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Abstract 

The subject of variation analpis is of interest in mand'tuting processes where items are 

bpDg produced in large quantity and pam through mzmy operations or stages b d o n  they 

are campletecl. ARer the fisai operation, they must meet certain specifications. The issue 

is to discover how variation in the product characteristics at the h a 1  stage of the proccss 

can be reduced. With that goal in mind, it is nsaul to understand how the variation is 

conveyed thtough the process. 

Multivariate nonnality is assumed as the underlyïng model for the measured product. 

Methads are given for andysing variance tratlsmkion mder this model, both when a 

genad muitivuïate normal holds, and in a more testrictcd case, when a k t  otdar 

autoregressive structure is appropriate- 

Inevitably, thue wül be meastuernent an>r in the data collecteci on the procear. It 

is shown that this measurement -or can severly hinder attempts to characterize the 

process, and should be incorporateci expiiutly in an analysis A naive estimation method 

is inttoduced and shown to work weU. 

It may be lesa expensive, in =me instances, to coNect large amounts of sample data 

after each stage, and then t r d  ody a few items through the process. Methods are given 

of incotporating cross-sectional data into the analpis. A b  di#urwd is how to do this 

when the problem k compounded by measurement =or. 

Final&, some consideration is aven to the issue of dtivariate data. 
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Chapter 1 

Introduction 

This thesis de& with the subject of andysing variation in an industrial process. 

This subject is of intaest in many industrial processes in which items are being 

prodnced in large qnantity. These items generally pass t h g h  many operations 

before they are completed. After the final operation, they must meet certain spec- 

ifications. The issue of intaest is to discova how variation in the product at the 

final stage of the process can be reduced. A process that ha9 little variation in its 

final product is a cost efficient one, sinee few parts rill be saapped due to failure 

to meet specifications. Also, to produce high quality products it is important to 

minïmize variation in key quality characteristics. For instance, suppose a consumer 

buys a new car, and discovers that although the vehicle has just b e n  puchased, it 

is noisy to drive in becanse the doors of the car do not dose tightly. Thus, wind can 

be heard traveling around the car, and the consumer finds the drive unpleasant. 

This parti& problem wodd be eüminated if the mannfactuter consistently made 

vehides with doors that dose tightly in th& &ames. Variation analysis is osefid in 



determining how to do t b .  

The key to reducing variation in the final product is to have an understanding 

of how much of that variation arks at each stage of a process. If some data can be 

tracked through the cotuse of the process, then statisticd methods can be used to 

determine those stages that are the largest contributors to the variation. Statistical 

insight into this problem helps to focus engineering efforts. The a h  is a less variable 

product . 

1.1 Description of Problem 

We consider the problem of an industrial process producing items that shodd con- 

form to certain target values. These targets may relate to the dimensions of the 

prodnct, or they may relate to other characteristics s a c h  as, for example, rounàness, 

flatness or smoothness. These characteristics are referred to as puality charader- 

istics, because they are the measare of performance of the product. For more on 

quality characteristics, see Montgomery (1985), Moen et al. (1991), Nair (1992) or 

Roy (1990). The products of the process wiU naturally vary about the given values, 

and this variation may be costly to the mandactarer if it resdts in customet dissat- 

isfaction (Provost, 1990). It is therefore desirable to minimbe the variation of the 

process. For some chder i s t ics ,  variation only needs to be teduced to the point 

where the product rill meet spedication. For other characteristics, any reduction 

in variation is desirable, evea &a the product confoxmm to spedication. These 

types of characteristics are called key quaIity characteristics (KQC's). 

Often, the industrial process in question consists of maay serial or pardel stages 
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y2 yk 

Figure 1.1: Stages of the procars 

that the items pass through before they are completed, as illustrated in Figure 1.1. 

This complicates the issue of minimiBng variation in the quality characteristics, 

because it is no longa clear where the variation in the product at the final stage is 

coming h. Consider a two stage process, for instance, where a measarement in 

the same characteristic is taken bdore an operation and then again after it (the final 

stage). Consider a given amount of variation in the process before the operation. 

Then, any combination of tkee things can happen. The operation might simply 

transmit the variation, in which case the variation of the product at the final stage is 

determined by the variation in the product at the kst stage. It is also possible that 

the operation adds to the variation. The variation present at the h s t  stage will be 

of little importance if the variation added at the operation is large comparatively. 

Another possibility is that the operation may in fact ''remove" the variation that 

was present in the process at the first stage. In that case, the Yariation at the first 

stage of the process is not relevant to the variation at the ha1 stage. Cledy, the 

scenarios given above can be gmeraked to any numba of stages. 

We can illutrate these situations graphically throipgh the use of scatter plots 

and sequence plots. If ne track items through the two stage process and plot th& 

measmements, ne get a scatter plot of the data. If this scatter plot appears as 
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Figure 1.2: Perfed transmission 

1 
- - -  

Yi 

Figure 1.3: Tokai added variation 

shown in Figure 1.2, then we have perfect transmission of d a n c e ,  since al the 

variation in Y2 is due to vatiation in YI. Clearly, the slope of the regression is 

relevant here - if we could Yatten" the line so that it is horizontal, these wodd be 

no d a t i o n  in 5. This cozresponds to removiag k a t i o n  fiom the first stage. 

If, on the other hand, a scat ter  plot of the data reveaed the figare shown in 1.3, 

we would have total aàded variation in K. This is becanse none of the variation in 

Y, is due to variation in Yi. 

The more Uely situation is that some combination of the above tao situations 

occurs, aa iliustrated in Figure 1.4. 



I YI 

Figure 1.4: Both added and transmitted vasiation 

Y I 

Figure 1.5: Pdect  transmission of variance - sequence plot 

Sequence plots can also be used to illustrate these situations. These are plots 

of the time seqaence for each item tracked tkough the process. In the case of 

perfect transmission, this plot would appear as illnstrated in Figure 1.5, where all 

the lines are parallel. When thae is total added variation, this plot would appear 

as in Figure 1.6, where the lines on the plot all cross. 

Assnming it is possible to track at le& some items tkough the process and 

make measnrements after each stage, those stages that are contributhg the most 

to the variation in the hal  product c m  be identified. This contributes to a deeper 

understanding of the variation in the process and how it &ts variation in the 



Figure 1.6: Total added wation - sequence plot 

qualie chatacteristic. Potentially, an intervention could be made that teduces the 

variation contribated at the key sop~ces, and dtimatdy r d t s  in a more cost 

dedive process and Iowa variation in the qnaiity characteristic. 

1.2.1 Piston Example 

This example wîil be used throughoat this thesis to provide a numerical illustration 

of the concepts described. 

A piston is a part in an automobile located in the engine cylinder, the basic 

fiamework of the engine. The piston is essentially a cylinder dosed at the top and 

open at the bottom, where it is connected to a rod. The piston moves in a vertical 

motion in the engine cylinder, p u s h g  out exhaust on the upstde, and intaking 

fnel on the downstroke (Csouse, 1970). 

A study was done on 96 pistons as they were pmsing throngh a production line. 

Each of the 96 pistons studied had 53 observations rewrded on it. The process 



is jllustrated schematically in Figme 1.7. The quality characteristics of the piston 

were four diameters, located at a height of 4 mm, 10 mm, 36.7 mm and 58.7 mm. 

These diameters w a e  m-ed dtet each operation in the process, denoted in 

Figure 1.7 by Y1 - Y7. It shodd be noted that aü diameters were meastued in 

xnillimetres, to a precision of 0.001 millimettes, or 1 micron. 

The following is a brealtdona of the measuremeots on a piston. 

(1) Piston number. 

(2) Die namber - A piston is produced from one of six possible dies. Each die 

prodnced an eqnal rider of pistons (21). 

(3) Week number - This stady was done ova  a hRo week period; 48 pistons w a e  

produced in each week (22). 

(4) Path 270 machine number - At operation 270, there were tao different ma- 

chines that the piston codd have corne through. An eqaal n d e r  of pistons 

went through each machine (23). 

(5) Path 290 machine number - The same situation occnrred at operation 290 

(W. 

(620) Covariates - 15 attzibutes were measured on the pistons b e b e  production 

(XI-X 15). 

(21,22) Op 210 - After opetation 210, the diameters of the pistons were measared at 

4 mm. and 58.7 mm. At this partidar operation, no measurements w a e  

made at 10 mm and 36.7 mm (Yl). 



CHAPTER 1. INTRODUCTION 



(23,24) CoMnates - Two attributes were measored &es op 210 (X16,X17). 

(25-28) Op 230 - Four diametas w a e  meastl~ed aftm op 230: 4 mm, 10 mm, 36.7 

mm, and 58.7 mm (Y2). 

(29) Cowriate - One attribute was measiired afta op 230 (X18). 

(30-33) Op 260 - Four diametas were measured afta op 260 (Y3). 

(34-37) Op 270 - Four diameters were measared &et op 270 (Y4). 

(38-41) Op 280 - Four diameters were measnred after op 280 (Y5). 

(42-45) Op 290 - Four diametas were measured after op 290 (Y6). 

(46-49) Op 320 - Four diameters were meawred after op 320 (Y7). 

(50-53) Op 320 - Four diameters were m e a s d  &er op 320 using a different gauge 

(Y'IF). 

In any snbseqnent analysis, when a measarement was required for the final 

diameter of the piston, the first set of measurements (46-49) was used iastead of 

the second set (50-53), because the former was deemed to be more reliable. The 

second set of measurements was taken fiom a diffexent measmement machine than 

the others. 

This is en example of the type of muiti-stage indushial process deseribed above. 

It is of interest to identify the stages of the process that are major contribators of 

variation in the final diameters. 



REMHEADER 

Figure 1.8: Location of rear header on door 

Another example that wiU be ased occasionally is some car assembly door hanghg 

data. Here, thirteen cars w a e  tracked thrmgh a seven operation process, and the 

flushness of the rear header was measirred on the rear door* This is an in-out 

measmement which can eitha be above or beiow the target valne. To see where 

this location is on the door, see Figure 1.8. 

The seven operations that the cars went throagh were the following: 

3. Door hardware installation 

4. Striker installation 

6. Seah and chassis 



For each car, a meastuement was taken on the reat header &et each of the above 

operations. 

Again, this is an example of the type of mdti-stage indastria1 process ne are 

interested in. In fact, several fliishness measurements were taken on each car. Note 

that the geometry of the car door might lead as to consider several puality charac- 

teristics. The flushness measnrements themselves are clearly quality characteristics. 

The difference between mea~tllements on the top of the car door and on the bottom 

wil l  indicate how the door is tilted in that plane, and hence might &O be a quality 

characteristic of interest. Simikrly for the difference between measurements made 

on the IeA of  the door and on the nght. 

1.3 Statistical Issues and Problems 

The subject of redncing MOation is diseassed tkoughoat the quality fiteratate. See, 

for example, Joiner and Gaudarà (1990), Pyzdek (1990), and Nolan and Provost 

(1990). References on this issue that more closeiy resemble our approach, however, 

are Lawless, MacKay and Robinson (l996), Hamada and Lawless, Wu et al. (l994), 

X e  et al. (1994) and Knof and Fanor (1996). 

To iiiustrate the types of issues we address, consider a simplified situation in 

which there is a single operation. A measurement X is made before the operation 

and a measarement Y is made afterwards, whae X and Y are not necessarily 

meastuementcl of the rame thing. This can be thought of as illnstrated in Figure 



1.1, where there are tao stages. It will then be hue that 

The lkst term of the above equation can be interpteted as the variation in Y 

explained by X. The second term can be interpreted as the unexplained variation 

in Y. I fwe  assume that the mernucement of X d e s  aJl relevant idormation about 

the variation of Y at that stage, then we c m  &O interpret this equation as the 

following: the first term is the variation tansmitted to Y from the fkst stage and the 

second term is the variation added to Y aRer the &st stage. Ciearly, to compte the 

relevant expectations and variances, models ate needed for f (X) snd f (Y IX), whae 

f denotes a pmbability hct ion  in the discrete case or a probability distribution 

hc t i on  in the continuous case. At the very least, the first two moments of these 

firnctions will be needed. With these models in hand, the variation in Y can be 

broken d o m  as desired. 

In the general problem, we consider a k-stage process, with upstream measure- 

ments Xi, Xt,  . . ., Xk-i and the final padity characteristic mea~~uements Y. All 

of the upstream and quaüty characteristic measurements may be vectors, and need 

not be measurements of the same characteristic at each stage. It is possible, for 

example, that some of the & are measurements of the quality characteristic at 

an earlier stage of the proeess, while 0th- may be meawrements of completely 

diffèrent attributes of the process. Ideally, we wodd use all of this information to 

understand how variation in Y is propagated, and hon it might be reduced. 

This thesis wi l l  focus on the problem when the same qnality characteristics 



are m e a s d  at each stage. Thus, the measnrements are YI, . . ., Yk. There ate 

many statistical issues associated with this problem. Finding appropriate models 

to describe the data is the &st issue. Associated with this are issues of mode1 

fitting and assasment. 

The data are ofken obsmed with some memement error. This is another issue 

of importance, because ofken the error involved can be mbstantiai and ignoring 

it can seriously mislead the investigator. Methodology needs to be developed to 

explicitly handle this error. 

Another issue of interest is related to data collection. It frequently occurs that 

while tracking items throngh a process is expensive, measnring large numbers of 

items &a each stage is considaably less expensive. Methodology that uses this 

type of "cross-sectional" data in the analysis wodd be usefiil. 

Missing data is anotha relevant statistical issue. Ekequently, not dl data can 

be taken on all the items afta each stage. This is especialiy trne when the data 

are collected using automatic methods, snch as coordinate memement machines. 

Methods are needed that use the data that are available as efficiently as possible. 

Another thing that occurs ofken in these situations is that the data that are 

collected are correlated cross-sectionaiiy, and so rnuitivariate methods are needed 

in the analysis. Analysing the qu$ity characteristics one variable at a t h e  is not 

snfncient. The diameters meaeared on the pistons are an example of such data. 

Although models can be developed to Lake account of c o d t e d  data, the diiliculty 

occars when m g  to relate analysis done with these models back to the original 

process. 
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This thesis is outlined as foilows: the remahder of this chapter introduces 

the Mivariate AR(1) model and some methods of anaiysis; Chapter two disasses 

methods of analysis of variance t r d s i o n  in the presence of measmement =or; 

Chapter three discosses how to handle the data when the longitudinal data are 

supplemented with cross-sectional data; Chapter four discusses non AR(1) normal 

models; Chapter five ptovides some discussion on multivariate data and Chapter 

s u  presents conclusions and ideas for fiiture research. 

Most of this thesis wi l l  focus on univariate measurements. This is applicable 

methodology when there is only one quality characteristic of interest, or when there 

are more, bat they are uncorrelated. 

1.4 The AR(1) Model 

1.4.1 The Model 

The use of the AR(1) model was proposed by Lawless, MacKay and Robinson 

(1996), following work by Robinson. 

As a fùst step in addressing the identification of key sources of variation in 

an indnstrial process, ne consider a h o  stage process in which there is a unique 

dimension of interest. We will assume 4 and Yz to be random variables from a 

bivariate normal distribution. h that case, we can represent them as follows: 
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Then, by the conditional variance formnla, 

The interpretation of equation (1.1) is that the îust tenn is the amount of variation 

added due to the operation, whereas the second term is the amount of variation 

present in Yl that is transmitted through to &. HP2 is dose to one, almost dl of 

the variation present in Yl wil l  be tiansmitted to 5. Conversely, if Pa is close to 

zero, then the Mnation in & is due h s t  entîrely to the variation added at the 

operation. 

We non expand the process to tkee stages. The AR(1) model assumption 

specifies that the conditional distribution of a partidar variable, x, given all the 

earlier ones, Yi,. . . , Y;--l, is n o d ,  with a mean which is a fanetion only of the 

previoas variable, x-i, and a constant varjance. We will subsequently refer to this 

model as the first order aatoregressive model (AR(I)), due to its similarity to the 

time series model of the same name. In this case, 
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Again using the conditional variéance formula, we get that 

The îust term in eqnation (1.2) is the variance added due to operation h o .  The 

second term is the variation added at operation one and transmitted t h g h  to 

Y3, and the final tam is the variation transmitted from YI. 

Notice that if we are interested in collapshg both of the above operations into 

one single operation, we could consida the &t of that combîned operation. It 

can be shown that 

Obvioasly, the above expressions give the same redts for the unconditional vari- 

ance of YJ as ras fomd in (1.2). 

This type of caldation can similarly be &ed out on any nombet of seriai 

operations. In the general case, there are k stages and under the AR(1) model, it 
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is assamed that 

Equivalently, we codd arite 

This form is more convenient when discpssing targeting, since E(x) = a; = p. 

The variance formnlae are not affected by this alternate form. 

The AR(1) model states that the m e n t  meastuement is a function of the 

previous measmement only- This is often a reasonable situation from a physical 

point of view. Some reasons for which this might not hold, however, are that the 

multiwuiate normal model and the linear form of E(kfl&i) may not be vaiid. 

Further, if there are several codated variables and key ones are not observed, 

then the observed measurements may not conform to an AR(1) model. 

A us& "marginaln re-parameterkation of the AR(1) model is the folloaing: 

Hae, pij iepresents the correlation between measmementa at stage i and j. In this 



parameterbation, the variance partition of a k-stage process is expressed as 

Dividing by the total variance 4 gives 

This form indicates the proportion of the variance of the final product that is 

contribated at each stage. The proportions of variance are generally of more interest 

than the components themseives. 

It shoulc? be noted here that if the AR(1) model is appropriate, collapsing op- 

erations one and tao into a combined operation wi l l  resdt in a variance partition 

eqaident to that given by equation (1.2). That is, the first taro t a m s  of equation 

(1.2) will mm to give the added variation of the combined operation. 

Since, in the case of the AR(1) model considaed here, all partitions of Vanance 

of the final tesponse attribute consistent contributions of variation to the previons 

stages, evalnating the &ect of an intervention in the process is relatively straight- 

forward. This assumes that the AR(1) structure is not dected by the intervention. 

For instance, if in the case of the stages, the d a t i o n  added at opaation t a o  

(03;) is reduced by one haIf, then this redaces the first tenn in equation (1.2) by 

one haIf. Abo, if some intervention could be made that changes the slope of Y3 

on & (Pa) to one half its valne, then both the second and thkd terms in equation 



CKAPTER 1. iNTRODUCTïûN 19 

(1.2) reduce by one quarter. This approach comsponds to "removing" variation at 

opaation two. These scenarios suggest diBetent ways of reducing the variation in 

K- 
For ref'ces on this type of model used in longitudinal data analysis, see, for 

example, Diggle et al. (1994). 

