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Abstract

The atmospheric lightwave propagation is considerably influenced by the random vari-

ations in the refractive index of air pockets due to turbulence. This undesired effect

significantly degrades the performance of free-space optical (FSO) communication sys-

tems. Interestingly, the severity of such random degradations is highly related to the

range of atmospheric propagation. In this thesis, we introduce relay-assisted FSO com-

munications as a very promising technique to combat the degradation effects of atmo-

spheric turbulence. Considering different configurations of the relays, we quantify the

outage behavior of the relay-assisted system and identify the optimum relaying scheme.

We further optimize the performance of the relay-assisted FSO system subject to some

power constraints and provide optimal power control strategies for different scenarios

under consideration. Moreover, an application of FSO relaying technique in quan-

tum communications is investigated. The results demonstrate impressive performance

improvements for the proposed relay-assisted FSO systems with respect to the conven-

tional direct transmission whether applied in a classical or a quantum communication

channel.
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Chapter 1

Introduction

Free-space optical communication refers to terrestrial line-of-sight optical transmission

through the atmosphere [1]. This technology has recently attracted a renewed interest

within the research community although its roots can be traced back to Alexander

Graham Bell’s “photophone” [2]. In this first free-space optical (FSO) experiment

carried out on February 18, 1880, Bell was able to transmit voice signals through a

modulated beam of light via atmosphere for a distance of about 200 m. Although Bell’s

photophone never came out as a commercial product, it has successfully demonstrated

the potential of FSO transmission.

Today’s FSO systems use either lasers or light emitting diodes (LEDs) to transmit a

modulated beam of visible/infrared light [3]. These systems are license-free with high-

bandwidth capacity providing a cost-effective and easy-to-install alternative to fiber

optics. They further provide an inherent security due to the nature of their directional

and narrow beams which make eavesdropping and jamming nearly impossible. With its

unique features, FSO communication is appealing for a number of applications including

last-mile access, fiber back-up, back-haul for wireless cellular networks, and disaster

recovery [4].

Despite the major advantages of FSO, its widespread use has been hampered by its

rather disappointing performance for long-range links. For link ranges longer than 1 km,
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atmospheric turbulence-induced fading becomes a major performance limiting factor in

FSO systems [5]. Although FSO links are built taking into account a certain dynamic

margin, the practical limitations on link budgets do not allow very high margins leaving

the link vulnerable to deep fades. Therefore, powerful fading-mitigation techniques need

to be employed for FSO links particularly with transmission range of 1 km or longer.

1.1 Previous Works

Error control coding in conjunction with interleaving can be employed in FSO communi-

cations to combat fading [6], [7]. However, optical links with their transmission rates of

order of gigabits need to deal with highly correlated channel states over a large number

of consecutive bits. For most scenarios, this requires large-size interleavers to achieve

the promised coding gains. Based on the statistical properties of turbulence-induced

fading, maximum likelihood sequence detection (MLSD) is proposed in [8] as another

solution for fading mitigation. However, MLSD requires complicated multidimensional

integrations and suffers from excessive computational complexity.

Spatial diversity techniques [9, 10, 11, 12, 13], i.e., the employment of multiple

transmit/receive apertures, provide an attractive alternative approach for fading com-

pensation with their inherent redundancy. Besides its role as a fading-mitigation tool,

multiple-aperture designs significantly reduce the potential for temporary blockage of

the laser beam by obstructions (e.g., birds). Further justification for the employment of

multiple apertures comes from limitations in transmit power density. The allowable safe

laser power depends on the wavelength and obviously a higher power at the transmit-

ter side allows the system to support longer distances and through heavier attenuation

while achieving higher data rates.

It is well known from the vast literature on wireless radio frequency (RF) systems

that simply sending the same signal from multiple transmit antennas (i.e., repetition

coding) does not realize any transmit diversity advantage. This is also the case for FSO

links with heterodyne reception and it is indeed demonstrated in [14] that conventional

orthogonal space-time block codes (OSTBCs) designed for wireless RF systems can be
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employed in heterodyne FSO links with quadrature amplitude modulation (QAM) or

phase shift keying (PSK). These codes, however, cannot be employed in the intensity

modulation direct detection (IM/DD) FSO systems since they require signal’s phase

information which is not available in the case of intensity modulation. In [15], Simon

and Vilnrotter have proposed a modified version of Alamouti code [16] (i.e., OSTBC for

two transmit antennas) for FSO IM/DD links by avoiding the necessity of transmitting

the negative of a modulation signal. However, the question arises if we need modified

OSTBCs for FSO IM/DD systems where the repetition code is able to extract spatial

diversity advantages, [9, 10, 11, 12, 13], unlike RF or heterodyne FSO communications.

If yes, how much improvement they can provide with respect to the simple repetition

code? The answer is interestingly “No”. In [17], we have clearly demonstrated that

utilization of OSTBCs is not necessary, even detrimental in some cases, for an FSO

IM/DD link.

Cooperative diversity has been recently introduced as an alternative way of realizing

spatial diversity advantages [18, 19, 20]. The main idea behind cooperative diversity

is based on the observation that in a wireless RF channel, the signal transmitted by

the source node is overheard by other nodes, which can be defined as partners or

relays. The source and its partners can jointly process and transmit their information,

creating a virtual antenna array although each of them is equipped with only one

antenna. Multi-hop transmission is an alternative relay-assisted transmission scheme

which employs the relays in a serial configuration [21]. Such schemes are typically

used to broaden the signal coverage for limited-power transmitters and do not offer

performance improvement against fading effects in wireless RF environments, i.e., it

does not increase the diversity order [18].

To the best of our knowledge, relay-assisted FSO transmission was first proposed

by Acampora and Krishnamurthy in [22]. Their work, however, has a networking

perspective and does not address the physical layer aspects which our work aims to

focus on. In [23], Akella et al. have studied the bit error rate performance of a decode-

and-forward FSO multi-hop scheme. Their channel model considers only path-loss

and ignores the fading effects. In [24] and [25], Tsiftsis et al. have considered K

and Gamma-Gamma atmospheric-induced fading models without explicitly taking into
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account the path-loss and evaluated outage probability for a multi-hop FSO system.

Their results demonstrate the usefulness of relay-assisted transmission as a method to

broaden the coverage area, but do not highlight its use as a fading-mitigation tool which

is demonstrated in our work.

1.2 Relay-Assisted FSO Communications

In this thesis, we introduce relay-assisted FSO communications as a very promising

technique to combat the atmospheric turbulence degradations. We present an exten-

sive investigation of the relay-assisted FSO communications based on both the Poisson

and Gaussian channel models commonly used in the literature. Furthermore, as an ap-

plication of FSO communications, we study an FSO quantum-key distribution (QKD)

system employing a proposed passive relaying strategy.

The impressive performance of the proposed relay-assisted FSO systems can be

mainly described by the distance-dependency of the turbulence-induced fading. This

is a major difference between the wireless RF and wireless optical systems and allows

multi-hop FSO transmission bring performance improvements against the degrading

effects of fading, as reflected by our performance analysis and numerical results. The

main contributions and the results of this thesis which have been also reported in

[26, 27, 28, 29] can be categorized in three parts as follows.

1.2.1 Relay-Assisted FSO Communication over the Gaussian

Channel

In the first part, we consider IM/DD FSO communication systems modeled by an addi-

tive white Gaussian noise (AWGN) channel. Relay-assisted FSO systems with Different

configurations of the relays are investigated whether they are employed in serial (i.e.,

multi-hop transmission) or in parallel (i.e., cooperative diversity). Our investigation on

multi-hop FSO differs from earlier work in [23, 24, 25] in the sense that we explicitly

take into account both path-loss and fading effects. We also consider parallel relaying as
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a possible alternative to serial relaying. It is obvious that broadcast nature of wireless

RF transmission (i.e., the cost-free possibility of the transmitted signals being received

by other than destination nodes) is not present in FSO transmission which is based on

line-of-sight transmission through directional beams. Therefore, we create an artificial

broadcasting through the use of multiple transmitter apertures directed to relay nodes

and propose a parallel relaying transmission scheme.

For both the parallel and serial transmissions under consideration, we derive ex-

pressions for outage probability assuming amplify-and-forward (AF) and decode-and-

forward (DF) relaying. We present a diversity gain analysis through the derivation

of so-called relative diversity order (RDO) particularly applicable to the log-normal

channel under consideration [30]. We further present an extensive simulation study to

confirm our derivations. In particular, the outage probability analysis demonstrates

that an impressive performance improvement of 18.5 dB is possible with the use of a

single relay at a target outage probability of 10−6 and this improvement enhances by

inserting more relays within the link. It is also observed that parallel relaying takes

advantage of the distance-dependency of the fading variance to a lesser extent and is

outperformed by serial relaying as the number of relays increases.

1.2.2 Relay-Assisted FSO Communication over the Poisson

Channel

In this part, we consider shot noise-limited IM/DD FSO systems commonly modeled

by the Poisson channel. The outage behavior of the multi-hop atmospheric turbulent

Poisson channel with a constant rate and transmission delay constraint is studied. It

is assumed that perfect channel state information (CSI) is available at the receiver

side; however, it may or may not be available at the transmitter side. We solve the

outage probability minimization problem for the decode-and-forward multi-hop Poisson

channel subject to a peak power constraint as well as a short- or long-term average

sum power constraint. As a result, the optimal power control strategies are provided

for different scenarios under consideration. Furthermore, a simple and accurate sup-

optimal solution is proposed for the case of perfect CSI at the transmitters with short-
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term average power constraint where the calculation of the power control law involves

solving a nonlinear equation.

The results show that the relaying strategy significantly improves the outage prob-

ability of the system operating over the turbulence-degraded Poisson channel and this

improvement enhances as the number of relays increases. Moreover, we observe that

available CSI at the transmitters can improve the outage probability of the system un-

der both short- and long-term power constraints except for a single-hop Poisson channel

with short-term power constraint.

1.2.3 Relay-Assisted Free-space Quantum-Key Distribution

In the last part of the thesis, we propose a terrestrial relay-assisted scheme for a free-

space quantum key distribution system based on BB84 protocol. The QKD scheme

uses elementary quantum systems such as polarized photons to transfer secret keys

between two points [31, 32]. We consider the deployment of passive relays which simply

redirect (i.e., collect and point) the qubits (quantum bits) to the next relay node or to

the receiver without performing any measurement or detection process. These relays,

which can be implemented by adaptive optics, reconstruct the turbulence-degraded

wave-front of the received beam and redirect the resulting collimated beam to the next

relay or destination.

We investigate the efficiency of such relay-assisted systems to combat the range

limitations in a terrestrial scenario. Based on a near-field analysis, we derive an up-

per bound on quantum bit error rate (QBER) of the relay-assisted QKD system. Our

results demonstrate that, although the relay-assisted QKD scheme increases the aver-

age number of background photons collected at the receiver, it is able to significantly

decrease the photon loss caused by diffraction and turbulence. The proposed scheme

therefore outperforms point-to-point counterparts in long ranges.
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1.3 Organization of the Thesis

In the next chapter, we present a brief introduction to the free-space optical communi-

cations. In chapter 3, we propose the relay-assisted FSO communications with different

relay configurations and analyze their outage performances and diversity gains based on

the Gaussian channel model. In chapter 4, we investigate the optimal performance of

the multi-hop FSO system modeled by the Poisson channel and provide optimum power

control laws for different scenarios. In chapter 5, we introduce a particular application

of the relay-assisted FSO systems in quantum cryptography and discuss its advantages.

Finally, we summarize the thesis in chapter 6.
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Chapter 2

Background

2.1 Optical Communication System

The demand increase for high-speed data communication has been accelerated by the

growth of Internet usage, internet protocol (IP) television, and Voice over IP. This

strong demand for high-bandwidth communication encourages engineers to design high

bit-rate optical communication systems in which the information is transferred using a

high frequency (∼ 100 THz) lightwave carrier. The fiber-optic and free-space optical

systems are the two common forms of optical communications. In fiber-optic commu-

nications, the information-bearing light is guided through an optical fiber. However, it

is radiated over the atmosphere in free-space optical communications.

Figure 2.1 illustrates the block diagram of an optical communication system. A

source produces information waveforms which are then modulated onto an optical car-

rier. The generated optical field is radiated through an optical link (turbulent at-

Source
Optical modulator

and transmitter
Optical link

Optical

receiver

Figure 2.1: The block diagram of an optical communication system.
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Photodetector

Optical

filter

i(t)Received

field

Figure 2.2: The schematic diagram of direct detection receiver.

mosphere or optical fiber) towards a remote destination. At the receiver, the field is

optically collected and a photo-detector, located at the focal plane of the collecting lens,

transforms the optical field to an electrical current. The receiver processes the detected

electrical current to recover the original transmitted information [1].

There are basically two types of optical receivers: Direct detection (non-coherent)

receivers and coherent detection receivers. In direct detection receivers (Figure 2.2), the

photodetecor directly detect the instantaneous power (or intensity) of the collected field

at the receiver aperture. The implementation of such receivers is very simple and cost-

effective. However, they can be only employed in intensity-modulation direct-detection

systems in which the information is contained in the power variation of the transmitted

field.

A form of coherent detection receivers (i.e., heterodyne receiver) is illustrated in

Figure 2.3. In this detection technique, the received field is optically mixed before pho-

todetection with a locally generated optical field through a front-end mirror. Amplitude,

frequency, or phase modulation can be used in optical communication systems employ-

ing coherent reception. However, such receivers are much more difficult to implement

in comparison to non-coherent counterparts and require spatially coherent combining

of the received field and the locally generated field [1].

Since coherent FSO communication, although possible, is rarely employed in current

systems due to technical difficulties and high cost, practical interest lies in the design

of IM/DD FSO systems which will be the focus of this thesis. IM/DD communication

systems use intensity modulation techniques such as on-off keying (OOK) or pulse

position modulation (PPM). In OOK, the optical transmitter is “on” during the whole

bit interval when “1” is transmitted, and is “off” when “0” is transmitted. On the
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Figure 2.3: The schematic diagram of heterodyne detection receiver.

other hand, in binary pulse position modulation (BPPM), the optical transmitter is

“on” during a half of the BPPM bit interval (i.e., “signal slot”) and is “off” during the

other half (i.e., “non-signal slot”). Although OOK gives a better spectral efficiency with

respect to BPPM, it requires threshold detection which needs channel state information.

In contrast, the BPPM signal can be easily detected without any need to threshold

detection. Nevertheless, the two techniques yield the same error rate performances.

2.2 Atmospheric Turbulence Channel

Atmospheric aerosols and molecules along with bad weather conditions cause absorption

and scattering which attenuate the power of the light traveling through atmosphere.

Furthermore, the spatial and temporal variations of the air thermal inhomogeneities

cause random fluctuations of the refractive index (i.e., atmospheric turbulence) which

degrades the performance of optical communication. In this section, we discuss the

modeling of an IM/DD free-space optical channel through an atmospheric path.

It is known [33] that the polarization-dependent effects of the turbulent atmosphere

which may cause signal distortions due to dispersion effect are negligible especially at

the low-loss transmission windows of atmosphere. Therefore, without loss of generality,

we assume that the transmitted optical signal is linearly polarized. Using the complex

quasi-monochromatic notation, we can then represent the transmitted optical field at

z = 0 plane as a scalar function of time and space by

10
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Figure 2.4: The free-space propagation geometry.

f(t, ~ρ) = Re
{

[ξ(~ρ)x(t)] e−j2πfct
}

(2.1)

where x(t) is the temporal component (modulating signal) and ξ(~ρ) is the spatial com-

ponent (spatial beam pattern) of the transmitted optical field and fc is the carrier

frequency. Assuming that the beam pattern ξ(~ρ) is transmitted from a circular pupil

R located in the plane z = 0 as in figure 2.4, the extended Huygens-Fresnel principle

[33] yields the received field pattern ξ′(~ρ′) as

ξ′(~ρ′) =

∫
R

ξ(~ρ)h(~ρ, ~ρ′)e−aL/2d~ρ (2.2)

which is collected within the pupil R′ in the z = L plane. In (2.2), a is the extinction co-

efficient which determines the loss due to absorption and scattering and h(~ρ, ~ρ′) denotes

the paraxial1 Green’s function for atmospheric propagation through clear turbulent air

and is given by [33]

h(~ρ, ~ρ′) =
ejkL+jk|~ρ−~ρ′|2/2L

jλL
eχ(~ρ,~ρ′)+jϕ(~ρ,~ρ′) (2.3)

where λ is the wavelength and k = 2π/λ is the wave number. In (2.3), χ(~ρ, ~ρ′) and

1The paraxial assumption is valid here since the propagation of the optical beam is highly directional

and the wavelength is much smaller than the spatial scale of the refractive index fluctuations [33].
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ϕ(~ρ, ~ρ′) are, respectively, the stochastic log-amplitude and phase fluctuation terms de-

scribing the atmospheric turbulence of the path connecting the points at ~ρ and ~ρ′.

Assuming that the transmit beam pattern is normalized such that
∫
R
|ξ(~ρ)|2d~ρ = 1, the

optical signal power collected by the receive aperture can be written as

Ps = Pt

∫
R′
|ξ′(~ρ′)|2d~ρ′ (2.4)

where Pt =
∫
R
|f(t, ~ρ)|2d~ρ is the transmitted optical field power. In a far-field scenario

which explains most of the practical FSO systems, the received optical power in (2.4)

reduces to [9]

Ps ≈ e−aL
ATXARX

(λL)2
hPt (2.5)

where ATX and ARX are respectively the transmit and receive pupil areas and h denotes

the turbulence-induced fading coefficient given by

h =
∣∣eχ+jϕ

∣∣2 = e2χ. (2.6)

We can further define the path loss of the optical link as

`(L) = e−σ L
ATXARX

(λL)2
(2.7)

which include the atmospheric attenuation caused by diffraction, absorption and scat-

tering.

In the derivation of the received power in (2.5), it is assumed that the transmit and

receive apertures are small compared to the spatial coherence length of the turbulent

atmosphere. We further consider the far-field assumptions that the distance between

source and destination L is much greater than the receive and transmit aperture diam-

eters, i.e., λL >> ARX , ATX .
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Figure 2.5: The Airy pattern image of two separated point sources on the detector.

At the receiver side, the field collected at the receive aperture is focused by an

optical lens onto the detecting surface which is located at the focal plane of the optical

lens. The field produced in the focal plane called as diffracted field, is related to the

two-dimensional spatial Fourier transform of the received field. The diffracted field

forms a familiar pattern known as “Airy pattern” in optical diffraction theory. The

Airy pattern occupies a width of about 2λ which is on the order of microns in size [1].

In fact, the Airy pattern is the image of point source produced by the lens on its focal

plane.

