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Abstract

General purpose rich-text editors, such as MS Word are often used to author soft-
ware requirements specifications. These requirements specifications contain many different
logical structures, such as use cases, business rules and functional requirements. Auto-
mated recognition and extraction of these logical structures is necessary to provide useful
automated requirements management features, such as automated traceability, template
conformance checking, guided editing and interoperability with sophisticated requirements
management tools like Requisite Pro. The variability among instances of these logical
structures and their attributes poses many challenges for their accurate recognition and
extraction. The thesis provides a framework for the extraction of logical structures from
software requirements documents. The framework models information about style, struc-
ture, and attributes of the logical structures and uses the defined meta-model to extract
instances of logical structures. A meta-model also incorporates information about the vari-
ability present in the instances. The framework includes an extraction tool, ET, that reads
the meta-model and extracts instances of modelled logical structures from the documents.
The framework is evaluated on a collection of real-world software requirements documents.
Using the framework, different logical structures can be extracted with high precision and
recall, each close to 100%. The performance of the extraction tool is acceptable for fast
extraction of logical structures from documents with extraction times ranging from a few
milliseconds to a few seconds.
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Chapter 1

Introduction

Requirements management tools have been developed to allow capturing and managing
software requirements specifications (SRS) at the level of logical structures such as use
cases, business rules, functional requirements and UI mockups [1]. By knowing the in-
ternal attributes of these structures, the tools can offer many advantages including fine-
grained traceability, guided (structured) editing and template conformance checking [2].
Despite the availability of such tools, many organizations still utilize general-purpose text
editors, such as MS Word, to write SRS. To bridge the gap between structured require-
ments specifications and free text, tools like Requisite Pro [3] provide capability to import
entire documents and link to requirements in the documents. The import process requires
parsing the documents to identify requirements contained in them. Current methods used
to parse the documents require users to specify either regular expressions or delimiter se-
quences for every requirement to be extracted. These methods are limited to identifying
atomic requirements, in the form of sentences or paragraphs and are insufficient for the
extraction of logical structures with multiple attributes.

Several tools have also been developed that offer automated analyses of requirements
statements [4, 5, 6]. Whereas these tools use semantically rich techniques to reason about
validity of requirements, they do not deal with locating these logical structures. We believe
that to run a deeper semantic analysis, it is important to first recognize semantic structures
in rich text.

The thesis presents a framework for the extraction of logical structures from rich-
text documents written using general-purpose editors. The research was conducted in the
following three phases:

1. We collected various requirements documents from different sources including indus-
try.

1



2. We analyzed a randomly selected subset of the collection of documents from our
collection to identify requirements for logical structure extraction and develop our
approach.

3. We evaluated our developed approach on the entire collection of documents.

The analysis of the requirements documents shows that logical structures produced
for a given project follow a particular template either consistently or with minor vari-
ations. A project in this context refers to a system (or a tool) to be implemented or
modifications/updates made to an already implemented system. We hypothesize that log-
ical structures can be extracted by finding elements in the documents that match a given
template. In the framework, a meta-model for logical structures is created that captures
information about attributes (Name, ID, etc.), style (bold, italic etc.) and skeletons (ta-
bles, lists etc.) that are used to populate instances of the logical structure. Variations in
the attribute identifiers, styles, skeletons and cardinality of attributes are also captured in
the meta-model. The meta-model is used by a generic extraction tool, ET, to search for
elements in the document satisfying the meta-model. The satisfying elements are extracted
as instances of the logical structure represented by the meta-model.

To measure the applicability, effectiveness and efficiency of our approach in extracting
logical structures, we created meta-models for several logical structures and used them to
extract instances. The results show precision and recall, each close to 100% for all logical
structures and extraction time of less than 2 seconds for most logical structures.

The proposed framework provides opportunity for improvement in import and traceabil-
ity features provided by requirements management tools, allowing users to take advantage
of those tools together with a free environment of a generic and already widely adopted
text editor . The motivation for such a framework is driven by several key observations.

1.1 Motivation

In many organizations, Word documents are still the preferred way of capturing require-
ments, which effectively deprives these organizations of many advanced features such as
fine grained traceability between related parts of requirements and traceability from the
requirements to code, semantic query over the requirements, and support for consistency
management in methodologies of writing requirements. Some of the key challenges faced by
users of such systems that we identified in a recent consulting engagement 1 are discussed

140 software architects, requirements analysts, testers and project managers from a large company in
Canada were interviewed about common software engineering problems faced by the organization. The
interviewee were also asked to rank a set of proposed solutions that may solve the software engineering
problems faced by them. [7]
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below:

1.1.1 Fragmentation of Documentation

Software specifications often contain certain logical structures prescribed by specification
methodologies such as Rational Unified Process[8]. Requirements are typically fragmented
over many documents. As a result, many logical structures that are spread across multiple
documents reference each other (usually by means of an ID) to completely capture a
particular requirement. Reading these requirements is particularly challenging for people
new to a project or even for those associated with it for years. Upon encountering a
reference, the reader has to locate the document that contains the referenced structure,
shift their focus to that document, read and understand the target artifact and then move
their focus back to the first document. Such a scenario becomes even more dreadful when
the logical structures use references recursively. Reading requirements in such a manner
causes the reader to lose context by switching between documents and wastes precious
time. This challenge could be addressed by automatic linking of the reference to the target
structure, which in turn could be used for creation of sliced views of the documentation.
This is not possible unless the logical structures, their attributes, and their boundaries
within the documents can be recognized.

1.1.2 Inconsistency in Methodology Across Projects

There are many software projects under development and maintenance in any large or-
ganization at any given time. Consistency in the way requirements and other software
specifications are written is critical for efficient collaboration among different teams. Or-
ganizations that use Word documents to author requirements often create templates for
writing logical structures such as use cases and business rules. Such templates, however,
cannot be used for automatically checking the conformance of the document with the tem-
plate later. Significant manual effort is required to ensure the conformance of the document
to the specified template. This challenge could be addressed by automatic recognition of
logical structures during document editing and providing guidance based on template con-
formance checking. Similar support is well known in IDEs as code completion and quick
fix.

1.1.3 Manual Import of Legacy Documents

If an organization decides to start using a sophisticated requirements management system
like DOORs [9], it may choose to import some of the existing (and at this point legacy)
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documents into the new system. Such an import is entirely manual, very time and ef-
fort consuming, and consequently rarely undertaken. This challenge could be addressed
by automatically translating already recognized logical structures into the format under-
standable by the tool. Although, verifying that the structures are correctly recognized still
requires manual effort, it is significantly smaller than before.

1.1.4 Querying Documents

The need to query requirements documents arrises from time to time. If attributes of
logical structures are recognized within the documents, queries can be made using these
attributes. For example, a query can produce all the use cases in which actor X appears.
Such support can be built into the word processing tools as an enhanced search plug-in
that uses the template to identify attributes and allows the user to query those attributes.

To summarize the motivations, we want to preserve the convenience of using well-known
editors and enhance the experience by offering artifact completion, linking, displaying
definitions for references, and other features well known from IDEs. We believe that the
proposed system will be a necessary step towards the realization of this goal.

1.2 Problem Statement

The survey of requirements documents showed that different projects use different tem-
plates to write the same logical structures. However, logical structures conform mostly to
a single template within the scope of the same project. This provides an opportunity to
extract logical structures through searching for a template. Nonetheless, there are many
challenges involved in doing so. A template consists of two different parts – the method-
ology and the physical presentation. Methodology refers to attributes of the logical
structure and the rules relating to these attributes. For example, use case in one method-
ology may have id, name, scenario and preconditions as attributes where preconditions
may be an optional attribute. Physical presentation describes how these structures
materialize in the actual documents. For example, a use case may be written using a table
or a section containing lists. The following example shows two different methodologies and
presentations of use cases.

Fig.1.1a and 1.1b show examples of use cases belonging to two separate systems2. The
presentations used to write use cases in both are clearly different from one another. In

2The examples do not show actual data from collected software requirements documents. However,
these examples depict the variability observed in those requirements documents.
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Instances of Logical Structure (Use Case) 

A7ribute Instances (Flow, ID, Name, Actor) 

A7ribute Iden@fiers 

(a) Example Use Cases – Set 1 

(b) Example Use Cases – Set 2 

Figure 1.1: Example Use Cases

Fig.1.1a the use case is written as a section of text where as in Fig.1.1b, tables are used to
write the use cases. The difference in the attributes is also evident. Use cases in Fig.1.1a
use ID, Name, a list for Flow and a sub-section for Extensions where as the use cases
in Fig.1.1b use Name, Actor, Precondition, Process Description etc. These differences in
attributes stem from using different templates, such as [10, 11] for writing use cases.

Examples of variations within the instances of logical structures are depicted in both
Fig.1.1a and Fig.1.1b. These variations can be divided into two categories – logical vari-
ations and physical variations. The logical variations include differences in the number
of attribute instances within an instance of a given logical structure, for example, the
attribute Extensions is missing in the third instance of use case shown in Fig.1.1a. The
logical variations also include using different attributes to represent the same concept, for
example use cases in Fig. 1.1b use either a step by step description of the main scenario
or description divided into actions and responses.
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The physical variations can be further divided into two categories – accidental vari-
ations and designed variations. Accidental variations refer to minor mistakes that
happen while writing instances of a given logical structure. These include spelling mis-
takes, for example “Actar” instead of “Actor” in the second instance shown in Fig.1.1b and
mistakes in applying the style(bold, italic and font size), for example unnecessary italicized
section title in the third instance shown in Fig.1.1a. The designed variations are physical
variations that are allowed by the template, for example use cases in Fig.1.1a either spec-
ify the “Extensions” as a sub-section or “Extension” as block of text. Another example of
designed physical variation is the convention used to write IDs, where an ID can either be
Alpha-Numeric or Numeric only.

All of the above mentioned variations make the job of extracting logical structures ex-
tremely challenging.

1.2.1 Requirements for Logical Structure Extraction Systems

The analyses of requirements documents and a survey of related work (see Chapter 3)
leads us to determine a set of features necessary for a practical logical structure extraction
system. We summarize them in the following points and provide rationale for their inclusion
in the requirements for a practical logical extraction system.

1. The extraction system should work with any type of documents including Word, PDF,
HTML etc.

Software Requirements may be captured in many different types of documents with
a consistent template. HTML and Word documents that conform visually to a single
template have radically different underlying Office Open XML [12] for Word and
HTML+CSS for HTML documents. Several tools exist that allow conversion from
HTML to Word, PDF to Word and vice versa [13][14]. However, the conversion
is often erroneous. If the logical structure extraction system defines templates at
the level of underlying representation, then separate templates must be defined for
different types of documents which is extra work. Therefore, the logical structure
extraction system should be able to extract instances from documents of different
type given a single template.

2. The system should allow the templates to be represented in a human-readable form.

In case, the templates are induced from a given set of examples, such as in wrapper
induction (see Sec.3.2), they should be encoded in a human readable syntax. We
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believe that certain parts of the template, for example optional attributes, are ex-
pert knowledge and can be edited by the user of the system. For example, a user
may already know that preconditions and postconditions in use cases are optional
attributes. To completely capture this information using examples will not be prac-
tical, as the example set must contain an example where each of these attributes
is present and an example where none of these attributes appear. Considering the
fact that a logical structure may contain many optional attributes, a completely
automated learning tool would require a lot of examples to completely capture the
variability in the instances. It is therefore necessary for the template to be encoded
in a human-readable form so that a user may add or modify knowledge by changing
parts of it. Moreover, these changes should be easy to make.

