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Abstract 

As a result of tunnel construction, the ground level surface above will tend to collapse downward 

as the soil seeks to refill the missing tubular cavity.  Many infrastructures that were originally 

built on that surface may also fall slightly or severely depending on the engineering design and 

execution of the tunneling project.  Engineers then must factor in the development of ground 

subsidence, examining geotechnical and geological issues to construct a model that would 

otherwise predict the extent of vertical settlements.  Their predictions could help to assess 

potential damages and make corrective actions.  In this thesis submission, analytical methods 

from the classical elasticity were used to estimate surface displacements for a prospective tunnel.  

The analytical equation tied in the method of virtual images originating from Sagaseta 

with the classical Kirsch elastic solutions for stress-displacements of an infinite plate with hole in 

order to establish a solution of half-space.  This approach will be similar to what Verruijt-Booker 

had developed after Sagaseta but will include higher-order terms to simulate an excavation 

process in a longitudinal direction below ground and thereby obtain a new subsidence equation 

including ground parameters associated with tunnel shape changes occurring at its base, 

springline (sideway point) and crown (top). These parameters were not previously reported by 

the Verruijt-Booker work or from current technical literature. In addition, the prescribed solution 

could include any Poisson’ ratios in which only the original Verruijt-Booker could be found 

correct for only incompressibility conditions (υ = 0.5).  The Verruijt-Booker equation considered 

deep tunnels only.  An extra term influencing the subsidence was included in the modified 

solution which is significant for shallow tunnels. 
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The derived equations were applied to calculate surface deflections using data from a 

tunnel construction project to test its viability.  Comparison analysis was made with the three 

methods to be described- Peck, Sagaseta, and Verruijt-Booker.  In addition, a parametric study 

was made to examine the amount of subsidence changed when deciding to construct a tunnel 

from a shallow to deeper zone.  Finally, a qualitative study of the derived equation and Verruijt-

Booker was conducted to assess potential subsidence behaviour between shallow and deep 

tunnels. 
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Chapter 1                                                                Introduction 

A recurring problem in municipal or major urban center is the planning of transportation systems 

needed to bring its citizenry from various points to another.  One important component of this 

solution is the construction of public transit networks that co-mingles with other private vehicle 

users but nevertheless delivers the people to their intended destination with minimal delays in a 

large urban traffic system.  In addition to the benefits of easing congestion, there is an 

environmental impact when the emissions of pollutants from waiting automobiles are released 

during daily stops.   

 

While not being the total solution of environmental and traffic problems, the engineering 

design and construction of railway tunnels below ground has been one of the favorable option 

city planners look to.  One can think of London (UK), Washington D.C, New York City, Paris, 

and Tokyo are such prime examples as densely populated centers having to deliberately 

construct tunnel networks for subway trains connecting to certain important nodes or points 

decided by governmental and consulting firms.    

 

The engineering of tunnel construction must be examined at multiple viewpoints to 

ensure the safety of the surroundings is maintained.  A typical tunneling project would consist of 

a detailed geological and geotechnical analysis, routing issues, data monitoring programs, and 

preliminary to final approval of the tunnel design itself.  An important component recognized by 

engineers that is integrated in that project is the prospect that foundations of buildings may settle 

due to the boring activities.  Depending on the tunnel diameter and depth below, the volume 

excavated will force the soil to immediately or in due course cover up the opening gap.  Even if 
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reinforced liners are installed around the circumference, there will still be soil movement that 

will envelop the liners and potentially leave significant depression space for the foundation to 

move downwards.   

There are current numerical and analytical studies conducted to monitor subsidence as the 

tunnel boring machines (TBM) advances [2, 5, 8, 15, 17, 18, 20, 21].  The analytical work relies 

on the theory of elasticity [27, 29].  Of the many prominent researchers, Peck [22] was one of the 

originators who suggested that the vertical settlements matched the patterns of the Gaussian or 

normal distribution curve.  Later on, closed form solutions were proposed independently first by 

Sagaseta [23], and years after generalized by Verruijt and Booker [29].  Sagaseta suggested that 

strain field is based on an isotropic and homogeneous incompressibility of the soil caused by 

near-surface ground loss.  He was the original developer of the concept of virtual images in 

formulating displacements, a concept that was subsequently refined by others.  The Verruijt-

Booker method extended the solution of Sagaseta in terms of ground loss, not necessarily for the 

incompressible condition, applicable to any Poisson ratio values and included the effects of 

ovalization of the tunnel opening.    

 

Tunnel subsidence can be measured with varying accuracy with either empirical or 

computational means.  In studies using the empirical approach, a gap parameter has been 

extensively investigated by Lee, Rowe et al [13, 14] to measure the ground loss.  Using finite 

element analysis data and traditional geotechnical engineering, the researchers were able to 

construct N-Ω graphs, and develop calculation guidelines for quantifying the physical gap, 

elastoplastic deformation and workmanship at the tunnel face. These three components are to be 

added together to obtain a numerical gap value.  In general, ground loss measures the material 

volume that has been removed in excess of the theoretical design volume of excavation.  This 
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particular quantity provides a field-based indicator to possibly calibrate with analytical modeling 

work.   

An alternative method for predicting subsidence considers elasticity theory.  More 

directly, the contribution of this utilized the Kirsch solution of a hole in an infinite plate and 

combine those results with the virtual image technique introduced nearly a century later by 

Sagaseta.  The approach here adopts a procedure somewhat similar to Verruijt and Booker but 

takes on a general analysis which includes higher-order terms appearing in the elastic equations.  

The outcome of this approach is the derivation of coefficients which measure the distortion and 

radial strain of an excavated tunnel, as well as development of general displacement equations 

for both horizontal and vertical directions.  In particular, a subsidence or vertical surface 

displacement equation was obtained to estimate soil movement downwards when disturbed by 

the bored tunnel.  In addition, by normalizing some aspects of the subsidence equation, some 

inferences may be made to predict responses of the settlements.   

 

The organization of the remaining thesis is summarized as follows.  Chapter 2 further 

describes the causes of subsidence and how to measure it in actual construction.  A brief 

introduction of the Peck method is discussed due to its ubiquitous application at many sites.  

Chapter 3 and 4 provides the analytical background and tools required to establish the 

displacement equations.  In Chapter 5, numerical results and qualitative observations are made.  

Finally, Chapter 6 provides the conclusions that summarize the entire findings and contributions. 
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Chapter 2                          Description of Subsidence Problem 

2.1 Introduction 

The problem of determining vertical displacement or subsidence of the ground level due to 

subsurface tunneling is an important endeavor as engineers must be aware of adjacent and 

existing structures on top may collapse as the foundation soil seeks to cover up the excavated 

opening.  Essentially, the tunnel boring machines (TBM) shown in Figure 2.1 advances forward 

through a prescribed design route creating a cylindrical cavity or tube.  The resulting cavity 

would then cause the surrounding soil to move towards it and immediately fill up so as to restore 

to its original state of equilibrium.  This caving in phenomenon is unavoidable irrespective of the 

geographic location and type of non-uniform geological layers for tunnel construction projects 

around the world [24].  

As depicted in Figure 2.2, the gap between the original ground surface and deflection 

produces unwanted slopes that would otherwise force the foundations of facilities to slide along 

and destabilize the structure causing severe damages.  Engineers must then develop some 

geomechanical model that will predict the extent of these displacements in order to recommend 

and plan reinforcement options that will minimize potential foundation collapse.  While the focus 

of this tunneling subsidence modeling is in the domain of civil engineering, it could also be 

extended towards mining and petroleum engineering operations since they involve tubular 

underground excavation to obtain useful natural resources [24][30]. 
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Fig.2.1 Tunnel boring machine (TBM) used to excavate cylindrical opening [AlpTransit Gotthard Ltd. 

http://www.alptransit.ch/pages/e/]. 

 

 

Fig.2.2 Tunneling activities represented by the circle will cause the surrounding soil to collapse indicated by 

the arrows.  Engineers must determine the amount of subsidence to prevent any nearby or overlying 

structures from falling in. 
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2.2 Subsidence Causes 

Subsidence may be described by the ground loss attributed by the excavation of soil from the 

surface below.  In the context of tunnel engineering, the result of the tunnel boring machine 

(TBM) creating an underground opening allows the surrounding soil to become mobile so as to 

fill in the cavity.   This soil movement towards covering the excavated void is known as the 

ground or volume loss, which in turn measures the amount of subsidence, or surface deflections 

that would be induced by subsurface boring operations.    

In numerical modeling of ground losses, the aim is to account for certain factors 

encountered during the construction stage so as to obtain a reliable prediction of settlements.  

