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Abstract

This thesis focuses on decentralized deadbeat output regulation of discrete-time nonlin-
ear plants that are composed of multiple agents. These agents interact, via scalar-valued
signals, in a known structured way represented with a graph. This work is motivated by
applications where it is infeasible and/or undesirable to introduce control action within
each plant agent; instead, control agents are introduced to interact with certain plant
agents, where each control agent focuses on regulating a specific plant agent, called its
target. Then, two analyses are carried out to determine if regulation is achieved: targeting
analysis is used to determine if control laws can be found to regulate all target agents, then
growing analysis is used to determine the effect of those control laws on non-target plant
agents. The strength of this novel approach is the intuitively-appealing notion of each
control agent focusing on the regulation of just one plant agent. This work goes beyond
previous research by generalizing the class of allowable plant dynamics, considering not only
arbitrary propagation times through plant agents, but also allowing for non-symmetrical
influence between the agents. Moreover, new necessary and sufficient algebraic conditions
are derived to determine when targeting succeeds. The main contribution of this work,
however, is the development of new easily-verifiable conditions necessary for targeting
and/or growing to succeed. These new conditions are valuable due to their simplicity and
scalability to large systems. They concern the positioning of control agents and targets as
well as the propagation time of signals through the plant, and they help significantly with
design decisions. Various graph structures (such as queues, grids, spiders, rings, etc.) are
considered and for each, these conditions are used to develop a control scheme with the
minimum number of control agents needed.
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Chapter 1

Introduction

This thesis deals with the decentralized output regulation of nonlinear discrete-time multi-
agent systems. By “multi-agent” systems we mean that the plant is composed of subsys-
tems, called agents, that interact with one another. By “output regulation” we mean that
it is desirable to drive to zero the output signals of all plant agents; in particular, we focus
on deadbeat regulation, whereby the output signals are driven to zero in finite time. As
the first step to control a multi-agent plant, we introduce control agents, placed at strategic
locations among the plant agents, with each control agent focusing on regulating a specific
plant agent, called its target. A novel analysis approach is then used to determine if control
laws can be found for the control agents so that the plant is successfully regulated. The
analysis has two stages, namely targeting analysis and growing analysis. Through target-
ing analysis, it is determined if the control agents are capable of driving the outputs of
all target plant agents to zero. Then, growing analysis is applied to determine if the same
control laws can drive the outputs of non-target plant agents to zero.

The targeting approach used in this thesis has the advantage that it is intuitively easy
to understand and, we argue, often desirable in practical problems. As an example, a
teacher who tries to keep a class of noisy students in control might naturally focus on
controlling a few troublemaker students in the class rather than try to control every single
student simultaneously, which could be overwhelming. Another key characteristic of our
approach to regulation is that it relies on using separate control agents to bring about
control action. This method is beneficial for any multi-agent situation where it is infeasible
and/or undesirable to place a controller within all plant agents. Many social and economic
systems fall in this category. For instance, police officers trying to control an unruly crowd
at a protest, a central bank trying to influence a country’s economy, or government leaders
trying to influence a country’s population or culture towards a certain issue can all benefit
from this approach. In addition to socio-economic systems, this technique can also be
potentially beneficial in some industry and military applications. A few such examples are

1



listed in the following:

• Unmanned autonomous vehicles (UAVs): A targeting approach can potentially be
used to control a number of unmanned autonomous vehicles by influencing only a
small number of target UAVs through a few controller UAVs. Using this approach,
simpler UAVs can be developed as the plant agents, potentially resulting in a con-
siderable reduction in the production and maintenance costs.

• Distributed energy generation: Controlling a network consisting of thousands of
small-scale power generators (such as wind turbines and solar bank cells) is very
challenging. The idea of having central power authorities focus on controlling only a
few target generators can greatly simplify the problem.

• Traffic control: In order to control traffic congestion, a targeting approach can be
used by the controllers to control the traffic signals at target intersections or to control
the speed limits at target roads, rather than try to control the traffic signals or speed
limits at all the intersections and roads.

• Water management: The idea of targeting can be used to control a few target dams
or pumps. This approach can greatly simplify the control of all dams and pumps and
potentially result in a more effective water management system.

The idea of targeting was introduced by Spieser and Davison to stabilize crowds mod-
elled by suggestibility theory, as characterized in a well-known book by LeBon (see [5, 20,
23, 22, 21, 3]). This control strategy was first used to stabilize the people in a queue [22].
The idea was then extended to one-dimensional crowds [20] and two-dimensional crowds
[23]. Targeting and growing analyses were primitive at this stage and were developed
only to handle the specific psychological dynamics of a crowd where the propagation times
through plant agents were assumed to be constant (i.e., one time step) and plant agents
were assumed to influence each other in a symmetrical manner (i.e., each agent influenced
its neighbour as much as it was affected by it). Later in [5], the important notion of
“dependency graphs” was introduced to deal with targeting analysis. This thesis extends
the previous research by generalizing the class of plant dynamics considered, allowing for
arbitrary propagation times through plant agents and control agents, and also allowing for
non-symmetrical influence between the agents. Targeting and growing analyses are also
generalized. Moreover, new necessary and sufficient algebraic conditions are derived to de-
termine when targeting succeeds. Finally, new easily-verifiable necessary conditions have
been developed for targeting and/or growing to succeed [18]. While these new conditions
are valuable due to their simplicity and scalability to large systems, they have also provided
us with much better understanding of targeting and growing. As a result, it is much easier
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now to deal with the design problem. In fact, a better understanding of certain structures
(such as queues, grids, spiders, rings, etc.) has been established in this thesis.

Apart from the aforementioned previous research, the use of targeting to control a
multi-agent system is, to the best of the author’s knowledge, completely a novel approach.
However, the fact that the control agents are separately introduced to the plant and are
distinctly different from the plant agents, puts this work in the classical decentralized control
framework [2, 4, 25, 19]. Also, this work is related to the modern co-operative control
theory [15, 14, 24, 7, 12, 17, 16, 13, 9, 8] due to the importance of the graph structure
and that some degree of communication and co-ordination is usually needed among the
control agents. Leader-follower problems within the formation control literature (a subfield
of co-operative control) are in particular similar to this work in that there is a distinction
between the types of the agents (leaders or followers) in the plant similar to what is used
in the notion of targeting (control agents or plant agents). Moreover, the graph structure
is emphasized in the leader-follower problems ([9] and [16]). Finally, at a higher level, this
research can be related to the work in the structured systems literature [6] where great
emphasize is placed on the graph structure of the system.

A brief overview of the chapters of this thesis is given in the following. Chapter 2 first
introduces a collection of notation and terminology that is used throughout this thesis.
Then, it provides the system model by formulating the dynamics of the plant agents and
control agents in the system. Finally, various assumptions are made that mainly concern
targeting assignment, communication and sensing requirements, signal propagation time in
the system, and targeting and growing processes. These assumptions have been introduced
either as a necessity to be able to achieve the desired control objective or to simplify the
analysis.

In Chapter 3, the control objective is formalized and the two problems related to this
objective are stated. Trying to achieve deadbeat output regulation of all the plant agents,
the first problem deals with finding, if possible, a set of such control laws for a given plant
where the placement of control agents and targeting assignment are known. The second
problem is to determine the number of control agents required to regulate a given plant,
where they should be placed, and which plant agents they should target.

Chapter 4 addresses the first problem. Targeting analysis and growing analysis are
described in detail in this chapter. Targeting analysis is used to determine if the control
agents are able to zero1 all the targets, while growing analysis is used to determine the
effect of the control laws on non-target plant agents. To achieve regulation of the plant,
both analyses must be carried out successfully. It is shown that two important factors,
involved in regulation of any plant, are the graph structure and the signal propagation time

1We say that a plant agent is “zeroed” if the control laws drive the plant agent output to zero in finite
time.
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in the plant. This chapter ends with a section on the communication requirements among
the control agents and the sensing requirements for control agents to regulate a plant. It
is shown that communication and sensing requirements are not unique for a given control
scheme and there is (generally) a trade-off between the two.

In Chapter 5, a set of necessary conditions, as the main contribution of this work,
are discussed to ensure targeting analysis and/or growing analysis are successful. These
necessary conditions can help a designer determine how many control agents should be
used, where control agents should be placed, and what targeting assignment should be
used to ensure regulation can be achieved. Implications of these necessary conditions are
provided in Chapter 6. The second problem is addressed in this chapter for different
graph structures, including queues, grids, spiders, rings, wheels, complete graphs and null
graphs. Finally, Chapter 7 summarizes the main results of the thesis and provides a number
of interesting and promising directions to further this research.
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Chapter 2

System Model

This chapter describes in detail the model of the system considered in our work. First a
collection of notation and terminology are introduced to represent a controlled multi-agent
plant (i.e., a multi-agent plant with a given control scheme). Next, the dynamics of the
plant and control agents are defined. Finally, the required assumptions for the system are
explained thoroughly with the use of examples where needed.

2.1 Notation and Terminology

Consider a plant composed of n distinct agents that interact in a known manner. Assume
m control agents are used to control the plant. In order to represent the plant and the
control agents, a directed graph is used. The vertices of the graph are the plant agents
and the control agents, denoted O1, ..., On and Xn+1, ..., Xn+m, respectively. The directed
edges of the graph represent the interactions between the agents; specifically, a directed
edge from Oi to Oj means that the output of Oi is an input to Oj (similarly for control
agents). Also, the target of control agent Xi for n + 1 ≤ i ≤ n + m is denoted Ti where
Ti = Oj for some j in the interval 1 ≤ j ≤ n.

Define the set of neighbours of Oi (for 1 ≤ i ≤ n) as

N (Oi) = {Oj : there is a directed edge from Oj to Oi for 1 ≤ j ≤ n}
∪ {Xj : there is a directed edge from Xj to Oi for n+ 1 ≤ j ≤ n+m}.

In an analogous way, define the set of neighbours of Xi (for n+ 1 ≤ i ≤ n+m) as

N (Xi) = {Oj : there is a directed edge from Oj to Xi for 1 ≤ j ≤ n}
∪ {Xj : there is a directed edge from Xj to Xi for n+ 1 ≤ j ≤ n+m}.

5



O6 O7

O8

O3

O2

O1

X13

O5
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O9X15 O11
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Figure 2.1: A controlled plant composed of 12 plant agents (O1-O12) and 3 control agents
(X13-X15).

Figure 2.1 shows a system composed of 12 plant agents and 3 control agents. Target
assignments are shown using red arrows. Thus, T13 = O1, T14 = O4 and T15 = O12.
As an example, the set of neighbours of O8, X13, and X14 are N (O8) = {O7, O10, X14},
N (X13) = ∅, and N (X14) = {O8}, accordingly.

Adapting terminology from graph theory, a path refers to a sequence of nodes that follow
directed edges such that no nodes appear in the sequence more than once. For the system
in Figure 2.1, there are only two paths from X13 to O1: X13 → O6 → O3 → O2 → O1, and
X13 → O6 → O7 → O5 → O3 → O2 → O1, while there exists no path from any agent to
X13.

2.2 The System Model

The dynamics of the plant agents and control agents are formulated in this section. We
denote the scalar output signal of Oi (for 1 ≤ i ≤ n) at time k by yi[k]. Similarly,
we represent the scalar output signal of Xi (for n + 1 ≤ i ≤ n + m) by yi[k]. Also,
Yi[k] is defined to be the set of output signals of all neighbours of Oi or Xi; i.e., Yi[k] =
{yj[k] : Oj ∈ N (Oi) or Xj ∈ N (Oi)} or Yi[k] = {yj[k] : Oj ∈ N (Xi) or Xj ∈ N (Xi)},
respectively. For example, for the system in Figure 2.1 where N (O8) = {O7, O10, X14}, we
have Y8[k] = {y7[k], y10[k], y14[k]}.
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The dynamics of plant agent Oi (for 1 ≤ i ≤ n) are given as below:

xi[k + 1] = fi(xi[k], Yi[k]) (2.1)

yi[k] = hi(xi[k]), (2.2)

while those of control agent Xi (for n+ 1 ≤ i ≤ n+m) are

xi[k + 1] = fi(xi[k], Yi[k], ui[k]) (2.3)

yi[k] = hi(xi[k], ui[k]), (2.4)

where xi[k] represents the state vector of Oi (for 1 ≤ i ≤ n) or that of Xi (for n+ 1 ≤ i ≤
n + m), and ui[k] denotes the scalar control signal of Xi (for n + 1 ≤ i ≤ n + m), where
ui[k] possibly is a function of various states and other control signals (see Assumptions A2

and A3 below).

2.3 Assumptions

For the system with dynamics (2.1)–(2.4), seven standing assumptions are required, as
explained in the following. Assumptions A1-A4 are taken almost word for word from
[5]. Davison and Spieser introduce two other assumptions in [5] concerning the set of
neighbours of each control agent, and the distances1 between the control agents and the
targets, and then try to relax them. In this work, however, these assumptions have been
removed. In fact, Chapters 4 and 5 provide a number of theorems for successful targeting
and/or growing that concern these issues. The last three assumptions are specific to this
work. Assumption A5 deals with the signal propagation times through the system, and
the last two assumptions are critically required for regulation of any plant with generalized
dynamics of (2.1)–(2.4). The first four assumptions are as follows:

Assumption A1: There is at least one path from each control agent to its associated target.

