
A Simplified Method for Hedging

Jump Diffusions

by

Wenjie Xiao

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2010

c© Wenjie Xiao 2010



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Geometric Brownian Motion (GBM) and has been widely used in the Black Scholes option-

pricing framework to model the return of assets. However, many empirical investigations

show that market returns have higher peaks and fatter tails than GBM. Contrary to the

Black Scholes model, an option-pricing model which contains jumps reflects the evolution

of stock prices more accurately. Therefore, hedging a model under jump diffusion would

be desirable. This thesis develops a simplified method for hedging jump diffusions.

In order to hedge the jump risk, other instruments besides the underlying asset must

be used in the hedging procedure. We start with a the Partial Integro Differential Equa-

tion (PIDE) that models contingent claims with jumps and consider a dynamic hedging

strategy that uses a hedging portfolio with the underlying asset and liquidly traded op-

tions. We introduce a simple hedging method, where, at each rebalance time, we minimize

the instantaneous jump risk by finding proper weights for the underlying asset and in-

struments.

We use a simulation method to test our approach using a Truncated SVD method

to solve the linear system of equations resulting from our minimization procedure. Our

results indicate that the proposed dynamic hedging strategy provides sufficient protection

against diffusion and jump risk.

The method also provides a firm theoretical basis for a method which is used in

practice.
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Chapter 1

Introduction

1.1 Overview

Minimizing risk by using hedging instruments is a well-known problem. In a complete

market, where no jumps occur, the standard Black-Scholes analysis assumes that risk can

be eliminated by using a continuously re-balanced delta hedge. However, if the underlying

process is a jump diffusion, then a market consisting of the underlying asset and a bond

is no longer complete. Consequently, the standard delta hedge will not result in an

instantaneously risk-free portfolio. A random gain or loss will be produced if we simply

use the delta hedging strategy.

1.2 Previous Work

1.2.1 Model

The Black-Scholes model with constant volatility has been commonly used because it is

easy to implement. However, this model does not reproduce the volatility smile typically

seen in real option prices. In order to improve the Black-Scholes model, a volatility surface

[2] is often used. However, a volatility surface cannot account for sudden jumps in asset

prices. For example, recent stock market crashes are obviously not consistent with a

1



Geometric Brownian Motion (GBM) model. A more powerful model which allows jumps

is needed.

The most general form of a model which allows jumps is a Lévy process [18, 19]. In

this work, we restrict our attention to a finite activity Lévy process. The finite activity

Lévy model is also known as jump diffusion model [18, 19]. Anderson and Andreasen [1]

showed that a jump diffusion model with a local volatility surface is able to produce a

good fit to S&P 500 option prices. In spite of this, jump diffusion models are not widely

used. The pricing equations are more complex and, in theory, we need an infinite number

of hedging instruments to complete the market.

1.2.2 Pricing the Portfolio

Efficient ways to estimate the price of derivative securities (e.g,, options), where the

underlying assets follow a jump diffusion process have been discussed in several papers.

A tractable option pricing model, which is valid even when jump risk is systematic, has

been developed by Bates in 1988 [8]. Andersen and Andreasen [1] developed the idea of

combining a deterministic local volatility approach with lognormally distributed Poisson

jumps and constant parameters. They pointed out the following advantage in their paper

“ . . . by letting the jump-part of the process dynamics explain a significant

part of the volatility smile/skew, we generally obtain a ‘reasonable’, stable

[deterministic volatility] function, without the extreme short-term variation

typical of the pure diffusion approach” [1].

However, if we remove the assumption of constant local volatilities, there is no existing

analytic method that can be applied directly to price the options under a jump diffusion

model, even for simple European options. In order to solve this problem, numerical

techniques are required [1]. Unfortunately, even if we assume constant volatilities in

the model, most existing methods can only price vanilla European options when jump

processes are included.
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Generally, solving a partial integro-differential equation (PIDE) problem is required

when we want to value an option under a jump diffusion model. One method suggested

by Amin is based on multinomial trees [14]. However, this explicit type method has time

step limitation problems because of stability considerations. Even worse, this approach

also has accuracy issues (this method is only first order accurate in general). Zhang [22]

introduced a method which divided the PIDE into two parts and solved them at different

time levels. This method treats the jump integral term explicitly, and the rest of the

PIDE implicitly. Although this method works well on pricing American options, there

are severe restrictions due to stability conditions. In [23], pricing American options with

Poisson distributed jumps was solved with the method of lines. More general/complex

models which use a Lévy process can be solved by either a method which combines a finite

difference method and a fast Fourier transform (FFT) [1] or a finite element method based

on wavelets [24]. An implicit method has been introduced in [13], in which the pricing

error can be reduced to second order in many cases.

1.2.3 Hedging the Portfolio

It is very challenging to develop a hedging strategy when the underlying asset follows

a jump diffusion process. It is impossible to have a perfect hedge with a finite number

of instruments when the underlying asset follows a jump diffusion process, no matter

how small the hedging interval. There have been relatively few studies of hedging jump

diffusion. Carr and Wu suggested using a semi-static approach for hedging in [29]. They

used the exact relationship between the value of a target option in terms of its payoff and

the risk-adjusted density function. Mathematically, we can transform this relationship

into the idea of hedging the primary option by use of several short term options with

certain weights. The weights of the spanning options are given by the gamma (second

derivative of the option price) of the primary option at the expiry date of the short term

options. In practice, the dynamics of the market is unpredictable, so a fitted model is

commonly used to compute the portfolio weights. Of course, a finite number of hedging

options is used.
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Another approach uses a dynamic self financing portfolio. This was first suggested

by Bates in 1988 [8]. In 2000, Andersen and Andreasen put forward this idea again [1].

They suggested using a dynamic self financing portfolio which consists of the underlying

asset and a finite number of options to minimize jump risk. However, there are two

important issues which need to be addressed. It is not clear how many options are needed

in the hedging portfolio in order to obtain a satisfactory risk reduction. In addition, if

the portfolio is re-balanced too frequently, then large transaction costs may accumulate.

1.3 Main Results

In this thesis, we assume the underlying asset follows a Merton jump diffusion [4]. We use

dynamic hedging to minimize the instantaneous risk. A jump-diffusion model is subject to

two sources of risk: the diffusion risk from the Brownian motion component and the jump

risk. It is well-known that the diffusion risk can be removed by applying delta hedging.

However, the jump risk can be eliminated only by adding an infinite number of hedging

instruments, which is impossible in practice. Even so, we can address instantaneous jump

risk by using a finite and practical number of hedging instruments. This kind of dynamic

hedging can be used for both European and American-style exercise rights. As suggested

by Andersen and Andreasen in [1], we use a finite number of options as part of a dynamic

hedging strategy to minimize jump risk. More specifically, we will follow the idea of He

et al [26]: minimizing the jump risk in some sense, subject to the delta-neutral constraint

that eliminates the instantaneous jump diffusion risk. Mathematically, we transform this

optimization problem into a linear equation problem. This linear equation problem can

be solved by using a TSVD (truncated singular value decomposition). We show that the

overall jump risk will be controlled if the instantaneous jump risk is minimized.

The main difference between the approach in this thesis and that in He el al [26] is

that we minimize the jump risk by forcing the jump risk to be identically zero at a finite

set of jump sizes. This contrasts to the weighted integral approach in [12]. We believe

that the method used in this thesis is simple and intuitive and therefore may find use by
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practitioners. In fact, a simple form of this approach is used in the energy industry [33].

1.4 Outline

The outline of this thesis is as follows. In Chapter 2, we introduce the model and the

derivation of instantaneous jump risk. In Chapter 3, we present a method that minimizes

the risk and its implementation. Numerical results are provided in Chapter 4. Finally, in

Chapter 5, we provide conclusions.
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Chapter 2

Jump Diffusion

2.1 Hedging Model and Theoretical Hedging Risk

In this section, we will first briefly introduce the Black-Scholes under geometric Brownian

motion (GBM) model and the Merton jump-diffusion model. Then, we will derive the

expression for instantaneous jump risk.

2.1.1 The Black-Scholes Model

The Black-Scholes model was first introduced by Black and Scholes in [31]. It is widely

used as a tool for pricing equity options. There are several assumptions underlying the

Black-Scholes model. The most well-known assumptions are:

• the volatility (i.e. the standard deviation of the continuously compounded returns

of a financial instrument in a specific time period) is constant;

• there is no transaction costs and taxes;

• the underlying asset follows Geometric Brownian Motion (GBM) with constant drift;

• there are no arbitrage opportunities;

• there are no restrictions on short selling.
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Assuming the underlying asset follows GBM, the price can be written as the solution of

the stochastic differential equation (SDE):

dSt = αStdt+ σStdZt, (2.1.1)

where St is underlying asset, α is the drift term, σ is the volatility and dZt is the increment

of a standard Wiener processes. Under the GBM assumptions, underlying asset paths

are positive and continuous; asset returns are independent and uncorrelated over non-

overlapping time periods [25].

