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Abstract

Content Based Image Retrieval (CBIR) is an important research area in the field of

multimedia information retrieval. The application of CBIR in the medical domain has

been attempted before, however the use of CBIR in medical diagnostics is a daunting

task. The goal of diagnostic medical image retrieval is to provide diagnostic support by

displaying relevant past cases, along with proven pathologies as ground truths. Moreover,

medical image retrieval can be extremely useful as a training tool for medical students and

residents, follow-up studies, and for research purposes.

Despite the presence of an impressive amount of research in the area of CBIR, its

acceptance for mainstream and practical applications is quite limited. The research in

CBIR has mostly been conducted as an academic pursuit, rather than for providing the

solution to a need. For example, many researchers proposed CBIR systems where the image

database consists of images belonging to a heterogeneous mixture of man-made objects

and natural scenes while ignoring the practical uses of such systems. Furthermore, the

intended use of CBIR systems is important in addressing the problem of “Semantic Gap”.

Indeed, the requirements for the semantics in an image retrieval system for pathological

applications are quite different from those intended for training and education. Moreover,

many researchers have underestimated the level of accuracy required for a useful and

practical image retrieval system. The human eye is extremely dexterous and efficient in

visual information processing; consequently, CBIR systems should be highly precise in

image retrieval so as to be useful to human users. Unsurprisingly, due to these and other

reasons, most of the proposed systems have not found useful real world applications.

In this dissertation, an attempt is made to address the challenging problem of developing

a retrieval system for medical diagnostics applications. More specifically, a system for
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semantic retrieval of Magnetic Resonance (MR) images in 3D brain volumes is proposed.

The proposed retrieval system has a potential to be useful for clinical experts where the

human eye may fail. Previously proposed systems used imprecise segmentation and feature

extraction techniques, which are not suitable for precise matching requirements of the image

retrieval in this application domain. This dissertation uses multiscale representation for

image retrieval, which is robust against noise and MR inhomogeneity. In order to achieve

a higher degree of accuracy in the presence of misalignments, an image registration based

retrieval framework is developed. Additionally, to speed-up the retrieval system, a fast

discrete wavelet based feature space is proposed. Further improvement in speed is achieved

by semantically classifying of the human brain into various “Semantic Regions”, using an

SVM based machine learning approach.

A novel and fast identification system is proposed for identifying a 3D volume given a 2D

image slice. To this end, we used SVM output probabilities for ranking and identification

of patient volumes. The proposed retrieval systems are tested not only for noise conditions

but also for healthy and abnormal cases, resulting in promising retrieval performance with

respect to multi-modality, accuracy, speed and robustness.

This dissertation furnishes medical practitioners with a valuable set of tools for semantic

retrieval of 2D images, where the human eye may fail. Specifically, the proposed retrieval

algorithms provide medical practitioners with the ability to retrieve 2D MR brain images

accurately and monitor the disease progression in various lobes of the human brain, with

the capability to monitor the disease progression in multiple patients simultaneously. Ad-

ditionally, the proposed semantic classification scheme can be extremely useful for semantic

based categorization, clustering and annotation of images in MR brain databases. This

research framework may evolve in a natural progression towards developing more powerful
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and robust retrieval systems. It also provides a foundation to researchers in semantic based

retrieval systems on how to expand existing toolsets for solving retrieval problems.
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Chapter 1

Introduction

Information retrieval is a multi-billion dollar industry, if companies like GoogleTMand

YahooTMare of any indication. While the text-based retrieval systems have matured well

in recent years, multimedia retrieval systems, such as those based on images and videos,

remain in infancy. Consequently, multimedia information retrieval systems have become

subject of extensive research efforts.

Investment in the use of Information Technology (IT) in the healthcare sector has grown

rapidly during the last decade. The use of IT in the healthcare domain has potential

to efficiently maintain patient records, reduce patient waiting times, improve emergency

response times, improve drug deliveries, as well as processing of insurance claims. The

benefits of the use of IT is not limited to these aspects only. In fact, information technology

has the capability to revolutionize the way we perceive healthcare services. Some of the

future applications of IT in healthcare include delivery of the healthcare records on mobile

devices, remote monitoring of critically ill patients, and live medical expert advices during

surgical procedures.
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Governments all over the world have invested billions of dollars to modernize and to re-

place the old paper-based records with new computer-based systems. For instance, Canada

Health Infoway is an independent, federally-funded, not-for-profit organization tasked with

accelerating the development of Electronic Health Records (EHR) across Canada. As a

strategic investor, this organization works with Canadian provinces and territories with the

goal of creating electronic health records for Canadians. Infoway‘s members are Canada’s

14 federal, provincial and territorial Deputy Ministers of Health. Infoway has recently

developed a pan-Canadian electronic health information standard, leveraging on the ex-

isting HL7v3 standards. By the end of 2008, there were 276 EHR projects under way

in Canadian hospitals, other health-care facilities, pharmacies and laboratories, with an

investment value of $1.5-billion from Canada Health Infoway.

Similarly, eHealth Ontario is tasked with facilitating the development of provincial

public Electronic Health Record system. eHealth Ontario was created in September 2008

through a merger of the Ontario Ministry of Health’s electronic health program and the

Smart Systems for Health Agency (SSHA). The mandate of eHealth Ontario is to create

electronic health records for all the patients in the province by 2015. The Government

of Ontario is investing the capital as well as the political will, in making this strategy a

success. In May 2008, cabinet approved the funds from fiscal year 2008-09 through to

2011-12. The total cost of Ontario eHealth strategy over the three years is $2.133 billion

[2].

It is note worthy that the Picture Archiving and Communication Systems (PACS) are an

integral part of such electronic health records. PACS, are software components for storing

and accessing large amounts of visual data used in medical departments. Therefore, robust

and efficient image retrieval systems are extremely useful in PACS.
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This chapter introduces the research in medical image retrieval and also highlights the

problems associated with it. It is organized in various sections, where the first section

introduces a general framework of content based image retrieval; the second section dis-

cusses the challenge of semantic gap; the third section discusses the lack of practical uses

of Content Based Image Retrieval CBIR systems; the fourth section discusses the CBIR in

medical domain which is followed by the section on motivations; the sixth section presents

the thesis objectives and the final section provides the organization of this dissertation.

1.1 Content Based Image Retrieval

Due to the prevalence of digital images in recent times, the usefulness of Content Based

Image Retrieval (CBIR) systems in various important applications cannot be overempha-

sized. The notion of CBIR is to find similar images in a large image database through some

key attributes or through some inherent features in those images. There are many appli-

cation areas for CBIR, including healthcare, face recognition, remote sensing, astronomy,

paleontology and document retrieval.

A typical CBIR system is shown in Figure 1.1, using a basic, simplified block schematic.

Here, a feature database is populated offline from the collections of the images. In the

normal online mode, a human operator provides a query image to the system and the

system is supposed to find the most similar images from the database. This is done by

matching the feature vectors of the query image to that of the feature vectors of the images

in the database. Numerous variations to this basic architecture have been proposed in the

literature.

The challenge in the development of a CBIR system is due to two important and ill-
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Figure 1.1: A typical and simplified block schematic of a CBIR system
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posed problems. The first problem is the “Sensory Gap”, which is the gap between the

object in the world and the information in a computational description derived from a

recording of the scene [3]. The second problem is the “Semantic Gap”, which is the lack

of coincidence between the information that one can extract from the visual data and the

interpretation of the same data by a user in a given situation [3]. These gaps are shown in

Figure 1.2, where the dashed lines indicate various modes of the semantic gap and dotted

line indicates the sensory gap. The main components of a CBIR system are explained

further in the following subsections.

Hearing

Vision

Touch

Smell

Human Knowledge

Image

Physical World

Sensory Gap

Semantic Gap

Figure 1.2: Sensory and semantic gaps in human knowledge accumulation

1.1.1 Feature Extraction

Feature extraction is a process to compute a set of inherent features in images, such as

color, texture and shape etc. The selection of a proper image feature set is one of the most

critical aspect of a CBIR system design. The object or an area of interest in images, may
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appear differently due to change in color, shape, size, orientation or motion. Therefore,

the problem of feature extraction has been extensively studied and explored in the areas of

robotics and computer vision. Consequently, there are thousands of approaches presented

and discussed by the research community. The problem of the feature extraction becomes

extremely difficult when the object under consideration appears to be changing its color

and shape due to motion, such as an octopus moving in water.

Some of the popular image feature sets include color, shape, texture, region and trans-

form. In color-based techniques, feature sets include color histogram. In shape-based tech-

niques, these sets normally include edges, corners, curvature scale space and chain codes.

In texture-based techniques, these feature sets normally include co-occurrence matrices

and Gabor filters, region based approaches use various kinds of segmentation schemes. In

transform-based techniques, the feature sets normally include Fourier and wavelet trans-

forms.

The type of images often dictate the type of features to be extracted, for example,

color-based features would be preferred for color pictures. While feature sets are selected

on the basis of some dominant property of the image, it is a normal practice to use different

types of feature sets in a practical system.

The RGB color representation is a good choice for color-based systems, as it tries to

model the input channels of the human eye. It is particularly useful when the color vari-

ance is minimal, as in case of images of paintings, photographs and trademarks taken in

standard conditions. HSV representation has nice invariance properties under different ob-

ject orientations [4], whereas the CIE-Lab representation is designed so that the Euclidean

distance between two colors representations, models the human perception of color differ-

ences [3]. The texture in an image is another important feature type for both natural and
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medical images. Textures are defined in terms of small repeated structures and randomness

in the image. The existing literature in computer vision is rich in this regard.

The shape of an object is an important feature for any object-based retrieval systems.

Here, object-based implies that images contain one or more specific objects, such as faces,

flowers, plants, mountains, automobiles, trademarks and man-made objects. It is a com-

mon knowledge that people perceive and process knowledge mostly by recognizing objects

and by associating relationships among these objects.

Natural objects tend to be more varied in shapes and sizes than man-made and indus-

trial objects. Hence, most of the research in computer vision and pattern recognition has

been done using the object-based paradigm. A review of the shape-based techniques can be

found in [5]. In this regard, there are two broad categories of algorithms. In one category

of techniques, an image is segmented based on color, grey-level or texture. Whereas in the

other category of techniques, gradient based approaches are used where the objective is to

extract the boundary of an object, assuming that the shape of the boundary can uniquely

discriminate among various objects.

Some researchers in [6, 7, 8, 9, 10] have used machine learning based approaches to

account for semantics. Multi-level image features have been suggested in [9, 10] and are

found to be robust. In [11] image segmentation using statistical means is proposed.

1.1.2 Similarity Matching

Similarity matching involves comparing features of the query image and database images.

An extensive amount of literature is available in the area of similarity matching. Re-

searchers have used various kinds of distance measures to compare feature vectors. The
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most common distance measure is the Euclidean distance which is used in many early

works, including in [12]. A review of more complex distance metrics can be found in [13].

Similarity matching for the object based features requires shape matching algorithms.

A review of such shape matching techniques can be found in [14]. In practice, shapes can be

measured by various methods, such as moments, deformations and multiresolution-based

approaches [15, 16]. For instance, in [17] shapes are matched using point correspondence.

A recent work in [18] utilizes Triangle Area Representation (TAR) of each object stored

at the corresponding node in the Curvature Tree (CT). The similarity between two multi-

object images is measured based on the Maximum Similarity Subtree Isomorphism (MSSI)

between their CTs. A recursive algorithm to solve the MSSI problem is proposed and an

effective dynamic programming algorithm is developed to measure the similarity between

the attributed nodes.

Recently, researchers have put efforts to map the similarity in semantic domains to low-

level visual features through learning approaches, such as those proposed by [19] and [20].

In [19], Bhattacharya distance for statistical similarity is used where concept probabilities

are determined for the combined color and texture feature vector by using multi-class

SVM. In [20], the feature samples in the same category are trained as “similar” class

and the feature samples in different categories as “dissimilar” class, and the training is

achieved through a boosting framework. In [21], both supervised and unsupervised learning

techniques are investigated to associate the low-level global image features (e.g., color,

texture, and edge) in the projected PCA-based eigenspace to link high-level semantics

with visual categories.
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1.1.3 Query Formulation

Query formulation is an important subsystem from the user interaction perspective. Of-

ten query formulation dictates the significant portion of the design paradigm of a CBIR

system. In content-based image retrieval, interaction is a complex interplay between the

user, images, and semantic interpretations of these images [3]. Earlier systems used the

simplest approach, where the user picks one of the database images as a query image

and performs the retrieval. Consequently, most of the CBIR systems support “query-by-

example”; some of them give additional facility to the user by providing “query-by-sketch”

[22, 23] and keyword support. In order to improve the retrieval results, some systems, such

as in [24, 25, 26], require the user to identify relevant regions.

1.2 The Challenge of the Semantic Gap

As already mentioned, the lack of acceptance of CBIR in mainstream and practical appli-

cations has largely been attributed to the so called “semantic gap” [3]. In other words,

systems should be able to capture the intention of the user to efficiently provide better

results. Generally, CBIR systems require the user to provide a query image to initiate the

query. The issue of semantics also brings human subjectivity in the discussion because

an image may contain more than one semantic aspects. Moreover, a user may interpret

different semantics in an image based on his needs and requirements from time to time.

There are many proposed techniques to address this problem. These techniques can be

divided into two broad categories. The first category deals with the semantics in the query

formulation while the second category involves semantics in the matching stage. These

categories are further discussed in the following subsections.
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1.2.1 Semantics in the Query Formulation

In this category, researchers have proposed additional facilities for the user to provide

more accurate queries. Some of the systems require the user to identify relevant regions

[24, 25, 26] to improve the results. Some researchers supplemented the query image with

text fields to handle semantics in the retrieval process [27, 28, 29, 30, 31, 32]. In [33], both

images and associated texts are indexed using medical concepts from the Unified Medical

Language System (UMLS) meta-thesaurus in order to facilitate the automatic indexing

and retrieval of large medical-image databases.

1.2.2 Semantics in Matching Subsystems

In this category, research activities have been focused on ”Relevance Feedback” (RF). The

main idea behind RF is to refine the retrieval results by allowing the user to teach the

system by indicating good and bad results. The system is expected to modify its similarity

matching criterion to improve the retrieval results. Variety of learning approaches have

been presented in the literature to perform RF. While earlier techniques used incremental

learning approaches presented in [34, 35], recently Support Vector Machines (SVM) have

been popular [36] for this task.

The problem in RF is mainly due to the sparse training data and the non-availability

and un-willingness of human operator to teach a system involving thousands of images.

In order to circumvent some of these problems, some researcher have proposed to use the

user log [37]. Moreover, human judgment is subjective and changes considerably from one

person to another and hence reliability of the RF system is difficult to achieve in general

sense.
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1.3 Lack of Practical Uses of CBIR

Given the impressive amount of research efforts, the acceptance of CBIR for mainstream

and practical applications is quite limited. This is due to the fact that the research on

CBIR has largely been initiated as an academic pursuit rather than providing a solution

to a human need. For example, many researchers proposed CBIR systems with databases

consisting of heterogeneous mixture of variety of man-made objects and natural scene

images without looking into the possibility of some practical uses of such systems.

Another reason for the lack of practical uses of CBIR technology is the semantic gap.

Semantic gap in the abstract sense is difficult to implement because it would require a

knowledge base of the semantics in the whole world. Therefore, the intended use of the

system is important to address this gap. For example, semantics for the pathological

system will be quite different than the one intended to be used for the training purposes.

The semantics for a retrieval system for pathological use will include types and extents

of diseases related to specific anatomical areas. On the other hand, the semantics for the

retrieval system for educational purposes will require broad labeling of all the anatomical

regions of healthy and abnormal conditions. Accordingly, meaningful semantics will be

different for each class of the retrieval systems.

The researchers in the area of CBIR initially underestimated the level of accuracy

required for a useful system. The human eye is extremely dexterous in visual information

processing; consequently, CBIR systems have to be precise in order to be useful for users.

As such most of the proposed systems have not been found useful in real world applications.
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1.4 Medical Image Retrieval

The use of CBIR in the medical domain is the most important application area because

digital images are produced in an ever-increasing quantities for the use in diagnostics and

therapies. For example, the Radiology Department of the University Hospital of Geneva

alone produced more than 12,000 images a day in the year 2002 [1]. In the same year, the

total amount of cardiological image data produced in the Geneva University Hospital was

around 1 TB.

The goal of medical information systems have often been defined as to deliver the right

information at the right time, at the right place, to the right persons in order to improve

the efficiency of the care processes [38]. Hence, such a goal would require more than a

query by patient name, series ID or study ID for images.

Due to the advent of “Digital Imaging and Communications in Medicine” (DICOM), a

standard for image communication, patient information can be stored along with the ac-

tual images. In many academic articles, the content-based retrieval of medical images for

supporting clinical decision making has been proposed, which would improve the manage-

ment of the clinical data. This also provides scenarios for the integration of content-based

image retrieval methods into Picture Archiving and Communication Systems (PACS).

Clinical decision support techniques, such as case-based reasoning [39] and evidence-

based medicine [40], can benefit greatly from efficient CBIR systems. Decision support

systems in radiology and computer-aided diagnostics for radiological practice, as demon-

strated at the Radiological Society of North America (RSNA), are on the rise and create

a need for powerful data, meta-data management and retrieval systems [1]. The general

clinical benefit of imaging systems has been demonstrated in [41].
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In the medical application domain, many systems have been proposed where the image

database consist of images of various anatomical regions with a variety of image modal-

ities. One such database is ImageCLEFmed [42], which is developed to compare and

evaluate general image retrieval algorithms. The image retrieval systems developed for

these databases are more useful for applications in training and education rather than in

diagnostic and decision support.

1.5 Motivations

The use of CBIR in medical diagnostics is the hardest but it is the most important ap-

plication for image retrieval in the medical domain [1]. To be used as a diagnostic aid,

image retrieval systems need to prove their performance to get accepted by clinicians. For

application domains where evidence-based medicine or case-based reasoning is required,

it is important to supply relevant and similar cases for comparison. Such retrieval will

require visual features, which accurately model the visual detection of an MD using as

much domain knowledge as possible.

There are two main ideas for supporting the clinical decision-making process. The

first one is to supply the medical doctor with cases that offer a similar visual appearance.

Results of the retrieval may supply a second opinion to the MD and support reasoning

based on the various cases that are supplied by the system and the data available on

the current patient. Another idea is the creation of databases containing normal (non-

pathologic) cases and the comparison of the distance of a new case with the existing cases,

thus performing dissimilarity retrieval as opposed to the similarity retrieval. This is even

more natural compared to the normal workflow in medicine, where the first requirement is
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to find out whether the case is pathologic or not [1].

One of the important application domains in medical imaging is the MR brain imaging.

