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Abstract

The subject of variation analysis is of interest in manufacturing processes where items are
being produced in large quantity and pass through many operations or stages before they
are completed. After the final operation, they must meet certain specifications. The issue
is to discover how variation in the product characteristics at the final stage of the process
can be reduced. With that goal in mind, it is useful to understand how the variation is
conveyed through the process.

Multivariate normality is assumed as the underlying model for the measured product.
Methods are given for analysing variance transmission under this model, both when a
general multivariate normal holds, and in a more restricted case, when a first order
autoregressive structure is appropriate.

Inevitably, there will be measurement error in the data collected on the process. It
is shown that this measurement error can severely hinder attempts to characterize the
process, and should be incorporated explicitly in an analysis. A naive estimation method
is introduced and shown to work well.

It may be less expensive, in some instances, to collect large amounts of sample data
after each stage, and then track only a few items through the process. Methods are given
of incorporating cross-sectional data into the analysis. Also discussed is how to do this
when the problem is compounded by measurement error.

Finally, some consideration is given to the issue of multivariate data.

iv



Acknowledgements

I would first like to thank my supervisors, Jock MacKay and Jerry Lawless. I
have not only learned a great deal about research from them, they also gave me an
enormous amount of support. Their patience was boundless.

Thanks to Greg Bennett, Stefan Steiner and Jim Whitney for their input. There
are many people in the statistics department and on the fifth floor who made my
days much more cheery. Thanks to them also.

I would like to thank Patrick Maidorn, for his constant support. He put up with
me even in my most “stressed out” times. Matt Schonlau deserves a big thanks
for “sticking with me” throughout my entire time here at Waterloo. I would also
like to acknowledge Andreas Sashegyi for his remarkable ability to find something
positive in any situation.

Finally, I can’t express how grateful I am to my mom, dad and brother for their
belief in me, and for their unwavering love and support. They are my pillars of

strength.



Dedicated to the memory of
Chelsea Anne Pichach

Witk you a part of me hath passed away;
For in the peopled forest of my mind
A tree made leafless by this winiry wind
Shall never don again its green array.
Chapel and fireside, country road aend bay,
Have something of their friendliness resigned;
Another, if I would, I could not find,
And I am groun much older in a day.
But yet I treasure in my memory
Your gift of charity, and young heart’s ease,
And the dear honor of your amity;
For these once mine, my life is rich with these.
And I scare know which part may greater be -
What I keep of you, or you rob from me.

- George Santayana



Contents

1 Introduction _
1.1 Description of Problem . . . . . ... ... ... .. .........
12 Examples . .. ... ... ... ... .. ... e
121 PistonExample . . . . ... .. ... ... ..........
1.2.2 Door Hanging Example . . . . . .. .. ... .. .. .....
1.3 Statistical Issues and Problems . . . . .. .. ... ...... ...
14 The AR(1)Model . . . . . ... .. .. ... ... ... .. ....
141 TheModel. . . . . ... ... ... ... ... ...
14.2 Maximum Likelihood Estimation . .. .. ... .. .. ...
143 Diagnostics . . .. ... ... ... ..0.i.iuieeneno...
144 MissingData . .. ... .. ... ... ... ... .......

2 The AR(1) Model with Measurement Error
2.1 Effects of Measurement Error if Ignored . . . . . . . .. .. .. ...
22 Estimation . . . . ... .. ... . ... e
221 TWOSEEES . - o o v e e e e
222 ThreeorMore Stages . . . . .. ... .............

(=2 TN = T - R

10
11
14
14
19
21
22



23 ModelChecking . . . . ... ... ... ... ... ... ...
2.4 Uncertainty in the Measurement Error Variance . . . . . ... ...
25 MissingData . .. ... ......... .. .. ...,
26 PistonExample . . . . . . ... .. ... ... ... ... ... ...

311 TwoStages . .. ...........c.0otunuuneneo..
312 ThreeorMoreStages. . . ... . ... ... .........

32 Designlssues . ... ... . ... ... ... ...
3.2.1 Known Marginal Parameters . . . . .. ... .. .... ...
3.2.2 Limited Cross-sectional Data . . ... .. ... .......

3.2.3 General Recommendations . . . . .. .. .. .........

The General Multivariate Normal Model

4.1 Intervention at thefirststage . . ... ... .............
411 Methodology .. ..... ... ... ... ... ... ...
412 Examples . ... .. ... ... . ...

4.2 Intervention at thesecondstage . . . . .. ... ... ........
4.2.1 Reducing the added variation . .. ... ... ...... ...
422 Examples ... .. ...... ... .. ... ...
4.2.3 Changing the slope of the second stage on the first stage .

424 Examples ... .. ..... ... ... ... ... ... ...

72
73
73
81
89
91
91
93
99

100
104
104
108
117
117
120
124



4.3 Intervention at thethirdstage . . . . .. . .. ... .........

44 Conclusions . . . . . . . . i i i i i it e e e e e e e e e e e e e e

5 Multivariate Data
51 Review . . . . . . . .. .. e e e e e e
52 Other Approaches . . . . ... ... ... ... ... . ...
5.2.1 Modeling the Intervention . .. .. . ... .. .... .. ..
5.2.2 Principle Components Analysis . . .. ... .........

5.3 DiIscussion . . . . . . . . i i e e e e e e e e e e e e e e e e e e e e e

6 Discussion
6.1 Conclusions . . . . . . . . . . i i e e e e e e e e e e e e

6.2 FurtherResearch . ... . ... ... ... ... ..., ...
A Variance Formulae for Measurement Error
B Variances for Semi-Naive Estimates
C Simulation Results for Cross-Sectional Data

Bibliography

130
131
138
138
142
143

147
147
148

151

159

167

179



List of Tables

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

Measurement error simulationrunvalues . . . . . ... . ... ... 39

Bias of simulation proportions when measurement error is ignored. . 40

Average of 99 values of first proportion . . . . . ... ... ... .. 42
Average of 99 values of second proportion . .. .... . ... ... 43
Average of 99 values of third proportion . . ... ... .. ... . 44

Coverage frequency of first component using the bootstrap method 45
Coverage frequency of second component using the bootstrap method 46
Coverage frequency of third component using bootstrap method . . 47

Coverage frequency of first component using approximate variance . 58

2.10 Coverage frequency of second component using approximate variance 58

2.11 Coverage frequency of third component using approximate variance 59

3.1

4.1
4.2

5.1

Estimated mean squared errors for the estimators and the components 87

Parameters for the relevant conditional distributions of piston data 110

Summary of effect of interventions at various stages . . . . . ... . 129

Variaunce transmission of hood data using univariate analysis . . . . 133



9.2 Multivariate AR(1) model results for hood data. . . .. .. .. . .. 134

5.3 Principle components analysis of hood data . .. ... ..... . 143
C.1 Average of 100 values of first component, n=20. . ... ... ... . 168
C.2 Average of 100 values of first component, n=50. . . . .. ... ... 169
C.3 Average of 100 values of second component, n=20. . . . . . .. ... 170
C.4 Average of 100 values of second component, n=50.. . . . . .. ... 171
C.5 Average of 100 values of third component, n=20. . ... .... .. 172
C.6 Average of 100 values of third component, n=50. . ... ...... 173

C.7 Approximate confidence intervals: 1st component, naive estimates. . 174
C.8 Approximate confidence intervals: 2nd component, naive estimates. 174

C.9 Approximate confidence intervals: 3rd component, naive estimates. 175

C.10 Appto:tixhate C.L’s: 1st component, semi-naive estimates. . . . . . . 175
C.11 Approximate C.I’s: 2nd component, semi-naive estimates. . . . . . 176
C.12 Approximate C.I’s: 3rd component, semi-naive estimates. . . . . . 176

C.13 Comparison of approximate variance formulae and bootstrap, naive
estimates. . ... ... ... ... ... ... ... . ... 177
C.14 Comparison of approximate variance formulae and bootstrap, semi-

naiveestimates . . . ... ... .. ... ... ... ... .. . . 178



List of Figures

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

Stagesof theprocess . . . . ... ... ... ............. 3
Perfect transmission . . . . ... ... ... ... ... ...... 4
Total added variation . . . . ... ... .... ... ... ..... 4
Both added and transmitted variation . . . .. ... ... ... ... 5
Perfect transmission of variance - sequenceplot . .. ... .. ... 5
Total added variation - sequenceplot . . . .. ... ......... 6
Schematic diagram of the piston process . . . ... ... ... ... 8
Location of rear headerondoor . . . ... ... ... ... ..... 10
Figures for pia =v02and p5s=v02. . . .. ... ......... 49
Figures for pya = v02and pos=+v05. . . ... ... ... . ... . a0
Figures for py; = v0.2 and Pas = VOS. . .. 51
Figures for pjz = v05and po3=v0.2. . . ... .. ......... 52
Figures for pj = v05and pos =v05. . . .. ... ......... 53
Figures for p;3 = V05and pss=v08. .. ... ... ...... .. 54
Figures for py2 = v08and pss=v0.2. . . .. ... ......... 55
Figures for py =v08and pas =v05. . . . . .. ... ... .... 56



2.9 Figuresfor p;3=v08and ps=+v08. .. . ... ... ... .... 57

2.10 Second stage of piston data plotted against the first stage . . . . . . 67
2.11 Third stage of piston data plotted against the second stage . . . . . 68
2.12 Sequence plot of pistondata . . . . .. .. ... ........... 69

3.1 MSE:s of the first variance component, cross-sectional simulation . . 84
3.2 MSE:s of the second variance component, cross-sectional simulation 85

3.3 MSE:s of the third variance component, cross-sectional simulation . 86

3.4 Information with known marginals: 2 stages, naive estimate . ... 94
3.5 Information with known marginals: 2 stages, mle .. ... .. ... 95
3.6 Information in cross-sectional data: 1st component . ... .. ... 97
3.7 Information in cross-sectional data: 2nd component . . . . . . . . . 98

4.1 Original breakdown of variation by stage for piston data using AR(1)
models. . . .. ... ... ... e 101
42 Result of reducing the variation of y4 by 50% . . . . . . .. ... .. 110
4.3 Breakdown in door hanging data, with the AR(1) model imposed. . 112
4.4 Effect of reducing the variation of y4 by 50%, with the AR(1) model 113

4.5 Breakdown in door hanging data, no model restriction ... .. .. 115
4.6 Effect of reducing the variation of y4 by 50% . . . . .. ... .. .. 116
4.7 Effect of reducing the variation added at ys by 50% . . ... . ... 121
4.8 Effect of reducing the variation added at ys by 50%, AR(1) model . 123
4.9 Effect of reducing the slope of ys on yg by 50% . . . . . . ... ... 126
5.1 Calculated values for thehooddata . . . . .. ... ......... 137



5.2 Calculated values forthehood data . . . . .. .. ... .... ...

5.3 Variance transmission for COMB1
5.4 Variance transmission for COMB2

...................

-------------------



Chapter 1

Introduction

This thesis deals with the subject of analysing variation in an industrial process.
This subject is of interest in many industrial processes in which items are being
produced in large quantity. These items generally pass through many operations
before they are completed. After the final operation, they must meet certain spec-
ifications. The issue of interest is to discover how variation in the product at the
final stage of the process can be reduced. A process that has little variation in its
final product is a cost efficient one, since few parts will be scrapped due to failure
to meet specifications. Also, to produce high quality products it is important to
minimize variation in key quality characteristics. For instance, suppose a consumer
buys a new car, and discovers that although the vehicle has just been purchased, it
is noisy to drive in because the doors of the car do not close tightly. Thus, wind can
be heard traveling around the car, and the consumer finds the drive unpleasant.
This particular problem would be eliminated if the manufacturer consistently made
vehicles with doors that close tightly in their frames. Variation analysis is useful in
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determining how to do this.

The key to reducing variation in the final product is to have an understanding
of how much of that variation arises at each stage of a process. If some data can be
tracked through the course of the process, then statistical methods can be used to
determine those stages that are the largest contributors to the variation. Statistical
insight into this problem helps to focus engineering efforts. The aim is a less variable

product.

1.1 Description of Problem

We consider the problem of an industrial process producing items that should con-
form to certain target values. These targets may relate to the dimensions of the
product, or they may relate to other characteristics such as, for example, roundness,
flatness or smoothness. These characteristics are referred to as quality character-
istics, because they are the measure of performance of the product. For more on
quality characteristics, see Montgomery (1985), Moen et al. (1991), Nair (1992) or
Roy (1990). The products of the process will naturally vary about the given values,
and this variation may be costly to the manufacturer if it results in customer dissat-
isfaction (Provost, 1990). It is therefore desirable to minimize the variation of the
process. For some characteristics, variation only needs to be reduced to the point
where the product will meet specification. For other characteristics, any reduction
in variation is desirable, even after the product conforms to specification. These
types of characteristics are called key quality characteristics (KQC’s).

Often, the industrial process in question consists of many serial or parallel stages
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Figure 1.1: Stages of the process

that the items pass through before they are completed, as illustrated in Figure 1.1.
This complicates the issue of minimizing variation in the quality characteristics,
because it is no longer clear where the variation in the product at the final stage is
coming from. Consider a two stage process, for instance, where a measurement in
the same characteristic is taken before an operation and then again after it (the final
stage). Consider a given amount of variation in the process before the operation.
Then, any combination of three things can happen. The operation might simply
transmit the variation, in which case the variation of the product at the final stage is
determined by the variation in the product at the first stage. It is also possible that
the operation adds to the variation. The variation present at the first stage will be
of little importance if the variation added at the operation is large comparatively.
Another possibility is that the operation may in fact “remove” the variation that
was present in the process at the first stage. In that case, the variation at the first
stage of the process is not relevant to the variation at the final stage. Clearly, the
scenarios given above can be generalized to any number of stages.

We can illustrate these situations graphically through the use of scatter plots
and sequence plots. If we track items through the two stage process and plot their

measurements, we get a scatter plot of the data. If this scatter plot appears as
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Y,

Figure 1.2: Perfect transmission

Figure 1.3: Total added variation

shown in Figure 1.2, then we have perfect transmission of variance, since all the
variation in Y; is due to variation in ¥;. Clearly, the slope of the regression is
relevant here - if we could “flatten” the line so that it is horizontal, there would be
no variation in ¥;. This corresponds to removing variation from the first stage.

If, on the other hand, a scatter plot of the data revealed the figure shown in 1.3,
we would have total added variation in Y;. This is because none of the variation in
Y; is due to variation in Y;.

The more likely situation is that some combination of the above two situations

occurs, as illustrated in Figure 1.4.
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Y

Figure 1.5: Perfect transmission of variance - sequence plot

Sequence plots can also be used to illustrate these situations. These are plots
of the time sequence for each item tracked through the process. In the case of
perfect transmission, this plot would appear as illustrated in Figure 1.5, where all
the lines are parallel. When there is total added variation, this plot would appear
as in Figure 1.6, where the lines on the plot all cross.

Assuming it is possible to track at least some items through the process and
make measurements after each stage, those stages that are contributing the most
to the variation in the final product can be identified. This contributes to a deeper

understanding of the variation in the process and how it affects variation in the



CHAPTER 1. INTRODUCTION 6

T I
S
1 2 lage

Figure 1.6: Total added variation - sequence plot

quality characteristic. Potentially, an intervention could be made that reduces the
variation contributed at the key sources, and ultimately results in a more cost

effective process and lower variation in the quality characteristic.

1.2 Examples

1.2.1 Piston Example

This example will be used throughout this thesis to provide a numerical illustration
of the concepts described.

A piston is a part in an automobile located in the engine cylinder, the basic
framework of the engine. The piston is essentially a cylinder closed at the top and
open at the bottom, where it is connected to a rod. The piston moves in a vertical
motion in the engine cylinder, pushing out exhaust on the upstroke, and intaking
fuel on the downstroke (Crouse, 1970).

A study was done on 96 pistons as they were passing through a production line.
Each of the 96 pistons studied had 53 observations recorded on it. The process
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is illustrated schematically in Figure 1.7. Tile quality characteristics of the piston
were four diameters, located at a height of 4 mm, 10 mm, 36.7 mm and 58.7 mm.
These diameters were measured after each operation in the process, denoted in
Figure 1.7 by Y1 - Y7. It should be noted that all diameters were measured in
millimetres, to a precision of 0.001 millimetres, or 1 micron.

The following is a breakdown of the measurements on a piston.

(1) Piston number.

(2) Die number - A piston is produced from one of six possible dies. Each die

produced an equal number of pistons (Z1).

(3) Week number - This study was done over a two week period; 48 pistons were

produced in each week (Z2).

(4) Path 270 machine number - At operation 270, there were two different ma-
chines that the piston could have come through. An equal number of pistons
went through each machine (Z3).

(5) Path 290 machine number - The same situation occurred at operation 290
(24).
(6-20) Covariates - 15 attributes were measured on the pistons before production

(X1-X15).

(21,22) Op 210 - After operation 210, the diameters of the pistons were measured at
4 mm. and 58.7 mm. At this particular operation, no measurements were

made at 10 mm and 36.7 mm (Y1).
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Figure 1.7: Schematic diagram of process. Note that Yi denotes the ith set of four
diameter measurements.
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(23,24) Covariates - Two attributes were measured after op 210 (X16,X17).

(25-28) Op 230 - Four diameters were measured after op 230: 4 mm, 10 mm, 36.7
mm, and 58.7 mm (Y2).

(29) Covariate - One attribute was measured after op 230 (X18).
(30-33) Op 260 - Four diameters were measured after op 260 (Y3).
(34-37) Op 270 - Four diameters were measured after op 270 (Y4).
(38-41) Op 280 - Four diameters were measured after op 280 (Y5).
(42-45) Op 290 - Four diameters were measured after op §90 (YS6).
(46-49) Op 320 - Four diameters were measured after op 320 (Y7).

(50-53) Op 320 - Four diameters were measured after op 320 using a different gauge
(Y7F).

In any subsequent analysis, when a measurement was required for the final
diameter of the piston, the first set of measurements (46-49) was used instead of
the second set (50-53), because the former was deemed to be more reliable. The
second set of measurements was taken from a different measurement machine than
the others.

This is an example of the type of multi-stage industrial process described above.
It is of interest to identify the stages of the process that are major contributors of

variation in the final diameters.
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REAR HEADER

Figure 1.8: Location of rear header on door

1.2.2 Door Hanging Example

Another example that will be used occasionally is some car assembly door hanging
data. Here, thirteen cars were tracked through a seven operation process, and the
flushness of the rear header was measured on the rear door. This is an in-out
measurement which can either be above or below the target value. To see where
this location is on the door, see Figure 1.8.

The seven operations that the cars went through were the following:
1. Door hanging

2. Paint

3. Door hardware installation

4. Striker installation

5. Striker fit

6. Seals and chassis
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7. Final fit

For each car, a measurement was taken on the rear header after each of the above
operations.

Again, this is an example of the type of multi-stage industrial process we are
interested in. In fact, several flushness measurements were taken on each car. Note
that the geometry of the car door might lead us to consider several quality charac-
teristics. The flushness measurements themselves are clearly quality characteristics.
The difference between measurements on the top of the car door and on the bottom
will indicate how the door is tilted in that plane, and hence might also be a quality
characteristic of interest. Similarly for the difference between measurements made

on the left of the door and on the right.

1.3 Statistical Issues and Problems

The subject of reducing variation is discussed throughout the quality literature. See,
for example, Joiner and Gaudard (1990), Pyzdek (1990), and Nolan and Provost
(1990). References on this issue that more closely resemble our approach, however,
are Lawless, MacKay and Robinson (1996), Hamada and Lawless, Wu et al. (1994),
Xie et al. (1994) and Knof and Farrow (1996).

To illustrate the types of issues we address, consider a simplified situation in
which there is a single operation. A measurement X is made before the operation
and a measurement Y is made afterwards, where X and Y are not necessarily

measurements of the same thing. This can be thought of as illustrated in Figure
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1.1, where there are two stages. It will then be true that
Var(Y) = Varx(E(Y|X)) + Ex(Var(Y|X))

The first term of the above equation can be interpreted as the variation in Y
explained by X. The second term can be interpreted as the unexplained variation
in Y. If we assume that the measurement of X carries all relevant information about
the variation of Y at that stage, then we can also interpret this equation as the
following: the first term is the variation transmitted to Y from the first stage and the
second term is the variation added to Y after the first stage. Clearly, to compute the
relevant expectations and variances, models are needed for f(X) and f(Y|X), where
f denotes a probability function in the discrete case or a probaﬁility distribution
function in the continuous case. At the very least, the first two moments of these
functions will be needed. With these models in hand, the variation in Y can be
broken down as desired.

In the general problem, we consider a k-stage process, with upstream measure-
ments X,, X3, ..., Xi-; and the final quality characteristic measurements Y. All
of the upstream and quality characteristic measurements may be vectors, and need
not be measurements of the same characteristic at each stage. It is possible, for
example, that some of the X; are measurements of the quality characteristic at
an earlier stage of the process, while others may be measurements of completely
different attributes of the process. Ideally, we would use all of this information to
understand how variation in Y is propagated, and how it might be reduced.

This thesis will focus on the problem when the same quality characteristics
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are measured at each stage. Thus, the measurements are Y, ..., Yi. There are
many statistical issues associated with this problem. Finding appropriate models
to describe the data is the first issue. Associated with this are issues of model
fitting and assessment.

The data are often observed with some measurement error. This is another issue
of importance, because often the error involved can be substantial and ignoring
it can seriously mislead the investigator. Methodology needs to be developed to
explicitly handle this error.

Another issue of interest is related to data collection. It frequently occurs that
while tracking items through a process is expensive, measuring large numbers of
items after each stage is considerably less expensive. Methodology that uses this
type of “cross-sectional” data in the analysis would be useful.

Missing data is another relevant statistical issue. Frequently, not all data can
be taken on all the items after each stage. This is especially true when the data
are collected using automatic methods, such as coordinate measurement machines.
Methods are needed that use the data that are available as efficiently as possible.

Another thing that occurs often in these situations is that the data that are
collected are correlated cross-sectionally, and so multivariate methods are needed
in the analysis. Analysing the quality characteristics one variable at a time is not
sufficient. The diameters measured on the pistons are an example of such data.
Although models can be developed to take account of correlated data, the difficulty
occurs when trying to relate analysis done with these models back to the original

process.
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This thesis is outlined as follows: the remainder of this chapter introduces
the univariate AR(1) model and some methods of analysis; Chapter two discusses
methods of analysis of variance transmission in the presence of measurement error;
Chapter three discusses how to handle the data when the longitudinal data are
supplemented with cross-sectional data; Chapter four discusses non AR(1) normal
models; Chapter five provides some discussion on multivariate data and Chapter
six presents conclusions and ideas for future research.

Most of this thesis will focus on univariate measurements. This is applicable
methodology when there is only one quality characteristic of interest, or when there

are more, but they are uncorrelated.

1.4 The AR(1) Model

1.4.1 The Model

The use of the AR(1) model was proposed by Lawless, MacKay and Robinson
(1996), following work by Robinson.

As a first step in addressing the identification of key sources of variation in
an industrial process, we consider a two stage process in which there is a unique
dimension of interest. We will assume Y; and Y; to be random variables from a

bivariate normal distribution. In that case, we can represent them as follows:

Y’l ~ N(‘ll,d’f)
YilYs ~ N(ez+B:Yi,03,).



CHAPTER 1. INTRODUCTION 15

Then, by the conditional variance formula,

Var(Yz) = E(Var(Y:|Y1)) + Var(E(Yz2|1h))

= o} +BVar(Yi). (1.1)

The interpretation of equation (1.1) is that the first term is the amount of variation
added due to the operation, whereas the second term is the amount of variation
present in Y; that is transmitted through to Y;. If B; is close to one, almost all of
the variation present in Y; will be transmitted to Y;. Conversely, if 3; is close to
zero, then the variation in Y: is due almost entirely to the variation added at the
operation.

We now expand the process to three stages. The AR(1) model assumption
specifies that the conditional distribution of a particular variable, Y;, given all the
earlier onmes, Y;,...,Y;_1, is normal, with a mean which is a function only of the
previous variable, Y;_;, and a constant variance. We will subsequently refer to this
model as the first order autoregressive model (AR(1)), due to its similarity to the

time series model of the same name. In this case,

Y1 ~ N(I‘lidz)
YalY1 ~ N(az+B:Yh,03,)
}’SIYiv Yi ~ N(a3 + ﬂaY;! dgA)
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Again using the conditional variance formula, we get that

Var(Ya) = oi,+p0iVar(Ys)

= 034 +P303, +P303Var(Yh) (1.2)

The first term in equation (1.2) is the variance added due to operation two. The
second term is the variation added at operation one and transmitted through to
Y3, and the final term is the variation transmitted from Y;.

