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Abstract

In this thesis we present results from quantum Monte Carlo for the fully-frustrated
honeycomb lattice. The XXZ model is of interest in the classical limit, as there is a
mapping between the classical fully-frustrated honeycomb Ising model groundstates and
the classical hard-core dimer model groundstate. The aim of this work is to explore the
effect of quantum fluctuations on the fully-frustrated honeycomb model to see what sort of
interesting physics arises. One might expect unusual physics due to the quantum hard-core
dimer model, where interesting physics are known to exist. This is because there is a duality
mapping between the classical dimer model and the classical fully-frustrated honeycomb
Ising model. Indeed, by studying the fully-frustrated honeycomb XXZ model we find that
in some cases the system orders into crystal-like structures, a case of order-by-disorder.
The most interesting case, when the frustrating bonds are chosen randomly, reveals to us
a novel state without any discernible order while at the same time avoiding the freezing
one would expect of a glass. This state is a featureless system lacking low temperature
magnetic susceptibility—a candidate “quantum spin liquid”. Future work that might more
easily measure quantum spin liquid criteria is suggested.
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Chapter 1

Introduction

1.1 Overview

A quantum spin liquid describes a zero temperature paramagnet-like state in which the
quantum correlations give rise to strange physics. In some of the known theoretical exam-
ples, the state manifests as a featureless ground state which is an overlap of all possible
singlet coverings on the lattice [1]. These strange states have no classical analogue and we
are only beginning to find compounds which may possess the necessary structure to realize
and analyze these strange systems in real materials [1].

Quantum spin liquids are interesting because they permit strange excitations that may
fractionalize quantum numbers. One property all quantum spin liquids must have is decon-
fined spinon excitations [1]. This means that the spin quantum number becomes dissociated
with the charge quantum number of the electron. Such splitting of the electron’s quantum
numbers is thought to be another mechanism by which we can create superconductivity [2].
Experimental search for quantum spin liquids in materials is ongoing, with new candidates
appearing in many classes of materials, such as organic compounds [3].

In this thesis we explore the effect of quantum perturbations on the fully-frustrated
honeycomb model. These perturbations are explored by examining the XXZ model in
the limit where the quantum perturbations are small, the quantum term is 1/3 of the
classical term. We use the XXZ model to study an interesting case of the effect of quantum
perturbations of a classical manifold, similar to previous work along these lines carried out
by Moessner and Sondhi [4]. In their study they used a transverse field to generate a
quantum perturbation—our case uses in-plane coupling between nearest neighbors, and
produces different results.

The quantum XXZ model on the honeycomb lattice is interesting to study because of
the close relation to spin liquids this system may have. The reason we expect there may be
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a relation to quantum spin liquids is two-fold. First, there is a duality mapping between the
classical groundstates of the fully-frustrated honeycomb lattice Ising model and classical
dimers on the triangular lattice. This alone is not interesting, but the quantum dimer
model on the triangular lattice is known to have an extended Resonating Valence Bond
phase, also called a quantum spin liquid [5]. Adding quantum fluctuations to the fully-
frustrated honeycomb model may then let us approach the quantum dimer model through
this duality mapping. As a second point, frustrated systems under quantum perturbation
are themselves good candidates for quantum spin liquids [1], and so such systems are
promising candidates for finding quantum spin liquids.

The thesis is organized as follows. We start with a brief introduction to magnetic
systems including the Ising model and classical and quantum Heisenberg models. The
Monte Carlo formalism for classical simulation is presented, followed by the concepts behind
Stochastic Series Expansion quantumMonte Carlo (SSE QMC). This is followed by sections
on observables in SSE QMC and specific details about what we measure during simulation.
Visualization techniques for data analysis are presented along with a short proof relating
hopping in the quantum model to the existence of singlets. Frustrated magnetic systems
and their defining characteristics are discussed.

In Chapter 2 we treat the classical Ising spin model in mean-field theory and then ex-
amine the quantum model in spin-wave theory, showing the magnetization reduction and
spin stiffness in the XY model. We follow by detailing the important results of the classical
fully-frustrated honeycomb Ising model. It describes the way in which we satisfy the fully-
frustrated requirement and follows with results from the interaction matrix approximation.
Results from classical Monte Carlo show the extensive entropy in the groundstate. Ana-
lytical results that allowed exact calculations of the extensive entropy using combinatorics
are also presented.

Chapter 3 describes the quantum Hamiltonian and the specific observables that are
measured in the simulations. We then go on to show that results from SSE QMC agree
with an exact diagonalization method, and present results from the three gauges we studied,
the Discrete Translationally Symmetric (DTS) gauge, the Discrete Rotationally Symmetric
(DRS) gauge and the random gauge. We show that the first two groundstate phases are
locally fluctuating solid phases, while the third appears to be a featureless liquid phase.
The perturbation theory explaining these gauges is also covered in this chapter.

In the Conclusions, we re-emphasize the nature of the groundstates of these quantum
systems and examine how well they fit into the paradigm of quantum spin liquids. The first
two phases do not fit the description of quantum spin liquids, and rather appear to be cases
of order-by-disorder where the quantum fluctuations have ordered the classically degenerate
manifold. In the case of the random gauge, when most bonds are antiferromagnetic, the
system is featureless in the spin sector, but analysis of spinon excitations are needed to
verify the system as a quantum spin liquid. For this reason the system remains a candidate
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quantum spin liquid.

The candidate’s contributions specific to this thesis include all material following the
introduction except where old material is referenced. The classical work on the fully-
frustrated honeycomb lattice Ising model was performed by Shawn Andrews, Hans De
Sterck, Roger Melko and the candidate, with measurement and analysis of the extensive
entropy carried out by the candidate. Specific contributions include all the modifications
of the SSE QMC code necessary to simulate the DRS and random gauges. The analytical
interaction matrix approach as well as the spin-wave theory were performed to assist in
fundamental understanding of the groundstate phase. The visualization material, although
brief, represents a large body of work that was necessary to produce the detailed images
of the lattice presented in later sections.

1.2 Magnetic systems

In the field of condensed matter physics, one way in which the study of magnetic systems
arises is examining the Hubbard model. The Hubbard model is a very general model that
describes electrons on a lattice that interact by “hopping” around the lattice and costing
an energy U when two electrons share the same site. The fermionic nature of the electrons
combined with their spin lead to a nearest neighbor spin-spin interaction of the electrons
as the low energy physics effective model, specifically in the large U limit. There are
also more direct examples of magnetic systems, such as lattices that have large magnetic
ions that interact with their neighbors. When each of these models is broken down, our
fundamental unit is that of a magnetic moment, usually fixed in size, that interacts with
its neighbors through some effective interaction, mediated by hopping, the dipole field, or
any number of other terms. The moment may be pinned to an axis, a plane, or allowed
to freely rotate. The spin may be effectively classical, or may be small enough that we
must consider them fully quantum mechanically. In any case, the field of magnetism is
rich in models, methods and materials, and it is within this broad umbrella that we have
decided to examine the fully-frustrated honeycomb lattice. The XXZ model is an effective
Hamiltonian for the Hubbard model in the large U limit, and the frustration of the system
is thought to be a crucial ingredient in the search for spin liquids [1]. On a fully-frustrated
honeycomb lattice the known mapping of the groundstate to that of the triangular lattice
dimer model, the quantum triangular lattice dimer model groundstate being one of the
prototypical 2d quantum spin liquids [1], makes it more interesting as a candidate for
unusual physics.

To discuss much of the work on the honeycomb model, it helps to know some standard
results from well known magnetic systems. The most simple model of a magnetic system,
both in concept and computation, is the Ising model. As a note, in addition to magnetic
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systems, the Ising model is general enough that it can be mapped to a host of other
problems and in the most general case is NP-Complete [6]. The Ising model is simple,
relates to real systems and in the worst case is not solvable in polynomial time, and this
alone is enough reason to want to understand its complexities and the state of the art
methods that are pushing our understanding of this class of problems.

To build some intuition, we will start by discussing the classical Ising ferromagnet in
various spatial dimensions. The Hamiltonian for the Ising model takes the form

H =
∑

〈i,j〉
σiσj, (1.1)

where 〈i, j〉 denotes nearest neighbors, and σi denotes the spin at site i, taking values of
plus or minus 1. In one spatial dimension, where 〈i, j〉 → {i, i+ 1}, Ising showed [7] that
there is no ordering all the way down to absolute zero. In two dimensions and above there
is a critical temperature after which the systems undergoes a process known as spontaneous
symmetry breaking and the spins align parallel or anti-parallel to their neighbors. That the
Hamiltonian for such a system does not break Z2 symmetry while the groundstate does is
the very reason why such systems tend to be interesting, and the ways in which symmetry
is broken can become very different in more complex systems.

1.3 Heisenberg model

There are two versions of the Heisenberg models one can consider, the classical and quan-
tum version. In the classical version the Heisenberg model is simply a set of classical
three-dimensional vectors that have an interaction energy proportional to their dot prod-
uct,

H =
∑

〈i,j〉
JijSi · Sj. (1.2)

The quantum version of the Hamiltonian replaces the classical spins with quantum me-
chanical spins. Quantum mechanical spins have the peculiar property that measuring the
spin in one axis forces the spin to an eigenstate of the operator along that axis. Eigenstates
of different axis do not commute—measuring the spin in one axis will affect the measure-
ment we get when we measure the spin in a different axis. For this reason, we write out
the dot product explicitly and then transform it to a more convenient form where the non-
commuting properties of the operators is most clear. In this spin-1

2
case the Hamiltonian
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is re-written as

H =
∑

〈i,j〉
Jij
(

Sz
i S

z
j + Sx

i S
x
j + Sy

i S
y
j

)

=
∑

〈i,j〉
Jij

(

Sz
i S

z
j +

1

2
(S+

i S
−
j + S−

i S
+
j )

)

.
(1.3)

Much like the Ising model, the classical Heisenberg ferromagnet and antiferromagnet
do not order in one dimension [8], but do permit a finite temperature transition to a long
range ordered state in three dimensions or higher. The Heisenberg model differs from the
Ising model in that for two dimensions, it remains disordered in the thermodynamic limit
all the way down to T = 0.

In the classical version the energy can be minimized by having every pair of spins
parallel (or antiparallel, assuming the system is not frustrated), but things are slightly
more complicated in the quantum case. For the quantum ferromagnet, the state of all
spins aligned is still an eigenstate of the Hamiltonian, and so the classical picture is at least
plausible as a groundstate for the quantum ferromagnet. We can see this by examining the
only part of the Hamiltonian that takes us to a different state, the term (S+

i S
−
j + S−

i S
+
j ).

On the fully polarized state, each of these terms would annihilate the state, as both include
the product of one lowering or raising operator, and one of these would annihilate either
the fully down or fully up polarized state, respectively. This means the only remaining
term would be the diagonal one, which does not change the state, and in this way the
state is diagonal with respect to the Hamiltonian. The quantum antiferromagnet however
is much different, as the classical groundstate where neighboring spins are antiparallel is
no longer even an eigenstate of this new Hamiltonian. Consider the act of (S+

i S
−
j +S−

i S
+
j )

as one that flips neighboring spins and then gives back that modified state. If we imagine
the classical antiferromagnet, all neighboring spins are antiparallel, and any action of this
operator would give contributions to different states than the ones we started with. That
the action of the Hamiltonian produces a different state than we started with is the very
definition of the state not being diagonal with respect to the Hamiltonian. In the following
we will present various analytical methods that give us some insight on the basic concepts
of phase transitions from a disordered to ordered state, and how the quantum system is
different than the classical system.

1.4 Monte Carlo simulations

Monte Carlo methods today describe a wide range of techniques that at their core use
a pseudo-random process, usually random number generation, to gain information about
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some problem that is too difficult or impossible to solve exactly. A crude numerical inte-
gration algorithm can be made in this fashion by taking a finite region that a function is
bounded within, and generating random points in the bounded region. By counting the
number of points under the function to the total number of points generated in the region,
one has the ratio of the functions volume to the bounded region’s volume, or an estimate
of the function’s integral on the domain chosen. The approximation is quite crude, and it
is obvious from the construction that depending how the bounding domain is chosen, it
may take a large number of points to get a good approximation for the integral.

If we want to learn about some large thermodynamic system, we can imagine examining
that system in the canonical ensemble, for a lattice system this would correspond to a fixed
number of sites of the lattice. In that language, and quantity we want to figure out can be
measured as

〈A〉 =
∑

iAie
−βEi

∑

i e
−βEi

, (1.4)

where the sum over i includes all possible microstates in the system. If you imagine a spin
system withN spins, then naively the number of states scales as 2N and becomes impossible
to calculate for a large system. This is where Monte Carlo can be useful through something
called importance sampling. Importance sampling is the idea that there are a subset of
states within the distribution that contribute more to the expectation value than others,
due to them having a larger “weight” (where the e−βEi factor is the weight). If we sample
all the configurations with a frequency proportional to their weight, then the expectation
of some operator is simply the average value observed over the sampling. This can be
easily seen by rewriting the above as

〈A〉 =
∑

iAiWiNtot
∑

iWiNtot

=

∑

iAiWiNtot

Ntot

,

Wi =
e−βEi

∑

j e
−βEj

,

(1.5)

where Wi is the normalized weight of a state, such that the sum of all weights adds to one.
From the above it should also be obvious that there is a discretization error as Ntot and
WiNtot must both be integers. A necessary condition for this being accurate is that we
actually sample configurations proportional to their weight (a condition satisfied by having
balance) and that our algorithm is capable of sampling every configuration of relevance (a
condition known as ergodicity).

A class of Monte Carlo that efficiently achieves balance and ergodicity is the Metropolis
condition Markov chain Monte Carlo [9]. This type of Monte Carlo works by starting from
an arbitrary state with some known energy, and then moving to a nearby state. In this
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case nearby usually refers to the fact that we generate the new state by some small change
to the original state, and this new state is expected to have a similar weight. We then
accept or reject moving to that state with some probability, takes measurements (even if
the move is rejected) and continue the process. The probability that we accept a move is
given by

P (A→ B)

P (B → A)
=
W (B)

W (A)
. (1.6)

For the canonical distribution the weights can be determined from the energy, and the
above reduces to

P (A→ B)

P (B → A)
= eβ(EA−EB). (1.7)

There are two parts in the transition from a state A to a state B. The first is our update
scheme has a certain probability of choosing to try to go from state A to state B. The
second is that we have some probability of accepting this move after that. For simplicity,
often a condition know as detailed balance is used instead of the balance condition, but the
former satisfies the latter. The condition for detailed balance can then be written as

Pchoose(B,A)Paccept(B,A)

Pchoose(A,B)Paccept(A,B)
= eβ(EA−EB). (1.8)

In the simplest methods, from every state we randomly select one of the nearby states with
some flat probability distribution. An example of this is taking some initial spin configu-
ration, and randomly choosing one of the spins to flip. In this example, the probability of
choosing state B from state A and vice-versa are both 1/Nspin. Due to this symmetry the
first part of Equation (1.8) can be removed from the top and bottom of the fraction, and
we are only left with acceptance probabilities.

One choice of acceptance probabilities that satisfies the above is

Paccept(B,A) = min[K,Keβ(EA−EB)], K ∈ (0, 1]. (1.9)

Often to ensure that the system changes as much as possible, often resulting in faster
convergence, K is chosen to be 1. With the above information one already knows enough
to construct a Monte Carlo simulation of the classical Ising model any number of dimensions
that is capable of measuring quantities like the Néel ordering temperature or the correlation
function at any finite temperature. The main difficulty that arises from this point forward
is that at even though the simulation is fully ergodic, because the Markov chain only ever
moves a small distance in configuration space, if there are two or more regions in phase
space that both give large contributions to the partition function but are separated by a
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large energy barrier in configuration space, the simulation may not be able to sample both
of these regions efficiently. This breakdown in the Monte Carlo sampling is referred to as a
critical slowdown (or loss of ergodicity), and it is usually most problematic around a phase
transition or when trying to sample different symmetry-broken states.

Near a phase transition there are often a host of states that the simulation should be
sampling in order to properly describe the system. This means that if the Monte Carlo
algorithm gets stuck, it will often only sample a small region in configuration space, as
opposed to sampling all the relevant configurations. One of the most direct resolutions to
this problem is to design update schemes that are more complex than simply flipping a
single site, such as the Wolff algorithm, that builds large clusters of spins and flips all of
them at the same time [10, 11]. Methods of this sort restore ergodicity by ensuring that
the sampling taken truly represent the set of weights for the partition function at a given
temperature. Specific problems may even require specialized algorithms, such as the loop
move for the fully-frustrated honeycomb lattice [12].

1.5 Quantum Monte Carlo

In the preceding Monte Carlo discussed, the systems of study were always treated as
classical. The primary difference between quantum and classical systems is the nature of
the Hamiltonian. In a classical system, all elements of the Hamiltonian commute with one
another, meaning that there is a simple basis where the Hamiltonian is exactly diagonal
and eigenstates of the system have exact product-state like representation in that basis. A
good example is the classical Heisenberg system, where the x-,y- and z-component of the
spin can all be simultaneously known, and specifying each component fully describes each
spin.

