
A Computational Study of Problems
in Sports

by

Tyrel Clinton Russell

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2010

c© Tyrel Clinton Russell 2010

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

This thesis examines three computational problems in sports. The first problem ad-
dressed is determining the minimum number of points needed to guarantee qualification for
the playoffs and the minimum number of points needed to have a possibility of qualification
for the playoffs of the National Hockey League (NHL). The problem is solved using a phased
approach that incrementally adds more complicated tie-breaking constraints if a solution is
not found. Each of the phases is solved using a combination of network flows, enumeration
and constraint programming. The experimental results show that the solver efficiently
solves instances at any point of the season. The second problem addressed is determin-
ing the complexity, either worst-case theoretical or practical, of manipulation strategies in
sports tournaments. The two most common types of competitions, cups and round robins,
are considered and it is shown that there exists a number of polynomial time algorithms
for finding manipulation strategies in basic cups and round robins as well as variants. A
different type of manipulation, seeding manipulation, is examined from a practical perspec-
tive. While the theoretical worst-case complexity remains open, this work shows that, at
least on random instances, seeding manipulation even with additional restrictions remains
practically manipulable. The third problem addressed is determining whether manipula-
tion strategies can be detected if they were executed in a real tournament. For cups and
round robins, algorithms are presented which identify whether a coalition is manipulating
the tournament with high accuracy. For seeding manipulation, it is determined that even
with many different restrictions it is difficult to determine if manipulation has occurred.

v

Acknowledgements

I have been helped by a number of people in the completion of this work and I would
like to take the opportunity to thank those people for their support during my time at
the University of Waterloo. I would like to thank my supervisor Peter van Beek for his
dedication, advice, counsel and ideas during the completion of this work. I would also like
to thank Toby Walsh for his advice and for his input and ideas on the publication that
we co-authored. I would like to thank my external examiner Michael Trick for his input
and his corrections which helped make my thesis better. As well, the other members of
my committee, Alex Lopez-Ortiz, Dan Brown and Ada Barlatt, for their corrections and
insightful comments on the thesis. I would like to thank Hagit for her time, care and love
without which I would not have been able to succeed. I would like to thank my former
roommates, Jeff Quilliam, Laurent Charlin and Fabienne Beduneau, for their laughter and
friendship. I would like to thank my friends for helping me stay sane and relaxed. I would
also like to thank the members of the AI Lab, past and present, for their ideas and input.
Last, but not least, I would like to thank my family for their support and encouragement.

vii

Table of Contents

List of Tables xiii

List of Figures xv

1 Introduction 1

2 Background 5

2.1 Constraint Programming . 5

2.2 Enumeration Techniques . 7

2.3 Network Flows . 9

2.4 Dynamic Programming . 10

2.5 Competitions, Tournaments and Manipulations 11

2.6 Accuracy, Precision and Recall . 13

3 NHL Playoff Qualification and Elimination Problems 15

3.1 Related Work . 17

3.2 The NHL Playoff System . 18

3.3 A Motivating Example . 20

3.4 Basic Models . 20

3.5 Solution Overview . 25

3.6 The First Phase . 27

3.6.1 Enumerating the Set of Implication Constraints 29

3.6.2 Calculating the Bound . 31

ix

3.7 The Second Phase . 39

3.8 The Third Phase . 43

3.8.1 Symmetry Breaking and Redundant Constraints 44

3.8.2 Pruning Values from Constrained Teams via Flow Manipulation . . 46

3.9 A Note About Division Leaders . 46

3.10 The Elimination Problem . 49

3.11 Experimental Results . 49

3.12 Summary . 55

4 The Manipulation of Sporting Tournaments 57

4.1 Related Work . 59

4.2 Cup Competitions . 61

4.2.1 Minimal Number of Manipulations for Cup Competitions 65

4.2.2 Double Elimination Cup Competitions 66

4.2.3 Reseeding Cup Competitions . 68

4.3 Round Robin Competition . 70

4.3.1 Minimal Number of Manipulations for Round Robin Competitions . 74

4.4 Seeding Cup Competitions . 77

4.4.1 Definitions . 77

4.4.2 A Description of the Families of Restrictions 81

4.4.3 Practical Complexity and Constraint Programming 83

4.4.4 Symmetry Removal . 88

4.4.5 Experimental Results . 89

4.5 Combining Manipulations . 90

4.5.1 Seeding Manipulation with a Coalition of Cheaters 90

4.5.2 Combining Round Robin and Cup Competitions 91

4.6 Summary . 96

x

5 Detecting Manipulation in Sporting Tournaments 99

5.1 Related Work . 100

5.2 Detecting Manipulations in Cup Competitions 101

5.2.1 Notation and Definitions . 101

5.2.2 Pruning and Bounding the Coalitions 106

5.2.3 An Algorithm For Determining Strategically Optimal Coalitions . . 112

5.2.4 Experimental Results . 114

5.3 Detecting Manipulations in Round Robins 118

5.3.1 Coalitions Formed by Only Losing to Desired Winner 120

5.3.2 Coalitions Formed by Losing to Any Team 123

5.3.3 Experimental Results . 125

5.4 Detecting Seeding Manipulations . 128

5.4.1 Families of Restrictions Where Detection is Not Possible 129

5.4.2 Families of Restrictions Where Detection is Possible 130

5.5 Summary . 130

6 Conclusions and Future Work 133

6.1 Future Work . 135

APPENDICES 137

A NHL Qualification and Elimination Results 139

B Seeding Variation Results 143

C Round Robin Detection Results 147

References 151

xi

List of Tables

2.1 Domains of the Variables . 8

3.1 NHL Scoring Models . 19

3.2 The Standings After 13 Games . 22

3.3 Number of Games Remaining in the Example 22

3.4 Results vs. Globe and Mail . 50

3.5 Interesting Features of the Results . 52

3.6 Average Days Remaining by Scoring System 53

3.7 Clinching Under Different Scoring Models in the East 53

3.8 Clinching Under Different Scoring Models in the West 54

3.9 Solver Phase Breakdown . 54

3.10 Breakdown of the Effectiveness of Techniques 55

4.1 The Adjacency Matrix of the Tournament for the Cup in Figure 4.1 64

4.2 Tournament Graph for the Round Robin Manipulation Example 72

4.3 Timing Results for Seeding Manipulation 91

4.4 Percentage of Manipulable Teams . 92

4.5 Timing Results for Seeding With Coalitions 93

4.6 Percentage of Manipulable Models With and Without Coalitions 93

4.7 Complexity of Manipulation Strategies . 96

5.1 Adjacency Matrix of the Tournament Graph 105

5.2 Determining if There is a Coalition . 118

xiii

5.3 Size of Generated Coalitions . 119

5.4 Precision, Recall, and F-measure of Coalition Detection Results 120

5.5 Organization of Teams In Coalition Detection Results 121

5.6 Results for the Selection of the Best Coalition 122

5.7 Accuracy of Detection of Simple Round Robin Manipulation 126

5.8 The Difference between Coalition and A ∪B 126

5.9 Accuracy of Detection of Complex Round Robin Manipulations 127

5.10 The Difference between Generated Coalitions and Expected Coalition . . . 127

5.11 The Number of Generated Coalitions . 127

5.12 Percentage of Instances with Two or More Strategically Optimal Winners . 128

A.1 Qualification and Elimination Results . 140

A.2 Clinching and Elimination Under Various Scoring Models 141

B.1 Timing Results for Seeding Manipulation 144

B.2 Percentage of Manipulable Models . 145

C.1 Accuracy of Detection of Simple Round Robin Manipulation 147

C.2 Accuracy of Detection of Complex Round Robin Manipulation 147

C.3 The Difference Between Coalition and A ∪B 148

C.4 The Difference Between Generated Coalitions and Expected Coalition . . . 148

C.5 The Number of Generated Coalitions . 149

C.6 Percentage of Instances with Two or More Strategically Optimal Winners . 149

xiv

List of Figures

2.1 A Backtrack Tree . 9

2.2 Converting a Multi-Sourced, Multi-Sinked Flow Network 10

3.1 An Example Schedule . 21

3.2 The Relaxed Bound . 37

3.3 The Feasible Flow Network . 40

3.4 A Flow Network and its Residual Network with a Max Flow 47

3.5 Reduced Pruning Graph . 48

3.6 Difference Between Bound Values . 51

4.1 An Example of Manipulation in a Cup . 64

4.2 A Double Elimination Cup . 67

4.3 A Ranked Reseeding Cup . 69

4.4 Flow Graph for Manipulating Round Robins 73

4.5 Team Arrangement used by the NCAA . 79

4.6 Seeding Elements . 80

4.7 A Cup and Corresponding Binomial Spanning Tree 83

4.8 The Edge Cardinality Constraint . 85

4.9 An Example of Pruning using Pools . 86

4.10 An Example of Pruning using Fixed Arrangement 87

4.11 NCAA Probability Data . 90

5.1 Results According to the Tournament . 104

xv

5.2 Results under Manipulation . 104

5.3 Results under Manipulation with Upsets 105

5.4 Disjoint Sub-trees . 107

5.5 Consecutive Manipulations are Redundant 109

5.6 Dominance of Unpaired Manipulations . 110

5.7 NCAA Probability Data . 116

5.8 Random vs Coalition . 117

xvi

Chapter 1

Introduction

Computational techniques have been applied to sports since at least the mid-sixties when
Schwartz [63] developed a flow-based technique to solve when teams had clinched a baseball
title. Since then other problems have been tackled using computational techniques. Exam-
ples include tournament scheduling [49], league planning [62], ranking [44] and elimination
problems [63]. Additionally, in the last couple of decades, there has been a large body
of work examining the computational properties of election manipulation. These type of
manipulations can be applied to sports as both elections and sports competitions fall into
the broader category of social choice mechanisms.

The area of determining when teams have clinched a sporting title has been expanded
into a host of other papers including both practical results and complexity studies. The
first problem addressed in this thesis is qualification and elimination in hockey, one of the
sports that has received very little attention from computational studies. The problem
differs from other qualification and elimination problems in other sports [1, 54] in that the
scoring mechanism is different than those traditionally used and the method of qualification
combines the idea of wild cards and multiple playoff positions.

Aside from its intrinsic interest as a difficult combinatorial problem, the problem has
a practical interest to the fans that watch the sport. In Canada, major national daily
newspapers report whether the teams have clinched or been eliminated from the playoffs.
The methods used by the papers are heuristic and the results can vary from the optimal
reporting date by several days. Beyond knowing the date of elimination, it is possible to
calculate exactly the number of games needed to clinch a playoff spot, to guarantee for
certain that the team will qualify, and the number of games the team could lose and still
earn a playoff spot. From a management perspective, knowing the exact number of games
that must be won to control their own destiny could be helpful in planning tactics and
training.

1

Some of the core attributes of sports are supposed to be integrity, honesty and sports-
manship. However, there have been numerous cases where the desire to win at all cost has
pushed coaches, teams and individual athletes to rig games, accept bribes and take perfor-
mance enhancing drugs. Given that such manipulations happen, it becomes interesting to
determine how easily manipulations could be used to change the result of a competition.
Research into computational social choice has long studied how coalitions of manipulating
agents could change the result of an election given enough information. The subject of
manipulating in sports has also been mentioned but with less focus, perhaps due to the fact
that elections are used to select the leaders of countries as well as possibly judges and law
enforcement officers. However, given the wide impact of sports on society, it is interesting
to determine how the techniques from elections can be applied to sports.

The study of manipulation has been focused on computational complexity results. The
reason for this examination is the hope that computational complexity might provide a
barrier to manipulation. Given a recent experimental study and observations from other
researchers, it seems likely that this is not the case [68, 10]. The overall result is that com-
putationally easy problems are easy to manipulate and computationally complex, NP-Hard
or stronger, may be hard to manipulate in worst-case but are often easy in practice. How-
ever, as shown later, the common types of sports competitions, used widely in professional
and amateur sports, are easily manipulable and thus even the weak barrier of computa-
tional complexity does not apply. Since it is unlikely that every sports competition is
going to change the format of their competitions, there is a benefit to understanding the
mechanisms with which a coalition could manipulate the tournament so that the organizers
can protect against the possible application of such behaviour by the competitors. This
situation is analogous to security researchers that attempt to find exploits in programs so
that the weakness can be fixed or managed.

This thesis focuses on two different manipulation strategies: manipulation by a coali-
tion of teams or athletes via thrown games and manipulation by the organizer via schedule
generation. For manipulations by a coalition of teams, this thesis examines the complex-
ity of the two common types of sports competitions, round robins and cup competitions,
to determine if the ease of manipulation in elections translates to easy manipulations in
sports. Beyond their existence, it is interesting to determine how hard it is to manipulate
a competition optimally. Optimal in this sense refers to the coalition using as little effort
as possible to change the result as desired. In the case of seeding manipulation by the or-
ganizer, which has unknown complexity, a practical experimentation is made to determine
if the problem can be solved regardless of the complexity. This technique has been used
previously on problems of unknown complexity such as, for example, graph isomorphism.

While determining how hard it is to achieve a manipulation is interesting and useful
information, it does not provide the organizers of the tournaments with tools to combat
the manipulations. Paired with the existence of easy manipulations and the widespread

2

use of such competition mechanisms, detection methods for such manipulations is a crucial
tool. Somewhat surprisingly, the work of manipulation has not been paired with detection
methods in the literature. Given the assumption that a coalition of agents is changing the
results of matches to rig the competition, the changes should be visible to the viewers of
the game, for example, by the game not finishing as expected. Currently, almost all sports
cheating detection is done through the analysis of betting patterns. If a coalition is actively
at work in a competition then the end result should be that some of the unexpected results
are those of the coalition. The question that is interesting is whether it is possible to look
for patterns in the results to determine the existence of and makeup of the hidden coalition
that formed at the start of the tournament.

Another interesting question is whether detection is possible. If a random set of upsets
always appears to be the same as a set of manipulations, it would not be possible to
differentiate the two sets from the pattern of results. For each of the different type of
manipulation, the question of whether it is possible to distinguish between a set of outcomes
that happen randomly or via manipulation is addressed.

The rest of the thesis is organized as follows. In Chapter 2, the background material
needed to understand the material in the following three chapters is presented. In Chapter
3, a hybrid constraint programming and enumeration approach for solving the qualifica-
tion and elimination problems related to the NHL hockey is presented. A basic model is
proposed and then extended allowing the solver to handle practical instances. In Chapter
4, a complexity analysis is applied to the problems of manipulation in cup competitions
and round robins. Without a complexity result for seeding manipulation, a known open
problem, constraint programming techniques for solving subgraph isomorphism problems
are applied to different models of seeding manipulation. In Chapter 5, detection is dis-
cussed as a computational task. For cup competitions, a dynamic programming algorithm
is proposed for finding manipulations in cup results. The detectability of round robin and
seeding manipulations is also examined. Chapter 6 concludes the results and restates some
of the problems open for future work.

3

Chapter 2

Background

The material in this chapter covers a wide variety of techniques and concepts related to
the problems and algorithms described in the remainder of the thesis. A brief introduction
to each area is given along with more detail descriptions of the relevant techniques which
are used in the thesis. Some of the concepts and techniques are used in more than one
chapter of the thesis as listed at the beginning of each section.

2.1 Constraint Programming

Constraint programming is a methodology for solving combinatorial problems using search
and logical inference that is used in Chapters 3 and 5. A Constraint Satisfaction Problem
(CSP) is a mathematical model of a problem consisting of variables, the domains of the
variables and constraints on the variables. Variables represent some quantitative aspect of
a problem and the domain of that variable is the set of possible values which the variable
could be assigned, denoted dom(x) where x is a variable. A constraint on a variable
or variables is a restriction of the domain values. For a more detailed introduction to
constraint programming, refer to the following sources [29, 43, 56].

Example 2.1. Given 10 pennies, 8 nickels, 5 dimes and 3 quarters, find a subset of the
change such that the monetary value is one hundred cents and there are more pennies
than nickels, nickels than dimes, and dimes than quarters. To model this problem as a
CSP, four variables are introduced that represent the number of pennies (xp), nickels (xn),
dimes (xd) and quarters (xq). Since there may be none of the coins used or all of the
coins used, dom(xp) = {0, . . . , 10}, dom(xn) = {0, . . . , 8}, dom(xd) = {0, . . . , 5} and of
dom(xq) = {0, . . . , 3}. The constraints represent the sum of the coin’s values (xp + 5xn +
10xd +25xq = 100), the number of pennies is greater than the number of nickels (xp > xn),

5

the number of nickels is greater than the number of dimes (xn > xd) and the number of
dimes is greater the number of quarters (xd > xq)

An assignment of a variable is the association of a particular value with a given variable.
A partial assignment of a set of variables is a particular assignment of values to a subset
of the variables. A complete assignment of a set of variables is the assignment of values to
every variable in the set.

Example 2.2. Referring to the CSP described in Example 2.1, an assignment is, for
example, associating the value 4 with the variable xn. A partial assignment of the variables
{xp, xn, xd, xq} is xn = 4 and xd = 3. A complete assignment of the variables {xp, xn, xd, xq}
is xp = 10, xn = 5, xd = 4 and xq = 1.

The scope of a constraint is the set of variables affected by the constraint. A constraint
is violated if given a partial, possibly complete, assignment of values to the variables in the
scope of the constraint there exists no solution. A constraint is satisfied if every variable
has value and the constraint is not violated. A constraint in a CSP is Arc Consistent if
for every variable-value pair in the scope of the constraint there exists a value for all other
variables which satisfies the constraint.

Example 2.3. Referring to the CSP described in Example 2.1, the scopes of the four
constraints are {xp, xn, xd, xq}, {xp, xn}, {xn, xd} and {xd, xq}, respectively. Given the
constraint xn > xd and the assignment of xn = 0, the constraint would be violated since the
partial assignment allows for no value of xd. If however, xn = 1 and xd = 0, the constraint
xn > xd is satisfied. Again referring to the constraint xn > xd and with dom(xn) =
{0, . . . , 8} and dom(xd) = {0, . . . , 5} to establish arc consistency, it suffices to ensure that
for every value in xn there exists a value in the domain of xd which satisfies the constraint.
For example, it has already been shown that xn = 0 violates the constraint and therefore
the domain of xn can be contracted to {1, . . . , 8}. For all other values there is a valid
assignment for the other variable that satisfies the constraint and no more reductions to
the domains can be applied.

The method by which a constraint is made consistent is known as propagation. A CSP
is unsatisfiable if there exists one or more variables such that there is no value which does
not violate at least one constraint. A CSP is satisfiable if there exists a value for every
variable that simultaneously satisfies every constraint.

Example 2.4. The CSP described in Example 2.1 is satisfiable since the solution xp = 10,
xn = 5, xd = 4 and xq = 1 satisfies each constraint.

Finding a satisfiable solution to a problem is the main task of constraint programming.
The application of arc consistency prunes some values from the domains of the variables

6

but does not necessarily result in a solution. Search is used to solve these problems, with
backtracking search, which maintains arc consistency at each node in the tree, being the
most common search applied in constraint programming. A backtracking search is a depth
first search which returns to a previous partial solution when a partial solution denoted
by the branch is shown to be unsatisfiable. To maintain arc consistency, arc consistency is
applied at each node of the tree to prune the inconsistent values from the variables.

To implement a search, two heuristics must be defined: the variable ordering heuristic
and the value ordering heuristic. A variable ordering heuristic is a heuristic which selects
the best variable to assign a value given a partial assignment of other variables. A value
ordering heuristic is a heuristic which selects the best value given a variable and a partial
assignment of the other variables.

Example 2.5. Referring to the CSP described in Example 2.1, solving this problem can
be accomplished using backtracking search. The variable ordering is to select the variable
with the least number of values in its domain and the value ordering is to select the largest
value. Applying generalized arc consistency before search yields the values seen in the first
row of Table 2.1. Since xp has the fewest number of values, it is selected and the child
representing the largest value is expanded as in Figure 2.1. The next variable is selected is
xq and the largest value remaining in the domain is 2. After applying arc consistency, the
domain of xd is wiped out and a fail is generated. Therefore, a backtrack occurs and the
next largest value of xq, 1, is tried as shown in Figure 2.1 and the domains are pruned as
in the fourth row of Table 2.1. The last step selects xn with value 7 and, after propagation,
the solution xp = 10, xn = 7, xd = 3 and xq = 1 is found.

2.2 Enumeration Techniques

While solving combinatorial problems via search and inference can be effective, it can be
advantageous to solve problems, especially smaller problems, using an enumeration tech-
nique. An enumeration technique is a method which systematically lists all of the possible
combinations of values possible for a given problem. The advantage of an enumeration
technique over a search technique with inference is that it can be simpler and more effi-
cient to verify whether an assignment of values is a solution for an exponential search space
than applying the logical inference while searching.

Example 2.6. Referring to the problem in Example 2.1, it is possible to apply enumeration
to this problem. There are four variables with domains of size 11, 9, 6 and 4. The sum
constraint can be checked in time linear in the number of variables and the inequality
constraints can be checked in constant time. Therefore, each solution can be checked in
linear time. Since there are at most 2376 possible combinations to check, this problem
could be solved easily using enumeration.

7

Table 2.1: The domains of the variables and the partial solutions for each step of applying
backtracking search while maintaining arc consistency. Each row represents the domains
after arc consistency has been applied. Row 0 represents the initial domains before any
propagation has been applied.

Domains Partial Assignment
0 dom(xp) = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

dom(xn) = {0, 1, 2, 3, 4, 5, 6, 7, 8}
dom(xd) = {0, 1, 2, 3, 4, 5}
dom(xq) = {0, 1, 2, 3}

xp =?
xn =?
xd =?
xq =?

1 dom(xp) = {5, 10}
dom(xn) = {2, 3, 4, 5, 6, 7, 8}
dom(xd) = {1, 2, 3, 4, 5}
dom(xq) = {0, 1, 2, 3}

xp =?
xn =?
xd =?
xq =?

2 dom(xp) = {10}
dom(xn) = {2, 3, 4, 5, 6, 7, 8}
dom(xd) = {1, 2, 3, 4, 5}
dom(xq) = {0, 1, 2}

xp = 10
xn =?
xd =?
xq =?

3 dom(xp) = {10}
dom(xn) = {4, 5, 6, 7, 8}
dom(xd) = {}
dom(xq) = {2}

xp = 10
xn =?
xd =?
xq = 2

4 dom(xp) = {10}
dom(xn) = {5, 7}
dom(xd) = {3, 4}
dom(xq) = {1}

xp = 10
xn =?
xd =?
xq = 1

5 dom(xp) = {10}
dom(xn) = {7}
dom(xd) = {3}
dom(xq) = {1}

xp = 10
xn = 7
xd = 3
xq = 1

8

xp

xq

fail

2

bac
ktr

ack
xn

solution

7

?

5

1

?

0

10

?

5

Figure 2.1: The backtracking tree described in Example 2.5. The first step selects 10 from
the domain of xp. Next, xq is selected with value 2. A domain wipeout occurs and the
algorithm backtracks. The next largest value of xq is 1. Finally, xn is selected with value
7 and, after propagation, a solution is found.

2.3 Network Flows

Network flows are used to solve problems in Chapters 3 and 4. For more information on
network flows, refer to the material in [19, 2].

A flow network is a directed graph labelled with capacities on each edge, where the
capacities must be greater than or equal to zero. A source node is a node with no incoming
edges. A sink node is a node with no outgoing edges. A flow network can always be
converted to a single sourced and single sinked flow network by adding two additional
nodes and adding edges of infinite capacity from the new source node to the original
source nodes and to the new sink node from the original sink nodes (see Figure 2.2)[19]. A
feasible flow on the graph must satisfy the constraint that the flow is less than the capacity
and the sum of the flow entering a node must equal the sum of the flow exiting the node.
The value of the flow is equal to the sum of the flow on all of the edges entering the sink
node.

The max flow for a network is defined as the maximum possible value of the flow and
can be determined in polynomial time [19, 2]. A feasible flow is a flow, possibly maximal,
which satisfies all the lower and upper bound constraints. The bold values in Figure 2.2b
represents a maximum and feasible flow for the network.

If the problem is to find a feasible flow with lower and upper bound capacities, it is

9

1

2

3

4

5

[0, 2]

[0,
1]

[0,
1]

[0, 2]

s

1

2

3

4

5

t

[0,
∞],2

[0,∞],1

[0, 2],2

[0,
1],

1

[0,
1],

1

[0, 2],2

[0,∞],1

[0,
∞],2

(a) (b)

Figure 2.2: (a) The original flow network with five nodes. (b) The new flow network with
two additional nodes s and t. s has two outgoing edges to the two original sources 1 and
2 and t has two incoming edges from the two original sinks 4 and 5. The bold numbers
represent a maximum and feasible flow.

possible to convert that network into a flow network using only upper bound capacities by
adding two additional nodes and extra edges. A max flow is then calculated on the new
network. If the value of the max flow is equal to the sum of the capacities entering the new
sink node then the problem has a feasible flow which satisfies both the upper and lower
bound constraints [2].

2.4 Dynamic Programming

Dynamic programming is a technique for solving problems that relies on optimal substruc-
ture within subproblems and overlapping subproblems to solve problems efficiently [19].
Dynamic programming is used in Chapters 4 and 5. For more information, refer to the
explanation in [19].

The standard dynamic programming approach is a bottom up approach [19]. As sub-
problems are solved, the solutions to the subproblems are stored and combined in larger
subproblems. This approach works when the result of the subproblem is optimal or is said
to have optimal substructure. This means that the optimal solution to the subproblem
forms part of the optimal solution to the entire problem.

Keeping track of the subproblems is only beneficial if the problems have overlap. If
most subproblems are only solved once then there is no benefit to keeping a table of the
solutions to the subproblems.

A top-down approach to solving dynamic programming problems can also be used,
termed memoization. Like a recursive algorithm, the sub-problems are solved top down.
However, unlike a recursive solution, each solution is stored and if the same subproblem
is subsequently encountered then the solution is returned immediately without further
recursion. This type of dynamic program can work well in problems with high overlap [19].

10

2.5 Competitions, Tournaments and Manipulations

In many sporting competitions, the final winner of a competition is decided by a tree-like
structure, called a cup. The most common type is a single elimination cup, a tree structure
where the root and internal nodes represent games and leaves represent the teams in the
tournament. A double elimination cup is two trees where the losers of the primary tree are
demoted into the second tree at specified entry points. Losers within the second tree are
then eliminated from the tournament. At the end of the competition, the winner of both
trees meet and play one or two games. If the winner of the primary tree wins the game
then the competitions is finished and that team is declared the winner. If not then, in
order to be eliminated twice, they must play a second game which ultimately determines
the winner of the competition.

Cups need to be seeded to determine which teams play against each other in each round.
One method for seeding is by rank. The most common method for ranked seeding is to
have the top team play the worst team, the second place team play the second worst team
and so forth. An example of ranked seeding using this method is the National Basketball
Association in the US. Another method for determining seeding is randomly, also known
as a draw. An example of this is the UEFA Champions League where teams reaching the
quarter finals are randomly paired for the remainder of the tournament. Seeding may also
be more complex (for instance, it may be based on the group from which teams qualify or
some other criteria).

Another way that cups are modified is between fixed and unfixed cups. A fixed cup
is a cup where there is a single seeding at the start of the cup. Examples of this are the
National Basketball Association playoffs and the FIFA World Cup of Football. An unfixed
cup is one where seeding may occur not only before the start but between any round.
Examples with an unfixed cup are the National Hockey League playoffs and the UEFA
Champions League.

In this thesis, perfectly balanced cup competitions are examined and it is assumed
that m, the number of teams, is a power of 2. The names of the teams are t1, t2, . . . ,
t2n , for some n = log m. A competition tree is a complete binary tree where the leaves
are labeled with the set of teams, called the seeding of the tournament. The matches in
the competition are the games between two teams at each node (except the leaves) of the
competition tree. There are exactly m − 1 matches in a competition tree. A round of a
competition tree is defined to be all of the matches occurring at an equal height from the
leaves of the tree. The round k for 1 ≤ k ≤ n is defined to be all matches at a height k
from the leaves.

Finally, a round robin competition is a competition where each team plays every other
team a given number of times. In a single round robin competition, each team plays every

11

other team exactly once. Another common variant of this is for teams to play a double
round robin competition where each team plays every other team twice, often at home and
away.

The set of teams in the competition is denoted T where |T | = m. A tournament is a
directed graph G = (T,E) where the underlying undirected graph is a complete graph. It
is assumed that the tournament is known for the remainder of this work. Every directed
edge (ti, tj) ∈ E represents a game where ti is expected to win over tj. As in election
manipulation where the electoral vote is assumed to be known, it is assume that G is
known, via an oracle, and, from G, the relative strengths of teams is known and the
expected winner of the contests can be determined.

An upset is a match where team i was expected to win over team j according to the
tournament graph, but team j won against team i in the actual competition. A team i is
said to have caused an upset if they lost a match that they were expected to win.

Definition 2.1 (upset). Let G = (T,E) be a tournament graph. An upset is a pair (tj, ti)
where (ti, tj) ∈ E but tj won against ti in some round of the actual competition. Let
U denote the set of all upsets that occurred in the competition, let Uk denote only those
upsets that occurred at round k, 1 ≤ k ≤ n, of the competition, and let Uk

S , S ⊆ T ,
denote only those upsets that occurred at round k that were caused by a team in S; i.e.,
Uk

S = {(tj, ti) | (tj, ti) ∈ Uk ∧ ti ∈ S}.

This thesis focuses on a particular subset of upsets which are caused by a coalition. A
coalition is a set of teams S, S ⊆ T , which conspires to manipulate the competition to
change the winner.. A manipulation is an upset (tj, ti), either executed or planned, which
is intentional; i.e., team ti threw the match or planned to throw the match.

In this thesis, manipulations are restricted to those manipulations where a coalition
member loses. Therefore, an edge (ti, tj) is manipulable if and only if candidate ti is a
member of the coalition. This restricts the behaviour of the manipulators to throwing
games where they could have won. This restriction is due to the fact that it is simple to
perform worse but more difficult to play better.

Two different types of manipulation strategies are considered in this work. A construc-
tive manipulation is one that ensures a specific team wins the competition. A destructive
manipulation is one that ensures a specific team loses the competition.

For round robin competitions, the concept of the tournament is generalized beyond
the simple win-loss scoring model to a complete graph where the edge (ti, tj) ∈ E has a
non-negative weight wij which represents the number of points that would be earned by
ti when playing tj in a fair game. A manipulation in this case is defined as an outcome
where the points earned in the match are different from those given by the tournament.

12

However, as before, manipulations are restricted so that the manipulator achieves no more
points and the team being manipulated achieves no less points.

The probabilistic variant of the tournament is defined to be a complete directed graph
where each edge is labelled with the probability of the outcome. Again, it is assumed that
the probabilities are known via some oracle.

2.6 Accuracy, Precision and Recall

When evaluating experimental results, as in Chapter 5, it is sometimes advantageous to
look at measures beyond accuracy. In this section, some additional measures are introduced
which provide a more thorough picture of data. Information in this section can be found
in more detail in [42, sec. 8.1, pg. 267].

In this section, it is assumed there exists some classification task; i.e., a problem of
labelling whether a given instance is a member of the class or not. A classification algorithm
is a procedure that takes an instance and returns true if an instance is a member of the
class and false otherwise. A true positive (tp) is a positive result from the algorithm where
the instance is a member of the class. A false positive (fp) is a positive result from the
algorithm where the instance is not a member of the class. A true negative (tn) is a negative
result from the algorithm where the instance is not a member of the class. A false negative
(fn) is a negative result from the algorithm where the instance is a member of the class.

Accuracy measures the percentage of instances that were correctly labelled by the
system.

accuracy =
tp + tn

tp + fp + tn + fn
. (2.1)

This measure fails to capture the impact of the false positives and the false negatives.
Two additional metrics called precision and recall attempt to correct for this bias. Precision
is the ratio of the number true positives over the number of instances identified as positive
and recall is the ratio of the number of true positives to the number of instances which
were actually positive.

precision =
tp

tp + fp
. (2.2)

recall =
tp

tp + fn
. (2.3)

13

In an attempt to balance the two criteria, a combination is proposed [42]. The com-
bination is known as the F measure. By equally weighting the combination, the following
equation is defined as,

F =
2 ∗ precision ∗ recall

precision + recall
. (2.4)

14

Chapter 3

NHL Playoff Qualification and
Elimination Problems

As a season progresses, sports fans become intensely focused on the playoff race and the
position of their team in the standings. Sports sections of major newspapers publish the
results of the games and announce when teams have qualified for the playoffs and when
they have been eliminated (e.g. The Globe and Mail [26]). However, the newspapers use a
heuristic measure for determining when teams have qualified for or been eliminated from
the playoffs and announcements are sometimes not made until several days after the team
has clinched or been eliminated. Since fans are interested in knowing when their team has
clinched as early as possible, the exact answer is of more interest as the heuristic answer
may not give precise results.

However, if the team has not clinched a playoff spot, this method provides no informa-
tion about how close a team is to earning a playoff position. The problem of determining
how close a team is to clinching a playoff spot can be modelled as an optimization prob-
lem that determines the minimum number of points that is necessary to guarantee a spot.
This bound on the number of points can also be used to determine when a team has no
guarantee of making the playoffs and when a team has lost a crucial game and left des-
tiny in the hands of another team. These bounds give both fans and the managers of the
teams additional information. For a coach, there is the additional benefit of knowing which
games must be won so they can rest injured players before the playoffs. These factors are
interesting to hockey fans and can be generalized to other sports with playoff structures,
such as baseball and basketball. From a computational point of view, the qualification and
elimination problems addressed here are NP-Hard problems and an efficient solution is not
known to exist [45, 27].

In this chapter, a hybrid constraint programming and enumeration method is proposed
to exactly solve qualification and enumeration problems for the National Hockey League

15

(NHL) playoffs1. Solutions to both the qualification and elimination problems use a phased
strategy that solves enumerated sub-problems with network flows and constraint program-
ming. Symmetry and dominance constraints are added to the model to improve efficiency.

Instances from the 2005-06 and 2006-07 seasons were experimentally evaluated using
the solver. For these seasons, qualification of teams was shown up to five days earlier than
the Globe and Mail [26]. All of the different scoring models that have been used by the
NHL as well as the model used in the hockey tournament of the 2010 Olympic Winter
Games were tested using the solver. The NHL tried the various scoring models to increase
the competitiveness of the league though there exists no data on how these changes affected
the clinching dates. In this thesis, it is shown that adjusting the scoring model can change
the average qualification date by more than two days but the results vary significantly from
year to year. Interestingly, the Toronto Maple Leafs would have qualified for the playoffs
under any other scoring model than that used by the NHL in 2006-07 season. Another
example where the scoring model mattered was the Edmonton Oilers in 2005-06 who were
Western Conference champions but would not have made the playoffs if the scoring model
from the Olympics had been used.

The solver proposed in this work can determine the minimum number of points for a
given team, at any point in the season, within ten minutes and, for dates near the end of
the season, in seconds. Equivalently, the minimum number of points needed to have any
chance of making the playoffs can be determined in a similar fashion. In sports, analysts,
reporters and coaches often refer to “must win” games. The method used in this paper
can identify games where losing that game, the team puts its playoff aspirations into the
hands of its opponents. While this does not mean the team will not qualify for the playoffs,
it does mean that the team cannot guarantee a playoff spot. Nine teams in the 2006-07
season are identified that lost one of these “must win” games and found themselves in a
position to earn a playoff spot again only through the actions of their opponents. Several
teams experienced this phenomenon four times during the season.

This chapter first discusses some of the related work that exists in the literature. For
those unfamiliar with the NHL, the NHL system is discussed as some background is neces-
sary to understand the rest of the chapter. An introduction to the formal problem definition
and some notation that will be used in the remainder of the chapter follows. A phased
solver relying on the properties of tie-breaking constraints is proposed. Enumeration and
bounding techniques are proposed to improve the efficiency of the solver. Lastly, some
experimental results on real world NHL instances are presented.

1Portions of this work have previously been published in [57, 58, 59].

16

3.1 Related Work

The problem of determining when a sports team has mathematically clinched a playoff spot
has been well studied for several sports, including baseball [63, 55, 69, 1] and soccer [54].
The problem is known as a winner determination problem. Schwartz [63] first looked at
this type of problem algorithmically for the historical baseball problem. Two optimization
variants of winner determination problems are discussed in this thesis.

Definition 3.1 (Playoff Qualification Problem). Given a remaining schedule of games left
to play, the results up to a given point of the season—i.e. points and wins earned by teams
so far—and a distinguished team tq, the playoff qualification problem is to determine the
minimum number of points needed by tq such that if they earn that number of points there
exists no scenario, i.e. a completion of the remaining games, such that tq does not qualify
for the playoffs.

Definition 3.2 (Playoff Elimination Problem). Given a remaining schedule of games left
to play, the results up to a given point of the season—i.e. points and wins earned by teams
so far—and a distinguished team tq, the playoff elimination problem is to determine the
minimum number of points such that if tq earns that number of points there exists at least
one scenario where tq earns a playoff spot.

Playoff qualification criteria typically either select the top m teams or select the division
leaders and a fixed number of extra teams, called wild card teams. These problems are
known to be NP-Hard in general when there are m spots, where m > 2, that make the
playoffs or when there is at least one wild card spot and multiple divisions [45, 27]. By
restriction, problems solved using the current playoff structure of the NHL are also NP-
Hard as the NHL playoffs have multiple divisions and wild cards and eight teams making
the playoffs.

Approaches for solving the playoff qualification and elimination problems have been
proposed for the Brazilian football championship [54] and for Major League Baseball [1];
both approaches use integer programming. Unlike hockey, these sports either have a simpler
scoring model or a simpler playoff qualification method. Robinson [55] suggests a model for
determining the number of points needed to clinch a playoff spot in the National Basketball
Association and solves the model using integer programming techniques. Robinson [55] also
suggested a model for the NHL but his model did not allow for wild card teams or tie-
breaking conditions. Gusfield and Martel [27] put forth a method for calculating bounds
on the conditions when a team has been eliminated from baseball playoffs but their method
only works for a single wild card team and a simple win-loss scoring model. The solver in
this chapter uses a similar method but differs in approach as there are multiple wild card
teams in the NHL. Cheng and Steffy [16] looked at the problem of determining qualification

17

for the NHL using an integer programming model but they found that they could not solve
the model when secondary and tertiary tie-breaking rules were included.