By combining all of these assumptions together with the idea that there is no imme-

diate gain for selling or buying, the Black-Scholes price can be obtained by solving the

following partial differential equations (PDE):

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 (2.1.2)

where V is the no-arbitrage value of a European option. When t = T and T is the expiry

time, the resulting value V is the option payoff.

Stock prices are continuous in the Black-Scholes model, but in reality stock prices can

jump suddenly. In the next section, we discuss the Merton jump-diffusion model which

better reflects reality.

2.1.2 Merton Jump Diffusion

In the Merton Jump Diffusion model, the change in the asset price can be divided into

two parts. One part comes from the continuous diffusion of the model which is modeled

by a Geometric Brownian Motion, while the other part is generated from discontinuous

jumps, and is modeled by a compound Poisson Process. Based on the assumption that

the underlying process is a jump diffusion with constant volatility, the underlying asset

8



S is given from the solution to the SDE

dSt
St−

= (α− κλ)dt+ σdZt + (Jt − 1)dπt (2.1.3)

where

• t− is the time instant immediately before time t,

• α is the instantaneous expected rate of return on the asset,

• λ > 0 is the intensity of the jump process which is independent of time t,

• κ is the mean of (Jt − 1),

• Jt − 1 is a jump amplitude function which determines a jump from S to JtS where

Jt is an independent and identically distributed random variable which represents

the jump amplitude and is nonnegative,

• σ denotes the diffusive volatility of the asset return when a jump does not occur,

• Zt is a standard Brownian motion process, dZt is the increment of a Wiener process,

• dπt follows a Poisson distribution, where

dπt =

 0 with probability 1− λdt,

1 with probability λdt.

For simplicity, Jt is assumed to be lognormally distributed. We also assume that Zt, πt

and Jt are independent processes. The process πt determines the possibility of getting a

jump at a particular point in time. More specifically, dπt is the probability that an asset

price jumps during a small time interval dt.

The compound Poisson Process in model (2.1.3) includes two pieces of information.

First, πt determines if the jump occurs in the current time interval dt. Second, Jt gives

the jump amplitude if a jump occurs. For example, suppose a jump occurs in the current

9



time interval dt, (i.e. dπt = 1) then the price of the asset jumps from St− to JtSt− . So

the relative price jump size is

dSt
St−

=
JtSt− − St−

St−
= Jt − 1.

As mentioned in model (2.1.3), Jt is a nonnegative independent identically random

number which is generated from lognomal distribution, ln(Jt) ∼ i.i.d. N(µ, γ), that is:

E(Jt) = eµ+ γ
2

V ar(Jt) = e2µ+γ(eγ − 1).

This implies,

κ = E(Jt)− 1 = E(Jt − 1) = eµ+ γ
2 − 1

V ar(Jt − 1) = e2µ+γ(eγ − 1).

2.1.3 Option Pricing under the Jump-Diffusion Process

Following standard arguments [25, 1], the value of a European option under the process

(2.1.3) can be found by solving a partial integro-differential equation (PIDE).

Define L as:

LV ≡ ∂V

∂τ

−
(
σ2S2

2

∂2V

∂S2
+ (r − κQλQ)S

∂V

∂S
− rV + λQ

[∫ ∞
0

V (SJ, τ)gQ(J)dJ − V (S, τ)

])
,

where Q represents the Q measure, V is the value of the option, T represents the expiry

time of the option, t represents the current time, τ = T − t, r is risk-free interest rate, κ, λ

and J are defined as in the SDE (2.1.3), gQ(J) is the risk-adjusted distribution of jumps.

The price of a European option, which may only be exercised at its expiration data, is
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given by

LV = 0. (2.1.4)

In order to price the American style contract, which can be exercised at any time

before the maturity, the PIDE Variational Inequality

min(LV, V − Ve) = 0,

needs to be solved [32], where Ve denotes the payoff of the claim.

By using the jump-diffusion process, the model is clearly improved in several ways.

First, the probability of a large change in the underlying asset is larger than under the

GBM model. This difference gives us a heavier tail in the distribution of returns. Second,

the implied volatility generated under the jump-diffusion model produces a volatility

smile, which is consistent with observed option prices.

2.1.4 Hedging Risk under a Jump-Diffusion Process

In this section, the mathematical representation of jump risk will be derived. Under the

P measure, an asset follows

dSt = (αP − κPλP)St−dt+ σSt−dZ
P + (Jt − 1)St−dπ

P (2.1.5)

where P is the real world measure, and a jump occurs with intensity λP. The jump size

Jt is distributed according to gP(Jt) and has a mean of κP + 1.

Assume we are short a derivative (primary option) V , then our position is −V in the

contract. In order to hedge a target option V , we will start with the standard hedging

portfolio. Holding a long position in e units of the underlying asset, and a long position

in N additional hedging options with prices ~I = [I1, I2, ..., IN ], with corresponding weight

11



~φ = [φ1, φ2, ..., φN ] and an amount B in cash, the overall hedged position has value

Π = −V + eS + ~φ · ~I +B (2.1.6)

where ~I is a vector which includes all possible hedging instruments we will use for the

entire hedging time period. If Ii is not used in the current time period, φi is set to zero.

For simplicity, all the explicit dependence on time t and asset price S have been dropped.

In order to represent changes of the components of Π when a jump occurs with size J ,

we define

∆V = V (JS)− V (S),

∆S = JS − S,

∆~I = ~I(JS)− ~I(S).

If a change in the short position −V is always explicitly equal to the change in the hedge

portfolio eS+ ~φ · ~I+B, then we will say the hedge is perfect and then dΠ equals zero (i.e.

no variation) over t → t + dt. Therefore, we must consider the infinitesimal change in

the overall hedged position value Π. Because we are considering the real-world evolution

of this portfolio, the underlying jump-diffusion process of interest is governed by the P

measure, and is given in (2.1.5). So we have (using Ito’s formula):

dS = ξPSdt+ σSdZP + ∆SdπP

dV =

[
∂V

∂t
+
σ2S2

2

∂2V

∂S2
+ ξPS

∂V

∂S

]
dt+ σS

∂V

∂S
dZP + ∆V dπP

d~I =

[
∂~I

∂t
+
σ2S2

2

∂2~I

∂S2
+ ξPS

∂~I

∂S

]
dt+ σS

∂~I

∂S
dZP + ∆~IdπP

dB = rBdt,

where ξ = αP−κPλP. Therefore, the immediate change in the value of the overall hedged

12



position can be written as

dΠ = −dV + e dS + ~φ · d~I + dB

= −
[
∂V

∂t
+
σ2S2

2

∂2V

∂S2

]
dt+ ~φ ·

[
∂~I

∂t
+
σ2S2

2

∂2~I

∂S2

]
dt

+rBdt+
[
−∆V + (e∆S + ~φ ·∆~I)

]
dπP

+ξPS

[
−∂V
∂S

+ e+ ~φ · ∂
~I

∂S

]
dt+ σS

[
−∂V
∂S

+ e+ ~φ · ∂
~I

∂S

]
dZP, (2.1.7)

where e and ~φ are constant over dt, as they are specified at the beginning of this time

interval. If the portfolio is delta neutral, then we have

−∂V
∂S

+ e+ ~φ · ∂
~I

∂S
= 0. (2.1.8)

Substituting (2.1.8) into equation (2.1.7), we will have

dΠ = −
[
∂V

∂t
+
σ2S2

2

∂2V

∂S2

]
dt+ ~φ ·

[
∂~I

∂t
+
σ2S2

2

∂2~I

∂S2

]
dt

+rBdt+
[
−∆V + (e∆S + ~φ ·∆~I)

]
dπP, (2.1.9)

indicating that dΠ is now a pure jump process with drift. Rewriting PIDE (2.1.4) as

∂V

∂τ
=

σ2S2

2

∂2V

∂S2

+ (r − κQλQ)S
∂V

∂S
− rV + λQ

(∫ ∞
0

V (SJ, τ)gQ(J)dJ − V (S, τ)

)
,

and then by using elementary rearrangement, and we obtain:

∂V

∂t
+

σ2S2

2

∂2V

∂S2
= rV + λQEQ(∆S)− rS ∂V

∂S
− λQEQ(∆V )

∂~I

∂t
+

σ2S2

2

∂2~I

∂S2
= r~I + λQEQ(∆S)− rS ∂

~I

∂S
− λQEQ(∆~I), (2.1.10)

where EQ(∆S) = EQ(S[J − 1]) = SEQ(J − 1) = SκQ. Substituting (2.1.10) into (2.1.9)
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gives

dΠ = −
[
rV + λQEQ(∆S)− rs∂V

∂S
− λQEQ(∆V )

]
dt

+ ~φ ·

[
r~I + λQEQ(∆S)− rs ∂

~I

∂S
− λQEQ(∆~I)

]
dt

+ rBdt+
[
−∆V + (e∆S + ~φ ·∆~I)

