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Abstract 

 

Magnesium, with a Hexagonal Close-Packed (HCP) structure, is the eighth most abundant element in the 

earth’s crust and the third most plentiful element dissolved in the seawater. Magnesium alloys exhibit the 

attractive characteristics of low densities and high strength-to-weight ratios along with good castability, 

recyclability, and machinability. 

Replacing the steel and/or aluminum sheet parts with magnesium sheet parts in vehicles is a great 

way of reducing the vehicles weight, which results in great savings on fuel consumption. The lack of 

magnesium sheet components in vehicle assemblies is due to magnesium’s poor room-temperature 

formability. In order to successfully form the sheets of magnesium at room temperature, it is necessary to 

understand the formability of magnesium at room temperature controlled by various plastic deformation 

mechanisms. 

The plastic deformation mechanisms in pure magnesium and some of its alloys at room 

temperature are crystallographic slip and deformation twinning. The slip systems in magnesium at room 

temperature are classified into primary (first generation), secondary (second generation), and tertiary 

(third generation) slip systems. The twinning systems in magnesium at room temperature are classified 

into primary (first generation) and secondary (second generation, or double) twinning systems. A new 

comprehensive rate-dependent elastic-viscoplastic Crystal Plasticity Constitutive Model (CPCM) that 

accounts for all these plastic deformation mechanisms in magnesium was proposed. The proposed model 

individually simulates slip-induced shear in the parent as well as in the primary and secondary twinned 

regions, and twinning-induced shear in the primary and secondary twinned regions. The model also tracks 

the texture evolution in the parent, primary and secondary twinned regions. Separate resistance evolution 

functions for the primary, secondary, and tertiary slip systems, as well as primary and secondary twinning 

systems were considered in the formulation. In the resistance evolution functions, the interactions 

between various slip and twinning systems were accounted for. 

The CPCM was calibrated using the experimental data reported in the literature for pure 

magnesium single crystals at room temperature, but needs further experimental data for full calibration. 

The partially calibrated model was used to assess the contributions of various plastic deformation 

mechanisms in the material stress-strain response. The results showed that neglecting secondary slip and 

secondary twinning while simulating plastic deformation of magnesium alloys by crystal plasticity 

approach can lead to erroneous results. This indicates that all the plastic deformation mechanisms have to 

be accounted for when modelling the plastic deformation in magnesium alloys. 

Also, the CPCM in conjunction with the Marciniak–Kuczynski (M–K) framework were used to 

assess the formability of a magnesium single crystal sheet at room temperature by predicting the Forming 
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Limit Diagrams (FLDs). Sheet necking was initiated from an initial imperfection in terms of a narrow 

band. A homogeneous deformation field was assumed inside and outside the band, and conditions of 

compatibility and equilibrium were enforced across the band interfaces. Thus, the CPCM only needs to be 

applied to two regions, one inside and one outside the band. The FLDs were simulated under two 

conditions: a) the plastic deformation mechanisms are primary slip systems alone, and b) the plastic 

deformation mechanisms are primary slip and primary twinning systems. The FLDs were computed for 

two grain orientations. In the first orientation, primary extension twinning systems had favourable 

orientation for activation. In the second orientation, primary contraction twinning systems had favourable 

orientation for activation. The effects of shear strain outside the necking band, rate sensitivity, and c/a 

ratio on the simulated FLDs in the two grain orientations were individually explored. 
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s   Slip or twinning system shear direction 
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Superscripts and subscripts: 

 

 
p   Plastic part 

 *  Elastic part 
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s    Secondary slip system  

t    Tertiary slip system 

p    Primary twinning system 
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  regions in the FLD calculations, respectively; e.g. 
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Chapter 1 

Introduction and contributions 

 

1.1 Introduction 

Magnesium, with a Hexagonal Close-Packed (HCP) structure presented in Figure 1-1, is the eighth most 

abundant element in the earth’s crust and the third most plentiful element dissolved in the seawater [1].  

 

 

 

 

 

 

 

 

 

Figure 1-1 An HCP unit cell 

 

The four-index Miller-Bravais coordinate system },,,{ 321 caaa , shown in Figure 1-1, is the most 

convenient way to present the orientations in an HCP structure. The angle between the three axes 1a , 2a , 

and 3a is 
120 (i.e. 0321  aaa ), and the c-axis is perpendicular to all of them. For numerical 
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computation, however, an orthonormal coordinate system (Miller coordinate system) is required 

(transformation between the Miller-Bravais and Miller coordinate systems is outlined in Appendix C). 

The c/a ratio in pure magnesium is 1.624 which is close to the ratio in an ideal HCP structure (c/a=1.633) 

[2]. A thorough crystallography of HCP metals is discussed in [2]. 

 The plastic deformation mechanisms in magnesium are crystallographic slip and deformation 

twinning. Crystallographic slip is caused by the movement of atoms with respect to one another, on 

certain planes of material in certain directions. With deformation twinning, the lattice orientation of a part 

of the material changes with respect to a plane in the material called twinning plane. This process is 

illustrated in Figure 1-2 [3]. As shown in this figure, after shear is applied to the lattice of the material in 

the noted direction, atoms on plane 1 undergo a certain shear with respect to the atoms on plane 0, atoms 

on plane 2 undergo the same amount of shear with respect to the atoms on plane 1, atoms on plane 3 with 

respect to the atoms on plane 2, etc. The result is the reproduction of the lattice with a new orientation, 

which is the mirror image of the lattice in the untwinned part of the material. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-2 The deformation twinning process [3] 

 

The important differences between the crystallographic slip and deformation twinning are as 

follows [3]: 

1. With crystallographic slip, the amount of shear displacement is an integral number of the 

interatomic repeat distance of the material (i.e. an integer number multiplied by the length of the slip 

dislocation burger vector) whereas with deformation twinning it is a fraction of the interatomic repeat 

distance. 
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2. Slip occurs on a few parallel planes of the material, but in twinning shear occurs on every 

successive layer of the material.  

3. Twinning is polar; meaning on a twinning plane deformation can happen in one direction only. 

This limitation does not exist in the case of slip, where on a slip plane shear can happen in two opposite 

directions.  

4. While deformation twinning changes the lattice orientation of the material abruptly, the change 

in the lattice orientation of the material caused by slip is gradual. 

 

 

 

 

 

 

 

Figure 1-3 A sphere of a material with the top part of it twinned [3] 

 

Figure 1-3 shows a sphere of a material where the top part of it undergone twinning. In this 

figure, 
1K is the twinning plane (the lattice in the twinned region is the mirror image of the lattice in the 

untwinned region with respect to this plane) which remains undistorted during deformation twinning. 
2K

is another plane in the material that remains undistorted during deformation twinning. 
1 is the direction 

of twinning shear. 
2 lies in the 

2K plane and is perpendicular to the intersection of the 
1K and

2K  

planes. Twinning systems are classified into type I, type II, and compound twins [3-5]. In type I twins, the 

lattice of the twinned region results from rotation of the parent lattice by 
180 around the normal to the 

1K plane. In type II twins, the lattice of the twinned region results from rotation of the parent lattice 

around
1 . In FCC and BCC crystals all four twinning elements 1K , 

2K , 
1 , and 

2  are rational, 

however, in HCP crystals some of the twinning elements might be irrational [3]. The type I twins in 

which all the four twinning elements are rational are called compound twins. The twinning systems for 

magnesium reported in Table C-1 in Appendix C are compound twins [6]. 
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Some important planes in magnesium are presented in Figure 1-4 (more details are available in 

[1,2]). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-4 Some important planes in magnesium at room temperature [1,2] 

 

Based on the Von Mises criterion [7,8], activity of five independent plastic deformation 

mechanisms were required to accommodate an arbitrary plastic deformation in a given material. Basal, 

prismatic, and pyramidal a  slip systems provide four independent plastic deformation mechanisms. 

Pyramidal  ac  slip system, which can be the fifth independent plastic deformation mechanism, is 

difficult to activate at room temperature, since it has a high Critical Resolved Shear Stress (CRSS) [9,10]. 

At room temperature, deformation twinning has a lower CRSS than the pyramidal  ac  slip system, 

and it can provide the fifth independent plastic deformation mechanism to satisfy the Von Mises criterion. 

At elevated temperature, the CRSS of pyramidal  ac  slip and other non-basal slip systems decreases 

[11], and they can provide the fifth independent plastic deformation mechanism. 

Magnesium alloys exhibit the attractive combination of low densities (e.g. the lowest density of 

structural materials) and high strength-to-weight ratios as well as good castability, recyclability, and 

machinability [12,13]. Due to high fuel prices, automotive companies are investigating new light metal 

alloys and among the most promising are various magnesium alloys. Replacing the steel and/or aluminum 

sheet parts with magnesium sheet parts in vehicles is a great way of reducing vehicle weight if it can be 

cost-competitive. The lack of magnesium sheet components in vehicle assemblies is due to magnesium’s 

poor room-temperature formability [13,14]. In order to successfully form the sheets of magnesium at 

room temperature it is necessary to understand the formability of magnesium alloys at room temperature 

controlled by various plastic deformation mechanisms. 
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Due to the complicated behaviour of plastic deformation mechanisms in magnesium at room 

temperature, which is a function of initial texture and strain rate, the macroscopic plastic behaviour of 

magnesium and its alloys is quite anisotropic. As a result, researchers were not able to capture this 

behaviour by phenomenological continuum plasticity models with great success. Therefore, developing a 

physics-based model such as crystal plasticity that can consider the crystallographic slip and deformation 

twinning as the deformation mechanisms, as well as material initial texture and its evolution is inevitable. 

The plastic deformation mechanisms in pure magnesium [15,16] and some of its alloys [16-19] at 

room temperature are crystallographic slip and deformation twinning. The slip systems are classified into 

primary (first generation), secondary (second generation), and tertiary (third generation) slip systems. The 

twinning systems are classified into primary (first generation) and secondary (second generation, or 

double) twinning systems.  Here a primary slip system refers to a slip system that is active inside an 

untwinned region of the grain (parent grain or matrix). A primary twinned region lies inside the matrix. A 

secondary slip system is active inside a primary twinned region. A secondary twinned region lies inside a 

primary twinned region. A tertiary slip system is active inside a secondary twinned region. Jiang et al. 

[17,18] reported an average volume fraction of nearly 50% for the combined volume fraction of the 

primary contraction and double twins during uniaxial tension experiments on the extruded AM30 tubes at 

room temperature at a loading rate of 0.1/s. For the extruded AZ31 tubes under the same loading 

condition this average volume fraction was reported to be 24%. This suggests that the contribution of the 

additional shear from these twinning systems in the macroscopic plastic strain of the loaded specimen 

must be accounted when modelling the plastic deformation of magnesium. The inclusion of primary and 

secondary twinning systems in a model necessitates the inclusion of secondary and tertiary slip systems, 

especially for large deformation simulations. There is a requirement to develop models to account for all 

the intragranular plastic deformation mechanisms in magnesium, and this thesis describes a 

comprehensive model to capture these deformation mechanisms. 

 

1.2 Literature review 

Here, the main models in the literature that have considered both crystallographic slip and deformation 

twinning for simulating the plastic deformation in metals are presented. All of them treat the deformation 

twinning as a pseudo-slip deformation mechanism, meaning if t , f , and tw  are the shear strain, 

volume fraction, and specific shear strain (Appendix D) associated with a twinning system, respectively, 

then twt f    (more details in [20]). Explanation of the models are as follows: 

a) Predominant twin reorientation (PTR) method with Taylor [8] assumptions: this method was 

proposed by Van Houtte [20], and was then improved by Tomé et al. [21]. The growth of the volume 
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fractions of the twinned regions is carefully tracked in each grain, however, using a statistical criterion 

(based on the volume fraction of the twinned regions in the grain and entire polycrystal aggregate) the 

entire grain is reoriented into a dominant twin orientation, and the orientations of the twinned regions are 

not changed at the end of each simulation time step. The total number of grain orientations remains 

constant, and from the computational point of view this is a major advantage.  Two major weaknesses 

were pointed out by Kalidindi for this method [22]. First, for the statistical criterion to be meaningful a 

large number of grain orientations are required. Second, the grain is re-oriented based on the increments 

of the volume fractions of the twinned regions in a given time-step, independent of the previous 

deformation history, and therefore the orientation at which a grain may be twinned may not be the most 

dominant one. In this method, primary and secondary slip systems, as well as primary twinning systems 

were considered as the plastic deformation mechanisms. 

b) Volume fraction transfer (VFT) scheme with Taylor [8] assumptions: this approach was 

proposed by Tomé et al. [21], to overcome the second limitation of van Houtte’s approach [20] mentioned 

above. It employs weighted grain orientations to work around the problem of tracking the large number of 

new orientations created by deformation twinning [22]. In this scheme, the twinned parts of the grains are 

re-oriented at the end of each time step. Weighted grain orientations are used in the model, and by 

suitably modifying them, the orientation changes caused by deformation twinning were computed (more 

details were available in [22]). The plastic deformation mechanisms considered in this method were 

primary and secondary slip systems as well as primary twinning systems.  

c) Total Lagrangian approach with Taylor [8] assumptions: there is a fundamental drawback to 

both models a and b. In these two models, the twinned regions are treated as new grains which can 

undergo further slip and twinning similar to an untwinned grain. It is well-known that the deformation 

characteristics of the twinned regions are not similar to the untwinned grains [22]. Kalidindi [22] 

proposed a model to address this shortcoming. He modified the available rate-dependent Crystal Plasticity 

Constitutive Model (CPCM) that was formulated for materials that exhibit only crystallographic slip to 

consider deformation twinning [23]. In this work deformation twinning is included as an additional mode 

of deformation into the evolution equation of the plastic part of the deformation gradient. An advantage of 

this method is that it allows the deployment of the crystal plasticity theory with deformation twinning 

while taking full advantage of an efficient fully implicit time integration scheme that was previously 

developed [23]. The difficultly of using this formulation is determining the resistance evolution functions 

for various plastic deformation mechanisms from the experimental data for a given material. In this 

model, only primary slip and primary twinning systems were considered as the plastic deformation 

mechanisms. 
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Salem et al. [24] employed this crystal plasticity framework with separate resistance evolution 

functions for primary slip and primary twinning systems to simulate the plastic deformation in 

Titanium which deforms predominantly by twinning up to a compressive strain of 0.3 and by slip and 

twinning in the fragmented grain structure at higher strains. The model captured the plastic deformation 

behaviour of  Titanium quite well. This model was still further improved by Wu et al. [25] who 

considered secondary slip (with same resistance functions as primary slip) and introduced a grain 

fragmentation technique to improve the accuracy of the simulation of  Titanium. In these models, the 

lattice orientations in the matrix and primary twinned regions can be tracked throughout the deformation, 

although with the deployed computational procedure this is not necessary at each simulation time step. 