Wayne [69] introduced the concept of a lower bound that could be used to determine
whether or not a team was eliminated from the playoffs. Specifically, he introduced a lower
bound on the minimum number of points needed to possibly earn a playoff spot. Gusfield
and Martel [27] show how this idea can be extended to include a single wild card team and
multiple division leaders. In this chapter, the existence of an upper bound which represents
the minimum number of points needed to guarantee a playoff spot is discussed. Again, the
problem in this chapter corresponds to the more complicated case where there are multiple
wild cards.

Schwartz [63] showed in 1966 that the winner determination problem, could be solved
in polynomial time for a win-loss scoring model using network flows. The basic method
described by Schwartz [63] uses a flow network to partition remaining games to individual
teams. If there exists a feasible flow, which represents an assignment of wins, then there
exists a scenario where the distinguished team earns the most points and they have not
be eliminated. Kern and Paulusma [34] showed that the same approach could be used for
other scoring models if the scoring model is normalized. However, Kern and Paulusma
make a strong assumption about the play of the distinguished team tq as it is assumed tq
wins or loses every remaining game, depending on whether elimination or qualification is
discussed, respectively. This is not feasible in this work as the assumption does not hold
true in optimization problems where the points of tq may not be at either extreme. As
well, Kern and Paulusma’s model does not explicitly state how to deal with the factors
removed during normalization as they must be reincorporated into the model when dealing
with tie-breaking conditions.

3.2 The NHL Playoff System

Since the last expansion of the league in 2000, the NHL has consisted of thirty teams
arranged into two conferences, East and West, each of fifteen teams. Each conference
is composed of three divisions with five teams each. Every team in the NHL plays 82
games with 41 home games and 41 away games. These games are spread unevenly with
the highest number of games being played against teams in their own division, then their
own conference and then finally the opposite conference. Currently teams play six games
against each team in their division, four games against teams in their conference but not
their division and one or two games against teams in the opposite conference. Each game
in the NHL consists of sixty minutes of regulation time split into three periods of twenty
minutes each. If the game is tied at the end of regulation time, a shorter overtime period
of five minutes is played, which is sudden death i.e. ends when a goal is scored, and, if

18

Table 3.1: The scoring models that have been used by the NHL. The possible outcomes
of an NHL game between two teams (i, j) are A) j wins in regulation time, B) j wins in
overtime, C) tied game, D) i wins in overtime and E) i wins in regulation time. The table
shows the points awarded in each of the possible outcomes for a given scoring model. If an
entry is blank then the outcome is not possible under the scoring model.

Scoring Model A B C D E
Historic Era { (0, 2) (1, 1) (2, 0) }
Overtime { (0, 2) (0, 2) (1, 1) (2, 0) (2, 0) }
Extra Point { (0, 2) (1, 2) (1, 1) (2, 1) (2, 0) }
Shootout { (0, 2) (1, 2) (2, 1) (2, 0) }
Proposed { (0, 3) (1, 2) (2, 1) (3, 0) }

the score remains tied after overtime, a shootout is conducted, which must conclude with
a winner. A team makes the playoffs if they are a division leader or one of the top five
teams that are not division leaders in their conference. The top five teams in a conference
who failed to win their conference are known as wild card teams. There are 16 teams in
the playoffs.

Like many North American sports, an NHL game must end in a win or loss. However,
the NHL has a unique scoring system as there are points awarded for reaching overtime
even if a team does not win the game. If the game ends during regulation time then the
winner of the game is awarded two points and the loser earns no points. If, however, the
game ends either during the overtime period or the shootout then the winner still earns
two points but the loser earns a single point in consolation.

The NHL has used several different scoring models over the years. A scoring model is
defined as a set of tuples defining the possible outcomes, and subsequent reward, of the
games. Each of the NHL scoring models can be viewed in Table 3.1. Referring to Table
3.1, the current scoring model is called the Shootout Model.

In the NHL, teams are placed in the standings by the number of points, for both
divisional and overall standings. However, it is possible to have two teams with the same
number of points. The NHL uses three different tie-breaking measures. The first tie-
breaking measure is to compare the number of wins by each team. If the teams are still
tied, the number of points earned against only those teams that are tied are compared.

There is a third measure, the total number of goals scored in the entire season, used
by the NHL but not included in this work as it is impossible to determine beforehand how
many goals will be scored in an NHL game. Instead, it is assumed that in the case of
qualification that a team has not qualified if they need to win via the third tie breaker.

19

Conversely, in the case of elimination, it is assumed that a team has a chance to qualify if
they could win via the third tie breaker.

3.3 A Motivating Example

Before proceeding with a more rigorous description of the various mechanisms used to
solve these problems, an illustrative example is introduced that will be used throughout
the chapter. Since a full scale problem using all of the teams in the league is too large to
be effective as an example, a hypothetical six team league is constructed where teams play
each other exactly four times, for a total of 20 games each. For simplicity, divisions are not
introduced in this example but are discussed later in the chapter. In the example, four of
our six teams make the playoffs. To illustrate the concept, our example contains a varying
number of games played and games remaining against various teams. The schedule for
the hypothetical league is constructed so that every team plays on each game day. Note
that this is not necessarily the case in the NHL or virtually any other professional sports
league and is done for clarity as when the games are played does not actually affect the
mechanism by which problems are solved.

From the NHL, six teams were selected, Boston, Chicago, Detroit, Montreal, New York
and Toronto, and a round robin tournament with four identical rounds was generated.
The schedule can be seen in Figure 3.1. In the example, the first thirteen games of the
season have been played and each team has seven games remaining. Again, the symmetry
in terms of the number of games remaining is simply for clarity and simplicity and is not
required by the techniques. From the results of the games, the standings at that point in
the season can be constructed (see Table 3.2). The games remaining between each pair of
teams is summarized in Table 3.3.

For the remainder of this chapter, this example is used to discuss how the various
mechanisms of the solver work and why the mechanisms are implemented. At each point
in the chapter, the fate of New York and the steps in determining how many points New
York needs to clinch a playoff is discussed.

3.4 Basic Models

To formally specify the model, certain concepts and notations must first be introduced.
The set of teams in the NHL is denoted T = {t1, . . . , tn}. Let Ci be the set of teams in the
conference and Di be the set of teams in the division to which team ti belongs. A scenario
S is a completion of the schedule from current date of the season to the end of the season
by assigning wins, losses, and overtime losses to the games scheduled after d0.

20

30 31 1 2 3 4 5

M:0,T:2 T:2,B:1 T:2,NY:0 T:1,C:2
NY:2,B:1 M:1,D:2 M:2,C:0 M:2,B:1
D:2,C:0 NY:2,C:0 B:2,D:1 NY:0,D:2

6 7 8 9 10 11 12

T:2,D:0 M:1,T:2 T:0,B:2 T:0,NY:2
NY:2,M:0 NY:2,B:0 M:2,D:1 M:2,C:0
B:1,C:2 D:1,C:2 NY:1,C:2 B:1,D:2

13 14 15 16 17 18 19

T:0,C:2 T:1,D:2 M:2,T:1 T:2,B:0 T:2,NY:0
M:2,B:1 NY:2,M:0 NY:2,B:0 M:2,D:0 M:2,C:0
NY:2,D:0 B:2,C:0 D:2,C:0 NY:2,C:0 B:2,D:1
20 21 22 23 24 25 26

T v C T v D M v T T v B
M v B NY v M NY v B M v D
NY v D B v C D v C NY v C

27 28 29 30 1 2 3

T v NY T v C T v D
M v C M v B NY v M
B v D NY v D B v C

Figure 3.1: An example schedule for six teams where each team plays each other team four
times for a total of sixty of games. Thirteen of each team’s games have been played and
the results, in terms of points, are noted against the played games. The remaining seven
games that each team must still play are listed with their scheduled opponents.

For every team ti and opponent tj, there exists a win variable, wij, and overtime loss
variable, olij, which represent the wins and overtime losses earned at the end of the season
by ti over tj. For every team ti and opponent tj, constants Wij and OLij represent the
number of wins and overtime losses earned up to the current date of the season. The points,
pij earned by the team ti against an opponent tj at the end of the season is the weighted
sum of the wins, worth two points, and the overtime losses, worth a single point, notated
pij = 2wij + olij. Let Gij be the constant representing the number of games remaining
for a team ti against a team tj at the current date and Gi =

∑
j Gij is the sum of games

remaining for team ti against all teams. The total points earned at the end of the season
by team ti, pi, is the sum of points earned against all opponents, pi =

∑
j(pij), and the

constant Pi represents the points earned by ti up to the current date of the season. Let
TBi, the tie-breaking set, be the set of all of the teams tied with team ti including ti in
both points and wins at the end of the season.

For each team ti, let mppi be the maximum possible points that could be earned by ti
if they won all of their remaining games. Given a subset of teams T ′ ⊆ T , let max (T ′) be
the maximum points over all teams in T ′ at the end of the season and let min (T ′) be the
minimum points over all teams T ′ at the end of season.

A team only qualifies for a playoff spot if they are a division leader or a wild card team.
A division leader is the team ti that has the maximum number of points at the end of the

21

Table 3.2: The standings of the hypothetical league after the first thirteen games of the
schedule have been played. Each team is awarded 2 points for each win, 0 points for each
loss and 1 point for each overtime loss.

Team Games
Remaining

Games
Remaining

Wins Losses Overtime
Losses

Points

New York 13 7 9 3 1 19
Montreal 13 7 8 3 2 18
Toronto 13 7 7 3 3 17
Detroit 13 7 6 3 4 16
Boston 13 7 4 3 6 14
Chicago 13 7 5 8 0 10

Table 3.3: The number of games remaining for each team against each opponent after the
thirteen completed games in the example.

Teams Boston Chicago Detroit Montreal New York Toronto
Boston — 2 1 2 1 1
Chicago 2 – 1 1 1 2
Detroit 1 1 – 1 2 2

Montreal 2 1 1 – 2 1
New York 1 1 2 2 – 1
Toronto 1 2 2 1 1 –

season within their own division (i.e. pi = max(Di)) and has better tie breakers than any
team with equivalent points in their division at the end of the season. A wild card team
is any team ti that is not a division leader but has a pi greater (or equal with better tie
breakers) than at least seven other teams in Ci that are also not division leaders. Note
that the number of teams, in this case seven, is simply the subtraction of the number of
division leaders and wild card spots from the total number of teams in the conference.

A team has qualified for the playoffs when the number of points needed to guarantee
a playoff spot is zero. A team controls their own destiny as long as the number of points
needed to guarantee a playoff spot needed does not exceed the maximum points possible,
mppi. A team has been eliminated when the number of points needed to possibly qualify
for a playoff spot exceeds the maximum number of points possible.

The basic models for the qualification and elimination problem, discussed below, rep-

22

resent all of the necessary constraints for the two problems. Note that there is many ways
to model these problems and this is just one, relatively simple, model for the problem.

The basic model of the NHL Qualification problem is a combination of six constraints
(Constraints 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, and 3.7) where some are more important than
others. Following the example of Ribeiro and Urrutia [54], the problem of finding the
minimum points necessary for a team to qualify is converted into the problem of finding
the maximum number of points where there exists a situation where the team could have
been eliminated. This is because it is often easier to find a solution when one exists than
prove that there does not exist a solution. Therefore, the number of points needed to clinch
a playoff spot is in fact one greater than the result returned from this model. Constraint
3.1 denotes that the problem is a maximization problem over the number of points earned
by the team under consideration. Constraint 3.2 requires that the number of total wins
between two teams equals the number of games they played. Constraint 3.2 enforces the
constraint that each game must end in a winner. Constraint 3.3 states that the number of
wins and overtime losses in any completed scenario must be less than or equal to the sum of
the wins already earned, the overtime losses already earned and the total number of games
remaining to be played. This ensures that each team earns only one win or one overtime
loss for each game played. Constraint 3.4 formally defines the tie-breaking sets in terms of
the model variables. The most important and most complicated constraint, Constraint 3.5,
states in general that a team must be better on points, tie breakers or division leader status
to be better than tq. The first three terms of Constraint 3.5 correspond to the tie-breaking
constraints. The fourth is a compound term that says that regardless of how well a team
does against tq as long as the team is the top team in their division then they qualify. It is
important to note that this constraint is quadratic in nature as the third term is a sum over
a set variable. Constraint 3.6 enforces that there must be at least eight teams, the number
of playoff spots, that are better than the team under consideration. Constraint 3.7 ensures
that there is at least one team which is better than the team under consideration and
belongs to their division. This ensures that the team under consideration is not themselves
a division leader.

An indicator variable bi is introduced which is 1 if and only if ti has more points or
better tie breakers than tq or is a division leader. If there exists eight or more teams
where this is true then team tq needs max pq + 1 points to guarantee a playoff spot. The
problem with this model is that the core of the model is a combination of implication and
disjunction constraints and such models can be difficult to solve. However, like other real
world problems, the NHL is of bounded size and, therefore, it is sometimes practical to
enumerate some of the variables or constraints of the model. In the next sections, the
use of enumeration and decomposition to find solutions to models with Constraint 3.5 is
discussed.

23

max pq , (3.1)

∀i, j, i < j wij + wji = Wij + Wji + Gij , (3.2)

∀i, j, i < j wij + olij ≤ Wij + OLij + Gij , (3.3)

∀i, j j ∈ TBi ⇔ pi = pj ∧ wi = wj , (3.4)

∀i bi = 1 (3.5)

⇔ (pi > pq) (3.5a)

∨ (pi = pq ∧ wi > wq) (3.5b)

∨

pi = pq ∧ wi = wq ∧
∑

tj∈TBq

pij >
∑

tj∈TBq

pqj

 (3.5c)

∨

[
∀td∈Di

(pi > pd)

∨ (pi = pd ∧ wi > wd)

∨

pi = pd ∧ wi = wd ∧
∑

tj∈TBi∧tj∈Di

pij >
∑

tj∈TBi∧tj∈Di

pdj

 , (3.5d)

∑
ti∈Cq

bi ≥ 8 , (3.6)

∃i ti 6= tq ∧ ti ∈ Dq

∧

[
∀td∈Dq (pi > pd)

∨ (pi = pd ∧ wi > wd)

∨

pi = pd ∧ wi = wd ∧
∑

tj∈TBi∧tj∈Dq

pij >
∑

tj∈TBi∧tj∈Dq

pdj

 . (3.7)

The NHL Elimination Problem has a similar model where the solution is the minimum
number of points where there are at least seven teams that do not do better than the
distinguished teams. In other words, the goal is to find the solution where the team under
consideration could do no worse and still make the playoffs. The constraints described in
Constraints 3.9, 3.10 and 3.11 are identical to Constraints 3.2, 3.3 and 3.4. Constraint
3.12 says that a team is worse than tq if they have less points or equal points and worse
tie-breakers than tq or is a division leader. Constraint 3.13 says there is a solution where
tq qualifies if there are seven teams worse than tq or tq is a division leader.

24

min pq , (3.8)

∀i,j,i<j wij + wji = Wij + Wji + Gij , (3.9)

∀i,j,i<j wij + olij ≤ Wij + OLij + Gij , (3.10)

∀i, j j ∈ TBi ⇔ pi = pj ∧ wi = wj , (3.11)

∀i ωi = 1 (3.12)

⇔

[
(pi < pq) (3.12a)

∨ (pi = pq ∧ wi < wq) (3.12b)

∨

pi = pq ∧ wi = wq ∧
∑

tj∈TBq

pij <
∑

tj∈TBq

pqj

 (3.12c)

∧

[
∃td∈Di

(pi < pd)

∨ (pi = pd ∧ wi < wd)

∨

pi = pd ∧ wi = wd ∧
∑

tj∈TBi∧tj∈Di

pij <
∑

tj∈TBi∧tj∈Di

pdj

 , (3.12d)

∑
ti∈Cq

ωi ≥ 7

∨

[
∀td∈Dq (pq > pd)

∨ (pq = pd ∧ wq > wd)

∨

pq = pd ∧ wq = wd ∧
∑

tj∈TBq∧tj∈Dq

pqj >
∑

tj∈TBq∧tj∈Dq

pdj

 . (3.13)

3.5 Solution Overview

Constraint 3.5 is a combination of a logical implication and a disjunction where even
maintaining arc consistency may prune very few domains until late in the search. However,
mutually exclusive disjunctions provide a simple method for decomposing the model as
only one of the conditions can be true at any given time. One method for dealing with

25

mutually exclusive disjunction is through branching on exclusive choices in the disjunction
as described by Van Hentenryck [29, pg. 169]. The approach here, of enumerating and
using different solvers, differs because the feasibility of combinations of disjunctions can be
easily checked and it is possible to determine when a problem is hard and can be reserved
until later, if needed. Observe that in Constraint 3.5 the first three conditions (Constraints
3.5a, 3.5b, 3.5c) have a mutually exclusive structure,

(pi > pq) ∨ (pi = pq ∧ wi > wq)

∨

pi = pq ∧ wi > wq ∧
∑

tj∈TBq

pij >
∑

tj∈TBq

pqj

 .

Each constraint naturally excludes the others being true and thus provides a simple
decomposition as each term in the constraint being true means the other terms cannot
be true. Also, these terms form a tie-breaking constraint which means that the relaxed
version of the first, where equality is allowed, would include all solutions to the second and
third and the relaxed version of the second with equality would include the solutions to
the third.

These observations allow for a phased strategy where each disjunction is added only
if necessary. This is efficient in this case as the tie-breaking constraints are often not
necessary and it is often the case that delaying the enforcement of the constraint in its full
complexity means that it never has to be completely solved. Algorithm 3.1 gives the basic
algorithm that is used to solve the problems.

The first phase only enforces Constraint 3.5a and not Constraints 3.5b and 3.5c which
corresponds to determining the minimum number of points where tq guarantees a playoff
spot only via points. One of the techniques used in this phase is to enumerate all of the
possible teams that could occupy the eight playoff positions. Determining the maximum
number of points that the weakest team filling the spots could earn gives a bound, for that
set, on the number of points that tq would need to earn. If this number of points, for all
sets, is less than Pq, the points currently earned by tq so far, then tq would not need to
earn anymore points and they would have guaranteed a playoff spot. If the weakest team
in one of the sets earned more points than tq could possibly earn (mppq) then tq cannot
guarantee a playoff spot. In all other situations, there is a maximum number of points for
each of the weakest teams and, as described in more detail in Section 3.6, only the sets
with the highest point value are kept. This is the best pruning that can be achieved at this
level. Since tq could possibly qualify, given further tie-breaking, at the bound calculated,
each set remaining after pruning along with the highest point bound p are given to the
second phase of the solver.

26

The second phase of the solver enforces Constraints 3.5a and 3.5b but not Constraint
3.5c which corresponds to determining the minimum number of points where tq guarantees
a playoff spot using points and wins. Given the sets from the first phase and the point
bound p, it is determined if there exists a set of teams such that there exists a scenario
where each team has more than p points or exactly p points and more wins when tq has
p points. If this exists then tq would need one more point to earn more points than the
teams in that set and, since p is the maximum over all sets, all sets. If tq cannot earn that
extra point, when p ≥ mppq, then there exists a scenario where tq cannot qualify. If no
such set exists, then it is necessary to determine if any of the sets could have every team
have more points or equal points and equal or more wins. If not, then tq would guarantee
with p points and, if so, then further tie-breaking would be necessary. By recording all of
the possible win values where teams could be tied, it is easier to determine a solution in
the third phase. Therefore for each set remaining, triples are constructed with a set, the
point bound and a win bound, w, that is feasible for the set.

The third phase solves the complete model. If there is a solution then tq needs p + 1
points to guarantee. If p ≥ mppq then tq would not be able to guarantee a playoff spot. If
there is no solution to the model then tq needs p points to qualify.

A variety of different techniques are used to solve the problems. In each stage, there is
some enumeration and feasible flow calculations. In the third stage, constraint program-
ming is used to solve the complete model. Each of these techniques are expanded in more
detail in Sections 3.6, 3.7 and 3.8.

Much of the same mechanisms can be used for the playoff elimination problem. The
goal is to search for any set of seven teams to occupy the spots below tq. If this set of
teams exist or if tq is a division leader at a given point bound then tq can possibly qualify
for the playoffs. Using a similar bounding technique, a tight bound is obtained in a similar
manner and the same phased solving methods can be applied as the same tie-breaking
conditions apply in both situations. One difference between the elimination version of the
problem and qualification version is that we are looking for solutions at the bound instead
of proving that none exist, which is beneficial as it is often much more efficient to prove
the existence of a solution.

3.6 The First Phase

In this section, the mechanisms for solving the first phase of the solver are described. In
the previous section, the enumeration of sets of teams that could potentially be the division
leaders and wild card spots is mentioned. In this section, some formal justification for this
enumeration and some discussion of how the enumeration can be used to satisfy the logical
equivalence of Constraint 3.5 while also satisfying Constraint 3.6. Given the sets of teams,

27

Algorithm:Solver(Games Remaining, Results, tq)

input : The schedule of games remaining, the results of the season so far and a
team tq

output: The minimum number of points needed by tq to guarantee a playoff spot

// FIRST PHASE
ans1 ← For every possible set of division leaders and wild card teams, is the maximum number of
points earned by the weakest team in the set less than Pq, the current points of tq?;
if ans1 = ‘yes’ then

return Pq;
ans2 ← Does there exist a set of division leaders and wild card teams where the maximum number
of points earned by the weakest team in the set is less than or equal to mppi?;
if ans2 = ‘no’ then

return cannot guarantee;
enumerate the sets of teams such that ans1 = ‘no’ and ans2 = ‘yes’;
find the bounds for each set;
prune sets without the highest bound p;
// SECOND PHASE
ans3 ← For every set of division leaders and wild card teams, is there a scenario where every team
in the set has more points or equal points and more wins than tq given that pq = p?;
if ans3 = ‘yes’ and p < mppq then

return p + 1;
else if ans3 = ‘yes’ and p ≥ mppq then

return cannot guarantee;
ans4 ← For every set of division leaders and wild card teams, is there a scenario where every team
in the set has more points or equal points and equal or more wins than tq given that pq = p?;
if ans4 = ‘no’ then

return p;
enumerate the sets of teams such that ans3 = ‘no’ and ans4 = ‘yes’;
determine the win bound w for each set;
// THIRD PHASE
ans5 ← For every set of division leaders and wild card teams, is there a scenario where every team
earns a playoff spot given that tq has p points and w wins?;
if ans5 = ‘yes’ and p < mppq then

return p + 1;
else if ans5 = ‘yes’ and p ≥ mppq then

return cannot guarantee;
else

return p;

Algorithm 3.1: The overview of the solver phases. Each phase corresponds to solving
the problem with increasing levels of tie-breaking. The first phase solves the problems
where only the points of the teams are considered. If teams may still be tied on points,
the second phase solves the problem where points and wins are used to compare teams.
If the teams are still tied then the third phase solves the problem where points, wins and
points against tied teams are used to compare teams.

28

a bound on the number of points earned by the weakest team is developed. Combined with
the enumeration of all sets, the bounding of the sets provides a tight lower bound on the
actual value of the complete problem. Given the enumeration and bounding, it is simple
to answer the two necessary questions for the first phase. If the bound p is less than Pq

then tq has already qualified and if p is greater than mppq then guaranteeing qualification
is not possible.

3.6.1 Enumerating the Set of Implication Constraints

Implication constraints are widely used in constraint models. Examples of applications
that include implication constraints include lattice protein folding [8], configuration prob-
lems [33], telecommunication feature subscription [37], pipeline planning and scheduling
[46], and the travelling salesman problem with time windows [51]. However, while they
easily capture the constraints inherent in many applications, they provide relatively weak
propagation [39].

Enumeration is a common operations research and constraint programming technique
for decomposing a problem into more manageable sub-problems. Often, the goal is to
enumerate the values of specific variables to decompose the constraint graph or propagate
a singleton value. This differs from the goal here which is to allow constraints to be
posted earlier to increase the propagation available to the solver. Examples of applications
which use enumeration as decomposition technique include sports scheduling problems [49],
instruction scheduling [41], and diagnostics [61].

Rymon introduced a technique for enumerating the power set of possible sets system-
atically in a best first fashion [61]. This is similar to the technique used here but again
the enumeration used by Rymon was on variable values whereas, in this work, it is on con-
straint implications which does not necessarily result in any singleton variable propagation
but rather allows the implied constraint to be posted earlier than in the simple model.

Enumerating implication constraints can be applied to Constraint 3.5 for the NHL
problems. Given the limited size of an NHL conference, it is possible to enumerate all of
the different ways that the indicator variables bi could be set in the model. Examining one
side of the logical equivalence in Constraint 3.5, it is possible to derive,

∀ibi ⇒ (pi > pq) ∨ (pi = pq ∧ (3.14)

Constraint 3.5 is a constraint of logical equivalence and does not necessarily have the
dominance described. However as long as Constraint 3.6 is satisfied, Constraint 3.14 can
be substituted for Constraint 3.5 because as long as eight teams are better as specified in
Constraint 3.6 then additional bi variables do not necessarily need to be true.

29

An Elimination Set, E, is a set of eight teams from the same conference with at least
one team from each division and does not include tq. Each team ti ∈ E must either have
mppi > Pq or be the only team in E from a division Di such that Di 6= Dq.

Example 3.1 (Finding Elimination Sets). Referring to the example in Section 3.3, the
hypothetical league has four playoff positions. Hence, the elimination set has four teams.
Given tq = New York, the elimination sets are formed from the remaining five teams.
Every subset of size four which can earn more points than the number of points New York
currently has is a viable elimination set. In this case, every team can earn more points
than New York currently has and the elimination sets are:

• {Montreal, Toronto, Detroit, Boston}

• {Montreal, Toronto, Detroit, Chicago}

• {Montreal, Toronto, Boston, Chicago}

• {Montreal, Detroit, Boston, Chicago}

• {Toronto, Detroit, Boston, Chicago}

A Qualification Set, Q, is a set of seven teams from the same conference which does not
include any team that has clinched a division leadership position and does not include tq.

Example 3.2 (Finding Qualification Sets). Referring to the example in Section 3.3, the
hypothetical league has only six teams and four playoff spots. Therefore, a qualification set
would have two teams. The only pairs in this example which are not qualification sets are
the ones including New York. The qualification sets are:

• {Montreal, Toronto}

• {Montreal,Detroit}

• {Montreal, Boston}

• {Montreal, Chicago}

• {Toronto, Detroit}

• {Toronto, Boston}

• {Toronto, Chicago}

• {Detroit, Boston}

• {Detroit, Chicago}

• {Boston, Chicago}

30

3.6.2 Calculating the Bound

It is well known that tight lower bounds are useful in solving combinatorial optimization
problems. The most common use is in branch and bound search where lower and upper
bounds are used to prune infeasible regions of the search space. Mixed integer program-
ming relies heavily on this technique due to the existence of an easily obtainable polynomial
relaxation, the LP relaxation. In a constraint programming context, an integer optimiza-
tion function may be represented as a constrained integer whose domains may be pruned
by good bounds.

Since the NHL Playoff Qualification problem is an optimization problem, not all of
the feasible solutions lead to an optimal solution and bounding can be used to remove
feasible solutions that are non-optimal. Before presenting the bounding technique used
to find bounds on the elimination and qualification sets described in the previous section,
two generic lemmas and some notation are introduced to help prove the correctness of the
bounds on the sets.

Given a set of implication constraints of the form, pi ⇒ qi, where pi is an indicator
variable, i.e. a constraint where there is a single variable constrained to be a single value,
and qi is any constraint that does not include the variable in pi and the ability to check
the feasibility of all other constraints on the indicator variables, a generic dominance rule
about implication constraints of this form can be created. An assignment of the indicator
variables pi is the set of indicator variables PT which are set to true while all other indicator
variables are set to false. For each indicator variable pi ∈ PT , there is a corresponding qi

constraint which must be satisfied in the model and let QT be the set of constraints that
must be satisfied under an assignment PT . Let I(pi) be the set of constraints that can
be affected by fixing the value of an indicator variable pi, directly or by chaining through
other variables in the constraints and I(PT) =

⋃
pi∈PT

I(pi) be the set of all constraints
affected by setting a set of indicator variables PT . A constraint c is said to be affected
by chaining if there exists a sequence of constraints from c to a constraint containing the
indicator variable pi such that a constraint in the sequence shares at least one variable
with its predecessor and successor in the sequence.

Lemma 3.1 (Superset Dominance of Implication Constraints). Given a set of implica-
tion constraints, pi ⇒ qi, and a set of other constraints in the model, if there exists an
assignment of pi variables, PT , that yields a feasible solution to the model then any sub-
assignment P−T ⊆ PT yields a feasible solution to the model as long as the constraints in
I(PT) have a feasible solution given the assignment P−T .

Proof. Assume that there is a feasible solution to the model given the assignment PT . Now
assume that the model is infeasible for some sub-assignment of PT , P−T . This means that
some constraint in the model that was not violated under the assignment PT has now been

31

violated under the assignment P−T . Since the implication constraints enforced by P−T are
a subset of the implication constraints under the assignment PT and the model is strictly
more relaxed, the only constraints which could have caused the model to become infeasible
are those in the set I(PT).

There exists another dominance in the set of indicator variables. If the constraints
enforced by an assignment are infeasible then any set containing that assignment must
also be infeasible.

Lemma 3.2 (Subset Dominance of Implication Constraints). If the set of constraints QT

associated with an assignment PT are infeasible, then any set P+
T , such that PT ⊆ P+

T ,
enforces an infeasible set of constraints.

Proof. Since the set of constraints Q+
T enforced by P+

T contains the infeasible subset of
constraints QT , the entire set of constraints is infeasible.

Given Lemma 3.1 and Constraint 3.6, if there is a feasible solution with more than
eight constraints enforced then there is a feasible solution with exactly eight implication
constraints enforced. In this section, it is shown that an assignment can be bounded and
that smaller feasible sets always have a solution value at least as large as a super set.

The bound of an elimination set, E, is the max (min (E)) under all scenarios S where
either pq = min (E) or pq = mppq. The bound on the qualification set, Q, is the
min (max (Q)) under all scenarios S where either pq = max (Q) or pq = Pq.

A bound is constructed by taking an assignment to the indicator variables and relaxing
Constraint 3.14 to,

∀ibi ⇒ (pi ≥ pk) . (3.15)

Constraint 3.15 gives the relaxed form of the original constraint where only the first
tie-breaking condition is considered. The solution to the relaxed problem with Constraint
3.15 is a lower bound on the original problem since the distinguished team may need one
more point to actually break ties which are relaxed using (3.15). The following lemma
formalizes this notion.

Lemma 3.3 (One More Point Lemma). The solution to the basic constraint model given an
assignment PT corresponding to an elimination set and where Constraint (3.14) is replaced
by Constraint (3.15) is a tight lower bound on the original problem that is at most one less
than the actual solution for the given set of indicator variables if a solution exists.

32

Proof. The solution obtained by substituting the relaxed constraint finds the maximum
value of pq such that each team ti where bi ∈ PT has at least as many points as tq. If
tq earns one more point then there must exist one team ti where bi ∈ PT that cannot
simultaneously obtain pq + 1 points along with tq or the solution was not the maximum.
Therefore, if tq earns one more point than the relaxed bound, they necessarily qualify and
could qualify at the lower bound if they are better on tie breaks.

Now, it is shown that a smaller assignment necessarily has a bound value that is at
least as large as an assignment which sets every variable in the smaller assignment.

Lemma 3.4 (Smaller Subsets are Optimal). Given two assignments, P+
T and PT , such

that PT ⊆ P+
T , the solution for the NHL qualification problem under the assignment PT

has a value that is at least as large as the value of the solution to the NHL qualification
problem under the assignment P+

T as long as both models have a feasible solution.

Proof. Assume there is a feasible solution to both models and that the solution under the
model enforcing the constraints in QT has a value that is less than the value of the solution
to the model enforcing the constraints in Q+

T . However, the constraints in the model
under the assignment PT are a subset of the constraints in model under the assignment
P+

T . Therefore, any solution to the P+
T model is a solution to the PT model as long as

Constraint 3.6 is satisfied under PT , which is given. Therefore, the solution to model
under the assignment PT must have a solution value at least as large as the solution value
of the model under the assignment P+

T .

Lemma 3.4 states that smaller sets are optimal if they are feasible and Lemma 3.2
shows that any superset of a small set is infeasible if the smaller set is infeasible. As a
result, this means that it is sufficient to only look at the smallest sets that satisfy both the
constraints on the indicator variables and the constraints on the rest of the model.

In a playoff qualification problem, those solutions where the distinguished team tq may
earn a playoff spot but earning one more point will surely earn them a playoff spot give
the best bound. Adapting an idea by Brown [13], the problem is solved by calculating a
sequence of feasible flows. The algorithm starts with an upper bound found via a relaxation.
Given the upper bound, it is determined, via a feasible flow calculation, if every team in
the elimination set could earn at least that many points. If not, the upper bound is reduced
until a feasible solution is found.

In order to find the best bound, teams in the elimination set E earn as many points as
possible. This means that every loss by a team in the elimination set is an overtime loss
and teams in the elimination set are expected to win all of their games against teams that
are not in the elimination set except against tq. The points earned by a team ti given the
above criteria is formalized as,

33

p′i = Pi + 2
∑
j /∈Ci

gij + 2
∑

j /∈E∪{tq}

gij +
∑

j∈E∪{tq}

gij . (3.16)

Equation 3.16 represents the sum of the points already earned (Pi), the wins against
teams not in the set E∪{tq} (2

∑
j /∈Ci

gij +2
∑

j /∈E∪{tq} gij) and one point each from games

against teams in E ∪ {tq} (
∑

j∈E∪{tq} gij). The preprocessing step is a valid dominance

relation as the scenario with the maximum min (E) is desired and these steps either increase
the points of a team in E or leave them the same while not affecting the maximum possible
points of the teams in E.

Lemma 3.5 (Adjusted Points Lemma). A solution with points adjusted as in Equation
3.16 dominates all other solutions for a given elimination set E.

Proof. Assume there exists a scenario where the bound value is greater than any bound
where points are first adjusted as in Equation 3.16. This means that either one or more
teams lost some games to the opposite conference, lost a game to a team not in E ∪ {tq},
or failed to earn an extra point when losing to a team that was in E ∪ {tq}. (Case 1)
Assume there exists a team ti which lost games to the opposite conference. Since the points
earned against opposite conference teams do not affect any other team in E∪{tq}, ti could
win those games and the bound would either increase or stay the same. Therefore the
bound is never decreased by winning against the opposite conference and for there to be a
scenario where the bound is higher without the adjustment it must occur in the other two
conditions. (Case 2) Assume there exist a team ti that does not win all games that are
not in the set of elimination teams or tq. If this was not the case, then there exists games
that ti could win without affecting how many points the other teams in E ∪ {tq} earn.
As with the previous case the bound either increases or stays the same by winning those
games and therefore the scenario where the bound is higher without adjustment must have
occurred due to the non-adjustment of the third condition. (Case 3) Assume there exist a
team that does not earn at least one point from any game that they participate in against
teams in E ∪ {tq}. Team ti need not win these games but, if they lose, the point bound
would be no lower if they lost in overtime, earning one point. Therefore, the third and
final criteria cannot cause the bound to be lowered and there is a contradiction. Therefore,
any scenario which enforces the adjustment has a solution value at least as high as any
scenario which does not adjust the points.

The Relaxed Bound

To determine the initial value for the bounding procedure, a relaxation of the bound
calculation is solved where the constraint that a specific number of games must be played

34

between two teams is relaxed. Therefore, every game between teams in the elimination
set are considered as a pool of games and are assigned to the worst team until the games
are used up or the mini∈E(mppi) is reached. As well, the constraint that tq could reach
the bound if it is not larger than mppq is relaxed. While this scenario is not necessarily a
feasible solution, the relaxed bound is a good overestimate of the actual bound. Lemma
3.6 shows that the relaxed bound is an upper bound of the actual bound.

Lemma 3.6 (The Relaxed Bound). The relaxed bound is an upper bound of the actual
bound.

Proof. Proof by contradiction. Assume that there exists an actual bound which is higher
than the relaxed bound given by the algorithm. This assumes that there exists some as-
signment of wins that is not possible under the relaxed bound. However, the relaxed bound
is a valid relaxation since two constraints are removed and none are added. Therefore, the
solution to the original problem must be contained in the set of solutions to the relaxed
problem. Therefore, any bound achievable on the original problem is achievable under the
relaxation.

Algorithm 3.2 shows the steps of the algorithm. The maximum upper bound of the
algorithm is the lowest mppi for all teams ti ∈ E. Next, add all of the points described by
Equation 3.16 as well as any points that could be earned by playing tq. During this step, a
count of the number of remaining games is kept. The teams are sorted by increasing point
values. Finally, games are added from the pool of remaining games to the worst or set of
equally worst teams until the maximum upper bound is reached or the pool contains no
more games.

