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Abstract

Data from longitudinal surveys give rise to many statistical challenges. They

often come from a vast, heterogeneous population and from a complex sampling de-

sign. Further, they are usually collected retrospectively at intermittent interviews

spaced over a long period of time, which gives rise to missing information and loss

to follow-up. As a result, duration data from this kind of surveys are subject to de-

pendent censoring, which needs to be taken into account to prevent biased analysis.

Methods for point and variance estimation are developed using Inverse Probabil-

ity of Censoring (IPC) weights. These methods account for the random nature

of the IPC weights and can be applied in the analysis of duration data in survey

and non-survey settings. The IPC estimation techniques are based on parametric

estimating function theory and involve the estimation of dropout models. Survival

distributions without covariates are estimated via a weighted Kaplan-Meier method

and regression modeling through the Cox Proportional Hazards model and other

models is based on weighted estimating functions. The observational frameworks

from Statistics Canada’s Survey of Labour and Income Dynamics (SLID) and the

UK Millenium Cohort Study are used as motivation, and durations of jobless spells

from SLID are analyzed as an illustration of the methodology. Issues regarding

missing information from longitudinal surveys are also discussed.
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Chapter 1

Introduction

1.1 Settings of interest

A life history process is usually characterized by events that are experienced by

individuals through their lifetime pertaining to health, education, labor experience,

social dynamics, economic history, etc. These kind of processes may often be rep-

resented by a set of states and the transitions an individual may experience among

them.

In studying a certain disease characterized by the states “infected” and “not

infected”, there may be interest in analyzing the time to infection or the times

between infections in patients and the variables that affect them such as a treat-

ment or physiological characteristics. When examining the events that occur in an

individual’s employment history characterized by states such as being “out of the

labor force”, “employed” and “unemployed”, one may be interested in examining

the time to experiencing one of these states or the length of a sojourn in a par-

ticular state, and its relationship with variables like age, gender, education level,

etc. It may also be of interest to estimate the distribution of the durations of the

experienced jobless spells without considering covariates.

Data on life history processes are collected over time and may include specific

1



information on the timing and duration of events. Information can be collected

from cohorts that are randomly selected, from observational studies on a popula-

tion or cohorts from a population, or through longitudinal surveys. Prospective

data are usually collected in intermittent interviews over a long period of time.

Further, it often comes from a heterogeneous population, and the sampling scheme

may involve clustering, stratification and unequal probabilities of selection. For in-

stance, the longitudinal Survey of Labour and Income Dynamics (SLID) interviews

Canadian individuals once a year, over periods of six years. Each year, SLID col-

lects information about individual labour history, family composition and economic

experience pertaining to the previous year. Since this survey includes individuals

from across Canada, it relies on a complex sampling scheme that takes into account

the heterogeneity of the population. Information about SLID can be found online

at www.statcan.gc.ca/pub/75f0011x/4060256-eng.htm.

Another example of longitudinal surveys is the Millennium Cohort Study (MCS),

providing data from children growing up in the four countries of the United King-

dom. This is a complex survey that aims at understanding the social and economic

conditions surrounding birth and early childhood and collects information regard-

ing the develpment of children that were born in 2000 and 2001. Information is

collected from children at ages 9 months, 3, 5 and 7 years old. Online information

about the MCS can be found at www.cls.ioe.ac.uk/text.asp?section=000100020001.

When data are collected over spaced interviews and over a long period of time,

it is usually the case that information is lost partially or even completely. In some

cases the individual may have been contacted, but the information was not collected

in its totality. In some other cases, individuals may be lost to follow-up at some

time before the end of the study and no further information is collected at all. Our

attention will focus on the latter scenario, where it is often reasonable to assume

that the loss to follow-up mechanism is related to the life history of individuals,

that is, to the events they experience and to covariates.

In the above examples, loss to follow-up becomes substantial over time. SLID

2



samples are typically in the 25-30 percent range of loss to follow-up by the end of

the six years. In the MCS study, there was a loss to follow-up rate of 28 percent in

the first wave and 42 percent by the second wave (Plewis,[47]). Dependent loss to

follow-up has been considered by many authors in the context of continuous and

binary outcomes (e.g. Robins et al., [51]; Miller et al., [44]; Preisser et al., [48]);

however, event history or duration analysis where data are collected retrospectively

at each interview time has not been considered.

Methodology for the analysis of durations can be applied in this kind of setting.

In general, it is used to examine the times to events, the times between events or

the lengths of sojourns in states. In the simplest case, the time to occurrence of

only one event per individual can be analyzed through standard survival analysis.

Duration analysis is also used for the analysis of the times between successive events

experienced by the same subject, that is, of multiple durations per individual. Even

though it has been thoroughly studied in many settings, the analysis of durations

has not yet received much attention under the assumption of dependent loss to

follow-up and in particular in the context of complex survey data.

This chapter provides the theoretical basis for the methods to be developed in

this dissertation. Section 1.2 gives a discussion of survival analysis theory. Mul-

tistate models are discussed in section 1.3. Section 1.4 introduces the statistical

challenges when analyzing survey data. Section 1.5 presents a summary of survival

methods extended to survey data that are found in the literature. These methods

involve single durations per individuals and do not consider the issue of dependent

loss to follow-up. Section 1.6 presents additional features of longitudinal surveys

and describes dependent loss to follow-up. Finally, section 1.7 provides an outline

of the remainder of the thesis.
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1.2 Survival analysis

A failure time is defined as a duration, survival time or time between two events

of particular interest. Survival analysis consists of the study of failure times taking

into consideration their relation with other variables and with censoring processes.

We will be focusing on the right type of censoring in which the individual was not

observed to fail during a follow-up period.

Likelihood function for right censored data

An individual’s lifetime or failure time is denoted by Ti and the censoring time is

represented by Ci. In dealing particularly with a continuous time specification, we

let f(ti) and g(ti) be the density functions of the failure and censoring times for

individual i, i = 1, 2, ..., n respectively. Further, let S(ti) = P (Ti > ti) and G(ti) =

P (Ci > ti) denote the survivor functions of Ti and Ci. Also, let h(t) = f(t)/S(t)

be the hazard function, that describes the instantaneous rate of failure at time

t. The observed time is represented by ti = min (Ti, Ci) and the status indicator

δi = I(Ti ≤ Ci).

If Ti and Ci are independent, the likelihood function for right censored data

{(ti, δi) i = 1, 2, ..., n} is given by:

L =
n∏

i=1

[f(ti)G(ti)]
δi [S(ti)g(ti)]

1−δi

∝
n∏

i=1

f(ti)
δiS(ti)

1−δi =
n∏

i=1

h(ti)
δi exp

{
−
∫ ti

0

h(u)du

}
. (1.1)

This likelihood (1.1) can be extended to include covariates, and parametric

regression models can be examined. Among the models that can be used to specify

the density and hazard functions in (1.1), this work will focus on the the log-

location-scale and the proportional hazards regression models.

The solution θ̂ to the score equation U(θ) = ∂log(L(θ))/∂θ = 0 where θ

is a parameter of dimension p, in most cases maximizes L(θ) and is called the

4



maximum likelihood estimate (MLE). Tests and interval estimates for θ can be

performed using the large-sample approximation of a p-variate normal distribu-

tion of the estimators θ̂. That is,
√
n(θ̂ − θ) is asymptotically Normally dis-

tributed with zero mean and variance V , which is estimated by V̂ = I(θ̂)−1, where

I(θ) = −∂2 logL(θ)/∂θ∂θ′. For a more detailed discussion, refer to Kalbfleisch and

Prentice [25] and Lawless [32].

It is important to note that (1.1) is based on the joint distribution for the

censoring and failure times. The main assumptions for (1.1) to be valid are that

(i) the failure times for individuals occur independently; (ii) failure and censoring

times are independent given covariates in the failure time model; and for the right

hand side of (1.1), that (iii) the distribution of the censoring times does not involve

parameters that specify the failure times distribution (noninformative censoring).

The assumptions (ii) and (iii) can be relaxed somewhat and the expression in

the right hand side of (1.1) is no longer a likelihood but is regarded as a partial like-

lihood. For a detailed discussion about likelihood and partial likelihood estimation

with lifetime data under independent and noninformative censoring see Lawless

([32], p.59-60).

Non-parametric estimation in the absence of covariates.

The non-parametric estimator of the survivor function, known as the Product Limit

or Kaplan-Meier (KM) estimator, is a function of the proportion of failure times dt

and the number of at risk individuals nt at each time t, giving ĥ(t) = dt/nt. These

two quantities are expressed as dt =
∑n

i=1 I(ti = t, δi = 1), nt =
∑n

i=1 I(ti ≥ t),

where δi is the censoring indicator introduced earlier. The K-M estimate has the

following form:

Ŝ(t) =
∏

s≤t

[1− ĥ(s)]. (1.2)

It is understood that ĥ(s) = 0 whenever ds = 0, ns > 0 and is undefined when

ns = 0. The KM estimate can be derived as a non-parametric maximum likelihood

5



estimator of the discrete time formulation of the survivor function by constructing

the likelihood of the lifetimes in terms of the hazard function h(t) as the parameter

of interest. For a detailed derivation, see Lawless [32], p.83.

As a maximum likelihood estimator, the asymptotic variance of the KM estima-

tor can be obtained from standard maximum likelihood large sample theory. Let

t1, t2, ..., tk be the distinct failure times in a sample. Then the asymptotic variance

of the KM estimate is estimated by (Greenwood Formula):

V̂ ar(Ŝ(t)) = Ŝ(t)2
∑

j:tj≤t

dj
nj(nj − dj)

. (1.3)

The nonparametric maximum likelihood estimator of the cumulative hazard func-

tion H(t) =
∫ t

0 h(s)ds is the Nelson-Aalen (NA) estimator,

Ĥ(t) =
∑

j:tj≤t

dj/nj. (1.4)

Since the K-M and N-A estimates are maximum likelihood estimates, in the discrete

time case they both have large sample properties such as aymptotic normality and

consistency, allowing for estimation of confidence intervals of survival probabilities

and hypothesis tests using (empirical) likelihood ratio statistics. These results also

extend to the case where S(t) is continuous. The SPlus functions survfit and

kaplanMeier, and the R function survfit can be used to obtain the K-M and

N-A estimates. Analogously, the procedure LIFETEST from SAS is available. The

SYSTAT/MYSTAT packages have the SURVIVAL module in which Kaplan-Meier

estimates can be obtained. In the case of survey data, the SUDAAN package pro-

vides the function KAPMEIER, and the STATA package through the option STS.

Parametric regression models.

As mentioned earlier, explanatory variables for failure times may be included para-

metrically in (1.1). The discussion below involves a vector of fixed covariates x,
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however, it can be generalized to external time varying covariates, which are not

affected by the survival status.

The most widely used parametric regression models are those from the log-

location-scale and the (parametric) proportional hazards (PH-also called relative

risk) families. The log-location-scale models are usually specified in terms of the

log-failure time Y = log(T ), through the survivor function of W = (Y − u(x))/b,

that is,

S(y|x) = SW

(
y − u(x)

b

)
, (1.5)

where b is a scale parameter and the location parameter has usually the form u(x) =

x′β, a function of the covariates x and β, px1 vectors. The most convenient way to

express the relationship between Y andW is through the linear form Y = u(x)+bW ,

where the variableW is commonly distributed as standard normal, extreme value or

logistic, and correspondingly, T is distributed as log-normal, Weibull or log-logistic.

Estimation and inference is performed based on the likelihood in (1.1) and the

usual maximum likelihood asymptotic theory. When u(x) = x′β, we have θ = (β, b)

and expression (1.1) becomes:

L(β, b) =
n∏

i=1

[
1

b
fW

(
yi − x′

iβ

b

)]δi
SW

(
yi − x′

iβ

b

)1−δi

, (1.6)

where yi = min{Yi, logCi}.The PH regression class of models is specified through

the hazard function. The fully parametric PH models consist of a parametric base-

line hazard h0(t; η) and some function of the covariates, usually r(x) = exp(x′β):

h(t|x) = h0(t; η)r(x). (1.7)

The likelihood for the model in (1.7) in terms of the hazard function has the form:

L(η, β) =
n∏

i=1

[h0(ti; η)exp(x
′
iβ)]

δiexp
{
−H0(ti; η)e

x′
iβ
}
.

Estimation and inference for hazard based modelling can be readily implemented

using optimization software based on the likelihood function above, as well as com-

putation of the estimated asymptotic covariance matrix of the maximum likelihood

estimators (η̂, β̂).
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Statistical software for lifetime data is widely available. Among the parametric

survival analysis software packages are SPlus/R through the function censorReg/

survreg and SAS through the LIFEREG procedure. References to other packages

can be found in Lawless ([32], p.40).

Semi-parametric regression models.

The semi-parametric proportional hazards model introduced by Cox [17] has gained

much popularity because it does not require a full parametric specification of

the survival regression model, that is, the regression parameters in β can be es-

timated without specifying explicitly the baseline hazard h0(t). The only as-

sumption required is the multiplicative relation of the covariates with the baseline

hazard, though it still needs to be validated. With the usual covariate function

r(x) = exp(x′β), the expression for the hazard function in (1.7) becomes:

h(t|x) = h0(t)exp(x
′β). (1.8)

Estimation for semi-parametric PH models is related to the concept of partial like-

lihood, first introduced by Cox [18]. It is based on the conditional probability that

a given individual has a failure at time t, given that a failure actually has occurred

at time t and the set of individuals at risk, R(t) (individuals that have not failed

and are uncensored at time t). The partial likelihood to estimate β from individuals

i = 1, 2, ..., n is

L(β) =
n∏

i=1

(
eβ

′xi

∑n
l=1 Yl(ti)eβ

′xl

)δi

, (1.9)

where Yi(t) = I(ti ≥ t) indicates whether individual i is at risk at time t and δi is

the censoring indicator defined earlier. The expression in (1.9) is not an ordinary

likelihood; however, in many applications it can still be treated as one. For details,

refer to Lawless ([32], pp.349,551) and Kalbfleisch and Prentice ([25], p.99).

The score U(β) and the information matrix I(β) can be computed and used in

optimization algorithms for estimation, likelihood ratio tests can be performed and
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β̂ is asymptotically normal with expectation β and covariance matrix estimated by

I(β̂)−1. Taking the logarithm of (1.9) and differentiating with respect to β, the px1

score vector may be obtained as:

U(β) =
n∑

i=1

δi

[
xi −

S(1)(ti, β)

S(0)(ti, β)

]
, where (1.10)

S(0)(t, β) =
n∑

i=1

Yi(t)exp(x
′
iβ) and

S(1)(t, β) =
n∑

i=1

Yi(t)xiexp(x
′
iβ).

When estimating the survivor function S(t|x) = S0(t)exp(x
′β), regression coefficients

are estimated from maximizing (1.9) and the baseline survivor function can be

estimated using the Breslow or generalized Nelson-Aalen estimate Ĥ0(t) and the

relation Ŝ0(t) = exp(−Ĥ0(t)). The estimate Ĥ0(t) has the form (for details, see

Lawless [32], ch.7):

Ĥ0(t) =
∑

j:tj≤t

{
δj∑n

i=1 Yi(tj)ex
′
iβ̂

}
=

∑

j:tj≤t

{
δj

S(0)(tj, β̂)

}
. (1.11)

The asymptotic variance of Ĥ0(t) is estimated by:

V̂ ar[Ĥ0(t)] =
∑

i:ti≤t

δi

S(0)(ti, β̂)2
+ Ŵ (t)′I(β̂)Ŵ (t), where (1.12)

Ŵ (t) =
∑

i:ti≤t

δix̄(ti, β̂)

S(0)(ti, β̂)
, x̄(t, β) =

n∑

i=1

Yi(t)xi exp (x′
iβ)∑n

l=1 Yl(t) exp (x′
lβ)

,

and S(0)(t, β̂) as in (1.10).

Sometimes it is desirable to define separate hazard functions representing the

strata from a population, when it is assumed that individuals in the same stra-

tum have proportional hazard functions, but not so for those in different strata.

The stratified model with hazard function hj(t|x) = h0j(t)ex
′β for stratum j,

j = 1, 2, ..., J is often used. Then the likelihood function is constructed as the

product of the stratum-specific likelihoods Lj(β) of the form (1.9) and the score

and information functions described earlier are summed over the strata.

9



The methodology described above can be used in the case of time varying

covariates. It is straightforward to replace the fixed covariate vector x by the

time dependent covariate vector x(t). The model in (1.8) can be extended to

h(t|x(t)) = h0(t)exp(x(t)′β) and the partial likelihood (1.9) as well as the score in

(1.10) can be expressed similarly. Direct generalizations of (1.11) and (1.12) can

also be made.

Software packages for the semi-parametric analysis just described include SPlus/R

and SAS. The SPlus/R function coxph fits a Cox PH regression model with fixed or

time dependent covariates and can handle stratification. Also, the function cox.zph

in SPlus/R provides a test for the proportional hazards assumption. Analogously,

SAS provides the procedure PHREG. A package that accommodates this type of

estimation for survey data is SUDAAN with the function SURVIVAL.

1.3 Multistate models and consecutive durations

The survival theory described in the preceding section involves the time to a single

event which can also be viewed as the time spent in one life state before making a

transition to another. In a multistate process an individual is assumed to occupy

one of a defined set of states {1, 2, ..., K} at any given time. Multistate processes

generate multiple lifetime variables per subject. The related lifetime variables may

indicate the time at which each state was visited or the length of the sojourn in

each state, for example.

One example of multistate processes is given by a study on patients treated for

colon cancer (Moertel et al., [45]). The states under study are “treated and disease

free”,“disease recurrence” and “death”. Related times to events are: time from

treatment to disease recurrence and the times to death from treatment or from the

recurrence of the disease.

Labour studies provide one more example that involves the analysis of transi-

tions between a set of states. These studies involve the states “employed”, “un-
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Figure 1.1: Examples of multi-state diagrams: (a)failure time; (b)progressive;

(c)competing risk; (d)illness-death.

employed” and “out of the labour force”. It may be of interest to examine the

probability distributions of the time to leave the “unemployed” state to the other

two remaining states separately, that is, the duration of an unemployment spell

before transitioning to being employed or to out of the labour force. It may also

be of interest to analyze its relation with covariates such as education level and

marital status.

The diagrams in Figure 1.1 illustrate some types of multistate processes. The

simplest process, (a), corresponds to the failure time model discussed in the survival

analysis section; (b) illustrates a progressive model where states occur in an ordered

sequence, useful for representing a sequence of events; (c) is the competing risks or

multiple failure mode model, consisting of K − 1 absorbing states; and finally (d),

which in biostatisics is often called an illness-death model since it illustrates the

states under study indicated by, for instance, 0-healthy, 1-sick, 2-deceased (absorb-

ing). The first example mentioned above can be represented by the diagram in (d)

and the second example may be represented in the competing risks setting in (c).

From the preceding paragraphs, it becomes natural to see that multistate models

are addressed through a random variable Yi(t) that indicates the state in the set

{1, 2, ..., K} which the individual i is in at time t. An equivalent way to keep track
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of this kind of process is through event occurrence counting processes, which instead

uses Nij(t) to record the number of times an individual i has an event of type j,

j = 1, 2, ..., J at time t. Here, the events are the J different types of transitions

that can be made between states.

Although they are mathematically equivalent, the multistate and event occur-

rence approaches are used for different objectives. The former is commonly used

when interest lies in studying duration times. Note that from Yi(t) it is possible

to obtain the length of sojourn in a specific state, that is, the elapsed time for the

process to leave a state and make a transition to another. The event occurrence ap-

proach is used when the number of visits to the states is rather in question. In this

work, the focus will be on the study of duration times in the multistate framework.

Consider the external covariates xi(t) and let the history of the process up to

time t be denoted by Hi(t) = {Yi(s), 0 ≤ s < t}. If it is assumed that two events

cannot occur simultaneously, then the full event history process can be described,

from the multistate persective, by the transition intensity functions defined as:

λikl(t|xi(t), Hi(t)) = lim
∆t→0

Pr {Yi(t+∆t) = l|Yi(t−) = k, xi(t), Hi(t)}
∆t

(1.13)

where k '= l, are valued on the state space {1, 2, ..., K}.

Simplifications of the intensity function are often used in practice, such as

Markov models where it only depends on x(t) or t and Semi-Markov (renewal)

models where the intensity depends on Hi(t) only through the elapsed time since

the most recent transition and on x(t).

The survival model described in section 1.2 is a special case of multistate models,

since it can be considered as a transitional model with two states (see Figure 1.1

(a)), where the only possible transition is from state 1 to state 2. Defining Ti as

the duration of the i individual’s visit to state 1, the intensity function in (1.13) is

simplified to λi(t|xi(t)) = lim∆t→0 Pr {Ti < t+∆t|Ti ≥ t, xi(t)} /∆t, which is the

definition of the hazard function h(t) used in (1.1).

The competing risks setting (Figure 1.1, (c)) is modelled as follows. Suppose
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that a continuous failure time T is subject to several modes or causes of failure

CF , CF ∈ {1, 2, ..., K} and also to right censoring (recall the “unemployed” vs.

“employed” and “out of labour force” example). One way of fully specifying the

distribution of (T,CF ) is by the mode-specific hazard function

λj(t) = lim
∆t→0

Pr(T < t+∆t, CF = j|T ≥ t)

∆t
; j = 1, 2, ..., K. (1.14)

The marginal hazard function for T is λ(t) =
∑K

j=1 λj(t) and the marginal

survivor function is S(t) = exp (−Λ(t)), where Λ(t) =
∑K

j=1 Λj(t) is the cumula-

tive hazard function for T . The marginal survivor function can also be expressed

as S(t) =
∏k

j=1 Gj(t), where Gj(t) = exp (−Λj(t)). The function Gj(t) is not a

survivor function for any observable random variable; however, it is used for con-

venience as described below, in expression (1.16).

The mode-specific distribution and density functions, referred to as the subdis-

tribution and subdensity functions are usually of interest for analyzing a specific

mode of failure. They are given by, respectively:

Fj(t) = Pr (T ≤ t, CF = j) =

∫ t

0

λj(u)S(u)du, and fj(t) = F ′
j(t) = λj(t)S(t).

Information is collected from a random sample of size n that gives either (Ti =

ti, CFi) or Ti > ti. Defining δi = 1 if ti is a failure time and 0 if ti is a censoring

time, and assuming independent censoring, then the likelihood function is given by:

L =
n∏

i=1

fCFi(ti)
δiS(ti)

1−δi (1.15)

=
k∏

j=1

n∏

i=1

gj(ti)
δijGj(ti)

1−δij =
k∏

j=1

Lj (1.16)

where δij = I(CFi = j, δi = 1), fj(t) = λj(t)S(t) and gj(t) = λj(t)Gj(t) = −G′
j(t).

As indicated earlier, the functions gj(t) and Gj(t) in (1.16) do not correspond to

any observable random variable; however, the obtained likelihood expression has

the standard form for a survival time distribution. If we assume that these functions

involve separate parameters θj for j = 1, 2, ..., k, then usual procedures can be used

and estimation can be done for each type of failure separately through Lj. In this
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case, a failure of type j at time ti is treated as a failure for estimation of θj and a

failure of any other mode at ti is treated as censoring.

Parametric or semi-parametric models for the intensity functions in (1.13), and

(1.14) can be specified. In the parametric case, asymptotic properties for the score

function and for the maximum likelihood estimate can be used for inference. The

semi-parametric multiplicative formulation of the intensity function can be analyzed

using partial likelihood arguments described earlier. For a more detailed discussion

on estimation in multistate models, see Kalbfleisch and Prentice [25], Blossfeld et

al. [7] and Lawless [32].

1.4 Inference from survey data

Survey data are usually collected based on multi-stage stratification and cluster

sampling designs as well as unequal probabilities of selection. To account for this,

standard design-based sampling theory for survey data involves the use of design

weights in the estimation of descriptive quantities such as population means and

proportions. In contrast, the analytical study of survey data where interest lies

in examining the relation of other variables with a response, leads to the use of

more complex, model-based estimation techniques. There is controversy on whether

survey weights are necessary in the use of model-based estimation techniques (for

example, see Korn and Graubard, [28], Gelman ([22], Little [41], [42] ).

Analytic inference can be performed from the superpopulation or finite popula-

tion perspectives. The former regards the survey population as a random sample

from an infinite universe and this randomness is accounted for in statistical infer-

ence. The latter treats the population as finite; the data obtained are considered

fixed and the only realization of a random variable is through the sampling mech-

anism, which determines the probability an individual is included in the sample.

The superpopulation based methods described in the following section have

to do with the idea of ignorable sampling. In line with Chambers and Skinner
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([12], p.7), suppose that we have a population of size N and the sample inclusion

indicator vector IU = (I1, ..., IN), Ii = I(i ∈ S). Also, let ZU = (Z1, ..., ZN) denote

the matrix of design related factors Zi such as cluster and stratum information; and

YU = (Y1, ..., YN) the matrix of response vectors Yi for each individual. Suppose that

the realizations of the random variables (IU , YU , ZU) are denoted by (iU , yU , zU).

The joint distribution indexed by the parameters (φ,ψ) is:

f(iU |zU , yU)f(yU |zU ;φ)f(zU ;ψ).

Further, let Yobs denote the responses from the sampled individuals and Ymiss those

from the individuals that were not included in the sample. The observed data are

given by (iU , yobs, zU) and the likelihood for (φ,ψ) is:

L(φ,ψ) ∝
∫

f(iU |zU , yU)f(yU |zU ;φ)f(zU ;ψ)dymiss. (1.17)

For the sampling design to be ignorable, it is necessary that f(iU |zU , yU) = f(iU |zU)

and that the function f(iU |zU) does not depend on the parameters (φ,ψ). If these

conditions are met, then it is possible to make likelihood-based inference treating

iU as fixed and therefore discarding f(iU |zU , yU) from (1.17). In more general

cases, additional covariates XU can be introduced so the model for responses is

f(yU |zU , xU ;φ) and the requirement for design ignorability is f(iU |zU , xU , yU) =

f(iU |zU). Further discussion about ignorable designs can be found in Pfefferman

[46] and Binder and Roberts [5].

As will be discussed in more detail in the next section, the finite population

perspective for analytic inference is based on the notion of estimating a population

quantity that is an implicit function of the parameter of interest and is referred to

in sampling as pseudo-likelihood inference.

1.5 Surveys and survival analysis

As mentioned earlier, survival analysis methodology can be applied in the case of

single durations per individual, and has been described for the non-survey setting
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in section 1.2 . Extensions to survey data may proceed from the superpopulation or

the finite population perspectives. In particular, this section provides a summary

of survey methods based on the Cox PH formulation, under the assumption of

independent loss to follow-up. Contributions include those of Binder [4] in the

finite population framework, a combination of finite and superpopulation based

inference given in Lin [38] and superpopulation based inference given in Boudreau

and Lawless [9] and Lawless [32].

With regard to the analysis of multiple durations, the contributions in the lit-

erature have been found to be sparse. Some of these include Blossfeld and Hamerle

[6], Hamerle [23] and Kovacevic and Roberts [29] regarding the marginal estima-

tion via the Cox model of unemployment duration distributions. The analysis of

successive duration times will be discussed in more detail in Chapter 2.

Superpopulation inference

Suppose that a finite population U = {1, ..., N} is divided into R disjoint strata

{U1, ...,UR} and that the primary sampling units (PSU’s) are clusters of individuals

that are selected within the strata, according to a given sampling design. Then,

subsamples Skr are chosen within cluster k in stratum r, k = 1, ..., Kr and r =

1, ..., R. The sample S is then expressed by:

S =
R⋃

r=1

Kr⋃

k=1

Skr.

Let ti = min (Ti, Ci) represent either the time to an event (Ti) or the censoring

time (Ci), δi = I(Ti ≤ Ci) indicate status (δi = 0 if censoring is present) and xi rep-

resent the covariates of individual i. Therefore, the information collected from an

individual that experienced the event of interest in the sample consists of {ti, δi, xi}.

Let θ be the parameter of interest and λ(ti|xi; θ), f(ti|xi; θ) and S(ti|xi; θ) denote

the hazard, density and survivor functions given xi, respectively. These models

represent marginal distributions for an individual. Given the considerable hetero-

geneous structure in the population, the model may include stratum information
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among the covariates xi, and may apply only to a certain subgroup of the popula-

tion. Moreover, the Ti are not in general independent, given xi. In this thesis, we do

not attempt to model association between individuals, but allow for the association

in inferences about θ.

Suppose that the model of interest gives rise to an estimating function for each

individual i, denoted by Ui(θ). Estimation from the superpopulation perspective is

possible through (Lawless,[31], p.234):

U(θ) =
R∑

r=1

Kr∑

k=1

∑

i∈Skr

Ui(θ) = 0 (1.18)

where Skr denotes the sample of individuals in the kth stratum and rth cluster, de-

fined earlier. It is assumed that any stratum effects are modelled via the covariates

xi, so that E
(
Ui(θ)

)
= 0 for i in each Skr.

The estimating equation in (1.18) is unbiased under the assumption of cor-

rectness of the model, ignorable sampling (described in the preceding section) and

ignorable censoring, that is, when Pr(Ti|Ci, Ii = 1, xi, ) = Pr(Ti|Ii = 1, xi). The

estimator θ̂ is asymptotically normal with variance estimated by:

V̂ (θ̂) = I(θ̂)−1V̂
(
U(θ)

)
I(θ̂)−1, (1.19)

where I(θ) = −∂U(θ)/∂θ is the observed information matrix and

V̂
(
U(θ)

)
=

R∑

r=1

Kr∑

k=1

( ∑

i∈Skr

Ui(θ̂)
)( ∑

i∈Skr

Ui(θ̂)
)′
. (1.20)

The Cox PH model can also be handled via an estimating function like (1.18).

For this case, we will illustrate the approach for a stratified Cox model. For a

set of strata r = 1, 2, ..., R0, suppose the hazard function is then λir(t|xi(t)) =

λ0r(t)exp(x′
irβ) referring to the ith person in stratum r, where β is a p×1 vector of

regression parameters and the λ0r(t) are arbitrary baseline hazard functions. It is

important to note that the strata specified in this model usually do not represent

the lowest stratum level in the survey design.
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Define the risk indicator as Yi(t) = I(ti ≥ t). Then the estimating function for

β is (Boudreau and Lawless [9]):

U(β) =
R∑

r=1

Kr∑

k=1

∑

i∈Skr

δi

(
xi(ti)−

S(1)
r (ti, β)

S(0)
r (ti, β)

)
, where (1.21)

S(0)
r (t, β) =

Kr∑

k=1

∑

i∈Skr

Yi(t)exp(xi(t)
′β) and (1.22)

S(1)
r (t, β) =

Kr∑

k=1

∑

i∈Skr

Yi(t)xi(t)exp(x
′
iβ). (1.23)

Left truncation frequently arises with duration data from surveys. This occurs

when the spell for which a duration or failure time is defined started at time li

prior to the observation period; in that case we know that Ti ≥ li and we condition

on this fact. For example, an individual may have been jobless for a time li prior

to the time at which they join a study. Likelihoods like (1.1), (1.6) and (1.15) can

be adjusted for left truncation. In (1.21), left truncation is readily introduced by

just redefining the risk indicator as Yi(t) = I(li ≤ t ≤ ti). Truncation times are

assumed to be independent of the event times, given covariates xi.

Even though the estimating equation U(β) = 0 was originally designed for

within and between cluster independence of {Ti, i ∈ Skr} for β̂ to be consistent,

Boudreau and Lawless [9] show that in the case of within cluster association, U(β) =

0 is asymptotically unbiased and so can be used for consistent estimation of β. This

applies for a large number of clusters and bounded cluster size.

Similarly, it is shown in Boudreau and Lawless [9] that Breslow-Aalen estimates

of the baseline cumulative hazard functions Λ0r(t) are consistent for arbitrarily large

number of clusters with a bounded size within each stratum, and have the form:

Λ̂0r(t, β̂) =
Kr∑

k=1

∑

i∈Skr

δiI(ti ≤ t)

S(0)
r (ti, β̂)

(1.24)

Point estimators of β and Λ0r(t) as well as variance estimates can be obtained

from standard survival analysis software. The flexibility of the coxph function in
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SPlus/R can be used in conjunction with the strata and cluster options to perform

these procedures.

A weighted version of U(β) can be used when sampling is non-ignorable, so

that the estimating function (1.21) is not asymptotically unbiased. The weight wi

is proportional to the inverse of the sample inclusion probability πi = P (i ∈ S)

and the weighted versions of (1.21), (1.22), (1.23) can be used to give an estimate

β̂W and the respective weighted version of (1.24) to give Λ̂0rW (t, β̂W ). Asymptotic

variance estimators are obtained under the same line of development as for the

aymptotic variance of the unweighted estimates from (1.21) and (1.24).