Notice that if we are interested in collapsing both of the above operations into
one single operation, we could consider the effect of that combined operation. It

can be shown that

E(KlY1) = Eyw(E(WY,Y))
a3 + Bs(az + B:Y1).

]

Also,

Var(Bil¥i) = By (Var(YalVs, b)) + Vary,y (E(%]Y, Y3))

_ .2 2 2
= 034+P3024

Obviously, the above expressions give the same results for the unconditional vari-
ance of Y3 as was found in (1.2).

This type of calculation can similarly be carried out on any number of serial
operations. In the general case, there are k stages and under the AR(1) model, it
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is assumed that

i ~ N(F‘I:”:)
I’iu’h---)yi-l ~ N(ai‘f‘ﬂilfi-haéq) i=2$"'sk' (1'3)

Equivalently, we could write

}'i ~ N(Ilh”:)

YilYi,....Ye ~ N(af+0i(Yier — pica)iod)  i=2,...,k

This form is more convenient when discussing targeting, since E(Y;) = af = u;.
The variance formulae are not affected by this alternate form.

The AR(1) model states that the current measurement is a function of the
previous measurement only. This is often a reasonable situation from a physical
point of view. Some reasons for which this might not hold, however, are that the
multivariate normal model and the kinear form of E(Y;|Y;-;) may not be valid.
Further, if there are several correlated variables and key ones are not observed,
then the observed measurements may not conform to an AR(1) model.

A useful “marginal” re-parameterization of the AR(1) model is the following:

Y. ~ N(m,0})

Pi-25s = Pi-25-1 * Pi-14-

Here, p;; represents the correlation between measurements at stage i and j. In this
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parameterization, the variance partition of a k-stage process is expressed as

Var(¥i) = ":(1 - P:-l.k) + ”sz-t,k(l "‘Pi-—z,k-l) +...

+ 0:!’:-;.& ---prs(l - Piz) + TePi k- Pg,ng.z- (1.4)
Dividing by the total variance o} gives

=(Q1- P:-l,k) + Pz-l.k(l - Plze—z,k—l) +.. -P:-l,le .- -P;,::Piz- ‘ (1.5)

This form indicates the proportion of the variance of the final product that is
contributed at each stage. The proportions of variance are generally of more interest
than the components themselves.

It should be noted here that if the AR(1) model is appropriate, collapsing op-
erations one and two into a combined operation will result in a variance partition
equivalent to that given by equation (1.2). That is, the first two terms of equation
(1.2) will sum to give the added variation of the combined operation.

Since, in the case of the AR(1) model considered here, all partitions of variance
of the final response attribute consistent contributions of variation to the previous
stages, evaluating the effect of an intervention in the process is relatively straight-
forward. This assumes that the AR(1) structure is not affected by the intervention.
For instance, if in the case of three stages, the variation added at operation two
(034) is reduced by one half, then this reduces the first term in equation (1.2) by
one half. Also, if some intervention could be made that changes the slope of Y;
onr Yz (Bs) to one half its value, then both the second and third terms in equation
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(1.2) reduce by one quarter. This approach corresponds to “removing” variation at
operation two. These scenarios suggest different ways of reducing the variation in
v )

For references on this type of model used in longitudinal data analysis, see, for
example, Diggle et al. (1994).

1.4.2 Maximum Likelihood Estimation

Since the data in this situation are n items that are tracked through a k-stage
process and measured after each stage, we will write y,; to denote the bth item's
measurement after the ath stage. In that case, the maximum likelihood estimates

for the AR(1) model parameters are (Lawless, MacKay and Robinson, 1996):

. _ . 1 & _
m=m a'f = ”Z(!Iu: -311)z
L=
- S, .
B = L= t1=2,...,k
Slla'—lﬂ-’-l
G=%—-PFiia 1=2,....k
O
53, = V¥ _ 3. Oviaw =92 . ]
iA " p - 1=2,...,k (1.6)
where
- 1 &
i = ;Z!h’k
k=1
va: = Z(yik ".'7:')2
k=1

and Sv.-w.- = E(yi-l.k - fi-l)(yi,k - il'i)-
k=1
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In the marginal parameterization, they are

Using these estimates, the total estimated variance at any stage can be exactly
partitioned into its components.

It is not true, however, that the estimated components of two or more opera-
tions will sum to give the component of a combined operation. For example, the

estimated added variation in the process between Y; and Y3 would be

2 2
~2 2242 _Suslu Slmn va:
Giat+ P, =2 e an
M7 n nSun Sty

If operations one and two are grouped together, however, and Y; is not observed,

then we would estimate the added variation between Y; and Y3 to be

2
Sum _ Sww
n nSpm

This indicates that while the true components of variance added at operations one
and two should sum to that component added by the super operation with an AR(1)
model, the estimates of these components do not. If the AR(1) model is correct
and the sample size is moderately large, though, these estimates should roughly
add.
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1.4.3 Diagnostics

Various graphical and formal methods can be used to determine the adequacy of
the AR(1) model.

Since the AR(1) model implies that the marginal distributions of each of the
stages must be normal, the observed values from each stage can be plotted using a
QQ plot (see Johnson et al., 1988, p. 146). If any of these plots reveal substantial
departures from normality, the AR(1) model should be rejected.

If not, however, then the assn;npﬁon of linearity of the conditional means should
be verified. This would require plotting all combinations of the stages pairwise to
see if the linear assumption is reasonable.

Plots of the residuals should also be made to see if the first order autoregressive
relationship holds. Hence, the residuals of the Y; vs ¥;_; regression should be plotted
against all previous stages, Y;_,,...,Y3,Y;. If these plots indicate any relationship
between the residuals and the variables Y;_;,...,Y3,Y;, then the AR(1) model is
not applicable, since ¥; would then be a function of something other than just Y;_;.
Different methodology will be required in this case.

The assumption of constant variance can be verified by plotting the residuals
against their predicated values. For example, outward-opening funnel shapes on
these plots indicate that the variance is changing with the mean. Details are given
in Montgomery and Peck (1992), p. 74 or Draper and Smith (1981), p. 147.

To formally test univariate normality, a number of tests have been developed.
Popular test are the Shapiro-Wilks statistic, and tests of skewness and kurtosis.
See, for example, Madansky (1988).
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The bivariate normality of consecutive stages can be tested by generating ellipti-
cal contours of the bivariate density with the estimated parameters, and comparing
the proportion of sample observations lying inside these contours to a theoretical
values. See Jobson (1991), p. 115.

The first order autoregressive nature of the data can be tested using the extra

sums of squares principle. Using this method, the model
Y=a+p8Y,+e€
can be tested against the model
Yi=a+fh+6Ye+...+ BV + ¢

If the smaller model is not adequate, then the AR(1) assumption is not valid. See,
for example, Montgomery and Peck (1992), p. 139, or Draper and Smith (1981),
p. 97.

A likelihood ratio test could also be done to test the AR(1) model against a
more general multivariate normal model. Details on how to do this for a larger

class of models are given in the next chapter.

1.4.4 Missing Data

It sometimes happens in industrial processes that all the desired measurements on
a part are not taken at all the stages. When this occurs, methods of estimating
distribution parameters are needed that make use of all the available data. If some
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data are missing in a serial process, but the process is thought to adhere to an
AR(1) model, sets of data from adjacent stages can be considered pairwise, and the
bivariate normal distribution parameters estimated.

The EM algorithm (Little and Rubin, 1987) can be used to derive estimates
of the parameters, assuming the data are missing at random. For a bivariate nor-
mal distribution when both variables may contain missing values, this calculation
involves dividing the data into three groups: (1) units in which the first variable
is observed but the second is not, (2) units in which both variables are observed
and (3) units in which the first variable is missing but the second is observed. For
further details, see Liitle and Rubin (1987), page 132. Fong and Lawless (1996)

give a general solation to this problem.



Chapter 2

The AR(1) Model with

Measurement Error

In industrial processes, the measurement system involved in determining the quan-
tities of interest is an important issue. With the technological developments of
recent years, machines are being used that are capable of repeating measurements
to a remarkable precision. This is not the only factor, however, that is relevant
when considering the error involved in determining the true dimension. Usually,
experiments have been done to determine the precision of the measurement system,
taking into account factors such as different operators and positioning inside a mea-
surement machine, as well as the machine itself. The term measurement error refers
to the error that occurs as a result of all of these different sources of variability. It
is an issue of concern when dealing with data of all sorts, and has been addressed
by authors such as Fuller (1987), Seber (1977) and Johnson (1972).

To add measurement error to the AR(1) model introduced in the previous chap-

24



CHAPTER 2. THE AR(1) MODEL WITH MEASUREMENT ERROR 25

ter, suppose the measured values of the characteristic of interest are X;, X;,..., X;

where

X:=Y. +¢, & ~ N(0,02) (2.1)

We will mostly assume that the variances o2 are known. When we do discuss esti-
mating o2, however, we will assume that the data used to do this are independent
of the process data.

The process (X3, Xa, ..., Xe) is no longer AR(1) if £ > 2. In fact, the conditional
distribution of X;|X,,...,X;—; depends on all of X;,..., X; ;.

Given observations (Xi,X;,...,Xi) on n items, the goal is to estimate the
proportions of variance (1.5). The fact that we no longer observe the Y; due to the
presence of measurement error substantially complicates this problem.

This chapter is outlined as follows: the first section discusses the effects of mea-
surement error if ignored, the second section elaborates on the estimation problem
and introduces an alternative method to maximum likelihood, the third section
provides some model checking techniques, the fourth section discusses approaches
to use when the measurement error is estimated instead of known exactly, the
fifth section describes solutions to the missing data problem, and the last section

describes using these techniques for the piston example.

2.1 Effects of Measurement Error if Ignored

We review the effects of ignoring measurement error (Lawless et al., 1996), since

this will motivate what follows. To demonstrate the effect of ignoring measurement
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error in the identification of the variance proportions (1.5), consider first a two

stage process in which
Xy ~ N(m, 07 +02) X; ~ N(az + Bam, 034 + B30l + 02 (2.2)

with Cov(Xjy, X3) = B202. This comes from (1.3) and (2.1).

Suppose n items are tracked through the process so that we have data (z,;, z,;;
J=1, ...,n) and we estimate the variance components assuming that the AR(1)
model is appropriate, that is, assuming a., = ., = 0. Then the maximum likeli-

hood estimates given earlier are

a2 _ Sz;z; - Szlzz ~2 __ 53232
o= 3 B2 = 3 . o= ’
n 12, n
n
where Seiz; = I (Tik — Zi)(zjk — Z5).
k=1
s:,'t-

Note that as n — o0, —2% — Cov(X;, X;), where “—” denotes convergence in

probability, so that

- a3
- 2 2 1 ~2 2
dg i £ +a.¢3 ﬂz ) ﬂz 2 2 01 - oy +a'3‘.
o +a¢[

In the partition (1.5),
[
0% Y

_ %
1—--0—;—1'
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the estimates are such that as n — oo

Bga'{ 62611 Uz az
a3 - o3 al+o'2)(o’3+a’)

Hence, the variation transmitted from stage one is underestimated. Since the es-
timates of the proportions must also sum to one, this implies that the variation
added at stage two is overestimated. If the measurement system contributes 20%
of the variation in X; and Xj;, then the asymptotic bias is substantial.

Suppose we expand this to a process with three stages. If we ignore the mea-

surement error, then we would use the estimates

S. . S. ~ 5.
a2 _ Yzn - _ Seap _ Sz 27 ~2 Tyzs 32y
o= n AT —q 2" o O34 = n Bs n
ﬁ‘ _ 53132 - Szzz;
2= ) 3 =
33131 53232

Then, the proportions of variance contributed according to (1.5) are

Lo P, BloR  Bst

ata a
Using the above estimates,
&gA dgA{ Ug 0.3 gagaczz
7 7 At T vl V@ Fa) i
- o?
ﬂagégA - ﬁa”j_A_( d’g )( 0’; )2( 0; + 03’ ~ ‘6’203(;#;{))
a3 o3 +0% 03+ 0} o3 — Biat ’
333353 28302 o} o3 a}
319201 P3P0y 2
o3 - o} (a’ + 02 )(a’ + a3 ) (o'1 + 02 )- (2:3)
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While it is clear that the proportion of variance transmitted from the first stage is
underestimated, the direction of bias for the other two proportions is not obvious.
In fact, the bias of the variance added at the third stage is always positive, which
can be seen by writing it in the marginal parameterization. In this form,

33 _, 03031~ pl) + odod +odo2 + L2
& (Groi)eive)

2.2 Estimation

2.2.1 Two Stages

In the situation described above, it is possible to develop maximum likelihood es-
timates to take account of the measurement error. Recall that the distribution of
(X1, X3;) was given in equation (2.2). X; and X; have a bivariate normal distri-
bution, and there are five functionally independent unknown parameters, u,, oy,
a3, P2, 024 in the model. Equivalently, we may take the parameters to be E(X,),
Var(X;), E(X:), Var(X;), and cov(X;, X;). The maximum likelihood estimates of

these parameters are (Larsen et al., 1986)

E(X,) =2, E(X;) = z,, Var(X;) = é;_ﬂ, Var(X;) = %31

C‘O’U(X1Xz) = é?:-f-z—
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We then get the following maximum likelihood estimates for the original parameters

by the invariance property, assuming that o2, are known:

S. - S.

- - -2 21 2 123
M=% o= -0, B2 = —rr
n a Szyz — 102

- S. nS?

A2 z223 z1%3 2
a; = Z3 — BT, 2A = - -0,
n (Szlzl - nﬂzl 3

assuming these estimates are greater than or equal to zero. If they are not, then
some investigation should be made into whether the data are representative of
the process, and also whether the measurement error variance is appropriate. A
simplistic solution is to set the variance estimates to zero.

In the marginal parameterization for this model (u;, a1, g2, 02, p12),

S.
A= - = ~2 _MPm;mz: 22 __ Yzmza 2
b=z B2 =ZT2 o] = n a : = O,
- Szy2s
hz =

J(Szlzl - n‘zzx )(Szzzz - na’fz)

These estimates are intuitive; we estimate the variance of Y;, for example, by esti-
mating the observed variance and subtracting the measurement error variance.

Exact distributional properties can be determined for j; and &7 above, since

Xy ~ N(I‘l:”: +d¢2;)’
o} + a3
51 ~ N(’ll,—l—;—'l‘)
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and

\/'7(-"’1 ~ ph) ~ by,

S,
(g

Inferences can be made accordingly. Also

S’l‘l ~ x) X

o} +a2

and since g2, is presumed known, inferences can be made about o}. For instance,

a 100(1 ~ a)% confidence interval for o is

Szlzl 0,2 Stlzl 2
(= ) —0q
xl-alz.n—l xa/!.n-l

assuming the left hand side is greater than zero. If mot, it can be replaced by
zero. Finding exact distributions for the remaining parameters proves to be more

difficult. If we condition on the z;;, we find that

ﬁ20§Sz1z|
(df + dezl )(Sz|z| - natzl

E(B:2|z11,212,.. -, Z1n) =

which shows that the estimator is biased. Further,

Serer (03, + 02, + Blo3 (7))

(Sglzl —nd'zl 2

V‘"'(ﬂzlzu, L12y.-«y xlﬂ) =

Since the exact distribution is difficult to specify, simulations were done on two

variables, )
7 = B2 — B2
;7Vm:(ﬂ:)
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Here, the denominator is simply the variance of 3; with the maximum likelihood

estimates substituted for the real values. Further

7, = PP

VVar(6:)

where c is a correction for the bias, i.e.

S, &fszlzl .
(5'% + "'ezl )(Szyar — ’wgzl J

[ >4

These simulations showed that the interval [-1.96, 1.96] had a coverage frequency
fairly close to 95%, which shows that a normal approximation may be useful. There
was no discernable difference between the coverage frequencies of Z; and Z,.

For the asymptotic properties of &; and J,, see Fuller (1987), p. 15.

Recall that we are interested in the estimates of the proportions of the variance

of lfz, which in terms Of[ll, B2, 01, 02 and P12 is
1=(1-5%)+4%,

It is possible to get approximate variance estimates for these proportions, by ob-

serving that the cross product matrix has a Wishart distribution (Mardia et al.,
1979)

Sevzr Suim,

S= ~ Wi(E,n ~ 1)

Se1za Sz
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where

ai + 0,

o P120102

=

P120102 dg + 0'33

This gives us that (Magnus and Neudecker, 1979):

and that
Sz;z;
Var 122
| Som

E(S)=(n-1)8

32

Hence we can conclude that

where

F =t

Var((1—-p53,)) =~ F+«V * FT

(n — 1)’pi;0i03

-2(1& - 1)p130'10’3

[ 2n-1)(eF+a2P| 2An—Dpumon | 20-1)
(of +02) phoio]
2(n ~1)p1zoiozx | (n—1){(0} +02)* |2(n —1)p120:*
(o1 + 7)) (03 +02,) + plaoio3} | o2 % (o} + o)
2(n — 1)p},yoia; 2(n ~ 1)py30105% 2(n~1)*
i (03 + 02, (63 +05) |
(2.4)

—

i—oiH(n—1)o3 ~ a2} {(n - 1)of ~ a2 H{(n — 1)} - 02}’

(n— 1)’!’{3"3"3__
{(rn —1)a} - a2 }*{(n - 1)}
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and V is the variance-covariance matrix given in (2.4). Approximate variances for
the components of variance can be found analogously, and are given in Appendix

A.

2.2.2 Three or More Stages
Maximum likelihood estimation

Maximum likelihood estimates do not have closed form expressions for models with
more than two stages. The number of functionally independent parameters in an
AR(1) k-stage process observed with measurement error is 3k-1 (two parameters
for the initial stage and three more for every additional stage). The number of
independent parameters in a general multivariate normal, however, is k + 5&;—'9'
(k parameters for the mean, and ﬂ!‘f'-l-)- variance-covariance parameters). In the
case when k=2, these values are the same and the parameterization (g, 01, a1, 5,
o41) is equivalent to (E(X,), Var(X,), E(Xz2), Var(X,),Cov(X;, X;)). For k > 2
the general multivariate normal has more parameters, and a one to one mapping
between the two sets of parameters does not exist.

If, in the three stage case, we presume the existence of an underlying AR(1)
process (1.3) for 11, Y3, Y3, but that what we observe is X, X2, Xj, given by (2.1),

we can parameterize the joint distributions of these variables as follows:

Y m o} P120102  P12P230103
Y;: | ~MVN |p= B2 y By = P120103 o3 P230203

Ys Hs | P12P230103  P230303 o3




CHAPTER 2. THE AR(1) MODEL WITH MEASUREMENT ERROR 34

and

X p o} + 62  p1a0102  P12p230103

X |~ MVN |p= B2 | I = P120102 Ug +o? P230203

€

X3 B3 P12P230103 230203 03 + 07, ]
(2.9)
In this case, the proportions of the variance of Y; can be expressed as
1 = (1 — p33) + pls(1 — pi;) + P2spi; (2.6)

where the first term is the proportion of variation added at the third stage, the
second term is the proportion of variation added at the second stage and transmitted
to the third stage, and the third term is the proportion of variation transmitted
from the first stage of the process.

The goal here is to estimate these three proportions based on independent ob-
servations (zij, Z2j, 23;5), § = 1,...,n. This involves estimating the eight unknown
parameters in the distribution (2.5).

The multivariate normal likelihood of (X1, X2, X3) can be expressed as (Johnson
et al., 1988)

LW Ts) = s e -traeel B2 (S - 8~ £)7))/2

i=1
—n/2& - p)TE;HE - p)}
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where xj = (z;, z3j, 23;)T . If we write

-

53131 53131 Sz;z,

E:I(XJ - 5)(x.i - 5)1’ = Szlzg Sz,zg Szgza = Szz
Ji=

Szu:; Sz:ts sz:::J

b

then the log-likelihood can be written as

I(p, 2:) = —(3n/2) log(2r) — (n/2) log | .|
—(1/2)trace{=;'S} — (n/2)(Z — p)TE;Y(Z — p) (2.7)

It is known (Johnson et al., 1988) that for any I, this likelihood is maximized
with respect to u by i = Z;, (i = 1,2,3). It remains, then, to determine the
values of the three variance parameters and the two correlation parameters that
will maximize the likelihood. There is not a closed form algebraic expression for
any of these estimates, and they must be determined numerically. This is computer
intensive and time consuming. If confidence intervals for variance components are
also desired, additional computation will be needed. In the next section, we present

a simpler method that performs very well.

Naive estimates

Simple estimates for a k-stage process can be obtained by using the two stage

maximum likelihood estimates obtained earlier for each pair of consecutive stages.
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This leads to the following estimates for the k-stage case:

,‘l=£” 0’.= n:.—afi t=1,2’ ’k
[ y— —_ i=12,...,k-1 (2.8)

Pijiy = ===
\/ngizi — no ez;)(st;+|=i+1 - 'Wi'.-ﬁ)

Proving consistency of these estimators is straightforward. That the ji; converge

in probability to y; is an application of the weak law of large numbers. Similarly,

for
- S....
‘2 - B 5 — a,:’
n
it is true that
Sz.2:
==, Var(X.-)
n
= ol+a2

Hence, 7 — o?. Finally, since it is true that

Bty Gou(Xi, X

= Pii410i0i4

and that

n

\/(ng.'z: _ a.ez.)(.s_"*_’:ﬁil - az.,“) - 0054
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we get

Sesviyy
k(3

Sy Seiern:
(B — o) (= —al,))

Pigy1 =

~ Pii+1

Note that the above calculations are general, and hold for any number of stages.
In simulations, it was found that the distributions of the estimated square roots
of the individual variance proportions could be well approximated by normal dis-
tributions. This is also true for the estimates of the square roots of the variance
components. Hence, it is useful to find confidence intervals in this metric. Cal-
culating the asymptotic variance of these quantities can be done analogously to
the method for the results shown in the previous section. See Appendix A for the
approximate variances of the square root of the proportions and the components of
variance at each of the three stages. An approximate 98% confidence interval can

be computed using the formula

estimated proportion +2.33 f Var(estimated proportion) (2.9)

where Var(estimated proportion) is found using the approximate formula and re-
placing the true values of the parameters by their estimates.

Parametric bootstrap calculations can also be used to get approximate confi-
dence intervals. Once estimates for the parameters of the model have been found,
these values can be used as the “true” values in generating N “bootstrap” samples

of size n, the original sample size. Estimates of the variance components can be
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computed from each of the N samples, and confidence intervals calculated from
them. For example, to get a 90% confidence interval, we could take N=99, and
select the 5th and 95th values of the ordered estimates as the lower and upper
limit for each variance component. For more details on parametric bootstrapping

to compute confidence intervals, see Efron and Tibshirani (1986).

2.2.3 Simulation Results

We would like to know how the naive estimators compare to the maximum likelihood
estimators. In addition, we want to know how well confidence intervals for variance
components perform in terms of giving close to the stated coverage. These questions
were addressed in a simulation study in which a three stage process was considered.

Since the values of the variances at the three stages do not change the properties
of the estimators, they were set to always be one. For the same reason, the means
at all three stages were set to zero. The variables that were manipulated were
P12, p23 and o;. In this simulation, the measurement error was set to be the same
at all stages, since this often occurs when the same characteristic is measured at
each stage of the process. Three levels for each of p;; and p33 were used, v0.2, /0.5
and v/0.8. These values were chosen because they provide a wide range of different
values (see (1.4)) being added and transmitted through the process. Hence, values
of the first variance proportion in (2.6) range from 0.2 to 0.8, while values of the
second and third variance proportions range from 0.04 to 0.64. In this case, the
true values of the proportions are the same as the components. Please see Table

2.1 for the exact quantities.
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p12 | Component | pa3 = v0.2 | pas = /0.5 | p23s = V0.8
V0.2 First 0.80 0.50 0.20
Second 0.16 0.40 0.64
~ Third 0.04 0.10 0.16
V0.5 First 0.80 0.50 0.20
“Second 0.10 0.25 0.40
"~ Third 0.10 0.25 0.40
0.8 First 0.80 0.50 0.20
Second 0.04 0.10 0.16
Third 0.16 0.40 0.64

39
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Table 2.1: Actual values of the three variance components in (1.4) in the simulation
runs for a three stage process.