Example 3.3 (Calculating the Relaxed Bound). Referring to the example described in Sec-
tion 3.3, the first elimination set described previously in Example 3.1 is Montreal, Toronto,
Detroit and Boston. This leaves New York and Chicago out of the set. The maximum
upper bound is 28 as Boston has the lowest maximum possible points, where mppB = 28.
Figure 3.2a shows the current points of the teams within the set (See Table 3.2). Referring
to Table 3.3, each team within the set plays 2 games against either New York or Chicago
and one against the other. As well, each team within the set plays one game against two
teams within the set and two games against the other team in the set. Figure 3.2b shows
the points, two per game, added for the games outside the set and the points, one point
per game, added for the games inside the set. The next step in the algorithm sorts the
teams in ascending order as shown in Figure 3.2c. At this point, there are eight games
remaining between the teams within the set. Boston has two less points than Detroit so
two of the remaining games are assigned to Boston (See Figure 3.2d). Now Boston and
Chicago have one less point than Toronto, so one game is added to both of those teams
(See Figure 3.2e). With four games remaining, Boston, Chicago and Toronto each have

35

Algorithm:RelaxedBound(T , E, g)

input : The set of teams T , the elimination set E and the games remaining g
output: Returns the relaxed bound for E.
Initialize Points array to zero;
Max← the smallest mppi of all teams in E;
// Adjust The Points

for t ∈ E do
Points[i]← Pi;
for j ∈ T do

if j ∈ E then
Points[i]← Points[i] + 1;
GamesRemaining← GamesRemaining + 1;

else
Points[i]← Points[i] + 2;

sort ascending(Points);
current← Points[0]; // Initial Starting Points

GamesRemaining← GamesRemaining/2; // Due to Double Counting

// Assign The Remaining Games to the Weakest Teams

while GamesRemaining > 0 do
if current ≥ Max then

return Max;

difference ← the number of teams with points equal to current;
if difference < GamesRemaining then

Increment Points by one for each team with points equal to current;
current← current + 1;

else
return current;

return current;
Algorithm 3.2: This algorithm describes the method by which a relaxed infeasible
bound is calculated.

one point less than Montreal and one game each is assigned to those teams (See Figure
3.2f). There is a single game remaining but four games are required to increase the bound
plus the maximum upper bound has been reached. All other elimination sets would have a
bound of 24 because Chicago can earn at most 24 points and Chicago is a member of all of
the other sets.

36

M TB D M TB D MTB D MTB D MTB D MTB D

18

14

17

16

+6

+6

+6

+6

+4

+4

+4

+4

28

24

27

26

24

26

27

28

+2

26 26

27

28

+1 +1

27 27 27

28

+1 +1 +1

28 28 28 28

(a) (b) (c) (d) (e) (f)

Figure 3.2: The application of the relaxed bound algorithm on the example. (a) The
number of points earned by each team. (b) Added six points for each team for the three
games they play against both New York and Chicago and four points for the four remaining
games. (c) The sorted list of teams. (d) Two wins are added to Boston. (e) A single
point each is added to Boston and Detroit. (f) Three points are added to the three weakest
teams and the algorithm terminates with a single game remaining.

The Flow Network and the Bound

Once an upper bound is calculated by the relaxed bound algorithm, the bounding procedure
must be applied (see Algorithm 3.3). The algorithm uses a flow network to model the
problem of finding a bound for a given elimination set. Described in detail later, a flow
network is constructed such that a feasible flow on the network ensures that there exists
a scenario where each team in the set earns the number of points needed to reach a given
bound. If the problem is infeasible, then the bound is reduced and the computation is
repeated until a feasible solution is found.

Given a bound, every team in the elimination set and the team tq needs to win a certain
number of games to reach the bound. The need, ni, of a team ti is the difference between
the bound and the adjusted points of ti.

ni = max (bound− p′i, 0), (3.17)

where bound is the current lower bound on points and p′i is defined in Equation 3.16.

Once the needs are known for a given elimination set, it is relatively simple to construct
the flow network to solve the problem. A source node s and a sink node t are added. The
bound on an elimination set requires that each team in the elimination set reaches the

37

Algorithm:Bound(E)

input : The elimination set E.
output: Returns bound on the elimination set E.
bound ← RelaxedBound(E, tq);
repeat

Needs ← CalculateNeeds(E, tq, bound);
need←

∑
i∈E ni;

G ← ConstructGraph(Needs);
flow ← CalculateFlow(G);
if flow < need then

bound← bound− 1;

until flow ≥ need ;
return bound

Algorithm 3.3: This algorithm shows the steps for calculating the bound for a given
elimination set, E. First, calculate the relaxed bound as a starting point. From that
starting point, generate, for each team, the number of points needed to reach the bound,
denoting the set of needs as Needs. Then, check feasibility using a flow algorithm. If the
flow meets the needs, return the bound. Otherwise, reduce the bound and iterate.

bound and that pq is exactly the bound or, if the bound is too large, mppq, and there is
no restriction on the points of the other teams. Therefore, the network must include all
of the teams from the elimination set and tq to ensure that each reaches the bound, if
possible. A node for every matchup of teams from the set composed of the elimination set
plus tq is added and, in second column, a node for each team in the elimination set plus tq.
There is an arc from s to every node representing a matchup of two teams with an upper
and lower bound capacity equal to the number of games that they play. From each node
representing matchups, there are two outgoing edges, one for each team in the matchup,
with a lower bound capacity of zero and an upper bound capacity equal to the number
of games remaining between the two teams. The flow along the edges from the matchups
represents an outcome of the games in some scenario. From each node representing a team,
there is an edge to the sink node t with a lower bound capacity equal to the need of the
node and an upper bound capacity equal to the number of games the team has remaining.
One exception is that the edge from the node representing tq to the sink has an upper
and lower bound capacity equal to the need. A feasible flow on this network solves the
bounding problem because it ensures that at least one team wins every game and that each
team in the set meets their need to reach the point bound. An example of such a network
can be found in Figure 3.3.

Example 3.4 (Calculating the Tight Lower Bound). Referring to the example described in
Section 3.3, the bounding technique is applied to the first set of teams generated in Example

38

3.1. Recall that in Example 3.3, the upper bound for this set is 28. Now a feasible bound
must be calculated. First, the adjusted points are calculated as described in Equation 3.16.
Subtracting from 28 the adjusted points of each team in the set as well as New York, the
need for each team is determined. Now, the flow network in Figure 3.3 is constructed. A
sink node s and a source node t are added. The first column of nodes represents the ten
possible pairings of opponents between all of the teams in the set and New York. And the
second row of nodes represents each team. Each pairing of opponents has some number of
games to be played. For each, an edge is added from the source with an upper and lower
bound capacity equal to the number of games to be played. For example, New York plays
Montreal twice so the edge from the source to the New York-Montreal pairing is two. From
the pairing nodes, there are two outgoing edges, one to each of the teams in the pairing.
These have an upper bound capacity of the number of games to be played and a lower bound
capacity of zero. In the case of the New York-Montreal pairing, there is an edge to New
York and an edge to Montreal and both of them have an upper bound capacity of 2 and a
lower bound capacity of zero. From each team node, an edge to the sink is added with the
lower bound capacity being the need of that team to reach the bound and the upper bound
capacity being the maximum number of games the team could win. Note that New York
is reaching the bound exactly so its upper and lower bound capacities are equal. Montreal,
alternatively, has a need, and hence a lower bound capacity, of two, but an upper bound
capacity of six as members of the elimination are only constrained on their lower bound.
Once the flow network has been constructed, a feasible flow algorithm is applied [2]. Figure
3.3 shows that there exists a feasible flow on this network and therefore the relaxed bound
is, in this case, a feasible bound. Note that the bound on all of the other elimination sets
is 24.

Example 3.5 (The First Phase). In Example 3.4, it is shown that there exists a solution
to the problem with equality constraints for New York at a point bound of 28 and the set
{Montreal, Toronto, Detroit, Boston} is the only possible set with an optimal solution as
the others had a point bound of 24. Since 28 is neither greater than the maximum possible
points of New York or less than the current points of New York, no decision can be made
and the second phase is needed.

3.7 The Second Phase

In the second phase, only the elimination sets where teams can reach the point bound p
are kept from the first phase and, for each set, there exists no scenario where every team
in the set earns more points than the bound. The second phase is looking for sets where
every team earns more points than the bound or if a team just reaches the bound, the
tied team earns more wins. Observe that tq has a certain number of earned wins, Wq,

39

s

NY, M

NY, T

NY, D

NY, B

M, T

M, D

M, B

T, D

T, B

D, B

NY

M

T

D

B

t

[2
, 2

],
2

[1
, 1

],
1

[2,
2],

2

[1,
1],

1

[1, 1],1

[1, 1],1

[2, 2],2

[2, 2],2

[1, 1],1

[1, 1],1

[0, 2],0

[0, 2],2

[0, 1],
1

[0, 1],0

[0,
2],

0

[0, 2],2

[0
, 1

],
0

[0, 1],1

[0,
1],

0

[0, 1],1

[0
, 1

],0

[0, 1],1

[0
, 2

],
0

[0, 2],1

[0,
2],

1

[0, 2],1

[0
, 1

],
0

[0, 1],1

[0,
1],

0

[0, 1],1

[1, 1],1

[2, 6],2

[2, 6],2

[4,
6],

4

[5
, 5

],
5

Figure 3.3: The feasible flow network from Example 3.4. Shows the elimination set of
Montreal, Toronto, Detroit and Boston for New York with a point bound of 28. The arcs
are notated with their upper and lower bound capacities. The bold number represents a
possible feasible flow on the network.

initially and some maximum and minimum possible given p. The range can be defined by
observing the possible configurations of consolation points earned via overtime. The win
range is defined more formally as,

40

Wq + max ((p− Pq)−Gq, 0) ≤ wq ≤ Wq +

⌊
(p− Pi)

2

⌋
. (3.18)

Given the range of win values, each value is checked while bounding the wins of tq,
denoted w. For each set, it is determined whether the teams can collectively exceed the
point bound or reach the point bound and exceed the win bound, where the win bound
is some possible win value of tq. These problems are solved in a similar manner to the
previous point bound calculation but with adjusted needs. There are four different cases
that must be considered. First, some teams have have already exceed the point bound,
therefore, their need is zero. Second, some teams may be able to reach the bound but
would have more wins than the win bound. Therefore, some teams need to win at least
as many games as needed to reach the point bound. Third, some teams may reach the
bound but must require more wins to ensure that the wins are exceeded. Note that earning
a single extra win is sufficient as a single extra win will give a team an additional point
and thus not be tied on points. The last need that must be adjusted is that of tq which
must earn exactly w wins. By subtracting from the current value, Wq, tq’s need can be
determined. The needs and conditions are formalized in the following equation.

ni =

0 if (p− Pi)−Gi < 0
(p− Pi)−Gi if (p− Pi)−Gi + Wi > w
(p− Pi)−Gi + 1 if (p− Pi)−Gi + Wi ≤ w
w−Wi if (pi = p) ∧ (wi = w)

. (3.19)

Lemma 3.7 (Needs Satisfy the Constraints). A team ti meeting the needs described in
Equation 3.19 has more points or equal points and more wins if any of the first three
conditions are true. If not they must be tied as defined by the fourth condition.

Proof. The first condition states that if ti lost every game but lost them in overtime then
the ti would have more points than the point bound. Under this condition, ti could win
none of their games and have more points. The second condition states that if by reaching
the point bound, ti has more wins then they only need to earn enough points to reach
the point bound. The third condition states if ti does not have more wins than w when
reaching the point bound they must earn a single extra win. Observe that if ti earned a
single extra win beyond the minimum required to reach the point bound, while losing all
of their other games in overtime, ti would have more points. Therefore, it is sufficient for ti
to win only one more win than the minimum. The fourth criteria states that if ti must be
tied with the bounds at the end of the season then the number of points and wins should
be equal to the point bound and win bound, respectively. Any other solution would have
ti fail to be better than tq.

41

Given the needs from Equation 3.19, this problem is formulated as a feasible flow
problem as described in Section 3.6.2 except with new needs. If there exists a solution
then tq would need an extra point beyond p in order to guarantee a playoff spot. If p+1 is
greater than mppq then tq cannot guarantee qualification. Otherwise, p + 1 points can be
returned. If there are no solutions, then the needs must be checked for equality. This is to
determine if any set could earn more points or equal points and equal or more wins. This
can be done by modifying Equation 3.19 so that teams which need no extra wins to reach
the point and win bound need only a minimum number of wins to reach the point bound
as opposed to before where the team needed an extra point to exceed the win bound. If
there is no solution under the modification for equality for any set, then there is no scenario
where tq does not qualify when earning p points and that value is returned. For any sets
which have a solution, then the sets must be tested under the third phase.

Example 3.6 (The Second Phase). Referring to the example described in Section 3.3 and
last expanded in Example 3.5, the tie-breaking methodology is expanded. First, it must be
determined how many wins New York could earn given that p = 28. Using Equation 3.18,
New York must have between 11 and 13 wins if they earn 28 points. Each of these possible
win values affects the needs of the teams. Using Equation 3.19, note that the first condition
where teams could earn more than 28 points without winning a single game (i.e., only on
overtime losses) does not hold for any of the teams as each team needs more than seven
points to reach p. For the second criterion, it must be determined how many wins a team
absolutely must earn to reach the bound. That calculation of the condition is described
below,

Montreal: (28− 18− 7) + 8 = 11,

Toronto: (28− 17− 7) + 7 = 11,

Detroit: (28− 16− 7) + 6 = 11,

Boston: (28− 14− 7) + 4 = 11.

The most important observation to make here is that none of the teams can possibly
exceed even the lowest win value possible for New York without earning another win. This
means that the third criteria from Equation 3.19 would have to be enforced for all teams
and each team would have their need increase by one. Recall, however, from Example 3.5,
that Boston can not increase their need as Boston requires all of their seven games just
to reach 28 points. Therefore, one team cannot earn more than 28 points or exactly 28
points and more than 11 wins under any situation. Since Boston cannot earn more than
11 wins, win values of 12 and 13 can be pruned. The previous equation shows however that
the teams could be tied with 28 points and 11 wins. Thus, the only remaining set has a
point bound of 28, the only eligible win bound is 11 and the third phase is required to decide
whether New York has clinched with 28 points.

42

3.8 The Third Phase

The third phase of tie-breaking is the most complicated of the tie-breaking constraints. It
states that teams who are tied in terms of both points and wins are compared in terms of
the number of points earned only against those teams who have also earned exactly that
number of points and wins. The most difficult thing to determine about this constraint
is that until the final points and wins are calculated for each team the exact composition
of the set of tied teams is unknown. This problem is avoided by considering each set of
possibly tied teams separately. Recall that the tie-breaking set, TBq, is the set of teams
tied with tq such that, for every ti ∈ TBi, pi = p and wi = w where pq = p and wq = w.
Note that only the sets of teams that are tied with tq are important as the positional
arrangement of other tied teams is not relevant to solving the problem.

Many of these teams in the problem could not possibly be a part of a tie-breaking
set. Given that the number of points and wins that a team must earn is fixed, only the
number of points earned from overtime losses varies. As well, with larger sets, it is often
not possible for all teams to be simultaneously tied.

To prune the possible membership of the tie-breaking set, a similar mechanism to the
one used in the second phase is introduced. The major difference is that, unlike the second
phase where the fourth criteria of Equation 3.19 only applied to tq, here any team in TBq

will compute their need using this criteria. Any possible tie-breaking set where there is no
feasible flow can be pruned. The equality modification to Equation 3.19 from 3.7 would
also be applied.

Once the tie-breaking sets have been pruned, a feasible solution to Constraint 3.14 must
be found. Unfortunately, this can no longer be represented in the flow network formulation
used so far. At this point, a constraint programming solver is used to determine the
feasibility of the final constraint. The basic model is extended to take advantage of the
enumeration from the previous phases. First, the constraint that at least eight teams must
be better is removed as this is ensured by enumerating in the first phase. Second, the
complicated disjunction (Constraint 3.5) is replaced with a series of simpler constraints,
described below, that can be expressed more easily and propagated earlier. Last, the
optimization criterion can be removed as the tight bounding has turned the problem into
a decision problem.

To reduce the burden of the disjunction, four different classes of teams are identified
that exist in the problem: those teams who are in the elimination set and those that are
not and, concurrently, those teams which are in the tie-breaking set and those who are
not. The constraints that must be applied in each situation are different.

The first constraint that can be added is that teams which are members of the tie-
breaking set must have exactly p points and w wins. Additionally, those tie-breaking set

43

members who are also members of the elimination set must have more points against other
tie-breaking members than tq while those who are not members of the elimination set do
not have to enforce this. If a team is neither a member of the elimination set nor the
tie-breaking set then all constraints can be relaxed as those teams do not have to meet any
bounds. Those teams who belong to the elimination set but not the tie-breaking set have
to earn more points or equal points and more wins than tq. However, as noted in the second
phase, to earn enough points to exceed the bounds, it is only necessary to enforce that
the teams reach their need values. By enforcing the needs, the teams necessarily satisfy at
least one term of the disjunction as shown in Lemma 3.7.

Example 3.7 (The Third Phase). Referring to the example described in Section 3.3 and
last expanded in Example 3.6, recall that there is a single eligible elimination set with p = 28
and w = 11. Note that since Chicago could only earn 24 points even if Chicago won all of
their games, Chicago is not a candidate for the tie-breaking set. Now, the set of New York
and Boston combined with any subset of the remaining teams is a valid tie-breaking set.
However, recall from Example 3.6 that each team needs to earn at least one more win (and
thus point) in order to not be tied. This would increase the need by at least one of either
Montreal, Toronto or Detroit. Observe from Figure 3.3, that none of the teams exceeded
their minimum capacity and no further points could be earned by any team. Therefore,
we skip showing that the only valid tie-breaking set is the one that contains the entire set
and New York as none of them could earn a single point without causing infeasibility for
another team. Now all that remains to be shown is that the constraint program described
by the elimination set, point bound, win bound and tie-breaking set has a solution where
all of the teams in the elimination set has more points against teams that are tied than
New York. In fact, there is no solution where this is true. New York can earn at most
seven points against Chicago and Montreal must earn eight points against Chicago as there
was no slack in the feasible flow to allow Montreal or New York to drop games from teams
outside the set. Therefore, New York has 21 points against teams in the set and Montreal
only has 20 points against teams within the set and, therefore, New York needs 28 points
to guarantee a playoff position.

3.8.1 Symmetry Breaking and Redundant Constraints

While this model is a correct model, additional symmetry breaking and redundant con-
straints are added to ensure that solutions are found quickly. It is a common modelling
technique to add additional constraints, either statically or dynamically, to remove sym-
metries and dominances from the solution set. This technique is combined with the initial
enumeration to remove symmetries and dominances that could not be easily detected with-
out the enumeration.

44

The most obvious dominance constraint is that elimination sets which do not have an
upper bound equal to the point bound can be discarded.

There is little true symmetry in the NHL Playoff Qualification problem as each team
often has a different number of games remaining, points, wins and different opponents for
their remaining games. However, by using the phased approach combined with enumera-
tion, it is possible to identify classes of teams where symmetries can be applied to reduce
the search space of the problem. Recall from above that the classes are based on the team’s
membership in either the elimination or tie-breaking set or both.

The most obvious of the symmetries is that teams that belong to neither set are uncon-
strained under the specific set restriction being applied. If these teams play games between
each other, the result is not affected regardless of the outcome of the game. Therefore,
values can be arbitrarily assigned to the win variables for games between teams in that
class. As well, if teams in this class earn overtime points it does not affect any constraint
and the overtime variables for each team, therefore, can be fixed to zero.

Another symmetry is that teams that are members of the elimination set but not the
tie-breaking set win all of their games against those who belong to neither including those
in the opposite conference. Unlike those teams who belong to the tie-breaking set, neither
their wins nor their points are constrained by an upper bound. Since none of the teams
whom they are defeating need the points, if there is a solution then there is also a solution
with those wins.

For those teams in the tie break, it is possible to add a redundant constraint which also
constrains the number of overtime losses.

There is a useful relationship between teams within the tie-breaking set and overtime
losses. There are three groups of teams in the tie-breaking set: those teams that are also
in the elimination set that are trying to earn as many points as possible to be better than
tq, those teams that are not in the elimination set which just need to reach the bounds and
tq. It is often possible when a team from within the tie-breaking set loses a game to set
the overtime loss value immediately. For the first group, any time they lose games against
teams also in the tie-break, it is possible to immediately assign the corresponding overtime
loss values to as high as possible without violating the redundant constraint on the number
of overtime losses allowed. For those teams that are not in the elimination set and are not
tq, any time the lose games regardless of whom they are playing, as many overtime points
as possible without violating the overtime loss constraint should be assigned. Every time
tq loses a game against a team that is not in the tie-break, the overtime loss should be
assigned as long as the overtime loss constraint is not violated.

Once the win values for every game that involves the tie-breaking set has been deter-
mined, the remaining values can be propagated without search. First, the remaining win
variables for the teams in the elimination set but not the tie-break set must be assigned.

45

However, this problem is identical to the problem solved in the second phase and can be
solved in polynomial time. The only variables that would be left to be set are the overtime
loss variables for tq against teams within the tie-breaking set and those by the elimination
set members also in the tie-breaking set. However, at this point it is possible to determine,
the number of overtime losses earned by each team and assign them based on a predefined
order which ensures a solution if possible.

3.8.2 Pruning Values from Constrained Teams via Flow Manip-
ulation

The feasibility of the tie-breaking set depends on whether there exists a feasible flow equal
to the needs of the teams in the flow network of the type represented by Figure 3.4. An
important observation that can be made is that any feasible flow is a valid assignment of
the win variables of the teams in the elimination and tie break set. The variables within the
solver can be pruned by modifying an already existing flow to contain a specific test value
using a method adapted from Maher et al. [40]. If there is a flow that contains the value
then there is a support for that value and that value is kept. If not, the value is pruned
from the domain of the variable. The idea is similar to the idea used in the Ford-Fulkerson
algorithm. However, in this case, a path between two internal nodes is desired.

To reduce the practical complexity of the algorithm, the residual graph is reduced to
only those components that will be updated. In a graph containing a feasible flow, the
edges out of v and into w are completely saturated. Since any modification must also be
a feasible flow, these edges must remain saturated and any modification should not alter
these edges. The other reduction that can be made to the graph depends on the symmetry
between nodes representing teams and the links to their matched games. This allows us
to remove the nodes representing the matched games and link the nodes directly together.

Example 3.8. Examine Figure 3.4b and note that in the residual graph links into v and
out of w are saturated and can be removed. Also observe that the edge from node 1 to
node (1, 2) is the same as the edge from node (1, 2) to node 2. Therefore, we can remove
node (1, 2) and directly link (2, 1). Figure 3.5 shows the reduced pruning graph along with
a single variable update.

3.9 A Note About Division Leaders

An intentional omission from the preceding discussion of the solution is the issue of division
leaders and their special status in sports leagues. A division leader is guaranteed a playoff
spot regardless of how it would have actually ranked had it not been at the top of its

46

s 1, 2

1

2

t

[0, g13
]

[g12, g12]

[0, g23]

[0
, g

12
]

[0, g
12]

[n
1 , g1]

[n2,
n2]

v 1, 2

1

2

t s

w
g12

n
1
+

n
2

g
1
3

g
23

g 1
2

g 1
2

g
12

g 1
−

n
1

n
1

n2

∞

(a) (b)

v 1, 2

1

2

t s

w
0/3

0/4

0/1

0/1 0/
3

0/
3

0/3

0/
1

0/2

0/2

0/∞

v 1, 2

1

2

t s

w
3

4

1

1

3

1

2

2

1

1

2

2

∞

4

(c) (d)

Figure 3.4: (a) A network flow with three teams. Team 1 has a lower bound constraint
on the number of wins and is in the elimination set and not in the tie break set, team 2
is in the tie break set and has a fixed number of possible wins, and team 3 is in neither
the elimination set or the tie break set and has no bounds on either points or wins. (b) A
flow graph transformed to remove the lower bound capacities. Two additional nodes are
added v and w. A feasible flow exists in the original graph if the maximum flow is equal
to the sum of the lower bounds on the original graph (n1 + n2 + g12). (c) An example flow
graph for three teams where Team 1 must earn between 2 and 3 games, Team 2 must earn
exactly 2 games and Team 3 is unbounded. (d) The residual graph containing a maximum
flow.

division. The complication of these division leaders arises from the tie-breaking constraints
used. First, it is shown that at most one division leader could be weaker than tq.

Lemma 3.8 (At Most One Weak Division Leader). At most one of the three division
leaders can have fewer points or equal points and fewer wins than tq if tq does not clinch a
playoff spot.

Proof. It is impossible for the leader of tq’s division to have fewer points or equal points
and fewer wins as the team could not be a division leader as tq would be ranked ahead
of the team within that division. So at least one team in tq’s division must have at least

47

1

2

t

s

1

1

12

1

∞ 4

1

2

t

s

1

1

1+12-1

1

∞ 4

1

2

t

s

1

1

21

1

∞ 4

1

2

t

s

1

1

21

1

∞ 4

(a) (b) (c) (d)

Figure 3.5: Reduced Pruning Graph. (a) shows the reduced residual graph of Figure 3.4.
In (b), the link between nodes 1 and 2 is reduced and the link between nodes 2 and 1 is
increased, which ensures the constraint that the flow between them equals some mutual
capacity. (c) shows the path that is found from node 2 to node 1 correcting the imbalance.
Once a path is found, the flow is redirected and the opposite edges are updated by the
change. (d) shows the new stable solution showing support for the assignments of w12 = 1
and w21 = 2.

equal points and equal wins. Suppose, however, that the two other division leaders have
fewer points or equal points and fewer wins. Note however this also means that every other
team in both divisions will have fewer points or equal points and fewer wins than tq. Since
at most four other teams from tq’s division plus the two division leaders would qualify, tq
must qualify in seventh at worst. Therefore, at most one division leader can have fewer
points or equal points and fewer wins if tq does not qualify for the playoffs.

This can be effectively dealt with by simply tweaking how elimination sets are generated.
If a team is a division leader that has fewer points or equal points and fewer wins then there
are obviously no other teams that could be in the elimination set as they would fail the
constraints. Therefore, any elimination set that contains only a single team from a division
that does not include tq can simply drop that team. If the set contains no members from
a division, again not containing tq, eight sets of seven are generated by selectively leaving
one team out of the original eight team set.

The more complicated case is when every member of the elimination set from a partic-
ular division is also in the tie-breaking set. In this case, it is possible for a team ti to fail to
be better than tq but to still also be the division leader. The reason for the discrepancy is
that when ti is compared using the third tie-breaking criteria there are two different sets of
teams: the set of all teams which are tied and the set of all teams from the same division
that are tied. It is possible for ti to lose the tie break in the former and win in the latter
which still assures them a playoff spot as division leader. These situations are very rare and
can be handled individually when the situation arises. First, if this pertains to a division
not containing tq, the problem is solved normally and, if a solution is returned, a valid
solution is obtained. If no solution is found or if tq is possibly a division leader, further

48

steps must be taken. Given there is only a small number of possible division leaders, the
problem is solved enforcing a different division leader each time. The enforced division
leader does not need to have the tie-breaking constraint enforced for the overall solution
but it does have to be enforced against its divisional rivals.

3.10 The Elimination Problem

The focus of the explanation has been on the solver for the qualification problem but the
basic mechanics are applied in the same manner for the NHL playoff elimination problem.
The major difference is how the point bound is calculated given a qualification set. Instead
of finding the maximum point value of the weakest team in the set, the minimum possible
point value of the strongest team is found using the feasible flow algorithm. Once the point
bound is established, the other major difference is that if a solution is found then the point
bound is returned and if there is no solution then the point bound plus one is returned.

Another difference with elimination problems is with division leaders. It must be
checked first if tq could be a division leader for less points. Note this can be integrated
seamlessly with the normal procedure by adding the set containing only the other division
members. If this set has a better point value, it is kept and, if not, it is pruned like other
sets.

3.11 Experimental Results

The solver was implemented in C++ using the Boost Graph Library [64] for the feasible
flow calculations and ILOG Solver [31] to solve the final constraint model. The calculated
results are compared against those shown in the Globe and Mail [26] for the 2005-06 and
2006-07 season. The 2006-07 season results are used to calculate the minimum points
needed to clinch a playoff spot. In total, determining the bound for all 30 teams on all
181 game days of the 2006-07 NHL season (5430 problems) took a little over 46 hours on
a Pentium 4 PC. Each individual instance, representing a team at a given date, took less
than ten minutes to calculate the bound and those problems near the end of the season,
where the results matter the most, were calculated in seconds. The dates at which various
teams would have clinched using the various scoring models used and proposed by the NHL
was compared.

To generate the qualification problem instances, the results from the 2005-06 and 2006-
07 seasons were obtained and broken into separate days. To create instances from the
results for each day of the season, the number of points and wins earned up to that point
in the season was calculated.

49

Each of the problem instances for the 2005-06 and 2006-07 seasons was tested and the
date of qualification for each of the teams was determined. For most instances, the solving
time was a fraction of a second. When comparing the results to the results posted in the
Globe and Mail, the exact results generated show qualification earlier for nine teams during
the 2005-06 season and for four teams during the 2006-07 season. Interestingly, the Globe
and Mail never announced clinching before the actual date in 2005-06 and 2006-07. The
results of this experiment are shown in Table 3.4. In this table, entries with multiple dates
are due to the absence of Sunday editions or unreported results where it was unclear on
which day the result would have been reported.

Qualification was shown earlier than the Globe and Mail by as much as five and four
days for the 2005-06 and 2006-07 seasons, respectively. Note that the largest difference is
for the first team to qualify in both seasons. It is possible that this is due to the paper
not calculating the results because they did not realize that teams had clinched playoff
spots. Even disregarding these results, discrepancies as large as four days and two days
were found for the 2005-06 and 2006-07 seasons, respectively.

Table 3.4: The results of qualification compared against the published Globe and Mail
results. Only results that differ are shown.

2005-06 2006-07
Team Optimal Globe and Mail
Ottawa Mar 22 Mar 27
Montreal Apr 14 Apr 18
Buffalo Apr 4 Apr 5
New Jersey Apr 12 Apr 14
Calgary Apr 8 Apr 9 or 10
Colorado Apr 13 Apr 15
San Jose Apr 13 Apr 14
Dallas Mar 31 Apr 1, 2 or 3
Nashville Apr 9 Apr 10

Team Optimal Globe and Mail
Buffalo Mar 18 Mar 22
Atlanta Apr 2 Apr 4
Detroit Mar 24 Mar 25 or 26
Nashville Mar 23 Mar 24

The bound result is plotted against both the current points of the team and maximum
possible points of the team. If the bound result is greater than the maximum possible
points, then the team is no longer able to guarantee a playoff spot. If the current number
of points is equal to the number of points needed by the team then that team has clinched
a playoff spot. Figure 3.6 shows the result calculated for Toronto and Pittsburgh. Note
that Toronto did not make the playoffs because the current points never reached the bound
value. Also note that Toronto placed themselves in a position where guaranteeing a playoff
spot was not possible and got lucky four times. In other words, they lost a “must win”

50

 0

 20

 40

 60

 80

 100

 120

 140

 160

 20 40 60 80 100 120 140 160 180

P
oi

nt
s

Days

Toronto

Max Points
Guaranteed

Possible
Points

 0

 20

 40

 60

 80

 100

 120

 140

 160

 20 40 60 80 100 120 140 160 180

P
oi

nt
s

Days

Pittsburgh

Max Points
Guaranteed

Possible
Points

(a) (b)

 0

 10

 20

 30

 40

 50

 60

 70

 130 140 150 160 170 180

P
oi

nt
s

Days

Toronto

Points Remaining
Points to Guarantee

Points to Possible

 0

 10

 20

 30

 40

 50

 60

 70

 130 140 150 160 170 180

P
oi

nt
s

Days

Pittsburgh

Points Remaining
Points to Guarantee

Points to Possible

(c) (d)

Figure 3.6: (a) and (b) The minimum number of points needed by Toronto and Pittsburgh
to guarantee or possibly qualify for a playoff spot in the 2006-07 NHL season. (c) and
(d) The difference between current points by Toronto and Pittsburgh and the maximum
points, number of points to guarantee and number of points to possibly qualify in the
2006-07 NHL season.

game five times during the 2006-07 season while Pittsburgh was never in that situation.
Another interesting feature is that, in both graphs, the bound on points, 145, at the start
of the season to guarantee a playoff spot was quite high.

51

Table 3.5: Shows some of the features that can be highlighted by calculating the minimum
number of points needed to guarantee a playoff spot.

Feature Value Team(s)
Earliest day where a team could not
guarantee

64 days St. Louis

Most days where a team could not
guarantee

118 days St. Louis

Most times a team got lucky 4 Toronto, Boston and NY Rangers
Number of teams that got lucky and
earned a spot

2 NY Islanders and NY Rangers

Number of teams that got lucky but
failed to earn a spot

7 Toronto, Boston, Washington, Car-
olina, Edmonton, Phoenix and
Columbus

Table 3.5 shows an overview of the results of the 2006-07 NHL season in terms of the
minimum points needed to guarantee a playoff spot. One interesting observation that can
be made from this table is that of the nine teams that got a second chance only two of
those teams ended up earning a playoff spot. As well, of those seven teams, two of them
had four chances to make the playoffs after losing a must win game. Another interesting
note is that St. Louis could not guarantee a playoff spot after only the sixty-fourth game
day and never recovered during the final one hundred and eighteen game days.

Once the solver has been designed for one scoring model, it is relatively straight-forward
to translate the model to other scoring systems. The instance generator was modified to
calculate the points correctly for each of the different scoring models and the instances
were run for all of the scoring models used by the NHL as well as a proposed model for
the NHL which was used in the 2010 Winter Olympics. The results of this experiment can
be found in Table 3.6. The average of number of days remaining when teams clinch in a
given season can vary by more than two days depending on the scoring model used.

The most interesting effect of changing the scoring model was to observe which teams
qualified for the playoffs. In the case of the 2006-07 season, the Toronto Maple Leafs
would have qualified for the playoffs under any other scoring model than the one used
that season all other things being equal (see Table 3.7). Another interesting note is that
Edmonton, who were the Western Conference Champions in 2005-06, would not have made
the playoffs if the proposed scoring model had been imposed and their spot would have gone
to divisional rival Vancouver (see Table 3.8). It should be noted that these results assume
that the games would end in the same way regardless of the scoring system. However,
research in economics has shown that teams modify the way they play depending on the

52

Table 3.6: Average days remaining by scoring system for the 05-06 and 06-07 seasons.

Average Days Remaining
Scoring Model 2005-06 2006-07
Historic 12.75 11.75
Overtime 11.56 12.81
Extra Point 11.75 10.63
Current 11.94 10.75
Proposed 13.13 10.13

scoring model [9]. Even given this fact, it is interesting to note that some team strategies
would have been good enough to secure a playoff spot under any scoring model while other
teams strategies only ensure qualification under the current scoring model, for example,
Tampa Bay in 2006-07.

Table 3.7: Date of clinching under different scoring models in the Eastern conference of
the NHL in 2006-07.

Team Historic Overtime Extra Point Current Proposed
East
Toronto Apr 8 Apr 8 Apr 8 — Apr 9
Ottawa Mar 19 Mar 18 Mar 21 Mar 25 Mar 21
Montreal — Apr 8 — — Apr 7
Buffalo Mar 24 Mar 21 Mar 23 Mar 18 Mar 22
Boston — — — — —
NY Islanders Apr 8 — — Apr 9 —
NY Rangers — — Apr 9 Apr 6 Apr 7
.
Tampa Bay — — — Apr 6 —
Florida Apr 6 — — — —
Atlanta Apr 7 Apr 1 Apr 2 Apr 2 Apr 7
Carolina — Apr 2 Apr 6 — —

The combination of the various techniques generates a set of models for each problem
that can be easily solved. Each component builds on the techniques used previously. The
initial enumeration is used to deal with the implication constraints and the cardinality
constraint on the indicator variables. Once the sets have been enumerated, it is easy
to prune the sets since bounds can be calculated efficiently. The phased solver method

53

Table 3.8: Date of clinching under different scoring models in the Western conference of
the NHL in 2005-06.

Team Historic Overtime Extra Point Current Proposed
Vancouver — — — — Apr 14
Edmonton Apr 14 Apr 14 Apr 18 Apr 14 —
Calgary Apr 6 Apr 6 Apr 6 Apr 8 Apr 6
.

takes the idea of enumeration and extended that to disjunctions as well as implication
constraints. Lastly, once the enumeration has fixed both the points and wins earned by
the distinguished team, it is possible to fix many of the other variables due to symmetry.

Table 3.9: The counts of problems in the 2007-08 season solved via the various stages of
the solver. Positively solved instances means a solution was found and the bound must be
increased. Negatively solved instances means that bound was valid for that instance. Any
problem without a definitive solution was passed to the next phase of the solver.

Solver Stage & Result Number of
Instances (/5430)

Cumulative
Percentage

First Phase 1212 22%
Second Phase (Positively) 2249
Second Phase 1524 92%
Third Phase (Positively) 338
Third Phase (Negatively) 107 100%

Table 3.9 shows the results breakdown of the solver in terms of its phases. The first
phase solves 1212 of the 5430 of the problems and in the second phase, with tie-breaking
on wins, a further 3773 problems are solved, which makes up about 92% of the problems.
However, the remaining 8% of problems require a backtracking constraint solver to calculate
the final result in the third phase. Also, note that in 47% of the total instances, the answer
differs from the initial lower bound.

Table 3.10 shows the improvements of the various techniques. Implementing a sum
of variables indexed by a set of indices from a set variable proved infeasible using ILOG
Solver 4.2 [31], so the simple model was not implemented in its pure form. From the results,
implementing enumeration allows some problems to be solved but it must be combined with
other techniques. The largest improvement was from using enumeration and decomposition

54

Table 3.10: Results from the 2006-07 season. Instances are solved for every game day,
working in reverse order from the end of the season (Apr 8) to the beginning of the
season (Oct 4). There are a total of 5430 instances.

Enumeration Bounding Phased Solver Symmetry
Breaking

Timeouts (300 s) 50751 4217 2 0
Latest Date of Failure Apr 4 Apr 4 Oct 5 N/A
Earliest Problem Solved Mar 18 Dec 5 Oct 4 Oct 4
1 Due to time constraints, timeouts for Enumeration are estimated. Once a team

timed out ten times, it was extrapolated that all of the remaining instances would
time out. This is a relatively safe assumption since the instances get larger towards
the beginning of the season and the gap between the bound and the current points
increases.

to create a phased approach. Symmetry breaking constraints were added to solve the last
remaining problems.

3.12 Summary

As the season winds down, the fans of the NHL are interested in knowing how far their
team is from clinching a playoff spot. A method for calculating the minimum number
of points that must be earned in order to ensure that the team reaches a playoff spot
was presented. This calculation is efficiently computed by using a multi-stage solver that
combines enumeration, flow network calculations and backtracking search.

