chromium, among others.

The emissions inventories are also divided into different source categories depending on their

attributes and characteristics, and SMOKE processes these into four different types in order

to account for the difference in temporal and spatial distribution of different emission

sources: area (nonpoint and nonroad mobile sources), biogenic (biogenic land use data),

mobile (on-road mobile) and point (point and wildfire sources). Area Sources include

nonpoint/stationary sources as well as nonroad mobile sources. Stationary sources refer to

those that are not movable, and are estimated over a particular area like a county or district

because it is not possible to collect emissions data at each point of emission. Examples
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include residential heating and mining operations. They may also include some sources like

dry cleaning facilities which can be summed and treated as nonpoint sources because they are

small and too abundant to account for individually. Nonroad mobile sources contain

vehicular and movable sources with the exception of those that travel on roads. They are

spread over an area during processing. Examples include trains, construction vehicles, boats

and lawn and garden equipment. Biogenic Sources use land use data which is characterized

by the type of vegetation within the domain. Emissions are estimated using Biogenic

Emission Inventory System (BEIS) model based on the factors such as the distribution of

vegetation, foliage density, temperature and solar radiation. Biogenic sources account for all

natural emissions from vegetation, soils and lightning. Mobile Sources are vehicular sources

that travel on roads such as gasoline and diesel vehicles. They are estimated with the internal

MOBILE 6 model based on road type and vehicle classes, and are computed over a spatial

extent. MOBILE 6 uses a special type of input called activity data which consists of vehicle

miles traveled and can include vehicle speed. Point Sources are those which release

emissions from isolated stacks or vents. They are largely industrial emissions, vertically

distributed from sources such as electric generating utilities, refineries and chemical

processing and manufacturing. They equal one tonne or more per year, and are identified by

exact locations because they are regulated and their location are available in regulatory

reports (Byun & Schere, 2006).

3.3.9 Spatial Allocator - Surrogate and Vector Tools

Spatial surrogate input files for SMOKE were developed with the Spatial Allocator version

3.6. The Spatial Allocator consists of the surrogate and vector tools, and was created from

the Multimedia Integrated Modelling System (MIMS) Spatial Allocator. It is used to

generate grid, E-Grid or polygon based spatial surrogates directly from shapefiles for use in

SMOKE, where the input shapefiles are created using GIS software such as ArcGIS, and are

available for the North American domain from the US EPA’s ftp site

(ftp://ftp.epa.gov/EmisInventory/emiss_shp2003). A spatial surrogate is a value greater than
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zero and less than or equal to one. It specifies the fraction of emissions in a given area such

as a county or province that is to be allocated to each grid cell that overlaps that particular

area. This is an important part of air quality modelling because the accuracy of a simulation

depends largely on its emission inputs. They are used to map county-level emissions data

onto modelling domain by assigning a certain fraction of the emissions in an area, usually a

county, to the individual grid cells that overlap that area. They are needed to provide data

that is missing from the raw inventory files.
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Chapter 4

Associated Exercises

4.1 Benchmark Case

Before an air quality model can be used for a simulation, it must be properly installed,

compiled and tested for accuracy. These steps are essential to make sure the model is set up

and running correctly. Before the benchmark case could be conducted, the system

requirements for running CMAQ were addressed. First, the latest versions of the Current

Versions System (CVS), Input/Output Applications Programming Interface (IOAPI) and

Network Common Data Form (netCDF) libraries were installed, and then the CMAQ source

code, scripts and benchmark data was unpacked and compiled. The Package for Analysis

and Visualization for Environmental Data (PAVE) version 2.1 was also installed and

compiled for viewing the information contained in CMAQ, SMOKE, MCIP and WRF output

files. Once these installations were complete, the CMAQ version 4.2 benchmark case was

run as outlined in the CMAQ 4.2 User’s Guide, using nested domains over three days to test

the setup of the model. The output was then compared with the dataset provided in the

CMAQ distribution. After determining that the output matched, the following exercises were

conducted to gain experience and knowledge in the process of air quality modelling.

4.2 Exercise 1: Bath Project

Although the benchmark case provided guidance on how to run CMAQ, it invoked only one

specific configurations of the model. The model’s actual setup can be modified in numerous

ways depending on the objective of the simulation. Thus the main purpose of this exercise

was to learn how to alter and run MCIP, SMOKE and CMAQ for my own specific modelling

case. To do this, the MCIP, SMOKE and CMAQ models were employed to generate AQ

data for the town of Bath with local emissions from the nearby Lafarge cement plant turned
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off in order to provide a better understanding of the air quality impacts of the factory on the

town of Bath. CMAQ output was created for the entire month of July 2007, with a three-day

warm up period from June 27-June 30, 2007, for three domains (two nested). A Red Hat

Linux platform was used with one node containing 4 CPU. Each CPU provided 1G of

memory. This exercise involved installing and compiling MCIP version 3.1 which was the

most current release of the model at the time. MCIP was used to prepare the meteorological

fields for input into CMAQ as well as SMOKE version 2.1. The emissions dataset was

generated from the US EPA’s 1999 emissions inventory for the US and 1996 inventory for

Canada. The output was compared against a reference set of CMAQ output that included the

emissions from the Lafarge plant. This exercise was very useful as it provided experience in

using MCIP and SMOKE, and helped to explain the processes involved in air quality

modelling such as input generation and preparation for the CCTM. The practice and benefit

of using nested domains was also investigated as three domains had to be run for each

SMOKE, MCIP and CMAQ. Using nested domains allows for greater accuracy and higher

spatial resolution locally (Mueller, Mao, & Mallard, 2010), and reduces the impacts of error

propagation from the boundary conditions. Nesting however, is computationally intensive

due to the increased number of grid cells involved in each successive domain. The wall-

clock time required to produce a month’s worth of data was also extensive because all

models had to be run once for each domain, for each day. To run a single three-day

simulation using two nested domains required approximately 10 hours of wall-clock time.

4.3 Exercise 2: A-MAPS Project

The second exercise conducted was to run CMAQ from December 1, 2007 to March 31,

2008 using a three day warm up period from November 28 to November 30, 2007. This is

where the model was allowed to run prior to the modelling episode in order to smooth out

any inaccuracies associated with the initial and boundary conditions. The MCIP, SMOKE

and CMAQ scripts were altered according to the required specifications, and the model was
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run for the same domains described in Section 4.2. After the first few weeks of the

modelling episode were complete the CCTM was changed to run on multiple processors.

This was a difficult task as the build and run scripts for the CTM had to be altered. A

description of these changes can be found in Appendix A. After numerous trial runs in

parallel mode, it was determined that the Parallel Virtual Machine (PVM3) version 3.4.5

library, which is used to support communication between multiple machines, was needed.

Spending the time on this alteration was beneficial because running CMAQ on multiple

processors significantly reduces the wall-clock time for each simulation. Each single-

processor simulation for domains 1, 2 and 3 took 60 minutes, 2 hours and 7 hours,

respectively, whereas the cluster simulations required approximately 2.5 hours in total to run

all three domains. Once the parallel mode was established, simulations for the rest of the

period were carried out and the final output was validated against concentration profiles and

satellite measurements provided by A-Maps Environmental Inc. At a closer look of the

results, I determined that this was because the data had been initialized every three days

which kept setting the concentration of NO2 to zero. This was an important realization

because the ICs and BCs need approximately three days for their effects on the modelling

episode to be minimized (C. J. Lin et al., 2005). Future simulations took this into account

and the run scripts for the CCTM were altered accordingly.

4.4 Exercise 3: Model Updates

As new versions of air quality and supporting models are periodically released, it is

beneficial for users to update their models to take advantage of the newest advances in

tropospheric chemistry and transport. This exercise involved updating installing the latest

releases of CMAQ, SMOKE and MCIP and the Spatial Allocator to simulate NO2 for the

year of 2007. The first step was to update CMAQ to version 4.7. This process was very

time-consuming because version 4.7 had only been released a short time prior to this

exercise, and had not yet been fully evaluated by the modelling community. Often model

developers do not fully test and evaluate for bugs in the source code. Instead, they release
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new versions and leave it up to users to discover and report back any problems which may

exist in the chemistry or physical processes. After trying to compile CMAQ version 4.7

without success, I determined that it contained too many bugs which prompted me to move

down a version to 4.6 which was still relatively new – as it had only been released in 2006 –

but had been fully investigated and tested (Mueller et al., 2010). This proved to be a

beneficial step because recent studies revealed that version 4.7 was seen to produce worse

results in ozone studies (Foley et al., 2010). The same steps that were carried out in 4.1 were

repeated with the updated versions of all libraries because each successive version of CMAQ

usually requires a different release of libraries and supporting programs. That being said, the

meteorological interface and emissions models needed to be updated as well in order for their

output to be compatible with the new CMAQ.

Once the CMAQ benchmark case was successfully run according to the user’s guide (US

EPA, 2006), MCIP version 3.3 was installed. The output was fed into CMAQ along with

emissions files from my old SMOKE model for a test run. The CMAQ run failed, and the

errors suggested that the dry deposition of various pollutants were handled incorrectly.

Further examination led to the conclusion that MCIP version 3.4 was the best adaptation to

use with CMAQ version 4.6 because it was more ‘robust’ in its handling of dry deposition

(Otte, 2009). After this change was made and the simulation was complete, SMOKE version

2.4 was installed and compiled. The 2005 U.S. emissions inventory was downloaded from

the EPA’s emissions inventory clearing house (2005 platform), and the 2006 Canada

emissions inventory was provided by Dr. Sunny Wong from the Ontario Ministry of the

Environment (MOE). The MOE’s Canadian inventory was a more complete dataset than that

provided by the EPA (Wong, 2010).

With the upgraded version of SMOKE, a new set of spatial surrogates needed to be created

for compatibility with SMOKE. Surrogates are necessary to properly allocate pollutants over

a given area. The Spatial Allocator version 3.6 was installed and a total of 68 surrogates
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were created for three domains to supplement the inventories. These surrogates included

land and water boundaries, population and housing information, road networks and land use

among other categories. Processes such as weighting, filtering, merging and gapfilling were

carried out to get the best spatial representation of the emissions.

After much work, time constraints dictated that updating the emissions model was not

feasible, so the exercise was put to an end. Because SMOKE is a highly complex model, a

great amount of time is required to fully understand the structure of the model and the

interconnectedness of each file. File formats and inventories data are very specific and need

to be individually chosen to suit each simulation. This exercise provided a great learning

experience because it allowed me to become familiar with all the different aspects of air

quality modelling, from the creation of the meteorology and emissions files, to the internal

modules of CMAQ. Studying the set-up of each model and the work required to generate

high quality CMAQ input provided the sound knowledge base required for my master’s

project in 3-dimensional air quality modelling
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Chapter 5

Winter Study

5.1 Introduction

The troposphere – which extends from the Earth’s surface to 10-18 km in altitude depending

on the latitude and season – contains 85 percent of the atmosphere’s mass (Jacob, 1999;

Wallace & Hobbs, 2006) and its composition is influenced by transport processes in the

planetary boundary layer (PBL) which is the lowest part of the troposphere (R. Atkinson,

2000; Wallace & Hobbs, 2006). Here, the atmosphere has direct contact with the Earth’s

surface; consequently it is within the PBL that pollutants are emitted into the atmosphere

from anthropogenic and biogenic sources (Jacob, 1999; Wallace & Hobbs, 2006).

Tropospheric NO2 and O3 are two such pollutants. The main supply of NO2 is through

conversion from NO when NOx is emitted into the lower atmosphere primarily through fossil

fuel combustion from sources like road transport, power generation and industry (R.

Atkinson, 2000; Environmental Monitoring and Reporting Branch of the Ontario Ministry of

the Environment, 2009; van Noije et al., 2006). Ozone is a secondary pollutant generated

through chemical reactions involving NOx and VOCs and is heavily dependent on

meteorological conditions like sunlight and temperature such that O3 episodes normally

occur above 25°C (Sillman, 1993).

Despite the need for warm temperatures, O3 episodes do still occur in the winter even though

formation efficiency and solar radiation are limited. This aspect of O3 differs from other

pollutants like sulphur dioxide (SO2) or carbon monoxide (CO) (Sillman, 1993; Tesche et al.,

2006) which are more concentrated under cold weather conditions and sparse sunlight. Most

O3 investigations do not focus solely on the winter season (Eder & Yu, 2006), but some

authors have examined these uncommon wintertime events to try to understand the seasonal

cycle of O3, its precursors as well as the photolysis reactions associated with their formation
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and destruction. Zhang et al. (2006) reported that CMAQ was able to sufficiently simulate

various pollutant species during the winter months in East Asia, though O3 was

overestimated and NO2 values larger than 1.20 ppb were not easily reproduced. In North

America, Chtcherbakov et al. (2002) found that modelled and measured NO2 showed good

correlation for a high O3 conditions in the winter of 1998. In this chapter, the focus will be

on O3 and NO2 simulations for the first three months of 2005 which experienced higher than

normal O3 levels.

5.2 Method

The spatial and temporal distributions of O3 and NO2 over the cities of Ottawa and North Bay

were evaluated by pairing the model results with the measurements extracted from the

MOE’s Air Quality (AQ) network stations in those respective cities. The daily 1-h average

and diurnal cycles, 8-h maximum and 8-h average values for O3 and NO2 were analyzed

along with wind speed and wind direction. The urban AQ station was located at Rideau

Street/Wurtemburg Street in downtown Ottawa at an elevation of 68 meters with an air intake

height of 4 meters. The rural AQ station was found at Chippewa Street West at the

Department of National Defence in North Bay, at an elevation of 219 meters with an air

intake height of 4 meters. Though North Bay’s station is close to human activity, its

population is substantially lower relative to Ottawa’s population which makes it suitable to

representative the rural site. Ozone and NO2 measurements at these sites were recorded

every minute then averaged over one hour to produce an hourly datasets for each day of the

year.
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5.2.1 Modelling Domain

A modelling domain incorporates the area of interest which accounts for local emissions, as

well as an external area that, based on wind patterns, can sufficiently account for the long

range transport of pollutants into the area of interest. Figure 3 shows the CMAQ modelling

domain which is centred at 45ºN and 90ºW and encompasses all of Southern and Central

Ontario including the cities of Ottawa located at 45º25’N and 75º40’W and North Bay

located at 46º19’N and 79º26W. The domain also incorporates the north eastern U.S around

the Great Lakes basin in view of the fact that the air quality in Ontario is highly impacted by

transport from the United States. It contains 79 x 71 grid cells with a horizontal resolution of

36 km and 19 vertical layers which extend from the surface to the height of 100 mb. The

layers are measured in sigma coordinates which are defined as the ratio of the pressure at a

given altitude to the pressure on the surface of the earth below.

Figure 3. The CMAQ modelling domain used in this study with a resolution of 36 x 36 km.

Ozone and NO2 were simulated using CMAQ version 4.6 (Byun & Schere, 2006) on a Red

Hat Linux cluster containing 8 nodes. The SAPRC-99 gas phase chemical mechanism (W.

Carter, 2000b), Euler backward interactive (EBI) solver (Hertel, Berkowicz, Christensen, &
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Hov, 1993) and AERO3 aerosol module were used to simulate the transport and chemical

transformations in the troposphere for the period of January 4 to March 31, 2005. The

simulation was initiated assuming a clean atmosphere by using the background default

profiles for the boundary and initial conditions that were provided with the CMAQ package.

To minimize the propagation effects of these and establish a realistic atmosphere during the

period of interest, a two day spin up period was allowed at the beginning of January

(Jimenez, 2007; C. J. Lin et al., 2005; Wong, 2010). The CMAQ simulation options used in

this study are listed in Table 4.

Table 4. CMAQ simulation options invoked for this study.