]
dπP

= r

[
−V +

(
∂V

∂S
− ~φ · ∂

~I

∂S

)
S + ~φ · ~I +B

]
dt

+ λQ

[
EQ(∆V )−

(
∂V

∂S
− ~φ · ∂

~I

∂S

)
EQ(∆S)− ~φ · EQ(∆~I)

]
dt

+
[
−∆V + (e∆S + ~φ ·∆~I)

]
dπP. (2.1.11)

Since we assume the delta neutral constraint holds, then substituting (2.1.8) into

(2.1.11) gives,

dΠ = r
[
−V + eS + ~φ · ~I +B

]
dt

+ λQ
[
EQ(∆V )− eEQ(∆S)− ~φ · EQ(∆~I)

]
dt

+
[
−∆V + (e∆S + ~φ ·∆~I)

]
dπP

= rΠdt

+ λQdtEQ
[
(∆V )− (e∆S + ~φ ·∆~I)

]
+ dπP

[
−∆V + (e∆S + ~φ ·∆~I)

]
. (2.1.12)

Therefore, equation (2.1.12) shows that the value change of the overall hedged position

depends on two components: the risk free gain and the instantaneous jump risk, denoted

by

λQdtEQ
[
(∆V )− (e∆S + ~φ ·∆~I)

]
+ dπP

[
−∆V + (e∆S + ~φ ·∆~I)

]
︸ ︷︷ ︸

instantaneous jump risk

.

Note that if the jump process under measure Q and P are the same, then the real-world

14



expected value of instantaneous jump risk is zero.

The first component of the instantaneous jump risk is deterministic and the second

component is stochastic since it depends on whether or not a jump occurs over the instant

dt and the size of the jump. In order to minimize the jump risk, we only need to consider

the stochastic part. We define a random variable for this stochastic part:

∆H(J) = −∆V + e∆S + ~φ ·∆~I. (2.1.13)

When ∆H(J) is small (i.e. the second component of the instantaneous jump risk is small),

the deterministic component of the jump risk also becomes small (i.e. the first component

of the instantaneous jump risk is small), so we have small overall instantaneous jump risk.

Therefore, the change in the overall hedged position due to a jump is small. If we can

find the optimal weight {e, φ} that minimizes the jump risk over the instant dt, then the

hedging risk can be controlled.

2.2 SVD and TSVD

Our method for determination of the hedging portfolio weights will use a Singular Value

Decomposition (SVD). In this section, we give a review of the Singular Value Decompo-

sition (SVD) and Truncated Singular Value Decomposition (TSVD).

2.2.1 Singular Value Decomposition: Definition

A singular value decomposition (SVD) is a very useful tool for calculating the pseudoin-

verse, least squares fitting of data, matrix approximation and determining the rank, range

and null space of a matrix. The SVD can be applied to any kind of matrix. However, for

simplicity, we only consider square matrices in this thesis. Let A be a n×n matrix. Then

we can decompose A as follows:

A = UΛV T , (2.2.1)
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where U and V are orthonormal matrices which have the property UUT = In and V V T =

In. In is an n × n identity matrix. U has size n × n. V is a n × n matrix. Λ is a n × n

diagonal matrix with form: 
w1 0 · · · 0

0 w2 · · · 0

· · · · · · · · · · · ·

0 0 · · · wn


The diagonal entries are called the singular values of matrix A (including zero). Each

singular value has its corresponding singular vectors. The ith column in matrix U (i.e.

ui) and ith column of matrix V (i.e. vi) are called left and right singular vectors for the

ith singular value. Normally, all wi are in decreasing order, i.e. w1 ≥ w2 ≥ · · · ≥ wn.

2.2.2 SVD and Matrix Norms

Given the matrix equation Ax = b, we define x to be a minimum norm solution of this

equation when x is a solution of this equation and has minimum norm amongst all possible

solutions of the equation. In this thesis, we only consider square matrices. Therefore, if

A is a n× n matrix, there are two possible cases for solving Ax = b:

• If the rank of A (i.e. rank(A)) is n. There exists a unique solution for the equation.

This solution is the minimum norm solution.

• if the rank of A < n. We say A is rank deficient. Then the solution is found which

minimizes both ‖ x ‖2 and ‖ Ax− b ‖2, known as the minimum norm solution.

We define a pseudoinverse matrix of Λ, say Λ̃, as the diagonal matrix with:

w̃i,i =

 1
wi,i

if wi,i > 0

0 if wi,i = 0

Then the pseudoinverse of A, denoted by Ã, is given by

Ã = V Λ̃UT
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If A is a square matrix, we have that x̃ = V W̃UT b solves the linear equation Ax = b in

the following sense:

• If A is non-singular, then x̃ is the unique solution to the equation.

• If A is singular and b ∈ RA, then x̃ is minimum norm solution.

• If A is singular and b ∈ NA, then x̃ = arg minx |Ax− b|,

where

• NA is the null space of A such that NA = {x ∈ Rn : Ax = 0}.

• RA is the range of A such that RA = {x ∈ Rn : Ax 6= 0}.

If A is a nonsingular matrix, then all the singular values wi > 0. We then have Λ−1 = Λ̃,

and

A−1 = (UΛV T )−1

= V Λ−1UT

= V Λ̃UT

= Ã

Therefore, Ã = A−1. The pseudoinverse solution x̃ can be determined by using an SVD

approach. x̃ is a unique solution and it is a minimum norm solution. If A is a singular

matrix, the minimum-norm solution to Ax ≈ b is given by Ãb.

2.2.3 Truncated Singular Value Decomposition

In real applications, due to efficiency considerations or other benefits, the SVD is usually

not chosen. Instead, truncated SVDs are used for the computation.

A truncated SVD (TSVD) is a reduced rank approximation to A obtained by setting

all but first k largest singular values equal to zero and using only the first k column
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vectors of U and k row vectors of V in the calculation. The rest of matrices of U and V

are discarded. If we have an SVD decomposition A = UΛV T and U , V and Λ are defined

as in section (2.2.1), the TSVD can be written as:

Ak = UkΛkV
T
k . (2.2.2)

If a matrix A has rank r, a full rank decomposition of A is usually denoted by

Ar = UrΛrV
T
r . (2.2.3)

A theorem proven by Eckart and Young [30] shows that the error in approximating a

matrix A (with rank r) by Ar can be written:

‖ A− Ar ‖F≤‖ A−B ‖F (2.2.4)

where B is any matrix with rank r, ‖ . ‖F means Frobenius norm. This formula (2.2.4)

tells us the difference between A and Ar is smaller than the difference between A and any

other rank r matrix B. Therefore, there does not exist a matrix that has rank r and is

closer to matrix A than Ar.

If A is a singular matrix (a matrix that is not invertible) with rank r, we can find the

best approximate minimum-norm solution to Ax ≈ b by solving A−1
k b where k = r by

using a TSVD decomposition (2.2.3).

Furthermore, k can be any number < n, even for k < r. Although (2.2.3) is no longer

a full rank decomposition of A when k 6= r , it is still the closest approximation for matrix

A with rank k from Eckart’s theorem (2.2.4).

We can decompose any singular or nonsingular matrix using an SVD or a TSVD. In

this thesis, we will use a TSVD, since this will tend to produce more stable weights in the

hedging portfolio.
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2.3 Hedging Strategy

As we discussed in Section (2.1.4), if we can find a proper weight {e, ~φ} to lower the value

of the stochastic term in the instantaneous jump risk (2.1.13), we can lower the overall

jump risk over the instant dt. Kennedy [12] points out that the weights can be found by

solving the optimization problem:

arg min
{e,~φ}

∫ ∞
0

[
−∆V + (e∆S + ~φ ·∆~I)

]2
W (J)dJ (2.3.1)

subject to e+ ~φ · ∂
~I

∂S
=
∂V

∂S
, (2.3.2)

where e+ ~φ · ∂~I
∂S

= ∂V
∂S

is the delta neutral condition. In equation (2.3.1), W (J) is a proper

weighting function (see [12]).

In this thesis, we will use a simpler method to find the weights {e, ~φ} which makes the

jump risk small. Recall the expression for the jump risk of given jump size J :

∆H(J) = −∆V + e∆S + ~φ ·∆~I (2.3.3)

If dim(~I) = N , then we have N + 1 hedging weights, {e, φ1, · · · , φN}. Selecting N

distinct values of Ji, i = 1, · · · , N , let

∆H(Ji) = 0, i = 1, · · · , N. (2.3.4)

This gives us a set of N equations.

