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Abstract

Stable matchings were introduced in 1962 by David Gale and Lloyd Shapley to study
the college admissions problem. The seminal work of Gale and Shapley has motivated hun-
dreds of research papers and found applications in many areas of mathematics, computer
science, economics, and even medicine. This thesis studies stable matchings in graphs and
hypergraphs.

We begin by introducing the work of Gale and Shapley. Their main contribution was the
proof that every bipartite graph has a stable matching. Our discussion revolves around the
Gale-Shapley algorithm and highlights some of the interesting properties of stable match-
ings in bipartite graphs. We then progress to non-bipartite graphs. Contrary to bipartite
graphs, we may not be able to find a stable matching in a non-bipartite graph. Some of
the work of Irving will be surveyed, including his extension of the Gale-Shapley algorithm.
Irving’s algorithm shows that many of the properties of bipartite stable matchings remain
when the general case is examined.

In 1991, Tan showed how to extend the fundamental theorem of Gale and Shapley to
non-bipartite graphs. He proved that every graph contains a set of edges that is very similar
to a stable matching. In the process, he found a characterization of graphs with stable
matchings based on a modification of Irving’s algorithm. Aharoni and Fleiner gave a non-
constructive proof of Tan’s Theorem in 2003. Their proof relies on a powerful topological
result, due to Scarf in 1965. In fact, their result extends beyond graphs and shows that
every hypergraph has a fractional stable matching. We show how their work provides new
and simpler proofs to several of Tan’s results.

We then consider fractional stable matchings from a linear programming perspective.
Vande Vate obtained the first formulation for complete bipartite graphs in 1989. Fur-
ther, he showed that the extreme points of the solution set exactly correspond to stable
matchings. Roth, Rothblum, and Vande Vate extended Vande Vate’s work to arbitrary
bipartite graphs. Abeledo and Rothblum further noticed that this new formulation can
model fractional stable matchings in non-bipartite graphs in 1994. Remarkably, these
formulations yield analogous results to those obtained from Gale-Shapley’s and Irving’s
algorithms. Without the presence of an algorithm, the properties are obtained through
clever applications of duality and complementary slackness.

We will also discuss stable matchings in hypergraphs. However, the desirable properties
that are present in graphs no longer hold. To rectify this problem, we introduce a new
“majority” stable matchings for 3-uniform hypergraphs and show that, under this stronger
definition, many properties extend beyond graphs. Once again, the linear programming
tools of duality and complementary slackness are invaluable to our analysis. We will
conclude with a discussion of two open problems relating to stable matchings in 3-uniform
hypergraphs.
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Chapter 1

Introduction

Imagine that you travel back through time to your final year of high school. It is an
exciting time: The days of walking down the halls towards those “decidedly useless” classes
are coming to a triumphant end. In the background, school counsellors can be found
preaching the importance of a post-secondary education. Not surprisingly, we will assume
that you are one of the best students in your school. Because of this assumption, the school
counsellors are particularly interested in seeing you attend a post-secondary school and,
eventually, have a profound impact on the rest of the world. Try as you may, you really
will not find a better alternative. Wisely, you accept this idea without too much trouble.
You will ultimately be faced with three questions.

The first of these questions is arguably the most important: “Which post-secondary
institution should I choose to take all of my money?” The answer will not be found easily;
factors such as tuition costs, distance from home, and program reputation will undoubtedly
affect your eventual choice of school. From the other side, a university has to decide
which students it will admit. Naturally, a school would want to admit the best students
possible. However, this may not happen since the best students could prefer to attend
another school. To help with this problem, imagine the existence of a central admissions
committee that assigns students to schools based on the preferences of both. In addition,
suppose Rebecca applied for admission to the University of Waterloo. Ideally, this central
admissions committee would like to avoid the situation in which Rebecca is denied entry to
UW, but would rather admit her than some other student who has already been accepted.
Such a scenario would undermine the credibility of the committee since both the student
and the school would have a reason to ignore the committee’s decision.

The second question you will be faced with is: “Who am I going to be yelling at for
spawning a new type of bacteria ten feet from where I sleep?” Once a school has a final list
of its new first-year students, it now has the task of assigning roommates for the students
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living in residence. Similar to the first problem, the school does not want students taking
matters into their own hands and reorganizing their living arrangements.

The final question comes after four years of hard work and many hours of lost sleep
when you finally graduate with a post-secondary degree. You are now expected to start
a life in the real world. Typically, this life will involve a successful career (your recently
obtained degree will be useful in this endeavour) and, more relevant for this paper, a
beautiful family. The question becomes: “Who am I going to spend the rest of my life
with?”

These questions motivate the following three problems:

Problem 1 (College Admissions Problem). A set of n high school students are applying to
m universities. Naturally, each student can attend only one university and each university
has some maximum quota of students. Students rank universities to which they apply,
and each university ranks its applicants. Can we find an assignment of students to schools
such that if a student is not attending a particular university, then either the student
is attending a school he prefers, or the university has reached its admissions quota with
students it prefers?

Problem 2 (Stable Roommates Problem). Suppose there are n people living in a university
dormitory. Each person ranks the other students in terms of who they would prefer to have
as a roommate. Can we find an assignment of roommates such that if two people are not
roommates then at least one of them prefers their current roommate?

Problem 3 (Stable Marriage Problem). A community consists of n men and m women.
Each person ranks members of the opposite sex in terms of who they would prefer for a
spouse. Can we find a set of couples such that if two people are not married to each other
then at least one of them prefers their spouse?

Notice that the stable marriage problem is a special case of the college admissions
problem: Imagine that each university is only allowed to admit a single student. This is
a ludicrous notion; the tuition fees of those poor students would be astronomical! Fortu-
nately, this is where the marriage metaphor becomes useful. Restricting each university to
only one student, while ridiculous in principle, yields the stable marriage problem.

We can view the stable marriage problem as an attempt to prevent affairs among
married partners. While this is a noble cause, the recent “transgressions” of a certain
professional golfer would suggest that preventing affairs is an impossible task. Needless to
say, there are social reasons why the stable marriage problem may not accurately describe
successful marriages, but we will not delve into such reasons here. However, the National
Resident Matching Program (NRMP) is a real example where these problems find some
use.
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Similar to post-doctoral fellows, residents are recently graduated medical doctors who
practice medicine under the supervision of a full physician until they have the experience
to work as physicians themselves. The NRMP began in 1952 to match residents with
hospitals based on the preferences of the participating parties. In fact, they try to solve
the college admissions problem. Indeed, there is no shortage of examples of these two-sided
preference models. Here at the University of Waterloo we can look to the Co-operative
Education program: After their interviews, students rank potential employers in terms of
work preference and the employers rank their student applicants.

Our three problems were formally introduced in 1962 by David Gale and Lloyd Shap-
ley [13] and fall into the class of stable matching problems. The main contribution of
Gale and Shapley was their proof that every instance of the college admissions problem,
and therefore the stable marriage problem, has a solution. Their proof was based on an
algorithm we will see later in Section 2.1.1.

Sadly, Gale and Shapley found the following example to show that an instance of
the stable roommates problem may not have a solution: Suppose a dormitory consists of
Andrew, Brandon, Christopher, and David. Andrew ranks Brandon first, Brandon ranks
Christopher first, Christopher ranks Andrew first, and all three rank David last. David’s
preferences are immaterial at this point. David’s roommate, regardless of who it is, will
prefer both of the others, and one of those two will also prefer David’s roommate [13].
Thus, there is no stable assignment of roommates.

However, the seminal work of Gale and Shapley has motivated some fascinating math-
ematics, and has been the starting point for hundreds of research papers. In a series of
lectures in 1976, Donald Knuth [33] showed that the set of all stable matchings in a bi-
partite graph forms a distributive lattice. Although this fact was largely ignored for many
years, it eventually led to some remarkable consequences. Knuth also conjectured that
stable matchings and lattice theory might be more closely related than originally thought.
We will see in Section 2.1.2 that this is indeed the case. As another example, the theory
of stable matchings can be used to give a short proof of Galvin’s Theorem for list-edge-
colourings of bipartite multi-graphs, and hence, a proof of the Dinitz conjecture about
partial Latin squares [16].

In the last five years, applications of stable matchings have found their way back to
the medical fields. In particular, variants of stable matching problems have been used to
model the so-called kidney transplant problem. This is essentially the problem of matching
patients to donors where the preferences for a patient needing a kidney are based on the
suitability of the potential donors [24, 43].

Obviously, the main objective of this thesis is to examine some of the interesting math-
ematical properties of stable matchings. Consequently, the bulk of our discussion will be
an exposition of the works of Gale and Shapley, Knuth, Irving, and many others. Un-
fortunately, a common trait among stable matching papers is that many are written in
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the context of computer science. While it is undeniable that there have been many ad-
vancements in stable matching research, this language can be unfamiliar to certain aspiring
mathematicians. We will try to present this material in the context of graph theory and
limit the use of the lists and tables of computer science. Hopefully, this will clean up the
presentation of many of the proofs.

Section 1.1 will conclude our introduction with a review of the necessary prerequisite
material from graph theory, linear programming, and order theory.

In Chapter 2 we will introduce the stable matching problem. Starting with the work
of Gale and Shapley, we highlight some of the interesting properties of stable matchings in
bipartite graphs. The chapter will conclude with a look at stable matchings in non-bipartite
graphs. We will see that we keep many of the properties of bipartite stable matchings when
we jump to the general case.

The purpose of Chapter 3 will be to show that the fundamental theorem of Gale and
Shapley from Chapter 2 can be extended to non-bipartite graphs by considering a suitable
extension of stable matchings. We will consider a result of Tan, and a subsequent result
of Aharoni and Fleiner, which shows that every graph contains a set of edges that is very
similar to a stable matching. This special set of edges will allow us to characterize the
graphs that have stable matchings. We will also take a vacation from the combinatorial
side of stable matchings to visit the linear programming world. Duality and complementary
slackness can provide alternate proofs to many of the results of Chapter 2.

Chapter 4 will bring stable matchings to 3-uniform hypergraphs. We will highlight some
of the difficulties stable matchings present us when we move from graphs to hypergraphs
and discuss some open questions and conjectures. To deal with these difficulties, we propose
a new, stronger, definition of stable matching. Using techniques from linear programming,
we obtain original results that show the behaviour of these “majority” stable matchings
mirrors the behaviour of stable matchings in graphs more closely than the standard stable
matching in 3-uniform hypergraphs. We will also construct a very large class of 3-uniform
hypergraphs admitting a majority stable matching.

Chapter 5 highlights two open questions about stable matchings in 3-uniform hyper-
graphs. The first asks if there is always a stable matching when the preferences are struc-
tured in a specific way. The second asks if every 3-uniform hypergraph has a fractional
stable matching where all the edge values are not too small. For both problems, we prove
that small instances have a positive answer.
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1.1 Background Check

Possibly excepting some of the order theory, most undergraduates in the Department of
Combinatorics and Optimization here at the University of Waterloo will have seen all of
this background material by the time they finish the third year of their studies. For this
reason, the majority of people who voluntarily read this thesis can skip the remainder of
this chapter. However, we include our background section should a reader need a brief
review of basic graph theory, linear optimization, or order theory.

1.1.1 Graph Theory

A graph is a pair (V,E) where V is a finite set, called the set of vertices, and E is a set
of two element subsets of V , called the set of edges. More generally, a hypergraph is a
pair (V,E) where V is a finite set and E is a set of subsets of V . If a hypergraph H has
the property that every edge has size r then we say that H is r-uniform. In particular, a
2-uniform hypergraph is a graph.

1

23
4

Figure 1.1: Example of a graph

As in Figure 1.1, we will typically represent a graph as a drawing in the plane with
points (vertices) and lines (edges) connecting some, or all, of the points. However, it is
sometimes useful to represent a graph by a matrix. The vertex-edge incidence matrix of a
hypergraph G = (V,E) is a |V | × |E| matrix M where the (v, e)-entry of M is defined as
follows:

M(v,e) =

{
1 if v is an endpoint of e

0 otherwise.

for every v ∈ V and e ∈ E. For the graph in Figure 1.1, we give the following vertex-edge
incidence matrix:

M =




1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1




5



In a graph, a vertex v is a neighbour of vertex u if uv ∈ E. The neighbourhood of a
vertex u, denoted N(u), is the set of neighbours of u. Let v ∈ V . The degree of v, denoted
deg(v), is defined to be the number of edges e such that v is an endpoint of e. If deg(u) = 0
for some vertex u then we say that u is isolated. Note that in a graph, an isolated vertex
has an empty neighbourhood.

A directed graph, or digraph, is a pair (N,A) where N is a finite set of nodes and A is
a set of ordered pairs of distinct nodes of N , called arcs. The distinction here is that the
arcs have a direction associated with them: If a = (u, v) is an arc, we think of the arc as
being directed from u to v. Therefore, in Figure 1.2, we see that the arcs (2, 3) and (3, 2)
are different. Alternatively, we will say that u is the tail of arc a and v is the head of a;
these will be denoted by tail(a) and head(a), respectively.

1

23

4

Figure 1.2: Example of a directed graph

Let G = (V,E) be a hypergraph. We say H = (V̄ , Ē) is a subhypergraph of G if V̄ ⊆ V
and Ē ⊆ E. We will often denote V (H) and E(H) to be the vertices and edges of the
subhypergraph, respectively.

A matching in a hypergraph G = (V,E) is a set of edges, M ⊆ E, such that each vertex
in V is incident to at most one edge of M . A matching M is maximal if M ∪ e is not a
matching for any e ∈ E\M . In Figure 1.3, the matching is not maximal since we could
add the edge 34 to obtain a larger matching. Further, if every vertex is incident to exactly
one edge of M , then M is a perfect matching.

1

23
4

Figure 1.3: Example of a non-maximal matching

A graph G = (V,E) is bipartite if there is a partition (A,B) of V such that every
edge of E has exactly one endpoint in A and one endpoint in B. Similarly, a 3-uniform
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hypergraph is tripartite if there is a partition (A,B,C) of V such that every edge of E has
exactly one endpoint in each of A, B, and C.

1

2

3

a

b

c

Figure 1.4: Example of a bipartite graph

A cycle in a graph is a subgraph C with n distinct vertices v0, v1, . . . , vn−1 such that
vivi+1 ∈ E(C) for all i modulo n, n ≥ 3. It will be convenient for us to refer to a cycle by
its edges: v0v1, v1v2, . . . , vn−2vn−1, vn−1v0. If n is an odd number then the cycle is odd.

We can also discuss cycles in a directed graph: A directed cycle is a subdigraph B with
n distinct nodes u0, u1, . . . , un−1 such that uiui+1 is an arc for all i modulo n, n ≥ 2. The
key here is that the arcs of the directed cycle have a consistent orientation. As examples,
C1 = 12, 23, 31 is an odd cycle in Figure 1.1, C2 = a1, 1b, b2, 2a is an even cycle in Figure
1.4, and C3 = 13, 34, 41 is a directed cycle in Figure 1.2. A well-known result shows us a
very close relationship between a bipartite graph and its set of cycles.

Theorem 1.1.1. A graph is bipartite if and only if it does not have an odd cycle.

In Chapter 3, we will see a result analogous to Theorem 1.1.1 for stable matchings in
graphs. Specifically, we will see how odd cycles can provide a characterization of stable
matchings.

A more complete review of graph theory can be found in the excellent book by Bondy
and Murty [8].

1.1.2 Linear Programming

For us, linear programming is the problem of maximizing a linear function of a finite number
of real variables subject to a finite number of linear inequalities. Any linear program can
be expressed in the following form:

max cTx (P)

subject to: Ax ≤ b

x ≥ 0,

7



where A ∈ Rm×n, c ∈ Rn, and b ∈ Rm. This is called the primal problem. A feasible
solution of (P) is a vector x ∈ Rn such that Ax ≤ b and x ≥ 0. A feasible solution, x∗, is
an optimal solution of (P) if cTx∗ ≥ cTx for every feasible solution, x, of (P). Associated
with (P) is another linear program:

min bTy (D)

subject to: ATy ≥ c

y ≥ 0.

This is the dual linear program. The feasible solutions of (P) have a special relationship
with the feasible solutions of (D).

Lemma 1.1.2 (Weak Duality). If x̄ is a feasible solution to (P) and ȳ is a feasible solution
to (D), then cT x̄ ≤ bT ȳ.

Corollary 1.1.3. If x̄ is a feasible solution to (P), ȳ is a feasible solution to (D), and
cT x̄ = bT ȳ, then x̄ is optimal for (P) and ȳ is optimal for (D).

The ultimate goal of linear programming is to find an optimal solution to (P). Corollary
1.1.3 gives us a simple way to check the optimality of a solution without resorting to an
algorithm to solve linear programs. Once we have an optimal solution to our linear program,
we would like to be able to deduce some useful properties.

Theorem 1.1.4 (Complementary Slackness). Let x∗ and y∗ be feasible solutions to (P)
and (D). Then x∗ and y∗ are optimal for (P) and (D) if and only if

• x∗j = 0 or (rowj(A
T ))y∗ = cj for all j ∈ {1, . . . , n}, and

• y∗i = 0 or (rowi(A))x∗ = bi for all i ∈ {1, . . . ,m}.