3. The system should be able to handle minor errors like spelling mistakes, style incon-
sistencies etc.

Using attribute identifiers such as Use Case Name and Preconditions in regular
expressions to find matching elements will not work if spelling mistakes occur within
these identifiers. On the other hand capturing all possible variants of small spelling
errors within the regular expression is also not suitable. Therefore, the extraction
system should be able to deal with minor errors in identifier parts of the template
while still being able to match the pattern specified by the template.

4. The system should be easily extendable in its capability to recognize and extract new
logical structures and presentations.

There are many different logical structures used in requirements documents, architec-
ture documents etc. and there are many different ways of presenting them. Logical
structures of all kinds such as Functional and Non-functional Requirements, Data
Objects, Business Cases and those specific to an organization or project should be
extractable.

1.3 Objectives

The objective of this thesis is to provide a comprehensive solution for the extraction of
logical structures, such as use cases, functional requirements, business requirements etc.
from software requirements documents. The following novel contributions are made in this
thesis:

• We identify and present necessary requirements for logical structure extraction sys-
tems.
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• We present a novel approach to extract logical structures from requirements docu-
ments. Our approach uses meta-models of logical structures to extract instances of
logical structures.

• Our approach is independent of the type of documents and can be easily extended
to extract logical structures from different types (PDF, HTML etc.) of documents.

• Our approach can perform partial matching of the text and style parts of the meta-
models to overcome minor editing errors in the instances of logical structures.

• We evaluate our approach on real-world documents collected from various sources
including industrial organizations. Our approach achieves high levels of precision
and recall and executes within a reasonable amount of time

1.4 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 provides a brief overview of Clafer;
the language used by our framework for meta-modeling. Chapter 3 discusses related work
and Chapter 4 presents details about different parts of our proposed framework including
meta-modeling and the extraction process. We provide and discuss evaluation results in
Chapter 5 and conclude the thesis with Chapter 6.
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Chapter 2

Background

The meta-models in the proposed framework are specified using Clafer [15]. The following
section provides a brief overview of Clafer.

2.1 Clafer

Clafer (class, feature, reference) is a meta-modeling/concept-modeling language. The goal
of Clafer is to provide a concise language for class modeling, feature modeling and a mixture
of class and feature modeling. Moreover, Clafer can be used to model arbitrary concepts
and allows specialization of models by means of constraints and inheritance. Fig. 2.1
shows a simple meta-model for students in a school. Each student in the school has a
name, a student id, and a year of graduation. Each student can either be a graduate
or an undergraduate student and would be enrolled in one of the degrees (finance, math,
economics, cs) offered by the school. A student can take many courses during the course of
their degree. Each course has an id and a title. We now explain Clafer using the presented
example.

A Clafer model is a set of type definitions, clafers and constraints. The meta-model
in Fig. 2.1 has three top-level type definitions Person (line 1), Student (line 7) and Course
(line 4). Each type definition contains a hierarchy of clafers (lines 2-3, 5-6, 8-20). Student
additionally contains a constraint (line 21). The hierarchy is defined by the indentation of
clafers. Each type definition provides a separate namespace for the clafers it contains. An
abstract modifier indicates that no instance of the type can be created unless extended by
a concrete type.
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abstract Person1

name : String2

age : Integer3

abstract Course4

courseID : Integer5

courseTitle : String6

abstract Student : Person7

studentID : Integer8

gradYear : Integer9

courses -> Course 2..*10

enrolled ?11

Info12

xor Program13

Grad14

Undergrad15

xor Major16

Finance17

Math18

Economics19

CS20

[gradYear < 2011 => ˜enrolled]21

Figure 2.1: Meta-model in Clafer

A Clafers can be thought of a slot that can contain instances or references to instances
of clafers. Reference clafers are declared using -> and have no sub-clafers. In our meta-
model, courses (line 10) is a reference clafer that can contain references to instances of
type Course. A Clafer that is not declared using -> such as studentID (line 8), or contains
sub-clafers such as Major (line 16), is called a containment clafer i.e. a clafer that contains
instances. A containment clafer definition creates a clafer and, implicitly, a new concrete
type, both located in the same namespace.

Clafers have clafer cardinality associated with them which puts constraints on the
number of clafer instances or references that a given clafer may contain. Cardinality of
the clafer is specified as an interval between m..n, where m ∈ N, n ∈ N ∪ {∗},m ≤ n. By
default, each clafer has an associated cardinality of 1..1. The cardinality 0..1 can be written
as “?”. The cardinality in line 10 specifies that a valid instance of Student must have a
reference clafer courses that contains references to at least 2 instances of Course. Similarly,
the “?” in line 11 states that an instance of Student may or may not have an instance of
enrolled. Clafers also have an associated group cardinality, which constraints the number
of child instances, i.e. the instances contained by sub-clafers. The group cardinality also
ranges between m..n. xor is equivalent to a group cardinality of [1..1]. For example, xor
on Major (line 16) in our meta-model states that only one instance of either Finance, Math,
Economics or CS is allowed. The xor is equivalent to saying that a student’s major can
only be one of the above options.
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A constraint is used to express dependencies between one or more clafers (line 21,
Fig.2.1) or to restrict integer and string values (line 2-3, Fig.2.2). The constraint in line
21, Fig.2.1 states that if a student’s graduation year is less than 2011 then the instance
of Student must not contain an instance of the sub-clafer enrolled. In other words, the
constraint states that a student whose graduating batch is less than 2011 is not enrolled.

Clafers can be extended by means of inheritance. Student is inherited from Person and
inherits all the clafers of the type Person.

course1 : Course1

[courseID = 12

courseTitle = "Intro to Algorithms"]3

course2 : Course4

[courseID = 25

courseTitle = "Information Retrieval"]6

Rehan : Student7

[name = "Rehan Rauf"8

age = 259

studentID = 124434210

gradYear = 201111

courses = course1 + course212

Grad && CS]13

Figure 2.2: Instance of Meta-model in Fig.2.1

The meta-model in Fig.2.1 can have many instances. Each instance is obtained by
extending or specializing the meta-model. Fig.2.2 shows an example instance of the meta-
model in Fig.2.1. A valid student must be listed in two courses. In our example, two
concrete instances of Course (line 1,4) are created by extending from Course. A concrete
Student Rehan extends Student and constrains its sub-clafers. The courses (line 12) ref-
erence is constrained to point to the two instances of Course. The constraint Grad &&
CS (line 13) automatically selects the Program and Major clafers. More details about the
language can be found elsewhere [15]
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Chapter 3

Related Work

We find many examples of automated natural language analysis being used to reason about
the quality of requirements, to disambiguate confusing statements and extract ontology
[16, 17, 18, 5, 19]. Most of these techniques work at the level of sentences without the
knowledge of semantic structures to which the sentences belong. Recently, systems are
emerging that perform automatic inspection at the level of logical structures like use cases.
Text2Test [20] is one such system that uses text analysis to produce a semantic model for
the use case and report problems in the model at edit time. The use cases are either written
in the editor provided by the system or are imported from other documents. Working at
the level of logical structures opens up new possibilities for a deeper inspection.

As far as we know, there have been no formal studies dealing with extraction of logical
structures from software requirements documents. However, some commercially available
requirements management tools allow users to extract requirements from documents by
means of import. We now present the features and shortfalls of the logical structure
extraction provided by two well-known requirements management tools.

3.1 Logical Structure Import in Requirements Man-

agement Tools

Reqtify [21] and Requisite Pro[3] are powerful requirements management and traceability
tools that allow users to import Word and Excel documents and provide traceability links
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(a) Reqtify (b) Requisite Pro

Figure 3.1: Importing Requirements in RM Tools

to elements within the documents. As shown in Fig.3.11, these tools allow users to specify
a regular expression or a prefix expression to match the elements of interest and import
requirements. Requisite Pro additionally allows users to match elements by a pre-defined
style (Heading 1). The use of such expressions can only be practical if the authors of the
document strictly conform to style and patterns recognized by these tools. For example,
a regular expression “REQ-\d+” would match each definition of the requirement of this
form as well as each reference to a requirement (Fig.3.2).

(a) Requirement Definitions (b) Reference to Requirement

Figure 3.2: Definition vs Reference

These tools rely on using predefined Word styles (Headings) to disambiguate between
the definition and the reference. It forces the authors to strictly format the document
so that it may be imported. This requirement can be enforced on new documents being
written but old documents that were not written with this strict requirement in mind
will not be importable. Moreover, these regular expressions are good to match individual

1Fig.3.1a captured from http://www.geensys.com/commun/docs/reqtify/Viewlet/tutorial2.

viewlet/tutorial2_viewlet_swf.html
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requirements in the form of a paragraph or a section but recognizing attributes within
these requirements is not so trivial. Although, theoretically one can define sub-expressions
for each attribute, they need to incorporate a lot of variations like missing or out of order
attributes. There is also no direct support for requirements structured within tables. These
regular expressions cannot be used to extract information from physical structures within
tables (columns, rows etc.) without incorporating underlying mark-up tags used for tables.
Such application of regular expressions for locating elements is widely found in the field
of information retrieval. Next we discuss these approaches briefly and list down their
limitations.

3.2 Wrappers

In IR literature, the procedure for the extraction of relational content from webpages is
called Wrapper [22]. Wrappers are used to crawl webpages and extract specific informa-
tion from them. These wrappers use known patterns to locate and extract the required
knowledge. The process of automatically generating a wrapper based on examples is called
Wrapper Induction [23]. With the rapid expansion of the Internet and growing hunger
for information, many wrapper induction systems have emerged to facilitate extraction of
interesting information from webpages [22] [24] [25] [26] [27]. Many toolkits for generating
wrappers have also been developed [28].

WIEN[23] is one of the earliest wrapper induction systems. It assumes information to
be present in a tabular structure. There are six proposed types of wrappers. The simplest is
the Left-Right Wrapper. An example of the LR wrapper would be <B> </B> where <B>
is the left delimiter and </B> is the right delimiter. Given many examples, the system
is able to generalize the left and right delimiters. Using these delimiters, the system will
extract all the elements present between them. All the other proposed wrappers also use
delimiters. The proposed Head-Left-Right-Tail wrapper works exactly the same as LR
wrapper except that it ignores the Head and Tail of the page which might be using the
same delimiters. Such use of delimiters only works with consistently and uniquely tagged
information.

A different wrapper induction system WHISK [24] produces wrappers in the form of
regular expressions. Given a set of labeled examples and the number of slots that need to
be extracted WHISK specializes a regular expression that covers all given examples and
extracts information present in the defined slots. For example, if three elements are to be
extracted WHISK will start with the basic rule * (*) * (*) * (*) *. The elements that need
to be extracted are represented using brackets. These element slots can also specify classes
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that need to be matched. Using the labeled examples the rule is specialized. For example
a rule :

‘.’ (NUMBER) * (COUNTRY) ‘@newline’

when operates on data

No. 1 China
No. 2 India
No.-3 Russia

will extract the tuples (1,china), (2,india), (3,russia). The good this is that WHISK rules
also take into consideration the class of the element to extract along with the delimiters.
This helps improve precision by eliminating text the fits the pattern but does not belong
to the desired class. The problem with WHISK is that it does not allow missing elements
nor does it allow different permutations of the elements.

In SoftMealy [29], extraction rules are expressed as Finite State Transducers. The main
advantages are that it allows missing element values in generated wrappers and can cater
for different permutations. It also allows disjunction in the rules. An example rule :

*. (Number) ‘@space’ Either * ‘,’ (Country) ‘@newline’
OR (Country) ‘@newline’

when operates on data

No. 1 China
No. 2 Mumbai, India
No. 3 Russia

will extract the tuples (1,china), (2,india), (3,russia) . One critical problem with SoftMealy
induction system is that all the possible permutations of the desired elements must be
depicted in the examples. The elements that can be missing must also be indicated by
the training examples. Similar to SoftMealy, Borker et al. use Hidden Markov Models
to capture the variability in the order and cardinality of attributes.[30] Their proposed
technique was shown to work well with human written address records and bibliography
records that had variability in the order and number of attributes. However, a separate
training set of sufficient size had to be supplied for each type of record. In case of require-
ments documents, providing sufficient training examples may not be feasible for practical
purposes because each organization employs a different template with different attributes,
some of which are custom defined for the company.