Parameters Settingsa

Mass consistency adjustments Yamartino scheme for mass-conserving advection

Coupling-decoupling scheme Generalized coordinate system

Horizontal advection Piecewise Parabolic Method

Vertical advection Piecewise Parabolic Method

Horizontal diffusion Multiscale diffusion

Vertical diffusion Eddy diffusivity theory

Photolysis Photolytic rate constants

Plume in grid Not invoked

Gas phase chemistry solver Euler Backward Iterative solver for SAPRC-99

mechanism

Aerosol model Aerosol solver 3

Aerosol deposition velocity Aerosol deposition velocity routine

Cloud dynamics and aqueous

chemistry

Asymmetric convective model based on Regional

Acid Deposition Model

a
A description of the settings can be found in Wang et al. (2004) and Skamarock et al. (2005).
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5.2.2 Meteorology and Emissions

The 2-D and 3-D, gridded meteorology and emission fields were provided by Dr. Sunny

Wong and Dr. Andrei Chtcherbakov from the Ontario Ministry of the Environment’s Air

Monitoring and Reporting Section. The meteorological data were created using the Weather

Research and Forecasting (WRF) Model version 3.2, and were processed for CMAQ using

MCIP version 3.4. The meteorological physics options, outlined in Table 5, were invoked

according to findings by Challa et al. (2007). The U.S.A. O3 and NOx emissions were based

on the EPA’s National Emission Inventory (NEI) 2005 based platform which takes into

account the NO2 emissions changes due to the EPAs NOx State Implementation Plan (SIP

Call) and were processed by SMOKE version 2.4. The Canadian inventory was updated to

include heat island effect to provide a more comprehensive output. The Spatial Allocator

version 3.6 produced the spatial surrogates to supplement the emissions, while SMOKE used

the Biogenic Emissions Inventory System version 3.14 (BEIS 3) and the MOBILE6 model to

compute natural surface emissions and gridded motor vehicle emissions for the period,

respectively.

Table 5. WRF physics options used in this study.

Parameters Settings a

Grid Spacing 36 km x 36 km

PBL Scheme YSU

Cumulus paramterization Kain-Fritsch (new eta)

Microphysics WSM 3-Class Simple Ice

Longwave Radiation RRTM

Shortwave Radiation Dudhia

Surface Layer Scheme Monin-Obuk

Land-Surface Scheme NOAH Land-Surface Model

Number of Layers 19

a
A description of the settings can be found in Wang et al. (2004) and Skamarock et al. (2005).
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5.2.3 Statistical Analysis

In the modelling community there is no universally accepted set of performance measures

used to determine if the correlation between model predictions and ground measurements are

satisfactory (Brulfert et al., 2007). Various forms of bias and error have been proposed in air

quality studies (Appel et al., 2007; Chen, Stein, Zubrow, & Kotamarthi, 2006; Russell &

Dennis, 2000; D. Tong & Mauzerall, 2006), all of which provide valuable insight into the

accuracy of model predictions. In 1991, the US EPA created a comprehensive list of

statistical measures that it recommended as a guideline for CMAQ users to follow when

examining predicted ozone concentrations (US EPA, 1991). The following evaluation

metrics – which have been applied extensively in past investigations (C. Hogrefe, Rao,

Kasibhatla, Hao et al., 2001) – were used in this study to compare the similarity of the model

O3 results with measurements given the importance the EPA has place on them (D. Tong &

Mauzerall, 2006). The measured data was extracted from the Ministry of the Environment’s

Ambient Air Quality Monitoring Network for North Bay, Chatham and Ottawa. At least 75

percent of the hours covering the modelling period were available for all three sites, as

suggested by Tong et al., 2006.

Mean Normalized Bias Error (MNBE)

MNBE =
ଵ

ே
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Mean Normalized Gross Error (MNGE)
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Unpaired Peak Prediction Accuracy (UPA)
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× 100% (30)



43

Here N indicates the number of observation-model pairs, Cmod and Cobs indicate the

modelled and observed O3 concentrations at each site, respectively; and max refers to the

maximum observed or modelled O3 value for the period.

The MNBE represents the scale of the error for the modelled O3 relative to the observed

measurements at the specified site. The MNGE is used as an indicator of the model’s

precision as it calculates the mean unsigned error for the simulated O3 and relates the error to

the observed measurements. Both tests can be limited to cases where the observed

concentrations are above a predetermined minimum, such that observation-prediction pairs

are excluded from the analysis when the observations fall below the set minimum value.

This cut-off value, which is normally set to the average background concentration of ozone

in the region of interest, varies among studies (Brulfert et al., 2007; C. Hogrefe, Rao,

Kasibhatla, Hao et al., 2001). For example, Tong et al. (2006) used a cut-off value of 40 ppb

when evaluating summertime O3 concentrations across the continental U.S., while Russell et

al. (2000) set the cut-off value to 60 ppb. I chose not to impose any limits in my analysis

because this study is interested in the total ozone emissions in Ottawa, Chatham and North

Bay, and not just those values above the background levels.

The last parameter, the UPA, is used to compare the maximum predicted and observed values

over all hours in the modelling period. The general ranges of acceptability for these tests are

±5-15% for the MNBE, ±30-35% for the MNGE and ±15-20% for the UPA (US EPA,

1991); however, the EPA does suggest that these criteria alone should not be used as the

determining factors for model accuracy. To supplement these calculations, a fourth measure

was called the Mean Bias (MB) was used. This expresses model bias in actual (ppb) values

(Eder & Yu, 2006; Eder, Kang, Mathur, Yu, & Schere, 2006), and was used to evaluate both

O3 and NO2 in this study

Mean Bias (MB)

MB =
ଵ

ே
∑ ݉ܥ ݀ �( ܾܥ–݅( �ሺ݅ሻேݏ
ୀଵ (31)
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Though this particular calculation was not specified by the EPA in its report, it has been

frequently employed in other O3 and NOx investigations (M. Zhang et al., 2006). It is an

important tool in air quality modelling because it provides a quantitatively allows one to

assign an amount by which the modelled and measured datasets differ. Graphical

examination should also be used to visually inspect the correlation between predicted and

measured concentrations. The combination of all of the above techniques can provide a

powerful analysis.

5.3 Results and Discussion

5.3.1 Spatial Variability of Model Performance

Figures 4 and 5 present simulated and measured daily 1-h average ozone and NO2 mixing

ratios, respectively, for February 5, 2005. This day was chosen at random to illustrate the

winter diurnal, spatial patterns of O3 and NO2. A comparison of these figures shows that

CMAQ is generally able to simulate the spatial distribution of surface O3 throughout

southern Ontario and the north eastern United States. Ozone follows a predictable intraday

cycle where its concentration drops during the morning and evening rush traffic hours, but

peaks between 11 am to 3 pm during what is typically the brightest, most photochemically

active time of the day (Geddes et al., 2009). This diurnal cycle is represented qualitatively in

Figure 4a and b which illustrate the morning rush hour at 7 am local time (12 UTC) and the

peak ozone production hour at 1 pm local time (18 UTC), respectively. During the morning

traffic which is approximately 7-9 am, it can be seen that ozone mixing ratios are low over

the entire domain as expected due to the scavenging of O3 by the sudden influx of NOx

emissions from motor vehicles. The range of O3 levels over most of Ontario in Figure 4a is

roughly 25-34 ppb, which earlier studies (Yap, Ning, & Dong, 1988) have suggested to be

just below the range of background ozone levels for the area (30-50 ppb hourly maximum)

though most of these studies focus on the summer months.
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In contrast to Figure 4a, Figure 4b displays O3 during the prime ozone time of the day with

the highest amount of photochemical radiation. At this time, the morning traffic has

subsided, and the large mobile source NOx emissions have ceased. Here, CMAQ ozone

mixing ratios are around 34 ppb in southern Ontario and reach 50 ppb in parts of the eastern

and mid-western U.S. It should be noted however that while the maximum value on the scale

is 50 ppb, ozone levels may have exceeded this value in these regions. Any exceedance is

not shown though, due to the limits of the scale. The spatial distribution of ozone in these

figures is in agreement with the distribution of NO2 in Figures 5a and b which illustrate the

peak NO2 spatial distribution. This is a clear example of the O3-NO2 diurnal cycle because it

shows that low O3 mixing ratios due to titration by NOx at times when NO2 is high. This is

due to the non-linear chemical coupling of ozone and nitrogen dioxide (Mazzeo, Venegas, &

Choren, 2005). In these figures, ‘spots’ of high concentrations of NO2 can be seen over large

urban centres in the domain such as Detroit-Windsor, Toronto, Ottawa, New York, parts of

the Ohio River Valley as well as cities along the south-eastern seaboard. This is precisely

what is expected due to the high volume of commuter traffic in cities. High ozone

concentrations (30-35 ppb) can also be seen over the St. Lawrence River. Though this

waterway experiences a great volume of shipping traffic which is provided for in the mobile

emissions and surrogate files, the concentration shown is large enough to suggest that

meteorological factors allow ozone to accumulate to appreciable levels. Because the St.

Lawrence River Valley is at the east end of the Windsor-Quebec corridor, it is subject to the

long range transport (LRT) of pollutants from Southern Ontario and the Midwestern U.S.A.

Figure 6a-c portray the wind direction in degrees for 6-20 UTC for February 5 2005. Figure

6d-f show the corresponding change in O3 mixing ratios over the entire domain. As the wind

direction slowly changes (decreasing in degree) over the fourteen hour period, the ozone

levels surrounding the St. Lawrence River slowly decrease toward 31 ppb. At 12 UTC, the

area around the St. Lawrence is predominantly green indicating ozone levels of about 34-40

ppb. The wind direction along the eastern United States at the same time is about 308-360
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degrees (north-west to north directions) as indicated by the orange and red colours in Figure

6a. This north/north-west wind pushes along the U.S. coast and drags with it ozone and

precursors from heavily polluted cities like New York and Philadelphia. Because ozone can

persist in the troposphere for a few days, it has the potential to travel great distances (Yap et

al., 1988) and accumulate within an air parcel. This explains why CMAQ generated high

levels of O3 over the St. Lawrence River.
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Figure 4. Surface mixing ratios of ozone (O3) over Ontario and the north eastern U.S. for
February 5 2005 during (a) the morning rush traffic hour at 7 am local time (12 UTC) and (b)
the expected daytime high at 1 pm local time (18 UTC).

Figure 5. Nitrogen dioxide (NO2) spatial distribution over southern Ontario and the north
eastern U.S. for February 5 2005 during (a) the 7 am morning rush traffic hour and (b) the 6
pm evening rush traffic hour.
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Figure 6. The wind direction over a representative fourteen hour period during the winter of 2005 (top panel), and the corresponding
ozone (O3) changes over the same period (bottom panel). North (348.75-11.25), east (78.75-101.25), south (168.75-191.25), west
(258.75-281.25).
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5.3.1.1 Quantitative Analysis: Base Case

Figure 7 compares the modelled 1-h average surface O3 concentrations for North Bay and

Ottawa with the O3 concentrations from the MOE monitoring network stations in co-located

grid cells. The entire domain is not shown in these plots. Instead, a close up image focusing

on the three areas of interest in southern Ontario is seen. Here, the spatial allocation of ozone

at each monitoring site based on the statistical parameters in Table 6 and Table 7 is

visualized. Though CMAQ was able to capture the domain-wide spatial variation of O3 and

NO2, quantitative analysis shows that it tends to over-predict ozone when its results are

directly compared to both sites, but systematically under-predicts NO2 at each site within the

range of about -4 ppb to -8 ppb. The statistics for NO2 show a much greater negative bias

compared to those for O3 because NO2 is more sensitive to errors that exist in the emissions

and meteorology data, especially under slow moving or stagnant wind conditions (Yu, Sokhi,

Kitwiroon, Middleton, & Fisher, 2008). These results are not surprising because many ozone

and NOx modelling studies have reported a systematic under-prediction of ozone precursors

(Russell & DennisOn assignment to the Atmospheric Research and Exposure Assessment

Laboratory, U.S. Environmental Protection Agency, Research Triangle Park,NC 27711.,

Robin, 2000). The over- and under-predictions of both species are connected to each other

since the cycling of NO2 and O3 is governed by the null cycle (Equations 1-3).

Table 6. Model evaluation statistics for hourly ozone mixing ratios for January-March 2005.

City Month MB (ppb) MNBE (%) MNGE (%) UPA (%)

North Bay January 7.17 145 151 3

February 3.07 115 127 -9

March 0.13 122 149 -15

Winter Total 3.35 128 143 - 15

Ottawa January 5.84 128 137 34

February 2.25 159 177 8

March -2.79 14 45 12

Winter Total 1.56 91 111 12
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Table 7. Mean Bias for hourly nitrogen dioxide (NO2) concentrations for January-March
2005.

January (ppb) February (ppb) March (ppb) Winter Total

North Bay -7.25 -8.39 -10.42 -8.75

Ottawa -4.08 -7.50 -1.82 -4.37

Ozone spatial patterns in Figure 7 indicate that CMAQ performs adequately in estimating

ozone in southern Ontario, given that the wintertime MB at both monitoring stations are

relatively low (0 ppb < MB < 5 ppb). Conversely, consistent negative values for NO2 across

both sites denote that CMAQ under-predicts observed concentrations of up to 10 ppb for

North Bay and up to 5 ppb for Ottawa. The MNBE values (Figure 7) however, reveal a

positive bias for all sites that greatly surpasses the accepted range of 15 -20% thus illustrating

the inability of the model to replicate ozone concentrations across southern Ontario. This

over-estimation is also seen by the MNGE (Figure 7) which is well outside of its satisfactory

range of 30-35%. The UPA pattern for North Bay was the only statistic that was within the

EPA’s recommended range (±15-20%) while the UPA for Ottawa was just outside this range

at 12%. These statistics are not surprising because the amount of NOx present in urban

centres due to motor vehicles almost always exceeds that which is accounted for in the

mobile emissions inventories. The scavenging of O3 by NOx, process which is more

pronounced in the winter than in the summer, limits the daily concentration of ozone in city

centres as well as areas along major roadways. Some studies have shown this reduction to be

as high as 50% on average (McKendry, 1993).
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Figure 7. A statistical comparison of (a) mean bias, (b) mean normalized bias error, (c) mean normalized gross error and (d) the
unpaired peak prediction accuracy for the 1-h average surface ozone (O3) mixing ratios between CMAQ output and the individual
monitoring stations at North Bay and Ottawa. Mean bias for (e) nitrogen dioxide (NO2) 1-h average mixing ratios are also reported.
Model predictions that did not have a corresponding measurement value were not included in the analysis.
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5.3.1.2 Quantitative Analysis: Cases 2 and 3

To further evaluate the model’s spatial performance, the statistical parameters outlined in

Section 5.2.3were recalculated using the same datasets from the previous section – both AQI

station measurements and CMAQ output – but with applied cut-off values of 30 ppb for Case

2 and 40 ppb for Case 3 (i.e. all data pairs containing measurements below the specified cut-

off value were not used in the analysis). This method is similar to that outlined in Tong et al.

(2006) where three different limits of 20 ppb, 40 ppb and 60 ppb were imposed on an ozone

summertime experiment to assess the propensity toward positive or negative bias in CMAQ

output. Tong et al. (2006) used 40 ppb as the initial cut-off value to eliminate the

contributions of background O3 levels, and then applied additional limits to further test the

performance of CMAQ. While many ozone studies use 40 ppb as a cut-off value (Brulfert et

al., 2007), in this project the limiting value of 30 ppb was chosen first for Case 2 because 40

ppb is often used as the cut-off in summertime ozone analysis (Brulfert et al., 2007), and so a

lower level must be chosen for winter investigations to eliminate the background ozone

contribution since ozone production in the winter is less efficient due to decreased solar

radiation and temperatures (H. Wang et al., 2009). After this, the mixing ratio of 40 ppb was

applied to the dataset to get a better understanding of CMAQ’s performance as a function of

O3 concentration. The statistical analysis for each case is presented in Table 8 and Table 9,

respectively. Only the overall winter totals were plotted for Case 2 and Case 3, as opposed to

the monthly values as in the Base Case because the number of usable model-measurement

pairs for each month became less than 75% of the hours in each month (D. Tong &

Mauzerall, 2006; Yu et al., 2008) with each successive limit. For example, the number of

data pairs for North Bay that met the 40 ppb limit in January was only 1% of all January

measurements. This number was even smaller for Ottawa where no measurements above 39

ppb were recorded.
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Table 8. Model evaluation statistics for hourly ozone (O3) concentrations for January-March
2005 using a measurement cut-off value of 30 ppb.