Finite population inference

For many analyses of multivariate survey data, it is convenient to define the param-

eters of interest as implicit functions of population totals, rather than explicitly, as

is done usually for descriptive inference (Binder [3]). As before, suppose that a size

N population is divided into r = 1, ..., R strata of size Nr and that stratum r in

the population is composed of Kr clusters. Also, let Ukr denote the subpopulation

corresponding to the kth cluster in the rth stratum. Let θ denote the parameter of

interest to be defined implicitly through the following population quantity:

UU(θ) =
R∑

r=1

Kr∑

k=1

∑

i∈Ukr

Ui(θ), (1.25)

where Ui(θ) is the pseudo-score contribution from individual i. It is the finite

population version of the score function in (1.18), and as such, does not have the

same interpretation provided by the superpopulation framework, in the sense of

being a function of random quantities. Let θN denote the solution to UU(θ) = 0.

Suppose that Kr clusters are selected from the Kr clusters in stratum r of the

population, for r = 1, ..., R. The sample estimate of the population quantity in

(1.25) is given by

ÛU(θ) =
R∑

r=1

Kr∑

k=1

∑

i∈Skr

wiUi(θ), (1.26)
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where the wi are sampling weights corresponding to the sample inclusion probabil-

ities. The pseudo-maximum likelihood estimate θ̂ satisfies ÛU(θ̂N) = 0. Pseudo-

likelihood inference can be approached from design-based or model-based perspec-

tives. Variance estimation is usually performed using a combination of a Taylor

series linearisation argument and an appropriate method (design or model based)

for estimating the variance of ÛU(θ). The ”sandwich” variance estimator of θ̂ that

is obtained from the linearisation has the form:

V̂ (θ̂) =






(
∂ÛU(θ)

∂θ

)−1

V̂
(
ÛU(θ)− UU(θ)

)
(
∂ÛU(θ)

∂θ

)−1





∣∣∣∣∣∣
θ=θ̂N

, (1.27)

where θ̂ is the solution to ÛU(θ) = 0 and V̂ [ÛU(θ) − UU(θ)] is a corresponding

estimator of the variance of ÛU(θ)− UU(θ) (Binder, [3]; Chambers [11]).

Binder [3] explains differences between implicit and explicit parameters and

provides a discussion of the pseudo-likelihood theory as well as variance estimation

methods of the form in (1.27) for generalized linear models. The case of Cox’s PH

partial likelihood is as follows.

The pseudo-likelihood theory described above gives the following expressions

for the Cox proportional hazards model (Binder,[4]). The pseudo-score function for

the population is given by:

UU(B) =
R∑

r=1

Kr∑

k=1

∑

i∈Urk

δi

(
xi −

S(1)(ti, B)

S(0)(ti, B)

)
, where (1.28)

S(0)(t, B) =
R∑

r=1

Kr∑

k=1

∑

i∈Urk

Yi(t)exp(x
′
iB),

S(1)(t, B) =
R∑

r=1

Kr∑

k=1

∑

i∈Urk

Yi(t)xiexp(x
′
iB),

and where ti is the failure or censoring time, δi is the censoring indicator, Yi(t) =

I(ti ≥ t) is the risk indicator and xi are the covariates of individual i. Note that

these are the finite population version of score functions in (1.10) and B is the finite

population parameter of interest, that is, the solution to UU(B) = 0.

20



The estimating equation that results from the sample estimate of (1.28), with

sampling weights wi which are constructed so that the weighted sums are approxi-

mately unbiased and consistent estimates of the corresponding means over the finite

population and giving the pseudo-maximum likelihood estimate B̂, has the form:

ÛU(B̂) =
R∑

r=1

Kr∑

k=1

∑

i∈Skr

wiδi

(
xi −

Ŝ(1)(ti, B̂)

Ŝ(0)(ti, B̂)

)
= 0, where (1.29)

Ŝ(0)(t, B̂) =
R∑

r=1

Kr∑

k=1

∑

i∈Skr

wiYi(t)exp(x
′
iB̂),

Ŝ(1)(ti, B̂) =
R∑

r=1

Kr∑

k=1

∑

i∈Skr

wiYi(t)xiexp(x
′
iB̂).

Note that the above expression has the form:

ÛU(B̂) =
R∑

r=1

Kr∑

k=1

∑

i∈Skr

wiUi(B̂,wi) = 0. (1.30)

Binder uses (1.30) to approximate (1.26) in the sandwich estimator defined in (1.27)

with a design-based estimate of V
(
ÛU(B)

)
.

It is important to note that the information from the population {ti, δi, xi}

(i = 1, 2, ..., N) is considered as fixed in this context, and that the parameter value

B does not have an exact hazard ratio interpretation, as possessed by the regression

parameter β in (1.8). We note that, in fact, the censoring processes often apply only

to individuals in the sample, for example, when they result from loss to follow-up.

Furthermore, the Ci are random at the time the sample is drawn. Thus, the idea

of fixed functions Ui(θ), i = 1, . . . , N is not completely true here, since the line

between finite and superpopulation inference is not clear.

Lin [38] extends Binder’s variance estimate to the superpopulation approach and

provides a formal justification of the proposed variance. This inference procedure

treats the information of the survey population as a random sample {ti, δi, xi}

(i = 1, 2, ..., N) and is therefore conceived from the superpopulation perspective.

This allows for a straightforward interpretation of the estimated covariate effects.
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Lin’s variance consists of Binder’s variance plus one more term that accounts for

randomness coming from the superpopulation. Boudreau and Lawless [9] have

found that in settings where the population size is large with respect to the sample

size, their variance estimates do not significantly differ from Lin’s, and neither differ

much from Binder’s.

Both superpopulation and finite-population methods can be carried out in the

SUDAAN package, via the SURVIVAL procedure. Since SUDAAN is a package de-

signed for survey data, it is possible to specify sampling design features in the

point and variance estimation from Cox’s porportional hazards models. SAS pro-

vides Cox’s regression and Binder’s variance estimates through the cov option in

the PHREG procedure allowing for the use of case-specific weights. Similarly, SPlus

and R can be used via the coxph function with the cluster and strata options,

where weights are also allowed.

In cases where within-cluster dependence does not affect the estimation results

dramatically (as in Boudreau [8]), standard diagnostic and model checking methods

can be used. For cases like this, residuals and diagnostic plots to assess goodness

of fit, methods to identify influential observations and to examine the functional

form and the proportional hazards assumption can be be carried out from both

the weighted and unweighted methods described here. For a detailed summary on

model checks and diagnostics, see Therneau and Grambsch ([57], chapters 4-7),

where SAS and SPlus functions are used.

1.6 Longitudinal surveys

Longitudinal surveys add a new dimension to cross sectional surveys in that they

provide information about the evolution of a population over time. The latter

are useful in describing a population in a specific moment, and in this sense we

can say that they provide a static snapshot of the population, while longitudinal

surveys aim to portray the dynamic nature of lifetime processes for individuals in
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the population.

One example of longitudinal surveys is the Survey of Labour and Income Dy-

namics (SLID) of Statistics Canada. It provides information about transitions in

jobs, income and family events experienced by Canadian individuals. Samples from

SLID are selected from the Labour Force Survey (LFS) and thus share the latter’s

complex sample design. Individuals are interviewed annually for a period of six

years, and the information is gathered retrospectively regarding events that oc-

curred during the year that elapsed since the last interview. Information about the

LFS and SLID can be found online at www.statcan.gc.ca/imdb-bmdi/3701-eng.htm

and www.statcan.gc.ca/pub/75f0011x/4060256-eng.htm, respectively. A comprehen-

sive summary of SLID can be found in Boudreau, [?].

Another example is the Millennium Cohort Study (MCS), providing data from

children growing up in the four countries of the United Kingdom. This is a complex

survey that aims at understanding the social and economic conditions surrounding

birth and early childhood and collects information regarding the develpment of

children that were born in 2000 and 2001. Information has so far been collected for

children at ages 9 months, 3, 5 and 7 years old, in the years 2001/2, 2004/5, 2006,

and 2008, respectively. The fifth wave is scheduled to take place in 2012, when the

cohort children will be age 11. Online information about the MCS can be found at

www.cls.ioe.ac.uk/text.asp?section=000100020001.

Data from longitudinal surveys are often collected in spaced interviews over a

long period of time. This may lead to partial or total loss of information from

individuals over the observation period. As a result, not only is loss to follow-

up common by the end of the survey, but also it may be dependent on events or

covariates of interest. In the above examples, loss to follow-up becomes substantial

over time. SLID samples are typically in the 25-30 percent range of loss to follow-up

by the end of the six years. In the MCS study, there was a loss to follow-up rate

of 28 percent in the first wave and 42 percent by the second wave (Plewis,[47]).

Dependent loss to follow-up has been considered by many authors in the context of
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continuous and binary outcomes (e.g. Robins et al., [51]; Miller et al., [44]; Preisser

et al., [48]); however, duration analysis where data are collected retrospectively has

not been considered.

The observational framework for the analysis of durations can be described as

follows. Individuals selected for a panel are seen at times t = 0, 1, 2, . . . ,M over

a period (0,M ]. In SLID for example, M = 6 years and t = 1, . . . 6 represent

the years of a panel, 1996-2001, 1999-2004, etc. At time t, information about the

event of interest and covariates Di(t) is collected retrospectively from the period

(t− 1, t]. At the initial visit (t = 0), baseline information is collected which may or

may not include details of events that started before t = 0. Individuals are subject

to be missing from the survey at any interview time t ≤ M . In some cases, the

missing data pattern may be monotone, this means that individuals do not return

to the survey after being absent once. In some other cases, it is possible to allow

individuals to return to the study. The methods that are presented here will focus

only in the former patter of missing data. In SLID for example, individuals are

allowed to return after no more than two consecutive absent interviews. In our

analyses from SLID however, only the information of individuals up to the first

time they missed an interview or labour information is not given is considered.

Methods for non-monotone patterns of missing data are of practical interest and

techniques need to be developed, this will be further discussed in chapter 8.

When modelling durations, loss to follow-up should be considered if it is sus-

pected that it is related to the event history and covariates. Since a duration

typically overlaps more than one interval (t − 1, t], we require a weighted analy-

sis with time-varying weights. In this observational framework, loss to follow-up

can be modelled for each interview time by the probability that an individual is

observed at time t, given that he or she was also observed at time t − 1. Covari-

ate information up to time t − 1 in the model for loss to follow-up at time t may

also include event related and sampling design variables. As will be discussed in

more detail in Chapters 3 and 4, it is important that this covariate information is
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enough so that it is reasonable to assume that the event of interest (duration) is

conditionally independent of loss to follow-up.

1.7 Outline of the thesis

Chapter 2 provides a discussion about duration analysis which is based on the

survival analysis and multistate models theory given in sections 1.2 and 1.3. It

gives the basics of conditional estimation in classical settings and a discussion about

issues involving marginal analysis of sequences of durations from survey data. The

issue of dependent loss to follow-up and the importance of accounting for it when

performing analysis of durations is discussed, as well as an introduction of the

Inverse Probability of Censoring Weighted (IPCW) method.

The main objective of Chapter 3 is to describe some of the proposed methods

for analysis in the context of duration and event history analysis, without consider-

ing sampling theory. The observational framework within which the methods will

be applied is described and a section is dedicated to describe the model that is

employed for estimation of the IPC weights. Examples are presented regarding the

application of the IPCW method to the analysis of duration time distributions.

The contents of Chapter 4 are the basis for the methods that are proposed in

Chapters 5 and 6, where Kaplan-Meier and Cox PH models are discussed. It gives

the IPCW techniques extended to the context of duration variables, which are based

on estimating function theory for parametric models. A simulation study illustrates

the performance of the IPCW under dependent loss to follow-up, regarding log-

Normal durations. The results show that the use of IPC weights reduces bias in

the estimation of regression coefficients and that the proposed variance estimation

method performs well. Finally, an extension of the methodology to survey data is

provided.

Chapter 5 describes the methods for applying the Kaplan-Meier estimator in

the context of survey data. The methods for variance estimation are based on
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the parametric modelling presented in Chapter 4. A simulation study is presented

to assess IPCW estimates of the survivor function based on multiple spells from

individuals sampled from a finite population. This simulation shows our methods

give good results in the presence of non-ignorable sampling design (in the lines of

section 1.4) and dependent loss to follow-up.

Variance estimation of estimates from the Cox PH model is discussed in Chap-

ter 6. The parametric methods described in Chapter 4 can be used when using a

Piecewise Constant (PC) model as an approximation to the Cox PH model. Esti-

mating functions for both the Cox PH and the PC models are described as well as

the proposed variance estimation procedure. A simulation study is presented where

the PC approximation to the Cox PH model is assessed, with good overall results,

indicating the feasibility of the application of this method on real data sets.

Implementation of the methods for Kaplan-Meier estimates and for Cox PH

regression coefficients discussed in chapters 5 and 6 is carried out for jobless spells

from the Survey of Labour and Income Dynamics (SLID). This chapter gives a

broad discussion regarding the issues that have been encountered while analyzing

SLID data, which are common in longitudinal surveys. This chapter also gives a

descriptive analysis of the SLID data regarding loss to follow-up, missing data and

characteristics of the jobless spells, focusing on members of panel 3, which covers

the period from 1999 to 2004. Implementation of the proposed methodology is

performed on jobless spells from individuals residing in Ontario and Quebec in the

year 1999.

Final remarks and conclusions are presented in Chapter 8. This chapter gives

pointers for future research, for example, for the generalization of the monotone

missing data pattern that was assumed in the proposed methods, as well as proce-

dures for handling missing data in covariates and response variables in the context

of duration analysis of survey data.
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Chapter 2

Analysis of Durations from

Longitudinal Survey Data

2.1 Motivation

One of the main objectives of this work is to propose methods for the analysis of

relevant distributions for single durations and also for the analysis and modelling

of sequences of duration times, or multiple durations. A sequence of durations may

occur as successive state duration times for a sequence of states. For example, a

heart transplant study where durations from a sequence of states given by “ad-

mitted to program, pre-transplant”, “alive, post-transplant”, “dead” are observed.

Another example is given by the sequence of durations of the sojourns in the states

“disease-free” and “recurrence” in a cancer study. There are also types of sequences

where the successive durations are observed in a specific state. For instance, the

sequence of durations of unemployment spells, the durations of maternity leaves in

working women, the duration of quitting attempts in smokers.

The standard survival methods for single durations discussed in the preceding

chapter consitute the building blocks for the analysis of sequences of durations.

Sometimes it is reasonable to assume that the within-individual duration times are

independent. Independence is attained if the time of occurrence of an event is un-
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affected by the times of the preceding events, that is, by previous event history.

However, it usually is the case that multiple observations in one individual are

subject to a possible interdependence. For example, the duration of an unemploy-

ment spell may be related to the length and the number of previous unemployment

episodes an individual has experienced. Consequently, the analysis of sequences

of durations may not only include an examination of the effects of fixed or time-

varying covariates and association within clusters of individuals, but may include

also within-individual dependence.

Section 2.2 gives the basics of conditional estimation in classical settings. As

motivation, suppose that it is reasonable to fit a model for the first jobless spells

for individuals in a given year. When considering any subsequent spells however,

covariate information such as the start time of the spells, and times and durations

of preceding spells should be considered in the model. A limitation of this method is

that after conditioning on previous events, generalizations of the results to address

average population features become difficult. However, this approach is essential if

we wish to understand the dynamics of employment on an individual level.

Survey studies often focus on answering questions regarding characteristics of

the population. For instance, SLID data may be useful in estimating the distri-

bution of unemployment spells that begin in a specific calendar year or the joint

probability distribution of employment and unemployment spells that begin in a

specific calendar year given a set of covariates. Such population level features are

easier to address than marginal features associated with specific individuals. Sec-

tion 2.3 gives a discussion about issues involving marginal analysis of sequences of

durations from survey data.
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2.2 Conditional analysis of sequences of duration

times

Let (0,M ] denote the potential follow-up period for individuals i = 1, 2, ..., n and

suppose mi duration times Yij (j = 1, 2, ...,mi) occur for individual i. Let uij and

vij denote the start and end times of the jth spell’s duration, such that ui1 < vi1 ≤

ui2 < vi2 ≤ ui3, etc. The duration times are then Yij = vij − uij and the time the

person was last seen is denoted by Ci. The observed duration time is then yij =

min (Yij, Ci − uij) and the non-censored indicator is given by δij = I(Yij ≤ Ci−uij).

Note that only the last duration can be censored in this framework.

Assume that the within-individual duration times have conditional distribu-

tions:

Fj(y|zij) = Pr(Yij ≤ y|zij) j = 1, 2, ...,mi (2.1)

where the vector zij may consist of covariates xij and features of previous spells and

previous duration times y(j−1)
i = {yi1, yi2, ..., yi,j−1}. For example, zij may include

not only y(j−1)
i , but also the start and end times of previous spells. Since the

process to which the durations Yij belong involves a set of two or more states, then

the vector zij could also include information regarding the sojourn in other states.

For example, suppose that we were analyzing a process of two states, “employed”

and “unemployed” and that our interest lies in the durations of the visits spent in

the “unemployed” state. Then the vector zij could include not only the previous

durations in the state of interest, but also the durations and the start times in the

“employed” state.

Moreover, let fj(yij|zij), hj(yij|zij), and Sj(yij|zij) represent the jth duration

time density, hazard and survivor function given the vector zij, respectively. As-

suming that Yij is conditionally independent of Y (j−1)
i given zij and that the last

duration time is possibly right censored, we can express the overall likelihood from
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n independent individuals by:

L =
n∏

i=1

mi−1∏

j=1

fj(yij|zij)Sj(yimi |zij), (2.2)

=
n∏

i=1

{
mi−1∏

j=1

hj(yij|zij)exp(−Hj(yij|zij))
}
exp(−Hj(yimi |zij)). (2.3)

Note that for every observed spell yij, the vector zij may include the start time of

the spell, uij. For the first observed spell yi1 in (0,M ], we assume that the start

time ui1 is known, even if ui1 < 0.

Standard survival analysis methods and software on Accelerated Failure Time

(AFT) and Proportional Hazards (PH) regression models can be applied using the

likelihood function for right censored data from expressions (2.2) and (2.3). The

AFT models described in the previous chapter are easily used by letting Y ∗
ij =

log(Yij) and defining the independent and identically distributed random variables

εij for i = 1, 2, ...., n to give:

Y ∗
ij = β0j + z′ijβj + σjεij j = 1, 2, ...,mi. (2.4)

Just as described earlier, the error distribution is usually taken to be standard

normal, extreme value or logistic.

The partial likelihood for the semi-parametric multiplicative model

hij(y|zij) = h0j(y) exp(z
′
ijβj), (2.5)

is similar to the partial likelihood in (1.9). Note that here covariates are assumed

fixed across a spell; however, the methods discussed can be extended to time varying

covariates. The partial likelihood for estimating βj is:

Lj(βj) =
n∏

i=1

{
exp(z′ijβj)∑n

l=1 δljI(ylj ≥ yij)exp(z′ljβj)

}δi,j+1

, (2.6)

where δij = 1 if the (j − 1)st event was observed from individual i and δij = 0

otherwise. A similar idea applies for the estimator of the baseline cumulative hazard

functions. Using β̂j from maximizing (2.6) we get:

Ĥ0j(y) =
n∑

i=1

{
δi,j+1I(yij ≤ y)

∑n
l=1 δljI(ylj ≥ yij) exp(z′ljβ̂j)

}
. (2.7)
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Interest may reside in estimating quantities based on the above expression, such as

the survivor function:

Ŝj(y|zij) = exp
{
−Ĥ0j(y)e

z′ij β̂
}
. (2.8)

The preceding discussion assumes that the same family of models applies to

the jth duration time of any individual with one or more durations. This may not

always be sensible, because two individuals may have had different event histories

prior to time t = 0, and different histories over (0,M ]. The specification of models

for sequences of durations is dependent on the setting and on the objectives of

analysis, and it is difficult to give a general treatment.

Sometimes the process has started before the observation period (0,M ], that

is, ui1 ≤ 0. Earlier we indicated that Yi1 may be subject to left truncation, and

described how to handle this for the Cox model. In the case of parametric models,

the following procedure is applied. Since the first duration time is defined as Yi1 =

vi1−ui1, then Yi1 ≥ −ui1. The term corresponding to the first duration time in the

likelihood (2.3) must be replaced by the left truncated probability:

Pr(Yi1|xij, Yi1 ≥ −ui1). (2.9)

When the values of ui1 are available, then they can be used in (2.9) and adjustments

made to likelihood functions like (1.1). However, when they are unknown, then it

may be convenient to discard them and treat the process as if the follow-up had

begun at time 0, the start of the observation period (0,M ]. The convenience of this

choice depends on whether there are enough within-subject duration times so that

this does not represent a substantial loss of information.

Another alternative when ui1 ≤ 0 is to use a model f0(u) for ui1 to provide the

marginal distribution for the time Yi1 of the first event after selection:

f1(y) =

∫ 0

−∞ f0(y − u)f0(u)du
∫ 0

−∞ S0(−u)f0(u)du
(2.10)

Care must be taken when chosing a model for ui1. In some cases it is valid to assume

f0(u) = c, giving a simplified version of (2.10). A detailed discussion and examples

can be found in Cook and Lawless ([15], ch.4) and Lawless and Fong ([33]).

31



Using conditional models, it is possible to apply the superpopulation and finite

population methods described in section 1.5 for each Yij and the software that has

been discussed there can be used for analysis.

Model checking consists of a combination of graphical methods based on resid-

uals and formal tests based on model expansion. The latter involves adding pa-

rameters that represent specific types of departures from the current model, and

hypothesis tests can be performed. Some examples of model expansion, as discussed

in Lawless [32], are: adding covariates representing interactions or nonlinear terms

to check a linear model; allowing the scale parameter b in a location-scale model

to depend on covariates x as a check on the constancy of b; building time-covariate

interactions as a check for the PH assumptions. A detailed discussion on residual

and influence analysis as well as model expansion techniques can be found in Law-

less [32], and Kalbfleisch and Prentice [25]. The book of Therneau and Grambsch

[57], also gives a comprehensive discussion of the model checking methods for the

Cox PH model and how they can be implemented in SPlus and SAS.

2.3 Marginal analysis

In some settings researchers might want to study the distribution of single durations

in persons that experienced the related event, without covariates. Note that in some

studies there might be only a proportion of the population who actually experiences

the event of interest in a given period of time. An example is the analysis of the

durations of first jobless spells from residents of Ontario, that started in the year

2001. The same applies to durations that can occur more than once in the same

individual, for example, all jobless spells that started in 2001.

It is important to distinguish between finite population and superpopulation.

When using a finite population model, the statements that are formulated apply

to the particular finite population in question. Consider for example, the empirical

finite population distribution for all spells that started in Ontario in a particular
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year. Suppose that individual i in a finite population U of size N∗ experiences

a sequence of jobless spells with durations represented by {Yi1, . . . , Yimi}. The

duration distribution as a finite population quantity is expressed as:

SU(y) =
1

N

∑

i∈U

mi∑

j=1

I(Yij ≥ y). (2.11)

where N =
∑N∗

i=1 mi is the total number of durations in the population. For indi-

viduals i with mi = 0, the corresponding summand in (2.11) is equal to zero.

From the superpopulation framework, we make the assumption that the par-

ticular finite population under study represents a realization from a hypothetical

superpopulation. That is, the finite population at hand is a member of a set of all

possible finite populations in a particular point in time. From this point of view,

the empirical distributions for durations from the finite population can approximate

a distribution function from the super-population perspective, as the population’s

size N∗ increases to infinity. This is expressed as follows,

S(y) = plim SU(y) = plim

(
N∗

N

)
plim

(
1

N∗

∑

i∈U

mi∑

j=1

I(Yij ≥ y)

)
.

The above is reasonable since the durations Yij and N are latent random variables

at the time the sample is selected, and in this sense, the finite population quantity

in (2.11) has random components.

Sometimes we may want to analyze sequences of durations through joint marginal

models. The main case is where the potential sequence of durations from each indi-

vidual has the same length. For example, in the UK Millenium Cohort Study, when

studying the times to motor skill developmental events in children, like the time

to learn to stand up and the time to learn to jump. These events usually occur

around the ages of one and five years, respectively. Suppose that some families

dropout from the survey before their children achieve some of these events. The

sequence of durations for each individual can be expressed as (Yi1, Yi2) where Yi1

denotes the time from birth to learning to stand and Yi2 denotes the time from

standing to having learned to jump. In studies like this, two issues arise. One is of

33



induced dependent censoring, when the probability of a second spell to be censored

depends on the length of the first. For example, suppose that for some reason

a child that has learned to stand up drops out of the study before he learns to

jump. The censoring time for Yi2 is Ci− yi1, that is, is related to the length of time

that took him to learn to stand up. The second issue is called non-identifiability,

and it arises since we can observe only (Yi1, Yi2) for which Yi1 + Yi2 ≤ Cmax where

Cmax = max{C1, . . . Cn}, and Ci is the censoring time for individual i. A detailed

discussion can be found in Lin et al., [39] and Cook and Lawless, [15]. This issues

make it difficult to apply marginal methods in sequences of durations of variable

lengths, and this will not be pursued further in this thesis.

There are several ways to handle within-individual dependence when distribu-

tions of duration variables and their relation with covariates are of interest. One

way is to introduce subject-specific random effects; this allows for association of

duration times within individuals. However, after marginalizing (integrating with

respect to random effects distribution), the interpretation of covariate effects can

in some cases become awkward. Multivariate models are another alternative (for

example, copulas). A third approach is to obtain marginal distributions from condi-

tional models; however, effects of covariates on marginal distributions are generally

complex in this setting, except for the normal case. For more details and examples,

see Lawless and Fong [33] and Cook and Lawless ([15], in section 4.4.1.).

In the context of marginal modelling from survey data, there are further issues to

be considered. An example of a duration study from survey data is when economists

are interested in examining permanent layoffs from full-time jobs between 1993-

1998. The types of questions that are of interest are: how long does it take a

permanently laid-off person to find a new job? What factors determine how long

a jobless period lasts? What is the wage gap between a new job and an old one?

(Galarneau and Stratychuk [21]). These type of studies have originated the need to

develop methodology for marginal regression modelling of durations in the survey

context; one example can be found in Kovacevic and Roberts ([29]).
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When there is dependency across durations for an individual, a marginal model

(one that does not include previous history as covariates) may not be valid for

analytical purposes. When an event history process has been in existence before

the start of the study, not only event history within the observation period is of

relevance, but also information before the start of the study. Again, if dependency

is not accounted for, the models may have some descriptive value, but inferences

about individual causal factors or dynamics may be misleading. For example, when

analyzing first and subsequent jobless spells from 2000 to 2002, it would be useful to

have information regarding whether there were any spells before 2000, their length,

starting year, etc.

An ideal setup for straightforward interpretation of individual durations is when

the individuals in the population are all at risk of experiencing the sequence of

spells, and when these sequences have a common starting time across individuals.

In individuals who experience two jobless spells in a period of three years, say, it

might not make sense to model first spells in the same way as second spells, and it

is likely that this kind of modelling would not be of much interest in practice, since

the employment experience across individuals most likely has started at different

times. Examples of more straightforward interpretation are easier to find in settings

where everyone has a common time origin that corresponds to start of follow-

up. For instance, in a clinical trial where a certain treatment is administered to

all individuals and its effects in a potential sequence of events is monitored over

time. In the survey setting, an example would be smoke quitting attempts and

their durations in individuals after a set of tobacco preventive measures had been

implemented in a given geographical region.

In this thesis, we do not consider joint marginal modelling, instead we focus on

univariate marginal modelling and estimation, as well as conditional modelling of

sequences of durations.
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2.4 Dependent loss to follow-up (LTF)

Dependent loss to follow-up (LTF) is present when there is an association between

the LTF mechanism and the event of interest, that is, when LTF depends of event

history and also on covariates. For example, when studying unemployment spells,

it seems natural to assume that individuals who experience longer spells are more

likely to drop out from the survey, than those who have shorter spells. A person

may move to a different city as a result of their job search and is not reached by the

interviewer, or might feel uncomfortable to stay in the survey while experiencing a

long unemployment period and hence refuse to participate.

A feature concerning the study of durations is that these are usually collected

intermittently over long periods of time, giving rise to the issue of dependent loss

to follow-up. Longitudinal surveys, as discussed previously in section 1.6, usually

have this particularity. Loss to follow-up becomes substantial by the end of the

observation period, and it may be dependent on events or covariates of interest. In

section 1.6 we gave the examples of SLID and the UK MCS study. In the former,

samples are typically in the 25-30 percent range of loss to follow-up by the end of

the SLID six-year panels. In the MCS study, there was a loss to follow-up rate

of 28 percent in the first wave and 42 percent by the second wave (Plewis,[47]).

Dependent loss to follow-up has been considered by many authors in the context of

continuous and binary outcomes (e.g. Robins et al., [51]; Miller et al., [44]; Preisser

et al., [48]); however, duration analysis where data are collected retrospectively has

not been considered.

Inverse Probability of Censoring (IPC) weighted methods can be applied to

deal with dependent loss to follow-up. These are discussed in the next chapter,

and further chapters elaborate on the estimation of marginal duration distributions

without covariates and the application of Cox PH regression models to sequences

of durations from survey data. This is done taking into account the considerations

about conditional and marginal modelling discussed in this chapter. Variance esti-

mation techniques applicable to the K-M estimator and the Cox PH models with
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the use of IPC weights are proposed.
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Chapter 3

Duration and Event History

Analysis with Dependent Loss to

Follow-up (LTF)

The main objective of this chapter is to describe some of the proposed methods of

analysis in the context of duration and event history analysis, without considering

sampling theory for now. These methods have to do with dependent censoring that

is caused by an association between the LTF mechanism and the event of interest,

that is, when the LTF depends on previous event history and also on covariates. For

example, it is more likely for individuals with a higher incidence of unemployment

spells to drop out from SLID.

The LTF mechanism manifests itself along the observation period. Information

is typically collected at discrete interview times t = 0, 1, ...,M . At time t, informa-

tion for the time interval (t− 1, t] is collected. If an individual is lost to follow-up

at time t ≤ M then we have their data only up to time t− 1. For a person not lost

to follow-up, we have their information over the period (0,M ].

The methods to be described involve the use of inverse probability of censoring

weights (IPCW) suggested initially by Robins et al. [51]. The first section in this

chapter will provide a setup and notation for the IPCW weighting approach and it
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is shown how unbiased estimation can be achieved when there is dependent LTF.

Section 3.2 provides a discussion about the modelling method that is employed

to estimate the probabilities of dropout. The third section is about the application

of the IPCW approach to the analysis of duration time distributions and provides

examples regarding employment and unemployment spells like those from SLID,

without considering the design features for the moment.

3.1 The Inverse Probability of Censoring Weights

(IPCW) method

The IPCW weighting method is designed to give unbiased estimating functions for

parameters of interest in the presence of dependent loss to follow-up (Robins et.al

[51], Preisser et.al [48]). It consists of modelling the probability of loss to follow-up

(LTF) for each individual, at a predetermined set of interview times within the

observation period. The IPC weight represents the inverse of the probability of

being observed at a given time. This probability is often estimated by a logistic

regression model.

There is a second IPC weighting approach discussed in Preisser et al. [48],

simpler than the one we use in that the same weight is applied to each individual’s

duration times, while ours may give one or more weights for a single duration.

Preisser et al. used these two approaches for the analysis of longitudinal binary data

and illustrated how weighted estimation is consistent when the dropout mechanism

is correctly specified. They compare the performance of unweighted and weighted

estimating equations under a misspecified dropout model and find that the second

weighting approach is less efficient and gives extremely biased estimates under

minimal dropout. We also found through simulations that the second approach

gives biased results, hence only the first approach will be discussed here.

The probability related to dropout is defined in a set of discrete time points

t = {0, 1, ...,M} that represent predetermined interview times which are the same
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across all individuals. The unemployment spell data from SLID for example, is

based on annual interviews for a six year period, in this case M = 6. In the

discussion below we assume that once a person is lost to follow-up they are not

seen again.

The variables to be used are introduced as follows:

Rt = I(individual is observed at time t) is the indicator related to LTF,

C = sup{t : Rt = 1} is the censoring time, so LTF time is t+ 1,

H(t) = D(t) = {D(1), D(2), ..., D(t), H(0)} is the history of the process up to

time t, where H(0) represents the initial conditions measured at t = 0 and D(t) is

data over the interval (t− 1, t] including covariates, collected at time t.

Let us assume that the event of being observed at time t is unrelated to the

current and future outcomes and covariates, conditional on the observed past. This

is the missing at random (MAR) assumption, in the sense of Rubin [53]. That is:

Pr(Rt = 1|Rt−1 = 1, H(M)) = Pr(Rt = 1|Rt−1 = 1, H(t− 1)). (3.1)

Consider the model P (D(t)|Z(t)) where Z(t) can include external covariates

X(t) plus history H(t − 1) up to the previous observation time. The likelihood is

expressed by pieces according to H(M) = {D(1), ..., D(M), H(0)}, given external

covariate history X(M).

Then the score function for the ith individual is given by:

UR
i (θ) =

M∑

t=1

Rit∂ logPθ[Di(t)|Zi(t)]/∂θ =
M∑

t=1

uR
it(θ).