In [26] the authors propose wrapper induction and extraction techniques for records
whose attributes may be present in different branches of the HTML DOM. They use a broom
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structure which represents a path of HTML tags to represent their records and wrappers.
During extraction the path of the broom is used to limit the search to portions of the DOM
matching the path. Records are extracted by matching the tree part of the broom. The
technique also makes use of attribute identifiers to disambiguate attributes which appear
in similar HTML tags. Although the authors acknowledge that the disambiguation is
necessary in the case of optional attributes, they fail to present clear heuristics to do so.

STALKER[25] is one of the more sophisticated wrapper induction systems. In STALKER,
rules are represented in a hierarchical fashion using SkipTo(). The hierarchy is defined as an
Embedded Catalog Tree (ECT), which is similar to the hierarchical model of the document.
For example, for an ECT defined as

Document := Some -Text List(UseCases)
UseCase := Name List(Main Scenario)
Main Scenario := List(Scenarios)

and given a document with two example use cases

<body>

some other artifacts

<UseCases>

<Table>

<tr><b>Name:</b> First UC </tr>

<tr><b>Main Scenario:</b> Scenario1 \n Scenario2 \n Scenario3 </tr>
</Table>

<Table>

<tr><i>Name:</i> Second UC </tr>

<tr><b>Main Scenario:</b> Scenario4 \n Scenario5 \n Scenario6 </tr>
</Table>

</UseCases>

</body>

STALKER will first extract the list of use cases then extract each use case and then its
name followed by the main scenario. The extraction of each attribute is guided by the
associated rules of extraction. The rules of extraction in the above example are:

Extraction of List (UseCases) : *‘<UseCases>’(*)‘</UseCases>’
Iteration Rule for UseCases : *‘<table>’ (*) ‘</Table>’
Extraction Rule for Name : *‘Name:</b>’ (*) ‘</tr>’

OR *‘Name:</i>’ (*) ‘</tr>’
Extraction Rule for List(Main Scenario) : *‘Main Scenario:</b>’ (*) ‘<tr>’
Iteration Rule for Scenarios : ‘@begin’ OR ‘@newline’ (*) ‘@newline’

With STALKER one can extract each logical structure with its attributes. However, all
logical and physical variations must be encoded using rules similar to those shown above.
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Logical variations can be incorporated by providing different examples but accidental phys-
ical variations are very hard to encode in such a manner.

To summarize, Wrappers, which are sophisticated regular expressions, work well in
the domain of webpages. However, there are many factors limiting their practical use
for the extraction of logical structures from requirements documents. First, the wrappers
work with the underlying representation, such as HTML tags, of documents. In case of
websites, the pages are usually generated by a script that fills in data from a relational
back-end storage. Therefore, the HTML generated is the same for every instance of a
particular logical structure. In case of requirements documents in Word, the underlying
representation is Office Open XML [12]. While writing logical structures, the users try
to visually match the template. This often results in a logical structure that visually
conforms to the template but the underlying OOXML is very different from the original
template. Therefore a wrapper trained on a template may not be capable of extracting
all of the instances. Second, the wrapper induction systems are limited in their capability
to efficiently handle missing and out of order attributes and require a large training set
to capture all possible scenarios. A way around this problem is to directly change the
induced wrapper to take into account missing or out of order attributes. However, in most
of the wrapper induction systems we encountered, induced wrappers use system specific
and technical representation which is not easy to read for humans and cannot be edited
by the users.

3.3 Framework-specific Modeling Languages

The approach presented in this thesis is inspired by the use of framework-specific modeling
languages (FSMLs) to represent correct usages of different object-oriented frameworks [31].
Object-oriented frameworks allow developers to instantiate framework concepts by writing
framework completion code. A framework-specific model (FSM) represents the implemen-
tation code of the application from the framework viewpoint. It provides information about
how framework concepts are implemented in the code.

In object oriented frameworks, the instantiation of framework concepts is governed
by the application programming interface (API) of the framework. The API exposes the
programming elements and their associated rules of use to the developers, for example,
what classes to subclass, methods to call and how they should be used. The APIs often
provide several different mechanisms to implement a similar concept, for example an eclipse
[32] editor can be implemented as single-page or multipage, can register different types of
UI event listeners, and can itself be a source of events.
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Antkiewicz et al. propose that APIs and their rules actually form a domain-specific
language whose concepts are implemented and exposed through the mechanisms of the
framework’s programming language [31]. The domain-specific language that formalizes
the framework’s API concepts and constraints is called a Framework-Specific Modeling
Language (FSML). FSMLs are used to express API usages by creating a model. Each
FSML is developed by an expert familiar with a given framework. The meta-model of the
FSML is specified declaratively using cardinality-based feature models [33] and specifies
the concepts of the framework and the variability in how they can be used. Each concept
and the property of the concept is represented as a feature in the meta-model of an FSML.
A feature in an FSML usually has an associated mapping definition, which specifies how
the feature is implemented in the code. Mapping definitions are created by providing values
to several parameters, such as method signatures or super type names. These parameters
are defined in generic and reusable mapping types, such as “a method call to a method
with signature <s> in the control flow of a class <c>”, in which <s> and <c> are the
parameters. From such a mapping type, a concrete mapping definition for a feature can
be created by providing concrete values to these parameters. For example, value of s could
be given as “Applet.getParameter(String)”.

Applet <class>1

[1..1] name (String) <fullyQualifiedName>2

![1..1] extendsApplet <extendsClass: ’Applet’>3

[0..1] extendsJApplet <extendsClass: ’JApplet’>4

[0..*] parameter <callsReceived: ’String Applet.getParameter(String)’ >5

[0..*] name (String) <valueOfArg: 1>6

[0..*] providesParameterInfo <methods: ’String [ ] [ ] getParameterInfo()’>7

[1..1] overridesRequiredMethods8

<1-3>9

[0..1] init <methods: ’void init()’>10

[0..1] start <methods: ’void start()’>11

[0..1] paint <methods: ’void paint(Graphics)’>12

Figure 3.3: Applet FSML

Fig. 3.3 shows a fragment of the Java AppletFSML [31]. “An applet is a program
written in the Java programming language that can be included in an HTML page” [34].
The concepts in the Applet framework are shown as a hierarchy of features. Features with
an “!” are called essential features. Essential features imply the parent feature. Mandatory
features for example, name (line 2) are identified with the cardinality of [1..1]. In Fig.
3.3, the name (line 2) feature represents the fully qualified name of the Java class for an
applet. extendsApplet (line 3) specifies that the Applet class extends the java.applet.Applet.
extendsJApplet (line 4) specifies whether or not the applet extends java.swing.JApplet. This
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public class MyApplet extends Applet{
public void init(){
String color = getParameter("color");

}
public void start() {...}
public String [ ] [ ] getParameterInfo(){
return ....;

}
}

Applet
[1] name (’MyApplet’)
[1] extendsApplet
[1] parameter
[1] name (’color’)

[1] providesParameterInfo
[1] overridesRequiredMethods

[1] init

[1] start

Figure 3.4: Example Applet Framework-specific Model

is depicted by the cardinality for extendsJApplet [0..1].

Lines 5-6 in the Applet FSML represent HTML parameters. Applets are passed dif-
ferent parameters by HTML. These parameters are accessed by making a call to Ap-
plet.getParameter(String) and providing a name. The name in line 6 represents the name
of the parameter that will be passed to Applet.getParameter(String) (line 5). The pro-
videsParameterInfo (line 7) feature depicts whether the getParameterInfo() method has
been overridden to provide parameter information.

Group cardinality is shown as <m-n>. The group cardinality specifies the constraint on
the number of instances of children a given feature can have. The overridesRequiredMethods
(line 8-9) group specifies the rule that the Applet should override at least one of the
methods– init, start, paint. These methods are shown as sub-features. The associated
mapping definition of features is shown using < > brackets. The mapping definition
specifies the parameter name, for example, callsReceived (line 5), methods (line 10) and
the parameter value, for example, String getParameter(String) (line 5), void init() (line
10).

Framework specific models can be extracted automatically by reverse engineering the
applications that use a given framework.[35] The application code is statically analyzed
to match known patterns for features in the FSML meta-model. The existence of these
matches determines the presence of features and associated values. Fig. 3.4 shows an
example Applet code and the corresponding Framework-specific model. The framework-
specific model depicts the configuration of Applet FSML meta-model for the given code.

The work in this thesis applies similar ideas in the domain of software requirements
documents. We hypothesize that a meta-model (equivalent to FSML meta-model) can
be defined for each type of logical structure belonging to a certain group of documents.
The meta-model can also express variability, constraints on the attributes of the logical
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structures, and mapping definitions using concepts similar to the ones used in framework-
specific modelling languages. This meta-model can then be used to locate and extract the
logical structures. We present the details of our approach in the next chapter.
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Chapter 4

Framework for Logical Structure
Extraction

We propose a framework for model-guided extraction of logical structures. The framework
consists of three parts – a modeling part, document queries and an extraction tool, ET. In
the framework, a meta-model is created for each logical structure that is to be extracted.
The meta-model specifies various attributes a logical structure may have as well as car-
dinality (optional, exactly one or many) of attribute instances and variations in attribute
identifiers. The meta-model also captures the information about how the logical structure
is materialized in the document. The extraction tool, ET, consumes a meta-model and
uses document queries to extract elements from the documents. It evaluates the extracted
elements against constraints specified by the meta-model and produces only the satisfying
elements as instances of the meta-model.

4.1 Meta-Modeling

The framework uses Clafer (see Sec.2.1) to specify the meta-models. The language allows
specialization of models by means of inheritance and constraints. The meta-model in
the framework consists of three basic types: LogicalStructure, Attribute and Mapping.
The type LogicalStructure is the most abstract type for any logical structure. All logical
structures extend from the type LogicalStructure. Each logical structure is composed of
many attributes. Attributes extend from the type Attribute. Physical presentations are
modeled as Mappings. We observe that each document is made up of three primitive
building blocks; paragraph, cell (table cell) and a graphic object. All other elements are
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built using these basic building blocks. For example, a list is a collection of enumerated or
bulleted paragraphs and a column in a table is an arrangement of cells in a specific order.
We represent each basic element by a Mapping in our framework. Complex Mappings like
list, section, column in a table are composed of basic Mappings like ParagraphMapping,
CellMapping etc. The reason these presentations are called Mappings is because they map
an abstract meta-model to materialized instances in the documents.

4.1.1 Mappings

In the meta-model, a mapping is specified with the logical structure and each of its at-
tributes. The mapping provides information about the physical element in the document
that the logical structure or attribute maps to. To identify mappings, we chose a random
sample of 20 software requirements documents from our collection and manually inspected
the logical structures and attributes present in them. We identified a set of 15 physical
presentations that were commonly used throughout these documents to author the logical
structures and their attributes. We analyzed the properties of these physical presentations
and came up with the a set of 15 mappings with multiple parameters. The mappings are
are also defined using Clafer.

abstract SectionMapping : Mapping
sectionTitleText:String?
sectionTitlePattern:String?
sectionTitleStyle->LSStyle?