Two levels of o, were chosen, 0.1 and 0.3, for i = 1,2,3. At the high level of
measurement error, the ratio o.;/a; is 30%. This level of measurement error would
be unacceptable in some applications in industry; anything higher would call for a
different measurement system. Note that even at the low measurement error level,
and in the case of three stages, the bias in estimation resulting from ignoring the
measurement error can be substantial. Bias here refers to the difference between thg
meaun of a variance proportion estimate in large samples, as given in (2.3), and the
true value of the variance proportion. Table 2.2 reproduces the variance proportions
of Table 2.1 for each scenario and shows the bias that results if measurement error
is ignored.

These combinations of three levels for p,2 and p;s and two levels for 0., were
used for an 18 run simulation. At each rum, 99 samples (X;, X;, X3) of 99 units
were created using the given set of values of py3,p23 and o, as true parameters.

For each sample, both the maximum likelihood estimates and the naive estimates
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ps | pr2 | Comp. | Actual { ¢, =0.1 | 0. =03

Bias Bias

First 0.8 | 0.00394 | 0.0317

v/0.2 [ Second | 0.16 | -0.00238 | -0.0200
Third | 0.04 | -0.00156 | -0.0117

First 0.8 0.00394 | 0.0317

v02 | 05 [Second | 0.1 [ -3.88e-05 | -0.00251
[ Third | 0.1 | -0.00390 | -0.0292
First 0.8 0.00394 | 0.0317 |

v08 [Second | 0.04 | 0.00230 | 0.0150
Third | 0.16 | -0.00624 | -0.0467 |

First 0.5 0.00985 | 0.0792

v0.2 [Second | 0.4 [ -0.00595 | -0.0500
Third | 0.1 | -0.00390 | -0.0292

First 0.5 | 0.00985 | 0.0792

v05 | v/0.5 [Second | 0.25 | -9.71e-05 | -0.00627
Third | 0.25 | -0.00975 | -0.0729

First 0.5 | 0.00985 | 0.0792

v0.8 [Second | 0.1 [ 0.00576 | 0.0375

" Third | 0.4 | -0.0156 | -0.117

First 0.2 0.0158 0.127

v02 [Second | 0.64 | -0.00952 | -0.0800
" Third | 0.16 | -0.00624 | -0.0467 |
First 0.2 0.0158 0.127 |

V08|05 |Second| 0.4 |-0.000155 | -0.0100
 Third | 0.4 -0.0156 | -0.117

First 0.2 0.0158 0.127

v0.8 [ Second [ 0.16 [ 0.00921 | 0.0600

" Third | 0.64 | -0.0250 | -0.187

Table 2.2: Bias of simulation proportions when measurement error is ignored.

40
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were found, and the three variance components were calculated. Then, 99 bootstrap
samples were created using each set of estimates as the real parameters. The lowest
and the highest values of the estimated variance components from these bootstrap
samples were used to specify 98% confidence intervals for the components for each
sample. Only 99 bootstrap samples were done here to keep the time limitations of
the simulation feasible. In an industrial setting, computing more bootstrap samples,
for example 1000, are recommended.

The results of the simulation are given in Tables 2.3 - 2.8. Table 2.3 shows
the average value of the maximum likelihood estimates and the naive estimates for
each run, for the first variance proportion. Also included are the standard deviation
estimates of the run. Tables 2.4 and 2.5 show the same for the second and third
variance proportions, respectively. Tables 2.6 - 2.8 gives the coverage frequencies
of the bootstrap-based confidence intervals for both the maximum likelihood esti-
mates and the naive estimates for all three variance components (“Raw”) and the
proportions (“Proportion”). Recall that this theoretical coverage frequency is 98%.
No major discrepancies in coverage frequency are seen.

These results indicate that the performances of the naive estimates and the
maximum likelihood estimates are virtually indistingunishable. In fact, the estimates
are very close to each other in most cases. This can be seen in Figures 2.1 - 2.9,
which show the naive estimates plotted against the maximum likelihood estimates
for each of the variance components and for all runs. The top row of plots on
these graphs is the run at the low measurement error level, and the bottom row

of plots is the run at the high measurement error level. The Y=X line has been
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ts—— —

| P23 | g1z | Estimate o, =L og.=H | Real Value
L Mle 0.163 (0.054) | 0.167 (0.074) 0.16

L

Naive | 0.163 (0.054) | 0.167 (0.074)

M| Mie |0.104 (0.040) | 0.101 (0.045) 0.10
Naive | 0.104 (0.040) | 0.101 (0.045)
H Mle [0.044 (0.017) | 0.041 (0.021) 0.04

Naive | 0.044 (0.017) | 0.041 (0.021) .

M| L | Me |0.396 (0.063) | 0.402 (0.074) 04

Naive | 0.396 (0.063) | 0.402 (0.074)
M | Mie |0.253 (0.049) | 0.256 (0.052) | 0.25
H

Naive | 0.253 (0.049) | 0.256 (0.052)
Mle | 0.100 (0.022) | 0.094 (0.027) | _ 0.10

Naive | 0.100 (0.022) | 0.094 (0.027)

H| L | Me [0.634(0.064)]0.645 (0.076) | 0.64
Naive | 0.634 (0.064) | 0.646 (0.076)
Mle | 0.401 (0.052) | 0.393 (0.073) | _ 0.40
Naive | 0.401 (0.052) | 0.391 (0.073)
H [ Ml |0.163 (0.034) | 0.158 (0.049) |  0.16
Naive | 0.164 (0.034) | 0.157 (0.050)

=

Table 2.4: Average of 99 values of second component of proportion estimates for
each run. The figures in brackets represent the estimated standard deviation for
these values. Sample size is 99.
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e————

| P23 | P12 Estimate o =L c.=H Real Value
L[L Mle [ 0.045 (0.027) | 0.043 (0.025) 0.04
Naive | 0.045 (0.027) | 0.043 (0.026)
M | Mie |[0.107 (0.043) | 0.110 (0.044) 0.10
Naive | 0.107 (0.043) | 0.109 (0.044)
H| Me |0.173 (0.062) | 0.167 (0.064) 0.16
- Naive ( 0.173 (0.062) | 0.167 (0.066)
M| L Mle | 0.100 (0.040) | 0.107 (0.045) 0.10
Naive | 0.100 (0.040) | 0.108 (0.045)
M| Me [0.247 (0.062) | 0.257 (0.066) 0.25
Naive | 0.247 (0.062) | 0.258 (0.068)
H | Mle |0.401 (0.068) | 0.406 (0.084) 0.40
Naive | 0.401 (0.068) | 0.405 (0.086)
H|L Mle | 0.162 (0.060) [ 0.159 (0.067) 0.16
Naive | 0.162 (0.060) | 0.159 (0.066)
M| Mle |[0.395 (0.067) | 0.417 (0.080) 0.40
Naive | 0.395 (0.067) | 0.419 (0.080)
H | Me |0.632(0.054) | 0.645 (0.071) 0.64
Naive | 0.631 (0.054) | 0.648 (0.074)

Table 2.5: Average of 99 values of third component of proportion estimates for each

4

run. The figures in brackets represent the estimated standard deviation for these
values. Sample size is 99.
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pa2s | p12 | Estimate | Raw | Frequency | Proportional | Frequency
o.=L| o.=H o, =L c.=H
L | L Mie 08 91 a6 95
Naive 97 g1 98 91
M| Mie 97 98 95 98
Naive 98 97 97 98
H Mie 91 97 95 98
Naive 92 94 97 97
M| L Mle 96 96 96 95
Naive 94 94 99 98
M| Mie 97 95 99 96
Naive 97 95 99 97
H Mie 97 91 98 95
| | | Naive | 97 01 95 97
"H| L | Mle 96 95 97 95 |
Naive 98 a6 98 96
M Mie 95 93 95 96
Naive 97 94 97 ag
H| Mie 97 96 95 97
Naive 98 a7 98 a7

45

Table 2.6: Coverage frequency for first component for each run. Note that these
figures are not given in percentages - they are the actual number of intervals that
cover the real value out of 99 trials. (Coverage interval should be 98%). Sample

size 1s 99.
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pas | p12 | Estimate | Raw | Frequency | Proportional f‘tequelxg_);
ge=L| o.=H . =L o.=H

L | L Mle 97 94 96 95
Naive | 98 95 99 %
M Mle 97 94 95 97
Naive 98 96 97 97
H Mle 96 96 96 98
Naive 98 96 97 98

(ML Me [ 9% | o | 95 | 97 |
Naive 935 95 95 97
M| Mie 97 95 95 98
Naive 99 97 97 98
H| Me 97 96 97 96
Naive 95 96 97 98
H|L Mile 97 93 95 97
Naive 97 92 96 97
Mle 94 96 96 97
Naive | 96 93 97 99
H Mle 93 92 97 95
Naive 95 94 97 94

46

Table 2.7: Coverage frequency for second component for each run. Note that these
figures are not given in percentages - they are the actual number of intervals that
cover the real value out of 99 trials. (Coverage interval should be 98%.) Sample

size is 99.
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p23 | p12 | Estimate | Raw | Frequency | Proportional | Frequency
o.=L| o.=H o, =L c.=H
L|L Mle 92 93 94 95
Naive 96 95 98 96
M Mle 96 98 98 99
Naive 99 98 99 98
H Mle 97 97 96 97
Najve 99 97 96 98
M|L Mle 97 97 98 97
Naive 96 98 96 96
M Mile 94 96 94 96
Naive 94 99 94 98
H Mle 97 98 98 93
| | Naive | 96 96 94 98 |
H|L| Me | 9 95 94 98 |
Naive 98 95 97 95
M Mle 97 96 94 96
Naive 96 97 98 95
H Mile 95 95 97 94
Naive 93 97 97 96

47

Table 2.8: Coverage frequency for third component for each run. Note that these
figures are not given in percentages - they are the actual number of intervals that
cover the real value out of 99 trials. (Coverage interval should be 98%.) Sample

size is 99.
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added for reference. The naive estimates appear to be closest to the maximum
likelihood estimates when the largest amount of variation is added at the end of
the process. An interesting feature that can be seen is that regardless of the p,; or
P23 values, the naive estimétes are closer to the maximum likelihood estimates when
the measurement error is low, as compared to when it’s high. This is expected, since
we know that the estimators are the same when there is no measurement error.

Overall, the data suggest that in the three stage case, the naive estimates can
be substituted for the maximum likelihood estimates in many situations likely to
be encountered in practice. There is little justification for spending time computing
the maximum likelihood estimates, when the naive estimates can be found faster
and without the use of optimization methods.

Other simulations were done to check the coverage frequencies of the confidence
intervals given in equation (2.9) for various values of the trune parameters. For a
given set of true parameters, 1000 data sets of sample size 99 were generated. For
each data set, the naive estimates of the square root of the variance components
and proportions were found. Their approximate variances were calculated using
these estimates, and a 98% confidence interval was computed using equation (2.9).
Then, the coverage frequency for that set of real parameters was found by counting
how many of the 1000 intervals actually contained the true parameters. See Tables
2.9 - 2.11 for these values. Overall, the coverage frequencies achieved were very
close to 98%. This suggests that the approximate variance formulas given in the
appendix are useful in finding confidence intervals, which further strengthens the
argument for using the naive estimates.
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Third component - Real vaiue = 0,04

Second component - Real value = 0,18

Firel component - Real value = 0,8

Figure 2.1: Figures for p;3 = v0.2 and p3 = v/0.2.
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Third component - Real value = 0,1

Second componen! - Real value = 0.4

First component - Real value = 0.§
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Figure 2.2: Figures for p;3 = v/0.2 and p;3 = v/0.5.
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Third component - Real value = 0,18

Second component - Real value = 0,64

First componen - Rea) value = 0.2
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Figure 2.3: Figures for p;; = /0.2 and p;3 = +/0.8.
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Figure 2.4: Figures for p;; = 0.5 and p5 = v0.2.
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Third component - Real value = 0,64

Second component - Real value = 0,16

First component - Real value = 0.2

Figure 2.9: Figures for p;; = 0.8 and p;3 = v0.8.
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ps | prz | Component " Proportion
o.=L|o.=H|o.=L]|o.=H
L | L | 99 | 968 | 958 | 969
L{M| 970 97.2 97.2 96.5
L | H| 9.9 97.2 97.1 974
M| L | 95 97.7 98.1 97.3
M| M| 9.9 97.3 98.1 96.7
M| H | 938 97.1 98.3 96.9
H|L 96.2 97.3 97.2 97.8
H| M| 9.6 97.9 96.6 97.8
H|H 97.2 97.7 98.1 98.4

Table 2.9: Coverage frequencies of confidence intervals using approximate variance
formulas for the square root of the first variance component. Numbers are percent-
ages of 1000 simulations. Theoretical coverage frequency is 98%. Sample size is
99.

P12 | Component Proportion
o.=L|o.=H|o.=L|o.=H
97.3 98.1 97.3 98.0
97.6 97.6 98.0 98.1
97.6 97.8 98.2 98.1
974 97.7 974 97.1
97.8 97.2 97.7 96.8
96.8 97.0 96.5 98.1
96.6 97.0 97.1 97.7
96.6 96.7 96.7 97.0
96.8 97.7 97.5 98.3

»
™
w

RN E 44 <l ol
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Table 2.10: Coverage frequencies of confidence intervals using approximate vari-
ance formulas for the square root of the second variance component. Numbers are
percentages of 1000 simulations. Theoretical coverage frequency is 98%. Sample
size is 99.
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——

—(_ngponent Proportion

o.=L)o.=H|o.=L|o.= H|
96.3 96.9 96.7 96.9
97.6 98.1 97.6 97.9
98.0 98.4 97.5 98.3
96.8 97.3 97.6 97.9
96.3 97.0 97.7 96.7
98.4 97.1 98.3 97.4
96.8 98.3 96.6 97.6
974 96.7 96.9 97.3

98.0 97.1 97.5 97.6
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Table 2.11: Coverage frequencies of confidence intervals using approximate vari-
ance formulas for the square root of the third variance component. Numbers are
percentages of 1000 simulations. Theoretical coverage frequency is 98%. Sample
size is 99.

It seems that both the bootstrapping and the approximate variance formulas are
satisfactory methods of finding confidence intervals for the sample size considered
here (n=99). For small sample sizes, however, one might expect the bootstrap

method to be more accurate.

2.3 Model Checking

It is important to check whether observed data are consistent with an AR(1) process
with known measurement error. As indicated in (2.5), this model implies that the
observed measurements follow a multivariate normal distribution.

As a first step in evaluating the multivariate normal assumption, the normality
of the univariate marginal distributions should be checked, as for the AR(1) model.

If the marginal distributions do not seem normal, then the multivariate normal
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assumption can be rejected. If they do seem normal, however, the assumption of
the linearity of the conditional means should be verified. That is, plots should
be made of all ¥; vs Yj for i > j. Again, if this assumption is contradicted, the
multivariate normal assumption should be rejected.

Residual plots can also be done for the AR(1) model with measurement error.

To see how, write

Yo = aa+BYia +m

Xi = Y+«

Since we are assuming independence of y; and ¢;, of all u;, u; when i # j, and

similarly for ¢;, we get that

Xi=0o;+f:iXi1 ~ i + 6+

Let
R;=-Bieia+ea+mp

Using the calculated estimates for a; and g;, we can estimate R; by

Ri= X; — & — f: X,

These estimated residuals should be independent of all previous values, i.e. X,
X2, ..., Xi-3. Hence, plots of these residuals against these stages should reveal no

discernible trends.
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Other, more formal tests can be applied to test for multivariate normality
(Looney, 1995).

We can test the adequacy of the AR(1) model or the AR(1) with measurement
error model within a normal model via a likelihood ratio test, as follows. Under
a general multivariate normal structure, the maximum likelihood estimates are

(Johnson, 1988)

a=X 2:555 (2.10)

and so the maximized log-likelihood takes the form

£ Sn 1 Sn -
Q) = —Flog|==| - Flog(2n) — Strace{(==)7!5,.}
= _PioglS= "2 _"P
= 2Iogl 5 3 log(2x)

Under the constraint of being an AR(1) process with measurement error, the max-

imized log-likelihood takes the form
(@)= —-g—loglﬁzl - %trace{f}; 15:2} — %glog(%') (2.11)

where I, is of the form given in (2.5), and an estimate of it has been found by

optimizing (2.7). From the theory of the likelihood ratio test,
~20(6) - () ~ o,

In simulations for the case k=3, it was found that the distribution of the statistic

given above could not be distinguished from x3, for sample sizes as small as 30.
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This was true even when [(&) was approximated by evaluating (2.11) using naive
estimates. This means that a simple approximate test can be carried out for the
AR(1) model with measurement error without needing to compute the maximum
likelihood estimates for the model.

Using the above likelihood expression, the deviance residuals can be examined
to see if any observations are particularly influential. See, for example, Williams
(1987).

2.4 Uncertainty in the Measurement Error Vari-

ance

At this point, we will discuss how the results given above can be modified to take
into account uncertainty in the measurement error variance.

We will assume that the data taken to estimate the measurement error are in-
dependent of the process data. Further, we will assume that out of the experiment,

we have an estimate of o3, 62, such that
E@) = o
and Var(&f) = V,

If the estimate is not unbiased, minor adjustments can be made to the following

procedures.

The naive estimates described earlier can then be modified by replacing the
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known measurement error with the estimate given above. The maximum likelihood
estimates can be computed also by replacing the estimate above with the known
measurement error in the likelihood (2.7).

The delta method can be used here to get approximate variance formulas for
the proportions and components. For example, in a two stage process where the
measurement error is the same at both stages, the approximate variance formula

can be computed by noting that

S:

2122
(Szy2, — na? )(Sz;2, — n63)

1-pl=1-

is a function of four random variables, S;,2,, Sz,2,; Sz;2, and 72, and that the last
is independent of the first three. When the gradient is taken with respect to each of
these variables, and the expected values of S.,z,, Sz,2;, Se;e, and 572 are substituted

into these expressions, we get that the resulting vector is

F = [ (n - 1)’!’%3”3“3
— Hn-1)o} -2 {(n - 1)a} - a2}’
—2(n - l)pud’ldz
{(n ~1)of ~ a?H{(n - 1)0} — 02}’
(n ~ 1)*p} 0103
{(n - 1)o} — a?H{(n — 1)a} — 02}’
—n(n —1)*pl,0i0}
{(n - V)of — 02}H{(n - 1)o7 — 02}

1 1
e =o T o=
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Further, the variance-covariance matrix of these variables is

[ 2n— 1)+ 02| 2n-Dpuoror | 2a-1) |0 ]
(o} +07) piaoio}
2(n = 1)pr210ax | (n—1){(07 +02)* |2(n —1)pyz01% | 0
z= (61 +02)  |(0F+07) + 003} | oa(of +02)
2(n — 1)p}y0i03 | 2(n~1)p12o10s+ 2n—1) -1 0
(03 +02) (o3 +02)°
. 0 0 0 V.

Hence, the approximate variance of this variance proportion can be calculated as
Var(l — p2,) ~ F«Zx FT

_Similar calculations can be done for the variance components, and in the case of
more stages.

Note that the method described here is not the only method of collecting data

on measurement error. For instance, such data can be collected while gathering

the process data, simply by measuring each part twice. Methods of analysis in this

case have yet to be investigated.

2.5 Missing Data

Missing data can be handled in the situation when the data adhere to an AR(1)

model with measurement error. The procedure used to do this is a generalized
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version of that used for the simple AR(1) model.

In this case, the observed X’s are treated as a general multivariate normal, as
given in the three stage case by (2.5). In the EM algorithm, all the data are used to
estimate the expectations of the E step. A numerical optimization is then required
for the M step. Details of this calculation are given in Little and Rubin (1987), p.
142, and have been used in Hamada and Lawless.

The problem with the procedure described above is that it is very computa-
tionally intensive. Fong and Lawless (1996) use a Kalman filtering approach to
facilitate the use of the EM algorithm, and find this approach to be more efficient.

The naive estimates can also be used to estimate the parameters in the case
where some data are missing. The method of doing this would be simply be to
estimate the parameters over the data that are available. For example, in the case
of estimating a variance parameter, we would use all the data that are available
for that stage and estimate the variance as the sum of squares of that data divided
by the amount of data and subtract the measurement error variance. Correlation
parameters between adjacent stages could similarly be calculated over all the data in
which both stages were observed. This approach is much simpler than implementing
the EM algorithm described above.

2.6 Piston Example

For the piston example described in the previous chapter, the variance of the final
stage will be partitioned using an AR(1) model with measurement error. To simplify
the process, it will be reduced to three stages, namely Y4, Y, and Y7. It was believed
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that these stages were not changing the diameter of interest at all. Further, only
one of the diameters will be considered here, the diameter at a height of 4 mm.
The known measurement error standard deviation is approximately 5*10~* mm, or
0.5 microns, at each stage. This gives an estimated ratio of 2 = 22%.

Engineering knowledge of the process indicated that the normal AR(1) model
with measurement error should adequately describe it. Various model checks were
used to determine the adequacy of this model. The data are essentially discrete
over the range in which they were measured, which affects the normality assump-
tion. Still, the QQ plots at each stage did not reveal any significant departures.
The deviance residuals of three pistons proved to be particularly influential. Scat-
ter plots of pairs of measurements also showed these three points as outliers, and
the sequence plot revealed that this might be because their second measurements
were faulty (Ys). Hence, these outliers were removed from the subsequent analysis,
although some investigation should be done to seek causes for why these particular
pistons may have differed from the rest. See figures 2.10 - 2.12 for plots of the
data. Note that Figure 2.12 is not a good example of a sequence plot, since the
individual items are difficult to trace due to the discrete nature of the data. Still,
it is apparent from this plot why the three pistons specified are outliers.

The goal of this study is to determine how the variation at the final stage of
the process can be attributed to variation transmitted from upstream. When the
measurement error is ignored, the proportions of variance contributed according to
the AR(1) model are 0.256 at the third stage, 0.244 at the second stage, and 0.500
at the first stage. Using the naive estimates introduced in section three and the
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Figure 2.10: Second stage of piston data plotted against the first stage. The numeric
values indicate the three outliers.
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Figure 2.11: Third stage of piston data plotted against the second stage. The
numeric values indicate the three outliers.



CHAPTER 2.

i

4

" hdp

A

il *

'«»mqw
N

i
‘«4‘5\‘?&! 4/’
o /[T

W |

THE AR(1) MODEL WITH MEASUREMENT ERROR 69



CHAPTER 2. THE AR(1) MODEL WITH MEASUREMENT ERROR 70

known measurement error variance, however, we find instead that the proportion
of variance contributed is 0.181 at the third stage, 0.206 at the second stage and
0.613 at the first stage. Taking into account the measurement error not only gives
a more accurate impression of where the variation is coming from, but also allows
a more accurate interpretation of how an intervention in the process will affect the
variation at the final stage.

Both the bootstrap technique and the approximate variance method described
earlier were used to find 98% confidence intervals for these proportions. In the first
case, 1000 bootstrap samples were simulated using the naive estimates as the real
values, and new estimates for the proportions were computed. The 10th and the

990th ordered values were then found to give the following confidence intervals

Prop. from 3rd stage: (0.088,0.300)
Prop. from 2nd stage: (0.105,0.322)
Prop. from 1st stage: (0.466,0.750)

In the case of the approximate variance method, the naive estimates were substi-

tuted into the equations in Appendix A and (2.9) to give the confidence intervals

Prop. from 3rd stage: (0.092,0.299)
Prop. from 2nd stage: (0.115,0.323)
Prop. from 1st stage: (0.475,0.769)

The two sets of confidence intervals agree well. The main conclusion is that the

first stage contributes most of the variation.
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The analysis done using the maximum likelihood estimates yielded the same
conclusions as that done with the naive estimates.
Finally, it should be mentioned that the likelihood ratio test given previously

was carried out, and was found to yield
(@) = 1423.91

under the assumption of the AR(1) model with measurement error. Under the full
model,
() = 1424.83

Using the approximating chi-squnare distribution on one degree of freedom, this gives
a p-value of 0.173, indicating no reason to reject the measurement error model.
The likelihood ratio test was also done for the AR(1) model without measurement
error, and was found to give a likelihood of 1421.54, which when compared to the
full model gives a p-value of 0.010, suggesting that this model does not describe
the data adequately.

We conclude that while more than half of the variation at the final stage is
transmitted from the first stage, 40% of it still comes from subsequent stages.
This somewhat contradicts previous knowledge of the process, and provides new

opportunities for variation reduction.