If Rt and D(t) are independent given Z(t) (Rt⊥D(t)|Z(t)) then the above can be

used directly to obtain unbiased estimates of θ provided the model Pθ(Di(t)|Zi(t))

is correctly specified so that E
{
uR
it

}
= 0 for each t = 1, 2, ...,M . It is verified that:

EDi(t),Rit|Zi(t)

{
uR
it

}
= EDi(t)|Zi(t)

{
ERit|Zi(t)

{
uR
it(θ)

}}

= EDi(t)|Zi(t) {∂ logPθ[Di(t)|Zi(t)]/∂θ}ERit|Zit {Rit} = 0. (3.2)
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However, if Rt⊥D(t)|Z(t) is not true but variables Zc(t) which include Z(t)

are available such that Rt⊥D(t)|Zc(t), then the following estimating function is

appropriate:

Up
i (θ) =

M∑

t=1

Rit

pit

∂ logPθ[Di(t)|Zi(t)]

∂θ
=

M∑

t=1

up
it(θ), (3.3)

where pit = Pr(Rit = 1|Zc
i (t)) = Pr(Ci ≥ t|Zc

i (t)). Under the correct model,

unbiasedness can be verified by:

EDi(t),Rit,Zc
i (t)|Zi(t)

{
up
it(θ)

}
= EDi(t),Zc

i (t)|Zi(t)

{
ERit|Di(t),Zc

i (t),Zi(t) {u
p
it(θ)}

}

= EDi(t),Zc
i (t)|Zi(t)

{
ERit|Zc

i (t)
{up

it(θ)}
}

(3.4)

= EDi(t)|Zi(t)

{
∂ log(Pθ[Di(t)|Zi(t)])/∂θ

}
(3.5)

= 0. (3.6)

Note that (3.4) is due to the fact that Pr(Rt|D(t), Zc(t), Z(t)) = Pr(Rt|Zc(t))

since Zc
i (t) includes Zi(t) and the assumption that Rt⊥D(t)|Zc(t).

Line (3.5) follows by letting G(D(t)|Z(t)) = ∂ log(Pθ[Di(t)|Zi(t)])/∂θ and

ED(t),Zc(t)|Z(t) {G(D(t)|Z(t))} =

∫

D(t)

∫

Zc(t)

G(D(t)|Z(t))dP (D(t), Zc(t)|Z(t))

=

∫

D(t)

G(D(t)|Z(t))dP (D(t)|Z(t))

= ED(t)|Z(t)G(D(t)|Z(t)). (3.7)

It can be shown that if

Pr
(
Di(t)|Zc

i (t)
)
= Pr

(
Di(t)|Zi(t)

)
then Zc

i (t)⊥Di(t)|Zi(t),

and so Di(t)⊥Ri(t)|Zi(t). Thus the IPC weighting is needed only when there are

covariates or event history that affect both Ri(t) and Di(t), but which are not in the

model Pr
(
Di(t)|Zi(t)

)
. This can often occur, in particular when we are interested

in marginal distributions for durations or other responses, or distributions that

condition on just a few covariates.
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By noting that Pθ(Hi(Ci)) =
∏Ci

t=1 Pθ(D(t)|Z(t)), the estimating function in

(3.3) is equivalent to:

Up
i (θ) =

Ci∑

t=1

1

pit

∂logPθ(Di(t)|Zi(t))

∂θ
.

This weighting approach needs a separate weight for the data from each year, so

the data sets must be arranged accordingly for analysis. This will be discussed in

section 3.3.

3.2 Modelling the dropout process

This section elaborates more explicitly on the dropout modelling that is going to

be used to provide the weights in expression (3.3). The estimation of dropout

probabilities from the modelling approaches defined in the preceding section are

carried out using the following logistic model:

logit λit(Z
c
i (t);α) = α′Zc

i (t), (3.8)

where λit(Zc
i (t);α) = Pr(Rit = 1|Ri,t−1 = 1, Zc

i (t);α) is the probability that indi-

vidual i was observed at interview time t given that they were observed at t − 1,

t = 1, ...,M . Also, Zc
i (t) is a p × 1 covariate vector and α is a p × 1 parameter

vector. As mentioned earlier, for the IPCW to be needed, the covariates Zc
i (t) must

affect both the durations and the dropout process.

Under the assumption that Pr(Rit = 1|Ri,t−1 = 1, Zc
i (t)) = Pr(Rit = 1|Ri,t−1 =

1, Hi(t− 1)) = Pr(Rit = 1|Ri,t−1 = 1, Hi(M)), estimates for the LTF probabilities

can be obtained by using the fitted coefficients from (3.8) and by

Pr(Rit = 1|Zc
i (t)) = λi1 · λi2 · · ·λit. (3.9)

It is assumed that Ri1 = 1 with probability 1 and that intermittent dropout

patterns are not allowed: Ri,t+k = 0, k > 0 whenever Rit = 0. The likelihood
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function for the dropout probability in (3.8) is given by:

L(α) =
M∏

t=1

m∏

i=1

{
λit(Z

c
i (t);α)

Rit(1− λit(Z
c
i (t);α))

1−Rit
}Ri,t−1 . (3.10)

The dropout probabilities in (3.10) can be estimated for the discrete interview

times t = 1, ...,M , via standard GLM software (Lawless (2003), p.372).

3.3 Examples

This section provides an example of the discussion about the application of the

IPCW approach from section 3.1 to the analysis of duration time distributions and

event histories.

Suppose we have an event history process over a time period (0,M ] represented

by a model with parameter of interest θ and possibly other nuisance parameters.

Let this event history process consist of sojourns and transitions within a set of

states. Since censoring may be present in this process, we will consider notation

relative to an observed sequence of sojourns over (0, C], where C ≤ M .

For illustration, suppose that for all individuals the process starts in the same

state and the subsequent visited states are the same for everyone. Let j indicate

the sojourn in state Ej ∈ {1, 2, ..., K} which starts at time tj−1 and ends at time

tj, j = 1, 2, ... (let t0 = 0). Suppose δj = 1 indicates if the observed sojourn ends

at tj with a transition to a new state and δj = 0 if it ends due to censoring with

the individual remaining in state Ej. Finally, let Yj be the full duration of the jth

sojourn, so that yj = tj − tj−1 ≤ Yj is the observed sojourn.

Note that the process occurs in continuous time while the information is col-

lected at discrete times t ∈ {1, 2, ...,M}. Also, let x denote the history of the

external covariates, which can be time varying. In this case it is assumed that the

transition intensities at time t will depend only on covariate values up to time t.

To keep things simple we assume that given H(0), the sequence of states that can

be visited is known.
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The probability models to represent the whole sequence of sojourns may be

represented by:

∏

j

Pr(Yj|Y (j−1), x,H(0)) = Pr(Y1, Y2, ...|x,H(0)), (3.11)

where Y (j−1) = {Y1, ..., Yj−1}. Note that (3.11) allows us to consider either condi-

tional or joint model specifications for the durations Y1, Y2, ....

If censoring is present, then the conditional specification in (3.11) is more conve-

nient to use. Assume that censoring is ignorable and that the process for individual

i was observed over the time interval (0, Ci]. The likelihood function for a sequence

of mi observed durations yi1, ..., yi,mi (the last one right censored) based on the

conditional model in (3.11) is

Li(θ) =
mi−1∏

j=1

fij(yij|y(j−1)
i xi, Hi(0)) · S(yi,mi |y

(mi−1)
i , xi, Hi(0)), (3.12)

where y(mi−1)
i = {yi1, ..., yi,mi}, f(·) and S(·) are density and survivor functions.

The estimating function based on (3.12) for an individual i is ui(θ) = ∂ logLi(θ)/∂θ

and across n independent individuals is

U(θ) =
n∑

i=1

Ui(θ). (3.13)

If censoring is not ignorable given the external covariates xi, then the IPCW

approach discussed in section 3.1 can be used. Let Up
it(θ) represent the term

∂ logPi(Di(t)|Zi(t))/∂θ in expression (3.3) for t = 1, 2, ...,M . The estimating func-

tion is:

Up(θ) =
n∑

i=1

M∑

t=1

Rit

pit
Up
it(θ)

=
n∑

i=1

Up
i (θ). (3.14)

The data Di(t) over the time interval (t− 1, t] correspond to the durations Yij

observed in (t− 1, t], while the set of covariates Zi(t) contains relevant information
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in Hi(t − 1) about the event process and covariates. If the duration Yij started

before time t − 1, then Hi(t − 1) contains information about the starting time of

the related spell.

For example, suppose that at time t, a sojourn duration Yij has length yij(t).

Then, the information contained in Hi(t− 1) will be yij(t− 1) and the information

D(t) includes either that the spell ends in (t−1, t] (due to a transition or censoring)

or extends beyond t. So the likelihood contribution from D(t) for an individual i

with such a spell is of the form:

Pr(Yij = yij|Yij > yij(t−1), zij)
δij(t)·Pr(Yij > yij(t−1)+1|Yij > yij(t−1), zij)

1−δij(t),

where δij(t) = I(Yij ends in (t− 1, t]).

Since each data collection interval (t − 1, t] is dealt with separately for t =

1, 2, ...,M , the estimating function obtained from the model must be unbiased over

each interval, that is, the basic estimating functions Up
it(θ) in (3.14) need to be

unbiased for each t . This should be considered carefully if the model accounts only

for partial information about the previous event history.

The UK Millennium Study has interview times of 9 months, 3, 5 and 7 years.

An example of the kind of sequences of durations described above might be related

to the times to cognitive developmental milestones in children up to seven years of

age. Suppose that K = 4 and E = 1 if the child turns his head when hearing his

name (6-9 months), E = 2 when the child can match two objects together by color,

shape or size (1-2 years), E = 3 when he learns different shapes by name and colors

(3-5 years) and E = 4 when the child learns his full name, age and address (5-7

years). In this example, it may be reasonable to assume that the time to achieve

one of these milestones is related to the time that previous ones took to occur.

Further, censoring is likely to be present as well as dependent loss to follow-up as

there might exist factors that affect both the development of a child and his loss to

follow-up, such as socio-economic status and family composition.
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Alternation between employment and unemployment

As another example, we consider a sequence of four transitions between states

Ej ∈ {E,U} where E and U stand for employed and unemployed, respectively.

Recall that Yij is the full duration of the jth sojourn, and the observed duration is

yij = tij − ti,j−1 ≤ Yij where ti,j−1 and tij denote the starting and ending times of

the observed sojourn, respectively. Suppose that the individual’s sequence started

with the state E. Let Ci denote the time that the individual i was last seen,

Ci ∈ {1, 2, ...,M}.

Suppose that the hazard functions used to describe the unemployment and

employment durations are given, respectively, by:

λU(yj|x, y(j−1), H(0); θ) and λE(yj|x, y(j−1), H(0);ψ).

Further, assume that the times of E ↔ U transitions {ti1, ti2, ti3, ti4} and sojourn

durations {yi1, yi2, yi3, yi4} with yi4 censored, were recorded. Note that the corre-

sponding states are (see figure 3.1):

{Ei1 = E, Ei2 = U, Ei3 = E, Ei4 = U} .

t
i1
 t

i2
 

  1   2   3   4 t=0 

t
i3
 

  5 
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i
=4 

 Y
i1 

E
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 Y
i2 
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i2
=U 

 Y
i3 

E
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=E 

 Y
i4 

E
i4
=U 

  6 

Figure 3.1: Example of a sequence of employment and unemployment durations.

Assuming that there is no information on the starting time of the first E duration
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Yi1, the likelihood for years t = 1, 2, 3, 4 is composed of the following probabilities:

For D(1) : Pr(Yi1 = yi1|zi1)Pr(Yi2 > 1− yi1|yi1, zi1),

For D(2) : Pr(Yi2 = yi2|Yi2 > 1− yi1, zi2)Pr(Yi3 > 2− ti2|yi1, yi2, zi2),

For D(3) : Pr(Yi3 > 3− ti2|yi1, yi2, zi3),

For D(4) : Pr(Yi3 = yi3|Yi3 > 3− ti2, zi4)Pr(Yi4 > 4− ti3|yi1, yi2, yi3, zi4).

A data frame to implement this approach is illustrated in Table 3.1. As men-

tioned above, the idea is to partition the time interval [0, 6] into pieces defined by

the transitions to U/E states and the interview times t = 1, 2, ..., 6. Note that a

single individual with ID=i will have as many lines as pieces that resulted in his

or her event history in their follow-up period. The individual in our example has

7 pieces altogether, as Figure 3.1 shows. Therneau and Grambsch [57] refer to this

as “counting process data” format.

The information provided in each line in the data frame will correspond to the

event process and covariate information available for each interval. The variables

Start.t and Stop.t give the calendar times that define the starting and ending

times of the intervals. The variable Start.y is zero to indicate that a new spell

begun at Start.t, otherwise it will show the length of the spell at the end of the

previous interval. For example, the third line corresponds to the interval given by

(Start.t, Stop.t)=(1, ti2) and has a Start.y value of 1 − ti1, which is the length of

the spell at the end of the previous interval: (Start.t, Stop.t)=(ti1, 1). Stop.y gives

the cumulative length of the spell at the end of the corresponding interval from the

time it started. For example, lines 4,5 and 6 give the length of the spell Yi3 at the

end of Stop.t=2, 3, ti3. Etype gives the type of transition (U or E) that occurred in

the interval to which each line corresponds. Status is 1 if the spell ended by Stop.t,

0 if it extended beyond Stop.t. The elements of the Covs column give information

on previous lengths as well as external covariates. Note that the information in this

column coincides with the covariates and previous lengths used for conditioning in

the duration probabilities for D(1), ..., D(4) described above. Finally, note that the
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ID Weight Start.t Stop.t Start.y Stop.y Etype Status Covs∗ Enum

i p−1
i1 0 ti1 0 ti1 E 1 yi1, zi1 1

i p−1
i1 ti1 1 0 1− ti1 U 0 y(3)i , zi2 2

i p−1
i2 1 ti2 1− ti1 ti2 − ti1 U 1 y(4)i , zi3 3

i p−1
i2 ti2 2 0 2− ti2 E 0 y(4)i , zi4 4

i p−1
i3 2 3 2− ti2 3− ti2 E 0 y(4)i , zi4 5

i p−1
i4 3 ti3 3− ti2 ti3 − ti2 E 1 y(4)i , zi4 6

i p−1
i4 ti3 4 0 4− ti3 U 0 y(4)i , zi4 7

∗ Note: y(k)i = (yi1, ..., yi,k−1)

Table 3.1: Data frame to implement IPCW methods.

Weight column gives values of p−1
it to those intervals (lines) that are related to the

time intervals (t− 1, t], t = 1, 2, 3, 4.
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Chapter 4

Weighted Parametric Regression

Analysis

This chapter provides estimation methods to implement the IPCW techniques from

Chapter 3 in the context of duration variables from survey data. The techniques are

based on estimating function theory (White [58]) on parametric regression models.

This chapter also constitutes the basis for the methods that are proposed in chapters

5 and 6, where Kaplan-Meier and Cox PH models are discussed.

Robins et al. [51] gave variance estimation methods that can be derived from

those of White, applied to IPCW generalized linear models for longitudinal data in

the non-survey context. Their “sandwich” variance estimators take into account the

random nature of the weights. Miller et al. [44] have extended the methods from

Robins et al. to survey data. They analyze discrete outcomes from longitudinal

surveys subject to multiple-cause non-response, accommodate for sampling design

weights and use a stratified cluster-sampling version of the middle part of the

“sandwich” variance estimate from Robins et al. The structure of duration and

event history data requires modifications and extensions of the previous methods,

and we develop these here and in the following chapters.

Section 4.1 provides a brief overview of variance estimation in estimating func-

tion theory and gives an adaptation of the IPCW method from Robins et al. to
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the parametric duration analysis framework. An example is provided regarding

location-scale models together with a simulation in which the behavior of the IPCW

based methodology is examined. Robins et al. show that the asymptotic variance

of the estimator of the parameters of interest are smaller when estimated IPC

weights are used instead of pre-specified weights. In addition, naively treating the

IPC weights as fixed gives slightly larger variance estimates, but they are often

close to the variances obtained when treating them as random. The simulations

from this chapter are used to compare the variance estimates based on random or

non-random assumptions for the IPC weights. Section 4.2 gives an extension of

the variance estimates from Robins et al. to the analysis of durations from survey

data, along the lines of Miller et al.

4.1 Estimation in classical settings

The following discussion regards estimation using IPC weights in the parametric

analysis of right-censored data, along the lines of Robins et al. [51]. Let (0,M ]

denote the follow-up period for individuals i = 1, 2, ..., n and suppose mi ≥ 0

events are observed for individual i. Let uij and vij denote the start and end times

of a spell with an associated duration defined by Yij = vij − uij, j = 1, 2, ...,mi.

Let the time the person was last seen be Ci ∈ {1, 2, ...,M}. Note that this implies

that an individual may be lost to follow-up before the end of the period (0,M ].

Furthermore, suppose that Zij(uij + y) denotes a set of covariates for individual

i, at calendar time uij + y; it may include uij and also may include information on

prior event history up to time t− 1, where t− 1 < uij + y ≤ t.

Let S(y), h(y) and f(y) denote the survivor, hazard, and probability density

functions for a specific duration time y given covariates where S(·), h(·) and f(·)

depend on a finite dimensional parameter θ.

The discussion from Chapter 3 presents two models for estimation, one for

modelling the events or durations of interest and another one for modelling loss
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to follow-up to obtain the IPC weights. They lead to the following system of

estimating equations:

U(θ,α) = 0

G(α) = 0
(4.1)

where θ and α are parameter vectors of dimension px1 and qx1. The estimating

functions to model durations have the following form:

U(θ,α) =
n∑

i=1

mi∑

j=1

M∑

t=1

wit(y)Uijt(θ) =
n∑

i=1

Ui(θ), (4.2)

where wit(α) = Rit/pit(α) and Uijt(θ) = ∂lijt(θ)/∂θ. In our case, the term lijt(θ)

has the form of the log-likelihood of a survival model for right censored data. IPC

weights are associated to time intervals (t− 1, t] and durations can extend over one

or more of these. Therefore, the duration model in (4.1) needs to take into account

the delayed entry of spells that start before a given interval (t− 1, t]. Let

yij(t) = min(t, vij)−min(t, uij)

be the length of the observed duration yij at time t and

δij(t) = I(t− 1 < vij ≤ t)

indicate whether duration yij ends in the interval (t−1, t]; the log-likelihood lijt(θ) =

logLijt(θ) has the form:

Lijt(θ) =

{
f(yij)

S(yij(t− 1))

}δij(t) { S(yij(t))

S(yij(t− 1))

}1−δij(t)

. (4.3)

The estimating function related to loss to follow-up is the score function for a

logistic model for the probability of being observed at time t, given that Ri,t−1 = 1,

and is given by:

G(α) =
n∑

i=1

M∑

t=1

(Rit − λit(α)Ri,t−1)
∂ logitλit(α)

∂α
=

n∑

i=1

Gi(α). (4.4)

where

logit (λit(α)) = logit {Pr(Rit = 1|Ri,t−1 = 1, Zc
i (t);α}

= α′
tZ

c
i (t), (4.5)
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and αt is a vector of regression coefficients, α = (α′
1, . . . ,α

′
M)′, and Zc

i (t) a set

of covariates that may affect both durations and dropout. Note that pit(α) =

Pr(Rit = 1|Zc
i (t)) = λi1(α) . . .λit(α). Let the dimension of αt be qt and so the

vector α = (α′
1, . . . ,α

′
M)′ has dimension q = q1 + · · ·+ qM . The model (4.4) can be

fitted with standard logistic regression or generalized linear model software to give

maximum likelihood estimates α̂t and estimated probabilities p̂it = pit(α̂).

Note that the components of the estimating function for loss to follow-up G(α)

in (4.4) come from the separate logistic regression model loglikelihood functions for

t ∈ {1, . . . ,M}. For a given value of t this is

n∑

i=1

(Rit − λit(α)Ri,t−1)
∂ logitλit(α)

∂α
. (4.6)

The variance estimate for θ̂ comes from a direct application of the results of

White [58] on estimating function theory. The estimate of the asymptotic covari-

ance matrix for the parameter ψ̂ = (θ̂′, α̂′)′ is consistent and robust for model

misspecification, and is given by

V̂ ar(ψ̂) = A(ψ̂)−1B(ψ̂)−1A(ψ̂)−1, (4.7)

where

A(ψ) =



 −∂U (θ,α) /∂θ′ −∂U (θ,α) /∂α′

−G(α)/∂θ′ −∂G(α)/∂α′



 =



 A11 (θ,α) A12 (θ,α)

0 A22(α)





B(ψ) =



 V ar (U (θ,α)) Cov (U (θ,α) , G(α))

Cov (G(α), U (θ,α)) V ar (G(α))



 =



 B11 (θ,α) B12 (θ,α)

B21 (θ,α) B22(α)





The estimate of the variance of θ̂ is then obtained as the upper left block of (4.7)

evaluated at (θ̂, α̂),

V̂ ar(θ̂) = A11(θ̂, α̂)
−1

{
B11(θ̂, α̂)− A12(θ̂, α̂)A22(α̂)

−1B21(θ̂, α̂)
}
A11(θ̂, α̂)

−1,

∼=a A11(θ̂, α̂)
−1

{
B11(θ̂, α̂)− B12(θ̂, α̂)B22(α̂)

−1B21(θ̂, α̂)
}
A11(θ̂, α̂)

−1.

(4.8)
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The asymptotic equivalence of

E{A22(α)} and {B22(α)},

and of

E{A12(θ,α)} and E{B12(θ,α)}

allows to replace the corresponding terms in V̂ ar(θ̂), expression (4.8). This asymp-

totic equivalence can be shown noting that,

1. E{A22(α)} = E{−∂G(α)/∂α′} = V ar (G(α)) = {B22(α)} since G(α) is

based on likelihood functions.

2. E{A12(θ,α)} = E{B12(θ,α)} since Rit is assumed to be conditionally inde-

pendent of the entire duration history H(M), given covariates Zc
i (t). The i’th

terms of A12(θ,α) are (A12i)s = −∂Ui(θ,α)/∂αs,

(A12i)s = I(mi > 0)
M∑

t=1

mi∑

j=1

wijt(y)
∂ log pit(α)

∂αs

∂lijt(θ)

∂θ

= I(mi > 0)
mi∑

j=1

M∑

t=1

I(s ≤ t)wijt(y)Z
c
i (s) [1− λis(αs)]

∂lijt(θ)

∂θ

for s = 1, . . . ,M , since under the logistic model in (4.4),

∂ log (pit(α))

∂αs
=

∑

s′≤t

∂ log λis′(αs′)

∂αs
= I(s ≤ t)

∂ log λis(αs)

∂αs

= I(s ≤ t)Zc
i (s) [1− λis(αs)]

In addition, E{(B12i)s} = E{Ui(θ,α) Gi(α)s} = 0 for s > t, since Ris is

independent of the entire duration history Hi(M), conditional on Zc
i (s).

For s ≤ t, we have E{Ris − λis(αs)Ri,s−1|Ri,s−1 = 1, Rit = 1} = 1 − λis(αs).

Thus,

E {(B12i)s} = E

{
I(mi > 0)

mi∑

j=1

M∑

t=1

wijt(y)Z
c
i (s) {Ris − λis(αs)Ri,s−1}

∂lijt(θ)

∂θ

}

= E

{
I(mi > 0)

mi∑

j=1

M∑

t=1

I(s ≤ t)wijt(y)Z
c
i (s) [1− λis(αs)]

∂lijt(θ)

∂θ

}

= E {(A12i)s} .
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The second line in expression (4.8) is equivalent to the variance estimate for θ̂,

expressed by Robins et al. [51] as:

V̂ ar(θ̂) = B̂−1ĈB̂−1 ′, (4.9)

where both B̂ and Ĉ are pxp matrices,

B̂ = − 1√
n

∂U(θ, α̂)

∂θ

∣∣∣
θ̂
and (4.10)

Ĉ =
1

n

n∑

i=1




Ui(θ̂, α̂)−
[

n∑

i=1

Ui(θ̂, α̂)Gi(α̂)
′)

][
n∑

i=1

Gi(α̂)Gi(α̂)
′

]−1

Gi(α̂)






⊗2

(4.11)

where A⊗2 = AA′. It can be readily shown that the expression for Ĉ in (4.11)

disregarding the term 1/n is equivalent to the middle term in the second line of

(4.8). That is,

n∑

i=1




Ui(θ̂, α̂)−
[

n∑

i=1

Ui(θ̂, α̂)Gi(α̂)
′)

][
n∑

i=1

Gi(α̂)Gi(α̂)
′

]−1

Gi(α̂)






⊗2

= B11(θ̂, α̂)− B12(θ̂, α̂)B22(θ̂, α̂)
−1B21(θ̂, α̂)

where

B11(θ̂, α̂) =
n∑

i=1

Ui(θ̂, α̂)Ui(θ̂, α̂)
′ (4.12)

B12(θ̂, α̂) =
n∑

i=1

Ui(θ̂, α̂)Gi(α̂)
′ (4.13)

B22(θ̂, α̂) =
n∑

i=1

Gi(α̂)Gi(α̂)
′ (4.14)

Note that the matrix B22(α̂) in (4.8) can be replaced by a block diagonal matrix

representing V ar(G(α)), since the estimating functions in (4.4) are estimated sepa-

rately for each value of t and are mutually independent (see expression (4.6)). The

use of a block diagonal version simplifies the computation of its inverse. Moreover,

note that the summands of the Ĉ matrix have the form of square cross products of

the residuals from the multivariate regression of the Ui(θ, α̂) vectors on the vectors
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Gi(α̂) and thus they can be computed using standard linear models software. For

instance, using the lm function in R/SPlus and then using the $residuals option

.

Robins et al. point out that augmenting a correctly specified model for loss

to follow-up usually leads to an improvement in the efficiency with which θ is

estimated and show that there exists a lower bound for the asymptotic variance of

θ̂. One of the arguments for this gain in efficiency is that the variance matrix of

the residuals from a multivariate regression decreases as the number of covariates

increases. Furthermore, Robins et al. state that the variance of θ̂ using (4.9) is

larger than the variance computed considering the weights p−1
it (α̂) as fixed. This is

seen for the alternative variance estimate (4.8), by noting that (4.8) with the second

term in the middle is dropped, is the variance estimate for θ̂ when the weights are

known.

An example: location-scale models

For illustration, consider the family of location-scale or accelerated failure time

regression models and suppose that we have a single duration for each subject,

denoted by yi. Assume time varying covariates that may include information related

to the durations are constant over intervals (t − 1, t], denoted by Zi(t). Consider

y∗i = log(yi) and location and scale parameters µit = Zi(t)′β and b, respectively,

where β is the parameter vector of regression coefficients.

Defining θ = (β, b) and ȳi = (log(yi)− Z ′
itβ)/b, (4.3) gives (for mi = 1):

lit(θ) = log

{[
f0(ȳi)/b

S0(ȳi(t− 1))

]δit [ S0(ȳi(t)))

S0(ȳi(t− 1))

]1−δit
}

(4.15)

where yi(t) = min (t, vi) − min (t, ui) is the length of the spell yi up to time t,

t = 0, 1, ...,M . Also, f0(·), h0(·) and S0(·) are the respective density, hazard and

survivor functions of ȳi. Some models that could be used for f0(y) are the extreme-

value, normal and logistic, which correspond to yi being Weibull, log-normal, and
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log-logistic.

As before, the IPC weights are obtained by solving the estimating function for

loss to follow-up, G(α) in (4.4), for separate logistic regression models as in (4.6).

In order to compute the variance estimates we need the matrix of individual

contributions to the duration model scores Ui(θ) and also the matrix of individual

contributions to the loss to follow-up model scores Gi(α). In parametric location-

scale modelling this can be done in several ways.

The estimate for β in equation (4.2) can be obtained by using general optimiza-

tion software, that is, by maximizing the weighted log-likelihood function which

corresponds to

lw(θ,α) =
n∑

i=1

mi∑

j=1

M∑

t=1

wit(y)lijt(θ)

where lijt(θ) is of the form (4.15). For example, (i) in R via the nlm or optim opti-

mizers or (ii) in SPlus, via nlmin. The B̂ matrix in (4.9) is obtained by specifying

the hessian option, available in both nlm and nlminb. The gradient option does

not give the individual duration model scores Ui(θ̂, α̂), it only gives the value of

the gradient evaluated at the maximum. Therefore, extra code would be needed

to compute the terms Ui(θ̂, α̂). Other software with good optimization functions

(e.g. the proc nlp procedure in SAS) could also be used to obtain estimates and

hessian matrices.

Another way to obtain the maximum in (4.2) is by using the function censorReg

in SPlus specifying the desired distribution f0(·) in (4.15). The matrix B̂ can be

obtained from the variance matrix of the estimated coefficients given by the output

and the Ui(θ̂, α̂) score residuals can be obtained with some extra code. A description

on how to specify censorReg in order to deal with weights, right censoring and

delayed entry can be found in Cook and Lawless, [15] (Appendix C).

Estimation of the loss to follow-up related probabilities pit(α̂) can be done using

proc logistic or glm in SAS and R/SPlus, respectively. When the loss to follow-
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up scores Gi(α̂) cannot be obtained directly from the software (which is the case

in SAS), it is useful to note that the score residuals are related to the DFBETA

residuals, calculated as the approximate change (α̂− α̂1
i ) in the vector of parameter

estimates due to the omission of the ith observation. The relationship between the

score residuals Gi(α̂) and the DFBETA residuals ∆α̂1
i is given by:

∆α̂1
i -

(
Rit − λit(α̂t)

1− hii

)
Zc

i (t)
′ ˆV ar(α̂) =

(
Gi(α̂)

1− hii

)
ˆV ar(α̂)

where hii = Zc
i (t) ˆV ar(α̂) Zc

i (t)
′ is the (i, i)th element of the “Hat” matrix based

on the logistic regression and ˆV ar(α̂) is the variance matrix of the estimated α̂

coefficient by the software (see Collet [14], chapter 5).

4.2 A simulation

This simulation is motivated by the observational framework used in the UK Mil-

lennium Cohort Study, in which children are followed longitudinally at ages of 9

months, and 3,5,7 and 9 years. This survey collects information about a variety

of characteristics regarding children’s growth, including features from their home

environment, such as their family’s health, economic status and composition. For

simplicity, we consider simple random samples of individuals.

In this simulation, we will assume that the time to achieve certain milestones

in the growth of children is of interest. Let’s suppose that a sample of children

is followed at ages 1,3,5,7, and 9. Denote the time to the event of interest by Yi,

experienced by individual i. It is simulated here as a Normal random variable with

mean and variance given by

E(Yi|x1i, x2i) = β0 + β1x1i + β2x2i and V ar(Yi|x1i, x2i) = σ2. (4.16)

Further, suppose that the covariates in (4.16) follow a bivariate normal distribution,

with mean µ = (µx1, µx2), and variances V ar(X1) = σ2
x1, V ar(X2) = σ2

x2 and

covariance Cov(X1, X2) = σ2
x1,x2. The correlation between X1 and X2 is given by

ρ = Cov(X1, X2)/(σx1 · σx2).
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Further, suppose that each child is subject to loss to follow-up before the end

of the study and that λit(α) = Pr(Rit|Ri,t−1 = 1, x2i;α), that is, the probability of

being observed at time t given that the person was also observed at t− 1, depends

on X2. Loss to follow-up is simulated from the following logistic model:

logitλit(α) = α0 + α1x2i, for t = 1, 3, 5, 7, 9. (4.17)

This model is also used to estimate the dropout related probabilities

pit(α) = Pr(Rit|x2i;α) = λt
i,

where α = (α0,α1)′ and λi = λi1 = λi2 = · · ·λit. Note that in this case we have

that pit(α) = pi(α) for all t and the parameters to be estimated from this model are

given by α = (α0,α1)′. Note that in real life we would not have knowledge about

the LTF process and should base the estimates of the IPC weights on separate LTF

models for t ∈ {1, . . . , 5}; however in this particular simulation we fitted only one

model for computational convenience.

It is of interest to examine the behavior of the IPCW method in the presence of

dependent loss to follow-up. The working model we use for the simulated durations

Yi is Normal with mean and variance given by

E(Yi|x1i) = βw
0 + βw

1 x1i and V ar(Yi|x1i) = σ2
w. (4.18)

From the properties of the Normal distribution, the true values of the parameters

in (4.18) are

βw
0 = β0 + β2

(
µx2 − ρ (σx2/σx1)µx1

)
,

βw
1 = β1 + β2ρ σx2/σx1, and

σ2
w = β2

2σ
2
x2(1− ρ2) + σ2;

where β0, β1, β2, ρ and σ2 are the parameters in (4.16). We will investigate how well

a working model with (4.18) estimates these values.

When the variable X2 affects both durations and dropout (β2 > 0) and is not

included in the working duration model (4.18), the IPC weights are necessary to
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achieve consistent estimation of βw
0 , β

w
1 and σ2

w. It is of interest to show how the

IPCW method behaves in different scenarios.

With Yi in years; let the overall variation of Yi be denoted by V ar
(
Yi

)
= σ2

y .