1.4.2 Maximum Likelihood Estimation 

Since the data in this situation are n items that are tracked through a k-stage 

process and measnred after each stage, we wïll nrite y* to denote the 6th item's 

measarement afta the ath stage. In that case, the maximum likelihood estimates 

for the AR(1) model parametas are (Lawless, MacKay and Robinson, 1996): 

where 
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In the marginal parameteridion, they are 

Using these estimates, the total estimated variance at any stage can be exactly 

partitioned into its components. 

It is not tnie, however, that the estimated components of two or more opera- 

tions rill m m  to give the component of a eombined operation. For example, the 

estimated added variation in the process between li and & wodd be 

If operations one and two are groaped together, however, and is not observed, 

then we wodd estimate the added variation between & and to be 

This indicates that while the mie components of variance added at operations one 

and two should s u m  to that component added by the sapa operation with an AR(1) 

model, the estimates of these components do not. If the AR(I) model is correct 

and the sample siee is moderately large, though, these estimates should roughly 

add. 



1.4.3 Diagnostics 

VMoas gtaphical and format methods can be used to determine the adequacy of 

the AR(1) model. 

Since the AR(1) model implies that the marginal distributions of each of the 

stages mnst be n d ,  the observeci values from e d  stage can be plotted asing a 

QQ plot (see Johnson et al, 1988, p. 146). If any of these plots reveal substantial 

departmes kom normality? the AR(1) model shodd be rejected. 

If not, however, then the assamption of linearity of the conditional means shodd 

be verified. This wodd require plotting all combinations of the stages pait.irise to 

see if the linear ass~lpt ion is reasonable. 

Plots of the residnals shodd also be made to see if the t i rs t  order autoregressive 

relationship holds. H e m ,  the residuals of the vs &-l regression shodd be plotted 

against ail previous stages, x-2, . . . , YI, Yi. If these plots indicate any relationship 

between the residuals and the variables Y-- r z , - - - ~  5, &, then the AR(1) mode1 is 

not applicable, since wodd then be a firnction of somethiag other than jnst K+ 

Dinerent methodology wïll be required in this case. 

The assamption of constant variance can be vedied by plotting the residuals 

against th& predicated values. For erample, ontnard-opening funnel shapes on 

these plots indicake that the variance is changing with the mean. Detaüs are given 

in Montgomery and Peck (1992), p. 74 or Draper and Smith (1981), p. 147. 

To formdy test univariate normality, a amber of tests have been developed. 

P o p t h  test are the Shapiro-Wilks statistic, and tests of skeaness and hirtosis. 

See, for example, Madansky (1988). 



The bivéuiate notmaity of consecutive stages can be tested by generating ellipti- 

caI contours of the b i d a t e  density with the estimateci parametas, and compMng 

the proportion of sample observations lying inside these contours to a theoretical 

values. See Jobson (1991), p. 115. 

The k t  orda antoregresive natme of the data ean be tested using the extra 

snms of squares p d p l e .  Using this method, the model 

can be tested against the model 

If the smaller model is not adequate, then the AR(1) assnmption i~ not Mÿd. See, 

for example, Montgomery and Peck (1992), p. 139, or Drapa and Smith (1981), 

p. 97. 

A lïkelihood ratio test codd &O be done to test the AR(1) model agaiiist a 

more general mdtivariate normal model. Details on how to do this for a larger 

dass of models are given in the next chapter. 

1.4.4 Missing Data 

It sometimes happens in industriai processes that all the desired measurements on 

a part are not t k  at d the stages. When this occats, methods of estimating 

distribution parameters are needed that make use of all the available data. Ifsome 
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data are missing in a s a i d  process, but the process is thought to adhere to an 

AR(1) model, sets of data fiom adjacent stages can be mnsidered pairwise, and the 

bivariate normal distribution parameters estimated. 

The EM algorithm (Little and Rnbin, 1987) can be used to derive estimates 

of the parametas, assnming the data are misshg at random. For a bivariate nor- 

mal distribution when both variables may contain missing values, this caldation 

involves dividing the data into tkee groaps: (1) u n i t s  in which the first variable 

is observed but the second is not, (2) d t s  in which both variables are observed 

and (3) anits in which the first variable is missing but the second is observed. For 

fkther detailp, see Little and Rubin (1987), page 132. Fong and Lawless (1996) 

give a general solution to this problem. 



Chapter 2 

The AR(1) Mode1 with 

Measurement Error 

In indushial processes, the measmement system involved in detetmining the quan- 

tities of interest is an important issue. With the technological developments of 

recent years, machines are being tued that are capable of repeating measarements 

to a remarkable preüsion. This is not the only factor, however, that is relevant 

when considering the error involved in detamining the tme dimension. Usually, 

experiments have been done to determine the prehion of the measurement system, 

taking into acconnt f&ors sach as cliffisent operators and positioning inside a mea- 

suxement machine, as well as the machùie itself. The tema measurement aror refers 

to the error that occnrs as a result of aU of these difFerent sources of variabüity. 1t 

is an issue of concem when dealing with data of aU sorts, aad has been addressecl 

by anthors sach as Mer (1987), Seba  (1977) and Johnson (1972). 

To add measmement anm to the AR(1) mode1 inttoduced in the previous chap 



ter, suppose the measnred dues  of the characteristic of interest are Xi, X2,. . . , Xk 
where 

X i = x + ~ ,  .i - N(O, a:) (2J) 

W e  wil l  mostly assame that the Mnances < are known. When we do discnss esti- 

mating o:, however, ne wil l  assume that the data used to do this are independent 

of the process data. 

The pmcess (XI, X2, . . . , Xc) is no longer AR(1) if h > 2. In fact, the conditional 

distribution of Xi lxl, . . . , Xi-l depends on dl of Xi, . . . , Xi-1. 
Given observations (Xi, X1, . . . , Xk) on n items, the goal is to estimate the 

proportions of variance (1.5). The fact that we no longer observe the due to the 

presence of measmement error substantially corapiicates this problem. 

This chapta is outlined as follows: the first section diseasses the effects of mea- 

surement error if ignored, the second section elaborates on the estimation problem 

and introduces an alternative method to maximum likelihood, the third section 

provides some mode1 chedring techniques, the fourth section discusses approaches 

to use when the measmement error is estimated instead of known exactly, the 

fiRh section describes soiutions to the missing data problem, and the last section 

describes nsing these techniques for the piston example. 

2.1 Effects of Measurement Error if Ignored 

We re- the dects of ignoring measurement ezror (Lawless et al., 1996), since 

this will motivate what follows. To demonstrate the &ect of ignoring measarement 



error in the identification of the variance proportions (1.5), consider hst a t a o  

stage procegp in which 

with Cov(Xl, Xz ) = au:. This cornes fiom (1.3) and (2.1). 

Suppose n items are tracked through the process so that ne have data (x i iY  22j;  

j=l, . . . , n) and we estimate the variance components aswming that the AR(1) 

modd i s  appropriate, that is, assnming a., = a, = O. Then the maximum likeli- 

hood estimates given earlier are 

&-=- Note that as n -+ OD, y -+ Cov(Xi, Xi), where "+" denotes convergence in 

probability, so that 

In the partition (1.5), 



the estimates are sach that as n + oo 

Hence, the variation transmitted fiom stage one ir underestimated. Since the es- 

timates of the proportions m a t  &O s u m  to one, this implies that the variation 

added at stage hro is overestirnated. If the measmement system contributes 20% 

of the variation in XI and X2, then the asymptotic bias is substantiai. 

Suppose ne expand this to a process with three stages. If we ignore the mea- 

surement error, then we wodd use the estimates 

Then, the proportions of variance contriboted accordhg to (1.5) are 

Using the above estimates, 
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While it is clear that the proportion of variance transmitted from the kst stage is 

underestimated, the direetion of bias for the other two propoztions is not obvioas. 

In fact, the bias of the variance added at the thad stage is alrrays positive, which 

can be seen by writing it in the marginal parameteiization. Iir this form, 

2.2 Estimation 

2.2.1 Two Stages 

In the situation desaibed above, it is possible to develop maximum UeIihood es- 

timates to take acconnt of the meamernent error. Recall that the distribution of 

(Xi, X2) was given in equation (2.2). Xi and XI have a bivariate normal distri- 

bution, and there are five fianctionally independent unknown parameters, pl, ul, 

& 7  Q ~ A  in the modd. Equivalently, we may take the parameters to be E(Xi), 

Var(&), E(X2), Vat(X2), and unr(X1, X2). The m&um likelihood estimates of 

these parameters are (Latsen et d.7 1986) 

E(X,) = E , ,  Ê(x,) = a,, 
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We then get the following m h u m  lïkelihood estimates for the original parameters 

by the invariance property, assnmiag that 4c are known: 

assaming these estimates are greater than or equd to zero. If they are not, then 

some investigation shonld be made into whetha the data are representative of 

the process, and &O whether the measnrement aror variance is appropriate. A 

Qmplistic solution is to set the variance estimates to zero. 

In the marginal parameterkation for this mode1 (pl, ai, PZ, 02, pi*), 

These estimates are intuitive; we estimate the variance of k;-, for example, by esti- 

mating the observed variance and subtracting the measmement =or variance. 

Exact distributional properties can be detemined for Pi and C: above, since 



and 

Inferences can be made accotdingly. Also 

and since otl is presamed known, inferences can be m d e  about a:. For instance, 

a 100(1- a)% confidence i n t d  for u: is 

assuming the left hand side is greata than zero. If not, it can be replaced by 

zero. Finding exad distributions for the remaining parameters proves to be more 

difficult. If we condition on the zzi1 we find that 

which shows that the estimator is biased. Fûrther, 

Since the exact distribution is difficult to speafy, sinudations were done on two 
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Here, the denominator is simply the variance of wîth the rnalcimum likelihood 

estimates substituted for the r d  values. Fkther 

whae c is a correction for the bias, i.e. 

These simulations showed that the intaval k1.96, 1.961 had a coverage fiequency 

fairly dose to 95%, which shows that a nonnal approximation may be usefnl. There 

was no discernable dinaence between the coverage fieqaencies of Zi and 22- 

For the asymptotic properties of 9 and see N e t  (1987), p. 15. 

Recall that we are interested in the estimates of the propoztions of the variance 

of &, which in  te^^ ofpl, Pa, CI, m2 and pl2 i8 

It is possible to get approximate variaace estimates for these proportions, by ob- 

serving that the cross product ma* has a Wishart distribution (Masdia et al., 



CKAPTER 2. THE AR@) MODEL W T H  MEASUREaNT ERROR 

where 

[ p a g ~ c 2  ci + <a 
This gives as that (Magnus and Neadder, 1979): 

and that 

Hence we can conclude that 

where 
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and V is the Vanance-covariance ma* given in (2.4). Approximate variances for 

the components of variance can be found analogously, and are given in Appendix 

A. 

2.2.2 Three or More Stages 

Maximum likelihood estimation 

Maximum Uelihood estimates do not have closed fonn expressions for modeh with 

more than taro stages. The nnmber of fnnctionally independent parameters in an 

AR(1) k-stage process observed with measmement -or is 3k-1 ( h o  parameters 

for the initial stage and three more for every additional stage). The namber of 

Yk+1) independent parameters in a general mdtivariate normal, however, is k + 
(k parameters for the mean, and variance-covariance parameters). ln the 

case when k=2, these values are the same and the parameterization (pl, CI, al, Pi, 

nA1) is eqaident to (E(Xl), Vhr(Xl), E(X2), Var(X2),Cov(Xl, XI)). For k > 2 

the genetal multivariate normal has more parametas, and a one to one mapping 

between the tao sets of parameters does not e t .  

If, in the thme stage case, we presume the existence of an underlying AR(1) 

process (1.3) for Yi, &, &, bat that what we observe is XI, X2, X3, given by (2.1), 

we can parametde the joint distributions of these vatiables as foilows: 
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and 

In this case, the proportions of the d a n c e  of cap be expressed as 

where the fust tam is the proportion of k a t i o n  added at the third stage, the 

second term is the proportion of b a t i o n  added at the second stage and transmitted 

to the third stage, and the third tam is the proportion of variation transmitted 

from the f i s t  stage of the process. 

The goal hae  is to esthate these three proportions based on independent ob- 

servations (zU, zz j, zsj), j = 1, . . . , n. This involves estimating the eight unknown 

parameters in the distribution (2.5). 

The multivariate normal likelihood of (XI, X2, XJ) can be expressed as (Johnson 

et al., 1988) 



then the log-likelihood can be nritten as 

It is known (Johnson et at, 1988) that for any C, this likelihood is mruEimized 

with respect to p by = Zi, (i = 1,2,3). It remains, then, to detennine the 

values of the tkee variance parameters and the tao  correlation parameters that 

will maximize the Iikelihood. There is not a dosed form algebraic expression for 

any of these estimates, and they must be determined numerically. This is cornputer 

intensive and time consuming. If confidence intervals for variance components are 

also desired, additional computation nill be needed. In the next section, we present 

a simpler method that paforms very w d .  

Naive estimates 

Simple estimates for a k-stage process can be obtained by using the two stage 

maximum Uelihood estimates obtained earlier for each pair of consecutive stages. 
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This Ieads to the follotKing estimates for the k-stage case: 

Proving consistency of these estimators is straightforward. That the & converge 

in probability to ~ < i  is an application of the weak law of large numbers. Siniilarly, 

for 

it is true that 

Hence, + a!. Findy, since it is hue that 

and that 
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we get 

Note that the above caldations are general, and hold for any namber of stages. 

In simulations, it was found that the distributions of the estimated square roots 

of the individual variance proportions codd be well approximated by normal dis- 

tributions. This is &O tnie for the estimates of the square roots of the variance 

components. Hence, it is u s e f i l  to find confidence i n t d  in this metric. Cal- 

cdating the asymptotic Mnance of these quantities can be done analogously to 

the method for the resdts shown in the previous section. See Appendu A for the 

approximate variances of the square root of the proportions and the components of 

variance at each of the tkee stages. An approxïmate 98% confidence intaval can 

be compated using the fonnnla 

estimated proportion f 2-33 (estimated proportion) (2-9 

where ~ ' ( e s t i m a t e d  proportion) is f m d  using the a p p r d a t e  formda and re- 

placing the trne dues of the parameters by th& estimates. 

Parametne bootstrap dcplations can &O be used to get approximate CO& 

dence intervaIs. Once estimates fot the parameters of the mode1 have been found, 

these values can be ased as the %me'' values in genaating N "bootstrapn samples 

of size n, the original sample size. Estimates of the variance components can be 
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computed fiom each of the N sarnples, and confidence intervab cdcuiated nom 

them. For example, to get a 90% confidence i n t d ,  we codd take N=99, and 

seleet the 5th and 95th values of the ordesed estimates as the lower and uppet 

Iimit for each variance component. For more details on paramehic bootstrapping 

to compute confidence intervab, see Efkon and Tibshpani (1986). 

2.2.3 Simulation Results 

We wodd lïke to knoa how the naive estimators compare to the maximum Wreühood 

estimators. In addition, we want to h o w  bow well confidence intavals for variance 

components perform in terms of givUig close to the stated coverage. These questions 

were addressed in a simulation stndy in which a tkee stage process was considered. 

Since the &es of the variances at the three stages do not change the properties 

of the estimators, they were set to dways be one. For the same reason, the means 

at d tkee stages were set to zero. The variables that were manipdated were 

pi,, f i 3  and a,. In this simulation, the measmement m o t  ras set to be the same 

at all stages, since this ofben occnni when the same characteristic is measured at 

each stage of the process. Three leveis for each of p12 and p, were used, a, 
and m. These vaiues were chosen because they provide a aide ange of Mkrent 

d u e s  ( s e  (1.4)) being added and transmitted tkough the process. Hence, values 

of the fùst varime proportion in (2.6) range fkom 0.2 to 0.8, while vaiues of the 

second and third variance proportions range fiom 0.04 to 0.64. In this case, the 

mie vaiues of the proportions are the same as the components. Please see Table 

2.1 for the exact quantities. 



pi2 

d0.2 

40.5 

Table 2.1: Actual values of the tkee variance components in (1.4) in the simulation 
mns for a three stage process. 

Two levels of o, were chosen, 0.1 and 0.3, for i = 1,2,3. At the high level of 

component 
F b t  

Second 
Third 
Fkst 

Second 
Third 

0.20 
0.16 
0-64 

I I 

measnrement aror, the ratio a,/ui is 30%. This level of measurement error wodd 

30 .8  

be anacceptable in some applications in industry; anytbing higher wodd dl for a 

p~ = 40.2 
0.80 
0.16 

different measurement system. Note that even at the low meastuement error levd, 

and in the case of three stages, the bias in estimation resulting from ignoring the 

p a  = 40.5 
0.50 
0.40 

0.50 
0.10 
0.40 

First 
Second 
Third 

measurement =or can be substantial. Bias here zefers to the maence between the 

p a  = 40.8 
0.20 
0.64 

0.80 
F 

0.04 
0.16 

mean of a variance proportion estimate in ktge samplee, as given in (W), and the 

0.16 
0.20 
0.40 
0.40 

0.04 1 0.10 

mie  value of the variance proportion. Table 2.2 reproduces the variance proportions 

0.80 
0.10 
0.10 

of Table 2.1 for each scenario and shows the bias that resdts if measurement aror 

0.50 
0.25 
0.25 

These combinations of three levels for fi, and pw and two levels for a, were 

used for an 18 tun simdation. At each rnn, 99 s~mp1es (Xi, Xt, Xs) of 99 units 

were created esing the given set of values of p l 3 , p ~  and o, as tme parameters. 

For each sarnple, both the maximum likelihood estimates and the naive estimates 
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First 0.5 0.00985 0.0792 
' Second 0.4 -0.00595 -0.0500 

' 

Third 0.1 -0.00390 -0.0292 
First 0.5 0,00985 0.0792 

' 

Second 0.25 -9.71e-05 -0.00627 
Third 0.25 -0.00975 -0.0729 

I 

First 0.2 0.0158 0.127 
Second 0.64 -0.00952 -0.0800 
ThLd 0.16 -0.00624 -0.0467 

1 Fust 1 0.2 1 0.0158 1 0.127 1 
Second 0.4 -0.000155 -0.0100 
Third 0.4 -0.0156 -0.117 

I 

' Second 0.16 0.00921 0.0600 
Thitd 0.64 -0.0250 -0.187 

Table 2.2: Bias of simnlation proportions when memement aror is ignored. 
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w a e  found, and the three variance components were calcttlated. Then, 99 bootstrap 

samples wae created using each set of estimates as the real parameters. The lowest 

and the highest values of the estimated variance wmponents firom these bootstrap 

samples wae ased to specify 98% confidence intentals for the components for each 

sample. Only 99 bootstrap samples were done here to keep the time limitations of 

the s idat ion f-ble. In an industrial setting, computing more bootstrap samples, 

for example 1000, are recommended. 