A vector z ∈ Rn is a convex combination of x and y if z = λx + (1 − λ)y for some λ
such that 0 ≤ λ ≤ 1. In R2 this is easy to visualize: The set of all convex combinations
of x and y is simply the line segment between x and y. A convex combination is strict if
0 < λ < 1. A set C ⊆ Rn is convex if for every x, y ∈ C and every real number λ with
0 ≤ λ ≤ 1, λx+ (1− λ)y ∈ C. In other words, C is convex if for any x, y ∈ C, C contains
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all convex combinations of x and y.

y

y'

x'

x

A B
Figure 1.5: Convex and non-convex sets

Figure 1.5 illustrates the difference between convex and non-convex sets. Set A is
convex since the line segment between any two points in A is contained in A. Set B is not
convex since the line segment between points y and z goes outside of B. The following
result is a trivial application of the definition of a convex set.

Lemma 1.1.5. The feasible set of any linear program is a convex set.

A vector w of a convex set C is an extreme point of C if it cannot be written as a strict
convex combination of two distinct points in C. In Figure 1.5, any “corner” of set A is an
extreme point of A.

Sometimes it is useful, and possibly necessary, to consider solutions of (P) where all
the components are integers. If we restrict all the variables of (P) to take integral values,
we obtain an integer linear program. Although they are notoriously difficult to solve to
optimality [32], integer linear programs are very powerful as a modelling tool. Indeed,
many combinatorial problems can be formulated as integer linear programs; the problem
of finding a maximum matching in a graph can be expressed as:

max eTEx (PMATCH)

subject to: Mx ≤ eV

x ∈ {0, 1}n

where M is the vertex-edge incidence matrix of the graph, and eE and eV are the vectors
of all 1’s in RE and RV , respectively.

This will be enough linear programming for this paper. However, we refer the reader
to the book of Bertsimas and Tsitsiklis [5] if our brief review is insufficient.

9



1.1.3 Order Theory

A partially ordered set is a pair (P,�) where P is a set and � is a binary relation on the
elements of P such that for all a, b, c ∈ P ,

• a � a,

• if a � b and b � a then a = b, and

• if a � b and b � c then a � c.

In other words, ‘�’ is a binary relation on P that is reflexive, transitive, and antisymmetric.
Further, we will use a ≺ b to represent that a � b and a 6= b. For brevity we will say (P,�)
is a poset or partial order. For example, let a, b ∈ N and define a � b to mean that a
divides b. Then (N,�) is a poset.

Let (P,�) be a poset. If a 6� b and b 6� a then a and b are incomparable. In (N,�), 2
and 3 are incomparable. The converse of a poset (P,�) is the poset (P,�c) where a �c b
if and only if b � a.

We can visually represent a poset by its Hasse diagram. We can think of a Hasse
diagram as a graph: Construct a vertex for each element of P and add an edge from a
up to b if a ≺ b and there does not exist a c ∈ P such that a ≺ c ≺ b. Notice that,
unlike a graph, the relative positions of vertices can be important. Informally, we mean
“big elements go above small elements”.

1

2
3

4

5

6

Figure 1.6: Hasse diagram

Figure 1.6 shows the Hasse diagram of ({1, 2, 3, 4, 5, 6},�) where � again represents
divisibility. The Hasse diagram of the converse of (P,�) is obtained by simply turning the
Hasse diagram of (P,�) upside down.

A partial order (P,�) is totally ordered if P does not have any incomparable elements.
The set of natural numbers with the canonical meaning of ≤, (N,≤), is a totally ordered
set. A total extension of partial order (P,�) is a totally ordered set (P,≤) such that if
a � b then a ≤ b. Notice that (N,≤) is a total extension of (N,�).

Let (P,�) be a poset, and let a and b be two elements of P . An element c of P is the
join (least upper bound) of a and b, if the following two conditions are satisfied:
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• a ≤ c and b ≤ c, and

• for any w in P , such that a ≤ w and b ≤ w, we have c ≤ w.

We will denote such a c by a ∨ b. Analogously, we can define the meet of a and b, a ∧ b
(greatest lower bound of a and b). If (P,�) is a poset and for every a, b ∈ P there exist
elements a ∨ b and a ∧ b in P then we say that (P,�) is a lattice.

A lattice is distributive if the following identities hold for every a, b, c ∈ P :

• a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c), and

• a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

These are often called the distributivity laws.

For our purposes, this is a sufficient introduction to order theory. However, additional
material can be found in Grätzer’s book [17]. We are now ready to discuss stable match-
ings.
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Chapter 2

Stable Matchings in Graphs

Our examination of stable matchings begins with graphs. As we will see, our problems
from Chapter 1 can be modelled as matching problems in appropriate graphs. However, our
definition of a “graph” is incomplete for the purpose of studying stable matchings. Notice
that a major component of Problems 1, 2, and 3 is the set of preferences of the parties
involved. Intuitively, the set of stable matchings should depend on the set preferences.
Indeed, this is the case. Therefore, we will be concerned with graphs that have additional
structure.

Let G = (V,E) be a graph. For a vertex v, a preference list of v, Lv, is a totally ordered
list of the edges that contain v. If every vertex of G has a preference list we will say that
G = (V,E, L) is a graph with preferences where L is the set of vertex preference lists. We
will take advantage of the fact that, in a graph, a vertex could rank either its incident
edges or its neighbour vertices; there is a one-to-one correspondence between the two sets.
We will take the convention that a >v b means vertex v prefers edge a to edge b. We can
also replace the preference list of a vertex with a partially ordered set, called the preference
poset. In this case G is a graph with poset preferences. Suppose Pv is the preference poset
for vertex v. If a and b are incomparable elements of Pv, then v considers a and b to be
equally as good or tied.

Let G = (V,E, L) be a graph with preferences and let M be a matching of G. If there is
an edge xy such that x and y prefer each other to their partners in the matching M , then
we will call it a blocking edge for M . It is certainly possible that an endpoint of a blocking
edge is unmatched in a matching. For our purposes, it will be convenient to imagine such a
vertex as being matched to itself. This will serve the noble purpose of reducing the number
of cases in many of our proofs. We will also say that the v-rank of an edge e is the position
of e in v’s preference list (i.e. v’s favourite edge has a v-rank of 1).

A matching M is a stable matching if for every edge xy 6∈ M either x prefers its
partner in M to y or y prefers its partner in M to x. Equivalently, we could define a
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stable matching to be a matching with no blocking edges. Notice that a stable matching
is necessarily maximal; otherwise, the edge that we could add to obtain a bigger matching
would be a blocking edge. Figure 2.1 gives us an example of a stable matching. A vertex
y is a stable partner of x if xy is an edge of some stable matching; we will call xy a stable
edge.

1 : (c, b, a)

2 : (b, a, c)

3 : (a, c, b)

(1, 2, 3) : a

(3, 1, 2) : b

(2, 3, 1) : c

Figure 2.1: Example of a stable matching

Naturally, we will first consider stable matchings in the bipartite setting. It will turn
out that we will always be able to find a stable matching, regardless of the bipartite graph
with preferences. Afterwards, we will move to the non-bipartite case. The difference here
will be that we can find examples of graphs with preferences without stable matchings.
However, there are many properties that bipartite and non-bipartite stable matchings still
share; we will try to feature the most interesting of these properties.

2.1 Bipartite Graphs

The stable marriage problem can be formulated as the problem of finding a stable matching
in a bipartite graph with preferences: Let the vertex classes be A := {men} and B :=
{women}. We add the edge ab if man a and woman b both consider each other to be
possible partners. The preferences for a vertex will simply be the preferences of the person
it is representing.

Similarly, we can formulate the college admissions problem. However, since each uni-
versity will likely admit more than one student, the college admissions problem is not
precisely a matching problem. We can circumvent this complication by constructing clone
vertices for each university. Specifically, if university a is willing to admit at most k stu-
dents, then we should have k copies of vertex a, where each clone vertex is incident to
exactly the same set of student vertices. Gale and Shapley gave an algorithm that would
solve both the stable marriage and college admissions problems and, in the process, prove
the following seminal result.

Theorem 2.1.1 (The Fundamental Theorem of Stable Matchings [13]). Every bipartite
graph with preferences has a stable matching.
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The ultimate goal of the next section will be to highlight this result and the Gale-
Shapley algorithm. Later on we will also see that for a bipartite graph with preferences,
the set of stable matchings forms a distributive lattice.

2.1.1 The Gale-Shapley Algorithm

The stable matching algorithm proposed by Gale and Shapley is very simple. Let G =
(A ∪B,E,L) be a bipartite graph with preferences. In turn, each unmatched vertex in A
proposes to its favourite neighbour vertex to which it has not yet proposed. If vertex b is
unmatched and receives a proposal from a, b accepts the proposal. If vertex b is matched
and likes the proposal from a better than its current proposal, b accepts a’s proposal and
rejects the old proposal; if b likes the current proposal better, then b rejects a. If a vertex is
rejected, then it proposes to its next most preferred neighbour. We stop once every a ∈ A
is either matched or has proposed to all of its neighbours.

Algorithm 1 Gale-Shapley Algorithm

Input: a bipartite graph with preferences, G = (A ∪B,E,L)
Output: a stable matching M
1: set K(x) := Lx ∀ x ∈ A ∪B
2: set M := ∅
3: while ∃ a ∈ A unmatched in M and K(a) 6= ∅ do
4: let b be the most preferred vertex of K(a)
5: if b is not covered by M then
6: M := M ∪ {ab}
7: else if zb ∈M for some z 6= a and a >b z then
8: M := M\{zb} ∪ {ab}
9: end if
10: K(a) := K(a)\{b}
11: K(b) := K(b)\{u|a >b u}
12: end while
13: output M , a stable matching

An amazing feature of this procedure is that it is very natural. It is the obvious thing
to do: Start with your favourite possible partner and work your way down the list until
you are matched with a partner or you run out of possible partners. Even more amazing
is that such a natural procedure is correct!

Theorem 2.1.2 (Gale and Shapley [13]). For any bipartite graph with preferences, the
Gale-Shapley Algorithm terminates with a stable matching.
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Proof: Let G = (A∪B,E,L) be a bipartite graph with preferences and let M∗ be the set of
edges returned by the algorithm. Lines 3 through 9 ensure that M∗ is indeed a matching.
Suppose, for a contradiction, that M∗ is not stable. Then there exists a blocking edge
ab ∈ E. Specifically, there exists a ∈ A and b ∈ B such that ab 6∈ M∗ and both a and b
prefer each other to their partners (if they have one) in M∗.

Since ab 6∈ M∗ then either there exists z ∈ A who proposed to b during the algorithm
such that z >b a or b never received a proposal throughout the algorithm. Notice that if b
receives a proposal, then b is guaranteed to be matched at the end of the algorithm and will
only accept a new proposal if it is better than the current one. Therefore, if b receives a
proposal, b is matched to a vertex w such that w ≥b z >b a, contradicting our assumption
that ab is a blocking edge for M∗. If b did not receive a proposal then every vertex in A is
matched to a vertex in B that it prefers to b, again contradicting our assumption.

Observe that in order for the algorithm to always output a stable matching, any bi-
partite graph with preferences must have a stable matching. In this way, Theorem 2.1.1
follows directly from the algorithm.

Returning to our University of Waterloo Career Services example from Chapter 1, a
reasonable conjecture is that the algorithm used to match students to employers is a variant
of the above algorithm, with A = {employers} and B = {students}. Unfortunately,
a quick search through the Career Services website shows that this conjecture is false.
The algorithm used by the Co-operative Education program is “greedy” and does not
guarantee a stable matching [50]. However, it is noteworthy that, ten years before the the
Gale-Shapley paper was published, the NRMP began using the Gale-Shapley algorithm to
match newly graduated doctors with hospitals [41]. The NRMP has proven so successful
that the program continues to use a version of the algorithm and thousands of hospitals
and doctors participate in the program [38].

We will refer the reader to the books of Knuth [33], or Gusfield and Irving [19], for
a simple analysis of this algorithm. However, if the reader is not interested, we will just
mention that the analysis essentially boils down to the fact that each vertex will propose
to each of its neighbours at most once. If there are n vertices then each vertex has at most
n− 1 neighbours; this gives us O(n2) as the running time.

The Gale-Shapley algorithm leads to some interesting theoretical consequences. We
will mention two of these here. However, we will save the proofs of these results until
Section 2.3.

Theorem 2.1.3 (Gale and Sotomayor [14], McVitie and Wilson [35]). Let G be a bipartite
graph with preferences. If vertex v is unmatched in a particular stable matching of G, then
v is unmatched in all stable matchings of G.

Corollary 2.1.4. Let G be a bipartite graph with preferences. All stable matchings of G
have the same size.
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In anticipation of the underlying structure of stable matchings, we will call a stable
matching A-optimal if every vertex in A is matched to the most preferred partner it can
have in any stable matching. Notice that in a bipartite graph with preferences, the A-
optimal stable matching, should it exist, is unique. However, the existence of such a stable
matching seems unlikely (the fact that it is a matching is surprising). Remarkably, Gale
and Shapley showed that their algorithm could do more than just guarantee the existence
of a stable matching.

Lemma 2.1.5 (Gale and Shapley [13]). For any bipartite graph with preferences, the Gale-
Shapley Algorithm terminates with the A-optimal stable matching.

Proof: Let M∗ be the stable matching given by the algorithm. Suppose, for a contra-
diction, that M∗ is not the A-optimal stable matching. Then there exists another stable
matching, M , and vertices a ∈ A and x, y ∈ B such that ax ∈ M∗, ay ∈ M , and y >a x.
Since ay 6∈ M∗, y must have rejected a during the algorithm. This rejection must have
happened because y received a proposal from a vertex z ∈ A such that z >y a. Since pro-
posals occur one at a time, we may assume that this is the first time during the algorithm
that a vertex in B rejected a proposal from a stable partner.

Now z cannot have a better stable partner than y since, at the time of z’s proposal
to y, y was first on z’s preference list and ay was the first stable edge that was rejected
during the algorithm. Thus, since zy 6∈M , z must prefer y to its partner in M . But then
zy is a blocking edge for M , contradicting that M is a stable matching.

We now know that the A-optimal stable matching exists. But, we actually know more
than that! The uniqueness of the A-optimal stable matching shows that the Gale-Shapley
algorithm will always terminate with the same stable matching. However, throughout
our discussion of Gale-Shapley, we did not specify a proposal order for the vertices in
A. Surprisingly, this is not a mistake. Such an order is not necessary! In the proof of
Lemma 2.1.5 there were no special assumptions about the execution of the algorithm that
produced M∗. Hence the proposal order is irrelevant: ANY execution of the algorithm on
a bipartite graph with preferences will yield the A-optimal stable matching. We will see
this non-determinism again when we look at Irving’s algorithm.

Many aspects of our world, especially athletics and politics, share a common trait: The
triumph of one group of people usually comes at the expense of another group. This is
also true with stable matchings in bipartite graphs with preferences.

Corollary 2.1.6 (McVitie and Wilson [36]). In the A-optimal stable matching, each vertex
in B is matched with the least preferred vertex it can have in any stable matching.

Proof: Let M∗ be the A-optimal stable matching and let M be another stable matching.
Let a, w ∈ A, x, y ∈ B such that ay ∈ M∗, wy ∈ M , and ax ∈ M . Suppose, for a
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contradiction, that a >y w. Since M∗ is the A-optimal stable matching and ay ∈ M∗, we
must have y >a x. Then ay is a blocking edge for M . But this contradicts that M is a
stable matching, since ay 6∈M .

This result justifies using the alternate term B-pessimal in place of A-optimal. By
the noted anti-symmetry of the stable matching problem, we obtain the B-optimal/A-
pessimal stable matching by simply running the algorithm with the women as the proposers.
Further, the previous two results will give us maximal and minimal elements of the promised
lattice.

2.1.2 The Lattice of Stable Matchings

In general, a bipartite graph with preferences can have more than one stable matching.
The example in Figure 2.2 has ten stable matchings. Can you find them all? In point
of fact, it is known there exist graphs with preferences with exponentially many stable
matchings [19] and the problem of counting stable matchings is #P-complete [28].

1 : (d, c, b, a)

2 : (c, d, a, b)

3 : (b, a, d, c)

4 : (a, b, c, d)

(1, 2, 3, 4) : a

(2, 1, 4, 3) : b

(3, 4, 1, 2) : c

(4, 3, 2, 1) : d

Figure 2.2: Bipartite graph with 10 stable matchings

We have been advertising that the set of stable matchings forms a distributive lattice.
As a first step towards this fact, we claim that the set of stable matchings is a partially
ordered set. Let M1 and M2 be stable matchings of G = (A ∪ B,E,L). We say that
M1 � M2 if every vertex in A has at least as good a partner in M2 as it does in M1. It is
easy to see that � is reflexive, antisymmetric, and transitive. This work is originally due
to Donald Knuth and John Conway [33].

Theorem 2.1.7. Let G = (A∪B,E) be a bipartite graph with preferences, and let M1 and
M2 be stable matchings of G. If each vertex in A is paired with its most preferred neighbour
from M1 and M2, then the result, M1 ∨M2, is a stable matching.

Proof: If M1 = M2, then the result is trivial. We will first show that M1 ∨ M2 is a
matching. Suppose, for a contradiction, that M1∨M2 is not a matching. Then there exists
a, x ∈ A and b, y, z ∈ B such that ab, xy ∈M1, az, xb ∈M2, with both b >a z and b >x y.
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b

z

x

a

Figure 2.3: Stable matchings M1 (thicker edges) and M2

Since b >a z, we must have x >b a; otherwise M2 would not be stable. But this
contradicts that M1 is stable since, by above, b >x y making xb a blocking edge for M1.
Thus, M1 ∨M2 is indeed a matching.