MB (ppb) MNBE (%) MNGE (%) UPA (%)

North Bay -4.95 -11 15 -15

Ottawa -5.27 -15 18 12

Table 9. Model evaluation statistics for hourly ozone (O3) concentrations for January-March
2005 using a measurement cut-off value of 40 ppb.

MB (ppb) MNBE (%) MNGE (%) UPA (%)

North Bay -9.50 -21 21 24

Ottawa -7.84 -19 23 12

These statistics show that the MB for North Bay and Ottawa are increasingly negative with a

cut-off value of 30 ppb and 40 ppb, but positive when no cut-off value was used (Table 6),

indicating that CMAQ overestimates surface ozone at low concentrations, but underestimates

ozone levels above 30 ppb. This shift in model performance toward underestimation was

also observed by Tong et al. (2006). Compared to the Base Case, CMAQ underestimates

with a larger bias for both sites when the cut-off values were applied. This pattern is

consistent with many other studies which have found CMAQ simulations to be negatively

biased at higher O3 levels (Appel et al., 2007). Evaluating Table 8 and Table 9 against the

criteria outline by the EPA (section 5.2.3) one can see that the MNBE for Ottawa and North

Bay both lie within the suggested range of ± 5-15% when 30 ppb is used as a cut-off, but fall

outside that range with a 40 ppb limit. The MNBE in these cases are much smaller than the

MNBE for the Base Case which had a very large positive bias in the absence of a cut-off.

The MNGE for all sites still do not meet the ± 30-35 percent condition of accuracy, but the

biases in Cases 2 and 3 are much smaller than in the Base Case. Lastly, the UPA for North
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Bay with a 30 ppb cut-off was the only UPA value to meets the EPA’s criteria (±15-20) for

maximum ozone accuracy.

The discrepancies between the model output and measurements shown in this section are

possibly caused by erroneous emissions input which greatly influence the spatial distribution

of ozone and NO2. This is illustrated by the systematic overestimation by CMAQ at both

sites as revealed by the statistical calculations when no cut-off value was used. More likely

the source of the error however was the comparison between point measurements and grid-

averaged model concentrations. The quantitative analyses provided also make it evident that

the tendency of CMAQ’s simulations toward over- (under-) prediction is somewhat

subjective depending on the criteria used for evaluation. Thus, to properly evaluate the

model and determine the source of the inaccuracies, the temporal patterns of O3 and NO2

need to be analyzed

5.3.2 Temporal Variability of Model Performance

5.3.2.1 North Bay

In order to evaluate the model’s ability to replicate the temporal distribution of O3 and NO2

in a rural setting, I compared the hourly modelled concentrations of these species to the

observed levels obtained from the MOE’s AQ monitoring network. Figure 8 illustrates the 1-

hour O3 time series comparisons for the months of January to March 2005 for North Bay.

Time series are an important part of any performance analysis because they can expose bias

within the modelled output (US EPA, 1991). By observing these graphs it can be seen that

for the duration of the winter period, CMAQ was unable to correctly reproduce the lower

concentrations of O3. The general temporal pattern for the hourly data is similar between the

model and measurements in terms of the timing of the ozone maxima and minima; however

the amplitudes of the peaks showed a lot of bias. The ozone measurements are seen to

decline to zero or close to zero from the evening into the early morning hours and do not



55

begin to rise again until after the morning traffic has ceased. Though one would not expect

to observe traffic patterns at rural sites, the North Bay station does experience vehicular

traffic do to its proximity to human activity; though North Bay does not experience the same

intensity in traffic flow as downtown Ottawa. These extremely low O3 levels can be

attributed to extreme pollution due to slow moving or stagnant wind conditions – which

allow for O3 titration – combining with ground level inversions caused by a shallow

planetary boundary layer (PBL) (Fraser, 2010), as will be discussed shortly. This event

which can carry over into the mid-morning is more often associated with urban sites due to

their abundance of NOx. Given the proximity of North Bay’s monitoring station relative to

the Jack Garland airport – 10 minutes south west – it is not surprising that high NOx

conditions exist there. The modelling results, however, do not match these low mixing

ratios. This is most likely because of the datasets being used in the comparison. The model

results were created from concentrations averaged across a 36 km x 36 km grid cell while the

measurements were hourly averages obtained from a single point located within the grid cell.

The coarse 36 km-averaged concentrations are thus not quite representative of point

measurements.

This was supported by the corresponding scatter plots (Figure 9) which had very poor

correlations as seen by the correlation coefficient (R2) values which are all below the

acceptable minimum of 0.50. Scatter plots are necessary for an air quality analysis because

they reveal the extent of the bias between the model-measurement pairs based on the

arrangement of data points along the perfect correlation line. The more dispersed the points

are from this line, the greater the error in the simulation (US EPA, 1991). Figure 9 shows

great amounts of dispersion away from the perfect correlation line. Because of this poor

correlation between the model results and measurements it is difficult to see any distinct

pattern in the plots, though there is a slight underestimation of ozone mixing ratios toward

the higher range of O3 concentration in plots for February and March. These results are

consistent with the hourly time series and are confirmed by referencing back to the statistical
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metrics from Table 6. These statistics show that the winter UPA has a value of -15%.

Though this falls within the acceptable range (±15-20%) it appears that CMAQ

underestimates peak O3 concentrations, suggesting that the reactivity of the ozone

(production) chemistry in the CCTM is not sufficient. The hourly time series also shows that

CMAQ is unable to replicate the lower levels of ozone which causes a systematic over-

prediction resulting in an overall winter MB of 3.35 ppb. Though this value is not very large,

the values for the MNBE, MNGE show poor model performance overall as they are all

outside of the recommended ranges provided by the EPA. The only parameter within its

acceptable range is the UPA which has a value of -15 and is used to determine the model’s

ability to reproduce the maximum ozone concentrations for the period. This statistic for

North Bay matches the trend seen in the hourly CMAQ time series where CMAQ is able to

replicate higher ozone values. As previously mentioned, these results are not surprising since

the model results are hourly averaged concentrations, averaged over a 36 km x 36 km grid

cell, whereas the measurements are taken at a single point within the grid cell.

The maximum and average 8-hour O3 concentrations were also plotted to further determine

how well CMAQ captures peak ozone levels during the winter (Figure 10), and their

statistical metrics are displayed in Table 10Table 10 and Table 11. These time series are

important from a regulatory point of view since the Canada Wide Standard of 65 ppb is based

on an 8-h averaging time, and the US EPA uses an 80 ppb daily 8-h maximum as its health

and monitoring guideline. Neither standard was exceeded during the modelling period,

although Figure 8c reveals that the measured 8-hour maximum did reach as high as 64 ppb at

the end of March. CMAQ was not able to match this value. The summary statistics show a

gradual trend from overestimation to underestimation for the 8-hour maximum values, while

the 8-hour average displays a decline in MB from about 7.5 ppb to less than 1 ppb. The UPA

calculations span a broad range in both tables, but both have an overall negative winter total.

The day to day variations in the CMAQ simulations in general replicate the observed data,

although timing of the maxima are slightly out of phase and the amplitude of the peaks do
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not match each other. On a handful of days CMAQ predicts high ozone levels relative to the

measurements, while February and March show model under-predictions. Though these

results are poor, they must be further compared to NO2 time series and diurnal cycles to fully

gauge the capability of the model.
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Figure 8. Comparisons of modelled (─) and measured (--) 1-h averaged surface ozone (O3)
mixing ratios for North Bay during (a) January, (b) February and (c) March 2005.
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Table 10. Model evaluation statistics for 8-hour maximum ozone (O3) mixing ratios for
January to March 2005.

Month MB (ppb) MNBE (%) MNGE (%) UPA (%)

January 2.22 31 39 3

February -0.87 15 33 -9

March -5.70 6 40 3

Summer Total -1.57 17 37 -15

Table 11. Model evaluation statistics for 8-hour average ozone (O3) mixing ratios for January
to March 2005.

Month MB (ppb) MNBE (%) MNGE (%) UPA (%)

January 7.45 77 80 4

February 4.22 97 104 -5

March 0.30 60 83 -15

Summer Total 3.86 77 88 -15

Comparing Figure 8 and the NO2 time series (Figure 11) an anti-correlation between O3 and

NO2 can be seen. This follows the same cycling as described in Equations 1 and 2 which

shows that as NO2 is consumed, O3 is produced. The spikes in NO2 levels in Figure 11occur

over during the morning and evening rush traffic hours when NOx is emitted in large

amounts. Though the majority of NOx is emitted as NO, nitrogen dioxide is created when

NO reacts with O3. This is what causes the spikes and dips in O3 and NO2 concentrations in

the hourly measurements.
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Figure 11. Comparisons of modelled (─) and measured (--) 1-h averaged surface nitrogen
dioxide (NO2) mixing ratios for North Bay during 2005 (a) January (b) February and (c)
March 2005.
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The diurnal cycles of O3 and NO2 were then studied to test whether CMAQ could capture

their intraday variation. This method has been used as a gauge in many ozone investigations

(J. Lin et al., 2008) to assess the capability and efficiency of the model during the day

because these species have very specific daily peak production patterns. The diurnal cycles

in Figure 13 illustrate the correlation between the model and measurements for O3 and NO2

over the entire modelling period for North Bay. The simulated PBL diurnal cycle is also

displayed in Figure 13.

The measured and modelled diurnal patterns for ozone presented in Figure 13. They are seen

to follow the same temporal distribution where ozone maximizes in the afternoon around 2

pm and minimizes around 8 am, though some notable differences are apparent. For example,

the timings of the maximum values in both datasets have a phase shift of about 1 hour and

the amplitudes of the peaks are much more prominent in the measurements. The

measurements begin to drop around 7 am each month and hit a minimum at 8 am. The curve

then starts to rise from around 10 am to a maximum at 2-3 pm followed by another decline.

Ozone destruction at this time occurs rapidly in the measurements but is very gradual in the

modelling results. Lin et al. (2008) suggest that this is due to the simulated PBL being too

strong which results in a more robust upward transport of NOx and a more forceful

downward transport of O3 from the upper PBL. The result is a greater accumulation of

simulated O3 at the surface and weaker NOx titration. The rise of a small, secondary peak in

Figure 13 is seen to occur overnight which other investigators (McKendry, 1993) have

attributed to a reduction in wind speed and a lowering of the planetary boundary layer (PBL).

Ozone mixing ratios begin to drop again around sunrise due to loss processes like dry

deposition and NOx titration. Ozone concentrations fluctuate in response to the hourly PBL

heights. Figure 13 illustrates the ability of CMAQ to simulate these important diurnal cycles.

When the PBL rises, O3 is transported upward. This reduces the concentrations of ground-

level O3. The maximum PBL heights are approximately 270 m, 350 m and 500 m for

January to March and drop as low as 160 m at night. Simultaneously, the NO2 diurnal cycle
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(Figure 13) drops and rises in opposition to ozone levels. This dimodal curve shows two

peaks around 8 am and 7 pm and a minimum at 2 pm which is in agreement with the O3

diurnal cycle. The ability of CMAQ to adequately simulate the diurnal cycles shows that the

model is working well. To further test the source of the errors, comparison between the

modelled and measured Ox (Ox= NO2 + O3) must be examined to determine whether the

emissions inventory contained any significant errors which would have cause the hourly time

series comparisons to be inaccurate.
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Figure 14. Comparison of 1-h averaged Ox mixing ratios for the modelling results (─) and
measurements (--) for January 2005 in North Bay.
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The Ox hourly time series imply that the emissions inventories do not contain any large

errors since the peaks and troughs of the measurement and model curves for January and

February follow a very similar pattern. Though the scatter plots all fall under the acceptable

range of R2= 0.5, there are no significant differences between the simulations and

measurements except during March where the model underestimated Ox mixing ratios

relative to the measurements. This indicates that the emissions are not erroneous, and that

the coarse grid resolution plays n important role in the overestimation of O3 and

underestimation of NO2. Further investigation of O3 and NO2 in urban areas was then

conducted to test how well CMAQ can estimate the two species in urban settings.

5.3.2.2 Ottawa

After analyzing CMAQs ability to simulate O3 and NO2 for a rural region, I examined how

well the model could reproduce these surface species in urban areas. The 1-h ozone time

series and scatter plots for Ottawa are given in Figure 16. The time series show that the

temporal distribution of O3 between the modelled and measured data seems to vary by

month. The amplitudes however show a gradual trend from overestimation to

underestimation through the winter period which is supported by the MB statistics reported

in Table 6 for January (5.84 ppb), February (2.25 ppb) and March (-2.79 ppb). CMAQ does

show an overall positive MB for the winter (1.56 ppb). The model is not able to capture

lower ozone concentrations toward the beginning of the winter period, and is unable to

replicate higher ozone values near the end of the winter.

In January the correlation between CMAQ output and measurements is less than satisfactory,

giving an R2 value of 0.27. The timings of the daily O3 peaks in the February time series

(Figure 16b) appear to match each other well. This can also be seen in the corresponding

scatter plot whose R2 value of 0.52 is within an adequate range. It should be noted though,

that a large portion of the AQ station measurements for the month of February were either
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unavailable or deemed unreliable by the MOE, thus were not used in any statistical

evaluation. In March, the agreement between the datasets in the hourly ozone time series is

very poor. The scatter plot for the month confirms this as the R2 value is only 0.27 which

indicates almost no correlation between the datasets. The graph does confirm the MB

statistics given that the majority of points between 20-40 ppb fall below the perfect

correlation line meaning that the model is under-predicting ozone. Overall, the graphical and

statistical analyses do not display good agreement between the model output and

measurements.
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Figure 16. Comparisons of modelled and measured 1-h averaged surface ozone (O3) mixing
ratios for Ottawa during 2005 (a) January (b) February and (c) March 2005.
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measurements taken from provincial monitoring stations for Ottawa during (d) January, (e)
February and (f) March 2005.
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Eight hour averages and maximum O3 values were also graphed for Ottawa and their

statistics were recorded in Table 12 and Table 13. Figure 18 shows that the peak ozone

levels were exceeded by CMAQ during the first part of winter and underestimated during the

latter half of the season. Figure 18 exhibits a small negative bias in model results during

early to mid-March when the 8-h maximum of the measurements rose above 40 ppb and the

model results were about 5-10 ppb below that. CMAQ over-predicted ozone throughout

much of January for both the 8-h maximum and 8-h average plots, but was able to mimic a

decline in O3 concentrations at the end of January and beginning of February similar to the

measurements. The statistics show a decreasing trend with an overall negative bias in the 8-h

maximum results. The 8-h O3 average also decreases from one month to the next, but retains

its overall positive value. The UPA values for each table are positive overall which indicates

that CMAQ over-predicted the maximum peak values.

The NO2 1-h average time series and scatter plots were evaluated next to establish how well

CMAQ can replicate the species. Unlike the NO2 plots for North Bay, the model did not

display vast under-prediction throughout the entire winter for Ottawa, though there is an

overall negative bias of MB= -4.37 ppb. The model showed difficulty in simulating

concentrations above approximately 30 ppb in January and February, and was not able to

reproduce NO2 mixing ratios above 13 ppb in March, though compared to North Bay, the

NO2 scatter plots for Ottawa (Figure 19) show better agreement between the model and the

measurements. While the correlation coefficients for January and March are only 0.32 and

0.29, respectively, the R2 value for February is 0.60 which shows good agreement between

the two datasets. The time series for both O3 and NO2 reveal the interconnected relationship

of the two species. As O3 levels rise, NO2 concentrations decline. This is the same pattern

that is described by the North Bay results and detailed by the spatial resolution of the

modelling domain in Section 5.3.1. Overall, the results indicate that CMAQ is working well

and that the emissions dataset does not have any major errors.
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Figure 18. Comparisons of modelled (─) and measured (--) ozone (O3) (a) 8-h maximum and
(b) 8-h average mixing ratios for Ottawa during winter 2005.
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Table 12. Model evaluation statistics for 8-hour maximum ozone (O3) mixing ratios for
January to March 2005.