Given the fast aging population of baby boomers in North America and Europe, coupled

with the prevalence of chronic illnesses such as Multiple Sclerosis (MS), Alzheimer (De-

mentia), and Stroke in this age-group, the usefulness of the MR brain imaging cannot be

overemphasized. Figure 1.3 shows query T1 image (top-left) and three consecutive slices

from the PD sequence all with 1mm3 voxels. It is clear from this figure that it is extremely

difficult to retrieve the correct PD slice by the human eye.

Figure 1.3: T1 query slice#82 (top left), PD slice#81 (top right), PD slice#82 (bottom
left), PD slice#83 (bottom right)

Identifying a specific semantic area (such as “brain lobe”) associated with the query

slice would be extremely useful for quickly retrieving the results. This will also help
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in quantifying, localizing and tracking of disease progression among various brain lobes.

Identification of the 3D MR volume of a subject, among the volumes of a large number

of subjects, given the query slice will help a great deal in monitoring and tracking of the

disease progression among a group of patients (subjects). Therefore, implementing these

ideas will help in achieving some of the goals of the medical information systems.

1.6 Thesis Objectives

Based on observations made in the previous section, this dissertation is targeted in address-

ing the challenging problem of developing an image retrieval system for medical diagnostics.

More specifically, this dissertation proposes a system for semantic retrieval of MR images

in 3D MR of brain volumes. Following are the thesis objectives in specific terms:

1. Develop a semantic based framework for retrieval of MR brain images for MR diag-

nostics applications.

2. Develop a fast retrieval application for multimodal, 2D brain MR image retrieval in

3D volumes.

3. Develop a robust system against variety of imaging related abnormalities such as MR

inhomogeneity, noise and acquisition misalignments etc.

Previously, the proposed systems use imprecise segmentation and feature extraction

techniques, which are not suitable for precise matching required for the retrieval of MR

images. Several challenging problems need to be addressed in order to achieve these ob-

jectives:
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1. The accuracy of the system needs to be extremely high.

2. The retrieval speed of the system needs to be acceptable.

3. The system needs to be robust against variety of imaging related abnormalities such

as MR inhomogeneity, noise and acquisition misalignments.

In order to satisfy these requirements, a multiscale representation is used for image

retrieval, which is robust against noise and MR inhomogeneity. An image registration based

framework is developed to achieve high accuracy in the presence of mis-alignments. To

speed-up the retrieval system, a fast discrete wavelet based feature space is used. Further

improvement in speed is achieved by using semantic classification of the human brain into

various semantic lobes. A novel fast retrieval system is proposed to identify a 3D volume

in a database given a 2D query slice.

1.7 Organization of the Thesis

Chapter 1 provides a detailed introduction to CBIR systems. The problem of semantic

gap has also been discussed with various mitigation techniques, such as relevance feedback

(RF). The reasons for the lack of acceptance of image retrieval for general usage have been

outlined. Motivations and objectives for this dissertation has been provided.

Chapter 2 provides an extensive literature review on medical image retrieval systems

and discusses challenges associated with 2D image retrieval in 3D brain volumes.

Chapter 3 deals with the 2D rigid registration, where a multiscale wavelet based regis-

tration scheme is proposed. A multiscale greedy steepest gradient registration technique is
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proposed for efficient implementation. The registration results with a greedy optimization

technique are also compared against other two known optimization techniques. The results

demonstrate the high efficacy of the approach under multimodal and noisy environment.

Chapter 4 deals with the intersubject retrieval part, which introduces two novel MI

based schemes. The first retrieval technique utilizes full registration at each level of the

retrieval, leveraging on all decomposition levels. The second retrieval technique starts

with coarse registration using the coarse level decomposition and iteratively utilizes finer

registration for the retrieval leveraging on finer levels of decompositions. It has been found

that the second technique is generally five times faster than first approach while maintaining

similar error rates. The proposed retrieval algorithms are tested under multi-modal and

noisy conditions. Experiments show promising results with respect to multi-modality,

accuracy, speed and robustness.

Chapter 5 introduces a novel, semantic assisted, intersubject retrieval technique to fur-

ther speedup the retrieval system. A fast and simple feature extraction scheme is developed

to extract features in the wavelet domain for the semantic classification. The feature set is

compared against a well known feature extraction technique called SIFT and found be more

effective in terms of speed and accuracy. In the first stage, a novel, SVM based, semantic

classification scheme is proposed for classifying an incoming 2D query image into one of

the semantic regions. These semantic regions are inspired by the four lobes of the human

brain. In the second stage, registration based retrieval technique, proposed in chapter 4, is

engaged in that specific semantic region, improving the speed by 50%. The classification

errors are found to be small. The proposed retrieval algorithms are tested under multi-

modal and noise conditions. The proposed retrieval algorithms are tested with healthy

and MS images of the same patient. Experiments show promising results with respect to
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multi-modality, accuracy, speed and robustness.

Chapter 6 presents a novel retrieval technique in a multisubject framework. In the first

stage, a novel SVM based identification scheme is presented for identifying an incoming

2D query image and relating to a few highly likely subjects. This is achieved using a

modified multiclass SVM with probabilistic outputs. In the second stage, an SVM based

semantic classification scheme is presented for classifying an incoming 2D query image into

one of the semantic regions. Finally, the registration based retrieval technique, proposed

in chapter 4, is engaged in a specific semantic region of volumes belonging to the selected

individuals. Simulations show promising results with respect to multi-modality, accuracy,

speed and robustness.

Finally, in chapter 7, this dissertation is concluded and a few limitations of the proposed

approach is mentioned. Various ways to extend this work in the future are also outlined.
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Chapter 2

Background and Literature Review

2.1 Introduction

Content based Image retrieval has been an active research area over the last decade, how-

ever, first review articles on methods in image databases appeared as early as in 1981 [43].

In 1995, Enser [44] provided an extensive description of image archives, various index-

ing methods and common searching tasks, using mostly text-based searches on annotated

images. In [45], an overview of the research domain is given and “Virage” system was

introduced. The most complete overview of technologies was given by Smeulders et al.

[3]. This article describes common problems such as the semantic and sensory gaps and

provides links to a large number of articles describing the various techniques used in this

problem domain. For an even deeper introduction into the domain, several books are

available, such as [46, 47].
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2.2 CBIR Systems

Although early systems existed already in the beginning of the 1980s (such as [48]), the

majority would recall IBMs Query By Image Content (QBIC) as the start of content-

based image retrieval [49]. The commercial QBIC system is definitely the most well-known

system. Another commercial system for image and video retrieval is Virage [45] that has

well known commercial customers, such as CNN. Most of the proposed systems are from

academia. Some well-known examples include Candid [50], Photobook [51] and Netra [52]

that use simple color and texture characteristics to describe the image content. The use of

higher level information, such as segmented parts of the image for queries, was introduced

by the Blobworld system [53]. On the other hand, PicHunter [54] is an image browser

that helps the user to find an exact image in the database by showing to the user images

on screen that maximize the information gain in each feedback step. Some systems are

available as demonstration versions on the web such as Viper [55], WIPE7 or Compass

[56]. In 2004, Mller et. al. [57] proposed image retrieval system for medical application

known as “medGift”. Table 2.1 provides a more complete list of the major CBIR systems

along with the citations. A detailed comparison for some of these systems can be found in

[58].

The proposed applications of CBIR systems include face recognition [11], healthcare

[34, 73], remote sensing [74], astronomy [75], paleontology [76], document retrieval [77],

textiles [78], robotics [79], airport management [80], trademarks and patents [81]. An

other important application of this technology is to automatically annotate the images in

a database [9, 82].
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Table 2.1: CBIR Systems

Name Citations
Blobworld [53]

QBIC [49]
PicHunter [54]

Virage [45]
PicToSeek [59]
SIMPLIcity [60, 61]

NeTra [52]
MARS [62]
WIBIIS [63]

COMPASS [56]
PICASSO [64]
MediaNet [65]
MUVIS [66, 67]
PicSOM [68]
WALRUS [69]
Cortina [30]
Viper [55]
UCID [70]

I-Browse [71]
Kingfisher [72]
medGIFT [57]
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2.3 Visual Image Features

There are many popular visual features such as color, texture and shape. Most of the

available systems only use these primitive features unless manual annotation is coupled

with the visual features. Even systems using segments and local features such as Blobworld

[53] are still far away from identifying objects reliably. No system offers interpretation of

images or even medium level concepts as they can easily be captured using text. This loss

of information from an image to a representation by features is called the semantic gap [3].

The more a retrieval application is specialized for a certain, limited domain, the smaller

the gap can be made by using domain knowledge.

It is now established that one kind of low-level feature is not sufficient for a complex

task of image retrieval. Hence, a set of different features is normally used to achieve the

desired performance.

2.3.1 Color

Color has been the most effective feature for the retrieval for general and stock photography

images. Although, most of the images are in the red, green, blue (RGB) color space, this

space is rarely used for indexing and querying because it does not correspond well to the

human color perception. Other color spaces such as hue, saturation, value (HSV) [55, 53]

or the CIE Lab [49] and LUV [83] spaces are much better with respect to the human

perception and are more frequently used. In other words, the differences in the color space

are similar to the differences between colors that humans perceive. Some effort has also

been spent on creating color spaces that are invariant to shades and other influences such

as viewing position [84, 85]. These approaches allow to identify colors even under varying
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conditions but the information about the absolute colors is lost in the process. In medical

domain, absolute color or gray level features are often of limited expressive power [1].

The edge histogram descriptor (EHD) is found to be quite effective for representing

natural images [86]. This feature captures the spatial distribution of edges, similar to the

color layout descriptor. To compute the EHD, a given image is first sub-divided into 4× 4

sub-images, and local edge histograms for each of these sub-images is computed. Edges

are broadly grouped into five categories: vertical, horizontal, 45o, 135o and neutral. Thus,

each local histogram has five bins corresponding to the above five categories. The image

partitioned into 16 sub-images results in 80 bins. These bins are non-uniformly quantized

using 3 bits/bin, resulting in a descriptor of size 240 bits. The EHD is quite sensitive to

objects or scene distortions [87].

2.3.2 Texture

Texture-based features try to capture the characteristics of the image or image parts with

respect to changes in certain directions and the scale of the changes. This is most useful

for regions or images with homogeneous texture. Due to the imprecise understanding and

definition of texture, the research in texture-based features have larger variety than color-

based features. However, texture provides important information in image classification as

it describes the content of many real-world images such as fruit skin, clouds, trees, bricks,

and fabric etc. Hence, texture is an important feature in defining high-level semantics for

image retrieval purpose [87].

Texture features commonly used in image retrieval systems include spectral features,

such as features obtained using Gabor filtering [88], and the statistical features such as the
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six Tamura texture features [89]. Among the six Tamura features: coarseness, directional-

ity, regularity, contrast, line-likeness, contrast and roughness, the first three were found to

be more significant than the others. MPEG-7 has employed the regularity, directionality

and coarseness as the texture browsing descriptor. The Wold features of periodicity, ran-

domness and directionality have been proved to work well on Brodatz textures [90]. The

limitation of Tamura features is its inability at multiple resolutions to account for scale.

Wold feature is affected by image distortions such as scale and orientation variations due

to perspective distortion [91]. These features are proved to be less effective when applied

to natural scene image retrieval as texture regions in such images are not so structured

and homogeneous [91].

Recent measures for capturing the texture in the images are Gabor filters [88, 92]

and wavelets [93]. Perhaps, Gabor filters perform better as they correspond well to the

properties of the human visual cortex [94]. Other traditional texture descriptors contain

features derived from co-occurrence matrices [95], transform-based features [96, 97, 98].

2.3.3 Localized image features

Low-level features, such as color and texture, can be used on a global image level or on

a local image level. The general approach is to use partitioning of the image for local

feature extraction. Normally, image partitioning do not take into account any semantics

of the image itself. When allowing the user to choose image regions of interest (ROI)

[99], to delineate objects in the image [100] or when segmenting the image into areas with

similar properties [24, 25], the locally extracted features contain more information about

the underlying semantics.
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2.3.4 Region and shape features

Automated segmentation of images into objects is an unsolved research problem. Even in

fairly specialized domains, fully automated segmentation is often not easy to realize. In the

area of image retrieval, several systems attempt to perform an automatic segmentation of

the images before extracting image features [9, 34, 101]. To have an effective segmentation

of images using varied image databases the segmentation process is normally done based on

the color and texture properties of the image regions. Much has been written on medical

image segmentation with respect to browsing image repositories [34].

MPEG-7 standard has included three shape descriptors for the object-based image

retrieval [87]. First one is the 3-D shape descriptor, which is derived from 3-D meshes of the

shape surface. The second descriptor is for the region-based shape, which is derived from

Zernik moments. The third is for contour based shape, which is derived from Curvature

Scale Space (CSS) [86]. Although the CSS descriptor is invariant to translation, scaling

and rotation, it is sensitive to general distortions which can be resulted from objects taken

from different point of view. Mokhtarian and Abbasi have extended the CSS descriptor to

be robust to affine transform [15].

2.4 Similarity Metric

Previous techniques have used various distance measures to compare the feature vectors.

The most simple distance measure is the Euclidean Distance which is used in several early

works, including in [12]. A review of more complex ones can be found in [13]. Color based

techniques resort to some type of histogram matching (such as [102, 103, 104]).
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In case of region based features, image similarity is measured at two levels [87]. The

first is the region-level, where the distance between two regions based on their low-level

features is measured. The second is at the image-level, where the overall similarity of two

images which might contain different number of regions is measured. Most researchers

employ the Minkowski-type metric to define region distance. Suppose we have two regions

represented by two p dimensional vectors (x1, x2, ..., xp), (y1, y2, ..., yp), respectively. The

Minkowski metric is defined as

d(X,Y ) =

(
p∑

i=1

|xi − yi|r
)1/r

(2.1)

When r = 2, it is the well-known Euclidean distance (L2 distance). When r is 1, this

metric becomes Manhattan distance (L1 distance). Often weighted Minkowski distance

function is used which introduces weighting to identify important features

d(X,Y ) =

(
p∑

i=1

wi |xi − yi|r
)1/r

(2.2)

where wi , i = 1, ..., p is the weight applied to different features.

Other distance types are also used in image retrieval, such as the Canberra distance,

angular distance, Czekanowski coefficient [105], inner product, dice coefficient, cosine co-

efficient and Jaccard coefficient [106]. The overall similarity of two images is more difficult

to measure and there are two ways to do this [87].

1. One-One match: Here, each region in the query image is only allowed to match one

region in the target image and vice versa. Normally, each query region of the query

image is associated to a single best matched region in the target image. Then the
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overall similarity is defined as the weighted sum of the similarity between each query

region in the query image and its best matched region in the target image.

2. Many-Many match: Here, each region in the query image is allowed to match more

than one region in the target image and vise versa. A widely used method is the

Earth Mover Distance (EMD), such as [107]. EMD is a general and flexible metric. It

measures the minimal cost required to transform one distribution into another based

on a traditional transportation problem from linear optimization, for which efficient

algorithms are available. EMD matches perceptual similarity well and can be applied

to variable-length representations of distributions.

Due to its simplicity, Minkowski metric is widely used in the previous systems to mea-

sure distance. However, extensive experiments have shown that it is effective in modeling

perceptual similarity [108]. Measuring perceptual similarity is still a largely unanswered

question because the processing of the human knowledge is not fully understood. Recently,

researchers have suggested to use statistical learning-based approaches. The statistics (dis-

tribution) of the low-level features is largely unknown and often cannot be modeled hence

non-parametric approaches are used. For example in [109], cosine similarity measure be-

tween feature vectors of query image and database image, for a particular feature input, is

used which is based on probabilities of the multiclass SVM outputs.

Recently, a kind of statistical distance measure, namely the Bhattacharya distance

[110], is applied for semantics based learning. The distance between a query image Iq and

a database image Ij based on this representation [19] is defined as,

DS−correlation(Iq, Ij) =
1

8
(µq − µj)

T

[
(Σq + Σj)

2

]−1

(µq − µj) +
1

2
ln

∣∣∣ (Σq+Σj)

2

∣∣∣
√

|Σq| |Σj|
(2.3)
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where, µq and µj are the mean vectors of the local concept space and Σq and Σj are

the covariance matrices of Iq and Ij, respectively. The Equation 2.3 is composed of two

terms, the first one being the distance between the feature vectors, while the second term

gives the class separability due to the difference between the covariance matrices.

2.5 Handling of Semantics

As mentioned in the previous chapter, reducing semantic gap is important in achieving de-

sired performance from a CBIR system. All the visual features, and even features derived

from segmented regions, are fairly low-level compared to high level concepts that are con-

tained in the images. These visual features do not necessarily correspond to objects in the

images or the semantic concepts or structures that a user might be interested in. Several

articles speak of semantic or cognitive image retrieval (such as [60]). It is often required to

connect visual low-level features with textual high level features and hence, the annotation

of image collections for retrieval or for the combination with visual features for retrieval is

another active research area [111, 9, 82, 112]. Many problems such as the subjectiveness

of annotations need to be addressed even when working with restricted vocabularies.

According to Liu et. al. [87], the state-of-the-art techniques in reducing the semantic

gap can be classified in five categories as follows.

1. Using object ontology to define high-level concepts [113, 114, 115, 116].

2. Using supervised or unsupervised learning methods to associate low-level features

with query concepts [117, 9, 34, 111].
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3. Introducing RF into retrieval loop for continuous learning of users intention [34, 118,

119, 111, 120].

4. Generating semantic template (ST) to support high-level image retrieval [121].

5. Making use of both the textual information obtained from the web and the visual

content of images for Web image retrieval [112, 122].

2.5.1 Ontology

In many cases, semantics can be easily derived from any human language. For example,

sky can be described as upper, uniform, and blue region. In systems using such simple

semantics, initially different intervals are defined for the low level image features, with

each interval corresponding to an intermediate-level descriptor of images, for example, light

green, medium green, dark green. These descriptors form a simple vocabulary, the so-called

object-ontology which provides a qualitative definition of high-level query concepts [87].

Database images can be classified into different categories by mapping such descriptors to

high-level semantics (keywords) based on our knowledge [114, 115, 123, 124], for example,

sky can be defined as region of light blue (color), uniform (texture), and upper (spatial

location). A typical example of retrieval system using such an ontology-based system is

presented in [113]. In this system, each region of an image is described by its average color

in lab color space, and its position in vertical and horizontal axis, as well as its size and

shape. Quantization of color and texture feature is the key in such systems. To support

semantic-based image retrieval, a more effective and widely used method to quantize color

information is by color naming.

Recently, a technique for automatically extracting the image content information into
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MPEG-7 format and associating them to the existing domain ontologies is developed [116].

The validation experiments show that a high retrieval accuracy rate is obtained when all

the image descriptors are combined with an ontology while building the semantic metadata

for indexing images.