Figure 2.5 illustrates the Airy pattern image of two separated point sources produced

by a lens on the detector located at the lens focal plane. The individual Airy patterns

superimpose in the focal plane since the optical lens performs a linear transformation.

The two patterns can be resolved only if the corresponding point sources are sufficiently

separated. In figure 2.5, the solid angle Ωfv represents the field of view of the receiver

which determines how much of incoming light field is actually detected.

In free-space optical systems, in addition to the desired signal power, a strong back-

ground light radiation is also collected by the receive aperture. The background noise is

modeled as a uniformly radiating source. The amount of the background noise collected

by the receiver is proportional to the receiver field of view and the receiver aperture

area as [1]
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Pb = N(λ)∆λΩfvARX (2.8)

where N(λ) and ∆λ are respectively the spectral radiance function and the receiver

optical filter bandwidth.

2.2.1 Turbulence-Induced fading

An optical beam traveling through the atmosphere experiences random phase and am-

plitude fluctuations (scintillation) due to atmospheric turbulence. Turbulence is a

chaotic state of the atmospheric flows which is caused by temperature variations in

the atmosphere. An atmospheric turbulent medium consists of many spherical regions

or eddies with randomly varying diameters and different indexes of refraction. The

propagating optical beam experiences random spatial and temporal fluctuations in this

randomly-varying-refractive-index medium.

According to Rytov’s theory [34], the turbulent medium is assumed to consist of

a series of thin slabs. Each slab modulates the optical field from the previous slab’s

perturbation by some incremental amount eψi . Therefore, the received field can be

expressed in terms of the transmitted field U0 as

U = U0e
ψ = U0

∏
i

eψi = U0e

∑
i
ψi

(2.9)

where eψ = eχ+jϕ represents the effect of turbulence-induced fading as a complex mul-

tiplicative term. According to the central limit theorem, ψ =
∑

i ψi is a complex

Gaussian random variable and therefore, the fading log-amplitude (χ) and phase (ϕ)

are normally distributed [34]. As a result, the turbulence-induced fading amplitude

(ha = |eχ+jϕ| = eχ =
√
h) is a log-normal random variable with log-amplitude mean

and variance of (µx, σ
2
x) and the probability distribution function (pdf) given by

f (ha) =
1

ha
√

2πσ2
x

exp

(
−(ln (ha)− µx)2

2σ2
x

)
. (2.10)
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We normalize the fading coefficient such that E[h2
a] = E[h] = 1 implying µx = −σ2

x.

This ensures that the fading does not attenuate or amplify the average power [35].

Assuming spherical wave propagation through a horizontal atmospheric path, the log-

amplitude variance σ2
x can be expressed in terms of wave number (k), refractive index

structure constant (C2
n), and the distance between transmitter and receiver (L) as [34]

σ2
χ = 0.124k7/6C2

nL
11/6. (2.11)

As demonstrated in the next chapters, the distance-dependency of the turbulence-

induced fading described by (2.11) plays a major role in the performance analysis of

FSO communication systems. As reflected by our performance analysis and numerical

results, this inherent characteristic allows multi-hop relaying technique bring perfor-

mance improvements against the degrading effects of turbulence-induce fading in FSO

systems, unlike wireless RF communications where the fading effects are not distance-

dependent.

In order to describe the spatial correlation of the turbulence-induced fluctuations, we

need to establish a statistical relationship between separated points on a turbulent wave-

front. For this purpose, we consider the phase and log-amplitude structure functions,

respectively, given by [34, 35]

Dφ(r) =
〈
[ϕ(~ρ′)− ϕ(~ρ)]2

〉
, (2.12)

Dχ(r) =
〈
[χ(~ρ′)− χ(~ρ)]2

〉
(2.13)

where ~ρ′ and ~ρ are position vectors on a plane perpendicular to the direction of the

propagation of the turbulent wave and the angle brackets denote the ensemble aver-

age. Since the turbulent phase and log-amplitude are locally stationary, their structure

functions depend only on the distance between the separated points r = |~ρ′ − ~ρ|. There-

fore, the sum of the phase and log-amplitude structure functions which is called wave

structure function can be described using a well-known expression as [35]
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D(r) = Dχ(r) +Dϕ(r) = 6.88

(
r

r0

)5/3

(2.14)

where r0 is the Fried parameter which can be written for the spherical waves as

r0 = 0.331

(
λ2

C2
nL

)3/5

(2.15)

which yields a measure of spatial coherence length of the atmospheric turbulence fluc-

tuations.

Various experiments have confirmed the validity of log-normal model under weak

turbulence conditions [34]. These weak turbulence conditions occur at the linear region

of scintillation index which saturates at σ2
χ = 0.5[9]2. Although early measurements

proposed log-normal statistics even for the saturated turbulence regime but later it was

theoretically and experimentally shown that this assumption is only partially true.

It is generally accepted that for very large values of σ2
χ, the irradiance (i.e. optical in-

tensity fluctuation) statistics approach negative exponential distribution [34]. There are

also other turbulence models including Log-normal-Rician distribution [36], I-K distri-

bution [37], and gamma-gamma distribution [3] which take into account stronger turbu-

lence effects. In this thesis, we study weak turbulence conditions where the turbulence-

induced fading can be precisely modeled by log-normal distribution.

2.3 Optical Detection and Receiver Noise

Optical receivers employ photodetector to transform the received optical power to an

electrical signal. If the frequency of the light (energy of the photons) is sufficiently

high, the photosensitive surface of the photodetector responds to incident light (photon

streams) by releasing free electrons from its inner surface. The released electrons are

then accumulated at a collecting anode and produce an electrical current.

2Some references reported the saturating point at σ2
χ = 0.3.
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One of the most important problems occurs during the reception of photon streams

is shot effect. The emission of photons on to the photosensitive surface releases electrons

in random time instances. The average rate of the electron releases (Λ electron/second)

is proportional to the incident field intensity (i.e. optical power). Since the electrons

are released independently, the probability of an electron release occurrence in a very

short time interval (∆t) can be calculated as the average rate multiplied by the time

interval (i.e. Λ∆t). Under these assumptions, the electron count in a time interval

of τ = n∆t is described by an n-Bernoulli trial event which is governed by “binomial

distribution”. For n → ∞ and ∆t → 0, the electron count process can be described

by the Poisson distribution as a limiting case of Binomial distribution. Therefore, the

electron count during a certain time interval of τ with the average count rate of Λ can

be characterized by a Poisson process ν(t) as [1]

Pr(ν(t+ τ)− ν(t) = j) = e−Λ Λj

j!
j = 0, 1, 2, . . . . (2.16)

This count distribution is indeed conditional Poisson, conditioned on a known value

for Λ. Therefore, for a random Λ, the counting process is a conditional Poisson or

doubly stochastic Poisson process. The quantity Λ can be expressed as the time average

of instantaneous received optical power as

Λ =
η

~ω

t+τ∫
t

P (t′)dt′ =
η

~ω

t+τ∫
t

(Ps(t
′) + Pn(t′))dt′ (2.17)

where η is quantum efficiency of the photodetector, ~ is the reduced Planck constant, ω

is the optical angular frequency, Ps is the instantaneous optical signal power collected

by the receiver lens. In (2.17), Pn is the noise power which corresponds to the sum of

background noise level (Pb) and the ”dark current” level (Pd). Dark current corresponds

to the random emission of electrons at a fixed rate, when no field is being emitted.

A released electron at a random time instance ti produces a response pulse Q(t− ti)
such that

∫∞
−∞Q(t′)dt′ = q where q is the electron charge. The superposition of the

response pulses of all the released electrons constitutes an electric current i(t) at the
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output of the photodetector which can be described by the shot noise process as

i(t) =

ν(t)∑
i=1

Q(t− ti) (2.18)

with mean µi and variance σ2
i which are, respectively, given by

µi = Λ

∞∫
−∞

Q(t′)dt′ = qΛ, (2.19)

σ2
i = Λ

∞∫
−∞

Q2(t′)dt′. (2.20)

The characteristic function of this shot noise process can be expressed as

Ci(jy) = exp

Λ

∞∫
−∞

[exp(jyQ(t′))− 1] dt′

 . (2.21)

Considering an ideal photodetector with an impulse response function, the shot

noise process reduces to the original photon counting process (i.e., Poisson process).

Integrating the photodetection current over the signal duration, the received signal can

be expressed in terms of the Poisson process ν(t) as

Pr =

T∫
0

i(t)dt =
k∑
i=1

T∫
0

qδ(t− ti)dt =
k∑
i=1

q = q [ν(T )− ν(0)] (2.22)

with mean µr and variance σ2
r given by

µr =
ηq

~ω

T∫
0

(Ps(t
′) + Pn(t′))dt′, (2.23)
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σ2
r =

ηq2

~ω

T∫
0

(Ps(t
′) + Pn(t′))dt′. (2.24)

This photon counting model of the optical receiver referred as the shot-noise-limited

receiver leads to a Poisson channel for our FSO communication system which will be

the focus of chapter 4 of the thesis. As an alternative to this model, we can consider

the high-count-rate regime (many counts expected at each t) of the shot noise process.

This model is well suited to the shot-noise-limited receivers when significant background

noise is collected by the receiver (i.e., Pb >> 1⇒ P = Ps + Pb + Pd >> 1⇒ Λ >> 1).

Inserting the normalized random variable x = (i− µi)/σi in (2.21) and then expanding

the argument of the exponential in power series, we obtain

Cx(jy) = exp

−y2Λ

2σ2
i

∞∫
−∞

Q2(t′)dt′ − j y
3Λ

6σ3
i

∞∫
−∞

Q3(t′)dt′ +
y4Λ

24σ4
i

∞∫
−∞

Q4(t′)dt′ + · · ·


(2.25)

Since σi ∝
√

Λ, the terms of higher order than y2 vanishes as Λ → ∞. Therefore, the

characteristic function of the normalized random variable reduces to

Cx(jy) = exp

(
−y

2

2

)
(2.26)

which is the characteristic function of the Gaussian distribution. Therefore, we can

describe FSO communication systems degraded by strong background radiation using

a Gaussian channel model which is the focus of chapter 3.

2.4 Quantum-Key Distribution

Cryptosystems are an indispensable part of modern telecommunication networks to se-

cure the privacy of data transmission and to protect it from electronic copying, cloning,
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and destroying, and to also deter unauthorized entry into the network. Vast major-

ity of today’s cryptosystems are able to offer only computational security within the

limitations of conventional computing power. Moreover, the realization of quantum

computers would, for example, make electronic money instantly worthless. Based on

the firm laws of quantum mechanics rather than some unproven foundations of math-

ematical complexity, quantum cryptography provides a radically different solution for

key distribution promising unconditional security.

Quantum cryptography builds on a well-known quantum physics rule that no mea-

surement can be taken without perturbing the quantum system, unless the quantum

state and the measurement are compatible. It guarantees a provenly-secure communica-

tion between a transmitting party (conventionally named as Alice) and a receiving party

(conventionally named as Bob). This comes from the fact that a potential eavesdrop-

per (conventionally named as Eve) cannot get any information about the communicated

quantum system without introducing perturbations that would reveal her presence. In

fact, Alice and Bob can check whether someone was eavesdropping or not by simply

comparing a randomly chosen subset of their data using a public channel. If the subset

received by Bob was unperturbed, then they can conclude that no measurement has

been taken and thus no eavesdropper was present. An end-to-end quantum cryptosys-

tem includes an initial phase of quantum key distribution (QKD) generating a fully

secure key between Alice and Bob and a subsequent one-time pad encryption process.

In the one-time pad process proposed by Vernam in 1926 [38], Alice encrypts her

message (m) using the randomly generated key (k) through QKD. She adds each bit

of the message to the corresponding bit of the key using modulo 2 binary addition

to obtain a scrambled text (s = m ⊕ k). Then she sends the scrambled text to Bob

through a public communication channel. Bob can then simply decrypt the message by

adding again the shared key (s ⊕ k = m ⊕ k ⊕ k = m). Note that the scrambled text

is as random as the key and thus it does not contain any information. Therefore, the

cryptosystem is provably secure according to the fundamentals of information theory.

In fact, this is the only provably secure cryptosystem known today [32].

The first QKD protocol proposed by Bennett and Brassard [39] is today widely

known as BB84 which uses elementary quantum systems such as polarized photons to
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transfer secret keys between two points. As an alternative to BB84, Ekert [40] has

proposed another protocol which involves the emission of two qubits (quantum bits)

from a source to Alice and Bob instead of transmitting a single qubit from Alice to

Bob. Assuming that the two emitted qubits from the source are in a maximally en-

tangled state, Ekert’s protocol avoids trusting the source which can be targeted by

eavesdropping attacks. Despite rather different implementation structures, both pro-

tocols guarantee equivalently secured QKD systems. A number of other protocols also

exist in the literature [32], but they essentially build on these two main protocols.

2.4.1 BB84 Protocol

Figure 2.6 illustrates a schematic diagram of a free-space QKD system which uses BB84

protocol [39] for key distribution. In this system, for each qubit, Alice randomly chooses

a polarization basis from two known polarization bases (e.g., 0◦/90◦ and −45◦/+ 45◦).

She then sends the qubit with a random bit value of 0 or 1 using polarization encoding

of photons based on the randomly chosen basis. Note that the first polarization in each

basis (0◦ and −45◦) represents 0 and the second one (90◦ and +45◦) represents 1.

At the receiver side, Bob also chooses a random basis from the two bases using a

passive beam splitter. At the outputs of the beam splitter, two polarization detection

units measure the quantum state of the possibly coming photon based on the two

different bases. Each of these units includes a polarizing beam splitter (PBS) to decide

between two orthogonal polarization states of the corresponding basis and two single-

photon Geiger-mode avalanche photodiodes (APDs) at the output of the PBS for photon

count.

To avoid uncorrelated measurement results due to incompatibility of the chosen

bases, Alice and Bob construct the secure key only based on the qubits received at the

sift events. Sift events correspond to the bit intervals in which exactly one of the APDs

registers a count and both Alice and Bob have chosen the same basis. According to

BB84 protocol, Alice and Bob can identify the sift events by exchanging information

in a public communication channel. After identifying the sifted qubits, Alice and Bob

follow a standard set of operations to identify and correct errors which have occurred
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Figure 2.6: The schematic diagram of a free-space QKD system based on BB84 protocol.

in the sifted bits. These errors are caused by dark counts or background noise as well

as by potential eavesdropper’s intervention. Then, Alice and Bob perform a procedure

called privacy amplification to prevent Eve from keeping useful information about the

key and finally establish a shared one-time pad key to use for secure communication

[32].
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Chapter 3

Relay-Assisted FSO Communication

over the Gaussian Channel

In this chapter, we consider relay-assisted FSO communication over IM/DD optical

channels modeled by additive white Gaussian noise (AWGN). We study both serial

(i.e., multi-hop transmission) and parallel (i.e., cooperative diversity) relaying encoupled

with amplify-and-forward (AF) and decode-and-forward (DF) modes. We consider an

aggregated channel model which takes into account both the path loss and turbulence-

induced log-normal fading. Since the fading variance is distance dependent in free-space

optical systems, relay-assisted transmission takes advantage of the resulting shorter hops

and yields significant performance improvements. We derive the outage probability of

the relaying schemes under consideration, which are further confirmed through Monte-

Carlo simulations. We also present a diversity gain analysis for the relay-assisted FSO

systems operating in log-normal atmospheric turbulence channels.

3.1 Relay-Assisted FSO Transmission

We consider a relay-assisted FSO communication system in which the transmitted signal

from a source node propagates through K serial or parallel relays before detection
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Figure 3.1: The FSO serial relaying configuration.

at the destination node. The system under consideration uses intensity-modulation

direct-detection (IM/DD) employing binary pulse position modulation (BPPM). In

such systems, optical transmitter is “on” during a half of the BPPM bit interval (i.e.,

“signal slot”) and is “off” during the other half (i.e., “non-signal slot”). The receiver

integrates the detected photocurrent over both the signal and non-signal slots of the

BPPM pulse and obtains the resulting electrical signal vector given by

r =

[
rs

rn

]
=

[
RTb(Ps + Pb) + ns

RTbPb + nn

]
(3.1)

where rs and rn are the received electrical signals which correspond to signal and non-

signal slots of the BPPM pulse. In (3.1), Ps and Pb are, respectively, the optical signal

power and background power incident on the photodetector, Tb is the duration of the

signal and non-signal slots, and R = ηq/~ω is responsivity of the photodetector. ns

and nn in (3.1) denote the additive noise terms for the signal and non-signal slots. We

assume that the noise terms are modeled as signal-independent additive white Gaussian

noise with zero mean and variance of σ2
n = N0/2. This is a good approximation for

FSO systems in which the receiver signal-to-noise ratio (SNR) is limited by the shot

noise caused by background light much stronger than signal (c.f. (2.26)) and/or by the

electronics thermal noise [5, 10].

In figures 3.1 and 3.2, we illustrate the serial and parallel relaying schemes under con-

sideration. In serial relaying (figure 3.1), the source transmits an intensity-modulated

signal to the relay node. Under the assumption of DF relaying, the relay decodes the

signal after direct detection, modulates it with BPPM, and retransmits it to the next re-

lay. If AF relaying is employed, the relay does not perform any decoding on the received

signal and, after multiplication with a proper energy scaling term, simply forwards it

to the next relay. This continues until the source’s data arrives at the destination node.
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Figure 3.2: The FSO parallel relaying configuration.

Figure 3.2 illustrates a parallel relaying scheme. Since broadcasting is not possible

in a line of site FSO communication system, the source is equipped with a multi-laser

transmitter with each of the transmitter pointing out in the direction of a corresponding

relay node. The source node transmits the same signal to K relays. Based on the AF

or DF relaying method, the relays either decode and retransmit the signal or scale the

received signal and forward it to the destination. It should be noted that, different

from wireless RF communication, distributed space-time block coding across relays is

not required because of the ensured orthogonality of the received diffraction patterns

from sufficiently separated transmit apertures (cf., section 2.2 and [11, 17]).

3.1.1 Decoded-and-Forward Relaying

In DF relaying, the relay decodes the signal after direct detection, modulates it with

BPPM, and retransmits it to the next relay or the destination only if the received

SNR exceeds a given decoding threshold γth defined in section 3.2. Such a threshold is

required to avoid error propagation and provide reliable communication [19].