These factors depend on data collected from soil properties, machine operations and previous 

case histories.    All this information forms a quantitative measure called the gap parameter (g) 

which gauges the ground loss at the tunnel crown.  In order to compute g, engineers using prior 

tunneling cases have formulated a systematic procedure requiring key measurements to be made 

as the TBM progresses from a distanced segment to the next.  These measurements must be 

made at three stages that occur simultaneously:  (1) front or face (2) on top of the shield and (3) 

the rear of the TBM where the linings are installed.  Furthermore, the path traversed by the TBM 

may encounter varying alignments and this influences the calculation of g.  Displacements 

measured at these three positions of the TBM are then used to compute g. 

The gap parameter consisted of adding some or all three components together depending 

on the traversed alignment [13, 14].  The general case may be stated as  

*

3p Dg G u                                                                                                                                         (2.2.1) 
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where g is the gap parameter, Gp is the physical gap between the vertical distance of the tunnel 

lining crown and shield, *

3Du  is referred as a spatial elastic-plastic deformation which factors in 

potential three dimensional movements in front of the tunnel path and ω defined as a 

workmanship factor due to steering issues.  Since g is a length measure, the units for each 

component that are added up can be expressed in millimeters (mm).  The significance of each 

term will be discussed below and for proper use of Eq. (2.2.1) depends upon recognizing on the 

constructional alignment.  

The alignment path can be generally categorized into three distinct construction 

procedural cases as shown in Figure 2.3.  In case (i), g is exactly equal to Gp because the TBM 

face is in full contact at the soil with minor stress and strain changes at the frontal contact 

interface leaving negligible horizontal gaps.  In addition, the advancing path of the TBM shield 

is essentially flat without any deviations.   The actual value (g=Gp) is then taken at the lining 

platform or behind the shield.  For case (ii), potential longitudinal displacements in front of the 

TBM face are included in g  *

3p Dg G u  but the traversed pathway remains fairly leveled.  It 

should be noted that the spatial deformation term could be simplified by using a planar 

approximation. Finally, all possible difficulties encountered during the boring operations can be 

factored in by extending case (ii) to include a workmanship factor ω.  Thus case (iii) has 

incorporated any effects of extraordinary maneuvers, irregular alignments, and soil 

reinforcements conforming to the general form defined by Eq. (2.2.1).                                      
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Fig.2.3 Gap parameter usage depending on how the construction progresses [12]. 

 

The quantitative evaluation of each of the three terms forming the gap parameter will 

now be examined.  The individual terms were established by Lee et al. and have specific 

calculation rules regarding the usage of TBM shield and lining dimensions, soil parameters and 

charts. 
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2.3 Peck’s Method 

The empirical method of Peck is often quoted in current tunnel engineering literature [8, 12, 17, 

18].  Its simplicity is that the pattern of the subsidence can be idealized as a normal distribution 

reflected downwards to resemble the deflections induced by tunnel excavation below ground.  

The equation states the vertical deflection 
zu  can be expressed as  

2

max 2
exp

2
z

x
u u

i

 
  

 
                                                                                                              (2.3.1) 

where umax  is the maximum settlement over the tunnel axis, x is the distance to the tunnel 

centerline and i is the inflection point in the normal distribution curve as shown in Figure 2.4.  

The inflection point is also equal to the standard deviation of the normal probability curve and 

could be interpreted as the magnitude of the settlement trough width.  Often, the determination of 

i is related to the soil property and depth of the tunnel to be obtained during construction [17]. 

 

Fig.2.4 The reflected normal curve approximates the settlement trough due to tunneling according to Peck. 

The volume loss (Vs) can be defined as the removed volume per meter run of excavated 

area and is equivalent to integrating (2.3.1). The integration process takes advantage of the 

special modified Gaussian integral [26] 
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 2exp ,  0ax dx a
a




                                                                                                    (2.3.2)         

Now substituting 
2

1

2
a

i
 into (2.3.2) establishes 

2

max max2
exp 2

2
s

x
V u dx iu

i






 
   

 
                                                                                    (2.3.3) 

With (2.3.3), umax can be solved to get 
max

2.52

s sV V
u

ii 
  , and then re-inserted into (2.3.1) to 

obtain the Peck deflection equation at the surface  0z
u  

 

2

0 2
exp

2.5 2

s

z

V x
u

i i

 
  

 
                                                                                                            (2.3.4) 

 As suggested by Peck, the parameter i could be approximated by a normalized diagram 

he devised as shown in Figure 2.5 below, 

 

Fig.2.5 Determining inflection point based on normalized parameters [9]. 
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or according to the following Clough-Schmidt [3,  9 ] empirical formula 

4/5

2

D h
i

D

  
   
  

                                                                                                                                       (2.3.5)  

where h denotes the depth of the tunnel axis, and D is the diameter of the cavity opening.  The 

potential range of values to estimate i as suggested in Figure 2.5 could belong into various soil 

characteristics.  Other modifications of Eq. (2.3.5) are suggested in recent investigations, but the 

principal objective is remains to find i if the method of Peck is to be used. 

 There are several caveats of using (2.3.4) including that it over-predicts the surface 

displacement when compared to other methods including analytical and field measurements.  

Another deficiency is that it cannot include any soil property parameter into the equation for 

displacement estimations.  In addition, the Peck equation is only applicable to one particular 

layer, that is the ground level, and leaves out intermediated gaps for analyzing subsurface strata 

if need be.  Finally, there is no corresponding lateral ground movement formulation that can be 

investigated using this method. 

2.4 Plane Strain Analysis 

A plane strain analysis was assumed for the analytical model work.  At the outset, the 

hypothetical tunnel can be assumed to be a cylindrical prismatic body and have lateral loads 

applied uniformly along an axis outside the xz-plane (Figure 2.6).  This assumption does not 

allow any displacement and strains along the y-direction of the tunnel.   Thus, any deformation 

of the ground can be also assumed to be independent of the y-coordinate [1, 23].  Since 

conditions are similar at all cross sections, only a slice between two sections can be studied 

making a two dimensional analysis possible. 
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Fig.2.6 Plane strain assumption for tunnel induced subsidence model.  The length of the tunnel is larger than 

the dimensions of the circular opening [18]. 
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Chapter 3                                                  Tunnel Deformations 

3.1 Closed-form Solutions for Tunnel Deformations 

The objective of determining the subsidence equation is to predict a certain amount of ground 

level deflections dependent on the tunnel deformation geometry as shown in Figure 3.1 below.  

The total deformation considers the total contribution from the ground loss and ovalization [5].  

As will be discussed later on, the ground loss is also equivalent to an evaluation for radial strain 

which may be considered a summed average of the total crown (top) and springline (side) of the 

cavity; likewise, the ovalization a differenced average between the crown and springline. 

 

Fig.3.1 Subsidence model incorporates the combined effects of ground loss and ovalization [5]. 

Closed- form solutions for tunnel deformations have been developed using various 

mathematical methods.  As will be described below, Sagaseta presented a procedure of 

converting a half-space to full space problem and used concepts from fluid mechanics to develop 

the displacement equations.  In addition, a brief discussion of the Verruijt-Booker (VB) equation 

will be described with respect to influence of a radial strain and ovalization parameter along with 

some problems associated with its use.  The two parameters in the VB equation parallel the two 
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components on the right-side of the diagram in Figure 3.1.  The corrections for the VB will be 

provided in the next chapter which incorporates higher-order terms. 

3.2 Sagaseta’s Method 

The principal concepts behind the Sagaseta method is the so-called virtual image procedure and 

comprised of some features modeled from fluid mechanics but modified for use in geomechanics 

[23].  This modification directly replaces the velocities as a quantity from fluid flow into 

displacements.  In a real physical situation, there are no normal and shear stresses present at the 

ground surface. The use of a virtual image in the full-space would eliminate the stress acting on 

the free ground surface 

 In brief, the analysis considers that a stress applied below (sink) a plane of symmetry has 

a dual image across that plane, essentially doubling the stress amount which in turn allows 

displacements to be determined. Any influence of the free surface could then be incorporated at 

the end of the solution.  The method also assumes the soil medium to be infinite, and be 

homogeneously isotropic.   

The Sagaseta method as depicted in Figure 3.2 consists of three main steps and is 

applicable with respect to shallow tunnel analysis. 

(1) A point sink in an infinite medium should be used to calculate strains ignoring any soil 

surface effects. 