The delta neutral condition (2.3.2) adds to the above equations. This gives a total of

N + 1 equations and N + 1 unknowns. If, for example, we select Ji to be equally spaced

in [0, Jmax] and we assume W (J) ≈ 0 for J ≥ Jmax, then

∑
[∆H(Ji)]

2W (Ji)δJi ≈
∫ Jmax

0

[
−∆V + (e∆S + ~φ ·∆~I)

]2
W (J)dJ

≈
∫ ∞

0

[
−∆V + (e∆S + ~φ ·∆~I)

]2
W (J)dJ (2.3.5)
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where δJi = Ji+1−Ji and hence we can view this hedging method as a quadrature rule for

approximating equation (2.3.1). Since ∆H(Ji) = 0, then in the limit asN →∞, equations

(2.3.4) and (2.3.5) approximates equation (2.3.1), for any nonnegative weighting function

W (J).
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Chapter 3

Testing Procedure

In this chapter, we will discuss the method used to test our proposed algorithm for hedging

jump risk. The algorithm consists of generating a stochastic price path, and along each

path, constructing the hedging portfolio described in Chapter 2. At each re-balancing

date, we determine the hedging weight, using the TSVD described in Chapter 2. We

then repeat this for many stochastic paths. This will generate summary statistics for our

proposed hedging strategy.

3.1 Data Generation

In this section, we will describe the method used to generate a stochastic price path. Since

we are working with a jump diffusion process, the model that we will use is the Merton

jump diffusion model. Recall the Merton model:

dSt
St−

= (α− κλ)dt+ σdZt + (Jt − 1)dπt.
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To implement this model, we start with a given initial value S0. The path of a underlying

asset can be generated using the following steps:

1. Let Y (ti) = log(S(ti)) (3.1.1)

2. set Y (ti+1) = Y (ti) + (α− κλ− σ2

2
)∆t+ σΦ1(ti)

√
∆t (3.1.2)

3. if Φ2(ti) ≤ λdt, then

Y (ti+1) := Y (ti+1) + µ+ γΦ3(ti) (3.1.3)

where Φ1,Φ3 are random numbers which are generated from a normal distribution and

Φ2 are random numbers with a uniform distribution on the interval (0, 1), ∆t is the unit

of the time interval given by ∆t = T
nh

, T is the expiry time of the target option, and nh

is the number of timesteps we use to approximate the solution to the SDE.

3.2 Weight Function

In this section, we briefly review the method for finding the hedging weights, and provide

a matrix form for the equations.

As we discussed in section (2.1.4), if we can find hedging weights {e, ~φ} such that

∆H(J) is small, then the change in the overall hedged position due to a jump is small.

Furthermore, in section (2.3), we provided a simplified method that can be used to deter-

mine the hedging portfolio weights. Recall the linear system: ∆H(Ji) = 0, i = 1, · · · , N.

e+ ~φ · ∂~I
∂S

= ∂V
∂S
,

(3.2.1)

where

∆H(Ji) = −[V (JiS, t)− V (S, t)] + e[JiS − S] + ~φ · [~I(JiS, t)− ~I(S, t)]. (3.2.2)
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Suppose dim(~I) = N , then we can write equation 3.2.1 as:


1 (I1)S (I2)S · · · (IN )S

J1S − S I1(J1S, t)− I1(S, t) I2(J1S, t)− I2(S, t) · · · IN (J1S, t)− IN (S, t)

J2S − S I1(J2S, t)− I1(S, t) I2(J2S, t)− I2(S, t) · · · IN (J2S, t)− IN (S, t)

· · · · · · · · · · · · · · ·

JNS − S I1(JNS, t)− I1(S, t) I2(JNS, t)− I2(S, t) · · · IN (JNS, t)− IN (S, t)





e

φ1

φ2

...

φN



=



VS

V (J1S, t)− V (S, t)

V (J2S, t)− V (S, t)
...

V (JNS, t)− V (S, t)


. (3.2.3)

As we discussed in previous chapter, the weights will be determined using a TSVD.

3.3 Solution of the Linear Equation

In this section, first we will discuss the relationship between the linear system equation

(3.2.1) and the least square problem. Then we will discuss singular problems we may

encounter during the hedging simulations. Lastly, we will provide the pseudocode that

generates the hedging weights.

3.3.1 Relationship to Least Square Problem

Suppose we have linear equations Ax = b, where A is a square matrix of size n × n and

x and b are vectors with size n× 1. Let r be the residual vector form x, defined as:

r = Ax− b.

Then we call a vector x∗ the least squares solution if

‖ r ‖2=‖ Ax∗ − b ‖2≤‖ Ax− b ‖2 for all x ∈ Rn,
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where Rn is set of all real vectors with size n× 1 and ‖ . ‖2 means 2-norm.

Although a least squares solution might not be unique, the least squares solution x

with the smallest norm, say ‖ x ‖2, is unique. The minimum norm solution x can be

solved using the normal equations

x = (ATA)−1AT b,

if (ATA) is nonsingular.

There always exists a least squares solution x, even when matrix ATA is ill-conditioned

or singular. In these cases (singular or ill-conditioned), we can find pseudoinverse solution

x̃ by using TSVD which discussed in section (2.2.2).

Let us write a linear equations Ax = b for matrix (3.2.3), where

A =


1 (I1)s (I2)s · · · (IN )s

J1S − S I1(J1S, t)− I1(S, t) I2(J1S, t)− I2(S, t) · · · IN (J1S, t)− IN (S, t)

J2S − S I1(J2S, t)− I1(S, t) I2(J2S, t)− I2(S, t) · · · IN (J2S, t)− IN (S, t)

· · · · · · · · · · · · · · ·

JNS − S I1(JNS, t)− I1(S, t) I2(JNS, t)− I2(S, t) · · · IN (JNS, t)− IN (S, t)

 ...(3.3.1)

b =



Vs

V (J1S, t)− V (S, t)

V (J2S, t)− V (S, t)
...

V (JNS, t)− V (S, t)


;x =



e

φ1

φ2

...

φN


, (3.3.2)

then the residual norm is ‖ r ‖2=‖ Ax− b ‖2.

Obviously, the smallest value of ‖ r ‖2 is zero, in which case x is also the solution to

Ax = b.
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3.3.2 Put-call Parity Problem

We need be careful when selecting the additional instruments for ~I, since some combina-

tion of options will make the matrix (3.3.1) singular or nearly singular.

For example, suppose we have two hedging options and they have the same strike

prices and expiration dates. One is a European put option, say P (S, t) and the other is

a European call option, say C(S, t). Then the corresponding columns of matrix A are



1 CS PS

J1S − S C(J1S, t)− C(S, t) P (J1S, t)− P (S, t)

J2S − S C(J2S, t)− C(S, t) P (J2S, t)− P (S, t)

· · ·

JNS − S C(JNS, t)− C(S, t) P (JNS, t)− P (S, t)


. (3.3.3)

Since C and P have same strike price and expiry time, then we know that put-call

parity holds. Recall the formula for put-call parity

C(S, t) +Ke−r(T−t) = P (S, t) + S, (3.3.4)

where K is the positive strike price and r is the risk free rate. If a jump occurs, then the

corresponding put-call parity rule is

C(JS, t) +Ke−r(T−t) = P (JS, t) + JS. (3.3.5)

Subtract (3.3.4) from (3.3.5), which gives

C(JS, t)− C(S, t) = P (JS, t)− P (S, t) + (J − 1)S. (3.3.6)

If we take derivative of (3.3.4) w.r.t S, we obtain

PS = CS − 1. (3.3.7)
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substitute (3.3.7) and (3.3.6) into (3.3.3), we get the following columns in A



1 CS CS − 1

J1S − S C(J1S, t)− C(S, t) C(J1S, t)− C(S, t)− (J1 − 1)S

J2S − S C(J2S, t)− C(S, t) C(J2S, t)− C(S, t)− (J2 − 1)S

· · ·

JNS − S C(JNS, t)− C(S, t) C(JNS, t)− C(S, t)− (JN − 1)S


. (3.3.8)

Clearly, in this matrix, we have the following relationship

the third column = the second column - the first column,

so the columns in matrix (3.3.8) are linearly dependent. Therefore, the matrix (3.3.3) is

singular.

In any real hedging situation, we would normally not include puts and calls with the

same strike and maturity, due to the put-call parity problem above. However, suppose

we have a put at strike K1 and a call at strike K2, and that J1S � K1, J2S � K2, then

put-call parity will hold approximately, and the matrix (3.3.3) can be almost singular. In

this case, solution of (3.2.3) using a TSVD should give reasonable weights, and produce

a weighting vector with a small norm.

3.3.3 Nearly Singular System

Suppose we have a target option near maturity t = T and we have two call options

(hedging options) expiring at t = T , with different strikes K1, K2. The value of these two

call options are (near t = T )

I1 ∼ S −K1, and

I2 ∼ S −K2
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when S � K1 and S � K2. Clearly,

(I1)S ∼ (I2)S, and

I1(JiS)− I1(S) ∼ I2(JiS)− I2(S).

Hence the two of columns of A corresponding to the weights φ1, φ2 are almost linearly

dependent. In this case, if we use a standard method for solving the equation (3.2.3),

we will find that φ1, φ2 fluctuate wildly as we approach maturity. This will lead to large

transaction costs. Hence, it is again desirable to use a TSVD so that we obtain reasonable

(i.e. small norm) hedging weights.