The results of the simulation are given in Tables 2.3 - 2.8- Table 2.3 shows 

the average d u e  of the rnzucimuxn Iikelüiood estimates and the naive estimates for 

each run, for the fkst variance proportion. Also inclnded are the standard deviation 

estimates of the m. Tables 2-4 and 2.5 show the same for the second and third 

variance proportions, respectively. Tables 2.6 - 2.8 gives the coverage fkequencies 

of the bootstrap-bd confidence intavals for both the maximum Ueiihood esti- 

mates and the naive estimates for ail tkee variance components ("Rad') and the 

proportions ("Proportionn). Recall that this theoretid coverage fkequency is 98%. 

No major discrepancies in coverage fiequency are seen. 

These resdts indicate that the performances of the naive estimates and the 

maximum likelihood estimates are Wtaally indistingaishable. In fact, the estimates 

are very dose to each other in most cases. This ean be seen in Figuses 2.1 - 2.9, 

which show the naive estimates plotted against the maximum likelihood estimates 

for each of the vaiance components and for aIl runs. The top row of plots on 

these graphs is the ran at the low measurement errer level, and the bottom row 

of plots is the m n  at the high measurement enor level. The Y=X line has been 
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p u  
C 

M 

H 

Table 2.4: Average of 99 values of second component of proportion estimates for 
each m. The figmes in brackets represent the estimated standard deviation for 
these values. Sample size is 99. 

pi1 
L 

M 

H 

L 

M 

E 

- 
L 

Esfimate 
Mle 

Naive 
Mle 

Naive 
Mle 

Naive 
Mle 

Naive 
Mle 

Naive 
Mle 

M 

H 

Naive 
Mle 

Naive 
Mle 

Naive 
Mle 

Real Value 
0.16 

0.10 

0.04 

0.4 

0.25 

0.10 

a, =L 
0.163 (0.054) 
0.163 (0.054) 
0.104 (0.040) 
0.104 (0.040) 
0.044 (0.017) 
0.W (0.017) 
0.396 (0.063) 
0.396 (0.063) 
0.253 (0.049) 
0.253 (0.049) 
0.100 (0.022) 
0.100 (0.022) 
0.634 (0.064) 

a, = H 
' -  0.167 (0.074) - 

0.167 (0.074) 
0.101 (0.045) 
0.101 (0.045) 
0.041 (0.021) 
0.041 (0.021) 
0.402 (0.074) 
0.402 (0.074) 
0.256 (0.052) 
0.256 (0.052) 
0.094 (0.027) 

0.634 (0.064) 
0.401 (0.052) 
0.401 (0.052) 
0.163 (0.034) 

0.094 (0.027) 
0.645 (0.076) 0.64 
0.646 (0.076) 
0.393 (0.073) 
0.391 (0.073) 
0.158 (0.049) 

O -40 

0.16 
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' M  L Mle ' 0.100 ( 
Naive 0.100 ( 

M M3e 0.247 ( 
Naive 0.247 ( 

H Mle 0.401( 
Naive 0.401 ( 

H L M e  0.162( 
Naive 0.162 ( 

M Mle 0.395 ( 
Naive 0.395 ( 

H Mle 0.632 ( 
Naive 0.631( 

YO) - 0.107 (0.045) 0.10 
140) 0.108 (0.045) 
62) 0.257 (0.066) 0.25 
162) - 0.258 (0.068) 
168) 0.406 (0.084) 0.40 
168) 0.405 (0.086) 
60) 0.159 (0.067) 0.16 
160) 0.159 (0.066) 
67) 0.417 (0.080) 0.40 
67) 0.419 (0.080) 
54) 0.645 (0.071) 0.64 
54) 0.648 (0.074) 

Table 2.5: Average of 99 values of third component of proportion estimates for each 
tan. The figuses in brackets repreaent the estimated standard deviation for these 
values. Sample size 1 99. 
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Table 2.6: Coverage fiequency for fist  eomponent for each run. Note that these 
figures are not given in percentages - they are the actuai nnmber of intavals that 
cover the real valne ont of 99 tn&. (Covexage interval shodd be 98%). Sample 
size is 99. 

p n  

L 

M 

H 

pl2 

L 

M 

H 

L 

M 

H 

L 

M 

H 

Estimate 

Mle 
Naive 
Mle 

Naive 
Mie 

Naïve 
Mle 

Naive 
Mle 

Naive 
Mle 

Naive 
Mle 

Naive 
Mle 

Naive 
Mle 

Naive 

Raw 
ue =L 

98 
97 
97 
98 
91 
92 
96 
94 
97 
97 
97 
97 
96 
98 
95 
97 
97 
98 

Requency 
uc = H 

91 
9 1  
98 
97 
97 
94 
96 
94 
95 
95 
91 
91 
95 
96 
93 
94 
96 
97 

Proportional 
tre =L 

96 
98 
95 
97 
95 
97 
96 
99 
99 
99 
98 
95 
97 
98 
95 
97 
95 
98 

Requency 
ce = E 

95 
91 
98 
98 
98 
97 
95 
98 
96 
97 
95 
97 
95 
96 
96 
99 
97 
97 



I 

L 1 Mle 94 1 96 1 95 
Naive 98 95 99 95 

M Mle 97 94 95 97 
Naive 98 96 97 97 

H Mle 96 96 96 98 
Naive 98 96 97 98 

L Mle 96 97 95 97 
Naive 95 95 95 97 

M Mle 97 95 95 98 
Naive 99 97 97 98 

H ( Mle 1 97 1 96 1 97 1 96 
Naive 95 96 97 98 

L Mie 97 93 95 97 
Naive 97 92 96 97 

M Mle 94 96 96 97 
Naive 96 93 97 99 

H Mle 93 92 97 95 
Naive 95 94 - 97 94 

Table 2.7: Coverage fkequency for second component for each ran. Note that these 
figures are not given in percentages - they are the actnai number of i n t d  that 
cover the r d  value out of 99 trials. (Covaage i n t d  shodd be 98%) Sample 
size is 99. 



1 t 1 - I 1 - - L - - 
L l L l  Mle 1 92 1 93 1 94 1 95 

Naive 99 97 96 98 
L Mle 97 97 98 97 

Naive 96 98 96 96 
M Mle 94 96 94 96 

Naive 94 99 94 98 
H Mle 97 98 98 93 

Naive 96 96 94 98 
L M e  96 95 94 98 

Naive 98 95 97 95 
M Mle 97 96 94 96 

Naive 96 97 98 95 
H Mie 95 95 97 94 

M 

Table 2.8: Coverage fkequency for thPd component for each m. Note that these 
figures are not given in percentages - they are the actuai i&mber of i n t d  that 
cover the r d  valne out of  99 trials. (Coverage intaval shodd be 98%.) Sample 
size is 99. 

Naive 
Mle 

Naive 

96 
96 
99 

95 
98 
98 

98 
98 
99 

96 
99 
98 



added for reference. The naive estimates appear to be closest to the maximum 

likelihood estimates when the largest amount of variation is added at the end of 

the process. An interesting feattue that can be seen is that regardlas of the pl2 or 

vaines, the naive estimates are closer to the maximum lilirelihood estimates when 

the rneastlz'ement =or ia low, as compared to vhen it's hi&. This is expected, since 

we know that the estimators are the same when there is no measmement error- 

O v d ,  the data suggest that in the thsee stage case, the naive estimates can 

be substituted for the maximtl~ll likelihood estùnates in many situations likely to 

be encountered in practice. There is litt1e justification for spending time computing 

the maximm likelihood estimates, when the naive estimates can be fotmd faster 

and without the use of optimization methods. 

0th- sidations were done to check the coverage frequenües of the confidence 

intervals given in equation (2.9) for various values of the true parameters. For a 

given set of hue parameters, 1000 data sets of sample size 99 were generated. For 

each data set, the naive estimates of the square root of the variance components 

and proportions w a e  found. TheV approximate variances were caldated using 

these estimates, and a 98% coddence interval was compnted ushg equation (2.9). 

Then, the coverage fiequency for that set of real parameters was found by counting 

how many of the 1000 intend aetudy contained the tnie parametas. See Tables 

2.9 - 2.11 for these dues. Overan, the coverage fiequencies achieved aere very 

dose to 98%. This suggests that the approrimate variance formulas given in the 

appendix are usefnl in finding confidence intavals, which firrther strengthens the 

argument for asing the naive eshates. 



CRAPTER 2. THE AR(1) MODEL WITa MEASUREMBNT ERROR 



CKAPTER 2- THE AR@) MODEL WITa MEASUREMENT ERROR 



CHAPTER 2. THE AR(1) MODEL WITH MEASUREmNT ERROR 



CElAPTER 2. THE AR(1) MODEL WlTH MEASUREMENT ERROR 

Figare 2.4: Figures for p12 = md p, = m. 
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Figure 2.6: Figares for pl, = and hl = m. 
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Figure 2.8: Figures for pl2 = a and = a. 
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Figure 2.9: Figures for pl, = \/O8 a d  p, = a. 
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I Comp Proportion 
T 

II 

T 

Table 2.9: Coverage fiequencks of confidence intervals ming approximate variance 
formdas for the square root of the first variance component. Niimbers are percent- 
ages of 1000 simdations. Theoretical coverage fiequency is 98%. Sample size is 
99- 

Table 2.10: Coverage fiequenues of confidence htervaIs tlsing approeate d 
ance formulas f a  the square root of the second variance componeot. Niimbers are 
pacentages of 1000 simalstions. Theoretid coverage fieqoency is 98%. Sample 
size is 99. 

pl2 C'omponent 
ue=L 

L 97.3 

Proportion 
a , = H  
98.1 

a , = L  
97.3 

a , = H  
98.0 ' 



Propc 
a, =L 
96.7 

I 

Table 2.11: Coverage fiequenues of confidence intervab using approximate vari- 
ance formulas for the square root of the third variance component. Numbers are 
percentages of 1000 simulations. Theoretical covaage fiequency is 98%. Sample 
size is 99. 

It seems that both the bootstrapping and the apptoximate variance formulas are 

satisfactory methods of finding confidence intervals for the sample size considered 

here (n=99). For small sample sizes, hoaever, one might expect the bootstrap 

method to be more accarate. 

2.3 Mode1 Checking 

It is important to check whether observed data ate consistent with an AR(1) process 

with hown measntement -or. As indicated in (2.5), this model implies that the 

observed measurements follow a mdtivariate normal distribution. 

As a first step in evaluating the multivatate n d  assumption, the nosmaiity 

of the Mivariate marginal distributions shodd be checked, as for the AR(1) model. 

If the marginal distributions do not aeem normal, then the muiti-te normal 
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assamption can be rejected. If they do seem normal, however, the assurnption of 

the linearity of the conditional means shodd be vedied. That is, plots shodd 

be made of all Yi vs for i > j. Again, if this assumption is contradicted, the 

mdtivariate n o d  assumption should be rejected. 

ResiduaI plots can &O be done for the AR(1) mode1 with measmement aror. 

To see how, d t e  

Since we are assaming independence of and y,  of ali b, when i # j ,  and 

similady for Q, ne get that 

Let 

Using the caldated estimates for ai and a, we can estimate R. by 

These estimated residuala shodd be independent of all previous values, i.e. XI, 

X2, . . ., Xi+ Hence, plots of these tesiduab against these stages should reveal no 

discernible trends. 



Other, more formai tests can be applied to test for mdtivariate normality 

(Looney, 19%). 

We can test the adequacy of the AR(1) model or the AR(1) with meamernent 

error model within a normal model via a likelihood ratio test, as follors. Under 

a genezd mdtivariate normal structare, the maximum likelihood estimates are 

(Johnson, 1988) 

and so the mai9miaed log-lüelihood takes the fom 

Under the constraint of being an AR(1) process with measarement error, the max- 

imized log-likelihood takes the form 

where C. is of the f m  given in (2.5), and an estimate of it ha9 been found by 

optimil.hg (2.7). Rom the theory of the iikelihood ratio test, 

In simulations for the case k=3, it was fonad that the distribution of the statistic 

given above codd not be disthguished nom d, for sample sizes as small as 30. 
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This was trae even when I(W) vas approximated by evaluating (2.11) using naive 

estimates. This means that a simple a p p r d a t e  test can be d e d  out for the 

AR(1) model with meamrement ermr without needing to cornpute the maximum 

likelihood estirnates for the model. 

Using the above lilrelibood expression, the devïance residuah can be examined 

to see if any observations are parti&1y infiuential. See, for exampIe, Williams 

(1987). 

2.4 Uncertainty in the Measurement Error Vari- 

ance 

At this point, ae d discuss how the r e d t s  given above can be rnodified to take 

into account uncertainty in the measmement error variance. 

W e  assume that the data taken to estimate the measurement m o t  are in- 

dependent of the process data. Furthet, n e  ririll assume that out of the qeriment, 

we have an estimate of ut, 3, such th& 

~ ( û f )  = af 

and var(&:) = v, 

If the estimate is not unbiased, minor adjustments can be made to the following 

procedures. 

The naive estimates described earlier can then be modified by replacing the 
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known measarement errot with the estimate given above. The maximum likelihood 

estimates c m  be computed &O by rephcing the estimate above rith the ~XLOWIL 

meastarement errer in the likelibood (2.7). 

The delta method csn be used here to get approximate variance formulas for 

the proportions and componentr. For example, in a h o  stage process where the 

memement error is the same at both stages, the a p p r k a t e  variance f o d  

can be computed by noting that 

is a fbction of fout random variables, S,,, , S.,, , S,, and e, and that the last 

is independent of the &st three. When the gradient is taken with respect to each of 

these variables, and the expected values of S.,, , S.,, , S,, and are rebstitnted 

into these expressions, ne get that the resulting vector is 

1 + 1 

{ n  - 1 - O }  {(n - l)4 - ni) 11 
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Ftuther, the variance-covariance matrix of these variables is 

Hence, the approximate variance of this variance proportion can be cddated as 

. Similar caldations can be done for the variance components, and in the case of 

more stages. 

Note that the method desdbed here is not the only method of collecting data 

on measmement error. For instance, such data can be collected while gathering 

the process data, simply by measnring each part twice. Methods of andysis in this 

case have yet to be hvestigated. 

2.5 Missing Data 

Missing data can be handled in the situation when the data adhese to an AR(1) 

mode1 with measmement aror. The procedure used to do this is a generabed 
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version of that used for the simple AR(1) model. 

In this case, the observed X's are treated as a general multivariate normal, as 

given in the three stage case by (2.5). In the EM aigorithm, all the data are used to 

estimate the expectations of the E step. A numerical optimization is then reqnired 

for the M step. Details of this caldation are given in Little and Rnbin (1987), p. 

142, and have been used in Hamada and Lawless. 

The problem vith the procedure desdbed above is that it is very cornputa- 

tionally intensive. Fong and Lawless (1996) use a K h a n  filtering approach to 

facilitate the use of the EM dgonthm, and h d  this approach to be more efficient. 

The naive estimates can also be ased to estimate the parameters in the case 

where some data are missing. The method of doing this wodd be simply be to 

estimate the parameters ova  the data that are available. For example, in the case 

of estimating a d a n c e  parameter, ne would use all the data that are adable 

for that stage and estimate the variance as the s u m  of squares of that data divided 

by the amount of data and gnbtrsct the meamarement error variance. Conelation 

parameters betweea adjacent stages codd similarly be calcillated over all the data in 

which both stages wae obsaved. This approach is mach simpler than implementing 

the EM algorithm described above. 

2.6 Piston Example 

For the piston example desaibed in the previous chapter, the variance of the final 

stage dl be partitioned nsing an AR(1) model with measmement -or. To simplifjr 

the process, it d be reduced to tthree stages, namely K, Ys, and fi. It was believed 



that these stages w a e  not changing the diameta of interest at all. Fnrther, only 

one of the diameters wiJl be conaidered here, the diameta at a height of 4 mm. 

The known measarement error standard deviation is approximately 5*104 mm, or 

0.5 microns, at each stage. This gives an estimated ratio of 2 = 22%. 

Engineering knowledge of the process indicated that the normal AR(1) model 

with rneasurement error should adequately describe it. Various model checks were 

used to determine the adeqaacy of this rnodel. The data are essentially disaete 

over the range in whïch they were meamed, which &ects the normality assamp 

tion. Still, the QQ plots at each stage did not reveal any significant departmes. 

The deviance residuds of three pistons proved to be partidarly infiuential. Scat- 

ter plots of pairs of meamrementa &O showed these three points as outliers, and 

the sequence plot revealed that this might be because th& second measnrements 

were fauity (Ys). Hence, these oatliers were removed fiom the subsequent analysis, 

although some investigation should be done to seek causes for why these patt idar 

pistons may have difFered from the rest. See figares 2.10 - 2.12 for plots of the 

data. Note that Figtue 2.12 is not a good example of a sequence plot, since the 

individual items are d.iEcult to trace dne to the disuete nature of the data. Still, 

it is apparent from this plot why the tkee pistons speeified are outliem. 

The goal of this study is to determine how the variation at the final stage of 

the process can be attnbuted to wiation traasmitted from upstream. When the 

rneasurement enor is ignored, the proportions of vatiance contributed according to 

the AR(1) m o u  are 0.256 at the thPd stage, 0.244 at the second stage, and 0.500 

at the first stage. Using the naive estimates introdaced in section three and the 
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Figure 2.10: Second stage of piston data plotted against the &st stage. The numeric 
values hdicate the tkee outfiers. 



o . . .  
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. 

Figure 2.11: Thitd stage of piston data plotted against the second stage. The 
numeric values indicate the three outlien?. 



Figure 2.12: Sequeme plot of the thme stages of the piston data. The n&c 
values inàicate the three outliers. 
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hown measurement aror variance, however, we b d  instead that the proportion 

of variance contnbated b 0.181 at the third stage, 0.206 at the second stage and 

0.613 at the k t  stage. Taking into aceoant the measmement aror not only gives 

a more acemate impression of where the variation is coming nom, but &O a b w s  

a more accurate interpretation of how an intervention in the process will affect the 

variation at the final stage. 