 

(2) The strains computed in (1) will cause surface level stresses and must be counterbalanced 

by determining these stresses.  Two sub-methods may be considered: 



15 

 

i. Using a virtual source, a projected negative (or positive) mirror image of the 

actual sink reflecting from the top surface can act as an opposite normal and shear 

stresses. 

ii. Add the image-based strains (or stresses) to those found in step (1). 

 

(3) Obtain a displacement field in a half-space influenced by the load on the surface equal 

and opposite from the calculated portion of step (2). This result is added to the 

displacements found in step (1). 

 

 

Fig.3.2 Sagaseta procedure outlining the use of the virtual image in order to develop a final displacement 

solution.  A half-space problem becomes a full-space in this method [21]. 
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As discussed from incompressible potential flow theory concerning sinks and sources, there is no 

angular velocity but only a radial component [7].  A point sink may then be represented as  

2

         
2 2

r

Q R
v U

r r




                                                                                                     (3.2.1)  

where 
rv  is called the radial velocity.  In the fluid-to-geomechanics analogy, Q (flow rate) is 

equivalent to the volume loss and when substituted derives the radial displacement U.  Here, U 

was simply replaced for vr.  For a two dimensional analysis, the horizontal (
xu ) and vertical (

zu ) 

displacements from the sink to an arbitrary point located below the ground surface were obtained 

by using  

cosxu U                                                                                                                                               (3.2.2) 

 

sinzu U                                                                                                                                              (3.2.3)

 

 

or in analytic form  

  

2

22

o
x

R x x
u

r

 
                                                                                                                                              (3.2.4) 

 

2

22

o
z

R z z
u

r

 
                                                                                                                                              (3.2.5) 

 

where    
2 22

o or x x z z    . 
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By step 2, the displacements represented by the sink part is added to the negative image 

resulting  

 

2

2 2

1 22
x

R x x
u

r r

  
   

 
                                                                                                                                    (3.2.6) 

and  

 

2

1 2

2 2

1 22
z

z zR
u

r r

  
   

 
                                                                                                                                    (3.2.7) 

 

where 

 

1

2

2 2 2

1 1

2 2 2

2 2

z z h

z z h

r x z

r x z

 


 




 




  

                                                                                                                                                    (3.2.8)                                                                                                                           

 

and h may be considered the tunnel placement depth measured from the opening centre to 

ground surface.  With respect to subsidence at the ground level, variable z is set to zero into 

(3.2.6) and (3.2.7) yielding 

2

2 2

2
x

R x
u

x h


 


                                                                                                                                                   

(3.2.9) 
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2

2 2

2
z

R h
u

x h





                                                                                                                                                    (3.2.10) 

 

An alternative form of the lateral and vertical deflections may be considered if a quantity 

called the volume loss (Vs) is defined as  

22sV R                                                                                                                             (3.2.11)  

 

Then, by inserting (3.2.11) into Eqs. (3.2.9) and (3.2.10) establishes 

  

 2 2

s
x

V x
u

x h
 


                                                                                                                  (3.2.12) 

 

 2 2

s
z

V h
u

x h



                                                                                                                    (3.2.13) 

  

3.3 Verruijt-Booker’s Method 

The Verruijt-Booker (VB) equations [29] were originally stated without providing details 

towards its development as  

 

2 2 2 2
2 2 1 2

2 2 4 4

1 2 1 2

2 22 2
22 2

2 4 4 6

2 2 2 2

1 1

32 1 2 4
                                  

1

x

x kz x kz
u R x R x

r r r r

nz x zR nzz R hx z

n r r n r r

 

 

    
       

   

  
     

     

                        (3.3.1)          
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2 2 2 2
2 21 2 1 2

1 22 2 4 4

1 2 1 2

2 2
2 22 2

2 4

2

1
                                   2 2

                                               

z

z z kx z kx z
u R x R z z

r r r r

n z x z
R R z

n r r

 

 

       
          

      

    
     

    

   
2 2

2 2 2 22
2 24 6

2 2

2 2 2
       3

1

R h R hzn z
x z x z

r n r

   
    

  

             (3.3.2)                                       

with .
1

k






  For the special case at the ground level z = 0, the subsidence becomes 

 

 

2 2
2 2

2 2 2
2 2

1
2 2z

n h x h
u R R h

n x h x h
 

   
   

   
                                                                (3.3.3)  

 

or equivalently, 

 

 
 

2 2
2 2

2 2 2
2 2

4 1 2z

h x h
u R R h

x h x h
  

 
   

  
                                                                (3.3.4)  

 

where 
1

1 2
n





 was used. 

  

 The essential features of the VB equations are that it was the first to combine the virtual-

image method of Sagaseta and equations from the theory of elasticity.  Another appealing 

attribute is that there are two equations to describe both lateral and vertical directions of 

displacements.  In addition, two geotechnical coefficients were introduced which they called ε 

for the radial strain and δ for the distortion or ovalization of the tunnel thereby include field 

measurements in order to obtain more refined surface settlement evaluation.  Unfortunately, the 
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formulas for these terms were never explicitly defined so as to compute their values in the 

original derivation.  This deficiency will be addressed in the next chapter including the entire 

development of a general solution that will treat the VB equations as a special case. 

 The VB equation can better describe tunnels that are placed at farther depths below 

ground.  The influencing variable in this case is the Poisson’s ratio υ at 0.5.  A heave should be 

experienced close to the tunnel centerline at the surface but according to the VB model, this 

should occur when x>h.  In addition the VB solution asserts that the shape of the settlement 

profile while independent of υ, tends to increase if υ decreases from 0.5 to 0.  These two 

attributes are contradictory to the general expressions developed in Chapter 4 and discussed in 

Chapter 5. 
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Chapter 4                       Higher-Order Derivation  

4.1 Generalized Verruijt-Booker Method 

The approach adopted here for the development of the Verruijt-Booker solutions will be 

connected to the elasticity problem of determining the biaxial stresses applied onto a central 

cylindrical opening in an infinite plate.  The originators of these elastic equations did not 

explicitly mention their procedure for their derivation, but in this thesis ideas from elasticity, 

solid mechanics, linear algebra and operational methods will attempt to generalize their solution.  

In the presentation to follow, linear terms used represented a solid soil matrix without any 

removed hole and higher order terms were retained to model an excavated hole.  The final 

horizontal and vertical displacement shall be demonstrated to have the form 

   1 2x x x
u u u                                                                                                                          (4.1.1)  

   1 2z z z
u u u                                                                                                                           (4.1.2)  

where the bracket subscript notation denotes the real x[1] or z[1]  and x[2] or z[2] are the virtual 

image-based displacements.  In addition, the subsidence equation was shown to contain two 

similar parameters and re-stated in normalized form to make qualitative observations presented 

in Chapter 5.  

  In this problem, the Airy stress function could be used to satisfy the compatibility 

equations denoted by the bi-harmonic operator.  Using certain boundary conditions, a stress 

solution could be obtained and in turn displacement equations may be derived.  These special 

stress solutions are referred to as the Kirsch equations and maybe applied to tunnel subsidence 

models.   
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In order to proceed, some basic elasticity relationships are reviewed and the problem of a 

plate without a hole subjected to uniaxial stresses is considered.   Based on the problem analogy, 

the next step extends to the plate with a hole but made use of its prior analysis to build on the 

solution leading to the equations of Kirsch. 

In polar coordinates, the bi-harmonic equation is specified as 

2 2 2 2
4

2 2 2 2 2 2

1 1 1 1
0

r r r rr r r r 

         
         

      
                                                 (4.1.3) 

and the corresponding polar Airy stress function   defined as 

2

2 2

1 1
r

r r r




  
 

 
                                                                                                               (4.1.4) 

2

2 2

1

r r


 



                                                                                                                           (4.1.5) 

1
r

r r r


  
   

  
                                                                                                                   (4.1.6) 

In various elasticity treatises, the infinite plate without hole problem and with stress applied 

uniaxially, as depicted in Figure 4.1, considers the trial solution Φ to have the rectangular form 

as   

2

2

py
                                                                                                                                   (4.1.7) 

where p denotes horizontal stress actions.  By conversion into polar coordinates, Eq. (4.1.7) 

becomes 
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 
2

1 cos 2
4

pr
                                                                                                                  (4.1.8)  

Applying the stress equation defined by Eqs. (4.1.4), (4.1.5), and (4.1.6) obtains 

 1 cos 2
2

r

p
                                                                                                                    (4.1.9) 

 1 cos 2
2

p
                                                                                                                  (4.1.10) 

sin 2
2

r

p
                                                                                                                        (4.1.11) 

 

Fig.4.1 Plate subjected to constant stress applied in the horizontal direction [31]. 