Month MB (ppb) MNBE (%) MNGE (%) UPA (%)

January 5.0 16 24 34

February -0.50 -1.0 29 -8

March -4.71 -19 23 12

Winter Total -0.14 -2 25 10

Table 13. Model evaluation statistics for 8-hour average ozone (O3) mixing ratios for January
to March 2005.

Month MB (ppb) MNBE (%) MNGE (%) UPA (%)

January 6.02 86 91 37

February 2.04 87 102 -15

March -2.63 -3 23 5

Winter Total 1.68 51 67 5
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Figure 19. Comparisons of modelled (─) and measured (--) 1-h averaged surface nitrogen
dioxide (NO2) mixing ratios for Ottawa during 2005 (a) January (b) February and (c) March
2005.
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Figure 20. The nitrogen dioxide (NO2) 1-h averaged scatter plots of model results plotted
against measurements taken from the provincial monitoring station for downtown Ottawa
during (d) January, (e) February and (f) March 2005.
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A plot for NOx was also created to get a better sense of the contribution of NO2 to overall

NOx concentration within an urban location. The NOx plot shows a large increase of NOx at

the end of January into early February. A smog episode which occurred from February 4-9

may be a contributing factor to this feature of the curve. The modelling results appear to

follow the same trend as the measurements, however the model is unable to match peak NOx

concentrations which means that the NOx emissions are much lower overall than the

measurements.
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Figure 21. A comparison between modelled (─) and measured (--) 1-h averaged NOx mixing
ratios for (a) Januray, (b) February and (c) March for Ottawa 2005.

The diurnal cycles were the next to be analyzed for the urban region. One can observe from

Figure 22 that the timing of the ozone peaks in the two curves for January and March are

measured to be at the same hour, while the datasets are only divergent by one hour in

February. The smaller, secondary peak which normally occurs overnight is shifted to the

early morning hours. The simulated diurnal cycles for Ottawa are much more prominent

than those for North Bay. A possible reason for this may be because CMAQ often under-

predicts O3 at rural sites while overestimating it at urban sites (Eder & Yu, 2006; Yu et al.,
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2008) because of the levels of NO2 that exist in emissions datasets for urban and rural areas.

These curves compare well to the NO2 diurnal cycles (Figure 22) which show the

characteristic double peaks at approximately 9 am and 6 pm for each month. The drop in

NO2 levels between noon and 2 pm for each cycle coincides with the spike in O3

concentrations in O3 diurnal cycle. The PBL cycle for Ottawa is similar to that for North Bay

except for a slight phase shift in January and is seen to go as low as 160 m. This is not

unexpected since the PBL height for Ottawa – as well as North Bay – is known to drop very

low during the winter nights (Harris, 2010). These results show that although CMAQ was

not able to properly reproduce the hourly temporal distribution of O3 or NO2 very well, the

model is running correctly given the accurate reproduction of the diurnal cycles.
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Once validated, the simulation results can then be used to assess the emissions inventory by

evaluating how the levels of oxidant (Ox) vary. Previous studies by Clapp et al. (2000) have

concluded that the relationship between NOx and Ox is linear such that Ox at a given

location contains a NOx-dependent and a NOx-independent contribution. The former is

produced by local sources and depends on the level of primary pollution, whereas the latter,

being a regional contribution, represents the regional background concentrations of O3

(Clapp & Jenkin, 2001; Mazzeo et al., 2005). While this study does not address the sources

of pollution, Ox concentrations are used to study the air quality because it encompasses the

total O3 and NO2 in a given location. Evaluating either species alone is often difficult in

urban setting because O3 is normally very low while NO2 is very high. The Ox comparisons

indicate that the emissions inventories for urban cities do not have major uncertainties. The

modelled and measured results generally rise and fall with the same temporal pattern, though

the amplitudes of the curves show some bias. The scatter plots also indicate this since they

are all below the standard R2 value of 0.5.
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Figure 23. Comparisons of modelled (─) and measured (--) 1-h averaged oxidant (Ox)
mixing ratios for (a) January, (b) February and (c) March 2005 for Ottawa.
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Figure 24. The oxidant (Ox) 1-h averaged scatter plots for Ottawa for (a) January, (b)
February and (c) March 2005.
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5.4 Summary and Conclusion

Using a coarse resolution, this study simulates the observed hourly and diurnal patterns of

surface ozone and nitrogen dioxide over two cities in Ontario during the winter of 2005. The

first city is North Bay which represents a rural region, and the second city is Ottawa which is

urban. The model’s spatial representation of both species over each city is as expected,

though the temporal results showed a continuous under-prediction of NO2, especially in

Ottawa. This effect is particularly clear over the nighttime hours where the hourly NO2

measurements are drastically higher than the model results. During the evening and

overnight, measured NO2 mixing ratios are observed to reach over 50 ppb at many points

throughout the modelling period. In response to these values, ozone mixing ratios

correspondingly decrease to zero or almost zero ppb. These results are not surprising given

that the monitoring stations for both sites are located near sources of NOx which suggests

that the emissions inventory under-represents local NOx emissions at both monitoring sites.

Though North Bay is not an urban centre, as previously mentioned its monitoring station is

located in the more populated part of the region, and is about 10 minutes northeast of the

local airport causing elevated levels of NOx to be recorded. In Ottawa, the monitoring

station is within the downtown core and is subject to high levels of NOx from motor vehicles

especially during the rush hour which is typical of urban areas. Both stations are also located

close to major road ways. This may be why the MB for Ottawa is smaller compared to North

Bay for both O3 and NO2.

The main reason why CMAQ over-predicted O3 and under-predicted NO2 was because the

grid resolution used in this study was 36 km x 36 km. Many authors have found that the grid

resolution can also influence the model-measurement correlation (Sokhi et al., 2006; M.

Zhang et al., 2006) because O3 and NO2 production are sensitive to the size of the grid cell.

Not only do coarser resolutions (i.e. large cell size) average out small-scale variations in

emissions and chemistry, they result in an increase in ozone production efficiency due to

higher NOx dilution across larger grid cells (Shrestha, Kondo, Kaga, & Inoue, 2009). This
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generates greater average ozone concentrations, and consequently, local maxima are not

adequately resolved (Carey Jang, Jeffries, & Tonnesen, 1995). Thus local or small scale

features such as diurnal cycles or O3 variability in Ottawa or North Bay generated by from

point measurements will not be represented in the grid-averaged concentrations resulting in a

poor comparison between the two datasets.

To observe the behaviour of pollutants on a local scale, the best practice would be to use

nested domains with very low resolution of a few kilometres (Yu et al., 2008; Y. Zhang, Liu,

Pun, & Seigneur et al., 2006b). Some studies have even used 1 km x 1 km resolution with

success (Sokhi et al., 2006), and have found that finer resolution grids provide better spatial

variability for low ozone episodes (Shrestha et al., 2009) such as those often found in urban

environments. There are however, other factors which may influence model performance in

addition to location and grid resolution. Model performance may also vary with season due

to the changes in solar radiation, temperature and emission rates of various pollutants. Thus,

in order to gain a comprehensive assessment of CMAQs ability to simulate O3 and NO2, the

same study must be completed for the summer months at a time when ozone production is

observed to be at a maximum rate.
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Chapter 6

Summer Study

In Ontario, the summer season is a significant time of the year for pollution especially O3 and

NO2. It is during this time that humans and vegetation experience the most exposure to the

hazards of surface-ozone and nitrogen oxides. With conditions favourable to O3 formation

and accumulation, the summer of 2005 saw the cities of Ottawa and North Bay go through a

combined total of 30 smog days. This is not surprising since the peak ozone season occurs

during the months of May to September (Geddes et al., 2009) after which O3 levels decline as

the weather cools in the fall and then raise in the spring as the amount of daily solar radiation

increases. To evaluate CMAQs performance in simulating this seasonal cycle, ozone and its

precursor species, NO2, were modelled over the summer months of June to August.

Increased solar radiation and temperatures during the summer provide ideal conditions for

ozone production making ozone episodes a common occurrence in Ontario.

The seasonality of O3 is the reason why most CMAQ investigations for ozone and NOx are

conducted for time periods during the summer months. Sokhi et al. (2005) compared CMAQ

O3 predictions generated over London, England during ozone episodes in July and August

2002 with observations taken from local urban monitoring stations. It was found that CMAQ

was able to capture the temporal patterns of O3 but could not replicate the peak magnitudes

very well, and over-predicted nighttime O3 levels. The study performed by Tong et al.

(2006) also simulated O3 concentrations across the United States and determined that the

accuracy of the simulation depended on O3 concentrations and location. The model

underestimated O3 at rural sites while over-predicting it at urban sites. Appel et al. (2007)

conducted a CMAQ performance evaluation for O3 from June through August 2001 for the

Eastern Unites States under various meteorological conditions. Sensitivity studies were also

conducted to determine the effects of the choice of chemical mechanisms, CMAQ model
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version, and boundary conditions. They found that CMAQ (over-) under-predicted at (low)

high maximum 8-hour average O3 mixing ratios although the diurnal cycles were represented

sufficiently. The influences of meteorological parameters such as vertical layer collapsing

and synoptic conditions were also investigated. CMAQ successfully simulated O3 under

typical summertime synoptic conditions, and still showed that meteorological conditions

played a role in the summertime cycling of O3 and NO2.

The interaction between wind direction, wind speed, local weather and topography all

contribute to ideal ozone or NOx conditions. During the summer in particular, the long range

transport of ozone and NO2 from heavily polluted areas in the United States mid-west have

been found to cause approximately 95 percent of the O3 episodes experienced in Ontario (H.

Wang et al., 2009). Polluted air masses originating south and southwest of the Great Lakes

in the Ohio River Valley (ORV) where large electrical generating units exist, typically

contribute 50-60 percent of Ontario’s total summertime ozone levels (Yap et al., 1988).

6.1 Method

The air quality model used in this study is CMAQ version 4.6. The model performance was

evaluated for both urban and rural regions from June 1 to August 31, 2005 with a two-day

spin up period at the end of May. Similar to the winter evaluation, ozone and nitrogen

dioxide levels in the cities of Ottawa and North Bay were simulated and compared with

measurements taken from the MOEs air quality network. A detailed description of the

method can be found in Section 5.2, and readers can refer to Chapter 5 for details on all

parameters and procedures including the modelling domain and statistical analysis.
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6.2 Results and Discussion

6.2.1 Spatial Variability of Model Performance

Figure 25Figure 25 and Figure 16 describe the spatial distribution patters of O3 and NO2

during the day of July 25, 2005. This date was chosen at random to provide a visual

representation of the relationship between the O3 and NO2 cycles. The surface-ozone

concentrations at 7 am local time (12 UTC) (Figure 25a) are seen to be much lower than

those simulated for 6 pm local time (18 UTC). The average O3 mixing ratio during the

morning rush hour varies between 27 to 60 ppb over south and central Ontario. The higher

levels that occur along the mid-Atlantic coast – caused in part by the difference in time zones

– are typical of summer high ozone summers (Godowitch, Gilliland, Draxler, & Rao, 2008) .

Figure 25b displays ozone levels at 1 pm local time which is the peak ozone production

period of the day. Concentrations as high as 95 ppb were simulated in various parts of the

domain, though the majority of Ontario is seen to be green which corresponds to ozone levels

between 40 to 60 ppb. It must be noted that O3 values represented by the red areas in the

figure may be higher than 95 ppb however this was the limit of the mixing ratio scale. The

patterns seen in this figure are to be expected since it is known that ozone falls to a minimum

during the morning traffic and reaches a maximum value between 1-3 pm when solar

radiation is high. This spatial distribution agrees with that of Figure 26 which shows the

nitrogen cycle during the morning and evening high traffic hours. The grey colour over most

of the domain represents NO2 levels as low as 1 ppb while the areas of colour represent a

surge in NO2 emissions due to motor vehicle traffic. Highly populated cities such as Detroit,

Windsor, Toronto, Boston and Montreal are seen to experience NO2 mixing ratios as high as

21 ppb, while some other cities like New York show even larger values. The pattern of NO2

distribution is fairly discontinuous compared to that simulated for the winter episode.
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Figure 25. Surface mixing ratios of ozone (O3) over Ontario and the north eastern U.S. for
July 25 2005 during (a) the morning rush traffic hour at 7 am local time (12 UTC) and (b) the
expected daytime high at 1 pm local time (18 UTC).

Figure 26. Nitrogen dioxide (NO2) spatial variation over southern Ontario and the north
eastern U.S. for July 25 2005 during (a) the 7 am morning rush traffic hour (12 UTC) and (b)
the 6 pm evening rush traffic hour (23 UTC).
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The ozone levels simulated over the St. Lawrence River are comparable to those simulated

during the winter, though the Great Lakes are seen to have much higher ozone levels during

the summer. Wind patterns are a key factor in the circulation of ozone because meteorology

can provide the ideal conditions for an ozone episode by altering the chemical and physical

dynamics of the troposphere; thus making O3 a regional concern (Brankov et al., 2003; C.

Hogrefe et al., 2006). Stationary or slowly migrating anticyclone (high pressure) systems can

cause dispersion, diffusion and deposition. It is these processes which are conducive to

summertime ozone episodes. For example, during the winter, from November to May,

prevailing winds around the Ottawa area are from the northwest. Conversely, from June to

October the prevailing winds originate in the south western United States (Air & Energy

Initiatives Environmental Management Division, 2004), and carry polluted air masses from

cities like Detroit, Cleveland and Chicago by advection into Southern Ontario and then

through the Ottawa region. Because summertime south westerly winds are often slow-

moving or stagnant, pollutants have enough time to collect, mix together and react. Physical

processes like wind speed and wind direction however, do not have an appreciable effect on

NO2, itself, because it is a short lived species with a lifetime in the PBL that varies from a

few hours to a few days (R. Atkinson, 2000), thus causing it to remain close to its sources

(Laj et al., 2009). The wind direction and corresponding ozone distribution are shown in

Figure 27.

In the first two frames, the wind direction along the east coast is around 150-200 degrees

which corresponds to south-southeast and south-southwest directions, thus directing polluted

air masses away from the St. Lawrence River as illustrated in the related ozone patterns

which show low O3 mixing ratios in that location. Later in the day at 20 UTC (3 pm local

time) the wind direction in these areas turns northward bringing ozone toward the St.

Lawrence River. Conversely, the wind direction over the heavily industrialized American

Midwest ranges from west to north over all three frames bringing O3 and NO2 to the Great

Lakes. Many authors (Brankov et al., 2003; Galvez, 2007; Godowitch et al., 2008) have
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reported that long range transport (LRT) increases the probability of summertime O3

episodes in (southern) Ontario when air flow is from the south and south west. While the

results reported above show that CMAQ is able to reproduce the spatial variability of O3 and

NO2, the statistical metrics outlined in Section 5.2.3 must also be examined as part of a

comprehensive assessment of the model’s performance.



92

Figure 27. The wind direction over a representative fourteen hour period during the summer of 2005 (top panel), and the
corresponding ozone (O3) changes over the same period (bottom panel). North (348.75-11.25), east (78.75-101.25), south (168.75-
191.25), west (258.75-281.25).
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6.2.1.1 Quantitative Analysis: Base Case

Table 14, Table 15 and the accompanying visualization (Figure 28) provide a quantitative

look at the spatial variation of O3 and NO2 at individual monitoring stations. They report the

biases and errors of the model predictions for both species with respect to the measurements

obtained from the MOEs monitoring stations in North Bay and Ottawa. No cut-off value was

applied to the base case in order to provide a stringent analysis of the model’s performance.