Assumption A2: Control agents can communicate among themselves, with no time delays.

Assumption A3: Each control agent can sense the state of every plant agent or control
agent.

Assumption A4: Each control agent targets a specific plant agent, but there are no duplicate
targets. Hence, in total there are m distinct targets.

Assumption A1 is necessary for Xi to be able to successfully zero Ti. Assumption A2

is included since the control laws developed in this work often require control agents to

1The reason for using the notion of distance between the control agents and the targets is explained in
Assumption A5.
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be able to communicate with other control agents; for simplicity, we assume that all such
communications are possible with no delays. Assumption A3, likewise, is made partly
out of necessity and partly out of simplicity. This is because the control laws developed
require some state information; also, loosening the assumption complicates several matters.
Assumption A4 is included to simplify analysis and to avoid redundancy in control effort.

The next assumption concerns the signal propagation time around the system. Let
δi ≥ 0 be the propagation time through control agent Xi (for n + 1 ≤ i ≤ n + m) which
is defined as the time (measured in samples) required for a change in ui[k] to propagate
through the dynamics (2.3)–(2.4) and to result in a change in yi[k]. In the special case
where the dynamics (2.3)–(2.4) are linear, δi is the relative degree of the transfer function
from ui to yi. Similarly, for any Oj ∈ N (Oi) or Xj ∈ N (Oi) or Oj ∈ N (Xi), define δji ≥ 1
to be the time required for a change in yj[k] to propagate through the dynamics (2.1)–(2.2)
or (2.3)–(2.4) and to result in a change in yi[k]. Our analysis requires the mild assumption
that the propagation times do not depend on the values of the signals:

Assumption A5: The dynamics (2.3)–(2.4) are such that the propagation time δi is indepen-
dent of ui[k], and the dynamics (2.1)–(2.2) and (2.3)–(2.4) are such that the propagation
time δji is independent of yj[k].

Assumption A5 implies that the propagation time along any path in the plant is con-
stant. In the previous work done by Spieser and Davison (see [5, 20, 23, 22, 21, 3]), and
our earlier work in [18], we use the notion of distance between control agents and targets
to refer to the signal propagation time in the system. This is a valid assumption for non-
directed graphs with equal propagation times through all agents. In this thesis, however,
we generalize our work by allowing for arbitrary propagation times through plant agents
and/or control agents and also by allowing for non-symmetrical influence between plant
agents and/or control agents. Thus, the notion of distance is no more valid for our purpose,
and we specifically use propagation times through the plant agents and control agents. In
fact, much of the analysis in this work depends on the propagation time along paths that
originate at control agents and end at targets, so additional notation is warranted: if there
is a path from Xi to Oj (for n + 1 ≤ i ≤ n + m and 1 ≤ j ≤ n), define ∆(Xi, Oj) to
be the time required for a change in ui[k] to propagate through the path, resulting in a
change in yj[k]. If there is only one such path, say Xi → Oα → Oβ → . . . → Oζ → Oj,
then ∆(Xi, Oj) = δi + δiα + δαβ + · · · + δζj; if there are multiple paths from Xi to Oj,
then ∆(Xi, Oj) is the smallest such sum. If there are no paths from Xi to Oj, then the
convention ∆(Xi, Oj) =∞ is used. As an example, consider the system in Figure 2.2 with
the following dynamics:
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X4

X5 O1

O3 O2

Figure 2.2: A system composed of 3 plant agents and 2 control agents.

x1[k + 1] = y5[k] + y2[k]− y3[k], y1[k] = x1[k] (2.5)

x2[k + 1] = −x2[k] + 2y1[k]− 3y3
3[k], y2[k] = x2[k] (2.6)

x3[k + 1] = x3[k] + y1[k] + y4[k], y3[k] = x3[k] (2.7)

x4[k + 1] = u4[k]− y3[k], y4[k] = x4[k] (2.8)

x5,1[k + 1] = 2u5[k], (2.9)

x5,2[k + 1] = x5,1[k], y5[k] = x5,2[k]. (2.10)

For this example, Assumptions A1 and A4 are satisfied by construction. In addition,
Assumption A5 is satisfied, leading to:

∆(X4, O1) = δ4 + δ43 + δ31 = 1 + 1 + 1 = 3,

∆(X4, O2) = δ4 + δ43 + δ32 = 1 + 1 + 1 = 3,

∆(X4, O3) = δ4 + δ43 = 1 + 1 = 2,

∆(X5, O1) = δ5 + δ51 = 2 + 1 = 3,

∆(X5, O2) = δ5 + δ51 + δ12 = 2 + 1 + 1 = 4,

∆(X5, O3) = δ5 + δ51 + δ13 = 2 + 1 + 1 = 4.

The next assumption is that each control agent, considered by itself, should be able
to zero its target, while the deeper issue of whether or not control agents are able to
simultaneously zero their targets (called targeting analysis) is left to Chapter 4:

Assumption A6: Each control agent (say Xi), considered by itself, is able to zero its target
(say Ti = Oj) in the sense that, if all control signals other than that of Xi are presumed to
be known for all time, then the control signal ui[k] can always be found, possibly dependent
on the state of various agents at time k and on the other presumed-known control signals,
to force yj[k + ∆(Xi, Oj)] = 0. (Note that ∆(Xi, Oj) <∞, by Assumption A1.)

Assumption A6 can be thought of as a controllability-like requirement. It is simply
a matter of iterating through the plant dynamics to determine, for each control agent,
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whether or not Assumption A6 is satisfied. As an example, consider again the system
in Figure 2.2 with dynamics (2.5)–(2.10). Control agent X4 has target T4 = O2 with
∆(X4, O2) = 3. Direct iteration through the plant dynamics over three samples yields an
expression for y2[k + 3] as follows:

y2[k + 3] = 4x1[k]−5x2[k]−9x3
3[k]−2x4[k]−2x5,2[k]

+4u5[k − 1]+3(x3[k] + x1[k] + x4[k])3

−3(x1[k] + x2[k]− x3[k] + x4[k] + x5,2[k] + u4[k])3. (2.11)

Setting this expression to zero yields

u4[k] = −x1[k]−x2[k]+x3[k]−x4[k]−x5,2[k]+{4x1[k]

−5x2[k]−9x3
3[k]−2x4[k]−2x5,2[k]+4u5[k − 1]

+3(x3[k] + x1[k] + x4[k])3}1/3 × 3−1/3. (2.12)

Thus, it is possible to find u4[k], dependent on the presumed-known u5[k − 1] and various
state components at time k, to force y2[k+ 3] = 0. This means Assumption A6 is satisfied
for X4. Similarly, for X5, we obtain ∆(X5, T5) = 3, and the expression for y1[k + 3] is

y1[k + 3] = −3x1[k] + 2x2[k]− x3[k] + 3x3
3[k]

−x4[k] + x5,2[k]− u4[k]

−3(x3[k] + x1[k] + x4[k])3 + 2u5[k]. (2.13)

Hence the control signal that forces y1[k + 3] = 0 is

u5[k] = 0.5{3x1[k]− 2x2[k] + x3[k]− 3x3
3[k] + x4[k]

−x5,2[k]+u4[k]+3(x3[k]+x1[k]+x4[k])3}. (2.14)

From the above equation, it can be seen that u5[k] depends on the presumed-known u4[k]
and various state components at time k. Hence, Assumption A6 is satisfied also for X5.

Finally, Assumption A7 below is central to the growing analysis of Chapter 4. Specif-
ically, it allows for the possibility that, by having control agents zero targets, other non-
target plant agents will also be zeroed by the same control laws. The assumption is as
follows:

Assumption A7: The dynamics of Oi in (2.1)–(2.2) satisfy the property that, if all of the
signals in Yi (for 1 ≤ i ≤ n) are fixed at zero, except for one (call that one yj), then, for
any k̄ ≥ 0, yi[k] = 0 (for k ≥ k̄) implies yj[k] = 0 (for k ≥ k̄).
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The example in Figure 2.2 with dynamics (2.5)–(2.10) satisfies this assumption: for O1,
if y1 is held at zero then, since y1 and x1 are equal, x1 must also be held at zero, which
implies y5 + y2 − y3 is held at zero, and therefore if any two of y5, y2, and y3 are held at
zero, the remaining one is also necessarily zero; similarly, for O2, if y2 is held at zero then
x2 must also be held at zero, which implies 2y1 − 3y3

3 is held at zero, and therefore one of
y1 or y3 must be held at zero if the other one is held at zero; likewise, for O3, if y3 is held
at zero then x3 must be held at zero, which implies y1 + y4 is held at zero, and so if one of
y1 or y4 is held at zero, the other must be held at zero too.

Having stated all the required assumptions, we formalize the control objective and the
two problems we deal with in this thesis in the following chapter.
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Chapter 3

Problem Formulation

The control objective in this thesis is deadbeat regulation of the outputs of all plant agents;
That is, it is desirable to drive the output signals of all plant agents to zero in finite time.
We define settling time as below:

Definition 1. Settling time, denoted λ, is the time it takes for the control agents to achieve
deadbeat output regulation of the plant agents from any initial condition (IC), i.e.,

λ = max
IC

min{λ : yi[k] = 0 ∀k ≥ λ, 1 ≤ i ≤ n}.

If full-state regulation is desired, so that the state vectors xi (for 1 ≤ i ≤ n) are driven
to zero instead of just the outputs yi, then additional assumptions on the plant agent
dynamics in (2.1)–(2.2) are needed. For example, deadbeat output regulation implies full-
state regulation if the systems xi[k + 1] = fi(xi[k], 0) (for 1 ≤ i ≤ n) are assumed to be
asymptotically stable. A more complete examination of full-state regulation is left as a
topic for future work.

Different questions might need to be answered when one is trying to regulate a plant or
trying to verify whether or not regulation is achievable for a plant. As an example, consider
the controlled plant in Figure 3.1 with dynamics (2.5)–(2.10) which was first introduced in
the previous chapter. The first basic question is whether or not the control agents —in the
given setting— can achieve deadbeat output regulation of the plant. Other questions that
might arise include: Is it possible to achieve the control objective with a fewer number of
control agents? Where should we place the control agents? How should we assign targets
to the control agents? What is the optimal settling time? How will the control scheme be
affected when disturbances are introduced to the plant?

For the purpose of this thesis, we consider two problems that are stated in the following.
It should be noted that, throughout this thesis, the term “regulation” refers to “deadbeat
output regulation.”

12



X4

X5 O1

O3 O2

Figure 3.1: A system composed of 3 plant agents and 2 control agents.

Problem 1: For a given plant, set of control agents with a specific placement, and tar-
geting assignment, find, if possible, a set of m computable control laws that regulate
the plant.

Problem 2: For a given plant, determine how many control agents are needed, where they
should be placed, and how targets should be assigned so that regulation is achievable
using computable control laws.

We use the term computable control laws in the following sense:

Definition 2. The control signals un+1[·], . . . , un+m[·] are computable if, for every time k,
there exists a permutation of (un+1[k], . . . , un+m[k]) such that each entry (say, up[k]) in the
permutation can be determined using only

• the values of the entries to the left of up[k],

• control signal data from time k − 1 or earlier, and/or

• state data from time k or earlier.

In other words, computability requires that the control laws be causal and that control
signals at any time k can be evaluated sequentially. The need for this notion of com-
putability arises since, if two or more control signals need to be solved concurrently, then
(in general) a set of algebraic nonlinear equations must be solved; such equations may not
even have a solution.

To make the notion of computability more clear, consider again the system in Figure
3.1 with dynamics (2.5)–(2.10). In the previous chapter we found the control signals u4[k]
and u5[k] by forcing y1[k + 3] = 0 and y2[k + 3] = 0 to hold for any time k ≥ 0 (note that
the settling time is λ = max{3, 3} = 3). Recall that u4[k] and u5[k] are:

u4[k] = −x1[k]−x2[k]+x3[k]−x4[k]−x5,2[k]+{4x1[k]

−5x2[k]−9x3
3[k]−2x4[k]−2x5,2[k]+4u5[k − 1]

+3(x3[k] + x1[k] + x4[k])3}1/3 × 3−1/3, (3.1)
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X4

X5 O1

O3 O2

Figure 3.2: The system of Figure 3.1 with a small modification (i.e., no interaction between
O2 and O3).

u5[k] = 0.5{3x1[k]− 2x2[k] + x3[k]− 3x3
3[k] + x4[k]

−x5,2[k]+u4[k]+3(x3[k]+x1[k]+x4[k])3}. (3.2)

It can be seen from (3.1) and (3.2) that u4[k] depends on u5[k − 1] and some state com-
ponents at time k, while u5[k] depends on u4[k] and various state components at time k.
Thus, u4[k] and u5[k] in (3.1) and (3.2) are computable in the sense of Definition 2, with
the permutation (u4[k], u5[k]).

