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Abstract

Cooperative wireless communication has received significant attention during recent years

due to several reasons. First, since the received power decreases rapidly with distance, the

idea of multi-hopping is becoming of particular importance. In multi-hopped communication,

the source exploits some intermediate nodes as relays. Then the source sends its message via

those relays to the destination. Second, relays can emulate some kind of distributed transmit

antennas to form spatial diversity and combat multi-path fading effect of the wireless channel.

Parallel Relay Channel is an information theoretical model for a communication system

whereby a sender aims to communicate to a receiver with the help of relay nodes. It represents

the simplest model for a multihop wireless network and a full understanding of the limits of

communication over such a channel can potentially shed light on the design of more efficient

wireless networks. However, the capacity of the relay channel has been established only for

few special cases and little progress has been made toward solving the general case since the

early 1980s.

In this dissertation, motivated by practical constraints, we study the information theo-

retical limits of the half-duplex Gaussian Parallel Relay channel , as well as, the transmission

strategies for the parallel relay channel with bandwidth mismatch between the first and the

second hops.

Chapter 2 investigates the problem of communication for a network composed of two

half-duplex parallel relays with additive white Gaussian noise (AWGN). There is no direct

link between the source and the destination. However, the relays can communicate with each

other through the channel between them. Two protocols, i.e., Simultaneous and Successive

relaying, associated with two possible relay scheduling are proposed. The simultaneous

relaying protocol is based on Broadcast-multiaccess with Common Message (BCM) scheme.

For the successive relaying protocol: (i) a Non-Cooperative scheme based on the Dirty Paper

Coding (DPC), and (ii) a Cooperative scheme based on the Block Markov Encoding (BME)

are considered. The composite scheme of employing BME in at most one relay and DPC

in at least another one is shown to achieve at least the same rate when compared to the

Cooperative and Non-Cooperative schemes. A “Simultaneous-Successive Relaying based on
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Dirty paper coding scheme” (SSRD) is also proposed. The optimum scheduling of the relays

and hence the capacity of the half-duplex Gaussian parallel relay channel in the low and

high signal-to-noise ratio (SNR) scenarios is derived. In the low SNR scenario, it is revealed

that under certain conditions for the channel coefficients, the ratio of the achievable rate

of the simultaneous relaying based on BCM to the cut-set bound tends to be 1. On the

other hand, as SNR goes to infinity, it is proved that successive relaying, based on the DPC,

asymptotically achieves the capacity of the network.

Schein and Gallager introduced the Gaussian parallel relay channel in 2000. They pro-

posed the Amplify-and-Forward (AF) and the Decode-and-Forward (DF) strategies for this

channel. For a long time, the best known achievable rate for this channel was based on the

AF and DF with time sharing (AF-DF). Recently, a Rematch-and-Forward (RF) scheme for

the scenario in which different amounts of bandwidth can be assigned to the first and second

hops were proposed. In chapter 3, we propose a Combined Amplify-and-Decode Forward

(CADF) scheme for the Gaussian parallel relay channel. We prove that the CADF scheme

always gives a better achievable rate compared to the RF scheme, when there is a bandwidth

mismatch between the first hop and the second hop. Furthermore, for the equal bandwidth

case (Schein’s setup), we show that the time sharing between the CADF and the DF schemes

(CADF-DF) leads to a better achievable rate compared to the time sharing between the RF

and the DF schemes (RF-DF) as well as the AF-DF.
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Chapter 1

Introduction

The continuous growth in wireless communication has motivated information theoretists to

extend Shannon’s information theoretic arguments for a single user channel to the scenarios

that involve communication among multiple users. In this regard, cooperative communica-

tion in which a source exploits some intermediate nodes as relays, to transmit its data to

an intended destination has received significant attention during recent years. Relays can

emulate distributed transmit antennas to combat the multi-path fading effect and increase

the physical coverage area.

Relay channel is a three terminal network which was introduced for the first time by

Van der Meulen in 1971 [1]. The most important capacity results of the relay channel

were reported by Cover and El Gamal [2]. Two relaying strategies are proposed in [2].

In one strategy, the relay decodes the transmitted message and forwards the re-encoded

version to the destination, while in another one the relay does not decode the message, but

sends the quantized received values to the destination (Compress-and-Forward (CF) scheme).

Zahedi and El Gamal considered two different cases of the frequency division Gaussian relay

channel. They derived lower and upper bounds on the capacity of this channel, which in turn

translates to upper and lower bounds on the minimum required energy per bit for the reliable

transmission [17]. The authors also derived a single letter characterization of the capacity of

the frequency division Additive White Gaussian Noise (AWGN) relay channel with simple

linear relaying scheme [18][19]. Recently, Cover and Young-Han Kim in [44] studied a class

of deterministic relay channel and derived its capacity with the hash-and-forward and CF

schemes. Marko Aleksic, Peyman Razaghi, and Wei Yu in [45] derived the capacity of a class

of modulo-sum relay channels using the CF scheme of [2]. They showed that the capacity of

this channel is strictly below the cut-set bound.

Moreover, several works study transmission strategies for multi-relay channels (See [3, 4,
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5, 6, 7, 8, 9, 10, 11, 12, 13, 28, 25, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43]). Schein in [3, 4]

establishes upper and lower bounds on the capacity of a full-duplex parallel relay channel.

The parallel relay channel in [3, 4] consists of a source, two relays and a destination, where

there is no direct link between the source and the destination, and also between the two

relays. Generally, the best rate reported for the full-duplex Gaussian parallel relay channel

is based on the time sharing between the combination of the Amplify-Forward (AF) and

Decode-Forward (DF) schemes (CADF scheme) and the Decode-Forward (DF) scheme (See

[5],[6]).

Parallel relay network is also considered in [12]. However, in the setup of [12], unlike the

setup in [3, 4, 5, 6], it is assumed that more than two relays exist in the network, and there is

also a direct link between the source and the destination. Motivated by applications in sensor

networks, the authors assume large bandwidth resources allowing orthogonal transmissions

at different nodes. They characterize optimum resource allocation for AF and DF and show

that the wide-band regime minimizes the energy cost per information bit in DF, while AF

should work in the band-limited regime to achieve the best rate.

Xie and Kumar generalized the block Markov encoding scheme of [2] for a network of

multiple relays [7]. Furthermore, Gastpar, Kramer, and Gupta extended the CF scheme in

[2] to a multiple relay channel by introducing the concept of antenna polling in [8] and [9].

They showed that when the relays are close to the destination, this strategy achieves the

antenna-clustering capacity. On the other hand, when relays are close to the source, the DF

strategy can achieve the capacity in a wireless relay network [10]. In [11], Amichai, Shamai,

Steinberg and Kramer considered the problem of a nomadic terminal sending information to

a remote destination via agents with lossless connections. They investigated the case that

these agents do not have any decoding capability, so they must compress what is received.

This case is also fully characterized for the Gaussian channel. Razaghi and Yu in [13]

proposed a parity-forwarding scheme for full-duplex multiple relay networks. They showed

that relay networks can be degraded in several ways, and parity-forwarding achieves capacity

for a new degraded form. Recently, Salman Avestimehr, Suhas Diggavi and David Tse in

[26, 27, 28] further studied the capacity of wireless relay networks. The authors in [26][27],

proposed a deterministic model for a multiuser communication channel and generalized the

max-flow min-cut theorem from the wire-line to the wireless networks. In [28], they proposed

an achievable rate for the Gaussian relay networks and showed that their achievable rate is

within a constant bit (determined by the graph topology of the network) from the cut-set

bound.
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1.1 Half-Duplex Relaying and Parallel Relay Channel

Recently, half-duplex relaying has drawn a great deal of attention (See [17, 18, 19, 15, 16,

20, 21], [25], [34, 35, 36, 37, 41, 42, 43]). The problem of time division relaying is considered

by Host-Madsen and Zhang [20]. By considering fading scenarios, and assuming channel

state information (CSI), they study upper and lower bounds on the outage capacity and the

Ergodic capacity.

Half-duplex relaying, in multiple relay networks, is studied in [25, 34, 35, 36, 37, 41, 42,

43]. Gastpar in [25] shows that in a Gaussian parallel relay channel with infinite number

of relays, the optimum relaying scheme is AF. Rankov and Wittneben in [34, 35] further

study the problem of half-duplex relaying in a two-hop communication scenario. In their

study, they also consider a parallel relay setup with two relays where there is no direct link

between the source and the destination, while there exists a link between the relays. Their

relaying protocols are based on either AF or DF, in which the relays successively forward their

messages from the source to the destination. We call this protocol “Successive Relaying” in

the sequel.

Xue and Sandhu in [36] also study different half-duplex relaying protocols and schemes

for the Gaussian parallel relay channel with two relays. Unlike our model in Fig. 1.1, the

inter-relay channel does not exist between two relays in [36]. They propose two time sharing

patterns. In time sharing pattern I, total available time is divided into two stages. In the

first stage, the source transmits its signal to both relays, and both relays receive it. Having

received the transmitted signal from the source during the first stage, the relays transmit

their signal coherently to the destination in the second stage. On the other hand, in time

sharing pattern II, although total available time is again divided into two stages, in each

stage the source and only one relay are in transmit mode, while the other relay and the

destination are in receive mode. For the time sharing pattern I, which we call “Simultaneous

Relaying” protocol in the sequel, they propose “Scale-Forward (SF)”, “Broadcast-multiaccess

with Common Message (BCM)”, “Compress-Forward (CF)”, and two hybrid schemes, i.e.,

“Decode-Forward via one link while Scale-Forward via other (Hybrid DF-SF)”, and “Decode-

Forward via one link while Compress-Forward via other (Hybrid DF-CF)”. For the time

sharing pattern II, they propose “Decode-Forward (DF)” scheme. They prove that the DF

scheme is the best under time sharing pattern II. They also prove that this scheme achieves

the capacity in certain symmetric case. However, it should be noted that the capacity result

of [36] is based on the peak power constraint. This means that each node is assumed to

transmit with a fixed power independent from the portion of the time it is in the transmit

mode.
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1.2 Summary of Dissertation and Main Contributions

Since constructing a large-scale wireless network is very expensive, it is important to under-

stand how to efficiently utilize the available power and bandwidth resources. The Gaussian

parallel relay channel with two relays which was introduced for the first time by Schein and

Gallager is one of the basic building blocks of a general network (See [3, 4]). Furthermore,

motivated by practical constraints, half-duplex relays which cannot transmit and receive at

the same time and in the same frequency band are of great importance. Hence, as one of our

goals in this thesis, we study and analyze the performance limits of a half-duplex Gaussian

parallel relay channel. Moreover, by proposing a new coding scheme we improve the achiev-

able rate of the Schein’s Gaussian parallel relay channel. A chapter is dedicated to each of

these topics. A summary of the contributions of this dissertation is as follows.

Chapter 2: Half-Duplex Gaussian Parallel Relay Channel

Source

Relay 1

Relay 2

Destination

Figure 1.1: Half-Duplex Gaussian Parallel Relay Channel (Solid, dotted, dashed, and dash-dotted

lines represent channels that are orthogonal to each other in the time domain).

In Chapter 2, different transmission strategies for the half-duplex Gaussian parallel relay

channel with two relays are proposed and their optimalities are investigated (See Fig. 1.1).

The summary of the contribution of this chapter is as follows.

• Scheduling Protocols

Simultaneous and successive relaying protocols are proposed. The simultaneous relay-

ing protocol is based on the “Broadcast-multiaccess with Common Message (BCM)”
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scheme of [36]. For the successive relaying protocol, a Non-Cooperative scheme based on

“Dirty Paper Coding (DPC)” and also a Cooperative scheme based on “Block Markov

Encoding (BME)” are proposed. Furthermore, simultaneous and successive relaying

protocols are combined and a “Simultaneous-Successive Relaying based on Dirty paper

coding” (SSRD) scheme with a new achievable rate is proposed.

It is shown that in the low SNR scenario and under certain channel conditions, SSRD

scheme is converted to simultaneous relaying based on BCM, while in the high SNR

scenarios, it becomes successive relaying based on DPC (to achieve the capacity).

• Capacity for symmetric scenarios

We show that in the symmetric case, the DPC scheme achieves the successive cut-set

bound.

• Different Types of Decoding

Two different types of decoding, i.e., successive and backward decoding, at the destina-

tion for the BME scheme are proposed. We prove that the achievable rate of BME with

backward decoding is greater than or equal to that of BME with successive decoding,

i.e., RBMEback
≥ RBMEsucc .

• Composite BME-DPC scheme

It is proved that BME with backward decoding leads to a simple strategy in which at

most one of the relays is required to cooperate with the other relay in sending the bin

index of the other relay’s message. Accordingly, in the Gaussian case, the combination

of BME in at most one relay and DPC in at least the other relay always achieves a

rate greater than or equal to that achieved by the simple BME or DPC schemes.

Chapter 3: A New Achievable Rate for the Gaussian Parallel Relay Channel

In chapter 3, we consider the Gaussian parallel relay channel with a source, a destination,

and a set of relays. There is no direct link from the source to the destination. This parallel

relay channel is a special case of a multiple relay network in which the source broadcasts its

data to all the relays, and the relays transmit their data coherently to the destination.

Summary of the contributions of this chapter is as follows.

• The Bandwidth Mismatch Case

A combined Amplify and Decode Forward (CADF) scheme for the bandwidth mismatch

case, where the bandwidth associated with different hops is different, is proposed. The
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superiority of this scheme compared with the Rematch and Forward scheme of [48][49]

is proved.

• A New Achievable Rate for the Schein and Gallager’s Set up

We show that time sharing between the CADF and DF schemes (CADF-DF) always

outperforms the RF-DF and the AF-DF. Hence, a new achievable rate for the Gaussian

parallel relay channel with two relays is obtained.
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Chapter 2

Half-Duplex Gaussian Parallel Relay

Channel

In this chapter1, we study transmission strategies for a network with a source, a destination,

and two half-duplex relays with additive white Gaussian noise which cooperate with each

other to facilitate data transmission from the source to the destination. Furthermore, it is

assumed that no direct link exists between the source and the destination. Therefore, this

channel is similar to the one considered in [3, 4] with two differences: First, the relays in

[3, 4] are full-duplex nodes, and second, unlike in our work, the relays in [3, 4] are not allowed

to communicate with each other (See Fig. 1.1).

Our primary objective is to find the best scheduling of the relays in the intended setup.

We consider two relaying protocols, i.e., simultaneous relaying versus successive relaying,

associated with two possible relay schedulings.

For simultaneous relaying, each relay exploits “Broadcast-multiaccess with Common Mes-

sage (BCM)” scheme of [36]. Therefore, similar to time sharing pattern I of [36], in a fixed

pre-assigned portion of the time, the relays receive the signal transmitted from the source,

and in the remaining time slot they transmit the re-encoded version of the decoded message

together.

The proposed successive relaying protocol is similar to the time sharing pattern II of [36].

However, since unlike [36], we assume a channel between two relays, the DF scheme of [36]

is not applicable here. Indeed, due to the presence of the inter-relay channel in our model,

transmitting relay produces interference on the receiving relay. Therefore, we consider two

1Portions reprinted, with permission, from (Seyed Saeed Changiz Rezaei, Shahab Oveis Gharan, and

Amir K. Khandani, “Relay Scheduling in the Half-Duplex Gaussian Parallel Channel”, IEEE Transaction

on Information Theory, Volume 56, Issue 6, pp. 2668 - 2687, June 2010). c© [2010] IEEE.
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approaches to deal with this interference. We propose a Non-Cooperative scheme based

on “Dirty Paper Coding (DPC)” and also a Cooperative scheme based on “Block Markov

Encoding (BME)”. In the Non-Cooperative scheme, since the source knows the interference

due to the transmitting relay on the receiving relay non-causally, it effectively remove the

inter-relay channel by exploiting DPC scheme. On the other hand, in the Cooperative

scheme, we allow the receiving relay to decode not only the signal transmitted by the source,

but also the signal transmitted by the transmitting relay. Knowing the message of each

other, the relays cooperate together to facilitate data transmission from the source to the

destination.

Furthermore, simultaneous and successive relaying protocols are combined and a “Si-

multaneous Successive Relaying based on Dirty paper coding” (SSRD) scheme with a new

achievable rate is proposed.

Since in simultaneous relaying the source transmits and the destination receives only in a

portion of the time, simultaneous relaying is not spectrally efficient. However, simultaneous

relaying does not suffer from the inter-relay interference. On the other hand, although succes-

sive relaying is spectrally efficient, the inter-relay interference can degrade the performance.

Hence, a natural question of optimum scheduling arises.

As the main result of this chapter, we derive the optimum relay scheduling in low and

high SNR scenarios. In low SNR scenarios and under certain channel conditions, we show

that the ratio of the achievable rate of BCM for simultaneous relaying to the cut-set bound

tends to one. On the other hand, in high SNR scenarios, we prove that the gap between the

achievable rate of the proposed DPC for successive relaying and the cut-set bound tends to

zero as O
(

1
logSNR

)

. In other words, it is shown that in the low SNR scenario and under

certain channel conditions, SSRD scheme is converted to simultaneous relaying based on

BCM, while in the high SNR scenarios, it becomes successive relaying based on DPC (to

achieve the capacity). Besides this main result, the following results are also obtained in this

chapter:

1. It is proved that BME with backward decoding leads to a simple strategy in which at

most one of the relays is required to cooperate with the other relay in sending the bin

index of the other relay’s message. Accordingly, in the Gaussian case, the combination

of BME in at most one relay and DPC in at least the other relay always achieves a

rate greater than or equal to that achieved by the simple BME or DPC schemes.

2. Two different types of decoding, i.e., successive and backward decoding, at the destina-

tion for the BME scheme are proposed. We prove that the achievable rate of BME with

8



backward decoding is greater than or equal to that of BME with successive decoding,

i.e., RBMEback
≥ RBMEsucc .

3. In the degraded case, where the destination receives a degraded version of the received

signals at the relays, BME with backward decoding achieves the successive cut-set

bound.

4. In the symmetric case, the DPC scheme achieves the successive cut-set bound.

It is worth noting that in our work, unlike [36], we assume average power constraint for the

nodes over all transmit and receive modes.

After this work was completed, we became aware of [37] which has independently pro-

posed an achievable rate based on the combination of superposition coding, BME and DPC.

In their scheme, the intended message “w” is split into a message which is transmitted to the

destination by exploiting cooperation between the relays “wr” and a message which is trans-

mitted to the destination without using any cooperation between the relays “wd”. Hence,

the signal associated with “wd”, transmitted by one relay, can be considered as interference

on the other relay. “wr” is transmitted by using BME and “wd” is transmitted by employing

DPC. Therefore, in their general scheme, the associated signals with these two messages are

superimposed and transmitted. As the channel between the two relays becomes strong, their

proposed scheme is converted to BME. On the other hand, as the channel becomes weak,

their proposed scheme becomes DPC. The assumption of [37] for node power consumption

is similar to ours.

The approach of this work is different from [37], in the sense that we compare the suc-

cessive and simultaneous relaying protocols. We show that each one achieves the capacity in

certain scenarios. Specifically, unlike [37], we also propose BME based on backward decoding,

and consequently, establish the mentioned results 1 to 4 above.

This chapter is organized as follows. In section 2.1, the system model is explained.

In section 2.2, the coding schemes for the half-duplex Gaussian parallel relay channel are

proposed and their associated rates are derived. Section 2.3 is devoted to optimality results,

and finally simulation results are discussed in section 2.4.

2.1 The System Model

We consider a Gaussian network which consists of a source, two half-duplex relays, and

a destination, and there is no direct link between the source and the destination. Here

we define four states according to the transmitting and receiving mode of each relay (See

9



Fig. 2.1). Assuming n uses of the network, nb denotes the number of network use when the

network is operating in state b. Hence, denoting the portion of the total network use that

the network is in state b as tb, we have tb =
nb

n
, and therefore

∑4
b=1 tb = 1. Nodes 0, 1, 2,

and 3 represent the source, relay 1, relay 2, and the destination, respectively. Moreover, the

transmitting and receiving signals at node a during state b are represented by x
(b)
a and y

(b)
a ,

respectively. Hence, at each node c ∈ {1, 2, 3}, we have

y(b)
c =

∑

a∈{0,1,2}

hacx
(b)
a + z(b)c . (2.1)

where hac
,s denote channel coefficients from node a to node c, and z

(b)
c is the AWGN term

with zero mean and variance of “1” per dimension. It is worth mentioning that noises at the

relays and destination at each state of transmission are independent from each other and

channels are fixed coefficients.

d) State 4 with duration t4:

Source Destination

Relay 1

Relay 2

h01

h12

h23

the vectors x
(1)
0 and x

(1)
2 .