In quantum systems the operators of the Hamiltonian do not necessarily commute
with one another, making it much harder to make clear and simple statements about the
groundstate like the classical case. For instance, for the spin 1

2
Heisenberg antiferromagnet

the magnetization in the z-axis is a good quantum number for the system, but as the
Hamiltonian in Equation (1.3) clearly shows, there are elements that are off diagonal
with respect to this basis. This means, in general, that a state defined by the z-axis
magnetization on each site will not be an eigenstate of the Hamiltonian. Since the states
form a complete basis, we are guaranteed that some (possibly complex) linear combination
of the z-axis magnetization states will be able to represent any eigenstate of the system.

The class of quantum Monte Carlo algorithms is quite broad. In a continuous real-space
problem, one may try to minimize the energy over a set of variational wave functions [13].
If the wave functions are good, the result is expected to be a good approximation to the
groundstate wave function and from this perspective many of the properties of the system
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can be extracted from the variational wave function. The class of methods we use use
direct samplings of the partition function itself, in a similar way to classical Monte Carlo.
Specifically, we use a method known as Stochastic Series Expansion Quantum Monte Carlo
(SSE QMC) which is an exact, unbiased method for quantum systems as long as the basic
updates remain ergodic [14, 15, 16].

As before, we have a partition function for our system. Writing it out explicitly, it
takes the form

Z = Tr[e−βH ] =
∑

α0

〈α0| e−βH |α0〉 , (1.10)

which is so far exact. We then expand the exponential as its Taylor series and insert the
identity operator between each power of H, in a formulation known as the Stochastic Series
Expansion, to get

∑

α0

〈α0| e−βH |α0〉 =
∑

α0

〈α0|
∞
∑

n=0

−β
n!
Hn |α0〉 ,

=
∑

{αi}

∞
∑

n=0

(−1)n(β)n

n!

n
∏

i=0

〈αi|H |αi+1〉 ,
(1.11)

where we must demand that |α0〉 = |αn+1〉 to be consistent with the expansion representing
the trace. The difference between classical and quantum Monte Carlo is where in the
first we could sample the different basis states of the system to learn about the partition
function, here we must sample different sets of expansions of the system {αi}. Building
the Monte Carlo for this system amounts to finding a way to do importance sampling on
the sets {αi}.

Before we move on, it is important to note the (−1)n factor in the partition function,
suggesting that it may be possible to get negative weights in our sampling, a difficulty
known as the sign problem. As shown in the classical Monte Carlo section, the condition
of detailed balance only makes sense if all the weights are positive. The best way to
remedy this problem is to ensure that the expansion of the Hamiltonian in Equation (1.11)
precisely cancels the (−1)n factor. If all the terms in the Hamiltonian can be modified to
have a negative sign in front of them, then this will solve the problem directly. For diagonal
elements of the Hamiltonian, we can simply add a constant to all of them to ensure that
they are negative. If we have positive off diagonal terms then we can only simulate a
bipartite lattice. The reason for this is that to transform the basis to its original state
will always require an even number of off diagonal operators, and hence we are guaranteed
that the expectation of any expansion {αi} is positive. In practice this tends to mean that
frustrated systems, such as the Heisenberg antiferromagnet on a triangular lattice, cannot
be simulated efficiently in this framework.
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The next step in the procedure is to break up the Hamiltonian into it is most elementary
interactions

H = −
∑

t

∑

a

Ht,a, (1.12)

where t and a specify the nature of the operator (diagonal, off-diagonal, etc..) and the
location on the lattice that the operator occurs at, for instance a bond index for a two site
operator. With this change, we now write the SSE as

Z =
∑

α

∞
∑

n=0

∑

Sn

βn

n!
〈α|

n
∏

i=0

Hti,ai |α〉 , (1.13)

where Sn now denotes a set of {ti, ai} signifying a particular element by element product
of Hn that we must sample now in addition to the basis states |α〉 to do the Monte Carlo
simulation.

Finally, we may truncate this sampling at some finite value of n =M . If we look at the
contributions to the partition function as a function of n, we find that it is typically peaked
at some finite value of n with an exponentially decaying tail [16]. Using equilibration we
can determine how large an M is needed to ensure that we are sampling all of the relevant
region. One can achieve this by having the original list and adding “filler” operators,
conventionally labeled H0,0 = I which do not change the basis or contribute to the value of
a particular expansion of operators. What these filler operators do change is the number
of permutations of an instance of the list Sn, which must be accounted for by dividing
the weight of each element of the partition function by the number of ways we can insert
blank elements into the list, which is M !/(M − n)!n!. With this, the final expression for
our partition function can be written as

Z =
∑

α

∑

SM

βn(M − n)!

M !
〈α|

M
∏

i=0

Hti,ai |α〉 . (1.14)

As we originally wrote, this method involves the trace over all basis states, meaning that
the first and last state must be the same, or |α0〉 = |αM〉. This puts a high constraint on the
off diagonal operators in the list SM , since if they are chosen incorrectly one could imagine
generating expansions with zero contribution to the trace—a waste of computational effort.
With this in mind, the fundamental moves in the SSE are designed such that they are both
ergodic but only sample states with non-zero contribution to the trace. To do this requires
two types of updates in simulation: the diagonal update and the off-diagonal update.

In the diagonal update, we fluctuate the number n by swapping “filler” identity oper-
ators, H0,0, with diagonal operators. Since diagonal operators do not change the configu-
ration of any of the states |α〉, we can add them anywhere without ruining the boundary

10



conditions of the system. To perform the update, we move through the list of operators
and wherever we find an identity operator, we randomly choose a diagonal element of the
Hamiltonian and calculate the ratio of the weight of the old weight to the new weight to
determine whether to accept the move. Since all the matrix elements are multiplied to
calculate the weight of a state, when we add a single operator we only need to look at the
weight of that state compared to the weight before, plus any prefactors that have changed.
Writing it in a general form using the notation that H1,i refers to the diagonal operator
and assuming n is the number of operators in the list SM excluding the the one we are
looking at, then

W (H1,i)

W (H0,0)
=

〈αj|H1,i |αj + 1〉 β
(M − n)

. (1.15)

Since H1,i will in general only act on a small number of spins of the system, all the
possible matrix elements of 〈αi|H1,i |αj〉 can be calculated before running the simulation.
In this way, the Monte Carlo update remains a local procedure, requiring a fixed amount
of information independent of the lattice size for the diagonal update scheme.

The off-diagonal update is slightly more complicated, as we have to ensure that we
design it in such a way that the boundary conditions are always satisfied. The first step
in this process is constructing a linked list of vertices involved in operators in the list SM

as shown in Figure 1.1.

αi

αi+1

αi+2

αi+3

Figure 1.1: Cartoon of the operator list SM and extracted vertex list. Operators (bars)
connect spins at different layers, |αi〉. If we look up in the list and connect spins only
where they are involved in operators, then we can create the linked list needed for the
off-diagonal update. Blue dots represent up spins, while red dots represent down spins,
and the dashed bars represent operators that have off-diagonal overlap.

First, we will define a vertex as any of the spins connected to an operator. In our case,
every operator has 4 associated vertices, two for the spin that it acts on in |αi〉 and two
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for the spins it “produces” in |αi+1〉. Diagonal operators do not change the orientation
of these spins, but they are still the four spins of relevance to each operator. Vertices
are also connected to other vertices. Vertices “above” an operator in the operator list
connect to the next vertex “below” an operator that acts on the same spin, and vice versa.
Starting on a random vertex of an operator in the list, we enter an operator through a
spin and choose a spin to exit through. After exiting the operator, the loop continues to
the vertex connected to the one it just left. The loop repeats this procedure, flipping all
the spins it passes through until it reaches the starting location. Once the loop reaches its
starting location, it finishes and all the spins it has flipped and operators it has changed
result in a new state. Although we could construct a random loop and use the metropolis
condition to compare the initial and final state, this would likely result in states with vastly
different weights, and hence be inefficient. Instead a slightly different condition known as
time-reversal symmetry is used

W (s)T (s, e→ s′, x) = W (s′)T (s′, x→ s, e), (1.16)

where s is the local configuration around a particular operator, 〈αk| and |αk+1〉, and W (s)
is the weight of those states around an operator. The state s is the initial state when
the loop enters from vertex e, and s′ the state when the loop exits by vertex x. Keep in
mind that in our construction of the operators Ht,a, for a particular choice of s there is
only one operator (that is not the identity) that will have a non-zero expectation value,
so by changing the local configuration we explicitly change the contribution to the weight
from that state. This transition looks very similar to the condition for detailed balance in
Equation (1.8), and indeed if we use the time reversal symmetry condition we can recover
detailed balance, the proof for such presented in [14].

The other condition that is required is
∑

x

T (s, e→ s′, x) = 1, (1.17)

or any loop that enters a vertex must exit the vertex with probability one. Using time-
reversal symmetry, the above condition and the weights of the matrix elements (given
by the Hamiltonian) result in an under-constrained set of equations for all the possible
transition probabilities. Often one adds additional constraints, such as insisting that the
loop bounce infrequently, to make the set of transition probabilities deterministic. Once
the transition probabilities are determined we have all physics necessary to construct a
SSE QMC simulation of a system.

Observables in SSE QMC are measured just as you would expect from the framework.
For a generic quantum Hamiltonian, the expectation of some operator A takes the form

〈A〉 = Tr[Ae−βH ]. (1.18)
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If we insert this in to Equation (1.14) then we get something of the form

〈A〉 =
∑

α

∑

SM

βn(M − n)!

M !
〈α|A

M
∏

i=0

Hti,ai |α〉 . (1.19)

Since A may not be diagonal in the set of |α〉 we have chosen, or even commute with the
Hamiltonian, measuring it may represent another challenge. If it is diagonal with respect
to our basis, we can measure it directly in each Monte Carlo step as

〈A〉 = 1

M

M
∑

i=0

〈αi|A |αi〉 , (1.20)

where the αi are the different basis elements generated by the application of operators in
the list SM . If we imagine off-diagonal operators that can be represented by an element
of our Hamiltonian Htk,ak , then we can easily measure it by plugging the element into
Equation (1.14) which then becomes

〈Htk,ak〉 =
∑

α

∑

SM

βn(M − n)!

M !
〈α|Htk,ak

M
∏

i=0

Hti,ai |α〉 . (1.21)

But we can easily relate the list of length M times an element of the Hamiltonian to a list
of length M +1 that begins with Htk,ak by rewriting it as the weight of some configuration
W (Htk,ak , α, SM )

W (Htk,ak , α, SM ) =
βn+1((M + 1)− (n+ 1))!

(M + 1)!
〈α|Htk,ak

M
∏

i=0

Hti,ai |α〉 ,

=
β

M + 1

βn(M − n)!

M !
〈α|Htk,ak

M
∏

i=0

Hti,ai |α〉 ,

〈Htk,ak〉 =
{

M+1
β

if SM+1 begins in Htk,ak

0 otherwise
.

(1.22)

We can easily replace M + 1 with M (since it is arbitrary in this case) and average over
all permutations of SM to finally get

〈Htk,ak〉 =
M

β

1

M
〈N [tk, ak]〉 ,

=
〈N [tk, ak]〉

β
,

(1.23)
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where 〈N [tk, ak]〉 is the number of operators of type Htk,ak in the list SM . In this way we
find that if we measure the average number of occurrences of a particular operator over the
Monte Carlo simulation, we find the expectation value of that particular operator times β.

If we have an operator that is represented as a product ofm elements of the Hamiltonian,
then using the same method as above we can calculate the expectation of the product of
those two operators. We use the same argument as before, except now we consider a list of
length SM−m with the exact product of relevant operators tacked on the end. The equation
we get in this case is

W

(

m
∏

k=1

Htk,ak , α, SM

)

=
βn+m((M +m)− (n+m))!

(M +m)!
〈α|

m
∏

k=1

Htk,ak

M
∏

i=0

Hti,ai |α〉 ,

=
βmM !

(M +m)!

βn(M − n)!

M !
〈α|

m
∏

k=1

Htk,ak

M
∏

i=0

Hti,ai |α〉 ,
〈

m
∏

k=1

Htk,ak

〉

=

{

(M+m)!
βmM !

if SM+mbegins in
∏m

k=1Htk,ak

0 otherwise
.

(1.24)

Again,M+m is simply the length of the appended list. Averaging over all the permutations
of the list we get something similar to the form before

〈

m
∏

k=1

Htk,ak

〉

=
1

βm

〈

(M − 1)!

(M −m)!
N [tk1, ak1, ..., tkm, akm]

〉

, (1.25)

where N [tk1, ak1, ..., tkm, akm] represents the number of times the subsequence of operators
representing the one of interest occur in the list. In general due to the infrequency of specific
orders of operators occurring in the list, statistics of products of operators take much longer
to converge than that of single operators. We can speed up the process by ignoring the
identity operators in the list, since inserting the identity in the list of

∏m
k=1Htk,ak does not

change it. We then get the form

〈

m
∏

k=1

Htk,ak

〉

=
1

βm

〈

(n− 1)!

(n−m)!
N [tk1, ak1, ..., tkm, akm]

〉

. (1.26)

This time N [tk1, ak1, ..., tkm, akm] represents the number of times the sublist occurs in the
operator list ignoring the identity operators in SM . The above converges faster than the
previous form, but should converge to the same value in the limit of large Monte Carlo
sampling.
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1.6 Observables in quantum Monte Carlo

The choice of basis in the SSE QMC makes certain variables very easy to measure while
some require more complicated procedures to extract the relevant information. For in-
stance, any information relating to the spins themselves can be extracted from the base
layer, |α0〉, of the Stochastic Series Expansion. If we wish to calculate the spin-spin cor-
relation function, we can simply extract it by iterating over the spins in the base layer at
each Monte Carlo step. The reason we do not integrate over the entire Stochastic Series
Expansion to calculate the spin-spin correlation is that each layer is only modified if it has
an off-diagonal operator between them, and even then it is only changed by the swapping
of two spins. In this way, adjacent layers of the SSE are highly correlated, and collecting
such data would be a large time investment for a limited increase in accuracy. From the
base layer we also extract the single spin expectation value as well as bulk properties like
the sublattice and full lattice magnetization.

Formally, the diagonal quantities we regularly measure are

〈Sz
i 〉 =

1

NM

∑

M

〈α0|Sz
i |α0〉 , (1.27)

〈

Sz
i S

z
j

〉

=
1

NM

∑

M

〈α0|Sz
i S

z
j |α0〉 , (1.28)

〈m〉 = 1

NM

∑

M

(

1

Ns

∑

i

〈α0|Sz
i |α0〉

)

, (1.29)

〈

m2
〉

=
1

NM

∑

M

(

1

Ns

∑

i

〈α0|Sz
i |α0〉

)2

, (1.30)

where NM is the number of Monte Carlo steps, and the sum is performed after each step
of the Monte Carlo simulation. The first two quantities are the single site expectation,
showing the average orientation of a particular spin over the simulation, and the spin-spin
correlation function, showing the relative orientation of all pairs over the simulation. Ns

in the above is the number of spins in the simulation, making the last two quantities the
magnetization and magnetization squared per spin, useful in calculating the susceptibility.

From the above quantities we can calculate further quantities of interest to analyze the
simulation. One can imagine that for some conditions the simulation may be ergodic in
such a way that the single spin expectation was zero for every site—due to spin inversion
symmetry—but the groundstate was some symmetry breaking groundstate, such as the
antiferromagnet. One generic method for detecting spatial ordering is the Fourier transform
of the spin-spin correlation function, often referred to as the structure factor. It is defined
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as

S(q) =
1

Ns

∑

i,j

eirij ·q
〈

Sz
i S

z
j

〉

. (1.31)

For strong ordering, Bragg peaks develop in this function that scale with Ns. We can also
examine the “connected” correlation function, defined as

S(q) =
1

Ns

∑

i,j

eirij ·q
(〈

Sz
i S

z
j

〉

− 〈Sz
i 〉
〈

Sz
j

〉)

. (1.32)

This measure subtracts off any static structure in the groundstate, and only shows how
fluctuations out of the ordered state are correlated. A flat spectrum in the thermodynamic
limit, in either of the above would imply that the groundstate, or groundstate fluctuation
correlation, lacks long range order.

From the magnetization we can derive the spin susceptibility of the system. The uniform
spin susceptibility is defined as

χ =
β(〈m2〉 − 〈m〉2)

N
. (1.33)

This quantity can have important features that describe the low energy physics of the
system. If there is a temperature at which the magnetic susceptibility drops to zero, this
signifies the energy scale at which density fluctuations are frozen out. If such a regime exists
at low temperature, we would say that the system is gapped to single spin excitations at
low temperature. These types of descriptors help build intuitive pictures of the system by
describing bulk properties that are easier to interpret than the raw microscopic data.

The spin variables are simple to extract, but other variables require a more careful
examination of the SSE formalism to relate quantities in the simulation to parameters from
our original model. As described in Section 1.5, off diagonal operators can be measured
easily if they exist in the Hamiltonian by looking for their occurrences in the operator list.