This variation has been set to be σ2
y = 0.64. Based on this and β0 = 6, scenarios

for simulation are considered with (i) proportions of explained variation of EV =

1 − σ2/σ2
y = 0.3 and 0.5; (ii) correlation values between X1 and X2 of ρ = 0 and

0.4; and (iii) duration model coefficients β2 = 0 and β1 = β2. The values of β1 and

β2 can be obtained from EV and by noting that σ2
y = β2

1 + β2
2 + 2ρβ1β2 + σ2 when

choosing, without loss of generality, µx1 = µx2 = 0 and σ2
x1 = σ2

x2 = 1. The values

defined in (ii) and (iii) give eight possible scenarios, found in Table 4.1.

We employ an initial sample size of 1450. Thus, one repetition of the simulation

consists of creating a set of n = 1450 independent durations Y1, Y2 . . . Yn from model

(4.16) and then simulating a loss to follow-up time t ∈ {1, 3, 5, 7, 9} in years for

each, based on the model in (4.17). The values of the parameters in the dropout

model have been set to achieve approximately 50% loss to follow-up by the end

of the study (by t = 9) and by considering Pr(Ri9 = 1|x2i = −1.645) = .75

and Pr(Ri9 = 1|x2i = 1.645) = .25. These probabilities give α0 = 1.984 and

α1 = −.5123. We simulated 1000 independent samples for each scenario.

The total of 1000 simulations within each scenario gave an average of 1260

observed spells from which about 33% were censored. Note that the number of

spells differs from the initial sample size of 1450 because some individuals were lost

to follow-up in the first year (see (4.17)) and so no data on them were collected.

The average proportion of individuals lost to follow-up by year 9 was 0.48. The

proportion of censored spells and individuals lost to follow-up by year 9 did not

vary substantially across scenarios; the individual values can be found in Table 4.2.

Results from the simulations for each of the four possible scenarios for the ex-

plained variation factors of EV = 0.3 and EV = 0.5 can be found in Tables 4.3-4.4

and 4.5-4.6, respectively. From these Tables, it is possible to observe the behavior

of unweighted estimates and estimates based on the IPC weights. The column de-
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Table 4.1: Scenarios used for simulation of durations based on the Millennium Cohort

Study’s framework. Regression parameters with Y in both years and months are shown.

Year Scale Month Scale

Scenario EV ρ β2 β1 β2 β1

1 0.3 0.0000 0.3098 0.3098 3.7181 3.7181

2 0.0000 0.0000 0.4382 0.0000 5.2581

3 0.4000 0.2619 0.2619 3.1428 3.1428

4 0.4000 0.0000 0.4382 0.0000 5.2581

5 0.5 0.0000 0.4000 0.4000 4.8000 4.8000

6 0.0000 0.0000 0.5657 0.0000 6.7882

7 0.4000 0.3381 0.3381 4.0572 4.0572

8 0.4000 0.0000 0.5657 0.0000 6.7882

Table 4.2: Average proportion of censored spells, number of observed spells and average

proportion of LTF individuals by year 9, across 1000 samples.

Scenario Prop.Censored Av.No.Spells Prop.LTF

1 0.328 1259 0.485

2 0.326 1259 0.484

3 0.328 1260 0.484

4 0.327 1260 0.484

5 0.329 1260 0.485

6 0.326 1260 0.484

7 0.330 1260 0.485

8 0.327 1260 0.483
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noted by “True” represents the values of βw
0 , β

w
1 and σw under the true model. For

each one of these parameters, the column labeled as “Av.Coef” gives the average

of the estimated coefficients over the 1000 samples, “SD.Coef” gives the standard

error of the estimated coefficients, “Av.Bias” is the average of the bias, “Av.SD”

is the average standard deviation calculated under the unweighted method (where

“Method=Unw”) and the IPC method (“Method=IPC”). The “Cov” column shows

the estimated coverage probability obtained for each parameter, based on a nominal

95% confidence interval (Estimate ±1.96 SD).

In the case of scenario 1 when ρ = 0, β2 = β1 and EV = 0.3 (Table 4.3),

results for the Unw method give good coverage for βw
1 , with the IPC method giving

a better result in terms of bias. The absence of the variable X2 in the fitted

model is reflected by a low coverage for βw
0 and log(σw). The average standard

error “Av.SD” is slightly higher for method IPC compared to Unw. This behavior

appears consistent when increasing the explained variation to EV = 0.5 (scenario

5, Table 4.5), with the coverage for the slope parameter below the nominal value of

95%. Since X2 affects both durations and dropout, IPC weights would be needed in

this scenario. The IPC method shows good coverage and low bias for all parameters,

with slight improvement at the higher EV value.

In scenarios 2 and 6 (Tables 4.3, 4.5), with ρ = β2 = 0 and EV = 0.3, 0.5,

IPC weights are not needed since X2 does not affect dropout. Both Unw and IPC

methods work well in these cases, with slightly better results when EV increases.

When ρ '= 0 and β1 = β2, the variable X2 affects both dropout and durations,

hence IPC weights are expected to give better results than the Unw method. This is

the case in terms of bias and coverage, as can be seen in Tables 4.4 and 4.6 (scenarios

3 and 7), where the IPC gives good coverage while the Unw gives coverage values

below the nominal 95%. The behavior of the Unw method becomes worse as the

EV increases to 0.5, while the IPC method shows consistent results for both values

of EV.

Finally, when ρ '= 0 and β2 = 0, both Unw and IPC methods give good results
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(scenarios 4 and 8 in Tables 4.4, and 4.6). The Unw method performs well because

Y is independent of X2 given X1, and therefore there is no need for IPC weights.

This simulation shows that the IPC method performs better than Unw under

dependent loss to follow-up, when no sampling design features are present. It is

of interest to further explore the performance of the IPC method in hypothetical

situations where the sampling mechanism has an effect. This will be analyzed in

chapters 5 and 6, where Kaplan-Meier estimates and Cox PH models are imple-

mented using the variance estimation techniques for survey data described in the

following section.

Table 4.3: Results from simulation based on MCS study. Scenarios 1 and 2: EV =

0.3, ρ = 0 and β1 = β2 = 3.7181; β1 = 5.2581,β2 = 0 (month scale).

Scenario Parameter Method True Av.Coef SD.Coef Av.Bias Av.SD Cov

1 βw
0 Unw 72.0000 71.1812 0.2986 -0.8188 0.2937 0.201

βw
1 Unw 3.7181 3.6889 0.2855 -0.0292 0.2935 0.953

log(σw) Unw 2.1805 2.1655 0.0235 -0.0150 0.0239 0.901

βw
0 IPC 72.0000 72.0062 0.3050 0.0062 0.3007 0.943

βw
1 IPC 3.7181 3.7256 0.3067 0.0075 0.3150 0.955

log(σw) IPC 2.1805 2.1792 0.0266 -0.0013 0.0263 0.950

2 βw
0 Unw 72.0000 71.9964 0.2782 -0.0036 0.2709 0.944

βw
1 Unw 5.2581 5.2387 0.2745 -0.0194 0.2707 0.946

log(scale) Unw 2.0834 2.0821 0.0243 -0.0013 0.0239 0.956

βw
0 IPC 72.0000 71.9951 0.2898 -0.0049 0.2809 0.943

βw
1 IPC 5.2581 5.2384 0.2848 -0.0197 0.2803 0.949

log(σw) IPC 2.0834 2.0821 0.0255 -0.0013 0.0248 0.949
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Table 4.4: Results from simulation based on MCS study. Scenarios 3 and 4: EV =

.3, ρ = .4 and β1 = β2 = 3.1428; β1 = 5.2581,β2 = 0 (month scale).

Scenario Parameter Method True Av.Coef SD.Coef Av.Bias Av.SD Cov

3 Intercept Unw 72.0000 71.3847 0.2889 -0.6153 0.2867 0.429

x1 Unw 4.3993 4.2688 0.2868 -0.1305 0.2878 0.928

log(scale) Unw 2.1439 2.1337 0.0235 -0.0102 0.0239 0.929

Intercept IPC 72.0000 71.9798 0.2934 -0.0202 0.2945 0.948

x1 IPC 4.3993 4.3875 0.3099 -0.0118 0.3076 0.949

log(scale) IPC 2.1439 2.1417 0.0251 -0.0022 0.0257 0.951

4 Intercept Unw 72.0000 71.9843 0.2683 -0.0157 0.2729 0.957

x1 Unw 5.2581 5.2650 0.2694 0.0068 0.2738 0.958

log(scale) Unw 2.0834 2.0820 0.0242 -0.0014 0.0239 0.949

Intercept IPC 72.0000 71.9826 0.2784 -0.0174 0.2822 0.949

x1 IPC 5.2581 5.2621 0.2843 0.0039 0.2884 0.958

log(scale) IPC 2.0834 2.0819 0.0253 -0.0016 0.0249 0.946

Table 4.5: Results from simulation based on MCS study. Scenarios 5 and 6: EV =

.5, ρ = 0 and β1 = β2 = 4.8; β1 = 6.7882,β2 = 0 (month scale).

Scenario Parameter Method True Av.Coef SD.Coef Av.Bias Av.SD Cov

5 Intercept Unw 72.0000 70.9368 0.2631 -1.0632 0.2738 0.025

x1 Unw 4.8000 4.7422 0.2828 -0.0578 0.2735 0.934

log(scale) Unw 2.1179 2.0937 0.0238 -0.0242 0.0240 0.832

Intercept IPC 72.0000 72.0076 0.2749 0.0076 0.2736 0.949

x1 IPC 4.8000 4.7949 0.3212 -0.0051 0.3021 0.940

log(scale) IPC 2.1179 2.1164 0.0280 -0.0016 0.0271 0.939

6 Intercept Unw 72.0000 72.0045 0.2236 0.0045 0.2294 0.952

x1 Unw 6.7882 6.7843 0.2303 -0.0039 0.2288 0.951

log(scale) Unw 1.9152 1.9131 0.0240 -0.0020 0.0240 0.959

Intercept IPC 72.0000 72.0035 0.2341 0.0035 0.2376 0.954

x1 IPC 6.7882 6.7836 0.2403 -0.0046 0.2370 0.952

log(scale) IPC 1.9152 1.9127 0.0248 -0.0025 0.0248 0.955
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Table 4.6: Results from simulation based on MCS study. Scenarios 7 and 8: EV =

.5, ρ = .4 and β1 = β2 = 4.0572; β1 = 6.7882,β2 = 0 (month scale).

Scenario Parameter Method True Av.Coef SD.Coef Av.Bias Av.SD Cov

7 Intercept Unw 72.0000 71.2095 0.2663 -0.7905 0.2593 0.147

x1 Unw 5.6794 5.5167 0.2604 -0.1627 0.2605 0.902

log(scale) Unw 2.0464 2.0300 0.0254 -0.0164 0.0240 0.873

Intercept IPC 72.0000 71.9892 0.2727 -0.0108 0.2631 0.942

x1 IPC 5.6794 5.6811 0.2930 0.0017 0.2850 0.944

log(scale) IPC 2.0464 2.0436 0.0286 -0.0028 0.0264 0.926

8 Intercept Unw 72.0000 72.0012 0.2278 0.0012 0.2314 0.956

x1 Unw 6.7882 6.7908 0.2278 0.0026 0.2322 0.960

log(scale) Unw 1.9152 1.9133 0.0232 -0.0019 0.0240 0.948

Intercept IPC 72.0000 72.0036 0.2358 0.0036 0.2395 0.955

x1 IPC 6.7882 6.7881 0.2431 -0.0001 0.2458 0.955

log(scale) IPC 1.9152 1.9132 0.0248 -0.0020 0.0250 0.944

4.3 Estimation from survey data

In the context of survey data, suppose that a sampling design was used to ob-

tain a sample from a finite population of size N . Suppose that the sample S =
⋃R

r=1

⋃Kr

k=1 Srk is composed of Kr clusters within R strata, r = 1, ..., R, where Srk

is the subsample corresponding to the kth cluster within the rth stratum. Let

Ii = I(i ∈ S) indicate whether individual i was included in the sample and the

sampling probabilities be πi = Pr(Ii = 1), where πi depends on the stratum i is in.

The system of equations analogous to the ones in expression (4.1) are:

U(θ,α) =
R∑

r=1

Kr∑

k=1

∑

i∈Srk

Ui(θ,α) = 0 (4.19)

G(α) =
R∑

r=1

Kr∑

k=1

∑

i∈Srk

Gi(α) = 0. (4.20)

The individual estimating equations Ui(θ,α) referring to the duration model
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have a similar form as in (4.2),

Ui(θ,α) =
mi∑

j=1

M∑

t=1

wit(y)Uijt(θ), (4.21)

where wit(α) = Rit/πipit(α), and Uijt(θ) = ∂lijt(θ)/∂θ. The estimating equations

referring to the model for loss to follow-up have the same form as in (4.4). As

before, estimates of (θ,α) are obtained as solutions of these equations.

The discussion in Chapter 3 shows how using the IPCW method achieves unbi-

asedness under certain assumptions, in a general context. In particular, in order to

show that (4.2) is unbiased for every t, let Hi(M) = {Di(1), . . . Di(M)} represent

the duration history of individual i in the population, over the observation period

(0,M ]. Let ZD
i denote a variable that contains information about the sample de-

sign, that is, about stratification and clustering. Let Zi(t) the set of explanatory

variables of the duration model, which includes external covariates and history

Hi(t− 1) up to time t− 1. Further, consider Zc
i (t), the set of explanatory variables

in the model for loss to follow-up in (4.5), which may include Zi(t).

As before, let us assume that (i) Rit is conditionally independent of Di(t) given

(Zc
i (t), Z

D
i ) (missing at random assumption, Robins et al. [51]), (ii) Ii is condi-

tionally independent of (Di(t), Zc
i (t)) given ZD

i , and (iii) the duration model is

correctly specified, so that E(∂lit(θ)/∂θ|Zi(t)) = 0. Under these assumptions, we

have that Uit = Uit(θ,α) is unbiased for every t, t = 1, . . . ,M . The expected value

of

Uit =
Rit

πipit(α)

mi∑

j=1

∂lijt(θ)

∂θ
, (4.22)

conditional on Zc(t), ZD, and Z(t) is given by:

ED(t),I,Rt,Zc(t)|ZD,Zi(t) {Uit} = ED(t),Zc(t)|ZD,Zi(t)

{
ERt,I|D(t),Zc(t),ZD,Zi(t) {Uit}

}

= ED(t)|ZD,Zi(t)

{
ERt|Zc(t),ZDEI|ZD {Uit}

}
(4.23)

by assumptions (i) and (ii). After applying these two expectations to Uit, and

noting that ED(t),Zc(t)|ZD,Z(t) {Uit} = ED(t)|ZD,Z(t) {Uit} (see expression (3.7)), we
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are left with:

ED(t)|ZD,Zi(t) {Uit} = ED(t)|ZD,Zi(t)

{
mi∑

j=1

∂lijt(θ)/∂θ

}
(4.24)

= 0, by assumption (iii). (4.25)

Variance estimates

Miller et al. [44] adapted the variance estimation procedure with IPC weights

in Robins et al. [51] to the context of survey data. The variance for θ̂ has the

same “sandwich” form as in (4.9). Let it be denoted as the combined IPCW and

design-variance estimate for θ̂, given by

V̂ ar(θ̂)comb = B̂−1
combĈcombB̂

−1 ′
comb, (4.26)

where

B̂comb = −
R∑

r=1

Kr∑

k=1

∑

i∈Srk

∂Ui(θ, α̂)

∂θ

∣∣∣
θ̂

and (4.27)

Ĉcomb =
R∑

r=1

Kr

Kr − 1

Kr∑

k=1

{(
∑

i∈Srk

Êi

)
−

(
1

Kr

Kr∑

k=1

∑

i∈Srk

Êi

)}⊗2

(4.28)

where

Êi = Ui(θ̂, α̂)−
[

R∑

r=1

Kr∑

k=1

∑

i∈Srk

Ui(θ̂, α̂)Gi(α̂)
′

][
R∑

r=1

Kr∑

k=1

∑

i∈Srk

Gi(α̂)Gi(α̂)
′

]−1

Gi(α̂),

where Ui(θ,α) is as in (4.21) and A⊗2 = AA′. Miller et al. obtained the terms Êi

above in the Ĉ matrix from Robins et al. in (4.11), and applied to their sum the

standard stratified sampling variance estimator (4.28) to account for the stratified

and cluster sampling aspects of the data (Cochran, [13]).

As discussed in section 4.1, the variance estimates with the IPC weights alone

described in expression (4.2) are smaller than the variance estimates considering

the IPC weights as fixed. It is of interest to examine the behavior of variance

estimates that use combined IPC and sampling weights as in (4.26). This will be
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explored in the remainder chapters of this thesis. However, we note that a variance

estimate analogous to the form (4.8) can also be given in the survey context, thus

suggesting that treating the IPC weights, and hence the full combined weights, as

fixed produces a (slightly) larger variance estimate than treating them as random.
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Chapter 5

Weighted Kaplan-Meier

Estimation

As descriptive quantities, estimates of survivor distributions from a finite popula-

tion are of interest, for example, the distribution of jobless spells for individuals

living in different provinces. We later consider these based on labour data collected

by the Survey of Labour and Income Dynamics (SLID). One particularity of this

study would be that not every person in the population experiences the event of

interest (being jobless) in a given period of time. In other settings, interest might

lie on the survivor distribution of the time to an event, for instance, the study

of the time by which children reach a certain developmental milestone, from data

gathered from the UK Millenium Cohort Study (MCS). Note that in this example

a high proportion of the population of interest, if not its totality, may experience

the event in question.

Weighted Kaplan-Meier (K-M) estimates for dependent loss to follow-up in the

non-survey setting have been considered by Robins and Finkelstein [50], Robins

[49], Satten et al. [55]. Several authors have considered them in the survey data

context, for example, Folsom et al. [20], and Korn and Graubard [28]; however,

the issue of dependent loss to follow-up is not accounted for. Especially in the

case of estimating a duration distribution without covariates, dependent loss to
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follow-up becomes a problem, since it is typically related to covariates and previous

event history variables that are not being accounted for in the estimation of the

population survivor distribution.

The methods developed in chapter 4 concern parametric modelling as the basis

for variance estimation in the presence of dependent loss to follow-up. It is possible

to apply the methodology to Kaplan-Meier estimation, since, as we show below, it

can be performed through the estimation of the discrete-time hazard function via

parametric likelihood methods.

The first section of this chapter provides a framework in which the notion of

a finite population distribution is introduced, as well as notation. Section 5.2

gives a discussion of estimation of the survivor distribution using IPCW methods,

accounting for the randomness of the weights. This discussion makes reference to

the methods in chapter 4.

Section 5.3 gives a simulation study on the performance of the IPC weights in

the presence of dependent loss to follow-up and stratification effects. Results from

using sampling design weights with and without IPC weights are compared.

5.1 Framework

Let (0,M ] denote the follow-up period for individuals i = 1, 2, ..., n and consider the

notation defined at the beginning of section 4.1 regarding sequences of durations.

Briefly, for an individual i in the population, let mi ≥ 0 denote the number of

durations that the individual experienced within the observation period. As before,

denote uij, vij as the start and end times of the durations represented by Yij =

vij − uij; j = 1, . . .mi and the time a person was last seen as Ci ∈ {1, 2, ...,M}.

As discussed in section 2.3, the duration distribution as a finite population

quantity is expressed as:

SU(y) =
1

N

∑

i∈U

mi∑

j=1

I(Yij ≥ y). (5.1)
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For individuals i with mi = 0, the corresponding summand in (5.1) is equal to zero.

In (5.1), U is the finite population of size N∗ and N =
∑N∗

i=1 mi is the total number

of durations in the population.

For the discussion that follows, it is useful to assume that the finite population

quantity in (5.1) converges in probability to a superpopulation duration distribution

S(y), as the population’s size N∗ increases to infinity. This is reasonable since the

durations Yij and N are latent random variables at the time the sample is selected,

and in this sense, the finite population quantity in (5.1) has random components.

This is expressed as follows,

S(y) = plim SU(y) = plim

(
N∗

N

)
plim

(
1

N∗

∑

i∈U

mi∑

j=1

I(Yij ≥ y)

)
.

In large-scale population surveys, it might be of more interest to study a dura-

tion survivor distribution for a particular stratum or group in the population (e.g.,

a specific province in Canada), rather than an overall estimate that combines all

strata. The reasoning used above can be easily applied to this case.

5.2 Point and variance estimation

Let Ii = I(i ∈ S) indicate whether individual i was included in the sample and

let the sample inclusion probability be represented by πi = Pr(Ii = 1|ZD
i ), where

ZD
i is a set of factors regarding the sampling design. Let’s consider a discrete

time scale and duration times without including clusters and strata for now. From

section 1.2, we have the hazard function denoted by h(y) = Pr (Y = y|Y ≥ y) =

f(y)/S(y), where S(y) and f(y) = S(y) − S(y + 1) (when S(y) = P (Y ≥ y) are

the corresponding discrete survivor and probability functions, respectively.

Let T be an upper limit on the duration variable Y and define θ = (h(1), ..., h(T ))′,

where h(y) is the hazard function for y = 1, ..., T . For individuals that had at least

one event in the observation period, that is, those who had mi ≥ 1, the estimating
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functions U(θ,α) in (4.2) have elements of the form:

Ui(θ,α)y =
M∑

t=1

mi∑

j=1

δijt(y)

πipit(α)
[dijt(y)− h(y)] ,

=
M∑

t=1

Uit(θ,α)y y = 1, . . . , T (5.2)

where

dijt(y) = I (Yij = y, t− 1 < uij + y ≤ t)Rit, (5.3)

δijt(y) = I (Yij ≥ y, t− 1 < uij + y ≤ t)Rit; (5.4)

uij is the start time of the j-th duration Yij, πi = Pr(i ∈ S|ZD
i ) is the sample

inclusion probability and pit(α) = λi1(α) . . .λit(α) the probability of being observed

at time t, estimated from the estimating equations in (4.4) and the logistic model

in (4.5).

The terms in (5.2) are unbiased for every t. Recall that it is assumed that

the covariate vectors ZC
i (t) in the loss to follow-up modelling (expressions (4.4)

and (4.5)) include enough information such that Rit is conditionally independent

of Di(t), given ZC
i (t). The variables in ZC

i (t) must include terms that affect both

loss to follow-up and durations. It is important to note that Zi(t) may depend on

covariates or previous event information only up to time t − 1. This ensures that

data at t when the person is lost to follow-up, and later, are missing at random.

That is, that Rit is independent of the full duration history Hi(M) given ZC
i (t). In

line with the discussion in 4.1.2, analogous to (4.24) we have that,

EH(M)Rt,R|ZC(t),ZD {Uit} = EH(M)|ZC(t),ZD

{
mi∑

j=1

I(Yij ≥ y) [I(Yij = y)− h(y)]

}

(5.5)

= {mif(y)−miS(y)h(y)} (5.6)

= 0. (5.7)

The solution to
∑n

i=1 Ui(θ, α̂) = 0 in (5.2) is:

ĥ(y) =

∑n
i=1

∑mi

j=1 ŵij(y)dij(y)∑n
i=1

∑mi

j=1 ŵij(y)
, (5.8)
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where dij(y) =
∑M

t=1 dijt(y), ŵij(y) =
∑M

t=1 ŵijt(y), ŵijt(y) = δijt(y)
πipit(α̂)

, and α̂ is a

consistent estimator of α obtained from the estimating functions corresponding to

the dropout model as in (4.4) and (4.5). The weighted KM estimator of S(y) is

then given by

Ŝ(y) =
y−1∏

s=1

(
1− ĥ(s)

)
, y = 1, 2, . . . , T. (5.9)

Variance estimation

Consider that a sample S =
⋃R

r=1

⋃Kr

k=1 Srk of size n, based on Kr clusters within

strata r = 1, ..., R. The system of estimating equations can be expressed as in

(4.19) and (4.20), with a corresponding change in (5.8).

Let V̂ arcomb(θ̂) = B̂−1
combĈcombB̂

−1 ′
comb denote the asymptotic variance of the es-

timated parameter θ̂ = (ĥ(1), . . . , ĥ(T ))′ when using the sampling design weights

combined with the IPCW, as in (4.26). For the KM estimation, the Bcomb matrix

in (4.27) is a diagonal matrix with terms based on:

[
∂ Ui(θ, α̂)

∂θ

∣∣∣
θ̂

]

y

=
M∑

t=1

mi∑

j=1

1

πipit(α̂)

{
−dijt(y)

ĥ(y)2
− δijt(y)− dijt(y)

[1− ĥ(y)]2

}
; (5.10)

where Ui(θ, α̂) =
(
Ui(h(1), α̂), ..., Ui(h(T ), α̂)

)′
are the combined IPC and design

weighted score residuals in (5.2). The middle matrix Ccomb is obtained as in (4.28),

using Ui(θ, α̂) as in (5.2).

An asymptotic variance estimate for Ŝ(y) in (5.9) is given by a straightforward

application of the delta theorem ([32], Appendix B.1), leading to

V̂ ar
{
Ŝ(y)

}
= Ŝ(y)2

y−1∑

s=1

y−1∑

t=1

Ĉov
[
ĥ(s), ĥ(t)

]

[
1− ĥ(s)

] [
1− ĥ(t)

] , (5.11)

where Ĉov[ĥ(s), ĥ(t)] is the (s, t) element of (4.26) with B̂comb and Ĉcomb as in (4.27)

and (4.28), respectively.
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5.3 A simulation study

The objective of this simulation is to assess estimates (5.9) of the survivor func-

tion in (5.1) and their estimated variance (5.11), based on multiple spells from

individuals sampled from a stratified finite population. The main interest is to

show the performance of the weighted Kaplan-Meier method using two choices

of weights, mainly, design weights π−1
i and a combination of the design and IPC

weights π−1
it = (πip̂it)−1.

5.3.1 Setup

The simulated process is motivated by that of jobless spells from SLID. It consists

of an alternation of durations of sojourns in the states “jobless” and “not jobless”,

termed as NJ and J , similar to the example of alternating between employment

and unemployment in section 3.3, depicted in Figure 3.1. For convenience, we

assume that the process started in state NJ at t = 0. We will denote the durations

in state J as Yij and those in state NJ as Y NJ
ij for individual i, so that a whole

sequence is labeled as Y NJ
i1 , Yi1, Y NJ

i2 , Yi2, . . .. Interest resides in estimation of the

distribution of jobless spells over some time period.

The sequences of durations in states {NJ, J} are generated for a finite pop-

ulation of individuals, of size N . This population U is composed of ten strata

U1, . . .U10, and within each stratum, a simple random sample of individuals is ob-

tained.

Individuals are simulated to have sequences of jobless and not jobless spells

over a period of six years (312 weeks), and the durations of the spells are measured

in weeks. Every individual will start with an NJ spell with duration Y NJ
i1 of a

certain length, which will be followed by a J spell with duration Yi1, which in turn

is followed by a second NJ duration Y NJ
i2 , and so on. Simulation of individual

processes stop when the sum of the sequence of durations is greater or equal to 312

weeks.
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In the population, the multiple jobless spell duration times Yijr are generated

independently from a log-Normal model where Y ∗
ijr = log(Yijr); i = 1, . . . n and

j = 1, . . . ,mi, r = 1, ..., 10 and mi ≥ 0. The distribution of [Y ∗|X1, X2,α∗] is given

by:

E(Y ∗
ijr|xir1, xir2,α

∗
r) = β0r + β1xir1 + β2xir2 + εijr, (5.12)

β0r = β0 + α∗
r , εijr ∼ N(0, σ2);

where (X1, X2) ∼ Bivariate Normal with vector mean µ = (µx1 , µx2) and a variance

matrix with elements V ar(X1) = σ2
x1
, V ar(X2) = σ2

x2
and covariance Cov(X1, X2) =

σx1,x2 . The intercept is further defined in terms of α∗ = (α∗
1, . . . ,α

∗
10)

′ = (-0.366,

-0.125, -0.119, -0.116, -0.055, -0.029, -0.006, 0.164, 0.318, 0.334)′, which is a vector

of fixed stratum-specific effects. These were simulated from a Normal model with

zero mean and variance equal to .084, and then centered about their mean. The

variance of the generated fixed effects is V ar
(
α∗) = 0.047. The “not jobless” spells

denoted as Y NJ
ij are generated independently from an exponential distribution with

mean γ1 exp (γ2xi2).

Selection probabilities within each stratum in the population are specified so

that higher sampling weights are assigned to strata with longer average durations,

and are given by p =(0.02,0.022, ... ,0.038). Each stratum has 10000 individuals;

then the sample sizes from the strata r = 1, 2, . . . , 10 are (100,110,120, . . . , 190),

respectively, for a total sample size of 1450. No clustering is assumed and the

simulated processes within strata are mutually independent.

For individuals that are selected in the sample, the loss to follow-up process is

simulated from a logistic model, where

logitλit(α) = α0 + α1xi2 t = 1, . . . , 5. (5.13)

with λit(α) = Pr (Rit|Ri,t−1 = 1, Xi2 = xi2) and from where the IPC related proba-

bilities are obtained: pit(α) = Pr (Rit=1|xi2) = λi1λi2 · · ·λit.

The way in which this simulation is set up allows people in strata with larger

indices to have longer jobless spells, higher probabilities of selection and higher
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probabilities of becoming lost to follow-up, the latter by setting α1 < 0. It is

assumed that the time a person is last seen, Ci, is conditionally independent of

(Yij, Xi1) given xi2.

In this simulation we have that the variable X2 affects both durations and

dropout. Since we are not including it in the estimation of the duration distribution,

we expect to see that IPC weights are needed to achieve unbiasedness of the KM

estimate.

5.3.2 Estimation formulas

The estimation formulas that were used for each weighting method are given in

the following paragraphs. To keep the notation simple, it will be assumed that the

terms ĥ(y), Ŝ(y), Ui(h(y),α) correspond to the design, or combined weighted cases,

according to the context in which they are mentioned below.

Design method:

The sampling probabilities are πi = Pr(i ∈ Sr) = nr/Nr, for individual i in stratum

r, where Sr is the stratum r sample of size nr and Nr is the size of the corresponding

sub-population, r = 1, 2, ..., R. The estimate of the hazard function is given by

(5.8), with ŵij(y) = π−1
i :

ĥ(y) =

∑R
r=1(Nr/nr)

∑
i∈Sr

∑mi

j=1 I(Yij = y, δi = 1)
∑R

r=1(Nr/nr)
∑

i∈Sr

∑mi

j=1 I(Yij ≥ y)
. (5.14)

The superpopulation variance (based on Boudreau and Lawless, [9]) for the

estimated survivor function V̂ ar
(
Ŝ(y)

)
has the same form as in (5.11), where

Ĉov
(
ĥ(s), ĥ(t)

)
= B̂−1

desĈsupB̂
−1
des and where B̂des is a diagonal matrix of the form

B̂des = −diag

{
R∑

r=1

nr∑

i=1

∂Uir(h(y))

∂h(y)

∣∣∣
ĥ(y)

; y = 1, . . . , T

}
(5.15)

where
∂ Uir(h(y))

∂ h(y)

∣∣∣
ĥ(y)

=
Nr

nr

mi∑

j=1

{
−dijt(y)

ĥ(y)2
− δijt(y)− dijt(y)

[1− ĥ(y)]2

}
; (5.16)
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and where ĥ(y) is the design estimated hazard function in (5.14). The middle

matrix Ĉsup is of the form

Ĉsup =
R∑

r=1

nr∑

i=1

Uir(ĥ)Uir(ĥ)
′,

where Uir(ĥ) =
(
Uir(ĥ(1)), ..., Uir(ĥ(T ))

)′
are the score residuals from individual i

in stratum r as in (5.2), with πi = nr/Nr and pit(α)=1.

The finite population variance (based on Binder, [4]) of Ŝ(y) is slightly different.

It has the form in (5.11), where Ĉov[ĥ(s), ĥ(t)] = B̂−1
desĈfinB̂

−1
des, and

Ĉfin =
R∑

r=1

nr

nr − 1

nr∑

i=1

(
Uir(ĥ)− Ūr(ĥ)

)⊗2

, A⊗2 = AA′, (5.17)

where Ūr(ĥ) =
∑nr

i=1 Uir(ĥ)/nr and where Uir(ĥ) and ĥ are weighted with design

weights.

Combined method:

This method goes along the lines of section 5.2, where the hazard function is es-

timated as in (5.8), where πi = nr/Nr, as before, is the probability of inclusion of

individual i in stratum r. The survival function is estimated via (5.9) and the form

of the variance estimate of Ŝ(y) is (5.11), with Ĉov[ĥ(s), ĥ(t)] as the (s, t) element

of B̂−1
combĈcombB̂

−1
comb, where the diagonal matrix B̂−1

comb has elements of the form

B̂comb = −diag

{
R∑

r=1

nr∑

i=1

∂Uir(h(y))

∂ h(y)

∣∣∣
ĥ(y)

; y = 1, . . . , T

}
(5.18)

and the middle Ĉcomb matrix is:

Ĉcomb =
R∑

r=1

nr

nr − 1

nr∑

i=1

{
Eir − Ēr

}⊗2

,

Eir = Uir − (
nr∑

i=1

UirG
′
ir)(

nr∑

i=1

GirG
′
ir)

−1Gir,
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where A⊗2 = AA′, Uir =
(
Uir(ĥ(1), α̂), . . . , Uir(ĥ(T ), α̂)′ are the combined IPC

and design weighted score residuals from the duration model, Gir = Gir(α̂) the

score residuals from the LTF model for individual i in stratum r, respectively; and

Ēr =
∑nr

i=1 Eir/nr is the mean of Eir from stratum r.