Both the bootstrap technique and the a p p r d a t e  vasiance method desaibed 

earIier were used to h d  98% confidence i n t d  for these proportions. Li the iirst 

case, 1000 bootstrap samples were simuiated nsing the naive estimates as the real 

values, and new estimates for the proportions were compnted. The 10th and the 

990th ordaed values were then fotuid to give the following confidence intervals 

Prop. eom 3rd stage : (0.088,0.300) 

Prop. from 2nd stage : (0.105,0.322) 

Prop. fkom 1st stage : (0.466,0.750) 

In the case of the appioximate Yatiance method, the naive estimates were substi- 

tuted into the equations in Appendix A and (2.9) to give the confidence intervals 

Pmp. &om 3rd stage : (0.092,0.299) 

Prop. from 2nd stage : (0.115,0.323) 

Prop. fkom 1st stage : (0.475,0.769) 

The two sets of coddence intemals agree rd. The main conclusion is that the 

first stage contributes most of the variation. 



The d y s i s  done h g  the mzuimum likelihood estimates yielded the same 

conclusions as that done with the naive estimates. 

Finally, it should be mentioned that the likeIihood ratio test given previody 

was carried out, and rws fonnd to yidd 

under the assumption of the AR(1) model with meastuement ator. Under the fûll 

model, 

[(fi) = 1424.83 

Using the approximating chi-square distribution on one degree of &dom, this gives 

a p-value of 0.173, indicating no reason to reject the measurement error model. 

The Iikebhood ratio test was &O done for the AR(1) model without measurement 

enor, and was found to give a likelihood of 1421.54, which when compared to the 

Ml model gives a p-value of 0.010, suggesting that this model does not describe 

the data adequatdy. 

We conclude that whïie more than half of the variation at the final stage is 

transmitted fiom the firat stage, 40% of it stin cornes from sabsequent stages. 

This somewhat contradich previous knowledge of the process, and provides new 

oppominities for variation tedaetion. 



Chapter 3 

Cross-sectional and Longitudinal 

Data 

The methods described thus far to ded with the variation analysis problem have 

focused solely on one data collection scheme, namely tracking items through the 

process. As ha9 been mentioned earlïer, this type of data collection is expensive. 

Furthermore, it oRen happas that large amounts of data are available after each 

stage of the process, either because measurement systems gather these data in 

routine monitoring, or simply beeause they are cheap to collect. Of significant 

interest, then, is to detamine how this type of data can be used in the pattitioning 

of the variance at the last stage of the process. 

Statistically, this is a missing data problem, althongh we prder to thids of the 

cross-sectional data as snpplemental data. Clearly, the variation analysis problem 

cannot be handled without some longitudinal data, since estimates of the correlation 

between stages of the process wodd not be available. We will consider situations, 
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then, in which some longitudinal infarmation is amilable, but this is augmented 

with data that have been sampled dter each stage. 

This chapta is divïded into two sections, an analysis section and a design sec- 

tion. In the foÿmer, ne discnss issues of estimation given data of this sort, fust for 

tao stages, and then for tkee or mooe stages. An AR@) mode1 is assumed. We 

propose tao  naive sets of estimators, and give th& propaties. Some simulation 

resdts are also given. Also diseassed is how these estimators could be modified to 

indude meamernent error. In the design section of this chapter, we discuss the 

issue of how much idormation is available in the cross-sectional data. 

3.1 Analysis 

3.1.1 Two Stages 

Estimation 

Consider a two stage process, in which n observations are made on items tracked 

tkough both stages of the process, m items are sampled at the fust stage, and 

1 items are sampled at the second stage. The t h  groups of observations are 

denoted as S12, SI and S2, respectively. Since this is a two stage process, it is 

neceasarily AR(1). The goal is to detamine the variance components of interest, 

4 1  - ~ 3 ,  and +;:,- 
Various methods of estimating these components corne to mind. The fmt 

method is simply to ignore the supplemental data, and to estimate the variance 

components from only the longitudinal data, as given by the estimates in (1.6). 
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We will subsequent1y refa to these estimates as MLES(Sl2). These estimates are 

considered to be a badine against which to measare othe estimation techniques. 

The second method that could be naed is to compute the maximum Iüelihood 

estimates fiom these data. We ean m t e  d o m  the likelihood here as 

The maximum likelihood estimates, even in the simple tao stage case, must be 

computed numeridy. These estimators nill be referred to as MLES(S12-S2). 

Faitly obvious naive estimators can be constructed. The kst set will make use 

of al l  the data available at any stage to estirnate the marginal parametas at that 

stage, and only the longitudinal data to estimate the correlations. Hence, we have 

C (Ki - fil(S12, SI))' 
(m + n 2 , n  

1 - C (Ki - P,(S12, W)' 
(t + 4 h*SI 
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where h2 is the same as in (1.6). These estimates wil l  be referred to as the naive 

estimates for the fidl data (NEFS). Note that it wodd have been possible to use 

other forms for the correlation estimate; for example 

This form, however, does not guarantee a correlation estimate between -1 and 1, 

which leads to dificdty in interpretation. 

Although we would expect the NEFS to paform better than the MLES(S12), 

th& n s ~ e s s  appeani to be limited by the fact that the correlation estimate is 

the same correlation estimate used in the MLES(Sl2). The next set of estimators 

proposed uses the same estimates as the NEFS for the marginal parameters, and 

u;, but develops a more intricate method for estimating ~12. This new estimate of 

piz only uses the longitudinal data, as with the tao previous estimators, but in a 

different form. The form of this estimate cornes kom writing dom the likelihood for 

the data, as in (3.1), taking the logarithm and solving for p12. If we label fimctions 

of the data as follows: ' 

then the equation to be solved is the one in which the following fniiction is set to 
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zero: 

This gives a mbic equation in pl, which can be solved to give three roots. Tao of 

these roots ate complex conjugates and the other one is r d  The real root has the 

following form: if ne set 

and 
3n2 + 6nœ + pz 

O =  
dpf (3.7) 

The estimated quantities of f i  and ai are substituted into the above expressions to 

give estimates for a, p, P and Q. 
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We can show that when the estimates of and are substituted in, the 

equation given by (3.2) m u t  always have a root betareen -1 and +1, and thus the 

above correlation estimate mut  &O have t h  propaty. To do this, first define 

where xj ti El, and d&e the asud me- on U and V. Hence, 

V si2 

Then, by the Cauchy-Schwartz inequaky, 
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This wodd mean that 

which isn't possible. W e  condade fiom this that l&l 2 lai. 
Coming back to (3.2), we note that 

Sime lail 2 181, it is possible to show that for all combinations of and being 

positive or negative, we find that h(-1) has a different sign than h(1). We condude 

that the fnndion given by (3.2) must have a rwt behreen -1 and 1. The estimate 

of the correlation thns &O possesses this fatore. 

This set of estimators nill mbsequent1y be referred to as the semi-naive estima- 

tors (SNES). These have the advantage that they are in closed fonn, despite the 

fact that they are less intuitive thaa the NEFS. 

The next section desccibes some properties of the NEFS and the SNES. 



Properties of the NEFS and the SNES 

Proving consistency of the naive estimators, when the amount of marginal data 

is a h e d  multiple of the longitudinal data, and the amount of longitudinal data 

increases to infiniw, is straightforward. Here, well show coIlSiStency of the semi- 

naive estimate of pl2, given by (3.5). We'll assume that the nnmber of longitudinal 

observations is n. 

Note that we can nrite the estimate of a in equation (3.3) as 

fiom which we condude that 

fkom equation (3.0,  which gives that 

Sabstitating these into the expressions for P and Q as given by (3.6) and (3.7), we 
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find that 

fkm ahich we get that el2 P, piz. 

The delta method can be used here to get apptoximate variances for the variance 

components. For example, in the case where m=l=kn, ne find that nsing the NEFS, 

Substituting k = O into this expression gives 

which is the appro-te variance for the first component when the longitudinal 

data are ignored, i.e. using the MLES(S12). Similar caldations c m  be done for 

the second variance component, and &O for the variance components estimated 

using the SNES. Please see the next section for fkther detaüs. 
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3.1.2 Three or More Stages 

We considder non a situation in which thae are three or more stages in the process. 

The data wil l  stin be considered in groups, so that S12.. . k contains the longitudi- 

nal data and that Sk contains the marginal data on stage k. We wdl not consider 

the situation in which thae is inwmplete longitudinal data. The data are msumed 

to adhae to an AR(1) model. 

Estimation and Properties 

The estimates given in eqnation (1.6) can be used as estimates that do not use 

the extra cross-sectiond data, MLES(Sl2. . . k). This is &O mie in the case of 

three or more stages in the process. The rnzuimum likelihood estimates for the fidl 

data can be found by optimiaing the Iürelihood, andogous to that shown in the two 

stage case. For a k-stage process, this likelihood aill be the prodnct of a k-variate 

constrained multivariate notmal and k uniVaLjate normal parts, to account for the 

cross-sectional data. Estimates wïJl need to be compnted namerically. 

The naive estimates can be easily generalized to three or more stages. AgaLi, 

estimates of the marginal parametas for a stage cari be estimated fkom all the 

data available at that stage, and comeiation estimates for consecutive stages can 

be estimated fkom the longitudinal data. Recd that since we are aswming an 

AR(1) model, the correlation parameters for stages that are not consecutive are jast 

prodncts of the conelations between consecutive stages. The semi-naive estimates 

can be gme~alized in the same way to three or more stages. 

The naive and semi-naive estimates are clearly consistent for a process with 
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tkee or more stages, ander the same conditions as they were for the hro stage 

process. Ehrfhennote, approximate variance formulas eaa be found for the vari- 

ance components. As in the meastuement -or sïtnation, it was fouxid that the 

square mots of these components more dosely approximated normality than the 

components themselves. For the naive estimates and in a thtee stage process, it 

was found that 

when n is the size of S123 and the marginal data all have the same size, kn. Sirnilar 

formnlas can be found for the semi-naive estimates, but these are extremely lengthy. 

Maple programs to produce these formulas for a tkee stage process are given in 

Appendix B. Simjlar calcalations can be done for a geneial k stage process, but 

might be prohibitive when k is large. 

Simulation Results 

Some simulation studies were performed to investigate the four estimators de- 

scribed. These studies had tvo goals. The primary one ras to compare the four 
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estimators under a variety of diffkrent conditions. The secondary goal was to deter- 

mine if confidence intavals calculated for the NEFS and the SNES actudy gave 

intervals dose to their the~~etical merage fiequenues. 

The first simuiation study modeled a three stage process, and was set up such 

that the amount of cross-sectional data at al1 t h e  stages was the same. The 

experimental design had four faetors: the cordation between the first and second 

stage (p l i ) ,  the comelation between the second and third stage (pl& the sample 

size of the longitudinal data (n) and the multiplicative factor of the marginal data 

(k). The comelation faetors were ran at the values a, and a, the 

longitudind rample size had two values, 20 and 50, and k codd take the values 1, 

2 or 5. The resdt was a 54 nur simulation. 

At each nin, 100 samples were generated randomly, and each of the fonr estima- 

tors was nsed to compute the estimates of the three variance components. Averages 

and standard deviations for each of the components and each rnn are given in Tables 

C.1- (2.6 of Appendix C. An estimate of the mean square error of each estimator 

was computed, also for each run and each component. These values are plotted 

in Figues 3.1 - 3.3. The mean square enor of each estimator averaged over 27 

scenarios for each n and the 100 runs is given in Table 3.1. This vas done for each 

component and for each value of n. 

The resdts of this simulation indicate that irrespective of how much cross- 

sectional data are available, a sample size of 20 for the longitudinal data gives 

point estimates that are too imprecise to be of aqy practical d u e .  This seems to 

be especidy trne when the da t ion  is ronghly equdy divided among all stages; 
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Figure 3.1: MSEs of the firat variance component. The "mn on each plot repre- 
sents the d u e  of the run with estimator MLES(SLS4). The first plot shows the 
MLES(SlZ), the second the NEFS, and the last plot the SNES. The lines on the 
plot represent averages over k and n. Fos exampIe, the line &om observations 1 to 
9 represents the average for k=l and n=20, while the line ftom observations 10 to 
18 represents the average for k-1 and n=50. 
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component . Figure 3.2: MSEs of the second 
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Figure 3.3: MSEs of the thkd Vanaace component. 
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Estimator 
MLES(S123) 

NEFS 
MLES (S l23-S3) 

SNES 
MLES(S123) 
NEFS 

MLES (Sl2SS3) 
SNES 

MLES (SW) 
NEFS 

MLES(S12343) 
SNES 

MLES (S 123) 
NEFS 

MLES(S l2SS3) 
SNES 

MLES (S 123) 
lWFS 

MLES (S l23-S3) 
SNES 

MLES (Sl23) 
NEFS 

MLES(S lZ39S3) 
SNES 1 

- 
MSE 
0.0311 
0.0224 
0.0202 
0.0200 
0.0123 
0.0096 
0.0084 
0.0083 
0.0207 
0.0139 
0.0134 
0.0131 
0.0086 
0.0056 
0.0051 
0-0053 
0.0367 
0.0211 
0.0160 
0.0146 
0-0142 
0.0085 
0.0061 

Table 3.1: Estimated mean sqaared ersors for the estimators and the components 
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that is, no stage dominates. 

It can be seen that the MLES(S123) do worse then the other estimators uni- 

formly over the scenarios. 

Another thhg to note is that the MSEs of the NEFS for each run are very close 

to those of the MLES(S125S3). The SNES have mean square error values that 

are ahost the same as the fnn m&um likelihood estimates. This relationship 

is reflected in the actaal estimates themselves. Plots of the estimates show that 

the NEFS are not as dose to the MLES(S123-S3) as the SNES. These latter are 

extremely close to the MLES(S123-S3) for runs in which most of the variation is 

behg added at the lagt stage of the process. For runs in which this is not hue, the 

SNES are Enrther away fkom the MLES(S12343). 

Another point that can be observed fiom this simulation is that clifferences in 

the mean square error due to an increase in k are less pronounced than diffaences 

due to an increase in n. 

A fùrther stady was carried ont to see how dosely the confidence intervais fonnd 

using the approPmate variance formulas for the NEFS and the SNES gave th& 

theoretical coverage fkequencies. This simulation was also carried out in 27 rnns, 

at the same factor levels as the previous study, except that the oaly n valne used 

was n = 50. Here, 2500 samples for each r u  were generated and the NEFS and 

the SNES compnted for each. 98,95 and 90% confidence intervals were found nsing 

the apprmrimate variance formalas discussed earlier. The percentage of confidence 

intervals that contained the trae valne was then computed. Tables C.7 - C.12 that 

give the results of this simulation are also in Appendu C. 
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For the NEFS, the observed coverage fiequenaes are dose to the theoretical val- 

ues, dthough they tend to underestimate them in general. For the SNES, however, 

the a p p r h a t e  variance formulas are less diable. The intervds prodaced by this 

method are too conservative, and genetally give covetage fiequenues much higher 

than their theoretical values. 

W h e r  simukation was done to investigate how parametric bootstrapping per- 

formed as a method of produchg confidence intervals compared to the approha te  

variance formulas. This simulation was done only at three combinations of the fac- 

tor levels, becanse of the amount of cornputer tirne required. The values of the 

runs were pl2 = a, PU = and k=l; pi2 = J0.8, pl3 = and k=2; and 

pl2 = m, P23 = and k=5. Those three rans were chosen to be sach that 

most of the variation in the process was coming from a single stage. At each nui, 

1000 samples were genaated and confiderice intervals were produced using both 

methods. Tables resulting fkom this simulation are given in Tables C.13 and C.14 

of Appendix C. These tables indiate that for the NEFS, the approximate variance 

formulas are comparable to the bootstrap method for generating confidence inter- 

vals. For the SNES, the bootstrap is a more diab le  method, although it can give 

values far fiom the theoretical values in some cases. 

3.1.3 Adding Measurement Error 

As was illtmtrated in the previous chapter, meammement error is an important 

issue in indushial processes. One question that cornes to mind at this point is 

"How would measmement error be t a k a  into account when cross-sectional data 
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are present?" The estimates introduced earlier can be actended to expliatly deal 

with thi8. 

In the case of estimators that ody make use of the longitudind data, the sit- 

uation is analogoas to that described in chapter h o .  Hence, the naive estimates 

given in that chapter by eqaation (2.8) could be meà. 

If the maximum likelihood estimates are desired in this situation, then the f d  

likelihood can be nritten ont and optimized numeindy. For example, in the case 

of a t h  stage process, if we denote 

then the likelihood is 

where n, m, 1 and r are the sizes of $123, SI, S2 and S3, respedivdy, and S, 

and % are the wual mat* of cross-prodacts and vector of averages. When the 

measmement -or variance is assumed known, then there are eight parameters in 

tbis distribution that need to be estimated. 

The naive estimates and the semi-naive estimates introduced earlier can be ex- 
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tended in a natnral way to take measmement error into acconnt. For the naive 

estimates, for example, we wili continue to estimate the mean for a given stage 

uing ail the data, but now the estimate of the variance wil l  be the observed vari- 

ance over all the data at that stage minus the meamernent enor variance. The 

correlation parameters can then be estimated as given by (2.8). The semi-naive 

estimates can be modified in the same way as the naive estimates have been for 

the marginal parametas. Then, the correlation parameters will still be estimated 

using eqnation (3.5), but now the motWied marginal parameters w4 be snbstituted 

into the expression. 

A numerical simulation ha9 not yet been done to determine how well these 

modiîîed estimators pedorm. 

3.2 Design Issues 

When consideting the issue of cross-sectional data supplementing the longitudinal 

data, it wodd be helpfid to qnantiry the relative d u e  of the dinaent data. Such 

information could be used at the design stage of a study. Clearly such relationships 

will depend on how expensive it is to collect the data, but given that constraint, 

optim-g the amount of information that can be gained for a specified cost is 

desirable. This section addresses that qnestion. 

3.2.1 Known Marginal Paramet ers 

W e  wil l  begh this discussion by investigating a h o  stage process, and considering 

what happens when the marginal parameters, pi,  pz, cr~ and ua are hown. This 
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situation is the limit of having large amomats of cross-sectional infoxmation. 

Assume that we traeL n items thmngh the process, and that we estimate the 

correlation parameter between the two stages by 

Then we are interested in knowing what the gain in precision is if we estimate 

the variance components of interest by <(1 - and O#,, that is using the 

known d u e  of 4, owr estimating the variance at the second stage with the data 

collected. Note that the estimate of & is not the m k u m  likelihood estimate 

when the marginal idormation is known. 