3.4 Hedging Simulations

In this section, we will describe the algorithm we use to determine the effectiveness of our

hedging strategy using Monte Carlo simulations.

In order to speed up the computation, we precompute the tables of prices and deltas

of the target option and the hedging option at each discrete time ti, for a range of discrete

prices.

We then simulate a random path using equation (3.1.1), (3.1.2) and (3.1.3). At each

discrete time ti, we use a table look-up to construct the matrix (3.2.3). This system can

be solved using a TSVD.

3.4.1 Using the TSVD

To avoid unstable hedge weights, we will use a cutoff parameter to set all singular values

to zero if they are too small. More specifically, any singular value

|wi| < tol max
j
|wj|

is set to zero. Typically, we use tol = 10−6.

27



Consider the writer of an option who wants to use the hedge portfolio

Π = −V + eS + ~φ · ~I +B

to isolate their position from the hedging risk (i.e. jump diffusion risk) over each time

step before the target option matures. With a given initial stock price S0 (i.e. St0 = S0),

we use the algorithm (3.4.1) to generate statistics for our proposed hedging strategy.

Instead of computing the price and delta at each particular time step, we will create

precomputed tables which list the values (prices or delta) we will need to use. In the

simulation process, we either read the value directly from table or interpolate from the

values given in the precomputed table.

The precomputed tables have a grid size of ns × nh where ns is the number of grid

points for the underlying S and nh is the number of time steps. In this thesis, we pick

the range of times in the table to be [0, 1]. The maximum and minimum value of the

underlying S in the table are chosen as

Smax = exp{log(S0) + (αP − 0.5σ2) ∗ T + σmax ∗ σeff ∗
√
T}, and

Smin = exp{log(S0) + (αP − 0.5σ2) ∗ T − σmax ∗ σeff ∗
√
T}

where we use σmax = 3 in this thesis, T is maturity time, αP is drift value under P

measure, σ is the volatility and σeff ([36]) is defined as

σeff =
√
σ2 + λP(µ2

P + γ2
P)

where

• λP is the intensity of the jump process under P measure,

• µP is P measure jump mean

• γP is P measure jump standard deviation

The jump size is assumed to be log normally distributed.
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Simplified Hedging Simulation

Compute table of prices and deltas of V and ~I

For each simulation j, 0 < j < M

Solve the linear system as shown in (3.2.3) using a TSVD

x(t0, j) = [e(t0, j), ~φ(S(t0, j))]
T

B(t0, j) = V (S(t0, j))− e(t0, j)S(t0, j)− ~I(S(ti, j)) · ~φ(S(t0, j))

For each time step ti, 0 < i < nh− 2,

Generate Y (ti+1, j) by using steps (3.1.1), (3.1.2) and (3.1.3)

Set S(ti+1, j) = exp(Y (ti+1, j))

If this is a rebalancing time, then

Form a matrix A as shown in (3.3.1)

Solve the linear system as shown in (3.2.3) using a TSVD

x(ti+1, j) = [e(ti+1, j), ~φ(S(ti+1, j))]
T

B(ti+1, j) = exp(r∆t)B(ti, j)− [e(ti+1, j)− e(ti, j)]S(ti)

− [~φ(S(ti+1, j))− ~φ(S(ti, j))] · ~I(S(ti, j)) · ~φ(S(ti, j))

EndIf

EndFor

Generate Y (tNR , j) by using steps (3.1.1), (3.1.2) and (3.1.3)

Set S(tNR , j) = exp(Y (tNR , j))

Π(tNR , j) = −V (S(tNR , j)) + e(tNR−1, j)S(tNR , j)

+ ~φ(S(tNR−1, j)) · ~I(S(tNR , j)) +B(tNR−1, j) ∗ exp(r∆t)

EndFor

(3.4.1)
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Note that we are using the real measure P in the data generation step, and the Q

measure for the prices of the hedging instruments.

The relative profit and loss is normally used as the measurement for the hedging error.

We can find relative profit and loss by calculating the hedge portfolio through the above

algorithm (3.4.1) and substituting into the formula

Relative P&L =
exp(−rT )Π(T )

V (S(0), t = 0)
(3.4.2)

to get the value of the discounted relative P&L (also called discounted hedging error).

The relative profit and loss along the jth stochastic path is given by

(P&L)j =
exp(−rT )Π(tN , j)

V (S(0), t = 0)
.

We can then compute mean, standard deviation and VAR from these results for j =

1, · · · ,M .
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Chapter 4

Numerical Examples

In this Chapter, we will present numerical results for the hedging strategies discussed in

the previous Chapters. In particular, we discuss

• The cutoff parameter used in the TSVD [see section (4.7)].

• The maximum jump size considered in the approximation of the hedging error in-

tegral [see section (4.8)].

• Selection of the basic method used to approximate the hedging error integral [see

section (4.9, 4.4)]

4.1 Computational Parameters

Unless otherwise specified, we will use the parameters listed in Table (4.1). Later in this

Chapter, we will verify that the above choice of parameters gives accurate results.

4.2 Approximation of the Hedging Error Integral

In the rest of the Chapter, we will compare the results obtained using two methods to

approximate the hedging error integral (2.3.5): equally spaced jump sizes and Gaussian

quadrature jump sizes. Their definitions are stated in following subsections.
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parameter value
ns (table size of S grid) 400

nh (table size of number of time points) 800
rebalance times 400

TSVD cutoff 10−6

the range of jump size [0,2]
number of simulations 100000
number of time steps 800

Table 4.1: The pre-computed table has size ns × nh, rebalancing times indicate the
number of time we will rebalance our portfolio in a one year period. The number of
simulations is the sample size we used in our Monte Carlo Simulations.

4.2.1 Equally Spaced Jump Sizes

Equally spaced jump sizes are easy to understand. The best way to define this approxima-

tion is to give an example. Suppose in the hedging process, we choose the range of probable

jump size to be in J ∈ [0, 2] and we decide to use four hedging instruments to hedge our

target option. We need to pick four Ji from [0, 2] and we require that ∆H(Ji) = 0, and

that the distance between each Ji which gives ∆H(Ji) = 0 to be constant. Recall the

expression for jump risk ∆H(J) from Chapter 2.

∆H(J) = −[V (JS)− V (S)] + e(JS − S) + ~φ · [~I(JS)− ~I(S)].

Note that when J = 1, ∆H(J) = 0. Therefore, it is not necessary to specify ∆H(J) = 0

when J = 1. Thus the equally spaced jump sizes when we specify ∆H(J) = 0 for four

hedging options, are 0, 0.5, 1.5, 2.

4.2.2 Gaussian Quadrature Jump Size

Normally, in order to evaluate the integral of a given function h(x), we seek to obtain

the best numerical estimate of the integral by selecting the optimal values xi to evaluate

h(xi). Generally, numerical integration methods are developed based on a rather simple

choice of evaluation points for xi. However if we carefully choose the points to evaluate

h(x), this may lead to higher accuracy in evaluating the integral. In numerical analysis,
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a quadrature rule is an approximation of the integral function and we usually calculate

the weighted sum of the function value at specified points in the domain of integration.

The fundamental theorem of Gaussian quadrature states that the optimal xi of the n-

point Gaussian quadrature formulas are precisely the roots of the orthogonal polynomial

for the same interval and weighting function wi.

We will discuss two types of Gaussian quadrature in this thesis: the basic Gaus-

sian quadrature with Legendre polynomials as its orthogonal polynomials (also called

Gauss-Legendre quadrature), as well as Gauss-Laguerre quadrature which uses Laguerre

polynomials as its orthogonal polynomials.

The standard form of basic Gaussian quadrature uses a finite interval and is defined

by:

∫ 1

−1

h(x)dx ≈
n∑
i=1

wih(xi), (4.2.1)

where xi is the ith optimal value for evaluating h(x) and weights wi can be determined by

wi =
2

(1− x2
i )[

dpn(xi)
dx

]2
,

where pn(x) is a Legendre polynomial of degree n.

The conventional domain of integration for a Gaussian quadrature formulas is [−1, 1].

The basic Gaussian quadrature can be used for any finite domain of integration simply

by changing the integration over the standard interval [−1, 1] before applying the Gaus-

sian quadrature formulas. Let’s say we have interval [a, b] and the integral we wish to

approximate is given by

∫ b

a

h(x)dx,
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then carrying out a change of variables, gives us

∫ b

a

h(x)dx ≈ b− a
2

n∑
i=1

wih(
b− a

2
xi +

a+ b

2
).

Gauss-Laguerre quadrature is used when the upper bound of the integral over x is

infinite and is defined as

∫ ∞
0

e−xexh(x)dx ≈
n∑
i=1

wi[e
xih(xi)], (4.2.2)

where the weights wi are given by

wi =
xi

(n+ 1)2[Ln+1(xi)]2
,

where Ln(x) is a Laguerre polynomial with degree n.

We will refer to the optimal xi for the Gaussian quadrature formula (either under

finite interval or infinite interval) as a Gaussian quadrature jump size.