In serial relaying, the received signal at ith node (i = 1, 2..K + 1) can be expressed

using (3.1) as1

1Throughout this chapter, indexes i = 0 and i = K + 1 refer to the source and the destination

nodes respectively, and indexes i = 1, 2, · · · , K refer to the relay nodes.
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ri =

[
rsi
rni

]
=

[
RTb(Pgi−1,i + Pb) + nsi

RTbPb + nni

]
(3.2)

where rsi and rni are the received signals which correspond to signal and non-signal

slots of the BPPM pulse. In (3.2), P is the transmitted optical power per transmit

aperture which is related to the total transmitted power (Pt) by P = Pt/(K + 1) for

serial relaying. It is obvious that the optical signal power incident on the photodetector

defined in (3.1) is now given as Ps = Pgi−1,i where gi−1,i is the normalized channel

gain of the link connecting (i − 1)th and ith nodes. Considering an aggregated FSO

channel model where both distance-dependant path loss and turbulence-induced fading

are taken into account as discussed in chapter 2, we define a normalized channel gain

gi,j as

gi,j =
`(Li,j)

`(L0,K+1)
hi,j = `i,jhi,j (3.3)

where Li,j is the range of the link connecting ith and jth nodes. Furthermore, the

log-normal fading coefficient hi,j and the path loss factor `(·) are, respectively, given

by (2.6) and (2.7). In (3.3), the path loss factor is normalized with respect to the

path loss of the direct link connecting the source and destination, i.e., `(L0,K+1). This

normalization simplifies our performance analysis where the performances of FSO links

with different lengths are compared.

In parallel relaying, each of the relay nodes receives the transmitted signal from the

corresponding transmit apertures pointed in their direction. The received signal at ith

relay (i = 1, 2, ...K) is given by

ri =

[
rsi
rni

]
=

[
RTb(Pg0,i + Pb) + nsi

RTbPb + nni

]
(3.4)

where the average optical power per transmit aperture P can be obtained by dividing

the total transmitted power by the number of the transmit apertures in parallel relaying
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configuration2 , i.e., P = Pt/(2K). The relay nodes decode their received signals after

direct detection, modulate them with BPPM, and simultaneously retransmit to the

destination. At the destination, we assume a large receiver field of view which allows all

of the optical fields transmitted from different relay nodes are simultaneously detected.

Let D denote the decoded set which is the set of relays having successfully decoded

the signal (i.e., the received SNR exceeds the threshold). The received signal at the

destination can be written as the superposition of the transmitted optical signals from

the decoded set as

rK+1 =

[
rsK+1

rnK+1

]
=

RTb
(∑
i∈D

Pgi,K+1 + Pb

)
+ nsK+1

RTbPb + nnK+1

 . (3.5)

3.1.2 Amplify-and-Forward Relaying

In AF relaying, the relay first scales the received signals by an amplification factor

which keeps the average optical transmit power fixed and then retransmits it to the

next relay (or to the destination within the last hop). As illustrated in figure 3.3, after

photodetection, the power efficiency of the electrical signal can be improved through

a debiasing operation where the background noise bias level (i.e., RTbPb) is mostly

removed from the received signal without any loss of signal information. This debaising

operation should preserve the positivity of the electrical signal as it is used to modulate

the intensity of transmit laser beam after scaling by an amplifier. To achieve the

maximum power efficiency, the debiasing component decreases the level of both signal

and non-signal BPPM slots such that one of them reaches zero.

Considering the amplification and debiasing operations, the received signal at ith

node (i = 1, 2..K + 1) for serial relaying is given as

2Recall that the source is equipped with K transmitters and each of K relay nodes has one trans-

mitter resulting in a total of 2K transmit apertures for this scheme.
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Figure 3.3: The block diagram of the amplify-and-forward relay.

ri =

[
rsi
rni

]
=

[
ai−1gi−1,ir

s
i−1 +RTbPb − A′i + nsi

ai−1gi−1,ir
n
i−1 +RTbPb − A′i + nni

]

=

[
ai−1gi−1,ir

s
i−1 + Ai + nsi

ai−1gi−1,ir
n
i−1 + Ai + nni

] (3.6)

where Ai = RTbPb − A′i = −min{ai−1gi−1,iri−1,1 + nsi , n
n
i } is the bias term included to

improve power efficiency. Depending on the additive noise terms and fading amplitudes,

the bias term Ai can be positive or negative. In (3.6), the amplification factor at the

(i− 1)th node ai−1, i = 2, 3..K + 1, is defined as

ai−1 =
RTbP

Γi−1

. (3.7)

In (3.7), we have normalization term, i.e., Γi−1 = E[rsi−1 + rni−1], to ensure that the

average optical transmitted power from each node remains constant as P . Note that

for the signal transmitted from the source, normalization is obviously not required (i.e.,

a0 = RTbP ). The received signal at the destination for serial relaying is therefore given

by

rK+1 =

[
rsK+1

rnK+1

]
=


K∏
i=0

aigi,i+1 +
K∑
j=1

(nsj + Aj)
K∏
i=j

aigi,i+1 + nsK+1

K∑
j=1

(nnj + Aj)
K∏
i=j

aigi,i+1 + nnK+1

 . (3.8)

In parallel relaying, the relays receive the transmitted signals from the correspond-

ing transmit apertures pointed in the direction of their locations and simultaneously

retransmit them with proper amplification and debiasing operations. The received sig-

nal at ith relay (i = 1, 2, ...K) is therefore given by
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ri =

[
rsi
rni

]
=

[
RTbPg0,i + Ai + nsi

Ai + nni

]
(3.9)

and the received signal at the destination is

rK+1 =

[
rsK+1

rnK+1

]
=

RTbP
K∑
i=1

aigi,K+1g0,i +
K∑
i=1

aigi,K+1(nsi + Ai) + nsK+1

K∑
i=1

aigi,K+1(nni + Ai) + nnK+1

 . (3.10)

3.1.3 Calculation of the Normalization Term

The normalization term at ith relay (i = 1, 2, ...K) is given by

Γi = E[rsi + rni ]. (3.11)

After the insertion of the bias term, either rsi or rni becomes zero. Therefore, we can

rewrite the normalization term as

Γi = E[|rsi − rni |]. (3.12)

Conditioned on ḡi = {g0,1, g1,2..., gi−1,i}, the term rsi − rni is real Gaussian with mean

mi =
∏i−1

j=0 ajgj,j+1 and variance s2
i =

(
1 +

∑i−1
j=1

∏i−1
k=j akgk,k+1

)
N0 for serial AF relay-

ing and with mean mi = RTbPg0,i and variance s2
i = N0 for parallel AF relaying. Its

magnitude, therefore, follows a folded-normal distribution [41]. Hence, the normaliza-

tion term conditioned on ḡi is given by [41]

E[rsi + rni |ḡi] = si(ḡi)

√
2

π
exp

(
−m

2
i (ḡi)

2s2
i (ḡi)

)
+mi(ḡi)

(
2Q

(
−mi(ḡi)

si(ḡi)

)
− 1

)
. (3.13)

Performing an expectation over ḡi, we obtain
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Γi =

∫
ḡi

fḡi (ḡi)

(
si(ḡi)

√
2

π
exp

(
−m

2
i (ḡi)

2s2
i (ḡi)

)
+mi(ḡi)

(
2Q

(
−mi(ḡi)

si(ḡi)

)
− 1

))
dḡi

(3.14)

where fḡi(ḡi) is the joint pdf of the log-normal vector ḡi.

The calculation of (3.14) requires numerical computation, but it can be also pre-

cisely approximated which is particularly useful for practical implementation. The

normalization factor can be rewritten by the law of total probability as

Γi = E[|rsi − rni |] = Pr(rsi > rni )E[rsi − rni ] + Pr(rni > rsi )E[rni − rsi ]. (3.15)

Let Pe denote the average error probability for BPPM modulation scheme. We can

then write Pr(rsi > rni ) = 1 − Pe ∼= 1 and Pr(rni > rsi ) = Pe << 1. Inserting these in

(3.15), we find

Γi = E[|rsi − rni |] ∼= E[rsi − rni ] = E[mi] =

{∏i−1
j=0 aj`j,j+1, serial relaying

RTbP`0,i, parallel relaying
(3.16)

Inserting (3.16) in (3.7), the amplification factor (for i > 0) can be approximated as

ai ∼=


RTbP∏i−1

j=0 aj`j,j+1
= 1

`i−1,i
, serial relaying

RTbP
RTbP`0,i

= 1
`0,i
, parallel relaying

(3.17)

Equation (3.17) shows that the amplification factor in AF relays is only related to

the deterministic path loss factor. In other words, to keep the relays’ average optical

power consumption fixed, the AF relays should approximately compensate only for the

average link loss (i.e., path loss factor). We can then obtain the normalization term

using (3.16) in (3.17) as
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Γi ∼=

{
RTbP`i−1,i, serial relaying

RTbP`0,i, parallel relaying
(3.18)

It is obvious that the resulting normalization terms in (3.18) are very simple in com-

parison to (3.14) and can be easily implemented at the relay terminals. Our simulation

results further indicate that these approximations result in a negligible difference within

the line thickness.

3.2 Outage Probability Analysis

Atmospheric turbulence results in a very slowly-varying fading in FSO systems. The

channel coherence time is about 1-10 ms, therefore fading remains constant over hun-

dreds of thousands up to millions of consecutive bits for typical transmission rates [9].

For such quasi-static channels where the errors caused by fading are no longer indepen-

dent, outage probability is an appropriate metric to evaluate the performance of the

system. Denote C(h′) as the instantaneous capacity corresponding to a channel real-

ization h = h′ which is a function of instantaneous electrical SNR γ. For a Gaussian

channel where the mean values of received signal components for the signal and non-

signal slots are given by ms and mn, we have rs ∼ N(ms, σ2
n/2) and rn ∼ N(mn, σ2

n/2).

Instantaneous electrical SNR can be then defined as [42]

γ =
(ms −mn)2

σ2
n

. (3.19)

The outage probability at the transmission rate of R0 is given by [43]

Pout(R0) = Pr {C(γ) < R0} . (3.20)

Since C(·) is monotonically increasing with respect to γ, (3.20) can be rewritten as

Pout(R0) = Pr {γ < γth} (3.21)
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where γth = C−1(R0) is the threshold SNR. If SNR exceeds γth, no outage happens

and signal can be decoded with arbitrarily low error probability at the receiver. We

note that this threshold SNR is also considered as the DF relaying decoding threshold

introduced earlier in 3.1.1.

3.2.1 Outage Probability for DF Relaying

In DF relaying, an outage at each intermediate link may lead to the outage of the relay-

ing scheme. Therefore, the calculation of outage probability for each intermediate link

is required to evaluate the end-to-end performance. We first calculate the outage prob-

ability of an intermediate single-input single-output (SISO) link which is the building

block of both serial and parallel relaying schemes.

Using (3.19), the received electrical SNR for an intermediate SISO link connecting

ith and jth nodes can be obtained as

γ =
R2T 2

b P
2g2
i,j

N0

. (3.22)

Inserting (3.22) in (3.21), the outage probability of the SISO link is

Pout,SISO = Pr

{
gi,j <

√
γthN0

R2T 2
b P

2

}
. (3.23)

We replace the definition of gi,j = `i,jhi,j in (3.23) and obtain

Pout,SISO = Pr

{
hi,j <

1

`i,j

N

PM

}
(3.24)

where N = K + 1 for serial relaying and N = 2K for parallel relaying. In (3.24),

PM denotes power margin [10] and is defined as PM = Pt/Pth where Pth denotes a

threshold transmit power required to guarantee that no outage happens in a direct

fading-free transmission from the source to the destination. Thus the power margin

can be expressed as
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PM =

√
P 2
t (RTb)2

N0γth
. (3.25)

In (3.24), hi,j is a log-normal random variable with mean 2µχ(Li,j) and variance 4σ2
χ(Li,j).

Therefore the outage probability can be written using the cumulative distribution func-

tion (cdf) of the log-normal distribution a

Pout,SISO(Li,j) = Q

(
ln (`i,jPM/N) + 2µχ(Li,j)

2σχ(Li,j)

)
. (3.26)

Once we obtain the outage probability of the SISO link, we can now return our attention

to end-to-end outage probability for serial and parallel relaying.

Serial DF relaying: In serial relaying, an outage occurs when any of the intermediate

SISO links fails. Hence the outage probability for the end-to-end scheme can be given

as

Pout = Pr

{
N⋃
i=0

{γi < γth}

}
(3.27)

where γ0, γ1, · · · , γK are the SNRs of the intermediate SISO links with the lengths of

L0,1, L1,2, ...LK,K+1. Eq. (3.27) can be rewritten as

Pout = 1− Pr

{
K⋂
i=0

{γi > γth}

}
= 1−

K∏
i=0

(1− Pout,SISO(Li,i+1)). (3.28)

Replacing (3.26) in (3.28), the end-to-end outage probability for serial relaying scheme

is obtained as

Pout = 1−
K∏
i=0

(
1−Q

(
ln (`i,i+1PM/(K + 1)) + 2µχ(Li,i+1)

2σχ(Li,i+1)

))
. (3.29)
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Parallel DF Relaying: In parallel relaying, outage occurrence in one of the interme-

diate SISO links does not necessarily lead to an outage of the relaying scheme. In this

scheme, an outage occurs if either the decoded set D is empty or the multiple-input

single-output (MISO) link between the decoding relays and the destination fails. The

received SNR for the MISO link can be written as

γ =

R2T 2
b P

2

(∑
i∈D

gi,K+1

)2

N0

. (3.30)

Inserting (3.30) in (3.21), the outage probability of the MISO link is obtained as

Pout,MISO = Pr

{∑
i∈D

gi,K+1 <

√
γthN0

R2T 2
b P

2

}

= Pr

{∑
i∈D

`i,K+1hi,K+1 <
2K

PM

}
. (3.31)

We approximate the weighted sum of log-normal random variables in (3.31) as a log-

normal random variable using moment matching method [44], i.e., β = exp(ξ) ≈∑
i∈D `i,K+1hi,K+1. The log-amplitude factor ξ is defined as a normal random variable

with mean µξ and variance σ2
ξ which can be respectively written as

µξ(LD) = ln
∑
i∈D

`i,K+1 − σ2
ξ (LD)/2, (3.32)

σ2
ξ (LD) = ln

1 +
∑
i∈D

`2
i,K+1

(
exp(4σ2

χ(Li,K+1))− 1
)/(∑

i∈D

`i,K+1

)2
 . (3.33)

The mean and variance of ξ are functions of LD which is the set of distances between

the decoding relays and the destination (i.e., Li,K+1 ∈ LD, ∀i ∈ D). Using the cdf of

log-normal distribution, (3.31) is approximated as
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Pout,MISO(LD) ≈ Pr

{
β <

2K

PM

}
= Q

(
ln (PM/2K) + µξ(LD)

σξ(LD)

)
. (3.34)

For a parallel relaying scheme with K relays, the decoded set consists of 2K possibilities.

Let S(i) denote the ith possible set and Pr{S(i)} denote the probability of the event

{D = S(i)}. The outage probability for parallel relaying scheme can be then obtained

as

Pout =
2K∑
i=1

Pout,MISO(LS(i)) Pr{S(i)}. (3.35)

Noting Pr{S(i)} = Pr{(∩j∈S(i)j ∈ S(i))∩(∩j /∈S(i)j /∈ S(i))}, Pr{i ∈ S(i)} = 1−Pout,SISO,

and Pr{i /∈ S(i)} = Pout,SISO, we can rewrite (3.35) as

Pout =
2K∑
i=1

 ∏
j∈S(i)

(1− Pout,SISO(L0,j))
∏
j /∈S(i)

Pout,SISO(L0,j)

Pout,MISO(LS(i)). (3.36)

Replacing (3.26) and (3.34) in (3.36), the end-to-end outage probability for parallel

relaying scheme is obtained as

Pout ≈
2K∑
i=1

 ∏
j∈S(i)

(
1−Q

(
ln (`0,jPM/2K) + 2µχ(L0,j)

2σχ(L0,j)

))

×
∏
j /∈S(i)

Q

(
ln (`0,jPM/2K) + 2µχ(L0,j)

2σχ(L0,j)

)Q( ln (PM/2K) + µξ(LS(i))

σξ(LS(i))

)
.

(3.37)
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3.2.2 Outage Probability for AF Relaying

In AF relaying, the intermediate relay nodes forward the signal without any decoding.

Thus, instead of considering SNRs in intermediate SISO links, the total received SNR

at the destination should be calculated for outage analysis.

Serial AF Relaying: Recall that the received signal at the destination node for serial

AF relaying is given by (3.8). Equation (3.8) can be rewritten as

rK+1 =

[
rsK+1

rnK+1

]
=

 K∏
i=0

aigi,i+1 + Aacc + nsacc

Aacc + nnacc

 (3.38)

where we define the accumulated noise terms as nsacc =
∑K

j=1 n
s
j

∏K
i=j aigi,i+1 + nsK+1,

and nnacc =
∑K

j=1 n
n
j

∏K
i=j aigi,i+1 + nnK+1. In (3.38), Aacc denotes the accumulated bias

term and is given by Aacc =
∑K

j=1Aj
∏K

i=j aigi,i+1. Using (3.19) and (3.38), the received

SNR at the destination node is given by

γ =

K∏
i=0

a2
i g

2
i,i+1

N0

(
K∏
i=1

a2
i g

2
i,i+1 +

K∏
i=2

a2
i g

2
i,i+1 + · · ·+ a2

Kg
2
K,K+1 + 1

) . (3.39)

Defining

υj =

j∏
i=0

a2
i g

2
i,i+1

(RTb)2P 2
, (3.40)

we can rewrite (3.39) as

γ =
(RTb)

2P 2
(
υ−1

0 + υ−1
1 + · · ·+ υ−1

K

)
N0

−1

(3.41)

where υj’s are log-normal random variables since any product of independent log-normal
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random variables is also log-normally distributed. Let υj = exp(κi), then κi is a normal

random variable with mean

µκ(i) = ln

(
`2

0,1

i∏
j=1

a2
j`

2
j,j+1

)
− 4

i∑
j=0

σ2
χ(Lj,j+1) (3.42)

and variance

σ2
κ(i) = 16

i∑
j=0

σ2
χ(Lj,j+1). (3.43)

Moreover, the covariance between κi and κj can be obtained as Σκ(i, j) = σ2
κ(min(i, j)).