As mentioned earlier, it can be shown that whm 0 2  is estimated from the n 

observations, the approximate variance of the fmt component is given by (3.9), 

and that of the second is 

When the known value of oz is used to estimate these components, they both have 

the same variance, given by 

Figure 3.4 shows a plot of the ratio of the standard deviation of the estimate 

with the marginal information to the standard deviation of the estimate without the 

marginal information. The peculiar feature that this plot r e v d  is that for values 

of pl, such that (pirl > m, the stsadatd deviation of the first component estimate 

is actnally greater when the marginals are known. The explanation appears to be 
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that the extra iaformation is being used inediuently there. Another interesthg 

feattue that this plot reve& is that the ratio of the standard deviations for the 

h s t  component is highest for those dues  of pl2 at whkh the ratio for the second 

component is lowest . 
S i d a r  caldations can be done in this case when the ma]Eimum likelihood 

estimate is used for pl,. Figure 3.5 shows the plot of the ratio of the standard 

deviation of the variance components with the hiown marginal infornation to that 

estimating a2 with the longitudinal data. In this case, we see that the standard 

deviation is never greater using the marginal information than without it, which is 

what we wodd expect intuitively. 

3.2.2 Limited Cross-sectional Data 

The situation desaibed above, in which we know the marginal parameters of the 

distribution exactly, may seldom occm in practice. In what follows, we will assume 

that the amount of maginal data collected is the same at each stage, and is given 

by kn. 

In this scenarïo, we can caldate the approxhate variances of the NEFS and 

compare them to the appmtimate variances of the MLES(Sl2). When n is large, 

this should give a good indication of the amo~t  of information to be gained in the 

cross-sectional data, when using those estimates. 

The a p p r h a t e  variances for the components of a h o  stage process asing the 

MLES(S12) a a e  given in the previms aection. The variance of the f b s t  component 

nsing the NEFS is given by (3.8). If we make the approximation (k + l)n - 1 cs 
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0'1 8'0 9'0 0.0 E'O 0'0 
PU=w* 

Figare 3.4: Ratio of standard deviations of variance components with known 
marginal information, using the naive estimate, os. estimating marginal infor- 
mation 
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Figure 3.5: Ratio of standard deviaaons of variance components with hown 
marginal information, usïng the m d u m  Uelihood dimate, vs. estimating 
marginal uiformation 
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(k + l)n, then we can write that equation as 

whae the hst term is the variance calcniated when the marginals are known, and 

the second term is a correction faetor. Notice that this second tenn is negative 

if IpI2( > m, and so the Mnance expression inaeases with iacreasing k in that 

region. This behavior ean be seen in Figure 3.6, which is a plot of the ratio of the 

standard deviation of the first component estimated with the NEFS against those 

estimated with the MLES(Sl2), for dinaent values of p l i ,  and for krge n. 

Similady, the variance of the second component using the NEFS can be written 

In this case, the second term is alrrays positive, and so this vatiance is always 

decreasing as a fiinction of k- This can be seen in Figare 3.7. 

Some interesthg features are revealed in these plots. Note that when pl2 is 

small, the first component of variance will be ktga than the second, and thaefore 

it will be the component of most interest. This is &O the situation in which a 

large gain in precision can be made by using the NEFS over the MLES(Sl2) to 

estimate this component. Similady, when pl2 is large, the second component is the 

dominant one. Again, thb is exactly when the most gain in precision is to be had 

by nsing the NEFS to estimate this component. Since the fist component in this 

case win have a smaU valne, a relative loss in precision in estimating it may not be 
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Figure 3.6: Ratio of standard deviations of estimates of first component asing 
cross-sectional information, and with naive estimates 



CHAPTER 3. CROSS-SECTIONAL AND LONGlTUDI1VAC DATA 

Figure 3.7: Ratio of standard deviations of estimates of second component using 
cross-sectional information, and with naive estimates 
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bothersome. 

Ronghly spealung, it seems that the ateepest gain (or loss) in efnciency occnrs 

between k=O and k=10. %y k=20, it a p p a s  that most of the gain ha9 been made. 

At this point, we are approaching the limit in which we know the marginal param- 

eters. These are points to keep in mind when designing this type of expetiment. 

3.2.3 General Recommendations 

It has been shown to be less than straightfo~ltffdfd to answer the question "How 

mach information can be gained from the marginal data in this type of variance 

analysis?" In a practical situation, the answer to that question wül always depend 

on how expensive it is to conect cross-sectional data as compared to longitudinal 

data. The results given here indieate that if cross-sectional data ate about as 

expensive as longitudinal data, then the latter are more valuable in this analysis. In 

the more likely case that the cross-sectional data are snbstantially less expensive, 

it appears that there is some gain in colieding as much cross-sectional data a9 

longitudinal, or even twice as much. mer twice as mach cross-sectional data has 

been couected, the rate of gain seems mail. This assumes that there is a reasonable 

amount of longitudinal data collected. A sample size of 20 for the longitudkial data, 

for example, is probably too smati. The tables given in appendix C can be used 

as guidelines for these types of decisions. If the investigator is interested in using 

the SNES, dilferent data diedion scenarios codd be investigated in a simuiation 

stndy that ases bootstrapping to give an estimate of the amount of precision that 

might be expected, for diErnent values of the distributional parameters. 



Chapter 4 

The General Multivariate Normal 

Mode1 

The models that have been introduced thus far to deal with the variance transmis- 

sion problem are the AR(1) model and the AR(1) model with measmement error. 

Using these modeh, it is a simple task to assegs the &ect of an intervention in the 

process, either by reducing variation added at a certain stage, or by reducing the 

dope of the regression of a certain stage on the previms stage. In the case of a 

process that cannot be described by these mod&, it becomes a difficdt task to 

assess the &ect of any given stage on the dation in the final response. 

For example, in the case of the piston process introdaaed in the first chapter, 

suppose we use an AR(1) model to model the last four stages. We thedore partition 

the variance of the last stage hto four components: transmitted from the first stage 

(y4), added at the semnd stage (w), added at the third stage (y6) and added at 

the hal  stage (yt).  We could also combine the last tao stages (Le. pretend that 
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Figure 4.1: Original breakdoan of variation by stage for piston data using AR(1) 
models. Figure 4.1(A) ( l a )  assumes ail stages are observed, Figure 4.l(B) (middle) 
assumes y6 is not observed and Figure 4.1(C) (fight) assumes y5 and y, are not 
observed. 

we dont observe y6), and partition the variance into three components. Finaîiy9 

we could combine the last three stages of the pmcess and partition the variance at 

the final stage into h o  components: transmitted from the fmt stage and added 

between the fust and last stage. If we do this ne get dues as shown in Figare 4.1. 

This figure dearly shows a dilemma in taking effective action for variance re- 

duction. When the variance is parütioned into four components, it seerns that very 

Little variation is being transmitted from 94. However, when the Maance is decom- 

posed into two wmponents, transmitted from y4 and added aRer yr, it seems that 



most of the variation is being transmitted nom y*. These present two contradidory 

messages about how aective reducing the variation in Y( wodd be in redncïng the 

variation at the final stage. The problem is due to the tact that the AR(1) model 

is not adeqaate for these data. 

This chapter discusses methods of determining the &ect of a given stage on 

the variation in the final prodnct, when the data are assumed to f o h  a genaal 

mdtivariate normal model. That is, Yi, . . ., & can be modeled as a k-variate 

mdtivariate normal. This effect aill be analysed by proposing interventions to the 

process at that stage. In general, there are tao types of interventions that can be 

made at a given stage: the variance at that stage can be reduced or the slope of the 

regession of that stage on previous stages can be reduced. Methodology will be 

given to study these interventions in the case of a four stage process, under certain 

assumptions outside of the modei. These methods d be ased to anaiyse data 

kom the piston production process and the car door hanging process. 

In what folIoas, we wiU often make use of the four variable muitivariate normal 

formulae. If the variables y=, A, y3 and y, are muitivariate normal, then th& joint 

probability distribution can be written as 

1 - 1 
f(Y) = ( z f l ) 2 1 q l / 2  ezp{+Y - p)T~-'(Y - p ) )  (4.1) 



r = W )  
and E = E((Y +(Y -p)T). 

R e d  that in this case, if we partion Y, p and C as 

and C = 

where 

Yi and pl are q x 1 vectors (q i 4) 

Y2 and p2 are (4-q) x 1 vectors 

CI1 is a q x q ma* 

XI2 is a q x (4-q) matrix 

is a (4-q) x q matru 

a d  Cna is a ( 4 4  ~(4-q) matrix, 

then Yi is a q-variable multivariate normal with mean pl and variance-covariance 

m a h  Ctl. Fkther, using the above partition of Y, the conditional distribution 

of Y2 given YI = y, is 

(See Johnson, 1988.) 



Since ne aill be m a h g  fiequent use of the above formulae, we wil l  adopt the 

notation that C with a subscript of np~pbezs separated by a slash sin indicate a 

conditional variance-covariance matm. Also, o with the same type of snbscripts 

wiJl denote an dement of this matru Hence, for example, 

Also, snbsaipts of C that are numbers separated by a comma wi l l  indicate those 

rows and columns of 8. For instance, CIstr wiU iadicate a 2x1 vector given by the 

second and third rows of Z, and its foarth colnmn. This notation will also apply 

for p. Hence, C<M will denote the third and fourth mmponents of the p vector. 

4.1 Interventionat the first stage 

Consider a font stage process, whae the stages prodace measnrements yl, y*, y3 

and y,, in order. It is assumed that these foar mariables are mdtivatjate normal. 

Then, their joint probability distribution can be written as in eqnation 4.1. We are 

interested in the conditional distribution of yrrr = (y2, TJ~, given yl, which can 

be constnicted in the manner of equation 4.2. For fatme refaence, the variance- 
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covariance ma* in this conditional distribution aill be denoted Czuli. 

To detamine the &éct of an intervention at the first stage in this process, we 

will &ange the marginal distribution of n, and assume that the above conditionai 

disttibution remains the same. This assamption s e a n s  reasonable intuitivdy, but 

can o d y  be v d e d  experimentally. Thns, G p o s e  Chat the marginal distribution 

is modified to be f(yJ - N(pi,  +a:). Since we are not changing the mean of y, 

nor the conditional distabution of ~ 2 %  given yl, the means of y234 will not change 

either. The changes of interest, then, are the variances of all variables, as well as 

thek correlationsi. Having m o u e d  the distribution of yl, it wouid be worthwhile to 

decompose the variation of the h a 1  diameter (y4) into varions stages, to determine 

if these breakdowns reflect the cause of the tedudion in variation. 

One way of accomplishing these goals is to reconshct the multinormal dis- 

tribution of the fonr variables, with its neso parameters. This can be done using 

conditional variance fonnulae. For example, since the conditional distribution of 

y231 given yz is assnmed constant, then the conditional distribution of y2(y1, n d y  

is constant as well. Hence, with the new marginal distribution of y,, 



where pl3 is the old correlation between y1 and y2 and a: is the old variation of ya. 

The variances of A and y4 can be calctrlated snalogously. 

All the covariances involved can &O be dculated. As an example, consider 

the following: 

where here a1 and 0 2  denote the old &ances of y, and y, respectively, and as 

before, pl, is the old correlation between y1 and y2. Similar calenlations can be 

done for allother covariance tesms involving y,. 

To caldate the covariance of y2 and y=, we do the following: 

Hence, 



where here again all cr; ntpresent old standard deviation values and the p~ represent 

old cwelations. Andogoiisly, 

and 

We have therefore fonnd all the parameters in the new mnltivariate normal 

distribution of y. Denote the new &ce-covariance matrLr that has been con- 

stnicted Cm. Now we are interested in partitionhg the variance of the finai 

response, y4, into various components. That is, we wish to partition the variance 

at the final stage into components that can be attributed to npstreani stages. As 

implied earlier, when we have a mdtivariate normal distribution, any two variables 

fkom that distribution are bivariate normal, with a variance-covariance matrix given 

by the appropriate portions of the mdtivariate nomal variance-covariance matrix. 

For example, 

where 
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Rom this, the conditional Wbution of y4 on y3 can be determined. In fact, the 

regression co&cient of y4 on y3 trrin be 

and the conditional variance of y4 on y:, wdl be 

where 1-12 
P = dmz 

AiI 0th- bivariate conditional distributions can be cddated in the same way. Any 

partitions of variance can theref'ote be found. 

4.1.2 Examples 

Piston Data 

The above methodology was tried on the fist response of the piston production 

process. Here, the four variables of interest were denoted y,, YS, y ~ ?  and y,. The 

equations shown above were used to detemine the &ect of teduhg the variation 

in y4 by 50%. Ail sample values were replaced in the equations for hue values. In 
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this way, it was detennined that 

(in microns2). Hence, 

256714 = 

Foilowing the compntations as above, and tecalling that we are setting 7 = 0.5, we 

compute C,, to be 

l 2.385 1.928 1.789 2.151 

1.928 3.650 1.812 2.788 

1-789 1.812 3.455 2.233 

2.151 2.788 2.233 4.070 

Thus, to get three different partitions of the variance of y ~ ,  we can compute the 

parametas for the relevant conditional distnbntio~m to be as shom in Table 4.1. 

Figare 4.2 gives the appropriate decomposition of variance. The total variation 

of y7 went h m  6.010 microns2 originally to 4.070 microns2, a reduction of approx- 

imately a third. This is the d e c t  that wodd have been predicted by mdtiplying 

"box in Figure 4.1(C) by 0.5. Doing the same for Figures 4.1(A) and 4.l(B), 
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Distribution Slope Vkriation Added (microns2) 

~ 7 1 ~ 6  0.646 2.627 
YO IYS 0.496 2.555 
Y S ~ Y ~  0.808 2.092 
Y?~YS 0.764 1.941 
~ 7 1 ~ 4  0.902 2.131 

Table 4.1: Parameters for the relevant conditional distributions of piston data 

Figure 4.2: Result of reducing the variation of y4 by 50% 
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however, wodd have underestimated the &ect of this intavention. As can be seen 

fiom Figure 4.2, the la& breakdown of vafiance, Figure 4.2(C), acmrately identifies 

the source of the teduetion as the first stage. 

Door Hanging Data - AR(1) model 

Anothet data set on which this methodology was used was a car door hanging 

process. A test of these data reveals that an AR(1) model is adeqnate. It wodd 

be interesthg to look at these data in two ways: one in which the AR(1) model 

is imposed, and the other in whieh it is not. In the former case, the dec t  of the 

intervention on the variance at the last stage can be cdenlated quickly. Of interest 

is whetha this efEect will be the same as estimated in the Iatter case. 

When an AR(1) model is imposed on these data, the i 

is found: 

C =  

fol Uowing variance matrix 

This gives the breakdown shorn in Figure 4.3. Since an AR(1) model ha9 been 

assnmed, all three partitions of variance are equivalent. This WU be hue for sub- 

sequent analyses as w d ,  and so only the first breakdom WU be showm. 
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Fignre 4.3: Breakdom in door hanging data, wïth the AR(1) model imposed. 
Hence, p57 = P S ~ ~ B T  and p47 = p d ~ p s ~ p ~ r  by consmiction. 
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Figure 4.4: Mect of redncing the variation of y* by 50%, with the AR(1) mode1 

When the variation in y, is reduced by 50%, ne  get 

Hence the final variation has reduced fiom 0.911 to 0.891 mm2. The appropriate 

breakdom of variance is given in Figure 4.4. This is exactly what ne  wodd get if 

ne multiply the "y4 boxn in Figure 4.3 by 0.5, as expected. 
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Door Hanging Data - N o  model restriction 

W e  c m  now analyse the same data without imposing the AR(1) model. When this 

was done, the varianc+covatiance ma& was found to be 

Notice that this is vezy simiiar to the heancecovasiance matrix found previously- 

The original breakdom of variation here is given in Figure 4.5. Notice that now, 

the three partitions of Mnance are not ail equal. 

When the variation in y, was reduced by 50%, it was fonnd that 

which gives a decomposition of variance as shown in Figure 4.6. Althoagh the final 

variation here is very close to that foud above, it codd only have been predicted 

from Figme 4.5(C). The efFect of this intervention wodd have been overestimated 

using Figure 4.5(A) and underestimated nsing Figure 4.5(B). 
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Figure 4.5: Original breakdown of variation in door hanging data, using the AR@) 
model: Figure 4.5(A) (Mt) assumes dl stages are observed, Figure 4.5(B) (middle) 
assumes y6 is not observed and Figure 4.5(C) (right) assames y5 and y6 are not 
observed. 



Figure 4.6: Effect of redncing the variation of y4 by 50% 
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4.2 Intervention at the second stage 

4.2.1 Reducing the added variation 

Again, ne &art with the assumption that the measaremeats aie multiwuiate nor- 

mal, with a probability density as given in equation 4.1. Now, let 

Then, the conditional distribution of y u  given y32 can be found by equation 4.2 

and is given by 

The conditional variance-covariance matrix will subsequently be referred to as 

Csriiz. For this andysis, it aül be asstuned that the above conditional distri- 

bution of (ys, y4) gïven (Y,, A) does not change when ne intemene in the process 

at the second stage. We will fkther assume that the marginal distribution of y1 

remains constant, bat that the conditional distribution of yll yl changes. Hence, 

the marginal distribution of yl will be 
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Whereas it was tme that 

we d now consider that 

If .r is Iess than one, we are considering the situation in which stage hvo is adding 

less variation to the process. This may happen if the process at stage taro is adjusted 

based on yl. 

To determine what happens now, note that the variance of y1 has not changed, 

but that the variance of y2 h a ,  according to the fonowing calculations: 



whae here a2 denotes the old standard deviation of ya. 

W e  can now caldate the variances of ys and y,. This uui be done by applying 

the conditional variance formala to vectors in the folloning way: 

Since ne have construded the variaacecoYaLiance matrix of y34 above, we get that 

It rem& only to find the covariance terms between y12 and y=. This can be 

done in the manner of the following caldation: 



mer compating the above qaantities, it is possible to reconstruct the variance- 

covariance of the new multivariate normal distribution of (yi, y2 , y,, y*). Denote 

this matnr C,. As was done in the previous section, ne can now constrnct the 

b i d a t e  distributions that we may be interested in to partition the variance of y4 

into various components. 