The most common operator expectation value to measure is
〈

S+
i S

−
j + S−

i S
+
j

〉

, or the
local kinetic energy density. For every bond of the lattice, we count the number of occur-
rences of the operator in the operator list. Doing simulations at a fixed β and using the
equations given before, we find that the expectation of any bond operator is given by

〈

S+
i S

−
j + S−

i S
+
j

〉

=
〈N2,ij〉
β

(1.34)

Where N2,ij represents the number of times the relevant operator occurs in the operator
list, and this number is averaged over all Monte Carlo steps.

Similarly, if we define
bij = S+

i S
−
j + S−

i S
+
j (1.35)
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then we can examine 〈bijbkl〉 and its Fourier transform to see if there is a pattern in the
bond structure of the lattice. The equations are the same as Equation (1.31) and (1.32)
except we replace the spin-spin correlation with the new bond-bond correlation function,
and again we expect scaling proportional to Ns for strong order.

There is a special case of an operator measurement that is both diagonal and off
diagonal—the energy. Using the definition in Section 1.5 the energy is a special case
of Equation (1.21) which can be written as

〈H〉 =
∑

α

∑

SM

βn(M − n)!

M !
〈α|H

M
∏

i=0

Hti,ai |α〉 . (1.36)

As before, we find that the expectation of the operator is matched to the number of
occurrences of the operator in the list. The Hamiltonian is a special case as the operators
that we count are all the non-identity operators in the operator list. In this way the energy
becomes

E = −〈n〉
β
. (1.37)

The energy of the system is useful in that you expect it to converge to some stable
value for low enough temperature—that of the groundstate energy. By also measuring the
energy fluctuations we can calculate the specific heat by the equation

cv =
〈

n2
〉

− 〈n〉2 − 〈n〉 , (1.38)

which one can derive this by taking the derivative of the energy equation with respect
to temperature. The specific heat lets us measure certain important characteristics of the
system. As we mentioned before, Equation (2.34) shows how we can calculate entropy from
specific heat. For the typical systems we deal with the entropy at infinite temperature is
finite. For any Ising system with N spins, this maximal entropy is NkB ln(2). Using the
known maximal entropy, we can calculate what the entropy is at zero temperature using
the above method. Spikes in the specific heat in the above context signify a large change
in entropy over a small temperature change, something that can signify a phase transition
or the suppression of a class of excitation.

1.7 Visualization and interpretation

For many of the observables the formalism of their derivation means that looking at a
single number should contain all the relevant information to make a classification of the
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underlying groundstate. This is an approach that is unambiguous—as long as the observ-
able is well defined in terms of this number, there is little to interpret. Such methods tend
to be less informative when the groundstate is not as well understood, perhaps leading to
incorrect applications of methods that may have underlying assumptions.

As mentioned in the description of observables, the structure factor is expected to have
peaks that scale with Ns if there is strong ordering, but the interpretation of these peaks
then comes in to play. Since the structure factor is really just the Fourier transform of
the spatial two site correlation function, whether of spins or bonds, then if you think
comfortably in this space perhaps the answer is easy, but here I will use a few examples
from known groundstates and their transforms to build intuition. Also, to further simplify
things we will always distort our lattice so that it is a square lattice with a basis. This
simplifies things greatly, as the results for the square lattice carry very little ambiguity,
and since the entire point of this transform is to make the results as simple as possible,
nothing is lost by doing so.

For the structure factor of a finite lattice n-dimensional cubic lattice with lattice spacing
of unity, the allowed vectors take the form

q =
∑

i

2π

Li

niî, ni ∈ [−Li/2, Li/2]. (1.39)

Where Li is the length of the system in the dimension labeled by i, and î is the unit vector
in the basis vector for that dimension. The above is well defined when all of the dimensions
have an even length and periodic boundary conditions. There is some redundancy in the
above representation as well—technically there should only be as many valid q-vectors as
points in the lattice, but the redundant representation makes interpretation easier.

If we imagine the square lattice ferromagnet groundstate, then we expect to only find
a peak for the vector q = (0, 0). This is because for all other choices of q-vector the
contributions, for the fully polarized state

〈

Sz
i S

z
j

〉

= 1/4 for all i and j, the phase factors
exactly cancel. The graphical representation can be seen in Figure 1.2, showing the uniform
order transform into a central peak. In this way, the central peak of the structure factor
only gives properties regarding the bulk expectation of the property one is interested in.
For this reason, the correlation function is sometimes constructed to have an explicit zero
mean, by shifting all values by a constant, so that other more subtle effects than the central
peak may be observed.

Another common state that is detectable by this method is the square lattice antifer-
romagnetic state. For the classical groundstate of the square lattice antiferromagnet, one
expects to find peaks for the value q = (±π,±π). The lattice pattern and structure factor
for this case are shown in Figure 1.3.

To give one last example, we present a state with columnar order and the resulting
structure factor. Figure 1.4 shows the columnar ordering and the structure factor that
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Real Space Fourier Space

Figure 1.2: A typical ferromagnetic pattern (left) and the structure factor generated
(right). Blue circles represent +1 while red circles represent 0, green circles represent large
positive values.

Real Space Fourier Space

Figure 1.3: A typical antiferromagnetic pattern (left) and the structure factor generated
(right). Notice that there are four peaks this time—this is due to the “repeated-zone”
representation that is often used for structure factors. Normally there should only be as
many points as the original lattice, but more are often shown for symmetry and clarity.
Blue circles represent +1 while red circles represent 0, green circles represent large positive
values.

results from it. In general, the structure factor is able to detect any ordering that has a
unit cell and repeats in some direction. Since we are dealing with crystals to start with
such ordering is quite common, and hence the reason that this method is often used to

19



Real Space Fourier Space

Figure 1.4: Striped order in a system, most simply seen in models that have an x/y
asymmetry. If we imagine rotating the striped order (in a way that was commensurate
with the lattice size) the structure factor points would similarly rotate, with the distance
from the origin inversely proportional to the distance between layers. In this way, the
antiferromagnet can be seen as diagonal layers separated by the smallest possible distance,
as the q-vectors are the farthest possible distance from the origin. Blue circles represent
+1 while red circles represent 0, green circles represent large positive values.

characterize materials. Beyond that, scattering experiment results are often in the form
of structure factors, so relating to physical measurements is another reason this result is
calculated for any simulated systems that might be realizable in physical systems.

Another scenario that arises in some systems is that of a mix of correlated spins and
uncorrelated spins, perhaps on one of the sublattices and another. In this case, the ordered
sublattice contributes to the structure factor, and the uncorrelated sublattice should give a
zero contribution for all q-vectors in the thermodynamic limit. This ability of the structure
factor to detect partial orders makes it useful for analyzing a variety of phases.

If the structure factor shows that the spins are ordered in some long range configuration,
the phase is considered to be long range ordered, and hence referred to as a crystalline
phase. If the structure factor shows peaks that do not scale with the number of spins, this
implies there is no long range order in the system—but it says nothing about the short
range correlations in the system. This is because if each spin is only correlated with a
finite set of other spins in the lattice, then each spin only contributes a fixed amount to the
structure factor. Multiplying this fixed contribution by the number of spins gives us a value
that scales with Ns before multiplying by the prefactor of 1/Ns, giving a constant value
as opposed to one that diverges in the thermodynamic limit. In either case the structure
factor describes if the system has any sort of order, but it takes further intuition to extract
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the groundstate configuration from this method. Since we had access to the full single site
and two site correlation function, it is possible to visualize the data directly using a color
mapping and the original lattice geometry. This method was first developed to assist in
interpreting the structure factors, but eventually became one of the primary methods of
interpretation in this thesis, although as we will see it has limitations as well.

For a two dimensional lattice, you can assign every site an x and y coordinate, usually
chosen as the real lattice parameters for simplicity. At each of these sites we then draw
a circle to represent the spin that has a quality, usually color, representing 〈Sz

i 〉 for that
site. If the we are in a disordered (non-symmetry breaking) phase then we would expect
every spin would be colored the same, namely the color representing 〈Sz

i 〉 = 0. For a
highly ordered phase such as the antiferromagnet, one will see the typical checkerboard
pattern in the coloring of the sites, and distinguishing this would again be fairly easy.
In our fully-frustrated honeycomb XXZ model some of the groundstates involve some of
the spins strongly ordering, and some of the spins highly fluctuating. Using the structure
factor we find a peak that scale with Ns but at a lower value than if all the spins were
collectively correlated. Although the structure factor is able to detect even very weak order
very well, the real space pictures allow us to precisely describe that order in terms of the
original lattice. The difficulty with real space is that the representation is in some ways less
precise—it is easy to distinguish patterns in color, but only if the colors are distinguishable.
In this way the data must have significant numerical differentiation or be prepared in such
a way so that the color scale has enough contrast to be easily interpreted. If the simulation
were fully ergodic and lacked an explicit symmetry breaking terms like an external field,
one would expect the pattern of colors to show nothing at all—a uniform average of zero.

The second use of real space pictures is choosing a site (or bond) of the lattice and
using the spin-spin (bond-bond) correlation function to generate the remaining sites of the
lattice. By using different sites as a basis we can examine the local environment of spins
and bonds from any point on the lattice. In this way we can directly visualize whether
the correlations are long range or short range, if they system undergoes a dimensional
reduction to correlated one dimensional chains, or any other number of exotic behaviors.
The main difficulty again lies in processing the data in a way that will show the qualities
of interest, but this can be overcome by a smart choice of coloring scheme.

The last method of analyzing the data is using histograms. Suppose instead of mea-
suring the bulk magnetization we bin the average magnetization of each site. Using only
the bulk magnetization we are unable to differentiate a state where every spin equally
fluctuates or half of the spins freeze into a spin up configuration and half into the spin
down configuration. By examining the histogram of each spins average magnetization,
these configurations look like a distribution with a single peak and a doubly-peaked dis-
tribution, respectively. This is also useful in the examination of order parameters near
a phase transition. Imagine near a phase transition that the system fluctuates between
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an ordered phase where the order parameter takes a value of O1 = A0 and O2 = 0 and
a second ordered phase where a different order parameter takes the value O2 = B0 and
O1 = 0. In Monte Carlo averaging we would interpret this as a phase with the first order
parameter of O1 = A0/2 and the second order parameter at O2 = B0/2, or coexistence of
two order parameters. By using histograms, even of each value independently, we would
see the bimodal distribution and at least suspect that the two order parameters might
not be occurring simultaneously during the simulation. To further clarify we could bin
the data as a function of both parameters (as opposed to each independently), and we
would then see two clusters, each representing the original states we were fluctuating be-
tween. In some cases this may also be too data intensive, at which point collecting data
on O2

1, O
2
2, and O1O2 would resolve the issue if the parameters were coexisting or not.

It is with these above methods that we analyze each of the models of interest, using
each as necessary when they best illustrate the nature of the phases found in each of our
system.

1.8 Hopping and the singlet

Often times when discussing Monte Carlo simulations, there is never a strong connection
made between hopping and presence (or lack thereof) of singlets in a system. The term
“valence bond” is used often, sometimes explicitly referring to the presence of singlets,
but often it is not explicitly defined. Here we will attempt to draw a connection between
the expectation value of the hopping operator and the presence of a singlet or the fully
entangled triplet state on a pair of spins.

There are four properties we measure in simulation that are relevant for two sites i and
j: 〈Sz

i 〉,
〈

Sz
j

〉

,
〈

Sz
i S

z
j

〉

and
〈

S+
i S

−
j + Si

iS
+
j

〉

. Let us analyze a two site system, and let us
assume we analyze it using the following basis

|Ψ〉 = a |↑↑〉+ b |↓↓〉+ c√
2
[|↑↓〉+ |↓↑〉] + d√

2
[|↑↓〉 − |↓↑〉] . (1.40)

If we examine the expectation value of the operators on each of the basis states above, we
get the relationship

|↑↑〉 |↓↓〉 1√
2
[|↑↓〉+ |↓↑〉] 1√

2
[|↑↓〉 − |↓↑〉]

〈Sz
i 〉 1/2 −1/2 0 0

〈

Sz
j

〉

1/2 −1/2 0 0
〈

Sz
i S

z
j

〉

1/4 1/4 −1/4 −1/4
〈

S+
i S

−
j + S−

i S
+
j

〉

0 0 1 −1
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At this point we should mention that the simulation is capable of simulating both signs
of hopping without the sign problem due to the bipartite nature of the lattice. Since the
simulation does not change when the sign of the hopping is changed, all the results we have
gathered are equally valid for both signs, the only change being the interpretation of the
hopping. When we take the opposite sign of hopping, the expectation of hopping is really
a measure of

〈

−(S+
i S

−
j + S−

i S
+
j )
〉

instead, flipping the expectation of the third and fourth
columns in the table above for the hopping row.

The expectations in the above table are for the eigenstates. If we now imagine a state
of the form in Equation (1.40) we can recalculate what the expectation of the various
operators would be as a function of the coefficients

〈Sz
i 〉 =

1

2
a2 − 1

2
b2 + cd

〈

Sz
j

〉

=
1

2
a2 − 1

2
b2 − cd

〈

Sz
i S

z
j

〉

=
1

4
a2 +

1

4
b2 − 1

4
c2 − 1

4
d2

〈

S+
i S

−
j + S−

i S
+
j

〉

=c2 − d2

a2 + b2 + c2 + d2 =1.

(1.41)

We see that the expectation of
〈

S+
i S

−
j + S−

i S
+
j

〉

, if close to one, signifies the presence of
an entangled pair.

The last complication is that we calculate the above values by Monte Carlo, and so in
the worse case the above would be rewritten

〈Sz
i 〉 =

1

M

M
∑

i=1

1

2
a2i −

1

2
b2i + cidi

〈

Sz
j

〉

=
1

M

M
∑

i=1

1

2
a2i −

1

2
b2i − cidi

〈

Sz
i S

z
j

〉

=
1

M

M
∑

i=1

1

4
a2i +

1

4
b2i −

1

4
c2i −

1

4
d2i

〈

S+
i S

−
j + S−

i S
+
j

〉

=
1

M

M
∑

i=1

c2i − d2i

a2i + b2i + c2i + d2i =1.

(1.42)

In this final form, we want to know if we can put a bound on the coefficients if we know
certain properties of the expectation value of the operators above.
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Since we are interested in the singlet, let us try to calculate the term d2 term in the
expansion. For simplicity, we will calculate the c2 term and realize that the d2 term follows
an identical calculation when the sign of the hopping term is inverted in the Hamiltonian.
We know the hopping is always positive in our model, and since

〈

S+
i S

−
j + S−

i S
+
j

〉

= c2−d2,
it is unlikely we will see any expectation of d2 unless we flip the sign of the hopping.

Carrying on, we can attempt to isolate c2

1− 4
〈

Sz
i S

z
j

〉

2
=

1

M

M
∑

i=1

c2i + d2i ,

〈

S+
i S

−
j + S−

i S
+
j

〉

=
1

M

M
∑

i=1

c2i − d2i ,

1− 4
〈

Sz
i S

z
j

〉

4
+

〈

S+
i S

−
j + S−

i S
+
j

〉

2
=

1

M

M
∑

i=1

c2i .

(1.43)

Since the maximum value for
〈

S+
i S

−
j + S−

i S
+
j

〉

is 1 and the minimal value for
〈

Sz
i S

z
j

〉

is
−1/4, we recover that the largest c2 we can find is 1. In this way, we see that in a perfect
singlet neighbors would be antiferromagnetically correlated and the expectation of the
hopping operator would be 1. In our 2D models we will never see precisely this, as when
many of the bonds would be satisfied by antiferromagnetic arrangement, the singlet will
have to share its weight among all of the neighbors where spins can exchange and reduce
the systems energy. The above calculation lets us quantitatively determine the weights of
particular projections of the wave function on to a two site basis, and thus say without
ambiguity the relationship between the singlet and the hopping term of the Hamiltonian.

1.9 Frustrated magnetic systems

Frustrated magnetic systems are those for which all the interactions cannot be simultane-
ously satisfied. For any plaquette of the system frustration can be created in two general
ways, through geometry or through mixing interactions. The prototypical example of
geometric frustration is the antiferromagnetic triangular lattice. If we imagine a single
plaquette, that is a single triangle of the lattice, it consists of three connected sites. Defin-
ing the first spin (spin-1) to be up, the antiferromagnetic interaction would prefer that
the next spin we place (spin-2) be oriented down. The problem now is that the third spin
(spin-3) is required by spin-1 to down, but required by spin-2 to be spin up. This is shown
in Figure 1.5a. In this way, the orientation of spin-3 is frustrated since it cannot satisfy all
interactions simultaneously.
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a b

Figure 1.5: Basic frustrated plaquettes. (a) Geometric frustration in the triangular an-
tiferromagnet and (b) a plaquette of the fully-frustrated square lattice. For a single pla-
quette of a, six of the eight possible configurations are groundstates. Eight of the sixteen
configurations are valid groundstates for the plaquette of b.

Frustration through interaction is similar, except that it requires a mixing of ferromag-
netic and antiferromagnetic interactions. Figure 1.5b shows a square lattice with three
antiferromagnetic bonds and one ferromagnetic bond. By the same procedure as above,
after placing three of the spins in a way that satisfies the interaction, the fourth will be
forced to frustrate one of the remaining bonds.