To show that M1 ∨M2 is indeed stable, we again suppose the contrary. Then there
exist vertices u and v such that uv is a blocking edge for M1 ∨M2. We may assume that
u ∈ A. Since u prefers v to its partner in M1 ∨M2, the definition of M1 ∨M2 tells us that
u prefers v to its partners in both M1 and M2. Now v’s partner in M1 ∨M2 will either be
its partner in M1 or M2. Suppose v’s partner in M1∨M2 is its partner from M1. But since
uv is a blocking edge for M1 ∨M2, v prefers u to its partner in M1. This means that uv is
also a blocking edge for M1, contradicting that M1 is a stable matching. Hence, M1 ∨M2

is indeed a stable matching.

Corollary 2.1.8. Let G = (A ∪ B,E) be a bipartite graph with preferences, and let M1

and M2 be stable matchings of G. Then M1 ∨M2 is the least upper bound of M1 and M2.

Proof: From the definition of �, we can see that M1 � M1 ∨M2 and M2 � M1 ∨M2.
Let M̄ be a stable matching satisfying M1 � M̄ and M2 � M̄ . Then every vertex in A
must have a partner in M̄ that it prefers at least as much as its partners in M1 and M2.
Therefore M1 ∨M2 � M̄ , and M1 ∨M2 is the least upper bound of M1 and M2.

In a similar way, we can define M1 ∧M2 to be the stable matching where each vertex
in A is paired with its least preferred partner from M1 and M2. Thus, for any two stable
matchings, M1 and M2, we can find a least upper bound, M1 ∨M2, and a greatest lower
bound, M1 ∧M2. Hence, (M ,�) is a lattice. Notice that the converse of this lattice is
obtained by simply switching perspective to the B-vertices. The Hasse diagram for the
stable matching example in Figure 2.2 can be found in Figure 2.4. The theorem also shows
that the A-optimal stable matching is indeed the maximal element of our lattice. In point
of fact, Donald Knuth [33] noted that this lattice has much more structure.

Theorem 2.1.9. Let G = (A ∪ B,E) be a bipartite graph with preferences, and let M be
the set of all stable matchings for G. Then the lattice (M ,�) is distributive.

Proof: Let M1, M2, and M3 be stable matchings in G. Suppose that x ∈ A is matched
to yM1 , yM2 , yM3 ∈ B, respectively. We note that there are six possible permutations of
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yM1 , yM2 , and yM3 in the preference list for x. A simple calculation for each case yields
M1 ∧ (M2 ∨M3) = (M1 ∧M2)∨ (M1 ∧M3) and M1 ∨ (M2 ∧M3) = (M1 ∨M2)∧ (M1 ∨M3),
which are exactly the distributive laws.

There is much more substantial research into stable matching lattice theory [7, 19, 18,
25, 28]. A particularly interesting result, motivated by a question of Knuth [33], shows
how strong the connection is between stable matchings and lattice theory.

Theorem 2.1.10 (Blair [7]). Every finite distributive lattice is the lattice of stable match-
ings for some bipartite graph with preferences.

Blair’s construction took a lattice on n points and gave a bipartite graph with prefer-
ences with O(2n) vertices. Gusfield, Irving, Leather, and Saks [18] provided an efficient
construction of the stable matching instance, while improving the size of the graph to
O(n2).

Our detour through lattice theory may, admittedly, feel a little out of place here. How-
ever, these remarkable and, in some sense, fairly simple, facts deserve inclusion in our
discussion.

a1, b2, c3, d4

a2, b1, c3, d4 a1, b2, c4, d3

a2, b1, c4, d3

a2, b4, c1, d3 a3, b1, c4, d2

a3, b4, c1, d2

a4, b3, c1, d2 a3, b4, c2, d1

a4, b3, c2, d1

Figure 2.4: Hasse diagram of stable matchings

2.2 Non-Bipartite Graphs

We begin our section on non-bipartite graphs with an example to highlight the main
obstacle when considering stable matchings in non-bipartite graphs with preferences. In
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point of fact, the example in Figure 2.5 is the graph version of the unsolvable instance of
the stable roommates problem we saw in Chapter 1.

2 : (3, 1, 4)

3 : (1, 2, 4)

(2, 3, 4) : 1

(1, 2, 3) : 4

Figure 2.5: Example with no stable matchings

In any maximal matching, one of vertices {1, 2, 3}must be matched to vertex 4. Suppose
the matching is M = {14, 23}. Then the edge 13 blocks M since 3 >1 4 and 1 >3 2.
Similarly, edge 12 blocks the matching M̄ = {24, 13} and edge 23 blocks the matching
M̃ = {12, 34}. Hence, the graph with preferences has no stable matching. Notice that
12, 23, 31 is an odd cycle. The existence of such an odd cycle leads to a characterization
of bipartite graphs.

Theorem 2.2.1 (Abeledo and Isaak [1]). Let H = (V,E) be a graph. Then, H is bipartite
if and only if the graph with preferences G = (V,E, L) has a stable matching for any set of
preferences L.

Proof: Let H = (V,E) be a graph. If H is bipartite, then by Theorem 2.1.1, G =
(V,E, L) has a stable matching for any set of preferences. Therefore, we can suppose
that H is non-bipartite. We need to show that there is a set of preferences, L, such that
G = (V,E, L) does not have a stable matching. By Theorem 1.1.1, H has an odd cycle
C = v0v1, v1v2, . . . , vn−1v0. For each i modulo n, set vi+1 and vi−1 to have vi-rank 1 and 2,
respectively. The remaining preferences can be filled in arbitrarily.

Suppose, for a contradiction, that G = (V,E, L) has a stable matching M . Since C is
an odd cycle, there exists an i such that vi is not matched to either vi−1 or vi+1. Then
vi−1vi 6∈ M , vi is first on vi−1’s preference list, and vi is matched to, at best, its third
favourite neighbour. This means that vi−1vi is a blocking edge of M , contradicting that
M is a stable matching. Thus, G = (V,E, L) does not have a stable matching.

Since we now know that there exist graphs with preferences that do not have stable
matchings, the best algorithm we could hope for would be one that finds a stable matching
if it exists, or tells us that there is no stable matching. In 1985, Robert Irving [26] provided
such an algorithm and disproved a conjecture of Knuth, who suggested the problem might
be NP-complete [33].
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2.2.1 Irving’s Algorithm

Irving’s algorithm is divided into two phases. The first is very similar to the Gale-Shapley
algorithm and removes edges that could not possibly be part of any stable matching. The
main difference here is that vertices can both give and receive proposals. The second phase
proceeds by deleting edges in a more specialized way until either we are left with a stable
matching or we reach a condition that tells us that there is no stable matching.

We will call a vertex free if does not have a neighbour holding its proposal. Phase 1
starts with a vertex a proposing to its favourite neighbour, say b. Vertex b accepts the
proposal, meaning that a is no longer free, and then deletes any edge it prefers less than
edge ab. The algorithm continues with free vertices proposing in the same manner as
vertex a. The vertices that receive proposals delete edges in the same manner as vertex
b. Notice that these edge deletions prevent a proposal from being rejected immediately,
since any such rejection will have already been ruled out. If a vertex is currently holding
a proposal and receives a new one, then by the previous edge deletions it would accept
the new proposal and delete any less preferable edges still remaining. Hence, the previous
proposal edge would be deleted and the rejected vertex would become free again. Phase 1
stops once every vertex is either isolated or no longer free. If the edges form a matching,
then it is stable. Otherwise we will continue on to Phase 2.

Algorithm 2 Irving’s Algorithm - Phase 1

Input: a graph with preferences G = (V,E, L)
Output: the phase 1 subgraph G1 = (V,E1, L1)

set L1(x) := Lx ∀ x ∈ V and E1 := E
while ∃ x ∈ V such that x is free and L1(x) 6= ∅ do

let y be the most preferred vertex of L1(x)
if y is holding a proposal from z then

assign z to be free
end if
E1 := E1\{ay : x >y a}
L1(y) := L1(y)\{a : x >y a}
for all a such that x >y a do
L1(a) := L1(a)\y

end for
end while
V 1 := {v ∈ V : deg(v) ≥ 1}
output G1 = (V 1, E1, L1), the phase 1 subgraph

For this section, our pet example will be K6 with preferences, as shown in Figure 2.6.
We will use this graph to demonstrate the algorithm.

22



(2, 5, 3, 4, 6) : 1 2 : (3, 4, 5, 6, 1)

3 : (4, 5, 1, 2, 6)

4 : (1, 2, 5, 3, 6)(2, 4, 3, 1, 6) : 5

(1, 2, 3, 4, 5) : 6

Figure 2.6: K6 with preferences

Applying Phase 1 to our example we obtain the subgraph Figure 2.7. For similar reasons
to the Gale-Shapley algorithm, the order of the proposals is, once again, inconsequential
to the outcome of Phase 1.

(5, 3, 4) : 1 2 : (3, 4, 5)

3 : (4, 5, 1, 2)

4 : (1, 2, 5, 3)(2, 4, 3, 1) : 5

(∅) : 6

Figure 2.7: Phase 1 subgraph

Let G1 = (V 1, E1, L1) be the subgraph of G at the end of Phase 1. The following
Lemma shows, in particular, that we can ignore any vertex that becomes isolated during
Phase 1.

Lemma 2.2.2 (Irving [26]). Let G = (V,E, L) be a graph with preferences and let xy ∈ E.
If xy 6∈ E1 then xy is not an edge of any stable matching of G.

Proof: Suppose, for a contradiction, that xy is an edge of some stable matching M , but
xy 6∈ E1. We may assume that xy was the first such edge deleted during Phase 1. Without
loss of generality, xy was deleted when vertex z proposed to x (i.e. x prefers z to y). Now
in M , x is matched to y and z is matched to some vertex w. However, we note that z
cannot have a better stable partner than x since at the time of z’s proposal to x, x was first
on the preference list of z and xy was the first stable edge to be deleted. Thus z prefers x
to w. So zx blocks M , contradicting the assumption that M was stable.

23



If we are lucky and Phase 1 ends with a matching, it would be nonsensical to suggest
that we need to do more work to reach a stable matching.

Lemma 2.2.3 (Irving [26]). If every vertex in G1 is adjacent to at most one other vertex
then the set of edges E1 form a stable matching in G.

The proof is similar to the proof that the Gale-Shapley algorithm is correct and is
therefore omitted. To make our lives easier for the remainder of this section, we will rely
heavily on the following two properties.

Property 1. Vertex a is in the current preference list of vertex b if and only if b is in the
current preference list of a.

Property 2. Vertex a is first in the current preference list of vertex b if and only if b is
last in the current preference list of a.

Property 1 simply means that if we delete an edge ab, we must remember to remove b
from a’s preference list and remove a from b’s preference list. Notice that Property 2 also
holds in the Phase 1 subgraph, G1: Suppose vertex b receives a proposal from a. The fact
that a proposed to b tells us that b was first in a’s preference list, otherwise a would have
proposed to a vertex it preferred more than b. Vertex a becomes last in b’s preference list
because b deletes all of its neighbours it prefers less than a [26]. We will show that these
two properties hold throughout the algorithm, and will be essential to the proof that the
algorithm is correct.

We now come to Phase 2. Phase 2 deletes edges that are incident to a special set of
vertices. Let H be a subgraph of G1. Define fH(x), sH(x), and lH(x) to be the first,
second, and last vertices of x’s preference list in H. A rotation in H is a sequence of vertex
pairs,

R = (x0, y0), (x1, y1) . . . , (xr−1, yr−1),

such that fH(xi) = yi and sH(xi) = yi+1 for all i modulo r. In Figure 2.7 for example,

R = (1, 5), (2, 3), (3, 4)

is a rotation. If R is a rotation in a subgraph H, we will use H\R to represent the subgraph
obtained by deleting the set of edges

E(R) := {ayi : xi−1 >yi a for all i},

along with the associated entries in the preference lists, from H; we will say that R has
been removed from H. In our example, R = (1, 5), (2, 3), (3, 4) is a rotation and we delete
the following edges:
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• 15 since 3 >5 1,

• 23 since 1 >3 2, and

• 34 and 45 since 2 >4 5 and 2 >4 3.

(3, 4) : 1 2 : (4, 5)

3 : (5, 1)

4 : (1, 2)(2, 3) : 5

(∅) : 6

Figure 2.8: Removing a rotation

Figure 2.8 shows the result of removing R. Since we are only deleting edges, the fact
that Property 1 holds throughout Phase 2 is obvious. Property 2 also holds in Phase 2:
Let H be a subgraph of G1 in which Properties 1 and 2 hold and let

R = (x0, y0), (x1, y1) . . . , (xr−1, yr−1)

be a rotation in H. When we remove R, we delete the edges E(R). In particular, we delete
all the edges of the form xiyi because xi is last in yi’s preference list. Notice also that we
do NOT delete edges of the form xi−1yi. Therefore, yi is now first in xi−1’s preference list.
By definition of E(R), xi−1 is now also last in yi’s preference list. Deleting edges not of
the form xiyi does not affect Property 2, since they are not first nor last in any preference
list of H. So, Property 2 still holds in H\R, and rotation removal is well defined.

Lemma 2.2.4 (Irving [26]). Let H be a Phase 2 subgraph of G1. If H has a vertex with
at least two neighbours then H has a rotation.

Proof: We first note that if vertex a has only one neighbour, say b, then by Properties 1
and 2 the only neighbour of b is a. Let T be the set of vertices with at least two neighbours.
Let v ∈ T . By the above observation, every neighbour of v is also in T . So for every x ∈ T ,
sH(x) and lH(sH(x)) exist and are in T . Furthermore, if lH(sH(x)) = x then, by Property
2, we would have fH(x) = sH(x), which is a contradiction since each neighbour of x can
only appear once on x’s preference list. Therefore, lH(sH(x)) 6= x.

Let D be a directed graph with nodes T and for every x ∈ T an outward arc to
lH(sH(x)). Since every node has out-degree 1, there exists a directed cycle C. Let C =
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x0, x1, . . . , xr−1. Note that xi+1 = lH(sH(xi)) for all i modulo r. By Property 2 this
means that sH(xi) = f(xi+1). Let yi = f(xi) for all i modulo r and we can see that
R = (x0, y0), (x1, y1) . . . , (xr−1, yr−1) is a rotation.

Phase 2 can be described in the following way: While no vertex of V 1 is isolated and
the remaining edges are not a matching, find a rotation, which must exist by Lemma 2.2.4,
and remove it. If some some vertex becomes isolated then there is no stable matching.
Otherwise the matching we are left with is stable.

Algorithm 3 Irving’s Algorithm - Phase 2

Input: a graph with preferences G = (V,E, L) and its phase 1 subgraph G1 = (V 1, E1, L1)
Output: a stable matching M , or proof that there is no stable matching in G

let V ′ = {v ∈ V |degG1(v) ≥ 1}
let H = G1

while ∃ v ∈ V (H) such that degH(v) ≥ 2 and 6 ∃ u ∈ V (H) such that degH(u) = 0 do
find a rotation R in H
H := H\R

end while
if ∃ u ∈ V (H) such that degH(u) = 0 then

output that G has no stable matching
else

output M := E(H), a stable matching
end if

The next two results show that if a graph with preferences has a stable matching, then
at every iteration there will be at least one stable matching in the current subgraph of G1.
Unlike the Gale-Shapley algorithm, the stable matching found by Irving’s algorithm is not
unique; different sequences of rotation removals lead to different stable matchings.

Lemma 2.2.5 (Gusfield and Irving [19]). Let H be a Phase 2 subgraph of G1 and let M
be a stable matching of G which is contained in H. If

R = (x0, y0), (x1, y1) . . . , (xr−1, yr−1)

is a rotation in H and xiyi 6∈M for some i, then M is contained in H\R.

Proof: Since rotations are cyclic we may assume x0y0 6∈M . By the definition of a rotation,
x0 is therefore matched in M to, at best, y1. This means that, since M is a stable matching,
y1 must be matched to a vertex it prefers at least as much as x0; otherwise x0y1 would be
a blocking edge for M . Notice that by Property 2, x1 is last in y1’s preference list in H. In
particular, y1 prefers x0 to x1. Therefore, we also have x1y1 6∈M since, as we just noticed,
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y1 must be matched to a vertex at least as good as x0. Repeating this argument, we see
that xiyi 6∈ M , xi is matched in M to, at best, yi+1, and yi is matched in M to, at worst,
xi−1 for all i modulo r. But when we remove R, we only delete an edge if some yi prefers
that edge less than yixi−1. Thus, no edge of M is deleted when we remove R, showing that
M is contained in H\R.

Theorem 2.2.6 (Irving [26], Gusfield and Irving [19]). Let H be a subgraph of G1 in Phase
2 and suppose that H contains a stable matching of G. If

R = (x0, y0), (x1, y1) . . . , (xr−1, yr−1)

is a rotation in H, then there is a stable matching contained in H\R.

Proof: Let M be a stable matching of G and let R = (x0, y0), (x1, y1) . . . , (xr−1, yr−1) be
a rotation in H. If there is an i such that xiyi 6∈ M , then Lemma 2.2.5 tells us that M is
contained in H\R. Thus, we may assume that xiyi ∈M for all i modulo r.

We first claim that {x0, . . . , xr−1} ∩ {y0, . . . , yr−1} = ∅. Otherwise there are i and j
such that xi = yj. Note that xiyi, xjyj ∈ M . But this can only happen if xj = yi as well.
Using Properties 1 and 2, we can say that

fH(xi) = yi = xj = lH(yj) = lH(xi).