Figure 28 reveals an overestimation of simulated O3 for North Bay (0 ppb < MB < 5 ppb) as

well as Ottawa (MB > 10 ppb). The large bias of Ottawa suggests that O3 production and

accumulation is overly robust in the CCTM. This is supported by the MNBE and MNGE for

both sites which are well over their acceptable ranges outlined by the EPA. The UPA value

for Ottawa was the only statistic for O3 which did fit within the EPAs limits (±15-20%),

while the UPA for North Bay fell just below this range at -13%. In contrast to O3, the

calculated metrics for the modelled NO2 mixing ratios displayed an overall negative bias.

The monthly values from June to August become progressively less negative for North Bay,

but more negative for Ottawa. Both sites had mean biases in the range of -5 ppb to 0 ppb

which shows good agreement with the measurements. Unlike the winter statistics, the NO2

biases are smaller relative to those for O3. The above results indicate that CMAQ performs

acceptably in reproducing the spatial variation of O3 and NO2. This is substantiated by the

over-prediction of the former and the under-prediction of the latter which is to be expected

since the concentrations of each species rise and fall in opposition to each other.

Table 14. Model evaluation statistics for hourly ozone concentrations for June-August 2005.

City Month MB
(ppb)

MNBE
(%)

MNGE
(%)

UPA
(%)

North Bay June 5.64 104 114 -13

July 3.21 66 80 -7

August 5.18 111 122 -11

Summer Total 4.66 93 105 -13

Ottawa June 10.41 106 109 23

July 8.58 60 65 32

August 11.14 81 85 16

Summer Total 10.05 81 86 16
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Figure 28. A statistical comparison of (a) mean bias, (b) mean normalized bias error, (c) mean normalized gross error and (d) the
unpaired peak prediction accuracy for the 1-h average surface ozone (O3) mixing ratios between CMAQ output and the individual
monitoring stations at North Bay and Ottawa. Mean bias for (e) nitrogen dioxide (NO2) 1-h average mixing ratios are also reported.
Model predictions that did not have a corresponding measurement value were not included in the analysis.
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Table 15. Mean Bias for hourly nitrogen dioxide (NO2) concentrations for June-August 2005.

June (ppb) July (ppb) August (ppb) Summer Total

North Bay -2.49 -2.40 -1.75 -2.21

Ottawa 0.769 1.95 -10.05 -2.53

6.2.1.2 Quantitative Analysis: Cases 2 and 3

Continuing with the model evaluation, the statistical measures detailed in Section 5.2.3 were

reapplied to the simulations and measurements using cut-off values of 40 ppb and 60 ppb for

Case 2 and Case 3, respectively. The purpose of this was to monitor how CMAQ ozone

predictions vary with concentration. Summertime O3 background levels are on average 40

ppb in Ontario. This value was chosen as the first limit (Case 2) in the quantitative analysis.

The next limiting value used was 60 ppb which was also selected by Tong et al. (2006) as the

second cut-off value because they found that CMAQ best simulated O3 mixing ratios

between 40-60 ppb during the summer. Thus by eliminating the measurements below 40

ppb, the overall MB was reduced. The results of this analysis are reported in Table 16 and

Table 17.

Table 16. Model evaluation statistics for hourly ozone (O3) concentrations for June-August
2005 using a measurement cut-off value of 40 ppb.

City MB
(ppb)

MNBE
(%)

MNGE
(%)

UPA
(%)

North Bay -6.60 -11 18 -13

Ottawa 5.37 11 19 11



96

Table 17. Model evaluation statistics for hourly ozone (O3) concentrations for June-August
2005 using a measurement cut-off value of 60 ppb.

City MB
(ppb)

MNBE
(%)

MNGE
(%)

UPA
(%)

North Bay -14.02 -20 22 -13

Ottawa 4.49 7 12 11

Examining the statistics at multiple locations provides a useful measure of spatial distribution

in the simulation which could not be obtained if the concentrations were averaged over the

entire domain. After applying the cut-offs, the MB for both Ottawa and North Bay became

progressively smaller. With no cut-off, the MB for North Bay was positive, but turned

negative once the limits were imposed. The MB for Ottawa remained positive with all three

cases, but was reduced to less than 5 ppb for Case 3. The negative bias for North Bay is

greater when 60 ppb is used rather than 40 ppb, whereas for Ottawa, the bias becomes

smaller (i.e. the values move closer to zero) as larger cut-off standards are employed. A

reduction in MB was expected because each imposed cut-off eliminated a great amount of

data pairs in which over-prediction occurred since most hourly measurements were below 40

ppb and 60 ppb. The trend toward negative biases, which was also reported by Tong et al.

(2006), is representative of CMAQs inability to replicate low concentrations of O3. Using

the EPAs criteria for model evaluation, it is seen in Table 16 and Table 17 that the results for

the MB were matched by the MNBE which changed from a large positive integer at no cut-

off, to being within the EPAs suggested range of accuracy (±5-15%) with a 40 ppb and 60

ppb cut-off. Only the MNBE for North Bay with a 60 ppb cut-off value was outside of this

range. None of the calculated values for the MNGE fell within the EPAs recommended

range of ±30-35%, though all the values were smaller compared to when no cut-off was

used. Similarly, none of the calculated UPA statistics met the EPAs standards as well. This

means that CMAQ was not able to match the peak maxima. Similar to the winter episode,

the overall performance of CMAQ has shown that it has the capability to sufficiently
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simulate the spatial distribution of O3 and NO2. Thus the biases and errors reported in this

section are likely a consequence of the emissions inventory having a greater concentration of

one or both species relative to ambient conditions at both North Bay and Ottawa. A full

evaluation of the model requires an examination of the temporal variability of CMAQs

performance.

6.2.2 Temporal Variability of Model Performance

6.2.2.1 North Bay

In this section, the ability of CMAQ to reproduce the temporal features of O3 and NO2

measurements is evaluated for North Bay. Figure 29 exhibits the comparison of the hourly

surface-O3 mixing ratios for each month of the modelling period. The corresponding

monthly scatter plots are shown in Figure 30. By observing both sets of graphs it can be seen

that CMAQ is able to simulate the timing of the daily O3 cycle, as the peaks and troughs of

the modelled results are generally in phase with those of the measurements. However,

CMAQ is not able to match the lower mixing ratios of the measurements which indicate

weak titration of O3 by the CCTM. The ozone measurements decline to zero, or close to

zero, periodically over the duration of the modelling period. This pattern, which was not

reproduced by the simulation, occurs from the late evening into the early morning hours.

The over-prediction shown by the hourly time series matches with the overall positive bias

reported in Table 14 for the summer period. The summer MB for North Bay was calculated

to be 4.66 ppb, while the individual months varied between 3-6 ppb. The evaluation by Yu et

al. (2008) which used CMAQ to estimate O3 and its precursors in London, England, also

found that CMAQ was inclined to over-predict minimum O3 mixing rations during the night

and early morning hours at times when the measured O3 levels were low. A negative bias

toward the maximum peak values is also revealed. This is corroborated by the UPA for the

summer that was calculated to be -13% which lies just outside of the acceptable range of

±15-20%. Despite the model’s inability to simulate low concentrations of O3, the
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corresponding scatter plots (Figure 30) reveal a fairly good correlation between the model-

measurement data pairs. The scatter plot for June shows little scatter away from the perfect

correlation line, and has an R2 value of 0.59 which is above the acceptable minimum of R2=

0.50. The R2 values for July and August are slightly below the standard at 0.44 and 0.49,

respectively. They exhibit some scatter toward the higher end of O3 mixing ratios, but

appear to underestimate O3 when its levels are between 20-40 ppb. Overall, CMAQ under-

predicts O3 at high concentrations, and over-predicts it at low concentrations. These findings

are in agreement with those by Hogrefe et al. (2004) who examined an annual simulation of

O3, PM2.5 and the related meteorology over the continental United States. They are also in

agreement with the winter results which indicated that the comparisons between modelled

and measured values will not produce high correlation given the nature of datasets (i.e. point

measurements versus grid-averaged concentrations).

In addition to the hourly dataset, it is necessary to consider 8-h maximum and average

values. Analyzing CMAQs capability to estimate daily maximum and average 8-h O3

concentrations is an important step in this model evaluation because even though

Environment Canada and the US EPA have both set their own standards for acceptable O3

exposure, many authors have found that no clear threshold value exists below which O3

exposure is deemed safe (Mudway & Kelly, 2000). Thus it is necessary to consider 8-h

maximum and averages in addition to the hourly dataset for a complete performance

evaluation of CMAQ.
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Figure 29. Comparisons of modelled (─) and measured (--) 1-h averaged surface ozone (O3)
mixing ratios for North Bay during 2005 (a) June (b) July and (c) August 2005.
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Table 18. Model evaluation statistics for 8-hour maximum ozone (O3) mixing ratios for June-
August 2005.

Month MB (ppb) MNBE (%) MNGE (%) UPA (%)

June 2.21 31 39 3

July -1.84 15 32 -9

August -5.70 6 39 -15

Summer Total -1.90 17 37 -15

Table 19. Model evaluation statistics for 8-hour average ozone (O3) mixing ratios for June-
August 2005.

Month MB (ppb) MNBE (%) MNGE (%) UPA (%)

June 7.45 77 80 4

July 3.25 96 103 -5

August 0.29 59 82 -15

Summer Total 3.46 71 83 -15

Figure 31 presents the maximum and average 8-h time series comparisons for O3 at the North

Bay site. The accompanying summary statistics are shown in Table 18 and Table 19. Both

the Canada Wide Standard and the US EPAs 8-h daily maximum limits were surpassed

multiple times in contrast to the winter results (Figure 10). The 8-h maximum shows a

gradual underestimation by CMAQ as the MB changes from positive to a negative value

from June to August, cumulating in a summer total of -1.90 ppb. Though the summer total

MB for the 8-h average O3 values showed a positive bias at 3.46 ppb, the monthly values

followed a similar trend to the 8-h maximum where the MB decreased from 7.45 ppb in June

to 0.29 in August. Model evaluations by Appel et al. (2007) found similar results when

modelling a summertime episode in 2001 over the eastern U.S.A. They reported that the 8-h

average O3 mixing ratio was over-predicted in both the winter and the summer.
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In Figure 32, a comparison of the 1-hour NO2 mixing ratios for June to August 2005 are

displayed for North Bay. The model reproduced the temporal variation of the measurements

adequately, as the peaks and troughs of the curves are in phase with each other. However,

similar to the winter prediction for North Bay, the model showed a great amount of under-

prediction throughout the summer period as it was not able to replicate mixing ratios of NO2

above 5 ppb. These conclusions are corroborated by Shi et al. (2008) who reported that,

while the agreement was good, NO2 was systematically underestimated by CMAQ when

compared to satellite column measurements for southern Ontario and the north eastern

U.S.A. The summary statistics for NO2 (Table 15) verify these results. The MB for June to

August was quantified as -2.49 ppb, -2.40 ppb and -1.75 ppb, respectively, while the overall

MB had a value of -2.21 ppb. The poor correlation between the simulation and

measurements was also detailed by the NO2 scatter plots whose monthly R2 values were all

well below 0.50. What is seen in the scatter plots is that although the measurements have a

tendency to drop to zero ppb, the model still produces a mixing ratio value for the same hour.

The hourly time series also shows this, and at low measured values, the plots reveal good

correlations between the data pairs. Conversely, the amount of scatter in the plots increases

as the measured concentrations increase. These results do coincide well with the ozone

hourly time series such that when NO2 increases, O3 levels decrease. To develop a better

understanding of how the two species interact, and to provide a more in depth test of CMAQs

performance in modelling the temporal variation of O3 and NO2, the diurnal cycles of both

species were analyzed.

Graphical analysis of the diurnal cycles of O3 and NO2 (Figure 34a and b) show that CMAQ

can accurately simulate temporal features of each species. Both modelled and measured

curves follow the same general pattern though the minimum O3 concentrations due to

titration by NOx during the morning rush hour appear to occur a few hours later in the model

results compared to the measurements. The steepness of the incline is likely due to strong

ozone formation and accumulation chemistry in the CCTM. Despite that difference, the
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timing of the maximum peak height is the same for both curves except for the peak in June

which has a slight phase shift of a few hours. The timings of the peaks vary according to the

month. Normally the daily maximum ozone concentration occurs from 1-3 pm when solar

radiation is greatest. However June and August both experience maximum observed values

around 5 pm which then rapidly decline implying strong titration by NOx during the evening

rush hour. The modelled results show a more gradual decrease which may be generated by

slower titration with NOx.

In comparison to the winter O3 cycle, the model results for the summer have a broader range

between the daily maximum and minimum simulated values. Various factors contribute to

the intraday fluctuations of O3 such as increased daylight hours during the summer which

prolong ozone formation and accumulation. The height of the PBL is important as well.

During the winter in North Bay, the greatest PBL height simulated was just over 500 m in

March, whereas the summer heights for all three months are between 1500-1700 m. The

higher the PBL, the more O3 is transported down toward the surface allowing for the

accumulation of polluted air and thus an increase in O3 concentration. The lowering of the

PBL at night is accompanied by a decline in O3 at the surface. Because mixing is limited, O3

cannot replenish itself until the morning traffic generates an influx of precursors into the

troposphere.

The height of the PBL also has an effect on the amount of NO2 at the surface. The NO2

cycle, observed in Figure 34b, is connected to the daily temporal pattern of O3 and the PBL.

During the morning and evening rush traffic hours when NO2 reaches a maximum

concentration, minimum O3 levels are reached. This is the same cycle that is described by

Figure 25 and Figure 26. The ability of CMAQ to accurately replicate this cycle for the

summer episode leads to the conclusion that the model chemistry and transport processes are

acceptable. Though the measurement curve is more pronounced than the simulation – which

means that the NO2 emissions may be deficient in the emissions inventory – the results do
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agree with each other. This suggestion is also supported by the hourly NO2 time series

(Figure 32) which displayed a significant under-prediction of the simulated NO2 mixing

ratios relative to measurements. Overall, the model was able to reproduce the expected

temporal pattern of both O3 and NO2 which indicates that it is working correctly. Next the

level of Ox was examined because it incorporates both O3 and NO2, and thus is a measure of

the accuracy of the emissions inventory. If the modelled and measured values significantly

diverge, then one could conclude that the inventory inputs are erroneous. As noted by Lin et

al. (2005), the emissions inventories – along with the meteorology – are the leading causes of

errors in air quality simulations.

