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Abstract

ESR quantum computing presents faster means to perform gates on nuclear spins than
the traditional NMR methods. This means ESR is a test-bed that can potentially be useful
in ways that are not possible with NMR. The first step is to demonstrate universal control
in the ESR system. This work focuses on spin systems with one electron spin and two
nuclear spins. We try to demonstrate control over the nuclear spins using the electron as
an actuator.

In order to perform the experiments, a customized ESR spectrometer was built in the
lab. The main advantage of the home-built system is the ability to send arbitrary pulses
to the spins. This ability is the key to perform high fidelity controls on the spin system.

A customized low temperature probe was designed and built to have three features
necessary for the experiments. First, it is possible to orient the sample, thus to change the
spin Hamiltonian of the system, in situ. Second, the combined system is able to perform
ESR experiments at liquid nitrogen and liquid helium temperatures and rotate the sample
while it is cold. Last, the pulse bandwidth of the microwave resonator, which directly
affects the fidelity of the gates, is held constant with respect to the sample temperature.

Simulations of the experiments have been carried out and the results are promising.
Preliminary experiments have been performed, the final set of experiments, demonstrating
full quantum control of a three-spin system, are underway at present.
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Chapter 1

Introduction

1.1 Quantum computation

Quantum computers in principle can solve many classically intractable problems[16]. The
most famous example is factoring large numbers[20]. The power of quantum computers
come from properties only available to quantum particles, such as superposition and en-
tanglement. Similar to classical computers, which use bits as fundamental information
units, quantum computers use quantum bits (or qubits). The difference between classical
bits and qubits is that classical bits have to be either 0 or 1 while qubits can be 0, 1 or
an arbitrary superposition of 0 and 1. For quantum computers, well-defined qubits are
required[5]. Some choices of qubits include spins, photons and special superconducting
circuits.

Spin-1/2 particles can be used as qubits because they have two well-defined states,
spin-up and spin-down. The spin is in superposition when it is not aligned in the up-down
axis. Some spin-1/2 particles such as an electron, proton and carbon-13 nucleus have
been used as qubits for certain physical implementations of quantum computing. This
work reported here focuses on electron spin resonance (ESR) techniques used to control a
system containing these three types of spins.

1.2 Fundamentals of ESR and ESR quantum comput-

ing

The concept of ESR is very similar to nuclear magnetic resonance (NMR). The spin-1/2
electron exhibit energy difference (i.e. Zeeman energy) in the two spin state (up and down)
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while placed in a magnetic field. The energy difference E between the two states is governed
by:

E = hν = gµBB0 (1.1)

where h is Planck’s constant, ν is the resonance frequency (or Larmor frequency) that
describes the energy difference between the two states, g is the g-factor of the electron, µB
is Bohr magneton and B0 is the static magnetic field.

When a microwave pulse with a frequency ν is applied, the electron spin rotates a certain
angle based on the total energy of the pulse. By varying the power and the length of the
pulse, single-qubit gates such as NOT (which flips the electron spin) can be implemented.

In this work we only focus on ensemble systems, meaning samples that contain many
copies of the same molecule of interest. Each molecule is one quantum processor, and the
end-result measured is the average of all results from each molecule. This is an expectation
value measurement.

The motivation of doing quantum computing with ESR comes from NMR quantum
computing. In NMR, nuclear spins are used as qubits and radio frequency pulses are
used to perform operations on the qubits. NMR has been an ideal test-bed for quantum
computing[7] and several important algorithms have been demonstrated by NMR[12][3].
ESR is very similar to NMR. The qubits in ESR systems are electron spins (and nuclear
spins depending on the system). Due to electron’s intrinsic higher gyromagnetic ratio than
nuclei, the controls are normally microwave pulses. In this thesis, spin systems with one
unpaired electron and one/two nearby nuclear spin(s) are considered.

The main advantages of using ESR compared with NMR is that ∼ 103 times faster
quantum gates can be implemented in ESR. The Zeeman energy is ∼ 103 times larger
in ESR than in NMR. In NMR, a single qubit gate normally takes microseconds. On the
other hand, it (typically) only requires nanoseconds to perform single-qubit gates in ESR. In
addition, due to relatively weak dipole-dipole interactions between the nuclei (∼KHz), two-
qubit gates in NMR take milliseconds to perform. However, in ESR, the electron couples to
its surrounding nuclei though hyperfine interactions that are much (∼ 103 times) stronger
than the direct dipole-dipole interactions between nuclei. Therefore, utilizing hyperfine
interaction makes it possible to control the nuclear spins much faster than the traditional
NMR methods. More detail is described in next section. Another advantage of ESR is that
at the same sample temperature, electron spins have ∼ 103 times larger spin polarization
due to its larger gyromagnetic ratio. The calculations are shown in appendix A.

There are also disadvantages to using ESR. The electron spins typically have shorter
spin-lattice (T1) and spin-spin (T2) relaxation times. Detailed explanations of T1 and T2

can be found in chapter 2 of Levitt[13]. It is also more challenging to design systems that
have both good bandwidth and good signal level that are both essential for experiments.
This is discussed in detail in section 2.2.
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1.3 Universal control using anisotropic hyperfine cou-

pling in 1e-1n system

As mentioned previously, it is possible to control the nuclear spins through electron via
hyperfine interactions. In order to illustrate this, it is important to examine the spin Hamil-
tonian. In the most basic one-electron-one-nucleus (1e-1n) system, the spin Hamiltonian
H0 has the form[19] (after secular approximation)