Since the first vertex on the preference list of xi is the same as the last, xi has only one
vertex in its preference list, contradicting our assumption that xi was in the rotation R.

Now, let M ′ be the matching obtained from M by replacing the edges xiyi with xiyi+1

for all i modulo r. Since R is cyclic and {x0, . . . , xr−1} ∩ {y0, . . . , yr−1} = ∅, M ′ is indeed
a matching. We also note that M ′ is contained in H\R, since fH\R(xi) = yi+1 for all i and
only edges containing yi for some i can possibly be deleted when we remove R.

To complete the proof, we need only show that M ′ is stable. Suppose, for a contra-
diction, that the edge uv blocks M ′. Since M is a stable matching, uv cannot block M .
Notice that only the xi’s and yi’s have different matching partners in M ′ and only the xi’s
prefer their partner in M to their partner in M ′. So any blocking edge for M ′ must involve
some xj. Therefore, we may assume that u = xj for some j.

Claim: The blocking edge uv is an edge of H\R.

Proof of Claim: Suppose, for a contradiction, that uv is not an edge of H\R. Then uv was
deleted when we removed R. Therefore v = yi for some i and yi prefers xi−1 = lH\R(yi) to
u. But this contradicts the assumption that uv blocks M ′ since xi−1yi ∈M by assumption.

So uv ∈ H\R and, by above, u = xj for some j. By definition of M ′, u’s partner in
M ′ is first on its preference list in H\R. Since uv ∈ H\R, u must prefer fH\R(u) to v,
contradicting the assumption that uv blocks M ′.
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The proof of Theorem 2.2.6 has a corollary. Specifically, this follows from the section
of the proof where we show M ′ is a stable matching.

Corollary 2.2.7. If, when Irving’s algorithm terminates, every vertex of V 1 has degree 1,
then the remaining edges are a stable matching of G.

Let us prove that Irving’s algorithm really works (finally!). Let G = (V,E, L) be a
graph with preferences. Recall that V 1 is the set of non-isolated vertices after Phase 1.
First, suppose that G does not have a stable matching. By Corollary 2.2.7, Phase 2 cannot
terminate with a perfect matching of G1. Also, we continue to remove rotations while there
is still a vertex of V 1 of degree at least 2. Therefore, there must exist a vertex of V 1 which
became isolated during Phase 2 to cause the algorithm to stop.

Now suppose that G has a stable matching. Lemma 2.2.2 tells us that Phase 1 does
not affect any stable matching of G. So, all the stable matchings of G survive to see Phase
2. Now, we keep removing rotations as long as there is a vertex of V 1 with degree at least
2. Since an isolated vertex of V 1 implies no stable matching, Phase 2 must terminate as a
perfect matching of G1. Theorem 2.2.6 tells us that as long as we are removing rotations,
there will always be a stable matching in the remaining subgraph. Therefore, the remaining
edges must be a stable matching of G.

Thus, Irving’s algorithm correctly identifies whether a graph with preferences has a
stable matching and, if it does, provides one for us.

Before we move on, we will briefly describe the running time of Irving’s algorithm.
Phase 1 runs in O(n2) time for the same reason that the running time of the Gale-Shapley
algorithm is O(n2). In his original paper [26], Irving showed how to implement Phase 2 to
run in O(n2) time. This gives us an overall time complexity of O(n2).

2.3 Consequences of Irving’s Algorithm

In practice, we can use Irving’s algorithm to decide if a graph with preferences has a stable
matching. It is equally useful as a theoretical tool. We will start with a simple observation.

Lemma 2.3.1. Let G be a graph with preferences. If, at the end of Phase 1, vertex v has
an empty preference list then v is not matched in any stable matching of G.

This follows directly from Lemma 2.2.2. Vertex v is not incident to any edges in G1 so
no edge incident to v in G can be in any stable matching.

Lemma 2.3.2. Let G be a graph with preferences. If, at the end of Phase 1, vertex v has
a nonempty preference list then v is matched in every stable matching of G.
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Proof: Let v be a vertex of G that has a nonempty preference list at the end of Phase 1.
We first note that v must be first in the preference list of some vertex, say u. Otherwise,
by the Pigeonhole principle, there is a vertex z such that z is first in the preference lists of
both w and y. But, by Property 2, both w and y would then be last in the preference list
of z. This is a contradiction since all the preference lists are total orders.

Now if v is unmatched in some stable matching M , then vu blocks M since vu 6∈ M
and u, by Lemma 2.2.2, is matched to a vertex it prefers less than v. Thus, v must be
matched in every stable matching.

The next result follows easily from the previous two lemmas and is the non-bipartite
version of Theorem 2.1.3 in Section 2.1.

Theorem 2.3.3 (Gusfield and Irving). Let G be a graph with preferences. If vertex v is
unmatched in a particular stable matching of G, then v is unmatched in all stable matchings
of G.

We now know there exists a partition of the vertices: Vertices that are always matched in
a stable matching and vertices that are never matched. Less technically, it does not matter
which set of stable marriages we choose, the same set of people will never be married
(possibly for the best). Once we have this partition, the consequence is inescapable. Yet,
the conclusion still startles many people when they first hear it.

Corollary 2.3.4. Let G be a graph with preferences. If G has a stable matching, then all
stable matchings of G have the same size.

In the case of graphs with poset preferences, Theorem 2.3.3 and Corollary 2.3.4 no
longer hold. Consider Figure 2.9. We have a cycle with three vertices, and each vertex is
indifferent to its neighbours.

1 :
(
2
3

)

3 :
(
1
2

)(
1
3

)
: 2

Figure 2.9: Example of a graph with poset preferences

One way to find a stable matching in a graph with poset preferences is to take a total
extension of all the preference posets and then find a stable matching in the resulting graph
with preferences. However, Figure 2.10 demonstrates a flaw in this approach.

1 : (2, 3)

3 : (1, 2)(3, 1) : 2

1 : (3, 2)

3 : (1, 2)(3, 1) : 2

Figure 2.10: A problem with poset preferences
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Both graphs have preference lists which are total extensions of their respective prefer-
ence posets in the original graph. But the graph with preferences on the left has a stable
matching, while the one on the right does not! When we take total extensions of the pref-
erence posets, a vertex with a partially ordered preference list will have to “break ties”. As
our example shows, different choices of tie-breaking yield different answers to the question
“Does this graph with preferences have a stable matching?” This trait makes finding a
stable matching in a non-bipartite graph with poset preferences NP-complete [40]. This is
not a problem in a bipartite graph with poset preferences, since the resulting graph with
preferences will always have a stable matching by Theorem 2.1.1. However, we still lose
the result of Corollary 2.3.4.

(
a
b

)
: 1

(b) : 2

a : (1)

b :
(
1
2

)

(
a
b

)
: 1

(b) : 2

a : (1)

b :
(
1
2

)

Figure 2.11: Poset preferences and stable matchings of different size

The graph with poset preferences in Figure 2.11 admits exactly two stable matchings,
as shown. Notice that one of the stable matchings has size two and the other only has size
one. Naturally, “What is the maximum (or minimum) size of a stable matching in a graph
with poset preferences?” is the next question. Would it be possible to modify one of our
algorithms to find a maximum cardinality stable matching? As with most stable matching
problems involving poset preferences, this problem gets caught in the NP-completeness
trap [34].
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Chapter 3

Fractional Stable Matchings

As we noted in Section 2.2, a non-bipartite graph may not have any stable matchings. A
possible way to avoid this unfortunate fact is to relax the “matching” requirement. In
this chapter, we will be concerned with graphs with preferences. However, the preliminary
definitions can be extended to hypergraphs with preferences and will be discussed in this
context later in Chapter 5.

A hypergraph with preferences, H = (V,E, L), is a hypergraph where every vertex
has a totally ordered list of its incident edges. Let H = (V,E, L) be a hypergraph with
preferences and let M be a matching of H. If there is an edge e ∈ E such that all the
vertices of e prefer edge e to their respective edges of M , then we will call it a blocking
edge for M . A matching, M , is stable if M does not have any blocking edges. In other
words, if M is a stable matching for H, then for every e 6∈ M , at least one of the vertices
of e prefers its matching edge to e.

A vector x ∈ RE
+ is called a fractional matching if

∑

e∈E:
u∈e

xe ≤ 1 for every u ∈ V.

A fractional matching x is called a fractional stable matching if every edge e contains a
vertex u such that ∑

e≤uj

xj = 1.

We will see that a hypergraph always admits a fractional stable matching regardless of the
preferences of the vertices. In some sense we can think of a fractional stable matching as
a stable arrangement of timeshared partnerships: Suppose that i and j are the endpoints
of edge e. The value of xe represents the proportion of time that i and j are roommates.
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At least one of i and j will always have an additional situation that is preferred at least as
much as the assignment of i to j. Admittedly, this is a curious metaphor since we described
the original stable marriage problem as a way of preventing multiple partners. Fractional
stable matchings in graphs with preferences will eventually lead us to a structure called
a “stable partition”. Stable partitions very closely resemble stable matchings and can be
found using a simple extension of Irving’s algorithm. In the process of our investigation we
will see necessary and sufficient conditions for the existence of stable matchings in graphs
with preferences.

3.1 Scarf’s Lemma

Our starting point for fractional stable matchings will be a remarkable result of Scarf [46].
Originally, the result was proved in the context of game theory, but has since found many
applications in graph theory (for examples, see [4, 21, 39, 46]). There are several seemingly
unrelated topological versions of Scarf’s result. However, the version that will be partic-
ularly useful for us involves matrices and allows for a connection to linear programming.
To set up Scarf’s Lemma we need a definition. For a real matrix C, a set of columns S of
C is called dominating if for every column j of C, there exists a row i such that cij ≤ cik
for every k ∈ S. As an example, consider the following matrix:

C =




2 1 7 4 5 2
8 2 2 3 6 7
1 3 2 2 1 4
4 4 8 1 5 5




With a bit of effort we can see that the first, third, fifth, and sixth columns form a
dominating set of columns.

Theorem 3.1.1 (Scarf’s Lemma [46]). Let m < n be positive integers, let b ∈ Rm
+ , and let

B and C be m× n real matrices with the following properties:

• the first m columns of B form an identity matrix, and the set {x ∈ Rn
+ : Bx = b} is

bounded,

• all entries in each row of C are distinct, and each entry cik for k > m satisfies
cii < cik < cij for each j 6= i, j ≤ m.

Then there exists x ∈ Rn
+ such that Bx = b and the set of columns S of C indexed by the

support of x, supp(x) = {k : xk > 0}, form a dominating set.

The full version of Scarf’s Lemma actually claims that the number of solutions to
Bx = b corresponding to dominating sets in C is odd. However, the stronger statement
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requires additional assumptions on the matrices B and C. We will use Scarf’s Lemma
to show the existence of a fractional stable matching in any hypergraph with preferences.
Thus, the above version will be sufficient for our purposes. We refer the reader to the
papers of Haxell [21], Rioux [39], or Scarf [46] for a full treatment.

Let H = (V,E, L) be a hypergraph with preferences. The main obstacle that stands
in the way of applying Scarf’s Lemma is the link between stability and a dominating set
of columns. To that end we make the following definitions. Recall the definition of v-rank
from the introduction to Chapter 2. Let v be a vertex, let e be an edge such that v ∈ e and
let i be e’s rank in the preference list of v. We define the value of e in the preference list of v
to be deg(v)−i+1. For example, v’s favourite edge would have value deg(v)−1+1 = deg(v)
and v’s least favourite edge would have value deg(v)− deg(v) + 1 = 1.

We need to encode the preferences of H into a matrix C. The rows of our matrix C will
be indexed by an arbitrary, but fixed, ordering of V . The columns will be indexed by V ∪E.
The first |V | columns will be indexed by the same ordering as the rows. The remaining
|E| columns will be indexed by some fixed ordering of E. Let v ∈ V . We first define all
(v, e)-entries for e ∈ E: set the (v, e)-entry to be the value of e in the preference list of v if
v ∈ e, and otherwise we assign to {(v, e) : v 6∈ e} the values {deg(v) + 1, . . . , |E|} with an
arbitrary permutation. Finally for the first |V | entries of row v we let the (v, v)-entry be
0, and all other entries be distinct values strictly larger than |E|. We will call C the value
matrix of H.

Theorem 3.1.2 (Aharoni and Fleiner [4]). Every hypergraph with preferences has a frac-
tional stable matching.

Proof: Let H = (V,E, L) be a hypergraph with preferences. Let C be the value matrix of
H and let B be the vertex-edge incidence matrix of H with the identity matrix appended
to its left. Both B and C have rows indexed by V and columns indexed by V ∪ E. By
construction, C satisfies the conditions of Theorem 3.1.1 and setting b as the all-1’s vector
allows B to meet the conditions of the theorem. Therefore, there exists x ∈ RV ∪E

+ satisfying
Bx = b and a set of columns S, indexed by supp(x), which form a dominating set in matrix
C. Let x̄ ∈ RE

+ be the entries of x corresponding to the edges of H. We claim that x̄ is a
fractional stable matching of H.

The definition of B and the fact that Bx = b ensures that x̄ is a fractional matching.
To check that x̄ is fractionally stable, let h be an arbitrary edge. Then in the matrix C
there exists a vertex v such that all entries in row v of the columns indexed by supp(x)
are at least the (v, h)-entry. Note that the column v is not in supp(x) as the (v, v)-entry
is strictly smaller than every other entry in row v. Therefore

∑
e∈E:v∈e x̄e = 1. If v ∈ h,

then by the way we defined C, we see that every edge e for which v ∈ e and x̄e > 0 has
a higher value in the preference list of v than h. Therefore

∑
h≤ve

x̄e = 1 as required. To
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complete the proof we must show that the case where v 6∈ h cannot happen. Suppose, for
a contradiction, that v 6∈ h. By the definition of C, the (v, h)-entry is at least deg(v) + 1.
Thus, there is no edge e such that v ∈ e and x̄e > 0. Since Bx = b we must then have
v ∈ supp(x), contradicting our earlier finding. Therefore x̄ is a fractional stable matching
as required.

Interestingly, the existence of a fractional stable matching extends to hypergraphs with
poset preferences.

Corollary 3.1.3. Every hypergraph with poset preferences has a fractional stable matching.

Proof: Let H = (V,E, P ) be a hypergraph with poset preferences. For all v ∈ V let Pv

be the preference poset of v and let Lv be a total extension of Pv. Consider the auxiliary
hypergraph with preferences H̄ = (V,E, L̄) where L̄ is the set of all Lv.

By Theorem 3.1.2, H̄ has a fractional stable matching x. We claim that x is also
a fractional stable matching for H. Clearly x is a fractional matching. Suppose, for a
contradiction, that x is not a fractional stable matching for H. Then there exists an edge
e such that

∑
e≤vh

xh < 1 for all v ∈ e. In particular, for every v ∈ e there exists an edge
f such that f <v e and xf > 0. Since f <v e in Pv, we must have f <v e in Lv since Lv

is a total extension of Pv. As x is a fractional matching,
∑

e≤vh
xh < 1 must hold in H̄ as

well. This contradicts the assumption that x was a fractional stable matching for H̄.

3.2 Stable Partitions

Stable partitions were introduced by Tan [48] to provide a characterization of graphs with
preferences that have stable matchings. This characterization is known as Tan’s Theorem.
Tan’s Theorem is similar in flavour to Tutte’s Theorem about perfect matchings and Ku-
ratowski’s Theorem about planar graphs: The only impediment to a stable matching is
a particular type of stable partition. We will prove this result later after we examine an
algorithm to find stable partitions in a graph with preferences. In this section, we will
introduce stable partitions and their connection to fractional stable matchings.

A cycle C = {v0v1, v1v2, . . . , vn−2vn−1, vn−1v0} of a graph with preferences G = (V,E, L)
is a preference cycle if vi−1vi <vi vivi+1 for all i modulo n.

1 : (2, 3)

3 : (1, 2)(3, 1) : 2

Figure 3.1: Example of a preference cycle
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A stable partition of G = (V,E, L) is a set of edges, S ⊆ E, with the following proper-
ties:

• Any component of S is either a cycle, a single edge, or an isolated vertex,

• each cycle component of S is a preference cycle, and

• for any e ∈ E\S, there is a vertex v, incident with an edge of S, such that v ∈ e and
e <v f for any f ∈ S with v ∈ f .

Notice that if S does not contain any cycles, then S is actually a stable matching. In
the case that S contains a preference cycle component of odd length, we will say that S is
an odd stable partition.

Theorem 3.2.1 (Tan [48]). Every graph with preferences has a stable partition.

Proof: Let G = (V,E, L) be a graph with preferences. By Theorem 3.1.2 G has a fractional
stable matching x ∈ RE

+. Let S = supp(x). We will show that S is a stable partition. Since
x is a fractional stable matching, we can orient each edge e towards a vertex v such that∑

e≤vj
xj = 1.

Claim 1: Each vertex v is the head of, at most, one arc in S.

Proof of Claim 1: Suppose vertex v is the head of arcs e, h ∈ S. Without loss of generality,
we may assume that e <v h. Since v is the head of both arcs, we see that

∑
e≤vj

xj = 1
and

∑
h≤vj

xj = 1. But since e <v h, we must have xe = 0, contradicting that e ∈ S.

Claim 2: If e, f is a directed path and e, f ∈ S, then there is a g ∈ S such that e, f, g is a
directed path or a directed 3-cycle.