 

 

In extending the analogy with that of an inserted circular opening, the Φ function will be 

assumed to comprise the form  

1 2( ) ( )cos2r r                                                                                                             (4.1.12) 
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and when substituted as individual components 
1 2( ) and ( )cos2r r   into Eq. (4.1.3) a pair 

ordinary differential equation are obtained as 

22

1 1

2 2

1 1
0

d dd d

r dr r drdr dr

   
    

  
                                                                                         (4.1.13) 

22

2 2 2

2 2 2 2

41 4 1
0

d dd d

r dr r drdr r dr r

    
      

  
                                                                      (4.1.14) 

The first differential equation can be resolved by first expanding it 

4 22

1 1 1 1

4 2 2

1 1 1 1
0

d d d dd d d

r dr r dr r dr r drdr dr dr

       
       

    
      

4 3 2 2 3 2

1 1 1 1 1 1 1 1

4 3 3 2 2 2 2 3 3 2 2

1 2 1 1 1 1 1
  

d d d d d d d d

r dr r drdr dr r r dr r dr dr r r dr

       
                  

4 3 2

1 1 1 1

4 3 2 2 3

2 1 1
  

d d d d

r drdr dr r dr r

   
                                                                                   (4.1.15) 

The solution has the form mte  or by letting ,tr e then .mr   Subsequently, the 

corresponding characteristic equation is 

        0 1 2 3 2 1 2 1m m m m m m m m m m           

4 3 2  4 4m m m    

with roots 0, 0, 2, and 2.   

The second differential equation is resolved in a similar manner and yields 
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4 22 2

2 2 2 2 2

4 2 2 2 2

2

2 2 2 2

2 2 2 3 4

1 1 1 1
0 4

164 4 4
            

d d d dd d d d

r dr r dr r dr r drdr dr dr r dr

d dd

r dr drr r dr r r

    

   

      
          

      

 
    

 

                                         

4 3 2 2

2 2 2 2 2 2 2 2

4 3 2 2 3 2 2 3 3 4

2 2

2 2 2 2 2

3 4 2 2 3 2 4

242 1 1 4 8 8
  

8 164 4 4
               

d d d d d d d

r dr dr drdr dr r dr r r dr r r r

d d d

drr r r dr r dr r

       

    

       

    

                

4 3 2

2 2 2 2

4 3 2 2 3

2 9 9
  

d d d d

r drdr dr r dr r

   
                                                                                 (4.1.16) 

with its characteristic equation designated as 

        0 1 2 3 2 1 2 9 1 9m m m m m m m m m m           

4 3 2  4 4 16m m m m     

and respective roots of  -2, 0, 2 and 4. 

Based on these determined roots, the general solution could be represented as 

2 2

1( ) ln lnr A B r Cr Dr r                                                                                             (4.1.17) 

2 4

2 2
( )

E
r F Gr Hr

r
                                                                                                       (4.1.18) 

Equations (4.1.17) and (4.1.18) are then back-substituted into (4.1.12) and applying the polar 

stress relations gets 

2 2 2 4

2
ln ln cos 2

E
A B r Cr Dr r F Gr Hr

r


 
         

 
                                           (4.1.19) 
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 
2 4 2

6 4
2 1 2ln 2 cos 2r

B E F
C D r G

r r r
 

 
       

 
                                                       (4.1.20) 

  2

2 4

6
2 3 2ln 2 12 cos 2

B E
C D r G Hr

r r
 

 
        

 
                                                  (4.1.21)                            

2

4 2

6 2
2 6 sin 2r

E F
G Hr

r r
 

 
     
 

                                                                                (4.1.22) 

            The seven constants B, C, D, E, F, G and H may be evaluated by considering firstly, that 

as r converges toward infinity, the stress becomes a finite value ζ and so constants D and H are 

zero.  With D and H removed, the remaining three equations should be equated with the alike 

terms to Eqs. (4.1.9), (4.1.10) and (4.1.11) to yield the coefficients 

4p C                                                                                                                                  (4.1.23) 

4p G                                                                                                                                  (4.1.24)  

Finally, consider r at the tunnel radius R, then  and r r  becomes zero setting up the following 

system of equations 

2
0 2

B
C

R
                                                                                                                           (4.1.25) 

4 2

6 4
0 2

E F
G

R R
                                                                                                                   (4.1.26) 

4 2

6 2
0 2

E F
G

R R
                                                                                                                 (4.1.27) 
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and then yielding the solutions of
2

2

pR
B   , 

4 2

 and 
4 2

pR pR
E F   .  Now back-substitute 

all the lettered constants into (4.1.20), (4.1.21) and (4.1.22) obtains the Kirsch elastic solutions 

2 4 2

2 4 2

3 4
1 1 cos 2

2 2
r

p R p R R

r r r
 

   
       

   
                                                                      (4.1.28) 

2 4

2 4

3
1 1 cos 2

2 2

p R p R

r r
 

   
      

   
                                                                                 (4.1.29) 

4 2

4 2

3 2
1 sin 2

2
r

p R R

r r
 

 
    

 
                                                                                         (4.1.30) 

            The preceding described only the horizontal stress actions on the edge of the plate but 

through similar steps, the solutions are equal to the effects of vertical applications.  Once the 

vertical component analysis has been obtained, then by superposition, the stresses are 

represented as  

2 4 2

2 4 2

3 4
1 1 cos 2

2 2
r

p q R p q R R

r r r
 

    
       

   
                                                             (4.1.31)     

2 4

2 4

3
1 1 cos 2

2 2

p q R p q R

r r
 

    
      

   
                                                                     (4.1.32) 

 

 
4 2

4 2

3 2
1 sin 2

2
r

p q R R

r r
 

 
    

 
                                                                                    (4.1.33)  
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where q denotes the uniaxial applied stress in the vertical direction.  This biaxial stress action 

may be viewed in Figure 4.2 below. 

 

Fig.4.2 Plate subjected by simultaneous horizontal and vertical stresses [31]. 

 

            The plane strain displacements around the circular opening are then obtained by 

integrating the respective strain relations defined below.  

 
1

r r

U
U dr dr dr

E r
  


   

                                                                                (4.1.34) 

 
V

V r u d d  



  

                                                                                                    (4.1.35) 

 

In the polar system U is referred to as the radial displacement and V called the tangential 

displacement as shown in Figure 4.3. 
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Fig.4.3 Radial and tangential displacement for an element. 

 

It should also be noted that the planar stress solutions may be changed into a planar strain 

setting based on the material coefficient transformations given as  

2
Plane Stress  Plane Strain

1

Plane Stress    Plane Strain
1

E
E









 






 

                                                                                (4.1.36) 

Based on 
r and

  as defined by (4.1.31) and (4.1.32), the radial and tangential 

derivatives for (4.1.34) and (4.1.35) are 

 

2 2 4

2 2 4

2 4

2 4

1 4 3
1 1 cos 2

3
                                   1 1 cos 2

a b

a b

U R R R

r E r r r

R R

E r r

  


  

    
        

     

    
       

    

                                         (4.1.37) 
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2 4 2 4

3 3

4 2 4 2
2 cos 2 2 cos 2b bV R R R R

r r
E r r E r r

 
 



   
         

    
                                  (4.1.38) 

Carrying out the integration of (4.1.37) and (4.1.38) then establishes the results of 

 

2 4 2

3

2 4

3

1 4
cos 2

                            cos 2

a b

a b

R R R
U r r

E r rr

R R
r r

E r r

  


  

    
        

    

    
       

    

                                                 (4.1.39)  

 

2 4 2 4

3 3

1 2 2
sin 2 sin 2b b

R R R R
V r r

E r r E r r


   
      

            
      

                                (4.1.40)

 

and for the planar strain displacement mode, the material coefficients are replaced by 

transformation Eq. (4.1.36) resulting in  

 

 

2 2 4 2

3

2 4

3

1 4
cos 2

1
                                 cos 2

a b

a b

R R R
U r r

E r rr

R R
r r

E r r


  

 
  

    
        

    

     
       

    

                                  (4.1.41) 

  

 2 2 4 2 4

3 3

11 2 2
sin 2 sin 2b b

R R R R
V r r

E r r E r r

 
   
      

            
      

                (4.1.42) 
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where 
a  and 

b are defined by 

2
a

p q



                                                                                                                             (4.1.43)  

2
b

p q



                                                                                                                             (4.1.44) 

 At this point, the results of (4.1.41) and (4.1.42) will be expanded so as to accommodate 

the sign convention due to physical interpretation and to incorporate only higher order terms.  