H0 = ωSSZ + ωIIZ + ASZIZ +BSZIX (1.2)

where ωS is the Larmor frequency for the electron spin, ωI is the Larmor frequency for the
nuclear spin, A is the isotropic hyperfine coupling coefficient, B is the anisotropic hyperfine
coefficient, SX , SY and SZ are the Pauli X, Y and Z operators acting on the electron spin,
IX , IY and IZ are the Pauli X, Y and Z operators acting on the nuclear spin respectively.
The spin Hamiltonian can also be written in matrix form as

ωS

2
+ ωI

2
+ A

4
B
4

0 0
B
4

ωS

2
− ωI

2
− A

4
0 0

0 0 −ωS

2
+ ωI

2
− A

4
−B

4

0 0 −B
4

−ωS

2
− ωI

2
+ A

4

 (1.3)

After diagonalizing the matrix, the eigenstates for the system are

|1〉 = cos(
ηα
2

) |αα〉 − sin(
ηα
2

) |αβ〉 (1.4)

|2〉 = sin(
ηα
2

) |αα〉+ cos(
ηα
2

) |αβ〉 (1.5)

|3〉 = cos(
ηβ
2

) |βα〉 − sin(
ηβ
2

) |ββ〉 (1.6)

|4〉 = sin(
ηβ
2

) |βα〉+ cos(
ηβ
2

) |ββ〉 (1.7)

where ηα = arctan( −B
A+2ωI

), ηβ = arctan( −B
A−2ωI

), |αβ > indicates the electron spin is in
|α > or spin-up state, and the nuclear spin in in |β > of spin-down state. The transition
probability between each state is calculated by

p = |ψa >† S−|ψb > (1.8)

where |ψa > and |ψb > are the two eigenstates of interest, S− is the lowering operator,
S− = SX − iSY . With different choices of A and B, the probabilities of transitions can
be varied. When all transitions are accessible, and with the ability to drive one transition
(with bandwidth covering all transitions), universal control is possible in the system. In
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order to control the system efficiently, meaning that gates have high fidelity and are as
short as possible, proper choices of the hyperfine coefficients A and B should be made so
that all transitions have relatively large probabilities.

The control in ESR is to drive one or several available electron transition(s). The
mathematical form of the control can be described as

Hcon = ω1(t)(cos θSX + sin θSY ) (1.9)

where ω1 is the strength of the microwave magnetic field and is time-dependent, θ is
the phase. Due to the complex free evolution of the spin Hamiltonian, gradient ascent
pulse engineering (GRAPE)[8] is used to design high-fidelity gates. Hodges et al.[11] have
demonstrated controlled-NOT (electron being the control bit and nucleus being the target
bit) using GRAPE with good fidelity experimentally.

1.4 Universal control in 1e-2n system

The goal of this thesis is to show that universal control utilizing anisotropic hyperfine
interactions can be achieved in 1e-2n system. The spin Hamiltonian for a 1e-2n spin
system can be described as

H0 = ωSSZ + ωI1I1Z + A1SZI1Z +B1SZI1X + ωI2I2Z + A2SZI2Z +B2SZI2X (1.10)

where ωI1 and ωI2 are the Larmor frequencies of the two nuclei, A and B are isotropic
and anisotropic hyperfine coupling coefficients with the subscripts indicating the particular
nuclear spin. The dipole-dipole interactions between the two nuclear spins is neglected since
its strength is normally more than 100 times smaller than the electron-nuclear hyperfine
interactions.

The 3-spin system has eight eigenstates, and the transition probabilities are also gov-
erned by equation 1.8. In order to have good control over the entire system, both sets
of hyperfine coefficients should be chosen carefully to ensure that all transitions can be
accessed relatively easily. Once again, with the use of GRAPE, by only having the ability
to drive electron transitions, high-fidelity universal control can be achieved. One example
experiment this thesis tries to demonstrate is to perform a controlled-NOT gate on the two
nuclear spins with the electron spin acting as an actuator.

1.5 Layout of the thesis

The following of the thesis is divided into four chapters. Chapter 2 talks about the appa-
ratus including the home-built ESR spectrometer, the resonator and the low-temperature

4



probe, for the experiments. Chapter 3 focuses on the malonic acid sample used in experi-
ments and gives some important characteristics. Chapter 4 depicts procedures to prepare
for experiments and simulations of the experiments. Finally, chapter 5 looks at future
directions and concludes this thesis.
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Chapter 2

Apparatus

2.1 ESR spectrometer

Commercial ESR systems are widely available for studies of radical molecules and electronic
defects in solids. The main draw-back of the commercial systems from the viewpoint of
quantum information processing is that pulses applied to the spins are only available in
simple forms (such as square pulses). In order to demonstrate universal control through
the use of GRAPE pulses, which are typically strongly modulated pulses, a customized
system is required.

Figure 2.1 shows the schematic of the homebuilt x-band (8-12GHz) ESR spectrometer.
The microwave source provides a CW output. The arbitrary waveform generator (AWG)
gives the ability to create arbitrary pulse shapes with 1ns timing resolution. The AWG is
key for allowing GRAPE and other arbitrarily modulated pulses to be implemented. The
IQ modulator is a device that enables inputs to both X and Y control channels, i.e. 0◦ and
90◦ phase components (quadrature). Both inputs are generated by the AWG. The 1kW
traveling wave tube (TWT) amplifier amplifies the pulses to the power levels required for
exciting the spins efficiently. Finally, the control fields are sent through a circulator into
the resonator where the sample is placed. The circulator also directs the signal originating
from the sample spins to the receiver arm, consisting the switch, which is used to protect
the receiver during pulse inputing stage, and then to the receiver, to demodulate the signal
and display it on the oscilloscope, then finally transfer to the computer.