The “naive” variance of Ŝ(y) from the COMB method treats the IPC weights

as fixed instead of random. It has the form in (5.11) and the covariance matrix for

the hazard functions is given by B̂−1
combĈN.combB̂

−1
comb, where

ĈN.comb =
R∑

r=1

nr

nr − 1

nr∑

i=1

{
Uir(ĥ)− Ūr(ĥ)

}⊗2

, A⊗2 = AA′, (5.19)

and where Ūr(ĥ) =
∑nr

i=1 Uir(ĥ)/nr and where Uir(ĥ) =
(
Uir(ĥ(1)), ..., Uir(ĥ(T ))

)′

and ĥ are weighted with combined IPC and design weights.

5.3.3 Results

The parameter values were specified using a scheme similar to the one used in the

simulation of section 4.2. Let the overall variation of Y ∗
ijr based on model (5.12) be

denoted by V ar
(
Y ∗
ijr

)
= σ2

y . This variation has been set to σ2
y = 0.36, with time

measured in years. Based on this and β0 = log(24) = 3.178, scenarios for simulation

are considered with (i) proportions of explained variation of EV = 1−σ2/σ2
y = 0.3

and 0.5; (ii) correlation values between X1 and X2 of ρ = 0 and 0.3; and (iii)

duration model coefficients β2 = 0 and β1 = β2. The values of β1 and β2 can be

obtained from EV and by noting that σ2
y = V ar(α∗) + β2

1 + β2
2 +2ρβ1β2 + σ2 when

choosing, without loss of generality, µx1 = µx2 = 0 and σ2
x1 = σ2

x2 = 1.

From the eight possible scenarios given by (ii) and (iii) we explore four. These

are presented in Table 5.1. The first two scenarios correspond to values of EV = 0.5

and σ2 = 0.18 and the latter two, to EV = 0.3 and σ2 = 0.252.

The “not jobless” spells were simulated according to an exponential distribution

with mean γ1 exp (γ2xi2), where γ1 = 11.619 and γ2 = 0.155; these values give a

proportion of individuals with zero jobless spells in the population of about 59.5%.
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Table 5.1: Parameter scenarios I-IV used for simulation for Kaplan-Meier estimation.

Scenario I II III IV

ρ 0.300 0.000 0.300 0.300

β1 0.226 0.365 0.247 0.1535

β2 0.226 0.000 0.000 0.1535

EV 0.5 0.5 0.3 0.3

The parameters of the loss to follow-up model in (5.13) were set up so that about

50% of the sample would drop out by year six, with α0 = 2.131 and α1 = −0.536.

Since the dropout and the duration models share the variable X2, α1 < 0 ensures

that individuals in the sample with longer jobless spells are associated with a lower

probability of being observed.

Four populations were generated according to the scenarios shown in Table

5.1, each of size N = 100, 000. Within each population, there were 40.6% of

individuals with at least one jobless spell (on average, over the four populations).

Each population had individuals that experienced from zero to five spells.

Recall that 1000 samples were selected from the finite population, by selecting a

random sample of size nr from stratum r each time. Across scenarios I-IV and the

1000 samples, the average number of observed spells, the percentage of censored

spells and of LTF individuals by year six did not vary substantially. On average,

there were about 503 total jobless spells, 11.6% of those were censored, and 49.9%

of persons were LTF. The average percentage (40.5%) of individuals with at least

one jobless spell in the samples is representative of the average across populations.

The population quantity of interest is the distribution of the durations of the

simulated jobless spells, expression (5.1). A summary of the survival distribution

(duration times with probabilities closest to .1, . . . , .9) from each population of the

four is shown in Table A in the appendix.

Subsection 5.3.2 presents the formulas for variance estimation for the estimation

methods: sampling design-weighted from the superpopulation and finite population
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approaches (expressions (5.15), (5.16) and (5.17)), and the combined and combined

naive (expressions (5.18) and (5.19)). These were carried out for each simulated

scenario. Results for Ŝ(y) include bias, empirical and average standard errors, as

well as estimated coverage probabilities of a 95% nominal confidence interval given

by

exp
{
− exp

{
Ŝl(y)± 1.96

√
V̂ar

(
Ŝl(y)

)}}

where Ŝl(y) = log
(
− log

(
Ŝ(y)

))
. This complementary log-log transformation of

Ŝ(y) was used in order to have the CI limits between 0 and 1. General features

of the results will be discussed below, and detailed results can be found in the

Appendix (Tables A.2 - A.9).

Figures 5.1 and 5.2 show bias and estimated coverage from scenarios I-IV at each

duration time where the estimated survival probability was closest to 0.1, . . . , 0.9.

The graphs show results from the DES and COMB methods. Only the superpopu-

lation design method is shown here, since the finite population methods gave very

similar results (see appendix).

Results from scenario I (ρ = 0.3, β2 > 0) show that in terms of bias and coverage,

the COMB method does much better than DES, as expected. When ρ = 0 and

β2 = 0 as in scenario II, no IPC weights are needed, only design weights. This

picture shows the COMBmethod does as well as DES, in terms of bias and coverage,

even though IPC weights are not needed.

In scenario III, when ρ = 0.3 and β2 = 0, we have that Y is independent of X2

given X1, thus IPC weights are not needed. Figure 5.2 shows that both DES and

COMB give good results, with slightly bigger bias from DES.

The case of scenario IV is comparable to scenario I, only that the explained

variation is decreased from 0.5 to 0.3. As with scenario I, the COMB method gives

much better results in terms of both bias and coverage than the DES method.

In summary, through scenarios I-IV the COMBmethod gives the lowest bias and

a coverage close to 0.95, and is never lower than 0.925. It has been observed that the

average standard errors slightly underestimate the empirical standard errors from
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the COMB method at some duration times, which gives a slightly lower coverage

than the nominal 95%. The average standard errors estimate the empirical standard

errors by ranges 91 − 96%, 92 − 98%, 93 − 102%, 93 − 101% in scenarios I-IV,

respectively (Tables A.2 to A.9). Another simulation using scenario I where the

sample sizes were increased to 2900 (not shown here), gave slightly better results

for the COMB method. The average standard errors estimate 93 − 100% of the

empirical standard errors and the coverage improves from ranges 0.925 − 0.947 to

0.932− 0.955.

The COMB variance estimates give slightly lower values than the naive ones

(Tables A.2-A.9), as expected (Robins et al. [51]), and CI coverage quite close

to 95%. The use of the computationally simpler naive variance estimates provide

conservative confidence inervals (coverage slightly greater than the nominal value),

which are satisfactory in many practical settings. It is of interest to make a com-

parison between COMB naive and COMB estimates with real data, and this will

be discussed in chapter 7, where methods are applied to SLID jobless spells.

In order to obtain unbiased results, COMB methods are advisable when it is

suspected that the sampling design and dropout have an effect on durations. Even

though the Naive COMB variance estimates are only slightly larger than the COMB

variance estimates in this simulation, in practice, it is not recommended to rely

only on the Naive COMB variance, but rather to compute both and see whether

the COMB variance is substantially different. If this is the case, use of the COMB

method is recommended.
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Figure 5.1: Bias and estimated coverage, scenarios I and II.
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Figure 5.2: Bias and estimated coverage, scenarios III and IV.
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Chapter 6

Weighted Cox PH Analysis

When analyzing spells and their relation with covariates, we distinguish cases where

individuals experience a single spell, or cases where individuals experience a se-

quence of spells. Examples of single spells are the time to experience a develop-

mental milestone in children, the time for women to have a first pregnancy, and

their relationship with factors such as socio-economic status or family composition.

Sequences of spells can be found for example in tobacco consumption studies, where

sequences of tobacco smoking cessation periods with relation to education level and

exposure to cigarette prevention campaigns are examined.

As mentioned before, methods for sampling design-weighted estimation of re-

gression parameters based on the Cox model have been discussed by several authors,

for example, Binder [4], Lin et al. [39], Boudreau and Lawless [9]. In the case of

IPC weights, Robins and Finkelstein [50] used Cox PH model based methods in

the analysis of data from a clinical trial to study the effect of an alternative treat-

ment in AIDS patients. The estimating function formulas based on the Cox PH

model presented in this chapter can be seen as a version of the formulas from

Robins and Finkelstein developed for the context of duration analysis of survey

data. Their variance estimation procedures, however, are complex and based on

stochastic integrals and martingale theory; and do not consider sampling design

weights, clustering or stratification.
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As discussed earlier, the parametric methods for variance estimation presented

in chapter 4 can be used when assuming that the duration time distribution is

known except for a vector of parameters. They can also be used to estimate a

discrete survivor distribution by viewing the Kaplan-Meier estimate as a maximum

likelihood estimator, as discussed in chapter 5. The case of the Cox model is more

complicated since the parameters are given by an infinite dimensional baseline haz-

ard function h0(y) which is non-parametric, and a set of regression coefficients that

are specified by a relative risk function, generally of the form r(x, β) = exp(β′x).

One option is to approximate the Cox PH model with a piecewise constant (PC)

hazards model. From this approach, the parametric based methods from chapter 4

can be employed.

The first section of this chapter gives expressions for the estimating functions

that are used to estimate the regression coefficients and the cumulative hazard

function based on the Cox PH model. It also provides a discussion on the piecewise

constant model and its relationship with the Cox model. Section 6.2 gives a variance

estimation method by adapting the variance estimation formulae from chapter 4

to the PC model. Finally, section 6.3 presents a short simulation in which this

approximation is assessed.

6.1 IPC weights and the Cox PH model

6.1.1 Estimating functions

Recall from section 4.3 that when considering strata r = 1, . . . , R and clusters

k = 1, . . . , Kr within stratum r, the estimating equations defined for individuals in

the sample S =
⋃R

r=1

⋃Kr

k=1 Srk are given by:

U(θ,α) =
R∑

r=1

Kr∑

k=1

∑

i∈Srk

Ui(θ,α) = 0 (6.1)

G(α) =
R∑

r=1

Kr∑

k=1

∑

i∈Srk

Gi(α) = 0, (6.2)
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where the equations U(θ,α) and G(α) involve the model for durations and dropout

used to estimate the IPC weights, respectively.

Suppose that Yi is a duration from individual i and that ui and vi denote the

start and end times, respectively. Further, let yi = min(Yi, Ci−ui) be the observed

duration and δi = I(yi = Yi) indicate whether the duration is completely observed

or censored. Furthermore, suppose that Zi(ui + y) denotes a set of covariates for

individual i, that may include information on prior event history up to time t− 1,

where t− 1 < ui + y ≤ t, as well as on information on external covariates.

The Cox Proportional Hazards model is given by:

h(y|Z(ui + y)) = h0(y)exp(Z(ui + y)′β). (6.3)

The estimating functions Ui(θ,α) in (6.1) based on (6.3) can be seen as an extension

of the formulas from Robins and Finkelstein [50] to our observation framework; or

as an IPCW version of the expressions in Binder [4], Lin et al. [39], or Boudreau

and Lawless [9]. They are given by:

Ui(β,α) = wi(y)δi

{
Zi(ui + yi)−

S(1)(yi, β,α)

S(0)(yi, β,α)

}
, (6.4)

where

S(1)(y, β,α) =
R∑

r=1

Kr∑

k=1

∑

j∈Skr

wj(y)I(yj ≥ y)Zj(uj + y) exp(β′Zj(uj + y)), (6.5)

S(0)(y, β,α) =
R∑

r=1

Kr∑

k=1

∑

j∈Skr

wj(y)I(yj ≥ y) exp(β′Zj(uj + y)), (6.6)

where wi(y) =
∑M

t=1 Ritξit(y)/πipit(α), and ξit(y) = I(t − 1 < ui + y ≤ t). For

convenience we write wi(y) to stand for wi(y;α).

The estimating equations referring to the model for loss to follow-up have the

same form as in (4.4). Estimates of (β,α) are obtained by solving these equations

along with (6.1) with θ replaced with β and Ui(β,α) given by (6.4). The estimate

of β can be readily obtained through Cox PH software that allows for case weights

and left truncation, such as the coxph function in R/SPlus and the PHREG procedure
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in SAS. Estimation is done by first estimating α and then using estimated weights

wi(y, α̂).

The input data frame usually needs to be arranged in the same way that was

used for the example of alternating employment and unemployment processes in

section 3.3. Table 3.1 shows the data frame in which information regarding to spells

for employment and unemployment (E,U) is arranged. When analyzing one type

of durations, we would focus on one of the lines corresponding to the process of

interest (either E or U). In this Table, the variables “Start.w” and “Stop.w” are

analogous to yi(t− 1) and yi(t), and “Status” to δi(t). The covariates in the Table

shown as“zi1”, “zi2”, etc., are equivalent to Zi(1), Zi(2), etc. Such software also

produces variance estimates assuming the weights as fixed. In many cases, the

variance estimates assuming fixed weights are just slightly larger than those which

recognize the IPC weights are random (Robins et al. [51]). This has been seen

in the simulation results from chapters 4 and 5 regarding parametric models and

Kaplan-Meier estimation, respectively, and will be assessed in the simulation study

for the Cox PH model in section 6.3.

The estimate of the cumulative hazard function is given by

Λ̂0(y) =
∑

yi≤y

{
δiŵi(yi)∑R

r=1

∑Kr

k=1

∑n
j∈Srk

ŵj(yi)I(yj ≥ yi) exp(β̂′Zj(uj + yi))

}
. (6.7)

Stratified versions of (6.3) and (6.7) can also be considered. For example, SLID

has multiple levels of stratification within provinces, such as economic regions,

employment insurance regions, etc. While modelling jobless spells from Ontario,

one might be interested in including some of these as strata in the hazards model

in (6.3) and so the model may, for instance, be expressed as

hr(y|Zr(t)) = h0r(y)exp(Zr(t)
′β). (6.8)

Model strata is readily implemented in Cox model software, for example, by adding

a term strata(variable) in the coxph function in R/SPlus or by defining a strata

step inside the SAS procedure PROC PHREG.
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6.1.2 Piecewise constant approximation

The piecewise constant (PC) hazards model can be used to approximate the Cox PH

model. This model uses the form in (6.3) but with a piecewise constant specification

for h0(y). It approximates results from a Cox model quite well, with a few well

chosen pieces, and variance estimates based on the methods described in chapter 4

can be used. Information about the PC model can be found in Lawless [32] (pages

30, 323, 384) and some examples of applications of this model as an approximation

to the Cox PH model in Lawless et al. [35], and Andersen et al.[2].

Let us follow the notation used in section 4.1, where ui and vi are the start and

end times of a spell, and the spell’s duration is given by Yi = vi−ui, for individuals

i = 1, ..., n. Let b0 < b1 · · · < bm be specified values with b0 = 0 and bm = ∞. The

hazard function for the PC model, given covariates, is then

hpc(y|Zi(ui + y)) = hpc
0 (y) exp(β

′Zi(ui + y)), (6.9)

where the piecewise constant baseline hazard function hpc
0 (y) for y is:

hpc
0 (y) = ρj, if bj−1 ≤ y < bj, (6.10)

where ρj > 0 and j = 1, 2, ...,m.

The hazard function in (6.10) can be used to express the log-likelihood function

for right censored data accounting for the time-varying IPC weights (see expression

(4.3)). For simplicity, let’s assume that the covariates are constant over intervals

(t− 1, t], so that Z(ui+ y) = Z(t). Let yi(t) = min (t, vi)−min (t, ui) be the length

of the observed duration yi at t and δi(t) = I(t − 1 < vi ≤ t) indicate whether

the duration yi ends in the interval (t − 1, t]. Further, let θ = (ρ′, β′)′, denote the

parameter of interest, where ρ = (ρ1, . . . , ρk)′, β = (β1, . . . , βp)′. The log-likelihood

is of the following form:

l(θ,α) =
n∑

i=1

M∑

t=1

wit(α) lit(θ), (6.11)
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where wit(α) = Rit/πi pit(α) and

lit(θ) = δi(t) log h
(
yi(t)

)
+ log

(
S
(
yi(t)

)
/S

(
yi(t− 1)

))

= δi(t)
[ m∑

j=1

I(bj−1 ≤ yi(t) < bj) log ρj + β′Zi(t)
]

− eβ
′Zi(t)

[
Λpc
0 (yi(t))− Λpc

0 (yi(t− 1))
]
, (6.12)

where Λpc
0 (y) =

∑m
j=1 ρj∆j(y) and ∆j(y) =

∫ bj
bj−1

I(u ≤ y)du = min(bj , y)−min(bj−1, y).

Putting aside strata and clusters for now, the estimate θ̂ = (ρ̂′, β̂′)′ is obtained from

solving the system

U(θ,α) =
n∑

i=1

M∑

t=1

Uit(θ,α) = 0 (6.13)

G(α) =
n∑

i=1

M∑

t=1

Git(α) = 0 (6.14)

where

Uit(θ,α) = wit(α)
∂lit(θ)

∂θ
, (6.15)

wit(α) = Rit/πipit(α), and from (6.12),

∂lit(θ)

∂β
= δi(t)Zi(t)− Zi(t) exp(β

′Zi(t))
m∑

j=1

ρj [∆j(yi(t))−∆j(yi(t− 1))] (6.16)

∂lit(θ)

∂ρj
= δi(t)

I(bj−1 ≤ yi(t) < bj)

ρj
− exp(β′Zi(t))[∆j(yi(t))−∆j(yi(t− 1))], (6.17)

and where Git(α) is the score estimating function from the model for logit
(
λit(α)

)
=

logit
{
Pr

(
Rit = 1|Ri,t−1 = 1, Zc

i (t)
)}

in chapter 4, expression (4.4).

The estimate θ̂ = (ρ̂′, β̂′)′ can be obtained by maximizing
∑n

i=1

∑M
t=1wit(α̂) lit(ρ,β)

or
∑n

i=1

∑M
t=1wit(α̂) lit(ρ̃(β, α̂),β) in (6.12) using optimization software (for example,

nlm or nlmin in R/SPlus). Here, ρ̃(β, α̂) is the maximizer of (6.13) with α replaced by α̂

and β fixed and is given by

ρ̃j(β, α̂) =

∑n
i=1

∑M
t=1wit(α̂)δi(t)I(bj−1 ≤ yi(t) < bj)∑n

i=1

∑M
t=1wit(α̂) exp(β′Zi(t))[∆j(yi(t))−∆j(yi(t− 1))]

. (6.18)

Estimates for (6.18) are readily obtained by substituting β by β̂. The baseline cumulative

hazard function has the form

Λ̂pc
0 (y) =

m∑

j=1

ρ̂j∆j(y), (6.19)
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where ρ̂j = ρ̃j(β̂, α̂).

We can obtain an expression for the profile score UP (β,α) for β based on (6.13) by

substituting ρ̃j(β,α) in place of ρj in expression (6.11), and differentiating with respect to

β. The expression for UP (β,α) has a similar form to the Cox model estimating function

in (6.4) and its components in (6.5) and (6.6). It is given by

UP (β,α) =
n∑

i=1

UP
i (β,α), (6.20)

where

UP
i (β,α) =

M∑

t=1

wit(α)δi(t)




Zi(t)−
k∑

j=1

I(bj−1 ≤ yi(t) < bj)
S(1)
j

S(0)
j




 , (6.21)

S(0)
j =

n∑

i=1

M∑

t=1

wit(α) exp(β
′Zi(t))[∆j(yi(t))−∆j(yi(t− 1))], (6.22)

S(1)
j =

n∑

i=1

M∑

t=1

wit(α)Zi(t) exp(β
′Zi(t))[∆j(yi(t))−∆j(yi(t− 1))], (6.23)

where as before, wit(α) = Rit(y)/πipit(α).

Introducing the sampling design’s stratum and cluster information we have an anal-

ogous version of (6.18) given by

ρ̃sj(β, α̂) =

∑R
r=1

∑Kr
k=1

∑
i∈Srk

∑M
t=1wit(α̂)δi(t)I(bj−1 ≤ yi(t) < bj)

∑R
r=1

∑Kr
k=1

∑
i∈Srk

∑M
t=1wit(α̂) exp(β′Zi(t))[∆j(yi(t))−∆j(yi(t− 1))]

.

(6.24)

The profile score function that accounts for clusters and strata can be obtained by

replacing
∑n

i=1 U
P
i (β,α) by

∑R
r=1

∑Kr
k=1 U

P
i (β,α) in expression (6.20), and by doing the

same with the summations in its components S(0)
j and S(1)

j in (6.22) and (6.23).

When k becomes large, in practice, we’ll assume that bk−1 is fixed at some large value

beyond which a failure is impossible; and that as k increases, the values bj − bj−1 for

j = 1, . . . k − 1 approach 0. Then the expression for UP
i (β,α) based on the PC model in

(6.21) converges to Ui(θ,α) based on the Cox model, in (6.4). Note that their respective

components S(0)
j and S(1)

j in (6.22) and (6.23) expressed accounting for clusters and strata

converge to S(0)(y,β,α) and S(1)(y,β,α) in (6.5) and (6.6), respectively (see Lawless [32],

p. 385). Analogously, the baseline cumulative hazard function in (6.7) is approximated

by

Λ̂pc
0 (y) =

m∑

j=1

ρ̂s∆j(y). (6.25)
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where ρ̂s = ρ̃sj(β̂, α̂).

6.2 Variance estimation

The variance estimates based on the PC model can be obtained simply by applying the

formulae described in Chapter 4, in expression (4.26) given by

V̂ ar(θ̂)comb = B̂−1
combĈcombB̂

−1 ′
comb, (6.26)

where

B̂comb = −
R∑

r=1

Kr∑

k=1

∑

i∈Srk

∂Ui(θ, α̂)

∂θ

∣∣∣
θ̂

and (6.27)

Ĉcomb =
R∑

r=1

Kr

Kr − 1

Kr∑

k=1









∑

i∈Srk

Êi



−



 1

Kr

Kr∑

k=1

∑

i∈Srk

Êi










⊗2

(6.28)

where A⊗2 = AA′, and

Êi = Ui(θ̂, α̂)−




R∑

r=1

Kr∑

k=1

∑

i∈Srk

Ui(θ̂, α̂)Gi(α̂)
′








R∑

r=1

Kr∑

k=1

∑

i∈Srk

Gi(α̂)Gi(α̂)
′




−1

Gi(α̂).

where θ = (β′, ρ′)′ is the parameter vector of the PC model in (6.11), and is of dimension

(p + m). Here, Ui(θ,α) =
∑M

t=1 Uit(θ,α), where the summands are based on the PC

model and are given in (6.15). As mentioned earlier regarding the estimating equation in

(6.14), the vector Gi(α) =
∑M

t=1Git(α), is of dimension q = q1 + · · ·+ qM .

The (p+m)× (p+m) matrix B̂ has the form

B̂ = −



 ∂U(θ,α)/∂β∂β′ ∂U(θ,α)/∂ρ′∂β′

∂U(θ,α)/∂β∂ρ′ ∂U(θ,α)/∂ρ∂ρ′




∣∣∣
θ̂
, (6.29)

where, by letting Zik(t) and βk be the kth column of Zi(t) and the kth component of β,

from (6.16) and (6.17) we have

• ∂U(θ,α)/∂β∂β′ is a p× p matrix with (k, s) elements of the form

∂U(θ,α)/∂βk∂βs = −
R∑

r=1

Kr∑

k=1

∑

i∈Srk

M∑

t=1

exp
(
β′Zi(t)

)
Zik(t)

′Zis

[
Λpc
0

(
yi(t)

)
−Λpc

0

(
yi(t−1)

)]
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for k = 1, . . . , p, s = 1, . . . , p;

• ∂U(θ,α)/∂β′∂ρ′ is a p×m matrix with (k, j) elements

∂U(θ,α)/∂βk∂ρj = −
R∑

r=1

Kr∑

k=1

∑

i∈Srk

M∑

t=1

exp
(
β′Zi(t)

)
Zik(t)

[
∆j

(
yi(t)

)
−∆j

(
yi(t− 1)

)]

= ∂U(θ,α)/∂ρj∂βk, the (j, k) element of ∂U(θ,α)/∂ρ′∂β′,

where k = 1, . . . , p and j = 1, . . . ,m;

• ∂U(θ,α)/∂ρ′∂ρ′ is a m×m diagonal matrix with (j, j′) elements

∂U(θ,α)/∂ρj∂ρj′ = −
R∑

r=1

Kr∑

k=1

∑

i∈Srk

M∑

t=1

wit

[
δi(t)I(bj−1 ≤ yi(t) < bj)/ρ

2
j

]

if j = j′ and equal to zero if j '= j′, j = 1, . . . ,m.

6.3 A simulation study

6.3.1 Setup

The simulation presented here aims to assess the PC approximation to the Cox PH

model. We assume an observational framework where spells from individuals in a finite

population of size N = 100, 000 are simulated. Simple random samples of n = 1500

individuals are obtained from this population and follow-up is simulated annually for

six consecutive years. The observation period is denoted by (0,M ] where M = 6 and

interview times are given by t, t ∈ {1, 2, . . . , 6}. Each individual i in the population is

associated with one simulated duration Yi, where Yi has a Weibull distribution, that is,

(
Y ∗
i |xi1, xi2

)
=

(
log Yi|xi1, xi2

)
∼ Extreme Value

(
u(xi), b

)
(6.30)

where u(xi) = β0 + β1xi1 + β2xi2; and (X1, X2) ∼ Bivariate Normal with vector mean

µ = (µx1 , µx2) and a variance matrix with elements V ar(X1) = σ2
x1
, V ar(X2) = σ2

x2
and

covariance Cov(X1, X2) = σx1,x2 . The starting times of the durations were generated

from a Uniform distribution in (0, 3) years.
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Simulating the log-spell durations (Y ∗
i |xi1, xi2) from an Extreme Value distribution

implies that the variables (Yi|xi1, xi2) have a Weibull distribution with shape and scale

parameters exp
(
u(xi)

)
and b−1, respectively. The Weibull distribution has the peculiarity

that it belongs to both the Accelerated Failure Time and to the Proportional Hazards

families of distributions (see more on Weibull and Extreme Value distributions in Lawless

[32], sections 5.2 and 6.3).

The start times of the simulated spells follow a Uniform(0, 3) distribution. As in

previous simulations, loss to follow-up is simulated from a logistic model, where

logitλit(α) = α0 + α1xi2 t = 1, . . . , 5. (6.31)

with λit(α) = Pr (Rit|Ri,t−1 = 1, Xi2 = xi2) and from where the IPC related probabilities

are obtained: pit(α) = Pr (Rit=1|xi2) = λi1λi2 · · ·λit. The estimation of the IPC weights

was done by fitting a separate model for each time t ∈ {1, . . . , 5}, where α̂ = (α̂1, . . . , α̂5)′,

where α̂t = (α̂0t, α̂1t).

The Cox PH and PC models we consider are given, respectively, by

hc(y|x1) = hc0(y) exp(β
c
1x1) (6.32)

and

hpc(y|x1) = hpc0 (y) exp(βpc
1 x1). (6.33)

That is, x1 is included in the fitted models. The “targets” of estimation are then βc
1N

and

βpc
1N

, which are solutions to the following estimating equations from the entire simulated

population. The estimating equations based on the Cox model are given by

U(βc
1) =

N∑

i=1

δi
{
xi1 −

S(1)(yi,βc
1)

S(0)(yi,βc
1)

}
(6.34)

where

S(1)(y,βc
1) =

N∑

j=1

I(yj ≥ y)xj1 exp(β
c
1xj1), (6.35)

S(0)(y,βc
1) =

N∑

j=1

I(yj ≥ y) exp(βc
1xj1); (6.36)

where yi = min(Yi,M − ui) is the spell’s length in (0,M) and δi = I(yi ≤ M − ui). The

estimating equations based on the PC model are given by

U(βpc) =
N∑

i=1

{
δixi1 − xi1 exp

(
βpc
1 xi1

) m∑

j=1

ρj∆j
(
yi
)}

. (6.37)
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Note that (6.36) and (6.37) do not need to account for weights (design or IPC) since they

are from the entire population.

The parameter values for the model in (6.30) were selected according to a total vari-

ation of σ2
y = V ar(Y ∗

i ) = 0.36. The model in (6.30) can be expressed as

Y ∗ = β0 + β1X1 + β2X2 + ε, where ε ∼ Extreme Value(0, b)

and the total variation is expressed as σ2
y = β2

1 + β2
2 + 2β1β2Corr(X1, X2) + σ2

ε , where

σ2
ε = V ar(ε) = b2π2/6, which is unexplained variation.

The value of β0 = 3.369 was selected from the relation β0 = β′
0 + κσ′√6/π, where

κ = 0.5772 is known as Euler’s constant (see Lawless [32], p.21), and where β′
0 = log(24) =

3.178 (with durations measured in weeks) and σ′ =
√
0.18 = 0.424 are the intercept and

standard deviation that were used to simulate log-Normal durations in the simulation

from section 5.3. This value for β0 gives a similar duration distribution to the one used

before, with a median duration value of 24 weeks.

The proportion of unexplained variation was set to EV = 0.5, so V ar(ε) = .18.

Without loss of generality, µx1 = µx2 = 0 and σ2
x1 = σ2

x2 = 1, and Corr(X1, X2) = 0.3.

Based on this and β0 = 3.369, the remaining parameter values for the duration model

were obtained as β1 = β2 = 0.263 and b = 0.331. The loss to follow-up model parameters

in (6.31) were set as α0 = 2.131 and α1 = −0.537, so that 50% of the of the samples

would drop out by year six.

6.3.2 Results

A total of 1000 simple random samples of size n = 1500 were drawn from the population

and estimates of βc
1N and βpc

1N were obtained and denoted by β̂c
h1 and β̂pc

h1, for h =

1, . . . , 1000. The objective is to compare ¯̂βc
1 =

∑1000
h=1 β̂

c
h1/1000 and ¯̂βpc

1 =
∑1000

j=1 β̂pc
j1/1000

with βc
1N and βpc

1N and examine their variance estimates.

The PC model intervals (bj−1, bj ] were selected using the same procedure for the

population and samples, based on the durations distribution, as follows. The middle

point between the minimum duration and the first quartile was found, then between the

first and the second, and between the second quartile and the third. These amount for 6
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pieces so far and then there were included 6 additional pieces of the same length between

the maximum duration and the third quartile, giving a total of 12 pieces. This method is

artificial, but was found convenient for simulation purposes and was the option that gave

the best results. With real data, it is advisable rather to determine the length and number

of pieces based on the curvature of the baseline cumulative hazard function from the Cox

model. In a way, the cumulative baseline function serves as a tool for “calibration” of the

PC model in order to specify the pieces that yield a better approximation.

The estimation procedure for the pieces ρj for j = 1, . . . ,m and the parameters βpc
1N

was performed as described in section 6.1.2, using the R non-linear minimization function

nlm. The graph in the left hand side in Figure 6.1 shows the baseline cumulative hazard

function based on the durations from the entire population, obtained from the Cox PH

and the PC models, respectively. The right hand side graph shows the average of the

unweighted estimates of the baseline cumulative hazard functions from the 1000 samples,

restricted to up to 80 weeks, based on the Cox PH and the PC models. The IPC estimates

gave very similar results and were omitted from the graph.

It can be seen that the Cox PH model is approximated fairly closely by the PC

model in the population case. In the sample based average estimate, the PC model starts

disagreeing from the Cox model for durations of around 52 weeks, which should not be of

concern, since durations longer than 52 weeks have a low probability of occurring, that

is, Pr(Yi > 52) = 0.082 (calculated from the population duration distribution). Based

on these graphs, we can conclude that the PC approximation in both the population and

the samples is quite good. This is further verified with the point and variance estimation

results presented in the following discussion.
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Figure 6.1: Population and sample average of the baseline cumulative hazard function.
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In all samples, some individuals were loss to follow-up at year 1 and their spell was

not observed. On average, there were 49.9% individuals lost to follow-up and a total of

1182 observed spells, from which 6.5% were censored.

Under the full model
(
Y ∗|X1, X2

)
, the relationship between the regression coefficients

from the Extreme Value model β1 in (6.30) and the Cox PH model βph
1 is given by

βph
1 = −β1/b, where b is the scale parameter from the Extreme Value model. Note that if

we were using the full model, we would have βph
1 = −0.795, since we used b = 0.331 and

β1 = 0.263. The value for βc
1 under the reduced model [Y ∗|X2] should be similar to βph

1 .

Table 6.2-(a) shows the values of the target population parameters based on the Cox PH

and PC models denoted earlier by βc
1N

and βpc
1N

, respectively; the latter resulting a good

approximation of the former. This section of the table also shows the average over the

1000 sample estimates, based on the Cox PH and PC model, which are also very close to

one another.