These special alterations are for the purpose of subsidence modeling.  The physical modeling can 

be viewed in Figure 4.4.  On the left side, the plate has not been punctured and only when a hole 

has been removed, compressive stresses begin to develop around the opening moving outwardly.  

Consequently, the complete displacement analysis begins with the subtraction of the pre-bored to 

the excavated cavity thereby establishes a negative sign with respect to the radial and tangential 

displacements.   The higher order terms will represent an excavation and any displacements will 

be influenced by these terms.  Expanding using these assumptions obtains  

 

 

Fig.4.4 Sign convention established by setting the pre-bored medium with that of the excavated. 
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The higher order terms will represent an excavation and any displacements will be influenced by 

these terms.  Expanding using these assumptions obtains  

 2 2 2 4 2 4

3 3

11 4
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R R R R R
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 

  
    

 
                                      (4.1.45) 
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3 3

11 2 2
sin 2 sin 2b b

R R R R
V

E r r E r r

 
   
      

         
      
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E r E r

   
 

  
                                                           (4.1.46)  

 

The result of interest is when r becomes the tunnel radius R at the wall for the radial component.  

When substituted into (4.1.45) gets 

  

 
       1 4 1 1 1

cos 2 + cos 2a b bU r R R R R
E E E

   
    

   
                  

 
   3 4 1

                1 cos 2
ba
RR

E E

  
 

 
                                                          (4.1.47)  

 

The extreme points with respect to the radial displacement U around the circle may now be 

examined to determine a set of component-wise vertical and horizontal displacements, and in 

turn re-write 
a and 

b as a special coefficient pair.  These points are depicted in Figure 4.5. 
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Fig.4.5 Tunnel points of interest for radial displacement. 

Taking 0  (for U1) and 
2


  (for U2) as the extreme points in (4.1.47) gets  

 

 
   

1

3 4 1
1

ba
RR

U
E E

  


 
                                                                                  (4.1.48) 

 

 
   

2

3 4 1
1

ba
RR

U
E E

  


 
                                                                                 (4.1.49) 

 

Adding (4.1.48) and (4.1.49) leads to 

 

1
a

E






                                                                                                                             (4.1.50) 

 

where  is a dimensionless coefficient defined by 

 

1 2

2

U U

R



                                                                                                                         (4.1.51) 
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Similarly, the difference between (4.1.48) and (4.1.49) finds 

 

  3 4 1
b

E


 


 
                                                                                                             (4.1.52) 

 

where 

 

 1 2

2

U U

R



                                                                                                                        (4.1.53) 

 

From (4.1.50) and (4.1.52), substitute the newly found coefficients into (4.1.45) and (4.1.46) 

thereby establishes 

2 2 4
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1 4 1
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3 4 3 4

R R R
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r r r

   
 

 

   
      

    
                                                   (4.1.54) 
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3
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R R
V

r r

  
 

 

   
    

    
                                                                (4.1.55) 

   

           Having now determined the radial (U) and tangential (V) displacements that are in polar 

form, it is of practical use to transform the pair into rectangular components (x, z).  In addition, 

hereinafter, the previous plate problem can now be viewed as a soil matrix and that x will denote 

the horizontal distances, and z for the vertical distance.  At ground level or surface, z = 0.  The 

open hole can now also be considered a bored tunnel as depicted in Figure 4.6. 
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Fig.4.6 Plate problem from solid mechanics may now be viewed in the context of tunneling. 

         

            From linear algebra, a useful transformation rule that allows this conversion to take place 

can be defined as 

cos sin

sin cos

x

Z

u U

u V

 
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     
     
    

                                                                                                                   (4.1.56) 

The square matrix if replaced by the analytic components can take the form 

x

z

x z

u Ur r

u z x V

r r

 
    

     
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                                                                                                                                  (4.1.57) 

and now substituting for U and V obtains  
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                          (4.1.58)                                                             (3.3.58) 
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Expanding these matrices, the horizontal (ux) and vertical (uz) displacements were found to be 
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                      (4.1.59)                                                        
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                                           (4.1.60)           

                                                    

By applying the principle of virtual images as depicted in Figure 4.7, the single point at the sink 

was then projected symmetrically above the ground surface to produce the image.  Hence, the 

singular displacements are represented as 
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Fig.4.7 Application of the Sagaseta method.  The sink and image points both cause displacements [5]. 
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             (4.1.62)                                                                                    

Here   is defined by (4.1.51) and   by (4.1.53).  In tunnel engineering,  is called the radial 

strain or ground loss, and  is referred to as a distortion or ovalizaton parameter.  In addition, the 

new r and z distance terms are defined by 
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                                                                                                                                                  (4.1.63)                                                                                                                           

 

Components with the sub-indices 1 denotes the lower plane while 2 indicates the upper plane.  

The h in (4.1.63) may be considered the tunnel placement depth measured from the center of the 

opening to the ground surface and x denotes the lateral distance from the center of the cavity.  

Based on the derived information so far, it is now worthwhile to develop a stress formula 

acting normal at the ground level (z = 0) in which the pressure is influenced internally from the 

tunnel cavity.  In turn, displacements may be found as suggested by Verruijt and Booker which 

made use of Fourier methods [26, 29].  This normal stress 
zz  may be determined by applying 

the transformation rule  

2 2sin cos sin 2zz r r                                                                                           (4.1.64) 

 

From above, the modified radial, tangential and shear stress are restated as follows 
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When these expressions are expanded and retained for the higher order terms, the equations 

becomes 
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where G denotes the shear modulus and 3 4 .     Now, the normal stress is written out in 

analytic form as  
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Applying the principle of virtual image doubles the result of (4.1.71) thereby obtains 
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In passing, it should be noted that there are no shear stresses, that is 0zx   and vertical 

displacement at the surface in the real sense.  The former may be confirmed by applying the 

shear stress law 

 
1

sin 2 cos 2
2

zx r r                                                                                              (4.1.73) 

 

and when inserting the polar stress coefficients of (4.1.68), (4.1.69) and (4.1.70), attention is 

made to the fact that p and q are zero in evaluating for 
a  

and 
b .  The latter statement could be 

verified by inserting z = 0 into (4.1.62) which makes 
 1z

u  zero. 

 In order to obtain the displacements needed to counterbalance in the opposite direction of 

the acting normal stress, one possible method made use of the Fourier cosine transform  cF a .  

The justification of  cF a has to do with the fact that (4.1.72) is an even function.  In the treatise 

by Sneddon [26], the horizontal and vertical displacement may be represented as  
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where G denotes the shear modulus and  P a can be defined as  
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or by inserting (4.1.72) obtains 
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In the integrands of (4.1.74) and (4.1.75), use of 
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was made to simplify the 

expressions to 
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The evaluation of P(a) could be determined first by separating the integrand of Eq. (4.1.77) into 

three sub- components, and by referring to any mathematical table [27] for the particular Fourier 

cosine transform of 

 
2 2

exp1

2
c

ah
F

x h h

  
  

                                                                                                               (4.1.80) 

 

             The next step required a series of single or multiple partial differentiations with respect to 

either variables a or h for both sides of (4.1.80) and then finally adds up all parts to attain the 

final result for all terms of (4.1.77).   These sequences of steps could be traced out as shown in 

Figure 4.8. 
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Term Differentiation Order 
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Fig.4.8 Differentiation summary for the Fourier cosine transform to evaluate P(a). 