There is one operational detail worth mentioning. The IQ modulator does not respond
linearly to the input power. In most uses, the IQ modulator receives inputs with different
powers for the in-phase and quadrature channels. Ideally, the output of each channel would
be proportional to the input power, and the phase of the output would be the same as of the
input. Unfortunately, due to the nonlinear response of the IQ modulator, the actual phase
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ScopeMicrowave
Source

Receiver

IQ
Modulator

AWG

1KW TWT
Amplifier

Switch Computer

Resonator
Circulator

8-12 GHz

(Sample)

Figure 2.1: Schematic of the homebuilt x-band ESR spectrometer. The microwave source
provides carrier frequencies for the input pulses to match the resonance frequency of the
resonator. The arbitrary waveform generator (AWG) is used to produce arbitrary input
pulse shapes. The IQ modulator enables inputs to both in-phase and quadrature channels.
The circulator and the switch are used to make sure the output signal from the sample
goes to the receiver while minimal power is reflected back to the TWT amplifier. The
demodulated signal is then displayed on the oscilloscope and also recorded on the computer.

based on the outputs would be different from the ideal phase based on the inputs. This
error is crucial in quantum information context and should be minimized. The solution to
this problem is to use IQ modulator as a single side-band mixer. The two inputs to the
IQ modulator now have the same amplitude (which ensures the output and input phases
are the same), none-zero frequency and differ by a π/2 phase. The detail is illustrated in
Figure 2.2.
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RF INPUT RF OUTPUT

90 degree 
phase shifter

Q

I

IQ modulator

Figure 2.2: This illustrates how the IQ modulator is used in the spectrometer to avoid
the power nonlinearity issue that would cause error in the phase of the output of the
modulator. The inputs to both I and Q channels have the same power but with a 90◦

difference in phase. The output of IQ is the sum of the two channels. In this case, the
output is sin((ω0 + ω1)t + φ). Note that ω0 + ω1 is the ESR frequency and the φ is the
desired phase of the output.

2.2 Resonator

The resonator used for the experiments is a 2-loop-1-gap aluminum resonator based on the
idea from Eaton et al[17]. Figure 2.3 shows the dimensions of the resonator. The sample
of interest sits in the small loop.

The resonator is placed inside a aluminum box and the microwave is coupled in by a
small section of wire (inner conductor of coax) acting as an antenna. A tuning screw is
placed on the opposite site of the antenna for adjusting the resonance frequency (illus-
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Top View

9.53mm

14mm

D = 7mm

3mm

0.1mm

Side View

4mm

Figure 2.3: Resonator dimensions

trated in Figure2.4). The directions of the electric and magnetic fields in the resonator are
illustrated in Figure 2.5.

Figure 2.4: Resonator coupling scheme

For the current experiment setup, the largest distance between two accessible transitions
is roughly 130MHz. This means in order to control the system, a minimum of 130MHz
is required for the bandwidth of the resonator. The original resonator has a Q of around
300 and resonates at about 9GHz. This yields a bandwidth of roughly 30MHz. In order to
meet the requirement on the bandwidth, a suitable amount of dielectric is added into the
gap of the resonator to spoil the Q. In this case, Stycast 2850 (a type of epoxy) is used due
to its stability after cure. The final bandwidth of the resonator measured in vector network
analyzer (VNA) is 170MHz. Note that any bandwidth between 30MHz and 170MHz can
be achieved in principle with different amount of epoxy. Figure 2.6 and figure 2.7 show the
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EB
B

out of the plane

into the plane

Figure 2.5: Electric and magnetic fields directions in the aluminum resonator

microwave reflection measurements before and after using epoxy, respectively.

2.3 Low temperature probe

The low temperature probe is designed based on three criteria:

1. The bandwidth of the resonator should remain roughly the same for all operational
temperatures.

2. The sample can be cooled close to the temperature of the liquid cryogen (e.g. liquid
helium or nitrogen).

3. The sample can be rotated about one axis at low temperature for sample orientation.

To fulfill the requirements, the probe is designed in such a way that the sample does
not directly contact the cryogen, but instead is cooled by conduction through a cold finger.
This prevents the resonator from touching the cryogen to maintain the temperature (and
thus the bandwidth) of the resonator while cooling down the sample.

The cold finger contains a copper base that directly contacts the cryogen and a copper
rotary piece that sits inside the copper base. Below the base is a copper cap that keeps the
rotary piece in place. The sample is glued on one end of a quartz rod which is silver pasted
onto the rotary piece. The sample also sits in the small loop of the resonator. The reason
for having a quartz rod is to make sure the copper does not get too close to the resonator to
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Figure 2.6: Reflection measurement of the resonator using vector network analyzer (VNA)
before applying epoxy, the bandwidth of the resonator is 31MHz.

interfere with the microwave magnetic field, e.g. to make the field inhomogeneous around
the sample. Quartz and silver paste are chosen due to their high thermal conductivity.
To have the best thermal conductivity between the copper base and the rotary piece, the
rotary piece is machined to fit in the copper base with maximal contact surface area. In
order to be able to rotate the rotary piece, hence the sample, the copper base and the
rotary piece are both machined carefully to have the best quality surfaces to reduce the
friction. Figure 2.8 shows a diagram of the cold finger assembly.

The rest of the probe contains a resonator box that hosts the resonator, a microwave
input/output port and a pick-up antenna for ”pulse fixing” (see chapter4 section4.1), a
worm gear set that is used to rotate the sample, a tuning/matching mechanism, two tem-
perature sensors (mounted on the cold figure and the resonator box) and a vacuum box
that encapsulates the whole assembly. Figure 2.9 shows a CAD drawing of the whole setup.
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Figure 2.7: Reflection measurement of the resonator after applying epoxy using VNA, the
bandwidth of the resonator is now 170MHz. Notice that the resonance frequency is also
shifted downward by roughly 1GHz. The blue line shows the transmission efficiency of a
pickup coil that is used to examine the input pulses to the resonator.