4.3 Example

To provide a simplified illustration of the hedging strategy, we introduce a specific re-

balancing example to study the behavior of the jump size which we will choose in two

different ways. Before showing the results, let us first provide some necessary data, under

both P and Q measure. Recall that the P measure is the real world probability measure.

We will use P measure parameters when simulating the stochastic paths in our hedging

simulations. The Q measure parameters are those used in pricing options.

Jumps are assumed to occur with a Possion distribution. We assume that if a jump

occurs, then the log of the size of jump, defined as Jgen, follows a normal distribution

with log(Jgen) ∼ N(µ, γ) and the values that characterize the jump diffusion model are

reported in Table (4.2), the values listed in the table are taken from [12].
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Probability measure λ µ γ σ α
Q 0.1 -0.92 0.425 0.2 0.05
P 0.0228 -0.5588 0.425 0.2 0.1779

Table 4.2: The dividend yield q = 0, interest rate r = αQ and drift rate in Brownian
motion is αP.

Recall that, in finance, the option that allows the holder to profit based on the change

of the price of the underlying asset, regardless of the direction of price movement, is called

a straddle option. A straddle option is equivalent to the investor holding a position in

both a put and a call with the same strike price, and expiration date. The purchase of

the option derivatives is known as a long straddle, while a short straddle indicates the

sale of the option. The payoff of stradle option is given by

payoff = max(K − S, 0) + max(S −K, 0),

where K is strike price and S is underlying price.

Now, suppose a financial institution has sold an at-the-money one year straddle option

and the initial stock price is S0 = 100. To hedge this option, we take an underlying asset

and some additional hedging options. We start with two hedging options, then four

options and then eight. The corresponding options are shown in Table (4.3), (4.4) and

(4.5) respectively. We will reuse the same options to hedge the portfolio when the current

hedging options have expired. The computational parameters are given in Table (4.1).

To keep things simple, we will use these examples throughout this thesis.

Instrument Maturity(year) Strike
Straddle 1 100

call 0.5 70
put 0.5 140

Table 4.3: The first option is the target option, the rest are hedging options. All
options are European options.

In the case of equally spaced jump sizes, the points where ∆H(Ji) = 0 are given in

Tables (4.6), and we use these values throughout the thesis.

Table (4.7) shows the values for the Gaussian-Legendre quadrature rule and Table
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Instrument Maturity(year) Strike
Straddle 1 100

call 0.5 70
call 0.5 90
put 0.5 120
put 0.5 140

Table 4.4: The first option is the target option, the rest are hedging options. All
options are European options.

Instrument Maturity(year) Strike
Straddle 1 100

call 0.5 70
put 0.5 80
call 0.5 90
put 0.5 105
call 0.5 110
put 0.5 120
call 0.5 130
put 0.5 140

Table 4.5: The first option is the target option, the rest are hedging options. All
options are European options.

(4.8) shows the values for the Gaussian-Laguerre quadrature rule.

Number of hedging options Value of J : equally spaced
2 0, 2
4 0, 0.5, 1.5, 2
8 0, 0.25, 0.5, 0.75, 1.25, 1.5, 1.75, 2

Table 4.6: The value J = 1 is automatically hedged due to the delta neutrality
condition(2.1.8). The rest of the numbers are equally spaced.

Number of hedging options Value of J under Gauss-Legendre Quadrature rule
2 0.2254, 1.7746
4 0.0938, 0.4615, 1.5385, 1.9062
8 0.0318, 0.1640, 0.3866, 0.6758, 1.3242, 1.6134, 1.8360, 1.9682

Table 4.7: The value J = 1 is automatically hedged due to the delta neutrality
condition(2.1.8), Legendre polynomial quadrature.
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Number of hedging options Value of J under Gauss-Laguerre Quadrature rule
2 0.585786, 3.41421
4 0.322548, 1.74576, 4.53662, 9.39507
8 0.17027, 0.9037, 2.25108, 4.2667, 7.0459, 10.75851, 14.74067, 22.8632

Table 4.8: The value J = 1 is automatically hedged due to the delta neutrality
condition(2.1.8), Laguerre polynomial quadrature.

4.4 Hedging Simulations

In this section, we provide the results of our numerical studies of various of hedging

strategies.

4.4.1 Equally Spaced Jump Size

In this section, we plot the distributions of relative P&L (3.4.1) with four hedging options

and compare the results with the plot of probability of relative P&L with delta hedging

only. We use the interval [0, 2] as our range of jump size. Therefore, the values of J are

0, 0.5, 1.5, 2. The corresponding plot is given in Figure (4.1).

As shown in Figure (4.1), when we increase the number of hedging options, the plot

becomes more peaked. In (a) of Figure (4.1), the values of the relative P&L are in the

range [−3, 1]. When we include four options as our hedging instruments, we find that

most relative P&L values are in the range [−0.1, 0.1], which is closer to zero.

4.4.2 Gaussian Quadrature Jump Size

Now, we use the jump size from the Gaussian Quadrature formula to calculate the relative

P&L using four hedging options. The corresponding jump sizes where we set ∆H(Ji) = 0

are 0.0938, 0.4615, 1.5385, 1.9062. The density of the P&L is given in Figure (4.2).

Comparing (a) and (b) in Figure (4.2), shows the same pattern again: the distribution

becomes narrower when we include more hedging instruments. In addition, we see a

normal-like distribution with roughly zero mean.
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Figure 4.1: Distributions of relative P&L for hedging the one-year European straddle.
Parameters are given in Table 4.2. We rebalance our option 400 times a year. (a)
Distributions of relative P&L with delta hedging; (b) Distributions of relative P&L
with 4 hedging options using equally space jump size.
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Figure 4.2: Distributions of relative P&L for hedging the one-year European straddle.
Parameters are given in Table 4.2. The number rebalancing times is 400. (a) Distri-
butions of relative P&L with delta hedging; (b) Distributions of relative P&L with 4
hedging options where we use Gaussian Quadrature jump size.
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4.4.3 Comparison of Gaussian Quadrature and Equally Spaced

jump size

We will now examine the performance of the hedging strategies discussed in section 4.3

in more detail. In particular, we will look at the value of standard deviation of relative

P&L and the percentiles of the P&L. The resulting data are listed in Table (4.9).

number of hedging options std Percentiles(%)
0.02 0.2 99.8

2 0.156693 -3.1522 -1.9638 0.2651
4 0.040933 -0.6027 -0.1696 0.1436
8 0.024017 -0.2548 -0.0693 0.1174

Table 4.9: Parameters used in Table (4.2). Equally spaced jump size. Rebalancing
400 times a year. “std” refers to standard deviation.

number of hedging options std Percentiles(%)
0.02 0.2 99.8

2 0.169368 -2.3776 -2.0207 0.2793
4 0.041128 -0.5064 -0.1639 0.1443
8 0.018814 -0.2019 -0.0478 0.1023

Table 4.10: Parameters used in Table (4.2). Gaussian quadrature jump size. Rebal-
ancing 400 times a year. “std” refers to standard deviation.

We see that the standard deviation becomes smaller when we include more hedging

instruments, and the tail losses become smaller.

We recalculate all the data using the same example and parameters, but now we use

the Gaussian Quadrature jump sizes. The resulting standard deviation and percentiles

for relative P&L are shown in Table (4.10)

The performance of these two strategies is quite similar. However, for a large number

of hedging options, it appears that the Gaussian quadrature method is slightly better

than the equally spaced technique.
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4.5 Convergence with Respect to Rebalancing Fre-

quency

In this section, we show that for a fixed number of hedging options, the standard deviation

converges to a finite value as the number of rebalances becomes large. In this section and

the next section, we hedge with the underlying asset and 4 additional options.

4.5.1 Effect of Rebalancing Frequency

Now we increase the number of rebalancing times in one year, and observe the changes

in the standard deviation. These results shown in Table (4.11).

Rebalancing frequency standard deviation Delta hedge only standard deviation
Rebalancing every half year 0.163359 0.487705

Rebalancing monthly 0.093157 0.381079
Rebalancing 50 times a year 0.055472 0.377799
Rebalancing 100 times a year 0.044935 0.375368
Rebalancing 200 times a year 0.041093 0.375229
Rebalancing 400 times a year 0.040933 0.375166

Table 4.11: Parameters are given in Table 4.2. We use 4 hedging instruments to
hedge our target European straddle option and using equally spaced jump sizes.

Rebalancing frequency standard deviation Delta hedge only standard deviation
Rebalancing every half year 0.170389 0.487705

Rebalancing monthly 0.120692 0.381079
Rebalancing 50 times a year 0.060978 0.377799
Rebalancing 100 times a year 0.046232 0.375368
Rebalancing 200 times a year 0.041793 0.375229
Rebalancing 400 times a year 0.041128 0.375166

Table 4.12: Parameters are given in Table 4.2. We using 4 hedging instruments to
hedge our target European straddle option and using Gaussian quadrature jump sizes.