4.2.2 Examples 

Piston Data 

For the piston example, we aill use the above methodology to determine the &ect 

of redaeiag the variation added at the second stage. For these data, it was found 

that 

(again in microns2). Letting T = 0.5, that is having reduced the variation added at 

this stage by 5096, we fotmd that 

This resulting partitions of VaTiance of y7 are given in Figure 4.7. Hence, the 

total variation in y7 has been reduced to 5.747 microns2, a reduction not nearly as 

significant as that seen in the previons section. 



Figtue 4.7: Enect of redncing the variation added at y5 by 50% 
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Ifwe wae to predict the &ect of t h  intemention h m  Figure 4.1, Figote 4.1(A) 

wodd have predicted it accurately, whereas Figare 4.1(B) wodd have overestimated 

the nduction in variance. It is undear whether the former is a lu& coincidence, 

siaee the breakdown rdt ing  fiom dtiplying the y5 bar in Figure 4.1(A) is not 

the same as that shown in Fignre 4.7(A). In this figare, none of the thme partitions 

dearly shows the source of the reduction of variation, although the last one does 

correctly identifr it as not having origluited fkom y,. 

Door hanging data - AR(1) model 

In the case of the door hanging data with an AR(1) modd imposed, the consequence 

of reduQng the added variation at the second stage by 50% is to dectease the final 

variation kom 0.911 mm2 to 0.891 mm2. The breakdown of the variation appears in 

Figure 4.8. This is the breakdoan achieved by mdtiplying the "y5 boxn in Figure 

4.3 by 0.5, exactly as expected. 

Door hanging data - N o  model restriction 

For the same data with no model restrictions, the effect of rednchg the added 

variation at the second stage by 50% is to give a find variation of 0.910 mm'. In 

other words, snch an intervention has essentially no efbct. This could not have 

been predicted from any of the breakdorns given in Figure 4.5. 
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Figure 4.8: Eftect of reducing the MRation added at y5 by 50%, AR(1) mode1 



4.2.3 Changing the slope of the second stage on the first 

stage 

We have seen how to andyse the ened ofreducing the variation added at the second 

stage on the variation of the final stage. Another way of intemenhg at the second 

stage, however, is to change the dope of the second stage on the first stage. If n e  

reduce this slope, the &ect shodd be to reduce the variation transmitted fkom the 

fkst stage, and hence to reduce the ovetall variation. To analyse this situation, we 

wiJl assume the same situation as above, namely that the conditional distribution 

of ( 9 3 , ~ ~ )  on (yl, y2) remab constant. We will again assume that the marginal 

distribution of a hasn't changed, bat this time we wil l  assame that the conditional 

distribution of y2 on yi  has changed in the following way: 

Note that this change win affect the means of ya, y3 and y,, but we will assume that 

the process can mtbsequently be retargeted. 

The following can be derived easily 

These thne eqnations can be used to construct the variance-covariance matrix of 



yu, and the equations above relating to quantities iavolving y, and ean be nsed 

here. Hence, for example, 

andogonsly to equation 4.3 and 

The construction of 8, and the subsequent partitioning of the Mnation of y4 

proceeds as mual. 

4.2.4 Examples 

Piston Data 

The above methodology gives the following for the piston erample when r = 0.5 

which resdts in the partition of variance shown in Figure 4.9. Here the h a 1  

variance has been reduced to 4.461 micronsz, which is comparable to the &ange 

that occurred when the variance of y4 was wduced by 50%. h Figure 4.9, the 1-t 
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Figure 4.9: Eneet of teduchg the slope of y5 on y4 by 50% 

partition of Vanance acctl~ately rdects the source of the reduction. 

To predict the dect of this intervention flom Figure 4-1, we wodd have md- 

tiplied the y, box in Figures 4.1(A) and 4.1(B) by f . (It wodd have been undear 

how to predict the effect of changing the slope of y5 on y4 from Figare 4.1(C)). 

Neither of these two values woald have produced the 4.461 mimons2 foand here. 

Furthermore, the h o  dues foand, 4.245 mimons2 and 5.422 microns2, are quite 

different fiom each othm. 
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Door Hanging Data - AR(1) model 

When the dope of the second stage on the first stage is deaeased, the etfect in this 

case is to deaease the final dation to 0.881 mm2. The teSalthg breakdom of 

variation is that found by multiplying the y4 box in Figare 4.3 by ( f )l, or by 0.25. 

Door Hanging Data - N o  model restriction 

The same intervention is predicted to have less of an &ect in reducing the variation 

when the AR(I) model is not imposed. IIae, the h a 1  variation is 0.904 mm2. 

Figare 4.5(C) cornes dose to predicting thhi value when the y4 box is multiplied by 

Il 4 but the predidion given by Figure 4.5(A) overestimates the amount of reduction 

occnmng. 

4.3 Intervention at the third stage 

We can consider intavening in the process at the third stage, as ne  have done 

for the tao previous stages. Again in this case ne can investigate h o  types of 

interventions: reducing the added variation or redncing the dope of the regession 

of the third stage on either, or both, of the two previous stages. The caldations 

required to investigate these types of scenarios are si& to those shown for other 

stages, and nin not be given hae in the interest of brevity. Both the piston data and 

the door hangkig data were ased to investigate the following scenarios: seducing 

the variation added at the thkd stage by one half, reduQng the dope of the third 

stage on the second stage by half while keeping the dope of the thitd stage on the 



first stage constant, and teduchg the slope of the third stage on the first stage 

by hdf while keeping the dope of the thkd stage on the second stage constant. 

A s u m m a r y  of these resuits i given in Table 4.2. One curiotu r e d t  that can be 

seen in this table is that in some rcenarios investigated for the door hanging data, 

the dect of an intervention is to cause the variance at the find stage to inmese. 

Variation in these estimates has not been discassed, however, and it codd be that 

the inuease in variance is not signiscant. 

4.4 Conclusions 

When the data of a process can be modeled adequately with an AR(1) model, 

it is easy to assess the &ect of an intervention in the process. When an AR(1) 

model does not fit the data, it can be serioasly misleading to use it to assess 

how an intervention might &ect the &ance at the final stage. In this case, an 

appropriate model might be the fidl maltivariate n o d  model. Assessing the 

efFect of an intervention is less intuitive than with the more restricted model, but 

can be done by making some assumptions regardhg the conditional distributions 

of sabsequent stages. 

For the piston example dismsed, the most significant change codd be made by 

either reducing the variation of the &st stage, or by reducing the dope of the second 

stage on the h t  stage. Other interventions wodd not be as efficient in reducing the 

variation of the final response. For the door hanging example, the most sigaificant 

change couid be made by redacing the variation aàded at the third stage. See Table 

4.2 for a summary of these changes. Li both cases, these recommendations can now 



Intervention 

Table 4.2: Snmmary of efFect of interventions at various stages 

Value 

Total Variance 
50% reduction 
i~ VBÉ'P 

of 1st stage 
50% rednction 
in var'n added 
at 2nd stage 
50% reduction 
in slope of 2nd 
stage on 1 s t  
50% reduction 
in m'n added 
at 3rd stage 
50% reduction 
in slope of 3rd 
stage on 2nd 
50% reduction 
in dope of 3rd 
stage on 1 s t  

be passed on to the engkieers in charge of the process, in the hope of improving 

quality. 

0.911 
0.891 

0.911 
0-902 Variance 

Percent Decrezue 

Variance 
Percent Decrease 

Variance 
Percent Decrease 

Variance 
Percent Decrease 

Variance 
Percent Deaease 

Variance 
Percent Decrease 

Doar Hanging 
No Mode1 
Restriction 

Piston - 

Data 

6.010 
4.070 

Dom Hanging 
with Mode1 
Restriction 

32.3 

5 -747 
4-4 

4.461 
25.8 

5.934 
1.3 

5.843 
2.8 

5.473 
8.9 

2.2 

0.891 
2.2 

0.881 
3.3 

0.845 
7.2 

0.851 
6.5 

0.911 
O 

1.0 

0.910 
0.1 

0.904 
0.8 

0.757 
16.9 

O .946 
-3.8 

0.995 
-9.2 



Chapter 5 

Mult ivariate Data 

With the growing complexiQ of processes seen in industry? and the availability of 

machines to take many measarements on the process quiclrly, mdtivariate data are 

becoming the nom. Methods are reqnged that can handle correlated data and 

make use of all its featues. The variance transmission problem is to identify those 

opportunities that have the greatest potential for variation reduction. Since the 

data are multivariate, variance reduction might be desirable equaily at all measnre- 

ments, or it may be that &ance teduction is more valaable at some measurements 

than at others, or there may be an interaction between various measarements. The 

priority of variation reduction at different measurements can be quantified by a loss 

hction. 

In this chapter, ne review thme papas th& address issues relevant to mdti- 

variate data in multi-stage processes, and discuss some of the issues involved in this 

andysis. We a h  suggest some 0th- approaches that might be taken, and discass 

issues that have yet to be addresaed. 



We will assume t h g h  this disenssion that a muhivariate AR(1) normal model 

is appropriate for the data. Hence the model can be umitten as 

where Y is a vector of m measmements. h o  Ai is a vector and Bi is a ma-, 

genaalizations of ai and &, respectively. The total variance ma& of Yi wiil be 

denoted by Ci and the added Mnance at that stage is CiA7 i.e. ZiA = Var(y). 

The variance transmitted from previous stages is given by Ci - CiA. These are now 

m * m matrices. 

5.1 Review 

The three papen that will be reviewed in this section are Lawless, MacKay and 

Robinson (1996), Fong and Lawless (1996) and Xie, Yang and He (1994). Lawless 

et al. deal with muitivariate data by considering each measarement separately, 

and nsing the univariate AR(1) model to analyse variance transmission. Fong and 

Lawless use the generalized AR(1) model given in eqaation (5.1), and dlon for 

missing data and measurement mer. Xie et al. use two approaches in their paper: 

they fitst define los8 fanctions that they m e  at the wuious stages of the process, 

and then they consider ptinciple componentrr analysis. 

The approaches desaibed above will be demoostrated on some hood fitting 

data. This is data in which the hoods on 19 cars w a e  measured at four places: 
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tao in the fiont and two in the rear, one dong each side. There was no missing 

data, and measurement e w r  wiJI be ignored for the subsequent d y s e s .  Each 

measmement represents a deviation h m  nominal These were four stages involved 

in the installation of the hood: 1) hanging the hood (HANG), 2) painting the hood 

and the r a t  of the car (PAINT), 3) instdling hardware wch aa the hood latch 

(HARD) and 4) adjusting or LLfinessing" the hood for betta  fit (FIN). ln tbis case, 

variation reduction is eqd ly  important at dl four of the measnrements. 

LawIess, MacKay and Robinson use a univaRate analysis for each of the mea- 

surements of interest when dealing with a multivasiate data situation. This means 

considerhg each measmement independently and modeling it with a univariate 

AR@) model. When this is done for the hood data, the r d t s  are as given in 

Table 5.1. The resdts indicate that for the two fiont measurements, most of the 

variation is coming from the finesse stage, while for the tao rear measp~ements, 

most of the variation is coming h m  the HANG stage. It shodd be pointed out, 

however, th& for the l& front meastuement, the variance at the third stage is 

roughly hrice the variance at the final stage. Hence, while all of the variation 

present at the final stage is added there, this is an improvement over eliminating 

the 1st stage dtogether. In all cases, very little variation is contributed by the two 

intermediate stages of the proeess. 

The strength of this method of tlllalysis is its intezpretabüity. The results &en 

hae caa be applied directly to the process. The drawback is, of course, that 

tbis method does not take into acconot the correlation between the measurements. 

Hence, caution ne& to be exercised in intemenhg in the process to effect one 
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HARD 
PAINT 
HANG 

, Stage 
FIN 

[ TOTAL 1 0.556 0.500 0.903 0.929 

Piont Right Ront Left Rear Right Re- 
0.556 0.398 0,105 0-041 

Table 5.1: Vitriance transmission of hood data tising univariate analysis 

measurement, since such an intervention may have doreseen r e d t s  on other 

measurements. For example, it is conceivable that in attempting to teduce the 

variation added at the finesse stage, some a d j m e n t  ïs made that maes the rear 

measurement values at this stage less dependent on those values at the previoas 

stage. This wodd result in the f o r h a t e  situation in which variation ttansmitted 

kom previons stages wodd be reduced, and the variation at the HANG stage need 

not be adjasted. 

Fong and Lawless deal with a mdtivariate AR(1) model in their analysis, and 

use a K h a n  filtering approach to handle missing data and measurement -or. 

This approach is more duent  in terms of compnta time than nsing, for example, 

a simplex search algorithm to compute maximum likelibood estimates. Assnming 

that measmement aror is negiigible for the hood data, we get the tesults given in 

Table 5.2 wing the multivariate AR(1) model. 

Although this approach makes use of the full structure of the multivariate data, 

the r e d t s  are hard to interpret. Note that none of the estimated correlations 

between meagurements is extremely high. They are not, however, nepiigible and 

since we are interested in teduchg the variance at all the measurements, it is difncult 



Stage 

HANG 

PAINT 

FIN 

Table 5.2: Multivariate AR(1) mode1 resdts. The off diagonals are corrdations, 
while the diagonal elementa of the matrices are variances 
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to tell what type of intervention wodd be mort beneiiciai. More wi l l  be said about 

this in the next section. 

Xie et al. (1994) taLe a difkent appsoach to the analysis of data fiom a mdti- 

stage mnltivariate process. They define two effects in mch a process: the certain 

&t, which results in the same deformation patteni on each item at each stage, 

and the uncertain &t, which is essentially a random &ect on each item. They 

also reduce the dimension of the data by using the geometry of the product to 

defme sections. The catain a e c t  is quantdied by the mean squaxe of the saxnple 

mean deviation (MSMD). Let xjk denote the deviation from nominal of the i-th 

point of the k-th item at the j-th stage (i = 1,. . . , n; j = 1,. . . , L; k = 1,. . . ,m). 

Then - 
1 

MSMD = - c (k &jk)2 
%ES, k 

where S' is the measuring point set of section p; n, is the namber of points in 

that set. Similady, the uncertain efEect is qnantified by the average variance of the 

deviation (AVD), and is given by 

1 1 AVD = - (-1 E(xjk Ej*)' 
np i€SP * &  

where 

Both the MSMD and the AM) are compated at each stage of the process. If we 

define the average loss at a stage and at the pth section to be 
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then the average 108s is the sum of the MSMD and the A m .  

Once these values have been calculated, the authors continue by doing a variety 

of prinaple components analyses. They first look at the principle components for 

each section and each stage. They then look at the principle oomponents analysis 

on and (Eljk - Ej=), to determiae modes of variation in the certain &ect and in 

the uncertain effect. They contast tbis to the prinaple components analysis given 

by combining all of the data togetha. 

Ovaall, this approach seems to be ad hoc. It contributes little towards an 

understanding of the process. For example, the prinaple components analysis of 

the certain dect  groups the data over the Merent stages together. Thas, while 

the fùs t  principle component of sach an analysis allows us to detamioe a direction 

in which a large amount of the variation is occarring, it does not explain where 

this variation is coming fkom. The same can be said for the principle component 

analysis of the uncertain effecf. C o n v d y ,  wWe the principle components d y s i s  

done at each stage allows determination of the variation modes at each stage, it 

does not distingnish between certain and uncertain effects. muther, there is no way 

of determining whether the variation mode at a certain stage is being trmmitted 

throilgh to the final stage. Hence, it is vay difficdt to relate these resdts back to 

the process in a meaniDgfid way. 

The MSMD and AVD values were calculated for the hood data. Here, the fist  

section was defined to be the front tao measureaients, and the rear measurements 

were defined to be the second section. Plots of these values are given in Figures 5.1 

and 5.2. These plots indicate that there is large variation in the certain d e c t  at 
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MSMD Values 

Figure 5.1: Cdculated dues for the hood data 

section tao and at the PAINT stage. This impIies that these are factors at that stage 

that are having a large impact on the deformation of the rear of the hood. T h a e  is 

relatively little mean deviation for the fùst section. This means that there are no 

large factors that are affecthg the process at the fiont of the hood in a consistent 

manner. Farther, there appears to be about the same amomt of variation in the 

uncertain &ect in both sections and at all stages. The implication is that there 

is somethiag to be gained fkom focasing on reàucing variation at  previous stages. 

Notice, though, that there is no consideration given to how variation at previous 

stages affects the variation at the kt stage. This omission c d d  seriously mislead 

the investigator. The resdts fkom tbis analysis shoald be compared to those found 

using the mdtivariate AR(1) modd. 

Generally spealuig, thae appean to be more work necessary in understanding 

the mdtivariate multi-stage problem. The next section proposes other approaches 
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AVD Values 

Figure 5.2: Calcalated values for the hood data 

that might be considered. 

5.2 Other Approaches 

5.2.1 Modeling the Intervention 

In the case of mdtiyariate data that adhere to the g e n d e d  AR(1) model, an 

approach can be taken that models the $Teet of an intemention and considers this 

&ed with a univariate loss fanction. For example, consider a h o  stage process in 

which bivariate data are observed. Then n e  can describe this situation as 
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1 a., 

We cair d&e in this case a 1085 fanction that penalizes the variance of each mea- 

surement in YI equally; for example, the average of the Vanances. This gives us 

that L = $zace(Vo+(Y2)). 

W e  can stady Yatious interventions in the process and th& eftect on the above 

loss. First , consida reduchg the variance at the first stage, which we can model 

in a general way as changing Xi to 

The d u e s  of T ~ ,  712 and r2 will be detamioed by the way in which the intervention 

wiU occnr, and the engineering perspective as to what these values should be. W e  

aiU assume that the conditional distribution of the second stage on the first stage 

d be tmaffected. The variance of Y2 d l  be 
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The loss is now L = )trace(&-,,). 

Anothex intervention in the process could be in the way that Y2 depends on 

Yi. Hen~e? considet changing B to B', where 

Again, the values that r will take shodd be determinecl by engineering knowledge. 

In this case, the loss changes to L = itrace(B*CIB" + Cu). Similar dadations 

uui be done if we consider changing 

We can apply this methodobgy to the hood data htrodnced earlier. R e d  

that the variance mahices for these data at each stage are given in Table 5.2. If we 

take the avesage of the variances at the last stage to be the loss nuietion, then the 

current loss is 0.722. Consider hs t  changing the variance-covariance matait added 

at the last stage, to 

This corresponds to redacing the marginal variances of the four measmements by 

one hdf, but not changing the correlations between them. If ne do this, the loss is 

reduced to 0.609. 