The integration was carried out between the initial undeformed and final deformed configurations (total 

Lagrangian approach).  

d) Crystal plasticity constitutive model implemented in a finite element code: Staroselsky and 

Anand [26] proposed a rate-independent CPCM incorporated in a User-defined MATerial subroutine 

(VUMAT) in ABAQUS/Explicit [27] finite element software to simulate the plastic deformation of the 

AZ31B magnesium alloy. In their CPCM the resistances of the primary slip and primary twinning 

systems were constant. They modified the evolution of the plastic part of the deformation gradient to 

approximately account for the grain-boundary sliding effect reported by Hauser et al. [28]. They 

employed Van Houtte’s method (PTR) [20] to account for the twinning shear as well as the lattice 

reorientation due to twinning deformation. The prediction of the macroscopic stress-strain curves for the 

AZ31B by this model in some loading paths was not satisfactory when compared with the experimental 

data [26]. 

e) Updated Lagrangian approach with Taylor [8] assumptions: Lévesque et al. [29] proposed a 

rate-dependent CPCM for the AM30 magnesium alloy. They modified the CPCM of Peirce et al. [30] 

proposed for the materials that undergo plastic deformation by crystallographic slip alone to account for 

the deformation twinning, as well. In their CPCM they considered the primary slip and primary twinning 

as the plastic deformation mechanisms. The proposed model was successful in predicting the stress-strain 

curves as well as texture evolution for AM30 in a number of loading paths. The integration was carried 

out between every two successive deformed configurations (updated Lagrangian approach). 

f) Viscoplastic self-consistent (VPSC) polycrystal approach: self-consistent models allow for 

different strain response in each grain, depending upon the relative stiffness between the grain and 

surrounding homogeneous equivalent medium with consistency conditions requiring that the averaged 

behaviour over all the grains must be the same as the macroscopically imposed one. A number of studies 

have used VPSC scheme to simulate large strain behaviour and texture evolution of HCP polycrystalline 

magnesium under various deformations [11,31-36]. Recently, attempts to develop a finite strain Elastic-
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Viscoplastic Self-Consistent (EVPSC) model for polycrystalline materials were also made [37]. The 

results tend to be extremely sensitive to the stiffness of the grain-matrix interaction associated with the 

Self-Consistent Schemes. Proust et al. [34] combined a Composite Grain (CG) model with the VPSC 

polycrystal approach. Their proposed model accounted for volume fractions of the matrix, primary, and 

secondary twinned regions, as well as the activity of primary and secondary slip systems. Proust et al. 

[34] successfully applied this model to predict the stress-strain curves as well as texture evolution of 

hexagonal Zr deformed in compression at 76 K for monotonic and non-monotonic loading paths.  

In a single crystal of magnesium, the resistance evolution of a given slip system depends, in a 

complex manner, on the interactions that exist between this slip system and other slip and twinning 

systems. The same holds true for a given twinning system (for a review of these effects, see [34,35]). For 

instance, it is well-known that twin boundaries can act as obstacles to further slip (Hall-Petch effect 

[38,39]). Also, the resistance of the slip systems inside the twins is different from the resistance of the slip 

systems inside the parent due to the Basinski-hardening mechanism [40]. The models by Van Houtte [20], 

Tomé et al. [21], and Staroselsky and Anand [26] (a, b, and d, respectively) did not account for these 

effects, and the other models (i.e. c, e, and f) accounted for these interactions in a phenomenological way 

(not at dislocation level). There were efforts in understanding these effects [4,41,42], and quantitative data 

on these interactions are becoming available for accurate numerical modelling. 

This thesis describes a model incorporating the plastic deformation mechanisms of primary, 

secondary, and tertiary slip systems, as well as primary and secondary twinning systems in a 

comprehensive CPCM for the hexagonal magnesium. Crystallographic slip in the parent, primary, and 

secondary twinned regions, as well as different twinning modes in magnesium are considered. The 

interactions between various slip and twinning systems are incorporated in a phenomenological way. 

 

1.3 Contributions and outline of the thesis 

This thesis offers two major contributions. The first contribution is that upon calibration and validation of 

the proposed CPCM with experimental data at room temperature, the model can be used to simulate and 

understand the plastic deformation of magnesium under different loading conditions. The CPCM contains 

a number of parameters corresponding to different plastic deformation mechanisms. Some of them have 

been calibrated using limited experimental data reported in literature for pure magnesium single crystals 

at room temperature. More experimental data are required to completely calibrate and take advantage of 

the proposed CPCM. The influences of the parameters that could not be calibrated due to lack of 

experimental data were investigated through a numerical study (assessing the relative contributions of 

different plastic deformation mechanisms in the material stress-strain response) to highlight the strength 

of the new model with all the plastic deformation mechanisms included in it. The results show that 
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neglecting secondary twinning and secondary slip while simulating deformation of magnesium alloys by 

crystal plasticity approach can lead to erroneous results. From this, it is concluded that accounting for all 

not just a few of the plastic deformation mechanisms to model the plastic deformation in magnesium 

alloys is necessary. While the model by Proust et al. [34] and the one proposed in this thesis account for 

the same number of intragranular plastic deformation mechanisms in magnesium, there are differences 

between them. The model by Proust et al. [34] does not account for the material elasticity. To simulate the 

unloading and strain path changes in the material by the VPSC approach, accounting for material 

elasticity is necessary (as pointed out by Wang et al. [37]). In the VPSC polycrystal approach, each grain 

is not in direct interaction with the neighbor grains (each grain is in interaction with the entire aggregate 

as an equivalent medium), and the conditions of equilibrium and compatibility are not completely 

satisfied between neighbor grains. The grain geometric shape is also restricted to be an ellipsoid. The 

proposed model in this thesis accounts for material elasticity. It can be applied to polycrystals through 

finite element, as well (this technique is called Crystal Plasticity Finite Element Method (CPFEM)). In the 

CPFEM each grain is in direct interaction with the neighbor grains, and the conditions of equilibrium and 

compatibility are imultaneously satisfied between them (more details are available in [43]). With CPFEM 

the grains can have any arbitrary geometric shape. 

The second contribution is that the proposed CPCM in conjunction with the Marciniak–

Kuczynski (M–K) approach were used to assess the formability of a magnesium single crystal sheet by 

simulating the Forming Limit Diagrams (FLDs). Sheet necking was initiated from an initial imperfection 

in terms of a narrow band. A homogeneous deformation field was assumed inside and outside the band, 

and conditions of compatibility and equilibrium were enforced across the band interfaces. Thus, the 

CPCM only needed to be applied to two regions, one inside and one outside the band. The FLDs were 

simulated under two conditions: a) the plastic deformation mechanisms are primary slip systems alone, 

and b) the plastic deformation mechanisms are primary slip and twinning systems. The FLDs were 

computed for two grain orientations. In the first orientation, primary extension twinning systems have 

favourable orientation for activation. In the second orientation, primary contraction twinning systems 

have favourable orientation for activation. The effects of shear strain outside the necking band, rate 

sensitivity, and c/a ratio on the simulated FLDs for the two orientations were individually explored. 

In Chapter 2 the proposed CPCM for magnesium single crystals, its formulation, and integration 

procedure are outlined. The calibration of the CPCM is presented in Chapter 3. There, by an illustrative 

example, the importance of accounting for the kinematics of various plastic deformation mechanisms in 

the CPCM is also emphasized. In Chapter 4, the formulation for simulating the FLDs using the proposed 

CPCM within the M–K framework, as well as the FLDs’ simulation results for two grain orientations 
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under various conditions are presented. Chapter 5 contains the conclusions and proposed research for the 

future. 

The equations related to the calculation of plastic work in the parent and primary twinned regions, 

number of state variables, conversion of the Miller-Bravais coordinate system into an orthonormal one, 

and some metallurgical information about magnesium are all presented in the appendices. 
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Chapter 2 

A new crystal plasticity constitutive model for magnesium single 

crystals, formulation, and integration procedure 

 

2.1 A new crystal plasticity constitutive model for magnesium single crystals  

In this work, the rate-dependent elastic-viscoplastic Crystal Plasticity Constitutive Model (CPCM) laid 

out by Peirce et al. [30]  for materials in which primary slip systems are the only plastic deformation 

mechanism, was modified to include the secondary and tertiary slip systems as well as primary and 

secondary twinning systems as additional plastic deformation mechanisms. Deformation twinning was 

treated as a pseudo-slip mechanism (i.e. twt f    [20]). Following the Taylor [8] assumptions, a 

homogeneous deformation field was assumed in the entire grain. This means that the parent, primary, and 

secondary twinned regions undergo the same total deformation gradient, and there is a single 

decomposition of the total deformation gradient tensor into the elastic and plastic parts (similar to the 

works in [22,24,25,29]). 

It was demonstrated that in order to activate twinning, twinning dislocations have to nucleate first 

(see e.g. [44]). In the case of single crystals, it is believed that twinning dislocations originate from the 

elements of the dislocations substructure produced before twinning by the activity of slip systems. The 

plastic work is a good indicator to describe slip system activity in the material (the calculation method of 

plastic work in the matrix and primary twinned regions is presented in Appendix A). Because of this fact, 

in the proposed model, a plastic work-based criterion was employed to activate the twinning systems. In 
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this approach, the nucleation of a primary twinning system does not occur before the plastic work due to 

slip-induced deformation inside the parent has reached a certain threshold value. Similarly, a double twin 

will not nucleate before the plastic work due to the slip-induced deformation inside the primary twinned 

region has reached a certain threshold value. This approach is similar to the approach of using a threshold 

stress to invoke the activation of a new mechanism for plastic deformation of magnesium polycrystal 

employed by Staroselsky and Anand [26]. The plastic work based nucleation criterion for twinning in 

magnesium single crystals is the simplest criterion at the meso-scale level modelling. This criterion 

should be improved as the understanding of twin nucleation mechanisms in magnesium single crystals 

advances. For magnesium polycrystals, recent results reveal that twinning nucleation depends strongly on 

the grain boundary misorientation angle and defect structure of the grain boundaries [45-47]. Therefore, 

when the proposed model is applied to magnesium polycrystals (with an appropriate homogenization 

scheme), the twinning nucleation criterion has to account for these effects. 

The proposed model works in a sequential manner as follows; each step has its own set of 

equations: 

1. When a single crystal of magnesium is loaded, at the initial stage of deformation, the proposed 

model considers the primary slip systems inside the untwinned crystal as the only plastic deformation 

mechanisms that can accommodate the macroscopic plastic deformation. 

2. When the plastic work due to primary slip systems has reached a certain value (
1c ), nucleation 

of the primary extension or contraction twinning systems is allowed in the code. Provided that the 

Resolved Shear Stress (RSS) for the primary extension (Figure 2-1a) or contraction (Figure 2-1b) 

twinning systems is non-zero, they can grow. 

3. Nucleation of the secondary slip systems inside the primary extension twinned region is 

allowed in the code. Provided that the RSS for the secondary slip systems is non-zero, they can take up 

shear. 

4. Nucleation of the secondary slip systems inside the primary contraction twinned region is 

allowed in the code. Provided that the RSS for the secondary slip systems is non-zero, they can take up 

shear. 

5. When the plastic work due to the slip-induced deformation inside a primary contraction 

twinned region has reached a certain value ( 2c ), nucleation of secondary extension twinning systems 

inside the primary contraction twinned region (double twin) is allowed. Provided that the RSS for the 

secondary extension twinning systems is non-zero, they can grow (Figure 2-1b). 

6. Nucleation of the tertiary slip systems inside the secondary extension twinned region is 

allowed. Provided that the RSS for the tertiary slip systems is non-zero, they can take up shear. 
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It is worth mentioning that the proposed CPCM can be used for modelling the plastic deformation 

in titanium alloys where the primary slip, primary twinning, and secondary slip systems are the plastic 

deformation mechanisms [25] (i.e. the first four steps of the proposed model can be used to model the 

plastic deformation in titanium alloys). The corresponding formulation for each step of the above 

algorithm is described in the following section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1 Twinned regions types in magnesium. a) a primary extension twinned region, and b) a primary 

contraction twinned region with a secondary extension twinned region inside 

 

2.2 Formulation of the proposed crystal plasticity constitutive model  

The equations corresponding to each step of the CPCM are outlined in the following subsections.  
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2.2.1 Equations corresponding to step 1 of the crystal plasticity constitutive model 

In step 1 of the CPCM, primary slip systems are the only plastic deformation mechanisms. The equations 

for this step of the model are identical to the ones outlined by Peirce et al. [30] which are presented here.  

Similar to the work by Peirce et al. [30], the deformation gradient is decomposed into the elastic 

and plastic parts as follows: 

pFFF *           (2-1) 

*F includes the elastic stretch and rigid body rotation effects, and 
pF includes the plastic deformation 

resultant from the primary slip systems. 

The Eulerian velocity gradient, L, can be written as: 

pLLFFL   *1          (2-2) 

 

where, 

1***  FFL  ,   1*1*1**1   FFFFFFFFL ppp       (2-3) 

*L and 
pL are the elastic and plastic parts of the velocity gradient, respectively. 

The deformation rate and spin are decomposed into the elastic and plastic parts as follows: 

pDDD  *
          (2-4) 

p *
          (2-5) 

The total deformation rate and spin are related to the velocity gradient according to the following 

equations: 

)(LsymD            (2-6) 

)(Lasym           (2-7) 

The plastic part of the deformation rate and spin are related to the plastic part of the velocity 

gradient as shown below: 

)( pp LsymD           (2-8) 

)( pp Lasym          (2-9) 

The orientation matrix of the grain, Q , defined later by Equations (2-178)-(2-187), is updated by

* . This is valid for all the six steps of the model. 

Consider 
)( ps 
 and 

)( pm 
 as the shear direction and plane normal of a primary slip system )( p , 

and  
)( ps 
 and 

)( pm 
as the shear direction and plane normal of a primary twinning system )( p . The 

following equations govern the change in their orientation after the deformation: 

)(*)*( pp sFs            (2-10) 
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1*)()*(  Fmm pp 
         (2-11) 

)(*)*( pp sFs            (2-12) 

1*)()*(  Fmm pp 
         (2-13) 

From Equations (2-10)-(2-13), at any given stage of deformation,  
)( ps 
 and 

)( pm 
, as well as 

)( ps 
 and 

)( pm 
remain mutually perpendicular. 

PL has contributions from the primary slip systems and is defined as follows: 

 
p

pppp msL


  )()*()*(          (2-14) 

For each primary slip system )( p , the symmetric tensor, 
)( pP 
, and antisymmetric tensor , 

)( pW 

, are defined by: 

)(
2

1 )(*)(*)(*)(*)( ppppp smmsP          (2-15) 

)(
2

1 )(*)(*)(*)(*)( ppppp smmsW                    (2-16) 

The plastic part of the deformation rate and spin are related to the plastic part of the velocity 

gradient as follows: 


p

pppp PLsymD


  )()()(          (2-17) 


p

pppp WLasym


  )()()(         (2-18) 

The constitutive law is given by: 

 

 332211

)()()()(

)(

DDD

WWPCDC

mat

p

p

pmatmatpp

matmat

matmatmat

mat



 




 



 
  

           (2-19) 

where matC
 
is defined by: 

TT

mat QQCQQC


          (2-20) 
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

C  is the Elastic moduli for magnesium single crystal defined in Appendix  D. 