In describing frustrated lattices of the second type it is convenient to define a set of
variables that live on the bonds of the lattice. One such representation would be one in
which we fix the amplitude of the interaction and let the sign vary.

Jij = JeiAij . (1.44)

In such a description the set of Aij’s completely describe the interaction and the frustra-
tion for a given lattice. If we imagine a square lattice of bonds randomly chosen to be
antiferromagnetic or ferromagnetic, then each plaquette will be frustrated if it satisfies the
condition

∑

{i,j}∈p
Aij = (2n+ 1)π, n ∈ {0, 1}. (1.45)

Where {i, j} ∈ p describes the set of bonds that belong to a particular plaquette. Such
a condition can be extended to a general lattice as well. For any lattice, it is “fully-
frustrated” if every plaquette satisfies a condition similar to Equation (1.45), specifically
that that the number of antiferromagnetic bonds around every plaquette must be odd.
Such a general case covers both geometrically frustrated lattices and those in which we
craft the frustration explicitly.
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Frustrated systems are interesting to study because they tend to have properties that are
unusual in classical systems. Although all frustrated systems cannot satisfy all interactions
simultaneously, some of them also have multiple equal energy groundstates, and in rare
cases they may have macroscopic degeneracy in the groundstate. Systems that have an
extensive entropy at zero temperature often give rise to other peculiar states or transitions
when an anisotropy or external perturbation is applied to the system. Frustration can
lead to a suppression of “conventional” order and can lead to disordered or spin-liquid
groundstates [1], as mentioned earlier in this chapter.
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Chapter 2

Classical Fully Frustrated
Honeycomb Lattice Ising Model

2.1 Analytical methods for spin models

In the study of spin systems, an approximation that assumes a spin’s neighbors take an
orientation equal to the average orientation (or “field”) of all spins in the system is known
as mean field theory. If we were to look at the Ising ferromagnet in mean field with an
applied external field, the Hamiltonian would be rewritten as

H = −J
∑

〈ij〉
σiσj − µB

∑

i

σi

= −1

2
Jz 〈σ〉

∑

i

σi − µB
∑

i

σi

= −(
1

2
Jz 〈σ〉+ µB)

∑

i

σi,

(2.1)

where z is the number of nearest neighbors and 〈σ〉 = 1/N
∑

i σi is the mean orientation
of any of the spins. The assumptions that we have made here is that each spin is does
not fluctuate much from the average value of all spins, which depending on the system can
be anywhere from a good to a terrible approximation. Nevertheless, even in this crude
approximation we can see that the model undergoes a phase transition from a disordered
to an ordered state.

For a given average value of the spin, we can calculate the energy difference between
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the two spin configurations for a local spin.

∆ǫ = −µB∆σ − Jz 〈σ〉∆σ,

= 2µ

(

B +
Jz 〈σ〉
µ

)

,
(2.2)

where we take ∆σ = −2. As the above form suggests, the average magnetization acts like
an external magnetic field for each spin of the lattice. This effective field produced by
neighboring spins is usually referred to as the internal or molecular field.

Since we now know the energy difference between the two states, we can use the Boltz-
mann distribution to find the ratio of up to down spins in equilibrium. The Boltzmann
distribution states that in equilibrium we should find

〈N−〉
〈N+〉 = exp(−2µ(B′ + B)β) (2.3)

Where β = 1/kBT is the inverse temperature, B′ = Jz 〈σ〉 /µ is the molecular field and
N+ and N− represent the total number of up and down spins, respectively. The molecular
field B′ also explicitly depends on the number of up and down spins, so the above is really
a self consistent equation of the form

N(〈σ〉 − 1)/2

N(〈σ〉+ 1)/2
= exp(−2µ(

Jz 〈σ〉
µ

+ B)β),

〈σ〉 − 1

〈σ〉+ 1
=exp(−2µ(

Jz 〈σ〉
µ

+ B)β),

1

2
ln

(〈σ〉+ 1

〈σ〉 − 1

)

=β(Jz 〈σ〉+ µB),

tanh− 1(〈σ〉) =β(Jz 〈σ〉+ µB),

〈σ〉 =tanh (β(Jz 〈σ〉+ µB)) ,

(2.4)

where now the self consistent form is very apparent. If we lump the terms β′ = βJz and set
the external field to zero, we can plot both left and right side together and find solutions
where they cross. In Figure 2.1 we see that there is always one solution at 〈σ〉 = 0 for
any β′, but as we take larger and larger β′ (corresponding to lower and lower temperature)
there is a point at which two more solutions develop. This point at which we have non-zero
solutions for the magnetization is known as the mean field critical temperature Tc. For
example, if we were considering the 2D Ising model on a square lattice, then kBTc = 4J . It
is important to note that as long as we can make β′ large enough, the system will always
order. This implies that for any positive z value an Ising system will order at a low enough
temperature, while more advanced approximations or Monte Carlo simulation show that
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Figure 2.1: The self consistent mean field theory magnetization. The graph shows the
intersections of the self consistent relationship in Equation (2.4). When β′ is below 1, there
is only one solution at 〈σ〉 = 0. If β′ is greater than 1, than two additional symmetric
non-zero solutions develop.

although classical 2D models do order, the classical 1D Ising model does not order all the
way down to T = 0 [7]. Extending this to the honeycomb ferromagnet, where z = 3, we
find that the critical temperature is predicted to be Tc = 3J in mean-field theory.

In one dimension the exact solution to the Ising model was derived by Ising himself [7],
where he found there was no phase transition all the way down to absolute zero, but
incorrectly concluded that there was no finite temperature transition for any number of
dimensions. For the two dimensional Ising model the exact solution was derived by On-
sager [17], but the derivation is more mathematically challenging than the above and not
necessary for our discussion of this work. Beyond two dimensions there are various other
methods, but the mean field approximation above also becomes more and more accurate,
becoming exact as we go above the upper critical dimension [18].

The next relevant model that we can treat analytically is the quantum XY model. in
this model we assume a Hamiltonian of the form

H = −J
∑

〈ij〉
Sx
i S

x
j + Sy

i S
y
j . (2.5)

If we rotate the basis so the y direction now points along the z axis, and expand the Sx

29



operators into raising and lowering operators for the Sz basis we get

H = −J
∑

〈ij〉
Sz
i S

z
j +

1

4
(S+

i + S−
i )(S

+
j + S−

j ), (2.6)

after which we can apply the Holstein-Primakoff transformation. The Holstein-Primakoff
transformation [19] starts from an ordered groundstate “guess” and calculates corrections
as perturbations from this guess. In it we define the quantity S representing the magnitude
of the spins on the lattice, in this case 1

2
. Here we will perform what is known as linear

spin-wave theory, in which we will find the lowest excitations are gapless non-interacting
magnons.

Applying the transform to the above Hamiltonian we get

H =− J
∑

〈ij〉
(S − a†iai)(S − a†jaj)+

S

2





(

1− a†iai
2S

)1/2

ai

(

1−
a†jaj

2S

)1/2

aj +

(

1− a†iai
2S

)1/2

aia
†
j

(

1−
a†jaj

2S

)1/2

+

a†i

(

1− a†iai
2S

)1/2(

1−
a†jaj

2S

)1/2

aj + a†i

(

1− a†iai
2S

)1/2

a†j

(

1−
a†jaj

2S

)1/2


 .

(2.7)

Expanding the square root in each term and only keeping terms of order 1/S we get

H =− J
∑

〈ij〉
(S − a†iai)(S − a†jaj)+

S

2

[(

1− a†iai
4S

)

ai

(

1−
a†jaj

4S

)

aj +

(

1− a†iai
4S

)

aia
†
j

(

1−
a†jaj

4S

)

+

a†i

(

1− a†iai
4S

)(

1−
a†jaj

4S

)

aj + a†i

(

1− a†iai
4S

)

a†j

(

1−
a†jaj

4S

)]

.

(2.8)

We take this form and Fourier transform the creation and annihilation operators, keeping
only quadratic terms. Defining L as the linear dimension of some finite L × L lattice, we
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get

H =− J
∑

〈mn〉

[(

S − 1

L

∑

k1

∑

k2

ei(k1−k2)mb†k1bk2

)(

S − 1

L

∑

k1

∑

k2

ei(k1−k2)nb†k1bk2

)

+

S

2L

(

∑

k1

e−ik1mbk1
∑

k2

e−ik2nbk2 +
∑

k1

e−ik1mbk1
∑

k2

eik2nb†k2 +

∑

k1

eik1mb†k1

∑

k2

e−ik2nbk2 +
∑

k1

eik1mb†k1

∑

k2

eik2nb†k2

)]

.

(2.9)

Changing the sum to one explicitly over nearest neighbors, δ, we get

H =− J

2

∑

m

∑

δ

[(

S − 1

L

∑

k1

∑

k2

ei(k1−k2)mb†k1bk2

)(

S − 1

L

∑

k1

∑

k2

ei(k1−k2)(m+δ)b†k1bk2

)

+

S

2L

(

∑

k1

e−ik1mbk1
∑

k2

e−ik2(m+δ)bk2 +
∑

k1

e−ik1mbk1
∑

k2

eik2(m+δ)b†k2 +

∑

k1

eik1mb†k1

∑

k2

e−ik2(m+δ)bk2 +
∑

k1

eik1mb†k1

∑

k2

eik2(m+δ)b†k2

)]

.

(2.10)

We can now perform the sum over all m explicitly to get the form

H =− JL

2

∑

δ

[(

S − 1

L

∑

k

b†kbk

)(

S − 1

L

∑

k

b†kbk

)

+

S

2L

(

∑

k

eikδbkb−k +
∑

k

e−ikδbkb
†
k+

∑

k

eikδb†kbk +
∑

k

e−ikδb†kb
†
−k

)]

.

(2.11)

Performing the sum over δ then gives us the form

H =− JLz

2

∑

δ

[(

S − 1

L

∑

k

b†kbk

)(

S − 1

L

∑

k

b†kbk

)

+

S

2L

(

∑

k

γkbkb−k +
∑

k

γ−kbkb
†
k+

∑

k

γkb
†
kbk +

∑

k

γ−kb
†
kb

†
−k

)]

,

(2.12)
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where z is the number of nearest neighbors and we define

γk =
1

z

∑

δ

eikδ. (2.13)

After making this transformation the Hamiltonian has the form

H = −JS
2Lz

2
+
JSz

4

∑

k

(4− 2γk) b
†
kbk − γk

(

bkb−kb
†
kb

†
−k

)

,

H = −JS
2Lz

2
+
JSz

4
Hk.

(2.14)

From here if we can diagonalize Hk we will have diagonalized the problem.

If we use a Bogoliubov transformation [19] of the following form

αk =ukbk − vkb
†
−k

α†
−k =ukb

†
−k − vkbk

[

αk, α
†
k

]

=1 = u2k − v2k,

(2.15)

we find that to have the set of αk behave with proper boson statistics, we have a restriction
on the coefficients u and v. If we insist that this new set of variables is diagonal with respect
to the Hamiltonian, we get a further set of restrictions on the coefficients

[αk, Hk] =αkλk,

λkuk = [uk(4− 2γk)− 2vkγk] ,

λkvk = [−vk(4− 2γk) + 2ukγk] .

(2.16)

This gives us the system of equations

(

−(4− 2γk − λk) 2γk
2γk −(4− 2γk + λk)

)(

uk
vk

)

=

(

0
0

)

. (2.17)

Solving this gives this constraint

λ2k = (4− 2γk)
2 − 4γ2k . (2.18)

If we substitute this back into Hk and then collect all the terms from the original Hamil-
tonian, we finally get the diagonalized form

H = −JLzS(S + 1)

2
+
JzS

2

∑

k

(

αkα
†
k +

1

2

)

√

(2− γk)2 − γ2k. (2.19)
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In this form we can explicitly calculate the reduction of the groundstate energy from the
maximal energy per interaction—that being if every site could be in a singlet with every
other site of the lattice. We can also calculate the reduction in magnetization at zero
temperature due to quantum fluctuations from this Hamiltonian.

For the honeycomb model, the γk must be averaged over the two sublattice contribu-
tions, and we get the form

γk =
γk1 + γk2

2
,

=
1

6

(

eikx + e−ikx + ei(
kx
2
+
√
3
ky
2
) + e−i( kx

2
+
√
3
ky
2
) + ei(

−kx
2

+
√
3
ky
2
) + e−i(−kx

2
+
√
3
ky
2
)
)

,

=
1

3

(

cos(kx) + cos(
kx
2

+
√
3
ky
2
) + cos(

−kx
2

+
√
3
ky
2
)

)

.

(2.20)

Plugging the above energy into Equation (2.19) and simplifying we find a groundstate
energy of

H0 = −3

2
JSL(S + 1− 0.6947). (2.21)

To compare, the classical antiferromagnet has an energy of −3/2JSL(S), so the addition
of quantum terms reduces the energy from this classical limit.

We can also calculate the expectation of the spin stiffness in this approximation. The
spin stiffness is defined as

1

2
ρsφ

2 =
〈H(φ)〉
N

− 〈H(0)〉
N

, (2.22)

where 〈H(φ)〉 is the energy of the twisted Hamiltonian—that is the internal energy when we
assume the system has a twist enforced between neighboring spins of the lattice. Enforcing
the twisted condition give us a Hamiltonian of the form

H(φ) = −J
∑

〈ij〉

(

Sx
i S

x
j + Sy

i S
y
j

)

cos(φ) +
(

Sx
i S

y
j − Sy

i S
x
j

)

sin(φ). (2.23)

Taylor expanding the above in terms of φ and matching up with Equation (2.22) we get

H(φ) = (1− φ2

2
)H0, (2.24)

ρs = 0.6039J, (2.25)

for the spin-1
2
honeycomb lattice. This is the same value that is obtained during quantum

Monte Carlo calculations performed on the XXZ model when J/t = 0, which is effectively
the XY model.
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2.2 Hamiltonian and gauge choice

The classical fully-frustrated honeycomb lattice is an instance of the Ising model. The
general Hamiltonian we consider takes the form

Ĥ = J
∑

〈ij〉
e−iAijSz

i S
z
j , Aij ∈ 0, π, (2.26)

where the fully-frustrated requirement is satisfied by

∀p
∑

ij∈p
Aij = (2n+ 1) π, n ∈ {0, 1, 2}, (2.27)

where each p is a plaquette of the lattice. In our model, Aij is only allowed to take on the
value zero or π. This means for each bond it is satisfied, while Jz is positive, if the spins
are parallel when Aij is π, or anti-parallel when Aij is zero. For each plaquette the above
restriction is equivalent to requiring that an odd number of bonds have Aij = π. In this
way the Aij variables can be seen as a gauge choice, as there are many ways to satisfy this
constraint.

The reason for using the term “gauge” can be examined by looking at the fully-
frustrated constraint of the system and how it can be manipulated. If we examine the
condition in Equation (2.27) it is fairly clear that there is more than one unique way to
generate the fully-frustrated condition. Using the variables on the bonds, we can define a
lattice curl as

∇p =
∑

ij∈p
Aij, (2.28)

where every bond can only takes values that are multiple of π. Using this definition, the
fully-frustrated requirement can be recast as enforcing the curl on every plaquette to be
equal to π modulo 2π. Such gauge language was developed to understand the problem of
random bond models and transform them in a way that allowed analytical progress [20],
and it is similar enough conceptually that we use it here as well.

With this in mind, we can now suggest more concretely why a choice of frustration is
similar to a choice in gauge. If we take a particular choice of frustration, we may add an
arbitrary pattern to the bonds, as long as it satisfies

∀p ∇p ≡ 0 (mod 2π). (2.29)

Using this transformation, we may transform from any frustration choice to any other
frustration choice. In this way, it is similar to the gauge freedom in electrodynamics where
the electric potential and vector potential can be changed by

V → V +∇φ,

A→ A− ∂φ

∂t
,

(2.30)

34



causing no change in the the electric and magnetic field, the only measurable effect of these
potentials.

If we consider the relevant variables of the fully-frustrated honeycomb model to be the
location of the frustrated bonds, then changing the gauge by the above transform simply
changes the particular spin configuration. The dynamics of the system are only dependent
on the energy, and without an external magnetic field the energy is only dependent on
frustrated bonds. In this way, transforming the gauge cannot affect the dynamics of the
classical simulation, and in effect only transforms the particular spin configuration for a
particular choice of frustration. In the classical system, the choice of frustration truly acts
as a gauge freedom which aside from the particular spin configuration, does not affect the
simulation.

When we move to the quantum system the two signs of the interaction are fundamen-
tally different, as with the addition of the hopping term the two signs of the interaction
are no longer effectively identical. The hopping term acts similar to an external field in
that the first prefers spins to pair anti-aligned and the second prefers a particular spin
orientation—both cases breaking the symmetry between up and down spins. Either of
these qualities destroys the symmetry that allows this gauge transformation to truly be a
gauge freedom, but for the sake of using conventional terminology we refer to the particular
way in which the bonds are frustrated as our gauge choice.