Since any power (positive or negative) of a log-normal random variable is also log-

normally distributed, the sum of υ−1
j ’s can be approximated as a log-normal random

variable, i.e., exp(ε) ≈
∑K

j=0 υ
−1
j . Therefore, γ can be approximated in terms of a single

log-normal random variable as

γ ≈ (RTb)
2P 2 exp(−ε)/N0 (3.44)

where the mean and variance of the normally distributed random variable ε are

µε = ln

(
K∑
i=0

exp(σ2
κ(i)/2− µκ(i))

)
− σ2

ε/2, (3.45)

σ2
ε = ln

1 +

(
K∑
i=0

K∑
j=0

eσ
2
κ(i)/2+σ2

κ(j)/2−µκ(i)−µκ(j)(eΣκ(i,j) − 1)

)
(

K∑
i=0

exp(σ2
κ(i)/2− µκ(i))

)2

 . (3.46)

Replacing (3.44) in (3.21), the end-to-end outage probability of the serial AF relaying

scheme is obtained as
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Pout ≈ Pr

{
exp(−ε) < γthN0

(RTb)2P 2

}
= Pr

{
exp(−ε) < (K + 1)2

P 2
M

}
= Q

(
ln (P 2

M/(K + 1)2)− µε
σε

)
. (3.47)

Parallel AF Relaying: Recall that the received signal at the destination node for

parallel AF relaying is given by (3.10). Equation (3.10) can be rewritten as

rK+1 =

[
rsK+1

rnK+1

]
=

 K∑
i=1

Paigi,K+1g0,i + Aacc + nsacc

Aacc + nnacc

 (3.48)

where we define the accumulated noise terms as nsacc =
∑K

i=1 aigi,K+1n
s
i + nsK+1, and

nnacc =
∑K

i=1 aigi,K+1n
n
i +nnK+1, and the accumulated bias term asAacc =

∑K
i=1 aigi,K+1Ai.

Using (3.19) and (3.48), the received SNR at the destination node is given by

γ =

(
RTbP

K∑
i=1

aigi,K+1g0,i

)2

N0

(
K∑
i=1

a2
i g

2
i,K+1 + 1

) . (3.49)

The summation terms in the numerator and denominator of (3.49) can be approximated

as single log-normal random variables, i.e. exp(ω1) ≈
∑K

i=1 aigi,K+1g0,i, and exp(ω2) ≈∑K
i=1 a

2
i g

2
i,K+1. Therefore, (3.49) reduces to

γ ≈ R2T 2
b P

2 exp(2ω1)

N0 (exp(ω2) + 1)
. (3.50)

The log-amplitude pair (ω1, ω2) follows a correlated bivariate normal distribution. Their

mean and covariance matrix are defined respectively as
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µ1 = ln
K∑
i=1

ai`0,i`i,K+1 − σ2
1/2, (3.51)

µ2 = ln
K∑
i=1

a2
i `

2
i,K+1e

4σ2
χ(Li,K+1) − σ2

2/2, (3.52)

Σ =

[
σ2

1 σ12

σ12 σ2
2

]
(3.53)

where σ2
1, σ2

2, and σ12 are given by

σ2
1 = ln

1 +
K∑
i=1

a2
i `

2
0,i`

2
i,K+1

(
e4σ2

χ(L0,i)+4σ2
χ(Li,K+1) − 1

)/(
K∑
i=1

ai`0,i`i,K+1

)2
 ,

(3.54)

σ2
2 = ln

1 +
K∑
i=1

a4
i `

4
i,K+1

(
e24σ2

χ(Li,K+1) − e8σ2
χ(Li,K+1)

)/(
K∑
i=1

a2
i `

2
i,K+1e

4σ2
χ(Li,K+1)

)2
 ,

(3.55)

σ12 = ln

1 +

K∑
i=1

a3
i `0,i`

3
i,K+1

(
e12σ2

χ(Li,K+1) − e4σ2
χ(Li,K+1)

)
(

K∑
i=1

a2
i `

2
i,K+1e

4σ2
χ(Li,K+1)

)(
K∑
i=1

ai`0,i`i,K+1

)
 . (3.56)

Replacing (3.50) in (3.21), the end-to-end outage probability is obtained using pdf of

the bivariate normal distribution as

Pout = Pr

{
exp(2ω1)

exp(ω2) + 1
<

2K

PM

}

=

∞∫
−∞

ω0∫
−∞

exp

(
−(σ2

2(ω1−µ1)2+σ2
1(ω2−µ2)2−2σ12(ω1−µ1)(ω2−µ2))

2|Σ|

)
2π
√
|Σ|

dω2dω1 (3.57)
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where the upper limit of the inner integration is defined as ω0 = ln(
√

exp(ω2) + 1) +

ln(
√

2K/PM). A closed-form expression for (3.57) is unfortunately not available. How-

ever, it can be easily calculated through multi-dimensional integration routines such as

Gauss-Hermite quadrature formula [45].

3.3 Diversity Gain Analysis

Diversity order is conventionally defined as the negative asymptotic slope of the perfor-

mance metric (e.g., probability of error or outage probability) versus SNR on a log-log

scale. Unfortunately, the conventional definition of diversity order is useless for log-

normal fading channels [30]. In this section, we adopt relative diversity order (RDO),

which we have recently introduced in the context of indoor RF log-normal channels

[30], for FSO communication systems operating in turbulence-induced fading channels.

Based on the conventional definition, the diversity order of the FSO SISO transmis-

sion is given as

d = − lim
SNR→∞

∂ lnPout
∂ lnSNR

= − lim
PM→∞

∂ lnPout
∂ lnPM

. (3.58)

Using (3.26) and applying the Chernoff bound on theQ function (i.e., Q(x) ≤ 0.5 exp(x2/2)),

the outage probability of the FSO SISO transmission can be bounded by

Pout = Q

(
ln(PM) + 2µχ(L)

2σχ(L)

)
≤ 1

2
exp

((
ln(PM) + 2µχ(L)

)2

8σ2
χ(L)

)
. (3.59)

Inserting (3.59) in (3.58), the diversity order for the direct transmission is obtained as

d = − lim
PM→∞

∂

(
−(ln(PM )+2µχ(L))

2

8σ2
χ(L)

+ ln
(

1
2

))
∂ lnPM

= lim
PM→∞

ln(PM)

4σ2
χ(L)

=∞. (3.60)
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As observed in (3.60), the conventional definition of diversity order yields infinity [30]

and does not provide a meaningful measure for diversity order. To overcome this

problem, we define the so-called relative diversity order (RDO) [30] to quantify the

diversity gain of FSO diversity systems. Based on the outage probability, RDO is given

as

RDO(PM) =
∂ lnPout/∂ lnPM

∂ lnPout,benchmark/∂ lnPM
(3.61)

where Pout,benchmark is the outage probability of a benchmark scheme. We consider the

benchmark scheme as the direct (SISO) transmission to keep compatibility with the

conventional definition of the diversity order in Rayleigh fading channels [30]. The

asymptotic relative diversity order (ARDO) is further given by [30]

ARDO = lim
PM→∞

RDO(PM). (3.62)

3.3.1 Diversity Gain Analysis for Serial DF Relaying

Inserting (3.29) and (3.59) in (3.61), the RDO of FSO serial relaying scheme is obtained

as

RDO(PM) =

∂ ln

(
1−

K+1∏
i=1

(
1−Q

(
ln(`i,i+1PM/(K+1))+2µχ(Li,i+1)

2σχ(Li,i+1)

)))/
∂ lnPM

∂ ln
(
Q
((

ln(PM) + 2µχ(L)
)/

2σχ(L)
))/

∂ lnPM
.

(3.63)

Expanding the product in the numerator and neglecting the terms of the same or higher

order than Q2(.), (3.63) can be well approximated as

RDO(PM) =

∂ ln

(
K+1∑
i=1

Q

(
ln(`i,i+1PM/(K+1))+2µχ(Li,i+1)

2σχ(Li,i+1)

))/
∂ lnPM

∂ ln
(
Q
((

ln(PM) + 2µχ(L)
)/

2σχ(L)
))/

∂ lnPM
. (3.64)
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Assuming that the nodes in serial relaying configuration are equidistant, i.e., Li,i+1 =

L′ = L/(K + 1), and using the Chernoff bound on Q function, ARDO of DF serial

relaying can obtained by taking the limit of (3.64) as

ARDO = lim
PM→∞

∂

(
(ln(`0,1PM/(K+1))+2µχ(L′))

2

8σ2
χ(L′)

+ ln
(

(K+1)
2

))/
∂ lnPM

∂
((

ln(PM) + 2µχ(L)
)2
/

8σ2
χ(L) + ln (0.5)

)/
∂ lnPM

= lim
PM→∞

ln(PM)/4σ2
χ(L/(K + 1))

ln(PM)/4σ2
χ(L)

=
σ2
χ(L)

σ2
χ(L/(K + 1))

. (3.65)

Inserting (2.11) in (3.65), we find ARDO as

ARDO =
σ2
χ(L)

σ2
χ(L/(K + 1))

=
L11/6

(L/(K + 1))11/6
= (K + 1)11/6. (3.66)

From (3.66), it is interesting to note that, unlike wireless RF communication, serial

relaying (multi-hop transmission) can extract diversity advantage in FSO systems. The

fact that fading variance is distance-dependent in FSO systems (cf. Eq. (2.11)) consti-

tutes a major difference between wireless RF and wireless optical systems. This inherent

characteristic lets multi-hop FSO transmission smartly exploit the shorter distance in

the resulting hops and take advantage of the artificially induced diversity gain resulting

from distance-dependency of fading variance.

3.3.2 Diversity Gain Analysis for Parallel DF Relaying

Inserting (3.37) and (3.59) in (3.61), the RDO of FSO parallel relaying scheme is ob-

tained as
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RDO(PM) =

∂ ln

(
2K∑
i=1

Pout(S(i))

)/
∂ lnPM

∂ ln
(
Q
((

ln(PM) + 2µχ
)/

2σχ
))/

∂ lnPM
. (3.67)

The numerator of (3.67) can be written as

I =

∂ ln

(
2K∑
i=1

Pout(S(i))

)
∂ lnPM

=

2K∑
i=1

∂Pout(S(i))
∂ lnPM

2K∑
i=1

Pout(S(i))

=

2K∑
i=1

Pout(S(i))∂ lnPout(S(i))
∂ lnPM

2K∑
i=1

Pout(S(i))

. (3.68)

Assuming that the relays are located at the halfway point, i.e., L0,i = Li,K+1 = L/2,

and using the Chernoff bound on Q functions in Pout(S(i)), we can rewrite (3.68) as

I =
K∑
j=1

(
K

j

)
Pout(S(j))

2K∑
i=1

Pout(S(i))

j ∂
(

(ln(`0,1PM/2K)+2µχ(L/2))
2

8σ2
χ(L/2)

)
∂ lnPM

+ (K − j) ∂ ln(Γ)

∂ lnPM

+∂

((
ln(PM/2K) + µξ(LS(i))

)2

2σ2
ξ (LS(i))

)/
∂ lnPM

]
(3.69)

where Γ = 1 − Q
((

ln (`0,1PM/2K) + 2µχ(L/2)
)/

2σχ(L/2)
)
. Noting ln(Γ) → 0 for

PM →∞, and inserting (3.69) in (3.67), ARDO of the DF parallel relaying can obtained

by taking the limit of (3.67) as

ARDO = lim
PM→∞

1
2K∑
i=1

Pout(S(i))

K∑
j=1

(
K

j

)
Pout(S(j))

(
j ln(PM )

4σ2
χ(L/2)

+ ln(PM )

σ2
ξ (j,L/2)

)
ln(PM)/4σ2

χ(L)
(3.70)
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where σ2
ξ (j, L/2) = σ2

ξ (LS(i))|L0,j=Lj,K+1
= ln(1+(exp(4σ2

χ(L/2))−1)/(K− j)). Assume

that the fading variance σ2
χ(L) is sufficiently small, we can approximate σ2

ξ (j, L/2) ≈
4σ2

χ(L/2)/(K − j). Therefore, we can rewrite (3.70) as

ARDO = lim
PM→∞

1
2K∑
i=1

Pout(S(i))

K∑
j=1

(
K

j

)
Pout(S(j))

(
j
σ2
χ(L)

σ2
χ(L/2)

+ (K − j)
σ2
χ(L)

σ2
χ(L/2)

)
.

(3.71)

Inserting (2.11) in (3.71), we obtain

ARDO = lim
PM→∞

211/6K
2K∑
i=1

Pout(S(i))

K∑
j=1

(
K

j

)
Pout(S(j))

= lim
PM→∞

211/6K
2K∑
i=1

Pout(S(i))

2K∑
j=1

Pout(S(j)) = 211/6K. (3.72)

Comparing (3.66) and (3.72), we can express the ARDO of the relay-assisted FSO

systems with DF relaying in a general form as

ARDO = N
11/6
H ND (3.73)

where NH and ND are respectively the number of hops and the number of diversity

paths in the relaying configuration. In (3.73), we observe that the serial relaying factor

(i.e., N
11/6
H ) is stronger than the parallel relaying factor (i.e., ND). Therefore, we can

conclude that a parallel relaying scheme (ND ≥ NH) takes advantage of the distance-

dependency of fading log-normal variance less than a serial relaying scheme (NH ≥ ND).

Therefore, the serial relaying outperforms the parallel relaying as the number of relays

increases.
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3.4 Numerical Results and Discussions

In this section, we present numerical results for the outage and diversity analysis ob-

tained through the derived expressions and Monte-Carlo simulations. We consider an

FSO system with λ = 1550 nm operating in clear weather conditions with visibility

of 10 km. We assume an atmospheric attenuation of 0.43 dB/km (i.e., a ≈ 0.1) and

structure constant of C2
n = 1× 10−14m−2/3. The link range (i.e., distance between the

source and the destination) is L0,K+1 = L = 5 km. For serial relaying, we assume the

consecutive nodes are equidistant along the path from the source to the destination. In

parallel relaying, the relays are located on the halfway point.

Figure 3.4 demonstrates the end-to-end outage probability of an FSO DF system

for serial relaying assuming K = 1, 2, 3. We present analytical results which have been

obtained through (3.29) along with the Monte-Carlo simulation of (3.21). As clearly

seen from figure 3.4, our exact closed-form expressions provide an identical match to

simulation results. As a benchmark, outage probability of the direct transmission is

also included in this figure.

Figure 3.4 shows that serial relaying significantly improves the performance. Par-

ticularly, for a target outage probability of 10−6, we observe performance improvements

of 18.5 dB, 25.4 dB, and 29.2 dB for K = 1, 2, and 3 with respect to the direct trans-

mission. We should emphasize that these impressive performance gains are a result

of relay-assisted transmission’s ability to exploit the distance-dependency of the log-

amplitude variance. As reported in [12], spatial diversity, through the use of co-located

apertures, in an FSO communication system scales down the effective log-amplitude

variance by the number of apertures. A similar effect is observed in serial relaying

where the fading log-amplitude variance of each intermediate SISO link decreases as

the intra-distance decreases through the insertion of relaying nodes. Therefore, diver-

sity advantage is artificially induced in the relaying scheme by shortening the distance

between communicating nodes. This diversity advantage can be also observed in the

figure by comparing the slopes of the performance curves for the relay-assisted and

direct transmission systems.

Figure 3.5 demonstrates the end-to-end outage probability of an FSO DF system for
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parallel relaying assuming K = 1, 2, 3. We present analytical results which have been

obtained through (3.37) along with the Monte-Carlo simulation of (3.21). Although

the derived expression is based upon an approximation, we have found nearly identical

match between analytical and simulation results. We also note that for K = 1 the

performance of serial and parallel relaying coincide as expected which can be readily

confirmed through the comparison of (3.21) and (3.37). We observe from figure 3.5 that

parallel relaying improves the outage performance with respect to direct transmission.

Specifically, we obtain performance improvements of 18.5 dB, 20.3 dB, 20.7 dB for
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Figure 3.4: The outage probability of the FSO serial decode-and-forward relaying

scheme.
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K = 1, 2 and 3 with respect to the direct transmission for a target outage probability

of 10−6. We note that performance gains are less than those observed in serial relaying

since parallel relaying (with only two hops) exploits distance-dependency of fading

variance to a lesser extent.

Figure 3.6 demonstrates the end-to-end outage probability of an FSO AF system for

serial relaying assuming K = 1, 2, 3. We present approximate analytical results which

have been obtained through (3.47) along with the Monte-Carlo simulation of (3.21). For

K = 1, we observe a very good match between analytical and simulation results. The
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Figure 3.5: The outage probability of the FSO parallel decode-and-forward relaying

scheme.
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discrepancy gets larger for K = 2 and K = 3. Recall that closed-form expressions for

this case are built upon an approximation of the sum of correlated log-normal random

variables as a single log-normal term. Comparison with direct transmission reveals that

performance improvements are 12.2 dB, 17.7 dB, 21 dB for K = 1, 2 and 3 for a target

outage probability of 10−6. It is observed that the performance gains are less than those

observed in DF relaying. However, AF relays enjoy a lower complexity in comparison

with DF counterparts since it does not require any decoding process.

Figure 3.7 demonstrates the end-to-end outage probability of an FSO AF system
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Figure 3.6: The outage probability of the FSO serial amplify-and-forward relaying

scheme.
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for parallel relaying assuming K = 1, 2, 3. We present analytical results which have

been obtained through (3.57) along with the Monte-Carlo simulation of (3.21). Similar

to figure 3.6, they provide a good match for K = 1 while some discrepancy is observed

for K = 2, 3 due to the log-normal approximation. At a target outage probability of

10−6, FSO DF parallel relaying system yields performance gains of 12.2 dB, 18.1 dB,

20.2 dB for K = 1, 2, and 3. It is observed that these are lower than those observed for

its counterpart with DF relaying.

Figure 3.8 demonstrates the RDO of an FSO DF system with serial relaying for
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Figure 3.7: The outage probability of the FSO parallel amplify-and-forward relaying

scheme.
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different number of relays (i.e., K = 1, 2, 3). At very high power margin, we observe

RDO values of 3.7, 7.9, and 13.5 respectively for K = 1, 2, and 3. These provide a

good match to analytical ARDOs (i.e. PM → ∞) calculated as (K + 1)11/6 = 3.6, 7.5,

and 12.7 for K = 1, 2, and 3. We also observe that RDOs for lower PM values are

higher than those for higher PM values. This can be explained by the advantage of

serial relaying configuration in reduction of path loss effects which is more pronounced

in lower power margin values.

Figure 3.9 demonstrates the RDO of an FSO DF system with parallel relaying for
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Figure 3.9: The diversity gain of the parallel DF relaying scheme with different number

of relays.

different number of relays (i.e., K = 1, 2, 3). At very high power margin, we observe

RDO values of 3.7, 7.17, and 10.6 for K = 1, 2, and 3. These values are very close to

analytical ARDOs (i.e. PM → ∞) which are obtained as 211/6K = 3.6, 7.12, and 10.7

for K = 1, 2, and 3.
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Chapter 4

Relay-Assisted FSO Communication

over the Poisson Channel

In this chapter, we study the outage behavior of a constant-rate multi-hop FSO system

over the Poisson channel degraded by turbulence-induced fading. This is the suitable

model for multi-hop FSO communication with shot-noise-limited direct detection re-

ceivers. In the previous chapter, under a Gaussian channel model, we showed that such

multi-hop relaying can significantly outperform the parallel relaying and direct trans-

mission counterparts. In fact, the multi-hop FSO system takes advantage of shorter

individual intermediate hops with much weaker turbulence and effectively mitigates the

fading degradation.