This intervention ha9 the &ect of reducing the Ioss to 0.392. 

A third End of intervention is changing the variance at the ptevions stage. We 

will do this in the same way as ne did for the hal stage, namely by teduchg the 

Mnances by one half and the covariances by one quarter. This intervention reduces 

the loss to 0.469. It should perhaps be pointed out h a e  that if this intervention 

had proven to be the most effective, the variance transmission methodology could 

be used to determine the best way of redacing variation at this stage. 

Of the interventions considd here, the most &&ive proved to be by chang- 

ing the conditionai expectation of Ys on YI. Given the r d t s  of the univariate 

andysis shown ezclier, this is somewhat mqrising, since the two front measure- 

ments had almost dl of thek variation added at the la& stage. Clearly there are 

other interventions that could have been considered. In a practid situation, the 

types of interventions investigated shodd be dictated by engineering how1edge of 

the process. 
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5.2.2 Principle Components Analysis 

Another approach that be used to deal with this problem is applying the 

AR(1) mode1 to prhciple components of the data. The prinaple components will 

be ddEerent at each stage. However, if we can isolate a few modes of vMation at 

the h a 1  stage, and if theae are interpretable, then detamining those stages which 

are contributing to the modes of variation will be nsehil. Yang (1996) gives an 

example from the automotive industry of the use of principle components to rednce 

variation, 

A principle wmponents analysis was done for the hood data, and the resdts 

are given in Table 5.3. The hst two principle components explain 78% of the 

variation at the final stage. Suppose we use these two components to create two 

new variables, COMBl and COMBZ, wheze these are hear combinations of the 

original variables, given by 

and 

COMBl = - L F + R F + 2 L R - R R  

COMB2 = -5LF + RF +2LR + 8RR 

whae LF, RF, LR and RR are the left fiont, right front, left reat and right rear 

measurements, respectively. These tao variables have a very srnail correlation at 

the final stage. 

Now, the AR(1) andysis of variation transmission c m  be applied to the new 

variables. Figure 5.3 shows the scat te r  plots for the first variable over the four 

stages, and a bar plot of the variation added and transmitted fkom the different 



CHAPTER 5- MULTWARXATE DATA 

Table 5.3: Principle components andysis of hood data 

stages. Figure 5.4 shows the same for the second variable. Both these plots indicate 

that the first and last stages are the best opportnaities for variance reduction. Note 

that the above analysis is oniy usefiil if the enpineers on the process can interpret 

the new variables created, COMBl and COMB2, in a meaningfd way. COMBl, 

for example, appears to be a measare of the tilt of the hood on the diagonal &S. 

Clearly, there is some difEculty in dealing with mdti-stage mdtivariate pro- 

cesses. Issues such as how to use principle component regression in Mtiance trans- 

mission analysis have yet to be investigated. In general, there seems to be a ttade-off 

PC4 
0.50 
0-71 
0.59 
0.15 
0.35 

between being able to nse all of the available data and simpliuty of interpretation. 

Std. Dev 
b t a h  

5.3 Discussion 

PC2 
1.02 
-0.53 
0.09 
0.22 
0.81 

PC1 
1.15 
-0.29 
0.41 
0.74 
-0.44 

More work needs to be done in the area of mdti-stage multivariate processes. Some 

graphieal methods of portrayhg data in these cases would be very u s e . ,  especiaily 

if they codd be used as a diagnostic tool for model checking. Also nsefbl wodd 

be methods thatdeal with departares fiom the AR(1) model, sach as the general 

multivariate n o d  model. The intervention modeling approach codd perhaps 

PC3 
0-66 
0.37 
-0.68 
0.61 
0.15 
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Figure 5.3: Valiance transmission for COMBl 
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Figute 5.4: Vatiance transmission for COMB2 
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be used in these situations. Finalty, methods that take cross-sectional data into 

acconnt are needed. Naive approaches that are relatively simple to anderstand and 

dcnlate, and yet efficient in the statistid sense, wodd be i d d  



Chapter 6 

Discussion 

6.1 Conclusions 

Variance transmission analysis provides a u s a  tool for prioritization of variation 

reduction efforts in multi-stage processes. A fkst order autoregressive model was 

introduced by Lawless, MacKay a d  Robinson (1996), who demonstrated how to 

partition the variance at the last stage of the process into components attributable 

to the upstream stages. They discnss the need for data in which items have been 

tracked through the proceas, aad measnrements have been made &er each stage. 

It was shown that when the data are obaerved with messarement -or, the 

andysis using the AR(1) model gives biased resulta. A naive method of estimation 

that qlicit1y takes into account the measmement ana was introduced. This 

method was shown to work weil when eompared to m h u m  likelihood estimation. 

Methods of hding conâdence intervals for the vaxiance components of interest were 

&O investigated. 
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Ekequently, eross-sectionai data are available on the pmcess in addition to the 

longitudinal data. This type of data is iumdy less expensive to get than longitudi- 

nal data, and may be collected aatomatidiy. Methoùs of estimating the variance 

components of intaest in this situation are investigatedC A discussion is given about 

designing studies when these two modes of data collection are available. 

A more general muitivariate normd model is also used to model data fkom 

mdti-stage processes. It is found that in this case, variance transmission andysis 

is less straightforarard then when the more restrictive AR(1) model is imposed. 

Here, a certain type of intervention in the process is modeled, and the resulting 

a e c t  on the variance at the last stage is of interest. This method assumes that the 

certain conditional distributions are unaffected by the intervention. 

Finally, a &seussion is given about methods of handling mdtirariate data in 

muiti-stage processes. Some approaches are reviewed and some suggestions are 

made for other approaches that might be investigated. 

6.2 Further Research 

Many issues remain to be investigated in this variance transmission problem. 

One such issue h the question of non-nomal data. It CO& happen that the 

data collected from multi-stage processes are binary, categoriea, discrete or have 

a continuous distribution that is not normal. The piaton data illustrate a simple 

example of how this might happen. At the final stage, a measmement muid be 

recorded on the piston th& wm not the value of the diameters, but rather a mea- 

surement of O if the piston met specifications or 1 if it did not. In this case, ne 
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would have binaty measu~ements at the h d  stage and continuous measatements 

upstream. Methods of dediog with mch situations need to be investigated. This 

type of data may also be available in large quatities as cross-sectional data. 

Another issue that maitir fartha considexaiion is loss firpctiom. When a part 

does not meet specifications, then the way in which it is deviant may be relevant. 

For example, in the piston ptocess, it might be that if the diametas of interest are 

too large, then the piston can be reworked, but if they are too small, the piston 

mnst be scrapped. Likely the cost of rework nül be less than the cost of scrap. 

This induces a n a t d  loss fnnction on the process and then the issue of interest 

is not variance transmission, but the way in w i e h  npstrearn measarements affect 

the expected loss at the ha1 stage. 

For example, if f i  is the pmdnct at the find stage, and l$ is an upstream 

measmement, then we are intaested in minimiziag E(L(Yk)). Note that 

Suppose that we let the loss niaction be 

where m is the target value at the fin$ stage. Then 

Clearly, thh idea can be extended to indude more npstream meastllcements as weil 
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as multivariate measurements. 

Loss ninctioois $80 a r k  as a methd of redneing the dimension of multivariate 

data This is discussed by Pipatiello (1993). Methods of handling such situations 

are reqaited. 

Coviuiates in this type of analysis need to be investigated farfher. In the piston 

example, at operations 270 and 290 where thae w a e  two machines operating in 

pardlel, the machines become covariates in the process. DSerences due to targeting 

or in the variances at these machines may be affecthg the variance at the final 

stage. LawIess, MacKay and Robinson (1996) discuss mvariates bridy, but a more 

systematic methodology is required. 



Appendix A 

Approximat e Variance Formulae 

for Naive Estirnates with 

Measurement Error 

The purpose of this appendix is to give the approhate  Vanance estimates of var- 

ious variance components and proportions. These apptoxixnate variance estimates 

are computed by îinding the erpected values and variances of the raxidom variables 

of which they are fiinctions. These are then used in a b t  order Taylor series 

expansion of the ninction. 

The variance estimate of the &st variance component in a two stage process is 



APPENDIX A. VARIANCE FORMUtAE FOR MEASUREMENT ERROR 152 

where 

and 

This estimate for the second component in a tao stage process is 

where 

&O, 

r =  
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The variance of the square root of the kst proportion is 

1 [il 
where 

where f is a scalar, W is a vector of elements wg and X is a symmetric matrix of 



elements 26, and these are given as follows: b 
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where X is the same matrix that appeared in the previous equation, f is a scalar 

and Y is a vector of elements as follows: 
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The variance formdae for the variance components in a three stage process wil l  

non be &en. For the fist component, this formula is 

where fis a scdar, H is a vector of elements and Q is a symmetric matrix as: 

The second variance component has an approxïmate variance given by 
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where 

Finally, the approximate variance of the third variance component is 
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where Q is the matrir given in the pre+ expression, and f and L are as follows: 



Appendix B 

Approximat e Variance Formulae 

for Semi-Naive Est imates: Three 

The purpose of this appendix is to give cesdts for the approxhate Mnance for- 

mulae for the semi-naive estimates of the cross-sectional data- Because the actual 

formulae are lengthy, the Maple programs (Char et al, 1985) that w a e  used to cal- 

d a t e  them dl be given instead. The &ance-covariance matru of the random 

variables in these expressions were found. The gradients for ail the vectors were 

then c d d t e d  at the mean values of these random vasiables. The appropriate a p  

p r o h t e  variance formula was then given by the product of the transpose of the 

gradient, the variance-covariance matru and the gradient. The formulae given here 

are for the variance-covariance matrix, as well as for the gradients of the square 

roots of the three components in a three stage process. They are analogous to the 
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equations given in (3.10) for the naive estimates. 

The variance-covariance matrix appeared as f o h s :  

with(1inalg) ; 
bigvar : = array (s~iatric . 1. .14,1. .14) ; 
bigvarClsi] := si(pal'l/n; 
bigtar Cl, 23 : = rhol2*sigmaî*rige2/n; 
bigvar Ci, 31 : = rhol2*rho23*sigmal*si&ma3/n; 
bigvar cl . 4 := sigaala2/ ( (k+l) *IL) ; 
bigvar Ci, 51 : = rhol2*sigmal*si~/((k+l) *n) ; 
bigvar cl. 61 : = rho12*rho23*sigmal*sigma3/ ( (k+1) m) ; 
bigvarD.71 := O; 
bigvar[1,8] := O; 
bigtar[1.9] := 0; 
bigvar [1,10j := 0; 
bigvarn. Il] := 0; 
bigvar Cl. 123 : = -2*kaal*sigmal'2/ (k+1) ; 
bigvar Cl # 131 := -2*k*rho12*sigmal*sigma2~/ (k+1) ; 
bigvar cl, 143 : = -2*k*rho12*rh023*si&mal*sigma3rtnni3/ (k+i) ; 
bigvar C2.21 : = sigma2'2/n ; 
bigvar C2,3] : = rho23*iigma2*sigaa3/n; 
bigvarC2,a := rho12*sigmai*sig.a2/((k+i) +n) ; 
bigvar C2.53 : = sigma2~2/ ( (k+l) m) ; 
bigvar[2,6] := rho23*sigma2*sigma3/((k+i) *n) ; 
big~arC2.73 0 ;  
bigtarC2.83 := O; 
bigvarC2.93 := 0; 
bigvar c2.10] : =O ; 
bigrarL2, il] := O; 
bigvarC2,12] := -2*k*rhol2*sigpai*si&ma2~i/(k+1) ; 
bigvarC2 133 := -2*k*a12*sigia2'2/(k+l) ; 
bigrar[2,14] : = -2*k.rho23*iilpa2*ii&aa3+ipu3/(k+l) ; 
bigvarc3,3] := sig~a3'2/n; 
bigvar[3,4 := rhol2*rho23*aigrat*si~3/((k+l)*n); 
bigvar[3,5] : = rho23*sig1~2*sigma3/ ((k+l) *n) ; 
bigvar C3.63 : = sigma3*2/ ( (k+1) *n) ; 
bipar[3,?] := O; 
bigvar[3,8] := O; 
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bigoar[3.9] := O; 
bigvar[3.10] := O; 
bigrarC3. il] := O; 
bigvar C3.121 : = - 2 * k * ~ h o l 2 * r h o 2 3 * s i g . a l * a i ~ ~ l /  (k+l) ; 
bigrarC3.133 := -2*k+rb023*signW*si~3+niu~/ (k+1) ; 
bigrarC3.143 := -2*k*si@~3'2*iii3/&+1) ; 
bigvarC4.4 := siplœ2/((k+1)-); 
bigrarC4.53 := rho12*sigial+dgma2/((k+l) '2-1 ; 
bigvar 14.63 : = rho12*rho23*sigmai*sig~3/ ( (k+l) -2-1 ; 
bigrarC4,7] := O; 
bigrarc4.83 := 0; 
bigvatC4,9] := O; 
bigvar[4,10] := O; 
bigvar[4,11] := O; 
bigrar[4.12] := O; 
bigvar[4,13] : = -2*k*rho l2*s ip l*s ipn iaz~ /  (k+l) ; 
bigvar[4,14] : = -2*k*rho 12*rho23*si&ma1*si&rPa3irmu3/(k+l) ; 
bigvar[5.5] := sigmaZ'2/ ( (k+1) *n) ; 
bigoar[5,6] : = rho23*sigma2*sigma3/ ( (k+1) ̂2*n) ; 
bigrar[5,?] := O; 
bigvarC5.81 := O; 
bigvar[5.91 := O; 
bigvar[5.10] := O; 
bigvar[5.11] := O; 
bigvar[5,12] : = - 2 * k * r h o l 2 * s i g r n a l * s i ~ ~ i / ( k + l )  ; 
bigrar[5.13] := O; 
bigvar [S, 143 := - 2 * k * r h o 2 3 * s i ~ * s i g a a 3 ~ / ( k + i )  ; 
bigvar 16.61 : = sigma3'2/ ( (k+l) a) ; 
bigrar[6.7] := O; 
bigvar[6.8] := O; 
bigvar[6,9] := O; 
bigrar[6.10] := 0; 
bigvar[6,11] := O; 
bigvarC6,12] := -2*k*rho12*rho23*si&ma1*si~rtmul/ (k+1) ; 
bigrarC6,13] := -2*k*rb023*siga~2*si~31tmu2/(k+l) ; 
bigrarC6,14] := O ; 
bigrar[7,7] := 2*(n-1)*sipla4; 
bigrat[?, 81 : = 2* (a-1) *rho12*rignial43*sipa2; 
b i g ~ a d 7 . 9 1  : = 2*(n-1) * r h o l 2 ' 2 * s i g i ~ l ~ 2 * s i ~ ~ 2 ;  
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The gradiemt of the square root of the fist component was given as follows: 

g d a t  : = -(k+l) a*((sx2.2si + n*(u2si-ii~sis3) '2) / (2*sx2~2sls3) + 
( ~ ~ 3 x 3 ~ 1  + n*(u3s1-u3s1s4)a2)/(2*sx3r3s1s4)); 
deltahat : = (k+l) '2~'2*(sx,IZr3sl + n*(u2sl-u2sla3) *(u3sl-u3s1~4) ) 
/ (sr2~2sls3*sx3x3~1s4) ; 
percf our : = (3*n*2+6a*g-t+de1tahat02) / (n*29erctbree6 (1/3) ; 
rho23hat : = percthree* (l/J) + (l/Q) *perdour + deltahat/ (3*n) ; 
f isstcomp : = sx3~3sls4/ ((k+1) m) * (1-tho23hat-2) ; 
f := sqrt(firstconp); 
graâf : Cdïff (f ,ulsl) ,âiff (f ,u2sl) ,diff (f ,uJsl) ,diff(f ,ulslsl), 
diff (f ,u2sls3) ,diff (f ,u3sls4) ,diff (f .sxlxisl) , d i f f ( f  ,sxlx2sl), 
diff (f ,sx2x2s1) ,diIf (f ,sr2%3s1) .di- (f ,sx3x3sl) ,diff (f ,sxlrlsis2).  
diff (f , sxZ2sls3) &ff (f, ~ ~ 3 x 3 ~ 1 ~ 4 )  3 ; 
uisi := mul; 
uasi := mu2; 
u3sl  := -3; 
~ 1 ~ 1 ~ 2  := mi; 
u2sls3 := mu2; 
u3sls4 := mu3; 
sxlxlsl : = (n-1) *sigmala2; 
sxlr2sl : = (n-1) *rholZ*sigrial*sigpia~; 
~ ~ 2 x 2 ~ 1  : = (pl) *signa2'2; 
~ ~ 2 x 3 ~ 1  : = (n-1) *rho23*dgma2*sigM3 ; 
~ ~ 3 x 3 ~ 1  : = (n-1) *sigm&Y!; 
sxlxlsis2 := ((k+l)*n-i)*sigaal'2; 
~ ~ 2 x 2 ~ 1 ~ 3  := ((k+l) *n-1) *rig~2'2; 
~ ~ 3 x 3 8 1 ~ 4  := ((k+1)--i)*sigma3'2; 
evaldgradf )  ; 