This work represents the first complete and efficient solution to the NHL qualification
and elimination problems. The key to scaling up the constraint programming approach
was a combination of enumeration and additional symmetry breaking and redundant con-
straints. By introducing symmetry and redundant constraints to the model, the amount of
search necessary to find a solution or to confirm that no solution was possible was reduced.
As well, the costly work associated with the calculation of the actual division leaders was
avoided as much as possible.

The 2005-06 and 2006-07 seasons were used to verify that the solver could solve realistic
problems. Solving an individual instance only took a fraction of a second and all instances
of the 2005-06 and 2006-07 seasons could be solved in a several minutes while respecting all
tie-breaking rules. As well, clinching and elimination results could be announced as much
as five days earlier than the Globe and Mail [26]. Observing the effect of scoring model on

55

playoff qualification, it was found that qualification under scoring models could vary by by
more than two days and changing the scoring model caused different teams to qualify for
the playoffs.

A side effect of calculating the number of points need to qualify for the playoffs is the
ability to determine when the team is in danger of losing control of its destiny. These
games, often described by coaches as “must win” games, can be identified as the loss
reduces the maximum possible points to below the bound of the team. Nine different
teams in the 2006-07 NHL season were identified that lost control of their fate and then
gained that control back through mistakes by their opponents. Only two of these teams
took full advantage of this situation and clinched a playoff spot. Of the nine teams which
experience this event, three of them experienced it four times.

In the next chapter, a series of different manipulation strategies is examined a from
computational perspective. Work from social choice theory and winner determination
problems is adapted to create algorithms for manipulations in cup competitions and round
robins.

56

Chapter 4

The Manipulation of Sporting
Tournaments

The Gibbard-Satterthwaite theorem states that, unless dictatorial or unfair, voting systems
are always manipulable. One possible escape proposed by Bartholdi, Tovey and Trick is
that the manipulation may be computationally too difficult to find [10] (but see [68] for
discussion about whether manipulation is hard not just in the worst case). Like elections,
sporting competitions can also be manipulated. For example a coalition of teams might
throw games strategically to ensure that a desired team wins or a certain team loses.
Another example of manipulation would be to organize the teams in a cup competition so
that the desired match-ups occur.

Manipulating a sporting competition is slightly different from manipulating an election
as in a sporting competition the voters are also the candidates. This means that there
are no votes to consider as only the two teams participating in a match can change the
outcome of the game.

In this chapter, manipulation is viewed from two different computational perspectives1.
First, viewed from the perspective of theoretical worst-case complexity, the theory of com-
putational complexity used in the election literature, specifically the work on sequential
majority voting and Copeland voting, is applied to common sports competitions. As well,
several different variants are discussed including how minimal sized coalitions could be con-
structed for various sports competitions. Second, viewed from the perspective of practical
complexity, it is observed how difficult problems are in practice. It is shown that realistic
problems can be solved extremely quickly using, in this case, constraint programming.

Two common types of competitions are discussed in this chapter: cup competitions

1Portions of this work have previously been published in [60]. This work was co-authored with Toby
Walsh.

57

and round robin competitions. These two types of competitions and variants of these
competitions cover most if not all sports competitions. Cup competitions pit pairs of
teams against each other until only a single team remains. Round robin competitions
allow each team to play every other team and the total of the results is summed at the
end. The team with the most points is declared the winner.

Three types of manipulations are discussed in this chapter: constructive manipulation,
destructive manipulation and seeding manipulation. A constructive (or destructive) ma-
nipulation attempts to modify the outcome of games so that a desired team wins (or loses).
A seeding manipulation attempts to determine a seeding of a cup competition so that a
desired team wins the competition. It is assumed that there is a tournament graph that
describes the expected outcome of all fair games between opponents. Manipulating a game
in constructive or destructive manipulation modifies the tournament graph directly. Since
it is hard for a team to play better than it can, we consider manipulations where teams in
the coalition are only able to throw games. By comparison, in an election, voters in the
manipulating coalition can mis-report their preferences in any way they choose.

I first address manipulating cup competitions, also known as single elimination compe-
titions. It is shown that a coalition can determine a manipulation strategy in polynomial
time. This technique is extended to look at a minimization variant where a minimal set of
conspirators are found among a set of willing cheaters. Variations of the basic tournament
structure like double elimination tournaments and reseeding cups are also discussed.

I show that round robins, using the most common scoring model (a win or a loss), can
be manipulated in polynomial time by a coalition of cheaters. As well, it is determined
which of the remaining set of scoring models can be manipulated in polynomial time and
for which it is NP-Hard to do so. When extending the work to qualification and elimination
as discussed in Chapter 3 and the work of Ribeiro and Urrutia [54], the problem is almost
always NP-Hard. However, the work in Chapter 3 and Ribeiro and Urrutia [54] shows that
the problem of qualification and elimination for NHL hockey and Brazillian soccer can be
solved in practice.

When discussing cups, there is another obvious manner in which they can be ma-
nipulated. If the manipulators could influence the construction of the schedule then the
manipulator could change who wins the competition. The worst-case complexity of ma-
nipulating the seeding, the schedule of games, is unknown and remains an open problem
[35, 28, 67, 70]. However, as shown later in the chapter, regardless of the complexity, it
can be easy to determine seedings where the desired team wins given a random tourna-
ment graph. Even tightening the restrictions to which a seeding must conform does not
necessarily make the problem hard.

Last, the combination of the various manipulations is discussed. First, the combination
of cup manipulation and seeding manipulation is discussed and its practical complexity is

58

analyzed. Second, the complexity of a multi-stage competition which has a round robin
first stage and a final stage is derived. In many sporting tournaments, including the World
Cup, this is the common competition structure. It is shown that if only a single team
advances from each group then a manipulation strategy can be determined in polynomial
time. If not, there are several variants where two teams advance from the group stage to
the cup competition where a manipulation strategy can be determined in polynomial time.
In general, determining if k teams advance from the group is NP-Complete [45].

At first glance, the notion of determining algorithms for manipulating tournaments
has a particular negative social connotation. In some sense, this work could be used to
empower the cheaters. An analogy can be made, however, to computer security where
the security holes exist and failure to acknowledge their existence does not protect the
tournaments from the abuse. As well, the assumption that the work generated here could
not possibly have been discovered, in part or in whole, by the cheaters is unlikely to be
true. As such, there seems to be some benefit to revealing the manipulation strategies so
that the tournament organizers are aware of them and can attempt to combat them.

Before discussing the algorithms and results, some related work is presented, primarily
in voting mechanisms (Section 4.1). Manipulations by coalitions on cup competitions are
described in Section 4.2. In Section 4.3, it is shown that coalitions can manipulate round
robin competitions. A different type of manipulation, one of organization, is discussed
in Section 4.4 where the effect of different seedings of tournaments on the winners of
tournaments is examined. Combinations of these manipulations are discussed in Section
4.5. Finally, some concluding remarks are made in Section 4.6.

4.1 Related Work

Tang, Shoham and Lin [66] address the direct manipulation of tournament graphs in team
competitions by providing conditions for truthful reporting of player strengths. Tang et
al. [66]’s method tries to encourage teams to rank their players honestly so that, when
the teams compete in bouts, the best player on one team plays the best on the other, the
second best plays the opposing second and so forth. An example of a competition where
opponent matching is used is Davis Cup Tennis. The work presented in this chapter is
similar in theme but uses different techniques.

Conitzer, Sandholm and Lang [18] give an algorithm to determine if a coalition can ma-
nipulate a cup-based election. In this chapter, their algorithm is modified to manipulate
directly the tournament graph instead of the votes. Bartholdi, Tovey and Trick [10] dis-
cuss direct manipulations of the tournament under second-order Copeland, a round robin
like rule with secondary tie breaking. Bartholdi et al. [10] use a single scoring model and
results in this chapter extend the idea to all possible scoring models. Using the work of

59

Kern and Paulusma [34], the relationship between the manipulation of round robin compe-
titions and winner determination in sports problems is established in Section 4.3. Altman,
Procaccia and Tenneholtz [3] construct a social choice rule that is monotonic, pairwise
non-manipulable and non-imposing. Round robin and cup competitions are monotonic as
a single team losing a game does no better. Pairwise non-manipulability means that no
two teams are better off by manipulating the tournament. I show that round robin and
cup competitions are pairwise manipulable and that manipulations can be calculated in
polynomial time.

The algorithms used to determine manipulations of the tournament can be modified
to calculate the smallest number of manipulations needed. In this chapter, dynamic pro-
gramming is added to Conitzer, Sandholm and Lang’s algorithm to calculate minimal cup
manipulations. Vu, Altman and Shoham [67] use a similar method to calculate the prob-
ability that a team wins the competition, which is a related but different problem. For
round robin competitions, I show that there is a variation that adds weights to the flow net-
work used to solve winner determination problems and uses a minimum cost feasible flow
cost algorithm to determine the minimal number of manipulations. This allows minimal
manipulations to be calculated in polynomial time for cup competitions.

Vu et al. [67] provide several results on determining probabilities of teams winning,
given a seeding of the tournament. Hazon et al. [28] show that it is NP-Complete to
determine whether there is a seeding where a team wins a cup with a given probability.
This is similar to determining a possible winner given random reseeding except edges in
the tournament are labelled with probabilities.

Lang et al. [35], Vu et al. [67], Hazon et al. [28] and Williams [70] have all discussed
the probability of determining a seeding in the deterministic case where a given team
wins. As yet, the complexity of determining a seeding when the results of the games are
deterministic—a tournament graph is used to determine results—remains open. However,
Lang et al. [35] show that determining the solution for the weighted case is NP-Complete.
Both Hazon et al. [28] and Vu et al. [67] show that the problem of determining a seeding
for a balanced tournament which maximizes the probability of a given team winning is
NP-Complete. Williams [70] shows that certain classes of these problems can be solved in
polynomial time. As well, she showed that there is high likelihood that random problems
will be solvable in polynomial time. I tackle the open problem from a different perspective.
Instead of determining the worst-case complexity, an experimental study is performed to
analyze the practical hardness of problems. Further realistic restrictions are placed on the
problems that have not been discussed in previous work.

60

4.2 Cup Competitions

Cup competitions are an interesting case because in order for a coalition to manipulate
games they must detrimentally affect their own performance by throwing a game. This
would suggest that the incentive for throwing the game would have to be strong. An exam-
ple where this occurred is during the 1919 World Series where the White Sox deliberately
threw games in the final and, in the end, gave away the championship. The reason for
this was stated to be underpaid players being bought off by gangsters [6]. There are other
motivations that are plausible. A coalition might employ destructive manipulation to en-
sure that a certain team loses, which they collectively do not want to win either for spite,
jealousy or rivalry. Also, there is often some monetary reward to finishing in first place. A
group of teams might form to promote a team because if they manipulate the tournament
and split the winnings, this might increase their expected payout. An interesting ques-
tion that is not addressed here would be whether it is possible to generate an incentive
compatible payout mechanism which satisfies the property that every team is expected to
earn more money by playing each game fairly but there still remains some incentive to win
the tournament. However in real world circumstances, this is further complicated by the
presence of outside money such as in the 1919 Black Sox scandal.

Cup manipulation strategies in the direct tournament manipulation case amount to
determining for each coalition member the round in which they would throw a game.
Background material pertaining to this work can be found in Section 2.5. Section 4.2.1
discusses how coalitions can be made minimal in the sense that each member must ma-
nipulate a game in order to achieve the goal and no unnecessary coalition members exist
which did not need to manipulate. Manipulation of double elimination cups and reseeding
cups is tackled in Sections 4.2.2 and 4.2.3, respectively.

The primary result of this work is that finding a constructive or destructive manipula-
tion of the competition is polynomial. This is shown using the results in [18] which shows
that a manipulation of an election using the cup rule can be found in O(m3n) time where
m is the number of candidates and n is the number of voters. The basic algorithm (see
Algorithm 4.1) is designed for fixed cups where the seeding at each round is predetermined.

The basic Conitzer-Sandholm-Lang (CSL) algorithm is a recursive method that treats
each node in the cup tree (which is not a leaf) as a sub-election (see Algorithm 4.1).
Conitzer et al. [18] note that a team wins a sub-election if and only if they win one of its
children and they can defeat one of the potential winners on the other side. It is perhaps
simpler to understand this algorithm from a bottom up perspective in terms of sports.
Observe that if there are leaf nodes ti and tj and there exists an arc in the tournament
(ti, tj) then ti will win the match between ti and tj and, thus trivially, is a potential winner
of the match between ti and tj. Now suppose that ti is a member of the coalition. If ti
throws the game, tj is also a potential winner of the match between ti and tj. Assume that

61

Algorithm:CSL(tw, C, G, S)

input : A team tw, a cup tree C, a tournament graph G = (T,E), and a coalition
of teams S

output: Returns true if tw can win via manipulation and false otherwise

winners ← PossibleWinners(C, G, S);
if tw ∈ winners then

return true;
else

return false;

Algorithm 4.1: The pseudo-code for the main function of the CSL algorithm

there is some match in the middle of the competition with two sets of potential winners
A and B. Any team from A is a potential winner of the match if there exists a team in
B that they can defeat or if a coalition member in B throws a game. The same is true
for teams in B. Therefore, there is a constructive manipulation if the desired winner is a
member of the potential winners at the top node in the cup tree.

Theorem 4.1 (Constructive Manipulation of Cups). Determining if a cup competition
can be constructively manipulated using manipulations of the tournament takes polynomial
time.

Proof. The CSL algorithm examines at most O(m2) pairs of opponents as no two teams
are compared more than once. Note that the original analysis provided a looser O(m3)
bound on the number of comparisons, but this can be tightened by an observation of
Vu et al. [67]. The difference between direct manipulation of the tournament and the
method by Conitzer, Sandholm and Lang is that determining if a team could defeat another
team meant summing all values of the n voters requiring O(n) time whilst in the direct
manipulation of the tournament this can be done in constant time. Therefore, constructive
manipulation of the tournament in a cup competition takes just O(m2) time.

Example 4.1. To illustrate how manipulations occur in cups, assume there is a sixteen
team example with coalition members t3, t5, t11, t12, t13 and t15, who wish to manipulate
the tournament so t7 wins. Also given are the tournament graph in Table 4.1 and the
cup in Figure 4.1, which shows the seeding of teams. t1 is the expected winner of the cup
if no manipulation occurs. Applying Algorithm 4.1, the potential winners are calculated
at the first stage of the competition. If there is a coalition member in a pair of teams
then both teams proceed otherwise only the expected winner makes it to the next round. At
the next round, teams may potentially face more than one opponent depending on which
manipulation occurs. If a team can beat any of their possible opponents or if one of the

62

Procedure:PossibleWinners(C, T , S)

input : A cup tree C, a tournament graph G = (T,E) and a coalition of teams S
output: Returns the set of possible winners of the cup tree via manipulation of the

tournament by the coalition

if leaf(C) then
return {C};

else
winners ← {};
LeftWinners ← PossibleWinners(left(C), T , S);
RightWinners ← PossibleWinners(right(C), T , S);
forall ti ∈ LeftWinners do

if ∃tj ∈ RightWinners such that (ti, tj) ∈ E ∨ tj ∈ S then
add(winners, ti);

forall tj ∈ RightWinners do
if ∃ti ∈ LeftWinners such that (tj, ti) ∈ E ∨ ti ∈ S then

add(winners, tj);

return winners;

possible opponents is a coalition member who could lose to them by manipulation, then we
add that team as a possible winner of that round. For example, t7 loses to both t5 and t6
in a fair match but since t5 is a coalition member they could manipulate that game and t7
continues to the next round. Continuing this reasoning, the possible winners are generated
at each level. Since t7 is a possible winner on the final level, they can be made a winner of
the competition by manipulation.

Observe that destructive manipulation of a competition using tournament manipula-
tions is similar since this simply requires determining if there is at least one other possible
winner of the tournament via manipulations.

Theorem 4.2 (Destructive Manipulation of Cups). Determining if a cup tournament can
be destructively manipulated using tournament manipulations takes polynomial time.

Proof. Determine the set of possible winners using Algorithm 4.1. If there exists a team
other than the team the coalition wishes to lose then there is a destructive manipulation.

Example 4.2. Referring to Example 4.1, notice that the set of possible winners of the
tournament can be at least two different teams. Therefore, the coalition can ensure that
any team in the cup does not win if they so chose. For example if their goal was to make

63

{10, 43,73, 92, 122, 151, 163}

{10, 41,72} {90, 121, 132, 143, 151, 163}

{10, 41} {50, 61,71} {90, 121} {130, 142, 151, 162}

{10} {30, 41} {50, 61} {70} {90} {110, 121} {130, 141} {150, 161}

{10} {20} {30} {40} {50} {60} {70} {80} {90} {100} {110} {120} {130} {140} {150} {160}

Figure 4.1: The cup competition described in Example 4.1. There are sixteen teams and
each coalition member is denoted with a filled circle. In the example, the coalition is
attempting to make team 7 the winner, which is bolded throughout the diagram. At each
node of the competition, there is a set of teams that corresponds to the possible winners
of that node via manipulation by the coalition. The first team in each list is the expected
winner of the match without manipulation and all other the teams represent those which
could win the match given manipulation. Since team 7 is a possible winner of the final
game at the apex of the cup, then it is possible for the coalition of 3, 5, 11, 12, 13 and 15
to manipulate the competition so that seven wins. The minimal number of manipulations
needed to make a given team a winner at each level is denoted by the subscript on the
team number.

Table 4.1: The adjacency matrix of the tournament graph for the cup described in Example
4.1. If a team has a 1 in their row then they win the game and, if not, they would lose.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 0
2 0 0 1 0 0 1 1 0 1 1 0 1 0 1 0 1
3 0 0 0 1 1 0 1 0 1 0 0 0 1 1 0 1
4 1 1 0 0 1 1 0 1 1 1 1 0 1 1 0 1
5 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 0
6 0 0 1 0 0 0 1 1 0 0 1 1 1 0 1 1
7 0 0 0 1 0 0 0 1 0 1 1 0 1 1 1 0
8 1 1 1 0 1 0 0 0 0 0 0 1 1 0 0 1
9 0 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1

10 0 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0
11 1 1 1 0 0 0 0 1 0 0 0 1 1 1 0 0
12 0 0 1 1 1 0 1 0 1 0 0 0 1 1 1 0
13 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1
14 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0
15 1 1 1 1 0 0 0 1 1 0 1 0 0 1 0 1
16 1 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0

64

t1 lose, then by the second round the coalition could have caused the loss by forcing t1 to
play team t4.

4.2.1 Minimal Number of Manipulations for Cup Competitions

Having a coalition that can easily manipulate tournaments is dangerous but even more
distressing is that teams can find the minimal set of manipulations needed to make the
team the winner with very little extra effort. Given a pool of willing conspirators, it makes
sense to select the smallest group of cheaters for two reasons. First, the fewer games that
are manipulated the less suspicious a manipulation strategy. Second, the cost would almost
assuredly go up and the split of the winnings earned by each member would be less. Thus,
it is reasonable to assume that any cheater attempting to manipulate a competition would
find the smallest available coalition to do so.

Computing the minimal number of manipulations simply requires keeping a count
within Algorithm 4.1 for computing a manipulation. Let sti

` be the match at level ` where
ti is a leaf node of the sub-tree below sti

` . The level is defined as the height from the bottom
of the cup tree, which is assumed to be a perfectly balanced binary tree, and level 0 is the
level belonging to the leaves.

Let cij be a constant that is 1 if (tj, ti) ∈ M and 0 otherwise, where M ⊆ E is the
set of edges which can be manipulated by the coalition. This corresponds to cij = 1
when a manipulation must occur for ti to win and 0 otherwise. The minimal number of
manipulations needed to win a match sti

` is,

m(ti, s
ti
`) =

{
0 if ` = 0

m(ti, s
ti
`−1) + mintj∈Di

(m(tj, s
tj
`−1) + cij) if ` > 0

,

where Di is the set of teams that ti can defeat fairly or are a coalition members.

Lemma 4.1 (Minimal Number of Manipulations). The minimal number of manipulations
needed to make a team ti a winner at level ` in the tree is equal to m(ti, s

ti
`).

Proof. By induction. (Base Case) First, observe that the minimal number of manipula-
tions at a leaf is 0. Hence, m(ti, s

ti
0) = 0 for all leaves ti. Next note that at level 1 there

are only 2 nodes in the possible winner sets of the leaves. Therefore, if ti can defeat tj,

m(ti, s
ti
1) = m(ti, s

ti
0) + m(tj, s

tj
0) + cij = cij which is the exact number of manipulations

that have occurred to make ti a possible winner so far. (Induction Step) Assume the
premise for 1 < ` ≤ k. Now, m(ti, s

ti
k+1) = m(ti, s

ti
k) + mintj∈Di

(m(tj, s
tj
k) + cij). It is given

that m(ti, s
ti
k) is the minimal number of manipulations needed to make ti a winner at level

k by the assumption and, for every tj ∈ Di, it is known that m(tj, s
tj
k) is also the minimal

65

number of manipulations needed to make each tj a winner at level k. By definition, cij is
the number of manipulations for ti to defeat tj. Since ti can defeat any tj in Di, the one
with the fewest previous manipulations to be a winner at level k plus cij leads to the fewest
manipulations in total to make ti win the sub tournament sti

k+1. This equals the minimum
over the set Di. Therefore the lemma holds for k + 1 and, by induction, all ` levels of the
tree.

Theorem 4.3 (Minimal Manipulation is Polynomial). A modified CSL algorithm, where
the team which minimizes the value of m(ti, s

ti
n) is selected to lose to team ti at every node

sti
n , calculates the minimal number of manipulations needed to constructively or destruc-

tively manipulate a cup competition in polynomial time.

Proof. By Lemma 4.1, the value of m(tw, stw
n) at the root node is the minimal number

of manipulations which ensures tw is the winner. All that remains is to show that the
algorithm remains polynomial. The modified CSL algorithm still makes O(m2) compar-
isons. The only difference is that it is necessary to calculate the minimum which can be
done by storing the minimum as each team is checked. Therefore, the time complexity re-
mains O(m2). Constructive manipulation requires calculating m(tw, stw

n) whilst destructive
manipulation requires the minimum over all other teams.

Example 4.3. Referring to Example 4.1, there are a variety of ways that t7 could be made
a winner using more or fewer manipulations. This example illustrates how to calculate the
minimal set of manipulations needed to make t7 the winner. Figure 4.1 shows the cup tree
annotated with both the teams and the minimum number of manipulations needed to make
each team a winner. For example, in the final round, t7 could play t12, t13 and t15. t7
needs two manipulations to get to that round. t13 also needs two manipulations but loses
to t7 and a total of four manipulations is required. However, t7 can defeat t15, who only
need one manipulation, so only three manipulations are required. Since t7 loses to t12 and
would require a manipulation, four manipulations are required. So t7 plays t15 and would
need a minimum of three manipulations from t3, t5 and t13. Coalition members t11, t12

and t15 are unnecessary. Note that the coalition can make t15 the winner with only a single
manipulation which means destructive manipulation is easier and requires only t13.

4.2.2 Double Elimination Cup Competitions

In a double elimination competition, a manipulation of the tournament does not auto-
matically bounce the manipulator out of the tournament as in the single elimination case.
Recall that a double elimination tournament is a cup where each team must lose two games
to be eliminated. Figure 4.2a shows an example of a double elimination tournament with
eight teams. Since teams are not immediately eliminated, a manipulator may be able to

66

1 ∨ 2 3 ∨ 4 5 ∨ 6 7 ∨ 8

1 ∨ 3 5 ∨ 7 2 ∨ 4 4 6 ∨ 8

6

1 ∨ 5 3 ∨ 8 8 2 ∨ 7

2

3 ∨ 7

7

3 ∨ 5

5

1 ∨ 3

1 3

W LW

L W

LW L

W

L
W

L

W

L

W
L

W

L

W

L

W L

W L

W L

W
L

1 2 3 4 5 6 7 8
1 0 1 1 0 1 0 0 1
2 0 0 0 1 0 0 1 0
3 0 1 0 1 1 0 1 1
4 1 0 0 0 1 1 1 1
5 0 1 0 0 0 1 1 0
6 1 1 1 0 0 0 0 0
7 1 0 0 0 0 1 0 1
8 0 1 0 0 1 1 0 0

(a) (b)

Figure 4.2: (a) An eight team double elimination cup. The shaded nodes represent the
matches where both teams have lost at least one match and could be eliminated. (b) The
adjacency matrix for the tournament graph related to the double elimination cup, where
a 1 in position (i, j) denotes that team ti defeats team tj in a fair match.

manipulate the tournament twice. As well, a single team could manipulate the tournament
and still earn a victory in that tournament. Unfortunately, the CSL algorithm does not
work in this case because a manipulator can take more than one path through the tour-
nament. Given that coalitions are likely to be small in practice, a polynomial algorithm
for double elimination tournaments if the size of the coalition is constant is shown. While
this algorithm is not necessarily applicable in all situations, it could be argued that, for
the coalitions likely to be found in practice, this method could be used.

Lemma 4.2 (Double Elimination Manipulation). For double elimination tournaments, if
the size of the coalition is of bounded size c, determining whether there is a constructive
manipulation takes polynomial time.

Proof. If there is a coalition of bounded size c then a team can manipulate the cup only
once if they wish to win the tournament and twice if the team desires another team to

67

win. At each step in the tree, a team must decide whether to manipulate or not. Since
there are two chances to be eliminated, there remains c teams after any coalition member
manipulates once. Only after they have manipulated a second time are they removed from
the competition. This means there are at most 2c different manipulation strategies at each
of the log(m) levels. This gives O(2log (m)c)(= O(mc)) possibilities that can be checked in
linear time, which gives a polynomial algorithm for determining if there is a constructive
manipulation.

Example 4.4. To illustrate how a manipulation strategy could be determined for double
elimination cups, referring to Figure 4.2, assume there is a coalition consisting of t2 and
t8 that are attempting to make t4 the winner. Both t2 and t8 are expected to lose their first
game and thus cannot manipulate that game. However, both win the next game so there
are four possible options in terms of manipulation; i.e., every pairing of manipulating or
not for both teams. However, t2 must manipulate their game against t4 or their desired
winner would be eliminated. One possibility is that t2 manipulates in the second round
and no other manipulations occur. t4 would win the next game but end up losing to t3,
which is not a valid manipulation strategy. Therefore, t8 must also manipulate their second
game and thus both coalition members would be eliminated. Fortunately, t6 beats t3 when t8
throws the game and t4 wins its four remaining games. Therefore, there is a valid strategy
where both coalition members manipulate matches in the second round.

4.2.3 Reseeding Cup Competitions

Another variant on the cup that is used in practice is those cups that have reseeding
within them. There are two common kinds of reseeding cups. The simplest kind is random
reseeding. This means that after each round a random draw is held to determine opponents.
One example of this is in soccer where the final eight of the EUFA Champions League are
seeded via a draw. Another common type of reseeding is ranked reseeding where reseeding
is based on rank where teams are reseeded to ensure top teams gain an advantage at each
round. This type of reseeding is used in the National Hockey League playoffs. Figure 4.3
shows a cup using ranked reseeding.

In general, the complexity of determining if a valid manipulation exists in these mecha-
nisms is unknown. However, a sub class of these problems where the coalition size is fixed
is polynomial. The CSL algorithm cannot be applied because teams could have multiple
paths through the tournament. However, if the size of the coalition is of bounded size
c, then a manipulation strategy can be found in polynomial time. As in Section 4.2.2,
coalitions are likely to be of a small bounded size and this method might be applicable in
practice.

68

1

1 4

1 4

1 46 2

41 6 2

1 8 4 5 3 6 2 7

1 2 3 4 5 6 7 8
1 0 1 1 1 1 1 0 1
2 0 0 0 1 0 0 1 0
3 0 1 0 1 1 0 1 1
4 0 0 0 0 1 1 1 1
5 0 1 0 0 0 1 1 0
6 0 1 1 0 0 0 0 0
7 1 0 0 0 0 1 0 1
8 0 1 0 0 1 1 0 0

(a) (b)

Figure 4.3: (a) A ranked reseeding cup. Teams are ranked from 1 to 8, with 1 being the
top ranked team. After the results of each round are found, the pairings for the next round
are generated while ensuring the top ranked team remaining plays the worst ranked team
remaining and so on. (b) The adjacency matrix corresponding with the ranked reseeding
cup.

Lemma 4.3 (Reseeding Cup Manipulation). For a ranked reseeding cup competition, if
the manipulating coalition is of bounded size c, then determining a set of manipulations
that makes a team win takes polynomial time.

Proof. The key observation is that with a constant-sized coalition there are only a poly-
nomial number of ways to manipulate the games by rearranging the tournament graph. It
suffices to check the winner of each of the polynomial number of fixed tournament graphs.
For each fixed tournament graph, the winner can be determined in linear time as there are
only O(m) matches to check.

At most c of the m
2

matches in the first round have more than one team as a possible
winner. This means that there is at most 2c possibilities to examine after each round. As
there are log(m) rounds, at most (2c)log m (=mc) possibilities must be considered. Given
O(mc) possible manipulation strategies for an unfixed cup with ranked reseeding and a
bounded sized coalition, it is sufficient to check each arrangement, which can be done in
linear time. This gives a polynomial algorithm for bounded c.

Example 4.5. Figure 4.3a shows a reseeding cup where each game happens according to the
tournament graph (Figure 4.3b). Now assume that t2 and t4 are conspiring to manipulate
the tournament so that t5 wins the cup. t1 only loses to t7 so t2 must manipulate to t7
in the first round otherwise t1 wins the cup. As well, if t4 beats t5 in the first round then

69

t5 is eliminated and the goal cannot be achieved. Therefore, in this case, both teams must
manipulate in the first round. t5 would then play t6 and t7 in consecutive rounds defeating
both of them to win the cup.

With random reseeding the problem can be separated into two issues: determining
whether manipulation is possible to make a team a winner under every possible seeding and
determining if there exists any seeding such that the coalition can manipulate the games to
make a given team the winner. These problems are discussed in more detail in Section 4.4 as
they are equivalent to seeding manipulation. Vu et al. [67] and Hazon et al. [28] tackle some
probabilistic variants of possible winners without manipulation of games. However, the
complexity of determining possible winners with a win-loss tournament graph in balanced
cup trees remains open [35, 28, 52].

4.3 Round Robin Competition

Round robins are widely used in many real world tournaments. One advantage from an
organizers point of view is that teams are not immediately eliminated if they lose a single
game. However, this increases the susceptibility to cheating as teams are not necessarily
eliminated by manipulating a game. One complication is that games do not always need
to end in a victory and a variety of different scoring models can be used.

A scoring model is defined as a set of tuples giving the possible outcomes of a game.
Copeland scoring has a simple win-loss ({(0, 1), (1, 0)}) scoring model where the winning
team earns one point and the losing team earns none. Bartholdi, Tovey and Trick [10] show
that constructive manipulation can be determined in polynomial time for a chess scoring
model ({(0, 1), (1

2
, 1

2
), (1, 0)}). Faliszewski et al. [22] show that for a range of scoring models

manipulating Copeland voting, i.e. a round robin election, is NP-Complete. The full
characterization of the polynomially manipulable scoring models is made in this chapter.

The problem of manipulating a round robin is the problem of determining which games
need to be manipulated to ensure that a given team tw wins the competition. Given
that coalitions are assumed to only be able to throw games they should have won, there
are some games that cannot be affected by the coalition and are fixed. All other games
are manipulable. Games between coalition members can earn any of the possible scores
allowed by the scoring model. Games where coalition members and non-coalition members
compete are restricted so the manipulator earns equal or less points and the non-member
earns equal or more points. To fully characterize the set of polynomial scoring models, a
correspondence between manipulation in round robins and winner determination problems
is made. Using this observation, the following theorem is obtained.

70

Theorem 4.4 (Constructive Manipulation for Round Robins). Determining if there exists
a constructive manipulation of a round robin competition is solvable in polynomial time
if the scoring model, normalized as described by Kern and Paulusma [34], is of the form
S = {(i, n− i) | 0 ≤ i ≤ n}, and NP-complete otherwise.

Proof. First observe that in manipulation problems, there exists games which can be ma-
nipulated and games which cannot be manipulated. In winner-determination problems,
there exists games which have been played and those remaining to be played. In both
cases, the goal of the problem is to find an assignment of the changeable games so that a
specific team wins the tournament. In manipulation problems, however, the possible set
of scores between a non-coalition member ti and a coalition member tj are restricted but
it can be shown that the restricted model is still a conforming model—a model that is of
the form S = {(i, n − i) | 0 ≤ i ≤ n}—when normalized. Assume there is a normalized,
conforming scoring model and the initial result of the game is (ci, cj), then the remaining
valid scores that can be assigned are those from (ci, cj) to (n, 0) as the non-coalition mem-
ber cannot have a lower score given the restriction. By normalizing this new model, a new
model is obtained, {(0, cj), . . . , (n− ci, 0)} which is conforming. Note that it is possible for
an initially non-conforming model to become conforming for games between non-coalition
members and coalition members. However in games between two coalition members, any
outcome is possible and, therefore, the scoring model would still be non-conforming as a
whole. Kern and Paulusma [34] showed that determining if a team can win a tournament
(i.e. is not eliminated from competition) takes polynomial time, using flow networks, if the
normalized scoring model is of the form S = {(i, n − i) | 0 ≤ i ≤ n} and is NP-complete
otherwise.

Example 4.6. To illustrate the concept of manipulating the round robin tournament, as-
sume there exists a six team single round robin, the tournament uses a scoring model with
only wins and losses and the tournament graph, shown in Table 4.2, represents the outcome
of all fair matches in the competition. Now suppose a team or group of teams wishes to
make t6 the outright winner. As it stands, t6 is tied with t1 with four wins if all games
are played fairly. In this example, the conspirators could only be t1 or t5 as none of the
other teams can cause t6 to win the tournament. First, if t5 was the conspirator, t5 could
lose the game against t6, making t6 the winner. Second, if t1 was the conspirator having
already lost to t6, t1 must lose a game to another team without making the new victor of
the manipulated game the winner. Clearly, in this example, it can be seen that t1 could
safely lose one game to t2, t3 or t4. For illustrative purposes, the exact flow graph needed to
solve these problems in general as described by Kern and Paulusma [34] is shown in Figure
4.4. The graph shows a matching problem where games are assigned winners so that total
number of victories for any team is less than those of t6, who earned four victories. Note
that t5 can earn one less victory since t5 wins when playing t6, which is not represented in
the graph.

71

Table 4.2: The tournament graph, as an adjacency matrix, for Example 4.6.

1 2 3 4 5 6
1 0 1 1 1 1 0
2 0 0 1 0 0 0
3 0 0 0 1 0 0
4 0 1 0 0 1 0
5 0 1 1 0 0 1
6 1 1 1 1 0 0

Using Theorem 4.4, it is possible to answer, at least for the direct tournament manipula-
tion case, the three open cases left by Faliszewski et al. [22]. The three remaining scoring in-
stances left open in Faliszewski et al. [22] are {(0, 1), (0, 0), (1, 0)}, {(0, 1), (1, 0), (1, 1)} and
{(0, 1), (1

2
, 1

2
), (1, 0)}. The normalized form of these scoring models are {(0, 0)}, {(0, 1), (1, 0)}

and {(0, 2), (1, 1), (2, 0)}. Problems using these models can be solved in polynomial time
as they are all of the form S = {(i, n− i) | 0 ≤ i ≤ n}.

By comparison, it is always polynomial-time solvable to determine if a destructive
manipulation exists.

Theorem 4.5 (Destructive Manipulation of Round Robins). Determining if there is a
destructive manipulation of a round robin competition takes polynomial time.

Proof. Assume that tl is the team that the coalition desires to lose. It is sufficient to
check whether the maximum points of another team via manipulation is greater than the
points of tl. If tl is a member of the coalition and therefore a manipulator, for each team
ti that is checked, only manipulations that increase the relative points between ti and tl
are applied. For all other teams, the manipulations which decrease the points of tl or
increase the points of ti are applied. If tl is not a member of the coalition, no games
involving tl may be manipulated since manipulations are restricted to allow only those
manipulations that increase the points of tl and, therefore, increase the relative gap between
tl and the manipulator. Therefore, no other team is better off when games involving tl are
manipulated. In both cases, the manipulations that increase the points of the team under
consideration against all other teams is applied. If the total number of points of any other
team is greater than the points of tl under these manipulations, then there is a destructive
manipulation of tl. This algorithm can be run in O(m2) time.

Example 4.7. To illustrate the concept of destructively manipulating round robin tourna-
ments, recall the example described in Example 4.6. Suppose the conspirators wish for t1
to not win the tournament. The only team that could change the result is t5 by losing to t6
and making t6 the outright winner with five victories over t1’s four victories.

72

s

1, 2

1, 3

1, 4

1, 5

2, 3

2, 4

2, 5

3, 4

3, 5

4, 5

1

2

3

4

5

t

[1
, 1

],
1

[1
, 1

],
1

[1,
1],

1

[1,
1],

1

[1, 1],1

[1, 1],1

[1, 1],1

[1, 1],1

[1, 1],1

[1, 1],1

[0, 1],1

[0, 1],0

[0, 1],
1

[0, 1],0

[0,
1],

0

[0, 1],1

[0
, 1

],
1

[0, 1],0
[1,

1],
1

[1, 1],1

[1, 1],1

[1,
1],

1

[1, 1],1

[1,
1],

1

[0, 3],3

[0, 3],1

[0, 3],1

[0,
3],

3

[0
, 2

],
2

Figure 4.4: The feasible flow network from Example 4.6. The edges are denoted with
upper and lower bound capacities in the brackets and a corresponding feasible flow, shown
in bold. The conspirator (Team 1) can change each of the games they were supposed to
win but all other games are fixed.

To extend these results to the multiple round tournaments, it suffices to just add the
extra games to the flow graph used to calculate winner determination problems as described
by Kern and Paulusma [34]. For a round robin with n rounds, there is an additional

(n − 1)m(m−1)
2

nodes and 3(n − 1)m(m−1)
2

edges in the feasible flow graph, where m is the
number of teams in the round robin.