Proof of Claim 2: Let w ∈ V be the tail of f (head of e). Since e is oriented towards w we
have e <w f . Let z = head(f). Note that xf < 1 as x is a fractional matching. Since x is
also a fractional stable matching, there must be an edge g ∈ S such that tail(g) = z and
f <z g. If head(g) = tail(e) then e, f, g is a directed 3-cycle. Otherwise e, f, g is a directed
path.

Claim 3: Each vertex v is the tail of, at most, one arc in S.

Proof of Claim 3: Suppose vertex v is the tail of arcs e, h ∈ S. Let z = head(e) and
w = head(h). Note that xe and xh are both strictly less than 1. By Claim 1 and our choice
of edge orientations, there must exist arcs f, k ∈ S such that tail(f) = z and tail(k) = w.
Repeatedly applying Claims 1 and 2 shows that there is a directed cycle C1 containing the
path e, f and another directed cycle C2 containing the path h, k. Note that all the arcs of
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C1 and C2 are in S. Since C1 and C2 share vertex v, there must be a vertex that is the
head of two arcs of S, contradicting Claim 1.

Claims 1 and 3 imply that each vertex is incident to, at most, two edges of S. Claim
2 implies that any path of length at least two is actually part of a cycle of edges of S.
These two properties show that any component of G induced by S is either an isolated
vertex, a single edge or a cycle. Note that the proof of Claim 2 also implies that any cycle
component is a preference cycle.

Finally, let i ∈ E\S and suppose that i is oriented as ab. Note that xi = 0 and∑
i≤bj

xj = 1. By definition of S and our choice of edge orientation, we must have i <b s
for all s such that b ∈ s and s ∈ S. Thus S is indeed a stable partition.

The proof presented here is due to Aharoni and Fleiner [4]. We will give another proof
(similar to Tan’s proof) of this result in the next section when we examine Tan’s Algorithm
and show that it will always find a stable partition.

A very nice consequence of the definition of stable partition and Theorem 3.2.1 is that
once we have a stable partition, we automatically have a fractional stable matching. As we
will see, this fractional stable matching has a very nice property: xe ∈ {0, 1

2
, 1} for every

e ∈ E. These special fractional stable matchings are called half-integral stable matchings.

Theorem 3.2.2 (Tan [48], Aharoni and Fleiner [4]). Every graph with preferences has a
half-integral stable matching.

Proof: Let G = (V,E, L) be a graph with preferences. Theorem 3.2.1 ensures that G has
a stable partition S. Recall that the components of S are either cycles or edges. For every
e ∈ E define

xe =





1 if e is an edge component of S
1
2

if e is an edge of a cycle component of S

0 otherwise.

We claim that x is a half-integral stable matching. Note that x is certainly a fractional
matching, while

∑
e∈E:v∈e xe = 1 if v is incident to an edge of S and

∑
e∈E:v∈e xe = 0

otherwise. First, let e 6∈ S. Since S is a stable partition, e has an endpoint v such
that e <v f for every f ∈ S such that v ∈ f . If v is in an edge component of S, then
xf = 1, implying that

∑
j∈E:e≤vj

xj = 1. If v is in a cycle component of S, then there are

g, h ∈ S incident with v such that e <v g and e <v h. Since xg = xh = 1
2
, the result is∑

j∈E:e≤vj
xj = 1.

Now, let e ∈ S. If e is in an edge component of S, then since x is a fractional matching
and xe = 1, we have

∑
j∈E:e≤vj

xj = 1 for some endpoint, v, of e. If e is in a cycle
component, then since the cycle is a preference cycle, there exist a vertex u and an edge
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f such that u ∈ e, u ∈ f and e <u f . Our definition of x ensures that
∑

j∈E:e≤uj
xj = 1.

Thus x is, indeed, a half-integral stable matching.

Notice that if a cycle component C has an even number of edges, we could instead
define the edge variables to alternate between 0 and 1 as we go around the cycle. Then we
see that the above proof is still valid. Thus, a stable partition with no odd cycles induces
a stable matching.

As with Corollary 3.1.3 in the previous section, consider a graph with poset preferences.
Once again we can take a total extension of the preference poset for every vertex to obtain
a half-integral stable matching in the auxiliary graph. Following the proof of Corollary
3.1.3 yields the analogous result.

Corollary 3.2.3. Every graph with poset preferences has a half-integral stable matching.

3.2.1 Tan’s Algorithm

Given that a graph with preferences will always have a stable partition, it would be ideal to
have an algorithm to find such a set of edges. Tan gave such a procedure in 1991 [48]. The
algorithm is essentially the same as Irving’s algorithm. In fact, Phase 1 is identical. The
only difference will be our treatment of isolated vertices in Phase 2. Instead of stopping
when we find an isolated vertex, we will set aside the isolated vertices and continue the
algorithm on the non-isolated vertices. As a consequence, we will see that Tan’s algorithm
provides us with a characterization of graphs with preferences that do not have a stable
matching.

We recommend that the reader be familiar with the definitions and results of Section
2.2.1. For convenience, we will give a short review of how the Phase 1 algorithm works.
Recall that a vertex x is “free” if there is no vertex z currently holding a proposal from
x. Free vertices propose to their favourite remaining neighbour until every vertex is either
isolated or not free. If x proposes to vertex v, we delete all the edges incident to v that v
prefers less than xv. Note that if v were holding a proposal from z then z would become
free after x’s proposal to v because v deleted all the edges it preferred less than vz; so, we
must have x >v z in order for x to propose to y. Phase 1 continues as long as there is a
free vertex x that is not isolated.

Exactly as in the case of stable matchings, the Phase 1 subgraph contains all stable
partitions.

Lemma 3.2.4 (Tan [48]). Let G = (V,E, L) be a graph with preferences and let xy ∈ E.
If, at the end of Phase 1, xy 6∈ E1 then xy is not an edge of any stable partition of G.
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Proof: Suppose, for a contradiction, that xy is an edge of some stable partition S, but
xy 6∈ E1. We may assume that xy was the first such edge deleted during Phase 1. Without
loss of generality, xy was deleted when vertex z proposed to x (i.e. z >x y). Now in S, x is
incident to y and let w be the most preferred vertex adjacent to z. We note that z cannot
be incident to a better vertex in S than x since at the time of z’s proposal, x was first on
the preference list of z and xy was the first edge of S to be deleted. Thus x ≥z w.

If x >z w, then xz 6∈ S by definition of w. But this means that xz blocks S since
z >x y, contradicting that S is a stable partition. Otherwise, x = w. So degS(x) = 2 as
xy, xz ∈ S. By definition of stable partition, the component containing the edges xy and
xz is a preference cycle. So there must exist a vertex u, possibly y, such that zu ∈ S.
However, w = x >z u and z >x y, contradicting that the component is a preference cycle
and that S was a stable partition.

Algorithm 4 Tan’s Algorithm - Phase 1

Input: a graph with preferences G = (V,E, L)
Output: the phase 1 subgraph G1 = (V 1, E1, L1)

set L1(x) := Lx ∀ x ∈ V and E1 := E
while ∃ x ∈ V such that x is free and L1(x) 6= ∅ do

let y be the most preferred vertex of L1(x)
if y is holding a proposal from z then

assign z to be free
end if
E1 := E1\{ay : x >y a}
L1(y) := L1(y)\{a : x >y a}
for all a such that x >y a do
L1(a) := L1(a)\y

end for
end while
V 1 := {v ∈ V : deg(v) ≥ 1}
output G1 = (V 1, E1, L1), the phase 1 subgraph

Once again we can ignore any isolated vertices at this point. By Lemma 3.2.4 these
vertices will be isolated in any stable partition. We now come to Phase 2 where we further
delete edges via removal of rotations.

Recall the definition of a “rotation” from Section 2.2.1 and that E(R) is the set of
edges that are deleted when we remove the rotation R. The essential ingredient in Tan’s
Algorithm is the observation that if a vertex becomes isolated after eliminating a rotation
R, then E(R) can only be a very special set of edges.
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Lemma 3.2.5 (Tan [47]). Let H be a subgraph of G1 in Phase 2 and let

R = (x0, y0), (x1, y1) . . . , (xr−1, yr−1)

be a rotation in H. If, after removing R from H, some vertex becomes isolated, then E(R)
is exactly an odd preference cycle.

To prevent this thesis from being thrown across the room in frustration, we will omit
the extremely technical details of this result and refer the interested (and brave) reader
to the papers of Tan [47, 48]. Nonetheless, here is a sketch of the proof: By definition of
rotation removal we can assume that x0 is an isolated vertex. We now make the observation
that to delete the edge x0y0, we must have y0 = xj and x0 = yj+1 for some j 6= 0. Then,
using Properties 1 and 2 from Section 2.2.1, we can show that degH(xj) = 2. Finally, we
apply induction to show that the same properties hold for all indices i modulo r and that
r is indeed odd. Hence, E(R) is an odd cycle. The fact that E(R) is a preference cycle
follows since R is a rotation.

As an illustration, consider the graph with preferences in Figure 2.6. Figure 2.8 showed
the state of the graph after Phase 1 and the removal of a rotation. Notice that

R = (1, 3), (2, 4), (3, 5), (4, 1), (5, 2)

is now a rotation and, if we remove it, the graph has no edges left. By inspection E(R) is
an odd preference cycle.

During Phase 2 of Irving’s Algorithm, we stopped if we found an isolated vertex because
there was no stable matching. Tan shows us that the absence of a stable matching implies
the presence of an odd preference cycle. This preference cycle will turn out to be an odd
component of a stable partition.

We can describe Phase 2 in the following way: While there is an active vertex of degree
at least 2, Lemma 2.2.4 tells us that there is a rotation. Therefore, we find a rotation and
remove it. If removing a rotation R causes a vertex to become isolated, add E(R) to S
and continue Phase 2 on the non-isolated vertices. If all remaining vertices have degree 1,
add the remaining edges to S. Then, S will be a stable partition.

We are now ready to prove that Tan’s algorithm is indeed correct.

Theorem 3.2.6 (Tan [48]). For any graph with preferences, Tan’s algorithm outputs a
stable partition.

Proof: Let S be the set of edges given by Tan’s algorithm. Notice that, by Lemmas 3.2.4
and 3.2.5, the edges of S form components which are either an isolated vertex, a single
edge, or a preference cycle. Thus, we need only show that S satisfies the third condition
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of a stable partition. Suppose, for a contradiction, that S is not a stable partition. Then
there exists an edge ab 6∈ S and edges aw, bz ∈ S such that b >a w and a >b z.

If ab was deleted during Phase 1, then without loss of generality, there is a vertex u
that proposed to vertex a such that u >a b. But this contradicts the fact that edge aw ∈ S,
since if such a u existed, u >a b >a w which would have caused the edge aw to be deleted
as well.

If ab was deleted during Phase 2, then as noted in the proof of Theorem 2.2.6, we may
assume that b = yi for some yi in the removed rotation

R = (x0, y0), (x1, y1) . . . , (xr−1, yr−1).

Since ab was deleted, we must have xi−1 >b a. By definition of rotation removal we also
see that edge bz was deleted, since xi−1 >b a >b z. Again this contradicts our assumption
that bz ∈ S. Thus S must be a stable partition.

Algorithm 5 Tan’s Algorithm - Phase 2

Input: a graph with preferences G = (V,E, L) and its phase 1 subgraph G1 = (V 1, E1, L1)
Output: a stable partition S

let H := G1, and S = ∅
while ∃ v ∈ V (H) such that degH(v) ≥ 2 do

find a rotation R in H
J := H\R
if ∃ u ∈ V (J) such that degJ(u) = 0 then
S := S ∪ E(R)
V ′ := V (H)\{v ∈ V (H) : degJ(v) = 0}

end if
E ′ := E(H)\E(R) and L′ := L(H)\L(R)
H := (V ′, E ′, L′)

end while
S := S ∪ E(H)
output S, a stable partition

This procedure is almost identical to Irving’s Algorithm. The only difference comes
when we find an isolated vertex in Phase 2. Instead of stopping, we store E(R) and
continue removing rotations as if the algorithm did not find anything at all. So, it is not
a surprising fact that the running time of Tan’s Algorithm remains O(n2) [48].
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3.2.2 A Consequence of Tan’s Algorithm

Section 2.3 shows how many interesting properties of stable matchings in bipartite graphs
actually extend to the non-bipartite case. This section will look at an implication of Tan’s
Algorithm and the existence of stable partitions. In particular, we will finally give a proof
of Tan’s Theorem.

Theorem 3.2.7 (Tan’s Theorem [47]). A graph with preferences has a stable matching if
and only if it does not have an odd stable partition.

Given that all bipartite graphs with preferences have a stable matching, this result
should not come as a huge surprise. As we saw in Theorem 1.1.1, any non-bipartite graph
necessarily has an odd cycle. Therefore, it is reasonable to suspect that the non-existence
of a stable matching in a graph with preferences must have something to do with an odd
cycle. Tan’s Theorem simply confirms our suspicions.

The reader who is still awake at this point will realize that Tan’s characterization of
graphs with preferences admitting stable matchings is missing only one piece.

Lemma 3.2.8 (Tan [48]). If G is a graph with preferences and has an odd stable partition,
then G has no stable matching.

Proof: Suppose, for a contradiction, that G has an odd stable partition, S, and a stable
matching M . Let A be the set of vertices who have a partner in M that they prefer more
than at least one of their neighbours in S. Let B be the set of vertices who have a partner
in M that they prefer less than all of their neighbours in S. Every vertex in A must be
matched in M to a vertex in B. Otherwise, if ab ∈M , a ∈ A and b 6∈ B then both a and b
would prefer the edge ab to at least one of their partners in S which would contradict that
S is a stable partition. So we must have |A| ≤ |B|.

Now let xy ∈ S. If both x and y are in B, then both x and y prefer the edge xy to
their matching partners, contradicting that M is a stable matching. Let C be the vertices
of a component of S. Since each component of S is either a single vertex, a single edge or
a cycle, and no two adjacent edges are in B, we must have |A∩C| ≥ |B ∩C|. If C has an
odd number of vertices then the inequality is strict. Let C be the set of components of S.

|A| =
∑

C∈C

|A ∩ V (C)| >
∑

C∈C

|B ∩ V (C)| = |B|.

The strict inequality comes from the fact that S is an odd stable partition and must
therefore have at least one odd component. Thus, we have a contradiction which gives us
the result.
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In summary, if G = (V,E, L) does not have a stable matching, then by Phase 2 of
Irving/Tan’s algorithm and Lemma 3.2.5, G must have an odd stable partition. Conversely,
if G has an odd stable partition, then G has no stable matching by Lemma 3.2.8. This is
exactly the characterization given by Tan.

3.3 Linear Programming

We now return to fractional stable matchings. An unfortunate consequence of using Scarf’s
Lemma to prove the existence of a fractional stable matching is that there is no intuition
about the set of all fractional stable matchings. Scarf’s Lemma simply tells us that there
is always a fractional stable matching. In point of fact, the set is not convex! Consider the
graph with preferences in Figure 3.2.

1 : (d, c, b, a)

2 : (c, d, a, b)

3 : (b, a, d, c)

4 : (a, b, c, d)

(1, 2, 3, 4) : a

(2, 1, 4, 3) : b

(3, 4, 1, 2) : c

(4, 3, 2, 1) : d

Figure 3.2: Example of non-convex fractional stable matchings

From Figure 2.4, we can check that M1 = {a2, b1, c4, d3} and M2 = {a4, b3, c2, d1} are
stable matchings. Any convex combination of these two stable matchings will be of the
form:

xe =





λ if e ∈M1

1− λ if e ∈M2

0 otherwise.

where 0 ≤ λ ≤ 1. We then find that
∑

a3≤aj
xj = λ and

∑
a3≤3j

xj = 1 − λ for the edge
a3. Both λ and 1 − λ are strictly less than 1 when 0 < λ < 1. Thus any strict convex
combination of M1 and M2 is not a fractional stable matching.

We will examine a linear program in which the feasible set will contain all fractional
stable matchings. This added structure will allow us to make observations about these fea-
sible solutions and, hence, the set of fractional stable matchings. The proofs of the results
in the next section will be left until Chapter 4, where we will consider a generalization to
3-uniform hypergraphs.
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3.3.1 Stable Matchings and Linear Programming

The first linear programming formulation for stable matchings was given by Vande Vate
in 1989 [51]. However, his formulation was only for stable matching problems where the
underlying graph was the complete bipartite graph, Km,n. Roth, Rothblum, and Vande
Vate [42] extended Vande Vate’s work to arbitrary bipartite graphs with preferences in
1993. In 1994, Abeledo and Rothblum [3] showed that many interesting properties of the
bipartite formulation easily extend to the non-bipartite case.

Recall that x ∈ RE
+ is a fractional stable matching for a graph with preferences if it is a

fractional matching and for every edge ij either
∑

a≥ij
xia = 1, or

∑
b≥ji

xjb = 1. Observe
that any fractional stable matching is a feasible solution to the following linear program:

max
∑

ij∈E

xij (PSM)

subject to:
∑

j∈N(i)

xij ≤ 1 i ∈ V
∑

a>ij

xia +
∑

b>ji

xjb + xij ≥ 1 ij ∈ E

xij ≥ 0 ij ∈ E.