In Table (4.11), the standard deviation of relative P&L becomes smaller when rebal-

ancing the hedging portfolio more frequently, but converges to a finite limit. This is, of

course, because the residual risk cannot be eliminated with a finite number of hedging

instruments.
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It is interesting to observe that even if we rebalance only twice a year, with the

underlying asset and four options, then the standard deviation is smaller compared with

delta hedging, rebalanced 400 times.

We repeat the same process as in the previous section with Gaussian quadrature jump

sizes and again test the convergence. The corresponding standard deviation of relative

P&L is shown in Table (4.12)

We see that when we increase the rebalancing time from 200 to 400, the standard devi-

ation does not change significantly. Therefore, we will use 400 as our default rebalancing

frequency.

4.5.2 Convergence with Respect to Number of Simulation

In this section, we will test the Monte Carlo sampling error of our simulations. In this

section and the next section, we hedge with the underlying asset and 4 additional options.

4.5.3 Effect of Number of Simulations

We will start with simulation size M = 12500, and double the size in each test. We start

with an equally spaced jump size. The results are shown in Table (4.13).

number of simulation standard deviation Delta hedge only standard deviation
M=12500 0.048211 0.392437
M=25000 0.042792 0.386737
M=50000 0.041073 0.377551
M=100000 0.040933 0.375166

Table 4.13: Parameters are given in Table 4.2. We use 4 hedging instruments to
hedge our target options where the target option is a European straddle and using equally
spaced jump size.

We recompute the standard deviation of relative P&L again, but now we will use the

Gaussian quadrature jump size. The results are shown in Table (4.14)

By examining these tables, we see that the change in the standard deviation is quite

small, going from 50,000 to 100,000 samples. Consequently, we will use M = 100, 000 as
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number of simulation standard deviation Delta hedge only standard deviation
M=12500 0.047921 0.392437
M=25000 0.043685 0.386737
M=50000 0.041572 0.377551
M=100000 0.041128 0.375166

Table 4.14: Parameters are given in Table 4.2. We use 4 hedging instruments
to hedge our target options where the target option is a European straddle and using
Gaussian quadrature jump size.

our default sample size.

4.6 Minimizing the Hedging Error

If the number of discrete jump sizes Ji used to approximate the hedging error (equation

(3.4.2)) is large enough, then the standard deviation of the change in the hedging portfolio

should become small. We will verify this in the following section.

4.6.1 Change in Hedging Portfolio Value with Increasing Num-

ber of Hedging Instruments

In order to illustrate the issues involved, we first compute the change in the total hedging

portfolio for a fixed stock price S at a fixed time t due to different values of the jump size

J .

Consider the following scenario: suppose an option writer sells a one-year straddle

option with strike price $100, and the option writer wants to form a portfolio to hedge

the possible risk (including the jump risk). Recall that the hedging portfolio is

Π = −V + eS + ~φ · ~I +B.

Figures (4.3) and (4.4) show the value of the portfolio as a function of the jump size

J (for fixed S, t). Note that a good hedging portfolio will be close to zero for all values

of J .
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Figure 4.3: Change in the value of the overall hedged position resulting from the
jump, parameters given in Table 4.2 with fixed stock price S = 106.5 at time t =
0.05. The target option is a one-year straddle option with strike $100. Hedging options
are all European calls with strike: K =[110,140,150] (Delta hedge + 3 options), K =
[80,90,110,120,130,140,150] (Delta hedge + 7 options). Options we used are listed in
Table (4.15) and (4.16).

We can clearly see from Figure (4.3) that the variance of the hedging portfolio becomes

smaller as we increase the number of hedging options. In the example we used for Figures

(4.3) and (4.4), we are only hedging once at one specific time. The change in the portfolio

is given as

∆H(J) = −∆V + e∆S + ~φ ·∆~I.

Assuming that J is lognormally distributed, the expectation of ∆H(J) is defined as

E(∆H(J)) =

∫ ∞
0

∆H(J)f(J)dJ,

where f(J) is the lognormal density function and the standard deviation of ∆H(J) is
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Figure 4.4: Enlargement of the curve when 7 options are used, Parameters are given
in Table 4.2 with fixed stock price S = 106.5 at time t = 0.05. The target option is a
one-year straddle option with strike $100. Hedging options are all European calls with
strike: K = [80,90,110,120,130,140,150]. Options we used are listed in Table (4.15)
and (4.16).

defined as

std(∆H(J)) =
(
E(∆H(J)2)− E(∆H(J))2

) 1
2 .

Instrument Maturity(year) Strike
Straddle 1 100

call 1.5 110
put 2 140
call 1.2 150

Table 4.15: The first option is the target option, the rest are hedging options. All
options are European options.

Table (4.17) shows the sample mean and standard deviation of ∆H(J). The standard

deviation is reduced as we increase the number of hedging options.
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Instrument Maturity(year) Strike
Straddle 1 100

call 1.5 110
put 2 140
call 1.2 150
call 1.1 90
call 1.7 80
call 1.4 120
call 1.6 130

Table 4.16: The first option is the target option, the rest are hedging options. All
options are European options.

Hedging Strategy mean standard deviation
Delta hedging only -17.0613 36.7962

Delta hedging +3 options -0.392836 0.62987
Delta hedging +7 options -0.0087528 0.0470654

Table 4.17: Mean and standard deviation of ∆H(J). Parameters are given in Table
(4.2) with fixed stock price S = 106.5 at time t = 0.05. The options we used are list in
Table (4.15) and (4.16)

4.6.2 Comparison of Gaussian Quadrature Jump Sizes

We have introduced two different Gaussian quadrature approaches in section (4.2.2). Now,

let us compute the mean and standard deviation of hedging error using both Gaussian

quadrature strategies. We compute the mean and standard deviation of relative P&L with

Gauss-Legendre quadrature jump size using the simulation methods which were discussed

in section (3.4). The results are given in Table (4.18). Table (4.19) lists the results with

the Gauss-Laguerre jump sizes using the same simulation method.

Comparing the results in the two tables, we also find that the standard deviation in

Table (4.19) is much larger than the value in Table (4.18) when we are hedging with the

same number of additional instruments. This is because we waste our resources hedging

large, unlikely jump amplitudes. Therefore, in the rest of this thesis, we will only consider

the Gauss-Legendre jump sizes.
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Hedging strategy mean standard deviation Percentiles(%)
0.02 0.2 99.8

Delta hedging only 0.24982 0.375166 -2.3776 -2.0207 0.2793
Delta hedging +4 options -0.00783517 0.041128 -0.5064 -0.1639 0.1443
Delta hedging +8 options -0.00027752 0.018814 -0.2019 -0.0478 0.1023

Table 4.18: Parameters are given in Table (4.2) and additional hedging options are
given in Table (4.4) and (4.5). We generate the jump size for each options with the
Gauss-Legendre Gaussian quadrature rule.

Hedging strategy mean standard deviation Percentiles(%)
0.02 0.2 99.8

Delta hedging only 0.24982 0.375166 -3.1545 -1.7045 3.8847
Delta hedging +4 options -0.0280768 0.225342 -2.5506 -1.4335 0.8139
Delta hedging +8 options -0.00284226 0.0601099 -1.7887 -0.5291 0.1792

Table 4.19: Parameters are given in Table (4.2) and additional hedging options are
given in Table (4.4) and (4.5). We generate the jump size for each options with Gauss-
Laguerre Quadrature rule.

4.7 Transaction Cost Considerations

In [34], the transaction costs are modelled explicitly. Here, we take a simpler approach.

We would like to generate a hedging strategy which does not result in large amounts of

buying/selling of assets. If the hedging portfolio is

Π = −V + eS + ~φ · ~I +B,

then, a simple measure of an efficient strategy, in terms of transaction costs is to examine

Πabs = |V |+ |eS|+ |~φ · ~I|+ |B|. (4.7.1)

Recall that a good hedging strategy has Π ∼ 0. If Πabs ∼ 0, then the portfolio does

not have large long and short positions, which would lead to large transaction costs. Now,

recall the TSVD cutoff parameter described in section (3.4.1). If we increase the value of

the cutoff parameter, then we keep fewer non-zero singular values, and we are effectively,

regularizing the solution of the matrix problem.
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Note that one way to force a small norm for Πabs is to solve the following problem for

the hedging weights

xρ = arg min
[
‖ AX − b ‖22 +ρ ‖ x ‖22

]
, (4.7.2)

for a given value of regularization parameter ρ.

Suppose we have a value k ≤ r, where r is the rank of matrix A. In [28], it is pointed

out that a TSVD can be considered to be an SVD with a filter factor gi for the singular

value. Given a cutoff σk, the filter is defined by,

gi =

 0 if σi < σk,

1 if σi ≥ σk.

In [28], it is also noted that solving (4.7.2) can be viewed as using a TSVD with a

smooth filter function. The TSVD can be seen as a “sharp” filter, applied to (4.7.2), with

ρ = σk. Hence, using a larger value of σk, is roughly equivalent to using a larger value of

ρ in equation (4.7.2). As a result, increasing the size of σk should make Πabs smaller.