This probe has been tested under liquid nitrogen and liquid helium conditions. The
test results for liquid nitrogen for resonator bandwidth, sample temperature and the ability
for sample rotation are as follows.

2.3.1 Resonator bandwidth

The bandwidth of the resonator is crucial for doing quantum computing in ESR, therefore
is a high priority while designing the probe. The main factor that changes the resonator
bandwidth in the current setup is the temperature of the resonator, e.g. at cryogenic
temperatures, bandwidth expected to decrease dramatically as Q increases (due to the
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Cryogen

Low friction gold 
plated surface

Silver paste

Resonator

Sample

Quartz rod

Copper cap

Rotary piece

Copper base

Screw

Figure 2.8: This shows the cold finger assembly. The copper base is in contact with the
liquid cryogen from the top. The sample sits inside the resonator.

decrease in the resistance of Aluminum). Due to the irradiative heating between the
sample and the resonator, the temperature of the resonator decreases somewhat as the
sample cools. The final stable temperature of the resonator is around 260K. Although
the final temperature of the resonator is 40K below room temperature, the change in
bandwidth is roughly 0. Note that re-tuning is required after the temperature of the
resonator stabilizes. The resonance still stays at the same frequency after re-tuning.
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Cold Finger
Cryostat

Worm gear

(under vaccum)

Figure 2.9: The CAD drawing of the entire low temperature probe.

2.3.2 Sample temperature

Due to irradiative heating, the sample temperature is typically about 10K above the tem-
perature of the cryogen used. This is calculated by measuring the ESR signal level and the
coherence time T2 of the sample as we now describe. The intensity of the signal from a spin
system with transverse magnetization is proportional to the population difference between
the spin-up and spin-down states of the electron in its thermal state. The population dif-
ference is proportional to the inverse of the temperature and is described by equation A.4.
It can be approximated as

n↑ − n↓ =
A

T
(2.1)

14



where n↑ is the population of the spin-ups, n↓ is the population of the spin-downs, A is a
constant and T is temperature in Kelvin.

The other factor that changes the signal intensity is the spin coherence time T2. The
signal intensity decays with respect to the time t between the moment the coherence is
created in XY plane to the point when the signal is measured. The decay rate is e−t/T2

and T2 is temperature dependent.

The equation that describes the relationship between the temperature and the signal
intensity G(t) is:

G(t) =
A

T
e−t/T2 (2.2)

At room temperature, signal intensity is measured to be 2.9 times smaller than the
signal intensity with liquid nitrogen. T2 is measured to be 4.6µs and 2.1µs for room
temperature test and liquid nitrogen test, respectively. These yield an effective sample
temperature of 87K (10K above the cryogen temperature).

2.3.3 Ability to orient the sample

It is important to have the ability to rotate the sample in situ since the spin Hamiltonian
depends strongly on the sample orientation. It is also recognized that mapping out the
spectra as a function of orientation helps determine the spin Hamiltonian.

To have the sample rotate properly, the contacting surfaces of the copper base and
the rotary piece should both be clean and smooth. The screws holding the cap onto the
copper base should not be over tightened. Whether the sample can be rotated can be
immediately determined by attempting to rotate the sample with the rotation assembly.
For the rotation to work at low temperature, the sample should rotate smoothly without
any noticeable friction at room temperature.

For the current malonic acid sample, there are four allowed transitions that can be
seen through a fieldswept experiment where the ESR frequency is fixed while the static
field is varied. The allowed transitions would show up in the resonance spectrum as peaks
indicating the transitions can be driven with the corresponding fields at the particular
frequency. The locations of the peaks are determined by the hyperfine couplings, and the
coupling coefficients are functions of the sample orientation. By measuring the fieldswept
data with respect to the orientation, the ability for sample rotation can be tested accurately.
Figure 2.10 shows a typical plot of the fieldswept data and figure 2.12 shows theoretical
and experimental values of the spacings (couplings) versus the angle of the sample being
rotated about the y-axis of the sample. The experimental data agrees with the theoretical
one. This means the sample can be rotated precisely within experimental errors.
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Figure 2.10: A typical fieldswept data showing the four allowed transitions. The arrows
above the peaks indicate the spin states of the two nuclear spins at the corresponding
transitions. The blue line is the raw data that measures the echo height. The pulse
sequence is shown in Figure2.11. Four peaks can be fitted to the raw data and is showing
as the red curve.

echo
t t

Figure 2.11: Pulse sequence of the fieldswept experiments (also standard spin echo mea-
surements). τ is a constant.
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Figure 2.12: Peak splittings from fieldswept data (H coupling is the splitting between
|↑↑〉 and |↑↓〉 and C coupling is the splitting between |↑↑〉 and |↓↑〉 in fig2.10). The
angle indicates the amount of rotation done to the sample about y-axis of the crystal.
The theoretical values are calculated based on the hyperfine tensor measure by Cole and
Heller[4].
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Chapter 3

Spin System

3.1 Single crystal malonic acid

The sample used in experiments is a single crystal of malonic acid. Figure 3.1 shows a
drawing of the molecule. One reason for choosing this as the sample is that malonic acid
is well-studied[2][14][1]. The space group for malonic acid is P 1̄[9] (two molecules per unit
cell and they are related by mirror symmetry) so that every spin in every molecule in
the sample feels the same environment. Section 3.1.1 describes the sample preparation
procedures.