(a) Definition

‘SectionMapping
[sectionTitleText = “Requirements”]
[sectionTitleStyle = Bold12]

(b) Example

Figure 4.1: SectionMapping

Each mapping extends from the type Mapping and includes parameters to specify
properties of the mapping. For example, the SectionMapping, shown in Fig. 4.1a, consists
of three parameters: sectionTitlePattern, sectionTitleText and sectionTitleStyle. The “?”at
the end specifies that the parameter is optional and may or may not be specified. The
parameters of SectionMapping can be constrained to represent a set of particular sections
in the documents. For example, the SectionMapping defined in Fig. 4.1b is constrained to
represent only the sections whose title is “Requirements”and the title has a specific style
i.e. Bold12. In Clafer, ‘SectionMapping is equivalent to SectionMapping:SectionMapping
which defines a concrete clafer (SectionMapping) that has the same name as the type
(SectionMapping) it extends from.
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‘SectionMapping
[sectionTitlePattern = “Functional {Req-‘NUM’}:*"]
[sectionTitleStyle = Bold12]

Figure 4.2: SectionMapping with Title Pattern

If the section title is not consistent across modelled sections, sectionTitlePattern can be
specified as shown in Fig. 4.2. The convention used to express patterns in the framework
is similar to the one used by WHISK [24]. The patterns are composed of three regular
expressions and are of the form “regex {regex} regex”. The whole expression defines the
pattern that needs to be matched and the expression within the parenthesis specify the
portion to which the attribute maps to. Special reserved symbols, such as ‘NUM’are defined
to represent common regular expressions. They are used within (‘’) quotes in the pattern
expressions. For example, the reserved symbol ‘NUM’is equivalent to a regular expression
that will match numbers including those containing decimal points. This makes it easier
for the user to read the meta-model.

We believe that few mappings should be enough to model many different logical struc-
tures. However, if required, new mappings can be defined. The 15 mappings that were
identified were enough for modelling all the logical structures encountered in the set of
evaluated documents. These mappings are presented in Appendix A.

abstract LSStyle
bold?
italic?
fontSize->Integer

(a) Definition

Bold12:LSStyle
[bold]
[˜italic]
[fontSize = 12]

(b) Example

Figure 4.3: Style

4.1.2 Style

The style in a meta-model is represented by three properties – bold, italic and font size.
Different styles are represented by extending the basic type LSStyle which has three param-
eters bold, italic, fontSize. The bold and italic parameters are boolean parameters where
as the fontSize is an integer parameter. An example Style object is shown in Fig. 4.3b.
Semantically, it means that the element with which this style may be associated to is bold,
not italic and has a font size of 12.
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4.1.3 Meta-Models

We explain the meta-models in our framework by providing examples. The meta-model for
use cases in Fig.1.1a and Fig.1.1b are shown in Fig.4.4 and Fig.4.5 respectively. We now
explain in detail the meta-model in Fig.4.4. Semantically the meta-model reads: Instances
of logical structure UseCase1 map to a section whose title is bold and the font size of the
title is 12. UseCase1 has four attributes ID, Name, Flow and Extensions. Extensions may
or may not be present in some instances of UseCase1. ID and Name map to the title of
section the use case maps to. The portion of section title that belongs to the ID and Name
is defined by their respective patterns. Flow maps to a list and Extensions map to either a
sub-section with title “Extensions”or a text block within the section the use case maps to.

abstract UseCase1 : LogicalStructure1

‘SectionMapping2

[sectionTitleStyle = Bold12]3

ID : Attribute4

‘SectionTitleMapping5

[sectionTitlePattern=“{UC ‘NUM’} * ]”6

Name : Attribute7

‘SectionTitleMapping8

[sectionTitlePattern=“ UC ‘NUM’ {*} ]”9

Flow : Attribute10

‘ListMapping11

FlowItem : Attribute 1..*12

‘ParagraphMapping13

Extensions : Attribute ?14

xor Mapping15

‘SectionMapping16

[sectionTitleText=“Extensions:”]17

‘TextBlockMapping18

[identText=“Extension”]19

[delimiter=“:”]20

Figure 4.4: Meta-model for Use Cases in Fig.1.1a

Line 1 in the meta-model defines the logical structure to be extracted. Line 2 creates
a clafer named SectionMapping of type SectionMapping in the scope of UseCase1. This
SectionMapping defines the mapping for the logical structure. Line 3 constraints the
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sectionTitleStyle parameter of the SectionMapping clafer to refer to the clafer Bold12 that
is defined outside the scope of UseCase1. Lines 4-20 create ID, Name, Flow and Extensions
clafers of super type Attribute in the scope of UseCase1. Each attribute contains a mapping
defined within its scope.

abstract UseCase2 : LogicalStructure1

‘TableMapping2

Name : Attribute3

‘CellMapping4

[colIndex=15

rowIndex=1]6

Actor : Attribute7

‘HCellBlockMapping8

[identText=“Actor”]9

Precondition : Attribute ?10

‘HCellBlockMapping11

[identText=“Precondition”]12

xor Flow13

ProcDesc : Attribute14

‘ColumnMapping15

[colTitleText = “Process Description”]16

Action : Attribute17

‘ColumnMapping18

[colTitleText = “Action”]19

Response : Attribute20

‘ColumnMapping21

[colTitleText = “Response”]22

MainScenario : Attribute23

‘ColumnMapping24

[colTitleText = “Main Scenario”]25

Figure 4.5: Meta-model for Use Cases in Fig.1.1b

An attribute may consist of many sub-attributes that can be identified individually.
For example, the Flow in line 10 of Fig. 4.4 maps to a list. Each item of the list can be
recognized by defining a sub-attribute FlowItem in the scope of Flow. Line 12-13 show the
declaration of the sub-attribute FlowItem. Similarly, lines 14-22 in Fig. 4.5 show Process
Description with two sub-attributes – Action (Line 17) and Response (Line 20).
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Logical Variations

Logical variations in the logical structures can be modeled within the meta-model. For
example, use cases in Fig.1.1b use either the “Main Scenario” or the “ProcessDescription”
attributes to capture the Flow of a use case. This is modelled as an xor group in the
meta-model.

xor Flow13

ProcDesc : Attribute14

MainScenario : Attribute23

Logical Structures may have attributes that are optional such as preconditions or at-
tributes that may have different number of instances within one logical structure, for
example, actor in a use case. The cardinality of attributes can be specified easily by spec-
ifying the cardinality range with the definition of the attribute. The default cardinality
range for each defined attribute is [1..1], which means at least one and at most one. The
cardinality range for an optional attribute is [0..1] and can be denoted by “?”. FlowItem in
Fig.4.4 (line 12) has a cardinality range of [1..*] which means that there should be at least
one flow item but there can be many flow items. Similarly, “?” in line 14, Fig.4.4 and line
10, Fig.4.5 specifies that Extensions and Preconditions are optional.

Designed Physical Variations

Designed variations in physical presentation are modeled by having an xor group for the
mappings. For example, the meta-model in Fig. 4.4 (lines 15-20) allows Extensions to be
written either as a section or a text block.

xor Mapping15

‘SectionMapping16

‘TextBlockMapping18

Accidental Physical Variations

To overcome accidental variations, a threshold is used for both: text matching and style
matching. The thresholds range from 1 to 100 and can be specified in the meta-model itself
by including the ExtractionSettings. Fig.4.6 shows an example threshold setting. Setting
the threshold to 100 means that an exact match will be required between the text and style
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identifiers specified by the meta-model and the text and style of the document elements
being matched.

ExtractionSettings
[textMatchThreshold = 90]
[styleMatchThreshold = 70]

Figure 4.6: Example Extraction Settings

Scope for Logical Structures

Sometimes it may not be necessary to look for logical structures in all parts of the docu-
ments. For example, if we find that non-functional requirements are always written in the
appendix section of the requirements documents, we can limit the scope of our search by
providing an optional parameter lsScope for Logical Structures. Fig.4.7 shows a portion of
the meta-model for such a scenario.

abstract NonFuncReq : LogicalStructure1

‘TableMapping2

‘SectionMapping3

[sectionTitlePattern = “*Appendix*”]4

[lsScope = SectionMapping”]5

Figure 4.7: Scope for Logical Structures

Lines 2-4 create two Mapping clafers – TableMapping and SectionMapping. In line
5, the SectionMapping clafer is assigned to the lsScope parameter of the logical structure
NonFuncReq. TableMapping is automatically considered to be the mapping for logical
structure NonFuncReq. Semantically, the meta-model reads: Non functional requirements
map to a Table in the Section whose title contains the word “Appendix”. For the given
meta-model, tables found only in appendices of the documents will be included in the
search for non functional requirements. Defining lsScope may also be required when the
only thing that uniquely distinguishes between two separate types of logical structures is
the context in which their instances are found.
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abstract BusinessRule : LogicalStructure1

‘SectionMapping2

[ordered]3

........4

Figure 4.8: Order of Attributes in Logical Structures

Order of Attributes

By default, the order of attributes is not important in the meta-model. The extraction
process looks for attributes with in the scope of logical structures without the restriction
on order. However, if the order of the attributes is important to uniquely identify the given
logical structure from other structures in the documents, the ordering restriction can be
put by specifying an optional parameter ordered? of the logical structure. Fig.4.8 shows
a fragment of a meta-model for Business Rules. The ordering restriction is specified by
writing a constraint (line 3).

CollectionMapping

Some logical structures may not map to a single define-able element in a document but
map to a collection of elements in the document. Fig.4.9 shows use case instances that are
written using a combination of text-blocks and a table only. There is no single element
that the use case maps to. To model such a scenario, a special Mapping is used i.e.
CollectionMapping. Fig.4.9 also shows the meta-model for these use cases. The extraction
tool handles the CollectionMapping in a special manner. We explain that in section 4.3.1.

4.2 Document Queries

All mappings have corresponding document queries that are used to extract the docu-
ment elements modelled by the mapping. For example, the mapping ListMapping has a
corresponding document query, which can extract lists in the documents that satisfy the
parameters of the query. Each Mapping that is provided in the framework must have an
implementation of a corresponding document query and should have support for all the
parameters of the Mapping. We implemented document queries for Microsoft Word for
the 15 mappings identified in Sec.4.1.1.
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abstract UseCase3: LogStruct
‘CollectionMapping

ID : Attribute
‘TextBlockMapping
[identText=“ID”]

Name : Attribute
‘TextBlockMapping
[identText=“Name”]

Description : Attribute
‘TableMapping

Figure 4.9: Example of CollectionMapping

Before implementing queries, elements (paragraphs, lists, sections, tables etc.) in the doc-
uments need to be identified. There are two types of document elements – Basic elements
like paragraph, cell and graphics and Complex elements like sections, lists, columns etc.
We now explain how these two different types of elements are identified.

4.2.1 Basic Elements

Basic elements can be identified directly. In case of MS Word, paragraphs, tables and
graphics can be extracted directly by either using the Word API or by parsing the un-
derlying OOXML. We chose to extract individual cells rather than tables. This allowed
us to define more complex mappings over a collection of cells than was possible over a
collection of tables. Table 1 shows a summary of basic elements and their properties that
were identified.
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Properties Type Value

Paragraph
text String text of the paragraph
bold Int 0 if the entire paragraph is not bold. 1 if some parts

of paragraph are bold. 2 if the entire paragraph is
bold

italic Int 0 if the entire paragraph is not italic. 1 if some parts
of paragraph are italic. 2 if the entire paragraph is
italic

underline Int 0 if the entire paragraph is not underlined. 1 if some
parts of paragraph are underlined. 2 if the entire
paragraph is underlined

fontSize Int Font Size of the paragraph text
listIndicator Boolean True if paragraph belongs to any list. False if it

cannot be determined
rangeStart Int Start position of the paragraph relative to the start

of the document
rangeEnd Int End position of the paragraph relative to the start

of the document
indent Int left-indentation of paragraph

Cell
tableID Int ID of the table the cell belongs to

coordinates Int (x1, y1) and (x2, y2) coordinates of the cell
rangeStart Int Start position of the contents of the cell relative to

the start of the document
rangeEnd Int End position of the contents of the cell relative to

the start of the document

Graphics
ID String ID of the graphics.

caption String Text of caption on the graphic
rangeStart Int Start position of the graphics object relative to the

start of the document
rangeEnd Int End position of the graphics object relative to the

start of the document

These properties of basic elements are used by the document queries to extract relevant
elements. They are also used to identify the complex document elements.