The first relay and the destination receive
y

(1)
1 and y

(1)
3 , respectively.

The source and the second relay transmit The source and the first relay transmit
the vectors x

(2)
0 and x

(2)
1 .

The second relay and the destination receive
y

(2)
2 and y

(2)
3 , respectively.

Source Destination

Relay 1

Relay 2

h12

h13

h02

Source Destination

Relay 1

Relay 2

h01

h02

The source transmits the vector x
(3)
0 .

The first and the second relay receive y
(3)
1

and y
(3)
2 , respectively.

Source Destination

Relay 1

Relay 2

h13

h23

The destination receives y
(4)
3 .

The relays transmit the vectors x
(4)
1 and x

(4)
2 .

a) State 1 with duration t1: b) State 2 with duration t2:

c) State 3 with duration t3:

Figure 2.1: System Model.
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Noting the transmission strategies in Fig. 2.1, we have

y
(1)
1 = h01x

(1)
0 + h21x

(1)
2 + z

(1)
1 , (2.2)

y
(1)
3 = h23x

(1)
2 + z

(1)
3 , (2.3)

y
(2)
2 = h02x

(2)
0 + h12x

(2)
1 + z

(2)
2 , (2.4)

y
(2)
3 = h13x

(2)
1 + z

(2)
3 , (2.5)

y
(3)
k = h0kx

(3)
0 + z

(3)
k , k ∈ {1, 2}, (2.6)

y
(4)
3 =

2
∑

k=1

hk3x
(4)
k + z

(4)
3 . (2.7)

Throughout the paper, we assume that h01 ≥ h02 unless specified otherwise, and from

reciprocity assumption, we have h12 = h21. Furthermore, the power constraints P0, P1, and

P2 should be satisfied for the source, the first relay, and the second relay, respectively. Hence,

denoting the power consumption of node a at state b by P
(b)
a =

∥

∥

∥
x
(b)
a

∥

∥

∥

2

n
, we have

P
(1)
0 + P

(2)
0 + P

(3)
0 = P0, (2.8)

P
(2)
1 + P

(4)
1 = P1,

P
(1)
2 + P

(4)
2 = P2.

2.2 Achievable Rates and Coding Schemes

In this section, we propose two cooperative protocols, i.e., Successive and Simultaneous

relaying protocols, for a half-duplex Gaussian parallel relay channel.

Since we will propose achievable schemes for parallel relay channel in this chapter and

the next chapter, let us recall the definition of achievability:

Definition 2.2.1. Assume message w ∈ [1,M ]. The rate R of an (M,n) code is defined by

R = logM
n

bits per transmission. The rate R is said to be achievable by a relay channel if,

for any ǫ > 0 and for all n sufficiently large, there exists an (M,n) code with M ≥ 2nR such

that λn < ǫ, where λn is the maximal probability of error. The capacity of the relay channel

is the supremum of the set of achievable rates.

2.2.1 Successive Relaying Protocol

In Successive relaying protocol, relay one and relay two are not allowed simultaneously to

transmit, or receive, i.e. t3 = t4 = 0, and the relations between the transmitted and the

11



received signals at the relays and at the destination follow from (2.2)-(2.5). For the successive

relaying protocol, we propose a Non-Cooperative and a Cooperative Coding scheme in the

sequel. In the proposed schemes, the time is divided into odd and even time slots with the

duration t1 and t2, respectively. Accordingly, at each odd and even time slots, the source

transmits a new message to one of the relays, and the destination receives a new message

from the other relay, successively (See Fig. 2.2).

R(2)

R(1)

R(1)

R(2)

R(2)

R(1)

Figure 2.2: Information flow transfer for successive relaying protocol for two relays.

Non-Cooperative Coding

In the Non-Cooperative Coding scheme, each relay considers the other relay’s signal as

interference. Since the source knows each relay’s message, it can apply the Gelfand-Pinsker’s

coding scheme to transmit its message to the other relay. For a review of Gelfand-Pinsker’s

result and Dirty Paper Coding see Appendix A. The following Theorem gives the achievable

rate of this scheme.

Source Destination

Time Slot 2 with duration t2

R(2)

R(1)

Source Destination

Time Slot 1 with duration t1

R(1)

R(2)

Figure 2.3: Successive relaying protocol based on Non-Cooperative Coding.

12



Theorem 2.2.1. For the half-duplex parallel relay channel, assuming successive relaying,

the following rate RDPC is achievable:

RDPC = max
0≤t1,t2,t1+t2=1

R(1) +R(2), (2.9)

subject to:

R(1) ≤ min
(

t1(I(U
(1)
0 ; Y

(1)
1 )− I(U

(1)
0 ;X

(1)
2 )), t2I(X

(2)
1 ; Y

(2)
3 )
)

, (2.10)

R(2) ≤ min
(

t2(I(U
(2)
0 ; Y

(2)
2 )− I(U

(2)
0 ;X

(2)
1 )), t1I(X

(1)
2 ; Y

(1)
3 )
)

. (2.11)

with probabilities:

p(x
(1)
2 , u

(1)
0 , x

(1)
0 ) = p(x

(1)
2 )p(u

(1)
0 |x(1)

2 )p(x
(1)
0 |u(1)

0 , x
(1)
2 ),

p(x
(2)
1 , u

(2)
0 , x

(2)
0 ) = p(x

(2)
1 )p(u

(2)
0 |x(2)

1 )p(x
(2)
0 |u(2)

0 , x
(2)
1 ).

where |U (1)
0 | ≤ min{|X (1)

0 |, |Y (1)
1 |}+ |X (1)

2 | − 1 and |U (2)
0 | ≤ min{|X (2)

0 |, |Y (2)
2 |}+ |X (2)

1 | − 1.

Proof. See Appendix C.

From Theorem 2.2.1, the achievable rate of the proposed scheme for the Gaussian case

can be obtained as follows.

Corollary 2.2.1. For the half-duplex Gaussian parallel relay channel, assuming successive

relaying protocol with power constraints at the source and at each relay, DPC achieves the

following rate:

RDPC= max R(1) +R(2), (2.12)

where the maximization (2.12) is over parameters t1, t2, P
(1)
0 , and P

(2)
0 subject to the fol-

lowing constraints:

R(1) ≤ min

(

t1C

(

h2
01P

(1)
0

t1

)

, t2C

(

h2
13P1

t2

)

)

,

R(2) ≤ min

(

t2C

(

h2
02P

(2)
0

t2

)

, t1C

(

h2
23P2

t1

)

)

,

P
(1)
0 + P

(2)
0 = P0,

t1 + t2 = 1,

0 ≤ t1, t2, P
(1)
0 , P

(2)
0 .

Proof. See Appendix D.
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State 2 with duration t2

(ŵ(b−1), ŵ(b))

x
(1)
0 (w(b)|w(b−1), s

(b−2)
1 )

x
(2)
1 (w(b)|s(b−1)

2 ), u
(2)
1 (s

(b−1)
2 )

(ŵ(b), ŵ(b+1))x
(1)
2 (w(b−1)|s(b−2)

1 ), u
(1)
2 (s

(b−2)
1 )

(ŝ
(b−1)
2 , ŵ(b−1))(ŝ

(b−2)
1 , ŵ(b−2)) x

(2)
0 (w(b+1)|w(b), s

(b−1)
2 )

State 1 with duration t1

Figure 2.4: Successive relaying protocol based on Cooperative Coding.

x
(1)
0 (w(3)|w(2), s

(1)
1 )x

(1)
0 (w(1)|1, 1)

x
(1)
2 (1|1),u

(1)
2 (1)

x
(2)
0 (w(2)|w(1), 1)

x
(1)
2 (w(2)|s(1)

1 ),u
(1)
2 (s

(1)
1 )

x
(2)
1 (w(3)|s(2)

2 ),u
(2)
1 (s

(2)
2 )

x
(2)
0 (w(4)|w(3), s

(2)
2 )

x
(2)
1 (w(1)|1),u

(2)
1 (1)Relay 1

Source

Relay 2

Block 2Block 1 Block 3 Block 4

Figure 2.5: Decode-and-forward for successive relaying protocol.
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Cooperative Coding

In this type of coding scheme, we assume that, at each block, the receiving relay decodes not

only the new transmitted message from the source, but also the previous message transmitted

from the transmitting relay (See Figs. 2.2 and 2.4). Our proposed coding scheme is based on

binning, superposition coding, and Block Markov Encoding. The source sends B messages

w(1), w(2), · · · , w(B) in B + 2 blocks. For a review of Block Markov Encoding scheme see

Appendix B.

Generally, this scheme can be described as follows (See Figs. 2.4 and 2.5). In block b, the

relay (b+1) mod 2+1 decodes the transmitted messages w(b) and w(b−1) from the source and

the other relay, respectively. In block b + 1, it broadcasts w(b) and the bin index of w(b−1),

s
(b−1)
(b+2) mod 2+1, to the destination using the binning function defined next.

Definition (The Binning Function): The binning function f
((b+1) mod 2+1)
Bin (w(b−2)) : W =

{1, 2, · · · , 2nR((b+1) mod 2+1)}
−→ {1, 2, . . . , 2nr((b+1) mod 2+1)

Bin } is defined by f
((b+1) mod 2+1)
Bin (w(b−2)) = s

(b−2)
(b+1) mod 2+1, where

f
((b+1) mod 2+1)
Bin (.) assigns a randomly uniform distributed integer between 1 and 2nr

((b+1) mod 2+1)
Bin

independently to each member of W .

As indicated in Fig. 2.5, in the first block, the source transmits the codeword x
(1)
0 (w(1)|1, 1)

, with i.i.d entries and distribution p(x
(1)
0 |x(1)

2 , u
(1)
2 ), to the first relay, while the second relay

transmits a doubly indexed codeword x
(1)
2 (1|1) and the codeword u

(1)
2 (1), with i.i.d entries

and distributions p(x
(1)
2 |u(1)

2 ) and p(u
(1)
2 ), to the first relay and destination. In the second

block, the source transmits the codeword x
(2)
0 (w(2)|w(1), 1), with i.i.d entries and distribu-

tion p(x
(2)
0 |x(2)

1 , u
(2)
1 ), to the second relay, and having decoded the message w(1), the first

relay broadcasts the codewords x
(2)
1 (w(1)|1) and u

(2)
1 (1), with i.i.d entries and distributions

p(x
(2)
1 |u(2)

1 ) and p(u
(2)
1 ), to the second relay and destination. It should be noted that the

destination cannot decode the message w(1) at the end of this block; however, the second

relay decodes w(1) and w(2) messages. Using the binning function, it finds the bin index of

w(1) according to s
(1)
1 = f

(1)
Bin(w

(1)). In the third block, the source transmits the codeword

x
(1)
0 (w(3)|w(2), s

(1)
1 ), with i.i.d entries and distribution p(x

(1)
0 |x(1)

2 , u
(1)
2 ), to the first relay, and

the second relay broadcasts the codewords x
(1)
2 (w(2)|s(1)1 ) and u

(1)
2 (s

(1)
1 ), with i.i.d entries

and distributions p(x
(1)
2 |u(1)

2 ) and p(u
(1)
2 ), to the first relay and destination (for the detailed

description of the codebook constructions see Appendix E).

Two types of decoding can be used at the destination: successive decoding and backward

decoding. Successive decoding at the destination can be described as follows. At the end of

the bth block, the destination cannot decode the message w(b−1); however, having decoded

the bin index s
(b−2)
(b+1) mod 2+1 from the received vector of the bth block, it can decode the
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message w(b−2) from s
(b−2)
(b+1) mod 2+1 and the received vector of the (b − 1)th block. On the

other hand, backward decoding can be explained as follows. Having received the sequence

of the B +2th block, the destination starts decoding the intended messages. In the B +2th

block, one of the relays transmits the dummy message “1” along with the bin index of the

message w(B) to the destination. Having received this bin index, the destination decodes it,

and then backwardly decodes messages w(b), b = B,B − 1, · · · , 1 and their bin indices. The

following theorem gives the achievable rate of the proposed scheme.

Theorem 2.2.2. For the half-duplex parallel relay channel, assuming successive relaying,

the BME scheme achieves the rates RBMEsucc and RBMEback
using successive and backward

decoding, respectively:

RBMEsucc= max
0≤t1,t2,t1+t2=1

R(1) +R(2) ≤ max
0≤t1,t2,t1+t2=1

min (

min
(

t1I
(

X
(1)
0 ; Y

(1)
1 | X(1)

2 , U
(1)
2

)

, t2I
(

X
(2)
1 ; Y

(2)
3 | U (2)

1

)

+ t1I
(

U
(1)
2 ; Y

(1)
3

))

+

min
(

t1I
(

X
(1)
2 ; Y

(1)
3 | U (1)

2

)

+ t2I
(

U
(2)
1 ; Y

(2)
3

)

, t2I
(

X
(2)
0 ; Y

(2)
2 | X(2)

1 , U
(2)
1

))

,

t1I
(

X
(1)
0 , X

(1)
2 ; Y

(1)
1 | U (1)

2

)

, t2I
(

X
(2)
0 , X

(2)
1 ; Y

(2)
2 | U (2)

1

))

. (2.13)

with probabilities

p(x
(1)
0 , x

(1)
2 , u

(1)
2 ) = p(u

(1)
2 )p(x

(1)
2 |u(1)

2 )p(x
(1)
0 |x(1)

2 , u
(1)
2 ),

p(x
(2)
0 , x

(2)
1 , u

(2)
1 ) = p(u

(2)
1 )p(x

(2)
1 |u(2)

1 )p(x
(2)
0 |x(2)

1 , u
(2)
1 ),

p(x
(1)
2 , u

(1)
2 ) = p(u

(1)
2 )p(x

(1)
2 |u(1)

2 ),

p(x
(2)
1 , u

(2)
1 ) = p(u

(2)
1 )p(x

(2)
1 |u(2)

1 ).

RBMEback
= max

0≤t1,t2,t1+t2=1
R(1) +R(2) ≤

max
0≤t1,t2,t1+t2=1

min
(

t1I
(

X
(1)
0 , X

(1)
2 ; Y

(1)
1

)

, t2I
(

X
(2)
0 , X

(2)
1 ; Y

(2)
2

)

,

t1I
(

X
(1)
0 ; Y

(1)
1 | X(1)

2

)

+ t2I
(

X
(2)
0 ; Y

(2)
2 | X(2)

1

)

,

t1I
(

X
(1)
2 ; Y

(1)
3

)

+ t2I
(

X
(2)
1 ; Y

(2)
3

))

. (2.14)

with probabilities

p(x
(1)
0 , x

(1)
2 ) = p(x

(1)
2 )p(x

(1)
0 |x(1)

2 ),

p(x
(2)
0 , x

(2)
1 ) = p(x

(2)
1 )p(x

(2)
0 |x(2)

1 ).

Proof. See Appendix E.
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Remark 2.2.1. According to the discussion in Appendix E, r
(1)
Bin = 0 or r

(2)
Bin = 0. In other

words, in the Cooperative BME scheme based on backward decoding, at most one relay is

necessary to use binning function for the message it receives from another, and the other

relay is not necessary to cooperate with this relay. Therefore, we propose a composite BME-

DPC scheme for the Gaussian case. In this scheme, at most one of the relays decodes the

other relay’s message. Having decoded that, it then uses the binning function to cooperate

with the other relay. On the other hand, using the DPC scheme, the source cancels the

interference due to one relay on the other. In cases that both r
(1)
Bin = 0 and r

(2)
Bin = 0, the

DPC scheme is applied.

Proposition 2.2.1. The BME with backward decoding achieves at least the same rate as the

one with successive decoding, i.e., RBMEback
≥ RBMEsucc.

Proof. For the first term of minimization (2.13), we have

min
(

t1I
(

X
(1)
0 ; Y

(1)
1 | X(1)

2 , U
(1)
2

)

, t2I
(

X
(2)
1 ; Y

(2)
3 | U (2)

1

)

+ t1I
(

U
(1)
2 ; Y

(1)
3

))

+

min
(

t1I
(

X
(1)
2 ; Y

(1)
3 | U (1)

2

)

+ t2I
(

U
(2)
1 ; Y

(2)
3

)

, t2I
(

X
(2)
0 ; Y

(2)
2 | X(2)

1 , U
(2)
1

))

≤

min
(

t1I
(

X
(1)
0 ; Y

(1)
1 | X(1)

2 , U
(1)
2

)

+ t2I
(

X
(2)
0 ; Y

(2)
2 | X(2)

1 , U
(2)
1

)

,

t1I
(

X
(1)
2 , U

(1)
2 ; Y

(1)
3

)

+ t2I
(

X
(2)
1 , U

(2)
1 ; Y

(2)
3

))

. (2.15)

Let us focus on t1I
(

X
(1)
0 ; Y

(1)
1 | X(1)

2 , U
(1)
2

)

+ t2I
(

X
(2)
0 ; Y

(2)
2 | X(2)

1 , U
(2)
1

)

:

t1I
(

X
(1)
0 ; Y

(1)
1 | X(1)

2 , U
(1)
2

)

+ t2I
(

X
(2)
0 ; Y

(2)
2 | X(2)

1 , U
(2)
1

)

(a)
=

t1H
(

Y
(1)
1 | X(1)

2 , U
(1)
2

)

− t1H
(

Y
(1)
1 | X(1)

0 , X
(1)
2

)

+

t2H
(

Y
(2)
2 | X(2)

1 , U
(2)
1

)

− t2H
(

Y
(2)
2 | X(2)

0 , X
(2)
1

) (b)

≤

t1H
(

Y
(1)
1 | X(1)

2

)

− t1H
(

Y
(1)
1 | X(1)

0 , X
(1)
2

)

+

t2H
(

Y
(2)
2 | X(2)

1

)

− t2H
(

Y
(2)
2 | X(2)

0 , X
(2)
1

)

(c)
=

t1I
(

X
(1)
0 ; Y

(1)
1 | X(1)

2

)

+ t2I
(

X
(2)
0 ; Y

(2)
2 | X(2)

1

)

. (2.16)

(a) and (c) follow from the definition of mutual information, the fact that U
(1)
2 −→

(

X
(1)
0 , X

(1)
2

)

−→ Y
(1)
1 and U

(2)
1 −→

(

X
(2)
0 , X

(2)
1

)

−→ Y
(2)
2 form Markov chain, and (b) follows from the

fact that conditioning reduces entropy. Inequality (b) becomes equality if p(x
(1)
0 , x

(1)
2 , u

(1)
2 ) =

p(u
(1)
2 )p(x

(1)
2 )p(x

(1)
0 |x(1)

2 ) and p(x
(2)
0 , x

(2)
1 , u

(2)
1 ) = p(u

(2)
1 )p(x

(2)
1 )p(x

(2)
0 |x(2)

1 ) . Using the similar

argument for t1I
(

X
(1)
2 , U

(1)
2 ; Y

(1)
3

)

+ t2I
(

X
(2)
1 , U

(2)
1 ; Y

(2)
3

)

,
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t1I
(

X
(1)
0 , X

(1)
2 ; Y

(1)
1 | U (1)

2

)

, and t2I
(

X
(2)
0 , X

(2)
1 ; Y

(2)
2 | U (2)

1

)

in (2.13) and (2.15), and the

fact U
(1)
2 −→ X

(1)
2 −→ Y

(1)
3 , U

(2)
1 −→ X

(2)
1 −→ Y

(2)
3 , U

(1)
2 −→

(

X
(1)
0 , X

(1)
2

)

−→ Y
(1)
1 ,

U
(2)
1 −→

(

X
(2)
0 , X

(2)
1

)

−→ Y
(2)
2 form Markov chain, and Appendix E, along with comparing

RBMEsucc and RBMEback
in Theorem 2.2.2, we have RBMEback

≥ RBMEsucc .

Hence, from the discussion in Remark 2.2.1 and Proposition 2.2.1, we have the following

theorem.

Theorem 2.2.3. For the Gaussian case, the composite BME-DPC scheme achieves the

following rate RBME−DPC. Furthermore, RBME−DPC ≥ max(RBMEback
, RDPC). In other

words, the composite BME-DPC scheme always achieves a rate greater than or equal to that

of the BME and DPC schemes for the Gaussian case.

RBME−DPC =max (RBME−DPC1, RBME−DPC2, RDPC) , (2.17)

where for the RBME−DPC1 and RBME−DPC2, we have

RBME−DPC1 =max R(1) +R(2)

=max min



t1C





h2
01P

(1)
0 + h2

12P2 + 2h01h12

√

ᾱP
(1)
0 P2

t1



 ,

t1C

(

h2
01αP

(1)
0

t1

)

+ t2C

(

h2
02P

(2)
0

t2

)

,

t1C

(

h2
23P2

t1

)

+ t2C

(

h2
13P1

t2

)

, t2C

(

h2
02P

(2)
0

t2

)

+ t2C

(

h2
13P1

t2

)

)

,(2.18)

subject to:

r
(1)
Bin = 0.