Figure 3.1: Malonic acid molecule[15]. White balls represent proton atoms, black balls
represent carbon atoms and blue balls represent oxygen atoms.
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3.1.1 Sample preparation

In order to have one electron and two nuclear spins in the system, malonic acid with the
methyl carbon labeled is used. The chemical formula of such molecule is COOH−13CH2−
COOH. The substance is then dissolved in water. By controlling the evaporation speed
of water, single crystals can be grown from the solution. Adding in seed crystal when the
solution is saturated helps in getting better quality and larger crystals.

In order to get an unpaired electron in the system, X-rays are used to irradiate the
crystal[14]. To get a decent amount of electron defects in a 1mm × 1mm × 3mm crystal,
an X-ray single crystal diffractometer from Bruker AXS is used to shine X-ray on the
crystal for ∼20 hours. During this process, proton-carbon bonds get destroyed and leave
unpaired electrons. Most of the radicals created are not stable. After annealing the sample
at 60oC for 24 hours, only one type would be present in measurable amounts. The chemical
formula of the stable radical is COOH −13 ĊH −COOH. Note that electron, proton and
13C all have spin-1/2.

3.1.2 Different isotopologues

Different isotopologues of malonic acid are also considered as sample candidates. A major
draw-back from the sample COOH −13 ĊH − COOH is the broad linewidth of the ESR
peaks (14MHz) due to the dipole-dipole coupling between the electron and the protons
in the environment[6] (i.e. the carboxylic protons and the protons on the methyl groups
without free electrons). The dipole-dipole coupling strength depends on the gyromagnetic
ratios of the two coupled spins as follows[13]:

djk = −µ0

4π

γjγkh̄

r3
jk

1

2
(3 cos2 Θjk − 1) (3.1)

where µ0 is the magnetic constant, γj and γk are the gyromagnetic ratios of the two spins,
rjk is the distance between the two spins and Θjk is the angle between the vector connecting
the two spins and the external magnetic field.

The easiest way to reduce the coupling strength is to replace the atoms with the ones
that have smaller gyromagnetic ratios. In this case, in order to maintain the molecular and
crystal structure, it is the best to use deuterium atoms to replace the protons. The chemical
formula of this 1e-2n 3-qubit system is COOD −13 ĊH − COOD. Now, since half of the
protons close to the free electron are replaced by deuterium, the linewidth would be reduced
by 50% (or 7MHz). While the partially deuterated sample seems to be an ideal sample to
use, there is not a known way to make the sample. Several attempts have been made by
us trying to exchange the carboxylic protons with deuteriums in solution, unfortunately
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spins chemical formula calculated linewidth studied in this work

e−H −13 C 13ĊH(COOH)2 14MHz yes

e−H −13 C 13ĊH(COOD)2 7MHz no

e−D −13 C 13ĊD(COOD)2 2MHz yes

Table 3.1: Comparison between the sample that is currently being examined, the ideal
sample and the two-qubit-one-qutrit sample. The calculation is done by summing over
interactions between the electron and its 500 closest nuclear spins (including more nu-
clear spins doesn’t make much difference in the result). The linewidth is not orientation
dependent.

the methyl proton also exchanges with the surroundings relatively easily. This leads to
end-products containing mixtures of COOH −13 ĊH −COOH, COOD−13 ĊD−COOD
and COOD −13 ĊD − COOD.

Although COOD −13 ĊH − COOD is not accessible, fully deuterated malonic acid
COOD−13 ĊD−COOD can be prepared. Since all the spins around the free electron are
deuterium for the fully deuterated sample, the linewidth is 6.5 times smaller than the fully
protonated sample (the gyromagnetic ratio of deuterium is 6.5 times smaller than that of
proton). Instead of having three qubits, this sample consists two qubits and one qutrit
since deuterium is spin-1 particle. A potential problem of this sample is the additional
quadrupole coupling term in the spin Hamiltonian[18][10]. It is still believed that with
careful design, interesting experiments can be performed on this sample. We reserve this
for future work.

Table 3.1 shows a comparison between the three samples.

3.2 Malonic acid characteristics

To lay a groundwork for the experiments, some key characteristics have been measured for
this sample.

3.2.1 Relaxation times

The relaxation times T1 and T2 are very important for designing experiments. T1 is mea-
sured using the inversion recovery method and T2 is measured using a two-pulse ESEEM
(electron spin echo envelope modulation) experiment. Typical values of T1 and T2 at liq-
uid Nitrogen temperature are ∼ 20µs and ∼ 2µs, respectively. Note that both T1 and T2

depend on the orientation of the crystal with respect to the static magnetic field. Figure
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3.2 shows a plot of typical T1 data, figure3.3 shows the pulse sequence for measuring T1
and figure 3.4 shows a plot of typical T2 data.
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Figure 3.2: T1 measured via inversion recovery at liquid nitrogen temperature

echo

Figure 3.3: Pulse sequence of the T1 experiments. The first π pulse inverts the spin
population. τ is a variable. T1 can be measured by fitting an exponential function to the
data.
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Figure 3.4: T2 measured via two-pulse ESEEM at liquid nitrogen temperature. The pulse
sequence for this measurement is the same for fieldswept (see figure2.11), where τ in this
case is a variable. Note the modulations come from the nuclear frequencies of the spin
system.