4.2.2 Complex Elements

Complex elements such as Sections, Rows and Columns in a Table, Lists etc. cannot be
directly extracted. These complex elements are composed of basic elements. For example,
a section is an arrangement of paragraphs, tables and graphics in a specific hierarchy. The
heuristics for the identification of complex elements were developed by analyzing the the
same set of 20 documents that was used to identify Mappings (Sec.4.1.1). Properties of
basic elements are used in the heuristics. Here we present heuristics for the identification
of two complex elements, Sections and Columns.
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Section

A document can be viewed as a tree of sections. Fig.4.10 shows a small document and the
corresponding sections tree.

Figure 4.10: Section Tree

The document can be divided into sections by analyzing the style of paragraphs. The
following pseudo-code describes the creation of sections tree.
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Algorithm 4.2.1: makeSectionsTree(basicDocElements, root)

prevSection← root
for each paragraph ∈ basicDocElements

do

{
currectSection← makeSection(paragraph)
addSectionToTree(currentSection, prevSection)

return (root)

procedure addSectionToTree(currentSection, prevSection)
cStyle← currentSection.sectionT itleStyle
pStyle← prevSection.sectionT itleStyle
comparison← compareStyles(cStyle, pStyle)
if comparison > 0

then
{
addSectionToTree(currentSection, prevSection.parent)

else if comparison < 0
then

{
prevSection.children← prevSection.children + currentSection

else

{
parent← prevSection.parent
parent.Children← parent.Children + currentSection

procedure compareStyles(style1, style2)
if style1.bulletStyle > style2.bulletStyle return (1)

else if style1.bulletStyle < style2.bulletStyle return (−1)
if style1.fontSize > style2.fontSize return (1)

else if style1.fontSize < style2.fontSize return (−1)
if style1.bold > style2.bold return (1)

else if style1.bold < style2.bold return (−1)
if style1.italic > style2.italic return (1)

else if style1.italic < style2.italic return (−1)
return (0)

The comparison of bulletStyles involves comparing the bullet numbers of the para-
graphs. Fig. 4.11 shows some of the sections that can be identified by the above heuristics.
There are 3 sections in Fig. 4.11a i.e. Section A, Section B and Section A1 where Section
A1 is a sub-section of Section B. The hierarchy can be determined by comparing the style
and bullet number of the section title paragraphs. Similarly, Fig. 4.11b shows 4 different
sections. As shown, sections can be embedded inside tables as well. In Fig. 4.11b, only
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the information about styles is used to determine the hierarchy of sections whereas in Fig.
4.11c, only the information about bullet numbers is used to determine the sections and
their hierarchy.

(a) (b) (c)

Figure 4.11: Examples of sections

Column

A column is a vertical arrangement of cells. Fig.4.12a shows all the columns (5) in the
given table. The (x1,y1) and (x2,y2) coordinates of the cells are used to determine if the
cells are vertically aligned.

(a) Column in a Table (b) Coordinates

Figure 4.12
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The following pseudo-code describes the identification of columns.

Algorithm 4.2.2: makeColumns(cellArray)

output← 〈〉
for each cell ∈ cellArray

do
if cellIsNotEmpty

then



headCell← cell
nextCell← cell.next
column← 〈〉
while true

do

if nextCell.isVerticallyBelow(headCell)
and nextCell.overlapsHorizontallyWith(headCell)

then


if nextCell.isWithinHorizontalBoundariesOf(headCell)

then

{
column← column + nextCell
nextCell← cell.nextCell

else break
output← output + column

return (output)

All other complex elements are identified using similar heuristics. It is worth noting that
new document types like PDF, HTML etc. can be incorporated by providing mechanism
to extract basic elements. However, the heuristics for complex elements remain the same
and hence they need not be re-implemented.

4.2.3 Queries

Each document query executes within a given scope. The default scope for each query
is repository. The scope repository specifies that the query will be executed over all the
documents in the repository. This means that a simple SectionQuery corresponding to
SectionMapping with no parameters will return all the sections in all the documents in the
repository. The result of one query can be used as a scope of the next query. For example,
each section returned by the SectionQuery can be used as a scope for ListQuery that will
return all the lists within the provided section only.
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Appendix A presents different queries corresponding to the mappings we identified and
the document elements that are matched.

4.2.4 Partial Matching

The extraction tool uses a bi-gram similarity measure [36] to match text parameters in
the meta-model such as sectionTitleText and identText with elements in the documents.
The bi-gram similarity is computed by breaking down the two strings into bi-grams and
computing the similarity coefficient. The coefficient used is the Dice coefficient given by :

StringSimilarity = 2
|B ∩B′|
|B|+ |B′|

where B is the set of bi-grams in string 1 and B’ is the set of bi-grams in string 2.

The following coefficient is used to match two styles:

StyleSimilarity =
(b == b′) + (i == i′) + maxF−|f−f ′|

maxF

3

where b and b’ are bold parameters, i and i’ are italic parameters, f and f ’ are font sizes
of the two styles and maxF is the maximum font size. (b==b’) produces 1 if both bold
parameters are the same and 0 otherwise. For our experiments we chose maxF to be 20.

The range for both coefficients is [0,1], which is scaled to [0,100]. One factor that
restricts the value of thresholds is the similarity between attribute identifiers used in the
meta-model of the logical structures. For example, if a logical structure Use Case consists
of two attributes Preconditions and Postconditions both of which map to a text-block and
use “preconditions” and “post-conditions” for attribute identifiers, then the text similarity
between these two identifiers is 69. This limits the textMatchThreshold which cannot
be less than 70 otherwise an instance of attribute Postcondition may be identified as an
instance of Precondition. Selecting the threshold values depends on the parameters used
in the meta-model and their role in uniquely identifying the logical structures. If there are
many style parameters used without accompanying text parameters then the threshold for
style should be set to a higher value to help disambiguate instances of modelled logical
structures from other things in the documents. If the threshold is not specified in the meta-
model, a default value of 80 is used.The value 80 worked well for most of the documents
that were evaluated.
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4.3 The Extraction Tool

We implemented an interpreter for logical structure definitions in Clafer. The interpreter
is used by the extraction tool to query and reason about the meta-model. To find and
extract instances of the meta-models, an extraction tool takes as input, a meta-model, like
the one shown in Fig.4.4 and a repository containing project documentation and produces
the extracted instances as follows:

1. The algorithm begins by locating all elements in the documents that are referenced
by the mapping of the logical structure. In example meta-model Fig.4.4, all sections
that conform to the style Bold12 in the documents are located. It is important to
note that elements of interest are found using document queries corresponding to
each mapping.

2. The algorithm then traverses all the located elements (sections in the example) and
searches for attributes (ID, Name etc.) within the scope of each element (sec-
tion). The search for attribute uses the mapping defined for the attribute and its
corresponding document query. In the example, ID and Name are searched within the
title of each section being traversed. The Flow is mapped to the list element found by
the ListQuery. The scope for ListQuery is the section being traversed. Two separate
document queries – SectionQuery & TextBlockQuery are launched for theExtensions
attribute. The Extensions attribute is mapped to either a sub-section or a text-block
or nothing based on the results of the queries.

3. Moving forward, the element (section) is checked for constraints on the cardinality
of attributes as well as extra constraints specified by the meta-model (for example
order of the attributes). If all the mandatory attributes are found within the element
being traversed and the element satisfies the constraints specified by the meta-model,
it is extracted as a specialized instance of the meta-model for that logical structure.

4.3.1 Dealing with CollectionMapping

Due to the nature of CollectionMapping, it has to be treated differently. A possible im-
plementation for the collection query may take as input all the attributes that are defined
in the scope of the logical structure and search for ordered occurrences of these attributes.
However, to avoid enforcing a complete order, the collection query requires that the first
attribute defined must be in order and not optional. Based on the first attribute the
collection query divides the scope into collections. In the example presented in 4.9, the
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Figure 4.13: Identified Collection Elements in Example 4.9

collection query would search for the attribute ID by using the text-block query and di-
vide and produce collection elements as shown in Fig.4.13. From this point onwards, the
extraction process remains the same.
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Chapter 5

Evaluation

5.1 Analytical Evaluation

We now discuss the evaluation of the proposed framework in light of the requirements
determined in section 1.2.1.

1. The extraction system should work with any type of documents including Word, PDF,
HTML, etc.

Logical Structures in the framework are modelled at an abstract level of Sections,
Tables, Columns, Lists, etc. The document queries use basic (Paragraph, Cell etc.)
and complex (Section, List etc.) document elements in ignorance of the way these
elements are identified. The mechanism for the identification of basic elements must
be developed for all types (PDF, Word, HTML etc.) of documents. However, as
shown in section 4.2.2, the identification of complex elements is based on the proper-
ties of the identified basic elements and hence does not require extra work. For the
evaluation, the document queries for MS word were created but support for PDF or
HTML files can be added easily by developing mechanism for the identification of
basic PDF or HTML elements such as PDFCell, PDFParagraph, HTMLParagraph
etc. This separation of document queries from the structure of elements allows one
to specify a single meta-model, which can be used to extract instances from different
types of documents.

2. The system should allow the templates to be specified in a human-readable modelling
language.
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The framework uses Clafer to create meta-models. As shown in Fig.4.4 and Fig.4.5,
the meta-model in Clafer is easy to read and understand. Moreover, the structure of
the meta-model resembles the structures of logical structures i.e. the attributes are
defined within the scope of logical structure and attributes that appear within other
attributes are recursively defined within in the scope of parent attributes.

Logical and Physical variations can be defined easily. For example, if an attribute
has to be made optional, an addition of only a single character “?” is required in the
meta-model.

3. The system should be able to handle minor errors like spelling mistakes, style incon-
sistencies, etc.

Using the two similarity metrics for text and style matches defined in Sec. 4.2.4,
minor errors in spellings and style are overcome. The user is given an option to set
an acceptable degree of error by means of thresholds.

4. The system should be easily extendable in its capability to recognize and extract new
logical structures and presentations.

Many different logical structures such as functional requirements, feature requests,
business case etc. can be modelled using the presented approach. The approach only
requires that each logical structure be modelled using our meta-modelling specifica-
tion. The extraction tool is completely decoupled from the type of logical structures.
It only requires a valid meta-model. Therefore, the scope of the approach is not lim-
ited to software requirements documents only. This approach can be used to model
logical structures in rich text documents from any domain.

5.2 Experimental Evaluation

In this section we provide the results of the following investigations:

1. Can we model and extract logical structures from real world software requirements
documents?

2. How efficient is the extraction tool?

3. How complex are the meta-models?

4. How do instances of logical structures vary?

5. How does capturing variability affect the complexity of the meta-model?
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6. How critical is the need for a human editable meta-model?

5.2.1 Set-up of the Experiments

A total of 46 software requirements documents were collected at the convenience of the au-
thors [37]. These documents belonged to industrial systems, student projects done as part
of a course at University of Waterloo, requirements documents collected for the use case
database [38] and documents downloaded from the Internet by searching for keywords like
“Software Requirements Documents”, “SRS”, etc. 20 of these documents were randomly
selected for the analysis of logical structures and develop the foundations of the framework.