Suppose we take another look at the example in Figure 3.2. Notice that, since M1 and
M2 are stable matchings, the vectors

xe =

{
1 if e ∈M1

0 otherwise

and

x̄e =

{
1 if e ∈M2

0 otherwise

are feasible for (PSM). Since the feasible region of any linear program is convex, any convex
combination of x and x̄ is also a feasible solution to (PSM). But we showed that any strict
convex combination of x and x̄ is not a fractional stable matching. Therefore, the feasible
solutions of (PSM) are not necessarily fractional stable matchings. However, this does not
make (PSM) useless! Since we now know that every graph with preferences has a fractional
stable matching, Theorem 3.1.2 implies that the feasible set of (PSM) is always non-empty.
As we will see, this linear program has some very useful properties which can be transferred
directly to the set of fractional stable matchings.
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Lemma 3.3.1 (Roth, Rothblum, and Vande Vate [42], Abeledo and Rothblum [3]). Let G
be a graph with preferences. The incidence vectors of stable matchings of G are precisely
the feasible integer solutions to (PSM).

It is well known that integer programming is a hard problem in general [32]. A natural
question to ask is: Can we add any other constraints to (PSM) and obtain the convex
hull of the incidence vectors of stable matchings? Or in other words: Is there a linear
programming formulation for stable matchings such that the extreme points of the feasible
solutions are exactly the stable matchings? Such a formulation would allow us to solve
any linear optimization problem over the set of stable matchings using a suitable linear
programming algorithm. Sadly, this is not the case.

Theorem 3.3.2 (Feder [11]). Let G be a graph with preferences. It is NP -hard to optimize
a linear function over the set of stable matchings of G.

We should point out that Feder’s result does not mean that the extreme point solutions
to (PSM) can be arbitrary.

Theorem 3.3.3 (Abeledo and Rothblum [3]). Let G be a graph with preferences and let
S be the set of feasible solutions to (PSM). Then the extreme points of S are half-integral.

By the above comments, an ideal formulation would have extreme points with integral
coordinates. It turns out (not surprisingly) that by restricting our focus to bipartite graphs
with preferences, (PSM) is such a formulation.

Theorem 3.3.4 (Vande Vate [51], Rothblum [45]). Let G be a bipartite graph with pref-
erence lists and let S be the set of feasible solutions to (PSM). Then the extreme points of
S are exactly the incidence vectors of stable matchings of G.

In the bipartite case, we now have that the feasible set of (PSM) is a non-empty poly-
tope and its extreme points are always integral. This leads us to another proof of The
Fundamental Theorem of Stable Matchings from Section 2.1.

As mentioned earlier, duality and complementary slackness play a leading role in the
linear programming perspective of stable matchings. Obviously we need a dual linear
program to fully utilize these tools. The dual of (PSM) is the following:

min
∑

i∈V

yi −
∑

ij∈E

zij (DSM)

subject to: yi ≥ 0 i ∈ V
zij ≥ 0 ij ∈ E

yi + yj −
∑

j>ia

zia −
∑

i>jb

zjb − zij ≥ 1 ij ∈ E.
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Although it is worthwhile to work through the details to obtain (DSM) (and would
probably be an excellent assignment question in a linear programming course), we will
leave this as an exercise for the reader.

Lemma 3.3.5 (Abeledo and Rothblum [3]). Let x̄ be a feasible solution to (PSM) and let
ȳ ∈ RV and z̄ ∈ RE be defined as follows:

ȳi =
∑

j∈N(i)

x̄ij i ∈ V,

z̄ij = x̄ij ij ∈ E.
Then (ȳ, z̄) is a feasible solution to (DSM).

Theorem 3.3.6 (Roth, Rothblum, and Vande Vate [42], Abeledo and Rothblum [3]). Let
x̄ be a feasible solution to (PSM). Then x̄ is also an optimal solution to (PSM).

It is also true that the (ȳ, z̄) defined in Lemma 3.3.5 is optimal for (DSM). This will
turn out to be very important when we look at the proofs of these results. The following
corollary is now immediate.

Corollary 3.3.7. Let G be a graph with preferences. If G has a stable matching, then all
stable matchings of G have the same size.

This is exactly the conclusion of Corollary 2.3.4. Additionally, Theorem 2.3.3 is a trivial
consequence of the following result.

Theorem 3.3.8 (Roth, Rothblum, and Vande Vate [42], Abeledo and Rothblum [3]). Let
G = (V,E, L) be a graph with preferences. There exists a partition (A,B) of V such that
for every feasible solution x̄ to (PSM),

∑

j∈N(i)

x̄ij = 1 if i ∈ A,

∑

j∈N(i)

x̄ij = 0 if i ∈ B.

This partition of the vertices can even give us a sufficient condition for the non-existence
of a stable matching.

Corollary 3.3.9 (Abeledo and Rothblum [3]). Let G be a graph with preferences. If |A|
is odd then G does not have a stable matching.

The main point here is that linear programming can provide alternate proofs to many
of the results in Chapter 2 without relying on the properties of an algorithm. Furthermore,
these properties extend to the fractional case since fractional stable matchings are feasible
solutions to (PSM). We will see this approach again, along with extensions of many of the
proofs, in Section 4.2.
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Chapter 4

3-Uniform Hypergraphs

Let us return to our time travelling adventure from Chapter 1. However, against the advice
of many science fiction enthusiasts, we are going to allow some small changes to the past.

First, suppose that your university has several options for residence and you decide you
would like to live in an apartment. This means that, instead of having a single roommate,
you will have several roommates. We will assume that each apartment will have three
occupants. The school is faced with essentially the same problem as before: Can it assign
students to apartments so that there is no group of three students who would rather live
together than with their assigned roommates?

The other change we will make comes when you get married: Your future spouse has
agreed to marry you only if you agree to having a dog. Now, instead of only finding a spouse,
you have to worry about finding a spouse AND a dog. We will make the assumption that
the dogs know what kinds of dog food they will be fed by each possible couple, so that they
will be able to rank their possible owners. Once again, the goal is to avoid man-woman-dog
triplets that prefer each other to their respective families.

Our motivational problems from Chapter 1 have the following hypergraphic cousins:

Problem 4 (Threesome Roommates Problem). Suppose there are n people living in a
university dormitory. Each person ranks the other

(
n−1

2

)
pairs of students in terms of who

they would prefer to have as roommates. Can we find an assignment of roommates such
that if three students are not roommates then at least one of them prefers their current
roommates?

Problem 5 (Stable Family Problem). A community consists of n men, n women, and
n dogs. Each man ranks every woman-dog pair in terms of who they would prefer for a
family. Similar rankings are made by each woman and dog. Can we find a set of families
such that if a man, a woman, and a dog are not a family then at least one of them prefers
their current family?
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Given that a matching is now a group of three, graphs with preferences are no longer
sufficient to model Problems 4 and 5. We turn our attention to stable matchings in
hypergraphs. In particular, we will model the threesome roommates and stable family
problems with 3-uniform hypergraphs and tripartite 3-uniform hypergraphs, respectively.
Recall the definition of a hypergraphic stable matching from Chapter 3.

Unlike a graph, representing a hypergraph can be very messy for all but the smallest
of cases. We will display hypergraphs in a table, similar to Table 4.1.

1 123 124 134
2 123 124 234
3 234 134 123
4 134 124 234

Table 4.1: Example of a hypergraph

The first entry of a row represents the name of the vertex. The remaining entries of row
v have two purposes: To tell us which edges are incident to v and to display the preference
list of v, read from left to right.

Regrettably, the similarities between graphs and hypergraphs end at the definition.
In 1991, Hirschberg and Ng showed, through a reduction from 3-dimensional matching,
that the problem of deciding if an instance of the stable family problem has a solution is
NP-complete [37]. The situation only gets worse!

4.1 Difficulties with Hypergraph Stable Matchings

As we saw in Chapter 2, stable matchings in a graph with preferences exhibit very strong,
and extremely useful, properties:

• All stable matchings have the same size,

• a vertex is matched either in every stable matching or in no stable matchings,

• we have efficient algorithms to find a stable matching or tell us that one does not
exist, and

• if there is no stable matching, we can still find a half-integral stable matching.

Is it possible that these properties extend to 3-uniform hypergraphs? We already know
that Problem 5 is NP-complete, so efficient algorithms are unlikely. But what about the
other three properties? Let us look at some examples.
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1 123 156
2 234 123
3 123 234
4 234
5 156
6 156

Table 4.2: Stable matchings of different size

Table 4.2 gives a hypergraph with vertex set {1, 2, 3, 4, 5, 6} and edge set {123, 156, 234}.
Notice that M1 = {156, 234} is a stable matching since 123 6∈ M1 and 234 >2 123. Fur-
thermore, M2 = {123} is also a stable matching since 156, 234 6∈ M2, 123 >1 156 and
123 >3 234. Clearly, M1 and M2 do not have the same size.

Here is another example:

1 123 124 134
2 123 124 234
3 234 134 123
4 134 124 234

Table 4.3: No vertex partition

This hypergraph has vertices {1, 2, 3, 4} and edges {123, 124, 134, 234}. We can also see
that M3 = {123} and M4 = {134} are stable matchings. However, vertices 2 and 4 are
both matched in only one of M3 and M4: We have lost the very nice property that if a
vertex is matched in a stable matching, then it is matched in all stable matchings.

Even if we want to talk about fractional stable matchings in hypergraphs we can run
into problems:

1 123 124 134
2 234 123 124
3 134 234 123
4 124 134 234

Table 4.4: No half-integral stable matching

We will first show that this hypergraph does not have a stable matching. Consider
the matching M = {123}. Notice that 234 is a blocking edge for M since 234 >2 123,
234 >3 123, and vertex 4 is unmatched. Hence, M is not stable. A similar argument shows
that each of the other three maximal matchings are not stable. Therefore, the example
has no stable matchings.
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What can we say about its fractional stable matchings? Recall that a fractional match-
ing x is called a fractional stable matching if every edge e contains a vertex u such that

∑

e≤uj

xj = 1.

A graph may or may not have a stable matching, but we know that it will always have a
fractional stable matching where every edge takes a value in the set {0, 1

2
, 1}.

Suppose that this hypergraph has a half-integral stable matching. Since it does not have
a stable matching, some edge must have a value of 1

2
. The preference lists have a cyclic

structure, so we may assume that x123 = 1
2
. The definition of a fractional stable matching

tells us that since x123 = 1
2
, we must have either x234 = 1

2
or x134 = 1

2
. If the former is true,

then the same argument shows that either x134 = 1
2

or x124 = 1
2
. Now, x134 6= 1

2
since the

sum of the edges at vertex 3 would be 3
2

and not a matching. But, x124 6= 1
2

because vertex
2 runs into the same problem. Thus, it is not possible to have x234 = 1

2
. The x134 = 1

2
case

is very similar and is left to the reader. There is no half-integral stable matching. In fact,
the best fractional stable matching can be found by giving each edge a value of 1

3
.

The point of these examples is this: All of our properties can fail to exist when we
move to hypergraphs! We must hope there is a special case of stable matchings that will
yield these properties.

4.2 Majority Stable Matchings

Let H be a 3-uniform hypergraph with preferences and let M be a matching of H. Recall
that M is a stable matching if for every edge ijk 6∈ M , at least one of i,j, or k prefers its
matching edge to ijk. If every ijk 6∈ M has the stronger property that at least TWO of
i, j, and k prefer their matching edge to ijk, then we will say that M is a majority stable
matching. Once more, we can alternatively define a majority stable matching in terms of
blocking edges. In this case, a blocking edge for a matching M is an edge ijk 6∈ M such
that at least two of i, j, and k prefer the edge ijk to their respective matching edges; a
matching M is a majority stable matching if it does not have any of these blocking edges.

There has been much research into the varying “strength” of a stable matching in a
hypergraph with poset preferences [6, 23, 24, 27]. Weak, strong, super, and ultra stable
matchings form a hierarchy based on the types of blocking edges they exclude [23]. How-
ever, all four of these stable matchings coincide with our notion of stable matching when
the preference lists are totally ordered. In addition to bringing the desirable properties of
stable matchings from graphs to hypergraphs, our definition of majority stable matchings
was made to study the strengths of stable matchings when the preference lists are totally
ordered.
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Consider the hypergraph in Table 4.5. There are two stable matchings: M5 = {123, 456}
and M6 = {156, 234}. We claim that M5 is a majority stable matching: Notice that 156
and 234 are not edges of M5, 123 >1 156, 123 >2 234, 456 >4 234, and 456 >5 156. Indeed,
majority stable matchings can exist.

1 123 156
2 123 234
3 234 123
4 456 234
5 456 156
6 156 456

Table 4.5: Majority stable matching example

As promised, we will proceed by extending many of the linear programming results of
Section 3.3. To do this, we will need a suitable linear program:

max
∑

ijk∈E

xijk (PMSM) (4.1)

subject to:
∑

uv:
iuv∈E

xiuv ≤ 1 i ∈ V (4.2)

∑

ab>ijk

xiab +
∑

cd>jik

xjcd +
∑

ef>kij

xkef + 2xijk ≥ 2 ijk ∈ E (4.3)

xijk ≥ 0 ijk ∈ E. (4.4)

Lemma 4.2.1. Let H be a 3-uniform hypergraph with preferences. The incidence vectors of
the majority stable matchings of H are precisely the feasible integral solutions to (PMSM).

Proof: It is not hard to see that an integral vector satisfies (4.2) and (4.4) if and only if
it is the incidence vector of a matching. We note that an integral vector violates (4.3) if
and only if one of the following happens:

• xijk =
∑

ab>ijk

xiab =
∑

cd>jik

xjcd =
∑

ef>kij

xkef = 0, i.e. all of i, j, and k are matched in

an edge they prefer less than ijk, or

• xijk = 0 and exactly one of
∑

ab>ijk

xiab,
∑

cd>jik

xjcd, or
∑

ef>kij

xkef equals 1, i.e. only one

of i, j, or k is matched in an edge it prefers more than ijk.
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Neither case meets the definition of a majority stable matching. Thus, a vector x is the
incidence vector of a majority stable matching if and only if it is an integral solution to
(4.2)-(4.4).

Since majority stable matchings are still stable matchings, a 3-uniform hypergraph with
preferences may fail to have a majority stable matching. But there is an additional concern
here. Consider Table 4.6.

1 124
2 234 124
3 234
4 124 234

Table 4.6: Feasible set of (PMSM) can be empty

Both M = {123} and M̄ = {234} are stable matchings. The set of majority stable
matchings can be expressed as the integral solutions to the following linear program:

max x124 + x234 (4.5)

subject to: x124 ≤ 1 (4.6)

x234 ≤ 1 (4.7)

x124 + x234 ≤ 1 (4.8)

x234 + 2x124 ≥ 2 (4.9)

x124 + 2x234 ≥ 2 (4.10)

x124, x234 ≥ 0. (4.11)

Notice that, if we add the constraints (4.9) and (4.10), we obtain the valid inequality

x124 + x234 ≥
4

3
,

which clearly contradicts constraint (4.8). So, not only does the example in Table 4.6 have
no majority stable matchings, but the set of feasible solutions to (PMSM) is empty! Recall
that (PSM) is always non-empty, even if the corresponding graph with preferences has no
stable matching.

The dual of (PMSM) is once again analogous to (DSM) in Section 3.3. The linear
program (DMSM) will allow us to use the powerful ideas of duality and complementary
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slackness to obtain results that are analogous to the results in Section 3.3:

min
∑

i∈V

yi − 2
∑

ijk∈E

zijk (DMSM)

subject to: yi ≥ 0 i ∈ V
zijk ≥ 0 ijk ∈ E

yi + yj + yk −
∑

jk>iab

ziab −
∑

ik>jcd

zjcd −
∑

ij>kef

zkef − 2zijk ≥ 1 ijk ∈ E.

Lemma 4.2.2. Let x̄ be a feasible solution to (PMSM) and let ȳ ∈ RV and z̄ ∈ RE be
defined as follows:

ȳi =
∑

uv:
iuv∈E

x̄iuv i ∈ V,

z̄ijk = x̄ijk ijk ∈ E.

Then (ȳ, z̄) is a feasible solution to (DMSM).

Proof: By construction, we see that ȳi ≥ 0 for all i ∈ V and z̄ijk ≥ 0 for all ijk ∈ E.
To establish the feasibility of (ȳ, z̄), we consider the remaining constraint of (DMSM). Let
ijk ∈ E. For (ȳ, z̄) the left hand side of the inequality is

ȳi + ȳj + ȳk −
∑

jk>iab

z̄iab −
∑

ik>jcd

z̄jcd −
∑

ij>kef

z̄kef − 2z̄ijk.

Substituting in the values for ȳ and z̄ we obtain

∑

ab:
iab∈E

x̄iab +
∑

cd:
jcd∈E

x̄jcd +
∑

ef :
kef∈E

x̄kef −
∑

jk>iab

x̄iab −
∑

ik>jcd

x̄jcd −
∑

ij>kef

x̄kef − 2x̄ijk,

which simplifies to

∑

ab>ijk

x̄iab +
∑

cd>jik

x̄jcd +
∑

ef>kij

x̄kef + x̄ijk ≥ 1.

The inequality in the last line follows from the primal feasibility of x̄. Thus, (ȳ, z̄) is feasible
for (DMSM).

In Section 3.3 we saw that every feasible solution to (PSM) was also an optimal solution.
The linear program (PMSM) has the same helpful property.
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Theorem 4.2.3. Let x̄ be a feasible solution to (PMSM). Then x̄ is also an optimal solution
to (PMSM).