The first approach when looking at such a problem is to attempt an analytical solution.
Here such an approach is to solve the interaction matrix of a unit cell of the problem to
see what the ordering wave vectors are. The interaction matrix relaxes the constraint that
the spins must be strictly up or down and lets them take continuous values. This is done
by taking the state of the system to be a classical vector of dimension n, where n is the
number of spins in the system. If this is done we can then take the Hamiltonian to be a
matrix with non-zero elements wherever spins interact with other spins, with a complex
factor between cells to allow for rotating all of the spins from one cell to another, to further
reduce the energy. The constraint that we have relaxed in this process is requiring that all
the spins point up and down—now the values of the eigenvector, which we normalize so
they are all less than one, may take on any real values. In this sense, we solve a similar
problem to the one we were interested in and hope to gain insight from that solution.

The interaction matrix is generated by first indexing all the spins in the unit cell with
a number. If there are n spins, then we build the n× n interaction matrix I. Iij is defined
directly from the Hamiltonian: if i and j are in the same unit cell, then it is simply the
sign and strength of the interaction between the two spins (zero if they do not interact),
which we can call Jij. If i and j are on different unit cells, then the matrix element is of
the form

Iij = Jije
−i~rab·~q, (2.31)
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where Jij is the same as defined above and ~rab is the vector between unit cell a and b, where
spin i is taken to be in unit cell a, and spin j is taken to be in unit cell b. The vector ~q
allows us the freedom to assume that the spin configurations are the same in each unit cell,
except that spins in adjacent cells are allowed to change phase corresponding to a factor
e−i~rab·~q. Such a vector is physical to real problems as it corresponds to some sort of long
range ordered state of the kind that could be detected through an appropriate scattering
measurement [21].

Figure 2.2: Pictures of the different gauge choices considered in this thesis. The highlighted
bonds show where Aij = π. Similar gauges can be constructed by flipping the overall sign
of J . (a) shows the discrete translationally symmetric (DTS) gauge choice, while (b)
shows the discrete rotationally symmetric (DRS) gauge choice. (c) is an example using a
random process to fulfill the fully-frustrated requirement.

For other models the interaction matrix approximation can be very informative. In the
case of the triangular model the peaks in q-space of the eigenvalues of the interaction matrix
correspond to the peaks in the real system when quantum perturbations are added [22],
while in the Kagome case the spectrum is completely flat even with quantum effects [4],
and the quantum case does not order [23].

We can construct the interaction matrix for the fully-frustrated honeycomb using any
of the gauges shown in Figure 2.2 that have a unit cell, that is the discrete translationally
symmetric (DTS) gauge or the discrete rotationally symmetric (DRS) gauge. For the DTS
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Model Extensive Entropy Correlations Interaction Matrix Result
Triangular 0.323 kB [4] 1√

r
[4] minima at ~q = [4π

3
, 0] [22]

Kagome 0.502 kB [4] e−r/ξ [4] flat spectrum [4]
FF-honeycomb 0.214 kB [12] e−r/ξ [4] minima at ~q = [π

6
, 2π

6
]

Figure 2.3: Results for the interaction matrix for different systems. In the triangular and
Kagome lattices the interaction matrix relates to the ordering or lack of ordering of the
systems, and hence the correlations. In the fully-frustrated honeycomb lattice it fails to
predict the lack of order and hence type of correlations.

gauge we get an interaction matrix of the form

J









0 1 0 I1,4
1 0 I2,3 0
0 I∗2,3 0 1
I∗1,4 0 1 0









where: I1,4 = −e−i ~a2·~q + ei( ~a1− ~a2)·~q

I2,3 = 1 + e−i ~a1·~q

(2.32)

where we use a 4×4 matrix of a unit cell of four spins to simplify calculations. The minimal
eigenvalue of this matrix (assuming rAB = n1 ~a1 + n2 ~a2 and ~a1 = î and ~a2 = 2ĵ) is found
when ~q = (π

6
, 2π

6
). The minimal eigenvalue’s value at this point is λmin = −2.449J .
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Figure 2.4: The lowest eigenvalue of the interaction matrix for the (a) DTS gauge and the
(b) DRS gauge over the first Brillouin Zone. The square Brillouin zone and basis vectors
are chosen in such a way such that these results are directly comparable to the structure
factor results presented in later sections.
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Using the DRS gauge we need a larger unit cell, but we can construct the interaction
matrix in the same way. Using that unit cell we get

J

























0 1 0 0 0 I1,6 0 I1,8
1 0 0 0 1 0 I2,7 0
0 0 0 1 0 I3,6 0 I3,8
0 0 1 0 −1 0 1 0
0 1 0 −1 0 1 0 0
I∗1,6 0 I∗3,6 0 1 0 0 0
0 I∗2,7 0 1 0 0 0 −1
I∗1,8 0 I∗3,8 0 0 0 −1 0

























where: I1,6 = −e−i ~a2·~q

I1,8 = e−i ~a2·~q

I2,7 = e−i ~a1·~q

I3,6 = ei( ~a1− ~a2)·~q

I3,8 = e−i ~a2·~q

(2.33)

The minimal eigenvector of this matrix takes the form (assuming rAB = n1 ~a1 + n2 ~a2
and ~a1 = 2̂i and ~a2 = 2ĵ) is found when ~q = (5π

12
,−2π

12
). The eigenvalue at this point is

again λmin = −2.449J .

In both cases the eigenvalue spectra have minima corresponding to a unique configura-
tion and q-vector that minimizes the energy. Although we know that this classical Hamil-
tonian retains a disordered degenerate groundstate, one may ask whether the momentum-
space location of these minima will correspond to an ordering wave vector when quantum
fluctuations are added to this model.

The presence of mixed bonds adds something unique to the fully-frustrated honeycomb
model. As mentioned earlier we have a choice of gauge in the Aij variables. What was
not immediately clear is that classically any valid choice of the Aij (those that satisfy the
constraint in Equation (2.27)) will produce a similar groundstate. By similar we mean
that many of the thermodynamic properties, aside from specific spin configurations, are
the same. Further discussion of the groundstate can be found in Section 2.3.

2.3 Results from classical Monte Carlo

As mentioned in the section describing classical Monte Carlo algorithms, the fully-frustrated
honeycomb lattice takes a bit more work to simulate due to its frustrated nature. When
a simple Monte Carlo algorithm is implemented, the system would take a long time to

38



find the true groundstate of the system, often because it would get stuck in local min-
ima. Figure 2.5 shows the slow decay of the energy as the Monte Carlo algorithm iterates.
Although it is easy to construct a particular ground state of the classical fully-frustrated
honeycomb model, it is somewhat more difficult to imagine all of the allowed states ana-
lytically (although, this was done in [12]). Instead, it is more productive to examine the
type of simple moves that take us from one allowed groundstate to another. Single spin
flips are always guaranteed to cost energy when we are in the groundstate, so the only way
to create moves that do not cost energy is to engineer a move that flips at least two spins.
The realization of this cluster move for the case of the classical fully-frustrated honeycomb
model is called the chain move.

0 200 400 600 800 1000
−0.25

−0.2495

−0.249

−0.2485

−0.248

−0.2475

E
/N

# of MC Steps

 

 
With Chain (N=18432)
Without Chain (N=18432)
Without Chain (N=1152)

Figure 2.5: This graph shows the energy of the system as a function of the number of Monte
Carlo steps with and without chain moves. Without the moves the system becomes stuck
in local minima and takes much longer to find the groundstate energy, while with chain
moves it is able to find the groundstate energy very quickly. Figure reprinted from [12]
with permission from authors.

To simulate the classical fully-frustrated honeycomb Ising model properly, the chain
move was designed in such a way that it would either take the system between degenerate
groundstates or fix a defect. The chain is constructed by starting on one of the frustrated
bonds of the lattice and flipping a tree of spins that only ends upon being connected to
another frustrated bond [12]. In this way, the chain guarantees that it takes the system
to an equal energy configuration in the absence of anisotropy or an external field. This
is important since the equivalent set of single spin flips that would be required to move
between these states require going through intermediate states of energy at least E0 + J
and are hence are suppressed in the Monte Carlo algorithm by a factor of e−βJ .
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If we look at the restriction of the groundstate, we find that one of the bonds on
each plaquette must be unsatisfied. One bond being unsatisfied per plaquette is the exact
groundstate independent of any gauge choice. If we looked only at the position of the
frustrated bonds and their dynamics in the classical Monte Carlo, we would be unable to
differentiate between different gauge choices. Whether each bond is frustrated or not also
entirely determines the energy and hence the dynamics of the system. Given a particular
state of all the bonds of the system, it is entirely possible to perform the classical Monte
Carlo simulation without knowing the precise spins. We can do this because we know the
effect of flipping a single spin regardless of the type of bonds it is connected to or the initial
orientation of the spin. If one can perform the full simulation without knowing the type
of bonds or spins, then they cannot be relevant to the dynamics of the problem, although
they remain relevant to observables that depend on the details of the spin configuration,
such as total magnetization.

Additionally, one can lift the extensive degeneracy by applying a small uniform magnetic
field or by creating one weak bond per hexagon. By changing the problem in the latter way,
the groundstate becomes unique (up to spin-inversion) and now the problem of finding the
unique groundstate is impossible without the use of the above mentioned loops. When the
loops move between non-equal energy states, we use the normal detailed balance condition
to decide on accepting a move between the two states. Since the chain is deterministic given
a starting spin, the selection probability for moving from one configuration to a valid final
configuration after a chain is equal, and we again only need to compare the energies of the
two states. When the anisotropy is small, normal single spin flips will not find the global
minimum state, but the chains will continue to work at the low temperatures where the
anisotropy becomes important. If the anisotropy is large, then even single spin flips will be
able to approach the groundstate configuration—although if the anisotropy is large enough
then a new chain move may be necessary to take one between near degenerate groundstates
of the perturbed Hamiltonian. Using the chain moves, the recovery of entropy, implying
a unique groundstate, and realization of the lowest energy configuration in the perturbed
model are both explicitly found for the classical fully-frustrated honeycomb lattice [12].

When a small field is applied, the extensive degeneracy breaks and we find ourself in a
regime where the groundstate entropy scales with the square root of the number of spins in
the system. When the field reaches the same strength as the interaction energy, h/J = 1,
the systems again has an extensive entropy. Figure 2.6 shows the specific heat as a function
of temperature, with a soft peak and a second sharp peak, representing partial ordering.
We are able to calculate the specific heat using the equation

S(T2)− S(T1)

N
=

∫ T2

T1

cv
T ′dT

′. (2.34)

Although the extensive entropy is less than the ground state without a magnetic field,
Figure 2.7 shows that it still scales to a non-zero value. For fields larger than h/J = 1 the
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system loses its extensive entropy and the number of ground states scales with the linear
length of the system [12]. At the special field value of h/J = 3/2 The system reaches a
special symmetric point where the entropy becomes extensive again, and scale to a larger
value than in the case of h/J = 1, as shown in Figure 2.7
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Figure 2.6: The specific heat of the classical fully-frustrated honeycomb when h/J = 1
(left) and h/J = 3/2 (right), where h is the strength of the external field. Notice the spike
at low temperature indicating a second ordering transition when h/J = 1 while there is no
bump for h/J = 3/2.
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Figure 2.7: The size scaling of the residual entropy of the classical fully-frustrated hon-
eycomb when h/J = 1 (left) and h/J = 3/2 (right). Both scale to a residual value that is
extensive in the number of spins in the system. The dashed green lines show the analytical
results from combinatorics in the large L limit.

The results of this classical study at a field was also complimented by a study of
all possible ground state configurations using combinatorics. This combinatoric analysis
allowed prediction of the extensive entropy and non-extensive entropy for all values of the
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external field. For h/J = 1 we find the extensive entropy is

S

N
=

ln 2

2L2
+

1

8L
+

1

8
lnφ, (2.35)

where φ is the golden ratio, or 1+
√
5

2
, and L is the length of the system. In the limit of

large L, we find S
N

≈ 0.06015 [12]. In the case where h/J = 3/2 we find the equation of
the limiting case is

S

N
=

1

4L
ln

(

5 + 3
√
5

10

)

+
1

2
lnφ, (2.36)

and we find in the limit of large L that we get a residual entropy of S
N

≈ 0.24061 [12]. In
this way the ground state of the classical fully-frustrated honeycomb Ising model is very
well understood, not only in terms of the appropriate simulation needed to explore the
manifold of degenerate groundstates but also in terms of the microscopic description of the
frustrated manifold and the number of ways it can be rearranged. Note that Figure 2.7
the Monte Carlo results do not exactly converge to the predicted results from the com-
binatorics method within the bounds of error, suggesting there may be subtle corrections
not accounted for or that the Monte Carlo results need to be pushed to even larger sizes.

The fully-frustrated honeycomb is also an interesting problem because the groundstate
can be mapped to the groundstate of a hard core dimer problem on a triangular lattice.
The hard core dimer problem assumes we have a dual lattice and each site belongs to
exactly one dimer, and in this context a dimer is simply an object that connects two
nearest neighbor sites on a lattice. The mapping from the fully-frustrated honeycomb is
done by first constructing the dual lattice, which is triangular, and then on the dual lattice
each bond crosses one bond of the original lattice. Figure 2.8 shows how the frustrated
bonds of the fully-frustrated honeycomb model map to the dimers of the hard core dimer
model. Where a dual lattice bond crosses a frustrated original bond, we place a dimer.
Every plaquette has only one frustrated bond in the groundstate, so for each node at the
center of a plaquette it has only one dimer connecting to it. Exactly every node having
only one dimer connect to it is precisely the condition of the hard core dimer model, and
as long as we are in a groundstate of the fully-frustrated honeycomb the mapping is good.

In the Hamiltonian we have shown so far, the residual entropy of the groundstate was
measured to be S ≈ 0.214 per spin [12]. In the classical hard core dimer model, the residual
entropy has also been calculated—in that case it is also known to be the same value [24],
suggesting that this mapping allows one to sample all the same relevant configurations in
the dual model, up to a constant non-extensive factor.

42



Figure 2.8: The duality mapping of the fully-frustrated honeycomb model to the hard
core dimer model on the triangular lattice. Everywhere there is a frustrated bond of the
honeycomb model, we insert a dimer on the triangular lattice bond it crosses. In this way,
every groundstate of the fully-frustrated honeycomb model has an analogue in the hard
core dimer model on the triangular lattice.
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Chapter 3

Quantum Monte Carlo Results

3.1 Quantum XXZ Hamiltonian

One extension to the classical Hamiltonian described so far is to add a hopping term to
the spins to see the effect on the degenerate groundstate. The new Hamiltonian takes the
form

Ĥ = J
∑

〈ij〉
e−iAijSz

i S
z
j −

t

2

∑

〈ij〉
S+
i S

−
j + S−

i S
+
j , (3.1)

or the so-called XXZ model. The t
2
term can also be written as Sx

i S
x
j + Sz

i S
z
j without the

factor of 1
2
. Normally when quantum fluctuations of this sort are introduced they disorder

a system. This can be noted by the fact that if we look at the above Hamiltonian in the
limit where J/t → 0 we are left with the uniform XY model on the honeycomb lattice.
The uniform XY model on a honeycomb lattice is defined by having an off-diagonal order
parameter, 〈Sx〉 6= 0 at T = 0, and a non-zero spin stiffness at low temperature [25]. The
effect of a disordering interaction on a system which is already highly disordered is then
one of interest for this work.

Firstly, we test our method by comparing the energy of the groundstate in the SSE
method to that from Lanczos method. The Lanczos method is one where we use the
Hamiltonian to iteratively generate an orthogonal set of states, and within this set of
states we find are able to find the minimal energy [26, 27, 28]. The method works by
taking a random state and applying the Hamiltonian to generate a new state. This new
state is then made orthogonal to the states generate so far, and the procedure continues
to generate more and more states. This is efficient to do because the nature of the gen-
erating method for Lanczos ensures that the expectation of two states sandwiching the
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Hamiltonian, 〈ψi|H |ψj〉, only has non zero expectation value for a small number of pairs
i, j.

If we start with a random state |f0〉 we generate new states by applying the Hamiltonian
and requiring orthogonality to previous states. This is achieved by

|f1〉 = H |f0〉 − a0 |f0〉 (3.2)

where
am = Hmm/Nm, Nm = 〈fm|fm〉 , Hmm = 〈fm|H |fm〉 . (3.3)

Equation (3.2) guarantees the second state is orthogonal to the first state. We can now
attempt to generate the next state in a similar way. For the second state, we can generate
it by

|f2〉 = H |f1〉 − a1 |f1〉 − b0 |f0〉 (3.4)

where
bm−1 = Nm/Nm−1. (3.5)

If we look at the overlap of |f2〉 with the previous two states, we get

〈f2|f1〉 = H11 − a1N1, 〈f2|f0〉 = N1 − b0N0, (3.6)

which by definition, is zero for both states by construction. We can now define the general
equation for new Lanczos states as

|fm+1〉 = H |fm〉 − am |fm〉 − bm−1 |fm−1〉 , (3.7)

and the orthogonality with all earlier states is guaranteed by the construction [29]. As
a small note, when performing this construction numerically states can become non-
orthogonal due to numerical imprecision present in a computer. In these cases it is possible
the states are no longer orthogonal, causing obvious problems in the algorithm. This can
be fixed by re-orthogonalizing the system every so often.