Now, suppose the link from O3 to O2 in Figure 3.1 is broken completely, resulting in
Figure 3.2 with the following simplified dynamics for O2:

x2[k + 1] = −x2[k] + 2y1[k], y2[k] = x2[k]. (3.3)

Dynamics (2.5), (2.7)–(2.10), and (3.3) result in ∆(X4, O2) = 4 and ∆(X5, O1) = 3, and
the control laws that force y2[k + 4] = 0 and y1[k + 3] = 0 are found to be:

u4[k] = −5x1[k] + 4.5x2[k]− x3[k] + 2x5,2[k]

+2u5[k]− 2u5[k − 1], (3.4)

u5[k] = 0.5{3x1[k]− 2x2[k] + x3[k] + x4[k]

−x5,2[k] + u4[k]}. (3.5)

From (3.4) and (3.5), u4[k] depends on u5[k], u5[k − 1], and various state components at
time k, while u5[k] depends on u4[k] and a number of state components at time k. Thus,
control laws u4[k] and u5[k] cannot be computed sequentially; i.e., u4[k] and u5[k] in (3.4)
and (3.5) are not computable in the sense of Definition 2.

We deal with the first problem in Chapter 4. To address the second problem, we
develop necessary conditions for targeting and/or growing to succeed in Chapter 5. Then,
in Chapter 6 we consider different graph structures such as queues, grids, spiders, etc., and
investigate the design problem for each.
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Chapter 4

A Decentralized Control Approach to
Regulation

This chapter deals with Problem 1. Under Assumptions A1–A7 with known plant and
control agent dynamics, known control agent placement, and known targeting assignment,
a novel approach is used to determine if regulation is achievable. This approach is carried
out in two steps: targeting analysis and growing analysis. Targeting analysis answers the
question as to whether or not there exist computable control laws that zero all m targets.
If such control laws exist, we say that targeting succeeds or works ; otherwise, we say
targeting fails or does not work. Growing analysis determines the behaviour of non-target
plant agents when the same computable control laws are used. If all non-target plant
agents are zeroed, then we say that growing succeeds or works. If not, we say growing fails
or does not work. Regulation is achieved if targeting analysis and growing analysis both
succeed. Finally, we close this chapter with a section on the communication requirements
among the control agents and the sensing requirements for control agents to regulate a
plant.

4.1 Targeting Analysis

If only one control agent is introduced to the plant, then under the given set of assumptions,
targeting succeeds. In particular, Assumptions A1 and A6 directly imply that control signal
un+1[k] can be found to zero Tn+1.

If two or more control agents are placed among the plant agents (i.e., m ≥ 2), Assump-
tions A1 and A6 imply that each control agent, by itself, is able to zero its target. However,
it does not follow that the resulting control laws un+1[k], . . . , un+m[k] are computable, in
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the sense described in Definition 2. That is, the m control laws, when considered together,
may not be causal or may not be able to be evaluated sequentially. The purpose of targeting
analysis is to make this determination.

In the previous chapter, we considered a system consisting of three plant agents and
two control agents with dynamics (2.5)–(2.10) in Figure 3.1. Iterating through the plant
dynamics, we found the expressions (3.1) and (3.2) for the control laws, and discussed in
detail in what sense these control laws follow the notion of computability. Also, a variation
of this system with dynamics (2.5), (2.7)–(2.10), and (3.3) was considered in Figure 3.2 in
which a link between two of the plant agents was removed. By deriving the expressions
(3.4) and (3.5) for the control laws, it was shown that regulation of this plant is not
achievable; i.e., there exist no computable control laws for regulation of this plant. Hence,
it is easy to see that the determination as to whether or not targeting succeeds depends
strongly on the structure of the underlying graph.

The other important factor that affects targeting is the propagation time through the
plant agents and control agents. To illustrate this point, consider again another variation
of the controlled plant in Figure 3.1. Suppose the dynamics of O2 are modified so that an
extra sample is required to process y3:

x2,1[k+1] = y3[k] (4.1)

x2,2[k+1] = −x2,2[k]+2y1[k]−3x3
2,1[k], y2[k]=x2,2[k]. (4.2)

Repeating the earlier calculations with these new dynamics results in ∆(X4, T4) = 4 and
∆(X5, T5) = 3, and targeting analysis concludes that the control law, u4[k], that forces
y2[k + 4] = 0 depends on u5[k], while the control law, u5[k], that forces y1[k + 3] = 0
depends on u4[k]. Therefore u4[k] and u5[k] depend on one another, and the control laws
are not computable; i.e., targeting fails.

The above examples are relatively simple to analyze. For more complicated systems,
the use of a dependency graph to keep track of the dependencies among un+1[·], . . . , un+m[·]
helps greatly. The notion of dependency graphs was first introduced by Davison and
Spieser in [5]. The dependency graph has as nodes the signals un+1[·], . . . , un+m[·] at times
. . . , k−2, k−1, k, k+1, k+2, . . ., with directed edges from ui[l−1] to ui[l] (for −∞ < l <∞
and for each i in the interval n+1 ≤ i ≤ n+m) to indicate that ui[l−1] must be computed
before ui[l] can be computed. In addition, directed edges are drawn, for any j 6= i where
∆(Xj, Ti) < ∞, from uj[l + ∆(Xi, Ti) −∆(Xj, Ti)] to ui[l] (for −∞ < l < ∞) to capture
the dependence of ui[·] on uj[·]. This dependency arises from the fact that after ∆(Xi, Ti)
time steps, the control signals ui[l] and uj[l+ ∆(Xi, Ti)−∆(Xj, Ti)] both reach the target
agent Ti (for −∞ < l <∞); consequently, uj[l+ ∆(Xi, Ti)−∆(Xj, Ti)] must be known to
be able to compute ui[l].

As an example, once again we consider the controlled plant composed of three plant
agents and two control agents with dynamics (2.5)–(2.10) and construct its dependency
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(a)

X4

X5 O1

O3 O2

(b)

u5[k − 1] u5[k] u5[k + 1]

u4[k − 1] u4[k] u4[k + 1]

Figure 4.1: A system composed of 3 plant agents and 2 control agents with dynamics
(2.5)–(2.10): (a) the graph structure, (b) the corresponding dependency graph.

graph (see Figure 4.1). Having ∆(X4, T4) = 3, ∆(X4, T5) = 3, ∆(X5, T4) = 4, and
∆(X5, T5) = 3, we need to draw arrows from u4[l] to u5[l], and from u5[l − 1] to u4[l]
(for −∞ < l < ∞) in the dependency graph. The graph structure and the dependency
graph for this example are shown in Figure 4.1. This dependency graph has no loops,
which is consistent with our earlier conclusion: it is possible to compute the control signals
sequentially. The sequence in which the control signals should be evaluated can be read
off the green arrows in the dependency graph: u4[k] can be computed using control-signal
information from time k − 1 (in addition, of course, to state information at time k), while
u5[k] can be computed using the value of u4[k] in addition to control-signal information
from time k − 1 (and, again, state information at time k).

Similarly, we can draw the dependency graph for the two variations of the above ex-
ample; i.e., (i) the controlled plant with dynamics (2.5),(2.7)–(2.10) and (3.3) as shown in
Figure 4.2(a) for ease of reference, and (ii) the controlled plant with dynamics (2.5), (2.7)–
(2.10) and (4.1)–(4.2) as shown in Figure 4.2(b). Dynamics of these controlled plants both
generate the same dependency graph shown in Figure 4.2(c). Note that there are loops in
this dependency graph, capturing the fact that u4[k] cannot be computed without knowing
u5[k], and vice-versa; consequently, there do not exist computable control laws to zero both
targets.

As a more complicated example, consider the system in Figure 4.3(a). Assuming for
simplicity that all δi and δji values are 1, the dependency graph in Figure 4.3(b) results.
As it can be seen in this figure, the dependency graph has no loops, so targeting succeeds;
i.e., there exists a set of computable control laws that can zero all targets in Figure 4.3(a).
The control law sequence can be observed from the dependency graph: at time k, first X13
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(a) (b)

X4

X5 O1

O3 O2 X4

X5 O1

O3 O2

(c)

u5[k − 1] u5[k] u5[k + 1]

u4[k − 1] u4[k] u4[k + 1]

Figure 4.2: Controlled plants composed of three plant agents and two control agents: (a)
the graph structure for the system with dynamics (2.5),(2.7)–(2.10) and (3.3), (b) the
graph structure for the system with dynamics (2.5), (2.7)–(2.10), and (4.1)–(4.2), (c) the
corresponding dependency graph for both systems.

computes u13[k] which depends on control-signal information before time k, in addition to
the state information at time k. Then, X13 passes the value of u13[k] to X14 who similarly
computes u14[k] which depends on control-signal information from before time k and on
u13[k], in addition to the state information at time k. Next, X14 passes the values of u14[k]
to X15 so that X15 can compute u15[k] using the control-signal information from before
time k and u14[k], in addition to the state information at time k.

The above discussion, which extends recent work in [5] and [18], is summarized in parts
(a) and (b) of the following theorem. Part (c) of the theorem is new, and, in addition to
being potentially useful in automating targeting analysis, is employed in Chapter 5.

Theorem 1. For a given plant, given set of m ≥ 2 control agents, and given targeting
assignment, the following three conditions are equivalent:
(a) Targeting succeeds.
(b) The dependency graph has no loops.
(c) For every p in the interval 2 ≤ p ≤ m and every permutation involving p of the m
control agents (denoted (X̄1, . . . , X̄p) with corresponding targets (T̄1, . . . , T̄p)),

p∑
i=1

∆(X̄i, T̄i) <

p−1∑
i=1

∆(X̄i, T̄i+1) + ∆(X̄p, T̄1). (4.3)

Proof: The equivalence of (a) and (b) follow immediately from the definition of com-
putability and from the way the dependency graph is constructed. Condition (c) is a
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(a)

O6 O7

O8

O3

O2

O1

X13

O5

O4

X14

O10

O9X15 O11

O12

(b)

u13[k − 3]

u14[k − 3]

u15[k−3]

u13[k − 2]

u14[k − 2]

u15[k−2]

u13[k − 1]

u14[k − 1]

u15[k−1]

u13[k]

u14[k]

u15[k]

u13[k + 1]

u14[k + 1]

u15[k+1]

Figure 4.3: A controlled plant composed of 12 plant agents and 3 control agents, assuming
all δi and δji values are 1: (a) the graph structure, (b) the corresponding dependency
graph.
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mathematical statement that there are no loops in the dependency graph involving nodes
on all p (where 2 ≤ p ≤ m) of the m “horizontal lines” of the dependency graph, and
therefore condition (c) is equivalent to condition (b). To derive (4.3), fix p (for 2 ≤ p ≤ m)
and fix the specific permutation (X̄1, . . . , X̄p) under the constraints that ∆(X̄i, T̄i+1) <∞
(for 1 ≤ i ≤ p − 1) and ∆(X̄p, T̄1) < ∞. If these constraints are violated, then (4.3)
holds trivially. Note that the left-hand side of (4.3) is necessarily finite by Assumption A1.
Think of the dependency graph, and focus on the p “horizontal lines” that correspond
to ū1, . . . , ūp (where ūp is the control signal for X̄p). The dependency graph has various
arrows, including arrows

from ū1[k + ∆(X̄2, T̄2)−∆(X̄1, T̄2)] to ū2[k],

from ū2[k + ∆(X̄3, T̄3)−∆(X̄2, T̄3)] to ū3[k],
...

from ūp−2[k + ∆(X̄p−1, T̄p−1)−∆(X̄p−2, T̄p−1)] to ūp−1[k],

from ūp−1[k + ∆(X̄p, T̄p)−∆(X̄p−1, T̄p)] to ūp[k],

from ūp[k + ∆(X̄1, T̄1)−∆(X̄p, T̄1)] to ū1[k].

The dependency graph also has duplicates of each of the above arrows, generated by
replacing k with k ± 1, k ± 2, etc. Specifically, on defining

ap = ∆(X̄p, T̄p)−∆(X̄p−1, T̄p),

ap−1 = ∆(X̄p−1, T̄p−1)−∆(X̄p−2, T̄p−1),

...

a3 = ∆(X̄3, T̄3)−∆(X̄2, T̄3),

a2 = ∆(X̄2, T̄2)−∆(X̄1, T̄2),

a1 = ∆(X̄1, T̄1)−∆(X̄p, T̄1),

the dependency graph has arrows

from ū1[k+a2+a3 + · · ·+ap] to ū2[k + a3+ · · ·+ap],
from ū2[k+a3+a4+ · · ·+ap] to ū3[k + a4+ · · ·+ap],

...

from ūp−2[k + ap−1 + ap] to ūp−1[k + ap],

from ūp−1[k + ap] to ūp[k],

from ūp[k] to ū1[k − a1],
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ū1[k − a1]

...

. . .

. . .

. . .

. . .

. . .

ū1[k]

ū2[k]

...
ūp−2[k]

ūp−1[k]

ūp[k]

. . .

. . .

. . .

. . .

ū1[k + γ]

ū2[k + β]

...
ūp−2[k + α]

ūp−1[k + ap]

. . .

. . .

. . .

. . .

. . .

Figure 4.4: Dependency graph for the proof of Theorem 1(c). Note that α = ap−1 + ap,
β = a3 + · · ·+ ap−1 + ap, and γ = a2 + a3 + · · ·+ ap−1 + ap.

as can be seen in Figure 4.4. By construction, the first p− 1 of the above arrows connect
together, forming a path from the ū1 “horizontal line” down to the ūp “horizontal line” of
the dependency graph. The last arrow then connects the end of the path back to a node on
the ū1 “horizontal line.” Hence, a loop involving all p arrows does not exist if and only if the
end of the last arrow lies to the right of the start of the path, i.e., a2 +a3 + · · ·+ap < −a1;
substituting in for a1, . . . , ap yields (4.3).