 

In Appendix A, all the calculations are shown.  When all simplifications are made, the 

final integrals should have the following forms 

 

 
 

2 2

2 2

20 2 2

cos
4 2 exp

h x axdx
R G R G a ah

x h
  

 
 


                                                               (4.1.81) 

 

 
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3 cos 2 exp16 h x h axdx R G a h ahR G

x h

 
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                                           (4.1.83) 
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and by combining (4.1.81) through (4.1.83) according to (4.1.77) will obtain the determination 

for P(a) as 

     
 4 32 2

2
exp2

2 exp exp

           

R G a ahR G a h
P a R G a ah ah

  
 

 


                      (4.1.84)           

            The last step in establishing the two directional displacement equations were then to 

insert (4.1.84) into (4.1.78) and (4.1.79).   In the next computation process, additional Fourier 

sine  sF a and cosine  cF a
 
transforms below must be considered as follows 

 
2 2

exps

x
F az

x z
    

                                                                                                                            (4.1.85)           
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z
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x z
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                                                                         (4.1.86)  

 

 
2 2
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z
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x z
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                                                                                                      (4.1.87)          
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expb

c b
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z
F a az

x z



 
  

    


                                                                          (4.1.88)  

 

where Γ(b) denotes the gamma function [27].  In particular, when verified in analytical detail 

[see Appendix B], the following transforms will serve as identities ready for algebraic expansion 

 2 2

2

exps

x
F az

r
                                                                                                                          (4.1.89)     
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  2

2 4

2

2
exps
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F a az

r
                                                                                                                    (4.1.90) 
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 Making the insertion of (4.1.84) into (4.1.78) gets the following general expression 

 

 
 

 
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                             (4.1.97)  

Using the identities from (4.1.89) to (4.1.92) establishes the explicit result for (4.1.97) as  
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                                                                                                                                               (4.1.98) 

 

and when expanded gets 
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(4.1.99) 

 

Similarly, the substitution of (4.1.84) into (4.1.79) obtains the general expression 
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and inserting the identities from (4.1.93) to (4.1.96) into (4.1.100) gets 
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                                                                                                                                                            (4.1.101)                                                               

                                                  

where 
1 n

n



 which is also equal to  2 1 .   Expanding  (4.1.101) obtains  
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                                                                                                                                      (4.1.102) 

 

             The complete solution was defined at the start by (4.1.1) and (4.1.2) which stated the sum 

of the real and virtual components for the individual horizontal and vertical directions 

respectively.  Thus, the displacement equations could be re-written to include the derived 

information as 

       1 2
4.1.61 4.1.99x x x

u u u                                                                                                       (4.1.103)  

 

       1 2
4.1.62 4.1.102z z z

u u u                                                                                                     (4.1.104)  

 

For the special case of surface deflections, insert z = 0 into 
2z z h   and Eq. (4.1.104) becomes 
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                                                                                                                                                                (4.1.105)  

 

This was the subsidence equation used for the analysis of normalized terms. 
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4.2 Normalized Representation 

As was stated in Eq. (4.1.105), two higher-order terms were associated with the ovalization 

factor.  The first term could be normalized to become 
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1
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x

u h h

R x
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
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  
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                                                                                                                (4.2.1) 

 

and the second term represented as  

 

2

3

34 2

3 1

1
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x

u h h
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h



 
 

 
  
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                                                                                                                 (4.2.2) 

 

These normalized representations were plotted and discussed in Chapter 5.  Each normalized 

term is a non-dimensional number analogous to an aspect ratio or Reynold’s number.  These 

numbers have no units and were intended to ascertain any behavioural or qualitative patterns of 

the subsidence with respect to the lateral position of the tunnel centerline.  In this case, for the 

ratio ,
x

h
 h may be considered fixed while x could indicate any horizontal location away from the 

tunnel. 
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Chapter 5                                              Application of Methods 

5.1 Introduction 

The g parameter outlined in Chapter 2 is described in detail so as to demonstrate its usefulness in 

connection with the derived radial strain and ovalization of Chapter 4.  An expression is given to 

link these parameters.  In addition, a numerical example is discussed using tunneling data from a 

published paper and making use of the derived subsidence equation (4.1.105).  Finally, some 

qualitative features of the Eq. (4.1.105) are examined so as to obtain some prediction 

characteristics for expecting settlement responses during shallow tunnel excavation.  

5.2 Determination of Physical Gap  pG  

The physical gap has been defined as the difference between the vertical distances of the shield 

(D) and lining (d) crown.  The vertical distance of the shield is taken from the rear rather than at 

the face of the TBM because in the case (iii) scenario, the shield part may have rotated.  As 

shown in Figure 5.1, the sub-components of the shield diameter indicate an equivalent definition 

for determining Gp. Here, the totality of the shield diameter consisted of the lining distance, 

lining clearance (δ) and tailpiece thickness (Δ).  Since the tailpiece thickness is both located at 

the crown (top) and base (bottom), the actual thickness becomes 2Δ.  The sum of δ and 2Δ is 

then the equivalent formula for the physical gap as stated in Eq. (5.2.1). 

2pG D d                                                                                                                             (5.2.1) 
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Fig.5.1 Measurement points for determining the physical gap (Gp) during tunnel excavation [13]. 

 

 
5.3 Determination of Spatial Deformation  *

3D
u  

As a result of interface contact of the TBM and soil at the front, stresses applied on the face will 

often cause significant soil intrusion.  These horizontal displacements occurring at the face of the 

TBM contribute to a volume loss, and thus an additional term was needed in Eq. (2.2.1).  Such a 

term was designated a spatial deformation and may be quantified based on two or three 

dimensional finite element studies.  Lee et al. asserted that the two dimensional term can replace 

the spatial quantity without precision loss towards the deformational calculation.  Determining 

the value *

3Du  requires evaluating two quantities which are based on FEM and prepared charts.   

The equation for the spatial deformation is given as 

 

* 1
3

2

x
D

k
u


                                                                                                                                              (5.3.1) 
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where k1 is a special factor characterizing soil intrusion across the tunnel face.  It too may be 

defined as a ratio 

 

1

Vol. (non-uniform axial intrusion) using 3D FEM

Vol. (uniform axial intrusion)
k                                                              (5.3.2)                                                                                          (2.2.2.1) 

 

 

but in published studies, fall in the range between 0.7 to 0.9 for stiff to soft clays.  However, k1 = 

1 may be safely used [13].   

 The δx is called the tunnel face intrusion and may be estimated with (5.3.3) for some 

stability ratio N and finally back calculate to find δx.  As suggested by Lee et al., an N-Ω chart 

may be prepared to organize a series of standard values so the designer may simply read it off to 

begin the calculations.  The vertical axis makes use of the non-dimensional ratio given by 

 

x

o

E

RP


                                                                                                                                                  (5.3.3) 

 
    

where E is the elastic modulus of the soil, R is the tunnel radius, and Po is the total stress 

removed at the tunnel face calculated using 

 o o v w iP K P P P                                                                                                                                         (5.3.4)                                                                                                                              

 

with 
oK   representing the effective coefficient earth pressure at rest, 

vPas the vertical effective 

stress at the tunnel spring line (side), 
wP  denoting the porewater pressure and 

iP as the tunnel 
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supporting pressure.  The value of 
iP  may be zero if the tunnel is completely bored and if found 

at the tunnel face is compressed air will make 
iP  greater than zero. 

5.4 Determination of Workmanship  
 

 

The need for the workmanship term ω addresses the case (iii) of Figure 2.3 with respect to the 

complex nature of the tunnel pathway and how the TBM must deal with such a situation.  In this 

construction scenario, the tunnel shield must either be steered vertically up or down resulting in 

additional material being excavated.  In addition, the decision to include lining installation 

behind the shield and external components to reduce frictional drag may be factored in the final 

workmanship value (Figure 5.2).  

 A way of quantifying this particular loss has its origins from the work of Cording and 

Hansmire [13].  The authors suggested on top of the shield, a point over the crown would 

displace an amount equal to the length of the shield multiplied by the excessive pitch of the 

shield.  This concept may be put into equation form as 

shieldV RL ExcessPitch                                                                                                              (5.4.1)  

where R is the tunnel radius, L is the length of the shield and the Excess Pitch may be measured 

based on the schematic of Figure 5.  An alternative formulation is to view the transverse section 

composed of the TBM diameter 2R and adding the excess above the crown designated as ω to 

form a total length of 2R+ ω.  Then substituting into Eq. (5.4.1) will get 

2

2

2
shieldV R R


 
 

   
 

                                                                                                                 (5.4.2) 
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If higher order terms are ignored in Eq. (5.2) when expanded, then it may be simplified to  

 

sV R                                                                                                                                                (5.4.3) 

 

where L ExcessPitch    and the value of the excess pitch is decided beforehand. 

 

Fig.5.2 Workmanship term accounts for potential tilting of the tunnel shield [13]. 

 

 Even with control of the tunnel face to proceed with pitch irregularity, the TBM may also 

have some side to side motion as well to complicate the precise value of ω.  This combination of 

erratic movement will cause over-excavated voids thus allowing radial ground loss to form.  Two 

potential cases were modelled by Lee et al. to quantify this particular ground loss and has to do 

with either there are unlining or lining installations begins behind the shield. 

 For the unlined case, ω was proposed to be calculated using 

3

iu
                                                                                                                                                         (5.4.4)  
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where ui is the elastoplastic plane strain displacement at the crown and may be determined by 

applying  

 
2

1
1     

1
2 1 exp

2
1

i

u u

u

u

R N
c

E



 
   

   
  

                                                                               (5.4.5) 

 

Here, Eu and νu are the undrained elastic modulus and Poisson’s ratio, R is the tunnel radius, cu is 

the undrained soil strength, and N is a stability number. 