Figure 35 exhibits a good comparison of the modelled and measured Ox mixing ratios for the

summer period, given that the simulation follows the same temporal pattern as the

measurements. No large discrepancies exist between the two curves, though the model does

appear to be unable to replicate the lower concentrations of Ox similar to the predictions

made for the hourly surface-O3 comparisons from Figure 29. The Ox scatter plots (Figure

36) also show good agreement between the two datasets. Very little scatter can be seen in the

plot for June, while the opposite holds true for July. The August plot shows good correlation

at the lower end of O3 mixing ratios but starts to diverge away from the perfect correlation

line as O3 increases. These observations are supported by the R2 values which are a

respectable 0.65 and 0.54, respectively, for June and August, and 0.42 for July. Due to the

conformity between the model-measurement pairs, the emissions inventory likely does not

contain any large sources of error which would cause a deviation in the comparisons. It can

be concluded then, that the comparison between two different datasets – the 36km averaged

modelling results and the point measurements from the AQ station – was the main cause of

inaccuracy in the hourly and diurnal comparisons.
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Figure 32. Comparisons of modelled (─) and measured (--) 1-h averaged surface nitrogen
dioxide (NO2) mixing ratios for North Bay during (a) June (b) July and (c) August 2005.
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Figure 33. The nitrogen dioxide (NO2) 1-h averaged scatter plots of model results plotted
against measurements taken from provincial monitoring stations for North Bay during (d)
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Figure 36. The hourly averaged oxidant (Ox) scatter plots of model results plotted against
measurements taken from provincial monitoring stations for North Bay during (d) June, (e)
July and (f) August 2005.
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6.2.2.2 Ottawa

The CMAQ summer simulations for the rural site of North Bay showed a strong correlation

between the model simulations and the measurements. In this section, I investigate the

model’s performance in an urban environment. The 1-h ozone time series and scatter plots

for Ottawa are shown in Figure 37 and Figure 38. The time series show a strong correlation

between the timing of the model results and the measurements with a consistent

overestimation of O3 at both high and low concentrations. A likely source of this

overestimation may be that O3 production chemistry in the CCTM is too robust, possibly due

to too little cloud formation. The statistical summary from Table 14 verifies this graphical

analysis given that the MB for June (MB= 10.41 ppb), July (MB= 8.58 ppb) and August

(MB= 11.14 ppb) all show a positive bias. The overall MB for the summer is seen to be

10.05 ppb. In June, there is high correlation between the model results and measurements as

confirmed by the scatter plot for the month (Figure 38a) which gave an R2 value of 0.68 with

very little scatter. The plots for July and August also reveal good agreement between the

data sets with correlation coefficients of R2= 0.56 for July and R2=0.58 for August. The

summer total MNBE (93%) and MNGE (81%) are both well over their designated ranges, as

are the monthly values. The UPA, a measure of peak prediction accuracy, all show an over-

prediction by CMAQ though only the value for August (16%) – which is the same as the

summer total value – falls within the EPAs acceptable range of ±15-20%. These

calculations are similar to those generated for Ottawa during the winter episode although the

much larger summer biases can be attributed to the increase in ozone production efficiency

from the extended daylight hour and warmer temperatures.

It should be noted that the majority of the measurements are in the range of 20-40 ppb even

though, as previously mentioned, the established summertime background O3 levels for

southern Ontario are considered to be 40 ppb. Thus one would expect higher O3 mixing ratio

to be measured in lieu of long range transport contributions. However because Ottawa is a

major urban centre O3 levels are lowered by the titration effect due to excess NOx emissions.
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In rural regions, the ratio of precursors is more balanced such that the titration effect is less

significant (Moussiopoulos et al., 2009). The titration effect also helps explain the CMAQ

over-prediction in the hourly time series, as it makes evident the over-active ozone

production in the CCTM which gets averaged out across the entire grid cell without

accounting for concentration gradients.

A plot of the 8-h maximum and average O3 mixing ratios was created to supplement the

preceding analysis. The statistical analyses for these graphs are presented in Table 20 and

Table 21. The graphs show that CMAQ was not able to replicate the minimum values of O3,

but over-predicted the maximum values which is supported by the MB for the 8-h maximum

(MB= 10.84 ppb) and the 8-h average (MB= 9.95 ppb). The MNBE, MNGE and UPA

statistics also have a positive bias. By generating the 8-h average and 8-h maximum graphs,

one can see whether the US EPAs or the CWS was breached during the summer period. The

results show that both are repeatedly surpassed by the simulation and measurements. This

shows that the 8-h maximum and average graphs are a useful tool in prevention and

monitoring.

Table 20. Model evaluation statistics for 8-hour maximum ozone (O3) mixing ratios for June
to August 2005.

Month MB (ppb) MNBE (%) MNGE (%) UPA (%)

Summer Total 10.84 45 47 11

Table 21. Model evaluation statistics for 8-hour average ozone (O3) mixing ratios for June to
August 2005.

Month MB (ppb) MNBE (%) MNGE (%) UPA (%)

Summer Total 9.95 62 64 5



113

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

O
3

(p
p
b
)

0

20

40

60

80

100

Model

Measurements

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

O
3

(p
p
b
)

0

20

40

60

80

100

Day

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

O
3

(p
p
b
)

0

20

40

60

80

100

Figure 37. Comparisons of modelled (─) and measured (--) 1-h averaged surface ozone (O3)
mixing ratios for Ottawa during (a) June (b) July and (c) August 2005
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Figure 38. The hourly averaged ozone (O3) scatter plots of model result plotted against
measurements taken from the provincial monitoring station for downtown Ottawa during (d)
June, (e) July and (f) August 2005.
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Because the amount of O3 in urban regions is highly influenced by NOx emissions, the 1-h

NO2 time series was created to compare against the O3 results. Figure 40 describes the

accuracy of the CMAQ output with respect to NO2. The monthly graphs show that the there

is a general temporal agreement between the model and measurements, although the model

moderately under-predicted the overall NO2 given the MB which equals -2.53 ppb. This

trend is supported in the scientific review by Laj et al. (2009). A clear difference between

Figure 40 and the North Bay NO2 time series from Figure 32 is that major urban areas like

Ottawa have larger NO2 mixing ratios which are accounted for by the model. CMAQ over-

estimated NO2 for June (MB= 0.77 ppb) and July (MB= 1.95 ppb) but generated a MB of

-10.05 ppb for August. These calculations should be looked at critically because most data

from the month of August were not available. Had more measurements been incorporated

into the statistics, the MB for the month may possibly have followed a positive trend. This

would have also resulted in the overall MB being a positive value. The NO2 mixing ratios

extended from around 2-20 ppb for Ottawa which implies that the emissions inventories

contain more NO2 and NOx emissions for urban environments than for rural areas.

Additionally, the scatter plots in Figure 41 do not illustrate good correlation between the two

datasets as all the R2 values are below 0.3. Again, the result for August must be scrutinized

due to a lack of data points available for the comparison.

A plot of hourly NOx mixing ratios is analyzed next to observe the behaviour of NO2 relative

to NOx emissions as a whole. Comparing the simulated and measured NOx concentrations is

a valuable method to determine if the NO2 emissions described in the emissions inventories

are correct since the majority of NO2 is created through conversion from NO. Due to the

relationship between the two species, NO2 is expected to follow the same pattern as NO (R.

Atkinson, 2000). The comparison of modelled and measured NOx shows that the model

does not match the high or low mixing ratios of the measurements. The measurements

exceed 30 ppb on many days, but the model mostly simulates NO2 between 5-15 ppb. The
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differences may be due to the chemical mechanism of choice. As mentioned in Section

3.3.6, SAPRC-99 has upgraded radical recycling which allows more oxidized nitrogen

species like HNO3 to go back into the nitrogen cycle rather than acting as termination species

(Luecken et al., 2008).
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Figure 42. Comparison between modelled (─) and measured (--) 1-h averaged NOx mixing
ratios for Ottawa from June to August 2005. A significant portion of the month of August
was not available for the comparisons.

The diurnal cycles of O3 and NO2 are shown in Figure 43. CMAQ shows the ability to

accurately reproduce the temporal cycle of each species with fairly good accuracy. By

observing the O3 cycle, it can be seen that the timing of the measured and simulated peaks for

June and August occur between 1-3 pm in occurrence with the literature, while the modelled

O3 in August reaches its maximum value at 4 pm. These maxima coincide exactly with the

minimum values of the NO2 cycle. In the morning around 7 am, NO2 begins to rise from

fossil fuel emissions and O3 reaches its daily minimum. As the volume of traffic slows, NO2

starts its daily decline while O3 reaches its peak value in the afternoon. During the early

evening (6-9 pm) O3 starts to decline as NO2 accumulates from rush hour traffic. This is in

agreement with the spatial distribution results from Section 6.2.1. Previous studies have

reported that the rate of ozone destruction at this time depends on the altitude, with the

highest rate occurring near the surface due to NOx titration and dry deposition (J. Lin et al.,

2008). Although the evening O3 levels do deteriorate as the NO2 concentrations increase,
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there is no distinct minimum value seen during the evening rush traffic hour as was the case

for the winter analysis. A possible explanation for the elevated levels of nighttime O3 may

be because when winds approach from the south or southwest, they are transporting polluted

air masses from the ORV into Ontario (Yu et al., 2008). The ORV is heavily polluted from

large point source emissions which, when transported by physical processes, raise O3 levels

downwind (Brankov et al., 2003; Sillman, 1993).

The levels of O3 and NO2 in the troposphere also largely depend on the height of the PBL.

During the day, the concentration of ozone increases rapidly with the influx of solar radiation

as it speeds up the rate of photolytic reactions. This also warms the earth’s surface heating

the air above it causing an elevated, unstable PBL where ozone at higher altitudes can be

transported to the surface by vertical mixing (J. Lin et al., 2008). During the nighttime, the

earth’s surface cools allowing for a stable, shallow (nocturnal) boundary layer where O3 can

start to accumulate due to limited mixing. The PBL appears to be much higher during the

summer compared to the winter, though ozone levels are higher in the summer given the

more favourable O3-producing conditions. The simulations generate maximum monthly

heights from 1400-1600 m and monthly minima at approximately 200 m. In general, the

YSU scheme that I used has been found to generate higher O3 mixing ratios and lower NOx

levels than other PBL parameterizations. The YSU scheme, developed by YonSei

University, is a vertical diffusion package with nonlocal turbulent mixing in the PBL. This

is a key contributing factor to the large PBL height produced by the model. Overall, CMAQ

was able to successfully reproduce the temporal features of O3 and NO2 diurnal cycles.
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The last analysis to be completed was that for Ox. Figure 44 and Figure 45 illustrate the

capability of the CMAQ system in simulating the hourly mixing ratios of O3 and NO2 during

the summer in an urban centre. The comparison between the model output and

measurements shows very good agreement as established by the correlation coefficients from

the scatter plots which were all between 0.52-0.54. As with O3, Ox tends to simulate levels

above the measurements, causing the maxima and minima to be over-predicted. The

accuracy in the graphs indicates that absences of major errors in the emissions inventories.

Because Ox is normally a species used to describe urban settings due to their high levels of

NOx, any large errors in the emissions input to the model would be seen in these graphs. In

general, the model does a good job in reproducing the levels of Ox when compared to the

measurements.
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Figure 44. A comparison of modelled (─) and measured (--) 1-h averaged oxidant (Ox)
mixing ratios for (a) June, (b) July and (c) August 2005 for Ottawa.
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Figure 45. The oxidant (Ox) 1-h averaged scatter plots of model results plotted against
measurements taken from the provincial monitoring station for Ottawa during (a) June, (b)
July and (c) August 2005.
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6.3 Summary and Conclusion

The summer study of O3 and NO2 was conducted for the regions of North Bay and Ottawa to

examine how each species behaves in the summer under different settings. The simulations

for North Bay and Ottawa show better correlation with the measurements than during the

winter investigation. The hourly temporal variations for both species at both sites were

adequately represented, but CMAQ was still incapable of reproducing the lower values of O3

and the higher values of NO2 for North Bay. The main reasons for these results are similar to

those outlined in Section 5.4. With the resolution of the grid and given the fact that 36 km-

averaged concentrations were being compared to point measurements, it was not surprising

that most of the EPA’s criteria did not fit within their defined ranges of acceptability.

Furthermore, any ambiguities in the model-measurement comparisons were not surprising.

Grid resolution along with the location of the North Bay monitoring site, also favour lower

NO2 mixing ratios. Ozone production rates rise with coarser resolutions because NOx is

diluted more readily across each cell (Shrestha et al., 2009) and the monitoring station in

North Bay is in a high NOx environment which the emissions inventory does not account for.

Additionally, the increased solar radiation and temperatures during the summer all favour O3

production which explains why ozone levels during the summer were higher than during the

winter months.



127

Chapter 7

Conclusions and Future Work

7.1 Conclusions

The results presented in this work provide valuable insight into the seasonal air quality in

Ontario. The Community Multiscale Air Quality modelling (CMAQ) system was employed

to examine the behaviour of O3 and NO2 during the 2005 summer and winter seasons under

both rural and urban settings. The cities of North Bay and Ottawa were chosen to represent

these conditions, respectively. The output was then compared against ground measurements

from the MOEs monitoring network taken at both sites to determine how well the model

could reproduce the ambient conditions. The results presented in this study are the first

reported comparisons of hourly modelled results and surface measurements for these two

municipalities using the MOEs monitoring network and CMAQ output.

For both the winter and summer episodes, CMAQ was able to skilfully represent the spatial

variability of O3 and NO2 model output as seen by the visual images and statistical

measurements. The temporal time series however, revealed that the performance of CMAQ

varies by season and by region. The hourly comparisons for North Bay showed similar

results in both the summer and winter episodes. CMAQ had a difficult time simulating the

low values of O3 as well as the higher mixing ratios of NO2. The Ottawa results showed a

better agreement between modelled and measured results than those for North Bay. Ozone

and NO2 in Ottawa were both simulated with a fair amount of accuracy for winter and

summer, with the summer results being slightly more precise. The results of this study are

consistent with the literature which reports that CMAQ has a tendency to over-predict O3 at

urban sites and under-predict it at rural sites. At both monitoring sites, O3 reached near–zero

levels less frequently in the summer than the winter. This is related to the PBL diurnal cycle

whose minimum values were lower during the winter than in the summer causing less
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mixing. Lower mixing generates reduced accumulation of O3 at the surface and higher NO2

concentrations.

Overall, the model was running well as determined by its ability to replicate the diurnal

cycles for all sites and seasons. Because the CMAQ modelling parameters remained the

same for both investigations, I conclude that the difference in NO2 and O3 mixing ratios

during both seasons was due mainly to the input data that was used by CMAQ. The

exclusion of excess NO2 in the emissions inventory and the difference in meteorological

parameters generated varying results for both seasons at each site. Low input NOx emissions

at the North Bay site resulted decreased NO2 output which affected the O3 levels. The

Ottawa results did not show this pattern. This suggests that the levels of NOx in urban

centres are accurately accounted for in the emissions while a deficiency exists for rural

regions. Additionally, the meteorology played a significant role in the modelling results.

The lower concentrations of O3 in the summer output relative to the winter results can be

attributed to factors like increased summertime solar radiation, elevated temperatures and

relative humidity, all of which speed up photolysis rates – such as the photolysis of NO2 to

form O3 – and elevate the amount of ground-level O3 produced.

7.2 Future Work

Because the concentration of O3 in a given location depends on the NOx/VOC ratio in that

area as well as regional meteorological processes, all of these factors must be taken into

account when conducting a complete modelling investigation of ground-level O3 pollution.

This study considered only the relationship between O3 and NO2, as it was a base case

investigation into the performance of CMAQ. Now that successful model performance has

been established, upcoming projects should contain a broader focus on the future air quality

of rural and urban municipalities in Ontario. Creating future year emissions inventories by

updating the current inventories with 2010 data would allow one to project what affect
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current control and emissions programs in Ontario and the United States will have on the

province’s air quality. Including VOCs in the analysis is also a necessity as it would provide

a sound assessment of local O3 production because depending on the location, O3 can be

either NOx-sensitive or VOC-sensitive. Ozone formation in rural environments is NOx-

sensitive as these areas are rich in VOCs from biogenic sources and deficient in NOx since

fossil fuel combustion from vehicles is minimal. Urban area can exhibit the dependency on

either precursor depending on their concentrations (Byun et al., 2007; Duncan et al., 2009;

Kleinman et al., 1997) although recent studies have shown that O3 formation in the eastern

United States is becoming more NOx-sensitive in response to the more than 10% decrease in

NOx emissions between 2005 and 2007 due to the EPAs NOx SIP Call and NOx Budget

Trading Program (Duncan et al., 2009). Thus controlling the emissions of a given precursor

can have diverse effects in different areas which makes the choice of monitoring stations

important. This study roughly touched upon such differences, though a larger number of

sites across the province would provide more compelling results.