A decode-and-forward relaying strategy is employed for the multi-hop FSO trans-

mission where the turbulence-induced degradation is described by a block fading model.

We assume delay-limited transmission waveforms spanning over a single fading block

where the fading level remains constant. It is further assumed that perfect channel

state information (CSI) is available at the receiver side; however, it may or may not

be available at the transmitter side. We formulate an outage probability minimization

problem subject to a peak power constraint as well as a short- or long-term average

sum power constraint. As a result, optimal power control strategies are presented for

different scenarios under consideration. A sub-optimal yet low-complexity solution is
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further proposed under short-term power constraint.

4.1 Multi-Hop Poisson channel Model

The Poisson channel has been extensively studied in the literature (e.g., see [46] and

references therein). In [47], Kabanov derived the capacity of a single-user Poisson

channel subject to a peak power constraint using martingale techniques. Davis extended

Kabanov’s results in [48] by considering both peak and average power constraints and

introducing an additional parameter which represents background noise level. In [49],

Wyner derived the Poisson channel capacity and error exponent based on a discrete

memoryless channel approximation.

Shamai (Shitz) and Lapidoth [50] studied the Poisson channel with spectral con-

straints on the optical channel. In [51], Haas et al. derived upper and lower bounds

on the capacity of the multiple-input multiple-output (MIMO) Poisson channel de-

graded by atmospheric turbulence-induced fading. In [52], Chakraborty and Narayan

studied the capacity of the single-input single-output Poisson channel in the presence

of atmospheric turbulence. Furthermore, Chakraborty et al. investigated the outage

probability of the turbulence-degraded MIMO Poisson channel assuming perfect CSI

available at both transmitter and receiver [53].

In this chapter, we study the multi-hop Poisson channel degraded by atmospheric

turbulence. We consider a relay-assisted IM/DD FSO communication system in which

the transmitted signal from a source node propagates through K DF relays before

detection at the destination node. We assume strict transmission delay constraint and

constant transmission rate of R. The transmitter sends information by modulating the

intensity of the transmitted optical beam using a non-negative waveform λi(t) spanning

over a fading block, i.e., 0 ≤ t ≤ T . The input waveform in the ith hop (1 ≤ i ≤ K + 1)

satisfies the peak power and average sum power constraints1 given by

1Noting that the optical communication bandwidth is license-free and plentiful, we neglect the

spectral constraints on the system model. In effect, a more tractable model is considered rather than a

complicated one which fully takes into account the optical transmitter and receiver spectral limitations.
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0 ≤ λi(t) ≤ A, (4.1)

K+1∑
n=1

1

Tc

Tc∫
0

λi(t
′)dt′ ≤ σA (4.2)

where the peak power (A > 0) and the average-to-peak power ratio (0 ≤ σ ≤ K + 1)

are fixed. In (4.2), Tc is the average power constraint period and is equal to the fading

block duration under short-term average power constraint (i.e., Tc = T ) and is much

greater than the fading block duration under long-term average power constraint (i.e.,

Tc � T ).

The atmospheric channel within each hop is described by a block fading channel

which models the slowly-varying nature of atmospheric turbulence. The channel state

variable αi (i = 1, 2 . . . K + 1) for each hop is assumed to remain constant within each

fading block and randomly change between two consecutive fading blocks according to

a known turbulence-induced fading distribution2. Considering both effects of path loss

(`i) and turbulence-induced fading (hi), the channel state variable is defined as

αi = `ihi. (4.3)

Different statistical distributions for the turbulence-induced fading have been pro-

posed in the literature. Although the solution of the optimization problem discussed

in the next section does not depend on the fading distribution, a specific fading type

is required for outage probability calculations. In our numerical results, we assume the

log-normally distributed fading coefficient as defined in (2.6). In (4.3), `i = `(Li)/`(L)

denotes the normalized path loss of the ith hop where Li and L are respectively the

length of the ith hop and the length of the multi-hop link and the path loss factor `(·)
is given by (2.7).

2Note that, for the notation simplicity, both random channel state variable and its realization

(instantaneous channel state) have been denoted by α. However, they can be easily distinguished from

the context.
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In the multi-hop Poisson channel model, the relay and destination nodes employ

shot-noise-limited direct detection receivers which count the individual photon arrivals

at the photodetector. Therefore, the received signal at the ith hop can be well described

[54] by a doubly-stochastic Poisson process νi(t) with rate

Ψi(t) = αiλi(t) + λ0 (4.4)

where λ0 ≥ 0 is the background noise rate. Assuming the reception of many spatial

and/or temporal modes of light, the background noise can be well described by a con-

stant rate [54]. Therefore, for t, τ ≥ 0 and j = 0, 1, 2, ..., the Poisson process νi(t) is

defined as

Pr {νi(t+ τ)− νi(t) = j|Ψi(t) = ψi(t)} =
e−Λi(t,τ) [Λi(t, τ)]j

j!
(4.5)

where Λi(t, τ) =
∫ t+τ
t

ψi(t
′)dt′.

4.2 Outage Analysis and Optimization

As mentioned earlier, for typical FSO transmission rates, fading remains constant over

hundreds of thousands up to millions of consecutive bits. For such channels where the

errors caused by fading are no longer independent, outage probability is an appropriate

performance criterion. Outage probability is defined as the probability of the channel

instantaneous mutual information being below the transmission rate [43].

In this section, we investigate the outage behavior of multi-hop IM/DD FSO system

under consideration. Due to the slowly varying nature of the channel, an estimate of

CSI can be accurately obtained by the receiver and, if required, can be sent to the

transmitter via feedback. Therefore, we assume that perfect CSI is always available at

the receiver side and consider both cases of perfect CSI and no CSI at the transmitter

side. Specifically, in the following, we solve the problem of minimizing the outage prob-

ability in three cases: i) No CSI at the transmitters, ii) Perfect CSI at the transmitters
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under short-term average power constraint, and iii) Perfect CSI at the transmitters

under long-term average power constraint.

In the DF multi-hop transmission systems, the received signal at each relay is fully

decoded, re-encoded and then retransmitted to the next relay or destination. The di-

rected propagation of light and the isolation capability between the optical transmitter

and receiver in an FSO communication system prevent any inter- or intra-node interfer-

ence. Therefore, we consider full-duplex relaying and assume no interference between

individual FSO channels. The maximum instantaneous mutual information of such

multi-hop Poisson fading channel can be expressed in terms of the individual hops’

mutual information as

IM(α,µ) = min{I(α1, µ1), I(α2, µ2), · · · , I(αK+1, µK+1)} (4.6)

where α = {α1, α2, · · · , αK+1} is a given realization of the channel state vector and

µ = {µ1, µ2, · · · , µK+1} is the duty cycle vector. In (4.6), I(αi, µi) is the maximum

instantaneous mutual information of the ith hop which can be expressed using the

maximum mutual information of the single-hop Poisson fading channel as [49, 52]

I(αi, µi) = A[µiζ(αi, s)− ζ(µiαi, s)] (4.7)

where the multi-variable function ζ(·, ·) is defined as ζ(x, y)
∆
= (x+y) ln(x+y)−y ln(y).

The maximum mutual information in (4.7) can be achieved by piecewise-constant input

waveforms taking only the values 0 and A. In (4.7), µi is the probability of the input

waveform taking the value A (i.e., duty cycle of the input waveform), and s = λ0/A is

the reciprocal of the peak-signal-to-noise-ratio (SNR) denoted as SNR= A/λ0. It can

be noted that, in the two special cases of high SNR (i.e., λ0 → 0) and low SNR (i.e.,

λ0 →∞) regimes, the mutual information function in (4.7) tends respectively to [49]

I(αi, µi) = Aµiαi ln(1/µi), (4.8)

I(αi, µi) =
Aα2

iµi(1− µi)
2s

. (4.9)
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Note that the peak power constraint in (4.1) is already applied to the achievable

mutual information function in (4.7). Furthermore, applying the average power con-

straint in (4.2) to the maximizing input waveform, the short and long-term average

power constraints can be expressed in terms of the duty cycle as

K+1∑
i=1

µi(α) ≤ σ, (4.10)

E
{∑K+1

i=1
µi(α)

}
≤ σ. (4.11)

4.2.1 Short-Term Power Constraint

The outage minimization problem under short-term average power constraint can be

expressed as

min Pout = Pr {IM(α,µ) < R}

s.t.
K+1∑
i=1

µi(α) ≤ σ with probability 1 (4.12)

where R = rA/e [nats/s] is the constant transmission rate, e is the Euler’s number,

and r is the unitless relative rate with respect to the ultimate capacity of the peak-

power-constrained fading-free Poisson channel with background noise tending to zero

(i.e., A/e [49, 50]).

It is intuitive and easily provable that the outage probability minimization problem

in (4.12) can be reduced to a multi-hop mutual information maximization problem at

any channel state realization of α (e.g., see proposition 3 of [55]) as
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max IM(α,µ) = min{I(α1, µ1), · · · , I(αK+1, µK+1)}

s.t.
K+1∑
i=1

µi(α) ≤ σ (4.13)

The mutual information function given in (4.7), I(α, ·), for all α ∈ R is concave and

its maximum occurs at a critical point within 1/e 6 µ < 1/2 given by [49, 52]

µ0(α) =
s

α

[
1

e

(
1 +

α

s

)(1+ s
α)
− 1

]
. (4.14)

Therefore, the solution to (4.13) can be attained either on an interior point of the

feasible region where the smallest individual mutual information function attains its

maximum or on the boundary of the feasible region. We first consider the former case

where the constraint of the problem in (4.13) becomes inactive and therefore we have

the unconstrained problem as

max IM(α,µ) = max min{I(α1, µ1), · · · , I(αK+1, µK+1)} (4.15)

which can be solved as in Lemma 4.1.

Lemma 4.1: Eq. (4.15) attains its maximum at the maximum mutual information of

the hop with minimum fading level, i.e.,

max IM(α,µ) ≡ Cm = I(αm, µ0(αm)) (4.16)

where αm = min{α1, · · · , αK+1}. The duty cycle vector at which this maximum is

attained is not unique. However, the maximizing duty cycle vector which attains min-

imum average sum power (or minimum duty cycle sum) can be stated as

µ̃i =

{
µ0(αm), i = m

I−1(αi, Cm), i = 1, · · · , K + 1 and i 6= m
(4.17)
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where I−1(α, ·) is the inverse of the mutual information function given in (4.7). It can

be calculated as

I−1(α,R0) =
αs ln s− αR0/A− sζ(α, s)

α2 W−1

([
s ln s− R0

A
− sζ(α,s)

α

]
e−

ζ(α,s)
α

) − s

α
(4.18)

where W−1(·) is −1th branch of Lambert-W function which is a solution of the well-

known equation W(z)eW(z) = z [56].

Proof: See section 4.4.1.

Any solution of (4.15) might be a solution of the constrained problem in (4.13)

as well, if and only if that solution satisfies the constraint in (4.13). Therefore, an

immediate result of Lemma 4.1 is that the power control law in (4.17) gives the solution

of the constrained maximization problem in (4.13), if and only if

K+1∑
i=1

µ̃i =
K+1∑
i=1

I−1(αi, Cm) 6 σ. (4.19)

On the other hand, if the solution of (4.15) does not belong to the feasible region of

(4.13), then the problem in (4.13) can be solved by a water-filling approach [57] as

stated in Lemma 4.2.

Lemma 4.2: If the inequality in (4.19) does not hold, the solution to the constrained

maximization problem in (4.13) is attained at a boundary point of the feasible region

(i.e., points that satisfy the constraint with equality) where the mutual information of

all the individual hops are equal or below their maximum. Therefore, the solution can

be obtained by solving the following equations

I(α1, µ
∗
1) = I(α2, µ

∗
2) = · · · = I(αK+1, µ

∗
K+1) = C∗,

µ∗i 6 µ0(αi) ∀1 6 i 6 K + 1,
K+1∑
i=1

µ∗i = σ.

(4.20)

Proof: See section 4.4.2.
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The inverse of mutual information function given by (4.18) always yields the duty

cycles below the maximizing duty cycle, i.e., I−1(α, ·) 6 µ0(α). Therefore, the equations

in (4.20) can be combined and reduced to a single equation as

I−1(α1, C
∗) + I−1(α2, C

∗) + · · ·+ I−1(αK+1, C
∗) = σ. (4.21)

Let CMS(α) denote the maximum of objective function in the constrained optimization

problem of (4.13). Considering Lemmas 4.1 and 4.2, it can be stated as

CMS(α) =

 Cm = I(αm, µ0(αm)), if
K+1∑
i=1

I−1(αi, Cm) 6 σ

C∗, otherwise

(4.22)

where C∗ can be calculated by solving (4.21). Furthermore, the power control law which

optimizes both the optimization problems in (4.12) and (4.13) is obtained for the ith

hop as

µ̂i(α) = I−1(αi, CMS(α)) (4.23)

and the minimum outage probability can be then calculated as

P̂out = Pr{CMS(α) < R} (4.24)

For a sanity check, it can be noted that for the case of single-hop Poisson fading

channel (i.e., direct transmission), the solution to the outage minimization problem in

(4.12) reduces to

µ̂(α) = min {µ0(α), σ} (4.25)

which was earlier reported in [52, 53].

Furthermore, note that for the channel states realizations belonging to the outage

region Ω(R) = {α ∈ RK+1
+ : IM(α, µ̂(α)) < R}, an outage happens whether or not
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the optimal power control law (i.e., µ̂(α)) is employed. Therefore, the solution to the

optimization problem in (4.12) can be expressed in a more general form as

µ̂g(α) =

{
µ̂(α), if α /∈ Ω(R)

g(α), if α ∈ Ω(R)
(4.26)

where g(α) is an arbitrary function such that g(α) 6 σ with probability 1 and µ̂(α) is

the solution of the mutual information maximization problem in (4.13) which is given

by (4.23) and (4.25).

4.2.2 A Sup-Optimal Solution

When the inequality in (4.19) is not satisfied, the calculation of power control law under

the short-term power constraint involves solving the nonlinear equation in (4.21). To

reduce the complexity of the associated numerical procedure that is required at the

beginning of each fading block, we introduce a simple sub-optimal solution in this sub-

section.

Although a general closed-form solution is not available for (4.21), it can be solved

for the case of low SNR regime, (c.f., equation (4.9) for single-hop channel). This

solution implies that the optimal duty cycle for high fading levels (low optimal duty

cycle) is mainly related to the fading level through µi ∝ 1/α2
i . Furthermore, it is

inferred that when the fading level decreases (the optimal duty cycle increases), the

inverse relationship between the fading level and optimal duty cycle becomes weaker.

Therefore, we assume

µi ∝ 1/αki (4.27)

where 0 < k < 2 must be chosen appropriately based on the system parameters.

Inserting (4.27) in the short-term average constraint in (4.12) with equality, we can

calculate a sub-optimal yet simple power control law for the ith hop as
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µi =
σ∑K+1

j=1
αki
αkj

. (4.28)

Let S> denote the set of all individual duty cycles that exceed their optimum values,

i.e., µ0(αi). We can improve the sub-optimal duty cycle vector given by (4.28) by letting

µi = µ0(αi),∀i ∈ S> and modifying the rest of the duty cycles as

µi =

σ −
∑
l∈S>

µl

K+1∑
j=1
j /∈S>

αki
αkj

(4.29)

If S> is still non-empty, we repeat the above procedure until S> becomes empty.

4.2.3 Long-Term Power Constraint

The outage minimization problem under long-term average power constraint can be

expressed as

min Pout = Pr {IM(α, µ) < R}
s.t. E

{∑K+1
i=1 µi(α)

}
6 σ

(4.30)

To present the solution of this problem, we first need to introduce the following mini-

mization problem

min
K+1∑
i=1

µi(α)

s.t. IM(α, µ) > R

(4.31)

which is the dual of the problem in (4.13) and can be solved by Lemma 4.3 given in

the following.
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Lemma 4.3: Assuming I(αm, µ0(αm)) > R where αm = min{α1, · · · , αK+1} and µ0(·)
is given by (4.14), the solution to the minimization problem in (4.31) is given by

µ∗i (αi) = I−1(αi, R), for i = 1, 2, · · · , K + 1 (4.32)

where I−1(α, ·) is given by (4.18).

Proof: See section 4.4.3.

Note that if for a channel state vector α, the assumption I(αm, µ0(αm)) > R does

not hold, then the multi-hop mutual information falls necessarily below the transmission

rate (i.e., IM(α,µ) < R) and the feasible set of problem in (4.31) would be empty. In

such a channel state, outage happens regardless of the allocated input power and thus

we call them unavoidable outage states. We can now present the solution of the outage

probability minimization problem in (4.30) using the following Proposition.

Proposition 4.1: The ith element of the optimized duty cycle vector is given by

µ̂i(α) =

{
µ∗i (αi) = I−1(αi, R), if α ∈ <(ς∗)

0, otherwise
(4.33)

where µ∗i (αi) is the solution of (4.31) given by Lemma 4.3. For ς ∈ R+, we define the

region

<(ς) =
{
α ∈ RK+1

+ :
∑K+1

i=1
µ∗i (αi) 6 ς ∧ I(αm, µ0(αm)) > R

}
. (4.34)

The threshold value ς∗ in (4.33) can be defined as ς∗ = sup {ς : P (ς) < σ} where

P (ς) =

∫
<(ς)

∑K+1

i=1
I−1(αi, R)dF (α) (4.35)

and F (α) is the continuous3 cdf of the fading parameter α.

3The commonly used fading distributions for atmospheric turbulence are continuous. Interested

readers may refer to [55] for more details on required modifications in the case of discrete fading

distributions.
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Proof: See section 4.4.4.

The resulting minimum outage probability is then given by

P̂out = 1− Pr{α ∈ <(ς∗)}. (4.36)

The power control law given by (4.33) constitutes a threshold ς∗ such that if the

sum of the optimal duty cycles exceeds the threshold or an unavoidable outage state

occurs, transmission is turned off. Otherwise, transmission is turned on with an outage-

preventive power control law with minimum power consumption given by (4.32). In fact,

the power control law turns off the transmission in unavoidable outage states or very

bad fading conditions to save power therefore avoiding outage in the better channel

states.

4.2.4 No CSI at the Transmitters

The outage probability minimization problem for the case of no CSI at the transmitters

can be expressed as

min Pout = Pr {IM(α, µ) < R}

s.t.
K+1∑
i=1

µi 6 σ with probability 1
(4.37)

where the optimizing duty cycles are constant rather than a function of the fading

parameters. Noting that individual channel coefficients are statistically independent,

the objective function in (4.37) can be written as

Pout = Pr

{
K+1⋃
i=0

I(αi, µi) < R

}
= 1− Pr

{
K+1⋂
i=0

I(αi, µi) < R

}

= 1−
K+1∏
i=0

(1− Pr {I(αi, µi) < R}). (4.38)
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We assume identical distributions for the individual channel coefficients. Therefore,

the outage probability in (4.38) is a symmetric function of individual duty cycles and

this implies that the individual optimal duty cycles are equal to each other in the

optimal solution. Furthermore, from (4.38), it is apparent that minimizing the objective

function of (4.37) is equivalent to minimizing the outage probability of the individual

hops. Therefore the problem in (4.37) reduces to

min Pout = Pr {I(α, µ) < R}
s.t. µ 6 σ

K+1

(4.39)

In (4.39), we deliberately eliminate the index of α and µ, since the solution of (4.39) as

stated in Proposition 4.2 below does not depend on the characteristics of the individual

channel states.

