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Abstract 

While decision-making under uncertainty is a major universal problem, its implications in 

the field of transportation systems are especially enormous; where the benefits of right 

decisions are tremendous, the consequences of wrong ones are potentially disastrous. 

In the realm of highway systems, decisions related to the highway configuration (number 

of lanes, right of way, etc.) need to incorporate both the traffic demand and land price 

uncertainties. In the literature, these uncertainties have generally been modeled using the 

Geometric Brownian Motion (GBM) process, which has been used extensively in 

modeling many other real life phenomena. But few scholars, including those who used 

the GBM in highway configuration decisions, have offered any rigorous justification for 

the use of this model. 

This thesis attempts to offer a detailed analysis of various aspects of transportation 

systems in relation to decision-making. It reveals some general insights as well as a new 

concept that extends the notion of opportunity cost to situations where wrong decisions 

could be made. Claiming deficiency of the GBM model, it also introduces a new 

formulation that utilizes a large and flexible parametric family of jump models (i.e., Lévy 

processes). To validate this claim, data related to traffic demand and land prices were 

collected and analyzed to reveal that their distributions, heavy-tailed and asymmetric, do 

not match well with the GBM model. As a remedy, this research used the Merton, Kou, 

and negative inverse Gaussian Lévy processes as possible alternatives. 

Though the results show indifference in relation to final decisions among the models, 

mathematically, they improve the precision of uncertainty models and the decision-

making process. This furthers the quest for optimality in highway projects and beyond.
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 1 

1 Introduction 

Decision-making under uncertainty in highway systems is a non-trivial task that can yield 

great benefits with optimal decisions, but also potentially large and multifaceted cost 

implications with wrong ones. The reasons behind this, many of which may apply to 

other transportation systems or other public projects, are related to highway systems‟ 

massive size, cost and sphere of impact. As a result, the impact of decisions made on 

these systems have a long duration and are semi-irreversible. Further, decision optimality 

is a very challenging endeavor due to the overall system complexity and modeling 

inadequacies. 

1.1 Research Motivation 

The difficulty in realizing optimality in decision-making under uncertainty in 

transportation systems stems from the imbedded multi-dimensional system complexities. 

Analyzing and addressing these complexities, which constitute the cost of decisions‟ 

optimality, are significantly motivating this work. However, the bulk of this work is 

motivated by advancing the shortcomings of one of these complexities: the mathematical 

modeling of uncertainties. 

1.1.1 A Context Worthy of a Thorough Analysis 

In the quest for decision optimality it is crucial to rigorously analyze the intricate cost-

benefit aspects of transportation projects. By studying the characteristics of transportation 

systems, as well as locating the potential optimality loci and subsequently advancing 

them, the ultimate goal of establishing a global stochastic model framework for realizing 

decision optimality in highway systems can be advanced. 
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To tackle the complexities involved in the decision-making process, a comprehensive 

global analysis of the various aspects of transportation systems and the decision-making 

under uncertainty process in highway systems needs to be undertaken. 

1.1.2 Unquantifiable Assumptions in Uncertainty Modeling 

These complexities essentially stem from factors that include the large number of 

decisions and uncertainties, their correlations, as well as the identification of the 

optimization approach and the modeling of the uncertainties. 

There exist many optimization techniques in literature, but one technique that does not 

neglect the value of managerial flexibility is the real options technique. An application of 

this valuation technique in the realm of decision-making in highway development 

projects is presented in Zhao et al. (2004).  

The real options technique is derived from financial options. For a specific price, a 

financial option gives its holder the right, but not the obligation, to purchase (call option) 

or sell (put option) an underlying asset for a specific price at a specific time (European 

option) or during a specific period (American option). The prices of these options, 

determined using Black-Scholes formulas for pricing European call and put options, are 

unique values that would prevent investors from making riskless profits (i.e., arbitrage-

free prices) by simultaneously buying or selling the options and their underlying assets in 

certain combinations. In determining the arbitrage-free option price, the Black-Scholes 

formulas assume that the underlying asset (stock price) follows the lognormal Geometric 

Brownian Motion (GBM) process. This is a widely accepted model that Hull (2000), a 
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well-recognized authority in the field of financial derivatives industry, refers to as “the 

model for stock prices” (as cited in Marathe & Ryan, 2005). 

However, in contrast to those of financial options, the underlying assets in real options 

refer to real quantities; they could be natural resource prices or growth in demand for 

products or services. And while the GBM process is widely accepted as a valid model for 

the growth of a stock price over time, it does not necessarily apply to all cases involving 

real assets such as physical infrastructure projects (highways). Regardless, as Marathe 

and Ryan (2005) explain, many GBM models have been used in research related to 

physical assets. Likewise, in the real options application of Zhao et al. (2004), the two 

uncertainties related to traffic demand and land price are unjustifiably assumed to follow 

the GBM model. 

Like all other models, the GBM process does not come without assumptions, and unless 

at least some of these assumptions are empirically satisfied, this model choice cannot be 

mathematically justified on any level beyond that of mere convenience. The seemingly 

automatic adoption of the GBM model gives rise to numerous questions. What if the 

uncertainties that are assumed to follow the GBM dynamics fail the normality criterion? 

What if their distributions also possess heavy tails and have various patterns? If so, would 

there be alternatives to the GBM model? What about jump processes? Would they be 

mathematically justified? How about qualitatively? Are these jump processes flexible 

enough to cope with possibly different distributional patterns? These are some of the 

kinds of questions that may arise from works like that of Zhao et al. (2004). The authors 

of this paper offer a multistage real options stochastic model for decision-making in 

highway systems that incorporates the GBM process in modeling the evolution of two 
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uncertainties (traffic demand and land price), but also fail to offer grounds for this model 

choice. 

In this literature, we investigate the queries posed earlier with reference to Zhao et al. 

(2004) by analyzing data collected in Canada. The analysis shows that the GBM notion is 

not supported, at least not from the normality of the log-ratios perspective. 
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1.2 Research Objectives and Scope 

The ultimate objective of this work is to advance the quest for optimality in decision-

making under uncertainty in highway development projects. Where the primary 

contribution of this work occurs mathematically at a micro level, a macro analysis is still 

offered to better understand the problem, establish value, and place the significance of the 

mathematical treatment offered in its proper relative dimension, thus aiding and 

motivating further research on this topic. Consequently, the macro expedition also reveals 

further insights and contributions on different levels. More specifically, below is a 

detailed list of the objectives of this study: 

1. Conduct a comprehensive global analysis on decision-making in highway systems by: 

a. highlighting the value of right actions and the costs of making wrong 

decisions within the transportation systems domain; 

b. expanding, within the above framework of highlighting the cost of wrong 

decisions, the concepts of economic profit and opportunity cost to include 

potential wrong decisions. 

c. analyzing the challenges involved in the development of optimal decision-

making systems with respect to the scope and relative importance of the 

decisions, the uncertainty factors, and the optimality techniques, as well as the 

accuracy of the uncertainty models. 

2. Study, summarize, and critique the multi-stage stochastic model treatment of Zhao et 

al. (2004) in the context of the findings of the aforementioned analysis, and define 

accordingly the scope of the mathematical analysis portion of this research. 

3. Verify the mathematical assumptions of Zhao et al. (2004). 
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a. Conduct data collection for the traffic demand and land acquisition price 

uncertainty factors. 

b. Explore areas where data for traffic demand and land acquisition could be 

obtained and comment on data availability and its mathematical 

consequences. 

c. Verify the inadequacy of the current GBM assumption. 

d. Validate the presence of jumps in the uncertainty processes. 

4. Propose a rich and flexible alternative class of models (Lévy jump processes) to the 

GBM model in capturing the dynamics of the continuous-time uncertainties. 

5. Provide a mathematical review of the GBM model, Lévy processes in general, and 

particularly Merton, Kou, and negative inverse Gaussian models, in addition to a 

review of the parameter calibration method. 

6. Develop a decision-making algorithm similar to that of Zhao et al. (2004) and identify 

areas of similarity and disparity. 

7. Develop codes to generate the appropriate random processes applicable to the 

different models and integrate them, individually, into the decision-making algorithm. 

8. Calibrate and implement all four models 

In essence, the research claims on statistical and factual grounds that there exist other 

feasible alternatives to the GBM process that can be more accurate representations for 

these uncertainty processes. The research proposes Lévy processes as an alternative class 

of model that is capable of generating more accurate distributions. The research 

numerically validates this claim by implementing three models of Lévy processes: two 

from the finite activity subclass (Merton and Kou models) and one from the infinite 
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activity subclass (negative inverse Gaussian model). This research applies to any 

decision-making problem that involves multiple uncertainty factors, which can be 

represented in continuous time using GBM processes. 
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1.3 Research Methodology 

The qualitative problem analysis portion of this work was supported by research from 

sources including journal papers, books, and reports, as well as public and private sector 

organization‟s web pages and online materials; references to all of which are provided in 

the references section of this thesis. The conceptual and mathematical extension of the 

opportunity cost notion was the author‟s own novel work. 

In light of this analysis, we studied, summarized, and critiqued the model treatment of 

Zhao et al. (2004). To verify the inadequacy of the GBM model used in Zhao et al. 

(2004) and to investigate the appropriateness of jump processes as alternatives, data 

needed to be collected. Research was conducted in order to obtain data regarding land 

price for Canada and traffic demand for Ontario.  

Generally speaking, we found that traffic demand data is readily available but not in 

sufficiently large numbers, given the yearly time scale adopted in the decision-making 

algorithm. On the other hand, the land related statistics, unlike those of traffic volumes, 

are outright challenging to collect. The full outcome of the data collection effort, 

including the data used herein, was presented and referenced. 

To investigate the validity of the GBM model, we verified, using the available data, the 

normality of the log ratios of the annual traffic volume and land price data by 

constructing Quantile Quantile Plots (Q-Q plots) for samples of both uncertainties.  

As for jumps, mathematically speaking, the heaviness of the uncertainty distributions tails 

was used as an indicator to the presence of jumps. This check was performed by 
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calculating the probabilities, based on the normal law, of the maximum and minimum 

changes in the values of the observed uncertainties over the study period. As a measure of 

the very likelihood of jumps, we considered an uncertainty increment occurring with a 

probability of as little as 1% to represent a jump. 

Given the results of the above tests, we proposed three Lévy processes, two from the 

finite activity subclass (Merton and Kou models) and one from the infinite activity 

subclass (negative inverse Gaussian model) as possible alternatives to the GBM model. 

For comparability, the three proposed model parameters were calibrated, as opposed to 

being estimated, due to scarcity of data. The calibration process, which was performed 

based on the GBM model using the method of moments, was outlined for each model. 

With some exceptions that were also be highlighted, a decision-making algorithm similar 

to that of Zhao et al. (2004) was developed to test the models from a case study used in 

Zhao et al. (2004) in selecting design alternative. The decision-making system was 

developed in Matlab code and simulations with 10,000 iterations were performed for each 

model. For verification purposes, a detailed simple illustrative example of the core 

algorithm regression calculations as well as a full sample output were included in the text 

and the appendices, respectively. 
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1.4 Thesis Organization 

The entire qualitative analysis portion of this thesis occupies most of the contents of 

Chapter 2, where in subsection 2.2, we shed some light on the infrastructure and the 

complexity of transportation systems. The development and maintenance of these 

transportation systems have certain constraints that require important decisions to be 

made on a continuous basis over the lifecycle of these systems. These constraints are 

presented in subsection 2.3. The complexities of the decision-making process is 

elaborated in subsection 2.4, where we discuss the cost of wrong decisions in the first 

sub-subsection, the cost of inaction in the second, and the price of making the right 

decisions in the third. The extension of the opportunity cost concept is hosted within the 

first part of the first sub-section. In subsections 2.5 and  2.6, we introduce the concept of 

real options and jump processes. Finally, we summarize our findings in Section 2.7. 

In the first section of Chapter 3, we present the assumptions, the case study, and the 

solution algorithm of Zhao et al. (2004), as we adopt the same settings and a similar 

algorithm in our model implementations in Chapter 6. In the next section, we list some of 

the limitations of Zhao et al. (2004) in light of the findings of Chapter 2. Finally, we 

define the scope of our mathematical contribution in the third section. 

Zhao et al. (2004) assumes that the highway traffic volume and the land price 

uncertainties follow the geometric Brownian motion model. In order to test this 

assumption, one needs to collect real data on traffic demand and land acquisition costs. 
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In Section 4.1, we look into means of collecting such data and in Section 4.2 we analyze 

the collected data. In subsection 4.2.1, we test the validity of this statistical assumption 

and draw some general conclusions on the distributional properties of the collected data. 

This leads to subsection 4.2.2, where we investigate the presence of jumps in the 

empirical processes. 

In chapter 5, we provide, using modern probability theory, a detailed theoretical 

background on Lévy processes and the proposed three of its subclass models: Merton, 

Kou, and NIG. Also included is an outline of the Rydberg Algorithm used in simulating 

the NIG process and results of a test implementation performed to verify the accuracy of 

this algorithm. The above, which occupies several sections, is preceded by a recap of the 

mathematics of the uncertainties used in Zhao et al. (2004) (Section 5.1) and a brief 

derivation of the geometric Brownian motion model (Section 5.2), as it will be used later 

in the simulation and in the calibration of the proposed models.  

Finally, given that the numeric calibration method in Matlab requires initial parameter 

guesses, the chapter concludes with outlines of the methods used herein to arrive at these 

initial estimates for each of  the individual models. 

Chapter 6 is where model implementation, testing, and analysis of the core and proposed 

models take place. In the first section, we outline our version of the decision-making 

system algorithm by highlighting its key distinguishing features. Subsequently, in Section 

6.2, we present the case study on which the testing of the models is implemented. To 

facilitate model comparability and establish a baseline, we calculate the moments of the 

base GBM model in Section 6.3, where we further show a sample detailed decision 

system output and reveal the simulation results of the GBM model as a baseline. Sections 
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6.4 through 6.6 unveil the calibration calculations and the simulation results for the 

proposed Merton, Kou, and NIG models. Analysis and discussion follow in Section 6.7 

and final conclusions are communicated in Section 6.8.  

Chapter 7 is dedicated to summarizing the thesis in its entirety. 



 

 13 

2 Background, Analysis, and Literature Review 

  

2.1 Introduction 

Transportation is essential to the personal and to the social development of people; it is 

necessary to the linkage and the advancement of communities, and it is vital to the 

growth of the local, the regional and the overall national and global economies. The 

necessity of developing an efficient transportation system stems from the very basic need 

for people to move and travel, and the need for businesses to deliver services and to 

transport labor, materials, equipments, livestock, crops, and other goods. 

To meet these needs, several complex transportation systems of different types and 

infrastructures were developed over time. In subsection 2.2, we shed some light on the 

infrastructure and the complexity of these systems, putting the highway system network 

in its relative magnitude on the map of transportation systems. 

In the process of developing and maintaining these transportation systems, it is crucial for 

the transportation authorities to ensure that certain constraints are met. These constraints 

are presented in subsection 2.3. 

The process of developing and maintaining transportation systems with the set of criteria 

listed in subsection 2.3 requires important decisions to be made on a continuous basis 

over the lifecycle of these transportation systems. The complexity of this decision-

making process is geared by certain characteristic factors of the transportation systems 

that we elaborate on in subsection 2.4. Listing some relevant factors and challenges, we 
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discuss the cost of wrong decisions in the first sub-subsection, the cost of inaction in the 

second, and in the third, the price of making the right decisions. 

As a technique to attaining optimality, in subsection 2.5 we introduce the concept of real 

options and in subsection 2.6, we present jump processes as a means of improving the 

uncertainty models. Finally, paving the way to the mathematical treatment, in section 2.7 

we summarize our findings in chapter 2.  

2.2 Highway System in Context: Complexity and Relative Importance 

Transportation systems can be broadly classified into land, marine, and air transportation 

systems. However, the land transportation system can be regarded as the core of all 

transportation systems. It not only provides the medium through which most of the 

transportation traffic is served, but it also forms a necessary complementary system to the 

marine and air transportation systems that generates and terminates traffic from their 

origins to their final destinations. 

Unlike the other two system infrastructures, the land transportation infrastructure is not 

focused only at the endpoints (airports and seaports) but rather it lays its infrastructure 

along the entire trip paths. Serving large areas of varying mesh densities of origin-

destination links and/or stretching over vast distances and possibly across multitudes of 

terrains as well as other material and space restrictions, the land transportation system, 

with all its subsystem networks, is significantly more complex than the other two 

systems. 
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The land transportation system is composed of intricately and harmoniously interlinked 

networks, including networks of highways and interchanges, heavy vehicle routes, 

railways, transit system (subway, bus, and streetcars systems), light rapid transit system 

(sky trains), in addition to a vast network of roads, which may be superimposed by 

networks of High Occupancy Vehicle (HOV) and bicycle lanes, as well as sidewalks. 

Of all the subsystems, the highway system represents a major and a fundamental 

component of the land transportation system. According to the American Road & 

Transportation Builders Association‟s (ARTBA) report, Monthly Value of Transportation 

Construction Put in Place Report of May of 2005, out of $7.9 billion USD value of 

construction work performed on transportation projects in the United States in May 2005, 

$5.7 billion USD were spent on highways and bridges, which amounts to 72.15% of the 

total value of transportation construction work (Buechner, 2005). 

2.3 Transportation System Development Constraints 

In the process of developing and maintaining transportation systems, it is crucial for the 

transportation authorities to ensure that these systems are safe for commuters, friendly to 

the environment, and efficient to all the stakeholders involved (e.g., commuters, 

government, and local inhabitants in the system vicinity). This involves ensuring that the 

transportation systems are convenient, reliable, and economical to the commuters; 

economical and sustainable to the government to construct, to operate, and to maintain; 

and balanced with respect to the public benefits versus the private distresses to the local 

residents. 
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2.4 Characteristics of Transportation Systems in relation to Decision-

making 

In this section, we will outline some features of the transportation system as they pertain 

to the need for and the complexities of the decision-making process. 

2.4.1 The Cost of Wrong Decisions: The Factors Involved 

Making non-optimal decisions in transportation projects can lead to enormous and 

multifaceted costs. This stems from several characteristics of transportation systems; 

below are some of these factors. 

2.4.1.1 The Size Factor 

One common feature of transportation systems is the size factor, whether it is in the 

enormity of size or the vastness of space requirements of their infrastructures. 

Collectively, the infrastructure of the land transport systems includes: terminals (rail, bus, 

and transit), road and highway pavements (including streets; road intersections; carpool, 

transit commuter, and commercial parking lots; as well as pedestrian sidewalks.) 

Moreover, the land transport system infrastructure also includes bridges, highway 

interchanges, tunnels, gutters, culverts, retaining walls, water drainage and sewer 

systems, lighting systems, traffic lighting and signaling systems, toll facilities, and rest 

facilities, as well as vehicle service buildings, which include bus garages, service 

facilities, maintenance buildings, equipment storage buildings and wash facilities. 

Similarly, the infrastructure of the air transportation system includes terminals, runways 

and others structures like hangars, maintenance buildings, aircraft storage facilities, 
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stand-alone air traffic towers, and space facilities; whereas the marine transportation 

system includes terminals, docks, piers, wharves, and other facilities. 

Most of these infrastructures require a substantial amount of land space. One immediate 

consequence of wrong decisions in transportation systems is the enormous wastage of 

materials and land space. 

2.4.1.2 The Cost Factor 

Given the huge infrastructure noted in the previous section, transportation system 

development projects, like many other civil infrastructure projects, typically require large 

sums of investments. For instance, in 2004, Translink, the Greater Vancouver 

Transportation Authority, approved a comprehensive strategy, 2005 - 2007 Three-Year 

Plan & Ten-Year Outlook, to invest $4.0 billion in roads and transit. In 2005, the Ontario 

Ministry of Transportation announced the Northern Ontario Highways Strategy, a record 

$1.8-billion five-year plan for highway improvements and expansion in Northern 

Ontario. Another example is the 407 Electronic Toll Route (ETR) for which, when it 

opened in 1997, the construction cost was roughly $1.6 billion (Leatherdale, 2005). 

With reference to total annual transportation expenditure statistics, the Ontario Ministry 

of Finance‟s Annual Report and Consolidated Financial Statements 2006–2007 states 

that during this period the value of government expenditure in transportation related 

infrastructure amounted to $3.1 billion, which represented 48% of the total government 

investment in all capital assets ($6.4 billion). Additionally, in the United States, 

according to an ARTBA report, the value of construction work performed on 
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transportation projects in the United States in May 2005 totaled to US $7.9 billion, 

amounting to 8.3% of all construction work performed in the country (Buechner, 2005). 

When an optimal decision with reference to a transportation development project is made, 

the overall monetary cost of transportation system would be the total costs of the land 

acquisition and the system construction, operation, maintenance, rehabilitation, and future 

expansion. These costs, as high as they are, can be justified by the derived merits of the 

transportation system efficient operation. However, when the realized system operates 

inefficiently as a result of a non-optimal decision, the monetary cost of the decision 

would not only include the above costs but also the cost of time wasted, lost revenues, 

and the cost of any corrective measures taken to remedy the deficiencies. Therefore, 

when the monetary cost of transportation projects is of the above magnitudes, reason and 

prudence need to be exercised in the decision making process. 

2.4.1.3 The Foregone Opportunity Factor 

Because choosing between various possible alternatives is inevitable, and because the 

consequences of these decisions are immense, a rigorous decision-making process is 

crucial. In such a process where the most optimal decision is sought, opportunity cost 

analysis can play a vital role. But this analysis does not consider the possibility of the 

decision faltering upon implementation; it does not account for possible delays or 

additional costs, neither does it consider their forgone opportunities. If taken into account, 

the resulting extended opportunity cost analysis may result in better decisions. On the 

other hand, if a wrong decision is made, the opportunity cost factor adds another 

dimension to resulting losses. 
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2.4.1.3.1 Opportunity Cost: A Brief Review 

Transportation infrastructure projects are predominantly financed by governments 

through tax revenues. Having other important areas of expenditure (e.g., health; 

education, postsecondary education and training; children‟s and social services; and 

possibly others), governments have to make decisions about their budget allocations in 

these areas and among different options within each area. Given the fact that budgets are 

limited, trade-offs among these expenditure options are inevitable. Therefore, depending 

on the government‟s priorities, a decision to spend a dollar on the highest-valued option 

means a dollar not spent on next best one. The value of this forgone option is what is 

known as the opportunity cost. It does not necessarily have to have a monetary value; the 

option having the greatest expected utility
4
 is chosen, and it may include the do-nothing/ 

inaction option (e.g. money invested at the risk-free interest rate). While opportunity cost 

is not treated as an actual cost in any financial statement, opportunity cost analysis is an 

important part of the decision-making processes. (InvestorWords.com, 2010). 

However, opportunity cost decision analysis does not consider the possibility of the 

decision faltering and costing substantial delay and additional expenses. Do not these 

costs have opportunity costs? Would not the total cost (including remedial expenses and 

value of wasted time) consumed on an implemented decision have possibly allowed for 

more expensive and rewarding decision alternatives, in retrospect? And, therefore, would 

extending the concept of opportunity cost to model such scenarios provide more accurate 

                                                 
4
 Utility is defined here as the monetary equivalence of the level of satisfaction or benefit (monetary or 

otherwise) that would be realized from exercising or implementing an option. 
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evaluations and better decisions? Addressing these queries leads us to introduce the 

concept of opportunity cost of wrong decisions. 

2.4.1.3.2 Opportunity Cost of Wrong Decisions 

If the realized utility of an exercised option turns out to be less than what was initially 

expected (i.e., if the utility were mis-estimated) and consequently the decision were 

deemed to be non-optimal in view of the realized scenario, the decision-maker may have 

to take other actions to remedy the situation, which could incur substantial additional 

expenses and take extra time than already planned. Modeling this possibility in 

opportunity cost decision analysis by extending the concepts of opportunity cost and 

economic cost may reap better decisions.  

Therefore, where the opportunity cost of any decision to invest a certain amount of 

money in an option is the forgone value (utility) that would be realized from investing the 

same amount of money in the second-highest-valued option, we define the opportunity 

cost of wrong decision (OCWD) as: the forgone value that would be realized during the 

same period of time from investing in the second-highest-valued option, the sum of the 

original amount of investment in addition to the expected remedial expenses and the 

money value of wasted time or delay. Furthermore, in parallel with the concept of 

economic cost (EC) of a decision, which is defined as the cost incurred in implementing 

the decision plus its opportunity cost, we define the concept of economic cost of a non-

optimal/ wrong decision (ECWD) to be the economic cost of the decision plus the 

economic cost of mis-estimation or setbacks (ECME), which is the cost of the remedial 

expenses and that of delay plus their opportunity costs. 
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Alternatively, ECWD can be defined as total expected total cost (i.e., including cost of 

mis-estimation) plus OCWD. The former dentition assumes that the utility of decision 

option as well as its opportunity cost can be partitioned between the cost of the decision 

option and that of the mis-estimation. Whereas the latter deals with the expected cost and 

its utility in totality. 

ECWD of a decision option when subtracted from decision‟s expected utility yields the 

economic profit of wrong decision, EPWD. This value can be used as a criteria for 

decision-making, where the decision option having the maximum EPWD value is chosen. 

When incorporating the possibility of setbacks in decision-making through including cost 

of setbacks in the total expected cost and opportunity cost, more accurate assessments 

and consequently better decisions may arise. On the contrary, if this possibility is not 

taken into consideration and a wrong decision materializes, then given the scale of the 

negative consequences, the forgone opportunity factor multiplies the loss. This effect is 

felt the most when an implemented expensive decision option becomes increasingly more 

costly (due to remedial expenses, wasted time, and lost revenues) and yet never yields 

any of the sought utility; it becomes like a double loss: the wasted resources and the 

forgone opportunity. A real mega-scale project example of this (Montréal-Mirabel 

International Airport) is presented in subsection 2.4.1.10.1. 

Wrong decisions in transportation project can not only significantly increase the costs of 

the implemented decisions but also the values of their forgone opportunities. In addition 
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to the added costs, the forgone opportunity factor is another reason for seeking optimality 

in decision-making in transportation infrastructure projects. 

2.4.1.4 The Profitability Factor: Private Sector Involvement 

As mentioned earlier, due to the large cost and limited government resources, it has 

become increasingly more common to find the involvement of the private sector in 

transportation systems development through what are called public-private partnerships. 

One example of interest is the 407 Express Toll Route (ETR). For the sake of a more 

speedy construction and to save much needed provincial funds, the Ontario government 

resorted to a public-private partnership to facilitate the development of the highway.  

Other examples include the Viva bus rapid transit network in York Region, Ontario 

(Koole, 2006), the Confederation Bridge construction in Prince Edward Island (Transport 

Canada, 2005), and the Canada Line automated rapid transit service in Greater 

Vancouver, British Columbia (The Canada Line). 

While for the government some non optimal decisions may be justified on the basis of 

some non monetary or long term benefits, or because the money is eventually recoverable 

through future taxation, these decisions would be absolutely intolerable to the private 

sector, where the sole motive behind any venture is the monetary gain and where the 

resources are much more limited. Therefore, rigorous and comprehensive analysis 

becomes imperative to ascertain the viability and profitability of projects. 

There is a compounded sense of necessity for making right decisions when the private 

sector is involved. This requires an accurate project assessment and valuation, which 
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according to Zhao, Sundararajan, and Tseng (2004), “demands a prudent approach in 

sharing the commercial, financial, and development risk among the different agencies”. 

2.4.1.5 The Human Factor 

Construction of new transportation systems, including highways, or the expansion of 

existing ones can have many implications on people on different levels. Perhaps some of 

the most directly and immediately affected individuals are those who are located on or in 

near proximity to these projects. The effects of their disturbances can be economical, 

personal, and/or social in nature. 

Naturally, one prerequisite to undertaking any new construction or expansion of an 

existing highway is the procurement of the land or the right-of-way. In Canada, when 

such projects are deemed necessary and/ or in the public interest, the appropriate 

authority (e.g. the provincial ministry of transportation), through enacting legal 

procedures embedded in the Canadian Expropriation Act
5
 (1985), can take possession of 

the land areas that are “required by the Crown
6
 for a public work or other public 

purpose.”  

The expropriation process may inflict numerous damages on the landowners that include 

cases where: an owner is required to give up their occupations, a specially designed 

building is erected on the land, or the land is being used for residence. However, the 

landowner is still entitled to object to these damages. 

                                                 
5
 or similar provincial versions.  

6
 “Crown” means Her Majesty in right of Canada 
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A landowner, choosing to exercise the right to object to the notice of intention
7
 to 

expropriate the interest in land
8
, may get engaged in a lengthy and potentially taxing 

process, which involves serving on the Minister an objection
9
 to the notice of intention to 

expropriate the interest; attending public hearings
10

 or retaining counsel
11

 to present the 

nature and the grounds of the objections; and, where the effect is not given to the 

objection, requesting a copy of the public hearing report
12

. 

The landowners, having almost no choice but to sell, would, however, be entitled to 

compensations, as per Section 25 of the Canadian Expropriation Act. 

While the landowners are entitled to receive compensations for losses that are 

subsequently endured as result of the land expropriations, they and all those who choose 

to object to the notice of intention, may have to go through several other lengthy 

procedures that can include attending court hearings regarding determination of titles
13

 of 

                                                 
7
 “notice of intention”: Whenever, in the opinion of the Minister, any interest in land is required by the 

Crown for a public work or other public purpose, the Minister may request the Attorney General of Canada 

to register a notice of intention to expropriate the interest, signed by the Minister. 
8
 “land” includes buildings, structures and other things in the nature of fixtures and mines and minerals 

whether precious or base, on, above or below the surface. 
9
 Section 9 of the Expropriation Act, grants the landowner the right to object to the notice of intention, 

within thirty days after the day the notice is given, by serving on the Minister an objection in writing. 
10

 Subsection 10.(1) of the Expropriation Act states that the Minister shall, if the Minister has been served 

with an objection under section 9, order that a public hearing be conducted with respect to the objection and 

any other objection to the intended expropriation that has been or may be served on the Minister 
11

 Subsection 10.(6) of the Expropriation Act grants any person who may be heard at a public hearing under 

section 10 the right to be represented by counsel at the hearing. 
12

 As per Section 13, in the event where effect was not given by the Minister to the objection to the notice 

of intention, the landowner can request a copy of the public hearing report with a statement of the reasons 

that the Minister had for not giving the effect. 
13

 As per Section 18, where the Attorney General of Canada, at any time after the registration of a notice of 

confirmation, is in doubt as to the persons who had any right, estate or interest in the land to which the 

notice relates or as to the nature or extent thereof, the Attorney General of Canada may apply to the Court 

to make a determination respecting the state of the title to the land or any part thereof immediately before 

the registration of the notice, and to adjudge who had a right, estate or interest in the land at that time, and 

the nature and extent thereof. 
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the land, hiring land appraisal agencies (Section 29), accepting or rejecting compensation 

offers
14

, negotiating
15

 compensation settlements, or filing lawsuits
16

. 

Aside from the economical losses and the expropriation hassles, there are other 

disturbances to the landowners of the expropriated lands that may not have a monetary 

value. These include lifestyle losses such as loss of sentimental values, changes in life 

habits, and social disconnections due to resettlement, as well as life quality losses to 

nearby inhabitants of the transportation system in terms of increased air pollution and 

noise levels, loss of greeneries, reduced child safety, etc. 

Decisions to build or expand transportation systems can have great benefits, but they can 

also have enormous consequences on people, not all of which are compensable. With 

correct decisions, the greater public good may justify the cost paid by local inhabitants. 

But because wrong decisions can translate into little public benefits and result in people 

making unnecessary sacrifices, then extreme care must be taken in the decision-making 

process. 

                                                 
14

 As per paragraph 16.(1)(b), following issuance of a notice of confirmation of intention (Section 14), 

where the interest would, thereby, be confirmed to be expropriated becomes absolutely vested in the Crown 

(Section 15), the Minister shall, within a certain period of time, make an offer in writing of compensation in 

an amount estimated by the Minister to be equal to the compensation to which that person is then entitled. 
15

 As per Subsection 30.(1) where, after an offer of compensation in respect of an expropriated interest has 

been made under section 16 to any person, the owner and the Minister are unable to agree on the amount of 

compensation to which the owner is then entitled, either the owner or the Minister may, within sixty days 

after the making of the offer, serve on the other a notice to negotiate settlement of the compensation to 

which the owner is then entitled. 
16

 as specified under Section 31 of the Expropriation Act. 
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2.4.1.6 The Environmental Factor 

Given the physical nature of large-scale transportation systems, the erection of a new 

system or a major expansion of an existing one is likely to cause significant adverse 

environmental effects, which according to the Canadian Environmental Assessment 

(CEA) Act (1992) would necessitate the conduct of a comprehensive environmental 

assessment study prior to approving the project. Some of the projects that would require 

such an assessment, as identified by the Comprehensive Study List Regulations of the 

CEA Act (Ibid.), include: 

The proposed construction of  

(a) a railway line more than 32 km in length on a new right-of-way;  

(b) an all-season public highway that will be more than 50 km in length and either 

will be located on a new right-of-way or will lead to a community that lacks all-

season public highway access; or  

(c) a railway line designed for trains that have an average speed of more than 200 

km/h. 

Therefore, projects relevant to this study would certainly need to undergo a 

comprehensive environmental assessment. The CEA Act stipulates a variety of factors to 

be considered in the assessment such as “measures that are technically and economically 

feasible and that would mitigate any significant adverse environmental effects of the 

project” and “alternative means of carrying out the project that are technically and 

economically feasible and the environmental effects of any such alternative means”. 

Yet despite incorporating mitigation measures into the design of the project, some level 

of adverse environmental effects will be irreparable, which is justified if the merits of the 
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project materialize. However, if they do not, it is this irreparable damage that is the 

environmental cost of wrong decisions. 