2.5.2 Supervised Learning

In order to handle semantics in the image retrieval, supervised learning schemes, such as

support vector machine (SVM) [112, 125, 119, 19] and Bayesian classifier [54, 126, 127],

are often used. Due to the strong foundation, SVM is used for object recognition and text

classification. Moreover, it is also considered a good candidate for learning semantics in

image retrieval systems. To learn multiple concepts, multi-class SVM is popular in recent

works, such as [109], where both natural and medical images are semantically classified in

a hierarchical framework. For the combined color and texture feature vector, the class or

concept probabilities are determined by the prediction of the multi-class SVM. In [128], an

SVM is employed for image annotation application, where binary SVM models are trained

for each of the 23 selected semantics. In the testing stage, unlabeled regions are fed into

each model. The concept from the model giving the highest positive result is associated

with the region.

Another widely used learning method is Bayesian classification. In [129], high-level con-

cepts of natural scenes are captured from low-level image features using binary Bayesian

classifier. Database images are automatically classified in various types, such as indoor/outdoor.

The outdoor images are further classified into various sub-classes, such as city/landscape.

In [130], Bayesian network is used for indoor/outdoor image classification.
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Recently, a boosting type framework is presented in [20] which uses images in the same

category as “similar” class and images in different categories as “dissimilar” class. Here,

two images in the training set are considered as similar if they match in semantic category or

appear visually related. The goal is to simultaneously preserve both the semantic relevance

as well as the visual similarity. For instance, two images could be defined to be similar

only if they belonged to the same semantic category or similarity could be defined based

on the images visual similarity according to the human perception.

Decision tree based techniques are also used to derive semantic features. Decision

tree based methods, such as ID3, C4.5, and CART, build a tree structure by recursively

partitioning the input attribute space into a set of non-overlapping spaces [131]. A set of

decision rules is obtained by following paths from the root of the tree to leaves. In [132],

the CART decision tree methodology is used to derive decision rules mapping between the

global color distribution and the semantic keywords, such as Sunset, Marine, Arid images

and Nocturne.

2.5.3 Unsupervised Learning

Unsupervised learning has no measurements of the outcome, rather the task is to find out

how the input feature are organized or clustered. Image clustering is a typical unsupervised

learning technique for retrieval purposes. It intends to group a set of image data in a way

to maximize the similarity within clusters and minimize the similarity among different

clusters. Each resulting cluster is associated with a class label and images within the same

cluster are assumed to be semantically similar among each other. The traditional k-means

clustering and its variations are often used for this task. In [133], k-means clustering is

applied to the low-level color features belonging to the training images. The measurement
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of variations within each cluster, is used to derive a set of mappings between the low-level

features and the textual characterization (keywords) of the corresponding cluster. The

derived mapping rules are used to index new untagged images added to the database.

In [19], self organizing maps (SOM) are used to represent images with automatically

generated local visual concept. Here, visual concepts depict the perceptually distinguish-

able color or texture patches in the local image regions, which may not have clear semantic

interpretation. For example, a predominant yellow color patch may be present in an image

consisting of sun or a sunflower. In this framework, a visual concept vocabulary (codebook)

is constructed by utilizing SOM. Subsequently, images are represented in a correlation and

spatial relationship based concept feature spaces. This is achieved by exploiting the lo-

cal neighborhood structure of the codebook, the local concept correlation statistics, and

spatial relationships in the images. Finally, the features are used by a weighted similar-

ity matching scheme, which is based on the relevance feedback framework. The feature

weights are computed by considering both the precision and the rank order information of

the top retrieved images of each representation, which adapts itself to individual searches

to produce effective results.

2.5.4 Relevance Feedback (RF)

The main idea behind relevance feedback is to refine the retrieval results by allowing the

user to teach the system by identifying good and bad results. In response, the system

is expected to modify its similarity matching to improve the results. A large number of

publications have appeared in the past to implement RF (such as [56, 54, 134, 135, 28,

136, 137, 138, 65, 139, 140, 118, 141]).
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In the literature, machine learning techniques have been used in relevance feedback as

well. SVM is often used to capture the concept of the query image by separating the rele-

vant images from the irrelevant images using a hyper-plane in a projected space. The main

advantage of SVM over other learning algorithms is its high generalization performance in

the absence of a priori knowledge. The ability of SVM to work with small training sets

is another advantage. In [142], SVMactive is proposed to use negative and non-labeled

samples, and to learn a query concept more efficiently.

In most of the RF-based systems, the similarity measurement is fixed while the impor-

tance or weight of each descriptor is estimated through the RF from the user’s feedback.

In contrast to this, a generalized nonlinear RF algorithm for image retrieval has been pro-

posed in [143]. In this approach, instead of adjusting the degree of importance of each

descriptor, the similarity measure itself is estimated through an online learning mecha-

nism. The method is based on the recursive optimal estimation of a nonlinear parametric

relation of known functional components. However, due to the problem of optimization

itself, the computation is expensive and algorithm may get trapped into a local minima.

Problem in RF is mainly due to the sparse training data and the non-availability or

un-willingness of the human operator to teach a system involving thousands of images.

In order to circumvent these problems, some researcher have proposed to use the user log

[37, 144, 138]. However, the human judgment is subjective and changes significantly from

one person to another.

33



2.6 Medical Image Retrieval

Medical domain is often cited as one of the principal application domain for CBIR technol-

ogy in terms of potential impact [3, 145, 146]. The goals of medical information systems

have often been defined to deliver the needed information at the right time, the right place

to the right persons thereby improving the quality and efficiency of care processes [38].

Clinical decision support techniques such as case-based reasoning [39] and evidence-

based medicine [40] may benefit greatly from efficient CBIR systems. Decision support

systems in radiology and computer-aided diagnostics for radiological practice are on the

rise which creates the need for powerful techniques for information retrieval [1]. The

general clinical benefit of imaging systems is demonstrated in [41]. In the near future,

purely visual image queries will not be able text-based methods, however, they have the

potential to complement the text-based search. A hybrid retrieval system is proposed in

[147].

For the clinical decision-making process, it is important to find similar images in various

modalities acquired in various stages of the disease progression. This information is partly

contained in the DICOM headers, however, DICOM headers have been found to contain a

fairly high rate of errors, for instance, error rates in the range of 16% have been reported

[148] for field anatomical regions.

Teaching and research in the healthcare domain may benefit significantly by the use

of CBIR as visually interesting images are found in the existing large repositories. Visual

features not only allow the retrieval of cases with similar pathologies but also help in the

retrieval of visually similar cases but with different pathologies.
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2.6.1 Uses in PACS and other Medical Databases

Implementation of CBIR systems in the medical domain is proposed in many papers [149].

Research articles describe the use of image retrieval within an image management frame-

work, without stating what has actually been implemented and what is still in the status

of ideas. Similarly, the integration into Picture Archiving and Communication Systems

(PACS) or other medical image databases has been proposed often, but implementation

details are generally rare [1].

Clinically relevant indexing and selective retrieval of biomedical images is explained in

[150]. Some examples are given but no implementation details. It is proposed to make

changes in the DICOM headers, which in principal ,is not allowed according to the standard.

Many articles propose semantic retrieval based on images that are segmented automatically

into objects and where diagnosis can be derived easily from the objects visual features.

PACS are the main software components to store and access the large amount of visual

data used in medical departments. Often, layered architectures exist for quick short-term

access and slow long-term retrieval. The general schema of a PACS system within the

hospital is shown in Figure 2.1. The Integrating the Healthcare Enterprise (IHE) standard

is aiming at the data integration in healthcare domain.

Indexing of the entire PACS causes problems due to the sheer amount of data that

needs to be processed for allowing the image access by content. The issue of the amount

of data that needs to be indexed is not discussed in any of the articles. In [151], an image

classification system is integrated with PACS. Here, it is possible to search for certain

anatomic regions, modalities or views of an image. A simple interface for coupling the

PACS and the image retrieval system is stated as well. The search key is based on the
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Figure 2.1: The basic position of a PACS within the information system environment in a
hospital [1]
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DICOM unique identifier (UIDs) of the images. There is a lack of publications describing

the integration of image retrieval into the workflow in a medical institution. However, the

use of content-based image retrieval is proposed in specialized collections. For example, in

[152], CBIR is proposed in the context of a case database containing images and attached

case descriptions.

2.6.2 Use in Various Medical Departments

The CBIR technology is proposed for various medical departments and specializations,

however, most of the applications are centered around images produced in radiology de-

partments [1]. A categorization of images used in various departments is described in [153].

The application of CBIR for CT brain scans is discussed in [154]. Mammographies are one

of the frequent application areas for classification and content-based search [155, 119, 156].

CBIR for pathology images is often proposed where color and texture properties can

easily be extracted. The tasks of a pathologist when searching for reference cases also

supports the potential use of an image retrieval system. As early as 1986, the screening of

cytological specimens is described in [157] and later extended towards CBIR in [158]. The

use of CBIR in the retrieval of tuberculosis smears is described in [159]. An application of

CBIR for histopathologic images is described in [160]. The retrieval of histologic images are

proposed in [161]. Retrieval of cardiology MR images is proposed in [162]. Classification of

dermatological images is explained in [163, 164]. Within the cardiology department, CBIR

has been used to discover stenosis images [165].

The retrieval of High Resolution Computed Tomography (HRCT) scans of the lung is

implemented in ASSERT project [166]. Here, the diagnostic quality assessed by using
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the proposed retrieval system showed a significant improvement. The justification for the

use of CBIR in this area is the hard decision-making task and the strong dependence of

the diagnoses from texture properties. Descriptions of HRCT lung images, their visual

features, and their pathologies are given in [167]. The retrieval of thorax radiographies is

proposed in [168]. The retrieval of these images is more difficult because several layers are

superposed and influence the visual content.

Many research papers propose the retrieval of medical images but the clinical evaluation

is rarely done. For instance, in [153, 169], MR images of the brain are used to demonstrate

the image search algorithms without mentioning the integration and evaluation. Table 2.2

lists several image retrieval systems proposed for various medical departments [1].

Table 2.2: Various image types and respective retrieval systems

Name Citations
HRCTs of the lung ASSERT

Functional PET FICBDS
Spine X-rays CBIR2, MIRS

Pathologic images IDEM, I-Browse, PathFinder, PathMaster
Mammographies APKS

Images from biology BioImage, BIRN
Dermatology MELDOQ, MEDS

Breast cancer biopsies BASS
Varied images I2C, IRMA, KMed, COBRA, MedGIFT, ImageEngine

2.6.3 Query Formulation

The query formulation based on visual features alone can be an issue as most systems

in CBIR use the query by example (QBE) paradigm which needs an appropriate starting

image for querying. This problem of missing starting image is known as the page zero
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problem [1]. If text is attached to the images, which is normally the case in medical

applications, then the text can be used as a starting point and once visually relevant

images have been found, subsequent queries can be entirely visual. In the medical decision-

making process, there are often images available for the current case and hence the problem

of starting point does not arises.

In case of segmented images, the user may restrict the query to a certain Region Of

Interest (ROI) [170], which may lead to more accurate retrieval results. The use of human

sketches is also proposed in medical applications [147, 170, 171]. Considering the difficulty

in exact drawing and the need for some artistic skills and time, this method will only be

applicable for a small subset of queries, such as tumor shapes or spine X-rays. For general

image retrieval tasks sketches are too time-consuming and often the retrieved results are

not precise enough.

2.6.4 Use of Text in Medical Domain

In order to search image content, many systems propose to use text from the patient

record [172] or studies [170]. Others researchers define a context-free grammar [165], a

standardized vocabulary for image description [160]. In [173] researchers used text from

radiology reports to transform it into concepts in the UMLS metathesaurus in order to

retrieve the images. The use of text for queries is efficient, however it may not qualify to

be termed as content-based as the text does not necessarily define an image content. The

textual information in medical records rather puts images into the context they have been

taken in. However, the combination of textual with visual features of the images does have

the potential to produce excellent results [147].
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2.6.5 Visual Features in Medical Domain

Images in the medical domain do not always contain color therefore the color properties are

not important. However, some images, such as in dermatology, does have color information.

Pathologic images are needed to be normalized as different staining methods can produce

different colors. Within the radiology department, the normalization of gray levels between

different modalities can cause problems when there is no exact reference point is available

for the density of the tissue. A book chapter in [174] illustrates the dependency of intensity

values of the brain tissues in various modalities. Here, the direct use of color and gray level

features are not useful and texture and shape features gain importance. In mammography,

denseness is used for finding small nodules [175]. It is interesting to compare various

texture descriptors. Many of the texture descriptors model the same information and will

most likely deliver similar results.

The shape features of image segments can be powerful depending on the accuracy

of the image segmentation algorithm. Most common shape descriptors are variants of

Fourier descriptors [99, 176] which allow to extract invariant descriptions. The use of

image segmentation also permits to exploit spatial relationships within the image. Image

segmentation based features are often proposed but consistent segmentation is difficult to

realize. Nevertheless, many proposed techniques, such as in [177], automatic segmentation

is proposed.

The use of eigenimages for the retrieval of medical images in analogy to eigenfaces for

face recognition is proposed in [178, 179]. These features can be used for classification

when a number of images for each class exist. Still, the features are purely statistical and

it is hard to actually explain the similarity of two images based on these features which
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can more easily be done using histogram intersection. In [170], signatures of the manually

segmented objects of the images are proposed to reduce the list of resulting images. Other

techniques include Tissue Time Activity Curve (TTAC), which is used in [180] for the

retrieval of PET images. These are not really image features, rather 1D temporal signals

that are compared.

Unfortunately, many articles those propose content based image queries do not explain

reasons for the selection of a specific feature set. Sometimes, only a vague description such

as general texture and color or gray level features are given, such as in [181, 153].

2.6.6 Recent Works

Recently, researchers have put effort to map the semantic domain to low-level visual fea-

tures using machine learning approaches, such as in [21, 109, 19, 20]. In [19], Bhattacharya

distance for statistical similarity is used. Here, for the combined color and texture fea-

ture vector, the class or concept probabilities are determined by using the prediction of a

multi-class SVM classifier. In [20], authors used images in the same category as “similar”

examples and images in different categories as “dissimilar” examples. These examples were

learned through a boosting based binary classification framework. In [182], researchers map

the low-level features to simple words (such as corner, texture etc) and subsequently used

machine learning approach to map these simple words to high-level concepts.

Moreover, recent researchers, such as [21], have investigate both supervised and un-

supervised learning techniques to associate low-level global image features (e.g., color,

texture, and edge histogram) in the projected PCA-based eigenspace with their high-level

semantic visual categories.
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2.6.7 Performance Evaluation

Generally, it is difficult to compare two retrieval systems and it is true for medical image

retrieval systems as well. However, there are several articles on the evaluation of imaging

systems in medicine, such as [41]. Many researchers often present screenshots of retrieval

results, which is not enough. Visual presentation of the result does not reveal a great deal

about the real performance of the system, which is subjective as well.

Many system evaluations show measures with a limited power for comparison. In [183],

the precision of the four highest ranked images is used without revealing the number of

actually relevant items. In [179] researchers measure the number of times a differently

scaled or rotated image retrieves the original which is not a fair performance evaluation.

In medical statistics commonly used measurements are sensitivity and specificity which are

defined as

sensitivity =
positive items classified as pos.

all positive items
(2.4)

specificity =
negative items classified as neg.

all negative items
(2.5)

Systems that use sensitivity and specificity include [184, 185]. These values can also be

presented in the form of a ROC curve which contains much more information. As many

of the presented systems use classifications of images, “accuracy” is often used to evaluate

the system [186, 187, 176] which can be defined as,

accuracy =
items classified correctly

all items classified
(2.6)
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It is important to mention that CBIR systems not only find similar images but also

classify the images. This is often more helpful as the practitioner must still judge the

retrieved cases and the reasons for retrieving the images are often clearer, whereas, classifi-

cation results are sometimes hard to detail and need to be explained. Precision and recall

are well known measurements used in the domain of information retrieval [188]. These are

also used in CBIR extensively [189] and defined as,

precision =
number of relevant items retrieved

number of items retrieved
(2.7)

recall =
number of relevant items retrieved

number of relevant items
(2.8)

Another rarely mentioned evaluation parameter is the retrieval speed which is important

for an interactive system. In [190] it is only mentioned that the speed is reduced from hours

to minutes for a set of 4000 images.

Performance evaluation metrics need to show the usefulness for application. Such an

evaluation does not only contain the validation of a technology but also the inclusion of

human factors into the process such as usability issues and acceptance of the technology

[191], which can only be obtained through real user tests.

Finally, it will be interesting to evaluate the clinical impact of the application in real

clinical practice [1]. Are these technologies able to reduce the length of stay of patients

or do they manage to reduce the use of human resources for the patient care? Studies on

clinical effects of image retrieval technologies might still be a distance away, however there

are several necessities, such as the definition of standard and freely available databases,

the definition of query topics for these databases and the definition of “gold standards”.
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2.7 Challenges in Medical Image Retrieval

Based on the discussion in the preceding sections, it is obvious that the image retrieval is

a difficult problem. In this section, some of the major challenges in the area of medical

image retrieval are outlined as follows:

1. Application of CBIR in medical domain is potentially useful.

2. Extraction of robust and precise visual features from medical images is a difficult

problem.

3. The use of CBIR in medical diagnostics is important though it is difficult to realize.

4. To be used as a diagnostic tool, the CBIR systems need to prove their performance

to be accepted by the clinicians.

5. In medical application domain many systems have been proposed where database

consists of images of various anatomical regions with variety of image modalities

(such as ImageCLEFmed database [42]). Such databases are useful as a benchmark

to test various approaches in a general image retrieval framework, however these

approaches are not useful for diagnostics support systems where high precision is

required.

6. Useful semantics for medical image retrieval needs to be established.
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2.8 Image Retrieval Application for Magnetic Reso-

nance (MR) Brain Images

This dissertation attempts to address the need of image retrieval in medical diagnostics.

The goal of diagnostic medical image retrieval is to provide diagnostic support by display-

ing relevant past cases, along with proven pathologies as ground truth [192]. Moreover,

medical image retrieval may also be useful as a training tool for medical students and

residents, follow-up studies, and for research purposes. Image registration is an important

technique in the area of medical image analysis. Generally, it is needed for combining

information from multiple imaging modalities, monitoring changes, image guided surgery

or compare individuals anatomies to standard atlas. A majority of literature reviewed dis-

cusses medical image retrieval and registration as separate topics with respect to techniques

and methodologies for a variety of image modalities.