To help understand condition (c) of Theorem 1, consider the case where m = 2. Con-
dition (c) then generates a single inequality:

∆(X1, T1) + ∆(X2, T2) < ∆(X1, T2) + ∆(X2, T1).

The theorem states this is a necessary and sufficient condition for targeting to succeed.
Consider again the plant with dynamics (2.5)–(2.10) in Figure 4.1(a) with ∆(X4, T4) = 3,
∆(X4, T5) = 3, ∆(X5, T4) = 4, and ∆(X5, T5) = 3. The above inequality holds for this
example, implying that targeting works, which is consistent with our earlier analysis with
the use of dependency graph shown in Figure 4.1(b). On the other hand, the plant with
dynamics (2.5),(2.7)–(2.10) and (3.3) in Figure 4.2(a) with ∆(X4, T4) = 4, ∆(X4, T5) = 3,
∆(X5, T4) = 4, and ∆(X5, T5) = 3 violates the aforementioned inequality, indicating that
targeting fails for this system which was shown earlier with the existence of loops in the
corresponding dependency graph in Figure 4.2(c). When m = 3, condition (c) of Theorem
1 generates three distinct inequalities for p = 2:

∆(X1, T1) + ∆(X2, T2) < ∆(X1, T2) + ∆(X2, T1),
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∆(X1, T1) + ∆(X3, T3) < ∆(X1, T3) + ∆(X3, T1),

∆(X2, T2) + ∆(X3, T3) < ∆(X2, T3) + ∆(X3, T2),

and two distinct inequalities for p = 3:

∆(X1, T1) + ∆(X2, T2) + ∆(X3, T3) < ∆(X1, T2) + ∆(X2, T3) + ∆(X3, T1),

∆(X1, T1) + ∆(X2, T2) + ∆(X3, T3) < ∆(X1, T3) + ∆(X3, T2) + ∆(X2, T1).

All five of these inequalities, together, are necessary and sufficient for targeting to succeed.
In general, condition (c) generates a total of

m∑
p=2

Cm
p · (p− 1)! =

m∑
p=2

m!/[p(m− p)!]

distinct inequalities.

4.2 Growing Analysis

Assume at this point that targeting succeeds, so the m control agents have computable
control laws to zero their respective targets. We now turn to growing analysis to determine
whether the m control laws happen to zero non-target plant agents in addition to the
targets. Assumption A7 makes this analysis a straightforward extension of our earlier work
(see [5] and [18]). The analysis, in the form of an algorithm called the Growing Analysis
Algorithm (GAA), is provided in Figure 4.5. In the analysis, Ω denotes the set of agents
that are necessarily zeroed by the control laws that zero the targets. The set Ω “grows”
as the algorithm proceeds, explaining the name of this analysis. The following theorem
establishes two facts:

Theorem 2. For a given plant, given set of m ≥ 1 control agents, and given targeting
assignment, assume targeting succeeds. Then the following hold:
(a) The Growing Analysis Algorithm terminates after a finite number of iterations.
(b) If growing succeeds, then regulation of the plant is achieved with settling time λ =
max{∆(Xi, Ti) : n+ 1 ≤ i ≤ n+m}.
(c) The time complexity of the Growing Analysis Algorithm is O(n2).

Proof: The Growing Analysis Algorithm terminates after a finite number of iterations
since it requires Step 2 to be executed, at most, n times. If growing succeeds, then Ω
contains all n of the plant agents, and therefore the control laws zero every plant agent,
which is the definition of regulation in this thesis. By Assumption A7, all plant agents are
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Step 1: Initialize Ω = {Tn+1, . . . , Tn+m}.

Step 2: Determine if there exists a Oj ∈ Ω such that all agents in N (Oj), except for exactly
one (call it Oq or Xq, depending on the type of agent), are elements of Ω. Then necessarily
Oq (or Xq) is zeroed. Augment Ω with Oq (or Xq).

Step 3: Repeat Step 2 until either:

– all of O1, . . . , On are in Ω, in which case growing succeeds, or
– no Oj can be found satisfying the condition of Step 2, and at least one plant agent does
not appear in Ω, in which case growing fails.

Figure 4.5: The Growing Analysis Algorithm (GAA).

Number of elements Number of elements
in Ω examined (worst case)
m m

m+1 m+1
m+2 m+2

...
...

n-1 n-1
n -

Table 4.1: Data for complexity analysis of the Growing Analysis Algorithm.

zeroed no later than the time instant when all targets are zeroed, which is determined by
the largest value of ∆(Xi, Ti) for n + 1 ≤ i ≤ n + m. Finally, the information listed in
Table 4.1 is used for the complexity analysis of the Growing Analysis Algorithm. In Step
1, m elements are included in Ω. In the second step, in the worst case, all the m elements
have to be checked to continue to Step 3. If Step 2 is carried out successfully, then we have
to consider, in the worst case, m + 1 elements in Step 3 and so on. Once all the n plant
agents are in Ω, the GAA is terminated. Overall, the number of examinations made in the
worst case is found to be:

n−1∑
i=m

i =
n−1∑
i=0

i−
m−1∑
i=0

i

=
n(n− 1)

2
− m(m− 1)

2
.

Thus, the time complexity of the GAA is O(n2).
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As an example, consider once again the system with dynamics (2.5)–(2.10) in Figure
4.1(a). It was previously shown that targeting succeeds and that Assumption A7 holds.
Applying the Growing Analysis Algorithm to this system yields:

Ω = {O2, O1} [from Step 1],

Ω = {O2, O1, O3} [from Step 2 with Oj = O2 and Oq = O3].

Consequently, growing succeeds and the control laws in (3.1) and (3.2) regulate the plant
with settling time λ = max{3, 3} = 3. As another example, imagine the same system,
but with X5 or X4 removed, leaving only one control agent. Now targeting succeeds,
but growing fails. Finally, consider again the system in Figure 4.3(a) for which we showed
there are no loops in the dependency graph in the previous section, implying that targeting
works. Under Assumption A7, the Growing Analysis Algorithm proceeds (non-uniquely)
with

Ω = {O1, O4, O12},
Ω = {O1, O4, O12, O2},
Ω = {O1, O4, O12, O2, O3},
Ω = {O1, O4, O12, O2, O3, O5},
Ω = {O1, O4, O12, O2, O3, O5, O6},
Ω = {O1, O4, O12, O2, O3, O5, O6, O7},
Ω = {O1, O4, O12, O2, O3, O5, O6, O7, O8},
Ω = {O1, O4, O12, O2, O3, O5, O6, O7, O8, O11},
Ω = {O1, O4, O12, O2, O3, O5, O6, O7, O8, O11, O10},
Ω = {O1, O4, O12, O2, O3, O5, O6, O7, O8, O11, O10, O9},

so growing succeeds. Thus, regulation is achieved with settling time λ = max{5, 5, 5} = 5.
(All δi and δji values are assumed to be 1.) It should be noted that, in contrast to targeting
analysis, growing analysis depends only on the graph structure of the plant and not the
propagation time through the plant agents and control agents.

4.3 Communication and Sensing Requirements

In Chapter 2, we made assumptions regarding the communication requirements among the
control agents and the sensing requirements for control agents to regulate a plant using
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X13

X12
O1

O3

O2 O4 O5

O6

O11

O7

X14

O8 O9 O10

Figure 4.6: A controlled plant composed of 11 plant agents and 3 control agents.

the targeting approach (see Assumptions A2 and A3). For simplicity, we are assuming
no constraints on communication among the control agents and sensing capabilities of the
control agents. In practice, however, not all control agents need to communicate nor need to
sense the state of all the plant agents and/or control agents in the system. Communication
and sensing requirements are not unique for a given control scheme. In fact, communication
requirements are tightly interrelated with sensing requirements and intuitively, there is
(generally) a trade-off between the two: the more sensing ability the control agents have,
the less communication is needed among them to regulate the plant. For instance, if each
control agent can sense the whole state of the plant and other control agents, there is no
need for control agents to communicate with each other. Thus, communication and sensing
requirements can be determined depending on the application.

In the following, we use an example to show how communication and sensing require-
ments can be determined for regulation of a given plant. Consider a controlled plant as in
Figure 4.6 with the following dynamics:
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x1[k + 1] = −x1[k] + y2[k] + y12[k], y1[k] = x1[k] (4.4)

x2[k + 1] = y1[k]− y3[k] + y4[k], y2[k] = x2[k] (4.5)

x3[k + 1] = y2[k]− 2y13[k]− y4[k] + y5[k], y3[k] = x3[k] (4.6)

x4[k + 1] = −y2[k] + y5[k], y4[k] = x4[k] (4.7)

x5[k + 1] = x5[k] + y4[k]− y6[k]− 2y11[k], y5[k] = x5[k] (4.8)

x6[k + 1] = −x6[k] + y5[k]− 3y7[k], y6[k] = x6[k] (4.9)

x7[k + 1] = y6[k] + 2y8[k], y7[k] = x7[k] (4.10)

x8[k + 1] = −x8[k]− y7[k] + y9[k], y8[k] = x8[k] (4.11)

x9[k + 1] = y8[k] + y10[k], y9[k] = x9[k] (4.12)

x10[k + 1] = x10[k] + y9[k], y10[k] = x10[k] (4.13)

x11[k + 1] = y5[k]− y14[k], y11[k] = x11[k] (4.14)

x12[k + 1] = 2u12[k] + y1[k], y12[k] = x12[k] (4.15)

x13,1[k + 1] = u13[k]− y3[k], (4.16)

x13,2[k + 1] = x13,1[k], (4.17)

x13,3[k + 1] = x13,2[k], y13[k] = x13,3[k] (4.18)

x14[k + 1] = −u14[k], y14[k] = x14[k]. (4.19)

To find the control laws u12, u13, and u14 for this system, we need to find the expressions
y4[k + ∆(X12, O4)], y3[k + ∆(X13, O3)] and y10[k + ∆(X14, O10)] and set them all to zero
(refer to Assumption A6). Based on dynamics (4.4)–(4.19), we have ∆(X12, O4) = 4,
∆(X13, O3) = 4, and ∆(X14, O10) = 8. In the following, we find the expressions for
y4[k + 4], y3[k + 4] and y10[k + 8] by direct iteration through the plant dynamics:

y4[k + 4] = x4[k + 4] = −y2[k + 3] + y5[k + 3]

= −y1[k + 2] + y3[k + 2] + y5[k + 2]− y6[k + 2]

−2y11[k + 2]

= y1[k + 1] + y4[k + 2]− 2y5[k + 1] + 3y7[k + 1]

−2y11[k + 1]− y12[k + 1]− 2y13[k + 1] + 2y14[k + 1]

= −2y1[k]− 2y4[k]− 3y5[k] + 5y6[k] + 6y8[k] + 4y11[k]

+y12[k]− 2x13,2[k] + 2y14[k]− 2u12[k]− 2u14[k]

= −2x1[k]− 2x4[k]− 3x5[k] + 5x6[k] + 6x8[k] + 4x11[k]

+x12[k]− 2x13,2[k] + 2x14[k]− 2u12[k]− 2u14[k], (4.20)
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y3[k + 4] = x3[k + 4] = y2[k + 3]− 2y13[k + 3]

= y1[k + 2]− y3[k + 2] + y4[k + 2]− 2u13[k] + 2y3[k]

= −y1[k + 1]− y2[k + 1] + y5[k + 1] + y12[k + 1]

+2y13[k + 1]− 2u13[k] + 2y3[k]

= y1[k]− y2[k] + 3y3[k] + y5[k]− y6[k]− 2y11[k]

−y12[k] + 2x13,2[k] + 2u12[k]− 2u13[k]

= x1[k]− x2[k] + 3x3[k] + x5[k]− x6[k]− 2x11[k]

−x12[k] + 2x13,2[k] + 2u12[k]− 2u13[k], (4.21)

y10[k + 8] = x10[k + 8] = x10[k + 7] + y9[k + 7]

= y8[k + 6] + y9[k + 6] + 2y10[k + 6]

= −y7[k + 5] + 3y9[k + 5] + 3y10[k + 5]

= −y6[k + 4] + y8[k + 4] + 3y9[k + 4] + 6y10[k + 4]

= −y5[k + 3] + y6[k + 3] + 2y7[k + 3]

+2y8[k + 3] + 7y9[k + 3] + 9y10[k + 3]

= −y4[k + 2] + 2y6[k + 2]− 5y7[k + 2] + 9y8[k + 2]

+11y9[k + 2] + 16y10[k + 2] + 2y11[k + 2]

= y2[k + 1] + 3y5[k + 1]− 7y6[k + 1]− 15y7[k + 1]

−8y8[k + 1] + 25y9[k + 1] + 27y10[k + 1]− 2y14[k + 1]

= y1[k]− y3[k] + 4y4[k]− 4y5[k]− 11y6[k] + 29y7[k]

+3y8[k] + 19y9[k] + 52y10[k]− 6y11[k] + 2u14[k]

= x1[k]− x3[k] + 4x4[k]− 4x5[k]− 11x6[k] + 29x7[k]

+3x8[k] + 19x9[k] + 52x10[k]− 6x11[k] + 2u14[k]. (4.22)

Setting (4.20), (4.21), and (4.22) to zero, control laws are found to be:

u12[k] =
1

2
(−2x1[k]− 2x4[k]− 3x5[k] + 5x6[k] + 6x8[k]

+4x11[k] + x12[k]− 2x13,2[k] + 2x14[k]− 2u14[k]), (4.23)

u13[k] =
1

2
(x1[k]− x2[k] + 3x3[k] + x5[k]− x6[k]

−2x11[k]− x12[k] + 2x13,2[k] + 2u12[k]), (4.24)

u14[k] =
−1

2
(x1[k]− x3[k] + 4x4[k]− 4x5[k]− 11x6[k] + 29x7[k]

+3x8[k] + 19x9[k] + 52x10[k]− 6x11[k]). (4.25)
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Looking at expressions (4.23), (4.24), and (4.25), we can deduce that:

• Control agent X14 needs to sense the state of all the plant agents except O2 to be
able to compute u14[k].