RBME−DPC2 =max R(1) +R(2)

=max min



t2C





h2
02P

(2)
0 + h2

12P1 + 2h02h12

√

β̄P
(2)
0 P1

t2



 ,

t2C

(

h2
02βP

(2)
0

t2

)

+ t1C

(

h2
01P

(1)
0

t1

)

,

t2C

(

h2
13P1

t2

)

+ t1C

(

h2
23P2

t1

)

, t1C

(

h2
01P

(1)
0

t1

)

+ t1C

(

h2
23P2

t1

)

)

,(2.19)

subject to:

r
(2)
Bin = 0.
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where the maximization in (2.17) is over parameters t1, t2, P
(1)
0 , P

(2)
0 , α, and β, subject to

the following constraints:

P
(1)
0 + P

(2)
0 = P0,

t1 + t2 = 1,

0 ≤ t1, t2, P
(1)
0 , P

(2)
0 ,

0 ≤ α, β ≤ 1.

Proof. First, let us assume that r
(1)
Bin = 0. Now, we show that every rate pairs

(

R(1), R(2)
)

satisfying (4.42)-(4.48) satisfy (2.18). After specializing (4.42)-(4.48) for the Gaussian case

and comparing with (2.18), one observes that the second term in minimization (4.42) does not

exist. Substituting r
(1)
Bin = 0 in (4.43)-(4.48), one can obtain the other three corresponding

terms. Comparing those terms with (2.18), it can be readily seen that RBME−DPC1 ≥
RBMEback

. Now, assuming r
(2)
Bin = 0, and using the similar argument, one can easily prove

that RBME−DPC2 ≥ RBMEback
. Furthermore, by the definition of the composite BME-DPC

scheme in Remark 1, we should have RBME−DPC = max (RBME−DPC1, RBME−DPC2, RDPC).

Therefore, RBME−DPC ≥ max(RBMEback
, RDPC), and the theorem is proved.

Remark 2.2.2. Assuming r
(1)
Bin = 0, and r

(2)
Bin 6= 0 (r

(1)
Bin 6= 0, and r

(2)
Bin = 0), the destination

jointly decodes the current message and the bin index of the next message at the end of

even (odd) blocks and then it can decode the next message at the end of odd (even) blocks.

Therefore, using backward decoding is not necessary in the BME-DPC scheme.

From Theorem 2.2.2, we have the following corollary for the Gaussian case.

Corollary 2.2.2. For the half-duplex Gaussian parallel relay channel, assuming successive

relaying protocol with power constraints at the source and each relay, BME achieves the
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following rates

RBMEsucc= max min (RBME1 +RBME2 ,

t1C





h2
01P

(1)
0 + h2

12θ2P2 + 2h01h12

√

ᾱ1θ2P
(1)
0 P2

t1



 ,

t2C





h2
02P

(2)
0 + h2

12θ1P1 + 2h02h12

√

ᾱ2θ1P
(2)
0 P1

t2







 , (2.20)

RBMEback
= max min



t1C





h2
01P

(1)
0 + h2

12P2 + 2h01h12

√

β̄1P
(1)
0 P2

t1



 ,

t2C





h2
02P

(2)
0 + h2

12P1 + 2h02h12

√

β̄2P
(2)
0 P1

t2



 ,

t1C

(

h2
01β1P

(1)
0

t1

)

+ t2C

(

h2
02β2P

(2)
0

t2

)

, t1C

(

h2
23P2

t1

)

+ t2C

(

h2
13P1

t2

)

)

.(2.21)

where the maximization in (2.20) and (2.21) is over parameters

t1, t2, P
(1)
0 , P

(2)
0 , α1, α2, β1, β2, θ1, and θ2 subject to the following constraints:

RBME1 = min

(

t1C

(

h2
01α1P

(1)
0

t1

)

, t1C

(

h2
23θ̄2P2

h2
23θ2P2 + t1

)

+ t2C

(

h2
13θ1P1

t2

)

)

,(2.22)

RBME2 = min

(

t2C

(

h2
02α2P

(2)
0

t2

)

, t2C

(

h2
13θ̄1P1

h2
13θ1P1 + t2

)

+ t1C

(

h2
23θ2P2

t1

)

)

,(2.23)

P
(1)
0 + P

(2)
0 = P0,

t1 + t2 = 1,

0 ≤ t1, t2, P
(1)
0 , P

(2)
0 ,

0 ≤ α1, α2, β1, β2, θ1, θ2 ≤ 1.

Proof. See Appendix F.

2.2.2 Simultaneous Relaying Protocol

Figure 2.6 shows simultaneous relaying protocol. In simultaneous relaying, in state 3 with

duration t3 the source transmits its signal simultaneously to the two relays. Following state

3, in state 4 with duration t4, two relays transmit their signal coherently to the destination.

Hence, in this protocol, t1 = t2 = 0 and our system model follows from (2.6) and (2.7).
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Relay 2

h01

h23

Destination

h13

h02

t3 t4

Source

Relay 1

Figure 2.6: Simultaneous relaying protocol for two relays.

Broadcast-multiacess with Common Message (BCM)

In the BCM scheme each relay decodes the transmitted message from the source in state

3 (Broadcast (BC) State), and forwards its re-encoded version in state 4 (Multiple Access

(MAC) State). It is worth noting that this scheme was previously proposed in [4] and

considered in [36]. The following theorem gives the achievable rate of the BCM scheme for

the Gaussian case.

Theorem 2.2.4. For the half-duplex Gaussian parallel relay channel, assuming simultaneous

relaying protocol with power constraints at the source and at each relay, BCM achieves the

following rate

RBCM =max Rp +Rc, (2.24)

where the maximization (2.24) is over parameters t3, t4, P
(3)
0,p , P

(3)
0,c , P

(4)
1,p , and P

(4)
1,c subject

to the following constraints:

Rp ≤ min

(

t3C

(

h2
01P

(3)
0,p

t3

)

, t4C

(

h2
13P

(4)
1,p

t4

))

, Rc ≤ t3C

(

h2
02P

(3)
0,c

t3 + h2
02P

(3)
0,p

)

,

Rp +Rc ≤ t4C











h2
13P

(4)
1,p +

(

h13

√

P
(4)
1,c + h23

√
P2

)2

t4











,

P
(3)
0,p + P

(3)
0,c = P0, P

(4)
1,p + P

(4)
1,c = P1, t3 + t4 = 1,

0 ≤ t3, t4, P
(3)
0,p , P

(3)
0,c , P

(4)
1,p , P

(4)
1,c .

P
(3)
0,p and P

(3)
0,c are portions of the source total power P

(3)
0 associated with the private and

common messages at the source, and P
(4)
1,p and P

(4)
1,c are portions of relay 1 total power P

(4)
1

associated with the private and common messages at relay 1, respectively.
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Proof. See [4], and [36].

Interestingly, successive decoding at the destination does not degrade the performance of

the BCM scheme in the Gaussian case as shown in the following proposition.

Proposition 2.2.2. The rate of the BCM scheme is achievable by successive decoding of the

common and private messages at the destination.

Proof. See Appendix G.

2.2.3 Simultaneous-Successive Relaying Protocol based on Dirty

paper coding (SSRD)

Source Destination

Relay 1

Relay 2

R1

R2

a) Time slot 1 with duration t1

Source Destination

Relay 1

Relay 2

R4

b) Time slot 2 with duration t2

R3

Source Destination

Relay 1

Relay 2

d) Time slot 4 with duration t4

(R7, R9)

(R8, R9)

Source Destination

Relay 1

Relay 2

R6

(R5, R6)

c) Time slot 3 with duration t3

Figure 2.7: SSRD Scheme for the Half-Duplex Parallel Relay Channel.

In this section, we propose an achievable rate for the half-duplex parallel relay channel.

Our achievable scheme is based on the combination of the successive relaying protocol based

on the DPC scheme and simultaneous relaying protocol based on the BCM scheme (SSRD

scheme). Hence, we have the following theorem.

Theorem 2.2.5. Considering Fig. 2.7, for the half-duplex parallel relay channel, SSRD

scheme achieves the following rate RSSRD

RSSRD =max min (R1 +R4 +R5 +R6, R2 +R3 +R7 +R8 +R9) , (2.25)
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where maximization (2.25) is over parameters t1, t2, t3, t4, P
(1)
0 , P

(2)
0 , P

(3)
0,p , P

(3)
0,c , P

(2)
1 , P

(4)
1,p

, P
(4)
1,c , P

(1)
2 , P

(4)
2,p , and P

(4)
2,c subject to the following constraints:

R9 ≤ R6, R1 +R5 ≤ R3 +R7, R4 ≤ R2 +R8, (2.26)

P
(1)
0 + P

(2)
0 + P

(3)
0,p + P

(3)
0,c = P0,

P
(2)
1 + P

(4)
1,p + P

(4)
1,c = P1, P

(1)
2 + P

(4)
2,p + P

(4)
2,c = P2,

t1 + t2 + t3 + t4 = 1,

0 ≤ t1, t2, t3, t4, P
(1)
0 , P

(2)
0 , P

(3)
0,p , P

(3)
0,c , P

(2)
1 , P

(4)
1,p , P

(4)
1,c , P

(1)
2 , P

(4)
2,p , P

(4)
2,c .

where

R1 = t1C

(

h2
01P

(1)
0

t1

)

, R2 = t1C

(

h2
23P

(1)
2

t1

)

, R3 = t2C

(

h2
13P

(2)
1

t2

)

, R4 = t2C

(

h2
02P

(2)
0

t2

)

,

R5 = t3C

(

h2
01P

(3)
0,p

t3

)

, R6 = t3C

(

h2
02P

(3)
0,c

t3 + h2
02P

(3)
0,p

)

, R7 = t4C

(

h2
13P

(4)
1,p

t4

)

, R8 = t4C

(

h2
23P

(4)
2,p

t4

)

,

R9 = t4C











(

h13

√

P
(4)
1,c + h23

√

P
(4)
2,c

)2

t4 + h2
13P

(4)
1,p + h2

23P
(4)
2,p











.

Proof. The SSRD scheme is illustrated in Fig. 2.7. As indicated in the figure, transmission

is performed in 4 states. Relay 1 transmits its private message which was received in state 1

(with rate R1) and state 3 (with rate R5) in state 2 (with rate R3) and state 4 (with rate R7).

On the other hand, relay 2 transmits its private message which was received in state 2 (with

rate R4) in state 1 (with rate R2) and state 4 (with rate R8). Furthermore, the two relays

send the common message they have already received in state 3 (with rate R6) coherently

in state 4 (with rate R9). As observed, here we consider the private rate for both relays in

the MAC state, i.e., state 4. This is due to the reason that relay 2 also receives the private

message in state 2. Hence, from the above description, Fig. 2.7, and using corollary 2.2.1,

Theorem 2.2.4, and Proposition 2.2.2, the theorem is proved.

Remark 2.2.3. According to Theorem 2.2.3, another combined simultaneous-successive re-

laying protocol based on BME is not necessary. However, a “Simultaneous-Successive Relay-

ing protocol based on BME-DPC”, can be easily derived. Assuming the first relay decodes the

second one’s message, the achievable rate of this new scheme would be the same as RSSRD.

However, since the messages for the second relay are common, R8 in the expression of the
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achievable rate is zero. Furthermore, the following constraints instead of (2.26) should be

satisfied:

R9 ≤ R4 +R6, R1 +R5 ≤ R3 +R7, R1 +R4 ≤ t1I
(

X
(1)
0 , X

(1)
2 ; Y

(1)
1

)

. (2.27)

2.3 Optimality Results

In this section, the optimality of the proposed achievable schemes in the previous sections is

investigated.

The authors in [32] proposed some upper bounds on the achievable rate for general half-

duplex multi-terminal networks. From the discussion in [32], the cut-set upper bound Cup

is

Cup , max
0≤t̂1,t̂2,t̂1+t̂2=1

min
(

t̂1I
(

X
(1)
0 ; Y

(1)
1 | X(1)

2

)

+ t̂2I
(

X
(2)
0 ; Y

(2)
2 | X(2)

1

)

+ t̂3I
(

X
(3)
0 ; Y

(3)
1 , Y

(3)
2

)

,

t̂2I
(

X
(2)
0 , X

(2)
1 ; Y

(2)
2 , Y

(2)
3

)

+ t̂3I
(

X
(3)
0 ; Y

(3)
2

)

+ t̂4I
(

X
(4)
1 ; Y

(4)
3 | X(4)

2

)

,

t̂1I
(

X
(1)
0 , X

(1)
2 ; Y

(1)
1 , Y

(1)
3

)

+ t̂3I
(

X
(3)
0 ; Y

(3)
1

)

+ t̂4I
(

X
(4)
2 ; Y

(4)
3 | X(4)

1

)

,

t̂1I
(

X
(1)
2 ; Y

(1)
3

)

+ t̂2I
(

X
(2)
1 ; Y

(2)
3

)

+ t̂4I
(

X
(4)
1 , X

(4)
2 ; Y

(4)
3

))

. (2.28)

In fact, (2.28) is a special case of the cut-set bound in [14].

By setting t̂3 = t̂4 = 0 in (2.28), we obtain an upper bound on the successive relaying

protocol which we call it successive cut-set bound in the sequel.

Theorem 2.3.1. In a degraded half-duplex parallel relay channel where the destination re-

ceives a degraded version of the received signals at relays, i.e. X
(1)
2 −→ Y

(1)
1 −→ Y

(1)
3 and

X
(2)
1 −→ Y

(2)
2 −→ Y

(2)
3 , BME based on backward decoding achieves the successive cut-set

bound.

Proof. Setting t̂3 = t̂4 = 0 in (2.28) and comparing the result with (2.14) the theorem is

proved.

Theorem 2.3.2. In symmetric scenarios, where h01 = h02, h13 = h23, and P1 = P2, Non-

Cooperative DPC scheme achieves the successive cut-set bound.

Proof. Due to the symmetric assumption and using the successive relaying protocol, we have

t1 = t2 =
1
2
, P

(1)
0 = P

(2)
0 = P0

2
. Hence, RDPC in (2.12) becomes

RDPC= min

(

C
(

h2
01P0

)

,
1

2
C
(

h2
01P0

)

+
1

2
C
(

2h2
13P1

)

, C
(

2h2
13P1

)

)

,

= min
(

C
(

h2
01P0

)

, C
(

2h2
13P1

))

.
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On the other hand, from the symmetric assumption, the optimum value for t̂1 and t̂2 in

the successive cut-set bound is equal to .5, and the optimum values for the source power in

states 1 and 2 are the same. Therefore, the successive cut-set bound can be upper-bounded

by min (C (h2
01P0) , C (2h2

13P1)) which is equal to RDPC , and the theorem is proved.

In high SNR scenarios, we have the following theorem.

Theorem 2.3.3. In high SNR scenarios, assuming non-zero source-relay and relay-destination

links, when power available for the source and each relay tends to infinity as P1 = γ1P0, P2 =

γ2P0 with γ1, γ2 constants independent of the SNR, time slots t̂3 and t̂4 in (2.28) tend to zero

as O
(

1
logP0

)

. Furthermore, the upper bound on the capacity of the half-duplex parallel relay

channel in high SNR scenarios is

Cup = RDPC +O

(

1

logP0

)

.

In other words, DPC achieves the capacity of a half-duplex Gaussian parallel relay channel

as SNR goes to infinity.

Proof. Substituting X
(1)
0 ∼ N (0, P̂

(1)
0 ), X

(2)
0 ∼ N (0, P̂

(2)
0 ), X

(3)
0 ∼ N (0, P̂

(3)
0 ), X

(2)
1 ∼

N (0, P̂
(2)
1 ), X

(4)
1 ∼ N (0, P̂

(4)
1 ), X

(1)
2 ∼ N (0, P̂

(1)
2 ), and X

(4)
2 ∼ N (0, P̂

(4)
2 ) in (2.28), and

assuming complete cooperation between the transmitting and receiving nodes for each cut

in (2.28), we have

Cup ≤max min

(

t̂1C

(

h2
01P̂

(1)
0

t̂1

)

+ t̂2C

(

h2
02P̂

(2)
0

t̂2

)

+ t̂3C

(

(h2
01 + h2

02)P̂
(3)
0

t̂3

)

,

t̂2C





h2
02P̂

(2)
0

t̂2
+

(h2
12 + h2

13)P̂
(2)
1

t̂2
+

2h02h12

√

P̂
(2)
0 P̂

(2)
1

t̂2
+

h2
02h

2
13P̂

(2)
0 P̂

(2)
1

t̂22



+

t̂3C

(

h2
02P̂

(3)
0

t̂3

)

+ t̂4C

(

h2
13P̂

(4)
1

t̂4

)

,

t̂1C





h2
01P̂

(1)
0

t̂1
+

(h2
12 + h2

23)P̂
(1)
2

t̂1
+

2h01h12

√

P̂
(1)
0 P̂

(1)
2

t̂1
+

h2
01h

2
23P̂

(1)
0 P̂

(1)
2

t̂21



+

t̂3C

(

h2
01P̂

(3)
0

t̂3

)

+ t̂4C

(

h2
23P̂

(4)
2

t̂4

)

,

t̂1C

(

h2
23P̂

(1)
2

t̂1

)

+ t̂2C

(

h2
13P̂

(2)
1

t̂2

)

+

t̂4C





h2
13P̂

(4)
1 + h2

23P̂
(4)
2 + 2h13h23

√

P̂
(4)
1 P̂

(4)
2

t̂4







 . (2.29)
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subject to:

P̂
(1)
0 + P̂

(2)
0 + P̂

(3)
0 = P0,

P̂
(2)
1 + P̂

(4)
1 = P1,

P̂
(1)
2 + P̂

(4)
2 = P2,

t̂1 + t̂2 + t̂3 + t̂4 = 1,

0 ≤ t̂1, t̂2, t̂3, t̂4, P̂
(1)
0 , P̂

(2)
0 , P̂

(3)
0 , P̂

(2)
1 , P̂

(4)
1 , P̂

(1)
2 , P̂

(4)
2 .

Furthermore, from corollary 2.2.1, the achievable rate of the DPC scheme can be expressed

as

RDPC = min

(

t1C

(

h2
01P

(1)
0

t1

)

+ t2C

(

h2
02P

(2)
0

t2

)

,

t2C

(

h2
02P

(2)
0

t2

)

+ t2C

(

h2
13P1

t2

)

,

t1C

(

h2
01P

(1)
0

t1

)

+ t1C

(

h2
23P2

t1

)

,

t1C

(

h2
23P2

t1

)

+ t2C

(

h2
13P1

t2

))

. (2.30)

By setting P
(1)
0 = P

(2)
0 = P0

2
and t1 = t2 = 0.5 in (2.30), expression (2.30) can be simplified

as

RDPC ≥ 1

2
lnP0 + c. (2.31)

where c is some constant which depends on channel coefficients. Knowing that the term

corresponding to each cut-set in (2.29) for the optimum values of t̂1, · · · , t̂4 is indeed an

upper-bound for RDPC , and by setting P̂
(1)
0 = P̂

(2)
0 = P̂

(3)
0 = P0 in (2.29), we have the

following inequality between (2.31) and the first cut of (2.29).

1

2
lnP0 + c ≤ t̂1

2
ln

(

h2
01P0

t̂1

)

+
t̂2
2
ln

(

h2
02P0

t̂2

)

+
t̂3
2
ln

(

(h2
01 + h2

02)P0

t̂3

)

+

t̂21
2h2

01P0
+

t̂22
2h2

02P0
+

t̂23
2(h2

01 + h2
02)P0

=

(

1− t̂4
)

2
lnP0 +

t̂1
2
ln h2

01 +
t̂2
2
ln h2

02 +
t̂3
2
ln
(

h2
01 + h2

02

)

− t̂1
2
ln t̂1 −

t̂2
2
ln t̂2 −

t̂3
2
ln t̂3 +

t̂21
2h2

01P0

+
t̂22

2h2
02P0

+
t̂23

2 (h2
01 + h2

02)P0

. (2.32)
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Note that in deriving (2.31) and (2.32), the following inequality is applied to lower/upper-

bound the corresponding terms:

ln(x) ≤ ln(1 + x) ≤ ln(x) +
1

x
, ∀x > 0. (2.33)

Consequently, we have

t̂4 ≤ 1

lnP0

(

2c+ t̂1 ln h
2
01 + t̂2 ln h

2
02 + t̂3 ln

(

h2
01 + h2

02

)

− t̂1 ln t̂1 − t̂2 ln t̂2 − t̂3 ln t̂3
)

+
1

lnP0

(

t̂21
h2
01P0

+
t̂22

h2
02P0

+
t̂23

(h2
01 + h2

02)P0

)

.