3.2.2 Spin Hamiltonian

The spin Hamiltonian of the system has the form

H0 = ωSSZ + ωCICZ + ACSZICZ +BCSZICX + ωHIHZ + AHSZIHZ +BHSZIHX (3.2)

The hyperfine tensor of the system was found by Cole and Heller in 1961[4]. The forms
of electron-proton and electron-carbon hyperfine tensors in coordinates system of figure
3.5 are as follows:
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Figure 3.5: Malonic acid Cartesian molecular coordinates system[4]

e−H :

−58 0 0
0 −91 0
0 0 −29

MHz (3.3)

e−13 C :

212.7 0 0
0 22.8 0
0 0 42.2

MHz (3.4)

By varying the orientation of the crystal, the hyperfine couplings can be adjusted (rotate
the hyperfine tensor with rotation matrices, see details in Appendix B). It is wise to choose
an orientation that enables strong transitions between all eigenstates but also has not too
large bandwidth. An orientation that is easily distinguishable and also has good transition
probabilities between all states is chosen for the experiments. The hyperfine couplings for
this orientation (the three angles needed to rotate the sample to this orientation B are 98◦,
12.5◦ and -70◦) are

AC = 61.2MHz, BC = 55.6MHZ, AH = −35.9MHZ and BH = 16.3MHz (3.5)

In order to verify that the spin Hamiltonian is equal to the desired one, several tests
are required. In principle, one three pulse ESEEM spectrum (see figure 3.6 for the pulse
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sequence) is enough to determine the spin Hamiltonian[19]. The positions of the peaks in
three pulse ESEEM spectrum are functions of the isotropic and anisotropic coupling terms
As and Bs. When all peaks can be clearly seen in the spectrum, the As and the Bs can be
calculated. Usually, however, the peaks representing couplings between the electron and
the carbon-13 have much smaller intensities, only the A and B for electron and proton can
be determined from one three pulse ESEEM measurement. In order to determine the spin
Hamiltonian precisely, three measurements with different sample orientations (but all on
the same sample rotation axis) should be performed. From the three pieces of data, the
rotation axis can be first found by mapping the measured data to simulated data. Once
the rotation axis is found, the A and B coupling constants for electron and carbon-13 can
be extracted from the simulated data. Figure3.7 shows the three pulse ESEEM data the
chosen orientation (98,12.5,-70) and figure3.8 shows the Fourier transform of the ESEEM
data.

echo

Figure 3.6: Pulse sequence of three pulse ESEEM experiments. τ is a constant. T is the
variable.
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Figure 3.7: The three pulse ESEEM data at the chosen orientation. In order to get to
the orientation, the sample needs to be rotated 98◦ about the sample’s y axis, then 12.5◦

about the sample’s z axis and then -70◦ about the sample’s y axis.
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Figure 3.8: Fourier transform of the three pulse ESEEM data from figure3.7. The two
labeled peaks can be used to determine the electron-proton hyperfine couplings.
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Chapter 4

Experiments

The goal of the experiments is to demonstrate universal control in the 3-spin malonic acid
system. Section4.1 illustrates necessary steps before performing experiments, section4.2
shows the simulations of the experiment.

4.1 Preparation for experiments

In order to have high fidelity control, GRAPE pulses need to be designed based on the
following criteria:

1. the pulse length needs to be as short as possible so that decoherence can be minimized.

2. the pulse should be robust against a certain range of Hamiltonian distribution (i.e.
uncertainty in the electron Zeeman energy) since the inhomogeneous linewidth of a
transition is 14MHz.

3. the bandwidth of the pulse should be within the bandwidth of the resonator so that
the pulse can be corrected for non-linearities in pulse generation (”pulse fixing”) and
implemented with high fidelity.

The pulse finding is done by the ESR pulse finder program written by Dr. Colm Ryan.
Pulse fixing is done through feedback control by comparing the actual pulse seen by the
sample (detected through a pickup coil) with the ideal pulse. Figure 4.1 shows the in-
phase component of a pulse that performs a NOT gate on electron spins and the in-phase
component of the same pulse after pulse fixing. The final fixed pulse closely resembles the
ideal pulse (this can also be seen from figure 4.2, which shows the spectra of both ideal and
fixed pulses). This makes sure minimal fidelity loss is due to the imperfect implementation
of the GRAPE pulses.
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Figure 4.1: In-phase components of the ideal pulse (blue) and the measured pulse after
pulse fixing (red). Pulse fixing enables the pulse to be used closely resembles the ideal
pulse. The small differences between the two are results of the limited bandwidth of the
resonator.

4.2 Simulations

To show universal control, three different GRAPE pulses are designed. One is a π pulse
which does a NOT gate for the electron. The other two are to perform controlled-NOT
gates with one having the proton being the control bit and the carbon being the target bit
and the other using carbon to control proton. All three pulses are robust against 10MHz
uncertainty in electron Zeeman energy. The first experiment would utilize the π pulse
and demonstrate control over the electron transitions and the second would use the two
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Figure 4.2: Spectra of the ideal pulse (blue) and the measured pulse after pulse fixing
(red).

control-NOT pulses to demonstrate control over the nuclear transitions. Figures 4.3, 4.4
and 4.5 show the transitions the three pulses would drive respectively.

For the first experiment, the initial state of the system is in the thermal state. The
spin populations are higher in the four states with lower energies. By applying a π/2 hard
pulse on all transitions, the population differences can be measured. When the GRAPE
pulse is applied to the system before the readout pulse, the populations of the electron
spin-down and spin-up states are swapped. Applying the readout pulse would then yield
the same population differences but with an opposite sign. Figures 4.6 and 4.7 show the
spectra of the system measured in thermal state, and measured after the GRAPE pulse,
respectively, with no uncertainty in electron Zeeman energy. The peak intensities and the
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1 2 3 4energy

Figure 4.3: Transitions driven by the GRAPE π pulse. The arrows from the left to the
right indicate the spin state of the electron, proton and carbon respectively.

Figure 4.4: Transitions driven by the GRAPE proton control-NOT pulse. The arrows from
the left to the right indicate the spin state of the electron, proton and carbon respectively.