• Control agent X12 needs to measure the state of plant agents O1, O4, O5, O6, O8,
and O11, and the state of X14 and partly X13, and also communicate with control
agent X14 to obtain u14[k] to compute u12[k].

• Control agent X13 can compute u13 if it is able to measure the state of plant agents
O1, O2, O3, O5, O6, and O11, and the state of X12. Also X13 must communicate with
control agent X12 to obtain u12[k].

Manipulating these expressions, however, can result in different communication and
sensing requirements. As an example, substituting (4.25) into (4.23) yields:

u12[k] =
1

2
(−x1[k]− x3[k] + 2x4[k]− 7x5[k]− 6x6[k]

+29x7[k] + 9x8[k] + 19x9[k] + 52x10[k]− 2x11[k]

+x12[k]− 2x13,2[k] + 2x14[k]). (4.26)

And substituting (4.26) into (4.24) gives:

u13[k] =
1

2
(−x2[k] + 2x3[k] + 2x4[k]− 6x5[k]− 7x6[k]

+29x7[k] + 9x8[k] + 19x9[k] + 52x10[k]

−4x11[k] + 2x14[k]). (4.27)

If expressions (4.25), (4.26) and (4.27) are used by the control agents to compute the control
laws, then the control agents will no longer need to communicate with each other. The
sensing requirements for control agents X12 and X13 also change: Control agent X12 has
to sense the state of O3, O7, O9, and O10 in addition to the previous sensing requirements.
Control agent X13 does not need to sense the state of O1 and X12 any more; however, X13

now has to sense O4, O7, O8, O9, O10, and X14.

Constructing the dependency graph can also be helpful in determining the communi-
cation requirements (if any) among the control agents. Figure 4.7 shows the dependency
graph for the system in Figure 4.6. Note that this dependency graph is consistent with
(4.23), (4.24), and (4.25), even though this might not be apparent from the expressions.
However, further iterations through the plant dynamics confirms the constructed depen-
dency graph. For instance, further iterations of (4.23) show that u12[k] depends on u13[k−2]
in addition to u14[k] as seen in Figure 4.7. The communication requirements can be deter-
mined based on the sequence in which the control signals must be computed; i.e., as it can
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u12[k − 5]
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Figure 4.7: The dependency graph of the system in Figure 4.6 with no loops, implying
that targeting succeeds.

k x1[k] x2[k] x3[k] x4[k] x5[k] x6[k] x7[k] x8[k] x9[k] x10[k] x11[k]
0 2 -1 1 4 -1 2 3 -1 -2 1 2
1 -3 5 -1 0 -3 -12 0 -4 0 -1 -1
2 98 -2 5 -8 11 9 -20 4 -5 -1 -45.5
3 83 85 -2 13 85 62 17 11 3 -6 -31
4 -568 98 0 0 98 -28 84 -25 5 -3 347
5 -1066 -568 0 0 -568 -126 -78 -54 -28 2 312
6 -156 -1066 0 0 -1066 -208 -234 104 -52 -26 -351
7 0 -156 0 0 -156 -156 0 78 78 -78 0
8 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0

Table 4.2: Simulation results of the states of the plant agents in Figure 4.6. Note that the
settling time is λ = 8.

be seen in Figure 4.7, at time k, first X14 computes u14[k] using control-signal information
from time k−1 (in addition, of course, to state information at time k), next communicates
that information to X12. Then X12 similarly computes u12[k], and passes the value of u12[k]
to X13 so that X13 can compute u13[k]. As mentioned before, regulation of this system
can be achieved through other communication and sensing requirements set for the control
agents (refer to (4.25), (4.26), and (4.27)).

Finally, to confirm that regulation is achieved using the control laws in (4.23), (4.24),
and (4.25), the plant with dynamics (4.4)–(4.19) was simulated in MATLAB using arbitrary
initial conditions. The obtained values of the states of the plant agents and control agents
over time steps k = 1 to k = 8 have been summarized in Tables 4.2 and 4.3. As it can
be seen in Table 4.2, all the plant agents get zeroed at k = 8 as the settling time for this
plant is λ = max{4, 4, 8} = 8. Lastly, a summary of the values of the control signals over
the specified time steps is given in Table 4.4.
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Time Step (k) x12[k] x13,1[k] x13,2[k] x13,3[k] x14[k]
0 0 0 0 0 0
1 90 42.5 0 0 42.5
2 183 49 42.5 0 42
3 -570 -284 49 42.5 -262
4 -1732 -533 -284 49 -214
5 -654 -78 -533 -284 -217
6 910 0 -78 -533 -1066
7 156 0 0 -78 -156
8 0 0 0 0 0
9 0 0 0 0 0

Table 4.3: Simulation results of the states of the control agents in Figure 4.6.

Time Step (k) u12[k] u13[k] u14[k]
0 44 43.5 -42.5
1 93 48 -42
2 -334 -279 262
3 -907.5 -535 214
4 -43 -78 217
5 988 0 1066
6 156 0 156
7 0 0 0
8 0 0 0
9 0 0 0

Table 4.4: Simulation results of the control signals in Figure 4.6.
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Chapter 5

Necessary Conditions for Targeting
and/or Growing to Succeed

In the previous chapter we dealt with Problem 1. This chapter addresses Problem 2. To
help a designer determine how many control agents should be used, where control agents
should be placed, and what targeting assignment should be used, two theorems are given
in this chapter that provide several intuitively-appealing necessary conditions to ensure
targeting and/or growing succeed. Theorem 3 uses Condition (c) of Theorem 1 (that is,
inequality (4.3)) to derive two necessary conditions for targeting to succeed. Theorem 4
gives two necessary conditions for growing to work.

Theorem 3 is stated below. Part (b) of the theorem concerns intersections between
fastest paths from control agents to their respective targets. A fastest path from Xi to Ti
refers to a (possibly non-unique) path from Xi to Ti, say Xi → Oα → Oβ → . . . → Oζ →
Oj, such that:

δi + δiα + δαβ + · · ·+ δζj = ∆(Xi, Oj).

For example, consider again the controlled plant composed of three plant agents and
two control agents with dynamics (2.5)–(2.10) as shown in Figure 5.1(a). Given that
∆(X4, T4) = 3, the only fastest path from X4 to T4 in this figure is X4 → O3 → O2

with δ4 + δ43 + δ32 = 3; X4 → O3 → O1 → O2 is a path, but not a fastest path as
δ4 + δ43 + δ31 + δ12 = 4.

Theorem 3. For a given plant, given set of m ≥ 2 control agents, and given targeting
assignment, assume that targeting succeeds. Then both the following hold:
(a) Propagation times along the paths from control agents to respective targets must be,
on average, less than propagation times along the paths from control agents to all other
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(a) (b)

X4

X5 O1

O3 O2 X4

X5 O1

O3 O2

Figure 5.1: Controlled plants composed of three plant agents and two control agents: (a)
the graph structure for the system with dynamics (2.5)–(2.10), (b) the graph structure for
the system with dynamics (2.5), (2.7)–(2.10), and (3.3).

targets:

1

m

n+m∑
i=n+1

∆(Xi, Ti) <
1

m(m− 1)

n+m∑
i=n+1

n+m∑
j=n+1
j 6=i

∆(Xi, Tj) (5.1)

(b) There are no nodes in common between a fastest path connecting Xi to Ti (for n+ 1 ≤
i ≤ n+m) and a fastest path connecting Xj to Tj (for n+ 1 ≤ j ≤ n+m, j 6= i).

Proof: For p = 2, condition (4.3) generates m(m − 1)/2 unique inequalities that are
necessary for targeting to succeed, i.e.,

• For (Xn+1, Xn+2):

∆(Xn+1, Tn+1) + ∆(Xn+2, Tn+2) < ∆(Xn+1, Tn+2) + ∆(Xn+2, Tn+1),

• For (Xn+1, Xn+3):

∆(Xn+1, Tn+1) + ∆(Xn+3, Tn+3) < ∆(Xn+1, Tn+3) + ∆(Xn+3, Tn+1),

...

• For (Xn+1, Xn+m):

∆(Xn+1, Tn+1) + ∆(Xn+m, Tn+m) < ∆(Xn+1, Tn+m) + ∆(Xn+m, Tn+1),

• For (Xn+2, Xn+3):

∆(Xn+2, Tn+2) + ∆(Xn+3, Tn+3) < ∆(Xn+2, Tn+3) + ∆(Xn+3, Tn+2),
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• For (Xn+2, Xn+4):

∆(Xn+2, Tn+2) + ∆(Xn+4, Tn+4) < ∆(Xn+2, Tn+4) + ∆(Xn+4, Tn+2),

...

• For (Xn+2, Xn+m):

∆(Xn+2, Tn+2) + ∆(Xn+m, Tn+m) < ∆(Xn+2, Tn+m) + ∆(Xn+m, Tn+2),

...

• For (Xn+m−2, Xn+m−1):

∆(Xn+m−2, Tn+m−2)+∆(Xn+m−1, Tn+m−1) < ∆(Xn+m−2, Tn+m−1)+∆(Xn+m−1, Tn+m−2),

• For (Xn+m−2, Xn+m):

∆(Xn+m−2, Tn+m−2) + ∆(Xn+m, Tn+m) < ∆(Xn+m−2, Tn+m) + ∆(Xn+m, Tn+m−2),

• For (Xn+m−1, Xn+m):

∆(Xn+m−1, Tn+m−1) + ∆(Xn+m, Tn+m) < ∆(Xn+m−1, Tn+m) + ∆(Xn+m, Tn+m−1).

Add these m(m− 1)/2 inequalities together to get

(m− 1)
n+m∑
i=n+1

∆(Xi, Ti) <
n+m∑
i=n+1

n+m∑
j=n+1
j 6=i

∆(Xi, Tj).

Multiply each side by 1/m(m− 1) to obtain (5.1).

To prove condition (b), we show that, if there is an intersection between a fastest path
from, say, X̄1 to T̄1 and a fastest path from X̄2 to T̄2, then necessarily (4.3) is violated,
implying that targeting fails. To this end, consider the setup in Figure 5.2 in which Op

denotes a node that lies on both a fastest path from X̄1 to T̄1 and a fastest path from X̄2

to T̄2. As indicated in the figure, define

a = ∆(X̄1, Op),

b = ∆(Op, T̄1),

c = ∆(Op, T̄2),
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· · ·

Figure 5.2: System for the proof of Theorem 3(b).

and
d = ∆(X̄2, Op).

Any number of plant agents and control agents can appear in the “cloud” in the figure.

Since X̄1 → · · · → Op → · · · → T̄1 is assumed to be a fastest path, ∆(X̄1, T̄1) = a + b.
Likewise, ∆(X̄2, T̄2) = c+ d. Summing these two equalities leads to

∆(X̄1, T̄1) + ∆(X̄2, T̄2) = a+ b+ c+ d. (5.2)

Moreover, since X̄2 → · · · → Op → · · · → T̄1 is one path from X̄2 to T̄1, we know
∆(X̄2, T̄1) ≤ b+ d (see Figure 5.2). Similarly, ∆(X̄1, T̄2) ≤ a+ c. Summing these last two
inequalities leads to

∆(X̄2, T̄1) + ∆(X̄1, T̄2) ≤ a+ b+ c+ d. (5.3)

Compare (5.2) and (5.3) to conclude

∆(X̄1, T̄1) + ∆(X̄2, T̄2) ≥ ∆(X̄2, T̄1) + ∆(X̄1, T̄2),

which violates (4.3) for one of the permutations associated with p = 2.

Theorem 3(a) is an encouraging result since, in some applications (certainly in the
crowd-control application that motivated our work), it is desirable for control agents and
respective targets to be close to one another; the theorem says that this, in fact, must be
the case (on average) for targeting to succeed. Consider again the system in Figure 5.3.
In the previous chapter, it was shown that, assuming all δi = 1 and δji = 1, targeting
succeeds for this example. By calculating the propagation times between control agents
and targets, it is easy to verify that (5.1) holds as expected; i.e.,

1

3
(∆(X13, T13) + ∆(X14, T14) + ∆(X15, T15)) <

1

6
(∆(X13, T14) +∆(X13, T15) +∆(X14, T13)

+ ∆(X14, T15) + ∆(X15, T13) + ∆(X15, T14))
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Figure 5.3: A controlled plant composed of 12 plant agents and 3 control agents.

as ∆(X13, T13) = 5, ∆(X14, T14) = 5, ∆(X15, T15) = 5, ∆(X13, T14) = 5, ∆(X13, T15) = 6,
∆(X14, T13) = 6, ∆(X14, T15) = 5, ∆(X15, T13) = 8, and ∆(X15, T14) = 7. As another
example, Figure 5.4 illustrates a system for which targeting fails and yet (5.1) is satisfied,
showing that, although necessary, (5.1) is not sufficient for targeting to succeed.