2.4.1.7 The Irreversibility Factor 

For our purposes, irreversibility here refers to scenarios that range from the inherent 

difficulty of transforming a reality to cases of complete irreversibility of actions that 

result from poor decisions. 

Unlike the previous cost factors, which are cumulative, the irreversibility factor has a 

multiplicative effect, on top of the cumulative cost effect. The cumulative cost effect of 

the irreversibility factor is attributed to the cost of transforming the system into a useful 

one, whereas the multiplicative effect refers to its scaling (magnifying) effect on those 

previous factors mentioned (i.e. human, environmental, etc.). The cumulative cost effect 

of the irreversibility factor, having a monetary value, is already included in the cost and 

the opportunity cost of wrong decision factors. Therefore, the emphasis here will be 

placed on the scaling effect. 

Irreversibility is a common property of several elements of transportation projects. The 

first element relates to the size factor (Section 2.4.1.1) or the structural irreversibility. The 

reason behind the irreversibility of this element is twofold. 

Being composed of large structures and/or spanning over vast areas makes the 

transportation system infrastructure virtually irreversible once erected. As a matter of 

fact, these infrastructures, once built, are expected, with maintenance, rehabilitation and 

expansion, to last for many decades, if not centuries. The massive structures erected, 
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whether they are airports, seaports, bridges, bus terminal, subways, or highways, 

consume enormous amount of materials, equipments, space, etc. Meaning that 

demolishing them, beyond being costly, is completely wasteful. On the other hand, the 

unique nature of the structural elements of these systems applies to the difficulty side of 

the irreversibility spectrum in that, while doable, it is typically costly and time consuming 

to transform them into other types of structures. Also, the decision to transform the 

system is usually taken only after exhausting all other feasible options to rectify the 

system. 

The other aspect of the irreversibility of the size factor pertains to the expropriated lands 

and any existing structures on these lands, which would be permanently lost if the project 

proceeds, and would not normally be returned (at least not easily) even if the project is 

suspended or abandoned. 

The second element of the scaling effects of the irreversibility factor relates to the cost 

factor, where the cost paid in establishing or transforming the system is completely 

irrecoverable except by the amount of revenues and/or benefits realized in the operation 

of the system. Therefore, the system loss or the non-recovered portion of the cost 

(including the opportunity cost of wrong decision) resulting from the poor decision is 

irreversible. 

The third refers to the impact on the private sector of the irreversibility in mitigating 

losses. 
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The fourth relates, to various degrees, to the human factor, where the irreversibility of the 

disruptions to the lifestyles and of the reduction of life quality endured by the landowners 

and local residents as a result of the decision makes the cost of wrong decisions higher. 

Last but not least, the fifth element involves the environmental factor; the irreversibility 

of the damage (again to various degrees) caused to environment also makes cost of wrong 

decisions higher. 

2.4.1.8 The Time Factor 

The time factor and the irreversibility factor (discussed in the previous section) are 

related. We have made an analytical distinction between these two factors in that the 

latter refers to the degree of irreversibility of actions resulting from non-optimal 

decisions. In this section we discuss the time factor and its implication on the actions that 

are not completely irreversible. 

The process of establishing or expanding a transportation system does not start with a 

decision; what usually precedes this is a lengthy feasibility study involving traffic 

demand analysis and forecasting that leads to the recognition or prediction of a need for a 

corrective action. As discussed in Section 2.4.3.4.2 below, this is usually construction of 

new or expansion of current system. In between making the decision and the actual 

construction of the system are actions like proposing different alternative solutions and 

locations, assessing the environmental impacts, estimating costs, selecting the preferred 

design proposal, possibly conducting public hearings, and/or dealing with possible public 

outcry/ political opposition, possibly revising design, deferring or even abandoning the 

project altogether, procuring the land, possibly engaging in legal land expropriation 



 

 30 

proceedings, and bidding and selecting construction companies. Following that come the 

detailed design and the actual construction of the system, and upon construction 

completion starts an ongoing process of monitoring, rehabilitation and expansion that 

continues over the lifespan of the system. The monitoring process includes observing the 

highway service quality for rehabilitation needs and traffic counts for forecasting the 

system traffic demand growth, in order to take the right actions to meet the needs of the 

future. 

To varying degrees, one common feature of many of the above and other aspects of the 

transportation infrastructure developments is the long time-span drag. Some sporadic 

examples of this on different phases of existing highways are: from the time the need for 

Highway 407 was identified and land procurement began in the 1950s, it took about thirty 

years for the Ontario government to announce the construction of the highway in 1986 

(Mylvaganam and Bornis, 2004); a span of around 30 years passed between the first 

section and the final section of Hwy 401 were completed (Marshall, 2006); Hwy 407 was 

sold in 1999 through an unprecedented long lease lasting 99 years (Mylvaganam and 

Bornis, 2005); and still existent to-date, the first portion of the QEW officially opened on 

June 7, 1939 (Marshall, 2006). The long time span fact has a big effect on the different 

factors of the transportation system related to cost of wrong decisions. 

When it comes to non-optimal decisions, the time factor is much related to the concept of 

irreversibility in its relation to the first six factors; the time needed to remedy the effect of 

a wrong decision on an aspect of the transportation system is positively correlated to its 

level of irreversibility, and so is the relationship between the time and its effect on the 

cost of wrong decisions. The aspects of the transportation system (listed in the previous 
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section) at best require long durations (for those that are not completely irreversible), 

which in turn translate into a proportional level of magnification of cost. And at most (for 

the case of complete irreversibility), the scaling (or proportionality constant) would be 

equal to the inverse of the interest rate in the case where the cost can be represented as a 

constant perpetuity, or the inverse of the difference of the interest rate and the growth rate 

in the case where the representation is a growing perpetuity. This is assuming that in both 

cases, total cost can be represented in monetary terms. 

In summary, for a decision to establish or expand a transportation system, the first six 

cost factors are the unavoidable price that could be justifiably paid in return for the 

sought merits of the system. However, if this decision is poorly made and these merits 

never materialize partially or completely, the price of this poorly made decision would to 

some degree translate into a loss. The effect of the irreversibility factor on this loss would 

be to extend it for a proportional period of time, where the most conservative values of 

these time durations are fairly long. The irreversibility and time factors thus magnify the 

value of the cost. 

2.4.1.9 The Public and Political Factor 

Concerns arising from any combination of the size, the cost, the forgone opportunity cost, 

the human, the environmental, the irreversibility, or the time factors to decisions to 

construct or expand a transportation system can induce public opposition even prior to 

their establishments. Promises are made, or at least expected, when projects are 

undertaken. For example, the website for Translink, the South Coast British Columbia 

Transportation Authority, states that they “will invest the public's transportation dollars 
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wisely to ensure that the system is sustainable in the long-term”. However, when the 

promises made cannot be kept and the benefits of the system do not sufficiently 

materialize, the effect of these factors becomes more intense (proportional to the level of 

deficiency) and are propagated even further by the increased costs (remedial costs, 

wasted time, and cost of wrong decision). This would further result in public fury that 

may also lead to political backlashes. 

The public-political factor is a very likely consequence of wrong decisions; its value is 

proportional to the total magnitude of all the above costs of wrong decisions and itself is 

another cost of wrong decision that behooves for making optimal decisions. 

2.4.1.10 Can it really go that wrong? 

Above, we have presented some costs of wrong decisions in transportation projects. 

While these costs may appear uncommon and theoretical in nature they do, however, 

occur and when they do they can, depending on their magnitude of deficiency, have 

enormous real-life consequences. Below we present few case studies that demonstrate 

some of these costs of wrong decisions. 
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2.4.1.10.1 Montréal-Mirabel International Airport 

It was supposed to be “a project for the 21
st
 century”

17
, “the airport of the future”

18
, the 

“tool to help Montreal develop into a cultural and financial magnet” (Krauss, 2004), “the 

facility, which was meant to be the central gateway for much of Canada's international air 

travel, …, [that would] take flying to new heights of luxury and efficiency”, but instead it 

metamorphosed from an ambitious supermodern airport into a giant white elephant that 

only made “an ignominious landing in history's dustbin” (Toronto Star, 2004). 

It is the Montreal-Mirabel International Airport (commonly known as Mirabel), which 

was “revolutionary in its design, with a railroad station in its basement and a road tunnel 

under the runways to take drivers right to its international terminal” (Krauss, 2004). 

According to Transport Canada‟s website, when inaugurated on November 29, 1975, it 

was the world‟s largest airport in terms of property area. With 97,000 acres (393 square 

kilometers) of right-of-way (an area more than six times the size of Manhattan (Simon, 

1996)). it was envisioned to ultimately have six onsite terminal buildings and handle up 

to 50 million passengers a year (Toronto Star, 2004) and yet, “the airport - which cost 

more than $1 billion [more precisely $1.6 billion according to Maclean's (Branswell, 

1997)] to build… never handled more than 3 million travellers a year” (Toronto Star, 

2004), displaced some 3,500 farming families off their land (Ibid.), and ended up using 

only 16 square kilometers of the expropriated land (The Record, 2004). Financially, 

Mirabel was a disaster, as well; “…at the end [it] was running an operating deficit of $20 

million a year” (Delean, 2006). 

                                                 
17

 As it was labeled in the late 1960‟s by the Canadian Prime Minister Pierre Trudeau (Krauss, 2004). 
18

 A quote from a former employee at Mirabel-Montreal International Airport (Branswell, 1997)  
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In desperate attempts to resuscitate it, the Mirabel airport underwent several amputation 

surgeries, none of which landed far away from failure. “International commercial flights 

coming into Mirabel were transferred back to Dorval (now Pierre Elliott Trudeau) airport 

in 1997, leaving Mirabel to handle only charter and cargo traffic” (Krauss, 2004). Later, 

on October 31, 2004, it was reduced further to be used exclusively for cargo flights 

(Ibid.) and some light industry (CBC News, 2004). The death of Montreal Mirabel 

Airport passenger terminal was officially pronounced on February 21, 2006 when 

Aeroports de Montreal, the non-profit authority that runs both the Mirabel and the Pierre 

Elliott Trudeau airports, announced an agreement with an international consortium to 

transform the airport into a theme park. Despite that, the terms of the agreement state that 

“the terminal and adjacent buildings and property would be rented to the consortium for 

25 years, with provision for two five-year extensions” (Delean, 2006); thus, preserving 

the option/right of resurrecting the airport once again one day in the future. However, 

“the Trudeau expansion, which should provide passenger capacity for Montreal for the 

next 35 or 40 years, makes a return to Mirabel a very poor bet” (Toronto Star, 2004). And 

if and when done so, it would be too outdated to be considered a viable option; it would 

be 70 years old! (Ibid.) 

Many reasons were attributed to the Mirabel airport‟s failure; some are presented below:  

1. *Poor passenger demand volume prediction: 

a. The “erroneous predictions of passenger volumes that were based on the 

astronomical increases recorded in the 1960s” (Ibid.), which were due to 

“the glow of the Expo '67 world fair and [the anticipation for] the 1976 

summer Olympics” (Simon, 1996); 
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b. The economic shift marking “…the decline of Montreal as a business and 

financial centre” in favour of Toronto (Ibid.); 

c. “[T]he '70s oil crisis that peaked during Mirabel's construction” (Toronto 

Star, 2004); 

d. “[T]he flight of some 200,000 anglophones from Montreal after the 1976 

election of the separatist Parti Quebecois [PQ]” (Ibid.). 

 

2. *Technological ill-prognostications: 

a. The creation of quieter, runway-space-efficient, and environmentally 

friendly airplanes abrogated most if not all the benefits of airport 

remoteness from the centre of Montreal City; 

b. The development of fuel-efficient airplanes eliminated the necessity of 

landing at Mirabel for refueling. 

 

3. Ill-advised choice of location: 

a. “The airport's location, near the community of Mirabel… was … a big 

mistake, the result of a fundamentally flawed compromise between the 

federal [wanting it East of Montreal- close to Ottawa] and Quebec 

governments [wanting it to the West- close to Quebec city] that satisfied 

no one in the end”. In essence, “Mirabel was a compromise that really 

didn't work for anybody” (Ibid.); 

b. “The airport's distance (55 km) from the central city as well as from 

connecting flights at far-off Trudeau Airport have been crippling 
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deterrents to Mirabel's success from the time it opened in the fall of 1975” 

(Ibid.); 

c. The long and costly trips (30 minute-$60 taxi ride (Simon, 1996)), in 

addition to the absence of adequate land transportation infrastructure from 

Montreal to Mirabel made Mirabel very inconvenient to travelers. 

However, this “crippling remoteness from the city could have been 

mitigated by the promised road and rail infrastructure, which, for both 

political [election of the PQ government in 1976] and economic reasons, 

never materialized” (Toronto Star, 2004); 

d. *Furthermore, “a decision in the early 1980s to split air traffic between the 

city's two airports would prove "fatal" to Mirabel” as “it killed any transfer 

business…with the 3 1/2-to four-hour [transfer-time] gaps between 

Mirabel [international] and Dorval [Domestic] flights" (Ibid.). 

Items marked with (*) can be interpreted as unexpected jumps. 

 

Monetary Cost of Wrong Decisions 

The Mirabel airport, being a mega-project failure, is an excellent example to illustrate the 

enormous cost consequences of the wrong decisions taken. The first aspect of this cost is 

the enormous size of land and structures wasted, which could have otherwise been used 

more effectively. The opportunity cost of wrong decision for the airport, which when 

opened in 1975 cost $1.6 billion, is another aspect (Branswell, 1997). 
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In Section 2.4.1.3.2, we indicated that the economic cost of wrong decision is:  

Delay RemedialECWD OCWDA C C     

The present value of the initial construction cost (A) plus the present value of the cost of 

delay ( DelayC ) since 1975 plus the present value of all running operating deficits 

( RemedialC ), which includes $20 million per year since 1997 (Delean, 2006) and that of all 

other remedial costs (including the $200 million transformation cost (Ibid.) and of more 

than $9 million in farming-resumption programs (as stated at Transport Canada‟s 

website) plus the utility of investing all the pervious amounts in the next-highest-valued 

option (OCWD) is altogether the total monetary cost of the wrong decision of 

establishing the Mirabel airport. The magnitude of the opportunity cost of wrong decision 

(OCWD) should at least be the return that would have been earned from investing the 

first three amounts at the risk-free interest rate. Loosely speaking, however, for an idea of 

a potential value of the OCWD figure, it is noteworthy to observe that when highway 407 

was first opened in 1997 it cost $1.6 billion; the OCWD value could have been of the 

magnitude of the present value of the 407 ETR had this option been the second-highest-

alternative investment, for example. 

Human Cost 

The following passages of an article in Maclean‟s published on September 8, 1997 

vividly illustrate a sample of the human dimension of the mistakes in Mirabel. 

In 1969, the federal government began expropriating 360 square kilometres -- an 

area equivalent to almost three-quarters the size of the Island of Montreal. About 

8,000 rural residents were affected -- many were forced to become tenants on land 
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they had once owned. Others, like Lafond, had to move and became embroiled in 

bitter and lengthy land disputes (in the end, less than 10 per cent of the 

expropriated terrItôry [sic] was used). 

After losing his dairy farm in Ste-Scholastique in 1970, Lafond, now 64, moved 

his family to a smaller farm in nearby Bellefeuille. He eventually agreed to a $ 

100,000 out-ofcourt [sic] settlement with the federal government. Now, standing 

near his redbrick bungalow as cows graze on a nearby slope, his eyes well with 

tears as he recalls those years. But his sadness is quickly replaced by a flash of 

anger -- after all the havoc the airport wreaked on their lives, Lafond and other 

farmers who had their land expropriated want Mirabel to survive. He complains 

that his land was sacrificed to "save Montreal" from noise pollution, and now the 

flights are returning there to save the city's economy. "They're doing it for 

nothing," Lafond says. "One day or another they'll have to return to Mirabel." 

… Hubert Meilleur, the mayor of the nearby city of Mirabel, predicts that more 

than 1,000 jobs will be lost in the area as a result of scaling back flights to 

Mirabel. He lambastes the decision, saying it was taken to "please businessmen" 

and hurts two generations of people -- those who endured the expropriations, and 

their children, who benefited economically from the airport and could now lose 

their means of making a living. (Branswell, 1997) 
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Environmental Cost 

According to the book “Structure and dynamics of land use”, by Peter Brooke Clibbon, 

over the five year period between 1966 and 1971, and notably after 1969 when the site of 

the airport was selected and its official boundaries of Mirabel Airport were set, massive 

changes in the land use took place in the villages where the airport was constructed. 

During this period, the right-of-way for Mirabel airport was being expropriated and the 

construction was well under way. 

Attributed mainly to the airport, the area of urban and para-urban land use increased 

between 1966 and 1971 from 1,755.8 to 4,952.0 acres (182% increase), where in 1971, 

this presented 5.3% of the expropriated area.  The agricultural area dropped from 

59,814.6 (62% of the expropriated land in 1966) to 48,053.4 acres (51.0% of the 

expropriated land in 1971) for a total loss of 11,761.2 acres (19.7% decrease). The 

shrinking of the cultivated land is explained by the withdrawal of several thousands of 

acres from farming in the operational area, and also by the massive abandonment, which 

occurred almost everywhere else in the territory even in those sectors not immediately 

threatened by construction projects. During this period, the area of abandoned land rose 

dramatically, specifically from 7,367.1 to 15,579.4 acres, for an increase of 111.5%. By 

1971, the area in derelict farmland occupied 16.5% of the expropriated area, compared 

with 7.7% in 1966. Finally, in what amounts to a 3.6% reduction, the area of woodland 

declined by 955.6 acres (from 25,899.2 to 24,943.6 acres) between 1966 and 1971. In 

1971, forest represented 26.5% of the expropriated land. Other land uses, which include 

peat bogs, swamps and marshes, bare sand and clay, and water, occupied only 701.6 acres 

in 1971, or 0.7% of the expropriated area. 
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For our purposes, the period of interest is that spanning from the commencement of the 

land expropriation in 1969 to the end of the airport construction or the opening of the 

airport in 1975. The time period of the above statistics (1966-1971) does not exactly 

overlap with that of our interest (1969-1975). Regardless, the above statistics, 

overlapping only in the first two years (1969-1971) of the six-year period, loosely 

illustrate the severe level of impact the establishment decision of Mirabel airport had on 

the land use and the environment. 

Irreversibility and Time Effects 

The structural irreversibility of Mirabel lies on the side of “the difficulty of undoing 

actions” on the scale of irreversibility that was introduced in Section 2.4.1.7. The terminal 

complex, which includes a 5,000-space car park, a 355-room hotel and an eight-storey 

office building (CBC News, 2004), would take a few years to be renovated and 

transformed into a theme park, and is expected to cost $200 million (Delean, 2006). It 

took more than three decades of option exhaustion for this decision to be made. 

It was not until July of 1981 (more than a decade since the Mirabel land expropriation 

commenced) that the initial forecasts were revealed to be inaccurate. As a result, 80,000 

acres of Mirabel Airport right-of-way (97,000 acres) were deemed excess land. And, 

according to Transport Canada‟s website, it took nearly another decade, filled with public 

and political turmoil, for 1,400 properties to be eventually sold back (between 1985 and 

1989), at which point 11,000 acres were still kept as airport reserve land. Rightly labeled 

"correcting a historical injustice" (CBC News, 2006), a final move that took another two 

decades to be undertaken was announced in December of 2006. According to Transport 
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Canada‟s website, the federal government was to return the reserved 11,112 acres (4,450 

hectares) of farmland that was expropriated almost 40 years earlier.  

As painful and frustrating as this was to the inhabitants of the expropriated land, it could 

have been worse; their sufferings, still materializing, could have been dragged out by 

decades of inaction, as we shall see next. 

2.4.1.10.2 Pickering Airport: A déjà vu of Mirabel?  

In 1972, 18,600 acres of Grade A farmland (Lem, 2007) were expropriated in Pickering, 

Ontario for the construction of a reliever airport to the Pearson International Airport in 

Toronto. Due to “public opposition and the Ontario government's withdrawal of support 

for the project”, it has been put on hold since September of 1975 (Facts on File World 

News Digest, 1975). Between the claim of the inability of Pearson International Airport 

to cope with projected future aviation demand  on one hand and questions about the need 

for the airport, debate on Pickering airport kept resurfacing every few years (Boyle, 

2007).  

It is currently believed by proponents of the airport that Pearson International Airport 

“will meet its capacity of 50 million (passengers) by 2025-2027” (Lem, 2007). However, 

opponents of the project question, in part, the accuracy of these estimates, citing previous 

estimation flaws. Pickering airport may become a reality as soon as 2012, however, a 

final decision is not expected to be made until 2009 (Ibid.). 

It is clear that there is a legitimate claim of serious deficiencies in estimating aviation 

demand, thus the value of and the need for the airport is questionable. One thing that is 

certainly known is that without rigorous analysis and reliable demand projection, the 
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construction of the Pickering airport may very well be a Mirabel-like white elephant in 

the making. If it is any different, it is that the cost of a wrong decision could be even 

bigger given the longer period of inaction. 

2.4.1.10.3 Highway 407 

Another colossal error of decision-making that is closer to our area of interest is the sale 

of the 407 Electronic Toll Road (ETR). Unlike Mirabel, the 407 ETR transpired to be a 

very successful enterprise. Despite that, highway 407, like Mirabel, had its share of 

controversy; the common fault-denominator between the two undoubtedly encompasses 

poor demand estimation and project valuation. 

According to the 407 ETR website,  “Highway 407, which extends 108 kilometres east-

west, just north of Toronto” was meant to be a reliever highway to the congested highway 

401, but instead the 407 ETR turned into a luxurious highway monopoly or an “Extreme 

Toll Ripoff” (Leatherdale, 2005). 

Due to economic and political reasons, highway 407 was sold, in a competitive bid, to a 

consortium of private companies in 1999. The poor terms of sale, giving the consortium 

full ownership of the highway for 99 years with an unlimited control over the highway 

and its tolls, and the grave underestimation of the highway‟s worth were the main causes 

of the controversy. The $3.1 billion (Government of Ontario, 2006) privatization in 1999 

was worth $13 billion, in 2005 (Mylvaganam and Borins, 2005). Since 1999, tolls have 

risen more than 250% (Leatherdale, 2005). The situation could have been avoided with 

accurate traffic and revenue forecasts and with careful project valuation analysis. 
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2.4.2 The Cost of Inaction 

In Section 2.4.1, we discussed the high and myriad costs of making a decision to establish 

a transportation system and those of making non-optimal decisions, but what are the costs 

of not making any decisions or of inaction in general?  

There are two areas of inaction; one in addressing the need for a transportation system 

and the other is the inaction in remedying the effects of non-optimal decisions. In Section 

2.1, we have briefly mentioned the value and the benefits of transportation systems; the 

lack of attainment of these benefits is the cost of inaction in establishing the system. On 

the other hand, the continuation of losses, as well as the lost opportunities, resulting from 

poorly made decisions is the cost of inaction of remedying the system where possible. 

The great magnitude of these costs eliminates inaction as a practicable option and 

therefore the quest for optimal decisions, as costly as it may be, is the only viable option.  

2.4.3 The Price of Making Right Decisions: The Factors and Challenges 

Involved 

Previously in Section 2.4.1, we have listed, among other details, the transportation system 

factors that can be attributed to the costs of wrong decisions and/or to the inaccurate 

valuation of transportation projects. This was done by listing the impacts of these 

decisions on the different stakeholders involved. Moreover, the examples in that section 

were presented to illustrate the real possibility of making very poor decisions and their 

devastating consequences. 
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In the effort of attaining the benefits of transportation in Section 2.1, a rigorous decision-

making process is required, if not for optimizing the resources available, then at least to 

avoid paying the potentially massive costs resulting from the wrong decisions. 

This section is devoted to exploring ways of reaching optimality in the decision-making 

process in transportation system development projects. In our discussion on some of the 

requisites and challenges faced in attaining optimal decisions, we continue studying other 

factors of the transportation systems that are operational in nature and that need to be 

addressed in the decision-making process to arrive at optimal decisions. These factors, 

among others, jointly make the quest for optimality a very challenging exercise that 

eventually necessitates making significant simplifying assumptions. 

Although much of what follows may be applicable to the other modes of the land 

transportation system, for the sake of preciseness and focus, the discussion henceforth 

will be directed primarily towards highway systems. 

2.4.3.1 The Need for a Rigorous Decision-making System 

The Montréal-Mirabel International Airport case study, presented in Section 2.4.1.10.1, is 

predominantly an example of a poor decision in the planning phase, whereas the 407 ETR 

case in Section 2.4.1.10.3 is an example of poor decision in the operational phase 

resulting from poor uncertainty prediction and project valuation. While these are 

examples of failures on a mega-project scale, others, due to similar reasons, occur 

repeatedly in highway development projects. According to Zhao, T., Sundararajan, S. K., 

and Tseng C. L. (2004), “[o]ngoing operation decisions about capacity expansion, 

maintenance/rehabilitation, and regular maintenance have been based merely on 
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experience or perceived urgency of failure,” and that, “[v]ery often, key decisions during 

the planning and design phases, […] are made without considering the underlying 

uncertainties […]”. 

There is a need for a rigorous multistage stochastic decision-making system in the 

highway system development, operation, expansion, and rehabilitation phases that is 

capable of accurately modeling the various uncertainties and valuating the system at its 

various development phases under different uncertain scenarios. It is combating the 

challenges in the process of attainment of such a decision-making system that constitutes 

the price of making optimal decisions. 

2.4.3.2 Objectives of the Decision-making System 

In Section 2.3, we listed the broad constraints of a healthy transportation system. Meeting 

these transportation system constraints (speed/ time, convenience, reliability, economy, 

and sustainability) collectively become the broad objectives of the decision making 

process. In this respect, the object focus of this work relates directly to the efficiency 

constraints, and not those related to the environment and the safety, which are beyond the 

scope of this work. As such, if the benefits of the land transportation or highway system 

lie in the efficient and smooth movement of traffic, then the decision-making process 

needs to address certain operational factors to ensure the highway system traffic is 

running in a smooth and efficient manner. 
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2.4.3.3 The Complexity Factor 

Arriving at an optimal decision-making system for highway systems is a nontrivial 

endeavour. Modeling the highway system involves many challenges and complexities, 

some of which are elaborated on in the following sections. 

Naturally, the decision-making system needs to make optimal decisions in such a way 

that the total value of the highway system is maximized. These decisions need to be made 

continually and on a timely basis throughout the life-cycle of the highway. One challenge 

that lies in this process is the large number of decisions that need to be made. Given the 

infeasibility of considering them in their entirety, the decision-making system needs to 

include only the most important decisions. Not necessarily independent of one another, 

these decisions also need to be modeled in the decision-making system in a way that 

reflects these interdependencies. 

The value of the project and the outcomes of these decisions are contingent on the 

realization of the relevant underlying uncertainties that are imbedded in the highway 

system. Perhaps more of a challenge is addressing this uncertainty factor. Not only are 

they numberless, these uncertainties are highly correlated, have unknown stochastic 

dynamics, and require vigorous data analysis and tedious data collection efforts such that 

modeling them is at best nontrivial. 

A third challenge is relating in an optimization technique the decisions, the modeled 

uncertainties and other highway parameters in a way that closely resembles reality and 

that yields the optimal results sought. 
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In the following three sections, we elaborate on these challenges. 

2.4.3.4 Scope of Decisions: The First Challenge 

When attempting to develop an optimal decision-making system that deals with the 

different phases of the life-cycle of the highway system, one immediate constraint is the 

infeasibility of optimizing the large number of complicated decisions that need to be 

made during the life-cycle of the highway in absolution. These include many decisions 

within various processes taking place at the different phases of the highway life-cycle; 

some of these processes are listed below. 

 Planning phase: determining the needs for and the benefits of the highway 

project as well as the constraints to the highway users and economy (as illustrated 

previously in Sections 2.1 and 2.3 respectively), studying the character of the area, 

selecting the path of the highway, and acquiring the land. 

 Design phase (preliminary and final): designing of the highway parameters such 

as geometric shape and vertical alignment, design speed, number of lanes, width 

of right-of-way, drainage, and highway interchanges. 

 Development phase: construction of the highway. 

 Operation phase: highway maintenance, rehabilitation, and expansion. 

 

Naturally, the efficiency of the decision-making system lies in the optimality of its 

decisions. However, given the wide spectrum of decisions, optimality lies in making 

optimal decisions of the most important types of decisions. Below are some of these 

important decisions that arise as a direct result of meeting the main objective of the 

highway system in this work: the efficiency objective. 
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2.4.3.4.1 System Quality: The Rehabilitation Decision 

One factor that directly affects the efficiency of the highway system (meaning the 

smoothness of traffic, convenience, reliability and economy of the system) is the system 

traffic flow capacity. This depends on the highway service quality, where the higher the 

service quality of the system, the higher the system traffic flow capacity. 

Whether due to environmental reasons and/ or traffic use, deterioration in highway 

systems is inevitable, as is the need to maintain and to rehabilitate its infrastructure.  

Furthermore, rehabilitation is costly. Being so, there is a tradeoff between the cost of 

rehabilitation and the benefits gained. Thus, the modeling of the highway deterioration 

process and the timing of the rehabilitation decision become of the essence. 

The rehabilitation of the system is an important decision that needs to be made, where the 

decision making system needs to determine the optimal timing of these decisions to 

ensure its sustainability. 

2.4.3.4.2 Congestion Mitigation: The Expansion Decision 

The highway traffic flow efficiency also depends on the traffic demand on the highway as 

traffic congestion can severely hinder the efficiency of the system. In the long run, 

chronic traffic congestion on highway systems arises due to two main reasons: 

deterioration in the transportation system quality condition (as discussed earlier) and/or 

growth in the traffic volume to a level where the traffic demand approaches or exceeds 

the highway capacity. Therefore, the time analysis of the traffic demand is also needed in 

the transportation decision-making system with regard to the determination of the optimal 
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time to exercise a corrective decision option. But what are the corrective decision options 

that can be made to maintain system efficiency and alleviate congestions? 

Many strategies can be adopted to alleviate traffic congestion. They include system 

infrastructure management strategies such as highway rehabilitation and/or expansion, 

and traffic reduction strategies such as promoting the use of transit systems and carpools, 

as well as encouraging multi-occupant vehicle through the provision of restricted high 

occupancy vehicle (HOV) lanes
19

, promoting the notion of flexible work hours to reduce 

rush hour congestions, or taking punitive measures such as increasing fuel taxes and/or 

public parking fares. 

While traffic reduction strategies are being used in practice, they seem to be effective 

only when the transport system reaches absolute maximum expansion capacity and/or the 

cost (in time and money) becomes too excessive (e.g. Downtown Toronto or some 

sections of highway 401 during peak travel periods). Moreover, some of these strategies 

depend on the availability of well developed and convenient alternative transportation 

systems. Therefore, the system infrastructure management strategies remain the 

predominant set of options adopted to alleviate traffic congestion, thereby qualifying the 

adoption of this particular mitigation approach as a corrective or a preemptive optimizing 

decision in the decision-making process. 

Again, highway expansion is costly (more so than rehabilitation) and depends on the 

number of expansion lanes. In addition to the need to determine the timing of the 

                                                 
19

 High occupancy vehicle lanes (HOV) are lanes that are designated only to vehicles that carry at least two 

people. 
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expansion, the decision-making system also needs to determine the optimal number of 

lanes to be expanded. 

2.4.3.4.3 The Space Factor: The Land Acquisition Decision 

In sub-subsection 2.4.1.1, we elaborated on the massive sizes and the vastness of the land 

space requirements of the land transportation systems. Prior to the implementation of the 

expansion decisions, land on which the highway is to be constructed needs to be secured 

by the proper authorities. Land, especially in urban areas, is mostly owned by the private 

sector. Thus, land expropriation is inevitable. Moreover, the cost of the land acquisition 

constitutes a major portion of the overall highway development cost. 

The size of the land expropriated is dependent upon the geometric design (number of 

lanes to be built) and the outcome of the expropriation process where, for example, 

damages to the landowner may dictate that the entire land parcel be expropriated. Beyond 

being a prerequisite to highway construction or expansion, land acquisition also acts as an 

insurance against future variability in prices and in availability when acquired in excess 

of the current or the foreseen needs. It also grants the decision-maker the option of 

flexibly expanding the highway when deemed worthwhile, as the magnitude of this 

flexibility is confined by the size of land acquired. 

Land acquisition cost is enormous and, as noted in Section 2.4.1.3, government budgets 

are limited. Thus, there is a tradeoff between the cost of land to be acquired and the 

security and benefits sought. Consequently, there is a need to optimize the width of the 

right-of-way to be acquired in size and time. 
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2.4.3.5 The Uncertainty Factor: The Second Challenge 

A rigorous decision-making system rests on the accurate valuation of uncertain 

alternatives. The highway systems alternatives and states are embedded with myriad 

correlated uncertainties. And the uncertainties, themselves, can follow unknown 

distributions. The second challenge in developing a robust decision-making system lies in 

the treatment of the uncertainty factor, more specifically, the infeasibility of a full 

containment of all the uncertainties and their correlations and in mathematically capturing 

their dynamics. Therefore, in order to optimize decisions, one first needs to examine the 

different uncertainties involved and choose the most important ones to model. One also 

needs to ensure that the selected uncertainties indeed reflect the most feasibly accurate 

approximations of the valuation variables. 

Uncertainty is a common feature of many aspects of highway development projects, such 

as system cost, traffic demand, revenue, highway service condition, and user benefits. 