Proof: Let x̄ be a feasible solution to (PMSM). Define (ȳ, z̄) as in Lemma 4.2.2. Since
(ȳ, z̄) is feasible for (DMSM), we can compute its objective value:

∑

i∈V

ȳi − 2
∑

ijk∈E

z̄ijk =
∑

i∈V


∑

uv:
iuv∈E

x̄iuv


− 2

∑

ijk∈E

x̄ijk

= 3
∑

ijk∈E

x̄ijk − 2
∑

ijk∈E

x̄ijk

=
∑

ijk∈E

x̄ijk.

Since the dual objective value of (ȳ, z̄) equals the primal objective value of x̄, Corollary
1.1.3 implies that x̄ is optimal for (PMSM).

We note that the proof of this result also shows that (ȳ, z̄), defined in Lemma 4.2.2, is
optimal for (DMSM).

Theorem 4.2.4. Let H = (V,E, L) be a 3-uniform hypergraph with preferences. There is
a partition (A,B) of V such that for every feasible solution, x, to (PMSM),

∑

uv:
iuv∈E

xiuv = 1 if i ∈ A, and

∑

uv:
iuv∈E

xiuv = 0 if i ∈ B.

Proof: Define the sets A and B as follows:

A =



v ∈ V :

∑

uv:
iuv∈E

xiuv = 1 for all feasible x of (PMSM)





and

B =



v ∈ V :

∑

uv:
iuv∈E

xiuv = 0 for all feasible x of (PMSM)



 .

Let i ∈ V and suppose i 6∈ B. We will show i ∈ A. Since i 6∈ B, there exists a feasible
solution x̄ to (PMSM) such that ∑

uv:
iuv∈E

x̄iuv > 0.
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Define (ȳ, z̄) as in Lemma 4.2.2. The proof of Theorem 4.2.3 shows that (ȳ, z̄) is optimal
for (DMSM). Therefore, (x̄, (ȳ, z̄)) satisfies the conditions of Theorem 1.1.4. Note that yi
is the dual variable corresponding to the primal constraint

∑

uv:
iuv∈E

x̄iuv ≤ 1.

Since
ȳi =

∑

uv:
iuv∈E

x̄iuv > 0,

Theorem 1.1.4 implies that ∑

uv:
iuv∈E

x̄iuv = 1. (4.12)

Now, Theorem 4.2.3 tells us that every x which is feasible for (PMSM) is also optimal. So,
(x, (ȳ, z̄)) satisfies complementary slackness for all x feasible for (PMSM). In particular,
(4.12) holds for all such x. Thus, i ∈ A.

This is exactly the same partition we saw for graphs with preferences in Sections 2.3
and 3.3. Not surprisingly, this partition of the vertices leads to the same consequences.

Corollary 4.2.5. Let H be a 3-uniform hypergraph with preferences. For every feasible
solution x to (PMSM),

∑

ijk∈E

xijk =
|A|
3
.

Proof: Let x be a feasible solution to (PMSM). Recall from Theorem 4.2.4:

∑

uv:
iuv∈E

x̄iuv = 1 if i ∈ A, and

∑

uv:
iuv∈E

x̄iuv = 0 if i ∈ B.
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This yields the following:

3
∑

ijk∈E

xijk =
∑

i∈V


∑

uv:
iuv∈E

x̄iuv




=
∑

i∈A


∑

uv:
iuv∈E

x̄iuv


+

∑

i∈B


∑

uv:
iuv∈E

x̄iuv




=
∑

i∈A


∑

uv:
iuv∈E

x̄iuv




=
∑

i∈A

1

= |A|.

Corollary 4.2.6. Let H be a 3-uniform hypergraph with preferences. If H has a majority
stable matching, then all majority stable matchings of H have the same size.

Corollary 4.2.7. Let H be a 3-uniform hypergraph with preferences. If |A| is not a positive
multiple of 3 then H does not have a majority stable matching.

Theorem 4.2.4 and its corollaries suggest that the feasible solutions of (PMSM) have very
strong structure with respect to the matching constraints (4.2). This structure has been
mainly due to some clever complementary slackness arguments. How do these solutions
behave with respect to the stability constraints (4.3)?

Lemma 4.2.8. Let H = (V,E, L) be a 3-uniform hypergraph with preferences and let
ijk ∈ E. If there is some x̄, feasible for (PMSM), with x̄ijk > 0, then for every feasible
solution, x, of (PMSM),

∑

ab>ijk

xiab +
∑

cd>jik

xjcd +
∑

ef>kij

xkef + 2xijk = 2.

Proof: Let x̄ be a feasible solution to (PMSM) such that x̄ijk > 0 and define (ȳ, z̄) as in
Lemma 4.2.2. Theorem 4.2.3 shows us that (x̄, (ȳ, z̄)) is a primal-dual optimal pair for
(PMSM) and (DMSM). But Theorem 4.2.3 also tells us that every x, feasible for (PMSM),
is also optimal for (PMSM). So (x, (ȳ, z̄)) is a primal-dual optimal pair for every feasible
x. Note that z̄ijk = x̄ijk is the dual variable corresponding to the primal constraint (4.3).
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Since z̄ijk > 0, complementary slackness tells us that (4.3) is satisfied with equality for
every feasible x.

Let M and M̄ be stable matchings of a hypergraph with preferences. We will say that
vertex v prefers M to M̄ if v prefers its matching edge in M to its matching edge in M̄ .

Corollary 4.2.9. Let H be a 3-uniform hypergraph with preferences and let M be a ma-
jority stable matching of H. If ijk ∈M , then there is no majority stable matching, M̄ , of
H such that all of i, j, and k prefer M̄ to M .

Proof: Let xM be the incidence vector of the majority stable matching M such that
ijk ∈ M . Suppose, for a contradiction, that there exists a majority stable matching M̄
such that all of i, j, and k prefer M̄ to M and let xM̄ be the incidence vector of M̄ . Note
that xM̄ijk = 0. Since xMijk = 1, Lemma 4.2.8 shows that

∑

ab>ijk

xM̄iab +
∑

cd>jik

xM̄jcd +
∑

ef>kij

xM̄kef = 2. (4.13)

However, all of i, j, and k prefer M̄ to M . So

∑

ab>ijk

xM̄iab = 1,

∑

cd>jik

xM̄jcd = 1, and

∑

ef>kij

xM̄kef = 1.

This contradicts (4.13) and gives us the result.

Corollary 4.2.9 is of similar flavour to Corollary 2.1.6 from Section 2.1.1: Improving
the outcome of a sufficiently large group of people will almost undoubtedly come at the
expense of another group of people.

Sadly, all this exciting work cannot hide the fact that majority stable matchings in
hypergraphs with preferences can still pose difficulties. To illustrate this point, consider
the following disheartening result.

Theorem 4.2.10. If H is a 3-uniform hypergraph with preferences and H has a majority
stable matching, then H has only one majority stable matching.

Proof: LetH be a 3-uniform hypergraph with preferences and suppose, for a contradiction,
that M and M̄ are distinct majority stable matchings of H. Let T be the set of edges
which are in M but not in M̄ and let U be the set of edges which are in M̄ but not M .
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Define W to be the set of vertices of H that are matched in M by the edges of T . Notice
that the vertex partition from Theorem 4.2.4 shows us that W is also the set of vertices
matched in M̄ by the edges of U . Furthermore, |W | is a positive multiple of 3.

Now, xMijk = 1 > 0 for every ijk ∈ T . Therefore, by Lemma 4.2.8,

∑

ab>ijk

xiab +
∑

cd>jik

xjcd +
∑

ef>kij

xkef + 2xijk = 2

holds for the incidence vector, x, of any majority stable matching of H. Since xM̄ijk = 0 for
every ijk ∈ T , ∑

ab>ijk

xM̄iab +
∑

cd>jik

xM̄jcd +
∑

ef>kij

xM̄kef = 2.

This tells us that for every ijk ∈ T , exactly two of i, j, and k prefer M̄ to M . In simple
terms, two thirds of the vertices in W prefer M̄ to M . However, if we repeat the argument
for the edges of U , we will also see that two thirds of the vertices in W prefer M to M̄ .
The result follows from this contradiction.

Theorem 4.2.10 rules out any further discussion of the set of majority stable matchings
for a particular 3-uniform hypergraph. However, if we were given the task of finding a
stable matching in a 3-uniform hypergraph with preferences, a majority stable matching
would be a desirable choice because of the increased agreement among the vertices. Is
there a large class of 3-uniform hypergraphs with preferences that will have a majority
stable matching? In point of fact, the class is much larger than the class of graphs with
preferences that have a stable matching.

4.2.1 Constructing Majority Stable Matchings

In some sense, majority stable matchings are the ideal stable matchings in 3-uniform
hypergraphs with preferences. The problem is that they do not always exist. We would
like to construct an infinite class of 3-uniform hypergraphs with preferences that have a
majority stable matching.

Our construction starts with a graph with preferences, G, and a fixed stable matching
of G, say M̄ . We will build a 3-uniform hypergraph with preferences, H(G; M̄) = (V,E, L),
using the structure of G and M̄ . Specifically, let G = (V̄ , Ē, L̄) be a graph with preferences
that has at least one stable matching and let M̄ be a stable matching of G. The vertices
of H(G; M̄) are given by

V := V̄ ∪ {zxy : xy ∈ M̄}.
That is, the vertices of H(G; M̄) are the vertices of G plus a vertex for each edge of M̄ . To
define the edges of H(G; M̄), we first choose a subset of edges, Tzxy , of G for every xy ∈ M̄ .
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The only rule for choosing these Tzxy is that we must have xy ∈ Tzxy . We then add zxy to
every ab ∈ Tzxy . In other words,

E := {xyzxy : xy ∈ M̄} ∪ {abzxy : ab ∈ Tzxy ⊆ Ē for all xy ∈ M̄}.
Each vertex will have one of two types of preference lists. If x ∈ V̄ , then we construct Lx

using the following rules:

• If a >x b in L̄x, then xazij >x xbzkl for all ij, kl ∈ M̄ , and

• if xy ∈ M̄ , then xyzxy ≥x xyzij for all ij ∈ M̄ .

For xy ∈ M̄ , Lzxy is built in the following way: Let ab ∈ Ē. If ab 6∈ M̄ and both a and
b prefer their matching edges of M̄ to ab, then abzxy >zxy xyzxy. Otherwise, we want
xyzxy >zxy abzxy. Figure 4.1 and Table 4.7 provide a simple example of our construction.

(a, b) : 1

(b, a) : 2

a : (2, 1)

b : (1, 2)

Figure 4.1: Starting the construction of H(G; M̄)

We can see that M̄ = {a1, b2} is a stable matching ofG. Table 4.7 shows the hypergraph
H(G; M̄).

1 a1za1 a1zb2 b1za1 b1zb2
2 b2zb2 b2za1 a2zb2 a2za1

a a2za1 a2zb2 a1za1 a1zb2
b b1zb2 b1za1 b2zb2 b2za1

za1 a1za1 a2za1 b1za1 b2za1

zb2 b2zb2 b1zb2 a2zb2 a1zb2

Table 4.7: Construction of H(G; M̄)

Consider the matching M = {a1za1, b2zb2}. Since 1, 2, za1, and zb2 are matched to
their favourite edge, M is a majority stable matching. From this example, it seems that
most vertices must be matched to their favourite edges. In fact, this construction will
provide examples where very few vertices are matched to their favourite edge. However,
those hypergraphs are too large to display here.

The example in Figure 4.1 and Table 4.7 illustrates something surprising. A graph
with preferences may have many stable matchings and different choices of M̄ will lead,
in general, to different outcomes for H(G; M̄). However, the graph and its preferences in
Figure 4.1 is symmetric. If we chose M̄ ′ = {a2, b1} (which is also stable) and suitably
relabelled the vertices, we would see that H(G; M̄) = H(G; M̄ ′).
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Lemma 4.2.11. Let G be a graph with preferences and let M̄ be a stable matching of G.
Then H(G; M̄) has a majority stable matching.

Proof: Let G be a graph with preferences and let M̄ be a stable matching of G. Define
M := {xyzxy : xy ∈ M̄}. We will show that M is a majority stable matching of H(G; M̄).
By construction, M is certainly a matching of H(G; M̄). Suppose, for a contradiction, that
M is not a majority stable matching. Then, there exists an edge ijzxy, for some xy ∈ M̄ ,
such that at least two of i, j, and zxy prefer ijzxy to their respective matching edges.

Notice that if ijzxy >zxy xyzxy, then, by the construction of Lzxy , ij 6∈ M̄ and both
i and j prefer their matching edges of M̄ to ij. So, i and j also prefer their matching
edges of M to ijzxy. Hence, zxy is the only vertex of i, j, and zxy that prefers ijzxy to
its matching edge. This would contradict that ijzxy is a blocking edge of M . So, we may
assume that only i and j prefer ijzxy.

Suppose ikzik ∈ M , so that ik ∈ M̄ . By construction of Li, ikzik is i’s most preferred
edge that contains k. So, if i prefers ijzxy to ikzik, then j 6= k and j >i k in L̄i. Similarly, j
prefers i to its matching partner of M̄ . Therefore, ij is a blocking edge of M̄ , contradicting
that M̄ is a stable matching of G. Thus, M is indeed a majority stable matching of
H(G; M̄).

The construction of H(G; M̄) takes a graph with preferences and a stable matching to
create a 3-uniform hypergraph with preferences and a majority stable matching. Could
there be a converse to this statement? In other words, does every 3-uniform hypergraph
with a majority stable matching correspond in some natural way to a graph with a stable
matching? Currently, we do not know the answer to this question, but we can show a
result of this form for a certain special class of hypergraphs.

So far, the graphs we considered have been simple: For each pair of vertices, x and y,
there is, at most, one edge of the form xy. For the remainder of this section, we are going
to relax this requirement and allow pairs of vertices to have multiple edges between them.
For a fixed pair of vertices, x and y, the set of edges that have both x and y as endpoints
is called the parallel class of x and y. The graphs which allow parallel classes bigger than
one are called multigraphs.

Conveniently, the definition of “stable matching” is the same for graphs and multi-
graphs. In 2005, Cechlárová and Fleiner showed that finding a stable matching in a multi-
graph with preferences is equivalent to finding a stable matching in graph with preferences.
Specifically, they showed that if H is a multigraph with preferences, then there is a sim-
ple graph with preferences, G, such that H has a stable matching if and only if G has a
stable matching. Consequently, Irving’s algorithm can be used to find a stable matching
in a multigraph with preferences by finding a stable matching in a suitable graph with
preferences. We will refer the reader to the paper of Cechlárová and Fleiner for more
details [9].
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Let H = (V,E, L) be a 3-uniform hypergraph with preferences. We will call H bipartite
if there exists a set X ⊆ V such that every edge of H contains exactly one vertex of
X. Notice that, in a bipartite 3-uniform hypergraph, the neighbourhood of X, N(X),
induces a multigraph. This multigraph, H[N(X)], has vertex set N(X) and edge set
{(yz)x : x ∈ X and xyz ∈ E}.

There is a natural way to define the preference lists of N(X) based on L. Observe that
there is a one-to-one correspondence between the edges of H and the edges of H[N(X)].
Therefore, if xyz >y x̄yz̄ in H, we will insist that (yz)x >y (yz̄)x̄ in H[N(X)] for all
x ∈ X and y, z, z̄ ∈ N(X). With this requirement, we will say that H[N(X)] has induced
preferences. Table 4.8 illustrates the close relationship between the preference lists of H
and the preference lists of H[N(X)].

H y xyz x̄yz x̄yz̄ xyz̄
H[N(X)] y (yz)x (yz)x̄ (yz̄)x̄ (yz̄)x

Table 4.8: Preference lists of N(X) in H and H[N(X)]

Lemma 4.2.12. Let H = (V,E, L) be a bipartite 3-uniform hypergraph with preferences
and let X ⊆ V be its distinguished set of vertices. If H has a majority stable matching,
then H[N(X)] with induced preferences has a stable matching.

Proof: Suppose H = (V,E, L) is a 3-uniform hypergraph with preferences and let X be
a set of vertices such that every e ∈ E contains exactly one vertex of X. Let M̄ be a
majority stable matching of H. Define M := {(yz)x : xyz ∈ M̄ and x ∈ X}. We will show
that M is a stable matching of H[N(X)]. The set M is certainly a matching of H[N(X)].
Suppose, for a contradiction, that M is not a stable matching of H[N(X)]. Then there
exists an edge of H[N(X)], say (ab)x̄, that blocks M .

Since (ab)x̄ 6∈ M , the construction of M tells us that x̄ab 6∈ M̄ . Since M̄ is a majority
stable matching, at least two of x̄, a, and b prefer their respective matching edges of M̄ to
xab. However, the correspondence between the preference lists of H and H[N(X)] shows
that at least one of a or b prefers its matching edge of M to (ab)x, contradicting that (ab)x
was a blocking edge of M . Thus, M is a stable matching of H[N(X)].

Suppose that M is a stable matching of H[N(X)]. We can define a simple graph with
preferences, G, by deleting all but one edge from each parallel class, while preserving the
edges of M . The preference lists of G are obtained from H[N(X)] by simply deleting the
entries corresponding to the edges that were deleted. Then if M is a stable matching of
H[N(X)], M remains stable in G because we did not delete any edges of M . As with our
construction of H(G; M̄), this G is not unique. Different choices of edge deletions will give
us, in general, different graphs with preferences.
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Another question which we did not answer here is: Can we decide if a 3-uniform
hypergraph with preferences has a majority stable matching? At the moment, it is unclear
if the feasibility of (PMSM) is sufficient to guarantee a majority stable matching or if
(PMSM) can be feasible without an integral solution. In the next chapter, we will discuss
some other open problems relating to 3-uniform hypergraphs.