The gradient of the square root of the second component was given by: 

alpha : = - (k+i) +n*( (sxlxlsl + n*(ulsl-ulrrla2) ' 2 )  / (2*sx1xls1s2) 
+ (sx2xZsl + n*(u2si-u2sls3) ' 2 )  /(l*sx?.2sla3)) ; 
beta := ( lc+l) ^2mœ2* (sxix2s1 + n* (ulsi-ulais2) * 
u2si-u2s1i3) ) /(srlx1sis2*sr?x2~1a3) ; 
percone : (l/27) *beta* (18*n'2+9*n*alpha+beta'2) /n'3 + 
(1 /9 )  * (-3*nœ4- 18niœ3*aîpha+33a-2*betaa 2-36mœ2*aîp&aœ2+ 
24*n*alpha*beta'2+3*betaL4-24~*alpha'3-a2)'(0.5)/n'2; 
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perctwo : = (3*~'2+6*n*alpba+beta~Z) / (n-2fpaconea (1/3) ) ; 
rho12hat := parcone^<l/3) + (l/9) *pecctuo + beta/<3*n) ; 
gammahat := - (k+l) +ne( (~~2.2~1 + n* (u2a1-u2sls3) '2) / (Z*sx2x2sls3 + 
~ ~ 3 x 3 ~ 1  + n*(u3s1-u3s1s4) '2) /(2*sr3x3std) ) ; 
deltahat := (k+l) '?a'Z*(n2xSsl + n* (u281-u2sls3) * (u3st-u3sls4) ) 
/ (~x?12~1a3*sx3r3sld) ; 
percthree : = (l/2?) *deltahat* < l8.n^2+9m*grrrinuhat + 
deltahat -2) h - 3  + (1/9) (-3*i-4 - 18*nœ3*gdat + 
33*na2*deltahat'2 - 36+n*?*gammhat'Z + 24*n*gamnAhat *deltahatb2 
+ 3*deltahat '4 - 2 4 * n * g d a t  '3 - 3*gamnahat'2*deltahat ' 2 )  
'(0.5)/n̂ 2; 
percfour : = (3m'2+6*n*gsrahat+deltahatœ2) / (n'2*percthrae' (1/3) ) ; 
rho23hat : = percthree* (l/3) + <1/9) +perdou + deltahat / (3-1 ; 
seccomp := s~3t3.3sis4/((k+1) *IL) *rho23hata2* (1-rholZhat'2) ; 
f : = sqrt (seccomp) ; 
graàf := ~diff(f,ulsl).diff(f,u2~1),diff(f,u3si),diff(f,uisls2), 
diff (f .u2sls3) ,diff (f .u3sls4) , W f  (f .sxlxisl) .d i f f  (f ,srlx2s1). 
diff (f ,sx2r2si) ,diff (f ,sUxSsi) ,&ff (f ,sx3x3a1) ,diff (f ,sxlrlsls2), 
dif f (f , ~ ~ 2 x 2 ~ 1 ~ 3 )  ,diff (f , sx3~3sls4)] ; 
ulsl := mul; 
u2sl := m2;  
u3sl := mu3; 
ulsis2 := mi; 
u2sls3 := mu2; 
u3sis4 := mu3; 
S X ~ X ~ S ~  := (n-1) * ~ 5 p 1 - 2 ;  
sxlx2si := (n-i)*rhoi2*sigpal*si@; 
sx2x2sl := (n-1)*sigma2-2; 
~ ~ 2 x 3 ~ 1  : = (n-1) *rho23*sigma2*sigma3 ; 
~ ~ 3 x 3 8 1  := (n-l)*sigma3'2; 
sxirisls2 := ((k+l)~-l)*Qma1-2; 
~ ~ 2 x 2 ~ 1 ~ 3  := ((k+i)*n-l)*rigie2'2; 
~ ~ 3 x 3 ~ 1 ~ 4  := ((k+l)*n-l)*sigra3̂ 2; 
evalm(gradf) ; 

The gradient of the square root of the third component is given by: 

alpha : = - (k+1) *n*( (sxirlsl + n* (u1s1-u1s1~2) -2) / (2*sxi~lsls2) + 
( ~ ~ 2 x 2 s  1 + n* (u2si-u2sls3) '2) / (2*sx2x2sls3) ) ; 
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beta : = (k+1) '2~n2*(slrlr2si + a* (~1st-ulsls2) *(u2sl-u2sls3) ) 
/ (sxlxlsls2*sx2x2sls3) ; 
percone : = (1/27) *beta* <18*no2+9~*alpha+beta'2) /n'3 + 
l/9) * (-3*na4-18*n'3*alpha+33riaa2*beta*2-36- 
4*n*alpha*betaœ2+3*beta'4-24~*aïphaœ3-3*alpha*2*bet aœ2) 
^(O .5)/na2; 
parctrio : = (3+n'2+6m*alpha+beta'2) / (na2fperconee (l/3) ) ; 
rhol2hat : = percone' (l/3) + (l/9) *perctwo + beta/(t.n) ; 
g d a t  : = - (k+l) tn*( (ax2~2sl + n* (u2~1-~2sls3)'2) / 
(2*sx2x2s1133) + ( ~ ~ 3 x 3 ~ 1  + n* (u3s1-u3sls4) ' 2 )  / (2*sr3x3els4) ) ; 
deltahat := (k+1) ̂2~'2*(sx%3sl + n*(u2sl-u2sls3) * 
(u3sl-u3st4) ) / (sx2r2sls3*sx3x3s1s4) ; 
percthrae := (i/27) *deltahat* (18*n'2+9*n*gdat + 
deltahat-2) /nn3 + (l/B) * (-3*na4 - 18+n'3*gamahat + 
33*na2*deltahat'2 - 36*11'2*gdat'2 + 24hi+gaamahat* 
deltahat-2 + 3*de1tahata4 - 24hi*gdat'3 - 
3*g~at '2*del tahata2)  ' (0.5) /n'2 ; 
percfour : = (3*n'2+6*n*gamahat+deltahat'Z) / (na2*percthree' (1/3) ) ; 
rho23hat : = percthreea (l/t) + (1/9) *perd our + deltahat/ (3-1 ; 
thirdcomp : = sx3x3sls4/ ((k+1) m) rrho23hata2*rho12hat '2; 
f : = sqr t  (thirdconp) ; 
graàf := [diff(f,ulsl).diff(fBuZsi),diff(f.u3sl),diff(f ,ulsls2), 
diff (f ,u2sls3) , diff (f ,u3sls4) diff (f . sxlxlsl) . diff (f , sxLx2sl) , 
diff (f ,sxb2s1) ,diff  (f , ~~2x381) ,d i f f ( f  , ~ ~ 3 x 3 ~ 1 )  ,diff (f, sxlxlsls2), 
diff (f , sr2x2sls3) ,diff (f . sx3x3sls4)j ; 
ulsl := mul; 
u2s1 := -2; 
u3s1 := mu3; 
ulsls2 := mul; 
uSsls3 := mu2; 
~38184 :' m 3 ;  
sxirlal := (n-i)*sigiial'2; 
sxlx2rrl := (n-1) *rhol2*ailpal*ri~ ; 
~12x2131 := (n-l)*rig~2'2; 
sr2.3~1 : = (n-1) *tho23*sig1~Z*sig~3 ; 
~ ~ 3 x 3 ~ 1  := (n-l)*sig.a3'2; 
sx11s12 : ((k+l)*n-l)*sigmalœ2; 
sx2x2sln3 := ((k+1) *PI) *sigraZœ2; 
sx3x3sir4 := ((k+l)+n-l)*sigma3'2; 



APPENDLX B. V W C E S  FOR SEIMT-NAIVE E S T U T E S  

evalm(gradf1; 



Appendix C 

Sirnulat ion Result s for 

Cross-sect ional and Longitudinal 

Data 

The purpose of this appendix is to give the redts  of the simulations done in chapter 

three. Please see that chapter for a complete description of the simulation studies. 
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Pm 
Est. 
Real 
MLES 
(S123) 
NEFS 

SNES 

MLES 
(S l23-S3) 
Real 
MLES 
(S123) 
NEFS 

SNES 

MLES 
(Sl2SS3) 
Real 
MLES 
(S123) 
NEFS 

SNES 

rnES 
(S l23-S3) 

Table C. 1: Average of 100 values of first component of each rnn where n = 20. The 
figures in brackets represent the standard deviation for these values 
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P a  
Estimate 
Real 
MLES 
(S123) 
NEFS 

SNES 

MLES 
(S l2+S3) 
Real 
MLES 
(S123) 
NEFS 

SNES 

MLES 
(S l2+S3) 

Red 
MLES 
(S123) 
NEFS 

SNES 

MLES 
(S l2SS3) 

Table C.2: Avaage of 100 dues of first component of each ran whae n = 50. The 
figures in brackets represent the standard deviation for these values 
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P a  
Estimate 
Real 
MLES 
(S123) 
NEFS 

SNES 

MLES 
(S12SS3) - 

Red 
MLES 
(S123) 
NEFS 

SNES 

MLES 
(S l23-S3) 
Real 
MLES 
(3123) 
NEFS 

SNES 

MLES 
(S l23-S3) 

Table C.3: Average of 100 d u e s  of second mmponent of each run where n = 20. 
The figures in brackets teptesent the standard deviation for these values 
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P23 
Estimate 
Real 
MLES 
(S123) 
NEFS 

SNES 

MLES 
(S12343) 

Real 
MLES 
(S123) 
NEFS 

SNES 

MLES 
(S l23-S3) 
Real 
MLES 
(S123) 
NEFS 

SNES 

MLES 
(S123- S3) 

Table C.4: Average of 100 dues  of second component of each ran where n = 50. 
The figues in bradrets represent the standard deviation for these values 
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P23 
Estimate 
Real 
MLES 
(S123) 
NEFS 

SNES 

MLES 
(S123-S3) 
Real 
MLES 
(S123) 
NEFS 

SNES 

MLES 
(S12343) 

Red 
MLES 
(S123) 
NEFS 

SNES 

MLES 
(S l23-S3) 

Table C.5: Average of 100 dues  of thkd component of each run where n = 20. 
The figures in brackets represent the standard devïation for these d u e s  
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R d  Value 
MLES 
(S123) 
NEFS 

SNES 

MLES 

MLES 
(S123) 
NEFS 

SNES 

MLES 

MLES -19 
(S123) (-11) 
NEFS -18 

(-10) 
SNES -18 

(-08) 
MLES .19 

(S12343) (-09) 

Table C.6: Average of 100 values of thkd component of each nui where n = 50. - 
The figures in brackets represent the standard deviation for these values 
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Table (2.7: Further simulation to check approltimate variance formnlas. Naive 
estimates, fkst component, based on 2500 m s ,  n=50. Table entnes are percent of - 

samples induding the hue parameter valae. 

Table C.8: W h e r  simulation to check approirimate variance formnlas. Naive 
estimates, second component, based on 2500 rans, n=50. 
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Table C.9: Further simulation to check approximate variance formdas. Naive 
estimates, third component, based on 2500 nuis, n=50. 

Table C.10: Furtha simulation to check a p p r d a t e  variance formulas. Semi-naive 
estimates, f i t  component, based on 2500 runs, n = 50 
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Table C.ll: W h e r  simulation to check approximate variance fomdas. Semi-naive 
estimates, second component, based on 2500 m s ,  n = 50 

Table C.12: F'urther simulation to check apptoItiu1ate variance formulas. Semi-naive 
estimates, third component, based on 2500 mm, n = 50 
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1 

Naives 1 Coverage 1 Width 1 Coverage 1 Width ( Coverage 1 Width 
Approx. 
1st 98 96.9 0.6060 97.1 0.2199 96.5 0.2283 

94 93.4 0.4900 93.2 0-1778 92.4 0.1846 
90 90.0 0.4285 89.7 0.1555 88.4 0.1614 

2nd 98 98.0 0.1020 96.7 0.1763 97.2 0.4555 
94 93.1 0.0825 91.4 0.1425 91.9 0.3683 

Table C.13: Three nurs done to compare the appmPmate variance formuiae with 
the bootstrap, for the naive estimates. Longitudinal sample sïze = 50. 

Boot. 
1st 98 96.8 0.6402 97.6 

94 91.3 0.4976 93.5 
90 87.3 0.4305 88.8 

0.1135 97.1 
0.0854 92.6 
0-0734 88.3 

-0.5828 
94 93.6 0.3386 92.9 
90 88.6 0.2947 88.2 

0.2438 97.9 0.2550 
0.1854 93.3 0.1953 
0.1591 88.6 0.1676 
0.1949 96.6 
0.1480 
0.1276 

99.0 0.3970 
0.4538 95.2 0.3156 
0.3926 90.5 0.2749 
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Table C.14: Three rans done to compare the approximate variance f o d a e  with 
the bootstrap, for the semi-aaive estimates. Longitudinal sample size = 50. 

Semi-Naives 
Rnn 1 

Coverage 1 Width 
Approx. 

Rnn 2 
Coverage 1 Width 

1st 

2nd 

3rd 

Run 3 
Covaage ( Width 

rBoot. 

98 
94 
90 
98 
94 
90 
98 
94 
90 

0-5983 
0-4837 
0.4231 
0.4328 
0.3499 
0.3060 
0.3470 
0.2805 
0.2453 

99.7 
98.4 
96.9 
99.6 
99.2 
98.8 
98.2 
95.2 
91.9 , 

0.7307 
0.5908 
0.5167 
0.3034 
0.2453 
0.2145 
0.4098 
0.3313 
0.2898 

100.0 
100.0 
100.0 
99.9 
99.4 
99.0 
99.9 
99.9 
99.3 

0.9799 
0.7922 
0.6929 
0.7381 
0.5967 
0.5219 
0.7654 
0.6188 
0.5412 

100.0 
100.0 
100.0 
95.9 
90.2 
86.7 
98.0 
93.4 
89.8 



Bibliography 

[il Char, Bruce W., Keith O.  Geddes, Gaston H. Gonnet, and Stephen M. Watt 

(1985) Maple User's Guide. First Ceaves: A ltrtorial Introduction to Maple 

and Maple Refennce Manual, 4th Edition, WATCOM Publications Limited, 

Waterloo, Ontario. 

[2] Croase, William B., (1970) Automotive Engine Design. McGraw-Hill Book 

Company, New York. 

[3] Draper, N.R. and H. Smith, (1981) Applied RegressMn Analysis, Wiley and 

Sons, New York. 

[4] Diggle, Peter J., Kung-Yee Liang and Scott L. Zega (1994) Andysis of Lon- 

gitudinal Data. Oxford University Press. 

[5] Efron, B. and R. Tibshirani, (1986) '<Bootstrap Methods for Standard Errors, 

Confidence Intntervals and Otha Measores of Statistid Acmacy", Stutistical 

Science, Vol. 1, No. 1, 54-77. 



[6] Fong, Daniel Y.T. and JF. Lawless, (1996) KThe AnaLysis of Process Varia- 

tion 7hnsmission wïth Muitivariate Measurements", submitted to Journal of 

Qudity Technobgy. 

[7] FU=, Wayne A., (1987) Measunment E m r  Modeb. John Wdey and Sons, 

New York* 

[8] Hamada, M.S. and J.F. Lawless, Multivariate Methods for the Assessrnent of 

Process Variation ' R d s i o n ,  Prepared for General Motors Reseatch Labo- 

ratoties. 

[9] Jobson, J.D. (1991) Applied Mdtivan'ate Data Analysis, Volume 1: Regression 

and Ezperimentd Design, Spriages-Ver1lag, New York. 

[IO] Joi.net, Brkn L. and Marie A. Gaudard, (1990) "Variation, Management and 

W. Edwards Demingn, Qudity Progress, Decemba, 29-37. 

[ll] Johnson, J. (1972) Econometnc Methods, McGraw-Hill Book Company, New 

York. 

[12] Johnson, Richard A. and Dean W .  Wichern (1988) Applied Multivariate Sta- 

tisticai Analysis, Prentice Hall, New Jessey. 

[13] Know, Manfred and Malcolm Farrow (1996) "Design of  Experiments for Muiti- 

Stage Processes", Quaiity and Reliabüàty EngineeRng International, Vol 12, 

129-132 (1996). 

[14] Larsen, Richard J. and Monh L. Marx (1986) An Introduction to Mathematical 

Statistics and Its Applications, PrenticeHd, New Jersey. 



[15] Lawless, J.F., R 3. MacKay and J.A. Robinson (l996), "Analysis of Variation 

'hanmission in Manufacturing Processes", submitted to Journal of Quality 

Tedrnology. 

[le] Little, Roderi& J.A. and Donald B. Rubh, (1987) Statistical Anuiysis with 

M G n g  Data. Wiley and Sons, New York. 

[17] Looney, Stephea W. (1995) UHoa to Use Tests for Univariate Normality to 

Assess Mdtivariate Normalïty", The American Statistici~tz~ Vol. 49, No. 1, 

6470. 

[18] Mardia, K Y . ,  J.T. Kent and J.M. Bibby, (1979) Multivariate Analysis. Aca- 

demie Press, London. 

[19] Magnus, Jan R. and H. Nendecker, (1979) "The Commutation Matrix: Some 

Propaties and Applicationsn, The Annals of Statistics, Vol. 7, No. 2, 381-394. 

[20] Madansky, Albert, (1988) Prescriptions for Working Statisticians, Springes- 

Vezlag, New York. 

[21] Moen, Ronald D*, Thomas W. Nolan and Lloyd P. Provost (1991) Impzoving 

Quality through Planned Ezperimentation McGraw-Bill, hc. 

(221 Montgomey, Douglas C. (1985) Intmduction to Statisticd Quality Control 

Wiley and Sons, New York. 

[23] Montgomery, Douglas C. and Elizabeth A. Peck, (1992) Introduction to Linear 

Regression Analgsis, Wiley and Sons. 



[24] Nair, Vijayan N. (editor) (1992) "Taguchi's Patameta Design: A Panel Dis- 

cussion", TechnometriCs, Vol. 34, No. 2, pp 127-161. 

[25] Noh, Thomas W. and Lloyd P. Ptovost, (1990) "Understanding Variation", 

Qudity Pm~ress, May, 70-78. 

[26] Pignatiello, Joseph J. Jr (1993) "Strategies for Robust Muitkesponse Quality 

Engineeringn IIE Tkafzsactiow Vol. 25, No. 3, 5-15. 

[27] Prov~st, Lloyd P. and Clifford L. Norman, (1990) Variation throagh the 

Ages" , Qua& Prognss, Decembet, 39-44. 

[28] Pyzdek, Thomas, (1990) "Thaeys No Snch Thing as a Common Causen, ASQC 

Qwlity Congress ~uwactions 102-108. 

[29] Roy, Ranjit (1990) A Primer on the Tuguchi Method Van Nostrand Reinhold, 

New York. 

[30] Seber, G.A.F. (1977) Linear Regressàon Andysis, Wiley and Sons, New Yd. 

[31] Williams, D.A. (1987) "Generaiized Linear Mode1 Diagnostics Using the De- 

viance and Single Case Deletionsn , Applied Stutistics, Vol. 36, No. 2, pp. 181- 

191. 

(321 Wu, Shing-K~oy S. Jack Hu and S.M. Wu, (1994) UA Fault Identification and 

Classification Scheme for an Automobile Door Assembly Process," The Inter- 

national Joamal of Ffezible Manufactdng Systems, Vol. 6 ,  No. 4, 261-285. 



[33] Xie, Weimin, Kai Yang and Y u d a n  He, (1994) ISSAT conference pupers, 

"A Mdti-stage Mdtivariate Statistical Approach for the Diagnosis of Sheet 

Metal Assembly Processes", 102106. 

[34] Yang, Kai (1996), "Improving Automotive Dimensional Quality by Using Prin- 

cipal Component Analysisn , Qualit y and Reliabàiàt y Engincehg International, 

Vol. 12, No. 6, 401-409. 