Condition (b) of Theorem 3 generalizes a result that appears in [18], which applies only
to the specialized dynamics of the crowd-control application. Condition (b) is appealing
because it is easy to verify and, when working on Problem 2, it can be used to greatly
reduce the number of combinations of control agent locations and target locations that need
to be considered. The implication of this result can be seen in Chapter 6. The condition
is consistent with all previous examples: fastest paths do not intersect for the system in
Figure 5.1(a) with dynamics (2.5)–(2.10) for which it was shown earlier that targeting
succeeds. On the other hand, fastest paths do intersect for the system in Figure 5.1(b),
implying that targeting fails, as previously verified. Finally, it is possible to find examples
where fastest paths do not intersect, and yet targeting fails such as the system in Figure
5.5; hence, having non-intersecting fastest paths is a necessary, but not sufficient, condition
for targeting to succeed.

The next theorem provides two necessary conditions for growing to succeed:

Theorem 4. For a given plant, given set of m ≥ 1 control agents, and given targeting as-
signment, assume that targeting succeeds. Then growing succeeds only if both the following
hold:
(a) Each plant agent lies on the fastest path from some Xi to its associated Ti.
(b) For each Xi, the fastest path from Xi to Ti is unique.
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(a)

O1 O8

O9

O5

O4

O2

O3

O7

O6

X10

X11

X12

(b)

u10[k − 2]

u11[k − 2]

u12[k−2]

u10[k − 1]

u11[k − 1]

u12[k−1]

u10[k]

u11[k]

u12[k]

u10[k + 1]

u11[k + 1]

u12[k+1]

Figure 5.4: System with all δi = 1 and δji = 1 for which targeting fails and yet (5.1)
is satisfied as ∆(X10, T10) = 4, ∆(X11, T11) = 3, ∆(X12, T12) = 4, ∆(X10, T11) = 3,
∆(X10, T12) = 5, ∆(X11, T10) = 3, ∆(X11, T12) = 4, ∆(X12, T10) = 5, and ∆(X12, T11) = 4;
i.e., the left hand side of (5.1) has a value of 11/3, and the right hand side has a value of 4:
(a) the graph structure of the system, (b) the corresponding dependency graph with loops
which shows targeting fails.
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(a)

X7

X8 O1

O2

O3

O4

O5

O6

(b)

u5[k − 1] u5[k] u5[k + 1]

u4[k − 1] u4[k] u4[k + 1]

Figure 5.5: System for which fastest paths do not intersect, and yet targeting fails (assum-
ing all δi = 1 and δji = 1): (a) the graph structure of the system, (b) the corresponding
dependency graph with loops which shows targeting fails.
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(a)

X̄1 Oq T̄1

Op

(b)

X̄1 Oq T̄1

Op

(c)

X̄1 Oq T̄1

Op

Figure 5.6: Systems for the proof of Theorem 4. The horizontal paths are the fastest paths
from control agents to targets.

Proof: Label the m control agents and respective targets as X̄1, . . . , X̄m and T̄1, . . . , T̄m.
The crux of the proof is demonstrated in Figure 5.6(a)-(c), in which m = 1 and there is
one path from X̄1 to T̄1, and in which Op is an extra plant agent not on the path from
X̄1 to T̄1, but instead it has a single link to that path, joining at node Oq. The types of
links along the path from X̄1 to T̄1 (i.e., whether they are bidirectional or unidirectional)
is not relevant here (subject, of course, to satisfying Assumption A1). The three systems
in Figure 5.6(a)-(c) differ only in the type of link between Op and Oq. In Figures 5.6(a)
and (b), the GAA terminates with Ω = {T̄1, . . . , Oq}, i.e., neither Op nor nodes to the left
of Oq are included in Ω, and therefore growing fails. Growing also fails in Figure 5.6(c),
but this time the only node not in Ω is Op. All other cases can be reduced to one of the
three situations in Figures 5.6(a)-(c):

Case A: Consider an arbitrary plant with m control agents, where there is only one extra
plant agent (again denoted Op) that does not lie on any of the fastest paths. Figure 5.7
shows an example of such a situation for m = 3. It should be noted that we can arrange the
fastest paths between control agents and respective targets as shown in Figure 5.7 because
of the assumption that targeting works, implying that Theorem 3(b) holds (i.e., there are
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Figure 5.7: Systems for the proof of Theorem 4 (Case A). The horizontal paths are the
fastest paths from control agents to targets.

no nodes in common between any two fastest paths). In Case A, node Op has exactly
one link to one of the fastest paths, assumed without loss of generality to be that from
X̄1 to T̄1. Denote the node that is connected to Op by Oq. There can be additional links
connecting the various fastest paths (shown as dashed grey lines in Figure 5.7) subject, in
Case A, to there being no additional links terminating at nodes to the left of Oq on the
first fastest path. This situation is almost identical to those in Figures 5.6(a)-(c): at best,
growing fails because Op (and, depending on the type of link between Op and Oq, possibly
all nodes to the left of Oq on the fastest path from X̄1 to T̄1) is excluded from Ω.

Case B: Case B is identical to Case A except now there is assumed to be at least one link
between a node to the left of Oq and some other node on a different fastest path; the grey
lines in Figure 5.8 show an example of such a setup. As in Case A, there can also be links
between agents to the right of Oq, or Oq itself, and other plant agents. Apply the GAA to
this system, starting along the first fastest path: as in Case A, Ω potentially grows until
it includes all nodes on the first fastest path between T̄1 and Oq. Now, if Op is connected
to Oq as in Figure 5.6(c), at best all the plant agents can be zeroed, except not Op; thus,
growing fails. On the other hand, if Op is connected to Oq as in Figure 5.6(a) or (b), then
once Oq is zeroed, growing cannot proceed further than Oq along the first fastest path. If
there are no outgoing links from nodes to the left of Oq, then the nodes to the left of Oq

will never be part of Ω, and growing fails. But if there is an outgoing link from a node
(say Os) to the left of Oq on the first fastest path to another node (say Ot) on another (say
the second) fastest path, as shown with the diagonal grey lines in Figure 5.8, potentially
the GAA results in Os ∈ Ω. However, applying the GAA in this situation leads to the
conclusion that growing can possibly continue along the fastest path that contains Ot, but
Os does not lie on this fastest path (just like Op, which does not lie on the first fastest
path), so at best, Ω grows along the second fastest path from T̄2 until Ot. If there are no
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Figure 5.8: Systems for the proof of Theorem 4 (Case B). The horizontal paths are the
fastest paths from control agents to targets.

links between agents to the left of Ot on the second fastest path and other plant nodes,
growing cannot proceed beyond Ot on the second fastest path, leading to a situation like
Case A, but now involving the second fastest path instead of the first fastest path. If there
is no outgoing link from a node to the left of Ot on the second fastest path, then, at best,
Ω excludes nodes to the left of Ot on the second fastest path (plus those to the left of Oq,
which includes Os, on the first fastest path), and growing fails. If, however, there is at
least one outgoing link from a node to the left of Ot on the second fastest path to a node
on another fastest path, the whole argument can be repeated for the latter fastest path.
Following this reasoning, one of two situations arises:

Case B.1: If there are no outgoing links from nodes to the left of the link connected to
the last fastest path (say at node Ov), again as shown with grey lines in Figure 5.8, then
at best Ω excludes all nodes to the left of Oq, to the left of Ot, ..., and to the left of Ov.
Hence, growing fails.

Case B.2: If there is at least one outgoing link from a node that is to the left of Ov (say
Ow), that link can terminate at another node that lies to the left of Oq (if on the first fastest
path) or the left of Ot (if on the second fastest path), etc. The blue line in Figure 5.8 shows
such a link. Growing fails exactly as in Case B.1; the extra (blue) link has no effect. On
the other hand, the outgoing link could terminate exactly on or to the right of Oq (if on
the first fastest path) or exactly on or to the right of Ot (if on the second fastest path),
etc. Denote the node at which the link terminates by Or. The orange link in Figure 5.8
shows such a connection. Growing now fails (for the system composed of orange and grey
lines in Figure 5.8) for the same reason it fails in Case A, except now Or plays the role
of Oq and Ow plays the role of Op. If the orange link terminates along some other fastest
path (say terminating at Ox instead of Or in Figure 5.8), similar arguments can be made
to conclude that growing still fails. Finally, the presence of links between any other pair
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Figure 5.9: Systems for the proof of Theorem 4 (Case C). The horizontal paths are the
fastest paths from control agents to targets.

of nodes excluding Op (e.g., between Os and Oy, or between T̄1 and Ox, in Figure 5.8) has
no effect on these conclusions.

Case C: Case C is the same as Case B except multiple connections between Op and the rest
of the system are allowed. Assume, without loss of generality, that one of the connections
terminates at the fastest path from X̄1 to T̄1, and let Oq denote the right-most connecting
node on that path. An example is shown in Figure 5.9. Similar arguments as those used
in Case B can be applied here, leading to the conclusion that once growing finishes, Ω
includes, at most, the same nodes that would have resulted if the only connection to Op

was the one between Op and Oq. Hence, growing fails.

Case D: Case D allows for any number of plant agents that do not lie on fastest paths
between control agents and respective targets. An example of this setup is given in Fig-
ure 5.10. Once again, by applying the GAA first to the first fastest path, then moving on
the second fastest path, etc., we conclude that growing fails just as in Case C. For example,
with the system in Figure 5.10, Ω cannot contain Op, Or, or Os (in addition to possibly
other nodes, as before).

Cases A-D prove Condition (a) of Theorem 4, that is, growing works only if each plant
agent lies on the fastest path from some Xi to its associated Ti. Condition (b) of Theorem
4 also follows from the arguments made in Cases A-D, where the presence of plant agents
that do not lie on fastest paths between control agents and respective targets results in
non-unique fastest paths from some X̄i to T̄i. Note that we do not consider the case
of non-unique fastest paths with plant agents that lie on some (other) fastest paths, since
Condition (b) of Theorem 3 would be violated in such a case, contradicting our assumption
that targeting succeeds.

The conditions of Theorem 4 are easy to verify, even for large n. As examples, the

41



X̄1

X̄2

X̄3

Oq T̄1

T̄2

T̄3

OpOrOs

Figure 5.10: Systems for the proof of Theorem 4 (Case D). The horizontal paths are the
fastest paths from control agents to targets.

system in Figures 5.1(a) meet both conditions in Theorem 4, consistent with earlier analysis
that showed both targeting and growing succeed. On the other hand, if even one of
the control agents were removed (leaving the other control agent and target untouched),
then certain plant agents would not lie on a fastest path, and Theorem 4(a) implies that
growing fails. Lastly, we conjecture that the converse of Theorem 4 holds; that is, assuming
targeting works for a given plant, set of control agents and targeting assignment, growing
succeeds if both the following hold: (a) each plant agent lies on the fastest path from some
control agent to its associated target, (b) for each control agent Xi, the fastest path from
Xi to Ti is unique. The proof of this conjecture is left for future work.

In the next chapter, these results are applied to certain graph structures (such as
queues, grids, etc.) to help solve Problem 2; that is, to determine how many control agents
are needed for the regulation of a given plant using computable control laws, where they
should be placed, and how targets should be assigned.
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Chapter 6

Examples of Various Graph
Structures

In this chapter, we consider different graph structures and address Problem 2; i.e., we
deduce the number of control agents, their proper placement and targeting assignment
needed for both targeting and growing to succeed. For this purpose, we mostly make use
of Theorems 3 and 4 as they greatly reduce the number of possible arrangements of control
agents and targets for successful regulation of a system. The graph structures considered
in the following are queues, grids, spiders, rings, wheels, complete graphs and null graphs.
For simplicity, we assume that all the links in the following examples are bidirectional,
and that the δi and δji values are all equal to some δ ≥ 1, unless otherwise specified. We
present a control scheme for each plant structure with the minimum number of control
agents required for regulation. Note that the arguments made are just one way of using
the aforementioned theorems to reach the following deductions. We also use Theorem 2(b)
to specify the settling time in terms of δ. In the remainder of this chapter, we provide
variations of a few of the examples studied earlier, assuming either unidirectional links
in the plant or different δi and δji values. Finally, we end this chapter with remarks on
the difficulty level of the control problem with respect to the plant graph structure. It
should be noted that any plant — subject to Assumptions A2, A3, A5, and A6 — can be
regulated by setting m = n, linking control agent Xn+i directly to Oi and no other node,
and using Tn+i = Oi. Hence, the minimum number of control agents needed for regulation
is certainly never more than n.
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O1 O2 O3 O4 O5X6

Figure 6.1: Example of a queue plant structure with n = 5 plant agents. To regulate the
system, a control agent is placed and assigned to a target as shown.