Proposition 4.2: The solution to the problem in (4.39) is given by

µ̂ = min {µ∗, σ/(K + 1)} (4.40)

where µ∗ can be obtained by solving

µ∗ζ(β/µ∗, s) =
R

A
− ζ(β, s) (4.41)

with

β = −s
[
W−1

(
− exp

(
−1− R

As

))
+ 1

]
. (4.42)

Proof: See section 4.4.5.

Based on Proposition 4.2, the solution of minimization problem in (4.37) can be

stated as

µ̂i = min {µ∗, σ/(K + 1)} , ∀i ∈ {1, 2, · · · , K + 1} (4.43)

where µ∗ is obtained by solving (4.41).
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4.3 Numerical Results and Discussions

In this section, we present numerical results of our outage analysis. We assume an

absorption and scattering loss of 0.43 dB/km (i.e., a ≈ 0.1) and a log-normal fading

strength of σ2
χ = 0.3 for the direct link connecting the source and destination (L = 10

km). It is assumed that the relays are evenly distributed along the path from the

source to the destination. Before we discuss the performance of multi-hop system, we
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Figure 4.1: The outage probability of the single-hop Poisson fading channel with CSI

available at the transmitters (σ = 0.1).
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first present the performance of single-hop system which will be used as a benchmark.

Figure 4.1 demonstrates the outage probability of a single-hop Poisson channel (i.e.,

direct transmission) over log-normal fading. CSI is available at the transmitters and

subject to either a short or long-term power constraint. The outage probability is

calculated for σ = 0.1 and at different data rates with relative rates in the range of

r = 0.005 to r = 0.1 . As expected, the single-hop system performs better under

the long-term power constraint (LTPC) rather than the short-term power constraint

(STPC). We further observe that this improvement is independent of the data rate

variations.
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Figure 4.2: The optimal duty cycle of a single-hop Poisson fading channel with no CSI

at the transmitter as a function of SNR (σ = 0.5).

Figure 4.2 shows the variation of the optimal duty cycle for a single-hop system
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with no CSI (i.e., µ∗) as a function of SNR. The optimal duty cycle given by (4.41) is

calculated at different data rates. We observe from figure 4.2 that the constant optimal

duty cycle, µ∗, for the case of no CSI varies from 1/e at very high SNR to 0.5 at very

low SNR. These asymptotic values can be also confirmed by the earlier results on the

optimal duty cycle at high SNR (i.e., λ0 → 0) and low SNR (i.e., λ0 → ∞) regimes

[49, 52].
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Figure 4.3: The outage probability comparison of the single-hop Poisson fading channel

for no CSI case and CSI case with STPC (σ = 0.5).

Figure 4.3 demonstrates the outage probability for the single-hop system under
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short-term power constraint with and without CSI available at the transmitter assuming

σ = 0.5 and different data rates. It is observed that the single-hop system, even at

σ = 0.5, cannot take advantage of the available CSI at the transmitter. In fact, for the

single-hop system under the short-term power constraint, knowing the perfect CSI and

optimizing the duty cycle accordingly at the beginning of each fading block does not

lead to a better outage probability than using the constant optimal duty cycle of the no

CSI case given by (4.41). Note that the variation of data rate does not affect this result.

This result is somewhat expected if one notes that the power control law for these two

cases actually converge at µ̂ = min{1/e, σ} for high SNR and µ̂ = min{1/2, σ} for low

SNR.

Figures 4.4 and 4.5 plot the outage probability of a dual-hop system for the cases of

i) perfect CSI with short-term power constraint (STPC) assuming optimal solution), ii)

perfect CSI with STPC assuming sub-optimal solution, iii) perfect CSI with long-term

power constraint (LTPC), and iv) no CSI assuming a relative rate of r = 0.01 and

average-to-peak power ratios σ = 0.1 and 0.25.

We observe from figures 4.4 and 4.5 that the dual-hop system with long-term con-

straint outperforms the system with short-term constraint. Furthermore it can be seen

that unlike the single-hop system (figure 4.3), the dual-hop system can take advantage

of available CSI at the transmitters even under short-term constraint and outperforms

the system with no CSI for different average-to-peak power ratios. The proposed sub-

optimal solution (assuming k = 0.9) yields an outage probability very close to the

optimum values under short-term constraint for both values of σ. The sub-optimal

power control law with a much less complexity can perform almost the same as the

more complicated optimal power control law. Comparison of figures 4.1 and 4.5 reveals

that the relay-assisted transmission can significantly improve the outage rate of direct

transmission at r = 0.01. For example, an impressive performance gain of more than

30 dB is observed at the outage probability of 10−2 for the dual-hop system with or

without CSI.

We observe from the comparison of figures 4.4 and 4.5 that for both cases of no CSI

and perfect CSI with short-term constraint, reduction in the average-to-peak power

ratio from σ = 0.25 to σ = 0.1 increases the outage probability. However, this is not
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Figure 4.4: The outage probability of the dual-hop Poisson fading channel for cases

of i) perfect CSI with STPC assuming optimal solution, ii) perfect CSI with STPC

assuming sub-optimal solution, iii) perfect CSI with LTPC, and iv) no CSI (σ = 0.5

and r = 0.01).

observed in quite the same way for the case of perfect CSI with long-term constraint.

In fact, although we observe some outage increase in the SNR range4of about -18 dB

to -8 dB caused by reduction of average-to-peak power ratio, the outage probability

4It should be emphasized that some transformations on the SNR values are required before we can

compare them with common practical SNR values. This is because we defined SNR in this chapter as

the peak-signal-to-noise-ratio at the transmitter (source) rather than the commonly employed average-

signal-to-noise-ratio at the receiver which may attain much higher values.
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Figure 4.5: The outage probability of the dual-hop Poisson fading channel for cases

of i) perfect CSI with STPC assuming optimal solution, ii) perfect CSI with STPC

assuming sub-optimal solution, iii) perfect CSI with LTPC, and iv) no CSI (σ = 0.1

and r = 0.01).

remains the same in lower and higher SNR values. This phenomenon can be explained

by examining the outage region of the dual-hop system with long-term constraint.

Assuming r = 0.01 and σ = 0.1, we plot the boundary of the outage region (when the

transmission is turned off) and its complement region, <(ς∗), in figure 4.6.

In figure 4.6, the illustrated region <(ς∗) which is defined in (4.34) is limited by
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Figure 4.6: The boundary of the outage region and its complement region <(ς∗) for the

dual-hop system with LTPC (σ = 0.1 and r = 0.01).

both the average sum power constraint (associated with the first condition in (4.34))

and unavoidable outage threshold (associated with the second condition in (4.34)). We

observe from figure 4.6 that, for SNR values of -15 dB and -10 dB, not only the un-

avoidable outage threshold effect is involved but also the average sum power constraint

is active. However, for higher and lower SNR values, the long-term average sum power

constraint is inactive. Therefore, decreasing the average-to-peak power ratio does not

affect the outage probability in these SNR values.

Figure 4.7 illustrates the effect of parameter k in the accuracy of the sub-optimal
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Figure 4.7: The effect of parameter k on the sub-optimal solution for a dual-hop system

with σ = 0.1 and r = 0.1.

solution for a dual-hop system with r = 0.1 and σ = 0.1. We observe that an inappropri-

ate choice of k can significantly affect the accuracy of sub-optimal solution particularly

at higher SNR. However, it also shows that the performance of the sub-optimal solution

is not so sensitive to the small variations around the optimal selection.

Figure 4.8 demonstrates the outage probability of the multi-hop system with differ-

ent number of hops (K = 0, 1, 2) for the cases of i) perfect CSI with STPC assuming

optimal solution, ii) perfect CSI with STPC assuming sub-optimal solution, iii) perfect

CSI with LTPC, and iv) no CSI assuming r = 0.1 and σ = 0.1. We observe that the
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Figure 4.8: The outage probability of the Poisson fading channel for different number

of relays for cases of i) perfect CSI with STPC assuming optimal solution, ii) perfect

CSI with STPC assuming sub-optimal solution, iii) perfect CSI with LTPC, and iv) no

CSI (σ = 0.1 and r = 0.1).

sub-optimal solution can perform very close to the optimal solution for both dual-hop

(k = 1.25) and triple-hop (k = 1.75) systems. It is further observed that CSI available

at the transmitter is useful for the multi-hop relaying particularly for the system under

long-term constraint.

Moreover, figure 4.8 demonstrates that increasing the number of relays results in

significant improvement in the outage probability. For example, an additional perfor-

mance gain of about 18 dB is observed at the outage probability of 10−5 when the
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second relay is inserted. In fact, this is a result of the fact that multi-hop FSO system

exploits the distance-dependency of the turbulence-induced fading variance by lowering

the fading strength of the individual intermediate hops through the insertion of relay

nodes.

4.4 Proofs of Lemmas and Propositions

In this section, we present the proofs of lemmas and propositions stated in section 4.2.

4.4.1 Proof of Lemma 4.1

Proof. It is apparent that the duty cycle vector µ̃ in (4.17) attains the value of Cm =

I(αm, µ0(αm)) in (4.16). In order to prove that µ̃ is a solution of (4.15), we need to

show that any other duty cycle vector µ′ attains mutual information of less than or

equal to Cm, i.e., IM(α,µ′) 6 Cm, ∀µ′ ∈ RK+1
+ . In fact, we have

IM(α,µ′) 6 I(αm, µ
′
m)

6 I(αm, µ0(αm))

= Cm (4.44)

where the first inequality follows by the definition of multi-hop mutual information

function and the second inequality follows by noting that µ0(αm) maximizes I(αm, ·).
However, µ̃ is not the only solution of the unconstrained problem in (4.15). For example,

letting µm = µ0(αm), we can obtain many other solutions to (4.15) by selecting µ′is (∀i =

1, · · · , K + 1, i 6= m) within the interval of (I−1(αi, Cm), µ0(αi)). This is implied by

knowing that I(αi, ·) is monotonically increasing in those intervals.

Now, we need to show that µ̃ which maximizes (4.15) attains the minimum duty

cycle sum as well. Let µ′′ be any arbitrary duty cycle vector such as
∑
µ′′i <

∑
µ̃i.
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Then, there must be at least one hop with index j for which µ′′j < µ̃j. Therefore, we

have

IM(α,µ′′) 6 I(αj, µ
′′
j )

< I(αj, µ̃j)

= I(αj, I
−1(αj, Cm))

= Cm (4.45)

where the first inequality follows by the definition of multi-hop mutual information

function and the second inequality follows by noting that I(αj, ·) is strictly increasing

within (0, µ0(αj)] and the fact that the inverse of mutual information function given

by (4.18) always returns duty cycles below the maximizing duty cycle, i.e., I−1(α, ·) 6
µ0(α). Equation(4.45) implies that any arbitrary µ′′ such that

∑
µ′′i <

∑
µ̃i cannot be

a solution of (4.15) and therefore µ̃ is the solution with minimum duty cycle sum.

4.4.2 Proof of Lemma 4.2

Proof. First, we need to show that the equations in (4.20) have a solution. When

(4.19) does not hold, the global solution of unconstrained problem even with minimum

duty cycle sum (i.e., µ̃ given by Lemma 4.1) does not belong to the feasible region of

optimization problem in (4.13). Note that the solution of constrained problem cannot

exceed this global solution. Therefore, by considering the continuity of the mutual

information function, the solution to the equations in (4.20) is available and can be

written as µ∗ = µ̃− ε for some ε ∈ RK+1
+ such that

∑
εi =

∑
I−1(αi, Cm)− σ.

To complete the proof, we show that µ∗, i.e., the solution of the equations in (4.20),

maximizes (4.13). In fact, for any arbitrary power control law µ′ which satisfies the

constraint of (4.13), we know that there is at least one individual duty cycle µ′k such

that µ′k 6 µ∗k. This is because µ∗ satisfies the constraint with equality. Therefore, we

have
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IM(α,µ′) 6 I(αk, µ
′
k)

6 I(αk, µ
∗
k)

= C∗

= IM(α,µ∗) (4.46)

where the first inequality follows by the definition of multi-hop mutual information

function and the second inequality follows by noting that I(αk, ·) is increasing within

(0, µ0(αk)]. Equation (4.46) implies that any arbitrary µ′ attains multi-hop mutual

information of less than or equal to the resulting mutual information by µ∗ and thus

µ∗ is the solution of the constrained maximization problem in (4.13).

4.4.3 Proof of Lemma 4.3

Proof. Inserting IM(α,µ) given by (4.6) in the constraint of equation (4.31), we can

rewrite the problem (4.31) as

min
K+1∑
i=1

µi(α,)

s.t. I(α1, µ1) > R, I(α2, µ2) > R, · · · , I(αK+1, µK+1) > R. (4.47)

Assuming ηi
′s (1 < i < K + 1) are Lagrange multipliers, the Lagrange function can be

expressed as

L(µ) =
K+1∑
i=1

[µi − ηi(I(αi, µi)−R)]. (4.48)

To find the minimum, we set the gradient of (4.48) to zero and obtain
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1− ηiI ′(αi, µi) = 0, ∀1 6 i 6 K + 1 (4.49)

where I ′(αi, µi) is the first derivative of mutual information function with respect to

the duty cycle variable. Furthermore, noting that the mutual information function is

concave, it is easy to verify that the second derivative of (4.48) is always positive. The

Karush-Kuhn-Tucker (KKT) conditions enforce that the minimum point satisfies

ηi > 0, ∀1 6 i 6 K + 1

ηi(I(αi, µi)−R) = 0, ∀1 6 i 6 K + 1 . (4.50)

Inserting (4.49) in the first condition of (4.50), we obtain I ′(αi, µi) > 0, ∀1 6 i 6

K + 1. This implies that the minimum point can be only attained in the increasing

region of the mutual information function. Furthermore, from (4.49), it is obvious that

ηi 6= 0, ∀1 6 i 6 K + 1. Therefore, the second condition in (4.50) implies that the

minimum is obtained when the constraints are satisfied with equality, i.e., I(αi, µi) =

R, ∀1 6 i 6 K + 1. Based on the assumption of the Lemma (i.e., I(αm, µ0(αm)) > R),

we know for all 1 6 i 6 K + 1 the equality equations have solutions. Therefore, we

can write the solution to the problem in (4.31) using the inverse mutual information

function as

µ∗i (αi) = I−1(αi, R), ∀1 6 i 6 K + 1 (4.51)

where the inverse mutual information function, I−1(αi, R), is given by (4.18). Note that

the inverse function is expressed in terms of −1th branch of the Lambert-W function.

Therefore, the calculated optimal duty cycle values by (4.51) are always within the

increasing region of the mutual information function and hence (4.51) satisfy the KKT

conditions.
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4.4.4 Proof of Proposition 4.1

Proof. This proof is based on the approach proposed in [55]. Accordingly, we first

introduce the following lemmas.

Lemma 4.4: Let u be a nonnegative real random variable with continuous cdf F (u)

and χε denote the indicator function of a subset of
{
u ∈ R+

}
. We consider the following

maximization problem

max E{χεw(u)},

s.t. 0 6 w(u) 6 1 and E{χεuw(u)} 6 σ . (4.52)

Then the solution is given by

ŵ(u) =

{
1, for u 6 ς∗

0, for u > ς∗
(4.53)

where, for ς ∈ R+, we let P (ς) =
∫ ς

0
χεudF (u) and ς∗ = sup {ς : P (ς) < σ}.

Proof. By definition of ŵ(u), it is apparent that ŵ(u) satisfies the constraints. There-

fore, one of the two conditions below will apply

E{χεuŵ(u)} = P (ς∗) < σ, (4.54)

E{χεuŵ(u)} = P (ς∗) = σ. (4.55)

If (4.54) holds, it is immediate that ς∗ → ∞ and therefore (4.53) reduces to a trivial

solution as ŵ(u) = 1 which obviously maximizes (4.52). Now we consider the nontrivial

case where the solution in (4.53) satisfies the constraint with equality. Inserting ŵ(u)

in the objective function, we have
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E{χεŵ(u)} =

∫ ς

0

χεdF (u). (4.56)

We need to show that if for any other weight function 0 6 w(u) 6 1 such that E{χεw(u)}
is larger than (4.56), then it must violate the constraint. For any such w(u), we have

E{χεuw(u)} − σ = E{χεuw(u)} − E{χεuŵ(u)}

=

∫ ∞
ς∗

χεuw(u)dF (u)−
∫ ς∗

0

χεu(1− w(u))dF (u)

> ς∗
[∫ ∞

ς∗
χεw(u)dF (u)−

∫ ς∗

0

χε(1− w(u))dF (u)

]
= ς∗ [E{χεw(u)} − E{χεŵ(u)}] . (4.57)

Equation (4.57) shows that if E{χεw(u)} > E{χεŵ(u)}, then E{χεuw(u)} > σ and

therefore w(u) violates the constraint.