Future work should also consider a complete analysis of synoptic-scale meteorology to

properly predict future O3 levels in the province because O3 is a regional phenomenon. For

example, areas of high pressure over the North Atlantic Ocean have been found to be

conducive to warm, dry conditions in eastern North America (Appel et al., 2007) which

enhances the production of biogenic VOCs like isoprene. This in turn generates additional

VOC radicals that contribute to the net increase in O3 concentrations (Sofiev et al., 2009).

This study did briefly examine some meteorological parameters such as wind speed and wind

direction, but other factors like temperature, cloud formation or solar radiation which must be

intensely investigated and analyzed against O3 because they all hold critical roles in

photochemical processes. However, because a significant portion of Ontario experiences

cold weather for most of the year, particular attention should be paid to wintertime NOx and

VOC emissions and O3 formation. Furthermore, if an all-encompassing evaluation of air

quality in Ontario is to be carried out, regions in northern Ontario must be investigated since
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they are lacking in the literature as most authors focus on major cities adjacent to the Canada-

U.S.A. border. Undertaking such a project would be beneficial to the residents of Ontario

because it would allow policy makers to determine the best methods for reducing O3 and its

precursors throughout the province and the region.
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Appendix A

To run CMAQ in parallel the following lines were added to the end of the run script:

ls -l $BASE/$EXEC; size $BASE/$EXEC

#> Executable call for multiple PE, set location of MPIRUN script

set MPIRUN = /share/apps/mpich-1.2.7p1-pgi/bin/mpirun

set TASKMAP = $BASE/machines8

cat $TASKMAP

time $MPIRUN -machinefile $TMPDIR/machines -np $NSLOTS $BASE/$EXEC
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Appendix B

The following reactions were included in the SAPRC99_AE3_AQ chemical mechanism used

in this study:

REACTIONS[CM] =

<1> NO2 = NO + O3P # 1.0/<NO2_SAPRC99>;

<2> O3P + O2 + M = O3 # 5.68e-34^-2.80;

<3> O3P + O3 = # 8.00e-12@2060;

<4> O3P + NO + M = NO2 # 1.00e-31^-1.60;

<5> O3P + NO2 = NO # 6.50e-12@-120;

<6> O3P + NO2 = NO3 # 9.00e-32^-2.00&2.20e-11&0.80&1.0;

<8> O3 + NO = NO2 # 1.80e-12@1370;

<9> O3 + NO2 = NO3 # 1.40e-13@2470;

<10> NO + NO3 = 2*NO2 # 1.80e-11@-110;

<11> NO + NO + O2 = 2*NO2 # 3.30e-39@-530;

<12> NO2 + NO3 = N2O5 # 2.80e-30^-3.50&2.00e-12^0.20&0.45&1.0;

<13> N2O5 = NO2 + NO3 # 1.00e-03^-3.50@11000&9.70e+14^0.10@11080&0.45&1.0;

<14> N2O5 + H2O = 2*HNO3 # 2.60e-22;

<17> NO2 + NO3 = NO + NO2 # 4.50e-14@1260;

<18> NO3 = NO # 1.0/<NO3NO_SAPRC99>;

<19> NO3 = NO2 + O3P # 1.0/<NO3NO2_SAPRC99>;

<20> O3 = O3P # 1.0/<O3O3P_SAPRC99>;
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<21> O3 = O1D2 # 1.0/<O3O1D_SAPRC99>;

<22> O1D2 + H2O = 2*HO # 2.20e-10;

<23> O1D2 + M = O3P # 2.09e-11@-95;

<24> HO + NO = HONO # 7.00e-31^-2.60&3.60e-11^-0.10&0.60&1.0;

<25> HONO = HO + NO # 1.0/<HONO_NO_SAPRC99>;

<26> HONO = HO2 + NO2 # 1.0/<HONO_NO2_SAPRC99>;

<27> HO + HONO = NO2 # 2.70e-12@-260;

<28> HO + NO2 = HNO3 # 2.43e-30^-3.10&1.67e-11^-2.10&0.60&1.0;

<29> HO + NO3 = HO2 + NO2 # 2.00e-11;

<30> HO + HNO3 = NO3 %2 # 7.20e-15@-785&4.10e-16@-1440&1.90e-33@-725;

<31> HNO3 = HO + NO2 # 1.0/<HNO3_SAPRC99>;

<32> HO + CO = HO2 %3 # 1.30e-13@0.0&3.19e-33@0.0;

<33> HO + O3 = HO2 # 1.90e-12@1000;

<34> HO2 + NO = HO + NO2 # 3.40e-12@-270;

<35> HO2 + NO2 = HNO4 # 1.80e-31^-3.20&4.70e-12&0.60&1.0;

<36> HNO4 = HO2 + NO2 # 4.10e-05@10650&5.70e+15@11170&0.50&1.0;

<37> HNO4 = 0.61*HO2 + 0.61*NO2 + 0.39*HO + 0.39*NO3 #

1.0/<HO2NO2_SAPRC99>;

<38> HNO4 + HO = NO2 # 1.50e-12@-360;

<39> HO2 + O3 = HO # 1.40e-14@600;

<40A> HO2 + HO2 = HO2H %3 # 2.20e-13@-600&1.85e-33@-980;

<40B> HO2 + HO2 + H2O = HO2H %3 # 3.08e-34@-2800&2.59e-54@-3180;
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<41> NO3 + HO2 = 0.8*HO + 0.8*NO2 + 0.2*HNO3 # 4.00e-12;

<42> NO3 + NO3 = 2*NO2 # 8.50e-13@2450;

<43> HO2H = 2*HO # 1.0/<H2O2_SAPRC99>;

<44> HO2H + HO = HO2 # 2.90e-12@160;

<45> HO + HO2 = # 4.80e-11@-250;

<S2OH> HO + SO2 = HO2 + SULF + SULAER # 4.00e-31^-3.30&2.00e-12&0.45&1.0;

<H2OH> HO + H2 = HO2 # 7.70e-12@2100;

<MER1> C_O2 + NO = NO2 + HCHO + HO2 # 2.80e-12@-285;

<MER4> C_O2 + HO2 = COOH # 3.80e-13@-780;

<MEN3> C_O2 + NO3 = HCHO + HO2 + NO2 # 1.30e-12;

<MER5> C_O2 + C_O2 = MEOH + HCHO # 2.45e-14@-710;

<MER6> C_O2 + C_O2 = 2*HCHO + 2*HO2 # 5.90e-13@509;

<RRNO> RO2_R + NO = NO2 + HO2 # 2.70e-12@-360;

<RRH2> RO2_R + HO2 = ROOH # 1.90e-13@-1300;

<RRN3> RO2_R + NO3 = NO2 + HO2 # 2.30e-12;

<RRME> RO2_R + C_O2 = HO2 + 0.75*HCHO + 0.25*MEOH # 2.00e-13;

<RRR2> RO2_R + RO2_R = HO2 # 3.50e-14;

<R2NO> R2O2 + NO = NO2 # 1.0*K<RRNO>;

<R2H2> R2O2 + HO2 = HO2 # 1.0*K<RRH2>;

<R2N3> R2O2 + NO3 = NO2 # 1.0*K<RRN3>;

<R2ME> R2O2 + C_O2 = C_O2 # 1.0*K<RRME>;

<R2RR> R2O2 + RO2_R = RO2_R # 1.0*K<RRR2>;



154

<R2R3> R2O2 + R2O2 = # 1.0*K<RRR2>;

<RNNO> RO2_N + NO = RNO3 # 1.0*K<RRNO>;

<RNH2> RO2_N + HO2 = ROOH # 1.0*K<RRH2>;

<RNME> RO2_N + C_O2 = HO2 + 0.25*MEOH + 0.5*MEK + 0.5*PROD2 + 0.75*HCHO

# 1.0*K<RRME>;

<RNN3> RO2_N + NO3 = NO2 + HO2 + MEK # 1.0*K<RRN3>;

<RNRR> RO2_N + RO2_R = HO2 + 0.5*MEK + 0.5*PROD2 # 1.0*K<RRR2>;

<RNR2> RO2_N + R2O2 = RO2_N # 1.0*K<RRR2>;

<RNRN> RO2_N + RO2_N = MEK + HO2 + PROD2 # 1.0*K<RRR2>;

<APN2> CCO_O2 + NO2 = PAN # 2.70e-28^-7.10&1.20e-11^-0.90&0.30&1.0;

<DPAN> PAN = CCO_O2 + NO2 # 4.90e-03@12100&4.00e+16@13600&0.30&1.0;

<APNO> CCO_O2 + NO = C_O2 + NO2 # 7.80e-12@-300;

<APH2> CCO_O2 + HO2 = 0.75*CCO_OOH + 0.25*CCO_OH + 0.25*O3 # 4.30e-13@-

1040;

<APN3> CCO_O2 + NO3 = C_O2 + NO2 # 4.00e-12;

<APME> CCO_O2 + C_O2 = CCO_OH + HCHO # 1.80e-12@-500;

<APRR> CCO_O2 + RO2_R = CCO_OH # 7.50e-12;

<APR2> CCO_O2 + R2O2 = CCO_O2 # 1.0*K<APRR>;

<APRN> CCO_O2 + RO2_N = CCO_OH + PROD2 # 1.0*K<APRR>;

<APAP> CCO_O2 + CCO_O2 = 2*C_O2 # 2.90e-12@-500;

<PPN2> RCO_O2 + NO2 = PAN2 # 1.20e-11^-0.90;

<PAN2> PAN2 = RCO_O2 + NO2 # 2.00e+15@12800;
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<PPNO> RCO_O2 + NO = NO2 + CCHO + RO2_R # 1.25e-11@-240;

<PPH2> RCO_O2 + HO2 = 0.75*RCO_OOH + 0.25*RCO_OH + 0.25*O3 #

1.0*K<APH2>;

<PPN3> RCO_O2 + NO3 = NO2 + CCHO + RO2_R # 1.0*K<APN3>;

<PPME> RCO_O2 + C_O2 = RCO_OH + HCHO # 1.0*K<APME>;

<PPRR> RCO_O2 + RO2_R = RCO_OH # 1.0*K<APRR>;

<PPR2> RCO_O2 + R2O2 = RCO_O2 # 1.0*K<APRR>;

<PPRN> RCO_O2 + RO2_N = RCO_OH + PROD2 # 1.0*K<APRR>;

<PPAP> RCO_O2 + CCO_O2 = C_O2 + CCHO + RO2_R # 1.0*K<APAP>;

<PPPP> RCO_O2 + RCO_O2 = 2*CCHO + 2*RO2_R # 1.0*K<APAP>;

<BPN2> BZCO_O2 + NO2 = PBZN # 1.37e-11;

<BPAN> PBZN = BZCO_O2 + NO2 # 7.90e+16@14000;

<BPNO> BZCO_O2 + NO = NO2 + BZ_O + R2O2 # 1.0*K<PPNO>;

<BPH2> BZCO_O2 + HO2 = 0.75*RCO_OOH + 0.25*RCO_OH + 0.25*O3 #

1.0*K<APH2>;

<BPN3> BZCO_O2 + NO3 = NO2 + BZ_O + R2O2 # 1.0*K<APN3>;

<BPME> BZCO_O2 + C_O2 = RCO_OH + HCHO # 1.0*K<APME>;

<BPRR> BZCO_O2 + RO2_R = RCO_OH # 1.0*K<APRR>;

<BPR2> BZCO_O2 + R2O2 = BZCO_O2 # 1.0*K<APRR>;

<BPRN> BZCO_O2 + RO2_N = RCO_OH + PROD2 # 1.0*K<APRR>;

<BPAP> BZCO_O2 + CCO_O2 = C_O2 + BZ_O + R2O2 # 1.0*K<APAP>;

<BPPP> BZCO_O2 + RCO_O2 = CCHO + RO2_R + BZ_O + R2O2 # 1.0*K<APAP>;
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<BPBP> BZCO_O2 + BZCO_O2 = 2*BZ_O + 2*R2O2 # 1.0*K<APAP>;

<MPN2> MA_RCO3 + NO2 = MA_PAN # 1.0*K<PPN2>;

<MPPN> MA_PAN = MA_RCO3 + NO2 # 1.60e+16@13486;

<MPNO> MA_RCO3 + NO = NO2 + HCHO + CCO_O2 # 1.0*K<PPNO>;

<MPH2> MA_RCO3 + HO2 = 0.75*RCO_OOH + 0.25*RCO_OH + 0.25*O3 #

1.0*K<APH2>;

<MPN3> MA_RCO3 + NO3 = NO2 + HCHO + CCO_O2 # 1.0*K<APN3>;

<MPME> MA_RCO3 + C_O2 = RCO_OH + HCHO # 1.0*K<APME>;

<MPRR> MA_RCO3 + RO2_R = RCO_OH # 1.0*K<APRR>;

<MPR2> MA_RCO3 + R2O2 = MA_RCO3 # 1.0*K<APRR>;

<MPRN> MA_RCO3 + RO2_N = 2*RCO_OH # 1.0*K<APRR>;

<MPAP> MA_RCO3 + CCO_O2 = C_O2 + HCHO + CCO_O2 # 1.0*K<APAP>;

<MPPP> MA_RCO3 + RCO_O2 = HCHO + CCO_O2 + CCHO + RO2_R #

1.0*K<APAP>;

<MPBP> MA_RCO3 + BZCO_O2 = HCHO + CCO_O2 + BZ_O + R2O2 # 1.0*K<APAP>;

<MPMP> MA_RCO3 + MA_RCO3 = 2*HCHO + 2*CCO_O2 # 1.0*K<APAP>;

<TBON> TBU_O + NO2 = RNO3 # 2.40e-11;

<TBOD> TBU_O = ACET + C_O2 # 7.50e+14@8152;

<BRN2> BZ_O + NO2 = NPHE # 2.30e-11@-150;

<BRH2> BZ_O + HO2 = PHEN # 1.0*K<RRH2>;

<BRXX> BZ_O = PHEN # 1.00e-03;

<BNN2> BZNO2_O + NO2 = # 1.0*K<BRN2>;
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<BNH2> BZNO2_O + HO2 = NPHE # 1.0*K<RRH2>;

<BNXX> BZNO2_O = NPHE # 1.0*K<BRXX>;

<FAHV> HCHO = 2*HO2 + CO # 1.0/<HCHO_R_SAPRC99>;

<FAVS> HCHO = CO # 1.0/<HCHO_M_SAPRC99>;

<FAOH> HCHO + HO = HO2 + CO # 8.60e-12@-20;

<FAH2> HCHO + HO2 = HOCOO # 9.70e-15@-625;

<FAHR> HOCOO = HO2 + HCHO # 2.40e+12@7000;

<FAHN> HOCOO + NO = HCOOH + NO2 + HO2 # 1.0*K<MER1>;

<FAN3> HCHO + NO3 = HNO3 + HO2 + CO # 2.00e-12@2431;

<AAOH> CCHO + HO = CCO_O2 # 5.60e-12@-310;

<AAHV> CCHO = CO + HO2 + C_O2 # 1.0/<CCHO_R_SAPRC99>;

<AAN3> CCHO + NO3 = HNO3 + CCO_O2 # 1.40e-12@1860;

<PAOH> RCHO + HO = 0.034*RO2_R + 0.001*RO2_N + 0.965*RCO_O2 + 0.034*CO +

0.034*CCHO # 2.00e-11;

<PAHV> RCHO = CCHO + RO2_R + CO + HO2 # 1.0/<C2CHO_SAPRC99>;

<PAN3> RCHO + NO3 = HNO3 + RCO_O2 # 1.40e-12@1771;

<K3OH> ACET + HO = HCHO + CCO_O2 + R2O2 # 1.10e-12@520;

<K3HV> ACET = CCO_O2 + C_O2 # 1.0/<ACETONE_SAPRC99>;

<K4OH> MEK + HO = 0.37*RO2_R + 0.042*RO2_N + 0.616*R2O2 + 0.492*CCO_O2 +

0.096*RCO_O2 + 0.115*HCHO + 0.482*CCHO + 0.37*RCHO # 1.30e-12^2.00@25;