6.1 Queue Structure

Consider a system with a queue plant structure, where n plant agents are arranged in a
line with the neighbouring nodes connected to each other. Figure 6.1 shows a queue plant
structure with n = 5 plant agents. It is easy to see that a queue plant structure can be
regulated with just one control agent in the following configuration: a control agent is
linked to a plant agent on one end of the queue while targeting the plant agent on the
other end of the queue, as in Figure 6.1. Thus, the settling time for a queue is

λ = ∆(Xn+1, Tn+1) = (n+ 1)δ.

Theorem 4 implies that any other arrangement of a single control agent and its target will
result in failure of growing. Specifically, linking the control agent to any plant agent other
than one of the two ends and/or targeting such a plant agent fails to satisfy condition
(a) of Theorem 4. Failure of targeting, however, is not an issue for this structure, as any
control agent, considered by itself, can zero its target under Assumption A6. It should be
noted that for this structure, the proposed control scheme will work for any value of δi and
δji, due to the simplicity of a queue structure.

As an example, consider the system in Figure 6.1. The implemented control scheme
results in successful targeting as mentioned before. Applying the Growing Analysis Algo-
rithm to this plant gives:

Ω = {O5},
Ω = {O5, O4},
Ω = {O5, O4, O3},
Ω = {O5, O4, O3, O2},
Ω = {O5, O4, O3, O2, O1}.

Hence, growing succeeds.
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6.2 Grid Structure

We consider two variations of a grid plant structure in this section. First, we consider a
p× q grid structure, where the n = pq plant agents are arranged in a grid where adjacent
nodes are linked to each other. Figure 6.2(a) shows a 3× 2 grid system. Using Theorems
3 and 4, we can quickly discover that there are, in fact, not many ways in which targets
and control agents can be arranged so as to be consistent with the necessary conditions.
One such arrangement is to link the m control agents to plant agents along one of the
shorter edges, and assign plant agents on the opposite edge as targets, as shown in Figure
6.2(a). Indeed, this control scheme fulfils the control objective with the minimum number
of control agents needed, that is m = min{p, q}, with settling time

λ = (max{p, q}+ 1)δ.

If fewer than min{p, q} control agents are used, then growing fails since it is not possible
to have all the plant agents on fastest paths between control agents and their respective
targets as required by Theorem 4(a).

For example, consider the grid system in Figure 6.2(a). Assume that δ = 1. The
arrangement of control agents and targets leads to successful targeting as there are no loops
in the dependency graph shown in Figure 6.2(b). Another way to justify this is to look at
the propagation times between the control agents and the targets. Under the assumption
that δi = δji = δ, it is clear that this arrangement results in a smaller propagation time
from each control agent to its target than the propagation time from each control agent
to any other target, implying that Theorem 1(c) holds; i.e., targeting works. Applying the
Growing Analysis Algorithm to the plant, we can see that all nodes get zeroed:

Ω = {O3, O6},
Ω = {O3, O6, O5},
Ω = {O3, O6, O5, O2},
Ω = {O3, O6, O5, O2, O4},
Ω = {O3, O6, O5, O2, O4, O1},

showing that growing works.

Next, we consider a variation of the p × q grid system, where diagonal bidirectional
links are included among plant agents in addition to the links considered previously. We
call this structure a “full” grid. Figure 6.3(a) shows an example of a 3× 3 full grid system.
Theorems 3 and 4 can be used again to eliminate a great number of possible arrangements of
control agents and targets that result in failure of targeting and/or growing. For instance,
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(a)
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O2
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u8[k − 1] u8[k] u8[k + 1]

u7[k − 1] u7[k] u7[k + 1]

Figure 6.2: Example of a grid plant structure with: (a) n = 3× 2 plant agents where adja-
cent nodes are linked to each other. To regulate this system, control agents are introduced
as shown. (b) the corresponding dependency graph with no loops; i.e., targeting works.

the control scheme used for the non-full grid structure does not work for a full grid as it
fails to satisfy Theorem 4(b). Examining a p × q full grid structure carefully, we deduce
that a possible control scheme for regulation is to place the control agents along two edges
targeting the plant agents on the remaining edges in a diagonal manner, as in Figure 6.3(a).
This implies that the minimum number of control agents needed is m = p+ q− 1. Clearly,
this deduction is subject to p ≥ 2 and q ≥ 2, since having either one of p or q as one results
in a queue structure. The proposed control scheme can, in fact, regulate the system with
settling time

λ = (min{p, q}+ 1)δ.

Note that in a full grid structure, the minimum number of unique fastest paths that include
all the plant agents is p + q − 1 with each fastest path along the diagonal connections
confirming its uniqueness as required by Theorem 4(b). Having the fastest paths arranged
in any other way — consistent with Theorems 3 and 4 — requires more than p + q − 1
control agents for successful targeting and growing.

As an example, consider the plant in Figure 6.3(a) with δ = 1. The control scheme
leads to successful targeting since there are no loops in the dependency graph shown in
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Figure 6.3(b). Applying the Growing Analysis Algorithm to the plant gives:

Ω = {O3, O6, O7, O8, O9},
Ω = {O3, O6, O7, O8, O9, O5},
Ω = {O3, O6, O7, O8, O9, O5, O2},
Ω = {O3, O6, O7, O8, O9, O5, O2, O4},
Ω = {O3, O6, O7, O8, O9, O5, O2, O4, O1},

showing that growing succeeds.

6.3 Spider Structure

Consider a spider plant structure that has one central node and p ≥ 2 branches of any
length, where the length of branch i, denoted li, is the number of plant agents on that
branch. An example of a spider system with p = 4 is shown in Figure 6.4(a). Again using
Theorems 3 and 4, we can conclude that targeting and growing succeed only if at least
p − 1 control agents are used. Hence, the minimum number of control agents needed for
regulation is m = p − 1. In fact, a possible scheme that achieves regulation is to link the
control agents to the end nodes of any p−1 of the p branches, with all but one targeting the
branch nodes adjacent to the central node, and with the remaining control agent targeting
the node at the end of the branch that is without a control agent, as in Figure 6.4(a).
For this structure, the propagation time through the plant agents on the longest branch is
max1≤i≤p liδ; thus the settling time is found to be

λ =

(
max
1≤i≤p

li + 1

)
δ.

Using fewer than p− 1 control agents, we cannot satisfy the conditions of both Theorems
3 and 4 at the same time. For instance, fewer than p − 1 control agents can include all
the plant agents on their fastest paths as required by Theorem 4(a) only if they share the
central node, which contradicts Theorem 3(b).

As an example, consider the plant in Figure 6.4(a). Assume that δ = 1. The dependency
graph for this system has no loops as shown in Figure 6.4(b), showing that targeting works.
Next, the Growing Analysis Algorithm is applied to the system which results in zeroing all
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Figure 6.3: Example of a full grid plant structure with: (a) n = 3× 3 plant agents where
additional diagonal edges are included between plant agents. To regulate this system,
control agents are introduced as shown. (b) the corresponding dependency graph with no
loops; i.e., targeting works. To avoid cluttering the graph only one set of dependencies
between each pair of control signals are drawn.
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Figure 6.4: Example of spider plant structure with p = 4 branches: (a) the plant with
the implemented control scheme, (b) the corresponding dependency graph with no loops,
showing that targeting works. To avoid cluttering the graph only one set of dependencies
between each pair of control signals are drawn.

the plant agents:

Ω = {O3, O6, O7},
Ω = {O3, O6, O7, O2},
Ω = {O3, O6, O7, O2, O1},
Ω = {O3, O6, O7, O2, O1, O4},
Ω = {O3, O6, O7, O2, O1, O4, O5}.

Thus, growing succeeds.
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6.4 Ring Structure

Consider a ring plant structure, where the n ≥ 3 plant agents are connected to each other
in the shape of a ring. Figure 6.5(a) shows a ring plant structure with n = 6 plant agents.
It is easy to see that a ring plant structure can be regulated using m = 2 control agents
linked to two adjacent plant agents while targeting, in case of an even number of plant
agents, the two furthest adjacent plant agents as in Figure 6.5(a). For an odd number of
plant agents, one control agent targets the furthest plant agent, while the other control
agent targets the closer of one of the two plant agents adjacent to the first target as shown
in Figure 6.6(a) for a system with n = 7 plant agents. The settling time for a ring structure
is

λ = (dn
2
e+ 1)δ.

These control schemes are the only possible arrangement of two control agents and their
targets which are consistent with the necessary conditions of Theorems 3 and 4. Using
Theorem 4, we can deduce that it is impossible to have both targeting and growing success-
ful for a ring plant structure with only one control agent, as one fastest path can include
no more than dn

2
e of the plant agents.

To demonstrate that targeting and growing both work for the proposed control scheme,
first consider the plant in Figure 6.5(a) with δ = 1. Targeting works for the implemented
control scheme as there are no loops in the dependency graph shown in Figure 6.5(b). All
the plant agents will get zeroed after the Growing Analysis Algorithm is applied to the
plant, showing that growing succeeds:

Ω = {O5, O6},
Ω = {O5, O6, O1},
Ω = {O5, O6, O1, O4},
Ω = {O5, O6, O1, O4, O2},
Ω = {O5, O6, O1, O4, O2, O3}.

Next, we consider the example in Figure 6.6(a) for which targeting works as there are no
loops in the dependency graph as in Figure 6.6(b) where δ is set to 1. Similarly growing
works for this plant as all plant agents are included in Ω once the Growing Analysis
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(a)

X8

O1

O2

O3

O4

O5

X7O6

(b)

u8[k − 1] u8[k] u8[k + 1]

u7[k − 1] u7[k] u7[k + 1]

Figure 6.5: Example of a ring plant structure with n = 6 plant agents: (a) the plant with
two control agents introduced as shown in the figure, (b) the corresponding dependency
graph with no loops, showing that targeting works.

Algorithm is terminated:

Ω = {O6, O7},
Ω = {O6, O7, O1},
Ω = {O6, O7, O1, O5},
Ω = {O6, O7, O1, O5, O2},
Ω = {O6, O7, O1, O5, O2, O4},
Ω = {O6, O7, O1, O5, O2, O4, O3}.

6.5 Wheel Structure

A wheel plant structure with n ≥ 4 plant agents has n−1 plant agents connected in a ring
and the remaining plant agent connected to all the plant agents in the ring. An example
of a wheel plant structure with n = 10 is shown in Figure 6.7(a). Again, using Theorems 3

51



(a)

X8

O1

O2

O3

O4
O5

X7
O7

O6

(b)

u8[k − 1] u8[k] u8[k + 1]

u7[k − 1] u7[k] u7[k + 1]

Figure 6.6: Example of a ring plant structure with n = 7 plant agents: (a) the controlled
plant with two control agents introduced as shown in the figure, (b) the corresponding
dependency graph with no loops, showing that targeting works.
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and 4, we can deduce that successful targeting and growing for a wheel structure with n ≥ 7
is achieved with at least m = bn

2
c control agents, with three control agents linked to three

adjacent plant agents on the ring, where the control agent in the middle targets the furthest
plant agent on the ring, while the other two control agents target their neighbouring plant
agents. The remaining control agents are linked to every second plant agent targeting their
neighbouring agent, unless the number of plant agents on the ring is odd which results in
one control agent targeting the plant agent it is linked to as shown in Figure 6.7(a). The
settling time for a wheel plant structure with n ≥ 7 is

λ = 4δ.

Including all the plant agents on fastest paths using fewer than bn
2
c control agents always

leads to non-unique fastest paths, violating Theorem 4(b). To better clarify this point,
consider the example shown in Figure 6.7(a). Assume X15 is removed and X14 targets O8

rather than O7. Obviously, this violates Theorem 4(b). Also, if the plant agent in the
center is taken as a target, more control agents will be needed for successful targeting and
growing.

Figure 6.7 shows the graph structure of a plant with n = 10 plant agents arranged in a
wheel topology, and its dependency graph, assuming δ = 1, which does not have any loops;
i.e. targeting works for this system. Applying the Growing Analysis Algorithm results in:

Ω = {O3, O7, O8, O9, O10},
Ω = {O3, O7, O8, O9, O10, O1},
Ω = {O3, O7, O8, O9, O10, O1, O2},
Ω = {O3, O7, O8, O9, O10, O1, O2, O4},
Ω = {O3, O7, O8, O9, O10, O1, O2, O4, O5},
Ω = {O3, O7, O8, O9, O10, O1, O2, O4, O5, O6}.

Thus, growing succeeds.

For a wheel structure with 4 ≤ n ≤ 6, a different control scheme has to be used with
m = 3 control agents to be consistent with the necessary conditions of Theorems 3 and
4. In this control scheme that successfully regulates the system, the control agent in the
middle targets the node in the center. The settling time is found to be

λ = 3δ.