Pan and Rice [48] and Hutchinson [49] assumed a simple power law relation between the slip rate 

on a primary slip system and the ratio of RSS to the resistance of the primary slip system as follows: 

1
1

)(

)(

)(

)(
)()(




























m

p

p

p

p
pp

gg
a








 

         (2-21) 

where, 

matpp P   :)()(              (2-22) 

)( p  is the RSS on the primary slip systems, and   
)( pa  represents a reference shear rate. Equation (2-

21) is used for calculating the shear strain rate on the primary slip systems in the next steps of the model, 

as well. 

The evolution of resistance of the primary slip systems is given by: 


p

pA

p

p hg






  )(1)(           (2-23) 

 

 1

11 

A

p

A

p hh            (2-24) 


p

p



 )(

1           (2-25) 

A

ph1

 is the resistance evolution matrix, and, in general, converges to zero as 
1  increases. This holds true 

for the similar functions used in the resistance evolution of the other plastic deformation mechanisms in 

the next steps of the model. The diagonal terms of this matrix represent the slip systems, self-hardening, 

and off-diagonal terms, latent hardening. 

Since there is no twinned region at this step of the model, the total stress in the grain is equal to 

the stress in the parent as follows: 

mat

tot             (2-26) 

Equations (2-1) through (2-9) are valid for all six steps of the model and are not repeated in steps 

2-6 of the model. It should be noted that: 
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- In step 2: 
pL has contributions from the primary slip and primary twinning systems (Equations (2-37)) 

- In steps 3-4: 
pL  has contributions from the primary and secondary slip, and primary twinning systems 

(Equation (2-56)) 

- In step 5: 
pL  has contributions from the primary and secondary slip, and primary and secondary 

twinning systems (Equation (2-82)) 

- In step 6: 
pL  has contributions from the primary, secondary, and tertiary slip, as well as the primary and 

secondary twinning systems (Equation (2-112)) 

 

This is the generalization of what Kalidindi [22] did in his model, where only primary slip and 

twinning systems were considered as the plastic deformation mechanisms. 

 

2.2.2 Equations corresponding to step 2 of the crystal plasticity constitutive model 

In step 2 of the proposed CPCM nucleation of the primary twinning systems is allowed. The same 

deformation field is assumed to exist over the parent and primary twinned regions (Taylor [8] 

assumptions). In addition, Equations (2-1)-(2-13), (2-15)-(2-16), (2-20)-(2-22), and (2-25) are valid for 

step 2 of the model. An interaction between the resistances of the primary slip and primary twinning 

systems enforced and is highlighted later in Equations (2-46) and (2-51). 

At the very beginning of this stage, the initial lattice orientation of the primary twinned region as 

well as crystallographic planes and directions of the secondary slip and twinning systems inside of it are 

calculated. 

For type I twins, the transformation between the lattice orientations in the parent and a primary 

twinned region (
mat

twQ 1 ) with the plane normal, n, and shear direction, b, is [5,6,50]: 

RXXQmat

tw

1

1

          (2-27) 
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X       (2-28) 
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
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R          (2-29) 
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R is the rotation matrix, involving 
180 rotation of a parent lattice around the normal to the 

twinning plane [5,6,50]
1
.  The transformation from the lattice orientation in a primary twinned region to 

the lattice orientation in a secondary twinned region is defined in a similar manner in Subsection 2.2.4. 

Let us consider m and s as the crystallographic plane normal and shear direction of an arbitrary 

slip or twinning systems in the parent. Also, m  and s  as the crystallographic plane normal and shear 

direction of the same slip or twinning systems in a type I twinned region in the same material. If n and b 

are plane normal and shear direction of that type I twinned region, then the following equations relate the 

m  and s  to m and s, respectively [5,50-52]: 

























332313

322212

312111

1

1

1

1

nbnbnb

nbnbnb

nbnbnb

F

twtwtw

twtwtw

twtwtw

tw







      (2-30) 

  11 
 twFmm           (2-31) 

sFs tw1           (2-32) 

1twF  and tw  are the deformation gradient and specific shear strain associated with a primary twinning 

system, respectively. For extension and compression twins, the value of tw  is given in Appendix D. m

and s are the plane normal and shear direction in the primary twinned region. The components of m, s, n, 

b, m , and s are all expressed in the same coordinate system attached to the parent. Following the same 

procedure, the crystallographic plane normal and shear direction of the slip systems in a secondary 

twinned region is calculated (using 
2twF , in Subsection 2.2.4) from the corresponding crystallographic 

plane normal and shear direction of the slip systems in the primary twinned region (in which the 

secondary twinned region lies). 

If 
)( ss 
 and 

)( sm 
represent the shear direction and plane normal of a secondary slip system, and  

)( ss 
 and 

)( sm 
represent the shear direction and plane normal of a secondary twinning system, the 

following equations govern their updated orientation in the deformed configuration [5,50,51]: 

)*(1)*( ptws sFs            (2-33) 

  11)(*)(* 
 twps Fmm 

         (2-34) 

)*(1)*( ptws sFs            (2-35) 

                                                           
1
 The transformation between the lattice orientation in the matrix to the lattice orientation in a primary twinned 

region defined by Van Houtte [10] is not applicable to type I twins. 
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  11)*()*( 
 twps Fmm 

         (2-36) 

where 
1twF  is defined in Equation (2-30). It is obvious from Equations (2-33)-(2-36) that at any given 

stage of deformation, 
)( ss 
 and 

)( sm 
, as well as 

)( ss 
 and 

)( sm 
remain mutually perpendicular. 

PL has contributions from the primary slip and twinning systems, and is defined as follows: 

 
p

p

tw

ppp

p

pppp fmsmsL






  )( )()()*()*()()*()*(      (2-37) 

For each primary twinning system )( p , the symmetric tensor, 
)( pP 
, and antisymmetric tensor, 

)( pW 
, are defined as follows: 

)(
2

1 )(*)(*)(*)(*)( ppppp smmsP          (2-38) 

)(
2

1 )(*)(*)(*)(*)( ppppp smmsW                    (2-39) 

The plastic part of the deformation rate and spin are related to the plastic part of the velocity 

gradient as follows: 

 
p

p

tw

pp

p

pppp fPPLsymD






  )()( )()()()()(       (2-40) 

 
p

p

tw

pp

p

pppp fWWLasym






  )()( )()()()()(      (2-41) 

The constitutive laws are given by: 

 

   332211
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where matC
 
is given by Equation (2-20), and 1twC  is  defined by: 

TtwTtwtwtw

tw QQCQQC 1111

1



         (2-44) 

1twQ , the transformation matrix that expresses the lattice orientation in a primary twinned region with the 

normal plane, n, and shear direction, b, with respect to the global coordinate system is defined as follows: 

1

1

1 
 mat

tw

tw QQQ          (2-45) 

mat

twQ 1 is given in Equation (2-27). 

The evolution of the resistance functions for the primary slip systems is defined by: 
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The diagonal terms of 
A

ph2

  matrix represent the slip systems, self-hardening, and off-diagonal 

terms, latent hardening. 
A

ph 2


  accounts for the interaction between the primary slip and twinning systems.  

Following Neil and Agnew [33] and Lévesque et al. [29], Equation (2-49) was used to calculate 

the growth rate of the volume fraction of primary twinned regions as follows: 
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),()()( : pmatavepp P            (2-50) 

where 
),( pmatave   is the volumetric average of the stresses in the parent and primary twinned regions 

(two regions that lie on the two sides of the twinning plane) used to calculate the RSS 
)( p on the 

twinning plane. Equation (2-49) is used to calculate the volume fraction rate of the primary twinning 

systems in the next steps of the model. 
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The evolution of the resistance of the primary twinning systems is given by: 
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where 
B

ph2

  accounts for the interaction between the primary slip and twinning systems, 
1  is defined by 

Equation (2-25), and 1f  is:  
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Following Kalidindi’s approach [22], the total stress in the grain is equal to the volumetric 

average of the stresses in the parent and primary twinned regions: 
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2.2.3 Equations corresponding to steps 3-4 of the crystal plasticity constitutive model 

In steps 3-4 of the proposed CPCM, nucleation of the secondary slip systems inside the primary twinned 

regions is allowed. Like step 2, the same deformation field is assumed to exist over the parent and 

primary twinned regions. Also, Equations (2-1)-(2-13), (2-15), (2-16), (2-20)-(2-22), (2-25), (2-27)-(2-

36), (2-38), (2-39), (2-44), (2-49), (2-50), (2-54), and (2-55) are valid for steps 3-4 of the model. 

Interactions between the resistances of the primary slip, primary twinning, and secondary slip systems 

enforced and are highlighted later in Equations (2-63), (2-66), and (2-73). 

PL has contributions from the primary and secondary slip, and primary twinning systems, and is 

defined as follows: 
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For each secondary slip system )( s , the symmetric tensor,
)( sP 
, and anti-symmetric tensor, 

)( sW 
, are defined as follows: 

)(
2

1 )(*)(*)(*)(*)( sssss smmsP         (2-57) 

)(
2

1 )(*)(*)(*)(*)( sssss smmsW                    (2-58) 

The plastic part of the deformation rate and spin are related to the plastic part of the velocity 

gradient as follows: 
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The constitutive laws are given by: 
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where matC  and 1twC are given in Equations (2-20) and (2-44), respectively. 

The evolution of the resistance functions for the primary slip systems is defined by: 
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The diagonal terms of, 
A

ph 43

  matrix represent the slip systems, self-hardening, and off-diagonal 

terms, latent hardening. 
A

ph 43
 accounts for the interaction between the primary slip and twinning 

systems. 

The evolution of the resistance of the primary twinning systems is given by: 
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B

ph 43

 accounts for the interaction between the primary twinning and primary slip systems, and  
B

sh 43


accounts for the interaction between the primary twinning and secondary slip systems.
1  and 

1f are 

defined by Equations (2-25) and (2-54), respectively, and: 
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The evolution of the shear strain on the secondary slip systems is calculated as follows (similar to 

the primary slip systems in Equation (2-21)): 
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Equation (2-71) is used to calculate the shear strain rate on the secondary slip systems in the next 

steps of the model as well. The evolution of the resistance of the secondary slip systems is given by: 
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The diagonal terms of the 
C

sh 43
  matrix represent the slip systems, self-hardening, and off-

diagonal terms, latent hardening. 
C

ph 43

 accounts for the interaction between the secondary slip and 

primary twinning systems. 

Finally, similar to step 2, the total stress in the grain is calculated by Equation (2-55). 

 

2.2.4 Equations corresponding to step 5 of the crystal plasticity constitutive model 

In step 5 of the proposed CPCM, nucleation of the secondary twinning systems inside the primary 

twinned regions is allowed. The same deformation field is assumed to exist over the parent, primary and 

secondary twinned regions. Equations (2-1)-(2-13), (2-15), (2-16), (2-20)-(2-22), (2-25), (2-27)-(2-36), 

(2-38), (2-39), (2-44), (2-49), (2-50), (2-54), (2-57), (2-58), and (2-70)-(2-72) are valid for step 5 of the 

model. Interactions between the resistances of the primary slip, primary twinning, secondary slip, and 

secondary twinning systems enforced and are highlighted later in Equations (2-92), (2-95), (2-100), and 

(2-106). 

At the very beginning of this stage, the initial lattice orientation of the nucleated secondary 

twinned region as well as crystallographic planes and directions of the tertiary slip systems inside of it are 

calculated. 
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The transformation between the lattice orientations in a primary twinned region and a secondary 

twinned region (
1

2

tw

twQ ) inside of it with the plane normal, n, and shear direction, b, is derived as below 

[5,6,50]: 

RXXQtw

tw

11

2

           (2-76) 

The matrices X and R are defined in Equations (2-28) and (2-29), respectively. 

Let us consider m and s as the crystallographic plane normal and shear direction of an arbitrary 

slip system in a primary twinned region. Also, m  and s  as the crystallographic plane normal and shear 

direction of the same slip system in a type I secondary twinned region (that lies inside the primary 

twinned region). If n and b are the plane normal and shear direction of that primary twinned region, then 

the following equations relate the m  and s  to m and s, respectively [5,50-52]: 

 

























332313

322212

312111

2

1

1

1

nbnbnb

nbnbnb

nbnbnb

F

twtwtw

twtwtw

twtwtw

tw







      (2-77) 

  12 
 twFmm          (2-78) 

sFs tw2           (2-79) 

2twF  and tw  are the deformation gradient and specific shear strain associated with a secondary twinning 

system, respectively. The components of m, s, n, b, m , and s are all expressed in the same coordinate 

system attached to the parent. 

If 
)( ts 
and 

)( tm 
 represent the shear direction and plane normal of a tertiary slip system, the 

following equations govern their updated orientation in the deformed configuration [5,50-52]: 

)*(2)*( stwt sFs            (2-80) 

  12)*()*( 
 twst Fmm 

         (2-81) 

It is obvious from Equations (2-80) and (2-81) that at any given stage of deformation 
)( ts 
 and 

)( tm 
 remain mutually perpendicular. 

PL has contributions from the primary and secondary slip, as well as the primary and secondary 

twinning systems, and is defined as follows: 
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(2-82) 

For each secondary twinning system )( s , the symmetric tensor, 
)( sP 
, and antisymmetric tensor, 

)( sW 
, are defined as follows: 
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1 )(*)(*)(*)(*)( sssss smmsW                    (2-84) 

The plastic part of the deformation rate and spin are related to the plastic part of the velocity 

gradient as follows: 
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The constitutive laws are given by: 



27 
 

 

 

 

 

 332211

)()()()()()(

)()()()()(

)()()()()(

)()()()(

)(

DDD

fWWPCf

WWPCf

fWWPC

WWPCDC

mat

p

s

tw

s

s

smatmatss

mat

p

p

s

s

smatmatss

mat

p

p

tw

p

p

pmatmatpp

mat

p

p

pmatmatpp

matmat

matmatmat

mat
































 

 




















































  

           (2-87) 

 

 

 

 

 332211

1

)()()(11)()(

1

)(

)()(11)()(

1

)(

)()()(11)()(

1

)()(11)()(

11

111

)1(

DDD

fWWPCf

WWPCf

fWWPC

WWPCDC

tw

p

s

tw

s

s

stwtwss

tw

p

p

s

s

stwtwss

tw

p

p

tw

p

p

ptwtwpp

tw

p

p

ptwtwpp

twtw

twtwtw

tw
































 

 




















































 

           (2-88) 

 

 

 

 

 332211

2

)()()(22)()(

2

)(

)()(22)()(

2

)(

)()()(22)()(

2

)()(22)()(

22

222

)2(

DDD

fWWPCf

WWPCf

fWWPC

WWPCDC

tw

p

s

tw

s

s

stwtwss

tw

p

p

s

s

stwtwss

tw

p

p

tw

p

p

ptwtwpp

tw

p

p

ptwtwpp

twtw

twtwtw

tw
































 

 




















































  

           (2-89) 

where matC  and 1twC  are given in Equation (2-20) and (2-44). 2twC  is defined by: 
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2twQ , the transformation matrix that expresses the lattice orientation in a secondary twinned 

region with the normal plane, n, and shear direction ,b , respectively, with respect to the global coordinate 

system is defined as follows: 
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tw

mat

tw
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where 
mat

twQ 1 and 
1

2

tw

twQ  are given in Equations (2-27) and (2-76), respectively. 