Hence, we can bound the optimum value of t̂4 in (2.29) as

0 ≤ t̂4 . O

(

1

logP0

)

. (2.34)

Similarly, by considering the fourth cut in (2.29), we can derive another bound on the

optimum value of t̂3 as follows:

0 ≤ t̂3 . O

(

1

logP0

)

. (2.35)

Applying the inequality between (2.31) and the term corresponding to the second cut in

(2.29), knowing (from (2.34) and (2.35)) the fact that t̂3 ≤ c3
lnP0

, and t̂4 ≤ c4
lnP0

(where c3 and

c4 are constants), and using inequalities (2.33), and

ln(1 + x) ≤ x, ∀x ≥ 0, (2.36)
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we obtain

1

2
lnP0 + c ≤

t̂2
2
ln

(

h2
02h

2
13γ1P

2
0

t̂22

(

1 +
t̂2

γ1h2
13P0

+
t̂2 (h

2
12 + h2

13)

h2
02h

2
13P0

+
t̂2h12

h2
13h02

√
γ1P0

))

+

t̂3
2
ln

(

h2
02P0

t̂3

)

+
t̂4
2
ln

(

h2
13γ1P0

t̂4

)

+

t̂32
2
(

t̂2h2
02P0 + t̂2γ1 (h2

12 + h2
13)P0 + 2t̂2h02h12

√
γ1P0 + h2

02h
2
13γ1P

2
0

)+

t̂23
2h2

02P0
+

t̂24
2γ1h2

13P0

≤ t̂2 lnP0 +
t̂2
2
ln

(

h2
02h

2
13γ1

t̂22

)

+
t̂22

2γ1h
2
13P0

+
t̂22 (h

2
12 + h2

13)

2h2
02h

2
13P0

+
t̂22h12

2h2
13h02

√
γ1P0

+

c3
2 lnP0

ln h2
02 −

c3
2 lnP0

ln t̂3 +
c3
2
+

c4
2 lnP0

ln γ1h
2
13 −

c4
2 lnP0

ln t̂4 +
c4
2
+

t̂32
2
(

t̂2h2
02P0 + t̂2γ1 (h2

12 + h2
13)P0 + 2t̂2h02h12

√
γ1P0 + h2

02h
2
13γ1P

2
0

)+

t̂23
2h2

02P0
+

t̂24
2γ1h2

13P0

Therefore, we have

1

2
lnP0 + c. t̂2 lnP0 + ć

+O

(

1

lnP0

)

+O

(

1

P0

)

.

Hence,

1

2
− c2

logP0

≤ t̂2. (2.37)

Similarly, from the third cut of (2.29), for t̂1 we have

1

2
− c1

logP0
≤ t̂1. (2.38)

From (2.37) and (2.38), and also the fact that t̂1 + t̂2 + t̂3 + t̂4 = 1, we obtain

1

2
− c2

logP0
≤ t̂2 ≤

1

2
+

c1
logP0

, (2.39)

1

2
− c1

logP0

≤ t̂1 ≤
1

2
+

c2
logP0

. (2.40)
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Hence, from (2.34), (2.35), (2.39), and (2.40) as P0 → ∞, t̂3, t̂4 → 0 and t̂1, t̂2 → 0.5. This

proves the first part of the theorem.

Moreover, knowing that each term corresponding to the four cuts in (2.29) is greater than

0.5 ln(P0) + c and as t̂1, t̂2 are strictly above zero (approaching 0.5), we can easily conclude

that

P̂
(1)
0 , P̂

(2)
0 , P̂

(2)
1 , P̂

(1)
2 = Θ (P0) . (2.41)

Now, we prove that the DPC scheme with the parameters t1 = t̂1 +
t̂3+t̂4

2
, t2 = t̂2 +

t̂3+t̂4
2

,

P
(1)
0 = P̂

(1)
0 and P

(2)
0 = P̂

(2)
0 , where t̂1, · · · , t̂4, P̂ (1)

0 , P̂
(2)
0 are the parameters corresponding to

the maximum value of (2.29), achieves the capacity with a gap no more than O
(

1
logP0

)

. To

prove this, we show that each of the four terms in (2.30) is no more than O
(

1
logP0

)

below

the corresponding term (from the same cut) in (2.29). To show this, for the first cut we have

t̂1C

(

h2
01P̂

(1)
0

t̂1

)

+ t̂2C

(

h2
02P̂

(2)
0

t̂2

)

+ t̂3C

(

(h2
01 + h2

02)P̂
(3)
0

t̂3

)

− t1C

(

h2
01P

(1)
0

t1

)

−t2C

(

h2
02P

(2)
0

t2

)

(a)

≤ t̂1
2
ln

(

h2
01P̂

(1)
0

t̂1

)

+
t̂2
2
ln

(

h2
02P̂

(2)
0

t̂2

)

+ t̂3C

(

(h2
01 + h2

02)P̂
(3)
0

t̂3

)

−
(

t̂1
2
+

t̂3 + t̂4
4

)

ln

(

h2
01P̂

(1)
0

t1

)

−
(

t̂2
2
+

t̂3 + t̂4
4

)

ln

(

h2
02P̂

(2)
0

t2

)

+
t̂21

2h2
01P̂

(1)
0

+
t̂22

2h2
02P̂

(2)
0

(b)

.

t̂1
2
ln

(

h2
01P̂

(1)
0

t̂1

)

+
t̂2
2
ln

(

h2
02P̂

(2)
0

t̂2

)

+
t̂3
2
ln

(

(h2
01 + h2

02)P0

t̂3 + t̂1

)

−
(

t̂1
2
+

t̂3 + t̂4
4

)

ln

(

h2
01P̂

(1)
0

t1

)

−
(

t̂2
2
+

t̂3 + t̂4
4

)

ln

(

h2
02P̂

(2)
0

t2

)

+O

(

1

logP0

)

(c)

.

t̂3
2
ln





P0
√

P̂
(1)
0 P̂

(2)
0



− t̂4
4
ln
(

P̂
(1)
0 P̂

(2)
0

)

+O

(

1

logP0

)

(d)

. O

(

1

logP0

)

. (2.42)

Here, (a) follows from (2.33), noting the function t̂1 ln(P0−x−y)+t̂2 ln(y)+t̂3 ln
(

t̂3 + (h2
01 + h2

02)x
)

takes its maximum value at x ≤ t̂3
t̂3+t̂1

P0 and hence substituting P̂
(3)
0 = t̂3

t̂3+t̂1
P0 and fi-

nally noting P̂
(1)
0 , P̂

(2)
0 = Θ(P0) result in (b) , (c) follows from t̂3, t̂4 = O

(

1
logP0

)

and

ln
(

t1
t̂1

)

= O
(

1
logP0

)

, and finally (d) follows from P̂
(1)
0 , P̂

(2)
0 = Θ(P0).

Next, we bound the difference between the terms in the fourth cut of (2.29) and the
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fourth term in RDPC

t̂1C

(

h2
23P̂

(1)
2

t̂1

)

+ t̂2C

(

h2
13P̂

(2)
1

t̂2

)

+ t̂4C





h2
13P̂

(4)
1 + h2

23P̂
(4)
2 + 2h13h23

√

P̂
(4)
1 P̂

(4)
2

t̂4





−t1C

(

h2
23P2

t1

)

− t2C

(

h2
13P1

t2

)

(a)

.

t̂1
2
ln

(

h2
23P̂

(1)
2

t̂1

)

+
t̂2
2
ln

(

h2
13P̂

(2)
1

t̂2

)

+ t̂4C





h2
13P̂

(4)
1 + h2

23P̂
(4)
2 + 2h13h23

√

P̂
(4)
1 P̂

(4)
2

t̂4





−
(

t̂1
2
+

t̂3 + t̂4
4

)

ln

(

h2
23P2

t1

)

−
(

t̂2
2
+

t̂3 + t̂4
4

)

ln

(

h2
13P1

t2

)

+O

(

1

P0

)

(b)

.

t̂1
2
ln

(

h2
23P2

t̂1

)

+
t̂2
2
ln

(

h2
13P1

t̂2

)

+ t̂4 ln

(

h13

√

P1

t̂2 + t̂4
+ h23

√

P2

t̂1 + t̂4

)

−
(

t̂1
2
+

t̂3 + t̂4
4

)

ln

(

h2
23P2

t1

)

−
(

t̂2
2
+

t̂3 + t̂4
4

)

ln

(

h2
13P1

t2

)

+O

(

1

P0

)

(c)

.

t̂4
2
ln





2
√

(t̂1 + t̂4)(t̂2 + t̂4)
+

h13

h23(t̂2 + t̂4)

√

P1

P2
+

h23

(t̂1 + t̂4)h13

√

P2

P1



− t̂3
4
ln (P1P2)

+O

(

1

logP0

)

(d)

. O

(

1

logP0

)

. (2.43)

Here, (a) follows from (2.33) and noting P̂
(2)
1 , P̂

(1)
2 = Θ(P0), noting the function t̂1 ln(P2−y)+

t̂2 ln(P1 − x) + t̂4 ln
(

t̂4 +
(

h13

√
x+ h23

√
y
)2
)

takes its maximum value at x ≤ t̂4
t̂4+t̂2

P1, y ≤
t̂4

t̂4+t̂1
P2 and hence substituting P̂

(4)
1 = t̂4

t̂4+t̂2
P1 and P̂

(4)
2 = t̂4

t̂4+t̂1
P2 result in (b), (c) follows

from t̂3, t̂4 = O
(

1
logP0

)

and t̂1, t̂2 = 0.5 + O
(

1
logP0

)

, and finally (d) follows from the facts

that P1

P2
= Θ(1), t̂1 + t̂4, t̂2 + t̂4 = Θ(1), and t̂4 = O( 1

logP0
).

Next, we bound the difference between the terms in the second cut of (2.29) and the
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second term in RDPC

t̂2C





h2
02P̂

(2)
0

t̂2
+

(h2
12 + h2

13)P̂
(2)
1

t̂2
+

2h02h12

√

P̂
(2)
0 P̂

(2)
1

t̂2
+

h2
02h

2
13P̂

(2)
0 P̂

(2)
1

t̂22



+ t̂3C

(
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02P̂

(3)
0

t̂3

)

+t̂4C

(
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13P̂

(4)
1

t̂4

)

− t2C

(

h2
02P

(2)
0

t2

)

− t2C

(

h2
13P1

t2

)

(a)

.

t̂2
2
ln

(

h2
02h

2
13P̂

(2)
0 P̂

(2)
1

t̂22

)

+ t̂3C

(

h2
02P̂

(3)
0

t̂3

)

+ t̂4C

(

h2
13P̂

(4)
1

t̂4

)

−
(

t̂2
2
+

t̂3 + t̂4
4

)

ln

(

h2
02h

2
13P̂

(2)
0 P1

t22

)

+O

(

1

P0

)

(b)

.
t̂2
2
ln

(

h2
02h

2
13P̂

(2)
0 P1

t̂22

)

+
t̂3
2
ln

(

h2
02P0

t̂3 + t̂2

)

+
t̂4
2
ln

(

h2
13P1

t̂4 + t̂2

)

−
(

t̂2
2
+

t̂3 + t̂4
4

)

ln

(

h2
02P̂

(2)
0

t2

)

−
(

t̂2
2
+

t̂3 + t̂4
4

)

ln

(

h2
13P1

t2

)

+O

(

1

P0

)

(c)

.

t̂3
4
ln

(

P 2
0

P̂
(2)
0 P1

)

+
t̂4
4
ln

(

P1

P̂
(2)
0

)

+O

(

1

logP0

)

(d)

. O

(

1

logP0

)

. (2.44)

Here, (a) follows from (2.33), the fact that P
(2)
0 = P̂

(2)
0 = Θ (P0) and upper-bounding

P̂
(3)
0 ≤ P0, P̂

(4)
1 ≤ P1, noting the facts that P̂

(2)
0 +P̂

(3)
0 ≤ P0 and P̂

(2)
1 +P̂

(4)
1 = P1, the functions

t̂2 ln(P0−x)+t̂3 ln
(

t̂3 + h2
02x
)

and t̂2 ln(P1−y)+t̂4 ln
(

t̂4 + h2
13y
)

are maximized at x ≤ t̂3
t̂2+t̂3

P0

and y ≤ t̂4
t̂2+t̂4

P1, hence, substituting P̂
(3)
0 = t̂3

t̂2+t̂3
P0 and P̂

(4)
1 = t̂4

t̂2+t̂4
P1 upper-bounds the

expression which results in (b), (c) follows from t̂3, t̂4 = O
(

1
logP0

)

, t̂1, t̂2 = 0.5 + O
(

1
logP0

)

,

and finally (d) follows from the fact that P̂
(2)
0 , P1 = Θ (P0) and also t̂3, t̂4 = O

(

1
logP0

)

.

Noting that the second and the third cuts are the same, and using the same argument as

in (2.44), we can bound the difference between the terms in the third cut of (2.29) and the

third term in RDPC as

t̂1C





h2
01P̂

(1)
0

t̂1
+

(h2
12 + h2

23)P̂
(1)
2

t̂1
+

2h01h12

√

P̂
(1)
0 P̂

(1)
2

t̂1
+

h2
01h

2
23P̂

(1)
0 P̂

(1)
2

t̂21



 (2.45)

+t̂3C

(

h2
01P̂

(3)
0

t̂3

)

+ t̂4C

(

h2
23P̂

(4)
2

t̂4

)

− t1C

(

h2
01P

(1)
0

t1

)

− t1C

(

h2
23P2

t1

)

. O

(

1

logP0

)

.

Observing (2.42), (2.43), (2.44) and (2.45), completes the proof of the theorem.

Theorem 2.3.4. In low SNR scenarios, assuming P1 = γ1P0, P2 = γ2P0 with γ1, γ2 con-

stants independent of the SNR, when the power available for the source and each relay tends

to zero and
(

h13
√
γ1 + h23

√
γ2
)2 ≤ min (h2

01, h
2
02), the ratio of the achievable rate of the si-

multaneous relaying protocol based on BCM to cut-set upper bound goes to 1. In this scenario

t3 = t4 =
1
2
, and no private messages should be transmitted.
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Proof. By the same argument as in Theorem 2.3.3 and considering only the fourth cut, we

obtain another upper bound on the capacity. By the following inequality

ln(1 + x) ≤ x. (2.46)

we can bound the upper bound on the capacity as

Cup ≤
(

h13
√
γ1 + h23

√
γ2
)2

P0

2 ln 2
. (2.47)

Now, assuming t1 = t2 = 0, t3 = t4 =
1
2
, and transmitting just the common message, we

can achieve the following rate RBCM :

RBCM = min

(

1

2
C
(

2h2
02P0

)

,
1

2
C
(

2 (h13
√
γ1 + h23

√
γ2)

2 P0

)

)

. (2.48)

According to the Taylor expansion of ln(1 + x) at x = 0, we have

x− x2

2
≤ ln (1 + x) , (2.49)

Hence,

1

ln 2
min

(

h2
02P0

2
− h4

02P
2
0

2
,

(

h13
√
γ1 + h23

√
γ2
)2

P0

2
−
(

h13
√
γ1 + h23

√
γ2
)4

P 2
0

2

)

≤ RBCM . (2.50)

By (2.47), (2.50), and
(

h13
√
γ1 + h23

√
γ2
)2 ≤ min (h2

01, h
2
02), we have

lim
P0→0

RBCM

Cup
→ 1. (2.51)

2.4 Simulation Result

In this section, the achievable rate of different proposed schemes, i.e., SSRD, DPC, BME, the

proposed composite BME-DPC, combined BME DPC of [37], the proposed schemes in [36],

i.e., BCM, SF, Hybrid DF-CF, Hybrid DF-SF, and CF are compared with each other and

with the upper bound in different channel conditions. However, since in [36] unlike in our

work, the nodes cannot accumulate their powers in idle modes to consume in transmitting

modes, we apply our power constraint assumption to the schemes of [36].
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Figures 2.8 and 2.9 compare the achievable rate of the SSRD scheme with that of the

DPC scheme for successive relaying and the BCM scheme along with schemes of [36] for

simultaneous relaying protocols. Here the symmetric scenario in which P1 = P2 and h01 =

h02 = h12 = h13 = h23 = 1 is considered. The upper bound is also included in the figure.

In order to satisfy the condition in Theorem 2.3.4, i.e.,
(

h13
√
γ1 + h23

√
γ2
)2 ≤ min (h2

01, h
2
02),

in Fig. 2.8 we also assume P0 = P1+5(dB) = P2+5(dB). As Fig. 2.8 shows, SSRD achievable

rate almost coincides with the upper bound over all ranges of SNR. As proved in the previ-

ous section, in high SNR scenario, the SSRD scheme coincides with DPC and the successive

relaying protocol becomes optimum, while in low SNR scenario it coincides with BCM and

the simultaneous relaying protocol is optimum.

On the other hand, in Fig. 2.9 we assume that P0 = P1 = P2. In this situation, the

condition in Theorem 2.3.4 is no longer satisfied. Therefore, as this figure show, the ratio

of the achievable rate of the SSRD scheme to the cut-set bound, i.e., RSSRD

Cup does not tend

to one. Furthermore, the achievable rates of the SSRD, DPC, BCM, and Hybrid DF-CF

schemes coincide with each other.

As Figs. 2.8 and 2.9 show, the proposed scheme of this paper, i.e. SSRD, DPC, and

BCM outperform the ones proposed in [36].

Figure 2.10 compares the achievable rate of different successive relaying schemes, i.e.,

DPC, BME schemes with successive and backward decoding, proposed composite BME-DPC

and the combined BME DPC of [37] with each other and the successive cut-set bound for the

asymmetric scenario. It shows as the inter-relay channel becomes stronger, BME scheme can

achieve the successive cut-set bound, while the achievable rate of the DPC is independent of

that channel. Furthermore, this figure indicates BME with backward decoding gives a better

achievable rate with respect to BME with successive decoding which was proposed in [37].

Moreover, it can be seen from this figure that the achievable rate of our proposed composite

BME-DPC scheme coincides with that of the combined BME DPC scheme of [37].

Remark 2.4.1. We did not study the CF based strategies here. While DF based strategies

achieve the capacity of the single relay channel or general relay networks in many certain

scenarios, CF based strategies are known to achieve rates with at least a constant gap from

the cut-set upper bound (See [28]). Indeed, the only examples for the optimality of CF based

strategies that have been discovered most recently, are based on a very special case of the

discrete single relay channel (See [44, 45]). It is worth mentioning that in [45], the capacity

of the relay channel which is obtained by the CF strategy is strictly below the cut-set upper

bound.

In our setup, we study the possible scenarios in which the capacity can be achieved by our

proposed schemes (asymptotically high SNR, asymptotically low SNR, successive degraded and
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symmetric cases). However, in the CF strategy, since none of the relays decode the source’s

message, they have to quantize the source’s message with a quantization noise whose power

is in the same order as the power of the noise at the destination (assuming the signal powers

are the same in the network and the noise powers are different). In this way, the relays

are sure that the destination can decode their quantized signal. However, by imposing this

quantization-level noise, the rate achieved by the CF strategy would differ from the cut-set

upper bound with an additive gap (in high SNR regime) or a multiplicative gap (in low SNR

regime).

The CF based strategies also suffer from the following problem in the successive protocol.

The source is not aware of the quantized signal of each relay. Hence, it can neither cooperate

with the transmitting relay at the receiver side of the receiving relay (i.e. the extended MAC

would be reduced to the simple MAC) nor perform the DPC scheme to cancel the interference

of each relay’s signal imposed at the receiver side of the other relay.
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Chapter 3

Combined Amplify and Decode

Forward

For many years, Schein and Gallager’s achievable rate based on the time sharing between

the AF and DF schemes (AF-DF) was the best known achievable scheme for the Gaussian

parallel relay channel with two relays. Since then there was no reported improvement in

the literature. However, more recently, Yuval Kochman, Anatoly Khina, Uri Erez, Ram

Zamir in [48][49], proposed the Rematch-and-Forward (RF) scheme for this channel. This

scheme is based on the use of analog modulo-lattice modulation (See [47]) and hybrid digital

and analog coding for joint source channel coding (See [50]). The RF scheme is used for

the scenarios in which there is a bandwidth mismatch between the source-relays and relays-

destination channels. Furthermore, the authors showed that the time sharing between the

RF and DF scheme (RF-DF), in certain scenarios, achieves a better rate than the Schein

and Gallager’s scheme.