Table 6.1 shows the estimated coverage under the Cox PH model with respect to

the target parameter from this same model is 0.955 and 0.941, respectively, from the

unweighted and IPC methods. Regarding the PC model coverage, it was estimated as

0.961 and 0.959 from the unweighted and IPC methods, respectively. We note that in

this particular example, there was not a strong effect of loss to follow-up.

Table 6.1: Estimated coverage based on estimates from Cox PH and PC models.

Model Unw IPC

Cox PH 0.955 0.941

PC 0.961 0.959

Results shown in Table 6.2-(b) give an indication of how well the variance estimation

based on the PC model approximates the variance based on the Cox PH model. The

second column, labeled as “Cox PH”, shows the average standard errors over the 1000

samples, based on the conservative Cox PH model variance, given by I(β̂c
1)

−1, where

I(β̂c
1) = −∂U(βc

1)

∂βc
1

∣∣∣
β̂c
1

= −
n∑

i=1

∂Ui(βc
1)

∂βc
1

∣∣∣
β̂c
1

(6.38)

Ui(β
c
1) = wi(y)δi

{
xi1 −

S(1)(yi,βc
1)

S(0)(yi,βc
1)

}
, (6.39)
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Table 6.2: Population target parameter and estimates based on the Cox PH and PC

models.Samples are of size 1500 and subject to loss to follow-up.

(a) Point estimates

Population Sample Average
(
βc
1N , βpc

1N

)
Unw IPC

Cox PH -0.7745 -0.7816 -0.7807

PC -0.7736 -0.7828 -0.7767

(b) Standard errors of the form 1/I(θ̂)

Weights Cox PH PC,nlm PC,coded

Unity 0.0361 0.0353 0.0353

IPC 0.0312 0.0310 0.0310

(c) Standard errors from sandwich variance estimates

Unweighted IPC IPC Naive∗

Model Av.se Emp.se Av.se Emp.se Av.se

Cox PH 0.0382 0.0371 NA 0.0434 0.0425

PC 0.0380 0.0371 0.0420 0.0444 0.0426

∗ Treats IPC weights as fixed.
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and

S(1)(y,βc
1) =

n∑

i=1

wi(y)I(yj ≥ y)xi1 exp(β
c
1xi1),

S(0)(y,βc
1) =

n∑

i=1

wi(y)I(yj ≥ y) exp(βc
1xi1), (6.40)

and where wi(y) = 1 and wi(y) =
∑M

t=1RitI(t− 1 ≤ ui + y < t)/pit(α̂) were used in the

unity and IPC weighted case, respectively, where the latter are considered as fixed.

The third and fourth columns in Table 6.2-(b), labeled as “PC,nlm” and “PC,coded”

correspond to the PC model based standard errors. The former is computed as the

inverse of the negative hessian matrix given by the optimization R function nlm; the

latter is based on the analytically coded hessian matrix, where the second derivatives

were coded according to (6.29). In both cases, unweighted and IPC, the approximations

are very good. The “PC,nlm” and the “PC,coded” standard errors are virtually identical

and they closely approximate the standard errors based on the Cox PH model, for both

unity and IPC weights, with an average about 2% of the Cox PH average. It should be

noted that these standard errors are not correct, but are shown to indicate how well the

PC approximation works regarding I(β̂)−1. For unweighted estimates, the sandwich and

I(β̂)−1 variance estimates should be close.

Finally, Table 6.2-(c) shows the average and empirical standard errors over the 1000

samples, based on Cox PH and PC sandwich variance estimates for unity and IPC weights.

The second and third columns labeled as “Av.se” and “Emp.se” correspond to those where

unity weights were used. The variance based on the Cox PH model was calculated from

the sandwich form

I(β̂c
1)

−1
( n∑

i=1

U s
i (β̂

c
1)U

s
i (β̂

c
1)

′
)
I(β̂c

1)
−1 (6.41)

where I(β̂c
1) as in (6.38) and U s

i (β
c
1) are score residuals from the Cox PH model, obtained

using the residual function together with the scores option in R. This variance formula

with unity weights gave an average standard deviation of 0.0382 which overestimates

slightly, of about 3% the empirical value, 0.0371. The unweighted variance based on

the PC model was obtained as described in section 6.2, simplified by the absence of

stratification and clustering. The PC model standard errors are given by 0.0380 and

0.0371, and indicate that the PC model gives a very good approximation to the sandwich
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variance estimates from the Cox PH model, when unity weights are used.

The IPCW case is shown in fourth, fifth and sixth columns in Table 6.2-(c). The

first two were calculated based on (6.41) and the variance formulas from section 6.2,

respectively. The average standard error from the PC model is equal to 0.0420, which

estimates 94.5% of the empirical value 0.0444 and as expected, is smaller than the one

based on the naive estimate, given by 0.0426, calculated by (6.41). The PC model gives

an average standard error of 0.0420, which underestimates the empirical value based on

the Cox PH model 0.0434, only by 0.03%.

The results from this simulation show that the PC approximation to the Cox PH in

simple cases like this, where only one parameter is estimated, can be very good. The

selection of the pieces is crucial for this to occur, and as mentioned earlier, it is advised

to determine the length and number of pieces based on the curvature of the baseline

cumulative hazard function from the Cox PH model. Implementation of these methods

on jobless spells from SLID is presented in the next chapter, where many variables are

included in the initial models and the number of pieces has to be chosen carefully in order

to avoid having too many parameters for estimation.

The implementation of the PC model approximation to a stratified Cox model as in

(6.8) can be complicated; however, naive variance estimates that take the IPC weights

as fixed, which are given by standard Cox PH software, can be used if they don’t differ

substantially from the random IPC based variance. Further development of the PC model

approximation to stratified Cox PH models is needed.
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Chapter 7

Implementation on SLID Data

In this chapter, jobless spells from SLID are used as an illustration of the methods and

features of longitudinal survey data that have been described in preceding chapters. As

mentioned earlier, each SLID panel is surveyed for six years, with annual interviews

that collect labour and income information regarding the preceding year. We will focus

in particular on jobless spells from the third panel of SLID, which was followed from

1999 to 2004. Because of the duration of the observation period and the widely spaced

interviews, loss to follow-up is likely to be substantial in SLID. In the analysis of jobless

spells from SLID, it seems natural to assume that individuals who experience longer

jobless spells are more likely to drop out from the survey, than those who have shorter

spells. Therefore, dependent loss to follow-up needs to be considered in the estimation of

survival probability distributions and of regression coefficients.

The exploratory statistics presented in section 7.1 provide some of the general features

of the SLID sample and also of a subset that has been determined considering various

forms of loss to follow-up and features of the starting dates of the spells. Information

supplementing the discussion is given in Appendix B.

Sections 7.2 and 7.3 regard the implementation of the estimation procedures described

in chapters 5 and 6 concerning the estimation of survival probability distributions via the

Kaplan-Meier estimate and also the analysis of covariate effects through the Cox PH

model. Supplementing information on the Kaplan-Meier estimation is given in Appendix

D.
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7.1 Introduction

The target population of SLID is composed of all persons living in Canada, excluding

those residing in Yukon, Northwest Territories or Nunavut, in institutions or in Indian

reserves and full-time members of the Canadian Armed Forces living in barracks. As

mentioned earlier, at the beginning of the survey, an initial sample is drawn from the

Labour Force Survey (LFS), which is based on a stratified multi-stage sampling design.

Each province is divided into LFS economic regions, which are then subdivided into

one or more urban and rural areas. Further subdivision of the urban areas is based on

socioeconomic characteristics. The primary sampling units (PSU’s) are clusters formed

of groups of dwellings within each stratum, and a random sample of households is finally

selected within PSU’s.

One of the most challenging issues arising from the analysis of jobless spells from

SLID has been that of missing data, which is present in various forms. Some of them

have to do with the start and end of the jobless spells, others with missing covariate

information. The missing data problem is further discussed in chapter 8.

An issue regarding possible measurement error arises since the start and end dates

of jobless spells are obtained through the employment information collected during the

SLID interviews, rather than unemployment information. That is, the person that is

interviewed is not asked to provide dates regarding their jobless spells, but those dates

that are related to their past work experience. Then calculations are done in order to

create SLID variables regarding the start and end dates of the jobless spells. In many cases

the start dates of the jobless spells are coded with a “don’t know” response making the

length of the spell impossible to compute. The missing value in the start date variable has

further impact in the modelling of dropout through covariates that are based on jobless

spells characteristics.

The SLID information that refers to the termination of the jobless spells has also

been an issue. There are spells in SLID that are not observed to completion. To account

for this, there is a SLID variable “endtyp7” that provides information about the end of

a jobless spell. If the spell was completely observed, endtyp7=1, otherwise endtyp7=2,

either because (i) the respondent reported working in subsequent interviews, (ii) there was
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non-response or (iii) the person was no longer eligible for the labour interview. Reason

(i) is due to a recollection error, in which the person had reported being jobless at a

particular time in one interview and in the next he or she reports the contrary for that

same time. We have equated the two latter possibilities with dropout, but the question

remains on what is the best way to deal with the former. This issue is further discussed

in the appendix, section B.4.

Another type of missing information has been found in variables that are not directly

related to the start and end of jobless spells, but are intended to be used as covariates

for duration or dropout models. In SLID, this missing information comes in the form

of responses of the types “don’t know”, “not available” or “refusal”. As a way to deal

with this, even though it is not ideal, missing values were included in most models as an

additional covariate level, for the covariates that are categorical. The only continuous

covariate was Age, which did not have missing values. The variable related to marital

status in the models had only a few missing values and these cases were excluded from

analysis. These missing values affected the estimation of the IPC weights for these in-

dividuals, because a person who had a missing marital status value in any of the six

years of SLID would have an incomplete set of estimated dropout related probabilities to

compute IPC weights.

SLID provides a variety of sampling weights to choose from. As will be mentioned later

on, the right option is not always clear and depends on the objectives of the analysis.

SLID weights account for several forms of attrition, are calibrated against population

totals and are further adjusted for other factors. Since we are already accounting for

non-response and attrition in our IPC weights, we prefer a set of sampling weights that

are clear from these kinds of adjustments. SLID weights can be longitudinal or cross-

sectional. In both cases, there is a set of weights available for each person and each year

of the observation period of six years. Longitudinal weights are designed to represent

the Canadian population from the year in which a panel started being interviewed. For

instance, each year from 1999 to 2004, the longitudinal weights from panel 3 are adjusted

for non-response and for influential weight values to represent the population from 1999.

A weight value is considered influential if it has an excessive effect on the income estimate

of total provincial income. After these adjustments, the weights are further calibrated
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with respect to population totals in order to represent the population from 1999.

Cross-sectional weights are designed to represent the population of each year of a

longitudinal panel. They are adjusted for the same features as the longitudinal weights,

and also take into account interprovincial migration, the addition of cohabitants in the

households, and panel allocation of each one of the six years. The panel allocation refers

to the overlap of panels in a given year. For example, the samples from panels 2 (1996-

2001) and 3 (1999-2004) are integrated by a single set of weights in order to have a larger

sample for cross-sectional analysis separately for years 1999, 2000 and 2001. For details

about the longitudinal and cross sectional weights construction, see LaRoche, [30].

The SLID sample of panel 3 involves the years 1999-2004 and will be the object of

our attention in this chapter. It is composed of a total of 43683 individuals, of which

41% had at least one observed jobless spell in the six years. During the jobless periods,

individuals may or may not have been looking for work. In many cases the jobless spells

start a long time prior to the first interview in 1999. Furthermore, in our analysis we

assume a monotone type of missing information, which means that the first time a person

missed an interview is considered as the dropout time. Information that is available from

subsequent interviews will not be used in our analyses. More discussion of loss to follow-up

is contained in Appendix B1.

7.2 Some general features of jobless spells from

SLID

A jobless spell in SLID is defined as the period of time in which a person is out of work

and may or may not be looking for work. Note that this definition includes people who

are out of the labour force (a person who does not actively look for work during a jobless

spell is considered to be out of the labour force. See appendix B, section B.2). The jobless

spells used for the exploratory statistics in section 7.1 pertain to this definition while the

analyses in sections 7.2 and 7.3 involve jobless spells where the person was looking for

work.

In the SLID longitudinal panels, non-response is represented by zero longitudinal
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weights, assigned to people that did not respond to the interview, nor anybody in their

household. These weights are positive if at least one person from the household responded

to the interview. Response rates can be calculated by comparing the number of people

that responded to the interview among the total number of individuals in the sample.

Table 7.1 provides counts of the 43683 individuals from the SLID sample by response

status, longitudinal weight and year. The response status is indicated by (01) if in scope

(living in any of the 10 Canadian provinces), (02-06) if out of scope, and (07) if dropped

out from the survey. The response rates in the last column are calculated by dividing

the number of respondents (with w>0) by the number of longitudinal persons in the

sample (43683). Note that about 28% of the people moved out of scope, were deceased

or dropped out from the survey by 2004 (response status 02-07).

Table 7.1: Number of SLID individuals by response status, longitudinal weight (w) and

year, SLID sample.

Year Weight Response status∗ Subtotal Total Response rate
01 02-06 07 08

1999 w=0 7,024 - - - 7,024
w>0 36,158 501 - - 36,659 43,683 0.84

2000 w=0 6,643 - 801 - 7,444
w>0 35,340 899 - - 36,239 43,683 0.83

2001 w=0 4,292 - 3,147 - 7,439
w>0 34,892 1,352 - - 36,244 43,683 0.83

2002 w=0 3,970 - 4,941 3 8,914
w>0 32,922 1,847 - - 34,769 43,683 0.80

2003 w=0 2,661 - 7,625 9 10,295
w>0 31,214 2,174 - - 33,388 43,683 0.76

2004 w=0 1,701 - 9,778 10 11,489
w>0 29,631 2,563 - - 32,194 43,683 0.74

∗ Response status (SLID variable resp99 codes):
01=in scope; 02-04=living outside of the 10 Canadian provinces;
05=institutionalized; 06=deceased; 07=dropped out from survey;

08=not real person.

Since there are several ways in which attrition can occur in SLID, the convention was

made for our purposes, that a person will be considered to be observed in a particular

year (that is, not lost to follow-up) if their household had been reached and also if labour

information on them was available in that year. Individuals who were not observed in

the first two consecutive years of the panel were excluded from analysis. A person will be
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considered lost to follow-up the first year in which they (i) were a non-respondent, (ii) had

no job information, (iii) were out of scope, or (iv) dropped out from the sample. Please

refer to section B.1 in the appendix for more detailed information about these SLID

types of loss to follow-up (LTF) and the selection criteria. In our analysis we assume a

monotone type of missing information, which means that the first time a person missed

an interview is considered as their dropout time and so information regarding people and

their jobless spells that is available from subsequent interviews will not be used in our

analyses.

Table 7.2 involves Canadians who were at least 11 years old in 1999, who may or

may not have experienced one or more jobless spells in 1999-2004. Part (a) shows the

number of individuals and part (b) the corresponding number of jobless spells, while

the second column involves the SLID sample and the third column involves individuals

after adjusting for LTF (section B.1 in the appendix). The data set referred to in the

third column of Table 7.2 can be used to model LTF. Table 7.3 is analogous to Table

7.1 and shows the number of people by longitudinal weight, response status and year for

the 32834 individuals selected for LTF modelling. Note that after adjusting the for LTF,

the percentage of people in the new data set that moved out of scope, were deceased or

dropped out from the survey is about 21%.

Table 7.2: Counts of individuals and jobless spells from SLID before and after adjusting

for LTF.

(a) No. individuals:

No. spells SLID sample After LTF adjustment

0 25,674 15,339
≥ 1 18,009 17,495

Total 43,683 32,834

(b) Corresponding no. spells:

Start date SLID sample After LTF adjustment

Known 23,256 22,914
Unknown 8,320 7,869

Total 31,576 30,783

The year in which a person was last seen corresponds to the year prior to which

they were LTF. Table 7.4 shows the number of people that were last seen by year, from

105



Table 7.3: Number of SLID individuals by response status, longitudinal weight (w) and

year, data set resulting after LTF adjustment.

Response status∗

Year Weight 01 02-06 07 Subtotal Total Response rate

1999 w=0 1,981 - - 1,981
w>0 30,838 15 - 30,853 32,834 0.94

2000 w=0 1,986 - 436 2,422
w>0 30,082 330 - 30,412 32,834 0.93

2001 w=0 2,519 - 488 3,007
w>0 29,083 744 - 29,827 32,834 0.91

2002 w=0 2,669 - 1,593 4,262
w>0 27,367 1,205 - 28,572 32,834 0.87

2003 w=0 2,016 - 3,315 5,331
w>0 25,946 1,557 - 27,503 32,834 0.84

2004 w=0 1,383 - 4,895 6,278
w>0 24,602 1,954 - 26,556 32,834 0.81

∗ Response status (SLID variable resp99 codes):
01=in scope; 02-04=living outside of the 10 Canadian provinces;
05=institutionalized; 06=deceased; 07=dropped out from survey.

the data set that resulted after adjusting for LTF. Individuals that were observed in the

second year but not in the first were included as if they had joined the sample in the

second year (that is, in 2000), a total of 2372. The table also shows the yearly LTF rate

with respect of the remaining individuals in the sample. Note that about 42% of the

people were LTF by the end of the six years (based on the LTF definition in appendix,

section B.1).

Since economic conditions may change year after year, while analyzing jobless spells

it makes sense to exclude spells that started before January 1st of 1999 (about 26% of

the spells, as shown in table B.2 in Appendix B). Furthermore, there is uncertainty about

the accuracy of some start dates that refer to a long time before 1999, in some cases even

of several decades. The number of jobless spells starting between 1999 and 2004 from

individuals 16-69 years of age in 1999, is 20669 (5474 unknown), and they correspond to

11881 individuals who may or may not have been looking for work. The following tables

concern to these 20669 jobless spells.

Table 7.5 shows counts of jobless spells by spell order as well as the number of spells

with known and unknown start date. Note that most missing start dates correspond to
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Table 7.4: Number of individuals last seen by year, data set resulting after LTF adjust-

ment.

Remaining Yearly LTF

Year Last Seen LTF in sample Rate

1 4,570 0 32,834 -

2 2,878 4,570 28,264 0.162

3 3,167 2,878 25,386 0.113

4 1,827 3,167 22,219 0.143

5 1,412 1,827 20,392 0.090

6 18,980 1,412 18,980 0.074

Note: 2372 persons started follow-up in year 2.

the first spells. Spells with unknown start date were discarded from subsequent analyses.

Since this may incur potential bias, methods to deal with missing unknown start dates

are needed, as is discussed in chapter 8.

Table 7.5: Number of spells with known and unknown start date by spell order, after

adjusting for LTF, start date and age range. During these spells the person may or may

not have looked for work.

Start Date

Spell order Known Unknown Total

1 6,930 4,951 11,881

2 4,402 326 4,728

3 2,082 130 2,212

4 1,010 47 1,057

5 + 771 20 791

Total 15,195 5,474 20,669

The distribution by spell order and starting year is described in Table 7.6, among

the 15195 spells with a known start date. Most of the first spells start in the years 1,

2, and 3 of the panel (corresponding to years 1999-2001). Second spells more frequently

start in years 2 or 3, third spells in years 3 and 4, and so on. Also, most of the first
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and second spells start in the first three years of the panel. Among spells with known

start date, Table 7.7 shows the number of individuals who had 1,2, and up to 5+ spells.

It shows that 74% of individuals had one or two spells, contrasting with the 81% in the

initial SLID sample, as shown in Table B.3 in Appendix B. The spell frequency from

an individual is likely to be related to the spells’ length. For instance, those spells that

belong to individuals who experienced them once in the six years may be lengthier than

spells from persons who experienced four spells or more.

Table 7.6: Number of jobless spells by start year and order. During these spells the

person may or may not have looked for work.

Start Year∗

Spell Order 1 2 3 4 5 6 Total

1 2,810 1,442 1,062 654 538 424 6,930

2 486 1,064 985 746 612 509 4,402

3 33 230 509 524 398 388 2,082

4 <15 ∼38 138 254 301 275 1,010

5+ 0 <15 ∼50 148 245 312 771

Total ∼3,340 ∼2,783 ∼2,744 2,326 2,094 1,908 15,195

∗ Corresponding to years 1999 - 2004.

∼ Approximate due to confidentiality.

Table 7.7: Number of individuals by number of spells (with a known start date, and in

which the person may or may not have looked for work).

Spells Individuals Percent

1 4,100 46.88

2 2,434 27.83

3 1,154 13.20

4 590 6.75

5+ 467 5.34

Total: 8,745 100.00

The number of censored and uncensored spells with a known start date are shown
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in Table 7.8. The percent of censored spells for each order ranges from 28.3% to 35.1%.

Censored spells from all orders are 31.7% of the total.

Table 7.8: Counts of censored and not censored spells by order of spell, among spells

with known start date.

Spell order Not Censored Censored Total Percent Censored

1 4,547 2,379 6,930 34.3

2 3,155 1,247 4,402 28.3

3 1,465 617 2,082 29.6

4 708 302 1,010 29.9

5+ 500 271 771 35.1

Total 10,375 4,816 15,195 31.7

It is important to note that because of the high degree of missing data it will not be

possible to draw firm conclusions from the analysis of jobless spells presented in section

7.3. However, the analysis illustrates the methodology developed in this thesis. Chap-

ter 8 provides further discussion regarding data quality issues and problems in using

longitudinal survey data for inference about life history processes.

7.3 Loss to Follow-up Modelling in Ontario and

Quebec

As mentioned earlier, a jobless spell in SLID is defined as the period of time in which a

person is out of work and may or may not be looking for work. The jobless spells used for

the exploratory statistics shown in section 7.1 pertain to this definition while the analyses

in sections 7.2 and 7.3 involve jobless spells where the person was looking for work. For

a detailed definition of jobless spells in SLID refer to the appendix, section B.2.

This section begins with a brief summary regarding the modelling of loss to follow-up,

followed by the implementation of the weighted Kaplan-Meier and the Cox PH model-

based analysis, discussed in chapters 5 and 6.
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A person is considered lost to follow-up in a given year if he or she meets one of

the following: (i) the person was a non-respondent, (ii) had no job information, (iii) was

out of scope, or (iv) dropped out from the survey. Individuals were followed until the

first year in which they experienced any of these four conditions, and may have started

follow-up in the first or second years of the panel (more detailed information can be found

in the Appendix, section B.1).

The logistic model discussed in section 4.1, in expression (4.5), was used to describe

LTF from SLID. Models were fit for the years 2000 to 2004. The selection of covariates

was based on the list of variables that are used for non-response modeling in SLID (see

La Roche [30]). As will be described shortly, one covariate related to the jobless spells

was added, which indicates whether the individual was jobless in the preceding interview.

Recall that in SLID, non-response is one of the four conditions that define our dropout

response variable (if nobody in the household responded to the interview, the person

meets condition (i) above).

The sample composition evolves over the survey years, in the sense that it includes

people that turn 16 years of age each year. We are analyzing individuals that are eligible

to provide labour information, that is, are 16 years or older in a given year. Recall that

covariates in the LTF model for year t are based on information to the end of year t− 1.

This means that a person who is analyzed for LTF in the year 2000 must have labour

information in the year 1999. For this reason, LTF is analyzed for people not younger

than 16 years in 1999. Furthermore, there was a considerable number of individuals

with a code of “9:NA” (missing values) in the variable Student referring to whether the

person was a part or full time student, or was not a student . It has been found that all

individuals with this type of code in a given year were 69 years or older. The estimation

of dropout probabilities (and consequently of spell durations) was therefore restricted to

persons who were between 16 and 64 years of age in 1999.

The weighted Kaplan-Meier estimation in the next section is performed for jobless

spells from residents of Ontario and Quebec, separately. Loss to follow-up was thus mod-

elled for these two provinces. There is a set of individuals from whom labour information

was available only starting in the year 2000 and they were included in the samples from

Ontario and Quebec, starting from this year. The number of individuals in the sample
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from Ontario is 4412, from which 40% were LTF by year six, including the 664 individuals

that joined this sample in year 2000. The Quebec sample is of 3102, from which 43%

were LTF by year six, including the 222 individuals that joined the sample in year 2000.

Table 7.9 shows this and the number of individuals that were used in each one of the

models for years 2000 to 2004. Detailed information about the variables and counts of

individuals within each category can be found in Appendix C, Tables C.1 and C.2 for

Ontario and Quebec, respectively. Note in Table 7.9 that the group of individuals that

started follow-up in year 2000 are much more likely to drop out later on and may have a

different covariate distribution than those that joined the sample in 1999. This issue was

not dealt with in the dropout modelling here; however it would have been ideal to use a

separate dropout model for these groups.

The names of the variables used in the LTF models are as follows: Sex, Age, Educa-

tion Level (“Edlev”), Marital Status (“Marst”), Immigration Status (“Immst”), Student

(“Stud”), Renter, Household Size (“HHsz”), Family Composition (“Famtype”), House-

hold Type (“HHtype”), Urban and interactions. There is one variable that is directly

related to the durations of jobless spells, recording whether an individual was jobless

at the previous interview time, and is denoted by “Jstat”. The logistic model from ex-

pression (4.5) was fitted for each year of the panel, starting from year 2000 to 2004 (or

t ∈ {2, 3, 4, 5, 6}). The “Jstat” covariate was significant in all five models. Table 7.10

indicates with an “x” the variables that were significant at the 5% level for the final LTF

models of each year in Ontario and Quebec, respectively.

The selection of covariates was carried out by backward elimination using SAS. In-

formal model checks were performed by implementing the methods from Hosmer and

Lemeshow [24] regarding deciles of risk. These tests indicate that the models fit the data

satisfactorily. A detailed discussion of the modeling construction and evaluation can be

found in Appendix C.
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Table 7.9: Counts of individuals for the LTF model by year and province.

Ontario Quebec

Joined since Joined since

LTF Model 1999 2000 1999 2000

2000 4412 0 3102 0

2001 3768 664 2557 222

2002 3412 468 2263 134

2003 2928 331 1972 97

2004 2746 278 1819 79

Table 7.10: Variables in final models by year, LTF model (Ontario and Quebec), years

2000-2004

Ontario Quebec

Variable 2 3 4 5 6 2 3 4 5 6

Sex x

Age x x x x x x x x x x

Age2 x x x x x x x x x x

Edlev x x x x x x x

Marst x x x x x

Immst x x x x

Stud x x x x x x

Renter x x x x

HHsz x x

Famtype x x

Hhtype x x

Urban x x x x x

Jstat x x x x x x x x x x

Sex*Marst x

Age*Marst x x x

Urban*HHsz x
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7.4 Kaplan Meier estimation of jobless duration

distributions for residents of Ontario and Que-

bec

In this section we refer back to chapter 5, where weighted Kaplan-Meier (K-M) estimation

is discussed. The estimates presented here are descriptive quantities of the jobless spells

distributions from people living in Ontario and Quebec in the years 1999 and 2000. The

finite population quantity to be estimated is the empirical distribution given in expression

(5.1). As mentioned in section 5.1, it is useful to assume that the finite population

quantity in (5.1) converges in probability to a superpopulation duration distribution S(y)

as the population’s size increases to infinity, and so we can estimate the finite population

quantity from a superpopulation approach. In the following discussion, the formula for the

weighted Kaplan-Meier estimator in expression (5.9) and the estimation methods from

section 5.2 are implemented. The variance estimates were computed as in expression

(5.11) where Ĉov[ĥ(s), ĥ(t)] is the (s, t) element of V̂ ar(θ̂)comb = B̂−1
combĈcombB̂

−1
comb as in

expression (4.26), where B̂comb and Ĉcomb have the form in (4.27) and (4.28), respectively.

Jobless spells from individuals living in the provinces of Ontario and Quebec in 1999

were analyzed separately, with durations measured in weeks. The analyses shown here

correspond to spells that started in 1999 and 2000. The strata and clusters that were

used for variance estimation correspond to economic regions and dissemination areas from

SLID. Recall that the economic regions are groups of census divisions which are interme-

diate geographic areas between the province and the municipality (census subdivision).

The Dissemination Areas (DA’s) are small areas composed of one or more neighbouring

blocks and constitute the primary sampling units (PSU’s). Each dissemination area is

assigned a four digit code that is unique within a census division and a province or terri-

tory. In order to identify each DA uniquely in Canada, the two digit province code and

the two digit census division code must precede the DA code.

There are RON = 11 and RQC = 17 economic regions used as strata in the Ontario

and Quebec samples. The number of clusters within provinces and start year that were

used can be found in Table 7.11 below.

113



Among individuals that were used to model LTF from Ontario and Quebec in the

preceding section, 30% and 36% had at least one jobless spell in the six years from 1999

to 2004. In total, spells from 1124 and 931 individuals living in Ontario and Quebec in

1999 were used to estimate the survivor function from the population. Table 7.11 also

shows the number of complete and censored spells in each data set.

Table 7.11: No. of clusters, complete and censored spells by province and start year.

Ontario Quebec

Start Year No.clusters No.spells No.Cens. No.clusters No.spells No.Cens.

1999 283 359 60 217 311 55

2000 220 270 30 162 211 21

Note: The clusters are Dissemination Areas, PSU’s in SLID.

With the K-M estimates we aim to describe the jobless spells starting in 1999 and

2000 separately, from the population of individuals living in Ontario and Quebec in the

year 1999. Having this in mind, one question arises regarding the right choice of sampling

weights to use for estimation. It was mentioned earlier that in addition to the original

longitudinal sampling weights associated with the start year of the panel interviews (year

1999), other weights are given at the end of every year from 2000 to 2004. Consider the

example of a spell that started in 2000 and ended in 2001. It may be unclear which of the

three available longitudinal weights should be used (1999, 2000, or 2001). One possibility

is to use the weight corresponding to the end year of the spells. This option implies that

weights from different years would be combined together in the analysis, which seems

rather awkward. The weights from the start year, 2000, are an adjusted version of the

1999 weights, that takes into account for various forms of attrition and non-response.

We must note though, that we don’t require this adjusted version since our IPC weights

are already adjusting for LTF. An advantage of using the original longitudinal weights

from 1999 is that they are the closest to the base weights, ideally the ones to use for

the analyses, but are not available from SLID. Cross-sectional weights from 1999 and

2000 given by SLID represent the populations from these two years. These would be

appropriate if we were analyzing the jobless spells from people living in Ontario in these

years. In our weighted Kaplan-Meier estimates, longitudinal weights from the year 1999
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were used, since we want to describe jobless spells from individuals that were selected in

the SLID sample in the year 1999.

Figures 7.1 and 7.2 show weighted Kaplan-Meier estimates from jobless spells expe-

rienced by residents of Ontario and Quebec in the year 1999. The two upper graphs are

K-M estimates from spells that started in the years 1999 and 2000. The solid lines corre-

spond to unweighted K-M estimates and the dashed and dotted lines represent the design

and combined weighted estimates, respectively. Tables D.1 and D.2 in the appendix show

a summary of the estimates.

The lower graphs in these figures show the corresponding standard errors based on

several methods of variance estimation. One group, denoted in the graphs as DES and

indicated by a solid line, consists of three different formulas that gave virtually identical

values for all time points. The first method is the finite-population variance based on

Binder [4] similar to expression (5.17), with the difference that the weights are sampling

weights from SLID. The second method was based on Boudreau and Lawless [9], analogous

to expression (5.15). The third one was based on Lin [38], where an extra term given

by B̂−1 is added to the formula in (5.17). The dashed line corresponds to the combined

(design × IPC) weighted method from chapter 5, denoted as COMB. The dash-dotted

line represents the naive variance calculated using combined weights, but treating the

IPC weights as fixed, analogous to expression (5.19) and denoted by COMB Naive.

These figures show that there is not a substantial difference between the weighted

Kaplan-Meier estimates from the unweighted, DES, or COMB methods for Ontario in

1999; however, for the year 2000, the graph shows some difference, however, still small,

in durations between 25 and 55 weeks, where the COMB method gives slightly higher

estimates than DES. Estimates from Quebec in the year 1999 give very similar results

between DES and COMB, with the former giving slightly higher values at the tail of the

distribution, for durations of 55 weeks and longer, which accounts for 18% of the spells,

approximately. The year 2000 estimate for QC also gives slightly higher values from the

DES method, for durations of 37 weeks and longer, which have around a 0.38 probability.

Regarding the standard errors (lower graphs in the figures), it can be seen that the

COMB Naive and DES can be very similar, as in the case of Ontario spells from 1999.

The standard error based on the COMB Naive variance gives higher values than the other
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two in the case of Ontario, and in the case of Quebec, larger variances are given by the

DES method. For both provinces and years 1999 and 2000, the COMB standard errors

give the smallest values. There is an increment in the values of the standard errors from

the years 1999 to 2000 for both provinces.