Figure 4.5: Transitions driven by the GRAPE carbon control-NOT pulse. The arrows from
the left to the right indicate the spin state of the electron, proton and carbon respectively.
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peak number reference with GRAPE π pulse difference

1
phase -126.2 53.4 179.6

intensity 10418 7449 -28.5%

2
phase -97.6 81.7 179.3

intensity 10378 7386 -28.8%

3
phase -82.4 98.1 180.5

intensity 10378 7125 -31.3%

4
phase -53.8 126.7 180.5

intensity 10418 7316 -29.8%

Table 4.1: Comparison between simulated spectra (without Hamiltonian distribution and
with T2 = 2.7µs) taken with readout pulse only and with GRAPE π pulse, phase in degrees
and intensity in a.u.

phases of the four peaks with and without the GRAPE pulse are listed in table 4.1. Note
that the phase differences of the peaks with and without the GRAPE pulse are roughly
180◦, which means the spin populations are successfully swapped. The peak intensities
with the GRAPE pulse are ∼30% lower than the ones of the reference spectrum. This is
due to the T2 process during the GRAPE pulse time (the major source for signal loss) as
well as the imperfect fidelity of the pulse. Note, the T2 time used in the simulations is the
experimentally measured value, 2.7µs, for the current setup. Figures 4.10 and 4.11 show
the spectra of the system measured in thermal state, and measured after the GRAPE
pulse, respectively, with 14MHz uncertainty in electron Zeeman energy (the measured
linewidth of the peaks). Since the points defining the Zeeman distribution are discrete,
line broadening is used. Table 4.2 lists the peak intensities and phases of the result with
14MHz Hamiltonian distribution.

If an infinite T2 is assumed for the same experiment, the result would then be 99.4%.
Figure4.8 and figure4.9 show the simulated results without Hamiltonian distribution. This
means in principle, very high fidelity can be achieved by reduing the length of the GRAPE
pulse and extending the coherence time (can be done by cooling the sample to lower
temperature).

The second set of experiments are to test the control-NOT gates. The initial state of
the experiment is a pseudo pure state with population difference on only the first transition
(Figure 4.12). This is prepared by applying Gaussian selective π/2 pulses on transition 2,3
and 4, then waiting for a time of T2. The π/2 pulses create coherences on the last three
transitions. By waiting a time of T2, decoherence makes the populations between electron
spin-up and spin-down states even (strictly speaking, T2 and T1 processes compete during
the delay. T2 process kills the coherence between the two states while T1 process tries to
drive the population to the spin-up state. It is found that waiting a time of T2 yields the
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Figure 4.6: Simulated spectrum due to FID after a π/2 readout pulse without Hamiltonian
distribution with T2 = 2.7µs. Blue is the real component of the spectrum, red is the
imaginary. Note that the four peaks are not all in phase. This is because the Fourier
transform does not start exactly at the beginning of the FID since the smallest time step
size is 1ns in simulations.

best result for preparing pseudo-pure state). If a control-NOT gate is applied before the
detection, the population difference on the first transition would then be shifted to another
transition depending on the control-NOT gate used. Figure 4.13 shows the spectrum of the
pseudo pure state of the system, and figures 4.14 and 4.15 show the results after applying
CNOT (proton control) and CNOT (carbon control) gates without uncertainty in electron
Zeeman energy respectively. The results simulated with 14MHz Hamiltonian distributions
can be found in appendixC.

32



Figure 4.7: Simulated spectrum due to FID after a π/2 readout pulse after applying
π GRAPE pulse without Hamiltonian distribution with T2 = 2.7µs. Blue is the real
component of the spectrum, red is the imaginary.

4.2.1 Discussion of the simulations

The simulations show that with precise pulsefinding, high fidelity control can in principle
be demonstrated in this system (i.e. with T2 = ∞, typical fidelity is 99%). However, due
to short T2 compared to operation time, the fidelities in real experiments are capped at
70%. Since the operation time is fixed, it is important to extend the coherence time of the
electron by cooling the sample to lower temperature (i.e liquid Helium temperature).
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Figure 4.8: Simulated spectrum due to FID after a π/2 readout pulse without Hamiltonian
distribution with T2 =∞. Blue is the real component of the spectrum, red is the imaginary.
The peak intensities are different from the ones in figure4.7 due to decoherence during the
pulse sequence.
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Figure 4.9: Simulated spectrum due to FID after a π/2 readout pulse after applying π
GRAPE pulse without Hamiltonian distribution with T2 = ∞. The state correlation be-
tween the ideal and the measured (through simulation) is 99.4%. Blue is the real component
of the spectrum, red is the imaginary.
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peak number reference with GRAPE π pulse difference