The evolution of the resistance functions for the primary slip systems is defined by: 
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The diagonal terms of the 
A

ph5

  matrix represent the slip systems, self-hardening, and off-diagonal 

terms, latent hardening. 
A

ph 5


  accounts for the interaction between the primary slip and twinning systems. 

The evolution of the resistance of the primary twinning systems is given by: 
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B

ph5

  accounts for the interaction between the primary twinning and primary slip systems, 
B

sh 5


  accounts 

for the interaction between the primary twinning and secondary slip systems, and 
B

sh 5


  accounts for the 

interaction between the primary and secondary twinning systems. 

The evolution of the resistance functions for the secondary slip systems is defined by: 
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The diagonal terms of the 
C

sh 5


  matrix represent the slip systems self-hardening, and off-diagonal 

terms, latent hardening. 
C

ph5

  accounts for the interaction between the secondary slip and primary 

twinning systems, and
C

sh 5


  accounts for the interaction between the secondary slip and secondary 

twinning systems. 

The growth rate of the volume fraction of the secondary twinned regions is calculated as follows 

(similar to the primary twinning systems in Equation (2-49)): 
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),()()( : spavess P            (2-105) 

where 
),( spave   is the volumetric average of the stresses in the primary and secondary twinned regions 

(two regions that lie on the two sides of the twinning plane) used to calculate the RSS 
)( s on the 

twinning plane. Equation (2-104) is used to calculate the volume fraction rate of the secondary twinning 

systems in the next step of the model as well. 

The evolution of the resistance of the secondary twinning systems is given by: 
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D

ph5

 accounts for the interaction between the secondary twinning and primary twinning systems and 
D

sh 5


  

accounts for the interaction between the secondary twinning and secondary slip systems. 
1  is defined by 

Equation (2-25), 
1f  by Equation (2-54),

2 by Equation (2-70), and 
2f by: 
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Following Kalidindi’s approach [22], the total stress in the grain is equal to the volumetric 

average of the stresses in the parent, primary and secondary twinned regions: 
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2.2.5 Equations corresponding to step 6 of the crystal plasticity constitutive model 

In step 6 of the proposed CPCM, nucleation of the tertiary slip systems inside the secondary twinned 

regions is allowed. The same deformation field is assumed to exist over the parent, primary and secondary 

twinned regions. Also, Equations (2-1)-(2-13), (2-15), (2-16), (2-20)-(2-22), (2-25), (2-27)-(2-36), (2-

38),(2-39), (2-44), (2-49),(2-50), (2-54), (2-57),(2-58), (2-70)-(2-72), (2-76)-(2-81), (2-83), (2-84), (2-90), 

(2-104), (2-105), (2-110), and (2-111) are valid for step 6 of the model. Interactions between the 

resistances of the primary slip, primary twinning, secondary slip, secondary twinning, and tertiary slip 

systems were enforced and are highlighted later in the Equations (2-120), (2-123), (2-128), (2-132), and 

(2-139). 

PL has contributions from the primary, secondary, and tertiary slip systems, as well as the 

primary and secondary twinning systems, and is defined as follows: 
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For each tertiary slip system )( t , the symmetric tensor, 
)( tP 
, and antisymmetric tensor, 

)( tW 
, 

are defined as follows: 

)(
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1 )(*)(*)(*)(*)( ttttt smmsW         (2-114) 

The plastic part of the deformation rate and spin are related to the plastic part of the velocity 

gradient as follows: 
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The constitutive laws are given by: 
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where matC , 1twC , and 2twC are defined by Equations (2-20), (2-44), and (2-90), respectively. 

The evolution of the resistance functions for the primary slip systems is defined by: 
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The diagonal terms of the 
A

ph6

  matrix represent the slip systems, self-hardening, and off-diagonal terms, 

latent hardening. 
A

ph 6


  accounts for the interaction between the primary slip and twinning systems. 

The evolution of the resistance of the primary twinning systems is given by: 
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          (2-127) 

B

ph6

 accounts for the interaction between the primary twinning and primary slip systems, 
B

sh 6


 accounts 

for the interaction between the primary twinning and secondary slip systems, and  
B

sh 6


  accounts for the 

interaction between the primary twinning and secondary twinning systems. 

The evolution of the resistance of the secondary slip systems is given by: 
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s 
          (2-131) 

The diagonal terms of the 
C

sh 6


 matrix represent the slip systems, self-hardening, and off-diagonal 

terms, latent hardening. 
C

ph6

 accounts for the interaction between the secondary slip and primary twinning 

systems, and  
C

sh 6


 accounts for the interaction between the secondary slip and secondary twinning 

systems. 

The evolution of the resistance of the secondary twinning systems is given by: 
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t hh           (2-136) 
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D

ph6

  accounts for the interaction between the secondary twinning and primary twinning systems, 
D

sh 6


  

accounts for the interaction between the secondary twinning and secondary slip systems, and  
D

th 6


  

accounts for the interaction between the secondary twinning and tertiary slip systems. 

The evolution of the shear strain on the tertiary slip systems is calculated as follows (similar to 

the primary and secondary slip systems in Equations (2-21) and (2-71), respectively): 
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2)()( : twtt P             (2-138) 

The evolution of the resistance of the tertiary slip systems is given by: 

 
t

tE
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s
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s
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
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s

E

s             (2-140) 

 3

66 

E

t

E

t hh           (2-141) 

The diagonal terms of the 
E

th 6


 matrix represent the slip systems, self-hardening, and off-diagonal 

terms, latent hardening. 
E

sh6

  accounts for the interaction between the tertiary slip and secondary twinning 

systems. 
1 , 

1f , 
2 , 

2f  are defined by Equations (2-25), (2-54), (2-70), and (2-110), respectively. 3  is 

defined by: 


t

t



 )(

3           (2-142) 

The total stress in the grain is calculated by Equation (2-111). 

 

2.2.6 Resistance evolution functions and their dependency on the rate of slip and twinning 

systems  

Separate resistance evolution functions for the primary slip (for step 1 in Equation (2-23), step 2 in 

Equation (2-46), steps 3-4 in Equation (2-63), step 5 in Equation (2-92), and step 6 in Equation (2-120)), 

secondary slip (for steps 3-4 in Equation (2-73), step 5 in Equation (2-100), and step 6 in Equation (2-
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128)), and tertiary slip systems (for step 6 in Equation (2-139)), as well as primary twinning (for step 2 in 

Equation (2-51), steps 3-4 in Equation (2-66), step 5 in Equation (2-95), and step 6 in Equation (2-123)) 

and secondary twinning systems (for step 5 in Equation (2-106) and step 6 in Equation (2-132)) were 

considered. The 
ij

xh  functions where sptspx  ,,,, , 6,,1i , and EDBAj ,,,,   (for 

example in (2-24), (2-107), and (2-140)) can, in general, be any function that approaches zero rather 

quickly. Examples of these functions are found in Peirce et al. [53]. In step 1, it is assumed that the rate of 

resistance of a primary slip system (Equation (2-23)) is a function of the rate of shear on the primary slip 

systems. In the step 2, it is assumed that the rate of resistance of a primary slip system (Equation (2-46)) 

is a function of the rate of shear on the primary slip systems, and rate of change of volume fractions of 

primary twinning systems. The same holds true for the rate of change of resistances of the primary 

twinning systems (Equation (2-51)). These assumptions allow for the modelling of the interaction 

between primary slip and twinning systems. The evolution of the resistance functions in steps 3-4 are 

given by Equations (2-63), (2-66), and (2-73), for step 5 by Equations (2-92), (2-95), (2-100), and (2-

106), and for step 6 by Equations (2-120), (2-123), (2-128), (2-132), and (2-139). The goal behind all of 

these assumed rate of change of resistance functions in all of the six steps is to allow interaction between 

different slip and twinning systems in the simplest yet comprehensive mathematical form. It is noted that 

regardless of the choice of 
ij

xh functions, this formulation provides reasonable relations between the rate 

of change of resistance functions and the rate of slip and twinning systems at different regions of the grain 

(parent and twinned). 

 

2.2.7 Proof of the constitutive equations  

The following constitutive equation is valid for the parent region [30,53]: 

*

)(*

DCmat

mat




           (2-143) 

 

where the lattice Jaumann rate of Cauchy stress is related to the elastic part of the strain rate through the 

elastic moduli in the parent region. 

Similarly, the following constitutive equations can be written for the primary and secondary 

twinned regions: 
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Peirce et al. [30] showed how Equation (2-19) can be obtained from the Equation (2-143) above. 

Here, we show how Equations (2-42) and (2-43) (for the step 2 of the CPCM), can be obtained 

from Equations (2-144) and (2-145) above, respectively. The other constitutive equations in the other 

steps can be derived in a similar manner.  

In the step 2 of the proposed CPCM, 
pL  is defined as (identical to what Kalidindi [22] 

considered): 

 
p

p

tw

ppp

p

pppp fmsmsL
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
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  )( )()()*()*()()*()*(      (2-146) 

 

Based on this, the following can be written: 
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And finally considering Equations (2-4) and (2-5), as well as the following general relationships: 

**
*




           (2-149) 




           (2-150) 

 

Equations (2-42) and (2-43) can be derived from Equations (2-144) and (2-145). 

 

2.2.8 Constitutive model limitation 

A more accurate constitutive model does not assume the same deformation gradient for the parent, 

primary and secondary twinned regions (Taylor [8] assumptions). However, it considers individual 

deformation gradients for each region. Such a constitutive model should be implemented in a finite 

element code where the parent, primary and secondary twinned regions are included in different elements 

(because each region has a separate deformation gradient). In order to develop such a model, 

metallurgical information on the twin’s nucleation sites and their growth pattern would be necessary. 

Clearly, the number of equations and state variables, as well as computational time for such a model 

would be much more compared to the proposed model in this thesis. 
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2.3 Integration procedure of the proposed crystal plasticity constitutive model 

The numerical integration of the proposed CPCM can be accomplished by an explicit or implicit 

integration method. A very good discussion about different integration approaches for crystal plasticity 

constitutive equations was presented by Ling et al. [54]. Li et al. [55] developed an efficient implicit 

integration method (Homotopy Continuation), however, its implementation is rather difficult. Raphanel et 

al. [56] used the Runge-Kutta integration method to explicitly integrate the CPCM. Kuchnicki et al. [57] 

recast an implicit integration algorithm into an explicit one (subcycling algorithm), and by this method, 

they accelerated the integration procedure. However, the higher computational speed of their method 

comes at the cost of more complex implementation. 

After exploring the available integration methods, for the sake of simplicity, the explicit forward 

Euler integration procedure proposed in [58] was adopted in this work. The integration procedure is based 

on the updated Lagrangian crystal plasticity framework, and was developed to incorporate the CPCM in a 

VUMAT in an explicit finite element code. While their integration method considers slip as the only 

deformation mechanism, it can be easily extended to apply to the crystal plasticity formulation that 

considers both slip and twinning plastic deformation mechanisms. In their procedure, the forward Euler 

algorithm was used to integrate the equations. The basic idea behind this algorithm is to use the slip rates 

per slip system and the volume fraction rates per twinning system at time )(nt  to compute quantities for 

time )1( nt . 

The proposed CPCM in this thesis evolves in a sequential manner. In the case that the primary 

slip systems in the parent are the only deformation mechanisms (i.e. step 1), the integration procedure in 

[58] can be used directly without any modification to calculate the stresses in the grain. For steps 2-6, 

where deformation occurs due to twinning as well, the integration procedure in [58] were modified. The 

integration procedures for steps 2-6 are similar, and for the step 2, the integration procedure is outlined 

below. 
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- Updating the lattice vectors and P andW : 
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- Calculating the slip shear strain rates at time )(nt using the stress state and 
p

nP

)( , and the volume fraction 

rates at time )(nt using the stress state and 
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- Computing the total shear strain on the slip systems, volume fraction of the twinned regions, and 

resistance of the slip and twinning systems all at time )1( nt : 
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- Updating the elasticity modulus: 

T

n

T

nnnnmat QQCQQC )()()()()(



         (2-172) 

11

)(

1

)( )(  RXXQQ n

tw

n         (2-173) 



41 
 

Ttw

n

Ttw

n

tw

n

tw

nntw QQCQQC 1

)(

1

)(

1

)(

1

)()(1



         (2-174) 

- Updating the orientation matrix, Q , and Bunge angles [59]: 
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where from Bunge [59]: 

)cos()sin()sin()cos()cos( 121211  Q       (2-179) 

)cos()sin()cos()cos()sin( 121212  Q      (2-180) 

)sin()sin( 113 Q          (2-181) 

)cos()cos()sin()sin()cos( 121221  Q       (2-182) 

)cos()cos()cos()sin()sin( 121222  Q      (2-183) 

)sin()cos( 123 Q          (2-184) 

)sin()sin( 231 Q          (2-185) 

)sin()cos( 232 Q          (2-186) 

)cos(33 Q           (2-187) 
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- Updating the stress in the parent, primary twinned region, and the whole grain [60]: 
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Chapter 3 

Crystal plasticity constitutive model calibration and application: the 

importance of accounting for various plastic deformation 

mechanisms 

 

3.1 The experimental data on single crystals of magnesium and its alloys 

The proposed Crystal Plasticity Constitutive Model (CPCM) accounts for the intragranular plastic 

deformation mechanisms of primary, secondary, and tertiary slip systems, as well as the primary and 

secondary twinning systems in magnesium, and is intended to simulate the plastic deformation behavior 

of magnesium single crystals at room temperature. Before using this model as a predictive tool, 

reasonable resistance functions for various plastic deformation mechanisms needed to be considered, and 

then the parameters of these resistance functions needed to be calibrated with experimental data on plastic 

deformation of magnesium single crystals. A review of the available experimental data on plastic 

deformation of magnesium single crystals is presented as follows. 

The first attempt to understand the plastic deformation mechanisms in magnesium was made by 

Wonsiewicz and Backofen [15]. They grew single crystals of pure magnesium using the Bridgman 

technique, and ran plane strain compression tests on the specimens in four different loading directions, at 

temperatures ranging from 
20 C to 

307 C (Figures 3-1 and 3-2). They identified the plastic 
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deformation mechanisms (slip and twinning) in each loading direction, under metallographic examination 

with polarized light. 