73

A further complication is when the goal of manipulation is just to earn a berth in the
next round of the playoffs. One type of this problem was discussed in Chapter 3. It is
NP-Complete to decide these questions under most playoff systems for all scoring models
[45, 27]. Specifically, if there are more than two teams making the playoffs or if there
are wild card teams then the problem is NP-Hard to determine who wins a tournament.
As discussed before, manipulation problems are qualification and elimination problems
because unmanipulable games can be mapped to played games and those games which can
be manipulated are mapped to games remaining. This simple reduction shows that the
problems are identical and that the manipulation problems are also NP-Complete.

4.3.1 Minimal Number of Manipulations for Round Robin Com-
petitions

Like the manipulations in cup competitions, it is unlikely that coalitions would expose
themselves to extra risk by manipulating more games than necessary. In this section, it is
shown that determining the minimal number of manipulations for round robin competitions
with the win-loss scoring model can be done in polynomial-time. Only win-loss scoring is
considered in this section but it is conjectured that similar methods could be developed for
other scoring models, specifically those scoring models that were polynomial-time solvable
in Section 4.3.

The goal is to find the minimal set of manipulable edges that need to be changed so that
the desired team tw has at least as many wins as any other team in the competition. Before
it is shown how to calculate the minimal number of manipulations, a greedy method is
presented for determining the number of wins that tw would earn from coalitional manipu-
lation while preserving minimality. The intuition for this greedy algorithm is that selecting
manipulations to increase the wins of tw, if possible, always benefits tw while reducing the
number of wins of only the coalition members. Each coalition member which could lose
to tw by manipulation is added to a set. While there are coalition members that can lose
games to tw and have more wins than tw, remove the coalition member with the most wins
and reverse the edge in the tournament. The reversed edge is a minimal manipulation and
is stored. Recalculate the number of wins based on the newly adjusted tournament graph
and repeat the procedure until either there are no teams in the set or every team has equal
or less wins than tw.

Lemma 4.4 (Greedy Manipulations are Optimal). Algorithm 4.2 determines the minimal
number of manipulations needed to find the number of wins earned by tw in any minimal
set of manipulations.

Proof. First, recall that tw can earn no extra wins except by manipulation by coalition
members so the final number of wins earned by tw can only change if the coalition manip-

74

Algorithm:GreedyPreprocess(G, S, tw)

input : A Tournament Graph G = (T,E), a coalition of teams S and a team tw.
output: The minimum number of manipulations needed to find the number of wins

earned by tw in any minimal manipulation strategy.

for every team ti, calculate the number of wins, wi, according to G;
remove all teams from S which lose to tw according to G;
while ∃ti∈T wi > ww and S is not empty do

find the ti ∈ S with the largest wi;
remove ti from S;
reverse the edge (ti, tw) in G;
add (tw, ti) to Manipulations;
recalculate, for every team ti, the number of wins, wi, according to G;

return Manipulations;
Algorithm 4.2: The algorithm for preprocessing the problem of finding the minimum
number of manipulations needed to make a team the winner.

ulates games so that tw wins. Next, it is necessary to show that increasing the wins of tw
is at least as minimal as any strategy. Observe that to reduce the number of wins of two
or more nodes that have more wins than tw it requires two manipulations while increasing
the number of wins of tw requires only a single manipulation. While it does only require
a single manipulation to decrease the number of wins of one node, another node, which
is not necessarily tw, must earn extra wins. Therefore, increasing the score of tw is most
efficient, if possible.

For this to be a minimal number of manipulations, the greedy algorithm must not in-
crease the number of wins of tw unnecessarily. Assume that more than the minimal number
of manipulations was used by the greedy algorithm. This means that an edge was selected
that did not decrease the team with the most wins of the conspirators or further edges were
selected even though the number of wins of tw was already higher than all other teams.
However, since the coalition member with the most wins was selected and subsequently re-
duced, it is not possible to have increased the number of wins unnecessarily in this manner.
As well, the stopping condition assures that the algorithm stops whenever the number of
wins of tw is equal to or higher than all other nodes. Therefore, a contradiction is found and
the greedy algorithm uses only a minimal number of manipulations upon termination.

Example 4.8. In Example 4.6, it was determined that t5 could lose their game against t6,
making t6 the winner. However, t5 also could have lost their games to t2 and t3. Only the
single loss to t6 is minimal according to Lemma 4.4 because the stopping condition, that
t6 had more victories than every other team, was reached. If the coalition was t1, then no
greedy manipulation is possible and the wins earned by t6 remains at four.

75

If the greedy algorithm does not successfully make the team tw the winner because they
could not lose enough games to tw in order to increase their points beyond every other team
then the coalition must do more work to make the distinguished team the winner. This
is calculated using a minimum cost feasible flow algorithm. As in Section 4.3, a winner
can be determined using a feasible flow algorithm but this strategy may have used more
manipulations than necessary. A minimum cost feasible flow algorithm can be calculated
in polynomial-time if the weights on the edges are multiplied by the flow values [24]. The
minimal cost solution is the one where the least number of edges in the tournament graph
are reversed and manipulations are represented as the edges in the flow graph from a node
(ti, tj) to ti where (ti, tj) ∈ T and ti ∈ S where S is the coalition. By giving a weight of
1 to each edge representing a manipulation, the solution incurs a cost of 1 for each edge
it uses. Therefore, the minimal cost feasible flow is the solution which has flow along the
fewest edges representing manipulations.

Theorem 4.6 (Minimal Manipulations of Round Robins). Determining the minimal num-
ber of tournament manipulations given a tournament graph G = (T,E) required with a
win-loss scoring model to make tw a winner, if possible, takes polynomial-time.

Proof. Let c be the number of wins of the distinguished node, tw, calculated using Algo-
rithm 4.2. If the stopping condition has not been reached, c is used to determine how many
more manipulations are necessary. A winner determination flow network is constructed as
described by Kern and Paulusma [34] and Gusfield and Martel [27] (see Figure 4.4, for
an example). A weight of 1 is added to each edge (ti, tj) where (ti, tj) /∈ E and therefore
represents a manipulation. All other edges have the weight 0. The feasible flow which uses
the fewest of the non-zero edges is the minimal number of tournament manipulations to
achieve a constructive manipulation. Since the value of c can be determined in a linear
number of steps and a single minimum cost flow computation, which is polynomial, is
needed to determine the remainder of the minimum number of manipulations necessary to
make tw the team with the most wins, if possible, the entire procedure can be calculated
in polynomial-time.

Example 4.9. In Example 4.8, t5 was conspiring to change the outcome of the tournament.
t5 successfully achieved this using only the greedy manipulations. t1 was the second coalition
described in Example 4.6. t1 lost its only game to t6 fairly and thus nothing is gained by
applying the greedy manipulations and the number of wins of t6 remains at four. Therefore,
t1 must lose either the game against t2, t3 or t4. The obvious minimal choice is to choose
just one of the games to lose as this would satisfy the conditions and t6 would be the victor.
Suppose, for the purpose of illustration, that this was not immediately clear and t1 had
to choose the best subset of possible manipulations to achieve its goal. The flow network
described in Figure 4.4 has two edges for each game t1 plays representing the possible choices
of t1. By adding a cost of 1 for each game that could be manipulated, specifically the edges

76

((1,2),2), ((1,3),3) and ((1,4),4), and having no cost for every other edge, the minimal
cost feasible flow on the network returns a valid minimal solution. Note the feasible flow
shown in bold is also a minimal cost flow.

4.4 Seeding Cup Competitions

To this point, the focus has been on coalitions of teams manipulating the result of a
competition. However, it is possible for the scheduler of a competition to create a seeding
that favours one team over other teams. This section discusses some of the various ways in
which a seeding can be manipulated. While the previous two sections on cups and round
robins have focused on theoretical results, the theoretical complexity of this problem, when
the competition is balanced, remains open. Therefore, the focus shifts to how difficult
these problems can be in practice, regardless of the complexity. The results of this chapter
suggests that if these problems are theoretically difficult then it provides very little in terms
of a safety guarantee as large problems using hundreds of teams can be solved in less than
a second.

A competition must be organized by some mechanism and this mechanism may be
susceptible to manipulation by the scheduler of the tournament. The scheduler is referred
to as a single entity but in reality may be a committee of individuals. In this section, the
various vulnerabilities of the schedule of a cup competition, commonly called a seeding, are
highlighted. The standard seeding manipulation problem, highlighted in previous research
[35, 28, 67], represents the most unrestricted problem and therefore is the most open to
manipulation. A set of realistic restrictions are added to the problem and it is shown that
even under restricted conditions manipulation strategies are often easy to find.

4.4.1 Definitions

The seeding of a competition specifies which teams must play each other at every round of
the cup, assuming a team advances. Another possible view of a seeding is an assignment of
teams to the leaves of a cup tree. These seedings could be generated by a random draw but
it is also possible that a scheduler generates the seeding. A seeding manipulation strategy is
any set of deliberate scheduling actions in an effort to cause the desired team, tw, to win the
competition. A scheduling action is a placement of a team in the seeding. Not discussed in
the canonical description of this problem [35, 28, 67, 70], there are restrictions which could
be placed on the scheduler of the tournament. While some of these restrictions ensure
that less manipulation can occur, the only way to remove the possibility manipulation is
to fully remove the scheduler from the process as is done in a random draw. Note that
a random draw is often undesirable as this can lead to two favourite teams facing each

77

other early in the tournament instead of in the finals. To move away from a random draw,
restrictions are added to ensure that the seeding conforms to the desires of the organizers
like, for example, that top teams do not face each other immediately.

Four different types of restrictions can be added to the scheduling process. A pooling
restriction requires that a prespecified set of teams—called a pool—play each other before
playing other teams. A team arrangement restriction requires that the positioning of teams
must meet some criteria—a set of rules and conditions—when setting the schedule (see [48]
for an example of real world criteria). A pool arrangement restriction requires that the
winners of pools must be positioned according to some criteria. A criteria modification
restriction requires that the criteria by which teams are arranged is fixed and known.
Example 4.10 discusses how these restrictions are applied to a real world problem.

Example 4.10. The NCAA Division One Basketball Championship, commonly called
March Madness [48], is held annually in March and April. The championship uses a
single elimination cup structure where 64 teams are seeded in a balanced cup tree. The
teams are separated into pools of sixteen teams. Each team is assigned a rank from 1 to
16 and only one team of each rank may belong to a pool. The cup has four pools of teams
but the makeup of the pools is made by the scheduler [48]. If the scheduler so chose, pools
could be generated so that the scheduler’s desired team would belong to a pool where most
of the teams would lose to the desired winner. Therefore, there is no pooling restriction
on the pools in the NCAA tournament. An example where pools are restricted would be if
they were geographically based, like the NHL playoffs. Figure 4.5a shows how teams are
arranged in a pool so the top teams play weak teams as this competition has a team ar-
rangement restriction. If this arrangement was not fixed, then it would be possible to have
the top ranked team play the second ranked in the first round of the tournament and then
face the winner of the third and fourth ranked team in the next round. This hypothetical
arrangement of teams, shown in Figure 4.5b, guarantees that three of the top four teams
in the pool are eliminated after the second round. March Madness championships do not
have a pool arrangement restriction [48]. As such, the scheduler is able to arrange the
final two rounds as they see fit. The possible arrangements of the four pools of the NCAA
Championship are shown in Figure 4.5c. In a competition with a pool arrangement restric-
tion, there would be some predetermined method for arranging the pools for the final two
rounds. An example of such a method would be if the pools were geographically based and
the Northwest always played the Southwest in the semi-finals and then played the final team
from the East in the finals. Since the ranking of the teams is decided by the scheduler [48],
there is no restriction on criteria modification and the scheduler can use this to change the
seeding [17]. The imprecise nature of the rank generation allows for weaker teams to be
boosted in rank and top teams to be diminished. While it is unlikely that wholesale changes
would be made to the rank, it would be possible to modify the rank of teams a little while
still gaining a large advantage. Suppose that a team has an actual rank of eight, under the

78

1 16 8 9 4 13 5 12 3 14 6 11 7 10 2 15 3 4 1 2

(a) (b)

p1 p2 p3 p4 p1 p3 p2 p4 p1 p4 p2 p3 1 16 7 9 4 13 5 12 3 14 6 11 8 10 2 15

(c) (d)

Figure 4.5: (a) The arrangement of teams by rank used by the NCAA Division One
Basketball Championship. The numbers below the leaf nodes represent the rank of the
team at that leaf. The arrangement is designed so that if the top ranked team always
wins the arrangement preserves the property that the top ranked team plays the weakest
ranked team. (b) A seeding can be manipulated so that all of the top teams play each
other in the first two rounds. (c) The possible ways that the winners of the four pools of
the NCAA could be arranged. (d) Changing the rank of a team from eight to seven can
completely change their opponents.

arrangement described in Figure 4.5a, it is possible to completely change which opponents
the team plays by increasing its rank by one as a team of rank seven plays on the other
side of the cup tree (see Figure 4.5d).

Given the different restrictions, it is possible to construct families of restrictions and
classify competitions based on the restrictions present. As a naming convention, a family
of restrictions is considered as a four tuple where each tuple value can be either 0 or 1
depending on the presence of the restriction. An example tuple for the family without any
restrictions would be 0000. The tuple placements represent, from left to right, the pooling
restriction, the team arrangement restriction, the criteria modification restriction and the
pool arrangement restriction. Families that are equivalent regardless of a restriction being
present are merged and the corresponding tuple value is replaced with a don’t care value or
X. The complete set of families along with the restriction relationship are shown in Figure
4.6. An arc from one family to another represents that a restriction was added to the source

79

00XX

010X10X0

110010X1 011X

1110 1101

1111

Figure 4.6: The various different possible configurations of elements of a seeding. Each
label is a four tuple where 1 means fixed, 0 means unfixed and X is a don’t care value. Don’t
care values are used to denote when the models are solution equivalent. The four tuple
values represent are, from left to right, pooling, team arrangement, criteria modification
and pool arrangement.

family to produce the new family. The solution set is the set of all possible solutions to
the problem of finding a seeding manipulation strategy given a family of restrictions. Two
families are equivalent if the solution set is identical. To formalize the notion of model
equivalence, the two following lemmas are given.

Lemma 4.5 (Rank Modification Needs Fixed Team Arrangment). Any two families of
restrictions with unfixed pooling and equivalent values for criteria modification and team
arrangement have the same solution set regardless of the value of the pool winner arrange-
ment.

Proof. Let there exist two families 0ar0 and 0ar1 where a and r can be either value. Note
that no pooling restriction means that any pool can be generated that obey the constraints
of the values of a and r. The first family of restrictions allows pools to be arranged in
any order and the second requires the arrangement be fixed. Clearly, any solution under
the second family of restrictions is a solution to the first family of restrictions as the first
allows any arrangement including the restricted arrangement. That each solution under
the first family of restrictions is a solution under the second family restrictions can be seen
by realizing the pools are unfixed. Any solution under the first family of restrictions can
be transformed into a solution for the second family of restrictions by renaming the pools
so the pools match the fixed arrangement which is allowed since the pooling is unrestricted
in both cases.

Lemma 4.6 (Pool Winner Arrangements Needs Fixed Pools). Any two families of re-
strictions with unfixed team arrangement and equivalent values for pooling and pool winner
arrangement have the same solution set regardless of the value of the criteria modification.

80

Proof. Assume that there are two families p00w and p01w where p and w can be either
value. Now if the team arrangement is unrestricted then teams can be placed in any position
that does not violate constraints specified by p and w. The first family of restrictions
allows that teams can have ranks other than their actual rank and the second family of
restrictions requires that teams must maintain their actual rank. Any solution under the
second family of restrictions is a solution under the first family of restrictions as the rank
does not necessarily need to be changed. Any solution under the first family of restrictions
is a solution for the second family of restrictions since neither family of restrictions requires
that a team of a given rank to play a team of a specific rank. Therefore, regardless of the
rank assigned, any solution which obeys the constraints of p and w is a solution.

Figure 4.6 also conveys the solution dominance relationship between the various models.
An arc between two families of restrictions states that the family at the source of the edge
contains all solutions of the model at the sink of the edge for any given problem. Lemma
4.7 proves this statement formally.

Lemma 4.7 (Dominance of Seeding Models). Given two families of restrictions A and
B where family B contains only restrictions of A, sol(B) ⊆ sol(A) where sol(X) is the
solution set for a family X.

Proof. Given family B contains only restrictions of model A, A contains no restrictions
that are not also in B. Thus, a solution under the restrictions of B can not violate a
restriction in A and any solution under B is also a solution under A.

4.4.2 A Description of the Families of Restrictions

Each restriction of the tournament implies that the choice is fixed without input from the
scheduler. While it is possible to fully restrict a schedule, the result may be undesirable.
For example, if geographic constraints are used to ensure unmanipulable pooling then top
teams may be paired in the early rounds since they happen to be geographically close. In
this section, each family of restrictions is described and, if possible, a real world example
which uses these restrictions is described. It is shown that the families of restrictions cover
a large number of different sports.

The most restricted family is 1111. Under this family of restrictions, all of the restric-
tions are enforced and therefore there is a single possible winner given the tournament
graph. Competitions with these restrictions arise in the playoffs of many North American
sports where the ranking is determined by points and some well defined set of tie break-
ers, the team arrangement is predetermined ahead of time, the pooling is based on some
geographic or league feature and pool arrangement is irrelevant due to the fact there are
only two pools.

81

The next most restricted family is the 1101 family where only the criteria modification
restriction is not enforced. An example of this would be professional tennis where the
ranking of players in the tournament do not necessarily correspond to the World Ranking
of the same players. For example, players which have a specialty on a particular surface,
like clay or grass, can have a higher rank in the seeding than their actual ranking.

While a very restrictive family, 1110 presents an interesting case. This states that the
pooling, team arrangement and criteria are all immutable but the pool arrangement is not
restricted. This is interesting because in competitions where there are just one or two pools
then the problem corresponds to a 1111 family, the fully restricted case, but if there are
more than two pools the problem is unconstrained in terms of pool winners. When the
pooling, team arrangement and criteria are restricted, the pool winner can be determined
from the tournament graph. Since the arrangement of the pool winner is unfixed, the
winners can be manipulated into any arrangement that suits the scheduler corresponding
to the 00XX family of restrictions. It is not known whether there exists any real world
problems that have these restrictions.

The 1100 family of restrictions requires that the team arrangement and pooling of
teams is fixed but the ranking of teams can be modified and the arrangement of pools is
unfixed. Since professional tennis tournaments only have a single pool of teams, this family
of restrictions could be applied to tennis as well.

An interesting case for reasons discussed in more detailed later, the 011X family of
restrictions allows the pools to be unfixed but the team arrangement and criteria modifica-
tion are fixed. The 10X1 family of restrictions requires that pooling and the arrangement
of the pools are fixed while leaving the arrangement of the teams within the pools suscepti-
ble to manipulation. The 10X0 family of restrictions requires a specific pooling but offers
no other restriction on the seeding. It is not known if there are any competitions which
use either the 011X, 10X1 or 10X0 families of restrictions when generating seedings.

The 010X family of restrictions requires a specific arrangement of teams but requires
no other restrictions. This model is used in scheduling the NCAA Division One Basketball
Championship [48].

The most unconstrained family of restrictions is the 00XX family of restrictions. This
is the model described in other papers [35, 28, 67, 70]. One of the more distressing re-
sults shown later is its wide use and relative susceptibility to manipulation. This type of
completely unconstrained seeding is often used by local and amateur sports where it may
be difficult to determine rankings and there may only be two pools. Also note that any
competition where the seeding is generated by a random draw is seeded under the 00XX
family of restrictions.

82

t1

t1

t1

t1 t2

t3

t3 t4

t5

t5

t5 t6

t7

t7 t8

t1

t2 t3

t4

t5

t6 t7

t8

(a) (b)

Figure 4.7: (a) A cup competition denoting the winner in each node. (b) The correspond-
ing binomial spanning tree which represents the result of the competition.

4.4.3 Practical Complexity and Constraint Programming

While a more efficient method for solving these problems may exist, a polynomial-time algo-
rithm for finding seeding manipulation strategies has yet to be discovered. The alternative
to giving up on these problems would be to apply the machinery used to solve NP-Hard
problems and look at the practical complexity of these problems. This constitutes neither
a proof of efficiency or of hardness but rather shows, as is done in Graph Isomorphism [65],
that these problems can be solved even if their complexity is indeterminate.

The basic problem is determining if a given team tw is the winner under any seeding
of the tournament given the tournament graph G = (V, E). Lang et al. [35] showed that
the least constrained problem is solved by finding a binomial spanning tree within the
tournament graph structure. The winner of the cup represents the root of the tree. The
children are the teams the winner defeated in each round from left to right. This notion is
then applied recursively to each child. If there exists an assignment of the teams so that
the edges in the binomial spanning tree are also in the tournament graph then the team at
the root is a winner. In Section 4.4.4, it is discussed how these binomial trees must exist
for all possible seedings.

Example 4.11 (Binomial Tree Winner). Figure 4.7a shows a cup competition with the
expected winner of each match according to the tournament graph labelled in each node.
The winner of the cup is t1 and t1 becomes the root of the binomial tree. Since t1 defeats
t2, t3 and t5 in each successive round, t2, t3 and t5 are made the children of t1. t2 does not
win a single game so they are a leaf node. t3 defeats t4 and t5 defeats t6 and t7. Finally, t4
and t6 are leaf nodes and t7 defeats t8, which is a leaf node. The completely binomial tree
is shown in Figure 4.7b.

To tackle these problems, a constraint programming framework for solving sub-graph
isomorphism is used [72]. The constraint approach for the simple model given the notation

83

Algorithm:EdgeConstraints(E, v1, . . . , vm)

input : A list of edges and a set of variables
output: Returns a set of constraints on the variables

c ← 1;
queue.add (pair (vc,log(m)));
c ← c + 1;
while ¬queue.empty () do

pair (current,num child) = queue.pop ();
for i = 0 to num child− 1 do

Add the constraint that the (current, vc) be an edge in the tournament;
// add a new pair to the queue

queue.add (pair (vc, i));
c ← c + 1;

return the set of generated constraints;
Algorithm 4.3: This algorithm uses a queue-based algorithm to generate the edge
constraints for all variables in the constraint program.

is described first and then additional constraints are added to solve the other models. There
are m variables labelled v1, . . . vm, with the domain of each variable D(vi) = [1 . . . m]. Each
variable, vi is a node in the binomial spanning tree and the value of vi is the corresponding
tournament node. An AllDifferent constraint is added to ensure that no node is used more
than once, alldifferent(v1, . . . , vm). Edge constraints are added to the variables of the graph
to ensure that if there is an assignment of vi and vj to the variables in the spanning tree
which share an edge then (vi, vj) ∈ E. Algorithm 4.3 describes how the edge constraints
are generated for a given problem. Lastly, the constraint that v1 = tw ensures that tw wins
the tournament, if possible.

Arc consistency is enforced on the AllDifferent constraint and the edge constraints. Us-
ing the constraint program described above and arc consistency, simulated realistic prob-
lems with hundreds of teams are solved in under a second.

This basic constraint-based approach can be extended with additional constraints to
reflect the additional restrictions. The most useful is a global constraint proposed by
Larrosa and Valiente [36], called nRF+ in that work but referred to here as the edge
cardinality constraint, that enforces slightly stronger consistency on the children of nodes
within the tree. This ensures that for each value of a parent node there are enough distinct
values in the domains of the child nodes to satisfy each child node. Since, it is possible for
both the AllDifferent constraint and the edge constraints to be arc consistent but there be
no viable solution to the problem, this additional constraint can be effective.

Example 4.12 (Edge Cardinality Constraint). Figure 4.8a shows a parent variable with

84

[1, 4, 5]

[2, 4, 5, 6, 7] [2, 4, 5, 6, 7]

1 2 3 4 5 6 7 8
1 0 1 1 1 0 0 1 1
2 0 0 0 1 1 0 1 0
3 0 1 0 0 0 1 0 0
4 0 0 1 0 1 1 0 1
5 1 0 1 0 0 0 1 1
6 1 1 0 0 1 0 0 0
7 0 0 1 1 0 1 0 0
8 0 1 1 0 0 1 1 0

(a) (b)

[1]

[2, 4, 7] [2, 4, 7]

[4]

[5, 6] [5, 6]

[5]

[7] [7]

(c) (d) (e)

Figure 4.8: (a) An example of the edge cardinality constraint applied to a node with two
children with the current domains of each node. (b) The tournament graph. (c) The
result if the parent is set to 1 with three children. (d) The result if the parent is set to 4
with two children. (e) The result if the parent is set to 5 with only one value remaining
so 5 can be pruned from the domain of the parent.

two child variables and Figure 4.8b shows the tournament graph associated with the problem.
The domains of all three variables are arc consistent with respect to the edge constraints and
the AllDifferent constraint and no further reductions can be made with those constraints.
If an edge cardinality constraint is added that enforces that children which have the same
parent must have between them enough values to assign each child then a further reduction
can be made. Figures 4.8c and 4.8d show that if the parent is assigned the value 1 or 4
then there are enough remaining values to assign to both children. However in Figure 4.8e,
the parent is assigned the value 5 and a single value 7 remains in both children. Therefore,
the value 5 can be removed from the domain of the parent.

If there is pooling, a modified version of the constraints can be used so that the oppo-
nents in the early rounds are all from a given pool. This includes the edge constraints and
the edge cardinality constraint. For edge constraints, it is sufficient to verify that for arcs
representing early round matches that each child value has a possible parent value in the
same pool. Similarly for edge cardinality constraints, only those values which represent

85

1, 2, 7, 16

6, 7, 9, 10, 14

1 2 7 16

6 7 9 10 14

7, 16

6, 14

(a) (b) (c)

Figure 4.9: (a) A parent child pair of variables where the values are arc consistent according
to the edge constraint. (b) The selection of the tournament graph corresponding to the
values in the domains. Dotted lines are the pairings of values which do not respect the
pooling restriction where the pools are {1 . . . 4}, {5 . . . 8}, {9 . . . 12} and {13 . . . 16}. (c)
The arc consistent domains of the variables after pruning once the pooling restriction is
applied.

the same pool are counted. However, given the teams are fixed in the pools, it is possible
to determine the set of possible pool winners from each pool as a sub-problem. It is often
beneficial to take the set of pool winners and find a solution among the pool winners.
Additional constraints must be added to ensure that exactly one pool winner is present in
any solution.

Example 4.13. Figure 4.9a shows an edge constraint which is arc consistent. The relevant
sub-graph of the tournament graph can be viewed in Figure 4.9b. However, if teams must
belong to the same pool then extra pruning can be achieved. Assume that teams are pooled
into four groups {1 . . . 4}, {5 . . . 8}, {9 . . . 12} and {13 . . . 16}. Therefore, the dotted edges
in Figure 4.9b no longer provide support as the teams do not belong to the same pool and,
as shown in Figure 4.9c, the parent values of 1 and 2 can be removed along with child
values 7, 9 and 10.

If there is a fixed team arrangement, the edge constraint can be modified so that every
edge satisfies the arrangement. Suppose there is an edge between two vertices vi and vj.
Assume that each team in vi has a fixed rank and that the pair arrangement specifies
which teams vi could face, therefore, if there is a team ti ∈ D(vi) then there must be a
team tj ∈ D(vj) such that (ti, tj) is an edge in the tournament graph and the rank of ti is
compatible with the rank of tj given the round which the game is being played.

Example 4.14. Figure 4.10a shows an edge constraint with arc consistent domains ac-
cording to the relevant selection of the tournament graph shown in Figure 4.10b. Assume

86

1, 2, 7, 16

6, 7, 9, 10, 14

1 2 7 16

6 7 9 10 14

2, 7, 16

6, 7, 9, 10

(a) (b) (c)

Figure 4.10: (a) A parent child pair of variables where the values are arc consistent ac-
cording to the edge constraint. (b) Assuming that the edge in (a) represents a match in
Round 1, the rank of a team i is ((i − 1) mod 4) + 1 and teams of rank 1 play rank 4
and rank 2 play rank 3, this figure shows the selection of the tournament graph where the
edges that do not match the arrangement are dotted. (c) The arc consistent domain values
after pruning using the fixed arrangement restriction is applied. Note that if pooling was
added as in Example 4.13 and Figure 4.9, then the only values remaining would be 7 in
the domain of the parent and 6 in the domain of the child.

that the edge represents a game in the first round and the arrangement criteria requires
that top teams play the worst teams and so forth. In this example, assume teams are ranked
1, . . . , 4 and that the rank of a team i is equal to ((i− 1) mod 4) + 1. The dotted arcs in
Figure 4.10b represent all of the edges where the match up would violate the arrangement.
For example, if team 1 has a rank of 1 and therefore must play a team of rank 4 but the
opponents of team 1 remaining according to the original domains are 6, 9 and 10 which
have rank 2, 1, and 2, respectively. Therefore, according to the arrangement, team 1 has
no valid opponents and can be removed from the domain of the parent variable. Figure
4.10c shows the domains of the variables after all reductions have been made.

In a similar manner to modifying the edge constraint to deal with pair arrangement,
if there is a fixed arrangement of pool winners then this can be enforced by ensuring that
the edge is in the tournament graph and it satisfies the arrangement.

When the criteria by which an arrangement is made, for example the rank, is fixed
then determining which teams satisfy the arrangement is straight forward. However, if the
criteria is allowed to be modified slightly then an additional variable is added for each node
in the binomial tree. This variable represents the value of the criteria for the team at the
given node of the tree. Additional constraints are added to ensure the criteria matches
with the team such as, for example, that the rank is not too different from the actual rank.

87

The edge constraint is modified again to ensure the possible values of the criteria allow for
a given team arrangement.

4.4.4 Symmetry Removal

The simplest representation of a seeding is the simple list representation where the ith

element in the list represents the ith leaf of the tree. One of the problems with a list
representation is that it contains many rotational symmetries.

Example 4.15. Suppose there existed a sixteen team cup with the seeding represented as
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}. In this example, in the first round, team one
plays team two, team three plays team four and so forth. Note however, that {9, 10, 11, 12,
13, 14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8} and {8, 7, 6, 5, 4, 3, 2, 1, 9, 10, 11, 12, 13, 14, 15, 16} are iden-
tical seedings. The match ups in the first round stay the same, team one plays team two,
team three plays team four and so forth. Given the list representation, it is possible to
rotate the position of every leaf game and every sub-tree of games without disturbing the
result of the competition as the match-ups remain the same. Given that there are m − 1
games played in the tournament where each of the games could be independently rotated,
there are exactly 2m−1 equivalent seedings for every seeding represented as list.

Another possible representation is the binomial tree representation proposed by Lang
et al. [35]. Lemma 4.8 shows that every seeding represented as a list can be transformed
into a binomial tree, given the tournament graph.

Lemma 4.8. Given a tournament graph, a set of teams (where m = 2n) and a seeding,
there always exists a binomial tree structure that can be constructed from the seeding where
for every edge in the binomial tree there is an edge in the tournament graph.

Proof. First note that, using the tournament graph, the winner of every game in the cup
can be determined given the seeding of games. Now, the binomial tree is constructed
recursively. The winner of the competition tw is placed at the root of the binomial tree.
Next place all of the teams that lost directly to that tw in the leaves from left to right in
the order that tw beat the teams, which is exactly log(m) games. Now, recursively add
the children of each node ensuring that the children are added from left to right in the
order the children were defeated. The tree is constructed so that a parent node would have
played their ith child node in the ith round of the tournament. Therefore for the ith child
to have lost in the ith round, they must have won exactly i − 1 games. This means that,
given the children of a parent node who wins k games, exactly one child has 0 children, one
child has 1, and so forth, with the last child having k − 1 children. This is the definition
of a binomial tree.

88

The binomial tree only specifies who plays each team in each round but not to which
leaf the team belongs as any rotation can be used with identical results. Therefore, using
the binomial tree representation preserves all solutions without having to search through
the exponential number of rotational symmetries.

4.4.5 Experimental Results

While there is some evidence to suggest there is bias in seeding real world cup competitions
[17], there is no definitive data set to test the efficiency of the constraint programming
approach described above. Therefore to test the constraint programming approach under
the various restrictions, a set of realistic test benchmarks are generated. The first step is
to generate a realistic tournament graph.

To generate a real world tournament graph, real world data was mined to generate a
probability distribution of how often better teams lost to worse teams and their relative
difference in terms of rank. The NCAA Division One Basketball competition brackets from
1985 to 2009 were mined for this information. A probability model was constructed from
the data to give the distribution of upsets given the difference in rank. This model can
be seen in Figure 4.11. The graphs relative unevenness at high differences in rank is likely
due to there being very few instances for that difference. For example, for a difference of
10 rank, there is a forty percent chance of upset, which is likely due to the fact that there
was only 5 times where a team ten ranks apart played and 2 of them ended in an upset.

Tournament graphs are generated by sampling the distribution for each game to deter-
mine whether the lower ranked team defeated the higher ranked team. Graphs of size 4,
8, 16, 32, 64, 128 and 256 were generated. The largest cup balanced competitions found in
practice are those used by professional tennis where there are 128 participants. For each
tournament graph, every team is tested to determine whether there exists a seeding which
would ensure their victory. All of the families of restrictions were tested except the 1110
family, since it is a strictly easier variant of the 0000 family, and the 1111 family, which can
be solved in linear time using simple checks. Table 4.3 shows three of the more interesting
families of restriction. The timing results show that for most families of restrictions the
random instances generated are quickly solved. Only in a single family of restrictions, the
010X family, was there problems which timed out and even then there were relatively few
of those. Complete results can be found in Table B in the appendix. Table 4.4 shows
the percentage of teams that could be manipulated for a given rank. The results from
Table 4.4 confirms the theoretical result on the likelihood of possible seeding manipulation
strategies on the most unrestrictive model [70]. However, even relatively small restrictions
can drastically reduce the number of teams which could be made winners via seeding ma-
nipulation. As expected from the generation of the tournament graph, it is more likely
that the scheduler could generate a seeding manipulation strategy for strong teams. The

89

 0

 0.2

 0.4

 0.6

 0.8

 1

-2 0 2 4 6 8 10 12 14 16

P
ro

ba
bi

lit
y

Difference in Rank

Upset Ratio

Figure 4.11: The probability that a team whose rank is i positions lower than another
team would upset that team as estimated from the results for the 25 tournaments from
1985 to 2009. For each game in every tournament, the distance in rank between the two
teams was calculated and it was determined if the weaker team upset the stronger team.

complete table can be found in Appendix B in Table B.2. The results show that, at least
on random instances, that seedings can be easily generated to manipulate the results of the
tournament. Therefore, the cup competitions are open for potential abuse by the scheduler
of the competition from a practical point of view.

4.5 Combining Manipulations

In this section, the combination of the three manipulation schemes is discussed. Specifically,
how the problem changes if a scheduler has a coalition of cheaters with which to change the
outcome of games and how difficult it is to manipulate games in the two-stage competitions
where the first stage is a round robin and the second stage is a cup competition.

4.5.1 Seeding Manipulation with a Coalition of Cheaters

In Section 4.4, it was shown that, given the random model studied, it is almost always easy
to manipulate a cup competition. However, it is not always possible for the scheduler to
manipulate the results especially for lowly ranked teams or as restrictions are added to the
problem. The question becomes how does the problem change if the scheduler has access
to a coalition of willing cheaters that could throw games as needed.

90

Table 4.3: Effect of tournament size on the minimum, maximum and average CPU time
(sec.) to calculate a seeding manipulation, for selected families of restrictions 00XX,
10X0 and 010X. The complete results for all families are shown in Appendix B in Table
B.

00XX 10X0 010X
size range avg range avg range avg

16 [0–1] 0.00 [0–1] 0.00 [0–1] 0.01
32 [0–1] 0.01 [0–1] 0.03 [0–1] 0.04
64 [0–1] 0.04 [0–1] 0.06 [0–1657] 1.3

128 [0–1] 0.27 [0–1] 0.13 [0–?]1 N/A1

256 [1–61] 1.81 [0–1] 0.33 [0–?]2 N/A2

1 Due to memory restrictions, it was not possible to solve 9 out of the 12800 instances.
As such, the maximum time and average cannot be accurately reported.

2 Due to memory restrictions, it was not possible to solve 1794 out of the 25600 in-
stances. As such, the maximum time and average cannot be accurately reported.

Another way of looking at this problem is to notice that the tournament graph has a
single edge between any two pairs of teams i and j. When a game is thrown, the reverse of
the edge occurs. So any game where the coalition member is expected to win, the reverse
edge can be added to the tournament graph. With these modifications to the tournament
graph, all of the constraint programming techniques used in Section 4.4 can now be applied
to the new problem.

To test that the problems remain easy, random coalitions were generated and tested
on the tournament graphs created in Section 4.4.5. Coalitions have at least one member
and contain at most half of the teams. The size was selected from this range using a
uniform random distribution. The teams making up the coalition were also generated
randomly. To compare the differences, the solver for the 00XX restrictions was applied
to the tournaments with and without coalitions. Table 4.5 shows there is no practical
difference in solving the time taken to solve instances where coalition members are added
and Table 4.6 shows that there are strictly more possible solutions given the effect of the
coalition.

4.5.2 Combining Round Robin and Cup Competitions

There are a variety of two-stage competitions that are available but the most common form
of two-stage competition involves a group stage followed by a fixed cup competition. In
the following section, several instances are described where there exists a polynomial-time

91

Table 4.4: The effect of tournament size on the percentage of teams of rank i that could
be made the winner via manipulation of the seeding, for selected families of restriction:
00XX, 10X0, and 010X. The complete results for all families is shown in Appendix B in
Table B.2.