Below are some of these uncertainties and their correlations, as they relate to three 

important stochastic valuation variables in the decision-making process (highway 

development cost, traffic demand, and highway service quality): 

1) Highway development cost 

a) Land acquisition cost (Expropriation cost) 

i) Land price 

(1) Area of the expropriated land 

(a) Highway design 

(b) Exact size of expropriated land given damages to landowners 
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(2) Time 

(3) State of economy 

(4) Location 

(a) Urban 

(b) Rural 

(5) Public/ private investments 

(6) Government decisions: e.g. Landfills 

ii) Damages to the owner 

(1) Loss in business/ occupation 

(2) Lost properties (homes, specialized building, etc…) 

(3) Relocation 

iii) Amount of decrease in the value of the remaining property 

iv) Legal costs 

b) Construction/Rehabilitation Cost 

i) Material cost 

(1) Fuel price 

(2) Labor cost 

(3) Raw material cost 

ii) Labor cost 

(1) Inflation 

iii) Equipment rental & operational costs 

iv) Oil price 

v) Transportation cost  
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vi) Running costs 

c) Operational cost 

d) Inflation 

e) Foreign exchange rates 

 

2) Traffic demand 

a) Fuel price 

b) Population growth 

c) State of Economy 

d) Highway service quality level 

e) Highway location 

f) Seasonal changes 

g) Traffic shifts due to higher capacity (new highways or expansions) or shifts from 

other forms of transportation 

h) Government interventions: HOV and other traffic reduction incentive initiatives 

i) Private/public investment decisions 

i) New major enterprise 

ii) Political decisions (Hosting Olympics, foreign trade or partnership 

agreements, decisions to invest in regional industrial production or regional 

infrastructure development) 
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3) Highway service quality (deterioration) 

a) Traffic demand 

b) Type of traffic 

c) Time/age (material degradation) 

d) Environmental conditions and disasters 

e) Chemical spills 

f) Structural failure 

In the next few subsections, we analyze these major valuation variables and highlight 

some of their embedded uncertainties and suggest ways to model them. 

2.4.3.5.1 Highway Development Cost in relation to Land Acquisition Cost  

Due to the significant weight of the cost factor, as indicated in Section 2.4.1.2 above, 

there is a need to accurately model the dynamics of the highway development cost 

uncertainty. 

For a government, the total highway development cost includes the cost of land 

acquisition, in addition to those of the system construction, operation, maintenance, 

rehabilitation, and expansion. As alluded to in Section 2.4.3.4.3 above, the first cost item 

is significant; in fact, it could be manifolds that of the latter ones. For example, where the 

construction cost of Highway 407, when opened in 1997, was roughly $1.6 billion, 

estimates of the amount of money spent since the 1970s in acquiring the land on which 

the highway sits range from $104-107 billion dollars as of March 31, 1998 (Ontario, 

Legislative Assembly, 1998). 
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Therefore, when modeling the total highway development cost, attaining an accurate 

representation of the cost process of the land acquisition (being potentially more than 65 

times of the construction cost) should certainly supersede that of the highway 

construction. Traditionally, however, the cost of the right-of-way acquisition has been 

modeled simply through models of land price variability which, as seen above, involves a 

great level of simplification. 

In Section 2.4.1.5, we explained the process of land acquisition illustrating the grievance 

and losses that the landowner may endure as a result of the expropriation process. There 

we stated that the landowner, having almost no choice but to sell, would nonetheless be 

entitled to compensations as per Section 25 of the Canadian Expropriation Act. Here, we 

elaborate on this clause of the Act, which states: 

25. (1) Compensation shall be paid by the Crown to each person who, immediately 

before the registration of a notice of confirmation
20

, was the owner of a right, estate or 

interest in the land to which the notice relates, to the extent of his expropriated interest, 

the amount of which compensation shall be equal to the aggregate of 

(a) the value of the expropriated interest at the time of its taking, and 

(b) the amount of any decrease in value of the remaining property of the owner, 

determined as provided in Section 27. 

                                                 
20

 “notice of confirmation” is a notice issued following a request by the Minister to the Attorney General of 

Canada to register a notice confirming the intention to expropriate an interest in land 
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 [Where] the value of an expropriated interest is the market value thereof, that is to 

say, the amount that would have been paid for the interest if, at the time of its taking, it 

had been sold in the open market by a willing seller to a willing buyer. 

This value, as stated in 25.(1)(a) and determined in accordance with Section 26, is 

assessed differently for different expropriation scenarios, such as those where the owner 

is required to give up an occupation, where the Crown has taken physical possession of 

land, where specially designed building is erected on the land, or where the land is being 

used for residence. Therefore, compensation (or expropriation price) is composed of the 

sum of the market price of the expropriated land, the amount of decrease in the value of 

the remaining property, and other damages to the owner. 

 

Land expropriation price = Market price of expropriated land +

                                           decrease in the value of remaining property + 

                                           other damages to the owner

 (2.1) 

This is a far more realistic representation of the actual cost being paid by the government 

than that resulting from the sole consideration of the unit market land price. After all, this 

is the cost that is being incurred to obtain the right-of-way on which the highway is to be 

built, and it can be considerably larger than the mere market price of the expropriated 

land. 

From the mathematical modeling perspective, the dynamics of the land acquisition cost 

may substantially differ from that of the land price (being only one segment of the land 

acquisition cost), as the land price is one of many other widely uncertain factors. One of 

the land acquisition cost components is time dependent, whereas the other is location 
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dependent. The component of the dynamics of the land acquisition cost process that is 

time dependent is the unit land price; whereas, the other expenses relating to the 

landowner compensations are time independent, applying only at the time of 

expropriation, and depend on the location and the unique circumstances of the landowner. 

In order to conduct a thorough mathematical analysis to study the factors behind the 

different uncertainties in the land acquisition cost (e.g. damages to landowners or cost in 

urban vs. rural areas), one needs to collect a detailed breakdown of the statistics on the 

land acquisition cost values directly from the expropriating agency as well as collecting 

time varying statistics on unit market land prices. 

One simple way of modeling the cost of land acquisition is by analyzing the highway 

system section-wise and adding for each highway section an appropriate average unit 

expropriation cost term and the land price. Another way to model land acquisition cost 

process is to model it as a two-dimensional jump process: 

 Land price: time-variant process 

 Compensation cost: space-variant process 

Despite the above analysis and suggestions, and as stated in the scope of this work, for 

simplicity, the land acquisition cost will be based on a time-variant unit land price. 
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2.4.3.5.2 Construction Cost in relation to Material Cost 

Following the land acquisition cost, the next considerable item in highway development 

cost is the construction cost. Construction cost is composed of materials cost, labor cost, 

equipment rental and operational costs, as well as other running costs. Out of them all, 

the cost of construction material is the most substantial component. 

According to the May of 2005 ARTBA report Value of Transportation Construction Put 

in Place, “[m]aterials comprise just under half of highway and bridge construction costs 

[,…]” (Buechner, 2005). Noting an increase of 6.7% in the total value of highway and 

bridge construction work performed for the first 5 months of 2005 as compared to the 

same period in 2004, the ARTBA report also states that  

[s]ome of the increase in the value of construction on highways and bridges this 

year [2005] may simply represent higher material costs. During 2004, steel, fuel 

and cement prices all increased significantly, raising the cost of highway and 

bridge construction materials by 8.5%, according to data from the Bureau of 

Labor Statistics. So far in 2005, prices for aggregates, ready-mix cement and 

asphalt paving mixtures have risen significantly. (Ibid.) 

This indicates a potentially volatile nature for the construction material cost.  

In dollar value, the total value of construction work performed on highway and bridge 

projects in the US during that period of time totaled to $5.7 billion; this is still a 

significant component of the total cost in the absolute sense. 
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Its substantial proportion of the cost and its seemingly volatile nature may make 

modeling the materials cost as a stochastic process (as opposed to a constant variable) a 

fruitful measure, as it may capture the dynamics of the construction cost process more 

accurately. 

Despite the above, for the sake of simplicity, the consideration of material cost will not be 

part of the scope of this work. 

2.4.3.5.3 Oil Price 

Metaphorically speaking, if the economy in general is a physical body, then the 

transportation system would be its nervous system and oil would be its blood stream. Oil 

price is directly and indirectly a sub-factor of many other uncertain variables, the accurate 

representation of which may rely heavily on that of the dynamics of oil prices. 

The inclusion of the oil sub-factor in the modeling of the other factors, while it may be 

beneficial, can complicate the modeling and analysis of the decision-making system. 

Oil price process appears to have a very volatile dynamics, with an upward trend that 

seems to exhibit sudden big jumps. However, a thorough incorporation of this uncertainty 

is very challenging; therefore, this uncertainty will not be considered in this paper. 

2.4.3.5.4 Traffic Demand 

Traffic demand is an important valuation variable because it is a measure of a primary 

objective of the transportation system: the efficiency of the highway system. This could 

be measured by the congestion level of the highway, which is directly proportional to the 

traffic demand level past reaching the highway traffic capacity. 
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Traffic demand is very volatile, and its volatility is time-scale dependent. The traffic 

demand behaviour varies on an hour-to-hour scale, on a day-to-day scale, on a month-to-

month scale, and on that of a year-to-year scale. The different time scales capture 

different traffic variation patterns that may not be readily noticeable at other time scales, 

if detectible at all. For example, at the hour-to-hour scale, one would expect a large 

increase in traffic counts on certain highways during rush hours and a drop during the 

night hours on most highways. The weekday-weekend effect where traffic counts may 

increase or decrease during the weekends is mostly observable at the day-to-day scale. 

Other patterns may occur at the margin of two time scales, as in the case of some 

highways where traffic increases in the evening hours prior to the start of the first 

weekday and after the end of the last weekday. From a longer time-scale perspective, an 

effect that is revealed on the month-to-month scale could be that of the vacation season, 

where large peaks of traffic take place on certain highways during the months of summer 

or that where traffic substantially declines in the months of winter.  

Finally there is the year-to-year scale, which captures a wide spectrum of factor effects. 

There are many factors that drive the fluctuations in traffic demand at this time scale, 

perhaps the most significant ones being those leading to large increases: the long term 

increase due to growth in traffic demand or economic reasons and the big spontaneous 

jumps. These jumps may occur due to many factors such as: big jumps in fuel prices, 

seasonal/ environmental changes, traffic shifts due to higher traffic capacity (new 

highway or expansion) or shifts from other modes of transportation. Other factors include 

government traffic interventions such as adding HOV lanes or other traffic reduction 
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incentives, private/ public investment decisions such as building a new plant, and 

international events such as hosting the Olympics. 

Given that our interest is in a decision-making system that runs over the lifecycle of the 

highway system (many decades), that the shorter time scale variations could be 

aggregated in a single point (i.e. the average annual daily traffic (AADT) parameter), and 

that the most significant traffic fluctuations occur at the yearly time scale, the yearly time 

scale is the one that will be adopted. To model this uncertainty variable, one could also 

use a suitable stochastic model with jumps. 

2.4.3.5.5 Highway Service Quality 

In subsection 2.4.3.4.1, we have shown that rehabilitation is an important decision, the 

timing of which needs to be optimized. When attempting to do so, it becomes imperative 

to model the highway deterioration time process to know when the rehabilitation ought to 

be undertaken. Thus, highway deterioration or highway service quality level is another 

important valuation variable. It can be modeled through subjective discrete indices, such 

as the discrete-time Markov chain. 

2.4.3.6 The Path towards Optimality: The Third Challenge 

The complexity of the decision-making process, arising from the many interrelated 

decisions and the innumerable correlated uncertainties, has brought about voluminous 

research literature on topics related to decision-making under uncertainty. Techniques 

like Monte Carlo simulation and artificial intelligence techniques (such as artificial neural 

networks, knowledge-based expert systems, genetic algorithms, fuzzy logic, and hybrid 

systems thereof) were all developed in an attempt to facilitate optimal decision-making. 
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For many decades, researchers and practitioners have continued to apply these techniques 

to a wide spectrum of engineering applications. Another major challenge in attaining 

optimality lies in determining the best path towards optimality (meaning the most optimal 

optimization technique). 

One rather recent technique of interest, called real options, is based on financial 

mathematics. In valuing decision options, it incorporates the value of the very real 

flexibility that the decision-maker possesses and exercises throughout the lifecycle of a 

project, in terms of exploiting opportunities by changing the course of decisions 

depending on the unfolding of the embedded uncertainties. Thus, unlike traditional 

techniques, where the uncertainty has been typically portrayed as a risk that needs to be 

mitigated and managed
21

, the real options technique strategically manages uncertainties 

to exploit opportunities that maximize the project value; it offers a more realistic project 

assessment and consequently may constitute a more reliable decision-making tool than 

the traditional ones. 

For the purpose of this work, the real options optimization technique adopted is adapted 

from Zhao et al. (2004). It incorporates Monte Carlo simulation and least-squares 

regression integrated with backward dynamic programming steps. While, in this work, 

we are interested in improving on this real options technique, we do not claim that this is 

necessarily the most optimal technique. 

                                                 
21

 Uncertainty is prevalently perceived as a negative factor that can only generate losses. This is reflected 

in the four general methods of risk mitigation, namely: “avoidance, reduction, shifting or transfer, and 

assumption (CII, 1989)” (Ford et al., 2002). 
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2.5 Real Options 

Ford et al. (2002) provide the following concise literature review of real options: 

Real options theory is based on the approach developed to value and analyse 

options on financial assets (Black and Scholes, 1973; Cox et al., 1979; Bookstaber, 

1982). Methods for valuing options specifically on real assets have since been 

developed and analysed (Kemna and Vorst, 1990; Trigeorgis, 1993, 1995; Dixit 

and Pindyck, 1994; Brealey and Meyers, 2000), applied to engineering (Baldwin 

and Clark, 2000; Park and Herath, 2000; Benaroch, 2001), and promoted as a 

strategic planning aid by both academics (Kensinger, 1988; Biernlan and Smidt, 

1992; Amram and Kulatilaka, 1999b; Miller and Lessard, 2000) and practitioners 

(Leslie and Michaels, 1997). The real options approach has been adapted to 

financial strategy (Myers, 1984; Trigeorgis, 1993). The real options approach has 

been adapted to financial strategy (Myers, 1984; Trigeorgis, 1993). Real options 

have been used to capture latent value in many domains, including natural 

resources, research and development, technology, real estate, and product 

development (Kemna, 1993; Dixit and Pindyck, 1994; Trigeorgis, 1995; Amram 

and Kulatilaka, 1999a; Brennan and Trigeorgis, 2000; Benaroch, 2001). 

Real options valuation is based on financial options. In finance, an option is defined as 

the right, but not the obligation, to buy or sell an asset (instrument) under specified terms 

(Zhao et al., 2004). For example, an option that gives the right to purchase an asset is 

called a call option, whereas an option that gives the right to sell an asset is called a put 

option. Usually, there is a specified price (called the exercise price) at which the 
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underlying asset can be purchased or sold upon exercise of the option and a specified 

period of time over which the option is valid. There are two primary conventions 

regarding the acceptable exercise dates before expiration: an American-style option 

allows exercise at any time before and including the expiration date, whereas a European-

style option allows exercise only on the expiration date. (Zhao et al., 2004) 

As applied to physical assets, real options valuation refers to the options embedded in real 

operational processes, activities, or investment opportunities that are not financial 

instruments (Zhao et al., 2004). It is a right without an obligation to take specific future 

actions depending on how uncertain conditions evolve (Amram and Kulatilaka, 1999). 

Thus, the value of the option lies in the asymmetry of the right to capture the upside 

without the obligation to bear the downside (Ng and Björnsson, 2004.) Therefore, the 

central premise of real options theory is that when the future conditions are uncertain and 

the managerial strategy may later produce substantial losses/opportunities pending the 

outcome of these conditions, having flexible strategies, whereby decisions could be 

delayed until such times as the uncertain conditions are revealed, may reduce a loss or 

yield a latent value (i.e. be in the money) and thereby should have a price (i.e. option 

price). This is contrary to the traditional approaches where making/evaluating all strategic 

decisions invariably occurs at the preliminary planning phase. Essentially, 

[r]eal options theory attempts to answer the questions: what are the future 

alternative actions; when should we choose between these actions to maximize 

value based on the evolution of conditions; and how much is the right to choose 

an alternative worth at any given time (Ford et al., 2001).  
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In Section 2.4.3.4, we have listed some possible decisions that need to be taken 

throughout the life cycle of the highway system. Any of these decision alternatives 

translate into flexibility (a real option), the consideration of which in the analysis can turn 

the associated uncertainties from risks into opportunities. Of course, the trade-off 

between the number of real options considered and analysis complexity remains a very 

significant limitation. 
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2.6 Jump Processes 

The accuracy of any decision-making system involving uncertainty rests on its ability to 

model the uncertain factors. For example, the case studies presented in Section 2.4.1.10 

clearly illustrate how the inaccurate projection of passenger volume and traffic demand 

contributed to grave shortcomings in Mirabel and the 407 ETR. 

An analyst wishing to accurately capture the dynamics of uncertainties should not neglect 

how certain events, decisions and other factors, such as those marked with (*) in the list 

of reasons behind the failure to project the passenger volumes of Mirabel Airport, can 

result in unpredictable major jumps and result in devastating consequences. Modeling 

this phenomenon of uncertainties dynamics (the jumps) has, so far, been mostly 

neglected. Yet it is clear that even without any rigorous analysis, it would not be 

unreasonable to assume the likelihood of spontaneous, possibly correlated, jumps in 

dynamics of the uncertainty processes. 
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2.7 Summary and Conclusions 

In the first few sections of chapter 2, we have emphasized the value of transportation and 

the need for developing transportation systems. Presenting the complexity of current 

transportation systems, we showed the relative importance of the highway system and 

listed some constraints that need to be met by the transportation systems. Later, in 

Section 2.4, we tackled the topic of decision-making under uncertainty in transportation 

systems. We showed, in the first subsection (2.4.1), the enormous cost of wrong decisions 

on various aspects; there, we introduced the new concept of the opportunity cost of wrong 

decisions as well as the irreversibility as a scaling cost factor. Subsequently, we presented 

a few real life case studies illustrating the real possibility of errors in decisions on mega-

scales. In the second subsection (2.4.2), we claimed that inaction is not a viable option, 

and stated the reasons for that. 

The third subsection (2.4.3) addressed the price of making optimal decisions; listed there 

were three challenges faced in the development of an optimal decision-making system: 

the choice of decisions, uncertainties, and optimization technique. Addressing the first 

challenge (2.4.3.4), we, in accordance with the implementation in Zhao et al. (2004), 

highlighted the rehabilitation of the system as an important decision that needs to be 

made, one where the decision making system needs to determine the optimal timing of 

these decisions. The second decision relates to system expansion, where the system needs 

to determine the timing of the expansion and the optimal number of lanes to be expanded. 

Finally, a prerequisite to expansion is land acquisition. Consequently, the third decision is 

in regards to acquiring the land; in making this decision the system needs to optimize the 

width of the right-of-way to be acquired in size and time. 
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The second challenge (2.4.3.5) relates to the underlying uncertainties; not only are they 

numberless, they are highly correlated, have unknown stochastic dynamics, and 

consequently require vigorous data analysis and tedious data collection efforts to model. 

In this segment, we illustrated the numerousness and the high correlation of the 

underlying uncertainties. Furthermore, we extensively examined some of the most 

important ones. There, we asserted that in modeling the total highway development cost 

process, the land acquisition cost, being possibly manifold that of construction, 

supersedes construction cost in importance. The land acquisition cost is in fact the 

expropriation price paid to landowners, in which the land price is only one component. 

Therefore, modeling it solely as land price process involves a great level of 

simplification. 

We also stated that in the highway construction cost, which is still significant, material 

cost makes up a sizeable part; modeling the volatile material price process may be useful 

in better capturing that of the construction cost and ultimately the highway development 

cost process. Other important uncertainties presented were oil price, traffic demand, 

highway service quality. 

The last challenge discussed (2.4.3.6) was the choice of the optimization algorithm, 

which led to Section 2.5 where we introduced the real options optimization technique 

adopted in this paper. Subsequently in Section 2.6, we presented jump processes as a 

means of improving the uncertainty models. 
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The following chapters will be devoted to the computational aspect of this paper. Despite 

many of the analytical findings presented thus far, and as stated previously, our 

computational treatment will mostly follow Zhao et al. (2004) assumptions. 
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3 Proposed Framework for Highway Decision Analysis 

So far, we have analyzed the context of the problem at hand, where we justified the need 

for and explored the challenges involved in developing an optimal decision-making 

system. Skimming through different techniques in the field of decision-making under 

uncertainty, we focused our attention on the real options technique and expressed our 

interest in advancing the real options algorithm presented in Zhao et al. (2004). In the 

next few chapters, we will attempt to advance the algorithm by improving on some of its 

mathematical assumptions. 

In first section of this chapter, we will present the assumptions, the case study, and the 

solution algorithm of Zhao et al. (2004), as we will adopt the same settings and a similar 

algorithm in our implementation. Then in the next section, we will list some of the 

limitations of the Zhao et al. (2004) in light of the findings of chapter 2, and finally we 

will define the scope of our mathematical contribution in the third section. 

3.1 Highway Development under Uncertainty: A Real Options Approach 

Optimality, which is to be sought at all phases of the life of the highway system, can be 

achieved through the maximization of the overall highway system value (which can be 

subjective) among the different possible scenarios by simulating the evolution of 

uncertainties and the corresponding timely exercitation of the different decision options. 

The different scenarios are generated by altering the various conceivable combinations of 

decision options available. 
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In Zhao et al. (2004), a multistage stochastic model for decision making in highway 

development, operation, expansion, and rehabilitation is developed. Accounting for the 

evolution of three uncertainties (traffic demand, land price, and highway service quality 

index), the algorithm applies the real options approach through the incorporation of 

Monte Carlo simulation and least-squares regression integrated with backward dynamic 

programming steps. In the algorithm, the modeled decisions options are the exercitation 

options regarding the size of land acquisition as well as the number of lanes to be 

expanded or rehabilitated. The method introduced not only can select the optimal design 

alternative in the design phase but also can provide timely decisions on additional right-

of-way acquisition and highway expansion and rehabilitation during the operation phase. 

Below is a more detailed description of the algorithm. 

3.1.1 Embedded Real Options 

Beginning from the early planning phase to the design, and the construction all the way to 

the operation phase, there are many complicated decisions that ought to be made 

throughout the life-cycle of the highway system (as alluded to in 2.4.3.4). Each decision 

may provide a different level of flexibility and therefore can potentially be modeled as a 

real option. The real options embedded in the life-cycle of the highway systems refer to 

the decision options that may provide flexibility for future decision making or those that 

may be flexibly exercised to cope with the revealed uncertainty. Being exercisable at any 

time (discrete) during the highway service life, these real options are of the American-

style. Consistent with Zhao et al. (2004), the three real options considered here are: 
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 Right-of-way Acquisition: According to Zhao et al. (2004), “A right-of-way 

contract is apparently a real option of expansion. Acquiring the required right-of-

way is needed for every highway expansion (widening) process. Acquiring 

additional right-of-way width beyond the immediate need may be viewed as 

reserving land. This may reduce the risk associated with land availability and 

price fluctuation in future highway expansion”. Exercising this real option 

involves the determination of the optimal time and the width of land to be 

acquired.  

 Highway Expansion: “With an acquired right-of-way, the DM [decision maker] 

may exercise the expansion real option. The decision making regarding exercising 

this real option involves the determination of the optimal timing and the number 

of expansion lanes at different stages in the life cycle” (Ibid.). 

 Rehabilitation Decisions: “These decisions may be viewed as real options 

because they can be made flexibly to cope with highway deterioration ... the focus 

is on the exercise timing and the opportunity profit due to proper exercise of the 

option” (Ibid.). 

3.1.2 Underlying Uncertainties 

There are many uncertainties that a highway system is subjected to over time, such as 

changing requirements of users in terms of traffic demand, changing social and economic 

environment, changes in technology, and deterioration of the highway.  These can be 

broken up into internal and external uncertainties.  The internal uncertainties refer to 

those integral to the advancement of the highway, such as aging and deterioration.  The 
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external uncertainties correspond to the variability in the external environment that may 

affect decision-making, such as land price, labour cost, traffic demand, political and 

socio-economic environment, land availability, and natural hazards such as earthquakes, 

hurricanes, and floods. Again, the underlying uncertainties that will be modeled will be 

those in Zhao et al. (2004). 

 

Traffic Demand 

The fundamental measure of traffic volume is the annual average daily traffic (ADT), 

which is defined as the number of vehicles that pass a particular point on a roadway 

during a period of 24 consecutive hours, averaged over a period of 365 days.  ADT 

values can be converted to other measures of traffic, such as peak hourly volumes using 

empirical relations.  The demand for traffic volume, denoted by Q , is represented by the 

ADT values.  For toll roads in particular, being able to forecast the demand for traffic 

volume is an important task for economic reasons.  There are potential pitfalls in 

forecasting traffic demand including data quality and model accuracy, system stability 

over time, land use, travel behaviour, value of time, etc.  Other pitfalls could include 

development of competing facilities and changes in political and economic environment.  

These pitfalls worsen the accuracy in forecasting traffic demand and eventually become 

an underlined uncertainty for the highway system over its life-cycle.  Because of the wide 

variability of traffic flow over time, the demand Q  was modeled in Zhao et al. (2004) as 

the following stochastic process: 
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  ,Q Q Q

dQ
Q t dt dz

Q
   , (3.1)  

 

where Qz  is a Wiener process.  In particular,  ),tQQ  is called the drift function, and 

Q  is the volatility.  Without the noise Qz , the demand pattern can be obtained by 

solving the following differential equation: 

  ,Q

dQ
Q t dt

Q
  (3.2) 

 

A positive drift term means the uncertainty tends to drift up over time and the greater the 

volatility, the more volatile the uncertainty evolution. 

 

Land Price 

Land prices vary over time and are dependent on land use, which is used as an input to 

forecast traffic demand.  One should always estimate the market value of land at its best 

use.  Land appraisal is usually implemented by one of the following three approaches: 

cost, sales comparison, and income capitalization. Land price, denoted by P , was 

assumed in Zhao et al. (2004) to follow the below stochastic process: 

  ,P P P

dP
P t dt dz

P
   , (3.3) 

 

where Pz  is a Wiener process, and  tPP ,  and P  are the drift function and volatility 

of land price, respectively. 
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Highway Service Quality 

The highway service quality is the degree to which the highway serves users and fulfills 

the purpose that it was built for.  It can be represented by a condition index, on a scale of 

1 to 5, corresponding to the condition of very poor, poor, fair, good and excellent, 

respectively.  The condition index at time t  is denoted as 
tI , and  , 0, 1, 2,tI t    is a 

(discrete-time) Markov chain, that takes value in  5,4,3,2,1  and  tI  decreases over 

time.  The stochastic process  tI  can be seen as the deterioration process of the highway 

if no maintenance is done to the highway. The factors that cause this physical 

deterioration are load, environment, construction quality, and material degradation. 

Interdependency of the Uncertainties 

There are well-pronounced interdependencies existing among uncertainties, such as 

demand, land price and service quality.  Improved service quality on a highway system 

increases the “induced traffic”, while improved economic conditions increase the 

“developed traffic”.  Both induced and developed traffic improve the region‟s social and 

economic situation which will result in an increase in land use and price.  Moreover, 

traffic demand and land price may be positively correlated due to regional development.  

To model this, a correlation can be imposed to the two Wiener processes that control the 

uncertainty evolutions, e.g.,  

  cov ,Q P QPz z  , (3.4) 

 

where QP  is a constant.  It is also possible that an increase in highway demand would 

accelerate the deterioration of the highway and reduce service quality. The state transition 
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probabilities of the Markov chain can be modeled in such a way that they are dependent 

on Q  and Q ; however, this will not be considered. 

3.1.3 Multistage Stochastic Model 

The standard notations 
tQ ,

tP , and 
tI are traffic demand, land price, and highway 

condition index at time t, respectively. 

t = index for time  0, ,t T  in years, where T= length of the planning horizon over 

the life cycle of the highway system. 
tn = state variable indicating the number of lanes of 

the highway at time t, where  2,4,6,8tn  . 
tn = decision variable indicating the 

number of lanes of the highway to be expanded at time t, where  2,4,6tn  . 
tw = state 

variable indicating the right-of-way width at time t. Assume that the width of right of way 

along the highway is uniform and  150,175,200tw  (ft). 
tw decision variable 

indicating the width of the right of way to be acquired at time t, 0tw  .  0,1th  is a 

decision variable for rehabilitation. 
tv = a vector (collection) of the decision state 

variables at time t, where  ,t t tv n w . 
tu = a vector (collection) of decision variables at 

time t, where  , ,t t t tu n w h   . Xt a vector (collection) of underlying uncertainties 

at time t,  X  = , ,t t t tQ P I .  ;Xt t tf v = revenue function of the highway system in time 

period t under state 
tv , conditioned on the uncertainty realization of Xt

at time t. (Note 

the semicolon (;) distinguishes variables from parameters. In this case, Xt
is a parameter.) 

 ,t t tc u v = cost incurred for making decision 
tu under state 

tv at time t. 
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Assume at state 
tv at time t, the uncertainty vector Xt

 is revealed. Upon observing Xt
, 

the DM [decision-maker] (i) must realize the current system revenue  ;Xt t tf v  and (ii) 

strategically utilize the available flexibility [decision options] by making decisions 

tu with a cost of  ,t t tc u v  incurred (Ibid.). 

 , Xt t tF v  is the total value (expected profit) of the system for the remaining period at 

state 
tv at time t. Given the above, the problem can then be formulated by the following 

recursive relation: 

         1 1 1,X ,X max ,X ,
t

r

t t t t t t t t t t t t t
u

F v f v e E F v c u v

        (3.5) 

where r = risk-adjusted discount rate over one year, 
tE = expectation operator, and 

subscript t = expectation based on the available information for the uncertainty Xt
 at time 

t, and  0, 1t T   (Ibid.). The expectation in Eq. (3.5) is constrained by the following: 

State Transition Constraints: 

 
1 8     t t tn n n t      (3.6) 

 
1 200  (ft)    t t tw w w t      (3.7) 

Expansion Constraints: 

      t tn w t    (3.8) 

where  = lane width 

Rehabilitation Constraints: 

 1   if   1t th I   (3.9) 
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1 5   if   1t tI h    (3.10) 

  0,1      th t   (3.11) 

Initial Conditions: 

At 0t  , 
0 0v v  , 0 0X X   

Revenue Function: 

  ;X  = Revenue from traffic flow + Revenue from landt t tf v  (3.12) 

  Revenue from traffic flow min . . ,t t tn x I Q      (3.13) 

where  = average yearly revenue per vehicle;  = lane capacity of ADT (Annual 

Average Daily Traffic);  tx I = weighing factor of the revenue in terms of the highway 

service level. 

    5
,      0,1tI

tx I  
   (3.14) 

  Revenue from land t tw n d   (3.15) 

where d = total distance of the highway and = per mile revenue that the highway owner 

may obtain from the land use such as planting crops, parking lots, or other commercial 

developments. 

Cost Function: 

 
 

 

, expansion cost + right-of-way acquisition cost + rehabilation cost

              

t t t

n t t t m t t

c u v

d c n P w c n h



    
 (3.16) 

where 
nc = construction cost and 

mc = rehabilitation cost; both measured per lane and per 

mile. Note: at time t,  tc   is known with certainty only at time t. 
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Algorithm Development: 

Define: 

    1 1 1; , ;t t t t t t t tX u v E F v X        (3.17) 

where 
tu and 

tv = parameters. 

If  t  is known for all the different realizations  ,t tu v  at time t when 
tX is revealed, 

then the decision-maker would know the expected system value at time t+1 and 

consequently make the optimal decision. From (3.5),  the optimal system profit at time = t 

at state 
tv becomes: 

         ,X ,X max ; , ,
t

r

t t t t t t t t t t t t t
u

F v f v e X u v c u v    (3.18) 

The difficulty, however, arises when trying to evaluate  t   given the nonexistence of 

or at least the difficulty of obtaining an analytic form for  t  . To tackle this problem 

Zhao et al. (2004) employs numerical methods based on Monte Carlo simulation and 

least-square regression integrated with backward dynamic programming steps to 

approximate  t  ; this is done as described below. 

To approximate    1 1 1; , ;t t t t t t t tX u v E F v X        in Eq. (3.17), N data samples 

    1, ,  1, ,
i i

t tX X i N   are generated based on the uncertainty model of 
tX . For a given 

 ,t tu v , 
    1 1 1;
i i

t t tF F v X    in Eq. (3.5) are calculated for 1, , .i N   Subsequently, 
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the values and the functional forms of  ; ,t t t tX u v  are simultaneously estimated by the 

best function that regresses 
 i

F on 
 i

tX  for 1, , .i N   

For each given decision  , ,t t tn w h   under each state, 
tv , and highway quality 

index,
tI , the functional form used in the regression is assumed to take the form below: 

   2 3 4

1 2 3 4 5 6t t t t t ta a P a Q a Q a Q a Q         (3.19) 

 

The above represents the Monte Carlo and the regression segments of the algorithm. The 

backward dynamic programming component of the algorithm (that is based on Bellman‟s 

principle of optimality) calculates  t   backward in time from t T by letting at this 

time step, 

  ; , 0,      , ,T T T T T T TX u v u v X    (3.20) 

and determining  1 1 1 1; ,t t t tX u v      from  ; ,t t t tX u v , as illustrated in the following 

algorithm. 

Algorithm: Obtaining  1 1 1 1; ,t t t tX u v      with  ; ,t t t tX u v  known for all , .t tu v  

Data: 
1tu 
 and 

1tv 
are given. 

 Step 0: Set 
 

0, 0
i

i F   

 Step 1: If ,i N  go to step 4. Otherwise, generate a random vector 
 

1

i

tX  . 