 

 

 

 

 

 

 

Figure 3-1 Stress-strain curves for magnesium single crystals compressed along a) the ]0001[ c-axis with 

expansion limited to ]1021[ , and b) the ]0001[ c-axis with expansion limited to ]0110[ [15] 

 

 

 

 

 

 

 

 

Figure 3-2 Stress-strain curves for magnesium single crystals compressed along a) the ]0110[  with 

expansion limited to ]1021[ , and b) the ]1021[  with expansion limited to ]0110[  [15] 
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Kelley and Hosford [16] performed plane strain compression tests on single crystals of pure 

magnesium, magnesium with 0.5% thorium alloy, and magnesium with 4% lithium alloy in seven 

different loading directions, all at room temperature (Figures 3-3 through 3-6). They identified the plastic 

deformation mechanisms (slip and twinning) in each loading direction for the single crystals of pure and 

alloyed magnesium specimens. They have also investigated the effect of alloying in the activation energy 

of slip and twinning systems [16]. 

 

 

 

 

 

 

 

Figure 3-3 Stress-strain curves in different loading conditions for pure/alloyed Mg single crystals [16] 

 

 

 

 

 

 

 

 

 

Figure 3-4 Stress-strain curves in different loading conditions for pure/alloyed Mg single crystals [16] 
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Figure 3-5 Stress-strain curves in different loading conditions for pure/alloyed Mg single crystals [16] 

 

 

 

 

 

 

 

 

Figure 3-6 Stress-strain curve for a loaded pure Mg single crystal [16] 

 

Recently, Bhattacharya [1] performed uniaxial tension tests on single crystals of pure magnesium 

in five different loading directions (Figure 3-7), at the temperatures of 4.2 K, 78 K, and 300 K. In his 

work, similar to the works of Wonsiewicz and Backofen [15], and Kelley and Hosford [16], the plastic 

deformation mechanisms (slip and twinning) in each loading direction for the single crystals of pure 

magnesium specimens were identified. 



48 
 

 

 

 

 

 

 

 

 

 

 

Figure 3-7 Orientation of the specimens with respect to the unit cell of the HCP lattice [1] 

 

3.2 Model calibration  

The experimental data of Bhattacharya [1] was used to calibrate the parameters of the resistance functions 

in the proposed CPCM at room temperature. This data was used because specimens in his work were 

under uniaxial tension loading, and the boundary conditions applied on the specimens had less complexity 

compared to the works of Wonsiewicz and Backofen [15] or that of Kelley and Hosford [16]. In these two 

works the loading was plane strain compression and the boundary conditions were rather complex. 

The measured stress-strain curves by Bhattacharya [1] in the five different orientations at room 

temperature are presented in Figure 3-8. Based on the orientation of the specimen with respect to the 

tensile axis, as shown in Figure 3-7, the dominant plastic deformation mechanisms in orientation 1 are the 

primary slip systems. In orientations 2 and 4 they are the primary slip and contraction twinning systems. 

In orientations 3 and 5 they are the primary slip and extension twinning systems. 

The slip and twinning systems listed in Table C-1 (Appendix C) are considered as the active 

plastic deformation mechanisms at room temperature. The CPCM was integrated at one material point, 

representing the entire specimen in the uniaxial tension. 



49 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-8 Stress-strain curves measured in uniaxial tension tests of the specimens shown in Figure 3-7 at 

room temperature [1] 

 

A common resistance evolution function used for the FCC materials [53] has been used for the 

various plastic deformation mechanisms. The 
ij

xh functions (for example in Equations (2-24), (2-46), (2-

53), (2-64), (2-68), (2-75) etc.) have the following identical form: 













s

kij

x

h
hhh



02

0 sec          (3-1) 

(e.g. in Equations (2-24), (2-46), (2-64), (2-75) etc.) or    
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
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s

kij

x

fh
hhh


02

0 sec          (3-2) 

(e.g. in Equations (2-53), (2-68) etc.)  

 

This resistance evolution function has the same behaviour as a power-law type evolution function 

in the form of: 
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
     (3-3) 

 

i.e. by increasing the value of tot or totf  both of these two types of functions saturate. 

Since the latent hardening effect for the slip systems in magnesium is not experimentally 

quantified yet, it is assumed that the self-hardening effect equals latent hardening. The value of m was 

chosen to be 0.02 to simulate the behavior of metals at room temperature (for instance in Equations (2-

21), (2-49), (2-71), (2-104), (2-137) etc.). The reference slip rate and volume fraction rate (
)( pa  in 

Equation (2-21),
)( sa   in Equation (2-71),

)( pa  in Equation (2-49), and 
)( sa  in Equation (2-104)) were 

arbitrarily set to 
3101  (similar to the value Wu et al. selected in [25]). 

The calibration procedure is as follows. The stress-strain curve in loading orientation 1, where 

there is no twinning, was used to calibrate the parameters of the resistance evolution function for the 

primary slip systems in step 1 of the CPCM (i.e. Equation (2-24)). The stress-strain curves in loading 

orientations 3 and 5, where the extension twinning systems are active, were used to calibrate the 

parameters of the resistance evolution functions for the primary and secondary slip, as well as the primary 

twinning systems in steps 2 and 3-4 of the CPCM (i.e. Equations (2-47), (2-48), (2-52), (2-53), (2-64), (2-

65), (2-67)-(2-69), (2-74), and (2-75)). The stress-strain curves in loading orientations 2 and 4, where the 

contraction twinning systems are active, were used to calibrate the parameters of the resistance evolution 

functions for the primary, secondary, and tertiary slip, as well as the primary and secondary twinning 

systems in steps 2, 3-4, 5, and 6 of the CPCM, i.e. Equations (2-47), (2-48), (2-52), (2-53), (2-64), (2-65), 

(2-67)-(2-69), (2-74), (2-75), (2-93), (2-94), (2-96)-(2-99), (2-101)-(2-103), (2-107)-(2-109), (2-121), (2-

122), (2-124)-(2-127), (2-129)-(2-131), (2-133)-(2-136), (2-140), and (2-141). As it will be explained 

later in Subsection 3.2.5, with the available experimental data (Figure 3-8) it was only possible to 

calibrate the resistance evolution functions for the primary slip and twinning systems. The following 

subsections describe the calibration procedure. 
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3.2.1 Calibration of the resistance evolution function of primary slip systems 

The stress-strain curve in loading orientation 1, reported by Bhattacharya in [1], was used to calibrate the 

parameters of the resistance of primary slip systems in step 1 of the proposed CPCM. As it was 

mentioned in the previous section, the dominant plastic deformation mechanisms in this loading 

orientation were primary slip systems. The CRSS for the primary basal slip systems is taken as 0.8 MPa 

[61], 2 MPa for the primary pyramidal  ac  slip systems [1], and 39.2 MPa for the primary 

prismatic slip systems [62]. In our formulation the CRSS for a given plastic deformation mechanism 

corresponds to the initial value for the resistance of that plastic deformation mechanism. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-9 Curve fit results when only primary slip systems were considered (orientation 1) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-10 Total shear strain on a) the primary basal slip systems and b) the pyramidal  ac  slip 

systems (orientation 1) 



52 
 

In the next step, the experimental stress-strain curve provided by Bhattacharya [1] in loading 

orientation 1, was matched by calibrating 
)(1

0

pAh 
and 

)(1 pA

s

  (Equation (3-1)) for the resistance function of 

the primary slip systems (Equation (2-24)). The best calibration result obtained is shown in Figure 3-9. 

The total shear strain on all primary basal and pyramidal  ac  slip systems are presented in Figure 

3-10 (in this loading orientation, the prismatic slip systems do not take up any shear strain). The 

parameter values for this calibration are: in Equation (2-24), 
6)(1

0 1022.1 pAh 
Pa, 

5)(1 107.2 pA

s



Pa. 

 

3.2.2 Calibration of the resistance evolution function of the primary extension twinning 

systems (orientations 3 and 5) 

An attempt was made to curve fit the stress-strain curves in orientations 3 and 5 with the primary slip 

systems alone, primary extension twinning systems alone, a combination of primary slip and extension 

twinning systems, and a combination of primary and secondary slip and primary twinning systems. Also, 

nucleating the primary and secondary twinning systems at different plastic work levels, and the secondary 

slip systems at different deformation stages were tried. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-11 Curve fit results when primary slip and extension twinning systems were considered 

(orientation 3) 

 

The best curve fits for loading orientations 3 and 5 were obtained by considering primary slip 

systems and primary extension twinning systems where nucleation of the primary extension twinning 

systems was allowed at the very beginning of simulation (i.e. required plastic work for their nucleation 
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was set to zero). The curve fit results are shown in Figures 3-11 and 3-13. The total shear strain on all the 

primary slip, and primary extension twinning systems for both loading orientations are presented in 

Figures 3-12 and 3-14. The CRSS for the primary extension twinning systems is considered 1 MPa [63]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-12 a) Total accumulated shear strain by the primary pyramidal  ac  slip systems, and b) 

by the primary extension twinning systems (orientation 3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-13 Curve fit results when primary slip and extension twinning systems were considered 

(orientation 5) 
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Figure 3-14 a) Total accumulated shear strain by the primary pyramidal  ac  slip systems, and b) 

by the primary extension twinning systems (orientation 5) 

 

Table 3-1 contains the parameter values for the resistance of the slip (
A

ph2

  in Equation (2-47) and 

A

ph 2


  in Equation (2-48)) and extension twinning systems (

B

ph2

 in Equation (2-52) and 
B

ph 2


  in Equation 

(2-53)) obtained by calibration. 

 

Equation (2-47) 

)(2

0

pAh 
 6101.4  Pa 

)(2 pA

s

  5100.4  Pa 

Equation (2-48) 

)(2

0

pAh   6103.7  Pa 

5)(2 pA

s

   5101 Pa 

Equation (2-52) 

)(2

0

pBh 
 0 Pa 

)(2 pB

s

  5101 Pa 

Equation (2-53) 

)(2

0

pBh   6102.4  Pa 

)(2 pB

s

   5103.3  Pa 

 

Table 3-1 The parameter values for the resistance of the primary slip and extension twinning systems 
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3.2.3 Calibration of the resistance evolution function of primary contraction twinning 

systems (orientation 2 and 4) 

Attempts were made to curve fit the stress-strain curves in loading orientations 2 and 4, with primary slip 

systems alone, primary contraction twinning systems alone, a combination of primary slip and contraction 

twinning systems, a combination of primary and secondary slip and primary contraction twinning 

systems, and a combination of primary and secondary slip as well as primary contraction and secondary 

extension twinning systems. Also, nucleating the primary contraction and secondary extension twinning 

systems at different plastic work levels, and secondary slip systems at different deformation stages were 

tried. In order to keep the number of state variables at a minimum, the effect of considering tertiary slip 

systems (36x12=432 state variables associated with the shear strain on the tertiary slip systems) on the 

stress-strain response of the material in loading orientations 2 and 4 was not investigated. 

The best curve fits for loading orientations 2 and 4 were obtained by considering the primary slip 

and contraction twinning systems. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-15 Stress-strain curve fit results when primary pyramidal  ac  slip and contraction 

twinning systems were considered (orientation 2) 

 

For loading orientation 2, the result is shown in Figure 3-15. In this case, the nucleation of the 

primary contraction twinning systems was allowed at the plastic work of 
41054.3   Pa. The shear strain 

on the primary pyramidal  ac  slip, and primary twinning systems are shown in Figures 3-16a and 

3-16b, respectively (the primary basal and prismatic slip systems do not take up shear strain). While the 

results in Figure 3-15 represent the best match between the model and experimental results found, there is 
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a noticeable discrepancy between the two curves in this figure. The only way to improve the model results 

is to use more elaborate resistance evolution functions for the primary slip and twinning systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-16 a) Total accumulated shear strain by the primary pyramidal  ac  slip systems, and b) 

by the primary contraction twinning systems (orientation 2) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-17 Stress-strain curve fit results when primary slip and contraction twinning systems were 

considered (orientation 4) 

 

The curve fit result in loading orientation 4 is shown in Figure 3-17. Nucleation of the primary 

contraction twinning systems was allowed at the beginning of loading (i.e. the required plastic work for 
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their nucleation was set to zero). The shear strain on the primary pyramidal  ac  slip, and primary 

twinning systems are shown in Figures 3-18a and 3-18b, respectively (the primary basal and prismatic 

slip systems do not take up shear strain).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-18 Total accumulated shear strain by the primary pyramidal  ac  slip systems, and b) by 

the primary contraction twinning systems (orientation 4) 

 

Equation (2-47) 

)(2

0

pAh 
 6101.4  Pa 

)(2 pA

s

  5100.4  Pa 

Equation (2-48) 

)(2

0

pAh   0 Pa 

5)(2 pA

s

   5101 Pa 

Equation (2-52) 

)(2

0

pBh 
 7100.2  Pa 

)(2 pB

s

  5103.0  Pa 

Equation (2-53) 

)(2

0

pBh   6107.4  Pa 

)(2 pB

s

   5107.6  Pa 

 

Table 3-2 The parameter values for the resistance of the primary slip and contraction twinning systems 
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The CRSS for the primary contraction twinning systems in magnesium was not reported in 

literature. From calibration it was discovered that the choice of 2 MPa results in the best prediction of the 

experimental stress-strain curve in loading orientations 2 and 4. 

The parameter values for the resistance of slip (
A

ph2

  in Equation (2-47) and 
A

ph 2


  in Equation (2-

48)) and contraction twinning systems (
B

ph2

 in Equation (2-52) and 
B

ph 2


  in Equation (2-53)) obtained by 

calibration are shown in Table 3-2. 

 

3.2.4 Texture evolution 

As previously mentioned, the CPCM was integrated at one material point, representing the entire 

specimen in the uniaxial tension, and with this scheme any size effect (e.g. specimen aspect ratio) cannot 

be accounted for [71,72,77]. The calibration was done within a small range of deformation of the loaded 

specimens in five orientations (according to the Figure 3-8 the maximum strain in all the loaded 

specimens was only 35%), where the deformation can be assumed homogeneous. At this level of 

deformation, no experimental data regarding evolved grain orientation for the loaded specimens is 

available in [1], and so it was not possible to compare the simulated evolution of the grain with 

experimental data. 

For very large deformations (e.g. 250% strain in orientation 1, 60% strain in orientation 2, and 

150% strain in orientation 3, etc.), the experimental data regarding the evolved grain orientation for the 

loaded specimens is available in [1], however, at these high levels of deformation, it is very unlikely that 

the deformation in the specimens was homogeneous. Therefore, since the implemented integration 

scheme is only valid for homogeneous deformation throughout the specimen, it was not logical to 

compare the model prediction of grain orientation at these high levels of deformation (where the 

deformation is unlikely homogeneous) with the available experimental data in the five loaded specimens. 