The simulations from chapter 5 regarding Kaplan-Meier estimation show that the

COMB method gave slightly smaller standard errors than the COMB Naive method. For

jobless spells from SLID, this relation is preserved, however, the difference between these

two methods is much greater. Looking back at the way in which the variance estimates

are constructed, recall that the expression in (4.8) is equivalent to our variance formula

(4.9). Note that the term Bij(θ̂, α̂) in (4.8) corresponds to V ar
(
U(θ̂, α̂)

)
when i = j = 1,

and is related to V ar
(
G(α̂)

)
and Cov

(
U(θ̂, α̂), G(α̂)

)
when i = j = 2 and i = 1, j = 2.

The Naive variance results from Cov
(
U(θ̂, α̂), G(α̂)

)
= 0, and as this covariance value

increases, the greater the difference between COMB and Naive. The data from SLID has

greater variability than simulated data, and many more covariates are used in the LTF

models. This is reflected in the difference between the two methods.

Confidence intervals at a 95% confidence level were computed for the median, based

on each one of the Kaplan-Meier estimates. This was done by finding a set of y-values

satisfying −1.96 ≤ Z ≤ 1.96 where

Z =
Ŝ(y)− 0.5

se
(
Ŝ(y)

) .

Since Z changes only at the observed duration times, we took the y values at which Z

changes from being outside (−1.96, 1.96) to inside (−1.96, 1.96) (Lawless [32], p. 93).

Table 7.12 shows the estimated median and a 95% confidence interval, from the jobless

spells distribution from years 1999 and 2000 and both provinces. The DES and COMB

methods do not differ greatly in the province of Quebec, the median values are the same

and the confidence intervals vary by one week. In the case of Ontario, the DES method

gives slightly smaller estimated medians and confidence intervals than COMB.

Conclusions based on the COMB method are that spells decrease in median length

from year 1999 to year 2000, for about 5 and 4 weeks for Ontario and Quebec, respectively.

The confidence intervals from the Quebec spells are wider, reflecting greater variability.

The median length of the spells in Ontario is greater than in Quebec for both years, the
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Figure 7.1: Weighted K-M estimates and point-wise standard errors from jobless spells

starting in 1999 and 2000, from people living in Ontario in 1999.
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Figure 7.2: Weighted K-M estimates and point-wise standard errors from jobless spells

starting in 1999 and 2000, from people living in Quebec in 1999.
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medians differ by 5 and 4 weeks for 1999 and 2000.

Since spells with missing start dates were discarded and because of the great amount

of missing data in SLID, these conclusions should be interpreted with care, and viewed as

part of the illustration of the implementation of the variance estimates for IPC weighted

Kaplan-Meier estimates.

Table 7.12: Estimated median for survival and 95% CI, Ontario and Quebec.

Ontario Quebec

Year Method Median CI Median CI

1999 DES 29 (21, 32) 25 (19, 31)

2000 DES 21 (19, 29) 21 (16, 29)

1999 COMB 30 (25,32) 25 (19, 30)

2000 COMB 25 (21, 30) 21 (17, 29)
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7.5 Cox PH analysis of jobless durations for On-

tario residents

In this section we give two analyses on jobless spells from individuals that were living in

Ontario in the year 1999 and that were 16 to 64 years old in this year. The first analysis

involves single jobless spells that started in the year 2000 and that were the first observed

spells since 1999. The second analysis considers sequences of jobless spells that started

in the years from 2000 to 2002.

The idea of presenting these two examples is to illustrate cases where interest lies in

examining single spells and also cases where it is wished to examine sequences of spells in

a specific period. In the former case, we account for information regarding job experience

in the year preceding the jobless spells, 1999. In the case of sequences of spells, we

include information prior to the start year of the spells and also information involving

the sequences themselves, by adding covariates that refer to whether the spell is the first

of a sequence and, if not, the length of the preceding spell. The IPC weights that were

used are based on the LTF models presented in section 7.3.1 and Appendix C.

The analyses start by giving an assessment of the Piece-wise Constant (PC) model

approximation to the Cox PH model. The approximation of the variance estimates is

done by comparing standard errors provided by the coxph function in R/SPlus with those

computed from the PC model. Variance estimates from design and combined methods

that have been referred to in chapter 6 are also compared. Another part of the analyses

presents a model obtained by variable selection, based on results from the combined

weighted method. It should be noted that because of the missing data issues in SLID the

results and conclusions from final models should be taken only as an illustration.

The PC model approximation to stratified Cox PH models was not implemented here;

however, it remains of interest in this analysis to compare unstratified and stratified

regression coefficients from the Cox PH model. Stratification is given as before, by the

economic regions within Ontario (a total of R = 11); and clustering is given by the

dissemination areas from SLID: 181 and 389 for the first and second analysis, respectively.

The model checking techniques that are available in Cox PH model software that al-

low for case weights were used. Even though these are based on naive variance estimates,

120



they can still provide an indication of departures from model assumptions. The propor-

tional hazards assumption was checked by using the technique of model expansion, which

consists of adding a time dependent coefficient term interacting with each covariate in

the model and performing one significance test at a time or by performing a global test

on all coefficients (see Lawless, p. 361 [32], Therneau and Grambsch p. 130 [57]). The

linearity assumption of the PH model was checked by adding an extra term accounting

for the square of the variable Age, which is the only continuous variable in the models.

Graphical residual checks were done to complement the analyses, but are not shown here

for confidentiality reasons.

7.5.1 First jobless spells starting in 2000

The variables that were used as covariates in the models for this subsection are described

in Table 7.13, numbers 1-6. Some of these variables were selected based on the analysis

on jobless spells from SLID discussed in Kovacevic and Roberts [29]. The Age variable

represents the age in years and corresponds to the year 1999, as well as the variables

employment insurance, occupation and income. The baseline level refers to the lowest

category in all covariates.

PC model approximation to Cox PH

Estimation was performed on single spells from 196 individuals of which 19 were censored.

The intervals that were chosen for the PC model and the hazard estimates are shown in

Table D.3 in Appendix D. There are nine pieces, which were determined by visually

examining the curvature of the cumulative baseline hazard function from the Cox PH

model. Figure 7.3 shows the weighted Kaplan-Meier estimate with a naive variance-

based 95% confidence interval. Note that the tail of the distribution shows jobless spells

durations of up to 200 weeks (about 3.85 years) in length. The Kaplan-Meier estimate

shows that the median baseline duration is approximately 26 weeks, durations longer than

one year have a 0.26 probability and durations longer than 2 years have a probability of

about 0.08. The estimated baseline cumulative hazard function for the main effects model

in Table 7.13 is shown in Figure 7.4, using combined weights. We can see by the graph
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Table 7.13: Variables used in models for first jobless spells that started in 2000 (1-6) and

sequences of jobless spells starting in 2000-2002 (1-9) from residents in Ontario in 1999.

No. Variable Level Description

1 Age Cont. Age, centered∗

2 Sex 1 Female
2 Male

3 Minority group 1 Yes
2 No

4 Employment insurance 1 No
2 Yes

5 Occupation 1 Trades, transport, equipment operators
2 Management, business, finance,

administrative occupations
3 Natural, applied sciences, health, social

science, education, art, culture, sport
4 Primary industry
5 Processing, manufacturing, utilities
6 Sales and service
99 Missing values

6 Income 1 ≤First quartile
2 (First quartile,third quartile]
3 >Third quartile

7 Yearly quarter 1 Spell onset Jan-Mar
2 Spell onset Apr-Jun
3 Spell onset Jul-Sep
4 Spell onset Oct-Dec

8 Order 1 Order of jobless spell =1 (since 1999)
2 Order of jobless spell >1 (since 1999)

9 P.Dur Cont. Length of previous jobless spell duration∗∗

∗Mean age in data set for analysis 1 is 34.41, in data for analysis 2 is 34.15
∗∗Continuous, when Order=2 the mean value of 25.8 weeks.
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that the estimates of the cumulative hazards based on the Cox PH are well approximated

by those based on the PC model.
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Figure 7.3: Weighted Kaplan-Meier based on the main effects model from first jobless

spells in 2000, using combined weights.

Estimates of the baseline cumulative hazard functions for the main effects Cox PH

regression model and of the regression coefficients were obtained using the coxph function

in R/SPlus. Estimates based on the PC model were computed according to the methods

described in chapter 6, with variance estimates that account for 181 clusters and 11 strata.

The values of unweighted and weighted estimates are shown Tables D.4 and D.5 in the

appendix, respectively.

The PC model gives estimated regression coefficients that are mostly higher than

those from the Cox PH model. Tables D.4 and D.5 show that the unweighted, design

and combined weighted regression estimates over-approximate the Cox PH estimates
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by an average of 9%, 10% and 6%, respectively. The variance estimates from the Cox

PH that were used for comparison are robust variance estimates from the coxph and

cluster options in R/SPlus, based on Lin and Wei [40] (do not include stratification).

The PC model variance analogues give in the unweighted case, an average of 3% of over

approximation, while the design and combined method give an average of 4% and 5%,

respectively.

The graphs in Figure 7.5 show z-statistics |β̂c|/se(β̂) where the numerator is based on

point estimates from the Cox PH model and the denominator, on variance estimates from

the Cox PH or the PC models. The left graph shows estimates based on sampling design

weights and the right graph on combined (design×IPC) weights. The z-values based on

robust variance estimation methods are labeled as “Cox PH.robust” and “PC.robust”,

while those involving variance estimates from the PC model, based on Boudreau and

Lawless [9], are labeled as “PC.B&L”. Variance estimation methods analogous to those

from Binder [4] and Lin [38] based on the PC model gave very similar results to those

from PC.B&L, and therefore have been omitted.

The Cox PH.robust z-values are similar to those from the PC.robust method in both

graphs, indicating a good PC approximation in terms of variance estimates. Design

and combined methods agree that the three most significant variables are Age, Occup99

and Income.cat3; however, the combined PC method produces higher z-values, therefore

smaller variance estimates, than the other methods. The remaining variables are less

significant for the combined than for the design methods, therefore in this particular

case, it seems that the combined methods separate highly significant from not so highly

significant variables in a more evident way.

As expected, the standard errors based on the PC.Comb.Naive method are larger

than those from PC.Comb, but without drastically changing the results in terms of sig-

nificance. No stratification effects are indicated by the similarity of variances between

the CoxPH.robust and PC.robust to PC.B&L in the design case and to PC.Comb.Naive

in combined case.
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Model selection and interpretation of regression estimates

The model selection process consisted of a backward elimination procedure, based on the

combined weighted methods from chapter 6. The main effects model with variables 1-6

in Table 7.13 was evaluated, including the interactions Age:Sex, Minority:Income, and

Age:Occupation.

A summary of results from fitting the final model is shown in Table 7.14. This ta-

ble shows the standard errors that were obtained from the “PC.Comb” and from “Cox

PH.robust” discussed in the preceding subsection. Recall that the former variance esti-

mates take the IPC weights as random while the former are considered naive since takes

the weights as fixed. The variables that are significant at a 10% level or less are shown

in bold.

The Cox PH.robust variance estimates shown in Table 7.14 gave similar values to the

naive variances based on the PC model (not shown), the latter including stratification.

As observed in the preceding subsection, these variance estimates give larger values than

the PC.Comb method and consequently, have the effect of reducing the values of the z-

statistics. The variables that have a substantial variance increment are Ei, Income.cat3,

and the interactions Minority:Ei, Age:Occup4 and Age:Occup5.

A positive regression coefficient of a covariate category A implies that individuals in

this category have an increasing risk of leaving the “jobless” state, relative to individuals

that belong to a reference category B. This means that individuals from category A will

more likely experience shorter jobless spells than those from category B. Conversely, a

negative coefficient implies a decreasing risk of leaving the “jobless” state, thus individuals

from category A are more susceptible of experiencing longer spells than the category B

individuals.

The negative age estimated coefficient implies that as age increases, the risk of leaving

the jobless state decreases (which is equivalent of having a higher risk of experiencing

longer spells). Moreover, the squared value of Age indicates that there is a non-linear

relationship of this variable with the log-hazard function of the length of jobless spells.

The risk of leaving the jobless state with respect to the age variable will decrease as age

increases, at a slightly decreasing rate. For example, the risk is of 0.493 for individuals
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of age 25, and it decreases to 0 for individuals of age 34.4 (which is the age mean value),

and will further decrease to -0.316 for individuals of age 43.8.

Employment insurance is shown to be an important factor for the length of jobless

spells. Its negative sign indicates that a jobless spell from an individual who had employ-

ment insurance in the preceding year, is more likely to be longer than a spell from a person

who did not receive employment insurance in the preceding year. The positive interaction

term with minority indicates that the risk of experiencing longer spells will be shorter if

the person is not from a minority group. The risk of leaving the jobless state when receiv-

ing Ei the year before while not being from a visible minority group is exp(−.109) = 0.89

which decreases when being a from a visible minority to exp(−1.745) = 0.1746.

Positive significant income coefficients for both categories of this variable imply that

people with lowest income tend to experience longer spells. The risk of having shorter

spells for individuals in the highest income category is exp(0.79) = 2.2 times greater than

for those in the lowest category.

The occupation variable resulted with a Wald based p-value much smaller than 0.0001,

and the individual coefficients show that the only level that is significant is Occup99, re-

ferring to the “missing-values” category. Its interaction with age is significant at a 5%

level for types of occupation 4 (primary industry) and 5 (processing, manufacturing, util-

ities) and a 10% significant for occupation type 6 (sales and service). For occupation

types 5 and 6, this positive interaction means that shorter spells are more likely for mem-

bers of this occupation type, compared with members of the type 1(trades, transports,

equipment operators), as their age increases. Conversely, in the case of occupation of

type 4, as age increases, it is more likely to experience longer jobless spells compared to

people in the occupation of type 1.

Model checks

As mentioned at the beginning of this section, it is possible to perform informal model

checks based on output from Cox PH software. Even though these do not consider

the IPC weights as random, they can still provide indication of departures from model

assumptions. The proportional hazards assumption was checked by using the technique

of model expansion, which consists of adding a time dependent coefficient term associated
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Table 7.14: Summary from fitting unstratified Cox PH model to first jobless spells that

started in 2000 from residents of Ontario in 1999.

PC.Comb Cox PH.Robust
(Naive)

Variable Est. SE p-Val SE p-Val

Age -0.043 0.023 0.062 0.027 0.110
Age2 0.001 6.E-04 0.076 7.E-04 0.180
Minority 0.021 0.188 0.909 0.279 0.940
Ei -1.745 0.526 0.001 1.119 0.120
Occup2 0.102 0.284 0.719 0.317 0.750
Occup3 -0.300 0.291 0.302 0.371 0.420
Occup4 -0.142 0.435 0.745 0.581 0.810
Occup5 0.076 0.275 0.783 0.352 0.830
Occup6 -0.206 0.261 0.429 0.311 0.510
Occup99 -1.867 0.417 <0.001 0.541 0.001
Income.cat2 0.428 0.224 0.056 0.275 0.120
Income.cat3 0.790 0.245 0.001 0.324 0.015
Minority:Ei 1.615 0.601 0.007 1.162 0.160
Age:Occup2 0.018 0.026 0.474 0.030 0.540
Age:Occup3 0.014 0.027 0.611 0.033 0.680
Age:Occup4 -0.099 0.032 0.002 0.049 0.044
Age:Occup5 0.061 0.029 0.033 0.040 0.130
Age:Occup6 0.044 0.024 0.061 0.028 0.110
Age:Occup99 -0.046 0.029 0.108 0.036 0.200

Significant at a 10% level or less shown in bold.
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with each covariate in the model and performing one significance test at a time or by

performing a global test on all coefficients (see Lawless, p. 361 [32]). Each of these tests

can be seen as a trend test applied to the relationship of the Schoenfeld residuals and

time, or a function of time.

Table 7.15 shows the PH assessment results from fitting the model from Table 7.14 and

using the R/SPlus function cox.zph. The column labeled as “rho” is the Pearson corre-

lation between the scaled Schoenfeld residuals and time or a function of time, the column

“χ2” gives the corresponding test statistic, followed by the p-values in “p-Val”. A detailed

explanation on how these tests are constructed can be found in Therneau and Grambsch

[57], p.130. The PH assessment was performed using the Kaplan-Meier transformation of

time, which is less sensitive to censoring patterns than the identity or logarithmic trans-

forms. Table 7.15 shows no significant departures from the PH assumption in the global

test, although the variables Age2, Ei, Occup3, Occup99 and Minority:Ei do have a 10%

level significant departure. Further examination of Schoenfeld residual plots (omitted for

confidentiality) have led to conclude that the model coefficients do not vary dramatically

with respect to time.

One way to deal with departures from the PH assumption involves the addition of

a time dependent covariate in the model and testing for its significance; however this

strategy was not pursued here.

Stratification

In the introduction of this section, it was mentioned that the PC model approximation to

stratified Cox PH models has not yet been implemented, however, it remains of interest

to compare stratified vs. unstratified estimates of the Cox PH regression coefficients.

Stratification is given by the economic regions within Ontario, a total of R = 11.

Table 7.16 shows the results from fitting a stratified version of the model with variables

in Table 7.14. The standard errors are based on the variance estimate from Boudreau

and Lawless [9], and therefore naive regarding the random nature of the IPC weights.

Figure 7.6 shows a graphical representation of the z-values |β̂|/se(β̂) based on the naive

unstratified and the naive stratified estimates from Tables 7.14 and 7.16. Most z-values

decreased after stratification, some important changes are observed for the Age:Occup2

130



Table 7.15: PH Assessment, Cox PH unstratified fit on first jobless spells in 2000.

Variable rho χ2 p-Val

Age -0.006 0.008 0.931
Age2 0.085 3.643 0.056
Minority -0.023 0.137 0.711
Ei -0.074 4.810 0.028
Occup2 -0.012 0.031 0.859
Occup3 -0.111 3.494 0.062
Occup4 -0.064 0.844 0.358
Occup5 0.025 0.184 0.668
Occup6 -0.015 0.048 0.827
Occup99 -0.110 5.897 0.015
Income.cat2 0.026 0.221 0.638
Income.cat3 0.051 1.131 0.288
Minority:Ei 0.061 3.102 0.078
Age:Occup2 -0.016 0.062 0.804
Age:Occup3 -0.051 0.675 0.412
Age:Occup4 -0.081 1.195 0.274
Age:Occup5 0.045 1.049 0.306
Age:Occup6 0.003 0.002 0.963
Age:Occup99 -0.096 2.817 0.093
GLOBAL NA 24.762 0.169

Variables with significance of 10% or less
are shown in bold.

131



variable (from 0.72 to 0.022) and Occup6 (from 0.79 to 0.12 ), both variables remaining

not significant. The significance of Age:Occup4 increased considerably after stratifying,

going from about 5% to a 1% significance, this was the only significant variable that had

a major impact from stratification.

The PH tests for variables that appear significant in this stratified model do not

show important departures from the PH assumption, the global measure however shows

a larger value of the test statistic, compared to the unstratified model (Table 7.16).

It remains of interest to perform an analysis using stratified point and variance es-

timates taking the IPC weights as random. From the comparison between these two

models using naive variance estimates, it is expected that the stratification results using

the PC variance approximation will behave similarly, that is, with no dramatic changes

in the z-values for most variables. It remains unclear if the stratified model offers better

results in terms of the PH assumption in this example, and further assessment is required

by accounting for the IPC weights as random.

From the results presented in this subsection, it can be concluded that based on

these data, PC model variance estimates approximate quite well those from the Cox

PH model, considering the sample size and the resulting large standard errors, and can

be used for inference. In this example, the PC.Comb.Naive method gives very similar

variance estimates to the robust variance Cox PH estimates, indicating that there is not

an substantial effect of stratification.

It is important to note that, because of the considerable amount of missing informa-

tion, the results from the analysis of jobless spells is offered here only as an illustration.

The variables that were found the most significant for the durations of first jobless spells

in 2000 for individuals living in Ontario in 1999, are age, income, employment insurance,

employment insurance and the interactions Age:Occupation and Minority:Ei. Since there

was found no important difference between unstratified and stratified models under naive

variance estimates, and given that stratification has not played an important role in these

data, it is inferred that a comparison using PC.Comb variance estimates would not have

led to contrasting conclusions and that the significance results would have been preserved

for most variables.
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and unstratified models, based on naive variance estimates.
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Table 7.16: Summary of stratified fit and PH Assessment, first jobless spells in 2000,

ON.

PH Assessment
Variable Est. SE p-Val rho χ2 p-Val

Age 0.001 0.001 0.380 0.085 1.986 0.159
Age2 -0.027 0.032 0.390 0.089 4.434 0.035
Minority 0.253 0.321 0.430 0.039 0.408 0.523
Ei -1.778 1.134 0.120 -0.074 5.099 0.024
Occup2 0.071 0.390 0.860 0.044 0.526 0.468
Occup3 -0.531 0.470 0.260 -0.086 2.785 0.095
Occup4 0.093 0.704 0.890 -0.052 0.602 0.438
Occup5 0.052 0.421 0.900 0.035 0.401 0.526
Occup6 -0.045 0.374 0.900 0.062 1.073 0.300
Occup99 -1.935 0.588 0.001 -0.064 2.333 0.127
Income.cat2 0.441 0.254 0.083 0.058 1.375 0.241
Income.cat3 0.779 0.332 0.019 0.060 1.846 0.174
Minority:Ei 1.391 1.169 0.230 0.047 1.870 0.172
Age:Occup2 -0.001 0.035 0.980 -0.093 2.664 0.103
Age:Occup3 -0.008 0.041 0.850 -0.116 4.873 0.027
Age:Occup4 -0.150 0.059 0.011 -0.102 1.547 0.214
Age:Occup5 0.052 0.041 0.200 -0.005 0.011 0.916
Age:Occup6 0.032 0.032 0.320 -0.086 1.934 0.164
Age:Occup99 -0.041 0.041 0.320 -0.098 3.355 0.067
(GLOBAL) - - - NA 34.813 0.015

Variables significant at a 10% level or less are shown in bold.
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7.5.2 Sequences of jobless spells in 2000-2002

This section presents an analysis of sequences of jobless spells that started in the period

from 2000 to 2002, from individuals that lived in Ontario in 1999. To clarify, this means

that some sequences had their first spell in this period and some started back in 1999.

When analyzing sequences of spells, it is advisable to include information related to

previous spells in the model in order to account for dependence on past event history.

This section is divided into several parts. As in the preceding analysis, the first

one is about the assessment of the PC model approximation based on an initial model,

the second part gives a discussion on a model selected by backward elimination, and is

followed by model checks and stratified Cox PH modelling. We further include a brief

discussion to illustrate the modelling of jobless spells by order, in a similar fashion as in

Kovacevic and Roberts [29].

The variables that were used in the models are described in Table 7.13, numbers 1

to 6, are the same that were used in the preceding analysis, from which employment

insurance, occupation and income refer to the year prior to the start of the spell; and

three more variables (7 to 9) denoted as Yearly quarter, Order and P.Dur. The Yearly

quarter variable refers to the quarter of the year in which the spells started and will be

used to examine if the time of the year is an important factor in the length of the spells.

The Order variable is equal to one if there was a previous spell and zero otherwise. This

variable will be useful in finding out if second and subsequent spells are more likely to be

shorter or longer than first spells. The length of the preceding jobless spell, given that

there exists one, is denoted by P.Dur.

PC model approximation to Cox PH

In our sample of sequences of jobless spells in 2000-2002 from Ontario residents in 1999,

there were initially 520 individuals with 655 spells; 61 spells were lost due to missing

information in the variable P.Dur mentioned above, due to spells with unknown start

date. Hence there are left 471 individuals with 594 spells. From these spells, 80 were

censored, and 250, 206 and 138 spells started in years 2000, 2001, 2002.

The pieces for the PC model that were chosen and the estimated hazards are shown
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in Table D.3 in the appendix, section D.2. There are nine pieces in total, and were

determined based on a visual assessment of the curvature of the cumulative baseline

hazard function from the Cox PH model which is very similar to the one estimated from

the first jobless spells that started in year 2000, in the preceding analysis, and the same

limits for the pieces were used.

The left hand side of Figure 7.7 shows a plot of the estimated survivor function and

the right hand side is the estimated cumulative hazard function for the main effects model,

based on the PC and the Cox PH models, respectively. The former approximates fairly

well the estimate based on the latter. This plot also shows that the slope becomes lower

after 52 weeks, indicating a decreasing hazard rate after this time, that is, the conditional

probability of leaving the jobless state after 52 weeks decreases with time.

136



0 50 100 150 200

0.
2

0.
4

0.
6

0.
8

1.
0

Kaplan−Meier Estimate − Comb. weights

Time (weeks)

Pr
.S

ur
viv

al

Sequence of Jobless Spells in 2000−2002

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Estimated Baseline Cumulative Hazard − Comb. weights

Time (weeks)
Ba

se
lin

e 
Cu

m
ul

at
ive

 H
az

ar
d

Sequence of Jobless Spells in 2000−2002, Main Effects Model

Cox PH
PC

Figure 7.7: Weighted Kaplan-Meier and estimated baseline cumulative hazard function for main effects model from sequences of jobless

spells in 2000-2002, using combined weights.
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Estimates of the regression coefficients based on the Cox PH model were obtained

using the coxph function in R/SPlus, and those based on the PC model were computed

according to the methods described in chapter 6, with variance estimates that account

for 389 clusters and 11 strata.

The estimation results are shown in Tables D.6 to D.8 in the appendix. Both PC

model based estimates are calculated based on a larger sample size than those from the

preceding section, and do a better approximation for the unweighted, design and combined

weighted methods. Regarding the regression estimates, the unweighted PC model gives

values that are, on the average, within about 2% the Cox PH estimates, while the design

and combined weighted methods give 3%.

As before, the variance estimates from the Cox PH model that are used for comparison

are the robust variance estimates from the coxph and cluster options in R/SPlus, based

on Lin and Wei [40] and do not include stratification. The unweighted variance estimation

method gives values that are, on average, 0.6% close to the Cox PH based standard errors,

the design cases give an average of 0.5%; and the combined method gives 1.8%.

The graphs in Figure 7.8 are analogous to the ones in Figure 7.5, discussed in the

preceding section. They show the z-statistics |β̂|/se(β̂) calculated based on estimates

from the Cox PH and PC models described above. The left and right graphs show

estimates based on sampling design and on combined (design×IPC) weights, respectively.

As before, z-values based on robust variance estimates are labeled as “Cox PH.robust”

and “PC.robutst”, respectively. The label “PC.B&L” corresponds to design weighted

variance estimates from the PC model, based on Boudreau and Lawless [9], the z-values

labeled “PC.Comb” are based on the combined PC weighted variance estimates and those

labeled “PC.Comb.Naive” are based on combined PC weighted variance estimates taking

the IPC weights as fixed.
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Figure 7.8: Values of |β̂|/se(β̂) from jobless spells starting in 2000-2002.
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In terms of the significance of the variables, both design and combined methods

lead to the same conclusions regarding Age and the two income categories Income.cat2

and Income.cat3, which are significant at a 5% level. The combined weighted methods,

however, give greater z-values, especially for these three variables, and the significance

of the Age variable is substantially higher than for the design methods. This increase of

z-values implies a reduction of the variance estimates, which is consistent with what was

observed in the preceding analysis. The z-values based on the robust variances give very

similar results to those based on the PC.B&L in the design case and the PC.Comb.Naive

methods in the combined case, implying that stratification is not important in these data.

The combined methods place the variables Quarts, Minority, Order and the interaction

Order:P.Dur closer to the 5% significance level than the design methods.

As a summary, the results shown in this section have allowed us to verify that the

PC model gives a good approximation to the Cox PH model in real data sets for models

with many variables. As expected, the PC.Comb method gives smaller variance estimates

than PC.Comb.Naive, and in this case, the difference between these two does not lead

to different conclusions regarding the significance of the variables. Another important

conclusion is that the robust variance estimates without stratification (Cox PH.robust

and PC.robust) are very similar to those based on PC.B&L and PC.Comb.Naive, which

do account for strata.

Model selection and interpretation

A model with the variables in Table 7.13 including interactions between Age and Sex,

Minority and Employment Insurance, Minority and Income, and Quarts and Income was

assessed using the backwards elimination technique. From these interactions only Age:Sex

remained significant in the model.

Table 7.17 shows the significance tests for the variables that were left in the final

model using combined weights. The “Est.” column refers to the regression estimates

from the Cox PH model. The third and fourth columns refer to the standard errors and

p-values based on the PC model (“PC.COMB”); similarly, the fifth and sixth columns

are based on the robust variance estimate from the Cox PH model (“COX PH”). Results

based on these two variance estimates show an overall agreement, both giving as most
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significant the variables Age, Income and the term Order:P.Dur.

The Age coefficient is negative, agreeing with the modelling results on first jobless

spells in 2000 shown in the preceding subsection. This indicates that as age increases,

individuals are more likely to have longer jobless spells. The estimate for Age gives a

hazard of exp(−0.28) = 0.97 ( 95% CI of (0.96,0.98) ), giving a 3% reduction in the

hazard for leaving the jobless state for one year increment.

The Sex variable does not appear significant by itself, but it is significant at a 10%

level when included in interaction with Age. Controlling for the other variables in the

model, this interaction’s estimated coefficient implies that as age increases in women, it

becomes more likely for them to experience shorter spells than men.

With respect to the Minority variable, people that do not belong to a visible minority

group have exp(0.311) = 1.36 ( 95% CI of (0.99,1.88) ) times the hazard for leaving the

jobless state than those that do, that is, it is for them more likely to experience shorter

spells, controlling for all other variables in the model.

The Occupation variable has a Wald test statistic of 30.82, which is is highly significant

under the PC.COMB method. The individual p-values of the occupation types 3 (science,

education, art) and 5 (processing, manufacturing) are significant at a 10% level, implying

that the lengths of jobless spells from individuals in these occupation categories are

significantly shorter than those that work in the reference category, given by type 1

(trades, transport, equipment operators). The hazard for individuals in level 5 have a

exp 0.461 = 1.6 relative risk of having shorter spells than people from level 1, with a 95%

CI of (0.92, 2.72).

The variable income is highly significant, and the positive estimates imply shorter

spells for those with highest income. In particular, subjects in the Income.cat3 category

have a exp(0.93) = 2.53 relative risk of experiencing shorter spells ( 95% CI of (1.84,3.50))

compared to the lowest income category.

Longer spells generally occur in a lower frequency than shorter spells. Significance

of the Order variable would indicate that if the spell is of higher order then it is more

likely to be shorter than if it is a first spell. This variable has a significance level close to

the 10%. The interaction Order:P.Dur is significant at a 5% level, and its negative value

141



implies that among spells of higher order, there is a tendency of length increment as the

preceding spell becomes longer.

Table 7.17: Summary from fitting unstratified Cox PH model to sequences of jobless

spells in 2000-2002 from residents of Ontario in 1999.

PC.COMB COX PH.Robust
(Naive)

Variable Est. SE p-Val SE p-Val

Age -0.028 0.006 <0.001 0.007 <0.001
Sex -0.064 0.126 0.611 0.134 0.630
Minority 0.311 0.162 0.055 0.188 0.097
Occup2 0.363 0.293 0.216 0.321 0.260
Occup3 0.462 0.276 0.095 0.311 0.140
Occup4 -0.416 0.356 0.242 0.382 0.280
Occup5 0.461 0.276 0.095 0.317 0.150
Occup6 0.137 0.292 0.638 0.325 0.670
Occup99 -0.248 0.331 0.455 0.366 0.500
Income.cat2 0.507 0.138 0.000 0.150 0.001
Income.cat3 0.930 0.164 0.000 0.185 <0.001
Order 0.136 0.100 0.173 0.112 0.230
Order:P.Dur -0.010 0.005 0.029 0.005 0.040
Age:Sex -0.018 0.010 0.080 0.011 0.110

Significant at a 10% level or less shown in bold.

Model checks

Informal model checks were done using the R function cox.zph as in the preceding section,

and results in Table 7.18 show that many variables have a violation of this assumption,

with a global test showing a highly significant departure with a p-value <0.0001.

Schoenfeld residual plots vs. time (or a function of time) should show a constant

trend with no slope indicating that the coefficient does not depend on time, if the PH

assumption is valid. Plots given by cox.zph were examined for all the variables (omitted

for confidentiality), and a downward trend after approximately 52 weeks was observed

in the variables with a 10% significant negative “rho”, especially the Sex variable (Table

7.18 ).

Therneau and Grambsch [57] give a discussion about what can be done in the presence

of PH model departures, and based on this and the observed trend, a second test was
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performed on the set of spells, this time censoring those that were longer than 52 weeks.

Results on the fit and proportional hazards assumption are shown in Table 7.19. The

standard errors shown in this table correspond to the robust variance estimate obtained

from the coxph output and the PH assessment is done based on them. These tests give

indication that the model has improved with respect to the proportionality assumption.

Looking back at Kaplan-Meier estimate on Figure 7.7, it can be seen that the prob-

ability of a spell to have a duration longer than 52 weeks is of about 26%. Fom the

results in Table 7.19, it is reasonable to assume that spells longer than 52 weeks have

different characteristics, which should be taken into account in the model as an additional

covariate or modelled separately.