 Step 2: Evaluate 
          t t,X max X ; , ,

t

i i ir

t t t t t t t t
u

F f v e u v c u v    

 Step 3: Update 1i i   and 
 

0
i

F  , then go to step 1. 

 Step 4: Regress 
 i

F  on 
 
t-1X
i

 to obtain  1 1 1 1; ,t t t tX u v      
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At t = 0, setting 
0 0u u , 

0 0v v  , and 
0 0X X  , the maximization in step 2 gives the 

optimal decision that yields the maximal expected system profit. 

 

The above was essentially the model proposed in Zhao et al. (2004); for other model 

details and descriptions, algorithm development and challenges, the reader is encouraged 

to refer back to the original paper (Zhao et al., 2004), where most of the content of this 

section was obtained. 
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3.2 Some Limitations of the Paper 

Some of the limitations of Zhao et al. (2004) are presented in the paper itself; the 

numerous limitations essentially stem from the simplified assumptions made in the paper. 

A few of these are that: 

1. only three uncertainties and three decisions/ real options are considered; 

2. the uncertainties considered are independent of the decision-maker‟s decisions; 

3. the highway quality index uncertainty is independent on traffic demand; 

4. highway expansion does not improve highway quality 

5. the continuous state uncertainties follow geometric Brownian motion; 

6. the width of right-of-way along the highway is assumed to be uniform; and 

7. the expectation operator in Eq. (3.5) is not measured in risk-neutral framework. 

 

However, in view of our analysis in Chapter 2, there exist additional noteworthy 

limitations, part of which will be the centre of our mathematical contribution. 

We have shown in 2.4.1.5 and 2.4.3.5.1 that material cost is highly volatile and that it 

represents just under half of the total highway construction cost. Thus, the volatility of 

material cost should directly lead to a positively correlated level of volatility in the cost of 

expansion and rehabilitation. However, in Eq. (3.16), the total cost function  ,t t tc u v  

assumes that 
nc and

mc to be constant. This assumption of certainty of these unit costs in 

the value of total cost may, therefore, constitute a significant oversimplification. 

Also in 2.4.1.5 and 2.4.3.5.1, the land acquisition cost was shown to be the sum of the 

land price, the amount of decrease in the value of the remaining property, and other 



 

 83 

damages to the landowner(s). What is modeled in Eq. (3.16), however, is simply the land 

price,  t td P w , which accounts for only one segment of the actual land acquisition cost. 

Because the other two costs items are relatively massive and volatile, considering the 

quantity  t td P w  alone can be a grave underestimation of the true land acquisition cost. 

Moreover, it was shown in subsection ‎2.4.3.4.3 that even the size of the land (or its width, 

tw ) to be eventually acquired can vary substantially, and thus to assume the width to be 

uniform introduces some error as well. 

To remedy this deficiency, the other two segments could be modeled individually and 

incremented to the land price, where the land price can be modeled as time-varying 

stochastic process; the damages components of the land acquisition cost, on the other 

hand, are time-invariant uncertainties that are applicable only at the very last point of the 

land price trajectory. To be able to model them individually, one would need to collect 

detailed statistics on land acquisition costs. 

 

Uncertainty models represent the building blocks of the decision-making system at hand. 

Inaccurate representation of the uncertainty models may lead to erroneous decisions 

bearing potentially enormous monetary, human and other consequences; accurate 

modeling, on the other hand, involves great challenges, one aspect of which is 

determining the true distribution of these uncertainties.  
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Another limitation in Zhao et al. (2004) relates to the uncertainty model assumptions; 

lacking any justification, the geometric Brownian motion model seems to be adopted out 

of mere mathematical convenience. 

Furthermore, in light of our discussion in Section 2.6, another limitation is the lack of 

consideration of jumps. The incorporation of jumps can be a means to account for the 

time-invariant components of the cost uncertainty above as well as many other 

explainable and unexplainable patterns in the dynamics of uncertainty processes in 

general. 

While previously in this chapter, we presented as background the general backbone of the 

decision-making system adopted, the one that is actually implemented is presented in 

Chapter 6. There, further critiquing will take place as we present the decision-making 

algorithm implemented. 
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3.3 Scope of Mathematical Contributions  

Having studied the anatomy of the highway systems and having diagnosed many of their 

challenges and limitations, we now move on to problem treatment. Our treatment efforts 

will be mainly mathematical-computational in form and will centre on some aspects of 

the uncertainty factor. 

In Zhao et al. (2004) the continuous-time
22

 uncertainties, the land price and the traffic 

demand, were modeled as correlated geometric Brownian motions. In what follows, we 

will verify the validity of this normality assumption and investigate the presence of 

jumps. Subsequently, we will propose a class of models that incorporates jumps and 

implement and analyze certain models of this class. These models, applied to
tX in step 1 

of the solution algorithm above, can improve the uncertainty models and may alleviate 

some of the deficiencies presented earlier. 

                                                 
22

 While modeled as continuous time processes, they are sampled at discrete times. 
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4 Testing the Validity of the Assumptions of Normality & 

Lack of Jumps 

If, for a decision optimization system, choosing the right set of uncertainties makes 

option valuation more accurate, correctly modeling these uncertainties makes it more 

precise. Accurate modeling and simulation of the uncertainties is essential for an accurate 

analysis and correct decisions: garbage in-garbage out. 

Zhao et al. (2004) assumes that the highway traffic volume and the land price 

uncertainties follow the geometric Brownian motion model. In order to test this 

assumption, one needs to collect real data on traffic demand and land acquisition costs. 

In the following section we will look into means of collecting data and in Section 4.2, we 

will, in subsection 4.2.1, test the validity of this statistical assumption and draw some 

general conclusions on the distributional properties of the collected data. This leads to 

subsection 4.2.2, where we investigate the presence of jumps. 
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4.1 Data Availability 

In this section, we will explore some venues where highway traffic volume as well as 

both unit land price and total land acquisition cost data could be obtained in Ontario, 

Canada. 

4.1.1 Traffic Volumes 

As seen in chapter 3 above, to calculate the highway system revenues of the different 

decision options, traffic volumes need to be simulated. Therefore, to better understand the 

distributional properties of the traffic demand uncertainty and test the normality 

assumption in Zhao et al. (2004), data needs to be collected. Generally speaking, this data 

is easily available but, unfortunately, not in sufficiently large numbers, given the yearly 

time scale adopted. Below are two sources of traffic demand data. 

4.1.1.1 GTA Regional Traffic Demand Statistics 

Traffic volume data can be obtained from the Traffic Planning and Information Services 

Sections (TPISS) of various Regional Traffic Offices of the Ontario Ministry of 

Transportation in the Greater Toronto Area (GTA). Traffic data such as volume, 

occupancy and average speed, collected through Vehicle Detector Systems (VDS) 

installed along Highway 401 and sections of the QEW across the GTA, are stored in the 

Freeway Traffic Management System (FTMS) Data Warehouse Systems (DWS). The 

TPISS, having access to this system, extracts 24x7 volume data in a standard three season 

inventory cycles (spring, summer & fall) on yearly basis, subject to available/ functional 

VDS stations. 
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We have been able to collect from the Central Region Traffic Office traffic volume 

counts for QEW–Burlington corridor for the five year period (2001-2005). However, our 

interest is in Annual Average Daily Traffic (AADT
23

) counts. Therefore, while seemingly 

abundant, after mathematical massaging, the data collected would translate into only 5 

points, which is a very small sample size. A sample traffic volume data is available in 

Appendix 1. 

4.1.1.2 Ontario Traffic Demand Statistics 

Another readily available source of traffic volume statistics is the Provincial Highways 

Traffic Volumes 1988-2003 Manual available online on the Ontario Ministry of 

Transportation (MTO) website (Ontario Ministry of Transportation, 2006). The report 

lists, among other averaged traffic volume information, the Average Annual Daily Traffic 

(AADT) for each section of the highways under the jurisdiction of MTO. 

The statistics contained in the report, having a bigger sample size (15 as opposed to 5), 

being readily available in the sought AADT time scale, and being “obtained from sources 

considered to be reliable” are to be used in analysis (Ontario Ministry of Transportation, 

2006)
24

. A sample traffic volume data is available in Appendix 2. 

                                                 
23

 AADT: Average 24-hour, two way traffic for the period January 1 to December 31. 
24

 It should be noted that although the Ministry of Transportation asserts that this data is accurate, it also 

states that “[t]he Ministry makes no representation or warranty, expressed or implied with respect to [the 

data‟s] accuracy or completeness”. 
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4.1.2 Land Acquisition Cost  

The multistage stochastic model of Zhao et al. (2004) presented in chapter 3 also includes 

the land price as one of three cost components of the total highway development cost 

function (Equation (3.16)); the other two components being the highway expansion costs 

and the cost of rehabilitation. 

It was shown in 2.4.3.5.1 that the land expropriation cost may represent more than 65 

times the construction cost, and that the rehabilitation cost is relatively less significant. 

Hence, accurate modeling of the land acquisition cost uncertainty in any decision-making 

system involving highway development is of paramount importance. In addition, the 

section also revealed that land acquisition cost is in fact the expropriation price paid by 

the government, which is composed, for a given expropriated land, of the sum of the 

market price of the expropriated land, the amount of decrease in the value of the 

remaining property and other damages to the landowner. The former component is time-

dependent, while the latter two are case-specific. Therefore, ideally, the cost data that 

needs to be collected, analyzed, modeled and then simulated are: 1. historic unit land 

prices extending to the time of expropriation, and 2. the actual cost that is being incurred 

by the government at the time of expropriation in acquiring the land (expropriation price). 

Here, the expropriation price is the combination of the very last data point (that at the 

time of expropriation) of the land price trajectory in 1 and the compensation payment to 

damages sustained by landowners as a result of the expropriation. 
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In general, land related statistics, unlike those of traffic volumes, are challenging to 

collect. In the next two subsections, we will explore some areas where it is possible to 

collect historic land prices and actual land acquisition costs in Ontario. 

4.1.2.1 Historic Land Sale Prices 

4.1.2.1.1 Land Registry Offices 

In Ontario, the Ministry of Government Services keeps physical records of all patented 

lands in 54 Land Registry Offices (LRO) located in 53 locations across Ontario. One 

manual method to obtain various land-related statistics is possible by directly contacting, 

for a specific land parcel, the appropriate Land Registry Office
25

. On April 24, 2006, 

Randy Reese, Manager of Business Improvements at the Ontario Ministry of Government 

Services, stated in an email to the author of this paper that, “if the land is patented and the 

government purchased the lands, the Transfer/Deed
26

 of Land would be recorded on title 

to the property”. However, the purchase price may or may not be included in the 

document. Even if included, a breakdown of the expropriation price in terms of Eq. (2.1) 

would not be available (i.e., the land price and the landowner compensation segment of 

the expropriation price would be irretrievable). 

Moreover, apart from expropriation costs, other historic sale prices, if recorded, would 

only be available when a Transfer/Deed of Land would have occurred and that for a 

particular land parcel would not normally be frequent enough for a rigorous statistical 

                                                 
25

 On April 24, 2006, Randy Reese also stated that, “You need to know which Land Registry Office the 

land is in based on the County/District or Regional Municipality of the land. You also need the Property 

Identification Number (PIN) of the property. This can be obtained by various search methods such as 

search by name or search by address or on-site in the specific land registry office by lot/plan number”. 
26

 A deed is the document that legalizes a transfer of ownership of a real estate, which contains the names 

of the old and new owners, as well as a legal description of the property. 
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analysis. This indicates that average regional annual unit land sale prices should be 

sought instead. However, the task of extracting historic sale prices from physical records 

is very laborious and eventually the quality of results depends on the number of sale 

prices actually recorded. Such an endeavour is beyond the scope of this work. 

4.1.2.1.2 Province of Ontario Land Registration and Information System: 

POLARIS 

With the Province of Ontario Land Registration and Information System (POLARIS), 

“[t]he Province of Ontario is the first jurisdiction in the world to provide electronic 

registration of land-related documents” (Government of Ontario, 2007). The government 

of Ontario website explains that, “POLARIS consists of two databases: the title database 

with its abstracts of title information; and a database of maps”. The records contained in 

the system are accessible commercially through a private gateway software, Teraview 

Software
27

. Having access to Ontario's land registry information, the online service 

GeoWarehouse can also be valuable tool; “[i]ts database contains over 4 million 

properties from the automated land registry database and delivers the data [one needs] in 

convenient reports” (Teranet, 2006). Two reports that GeoWarehouse generates that 

could be of use for undertakings such ours are: 

 “The Sales History Report [, which] provides historical ownership and sale 

price information for subject properties [and;] 

 The Neighbourhood Sales Report [, which] delivers accurate sales information 

within a geographic radius and for a time period that [one specifies]” (Ibid.)  

                                                 
27

 For more information about Teraview Software, please visit their website at 

http://www.teranet.ca/services/gov.html.  

http://www.teranet.ca/services/gov.html
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However, according to Randy Reese,  

 The POLARIS records do not contain a complete historical record of the lands. 

 They are complete with all outstanding encumbrances and interests as to a 

 specific date forward which is the date of automation. The date of automation 

 varies between Land Registry Offices and within each Land Registry Office since 

 the records physically could not all be automated on the same day. The title prior 

 to the automated records is obtained in the specific Land Registry Office.  

The title data contained in the commercial (GeoWarehouse) database is delivered directly 

from the POLARIS database. Therefore, while convenient, the commercial database 

would not contain additional land price information to that available on POLARIS and 

consequently that at the land registry offices. Therefore, any scarcity of historic land 

prices existing at the source would only be translated in the commercial database reports. 

Despite that, the POLARIS Neighbourhood Sales Reports may still be useful in obtaining 

historic data on unit land prices in the neighborhood of the highway, although this was 

not attempted in this work. 

4.1.2.1.3 Other Sources of Historical Land Prices 

Even if historic sale prices of lands are not recorded at the LROs or POLARIS, there are 

other ways to arrive at this data, which are perhaps difficult but not impossible. Some of 

these, which are useful in land appraisal, are listed in the article “Sources of Historical 

Data for Appraisal Reports” by Chris Dumfries (2002) of the Appraisal Institute of 

Canada. These sources include historical archives, the Department of Indian and Northern 

Affairs Canada (e.g. land leases and bylaws), the knowledge of band members, and data 
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from Revenue Canada. For more details, the reader is advised to refer to the original 

article. 

4.1.2.2 Land Acquisition and Landowner Compensation Costs 

Ideally, the land acquisition cost is the quantity that should be modeled and not merely 

the sub-cost, the land price. Where the land price component of the land acquisition cost 

is time-dependent, the other component, the landowner damages, is time-independent and 

case-specific. 

To be able to model the landowner compensation cost portion of the land acquisition cost, 

real cost data of expropriated lands needs to be collected. A natural place to seek such 

data is the expropriating government agency itself (i.e. the Ministry of Transportation). 

Land acquisition cost data could be sought for an existing highway that is to be expanded. 

Otherwise, for a new highway, land expropriation data from another highway in a similar 

region could be used, as well as land expropriation data for any other public purpose at 

the same or nearby sites as the new highway. The process of collecting such data, 

containing confidential information, falls under the Freedom of Information Act. This 

route was not pursued here, being beyond the scope of work. 
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4.1.3 Data Used 

The statistics to be used in this thesis are the following: for traffic volumes, data were 

obtained from the Provincial Highways Traffic Volumes 1988-2003 (Ontario Ministry of 

Transportation, 2007). For unit land prices in urban and rural areas, data were obtained 

from Colliers International Industrial Land Sale Report (Colliers International, 2006) and 

from Farm Credit Canada (2006), respectively. 
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4.2 Data Analysis 

Inaccurate simulation of the underlying uncertainties may lead to inaccurate valuation 

and consequently may lead to poor recommendations/decisions. In turn, this may result in 

such devastating consequences as we saw earlier. As the accuracy of uncertainty 

simulation hinges on its underlying stochastic assumptions, we will analyze the 

mathematical models of the continuous-time uncertainties in Zhao et al. (2004), the 

traffic volume and the land price. In doing so, we will use the data collected to investigate 

the validity of the geometric Brownian motion process assumption by exploring some 

distributional properties of these uncertainties. 

4.2.1 Examining the Geometric Brownian Motion Assumption 

In their article, “On the Validity of the Geometric Brownian Motion Assumption”, 

Marathe and Ryan (2005) confirm that, 

Many recent engineering economic analyses have relied on an implicit or explicit 

assumption that some quantity that changes over time with uncertainty follows a 

geometric Brownian motion (GBM) process […] The GBM process, also 

sometimes called a lognormal growth process, has gained wide acceptance as a 

valid model for the growth in the price of a stock over time […] Under this model, 

the Black-Scholes formulas for pricing European call and put options, as well as 

their variations for a few of the more complex derivatives, provide relatively 

simple analytical evaluation of asymmetric risks. 

To that extent, Marathe and Ryan (2005) further assert that “[m]any recent examples of 

GBM models have arisen in real options analysis, in which the value of some 'underlying 
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asset' is assumed to evolve similarly to a stock price.” The real options application in 

Zhao et al. (2004) is one such example. However, “[a]s pointed out in Thorsen (1998), 

the GBM process assumption must be subject to test. Where significant financial impacts 

may result from the decision, it is of utmost importance to verify that a time series 

follows the GBM process, before relying on the result of such an assumption” (Ibid.). 

Likewise, this also applies in the case of Zhao et al. (2004). In fact, lacking any 

justification, the GBM assumption perhaps had been motivated by mere mathematical 

convenience. In what follows, some aspects of the geometric Brownian motion 

assumption in modeling the traffic demand and the land price stochastic processes will be 

tested. 

 

There are statistical implications to the GBM assumption, one of which is the non-

stationary characteristic of the uncertainty increments. Geometric Brownian motion is a 

log-normal diffusion process, whose variance grows proportionally with time. Thus, in 

the long run, the simulated uncertainty values would tend to substantially deviate/drift 

away from realistic values albeit preserving the mean value. This is, to some extent, a 

non-issue in Zhao et al. (2004) given the yearly time scale adopted, as this assumption 

results in a relatively short time series. However, there are other consequences to the 

GBM assumption, such as the independence of the GBM process increments and the 

normality of the log increment ratios. While we will not delve into the independence 

aspect in this paper, we will test the normality consequence. 
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4.2.1.1 The Normality Assumption 

The uncertainty dynamics, when modeled as a log-normal diffusion process implies that 

the increments of the logarithm of the uncertainties, or equivalently, the logarithm of the 

ratios of the uncertainty data (log-ratios), are normally distributed. In what follows, we 

will examine the validity of this normality assumption. 

To investigate the validity of the normality of the log ratios of the annual traffic volume 

and land price data, we will construct Quantile Quantile Plots
28

 (Q-Q plots) for a sample 

of highway sections as well as two other ones for average industrial land prices in the 

GTA and for national and provincial farmland prices. Results are portrayed below. 

                                                 
28

 Q-Q Plot is a graphical technique to determine whether two data sets come from populations with a 

common distribution; here samples quantiles of the logarithm of the data ratios will be plotted against the 

theoretical quantiles from a normal distribution. If the distribution of the log ratios of the traffic volume 

data is normal, the plot will be close to linear. 
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Figure 4-1: Q-Q Plots of Log-ratios of Traffic Volumes on a Sample of King’s Highway Sections 

(1988-2003). 
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The Q-Q plots in Figure 4-1 above belong to samples from sections of King‟s 

highways
29

. Traffic on these sections ranges from few thousands to few hundreds of 

thousands of AADT. Whereas, plots presented in Figure 4-2 and Figure 4-3, below, relate 

to Secondary highway
30

 and Tertiary road
31

 sections with traffic in the range of tens to 

several hundreds of AADT, respectively. 

 

 
Figure 4-2: Q-Q Plots of Log-ratios of Traffic Volumes on a Sample of Secondary Highway Sections 

(1988-2003). 

                                                 
29

 Kings Highways include: Queen Elizabeth Way (Q.E.W.), Highway 2 to Highway 148, and the 400 

series (Highway 400 to Highway 427) 
30

 Secondary Highways include: Highway 502 to Highway 673 
31

 Tertiary Roads include: Highway 801 to Highway 811 
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Figure 4-3: Q-Q Plots of Log-ratios of Traffic Volumes on a Sample of Tertiary Road Sections: 

Summer, Winter, and Average Annual Daily Traffic Counts (1988-2003). 

 

With reference to land price statistics, the Q-Q plots in Figure 4-4 relate to industrial land 

prices in the Greater Toronto Area (GTA), whereas those in Figure 4-5 and Figure 4-6 

relate to national and provincial farmland prices, respectively. 
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Figure 4-4: Q-Q Plots of Log-ratios of Industrial GTA Land Prices (1998-2005). 
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Figure 4-5: Q-Q Plot of Canadian Semi-annual Farmland Prices (1996-2005) 
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Figure 4-6: Q-Q Plot of Some Provincial Semi-annual Farmland Prices (1996-2005) 

 

Other Q-Q plots related to the other six provinces are provided in Appendix 3. 

 

As shown in Figure 4-1, Figure 4-2, and Figure 4-3, for the most part, the traffic volume 

statistics failed the normality test. In terms of land prices, Figure 4-4 and Figure 4-5 

likewise portray similar patterns.  

It is clear that the Q-Q plots do not support the notion of normality of the log ratios of the 

AADT and the land price data, thus exposing a violation to the Geometric Brownian 

Motion assumption. However, the Q-Q plots also fail to identify any unique pattern; for 

the most part, they indicate that the traffic and land price data come from heavy-tailed 

distributions. 
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4.2.1.2 Some Notes on Seasonality 

Marathe and Ryan (2005) reiterate the importance of removing the seasonality effect 

from the time series prior to testing the GBM assumption. 

It would suffice to look in Figure 4-7 at the seasonal variation traffic curves belonging to 

the intermediate and high variations (Recreation and Tourist) traffic curves to be 

convinced of the existence of high degree of seasonality in these particular traffic volume 

time series at the monthly and daily timescales. 

However, given that the time scale of the decision-making analysis is annual and the fact 

that the cyclical variations of the traffic volume occurs within the year timeframe, any 

seasonality effects embedded within the AADT values will have no bearing on the Q-Q 

plots. The same applies to any seasonal variations that may exist in the average yearly 

land price data. 
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Figure 4-7: 2003 Seasonal Variation Curves (Ontario Ministry of Transportation, 2006)  

 

 
Figure 4-8: Traffic Seasonal Variation Types (Ontario Ministry of Transportation, 2006) 

 

Furthermore, traffic count statistics on highways of the high variation type may exhibit 

deviations from normality that does not only occur collectively at the annual level 
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(AADT) but also separately at the seasonal level (SADT and WADT). For example, in 

Figure 4-3 above, heavy tail behaviors were observed in all the summer, winter, and 

average annual daily traffic counts. In that figure, highways 647, 668, and 580 are of HT 

type, whereas highway 581 is an HR. 

4.2.2 Jumps 

Heavy-tailed distributions may be attributed to presence of jumps. Jumps are essentially 

unexpected large changes in the value of the uncertainty. To investigate the possibility of 

this phenomenon we shall calculate the probabilities, based on the normal law, of the 

maximum and minimum changes in the values of the uncertainties over the study period 

as illustrated below: 
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where  X  AADT, P .    

It is a subjective measure to define how low an increment probability should be for the 

increment to constitute a jump. In the following subsections, we present the assumptions 

and the outcome of this investigation. 

4.2.2.1 Traffic Volumes 

To illustrate the very real possibility of jumps, we shall consider an increment of AADT 

with a probability 1%  to represent a jump. The figures and results presented below 

relate to three examples, of several others, of highway sections taken from a sample of 
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King‟s highways, Secondary highways, and Tertiary road sections, that met the above 

established jump criterion. 

 

Scatter Plot of AADT Increments for Hwy 427:
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Figure 4-9: Scatter Plot of a Sample of a King's Highway Sections with Jumps. 

 

Mean = 5613.333333  Std = 6123.476 

x
Max

 = 20700 (369 %)  x
Min

 = -4200 (-75 %)  

Year
Max

 = 1999  Year
Min

 = 1992 

P (X>x
Max

) = 0.0069  P (X<x
Min

) =  0.0545 

 

Scatter Plot of AADT Increments for Hwy 516:

DECEPTION BAY CULVERT

-250

-200

-150

-100

-50

0

50

100

150

1988 1990 1992 1994 1996 1998 2000 2002 2004

Year

A
A

D
T

 I
n

c
re

m
e
n

t

 
Figure 4-10: Scatter Plot of a Sample of Secondary Highway Sections with Jumps. 

 

Mean = 3.333333333  Std = 84.31799 

x
Max

 = 130 (3900 %)  x
Min

 = -210 (-6300 %)  

Year
Max

 = 2002  Year
Min

 = 2001 

P (X>x
Max

) = 0.0665  P (X<x
Min

) = 0.0057 
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Scatter Plot of AADT Increments for Hwy 805:
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Figure 4-11: Scatter Plot of a Sample of Tertiary Road Sections with Jumps 

 

Mean = -8  Std = 31.89268 

x
Max

 = 50 (-625 %)  x
Min

 = -100 (1250 %)  

Year
Max

 = 2001  Year
Min

 = 1989 

P (X>x
Max

) = 0.0345  P (X<x
Min

) = 0.0020 

 

All the above statistics show that very large jumps are occurring when theoretically, 

given a normal law, these jumps are extremely unlikely. For example, Hwy 427: Dixon 

RD IC O/P: Etobicoke highway section contains an upward jump of size equivalent to 

369% of that of the mean change with a probability of less than 0.69% as illustrated in 

Figure 4-9. This is consistent with the corresponding Q-Q plot in Figure 4-1, which 

indicates that the downward jump in 1992 is also nonconforming with the normal law. 

4.2.2.2 GTA Unit Industrial Land Sale Prices 

For the industrial land sale prices, we again consider an increment with a 

probability 1%  to represent a jump. The figures and results presented below relate to 

the four GTA regions (East, North, West, and South). 
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Scatter Plot of Industrial Land Increments in GTA Central
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Figure 4-12: Scatter Plot of Industrial Land Increments in GTA Central. 

 

Mean = 7,433.33   Std = 78,647.43  

x
Max

 = 79,682.00 (1072 %)  x
Min

 = -129,057.00 (-1736 %)  

Year
Max

 = 2004  Year
Min

 = 2005 

P (X>x
Max

) = 0.1791  P (X<x
Min

) = 0.0413 

 

 

Scatter Plot of Industrial Land Increments in GTA East
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Figure 4-13: Scatter Plot of Industrial Land Increments in GTA East. 

 

Mean = 15,025.67   Std = 59,894.31  

x
Max

 = 109,823.00 (731 %)  x
Min

 = -42,176.00 (-281 %) 

Year
Max

 = 1999  Year
Min

 = 2001 

P (X>x
Max

) = 0.0567  P (X<x
Min

) = 0.1698 
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Scatter Plot of Industrial Land Increments in GTA North
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Figure 4-14: Scatter Plot of Industrial Land Increments in GTA North. 

 

Mean = 55,569.33   Std = 77,335.15  

x
Max

 = 174,738.00 (314 %)  x
Min

 = -292,630.00 (-527 %) 

Year
Max

 = 2004  Year
Min

 = 2005 

P (X>x
Max

) = 0.0617  P (X<x
Min

) = 0.0000034 

 

 

Scatter Plot of Industrial Land Increments in GTA West
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Figure 4-15: Scatter Plot of Industrial Land Increments in GTA West. 

 

Mean = 38,761.67   Std = 63,601.55  

x
Max

 = 114,875.00 (296 %)   x
Min

 = -134,542.00 (347 %)    

Year
Max

 = 2004  Year
Min

 = 2005 

P (X>x
Max

) = 0.1157  P (X<x
Min

) = 0.0032 
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4.3 Conclusions 

In testing the validity of the geometric Brownian motion assumption in Zhao et al. 

(2004), data must first be obtained. The first section of this chapter was dedicated to 

looking into areas where this data could be collected. The ultimate outcome of this quest 

was that data could be obtained but in statistically insignificant numbers. Subsequently in 

section 4.2, using the data collected a simple graphical test, Quantile-Quantile plots, was 

employed to investigate the normality of the log ratios of the sampled uncertainty 

increments. The plots showed significant deviation from normality that, while indicating 

unanimously that the data came from heavy tail distributions, failed to identify any 

unique distribution pattern; this motivated some further analysis.  

As a possible contributing element to the heavy tail behavior, the presence of jumps was 

hypothesized and tested. The calculated low probabilities of the extreme values of the 

sampled increments supported this hypothesis. 

Given the varied distributions and the established existence of jumps, one way to better 

model the traffic volume and the land price uncertainty processes is to adopt a wide class 

of mathematical models involving jump processes. One such class of models is called 

Lévy processes, a detailed introduction of which is provided in Chapter 5 below. 
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5 The Mathematics of the Uncertainty Model Representation 

and Calibration: A Theoretical Review 

In Chapter 4 we saw that the traffic demand and the land price uncertainties do not evolve 

continuously; i.e. they exhibit jumps. Furthermore, the underlying distributions are not 

normal and are heavy (or fat) tailed. Cont and Tankov (2004) emphasize that it is 

especially important to specify the tail behavior correctly because “the tail behavior of the 

jump measure determines to a large extent the tail behavior of the probability density of 

the process” (p. 111). 

As an alternative model, the Lévy processes provide a convenient and more adequate 

framework to modeling the above empirical observations. On top of their ability to 

generate sample paths that can have jumps and to generate distributions that can be heavy 

tailed, they can also generate skewed distributions and smile-shaped implied volatilities 

(Papapantoleon, 2005). 

In this chapter we provide, using modern probability theory, some general theoretical 

background to Lévy processes and three of its subclass models: Merton, Kou, and NIG. 

This will be preceded by a recap of the uncertainties used in Zhao et al. (2004) and a brief 

derivation of the geometric Brownian motion theory, as it will be used later in the 

simulation and calibration of the three Lévy models. Finally, the chapter will conclude 

with a theoretical background to the calibration of the NIG models. 
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5.1 Underlying Uncertainties 

Out of the three uncertainties modeled in Zhao et al. (2004), two (traffic demand,Q , and 

land price, P ) are continuous state uncertainties and are assumed to follow geometric 

Brownian motion: 

  ,S S S

dS
S t dt dz

S
    

where here  ,S Q P , 
Sz  is a Wiener process, while  ,S S t  and 

S are the drift 

function and the volatility of the uncertainty S, respectively. The two Wiener processes 

are assumed to be correlated through  cov ,Q P QPz z   with QP  being constant. 

The third uncertainty, the highway service quality index, 
tI , is modeled as a discrete state 

uncertainty with five discrete values  that correspond to the highway conditions of 

excellent (5), good (4), fair (3), poor (2), and very poor (1). The condition index at time t, 

denoted as {It ,t = 0,1,2,...}, is modeled as a decreasing (discrete time) Markov chain 

taking values in {1, 2, 3 , 4, 5}. 
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5.2 Geometric Brownian Motion Model 

The classical diffusion model for the process 
tS  is 

tttt dWSdtSdS    

where 
tW is a standard Wiener process,  is the expected return and  is the volatility 

(Black and Scholes, 1973; Merton, 1973). The solution for this equation is  

 t
t

t

dS
dt dW

S
    (5.1) 

where  , .t t tS Q P  

Taking the natural logarithm of 
tS and invoking Ito‟s lemma yields the following 

differential equation: 
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Through integration, 
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or its equivalent: 

 

2

2

0

t W
t

tS S e


 
 

   
   (5.4) 

  

From this we can conclude that the ln tS follows a generalized Wiener process where 
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Also, equation (5.3) above can be expressed as:  

 ,t tX t W    (5.5) 
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Furthermore, 
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 

 (5.7) 

and  
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
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
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
 

  





              

     

 
     

 

  
     

  

    t

 

 
  22 2

0

Var 1tS X t tt
t

S
e e e

S

 
 

       
 

 (5.8) 
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5.3 Lévy Processes: The Preliminaries 

As defined in Rasmus et al. (2004), “[a] Lévy process is a stochastically continuous 

process with stationary and independent increments”. More formally,  

A cádlág
32

 stochastic process  
0t t

X


on [probability space]  , ,    with values in 

d  such that 
0 0X   is called a Lévy process if it possesses the following properties: 

1. Independent increments: for every increasing sequence of times 
0 nt t , the 

random variables 
0 1 0 1
, , ,

n nt t t t tX X X X X


   are independent. 

2. Stationary increments: the law of 
t h tX X   does not depend on t. 

3. Stochastic continuity:  
0

0, lim  = 0t h t
h

X X 


   . (Cont and Tankov, 

2004, p. 68) 

Being a Lévy process,  
0t t

X


has by definition an infinitely divisible distribution at every 

time t. While restricting the possible distributions
33

 available for X, this condition still 

leaves room for a rich enough class of models for X. 

For a Lévy process  
0t t

X


, there exists a continuous function : d   , which 

completely characterizes the law of X such that:  .
E ,    t t ziz X de e z

      .   is called 

the characteristic exponent and .
E tiz X

e 
   is the characteristic function of  

0t t
X


. 

The characteristic function of a Lévy process   d

0
on t t

X


  with a characteristic triplet 

(or Lévy triplet)  , , A  is given by 

                                                 
32

 A function f is said to be cádlág if it is right-continuous with left limits. 
33

 Some examples of infinitely divisible distributions include: the Gaussian, gamma,   stable, Poisson, 

log-normal, Pareto, Student, and normal inverse Gaussian distributions. 
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      .

1

1
. . 1 . 1

2
d

iz x

x
z i z z z e iz x dx  


    A


 (5.9)  

where , dz  , A is a symmetric positive n x n covariance matrix, and   is a positive 

Radon measure on  \ 0d  verifying the following: 

   
2

x 1 x 1

x    and    .dx dx 
 

    

In one dimension (d= 1), the characteristic exponent with the triplet  , ,    becomes  

      
2 2

.