 

3.2.5 Calibration conclusions 

The results of calibration for various plastic deformation mechanisms are summarized below: 

When the primary slip systems are the only active plastic deformation mechanisms (i.e. step 1 of 

the model), the parameters of their resistance were calibrated with good accuracy in Sections 3.2.1. In 

step 2 of the model where, in addition to the primary slip systems, primary twinning systems are active, 

the parameters of the resistance of the primary slip systems were calibrated with good accuracy as well. In 

this case, one set of parameter values for the resistance of primary slip systems was obtained for the case 
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where the primary slip systems interacted with primary extension twinning systems (orientations 3 and 5), 

and another set was obtained for the case where the primary slip systems interacted with primary 

contraction twinning systems (orientations 2 and 4). Since the nature of interaction between the primary 

slip and primary extension twinning systems differs from that between the primary slip and primary 

contraction twinning systems, the sets of parameter values for the resistance of primary slip systems differ 

in these two cases. 

Since the primary prismatic slip systems have a very high CRSS at room temperature, 39.2 MPa 

[62], regardless of the parameter values selected for their resistance evolution function, they did not take 

up any shear strain in all the loading orientations of the single crystals considered. The relatively low 

CRSS values for the slip and twinning systems, of the order of 1 MPa, which were used in the model, 

were obtained in deformation experiments on magnesium single crystals under the condition of uniaxial 

tension (as shown in Figure 3-8). On the other hand, experimental results on magnesium polycrystals [1] 

and on magnesium alloys [64,65], show that the yield stress of these materials is one order of magnitude 

larger than the yield stress observed in single crystals. The reason for this difference is the grain 

boundaries. These results suggest that to simulate the deformation behaviour of polycrystalline aggregate, 

much higher values for the CRSSs of the slip and twinning systems than those used for single crystals 

have to be considered. 

It was possible to determine one set of parameter values for the primary extension twinning 

systems in orientations 3 and 5, such that the experimental stress-strain curves were predicted with good 

accuracy in these two orientations. Also, one set of parameter values for the primary contraction twinning 

systems in orientations 2 and 4 was determined, such that the experimental stress-strain curves were 

predicted with good accuracy in these two orientations. 

The calibration of the CRSSs and resistance evolution function parameters of the secondary slip 

and twinning systems was not possible; this is only possible when there are more experimental stress-

strain curves in loading orientations where these plastic deformation mechanisms are active. 

 

3.3 Model application: importance of accounting for various plastic 

deformation mechanisms 

A numerical experiment was designed in which the proposed CPCM was used to simulate the simple 

shear loading of a magnesium single crystal to show the significance of accounting for the kinematics of 

various slip and twinning systems. 50% shear strain is applied to the single crystal, and the response of 

the material was calculated with steps 1, 2, 3-4, and 5 of the proposed CPCM. In this study, the nucleation 

of the primary twinning systems was allowed from the very beginning of the simulation (i.e. when the 
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shear strain was 0). Also, nucleation of the secondary slip systems was allowed around a shear strain of 

0.045. Finally, nucleation of the secondary twinning systems was allowed around a shear strain of 0.055. 

Through this strategy, it was possible to individually examine the effect of various plastic 

deformation mechanisms on the macroscopic stress-strain response of the material. For the reason 

mentioned previously in the Subsection 3.2.3, the effect of tertiary slip systems in the model was not 

investigated. 

Figure 3-19 shows the simple shear loading of a single crystal of magnesium. {X,Y,Z} 

corresponds to the global coordinate system, and },,{ 321 eee  corresponds to the orthonormal local 

coordinate system attached to the crystal. The c-axis of the crystal is aligned with the 3e axis. The 

orientation of the orthonormal coordinate system },,{ 321 eee  with respect to the crystal is shown in Figure 

C-1, Appendix C. 

Based on Figure 3-19, for 
 900  , the contraction twinning systems, and for 

 360270  , the extension twinning systems, get activated. The results of the simulations show that 

for
5.17 , a secondary extension twinning systems inside a primary contraction twinned region has a 

favourable orientation for nucleation and growth. Also, inside the primary contraction twinned region, 

four secondary pyramidal  ac  slip systems have a favourable orientation for nucleation and growth. 

So, all the plastic deformation mechanisms have favourable orientation for nucleation and growth in this 

orientation, and therefore this crystal orientation was selected for simulation. In terms of Bunge angles 

[59], the crystal orientation is as follows: 

0,90,5.162 21   

        (3-4) 

 

 

 

 

 

 

 

 

 

 

Figure 3-19 Simple shear loading of a single crystal of magnesium 
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The relationship between the orientation matrix and Bunge angles is given in Equations (2-178)-

(2-187). The slip and twinning systems considered in the simulation are presented in Table C-1 in 

Appendix C. The elasticity modulus for a single crystal of magnesium and the values of its components 

are given in Appendix D. 

The choice of resistance evolution functions for the various slip and twinning systems was the 

same as in Section 3.2 (Equations (3-1) and (3-2)). 

In step 1, the CRSS and resistance evolution function parameter values of the primary slip 

systems obtained by calibration in Subsection 3.2.1 were used.  

In step 2, the CRSS and resistance evolution function parameter values of the primary slip and 

contraction twinning systems obtained by calibration in Subsection 3.2.3 were used (Table 3-2). 

In steps 3-4, the CRSS and resistance evolution function parameter values of the primary slip and 

contraction twinning systems obtained by calibration in Section 3.2.3 were used (Table 3-2). For the 

resistance evolution function of the secondary slip systems, the same values as the ones obtained for the 

primary slip systems in Section 3.2.3 were used, i.e. in Equation (2-74), 0)(43

0  pCh 
, 

5)(43 101 pC

s



Pa; and in Equation (2-75), 
6)(43

0 101.4   sCh 
Pa, 

5)(43 100.4   sC

s

 Pa. The simple shear loading 

for three different conditions were simulated: 

sys.  slip  prim.3sys.  slip   second. CRSSs cCRSSs 
      

(3-5) 

 

where 3c  = 1, 2.5, and 6. 

Lastly, in step 5, the CRSS and resistance evolution function parameter values of the primary slip 

and contraction twinning systems obtained by calibration in Section 3.2.3 were used (Table 3-2). For the 

resistance evolution function of the secondary slip systems, the same values as the ones obtained for the 

primary slip systems in Section 3.2.3 were used, i.e. in Equation (2-101), 0)(5

0 pCh 
, 

5)(5 101pC

s



Pa; in Equation (2-102), 
6)(5

0 101.4  sCh 
Pa, 

5)(5 100.4  sC

s

 Pa; and in Equation (2-103), 

0)(5

0  sCh 
, 

5)(5 101 sC

s

 Pa. For the resistance evolution function of the secondary extension 

twinning systems, the same values as the ones obtained for the primary extension twinning systems in 

Section 3.2.2 were used, i.e. in Equation (2-107), 0)(5

0 pDh 
,

5)(5 101pD

s

 Pa; in Equation (2-108), 

0)(5

0  sDh 
,

5)(5 101 sD

s

 Pa; and in Equation (2-109),
6)(5

0 102.4  sDh 
Pa,

5)(5 103.3  sD

s



Pa. We have simulated the simple shear loading for three different conditions: 
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sys.  slip  prim.3sys.  slip   second. CRSSs cCRSSs        (3-6)
 

sys.     twinningprim.3sys.     twinningsecond. CRSSs cCRSSs 
     (3-7)

 

where 3c = 1, 2.5, and 6. 

The CPCM was integrated at one material point, representing the entire specimen in the simple 

shear loading. 

Figure 3-20 shows the global stress-strain curves for the four steps (when 3c  = 1). It can be seen 

that the macroscopic stress response of the material in steps 1, 2, 3-5, and 5 are different. The maximum 

difference between the stresses in steps 1 and 2 is 26.1%. This shows that if a part of plastic deformation 

is taken up by primary slip and twinning systems, the macroscopic stress-strain curve will be different 

compared to step 1 where the entire plastic deformation is taken up by the primary slip systems alone.  

The maximum difference between the stresses in steps 2 and 3-4 is 6.5% which indicates the effect of 

considering secondary slip systems as additional plastic deformation mechanisms. Finally, the difference 

between the stress responses in steps 3-4 and 5 is 3.5% which indicates that the accommodated shear 

strain by the secondary twinning systems did not increase enough to make a significant difference. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-20 Simulation results of simple shear loading of a magnesium single crystal, 3c  = 1 

 

Figure 3-21 shows the global stress-strain curves for the five steps when 3c  = 2.5. The 

macroscopic stress response of the material in steps 3-4 and 5 are slightly different (1.3%), and their 

difference with the stress-strain curve in step 2 decreased. The maximum difference between the stresses 
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in steps 2 and 3-4 is 4.1% which is less than the corresponding value for when 3c  = 1. This is because the 

CRSS for the secondary slip systems is higher in this step which results in less accumulation of shear 

strain on the secondary slip systems. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-21 Simulation results of simple shear loading of a magnesium single crystal, 3c  = 2.5 

 

Figure 3-22 shows the global stress-strain curves for the five steps when 3c  = 6. Note that the 

macroscopic stress response of the material in steps 2, 3-4, and 5 are all the same. This means that for 3c  

= 6 the secondary slip and twinning systems do not take up any plastic strain. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-22 Simulation results of simple shear loading of a magnesium single crystal, 3c  = 6 
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The distribution of plastic deformation on the various slip and twinning systems in the five steps 

are discussed next. For the presented grain orientation, in steps 2, 3-4, and 5 only one primary contraction 

twinning system was activated. In step 5 one secondary extension twinning system was activated inside 

the primary twinned region.  

Figure 3-23 shows the shear strain on the primary basal, prismatic, and pyramidal  ac  slip 

systems in the loading step 1.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3-23 Distribution of shear strain on the primary slip systems, step 1 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-24 a) Distribution of shear strain on the primary slip systems, and b) primary twinning systems, 

step 2  
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The shear strain distribution over the primary slip and twinning systems in step 2 are shown in 

Figures 3-24a and 3-24b, respectively. Compared with step 1, while the pattern of shear strain on the 

primary basal and prismatic slip systems did not change (Figure 3-23), the pattern of shear strain on the 

primary  ac  slip systems changed in step 2. This is because in step 2, strain along the c-axis of the 

HCP crystal can be taken up either by primary pyramidal  ac  slip systems or by primary twinning 

systems, and whichever has a greater resolved shear stress and lesser resistance takes up more strain. The 

accumulated shear strain by the only primary contraction twinning system is shown in Figure 3-24b. 

In steps 3-4, the accumulated shear strain by the primary slip systems is shown in Figure 3-25. 

The accumulated shear strain by the primary twinning the secondary pyramidal  ac  slip systems is 

shown in Figure 3-26 for three cases of 3c  = 1, 2.5, and 6. For 3c  = 1 and 2.5, the trend of shear strain on 

the primary slip primary twinning systems is very similar to step 2 (Figure 3-24). Around a shear strain of 

0.045, nucleation of the secondary slip systems was allowed and Figure 3-26b shows that the shear strain 

on the secondary pyramidal  ac  slip systems (other secondary slip systems did not have favourable 

orientation for growth). For, 3c  = 6 the distribution of shear strain on the primary slip and primary 

twinning systems are identical to step 2 (Figure 3-24). Furthermore, there is no shear strain on the 

secondary slip systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-25 Distribution of shear strain on the primary slip systems, steps 3-4 
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Figure 3-26 a) Distribution of shear strain on the primary twinning systems, and b) secondary slip 

systems, steps 3-4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-27 Distribution of shear strain on the primary slip systems, step 5 

 

In step 5, the distribution of shear strain on the primary slip systems is shown in Figure 3-27. The 

distribution of shear strain on the primary twinning and secondary pyramidal  ac  slip systems are 

shown in Figure 3-28. The shear strain accumulated by the secondary twinning systems is shown in 

Figure 3-29 for three cases of 3c  = 1, 2.5, and 6. For 3c  = 1 and 2.5, the distribution of shear strain on 

the primary slip and primary twinning systems are very similar to step 2 (Figure 3-24). Around a shear of 

0.045, nucleation of the secondary slip systems was allowed. Around a shear of 0.055 nucleation of the 

secondary twinning systems was allowed. Figure 3-26b shows the shear strain on the secondary 
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pyramidal  ac  slip systems, and Figure 3-29 shows the shear strain accumulated by the secondary 

twinning systems. For 3c  = 6, the distribution of shear strain on the primary slip systems and primary 

twinning systems are identical to step 2 (Figure 3-24). Furthermore, there is no shear strain on the 

secondary slip and twinning systems. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-28 a) Distribution of shear strain on the primary twinning systems, and b) secondary slip 

systems, step 5 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-29 Shear strain accumulated by the secondary twinning systems, step 5 

 

While the 3c  value was kept constant in the above simulations, it is trivial to see how an evolving 

3c  value from low to high, and/or high to low can affect the material response. Therefore, one can 
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conclude that the partially calibrated CPCM predicts that, depending upon the plastic deformation 

mechanisms taken into account and the resistance considered for them, the large strain deformation of the 

material can be different. This, in other words, indicates that neglecting secondary slip and twinning 

systems can reduce the accuracy of the predicted microscopic (texture) and macroscopic properties 

(stress-strain response) of magnesium alloys by the crystal plasticity modelling scheme. It is clear from 

the above that contraction twinning must not be neglected in any simulation of magnesium deformation. 
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Chapter 4   

Predicting the forming limit diagram for a single crystal of 

magnesium 

 

4.1 Introduction 

Assessing the FLDs of metals is integral to the study of their formability capabilities. In a practical sense, 

Keeler [66] introduced the concept of an FLD from his experimental investigations on plastic instability 

and fracture in sheets stretched over steel punches. His idea was proven to be very useful in representing 

the flow localization during sheet stretching. In a theoretical sense, there are two main approaches to 

compute FLDs in sheet metals. The first approach is the perturbation method based on the stability of 

deformation [67,68]. In this method, one deformation mode is considered in the entire sheet. Tóth et al. 

[68] computed FLDs where they accounted for the texture development. The second approach, which is 

the focus of this thesis, is based on the Marciniak–Kuczynski (M–K) analysis [69]. In the M–K analysis, 

thickness imperfections are introduced to simulate pre-existing defects in the sheet material. Unlike the 

perturbation method, the deformation mode in the groove is different from the mode outside the groove. 

Necking is considered to occur when the ratio of the thickness in the groove to the nominal thickness is 

below a critical value. Marciniak and Kuczynski [69] showed that the presence of even slight intrinsic 

inhomogeneities in load bearing capacity throughout a deforming sheet can lead to unstable growth of 

strain in the weaker regions, and subsequently can cause localized necking and failure [70,71]. 