Many of the proposed retrieval systems in the area of medical domain are adopted from

general image retrieval schemes which perform satisfactorily with databases consisting of

heterogeneous images of different modalities and anatomical regions. These systems use

imprecise segmentation and feature extraction techniques which are not suitable for precise

matching required for the retrieval of same 2D brain images (slices) in 3D volumes for

diagnostic support. Only a couple of research papers ([193, 194]) have been reported to

solve 2D slice retrieval problem. In [193] Karhunen-Loeve transform was used for the

retrieval of relevant slices in the eigenimage domain. However, this technique requires a

computationally expensive registration and intensity normalization step. Whereas, in [194],

a computationally expensive preprocessing step is needed where brain tissue is removed

from the skull and the mid-saggital plane is detected to compensate the alignment.
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The system proposed in this dissertation exploits the use of 2D registration for retrieval

purposes. Since mutual information provides high precision, it is used as a metric in the

proposed research. Moreover, the use of image registration based framework provides

desired properties of affine transform invariance and precise matching in an integrated

fashion.

2.8.1 Image Registration for Retrieval Applications

Image registration is an important technique in the area of medical image analysis. Gener-

ally, it is needed for combining information from multiple imaging modalities, monitoring

changes, guiding surgeries and comparing individuals anatomies to the standard atlas. Re-

cently, it has been realized that both retrieval and registration techniques in medical image

domain share some common steps and may complement each other [195, 196, 197].

In the context of fast and robust image retrieval, 2-D rigid registration, is preferred

against 3D non-rigid registration for the following reasons:

• Medical images are multimodal and heterogeneous with temporal properties. Hence,

multimodal image registration can be useful for medical image retrieval applications.

• Generally speaking, medical images are of high dimensionality, however these images

are often organized and visualized as collections of 2D slices. Thus, 2D registration is

a basic common denominator for image retrieval applications in the medical domain.

• The size of these images constitutes a challenge from the computational requirements

point of view. Image retrieval applications involve large number of images to be

processed.
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• Image retrieval applications demand fast, robust and fully automatic registration

techniques. Given the state-of-the-art, 2D rigid registration techniques appear to

be more suitable as deformable registration techniques require some form of manual

intervention [195].

• Deformable registration may easily fail in many situations due to image artifacts

[198].

Image registration, in multi-modal setting, is a difficult problem. Mutual information

(MI) based techniques have been quite successful in the area of medical image registration

[199, 200]. The multiresolution and wavelet based approaches tend to be more robust

[201, 202, 203, 204]. A wavelet based image retrieval is proposed for medical applications

in [195]. In [201], multiresolution representation of the image is used for registration.

There are several multiresolution based registration techniques proposed in the literature.

In [202], Gabor Filters were employed for multiresolution decomposition. In [203], remote

sensing images are registered using HL and LH coefficient of the wavelet decomposition.

In [204], low-pass Haar wavelet coefficients along with MI and Sum of Absolute Difference

(SAD) were used as registration metrics. Kullback-Leibler distance in multiresolution

setting is employed in [205], where pre-aligned training images were used.

In multi-modal scenario, image structure is more important than absolute gray levels.

Sometimes global count of MI can be misleading due to the absence of spatial information.

Computation of a similarity index based on MI with spatial information is promising

[199, 206]. Magnetic Resonance field inhomogeneity is a well known problem in MR images.

Normally, literature on medical image registration do not discuss it because the same

scanner is used to acquire images being registered. However, this assumption does not
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hold in a general image retrieval scenario. Consequently, we propose to use multiscale

wavelets with MI for fast, robust and automatic image registration.

It is tempting to “naively” argue that if registration is to be used in the retrieval process

then it should be performed between 3D volumes. There are several problems with this

approach:

1. Query information may contain only 2D slices and 3D volume may be not be available.

2. Even when query volume is available, it is not always possible to successfully reg-

ister two volumes automatically. Since 3D volumes registration involves affine or

deformable transformation, the registration will not be successful in case of large

mis-alignment or occlusion.

3. Precise 3D deformable registration requires a few semi-automatic preprocessing steps,

such as skull removal.

4. The registration between 3D volumes are computationally expensive.

Recent medical image registration techniques include multiscale edges [196], local Phase

coherence [207, 208] and complex phase order (CPOL) [209]. While multiscale edge based

technique use efficient Mallat’s wavelet [210], phase based techniques utilize Kovesi’s phase

congruency computation [211]. It is worth noting that wavelet based techniques are multi-

scale in nature and hence expected to be more robust than phase congruency based tech-

niques. Nevertheless, both the multiscale and the phase based techniques are attractive as

they highlight the structures being registered rather than the absolute gray-level.
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2.8.2 Slice Retrieval in 3D Brain Volumes

Many of the proposed retrieval systems in the area of medical domain are adopted from the

general image retrieval schemes which perform satisfactorily with databases consisting of

heterogeneous images belonging to different modalities and anatomical regions. Such sys-

tems use imprecise segmentation and feature extraction techniques which are not suitable

for very precise matching required for the retrieval of 2D images in 3D MR brain volumes.

Only a couple of research papers [193, 194] have attempted to solve the 2D MR slice

retrieval problem in the past. In [193], the Karhunen-Lo’eve transform is used for the re-

trieval of MR slices in the eigenimage domain. However, the proposed technique required a

computationally extensive registration and intensity normalization steps. In [194], compu-

tationally extensive preprocessing steps are used to remove the brain tissue and to detect

mid-saggital plane for compensating the alignment. These preprocessing steps work well in

the central portion of the brain but may yield erroneous results in other areas. Moreover,

these techniques are not tested in multimodal retrieval applications.

The author of this dissertation strongly feels that the 2D slice retrieval problem is

important to address the needs of image retrieval in medical diagnostic. Specifically, a

robust, multimodal and automatic retrieval system will be a significant contribution to the

research community.

49



Chapter 3

Multiscale Image Registration for

Retrieval Applications

3.1 Introduction

Image registration is the process of overlaying two or more images of the same scene taken

at different times, from different viewpoints, and/or by different sensors. It geometrically

aligns the reference and the sensed images. Differences between images arise due to different

imaging conditions. Image registration is a crucial step in all image analysis tasks in which

the final information is gained from the combination of various data sources, like in image

fusion, change detection, and multichannel image restoration [212].

One of the most exciting and the fastest growing research areas in the field of medical

imaging is image retrieval, with a particular interest in CBIR. Image retrieval involves

finding similar images from a large image database with the help of some key attributes

associated with images or features inherently contained in those images. There are few
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medical CBIR systems reported in the literature, such as ASSERT [213], CBIR2 [214],

IRMA [215], I-BROWSE [161] and Pathfinder [216].

In the medical domain, the goal of image retrieval is to provide diagnostic support

by displaying the relevant past cases, along with the proven pathologies as ground truths

[192]. Moreover, medical image retrieval may also be useful as a training tool for medical

students and residents, follow-up studies, and for the research purposes. Image registration

is an important technique in the area of medical image analysis. Generally, it is needed

for combining information from multiple imaging modalities, monitoring changes, guiding

surgeries and comparing an individual’s anatomies to the standard atlas.

Recently, it has been realized that both retrieval and registration techniques in the

medical domain share common image processing steps and require to be integrated in a

larger system to complement each other [195]. There are two broad categories of image

registration i.e. rigid and non-rigid (deformable) registration. Rigid registration only

involves translations and rotations but affine and deformable registration involves many

degrees of freedom such as scaling, shear and contour matching. In this chapter 1, a 2D

rigid registration is preferred for fast and robust image retrieval applications due to the

reasons mentioned in Chapter 2.

Image registration, particularly in the multi-modal setting, is a difficult problem. Mu-

tual information (MI), as a similarity measure, has been quite successful in the area of

medical image registration [199, 200]. Multiresolution and wavelet based approaches tend

to be more robust, such as proposed in [201, 202, 203, 204]. In [201], multiresolution

representation of the image is used for registration. Currently, there are several multireso-

1A part of this research has been presented at the International Conference on Bio-Medical Engineering
and Informatics (BMEI 2008) in China.
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lution based registration techniques in the literature. In [202], Gabor Filters are employed

for multiresolution decomposition, while in [203], remote sensing data is registered using

HL and LH coefficients of the wavelet representation. In [204], low-pass Haar wavelet co-

efficients along with MI and SAD (sum of absolute difference) are used for registration.

Kullback-Leibler distance in multiresolution setting is employed in [205], where pre-aligned

training images are used.

In the multi-modal scenario, the image structure is more important than the absolute

gray levels. It has been shown that sometimes the global count of the mutual information

can be misleading due to the absence of spatial information. The computation of a simi-

larity index based on MI with spatial information is shown to be promising [199, 206]. The

MR field inhomogeneity is a well know problem, however the literature on medical image

registration do not generally discuss about it because the same scanner acquires images

being registered. However, this assumption does not hold good in a general image retrieval

scenario.

The proposed work differs significantly from the previous research work in several ways.

First, it involves of the use of 2-D rigid registration for image retrieval applications in

the medical domain, rather than the use of 3-D deformable registration. Second, MI

in multiscale wavelet domain is employed to achieve fully automatic image registration.

Third, this scheme does not inherit the problem of local maxima caused (in MI profile)

by subsampling of the data at higher scales as discussed in [200, 201]. Fourth, we have

suggested using variable bin sizes (at multiple scales) to speed-up the computation.

The rest of this chapter is organized as follows. The second section provides a brief

overview of the multiscale wavelet decomposition; the third section discusses the use of

mutual information (MI) in wavelet decomposition; the fourth section presents the image
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registration based on greedy steepest gradient; the fifth section provides the results with

2-D images under rigid transformation. Finally, the sixth section concludes this chapter.

3.2 Multiscale Edge Representation and Decomposi-

tion

Multiscale edge representation of a 2-D signal provides characterization of singularity in an

image, namely, Lipschitz exponents [217, 210]. This representation is efficiently computed

at dyadic scales using separable low-pass and high-pass filters. In order to compute the de-

compositions at coarse scale, filters are upsampled instead of subsampling the image itself.

Hence, this scheme does not inherit the problem of local maxima caused by subsampling

of the data at higher scales. In [210], it has been shown that a close approximation of

original signal can be reconstructed from its wavelet transform modulus maxima. In [218]

this representation is used for the image registration using edge correlation as matching

criterion.

This section introduces the multiscale edge detection and representation through dyadic

wavelet transform. The same notations (as in the original work [210]) is used here for

obvious reasons. In two dimensions, a multiscale edge detection can be formalized through

a wavelet transform defined with respect to two wavelets ϕ1
2j(x, y) = 1

22j ϕ1
(

x
2j ,

y
2j

)
and

ϕ2
2j(x, y) = 1

22j ϕ2
(

x
2j ,

y
2j

)
. The wavelet transform of an image f(x, y) ∈ L2(R2) at the scale

has two components defined by, W 1
2jf(x, y) = f ∗ ϕ1

2j(x, y) and W 2
2jf(x, y) = f ∗ ϕ2

2j(x, y).

The 2-D dyadic wavelet transform of f(x, y) as the set of functions

Wf =
(
W 1

2jf(x, y),W 2
2jf(x, y)

)
j∈Z

.
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The magnitude of this wavelet decomposition is given as,

M2jf(x, y) =

√∣∣W 1
2jf(x, y)

∣∣2 +
∣∣W 2

2jf(x, y)
∣∣2 (3.1)

If ϕ1
2j(x, y) and ϕ2

2j(x, y) are quadratic spline functions (derivative of a cubic spline

function) then the wavelet transform can be implemented efficiently using simple sepa-

rable filters [210]. The implementation details of this wavelet transform are provided in

appendix A. Figure 3.1 shows a sample image and Figure 3.2 shows the multiscale wavelet

decompositions (W 1
2jf(x, y) ,W 1

2jf(x, y) and M2jf(x, y) column wise) at scales j = 1...4.

Here, fine details are available at the lower scales while coarse details can be observed at

the higher levels.

Figure 3.1: A sample image

3.3 Mutual Information in Multiscale Edge Decom-

position

In the area of medical imaging, various image modalities provide complementary informa-

tion. Here, images from different image modalities are often fused or combined to improve
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Figure 3.2: W 1
2jf(x, y) ,W 1

2jf(x, y) and M2jf(x, y) (column wise) of the image in Figure
3.1, with j = 1 to 5 levels (top to bottom).
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the diagnosis of the disease. Also different image modalities indicate same tissue with

different gray levels. For example, a brain structure may appear as bright in MR but dark

in SPECT scan [206]. Hence, matching the important structures in multiscale edges in the

image produces a good registration.

The Mutual Information (MI) between two random variables A and B is given as [219],

I(A,B) =
∑

a,b

PA,B(a, b)log
PA,B(a, b)

PA(a)PB(b)
(3.2)

where PA(a) and PB(b) are marginal probability distributions and PA,B(a, b) is the joint

probability distribution. MI is related to Shannon entropy as,

H(A,B) = H(A) + H(B) − H(A,B) (3.3)

where H(A) = −∑a PA(a)logPA(a) and H(A,B) = −∑a,b PA,B(a, b)logPA,B(a, b)

In practice, MI is computed from normalized joint histogram of the two images being

registered [200]. The joint histogram is computed using 64 bins at each scale. It should be

noted that using less number of bins also speeds up the computation of MI and hence the

registration process.

Figure 3.3 shows the profile of MI with rotation at various scales where the top de-

composition belongs to the finest resolution and the bottom decomposition belongs to the

lowest resolution. The joint histogram is computed using 64 bins at each scale. Here, it can

be observed that the capture range is larger at coarse scale while more precise localization

of peak of MI can be obtained at the finest level. Moreover, the slope of MI profile is larger

in the coarse scale. In retrieval applications, alignment may be required among the images
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belonging to the different locations (for example 5 slices off). In such cases, MI profile at

coarse scale may contain local maxima which may lead to the failure in registration, as

shown in Figure 3.4. This affect may be reduced by using less number of bins in the coarse

scale at the expense of smoothness of the peak, as shown in Figure 3.5.

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

1

2

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

2

4

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

2

4

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

2

4

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

5

Figure 3.3: Profile of MI with rotation (degrees) at various scales (top: Finest and Bottom:
Coarsest)

3.4 Multiscale Greedy Steepest Gradient Registra-

tion Technique

In this section, a novel multiscale optimization technique is proposed, which is suitable for

achieving the robust image registration in multiscale edge representation. Traditionally
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Figure 3.4: Images (T1 and T2) from different slices.
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Figure 3.5: MI profile (between the images shown in Fig. 3.4 with rotations using 256 bins
(top) and 4 bins (bottom) at coarsest scale.
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Powell’s optimization technique is used for MI based registration techniques [200]. How-

ever, we propose a variant of steepest gradient algorithm which is more robust and faster in

multiscale domain. Our approach is similar to [203], where, approximate search for max-

imum correlation is done at coarse scale and refinement is done at finer scales. However,

proposed approach is different than the previous techniques in several aspects. Firstly, we

have proposed a dyadic search space (consisting of both rotation and translation) for each

scale; and secondly, we have proposed a multiscale greedy steepest gradient optimization

which does not require explicit gradient computation. Moreover, we compute MI using

variable bin sizes for each level, thereby exploiting the multiscale wavelet decomposition.

Let ∆D and ∆R be the resolution in translation and rotation for the finest scale. For

the level j we set resolution for translation Sj
D = 2j−1∆D and Sj

R = 2j−1∆R for rotation.

If NB is the number of bins to be used at finest scale then we set number of bins at

level j as Sj
B = NB/2j−1. Let Ij

r be the magnitude of the wavelet decomposition of the

reference image (M2jfr(x, y)) at scale 2j and similarly Ij
f be the magnitude of the wavelet

decomposition of the floating image (M2jff (x, y)) at scale 2j. If 2D rigid transformation

of the floating image is denoted as T (Ij
f , x, y, θ) then mutual information between the two

can be written as H(Ij
r , T (Ij

f , x, y, θ)). Here x, y and θ are translations in X direction, Y

directions and rotation applied to the rigid transformer, respectively. We have used nearest

neighbor interpolation for speed considerations.

The optimization consists of two stages where first step is to search for the direction of

the maximum difference in MI in the neighborhood. This difference can be written as,

{xm, ym, θm} = argmax{H(Ij
r , T (Ij

f , x̂, ŷ, θ̂))

−H(Ij
r , T (Ij

f , x, y, θ))} (3.4)
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where x̂ = {x−Sj
D, x+Sj

D}, ŷ = {y−Sj
D, y+Sj

D} and θ̂ = {θ−Sj
R, θ+Sj

R}. The second stage

is the greedy ascent in the direction of steepest (maximum) gradient without resorting to

neighborhood search. If MI at the steepest direction {dx, dy, dθ} is H(Ij
r , T (Ij

f , xm, ym, θm))

then evaluations of MI is done the same direction if H(Ij
r , T (Ij

f , xm+dx, ym+dy, θm+dθ)) >

H(Ij
r , T (Ij

f , xm, ym, θm)). In general, this difference can be written as,

∆H = H(Ij
r , T (Ij

f , x + dx, y + dy, θ + dθ))

−H(Ij
r , T (Ij

f , x, y, θ)) (3.5)

This greedy movement in the steepest direction is continued until ∆H <= 0. Subse-

quently, the search moves to the next level 2j−1 (utilizing Ij−1
r and Ij−1

f ) till the neighbor-

hood search reaches to a local maxima. The pseudo code is described below.

1. Initialization: ∆D, ∆R and NB.

2. Compute M2jf(x, y) for both reference image fR(x, y) and floating image fF (x, y) at

each scale j = 1...L.

3. For each scale j = L....1,

• Compute: Sj
D, Sj

R and Sj
B.

• Set: Ij
r = M2jfr(x, y)

• Set: Ij
f = M2jff (x, y)

• Do search according to (3.4).

• Compute steepest direction {dx, dy, dθ}.

• Compute ∆H using (3.5).
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• If ∆H <= 0, Break.

• While ∆H > 0,

– Update x = x + dx, y = y + dy and θ = θ + dθ.

– Compute ∆H using (3.5).

– If ∆H <= 0, Break.

• End While,

4. End For

The greedy step in (3.5) is not optimal, however it provides speed improvement. This

algorithm works quite well due its multiscale nature. It should also be noted that the step

sizes are precomputed for the different scales and are not changed during the course of

optimization, which in turn provides simplicity for the implementation of the algorithm.

3.5 Registration Test Results

The test images are obtained from BrainWeb [220], a simulated MRI database at MNI,

Montreal, Canada. This database provides a synthetic volume with several options of

modalities, voxel sizes and noise levels. The size of the volumes are 181 × 217 × 181

with voxel size of 1mm × 1mm × 1mm. The multiscale decomposition is done at 5 levels

(L = 5). The initial parameters are setup as ∆D = 1 pixel (both x, y directions), ∆R = 0.5

degrees and NB = 256. The nearest neighborhood interpolation is used for the 2D rigid

transformation for speed considerations.