Theorem 4 implies that growing fails for this structure with m = 1 or m = 2 control agents,
since it is impossible to include all the plant agents on just one or two fastest paths that
are each unique.
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(a)

O10

O2

O3

O4

O5

O9

O8

O7

O6

O1

X11

X12

X13X14

X15

(b)

u11[k − 2]

u12[k − 2]

u13[k − 2]

u14[k − 2]

u15[k − 2]

u11[k − 1]

u12[k − 1]

u13[k − 1]

u14[k − 1]

u15[k − 1]

u11[k]

u12[k]

u13[k]

u14[k]

u15[k]

u11[k + 1]

u12[k + 1]

u13[k + 1]

u14[k + 1]

u15[k + 1]

Figure 6.7: Example of a wheel plant structure with n = 10 plant agents: (a) the plant with
the implemented control scheme, (b) the corresponding dependency graph with no loops,
showing that targeting works. To avoid cluttering the graph only one set of dependencies
between each pair of control signals are drawn.
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(a)

O1 O2

O4 O3

O5 X6

X7X8

(b)

u6[k − 2]

u7[k − 2]

u8[k − 2]

u6[k − 1]

u7[k − 1]

u8[k − 1]

u6[k]

u7[k]

u8[k]

Figure 6.8: Examples of a wheel plant structure with n = 5 plant agents: (a) the plant with
the implemented control scheme, (b) the corresponding dependency graph with no loops,
showing that targeting works. To avoid cluttering the graph only one set of dependencies
between each pair of control signals are drawn.

As an example, consider a wheel structured system with n = 5 plant agents as shown in
Figure 6.8(a). Assume that δ = 1. Targeting works for this system as there are no loops in
the corresponding dependency graph shown in Figure 6.8(b). Growing also succeeds since
all the plant agents get zeroed through the Growing Analysis Algorithm:

Ω = {O1, O2, O5},
Ω = {O1, O2, O5, O3},
Ω = {O1, O2, O5, O3, O4}.
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6.6 Complete Graph Structure

Consider a plant that has a complete graph structure with n ≥ 2 plant agents where each
plant agent is connected to all the other plant agents. An example of a complete graph
plant structure with n = 6 is shown in Figure 6.9(a). As before, Theorems 3 and 4 provide
us with guidelines as to which arrangements certainly result in targeting and/or growing
failure, which makes it easier to find a potentially successful control scheme. For this
structure, the Growing Analysis Algorithm also helps in deducing the minimum number of
control agents needed for the system’s regulation as each plant agent is linked to all other
plant agents. Successful targeting and growing can be achieved for this example only if at
least m = n − 1 control agents are used where each control agent is linked to one of the
plant agents, with all but one targeting the same plant agent they are linked to, and with
the remaining control agent targeting the only node that is without a control agent, as in
Figure 6.9(a). The settling time for this structure is

λ = 3δ.

Targeting and/or growing fails for a complete graph structure with fewer than n−1 control
agents as with this number of control agents it is impossible to have all the plant agents on
fastest paths between control agents and their respective targets such that, on average, the
propagation times along the paths from the control agents to their respective targets would
be less than the propagation times along the paths from the control agents to all other
targets (i.e., the conditions of Theorems 3 and 4 will not hold). For instance, if a control
scheme similar to the scheme for a wheel structure is used in this case, we fail to satisfy
condition (a) of Theorem 3. Another way to justify the number of required control agents
is through the Growing Analysis Algorithm. Given that each plant agent is connected to
all the other plant agents, we need to target at least n− 1 plant agents; otherwise growing
fails right away.

Consider the example in Figure 6.9(a) and assume that δ = 1. Constructing the
dependency graph makes it clear that targeting succeeds (refer to Figure 6.9(b)). Applying
the Growing Analysis Algorithm, it is easy to see that growing works:

Ω = {O1, O3, O4, O5, O6},
Ω = {O1, O3, O4, O5, O6, O2}.

Note that the complete graph structure is equivalent to a queue structure when n = 2,
a ring structure when n = 3, and a full grid structure (i.e., a grid structure with diagonal
links) when n = 4. The given control scheme for the complete graph structure confirms
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(a)
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(b)
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u10[k − 1]
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u7[k]

u8[k]

u9[k]

u10[k]

u11[k]

Figure 6.9: Example of a complete graph plant structure with n = 6 plant agents: (a) the
plant with the implemented control scheme that regulates the system, (b) the corresponding
dependency graph with no loops, showing that targeting works. To avoid cluttering the
graph only one set of dependencies between each pair of control signals are drawn.
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O1

O2

O3

O4

O5

X7O6

X10

X11

X9

X12

Figure 6.10: Example of a null graph plant structure with n = 6 plant agents. To regulate
this system, six control agents are introduced as shown.

our earlier deductions on the required number of control agents for these structures. In
fact, the control scheme for a complete graph with n = 2, n = 3 and n = 4 plant agents
results in the same arrangement as the control schemes for a queue, a ring and a full grid
do, respectively.

6.7 Null Graph Structure

Consider a null graph plant structure with n plant agents where the plant agents are not
connected to each other; i.e., the structure is edgeless. An example of a null graph plant
structure with n = 6 is shown in Figure 6.10. Using Theorem 4(a), one can easily deduce
that regulation can be achieved only if at least m = n control agents are used with each
control agent linked to a plant agent and targeting that same agent as in Figure 6.10. The
settling time for this structure is

λ = δi + δji = 2δ.

Note that this control scheme works for any plant with a null graph structure with any
values of δi and δji.

As an example, consider the system in Figure 6.10. Targeting clearly works using the
proposed control scheme. Regulation is achieved once all targets are zeroed.
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O1

O2

O3

O4

O5

X7O6

Figure 6.11: Example of a ring plant structure with n = 6 plant agents where all links are
unidirectional and all oriented in the same way. For successful targeting and growing, one
control agent is used as shown in the figure.

O1 O2 O3 O4 O5 X1

Figure 6.12: Example of a queue plant structure with unidirectional links all arranged in
one direction. To regulate this system, a control agent is placed and assigned to a target
as shown, such that ∆(Xn+1, Tn+1) <∞ (as required by Assumption A1).

6.8 Variations of Previous Examples

In the above structures, all the links were assumed to be bidirectional for simplicity. Hav-
ing unidirectional links in these structures sometimes simplifies and sometimes complicates
the control problem. In the following, we consider three examples where assuming unidi-
rectional links results in a smaller, the same, or a larger number of control agents needed
for the regulation of a specific structure, as compared to the case where only bidirectional
links were allowed.

As the first example, consider the ring structure. If the plant links are unidirectional
and all oriented the same way, we can easily see that successful targeting and growing
can be achieved using only one control agent, i.e., m = 1 as in Figure 6.11, which is
consistent with Theorems 3 and 4. As the second example, consider a queue structure
with unidirectional links all in the same direction. As in the bidirectional case, only one
control agent is needed for regulation. When the links are unidirectional, however, the
control agent can be placed at only one end of the queue as in Figure 6.12. As the final
example, consider a spider plant structure with unidirectional links as shown in Figure 6.13.
Again, using Theorems 3 and 4, we can conclude that successful targeting and growing can
be achieved only if at least m = p control agents are used in a specific arrangement as in
Figure 6.13 (where p is the number of branches).

The other assumption made for all the previous examples is that the δi and δji values
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O2 O3

O4 O5

O6
O7

Figure 6.13: Example of a spider plant structure with p = 4 branches and unidirectional
links as shown. For regulation of this plant, four control agents are needed as in the figure.

X7X8

O1

O2

O3

O4

O5

O6

Figure 6.14: Example of a grid plant structure with n = 3 × 2 plant agents where all
δi = δji = 1. To regulate this system, control agents are introduced as shown.

are all equal to some δ ≥ 1. If the propagation times between the plant agents and the
control agents are different, we can still use the same idea to help design a proper control
scheme. Clearly, the design problem will be more challenging. For instance, consider the
example in Figure 6.14. In Section 6.2, it was shown that two control agents can achieve
successful targeting and growing for this system, assuming that all δi = δji = 1. As a
variation of this example, assume that δ56 = δ65 = 3 while all other δi and δji values are
one. The previous control scheme cannot achieve successful targeting and growing as it
violates condition (b) of Theorem 4; however, a modified control scheme in which control
agent X8 targets O5 and a new control agent X9 is linked to and targets O6, satisfies the
conditions of Theorem 3 and 4. This control scheme, indeed, results in successful targeting
and growing.
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6.9 Final Remarks

It should be noted that regulation of a plant with no interaction between its plant agents
(i.e., null graph structure) and/or full interaction between them (i.e., the complete graph
structure) requires the most number of control agents. Hence, having full interaction or
lack of interaction are both considered as “challenging” plant structures from the control
point of view. On the other hand, the queue and the ring structures are considered as
the “easiest” plant structures as they can be regulated with the least number of control
agents (i.e., m = 1 and m = 2, respectively). This observation suggests that it is possible
to classify the graph structures based on the difficulty level of the control problem.

In the next chapter, a summary of the main results of this thesis is given. Also possible
promising future directions are provided.
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Chapter 7

Summary and Future Directions

This thesis, motivated by research in which a crowd of people is controlled by a number
of control agents, focused on decentralized output regulation of nonlinear discrete-time
multi-agent systems. In particular, our goal was to achieve deadbeat regulation of the
outputs. For this purpose, we first provided a generalized system model along with various
assumptions concerning targeting assignment, communication and sensing requirements,
signal propagation time in the system, and targeting and growing processes. To achieve
regulation, control agents were introduced at strategic locations among the plant agents,
with each control agent trying to regulate a specific plant agent, called its target. Targeting
analysis was used to determine if the control agents are capable of driving the outputs of
all target plant agents to zero. Then, growing analysis was applied to determine if the
same control laws can drive the outputs of non-target plant agents to zero. Two control
problems were investigated in this thesis: (1) for a given plant and control scheme, find,
if possible, a set of computable control laws that regulate the plant, (2) for a given plant,
determine the number of control agents and a control scheme that can achieve regulation.

To deal with Problem 1, our approach is to ensure targeting and growing analyses both
succeed. To verify whether or not targeting works, we used the notion of dependency
graphs for the control signals. Moreover, we derived a set of necessary and sufficient alge-
braic conditions to determine when targeting succeeds. For growing, we used the Growing
Analysis Algorithm to see if all plant agents get zeroed and regulation is achieved. To ad-
dress Problem 2, a set of easily-verifiable necessary conditions were presented for targeting
and/or growing to succeed. These conditions help greatly with the design problem; i.e.,
where to place the control agents and how to assign targets. To better show how these nec-
essary conditions help a designer come up with a control scheme with the minimum number
of control agents required, various graph structures were studied. We concluded that the
plant topology is an important factor affecting the difficulty of the control problem.

The main strength of this work is the set of new easily-verifiable necessary conditions
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developed for successful targeting and/or growing. These conditions are very powerful as
they have simple geometric interpretations, and are easily scalable to large systems. They
emphasize on the graph structure and the signal propagation time through the plant agents
and control agents as two important factors involved in regulation of a plant.

There are a number of different directions in which this research can go forward. In
the following, we have listed down some of those ideas that are considered most promising
or are of particular personal interest:

(a) Loosen up deadbeat requirement of regulation. Also, it is interesting to explore full
state regulation.

(b) Extend our control approach to tracking and disturbance rejection as they arise in a
large number of applications.

(c) Understand better any connections between our work and the research done within:
(i) the multi-agent control area, specifically “multi-agent controllability” [16, 13], and
(ii) structured systems theory, particularly the idea of “invertibility” [10, 1].

(d) Determine if it is ever possible to regulate a multi-agent system with control laws
that violate Definition 2, i.e., they are not computable.

(e) Investigate communication and sensing requirements in more detail to help determine
how restrictions on communications among control agents, and sensing limitations
are related. For instance, it might be possible to achieve regulation even when control
agents have no sensing abilities as long as there are no constraints on the communi-
cations between control agents.

(f) Introduce constraints and delays on communication and sensing. In practice, it is
often not feasible to have full communications among control agents, and/or full
sensing of the plant.

(g) Show that the converse of Theorem 4 holds, i.e., assuming targeting works for a given
plant and control scheme, then growing succeeds if both the following hold: (a) each
plant agent lies on the fastest path from some control agent to its associated target,
(b) for each control agent Xi, the fastest path from Xi to Ti is unique. This conjecture
is very appealing as it simplifies the control problem by giving us the option to ignore
growing analysis.

(h) Find a mathematical representation to capture the growing algorithm. We have con-
sidered different approaches (e.g., finite state machines, the use of graph theory, a
dependency graph for growing of the plant agents, etc.), but have not been able to
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develop a useful mathematical tool yet. Looking into “power dominating set” prob-
lems might be helpful for this purpose [11]. Having a mathematical representation of
growing can help understand growing process better, and find more easily-verifiable
geometric conditions necessary for regulation.

(i) Develop a “divide and conquer” approach to help design control schemes for very
large systems.

(j) Address the critical issue of robustness. It is important to make our control approach
robust in the sense of allowing for plant uncertainty, and also deal with faulty control
agents and/or communication links.

(k) Consider time-varying links between plant agents. Depending on the applications,
links between plant agent might appear and disappear. Thus, it is interesting to
investigate this type of problem.

(l) Discover fundamental performance limitations and how they vary with plant topol-
ogy. This idea has been studied briefly in Chapter 6 for only a limited number of
plant topologies. Studying other plant topologies can provide us with more insight
on the issue of performance limitations.

(m) Investigate optimal control problems. Two possible classes of optimal control prob-
lems are: (i) determine optimal placement of control agents and targets (e.g., to min-
imize the number of control agents, settling time, or communication requirements),
and (ii) find optimal control signals for each control agent.

(n) Generalize our work to vector-valued outputs. Also, it may be valuable to extend
our approach to a continuous-time framework.
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