1
. 1 . 1

2

iz x

x

z
z i z e iz x dx


  


    



 (5.10) 

 where , ,  ,  and  a measure on \ 0 .z       

The measure  , called the Lévy measure of X, defines how jumps occur. 

  

Lévy processes fall into different categories with respect to activity of jumps and 

variation of jump sizes. A Lévy process, X, is of finite activity (a.k.a. jump-diffusion 

model) if     , which would mean  that almost all paths of X have a finite number 

of jumps in every compact interval. On the contrary, X is of infinite activity type if 

    , which would mean that X  has an infinite number of jumps in every compact 

interval. 

With respect to quadratic variation, a Lévy process, X, is of finite variation if 

0A  (
2 0  in 1d) and  

x 1

x dx


  . On the other hand, X, is of infinite variation if 

0A  or if 0A  and  
x 1

x dx


  . 0A   indicates the lack of a Brownian 

component, i.e., a pure jump process (Papapantoleon, 2005). 
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Whether finite or infinite in activity or in variation, “every Lévy process is a 

superposition of a Wiener process and a (possibly infinite) number of independent 

Poisson processes” (Cont and Tankov, 2004, p.67). 
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5.4 The Lévy and the Compound Poisson Processes 

A compound Poisson process  
0t t

X


 with intensity 0   and jump size distribution 

 f x  is a stochastic process defined as 

 
1

tN

t i

i

X Y


  (5.11) 

where jump sizes 
iY  are i.i.d with distribution  f x  and  

0t t
N


 is a Poisson process 

with intensity  , independent from  
1i i

Y


. 

The compound Poisson process is the only Lévy process with piecewise constant function 

sample paths. The fact that any cádlág function can be approximated by a piecewise 

constant function makes the compound Poisson process very useful in approximating 

general Lévy processes. 

 

The characteristic function of the compound Poisson process has the following 

representation: 

      . .E exp 1 ,   t

d

t ziz X iz x de e t e dx z



  

        
  



  (5.12) 

where   is a Lévy measure
34

 on  \ 0 and not a probability measure since 

    1dx f x dx    
 

, and  f x  is the jump size distribution. 

 

                                                 
34

 Lévy measure,  C , is the expected number (per unit of time) of jumps whose size belongs to ,C  

where 
d

C   . Jumps of sizes in set C occur as a Poisson process with an intensity parameter  .
C

dx  
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The value of the compound Poisson process lies in the fact that it is also an ingredient of 

general Lévy processes. A Lévy process can be decomposed into 4 independent sub Lévy 

processes: a constant drift, a Brownian motion, a compound Poisson process, and a 

square integrable pure jump martingale (Papapantoleon, 2005).  

More specifically, Cont and Tankov (2004) explain that, as per Lévy-Itô decomposition, 

for a Lévy process  
0t t

X


on d with the following conditions: 

 Lévy measure   verifying the conditions in expression (5.9), and 

 Jump measure
35

 of X , denoted by 
XJ , as a Poisson jump measure on 

  d0,   with intensity    dx dt f dx dt  , where   is the intensity of a 

compound Poisson process and  f x  is the jump size distribution, 

there exists a vector   and a d-dimensional Brownian motion  
0t t

B


with an arbitrary 

covariance matrix A  such that: 

  
 

    
 

0

1, 0,

1, 0,

~

~

lim ,    where

,      and

.

l

t t t t

l

t X

x s t

t X

x s t

X t B X X

X xJ ds dx

X x J ds dx dx ds















 

  

   

 

  





 (5.13) 

 

The first two terms in expression (5.13) relate to a continuous Gaussian Lévy process (a 

Brownian motion with drift), whereas the latter two terms relate to discontinuous jump 

processes; l

tX , is a finite compound Poisson process of absolute jump sizes > 1 and 

                                                 
35

  , ,
1 2

J t t C
X

 
   is a jump measure that counts the number of jump times between 

1
t and

2
t  such that their 

jump sizes are in C . 
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0

~

lim tX 


is an infinite compensated

36
 compound Poisson process of absolute jump sizes 

between   and 1, where 0  . 

 

An important implication of the Lévy-Itô decomposition is that every Lévy process can 

be represented as a combination of a continuous Gaussian Lévy process  tB t  as well 

as a possibly infinite sum of independent compound Poisson process. “This implies that 

every Lévy process can be approximated with arbitrary precision by a jump-diffusion 

process” (Cont and Tankov, 2004, p.81). While very useful in approximating Lévy 

processes, this result is not utilized in this work as the models are simulated exactly.  

In the next two sections, we will describe a few specific models belonging to the finite 

and the infinite types of Lévy processes. 

                                                 

36
 Compensated, or centered, to ensure convergence of , as 0X


  . 
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5.5 Finite Activity (Jump Diffusion) Models 

A Lévy process, 
tX , of the jump-diffusion (finite) type takes the following form: 

 
1

,
tN

t t i

i

X t W Y 


    (5.14) 

where  
0t t

N


is a Poisson process counting the jumps of X, and 'siY are i.i.d. random 

variables representing the jump sizes. In the finite activity type of the Lévy processes, it 

is the distribution of the jump sizes,  o x , that defines the particular parametric model. 

The following two subsections offer brief descriptions of the Gaussian and the double 

exponential jump processes. 

5.5.1 Merton Jump Diffusion Model 

In his paper, “Option Pricing When Underlying Stock Returns are Discontinuous”, 

Merton (1976) states that,  

the Black-Scholes solution is not valid, even in the continuous limit, when the 

stock price [uncertainty] dynamics cannot be represented by a stochastic process 

with a continuous sample path […] i.e., in a short interval of time, the stock price 

can only change by a small amount. (p. 2-3) 

He concludes that, 

the antipathetical process to this continuous stock price motion would be a "jump" 

stochastic process defined in continuous time. In essence, such a process allows 

for a positive probability of a stock price change of extraordinary magnitude, no 

matter how small the time interval between successive observations. (p. 3) 

Essentially, Merton introduces a stochastic model with the following dynamics: 
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  
1

1
tN

t
t i

it

dS
dt dW d Y

S
 



 
    

 
  (5.15) 

where 
tW  is a standard Brownian motion,  

0t t
N


 is a Poisson process with rate , and 

 
1i i

Y


is a sequence of independent identically distributed (i.i.d.) nonnegative random 

variables such that  logi iY   has a normal distribution.  1iY   represents the 

percentage change in the value of the uncertainty due to jumps. 

Solving the differential equation in (5.15) yields the following dynamics of the modeled 

uncertainty: 

 2

0

1

1
exp .

2

tN

t t i

i

S S t W Y  


  
    

  
  (5.16) 

 

In the Merton jump diffusion model, the log-uncertainty process 
tX in (5.14) contains 5 

parameters:  - drift,  - diffusion volatility,  - jump intensity,  - mean jump size, and 

 - standard deviation of jump size. The Lévy density is  

  
 

2

2
exp

22

x
x




 

  
  

  

 (5.17) 

and the characteristic exponent is given by 

  
2 2

2 2

2. 1
2

z
i zz

z i z e



  

   
    

  

 (5.18) 

The cummulants  are: 

 

   

    
 

 

1

2 2 2

2

2 2

3

3 2 2 4

4

c =E ,

c =Var ,

3 ,  and

3 6 .

t

t

X t

X t

c t

c t

 

   

  

    

 

  

 

  

 (5.19) 



 

 125 

5.5.2 Kou Model 

The Kou model was introduced in an effort to address two established empirical 

phenomena in finance, namely the asymmetric leptokurtic and the volatility smile 

phenomena. The leptokurtic feature means that the uncertainty distribution “is skewed to 

the left, and has a higher peak and two heavier tails than those of the normal distribution” 

(Kou, 2002, p. 1086). The volatility smile refers to the implied volatility curve 

resembling a “smile” (i.e., a convex curve) as opposed to being constant, as is assumed in 

the Black-Scholes model. 

In describing the model, Kou (2002) states: 

The [proposed] model is very simple. The logarithm of the asset price is assumed to 

follow a Brownian motion plus a compound Poisson process with jump sizes 

double exponentially distributed. Because of its simplicity, the parameters in the 

model can be easily interpreted, and the analytical solutions for option pricing can 

be obtained. The explicit calculation is made possible partly because of the 

memoryless property of the double exponential distribution. (Ibid.p. 1087) 

The model here is identical to that in (5.15) and (5.16) except that the sequence of i.i.d. 

nonnegative random variables  log Y   has, as opposed to a normal law, an 

asymmetric double exponential distribution. It is given by 

 
     ( ) . 1 0 1 . 1 0 ,

1,  0

y y
f y p e y p e y

  

 

  

  

 

    

 
 (5.20) 

where p represents the probability of upward jump. In other words,  

  
,   with probability 

log ,
,  with probability 1

d p
Y

p









 
  

  
 (5.21) 
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where   and   are exponential random variables with means 1  and 1  , 

respectively. All sources of randomness, , ,t tW N and s  are assumed to be independent, 

even though this can be relaxed (Kou, 2002). Kou also states the following: 

Note that  
 1

E ,
pp

  


      

2

2 2

1 1 1
Var 1

p p
p p

      

   
        

   
, and 

      E E 1 ,    1,   0
1 1

Y e p p
 

 
 

  
 

 

     
 

  (5.22) 

The requirement 1   is needed to ensure that  E Y   and   E S t   ; it 

essentially means that the average upward jump cannot exceed 100% (p. 1088). 

 

Again using the log-price process 
tX in (5.14), the Kou jump diffusion model contains 6 

parameters:  - drift,  - diffusion volatility,  - jump intensity, , , p  
- parameters of 

the jump size distribution. The Lévy density is  

    0 0e 1 1 e 1
xx

x xx p p
   



       (5.23) 

and the characteristic exponent is given by 

  
2 2 1

.
2

z p p
z i z iz

iz iz


  

  

 
    

  
 (5.24) 

The cummulants  are the following: 
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

2


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
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,

c
3
 t

p




3


1 p 



3









 ,and 

c
4
 t

p




4


1 p 



4









 ,

c
5
 t

p




5


1 p 



5









 .

 (5.25) 

Finally, the semi-heavy (exponential) tails are as follows
37

:   ~ xp x e 
as x   and 

  ~
x

p x e


 as x  . 

                                                 
37

 Results obtained from Cont and Tankov (2004). 
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5.6 Infinite Activity Models: Generalized Hyperbolic Model 

A Lévy process of the infinite activity type is one that has in almost all paths an infinite 

number of jumps on every compact interval. A large family of Lévy processes of the 

infinite activity type (also referred to as pure jumps processes) is the generalized 

hyperbolic (GH) family. 

The GH model has the following parameters and domains: 

         0 shape ,   0  skewness ,    location ,  0 scale ,    shape           

It has an infinitely divisible distribution with a probability density function given by the 

following: 

 

      
 

     

 
 

 

   

1
2

22 2

22

1

2

/ 2
2 2

1

2 22

1 1

0

; , , , , , , ,

                                   exp

where   , , , ,

2

1 1
and       exp

2 2

GHf x c x

K x x

c

K

K z t z t t dt
















          

    

 
   

    








 

  

   






 
   

 


 (5.26) 

where K   is the modified Bessel function of the third kind
38

 with index .  

The characteristic function of the GH model is 

                                                 
38

 Modified Bessel functions of the third kind can also be referred to as modified Bessel functions of the 

second kind. According to Eric Weisstein (2008), “[t]he modified Bessel function of the second kind is the 

function  K z
 which is one of the solutions to the modified Bessel differential equation. The modified 

Bessel functions of the second kind are sometimes called the Basset functions, modified Bessel functions of 

the third kind (Spanier and Oldham 1987, p. 499), or Macdonald functions (Spanier and Oldham 1987, p. 

499; Samko et al. 1993, p. 20). The modified Bessel function of the second kind is implemented in 

Mathematica as BesselK[nu, z] ”. 
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 

  
 

22
22 2

22 2 2

iz

GH

K iz

e
iz K








  
 


    

  
  

    

 (5.27) 

and the cummulants  are as follows:  

 

 
 

 

 
 

 

 

 

 

 

1

2 2

2
2

1 2 12

2 2

2 2

,

var ,

where .

t

t

K
E X

K

K K K
X

K K K





  

  




 

  


     

   



  

 


                 

 

 (5.28) 

 

The tails of the Lévy density and the probability density are exponential with decay rates 

      and       (Cont and Tankov, 2004). 

Different values of , ,  and     yield different subclasses/shapes of the GH model: 

 

1
Normal inverse Gaussian: , 

2

Hyperbolic:                       1,

Variance gamma:              0 and 0,

Student t:                           0 and 0.





 

   

 



 

   

 

For simulation purposes, it is useful that the GH distribution can be represented as normal 

variance-mean mixtures with generalized inverse Gaussian distributions as mixing 

distributions; 

 2 2 2GH( , , , , ) ( , ) ( , , )
z

N z z GIG               (5.29) 

Among the different members of the GH class, the normal inverse Gaussian distribution 

is used herein. In the succeeding subsections, we explore some properties of the normal 

inverse Gaussian (NIG) distribution, outline a method of generating NIG random 

variables, and test the results against theoretical values. 
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5.6.1 Negative Inverse Gaussian Lévy Process: From GH to NIG 

The normal inverse Gaussian Lévy process,
tX , is defined as a Lévy process whose 

increments are stationery, independent, and distributed as negative inverse Gaussian. The 

distribution of this increment size produces a Lévy process of the infinite activity type. 

The NIG distribution belongs to the class of generalized hyperbolic densities, with 

1

2
   .  

The NIG distribution has four parameters ( , , , )    , where   is a shape or a steepness 

parameter whose value is proportional to the steepness of the density (or the tail 

heaviness),   is a skewness or an asymmetry parameter where 0   represents a 

symmetric density,  is a location or shift parameter, and   is a scale parameter. 

The characteristic triplet of the NIG Lévy process, 
tX , has the following Lévy-Khinchin 

representation  , ,A  , where (Ribeiro and Webber, 2003) 

    
1

1

0

2 sinh x K x dx


   


      (5.30) 

and    dx f x dx   is the Lévy jump measure with a Lévy density given by (Ribeiro 

and Webber, 2003; Rasmus, Asmussen, and Wiktorsson, 2004):  

    1( ; , , ) expf x x K x
x


    


  (5.31) 

with a characteristic exponent given by (Rasmus, Asmussen, and Wiktorsson, 2004) 

 

       
11

2 22 2 22

NIG t t t      
 

      
 

 (5.32) 
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The density function is given by the following expression (Kalemanova and Werner, 

2006): 

 

  
  

 

   

   

12 2

22

1

1
0

( ; , , , ) exp

where          ,

                   ,  ,  , 0,  0 ,  and

1 1
                   exp

2 2

NIG
K g x

f x x
g x

g x x

x

K z z t t dt


        



 

    




   

  

    

 
   

 


 
 (5.33) 

 1K z  is the modified Bessel function of the third kind and index 1, where here 

 z g x . 

The moment generating function of ~ NIG( , , , )X      is (Ibid.) 

    
 

  

2 2

22

exp
exp

exp
XM t t

t

  


  




 

 (5.34) 

 

and its cummulant generating function with respect to   is (Rydberg, 1997) 

   2 2          (5.35) 

 

Two important properties of the NIG distribution are the scaling property and that 

pertaining to its closure under convolution. 

 

For  ~NIG , , ,X      and a scalar ,c  cX  is also NIG distributed with parameters 

 ~NIG , , ,cX c c
c c

 
 

 
 
 

 (5.36) 

 



 

 132 

For independent random variables  1 1~NIG , , ,X      and  2 2~NIG , , ,Y     , the sum 

of  and X Y  is also NIG distributed with parameters 

 

  1 2 1 2~NIG , , , .X Y          (5.37) 

 

Having its increments being distributed as NIG random variables, the NIG Lévy 

process,
tX , when conditioned on 

0 0X  , has NIG distribution with the following 

parameters (Ribeiro and Webber, 2003; Rydberg, 1997):  

 

 ~ NIG( , , , ),  where  and t t t t tX t t            (5.38) 

 

From Rydberg (1997), the first four cummulants of 
tX are given by: 

 

 

 

 

   

 

1

1

2 3

2

2 5

3

2 2 2 7

4

1
2 2 2

κ ,

κ ,

κ 3 ,

3 4 ,

where 

t t

t

t

t

t

t

t

t

  

  

  

     

  









 





 

 

 (5.39) 

 

Equivalently, differentiating the cummulant generating function in (5.35) with respect 

to   yields other equivalent expressions for the cummulants of the distribution of 
tX : 
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 

 

 

 (5.40) 

For a fixed t, the parameters  
1

21t t  


   and t t


 


  are invariant under location 

and scale transformations. 

The skewness and kurtosis are as follows:  

 

3

3
2

2

2 2

4

2 2

2

κ
skewness: 3  and

κ

κ 4
kurtosis:     3 .

κ

t

t



  

 

  






 (5.41) 

5.6.2 Simulation of Normal Inverse Gaussian Lévy Process 

A NIG Lévy process is a Lévy process with increments distributed as NIG random 

variables. Hence, to generate the NIG Lévy process we need to generate these NIG 

random increments. There are different ways to do so that vary in exactness; in this 

subsection, we present and test an exact method of generating NIG random variables. 

5.6.2.1 The Rydberg Algorithm 

By definition, the normal inverse Gaussian Lévy process,
tX , is a process whose 

increments, 
1t t tX X X   , are stationery, independent and distributed as NIG random 

variables with parameters given by: ( , , , )tX NIG      . Thus, from (5.37), 
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0

  ( , , , )
t

t t t

t

X X X NIG t t   


     (5.42) 

The stochastic process
tX  which generates NIG distributed log ratios is given by: 

 exp( )t o tS S X  (5.43) 

where 

 1

01

log log log ( , , , )
t

t
t t t t

tt

S
X S S X NIG t t

S
   



       

To model the increments of the processes, 
0

,
t

t t

t

X X


   with ( , , , )tX NIG      , we 

hereby proceed by describing a method to generate these NIG increments. 

 

In the simulation of NIG( , , , )     (or equivalently 
1

GH( , , , , )
2
    ) random 

variables, one can utilize the fact that in (5.29) all GH distributions could be represented 

as normal variance-mean mixtures with generalized inverse Gaussian distributions as 

mixing distributions: 

 2 2 21
NIG( , , , ) ( , ) ( , , )

2z
N z z GIG             (5.44) 

 

Therefore, simulation of an NIG( , , , )     random variable reduces to sampling two 

random variables: a normal random variable, ( , )N    (with z     and 2 z  ) and 

a generalized inverse Gaussian random variable, ( , , )GIG     (with 2   and 

2 2    ). 
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An algorithm
39

 to generate NIG random variables that is based on Atkinson (1982) and 

Michael, Schucany & Hass (1976) is presented below (Rydberg, 1997): 

To generate X NIG( , , , )     : 

1. Sample Z from ( , , )GIG     where 2   and 2 2    , and let 2 Z   

To sample Z from 2 2 2( , , )GIG     , the following is a special approach 

for sampling from the ( , , )GIG     distribution that applies only to the case 

where 
1

2
    (NIG distribution): 

a. Sample 
0v  from 2 (1)  

if we let 
2

2 2
'

 


  
 


, then 

2
2

2

( ')
(1)

'

Z
V

Z

 





   

b. Solve for Z, which yields 

2
2 20

1 0 0

' '
' 4 ' '

2 2

v
z v v

 
   

 
    , and

2

2

1

'
z

z


 ,  

where 
0v  is a realization of V. 

c. Choose 
1Z z with probability 

1

'

' z



 
 (or 

2Z z  with probability 

1

1'

z

z 
) 

2. Let 2 Z   

3. Sample Y from N(0,1) 

4. Return 2X Y       

                                                 
39

 Other methods to generate NIG random variables exist; Kalemanova and Werner (2006) present an 

alternative algorithm that uses Gaussian and inverse Gaussian random variables. 
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The algorithm presented above was used to generate at every time step, t, n independent 

sample points of  
( )i

t
X  with the parameters ( , , , )NIG     . 

This effectively results in a process ( )

0

,  1 ,
t

i

t t

t

X X i n


     such that 

( , , , )tX NIG t t    . 

Finally, using (5.43), the values of the simulated uncertainty process, 
it

S , are obtained 

forward in time by evaluating 1 exp( )
i i it t tS S X . 

 

In the context of our application, the land acquisition cost and the traffic volume 

uncertainties are to be modeled as independent NIG Lévy processes. 

5.6.2.2  Testing the Algorithm 

To test the algorithm in Rydberg (1997), we implemented it in Matlab using the 

parameter values contained in Appendix A, Table 2: Deutsche Bank. 

As such, the NIG process to be generated has the following parameters: 

( , , , ) (75.49, 4.089,0 ,0.012 )tX NIG t t NIG t t         

The process duration was arbitrarily assumed to be 10 years, with an initial value 

0 0.1S   and a number of iterations (paths), NP=50,000. 

The cummulants of the generated NIG process values are tabulated below against their 

theoretical counterparts (as defined in (5.39)). 
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3
10


  
Year 1 2 3 4 5 6 7 8 9 10 

E[ ]
t

X  -0.6509 -1.3019 -1.9528 -2.6038 -3.2547 -3.9057 -4.5566 -5.2076 -5.8585 -6.5095 

Exact
X  -0.6496 -1.2692 -1.9016 -2.5906 -3.2458 -3.9530 -4.5781 -5.3195 -5.8895 -6.5748 

 VAR
t

X  0.1597 0.3193 0.4790 0.6387 0.7983 0.9580 1.1176 1.2773 1.4370 1.5966 

2

Exact
S  0.1588 0.3194 0.4807 0.6398 0.8022 0.9597 1.1203 1.2878 1.4484 1.6202 

 
5

10


  
Year 1 2 3 4 5 6 7 8 9 10 

 
3
κ t  -0.0345 -0.0689 -0.1034 -0.1379 -0.1724 -0.2068 -0.2413 -0.2758 -0.3102 -0.3447 

3

Exact
E X  

  -0.0254 -0.0612 -0.0872 -0.1157 -0.1413 -0.2020 -0.2248 -0.2909 -0.3236 -0.3728 

 
Year 1 2 3 4 5 6 7 8 9 10 

Tskew -0.1709 -0.1208 -0.0986 -0.0854 -0.0764 -0.0698 -0.0646 
-

0.0604 

-

0.0570 

-

0.0540 

Exact
Sskew  -0.1269 -0.1071 -0.0828 -0.0715 -0.0622 -0.0680 -0.0600 

-

0.0629 

-

0.0587 

-

0.0572 

Tkurt 3.3555 1.6777 1.1185 0.8389 0.6711 0.5592 0.4794 0.4194 0.3728 0.3355 

Exact
Skurt  6.0190 4.5502 4.0531 3.8214 3.6925 3.5704 3.4763 3.4403 3.3824 3.3879 

 

  1

1E[ ] κt t tX t        is the theoretical expected value, X  is the sample average, 

    2 3

2VAR κt tX t       is the theoretical variance, and 
2S  is the sample variance. In 

the second table,   2 5

3κ 3 tt      is the theoretical third moment and 
3E X 

 
  is the 

sample third moment. In the third table, Tskew and Tkurt are the theoretical skewness 

and kurtosis, respectively, whereas Sskew and Skurt are those of the simulated sample. 
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Except for those of the kurtosis, the tabulated values indicate that the exact algorithm 

does indeed generate NIG random variables fairly accurately; Figure 5-1 below is a 

graphical illustration. 

 

 
 

Figure 5-1: Theoretical (dotted) and Simulated (shaded) NIG Probability Distribution Function. 

 

As stated in Figure 5-1 above, the histogram area is 1.0000000 and the probability 

density area is 1.002432125. The pdf area, an approximate figure, is calculated as the 

sum of areas of discretized bins under the NIG density function between predetermined   

upper and lower limits. The bin areas are evaluated at the centers of the discretization 

bins. 

 

histogram area  = 1.0000000  pdf area   = 1.002632125 
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The figures below are the simulated NIG log ratios and the resulting NIG Lévy process, 

.tS  

 
Figure 5-2: Simulated NIG Log Ratios,

t
X  

 

 
Figure 5-3: Simulated NIG Process,

t
S   
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5.7 Model Calibration 

The Merton, Kou and NIG models all assume different sets of parameters. The scarcity of 

data alluded to previously prohibits parameter estimation, which makes parameter 

calibration the only feasible option.  

Calibration will rely on the method of moments where the moments of the proposed 

models are to be matched with those of the geometric Brownian motion model applied in 

Zhao et al. (2004); this is to make all the models comparable. 

In matching the moments, the sum of squares of differences of moments of the proposed 

model and those of the log-normal model will be minimized. Given that all the proposed 

models have more parameters than those of the lognormal one, a numeric technique will 

be employed to minimize the following function O: 

  
2

*

1

O= m m
n

i i

i 

  (5.45) 

where 
im is i

th
 moment of the proposed model, whereas *mi  is the i

th
 moment of the base 

model and n is the number of moments to be matched. 

In Section 5.5, we list the cummulants,  κ , 1i i n   of the Merton and Kou models, 

while in Section 5.6 those of the NIG models are listed. The moments 
im for each model 

can be obtained from the cummulants using the results (5.46) below: 
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 

 

     

       

1 1

2

2 2 1

3

3 3 1 1 2

2 2 4

4 4 1 3 2 1 2 1

2 2 3 5

5 5 1 4 2 3 1 3 1 2 1 2 1

m κ

m κ m

m κ 2 m 3m m

m κ 4m m 3 m 12 m m 6 m

m κ 5m m 10m m 10 m m 10m m 60 m m 24 m



 

  

    

      

 (5.46) 

As for the numeric technique, the Matlab function fminsearch will be used to search for 

the model parameters that would minimize the sum of squares function O above (i.e. find 

the parameters in the proposed models that would best match the moments of the base 

model). fminsearch uses what is generally referred to as unconstrained nonlinear 

optimization to find a minimum of a scalar function of several variables, starting at an 

initial estimate. The initial estimates of the parameters for the proposed models will be 

obtained by explicitly equating the first two moments. 

 

In the next subsection, we determine the moments of the base model and in the 

subsequent subsections, we present methods to obtain the initial estimates for each 

individual model. 
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5.7.1 Base Model 

In Zhao et al. (2004), the traffic demand and the land price uncertainties are modeled as 

correlated geometric Brownian motion processes: 

 t
t

t

dS
dt dW

S
    

where  , .t t tS Q P  

While the simulation of the uncertainties will be implemented as 

2

2

0

t W
t

tS S e


 
 

   
  , the 

calibration will be performed in the log scale as ,t tX t W    where 
0

ln t
t

S
X

S

 
  

 
 and  

2 2    . 

Given that  2

1 ~ ,tX N  
, its moment generating function is  2 2exp 2

tXM t t    

and consequently the first five moments are as follows: 

 

  

m
1

* =E X   

m
2

* =E X 2



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2   2

m
3

* =E X 3



    2  3 2 

m
4

* =E X 4



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4  6 2 2  3 4

m
5

* =E X 5



    4 10 2 2 15 4 

 (5.47) 

 

 

 2

0

2 2

0

E ln 2

Var ln

t

t

t
X t

t
X t

S
X t t

S

S
X t

S

   

 

  
      

  

  
     

  

 (5.48) 
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5.7.2 Merton’s Model 

The Merton model can be expressed as 

 Mer

Mer Mer

1

,
t

t

N

t i

i

X t W Y 


    (5.49) 

where,  

Mer

0

ln
t

tS
X

S

 
  

 
, Mer

2

Mer Mer 2    ,  
0t t

N


 is a Poisson process counting the 

jumps of 
Mer

t
X , and  

1i i
Y


, representing the jump sizes, are i.i.d. random 

variables such that    2log ~ ,i iY N     has a normal distribution. Note that 

here 
Mer   and 

Mer  , unless 
1

0.
tN

i

i

Y


  

Merton‟s model is of the jump diffusion type. Here, the log-uncertainty process, Mer

tX is 

the superposition of two independent processes: 

 Mer M_D M_J

t t tX X X   (5.50) 

where,  

M_D

Mer Mert tX t W    is a Brownian motion (diffusion) process, and 

M_J

1

tN

t i

i

X Y


 is compound Poisson (jump) process. 

From equation (5.50), and by independence, 

 
Mer M_D M_J

Mer M_D M_J

2 2 2

t t t

t t t

X X X

X X X

  

  

 

 
 (5.51)  

where  

 Mer M_D M_J

Mer M_D M_J

MerE , E ,  E E ,
t t t

t t tX X X
X X t X t Y t                       
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   Mer M_D

2 Mer 2 M_D 2

Mervar , var ,
t t

t tX X
X X      and 

         M_J

22 M_J 2 2var var .
t

tX
X t Y E Y t          

Thus, 

 
 

Mer

Mer

Mer

2 2 2 2

Mer

t

t

X

X

t t

t t

   

    

 

  
 (5.52) 

Given that at time t=1 the values
1X  and 

1

2 2

X  from the base model, 
tX , are 

known, let   Mer
11

Mer

1 1i.e. E E
t

XX
X X 



     and let 

    Mer
11

2 2 Mer

1 1i.e.var var .
t

XX
X X 



   

Then from equations (5.48) and (5.52), 

 
 

Mer

2 2 2 2

Mer

  

    

 

  
 (5.53) 

 

Lastly, if one assumes that due to jumps the unit variance takes a percentage r of that of 

the overall process unit variance (i.e. M_J
1

2 2

tX
r 



 and  M_D
1

2 21
tX

r 


  , 0 1r  ), and 

that the jump event arrival rate, , as well as the mean jump size,  , are known, then the 

initial values for the parameters of the Merton model in (5.49) can be explicitly calibrated 

as shown in Figure 5-4: 
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Initial Parameters for Merton Model 

 1t  , 

 , , and
1 2,    (from the base model) 

 
Merr r , 0 1r   

   (jump event arrival rate) 

   such that 
2p r 




  
 

 
 

, (mean jump size) 

 
2

2r
 


   (volatility of jump size) 

 
Mer     (drift of diffusion process) 

   2

Mer 1 r   (volatility of diffusion/ GBM process) 

 Mer

2

Mer Mer 2     (drift of GBM process) 

 

Figure 5-4: Calibration of the Initial Parameter Values for Merton Model 
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5.7.3 Kou’s Model 

Kou‟s model has the same form as Merton‟s model: 

Kou

Kou Kou

1

,
t

t

N

t i

i

X t W Y 


     

where 

Kou

0

ln
t

tS
X

S

 
  

 
, Kou

2

Kou Kou 2    , 

and  
0t t

N


is a Poisson process. However, in this case,  
1i i

Y


are i.i.d. random variables 

such that    log ~ DExp , ,i iY p      has an asymmetric double exponential 

distribution as opposed to having a normal distribution.  0,1p   is the probability of an 

upward jump, while 0   and 0   govern the decay of the tails for the distribution 

of positive and negative jump sizes. 

 

Similar to Merton‟s model, Kou‟s is also of the jump diffusion type, and the log-

uncertainty process above can also be represented as 

 Kou K_D K_J

t t tX X X   (5.54) 

where,  

K_D

Kou Kout tX t W    is a Brownian motion (diffusion) process and 

K_J

1

tN

t i

i

X Y


 is compound Poisson (jump) process, where  
1i i

Y


is as defined 

above. 
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From equation (5.54) and by independence: 

 
Kou K_D K_J

Kou K_D K_J

2 2 2

t t t

t t t

X X X

X X X

  

  

 

 
 (5.55)  

where  

     

Kou K_D K_J

Kou K_D K_J

Kou K_D K_J

2 Kou 2 K_D 2 K_J

E , E , E ,

var , var ,  and var .

t t t

t t t

t t tX X X

t t tX X X

X X X

X X X

  

  

            

  
 

  

K_D Kou
tX

t    (5.56) 

 
 

K_J

1
E

tX

pp
t Y t  

  

 
   

 
  (5.57) 

K_D

2 2

Kou
tX

t    (5.58) 

 
K_J

2

2 2

1

tX

pp
t 
  

 
  

 
  (5.59) 

 

From (5.57) and (5.59), one can obtain the following expressions for 
and 2 : 

 
 M_J

1

1
X

p
p




  







 

 (5.60) 

 
 M_J

1

2

2

2 2 1
X

p
p




  







 

 (5.61) 

These produce the following quadratic equation: 

      K_J K_J K_J
1 1 1

2 2 2 22 1 1 0
X X X

p p p     
        (5.62) 

The solution of (5.62) together with (5.60) yields the following explicit expressions for 


and 

in terms of the mean, K_J
tX

 , and variance, K_J

2

tX
 , of the Kou jump process: 
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      K_J K_J K_J K_J

1 1 1 1

K_J K_J
1 1

22 2 2 2 2

2 2

1 1 1
X X X X

X X

p p p p

p

      


 


    



 (5.63) 

 
 K_J

1

1
X

p
p




  







 

 (5.64) 

 

In calibrating Kou‟s model, one way of assigning values to the mean and the variance, in 

addition to setting the sum of moments of the diffusion and jump components of the 

uncertainty process to be the same as those of the geometric Brownian motion base 

model, is to also set these component moments to be exactly the same as their 

counterparts in Merton‟s model, i.e., 

 K_J M_J K_J M_J

2 2 and 
t t t tX X X X

      (5.65) 

and 

 K_D M_D K_D M_D

2 2 and 
t t t tX X X X

      (5.66) 

This will enable us to compare results afterwards. 

 

With equations (5.65) in mind, note that as a way of ensuring in Kou‟s model above that 

0  , the term  K_J K_J
1 1

2 2

X X
p   in Eq. (5.62) is forced to be strictly positive; this 

explains why we previously assigned the values   and   in Merton‟s model such that 

2p r 




  
 

 
 

. 