The performance of the registration algorithm is tested on AMD64 Dual Core CPU

with 2.8GHz and 3GB of RAM using MATLAB (R2008b) environment. Simulations are
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done by rotating the floating image in the range of 0 to 20 degrees and shifting by 0 to 8

pixels in both x and y directions. The reason for small range in translation trails is due the

fact that BrainWeb images does not have much empty spaces around. The performance of

T1-PD registration under noisy conditions are shown in Table 3.1. Here, Mean Absolute

Error (MAE) is used for the measurement of the registration accuracy.

Table 3.1: T1-PD Mean Absolute Error
%Noise Translation Rotation

Mean Variance Mean Variance

%3 0.4703 0.4082 0.0456 0.0207
%5 0.7841 0.7127 0.3207 0.1610
%7 1.2457 2.2535 0.7693 1.7542
%9 1.8452 3.2284 0.9322 1.9132

Table 3.2: Comparison of Registration Accuracy
Initial Proposed Nelder-Mead Powell

parameters

0.1,0.1,0.1 0.1433 9.4302 0.2013
1,1,1 0.1333 5.6246 0.2554
5,6,2 0.1333 0.4745 0.2978

-5,-9,14 0.1333 0.2554 0.1993
-5.5,-0.5,-8.5 0.3667 12.7806 0.3002

7,-7,20 0.1333 0.3385 0.2373

Table 3.3: Comparison of Registration Speed (Seconds)
Initial Proposed Nelder-Mead Powell

parameters

0.1,0.1,0.1 6.75 0.43 9.72
1,1,1 5.7 2.84 9.0
5,6,2 4.48 2.98 13.93

-5,-9,14 5.43 5.47 8.30
-5.5,-0.5,-8.5 5.45 1.88 7.94

7,-7,20 5.43 5.11 10.6
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Reference Image Floating Image

Registered Image Difference

Figure 3.6: PD-T1 registration results.

Reference Image Floating Image Registered Image

Reference Image Floating Image Registered Image

Figure 3.7: Multi-modal alignment results between different anatomical regions
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In Figure 3.6, a T1 floating image against PD reference image is registered and the

difference between the registered T1 image and the reference PD image is also shown.

The accuracy and speed of the proposed “greedy” steepest ascent algorithm is compared

against two well known optimization techniques, Nelder-Mead Simplex Method [221] and

Powell’s conjugate gradient method [222]. The same reference and floating image pair is

used for this comparison using different initial search parameters and the accuracy and

speed (seconds) are shown in the tables 3.2 and 3.3. The registration failures are indicated

by entries with the bold font. In Table 3.2, it can be observed that Nelder-Mead method

fails to register quite often and the accuracy of the proposed technique is consistently

better than the other methods. In Table 3.3, it can be observed that the speed of the

proposed technique is significantly better than Powell’s method which is widely used for

image registration tasks. It is worth mentioning that the Nelder-Mead and Powell methods

are used to register images directly, without employing the wavelet decomposition.

Normally, affine and non-rigid (deformable) registrations techniques are more accurate

than rigid registration techniques but are extremely slow. For example, demon-based affine

registration technique, presented in [223], took around 7 seconds to register two images of

256 × 256 pixels. On the other hand, deformable registration proposed in [224], took 238

seconds to register two images of 256 × 256 pixels on the same platform.

Another feature of the proposed technique is the ability to align nearby areas, which

is useful in image retrieval tasks. This requirement is not expected in the clinical image

registration process. Multi-modal alignment results between different anatomical regions

are shown in Figure 3.7.
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3.6 Conclusions

In this chapter, a 2D rigid, registration scheme for image retrieval applications is presented.

The main contribution in this chapter is the use of efficient multiscale representation in

image registration. This representation is robust against noise and MR field inhomogene-

ity and facilitates efficient multimodal image registration. Another significant contribution

is the development of multiscale registration scheme by exploiting the multiscale decom-

position and suggesting appropriate step and bin sizes. We provided a multiscale greedy

steepest gradient registration technique for the efficient implementation. The registration

results using the proposed optimization technique are also compared against the two well-

known optimization techniques. Simulation results demonstrate the high efficacy of the

approach under multi-modal and noisy environments.
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Chapter 4

Hierarchical Intersubject Multiscale

Image Retrieval in 3D Brain Volumes

4.1 Introduction

Many of the proposed retrieval systems in the medical domain have been adopted from

the techniques used in general image retrieval schemes. These techniques perform sat-

isfactorily with the databases consisting of heterogeneous images of different modalities

and anatomical regions. However, these systems are not suitable for the precise matching

required in the retrieval of 2D images in 3D volumes. Figure 4.1 depicts this challenging

problem, where even expert eye may fail. Only a couple of research papers [193, 194] have

been reported regarding the 2D slice retrieval problem. In [193], Karhunen-Loeve trans-

form is used for the retrieval of the relevant slice in the eigenimage domain. However, the

technique required a computationally expensive registration and intensity normalization

step. In [194], a computationally expensive preprocessing step is needed, where brain tis-
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sues are removed from the skull and the mid-saggital plane is detected to compensate for

the alignment. These preprocessing stages work well for the central portion of the brain,

however, such preprocessing provides erroneous for other areas of the brain. Moreover, this

technique has not been tested on multimodal scenarios. The proposed retrieval technique

in this chapter employs an efficient registration technique, which does not requires any

preprocessing stage 1.

Figure 4.1: T1 query slice#82 (top left), PD slice#81 (top right), PD slice#82 (bottom
left), PD slice#83 (bottom right)

In this chapter, a retrieval technique is proposed using fast 2D rigid registration, dis-

cussed in the previous chapter. The requirements for 2D slice retrieval can be listed as

follows:

1A part of this work has been presented at the IEEE Toronto International Conference - Science and
Technology for Humanity (TIC-STH 2009) in Toronto, Canada
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• Medical images are multimodal and heterogeneous with temporal properties. Hence

multimodal image registration is important for this retrieval application.

• The image registration should only allow 2D rigid (displacement and rotation) move-

ments. The use of a shear or a scale component will not help, as consecutive slices

are similar to each other.

• The registration technique should not be sensitive to signal variation across the image

due to MR field inhomogeneity.

• This image retrieval application expects to align images from different, albeit nearby

locations. This scenario is not expected in the general medical image registration.

• This image retrieval application demands a precise similarity metric.

• The retrieval time cannot be not more than a few minutes as the application will

defeat its purpose.

This chapter is organized in three sections where the next section introduces two fast

image retrieval techniques followed by results and conclusions.

4.2 Fast 2D Intersubject Slice Retrieval in 3D Volume

In the previous chapter, wavelet based 2D image registration was found to be robust and

precise. In this chapter, a novel scheme is presented for intersubject image retrieval. Here,

the term “intersubject” means that both the query image slice and the 3D volume belong

to the same subject. In this section, mutual information (MI) is proposed as a metric for

retrieving 2D slices from 3D volume in the multiscale domain. Here retrieval problem is
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attempted by maximizing MI between query image and the candidate slices from target

3D volume. The profile of MI (after registration) between saggital query and saggital

slices of 3D volume at various wavelet scales is shown in Figure 4.2. In this figure, query

image is 100th slice and the MI profile (in y-direction) is shown with slice index of the

target 3D volume (in x-direction). Since 2D correlation is an established technique for

pattern recognition, the profile of correlation between saggital query and saggital slices of

3D volume at various wavelet scales is shown in Figure 4.3. From this figure, it can be

concluded that 2D correlation is not a suitable metric for the wavelet based multimodal

image retrieval. It can be seen in Figure 4.2 that the MI maximizes near the true result.
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Figure 4.2: Profile of MI between saggital query (100th slice) and all the slices of 3D volume
at various wavelet scales

Here, a multiscale retrieval technique is proposed, which involves multiple 2D rigid

registration attempts between the query slice and candidate slices in the target volume.

In order to speed-up the retrieval process, the 2D rigid registration are attempted with

the candidate slices at large slice interval in coarse scale. The candidate slice interval is
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Figure 4.3: Profile of 2D correlation between saggital query and slices of 3D volume at
various wavelet scales

reduced progressively as the retrieval process moves in finer scales. Let ∆S = 1 be the

slice step size for the finest scale. For the level j, the step size is set at Rj
S = 2j−1∆S. The

slice index search range at next fine scale j is set as [Rj+1
S − Rj

S, Rj+1
S + Rj

S]. Here, Rj+1
S

is search results from previous scale. At coarsest scale, the algorithm does search until

(Hi − Hmax)/Hi > 0.4 with slice index step size of Rj
S. Here Hi is the MI between the

query image and the ith candidate image slice in the target volume after the registration.

The peak of MI during the retrieval process, in the current scale, is Hmax. The slice index

at which MI is maximum is used to start the search at the next finer scale.

4.2.1 Retrieval using Full Registration at All Scales (FRAS)

In this technique, full registration (involving decompositions from all the scales) is done

at larger interval of the slice indices at coarse scale and the slice interval is reduced as the
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search progressed in the finer scales. Let ∆S = 1 be the slice step size for the finest scale.

Then for the level j the step size is set at Rj
S = 2j−1∆S. The slice index search range at

the next fine scale j is only [kj+1−Rj
S, kj+1 +Rj

S]. Here, kj+1 is the search results from the

previous scale. Let I ij
r be the magnitude of the wavelet decomposition of the ith candidate

image among N , 2D slices (M2jfri(x, y)) at scale 2j and similarly Ij
q be the magnitude

of the wavelet decomposition of the query (floating) image (M2jfq(x, y)) at scale 2j. The

registration process between Ij
q and I ij

r can be described as,

< Hij, tij >= R
sij

Ci
(4.1)

where Ci = {Ij
q , I

ij
r } are the pairs used for image registration using sij as starting search

parameter vector. Outputs of the registration process are MI (Hij) and the solution vector

(tij).

At coarsest scale the algorithm performs the search in the whole 3D volume with slice

index step size of Rj
S, where registration is attempted between query image and candidate

slices in the target 3D volume. Here, HiL is the MI between the registered slices. Due

to the symmetry between the right and the left brain hemispheres in saggital view, the

retrieved result will contain slices from either of the two hemispheres. Consequently, the

algorithm tries to detect two peaks in MI profile after the registration at coarsest scale. If

the top two MI measurements after registration are HmL and HnL and corresponding slice

indices are m and n then algorithm considers n as a valid index to be searched according

to the following criterion.

DF > 22 & {(m < MD & n > MD) | (m > MD & n < MD)} (4.2)
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where DF = 100× (HmL−HnL)/HmL and MD is the index of the mid-slice of the volume.

The value of 22 is selected after extensive simulations. If the equation 4.2 is satisfied then

algorithm searches at slice index at n along with m at finer scales. In the following, pseudo

code is provided.

1. Initialization: s1L=[0,0,0], ∆S, MaxMI = 0, k2Flag = 0.

2. Compute Ij
q for query image and all 2D slices of target volume I ij

r at each i and j.

3. For j = L....1,

• Compute: Rj
S.

• If j = L,

– Register Ij
q with I ij

r slice with index in steps of Rj
S using s1L = [0, 0, 0] as

initial search parameter.

– kL = sort(< HiL >,′ descend′)

– m = kL(1) and n = kL(2)

– Compute DF = 100 × (HmL − HnL)/HmL

– If Eqn. 4.2 is TRUE

– Set k2Flag = 1

– Endif

• Else,

– Register Ij
q with I ij

r slice index m in step of Rj
S only in the range of [kj+1 −

Rj
S, kj+1 + Rj

S].

– kj = argmax(< Hij >)
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– Set m = kj

• End if,

4. End For,

5. m is the first solution.

6. If k2Flag == 1,

• For j = L − 1....1,

– Compute: Rj
S.

∗ Register Ij
q with I ij

r slice index n in step of Rj
S only in the range of

[kj+1 − Rj
S, kj+1 + Rj

S].

∗ kj = argmax(< Hij >)

∗ Set n = kj

– End if,

• End For,

• n is the second solution.

7. End if,

A description of the retrieval scheme for L = 3 for two levels (3 and 2) is shown in

Figure 4.4. In this figure, the WTM block computes magnitude of the wavelet transform

for query image. The processing for the finest scale j = 1 is identical to the processing for

scale j = 2 and hence not shown here. Here, it should be noted that index step size Rj
S

is 4 and 2 for levels 3 and 2, respectively. In order to speedup the retrieval process, the
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Figure 4.4: Description of FRAS retrieval scheme for L = 3 for j = {3, 2}
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initial transformation parameters for the registration among successive slices are set to the

previous registration result.

Figure 4.5 shows a retrieval result using a 2D slice of MR T1 sequence as query image

from BrainWeb [220] image dataset. Both query and 3D target volume are taken from 9%

noise-level (noise relative to the brightest tissue). The retrieval is done on a MR Proton

Density (PD) volume and the corresponding retrieved PD slice is also shown.

Query Retrieved

Registered Difference

Figure 4.5: A T1 query slice, retrieved corresponding PD slice (from 3D, PD volume) with
9% noise-level. The bottom row shows the registration result.

In order to evaluate the retrieval performance, the Mean Absolute Retrieval Error

(MAE) for N retrieval trails is defined as,

EMAE =

∑N
i=1 min{|Sm(i) − St(i)| , |Sn(i) − St(i)|}

N
(4.3)
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where Sm and Sn are the indices of the retrieved slice and St true (correct) retrieval slice.

Here, the MAE metric effectively computes the average retrieval error in the retrieved

slice indices. Metrics based on squared error are not suitable because they cannot directly

relate the error with slice index. Performance of the algorithm is tested on AMD64 Dual

Core CPU with 2.8GHz and 3GB of RAM using MATLAB (R2008b) environment. In

Table 4.1 the retrieval performance results are provided for retrieval of the T1 slices in PD

3D volume under various noise conditions. Since BrainWeb [220] images do not have much

empty space, translations could not be employed. Consequently, all the query images are

pre-rotated randomly in the range of 0 to 10 degrees. The retrieval is tested under various

noise conditions using the 3D volumes available at BrainWeb [220] website. This database

provides one synthetic volume with several options to choose regarding modalities, voxel

sizes and noise levels. The size of the volumes are 181 × 217 × 181 with voxel size of

1mm × 1mm × 1mm. In order to limit the number trails, both the query and the target

3D volumes are used from same noise-level. In all the simulations, results show EMAE < 2,

indicating that the retrieval error, on the average, is limited to one slice. In Table 4.2 the

retrieval timings are provided for the same set of simulations. In Table 4.3, performance

is shown for multimodal scenario among the transverse slices with 9% noise-level.

Table 4.1: Mean Absolute Retrieval Error T1-PD under noise (FRAS)
Mode EMAE(3%) EMAE(5%) EMAE(7%) EMAE(9%)

Transverse 0.1294 0.5529 0.7529 0.9294
Saggital 0.0000 0.0993 0.3901 0.7234
Coronal 0.4241 0.6073 0.8901 1.1466
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Table 4.2: Mean Retrieval Time (seconds) T1-PD under noise (FRAS)
Mode EMAE(3%) EMAE(5%) EMAE(7%) EMAE(9%)

Transverse 111 108 105 102
Saggital 127 121 122 124
Coronal 127 129 125 119

Table 4.3: Multimodal Performance with 9% noise (Transverse) (FRAS)
Mode EMAE Mean Retrieval Time (Sec.)

PD - T1 1.2765 105
T1 - PD 0.9294 102
T2 - T1 0.7647 97
T1 - T2 1.9353 104
PD - T2 0.9529 101
T2 - PD 0.3588 96

4.2.2 Retrieval using Partial Registration at Each Scale (PRES)

This technique uses a registration, that requires coarse optimization step sizes and uti-

lizes coarse level wavelet decomposition, while it iteratively uses finer registration for the

retrieval in finer scales. This approach is extremely rapid as compared to the previous

retrieval algorithm (FRAS). Let I ij
r be the magnitude of the wavelet decomposition of the

ith candidate image among N , 2D slices (M2jfri(x, y)) at scale 2j and similarly Ij
q be the

magnitude of the wavelet decomposition of the query (floating) image (M2jfq(x, y)) at scale

2j. Then the partial registration at level 2j between Ij
q and I ij

r can be described as,

< Hij, tij >= P
sij

jCi
(4.4)

where Ci = {Ij
q , I

ij
r } are the pairs used for registration using sij as starting search

parameter vector. Output of the registration process are Hij (MI) and solution vector tij.

The partial registration Pj is achieved by registering wavelet decompositions from a given
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level. The pseudo code of the registration algorithm can be described as follows.

1. Initialization: ∆D, ∆R, NB and L.

2. Compute M2jf(x, y) for both reference image fR(x, y) and floating image fF (x, y)

only at scale j = L.

3. Set j = L,

• Compute: Sj
D, Sj

R and Sj
B.

• Set: Ij
r = M2jfr(x, y)

• Set: Ij
f = M2jff (x, y)

• Do search according to (3.4).

• Compute steepest direction {dx, dy, dθ}.

• Compute ∆H using (3.5).

• If ∆H <= 0, Break.

• While ∆H > 0,

– Update x = x + dx, y = y + dy and θ = θ + dθ.

– Compute ∆H using (3.5).

– If ∆H <= 0, Break.

• End While,

4. Finish

Similar to equation 4.1, the partial registration process between Ij
q and I ij

r , at level 2j,

can be described as,

< Hij, tij >= R
sij

jCi
(4.5)
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where Ci = {Ij
q , I

ij
r } are the pairs used for registration using sij as starting search

parameter vector. Output of the registration process are Hij (MI) and solution vector tij.

The retrieval algorithm starts with coarsest scale L (lowest resolution) utilizing coarse

registration between the wavelet decompositions at level 2L and subsequently moves to-

wards the finer scale. At coarsest scale, the algorithm does search the whole 3D volume

with slice index step size of Rj
LS, where partial registration is done between the wavelet

decompositions of query image and the 2D slices in the target 3D volume. Here HiL is the

MI between the registered slices. Similar to the FRAS technique, the algorithm tries to

detect two peaks in MI profile after the registration at the coarsest scale. If the top two MI

measurements after registration are HmL and HnL and corresponding slice indices are m

and n then algorithm considers n as valid index to be searched according to the criterion in

4.2. Since this approach is fast we employed tri-linear interpolation (as opposed to nearest

neighborhood in FRAS) for the registration.

In Table 4.4, the retrieval performance is provided for the retrieval of T1 slices in PD

volume under various noise conditions. Here, all the query images are pre-rotated by

randomly in the range of 0 to 10 degrees. The simulation results show that EMAE < 2,

indicating that the retrieval error in the proposed technique, on the average, is limited

to one slice. In Table 4.5, the retrieval timings are provided for the same experiment. In

Table 4.6, performance are shown in multimodal (T1, T2 and PD) scenario with transverse

slices under 9% noise-level. The retrieval accuracy is better than FRAS due to the use

of tri-linear interpolation in the registration process. This technique is generally 5 times

faster than the FRAS technique.
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Table 4.4: Mean Absolute Retrieval Error T1-PD under noise (PRES)
Mode EMAE(3%) EMAE(5%) EMAE(7%) EMAE(9%)

Transverse 0.0294 0.3235 0.5235 0.7412
Saggital 0.0000 0.0284 0.3191 0.5532
Coronal 0.3403 0.5026 0.5079 1.0209

Table 4.5: Mean Retrieval Time (seconds) T1-PD under noise (PRES)
Mode EMAE(3%) EMAE(5%) EMAE(7%) EMAE(9%)

Transverse 22 22 20 20
Saggital 27 25 25 25
Coronal 25 23 22 21

Table 4.6: Multimodal Performance with 9% noise (Transverse) (PRES)
Mode EMAE Mean Retrieval Time (Sec.)