In this chapter1, we propose a Combined Amplify-and-Decode (CADF) scheme, when

there is a bandwidth mismatch between the source-relays (Broadcast: BC) and relays-

destination (Multiple Access: MAC) channels. We prove that this scheme always achieves

a better rate than the RF scheme. Furthermore, we show that time sharing between the

CADF and DF schemes (CADF-DF) always outperforms the RF-DF and the AF-DF.

This chapter is organized as follows. The system model is explained in section 3.1. The

CADF scheme for the bandwidth mismatch case is proposed and discussed in section 3.2.

And finally simulation results are discussed in section 3.3.

1Portions reprinted, with permission, from (Seyed Saeed Changiz Rezaei, Shahab Oveis Gharan, and

Amir K. Khandani, “A New Achievable Rate for the Gaussian Parallel Relay Channel”, Proc. Of IEEE

International Symposium on Information Theory 2009 (ISIT 2009), pp. 194 - 198). c© [2010] IEEE.
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3.1 The System Model

The setup of the system model considered in this paper is similar to [48]. Here, we consider

a Gaussian network which consists of a source, M relays, and a destination with no direct

link between the source and the destination.

zMAC

Relay 1

Relay 2

Relay M

Destination
xBC

z2

z1

y1

y2

yM

x1

x2

xM

Source

zM

yMAC

Figure 3.1: The Gaussian Parallel Relay Channel.

Nodes 1, · · · ,M represent relay 1 , · · · , relay M , respectively. The transmitted vectors

from the source and the relays, and the received vectors at the relays and the destination

are denoted by xBC , xm(m = 1, · · · ,M) and ym(m = 1, · · · ,M), and yMAC , respectively.

Hence, we have

ym = xBC + zm, m ∈ {1, · · · ,M}, (3.1)

yMAC =
M
∑

m=1

xm + zMAC . (3.2)

where zm and zMAC are the AWGN terms. Throughout the paper, for the sake of simplicity,

we consider the symmetric case in which all the AWGN terms have zero mean and the

variance “1” per dimension. It is worth mentioning that noises at the relays and destination

are independent from each other.

Furthermore, the average power constraints Ps, Pm (m ∈ {1, · · · ,M}) should be satisfied

for the source and relay nodes:

1

n
E ‖ xBC ‖2≤ Ps, (3.3)

1

n
E ‖ xm ‖2≤ Pm, m ∈ {1, · · · ,M}. (3.4)
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where n denotes the corresponding vector length.

Due to the symmetry assumption, we have

P1 = P2 = · · · = PM = Pr. (3.5)

It should be noted that for the bandwidth mismatch case Ps and Pr are the power constraints

per unit of bandwidth.

3.2 The Bandwidth Mismatch Case

In this section, we study the problem of bandwidth mismatch between the first and sec-

ond hop. This problem may arise in many practical situations. For instance, the available

bandwidth for the source and the relays to transmit their signals may not be equal. As

another example, consider a half-duplex parallel relay channel, assuming a constant band-

width from the source to the destination, the optimum amount of bandwidth for the first and

second hops is not necessarily the same. Hence, the Combined Amplify-and-Decode Forward

(CADF) scheme is proposed for these types of situations in the sequel.

Here we assume that for each ρ uses of BC channel, one use of the MAC channel is

allowed. ρ can be either less or greater than “1”. Practically, this means that one can

allocate less or more resources in terms of time or frequency to the first hop compared to

the second hop. On the other hand, from the mathematical point of view, this means that

the length of the codeword used at the source side is ρ times the length of the codewords

used at the relays side.

According to the cut-set bound Theorem (See [14]), on the cuts corresponding to the first

and second hop, the upper bound, Cup, on the capacity of this channel, Cs, is (See [48]):

Cs ≤ Cup , min
(

ρC (MPs) , C
(

M2Pr

))

. (3.6)

3.2.1 The Combined Amplify-and-Decode Forward (CADF)

In this section, CADF scheme is studied. This scheme is illustrated in Figs. 3.2. In this

strategy, the intended message is split into AF and DF messages. The AF message itself

is split into L AF sub-messages. Each AF sub-message is transmitted in 2αl(l = 1, · · · , L)
fraction of the available bandwidth from the source to the destination. The DF message is

superimposed on the AF message and transmitted from the source to the relays in
∑L

l=1 αl+

β1 dimensions. Having decoded the DF message, each relay transmits the re-encoded version

on top of the AF message in
∑L

l=1 αl + β2 dimensions. Due to the water-filling result of the
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DF message on the AF message and from (3.3) and (3.4), in αl band from the source to each

relay, we have

Ps,AFl
+ Ps,DFl

= Ps, l = 1, · · · , L. (3.7)

Similarly, for the relay side we have

Pr,AFl
+ Pr,DFl

= Pr, l = 1, · · · , L. (3.8)

Ps,AFL

Pr

α2 α3α1 β1
αL α2 α3α1 αL

at the source side.
a) Power distribution of the “AF” and “DF” messages

at the relay side.

1

b) Power distribution of the “AF” and “DF” messages

1

Ps

Pr,DF2

Pr,AF2

Pr,DF3

Pr,AF3

Pr,DFL

Pr,AFL

Pr,DF1

Pr,AF1

β2

Ps,DF1

Ps,AF1

Ps,DF2

Ps,AF2

Ps,DF3

Ps,AF3

Ps,DFL

Figure 3.2: Power distribution of the “AF” and “DF” messages at the source and relay sides.

Furthermore, due to the bandwidth constraint for the BC and MAC channel, we have

L
∑

l=1

αl + β1 = ρ, (3.9)

L
∑

l=1

αl + β2 = 1. (3.10)

The above discussions result in the following Theorem.

Theorem 3.2.1. For the Gaussian parallel relay channel, the CADF achieves the following
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rate:

RCADF ≤max
L
∑

l=1

RAFl
+RDFl

+RDF , (3.11)

subject to:

RDFl
≤ αlC

(

Ps,DFl

Ps,AFl
+ 1

)

,

RAFl
≤ αlC

(

M2Pr,AFl
Ps,AFl

MPr,AFl
+ Ps,AFl

+ 1

)

,

RDFl
≤ αlC

(

M2Pr,DFl
(Ps,AFl

+ 1)

MPr,AFl
+ Ps,AFl

+ 1

)

,

RAFl
+RDFl

≤ αlC

(

M2PrPs,AFl
+M2Pr,DFl

MPr,AFl
+ Ps,AFl

+ 1

)

,

RDF ≤ β1C (Ps) ,

RDF ≤ β2C
(

M2Pr

)

,
L
∑

l=1

αl + β1 = ρ,

L
∑

l=1

αl + β2 = 1,

Ps,AFl
+ Ps,DFl

= Ps,

Pr,AFl
+ Pr,DFl

= Pr,

0 ≤ αl, β1, β2,

0 ≤ Ps,AFl
, Ps,DFl

≤ Ps, 0 ≤ Pr,AFl
, Pr,DFl

≤ Pr, l = 1, · · · , L.

Proof. See Appendix H.

Remark 3.2.1. For the half-duplex scenarios, instead of the constraints
∑L

l=1 αl + β1 = ρ

and
∑L

l=1 αl + β2 = 1 for the bandwidths of the first and second hops separately, we assume

a constant bandwidth from the source to the destination, i.e., 2
∑L

l=1 αl + β1 + β2 = 1.

Proposition 3.2.1. The CADF scheme achieves the same rate RCADF , assuming successive

decoding of the DF and AF messages at the receiver side. Moreover, the achievable rate can
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be simplified as

RCADF ≤ max

L
∑

l=1

αlC

(

M2Pr,AFl
Ps,AFl

MPr,AFl
+ Ps,AFl

+ 1

)

+min

(

L
∑

l=1

αlC

(

Ps,DFl

Ps,AFl
+ 1

)

+ β1C (Ps) ,

L
∑

l=1

αlC

(

M2Pr,DFl
(Ps,AFl

+ 1)

M2Pr,AFl
Ps,AFl

+MPr,AFl
+ Ps,AFl

+ 1

)

+ β2C
(

M2Pr

)

)

, (3.12)

subject to:
L
∑

l=1

αl + β1 = ρ,

L
∑

l=1

αl + β2 = 1,

Ps,AFl
+ Ps,DFl

= Ps,

Pr,AFl
+ Pr,DFl

= Pr,

0 ≤ αl, β1, β2,

0 ≤ Ps,AFl
, Ps,DFl

≤ Ps, 0 ≤ Pr,AFl
, Pr,DFl

≤ Pr, l = 1, · · · , L.

Proof. From (3.11) and the discussion in Appendix H, we can consider the AF and the

DF messages at band αl in the second hop as the messages of a MAC with the following

inequalities

RAFl
≤ αlC

(

M2Pr,AFl
Ps,AFl

MPr,AFl
+ Ps,AFl

+ 1

)

, (3.13)

RDFl
≤ αlC

(

M2Pr,DFl
(Ps,AFl

+ 1)

MPr,AFl
+ Ps,AFl

+ 1

)

, (3.14)

RAFl
+RDFl

≤ αlC

(

M2PrPs,AFl
+M2Pr,DFl

MPr,AFl
+ Ps,AFl

+ 1

)

. (3.15)

It can be readily verified that subject to the constraint Pr,AFl
+ Pr,DFl

= Pr, the right-hand

side of (3.15) is a decreasing function of Pr,AFl
or equivalently an increasing function of Pr,DFl

.

Now, let us equate RAFl
in (3.15) with the AF rate ŔAFl

of another MAC which is achieved

by successive decoding of the DF and AF messages. Therefore, we have

RAFl
= ŔAFl

= αlC

(

M2Ṕr,AFl
Ps,AFl

MṔr,AFl
+ Ps,AFl

+ 1

)

≤ αlC

(

M2Pr,AFl
Ps,AFl

MPr,AFl
+ Ps,AFl

+ 1

)

. (3.16)

According to (3.16), we have

Ṕr,AF ≤ Pr,AF =⇒
RAFl

+RDFl
≤ ŔAFl

+ ŔDFl
,

RDFl
≤ ŔDFl

.
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Hence, (RAFl
, RDFl

) lies in the corner point of the MAC with parameters (ŔAFl
, ŔDFl

), i.e.

successive decoding of the DF and AF messages achieves RCADF .

Hence, we can assume

RAFl
= αlC

(

M2Pr,AFl
Ps,AFl

MPr,AFl
+ Ps,AFl

+ 1

)

. (3.17)

Now, from (3.15) and (3.17) inequality (3.14) is concluded. Hence, inequality (3.14) is extra.

Therefore, by considering the appropriate order of decoding for the DF and the AF messages

at the destination, the proposition is proved.

Remark 3.2.2. Due to the complicated nature of the formula for RCADF , it cannot be verified

that RCADF is a convex or concave function of Ps,AFl
and consequently claimed L > 1 or

L = 1, respectively. However, the following proposition gives an upper bound on the number

of bands L.

Proposition 3.2.2. The optimum number of bands L in the CADF scheme is at most equal

to two. Furthermore, for the half-duplex scenarios assuming one of the αl’s is non-zero,

depending on ρ < 1 or ρ > 1, either β1 = 0 and β2 6= 0 or β1 6= 0 and β2 = 0.

Proof. Assuming variables Ps,AFl
, Ps,DFl

, Pr,AFl
, and Pr,DFl

in (3.11) as constant parameters,

one can cast the optimization problem (3.11) in a linear form with variables αl, β1, and β2

as the optimization parameters. In order to do that, we introduce a parameter λ ∈ R to

(3.11), and assume that the difference between the two terms in the minimization (3.11) is

λ. Hence, we have the following linear optimization problem which is equivalent to (3.11):

RCADF ≤ max
λ∈R

(min(−λ, 0) + f(λ)), (3.18)

where

f(λ)= max

L
∑

l=1

αl

(

C

(

M2Pr,AFl
Ps,AFl

MPr,AFl
+ Ps,AFl

+ 1

)

+ C

(

Ps,DFl

Ps,AFl
+ 1

))

+ β1C (Ps) , (3.19)

subject to:
L
∑

l=1

αl

(

C

(

M2Pr,AFl
Ps,AFl

MPr,AFl
+ Ps,AFl

+ 1

)

+ C

(

Ps,DFl

Ps,AFl
+ 1

)

−C

(

M2PrPs,AFl
+M2Pr,DFl

MPr,AFl
+ Ps,AFl

+ 1

))

+ β1C (Ps)− β2C
(

M2Pr

)

= λ, (3.20)

L
∑

l=1

αl + β1 = ρ, (3.21)

L
∑

l=1

αl + β2 = 1, (3.22)

0 ≤ αl, β1, β2, l = 1, · · · , L. (3.23)
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For ρ < 1, from (3.21), (3.22), and knowing β1 ≥ 0, β2 > 0 can be concluded. Hence,

substituting β2 from (3.22) into (3.19) and (3.20), (3.19)-(3.23) becomes

f(λ)= max cTy, (3.24)

subject to:

Ay = b, (3.25)

y � 0. (3.26)

where

y = [α1, α2, α3, · · · , αL, β1]
T ,

cl = C

(

M2Pr,AFl
Ps,AFl

MPr,AFl
+ Ps,AFl

+ 1

)

+ C

(

Ps,DFl

Ps,AFl
+ 1

)

, l = 1, · · · , L,

cL+1 = C (Ps) ,

A1l = C

(

M2Pr,AFl
Ps,AFl

MPr,AFl
+ Ps,AFl

+ 1

)

+ C

(

Ps,DFl

Ps,AFl
+ 1

)

− C

(

M2PrPs,AFl
+M2Pr,DFl

MPr,AFl
+ Ps,AFl

+ 1

)

+ C
(

M2Pr

)

, l = 1, · · · , L,

A1L+1 = C (Ps) , A2l = 1, l = 1, · · · , L+ 1,

b =
[

λ+ C
(

M2Pr

)

, ρ
]T

.

The optimum solution of (3.24), yopt, is an extreme point of the region F = {Ay = b,y � 0}.
On the other hand, yopt is an extreme point of F if and only if it is a basic feasible solution

of (3.24). Since the rank of matrix A is at most 2, the basic feasible solution of F has at

most 2 non-zero entries (See [52]). Therefore, the only possible cases are αi 6= 0, αj 6= 0

(where i 6= j), and β2 6= 0 or αi 6= 0, β1 6= 0, and β2 6= 0.

Having the similar argument for ρ > 1, we can easily prove that the only possible cases

are αi 6= 0, αj 6= 0 (where i 6= j), and β1 6= 0 or αi 6= 0, β1 6= 0, and β2 6= 0. Hence, the

optimum number of bands L is at most equal to two.

For the half-duplex scenarios, from Remark 1, the optimization problem (3.19) becomes

a linear optimization problem with two constraints. Using the similar argument as in the

bandwidth mismatch case, only two optimization parameters would be non-zero. Hence,

assuming one of the αl’s is non-zero and ρ 6= 1, depending on ρ < 1 or ρ > 1, either β1 = 0

and β2 6= 0 or β1 6= 0 and β2 = 0. Therefore, from the above argument, for the half-duplex

scenarios the optimum number of bands L is at most equal to one.
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By considering the appropriate order of decoding for the DF message and the AF message

at the destination and from Proposition 3.2.2, the achievable rate can be simplified as

RCADF ≤ max

2
∑

l=1

αlC

(

M2Pr,AFl
Ps,AFl

MPr,AFl
+ Ps,AFl

+ 1

)

+min

(

2
∑

l=1

αlC

(

Ps,DFl

Ps,AFl
+ 1

)

+ β1C (Ps) ,

2
∑

l=1

αlC

(

M2Pr,DFl
(Ps,AFl

+ 1)

M2Pr,AFl
Ps,AFl

+MPr,AFl
+ Ps,AFl

+ 1

)

+ β2C
(

M2Pr

)

)

, (3.27)

subject to:
2
∑

l=1

αl + β1 = ρ, (3.28)

2
∑

l=1

αl + β2 = 1, (3.29)

Ps,AFl
+ Ps,DFl

= Ps, (3.30)

Pr,AFl
+ Pr,DFl

= Pr, (3.31)

0 ≤ αl, β1, β2, (3.32)

0 ≤ Ps,AFl
, Ps,DFl

≤ Ps, 0 ≤ Pr,AFl
, Pr,DFl

≤ Pr, l = 1, 2. (3.33)

3.2.2 The Traditional Coding Schemes

The achievable rates for the traditional coding schemes such as the Decode-and-Forward

(DF), the Amplify-and-Forward (AF), and the Compress-and-Forward (CF) are derived in

[48]. These are highlighted for comparison purposes:

Decode-and-Forward (DF)

In this scheme, the codeword xm in (3.2) is a re-encoded version of the decoded message at

relay m. Hence, the source transmits its message such that each relay can decode it. Hence,

the DF scheme achieves

RDF = min
(

ρC (Ps) , C
(

M2Pr

))

. (3.34)

Amplify-and-Forward (AF)

In the AF scheme, the relay m transmits a re-scaled version of the signal received from the

BC channel. Hence, the AF scheme achieves

RAF = γC

(

M2PrPs

MPr + Ps + 1

)

. (3.35)

where γ = min(ρ, 1).
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Compress-and-Forward (CF)

In the CF scheme, the relay m estimates the transmitted codeword and digitally compresses

its estimation. Then, it encodes the compressed value to an appropriate channel codeword

and sends it over the MAC channel [48]. Hence, the CF scheme achieves

RCF= ρC (PCF ) , (3.36)

subject to:

(1 +MPr)
1
ρ = 1 + PCF

(

MPs

MPs − PCF + 1

)M

.

3.2.3 The Rematch-and-Forward (RF) scheme

The RF scheme based on two different approaches was proposed in [48] and [49]. The RF

scheme in [48] can be briefly explained as follows. Depending on ρ > 1 or ρ < 1, the

source conducts the up-sampling or down-sampling operation, and the relays do the reverse

operation and then estimate the transmitted signal. Indeed, this scheme matches a colored

source to a channel and is implemented using the modulo lattice modulation. For further

details see [46][47][48]. The following Theorem is proved in [48].

Theorem 3.2.2. For the Gaussian parallel relay channel with expansion factor ρ, assuming

Ps > 1, the RF scheme based on Modulo Lattice Modulation (MLM) achieves the following

rate

RRFMLM
= C

(

M2Pr(P
ρ
s − 1)

(P ρ
s +MPr)γ(P

ρ
s +M2Pr)1−γ

)

. (3.37)

On the other hand, the RF scheme in [49] can be considered as a joint source channel

coding scheme and also a variant of the Hybride Digital Analog (HDA) coding approaches

which were previously proposed in [50]. In the RF scheme based on joint source channel

coding, a random white Gaussian codebook with the bandwidth of the MAC section is used.

An appropriate joint source channel coding scheme is exploited in the BC section while

analog transmission is used over the MAC section. The following theorem is proved in [49].

Theorem 3.2.3. For the Gaussian parallel relay channel with expansion factor ρ, assuming

Ps > 1, the RF scheme based on Joint Source Channel coding approaches (JSCC) achieves
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the following rates for ρ > 1 and ρ <= 1, respectively

For ρ > 1:

RRFJSCC
= C

(

M2 ṔsPr

Ṕs +MPr + 1

)

, (3.38)

For ρ <= 1:

RRFJSCC
= ρC

(

M2 P̃sPr

P̃s +MPr + 1

)

+ (1− ρ)C

(

M2 P̃sPr

P̃s +M2Pr + 1

)

, (3.39)

where

C
(

P̃s

)

= ρC (Ps) ,

Ṕs =
PsP̃s − ρ

Ps + ρ
.

Theorem 3.2.4. The CADF scheme achieves a better rate than the RF scheme based on

Modulo Lattice Modulation and the RF scheme based on Joint Source Channel Coding, i.e.,

RCADF ≥ max (RRFMLM
, RRFJSCC

).

Proof. Throughout the proof, we assume that L = 1 and depending on ρ < 1 or ρ > 1,

either β1 = 0 and β2 6= 0 or β1 6= 0 and β2 = 0.

RF scheme based on Modulo Lattice Modulation:

Case 1 : ρ ≤ 1

Consider the proposed scheme with Ps,AF = P ρ
s −1, Ps,DF = Ps−P ρ

s +1, and assume that no

DF message is superimposed on the AF message at the relay, i.e. Pr,AF = Pr and Pr,DF = 0.