Chapter 3

Cross-sectional and Longitudinal

Data

The methods described thus far to deal with the variation analysis problem have
focused solely on one data collection scheme, namely tracking items through the
process. As has been mentioned earlier, this type of data collection is expensive.
Furthermore, it often happens that large amounts of data are available after each
stage of the process, either because measurement systems gather these data in
routine monitoring, or simply because they are cheap to collect. Of significant
interest, then, is to determine how this type of data can be used in the partitioning
of the variance at the last stage of the process.

Statistically, this is a missing data problem, although we prefer to think of the
cross-sectional data as supplemental data. Clearly, the variation analysis problem
cannot be handled without some longitudinal data, since estimates of the correlation

between stages of the process would not be available. We will consider situations,

72
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then, in which some longitudinal information is available, but this is augmented
with data that have been sampled after each stage.

This chapter is divided into two sections, an analysis section and a design sec-
tion. In the former, we discuss issues of estimation given data of this sort, first for
two stages, and then for three or more stages. An AR(1) model is assumed. We
propose two naive sets of estimators, and give their properties. Some simulation
results are also given. Also discussed is how these estimators could be modified to
include measurement error. In the design section of this chapter, we discuss the

issue of how much information is available in the cross-sectional data.

3.1 Analysis

3.1.1 Two Stages

Estimation

Consider a two stage process, in which n observations are made on items tracked
through both stages of the process, m items are sampled at the first stage, and
| items are sampled at the second stage. The three groups of observations are
denoted as S12, S1 and S2, respectively. Since this is a two stage process, it is
necessarily AR(1). The goal is to determine the variance components of interest,
03(1 ~ 2;), and o3,

Various methods of estimating these components come to mind. The first
method is simply to ignore the supplemental data, and to estimate the variance

components from only the longitudinal data, as given by the estimates in (1.6).
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We will subsequently refer to these estimates as MLES(S12). These estimates are
considered to be a baseline against which to measure other estimation techniques.
The second method that could be used is to compute the maximum likelihood

estimates from these data. We can write down the likelihood here as

S 12 1 -1 — 2 _
exp{ )~
21ra'10‘z‘/ -pi 2(1 - pt2) L( o

2P12( pl )(}’21 “2) + (ng l‘z)z]} o ‘/21“”1 exp{ (Yh "I‘l) }

2 1 (Y l‘z)
H\/2_1'Fz exp{————} (3.1)

L(e) =

The maximum likelihood estimates, even in the simple two stage case, must be

computed numerically. These estimators will be referred to as MLES(S12-52).
Fairly obvious naive estimators can be constructed. The first set will make use

of all the data available at any stage to estimate the marginal parameters at that

stage, and only the longitudinal data to estimate the correlations. Hence, we have

Y
sizs (m+n)

- Yai
512,82) = —
”3( ) su;gz (l + n)

E S (Y- m(S12,51))

(m +n) s13,51

#(S12,52)® = a +n) stz(Yz. (512, 52))?

Ls12(Y1i — 1(512))(Yai — j3a(512))

2 7 eV — ma(S12)) Tory (Ve — fa(S12))2

5,(512,51)* =
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where 5,3 is the same as in (1.6). These estimates will be referred to as the naive
estimates for the full data (NEFS). Note that it would have been possible to use
other forms for the correlation estimate; for example

. _ LT s1(Yis — 31 (S12, S1))(Ya: — f52(S12, 52))
Pz = 71(512, S1)7,(512, S2)

This form, however, does not guarantee a correlation estimate between -1 and 1,
which leads to difficulty in interpretation.

Although we would expect the NEFS to perform better than the MLES(S12),
their usefulness appears to be limited by the fact that the correlation estimate is
the same correlation estimate used in the MLES(S12). The next set of estimators
proposed uses the same estimates as the NEFS for the marginal parameters, y; and
g;, but develops a more intricate method for estimating p;;. This new estimate of
p12 only uses the longitudinal data, as with the two previous estimators, but in a
different form. The form of this estiate comes from writing down the likelihood for
the data, as in (3.1), taking the logarithm and solving for p;2. If we label functions

of the data as follows: "

E=3 Y F=)Y}, G=)VYs H=)Y;:

s12 s12 s12 s12
I = Y Yi.Yy

S12

then the equation to be solved is the one in which the following function is set to
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Z€ro:

F E 2n
h(pz) = mpr1a(1 —pf;) + 2p1a( 207 + “;f - ’2‘;2

I—F — 1, G +npp;
0102

H 4G pin

1+ T - P+ L+ A ) (32)

This gives a cubic equation in p,; which can be solved to give three roots. Two of
these roots are complex conjugates and the other one is real. The real root has the

following form: if we set

F mE pin H pG pin

@ = -Za'f + o} 20} "~ 202 + a} 242 (3-3)
I— B —pyG+n
g = #2 a-f;, ] (3.4)
then
. 11 B
p1z = P + §Q + 3n (3.5)
where
1 B(18n2 + 9na + B?
P=x n’ ! (3.6)
V=3n* —18n%a + 33n237 — 36nla? + 24naf? + 30° — 24na® - 3
+ o3
and
3n? + 6na + B?
Q= tiets (3.7)

The estimated quantities of u; and o; are substituted into the above expressions to

give estimates for a, 8, P and Q.
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We can show that when the estimates of u; and o; are substituted in, the
equation given by (3.2) must always have a root between -1 and +1, and thus the
above correlation estimate must also have this property. To do this, first define

U = (Vi1 —@(S12,51),..., Y. — @(512, 51))
V = (Ya —ii(S12,52),.. — #2(512, 52))

where Y;; € 51, and define the usual metrics on U and V. Hence,

UV = Y (Vi — (512, S1))(Y: — 52(S12, 52))
512

il (Vi — (512, 51))

512

Y (Ya: — 32(512, 52))?

S12

H

vl

Then, by the Cauchy-Schwartz inequality,

U= V] <||UI * ||V

Assume now that |&| < |3|. Then

Esiatie = iy(S12, SOP | Sora(Vis ~ n(S12, 52))°
25:(512, S1) 252(512, 52)?

< [ Es1a(Mii = /in(512, 51))(Yas — 12(512, 52))|
71(S512, S1)a2(S12, 52)

\/Z‘su(Yx.—m(Slz 51))’ Ts12(Yai — i2(512, 52))?
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This would mean that

T si12(Yis — (512, S1))? + Y s12(Ya: — i2(S12, 52))?
25,(512, 51)? 255(512, S2)°

_ Y Es12(Yi — #1(512, 51))? E1a (Vs — 5a(S12, S2))? <o
51(512, 51)5,(S12, 52)

or

VEsia(Yis — #1(512,51))*  \/Esua(Vas — 5a(512, S2))°
Vv261(S12, S1) V2#2(512, 52)

which isn’t possible. We conclude from this that |&] > |A].
Coming back to (3.2), we note that

)2 <0

(

h(-1) = —~2a+28
k(1) = 2a+28

Since |a@| > Iﬁl, it is possible to show that for all combinations of & and 3 being
positive or negative, we find that h(-1) has a different sign than h(1). We conclude
that the function given by (3.2) must have a root between -1 and 1. The estimate
of the correlation thus also possesses this feature.

This set of estimators will subsequently be referred to as the semi-naive estima-
tors (SNES). These have the advantage that they are in closed form, despite the
fact that they are less intuitive than the NEFS.

The next section describes some properties of the NEFS and the SNES.
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Properties of the NEFS and the SNES

Proving consistency of the naive estimators, when the amount of marginal data
is a fixed multiple of the longitudinal data, and the amount of longitudinal data
increases to infinity, is straightforward. Here, we’ll show comsistency of the semi-
naive estimate of p;2, given by (3.5). We'll assume that the number of longitudinal
observations is n.

Note that we can write the estimate of a in equation (3.3) as

_ _Zsu(Y—m(S12))*  n(@(S12) — @ (S12,S1))?

25,(512, S1)? 2%,(512, S1)?
Ts12(Ya: — i2(512))? _ n(52(S12) — 32(S12, 52))?
27,(512, 52)F 25,(512, S2)?

from which we conclude that

Similarly, we write

B = (i~ m(S12))(Ya: - 12(512)) +

S12
n(i41(S12) — ir(S12, S1))(42(S12) ~ i (S12, 52)))/51(S12, S1)52(S12, 52)

from equation (3.4), which gives that

3.

P
- P12

Substituting these into the expressions for P and Q as given by (3.6) and (3.7), we
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find that

i 1
P 5 oleu+V3)P
: 3(=3 +4i2)
and 5 12
Q P12 + V3

from which we get that g, 5 p1z-
The delta method can be used here to get approximate variances for the variance

components. For example, in the case where m=I=kn, we find that using the NEFS,

Var(55(S12, 52)%(1 — pia?)) ~ [4{(k + I)n — 1}2p2,0%(1 — p2,)?
—2{(k + 1)n ~ 1}p},03(1 — p};)*(n ~ 1)

+2{(k + Dn ~ 1}a3(1 — p3,)*(n — D)/(k + 1n*(n ~1)  (3.8)

Substituting k£ = 0 into this expression gives

2(n ~1)o3(1 - ps)°
n?

(3:9)

which is the approximate variance for the first component when the longitudinal
data are ignored, i.e. using the MLES(S12). Similar calculations can be done for
the second variance component, and also for the variance components estimated

using the SNES. Please see the next section for further details.
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3.1.2 Three or More Stages

We consider now a situation in which there are three or more stages in the process.
The data will still be considered in groups, so that S12...k contains the longitudi-
nal data and that Sk contains the marginal data on stage k. We will not consider
the situation in which there is incomplete longitudinal data. The data are assumed
to adhere to an AR(1) model.

Estimation and Properties

The estimates given in equation (1.6) can be used as estimates that do not use
the extra cross-sectional data, MLES(S12...k). This is also true in the case of
three or more stages in the process. The maximum likelihood estimates for the full
data can be found by optimizing the likelihood, analogous to that shown in the two
stage case. For a k-stage process, this likelihood will be the product of a k-variate
constrained multivariate normal and k univariate normal parts, to account for the
cross-sectional data. Estimates will need to be computed numerically.

The naive estimates can be easily generalized to three or more stages. Again,
estimates of the marginal parameters for a stage can be estimated from all the
data available at that stage, and correlation estimates for consecutive stages can
be estimated from the longitudinal data. Recall that since we are assuming an
AR(1) model, the correlation parameters for stages that are not consecutive are just
products of the correlations between consecutive stages. The semi-naive estimates
can be generalized in the same way to three or more stages.

The naive and semi-naive estimates are clearly consistent for a process with
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three or more stages, under the same conditions as they were for the two stage
process. Furthermore, approximate variance formulas can be found for the vari-
ance components. As in the measurement error situation, it was found that the
square roots of these components more closely approximated normality than the
components themselves. For the naive estimates and in a three stage process, it

was found that

03(1 — p3a)(2p3snk + 7 — 1)
2(n-1)(k+1)n

o3(1 ~ p,)[2kplsp%sm + pis

R

Var(/52(5128, 5970 - 72)

Var(,/#x(5123, S3)25%(1 — 52,))

4

—4p3nk +2n — 2 4+ 2nk 4+ 2p3snk — pin)]/2(n - 1)(k+1)n

and  Var(y/53(5123, $3)2 5%,

4

032035 + 2p3,n + 2p},nk + 2p},nk
~6p3aplank — 2033 — 20, — 3p12p3am + 2p33p1ank + 31,035
/2(n = 1)(k + Dn (3.10)

when n is the size of $123 and the marginal data all have the same size, kn. Similar
formulas can be found for the semi-naive estimates, but these are extremely lengthy.
Maple programs to produce these formulas for a three stage process are given in
Appendix B. Similar calculations can be done for a general k stage process, but

might be prohibitive when k is large.

Simulation Results

Some simulation studies were performed to investigate the four estimators de-

scribed. These studies had two goals. The primary one was to compare the four
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estimators under a variety of different conditions. The secondary goal was to deter-
mine if confidence intervals calculated for the NEFS and the SNES actually gave
intervals close to their theoretical coverage frequencies.

The first simulation study modeled a three stage process, and was set up such
that the amount of cross-sectional data at all three stages was the same. The
experimental design had four factors: the correlation between the first and second
stage (p12), the correlation between the second and third stage (p23), the sample
size of the longitudinal data (n) and the multiplicative factor of the marginal data
(k). The correlation factors were run at the values v0.2, v/0.5 and 0.8, the
longitudinal sample size had two values, 20 and 50, and k could take the values 1,
2 or 5. The result was a 54 run simulation.

At each run, 100 samples were generated randomly, and each of the four estima-
tors was used to compute the estimates of the three variance components. Averages
and standard deviations for each of the components and each run are given in Tables
C.1 - C.6 of Appendix C. An estimate of the mean square error of each estimator
was computed, also for each run and each component. These values are plotted
in Figures 3.1 - 3.3. The mean square error of each estimator averaged over 27
scenarios for each n and the 100 runs is given in Table 3.1. This was done for each
component and for each value of n.

The results of this simulation indicate that irrespective of how much cross-
sectional data are available, a sample size of 20 for the longitudinal data gives
point estimates that are too imprecise to be of any practical value. This seems to

be especially true when the variation is roughly equally divided among all stages;
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Figure 3.1: MSEs of the first variance component. The “m” on each plot repre-
sents the value of the run with estimator MLES(51-S4). The first plot shows the
MLES(S12), the second the NEFS, and the last plot the SNES. The lines on the
plot represent averages over k and n. For example, the line from observations 1 to
9 represents the average for k=1 and n=20, while the line from observations 10 to
18 represents the average for k=1 and n=>50.
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Figure 3.2: MSEs of the second variance component.
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Figure 3.3: MSEs of the third variance component.
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Component | n Estimator MSE
1 20 | MLES(S123) | 0.0311
NEFS 0.0224
MLES(S123-S3) | 0.0202

SNES 0.0200

50 | MLES(S123) | 0.0125
NEFS 0.0096
MLES(S123-S3) | 0.0084

| ] SNES 0.0083

2 20 MLES(S123) | 0.0207 |
NEFS 0.0139
MLES(S123-S3) | 0.0134

SNES 0.0131

50 | MLES(S123) | 0.0086
NEFS 0.0056
MLES(S123-S3) | 0.0051

SNES 0.0053

3 20 | MLES(S123) [ 0.0367 |
NEFS 0.0211
MLES(S123-S3) | 0.0160

SNES 0.0146

50 | MLES(S123) |0.0142
NEFS 0.0085
MLES(S123-53) | 0.0061

SNES 0.0061

87

Table 3.1: Estimated mean squared errors for the estimators and the components
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that is, no stage dominates.

It can be seen that the MLES(S123) do worse then the other estimators uni-
formly over the scenarios.

Another thing to note is that the MSEs of the NEFS for each run are very close
to those of the MLES(S123-§3). The SNES have mean square error values that
are almost the same as the full maximum likelihood estimates. This relationship
is reflected in the actual estimates themselves. Plots of the estimates show that
the NEFS are not as close to the MLES(S123-S3) as the SNES. These latter are
extremely close to the MLES(5123-S3) for runs in which most of the variation is
being added at the last stage of the process. For runs in which this is not true, the
SNES are further away from the MLES(S123-S3).

Another point that can be observed from this simulation is that differences in
the mean square error due to an increase in k are less pronounced than differences
due to an increase in n.

A further study was carried out to see how closely the confidence intervals found
using the approximate variance formulas for the NEFS and the SNES gave their
theoretical coverage frequencies. This simulation was also carried out in 27 runs,
at the same factor levels as the previous study, except that the only n value used
was n = 50. Here, 2500 samples for each run were generated and the NEFS and
the SNES computed for each. 98, 95 and 90% confidence intervals were found using
the approximate variance formulas discussed earlier. The percentage of confidence
intervals that contained the true value was then computed. Tables C.7 - C.12 that
give the results of this simulation are also in Appendix C.
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For the NEFS, the observed coverage frequencies are close to the theoretical val-
ues, although they tend to underestimate them in general. For the SNES, however,
the approximate variance formulas are less reliable. The intervals produced by this
method are too conservative, and generally give coverage frequencies much higher
than their theoretical values.

Further simulation was done to investigate how parametric bootstrapping per-
formed as a method of producing confidence intervals compared to the approximate
variance formulas. This sinulation was done only at three combinations of the fac-
tor levels, because of the amount of computer time required. The values of the
runs were py; = V0.8, p2s = v0.2 and k=1; p;; = V0.8, ps3 = V0.8 and k=2; and
P12 = V02, pa3 = v0.8 and k=5. Those three runs were chosen to be such that
most of the variation in the process was coming from a single stage. At each run,
1000 samples were generated and confidence intervals were produced using both
methods. Tables resulting from this simulation are given in Tables C.13 and C.14
of Appendix C. These tables indicate that for the NEFS, the approximate variance
formulas are comparable to the bootstrap method for generating confidence inter-
vals. For the SNES, the bootstrap is a more reliable method, although it can give

values far from the theoretical values in some cases.

3.1.3 Adding Measurement Error

As was illustrated in the previous chapter, measurement error is an important
issue in industrial processes. One question that comes to mind at this point is

“How would measurement error be taken into account when cross-sectional data
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are present?” The estimates introduced earlier can be extended to explicitly deal
with this.

In the case of estimators that only make use of the longitudinal data, the sit-
uation is analogous to that described in chapter two. Hence, the naive estimates
given in that chapter by equation (2.8) could be used.

If the maximum likelihood estimates are desired in this situation, then the full
likelihood can be written out and optimized numerically. For example, in the case

of a three stage process, if we denote

-

o} +02  praoe;  prapcio;

= pr20102, T3+ 0’32 P2302073

P12p130103 Pna0203 03 + 0,

then the likelihood is

1
Gry R ST (oE + 0 YA(aE + o4 VA(eE + o3 ) T2
ezp{~1/2trace[E'S,,] —n/2(Z — p)TE(Z — p)
_'ZSX.(XI:' ~ i) — L s2(Xai — pa)? _ ss( X ~ ps3)? }
2(0f + 02 2(03 + 02 2(0} + 02

where n, m, [ and r are the sizes of S123, S1, S2 and S3, respectively, and S,
and Z are the usual matrix of cross-products and vector of averages. When the
measurement error variance is assumed known, then there are eight parameters in
this distribution that need to be estimated.

The naive estimates and the semi-naive estimates introduced earlier can be ex-
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tended in a natural way to take measurement error into account. For the naive
estimates, for example, we will continue to estimate the mean for a given stage
using all the data, but now the estimate of the variance will be the observed vari-
ance over all the data at that stage minus the measurement error variance. The
correlation parameters can then be estimated as given by (2.8). The semi-naive
estimates can be modified in the same way as the naive estimates have been for
the marginal parameters. Then, the correlation parameters will still be estimated
using equation (3.5), but now the modified marginal parameters will be substituted
into the expression.

A numerical simulation has not yet been done to determine how well these

modified estimators perform.

3.2 Design Issues

When considering the issue of cross-sectional data supplementing the longitudinal
data, it would be helpful to quantify the relative value of the different data. Such
information could be used at the design stage of a study. Clearly such relationships
will depend on how expensive it is to collect the data, but given that constraint,
optimizing the amount of information that can be gained for a specified cost is

desirable. This section addresses that question.

3.2.1 Known Marginal Parameters

We will begin this discussion by investigating a two stage process, and considering

what happens when the marginal parameters, u;, 42,01 and o; are known. This
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situation is the limit of having large amounts of cross-sectional information.
Assume that we track n items through the process, and that we estimate the

correlation parameter between the two stages by

pra = —2

Syll’l SWW
Then we are interested in knowing what the gain in precision is if we estimate
the variance components of interest by o3(1 — 5},) and 03p%,, that is using the
known value of 63, over estimating the variance at the second stage with the data
collected. Note that the estimate of 52, is not the maximum likelihood estimate

when the marginal information is known.

As mentioned earlier, it can be shown that when o, is estimated from the n
observations, the approximate variance of the first component is given by (3.9),

and that of the second is
2(n — 1)p},03(2 - pi,)
nz

When the known value of o3 is used to estimate these components, they both have

the same variance, given by
do3piz(1 — pls)? (3.11)
n-—1

Figure 3.4 shows a plot of the ratio of the standard deviation of the estimate
with the marginal information to the standard deviation of the estimate without the
marginal information. The peculiar feature that this plot reveals is that for values
of p13 such that |p12] > +/0.5, the standard deviation of the first component estimate

is actually greater when the marginals are known. The explanation appears to be
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that the extra information is being used inefficiently there. Another interesting
feature that this plot reveals is that the ratio of the standard deviations for the
first component is highest for those values of p,; at which the ratio for the second
component is lowest.

Similar calculations can be done in this case when the maximum likelihood
estimate is used for p;;. Figure 3.5 shows the plot of the ratio of the standard
deviation of the variance components with the known marginal information to that
estimating o, with the longitudinal data. In this case, we see that the standard
deviation is never greater using the marginal information than without it, which is

what we would expect intuitively.

3.2.2 Limited Cross-sectional Data

The situation described above, in which we know the marginal parameters of the
distribution exactly, may seldom occur in practice. In what follows, we will assume
that the amount of marginal data collected is the same at each stage, and is given
by kn.

In this scenario, we can calculate the approximate variances of the NEFS and
compare them to the approximate variances of the MLES(S12). When n is large,
this should give a good indication of the amount of information to be gained in the
cross-sectional data, when using those estimates.

The approximate variances for the components of a two stage process using the
MLES(S12) were given in the previous section. The variance of the first component

using the NEFS is given by (3.8). If we make the approximation (k + l)n — 1 =
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Figure 3.4: Ratio of standard deviations of variance components with known
marginal information, using the naive estimate, vs. estimating marginal infor-
mation
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(k + 1)n, then we can write that equation as

4p3,03(1 — p},)? + 203(1 - p1,)*(1 = 2P¥z)
n-1 (k+1)n

where the first term is the variance calculated when the marginals are kno_wn, and
the second term is a correction factor. Notice that this second term is negative
if [p12] > V0.5, and so the variance expression increases with increasing k in that
region. This behavior can be seen in Figure 3.6, which is a plot of the ratio of the
standard deviation of the first component estimated with the NEFS against those
estimated with the MLES(S12), for different values of p;3, and for large n.

Similarly, the variance of the second component using the NEFS can be written

4p3203(1 — p1,)* | 203p1,(3 — 2P§z)
n—1 (k+1)n

In this case, the second term is always positive, and so this variance is always
decreasing as a function of k. This can be seen in Figure 3.7.

Some interesting features are revealed in these plots. Note that when p,, is
small, the first component of variance will be larger than the second, and therefore
it will be the component of most interest. This is also the situation in which a
large gain in precision can be made by using the NEFS over the MLES(S12) to
estimate this component. Similarly, when p;; is large, the second component is the
dominant one. Again, this is exactly when the most gain in precision is to be had
by using the NEFS to estimate this component. Since the first component in this

case will have a small value, a relative loss in precision in estimating it may not be
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bothersome.

Roughly speaking, it seems that the steepest gain (or loss) in efficiency occurs
between k=0 and k=10. By k=20, it appears that most of the gain has been made.
At this point, we are approaching the limit in which we know the marginal param-
eters. These are points to keep in mind when designing this type of experiment.

3.2.3 General Recommendations

It has been shown to be less than straightforward to answer the question “How
much information can be gained from the marginal data in this type of variance
analysis?” In a practical situation, the answer to that question will always depend
on how expensive it is to collect cross-sectional data as compared to longitudinal
data. The results given here indicate that if cross-sectional data are about as
expensive as longitudinal data, then the latter are more valuable in this analysis. In
the more likely case that the cross-sectional data are substantially less expensive,
it appears that there is some gain in collecting as much cross-sectional data as
longitudinal, or even twice as much. After twice as much cross-sectional data has
been collected, the rate of gain seems small. This assumes that there is a reasonable
amount of longitudinal data collected. A sample size of 20 for the longitudinal data,
for example, is probably too small. The tables given in appendix C can be used
as guidelines for these types of decisions. If the investigator is interested in using
the SNES, different data collection scenarios could be investigated in a simulation
study that uses bootstrapping to give an estimate of the amount of precision that

might be expected, for different values of the distributional parameters.



Chapter 4

The General Multivariate Normal

Model

The models that have been introduced thus far to deal with the variance transmis-
sion problem are the AR(1) model and the AR(1) model with measurement error.
Using these models, it is a simple task to assess the effect of an intervention in the
process, either by reducing variation added at a certain stage, or by reducing the
slope of the regression of a certain stage on the previous stage. In the case of a
process that cannot be described by these models, it becomes a difficult task to
assess the effect of any given stage on the variation in the final response.