PD - T1 0.8529 19
T1 - PD 0.7412 20
T2 - T1 0.7353 19
T1 - T2 1.6176 22
PD - T2 1.4882 20
T2 - PD 0.2412 19
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4.3 Conclusions

In this chapter, a novel multimodal, multiscale, wavelet-based technique is proposed for 2D

slice retrieval in 3D Magnetic Resonance (MR) brain volumes. Here the main contribution

is the use of a multiscale registration scheme for retrieval of MR images. The target

application domain for the proposed retrieval scheme is diagnostic and decision support,

which is another contribution. For efficient retrieval of relevant 2D slices two novel MI based

search schemes are presented. The first retrieval technique (FRAS) utilizes full registration,

utilizing all decomposition levels, at each level of retrieval. Whereas, the second technique

(PRES) starts with coarse registration using a coarse level decomposition and iteratively

utilizes finer registration using finer levels of decompositions. We have found that the

PRES technique is generally five times faster than the FRAS approach, while maintaining

similar error rates. The proposed retrieval algorithms are tested under noisy conditions

and the experiments show promising results.
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Chapter 5

Semantic Assisted Intersubject

Image Retrieval in 3D Brain Volumes

5.1 Introduction

In the previous chapter, a technique for wavelet based image retrieval in 3D MR brain

volumes was presented. In this chapter, a novel semantic assisted scheme is presented for

intersubject retrieval. Here, the term “intersubject” means that both the query image slice

and the 3D volume belong to the same subject. This technique essentially shortens the

retrieval time by first associating the incoming query image to a specific area of the brain

and then executing the search in that limited area. This specific area of the brain is termed

as “Semantic Region”, a term inspired by the lobes of the human brain. The technique

presented in this chapter associates the query image with one of the semantic regions, while

speeding up the retrieval time simultaneously. Here, the first stage of associating the query

image to a particular semantic region is termed as “classification” to distinguish it from
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the retrieval part. The proposed technique not only retrieves 2D slice from 3D volumes

but also classifies the 2D slice to a semantic region as well, which is the major contribution

in this chapter.

The rest of this chapter is organized as follow. The second section introduces the

semantic regions in the human cerebral cortex; the third section briefly introduces support

vector machines (SVM); the fourth section provides the implementation details of the

semantic classification in the retrieval scenario; the fifth section presents the overall strategy

for the retrieval, which is supported by extensive simulation results for both healthy and

MS patients. Finally, the sixth section concludes this chapter.

5.2 Semantic Regions in Human Cerebral Cortex

The anatomy of the human cerebral cortex is studied thoroughly by dividing it into four

major lobes. Figure 5.1 depicts these lobes [225]. Here, it is obvious that these lobes are

highly irregular and hence extremely difficult for automatic parcellation. However, there

are some semi-automatic techniques developed for clinical research, such as in [226].

Figures 5.2, 5.3 and 5.4 show the percentage amount of brain matter belonging to

various lobes in transverse, coronal and saggital views, respectively. The use of millimeters

(instead of pixels) ensures consistency in measurements with different scanner resolutions.

Obviously, the brain lobes are highly irregular and overlap considerably and hence a

2D image slice in a specific view can be associated to more than one lobe simultaneously.

Moreover, in the saggital view, various lobes fully overlap each other due the symmetry

between left and right hemispheres of the brain. Consequently, the semantic classification

of the 2D images slices in this view is not attempted.
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Figure 5.1: Cerebral cortex of the human brain showing the 4 major lobes
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Figure 5.2: Percentage lobe volumes in Transverse view
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Figure 5.4: Percentage lobe volumes in Saggital view
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5.3 Introduction to Support Vector Machines (SVM)

Support Vector Machine (SVM) is a popular technique among non-parametric learning

techniques. This technique was first introduced by Boser [227] and Vapnik [228] in 1992

and 1998, respectively. Though, there are several known implementations of SVM available

in the research community, in this work “LIBSVM” [229] is used exclusively. This library

is the most popular implementation of SVM available in public domain.

A support vector machine constructs a hyperplane (or a set of hyperplanes) in a hyper-

dimensional space, which is used for classification and regression tasks. A good separation

is achieved by the hyperplane which has the largest distance to the nearest training data

points of any given class because the larger the margin the lower the generalization error of

the classifier. In the following subsections, an introductory treatment from [229] is provided

for the sake of completeness and more in depth treatment can be found in [228].

5.3.1 C-Support Vector Classification (C-SVC)

Given the training vectors xi ∈ Rn, i = 1, 2, ..., l, in two classes and a vector y ∈ Rl such

that yi ∈ {1,−1}, C-SVC solves the following problem:

min
w,b,ξ

1
2
wT w + C

∑l
i=1 ξi (5.1)

subject to yi(w
T φ(xi) + b) ≥ 1 − ξi
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Its dual is

min
α

1
2
αT Qα − eT α

subject to yT α = 0

0 ≤ αi ≤ C, i = 1, ..., l (5.2)

where e is the vector of all ones, C > 0 is the upper bound, Q is an l × l positive

semidefinite matrix, Q ≡ yiyjK(xi, xj), and K(xi, xj) ≡ φ(xi)
T φ(xj) is the kernel. Here

training vectors xi are mapped into a higher dimensional space by the function φ. The

decision function is

sgn

(
l∑

i=1

yiαiK(xi, xj) + b

)
(5.3)

Traditionally, an SVM solves two class problem, however for this work multiclass SVM is

needed as there are more than two semantic lobes in the brain. In the following subsection,

an extension to the multiclass SVM is introduced.

5.3.2 Multiclass SVM

SVM was originally designed for binary classification problems. However, when dealing

with several classes one needs an appropriate multi-class method. As two-class or binary

classification problems are much easier to solve, a number of methods have been proposed

for its extension to multi-class problems [230, 231].

Here aim is to assign labels to the instances by using support vector machines, where

the labels are drawn from a finite set of elements. One way to achieve this is to reduce

the single multiclass problem into multiple binary classification problems. Each of these
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problems produces a binary classifier, which is supposed to produce an output function

that gives relatively higher values for samples from the positive class and relatively small

values for the samples belonging to the negative class. There are generally two methods

to build such binary classifiers, where each classifier discriminates (i) between every pair

of classes (one-versus-one) or (ii) one of the labels to the rest (one-versus-all). The first

method uses L(L − 1)/2 binary classifiers for L number of classes, each of which provides

a partial decision for classifying a data point. During the testing of a feature x, each of

the L(L− 1)/2 classifiers votes for one class. The winning class is the one with the largest

number of accumulated votes. On the other hand, one against the others method compares

a given class with all the others put together. This basically constructs L hyperplanes

where each hyperplane separates one class from the other classes. In this way, it generates

L decision functions and an observation x is mapped to a class with the largest decision

function. In [230], it is shown that the one-versus-one strategy is more suitable for practical

reasons.

In LIBSVM, one-versus-one approach is adopted which is proposed by Knerr et. al.

[232]. For training data from the ith and jth classes, two-class classification problem is

solved as follows,

min
wij ,bij ,ξij

1
2
(wij)

T
wij + C

∑l
i=1 (ξij)t

subject to (wij)
T

φ(xt) + bij) ≥ 1 − ξij
t , if xt in the ith class,

(wij)
T

φ(xt) + bij) ≤ −1 + ξij
t , if xt in the jth class,

ξij
t ≥ 0.

A voting strategy is used in the classification process, where each binary classification is
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considered to be a voting process where votes can be cast for all the data points x. Finally,

a data point xi is designated to be in a class with maximum number of votes. When two

classes have equal amount of votes, the smallest index is selected. A detailed comparative

study on the selection criterion can be found in [230].

5.4 Semantic Classification of Brain Lobes

In this section, a novel technique is introduced for the classification of 2D images into

various semantic lobes. This technique involves three steps as follows:

1. Feature Extraction: A translation and rotation invariant feature set is extracted in

the wavelet domain.

2. Training: A multi-class SVM based training is used to produce a model.

3. Classification: A multi-class SVM model, produced in the previous stage, is used for

associating the incoming image slice to a specific semantic region.

Justifications for the use of SVM in this work is provided in appendix C.

5.4.1 Feature Extraction in Multiscale domain

In the absence of any pre-registration, it is imperative to have translation and rotation

invariant feature set. There are lots of feature extraction techniques reported in the liter-

ature, however only a few can be applied in wavelet based mutliscale domain. Most of the

feature extraction techniques produce a large feature set, which are cumbersome for train-

ing and matching. Many feature extraction techniques require computationally expensive
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preprocessing steps. In this work, a fast, novel and simple feature extraction technique in

wavelet domain is proposed.

Figure 5.5: Feature map

Figure 5.5 depicts a pre-defined feature map where each point indicates the sample

location of pixel in M2jf(x, y) (defined in eqn. 3.1). The feature set consists of grey

scale values of M2jf(x, y), sampled circularly starting from the outer most circle. This

scheme samples the wavelet transform magnitude more densely near the center which is

a desirable property for MR brain images. This kind of sampling has origin in log-polar

transformation used in RF coil design for Nuclear Magnetic Resonance (NMR) [233]. The

Fourier transform of this sampling scheme contains Bessel functions of the order of samples

taken in the N angular directions as follows,

SN(X,Y ) =
∫ rmax

0

∑∞

n=−∞ inJn(2πrR)einΘrdr,

n = 0,±2N,±4N...., (5.4)
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Derivation of this equation is quite involved and is presented in appendix B. The presence

of Bessel functions of various order captures a range of frequencies by the proposed feature

map. There are two components of this feature map, viz. angular interval and radial

interval. The angular interval is at 2π/48 radians and radial interval in 5 mm. Finally,

each image produces a feature vector of 48 × 18 = 864 length.

There is one condition in the proposed feature map for achieving translation and ro-

tation invariance. A “true” translation and rotation invariance can be achieved only if

the center of the feature map coincides with the center of object in the image. This is

achieved by automatically detecting the center of the object by thresholding the incoming

image and averaging the rows and columns positions separately. In practice, the feature

extraction technique is not sensitive to this threshold and in all the simulations a threshold

value of 25 is used.

The proposed feature extraction scheme is compared against one of the best known

feature extraction technique, namely “SIFT” [234]. To compare the proposed feature

extraction scheme with “SIFT”, a 2D query image from PD sequence is used to retrieve

similar slice in a 3D volume of T2 sequence. The SIFT technique is applied without

any preprocessing of the images and without any modifications to the original algorithm.

Matching is done using the compiled executable from the original author. The proposed

feature extraction technique is applied to the M24f(x, y), i.e. the coarsest scale. For the

proposed scheme matching is done using simple Euclidean distance metric. Figure 5.6

shows the retrieval performance between the proposed extraction technique (top) and the

SIFT (bottom) feature extraction.

Obviously, performance is much better in case of proposed algorithm. Moreover, re-

trieval time (feature extraction and matching) in case of proposed algorithm is 350 times
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Figure 5.6: Absolute Error comparison between proposed (top) and the SIFT (bottom)
feature extraction scheme.

94



faster than SIFT algorithm. This clearly shows that the proposed feature extraction algo-

rithm is suitable for the retrieval of multi-modal images in the wavelet domain.

5.4.2 SVM based Training of Semantic Classes

Here, the main idea is to divide the 3D MR brain volume into semantically distinct regions.

The brain lobes have irregular shapes and overlap significantly in transverse and coronal

perspectives. Since SVM based classification requires distinct class labels, one feature vec-

tor cannot be associated with more than one class. Consequently, a new term Semantic

Region is introduced to differentiate it from brain lobe. Though, Semantic Region is in-

spired from brain lobe, it is a non-overlapping and well defined region when viewed from

a single perspective.

Based on Figure 5.2, the three semantic regions are shown in the Figure 5.7 and are

defined in Table 5.1 for transverse view. Similarly, Figure 5.8 shows the semantic regions

in coronal view and the Table 5.2 defines the training classes for coronal view based on

Figure 5.3. In these tables the reference (origin) is a the center of 3D brain volume. The

center of the 3D volume is found by averaging the 3D coordinates of voxels belonging to

the gray-level greater than a threshold. In all the simulations a threshold value of 25 is

used.

Table 5.1: Semantic Regions in transverse view
Semantic Region Start (mm) End (mm)

Temporal first -5
Occipatal -6 24
Frontal 25 last

It can be observed from Figure 5.4 that all the lobes overlap between right and left

95



Temporal

Occipatal

Frontal
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Figure 5.8: Semantic Regions in coronal view
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Table 5.2: Semantic Regions in coronal view
Semantic Region Start (mm) End (mm)

Occipatal first -26
Parietal -27 2
Frontal 3 last

hemisphere in saggital view and hence it is not possible to train the classifier across right

and left hemisphere. Consequently, retrieval based on “Semantic Region” is not attempted

in the saggital view. Nevertheless, the retrieval of 2D slices from saggital view can be

accomplished using PRES technique alone, presented in the last chapter.

Separate training process is adopted for each pair of modality. For example, for the

training of modality pair PD-T1, the training images are taken from both the PD and

T1 volumes. Duplicate training is avoided by using the same PD-T1 trained model for

both PD-T1 and T1-PD classification. The training data is obtained by subsampling

proximately 20% feature vectors from the whole feature set belonging to both modalities.

Moreover, only volumes belonging to most noisy dataset (9% noise level) is used in the

training set and the same model is used in the classification attempts for other noise-levels.

The LIBSVM library is used to train the SVM models using C-SVC scheme discussed

earlier. Since the dimension of the feature set is large, linear kernel ( K(xi, xj) ≡ xT
i xj) is

found to be suitable, both in terms of accuracy and speed.
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5.4.3 Classification in Semantic Regions

First, 2D wavelet transform magnitude is computed which is followed by the feature ex-

traction. The classification is achieved according to the following equation,

sgn

(
l∑

i=1

yiK(xi, xj) + b

)
(5.5)

which is the simplified version of equation 5.3 given the kernel φ is linear. The next

section describes the full retrieval scheme.

5.5 Semantic Image Retrieval in 3D Volumes

This section provides the details of the overall retrieval process. Here, it is important

to note that the semantic classification process, consisting of feature extraction, training

and classification, utilizes wavelet transform magnitude only from the coarsest scale, i.e.

M24f(x, y).

Initially, the wavelet transform magnitude of the incoming query image with 4 levels

of decompositions is computed, which is followed by the feature extraction process. Next,

the semantic classification is performed using a trained SVM model as shown in Figure

5.9. Finally, based on the result of the classification process, the retrieval using PRES

technique is conducted only in a specific semantic region. The PRES technique is modified

as shown in Figure 5.10, where the detection of two peaks based on equation 4.2 is avoided.

For the sake of clarity, feature extraction and semantic classification processes will

jointly be termed as Classification and the PRES retrieval technique will be termed as
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Retrieval. Also, the translation and rotation process in the retrieval process will collectively

be termed as Transformation.

Though, the classification results are accurate, an error during the classification process

may lead the retrieval process in the wrong semantic region leading to a large retrieval error.

It should be noted here that an error in the classification near the transition between the

classes may not necessarily result in retrieval error because PRES technique may find

the correct slice while searching at finer scales of wavelet domain. However, there are

chances of classification errors because the incoming query image is not pre-registered.

In order to mitigate the effect of classification error, a novel two phase retrieval scheme

is developed, which is shown in 5.11. In the first phase, the semantic classification is

performed which is followed by the retrieval process proposed in the previous chapter.

The retrieval result contains the best matching slice index along with the transformation

parameter. In the second phase, the wavelet transform magnitude is transformed according

to the transformation parameter and classification is attempted again. If the result of

the second classification attempt is different than the first one, the retrieval processes is

repeated. On the other hand, if the result of the second classification attempt is same as

the first one then the result of the first retrieval process is accepted and the second retrieval

attempt is avoided. Figure 5.11 shows the the flowchart of the proposed two phase retrieval

scheme.

The performance of the proposed scheme is tested on AMD64 Dual Core CPU with

2.8GHz and 3GB of RAM using MATLAB (R2008b) environment. Since BrainWeb [220]

images do not have much empty space, translations could not be employed, and con-

sequently all the query images are randomly pre-rotated. The retrieval is tested under

various noise conditions using the 3D brain volumes available at BrainWeb [220]. Here,
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the noise is relative to the brightest tissue in the volume. This database provides one

synthetic volume with several options to choose such as modalities, voxel sizes and noise

levels etc. The size of the volume is 181×217×181 with voxel size of 1mm×1mm×1mm.

In order to limit the number of simulations, both the query and the target 3D volumes

belong to the same noise-level.

5.5.1 Retrieval among Healthy (Normal) Subjects

An extensive semantic retrieval simulation among healthy (normal) subjects is conducted.

The tables 5.3, 5.4 and 5.5 show the classification errors, mean absolute errors and mean

retrieval time in transverse view, respectively. Similarly, the tables 5.6, 5.7 and 5.8 in

coronal view, respectively. The number of trails in the transverse and the coronal views

are 180 and 217, respectively.