62



Chapter 5

Concluding Remarks

The practical applications of stable matchings have been evident since their formal intro-
duction in 1962. Indeed, the Gale-Shapley algorithm has been used to solve instances of
the college admissions problem for the NRMP and, in some cases, real schools. Today,
the medical field has found more complicated applications of hypergraphic stable match-
ings [24]. Stable matchings have even been applied in many other areas of mathematics [33].
A surprising fact to many people is that rich structure can be found when stable match-
ings are considered as a theoretical object. This versatility has helped the theory of stable
matchings to become a popular and developed research topic.

Before we continue on to some interesting unsolved problems, let us summarize what
we have seen in the preceding chapters.

Chapter 2
We began with an introduction to graphs with preferences and the basics of stable match-
ings. We then saw that the proposal/rejection process used by Gale and Shapley led to
some very intriguing properties. We also looked into stable matchings in non-bipartite
graphs with preferences. Irving’s algorithm showed that many of the interesting stable
matching properties found in bipartite graphs remain in stable matchings of non-bipartite
graphs.

As an aside, we looked briefly at the intimate connection between stable matchings and
lattice theory. Delving further into this association would require much more time than
we have here, but is a fascinating subject in its own right.

Chapter 3
Chapter 3 focused on the following question: “Can we generalize Theorem 2.1.1 to non-
bipartite graphs with preferences?” In fact, this is achieved by relaxing the integrality of
a stable matching to allow edges to take fractional values. But, rather than attacking
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non-bipartite graphs directly, we looked to fractional stable matchings in hypergraphs
with preferences. Using a matrix version of a powerful result due to Scarf, Theorem 3.1.2
promised that EVERY hypergraph with preferences has a fractional stable matching. We
then applied Theorem 3.1.2 to the special case of graphs. We saw that every graph with
preferences contains a set of edges that is, at least, very similar to a stable matching. As a
consequence of this fact, we can characterize the graphs with preferences that admit stable
matchings.

Linear programming provided tools that enabled us to talk about stable matchings
and fractional stable matchings at the same time. This allowed us to prove that fractional
stable matchings have analogous properties to stable matchings in graphs with preferences.

Chapter 4
Contrary to stable matchings in graphs with preferences, stable matchings in hypergraphs
with preferences behave very badly. The remarkable properties evident in graphs with
preferences vanish when edges are allowed to have a size bigger than two. The lack of
these properties is likely the reason why most hypergraphic stable matching problems are
NP-complete.

By considering majority stable matchings, we were able to use linear programming to
our advantage again. However, our successes were fleeting. The existence of a majority
stable matching in a 3-uniform hypergraph with preferences is such a strong property
that there can be, at most, one. However, we saw that it is possible to construct a large
class of 3-uniform hypergraphs with preferences which admit majority stable matchings.
This construction uncovered a strong relationship between majority stable matchings in
3-uniform hypergraphs and stable matchings in graphs.

5.1 Open Questions

To conclude this thesis, we will look to the future and discuss two open problems about
stable matchings in 3-uniform hypergraphs with preferences.

5.1.1 The Cyclic Stable Family Problem

Our first open problem is a slight variation on the stable family problem. It is rumoured to
be due to Knuth, but it first appeared in a paper by Ng and Hirschberg after they proved
that the stable family problem was NP-complete [37]. Specifically, we are interested in the
following:

Problem 6 (Cyclic Stable Family Problem). A community consists of n men, n women,
and n dogs. Each man ranks every woman in terms of with whom they would prefer to be
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in a family. Similarly, each woman ranks all the dogs and each dog ranks all the men. Can
we find a set of families such that if a man, a woman, and a dog are not a family then at
least one of them prefers their current family?

Once again, we are looking for a stable matching in a tripartite 3-uniform hypergraph
with preferences, H = (A ∪ B ∪ C,E, L). The difference here comes in the structure of
the preference lists. Notice that each vertex no longer ranks all its adjacent neighbours:
The vertices of A are interested only in the vertices of B, B is interested only in C, and C
is interested only in A. For example, if i ∈ A and j ∈ B, then any edge containing both
i and j is the same from i’s perspective. In this situation, we will say that H has cyclic
preferences.

With this special type of preference list, the definition of a blocking edge remains the
same: A blocking edge for a matching M of H is an edge ijk 6∈ M such that all of i, j,
and k prefer ijk to their respective matching edges. A matching, M , is stable if it does
not have any blocking edges.

For the remainder of this section, we will make two assumptions:

• For every i ∈ A, j ∈ B, and k ∈ C, ijk is an edge of H, and

• n = |A| = |B| = |C|.
The first assumption simply says that H is a complete hypergraph. This problem becomes
NP-complete without the completeness restriction [6]. The second assumption is purely
aesthetic. If the vertex classes have different sizes, then we can add just enough artificial
vertices so that A, B, and C are the same size. Any of these artificial vertices will be
appended to the end of any preference lists in an arbitrary order. Then, if the new hyper-
graph has a stable matching M̄ , we can exclude any edge of M̄ that contains any of the
artificial vertices to obtain a stable matching of the original hypergraph.

To some extent, this variant of the stable family problem most closely resembles the
original stable marriage problem: Each vertex class has preferences over only one other ver-
tex class. Recall that every instance of the stable marriage problem has a stable matching.
The belief is that this fact is also true for the cyclic stable family problem.

Conjecture 5.1.1 (Eriksson, Sjöstrand, and Strimling [10]). Every tripartite 3-uniform
hypergraph with cyclic preferences has a stable matching.

How close are we to a proof of this conjecture? Actually, not close at all. At this point
in time, we know only that very small instances always admit stable matchings.

Theorem 5.1.2 (Eriksson, Sjöstrand, and Strimling [10]). Let H be a tripartite 3-uniform
hypergraph with cyclic preferences. If n ≤ 4, then H has a stable matching.
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The proof of this result is a highly technical case analysis that is difficult to extend to
larger values of n. Additionally, Eriksson, Sjöstrand, and Strimling provided substantial
computer evidence to suggest that the n = 5 case is true [10]. However, a formal proof of
this fact remains elusive. We would suspect that successful proofs of the full conjecture
would cleverly employ one of two strategies:

• Generalize the Gale-Shapley algorithm to account for the extra vertex class, or

• artificially define a second set of preferences for the vertices of A over the vertices of
C and then use a double application of Theorem 2.1.1.

Since we are unable to resolve Conjecture 5.1.1, nor the n = 5 case, in this thesis (perhaps
at a later date), we will look at some special cases.

Lemma 5.1.3. Let H = (A ∪ B ∪ C,E, L) be a 3-uniform, tripartite hypergraph with
cyclic preferences. If every vertex in A has the same preference list, then H has a stable
matching.

Proof: We proceed by induction on n. If n ≤ 4, then H has a stable matching by Theorem
5.1.2. So, we can assume that n ≥ 5 and that the result holds for all k < n. Suppose
further that y ∈ B is the most preferred vertex by the vertices of A, z ∈ C is the favourite
vertex of y, and x ∈ A is the favourite vertex of z.

Consider the subhypergraph with preferences, T , obtained by removing the vertices x,
y, and z from H. By the inductive hypothesis, T has a stable matching M̄ . Define the
matching M := M̄ ∪ {xyz} for H.

Claim: The matching M is a stable matching of H.

Proof of Claim: Suppose, for a contradiction, that M is not a stable matching. Then there
exists a blocking edge ijk for M . Notice that any ijk must contain one of the vertices x,
y, or z. Otherwise, ijk would also be a blocking edge for M̄ in T , contradicting that M̄ is
a stable matching of T . Now, recall that xyz ∈M . Therefore, the vertices x, y, and z are
already matched to their most preferred vertex. Thus, the blocking edge ijk cannot exist.
This contradiction shows that M is a stable matching of T .

Notice that we could strengthen this result slightly: Instead of restricting the vertices
of A to a single preference list, we could just insist that the first n− 4 entries are identical.

Lemma 5.1.4. Let H = (A∪B ∪C,E, L) be a tripartite 3-uniform hypergraph with cyclic
preferences. If each vertex of A has a distinct favourite vertex in B, then H has a stable
matching.

Proof: Let M be any matching of H such that each vertex in A is matched in an edge
containing its favourite vertex of B.
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Claim: The matching M is a stable matching of H.

Proof of Claim: Suppose, for a contradiction, that M is not stable. Then, there exists a
blocking edge ijk for M . We may assume that i ∈ A. By definition of M , i is already
matched to its favourite vertex, meaning that the vertex j cannot exist. This contradicts
that ijk is a blocking edge for M . Thus, M is a stable matching.

An edge ijk is a preferable edge if j is first in i’s preference list, k is first in j’s preference
list, and i is first in k’s preference list. In the n = 5 case, the existence of a preferable edge
is sufficient to guarantee the existence of a stable matching and follows from Lemma 5.1.3.

Lemma 5.1.5. Let H = (A∪B ∪C,E, L) be a tripartite 3-uniform hypergraph with cyclic
preferences where n = 5. If H has a preferable edge, then H has a stable matching.

As anyone who has been part of a committee will know, the unanimous agreement of
Lemma 5.1.3 is an exceedingly special case. Even the complete discord of Lemma 5.1.4
and the ideal triple of Lemma 5.1.5 are very rare. But, these extreme cases make stable
matching proofs quite pleasant. To have any hope of proving Conjecture 5.1.1, we will
need to fill in this gap. Sadly, this is quite a substantial challenge when we do not know
of a way to extend the work of Gale and Shapley. To partially illustrate this fact, let us
consider the n = 5 case.

Lemma 5.1.6. Let H = (A∪B ∪C,E, L) be a tripartite 3-uniform hypergraph with cyclic
preferences where n = 5. If there are two vertices of B that are first and second in every
preference list of A, then H has a stable matching.

Proof: Let H = (A ∪ B ∪ C,E, L) be a tripartite 3-uniform hypergraph with cyclic
preferences where n = 5. Suppose b, b̄ ∈ B are the two vertices described in the statement
of the lemma. Let Ab be the subset of vertices of A that rank b first and b̄ second. Similarly,
let Ab̄ be the vertices of A that rank b̄ first and b second. Notice that, by assumption,
(Ab, Ab̄) is a partition of A.

Let c and c̄ in C be the favourite vertices of b and b̄, and let a and ā in A be the
favourite vertices of c and c̄, respectively.

At this point, we can make the following assumptions:

• c 6= c̄,

• a 6= ā, and

• a ∈ Ab̄ and ā ∈ Ab.

If c = c̄, then either abc or ab̄c is a preferable edge, depending on whether a ∈ Ab or
a ∈ Ab̄. Therefore by Lemma 5.1.5, H has a stable matching. Similarly, we can find
preferable edges if a = ā, a ∈ Ab, or ā ∈ Ab̄.
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Now, consider the subhypergraph, T , of H obtained by removing the vertices a, ā, b, b̄,
c, and c̄. By Theorem 5.1.2, T has a stable matching, say M̄ . Define M := M̄ ∪{abc, āb̄c̄},
a matching of H.

Claim: The matching M is a stable matching of H.

Proof of Claim: Suppose, for a contradiction, that M is not stable. Then, there exists
a blocking edge ijk for M . Since M̄ is a stable matching for T and b, b̄, c, and c̄ are
matched in M to their favourite vertices, we can say that the edge ijk contains either a
or ā. Suppose i = a. Since a ∈ Ab̄ and abc ∈ M , the only vertex a prefers to b is b̄. But
b̄ is matched to c̄, its favourite vertex of C. Therefore it is not possible for ijk to be a
blocking edge, contradicting that M was not a stable matching. This contradiction gives
us the result.

This proof relies on the three assumptions that guarantee a preferable edge. But very
few instances of the cyclic stable family problem actually have a preferable edge. This
means that we have to consider edges that are not as well liked by their vertices, driving
the number of cases out of control very quickly. We hope that a more cunning approach is
possible.

5.1.2 Bounded Denominators

In Chapter 3, we saw that every graph with preferences has a stable partition. As a
consequence of this, every graph with preferences also has a half-integral stable matching.
It is natural to wonder if 3-uniform hypergraphs have a similar fractional stable matching.
With a bit of work, or a quick trip back to Table 4.4 in Section 4.1, we see that it is not
possible for all hypergraphs with preferences to have a half-integral stable matching. So,
what kinds of edge values can we hope for? Are they even rational? More concretely, can we
find some absolute constant N such that for every 3-uniform hypergraph with preferences,
there is a fractional stable matching where the denominator of every fractional value is at
most N?

As an example, we saw that N = 2 for graphs. If such an N existed for 3-uniform
hypergraphs, Table 4.4 shows that N = 3 is the best possible. We are interested in knowing
if three is the true value of N for all 3-uniform hypergraphs. Before we continue, we will
make this notion precise. A fractional stable matching, x, is a 1

3
-integral stable matching if

xe ∈ {0, 1
3
, 1

2
, 2

3
, 1} for every e ∈ E. Based on this definition, we ask the following question:

Question 5.1.7. Does every 3-uniform hypergraph with preferences have a 1
3
-integral stable

matching?

To clarify, a 3-uniform hypergraph may have many fractional stable matchings; some
of which may even have arbitrarily large denominators. We would like to know if at least
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one of the fractional stable matchings has reasonable values. At this point, we do not know
the answer to this problem. However, there is some evidence to suggest it might be true.

Lemma 5.1.8. Let H = (V,E, L) be a hypergraph with preferences and let x be a fractional
stable matching of H. The support of x, supp(x), has at most |V | edges.

Proof: Let H = (V,E, L) be a 3-uniform hypergraph with preferences. Let x be a
fractional stable matching ofH and let S = supp(x). Since x is a fractional stable matching,
we can orient each edge e towards a vertex v such that

∑
e≤vj

xj = 1. The following claim
shows that |S| ≤ |V |, as required.

Claim: Each vertex v is the head of at most one arc in S.

Proof of Claim: Suppose vertex v is the head of arcs e, h ∈ S. Without loss of generality,
we may assume that e <v h. Since v is the head of both e and h,

∑
e≤vj

xj = 1 and∑
h≤vj

xj = 1. But since e <v h, we must have xe = 0, contradicting that e ∈ S.

Lemma 5.1.8 tells us that the subhypergraph induced by the support of a fractional
stable matching is very sparse. This greatly reduces the number of eccentric special cases
for the structure of the support of a fractional stable matching.

Recall from Chapter 3 that we could show another result that is similar to the claim
in the above proof: Each vertex v is the tail of at most one arc in S. With this second
property, it is possible to deduce the structure of S, and hence, define a half-integral
stable matching. Ideally, we would like to be able to do something similar here. As we
might expect, however, this is the step that is currently missing. But, for small 3-uniform
hypergraphs, it is feasible to attack the problem directly.

Lemma 5.1.9. Every 3-uniform hypergraph with preferences with four vertices has a 1
3
-

integral stable matching.

Proof: Let H = (V,E, L) be a 3-uniform hypergraph with preferences where |V | = 4. Let
x be a fractional stable matching of H and let S = supp(x). If |S| = 1, then S is a stable
matching. So, we may assume that |S| ≥ 2.

Claim: The set S cannot contain exactly three edges.

Proof of Claim: Suppose, for a contradiction, that |S| = 3. Let a, b, c ∈ S. Since H has
only four vertices, there must be exactly one vertex, v, that is incident to all of a, b, and
c. Since x is a fractional stable matching, we must have

xa + xb + xc = 1. (5.1)
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We may assume that a >v b >v c. The edge b must contain a vertex u 6= v such that
∑

b≤uj

xj = 1,

as x is a fractional stable matching. Note that deg(u) = 2 in S, by the above remarks.
However, this contradicts (5.1) since v is the only vertex incident to all of a, b, and c.
Thus, it is not possible for |S| = 3.

Suppose |S| = 2 and let a, b ∈ S. Since H has only four vertices, the edges a and b
must share exactly two vertices, say u and v. Further, xa < 1 and xb < 1. Let z be the
third vertex of the edge a. Notice that if both a >u b and a >v b hold, then we must have

∑

a≤zj

xj = 1,

since x is a fractional stable matching. But, z is only incident to a in S. Therefore,
∑

a≤zj

xj = xa < 1,

contradicting that x was a fractional stable matching. So, we must have a >u b and b >v a.
Now, we can define a new fractional stable matching, x̄, by

xe =

{
1
2

if e ∈ S
0 otherwise.

The stability of x̄ follows since supp(x̄) = supp(x).

If |S| = 4, then by the claim in the proof of Lemma 5.1.8, every edge of S must be last
in the preference list of some vertex. Simply set x̄e = 1

3
for every e ∈ E to construct a

fractional stable matching.

In all cases, H has a 1
3
-integral stable matching.

It is possible to extend this result to 3-uniform hypergraphs with |V | ≤ 5. However,
it would be rather cruel to force the reader to suffer through the case-by-case verification
when the end of this thesis is so close. Hopefully, we will think of a clever way to simplify
the proof enough in the near future to make it presentable.

There is some disagreement about the potential answer to Question 5.1.7. In general
hypergraphs with preferences, it is known that the denominators in fractional stable match-
ings can be unbounded. For example, consider the r-uniform analogue of Table 4.4. It is
possible to show that the best fractional stable matching assigns 1

r
to each of the edges.

Once again, we will let the reader play with this problem (Hint: Notice the cyclic nature
of the preferences). Perhaps, for 3-uniform hypergraphs, it is more realistic to hope that
the denominators are simply bounded by a finite positive integer. In either case, we would
like to resolve this question.
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