For example, in the case of the piston process introduced in the first chapter,
suppose we use an AR(1) model to model the last four stages. We therefore partition
the variance of the last stage into four components: transmitted from the first stage
(va), added at the second stage (ys), added at the third stage (ys) and added at
the final stage (y7). We could also combine the last two stages (i.e. pretend that

100
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Y? Y7 Y7
2.926
Y6 4.700 2076
1.774

5226 3.656 2.131
YS YS
0.526 1.580
Y4 Y4 Y4
0.784 2354 3879

Figure 4.1: Original breakdown of variation by stage for piston data using AR(1)
models. Figure 4.1(A) (left) assumes all stages are observed, Figure 4.1(B) (middle)
assumes yg is not observed and Figure 4.1(C) (right) assumes ys and y¢ are not
observed.
we don’t observe yg), and partition the variance into three components. Finally,
we could combine the last three stages of the process and partition the variance at
the final stage into two components: transmitted from the first stage and added
between the first and last stage. If we do this we get values as shown in Figure 4.1.
This figure clearly shows a dilemma in taking effective action for variance re-
duction. When the variance is partitioned into four components, it seems that very

little variation is being transmitted from y,. However, when the variance is decom-

posed into two components, transmitted from y, and added after yq, it seems that
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most of the variation is being transmitted from y,. These present two contradictory
messages about how effective reducing the variation in Y; would be in reducing the
variation at the final stage. The problem is due to the fact that the AR(1) model
is not adequate for these data.

This chapter discusses methods of determining the effect of a given stage on
the variation in the final product, when the data are assumed to follow a general
multivariate normal model. That is, V3, ..., Yi can be modeled as a k-variate
multivariate normal. This effect will be analysed by proposing interventions to the
process at that stage. In general, there are two types of interventions that can be
made at a given stage: the variance at that stage can be reduced or the slope of the
regression of that stage on previous stages can be reduced. Methodology will be
given to study these interventions in the case of a four stage process, under certain
assumptions outside of the model. These methods will be used to analyse data
from the piston production process and the car door hanging process.

In what follows, we will often make use of the four variable multivariate normal
formulae. If the variables y;, ¥a, y3 and y, are multivariate normal, then their joint

probability distribution can be written as

1Y) = Grgmer(-5(Y - WTE (Y~ W)} @41)

(yx
where Y = ya ,
Y3

\ % )
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n = E(Y)
and Z = E(Y-p)(Y -p))

Recall that in this case, if we partion Y, 4 and ¥ as

Y
Y = 1 o= (31
Y, B2
Su =
and v - u 212 ,
Loy T

where

Y, and g4, are q x 1 vectors (q j 4)
Y, and py; are (4-q) x 1 vectors
2,1 is a q x q matrix
%12 is a q x (4-q) matrix
Z,, is a (4-q) x q matrix
and ¥, is a (4-q) x(4-q) matrix,

103

then Y, is a q-variable multivariate normal with mean u; and variance-covariance

matrix ¥,;. Further, using the above partition of Y, the conditional distribution

of Yz given Y; =y, is

Neg(pz + ZnZ3 (Y1 — p1), B2z — 0,517 Z12)

(See Johnson, 1988.)

(4.2)
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Since we will be making frequent use of the above formulae, we will adopt the
notation that ¥ with a subscript of numbers separated by a slash will indicate a
conditional variance-covariance matrix. Also, ¢ with the same type of subscripts

will denote an element of this matrix. Hence, for example,

Y2
2234[1 = VGT( Y3 lyl)a

Ya
O3p = Cov(ysz,ysly1),

and oan = Var(yzly)

Also, subscripts of ¥ that are numbers separated by a comma will indicate those
rows and columns of ¥. For instance, X34 will indicate a 2x1 vector given by the
second and third rows of I, and its fourth column. This notation will also apply
for u. Hence, 34 will denote the third and fourth components of the y vector.

4.1 Intervention at the first stage

4.1.1 Methodology

Consider a four stage process, where the stages produce measurements y;,y2,ys
and y4, in order. It is assumed that these four variables are multivariate normal.
Then, their joint probability distribution can be written as in equation 4.1. We are
interested in the conditional distribution of y334 = (y2,ys, ¥4)T given y;, which can

be constructed in the manner of equation 4.2. For future reference, the variance-
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covariance matrix in this conditional distribution will be denoted Tasq)-

To determine the effect of an intervention at the first stage in this process, we
will change the marginal distribution of y;, and assume that the above conditional
distribution remains the same. This assumption seems reasonable intuitively, but
can only be verified experimentally. Thus, suppose that the marginal distribution
is modified to be f(y;) ~ N(p;1,70}). Since we are not changing the mean of y;
nor the conditional distribution of y3s4 given y,, the means of y;34 will not change
either. The changes of interest, then, are the variances of all variables, as well as
their correlations. Having modified the distribution of y,, it would be worthwhile to
decompose the variation of the final diameter (y,) into various stages, to determine
if these breakdowns reflect the cause of the reduction in variation.

One way of accomplishing these goals is to reconstruct the multinormal dis-
tribution of the four variables, with its new parameters. This can be done using
conditional variance formulae. For example, since the conditional distribution of

Y234 given y; is assumed constant, then the conditional distribution of y(y;, namely
yalyr ~ N(p2 + pra(0a/o1)(y1 — 101), 03(1 — p1,)),
is constant as well. Hence, with the new marginal distribution of y,,

Var(ys) = E(Var(ysly)) + Var(E(valn1))

E(03(1 - p%)) + Var(pa + pugj-(yl — )

o
a3(1 — pia) + sz(;':')’f ai

t

o3(1— P%z) + ploir
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where py; is the old correlation between y; and y; and o7 is the old variation of y;.
The variances of y; and y4 can be calculated analogously.
All the covariances involved can also be calculated. As an example, consider

the following:

Cw(yh yZ) = E[Cm’(yli yzlyl)] + CW[E(y1|yl)1 E(yzlyl)]
= 0+ Covfyy,p2 + sz%(yl — )]
= Covlys, pra—1]
o
= P12 EVaf(yx)
o

= p120:01T

where here o7 and o, denote the old variances of y; and y, respectively, and as
before, p12 is the old correlation between y; and y;. Similar calculations can be
done for all other covariance terms involving y;.

To calculate the covariance of y; and ys, we do the following:
Cov(ys,ys) = E[Cov(ya, ys|y1)] + Cov[E(yalw1), E(ys|y1)]

By definition,

Cov(yz, yslnn) = 7231

Hence,

a: o
Cov(yz,y3) = o2+ Covlps + Plz;‘:‘(w — 1), p3 + Pu;f(yl — )]



CHAPTER 4. THE GENERAL MULTIVARIATE NORMAL MODEL 107

720
o) + P12P13 :,3 Var(y)
1

= o)+ P12P130203T

where here again all o; represent old standard deviation values and the p;; represent

old correlations. Analogously,
Cov(yz,Y4) = T21 + P12P140204T

and

Cov(ys,ys) = Ouj1 + P13P140304T.

We have therefore found all the parameters in the new multivariate normal
distribution of y. Denote the new variance-covariance matrix that has been con-
structed Z,.,. Now we are interested in partitioning the variance of the final
response, Yy, into various components. That is, we wish to partition the variance
at the final stage into components that can be attributed to upstream stages. As
implied earlier, when we have a multivariate normal distribution, any two variables
from that distribution are bivariate normal, with a variance-covariance matrix given
by the appropriate portions of the multivariate normal variance-covariance matrix.

For example,

¥ | ~ N,
Ya

where

0 = (ps, pa)T
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L= zm:u,u

From this, the conditional distribution of y4 on ys can be determined. In fact, the

regression coeflicient of y4 on y; will be
[12/T1;
and the conditional variance of y4 on ys will be

L2+ (1-7%)
where p = _T2
vTuls;
All other bivariate conditional distributions can be calculated in the same way. Any

partitions of variance can therefore be found.

4.1.2 Examples
Piston Data

The above methodology was tried on the first response of the piston production
process. Here, the four variables of interest were denoted y,, ys, ys, and y7. The
equations shown above were used to determine the effect of reducing the variation

in y4 by 50%. All sample values were replaced in the equations for true values. In
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this way, it was determined that

( 4.769 3.855 3.578 4.301 \
3.855 5.208 3.258 4.523
3.578 3.258 4.797 3.846
\ 4.301 4.523 3.846 6.010 }

(in microns?). Hence,

2.092 3.655 1.050
Tsera = | 3.655 2.112 6.193
1.050 6.193 2.131

Following the computations as above, and recalling that we are setting » = 0.5, we

compute ¥, to be
( 2.385 1928 1.789 2.151 \

1.928 3.650 1.812 2.788
1.789 1.812 3.455 2.233
\ 2.151 2.788 2.233 4.070 )

Thus, to get three diﬂ:erent partitions of the variance of y7, we can compute the
parameters for the relevant conditional distributions to be as shown in Table 4.1.

Figure 4.2 gives the appropriate decomposition of variance. The total variation
of y; went from 6.010 microns?® originally to 4.070 microns?, a reduction of approx-
imately a third. This is the effect that would have been predicted by multiplying
“box y4” in Figure 4.1(C) by 0.5. Doing the same for Figures 4.1(A) and 4.1(B),
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[ Distribution Slope Variation Added (microns?)
yrlye 0.646 2.627
velys  0.496 2.555
vslye  0.808 2.002
yrlys 0.764 1.941
yrlye  0.902 2.131

Table 4.1: Parameters for the relevant conditional distributions of piston data

Y7 Y7 Y7
2.627
Y6 1.941
1067 2.131
Ys YS
0.215 1.221
Y4 Y4 Y4
0.160 0.909 1.940

Figure 4.2: Result of reducing the variation of y, by 50%
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however, would have underestimated the effect of this intervention. As can be seen
from Figure 4.2, the last breakdown of variance, Figure 4.2(C), accurately identifies

the source of the reduction as the first stage.

Door Hanging Data - AR(1) model

Another data set on which this methodology was used was a car door hanging
process. A test of these data reveals that an AR(1) model is adequate. It would
be interesting to look at these data in two ways: one in which the AR(1) model
is imposed, and the other in which it is not. In the former case, the effect of the
intervention on the variance at the last stage can be calculated quickly. Of interest
is whether this effect will be the same as estimated in the latter case.

When an AR(1) model is imposed on these data, the following variance matrix

is found: 1

[ 0.666 0.536 0.221 0.163
0.536 0.870 0.360 0.265
0.221 0.360 0.392 0.289
I 0.163 0.265 0.289 0.911

-

This gives the breakdown shown in Figure 4.3. Since an AR(1) model has been
assumed, all three partitions of variance are equivalent. This will be true for sub-
sequent analyses as well, and so only the first breakdown will be shown.
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Y7 Y7 Y7
0.698
Y6 0.831
0.132 0871
YS YS
0.041 0.041
Y4 Y4 Y4
0.040 0.040 0.040

Figure 4.3: Breakdown in door hanging data, with the AR(1) model imposed.
Hence, ps7 = pssper and pgr = pespseper by construction.
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Y7

0.698

Y6

0132

Y5

0.041

Y4

0.020

Figure 4.4: Effect of reducing the variation of y4 by 50%, with the AR(1) model

When the variation in y4 is reduced by 50%, we get

[ 0.333 0.268 0.111 0.082 .
0.268 0.655 0.271 0.200
0.111 0.271 0.355 0.262
] 0.082 0.200 0.262 0.891

J

Hence the final variation has reduced from 0.911 to 0.891 mm?. The appropriate
breakdown of variance is given in Figure 4.4. This is exactly what we would get if
we multiply the “y4 box” in Figure 4.3 by 0.5, as expected.
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Door Hanging Data - No model restriction

We can now analyse the same data without imposing the AR(1) model. When this

was done, the variance-covariance matrix was found to be

’ 0.666 0.536 0.100 0.111 1
0.536 0.870 0.360 0.128
0.100 0.360 0.392 0.289

I 0.111 0.128 0.289 0.911 ]

Notice that this is very similar to the variance-covariance matrix found previously.
The original breakdown of variation here is given in Figure 4.5. Notice that now,
the three partitions of variance are not all equal.

When the variation in y, was reduced by 50%, it was found that

0.333 0.268 0.050 0.056 T
0.268 0.655 0.319 0.083
0.050 0.319 0.384¢ 0.281
I 0.056 0.083 0.281 0.902 ]

which gives a decomposition of variance as shown in Figure 4.6. Although the final
variation here is very close to that found above, it could only have been predicted
from Figure 4.5(C). The effect of this intervention wounld have been overestimated

using Figure 4.5(A) and underestimated using Figure 4.5(B).
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Figure 4.5: Original breakdown of variation in door hanging data, using the AR(1)
model: Figure 4.5(A) (left) assumes all stages are observed, Figure 4.5(B) (middle)
assumes yg is not observed and Figure 4.5(C) (right) assumes ys and ys are not

observed.
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Figure 4.6: Effect of reducing the variation of y, by 50%

116



CHAPTER 4. THE GENERAL MULTIVARIATE NORMAL MODEL 117

4.2 Intervention at the second stage

4.2.1 Reducing the added variation

Again, we start with the assumption that the measurements are multivariate nor-
mal, with a probability density as given in equation 4.1. Now, let

n Y3
Yo = Yae =

Y2 Ya
Then, the conditional distribution of ys4 given y;3 can be found by equation 4.2

and is given by
f(¥s4ly1a) ~ N(paa + 234.1221-31,13(}'13 — p3), 234,34 - 234,1221*31,13212.34)

The conditional variance-covariance matrix will subsequently be referred to as
T34p12- For this analysis, it will be assumed that the above conditional distri-
butioﬁ of (ys,ys) given (y3,y2) does not change when we intervene in the process
at the second stage. We will further assume that the marginal distribution of y,
remains constant, but that the conditional distribution of yily, changes. Hence,
the marginal distribution of y; will be

nr~ N(I‘h‘:)'
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Whereas it was true that

valys ~ Nl + (1 = ), 03(1 = o),
we will now consider that

Y2lyr ~ N(p2 + puf:—:(yl — m), To3(1 = piy))-

If 7 is less than one, we are considering the situation in which stage two is adding
less variation to the process. This may happen if the process at stage two is adjusted
based on y;.

To determine what happens now, note that the variance of y; has not changed,

but that the variance of y; has, according to the following calculations:

Var(ys) = E(Var(yzly)) + Var(E(y2|n))

E(""":(l - sz)) + Var(u, + Pu%(!h — )

2
o
ra3(l —p},) + P::U_;V‘"'(yl)
= "'”g(l "‘sz) +sz°".?

o3(T — 7}, + p32)

i

Also,

Cov(yy,¥2) = E(Cov(yr,y2ly1)) + Cov(E(wilyr), E(yz, 1))

o
= Cov(y, ps2 + p12 ;‘:’(yx —h))
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o
= pr12 -'z'Va"(!h)
o

= /20201

where here o, denotes the old standard deviation of y,.
We can now calculate the variances of y; and y4. This can be done by applying

the conditional variance formula to vectors in the following way:

Var ys = E(Var Vs 3 }+ Var(E Vs |9 )

Ya Ya | Y2 Ya | Y2
= Esmz + Var(pad + Eu.lzzi'zl,uyu - 234.122le.sz12)

= a2+ 234,1221'11,1;‘/0"()' 13)21'21,1;212,34 (4.3)
Since we have constructed the variance-covariance matrix of Y34 above, we get that

Y3 Uf P120103

Var = D12 + 341251712

) . 1'21,11212.34
Ya P120102 03(T — Tpi; + pl;)

It remains only to find the covariance terms between y;3 and ys4. This can be

done in the manner of the following calculation:

Cw(yh y3) Cm"(yh y()
Cov(y12,¥se) =

CW(yz, y3) Cw(yh y‘)
E(Cov(¥1a,¥34l¥12)) + Cov(E(y13|y13), E(¥34|¥12))

= Cov(Yia, pis4 + B34,12277 13¥13 — Bs4,12573 150012)

= Var(y1a)Z5; 1281234
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After computing the above quantities, it is possible to reconstruct the variance-
covariance of the new multivariate normal distribution of (y1,¥z,¥s,v¢)- Denote
this matrix X,.,. As was done in the previous section, we can now construct the
bivariate distributions that we may be interested in to partition the variance of y,

into various components.

4.2.2 Examples
Piston Data

For the piston example, we will use the above methodology to determine the effect
of reducing the variation added at the second stage. For these data, it was found

that
2.048 4.359

4359 1.604

267]45 =

(again in microns®). Letting T = 0.5, that is having reduced the variation added at

this stage by 50%, we found that

(4769 3.855 3.578 4.301 )
3.855 4.162 3.075 4.002
3.578 3.075 4.765 3.755
| 4301 4.002 3.755 5.747

Toew =

This resulting partitions of variance of y; are given in Figure 4.7. Hence, the
total variation in y; has been reduced to 5.747 microns?, a reduction not nearly as

significant as that seen in the previous section.
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Figure 4.7: Effect of reducing the variation added at ys by 50%
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If we were to predict the effect of this intervention from Figure 4.1, Figure 4.1(A)
would have predicted it accurately, whereas Figure 4.1(B) would have overestimated
the reduction in variance. It is unclear whether the former is a lucky coincidence,
since the breakdown resulting from multiplying the ys box in Figure 4.1(A) is not
the same as that shown in Figure 4.7(A). In this figure, none of the three partitions
clearly shows the source of the reduction of variation, although the last one does

correctly identify it as not having originated from y,.

Door hanging data - AR(1) model

In the case of the door hanging data with an AR(1) model imposed, the consequence
of reducing the added variation at the second stage by 50% is to decrease the final
variation from 0.911 mm? to 0.891 mm?. The breakdown of the variation appears in
Figure 4.8. This is the breakdown achieved by multiplying the “ys box” in Figure

4.3 by 0.5, exactly as expected.

Door hanging data - No model restriction

For the same data with no model restrictions, the effect of reducing the added
variation at the second stage by 50% is to give a final variation of 0.910 mm?2. In
other words, such an intervention has essentially no effect. This could not have

been predicted from any of the breakdowns given in Figure 4.5.
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Figure 4.8: Effect of reducing the variation added at ys by 50%, AR(1) model
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4.2.3 Changing the slope of the second stage on the first
stage

We hav’e seen how to analyse the effect of reducing the variation added at the second
stage on the variation of the final stage. Another way of intervening at the second
stage, however, is to change the slope of the second stage on the first stage. If we
reduce this slope, the effect should be to reduce the variation transmitted from the
first stage, and hence to reduce the overall variation. To analyse this situation, we
will assume the same situation as above, namely that the conditional distribution
of (ys,y4) on (y1,y2) remains constant. We will again assume that the marginal
distribution of y; hasn’t changed, but this time we will assume that the conditional

distribution of y; on y; has changed in the following way:
o o:
y2ly1 ~ N(a(p: - Pu;‘i’ﬂt) + TPlz;f!lu a3(1 - pi;))

Note that this change will affect the means of y3, ys and y,, but we will assume that
the process can subsequently be retargeted.

The following can be derived easily

Var(y)) = of
Var(ya) = o3(1—pf, +7°p};

Cov(yy,y2) = Tp130102

These three equations can be used to construct the variance-covariance matrix of
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Y34, and the equations above relating to quantities involving ys and y, can be used

here. Hence, for example,

Y3 Uf TP120102

Var = Baajrz + B3412577 15

, s . 2 T212512,34
Ya TP120102 a3(1 — p3; + T2pi,

analogously to equation 4.3 and
Cov(y12,¥s4) = V“"(Yn)gle,uzu.u

The construction of ., and the subsequent partitioning of the variation of y,

proceeds as usual.

4.2.4 Examples
Piston Data

The above methodology gives the following for the piston example when r = 0.5

(4769 1928 3.241 3.33¢ )
1.928 2.871 1.676 2.397
3.241 1.676 4.315 2.885
k3.334 2.307 2.885 4.6l |

which results in the partition of variance shown in Figure 4.9. Here the final
variance has been reduced to 4.461 microns?, which is comparable to the change

that occurred when the variance of y, was reduced by 50%. In Figure 4.9, the last
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Y? Y? Y7
2533
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Y4 Y4 Y4
0.119 0.543 2331

Figure 4.9: Effect of reducing the slope of ys on y, by 50%

partition of variance accurately reflects the source of the reduction.

To predict the effect of this intervention from Figure 4.1, we would have mul-
tiplied the y4 box in Figures 4.1(A) and 4.1(B) by 1. (It would have been unclear
how to predict the effect of changing the slope of ys on y4 from Figure 4.1(C)).
Neither of these two values would have produced the 4.461 microns? found here.
Furthermore, the two values found, 4.245 microns? and 5.422 microns?, are quite

different from each other.
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Door Hanging Data - AR(1) model

When the slope of the second stage on the first stage is decreased, the effect in this
case is to decrease the final variation to 0.881 mm?. The resulting breakdown of

variation is that found by multiplying the y, box in Figure 4.3 by (})?, or by 0.25.

Door Hanging Data - No model restriction

The same intervention is predicted to have less of an effect in reducing the variation
when the AR(1) model is not imposed. Here, the final variation is 0.904 mm?.
Figure 4.5(C) comes close to predicting this value when the y, box is multiplied by
%, but the prediction given by Figure 4.5(A) overestimates the amount of reduction

occurring.

4.3 Intervention at the third stage

We can consider intervening in the process at the third stage, as we have done
for the two previous stages. Again in this case we can investigate two types of
interventions: reducing the added variation or reducing the slope of the regression
of the third stage on either, or both, of the two previous stages. The calculations
required to investigate these types of scenarios are similar to those shown for other
stages, and will not be given here in the interest of brevity. Both the piston data and
the door hanging data were used to investigate the following scenarios: reducing
the variation added at the third stage by one half, reducing the slope of the third
stage on the second stage by half while keeping the slope of the third stage on the
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first stage constant, and reducing the slope of the third stage on the first stage
by half while keeping the slope of the third stage on the second stage constant.
A summary of these results is given in Table 4.2. One curious result that can be
seen in this table is that in some scenarios investigated for the door hanging data,
the effect of an intervention is to cause the variance at the final stage to increase.
Variation in these estimates has not been discussed, however, and it could be that

the increase in variance is not significant.

4.4 Conclusions

When the data of a process can be modeled adequately with an AR(1) model,
it is easy to assess the effect of an intervention in the process. When an AR(1)
model does not fit the data, it can be seriously misleading to use it to assess
how an intervention might effect the variance at the final stage. In this case, an
appropriate model might be the full multivariate normal model. Assessing the
effect of an intervention is less intuitive than with the more restricted model, but
can be done by making some assumptions regarding the conditional distributions
of subsequent stages.

For the piston example discussed, the most significant change could be made by
either reducing the variation of the first stage, or by reducing the slope of the second
stage on the first stage. Other interventions would not be as efficient in reducing the
variation of the final response. For the door hanging example, the most significant
change could be made by reducing the variation added at the third stage. See Table

4.2 for a summary of these changes. In both cases, these recommendations can now
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[ Intervention Value Piston | Door Hanging | Door Hanging
Data | with Model No Model
Restriction Restriction
[ Total Variance 6.010 0.911 0.911
50% reduction Variance 4.070 0.891 0.902
in var’n Percent Decrease { 32.3 2.2 1.0
of 1st stage
50% reduction Variance 5.747 0.891 0.910
in var’n added | Percent Decrease | 4.4 2.2 0.1
at 2nd stage
50% reduction Variance 4.461 0.881 0.904
in slope of 2nd | Percent Decrease | 25.8 3.3 0.8
stage on 1st
50% reduction |  Variance 5.934 0.845 0.757
in var’'n added | Percent Decrease { 1.3 7.2 16.9
at Jrd stage
50% reduction Variance 9.843 0.851 0.946
in slope of 3rd | Percent Decrease | 2.8 6.5 -3.8
stage on 2nd
50% reduction Variance 5.473 0.911 0.995
in slope of 3rd | Percent Decrease | 8.9 0 -9.2

stage on 1st

Table 4.2: Summary of effect of interventions at various stages

be passed on to the engineers in charge of the process, in the hope of improving

quality.