 

At time t=1: 

 the values
1X  and 

1

2 2

X  from the base model are known, 

 
Mer is given from Merton‟s model, 
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 the volatility due jumps takes a percentage r of that of the overall process variance 

(i.e. K_J M_J
1 1

2 2 2

X X
r    and  K_D M_D

1 1

2 2 21
X X

r     , 
Kou Mer0 1r r r    ), 

   is the same as that of Merton‟s model, and  

 the probability of upward jump, p is given 

Given the above, the parameters of the Kou model  Kou Kou, , , ,p     can be calibrated 

as shown in Figure 5-5 below: 
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Initial parameters for Kou model 

 1t   

 , , and
1 2,     (from base model) 

 
Merr , 

Mer and 
Mer   (from Merton model) 

 
Kou Merr r r  , 0 1r   

 K_J M_J
1 1

MerX X
       

 M_JK_J
11

2 2 2

XX
r     

 
Mer   

 ,p 0 1p   

 
        K_J K_J K_J K_J

1 1 1 1

K_J K_J
1 1

22 2 2

2 2

1 1 1
X X X X

X X

p p p p

p

     


 


    




, 0   

 
 K_J

1

1
X

p
p




  







 

, 0   

  K_D
1

2

Kou 1
X

r      

 
 

K_J
1

Kou

1
X

pp
    

  

 
     

 
 

 
Kou     

 Kou

2

Kou Kou 2     

Figure 5-5: Calibration of the Initial Parameter Values for Kou Model 
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5.7.4 NIG Model 

Having four parameters,  , , ,    , the negative inverse Gaussian model is of the 

infinite activity Lévy subclass; it contains no diffusion component. The model will be 

calibrated by simultaneously equating its first two moments, 
1m and 

2m , with their 

counterparts in the base model, *

1m and *

2m , and solving for the two parameters   and   

(   and   are assumed to be known). Details are as follows: 

 

 

*

1 1 11
2 2 2

m =κ = m




 

 



 (5.67) 

Let 
*

1m
,L






 then 

 
1

2 2 2

,L


 





2
2 2

2
,

L


   2 2

2

1
1 ,

L
 

 
  
 

and 

2
2

2 2
1 .L



 
 


 

  
   

2

2
2 *

2 2 1 23 1
2 2 2 22 2

m κ m = + =m
 



   

 
 

   
  
 

 (5.68) 

   
 

   

2 2
2 2 2

2 1 1 2 2
2 2 2 22 2

2 2 *

2

m = + 2 = + 2 1

    = + 2 1 =m

L
L L

L
L L L

   
     

  
   


   



 
 

     
  
 

  
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Therefore, given   and  ,  
 

 

2

* 2

2

1
=

m 2

L L

L L




   



  
 and 2 2

2

1
1 ,

L
 

 
  
 

where 

*

1m
.L






  The initial values for the parameters of the NIG model can be explicitly 

calibrated as shown in Figure 5-6, below:  

 

 

Note that unlike Merton and Kou models, where the uncertainties are correlated, the 

uncertainties in the NIG case are assumed to be independent. 

Initial parameters for NIG model 

 Boundary conditions: 

       0 shape ,   0  skewness ,    location ,  0 scale          

 1t   

   and   (from base model) 

  *

1m =E X   

 * 2 2 2

2m =E X        

   and   are arbitrarily chosen such as above boundary conditions are met 

 
*

1m
L






  

 
 

 

2

* 2

2

1
=

m 2

L L

L L




   



  
 

 
2

1
1

L
 

 
  

 
 

Figure 5-6: Calibration of the Initial Parameter Values for NIG Model 
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6 Model Implementations and Testing 

The purpose of this chapter is to implement, test and analyze the core and proposed 

models. In the first section, we outline our version of the decision-making system 

algorithm by highlighting its key distinguishing features. Subsequently, in Section 6.2 we 

present the case study in which the testing of the models is implemented. To facilitate 

model comparability and establish a baseline, we calculate the moments of the base GBM 

model in Section 6.3, where we further show a sample detailed system output and reveal 

the simulation results of the GBM model as a baseline. Sections 6.4 through 6.6 unveil 

the calibration calculations and the simulation results for the proposed Merton, Kou, and 

NIG models. Analysis and discussion follow in Section 6.7 and final conclusions are 

communicated in Section 6.8. 
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6.1 System Algorithm 

The algorithm developed by Zhao et al. (2004) is based on the least-squares Monte Carlo 

(LSMC) method originally proposed by Longstaff and Schwartz (2001) and extended to 

“solve a much more complex problem” (Zhao et al., 2004). The algorithm used in this 

paper is a modified version of the one developed by Zhao et al. (2004), as presented in 

Section 3.1.3. In an effort to make the decision making algorithm more realistic, several 

important changes are introduced to the algorithm that bear important consequences, as 

will be seen shortly. The aspects of similarity and disparity between the two algorithms 

are described below. 

 

The embedded real options, the underlying uncertainties, and the multi-stage stochastic 

model for the development of the highway system are the same in our implementation as 

those presented in Zhao et al. (2004) (see Section 3.1) with the following exceptions: 

1. In Zhao et al, 2004, the do-nothing is not considered as an option for the land 

purchase and the highway expansion decisions. However, in our implementation 

this option is explicitly exercised. As a result, there are 10 states and 10 possible 

decisions as opposed to the 9 and 8 in Zhao et al. (2004). 

2. Unlike the implementation in Zhao et al. (2004), where in the simulation step the 

highway service quality index, 
tI , is introduced as a Markov chain but 

subsequently evaluated deterministically, 
tI  in our implementation is evaluated 

stochastically as Markov process (see Section 3.1.3). 

3. It is unclear exactly how the rehabilitation decision is made and what is its 

relation to the HSQI matrix in Zhao et al (2004). Some statements indicate that 
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the rehabilitation decision is not automatically deduced from HSQI matrix but 

rather as an independent option, although others have suggested otherwise. Below 

is a list of both positions. 

a. Rehabilitation decisions being independent from HSQI matrix:  

i. The rehabilitation decision is introduced as an embedded 

American-style real option where “the focus will be on the exercise 

timing […]” (Ibid., p. 25). 

ii. Zhao et al., 2004, state that “for simplicity we have implicitly 

assumed that the uncertainties considered are independent of the 

DM‟s [decision maker‟s] decisions” (Ibid. p.26). 

iii. In the numerical examples (Ibid., p. 29), it is stated that  

 when  1

1 0.5
1,  

0.5

t

t t

t

I p
I I

I p


  
   

 
 (6.1) 

 when   
11,  1t tI I    (6.2) 

iv. Figure 1 on (Ibid., p. 29) displays a plot of the regression of  t   

when 2tI   and 1.th   

 

b. Rehabilitation decisions being dependent on HSQI matrix: 

i. As presented in conditions (3.9) and (3.10) in Section 3.1.3, “[t]he 

rehabilitation constraints state that when the highway is in the 

„poor‟ condition, rehabilitation is mandatory. After the 

rehabilitation, the highway service level is upgraded to the 

„excellent‟ condition”. (Ibid., p. 27). This also seems to be 

inconsistent with (6.2) above. 
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ii. “[T]he maximum number of functions  t  to be determined at 

time t to be 360 ( 72 5  )” (Ibid., p. 29). Had the rehabilitation 

decision been considered an independent decision, the maximum 

number would instead have been the product of the number of 

states, the number of lane purchases and highway expansion 

decision options, the number of the highway service quality 

indices, and the two rehabilitation decision options: i.e. 

9 8 5 2 720    , or more accurately, 9 8 9 648    given that 

rehabilitation would not be required when 5tI  . 

 

4. In our implementation, the rehabilitation decision is mechanically controlled by 

the HSQI transition probability matrix. It is based on conditions (6.3) and the 

rehabilitation constraints (3.9) and (3.10) in Section 3.1.3. As such, the Highway 

Service Quality Index Transition Probability Matrix takes the following form: 

 

5 4 3 2 1

5 0.5 0.5 0 0 0

4 0 0.5 0.5 0 0

3 0 0 0.5 0.5 0

2 0 0 0 0.5 0.5

1

0 . 0

1

. 0. 0.

0 0 0 0

 
 
 
 
 
 
  

 (6.4) 

 

5. Using the adopted procedure, one can still allow for rehabilitation decisions to be 

randomly made at other states by modifying the HSQI matrix probabilities. Below 

is one example. 
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5 4 3 2 1

5 0.500 0.500 0 0 0

4 0.200 0.400 0.400 0 0

3 0.333 0 0.333 0.333 0

2 0.400 0 0 0.300 0.300

1 1 0 0 0 0

0 0 .00 0.00 0.00 0.00

 
 
 
 
 
 
  

 (6.5) 

 

6. The regression using the functional form used in taking the form of (3.19) yields 

badly scaled matrices, inaccurate and inconsistent results, and relatively very 

negligible coefficient values for the higher order terms (Ibid.). 

For example, one sample set of coefficients (generated with 2000 iterations) 

presented below indicate that 
6a is 0. 

  2 3 4

1 2 3 4 5 6t t t t t ta a P a Q a Q a Q a Q         

 

1.0e+008 * 

   
1a =6.65996220563437 

   
3a =0.00243747654678 

   
4a =-0.00000050131797 

   
5a =0.00000000005314 

   
6a =-0.00000000000000 

   
2a =-0.00000088006731 

 

7. Despite the previous observation, the functional form in (3.19) is still adopted: 

   2 3 4

1 2 3 4 5 6t t t t t ta a P a Q a Q a Q a Q         (6.6) 
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8. The multi-stage stochastic model adopted here uses the same general model 

framework but with some alterations: 

a. Boundary conditions at t=T: 

In addition to setting  ; , 0, , ,T T T T T T TX u v u v X    (i.e. expected 

system value for future states at t=T+1 is zero), the condition 

 , 0,  ,T T T T Tc u v u v   is also assumed in our implementation (i.e. given 

that no more decisions are to be considered at t=T, the costs should be zero 

as well). 

b. Conditional expectation:  

Given that  ; ,t t t tX u v  “can be viewed as conditional expectation of 

 , ,t t tX u v ” and “that there is a separate  t   for each possible 

realization of  ,t tu v ” (Zhao, 2003), then regression should take place 

before the maximization operator is applied in Step 2 of the algorithm in 

Section 3.1.3. Otherwise, regardless of the origin state,  t   would have 

the same value for any state decision whose destination state is the same. 

c. Given that at t=0, there is only one data item, it is not possible to 

determine  0t    at t=1. Thus, discounting will be used instead. 

d. More details are available in the modified algorithm presented below. 

 

9. Apart from the above, the principal change in this paper, which is the main thesis 

put forth, is the alteration of uncertainty model of 
tX  from the Brownian motion 
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to the Merton, Kou, and NIG models. Below is a description of the algorithm used 

in this dissertation. 

 

Algorithm: Obtaining  1 1 1 1; ,t t t tX u v      with  ; ,t t t tX u v  known for all ,t tu v from 

t=T-1 until t=2. 

Data: 
1tu 
 and 

1tv 
are given. 

 Step 0:  

o Generate, based on the assumed uncertainty model, a random matrix 

 
tX for all paths from t=1 to T and evaluate the transformed matrix ''

tX  

 from t=1 to T-1 based on (6.6) 

o Set ,t T  ; , 0, , ,T T T T T T TX u v u v X    and   , 0,  ,T T T T Tc u v u v   

 Step 1: Evaluate        t t t, ; ; ; , ,r

t t t t t t t t t tF u v X f v X e X u v c u v   , ,t tu v  

 Step 2: Evaluate     max ;
t

t t t t
u

F v F u v ,
tv  

 Step 3: While 1t  , regress  , ;t t tF u v X  on ''

t -1X  to obtain an individual 

   1 1 1 1; ,t t t tX u v     1 1,t tu v   

 Step 4: while 0t  , update 1t t  , then go to step 1 

 

At t=0, by setting 
0 0u u , 

0 0v v  , and 
0 0X X  ,  the evaluation of  (6.7) below gives 

the optimal decision that yields the maximal expected system profit, 
*.F  

       
0

*

0 0 0 0 0 1 0 0 0, max , ; ,r

t
u

F f v X e F u v X c u v

     (6.7) 
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6.2 Case Study: Selecting Design Alternatives 

The case study in which the proposed algorithm and uncertainty models are tested is the 

one used in Zhao et al. (2004) in selecting a design alternative during the design phase. In 

this phase, two decisions that need to be made when designing a new highway are the 

number of lanes to be built and the right-of-way that needs to be acquired. 

As in Zhao et al. (2004), we apply the model to a 50-mile-long section of highway.  

Likewise, the planning horizon is 25 years and the initial traffic demand (
0Q ) and land 

price (
0P ) are 4,200 vehicles of ADT and $70,000 per acre, respectively. The interest rate 

is 0.08. 

The tables presented below list the highway configuration options and system parameters 

used in Zhao et al. (2004) and adopted herein. 

 

Number of Lanes Width (ft) 

2 150 

4 150 

6 175 

8 200 
Table 1: Available Right-of -Way and Corresponding Minimum Width 

 

Parameter Value 
  $14,000 

  1000 vehicles 

  $10,000 per acre per year 

  12 ft 

d 50 miles 

nc  $750,000 

mc  $200,000 

T 25 years 

  0.7 

Table 2: Test System Values 
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Note: According to Zhao et al. (2004), the above cost data are based on a highway cost 

survey by the Washington State Department of Transportation (2002). 

In the following four sections we present the results of our implementations of this case 

study using the different uncertainty models: GBM, Merton, Kou and NIG. In each, the 

number of simulation iterations is 10,000 and the number of time steps is 25 years. 
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6.3 Geometric Brownian Motion Model 

6.3.1 Moments of the Base Model 

To enable the calibration of the proposed models, moments of the GBM are determined 

here. 

The parameters used in the geometric Brownian motion for the uncertainties, 
t

t

t

Q
S

P

 
  
 

, 

in Zhao et al. (2004) are 
0.05 0.2

,
0.1 0.2

 
   

    
   

, and  1,2 1 2cov , 0.2.     

Therefore, as previously illustrated in Section 5.7.1, the uncertainty processes 
1tX 
, 

 2~ ,tX N   , have these parameters 2
0.03

2
0.08

  
 

    
 

 and 
0.2

0.2


 
  
 

. 

Correspondingly, the first five moments of the base model  2~ ,X N    are as follows: 

 
0.03

E
0.08

X 
 

   
 

 

2 2 2
0.0409

E
0.0464

X  
 

       
 

 

 3 2 2
0.003627

E 3
0.010112

X   
 

       
 

 

4 4 2 2 4
0.00501681

E 6 3
0.00637696

X    
 

        
 

 

 5 4 2 2 4
0.0007308243

E 10 15
0.0021280768

X     
 

        
 

 

The above moments will used later to calibrate the proposed models. 
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6.3.2 Sample Model Implementation 

The calculation requirement of the decision-making problem at hand is immense. In an 

effort to depict our implementation of the system through tangible means, we exhibit in 

Appendix 4 a sample of a complete output of the GBM model algorithm for a 

hypothetical project in the planning phase; the planning horizon is 3 years, while the 

initial traffic demand and land price are 4,200 vehicles of ADT and $70,000, respectively. 

For conciseness, the core calculations are not displayed and the number of iterations 

(matrix rows) is confined to 3. However, given the differences in implementation noted 

earlier in Section 6.1, we illustrate in detail below how, in the regression core of the 

algorithm, the values of  1 1 1 1; ,t t t tX u v      are calculated and used for a sample state. 

The reader is encouraged to go through the material of Appendix 4 to become 

familiarized with the notation used and to refer back there as needed to verify the input 

and the results values. 

 

Sample Illustrative Example of the Core Algorithm Results for a Sample State 

At time step t=3, the regression of  1 1 1 1; ,t t t tX u v      uses the following values of the 

untransformed values of the two uncertainties, 
2tS 
(or S below) that are generated for 

previous time step t=2: 

S(:,2,1) = S(:,2,2) = 

  1.0e+003 *     1.0e+003 * 

    5.3031     92010 

    3.7649         94650 

    3.6136         66800 
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With (6.6)
40

, these translate into the poorly scaled transformed matrix 
2tX 
 (or X_T 

below):  

X_T(:,:,2) = 

  1.0e+014 * 

   0.00000000000001   0.00000000005303   0.00000028122870   0.00149138389829   7.90895795101062   0.00000000092010 

   0.00000000000001   0.00000000003765   0.00000014174472   0.00053365469670   2.00915656762273   0.00000000094650 

   0.00000000000001   0.00000000003614   0.00000013058105   0.00047186768083   1.70514105146377   0.00000000066800 

 

As a result of this fact, the computation of  
1

' 'X X X X


 transpires into an unreliable
41

 

result: 

X*inv(X'*X)*X' =    

 -0.527347 -0.6191752 -0.556429 

 -0.4826184 0.83481309 -0.142078 

 -0.0062542 0.13832138 1.1452568 

 

Given that at the time step t=3, 
3 0   and 

3 0c   ,t tu v , then 

   3 3 3 3 3; ;F u v f v S
3u  [Note: 

tf here is a function of the untransformed uncertainty 

matrix, ,tS  not ]tX  

Therefore, all three decisions,  3 1,2,3tu   that are feasible at state 
3 7tv   have the 

same values. For example,  3 3;F u v  (or F_all_d below) takes the same values for all the 

decisions: 

F_all_d
42

 =   
    
 103440000 103440000 103440000 
 103440000 103440000 103440000 
 103440000 103440000 103440000 

 

                                                 
40

 Implemented as   2 3 4

1 2 3 4 5 6t t t t t t
a a Q a Q a Q a Q a P         

41
 The unreliability is reflected in the associative matrix multiplication property not holding in the 

computations involving 
t

X and in the different outcomes generated using different computing programs. 
42

 Note: while the columns of F_all_d have to be the same at t=T, the rows here happened randomly to be 

identical. 
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and the value-to-go (or total value) of this state,     3 3 3
3

max ;
t

t t t t
u

F v F u v  


  (or F_i 

below) is 

F_i = 

           103440000 

           103440000 

           103440000  

 

Consequently,  2 2 2 2; , 7X u v 
2u  (or F_hat_all_d =  

1
' 'X X X X


F_all_d) is: 

 

F_hat_all_d = 

1.00E+08*    

-1.7615 -1.7615 -1.7615 

0.2173 0.2173 0.2173 

1.3213 1.3213 1.3213 

 

At t=2, the value of state 7,  2 2 2=7;f v S  is: 

f_t(:,7,2) =  

 103440000 

 115200000 

   103440000 

 

and the cost matrix of the decisions 
2u  is: 

 

c_PathDecStateTime(:,:,7,2) =    

 0 75000000 150000000 

 0 75000000 150000000 

 0 75000000 150000000 

 

As a result of the costs of the decisions taking different values, the values of the state 

would likewise be different under these decisions. For decisions 
2u  at state 

2 7v  , 

 2 23; 7F u v   (or F_all_d below) is: 
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F_all_d = 

1.00E+08*    

-0.5917 -1.3417 -2.0917 

1.3526 0.6026 -0.1474 

2.2541 1.5041 0.7541 

 

and the value-to-go,     
2

2 2 2 2max ;
u

F v F u v  is 

F_i=  

 1.00E+08 

             -0.5917 

             1.3526 

             2.2541 

 

corresponding to the 1
st
 decision. 

Using 
1tS 
, 

1tX 
 becomes: 

X_T(:,:,1) = 

  1.0e+014 * 

   0.00000000000001   0.00000000003934   0.00000015473996   0.00060870056846   2.39444542614139   0.00000000069930 

   0.00000000000001   0.00000000003998   0.00000015988002   0.00063928026997   2.55616215946005   0.00000000075180 

   0.00000000000001   0.00000000003158   0.00000009975491   0.00031506589385   0.99510411912649   0.00000000074530 

 

and  

X*inv(X'*X)*X' =    

 -1.0712 -2.1204 -1.3663 

 -2.0396 -1.0722 -1.5655 

 -1.7139 -1.7871 0.0795 

 

Therefore,  1 1 1 1; , 7X u v   becomes: 

F_hat_all_d = 

1.00E+08*    

-5.3142 -1.8957 1.5228 

-3.7722 -0.2643 3.2437 

-1.2239 1.3422 3.9082 
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At t=1, the same process continues except that regression would no longer be performed 

given that 
0tS 
 is constant (known). 

The value at state 
1 7v  ,  1 1 1;f v S  is: 

f_t(:,7,1) =  

 115200000 

 115200000 

 115200000 

 

and the cost matrix of the decisions 
1u  is:  

c_PathDecStateTime(:,:,7,1) =    

 0 75000000 150000000 

 0 75000000 150000000 

 0 75000000 150000000 

 

Then  1 1; 7F u v   becomes:  

F_all_d = 

1.00E+08*    

-3.7536 -1.3417 1.0577 

-2.3302 0.1580 2.6463 

0.0222 1.6410 3.2597 

 

and the value-to-go,     
1

1 1 1 1max ;
u

F v F u v  is 

F_i=  

 1.00E+08 

 1.0577 

 2.6463 

 3.2597 

 

corresponding to the 3
rd

 decision. 

At t=0, 
0 1tv    and  0 0 0;f v S  (or f_to below) is: 

 

 

 

f_to =  

 0 

 0 

 0 
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The cost of decision 
0 7u   is:  

c_Path_vo_to (:,7) =  

 1.00E+09 

 0.8500 

 0.8500 

 0.8500 

 

Then  0 07; 1F u v   becomes: 

Fo_all_d (:,7)=  

 1.00E+08 

 -7.5236 

 -6.0572 

 -5.4909 

 

The evaluation of  (6.7) for 
0tu  at 

0 1tv    yields the project value and the optimal 

decision. The maximum expected project value is: 

Expected_System_Value (7) =  

 1.00E+09 

 3.2667 

 

corresponding to decision 1 (do-nothing). 

6.3.3 GBM Model Simulation 

Having shown above how the algorithm works in a trivial example, we now present the 

results of our implementation of the algorithm to the case study in Zhao et al. (2004). 

Below is a summary of the simulation output for the GBM model. The table presented 

shows the average project values for all 10 states at each time step in the 25-year 

planning horizon in reverse order. The highlighted values correspond to the states having 

the maximum project values at each time step. 
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1 2 3 4 5 6 7 8 9 10

25 0 0.7891 0.9141 1.0391 0.8044 0.9294 1.0544 0.9207 1.0457 1.0175

24 0 1.4955 1.7359 1.9763 1.5038 1.7442 1.9846 1.7052 1.9455 1.8681

23 0 2.1243 2.5471 2.9698 1.5457 1.9684 2.3911 0.9754 1.3981 0.0219

22 0 2.7489 3.1941 3.6394 2.7438 3.189 3.6342 3.095 3.5402 3.3726

21 0 2.7489 3.1941 3.6394 2.7438 3.189 3.6342 3.095 3.5402 3.3726

20 0 3.8211 4.4409 5.0607 3.8107 4.4305 5.0503 4.2926 4.9124 4.6704

19 0 4.2971 4.9943 5.6914 4.2847 4.9818 5.679 4.8245 5.5216 5.2461

18 0 4.7379 5.5064 6.275 4.7247 5.4933 6.2618 5.3183 6.0868 5.7797

17 0 5.1449 5.9793 6.8138 5.1311 5.9656 6.8 5.7731 6.6075 6.2687

16 0 5.5159 6.4112 7.3065 5.4976 6.3929 7.2882 6.1809 7.0762 6.7051

15 0 5.8578 6.8093 7.7608 5.8363 6.7877 7.7392 6.5582 7.5097 7.1098

14 0 6.1733 7.1766 8.1799 6.1492 7.1525 8.1559 6.9077 7.911 7.4848

13 0 6.4672 7.5183 8.5695 6.4436 7.4948 8.546 7.2378 8.289 7.8401

12 0 6.7418 7.8372 8.9326 6.7225 7.8179 8.9132 7.5525 8.6479 8.1788

11 0 7.0017 8.1379 9.274 6.9914 8.1275 9.2637 7.8573 8.9935 8.5072

10 0 7.245 8.4188 9.5926 7.2455 8.4192 9.593 8.144 9.3178 8.8122

9 0 7.4675 8.6761 9.8846 7.4753 8.6838 9.8924 8.3993 9.6079 9.078

8 0 7.662 8.903 10.144 7.669 8.91 10.15 8.608 9.849 9.289

7 0 7.832 9.102 10.372 7.829 9.099 10.369 8.777 10.047 9.458

6 0 7.975 9.273 10.57 7.955 9.253 10.55 8.91 10.208 9.592

5 0 8.103 9.426 10.748 8.068 9.391 10.714 9.037 10.36 9.727

4 0 8.241 9.587 10.934 8.216 9.562 10.908 9.218 10.565 9.932

3 0 8.409 9.776 11.144 8.428 9.796 11.163 9.484 10.852 10.227

2 0 8.594 9.981 11.369 8.683 10.07 11.458 9.791 11.179 10.545

1 0 8.801 10.207 11.613 8.987 10.392 11.798 10.129 11.535 10.857

0 0 2.1243 2.5471 2.9698 1.5457 1.9684 2.3911 0.9754 1.3981 0.0219

Geometric Brownian Motion Model
T

im
e

System State Value (1.0e+08 *)

 

Table 3: System State Values -GBM Model (10,000 iterations) 

 

 

The maximum average state value at time 0 is $2.9698 x10
8
, corresponding to state 4. 

This suggests that the most optimal decision is to acquire maximum width (200ft) of land 

and build only two lanes. 
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6.4 Merton’s model 

Calibration 

As illustrated in Figure 5-4 in Section 5.7.2, the initial parameters of the Merton model as 

represented in Eq. (5.16), namely 
Mer Mer, , , ,     , can be obtained by matching the 

moments with respect to 
Mer  and 

Mer  as follows: 

 1t  , 

 
0.03 0.2

,
0.08 0.2

 
   

    
   

, 
1 2, 0.2    (given), 

 
0.5

0.5
r

 
  
 

 (by assumption) , 0 1r  ,  

 
Mer

0.05

0.03
 

 
   

 
 (by assumption), 

 
0.4

0.5


 
  
 

 ,  

0.5 0.5 0.04
0.447

0.05

0.5 0.5 0.04
0.577

0.03



   
  

  
   
   

  

, 

 

2

2
2

2

0.5 0.04
0.4

6 50.05

5 120.5 0.04
0.5

0.03

r
 



 
   

      
     
 

, 

 
Mer

0.03 0.05 0.4 0.010

0.08 0.03 0.5 0.065
  

    
      

    
, 

   2

Mer

0.5 0.04 0.02
1

0.5 0.04 0.02
r 

   
      

      

, and 



 

 171 

 Mer

2

Mer Mer

0.010 0.02 2 0.020
2

0.065 0.02 2 0.075
  

   
      

   
 

 

Using the above initial parameters, parameter calibration is subsequently performed 

numerically by matching the first two, three, and four moments. The two tables below 

portray the calibration results of the Merton model parameters for the traffic demand and 

land price uncertainties, respectively. 

 
Base model 1

st
 2 mom. mat'ed. 1

st
 2 mom. mat'ed. 1

st
 3 mom. mat'ed. 1

st
 4 mom. mat'ed.

GBM Merton Merton Merton Merton

given calculation calibration calibration calibration

gama_GBM 0.03

sigma_GBM 0.2

r* 0.5

lambda* 0.05 0.050000000 0.157173774 -2.29020E-16

rho* 0.4 0.400000001 0.001376479 0.121013564

delta 0.489897949 0.489897948 0.000060899 -0.050458405

gama_Mer 0.01 0.010000000 0.029783654 0.030000000

sigma_Mer 0.141421356 0.141421356 0.199999254 0.200000000

mu_Mer 0.02 0.020000000 0.049783504 0.050000000

c1= 0.03 0.03 0.03 0.03

c2= 0.04 0.04 0.04 0.04

c3= 0.0176 0.0176 4.12317E-10 -6.17547E-19

c4= 0.030436326 0.030436326 6.77356E-13 -1.20823E-20

m1= 0.03 0.03 0.03 0.03 0.03

m2= 0.0409 0.0409 0.0409 0.0409 0.0409

m3= 0.003627 0.021227 0.021227 0.003627 0.003627

m4= 0.00501681 0.037565136 0.037565136 0.00501681 0.00501681

* Assumed to be given initially fval: 0 4.078833E-10 1.22663E-18
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Table 4: Calibrated Parameters for Traffic Demand Uncertainty -Merton Model  
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Base model 1
st
 2 mom. mat'ed. 1

st
 2 mom. mat'ed. 1

st
 3 mom. mat'ed. 1

st
 4 mom. mat'ed.

GBM Merton Merton Merton Merton

given calculation calibration calibration calibration

gama_GBM 0.08

sigma_GBM 0.2

r* 0.5

lambda* 0.03 0.030000000 0.036888760 0.026112682

rho* 0.5 0.500000000 0.001907359 0.000567222

delta 0.645497224 0.645497224 -0.000344301 0.000078905

gama_Mer 0.065 0.065000000 0.079929640 0.079985188

sigma_Mer 0.141421356 0.141421356 0.199999653 0.199999979

mu_Mer 0.075 0.075000000 0.099929571 0.099985184

c1= 0.08 0.08 0.08 0.08

c2= 0.04 0.04 0.04 0.04

c3= 0.0225 0.0225 2.80994E-10 5.04217E-12

c4= 0.044831146 0.044831146 -3.93312E-12 4.15022E-14

m1= 0.08 0.08 0.08 0.08 0.08

m2= 0.0464 0.0464 0.0464 0.0464 0.0464

m3= 0.010112 0.032612 0.032612 0.010112 0.010112

m4= 0.00637696 0.058408106 0.058408106 0.00637696 0.00637696

* Assumed to be given initially fval: 0 2.719354E-10 5.04841E-12
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Table 5: Calibrated Parameters for Land Price Uncertainty -Merton Model 

 

For both uncertainties, matching the first two moments yields almost the same values for 

all the parameters as those assumed and calculated initially. Apart from the fact that when 

the first three and four moments are matched, some infeasible parameter values are 

obtained (i.e.   and/or  <0); the value of   for the other cases is so small that jumps 

are being effectively smoothed out (i.e., the model is forced back to GBM). 

Based on these findings, one may reasonably conclude that to calibrate the Merton model 

parameters it would suffice to match only the first two moments after guesstimating the 

jump parameters, based on one‟s belief regarding the behaviour of jumps in the empirical 

data. 

 

Model Implementation 

The above calibrated parameters, obtained by matching the first two moments, are used to 

generate the traffic demand and land price uncertainties using the Merton model. The 
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simulated average project values obtained in the decision-making system using the 

Merton model are presented in  

Table 6 below. Again, the highlighted values correspond to the states having maximum 

project values at each time step. 

 

1 2 3 4 5 6 7 8 9 10
25 0 0.7931 0.9181 1.0431 0.8255 0.9505 1.0755 0.9652 1.0902 1.0882

24 0 1.5033 1.7437 1.9841 1.5433 1.7837 2.0241 1.7894 2.0297 2.002

23 0 2.1597 2.5066 2.8535 2.2073 2.5542 2.9012 2.5518 2.8987 2.8473

22 0 2.7653 3.2105 3.6558 2.8197 3.265 3.7102 3.2539 3.6991 3.6242

21 0.0048 3.3278 3.8624 4.397 3.389 3.9236 4.4582 3.9042 4.4388 4.3406

20 0 3.8424 4.4622 5.082 3.9107 4.5305 5.1503 4.5035 5.1233 5.0037

19 0 4.3188 5.016 5.7131 4.3921 5.0893 5.7864 5.0541 5.7512 5.6097

18 0 4.7605 5.529 6.2976 4.8407 5.6093 6.3778 5.5679 6.3365 6.1743

17 0 5.1673 6.0018 6.8362 5.253 6.0874 6.9219 6.0377 6.8722 6.6876

16 0 5.5401 6.4354 7.3307 5.6279 6.5232 7.4185 6.4628 7.3581 7.1497

15 0 5.8829 6.8344 7.7859 5.9711 6.9226 7.8741 6.8501 7.8016 7.569

14 0 6.1979 7.2012 8.2045 6.2851 7.2884 8.2917 7.2032 8.2065 7.9493

13 0 6.4906 7.5418 8.593 6.5794 7.6305 8.6817 7.5348 8.586 8.307

12 0 6.7665 7.8619 8.9572 6.862 7.9574 9.0527 7.8559 8.9513 8.6545

11 0 7.0254 8.1615 9.2976 7.1312 8.2674 9.4035 8.1628 9.2989 8.9852

10 0 7.2689 8.4427 9.6165 7.388 8.5618 9.7356 8.4545 9.6283 9.2955

9 0 7.494 8.703 9.911 7.625 8.834 10.042 8.72 9.928 9.572

8 0 7.688 8.929 10.17 7.817 9.057 10.298 8.923 10.164 9.774

7 0 7.852 9.122 10.392 7.964 9.234 10.504 9.072 10.342 9.915

6 0 7.993 9.291 10.588 8.084 9.381 10.679 9.194 10.491 10.032

5 0 8.26 9.606 10.952 8.336 9.683 11.029 9.484 10.831 10.347

4 0 8.26 9.606 10.952 8.336 9.683 11.029 9.484 10.831 10.347

3 0 8.426 9.794 11.161 8.544 9.911 11.279 9.742 11.11 10.628

2 0 8.609 9.997 11.384 8.794 10.181 11.569 10.042 11.429 10.928

1 0 8.816 10.221 11.627 9.095 10.501 11.907 10.368 11.773 11.214

0 0 2.1378 2.5605 2.9832 1.646 2.0688 2.4915 1.1954 1.6181 0.352

System State Value (1.0e+08 *)

T
im

e

Merton Model

 

Table 6: System State Values -Merton Model  (10,000 iterations) 

 

 

Using the Merton model to simulate the traffic demand and land price uncertainties, the 

maximum average state value at time 0 is $2.9832 x10
8
, which corresponds to state 4. 