In the typical Lanczos method, the matrix of expectation values of the Hamiltonian is
tridiagonal. Using this set of states we can calculate the expectation of the Hamiltonian
for every pair of states and hence are able to calculate the eigenvalues of the system, corre-
sponding to the energies of the reduced basis we are working in. If properly implemented,
the minimal energy (or eigenvalue) of the Lanczos method very quickly converges to the
exact groundstate energy for the finite system at zero temperature [26, 28].

Figure 3.1 shows how the energy in SSE converges towards the groundstate energy as the
temperature is decreased. The fact that for particular parameters the system converges
faster or slower should not be seen as an error in the simulation technique, rather this
likely reflects the real physics of the system at a finite temperature. Although Lanczos is
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Figure 3.1: The energy of the Monte Carlo simulation with the groundstate energy from
Lanczos subtracted on a 3× 3× 2 sized system. a) shows the system for which J < 0 and
b) shows the system in which J > 0. ∆E = 〈EQMC〉 − ELanczos.

an efficient method for calculating groundstate properties, it scaled poorly and in general
cannot be used to study very large systems. For this reason Lanczos cannot be used to
directly study the large lattice sizes needed to extract interesting physics in this model, and
a small 3× 3× 2 system was used to test the SSE. Beyond this particular implementation,
there are many other previous implementations of the SSE, many of which have established
the method’s ability to reproduce known results [15, 16, 25].

In the sections that follow we will discuss the results for the three gauges, shown in
Figure 2.2.

3.2 Discrete Translationally Symmetric gauge

The quantumMonte Carlo performed in this section uses the DTS gauge to satisfy the fully-
frustrated requirement. Simulations are run as a single quenched simulation at modestly
low temperature, βt = 5 is first used, to examine properties of the system.

We qualify the general phase diagram of the fully-frustrated honeycomb XXZ model
by examining the spin stiffness as a function of J/t. In the limit of J/t→ ∞ the model is
exactly the classical fully-frustrated honeycomb Ising model, for which the phase diagram
is well understood. In the limit of J/t → 0 the model becomes the XY model on the
honeycomb lattice—a model we discussed in the earlier section of this thesis, and for which
the spin-wave description is fairly accurate. In Figure 3.2 we see that the spin stiffness
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is very close to the classical prediction of spin-wave theory from Equation (2.25). The
simplest way to examine the intermediate region is to look at the behavior of simple order
parameters as a function of the J/t parameter. We use the spin stiffness as the parameter
of interest to examine the general behavior over the range of J/t.
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Figure 3.2: The spin stiffness of the DTS gauge as we vary J/t with L = 24 and β = 10.
Notice the spin stiffness is a maximum at the point where the model is equivalent to the
XY-model, and decays reaching zero by |J/t| > 2.

Figure 3.2 shows that in this gauge choice it is easy to see the transition from a phase
with non-zero spin stiffness to one with sublattice order as J/t & 1.75. At this point the
spin stiffness quickly drops and the sublattice magnetization turns on. Initial work on
this system shows that the transition from the phase where the spin stiffness parameter is
non-zero to the phase where the sublattice magnetization is non-zero becomes sharper as
system size is increased and temperature decreased. In this sense we expect that there is
no value of J/t for which a non-zero sublattice magnetization and non-zero spin stiffness
would survive in the thermodynamic limit of an infinite lattice at zero temperature.

Considering that we know the behavior of the system in the limits of very large or very
small J/t, the question is then what occurs for intermediate regimes. Of particular interest
is the phase where there is no spin stiffness, but also non-trivial quantum fluctuations. We
believe that this phase is the one that best represents a classical disordered groundstate
perturbed by quantum fluctuations. With this in mind, most of the properties we discuss
are studies of the system with J/t = ±3. Simulations are performed for larger values of J/t,
but the SSE uses the off-diagonal operators of the Hamiltonian to sample configuration
space. If the off-diagonal operators only make up a small fraction of the Hamiltonian
this sampling is inefficient and new algorithms would need to be introduced to restore the
ergodicity of the algorithm.

For large simulations (24× 24× 2 sites, 24 unit cells in the x and y directions, and two
spins per unit cell) the DTS gauge with J < 0 has difficulty finding the exact groundstate,
as shown in Figure 3.3. After understanding the problem through analyzing the lattice
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spin configuration, we chose to use an annealing algorithm to remove the defects of the
lattice.
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Figure 3.3: (left) The structure factor of the DTS gauge when J < 0. For this picture the
system was not annealed and found to contain a defect that can be seen in the real-space
snapshot of |α0〉 at the end of the simulation (right). The defect can be seen as a kink in
the layers of white (spin up) and black (spin down) particles on the lattice, and if often
referred to as a screw dislocation [30].

The annealing algorithm is quite simple, and more complicated schemes are available
to implement if this scheme had failed. We start the system at a high temperature and run
Monte Carlo steps until the system reaches equilibrium. We then use the configuration,
corresponding to a particular choice of |α0〉 and a valid choice of operator list SM , and
use this as the initial configuration for a simulation at a lower temperature. The process
of re-equilibration and changing temperature is repeated until the target temperature is
reached. Using this process, the structure factors in Figure 3.4 are generated. With proper
annealing both peaks signify strong order, and the peak values scale with the number of
spins, indicating Bragg peaks.

Later analysis uses the real-space image of the lattice to verify the type of order that
the strong peaks corresponded to. Initial attempts to visualize the lattice simply mapped
the current step of the simulation, |α0〉, directly to up and down spins on the lattice.
This is an interesting method, but in the SSE formalism, any random |αi〉 carries no
particular meaning, except that averaging diagonal operator expectation values over the
set {α} gives the expectation of that operator. With this understanding we then collected
statistics, notably 〈Sz

i 〉 and
〈

S+
i S

−
j + S−

i S
+
j

〉

, to generate images. In this way, the image
truly represented the real-space version of the data that was being Fourier transformed
to generate the sublattice structure factors. Any patterns visible in the structure factor
should also be visible in the real-space image. Patterns for the two structure factors in
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Figure 3.4: The sublattice structure factor of the spin-spin correlation function of the DTS
gauge when (a) J > 0 and (b) J < 0 using annealing. Compare the sharp peaks found in
this case to the double peaks found without annealing in Figure 3.3.

Figure 3.4 are shown in Figures 3.5,3.6.

Let us now turn to the real-space images of the lattice and confirm that sublattice
structure factors correspond to the order observed in them. In the case where J > 0, the
order is primarily antiferromagnetic, with spins on each sublattice pointing opposite to
spins on the other sublattice. For the honeycomb lattice a sublattice structure factor was
often used rather than the full structure factor. This is because when decomposing the
lattice as a Bravais lattice with a basis, the calculations remain simple if we only consider
one species per unit cell. Examining the sublattice structure factor allows us a simple
interpretation of the results along the lines of the basic results presented earlier. If we
examine the sublattice structure factor, it should have a q = (0, 0) peak, corresponding to
a sublattice magnetization. The structure factor has one other subtle feature—two small
symmetric peaks at q = (0, π) and q = (0,−π). These two peaks refer to the same order
and suggest that in addition to the sublattice magnetization, spins vertical to one another
(on the same sublattice) are weakly anti-parallel. Looking more closely at the real-space
image, spins connected to bonds where Aij = π are reduced in magnetization, and occur
every second layer. This reduction every second layer is picked up by the structure factor
as the smaller signatures. A final important point is that all the peaks in the structure
factor occur for qx = 0, implying translational symmetry in the x-direction of the lattice.
Examining the visualization this translational symmetry is easily spotted.

With the above measures we can now describe the nature of the groundstate. First of
all, the strong peaks in the spin-spin structure factor suggest that the material is crystalline,
in so far that the spins are primarily localized. In both cases local fluctuations persist, but
as the phase diagram in Figure 3.2 shows, the system has no spin stiffness despite these
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Figure 3.5: The real-space image of the DTS gauge when J < 0. The variables represented
are in the image are 〈Sz

i 〉 (color of the spins) and
〈

S+
i S

−
j + S−

i S
+
j

〉

(thickness of the bonds).
The spins range from blue (〈Sz

i 〉 = −0.5) to red (〈Sz
i 〉 = 0.5) with purple representing a

site that spends equal time up and down (〈Sz
i 〉 = 0). All of the bond thicknesses are

normalized such that the thickest bond’s diameter is 80% the diameter of the spheres.
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Figure 3.6: The real-space image of the DTS gauge when J > 0. The variables represented
are in the image are 〈Sz

i 〉 (color of the spins) and
〈

S+
i S

−
j + S−

i S
+
j

〉

(thickness of the bonds).
The spins range from blue (〈Sz

i 〉 = −0.5) to red (〈Sz
i 〉 = 0.5) with purple representing a

site that spends equal time up and down (〈Sz
i 〉 = 0). All of the bond thicknesses are

normalized such that the thickest bond’s diameter is 80% the diameter of the spheres.
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fluctuations. A lack of spin stiffness implies that the spins are never transported around
the boundary when sampling valid operator expansions SM . This is because there is a
close relation between the winding of spins around the boundary and the spin stiffness.
The spin stiffness is related to the winding of spins across the boundary by the equation,
derived in [31, 32],

ρWα =
1

β

〈

W 2
α

〉

, α ∈ {x, y} (3.8)

where W is the number of (signed) number of spins that wind around the boundary of the
system in the expansion SM . Consequently, this implies that the fluctuations only move
the spins short distances.
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Figure 3.7: The sublattice structure factor of the bond-bond correlation function of the
DTS gauge for the sublattice of bonds with the largest value of

〈

S+
i S

−
j + S−

i S
+
j

〉

when (a)
the J > 0 and (b) J < 0 using annealing. Notice the central peaks indicating a non-zero
value of the bond parameter and a fairly flat spectrum otherwise. The peaks at q = (0,±π)
(more prominent in (b) but also present in (a)) show that in addition to the overall order,
there is vertical modulation.

If we look where the fluctuations occur, there is a preferred bond for both signs of J/t
that fluctuates more than the rest. This time we can use our real-space image to predict
that there should be peaks in the bond-bond structure factor. Considering that we have
invariance in the x-direction in both system, we expect any peaks (if they exist) should
occur for qx = 0, and the two layer vertical modulation in the system (from thick to thin
bonds on the same sublattice) suggests peaks should occur at qy = ±π. The structure
factor of the bond-bond correlation function in Figure 3.7 shows that this is indeed the
case. With long range order in the bonds for both cases, we could describe the system as a
partial valence bond crystal (often called a valence bond solid) in addition to a spin crystal.
We use partial here to distinguish from the case where every spin is part of a valence bond,
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which is not the case of this groundstate. This phase has been found in other works, and
has also been referred to as a CDW-VB (charge density wave valence bond) phase [33].
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Figure 3.8: The low temperature thermodynamic properties of the DTS gauge. The (a)
J > 0 energy levels off and the (b) magnetic susceptibility drops to zero by T/t ≈ 0.1,
showing that the groundstate does not permit single spin flips, but potentially allows moves
that conserve the total number of spin up and spin down. For the case where J < 0 the
(c) energy and (d) magnetic susceptibility flatten out and go to zero, respectively, by
about T/t ≈ 0.2. Notice the difference in scale for the case when J < 0 for the magnetic
susceptibility, likely due to the J < 0 case allowing large clusters of spins to flip since it
prefers spins to be aligned where Aij = 0.

Thermodynamic properties of the groundstates for both signs of J are shown in Fig-
ure 3.8. In both cases the energy decreases with temperature and saturates by T/t ≈ 0.2
when J > 0 and T/t ≈ 0.1 when J < 0. Similarly, the magnetic susceptibility remains
finite but sharply decreases to zero at these same points. For this reason, we describe
the groundstate as zero magnetic susceptibility phases, ones in which the total number of
spins is fixed with strong order in the spins where they are localized. The localization can
be seen through the lack of spin-stiffness, which only exists when spins wind around the
lattice. When the spins do fluctuate, they usually do it in a very confined region to reduce
the kinetic energy of the system, but motion on the length scale of the system is highly
suppressed.
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In examining the low energy manifold we lower the temperature to the point that single
spin flips no longer occur. At this temperature, the system chooses one of the symmetry
broken groundstates and is unable to fluctuate to the other symmetry broken state. We
can see this by examining the expectation of 〈Sz

i 〉 for each spin and noticing that when
the magnetization fluctuates away from zero, the groundstate samples both symmetry
broken groundstate when J > 0. Once such magnetization fluctuations stop, the system
is no longer able to sample the spin inverted state. In the case where J < 0 the system
tends not to fluctuate between the two sectors until higher temperatures, likely due to the
ferromagnetic spin clusters costing a large amount of energy to break. The only moves
allowed at this temperature are the swapping of two spins to minimize the kinetic energy
of the system.

If we imagine the quantum term as a perturbation to the classical Hamiltonian, keep-
ing in mind that the groundstate of the classical Hamiltonian is extensively degenerate, we
would suspect that the quantum terms would choose a superposition of classical configura-
tions that minimize their energy. In this light, we examine the groundstate configurations
of the model presented above. There are two points to note that arise naturally from the
nature of the groundstate restriction. The first is that the hopping must occur on a satisfied
bond with JeAij = |J |, or a bond that is satisfied when the spins on it take opposite sign.
The second restriction is that two of the four legs connecting the pair must be frustrated in
the initial configuration to ensure that if we are in a valid classical configuration before the
flip, we remain in a valid classical configuration after the flip. Figure 3.9 shows a cartoon
of one of the local configurations that when flipped keeps one within the classical manifold
of states.

Spin Up Spin Down

FM Bond AFM Bond

S+S−

Figure 3.9: A cartoon of the action of the (S+
i S

−
j +S−

i S
+
j ) element of the Hamiltonian on

a local configuration of spins. Notice that the number of frustrated bonds does not change,
nor does the number of frustrated bonds per hexagon. If the initial configuration is part
of a valid classical groundstate, so if the final configuration.

Using this cartoon picture we see that configurations satisfying Figure 3.9 minimize
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kinetic energy without costing classical energy. If we extend this to the full lattice and
keep in mind that the groundstate minimizes the sum of the kinetic and classical energy,
then the configurations that allow the most satisfying configurations while also being a valid
groundstate of the classical Hamiltonian should minimize the quantum Hamiltonian. If we
extend this to the full lattice and keep in mind that the groundstate minimizes the sum
of the kinetic and classical energy, then the groundstate Examining the state we extract
through Monte Carlo we find that the thick bonds occur precisely where exchanging two
spins causes no change to the classical energy. Looking more closely at Figures 3.5,3.6,
there are 1-dimensional chains of spins that although highly fluctuating, have a preferential
orientation. If we imagine starting from the configuration described by each spin in the
orientation that it spends most of the time in, we see now that any of the spins may be
swapped along the large chains to minimize kinetic energy without costing classical energy.
The second result from this thought experiment is that we see that flipping one spin in a
chain precludes both of its neighbors from flipping. If this scenario is correct, we should
be able to see a signature of this repulsion in the bond-bond correlation function. Indeed,
Figure 3.10 shows how within a layer there are short range correlations, but bonds on
differing layers interact weakly if at all.

3.3 Discrete Rotationally Symmetric gauge

In the DTS system the addition of quantum terms to the Hamiltonian changes the ground-
state from a massively degenerate set of classical configurations to some quantum super-
position of them that breaks translational symmetry. This is perhaps unsurprising, as
the nature of the quantum term is very sensitive to the sign of the classical interaction
between two spins. The DRS gauge is constructed in such a way as to minimize additional
symmetry breaking, although it requires quadrupling the unit cell from 2 to 8 spins. The
super-cell has a reduced rotational symmetry when compared to the original lattice—it
must be rotated by 2π/3 about one of the hexagons with

∑

ij Aij = 3π to recover the same
lattice. By comparison, a general honeycomb lattice only requires being rotated by π/3
about any hexagon to return to the same lattice, as shown in Figure 3.11.

As before, the first thing to examine is the spin stiffness as a function of J/t, to see
where the model transitions to an zero spin stiffness phase and becomes more interesting
to study. Unlike the DTS gauge, this system never exhibits sublattice magnetization for
either sign of J . The phase diagram for this choice of gauge can be seen in Figure 3.12,
and it carries the same general characteristics that the DTS system did. Due to the similar
phase diagram, we chose to study this system at J/t = ±3 as well. Like in the previous
case, the two limits of this model, J/t = 0 and J/t = ±∞, are the known XY-model
honeycomb and classical fully-frustrated honeycomb Ising model.
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Figure 3.10: The (left) sublattice bond-bond correlation function and (right) the real-
space image of the bond-bond correlation function, both using the third bond (marked in
red) as a reference. Notice the slight anti-correlation of nearest neighbors when compared
to differing layers, for which only interactions between fluctuations are much weaker.

Although this gauge likely leads to a different quantum groundstate, the classical man-
ifold of allowed states is very similar to that from the DTS gauge. If we ignore specific
spin configurations and think only in terms of patterns of frustrated bonds, the DRS gauge
has the same set of classical configurations when compared to the DTS gauge. In this per-
spective, we may get some similar properties when examining how quantum fluctuations
change the system. One difference we might expect is that the number of groundstates is
larger due to the different symmetry of the system. In the case of the DTS the second sym-
metry broken state can only be reached by overall spin-inversion. For the DRS gauge there
should exist spin-inversion symmetry and perhaps rotational symmetry (if the groundstate
breaks rotational symmetry) meaning we can expect as many as six symmetry breaking
groundstates.