We selected a total of 36 requirements documents in MS Word format from the 46 doc-
uments we collected. The other 10 documents were not considered for evaluation because
they had very few instances of logical structures. Table 5.1 gives details about the 36
selected documents. The length of each document in terms of total number of words and
source of the documents are given in column 2 and 4 respectively. Column 3 of Table 5.1
lists contents of the documents. There are 5 documents (Doc # 21-24, 36) from industry
containing only one instance of use case, each encompassing the whole document. The rest
of the documents contain multiple instances of logical structures.

Doc # Length Content Source
1 5,239 UC, NFR, Desc UCDB
2 6,327 DO, UC, NFR, Desc UCDB
3 3,195 UC, NFR, Desc UCDB
4 2,387 BC, UC, Desc UCDB
5 2,104 BC, UC, Desc UCDB
6 2,932 DO, UC, NFR, Desc UCDB
7 4,663 UC, NFR, Desc UCDB
8 12,715 FR, UC, TM, UCD, NFR, GR Student
9 22,667 FR, UC, TM, UCD, NFR, GR, IR Student
10 23,003 FR, UC, TM, UCD, NFR, SD, IR Student
11 20,381 FR, UC, TM, UCD, NFR, GR, IR Student
12 14,147 FR, UC, TM, UCD, NFR, GR, IR Student
13 14,154 FR, UC, TM, UCD, NFR, GR, IR Student
14 12,189 FR, BReq Industry1
15 2,125 FR, BReq, BR Industry1
16 1,657 FR, BReq, BR Industry1
17 2,837 FR, BReq, BR Industry1
18 2,298 FR, BReq, BR Industry1
19 4,329 FR, BReq, BR Industry1
20 2,646 FR, BReq, BR Industry1
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Doc # Length Content Source
21 2,176 UC Industry2
22 1,319 UC Industry2
23 5,151 UC Industry2
24 5,388 UC Industry2
25 1,566 UC Internet
26 5,204 UC, Desc, IR, FR, DBR Internet
27 1,905 GR, UC, Desc Internet
28 2,441 UC, Desc, Archi Design, Proj Plan Internet
29 2,909 FR, GR Internet
30 8,328 UC, NFR, FR, Desc, Risks Internet
31 3,360 UC, FR Industry3
32 2,107 UC, Hardware Interface, FR, NFR Industry3
33 4,741 UC, Hardware Interface, FR, NFR Industry3
34 2,790 UC, NFR, GR, Desc Industry3
35 6,757 System Features, Desc, UI Industry4

Legend UC = Use Case, FR = Functional Requirement, NFR = Non-functional
Requirement, Desc = Description of the System, IR = Interface Require-
ment, GR = General Requirement, UI = User Interface Specification, BR
= Business Rule, BReq = Business Requirement, UCD = Use Case Diagram

Table 5.1: Documents Used in Evaluation

The interpreter for logical structure definitions in Clafer, the extraction tool and doc-
ument queries are implemented in C#. All experiments were executed on a laptop with a
Core Duo 2 @2.26 GHz processor and 4GB of RAM, running Windows.

We evaluated different aspects of the framework by creating meta-models for 33 logical
structures. The meta-models were created using an iterative process. For each set of
logical structures, we began by taking a few example instances and created a meta-model
that conformed to those instances. The meta-model was then fed to the extraction tool.
The output of the extraction tool was manually inspected to identify the instances missed
by the extraction tool. The meta-model was refined to incorporate the variability that
led to the exclusion of those instances from the results. The process was repeated until
the maximum recall and precision was obtained for each meta-model. The results of the
extraction tool were outputted as an XML file that contained information about all the
instances of logical structures and their attributes that were recognized in the provided data
set. The XML also had information about the document name and character location of
the recognized instances. To help ease the process of manual inspection, the recognized
instances were highlighted in the actual documents. To help distinguish between different
attributes instances and view their start and end boundaries, varying colors were used for
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Figure 5.1: Recognized Use Cases in Fig.1.1a

highlighting attributes. Fig. 5.1 shows the highlighted parts after the extraction tool was
run on the example use cases in Fig. 1.1a with the meta-model in Fig. 4.4.

5.2.2 Evaluation

We now provide details of the relevant experiments we conducted to investigate the ques-
tions outlined above. We present and discuss the results of our experiments.

5.2.3 Can we model and extract logical structures from real
world software requirements documents?

As explained above, the meta-models were created in an iterative manner by looking at
example instances, creating and refining the meta-model instances until all instances of
the meta-model were retrieved accurately or a point was reached where refining the meta-
model further was not possible. Given a meta-model for a logical structure with many
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attributes, each retrieved item can be either

• an instance of the logical structure with all its attributes correctly recognized

• an instance of the logical structure some of whose attributes are not recognized
correctly

• an item that is not an instance of the logical structure

The recall [39] is defined as :

recall =
|T ∩R|
|T |

where

T = the set of all the instances of a given logical structure
R = the set of items that were retrieved

Precision is defined at two different levels: at the level of the instance of the logical structure
(precisionl) and at the level of attributes of the logical structure (precisiona)

precisionl =
|T ∩R|
|R|

precisiona =
|C ∩ I|
|I|

where

T = the set of all the instances of a given logical structure
R = the set of items that were retrieved
C = the set of instances with all their attributes recognized correctly
I = the set of retrieved instances

The precision and recall for each meta-model for respective logical structure is shown in
Table 5.2. Table 5.2 also shows the type of logical structure (column 2) for which the
meta-model was created and the documents used (column 3) in the testing set for each
meta-model. The information about the content of these documents is shown in Table 5.1.
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Meta-Model LS Doc # Recall Precisionl Precisiona

MM1 UC 1 1 1 1
MM2 NFR 1 1 1 1
MM3 UC 2 1 1 1
MM4 NFR 2 1 0.87 1
MM5 DO 2 1 1 1
MM6 UC 3 1 1 1
MM7 NFR 3 1 1 1
MM8 UC 4 1 1 1
MM9 UC 5 1 1 1
MM10 UC 6 1 1 1
MM11 NFR 6 1 1 1
MM12 DO 6 1 1 1
MM13 UC 7 1 1 1
MM14 UC 1-3,6-7 1 1 1
MM15 UC 21-24,36 1 1 1
MM16 BR 14-20 0.97 1 1
MM17 FR 14-20 1 1 1
MM18 UC 25 1 1 1
MM19 UC 26 1 1 1
MM20 UC 27 1 1 1
MM21 UC 28 1 1 0.86
MM22 FR 29 1 1 1
MM23 UC 30 1 1 1
MM24 UC 8 1 1 1
MM25 UC 9 1 1 1
MM26 UC 10 1 1 1
MM27 UC 11 1 1 1
MM28 UC 12 0.95 1 1
MM29 UC 13 1 1 1
MM30 UC 31 0.83 1 1
MM31 UC 32-33 1 1 1
MM32 UC 34 1 1 1
MM33 SF 35 1 1 0.86
Legend UC = Use Case, NFR = Non-functional Requirement, BR

= Business Rule, DO = Data Object, FR = Functional Re-
quirement, SF = System Feature

Table 5.2: Recall and Precision of the extraction
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Comments about Recall

The recall for meta-model 16 (MM16) was only 97% because one instance of the logical
structure, Business Rule in this case, was missed. The presentation of the business rule
was completely broken due to a human error and therefore the business rule was not recog-
nizable. In MM28, a single instance of use case was missed because one of the mandatory
attributes of that instance could not be properly recognized. A single instance of use case
was missed in MM30 because the method for identifying sections failed. It is important
to note that this failure was caused by the failure of the SectionMapping rather than the
failure of the extraction process or the meta-modeling logic.

Comments about Precisionl

The precisionl for MM4, is less than 100% because an item was incorrectly retrieved as
an instance of the functional requirement. The item was actually a part of the glossary
section but had the same style and parameters as that of the functional requirement. It
was not possible to make a distinction purely on the basis of structure and template.

Comments about Precisiona

One attribute in one instance of MM21 was not recognized properly due to the failure of
SectionMapping. There were 4 instances of the meta-model 33 for which the sub-attribute
(Functional Requirement) was incompletely retrieved. The authors of the document had
broken the sentences and indented them to appear together. Identifying them as one chunk
requires semantic analysis which is not included in the heuristics for our Mapping Queries.

The good precision and recall indicates that our framework is indeed suitable for the
extraction of logical structures from software requirements documents.

5.2.4 How efficient is the extraction tool?

To measure the efficiency of the extraction tool, we recorded the amount of time it took to
retrieve all the instances of a given logical structure. Table 5.3 provides extraction time in
milliseconds for all meta-models. The time shown does not include the time taken to read
the document into memory. As shown, the extraction time for most of the meta-models
was less than 2 seconds which is good for practical purposes. The maximum time taken is
for logical structure 14. The logical structure had 115 instances spread across 5 documents.
However, the time taken (12 seconds) is still reasonable for practical purposes.
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MM# Size of
Search
Space

# of Instances # of
Attributes

Avg Size of
Instances

Extraction
Time (ms)

MM1 5239 18 11 190 1641
MM2 5239 9 6 45 453
MM3 6327 37 11 114 1141
MM4 6327 6 3 19 828
MM5 6327 21 5 76 625
MM6 3195 15 12 128 718
MM7 3195 5 3 46 156
MM8 2387 13 4 104 796
MM9 2104 12 8 79 391
MM10 2932 17 12 108 515
MM11 2932 4 3 34 218
MM12 2932 4 5 55 375
MM13 4663 29 11 121 1891
MM14 26847 115 13 120 12453
MM15 15292 5 10 3058 1375
MM16 28081 33 2 27 921
MM17 28081 296 2 23 2781
MM18 1566 8 14 182 500
MM19 5204 11 11 174 578
MM20 1905 4 6 86 359
MM21 2441 7 8 121 484
MM22 2909 6 2 87 297
MM23 8328 28 9 146 563
MM24 12715 8 10 296 1031
MM25 22667 21 11 313 797
MM26 23003 22 10 427 823
MM27 20381 30 9 156 971
MM28 14147 20 10 269 875
MM29 14154 29 10 329 953
MM30 3360 6 3 234 918
MM31 6848 14 1 76 512
MM32 2790 9 3 74 856
MM33 6757 21 8 193 1768
Total n/a 883 246 n/a n/a

Table 5.3: Size of Search Space, Instances of Logical Structures and Extraction Times

The time it takes to extract all instances of a logical structure depends on a lot of
factors. These factors include the number of instances, the number of attributes, the size
of the documents scanned (search space), the size of extracted instances and the mapping
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used in the meta-model. Table 5.3 shows details about each meta-model and the instances
of the meta-model. The size of search space and average size of the instances is calculated
in term of number of words. The factor that most affects the extraction time is the total
size of the search space and the total size of the extracted instances (extraction space).
To demonstrate that, we calculated the sum of search space and extraction space for each
meta-model and then sorted the extraction times according to the total size. Fig.5.2 shows
the extraction times sorted by the total size(search space + extraction space). The lower
x-axis denotes the meta-model number and the upper x-axis denotes the total size.

Figure 5.2: Extraction Times Sorted by Total Size (search space + extraction space)

As shown by Fig.5.2, the extraction time more or less increases as the sum of the total
size of the search space and the total size of extracted instances increases. However, it
is important to note that there are other factors such as the type of mappings and their
associated number of parameters used in each meta-model that can affect the extraction
time. The type of mapping affects the extraction time because the time taken to identify
basic and complex element types is different for each element type.