Next we consider the change of Πabs with respect to the cutoff parameter σk/σ1.

We simulate 100000 random paths and consider hedging 100 times in one year. At each

hedging time, we compute the average of the Πabs with the simulated data at this particular

time. We plot the resulting average value in Figure (4.5). For this example, we include

four additional hedging options.

In Figure (4.5), we can see that increasing the size of the cutoff parameter σk/σ1

decreases the size of Πabs, as we would expect from our previous discussion. However, we

would also expect that increasing the size of the cutoff increases the hedging error, since

we have given up some of the reduction in hedging error in return for keeping the size of

the portfolio positions small.

Now, let us examine the effect of the value of the TSVD cutoff on the relative P&L.

We use three different values of the cutoff [10−4, 10−6, 10−8] to see the change in the value

of relative P&L. The results are listed in Table (4.20).
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Figure 4.5: Expected value of Πabs. Stability w.r.t cutoff. Parameters: initial stock
price S0 = 100, Strike k = 100, the P and Q measure data are listed in Table 4.2.

Value of cutoff standard deviation
10−4 0.046856
10−6 0.041128
10−8 0.090047

Table 4.20: Parameters are given in Table 4.2. Using four hedging instruments to
hedge our target option which is European straddle option. Hedging options are given
in Table (4.4). We use Gauss-Legendre jump size.

The standard deviation of the relative P&L becomes smaller while decreasing the

cutoff from 10−4 to 10−6, but the standard deviation suddenly goes up when we use 10−8

as our cutoff. We still keep some very small singular values when using 10−8, and these

singular values are close to zero. We suspect that the increase in the standard deviation

for very small cutoff is due to ill-conditioning.

Note that if the value of the cutoff is too small, we can expect large transaction costs.

On the other hand, if we pick the cutoff too large, the hedge error is larger. Therefore, the

tradeoff between the reduction of transaction costs and accuracy of the hedging process

is controlled by the value of cutoff. In this thesis, we use 10−6 as our default TSVD cutoff

49



value.

4.8 The Range of Jump Size

Given the range of jump size [Jmin, Jmax], if we have no idea which jump sizes are more

likely than others under the P measure, we normally assume the range of jump size is

[0, 2] [12]. Setting Jmin = 0 appears to be an obvious choice. In paper [26], it is shown

that the range [0, 2] performs well in general, and it has much better performance than

the range for an educated guess of the P measure jump size distribution.

In order to protect upward jumps, we need to select Jmax. However finding the right

value of Jmax is a bit complex. If Jmax is too large, we will waste our resources to protect

highly unlikely jump amplitudes. If we pick Jmax too small, we will miss a probable jump

event. Table (4.21) shows the results for various values of Jmax.

Interval of [0, Jmax] standard deviation
[0, 3] 0.112812
[0, 2] 0.041128

[0, 1.5] 0.051364

Table 4.21: Parameters are given in Table 4.2. We using four hedging instruments
to hedge our target options where target options is European straddle. Hedging options
are given in Table (4.4). We used the Gauss-Legendre jump sizes.

From the result in Table (4.21), we see that when we use a larger value for the max-

imum jump size J , we get larger standard deviations. When we use the small interval

[0, 1.5], we found the standard deviation is larger than for Ji ∈ [0, 2]. This may be caused

by ignoring too many probable jump sizes when hedging. Therefore, in this thesis, the

range of jump size is chosen to be in [0, 2].
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4.9 Analysis of Errors due to Pre-computed Table

Size

Recall that in Chapter 3, we described the algorithm used to simulate the hedging strate-

gies. We use a pre-computed table of hedging option values, and deltas. During the

simulation, we interpolate the necessary values from these tables. In this section, we

examine the interpolation errors from interpolating these tables.

We use the same example as before to show the changes of standard deviation with

respect to changing table size. The pre-computed table dimensions are ns × nh, where

ns is the number of entries in the asset price axis and nh is the number of entries in time

grid axis of the table. We will test the errors due to changing ns in the next subsections.

4.9.1 Interpolation Error

In this section, we use the case of hedging with the underlying asset and four additional

options to test the convergence. We study the convergence with respect to ns (price grid).

We use the Gaussian quadrature jump size method. The convergence table with respect

to ns with nh held fixed is shown in Table (4.22). Since we select nh to be the number

of time steps in pre-computed table, there is no interpolation error in the time direction.

ns standard deviation
25 0.229439
50 0.135256
100 0.061084
200 0.041365
400 0.041128

Table 4.22: Parameters are given in Table (4.2). We use four hedging instruments to
hedge our target European straddle option. The hedging options are given in Table (4.4).
We used Gaussian quadrature jump sizes. We fixed nh as nh = 800. We rebalance our
portfolio 400 times a year.

We can see from Table (4.22), the standard deviation does not change much as we

change ns = 200 to ns = 400. We use ns = 400 in this thesis.
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4.10 Convergence with Respect to Time steps

In contrast to the number of rebalancing times, the number of time steps is used when

we generate the random path in the MC simulation (see section 3.4). The change in the

standard derivation corresponding to different numbers of time steps is listed in Table

(4.23).

time steps standard deviation
400 0.042401
800 0.041128
1600 0.041109

Table 4.23: Parameters are given in Table (4.2). We use 4 hedging instruments to
hedge our target European straddle option. The hedging options are given in Table (4.4).
We used Gaussian quadrature jump sizes. We fixed ns = 400. We are rebalancing our
portfolio 400 times a year.

From Table (4.23), we find that the standard deviation of relative P&L become smaller

when we increase the number of time steps. However, when the number of time steps

changes from 800 to 1600, the difference in the standard deviation is small. Therefore,

we use 800 as the default number of time steps.

4.11 Summary of Numerical Experiments

In this Chapter, we gave the experimental results for different input parameters and

various hedging strategies. We conclude with a brief summary.

• The hedging error decreases as the number of hedging options used increases.

• With a fixed number of hedging options, increasing the rebalancing frequency, even-

tually results in the standard deviation converging to a finite value. This is due to

the residual jump risk.

• In order to construct the hedging portfolio, we need to specify the jump sizes

where we force the hedging error to be zero. We have tested three choices: equally
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spaced, Gauss-Legendre points and Gauss-Laguerre points. Equally spaced points

and Gauss-Legendre points are very close, with Gauss-Legendre points being supe-

rior with a larger number of hedging instruments.

• We can produce a hedging strategy which keeps the norm of the hedge portfolio

weights small by adjusting the TSVD cutoff parameters. This may be useful to

avoid large transaction costs.

• Consistent with previous results, we find that restricting the range of jumps sizes

(where we require the hedging error to be zero) to [0, 2] seems to work well for

reasonable parameters.
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Chapter 5

Conclusion

5.1 Summary

The Black-Scholes model assuming the underlying asset follows a geometric Brownian

motion and delta hedging are widely used in practice. However, if we consider a market

with jumps, the delta hedging strategy is no longer effective. It is by now well established

that jump diffusions are more realistic models of real world asset price processes.

In the energy world, it is common place to hedge jumps by estimating a small number

of possible jump sizes, and to construct a hedging portfolio which protects against these

events. This approach is simple to explain to practitioners, and is easy to implement.

In this thesis, we have shown that this simple idea can be viewed as a quadrature rule

for evaluating the jump risk integral. Since the error in the evaluation of this integral will

be small if a large number of quadrature points are used, then it follows that the error

in the hedging strategy will be small if a large number of instruments are used in the

hedging portfolio.

We have experimented with selection of quadrature points based on an equally spaced

midpoint rule, and two forms of Gaussian Quadrature. Our experiments indicate that the

Gaussian Quadrature method is slightly better than equally spaced points.

In order to determine the hedging portfolio weights at each rebalancing time, a linear
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system of equations must be solved. In some cases, this linear system is nearly singular.

We used a Truncated SVD(TSVD) method to solve this system. As a by-product of using

the TSVD, we have shown that if a suitable cut-off value is used in the TSVD, then the

norm of the hedging portfolio weights is small. Hence this will tend to reduce transaction

costs.

Overall, we find that using a hedging portfolio consisting of the underlying asset and

four additional liquid options is very effective at reducing the standard deviation and the

tail risk of the hedging strategy.

5.2 Future Work

Some directions for the future research are:

• In our hedging strategy, we control the jump risk by minimizing the instantaneous

risk. A global hedging strategy could be devised which would presumably lead to

better results.

• In this thesis, the maximum jump size in the range of jump sizes used in the quadra-

ture rule is constant. However, this maximum jump size was determined by exper-

iment. It would be desirable to develop a more mathematically sound approach for

determining this parameter.

• The TSVD cutoff value is another issue which may be considered for future investi-

gation. Transaction costs and hedge error move in opposite directions as we change

the value of the cutoff. Finding an optimal cutoff which gives us the smallest possi-

ble hedge error, and with the least possible transaction cost, would be an interesting

avenue for future research.
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