Hence, the achievable rate of the CADF scheme can be simplified to

RCADF = ρC

(

M2Pr (P
ρ
s − 1)

MPr + P ρ
s

)

+min

{

ρC

(

Ps − P ρ
s + 1

P ρ
s

)

, (1− ρ)C(M2Pr)

}

(3.40)

Now, let us define SNRAF ,
M2Pr(P ρ

s −1)
MPr+P

ρ
s

and SNRKF ,
M2Pr(P ρ

s −1)
P

ρ
s +M2Pr

. It is easy to show that

RCADF ≥ ρC(SNRAF ) + (1− ρ)C(SNRKF ). (3.41)

To prove this, consider the fact that SNRKF ≤ M2Pr and on the other hand, since Ps > 1

as in [48], we have
(

Ps+1
Ps

)ρ (
P

ρ
s +M2Pr

1+M2Pr

)1−ρ

≥ 1 which results in (1 − ρ) log

(

P
ρ
s (1+M2Pr)
P

ρ
s +M2Pr

)

≤

ρ log
(

Ps+1
P

ρ
s

)

or equivalently (1− ρ)C(SNRKF ) ≤ ρC
(

Ps−P
ρ
s +1

P
ρ
s

)

. Now, we can lower-bound
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the right-hand-side of (3.41) as follows

ρC(SNRAF ) + (1− ρ)C(SNRKF ) = ρ log(1 + SNRAF ) + (1− ρ) log(1 + SNRKF )

= log
(

(1 + SNRAF )
ρ (1 + SNRKF )

1−ρ
)

(a)

≥ log
(

1 + SNRρ
AFSNR1−ρ

KF

)

= RRFMLM
. (3.42)

Here, (a) follows from applying Holder’s inequality with p = 1
ρ
and q = 1

1−ρ
(See [51]).

Comparing (3.41) and (3.42) completes the proof.

Case 2 : ρ > 1

For the sake of simplicity we assume that no DF message is superimposed on the AF message

at the source, i.e. Ps,AF = Ps and Ps,DF = 0. Here two cases are considered:

i) (ρ − 1)C(Ps) > C(M2Pr). In this case, we have RCADF = RDF = C(M2Pr) which is

obviously greater than RRFMLM
. In fact, RCADF is also equal to the capacity of the channel.

ii) otherwise, we have

RCADF = C

(

M2 (Pr,AF + Pr,DF )Ps

MPr,AF + Ps

)

, (3.43)

where re-scaling the AF portion of the received signal at the relay with
√

Pr,AF

Ps
, we have

Pr,AF + Pr,DF +
Pr,AF

Ps
= Pr. Simplifying (3.43), we have

RCADF = C

(

MPs (1 +MPr)

MPr,AF + Ps

−M

)

, (3.44)

On the other hand, knowing

(ρ− 1)C(Ps) = C

(

M2Pr,DF

M2Pr,AF +
MPr,AF

Ps
+ 1

)

, (3.45)

we can derive Pr,AF as

MPr,AF =
M2PsPr − P ρ

s

MP ρ
s + P ρ−1

s +MPs +M
. (3.46)

From (3.46), one can easily verify that MPr,AF < MPr

P
ρ−1
s

. Substituting MPr,AF with MPr

P
ρ−1
s

in

(3.44), we conclude that RCADF > RRFMLM
.

RF scheme based on Joint Source Channel Coding:

Case 1 : ρ ≤ 1

Consider the proposed scheme with Ps,AF = (1 + Ps)
ρ − 1, Ps,DF = Ps − (1 + Ps)

ρ + 1, and
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assume that no DF message is superimposed on the AF message at the relay, i.e. Pr,AF = Pr

and Pr,DF = 0. Hence, the achievable rate of the CADF scheme can be simplified to

RCADF = ρC

(

M2Pr ((1 + Ps)
ρ − 1)

MPr + (1 + Ps)ρ

)

+min

{

ρC

(

Ps + 1− (1 + Ps)
ρ

(1 + Ps)ρ

)

, (1− ρ)C(M2Pr)

}

(3.47)

Now, let us define SNRAF , M2Pr((1+Ps)ρ−1)
MPr+P

ρ
s

and SNRKF , M2Pr((1+Ps)ρ−1)
(1+Ps)ρ+M2Pr

. It is easy to

show that

RCADF ≥ RRFJSCC
= ρC(SNRAF ) + (1− ρ)C(SNRKF ). (3.48)

To prove this, consider the fact that SNRKF ≤ M2Pr and on the other hand, since Ps > 1

as in [48], we have
(

(1+Ps)ρ+M2Pr

1+M2Pr

)1−ρ

≥ 1 which results in (1 − ρ) log

(

(1+Ps)ρ(1+M2Pr)
(1+Ps)ρ+M2Pr

)

≤

ρ log
(

Ps+1
(1+Ps)ρ

)

or equivalently (1− ρ)C(SNRKF ) ≤ ρC
(

Ps−(1+Ps)ρ+1
(1+Ps)ρ

)

.

Case 2 : ρ > 1

For the sake of simplicity we assume that no DF message is superimposed on the AF message

at the source, i.e. Ps,AF = Ps and Ps,DF = 0. Here two cases are considered:

i) (ρ − 1)C(Ps) > C(M2Pr). In this case, we have RCADF = RDF = C(M2Pr) which is

obviously greater than RRFJSCC
. In fact, RCADF is also equal to the capacity of the channel.

ii) otherwise, we have

RCADF = C

(

M2Pr(Ps + 1)

MPr,AF + Ps + 1

)

, (3.49)

where re-scaling the AF portion of the received signal at the relay with
√

Pr,AF

Ps+1
, we have

Pr,AF + Pr,DF = Pr. On the other hand, knowing

(ρ− 1)C(Ps) = C

(

M2Pr,DF

M2Pr,AF +
MPr,AF

Ps+1
+ 1

)

, (3.50)

we can derive Pr,AF as

MPr,AF =
MPr(Ps + ρ)(1 + Ps)

Ps ((1 + Ps)ρ − 1)− ρ
×

1
MPr(Ps+ρ)

+ M
Ps+ρ

− (1+Ps)ρ−1

MPr(Ps+ρ)

M(1+Ps)ρ

Ps((1+Ps)ρ−1)−ρ
+ (1+Ps)ρ−1

Ps((1+Ps)ρ−1)−ρ
− 1

Ps((1+Ps)ρ−1)−ρ

. (3.51)

From (3.51), one can easily verify that MPr,AF < MPr(Ps+ρ)(1+Ps)
Ps((1+Ps)ρ−1)−ρ

. Substituting MPr,AF with
MPr(Ps+ρ)(1+Ps)
Ps((1+Ps)ρ−1)−ρ

in (3.49), we conclude that RCADF > RRFJSCC
.

Remark 3.2.3. As proved in Theorem 3.2.4, the achievable rate of the CADF scheme is

always better than that of the RF scheme. Consequently, one can conclude that the achievable

rate of the time sharing of the CADF scheme with the DF or AF schemes always leads to a

better rate than the achievable rate of the time sharing of the RF scheme with the DF or AF

schemes. This fact is justified in the simulation result section.
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3.3 Simulation Results

In this section, the achievable rates of the proposed CADF scheme with that of the traditional

coding schemes and the upper bound are compared. We noticed in the simulation results

that the RF scheme based on Modulo Lattice Modulation and Joint Source Channel Coding

approaches leads to the same achievable rates. Hence, the curves associated with the rate of

the RF scheme are indicated with RRF in the sequel.

Fig. 3.3 compares the achievable rates of different schemes when ρ = 0.5 < 1. On the

other hand, Fig. 3.4 compares the achievable rates of different schemes when ρ = 2 > 1. As

we proved in the previous sections and, from these figures, as the number of relays increases,

the CADF scheme always outperforms the RF scheme.

Figs. 3.5 compare the achievable rate of the CADF scheme with that of other schemes for

the half-duplex scenarios. Assuming a constant bandwidth from the source to the destination,

the optimum bandwidths for the first and second hops are obtained. Fig. 3.5 show that, as the

number of relays increases, the CADF scheme outperforms the other schemes considerably.
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Figure 3.3: Rate versus number of relays (ρ = 0.5, Ps = 300, MPr = 10).

Fig. 3.6 compares the achievable rate of the CADF-DF with that of the RF-DF in [48],

and the AF-DF of [3] [4] in Schein’s parallel relay setup (i.e. parallel relay with two relays
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Figure 3.4: Rate versus number of relays (ρ = 2, Ps = 10, MPr = 300).
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Figure 3.5: Rate versus number of relays for the half-duplex scenario (Ps = 300, MPr = 10).
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and no bandwidth mismatch). Here, we assume that Ps = 20(dB). In this figure, we assume

that the total dimensions from the source to the destination is “2”. The assigned dimension

to the BC channel is equal to the one assigned to the MAC channel. In the time sharing

between the CADF and DF schemes, t1 + t2 dimensions are assigned to the CADF scheme

(t1 dimensions for the BC channel, and t2 dimensions for the MAC channel) while 2− t1− t2

is assigned to the DF scheme (1− t1 dimensions for the BC channel, and 1− t2 dimensions

for the MAC channel) with different peak powers. The same time sharing pattern is used

for the time sharing between the RF and the DF schemes [48] [49].

As Fig. 3.6 shows, the CADF-DF considerably outperforms the RF-DF and AF-DF.

It is worth noting that as the Schein’s AF-DF can be considered as a special case of the

CADF-DF, we can expect that the achievable rate of the CADF-DF is always better than

the AF-DF. On the other hand, from the result of Theorem 3.2.4, the CADF-DF always

outperforms the RF-DF in the Schein’s setup.
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Figure 3.6: Achievable Rates by Time Sharing.
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Chapter 4

Conclusion and Future Research

Direction

4.1 Conclusion

In this dissertation, we investigated the problem of cooperative strategies for a half-duplex

parallel relay channel with two relays. We derived the optimum relay scheduling and hence

the asymptotic capacity of the half-duplex Gaussian parallel relay channel in low and high

SNR scenarios.

Simultaneous and Successive relaying protocols, associated with two possible relay schedul-

ings were proposed. For simultaneous relaying, each relay employs BCM. On the other hand,

for successive relaying, we proposed a Non-Cooperative Coding scheme based on DPC and a

Cooperative Coding scheme based on BME. Moreover, a coding scheme based on the com-

bination of DPC and BME, in which at least one of the relays uses DPC while at most the

other one employs BME was proposed. We showed that this composite scheme achieves at

least the same rate as the cooperative coding based on BME with backward or successive

decoding as well as the DPC scheme in the Gaussian case.

We also proposed the SSRD scheme as a combination of the simultaneous and succes-

sive protocols based on DPC. In high SNR scenarios, we proved that our Non-Cooperative

Coding scheme based on DPC asymptotically achieves the capacity. Hence, in the high

SNR scenario, the optimum relay scheduling is Successive. On the other hand, in low SNR

where (h13γ1 + h23γ2)
2 ≤ min (h2

01, h
2
02), BCM achieves the capacity. Hence, in low SNR

scenario and under the condition specified above for the channel coefficients, the optimum

relay scheduling is Simultaneous.

Furthermore, we considered the problem of data transmission for the Gaussian parallel
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relay channel when there is a bandwidth mismatch between the BC channel and the MAC

channel. A Combined Amplify-and-Decode Forward (CADF) scheme was proposed and it

was proved that the CADF always outperforms the RF scheme presented in [48] [49]. It was

also shown that the CADF scheme always outperforms other traditional coding schemes,

i.e., AF, DF, and CF. For the case in which there exists no bandwidth mismatch between

the BC and the MAC channels, using the time sharing between the CADF and DF schemes

(CADF-DF) always outperforms the RF-DF in [48] [49], and the AF-DF in [3] [4].

4.2 Future Research Direction

Now, future research direction is explained. Two different directions associated with chapter

2 and 3 can be followed. Associated with chapter 2 and 3, one can consider half-duplex relay-

interference network with two sources, two relays, and two destinations, and also proposing

new coding schemes for the parallel relay channel.

4.2.1 Half-Duplex Relay-Interference Network

Here we consider a half-duplex relay-interference network which consists of two sources, two

relays, and two destinations (See Figs. 4.1 and 4.2). Here similar to chapter 2, simultaneous

and successive relaying protocols is proposed.

Destination 2

Relay 1

Relay 2

Source 1

Source 2

Destination 1

Figure 4.1: Simultaneous Relaying Protocol for Half-duplex Relay-Interference Network.

In simultaneous relaying, in one time slot two sources send their messages simultaneously

to the relays. Having decoded their messages, the relays transmits their respective messages

to the destinations. Obviously, this protocol removes the inter-relay interference. However,

twoX channels associated with time slot one and two is produced. Furthermore, this protocol

is not spectrally efficient (See Fig. 4.1).
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Destination 2

Relay 1

Relay 2

Source 1

Source 2

Destination 1

Figure 4.2: Successive Relaying Protocol for Half-duplex Relay-Interference Network.

On the other hand, in successive relaying, in the one time slot, two sources send their

messages to the first relay, while the second relay transmits the messages it has previously

received from the sources and the other relay to the destinations and the first relay. This pro-

tocol, unlike the simultaneous one, is spectrally efficient. We believe that some combination

of Interference Alignment and Dirty Paper Coding can effectively remove the interference

due to one relay on the other one. Therefore, it seems that successive using relaying pro-

tocol the optimum degrees of freedom of the network can be achieved (See Fig. 4.2). In

order to explain the achievable scheme for the successive relaying protocol let us consider

the following example.

Motivating Example

As an example we consider the system in 4.3. As indicated in the figure, nodes 1, 2, 3, and

4 equipped with two antennas while each of nodes 5 and 6 have 1 antenna. Node 1 tries to

send data to node 5, and node 2 tries to send data to node 6.

Our proposed scheme is based on the combination of successive-relaying and alignment.

Transmission is performed in two phases. In odd time slots, we have a MAC at node 3 and

a BC at node 4. On the other hand, in even time slots, we have a MAC at node 4 and a BC

at node 3.

The bottleneck in this system is the interference of node 4 on node 3 in odd time slots

and the interference of node 3 on node 4 at even time slots. We manage this interference

by using alignment. Let us assume that in odd time slots, node 1 and 2 use the direction

vectors u31 and u32 to send their data to node 3. Moreover, node 4 uses the vectors u54 and

u64 to send the corresponding data to nodes 5 and 6, respectively. We choose u54 and u64

such that (See Fig. 4.4):
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Node 6

Node 1

Node 2

Node 3

Node 4

Node 5

Figure 4.3: Relay-Interference Network.

u54⊥H64,

u64⊥H54.

H64

H54

u54
u54

Figure 4.4: Interference Alignment.

Then we choose u31 and u32 such that:

H31u31||H34u54,

H32u32||H34u64,
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Therefore, u31 and u32 are determined. We can use the similar approach for the even time

slots and compute u41, u42, u63, and u53. Having received y
(1)
3 at node node 3, it computes

r31 ,< y
(1)
3 , φ31 >, r32 ,< y

(1)
3 , φ32 >,

where φ31 is a unit vector orthogonal to H34u64 and H32u32, i.e., φ31⊥H34u64, H32u32.

Similarly, φ32⊥H34u54, H31u31. We note that r31 has no interference from data of node 2.

Similarly, r32 has not interference from data of node 1. Now, in the next even time slot,

node 3 transmits

γ (r31u53 + r32u63) ,

and node 5 receives

y
(2)
5 = γ < H53,u53 > .r31,

y
(2)
6 = γ < H63,u63 > .r32,

where γ is a constant.

It is worth mentioning that with this approach, we decompose the channel to two channels

as in Fig. 4.5. These two channels have no interference on each other. Consequently, we

can apply any non-cooperative and cooperative coding schemes for each of these channels

separately.

Node 2

Node 3

Node 4

Node 5Node 1

Node 4

Node 3

Node 6

Figure 4.5: Channel Decomposition through Interference Alignment.

4.2.2 New Coding Schemes for Parallel Relay Channel

Proposing new coding schemes for Parallel Relay channel is another direction for future

research.
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Novel Compress and Forward Schemes

Salman Avestimehr, Suhas Diggavi and David Tse in [28] proposed a new compress and

forward scheme for the Gaussian relay network. They proved that their scheme has a constant

gap from the cut set bound. However, the gap from the cut set bound is a function of the

network size. Furthermore, their scheme destroys the correlation in the codeword level which

can be beneficial in some scenarios. As an example consider a parallel relay channel with two

relays with ternary input alphabet. Assume that the noises at relays are reversely correlated.

It can be readily verified that simple relay forwarding, benefitting from the correlation of

the received signals, can achieve the capacity of this channel. This is an example that shows

us the correlation in the codeword level which is completely destroyed in [28] can be even

capacity achieving in some scenarios.

Bursty Schemes in the Discrete Memoryless Cases

It is shown in [3, 4] that bursty AF scheme achieves the cut set bound in very low SNR

scenarios. Proposing corresponding schemes for very noisy discrete memoryless parallel relay

channel would help to understand more comprehensively the nature of the relay problem.
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Appendix A

Gelfand-Pinsker and Dirty Paper Coding

Theorem A. 1. The capacity of a Discrete Memoryless Channel with i.i.d. state S with

probability p(s), where s is available to the encoder only, is given by

C = maxp(u,x|s)(I(U ; Y )− I(U : S)), (4.1)

where |U| ≤ min{|X |, |Y|}+ |S| − 1.

Proof. Codebook Generation: Fix p(u|s)p(x|u, s). Randomly generate 2n(I(U ;Y )−δ(ǫ)) i.i.d.

u ∈ A
(n)
ǫ (U) sequences according to a uniform distribution over A

(n)
ǫ (U) and partition them

into 2nR equal size bins (so sequences u(1), · · · ,u
(

2n(I(U ;Y )−R−δ(ǫ))
)

are in Bin 1, . . . ). We

would like the Uns in each bin to cover A
(n)
ǫ (U). This requires that I(U ; Y )− R > I(U ;S),

or R < I(U ; Y )− I(U ;S).

Encoding: To send the message w ∈ [1, 2nR], the sender chooses any u(k) in bin w such

that, (u(k), s) ∈ A
(n)
ǫ . The sender then chooses an x ∈ A

(n)
ǫ (X|u(k), s) and sends it. If

s /∈ A
(n)
ǫ (S) or no such u(k) exists, then w is assigned an arbitrary x sequence.

Decoding: Upon receiving y, the decoder looks for a unique u(k) such that (u(k),y) ∈
A

(n)
ǫ and declares the index of the bin containing u(k) as ŵ, otherwise an error is declared.

Probability of Error: Without loss of generality, assume w = 1 and k = 1 and define the

events

E0 = {s ∈ A(n)
ǫ },

E1 = {∃u : (u, s) ∈ A(n)
ǫ ,u ∈ Bin1},

E2k = {(u(k),y) ∈ A(n)
ǫ }.

Hence:

P (n)
e = P

(

Ec
0

⋃

Ec
1

⋃

Ec
21

⋃

(

⋃

k 6=1

E2k

))

≤ P (Ec
0) + P

(

Ec
1

⋂

E0

)

+

2n(I(U ;Y )−δ(ǫ))
∑

k=2

P (E2k) ,

We now bound the probability of each event:

1. P (Ec
0) → 0 as n → inf.
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2. The probability of the second event

P
(

Ec
1

⋂

E0

)

= P
{

(u, s) /∈ A(n)
ǫ for allu ∈ Bin 1

}

=
∑

s∈A
(n)
ǫ

p(s)P
{

(u, s) /∈ A(n)
ǫ for all u ∈ Bin 1

}

=
∑

s∈A
(n)
ǫ

p(s)
(

1− P
{

(u, s) ∈ A(n)
ǫ

})2n(I(U ;Y )−R−δ(ǫ))

≤ e−2n(I(U ;Y )−R−δ(ǫ))2−n(I(U ;S)+δ́(ǫ))

,

which approaches 0 as n → inf, if

R < I(U ; Y )− I(U ;S)− δ́(ǫ)− δ(ǫ),

3. By construction (u(1), s,x) ∈ A
(n)
ǫ . Now, since y has probability

∏n

i=1 p(yi|xi, si),

then by the Markov lemma, for n sufficiently large

P
{

(u(1), s,x,y) ∈ A(n)
ǫ

}

,

which implies that (u(1),y) ∈ A
(n)
ǫ .

4. Note that for k 6= 1

P
{

(u(k),y) ∈ A(n)
ǫ

}

≤ 2−n(I(U ;Y )−3ǫ),

Therefore,
2n(I(U ;Y )−δ(ǫ))

∑

k=2

≤ 2n(I(U ;Y )−δ(ǫ))2−n(I(U ;Y )−3ǫ),

which by selecting δ(ǫ) > 3ǫ, goes to 0 as n → ∞.