5.2.5 How complex are the meta-models?

We measure the complexity of the meta-models by the number of lines used to specify them.
There are many factors that determine the size of the meta-model. These factors include
the number of attributes and variability in the logical structures, the extent to which
details about the logical structure are modelled, the kind of Mapping and the number
of Mapping parameters used. Different Mappings have different number of parameters
and hence affect the size of the model differently. Each logical structure can be modelled
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with a different degree of details, for example the information about the style used may
or may not be modelled depending on the importance of style in uniquely identifying the
logical structure. The number of false positives reduce as more details are encoded in the
meta-model. Fig.5.3 shows information about the number of attributes in the meta-models
and the meta-model size. The upper x-axis denotes the number of attributes. The lower
x-axis denotes the meta-model numbers sorted in increasing number of attributes. The
y-axis shows the size of the meta-model in terms of number of lines used to write the
meta-model.

Figure 5.3: Size of the Meta-Models Sorted by No. of Attributes

Fig.5.3 shows that increasing the number of attributes does not introduce more complexity
in the size of the meta-model than is introduced by the attribute itself. The maximum size
of logical structures (52 Lines) is also acceptable for human viewing.

5.2.6 How do instances of logical structures vary?

We inspected each instance of each logical structure manually to observe the variability
present in them. Table 5.4 shows the variability divided up into three categories – the num-
ber of attributes with variable cardinality which includes optional attributes, the number
of attributes with designed physical variations which included alternate mappings and the
number of accidental variations found in the instances of attributes. The accidental vari-
ations include the number of spelling mistakes and the number of style mistakes. There
was only one meta-model, MM27, that used different attributes (flow, action-response
description) to capture the same conceptual attribute.
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MM# Num of
Attributes
With Varaible
Cardinality

Num of Attributes
With Designed
Variations

Accidental
Variations

MM1 3 0 1
MM2 0 0 0
MM3 1 0 1
MM4 2 0 1
MM5 1 1 0
MM6 2 0 0
MM7 0 0 0
MM8 1 0 0
MM9 3 1 1
MM10 2 0 2
MM11 0 0 0
MM12 0 0 0
MM13 2 0 0
MM14 6 1 4
MM15 3 2 2
MM16 0 2 1
MM17 0 0 0
MM18 1 0 0
MM19 2 1 1
MM20 0 0 0
MM21 1 0 2
MM22 0 0 2
MM23 2 0 0
MM24 2 0 0
MM25 2 0 0
MM26 5 0 0
MM27 3 0 2
MM28 3 0 3
MM29 2 0 0
MM30 0 0 2
MM31 0 0 0
MM32 0 0 0
MM33 3 0 4
Total 52 8 29

Table 5.4: Variability in the Instances of Logical Structures

The table shows that there are significant number of logical variations found in the
logical structures. Out of the 33 logical structures, 22 had at least one attribute that

49



was optional or had varying cardinality associated with it. The 33 meta-models had a
total of 246 attributes, out of which 52 attributes were either optional or had a different
cardinality. The variations in Mapping are not common with a total of only 8 attributes
having a variation in their mapping. Out of the 8 such attributes, 3 attributes had dif-
ferent presentations (for example SectionMapping and TextBlockMapping), 3 had variable
patterns for attribute ID (for example Numeric only and Alpha-Numeric) and 2 had vari-
able patterns for attribute Name across instances. We also found a notable amount of
accidental variations. The measurements shown in Table 5.4 are consistent with our initial
observation about the subset of the data. These are significant variations that make the
job of extracting logical structures non-trivial.

5.2.7 How does capturing variability affect the complexity of the
meta-model?

We conducted the following experiment to investigate how capturing variability affects the
complexity of the meta-model.

A single random instance of each logical structure was selected to create an initial
meta-model for the logical structure. The number of lines were noted and the meta-model
was used for extraction. Based on the extraction results, the meta-model was refined
and the extraction was repeated until maximum recall and precision was achieved. The
final meta-model was compared with the initial meta-model to note the changes in size
and the refinements performed. The whole experiment was repeated twice more with one
difference. For the second experiment, the best instance rather than a random instance
was chosen from the instances of the logical structure. The best instance was considered
to be the one that had the most number of optional attribute instances present. For the
third experiment, the worst instance rather than a random instance was chosen from the
instances of the logical structure. The worst instance was considered to be the one with
the least number of optional attribute instances present.

Fig.5.4 shows the difference in size of the initial and final meta-model for the best,
random and worst case. The difference is shown as percentage of the size of the initial
meta-model. The logical structures whose instances had no variability are skipped. The
lower x-axis denotes the meta-model number and the upper x-axis denotes the size of the
initial meta-model. The size change was dependent on the type of changes made. The
most change occurred when the initial meta-model did not contain an optional attribute
and the attribute had to be added while refining the meta-model. In MM14, 3 attributes
had to be made optional (an addition of “?” to 3 lines), 2 attributes had to be added (an
addition of 8 lines) and one alternating mapping was added (an addition of 3 lines) in the
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Figure 5.4: Change in Size of Meta-Models after Refinement

random case.
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Figure 5.5: Nature of Edits during Refinement

Fig.5.5 presents the nature of edits that were made between the initial and final meta-
models and their respective count. The count shown is the total count of edits across all
the meta-models for the random case in the above experiment. Most of these edits were an
addition of a single character “?”. The character was added to make an attribute defined
in the initial meta-model optional. The second most edits were made to add a missing
attribute to the initial meta-model.

Fig.5.4 and Fig.5.5 show that the size of the meta-models does not change significantly
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while capturing the variability and most of the edits required to capture variability are
easy to make. Hence it is feasible for a user to update the meta-model in order to capture
different types of variability.

5.2.8 How critical is the need for a human editable meta-model?

Building the meta-model from scratch requires a significant understanding of the frame-
work. The future work will focus on the induction of these meta-models from some exam-
ples. As explained in Sec. 1.2.1, it would not be possible to capture all of the variability
by using only a few example instances. It would be a lot easier to manually modify the
induced template to specify which attributes are optional (by just adding “?”) and vari-
ability in the presentations (by specifying another mapping type). To motivate the case
for a human readable and editable meta-model, we investigated that if there were an in-
duction system for meta-models which did not allow editing, how many instances would
be required to completely capture the variability. The following experiment was conducted
for the investigation.

A random instance was picked from the set of all instances of a given logical structure.
The instance was used to create the meta-model of the logical structure. The meta-model
was used to extract other instances of the logical structure and the precision and recall was
noted. The single random instance chosen did not capture any variability present in the
instances and therefore the recall and precision were less than the maximum possible. Next,
two random instances were selected from the set of all instances of that logical structure
to create the meta-model and the extraction was repeated. If precision and recall were
not equal to the maximum possible, the meta-model was further refined. The process was
repeated picking one more instance than on the previous occasion until the meta-model
was good enough to extract instances with maximum precision and recall. The number of
instances it took to get to the final meta-model was noted. The whole process was repeated
five times for each logical structure in our set of 33.

Fig.5.6 shows the median number of instances taken to get to the final meta-model over
5 iterations. The lower x-axis shows the meta-model number and the upper x-axis shows
the total number of instances for each logical structure.

As shown by Fig.5.6, some meta-models, such as MM14, MM26, MM28, require a
significant number of example instances to fully capture the variability present in their
instances. In the case of MM26 and MM28, the number of example instances constitute
almost 50% of the total number of instances. It may not be feasible to provide half the
number of desired instances as examples in order to extract the rest of them. It should be

52



Figure 5.6: Median % of Instances

noted that the accidental physical variations were ignored in the above experiment. If we
include the accidental variations, the median number of required instances would likely go
up. Given that most of the variability is due to optional attributes which can be considered
expert knowledge, it would be more feasible to induce the meta-model from a couple of
examples and then edit it to incorporate the variability.

5.3 Threats to Validity

We now discuss the threats to validity of the experiments conducted, the results obtained
and the limit to generalization. In particular, we discuss the threats to internal and
external validity and the measures taken to minimize such threats.

5.3.1 Threats to Internal Validity

Threats to internal validity relate to unexpected sources of bias that may compromise the
design and analysis of the study [40]. The main threats to internal validity of our study
are the methods used to record measurements. The recall and precision may be influenced
by the inclusion of a false negative, which makes the recall appear higher and the exclusion
of a false positive which makes the precision appear higher. To minimize these threats,
the results of the experiments were manually verified by looking at highlighted and missed
instances in the documents and manually scanning the output XML to verify extraction
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of attributes.

5.3.2 Threats to External Validity

Threats to external validity relate to the extent to which the conclusions can be generalized
[40]. We identified a set of 15 mappings that were enough to model logical structures in the
documents we evaluated. However, there is no claim that the same set of mappings will be
enough to model all logical structures belonging to all sorts of documents. The precision
and recall of our results was based on these mappings. Therefore, we claim that the same
level of precision and recall can only be expected if logical structures are modelled using
the mappings we identified.

Another threat to external validity relates to the design of the study. Ideally, the
data set for the study should be divided into two separate sets – the training set and
the evaluation set. In the study, we used a randomly chosen subset of the data set to
develop our technique but presented results over the entire data set. However, results for
each individual item in the data set were presented including those that were used for the
initial development and those that were used later. The results show an equal amount
of precision and recall between the two, indicating that the identified mappings and the
extraction process were applicable to the new encountered documents.
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Chapter 6

Conclusion

The ability to recognize and extract logical structures such as use cases, functional and
non requirements, system features, etc. from software requirements documents is critical
for the coherence of sophisticated requirements management and traceability tools and
general purpose rich-text editors. The thesis has identified a set of features necessary for
any practical logical extraction system. The proposed framework satisfies the requirements
identified in Sec.1.2.1. The thesis has provided evidence that logical structures and vari-
ability in their templates can be naturally and concisely modelled using the mappings that
were identified. It has also shown that, using the extraction tool included in the framework,
different logical structures can be extracted with high precision and recall, each close to
100%. The performance of the extraction tool is acceptable for fast extraction of logical
structures from documents with extraction times ranging from a few milliseconds to a few
seconds.

The performance of the framework is based on the performance of several key compo-
nents. We now discuss their limitations and future work that is needed to address these
challenges.

6.1 Limitations and Future Work

One of the basic assumptions is that a consistent template with slight variations is usually
followed across a single project allowing us to build a meta-model from very few examples
and extract the rest of the instances. The framework would be unable to handle situations
where no template is followed across the project or when documents are extremely incon-
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sistent in presentation. However, we believe that such a case is unlikely in the professional
environment of industry.

6.1.1 Document Queries

We assume that document queries can be written for all presentations. If a document query
cannot extract elements from the document with significant accuracy, our system may not
be as applicable. The performance of document queries is based heavily on the correctness
of the identification of complex document elements. As discussed in the evaluation, there
are cases when the heuristics for identification of complex document elements fail. There
are two broad reasons for the failure of complex element identification. First, the document
may not have enough style information to distinguish between different elements. Second,
the style information presented did not fit the rules defined by the heuristics.

In the first case, the document can be considered free running text and information
extraction from unstructured text becomes a separate problem altogether. The problem
can be solved by using a text segmentation approach that analyzes the natural language
and determines the boundaries of semantically related information [41]. A probabilistic
model is usually built using domain specific examples to classify passages in the text.
However, such a solution will not be as robust and would require extensive training on
different examples for different logical structures.

In the second case, the identification rules that use the style and structure information
can be learnt from a large set of example elements rather than being hand coded. Some
work has already been done to determine elements in HTML documents that are not
defined using proper tags [42, 43]. A probabilistic model is built from examples and is
used to extract structures from the text. The technique in [44] incorporates domain specific
vocabulary along with structural cues to improve section recognition in medical reports.

In future, these techniques can replace the heuristics for the identification of complex
document elements. However, because of the separation of queries from the identification of
document elements and meta-models from queries in our system, the rest of the framework
will remain the same.