00xx 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4 41 41 41 41 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

8 91 80 80 85 63 54 43 40 n/a n/a n/a n/a n/a n/a n/a n/a

16 97 97 96 95 95 94 95 95 90 92 90 82 78 62 59 32
32 100 100 100 100 100 100 100 100 100 100 100 100 100 98 97 87
64 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

128 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
256 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
10x0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

16 97 97 96 95 95 94 95 95 90 92 90 82 78 62 59 32
32 97 96 95 96 94 93 94 93 91 89 87 85 76 67 48 37
64 99 98 99 99 98 98 98 98 95 96 92 88 78 64 52 40

128 99 97 97 97 97 96 96 96 94 92 91 85 75 66 55 44
256 98 98 97 97 97 97 96 96 94 93 90 87 77 65 56 39
010x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

16 88 93 79 68 58 51 35 20 12 22 13 11 7 1 1 0
32 100 100 100 100 100 100 100 93 89 99 93 90 79 69 23 6
64 100 100 100 100 100 100 100 100 100 100 100 100 100 97 54 16

128 100 100 100 100 100 100 100 100 100 100 100 100 100 100 751 321

256 100 100 100 100 100 100 100 100 972 100 100 100 962 912 522 02

1 Percentages are a lower bound of actual percentages with a difference from actual
between 0% and 1%.

2 Percentages are a lower bound of actual percentages with a difference from actual
between 0% and 51%.

decision method for determining a constructive manipulation in this type of competition.
For this section, it is assumed that the scoring model is the simple win-loss model.

The simplest case of combining these two problems is when there is a round robin for
each single place in the cup competition. Determining a manipulation in this case can be
done in polynomial time.

Theorem 4.7. A constructive manipulation in a two-stage competition where the winner
of the groups qualifies for a set spot in a fixed cup can be determined in polynomial time.

Proof. First note that regardless of the size of the round robin groups, determining the
winner under manipulation can be done in polynomial time (for the win-loss model, see
Section 4.3). Therefore, it is possible to generate a set of possible winners at each fixed

92

Table 4.5: The effect of tournament size on the minimum, maximum and average CPU
time (sec.) for determining whether a team could be manipulated by seeding manipulation
for the 00XX family of restrictions with or without a coalition.

Without Coalition With Coalition
size range avg range avg
4 [0–0] 0.00 [0–0] 0.00
8 [0–0] 0.00 [0–0] 0.00
16 [0–1] 0.00 [0–1] 0.00
32 [0–1] 0.01 [0–1] 0.01
64 [0–1] 0.04 [0–1] 0.03
128 [0–1] 0.27 [0–1] 0.26
256 [1–61] 1.81 [1–10] 1.97

Table 4.6: The effect of tournament size on the percentage of teams of rank i that could
be made the winner via manipulation of the seeding for the 00XX family of restrictions
with and without coalitions.

No Coalition 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4 41 41 41 41 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
8 91 80 80 85 63 54 43 40 n/a n/a n/a n/a n/a n/a n/a n/a
16 97 97 96 95 95 94 95 95 90 92 90 82 78 62 59 32
32 100 100 100 100 100 100 100 100 100 100 100 100 100 98 97 87
64 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
128 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
256 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Coalition 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4 67 63 67 72 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
8 97 91 95 92 85 82 78 79 n/a n/a n/a n/a n/a n/a n/a n/a
16 97 98 97 96 96 96 96 96 95 96 95 96 96 89 92 89
32 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99
64 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
128 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
256 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

leaf in the cup. Given a fixed partition of teams at the leaves, the modified CSL algorithm
described in Section 4.2 can be applied where at round one the sets must be compared
instead of single teams. The remainder of the levels can be calculated as before. Since
both parts can be calculated in polynomial time regardless of how many teams are in the
group pools and the cup, the entire solution can be calculated in polynomial time.

Another common method is to have the top two teams from each group qualify into
two predetermined spots in the cup. This is the situation that is most often used in
tournaments like the World Cup of Football. In the World Cup, teams from the same
group are placed on opposite sides of the cup competition and would not face each other

93

again until, if both kept winning, the final. Since there are two teams from each group
which both may be able to finish in first or second, the possible winners at the leaves may
contain duplicates and, therefore, do not form a partition. Given the lack of a partition,
the complexity of this problem is unknown in general but, interestingly, it is polynomial
to determine if a team makes the finals. First, a lemma used to prove the theorem,

Lemma 4.9. There is a polynomial time algorithm for determining the set of teams that
can finish in first and second place in a round robin tournament.

Proof. While it is NP-Complete to determine if a team finishes in kth place, in this case
the problem is to determine all teams that could finish in second place or better. It is easy
to determine if a team can finish first given the win-loss scoring model. Determining if a a
team can finish in second is harder but, given there is at most O(n) teams in a pool, it is
possible to determine whether each team in the pool is better than all but one of the other
teams. Each team i is paired with every other team j and the maximum number of wins
that each can get while wj ≥ wi is determined. This can be done by finding the maximum
number of wins possible for i and j not using the games against each other. Next, the
wins to between the two teams are added, iteratively, to the team with the fewest wins,
the minimum win total between the two teams is used as the target point value. Using
the feasible flow method described in Section 4.3 with a ti needing exactly the target and
tj needing equal or more than the target, a solution means that there exists a situation
where ti finishes second. Hence there are O(n2) ways of configuring i and j and each can
be solved in polynomial time using feasible flows.

Theorem 4.8. Determining if a coalition S can manipulate a two-stage competition, where
teams from the same pool are placed on opposite sides of the cup competition, so that a
team tw reaches the finals can be done in polynomial time.

Proof. Using Lemma 4.9, it is possible to determine in polynomial time the list of teams
that finish in first and second in each round robin group. The second stage now has a
set of teams filling the correct positions of the cup and, given the structure of the cup,
sets that contain the same team are on opposite sides of the cup. Since the problem is
to determine whether there exists a way for the coalition to make a team tw a team in
the finals, it suffices only to look at half of the cup competition at a time. Therefore,
the modified CSL algorithm is applied replacing the single team at the leaves with the set
of possible teams. Since there are no duplicates and extra conditions, this can be solved
in polynomial time. Therefore, since both stages can be solved in polynomial time, it is
possible to manipulate a team so that it makes the finals when teams in the same group
pool are seeded on different sides of the competition.

Theorem 4.8 works only in the case of World Cup style competitions where exactly two
members of each group qualify for the finals. The number of ways to seed the top k teams

94

grows exponentially and, while these problems may still be solvable as in Chapter 3, the
problem no longer remains polynomial. The general problem where there are k teams from
each group making the finals is NP-Complete as the first stage is NP-Complete [45].

Given the result that all pairings of first and second place teams can be found in
polynomial time, it is possible to look at winning the tournament instead of just reaching
the final. The problem is complicated by the fact that some teams can finish in either
place and not every first and second place option can happen simultaneously. Due to this
fact, the complexity of the general problem remains open but there are two variants of
the problem that are polynomial. The first variant is found by noting that much of the
hardness comes from the fact that teams from the same pool are placed on opposite sides
of the cup competition. For example, if the teams were required to playoff for the same
leaf of the competition, then it is possible to construct the list of possible leaves from each
pool which can be solved in polynomial time. The example is generalized slightly in the
following theorem.

Theorem 4.9. A polynomial algorithm exists for determining constructive manipulations
for two-stage competitions where two teams are seeded as in the World Cup but they are
within constant distance of each other in the tree.

Proof. Given Lemma 4.9, there is a polynomial time algorithm for determining the pairs
of teams that finish in first and second. Note that if teams are a constant distance apart
in the tree then there is a constant sized sub-tree containing both pairs of teams and a
set of other pairs which are of equal distance apart. Therefore, all of the possible winners
of that sub-tree without conflicts can be determined in polynomial time by enumerating
all possibilities. Once there is a set of valid non-conflicting winners of each sub-tree, the
modified CSL algorithm with the set of possible winners at the leaves as in Theorem 4.7
can be used to calculate the remaining possible sets of winners in polynomial time.

The second variant uses the same idea as in Sections 4.2.2 and 4.2.3 that if there are only
a few coalition members then they can only have a local impact on the cup competition.
Again, this idea relies on the assumption that there is likely to be only a few manipulators
in a competition and, from a practical perspective, this method could be applied.

Theorem 4.10. A polynomial algorithm exists for determining constructive manipulations
for two-stage competitions where two teams are seeded as in the World Cup but there is a
coalition of constant size c.

Proof. Given at most c coalition members, that most c of the groups have a manipulator.
Given this, at most a constant number of groups could have different choices in selecting
the first and second place teams. Since there are at most O(m) teams in each pool, there

95

Table 4.7: The complexity of the various different manipulation strategies discussed in this
chapter.

Manipulation Type Worst-Case Complexity
Constructive Cup Polynomial
Destructive Cup Polynomial

Minimal Cup Polynomial

Double Elimination Cup
Polynomial for a bounded

sized coalitions

Reseeding Cup
Polynomial for a bounded

sized coalitions

Constructive Round Robin
Polynomial for certain scoring

models, NP-Complete otherwise
Destructive Round Robin Polynomial

Seeding Open
Combining Cup and Seeding Open

Combining Cup and Round Robin
Polynomial under

conditions

are at most O(m2) possible winners from a pool and O(m2c) different options for seeding
the tournament which is polynomial. Since each option can be checked in polynomial time
by the modified CSL algorithm, the solution can be found in polynomial time.

4.6 Summary

In sporting tournaments, unlike elections, manipulations are applied directly to the tour-
nament graph. In this chapter, three different types of manipulations have been discussed
that directly manipulate the tournament graph. As well, combinations of the three types
of manipulations are discussed. Algorithms used in elections and winner determination
problems were extended to the context of sporting manipulations.

Cup manipulations are easily manipulated and it is shown that modifying the CSL
algorithm used to find manipulations in elections gives an efficient method for calculating
the manipulations in tournaments. It turns out that finding the minimal number of ma-
nipulations, and thus the minimal sized coalition, is also easy in cup competitions. Some
variants of cups, specifically double elimination cups and reseeding cups, can be solved in
polynomial time if the size of the coalition is of bounded size.

96

Round robin competitions are also examined and it is shown that, for a wide variety of
scoring models, manipulations can be determined in polynomial time. This can be observed
by noting that there is an equivalence between the winner determination problem and the
round robin manipulation problem. It is shown that calculating the minimal number of
manipulations in round robins is also polynomial.

While the complexity of seeding a tournament remains open, the practical complexity
of the problem was studied by modelling the problem as a constraint program. Without
restrictions, on randomly generated instances, the problem remains easy and solutions are
found quite fast even on instances with up to 256 teams. This holds true with many of
the restricted models and, even on the most difficult model, the problems are mostly very
easy.

Combining the different manipulations provides some interesting results. Combining
manipulation of the seeding along with manipulation of the games in the cup has unknown
complexity but is again solved easily in practice since the solution requires only adding
extra arcs to the tournament graph. The complexity of manipulating a combination of a
round robin and a cup competition used in the World Cup of Football, Olympic Hockey
and a host of other sporting events is polynomial-time solvable under certain conditions.
If a single team qualifies from each group, there exists a polynomial time algorithm for
determining a manipulation strategy. If two teams qualify from the group, determining
if the team reaches the final can be calculated in polynomial time but the problem of
determining the winner is of unknown complexity. If restrictions are put on where the
teams from each group are seeded or how many coalition members exist in the tournament,
then the problem can again be solved in polynomial time.

In the next chapter, manipulation is examined from another perspective. Instead of
determining how hard it is to manipulate a competition, the detectability of those manip-
ulations is examined.

97

Chapter 5

Detecting Manipulation in Sporting
Tournaments

The focus of research on manipulation in elections and sports has been on how difficult
it would be for the cheaters to achieve their ends. There has been very little focus on
determining whether the cheating could be detected by the organizers of the tournament.
One reason why this may have been a neglected area of research is that most known
examples of match-fixing are single events where the cheaters hope to profit from betting
[5]. However, all of the previous work on manipulation deals with global manipulation
strategies where coalitions change their behaviour to modify the winner of the tournament.
Since these type of manipulations affect the tournament on a broad scale, it raises the
question of whether it is possible to detect such manipulations.

This chapter focuses on the detection of the three different types of manipulations
described in Chapter 4: cup manipulation, round robin manipulation and seeding ma-
nipulation. Detection of manipulation can be broadly separated into three different types:
detection based on events occurring within the individual games, detection based on events
external to the competition like betting and detection based on a pattern of game results.
Corresponding to the manipulation results from Chapter 4, this chapter focuses on the
third type, detection of manipulation based on a pattern of game results. As such, when a
certain manipulation strategy is labelled as undetectable, it is meant that there exists no
difference in the pattern of game results from any fair results. Conversely, a manipulation
strategy is labelled detectable if the pattern of game results exhibits optimality—uses as
few changes to the expected results as possible—while fair behaviour that achieves the
same result does not necessarily do so.

In Section 5.2, the detection of cup manipulations is examined and the concept of a
strategically optimal coalition is introduced. It is shown that strategically optimal be-
haviour occurs rarely in randomly generated tournaments and can be used to provide de-

99

tection assistance. This type of detection must be paired with individual game results as a
small percentage of teams can be misclassified and individual game analysis is proposed as
a complementary technique to detect manipulation. In Section 5.3, the detection of round
robin manipulation is proposed and two different classes of manipulation are examined.
Some simple algorithms are proposed along with a discussion of the results in terms of
detectability. In Section 5.4, several families of results are identified as being undetectable
based on the result of the seeding. The criteria modification restriction parameter is shown
to be the crucial factor in detectability as it is possible to identify the difference from the
expected results whereas with all other unfixed parameters any seeding would be possible
given a random draw.

5.1 Related Work

While there is no work on detecting coalitions of cheaters in election results, there is some
work on determining if the results of elections were fair within some confidence interval.
This process is known as auditing [7]. Aslam et al. [7] present an auditing technique that is
robust even when the electoral precincts are of different sizes. Myagkov et al. [47] and Levin
et al. [38] study election fraud using statistical auditing for elections in Russia, Ukraine
and Venezuela. The work in this chapter attempts to detect the same type of behaviour,
i.e., coalitions of cheaters attempting to change the result, but using different techniques
and focusing on a different aspect of the results.

In game theory, there is the notion of a coalitional game [50]. These are games where
the goal is to find the best partitioning of agents such that some metric is maximized,
for example, social welfare. Rahwan et al. [53] propose a mechanism for making anytime
decisions for producing coalitions that gives the best result. The work in coalitional games
is similar as coalitions are found using some fitness measurement. The reason for finding
the coalition differs in this work as coalitional behaviour is not desired.

The area of network security also contains work that is related to coalition and cheating
detection. Yan [71] proposes some methods to deal with illicit play of coalitions of players in
online bridge. Brickell and Stinson [12] propose a threshold scheme for protecting encrypted
data that allows cheaters to be detected with high probability even when working in a
coalition. Jin et al. [32] look at finding coalitions of cheaters attempting to circumvent
copyright procedures on streamed content. The work in coalition and cheating detection
in network security is focused on specific technical problems and cannot be directly applied
to the work in this chapter.

100

5.2 Detecting Manipulations in Cup Competitions

In cup competitions, it is known that a coalition can generate a manipulation strategy
in polynomial time (see Chapter 4). Combining this fact with the observation that in
many real world tournaments a large percentage of games are considered upsets by the
organizers (see Figure 5.7 in Section 5.2.4), it poses the question of whether or not some
of those upsets are strategic choices made by a coalition of cheaters.

In this section, a practical method for determining whether the behaviour of a coali-
tion of teams in the tournament matches the behaviour of a manipulating coalition is
described. The practical benefit of this technique would be to provide the organizers of
cup competitions with a tool to identify when suspicious patterns of behaviour have oc-
curred. Note that this technique does not provide a proof of dishonest behaviour but rather
provides organizers with a significant starting point to investigate possible corruption in
the competition.

It is well known that manipulations occurs in sports. This includes sports ranging from
soccer [25, 5], baseball [30], tennis [23], sumo wrestling [21] and even lawn bowling [14].
Detection of these events is often done through an analysis of betting and financial records
[25, 5, 23] but cheating is also apparent in the pattern of results of the game. The challenge
becomes disentangling the legitimate upsets from the manipulations. For a single game,
it may be possible to identify a manipulation via analysis of betting results or on field
play. However, for a sequence of games or a tournament of games, it becomes possible to
highlight suspicious patterns of activity rather than isolated occurrences. The remainder of
this section focuses on providing a technique for identifying suspicious patterns of behaviour
within the tournament results. The resulting algorithm could be used to aid investigators
and target specific teams or groups of teams whose on field play had yielded suspiciously
coincidental play.

In order to provide a foundation for detecting tournament manipulation, the concept of
a strategically optimal coalition is introduced along with a discussion about its relevance in
detecting fraud in sports. Some restrictions and observations about strategically optimal
coalitions are described and a dynamic programming approach is presented which easily
solves examples which are twice as large as known cup competitions. While the complexity
of the problem remains unknown, empirical results show that detecting coalitions in large
tournaments is possible.

5.2.1 Notation and Definitions

Before introducing the concept of strategically optimal coalitions, some notation and def-
initions are introduced formally. Refer to Section 2.5 for more details on the notation

101

and concepts used in this chapter. Since it is much harder to determine cheating before
the competition has completed, it is assumed that the results of the cup competition are
given and the winner of every match is known. The final winner of the competition is
denoted tw. It is also assumed that it is possible to identify accurately an upset from an
expected victory. The concept of a possible upset relaxes the assumption that the tour-
nament graph perfectly predicts the outcome of games. However, it is possible that some
games are identified as an upset or an expected outcome when the reality is the opposite.

At each round i = 1, . . . , n of the competition, if tw wins the tournament as a result
of manipulation by a coalition of teams, the coalition must have formulated a strategy to
guarantee that tw wins. The strategy may need to change from one round to the next as the
outcomes of many of the games will not be under the coalition’s control and there may be
upsets caused by teams that are not in the coalition. It is assumed in this work that rounds
happen simultaneously and planning happens only before or after rounds. In general, this
is restriction could be relaxed by simply adding possible plan changes between every game
that did not happen simultaneously. As well, it is assumed there is a strong incentive for a
coalition to minimize the number of manipulated matches, as each manipulation increases
the risk of detection. The reason why this assumption is likely to be true is that additional
unnecessary upsets are likely to draw attention to the coalition while providing no benefit
especially since manipulating eliminates the coalition member.

Definition 5.1 (optimal manipulation strategy). Given a coalition S, a distinguished team
tw, and the results of past rounds 1, . . . , k − 1 of the competition, a manipulation strategy
for S in round k is a set of manipulations that if executed ensures tw wins the tournament
under the assumption that the matches between teams not involving teams in S occur as
expected in the tournament graph G. A manipulation strategy for S in round k is optimal
if there exists no strategy for S with fewer total manipulations.

Example 5.1 (An Optimal Strategy). Consider a sixteen team cup competition where the
tournament graph is as shown in Table 5.1. If the outcomes of the matches follow the
tournament graph t9 will win the cup (see Figure 5.1). Suppose that the coalition of t13

and t16 would like t1 to win the cup. An optimal manipulation strategy for S = {t13, t16}
in round 1 is given by,

t13 throws match to t14 in round 1,
t16 throws match to t14 in round 2.

Given that t13 then throws the match to t14 in round 1 and no other upsets occur in that
round, an optimal manipulation strategy for round 2 involves just advancing the plan. If
t16 then throws the match to t14 in round 2 and no further upsets occur in the remainder
of the competition, t1 wins the cup (see Figure 5.2).

102

The goal of this work is to recognize coalitions which may have manipulated the compe-
tition to have their team win. It is not possible to know the coalitions or their manipulation
strategies but it is sometimes possible to recognize such coalitions through partial obser-
vation of their strategic behavior.

Definition 5.2 (strategically optimal coalition). A coalition S is a strategic coalition if
for each round k, 1 ≤ k ≤ n, the set of upsets Uk

S contains all and only the manipulations
that would have been executed in round k in an optimal manipulation strategy for S in
that round. A coalition S is a strategically optimal coalition if no proper subset of S is a
strategic coalition.

In the remainder of this section, coalitions are assumed to be formed prior to the
competition. While this is a strong assumption, there are real world scenarios where this
assumption would hold. The first scenario presumes that the financial activity which most
likely accompanies such coalition formation is probably more closely watched while the
competition is being played. Therefore, adding new coalition members on the fly exposes
the coalition to increased risk. The second scenario would be where the teams spend their
budget prior to the competition being played. In this scenario, no further coalition member
could be added. A third scenario would be where the cost of adding the additional coalition
member is more than the gain from winning the tournament. In these scenarios, adding
extra coalition members would provide little benefit.

Another assumption is that real coalitions operate in a strategically optimal manner. It
is possible that a coalition does not in fact operate such that they manipulate as few games
as possible and contain only the necessary members. There are two arguments to why this
assumption may be reasonable. The first is that believing that a coalition is not smart
enough to operate seems dangerous and that a smart coalition would prefer to operate in
a manner that manipulates as few games as possible and draws the least attention. The
second argument is that a larger than necessary coalition would reduce whatever reward
each coalition member receives.

The most restrictive assumption that this work makes is that it is assumed that if a
coalition member is involved in an upset then the upset was a manipulation. While this is
obviously a strong assumption, there is some reason to believe that if this is not true then
the coalition would fail to manipulate the competition. Since this procedure is attempting
to identify coalitions that successfully manipulated a coalition, it seems likely that the
upset of a member would cause the coalition to be unsuccessful and, therefore, the method
would not be directly applicable.

The relaxation of these assumptions is left for future work.

Example 5.2 (Changing a Strategy). Consider again the cup competition introduced in
Example 5.1, where the coalition S = {t13, t16} would like t1 to win the cup. The optimal

103

t9

t1

t1

t1

t1 t2

t3

t3 t4

t5

t5

t5 t6

t7

t7 t8

t9

t9

t9

t9 t10

t11

t11 t12

t16

t13

t13 t14

t16

t15 t16

Figure 5.1: The result of the cup if matches happen according to the tournament graph.

t1

t1

t1

t1

t1 t2

t3

t3 t4

t5

t5

t5 t6

t7

t7 t8

t14

t9

t9

t9 t10

t11

t11 t12

t14

t14

t13 t14

t16

t15 t16

Figure 5.2: The result of the cup if t13 and t16 manipulate the tournament and all other
matches happen as expected. Grey nodes indicate upsets.

manipulation strategy for S in round 1 remains the same and suppose that t13 then throws
the match to t14 but that there are also additional upsets in round 1 involving teams outside
of the coalition (see Figure 5.3). As their original strategy no longer ensures that t1 wins
the cup, the coalition must now reformulate their strategy by having t16 beat t14 and then
ultimately lose to t1. The strategy for round 2 is given by,

t16 throws match to t1 in round 4.

Assuming no further unexpected upsets, the strategy carries over to subsequent rounds and
t1 wins the cup.

104

t1

t1

t1

t1

t1 t2

t3

t3 t4

t5

t5

t5 t6

t8

t7 t8

t16

t11

t10

t9 t10

t11

t11 t12

t16

t14

t13 t14

t16

t15 t16

Figure 5.3: The result of the cup if t13 and t16 work in a strategically optimal manner and
there are additional upsets caused by non-coalition members. Grey nodes indicate upsets.

Table 5.1: Adjacency matrix of the tournament graph for Example 5.1. There is an edge
from ti to tj if cell (i, j) is equal to 1.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16
t1 – 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0
t2 0 – 0 1 1 1 1 1 1 1 1 1 1 1 1 1
t3 0 1 – 1 1 1 1 1 1 1 1 1 1 1 1 1
t4 0 0 0 – 1 1 1 1 1 1 1 1 1 1 1 1
t5 0 0 0 0 – 1 1 1 1 1 1 1 1 1 1 1
t6 0 0 0 0 0 – 1 1 1 1 1 1 1 1 1 1
t7 0 0 0 0 0 0 – 1 1 1 1 1 1 1 1 1
t8 0 0 0 0 0 0 0 – 1 1 1 1 1 1 1 1
t9 1 0 0 0 0 0 0 0 – 1 1 1 1 0 1 1
t10 1 0 0 0 0 0 0 0 0 – 0 0 1 1 1 1
t11 1 0 0 0 0 0 0 0 0 1 – 1 1 1 1 0
t12 1 0 0 0 0 0 0 0 0 1 0 – 1 1 1 1
t13 1 0 0 0 0 0 0 0 0 0 0 0 – 1 0 0
t14 0 0 0 0 0 0 0 0 1 0 0 0 0 – 0 0
t15 1 0 0 0 0 0 0 0 0 0 0 0 1 1 – 0
t16 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 –

105

5.2.2 Pruning and Bounding the Coalitions

While there are potentially many different coalitions that could form, it can be relatively
easy to prune teams from strategically optimal coalitions. In this section, a variety of
techniques are discussed that can be used to show that certain teams could not be a part of a
strategically optimal coalition which improves the efficiency of the dynamic programming
algorithm presented in Section 5.2.3. The first pruning mechanism that can be applied
uses the fact that a strategically optimal coalition must control the outcome of every game
involving tw, the team the coalition wants to win.

Lemma 5.1. Any upset involving tw has to be a manipulation and the team that causes
an upset in a match against tw must belong to every strategically optimal coalition.

Proof. Assume that the upset involving tw was not a manipulation. Therefore, the expected
outcome was for tw to lose and a strategically optimal coalition would not be possible as
the coalition would not have been able to guarantee the result given the expected outcome.
Hence, the team that causes the upset must be a member of every strategically optimal
coalition.

It can be observed that each problem can be decomposed into log(m) separate sub-
problems as shown in Figure 5.4, where m is the number of teams in the competition.

Lemma 5.2. If a coalition S is manipulating to make tw the winner, then this problem
can be solved as log(m) problems of arranging the opponents of tw such that in every round
k, 1 ≤ k ≤ n, the opponent either loses to tw or is a coalition member that manipulates
the game so tw wins.

Proof. If the team ti facing tw is not a coalition member and tw loses to ti according to
the tournament, then the coalition has not achieved its goal as tw would be eliminated and
would not win the competition. To prove decomposability, it must be shown that changing
the opponent of tw in a round ri can be done in isolation from finding the opponent in
any other round. Observe that teams can only affect each other if they could play each
other. Since teams always are eliminated after losing, for these teams to face each other,
they would first have to beat tw which would eliminate tw and therefore there would be no
solution. So for any valid strategically optimal coalition, the problems of determining how
to manipulate the competition to select the team which plays tw in round 1 ≤ k ≤ n are
disjoint.

If no manipulations or upsets occur in a competition, there is an expected winner of
each match. More formally,

106

tw

tw

tw

tw

tw 1 2 nodes 4 nodes
m
2

nodes

Figure 5.4: Shows the disjoint sub-problems that have to be solved in order to make tw
the winner. Each sub-problem is twice as large as the previous sub-problem.

Definition 5.3. The expected winner of a sub-tree at round k is the team that would have
reached round k if no upsets or manipulations had occurred.

Corollary 5.1. Given a coalition S, assuming the coalition is fixed and known (to the
members) at the beginning, if ti is the expected winner according to the tournament graph
of that sub-tree at round k playing tw and ti is expected to lose to tw or ti ∈ S, then no
other team in the sub-tree may be a member of S if the S is strategically optimal.

Proof. Assume there was another coalition member tj ∈ S which was expected to manip-
ulate a game in the sub-tree and S was strategically optimal. If tj was removed from the
coalition then ti would win each of its games up to round k where they could lose to tw
either normally or by manipulating the game. Since this strategy uses at most one manip-
ulation and any plan involving tj would involve at least two manipulations, a contradiction
is reached and S would not be strategically optimal if tj was a member.

If the assumption that the coalition is fixed and known (to themselves) at the beginning
is relaxed, the following lemma can be used to prune teams from the strategically optimal
coalition.

Lemma 5.3. A team t that is in a sub-tree dominated by tw—i.e., every team in the
sub-tree is expected to lose against tw—is not in any strategically optimal coalition.

Proof. Since tw is expected to defeat every team in the sub-tree, it is clear that any upset
amongst teams in the sub-tree does not affect the results and, therefore, none of the teams
could be a member of a strategically optimal coalition.

107

Corollary 5.1 allows us to prune any team that belongs to a sub-tree where the root
plays tw where the expected winner is expected to lose to tw or is a coalition member. This
can greatly simplify certain problems where tw is a relatively strong player and faces only
a few challenging opponents.

The next result bounds the total number of manipulations that are possible under
any tournament graph. This is an upper bound on the size of any strategically optimal
coalition. First, a relaxation of the notion of strategically optimal is defined.

Definition 5.4. A non-redundant coalition (for a team tw) is a coalition where any manip-
ulation strategy at round 0 has every team manipulating one game to make tw the winner
and no proper subset of the coalition could have manipulated another set of games to make
tw the winner. A team is redundant if it could be removed from the coalition and the coali-
tion could still manipulate the tournament at round 0. A team is non-redundant if when it
is removed the coalition could no longer manipulate the tournament at round 0.

Note that all strategically optimal coalitions are non-redundant coalitions but not all
non-redundant coalitions are strategically optimal coalitions. Non-redundant coalitions,
and thus all strategically optimal coalitions, can only contain a bounded number of mem-
bers given the size of the competition. To prove this, a few intermediate results are proved
that makes the final proof of bounded size easier.

Lemma 5.4. Given a manipulation strategy where a manipulation occurs in a specific
match, an expected winner of the match tj and a team ti which manipulates the match in
the strategy, if tj is coalition member then ti is redundant.

Proof. Since ti is the manipulator in the strategy, there must have been at least one
manipulation so that tj is no longer the winner. If tj is a member of the coalition, tj
could have either lost normally or manipulated the game which means that under that
strategy only zero or one manipulations occurs. In the strategy where ti plays in the
match and manipulates, there are at least two manipulations. Therefore, ti is redundant if
tj is a coalition member because ti could be removed from the coalition and the coalition
could have still manipulated the competition.

Lemma 5.5. A coalition S contains at least one member who is redundant if two teams
in the coalition manipulate two consecutive games.

Proof. Assume there exists a situation where two coalition members manipulate two con-
secutive games. Figure 5.5a shows such a situation. As shown in Figure 5.5b, the earliest
manipulator, t2, could have not manipulated the first game and, instead, manipulated the
winner, t1, if t2 defeats t1 in a fair game. This would have resulted in one less manipulation.
Alternatively, if t1 defeats t2 in a fair game then, as shown in Figure 5.5c, no manipulations

108

t1

t1 t3

t2 t3

t1

t1 t2

t2 t3

t1

t1 t2

t2 t3

(a) (b) (c)

Figure 5.5: (a) A situation where t2 manipulates the game against t3 and then t3 immedi-
ately manipulates the game against t1. (b) An alternative situation where if t2 defeats t1
according to the tournament, then one less manipulation is need and t3 is not a coalition
member. (c) Another alternative where if t1 defeats t2 according to the tournament then
no manipulations are needed and both coalition members are redundant.

are necessary. In either case, fewer coalition members are needed and therefore at least
one coalition member is redundant.

Using Lemma 5.5, it is possible to prove another property about non-redundant coali-
tions.

Lemma 5.6. For any pair of matches where the winners play in the next round, any
scenario where a manipulation occurs in both matches contains at least as many or more
manipulations than a scenario where only one manipulation occurs at that round.

Proof. Assume there are two pairs of teams where the winner of each match is facing the
other team in the next round where both matches are manipulated (see Figure 5.6a, for
example). Given Lemma 5.5, no manipulation can occur in the next round since both
previous matches are manipulated. Therefore, one team was manipulated by a coalition
into a position to lose immediately. If that coalition member had not manipulated the first
game, they could have either manipulated in the second round, shown in Figure 5.6b or
lost naturally, shown in Figure 5.6c. Since the number of manipulations is equal or less
than the previous case while obtaining the same result, there is a scenario where equal or
fewer manipulations occur if only one manipulation happens in the initial round.

Using Lemmas 5.5 and 5.6, the following proof of the maximum size of the coalition
can be obtained.

Theorem 5.1. Given m teams, for any seeding and any tournament graph, if there exists
a non-redundant coalition then it contains at most m

2
members.

109

t2

t2

t1 t2

t4

t3 t4

t2

t2

t1 t2

t3

t3 t4

t2

t2

t1 t2

t3

t3 t4

(a) (b) (c)

Figure 5.6: (a) A section of a cup where two manipulations happen in the same round
and the victors of the matches will face each other in the next round. (b) An alternative
arrangement of the manipulations which requires the same number of manipulations if
t3 defeats t2 according to the tournament graph. (c) Another alternative manipulation
strategy which requires less manipulations if t2 defeats t3 according to the tournament.

Proof. Proof by induction on the height of the tree n where n = log2 m. (Base Case) If
there is a tree of height 1, there would be two teams and it takes at most one manipulation
to make any team a winner. Either the team wins the game fairly or the other team
manipulates so that other can win.

(Induction Step) Assume the conclusion for all i, 1 < i ≤ k. Therefore, it is necessary
to prove that it holds for trees of height k + 1. At the level of k + 1, either the expected
winner wins or the expected winner manipulates to make the other team win. If the team
does not manipulate then there are at most 2k−1 coalition members in the sub-trees by
the inductive assumption and, therefore, at most 2k in the entire level k + 1. Therefore
it suffices to show that if the expected winner manipulates, there were at most 2k−1 − 1
manipulations in the sub-tree where the manipulator originated.

Observe that there are exactly 2k−1 matches in a sub-tree of size 2k. This means there
are 2k−1 − 1 pairs of matches and a singleton match at the top of the tree. Using Lemma
5.6, it is known that there are at most 2k−1 − 1 manipulations possible in those pairs
since any situation where there are two manipulations in the pair can be converted into an
equivalent or better situation where there are only one manipulation among the pairs. The
remaining singleton match at the top of the tree could possibly contain a manipulation
but since in the next consecutive match the winner of the sub-tree manipulates, Lemma
5.5 states that this is not possible. Therefore, there are at most 2k−1 − 1 manipulations
possible in the sub-tree. Therefore, the induction step holds and the theorem holds for all
n.

This bound is true regardless of the tournament graph given in the problem but it is
likely that the maximum size coalition given a particular seeding and a tournament graph
is smaller than the given m

2
. However, the following corollary which can be used to prune

110

teams can be derived.

Corollary 5.2. In any sub-tree of a competition at round k, a non-redundant coalition can
only have at most 2k−1 + 1 members of the coalition and the corresponding manipulation
strategy can only contain at most 2k − 1 manipulations for that sub-tree.

Proof. Using Theorem 5.1, it follows that for a non-redundant coalition there can be at
most 2k−1 coalition members to manipulate the winner of a sub-tree of height k. As well,
the manipulation strategy must use at most 2k−1 manipulations. The winner of that sub-
tree may also be a coalition member and, therefore, there can be at most 2k−1 +1 coalition
members in any sub-tree at round k.

Proving a lower bound for the problem is substantially easier. The coalition must
include at least the number of the expected winners to whom tw would have lost. More
formally, the following theorem states a lower bound on the number of coalition members
in the coalition.

Theorem 5.2. The coalition must include at least as many teams as the number of expected
winners of each sub-problem to which tw would lose in a fair match, where sub-problems
are decomposed as in Lemma 5.2.

Proof. If the expected winners are all coalition members then the theorem holds and if
one or more of them do not belong to the coalition then it would require at least one ma-
nipulation, and therefore coalition member, to change the result. Therefore, the coalition
must include as many teams as number of expected winners that tw would lose to in a fair
match.

The minimal number of coalition members in a non-redundant coalition is at most
log2 (m) = n teams where m is the total number of teams in the tournament and n is
the height of the cup competition. Since strategically optimal coalitions must be non-
redundant coalitions, both the upper and lower bound applies to strategically optimal
coalitions.

The lower bound on the number of members of a coalition is the same whether the coali-
tion is non-redundant or not but the upper bound on a coalition which contains redundant
members is much higher. There exists a tournament graph where m − 1 manipulations
could occur and tw wins. This can be seen easily by assuming that tw loses to every other
team. If this is so then each game can be manipulated without concern to whom tw plays
as any arrangement would require matches against tw to be manipulated and this results
in m− 1 manipulations or, in other words, a manipulation in every game.

Given a tournament graph, it is also possible to construct the maximum number of
manipulations possible to change tw into a winner. Using the CSL algorithm from Chapter

111

4, construct the set of possible manipulations while keeping track of the most number of
manipulations possible which is analogous to keeping the minimal number of manipulations
possible. Once the possible manipulations have been constructed, compute the maximum
number in the same manner.

5.2.3 An Algorithm For Determining Strategically Optimal Coali-
tions

The first algorithm that must be constructed is the algorithm that verifies that a coalition
is a strategically optimal coalition. I show that a coalition can be verified in polynomial
time (see Algorithm 5.1). Given a coalition S, the algorithm determines whether the
manipulations by those teams are strategically optimal. There are n = log(m) rounds in a
tournament graph. At each round k, 1 ≤ k ≤ n, the set of upsets Uk

S attributed to S must
be part of an optimal manipulation strategy. The minimal number of manipulations needed
to ensure that tw is a winner for a given set S is denoted ak. Fixing Uk

S as played, the
minimal number of manipulations possible for rounds k+1, . . . , n, denoted ck, can similarly
be determined. If, for every round k, ak =

∣∣Uk
S

∣∣ + ck then S is a strategically optimal
coalition since the coalition never uses more than a minimal number of manipulations
given the known upsets. Note that in Algorithm 5.1 if a coalition can no longer generate
any manipulation strategy to make tr the winner, ak and ck are undefined. To avoid
complicating the algorithm, these cases are not shown but it should be assumed that the
algorithm returns false.

Lemma 5.7. Determining if a coalition S is strategically optimal can be computed in
polynomial time.

Proof. Calculating the minimal number of manipulations requires O(m2) time as shown in
Theorem 4.3 and, for all rounds, the total time needed is O(m2 log(m)). Therefore, deter-
mining if a coalition S is a strategically optimal coalition can be computed in polynomial
time.

Algorithm FindAll can be used to determine all strategically optimal coalitions that
ensure the a given team wins a tournament. It returns Null if there are no such coali-
tions that can ensure the team wins; otherwise it returns the set of strategically optimal
coalitions (possibly the empty coalition). The initial call to the algorithm is FindAll(C,
tw), where tw is the final winner of the tournament and C is the cup competition. The
algorithm generates all strategically optimal coalitions for sub-trees and then merges them
together, pruning as they are constructed. The algorithm does this by generating optimal
manipulation strategies.