Chapter 5

Multivariate Data

With the growing complexity of processes seen in industry, and the availability of
machines to take many measurements on the process quickly, multivariate data are
becoming the norm. Methods are required that can handle correlated data and
make use of all its features. The variance transmission problem is to identify those
opportunities that have the greatest potential for variation reduction. Since the
data are multivariate, variance reduction might be desirable equally at all measure-
ments, or it may be that variance reduction is more valuable at some measurements
than at others, or there may be an interaction between various measurements. The
priority of variation reduction at different measurements can be quantified by a loss
function.

In this chapter, we review three papers that address issues rdeﬁnt to multi-
variate data in multi-stage processes, and discuss some of the issues involved in this
analysis. We also suggest some other approaches that might be taken, and discuss
issues that have yet to be addressed.

130
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We will assume through this discussion that a multivariate AR(1) normal model

is appropriate for the data. Hence the model can be written as

Y = mm+eq
Yi = Ai+BiYi1+€; 1=2,...,k (5.1)

where Y is a vector of m measurements. Also A; is a vector and B; is a matrix,
generalizations of a; and §;, respectively. The total variance matrix of Y; will be
denoted by X; and the added variance at that stage is I; 4, i.e. L;4 = Var(e;).
The variance transmitted from previous stages is given by X; - Z; 4. These are now

m * m matrices.

5.1 Review

The three papers that will be reviewed in this section are Lawless, MacKay and
Robinson (1996), Fong and Lawless (1996) and Xie, Yang and He (1994). Lawless
et al. deal with multivariate data by considering each measurement separately,
and using the univariate AR(1) model to analyse variance transmission. Fong and
Lawless use the generalized AR(1) model given in equation (5.1), and allow for
missing data and measurement error. Xie et al. use two approaches in their paper:
they first define loss fanctions that they use at the various stages of the process,
and then they consider principle components analysis.

The approaches described above will be demonstrated on some hood fitting

data. This is data in which the hoods on 19 cars were measured at four places:
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two in the front and two in the rear, one along each side. There was no missing
data, and measurement error will be ignored for the subsequent analyses. Each
measurement represents a deviation from nominal. There were four stages involved
in the installation of the hood: 1) hanging the hood (HANG), 2) painting the hood
and the rest of the car (PAINT), 3) installing hardware such as the hood latch
(HARD) and 4) adjusting or “finessing” the hood for better fit (FIN). In this case,
variation reduction is equally important at all four of the measurements.

Lawless, MacKay and Robinson use a univariate analysis for each of the mea-
surements of interest when dealing with a multivariate data situation. This means
considering each measurement independently and modeling it with a univariate
AR(1) model. When this is done for the hood data, the results are as given in
Table 5.1. The results indicate that for the two front measurements, most of the
variation is coming from the finesse stage, while for the two rear measurements,
most of the variation is coming from the HANG stage. It should be pointed out,
however, that for the left front measurement, the variance at the third stage is
roughly twice the variance at the final stage. Hence, while all of the variation
present at the final stage is added there, this is an improvement over eliminating
the last stage altogether. In all cases, very little variation is contributed by the two
intermediate stages of the process.

The strength of this method of analysis is its interpretability. The results given
here can be applied directly to the process. The drawback is, of course, that
this method does not take into account the correlation between the measurements.

Hence, caution needs to be exercised in intervening in the process to effect one
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Stage | Left Front Right Front Left Rear Right Rear
FIN 0.556 0.398 0.105 "0.041
HARD 0 0.083 0.051 0.014
PAINT 0 0.007 0.023 0.016
HANG 0 0.013 0.725 0.857
"TOTAL [ 0.556 0.500 0.903 0.929

Table 5.1: Variance transmission of hood data using univariate analysis

measurement, since such an intervention may have unforeseen results on other
measurements. For example, it is conceivable that in attempting to reduce the
variation added at the finesse stage, some adjustment is made that makes the rear
measurement values at this stage less dependent on those values at the previous
stage. This would result in the fortunate situation in which variation transmitted
" from previous stages would be reduced, and the variation at the HANG stage need
not be adjusted.

Fong and Lawless deal with a multivariate AR(1) model in their analysis, and
use a Kalman filtering approach to handle missing data and measurement error.
This approach is more efficient in terms of computer time than using, for example,
a simplex search algorithm to compute maximum likelihood estimates. Assuming
that measurement error is negligible for the hood data, we get the results given in
Table 5.2 using the multivariate AR(1) model.

Although this approach makes use of the full structure of the multivariate data,
the results are hard to interpret. Note that none of the estimated correlations
between measurements is extremely high. They are not, however, negligible and

since we are interested in reducing the variance at all the measurements, it is difficult
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= >3

Stage 3 Tia
069 005 —031 —007
0.05 038 025 —0.03
HANG | | 021 025 116 o001
| —0.07 —0.03 001 0.60
0.82 —0.13 ~033 —0137 [ 009 —-057 035 054
—0.13 022 038 —0.11 ~0.57 007 —033 —0.22
PAINT | | 033 038 193 o001 0.35 —033 003 025
| 013 —011 o001 o080) | 054 —022 025 001
112 —0.28 —002 0197 [ 025 —012 032 —0221
HARD | | 028 052 020 —0.50 —012 029 —0.30 —036
—002 029 121 —0.02 032 —030 006 046
| 019 -050 —002 079)] | -022 —036 046 o001
" 056 —039 —038 —0267 [ 046 —040 —0.29 —0.40 ]
e || 039 050 038 022 —040 034 003 038
—038 038 090 —0.20 029 003 008 052
| 026 ~022 020 093] | —040 038 052 003 ]

Table 5.2: Multivariate AR(1) model results. The off diagonals are correlations,
while the diagonal elements of the matrices are variances
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to tell what type of intervention would be most beneficial. More will be said about
this in the next section.

Xie et al. (1994) take a different approach to the analysis of data from a multi-
stage multivariate process. They define two effects in such a process: the certain
effect, which results in the same deformation pattern on each item at each stage,
and the uncertain effect, which is essentially a random effect on each item. They
also reduce the dimension of the data by using the geometry of the product to
define sections. The certain effect is quantified by the mean square of the sample
mean deviation (MSMD). Let Y;;: denote the deviation from nominal of the i-th
point of the k-th item at the j-th stage (i =1,...,n; 5 =1,...,L; k=1,...,m).
Then

MSMD = -nl: > (3 Yn)?

i€S, k
where S, is the measuring point set of section p; n, is the number of points in
that set. Similarly, the uncertain effect is quantified by the average variance of the

deviation (AVD), and is given by

1 1 -
AVD = — 3 (=) X (¥ — Vi)’
ics, k
= 1
where Y. = ;Zk:qu

Both the MSMD and the AVD are computed at each stage of the process. If we
define the average loss at a stage and at the p-th section to be

1

Y
Ry ies,
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then the average loss is the sum of the MSMD and the AVD.

Once these values have been calculated, the authors continue by doing a variety
of principle components analyses. They first look at the principle components for
each section and each stage. They then look at the principle components analysis
on ¥;;. and (Yije ~ ¥ij.), to determine modes of variation in the certain effect and in
the uncertain effect. They contrast this to the principle components analysis given
by combining all of the data together.

Overall, this approach seems to be ad hoc. It contributes little towards an
understanding of the process. For example, the principle components analysis of
the certain effect groups the data over the different stages together. Thus, while
the first principle component of such an analysis allows us to determine a direction
in which a large amount of the variation is occurring, it does not explain where
this variation is coming from. The same can be said for the principle component
analysis of the uncertain effect. Conversely, while the principle components analysis
done at each stage allows determination of the variation modes at each stage, it
does not distinguish between certain and uncertain effects. Further, there is no way
of determining whether the variation mode at a certain stage is being transmitted
through to the final stage. Hence, it is very difficult to relate these results back to
the process in a meaningful way.

The MSMD and AVD values were calculated for the hood data. Here, the first
section was defined to be the front two measurements, and the rear measurements
were defined to be the second section. Plots of these values are given in Figures 5.1
and 5.2. These plots indicate that there is large variation in the certain effect at
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MSMD Values

11
ShNES2 SRt SWLle? S
Figure 5.1: Calculated values for the hood data

section two and at the PAINT stage. This implies that there are factors at that stage
that are having a large impact on the deformation of the rear of the hood. There is
relatively little mean deviation for the first section. This means that there are no
large factors that are affecting the process at the front of the hood in a consistent
manner. Further, there appears to be about the same amount of variation in the
uncertain effect in both sections and at all stages. The implication is that there
is something to be gained from focusing on reducing variation at previous stages.
Notice, though, that there is no consideration given to how variation at previous
stages affects the variation at the last stage. This omission could seriously mislead
the investigator. The results from this analysis should be compared to those found
using the multivariate AR(1) model.

Generally speaking, there appears to be more work necessary in understanding
the multivariate multi-stage problem. The next section proposes other approaches
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AVD Values
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Figure 5.2: Calculated values for the hood data

that might be considered.

5.2 Other Approaches

5.2.1 Modeling the Intervention

In the case of multivariate data that adhere to the generalized AR(1) model, an
approach can be taken that models the effect of an intervention and considers this
effect with a univariate loss function. For example, consider a two stage process in
which bivariate data are observed. Then we can describe this situation as

Yu n 2 2
KB 711 O12)
Y1 = ~ N ’ 21 =

Yz An ”?z,x “g,l
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Y: Y; a by b

YalY, = 12 l nl N A R R
Y Ya a; ba b2
oo [t ot

2
012,24 0’3,24

Here,

Var(Y;) = BVar(Y,)BT + 224

We can define in this case a loss function that penalizes the variance of each mea-
surement in Y, equally; for example, the average of the variances. This gives us
that L = jtrace(Var(Y3)).

We can study various interventions in the process and their effect on the above
loss. First, consider reducing the variance at the first stage, which we can model
in a general way as changing ¥, to
: = TiO},  Tdly,

T120%2; Ti03,
The values of 7, 12 and 7; will be determined by the way in which the intervention
will occur, and the engineering perspective as to what these values should be. We
will assume that the conditional distribution of the second stage on the first stage
will be unaffected. The variance of Y, will be

Tinew = BE]BT + 53,
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The loss is now L = jtrace(Zsnew)-
Another intervention in the process could be in the way that Y; depends on
Y. Hence, consider changing B to B*, where

B = Tubu Tiabi2

Taby  Taabye
Again, the values that  will take should be determined by engineering knowledge.
In this case, the loss changes to L = jtrace(B*Z;B*T + £,,). Similar calculations
can be done if we consider changing X;4.

We can apply this methodology to the hood data introduced earlier. Recall
that the variance matrices for these data at each stage are given in Table 5.2. If we
take the average of the variances at the last stage to be the loss function, then the
current loss is 0.722. Consider first changing the variance-covariance matrix added

at the last stage, Lprn 4, to

> -

0503, 0.250%, 0.250%,, 0.250%,,
0.250%, 0503, 02502, 0.250%,
0.250% , 0.250%, 0502, 02503,
| 0.250},, 0.2503,, 02503, 0503, |

This corresponds to reducing the marginal variances of the four measurements by
one half, but not changing the correlations between them. If we do this, the loss is
reduced to 0.609.
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Another intervention to consider is changing Brry marD to

141

r0.51)11 bz bhs b T
by 0.5b;2 bis  ba
bsy b3z 0.5bs3 by

| ba b bes  0.5bes |

This intervention has the effect of reducing the loss to 0.392.

A third kind of intervention is changing the variance at the previous stage. We
will do this in the same way as we did for the final stage, namely by reducing the
variances by one half and the covariances by one quarter. This intervention reduces
the loss to 0.469. It should perhaps be pointed out here that if this intervention
had proven to be the most effective, the variance transmission methodology could
be used to determine the best way of reducing variation at this stage.

Of the interventions considered here, the most effective proved to be by chang-
ing the conditional expectation of Y; on Y;. Given the results of the univariate
analysis shown earlier, this is somewhat surprising, since the two front measure-
ments had almost all of their variation added at the last stage. Clearly there are
other interventions that could have been considered. In a practical situation, the
types of interventions investigated should be dictated by engineering knowledge of

the process.
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5.2.2 Principle Components Analysis

Another approach that might be used to deal with this problem is applying the
AR(1) model to principle components of the data. The principle components will
be different at each stage. However, if we can isolate a few modes of variation at
the final stage, and if these are interpretable, then determining those stages which
are confributing to the modes of variation will be useful. Yang (1996) gives an
example from the automotive industry of the use of principle components to reduce
variation.

A principle components analysis was done for the hood data, and the results
are given in Table 5.3. The first two principle components explain 78% of the
variation at the final stage. Suppose we use these two components to create two
new variables;, COMB1 and COMB2, where these are linear combinations of the

original variables, given by

COMBl1 = —-LF+ RF+2LR- RR
and COMB2 = -5LF+ RF +2LR + 8RR

where LF, RF, LR and RR are the left front, right front, left rear and right rear
measurements, respectively. These two variables have a very small correlation at
the final stage.

Now, the AR(1) analysis of variation transmission can be applied to the new
variables. Figure 5.3 shows the scatter plots for the first variable over the four
stages, and a bar plot of the variation added and transmitted from the different
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[ PC1 | PC2 [ PC3 [ PC4
Std. Dev | 1.15 | 1.02 | 0.66 | 0.50
Rotation | -0.29 | -0.53 | 0.37 | 0.71 |
0.41 | 0.09 |-0.68 | 0.59 |
0.74 { 0.22 | 0.61 | 0.15
-0.44 | 081 | 0.15 | 0.35

Table 5.3: Principle components analysis of hood data

stages. Figure 5.4 shows the same for the second variable. Both these plots indicate
that the first and last stages are the best opportunities for variance reduction. Note
that the above analysis is only useful if the engineers on the process can interpret
the new variables created, COMB1 and COMB2, in a meaningful way. COMB]1,
for example, appears to be a measure of the tilt of the hood on the diagonal axis.
Clearly, there is some difficulty in dealing with maulti-stage multivariate pro-
cesses. Issues such as how to use principle component regression in variance trans-
mission analysis have yet to be investigated. In general, there seems to be a trade-off

between being able to use all of the available data and simplicity of interpretation.

5.3 Discussion

More work needs to be done in the area of multi-stage multivariate processes. Some
graphical methods of portraying data in these cases would be very useful, especially
if they could be used as a diagnostic tool for model checking. Also useful would
be methods that deal with departures from the AR(1) model, such as the general
multivariate normal model. The intervention modeling approach could perhaps
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be used in these situations. Finally, methods that take cross-sectional data into
account are needed. Naive approaches that are relatively simple to understand and

calculate, and yet efficient in the statistical sense, would be ideal.



Chapter 6

Discussion

6.1 Conclusions

Variance transmission analysis provides a useful tool for prioritization of variation
reduction efforts in multi-stage processes. A first order autoregressive model was
introduced by Lawless, MacKay and Robinson (1996), who demonstrated how to
partition the variance at the last stage of the process into components attributable
to the upstream stages. They discuss the need for data in which items have been
tracked through the process, and measurements have been made after each stage.
It was shown that when the data are observed with measurement error, the
analysis using the AR(1) model gives biased results. A naive method of estimation
that explicitly takes into account the measurement error was introduced. This
method was shown to work well when compared to maximum likelihood estimation.
Methods of finding confidence intervals for the variance components of interest were

also investigated.

147
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Frequently, cross-sectional data are available on the process in addition to the
longitudinal data. This type of data is usually less expensive to get than longitudi-
nal data, and may be collected automatically. Methods of estimating the variance
components of interest in this situation are investigated. A discussion is given about
designing studies when these two modes of data collection are available.

A more general multivariate normal model is also used to model data from
multi-stage processes. It is found that in this case, variance transmission analysis
is less straightforward then when the more restrictive AR(1) model is imposed.
Here, a certain type of intervention in the process is modeled, and the resulting
effect on the variance at the last stage is of interest. This method assumes that the
certain conditional distributions are unaffected by the intervention.

Finally, a discussion is given about methods of handling multivariate data in
multi-stage processes. Some approaches are reviewed and some suggestions are

made for other approaches that might be investigated.

6.2 Further Research

Many issues remain to be investigated in this variance transmission problem.

One such issue is the question of non-normal data. It could happen that the
data collected from multi-stage processes are binary, categorical, discrete or have
a continuous distribution that is not normal. The piston data illustrate a simple
example of how this might happen. At the final stage, a measurement could be
recorded on the piston that was not the value of the diameters, but rather a mea-

surement of 0 if the piston met specifications or 1 if it did not. In this case, we
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would have binary measurements at the final stage and continuous measurements
upstream. Methods of dealing with such situations need to be investigated. This
type of data may also be available in large quantities as cross-sectional data.

Another issue that merits further consideration is loss functions. When a part
does not meet specifications, then the way in which it is deviant may be relevant.
For example, in the piston process, it might be that if the diameters of interest are
too large, then the piston can be reworked, but if they are too small, the piston
must be scrapped. Likely the cost of rework will be less than the cost of scrap.
This induces a natural loss function on the process and then the issue of interest
is not variance transmission, but the way in which upstream measurements affect
the expected loss at the final stage.

For example, if Y; is the product at the final stage, and Y; is an upstream

measurement, then we are interested in minimizing E(L(Y%)). Note that
E(L(Yr)) = Ev[Bv(L(YalYD)]
Suppose that we let the loss function be
L(Ye) = (Yi - m)’
where m is the target value at the final stage. Then
E(L(YA)) = Ey,[Var(%IY) + {E(GIY) — m}?]

Clearly, this idea can be extended to include more upstream measurements as well
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as multivariate measurements.

Loss functions also arise as a method of reducing the dimension of multivariate
data. This is discussed by Pignatiello (1993). Methods of handling such situations
are required.

Covariates in this type of analysis need to be investigated further. In the piston
example, at operations 270 and 290 where there were two machines operating in
parallel, the machines become covariates in the process. Differences due to targeting
or in the variances at these machines may be affecting the variance at the final
stage. Lawless, MacKay and Robinson (1996) discuss covariates briefly, but a more

systematic methodology is required.



Appendix A

Approximate Variance Formulae
for Naive Estimates with

Measurement Error

The purpose of this appendix is to give the approximate variance estimates of var-
ious variance components and proportions. These approximate variance estimates
are computed by finding the expected values and variances of the random variables
of which they are functions. These are then used in a first order Taylor series

expansion of the function.

The variance estimate of the first variance component in a two stage process is

Var(63(1 - 53,)) ~ F+ S FT

151
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where
F=| 1 , —2(n — 1)p12010, , (n —1)*ply0i0; ]
n' a{(n ~1)of ~ 02} n{(n —1)of — al)?
and
[ an -1} +02)7| 2n-Dpuowss | 2n-1)odyolel
(o3 +02)
o | 2m-Deuoes | @-Diei+ed) | 2n-1)ei+02)
(03 +02) R ART P120107
2n—1)plyoio; | 2An—1)(of+0l) |2An-1)(o}+a7)?
| P130103

This estimate for the second component in a two stage process is
Var(3353,) ~ G+« GT

where
= 2(n —1)p130n03  —(n —1)*pl,0103 ]
" n{(n—1)o} - a2} n{(n - 1)o} ~ a2}

Also,

o _ | = 140t + 221001+ 2) + phdat} | 2m ~ 1)001 + 2 )pracien
An-1)o}+o2)puoier | 2n—1)(oF +03)
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The variance of the square root of the first proportion is

- -

V11 Y2 Vi3 u;

1
Va"(\/l"ﬁgs z?[uz uz u,] Viz V32 U3 uz

Uiz U2z Va3 ] U3

where
f=1- (n— l)zp”az g3
{(rn-1)of —aZH(n - 1)of -2
v = (n ~ 1)?p3,0203
' -Dei -t Hm - 1)l -2
%z = ‘—2(11 - l)pgadza’s
{(n—1)of - 0ZH(n - 1)of -2}
v = (n ~1)’p3s0303
{(rn — 1)o3 — o2 }{(n —1)o3 ~ 02}
vu = 2(n—1)(03 +03)
viz = 2(n — 1)poi05(03 + 02)
vis = 2(n —1)p50303
vz = (n—1){(o3 + L) (03 + 0%,) + prs0303}
vss = 2(n—1)(03 + 02 )p230203
vss = 2(n—1)(o; +03)°
Also,

Var(y/p2s(1 ~ pt,) = "‘W s X«W*

where f is a scalar, W is a vector of elements w; and X is a symmetric matrix of
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elements z;;, and these are given as follows:

f = (n - 1)3038"36: -
{(n—1)of — o2 H{(n—-1)0} - a2}
(r = 1)*pi,p3s03 0303
{(r - 1)of — a2 H{(n — 1)03 — 02 }*{(n - 1)0} — 0%}

—(n — 1)2p2.0202
P230303

“ = m-Da-iHm-Dol-oip ¥
("‘ - 1)‘1’%2 zs"f"';a’g
{(n -1)o? — o2 H{(n ~ 1)o7 — 02 }*{(n — L)oF — a2 )2
w, = 2(n - l)pzad'zda _
T {(n-10i-o2}{(n-1)0i -2}
2(n — 1)%p3,pas03030s
{(n=1)of =2 }{(n — 1)o} - 02 }3{(n - 1)o% — 02,
w —(n —1)?p3;0303
3 p——vq

{(n ~1)o3 — a2 }*{(n — 1)o3 — o2,
2(n —1)*plp3s0i0303
{(n -1)o — a2 H(n — )0} — 02 }*{(n — 1)0} ~ o2,
we = —2(n — 1)*p12p33010303
{(n - 1o} -~ a2 H(n - 1)03 — 02 }*{(n ~1)03 ~ 02}
(n — 1)*p},p3.0i0303

I (CE T By ) 2 (OO V= B 3 2 (TR )
zn = 2(n—1)(o3 + "fx)z

212 = 2(n —1)py30203(03 +02)

zi3 = 2(n —1)p30303

Zie = 2(n —1)p12p35010203

Zis = 2(n —1)pjap3s0703

zn = (n—1){{(o3+ ”3,)(“: +0%) + p230303

Zis = 2(n —1)p20103(03 + a7)
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(n - 1){pupg;a'1¢r§as + pupzad’la’a(”g + "3,)}

)

T2
zs = 2(n — 1)p}yp23070205

zss = 2n~1)(0} +02)

zsa = 2(n—1)p1y0103(03 + 07,)

zss = 2(n —1)pj,0i0;

Za = (n—1){(o} + 02 )(0] + 02) + ply0i03}
z4s = 2(n ~1)puooz(o] + 02

Tgs = 2(n - 1)(0’? +0¢21 2

Finally,
Var(y/pkaily) = Y +X Y7 (A1)

where X is the same matrix that appeared in the previous equation, f is a scalar

and Y is a vector of elements as follows:

£ = (n — 1)*plapisoioios
{(m—1)oi -2 H(n —1)oZ ~ o2 P{(n ~ 1)o3 — o2,

g = —(n—-1) Plzl’za"'z "20'3

' {n-1ef-a2H(n 1o -t P{(n-1)o3 - a2 P
- 2(n — 1)°p},p2307 0305

¥ = [a—Del-tHm- 1ol -0V {(n-1)o — o2}
_ —2(n ~ 1)*p3p3s0i0303

¥ = = id-2HEm-1od -2 Plln-1)of — 03}
- 2(rn—-1) Pul’zs"lo'a o3

W= [a-Dei-a2Hm-1)o — o2} {(n-1)o% — o2}
- ~(n = 1)*p3,p3s0i03 "z"’s

¥ = m-0od-a2P{(n-1)oi— 02} {(n-1)a] — 02}




APPENDIX A. VARIANCE FORMULAE FOR MEASUREMENT ERROR 156

The variance formulae for the variance components in a three stage process will

now be given. For the first component, this formula is

Var(y/53(1 - %) = %Hm « HT

where f is a scalar, H is a vector of elements and § is a symmetric matrix as:

f = (n—1)o3 -0l I l)szs"z";
n n{(n ~ 1)o2 —
hl = ‘1‘
n
hz - —2(n - l)pzad’zds

n{(n —1)o3 — a2,
(n — 1)*piso303
n{(n —1)o3 — a2 }?
Q= 2(n-1)(o; +72)°

Q2 = 2(n —1)psa0203(03 +62)
Qs = 2(n —1)p30303

Q2 = (n—-1){(o7 + "'3,)("; + "ez,) + p3s0303}
Qs = 2(n —1)(03 + 02 )p20204

Qs = 2(n—1)(0F + a’fz )?