6.1.2 Learning Meta-Models from Examples

Although Clafer provides an easy and powerful notation to write meta-models for extrac-
tion, it may not be feasible for non-technical users to write models directly. Therefore, it
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is important to have a mechanism where a user tags examples and the meta-model is built
from those examples. Ideally, the tool should learn everything from tagged examples but
this may not be practical because of two reasons.

1. Such a tool would require a lot of examples to create the model, which is not practical
for real situations. The users cannot be required to provide many examples, as it
would take a lot of time and defeat the whole idea of automation.

2. To correctly model certain aspects, like an attribute being mandatory or optional,
varying examples covering all possible situations must be tagged and used. Choosing
a representative sample is a difficult task that requires deep knowledge about the
tool and more importantly extra time.

Therefore we envision a tool which can do three things: learn a meta-model from a few
examples, improve the meta-model if more examples are input, and provide a natural
interface for users to edit the meta-model. Using Clafer for modelling has the advantage
of providing a concise and simple notation to allow edits to the inferred model.

In our envisioned tool, the user would begin by specifying the logical structure for which
they are training the system and highlight attributes in the documents. The tool would
automatically build a meta-model with appropriate attribute identifiers and mappings.
An inspiration for such a tool is Thresher [45] which is a browser plug-in used to learn
and extract required information from arbitrary Websites. The induction of the meta-
model from examples involves determining the attributes, attribute cardinality, alternate
mapping groups, and inducing pattern parameters, such as sectionTitlePattern, involved
in the mappings. Techniques similar to [46] can be used to determine the attributes and
mapping groups. A wrapper induction system like WHISK can be used to identify the
pattern parameters. While wrapper induction is not suitable for capturing complete logical
structures, WHISK will be useful in determining single line patterns.
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Appendix A

The following sub-appendices provide details about the Mappings we identified and used
in the experiments. Each sub-appendix provides the description of the Mapping, its Clafer
definition and the functionality of the associated query. The parameters of the queries
are shown with the query. The underlined parameters are mandatory parameters for the
queries and must always be given. Other parameters are optional and may or may not be
given.

A.1 ParagraphMapping

The ParagraphMapping is used to map to paragraphs in the documents. A paragraph may
contain multiple lines of text.

Clafer Definition:

ParagraphMapping:Mapping
style -> LSStyle ?
pattern:String ?

ParagraphQuery (scope, style, pattern)

If no parameter is provided, the query extracts all the sections in the given scope. If pattern
is specified, only the paragraphs that match the given pattern will be matched. If style is
specified, only the paragraphs matching the given style will be matched.
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A.2 ParagraphPartMapping

ParagraphPartMapping is used when some attribute maps to a part of the paragraph. The
pattern must be of the form expression regex1 {regex2} regex3 where regex1-3 are optional.

Clafer Definition:

ParagraphPartMapping:Mapping
pattern:String

ParagraphPartQuery (scope, pattern)

The paragraphpart query applies the given pattern to all the paragraphs in the scope. The
fragment of each matching paragraph that matches the given regex2 is extracted.

A.3 TextBlockMapping

It is used to map to text-block structures in the documents. The textblock structure looks
like the following:

Identifier [delimiter] Value

The following is an example of a text-block where ’name’ is the identifier and ’Rehan’ is
the value:

Name : Rehan

Clafer Definition:
TextBlockMapping:Mapping

identPattern:String?
identText:String?
delimiter:String

TextBlockQuery (scope, identPattern, identText, delimiter)

The query matches all the text-blocks of the above mentioned form. One of identPattern or
identText must be provided. The delimiter cannot be part of the identPattern or the ident-
Text. The query matches all text-block whose identifier matches the given identPattern or
identText.
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A.4 SectionMapping

It is used to map to sections or subsections. For our purposes, we dont make a distinction
between sections and sub-sections. We consider sub-sections to be sections within another
section.

Clafer Definition:

SectionMapping:Mapping
sectionTitlePattern:String ?
sectionTitleText:String ?
sectionTitleStyle->LSStyle ?

SectionQuery (scope, sectionTitlePattern, sectionTitleText, sectionTitleStyle)

If no parameters are given, the section query extracts all the sections in the given scope.
If sectionTitlePattern is provided, only the sections whose title matches the given pattern
are extracted. If sectionTitleText is provided, only the sections whose title matches the
given text are extracted. Only one of these two parameters can be given at one time.
If sectionTitleStyle is provided, only the sections whose title matches the given style are
extracted.

A.5 SectionTitleMapping

It is used to match either the whole section title or part of the section title. The pattern
must be of the form expression regex1 {regex2} regex3 where regex1-3 are optional.

Clafer Definition:

SectionTitleMapping:Mapping
identPattern:String?

SectionTitleQuery (scope, identPattern)

If the identPattern is provided, the section-title query applies the given identPattern to
the title of each section in the scope. The fragment of each matching title that matches
the given regex2 is extracted. If no identPattern is provided, the query extracts the title
of each end every section in the given scope.
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A.6 ListMapping

It is used to match enumerated or bulleted lists in the documents. A list with a title
is quite like a section. The difference is that each element in the list must be either an
enumerated or bulleted paragraph. In the section, there is no such restriction.

Clafer Definition:

ListMapping:Mapping
listTitlePattern:String ?
listTitleText:String ?
listIdentLevel:Integer ?
listTitleStyle->LSStyle ?

ListQuery (scope, listTitlePattern, listTitleText, listTitleStyle)

If no parameters are given, the list query extracts all the lists in the given scope. If
listTitlePattern is provided, only the lists whose title matches the given pattern are ex-
tracted. If listTitleText is provided, only the lists whose title matches the given text are
extracted. Only one of these two parameters can be given at one time. If listTitleStyle is
provided, only the lists whose title matches the given style are extracted. The parameter
listIndentLevel can be used to extract sublists within the lists.

A.7 DocumentMapping

The DocumentMapping is used to map to entire documents.

Clafer Definition:

DocumentMapping:Mapping
namePattern:String ?

DocumentQuery (scope, namePattern)

If namePattern is specified, the document-query matches only those documents whose
name matches that pattern. This may be used to restrict the search to a certain set of
documents in the repository
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A.8 DocumentTitleMapping

It is used to match either the whole document title or part of the document title. The
pattern must be of the form expression regex1 {regex2} regex3 where regex1-3 are optional.

Clafer Definition:
DocumentTitleMapping:Mapping

style->LSStyle?
identPattern:String?

DocumentTitleQuery (scope, style, identPattern)

The search for document titles is limited to the first page of the document. Each paragraph
in the first page is scanned and the ones with heavier styles are selected as document title.
If the identPattern is provided, the document-title query applies the given identPattern
to each paragraph in the title of each document found in the provided scope (which may
be repository or a document) and extracts the fragment of each matching paragraph that
matches the given regex2. If style is provided, only the paragraphs in the title matching
the given style are considered for extraction. If no pattern is provided, all the filtered
paragraphs in the title page are extracted.

A.9 CellMapping

The CellMapping is used to map to table-cells in the documents. A cell may contain
multiple paragraphs, graphics, lists, sections etc.

Clafer Definition:
CellMapping:Mapping

colIndex:Integer ?
rowIndex:Integer ?
contentStyle->LSStyle ?

CellQuery (scope, style, pattern)

If no parameter is provided, the query extracts all the cells of all the tables in the given
scope. If colIndex or rowIndex is provided, only the cells that have the specified column
index or row index are extracted. If contentStyle is specified, only cells whos content has
the specified style are matched.
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A.10 TableMapping

The TableMapping is used to map to complete tables in the documents. The table heading
can be provided. The following two forms of table heading are recognized:

Table Heading
X X
X X
X X

(a) Outside the Table

Table Heading
X X
X X
X X

(b) In the first Row

Clafer Definition:

TableMapping:Mapping
headingText:String ?
headingPattern:String ?
headingStyle->LSStyle ?

TableQuery (scope, headingText, headingPattern, headingStyle)

If no parameters are given, the table-query extracts all the tables in the given scope. If
headingPattern is provided, only the tables whose heading matches the given pattern are
extracted. If headingText is provided, only the tables whose heading matches the given text
are extracted. Only one of these two parameters can be given at one time. If headingStyle
is provided, only the tables whose heading matches the given style are extracted.

A.11 HCellBlockMapping

The HCellMapping is used to map to horizontal blocks of two cells in the tables. A
horizontal cell block structure is of the following form:

Identifier Value
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HCellBlockMapping:Mapping
identText:String ?
identPattern:String ?
identStyle->LSStyle ?

Clafer Definition:

HCellBlockQuery (scope, identText, identPattern, identStyle)

If identPattern is provided, only the cell-blocks whose identifier matches the given pattern
are extracted. If identText is provided, only the cell-blocks whose identifer matches the
given text are extracted. Only one of these two parameters can be given at one time and
one of these must be given. If identStyle is provided, only the cell-blocks whose identifier
matches the given style are extracted.The scope for cell-block query can contain multiple
tables. In that case, matching cell-blocks from all tables will be extracted.

A.12 VCellBlockMapping

The VCellMapping is used to map to vertical blocks of two cells in the tables. A vertical
cell block structure is of the following form:

Identifier
Value

Clafer Definition:

VCellBlockMapping:Mapping
identText:String ?
identPattern:String ?
identStyle->LSStyle ?

VCellBlockQuery (scope, identText, identPattern, identStyle)

If identPattern is provided, only the cell-blocks whose identifier matches the given pattern
are extracted. If identText is provided, only the cell-blocks whose identifer matches the
given text are extracted. Only one of these two parameters can be given at one time and
one of these must be given. If identStyle is provided, only the cell-blocks whose identifier
matches the given style are extracted. The scope for cell-block query can contain multiple
tables. In that case, matching cell-blocks from all tables will be extracted.
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A.13 ColumnMapping

The ColumnMapping is used to map to columns tables in the documents. The following
two forms of columns are recognized:

X X X X X
X Identifier X
X val val ... X
X val val ... X

(a)

X X X X
X Identifier X
X val X
X val X

(b)

Clafer Definition:
ColumnMapping:Mapping

identText:String ?
identPattern:String ?
identStyle->LSStyle ?

ColumnQuery (scope, identText, identPattern, identStyle)

If identPattern is provided, only the columns whose identifier matches the given pattern
are extracted. If identText is provided, only the columns whose identifer matches the given
text are extracted. Only one of these two parameters can be given at one time and one of
these must be given. If identStyle is provided, only the columns whose identifier matches
the given style are extracted. The scope for column-query can contain multiple tables. In
that case, matching columns from all tables will be extracted.

A.14 RowMapping

The RowMapping is used to map to rows tables in the documents. The following two forms
of rows are recognized:

Clafer Definition:

RowQuery (scope, identText, identPattern, identStyle)

If identPattern is provided, only the rows whose identifier matches the given pattern are
extracted. If identText is provided, only the rows whose identifer matches the given text
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X X X X X
Identifier val val val val

X X X X X
X X X X X

(a)

X X X X X
Identifier val val val val

val val val val
X X X X X

(b)

RowMapping:Mapping
identText:String ?
identPattern:String ?
identStyle->LSStyle ?

are extracted. Only one of these two parameters can be given at one time and one of these
must be given. If identStyle is provided, only the rows whose identifier matches the given
style are extracted. The scope for row-query can contain multiple tables. In that case,
matching rows from all tables will be extracted.

A.15 GraphicMapping

It is used to match graphic objects such as clip-art and picture in the documents.

Clafer Definition:

GraphicMapping:Mapping
caption:String?

GraphicQuery (scope, caption)

If caption is not provided, the query extracts all the graphic objects in the given scope.
If caption is provided, only the graphics whose caption matches the given caption are
extracted.
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