Table 5.3: Number of Classification Errors in Semantic Regions under noise (Transverse
View)

Mode
noise(3%) noise(5%) noise(7%) noise(9%)
T O F T O F T O F T O F

PD-T1 0 2 2 0 2 2 0 2 2 0 2 3
T1-PD 0 4 0 0 4 0 0 4 0 0 4 0
T1-T2 0 2 3 0 2 4 0 2 4 0 2 3
T2-PD 0 3 2 0 4 3 0 3 3 0 5 0
T2-T1 0 5 0 0 5 0 0 6 0 0 6 0

5.5.2 Retrieval Between Normal and Abnormal(MS) Subjects

In this sub-section, retrieval simulations between normal and abnormal subjects with Mul-

tiple Sclerosis (MS) lesions, are presented. Table 5.9 shows the mean absolute errors and
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Table 5.4: Mean Absolute Error in Semantic Regions under noise (Transverse View)

Mode
noise(3%) noise(5%) noise(7%) noise(9%)

T O F T O F T O F T O F

PD-T1 0.17 0.03 0.13 0.65 0.33 0.36 0.90 0.63 0.67 0.95 0.90 0.88
T1-PD 0.04 0.10 0.06 0.44 0.47 0.34 0.66 0.67 0.61 0.76 0.97 1.0
T1-T2 0.00 0.03 0.03 0.05 0.16 0.62 0.26 0.27 0.59 0.47 0.73 0.37
T2-PD 0.01 0.03 0.01 0.12 0.9 0.03 0.22 0.27 0.10 0.35 0.57 0.10
T2-T1 0.38 0.03 0.04 0.09 0.50 0.22 0.37 0.90 0.37 0.94 1.5 0.57

Table 5.5: Mean Retrieval Time (seconds) in Semantic Regions under noise (Transverse
View)

Mode
noise(3%) noise(5%) noise(7%) noise(9%)

T O F T O F T O F T O F

PD-T1 12.3 9.1 12.1 12.2 8.8 11.2 12.8 9.9 10.7 12.9 9.7 10.9
T1-PD 13.4 11.4 12.3 13.9 11.4 11.3 12.9 11.0 11.6 13.2 11.2 11.3
T1-T2 13.1 10.7 12.5 12.7 10.4 12.4 13.6 11.3 13.1 12.9 11.3 12.0
T2-PD 12.1 10.5 12.3 12.7 10.1 11.9 12.2 10.9 11.8 11.9 14.4 12.5
T2-T1 12.1 10.4 10.9 12.2 11.5 10.4 12.4 12.2 9.9 12.5 11.4 10.3

Table 5.6: Classification Errors in Semantic Regions under noise (Coronal View)

Mode
noise(3%) noise(5%) noise(7%) noise(9%)
T O F T O F T O F T O F

PD-T1 1 1 0 1 1 0 1 1 0 1 0 1
T1-PD 1 0 1 1 0 2 1 0 1 1 0 1
T1-T2 0 1 1 0 1 1 0 1 1 0 1 1
T2-PD 1 2 0 1 2 0 1 2 0 1 2 0
T2-T1 1 2 0 1 2 0 1 2 0 0 1 1

Table 5.7: Mean Absolute Error in Semantic Regions under noise (Coronal View)

Mode
noise(3%) noise(5%) noise(7%) noise(9%)

T O F T O F T O F T O F

PD-T1 0.03 0.02 0.05 0.52 0.25 0.60 0.64 0.69 0.98 0.78 0.75 1.2
T1-PD 0.0 0.03 1.0 0.22 0.28 0.86 0.47 0.59 0.97 0.64 0.79 1.0
T1-T2 0.0 0.0 2.4 0.02 0.0 3.1 0.07 0.14 2.9 0.25 0.51 1.7
T2-PD 0.0 0.0 0.0 0.02 0.03 0.1 0.05 0.14 0.19 0.19 0.45 0.33
T2-T1 0.07 0.0 2.5 0.15 0.10 2.8 0.37 0.28 3.5 0.25 0.51 1.7
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Table 5.8: Mean Retrieval Time (seconds) in Semantic Regions under noise (Coronal View)

Mode
noise(3%) noise(5%) noise(7%) noise(9%)

T O F T O F T O F T O F

PD-T1 13.9 9.8 12.9 13.2 9.5 12.8 13.6 10.2 12.8 12.5 9.8 12.2
T1-PD 9.3 9.1 9.4 9.1 8.2 9.3 9.1 7.5 8.5 9.2 8.5 9.0
T1-T2 9.5 9.5 6.3 9.5 9.5 5.5 9.5 9.5 3.9 12.0 9.4 19.8
T2-PD 9.3 8.5 8.5 9.33 8.5 8.2 8.9 8.5 7.2 8.5 7.5 6.7
T2-T1 8.1 8.5 7.3 7.7 8.2 7.1 7.2 7.5 6.4 11.9 9.3 19.7

mean retrieval time in transverse view with five different modality pairs. Similarly, Ta-

ble 5.10 provides simulation results in coronal view. It is important to mention that the

trained SVM models of healthy subject are used and the new set of training with MS

cases is avoided, which lead to the performance degradation. The number of trails in the

transverse and the coronal views are 180 and 217, respectively.

Table 5.9: Mean Absolute Error in Semantic Regions with MS Lesions (Transverse View)

Mode
Mean Absolute Error Mean Retrieval Time (seconds)

T O F T O F

PD(MS)-T1 0.8140 0.7000 0.7910 14.3683 9.6563 12.5198
PD(MS)-T2 2.0000 0.4333 0.2687 12.8349 12.9553 11.9003
T2(MS)-T1 1.1395 2.1667 0.6119 13.0562 14.3154 11.6275
T2-PD(MS) 0.2093 1.4000 0.1791 12.0148 11.8645 12.4509
T2(MS)-PD 0.1512 1.7333 0.1194 12.5790 14.9376 13.1212

Table 5.10: Mean Absolute Error in Semantic Regions with MS Lesions (Coronal View)

Mode
Mean Absolute Error Mean Retrieval Time (seconds)

T O F T O F

PD(MS)-T1 0.7966 0.9592 1.2333 12.7128 10.1579 13.3967
PD-T1(MS) 0.1695 1.5510 0.6333 14.9693 11.0515 13.7697
T1(MS)-PD 0.2034 1.7755 0.5833 15.4213 10.8440 15.4994
T1-PD(MS) 0.5763 3.3469 1.1833 12.9809 11.1807 15.4256
T2(MS)-PD 0.0508 0.1429 0.0833 15.6196 9.3268 15.0574
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5.6 Conclusions

In this chapter, a novel, SVM based, semantic classification scheme is presented for clas-

sifying the incoming 2D query image into one of the semantic regions. This approach

not only retrieves 2D slice in 3D volumes but also classifies them to semantic regions as

well, which is a major contribution of this research work. The proposed semantic classi-

fication scheme can be extremely useful for semantic based categorization, clustering and

annotation of images in databases. Here, the semantic regions are inspired by the lobes

of the human brain. The classification is done by a multiclass SVM and the errors are

found to be small. Another contribution is the development of a fast feature extraction

scheme using polar, non-uniform, sampling grid, which is designed for extracting features

in wavelet domain for the purpose of semantic classification. The feature set is compared

against a well known feature extraction technique, called SIFT, and is found more effective.

The proposed retrieval algorithms are tested under noisy conditions among the volumes

of healthy subjects. Finally, retrieval results are provided between the volumes of healthy

and abnormal scans of the same subject. Simulations show promising results with respect

to multi-modality, accuracy, speed and robustness.
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Chapter 6

Semantic Assisted Multisubject

Image Retrieval in 3D Brain Volumes

6.1 Introduction

In the previous chapter, a semantic assisted image retrieval in 3D MR volumes was pre-

sented for intersubject scenario. In this chapter, a novel semantic assisted scheme is pre-

sented for multisubject retrieval. Here, the term “multisubject” means that the retrieval

is done in a database of 3D volumes belonging to many subjects. Thus, the technique

proposed in this chapter is more general. The overall retrieval technique essentially works

in three stages by first associating the in coming slice to a few 3D brain volumes among

many subjects; then associating the incoming slice to a specific semantic region; and finally

executing the PRES based retrieval scheme within the identified volume(s) and in a specific

semantic region. In this chapter, an SVM based scheme is presented for identifying the 3D

volume of the subject using incoming 2D query image, which is the major contribution.
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Here, a subset of the MIDAS dataset [235], consisting of approximately 100 MRI

datasets of normal subjects, is used. The selected dataset comprises of magnetic reso-

nance angiography (MRA), T1-Flash, T2 and T1-MPRage sequences.

Rest of the chapter is organized as follow. The second section describes the identification

of 3D volumes from 2D slice images using SVM; the third section presents the multisubject

semantic classification of lobes, which is the extension of the previous chapter; the fourth

section describes the full retrieval scheme; the fifth section presents the experimental results

and performance evaluation. Finally, the sixth section concludes this chapter.

6.2 3D Volume Identification Using SVM Probabilis-

tic Outputs

This section discusses a novel approach for identifying a 3D volume given a query slice

image. The feature extraction scheme in the wavelet domain is described in the previous

chapter. Here, the multicalss SVM based machine learning technique is used for identifying

similar 3D volumes from a set of volumes. Normally, a multiclass SVM only predict class

outputs, however in the process of identification some measure of similarity is needed to

rank the results. In the present work, a probability estimation approach, discussed in [236],

is used for multi-class SVM classification.

6.2.1 SVM with Probabilistic Outputs

For the purpose of training, the input to the retrieval system is a set of feature vectors

from the training images. Here, each image is manually annotated with a single semantic
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label selected out of M labels or categories. In the present application, the class labels

are identities of the subjects. A set of M labels are defined as C1, C2, ..., CM , where each

Ci, i ∈ 1, ...,M characterizes the representative semantics of an individual volume. In the

testing stage of the probabilistic classifier, each non-annotated or unknown image feature

vector is classified against M identities. The output of the classification process produces

a ranking on the M identities. Each identity would assign a probability (confidence) score

to the image. Consequently, the confidence score represents the weight of a category label

in the overall description of the incoming image. The probabilities or confidence scores of

the identities form an M -dimensional vector for a feature xm of image i as follows:

pi(xm) = [pi1(xm)...pik(xm)...piM(xm)]T (6.1)

Here, pik(xm), 1 ≤ k ≤ M , denotes the posterior probability that an image i belongs to

identity Ck in terms of input feature vector xm. Finally, an image i belongs to an identity

Cl, l ∈ 1, ...,M using feature vector xm where the identity label is determined by

l = argmaxk [pik(xm)] (6.2)

which is the label of the identity with the maximum probability score. In this context,

given the feature vector xm, the goal is to estimate

pk = P (y = k|xm), k = 1, ...M (6.3)
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the pairwise class probabilities rkj are estimated as an approximation (as in [236]),

rkj ≈ P (y = k|y = k or j, xm) ≈ 1

1 + eAf+B
(6.4)

where A and B are the parameters estimated by minimizing the negative log-likelihood

function, and f are the decision values of the training data (fivefold cross-validation (CV)

is used to form an unbiased training set). Finally, pk is obtained from all these rkj’s by

solving the following optimization problem:

min
p

1

2

M∑

k=1

∑

j:j 6=k

(
rjkpk − rjkpj

)2
(6.5)

subject to
M∑

k=1

pk = 1, pk ≥ 0 ∀k

where p(e.g., pi(xm)) is a M -dimensional vector of multi-class probability estimates. Sim-

ilarly, the label vector of a query image q can be found online by applying its feature

descriptors as inputs at different levels to the SVM classifiers as

pq(xm) =
[
pq1(xm)...pqk(xm)...pqM(xm)

]T
(6.6)

6.2.2 3D Volume Identification Scheme

The length of the feature set is large, therefore, a linear kernel with K(xi, xj) ≡ xT
i xj

is found to be most useful for SVM training, both in terms of accuracy and speed. The

first stage involves computing 2D wavelet transform magnitude, which is followed by the

feature extraction. Given feature vector of the 2D image slice, SVM classification produces

probabilities pq(xm) for each class label. The process of data collection for training and
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testing is depicted in Figure 6.1. The top ranked volumes with normalized probabilities

pq(xm) greater than 60% of the maximum is selected for further image retrieval process.

Figure 6.2 shows the SVM training and identification process. During the identification

process, the SVM based classifier outputs a probability vector of size M , where M is the

number of identities.

The accuracy of the SVM based identification process can be seen in Figures 6.3, 6.4,

6.5, 6.6, 6.7, 6.8 and 6.9 for different combinations of modalities between MRA-T1F, T1F-

MRA, MRA-T1R, T1R-MRA, T1F-T1R, T1R-T1F and T2-T1R, respectively.

It can be observed from these figures that the SVM based identification scheme improves

the performance significantly as compared to the Euclidean distance based ranking. It is

worth mentioning that the SVM based identification works extremely fast; normally it

takes only 0.2 seconds to do identification in ≈ 100 volumes. The LIBSVM library is

employed to train the SVM models using C-SVC scheme discussed in the previous chapter.

6.3 Multisubject Semantic Classification of Lobes

A scheme for the semantic classification was proposed in the previous chapter to classify

the incoming 2D query image into one of the semantic region of the brain. In multisubject

scenario, this problem can be handled in two ways; (i) train SVM classifiers for every

subject or (ii) train single SVM classifier with training data from all the subjects. Here,

second approach is used due to the lower complexity, which is shown in Figure 6.10. Hence

one SVM classifier is trained for each pair of modalities and for each view.

For transverse view, the three semantic regions are defined as shown in Table 6.1. In
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Figure 6.3: MRA-T1F: SVM based identification (solid) versus Euclidean distance (dotted)
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Figure 6.4: T1F-MRA: SVM based identification (solid) versus Euclidean distance (dotted)
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Figure 6.5: MRA-T1R: SVM based identification (solid) versus Euclidean distance (dotted)
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Figure 6.6: T1R-MRA: SVM based identification (solid) versus Euclidean distance (dotted)
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Figure 6.7: T1F-T1R: SVM based identification (solid) versus Euclidean distance (dotted)
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Figure 6.8: T1R-T1F: SVM based identification (solid) versus Euclidean distance (dotted)
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Figure 6.9: T2-T1R: SVM based identification (solid) versus Euclidean distance (dotted)
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this table, the reference (origin) is a the center of 3D brain volume, which is found by

averaging the 3D coordinates of voxels belonging to the non-zero grey-levels.

Table 6.1: Semantic Regions in transverse view
Semantic Region Start (mm) End (mm)

Temporal first -5
Occipatal -6 24
Frontal 25 last

The training data is extracted by subsampling approximately 45% feature vectors from

the whole feature set belonging to all the subjects and specific pair of modalities (such as

MRA-T1F). Duplicate training is avoided by using same model for the pair of modalities

of query and database images, regardless of which of them is used for query and retrieval.

For example, one SVM classifier is trained for both MRA-T1F and T1F-MRA modality

pairs.

The LIBSVM library is used to train the SVM models using C-SVC scheme discussed

earlier. Since the dimension of the feature set quite large (864) for each 2D image slice,

linear kernel, with K(xi, xj) ≡ xT
i xj, is found to be most useful, both in terms of accuracy

and speed.

6.4 Multisubject Image Retrieval Scheme

In this section, full retrieval scheme is described to retrieve 2D image slice in multiple 3D

volumes. It consists of three stages, viz. volume identification, semantic region classifica-

tion and registration-based retrieval. Figure 6.11 shows the schematic diagram of the full

retrieval scheme. In the first stage, given the query slice image, the identification of vol-

ume(s) is done using SVM based technique. The identification process identifies a subset of
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highly ranked subjects given a 2D query image. In the second stage, SVM based classifier

associates an incoming 2D query image to a specific semantic region. Finally, based on the

results of the first and second stage, registration based retrieval (PRES) is executed within

the volumes of the identified subjects and in that specific semantic region.
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WTM
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q
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SVM Based
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Normalize /

Ranking

Ranked Subj.

SVM Based
2Phase,Class
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(PRES)

Output

WTM DB

Ij
q

Figure 6.11: Description of full retrieval scheme

6.5 Experiments

In order to test the algorithms proposed in this chapter, MIDAS dataset [235] consisting of

approximately hundred MRI datasets of normal subjects is used. The dataset comprises of

magnetic resonance angiography (MRA), T1-Flash, T2 and T1-MPRage sequences. The

dataset is quite realistic in the sense that it is captured on various MR scanners and at
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different times. The details of the dataset is presented in Table 6.2, which shows that

the MRA and T2 volumes are anisotropic while the volumes of T1-Flash and T1-MPRage

images are isotropic. Consequently, MRA and T2 image volumes are converted to isotropic

voxels using MRICRO tool, which leads to different image sizes as shown in Table 6.3.

Table 6.2: MIDAs Dataset - Original
Modality Voxel size(mm) image dimensions

MRA 0.51 × 0.51 × 0.8 448 × 448 × 128
T1-Flash 1.0 × 1.0 × 1.0 176 × 256 × 176

T1-MPRage 1.0 × 1.0 × 1.0 208 × 256 × 128
T2 0.5 × 0.5 × 1.0 392 × 512 × 160

Table 6.3: MIDAs Dataset - Modified
Modality Voxel size(mm) image dimensions

MRA 1.0 × 1.0 × 1.0 228 × 228 × 101
T1-Flash 1.0 × 1.0 × 1.0 176 × 256 × 176

T1-MPRage 1.0 × 1.0 × 1.0 208 × 256 × 128
T2 1.0 × 1.0 × 1.0 196 × 256 × 160

In order to properly register and display the images, all the 2D slice images are resized to

larger image sizes by padding with dark noisy background. For example, the transverse (or

axial) images are padded to form images of 256×256 pixels for all the modalities. Moreover,

the MIDAS dataset is not a “closed set” among various modalities. Here, “closed set”

means that there are a few individuals (subjects) who are present in one modality while

absent in the other modality. Therefore a “closed set” is extracted and utilized in this

research.
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6.5.1 Training the SVM

As shown in Figure 6.11, an SVM based machine learning scheme is employed for both

“identification” and “classification” stages. In order to train an SVM model for identifi-

cation process, the training set is created by taking features from every 4th slice from all

3D volumes belonging to the pair of modalities. The remaining slices are used for testing

purpose. In order to train the SVM for classification process, every 3rd slices from all

3D volumes belonging to the pair of modalities are used as training set. There are three

semantic classes as discussed in the previous chapter.

6.5.2 Performance Evaluation

Here, False Match Rate (FMR) is used as a performance evaluation metric for the proposed

retrieval system. This metric is extensively used in the evaluation of biometric systems.

In the current retrieval framework, FMR can be defined as, the probability that the system

fails to find a correct match given the query slice in the database. Basically, it measures

the percent of valid queries which are incorrectly matched and can be computed as,

FMR =
number of incorrect matches

total number of attempts
× 100 (6.7)

This metric is justified here because a 2D query image matches correctly with only one

image slice in the identified 3D volume. Traditionally, image retrieval systems use Preci-

sion and Recall as performance metrics which are adapted from the information retrieval

framework. The reason for using these performance measures is the premise that a query

image retrieves a set of images. In the simulations, approximately 500 random retrieval
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trails are conducted for each modality pairs and the accuracy and mean retrieval time are

presented in Table 6.4.

Table 6.4: Performance Evaluation - Transverse
Modality pairs FMR (%) Mean Retrieval time (seconds)

MRA:T1-Flash 8.4 18.70
MRA:T1-MPRage 9.8 17.65

T1-Flash:T1-MPRage 8.5 18.69
T2:MRA 9.5 20.65

T2:T1-MPRage 4.3 16.99

It is important to note that the identification stage does not increase the retrieval time

significantly because most of the time it identifies the correct volume in the first rank. The

errors are identified manually by visual inspections of all the retrieval results. Simulations

of the algorithm is performed on AMD64 Dual Core CPU with 2.8GHz and 3GB of RAM

using MATLAB (R2008b) environment. Figures 6.12 and 6.13 show the results with noisy

MRA query images in T1-Flash database. Figure 6.14 shows the retrieval result in the

presence of RF field inhomogeneity.