The second variance component has an approximate variance given by

Var(y/a25%s(1 - p%) ~ —K *®+ KT
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where

k
k;

ks

Finally,

_ (n—=1)?p}030} (n — 1)*p3,p3s07 0303
T a{n-1of-02} n{ln-1ei-a2H{(n-1)ei - 02}
2(n —1)pasoags 2(n — 1)*p,pasciodos
n{(rn—1)o3 -0} n{(n~1)of — o2 }{(n ~1)o3 — 0% }?
—(n — 1)*p};0303 2(n — 1)*p3,p3s07 0303

]

]

]

]

n{(n—1)oj -02}* " n{(n—~1)o} — a}lﬁ}f(n -1)oi -2}
~2(n — 1)*p12p3,010303
w{(n ~ Dol —oZ {(n— Vo — oL F
(n —1)*pl,p3s03030 g
n{(n - 1)af - 02 }*{(n - 1)o3 — 02 }*
(n —1){(03 +02,)(03 + 0%,) + p3s0303}

2(n — 1)pa30z03(03 + trf,

(n — 1){p12p23010303 + p12p330103(03 + 02)}
2(n —1)p}rp207 0203

2n - 1)(a} + %)

2(n — 1)praoya2(03 + "gz,)

2(n —1)p3,0)03

(r = 1){(of +02)(03 + 03) + piy0i03}

2(n — 1)p120102(0f + 02)

2(n —1)(o? + 031 2

the approximate variance of the third variance component is

Var(\/5353,2, ~ I}L +B« LT
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where @ is the matrix given in the previous expression, and f and L are as follows:

h

L

ls

b

]

(n — 1)*p1,p3s010303

n{(n —1)af — o2 H(n - 1)o3 ~ 0% }?
2(n — 1)°pspasaioios

n{(n - 1l)of — o2 H{(n ~1)of — 02 }?

—2(n — 1)‘P¥zl’§3°’f"; 3

n{(n - 1)o} ~a2 H{(n - 1)of ~ 02 }°
2(n — 1)°p12p3,010303

n{(n —1)of — a2 H{(n —1)o} - 02 }?
—(n ~ 1)*p},p3;010303

n{(n ~1)o} — a2 P*{(n - 1)a3 — 02}




Appendix B

Approximate Variance Formulae

for Semi-Naive Estimates: Three

Stages

The purpose of this appendix is to give results for the approximate variance for-
mulae for the semi-naive estimates of the cross-sectional data. Bécause the actual
formulae are lengthy, the Maple programs (Char et al, 1985) that were used to cal-
culate them will be given instead. The variance-covariance matrix of the random
variables in these expressions were found. The gradients for all the vectors were
then calculated at the mean values of these random variables. The appropriate ap-
proximate variance formula was then given by the product of the transpose of the
gradient, the variance-covariance matrix and the gradient. The formulae given here
are for the variance-covariance matrix, as well as for the gradients of the square

roots of the three components in a three stage process. They are analogous to the

159



APPENDIX B. VARIANCES FOR SEMI-NAIVE ESTIMATES

160

equations given in (3.10) for the naive estimates.

The variance-covariance matrix appeared as follows:

wvith(linalg)

bigvar := array(symmetric,1..14,1..14);

bigvar[1,1]
bigvar(1,2]
bigvar(1,3]
bigvar[1,4]
bigvar(1,5]

bigvar(1,6] :
bigvar[1,7] :
bigvar(1,8] :

bigvar([1,9]
bigvar(1,10]
bigvar[1,11]
bigvar[1,12]
bigvar([1,13]
bigvar(1,14]
bigvar[2,2]
bigvar(2,3]
bigvar([2,4]
bigvar[2,5]
bigvar[2,6]
bigvar(2,7]
bigvar[2,8]
bigvar([2,9]
bigvar[2,10]
bigvar(2,11]
bigvar(2,12]
bigvar(2,13]
bigvar[2,14]
bigvar(3,3]
bigvar([3,5]
bigvar(3,6]
bigvar(3,8]

:= sigmal~2/n;
rhol2*sigmal*sigma2/n;
rho12*rho23+sigmai*sigma3/n;
sigma1-2/((k+1)*n);
rho12+sigmal*sigma2/((k+1)*n);
rhoi12#rho23*sigmal*sigma3/ ((k+1)*n);
0;
0;
:= 0;

:= 0;
:= 0;
1= ~2+«k*mul*sigmal~2/(k+1);

;= ~2¢k*rho12*sigmai*sigma2+*mu2/ (k+1) ;
-2%k*rho12+rho23*sigmal*sigma3*mu3/ (k+1) ;
:= sigma2-2/n;

:= rho23*sigma2+sigma3/n;
rho12+sigmal*sigma2/((k+1)*n);
1= sigma2°2/((k+1)*n);

:= rho23*sigma2+«sigma3/((k+1)#*n);
= 0;

= 0;

= 0;

:=0Q;

:= 0;

:= -2¢ksrhol2*sigmal*sigma2*mul/(k+1) ;

;= -2¢k*mu2ssigma2-2/(k+1) ;

:= -2sk*rho23*sigma2«sigma3smu3/(k+1);
:= gigma3~2/n;

:= rhol2¢rho23*sigmal*sigma3/ ((k+1)#n);
:= rho23+sigma2+*sigma3/((k+1)*n);

:= sigma3~2/((k+1)#*n);

= 0;

:= 0;

-
=
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bigvar[3,9] := 0

bigvar(3,10]
bigvar(3,11]
bigvar([3,12]
bigvar(3,13]

bigvar([3,14] :
:= sigmal~2/((k+1)*n);

:= rhol2*sigmaissigma2/((k+1)“2*n);

:= thol2#rho23*sigmal*sigma3/((k+1) “2#n);
= 0;

= 0;

= 03

bigvar(4,4]
bigvar(4,5]
bigvar[4,6]
bigvar[4,7]
bigvar(4,8]
bigvar[4,9]
bigvar[4,10]
bigvar[4,11]
bigvar[4,12]
bigvar([4,13]
bigvar([4,14]

bigvar[5,5] :
bigvar([5,6] :
bigvar([5,7] :
bigvar(5,8] :
bigvar(5,9] :
bigvar[5,10] :
bigvar(5,11] :
bigvar([5,12] :
bigvar[5,13] :

bigvar(5,14] :
bigvar[6,6]
bigvar(6,7]
bigvar(6,8]
bigvar(6,9]

bigvar([6,12]

bigvar[6,13] :

bigvar[6,14]
bigvar(7,7]
bigvar([7,8]
bigvar(7,9]

= 0;

= 0;

:= -2%k*rho12¢rho23*sigmalssigma3smui/(k+1);
:= -2xksrho23+sigma2*sigma3smu2/(k+1) ;

= -2¢k+gigma3-2smu3/(k+1);

= 0;
= 0;
= 03
:= -2xk*rho12*sigmal*sigma2*mu2/(k+1);
:= -2xk*rhol2srho23+sigmal*sigma3+smu3/(k+1);
sigma2~2/((k+1)#*n);
rho23+*sigma2+sigma3/ ((k+1)“2#*n) ;
0;
0;
0;
0;
0;
-2#k*rho12*sigmal*sigma2*mui/(k+1);
0 -
-2#¢k*rho23*sigma2+sigma3*mu3/(k+1) ;
:= sigma3-2/((k+1)*n);
1= 0;

= 0;
= 0;
bigvar([6,10] :
bigvar[6,11] :

= 0;
= O;
:= -2wkerhol12¢rho23+*sigmal*sigma3*mu1/ (k+1);
= -2»ksrho23*sigma2+sigma3*mu2/(k+1);
= 0;
1= 2¢(n-1)*sigmal4;

:= 2¢(n-1)*rhol2%sigmal~3*sigma2;
:= 2¢(n-1)*rhol12"2*sigmal”2*sigma2”2;
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bigvar(7,10] := 2#rho12~2#rho23*sigmal~2+sigma2+sigma3*(n-1);
bigvar[7,11] := 2#rho12-2#rho23"2*sigmal~2#sigma3~2+(n-1);
bigvar(7,12] := 2+(n-1)*sigmal-4;

bigvar(7,13] := 2«(n-1)*rho12"2*sigmal~2*sigma2-2;
bigvar[7,14] := 2%rho12-2#rho23~2+sigmal-2+sigma3-2*(n-1);
bigvar[8,8] := (n-1)*(sigmal-2+sigma2-2 +
rhol2"2*sigmal“2*3igma2-2);

bigvar[8,9] := 2*(n~1)*rho12*sigmal*sigma2-3;

bigvar(8,10] := 2*(n-1)*rho12+*rho23*sigmal*sigma2-2*sigma3;
bigvar(8,11] := 2*(n-1)*rhol2+rho23~2*sigmal*sigma2+*sigma3-2;
bigvar(8,12] := 2+#(n-1)*rhol2*sigmal-3*sigma2;

bigvar(8,13] := 2*(n-1)*rho12*sigmal*sigma2-3;

bigvar(8,14] := 2*rho12#rho23-2+sigmal*sigma2+*sigma3~2+(n-1);
bigvar[9,9] := 2#(n-1)*sigma2-4;

bigvar[9,10] := 2%(n-1)*rho23+sigma2-3*sigma3;

bigvar[9,11] := 2*(n-1)*rho23~2¢sigma2-2+sigma3~2;
bigvar[9,12] := 2*(n-1)*rho12"2*sigmal~2*sigma2-2;
bigvar(9,13] := 2#(n-1)*sigma2-4;

bigvar[9,14] := 2*rho23°2*sigma2-2*sigma3~2+(n-1);

bigvar[10,10] := (n-1)*(sigma2-2+sigma3-2 +
rho23-2*sigma2-2+sigma3-2);

bigvar[10,11] := 2#(n-1)*rho23*sigma2*sigma3~3;

bigvar{10,12] := 2#(n-1)*rho12-2+rho23*sigmal~2*sigma2+sigma3;

bigvar[10,13] := 2*(n-1)*rho23*sigma2"3*sigma3;
bigvar[10,14] := 2¢(n~1)*rho23*sigma2*sigma3-3;
bigvar[11,11] := 2¢(n-1)*sigma3-4;

bigvar[11,12] := 2*(n-1)*rho12°2¢rho23"2¢sigmal~2+sigma3~2;
bigvar(11,13] := 2#(n-1)*rho23-2+sigma2-2+sigma3-2;

bigvar[11,14] := 2*(n~1)#*sigma3-4;

bigvar[12,12] := 2%((k+1)*n-1)*sigmal-4;

bigvar[12,13] := 2*rho12°2*sigmai-2*sigma2-2*(n-1) +
4*n"2+k~2*mul*mu2srho12+*sigmai*sigma2/((k+1) “2#n);
bigvar(12,14] := 2srho12-2%rho23-2¢sigmal-2*sigma3-2+(n-1) +
4*n"2+k~2*mul*mu3*rhol2+rho23*sigmal*sigma3/((k+1) “2#n) ;
bigvar(13,13] := 2+((k+1)*n-1)*sigma2~4;

bigvar[13,14] := 2*rho23-2*sigma2-2*sigma3-2+(n~1) +
4*n"2+k"2*mu2*mu3*rho23*sigma2+*sigma3/ ((k+1) “2#n);
bigvar{14,14] := 2«((k+1)*n-1)*sigma3°4;
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The gradient of the square root of the first component was given as follows:

gammahat := -(k+1)*n*((sx2x2s1 + n*(u2s1-u2s1s3)"-2)/(2*sx2x2s183) +
(sx3x3s1 + n*(u3si-u3sis4)~2)/(2+*sx3x3s1s84));

deltahat := (k+1) 2*n"2*(sx2x3s1 + n*(u2s1-u2sis3)*(u3dsi-u3sis4))
/ (8x2x2s81s3%8x3x3s184) ;

percfour := (3#n~2+6*n*gammahat+deltahat=2)/(n"2*percthree-(1/3));
rho23hat := percthree”(1/3) + (1/9)*percfour + deltabat/(3*n);
firstcomp := sx3x3s1s4/((k+1)*n)*(1-rho23hat~2);

£ := sqrt(firstcomp);

gradf := ([diff(f,ulsl) ,diff(f,u2s1) ,diff(f,u3s1),diff(f,uisis?2),
diff(f,u2s1s3) ,diff(f,u3s1sq),diff(f,sxix1s1) ,diff(f,sx1x2s1),
diff(£,sx2x2s1),diff (f,sx2x3s1) ,diff (f,sx3x3s1) ,diff(f,sxix1s1s2),
diff(f,sx2x2s1s3) ,diff (f,sx3x3s1s4)];

ulsl := muil;

u2si := mu2;

u3sl := mu3;

ulsis2 := mui;

u2s1s3 := mu2;

u3sis4 := mu3;

sx1x1s81l := (n-1)#*sigmal~2;
sx1x2s1 := (n~1)*rhol2*sigmai*sigma?2;
sx2x2s81 := (n~1)*sigma2°2;
sx2x3s1 := (n~1)*rho23+*sigma2+sigma3;
sx3x3s81 := (n-1)#*sigma3°2;

sxi1x1s1s82 := ((k+1)*n-1)*sigmal-2;
sx2x28183 := ((k+1)*n-1)*sigma2-2;
sx3x3s1s84 := ((k+1)*n-1)*sigma3~2;
evalm(gradf);

The gradient of the square root of the second component was given by:

alpha := ~(k+1)*n*((sxixisl + n*(uisi-ulsis2)~2)/(2*sxix1s1s2)

+ (3x2x2s1 + n*(u2s1-u2s1s83)~2)/(2*sx2x281s3));

beta := (k+1)“2*n"2*(sx1x2s1 + n*(uisi-ulsis2)=*
u2si-u2s1s3))/(sxixis1s2+sx2x2s1s3);

percone := (1/27)sbeta*(18#n"2+9*n*alpha+beta~2)/n"3 +
(1/9)*(~3*n"4-18*n"3*alpha+33*n-2*beta“2-36+n"2*alpha~2+
24*n*alpha*beta“2+3*beta~4-24sn*alpha“3-3*alpha~2*beta~2)“(0.5)/n"2;
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perctwo := (3*n~2+6*n*alphatbeta~2)/(n"2¢percone”(1/3));

rhoi2hat := percone”(1/3) + (1/9)*perctuwo + beta/(3#*n);

gammahat := -(k+1)#*n*((sx2x2s1 + n*(u2si-u2s1s3)"~2)/(2*sx2x2s1s3) +
sx3x3s1 + n*(u3si-u3sisq4)"2)/(2*sx3x3s1s4));

deltahat := (k+1) “2*n~2%(sx2x3s1 + n*(u2s1-u2sis3)*(u3si-u3sis4))
/(8x2x281s3*sx3x3s8184) ;

percthree := (1/27)*deltahat*(18+n"2+9*n*gammahat +
deltahat~2)/n~3 + (1/9)#(-3*n"4 - 18*n"3*gammahat +
33*n"2*deltahat~2 - 36*n"2sgammahat~2 + 24*n*gammahat*deltahat~2
+ 3xdeltahat"4 - 24*n*gammahat~3 - 3*gammahat“2+*deltahat"2)
~(0.5)/n"2;

percfour := (3*n"~2+6*n*gammahat+deltahat-2)/(n"2*percthree~(1/3));
rho23hat := percthree~(1/3) + (1/9)*percfour + deltahat/(3*n);
seccomp := 8x3x3s134/((k+1)*n)*rho23hat“2*(1-rhoi2hat~2);

f := sqrt(seccomp);

gradf := [diff(f,ulsl),diff(f,u2s1),diff(f,u3s1),diff(f,uisis2),
diff(f,u2s1s83) ,diff(f,u3s1s4) ,diff(f,sx1x1s1) ,diff(f,sxix2s1),
diff(f,sx2x2s1) ,diff (£,sx2x3s1) ,diff (£,sx3x3s1),diff(f,sx1ix1s1s2),
diff(f,sx2x2s1s3),diff (£,sx3x3s1s4)];

ulsl := mul;

u2sl := mu2;

u3sl := mu3;

ulsis2 := mui;

u281s3 := mu2;

u3sis4 := mu3;

sxixisl := (n-1)#*sigma1-2;

sx1x281 := (n-1)*rhoi2#sigmai*sigma2;

sx2x2sl := (n-1)*sigma2-2;

sx2x3s81 := (n-1)*rho23*sigma2¢sigma3;

sx3x3s1 := (n-1)*sigma3-2;

sxixis182 :* ((k+1)*n-1)*sigmal~2;

sx2x28183 := ((k+1)*n-1)*sigma2-2;

sx3x3s184 := ((k+1)*n-1)*sigma3-2;

evalm(gradf);

The gradient of the square root of the third component is given by:

alpha := -(k+1)*n#*((sx1x1s1 + n*(ulsi-uls1s2)~2)/(2¢sxix1s1s82) +
(sx2x2s81 + n*(u2s1-u2s1s3)-2)/(2*sx2x2s1s83));
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beta := (k+1) “2sn~2+(sx1x2s1 + n*(ulsi-ulsis2)*(u2si-u2s1s3))
/(sxix1s182#8x2x2s8183);

percone := (1/27)#*betas(18+n~2+9*n*alphatbeta~2)/n"3 +
1/9)*(-3*n"4-18*n"3%alpha+33+n~2*beta"2~36#n"2+alpha~2+
4s*n*alphasbeta-2+3*beta"4-24*n*alpha~3-3+alpha“2*beta"2)
~(0.5)/n"2;

perctwo := (3*n~2+6*nsalphatbeta“2)/(n~2¢percone-(1/3));
rhoi2hat := percone~(1/3) + (1/9)*perctwo + beta/(3+n);
gammahat := -(k+1)#*n*((sx2x2s1 + n*(u2s1-u2s1s3)-2)/
(2+8x2x28183) + (sx3x3s1 + n*(u3s1-u3sis4)"2)/(2+#sx3x3s1s84));
deltahat := (k+1) " 2*n~2*(sx2x3s1 + n*(u2s1-u2sis3)=
(u3s1-u3s1s4))/(sx2x2s1s3*3x3x3s81s4) ;

percthree := (1/27)*deltahat*(18+*n~2+9*n*gammahat +
deltahat~2)/n"3 + (1/9)*(-3*n"4 - 18*n"3sgammahat +
33*n"2*deltahat”2 - 36*n"2*gammahat~2 + 24*n*gammahat*
deltahat~2 + 3#deltahat”4 - 24*n*gammahat-3 -
3*gammahat-2*deltahat~2)~(0.5)/n"2;

percfour := (3*n~2+6*n*gammahat+deltahat-2)/(n"2*percthree-(1/3));
rho23hat := percthree~(1/3) + (1/9)*percfour + deltahat/(3#*n);
thirdcomp := sx3x3s154/((k+1)#*n)*rho23hat"~2*rhoi12hat"~2;

f := sqrt(thirdcomp);

gradf := [diff(f,ulsl),diff(f,u2s1),diff(f,u3s1),diff(f,ulsis2),
diff (f,u2s1e3) ,diff(f,u3s1s4),diff (f,sx1x1s1) ,diff(f,sx1x2s1),
diff(f,sx2x2s1),diff(f,sx2x3s1) ,diff(f,sx3x3s1) ,diff(f,sxlixisis2),
diff(f,sx2x2s8183) ,diff(f,sx3x3s184)];

ulsl := mui;

u2sl := mu2;

u3sl := mu3;

ulsis2 := mui;

u2s1s3 := mu2;

u3sis4 := mu3;

sxixisl := (n-1)*sigma1-2;

sx1x2s1 := (n~1)*rhoi12*sigmaissigma2;

sx2x281 := (n~1)#*sigma2-2;

sx2x3s1 :* (n-1)*rho23*sigma2+ssigma3;

sx3x3s1 := (n-1)*sigma3~2;

sx1x1s182 := ((k+1)*n~1)#*sigmal~2;

sx2x2s183 := ((k+1)*n-1)*sigma2-2;

sx3x3s184 := ((k+1)*n-1)*sigma3~2;
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evalm(gradf) ;



Appendix C

Simulation Results for
Cross-sectional and Longitudinal

Data

The purpose of this appendix is to give the results of the simulations done in chapter

three. Please see that chapter for a complete description of the simulation studies.
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k 1 2 5
Pz L [ M| H | L | M|®|L|M] ®
P12 Est.

L | Real | 80 | 50 | .20 | .80 | 50 | 20 | 80 | 50 | 20
MLES | .78 | 46 | 17 | .73 | 44 | 18 | 75 | 47 | .18
(5123) | (.25) | (-16) | (.06) | (-24) | (.14) | (.06) | (:22) | (-15) | (.06)
NEFS | .78 | 47 | 18 | 76 | 45 | .19 | 78 | 47 | 20
(21) | (.15) | (.06) | (.17) | (.15) | (.07) | (17) [ (.15) | (.08)
SNES | .78 | 49 | 20 | .76 | 47 | 21 | 78 | 51 | .22
(-20) | (-15) | (.06) | (-18) | (.14) | (.08) | (.16) | (-14) | (.06)
MLES | 77 | 46 | 18 | 76 | 45 | .18 | 77 | 49 | .19
(5123-53) | (.20) | (.16) | (.05) | (.18) | (14) | (:06) | (.17) | (.14) | (.07)
M| Real | .80 | 50 | 20 | 80 | 50 | 20 | 80 | 50 | 20
MLES | 71 | 45 | 17 | 70 | 45 | 18 | .75 | 49 | 17
(S123) | (.24) | (.16) | (.06) | (.22) | (15) | (.06) | (.25) | (.16) | (.06)
NEFS | .72 | 49 | 19 | .75 | 46 | .21 | .18 | 52 | 21
(.:20) | (.16) | (.08) | (.18) | (.15) | (.08) | (.17) | (.16) | (.088)
SNES | 73 | 51 | 21 | .76 | 48 | 23 | 79 | 54 | .21
(-19) | (-16) | (.08) | (.16) { (.13) | (.07) | (.16) | (.15) | (.07)
MLES | 72 | 48 | 18 | 75 | 46 | 19 | 718 | 52 | 18
(5123-53) | (.19) | (.15) | (.06) | (.16) | (.13) | (.06) | (17) | (.15) | (.06)
H| Real | 8 | 5 | 2 | 8 | 5 2 8 5 2
MLES | .72 | 47 | 18 | 74 | 46 | 18 | 67 | 45 | .18
(S123) | (-23) | (-15) | (:07) | (:24) | (18) | (.06) | (.25) | (.17) | (.06)
NEFS | .75 | 48 | 20 | 76 | 49 | 19 | 72 | 47 | 19
(.20) | (-16) | (.10) | (.18) | (.16) | (.07) | (.18) | (.16) | (.09)
SNES | .76 | .50 | 21 | 77 | 51 | 21 | 74 | 48 | 21
(-19) | (-15) | (.08) | (-17) | (.16) | (.06) | (.17) | (.14) | (.06)
MLES | .75 | 47 | 18 | 76 | 48 | 18 | .73 | 46 | .18
(5123-53) | (.19) | (.14) | (.07) | (18) [ (.15) | (.06) | (18) | (.14) | (.06)

Table C.1: Average of 100 values of first component of each run where n = 20. The
figures in brackets represent the standard deviation for these values



APPENDIX C. SIMULATION RESULTS FOR CROSS-SECTIONAL DATA 169

k 1 2 5

pas L | M| H L M| H L M| H

P12 | Estimate
L Real 80 | 50 | 20 | 80 | 50 | .20 | .80 | 50 | 20
MLES | .76 | 47 | 19 | .79 | 48 | .19 | .80 | 46 | .19
(S123) | (-18) [ (.09) | (.04) | (.16) | (.10) | (.04) | (.19) | (.10) | (.04)
NEFS 77 | 49 | 20 | 18| 49| 20 | 80 | 49 | 20
(-15) { (.09) | (.05) | (.12) | (-10) | (.06) | (.12) { (.10) | (.05)
SNES d7 | 49 | 21 | 79 | 49 | 21 | 81 | 49 | 21
(-15) | (.09) { (-05) | (.12) [ (.09) | (.05) | (.11) | (.08) | (.04)
MLES | .77 | 48 | 20 | 79 | 48 | 19 | 80 | .48 | 20
(S123-53) | (.15) | (.09) | (-04) | (.12) | (.09) | (.04) | (.12) | (.09) | (.04)
M | Real 80 | 50 | 20 | 80 | 50 | 20 | 80 | .50 | .20
MLES | .76 | 47 | .19 | 79 | 47 | 19 | .75 | .49 | 20
(S123) | (-16) | (-10) | (.04) | (.14) | (-10) | (.04) | (-15) | (.09) | (.04)
NEFS 78 | 48 | 20 | .79 [ 49 | 20 | .78 | 49 | .21
(-15) | (-10) | (-05) | (-12) | (-10) | (.05) | (.12) | (.09) | (.05)
SNES 78 | 49 | .21 | 80 | 50 | 21 | .78 | 50 | .21
(-15) | (-09) | (-05) | (-11) [ (.09) | (-04) | (.11) | (.08) | (.04)
MLES | .78 | 48 | .19 | .79 | 48 | .19 | .77 | 50 | .20
(S123-S3) | (.15) | (.09) | (.04) | (-11) | (-09) | (-04) | (-11) | (.08) | (.04)
H Real 8 5 2 8 5 2 8 5 2
MLES | .76 | 47 | 29 | 77 | 48 | .19 | 76 | 47 | 19
(S123) | (.16) | (.08) | (.04) | (-14) | (.09) | (-04) { (-15) | (.09) | (.04)
NEFS 77| 49 | 19 | 80 | 49 | 20 | .78 | 49 | 20
(-14) | (.09) | (.05) | (.12) | (-10) | (.05) | (-12) | (.10) | (.05)