This suggests that the most optimal decision is to acquire maximum width (200ft) of land 

and build only 2 lanes. 
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6.5 Kou’s model 

Calibration 

As illustrated in Figure 5-5 in Section 5.7.3, the initial parameters of the Kou model as 

represented in Eq. (5.16)  Kou Kou, , , , ,p     
 can be calibrated as follows: 

 

 1t  , 

 
0.03 0.2

,
0.08 0.2

 
   

    
   

, 
1 2, 0.2     (from base model) 

 
Mer

0.5

0.5
r

 
  
 

, 
Mer

0.05

0.03


 
  
 

, and 
Mer

0.010

0.065


 
  
 

 (from Merton model) 

 
Kou Mer

0.5

0.5
r r r

 
    

 
   (by assumption) 

 K_J M_J
1 1

Mer

0.03 0.010 0.020

0.08 0.065 0.015X X
   

   
       

   
 

 M_JK_J
11

2 2 2
0.5 0.04 0.02

0.5 0.04 0.02XX
r 

   
      

   
 

 
Kou Mer

0.05

0.03
  

 
    

 
  (by assumption) 

 
0.5

0.5
p

 
  
 

     (by assumption) 

 
        K_J K_J K_J K_J

1 1 1 1

K_J K_J
1 1

22 2 2

2 2

1 1 1
X X X X

X X

p p p p

p

     


 


    




, 0   

11.124

6.873


 
  
 
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 
 K_J

1

1.124

0.8731
X

p
p




  






 
   

   
, 0   

1.124

0.873


 
  
 

 

  K_D
1

2

Kou

0.5 0.04 0.02
1

0.5 0.04 0.02
X

r  
   

       
      

 

 
 

K_J
1

Kou

0.0101

0.065X

pp
    

  

   
        

  
 

 Kou

2

Kou Kou

0.010 0.02 2 0.020
2

0.065 0.02 2 0.075
  

   
      

   
 

 

Again, using the above initial values, parameter calibration for the Kou model is 

subsequently performed numerically by matching the first two, three, four, and five 

moments. The tables below portray the calibration results of the Kou model parameters 

for the traffic demand and land price uncertainties, respectively. 

 
Base model 1

st
 2 mom. mat'ed. 1

st
 2 mom. mat'ed. 1

st
 3 mom. mat'ed. 1

st
 4 mom. mat'ed. 1

st
 5 mom. mat'ed.

GBM Kou Kou Kou Kou Kou

given calculation calibration calibration calibration calibration

gama_GBM 0.03

sigma_GBM 0.2

mu_j 0.02

r 0.5

sigma
2
_j 0.02

lambda* 0.05 0.040293586 2.89840E-17 -4.99230E-16 1.58650E-16

p* 0.5 0.444662747 0.381919537 0.236589282 0.201817928

lambda_minus 11.12372436 11.98442029 6.701078843 6.282359572 0.002614807

lambda_plus 1.123724357 1.254063855 1.654956499 6.282359572 4.484019040

gama_Kou 0.01 0.017579939 0.030000000 0.030000000 0.029999885

sigma_Kou 0.141421356 0.169596811 0.200000000 0.200000000 0.200001275

mu_Kou 0.02 0.031961478 0.050000000 0.05 0.05000014

c1= 0.03 0.03 0.03 0.03 0.029999885

c2= 0.04 0.040311594 0.04 0.04 0.04000051

c3= 0.0176 0.00907164 2.3826E-18 1.06071E-18 -7.0831E-09

c4= 0.01568 0.007245245 1.48454E-18 -3.20486E-19 2.70884E-06

c5= 0.013952 0.005776458 8.9033E-19 2.68751E-20 -0.001035963

m1= 0.03 0.03 0.030000000 0.030000000 0.030000000 0.029999885

m2= 0.0409 0.0409 0.041211594 0.040900000 0.040900000 0.040900503

m3= 0.003627 0.021227 0.012726683 0.003627000 0.003627000 0.003627025

m4= 0.00501681 0.02280881 0.013427408 0.005016810 0.005016810 0.005019642

m5= 0.000730824 0.025427953 0.012477559 0.001767153 0.001767153 0.000731631

* Assumed to be given initially fval: 0 2.16840E-18 8.67362E-19 2.63729E-06

T
ra

ff
ic

 D
e
m

a
n
d
, 
Q

 -
 K

o
u

 

Table 7: Calibrated Parameters for Traffic Demand Uncertainty -Kou Model 
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Base model 1

st
 2 mom. mat'ed. 1

st
 2 mom. mat'ed. 1

st
 3 mom. mat'ed. 1

st
 4 mom. mat'ed. 1

st
 5 mom. mat'ed.

GBM Kou Kou Kou Kou Kou

given calculation calibration calibration calibration calibration

gama_GBM 0.08

sigma_GBM 0.2

mu_j 0.015

r 0.5

sigma
2
_j 0.02

lambda* 0.03 0.030448786 1.849100E-16 -2.34180E-15 0.069674461

p* 0.5 0.499161010 0.301320051 0.068368862 -5.83680E-15

lambda_minus 6.872983346 7.171128945 8.775615795 6.338434529 23.61848977

lambda_plus 0.872983346 0.907691309 2.117482896 3.051165251 0.002509577

gama_Kou 0.065 0.065382064 0.080000000 0.080000000 0.082950825

sigma_Kou 0.141421356 0.147814695 0.200000000 0.200000000 0.200321622

mu_Kou 0.075 0.076306656 0.100000000 0.1 0.103015201

c1= 0.08 0.08 0.08 0.08 0.080000829

c2= 0.04 0.040593093 0.04 0.04 0.040253654

c3= 0.0225 0.020282035 5.67736E-18 2.93086E-18 -5.31404E-06

c4= 0.025833333 0.022395964 2.79324E-18 -3.19899E-18 -1.0029E-05

c5= 0.029583333 0.024666390 1.30636E-18 -3.92204E-19 -0.004085518

m1= 0.08 0.080000000 0.080000000 0.080000000 0.080000000 0.080000829

m2= 0.0464 0.046400000 0.046993093 0.046400000 0.046400000 0.046653787

m3= 0.010112 0.032612000 0.030536378 0.010112000 0.010112000 0.010167679

m4= 0.00637696 0.039410293 0.035429348 0.006376960 0.006376960 0.006436075

m5= 0.002128077 0.058016647 0.050832093 0.006219981 0.006219981 0.002195123

* Assumed to be given initially fval: 0 3.46945E-18 2.45327E-18 1.25561E-05
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Table 8: Calibrated Parameters for Land Price Uncertainty -Kou Model 

 

As presented in tables above, the calibrated parameter values of Kou model for the two 

uncertainties exhibit similar patterns to those of the Merton model: matching moments 

beyond the second one result in jumps disappearing; this occurs by 0   in all cases 

except for the fifth moment of the land price uncertainty, where the combination of the 

calibrated values of 0p   and
 leads to only negative jumps of relatively small sizes 

(ignoring the fact that 0).p   However, unlike the calibration in Merton‟s case, the 

values calibrated are somewhat different from those assumed and calculated initially. 

Therefore, numeric calibration may offer a better fit. 

 

Model Implementation 

With parameters obtained by matching the first two moments, the traffic demand and 

land price uncertainties are generated in the decision-making system using the Kou 

model. The simulated average project values obtained are presented in Table 9 below. 
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The highlighted values correspond to the states having maximum project values at each 

time step. 

1 2 3 4 5 6 7 8 9 10

25 0 0.7909 0.9159 1.0409 0.8115 0.9365 1.0615 0.9351 1.0601 1.0397

24 0 1.5003 1.7407 1.9811 1.5193 1.7597 2.0001 1.7357 1.9761 1.9145

23 0 1.5003 1.7407 1.9811 1.5193 1.7597 2.0001 1.7357 1.9761 1.9145

22 0.0038 2.7588 3.2035 3.6482 2.7746 3.2192 3.6639 3.1504 3.5951 3.454

21 114.46 32.42 18.4 4.39 32.44 18.42 4.4 18.33 4.31 4.13

20 187.34 51.29 28.18 5.07 51.31 28.2 5.09 28.09 4.98 4.77

19 330.88 87.81 46.76 5.7 87.82 46.77 5.72 46.65 5.59 5.35

18 452.4 118.76 62.52 6.29 118.77 62.54 6.3 62.4 6.16 5.89

17 109.95 33.44 20.13 6.82 33.45 20.14 6.84 19.99 6.68 6.38

16 0.2602 5.6015 6.4603 7.3192 5.6168 6.4757 7.3345 6.3032 7.1621 6.8308

15 0.2526 5.9343 6.8537 7.7731 5.9463 6.8657 7.7851 6.6767 7.5961 7.2366

14 29.59 13.585 10.889 8.193 13.597 10.901 8.205 10.699 8.003 7.618

13 21.749 11.918 10.251 8.583 11.931 10.263 8.595 10.049 8.381 7.973

12 16.853 10.97 9.958 8.947 10.988 9.977 8.965 9.755 8.744 8.316

11 16.075 11.035 10.162 9.288 11.064 10.191 9.317 9.964 9.091 8.645

10 11.512 10.138 9.873 9.607 10.178 9.913 9.647 9.681 9.415 8.948

9 10.483 10.104 10.002 9.9 10.153 10.051 9.949 9.809 9.707 9.216

8 8.81 9.883 10.022 10.161 9.932 10.071 10.21 9.813 9.952 9.432

7 7.266 9.662 10.024 10.386 9.698 10.059 10.421 9.778 10.14 9.586

6 5.902 9.462 10.022 10.581 9.477 10.037 10.597 9.733 10.293 9.711

5 0 8.113 9.436 10.758 8.112 9.435 10.757 9.118 10.441 9.842

4 0 8.253 9.6 10.946 8.262 9.608 10.955 9.304 10.65 10.054

3 0 8.42 9.788 11.156 8.474 9.842 11.209 9.571 10.939 10.349

2 0 8.605 9.993 11.38 8.728 10.116 11.503 9.879 11.266 10.663

1 0 8.812 10.217 11.623 9.033 10.439 11.845 10.212 11.618 10.966

0 0 2.1342 2.5569 2.9796 1.5885 2.0112 2.4339 1.0521 1.4748 0.1225

T
im

e

Kou Model

System State Value (1.0e+08 *)

 
 

Table 9: System State Values -Kou Model (10,000 iterations) 

 

Using the Kou model to simulate the traffic demand and land price uncertainties, the 

maximum average state value at time 0 is $2.9796 x10
8
, again corresponding to state 4 

with the right of way width of 200 ft to be acquired and two lanes to be constructed.  
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6.6 Negative inverse Gaussian Model 

Calibration 

As illustrated in Figure 5-6 in Section 5.7.4, the initial parameters of the NIG model as 

presented in Eq. (5.16)  ,  ,  ,       can be calibrated as follows: 

 Boundary conditions: 

       0 shape ,   0  skewness ,    location ,  0 scale          

 1t   

 
0.03

0.08

Geo 
 

   
 

 and 
0.2

0.2
Geo 

 
   

 
 (from base model) 

  *

1

0.03
m =E

0.08

GeoX 
 

   
 

 

 
2

2 2

* 2 2

2 2 2

0.03 0.2 0.0409
m =E

0.08 0.2 0.0464

Geo

GeoX  
  

          
 

 Let 
0.01

0.05


 
  
 

 and 
1

1


 
  
 

 

 
*

1
0.02m

0.03
L





 
   

 
 

 
 

 

2

* 2

2

1 0.500200
=

0.750675m 2

L L

L L




   

  
  

    
 

 
2

25.0299841
1

25.042474L
 

  
     

   
 

 

The tables below respectively show the calibration results of the NIG model parameters 

for the traffic demand and land price uncertainties, based on the above initial values. 
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Base model 1
st
 2 mom. mat'ed. 1

st
 2 mom. mat'ed. 1

st
 3 mom. mat'ed. 1

st
 4 mom. mat'ed. 1

st
 5 mom. mat'ed.

GBM NIG NIG NIG NIG NIG

given calculation calibration calibration calibration calibration

mu* 0.01 0.01008 0.03 145612.5589 -21817455.83

delta* 1 1.00338 1.73805 4614711.325 1494930630

alpha 25.02998402 25.0994 43.45125 115540125.6 37458666460

beta 0.5002 0.49815 0 -3643937.717 546624548.9

gama 25.02498551 25.0944561 43.45125 115482649.5 37454677872

gama_GBM 0.03

sigma_GBM 0.2

m1= 0.03 0.029988024 0.029998094 0.03 0.030000633 0.029937647

m2= 0.0409 0.04087531 0.040899772 0.0409 0.040900038 0.040817819

m3= 0.003627 0.003719163 0.003721682 0.003627 0.003627078 0.003612304

m4= 0.00501681 0.000191885 0.000190932 6.35589E-05 9.04283E-18 8.54631E-23

m5= 0.000730824 0.001082361 0.001083426 0.001024166 0.001014656 0.001008435

* Assumed to be given initially fval: 0 0 3.70189E-11 0.001031026
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Table 10: Calibrated Parameters for Traffic Demand Uncertainty -NIG Model 

 

 

Base model 1
st
 2 mom. mat'ed. 1

st
 2 mom. mat'ed. 1

st
 3 mom. mat'ed. 1

st
 4 mom. mat'ed. 1

st
 5 mom. mat'ed.

GBM NIG NIG NIG NIG NIG

given calculation calibration calibration calibration calibration

mu 0.05 0.04994 0.08 -330333.875 -58489112.47

delta 1 1.00296 5.53324 8160232.654 2107494042

alpha 25.04247404 25.10769 138.331 204507477.2 53797811877

beta 0.750675 0.75224 -3.61E-13 8271881.76 1492471685

gama 25.03122037 25.09641871 138.331 204340118.9 53777105640

gama_GBM 0.08

sigma_GBM 0.2

m1= 0.08 0.079989549 0.080002721 0.08 0.080002757 0.0797076

m2= 0.0464 0.046384368 0.046400609 0.0464 0.046400442 0.045572915

m3= 0.010112 0.010250915 0.010255743 0.010112 0.010112384 0.00988471

m4= 0.00637696 0.000192315 0.000191384 6.27108E-06 2.89746E-18 4.08412E-23

m5= 0.002128077 0.003804094 0.003806736 0.003671705 0.003669406 0.003528794

L
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d
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Table 11: Calibrated Parameters for Land Price Uncertainty -NIG Model 

 

The NIG model, being of the infinite activity class, does not contain a diffusion 

component; therefore, a different calibration pattern is revealed here. The parameters 

values obtained by matching the first two and three moments both resulted in different 

and feasible values. This is not the case for the higher moments, however. 

In the case of two moments being matched, the values generated are very close to those 

obtained manually. This is different for the case where three moments are matched; 

where   is or is close to 0. 

For the sake of consistency with the other models, we shall use the parameter values for 

the two matched moments‟ case.  
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Table 12 below presents the simulation results for the system state values using the NIG 

model. 

 

1 2 3 4 5 6 7 8 9 10

25 0 0.7933 0.9183 1.0433 0.8246 0.9496 1.0746 0.9647 1.0897 1.0895

24 0 1.5035 1.7439 1.9842 1.5408 1.7812 2.0216 1.7871 2.0275 2.004

23 0 2.1584 2.5053 2.8522 2.2007 2.5476 2.8945 2.5439 2.8908 2.8437

22 0 2.762 3.2073 3.6525 2.8083 3.2535 3.6988 3.2403 3.6856 3.6153

21 0 3.3218 3.8578 4.3938 3.3743 3.9103 4.4463 3.8903 4.4263 4.3357

20 0 3.8382 4.458 5.0778 3.8956 4.5154 5.1352 4.4884 5.1082 4.9978

19 0 4.317 5.0142 5.7113 4.3813 5.0784 5.7756 5.0457 5.7428 5.6142

18 0 4.7582 5.5268 6.2953 4.8278 5.5964 6.3649 5.5566 6.3251 6.1772

17 0 5.1646 5.9991 6.8336 5.238 6.0725 6.907 6.0241 6.8586 6.6904

16 0 5.5371 6.4324 7.3277 5.6118 6.5071 7.4024 6.4484 7.3437 7.154

15 0 5.8787 6.8302 7.7817 5.9525 6.904 7.8555 6.8339 7.7854 7.5731

14 0 6.1932 7.1966 8.1999 6.2662 7.2695 8.2728 7.1886 8.1919 7.9581

13 0 6.4878 7.539 8.5901 6.5643 7.6155 8.6667 7.5277 8.5789 8.3272

12 0 6.765 7.8603 8.9557 6.8494 7.9448 9.0401 7.8539 8.9493 8.6823

11 0 7.0245 8.1606 9.2968 7.1185 8.2546 9.3908 8.1619 9.2981 9.0152

10 0 7.2684 8.4422 9.616 7.3751 8.5488 9.7226 8.4549 9.6287 9.3302

9 0 7.491 8.7 9.909 7.607 8.815 10.024 8.715 9.924 9.603

8 0 7.685 8.926 10.166 7.797 9.038 10.278 8.92 10.161 9.81

7 0 7.85 9.12 10.39 7.947 9.218 10.488 9.076 10.346 9.96

6 0 7.991 9.288 10.586 8.067 9.364 10.662 9.195 10.493 10.076

5 0 8.12 9.443 10.766 8.178 9.501 10.824 9.315 10.637 10.199

4 0 8.259 9.605 10.951 8.322 9.668 11.014 9.485 10.832 10.388

3 0 8.425 9.793 11.16 8.529 9.896 11.264 9.741 11.109 10.667

2 0 8.609 9.997 11.384 8.778 10.166 11.553 10.039 11.426 10.968

1 0 8.815 10.221 11.627 9.078 10.483 11.889 10.366 11.771 11.258

0 0 2.1376 2.5603 2.9831 1.6298 2.0525 2.4752 1.1936 1.6163 0.3921

Negative Inverse Guassian Model

System State Value (1.0e+08 *)

T
im

e

 

Table 12: System State Values -NIG Model (10,000 iterations) 

 

The maximum average state value at time 0 is $2.9831 x10
8
, belonging to state 4 with the 

right of way width of 200ft to be acquired and two lanes to be constructed. 
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6.7 Results, Analysis and Discussion 

6.7.1 Do-nothing Option 

The no-action option is introduced explicitly as a decision in our implementation. Over 

the project duration, this option was predominantly the highest valued option within all 

decision states. 

6.7.2 Calibration 

As expected, in the calibration processes for the Merton and Kou models, where higher 

moments are matched to those of the GBM model, the jump components of the processes 

disappear. This is not the case for the NIG model, being of the infinite activity type. 

6.7.3 Algorithm Final Decisions 

The final outcomes of the algorithm in terms of optimality decisions, as summarized in 

Table 13 below, are essentially the same for all four models. It should be recognized, 

however, that while the optimal decisions at time 0 are all identical in nature and close in 

magnitude, the dynamics of the uncertainty processes over time that lead to these 

decisions at time 0 are significantly different and can lead to different interim decisions, 

as seen clearly in the Kou model (Table 9). There, the fluctuations of the optimal states 

are more frequent when compared to the other models. Moreover, the variations of the 

actual state values in the Kou model are so large that they assume values that are, at one 

point, up to two orders of magnitude higher. 
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Other vivid illustrations that speak to the same effect of the varying uncertainty dynamics 

are presented below; the figures portray the generated project uncertainty values and their 

corresponding regression plots for all four models for state 10 at time 2.  

 

 
Figure 6-1: Project Values and Regression Plot for State 10 at time 2 –GBM Model (2,000 iterations) 

1 2 3 4 5 6 7 8 9 10

0 2.1243 2.5471 2.9698 1.5457 1.9684 2.3911 0.9754 1.3981 0.0219

0 2.1378 2.5605 2.9832 1.646 2.0688 2.4915 1.1954 1.6181 0.352

0 2.1342 2.5569 2.9796 1.5885 2.0112 2.4339 1.0521 1.4748 0.1225

0 2.1376 2.5603 2.9831 1.6298 2.0525 2.4752 1.1936 1.6163 0.3921

Merton

Kou

NIG

GBM

Average State Decision Values at t=0 ($ 1.0e+08 *)

Table 13: Average State Decision Values for All Models at t=0 (10,0000 iterations) 
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Figure 6-2: Project Values and Regression Plot for State 10 at time 2 –Merton Model (2,000 

iterations) 

 
Figure 6-3: Project Values and Regression Plot for State 10 at time 2 –Kou Model (2,000 iterations) 
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Figure 6-4: Project Values and Regression Plot for State 10 at time 2 –NIG Model (2,000 iterations) 

 

 

Moreover, while close at state 4, the values of other states are not necessarily similar 

among the different models. As an illustration,  below presents the percentage change of 

the values of all possible future states for the three proposed models as compared to the 

base GBM model. 

 

2 3 4 5 6 7 8 9 10

Merton 0.64 0.53 0.45 6.49 5.10 4.20 22.55 15.74 1507.31

Kou 0.47 0.38 0.33 2.77 2.17 1.79 7.86 5.49 459.36

NIG 0.63 0.52 0.45 5.44 4.27 3.52 22.37 15.61 1690.41

Percentage Change Relative to GBM Model (%)

 

Table 14: Percentage Change of State Decision Values Relative to GBM Model (10,000 iterations) 
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6.7.4 Continuous Time Jumps and the Highway Deterioration-

Rehabilitation Processes 

 

Earlier in Section 6.1, we stated how the deterioration process and the rehabilitation 

decisions are modeled in our algorithm. As a result of the approach used, jumps other 

than those lead by the underlying traffic demand and land price processes can still occur 

in a given iteration per unit time due to either a unit deterioration in the highway quality 

or a decision to rehabilitate. With the assumed highway quality index transition matrix in 

equation (6.4), there are three possibilities for the discrete time jumps: a no jump 

scenario, a jump due to a deterioration of one index unit, or another due to an upgrade 

from an index 1 to 5 (when applicable). Consequently, three project value surfaces may 

arise. In this case, the regression surface would be an average surface of all the possible 

scenarios occurring at this particular decision state. Below are illustrations at the different 

independent decisions available at the decision state 4 for the four models. 

 
Figure 6-5: Project Values and Regression Plot for State 4 at time 2 –GBM Model (2,000 iterations) 
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Figure 6-6: Project Values and Regression Plot for State 4 at time 2 –Merton Model (2,000 iterations) 

 

 
Figure 6-7: Project Values and Regression Plot for State 4 at time 2 –Kou Model (2,000 iterations) 
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Figure 6-8: Project Values and Regression Plot for State 4 at time 2 –NIG Model (2,000 iterations) 

 

 

Indeed, three surfaces are clearly visible in all four models. Furthermore, if the above 

assertion is accurate, then one would also expect to have a single surface of values if 

deterioration and rehabilitation of the highway were not possible. One easy way to 

investigate this is to modify the highway quality transition matrix to reflect this situation, 

as shown below:  

 

5 4 3 2 1

5 1 0 0 0 0

4 0 1 0 0 0

3 0 0 1 0 0

2 0 0 0 1 0

1 0 0

..

..

..

..

.. 0 0 1

 
 
 
 
 
 
 
  

 (6.8) 
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In the above case, HSQI remains constant throughout the entire project duration. 

Likewise, if the last row of the original HSQI transition matrix were to be modified as 

shown in matrix (6.9) below, an additional value surface, reflecting the possibility of 

highway remaining at index 1, should emerge as well. 

 

 

5 4 3 2 1

5 0.5 0.5 0 0 0

4 0 0.5 0.5 0 0

3 0 0 0.5 0.5 0

2 0 0 0 0.5 0.5

1 0.5 0

0

0

. 0

0 0

. 0. 0.

.5

 
 
 
 
 
 
 
  

 (6.9) 

 

Implemented in the Kou model, the regression plots in Figure 6-9 and Figure 6-10 below 

are for state 4, using a hypothetical initial HSQI value of 3 and the above transition 

matrices (6.8) and (6.9) above, respectively. Both sets of figures reveal the expected 

patterns. 
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Figure 6-9: Project Values and Regression Plot for State 4 at time 2 with HSQI Matrix (6.8)– Kou 

Model (2,000 iterations) 

 

 
Figure 6-10: Project Values and Regression Plot for State 4 at time 2 with HSQI Matrix (6.9) Kou 

Model (2,000 iterations) 

 

In general, one can see in the above figures that for a given decision state, the land price 

and traffic demand uncertainties define the uncertainty surface pattern that tend to be 

replicated up or down, depending on the configuration of highway service quality index 

transition matrix. These value surfaces are easily visible due to the high impact of the 
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discrete jumps and their high probabilities in comparison with those of the continuous 

time uncertainties. On the other hand, when the continuous time jumps do occur (at the 

extremities), the situation reverses; the exact magnitude of the impact of the continuous-

time jumps becomes less clear due to their low frequency and scattering among the 

different HSQI variable states (discrete jumps). This may lead to inaccurate regression 

surfaces being generated at the extremities, as seen when comparing the shapes of the 

regression surfaces in Figure 6-7 and Figure 6-9 above. 

6.7.5 Highway Service Quality Index and the Algorithm Decisions 

From the shape of the regression plots presented in Figure 6-1 to Figure 6-4, it can be 

seen that the state decision value is more sensitive to the traffic demand uncertainty than 

to that of the land price. Moreover, Figure 6-5 to Figure 6-8 show that jumps in the HSQI 

variable overshadows those of the continuous time uncertainties. 

We have seen earlier that alterations of the continuous time models do not ultimately 

produce any significant effect in terms of the final outcomes of the decision algorithm. 

The question that would naturally arise is: can an alteration in the discrete time 

uncertainty model produce a different outcome? 

 

We will investigate the potentials of this possibility through a simple modification of the 

HSQI transition matrix in the Kou model. The table below, presenting average state 

values at t=0, shows that alterations in the highway service quality index variable can 

have a more profound impact on values and decisions than the continuous time 

uncertainties.  
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Matrix at t =0 1 2 3 4 5 6 7 8 9 10

6.5 5 0.4648 2.4345 2.7985 3.1626 1.9765 2.3405 2.7046 1.265 1.629 0.0485

6.9 5 0 2.0774 2.5001 2.9228 1.4893 1.912 2.3347 0.9405 1.3632 0.0245

6.8 5 0.1088 3.4445 3.8527 4.2609 3.808 4.2162 4.6243 3.4333 3.8414 2.4438

6.8 3 0.0473 1.976 2.3924 2.8088 1.3735 1.7899 2.2064 1.0758 1.4923 0.5491

6.8 1 0 1.2384 1.6611 2.0838 -0.0606 0.3621 0.7848 -0.9424 -0.5197 -1.8375

HSQI State Number

Average State Decision Values at t =0 ($ 1.0e+08 *) -Kou Model

 
 

Table 15: Average State Decision Values for Kou Model at t=0 using Different HSQI Matrices (5,000 

iterations) 



 

 192 

6.8 Conclusions 

It was shown that in our decision-making system that the optimal decision and the project 

value outcomes were both indifferent in all of the proposed models. 

Earlier, evidence of heavy-tail behaviour was established on quantitative and qualitative 

grounds. The underlying uncertainty models proposed, while significantly different, all 

satisfy this empirical reality and thus in theory should be more precise than the GBM 

model.  Had more data been available, parameter estimation, as opposed to calibration, 

could have been attempted and consequently may have yielded different outcomes. 

Moreover, our treatment of the HSQI variable, a non-deterministic variable to which the 

decision-making algorithm was shown to be sensitive, may also have had an impact on 

the final outcome. The sensitivity demonstrated in our implementation signifies that 

perhaps more emphasis should be devoted to enhancing the modeling of the HSQI 

variable in the mathematical representation and with respect to correlation with other 

variables. 

 

Regardless of the final outcomes of the proposed Merton, Kou, and NIG models, the 

ultimate conclusion is that it is possible to extend the uncertainty models far beyond that 

of the geometric Brownian motion to a much larger and flexible parametric family of 

models (Lévy processes); a set of models that is not only capable of producing 

distributions that are heavy-tailed, but also skewed and/or having smile-shaped implied 

volatilities. Thus, it can offer a more accurate depiction of the empirical observations. 

This could be a significant advancement in the modeling of continuous-time 

uncertainties, not only in our implementation or in the real options framework, but also in 
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other types of decision-making systems, as well as anywhere else where there is evidence 

of  jumps and where geometric Brownian motion is unjustifiably used. 

Lastly, in our realm of decision-making in highway systems, this mathematical 

advancement represents only a humble contribution as this advancement furthers only 

one aspect of a node (the uncertainty factor) in the nested complexities on the path 

towards optimality, as discussed earlier in Chapter 2. 
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7 Conclusions 

 

7.1 Summary 

In this thesis, we started by emphasizing the value of transportation and the need for 

developing transportation systems. Presenting the complexity of current transportation 

systems, we showed the relative importance of the highway system and listed some 

constraints that need to be met when developing efficient transportation systems. More 

specifically, we reiterated the ultimate goal of ensuring that the transportation system is 

convenient, reliable, and economical to the commuters; economical and sustainable to the 

government in construction, operation, and maintenance; and balanced with respect to the 

benefits to the public at large and the potential private distresses to the local residents. 

 

Developing efficient systems demands rigorous analysis and sound decisions. While the 

benefits of making optimal decisions are tremendous, so are the costs of making wrong 

decisions. It is noteworthy to reiterate here that the emphasis in these costs is not on those 

associated with the physical erection or expansion of the system, but rather the costs 

pertaining to making non-optimal decisions. To portray some aspects of these costs, we 

provided an elaborate and detailed list of factors, which included the size, the cost, the 

profitability, the human, the environmental, the irreversibility and the time factors. One 

other cost item mentioned that a decision-maker may fail to recognize is the opportunity 

cost. In the context of non-optimal decisions, we introduced the concept of opportunity 

cost of wrong decisions to be the forgone value that would have been realized (during the 

same time period) from investing in the second-highest-valued option, the sum of the 
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original amount of investment, any remedial expenses, and the money value of wasted 

time or delay. 

 

Subsequently, we presented a few real life cases illustrating the real possibility of errors 

in decisions on mega-scales. We claimed that inaction is not a viable option and the path 

to making optimal decisions is not trivial. To realize optimality, three challenges facing 

the development of an optimal decision-making system were identified to be the choice 

of decisions, underlying uncertainties, and optimization technique. 

 

In the context of our implementation, the first and last challenges were essentially dealt 

with in accordance with the treatment in Zhao et al. (2004). On the contrary, the 

treatment of the second challenge relating to the underlying uncertainties presented a 

significant diversion from Zhao et al. (2004). In the analysis, it was stated that not only 

are uncertainties numberless, they are highly correlated, have unknown stochastic 

dynamics, and consequently require vigorous data analysis and tedious data collection 

efforts to model.  

We then examined extensively some of the most important uncertainties. In particular, we 

asserted that in modeling the total highway development cost process, the land 

acquisition cost, being possibly manifolds that of construction, supersedes the latter in 

importance. Also, because the land acquisition cost is in fact the expropriation price paid 

to landowners, in which the land price is only one component, modeling it solely as land 

price process involves a significant degree of underestimation. 
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We also stated that within the highway construction cost (modeled as a constant), which 

still represents a significant amount, the material cost represents a sizeable part; modeling 

the volatile material price process may be useful in better capturing the dynamics of the 

expansion and rehabilitation cost processes and, ultimately, that of the highway 

development cost process. Other important uncertainties presented were oil price, traffic 

demand, and highway service quality index. 

 

Despite the above, we maintained Zhao et al.‟s (2004) choice and definitions of the 

uncertainties yet, nonetheless, questioned the validity of the geometric Brownian motion 

assumption. In testing this assumption, real data on traffic demand and land acquisition 

costs needed to be collected. We explored some venues where highway traffic volume as 

well as both unit land price and total land acquisition cost data could be obtained in 

Canada. The ultimate outcome of this quest was that data could be obtained, but in 

statistically insignificant numbers. 

 

Using the data collected a simple graphical test, Quantile-Quantile plot, was employed to 

investigate the normality of the log-ratios of the sampled uncertainty increments. The 

plots revealed significant deviation from normality that, while indicating unanimously 

that the data came from heavy-tailed distributions, failed to identify any unique 

distributional pattern. This supported the hypothesis that jumps could be a plausible 

contributing element in this heavy-tail behaviour. Aside from the logical rationale, when 

tested statistically the calculated low probabilities of the extreme values of the sampled 

increments supported this theory. 
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When it came to the probability theory, the varied distributions and the established 

existence of jumps justified the proposal of Lévy processes. Being a very wide and 

flexible class of jump models that, apart from being the only possible extension to the 

geometric Brownian motion, Lévy processes offer a very wide range of jump models that 

are capable of generating distributions that are heavy-tailed, skewed, and/or having smile-

shaped implied volatilities.  

 

From the list of Lévy processes, the Merton and Kou models from the finite activity 

subclass, as well as the negative inverse Gaussian model from the infinite activity 

subclass, were chosen to be implemented and tested. All of these models assume different 

sets of parameters.  

 

The scarcity of data mentioned previously prohibited parameter estimation and left 

parameter calibration to be the only feasible alternative. Calibration was performed based 

on the method of moments, where the first two moments of the proposed models were 

matched numerically with those of the geometric Brownian motion model applied by 

Zhao et al. (2004) in the Selecting Design Alternatives case study.  