70 
 

By using the phenomenological plasticity models within the M–K framework, the influence of 

yield surface vertices, anisotropy, and material rate sensitivity on FLDs were explored [72-74]. A detailed 

discussion about the development of phenomenological-plasticity-based models for FLD computation can 

be found in [70]. The initial texture and its evolution are two important factors in the formability of 

anisotropic materials. Tóth et al. [75,76] used the M–K framework and, by accounting for texture 

evolution, computed the FLDs for aluminum sheets. Wu et al. [70,77] and Inal et al. [71] used the rate-

dependent Crystal Plasticity Constitutive Model (CPCM) of Peirce et al. [30] to calculate FLDs for FCC 

and BCC polycrystals, respectively. The effects of initial imperfection intensity and orientation, initial 

distribution of grain orientations, crystal elasticity, strain-rate sensitivity, single slip hardening, and latent 

hardening on the predicted FLDs were discussed in detail in the works by Wu et al. [70,77] and Inal et al. 

[71]. Neil and Agnew [33] used a Viscoplastic Self-Consistent (VPSC) polycrystal plasticity model [78] 

in conjunction with the M-K framework to predict the FLDs for magnesium alloy, AZ31B, sheets. While 

they had considerable success, Lévesque et al. [29] addressed the requirement of a CPCM to generate 

FLDs for magnesium alloys (within the M-K framework) that would account for the strain rate effects. 

They used a rate-dependent elastic-viscoplastic CPCM with Taylor [8] assumptions in conjunction with 

the M-K framework to predict the formability of AM30 magnesium alloy at C200 at the strain rates of 

0.1/s, 0.01/s, and 0.001/s. 

In this thesis, as an application of the proposed CPCM, the effect of intragranular plastic 

deformation mechanisms of primary slip and twinning systems on the formability of a magnesium single 

crystal at room temperature is studied. This was done by simulating the FLDs using the proposed CPCM 

together with the M–K framework. The parameter values of the resistance functions for the primary slip 

and twinning systems obtained by calibration in Chapter 3 were used to simulate the FLDs. The 

significance of this investigation is that by studying the formability in magnesium single crystals, where 

the grain boundary effects do not have any contribution in the plastic deformation, the exclusive effect of 

intragranular plastic deformation mechanisms on the formability of magnesium can be assessed. 

According to the available literature to date, the effects of intragranular plastic deformation 

mechanisms in magnesium on its formability has not been exclusively studied. When more experimental 

data is available, assessing the effect of secondary twinning systems, as well as secondary and tertiary slip 

systems on formability of magnesium single crystals in different crystal orientations and loading paths, 

will be possible. 

The FLDs were computed for two different crystal orientations. In the first orientation, primary 

slip systems and extension twinning systems have favourable orientation for activation. In the second 

orientation, primary slip systems, as well as contraction twinning systems have favourable orientation for 

activation. Aside from the effect of primary slip and twinning systems on the FLDs, the effects of rate 
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sensitivity, c/a ratio, and shear strain (
12D ) outside the necking band on the simulated FLDs for the two 

orientations were investigated. 

Sheet necking was initiated from an initial imperfection in terms of a narrow band. The 

deformations inside and outside the band were assumed to be homogeneous and conditions of 

compatibility and equilibrium were enforced across the band interfaces. Thus, the CPCM needs to be 

applied to only two regions, one inside and one outside the band.  

The problem formulation and the method of solution are presented in Section 4.2. In section 4.3, 

the predicted FLDs for two grain orientations under various conditions are presented. 

 

4.2 Formulation for the computation of the forming limit diagram 

In Figure 4-1, 
1x  and 

2x  are the global coordinate system. A sheet having a non-uniformity in the form 

of a band (or groove) which is initially inclined at an angle   with respect to the 
2x  direction is 

considered in the analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1 The geometry and convention used in the FLD analysis [33] 

 

Quantities outside and inside the band are denoted by (1) and (2), respectively. The thickness 

along the minimum section in the band is denoted by )()2( tH  with an initial value of )0()2(H . The 

initial geometric non-uniformity is defined by: 
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)0(

)0(
)1(

)2(

H

H
f            (4-1)  

 

where )0()1(H is the initial thickness outside the band. The typical value of f  is between 0.95 and 0.995 

[71,77]. 

The imposed boundary conditions on the edges of the sheet are as follows: 

 
)1(

11

)1(

22

D

D
 const.          (4-2)  

0)1(

33  , 0)1(

12           (4-3) 

 

where 
)1(

11D  and 
)1(

22D are the (principal) logarithmic strain rates and 
)1( is the total Cauchy stress outside 

the band. In step 1 of the model, where the plastic deformation mechanisms are primary slip systems 

alone and there is no twinned region, the total Cauchy stress is equal to the stress in the parent (matrix) 

and is given by Equation (2-26). In step 2 of the model, where the plastic deformation mechanisms are 

primary slip and twinning systems, a homogeneous deformation field is assumed in the parent and 

twinned regions of the grain (Taylor [8] assumptions), and the total Cauchy stress is a weighted average 

of the stresses in the parent and twinned regions of the grain given by Equation (2-55). 

Following the works in [29,70,71,77] the following conditions are imposed: 

0)1(

23

)1(

13  DD , 0)1(

23

)1(

13

)1(

12        (4-4) 

 

where   is the spin tensor. These are simplifying assumptions to reduce the numerical calculations.  

In the papers by Wu et al. [70,77] and Inal et al. [71] the effect of shear strain 
)1(

12D  in the 

formulation was ignored, i.e. it was assumed 0)1(

12 D . This was done to avoid the required numerical 

computations to calculate the shear strain )1(

12D  outside the band. Because of the anisotropic relationship 

between the Jaumann rate of stress and strain rate (Equations (2-19), (2-42), and (2-43)), the condition of

0)1(

12 D  
may or may not result in a zero value for )1(

12  (in brief, this depends on the relative orientation 

of the grain with respect to the global coordinate system shown in Figures 4-1 and 4-2; more details are 

available in [79]). 

In the current work we account for )1(

12D  for more accuracy. )1(

12D and 
)1(

33D  are simultaneously 

calculated in each simulation time step by the boundary conditions in Equation (4-3) (in this case, )1(

12  is 

zero throughout the entire deformation). 
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The simulation results corresponding to these two different boundary conditions are compared in 

Subsection 4.4.1. 

Under this deformation condition, the groove orientation   is updated by [72]: 

)tan()tan(
))1((

1

)1(
11

nn e  

          (4-5) 

 

Since uniform deformations are assumed both inside and outside the band, equilibrium and 

compatibility inside and outside the band are automatically satisfied, apart from the necessary conditions 

at the band interface. Following Hutchinson and Neale [72], the compatibility condition at the band 

interface is given in terms of the differences in the velocity gradients inside and outside the band as 

follows: 

 ngLL  )1()2(
         (4-6) 

or 

  ngngDD 
2

1)1()2(  ,   ngng 
2

1)1()2(    (4-7) 

 

here, )cos(1 n  and )sin(2 n  are the components of the unit normal to the band in the current 

configuration (Figure 4-1). The g values are the parameters to be determined. Equilibrium on each side 

of the interface requires that: 

    )1()1(

212

)1(

111

)2()2(

212

)2(

111 HnnHnn        (4-8) 

    )1()1(

222

)1(

121

)2()2(

222

)2(

121 HnnHnn        (4-9) 

 

Again,   is the total Cauchy stress. The sheet thicknesses outside the band 
)1(H  and inside the 

band 
)2(H  are updated with the following evolution functions: 

)1()1(

33

)1( HDH   and 
)2()2(

33

)2( HDH         (4-10) 

 

The same instability criterion used by Inal [71] and Wu [70] was implemented in this research, 

i.e. the onset of sheet necking is defined by the occurrence of a much higher maximum principal 

logarithmic strain rate inside the band rather than outside the band: 
5

)1(

11

)2(

33 10
D

D
.  
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4.3 The integration procedure used to simulate the forming limit diagrams 

using step 2 of the crystal plasticity constitutive model and M-K framework 

The integration procedure of the CPCM when primary slip and twinning systems are the plastic 

deformation mechanisms (i.e. step 2 of the CPCM) within the M-K approach is presented in this 

subsection. This is a more complicated scenario than the case where the plastic deformation mechanisms 

are primary slip systems alone (i.e. step 1 of the CPCM). For the sake of simplicity, the forward Euler 

integration algorithm was used to integrate the constitutive equations within the updated Lagrangian 

setting. The idea behind this algorithm is to use the slip rates per slip system, and the volume fraction 

rates per twinning system at time 
)(nt  to compute quantities for time 

)1( nt . For forward Euler integration 

scheme to give valid results, a rather small time step has to be used. 

- Subroutine passes 
)1(

)(11 nD , 
pip

n

 )(

)( , 
pip

ng )(

)( , 
pip

nf )(

)( , 
pip

ng )(

)( , 
matip

n

)(

)( , 
pip

n

 )(

)( , 
)(

)(1

ip

n , 
)(

)(

ip

n , 
)(

)(2

ip

n , 
)*(

)(

ip

nF , 

)1(

)(11 n , )(n , )(1 nn , )(2 nn , 
)1(

)(nH , 
)2(

)(nH , t  

- Updating the lattice vectors and P  and W  inside and outside the band: 
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- Updating the elasticity modulus: 
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- Calculating the slip shear strain rates at time )(nt using the stress state and 
pip

nP )(

)(  , and the volume 

fraction rates at time )(nt using the stress state and 
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- Computing total slip, resistance and update the shear strengths of the slip systems: 
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- Update 
)1(

22D  
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- Calculating 
)1(

)(33 nD  and 
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)(12 nD  outside the band by simultaneously solving the following two equations: 
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- Calculating
1g , 

2g , and 
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- Updating
)1(H , 

)2(H ,  , 1n , and 2n : 
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- Updating the deformation rate and spin inside the band: 
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- Updating the stress in the parent, primary twinned region, and the whole grain: 
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- Updating the orientation matrix 
)(

)(

ip

nQ  and the Bunge angles [59]: 
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where from Bunge [59]: 
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- Condition to exit the subroutine: 
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4.4 Forming limit diagram results and discussion 

The FLDs were simulated for two orientations (Figure 4-2). In orientation A, primary slip systems and 

extension twinning systems have favourable orientation for activation. In orientation B, primary slip 

systems and contraction twinning systems have favourable orientation for activation. The Bunge angles 

[59] corresponding to these two orientations are as follows: 

Orientation A: 

2
1


  , 

2


  , 

2
2


          (4-74) 

 

Orientation B: 

 1
, 

2


  , 

2
2


          (4-75) 

 

The relationship between the Bunge angles and orientation matrix is given in Equations (2-178)-

(2-187). 

 

 

 

 

 

 

 

 

Figure 4-2 Grain orientations along with the lattice and global coordinate systems: a) orientation A, and 

b) orientation B 

There are two reasons for choosing these two orientations. First, in each orientation only one 

twinning kind (extension or contraction) has favourable orientation for activation; the effect of each 
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twinning kind can be assessed individually. Second, because the required loadings in orientations A and B 

in Figure 4-2 to compute the FLDs are similar to the loadings in crystal orientations 2, 3, 4, and 5 (Figure 

3-7), it is expected that the predicted FLDs in these two orientations have the most accuracy, compared 

with other grain orientations. The similarity here is that the prediction of a non-linear model around the 

operating point at which it was calibrated is much more accurate, compared with its prediction at other 

operating points. 

For the above two orientations, the effects of shear strain (
)1(

12D ) outside the necking band, slip 

and twinning systems, rate sensitivity parameter (m), and c/a ratio on the FLDs have been investigated. 

In these studies, the groove angle was changed from 0 to 
40 at increments of 

5  (similar to the work of 

Neil and Agnew [33] and Inal et al. [71]) to find the critical groove orientation at which the model 

predicts minimum formability. The initial imperfection parameter f  in Equation (4-1) was taken as 

0.992 in all the calculations. To simulate the FLDs, the strain rate ratio,   in Equation (4-2), was varied 

from 0 to 1. Because the constitutive model was not calibrated for compressive loading parallel and 

perpendicular to the c-axis of the magnesium single crystal (Figure 3-7),  was not assigned negative 

values when computing the FLDs. Negative values for  would be equivalent to using the model to 

simulate something outside its calibration domain and prediction capabilities. 

The slip and twinning systems considered in this work are listed in Table C-1 in Appendix C. 

 

4.4.1. Effect of the shear strain outside the band (
)1(

12D ) 

The effect of shear strain (
)1(

12D ) on the simulated FLDs was investigated. Figure 4-3 shows that 

neglecting or accounting for the shear strain (
)1(

12D ) in the FLD computation in step 1 of the model for 

orientation A does not have any effect on the predicted formability. However, in step 1 for orientation B 

(Figure 4-4) as well as in step 2 for both orientations A and B (Figures 4-5 and 4-6, respectively), 

accounting for
)1(

12D  in the FLD computation results in improved formability prediction. This suggests that 

in simulating the FLD of magnesium single crystals using crystal plasticity and M-K analysis, neglecting 

the shear strain (
)1(

12D ) results in a more conservative formability prediction. 
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Figure 4-3 FLDs computed with step 1 of the CPCM for orientation A with 0)1(

12 D  and 0)1(

12 D  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-4 FLDs computed with step 1 of the CPCM for orientation B with 0)1(

12 D and 0)1(

12 D  
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Figure 4-5 FLDs computed with step 2 of the CPCM for orientation A with 0)1(

12 D and 0)1(

12 D  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-6 FLDs computed with step 2 of the CPCM for orientation B with 0)1(

12 D and 0)1(

12 D  

 

4.4.2. Effect of twinning on formability  

Figure 4-7 shows the FLDs computed by steps 1 and 2 of the model for orientation A, where extension 

twinning systems have favourable orientation for activation. This figure shows that extension twinning 

systems improve the formability of the magnesium single crystal. The same conclusion was drawn by 

Lévesque et al. [29], as well as Neil and Agnew [33] for the AZ31 magnesium alloy (polycrystal with a 

rolling texture but at high temperature) which are in agreement with experimental results presented by 

Yukutake et al. [80] and Chino et al [81] at high temperature. 
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Figure 4-7 Comparing the FLDs computed with steps 1 and 2 of the CPCM for orientation A 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-8 Comparing the FLDs computed with steps 1 and 2 of the CPCM for orientation B 

 

Figure 4-8 presents the FLDs predicted by steps 1 and 2 of the model for orientation B where 

contraction twinning systems have favourable orientation for activation. Simulations show that similar to 

the extension twinning systems, contraction twinning systems improve the formability of the magnesium 

single crystal, as well.  