112

Algorithm:StrategicCoalition(C, tr, S, U)

input : A competition tree C, a team tr to establish as the winner of the sub-tree,
and a coalition S. Assumes that the set of upsets U that occurred in the
competition is available.

output: Returns true if S is a strategically optimal coalition; false otherwise.

Upsets← {};
Let n be the number of rounds in C;
for k ← 1, . . . , n− 1 do

ak ← MinManipulations(C, k, tr, S, Upsets);
if k = 1 ∧ ak 6= |S| then return false;
ck ← MinManipulations(C, k, tr, S, Upsets ∪ Uk

S);
if ak <

∣∣Uk
S

∣∣+ ck then
return false;

Upsets← Upsets ∪ Uk;
return true;

Algorithm 5.1: The algorithm for verifying that a coalition S can make tr a winner
given a tournament graph G and a set of upsets U .

Pruning is then based on a coalition not establishing the team tw (it does not achieve
the goal) or it uses too many manipulations to establish the team tw (it is not optimal).
The algorithm is specified in a recursive, top-down manner.

The actual implementation uses memoization so that the result is as efficient as a
dynamic programming approach but is somewhat easier to read and understand. The
memoization is not shown in the algorithm specification, but the idea is to, prior to each
recursive call, check whether the result has been previously computed. If it has, the stored
result is used. If it has not, the recursive call is executed and then the result is memoized
(see [19, p.347-349] for further details on dynamic programming using memoization).

Two optimizations are not shown in the algorithm: (i) if tr, which is expected to win
the sub-tree Cr, is expected to win against the winner of the subtree Co, the foreach loop
is avoid as the empty coalition will be the result; and (ii) at the end of each iteration of the
foreach loop, if So contains the empty coalition, every other coalition will be non-minimal
so the algorithm breaks out of the loop.

Example 5.3 (Finding A Strategically Optimal Coalition). Referring to the cup competi-
tion described in Example 5.1 and the manipulations illustrated in Figure 5.3, there is one
strategically optimal coalition {t13, t16}. Decomposing the tree as in Lemma 5.2 and apply-
ing Corollary 5.1, it can be seen that the expected winner of the first three sub-trees—t1, t3
and t5—are the actual winners and therefore there are no coalition members in those sub-
trees. All that remains to be shown is how the strategically optimal coalition is generated

113

Algorithm:FindAll(C, tr)

input : A competition tree C and a team tr to establish as the winner. Assumes
that tw, the final winner of the tournament, is available.

output: Returns all strategically optimal coalitions that can ensure tr wins the
subtree C. Returns Null if there are no such coalitions; otherwise, returns
the set of coalitions (possibly the empty coalition).

if C consists of a single team then
if T contains tr then return {};
else return Null;

else
Let Cr be the subtree of C that contains team tr and let Co be the other subtree;
Sr ← FindAll(Cr, tr);
if Sr = Null then return Null;
So ← Null;
foreach tk ∈ Co do

Stemp ← FindAll(Co, tk);
if Stemp = Null then return Null;
if tr is not expected to win against tk then

add tk to each coalition in the set of coalitions Stemp;

add the coalitions in Stemp to So;
remove from So any coalition that is a superset of another coalition in So;

Stemp ← Sr × So;
if tr = tw then // tw is to win the subtree C

foreach S ∈ Stemp do
if ¬StrategicCoalition(C, tr, S) then

prune S from Stemp;

return Stemp;

Algorithm 5.2: Generates for a given cup competition all of the possible strategically
optimal coalitions which establish tw. The recursive call generates all of the possible
strategically optimal coalitions in each subtree and then the results are combined.

from the right most sub-tree. This is done by building and verifying each coalition is not a
strategically optimal coalition while pruning as many possibilities at each stage.

5.2.4 Experimental Results

Given that no real world data exists detailing large scale coalitional cheating, it is necessary
to construct synthetic data to test the algorithm. As in Chapter 4, the statistical data

114

related to upsets in the NCAA Division One Basketball Championship (see Figure 5.7) is
used to randomly model real world upsets in a cup competition. The tournament graph is
constructed by examining each pair of games and generating the winner from the random
probability distribution. The resulting outcomes of the tournament constructed from the
tournament graph should approximate the real world outcome of the tournament. Upsets
are generated in a similar manner as the tournament. The teams are seeded using pools of
sixteen teams and the best-plays-worst paradigm. Each match is then played according to
the tournament with a random chance sampled from the distribution of an upset occurring.
To test the algorithm, it is necessary to embed a coalition which is actively changing the
tournament so that a specific team wins the tournament and reacts to the upsets as the
upsets occur in the tournament. These coalitions are generated using a heuristic method
described in Algorithm 5.3. Once a coalition is generated, additional upsets are added to
the competition according to the upset model shown in Figure 5.7. This method embeds the
optimal manipulations of coalitions and adds extra manipulations randomly as described
by the model. The only change is that care is taken to ensure that the new upsets do not
cause the coalition to become nonviable as the method is to detect successful coalitions.

Algorithm:GenCoalition(T ,G,tw)

input : A set of teams T , tournament graph G and a team tw.
output: Returns a coalition of teams which ensures that tw wins.

current← T ;
changed ← True;
newCoalition ← minimal subset of current needed to make tw a winner in T ;
while changed do

changed ← False;
foreach team ∈ newCoalition ∧ team 6∈ checked do

remove team from current;
if tw can win T given current is the coalition then

nextCoalition ← minimal subset of current needed to make tw a winner in
T ;
changed ← True;

else
add team to current;
add team to checked;

newCoalition ← nextCoalition;

return newCoalition;
Algorithm 5.3: The algorithm takes a set of teams T , a tournament graph G and a
desired winner tw and generates a coalition that manipulates the coalition optimally to
make tw the winner.

115

 0

 0.2

 0.4

 0.6

 0.8

 1

-2 0 2 4 6 8 10 12 14 16

P
ro

ba
bi

lit
y

Difference in Rank

Upset Ratio

Figure 5.7: The probability, constructed from the previous twenty five NCAA Division
One Basketball Championships (1985-2009), that a team whose rank is i positions lower
than another team would upset that team.

To compare strategically optimal manipulations from random upsets, 1000 instances
with generated coalitions and 1000 instances with random upsets were tested. The re-
sults, shown in Figure 5.8, show that random upsets rarely produce strategically optimal
behaviour and it was hypothesized that the existence of strategically optimal behaviour
meant that there was a manipulating coalition. To test the hypothesis, tests were rerun
on 1000 new instances with generated coalitions and 1000 new instances with random up-
sets. Table 5.2 shows the accuracy, precision, recall and F-measure of the new instances.
These results show that overall the accuracy of the method is high but that the results
are weaker on smaller sized tournaments where accuracy is 76.7%. From the recall val-
ues, it can be observed that no false negatives are produced and all of the instances with
coalitions are identified as having coalitions. There are two problems. The first is the false
positives where the algorithm concluded a coalition exists where none exists and the second
is that even when a coalition is identified as existing there can be quite a large number of
candidates that could be the potential cheating coalition. These problems are discussed
below.

From the precision values, it is clear that the problem of false positives is worse when
the tournaments are small but it can be seen in Table 5.3 that the size of coalitions and the
number of different coalitions is small when tournaments are small. Therefore, it is practical
to evaluate the small number of small coalitions to determine, by reviewing the game tapes,
if a manipulation occurred. However, as tournaments grow, this problem becomes more
pronounced and the number of potential strategic coalitions increases. Table 5.4 shows

116

1000

800

600

400

200

0
16 32 64 128 256 16 32 64 128 256

0 1+

N
u
m

b
e
r

O
f

In
st

a
n
ce

s

Number of Coalitions

Random vs Coalition

Random

Coalition

Figure 5.8: For various tournament sizes, the number of instances where a strategically
optimal coalition is detected where the upsets in the instances are generate at random
or by a strategically optimal coalition. 1000 random instances and 1000 instances with
strategically optimal coalitions are tested.

the precision, recall, and F-measure values when comparing the set of strategically optimal
coalitions returned when there exists a coalition. Referring to the precision values as the
size of the tournament grows, there are more strategically optimal coalitions in the larger
tournaments. However, results in Table 5.5 show that the percentage of teams from the
entire pool of teams drops as the size of the tournament increases and, in most identified
coalitions, nearly 60% of the teams are actually members of the coalitions. Furthermore,
in most instances, the percentage of falsely accused teams amounts to less than 6% of the
total teams in a competition. These results show that the large number of strategically
optimal coalitions are due to a multiplicative effect due to a small number of misidentified
cheaters.

It is assumed that it is practical for a person to evaluate the individual game results to
determine if cheating exists when suspected. Note that human evaluation allows certain
matches initially viewed as upsets to be reclassified as manipulation or as a true upset. This
reclassification could remove a team from all strategically optimal coalitions or require the
team be a member of the strategically optimal coalition. In this way, this method could be

117

Table 5.2: The accuracy, precision, recall and F-measure values when comparing 1000
instances with coalitions and 1000 random instances with no manipulation.

Size Accuracy Precision Recall F-measure
16 0.767 0.682 1.000 0.811
32 0.812 0.726 1.000 0.842
64 0.854 0.773 1.000 0.873

128 0.894 0.825 1.000 0.904
256 0.935 0.884 1.000 0.939

paired with other current methods which use betting to identify individual games where
teams are cheating.

Given a set of strategically optimal coalitions, it is likely that the human observer
would prefer to start with a good candidate for the actual strategically optimal coalition.
One possible criteria is to select the coalition that has the most number of teams actually
manipulating a game. The reason why this may be a good criteria is the implicit assump-
tion that it would be less likely for a large number of random upsets to happen optimally.
Table 5.6 shows the accuracy of the method when selecting the best coalition using the
most games manipulated by the coalition criteria. The results show, rather unsurprisingly,
that detecting coalitions which actually manipulate a large number of games have high ac-
curacy and that detecting coalitions smaller examples have higher accuracy than detecting
coalitions from larger examples. The results do show that, with the exception of instances
of size 256, even as the number of manipulating coalition members decreases the accuracy
remains relatively high even though the precision results from Table 5.4 show that there is
a great number of false positive coalitions to compare against. These results suggest that
starting with the coalition that contains the most number of upsets would be a worthwhile
strategy.

5.3 Detecting Manipulations in Round Robins

In round robins, there are two types of manipulations that a coalition can perform to change
the result of the tournament. The first is the most simple and involves a coalition member
losing its games directly to the desired winner, tw. The second complex manipulation is to
lose games amongst themselves so that tw does not have to win more games in order to win
the competition. The problem with the second type of manipulation is their motivation.
Though it may not be immediately obvious, if a coalition of teams needs to use the second
type of manipulations to successfully execute a strategy then the expected winner of the

118

Table 5.3: The size and number of the coalitions generated in the smallest 10, 25, 50, 75
and 95 percent of instances. The results show the comparison between 1000 random and
1000 generated instances.

Generated Random
Size of Coalitions Size of Coalitions

10% 25% 50% 75% 95% 100% 10% 25% 50% 75% 95% 100%
16 1 2 3 4 5 7 0 0 0 1 2 4
32 2 3 4 6 8 11 0 0 0 1 3 6
64 3 5 7 9 12 16 0 0 0 2 4 7
128 6 8 11 13 16 23 0 0 0 4 6 11
256 10 13 16 20 24 33 0 2 5 7 11 16

Number of Coalitions Number of Coalitions
10% 25% 50% 75% 95% 100% 10% 25% 50% 75% 95% 100%

16 1 1 1 1 2 6 0 0 0 1 2 4
32 1 1 1 2 4 18 0 0 0 1 2 5
64 1 1 2 4 8 36 0 0 0 1 3 18
128 1 2 4 10 42 510 0 0 0 0 5 60
256 2 6 20 72 340 4515 0 0 0 0 12 432

tournament is one of the coalition members. The reason for this is the assumption that
a team can only throw games and thus not win them when they should lose. Given this
restriction and assuming that the expected winner was not part of the coalition, reducing
the points among themselves when the expected winner is not losing any points serves no
practical purpose as tw still would need to earn more points than the expected winner.

Using the definitions from Section 2.5, it is again assumed that the results of the
competition are known and the coalition detection occurs with a known set of upsets and
results. It is also assumed that if two coalition members are playing each other or one
coalition member is playing tw then any upset is intentional and a manipulation. However,
an upset of a coalition member by a non-coalition member is considered to be just an upset.
In Section 5.2, it was assumed that this would not occur but additional upsets in round
robins often do not have huge negative consequences such as the elimination as in the case
of cup competitions. Another assumption made in this work is that a coalition member will
always manipulate any game they play against tw so that tw wins the competition unless
tw has clinched without further action by the coalition. Discussion of round robins in this
chapter are limited to single round robin tournaments using the simple win-loss model.

Example 5.4. To illustrate the concept of detection in round robins, a complete exami-
nation of the optimal manipulation strategies of round robins of size four is made. Round
robins of size four present an interesting case because no complex manipulations are possi-

119

Table 5.4: Shows the precision, recall and F-measure values for the Strategically Optimal
Coalition results on problems of size 16, 32, 64, 128 and 256 over 1000 instances.

Size Precision Recall F-measure
16 0.833 1.000 0.909
32 0.553 1.000 0.713
64 0.312 1.000 0.475

128 0.090 1.000 0.166
256 0.012 1.000 0.023

ble. There are four possible outcomes of a round robin of size four, which are {3, 2, 1, 0},
{3, 1, 1, 1}, {2, 2, 2, 0} and {2, 2, 1, 1}, where the teams are sorted by the number of wins
earned in descending order. In the first outcome, the team that earns three wins must
lose a game for any other team to win. This is optimal if the teams with either two or
one win are the desired winner. If the team with zero points is the desired winner, then
the team that earns three points must form a coalition with exactly one of the teams that
earns two or one points. For the second outcome, the only valid optimal strategy is for the
team that earns three wins to lose to the desired winner. For the third outcome, only the
team that wins no games is not already in a winning position and exactly two of the other
teams that earn two points must lose to the team that earns no points to optimally change
the outcome. For the fourth outcome, one of the teams that earn two points must lose to
one of the teams that earns one point. All other manipulations are non-optimal. Thus,
any detection method should highlight any team or set of teams which executes the optimal
manipulations.

5.3.1 Coalitions Formed by Only Losing to Desired Winner

Since the first type of manipulation where the only manipulations that occur are to tw is
simpler and more likely, it is interesting to look at the restricted form of the problem where
only this type of manipulation occurs. The goal of any coalition S which only manipulates
games against tw is to lose enough games to tw so that tw earns more victories than the
expected winner. In this context, a strategically optimal coalition would be a coalition
that always manipulates games to tw while tw is not expected to win and does nothing
otherwise. Given this goal and the tournament graph G = (T,E) where T is the set of
teams, the number of victories can be worked out as the difference between the expected
number of victories of the expected winner, ewe, and the expected victories of tw, eww. If
every team tied as the expected winner is a member of the coalition and can lose a game
to tw, then one less point is needed to make tw a winner. It is assumed that if tw is tied

120

Table 5.5: The average percentage of teams that are identified as being members of a
strategically optimal coalition, the average percentage of the teams identified correctly as
members of a strategically optimal coalitions and the average percentage of teams misclas-
sified as members of a strategically optimal coalition. Each result shows the percentage
value for the top 10, 25, 50, 75 and 95 percent of results taken from 1000 instances.

Percentage of Teams Identified as
Members of Strategically Optimal
Coalitions

Percentage of Teams Identified Correctly
as Members of the Coalition

10% 25% 50% 75% 95% 100% 10% 25% 50% 75% 95% 100%
16 6.2 12.5 18.8 25.0 37.5 50.0 100.0 100.0 100.0 100.0 75.0 33.3
32 6.2 9.4 15.6 21.9 28.1 40.6 100.0 100.0 100.0 87.5 66.7 33.3
64 4.7 9.4 14.1 18.8 23.4 31.2 100.0 100.0 91.7 83.3 68.2 33.3
128 3.9 7.0 10.9 14.8 19.5 25.0 100.0 93.1 87.1 78.6 63.8 33.3
256 3.9 6.2 9.4 12.5 16.4 21.5 94.1 89.1 82.0 73.6 59.8 28.6

Percentage of Teams Misidentified
as Members of the Coalition
10% 25% 50% 75% 95% 100%

16 0.0 0.0 0.0 0.0 4.7 13.9
32 0.0 0.0 0.0 2.2 6.0 13.2
64 0.0 0.0 1.0 2.3 4.6 9.8
128 0.0 0.5 1.3 2.5 4.8 9.0
256 0.3 0.8 1.7 2.8 4.8 8.6

with the other leaders then tw would win given some set of tie-breaking criteria.

ww =

{
ewe − eww if ∃ti (ewi = ewe and ti /∈ S)
ewe − eww − 1 if ∀ti (ewi = ewe and (ti, tw) ∈ E) and ti ∈ S)

(5.1)

There are two parts to determining the set of strategically optimal coalitions which
only lose games to tw. The first step is to identify all of the potential coalition members
and the second step is to generate all the feasible coalitions from those potential members.

Algorithm 5.4 shows the steps for generating all of the possible members. The first step
is to remove all teams that would lose to tw naturally since these teams could not add any
positive benefit to a coalition that loses games to tw as they are expected to do that. The
second step is to remove all of the teams that win games that they were not expected to

121

Table 5.6: Compares the best coalition returned by the coalition detection method against
the actual coalition. The best coalition is defined to be the coalition with the most number
of coalition members which actually manipulate. Shows the accuracy of the method for
each size of problem on 1000 instances. Each column represents the accuracy of the method
when tested on coalitions where at least X% of the teams manipulates.

100 90 80 70 60 50 40 30 20 10 0
16 100.0 98.4 98.4 97.7 96.9 96.5 95.2 95.1 95.0 94.9 94.9
32 100.0 98.8 97.5 94.9 92.4 90.0 86.9 85.0 84.3 84.0 84.0
64 100.0 97.7 94.7 89.5 81.6 77.9 72.8 70.0 68.1 67.1 67.1

128 100.0 96.3 91.0 82.6 74.3 65.2 58.1 54.1 52.3 51.7 51.4
256 100.0 95.8 90.0 75.5 58.3 45.6 39.3 33.9 30.8 30.0 29.8

win. Since a coalition member would prefer for games to stay the same and not generate
extra upsets, the coalition member should always lose every game they are expected to
lose. This leaves the teams that did not win any extra games and were expected to defeat
tw. These teams are broken into two sets: those teams that actually lost to tw and the
those teams that actually defeated tw. The first set is denoted A and the second set is
denoted B. Teams in both of these sets play tw at different points during the round robin.
Specifically, depending on whether tw is expected to win, a coalition member should lose
a game to tw or not. Therefore, a team in A is optimal if and only if tw is not expected
to win the coalition and further manipulation is required and a team in B is optimal if
and only if tw is expected to win and no further manipulation is expected to be required.
Pruning the teams that are not optimal from the sets A and B, any combination of the
remaining teams where the number of teams is equal to ww would be a valid strategically
optimal coalition.

Lemma 5.8. Algorithm 5.4 computes the set of possible coalition members in O(m3) time
in the worst case.

Proof. The first step of removing all teams that lose naturally to tw can be done in time
O(m), where m is the number of teams. It is valid to remove those teams since they could
not actually manipulate a game. This is also true for finding the set of teams that earn
extra points by upsetting teams. Removing teams that win extra games is valid because
those teams generate extra upsets and thus the strategy would not be minimal if they were
included. The remaining set of teams can be split into the sets A and B in linear time.
Determining if tw is the expected winner for m rounds given O(m2) games takes O(m3)
time. Each set can be pruned of the remaining non-optimal members in linear time. The
remaining teams are non-optimal because if tw was expected to win then no manipulation

122

Algorithm:PossibleCoalitionMembers(R, G, tw)

input : A round robin competition R, a tournament graph G = (T,E) where T is
the set of teams and a team tw which wins the competition.

output: Returns all possible coalition members which behave optimally along with
constraints on a specific subset of the results.

// removes all teams that are expected lose to tw or win extra games

A← the set of all teams that are upset by tw and win no extra games;
B ← the set of all teams that defeat tw and win no extra games;
// Identify dates when tw is expected to win

foreach round r of the season do
Identify whether tw is the expected winner in round r;

// remove all teams that do not win or lose where appropriate

Remove all teams from A that played tw in round r where tw was expected to win in
round r;
Remove all teams from B that played tw in round r where tw was not expected to
win in round r;
return A and B;

Algorithm 5.4: Generates, for a given round robin competition and tournament, all of
the possible coalition members which act optimally to make tw a winner.

would have been better than a manipulation and if tw is expected to lose then further
manipulation is necessary and it is always better to manipulate as early as possible to
deal with potential upsets later. Therefore, the worst case complexity of the algorithm is
O(m3).

Given the set of teams A and B, the teams must be combined into coalitions that
could optimally manipulate the tournament. For a coalition to be strategically optimal,
all of the coalitions must be of size ww, calculated as in Equation 5.1, and there should
always be enough possible coalition members to ensure that tw will become the winner.
Any set of teams of size ww from the set A ∪ B that satisfies the constraints is a possible
strategically optimal coalition which only loses games to tw. There are potentially an
exponential number of sets which could satisfy the conditions to be strategically optimal
coalitions.

5.3.2 Coalitions Formed by Losing to Any Team

It is possible for coalitions to form where top teams lose to weaker teams in order to have
another team win. Possible motives include monetary payoffs, improved draft standing
and prior obligations such as, for example, a ‘quid pro quo’ situation where top teams take

123

turns winning the championship every year to ensure they maintain the lion’s share of the
profits. Unlike the previous manipulation strategies where only losses to tw could occur,
coalitions that must self sacrifice themselves would manipulate other games.

Some of the constraints from the previous section must be relaxed. Specifically, the
constraint that teams which earn extra points are not part of the coalition must be relaxed
and the constraint that teams that lose naturally to tw are not part of the coalition must
be relaxed. The first constraint must be relaxed so that teams which earn extra victories
when tw is an expected winner are not part of the coalition. The second constraint is
removed entirely. However, an additional constraint is added: all teams that earn extra
victories and are part of the coalition must have earned the extra points from coalition
members. Given a Boolean variable si which is true if ti is a member of the coalition and
the set of teams, Li, that lose to ti when they should have won, the following constraint
can be derived,

∀ti ∈ T si ⇒
∧

sj∈Li

sj . (5.2)

The set of teams A and B can be calculated using Algorithm 5.4 except no check must
be made to ensure they earn no extra games. An additional set C is defined that includes
teams that were expected to lose to tw and did lose to tw while only receiving wins when
tw is not the expected winner. Given that a coalition could effectively achieve their goal by
only manipulating games against tw, there must be at most ww − 1 members from A

⋃
B

for complex manipulations to be necessary. Let u be the number of teams from A
⋃

B
belonging to the coalition such that 0 ≤ u < ww. Given a value of victories that tw could
achieve, u, there is a specific set of top teams, TTu, that must lose at most ww − u games
on purpose. Since any team can be upset, a minimal manipulation strategy is one where
the coalition only manipulates a minimal number of games between themselves and do not
earn any wins from teams not in the coalition. Since coalition members are attempting to
lose games to allow tw to exceed in wins them and those teams do not earn extra victories
unless necessary, any upset only reduces the number of manipulations that must be made.
An upset may make a coalition unviable by causing a non-coalition member to have more
points than tw could be expected to make even under the coalition.

Since each TTu set can be solved in isolation, the goal is to extend the set if necessary so
that the coalition can achieve the goal but never loses more games than necessary amongst
themselves. After identifying the set of teams that form the sets A, B, and C, all valid sets
must be generated. The following CSP is used to find all possible coalitions from A, B and
C given the external constraints. Constraint 5.3 ensure the coalition only attempts to have
tw earn enough games for TTu to be valid. Constraint 5.4 is the extra constraint described
above that enforces that teams that are upset by coalition members are coalition members

124

themselves. Constraint 5.5 states that teams that are not a member of the possible sets of
teams are not part of any coalition. Constraint 5.6 ensures that all the teams in the TTu

set under consideration are members of the coalition.

∑
ti∈A∪B

= u , (5.3)

∀ti∈T si ⇒
∧

sj∈Li

sj , (5.4)

∀ti /∈A∪B∪C ¬si , (5.5)

∀ti∈TTu si . (5.6)

Given the set of possible coalitions generated by solving the CSP, it must be ensured
that only a minimum number of manipulations are used in each round to ensure the
coalition is strategically optimal. Using the minimum cost feasible flow technique described
in Section 4.3 for finding minimal manipulations in round robins, it is determined if a
smaller set of teams could have manipulated the result at the start of the competition.
If so, the possible coalition is discarded. Next, the remaining coalitions are checked to
ensure that the manipulations used in any given round are minimal by calculating the
before and after cost of using the actual manipulations, which should be the same for
every round. Any possible coalition that has a minimal number of members and uses as
few manipulations as possible in each round is strategically optimal. A minimal number of
manipulations in this case refers to manipulations between coalition members as coalition
members could be upset by non-coalition members without manipulating.

5.3.3 Experimental Results

To test detectability of the two different types of round robin manipulations, it is necessary
to create a set of test problems. First, a set of round robin schedules must be generated such
that each team plays every other team. A canonical schedule was generated as described
by de Werra [20] and then the teams were permuted to generate different schedules. With
each round robin, a corresponding tournament graph was generated using data from the
NCAA Division I Basketball Championship (see Figure 5.7). Problems were generated for
round robins of even size from 4 to 40. Forty was chosen as the maximum as it was larger
than the number of teams in most professional sports leagues. For clarity, abbreviated
tables with results for round robins of sizes six, twelve, 18, 24, 30 and 36 are presented in
this chapter and the complete tables can be found in Appendix C.

One hundred random instances were generated along with one hundred instances with
coalitions embedded that only use manipulations against tw. Table 5.7 shows the accuracy

125

of the method for detecting manipulations. The accuracy of detecting simple manipulations
only against tw is better than 88% regardless of size and better than 97% on instances with
ten or more teams. When a team is correctly identified, the set of teams identified as being
members of the coalition are almost always members of the coalition. Table 5.8 that there
are at most three extra teams in A ∪ B and on average there is less than one extra team
in A ∪ B. Given the experimental assumptions about the tournament graph and upset
probabilities, this means that the method can determine a difference between random and
strategically optimal coalitions and the difference between the possible set of members and
the actual set of members is small.

Table 5.7: The effect of round robin size on the accuracy of identifying manipulation of
round robin competitions by only manipulating games against tw. Table C.1 in Appendix
C gives the complete results for all even sized round robins from 6 to 40.

6 12 18 24 30 36
88.5 97.5 99.5 99.5 99.0 99.5

Table 5.8: The effect of round robin size on the minimum, maximum and average difference
between the expected coalition and A ∪B where the coalition is a subset of A ∪B. Table
C.3 in Appendix C gives the complete results for all even sized round robins from 6 to 40.

6 12 18 24 30 36
range average range average range average range average range average range average

[0–2] 0.34 [0–1] 0.18 [0–1] 0.16 [0–2] 0.19 [0–3] 0.10 [0–2] 0.09

The same experiment was performed for complex manipulations where the top teams
lose games to ensure that tw wins. The one change is that for round sizes six, eight,
ten and twelve there were fewer than one hundred coalitions with complex manipulations
embedded. The reason for this was that it was not possible to have complex manipulations
in some of the smaller round robins given the tournament graph. In those four cases, there
are actually 69, 91, 99 and 99 examples where there existed a strategically optimal coalition
embedded in the upsets, respectively. The accuracy of detecting complex manipulations
from random upsets is better than 97.5% over all sizes. Table 5.9 shows the accuracy of
detection for a selection of round robin sizes. For instances with embedded upsets, the
coalitions that are generated from the CSP tend to be very similar to the actual coalition.
In many cases, only the single correct coalition is generated and, if spurious coalitions are
generated, the coalitions are at most five different teams and much less than one on average.

126

Table 5.10 shows the minimum, maximum and average difference in coalition membership
for a selection of teams. The number of spurious coalitions generated can be quite large,
in one case as many as 38 extra coalitions, but on average across all sizes of round robins
less than 1.72 spurious coalitions are generated. Table 5.11 shows the minimum, maximum
and average number of coalitions found to be strategically optimal for a selection of teams.

Table 5.9: The effect of round robin size on the accuracy of identifying manipulation of
round robin competitions where top teams must lose. Table C.2 in Appendix C gives the
complete results for all even sized round robins from 6 to 40.

6 12 18 24 30 36
98.2 100.0 98.0 100.0 100.0 100.0

Table 5.10: The effect of round robin size on the minimum, maximum and average difference
between the generated coalitions and the expected coalition. Table C.4 in Appendix C gives
the complete results for all even sized round robins from 6 to 40.

6 12 18 24 30 36
range average range average range average range average range average range average

[0–2] 0.32 [0–2] 0.16 [0–4] 0.48 [0–4] 0.64 [0–3] 0.67 [0–3] 0.70

Table 5.11: The effect of round robin size on the minimum, maximum and average number
of generated coalitions for instances where a coalition was manipulating the competition.
Table C.5 in Appendix C gives the complete results for all even sized round robins from 6
to 40.

6 12 18 24 30 36
range average range average range average range average range average range average

[1–3] 1.24 [1–1] 1.00 [1–2] 1.08 [1–21] 1.47 [1–39] 1.89 [1–22] 2.72

A number of extra teams were identified as winning via a strategically optimal coali-
tions. When there exists a strategically optimal coalition, there can be other teams that are
identified as being made winners via a strategically optimal coalition. However, no more
than 37% of instances had two winners identified as being strategically optimal and, for
most round robin sizes, the percentage is much smaller. Table 5.12 shows the percentage

127

of instances where extra teams have been identified as winning via a strategically optimal
coalition for a selection of round robin sizes.

Table 5.12: The effect of round robin size on the percentage of instances with two or more
teams identified as having won through strategically optimal coalitions using simple ma-
nipulations directly to tw or complicated manipulations involving the top teams. Random
instances are not shown as this occurred in only two simple random instances and no com-
plex instances. Table C.6 in Appendix C gives the complete results for all even sized round
robins from 6 to 40.

Percentage of
Instances with
Multiple Winners

Size Simple Complex
6 37 6
12 27 12
18 25 20
24 25 17
30 24 17
36 29 11

5.4 Detecting Seeding Manipulations

In previous sections, I examined the detection of manipulations of a competition by a coali-
tion of teams by observing the pattern of game results. In this section, I focus on detecting
manipulations of the seeding of a cup competition by the scheduler. For detection, it is
assumed that, as in many sports leagues, the teams have a ranking criteria which is used
to make pairings and the detectors have some notion of the ranking. In Section 4.4, the
problem of finding a seeding manipulation strategy by the scheduler was discussed and
four different types of restrictions were introduced: pooling restriction, team arrangement
restriction, criteria modification restriction and pool arrangement restriction. These re-
strictions were combined to create families of restrictions which could be used to classify
various sporting competitions. This section focuses on showing the detectability of the
different families of restrictions.

When a restriction is not enforced for a particular competition, a fair tournament is
assumed to have a ranking which differs little from the known ranking and unfixed team
arrangements, poolings and pool arrangements are assumed to be generated at random.

128

The justification for this assumption is that a fair tournament would have teams that are
placed given their real ranking. Additionally, an unfixed seeding should not favour any
team over any other team allowing the best teams the chance to rise to the top. Lastly,
pooling should be done randomly as any pool or pool arrangement should be equivalent
given the team arrangement and rank criteria restrictions.

As with the work in previous sections, there are other methods which could be used to
detect seeding manipulation like observing external factors like betting patterns or game
specific play. These methods are outside the scope of this work though each could be used
in concert with the techniques described here.

The families of restrictions can be partitioned based on whether it is possible to detect
a seeding manipulation strategy based on the resulting seeding. The following two sections
describes which families of restrictions are in which partition and why.

5.4.1 Families of Restrictions Where Detection is Not Possible

The 011X family of restrictions requires that the pair arrangement and rank remain fixed
but allows any arrangement of pools and pool winners. Since it is assumed that a fair
pooling and arrangement of the pool winners happens randomly, any seeding that ensures
the pair arrangement and ranking are unchanged could possibly have been generated by a
random draw. Therefore, from the pattern of the seeding, there is nothing to distinguish a
manipulated seeding from an fair seeding and detection of this type is not possible. Since
the 1110 and 1111 families of restrictions have the pair arrangement restriction and fixed
ranking, the argument applies to those families as well and detection from the pattern of
the seeding is not possible.

The 10X0 family of restrictions does not have a restricted pair arrangement and may
or may not have a fixed ranking. However, detection from the pattern of the seeding is
not possible in this case either. Since the pair arrangement is not restricted, the teams
within a pool can be arranged in any manner and a fair arrangement of the teams would
be randomly. Since any arrangement is possible under a random draw of the arrangement,
there is nothing to distinguish a manipulated seeding from a random seeding. Since the
10X1 family of restrictions has fixed pooling and unfixed team arrangement, the argument
applies to this family as well and detection from the pattern of the seeding is not possible.

The 00XX family of restrictions has no restriction on the seeding. A fair seeding would
be one drawn at random and therefore any manipulated seeding would be possible under
the restriction. As such, detection from the pattern of the seeding is not possible.

129

5.4.2 Families of Restrictions Where Detection is Possible

In this section, the detectability of families of restrictions 010X, 1100, and 1101 is discussed.
Recall from Section 4.4, that if the ranking was completely unfixed then the problem is
equivalent to the problem with both the pair arrangement and ranking criteria constraints
unfixed. Therefore, the discussion is limited to problems where the ranking criteria is
unfixed but bounded.

Detection of manipulation in models 010X, 1100, and 1101 with fixed team arrangement
but unfixed, but bounded, ranking criteria is aided by the fact that team arrangement is
linked to a specific rank. Under the assumption that the detectors can reasonably construct
the ranking of teams in the tournament, the difference between ranking of teams in seeding,
known from the team arrangement, and the actual ranking provides a significant indicator
of manipulation. Coleman et al. [17] discussed the bias of selection in the NCAA Division
One Basketball championship where the authors concluded that the bias was due to in
part the discrepancy between the perceived ranking and actual ranking. There are many
different ranking measures that could be used to construct a likely ranking of teams and
compared against the results [11, 4, 15]. One important thing to note here is that the
quality of the detection is highly dependent on the quality of the assumed ranking and,
therefore, is only as good as the ranking model used which are primarily heuristic in nature.
One other measure that could be used to determine if an actual manipulation occurred
would be if the expected winner changed due to the discrepancy in the ranking.

5.5 Summary

The first part of this chapter focuses on detecting strategically optimal coalitions in cup
competitions. Strategically optimal coalitions are coalitions that contain no redundant
members and change their strategy to handle changes due to unexpected upsets in the
tournament using as few manipulations as possible. A dynamic programming approach is
proposed along with a set of pruning conditions that successfully scales to competitions
with 256 teams. Experimental results show that the method can distinguish the presence
of manipulating coalitions with accuracy between 76.7% and 93.5% depending on the size
of the competition. For small sized competitions, it is shown that both the size and number
of coalitions is small and, therefore, any false positives could be checked. In competitions
of larger sizes, the detection algorithm returns a great deal more possible coalitions when
a coalition exists. However, analysis of the false positives shows that extra coalitions
tend to have a large overlap with the actual coalition. As well, in ninety-five percent of
cases at most 6% of the total teams are falsely placed in a strategically optimal coalition
which allows a person to effectively weed out teams from the competition by observing the
individual games for manipulation. Selecting the coalition which actually manipulates the

130

most number of games has promise as discriminating heuristic as the selected heuristic has
a high correlation with the actual coalition and the overlap is small in all but the largest
of tournaments. This provides a good starting place for the people attempting to detect
cheating.

The second topic discussed in this chapter discusses how to detect manipulation of round
robin tournaments. Two possible types of manipulation are discussed: direct manipulation
of tw and manipulation of other teams. Given the model of upsets and the randomly
generated tournament graphs, it was determined that random upsets could be distinguished
from upsets where a strategically optimal coalition was generating results. If the teams
were using just manipulations to tw then the accuracy of the technique is better than 88%
and this percentage improves when distinguishing between random and more complicated
manipulations with an accuracy better than 97%. In both cases, spurious possible coalitions
are generated by the methods but the average number of extra members is less than one.
The one issue with the technique is that extra possible strategically optimal winners are
found but at worst for a single small size round robin 37% of instances were identified with
multiple winners.

The last topic covered in this chapter is the discussion of detecting manipulation in
seeding. For many families of restrictions, the pattern of the seeding does not differ between
manipulated and fair seedings. As such, detection based on the pattern of the seeding is
not possible for those seedings. However, if it can be observed that the ranking has been
changed then detection is possible. The issue for these methods of detections, which have
been used in practice [17], is that if the known ranking is poor then the quality of the
detection suffers.

In the next chapter, some final concluding remarks are made and summary of results
from the entire thesis is presented.

131

Chapter 6

Conclusions and Future Work

This thesis looked at three different computational problems in sports. The first problem
was a qualification and elimination problem applied to the playoff system of the National
Hockey League and solved with a combination of network flows, enumeration and con-
straint programming. The second problem concerned the complexity of different manipu-
lation problems in sports by applying techniques from election manipulation and winner
determination research. Manipulation of seeding mechanisms was evaluated experimentally
using constraint programming as the complexity of manipulating seeding mechanisms is un-
known. The third problem concerned detecting manipulations of tournaments. A dynamic
programming approach was proposed to identify manipulating coalitions in cup competi-
tions. Additionally, the feasibility of detecting seeding manipulations was discussed.