Now, we prove the converse using the inequality H (W |Y n) ≤ nRP
(n)
e + 1 = nǫn which

is called the Fano inequality. Hence, consider
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nR ≤ I (W ; Y n) + nǫn

=
n
∑

i=1

I
(

W ; Yi|Y i−1
)

+ nǫn

≤
n
∑

i=1

I
(

W,Y i−1; Yi

)

+ nǫn

=
n
∑

i=1

I
(

W,Y i−1, Sn
i+1; Yi

)

−
n
∑

i=1

I
(

Yi;S
n
i+1|W,Y i−1

)

+ nǫn

(a)
=

n
∑

i=1

I
(

W,Y i−1, Sn
i+1; Yi

)

−
n
∑

i=1

I
(

Y i−1;Si|W,Sn
i+1

)

+ nǫn

(b)
=

n
∑

i=1

I
(

W,Y i−1, Sn
i+1; Yi

)

−
n
∑

i=1

I
(

W,Y i−1, Sn
i+1;Si

)

+ nǫn

where (a) follows from the Csiszar sum Lemma and (b) follows from the fact that
(

W,Sn
i+1

)

is

independent of Si. Now, define Ui =
(

W,Y i−1, Sn
i+1

)

.Note that
(

W,Y i−1, Sn
i+1

)

→ (Xi, Si) →
Yi form a Markov chain, thus

nR ≤
n
∑

i=1

(I (Ui; Yi)− I (Ui;Si)) + nǫn

≤ n max
p(u,x|s)

(I (U ; Y )− I (U ;S)) + nǫn (4.2)

which completes the proof of the converse.

Dirty Paper Coding

Theorem A. 2. Consider the AWGN channel with additive white Gaussian state, i.e., At

time i, Yi = Xi+Si+Zi, where the input X has average power constraint P , the states Si are

i.i.d.∼ N (0;Q) and the noise Zi are i.i.d.∼ N (0;N), the noise and state are independent.

Assume that only the encoder knows the state vector s. The capacity is C
(

P
N

)

.

Proof. We know the capacity expression, so we need to find the best distribution on U and

X given S subject to the power constraint. Let us try U = X + αS, where X ∼ N (0, P )

independent of S. With this choice, we have

I (U ; Y ) = h (X + S + Z)− h (X + S + Z|X + αS)

= h (X + S + Z) + h (X + αS)− h (X + S + Z,X + αS)

=
1

2
log

(

(P +Q +N)(P + α2Q)

PQ(1− α)2 +N(P + α2Q)

)

,
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and I (U ;S) = 1
2
log
(

P+α2Q

P

)

. Thus,

R(α) = I (U ; Y )− I (U ;S)

=
1

2
log

(

P (P +Q +N)

PQ(1− α)2 +N(P + α2Q)

)

Maximizing with respect to α, we find that α∗ = P
P+N

. Substituting we obtain

R

(

P

P +N

)

= C

(

P

N

)

. (4.3)
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Appendix B

Block Markov Encoding

Since Block Markov Encoding (BME) is used extensively in this chapter, here we explain

this type of encoding by deriving the achievable rate of the DF scheme for the single relay

channel.

A single relay channel consists of four finite sets X , X1, Y , and Y1 and a collection of

probability mass functions p(y, y1|x, x1) on Y × Y1, one for each (X,X1) ∈ X × X1. The

interpretation is that x is the input to the channel and y is the output of the channel, y1 is

the relay’s observation, and x1 is the input symbol chosen by the relay, as shown in Fig. 4.6.

The problem is to find the capacity of the channel between the source X and the destination

Y . The relay channel combines a broadcast channel (X to Y and Y1) and a multiple-access

channel (X and X1 to Y ).

Y1 : X1

YX

Figure 4.6: Relay Channel.

Theorem B. 1. The following rate R is achievable for the relay channel:

R = sup
p(x,x1)

min{I (X,X1; Y ) , I (X ; Y1|X1)},

where the supremum is over all joint distributions on X × X1.

Proof. Achievability: We use the following simple block Markov coding scheme. Consider

B blocks of transmission, each of n symbols. A sequence of B − 1 messages, wi ∈ W, i =

1, 2, · · · , B − 1, each selected independently and uniformly over {1, 2, · · · , 2nR} is to be sent

over the channel in nB transmissions, so the average rate will be R(B − 1)/B (Note that

as B → inf for a fixed n, the rate R(B − 1)/B is arbitrarily close to R.) We define a

doubly-indexed set of codewords:

C = {x(w|s),x1(s)} : w ∈ {1, · · · , 2nR}, s ∈ {1, · · · , 2nR0},x ∈ X n,x1 ∈ X n
1 .

We will also need a partition S = {S1, S2, · · · , S2nR0} of W = {1, 2, · · · , 2nR} into 2nR0 cells,

with Si

⋂

Sj = ∅, i 6= j, and
⋃

Si = W. The partition will enable us to send side information

to the receiver in the manner of Slepian and Wolf ([14]).
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Generation of random code: Fix p(x1)p(x|x1).

First generate at random 2nR0 i.i.d n-sequences in X n
1 , each drawn according to p(x1) =

∏n

i=1 p(x1i). Index them as x1(s), s ∈ {1, 2, · · · , 2nR0}. For each x1(s), generate 2nR condi-

tionally independent n-sequences x(w|s), w ∈ {1, 2, · · · , 2nR}, drawn independently accord-

ing to p(x|x1(s)) =
∏n

i=1 p(xi|x1i(s)). This defines the random codebook C = {x(w|s),x1(s)}.
The random partition S = {S1, S2, · · · , S2nR0} of {1, 2, · · · , 2nR} is defined as follows. Let

each integer w ∈ {1, 2, · · · , 2nR} be assigned independently , according to a uniform distri-

bution over the indices s = 1, 2, · · · , 2nR0, to cells Ss.

Encoding: Let wi ∈ {1, 2, · · · , 2nR} be the new index to be sent in block i, and let si be

defined as the partition corresponding to wi−1 (i.e., wi−1 ∈ Ssi). The encoder sends x(wi|si).
The relay has an estimate ˆ̂wi−1 of the previous index wi−1. (This will be made precise in the

decoding section.) Assume that ˆ̂wi−1 ∈ Sˆ̂si
. The relay encoder sends x1(ˆ̂si) in block i.

Decoding: We assume that at the end of block i−1, the receiver knows (w1, w2, · · · , wi−2)

and (s1, s2, · · · , si−1) and the relay knows (w1, w2, · · · , wi−1) and consequently, (s1, s2, · · · , si).
The decoding procedures at the end of block i are as follows:

1. Knowing si and upon receiving y1(i), the relay receiver estimates the message of the

transmitter ˆ̂wi = w if and only if there exists a unique w such that (x(w|si),x1(si),y1(i))

are jointly typical. It can be shown that ˆ̂wi = wi with an arbitrarily small probability of

error if

R < I(X ; Y1|X1) (4.4)

and n is sufficiently large.

2. The receiver declares that ŝi = s was sent iff there exists one and only one s such that

(x1(s),y(i)) are jointly typical. si can be decoded with arbitrarily small probability of error

if

R0 < I(X1; Y ) (4.5)

and n is sufficiently large.

3. Assuming that si is decoded correctly at the receiver, the receiver constructs a list

L(y(i − 1)) of indices that the receiver considers to be jointly typical with y(i − 1) in the

(i− 1)th block. The receiver then declares ŵi−1 = w as the index sent in block i− 1 if there

is a unique w in Ssi

⋂

L(y(i− 1)). If n is sufficiently large and if

R < I(X ; Y |X1) +R0, (4.6)

then ŵi−1 = wi−1 with arbitrarily small probability of error. Combining the two con-

straints (4.16) and (4.6), R0 drops out, leaving
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R < I(X ; Y |X1) + I(X1; Y ) = I(X,X1; Y ). (4.7)
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Appendix C

Proof of Theorem 2.2.1

Codebook Construction:

Let us divide blocks 1, 2, · · · , B + 1 into odd and even numbers. At odd and even

blocks, source generates 2nr
(1)
AUX and 2nr

(2)
AUX sequences u

(1)
0 (q1) and u

(2)
0 (q2) according to

∏t1n
i=1 p(u

(1)
0,i ) and

∏t2n
i=1 p(u

(2)
0,i ), respectively. Then, source throws u

(1)
0 and u

(2)
0 sequences

uniformly into 2nR
(1)

and 2nR
(2)

bins, respectively. Let us denote B1(w
(b)) and B2(w

(b)) as

the set of sequences at the odd or even block that belong to the w(b)’th bin, respectively (for

odd blocks, w(b) ≤ 2nR
(1)
, and for the even blocks, w(b) ≤ 2nR

(2)
).

Relay 1 and relay 2 generate 2nR
(1)

and 2nR
(2)

i.i.d x
(2)
1 and x

(1)
2 sequences according to

probabilities
∏t2n

i=1 p
(

x
(2)
1,i

)

and
∏t1n

i=1 p
(

x
(1)
2,i

)

. Furthermore, for all q1 and q2, the source

generates double indexed codebooks x
(1)
0

(

w(b)|w(b−1), q1
)

and x
(2)
0

(

w(b)|w(b−1), q2
)

according

to
∏t1n

i=1 p(x
(1)
0,i | x(1)

2,i , u
(1)
0,i ) and

∏t2n

i=1 p(x
(2)
0,i | x(2)

1,i , u
(2)
0,i ), respectively.

Encoding:

Encoding at the source:

At the odd block b, the source intends to send the message w(b) to the first relay.

In order to do that, since the source knows what it has transmitted during the previous

block to the second relay, it chooses a codeword u
(1)
0 (q1) such that u

(1)
0 (q1) ∈ B1(w

(b)) and
(

u
(1)
0 (q1) ,x

(1)
2

(

w(b−1)
)

)

∈ A
(n)
ǫ . and sends x

(1)
0 (u

(1)
0 ,x

(1)
2 ).

At the even block b, the source sends the message w(b) to the second relay in the similar

manner.

Encoding at relay 1:

At the even block b, relay 1 encodes w(b−1) ∈ {1, · · · , 2nR(1)} to x
(2)
1

(

w(b−1)
)

.

Encoding at relay 2:

At the odd block b, relay 2 encodes w(b−1) ∈ {1, · · · , 2nR(2)} to x
(1)
2

(

w(b−1)
)

.

Decoding:

Decoding at relay 1 and 2:

Having received the odd block b, relay 1 declares ŵ(b) = w(b) iff all the sequences u
(1)
0 (q1)

which are jointly typical with y
(1)
1 belong to a unique bin B1(ŵ

(b)). Similarly having received

the even block b, relay 2 declares ŵ(b) = w(b) iff all the sequences u
(2)
0 (q2) which are jointly

typical with y
(2)
2 belong to a unique bin B2(ŵ

(b)). Therefore, according to the Gelfand-
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Pinsker result the following rates for the channels from the source to relay 1 and relay 2 are

achievable:

R(1) ≤ t1

(

I(U
(1)
0 ; Y

(1)
1 )− I(U

(1)
0 ;X

(1)
2 )
)

, (4.8)

R(2) ≤ t2

(

I(U
(2)
0 ; Y

(2)
2 )− I(U

(2)
0 ;X

(2)
1 )
)

. (4.9)

Decoding at the destination:

Having received the odd block b, the destination declares ŵ(b−1) = w(b−1) iff
(

x
(1)
2

(

ŵ(b−1)
)

,y
(1)
3

)

∈ A
(n)
ǫ . Hence, in order to make the probability of error zero, from [14],

we have

R(1) ≤ t1I(X
(1)
2 ; Y

(1)
3 ). (4.10)

Similarly, for the even block b, we have

R(2) ≤ t2I(X
(2)
1 ; Y

(2)
3 ). (4.11)

From (4.8)-(4.11), we obtain (2.9)-(2.11).
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Appendix D

Proof of corollary 2.2.1

From Costa’s Dirty Paper Coding [33], by having

U
(1)
0 = X

(1)
0 +

h01h12P
(1)
0

h2
01P

(1)
0 + t1

X
(1)
2 , (4.12)

U
(2)
0 = X

(2)
0 +

h02h12P
(2)
0

h2
02P

(2)
0 + t2

X
(2)
1 . (4.13)

where X
(1)
0 ∼ N (0, P

(1)
0 ), X

(2)
0 ∼ N (0, P

(2)
0 ), X

(1)
2 ∼ N (0, P2), and X

(2)
1 ∼ N (0, P1), and

applying them to Theorem 2.2.1, we obtain corollary 2.2.1.
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Appendix E

Proof of Theorem 2.2.2

Codebook Construction:

Let us divide the blocks 1, 2, · · · , B+2 into odd and even numbers. The source generates

two codebooks x
(1)
0

(

w(b)|w(b−1), s
(b−2)
1

)

and x
(2)
0

(

w(b)|w(b−1), s
(b−2)
2

)

of size 2nR
(1)

and 2nR
(2)

corresponding to even and odd blocks, respectively. The first codebook is generated according

to the probability p(x
(1)
0 ,x

(1)
2 ,u

(1)
2 ) =

∏t1n
i=1 p(u

(1)
2,i )p(x

(1)
2,i |u(1)

2,i )p(x
(1)
0,i |x(1)

2,i , u
(1)
2,i ), and the second codebook is generated according to

the probability p(x
(2)
0 ,x

(2)
1 ,u

(2)
1 ) =

∏t2n

i=1 p(u
(2)
1,i )p(x

(2)
1,i |u(2)

1,i )p(x
(2)
0,i |x(2)

1,i , u
(2)
1,i ).

On the other hand, relay 2 generates 2nr
(1)
Bin i.i.d codewords u

(1)
2 and 2nR

(2)
i.i.d codewords

x
(1)
2 according to the probabilities p(u

(1)
2 ) =

∏t1n

i=1 p(u
(1)
2,i ) and p(x

(1)
2 | u(1)

2 ) =
∏t1n

i=1 p(x
(1)
2,i |

u
(1)
2,i ) at each odd block and relay 1 generates 2nr

(2)
Bin i.i.d codewords u

(2)
1 and 2nR

(1)
i.i.d

codewords x
(2)
1 according to the probabilities p(u

(2)
1 ) =

∏t2n

i=1 p(u
(2)
1,i ) and p(x

(2)
1 | u

(2)
1 ) =

∏t2n
i=1 p(x

(2)
1,i | u(2)

1,i ) at each even block, respectively.

Encoding:

Encoding at the source:

At the odd block b, the source encodes w(b) ∈ {1, · · · , 2nR(1)} to x
(1)
0

(

w(b)|w(b−1), s
(b−2)
1

)

and at the even block b, it encodes w(b) ∈ {1, · · · , 2nR(2)} to x
(2)
0

(

w(b)|w(b−1), s
(b−2)
2

)

and

sends them in odd and even blocks, respectively.

Encoding at relay 1:

At the even block b, relay 1 encodes the bin index s
(b−2)
2 of the message w(b−2) it has

received from relay 2 in the previous block to u
(2)
1

(

s
(b−2)
2

)

. Following that, it encodes w(b−1)

which was received from the source in block b− 1 to x
(2)
1

(

w(b−1)|s(b−2)
2

)

and sends it.

Encoding at relay 2:

At the odd block b, relay 2 encodes the bin index s
(b−2)
1 of the message w(b−2) it has

received from relay 1 in the previous block to u
(1)
2

(

s
(b−2)
1

)

. Following that, it encodes w(b−1)

which was received from the source in block b− 1 to x
(1)
2

(

w(b−1)|s(b−2)
1

)

and sends it.

Decoding:

Decoding at relay 1:

Knowing w(b−2) and consequently s
(b−2)
1 , having received block b, relay 1 declares (ŵ(b−1), ŵ(b)) =
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(w(b−1), w(b)) iff there exits a unique (ŵ(b−1), ŵ(b)) such that

(

x
(1)
0

(

ŵ(b)|ŵ(b−1), s
(b−2)
1

)

,x
(1)
2

(

ŵ(b−1)|s(b−2)
1

)

,u
(1)
2 (s

(b−2)
1 ),y

(1)
1

)

∈ A(n)
ǫ .

Hence, in order to make probability of error zero, from the Extended MAC capacity region

(See [14], [29], [30], and [31]), we have

R(1) ≤ t1I(X
(1)
0 ; Y

(1)
1 | X(1)

2 , U
(1)
2 ), (4.14)

R(1) +R(2) ≤ t1I(X
(1)
0 , X

(1)
2 ; Y

(1)
1 | U (1)

2 ). (4.15)

Decoding at relay 2:

Knowing w(b−2) and consequently s
(b−2)
2 , having received block b, relay 2 declares (ŵ(b−1), ŵ(b)) =

(w(b−1), w(b)) iff there exits a unique (ŵ(b−1), ŵ(b)) such that

(

x
(2)
0

(

ŵ(b)|ŵ(b−1), s
(b−2)
2

)

,x
(2)
1

(

ŵ(b−1)|s(b−2)
2

)

,u
(2)
1 (s

(b−2)
2 ),y

(2)
2

)

∈ A(n)
ǫ .

Hence, in order to make the probability of error zero, from the Extended MAC capacity

region (See [14], [29], [30], and [31]), we have

R(2) ≤ t2I(X
(2)
0 ; Y

(2)
2 | X(2)

1 , U
(2)
1 ), (4.16)

R(1) +R(2) ≤ t2I(X
(2)
0 , X

(2)
1 ; Y

(2)
2 | U (2)

1 ). (4.17)

Decoding at the destination:

Decoding at the destination can be done either Successively or Backwardly as follows.

1) Successive Decoding:

Having received the odd block b, the destination first declares the bin index ŝ
(b−2)
1 = s

(b−2)
1

of the message w(b−2) iff there exists a unique ŝ
(b−2)
1 such that

(

u
(1)
2 (ŝ

(b−2)
1 ),y

(1)
3

)

∈ A
(n)
ǫ .

Hence, in order to make the probability of error zero, from [14] we have

r
(1)
Bin ≤ t1I(U

(1)
2 ; Y

(1)
3 ). (4.18)

Having decoded the bin index s
(b−2)
1 of the message w(b−2), the destination can resolve its

uncertainty about the message w(b−2) and declares ŵ(b−2) = w(b−2) iff there exists a unique

ŵ(b−2) such that
(

x
(2)
1 (ŵ(b−2)|s(b−3)

2 ),u
(2)
1 (s

(b−3)
2 ),y

(2)
3

)

∈ A
(n)
ǫ . Hence, in order to make the probability of error

zero, from [14] we have

R(1) − r
(1)
Bin ≤ t2I(X

(2)
1 ; Y

(2)
3 | U (2)

1 ). (4.19)
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Using the same argument for the even block b, we have

r
(2)
Bin ≤ t2I(U

(2)
1 ; Y

(2)
3 ), (4.20)

R(2) − r
(2)
Bin ≤ t1I(X

(1)
2 ; Y

(1)
3 | U (1)

2 ). (4.21)

From (4.18)-(4.21), R(1) and R(2) are bounded as follows

R(1) ≤ t2I
(

X
(2)
1 ; Y

(2)
3 | U (2)

1

)

+ t1I
(

U
(1)
2 ; Y

(1)
3

)

, (4.22)

R(2) ≤ t1I(X
(1)
2 ; Y

(1)
3 | U (1)

2 ) + t2I(U
(2)
1 ; Y

(2)
3 ). (4.23)

From (4.14)-(4.17), (4.22), and (4.23), the achievable rate of BME scheme based on successive

decoding is equal to

RBMEsucc = max
0≤t1,t2,t1+t2=1

R(1) +R(2) ≤ max
0≤t1,t2,t1+t2=1

min ( (4.24)

min
(

t1I
(

X
(1)
0 ; Y

(1)
1 | X(1)

2 , U
(1)
2

)

, t2I
(

X
(2)
1 ; Y

(2)
3 | U (2)

1

)

+ t1I
(

U
(1)
2 ; Y

(1)
3

))

+

min
(

t1I
(

X
(1)
2 ; Y

(1)
3 | U (1)

2

)

+ t2I
(

U
(2)
1 ; Y

(2)
3

)

, t2I
(

X
(2)
0 ; Y

(2)
2 | X(2)

1 , U
(2)
1

))

,

t1I
(

X
(1)
0 , X

(1)
2 ; Y

(1)
1 | U (1)

2

)

, t2I
(

X
(2)
0 , X

(2)
1 ; Y

(2)
2 | U (2)

1

))

.