Lemma 4.5: The solution of (4.30) is in the form of

µ̂(α) =

{
χρµ

∗(α), with probability ŵ(α)

0, with probability [1− ŵ(α)]
(4.58)

where µ∗(α) is the solution of (4.31) and χρ denotes the indicator function of region

ρ(R) =
{
α ∈ RK+1

+ : I(αm, µ0(αm)) > R
}

for which the problem in (4.31) has a solu-

tion. Furthermore, ŵ(α) is a weight function RK+1
+ → [0, 1] and is obtained by solving

the following problem

max E{χρw(α)},

s.t. 0 6 w(α) 6 1 and E
{
χρ
∑K+1

i=1
µ∗i (αi)w(α)

}
6 σ. (4.59)
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Proof. The resulting outage probability of the power control law in (4.58) can be ex-

pressed as

P̂out(R, σ) = 1− E{χρŵ(α)}. (4.60)

Considering an arbitrary duty cycle vector µ in the class of probabilistic stationary

memoryless power-allocation functions [55] satisfying the constraint E {
∑
µi} 6 σ, we

define the region

A(α, R) =
{
µ ∈ RK+1

+ : IM(α,µ) > R
}
. (4.61)

Therefore the outage probability resulting from µ is given by

Pout(R, σ) = 1− Pr{µ ∈ A(α, R)}. (4.62)

We need to show that P̂out(R, σ) 6 Pout(R, σ). Let χA denote the indicator function of

{µ ∈ A(α, R)} and define the weight function as

w(α) = E{χA|α} (4.63)

where expectation is with respect to F (µ|α) and 0 6 w(α) 6 1. Then, we define a

new power control law as

µ′(α) =

{
χρµ

∗(α), with probability w(α)

0, with probability [1− w(α)]
(4.64)

Using the definition of µ∗(α), the outage probability P ′out(R, σ) resulting from µ′ can

be written as
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P ′out(R, σ) = 1− E{χρw(α)}

= 1− E{χρE{χA|α}}

= 1− E{E{χAχρ|α}}

= 1− E{χA}

= 1− Pr{µ ∈ A(α, R)}

= Pout(R, σ) (4.65)

where we can write χAχρ = χA, since χρ is either equal to 1 or if χρ = 0 then no power

control law can prevent from outage and thus χA = 0 as well. Equation (4.65) shows

that the newly defined power control law µ′ results in the same outage probability as

µ does. Moreover, we can show that µ′ satisfies the long-term power constraint. In

fact, we can write

σ > E
{∑

µi

}
> E

{
χA
∑

µi

}
>a E

{
χAχρ

∑
µ∗i

}
= E

{
E{χAχρ

∑
µ∗i |α}

}
=b E

{
χρ
∑

µ∗iE{χA|α}
}

= E
{
χρ
∑

µ∗iw(α)
}

= E
{∑

µ′i

}
(4.66)

where the inequality a follows by the fact that for all α such that χA = χAχρ = 1, we

have
∑
µ∗i 6

∑
µi which results from the definition of µ∗i . Furthermore, the equality

b can be written by noting that µ∗i is a deterministic function of α. Equation (4.66)

implies that µ′ indeed satisfies the long-term power constraint.

Now, noting that the weight function w(α) satisfies the constraint of (4.59) (i.e.,

E {χρ
∑
µ∗iw(α)} 6 σ), we can conclude E {χρw(α)} 6 E{χρŵ(α)} since ŵ(α) is the
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solution of the maximization problem in (4.59). Therefore, recalling the definitions in

(4.60) and (4.65), we have P̂out(R, σ) 6 Pout(R, σ) which means that the power control

law in the form of (4.58) can achieve outage probability lower or equal to that of any

arbitrary power control law.

Having the optimum form for the solution of (4.30) by Lemma 4.5, we need to obtain

an explicit expression for the weight function ŵ(α) by Lemma 4.4 in order to write the

solution of (4.30). Let u =
∑
µ∗i (αi) which is a continuous function RK+1

+ → R+. For

a given continuous F (α), this power sum is a random variable with cdf of

F (u) = Pr
{∑K+1

i=1
µ∗i (αi) 6 u

}
(4.67)

which remains continuous. Applying Lemma 4.4 to u =
∑
µ∗i (αi) to find ŵ(α) and ς∗

and further using Lemma 4.3 and Lemma 4.5, we can simply write the explicit solution

of (4.30) as in Proposition 4.1 (i.e., (4.33, 4.34, and 4.35)) where the region <(ς∗) in

(4.33) corresponds to the union of the interval u 6 ς∗ in (4.53) and the effect of indicator

function χρ in (4.58). Furthermore, knowing that µ∗i (αi) = I−1(αi, R) is continuous and

non-increasing, we have <(ς) ⊆ <(ς ′) for any 0 6 ς 6 ς ′ 6∞.

4.4.5 Proof of Proposition 4.2

Proof. Since I(·, µ) is an increasing continuous function with a range covering the whole

R+, I(α, µ) = R has a unique solution for all µ,R ∈ R+. Therefore we can rewrite the

objective function in (4.39) as

Pr {α < f(µ)} = F (f(µ)) (4.68)

where f(µ) = I−1(R, µ) is the solution of I(f(µ), µ) = R and F (·) is the cdf of the

continuous fading parameter α. Note that the function f(µ) = I−1(R, µ) is the inverse

of mutual information function with respect to the first argument and is different from
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the inverse function given by (4.18). Following that cdf function F (·) is increasing, the

outage minimization problem in (4.39) reduces to

min f(µ) = I−1(R, µ) ,

s.t. µ 6 σ/(K + 1). (4.69)

Let us first consider the problem in (4.69) without constraint. We can find the derivative

of f(µ) through the following differential equation

dI(f(µ), µ)

dµ
=
dR

dµ
= 0. (4.70)

Expanding (4.70), we can write the first derivative of f(µ) as

f ′(µ) =
f(µ) [1− ln(µf(µ) + s)]− ζ(f(µ), s)

µ [ln(f(µ) + s)− ln(µf(µ) + s)]
(4.71)

which implies that the function f(µ) : (0, 1) → R+ is differentiable and therefore

continuous in its domain. To find the critical points of f(µ), we apply f ′(µ) = 0 and

obtain

µf(µ)− s ln(µf(µ) + s) + s ln s = R/A (4.72)

and after some algebra, we can express f(µ) in terms of Lambert-W function as

f(µ) =
−s
µ

[
W−1

(
− exp

(
−1− R

As

))
+ 1

]
. (4.73)

Applying I(·, µ) to both sides of (4.73) and noting that I(f(µ), µ) = R, we have R =

I(β/µ, µ) or equivalently
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µζ(β/µ, s) =
R

A
− ζ(β, s) (4.74)

where the constant β is given by (4.42).

Taking the derivative of (4.71) and inserting f ′(µ) = 0 in the resulting expression,

we can write the second derivative of f(µ) at its critical point(s) as

f ′′(µ∗) =
α2

µ∗(µ∗f(µ∗) + s) ln
(

f(µ∗)+s
µ∗f(µ∗)+s

) > 0 (4.75)

which implies that the critical points of f(µ) can be only local minimum. Therefore,

since f(µ) is differentiable throughout its domain and has no local maximum, it can

only have a single local minimum at µ∗, i.e., solution of (4.74), which would be the

global minimum as well. Furthermore, the function f(µ) is non-increasing within the

interval (0, µ∗). Therefore, the solution to the constrained problem can be either at µ∗

or at the upper limit of the feasible interval (i.e., σ/(K + 1)) as stated in (4.40).

85



Chapter 5

Relay-Assisted Free-Space

Quantum-Key Distribution

In this chapter, we study free-space quantum-key distribution (QKD) as a particular

application of the FSO communication and propose a relay-assisted transmission tech-

nique to overcome the range limitations in the terrestrial free-space QKD systems. Our

proposed relay-assisted QKD system employs passive relay(s). The relays are passive

in the sense that they simply redirect the qubits without any detection or quantum

measurement involved. These relays, which can be implemented by adaptive optics

[58, 59, 60, 61, 62, 63], reconstruct the turbulence-degraded wave-front of the received

beam and redirect the resulting collimated beam to the next relay or destination.

We investigate the efficiency of such relay-assisted systems to combat the range

limitations in a terrestrial scenario. Based on a near-field analysis of the free-space

optical systems, we derive an upper-bound on quantum bit error rate (QBER) as a

performance criterion of QKD systems. Our results demonstrate that the relay-assisted

scheme is able to outperform point-to-point direct transmission for long link ranges in

which turbulence effects are particularly degrading.
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5.1 Related Works

In today’s world, wireless and wired communication networks transport huge volumes

of data including highly confidential information. Therefore, the privacy of information

and the security of the network are of the utmost concern. Conventional cryptosystems

are able to offer only computational security within the limitations of computing power.

Quantum cryptography, on the other hand, builds upon the basic principles of quantum

mechanics and promises unconditional security between two legitimate parties.

In analysis, design, and optimization of QKD systems, a critical issue to consider

is the operating environment. The common form of quantum channel which has been

intensively studied so far is fiber optic. Although today’s telecommunications networks

based on optical fibers are very advanced, such channels may not always be available.

With the recent commercialization successes, FSO technology has reached to a certain

maturity for classical data transmission and is a reliable alternative to fiber optics in

quantum cryptographic applications as well. In contrast to optical fibers, the dispersion

(birefringence) effects of FSO links are negligible especially at the low-loss transmission

windows of atmosphere (e.g., around wavelength of 770 nm) [32]. This guarantees

the consistency of the propagating photon’s polarization and makes FSO particularly

attractive for QKD systems.

Previous studies on terrestrial free-space QKD systems have presented analytical

approaches to characterize atmospheric effects [64, 65, 66] and demonstrated some ex-

perimental results [67, 68, 69]. A major drawback of QKD systems either operating

through fiber optic or atmospheric links (free-space optical links) is the range limi-

tation. In free-space QKD systems, this performance limitation is due to absorption,

scattering, diffraction, and turbulence degradation experienced in atmospheric channels

[64, 65, 66, 67, 68, 69].

Relay-assisted QKD has been originally proposed in [70] for fiber optic QKD sys-

tems. In the relaying scheme of [70] called as quantum repeater, long quantum channel

is divided into shorter hops in which perfect entangled pairs are created. Connecting

these individual entangled pairs though entanglement swapping leads to a single entan-

gled pair which is used for QKD based on Ekert’s protocol. The quantum repeaters
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are able to improve the performance by overcoming the exponential path loss of signal.

However, they require using quantum memory and entanglement purification to ensure

creation of perfect entangled pairs in the individual hops.

In [71], a simpler relaying scheme has been proposed which avoids the use of quantum

memory and entanglement purification. This scheme is not anymore able to mitigate

the exponential loss of signal, but it still improves the performance of fiber optic QKD

systems by suppressing the aggravated effect of detector dark counts experienced in

long distance links. Unlike [70, 71], a class of quantum relays called as trusted relays

have been further introduced in [72, 73] which are assumed sufficiently reliable to have

partial or perfect knowledge of the distributing keys. For example, a trusted quantum

relay may perform the well-known intercept/resend eavesdropping strategy to direct

Alice’s transmitted qubits to Bob without endangering the security of the QKD system

[72].

Quantum relaying has been also studied over FSO channels, but the current results

are mainly restricted to the satellite transmission [74, 75]. In [74], Hughes et al. have

considered a relay-assisted QKD scenario for satellite communication between two ter-

restrial nodes without line-of-sight path to each other. A trusted relay in a satellite

generates secure keys with the nodes and then reveals the exclusive disjunction (XOR)

of the two keys [74]. To support the idea, a feasibility analysis is also reported in [74]

based on the estimation of key generation capability of QKD system between a ground

station and a low earth orbit (LEO) satellite. In [75], Aspelmeyer et al. have studied

a similar satellite-based QKD set-up using quantum entanglement. They have inves-

tigated the link attenuation of surface/satellite-to-satellite systems to demonstrate the

feasibility of their idea.

5.2 The Relay-Assisted QKD System

We consider a relay-assisted free-space QKD system in which the transmitted qubits

by Alice travel through K relay nodes before detection by Bob. Conventional amplify-

and-forward and decode-and-forward relaying schemes typically employed in wireless
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communications are of no use for QKD systems1. Here, we consider passive relays

which simply redirect the qubits to the next relay node or to Bob without performing

any measurement or detection process. Therefore, any eavesdropping attempt which

takes place either at the relay nodes or in the middle of the FSO link can be still

detected by Alice and Bob during the error correction process of the BB84 protocol.

Wave-front

Sensor

Data

Processor

Deformable

Mirror

M
irr

or

Pilot beam

Figure 5.1: The schematic diagram of a typical adaptive optics system.

The relays receive the transmitted optical beam and reconstruct its turbulence-

degraded wave-front using adaptive optics before pointing it to the next relay or Bob.

Adaptive optics involves the use of a wave-front sensor and a deformable mirror as

depicted in figure 5.1. The wave-front sensor estimates the effects of atmospheric tur-

bulence by measuring the turbulence-induced distortions in the received pilot-beam

wave-front at the beginning of each block of key transmission. The deformable mir-

1No amplification can be performed at relay nodes without perturbing the quantum system [32].

Furthermore, since the relays are not necessarily trusted, neither measurements nor detection can be

performed.
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ror then uses this information to correct the atmospheric wave-front distortions of the

received qubit beam.

Different adaptive optics systems with full [59, 60, 61] and partial [62, 63] compen-

sation are proposed in the literature. In a fully compensated adaptive optics system,

the scale of the operating element (sub-aperture of the wave-front sensor and the actu-

ator of the deformable mirror) matches the scale of the atmospheric correlation length

(∼ r0 given by (2.15)) which is inversely related to the link length. Since the proposed

relay-assisted system divides the link range into shorter hops, adaptive optics can be

implemented relatively easier with larger, therefore fewer, elements. Furthermore, we

note that the atmospheric coherence time is inversely related to the link length [34].

Therefore, longer atmospheric coherence time can be experienced in the shorter hops

decreasing the rate of required updates in the adaptive optics system.

The proposed relay-assisted QKD system uses BB84 protocol for key distribution

as described in chapter 2. For each qubit, Alice generates a polarized optical pulse with

an average photon number of ns which is encoded with the corresponding polarization

state of the qubit for a randomly chosen basis. Due to the atmospheric effects (i.e.,

diffraction, atmospheric turbulence, and absorption-and-scattering loss), the ith relay

node (i = 1, 2...K) collects only a random fraction γi of the transmitted photons in the

ith hop. The relay then redirects the received photons by pointing the light beam to

the next relay node (or Bob) without performing any amplification/detection process.

At the destination side, Bob collects a fraction γK+1 of the transmitted photons from

the last relay node which corresponds to an overall fraction γ = γ1γ2 · · · γK+1 of the

originally transmitted photons from Alice2.

In the ith hop (i = 1, 2, · · · , K + 1), a spatial beam pattern ξi(~ρ) is assumed to

be transmitted from a circular pupil Ri with diameter di located in the z = 0 plane3.

A field pattern ξ′i(~ρ
′) is collected within the pupil R′i with diameter d′i in the z = Li

plane where Li is the length of ith hop. The received field pattern by the ith relay

2We assume negligible optics losses and perfect correction of wave-front turbulence-induced distor-

tions by adaptive optics within the relay terminals.
3Without loss of generality, we assume that the coordinate system is properly transformed for each

hop.
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(i = 1, 2, · · · , K) or Bob (i = K + 1) can be expressed similar to (2.2) as

ξ′i(~ρ
′) =

∫
Ri

ξi(~ρ)hi(~ρ, ~ρ
′)e−aLi/2d~ρ (5.1)

where a is the extinction coefficient determining the loss due to absorption and scat-

tering and hi(~ρ, ~ρ
′) denotes the Green’s function for atmospheric propagation through

clear turbulent air over the ith hop which is given by (2.3). The fraction parameter

[64] of the ith hop γi (i = 1, 2, · · · , K + 1) is expressed in terms of transmit and receive

beam patterns as

γi =

∫
R′i
|ξ′i(~ρ′)|

2d~ρ′∫
Ri
|ξi(~ρ)|2d~ρ

. (5.2)

We assume that the relays and the destination collect an average number of nB0

background photons per polarization. Taking into account the background photons

redirected by the relays, the total average number of background photons collected at

Bob’s receiver per polarization can be expressed as4

nB = nB0(1 + γK+1 + γKγK+1 + · · ·+ γ2 · · · γK+1)

= nB0

(
1 +

K+1∑
i=2

K+1∏
j=i

γj

)
. (5.3)

Besides the background noise, each of the single-photon detectors (APDs) at Bob’s

receiver registers an average number of nD dark counts.

4Equation (5.3) overestimates the effect of redirected background photons for the relay-assisted

system since the associated path loss is assumed to be as low as the path loss of the transmitted

collimated beam.
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5.3 Performance Analysis

We investigate the performance of the relay-assisted free-space QKD system through

the derivation of an upper-bound on QBER. QBER is given by [32]

QBER =
Pr(error)

Pr(sift)
(5.4)

where Pr(sift) and Pr(error) are probabilities of sift and error, respectively. Using

the results from [64], we can express the conditional sift and error probabilities of the

relay-assisted QKD system (conditioned on γ = {γ1, γ2, · · · γK+1}) as

Pr(sift|γ) = η (nSγ/2 + 2nN) exp [−η (nSγ + 4nN)] , (5.5)

Pr(error|γ) = ηnN exp [−η(nSγ + 4nN)] (5.6)

where η is the quantum efficiency of Geiger-mode APDs and nN , nB/2 + nD denotes

the average number of noise counts at each of Bob’s detectors.

To obtain unconditional probabilities of sift and error, we first need to statistically

characterize γ = {γ1, γ2, · · · γK+1}. We use the singular value decomposition of hi(~ρ, ~ρ
′),

i = 1, 2, · · · , K + 1, which is given by [64, 76]

hi(~ρ, ~ρ
′) =

∞∑
n=1

√
µni ϕ

n
i (~ρ′)Φn∗

i (~ρ) (5.7)

where µni ’s are the eigenvalues which satisfy 1 > µ1
i > µ2

i > µ3
i > · · · > 0. {Φn

i (~ρ)} and

{ϕni (~ρ′)} are, respectively, the input and output eigenfunction vectors which constitute

complete orthonormal sets on Ri and R′i. Let µi denote the largest eigenvalue in (5.7),

i.e., µi , µ1
i , and Φi(~ρ) denote the corresponding input eigenfunction (i.e., Φi(~ρ) ,
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Φ1
i (~ρ)). Using (5.1), (5.2), and (5.7), an upper bound on the fraction parameter γi can

be obtained as [64]

γi 6 µie
−aLi (5.8)

with equality when ξ̄i(~ρ) = Φi(~ρ). Here, ξ̄i(~ρ) is the normalized transmit beam pattern

of the ith hop which can be expressed as

ξ̄i(~ρ) =
ξi(~ρ)√∫

Ri
|ξi(~ρ)|2d~ρ

. (5.9)

Under atmospheric turbulence conditions which exhibit a slowly-varying nature, Alice

and relay nodes can employ adaptive optics to generate the optimum transmit field

pattern as

ξi(~ρ) =

[√∫
Ri

|ξi(~ρ)|2d~ρ

]
Φi(~ρ) (5.10)

which guarantees that the equality in (5.8) is achieved yielding the optimum fraction

parameter (i.e., maximum power transfer). Let µ denote the product of the individual

largest eigenvalues, i.e., µ = µ1µ2 · · ·µK+1 (0 6 µ 6 1). The optimum overall fraction

parameter can be then written as γ = µe−aL where L = L1 + L2 + · · ·+ LK+1. Unfor-

tunately, for near-field propagation, a statistical description of µi is not available in the

literature. However, noting that E{µi} is the maximum average power transfer over

the ith hop obtained through the use of optimum beam pattern, it can be simply lower

bounded by the average power transfer of any deterministic beam pattern, such as in

[64, 76], as

E{µi} > µ̂i ≡
8
√
Df

π

1∫
0

e−
Di(dix)

2 (cos−1(x)− x
√

1− x2)J1(4x
√
Df )dx (5.11)

93



where J1(·) is the first-order Bessel function of the first kind, Di(·) is the ith hop’s

spherical-wave wave structure function given by Di(ν) = 1.09k2C2
nLiν

5/3, and Df is the

Fresnel number product of the Ri and R′i pupils given by Df = ((πdid
′
i)/4λLi)

2.