Figure 4-9a presents the FLD computed by step 1 of the CPCM for orientation A and the shear 

strain on the pyramidal  ac slip systems. The FLD follows the trend of shear strain on the pyramidal 

 ac slip systems. Figure 4-9b shows the FLD computed by step 2 of the CPCM for orientation A, the 

shear strain on the pyramidal  ac
 
slip systems, and the volume fraction of the extension twinned 
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regions. It is apparent that the activity of the extension twinning systems drastically changes the 

magnitude of the shear strain on the pyramidal  ac slip systems, but the FLD still follows the trend of 

shear strain on the pyramidal  ac slip systems. Furthermore, to check the validity of this conclusion 

with respect to the grain orientation, the crystal in orientation A (Figure 4-2a) was tilted individually 

around the 
2X and 

3X axes. It was found that up to the tilt angle of 
5.7  around the 

2X and 
3X axes, 

the FLD still follows the trend of the shear strain on the pyramidal  ac
 
slip systems, in both steps 1 

and 2 of the CPCM in orientation A. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-9 Comparing the break-down of shear corresponding to the FLDs computed with steps 1 and 2 

for orientation A. a) shear strain on the slip systems, b) shear strain and volume fraction of the twinned 

regions 

 

The FLD computed by step 1 of the CPCM for orientation B and the relative shear strain on the 

basal and pyramidal  ac  slip systems are presented in Figure 4-10a.  Predictions show that the FLD 

follows the trend of shear strain on the basal slip systems curve. Figure 4-10b shows the FLD computed 

by step 2 of the CPCM for orientation B, the shear strain on the basal and pyramidal  ac slip systems, 

and the volume fraction of the contraction twinned regions. It is apparent that the activity of the 

contraction twinning systems slightly changes the magnitude of the shear strain on the basal systems, but 

the FLD still follows the trend of shear strain on the basal slip systems. Furthermore, to check the validity 

of this conclusion with respect to the grain orientation, the crystal in orientation B (Figure 4-2b) was tilted 

individually around the 1X and 
3X axes. Simulations show that up to the tilt angle of 

5  around the 1X
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and 
3X axes, the FLD still follows the shear strain on the basal slip systems, in both steps 1 and 2 of the 

CPCM in orientation B. 

 

 

 

 

 

 

 

 

 

 

Figure 4-10 Comparing the break-down of shear corresponding to the FLDs computed with steps 1 and 2 

for orientation B. a) relative shear strain on the slip systems, b) relative shear strain and volume fraction 

of the twinned regions 

 

4.4.3. Effect of rate sensitivity (m) 

 The effect of the strain rate sensitivity parameter (m in Equation (2-21) for primary slip systems, and in 

Equation (2-49) for primary twinning systems) on the FLDs was investigated in this subsection. The 

predicted FLDs by step 1 of the CPCM, for orientation A, corresponding to the m values (in Equation (2-

21)) of 0.005, 0.02, and 0.05 are presented in Figure 4-11. Simulations show that an increase in the m 

value corresponds to an increase in formability. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-11 Effect of rate sensitivity parameter, m, on the FLDs in step 1 of the CPCM (orientation A) 
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Figure 4-12 shows the predicted FLDs by step 1 of the CPCM, for orientation B, corresponding 

to the m values (in Equation (2-21)) of 0.005, 0.02, and 0.05. Once again, increasing the m value results in 

improved formability. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-12. Effect of rate sensitivity parameter, m, on the FLDs in step 1 of the CPCM (orientation B) 

 

Increasing the strain rate sensitivity parameter also leads to improved formability predictions by 

step 2 of the CPCM, for both orientations A and B (Figures 4-13 and 4-14). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-13 Effect of rate sensitivity parameter, m, on the FLDs in step 2 of the CPCM (orientation A) 
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Figure 4-14 Effect of rate sensitivity parameter, m, on the FLDs in step 2 of the CPCM (orientation B) 

 

Looking at the Equation (2-21), it is apparent that an increase in m corresponds to an increase in 

)( p (because the 







)(

)(

p

p

g 


 ratio is always a number less than one). This means that a material can take 

up more plastic deformation, and thus has more formability. A similar argument is made from Equation 

(2-49), where it shows that an increase in m corresponds to an increase in 
)( pf  . Therefore, the results in 

this subsection (an increase in m leads to improved formability in both steps of the model) are expected. 

 

4.4.4. Effect of c/a ratio 

One of the effects of alloying on magnesium is the ability to change the c/a ratio. The c/a ratio directly 

affects the plane normal and shear direction of slip and twinning systems (Equations (C-3) and (C-6), 

respectively). Thus, it changes the accumulated shear strain on the slip systems and volume fraction of the 

twinned regions. To assess this effect of alloying on magnesium, the sensitivity of FLDs with respect to 

the change in the c/a ratio was studied. 

Figures 4-15 and 4-16 present the predicted FLDs by step 1 of the CPCM, for orientations A and 

B, corresponding to the c/a values of 1.6, 1.624, and 1.65. By increasing the c/a value, formability 

improves slightly in both orientations. 
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Figure 4-15 Effect of c/a ratio on the FLDs in step 1 of the CPCM (orientation A) 
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Figure 4-16 Effect of c/a ratio on the FLDs in step 1 of the CPCM (orientation B) 

 

 

 

 

 

 

 

 

 

 

Figure 4-17 Effect of c/a ratio on the FLDs in step 2 of the CPCM (orientation A) 
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Figure 4-18 Effect of c/a ratio on the FLDs in step 2 of the CPCM (orientation B) 

 

Figures 4-17 and 4-18 present the predicted FLDs by step 2 of the CPCM for orientations A and 

B, corresponding to the c/a values of 1.6, 1.624, and 1.65. Once again, by increasing the c/a value, 

formability improves slightly. 

Besides changing the c/a ratio, alloying changes the CRSS values and deformation characteristics 

due to the solute effect. While the model predicts that change in the c/a ratio has a small effect on the 

FLD, changes in the other properties may have significant effects. 
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Chapter 5   

Conclusions and future research     

 

5.1 Conclusions 

A new rate-dependent elastic-viscoplastic Crystal Plasticity Constitutive Model (CPCM) for magnesium 

single crystals was proposed. The model accounts for the plastic deformation mechanisms of primary, 

secondary, and tertiary slip systems, as well as primary and secondary twinning systems observed in 

magnesium at room temperature. The model tracks the texture evolution in the parent, primary and 

secondary twinned regions. Separate resistance evolution functions for the primary, secondary, and 

tertiary slip systems, as well as the primary and secondary twinning systems were considered in the 

formulation. 

The major goal of this research was to investigate the contributions of various plastic deformation 

mechanisms in the macroscopic plastic deformation of a single crystal of magnesium. Therefore, using 

the available experimental data on plastic deformation of pure magnesium single crystals in literature, the 

parameters of a classic and common resistance evolution function for the primary slip and twinning 

systems were calibrated for the proposed CPCM. Simulations with the proposed CPCM (though due to 

the lack of quantitative experimental data certain assumptions were made, e.g. self-hardening equals the 

latent hardening effect) clearly indicated that accounting for the kinematics of various plastic deformation 

mechanisms is very important. For instance, depending upon loading path, neglecting secondary slip and 

twinning systems can lead to erroneous results while simulating plastic deformation of magnesium alloys 
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by crystal plasticity modelling approach. It is concluded that to model the plastic deformation in 

magnesium alloys accounting for all not just a few of the plastic deformation mechanisms is necessary. 

Upon availability of more quantitative experimental data it is possible to precisely account for the latent 

hardening effect in the proposed CPCM through the resistance evolution functions for the various slip 

systems. 

The proposed CPCM together with the M–K approach were used to simulate the FLDs for a sheet 

of magnesium single crystal. The FLDs were simulated under two conditions: a) the plastic deformation 

mechanisms are primary slip systems alone, and b) the plastic deformation mechanisms are primary slip 

and twinning systems. Based on the simulation results obtained with the steps 1 and 2 of the CPCM for 

both crystal orientations, it was concluded that neglecting the shear strain in the formulation results in a 

more conservative formability prediction. Also, both extension and contraction twinning systems improve 

formability. Finally, increasing the value of rate sensitivity parameter (m) improves the formability, and 

the same is valid for the c/a ratio. These numerical studies help in understanding the sensitivity of the 

model on its key parameter values. 

 

5.2 Future research 

The following tasks are suggested for future research. 

 

 Development and calibration of the resistance evolution functions for the secondary slip and 

twinning systems for the proposed CPCM is recommended. This will be possible if the 

contributions of these plastic deformation mechanisms in the macroscopic plastic deformation of 

magnesium in a few loading paths are experimentally available. After developing and calibrating 

these resistance evolution functions using the required experimental data, the contributions of 

these deformation mechanisms in the macroscopic plastic deformation of magnesium in any other 

loading path can be identified. Also, their effects on the formability through simulating the FLDs 

can be assessed. 

 

 In terms of number of equations and computational time, the proposed CPCM is probably the 

least complex one for modelling the plastic deformation in magnesium. It assumes the same 

deformation field over the parent and twinned regions, and the locations of the parent and 

twinned regions in the grain are not determined. Upon availability of more experimental data, it is 

logical to develop more accurate CPCM along with finite element implementation where the 

matrix, primary twinned, and secondary twinned regions are included in different elements. This 

way, different deformation fields are considered in the parent and twinned regions, and the 
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locations of the parent and twinned regions in the grain can be determined. In order to develop 

such a model, quantified metallurgical information on the twin nucleation sites and their growth 

pattern is necessary. Clearly, the number of equations, computational time, and complexity of 

such a model will exceed that of the proposed model in this thesis. 

 

 The latent hardening effect for various slip systems in the model is the other phenomenon that has 

to be precisely accounted for. Upon availability of experimental data, including this effect is quite 

straightforward.  

 

 The proposed CPCM accounts for the intragranular plastic deformation mechanisms in 

magnesium single crystals alone. Employing this model to simulate the plastic deformation in 

magnesium polycrystals could require an additional model accounting for the Grain Boundary 

(GB) sliding effect (i.e. intergranular plastic deformation mechanism, reported by Hauser et al. 

[28]). Development of such a model for the GB effect is a feasible task once more quantitative 

experimental data on plastic deformation of magnesium bi-crystals becomes available. 
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Appendix A.  

Calculation of plastic work in the parent and primary twinned 

regions 

 

Plastic work is calculated from the following general relationship: 


t

Pp dtDw
0

:          (A-1) 

where 
P

ijji

P DD  :  is a scalar. 

The plastic work in the matrix is calculated by the following values for   and
PD : 

mat            (A-2) 


p

ppP PD


  )()(           (A-3) 

The plastic work in a given primary twinned region resulting from the activity of secondary slip 

systems inside of it, is calculated by the following values for   and
PD : 

p            (A-4) 

)()()( p

s

ssP fPD 



  







           (A-5) 

 



95 
 

From Equations (A-3) and (A-5), it is apparent that because 
PD is a function of activity of slip 

systems, the plastic work is a good indicator to describe the activity of slip systems.  
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Appendix B. 

Total possible number of state variables for shear strain (slip 

systems), volume fraction of twinned regions (twinning systems), 

and Cauchy stress 

 

The total possible number of state variables associated with the shear strain on the slip systems, the 

volume fraction of the twinned regions, and the stress in the parent and twinned regions are presented in 

Table B-1. In this thesis the secondary twinning systems considered are the extension ones that form in 

the primary contraction twinned regions (this is the common secondary twinning that happens in 

magnesium alloys). Therefore, the maximum number is 6x6=36. 
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Table B-1 Total possible number of state variables for shear strain, volume fraction of the twinned 

regions, and Cauchy stress in the model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Shear strain on 

the slip systems 

Volume fraction of  

the twinned regions 

Cauchy 

stress 

Parent 12 0 6 

Prim. ext. twins 6x12 6 6x6 

Prim. cont. twins 6x12 6 6x6 

Secon. ext. twins 6x6x12 6x6 6x6x6 

Sub total 588 48 294 

Total 588+48+294 =  930 
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Appendix C.  

Conversion of the Miller-Bravais coordinate system into an 

orthonormal 

 

The slip and twinning systems listed in Table C-1
2
 are considered in the proposed Crystal Plasticity 

Constitutive Model (CPCM). The four-index Miller-Bravais coordinate system },,,{ 321 caaa  is not 

convenient for numerical modelling, since the coordinates in this system are not linearly independent in 

three-dimensional space. Therefore, an orthonormal coordinate system },,{ 321 eee as shown in Figure C-

1 is constructed. 

The following equations relate the Miller-Bravais indices to the orthonormal indices for a plane 

normal: 

 211 2
3

1
aae           (C-1) 

22 ae            (C-2) 











a

c

a
e 4

3           (C-3) 

                                                           
2
 Pyramidal a slip systems have been reported to be almost non-active at room temperature [82], and therefore are 

not accounted for. 
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Table C-1 The slip and twinning systems considered in the simulation 

 

 

 

 

 

 

Figure C-1 Miller-Bravais indices and orthonormal indices 

 

The following equations relate the Miller-Bravais indices to the orthonormal indices for a shear 

direction: 

 311
2

3
aae           (C-4) 

22
2

3
ae            (C-5) 

 

 

Slip Systems 

Basal a slip systems  1021}0001{  

Prismatic a slip 

systems 
 1021}0110{  

Pyramidal  ac slip 

systems 
 3121}1221{  

 

Twinning 

Systems 

Extension twinning 

systems 
 0111}2110{  

Contraction twinning 

systems 
 1021}0111{  
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









a

c
ae 43           (C-6) 

Orthonormal indices above should be normalized, as well. 
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Appendix D.  

Metallurgical information about magnesium 

 

In magnesium, the specific shear strain associated with the contraction twinning systems is [3]: 

0.1377

3

4

9

3
. 
































a

c

a

c

cont        (D-1) 

The specific shear strain associated with the extension twinning systems is [3]: 

0.1289
3

3
. 






















a

c

a

c

ext         (D-2) 

The elasticity modulus for a single crystal of an HCP metal, with respect to the orthonormal 

coordinate system shown in Figure D-1, is as follows [3]: 
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



























66

44

44

331313

131112

131211

00000

00000

00000

000

000

000

C

C

C

CCC

CCC

CCC

C       (D-3) 

with: 

 
  2

13123311331211

2

131133

11
2sssssss

sss
C




       (D-4) 

 
  2

13123311331211

2

131233

12
2sssssss

sss
C




       (D-5) 

 2

1312331133

13

13
2sssss

s
C




         (D-6) 

 
 2

1312331133

1211
33

2sssss

ss
C




         (D-7) 

44

44

1

s
C            (D-8) 

 1211

66
2

1

ss
C


          (D-9) 

 

 

 

 

 

Figure D-1 The orthonormal coordinate system corresponding to the elasticity modulus in Equation (D-3) 
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For magnesium, the values of the parameters are as follows [83]: 

19

11 10210.2  Pas         (D-10) 

19

12 10770.0  Pas         (D-11) 

19

13 10490.0  Pas         (D-12) 

19

33 10970.1  Pas         (D-13) 

19

44 10030.6  Pas         (D-14) 

The angle between the basal planes in the parent and a primary extension twinned region is [18]: 

86
3

tan2 1 



























 a

c

         (D-15) 

The angle between the basal planes in the parent and a primary contraction twinned region is 

[18]: 

56

2

3
tan2180 1 












































  a

c

        (D-16) 

The angle between the basal planes in the parent and a secondary extension twinned region is 

[18]: 

38
3

tan2

2

3
tan2 11 














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




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


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

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


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
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




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


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




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