 An alternative case incorporates lining and as such may be estimated by using 

0.6 pG                                                                                                                                                (5.4.6)  

 

but only if (2.2.3.6) satisfies the following inequality  

 

(5.4.7) (5.4.4)Eq Eq                                                                                                                                (5.4.7) 

 

If the inequality of (5.4.7) has not been met, then the governing value of ω must be based on Eq. 

(5.4.4).                             

 One last factor can further refine ω which addresses frictional contact influence between 

the soil and shield interface.  It has been identified that ground losses can be created from the 

welded beads on the hood for the intent of minimizing friction as the shield moves forward and 
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provide more steering flexibility.  With this bead attachment, the workmanship term defined by 

the governing result of Eq. (5.4.7) may be represented as 

 Value determined by Eq. (5.4.7) bnt                                                                                       (5.4.8) 

 

where tb is the bead thickness and n may be considered by deciding which of the following three 

cases are applicable 

 

0 no bead

1 bead spans the upper 180  of hood

2 bead covers full circumference of hood and shield

on




 
 

  

 

5.5 Linkage of Parameters 

A simple relation is demonstrated so as to bridge the gap parameter discussed above and the 

parameters radial strain and ovalization.  This technique connects the data measured from the 

field with the analytical equations.  By taking the ratio b

a




and using Eqs. (4.43), (4.44), (4.50) 

and (4.52) for simplification, it can be established that  3 4 .
p q

p q







 


  The term 

p q

p q




 is 

also equivalently defined by  
1 sin

1 sin








 from the Mohr-Coulomb theory of soil failure [6].  In this 

case, ε is related to g if g<<R, then g is approximately 02u where uo is the amount of radial 

displacement.  Then 02u g

R R
   which forms the linkage between ε and g. 
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5.6 Numerical Example 

Having described the theoretical aspects of determining ground level subsidence caused by 

shallow tunnel operations, it is quite useful to compute the quantity using a published example 

where an actual excavation project has taken place.  The example taken is from [17] and the 

subsidences calculated here include only Section 1 for discussion.   

Since four methods (Peck, Sagaseta, Verruijt-Booker, and thesis) were used for 

comparison, the data consisted of the inflection point i = 6.3 m, R = 4.7 m, h = 14.2 m, ε = 

0.0018, δ = 0.0023, υ = 0.3, g = 0.012 m and Vs = 0.50 percent.   The normalized settlement 

profiles for the right side of the tunnel are displayed in Figure 5.3.  A parametric analysis may be 

conducted using the plotted information in order to determine any significant changes if a 

variable of interest were to be altered.  The discussion of such a study is presented in the next 

section. 

The lowest subsidence (11.2 mm) estimate came from Sagaseta’s original formula while 

the highest settlement (32.2 mm) was obtained using the Peck equation.  The thesis-derived 

equation obtained a deflection value close to the Verruijt-Booker solution.  Despite that the 

different final form of the subsidence equations used, the end result all resemble a normal curve 

distribution. In testing the ε-g relation, the equation predicted a value of ε = 0.0025 compared to 

the measured 0.0018 which has a relative error of 40 percent.   
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Fig.5.3 Normalized settlement distribution based on four different methods.   

 

5.7 Parametric Analysis 

 The numerical example described in the previous section suggests a parametric study 

could be obtained.  In particular, the placement depths of the tunnel may be altered to gain some 

information regarding any changes of the subsidence from the four methods discussed.    

A total of 5 plotted graphs examined the distributions for depths between 20 to 40 m are 

shown in Figures 5.4 to 5.8.  These additional graphed figures including Figure 5.3 demonstrated 

a common behaviour in that the settlements over the tunnel decreased if deeper depths were 

chosen for construction.  The Peck method however retained its distinctive bell-curve shape 

throughout the comparison while the other three methods showed a flattened pattern progression 

from shallow to deeper zones.   

-0.0025

-0.002

-0.0015

-0.001

-0.0005

0

0.0 0.2 0.4 0.6 0.8 1.1 1.3 1.5 1.7 1.9 2.1

U
z/

h

x/h

Peck

Sagaseta

Verruijt-Booker

Thesis



57 

 

 

Fig.5.4 Subsidence distribution based on depth of 20 meters. 

 

 

 

Fig.5.5 Subsidence distribution based on depth of 25 meters. 
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Fig.5.6 Subsidence distribution based on depth of 30 meters. 

 

 

 

Fig.5.7 Subsidence distribution based on depth of 35 meters. 
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Fig.5.8 Subsidence distribution based on depth of 40 meters. 

 

The relative difference of the normalized surface deflections from shallow to deep depths 

of all four methods may be summarized in Figure 5.9.  Here the benchmark used the subsidence 

data above the cavity from Figure 5.3 while the other subsidences from Figures 5.4 to 5.8 were 

analyzed for their changes away from the shallow tunnel option.  It was observed that the 

displacement solutions were significantly reduced of up to 88% when the depth of 40 m was 

chosen; only the Peck method estimate was lower at 65% but otherwise suggested a similar 

trend.  The curve above the Peck method appeared to be lumped together but should be viewed 

as three distinct plots due to the closeness of the calculated error values.  The large reduction of 

subsidences makes sense as there is more ground layers above the cavity which provide stiffness 

to minimize soil movement.  With no soil movement at deeper excavations, the surface 

deflections become less pronounced. 
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Fig.5.9 Relative difference plot for the various depths.  The curve above the Peck method is composed of three 

other methods.  The differences calculated were close to one of another to have created the appearance of 

having them lumped together. 

 

5.8 Qualitative Predictions 

The normalized representations as defined by Eqs. (4.2.1) and (4.2.2) are discussed in this 

section.  When plotted, these normalized equations as shown in Figures 5.10 and 5.11 also depict 

a settlement trough distribution resembling the subsidence discussed above.  The key distinction 

here was to use the ratio 
x

h
for a rapid estimate of potential surface settlements with the 
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Fig.5.10 Normalized plot for the first ovalization with various Poisson's ratios. 

 

 

Fig.5.11 Normalized plot for the second ovalization term with various Poisson's ratios. 
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begins to increase its effect on the subsidence and will peak at its maximum located at the center 

of the tunnel.  Thus the surface settlements may be predicted to be at its highest by examining 

the relative value of 
x

h
. 

 An additional observation could be made when various Poisson’s ratios may be factored 

in.  In this case, a range between 0 and 0.5 was examined and multiplied with both
2

zu h

R
and 

3

4

zu h

R
. When plotted, at one end where the soil is compressible (υ = 0), the distribution suggests 

that the subsidence tends to be lesser when compared to the incompressibility state at 0.5 by a 

change of 0.667 with the settlements increasing.  

 The quantitative significance of the heave in Figures 5.10 and 5.11 between the 1 and 2 

of the horizontal axis could be examined by testing the influence of the ratio of the second over 

the first ovalization term and checking its impact of the tunnel radius over the depth placement.  

As depicted in Figure 5.12, the decrease of the ratio 
h

R
 suggests a stronger contribution from 

both ovalization terms in the order of 2 to 10 times of the subsidence equation; and for the 

reverse, if the tunnel placement depth is deeper will then increase 
h

R
 thereby making the need of 

the second ovalization negligible.  Based on these observations, it could be seen that the derived 

general subsidence may treat the Verruijt-Booker equation as a special case depending on the 

placement depth. 
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Fig.5.12 Influence of the ovalization term varied according to the placement depths of the tunnel. 

 

In addition, the real root of Figures 5.10 and 5.11 could be determined to be equal to  
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     .  Based on this formula, a plot distribution was constructed as 

shown in Figure 5.13 and indicates that if the tunnel placement for deeper depths were chosen 

the excessive heave tends to stabilze or level off.   For the root-based plot, the vertical axis was 

determined by the values of the derived root solution as compared to the other nomralized 

graphs. 
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h
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values above 0.331 shows the curve 
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Fig.5.13 The effects of heaving may be found by examining by examining the relation of the tunnel placement 

depths. 
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Chapter 6                                                                   Conclusion 

 

A new displacement equation linking the classical Kirsch solution and recent virtual image 

method of Sagaseta was derived.  Essentially, the final subsidence equations used those tools to 

convert a half to full-space problem were only contributed from the virtual image component 

existing in the upper plane.  The derivation incorporated higher order terms and obtained a new 

different pair of coefficients ε and δ for which the original VB paper does not explicitly state nor 

detail in steps their arrival towards the solution.   Other subsidence equations were also discussed 

and compared to one of another using actual data from a project site. 