5.3.1 Bound on the Sift Probability

Let µ = {µ1, µ2, · · ·µK+1} denote the vector of the largest eigenvalues (within each

hop) and V (µ) be a function of µ defined as

V (µ) = η(nSγ + 4nN)

= η

[
nSe

−aL
K+1∏
j=1

µj + 2nB0

(
1 +

K+1∑
i=2

K+1∏
j=i

e−aLjµj

)
+ 4nD

]
. (5.12)

Using (5.12), we can rewrite (5.5) for the case of optimum beam transmission as

Pr(sift|y) =
V (µ)

2
e−V (µ) =

(αy + β)

2
e−(αy+β) (5.13)

where α, β, and y are given by5

α = V (µ = 1)− V (µ = 0) = η

[
nSe

−aL + 2nB0

(
K+1∑
i=2

K+1∏
j=i

e−aLj

)]
, (5.14)

β = V (µ = 0) = η(2nB0 + 4nD), (5.15)

y =
V (µ)− β

α
. (5.16)

50 and 1 denote all-zero and all-one vectors, respectively.
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Averaging (5.13) over y, we obtain the sift probability as

Pr(sift) =

1∫
0

(αy + β)

2
e−(αy+β)p(y)dy (5.17)

where p(y) is the probability density function of y. Defining f(y) , (αy/2+β/2)e−(αy+β)

and noting that it is a concave function for 0 6 αy+ β < 2, we can lower bound (5.17)

as

Pr(sift) >

1∫
0

[f(0)(1− y) + f(1)y]p(y)dy

= f(0)(1− E{y}) + f(1)E{y}. (5.18)

Using (5.11), (5.12), (5.14), (5.15), and (5.16) and the fact that the elements of γ (and

therefore the elements of µ) are statistically independent, E{y} can be bounded as

E{y} > ŷ ,

nSe
−aL

K+1∏
j=1

µ̂j + 2nB0

(
K+1∑
i=2

K+1∏
j=i

e−aLj µ̂j

)

nSe−aL + 2nB0

(
K+1∑
i=2

K+1∏
j=i

e−aLj

) . (5.19)

Inserting (5.19) in (5.18) and noting that f(y) is increasing for 0 6 αy+β < 1, we have

a lower bound on the sift probability as

Pr(sift) > f(0)(1− ŷ) + f(1)ŷ

= (β/2)e−β[1− ŷ] + (α/2 + β/2) e−(α+β)ŷ (5.20)

under the practically reasonable condition η(nSe
−aL + 4nN) < 1.
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5.3.2 Bound on the Error Probability

Ignoring the effects of diffraction and turbulence on the redirected background photons

(from the relays), a pessimistic noise count at each of Bob’s detectors (i.e., n̂N =

nN |µ=1) can be written as

n̂N =
nB0

2

(
1 +

K+1∑
i=2

K+1∏
j=i

e−aLj

)
+ nD (5.21)

which obviously satisfies n̂N > nN . Therefore, we can bound (5.6) as

Pr(error|γ) 6 ηn̂Ne
−η(nSγ+4n̂N ). (5.22)

Inserting γ = µe−aL in (5.22) and averaging the resulting expression over µ, we have

Pr(error) 6

1∫
0

ηn̂Ne
−η(nSµe

−aL+4n̂N )p(µ)dµ (5.23)

where p(µ) is the pdf of µ. Defining g(µ) , ηn̂Ne
−η(nSµe

−aL+4n̂N ) and noting that it is

a convex function, we can further upper bound (5.23) as

Pr(error) 6

1∫
0

[g(0)(1− µ) + g(1)µ]P (µ)dµ

= g(0)(1− E{µ}) + g(1)E{µ}

6 g(0)(1− µ̂) + g(1)µ̂ (5.24)

where we define µ̂ = µ̂1µ̂2 · · · µ̂K+1. The first bound in (5.24) comes from the convexity

of g(µ) and the last bound results from the bound in (5.11) assuming that µi’s are
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statistically independent and noting that g(µ) is a decreasing function. Expanding

(5.24), we obtain

Pr(error) 6 ηn̂Ne
−η4n̂N [1− µ̂] + ηn̂Ne

−η(nSe
−aL+4n̂N )µ̂. (5.25)

Finally, replacing (5.20) and (5.25) in (5.4), we obtain an upper bound on QBER as

QBER 6
2ηn̂Ne

−η4n̂N

[
(1− µ̂) + e−ηnSe

−aL
µ̂
]

βe−β (1− ŷ) + (α + β) e−(α+β)ŷ
. (5.26)

It is important to note that, although at the beginning of this derivation we consider

optimum beam shaping in (5.8) to achieve the equality, the derived bound in (5.26) is

valid for non-optimized transmission as well. This is because, in (5.11), the lower-bound

on average µi is based on the transmission of a deterministic beam pattern rather than

the optimum one [64].

Finally, as a benchmark, to demonstrate the efficiency of the proposed relaying

scheme in compensating the degrading effects of atmospheric turbulence, we consider a

QKD system operating over non-turbulent air. The exact QBER of such a QKD system

is given by [64]

QBER =
2nN

nSµ0e−aLAB + 4nN
(5.27)

where LAB is the length of line-of-sight link connecting Alice and Bob and µ0 is the

largest eigenvalue of the singular value decomposition of vacuum-propagation Green’s

function given in [77].
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5.4 Performance Results and Discussions

In this section, we demonstrate the performance of relay-assisted QKD scheme under

consideration and compare its performance with point-to-point direct transmission. We

assume λ = 0.77µm, C2
n = 1 × 10−15 m−2/3, and operation in clear weather conditions

with visibility of 10 km which corresponds to the absorption and scattering loss of about

2 dB/km. Under the assumption that proper temporal, spectral, and spatial filters are

employed, a constant average number of background count, nB0 = 10−4 is assumed [67].

Bob’s APD detectors are operated at the detection efficiency of η = 0.5 with average

dark count of nD = 10−6 [64]. We also assume that all the receive and transmit pupils

have the same diameter d and the relay nodes are located equidistant along the path

connecting Alice and Bob, i.e., LAB = L.

Before we illustrate QBER performance, we study the behavior of the overall fraction

of collected photons at Bob’s receiver, i.e., γ. We normalize γ by the total amount of

absorption and scattering loss experienced in the direct path from Alice to Bob, i.e.,

e−aLAB . Based on the assumption made on the relay locations, we have γ/e−aLAB =

µe−aL/e−aLAB = µ. Figure 5.2 plots the lower bound on the average of µ (i.e., E{µ} =∏
iE{µi}) calculated from (5.11) for a relay-assisted QKD system operating over a

turbulent atmosphere with pupil diameter of d = 10 cm. We consider relay-assisted

systems with different number of relays, i.e., K = 1, 2, and 3. The results for direct

QKD systems operating over turbulent (i.e., µ̂, K = 0) and non-turbulent (i.e., µ0 given

in [77]) atmosphere are further included as benchmarks.

Comparing the performance curves of over the turbulent and non-turbulent atmo-

sphere for the direct system in figure 5.2, we observe that atmospheric turbulence de-

grades the performance of QKD systems particularly over the long links where stronger

turbulence effects are experienced. For example, the average number of photons col-

lected over a 10 km non-turbulent atmospheric path is more than three times the average

number of collected photons in the corresponding turbulent case.

It is obvious from figure 5.2 that, similar to the classical multi-hop FSO systems

studied in the previous chapters, the relay-assisted QKD scheme takes advantage of the

resulting shorter hops with weaker turbulence effects and improves the performance of
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Figure 5.2: The normalized fraction of collected photons at Bob’s receiver in relay-

assisted QKD system for different number of relays (d = 10 cm).

the QKD system. For example, deployment of two relays would be sufficient to com-

pensate the decrease in the average number of collected photons caused by turbulence

for a 10 km link.

Figure 5.3 demonstrates the upper bound on QBER performance of the relay-

assisted and direct QKD system operating over turbulent atmosphere as a function

of the link range (LAB = L) which are calculated through (5.26). We assume d = 10 cm

and ns = 1. As a benchmark, we include the QBER performance of direct QKD system
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over non-turbulent atmosphere calculated through (5.27). It is observed from figure 5.3

that the relay-assisted scheme improves the QBER performance of the links longer than

5.5 km. For example, for a link with the length of 10 km, the presence of turbulence

causes 193% increase in QBER of the direct QKD system. However, this degradation

is drastically reduced to only 26% for a triple-hop (K = 2) relay-assisted QKD system.

Although the triple-hop relay-assisted QKD system can significantly improve the

QBER performance, it should be emphasize that it cannot achieve the QBER perfor-
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Figure 5.3: The QBER of the relay-assisted QKD system for different number of relays

(d = 10 cm and ns = 1).
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Figure 5.4: The QBER of the relay-assisted QKD system versus the number of relays

with different pupil diameters (L = 10 km and ns = 1).

mance of the direct non-turbulent case as it might be expected from figure 5.2. This

is a result of the accumulation of background noise6 redirected from relays to Bob’s

receiver. In other words, there are two reverse effects which need to be considered. The

relay-assisted scheme increases the average number of collected photons coming from

Alice, but it also results in an increase of the average number of background photons

6Note that, in our analysis, this effect has been exaggerated in the derivation of the upper bound

on QBER of the relay-assisted system (c.f. equations (5.3) and (5.21)).
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at Bob’s receiver. It is therefore important to determine the optimum number of relays

(in the sense of QBER minimization) to be deployed.

In figure 5.4, we demonstrate the upper bound on QBER of the relay-assisted QKD

system with ns = 1 versus the number of relays. We fix the link length as 10 km

and consider different pupil diameters i.e., d = 6 cm, 10 cm, and 20 cm. We find out

that four, two and one relays are sufficient to minimize QBER respectively for d =

6 cm, 10 cm, and 20 cm. It is observed that the optimum number of relays increases
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Figure 5.5: The QBER of the relay-assisted QKD system versus ns for different link

lengths (d = 10 cm).
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as the pupil sizes decrease. This comes from the fact that for the system with smaller

pupil sizes, shorter hops are required for effective compensation of the diffraction and

turbulence effects.

In figure 5.5, we demonstrate the upper bound on QBER of the relay-assisted QKD

system as a function of the average number of transmitted photons by Alice, ns. We

consider L = 6 km and 10 km and assume d = 10 cm. Note that the QBER performance

improvements demonstrated in figures 5.3 and 5.4 were obtained for a fixed value of

ns = 1. From figure 5.5, we observe that decreasing the value of ns does not considerably

affect the amount of QBER improvement and therefore, similar conclusions can be also

made for these lower values of ns.
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Chapter 6

Conclusions

In this thesis, we introduced the relay-assisted free-space optical system as a very

promising technique to overcome atmospheric turbulence degradations whether em-

ployed over a classical or a quantum optical channel. FSO communication is a line-

of-sight optical transmission technique through the atmosphere which provides a cost-

effective and easy-to-install alternative to fiber optics. A major degrading factor in

FSO communication links is the atmospheric turbulence degradations. To mitigate the

degrading effect of turbulence-induced fading, different techniques such as spatial diver-

sity have been proposed in the literature. However, they are not so effective in longer

ranges where the atmospheric turbulence is most degrading. The contributions of this

work can be summarized as follows.

6.1 Relay-Assisted FSO Communication over the

Gaussian Channel

In chapter 3, we studied the relay-assisted FSO communication over a Gaussian channel

model of the intensity modulation direct detection systems. We have investigated serial

and parallel relaying, each of which operates either in amplify-and-forward or decode-

and-forward mode. The fact that fading variance is distance-dependent in FSO systems
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constitutes a major difference between wireless RF and wireless optical systems. This

lets multi-hop FSO transmission smartly exploit the shorter distance in the resulting

hops and brings substantial improvements against the degrading effects of turbulence-

induced fading. As a possible alternative to serial relaying, we have also considered

parallel relaying where an artificial broadcasting is obtained through the use of multiple

transmitter apertures directed to relay nodes.

Through the derivation of outage probability and Monte-Carlo simulations, we have

quantified the performance improvements obtained for both parallel and serial relaying

schemes. Specifically, for a single-relay serial relaying scheme (i.e., dual-hop scheme),

performance improvements of 12.2 dB and 18.5 dB at the outage probability of 10−6

have been obtained for serial relaying with AF and DF modes respectively. For a

triple-hop scheme, the respective performance improvements climb up to 17.7 dB and

25.4 dB. In comparison to serial relaying, parallel relaying takes advantage of distance-

dependency of fading log-normal variance to a lesser extent and is outperformed by its

competitor as the number of relays increases.

We have also quantified the diversity gain of FSO communication systems operating

in log-normal fading channels. We have derived so-called relative diversity orders de-

fined based on the outage probability for FSO diversity systems. Specifically, we have

demonstrated that diversity orders of (K+1)11/6, and 211/6K are obtained, respectively,

for serial and parallel DF relaying schemes employing K relay nodes. Comparing these

expressions, we can state the diversity order of the relay-assisted FSO systems with DF

relaying in a general form of N
11/6
H ND where NH and ND are respectively the number of

hops and the number of diversity paths in the relaying configuration. It is observed that

the serial relaying factor (i.e., N
11/6
H ) in this diversity order expression is stronger than

the parallel relaying factor (i.e., ND). Therefore, we can confirm our previous finding

that a parallel relaying scheme (ND > NH) is benefited from the distance-dependency of

fading log-normal variance less than a serial relaying scheme (NH > ND) and therefore

is outperformed by its counterpart as the number of relays increases.
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6.2 Relay-Assisted FSO Communication over the

Poisson Channel

In chapter 4, we have studied the outage behavior of multi-hop Poisson channel degraded

by atmospheric turbulence. This is the suitable model for multi-hop FSO communica-

tion with shot-noise-limited direct detection receivers. In chapter 3, under a Gaussian

channel model, we showed that such a serial relaying strategy can significantly outper-

form the parallel relaying and direct transmission counterparts. Therefore, we focused

on the multi-hop relaying scheme in chapter 4.

We considered a decode-and-forward relaying strategy for the multi-hop FSO trans-

mission where the turbulence-induced degradation is described by a block fading model.

Under the assumption of perfect CSI at the receiver, the outage probability minimiza-

tion problem has been solved and power control law (optimal duty cycle) has been

presented under peak and average sum power constraints. A number of scenarios based

on the availability or lack of CSI at the transmitter along with short or long-term power

constraints have been investigated. Moreover, a simple and accurate sup-optimal solu-

tion with low complexity has been proposed for the case of perfect CSI with short-term

power constraint.

Our numerical results have clearly demonstrated that relay-assisted transmission in

a direct-detection Poisson channel significantly improves the outage probability and this

improvement enhances as the number of relays increases. For example, an additional

performance gain of about 18 dB is observed at the outage probability of 10−5 when

the second relay is inserted. This is the result of the fact that multi-hop FSO system

exploits the distance-dependency of the turbulence-induced fading variance by lowering

the fading strength of the individual intermediate hops through the insertion of relay

nodes.

We further observe that CSI at the transmitter is not useful for a single-hop Poisson

fading channel with short-term constraint, but this information improves the outage

probability over the single-hop Poisson fading channel with long-term constraint as

well as that over the multi-hop Poisson fading channel with both short- and long-term
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power constraints.

Furthermore, it is shown that the proposed sub-optimal solution yields an outage

probability very close to the optimum values under short-term constraint for different

multi-hop scenarios. Therefore, the sub-optimal power control law with much less

complexity can perform almost the same as the more complicated optimal power control

law.

6.3 Relay-Assisted Free-Space Quantum-Key Dis-

tribution

In chapter 5, we have applied the concept of relaying to a quantum FSO communication

system to combat atmospheric turbulence degradation effects. Quantum cryptography

builds upon the basic principles of quantum mechanics and promises unconditional

security between two legitimate parties. In this technique, quantum-key distribution

establishes a secure shared key between the two parties enabling them to encrypt their

massages. A major drawback of QKD systems either operating through fiber optic or at-

mospheric links is the range limitation. To increase the link range, ”quantum repeater”

and ”quantum relay” were proposed based on the idea of entanglement swapping which

is not yet practical.

We proposed a terrestrial relay-assisted free-space quantum-key distribution sys-

tem for long links operating over turbulent atmosphere. Our proposed relay-assisted

free-space QKD system employs passive relays. These relays reconstruct the turbulence-

degraded wave-front of the received beam using adaptive optics and redirect the result-

ing collimated beam to the next relay or destination. Based on a near-field analysis, we

have derived an upper bound on QBER of the proposed system and presented extensive

numerical results on the performance as a function of various system parameters includ-

ing the number of relays, link range, pupil diameter, etc. Although the relay-assisted

scheme results in an increase of the average number of background photons collected

at the receiver, it is able to significantly decrease the photon loss caused by diffraction

and turbulence. The net gain is an overall performance improvement particularly for
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long link ranges.

The significance of this work lies on the ease of its implementation with respect to

the alternative relaying strategies. Although use of adaptive optics increases hardware

cost but it is a practical technique which can be conveniently implemented unlike the

entanglement swapping technique which is required for the previously proposed schemes

such as quantum repeater and quantum relay.

6.4 Future Works

In chapter 3, we assumed equal power allocation for the source and the relays. There-

fore, optimal power allocation for the Gaussian FSO channel particularly for an unbal-

anced distribution of the relays can be investigated as a future work. Furthermore, our

diversity gain analysis can be extended to the case of amplify-and-forward relaying sys-

tems. Investigating the performance of relay-assisted FSO communication employing

coherent receivers can be also another topic for the future work.

In chapter 4, we showed that the availability of perfect CSI at the transmitters

improves the performance of the relay-assisted FSO system. Although we studied the

FSO communication over multi-hop Poisson channel in the case of no CSI at the trans-

mitters, we assumed symmetric channel statistics for the multi-hop system. Therefore,

a possible research subject could be the investigation of the effects of CSI imperfection

on the performance of the power-optimized multi-hop FSO system in the case of unbal-

anced distribution of the relays. Moreover, the multi-hop turbulence-degraded Poisson

channel can be studied based on the simpler amplify-and-forward relaying configuration.

In chapter 5, our results build upon the ideal assumption of perfect reconstruction of

the wave-front using adaptive optics. Our preliminary results [78] suggest that the relay-

assisted QKD system could be useful even in the case of partial adaptive correction.

However, full investigation of this problem which requires an accurate analytical or

numerical modeling of the residual errors induced by partial adaptive correction is the

subject of a future work.
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