In more detail, the first problem I addressed was extending previous work in qualifi-
cation and elimination problems to the sport of hockey, specifically the qualification and
elimination rules used in the National Hockey League. This work differed from previ-
ous work as it solves problems with more wild card teams and proposes a combination
of network flows, enumeration and constraint programming to solve the problem. While
network flows and enumeration have been used previously [63, 69], the specific tie breaking
constraints used by National Hockey League were solved by the constraint programming
model described in this work. The inclusion of tie breaking conditions into the problems
was another area where little has been studied. Breaking problems into a phased approach
proved to be an effective technique for solving tie breaking problems. Since tie breaking
problems have a natural overlapping structure, it was useful to determine if the problem
could be solved with only a single tie breaking problem before introducing additional tie
breaking measures. Experimental data confirmed this hypothesis as a majority of the prob-
lems did not require the full tie breaking criteria. The results of the experiments showed
that qualification could be shown several days earlier than the heuristic methods used by
a major national newspaper. Problems could be solved efficiently and the precise number

133

of points needed to clinch a playoff spot and the number of losses which could be absorbed
and still have a chance of making the playoffs could be determined within seconds for most
problems. Even the hardest instances could be solved in under ten minutes.

The second problem I addressed was manipulation in cup and round robin competitions,
the two most common types of sports competitions. These two types of competition are
used in sports at the local, national and international level. As such their susceptibility
to manipulation is of interest. Work in elections and qualification problems was extended
to problems of manipulating cups and round robins, respectively. Cup manipulations were
found to have a polynomial algorithm for both constructive and destructive manipulation.
Constructive round robin manipulations could be found in polynomial time given a specific
class of manipulations and are NP-Hard to find otherwise. However, the polynomial class
of manipulation contains the win-loss model and the model which awards two points for
a win, one point for a tie and zero points for a loss. Since these models are among the
most common, the susceptibility to constructive manipulation remains high. While the
manipulation of tournaments using the scoring model of professional soccer are NP-Hard,
in practice [54], these problems could be solved. A destructive round robin manipulation
could always be found in polynomial time regardless of the scoring model. Since a coalition
could potentially have a choice over which set of manipulations to choose, the question of
manipulation strategy was pertinent. Since changing the result of the game increases the
exposure of the coalition and potentially increases the cost, it is advantageous to manipulate
the coalition using as few manipulations as possible. The work in Chapter 4 shows that
finding these manipulations could be solved in polynomial time.

The complexity of seeding manipulation has been the focus of several different papers
and still remains open [35, 28, 67, 70]. A recent paper showed that there exist several
classes of problems where a polynomial algorithm exists. This work examined a different
aspect of the problem. Given the unknown complexity of the problem, it experimentally
evaluated the problem as is done with problems such as graph isomorphism. Additionally,
the problem was expanded to look at restrictions of the seeding. The basic model allows for
extremely unlikely seedings and in practice additional restrictions are placed on the sched-
ulers of the tournament. These restrictions include a fixed pooling, a fixed arrangement of
teams, a fixed arrangement of pool winners and a fixed ranking. Experimental evaluation
showed that, regardless of the complexity, the simple model could be easily solved using
constraint programming. This is unsurprising given the result by Williams which states
that, in theory, it is likely that most problems have a solution given a random tournament
graph [70]. Results in this work showed that, even with restrictions, most problems can be
solved within seconds. Only in a small number of cases are there instances which require
more time to solve.

The third problem I addressed was whether it was possible to detect the manipulations
from the pattern of the results. Detecting manipulations given the result of a competition

134

was a new research area. This work puts forth a method for finding coalitions in cup
competition results. Using the notion of minimality from Chapter 4, the notion of a
strategically optimal coalition was presented given a number of upsets. These strategically
optimal coalitions were coalitions that react to upsets and always behave in a minimal
manner in the next round. Using dynamic programming, it was possible to effectively detect
strategically optimal coalitions. When comparing results without manipulating coalitions
and those with manipulating coalitions, it was shown that the accuracy of detection is
between 76% and 93% depending on the size of the competition. However, a large number
of possible coalitions was returned when there was a coalition and it was not straight
forward to determine which coalition to choose. However, experimental data showed that,
in 95% of all instances the coalitions returned, nearly 60% of the teams were actually
members of the coalition.

Detecting manipulations from round robins was broken into two categories. Those
coalitions that manipulate by losing games to tw and those games where top teams must
lose games so that tw can win. In both cases, it was shown that, for the instances tested,
the accuracy of detection was better than 88% across both types of manipulations and all
round robin sizes tested. One reason for this was that the specific behaviour exhibited by
a manipulating team tends to be very different than a team that can be upset. It was also
shown that on average the possible coalitions returned differed by less than one team. As
well, for complex manipulations where top teams must lose, the number of extra possible
coalitions returned is only 1.72 extra coalitions on average. One possible drawback is that
more than one team may be identified as strategically optimal but this rarely happened in
random instances and across all sizes was less than 37% of instances for a given size.

It was not always possible to detect manipulation from the seeding. The analysis of the
different restrictions shows that when there was an expectation of fairness it was possible to
calculate the divergence from an expected notion of fair. However, when a seeding feature
was supposed to be generated by random process then it was not possible to claim evidence
of manipulation as any random seeding was equally likely. For example, if the pools were
selected by random draw then any random draw is valid and nothing distinguishes this
draw from a manipulated draw. One reason for this is that as a single seeding there is no
basis to judge bias. In the case of modification of the rank, it is possible to detect because
there is an expectant outcome.

6.1 Future Work

For the qualification and elimination problems in NHL Hockey, two areas of future work
exist. First, the solver structure developed in this work could be applied to other sports.
One sport that seems to have been missed entirely is basketball, especially NBA basketball,

135

where that league shares many similarities with the NHL. The tie breaking conditions vary
but the NBA uses a simpler scoring model with only wins and losses. Second, the issue
of the probability of elimination and qualification has not been addressed. In some cases,
knowing how likely an event is to occur could be much more meaningful than the exact
number of games needed to qualify or be eliminated. The probability of a team clinching a
playoff spot or being eliminated from contention can be calculated by finding the sum of the
probability of all scenarios where the distinguished team clinches or is eliminated. Note that
as a consequence of solving this problem, the problem of counting all the situations where
the team clinches or is eliminated must be solved, which is known to be #P -Complete [27].
Another way to extend the work on qualification and elimination problems is to generate
scenarios to determine if critical events need to happen for a team to clinch or escape
elimination.

In the work on manipulation, a number of open problems and areas for future exists.
One of the known open questions in this area of research is determining the complexity
of seeding manipulation or schedule control for a balanced tournament. This problem has
been studied in a variety of different papers [35, 28, 67, 70] but as yet only a small number
of polynomial subclasses have been discovered [70]. Also, there are a number of variants of
the standard cup and round robin competitions that have not been fully studied and their
complexity is unknown. The open questions cover well known tournaments like the World
Cup of Football. As well, some of the combinations of the different types of competitions
and manipulations have unknown complexity. Further research in this area is needed.

In the work on detection, a few open questions and areas for future work have been
identified. There are a number of restrictions added to the detection problem that are
not true in every situation. To improve the applicability of these results, in the future, it
would be interesting to evaluate the techniques proposed under less restrictive conclusions.
Another open complexity question is whether it is possible to determine in polynomial
time, given a competition, tournament graph and set of upsets, if there is a coalition which
executed strategically optimal manipulations. One interesting question that arose from
this research is in the design of competitions. Specifically, could it be possible to design,
assuming forces external to the competition are removed, a reward method for a cup
competition such that no coalition of teams is better off by manipulating the competition.
This idea borrows from mechanism design the idea of an incentive compatible mechanism.
These mechanisms may be impossible but that may also be an interesting result.

136

APPENDICES

137

Appendix A

NHL Qualification and Elimination
Results

139

Table A.1: The results of qualification and elimination compared against the Globe and
Mail published results in 2005-06 and 2006-07. Highlighting denotes that the team qualified
for the playoffs. Note that the Globe and Mail did not publish elimination results in 2005-
06.

2005-06 2006-07
Team Optimal Globe & Mail Optimal Globe & Mail
East
Toronto Apr 17 N/A Apr 9 Apr 9
Ottawa Mar 22 Mar 27 Mar 25 Mar 25 or 26
Montreal Apr 14 Apr 18 Apr 8 Apr 8 or 9
Buffalo Apr 4 Apr 5 Mar 18 Mar 22
Boston Apr 2 N/A Mar 30 Mar 31, Apr 1 or 2
NY Islanders Apr 7 N/A Apr 9 Apr 8 or 9
NY Rangers Apr 5 Apr 5 Apr 6 Apr 6
New Jersey Apr 12 Apr 14 Mar 28 Mar 28
Pittsburgh Mar 21 N/A Mar 28 Mar 28
Philadelphia Apr 8 Apr 8 Mar 9 Mar 26
Washington Mar 29 N/A Mar 22 Mar 26
Tampa Bay Apr 18 Apr 18 Apr 6 Apr 6
Florida Apr 9 N/A Apr 4 Apr 4
Atlanta Apr 18 N/A Apr 2 Apr 4
Carolina Mar 28 Mar 28 Apr 4 Apr 4
West
Vancouver Apr 14 N/A Mar 28 Mar 28
Edmonton Mar 22 Mar 27 Mar 21 Mar 26
Calgary Apr 14 Apr 18 Apr 8 Apr 8 or 9
Colorado Apr 13 Apr 15 Apr 8 Apr 8 or 9
Minnesota Apr 8 N/A Mar 28 Mar 28
Los Angeles Apr 14 N/A Mar 13 Mar 26
Anaheim Apr 11 Apr 12* Mar 24 Mar 25 or 26
San Jose Apr 13 Apr 14 Mar 28 Mar 29
Dallas Mar 31 Apr 1, 2 or 3 Mar 28 Mar 28
Phoenix Apr 7 N/A Mar 16 Mar 26
Chicago Mar 23 N/A Mar 11 Mar 26
Detroit Mar 27 Mar 28* Mar 24 Mar 25 or 26
Columbus Mar 23 N/A Mar 18 Mar 26*
St. Louis Mar 23 N/A Mar 26 Mar 28
Nashville Apr 9 Apr 10 Mar 23 Mar 24

140

T
ab

le
A

.2
:

C
li
n
ch

in
g

an
d

E
li
m

in
at

io
n

u
n
d
er

d
iff

er
en

t
sc

or
in

g
m

o
d
el

s
in

th
e

N
H

L
fo

r
20

05
-0

6
an

d
20

06
-0

7
se

as
on

s.
H

ig
h
li
gh

ti
n
g

d
en

ot
es

th
at

th
e

te
am

q
u
al

ifi
ed

fo
r

th
e

p
la

yo
ff

s.

05
-0

6
06

-0
7

T
ea

m
H

is
to

ri
c

O
ve

rt
im

e
E

xt
ra

P
oi

nt
C

ur
re

nt
P

ro
po

se
d

H
is

to
ri

c
O

ve
rt

im
e

E
xt

ra
P

oi
nt

C
ur

re
nt

P
ro

po
se

d
E

as
t

T
or

on
to

A
pr

18
A

pr
14

A
pr

19
A

pr
17

A
pr

17
A

pr
8

A
pr

8
A

pr
8

A
pr

9
A

pr
9

O
tt

aw
a

M
ar

20
M

ar
20

M
ar

21
M

ar
22

M
ar

19
M

ar
19

M
ar

18
M

ar
21

M
ar

25
M

ar
21

M
on

tr
ea

l
A

pr
14

A
pr

16
A

pr
12

A
pr

14
A

pr
14

A
pr

8
A

pr
8

A
pr

8
A

pr
8

A
pr

7
B

uff
al

o
A

pr
4

A
pr

6
M

ar
31

A
pr

4
M

ar
30

M
ar

24
M

ar
21

M
ar

23
M

ar
18

M
ar

22
B

os
to

n
A

pr
12

A
pr

6
A

pr
7

A
pr

2
A

pr
4

M
ar

23
M

ar
26

M
ar

26
M

ar
30

M
ar

29
N

Y
Is

la
nd

er
s

A
pr

6
A

pr
3

A
pr

6
A

pr
7

A
pr

6
A

pr
8

A
pr

4
A

pr
9

A
pr

9
A

pr
9

N
Y

R
an

ge
rs

A
pr

4
A

pr
19

A
pr

7
A

pr
5

A
pr

5
A

pr
8

A
pr

4
A

pr
9

A
pr

6
A

pr
7

N
ew

Je
rs

ey
A

pr
10

A
pr

14
A

pr
17

A
pr

12
A

pr
14

M
ar

25
M

ar
16

M
ar

30
M

ar
28

M
ar

28
P

it
ts

bu
rg

h
M

ar
27

M
ar

25
M

ar
23

M
ar

21
M

ar
22

A
pr

1
M

ar
30

M
ar

30
M

ar
28

M
ar

30
P

hi
la

de
lp

hi
a

A
pr

10
A

pr
10

A
pr

8
A

pr
8

A
pr

7
M

ar
9

M
ar

9
M

ar
13

M
ar

9
M

ar
9

W
as

hi
ng

to
n

A
pr

2
M

ar
24

M
ar

26
M

ar
29

M
ar

31
M

ar
23

M
ar

25
M

ar
25

M
ar

22
M

ar
22

T
am

pa
B

ay
A

pr
15

A
pr

15
A

pr
19

A
pr

18
A

pr
19

A
pr

7
A

pr
8

A
pr

7
A

pr
6

A
pr

8
F

lo
ri

da
A

pr
14

A
pr

8
A

pr
12

A
pr

9
A

pr
8

A
pr

6
A

pr
8

A
pr

8
A

pr
4

A
pr

4
A

tl
an

ta
A

pr
18

A
pr

19
A

pr
19

A
pr

18
A

pr
19

A
pr

7
A

pr
1

A
pr

2
A

pr
2

A
pr

7
C

ar
ol

in
a

A
pr

1
A

pr
4

M
ar

28
M

ar
28

M
ar

24
A

pr
8

A
pr

2
A

pr
6

A
pr

4
A

pr
8

W
es

t
V

an
co

uv
er

A
pr

13
A

pr
13

A
pr

18
A

pr
14

A
pr

14
A

pr
4

M
ar

28
M

ar
28

M
ar

28
A

pr
4

E
dm

on
to

n
A

pr
14

A
pr

14
A

pr
18

A
pr

14
A

pr
13

M
ar

25
M

ar
22

M
ar

22
M

ar
21

M
ar

22
C

al
ga

ry
A

pr
6

A
pr

6
A

pr
6

A
pr

8
A

pr
6

M
ar

26
M

ar
28

A
pr

1
A

pr
8

A
pr

1
C

ol
or

ad
o

A
pr

8
A

pr
9

A
pr

12
A

pr
13

A
pr

10
A

pr
8

M
ar

28
A

pr
8

A
pr

8
A

pr
8

M
in

ne
so

ta
A

pr
18

A
pr

11
A

pr
8

A
pr

8
A

pr
10

A
pr

8
M

ar
28

A
pr

8
M

ar
28

A
pr

8
L

os
A

ng
el

es
A

pr
16

A
pr

14
A

pr
14

A
pr

14
A

pr
14

M
ar

25
M

ar
14

M
ar

16
M

ar
13

M
ar

16
A

na
he

im
A

pr
7

A
pr

9
A

pr
10

A
pr

11
A

pr
10

M
ar

17
M

ar
24

M
ar

24
M

ar
24

M
ar

28
Sa

n
Jo

se
A

pr
18

A
pr

14
A

pr
11

A
pr

13
A

pr
13

M
ar

22
M

ar
22

M
ar

24
M

ar
28

M
ar

23
D

al
la

s
A

pr
1

M
ar

31
A

pr
7

M
ar

31
M

ar
30

M
ar

28
M

ar
25

M
ar

31
M

ar
28

A
pr

1
P

ho
en

ix
A

pr
10

A
pr

11
A

pr
9

A
pr

7
A

pr
9

M
ar

19
M

ar
16

M
ar

16
M

ar
16

M
ar

18
C

hi
ca

go
A

pr
2

M
ar

27
M

ar
24

M
ar

23
M

ar
24

M
ar

25
M

ar
22

M
ar

21
M

ar
21

M
ar

18
D

et
ro

it
M

ar
24

M
ar

24
M

ar
24

M
ar

27
M

ar
20

M
ar

14
M

ar
15

M
ar

15
M

ar
24

M
ar

15
C

ol
um

bu
s

M
ar

26
M

ar
26

M
ar

20
M

ar
23

M
ar

22
M

ar
25

M
ar

18
M

ar
18

M
ar

18
M

ar
18

St
.

L
ou

is
M

ar
30

M
ar

28
M

ar
22

M
ar

23
M

ar
21

A
pr

4
M

ar
23

M
ar

25
M

ar
26

M
ar

23
N

as
hv

ill
e

A
pr

2
A

pr
2

A
pr

9
A

pr
9

A
pr

7
M

ar
18

M
ar

12
M

ar
24

M
ar

23
M

ar
18

141

Appendix B

Seeding Variation Results

143

T
ab

le
B

.1:
T

h
e

eff
ect

of
tou

rn
am

en
t

size
on

th
e

m
in

im
u
m

,
m

ax
im

u
m

an
d

average
C

P
U

tim
e

(sec.)
for

th
e

fam
ilies

of
restriction

s.
R

esu
lts

are
averaged

over
1000

in
stan

ces.

00X
X

10X
0

010X
10X

1
1100

011X
1101

size
ran

ge
av

g
ran

ge
av

g
ran

ge
av

g
ran

ge
av

g
ran

ge
av

g
ran

ge
av

g
ran

ge
av

g
16

[0-1]
0.00

[0-1]
0.00

[0-1]
0.01

[0-1]
0.00

[0-1]
0.01

[0-0]
0.00

[0-1]
0.00

32
[0-1]

0.01
[0-1]

0.03
[0-8]

0.04
[0-1]

0.03
[0-1]

0.07
[0-1]

0.00
[0-1]

0.07
64

[0-1]
0.04

[0-1]
0.06

[0–1657]
1.3

[0-1]
0.06

[0-1]
0.12

[0-8]
0.04

[0-2]
0.12

128
[0-1]

0.27
[0-1]

0.13
[0–?] 1

N
/A

1
[0-2]

0.13
[0-6]

0.21
[0-61]

0.44
[0-3]

0.22
256

[1-61]
1.81

[0-1]
0.33

[0–?] 2
N

/A
2

[0-3]
0.29

[0-3]
0.43

[0-29]
3.22

[0-5]
0.42

1
D

u
e

to
m

em
ory

restriction
s,

it
w

as
n
ot

p
ossib

le
to

solve
9

ou
t

of
th

e
12800

in
stan

ces.
A

s
su

ch
,
th

e
m

ax
im

u
m

tim
e

an
d

average
can

n
ot

b
e

accu
rately

rep
orted

.
2

D
u
e

to
m

em
ory

restriction
s,

it
w

as
n
ot

p
ossib

le
to

solve
1794

ou
t

of
th

e
25600

in
stan

ces.
A

s
su

ch
,

th
e

m
ax

im
u
m

tim
e

an
d

average
can

n
ot

b
e

accu
rately

rep
orted

.

144

Table B.2: The effect of tournament size on the percentage of teams of rank i =
1, . . . , 16, that could be made the winner via manipulation of the seeding, for all
families of restrictions. Results are averaged over 1000 instances.

00XX 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4 41 41 41 41 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
8 91 80 80 85 63 54 43 40 n/a n/a n/a n/a n/a n/a n/a n/a
16 97 97 96 95 95 94 95 95 90 92 90 82 78 62 59 32
32 100 100 100 100 100 100 100 100 100 100 100 100 100 98 97 87
64 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
128 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
256 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
10X0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
16 97 97 96 95 95 94 95 95 90 92 90 82 78 62 59 32
32 97 96 95 96 94 93 94 93 91 89 87 85 76 67 48 37
64 99 98 99 99 98 98 98 98 95 96 92 88 78 64 52 40
128 99 97 97 97 97 96 96 96 94 92 91 85 75 66 55 44
256 98 98 97 97 97 97 96 96 94 93 90 87 77 65 56 39
010X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
16 88 93 79 68 58 51 35 20 12 22 13 11 7 1 1 0
32 100 100 100 100 100 100 100 93 89 99 93 90 79 69 23 6
64 100 100 100 100 100 100 100 100 100 100 100 100 100 97 54 16
128 100 100 100 100 100 100 100 100 100 100 100 100 100 100 751 321

256 100 100 100 100 100 100 100 100 972 100 100 100 962 912 522 02

10X1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
16 97 97 96 95 95 94 95 95 90 92 90 82 78 62 59 32
32 97 96 95 96 94 93 94 93 91 89 87 85 76 67 48 37
64 99 98 98 98 97 97 97 96 94 94 90 85 75 63 50 37
128 97 95 95 95 94 93 92 93 90 88 88 80 71 62 51 39
256 97 96 96 96 95 94 93 93 91 89 86 83 74 61 52 34
1100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
16 88 93 79 68 58 51 35 20 12 22 13 11 7 1 1 0
32 83 83 74 65 56 42 28 20 13 16 12 7 3 2 1 0
64 90 85 74 68 54 52 30 20 15 15 15 8 3 2 0 0
128 90 83 73 67 55 48 32 20 14 13 15 9 5 4 1 0
256 90 85 74 64 55 46 31 22 14 15 16 9 5 4 1 0
011X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
16 19 26 26 17 5 3 1 0 0 1 1 1 0 0 0 0
32 86 84 69 66 44 29 21 20 8 7 6 4 2 2 0 0
64 100 100 100 100 98 94 84 77 46 60 60 57 43 33 13 0
128 100 100 100 100 100 100 99 93 79 96 91 93 82 69 32 0
256 100 100 100 100 100 100 100 100 95 100 100 100 96 90 52 0
1101 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
16 88 93 79 68 58 51 35 20 12 22 13 11 7 1 1 0
32 83 83 74 65 56 42 28 20 13 16 12 7 3 2 1 0
64 85 79 70 64 49 45 25 17 14 12 11 7 3 2 0 0
128 86 77 67 61 47 41 26 16 9 8 11 6 3 2 0 0
256 84 78 68 58 47 37 25 17 10 11 10 6 3 2 0 0

1 Percentages are a lower bound of actual percentages with a difference from actual
between 0% and 1%.

2 Percentages are a lower bound of actual percentages with a difference from actual
between 0% and 51%.

145

Appendix C

Round Robin Detection Results

Table C.1: The effect of round robin size on the accuracy (%) of identifying manipulation
of round robin competitions by only manipulating games against tw. 100 random and
embedded instances are compared.

6 8 10 12 14 16 18 20 22
88.5 94.0 99.0 97.5 99.0 100.0 99.5 99.0 100.0

24 26 28 30 32 34 36 38 40
99.5 99.0 99.0 99.0 100.0 100.0 99.5 99.5 99.5

Table C.2: The effect of round robin size on the accuracy (%) of identifying manipulation
of round robin competitions using complex manipulations where top teams must lose. 100
random and embedded instances are compared.

6 8 10 12 14 16 18 20 22
98.2 99.0 100.0 100.0 97.5 97.5 98.0 100.0 100.0

24 26 28 30 32 34 36 38 40
100.0 100.0 99.5 100.0 100.0 100.0 100.0 100.0 100.0

147

Table C.3: The effect of round robin size on the minimum, maximum and average difference
between the expected coalition and A∪B where the coalition is a subset of A∪B. Averages
are over 100 instances.

6 8 10 12 14 16
range average range average range average range average range average range average

[0–2] 0.34 [0–2] 0.35 [0–2] 0.25 [0–1] 0.18 [0–2] 0.15 [0–2] 0.20

18 20 22 24 26 28
range average range average range average range average range average range average

[0–1] 0.16 [0–2] 0.26 [0–2] 0.12 [0–2] 0.19 [0–2] 0.13 [0–2] 0.15

30 32 34 36 38 40
range average range average range average range average range average range average

[0–3] 0.10 [0–2] 0.07 [0–2] 0.12 [0–2] 0.09 [0–3] 0.17 [0–1] 0.05

Table C.4: The effect of round robin size on the minimum, maximum and average differ-
ence between the generated coalitions and the expected coalition. Averages are over 100
instances.

6 8 10 12 14 16
range average range average range average range average range average range average

[0–2] 0.32 [0–2] 0.17 [0–4] 0.73 [0–2] 0.16 [0–4] 0.86 [0–3] 0.55

18 20 22 24 26 28
range average range average range average range average range average range average

[0–4] 0.48 [0–3] 0.25 [0–2] 0.54 [0–4] 0.64 [0–2] 0.49 [0–4] 1.55

30 32 34 36 38 40
range average range average range average range average range average range average

[0–3] 0.67 [0–5] 3.08 [0–2] 0.65 [0–3] 0.70 [0–3] 0.61 [0–3] 0.74

148

Table C.5: The effect of round robin size on the minimum, maximum and average number
of generated coalitions for instances where a coalition was manipulating the competition.
Averages are over 100 instances.

6 8 10 12 14 16
range average range average range average range average range average range average

[1–3] 1.24 [1–2] 1.05 [1–2] 1.05 [1–1] 1.00 [1–4] 1.44 [1–1] 1.00

18 20 22 24 26 28
range average range average range average range average range average range average

[1–2] 1.08 [1–3] 1.26 [1–14] 1.50 [1–21] 1.47 [1–24] 2.21 [1–4] 1.21

30 32 34 36 38 40
range average range average range average range average range average range average

[1–39] 1.89 [1–6] 1.47 [1–14] 1.73 [1–22] 2.72 [1–15] 1.59 [1–15] 2.18

Table C.6: The effect of round robin size on the percentage of instances with two or more
teams identified as having won through strategically optimal coalitions using simple ma-
nipulations directly to tw or complicated manipulations involving the top teams. Random
instances are not shown as this occurred in only two simple random instances and no
complex instances. 100 simple and 100 complex manipulations are considered.

Simple Manipulations Complicated Manipulations
6 8 10 12 14 16 6 8 10 12 14 16

37 32 25 27 27 29 4 6 10 12 19 17

18 20 22 24 26 28 18 20 22 24 26 28
25 23 22 25 24 24 20 15 16 17 11 15

30 32 34 36 38 40 30 32 34 36 38 40
24 18 23 29 20 28 17 12 15 11 9 16

149

References

[1] I. Adler, A. L. Erera, D. S. Hochbaum, and E. V. Olinick. Baseball, optimization and
the world wide web. Interfaces, 32:12–22, 2002.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms
and Applications. Prentice Hall, 1993.

[3] A. Altman, A. D. Procaccia, and M. Tennenholtz. Nonmanipulable selections from a
tournament. In Proceedings of the 21st International Joint Conference on Artificial
Intelligence, pages 27–32, 2009.

[4] D. H. Annis and B. A. Craig. Hybrid paired comparison analysis with applications to
the ranking of college football teams. Journal of Quantitative Analysis in Sports, 1,
2005.

[5] Anonymous. Match-fix probe targets 200 games. BBC News, November 2009. http://
news.bbc.co.uk/2/hi/europe/8370748.stm.

[6] E. Asinof. 1919: America’s Loss of Innocence. Dutton Adult, 1990.

[7] J. A. Aslam, R. A. Popa, and R. L. Rivest. On auditing when precincts have different
sizes. In Proceedings of the Conference on Electronic Voting Technology, pages 1–13,
2008.

[8] R. Backofen. Using constraint programming for lattice protein folding. In Proceedings
of the 3rd Pacific Symposium on Biocomputing, pages 387–398, 1998.

[9] A. N. Banerjee, J. F. M. Swinnen, and A. Weersink. Skating on thin ice: rule changes
and team strategies in the NHL. Canadian Journal of Economics, 40:493–514, 2007.

[10] J. J. Bartholdi, C. A. Tovey, and M. A. Trick. The computational difficulty of manip-
ulating an election. Social Choice and Welfare, 6:227–241, 1989.

151

[11] V. Boginski, S. Butenko, and P. M. Pardalos. Matrix-based methods for college foot-
ball rankings. In S. Butenko, J. Gil-Lafuente, and P. M. Pardalos, editors, Economics,
Management and Optimization in Sports, pages 1–14. Springer, 2004.

[12] E. F. Brickell and D. R. Stinson. The detection of cheaters in threshold schemes. In
Advances in Cryptology, pages 564–577, 1990.

[13] J. R. Brown. The sharing problem. Operations Research, 27:324–340, 1979.

[14] T. Bryant. It’s not just formula one ... match-rigging claims hit lawn bowls. The
Guardian, September 2009. http://www.guardian.co.uk/sport/2009/sep/18/bowling-
match-rigging-new-zealand.

[15] C. R. Cassady, L. M. Maillart, and S. Salman. Ranking sports teams: A customizable
quadratic assignment approach. Interfaces, 35:497–510, 2005.

[16] E. Cheng and D. Steffy. Clinching and elimination of playoff berth in the NHL.
International Journal of Operations Research, 5:187–192, 2008.

[17] B. J. Coleman, J. M. DuMond, and A. K. Lynch. Evidence of bias in NCAA tourna-
ment selection and seeding. Managerial and Decision Economics, 2010. Online March
2010.

[18] V. Conitzer, T. Sandholm, and J. Lang. When are elections with few candidates hard
to manipulate? Journal of the ACM, 54:1–33, 2007.

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, 2001.

[20] D. de Werra. Scheduling in sports. Annals of Discrete Mathematics, 11:381–395, 1981.

[21] M. Duggan and S. D. Levitt. Winning isn’t everything: Corruption in sumo wrestling.
The American Economic Review, 92:1594–1605, 2002.

[22] P. Faliszewski, E. Hemaspaandra, and H. Schnoor. Copeland voting: Ties matter. In
Proceedings of the 7th International Conference on Autonomous Agents and Multia-
gent Systems, pages 983–990, 2008.

[23] G. Garber. Gamesmanship is name of the game in tennis. ESPN.com, August 2007.
http://sports.espn.go.com/espn/cheat/news/story?id=2955743.

[24] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, 1979.

152

[25] O. Gibson. UEFA investigates 40 European games in match-fixing crackdown. The
Guardian, September 2009. http://www.guardian.co.uk/football/2009/sep/25/uefa-
match-fixing-champions-league.

[26] Globe and Mail. Hockey scoreboard. Metro ed., 2006-2007.

[27] D. Gusfield and C. E. Martel. The structure and complexity of sports elimination
numbers. Algorithmica, 32:73–86, 2002.

[28] N. Hazon, P. E. Dunne, S. Kraus, and M. Wooldridge. How to rig elections and
competitions. In Proceedings of the 2nd International Workshop on Computational
Social Choice, pages 301–312, 2008.

[29] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, 1989.

[30] A. Huang. Say it ain’t so Tsao: Baseball scandal hits Taiwan. The Associated Press,
October 2009.

[31] ILOG S.A. ILOG Solver 4.2 user’s manual, 1998.

[32] H. Jin, J. Lotspiech, and N. Megiddo. Efficient coalition detection in traitor tracing. In
Proceedings of the 23rd International Information Security Conference, pages 365–380,
2008.

[33] U. Junker. Preference programming for configuration. In Proceedings of the 4th Work-
shop on Configuration, pages 50–56, 2001.

[34] W. Kern and D. Paulusma. The computational complexity of the elimination problem
in generalized sports competitions. Discrete Optimization, 1:205–214, 2004.

[35] J. Lang, M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh. Winner determination in
sequential majority voting. In Proceedings of the 20th International Joint Conference
on Artificial Intelligence, pages 1372–1377, 2007.

[36] J. Larrosa and G. Valiente. Constraint satisfaction algorithms for graph pattern
matching. Mathematical Structures in Computer Science, 12:403–422, 2002.

[37] D. Lesaint, D. Metha, B. O’Sullivan, L. Quesada, and N. Wilson. Solving a telecom-
munications feature subscription configuration problem. In Proceedings of the 14th
International Conference on the Principles and Practice of Constraint Programming,
pages 67–81, 2008.

153

[38] I. Levin, G. A. Cohn, P. C. Ordeshook, and R. M. Alvarez. Detecting voter fraud in an
electronic voting context: An analysis of the unlimited reelection vote in Venezuela. In
Proceedings of the 2009 Electronic Voting Technology Workshop/Workshop on Trust-
worthy Computing, pages 1–23, 2009.

[39] O. Lhomme. Arc-consistency filtering algorithms for logical combinations of con-
straints. In Proceedings of the 10th International Conference on the Principles and
Practice of Constraint Programming, pages 209–224, 2004.

[40] M. Maher, N. Narodytska, C.-G. Quimper, and T. Walsh. Flow-based propagators for
the sequence and related global constraints. In Proceedings of the 14th International
Conference on Principles and Practice of Constraint Programming, pages 159–174,
2008.

[41] A. Malik, M. Chase, T. Russell, and P. van Beek. An application of constraint pro-
gramming to superblock instruction scheduling. In Proceedings of the 14th Interna-
tional Conference on the Principles and Practice of Constraint Programming, pages
97–111, 2008.

[42] C. D. Manning and H. Shutze. Foundations of Statistical Language Processing. MIT
Press, 1999.

[43] K. Marriott and P. Stuckey. Programming with Constraints: An Introduction. MIT
Press, 1998.

[44] J. Martinich. College football rankings: Do the computers know best? Interfaces,
32:85–94, 2002.

[45] S. T. McCormick. Fast algorithms for parametric scheduling come from extensions to
parametric maximum flow. Operations Research, 47:744–756, 1999.

[46] A.V. Moura, C.C. de Souza, A.A. Cire, and T. M. T. Lopes. Planning and scheduling
the operation of a very large oil pipeline network. In Proceedings of the 14th Interna-
tional Conference on the Principles and Practice of Constraint Programming, pages
36–51, 2008.

[47] M. Myagkov, P. C. Ordeshook, and D. Shakin. The Forensics of Election Fraud:
Russia and Ukraine. Cambridge University Press, 2009.

[48] NCAA. NCAA division I men’s basketball championship: Principles and procedures
for establishing the bracket. http://www.ncaa.com/graphics/champpage/Bracket
Prin-Proc 2009-10 07.07.09.pdf, 2009.

154

[49] G. Nemhauser and M. Trick. Scheduling a major college basketball conference. Oper-
ations Research, 26(1):1–8, 1998.

[50] M. J. Osborne and A. Rubenstein. A Course in Game Theory. MIT Press, 1994.

[51] G. Pesant, M. Gendreau, J. Y. Potvin, and J. M. Rousseau. An exact constraint
logic programming algorithm for the traveling salesman problem with time windows.
Transportation Science, 32:12–29, 1998.

[52] M.S. Pini, F. Rossi, K. B. Venable, and T. Walsh. Dealing with incomplete agents’
preferences and an uncertain agenda in group decision making via sequential majority
voting. In Proceedings of the 11th International Conference on Principles of Knowledge
Representation and Reasoning, pages 571–578, 2008.

[53] T. Rahwan, S. D. Ramchurra, N. R. Jennings, and A. Giovannucci. An anytime
algorithm for optimal coalition structure generation. Journal of Artificial Intelligence
Research, 34:523–567, 2009.

[54] C. C. Ribeiro and S. Urrutia. An application of integer programming to playoff elimi-
nation in football championships. International Transactions in Operational Research,
12:375–386, 2005.

[55] L. W. Robinson. Baseball playoff eliminations: an application of linear programming.
Operations Research Letters, 10:67–74, 1991.

[56] F. Rossi, P. van Beek, and T. Walsh, editors. The Handbook of Constraint Program-
ming. Elsevier, 2006.

[57] T. Russell and P. van Beek. Mathematically clinching a playoff spot in the NHL and
the effect of scoring systems. In Proceedings of the 21st Conference of the Canadian
Society for Computational Studies of Intelligence, pages 234–245, 2008.

[58] T. Russell and P. van Beek. Determining the number of games needed to guarantee an
NHL playoff spot. In Proceedings of the 6th International Conference on the Integration
of AI and OR Techniques in CP for Combinatorial Optimization Problems, pages 233–
247, 2009.

[59] T. Russell and P. van Beek. Lessons learned from modelling the NHL qualification
problem. In Proceedings of the Eighth International Workshop on Constraint Modelling
and Reformulation, pages 132–146, 2009.

[60] T. Russell and T. Walsh. Manipulating tournaments in cup and round robin compe-
titions. In Proceedings of the First International Conference on Algorithmic Decision
Theory, pages 26–37, 2009.

155

[61] R. Rymon. Search through systematic set enumeration. In Proceedings of the Third In-
ternational Conference on the Principles of Knowledge Representation and Reasoning,
pages 268–275, 1992.

[62] R. Saltzman and R. M. Bradford. Optimal realignments of the teams in the national
football league. European Journal of Operations Research, 93:469–475, 1996.

[63] B. Schwartz. Possible winners in partially completed tournaments. SIAM Review,
8:302–308, 1966.

[64] J. Siek, L.-Q. Lee, and A. Lumsdaine. Boost Graph Library: User Guide and Reference
Manual. Addison-Wesley, 2001.

[65] S. Sorlin and C. Solnon. A global constraint for graph isomorphism problems. In First
International Conference on the Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, pages 287–302, 2004.

[66] P. Tang, Y. Shoham, and F. Lin. Team competitions. In Proceedings of 8th Inter-
national Conference on Autonomous Agents and Multiagent Systems, pages 241–248,
2009.

[67] T. Vu, A. Altman, and Y. Shoham. On the complexity of schedule control problems for
knockout tournaments. In Proceedings of 8th International Conference on Autonomous
Agents and Multiagent Systems, pages 225–232, 2009.

[68] T. Walsh. Where are the really hard manipulation problems? the phase transition in
manipulating the veto rule. In Proceedings of 21st International Joint Conference on
Artificial Intelligence, pages 324–329, 2009.

[69] K. D. Wayne. A new property and a faster algorithm for baseball elimination. SIAM
Journal on Discrete Mathematics, 14:223–229, 2001.

[70] V. V. Williams. Fixing a tournament. In Proceedings of the 24th AAAI Conference
on Artificial Intelligence, pages 895–900, 2010.

[71] J. Yan. Security design in online games. In Proceedings of the 19th Annual Computer
Security Applications Conference, pages 286–295, 2003.

[72] S. Zampelli, Y. Deville, and C. Solnon. Solving subgraph isomorphism problems with
constraint programming. Constraints, 15:327–353, 2010.

156