<K4HV> MEK = CCO_O2 + CCHO + RO2_R # 1.50e-1/<KETONE_SAPRC99>;

<MeOH> MEOH + HO = HCHO + HO2 # 3.10e-12^2.00@360;
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<MER9> COOH + HO = 0.35*HCHO + 0.35*HO + 0.65*C_O2 # 2.90e-12@-190;

<MERA> COOH = HCHO + HO2 + HO # 1.0/<COOH_SAPRC99>;

<LPR9> ROOH + HO = RCHO + 0.34*RO2_R + 0.66*HO # 1.10e-11;

<LPRA> ROOH = RCHO + HO2 + HO # 1.0/<COOH_SAPRC99>;

<GLHV> GLY = 2*CO + 2*HO2 # 1.0/<GLY_R_SAPRC99>;

<GLVM> GLY = HCHO + CO # 6.00e-3/<GLY_ABS_SAPRC99>;

<GLOH> GLY + HO = 0.63*HO2 + 1.26*CO + 0.37*RCO_O2 # 1.10e-11;

<GLN3> GLY + NO3 = HNO3 + 0.63*HO2 + 1.26*CO + 0.37*RCO_O2 # 2.80e-

12@2376;

<MGHV> MGLY = HO2 + CO + CCO_O2 # 1.0/<MGLY_ADJ_SAPRC99>;

<MGOH> MGLY + HO = CO + CCO_O2 # 1.50e-11;

<MGN3> MGLY + NO3 = HNO3 + CO + CCO_O2 # 1.40e-12@1895;

<BAHV> BACL = 2*CCO_O2 # 1.0/<BACL_ADJ_SAPRC99>;

<PHOH> PHEN + HO = 0.24*BZ_O + 0.76*RO2_R + 0.23*GLY # 2.63e-11;

<PHN3> PHEN + NO3 = HNO3 + BZ_O # 3.78e-12;

<CROH> CRES + HO = 0.24*BZ_O + 0.76*RO2_R + 0.23*MGLY + CRESAER # 4.20e-

11;

<CRN3> CRES + NO3 = HNO3 + BZ_O + CRESAER # 1.37e-11;

<NPN3> NPHE + NO3 = HNO3 + BZNO2_O # 1.0*K<PHN3>;

<BZOH> BALD + HO = BZCO_O2 # 1.29e-11;

<BZHV> BALD = # 5.00e-2/<BZCHO_SAPRC99>;

<BZNT> BALD + NO3 = HNO3 + BZCO_O2 # 1.40e-12@1872;
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<MAOH> METHACRO + HO = 0.5*RO2_R + 0.416*CO + 0.084*HCHO + 0.416*MEK +

0.084*MGLY + 0.5*MA_RCO3 # 1.86e-11@-176;

<MAO3> METHACRO + O3 = 0.008*HO2 + 0.1*RO2_R + 0.208*HO + 0.1*RCO_O2 +

0.45*CO +

0.2*HCHO + 0.9*MGLY + 0.333*HCOOH # 1.36e-15@2114;

<MAN3> METHACRO + NO3 = 0.5*HNO3 + 0.5*RO2_R + 0.5*CO + 0.5*MA_RCO3

# 1.50e-12@1726;

<MAOP> METHACRO + O3P = RCHO # 6.34e-12;

<MAHV> METHACRO = 0.34*HO2 + 0.33*RO2_R + 0.33*HO + 0.67*CCO_O2 +

0.67*CO +

0.67*HCHO + 0.33*MA_RCO3 # 4.10e-3/<ACROLEIN_SAPRC99>;

<MVOH> MVK + HO = 0.3*RO2_R + 0.025*RO2_N + 0.675*R2O2 + 0.675*CCO_O2 +

0.3*HCHO + 0.675*RCHO + 0.3*MGLY # 4.14e-12@-453;

<MVO3> MVK + O3 = 0.064*HO2 + 0.05*RO2_R + 0.164*HO + 0.05*RCO_O2 +

0.475*CO +

0.1*HCHO + 0.95*MGLY + 0.351*HCOOH # 7.51e-16@1520;

<MVOP> MVK + O3P = 0.45*RCHO + 0.55*MEK # 4.32e-12;

<MVHV> MVK = 0.3*C_O2 + 0.7*CO + 0.7*PROD2 + 0.3*MA_RCO3

# 2.10e-3/<ACROLEIN_SAPRC99>;

<IPOH> ISOPROD + HO = 0.67*RO2_R + 0.041*RO2_N + 0.289*MA_RCO3 + 0.336*CO

+

0.055*HCHO + 0.129*CCHO + 0.013*RCHO + 0.15*MEK + 0.332*PROD2 +

0.15*GLY + 0.174*MGLY # 6.19e-11;
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<IPO3> ISOPROD + O3 = 0.4*HO2 + 0.048*RO2_R + 0.048*RCO_O2 + 0.285*HO +

0.498*CO + 0.125*HCHO + 0.047*CCHO + 0.21*MEK + 0.023*GLY +

0.742*MGLY + 0.1*HCOOH + 0.372*RCO_OH # 4.18e-18;

<IPN3> ISOPROD + NO3 = 0.799*RO2_R + 0.051*RO2_N + 0.15*MA_RCO3 +

0.572*CO +

0.15*HNO3 + 0.227*HCHO + 0.218*RCHO + 0.008*MGLY + 0.572*RNO3

# 1.00e-13;

<IPHV> ISOPROD = 1.233*HO2 + 0.467*CCO_O2 + 0.3*RCO_O2 + 1.233*CO +

0.3*HCHO +

0.467*CCHO + 0.233*MEK # 4.10e-3/<ACROLEIN_SAPRC99>;

<K6OH> PROD2 + HO = 0.379*HO2 + 0.473*RO2_R + 0.07*RO2_N + 0.029*CCO_O2 +

0.049*RCO_O2 + 0.213*HCHO + 0.084*CCHO + 0.558*RCHO + 0.115*MEK +

0.329*PROD2 # 1.50e-11;

<K6HV> PROD2 = 0.96*RO2_R + 0.04*RO2_N + 0.515*R2O2 + 0.667*CCO_O2 +

0.333*RCO_O2 + 0.506*HCHO + 0.246*CCHO + 0.71*RCHO

# 2.00e-2/<KETONE_SAPRC99>;

<RNOH> RNO3 + HO = 0.338*NO2 + 0.113*HO2 + 0.376*RO2_R + 0.173*RO2_N +

0.596*R2O2 + 0.01*HCHO + 0.439*CCHO + 0.213*RCHO + 0.006*ACET +

0.177*MEK + 0.048*PROD2 + 0.31*RNO3 # 7.80e-12;

<RNHV> RNO3 = NO2 + 0.341*HO2 + 0.564*RO2_R + 0.095*RO2_N + 0.152*R2O2 +

0.134*HCHO + 0.431*CCHO + 0.147*RCHO + 0.02*ACET + 0.243*MEK +

0.435*PROD2 # 1.0/<IC3ONO2_SAPRC99>;
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<D1OH> DCB1 + HO = RCHO + RO2_R + CO # 5.00e-11;

<D1O3> DCB1 + O3 = 1.5*HO2 + 0.5*HO + 1.5*CO + GLY # 2.00e-18;

<D2OH> DCB2 + HO = R2O2 + RCHO + CCO_O2 # 5.00e-11;

<D2HV> DCB2 = RO2_R + 0.5*CCO_O2 + 0.5*HO2 + CO + R2O2 + 0.5*GLY +

0.5*MGLY

# 3.65e-1/<MGLY_ABS_SAPRC99>;

<D3OH> DCB3 + HO = R2O2 + RCHO + CCO_O2 # 5.00e-11;

<D3HV> DCB3 = RO2_R + 0.5*CCO_O2 + 0.5*HO2 + CO + R2O2 + 0.5*GLY +

0.5*MGLY

# 7.28e+0/<ACROLEIN_SAPRC99>;

<c1OH> CH4 + HO = C_O2 # 2.15e-12@1735;

<etOH> ETHENE + HO = RO2_R + 1.61*HCHO + 0.195*CCHO # 1.96e-12@-438;

<etO3> ETHENE + O3 = 0.12*HO + 0.12*HO2 + 0.5*CO + HCHO + 0.37*HCOOH

# 9.14e-15@2580;

<etN3> ETHENE + NO3 = RO2_R + RCHO # 4.39e-13^2.00@2282;

<etOA> ETHENE + O3P = 0.5*HO2 + 0.2*RO2_R + 0.3*C_O2 + 0.491*CO +

0.191*HCHO +

0.25*CCHO + 0.009*GLY # 1.04e-11@792;

<isOH> ISOPRENE + HO = 0.907*RO2_R + 0.093*RO2_N + 0.079*R2O2 +

0.624*HCHO +

0.23*METHACRO + 0.32*MVK + 0.357*ISOPROD # 2.50e-11@-408;

<isO3> ISOPRENE + O3 = 0.266*HO + 0.066*RO2_R + 0.008*RO2_N + 0.126*R2O2 +
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0.192*MA_RCO3 + 0.275*CO + 0.592*HCHO + 0.1*PROD2 + 0.39*METHACRO

+

0.16*MVK + 0.204*HCOOH + 0.15*RCO_OH # 7.86e-15@1912;

<isN3> ISOPRENE + NO3 = 0.187*NO2 + 0.749*RO2_R + 0.064*RO2_N +

0.187*R2O2 +

0.936*ISOPROD # 3.03e-12@448;

<isOP> ISOPRENE + O3P = 0.01*RO2_N + 0.24*R2O2 + 0.25*C_O2 +

0.24*MA_RCO3 +

0.24*HCHO + 0.75*PROD2 # 3.60e-11;

<t1OH> TRP1 + HO = 0.75*RO2_R + 0.25*RO2_N + 0.5*R2O2 + 0.276*HCHO +

0.474*RCHO + 0.276*PROD2 + TRP1AER # 1.83e-11@-449;

<t1O3> TRP1 + O3 = 0.567*HO + 0.033*HO2 + 0.031*RO2_R + 0.18*RO2_N +

0.729*R2O2 + 0.123*CCO_O2 + 0.201*RCO_O2 + 0.157*CO + 0.235*HCHO +

0.205*RCHO + 0.13*ACET + 0.276*PROD2 + 0.001*GLY + 0.031*BACL +

0.103*HCOOH + 0.189*RCO_OH + TRP1AER # 1.08e-15@821;

<t1N3> TRP1 + NO3 = 0.474*NO2 + 0.276*RO2_R + 0.25*RO2_N + 0.75*R2O2 +

0.474*RCHO + 0.276*RNO3 + TRP1AER # 3.66e-12@-175;

<t1OP> TRP1 + O3P = 0.147*RCHO + 0.853*PROD2 + TRP1AER # 3.27e-11;

<a1OH> ALK1 + HO = RO2_R + CCHO # 1.37e-12^2.00@498;

<a2OH> ALK2 + HO = 0.246*HO + 0.121*HO2 + 0.612*RO2_R + 0.021*RO2_N +

0.16*CO +

0.039*HCHO + 0.155*RCHO + 0.417*ACET + 0.248*GLY + 0.121*HCOOH

# 9.87e-12@671;
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<a3OH> ALK3 + HO = 0.695*RO2_R + 0.07*RO2_N + 0.559*R2O2 + 0.236*TBU_O +

0.026*HCHO + 0.445*CCHO + 0.122*RCHO + 0.024*ACET + 0.332*MEK

# 1.02e-11@434;

<a4OH> ALK4 + HO = 0.835*RO2_R + 0.143*RO2_N + 0.936*R2O2 + 0.011*C_O2 +

0.011*CCO_O2 + 0.002*CO + 0.024*HCHO + 0.455*CCHO + 0.244*RCHO +

0.452*ACET + 0.11*MEK + 0.125*PROD2 # 5.95e-12@91;

<a5OH> ALK5 + HO = 0.653*RO2_R + 0.347*RO2_N + 0.948*R2O2 + 0.026*HCHO +

0.099*CCHO + 0.204*RCHO + 0.072*ACET + 0.089*MEK + 0.417*PROD2 +

ALK5AER # 1.11e-11@52;

<b1OH> ARO1 + HO = 0.224*HO2 + 0.765*RO2_R + 0.011*RO2_N + 0.055*PROD2 +

0.118*GLY + 0.119*MGLY + 0.017*PHEN + 0.207*CRES + 0.059*BALD +

0.491*DCB1 + 0.108*DCB2 + 0.051*DCB3 + ARO1AER # 1.81e-12@-355;

<b2OH> ARO2 + HO = 0.187*HO2 + 0.804*RO2_R + 0.009*RO2_N + 0.097*GLY +

0.287*MGLY + 0.087*BACL + 0.187*CRES + 0.05*BALD + 0.561*DCB1 +

0.099*DCB2 + 0.093*DCB3 + ARO2AER # 2.64e-11;

<o1OH> OLE1 + HO = 0.91*RO2_R + 0.09*RO2_N + 0.205*R2O2 + 0.732*HCHO +

0.294*CCHO + 0.497*RCHO + 0.005*ACET + 0.119*PROD2 # 7.10e-12@-451;

<o1O3> OLE1 + O3 = 0.155*HO + 0.056*HO2 + 0.022*RO2_R + 0.001*RO2_N +

0.076*C_O2 + 0.345*CO + 0.5*HCHO + 0.154*CCHO + 0.363*RCHO +

0.001*ACET + 0.215*PROD2 + 0.185*HCOOH + 0.05*CCO_OH +

0.119*RCO_OH

# 2.62e-15@1640;
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<o1N3> OLE1 + NO3 = 0.824*RO2_R + 0.176*RO2_N + 0.488*R2O2 + 0.009*CCHO +

0.037*RCHO + 0.024*ACET + 0.511*RNO3 # 4.45e-14@376;

<o1OP> OLE1 + O3P = 0.45*RCHO + 0.437*MEK + 0.113*PROD2 # 1.07e-11@234;

<o2OH> OLE2 + HO = 0.918*RO2_R + 0.082*RO2_N + 0.001*R2O2 + 0.244*HCHO +

0.732*CCHO + 0.511*RCHO + 0.127*ACET + 0.072*MEK + 0.061*BALD +

0.025*METHACRO + 0.025*ISOPROD + OLE2AER # 1.74e-11@-384;

<o2O3> OLE2 + O3 = 0.378*HO + 0.003*HO2 + 0.033*RO2_R + 0.002*RO2_N +

0.137*R2O2 + 0.197*C_O2 + 0.137*CCO_O2 + 0.006*RCO_O2 + 0.265*CO +

0.269*HCHO + 0.456*CCHO + 0.305*RCHO + 0.045*ACET + 0.026*MEK +

0.006*PROD2 + 0.042*BALD + 0.026*METHACRO + 0.073*HCOOH +

0.129*CCO_OH + 0.303*RCO_OH + OLE2AER # 5.02e-16@461;

<o2N3> OLE2 + NO3 = 0.391*NO2 + 0.442*RO2_R + 0.136*RO2_N + 0.711*R2O2 +

0.03*C_O2 + 0.079*HCHO + 0.507*CCHO + 0.151*RCHO + 0.102*ACET +

0.001*MEK + 0.015*BALD + 0.048*MVK + 0.321*RNO3 + OLE2AER

# 7.26e-13;

<o2OP> OLE2 + O3P = 0.013*HO2 + 0.012*RO2_R + 0.001*RO2_N + 0.012*CO +

0.069*RCHO + 0.659*MEK + 0.259*PROD2 + 0.012*METHACRO # 2.09e-11;

<c1OH> HCOOH + HO = HO2 # 4.5E-13;

<c2OH> CCO_OH + HO = 0.13*RO2_R + 0.87*C_O2 + 0.13*MGLY # 8.00E-13;

<c3OH> RCO_OH + HO = RO2_R + 0.605*CCHO + 0.21*RCHO + 0.185*BACL #

1.16E-12;