2) Backward Decoding:

Following receiving the sequence corresponding to the B + 2th block, the destination

starts decoding the messages in a backward manner, i.e. from w(B) back to w(1). At the end

of odd block b, knowing the value s
(b−1)
2 from the received signal in block b+ 1, the destina-

tion declares
(

ŵ(b−1), ŝ
(b−2)
1

)

=
(

w(b−1), s
(b−2)
1

)

iff there exists a unique pair
(

ŵ(b−1), ŝ
(b−2)
1

)

such that f
(2)
Bin

(

ŵ(b−1)
)

= s
(b−1)
2 and

(

x
(1)
2

(

ŵ(b−1), ŝ
(b−2)
1

)

,u
(1)
2

(

ŝ
(b−2)
1

)

,y
(1)
3

)

∈ A
(n)
ǫ . Simi-

larly, at the end of even block b, knowing the value s
(b−1)
1 from the received signal in block

b+1, the destination declares
(

ŵ(b−1), ŝ
(b−2)
2

)

=
(

w(b−1), s
(b−2)
2

)

iff there exists a unique pair
(

ŵ(b−1), ŝ
(b−2)
2

)

such that f
(1)
Bin

(

ŵ(b−1)
)

= s
(b−1)
1 and

(

x
(2)
1

(

ŵ(b−1), ŝ
(b−2)
1

)

,u
(2)
1

(

ŝ
(b−2)
2

)

,y
(2)
3

)

∈
A

(n)
ǫ . Hence, in order to make the probability of error zero, from [14] we have

r
(1)
Bin ≤ R(1), (4.25)

r
(2)
Bin ≤ R(2), (4.26)

R(2) − r
(2)
Bin ≤ t1I

(

X
(1)
2 ; Y

(1)
3 | U (1)

2

)

, (4.27)

R(2) − r
(2)
Bin + r

(1)
Bin ≤ t1I

(

X
(1)
2 , U

(1)
2 ; Y

(1)
3

)

, (4.28)

R(1) − r
(1)
Bin ≤ t2I

(

X
(2)
1 ; Y

(2)
3 | U (2)

1

)

, (4.29)

R(1) − r
(1)
Bin + r

(2)
Bin ≤ t2I

(

X
(2)
1 , U

(2)
1 ; Y

(2)
3

)

. (4.30)
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Hence, by employing BME and Backward decoding, the following rate is achievable subject

to (4.14)-(4.17) and (4.25)-(4.30) constraints.

RBMEback
= max

0≤t1,t2,t1+t2=1
R(1) +R(2). (4.31)

Optimum input distributions

Now, we prove there exists input probability distributions (p(x
(1)
0 , x

(1)
2 , u

(1)
2 ) and p(x

(2)
0 , x

(2)
1 , u

(2)
1 ))

which maximize (4.31) and have the following property: u
(1)
2 is independent from (x

(1)
0 , x

(1)
2 )

and u
(2)
1 is independent from (x

(2)
0 , x

(2)
1 ). To prove this, consider p(x

(1)
0 , x

(1)
2 , u

(1)
2 ) and p(x

(2)
0 , x

(2)
1 , u

(2)
1 )

along with t1, t2 which maximize (4.31) subject to the required constraints. Let us define

p̂(x
(1)
0 , x

(1)
2 , u

(1)
2 ) and p̂(x

(2)
0 , x

(2)
1 , u

(2)
1 ) as

p̂(x
(1)
0 , x

(1)
2 , u

(1)
2 ) = p(u

(1)
2 )p(x

(1)
0 , x

(1)
2 ), (4.32)

p̂(x
(2)
0 , x

(2)
1 , u

(2)
1 ) = p(u

(2)
1 )p(x

(2)
0 , x

(2)
1 ), (4.33)

Now, we show that p̂(x
(1)
0 , x

(1)
2 , u

(1)
2 ) and p̂(x

(2)
0 , x

(2)
1 , u

(2)
1 ) along with t1, t2 achieve at least the

same rate as the optimum one. Let us denote the values of mutual information and entropy

with respect to the input distributions p, p̂ by Ip, Hp and Ip̂, Hp̂, respectively. The right-hand

sides of (4.27)-(4.30) with respect to p can be upper-bounded by the ones corresponding to

p̂ as follows

t1Ip

(

X
(1)
2 ; Y

(1)
3 | U (1)

2

)(a)

≤t1Ip

(

X
(1)
2 ; Y

(1)
3

)

= t1Ip̂

(

X
(1)
2 ; Y

(1)
3

)

, (4.34)

t1Ip

(

X
(1)
2 , U

(1)
2 ; Y

(1)
3

)

(a)
=t1Ip

(

X
(1)
2 ; Y

(1)
3

)

= t1Ip̂

(

X
(1)
2 ; Y

(1)
3

)

, (4.35)

t2Ip

(

X
(2)
1 ; Y

(2)
3 | U (2)

1

)(b)

≤t2Ip

(

X
(2)
1 ; Y

(2)
3

)

= t2Ip̂

(

X
(2)
1 ; Y

(2)
3

)

, (4.36)

t2Ip

(

X
(2)
1 , U

(2)
1 ; Y

(2)
3

)

(b)
=t2Ip

(

X
(2)
1 ; Y

(2)
3

)

= t2Ip̂

(

X
(2)
1 ; Y

(2)
3

)

. (4.37)

where (a) follows from the fact that U
(1)
2 −→ X

(1)
2 −→ Y

(1)
3 form a Markov chain and (b)

follows from the fact that U
(2)
1 −→ X

(2)
1 −→ Y

(2)
3 form a Markov chain. Moreover as in

distribution p̂, u
(1)
2 and u

(2)
1 are independent from (x

(1)
0 , x

(1)
2 ) and (x

(2)
0 , x

(2)
1 ), it can be easily

verified that the right-hand sides of (4.34)-(4.37) are equal to the right-hand sides of (4.27)-

(4.30) with the input distribution p̂, respectively. Hence, by utilizing p̂ instead of p, the

region that satisfies (4.27)-(4.30) is enlarged. Now, let us consider the right-hand sides of
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(4.14)-(4.17).

t1Ip

(

X
(1)
0 ; Y

(1)
1 | X(1)

2 , U
(1)
2

)(a)

≤ t1Ip

(

X
(1)
0 ; Y

(1)
1 | X(1)

2

)

= t1Ip̂

(

X
(1)
0 ; Y

(1)
1 | X(1)

2

)

(4.38)

t1Ip

(

X
(1)
0 , X

(1)
2 ; Y

(1)
1 | U (1)

2

)(a)

≤ t1Ip

(

X
(1)
0 , X

(1)
2 ; Y

(1)
1

)

= t1Ip̂

(

X
(1)
0 , X

(1)
2 ; Y

(1)
1

)

(4.39)

t2Ip

(

X
(2)
0 ; Y

(2)
2 | X(2)

1 , U
(2)
1

)(b)

≤ t2Ip

(

X
(2)
0 ; Y

(2)
2 | X(2)

1

)

= t2Ip̂

(

X
(2)
0 ; Y

(2)
2 | X(2)

1

)

(4.40)

t2Ip

(

X
(2)
0 , X

(2)
1 ; Y

(2)
2 | U (2)

1

)(b)

≤ t2Ip

(

X
(2)
0 , X

(2)
1 ; Y

(2)
2

)

= t2Ip̂

(

X
(2)
0 , X

(2)
1 ; Y

(2)
2

)

(4.41)

where (a) follows from the fact that U
(1)
2 −→ (X

(1)
2 , X

(1)
0 ) −→ Y

(1)
1 form a Markov chain

and (b) follows from the fact that U
(2)
1 −→ (X

(2)
1 , X

(2)
0 ) −→ Y

(2)
2 form a Markov chain.

Similarly, we observe that the right-hand sides of (4.38)-(4.41) represent the right-hand sides

of inequalities (4.14)-(4.17) with the input distribution p̂. Hence, the region of (R(1), R(2))

that satisfies (4.14)-(4.17) and (4.25)-(4.30) is enlarged by utilizing the input distribution p̂

instead of p. This proves the independency of input distributions with u(1) and u(2) in the

optimum distribution.

Simplifying the achievable rate

As we can assume that the input distributions are of the form (4.32) and (4.33), the

achievable rate can be simplified as follows.

RBMEback
= max

0≤t1,t2,t1+t2=1
R(1) +R(2) ≤

max
0≤t1,t2,t1+t2=1

min
(

t1I
(

X
(1)
0 , X

(1)
2 ; Y

(1)
1

)

, t2I
(

X
(2)
0 , X

(2)
1 ; Y

(2)
2

))

, (4.42)

subject to

r
(1)
Bin ≤ R(1), (4.43)

r
(2)
Bin ≤ R(2), (4.44)

R(1) ≤ t1I
(

X
(1)
0 ; Y

(1)
1 | X(1)

2

)

, (4.45)

R(2) ≤ t2I
(

X
(2)
0 ; Y

(2)
2 | X(2)

1

)

, (4.46)

R(2) − r
(2)
Bin + r

(1)
Bin ≤ t1I

(

X
(1)
2 ; Y

(1)
3

)

, (4.47)

R(1) − r
(1)
Bin + r

(2)
Bin ≤ t2I

(

X
(2)
1 ; Y

(2)
3

)

. (4.48)

with input distributions

p(x
(1)
0 , x

(1)
2 ) = p(x

(1)
2 )p(x

(1)
0 |x(1)

2 ),

p(x
(2)
0 , x

(2)
1 ) = p(x

(2)
1 )p(x

(2)
0 |x(2)

1 ).
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Now, we show that (4.42)-(4.48) is equivalent to

RBMEback
≤ max

0≤t1,t2,t1+t2=1
min

(

t1I
(

X
(1)
0 , X

(1)
2 ; Y

(1)
1

)

, t2I
(

X
(2)
0 , X

(2)
1 ; Y

(2)
2

)

,

t1I
(

X
(1)
0 ; Y

(1)
1 | X(1)

2

)

+ t2I
(

X
(2)
0 ; Y

(2)
2 | X(2)

1

)

,

t1I
(

X
(1)
2 ; Y

(1)
3

)

+ t2I
(

X
(2)
1 ; Y

(2)
3

))

. (4.49)

First, it is easy to verify that (4.42)-(4.48) imply (4.49). Now, in order to prove that the

converse is also true, we show that for every possible rate r satisfying (4.49), there exists a

quad-tupple
(

R(1), R(2), r
(1)
Bin, r

(2)
Bin

)

such that R(1) +R(2) = r,
(

R(1), R(2), r
(1)
Bin, r

(2)
Bin

)

satisfies

(4.42)-(4.48), and moreover at least one of bin rates is equal to zero, i.e., r
(1)
Bin = 0 or r

(2)
Bin = 0.

Let us define R(1) , min
(

r, t1I
(

X
(1)
0 ; Y

(1)
1 | X(1)

2

))

, R(2) , r − R(1). As r satis-

fies (4.49), we conclude that (R(1), R(2)) satisfies (4.42), (4.45), and (4.46). Furthermore,

as R(1) + R(2) = r ≤ t1I
(

X
(1)
2 ; Y

(1)
3

)

+ t2I
(

X
(2)
1 ; Y

(2)
3

)

, we conclude that either R(1) ≤
t2I
(

X
(2)
1 ; Y

(2)
3

)

or R(2) ≤ t1I
(

X
(1)
2 ; Y

(1)
3

)

. For the sake of symmetry, let us assume that

the first case has occurred, i.e., R(1) ≤ t2I
(

X
(2)
1 ; Y

(2)
3

)

. Now, we define r
(1)
Bin , 0 and

r
(2)
Bin , max

(

0, R(2) − t1I
(

X
(1)
2 ; Y

(1)
3

))

. Obviously, (4.43), (4.44), and (4.47) are valid.

Considering (4.48), we have

R(1) − r
(1)
Bin + r

(2)
Bin = R(1) +max

(

0, r −R(1) − t1I
(

X
(1)
2 ; Y

(1)
3

)) (a)

≤ t2I
(

X
(2)
1 ; Y

(2)
3

)

(4.50)

where (a) follows from the facts that r ≤ t1I
(

X
(1)
2 ; Y

(1)
3

)

+ t2I
(

X
(2)
1 ; Y

(2)
3

)

and R(1) ≤
t2I
(

X
(2)
1 ; Y

(2)
3

)

. Hence, (4.48) is also valid. The second case in which R(2) ≤ t1I
(

X
(1)
2 ; Y

(1)
3

)

can be dealt with in a similar manner.

Hence, from the above argument, the achievable rate of the BME scheme with backward

decoding can be simplified as follows

RBMEback
≤ max

0≤t1,t2,t1+t2=1
min

(

t1I
(

X
(1)
0 , X

(1)
2 ; Y

(1)
1

)

, t2I
(

X
(2)
0 , X

(2)
1 ; Y

(2)
2

)

,

t1I
(

X
(1)
0 ; Y

(1)
1 | X(1)

2

)

+ t2I
(

X
(2)
0 ; Y

(2)
2 | X(2)

1

)

,

t1I
(

X
(1)
2 ; Y

(1)
3

)

+ t2I
(

X
(2)
1 ; Y

(2)
3

))

, (4.51)

with probabilities

p(x
(1)
0 , x

(1)
2 ) = p(x

(1)
2 )p(x

(1)
0 |x(1)

2 ),

p(x
(2)
0 , x

(2)
1 ) = p(x

(2)
1 )p(x

(2)
0 |x(2)

1 ).
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Appendix F

Proof of corollary 2.2.2

Let V
(1)
0 ∼ N (0, α1P

(1)
0 ), V

(2)
0 ∼ N (0, α2P

(2)
0 ), V

(1)
2 ∼ N (0, θ2P2), V

(2)
1 ∼ N (0, θ1P1), U

(1)
2 ∼

N (0, θ̄2P2) and U
(2)
1 ∼ N (0, θ̄1P1), which are independent of each other.

Letting X
(1)
0 = V

(1)
0 +

√

ᾱ1P
(1)
0

θ2P2
V

(1)
2 , X

(2)
0 = V

(2)
0 +

√

ᾱ2P
(2)
0

θ1P1
V

(2)
1 , X

(1)
2 = V

(1)
2 + U

(1)
2 ,

X
(2)
1 = V

(2)
1 + U

(2)
1 and using the result in the expression for the achievable rate obtained in

Theorem 2.2.2, we obtain RBMEsucc for the Gaussian case, as given in [37] and (2.20), (2.22),

and (2.23), respectively.

For backward decoding, let V
(1)
0 ∼ N (0, β1P

(1)
0 ), V

(2)
0 ∼ N (0, β2P

(2)
0 ), X

(1)
2 ∼ N (0, P2),

and X
(2)
1 ∼ N (0, P1), which are independent of each other. By setting X

(1)
0 = V

(1)
0 +

√

β̄1P
(1)
0

P2
X

(1)
2 , X

(2)
0 = V

(2)
0 +

√

β̄2P
(2)
0

P1
X

(2)
1 and using the result in the expression for the achiev-

able rate obtained in Theorem 2.2.1, we obtain RBMEback
for the Gaussian case, as given in

(2.21).
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Appendix G

Proof of Proposition 2.2.2

Consider the sum rate for both the common message and the private message for the extended

multiple access channel from relays to the destination,

Rp +Rc ≤ t4C





h2
13P

(4)
1,p + (h13

√

P
(4)
1,c + h23

√
P2)

2

t4



 . (4.52)

It can be readily verified that subject to the constraint P
(4)
1,p +P

(4)
1,c = P1, the right-hand side

of (4.52) is a decreasing function of P
(4)
1,p or equivalently an increasing function of P

(4)
1,c . Now,

let us equate Rp in (4.52) with the private rate Ŕp of another MAC which is achieved by

successive decoding of common and private messages. Therefore, we have

Rp = Ŕp = t4C

(

h2
13Ṕ

(4)
1,p

t4

)

≤ t4C

(

h2
13P

(4)
1,p

t4

)

. (4.53)

According to (4.53), we have (See Fig. 4.7)

Ṕ
(4)
1,p ≤ P

(4)
1,p =⇒

Rp +Rc ≤ Ŕp + Ŕc,

Rc ≤ Ŕc.

Hence, (Rp, Rc) lies in the corner point of the extended MAC with parameters (Ṕ
(4)
1,p , Ṕ

(4)
1,c ),

i.e., successive decoding of common and private messages achieves the DF rate.

Common Rate
Rc Ŕc

Ŕp = Rp

Private Rate

Figure 4.7: The order of decoding “Common” and “Private” messages.
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Appendix H

Proof of Theorem 3.2.1

Codebook Construction:

At band αl, (l = 1, · · · , L) and β1, the source generates 2
nRAFl , 2nRDFl , and 2nRDF sequences

vBCl
(wAFl

), uBCl
(wDFl

), and xBC (wDF ) according to
∏αln

i=1 p(vBCl,i),
∏αln

i=1 p(uBCl,i), and
∏β1n

i=1 p(xBC,i), respectively. VBCl
, UBCl

, and XBC are Gaussian random variables with zero

mean and variances Ps,AF l
, Ps,DF l

, and Ps per dimension, where Ps,AF l
+ Ps,DF l

= Ps.

Furthermore, at band αl, the source generates i.i.d sequences xBCl
, where we have XBCl

=

VBCl
+ UBCl

. Hence, XBCl
∼ N (0, Ps).

All the relays, at band αl, (l = 1, · · · , L), and β2 generate 2
nRDFl and 2nRDF i.i.d url (wDFl

),

and xr (wDF ) sequences according to probabilities
∏αln

i=1 p(url,i), and
∏β2n

i=1 p(xr,i). Url and Xr

are Gaussian random variables with zero mean and variances Pr,DF l
and Pr per dimension.

Furthermore, relay m generates i.i.d sequences xml
, due to

Xml
=

√

Pr,AF l

Ps,AF l
+ 1

(VBCl
+ Zm) + Url. (4.54)

Encoding:

Encoding at the source:

At band αl, the source encodes wAFl
∈ {1, · · · , 2nRAFl}, and wDFl

∈ {1, · · · , 2nRDFl} to

vBCl
(wAFl

) and uBCl
(wDFl

) and sends xBCl
(wAFl

, wDFl
) to the relays. Furthermore, at

band β1, the source encodes wDF ∈ {1, · · · , 2nRDF } to xBC (wDF ) and sends it to the relays.

Encoding at relay m:

At band αl, relay m encodes wDFl
∈ {1, · · · , 2nRDFl} to url (wDFl

) and sends xml
as ob-

tained in (4.54), to the destination. Furthermore, at band β2, relay m encodes wDF ∈
{1, · · · , 2nRDF} to xr (wDF ) and sends it to the destination.

Decoding:

Decoding at relay m:

At band αl, relay m declares ŵDFl
= wDFl

iff there exits a unique uBCl
(wDFl

), such that
(

uBCl
(wDFl

) ,yml

)

∈ A
(n)
ǫ (See [14]). Hence, in order to make the probability of error zero,

we have

RDFl
≤ αlC

(

Ps,DFl

Ps,AFl
+ 1

)

. (4.55)

Similarly, at band β1, relay m declares ŵDF = wDF iff there exits a unique xBC (wDF ), such

that (xBC (wDF ) ,ym) ∈ A
(n)
ǫ . Hence, in order to make the probability of error zero, we have

RDF ≤ β1C (Ps) . (4.56)
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Decoding at the final destination:

At band αl, the destination declares ŵAFl
= wAFl

and ŵDFl
= wDFl

iff there exits unique

vBCl
(wAFl

) and url (wDFl
), such that

(

vBCl
(wAFl

) ,url (wDFl
) ,yMACl

)

∈ A
(n)
ǫ . Hence, in

order to make the probability of error zero, we have

RAFl
≤ αlC

(

M2Pr,AFl
Ps,AFl

MPr,AFl
+ Ps,AFl

+ 1

)

, (4.57)

RDFl
≤ αlC

(

M2Pr,DFl
(Ps,AFl

+ 1)

MPr,AFl
+ Ps,AFl

+ 1

)

, (4.58)

RAFl
+RDFl

≤ αlC

(

M2PrPs,AFl
+M2Pr,DFl

MPr,AFl
+ Ps,AFl

+ 1

)

. (4.59)

Similarly at band β2, destination declares ŵDF = wDF iff there exits a unique xr (wDF ),

such that (xr (wDF ) ,yMAC) ∈ A
(n)
ǫ . Hence, in order to make the probability of error zero,

we have

RDF ≤ β2C
(

M2Pr

)

. (4.60)

Noting the fact that RCADF =
∑L

l=1(RAFl
+ RDFl

) + RDF , and from (4.55), (4.56), (4.57),

(4.58), (4.59), and (4.60), Theorem 3.2.1 is proved.
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