 

In testing the proposed models, the above calibrated parameters were applied to the same 

case study settings, but using our own modified version of the decision-making algorithm 

of Zhao et al. The key differences in our decision-making algorithm included: the do-

nothing being considered explicitly as an option; the highway service quality index 
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(HSQI) being simulated randomly as a Markov chain, where the rehabilitation decision is 

being made mechanically using the HSQI transition probability matrix; and in calculating 

the expected future state value,  t  , the regression is performed before the 

maximization operator is being applied in Step 2 of the algorithm in Zhao et al. (2004). 

Last but not least, the thesis put forth the introduction of Lévy processes as an alternative 

class of models to the GBM model. 

 

Upon implementation of the base GBM model and the proposed Merton, Kou, and NIG 

models, it was found that the optimal decisions (states) and the project values were both 

indifferent in all four of the models. This was not necessarily the case for the other states. 

Moreover, the dynamics of the proposed jump processes over time were also shown to be 

different and that they can yield different interim decisions. 

Because of the way the deterioration process and the rehabilitation decisions are modeled 

in the decision-making system, jumps other than those lead by the underlying traffic 

demand and land price processes could still occur due to either a unit deterioration in the 

highway quality or a decision to rehabilitate. Therefore, depending on the setting of the 

HSQI matrix, several state value surfaces could arise where the regression surface would 

represent the average state surface. This also revealed the relatively high sensitivity of 

project value to the HSQI variable; a fact that signified that perhaps more emphasis 

should be devoted to enhancing the modeling of the HSQI variable in the mathematical 

representation, as well as with respect to correlation with other variables. 

Despite the above findings, the implementation performed proved that, with the proposed 

class of Lévy processes, it is possible to extend the uncertainty models far beyond that of 
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the geometric Brownian motion to a much larger and flexible parametric family of 

models; a set of models that is not only capable of producing distributions that are heavy-

tailed, but also skewed and/or having smile-shaped implied volatilities. Thus, it can offer 

a more accurate depiction of the empirical observations. This could be a significant 

advancement in the modeling of continuous-time uncertainties, not only in our decision-

making system or other real options applications, but also in other types of decision-

making systems, as well as anywhere else where there is evidence of  jumps and where 

geometric Brownian motion is unjustifiably used. 
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7.2 Future Research  

Future extensions of this research can be carried out to address the following aspects: 

1. Including factors such as safety and environmental implication into the analysis. 

2. Exploring the impact of incorporating the expropriation cost into the land price 

uncertainty, the construction cost as a variable where material cost variability is 

incorporated, and other factors (such as fuel price) into the analysis. 

3. Advancing the discrete state and time uncertainty model for the highway service 

quality index factor. 

4. Extending the analysis to include Lévy jump processes other than Merton, Kou, and 

negative inverse Gaussian models. 

5. Calibrating the different models based on one of the jump models as opposed to the 

diffusion model. 

6. Acquiring more data to improve testing of the normality of the uncertainties and to 

allow for parameter estimation as opposed to calibration; sources of data listed in this 

literature can be valuable for this undertaking. 

7. Experimenting with different functional forms in the regression of  t  . 

8. Determining the value of the HSQI variable deterministically as opposed to 

randomly, whereby it remains constant in the regression.
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Appendix 1 

Sample FTMS Traffic Volume Counts 
(QEW-Burlington spring 2001) 



 

 207 

FTMS - COMPASS DATA

W.B. EXPRESS BETWEEN THIRD LINE & BRONTE ROAD

QEWDE0180DWS LHRS - 10130        ICMS - 235

QEWDE0180DWS Mon Tue Wed Thu Fri * SAT * * SUN *

Hour Ending 23/04/2001 24/04/2001 25/04/2001 26/04/2001 27/04/2001 28/04/2001 29/04/2001

1:00:00 1179 1276 1586 1466 1611 2195 2125

2:00:00 15 955 975 986 1015 1523 1379

3:00:00 540 513 552 570 663 858 1011

4:00:00 375 414 471 436 547 658 687

5:00:00 727 434 428 487 540 466 394

6:00:00 1326 887 812 918 930 610 417

7:00:00 3134 2397 2465 2404 2433 1301 810

8:00:00 4495 4461 4473 4566 4429 2387 1502

9:00:00 4950 5171 4893 5058 5031 3555 2129

10:00:00 4041 4206 4303 4711 4438 4401 3408

11:00:00 3990 3930 4192 4323 4563 4934 4288

12:00:00 4360 4111 4402 4588 4730 5455 5048

13:00:00 4463 4351 4535 4496 5120 5376 5373

14:00:00 4606 4689 4868 5220 5481 5156 5394

15:00:00 5017 5131 5267 5850 5344 4353 5033

16:00:00 5361 5607 5518 4894 5077 5443 5158

17:00:00 5081 5006 4782 4550 4525 5257 5060

18:00:00 5301 4801 4813 4578 4769 5384 5043

19:00:00 4813 5558 4906 5885 5216 5337 4707

20:00:00 4162 4487 4105 4085 5152 3976 4039

21:00:00 3335 3372 4085 3634 4363 3025 3710

22:00:00 2848 3181 3452 3325 3820 2840 3291

23:00:00 2276 2515 2900 2871 3489 2965 2395

0:00:00 1966 2228 2536 2236 3251 2758 1567

24HR TOT 78361 79681 81319 82137 86537 80213 73968

A.M. TOT 29132 28755 29552 30513 30930 28343 23198

P.M. TOT 49229 50926 51767 51624 55607 51870 50770

NOON-NOON 77984 80478 82280 82554 83950 75068

ADT = 80317 AWD= 81607

FTMS - COMPASS DATA

E.B. EXPRESS BETWEEN THIRD LINE & BRONTE ROAD

QEWDE0180DES LHRS - 10130       ICMS - 235

QEWDE0180DES Mon Tue Wed Thu Fri * SAT * * SUN *

Hour Ending 16/04/2001 17/04/2001 18/04/2001 19/04/2001 20/04/2001 21/04/2001 22/04/2001

1:00:00 1022 809 815 765 843 1205 1700

2:00:00 781 510 504 439 555 860 1248

3:00:00 690 428 414 459 499 800 1146

4:00:00 648 493 489 558 542 637 758

5:00:00 1740 945 924 1006 987 629 556

6:00:00 3912 3923 4120 4062 3895 1144 709

7:00:00 4930 5340 5515 5543 5591 2028 1249

8:00:00 5614 5392 5601 5796 5778 2728 1435

9:00:00 5429 5443 5511 5864 6055 3594 1889

10:00:00 5052 5376 5344 5616 5435 4018 2651

11:00:00 5108 4876 4917 4929 4970 4422 3604

12:00:00 5178 4797 4706 4920 5151 4875 4426

13:00:00 5091 4623 4714 5137 4889 5002 4680

14:00:00 5068 4549 4610 4680 4967 4916 4957

15:00:00 5113 4932 5084 5112 5163 4800 4827

16:00:00 5018 4885 5374 4871 4141 4806 4907

17:00:00 5265 5182 5203 4809 4596 4934 5095

18:00:00 3861 5053 4775 4554 4853 4937 5415

19:00:00 4173 4170 4357 4141 4630 4420 4849

20:00:00 3396 3009 3063 3246 3666 3515 4348

21:00:00 2848 2367 2516 2680 2923 2873 3956

22:00:00 2585 2401 2420 2577 2702 2659 3249

23:00:00 2134 1942 2050 2287 2206 2579 2453

0:00:00 1367 1323 1265 1340 1858 2733 1344

24HR TOT 86023 82768 84291 85391 86895 75114 71451

A.M. TOT 40104 38332 38860 39957 40301 26940 21371

P.M. TOT 45919 44436 45431 45434 46594 48174 50080

NOON-NOON 84251 83296 85388 85735 73534 69545

ADT = 81705 AWD= 85074
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Appendix 2 

Sample Average Traffic Volume Counts 
(QEW-1988-2003 Traffic Volumes Production Page 18 of 736) 
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Appendix 3 

Q-Q Plots of Semi-annual Farmland Prices for the Other Provinces 
 (1996-2005) 
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Appendix 4 

Sample Output of the Decision-making System 
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NLane =  MinWidth=       

2  150       

4  150       

6  175       

8  200       

         

Uncertainty =  Mean =  Volatility =  Corr_Mat =   

    'Trafic_Demand' 0.03  0.2      1.0000    0.2000  

    'Land_Price' 0.08  0.2      0.2000    1.0000  

         

NUncer =  NPaths =  NtSteps=  Expir =   

2  3  3  3   

         

Inter =  no =  wo =     

0.08  0  0     

         

Qo =  Po =  Io =     

4200  70000  5     

         

gama =  alpha =  l =  Omega =   

14000  1000  10000  12   

         

dis =  c_n =  c_m =  beta =   

50  750000  200000  0.7   

         

NU =  NP =  NT =  T =  tStep = 

2  3  3  3  1 

         

So =  ir =  mu =  Sigma =   

4200  0.08  0.03  0.2   

70000    0.08  0.2   

         

All the possible design alternatives given the input number of lanes and lane minimum widths  

v =         

     0     0         

     2 150         

     2 175         

     2 200         

     4 150         

     4 175         

     4 200         

     6 175         

     6 200         

     8 200         

         

All the possible future states, v_t(n,w,k) for the state k:     

v_t(:,:,1)=  v_t(:,:,2)=  v_t(:,:,3)=  v_t(:,:,4)=  v_t(:,:,5)= 

     0     0       2 150       2 175       2 200       4 150 

     2 150       2 175       2 200       4 200       4 175 

     2 175       2 200       4 175       6 200       4 200 

     2 200       4 150       4 200       8 200       6 175 
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     4 150       4 175       6 175       0     0       6 200 

     4 175       4 200       6 200       0     0       8 200 

     4 200       6 175       8 200       0     0       0     0 

     6 175       6 200       0     0       0     0       0     0 

     6 200       8 200       0     0       0     0       0     0 

     8 200       0     0       0     0       0     0       0     0 

         

v_t(:,:,6) =  v_t(:,:,7) =  v_t(:,:,8) =  v_t(:,:,9) =  v_t(:,:,10)= 

     4 175       4 200       6 175       6 200       8 200 

     4 200       6 200       6 200       8 200       0     0 

     6 175       8 200       8 200       0     0       0     0 

     6 200       0     0       0     0       0     0       0     0 

     8 200       0     0       0     0       0     0       0     0 

     0     0       0     0       0     0       0     0       0     0 

     0     0       0     0       0     0       0     0       0     0 

     0     0       0     0       0     0       0     0       0     0 

     0     0       0     0       0     0       0     0       0     0 

     0     0       0     0       0     0       0     0       0     0 

         

All the possible decision alternatives, u_t(Dn, Dw, k) for the state k:    

u_t(:,:,1)=  u_t(:,:,2)=  u_t(:,:,3)=  u_t(:,:,4)=  u_t(:,:,5)= 

     0     0       0     0       0     0       0     0       0     0 

     2 150       0   25       0   25       2     0       0   25 

     2 175       0   50       2     0       4     0       0   50 

     2 200       2     0       2   25       6     0       2   25 

     4 150       2   25       4     0       0     0       2   50 

     4 175       2   50       4   25       0     0       4   50 

     4 200       4   25       6   25       0     0       0     0 

     6 175       4   50       0     0       0     0       0     0 

     6 200       6   50       0     0       0     0       0     0 

     8 200       0     0       0     0       0     0       0     0 

         

u_t(:,:,6) =  u_t(:,:,7) =  u_t(:,:,8) =  u_t(:,:,9) =  u_t(:,:,10) = 

     0     0       0     0       0     0       0     0       0     0 

     0   25       2     0       0   25       2     0       0     0 

     2     0       4     0       2   25       0     0       0     0 

     2   25       0     0       0     0       0     0       0     0 

     4   25       0     0       0     0       0     0       0     0 

     0     0       0     0       0     0       0     0       0     0 

     0     0       0     0       0     0       0     0       0     0 

     0     0       0     0       0     0       0     0       0     0 

     0     0       0     0       0     0       0     0       0     0 

     0     0       0     0       0     0       0     0       0     0 

         

ND =         

    10     9     7     4     6     5     3     3     2     1      

ND is a vector of which the ith element is the number of possible decisions for design state i  

         

The initial design state configuration of the highway, vo(no, wo), is:    

vo =         

     0     0         
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The initial highway system design state index number, isi, is:    

isi =         

1         

         

The vo_th corresponding possible future system state indecies, fsi, are:   

fsi =         

     1     2     3     4     5     6     7     8     9    10      

         

The vo_th corresponding possible future system state configurations, fsc(n,w), are:  

fsc =         

     0     0         

     2    150         

     2    175         

     2    200         

     4    150         

     4    175         

     4    200         

     6    175         

     6    200         

     8    200         

         

The vo_th corresponding possible future system state decisions, fsd(Dn,Dw), are:   

fsd =         

     0     0         

     2     150         

     2     175         

     2     200         

     4     150         

     4     175         

     4     200         

     6     175         

     6     200         

     8     200         

         

The vo_th corresponding possible previous system state indices, psi, are:   

psi =         

1         

         

The vo_th corresponding possible previous system state configurations, psc(n,w), are:  

psc =         

     0     0         

         

DecisionMap(Origin State, Option No, Destination State)     

DecisionMap =        

     1     1     1        

     1     2     2        

     1     3     3        

     1     4     4        

     1     5     5        

     1     6     6        

     1     7     7        

     1     8     8        
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     1     9     9        

     1    10    10        

     2     1     2        

     2     2     3        

     2     3     4        

     2     4     5        

     2     5     6        

     2     6     7        

     2     7     8        

     2     8     9        

     2     9    10        

     3     1     3        

     3     2     4        

     3     3     6        

     3     4     7        

     3     5     8        

     3     6     9        

     3     7    10        

     4     1     4        

     4     2     7        

     4     3     9        

     4     4    10        

     5     1     5        

     5     2     6        

     5     3     7        

     5     4     8        

     5     5     9        

     5     6    10        

     6     1     6        

     6     2     7        

     6     3     8        

     6     4     9        

     6     5    10        

     7     1     7        

     7     2     9        

     7     3    10        

     8     1     8        

     8     2     9        

     8     3    10        

     9     1     9        

     9     2    10        

    10     1    10        

         

S(i: path no, j: time step no, k: uncertainty no.)      

S(:,:,1) =    S(:,:,2) =     

  1.0e+003 *     1.0e+003 *    

    3.9337    5.3031    5.5884         69930       92010       85190   

    3.9985    3.7649    3.9880         75180       94650      125440   

    3.1584    3.6136    2.9837         74530       66800       66390   

         

Highway Service Quality Index probability transition matrix, P(I_t, I_t+1)    

P =         
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    0.5000    0.5000         0             0             0      

         0        0.5000    0.5000         0             0      

         0         0            0.5000    0.5000         0      

         0         0                 0        0.5000    0.5000      

    1.0000     0                 0             0             0      

P is the Highway Service Quality Index transition matrix from time t in t+1, where the index, I_t, goes from 5 
to 1: [5,4,3,2,1] 

         

I_to =         

5         

I_to is the initial highway service quality index at time 0, as input by user   

         

I_t =         

     4     3     3        

     4     4     3        

     4     3     3        

I_t is a matrix of the simulated (based on matrix P) highway servicce quality indecies, for all paths (rows of 
the matrix, I_t), from time step 1 till NT 

         

ho =         

0         

0         

0         

ho is a vector of the initial rehabilitation decisions, for all paths (rows), deduced from matrix P: taken when 
HSQI, I_t, increases in the next time step 

         

h =         

     0     0     0        

     0     0     0        

     0     0     0        

h is a matrix of rehabilitation decisions from time steps 1 till NT, calculated as ho   

         

x_I_to =         

1         

x_I_to is weighting factor (at t=0) of the highway revenue in terms of the highway service quality index 

         

x_I_t =         

    0.7000    0.4900    0.4900       

    0.7000    0.7000    0.4900       

    0.7000    0.4900    0.4900       

x_I_t is a matrix of weighting factors (for t >0) of the highway revenue in terms of the highway service quality 
index 

         

NFS =         

10         

         

f_t (Path, State, time)= Revenue from traffic flow + Revenue from land use. It depends on system state and 
uncertainty values (Decision independent.) 
f_to (Path, Vo, t=0)        

f_to =         

0         

0         

0         
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f_t(:,:,1) =         

           0    82600000    95100000   107600000    90200000   102700000   115200000   106571800   
119071800   107071800 
           0    82600000    95100000   107600000    90200000   102700000   115200000   107479000   
119979000   107979000 
           0    82600000    95100000   107600000    90200000   102700000   115200000    95717600   
108217600    96217600 

         

f_t(:,:,2) =         

           0    76720000    89220000   101720000    78440000    90940000   103440000    92660000   
105160000   106880000 
           0    82600000    95100000   107600000    90200000   102700000   115200000   104208600   
116708600   104708600 
           0    76720000    89220000   101720000    78440000    90940000   103440000    92660000   
105160000   102590400 

         

f_t(:,:,3) =         

           0    76720000    89220000   101720000    78440000    90940000   103440000    92660000   
105160000   106880000 
           0    76720000    89220000   101720000    78440000    90940000   103440000    92660000   
105160000   106880000 
           0    76720000    89220000   101720000    78440000    90940000   103440000    92660000   
105160000    93771800 

         

c_PathDecStateTime (Path, Dec, State, Time)= expansion cost + acquisition cost for right of way + cost for 
rehabilitation. Costs depend on system states and uncertainty values 
c_Path_vo_to =        

  1.0e+009 *        

         0    0.6000    0.6875    0.7750    0.6750    0.7625    0.8500    0.8375    0.9250    1.0000  

         0    0.6000    0.6875    0.7750    0.6750    0.7625    0.8500    0.8375    0.9250    1.0000  

         0    0.6000    0.6875    0.7750    0.6750    0.7625    0.8500    0.8375    0.9250    1.0000  

         

c_PathDecStateTime(:,:,1,1) =       

  1.0e+009 *        

         0    0.5995    0.6869    0.7743    0.6745    0.7619    0.8493    0.8369    0.9243    0.9993  

         0    0.6389    0.7328    0.8268    0.7138    0.8078    0.9018    0.8828    0.9768    1.0518  

         0    0.6340    0.7271    0.8203    0.7090    0.8021    0.8953    0.8771    0.9703    1.0453  

         

c_PathDecStateTime(:,:,2,1) =       

           0    87412500   174825000    75000000   162412500   249825000   237412500   324825000   
399825000           0 
           0    93975000   187950000    75000000   168975000   262950000   243975000   337950000   
412950000           0 
           0    93162500   186325000    75000000   168162500   261325000   243162500   336325000   
411325000           0 

         

c_PathDecStateTime(:,:,3,1) =       

           0    87412500    75000000   162412500   150000000   237412500   312412500         0         0         0 

           0    93975000    75000000   168975000   150000000   243975000   318975000         0         0         0 

           0    93162500    75000000   168162500   150000000   243162500   318162500         0         0         0 

         

c_PathDecStateTime(:,:,4,1) =       

           0    75000000   150000000   225000000           0           0           0           0           0           0  

           0    75000000   150000000   225000000           0           0           0           0           0           0  

           0    75000000   150000000   225000000           0           0           0           0           0           0  
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c_PathDecStateTime(:,:,5,1) =       

           0    87412500   174825000   162412500   249825000   324825000           0           0           0           0 

           0    93975000   187950000   168975000   262950000   337950000           0           0           0           0 

           0    93162500   186325000   168162500   261325000   336325000           0           0           0           0 

         

c_PathDecStateTime(:,:,6,1) =       

           0    87412500    75000000   162412500   237412500           0           0           0           0           0 

           0    93975000    75000000   168975000   243975000           0           0           0           0           0 

           0    93162500    75000000   168162500   243162500           0           0           0           0           0 

         

c_PathDecStateTime(:,:,7,1) =       

           0    75000000   150000000           0           0           0           0           0           0           0  

           0    75000000   150000000           0           0           0           0           0           0           0  

           0    75000000   150000000           0           0           0           0           0           0           0  

         

c_PathDecStateTime(:,:,8,1) =       

           0    87412500   162412500           0           0           0           0           0           0           0  

           0    93975000   168975000           0           0           0           0           0           0           0  

           0    93162500   168162500           0           0           0           0           0           0           0  

         

c_PathDecStateTime(:,:,9,1) =       

           0    75000000           0           0           0           0           0           0           0           0   

           0    75000000           0           0           0           0           0           0           0           0   

           0    75000000           0           0           0           0           0           0           0           0   

         

c_PathDecStateTime(:,:,10,1) =       

     0     0     0     0     0     0     0     0     0     0      

     0     0     0     0     0     0     0     0     0     0      

     0     0     0     0     0     0     0     0     0     0      

         

c_PathDecStateTime(:,:,1,2) =       

  1.0e+009 *        

         0    0.7651    0.8801    0.9951    0.8401    0.9551    1.0701    1.0301    1.1451    1.2201  

         0    0.7849    0.9032    1.0215    0.8599    0.9782    1.0965    1.0532    1.1715    1.2465  

         0    0.5760    0.6595    0.7430    0.6510    0.7345    0.8180    0.8095    0.8930    0.9680  

         

c_PathDecStateTime(:,:,2,2) =       

           0   115012500   230025000    75000000   190012500   305025000   265012500   380025000   
455025000           0 
           0   118312500   236625000    75000000   193312500   311625000   268312500   386625000   
461625000           0 
           0    83500000   167000000    75000000   158500000   242000000   233500000   317000000   
392000000           0 

         

c_PathDecStateTime(:,:,3,2) =       

           0   115012500    75000000   190012500   150000000   265012500   340012500         0         0        0 

           0   118312500    75000000   193312500   150000000   268312500   343312500         0         0        0 

           0    83500000    75000000   158500000   150000000   233500000   308500000          0         0        0 

         

c_PathDecStateTime(:,:,4,2) =       

           0    75000000   150000000   225000000           0           0           0           0           0           0  

           0    75000000   150000000   225000000           0           0           0           0           0           0  

           0    75000000   150000000   225000000           0           0           0           0           0           0  



 

 220 

         

c_PathDecStateTime(:,:,5,2) =       

           0   115012500   230025000   190012500   305025000   380025000           0           0           0           0 

           0   118312500   236625000   193312500   311625000   386625000           0           0           0           0 

           0    83500000   167000000   158500000   242000000   317000000            0           0           0           0 

         

c_PathDecStateTime(:,:,6,2) =       

           0   115012500    75000000   190012500   265012500           0           0           0           0           0 

           0   118312500    75000000   193312500   268312500           0           0           0           0           0 

           0    83500000    75000000   158500000   233500000            0           0           0           0           0 

         

c_PathDecStateTime(:,:,7,2) =       

           0    75000000   150000000           0           0           0           0           0           0           0  

           0    75000000   150000000           0           0           0           0           0           0           0  

           0    75000000   150000000           0           0           0           0           0           0           0  

         

c_PathDecStateTime(:,:,8,2) =       

           0   115012500   190012500           0           0           0           0           0           0           0  

           0   118312500   193312500           0           0           0           0           0           0           0  

           0    83500000   158500000            0           0           0           0           0           0           0  

         

c_PathDecStateTime(:,:,9,2) =       

           0    75000000           0           0           0           0           0           0           0           0   

           0    75000000           0           0           0           0           0           0           0           0   

           0    75000000           0           0           0           0           0           0           0           0   

         

c_PathDecStateTime(:,:,:,3) =       

0         

0         

0         

         

lambda =         

     0     1     2     3     4     0       

     0     0     0     0     0     1       

         

X_T(:,:,1) =         

  1.0e+014 *        

   0.00000000000001   0.00000000003934   0.00000015473996   0.00060870056846   2.39444542614139   
0.00000000069930 
   0.00000000000001   0.00000000003998   0.00000015988002   0.00063928026997   2.55616215946005   
0.00000000075180 
   0.00000000000001   0.00000000003158   0.00000009975491   0.00031506589385   0.99510411912649   
0.00000000074530 

         

X_T(:,:,2) =         

  1.0e+014 *        

   0.00000000000001   0.00000000005303   0.00000028122870   0.00149138389829   7.90895795101062   
0.00000000092010 
   0.00000000000001   0.00000000003765   0.00000014174472   0.00053365469670   2.00915656762273   
0.00000000094650 
   0.00000000000001   0.00000000003614   0.00000013058105   0.00047186768083   1.70514105146377   
0.00000000066800 
 
X_T is a matrix of transformed independent uncertainty values for all the time steps from NT-1 upto 1, 
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defining the functional form to be used in the regression 

_______________________________________________________   

InitialState = 

1 

PossibleFutState = 

     1     2     3     4     5     6     7     8     9    10 

TimeStep = 

3 

pi_t(:,:,:,1) = 0 

 

 
 

pi_t(:,:,1,2) = 

     0     0     0     0     0     0     0     0     0     0 

     0     0     0     0     0     0     0     0     0     0 

     0     0     0     0     0     0     0     0     0     0 

 

pi_t(:,:,2,2) = 

  1.0e+008 * 

   -1.3065   -1.3065   -1.3065   -1.3065   -1.3065   -1.3065   -1.3065   -1.3065   -1.3065       0 

    0.1612    0.1612    0.1612    0.1612    0.1612    0.1612    0.1612    0.1612    0.1612         0 

    0.9800    0.9800    0.9800    0.9800    0.9800    0.9800    0.9800    0.9800    0.9800         0 

 

pi_t(:,:,3,2) = 

  1.0e+008 * 

   -1.5194   -1.5194   -1.5194   -1.5194   -1.5194   -1.5194   -1.5194         0         0         0 

    0.1875    0.1875    0.1875    0.1875    0.1875    0.1875    0.1875          0         0         0 

    1.1396    1.1396    1.1396    1.1396    1.1396    1.1396    1.1396          0         0         0 

 

pi_t(:,:,4,2) = 

  1.0e+008 * 

   -1.7322   -1.7322   -1.7322   -1.7322         0         0         0         0         0         0 

    0.2137    0.2137    0.2137    0.2137         0         0         0         0         0         0 

    1.2993    1.2993    1.2993    1.2993         0         0         0         0         0         0 

 

pi_t(:,:,5,2) = 

  1.0e+008 * 

   -1.3358   -1.3358   -1.3358   -1.3358   -1.3358   -1.3358         0         0         0         0 

    0.1648    0.1648    0.1648    0.1648    0.1648    0.1648         0         0         0         0 

    1.0019    1.0019    1.0019    1.0019    1.0019    1.0019         0         0         0         0 

 

pi_t(:,:,6,2) = 

  1.0e+008 * 

   -1.5487   -1.5487   -1.5487   -1.5487   -1.5487         0         0         0         0         0 

    0.1911    0.1911    0.1911    0.1911    0.1911         0         0         0         0         0 

    1.1616    1.1616    1.1616    1.1616    1.1616         0         0         0         0         0 

 

pi_t(:,:,7,2) = 

  1.0e+008 * 

   -1.7615   -1.7615   -1.7615         0         0         0         0         0         0         0 

    0.2173    0.2173    0.2173         0         0         0         0         0         0         0 


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    1.3213    1.3213    1.3213         0         0         0         0         0         0         0 

 

pi_t(:,:,8,2) = 

  1.0e+008 * 

   -1.5780   -1.5780   -1.5780         0         0         0         0         0         0         0 

    0.1947    0.1947    0.1947         0         0         0         0         0         0         0 

    1.1836    1.1836    1.1836         0         0         0         0         0         0         0 

 

pi_t(:,:,9,2) = 

  1.0e+008 * 

   -1.7908   -1.7908         0         0         0         0         0         0         0         0 

    0.2210    0.2210         0         0         0         0         0         0         0         0 

    1.3432    1.3432         0         0         0         0         0         0         0         0 

 

pi_t(:,:,10,2) = 

  1.0e+008 * 

   -1.7472         0         0         0         0         0         0         0         0         0 

    0.2432         0         0         0         0         0         0         0         0         0 

    1.2151         0         0         0         0         0         0         0         0         0 

 

pi_t(:,:,:,3) = 0 

 

F_i = 
           0    76720000    89220000   101720000    78440000    90940000   103440000    92660000   105160000   
106880000 
           0    76720000    89220000   101720000    78440000    90940000   103440000    92660000   105160000   
106880000 
           0    76720000    89220000   101720000    78440000    90940000   103440000    92660000   105160000    
93771800 

 

EF_i = 
           0    76720000    89220000   101720000    78440000    90940000   103440000    92660000   105160000   
102510600 

 

MaxState = 

                      9 

 

TimeStep = 

                      2 

 

pi_t(:,:,1,1) = 

  1.0e+009 * 

         0    3.2708    3.7590    4.2472    3.6127    4.1009    4.5890    4.4427    4.9309    5.2727 

         0    3.3037    3.7959    4.2880    3.6545    4.1467    4.6388    4.4975    4.9896    5.3404 

         0    2.6681    3.0700    3.4719    2.9247    3.3266    3.7285    3.5832    3.9851    4.2417 

 

pi_t(:,:,2,1) = 

  1.0e+009 * 

   -0.3881    0.1000    0.5882   -0.0463    0.4419    0.9301    0.7837    1.2719    1.6138         0 

   -0.2767    0.2154    0.7076    0.0741    0.5662    1.0584    0.9170    1.4092    1.7600         0 

   -0.0857    0.3162    0.7181    0.1709    0.5728    0.9747    0.8294    1.2313    1.4879         0 
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pi_t(:,:,3,1) = 

  1.0e+009 * 

   -0.4493    0.0388   -0.1075    0.3807    0.2344    0.7225    1.0644         0         0         0 

   -0.3208    0.1714    0.0300    0.5222    0.3808    0.8729    1.2237         0         0         0 

   -0.0979    0.3040    0.1587    0.5606    0.4153    0.8172    1.0738         0         0         0 

 

pi_t(:,:,4,1) = 

  1.0e+008 * 

   -5.1053   -1.6868    1.7317    5.1502         0         0         0         0         0         0 

   -3.6486   -0.1406    3.3674    6.8753         0         0         0         0         0         0 

   -1.1019    1.4641    4.0302    6.5962         0         0         0         0         0         0 

 

pi_t(:,:,5,1) = 

  1.0e+009 * 

   -0.4090    0.0792    0.5673    0.4210    0.9092    1.2510         0         0         0         0 

   -0.2891    0.2031    0.6952    0.5538    1.0460    1.3968         0         0         0         0 

   -0.0979    0.3040    0.7059    0.5606    0.9625    1.2191         0         0         0         0 

 

pi_t(:,:,6,1) = 

  1.0e+008 * 

   -4.7021    0.1795   -1.2836    3.5980    7.0165         0         0         0         0         0 

   -3.3316    1.5899    0.1763    5.0979    8.6058         0         0         0         0         0 

   -1.1014    2.9177    1.4647    5.4838    8.0498         0         0         0         0         0 

 

pi_t(:,:,7,1) = 

  1.0e+008 * 

   -5.3142   -1.8957    1.5228         0         0         0         0         0         0         0 

   -3.7722   -0.2643    3.2437         0         0         0         0         0         0         0 

   -1.2239    1.3422    3.9082         0         0         0         0         0         0         0 

 

pi_t(:,:,8,1) = 

  1.0e+008 * 

   -4.7818    0.0998    3.5183         0         0         0         0         0         0         0 

   -3.3900    1.5315    5.0395         0         0         0         0         0         0         0 

   -1.1145    2.9046    5.4707         0         0         0         0         0         0         0 

 

pi_t(:,:,9,1) = 

  1.0e+008 * 

   -5.3939   -1.9754         0         0         0         0         0         0         0         0 

   -3.8306   -0.3226         0         0         0         0         0         0         0         0 

   -1.2370    1.3291         0         0         0         0         0         0         0         0 

 

pi_t(:,:,10,1) = 

  1.0e+008 * 

   -5.0478         0         0         0         0         0         0         0         0         0 

   -3.6158         0         0         0         0         0         0         0         0         0 

   -1.1692         0         0         0         0         0         0         0         0         0 

 

 
 

 

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F_i = 

  1.0e+008 * 

         0   -0.4389   -0.5104   -0.5819   -0.4487   -0.5202   -0.5917   -0.5300   -0.6015   -0.5440 

         0    0.9748    1.1241    1.2733    1.0541    1.2034    1.3526    1.2218    1.3711    1.2716 

         0    1.6718    1.9442    2.2166    1.7093    1.9817    2.2541    2.0192    2.2916    2.1476 

 

EF_i = 

  1.0e+008 * 

         0    0.7359    0.8526    0.9693    0.7716    0.8883    1.0050    0.9036    1.0204    0.9584 

 

MaxState = 

                       9 

 

TimeStep = 

                       1 

 

F_i = 

  1.0e+009 * 

    3.8680    1.1725    0.7652    0.3580    0.9202    0.5130    0.1058    0.2689   -0.1383   -0.3589 

    3.8780    1.2943    0.9058    0.5173    1.0417    0.6531    0.2646    0.4037    0.0152   -0.2258 

    2.8703    1.0448    0.7682    0.4915    0.8793    0.6026    0.3260    0.4326    0.1559   -0.0117 

 

EF_i = 

  1.0e+009 * 

    3.5388    1.1705    0.8131    0.4556    0.9470    0.5896    0.2321    0.3684    0.0109   -0.1988 

 

MaxState = 

                       1 

 

+++++++++++++++++++++++++++++++++++ 

 

TimeStep = 

                       0 

 

fdsi_s = 

     1     2     3     4     5     6     7     8     9    10 

 

ND_s = 

                 10 

 

Expected_System_Value = 

  1.0e+009 * 

    3.2667    0.4805    0.0631   -0.3544    0.1992   -0.2182   -0.6357   -0.4974   -0.9149   -1.1835 

 

value = 

              3.27E+09 

 

Next_Optimal_State = 

     0     0 
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Next_Optimal_Decision = 

     0     0 
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