1
phase -91.0 88.6 179.6

intensity 5.59e4 3.03e4 -45.8%

2
phase -105.4 73.9 179.3

intensity 4.23e4 2.59e4 -38.8%

3
phase -74.6 102.8 177.4

intensity 4.23e4 2.37e4 -44.0%

4
phase -89.0 92.3 181.3

intensity 5.59e4 3.15e4 -43.6%

Table 4.2: Comparison between simulated spectra (with Hamiltonian distribution with
T2 = 2.7µs) taken with readout pulse only and with GRAPE π pulse, phase in degrees and
intensity in a.u.
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Figure 4.10: Simulated spectrum due to FID after a π/2 readout pulse with 14MHz Hamil-
tonian distribution with T2 = 2.7µs. Blue is the real component of the spectrum, red is
the imaginary. Note that the four peaks are not all in phase. This is because the Fourier
transform does not start exactly at the beginning of the FID since the smallest time step
size is 1ns in simulations.
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Figure 4.11: Spectrum of the system after applying π GRAPE pulse with 14MHz Hamil-
tonian distribution with T2 = 2.7µs. Blue is the real component of the spectrum, red is
the imaginary. The fidelity of the pulse is 60%. T2 process contributes to the fidelity loss
greatly. Another factor is that the GRAPE pulse designed is only robust again roughly
10MHz uncertainly in Zeeman energy while the actual uncertainty is 14MHz. This also
results in narrower linewidth of peaks. Note that it is difficult to observe the narrowed
linewidth in this plot due to the line broadening applied.
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Figure 4.12: Spin population in the pseudo-pure state indicated by the number of balls.
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Figure 4.13: Simulated spectrum of the pseudo-pure state without Hamiltonian distribution
with T2 = 2.7µs. The state correlation of the pseudo-pure state is 90%. Note the small
peaks still exist because the system is strongly coupled. Even though the population
difference only present on one transition, the strong hyperfine coupling makes it possible
for the electron spins to go to any other state, which results in the additional small peaks.
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Figure 4.14: Simulated spectrum after applying CNOT (proton control) GRAPE pulse (in
figure 4.4) without Hamiltonian distribution with T2 = 2.7µs. The fidelity of the pulse is
73%.
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Figure 4.15: Simulated spectrum after applying CNOT (carbon control) GRAPE pulse (in
figure 4.5) without Hamiltonian distribution with T2 = 2.7µs. The fidelity of the pulse is
73%.
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Chapter 5

Conclusion

The customized ESR spectrometer provides the important arbitrary pulsing ability for
optimal control using GRAPE pulses. The home-built low temperature probe allows ESR
experiments to be performed at liquid cryogen temperatures, enables sample re-orientation
in situ and supplies a sufficient bandwidth to carry out the experiments.

The GRAPE pulses for the experiments have been designed and simulations suggest
that high fidelity can be achieved in experiments with longer coherence time (lower sample
temperature). The ability to implement high-fidelity control opens up many possible in-
teresting experiments, such as implementing and testing quantum error correction codes,
detailed study of decoherence process as well as error mitigation techniques such as refo-
cusing. The experiments characterizing the fidelities of designed operations are currently
underway.

Besides the current sample .CH(COOH)2, we are also planning to examine the .CD(COOD)2

system for future studies (hyperfine tensors found by Sanderud et al.[18]). The intrinsic
narrower linewidth makes it easier to determine the spin Hamiltonian as well as controlling
the system. The replacement of one qubit with one qutrit also means more information
can be stored in the system. Last but not the least, more fundamental experiments that
would make general improvements in ESR quantum computing (e.g demonstrating pulse
fixing gives better fidelity and should be used for quantum computing purpose) are being
considered.
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Appendix A

Spin polarization at finite
temperature

The population of a certain spin state in equilibrium at finite temperature obeys Boltzmann
distribution. The ratio of the population of spins being in the up state n↑ to that being in
the down state n↓ can be written as,

n↑
n↓

= exp(−E↑ − E↓
kBT

) = exp(
hν

kBT
) (A.1)

where kB is the Boltzmann constant, T is the temperature.

In high temperature regime (T>10K), hν is much larger than kBT . Taking Taylor
expansion of the equation yields,

n↑
n↓

= 1 +
hν

kBT
(A.2)

and

n↑ = n↓ +
hν

kBT
n↓ (A.3)

n↑ − n↓ =
hν

kBT
n↓ (A.4)

n↑ + n↓ = 2n↓ +
hν

kBT
n↓ (A.5)

By definition, spin polarization P is

P =
n↓ − n↑
n↓ + n↑

(A.6)

45



This leads to

P =
hν
kBT

n↓

2n↓ + hν
kBT

n↓
(A.7)

≈
hν
kBT

n↓

2n↓
(A.8)

=
hν

2kBT
(A.9)

Now, the spin polarization only depends on the Larmor frequency at a fixed temperature.

The Larmor frequency depends linearly on the gyromagnetic ratio γ of the particle,

ν =
γ

2π
B (A.10)

Since the gyromagnetic ratio of the electron is 660 times larger than the proton spin, the
spin polarization for electron is correspondingly larger.
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Appendix B

Hyperfine tensor versus rotation
angles

The electron-proton and electron-carbon hyperfine tensors are listed in equation 3.3 and
3.4 respectively. Any re-orientation of the sample can be described by three successive
rotations:

1. Rotate the sample by α about the y axis (coordinates system defined in figure 3.5).

Ry(α, 0, 0) =

cos(α) 0 − sin(α)
0 1 0

sin(α) 0 cos(α)

 (B.1)

2. Rotate the sample by β about the new z axis

Rz′ (0, β, 0) =

 cos(β) sin(β) 0
− sin(β) cos(β) 0

0 0 1

 (B.2)

3. Rotate the sample by γ about the new y axis

Ry′′ (0, 0, γ) =

cos(γ) 0 − sin(γ)
0 1 0

sin(γ) 0 cos(γ)

 (B.3)

The final hyperfine tensor T̃ is related to the initial hyperfine tensor T by:

T̃ = Ry′′Rz′RyTR
′

yR
′

z′R
′

y′′ (B.4)
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The isotropic hyperfine term A of the tensor is T̃ (3, 3) [(3,3) means the matrix element

on row 3 and column 3] and the anisotropic hyperfine term B is
√
T̃ (3, 1)2 + T̃ (3, 2)2.
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Appendix C

Spectra of CNOT gates simulations
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Figure C.1: Simulated spectrum of the pseudo-pure state with 14MHz Hamiltonian distri-
bution
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Figure C.2: Simulated spectrum after applying CNOT (proton control) GRAPE pulse (in
figure 4.4) with 14MHz Hamiltonian distribution
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Figure C.3: Simulated spectrum after applying CNOT (carbon control) GRAPE pulse (in
figure 4.5) with 14MHz Hamiltonian distribution
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