As with the DTS gauge we studied a 24×24×2 lattice at low temperature to examine the
groundstate properties. The structure factor of the sublattice spin-spin correlation function
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Figure 3.11: Rotational symmetry of the DRS gauge. The red lines show far the system
must be rotated to return to the original lattice for the normal honeycomb (left) and DRS
gauge (right). There is also reduced translational symmetry. Green dots represent sites,
while black lines represent normal bonds and yellow lines bonds where Aij = π.
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Figure 3.12: The spin stiffness of the DRS gauge as we vary J/t. The points where the
spin stiffness goes to zero are very similar to the DTS gauge (figure 3.2) on both sides,
suggesting that the number of bonds where Aij = π may be the leading factor in the
transition.

is shown in Figure 3.13. These structure factors have peaks that scale with the number of
spins in the system, indicating long range order. The weaker peaks indicate a more subtle
order that exists along side the primary Bragg peaks. In the case of Figure 3.13a the
main peaks suggest that within each layer moving over two cells will result in landing on
a spin of opposite orientation. The fact that the peaks have qy = 0 describe translational
symmetry in the y-direction. The smaller peaks at qy = ±π suggest an anti-symmetry
between adjacent layers which can can be seen more clearly in Figure 3.15. For the other
choice of J the strong peaks are at qx = ±π and all peaks lie on qy = ±π/2. Such strong
peaks in this case indicate moving in the x-direction one cell and in the y-direction two
cells, one ends up on a spin of the opposite orientation from the one started at. The weaker
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peaks at qx = 0 signify a weak sublattice magnetization between vertical rows. All of these
strong and weak peaks can be seen in the visualization of each site’s average magnetization.
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Figure 3.13: Sublattice structure factors of the DRS gauge for one of their six symmetry
broken states when a) J > 0 and b) J < 0. The other three states correspond to rotations
of the above configuration, keeping in mind that the underlying symmetry is triangular
rather than square.
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Figure 3.14: The bond-bond structure factor for the DRS gauge for (a) J > 0 and (b)
J < 0. In both cases the sublattice containing the thick bonds has been selected to show
their order. In both cases we have strong central peaks, with different edge behavior due to
the fluctuations on the non-thick bonds. When J > 0 these bonds have an expectation of
the hopping operator comparable to the highly fluctuating bond, while when J < 0 these
bonds have a very small expectation value.

The main different between the DTS gauge and the DRS gauge is that in the case of
the latter, the highly fluctuating bonds have no preferential spin configuration. In the
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case of the DTS gauge one of the two spins spends more time up than down, and the
other spends more time down than up. This is because for the neighbors to fluctuate, that
configuration is required on the neighboring pair. In the case of the DRS gauge the nearest
similar configuration is far enough away that each highly fluctuating bond can be in either
configuration equally and not affect the fluctuations of the other highly fluctuating bonds.
In addition to this, the higher symmetry of the lattice causes the the thick bonds to form
a triangular lattice like pattern as opposed to simply stripes as in the DTS gauge.

Figure 3.14 shows the long range sublattice order in the bonds. The bond ordering
and spin ordering are both reflected in the real-space pictures of the lattice shown in
Figures 3.15,3.16. The long range order in both structure factors lead us to classify this
groundstate as a crystalline state, similar to the DTS gauge. We again have locally fluctu-
ating pairs, but the bulk of the lattice has long range order that does not fluctuate in the
groundstate. Due to the ordering of the fluctuating bonds, it would also be appropriate
to call this groundstate a partial valence bond crystal or in the CDW-VB phase. We use
“partial” here again is to distinguish from the picture of a valence bond solid, where every
spin is in an a valence bond.

The low temperature thermodynamic properties of the system also suggest a solid phase.
Figure 3.17 shows we have similar behavior to the DTS gauge case where fluctuations in
the total number of spins are frozen out when the temperature is reduced below 0.1t. The
long range order and lack of overall spin fluctuation further suggest this groundstate as a
solid phase with only local fluctuations.

Examining the quantum term as a perturbation from the classical manifold again, we
can look for configurations that satisfy Figure 3.9 to see if our previous reasoning still
applies. If we examine the highly fluctuating bonds, for either orientation of an up and
down spin on each pair the classical energy cost is identical, and minimal. To first order,
each pair can fluctuate independently to minimize the energy of the quantum Hamiltonian.
In the case where J < 0, most of the bonds tend not to fluctuate. Those that do fluctuate
do so at a very reduced scale, as aside from the thick bonds such fluctuations will cost
classical energy. The case where J > 0 is more interesting, as more of the bonds can
potentially fluctuate. Examining the pattern carefully, the bonds on the same sublattice
as the thick bonds tend to have more hopping than the other sublattices. We could look
at this as two different 1-dimensional chains competing for order to minimize the quantum
energy. The reason there are not three competing directions is that in the third direction,
the sublattice contains bonds where Aij = π and hence hopping on these bonds does not
occur within the classical manifold of states.

In longer simulations, the DRS gauge is able to sample three rotationally symmetric
groundstates without leaving the zero magnetization sector. This can be seen in Figure 3.18
by the purple background color of the spins. One thing to check is whether the true
groundstate is one of three distinct groundstates or a superposition of all three. To do this,
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Figure 3.15: The real-space image of the DRS gauge when J < 0. The variables represented
are in the image are 〈Sz

i 〉 (color of the spins) and
〈

S+
i S

−
j + S−

i S
+
j

〉

(thickness of the bonds).
The spins range from blue (〈Sz

i 〉 = −0.5) to red (〈Sz
i 〉 = 0.5) with purple representing a

site that spends equal time up and down (〈Sz
i 〉 = 0). All of the bond thicknesses are

normalized such that the thickest bond’s diameter is 80% the diameter of the spheres.
Notice the pattern of very thick bonds forms a triangular lattice.
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Figure 3.16: The real-space image of the DRS gauge when J > 0. The variables represented
are in the image are 〈Sz

i 〉 (color of the spins) and
〈

S+
i S

−
j + S−

i S
+
j

〉

(thickness of the bonds).
The spins range from blue (〈Sz

i 〉 = −0.5) to red (〈Sz
i 〉 = 0.5) with purple representing a

site that spends equal time up and down (〈Sz
i 〉 = 0). All of the bond thicknesses are

normalized such that the thickest bond’s diameter is 80% the diameter of the spheres.
Notice the pattern of very thick bonds forms a triangular lattice.
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Figure 3.17: The low temperature thermodynamic properties of the DRS gauge. The a)
J > 0 energy levels off and the b magnetic susceptibility drops to zero by T/t ≈ 0.1. This
behavior is identical to the DTS case where the groundstate did no allow single spin flips.
For the case where J < 0 the c) energy and d) magnetic susceptibility flatten out and go
to zero, respectively, by about T/t ≈ 0.1. We again have a difference in scale between the
J < 0 and J > 0 case, with the J < 0 case having a larger magnetic susceptibility.

we look at
〈

SAi
SAj

〉

, where each SAi
corresponds to the structure factor for a particular

groundstate. When i = j we extract information about the magnitude of each ordered
state, while when i 6= j we see if the two order parameters ever coexist, something that
should occur if the groundstate is a superposition of the symmetry broken groundstates. If
we compare the ratio of the correlation order parameters, we find 〈SAi

SAi
〉 /
〈

SAi
SAj

〉

≈ 8
for a system of L = 8. Such a large value suggests that these phases do not coexist,
and rather that the system spontaneously fluctuates between each of them, existing in the
transition phase for only a short period of time.

Although the DRS gauge is able to fluctuate between groundstate sectors, we have
shown that the system primarily exists in one of the symmetry broken sectors at any given
time. In this way we are convinced that although there is no excitations involving the
addition of spin required to move from one state to another, there may be excitations in
the hopping that are required to move between these different groundstates. The lower
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Figure 3.18: The real-space picture of the lattice generated using a slice of the spin-spin
and bond-bond correlation functions over a very long simulation. The purple background
of spins indicates that relative to the black spin, each spin spends equal time in the up and
down configurations. What is not immediately clear is if this is due to random fluctuations
or by accessing three different groundstates that when averaged have spin-spin correlations
that are zero between every spin.
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energy would allow the system to access all the sectors without changing magnetization,
but would also explain why the system spends less time in that transition phase than
in any of the ordered phases. If we assume that each of the ordered phases represent
a possible groundstate of the system, then apart from the particular configuration (and
possibly excitations), the system is very similar to the DTS gauge. That is, it is a crystalline
system that has zero magnetic susceptibility.

3.4 Random gauge

The final system we studied was the case where we used a random configuration of frus-
tration to fulfill the fully-frustrated requirement. Any sort of regular scheme of placing the
bonds would likely result in a pattern that had a unit cell or would not fit using periodic
boundary conditions. To overcome this problem, the original classical Monte Carlo code
was used to randomly generate the locations where Aij = π. If we imagine the set of
possible groundstates of the classical Hamiltonian from Section 2.3, the only restriction is
that one bond per hexagon be frustrated. We generate the random pattern of frustration
by mapping the frustrated bonds from the final configuration of a classical Monte Carlo to
the bonds where Aij = π for the quantum Monte Carlo. Since the classical system has no
bias towards any particular configuration within the degenerate groundstate, the pattern
of bonds in the quantum Monte Carlo should be equally random and without bias.

Although in theory each configuration generated is an entirely unique system with a
cell the size of the full lattice, our simulations have shown that many random instances of
the set of such models tend to have similar behavior. This would suggest that the ordered
cases, or cases with a small unit cell, are the special cases. Therefore if the random gauge
fails to develop any order it is reasonable to believe that if we had a very large system
that lacked any long range order in the gauge choice, that it would behave similarly. That
is to say if we averaged over all possible configurations of frustration, we would expect
that any long range ordered cases would only lead to 1/N contributions to Bragg peak
intensity, where N is the number of possible choices of the frustration. From the results of
the classical fully-frustrated honeycomb Ising model the number of choices of frustration
is, by mapping frustrated bonds to a choice of frustration, extensive in the number of
spins. The systems with unit cells containing 4 and 8 spins, for the DTS and DRS gauges,
respectively, ordered in patterns that could be represented using the same number of spins
and an ordering wave vector. This is another way in which the random gauge can be
viewed as a system where the unit cell is the size of the entire lattice.

As one might expect from examining a random system, there are an extensive number
of such random configurations for any given system size. In initial studies we examined a
small set of instances of the random gauge, but for each sample the average properties were
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always very similar. This suggested to us that the qualities of the random gauge did not
rely on examining the disorder average properties of the system, but rather that for a large
enough system the properties of all system, except in rare cases, converged to the same set
of properties. The rare cases where the properties are not similar can be thought of as the
case where the instance of the random gauge gives a system that is ordered, as such cases
are allowed by construction within the random gauge. In the case where there is order we
have results showing that such systems behave differently, but such configurations are a
small fraction of all possible random configurations, and so in the general case we should
be able to ignore them when examining the disordered system as a whole.

0

5

10

15

20

25

30

-4 -3 -2 -1 0 1 2 3 4

J/t

50ρs/t
Mstagg

Figure 3.19: The spin stiffness for one realization of the the random gauge. In the random
gauge the spin stiffness is forced to zero faster than in the either the DTS or DRS gauges.
There is also a subtle staggered magnetization that turns on in the zero spin stiffness phase,
but it does not scale with system size and is not consistent among different realizations.

As before, classifying the groundstate within these phases is the main objective of this
work. Figure 3.19 shows that the system transitions from a system with non-zero spin
stiffness by |J/t| > 2, similar to the previous two cases. Despite the random nature of
this gauge, in the limiting cases of |J/t| → 0 or |J/t| → ∞ the random nature of the
fully frustrating bonds does not change either groundstate. In the case of only classical
interactions, the groundstate still maps to the classical fully-frustrated honeycomb lattice
as long as we restrict ourselves to look at where the frustrated bonds occur and ignore
specific spin configurations. The case of only quantum terms in the Hamiltonian the sign
of the classical term is non-existent, and we have the XY-model which is classified by
〈Sx〉 6= 0.

As before, most of the simulation was done on a system of 24× 24 unit cells containing
2 spins each. Initial results showed two very different behaviors depending on the sign of
J . When J < 0 the system formed large domains of aligned spins that possibly formed
boundaries around places where Aij = π. When J > 0 the system was unable to order,
and we were unable to find a typical order parameter to classify the phase.
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Figure 3.20: The Fourier transform of the spin-spin correlation functions. (a) shows the
transform when J > 0 and has a smooth transform with a non-Bragg peak (one that does
not scale with the number of spins) at q = (0, 0). (b) shows the transform when J < 0
that has a low intensity Fourier transform, indicating weak ordering. Different simulations
show inconsistent behavior in the transform of (b), aside from the low intensity.

Using the same analysis methods as before, we examined the sublattice structure factors
of the system using the same parameters as the previous models. Figure 3.20 shows that
when J < 0 the structure factor of the system is random and of a low intensity, suggesting
a disordered state. When most of the interactions are antiferromagnetic there is a slight
sublattice magnetization, but this does not scale with the number of spins in such a way
to suggest an ordered phase in the thermodynamic limit. From these two pictures it is
difficult to understand these states in a way that distinguishes them from high temperature
disordered states or the states with off-diagonal order when J/t is small. As before, we
look at the real-space pictures to see if they illuminate the nature of the groundstate at
all.

This time the real-space show something qualitatively different than the other gauges,
and perhaps lend insight to the structure factors found. When J < 0, the system appears
as a disordered but well defined “solid”. There are large regions of up and down spins with
fluctuating spins occurring on the interface between each region. In some sense this is very
similar to what we saw in the DTS gauge where bulk layers were formed with fluctuations
strongly isolated to the region between layers. The major difference in this case is that
regions of spins is not obvious in the random gauge case. We examined one instance of
the random gauge, using a set of simulations all using different random seeds, to see if the
cluster boundaries were defined by the instance of the random gauge or dynamic. Each
simulation found the same or very similar clusters, but the particular spin orientation and
relative spin orientation of each cluster was not consistent. This suggests a similar picture
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Figure 3.21: The real-space image of the random gauge when J < 0. The variables
represented are in the image are 〈Sz

i 〉 (color of the spins) and
〈

S+
i S

−
j + S−

i S
+
j

〉

(thickness
of the bonds). The spins range from blue (〈Sz

i 〉 = −0.5) to red (〈Sz
i 〉 = 0.5) with purple

representing a site that spends equal time up and down (〈Sz
i 〉 = 0). All of the bond

thicknesses are normalized such that the thickest bond’s diameter is 80% the diameter of
the spheres. Notice that the system appears as a disordered solid when J < 0.
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Figure 3.22: The real-space image of the random gauge when J > 0. The variables
represented are in the image are 〈Sz

i 〉 (color of the spins) and
〈

S+
i S

−
j + S−

i S
+
j

〉

(thickness
of the bonds). The spins range from blue (〈Sz

i 〉 = −0.5) to red (〈Sz
i 〉 = 0.5) with purple

representing a site that spends equal time up and down (〈Sz
i 〉 = 0). All of the bond

thicknesses are normalized such that the thickest bond’s diameter is 80% the diameter of
the spheres. Notice how 〈Sz

i 〉 ≈ 0 ∀i when J > 0.
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to the DTS gauge as mentioned earlier, although where in the non-random case it is easy
to identify a defect, such distinctions are less clear in the random gauge without explicitly
examining the energy. In the case where J > 0, we find a phase very different than the
previous cases. When examining the expectation value of each spin, the system fluctuates
in such a way that every spin tends to spend equal time up and down. Although such a
pattern could occur if the system were fluctuating between only two spin-inverted states,
such a situation would be resolved by examining the spin-spin correlation function.

If we define the matrix SSij =
〈

Sz
i S

z
j

〉

then the real-space image in Figure 3.23 is
generated by using a slice of the matrix SS. This allows us the view the spin-spin cor-
relation function directly on the lattice. If the system were fluctuation between the two
spin-inverted states, or even had well defined clusters that stayed flipped with respect to
one another, we would expect to see these clusters through the matrix SS. The only case
in which we might not see them is in the case where the average over all symmetry breaking
gives a matrix SS that is zero. Although it was not mentioned explicitly, this was the case
in the DRS gauge case, which is why looking at the structure factors and their correlation
is a better way to analyze that groundstate. In this case there is no reason for the different
groundstates to have such a careful symmetry that would cause the average of the SS
matrix over all groundstates to be zero. For that reason the matrix elements of SS for
spins separated by a large distance being close to zero suggests that the groundstate itself
is only correlated on the short length scale.