General predictions were made with regard to a variety of depths and their respective 

normalized settlements above the tunnel.  These predictions used a parametric-based 

methodology to compare the 4 displacement methods for 5 different tunneling options placed 

from shallow to deeper depths.  It was determined that if tunneling construction chose a deeper 

zone for boring, the surface deflections would become less apparent.  Irrespective of the 

subsidence methods, the quantitative conclusions were similar.   

Qualitative observations were also made and directed to the thesis derived equations.  

The generalized VB equation was able to determine the correct direction of the tunnel 

deformation pattern.  The amount of vertical forces exerted at the crown and base tends to move 

towards the center thereby pushing the lateral ends to expand horizontally.  Based on this 

recognition of the impact of the forces that imparts deformation without significant contribution 

from the radial strain, simple observations can be made from the subsidence equation (4.1.105).  

The method required normalizing the higher-order terms for its displacement to ovalization 
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against the relative lateral position to the placement depth of the tunnel 
x

h
.  The normalization 

analysis also included a range of Poisson’s ratio between 0 and 0.5 for different soil 

compressibility. 

In closing, the entire confirmation or verification process undergone in this study if 

implemented for an actual tunnel construction should be repeated for certain distances 

representative of the subsurface terrain.  These traversed segments may encounter a new soil 

medium requiring different soil properties such as Poisson’s ratio and elastic modulus, and 

possibly change in tunnel depth to be catalogued, but nevertheless can adopt the methodologies 

described in this work to predict a viable subsidence and take action. 
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Appendix A- Calculation for the P(a) Terms 

 

The Table 3.1 consisted of a summarized sequence of differentiation in order to evaluate the 

integral.  In this section, all the explicit terms will be calculated to make sense of the subsequent 

substitution required to determine the virtual-based deflections. 

 

The starting point is to consider the Fourier cosine transform defined below 

 

   
2 2 2 20

cos exp1

2
c

ax ah
dx F

x h x h h

  
    

                                                                               (A.1) 

 

and by some differentiation steps will it enable the evaluation of P(a).  For reference P(a) is 

restated here as    
0

coszzP a ax dx


   where zz was derived as  

  

 

 

 

   
 

2 2 2 2 2 2 4 4
2 2 4 4

2 3 4
2 2 2 2 2 2

4 16 3 12
6zz

R G h x R G h x h R G
h x h x

x h x h x h

  


 

 
      

  
                   (A.2)  

 

 

The first term from (A.2) required the operation on both sides of (A.1) as 
h




 

  

   

 
2 2 20 0 2 2

cos 2 cosax h ax
dx dx

h x h x h

  
  

   
                                                                                             (A.3) 
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       
2

exp exp exp exp 1
1

2 2 2 2

ah ah a ah ah

h h h h h h

         
      

   
                                   (A.4) 

  

which leads to 

                                                                           

 

 

 
 

2

2 2

20 2 2

cos exp
4 exp

h ax ah
R G dx R G a ah

hx h


  

  
     

  
                                             (A.5) 

The second part of the first term of (A.2) requires 

2

2h a h

   
  

   
 and gets 

 

 

 
 

2

2 2

20 2 2

cos exp
4 exp

x ax ah
R G dx R G a ah

hx h


  

  
   

  
                                                 (A.6) 

Subtracting (A.5) and (A.6) will verify Eq. (4.1.81). 

 For each derivative as was described for computing the second term of (A.2), it will be 

advantageous to isolate the left-side to have the form of (A.1) and simplify with the right-side 

differentiation.  The common differentiation sequence of 
2

2h




 obtains 

 
 

2

3 5 4 30 2 2

cos( ) 3 3
exp

16

ax a a
dx ah

h h hx h

  
    

 
                                                                         (A.7) 

The mixed-term product 3h
2
x

2 is handled by performing 2 2

2 2

a h

  
 

  
and h

4 
term occurring as the  

numerator of (A.2) is obtained by multiplying h
4
 of (A.7) yielding 
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 

 
 

2 22 2
2

30 2 2

3 cos16 3
3 3 exp

h x axR G R G
dx a h a ah

hx h

  

 

  
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                                           (A.8) 

 
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                                                    (A.9) 

If (A.8) and (A.9) are subtracted, Eq. (4.1.82) will be established. 

 In evaluating the remaining component of (A.2), it will be recognized beforehand that 

there is a common differentiation sequence with respect to h three times consecutively.  Thus, 

after the third differentiation 
3

3
,

h




the result should have the form 

 

 
 

2 3

4 7 6 5 40 2 2

cos 15 15 6
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96
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dx ah

h h h hx h

  
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 
                                                          (A.10) 

The step towards obtaining for the numerator containing the mixed-term 6h
2
x

2
 and x

4
 products 

are to differentiate (A.10) with respect to a twice and four-times respectively.  In doing so, these 

relations will be established 

 
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 

 
 

44 4 2 3

4 3 20 2 2

cos12 15 15 3
exp

4 88 8

h axR G R G a a a
dx ah

hh hx h

  

 

  
      

 
                              (A.12) 

 

 
 

44 4 2 3

4 3 20 2 2

cos12 3 3 3
exp

8 8 4 8

x axR G R G a a a
dx ah

h h hx h

  

 

  
       

 
                          (A.13) 

By adding (A.11) through (A.13) will confirm Eq. (4.1.83). 
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Appendix B- Fourier Sine and Cosine Transforms 

 

In this section, the Fourier sine  sF a and cosine  cF a transforms used in establishing the 

supplemental distance relations required for the virtual deflection equations development will be 

expanded.  In the following derivations, it will be taken for granted that the relevant transforms 

are valid from any reputable mathematical hand tables.   

 The relevant definition for the Fourier sine  sF a and cosine  cF a transforms was taken 

as the asymmetric representations 

 

       
0

sins sF a F f a f a ax da


                                                                                       (B.1) 

 

       
0

cosc cF a F f a f a ax da


                                                                                      (B.2) 

 

 It will be noted that in the process of substituting P(a) into Eqs. (4.88) or (4.89), the 

exponential part may be merged and in the context of (B.1) and (B.2) can the following 

definitions be seen 

 

   
0

exp sina h z ax da


                                                                                                                  (B.3) 
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

                                                                                                                          (B.4) 
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For simplicity, (B.4) will be considered but the derivation details are similar for (B.3).   From 

(4.63), the following distance relations for the upper plane were used 

  

2

2 2 2

2 2

z h z

r x z

 



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                                                                                                                                        (B.5) 

 

and when substituted into (B.4) the integral becomes 

 

   2
0

exp cosaz ax da


                                                                                                                     (B.6) 

 

 Also in the substitution of P(a) into the displacement integrals of Sneddon [26], the 

constant a
b
 will often appear.   From the cosine transform definitions of (4.1.87) and (4.1.88), 

their representations are repeated here as 
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The particular cases to be examined are with b = 2, 3 and 4.  When b = 1, (B.8) is reduced to 

(B.7). 

For b = 2, (B.8) will take the form as 
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where  1 !r r    is the gamma or factorial function.  Letting 
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analytic form 
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cos 2

z r z x z

r x z


  
 


.  Thus, (B.9) now becomes 

 
 

 

 2 2 2 2

2 2

2 2 4
2 2

2
2

expc

x z x z
F a az

rx z

 
      


                                                                      (B.10) 

 

which was the identity stated for (4.1.94). 

 

For b = 3, (B.8) will take the form as 

 

 
 

22

2 3/2
2 2

2

2cos 3arctan

expc

x

z
F a az

x z

  
  

     


                                                                             (B.11) 
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Here Γ(3) = 2, and the identity 3cos3 4cos 3cos    was used.  In a similar analytic manner 

from above and substitutions made gets  

 

 
 

 

 2 2 2 2

2 2 2 22

2 3 6
2 2

2
2

2 3 2 3
expc

z x z z x z
F a az

rx z

 
      


                                                  (B.12) 

 

thereby established identity (4.1.95). 

 

             Finally, setting 4,b   Γ(4) = 6 along with 4 2cos4 8cos 8cos 1      was referred to, 

making (B.8)    

 
 

23

2 4/2
2 2

2

6cos 4arctan

expc

x

z
F a az

x z

  
  

     


                                                                             (B.13) 

 

Repeating the same analytic form and substituting into cos4  gets
4 2

2 2

4 4 2

2 2 2

48 481
6

z z

r r r

 
  

 
.  Thus,   

 
2 4

3 2 2
2 4 6 8

2 2 2

48 486
expc

z z
F a az

r r r
                                                                                                    (B.14) 

  

and verifies identity (4.1.96). 
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