SNES 78 | 49 | 20 ) 80 | 50 | .21 | .78 | .49 | .20
(-13) | (.08) | (.04) | (.12) | (.09) | (.05) | (.10) | (.09) | (.04)
MLES | 77 | 48 | 19 | 80 | 49 | 20 | .78 | 49 | .19
(5123-S3) | (.13) | (.08) | (.04) | (.12) | (.09) | (.04) | (.20) | (.09) | (.04)

Table C.2: Average of 100 values of first component of each run where n = 50. The
figures in brackets represent the standard deviation for these values
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k 1 2 . 5
P23 L M H L M H L M H
P12 | Estimate

L | Real | 16 | 40 | 64 | .16 | 40 | 64 | .16 | 40 | 64
MLES | .18 | 38 | 56 | 16 | .41 | 57 | 17 | 43 | 61
(S123) | (.16) | (22) | (19) | (12) | (:23) | (.23) | (.12) | (:23) | (.26)
NEFS | 17 | 39 | 57 | 27 | 40 | 59 | .17 | 39 | 61
(14) | (:20) | (17) | (12) | (:19) | (.16) | (.11) | (.15) | (.17)
SNES | 18 | 38 | 57 | 17 | 39 | 59 | 17 | 38 | 60
(13) | (:20) [ (17) | (13) | (.18) | (.16) | (.11) | (.13) | (.18)
MLES | .18 | 39 | 59 ( 18 | .40 [ 60 | .18 | .39 | .62
(5123-53) | (.14) | (:21) | (A7) | (13) | (.18) | (.17) | (.12) | (.14) | (.16)
M| Real | 10 | 25 | 40 | 10 | 25 | 40 | 10 | 25 | 40
MLES | 11 | 22 | 37 {09 | 25 | 37 | .11 | 23 | .33
(5123) | (.11) | (-13) | (.15) | (.08) | (.15) | (.15) | (.11) | (.12) | (.14)
NEFS | .11 | 23 | 38 | 10 | 24 | .40 | .11 | 23 | .38
(:09) | (11) | (-13) | (.08) | (-12) | (.14) | (-09) | (-20) | (.15)
SNES | 11| 23| 38 | 10 | 24 | 40 | 11 | 24 | .39
(.10) | (.11) [ (-12) | (:08) | (-11) | (:13) | (.08) | (-10) | (.14)
MLES | .11 | 23 | 39 | 20 | 24 | 40 | .11 | .24 | .39
(S123-S3) | (.10) | (.11) | (.13) | (.08) | (.12) | (.13) | (.08) | (.120) | (.19)
H | Real | 04 | 10 | 16 | 04 | .10 | .16 | .04 | .10 | .16
MLES | 05 | .20 | .14 | 05 | 09 | 14 | 05 | 20 | .15
(5123) | (.04) | (.05) | (.05) | (.04) | (.06) | (.05) | (.05) | (.06) | (.06)
NEFS | .04 | 10 | .15 | .05 | 09 | 15 | .05 | .10 | .16
(.04) | (.05) | (.06) | (.04) | (.05) | (.05) | (.04) | (.05) | (.07)
SNES | 05 | a1 | 27 [ 05 | 20 | a7 | 06 | 21 | .17
(.05) | (.06) [ (.06) | (.04) | (.05) | (.06) | (.04) | (.05) | (.06)
MLES | 05 | 10 | .14 | 04 | .09 | 14 | 05 | .10 | .16
(5123-83) | (.04) | (.06) | (.06) | (.04) | (.05) | (.05) | (.04) | (.05) | (.06)

Table C.3: Average of 100 values of second component of each run where n = 20.
The figures in brackets represent the standard deviation for these values
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k 1 2 5
L M H L M H L M H

p12 | Estimate
L | Real 16 | 40 | 64 | .16 | 40 | 64 | .16 | 40 | 64
MLES | .17 | 37 | 61 | 18 | 41 | 59 | 16 | .39 | .63
(S123) | (.10) | (.13) | (.16) | (.10) | (.15) | (-25) | (.10) | (.15) | (.16)
NEFS A7 | 38 | 61 | 17 | 40 | 61 | .16 | .40 | .63
(-09) | (-.11) | (.13) | (.08) | (-11) | (-11) | (.09) | (.11) | (.10)
SNES 16 | 38 | 60 | .17 | 40 | 61 | .15 | .41 | .63
(-08) { (-11) | (-13) | (.08) | (-10) | (.11) | (.08) | (.10) | (.10)
MLES | 17 | 39 | 62 | .17 | 41 | 62 | .15 | 41 | .64
(S123-S3) | (-09) | (-11) | (.13) | (.08) | (.10) { (.11) | (.08) | (.10) | (.09)
M | Real 0| 25 [ 40 | 10 | 25 | 40 | 10 | 25 | .40
MLES 0 | 24 | 38 | 10 | 23| 38 | .10 | .26 | .38
(S123) | (.07) | (.08) | (.09) [ (.06) | (.08) | (.07) | (-06) | (.09) | (.08)
NEFS 10 | .25 | 39 | 10 | 24 | 39 | .11 | 26 | .40
(-06) | (-07) | (.08) | (.05) [ (.07) | (.08) | (.06) | (.07) | (.08)
SNES 0 { 25 | 39 | 10 | 24 { 39 | a1 | 26 | .39
(-06) | (.07) | (-08) [ (.04) | (.07) | (.07) | (.06) { (.06) | (.08)
MLES 0 | 25 | 39 | 10| 24 | 39| 11| 26 | .39
(S123-S3) | (.06) { (.07) | (.08) | (.05) | (.07) | (.07) | (.06) | (.06) | (.08)
H Real 04| .10 16 | 04 | 10 | .16 | .04 | .10 | .16
MLES | .05 | .10 | .15 | 04 | .10 | .15 | .04 | .10 | .15
(S123) | (.03) | (.03) | (.04) | (.02) | (.04) | (.04) | (.02) | (.03) | (.04)
NEFS 05| .10 | .15 | .04 | 10 | .26 | .04 | .10 | .16
(-02) | (.03) | (.04) | (.02) | (-03) | (.04) | (.02) | (.03) | (.03)
SNES 05 | .11 | .16 | .04 | 11 | 16 | 04 | .10 | .16
(-02) | (.03) | (.04) | (-02) [ (-03) | (.04) [ (.02) | (.03) | (.03)
MLES 05| .10 | .15 | .04 | 10 ( .16 | .04 | .10 | .16
(5123-S3) | (.02) | (.03) | (-03) | (.02) | (.03) | (.04) | (.02) | (.03) | (.03)

Table C.4: Average of 100 values of second component of each run where n = 50.
The figures in brackets represent the standard deviation for these values
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k 1 2 5
P2 L [M[H | L M|H|[L|[M]H
p12 | Estimate

L Real 04 [ 0] 16 | 04| 101 16| 04| .10 | .16
MLES | 05 | .12 | .18 | 05 | .11 | .19 | 05 | .14 | .17
(S123) | (-07) | (-10) | (-19) | (.06) { (.10) | (-18) | (.06) | (.12) | (.15)
NEFS | 05 | .11 ( .18 | .05 | .11 | .19 | 05 | 13 | .17
(:07) | (-09) | (.17) | (-05) | (.09) | (-16) | (-05) | (.10) | (.13)
SNES | 05 [ .11 | .16 | 05 | .10 | .18 | .05 | .11 | .17
(:05) | (-09) [ (.14) | (-.05) | (.08) | (-13) | (.04) | (.08) | (.11)
MLES | 05 ( 13 | .18 | 05 | 11 | 20 | 05 | .12 | .18
(S123-S3) | (.06) | (-11) | (.16) | (.05) { (-09) | (-13) [ (.05) | (.09) | (.12)
M Real 0 | 25 ] 40 | .10 | 25 | 40 | 10 | 25 | .40
MLES | 13 | 26 | 40 | .12 | 26 | 41 | .12 | 27 | 40
(S123) | (-11) | (.18) | (-27) | (-12) | (-16) | (-25) | (-13) | (.15) | (.24)
NEFS | 12 | 26 | 39 | 12 | 25 | 42 | 12 | 26 | .42
(-10) [ (-14) | (-22) | (-10) [ (-13) | (-19) [ (-10) | (.12) | (.26)
SNES 10 [ .24 | 36 | 11 | 23 | .38 | .11 [ 23 | .41

(-08) | (.12) | (.19) | (.08) | (-10) | (-14) | (.08) | (.09) | (.13)
MLES | .12 | 27 | 41 | 12 | 26 | 43 | .12 | 25 | 44
(5123-53) | (.10) | (.12) | (.18) | (.09) { (.11) | (.26) | (.09) | (.10) | (.14)
H Real 6 | 40 ] 64 | 16 | 40 | 64 | .16 | 40 | .64
MLES | 19 | 41 | 59 | 20 | 41 | 65 | 21 | 43 | .66
(S123) | (-18) | (-22) { (.29) | (-16) | (-28) | (-30) | (-.17) | (.25) | (.30)
NEFS | .18 | 40 | 61 | 19 | 41 | 64 | 21 | 42 | .64
(-15) | (-18) | (-21) | (.13) | (-21) | (-19) | (.14) | (.18) | (.15)
SNES | .16 | 38 [ 58 | .18 | 38 | 60 | .20 | 41 | 62
(-13) | (-16) | (.18) | (.11) | (.16) | (-15) | (.13) | (.14) | (.11)
MLES | .18 | 42 | 65 | 19 | 41 | 65 | .21 | .43 | 665
(5123-83) | (.14) | (A7) [ (17) | (12) | (17) | (.15) | (14) | (14) | (-12)

Table C.5: Average of 100 values of third component of each run where n = 20.
The figures in brackets represent the standard deviation for these values
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k 1 2 5

P2 L M H L M H L M H

p12 | Estimate
L | Real Value | .04 .10 .16 04 | .10 .16 .04 10 .16
MLES 04 A1 | .18 .05 11 A7 | .05 A1 18
(5123) [ (-03) | (.08) | (.11) | (.04) | (.07) | (.10) | (.04) | (.07) | (.11)
NEFS .04 A1 18 .05 .10 A7 | .05 A1 A7
(.03) | (:07) | (.10) | (.04) | (.07) | (.08) | (.04) | (.06) [ (.09)
SNES .04 A1 | 17 .05 | .10 A7 | .04 A1 .16
(-03) | (.06) | (.09) | (.03) | (.06) | (.07) | (.03) | (.05) | (.08)
MLES .04 A1 1 18 05 | .10 A8 | .04 A1 A7
(5123-S3) | (.03) | (.07) | (.09) | (.03) | (.06) | (.07) | (.03) | (.06) | (.08)
M Real .10 .25 .40 .10 .25 40 | .10 .29 40
MLES A1 .26 42 A1 .25 .40 .10 27 .40
(5123) | (.08) | (.11) | (.18) | (.07) | (.11) | (.16) | (.06) | (.11) | (.17)
NEFS 11 26 | 42 A1 | .25 40 .10 .26 40
(-06) | (-10) | (.14) | (.06) | (.10) | (.12) | (.06) | (.08) | (.11)
SNES .10 .26 41 10 24 39 | .10 .25 40
(:05) | (:09) | (.12) | (.05) | (.08) | (.10) | (.05) | (.07) | (.08)
MLES 11 27 | 43 A1 .25 41 | .11 .26 41
(5123-53) | (-05) | (.09) | (.11) | (.05) | (.08) | (.10) | (.06) | (.07) | (-09)
H Real .16 .40 .64 .16 40 .64 .16 .40 .64
MLES .19 40 .64 .16 39 .64 | .18 .40 .63
(S123) | (-11) | (13) | (.18) | (10) | (:14) | (29) | (12) | (.14) | (.28)
NEFS .18 4l | .64 A7 39 .65 .18 41 .65
(:20) | (1) | (.14) | (.09) | (.11) | (.13) | (.20) | (.10) | (.09)

SNES 18 40 | 62 .16 39 .64 | .17 40 .64
(-08) | (:09) | (12) | (.07) | (.09) | (-11) | (.08) | (.08) | (.07)
MLES .19 42 65 A7 | 40 .66 18 42 .65
(5123-53) | (.09) | (.10) | (.11) | (.08) | (.10) | (.10) | (.08) | (.08) | (.06)

Table C.6: Average of 100 values of third component of each run where n = 50.
The figures in brackets represent the standard deviation for these values
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1

2

3

P23

mom——

L

M

H

L

M

H

L

M

H

P12 C-i

g8
L | 9
90

96.84
94.16
88.92

96.52
93.16
87.68

96.52
92.72
88.04

97.36
93.84
88.48

96.64
93.80
88.28

97.52
94.16
88.60

96.80
93.68
88.68

97.32
94.04
88.96

96.92
93.80
88.56

98
M| 9
90

97.08
93.92
87.88

96.76
93.64
88.12

96.32
93.04
88.20

97.32
94.28
88.92

97.16
93.56
88.40

96.64
92.56
87.28

97.36
94.12
88.84

96.68
93.68
87.84

96.60
93.04
87.84

98
H | 95
90

97.56
94.28
89.08

95.64
92.80
87.08

95.44
92.04
86.44

98.08
94.96
89.20

97.12
94.00
88.76

97.00
93.76
88.80

97.28
94.20
89.08

97.12
94.16
89.16

96.88
94.08
88.76

Table C.7: Further simulation to check approximate variance formulas. Naive
estimates, first component, based on 2500 runs, n=50. Table entries are percent of

samples including the true parameter value.

k

1

2

5

P23

L

M

H

L

M

H

L

M

H

p1z | C.L

98
L {95
90

97.72
94.28
89.84

98.00
94.80
89.00

96.64
92.48
87.68

97.20
93.92
88.52

97.88
95.24
90.32

97.48
94.52
88.48

97.20
93.64
88.56

98.04
94.52
89.72

97.24
94.40
89.04

98
M| 95
90

97.92
94.48
89.16

97.28
94.16
89.44

96.64
93.48
88.48

97.60
94.08
88.68

97.96
94.88
89.12

96.92
93.60
88.56

97.72
94.16
89.32

97.68
94.00
88.84

96.88
93.40
87.72

98
H| 9
90

97.56
94.80
89.84

96.80
93.20
88.40

97.08
93.64
88.48

98.00
94.68
89.48

97.04
93.68
88.84

96.52
93.16
87.76

97.72
95.16
89.48

97.72
95.24
90.24

95.96
92.36
88.08

Table C.8: Further simulation to check approximate variance formulas. Naive
estimates, second component, based on 2500 runs, n=50.
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k 1 2 5

e — e ———————————————

P23 L M H L M H L M
P12 ClL
98 |95.80 [97.04 | 97.32 | 96.04 | 97.16 | 97.64 | 96.20 | 97.36 | 97.00
L | 95 ]92.60 | 93.24 | 94.40 | 93.32 | 94.28 | 94.28 | 92.80 | 94.56 | 93.44
90 | 87.68 {87.52 | 89.72 | 88.76 | 89.20 | 89.52 | 88.36 | 89.12 | 88.80
98 [97.04 [97.32 | 97.16 | 97.24 | 97.32 | 97.72 | 97.16 | 97.24 | 97.60
M| 95 |94.00 | 94.24 | 94.32 | 93.96 | 94.16 | 94.44 | 94.08 | 94.08 | 94.20
90 | 88.96 | 88.64 | 89.00 | 88.20 | 88.56 | 88.56 | 89.20 | 89.60 | 89.28
98 | 97.76 | 97.68 | 97.28 | 97.68 | 98.28 | 97.96 | 97.88 | 97.88 | 97.60
H | 95 |94.68 | 94.84 | 94.20 | 93.76 | 95.08 | 94.44 | 94.64 | 94.68 | 94.96
90 |89.72 | 89.32 | 89.44 | 89.04 | 90.16 | 89.08 | 90.08 | 89.16 | 90.20

Table C.9: Further simulation to check approximate variance formulas. Naive
estimates, third component, based on 2500 runs, n=>50.

k 1 2 5

———

P23 L M H L M H L M H
P12 C.L
98 | 99.68 | 99.96 | 100.00 | 99.48 | 99.96 | 100.00 | 98.60 | 99.48 | 100.0
L | 95 | 98.84 | 99.76 | 100.00 | 98.24 | 99.72 | 100.00 | 96.44 | 99.04 { 99.92
90 | 96.12 | 99.24 | 100.00 | 95.32 | 98.80 | 100.00 | 92.08 | 97.24 | 99.92
98 | 99.72 | 100.0 | 100.00 | 99.68 | 99.96 | 100.00 | 98.88 | 99.76 | 99.96
M | 95 |99.00|99.84 | 100.00 | 98.40 | 99.80 | 100.00 | 97.16 | 99.16 | 99.88
90 | 96.00 | 99.60 { 100.00 | 95.20 | 98.88 | 100.00 | 92.96 | 96.96 | 99.72
98 {99.72 | 100.0 | 100.00 | 99.60 | 99.88 ( 100.00 | 98.88 | 99.92 | 100.0
H | 95 | 98.64 | 99.80 | 100.00 | 98.60 | 99.72 | 100.00 | 96.80 | 99.16 | 99.92
90 | 96.40 { 99.24 | 100.00 | 95.32 | 98.76 | 100.00 | 92.52 | 97.72 | 99.88

Table C.10: Further simulation to check approximate variance formulas. Semi-naive
estimates, first component, based on 2500 runs, n = 50
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k 1 2 5

ps | L M| H | L [M[H|L]|[M]H
p1z | CL
98 |96.68 | 95.72 | 95.16 | 95.92 | 96.84 | 96.96 | 96.44 | 96.72 | 96.40
L | 95 [92.56 | 90.44 | 90.68 | 92.08 | 93.12 | 93.20 | 93.36 | 92.72 | 92.56
90 | 87.36 | 83.76 | 85.32 | 86.40 | 86.36 | 87.32 | 88.36 | 86.68 | 87.84
98 |96.76 | 96.96 | 96.68 | 97.00 | 97.92 | 97.08 | 97.40 | 97.76 | 97.04
M | 95 |94.04 [ 94.16 | 93.76 | 93.28 | 95.12 | 93.72 | 94.20 | 94.44 | 92.88
90 | 89.16 | 89.24 | 89.08 | 88.84 | 89.52 | 89.52 | 89.08 | 88.64 | 88.44
98 [ 99.60 | 99.88 | 99.76 | 99.44 | 99.76 | 99.88 | 99.48 | 99.96 | 99.92
H [ 95 |99.08 | 99.64 | 99.48 | 98.96 | 99.76 | 99.72 | 98.52 | 99.72 | 99.52
90 {98.36 | 99.52 | 99.28 | 97.64 | 99.40 | 99.36 | 96.24 | 98.96 | 99.04

Table C.11: Further simulation to check approximate variance formulas. Semi-naive
estimates, second component, based on 2500 runs, n = 50

k 1 2 5

P23 L | M| H | L | M| H | L | M| H
P12 ClL
98 |95.96 | 96.68 | 97.36 | 97.00 | 97.24 | 98.24 [ 97.20 | 97.40 | 97.40
L | 95 |92.40 | 93.52 | 94.36 | 94.44 | 94.00 | 95.72 | 94.00 | 94.36 | 94.20
90 | 87.68 | 87.28 | 89.64 | 90.00 | 89.84 | 90.52 | 88.80 | 88.80 | 90.12
98 | 97.72 | 98.80 | 99.28 | 97.48 | 98.96 | 99.72 | 97.76 | 98.28 | 99.40
M| 95 | 94.40 | 96.32 | 97.76 | 94.80 | 95.96 | 97.76 | 94.36 | 95.36 | 97.84
90 [89.96 | 91.44 | 94.60 | 90.64 | 91.28 | 94.24 | 90.12 | 90.96 | 94.64
98 | 98.60 | 99.64 | 99.96 | 98.80 | 99.76 | 100.00 | 97.44 | 99.56 | 100.00
H | 95 | 95.96 | 98.52 | 99.80 | 95.48 | 98.84 | 99.92 | 95.12 | 98.24 | 99.84
90 | 91.56 | 96.20 | 99.40 | 91.04 | 95.92 | 99.16 | 91.20 | 94.96 | 99.08

Table C.12: Further simulation to check approximate variance formulas. Semi-naive
estimates, third component, based on 2500 runs, n = 50
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Run1 Run 2 Run 3

Naives | Coverage | Width | Coverage | Width | Coverage | Width
Approx.
1st | 98 96.9 0.6060 97.1 0.2199 96.5 0.2283
94 93.4 0.4900 93.2 0.1778 92.4 0.1846
90 90.0 0.4285 89.7 0.1555 88.4 0.1614
2nd | 98 98.0 0.1020 96.7 0.1763 97.2 0.4555
94 93.1 0.0825 914 0.1425 91.9 0.3683
90 89.3 0.0722 874 0.1247 87.6 0.3221
3rd | 98 97.3 0.4146 97.5 0.5442 98.1 0.3906
94 92.6 0.3352 93.5 0.4400 93.6 0.3158
90 88.3 0.2931 88.7 0.3848 90.5 0.2762

Boot.
1st | 98 96.8 0.6402 97.6 0.2438 97.9 0.2550
94 91.3 0.4976 93.5 0.1854 93.3 0.1953
90 87.3 0.4305 88.8 0.1591 88.6 0.1676
2nd | 98 98.3 0.1135 97.1 0.1949 96.6 0.4830
94 94.0 0.0854 92.6 0.1480 92.0 0.3756
90 89.6 0.0734 88.3 0.1276 87.3 0.3258
3rd | 98 97.5 0.4333 97.5 0.5828 99.0 0.3970
94 93.6 0.3386 929 0.4538 95.2 0.3156
90 88.6 0.2947 88.2 0.3926 90.5 0.2749

Table C.13: Three runs done to compare the approximate variance formulae with
the bootstrap, for the naive estimates. Longitudinal sample size = 50.
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Run 1 Run 2 Run 3
Semi-Naives | Coverage | Width | Coverage | Width | Coverage | Width
Approx.
1st 98 99.7 0.7307 | 100.0 0.9799 100.0 0.5983
94 98.4 0.5908 100.0 0.7922 100.0 0.4837
90 96.9 0.5167 | 100.0 0.6929 100.0 0.4231
2nd | 98 99.6 0.3034 99.9 0.7381 95.9 0.4328
94 99.2 0.2453 99.4 0.5967 90.2 0.3499
90 98.8 0.2145 99.0 0.5219 86.7 0.3060
3rd | 98 98.2 0.4098 99.9 0.7654 98.0 0.3470
94 95.2 0.3313 99.9 0.6188 93.4 0.2805
90 91.9 0.2898 99.3 0.5412 89.8 0.2453
Boot.
1st 98 96.4 0.6349 98.4 0.2237 98.2 0.2078
94 92.4 0.4906 95.9 0.1706 94.0 0.1598
90 87.5 0.4252 92.1 0.1471 89.6 0.1381
2nd | 98 98.4 0.1237 98.2 0.1984 96.3 0.4668
94 94.3 0.0931 94.1 0.1523 90.6 0.3644
90 90.3 0.0795 90.8 0.1310 87.0 0.3153
3rd | 98 97.2 0.3970 96.2 0.4878 98.5 0.3463
94 93.1 0.3088 91.6 0.3791 94.0 0.2753
90 88.0 0.2667 85.3 0.3275 90.5 0.2411

Table C.14: Three runs done to compare the approximate variance formulae with
the bootstrap, for the semi-naive estimates. Longitudinal sample size = 50.
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