It is worth mentioning that the proposed image retrieval technique in coronal and

saggital views is not attempted as images in these views are rectangular with high aspect

ratio (as shown in Table 6.3), hence the circular feature map could not be applied for

extracting image features consistently. Moreover, in these views, the center of the object

is not closer to the center of the image.

6.6 Conclusions

In this chapter, a novel scheme for retrieving 2D image slices in multiple 3D brain volumes

is presented. Here, an SVM based identification scheme for identifying the 3D volume of the
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Query Image Retrieved Image

One Slice Down One Slice Up

Figure 6.12: Retrieval Result (MRA vs T1-Flash)

subject using an incoming 2D query image is proposed, which is the major contribution of

this chapter. In the next step, a semantic classification scheme for classifying the incoming

2D query image into one of the semantic regions is employed. This classification technique

is similar to the one presented in the previous chapter. This is followed by the regular

registration-based retrieval, as presented in the fourth chapter. The identification errors

are found to be small resulting in a fast algorithm because in more than 95% of cases it

finds the correct volume in the top most rank. Simulations show promising results with

respect to multi-modality, accuracy, speed and robustness.
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Query Image Retrieved Image

One Slice Down One Slice Up

Figure 6.13: Retrieval Result (MRA vs T1-Flash)
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Query Image Retrieved Image

One Slice Down One Slice Up

Figure 6.14: Retrieval Result (T1-Flash vs T1-MPRage)
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Chapter 7

Conclusions and Future Work

This chapter provides some general comments and remarks on the insights that have been

gained in this research in addition to the specific conclusions that are presented in the

previous chapters. Furthermore, some promising future research directions are discussed.

The main objective of this thesis is to address the challenging problem of developing

useful image retrieval techniques for medical diagnostics. Specifically, this dissertation

proposed a system for semantic, robust and multimodal retrieval of magnetic resonance

images in 3D MR brain volumes.

The work is presented in a bottom-up approach, where the core of the proposed retrieval

system is based on the multiscale 2D rigid registration, as presented in chapter three. The

proposed retrieval technique provides a precise algorithm for image retrieval within the 3D

volume of a given subject, as discussed in detail in chapter four. The speed of the proposed

retrieval technique has further improved with the introduction of a novel semantic assisted

classification scheme, as discussed in chapter five. This classification technique uses a an

efficient feature set in wavelet domain, which in turn is used for the training of Support
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Vector Machines (SVM). Retrieval results are also provided between the volumes of healthy

and abnormal scans of the same subject. A novel multimodal retrieval scheme for searching

a 2D image slice in multiple 3D volumes is proposed, which is discussed in chapter six.

Here, the rest of the retrieval stages uses a semantic classification and registration based

framework.

7.1 Contributions

The highlights and findings of this research can be briefed as follows:

1. A precise, multimodal and fast retrieval 2D slice retrieval technique is proposed for

the diagnostic applications in MR brain volumes.

2. The multiscale registration based framework works well for the retrieval task, using

mutual information (MI) as a matching criterion. The proposed approach is robust

against noise and RF inhomogeneity.

3. The SVM-based classification technique is found to be effective for learning semantic

regions in the human brain based on various lobes. Even in the case of volumes of

multiple subjects the classification accuracy is in the range of 95%.

4. The SVM-based identification technique is also found to be effective for identifying

the subject given a 2D slice. The identification accuracy is in the range of 98%.

5. The overall accuracy in the multisubject retrieval technique is found to be greater

than 90%. In intersubject (within the same subject) retrieval scenario, the Mean

Absolute Error is less than 2, which indicates that on the average the error is within

one slice.
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7.2 Limitations

This dissertation achieves its objectives satisfactorily and is expected to contribute signif-

icantly to the research community. However, there are three limitations of the presented

work:

1. Since proposed retrieval inherently does 2D image matching, a large rotation around

the axis in the plane of the view would result in retrieval errors. To mitigate this

problem, 3D volumes of both the query and the target should be crudely registered.

However, this problem has not been encountered during this research which may

indicate that the proposed retrieval approach is quite robust against typical mis-

alignments.

2. Retrieval in saggital view is not possible with semantic regions because it is impossible

to parcellate the brain lobes in this view. This is due to the symmetry of lobes

between right and left brain hemispheres, therefore, PRES scheme should be used in

this case.

3. Retrieval in coronal view could not be attempted with the multisubject scheme be-

cause the images in this view are rectangular with a high aspect ratio. Additionally,

the circular feature map is not suitable for computing features consistently across var-

ious modalities. This problem is further aggravated due to the fact that the center

of the object is far from the center of the image in coronal and saggital views. This

can be handled by either embedding the image into a larger image or oversampling

(reslicing) the volumes. However, these ideas were not explored in this work.
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7.3 Future Directions

The proposed research work can be extended in many ways, as discussed below.

1. As already mentioned, the retrieval in saggital view is not possible with semantic

regions due to the symmetry of lobes between the right and the left hemispheres.

Therefore, some different kind of semantics may be explored.

2. The proposed semantic classification scheme is crude in the sense that it partitions

the human brain into regions with 2D planes, which is quite different from the actual

shape of the lobe. Moreover, these regions are of fixed sizes for all the scans (subjects).

Therefore, a more accurate parcellation scheme may prove helpful.

3. Both the semantic “classification” and “identification” utilize the wavelet decompo-

sition at the coarsest scale. Therefore, a multiscale extension of the classification

and the identification scheme provide promising research direction. However, such

multiscale extensions tend to increase the complexity of the system.

4. The SVM-based identification approach is found to be highly accurate with approx-

imately 100 volumes available in the MIDAS database. However, there is a need for

more thorough analysis with more subjects.

5. For interactive retrieval a faster registration scheme is needed. This can be achieved

through various implementation strategies.

6. Integrating the proposed approach into an existing PACS system is highly desirable

to asses its usefulness in a clinical setting. This may prove an interesting and a

valuable future research direction.
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7.4 Final Remarks

In this dissertation, a new research paradigm for image retrieval systems for diagnostic and

decision support applications is proposed and implemented. More specifically, a system for

semantic retrieval of MR images in 3D brain volumes is presented. This is an important

application because it is expected to help experts where the human eye may fail. Pre-

viously proposed systems use imprecise segmentation and feature extraction techniques,

which are not suitable for precise matchings required for the retrieval in such applications.

Here, an efficient multiscale representation is used, which is robust against noise and MR

inhomogeneity. In order to achieve high accuracy in the presence of misalignments, an

image registration based framework is developed. To speed-up the retrieval system, a fast

discrete wavelet based feature space is used. Further improvements in the retrieval speed

is achieved by using the semantic classification of the human brain into various semantic

regions. This classification is done by using an SVM based approach. A novel and fast

3D volume identification system is proposed for identifying a 3D volume given a 2D image

slice. Here, the SVM output probabilities are used for ranking and identification of 3D

volumes. The proposed retrieval systems are tested not only for noise conditions but also

for healthy and abnormal cases, resulting in promising retrieval performance with respect

to multi-modality, accuracy, speed and robustness.

This dissertation furnishes medical practitioners with a valuable set of tools for semantic

retrieval of 2D images, where the human eye may fail. More specifically, the proposed

retrieval algorithms provide medical practitioners ability in retrieving 2D MR brain images

accurately and monitor disease progression in various lobes of the human brain, as well

as ability to monitor disease progression in multiple patients simultaneously. Moreover,
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the proposed semantic classification scheme can be extremely useful for semantic based

categorization, clustering and annotation of images in MR brain databases. This research

also provides a foundation to researchers in semantic based retrieval systems for expanding

the existing toolsets in retrieval problems. The proposed research framework may evolve

in a natural progression towards developing more powerful and robust retrieval systems.
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Appendix A

Implementation of Fast 2D Dyadic

Wavelet Transform

In this appendix, details of 2D dyadic wavelet transform is given for the sake of complete-

ness, however, reader can get more details from original paper [210]. The two wavelets

ϕ1(x, y) and ϕ2(x, y) can be written as separable products of functions of the x and y

variables. Here ϕ(x) belong to a class of 2π periodic functions H(ω), G(ω) and K(ω) that

satisfy following constraints,

H(ω) = eiω/2 (cos (ω/2))2n+1 , (A.1)

G(ω) = 4ieiω/2cos (ω/2) , (A.2)

K(ω) =
1 − |H(ω)|2

G(ω)
. (A.3)

L(ω) =
1 + |H(ω)|2

2
. (A.4)
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It can be proved (in [210]) that for 2n + 1 = 3, ϕ(x, y) is a quadratic spline with compact

support. These 2π periodic functions (H(ω), G(ω) and K(ω)) can be viewed as transfer

function of the discrete filters with finite impulse response which are presented in table

A.1.

Table A.1: Finite Impulse Response of the Wavelet Filters
n H G K L

-3 0.0078125 0.0078125
-2 0.054685 0.046875
-1 0.125 0.171875 0.1171875
0 0.375 -2.0 -0.171875 0.65625
1 0.375 2.0 -0.054685 0.1171875
2 0.125 -0.0078125 0.046875
3 0.0078125

The two wavelets ϕ1(x, y) and ϕ2(x, y) are characterized by the discrete filters H,G,K

and L. Moreover, Lp is the discrete filter obtained by putting 2p − 1 zeros between consec-

utive coefficients of the filter L. Let D be the Dirac filter whose impulse response is equal

to 1 at 0 and 0 otherwise. Let A ∗ (H,L) be the separable convolutions of the rows and

columns, respectively, of the image A with the 1-D filters H and L. Then the following

algorithm computes the 2-D discrete wavelet transform of an image Sd
1f . At each scale 2j,

the algorithm decomposes Sd
2jf into Sd

2j+1f , W 1,d
2j+1f and W 2,d

2j+1f .

j = 0

while (j < J)

W d
2j+1f = 1

λj
.Sd

2jf ∗ Gj

Sd
2j+1f = Sd

2jf ∗ Hj

j = j + 1

end of while

At each scale 2j, Sd
2jf ∗ Gj is divided by λj to obtain accurate measures of Lipschitz
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exponents from the wavelet maxima. The values of λj are shown in table A.2.

Table A.2: Normalization coefficients λj

j λj

1 1.50
2 1.12
3 1.03
4 1.01
5 1.00

The inverse wavelet transform algorithm reconstructs Sd
1f from the discrete dyadic

wavelet transform. At each scale 2j, it reconstructs Sd
2j−1f from Sd

2jf and W d
2jf .

j = J

while (j > 0)

Sd
2j−1f = λj.W

d
2jf ∗ Kj−1 + Sd

2jf ∗ H̃j−1

j = j − 1

end of while

Here it is worth noting that at each scale, wavelet decompositions are of the same size

as original image because filters are up-sampled. This produces convenient data which

does not have artifacts due to downsampling in a traditional discrete wavelet domains.
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Appendix B

Fourier Transform of Polar Sampled

2D Data

Here derivation is adapted from [233]. The Fourier transform of a continuous 2-D complex-

valued function f(x, y) is given as,

F (X,Y ) =

∫ ∞

−∞

∫ ∞

−∞

f(x, y)e−2πi(xX+yY )dxdy. (B.1)

Substituting r =
√

x2 + y2 and θ = tan−1y/x, and changing the differentials dxdy to

rdrdθ equation B.1 can be written as,

F (X,Y ) =

∫ 2π

0

∫ ∞

0

f(r, θ)e−2πir(Xcosθ+Y sinθ)rdrdθ, (B.2)

Since angular sampling is done before radial sampling, equation B.2 can be re-arranged as
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follows,

F (X,Y ) =

∫ ∞

0

∫ 2π

0

f(r, θ)e−2πir(Xcosθ+Y sinθ)rdrdθ (B.3)

=

∫ ∞

0

∫ 2π

0

f(r, θ)e−2πir(RcosΘcosθ+RsinΘsinθ)rdrdθ (B.4)

=

∫ ∞

0

∫ 2π

0

f(r, θ)e−2πirRcos(θ−Θ) (B.5)

where R =
√

X2 + Y 2 and Θ = tan−1Y/X. From [237] it is known that

eiucosφ =
∞∑

n=−∞

inJn(u)einφ,

where Jn is the Bessel function of the order n, taking u = 2πrR and φ = θ − Θ, hence,

F (X,Y ) =

∫ ∞

0

∫ 2π

0

∞∑

n=−∞

f(r, θ)inJn(2πrR)ein(Θ−θ)rdrdθ, (B.6)

The equation B.6 can be re-arranged as,

F (X,Y ) =

∫ ∞

0

∞∑

n=−∞

[∫ 2π

0

f(r, θ)e−inθdθ

]
inJn(2πrR)einΘrdr. (B.7)

Here the integral in brackets is a 1-D Fourier transform with respect to θ. This trans-

form over θ explicitly analyzes f into harmonic components of θ, indexed by their integer

angular frequencies n. The amplitudes of the harmonic components in this transform pro-

vide weighting coefficients for the components used in the final synthesis of F , which vary

with Θ as sinusoids and with R as Bessel functions of various orders.

Up to this point polar transformation in continuous domain is discussed, now the dis-
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cretization of θ is discussed. With discrete values of θ this function in Cartesian and polar

coordinates can be represented as,

sN(x, y) =
N∑

i=1

∆(xsinϕi + ycosϕi), (B.8)

sN(r, θ) =
N∑

i=1

∆(rcosθsinϕi + rsinθcosϕi), (B.9)

where ∆(x) is defined as the 2-D, infinitely sharp line impulse at x = 0 and N is the

number of angular samples from 0 to π. Hence FT can be written as,

SN(X,Y ) =
N∑

i=1

∫ ∞

−∞

∆(rcosθsinϕi + rsinθcosϕi)e
−2πirR′ |r|dr

This equation can be written in summation form as,

SN(X,Y ) =
N∑

i=1

SN,r(R
′, θ),

where SN,r can be written using convolution theorem,

SN,r(R
′, θ) = ∆(R′cosθsin(ϕi + π/2) + R′sinθcos(ϕi + π/2)) ∗

∫ ∞

−∞

|r|e2πirR′

dr. (B.10)

If r is limited to rmax beyond which r = 0 using a rectangular window then, integral in

previous equation becomes,

∫ ∞

−∞

rect

(
r

2rmax

)
|r|e2πirR′

dr = 2rmaxsinc2rmaxR
′ − rmaxsinc2rmaxR

′
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and in the frequency domain,

SN,r′(R
′, θ) = ∆ (R′cosθsin(ϕi + π/2) + R′sinθcos(ϕi + π/2))

∗ (2rmaxsinc2rmaxR
′ − rmaxsinc2rmaxR

′) (B.11)

If s is considered to be the integration for radii upto rmax of rings with radius r′ each

sampled N times over the range of 0 to π,

sN(r, θ) =

∫ rmax

0

δ(r − r′)(N/π)ℵ(θN/π)dr′ (B.12)

where ℵ(x) is an infinite 1-D train of impulses spaced at integer increments in x is defined

as,

ℵ(x) =
∞∑

i=−∞

δ(x − i)

Alternatively,

sN,θ(r, n) =

∫ 2π

0

(N/π)ℵ(θN/π)e−inθdθ = 2Nℵ(n/2N). (B.13)

The factor ℵ(n/2N) indicates that the 2N delta functions per ring of the sampling function

can be synthesized from a series of waves around the ring, with frequencies that are integer

multiples of the fundamental frequency 2N . This can be substituted in equation B.7 to

give,

SN(X,Y ) =
∫ rmax

0

∑∞

n=−∞ inJn(2πrR)einΘrdr,

n = 0,±2N,±4N...., (B.14)
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Up to this point r is considered as continuous now incorporating the discreteness in r

in equation B.11 leads,

SN,rd(R′, θ) = ℵ
(

R′

∆r
cosθsin(ϕi + π/2) + R′

∆r
sinθcos(ϕi + π/2)

)

∗ (2rmaxsinc2rmaxR
′ − rmaxsinc2rmaxR

′) (B.15)

Rather than a single ridge, the point response for each direction is now a series of ridges in

the same direction θi + π/2, replicated at the regular spacing 1/∆r. This equation shows

that the discrete polar FT is actually periodic in both r and θ.
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Appendix C

Justifications for the Use of Support

Vector Machines

There are two broad categories of the statistical classification schemes. First category

is known as the Parametric, while the other is known as the Non-Parametric scheme.

Inquisitive readers may find detailed treatments of this subject in the literature [238].

The parametric techniques, such as Gaussian Mixture Models (GMM), rely on the

estimation of probability density functions (PDFs) for the training data. The estimation

of the PDFs relies heavily on the nature and the size of the training set. The larger the

dataset the better the results. As mentioned in Chapter 5, the vector length of feature set is

864 for each image with 217 slices in the transverse (axial) view. Obviously, the parametric

techniques are less suitable in this application because of the large feature vector and a

relatively small number of images in the volume.

There are several popular non-parametric classification techniques, viz. Bayesian, k-

Nearest Neighbor (k-NN), Neural Networks and Support Vector Machines (SVM). These
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non-parametric classification techniques have been used extensively in the area of machine

intelligence, pattern analysis and recognition. The research reported in the literature is

quite diverse, however there is a limited amount of research work on the justifications and

comparison for these approaches. In [239], Linear Discrimination Analysis (LDA), k-NN,

Bayes, and SVM based classifiers are compared and concluded that the SVM technique can

find more complicated decision boundaries and the classification errors of k-NN and SVM

are considerably lower than others. More recently, k-NN and SVM are directly compared

in [240] on a variety of datasets, and concluded that the kNN is dominant on datasets with

relatively low sparsity. On datasets with high to extremely high level of sparsity, k-NN

starts performing poorly as it is unable to form reliable neighborhoods. Recently, neural

networks and SVM are studied in text recognition framework in [241], where SVM has

demonstrated superior classification accuracies as compared to the neural network based

classifiers in many experiments.

In many image retrieval subsystems, such as Relevance Feedback (RF), SVM has been

popular due to its ability to work well on sparse data. Besides, a recent research in [19]

indicates SVM to be suitable for medical image retrieval.

Due to these observations, the use of SVM is justified for semantic classification and

identification tasks, proposed in this dissertation.
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Glossary

Inhomogeneity Non-uniformity of MR radiation

Intersubject Within the same subject (patient)

Lobes Major anatomical areas of human brain

MR Magnetic Resonance

MS Multiple Sclerosis

Multimodal Involving several modes of MR sequences

Multiresolution Analyze images at multiple resolution

Multiscale Analyze images at multiple resolution

Multisubject Involving many subjects (patients)

PD MR Proton Density sequence

T1 weighted MR T1 sequence

T2 weighted MR T2 sequence

V olume 3D Data acquired from MR scanner
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