The random gauge also differs in the uniform magnetic susceptibility. Figure 3.24 shows
the magnetic susceptibility for the random gauge when J > 0. Notice the smooth transition
and tail that eventually goes to zero. Such a transition (as opposed to a sharp transition)
suggests that a large range of energy scales exist rather than a small set as in the cases
with well ordered groundstates. The main reason for examining these properties of the
system were to determine if the groundstate were glass like or liquid like. In the case of
J < 0 we are fairly certain the groundstate is a disordered solid—fluctuations are limited
to the boundary between domains and each domain has a high energy to flip similar to the
groundstate of DTS. We might expect that J > 0 gives us a state similar to the J > 0 case
of DTS as well, but in that case the symmetry of bonds where Aij = π is such that there
is a particular classical configuration one can perturb around to minimize the energy in
each cell while satisfying the boundary conditions with the neighboring cell. When there
is no well defined unit cell, there are many local configurations that might allow the most
hopping, but any choice will necessarily frustrate the allowed fluctuations of the neighbors,
and it will affect each neighbor in a different way depending on the orientation bonds where
Aij = π. If the energy cost to move between different classical configurations were high,
we would expect a random disordered groundstate for different random seeds of the Monte
Carlo simulation. If the energy cost were low between the different states, we open the
possibility for the groundstate to explore the entire constrained manifold of states and find
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Figure 3.23: The real-space lattice of the random gauge, generated using
the spin-spin correlation function (〈Sz

aS
z
i 〉) and the bond-bond correlation function

(
〈

(S+
a1
S−
a2
+ S−

a1
S+
a2
)(S+

i S
−
j + S−

i S
+
j )
〉

) , with the black spin and red bond as the refer-
ence. Notice that most spins remain purple except for one of the spins directly neighboring
the black spin. From this and the previous figure, we see that not only does every spin fluc-
tuate, but it fluctuates with respect to every other spin up to short range correlations. The
bond statistics are noisy as its takes much longer simulations to generate good statistics
on the bond-bond correlation function.
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Figure 3.24: The low temperature thermodynamic properties of the random gauge. The
(a) J > 0 energy levels off and the b magnetic susceptibility drops to zero by T/t ≈ 0.05,
lower than the temperature for the DTS gauge and the DRS gauge by a factor of 2. The
magnetic susceptibility drops off much more smoothly in this case, as unlike the cases with
small unit cells, there are many energy scales for the insertion of a single spin. This also sets
the energy scale for simulations, since the Hamiltonian commutes with total magnetization,
it must be fixed for any state at the very least.

the state that maximizes hopping.

In the classical fully-frustrated honeycomb Ising model we describe the groundstate
as an extensively degenerate manifold, but one could equally define such a manifold as a
liquid like state. By liquid we mean that although the system lacks in long range correla-
tions, it is not entirely paramagnetic like a gaseous state, but rather only has correlations
corresponding in this case to the minimum energy constraint. In light of recent interest in
the quantum version of such liquid states [1], we attempted to examine properties of this
state to see in what aspects it satisfied or did not satisfy the qualities of a quantum spin
liquid state. The difficulty with Stochastic Series Expansion quantum Monte Carlo is that
it samples from the thermal ensemble and is limited in the types of observables that one
is able to measure.

A quantum spin liquid is fairly well defined as a state, but even experimentally there
is great difficulty in determining a definitive measure that would quantify a state as one
of the quantum spin liquids. The one quality that all quantum spin liquids (and classical
spin liquids) have in common is that in the ideal models, they do not order at zero tem-
perature. This is already something which tends to be uncommon in most materials, as
even in frustrated systems it is possible that the extensively degenerate groundstates may
be unstable to small perturbations which exist in a more complete treatment of a system.
In addition to the extensive degeneracy, theoretical work [1] suggests that a quantum spin
liquid should have exotic excitations. One such excitation all quantum spin liquids should
have is a spinon like excitation, most well known in the 1D Heisenberg model where such

71



excitations occur at the boundaries of a defect. In 1D such the region between the defects,
sometimes called a string, is tensionless, which is another way of saying that the energy
cost of the intermediate region is independent of its length. If we took the groundstate
of a triangular lattice antiferromagnet in 2D, we would find that similar excitation to the
1D case do still exist, but now the “string” has an energy cost proportional to its length.
If the groundstate were some quantum superposition of singlets instead of some classical
configuration, then it would be possible for the string to be tensionless, as moving the ends
of the string around would simply cause a rearrangement of the singlets. Beyond this case
there are also more exotic properties that some quantum spin liquids may have, such as
the presence of vison excitations [34].

In the end the only qualities of the random gauge that we can say for certain is that
it is spin liquid with quantum fluctuations, but if this falls under the strict definition of
a quantum spin liquid as defined in [1] is less clear. If it is a quantum spin liquid, it is
unclear if the two-spin excitation corresponds to the low energy excitations that quantum
spin liquids are required to have. Considering the model can be cast in a way that lacks
the sign problem, it may be worth continued study in examining the further character of
the system to quantify all the qualities of the state. The only remaining difficulty would
be if there was need to do sampling over realizations of the random gauge, which would
increase the complexity and run time of any further simulation work.

3.5 Two spin excitations

In an attempt to understand the low energy physics of the system, we added an uniform
external field to the system to promote excitations where the magnetization is not zero.
From a classical perspective, the smallest excitation that can exist is one where a single
spin is flipped on a site connected to one frustrated bond. This creates two frustrated
bonds and raises the energy by J . The classical Hamiltonian also allows moves that
involve flipping two spins that do not cost classical energy. Since none of the elements
in the quantum Hamiltonian change the total number of up or down spins, the total
magnetization of the system is a good quantum number. Taken together, this means that
different magnetizations correspond to eigenstates of the quantum Hamiltonian that may
have different expectations of the hopping term over the lattice. In the limit of t << J
this means that states with magnetization +2 (as in two spin-1

2
spins flipped) greater than

the ground state correspond to low energy excitations.

In the Hamiltonian, there are only terms that swap two neighboring spins of oppo-
site orientation, meaning that the total magnetization within the groundstate is con-
served. This means that within a particular list of operator SM and the associated layers,
|α0〉 , |α1〉 , . . . , |αM〉, in the SSE representation, all of them have the same total magnetiza-
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tion. To change the total magnetization requires the off-diagonal update using the directed
loop algorithm. Since there is no off-diagonal operator that takes two down spins to two
up spins, or vice-versa, the winding of the loop update can only change one spin per wind
around through the operator list. In this way, to change the total spin of the system by
two requires passing through the configuration with one extra spin during the update.

If we recall the fully-frustrated honeycomb Ising model in the classical limit, then one
can imagine that flipping any single spin from the groundstate will either cost 3J or J
energy compared to the groundstate. This is because in the groundstate, every spin is
connected to 3 other spins but at most one of the connections is frustrated, meaning that
2 or 3 bonds will be classically frustrated in the new configuration. Despite this fact, there
are moves that involve flipping two spins that preserve the classical energy. Such move
must represent a new state, as the total magnetization is a good quantum number for the
XXZ Hamiltonian. An example of such a move is shown in Figure 3.25, that shows the
addition of two spins while keeping the total number of frustrated bonds unchanged, while
both the left and right states are valid configurations in part of a larger classically allowed
groundstate.

Spin Up

FM Bond AFM Bond

Spin Down

+2 spins

Figure 3.25: A move that does not exist in the Hamiltonian that takes us from one clas-
sically allowed state to another by two spin flips. In the simulation to get from the left
configuration to the right configuration requires passing through an intermediate configu-
ration where there is one more spin than the left configuration. This intermediate state
costs energy on the scale of J , and hence is a large energy barrier between two states that
have the same classical cost. It should be noted that the above move requires the presence
of a bond that prefers the spins to be ferromagnetically aligned to proceed, while the bonds
connected to the ferromagnetic bond can be of any type.

This strange double spin insertion was found by examining the effect of quenching in
the presence of a weak field. If we binned the magnetization, we often found large bins for
zero magnetization and +2 magnetization aligned with the field. The +1 magnetization
bins were always very small, and if we examined the time evolution we found that the
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system transitioned from zero to +1, stayed in the +1 sector for a few steps, then jumped
to the +2 sector and was fixed in that sector. This is precisely the behavior we would
expect if the +1 magnetization sector were an energy barrier that the system was passing
through between two low lying energy states. The field was necessary to bring the +1
and +2 magnetization sectors closer to the groundstate in energy, and bias the system to
transition to those states in fewer Monte Carlo steps so we could examine the behavior of
the system away from zero magnetization.
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Chapter 4

Conclusions

Through this work on the quantum fully-frustrated honeycomb model we have explored
the effect of quantum fluctuations on a classically disordered system. As was somewhat
expected, the quantum terms in the Hamiltonian cause the system to be sensitive to how
the fully-frustrated requirement is satisfied. Since the number of possible ways to arrange
the frustration on a large lattice is extensive, we started by using simple patterns that
could be easily tiled to arbitrary sizes. For each model, the simplest quantities to measure
were those involving the spins or the expectation of hopping, or higher order correlations
of these operators. Using these two measures and the fact that all the phases of interest
lack spin stiffness, we can coarsely classify each of the phases based on these two measures.

The simplest quality to check in each system is if the structure factor of the spin-spin
correlation function has Bragg peaks signifying long range order, or not. In this case we
would classify the resulting system as a (spin) crystal. Any peaks in the sublattice structure
factor indicates the system breaks symmetry in a way that persists over the simulation.
If we consider the normal definition of a crystal as an object which breaks continuous
symmetry then in a lattice system where the variable on the sites breaks the symmetry
of the lattice, we would call this a crystal. In this sense we describe the system as a
fixed choice of one of the available symmetry broken groundstates, and in such a state an
extensive number of the spins contribute to the “solidness” of the system. This diagonal
long range order does not deny other properties such as the existence of spin stiffness in
the supersolid or superglass phases [35], but it qualifies one aspect of the phase.

Still examining the spins, we can look at the low temperature uniform magnetic sus-
ceptibility of the system. At low temperature we expect the magnetic susceptibility to go
to zero if the system is gapped to single spin flips at low temperature. If the magnetic
susceptibility converges to a constant value this implies that the system is gapless to single
spin excitations. Gapless spin excitations imply that an infinitesimal field will polarize
the system, giving rise to a bulk magnetization. Being gapped to spin excitations at low
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temperature is associated with the system being difficult to perturb, as a small potential
applied to the system does not cause it to change significantly. When a system has zero
magnetic susceptibility away from a fully polarized state, this may be due to the system
being in a “spin crystal”, or a regular modulation of spin arrangement on the lattice.

We then chose to examine the expectation of the hopping, or
(

S+
i S

−
j + S−

i S
+
j

)

, also
called the expectation of the “kinetic energy”. This quantity has no classical analogue,
but we examined it in the same way as the Sz component of the spins. If we look at
the sublattice structure factor of the hopping, peaks that scale with the system size again
correspond to long range order. Long range order in valence bonds would be referred to
as a valence bond crystal, while we can similarly designate a disordered solid phase if we
have a fixed bond distribution that lacks long range order. Since the expectation of the
hopping can only be positive, a liquid like phase would have the quality of a uniform and
featureless distribution. As was shown earlier, the hopping relates to either the singlet or
the maximally entangled triplet. Although the exact relation also depends on the spin-spin
correlation function, the weight of the singlet (or entangled triplet) increases linearly with
expectation of hopping.

The first such model used the same frustration choice that was used during a recent
classical study of the fully-frustrated honeycomb lattice Ising model [12, 36]. This choice
of the variables Aij was referred to here as the DTS gauge, and lead to a groundstate we
understand as a perturbation from a particular classical groundstate. For either sign of
J , we find that the system forms a crystal in both the spins and the bonds. The spin
order is a perturbed antiferromagnet when J > 0 and forms ferromagnetic strips when
J < 0. In both cases a layer of strong bonds forms that is isotropic in nature and has a
short range repulsive interaction, something that we can understand through perturbation
theory. As temperature is decreased the system becomes gapped to spin excitations and is
unable to fluctuate between its different symmetry broken sectors without fluctuating total
spin. The combination of all these qualities lead us to describe the system as a crystal,
both when viewed from the point of view of the spins and the bonds. In addition to be a
crystal it is has zero magnetic susceptibility at low temperature. The quantum fluctuations
can be seen as ordering what was a classically disordered phase, and the ordering is to a
dominantly solid phase that maximizes local fluctuations that themselves only act locally.

In the DRS gauge we again find similar properties for both signs of J . When J > 0
we again realize a pattern that looks somewhat like a honeycomb antiferromagnet, but
the pattern never realizes a sublattice magnetization. This is realized through regular
defects in the global antiferromagnetic pattern that disallow the possibility for sublattice
magnetization. Ever without the sublattice magnetization, this system still realizes a
structure factor in both the spins and the bonds. The local fluctuations are different than
in the previous case, as the strongly fluctuating bonds spend equal time in each of the
two possible configurations and the strongly fluctuating bonds are twice as far apart than
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the first case. Similar to the DTS gauge, single spin excitations are frozen out at low
temperature, and the spin susceptibility reduces to zero. When J < 0 the model freezes
into a particular groundstate sector and is unable to fluctuate to the other groundstates.
When J > 0 the system chooses a particular groundstate, but in long simulations it is found
that it is able to sample the different groundstates while staying at zero magnetization.
To ensure that the true groundstate is not some overlap of these various groundstates,
we examined the order parameters for each and compared the self correlation and cross
correlation of these parameters over the simulation. By examining these, we find that only
one parameter is ever active at a time, implying that although transitions occur from one
state to another, the simulation never exhibits coexistence of the different groundstates.
This leads us to classify the groundstate as any of the symmetry broken states, and again
as a crystal phase with fluctuations that remain local.

The random gauge is the first to have very different behavior depending on the sign of
J . When J < 0, the system was shown to form a set of domains, each containing either
up or down spins. Since it was possible that the choice of domains might not be unique,
we quenched the system at low temperature using different random seeds and found that
the shape of the domain was consistent, but the orientation of spins within each domain
was not. In this way the conceptual picture for this model should be that it is similar
to the DTS gauge when J < 0. Here there may be a true groundstate configuration,
up to spin inversion, but unlike the DTS gauge the cost of a defect, either choosing the
domains incorrectly or choosing the relative orientation of domains incorrectly, is likely
to be different for each particular defect. Like all other systems, the spin susceptibility
vanishes at low temperature.

When the random gauge is simulated with J > 0, we get a system that seems to exhibit
physics very different in nature to the essentially solid states that we have seen previously.
Snapshots of the system show configurations that appear predominantly antiferromagnetic—
this makes sense as we expect to be within the classical manifold where there is only on
frustrated bond per hexagon, and 5 of 6 of the bonds on each hexagon prefer spins to
anti-align. As the temperature is decreased we find that the spin susceptibility reduces to
zero, although at a lower temperature than in either of the cases with a well defined unit
cell. If we examine the expectation of the single spin density at each site, 〈Sz

i 〉, we find
that this expectation value converges to zero as the simulation is allowed to continue to
run. Convergence takes longer at lower temperatures, but it does continue to occur down
to the lowest temperatures we were able to simulate. The structure factor of the spin-
spin correlation function is also flat, indicating no long range order. Examining the real
space version of the spin-spin correlation function, we find that although there are nearest
neighbor antiferromagnetic or ferromagnetic correlations depending on the type of bond
present, these correlations do not persist beyond one or two sites, and quickly decay to that
of being uncorrelated. If we look at the bond distribution,

〈

S+
i S

−
j + S−

i S
+
j

〉

, we find that

77



the behavior is somewhat disordered at lower temperatures. By disordered we mean that
there is a spatial distribution to the hopping that does not converge to isotropic hopping
with an increasing number of Monte Carlo steps. Taking all of these qualities together the
system seems to be a liquid when examining the spins, although we cannot yet comment
on the quantum or classical nature of this liquid, while also exhibiting disordered solid
behavior in the bonds.

Within the framework of Stochastic Series Expansion we were able to explore large
enough systems with enough detail to reveal the basic nature of this previously unstudied
family of lattices. In the simple cases, the results show two consistent aspects—collapse
of the extensive degeneracy to a crystalline state with local fluctuations. In the one case
which is not entirely resolved, the random gauge with J > 0, we have shows the results
of the fundamental variables. Fully understanding and qualifying this state may require
examining more complicated measures of the state, may require examining the excitations
from this state or may required simulations over many realizations of disorder, all of which
SSE is not well suited. The required properties of quantum spin liquid ground states, as
discussed in [1], are:

• no order in the spins, and

• deconfined spinon excitations.

There are other properties that quantum spin liquids might have, but here are the only
universal ones. In our random gauge we have found that we indeed have no order in the
spins for every instance of the random gauge studied. We however were unable to confirm
or deny the nature of magnetic excitations, as the costs an energy ∆E = J which is quite
large, and SSE QMC is not well suited to studying such excited states. We made several
attempts to analyze these aspects of the excited states using an external magnetic field
to attempt to promote states with magnetization, but after some analysis we found the
lowest spin excitations (in all gauges) were two spin excitations, which would necessarily
be different eigenstates, as total magnetization commutes with the Hamiltonian. Further
work, guided by certain properties of classical or quantum spin liquids, might shed light
on other characters of this state. Different numerical methods might allow measurement
of different observables, and with such measurements it might be easier to discern the
true nature of the random gauge, and whether it is simply an novel type of featureless
spin system with zero magnetic susceptibility, a class of quantum spin liquid, or something
else.
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