An additional comment regarding the assessment of the model, is that the assumption

of linearity of the Age variable was tested by adding a squared term, which did not

result significant, and therefore evidence is insufficient to conclude the Age variable has

a quadratic effect with these data.

Table 7.18: PH assessment, unstratified Cox PH fit on sequences of jobless spells in

2000-2002, ON.

Variable rho χ2 p-Val

Age -0.085 6.307 0.012
Sex -0.118 18.071 <0.001
Minority 0.045 1.652 0.199
Occup2 0.023 1.005 0.316
Occup3 0.042 3.298 0.069
Occup4 0.046 2.901 0.089
Occup5 0.060 6.782 0.009
Occup6 0.006 0.072 0.789
Occup99 0.010 0.166 0.684
Income.cat2 -0.070 4.857 0.028
Income.cat3 0.090 9.288 0.002
Order -0.052 2.357 0.125
Order:P.Dur -0.084 8.550 0.003
Age:Sex -0.076 7.951 0.005
GLOBAL NA 69.857 <0.0001

Variables with significance of 10% or less
are shown in bold.
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Table 7.19: Summary of unstratified fit after censoring spells longer than 52 weeks and

PH assessment, sequences of jobless spells in 2000-2002.

Significance PH Assessment
Variable Est. SE p-Val rho χ2 p-Val

Age -0.016 0.008 0.064 -0.031 0.936 0.333
Sex 0.060 0.142 0.670 -0.054 2.767 0.096
Minority 0.569 0.248 0.022 0.042 1.659 0.198
Occup2 0.175 0.301 0.560 -0.015 0.295 0.587
Occup3 0.374 0.287 0.190 0.009 0.102 0.749
Occup4 -0.350 0.326 0.280 0.013 0.163 0.687
Occup5 0.215 0.299 0.470 0.018 0.383 0.536
Occup6 0.177 0.297 0.550 -0.017 0.368 0.544
Occup99 -0.622 0.412 0.130 -0.004 0.022 0.882
Income.cat2 0.681 0.164 <0.001 -0.037 0.984 0.321
Income.cat3 0.987 0.206 <0.001 0.032 0.905 0.341
Order 0.216 0.132 0.100 -0.021 0.416 0.519
Order:P.Dur -0.005 0.005 0.270 -0.046 1.912 0.167
Age:Sex -0.018 0.012 0.130 -0.030 1.030 0.310
(GLOBAL) - - - NA 18.641 0.179

Variables significant at a 10% level or less are shown in bold.

Stratification

Cox PH stratified estimates will be compared with the unstratified estimates given in

Tables 7.17 and Table 7.19. Recall that we are stratifying on the 11 strata given by

economic regions and also considering these on the variance estimation, including the 389

clusters given by the dissemination areas (PSU’s).

The variance estimate given in Boudreau and Lawless [9] is produced by the R/SPlus

function coxph with the strata and cluster options and is used in the following analysis.

Even though this variance estimate does not account for the random nature of the IPC

weights, it can be used bearing in mind that the COMB Naive estimates may be higher

than the COMB estimates.

The upper panel of Table 7.20 shows the results from fitting a stratified Cox PH

model to the sequences of jobless spells in 2000-2002, together with the tests for the

proportionality assumption. Looking back at Table 7.17 for the unstratified model, it

can be seen that the effects of all variables remain significant at a 10% level, except for

that of Minority which has a significant change in magnitude. The proportionality tests
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in this table compared to those from the unstratified estimates (Table 7.18) show an

improvement regarding the PH assumption.

Visual assessment of residual plots vs. time led us to assume that spells longer than

52 weeks could be causing these PH departures. The lower panel of Table 7.20 shows

the results obtained after censoring spells that had durations longer 52 weeks. The most

important variables in this fit are Age, Occup3, Occup4, Income, Order and Order:P.Dur.

This is a better version of the unstratified model with estimates shown in Table 7.19. It

is more informative in the sense that it has more significant variables and validates better

the PH assumption for all variables.

Modelling by spell order

Kovacevic and Roberts [29] implement the Cox PH model in various forms to jobless

spells from SLID, involving individuals in the panel from 1993 to 1998 across Canada.

They analyze the first four spells in this period, and one of their analyses consists of

modelling the spells separately by spell order, which is equivalent to doing a stratified

Cox PH analysis, with different slopes and baseline hazards. They do not account for the

dependence between spells within individuals explicitly in the model, but they account for

it in variance estimation, using a robust estimate based on Lin [37], and compare results

while using design based variance estimates based on Binder [4]. They find no substantial

difference between these two variance estimation procedures in their particular example.

Further, they do not account for dependent censoring.

In the discussion that follows, we model first and second jobless spells that started

from 2000 to 2002 separately, from people residing in Ontario in 1999. Main effects models

were fitted, and the variables used for first spells are age, sex, minority, employment

insurance, occupation, income, yearly quarters and start year of the spell. The model

for second spells further includes the duration of the preceding spell. The variables

occupation, employment insurance and income from the year prior to the start of the

spell with exception of the start year of the spell are described in Table 7.13, section

7.3.3.

There were 392 first and 136 second spells, from which 182 and 58 were censored,

respectively. A model for third spells would have included 53 spells, but these did not
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Table 7.20: Summary of stratified fit and PH Assessment, sequences of jobless spells in

2000-2002.

Significance PH Assessment
Variable Est. SE p-Val rho χ2 p-Val

Age -0.0265 0.0070 0.0002 -0.070 4.162 0.041
Sex -0.0412 0.1352 0.7600 -0.062 4.580 0.032
Minority 0.1953 0.1912 0.3100 -0.008 0.052 0.820
Occup2 0.4522 0.3138 0.1500 0.016 0.484 0.487
Occup3 0.5352 0.3067 0.0810 0.036 2.349 0.125
Occup4 -0.5709 0.3558 0.1100 0.030 1.041 0.308
Occup5 0.5248 0.3133 0.0940 0.044 3.377 0.066
Occup6 0.1645 0.3214 0.6100 -0.003 0.022 0.882
Occup99 -0.2260 0.3428 0.5100 0.027 1.216 0.270
Income.cat2 0.5635 0.1519 0.0002 -0.014 0.198 0.657
Income.cat3 1.0104 0.1913 <0.001 0.069 5.623 0.018
Order 0.1134 0.1131 0.3200 -0.002 0.004 0.949
Order:P.Dur -0.0089 0.0053 0.0930 -0.040 1.902 0.168
Age:Sex -0.0185 0.0112 0.0970 -0.051 3.509 0.061
(GLOBAL) - - - NA 32.675 0.003

Summary after censoring spells longer than 52 weeeks

Significance PH Assessment
Variable Est. SE p-Val rho χ2 p-Val

Age -0.0189 0.0074 0.0110 -0.077 4.163 0.041
Sex -0.0866 0.1275 0.5000 -0.059 2.570 0.109
Minority 0.2201 0.2178 0.3100 -0.047 1.698 0.193
Occup2 0.2958 0.2860 0.3000 0.011 0.146 0.702
Occup3 0.4390 0.2647 0.0970 0.020 0.374 0.541
Occup4 -0.5431 0.3091 0.0790 0.043 1.056 0.304
Occup5 0.1777 0.2655 0.5000 0.011 0.111 0.739
Occup6 0.1357 0.2503 0.5900 -0.032 0.960 0.327
Occup99 -0.1403 0.3318 0.6700 0.040 1.311 0.252
Income.cat2 0.8151 0.1640 <0.0001 -0.030 0.658 0.417
Income.cat3 1.0644 0.2074 <0.0001 -0.014 0.180 0.672
Order 0.2229 0.1238 0.0720 0.027 0.518 0.472
Order:P.Dur -0.0080 0.0046 0.0780 -0.062 2.827 0.093
Age:Sex -0.0057 0.0102 0.5700 0.041 1.263 0.261
(GLOBAL) - - - NA 18.415 0.189

Variables significant at a 10% level or less are shown in bold.
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allow for stratification, so was left out of the analysis. There were less than 15 spells of

the fourth and fifth order. Eleven strata and 389 clusters were used for estimation, as

before, based on the economic regions and dissemination areas from SLID.

Tables 7.21 and 7.22 shows the results from fitting unstratified and stratified models

to first and second spells, respectively. For first spells, significance of the variables of

the unstratified model compared to the stratified model does not change dramatically;

however, the PH test assumption gives better results for the stratified model. In the

case of the second spells, the stratified model gives substantially different results than the

unstratified, and this is also reflected in the PH assessment.

The primary difference between the models used by Kovacevic and Roberts and our

models in Tables 7.21 and 7.22 , is that the latter account for dependent LTF. Keeping this

in mind, and the fact that their models control for a different set of covariates (also, theirs

do not take into account information about the spells, such as start time and previous

spell duration), there can be found some similarities in the overall results. For instance,

the variables income and age were both significant in most of their and our models. In

our analyses, the Occupation variable does not have a high significance, which is also the

case in Kovacevic and Roberts.

Modelling first and second spells separately, however, has its downside in that the

employment experience across individuals most likely has started at different times. That

is, second spells from separate individuals since the year 2000 may not be their second

spells since the start of their employment processes, which may very likely, differ. As

discussed in section 2.3, modelling by spell order in this context may have some descriptive

value but is not ideal for analytic purposes.
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Table 7.21: Summary of unstratified fit by jobless spell order and PH Assessment,
sequences of jobless spells in 2000-2002.

First Spells

Significance PH Assessment
Variable Est. SE p-Val rho χ2 p-Val
Age -0.042 0.007 <0.001 -0.143 11.700 0.001
Sex -0.053 0.143 0.710 -0.136 10.100 0.002
Minority 0.111 0.195 0.570 0.018 0.138 0.710
Ei -0.018 0.232 0.940 -0.055 2.070 0.150
Occup2 0.424 0.236 0.072 -0.024 0.251 0.616
Occup3 0.115 0.262 0.660 -0.055 1.490 0.222
Occup4 -1.094 0.852 0.200 -0.018 0.286 0.593
Occup5 0.197 0.265 0.460 -0.021 0.195 0.659
Occup6 -0.085 0.250 0.730 -0.038 0.736 0.391
Occup99 -0.617 0.317 0.052 -0.072 2.480 0.115
Income.cat2 0.461 0.205 0.024 0.010 0.055 0.814
Income.cat3 0.866 0.223 0.000 0.103 4.830 0.028
Quarts2 -0.323 0.169 0.057 -0.091 4.260 0.039
Quarts3 -0.088 0.159 0.580 0.004 0.007 0.933
Quarts4 -0.493 0.191 0.010 -0.108 7.150 0.008
Stryr.cat3 -0.340 0.152 0.025 0.001 0.000 0.983
Stryr.cat4 -0.435 0.197 0.027 -0.058 2.150 0.143
(GLOBAL) - - - NA 42.000 0.001

Second Spells

Significance PH Assessment
Variable Est. SE p-Val rho χ2 p-Val
Age -0.027 0.012 0.022 -0.243 15.471 0.000
Sex 0.197 0.265 0.460 0.073 1.573 0.210
Minority -0.183 0.311 0.560 -0.264 15.239 <0.001
Ei -0.542 0.348 0.120 0.165 10.230 0.001
Occup2 0.479 0.434 0.270 0.051 0.764 0.382
Occup3 0.672 0.424 0.110 0.240 17.695 <0.001
Occup4 0.039 0.621 0.950 0.154 7.304 0.007
Occup5 0.424 0.484 0.380 0.128 5.237 0.022
Occup6 0.186 0.521 0.720 -0.092 3.167 0.075
Occup99 0.627 0.608 0.300 0.069 1.487 0.223
Income.cat2 1.058 0.311 0.001 -0.324 22.242 <0.001
Income.cat3 1.094 0.364 0.003 -0.098 2.377 0.123
Quarts2 -0.354 0.483 0.460 0.175 10.666 0.001
Quarts3 0.154 0.341 0.650 0.066 1.141 0.285
Quarts4 -0.059 0.407 0.880 0.232 18.864 <0.001
Stryr.cat3 0.122 0.268 0.650 0.261 14.119 <0.001
Stryr.cat4 0.455 0.344 0.190 0.128 4.859 0.028
P.Dur -0.013 0.007 0.042 -0.199 9.899 0.002
(GLOBAL) - - - NA 92.458 <0.001

Variables significant at a 10% level or less are shown in bold.
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Table 7.22: Summary of stratified fit by jobless spell order and PH Assessment, sequences
of jobless spells in 2000-2002.

First Spells

Significance PH Assessment
Variable Est. SE p-Val rho χ2 p-Val
Age -0.042 0.007 <0.001 -0.106 6.300 0.012
Sex -0.045 0.146 0.760 -0.056 1.750 0.186
Minority 0.124 0.211 0.560 0.025 0.265 0.607
Ei -0.153 0.248 0.540 -0.086 5.230 0.022
Occup2 0.433 0.254 0.088 -0.006 0.020 0.887
Occup3 0.106 0.269 0.690 -0.043 0.897 0.344
Occup4 -0.976 0.756 0.200 -0.019 0.261 0.609
Occup5 0.160 0.260 0.540 -0.023 0.219 0.640
Occup6 -0.109 0.258 0.670 -0.022 0.261 0.609
Occup99 -0.631 0.308 0.040 -0.047 1.110 0.292
Income.cat2 0.735 0.206 <0.001 0.088 4.260 0.039
Income.cat3 1.122 0.249 <0.001 0.091 4.790 0.029
Quarts2 -0.380 0.186 0.041 -0.081 3.440 0.064
Quarts3 -0.101 0.167 0.550 0.000 0.000 0.998
Quarts4 -0.499 0.219 0.023 -0.059 2.560 0.110
Stryr.cat3 -0.387 0.153 0.012 -0.037 0.712 0.399
Stryr.cat4 -0.519 0.205 0.011 -0.081 4.450 0.035
(GLOBAL) - - - NA 25.200 0.090

Second Spells

Significance PH Assessment
Variable Est. SE p-Val rho χ2 p-Val
Age -0.024 0.014 0.082 -0.218 20.987 <0.001
Sex 0.416 0.247 0.093 0.102 2.545 0.111
Minority -0.645 0.477 0.180 -0.262 31.415 <0.001
Ei -0.575 0.388 0.140 0.159 10.790 0.001
Occup2 0.997 0.563 0.076 0.129 8.949 0.003
Occup3 1.319 0.621 0.034 0.139 11.495 0.001
Occup4 0.069 0.722 0.920 0.116 6.933 0.008
Occup5 0.865 0.605 0.150 0.123 8.376 0.004
Occup6 0.663 0.607 0.280 -0.039 0.853 0.356
Occup99 0.762 0.722 0.290 0.070 2.313 0.128
Income.cat2 0.897 0.326 0.006 -0.237 13.297 <0.001
Income.cat3 0.876 0.407 0.031 0.038 0.486 0.486
Quarts2 -0.640 0.641 0.320 0.117 6.028 0.014
Quarts3 0.012 0.426 0.980 0.120 4.447 0.035
Quarts4 -0.245 0.441 0.580 0.205 12.843 <0.001
Stryr.cat3 0.024 0.288 0.930 0.129 5.655 0.017
Stryr.cat4 0.351 0.373 0.350 -0.021 0.194 0.660
P.Dur -0.014 0.006 0.024 -0.084 1.581 0.209
(GLOBAL) - - - NA 75.333 <0.001

Variables significant at a 10% level or less are shown in bold.
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Chapter 8

Topics for Research

As a brief summary, the methods for the analysis of durations from longitudinal sur-

vey data developed in this thesis take into account for dependent loss to follow-up as

a form of missing at random (MAR) mechanism. It has been shown that our methods

provide unbiased estimates and that our variance estimates give better results when con-

sidering the IPC weights as random rather than fixed. The estimation techniques are

based on theory for parametric methods, and their applicability in this thesis includes

the estimation of regression coefficients from parametric survival models, the estimation

of non-parametric survival distributions via the Kaplan-Meier estimate, and the estima-

tion of regression coefficients and baseline cumulative functions from the Cox PH model

through the piece-wise constant approximation model.

As mentioned in chapter 7, through the implementation of the methodology in jobless

spells from SLID, we have encountered challenges regarding missing data and measure-

ment error. In this chapter we give a short discussion on patterns of missing data and

provide pointers towards dealing with them. We also give a discussion on missing data

in response variables and covariates. Other topics that have been identified as areas for

future research are discussed, such as generalizations of the MAR assumption, the devel-

opment of methods to perform model checks and for the analysis of more general event

history data.
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The MAR assumption and missing data patterns

Violations of the missing at random (MAR) requirement for our methods are likely to

occur in any survey in which panel members are seen at widely spaced interviews. Fur-

thermore, as noted by Robins et al. [51], if we wanted to generalize our methods from a

monotone missing data pattern to an intermittent one, then the data is no longer MAR.

That is, Pr(Rit|Ri,t−1 = 1, Hi(M)) = Pr(Rit|Ri,t−1 = 1, Hi(t− 1)) does not longer hold

and we say that the data is not missing at random (NMAR). In this case it is necessary

to make assumptions that cannot be checked in practice (Fitzmaurice et al. [19], part V),

so auxiliary data from administrative sources or from tracing individuals who were lost to

follow-up can be used. Another possibility is to perform sensitivity analysis to assess the

effect of NMAR loss to follow-up or other types of missing data (e.g. Rotnitzky, Robins

and Scharfstein [52], Scharfstein and Robins [56]).

Robins et al. [51], who applied IPCW methods in generalized linear models for lon-

gitudinal data in the non-survey context, provides a discussion on dealing with arbitrary

patterns of missing information. Some other examples are Yi and Thompson [60], where

a likelihood-based approach for longitudinal incomplete binary data with possibly NMAR

drop-outs is discussed. Yi and Cook [59] discuss an extension to deal with intermittently

missing data, and present an application to a longitudinal cluster-randomized smoking

prevention trial. The development of methods for NMAR assumption and intermittent

missing data patterns is a needed area of study in the context of duration analysis from

longitudinal survey data.

Missing data in response variables and covariates

In the analysis of jobless spells from SLID, we have encountered a variety of types of

missing data besides the one caused by attrition, which were dealt with, but methods

for other types of missing data need to be proposed. The introduction of chapter 7 gives

a detailed discussion on missing data from SLID, and as mentioned, one type has to do

with the start dates of the spells. Table B.4 in the appendix, shows that about 41% of

the individuals who had at least one jobless spell in 1999-2004 had at least one spell with

an unknown start date. In the data set that was used for analysis of jobless spells, there

were about 26% of spells with an unknown start date, as shown in Table 7.5. Discarding
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the spells that had an unknown start date may severely bias the estimation results and

it has further impact in the modelling of dropout, through covariates that are based on

information like the length of a preceding spell.

Another type of missing information has been found in variables that are not directly

related to the start and end of jobless spells, but are intended to be used as covariates

for duration or dropout models. In SLID, this missing information comes in the form of

responses of the types “don’t know”, “not available” or “refusal”. As a way to deal with

this, even though it is not ideal, missing values for categorical covariates were included

in most models as an additional covariate level.

A comprehensive discussion of methods for dealing with missing data can be found in

Little and Rubin [43]. A technique known as the complete case method consists of simply

using only individuals with complete data. This strategy may be satisfactory with small

amounts of missing data and when data are missing completely at random (MCAR),

but can lead to serious bias under MAR or NMAR conditions. Weighting procedures,

which can be seen as a form of the complete case method, such as those used in SLID

that account for non-response, consist of adjusting the sampling design weights and then

analyzing the complete units. Imputation methods consist of filling in the missing values

and then the imputed and observed data are analyzed together as “complete” data. Single

imputation has the disadvantage that imputing a single value treats that value as known,

and without special adjustments single imputation cannot reflect sampling variability.

Multiple imputation (Rubin [54]) is a method that incorporates imputation uncertainty

and is preferred over simple imputation when there are large amounts of missing data.

The estimates of variance based on multiple imputation methods are based on a specific

model and consider a particular missing data mechanism. In our case for example, a

model in which the distribution of the start time of a spell depends on information from

individuals and also on end times of the spells could be implemented and then values

may be randomly imputed, based on this model, to spells that have a missing start date.

Challenges of multiple imputation and approaches towards validating assumptions are

discussed in Kenward and Carpenter [27].

There are maximum likelihood and Bayes methods available when a model for all

variables (e.g. covariates, truncation times, start times, durations) is available and data
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are MAR. Cook and Lawless [15] (section 8.6) give a discussion on maximum likelihood

methods for missing covariates along with references. Regarding the Cox model in survival

analysis, Kalbfleisch and Prentice [25] (section 11.5) give some references. It is possible

to extend methods in Robins et al. [51], Lawless et al. [34] and related references to

deal with survey data but to date this has not been done for settings involving duration

analysis.

Measurement error

One example of measurement error, in SLID and in many longitudinal surveys, is the seam

effect. It is a form of recall bias and refers to a high occurrence of reported transitions

at the seam between two reference periods, in our case the SLID waves. The SLID

labour interviews are performed in January of each year and information is collected

about the individuals labor activity during the preceding year, called the reference year.

The interviewed person may have a better recollection of his or her labor activity from

the second half of the year than from the first half, for instance. This may induce a

biased response towards the beginning of a reference year. It is important to consider

this seam effect issue when drawing conclusions from the data. Discussion of the extent

and consequences of the seam effect in longitudinal surveys can be found in Callegaro[10],

and in particular for SLID in Cotton and Gilles [16] and Lemaitre [36].

Kalton et al. [26] provide a discussion regarding adjustments for seam effect while

analyzing spells from the US Survey of Income and Program Participation (SIPP). They

propose an adjustment that produces smooth distributions of starts and ends of the spells.

They compute weighted Kaplan-Meier estimates and identify the time in which the seam

effect takes place, and then reallocate a proportion of the reported starts and ends at the

seam effect to other time periods within the duration of the wave. Kalton et al. discuss

the cases of single and multiple spells per individual. It would be interesting to examine

the seam effect on SLID data, and develop methods since contributions in dealing with

this appear limited.

Another type of measurement error was found in variables regarding the termination

of the jobless spells. There are spells in SLID that are not observed to completion,

and to account for this, there is a SLID variable (“endtyp7”) that provides information
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associated with the end of a jobless spell, indicating whether the respondent reported

working in subsequent interviews, there was non-response or the person was no longer

eligible for the labour interview. We have associated the two latter possibilities to our

dropout related variable for estimation of the IPC weights, but the question remains on

what is the best way to deal with the former, especially when spells that end this way

occurred within a sequence (see section B.4 in the appendix and Table B.6).

Model checks

Classical duration analysis theory has a number of model checking methods, however, this

topic has not been developed for longitudinal survey data or when weights are treated

as random. Nonetheless, diagnostic checks by treating the weights as fixed can still be

useful. That is, to perform usual model checks by Cox PH software, like constructing plots

of weighted martingale residuals or DFBETAS, and using tests for the proportionality

assumption via cox.zph in R/Splus using naive variance estimates.

More complex processes

The methods developed here involve two alternating processes, illustrated by unemploy-

ment and employment durations. These methods can be easily extended to deal with

more general types of event history analysis. For example, in the competing risks model

(see section 1.3), an exit from a state can occur with a transition to one or more possible

states, and the hazard functions related to the transitions can be treated as transition

intensity functions (Andersen et al. [1]). For example, exits from the “unemployed”

(UE) state can occur by transitioning to the “employed” (E) or to the “out of the labour

force” (O) states. In the competing risks framework, different types of transitions can be

modeled separately (Lawless [32], ch. 9), so when analyzing transitions from the UE to

the E state, the transitions from UE to O can be treated as a censoring event and the

methods developed here can be readily applied. Processes where individuals can make

transitions back an forth between states are more complex and constitute an opportunity

for research.
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Appendix A

Simulation Results for

Kaplan-Meier Estimation

Table A.1: Empirical survival probabilities in population.

Scenario I Scenario II Scenario III Scenario IV

Time Surv. Time Surv. Time Surv. Time Surv.

9 0.9144 10 0.9044 9 0.9234 9 0.9198

12 0.8232 13 0.8174 13 0.8082 12 0.8292

15 0.7239 16 0.7165 16 0.7063 15 0.7318

18 0.6202 19 0.6168 19 0.6084 18 0.6292

21 0.5231 22 0.5241 22 0.5166 22 0.5028

25 0.4115 26 0.4152 26 0.4089 25 0.4211

30 0.3019 31 0.3095 31 0.3028 30 0.3112

36 0.2087 38 0.2019 37 0.2115 37 0.2013

47 0.1063 49 0.1036 49 0.1040 48 0.1044
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Table A.2: Bias and Empirical Standard Error for Ŝ(y), scenario I.

Bias Empirical SE

Time DES COMB DES COMB

9 -0.0116 0.0004 0.0152 0.0137

12 -0.0200 0.0006 0.0198 0.0187

15 -0.0253 0.0016 0.0230 0.0223

18 -0.0305 0.0014 0.0238 0.0239

21 -0.0322 0.0015 0.0238 0.0248

25 -0.0313 0.0021 0.0234 0.0254

30 -0.0292 0.0016 0.0210 0.0239

36 -0.0246 0.0013 0.0182 0.0218

47 -0.0165 0.0010 0.0134 0.0174

Table A.3: Average standard error and coverage for Ŝ(y), scenario I

Average SE Coverage

DES COMB DES COMB

Time Sup. Fin. Comb. Naive Sup. Fin. Comb. Naive

9 0.0143 0.0141 0.0126 0.0129 0.8180 0.7910 0.9300 0.9450

12 0.0190 0.0187 0.0175 0.0178 0.7880 0.7670 0.9250 0.9370

15 0.0218 0.0215 0.0207 0.0212 0.7550 0.7460 0.9320 0.9370

18 0.0233 0.0229 0.0228 0.0233 0.7300 0.7080 0.9400 0.9450

21 0.0236 0.0231 0.0239 0.0244 0.7040 0.6990 0.9470 0.9590

25 0.0228 0.0223 0.0239 0.0244 0.7120 0.7020 0.9470 0.9550

30 0.0208 0.0205 0.0228 0.0233 0.7120 0.7160 0.9320 0.9380

36 0.0182 0.0178 0.0208 0.0212 0.7347 0.7447 0.9327 0.9427

47 0.0135 0.0133 0.0165 0.0169 0.7895 0.8206 0.9377 0.9398

156



Table A.4: Bias and Empirical Standard Error for Ŝ(y), scenario II.

Bias Empirical SE

Time DES COMB DES COMB

10 0.00096 0.00123 0.01516 0.01587

13 0.00085 0.00145 0.01964 0.02041

16 0.00081 0.00160 0.02282 0.02361

19 0.00117 0.00236 0.02474 0.02573

22 0.00134 0.00227 0.02508 0.02634

26 0.00130 0.00227 0.02489 0.02597

31 0.00337 0.00366 0.02250 0.02360

38 0.00360 0.00384 0.01939 0.02018

49 0.00160 0.00148 0.01488 0.01569

Table A.5: Average standard error and coverage for Ŝ(y), scenario II

Average SE Coverage

DES COMB DES COMB

Time Sup. Fin. Comb. Naive Sup. Fin. Comb. Naive

10 0.0141 0.0140 0.0146 0.0147 0.9220 0.9310 0.9240 0.9380

13 0.0185 0.0183 0.0191 0.0192 0.9390 0.9340 0.9420 0.9400

16 0.0215 0.0212 0.0222 0.0223 0.9320 0.9260 0.9390 0.9360

19 0.0231 0.0228 0.0239 0.0240 0.9340 0.9350 0.9380 0.9400

22 0.0237 0.0234 0.0246 0.0246 0.9430 0.9410 0.9310 0.9400

26 0.0233 0.0230 0.0242 0.0243 0.9460 0.9420 0.9320 0.9390

31 0.0219 0.0216 0.0227 0.0228 0.9419 0.9389 0.9389 0.9419

38 0.0190 0.0188 0.0197 0.0198 0.9418 0.9388 0.9438 0.9438

49 0.0146 0.0144 0.0150 0.0151 0.9460 0.9384 0.9449 0.9438
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Table A.6: Bias and Empirical Standard Error for Ŝ(y), scenario III.

Bias Empirical SE

Time DES COMB DES COMB

9 -0.0029 0.00005 0.0136 0.0137

13 -0.0055 0.0008 0.0205 0.0205

16 -0.0063 0.0012 0.0235 0.0237

19 -0.0070 0.0016 0.0239 0.0245

22 -0.0066 0.0020 0.0235 0.0246

26 -0.0064 0.0017 0.0228 0.0244

31 -0.0059 0.0017 0.0210 0.0226

37 -0.0052 0.0011 0.0188 0.0206

49 -0.0029 0.0010 0.0138 0.0151

Table A.7: Average standard error and coverage for Ŝ(y), scenario III.

DES COMB DES COMB

Time Sup. Fin. Comb. Naive Sup. Fin. Comb. Naive

9 0.0131 0.0129 0.0130 0.0130 0.9320 0.9290 0.9280 0.9460

13 0.0191 0.0188 0.0192 0.0192 0.9100 0.9070 0.9260 0.9300

16 0.0218 0.0216 0.0223 0.0224 0.9250 0.9170 0.9300 0.9370

19 0.0233 0.0230 0.0240 0.0240 0.9230 0.9220 0.9340 0.9470

22 0.0237 0.0233 0.0246 0.0246 0.9380 0.9380 0.9480 0.9510

26 0.0232 0.0228 0.0243 0.0243 0.9380 0.9410 0.9450 0.9450

31 0.0215 0.0212 0.0228 0.0228 0.9490 0.9520 0.9580 0.9590

37 0.0190 0.0188 0.0204 0.0204 0.9458 0.9518 0.9518 0.9528

49 0.0142 0.0140 0.0154 0.0154 0.9511 0.9565 0.9489 0.9500
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Table A.8: Bias and Empirical Standard Error for Ŝ(y), scenario IV.

Bias Empirical SE

Time DES COMB DES COMB

9 -0.0078 0.00004 0.0144 0.0136

12 -0.0133 0.0007 0.0199 0.0191

15 -0.0181 0.0004 0.0226 0.0222

18 -0.0204 0.0007 0.0234 0.0238

22 -0.0210 0.0017 0.0235 0.0246

25 -0.0209 0.0014 0.0230 0.0244

30 -0.0192 0.0015 0.0211 0.0230

37 -0.0158 0.0012 0.0178 0.0204

48 -0.0099 0.0010 0.0134 0.0160

Table A.9: Average standard error and coverage for Ŝ(y), scenario IV

Average SE Coverage

DES COMB DES COMB

Time Sup. Fin. Comb. Naive Sup. Fin. Comb. Naive

9 0.0136 0.0135 0.0128 0.0128 0.8800 0.8670 0.9340 0.9420

12 0.0185 0.0183 0.0178 0.0179 0.8620 0.8390 0.9320 0.9360

15 0.0215 0.0212 0.0212 0.0213 0.8370 0.8210 0.9370 0.9430

18 0.0231 0.0228 0.0234 0.0234 0.8490 0.8370 0.9470 0.9520

22 0.0236 0.0232 0.0245 0.0245 0.8400 0.8390 0.9480 0.9500

25 0.0231 0.0227 0.0244 0.0245 0.8430 0.8440 0.9570 0.9580

30 0.0213 0.0210 0.0232 0.0233 0.8600 0.8630 0.9560 0.9560

37 0.0183 0.0180 0.0206 0.0206 0.8744 0.8854 0.9558 0.9548

48 0.0138 0.0136 0.0160 0.0160 0.8935 0.9204 0.9441 0.9548
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Appendix B

Definitions and Exploratory

Statistics from SLID

B.1 Defining loss to follow-up in SLID

LTF in exploratory discussion, section 7.2

Being lost to follow-up involves whether a person was in or out of scope and whether there

was labour information available for that person. The term “in scope” in a particular

year means that, as of December 31 of that year, the person was not deceased, lived in

one of the ten Canadian provinces, did not live on an Indian reserve, had not been living

in an institution for more than six months, or was not a full time member of the Canadian

Armed Forces living in military barracks. There are four possibilities for missing labour

information found in SLID data:

i. The person did not respond in the reference year but is still in scope. The person

is considered a soft refusal since it might be possible to obtain data from them in

a future year (SLID variables: ailgwt26=0, resp99=01))

ii. The person is in scope but no labour information is available in that year (SLID

variables: resp99=01, nbjbs28=97 - “don’t know”)

iii. The person is out of scope (SLID variable: resp99=02-06)

160



iv. The person dropped out from the sample (SLID variable: resp99=07)

Over the six years from 1999 to 2004, individuals may have experienced one or more

of the above possibilities (i)-(iii), while (iv) may have been experienced only once, since a

person that drops from the sample is not included subsequently. An individual’s labour

history in the six years may have a combination of (i)-(iii), forming patterns that may be

intermittent over the six years.

Persons that experienced any of the above conditions in the first two consecutive years

of the panel (1999 and 2000) were excluded from the analysis. As a convention, everyone

in the working data set was observed and had labour information in the first year of the

panel and was followed until the first year in which any of the above was experienced.

This year will be denoted as the loss to follow-up (LTF) time, or year. Individuals

that had (i), (ii) or (iii) in the first year (1999) but that were observed and had labour

information in the second year were applied the same follow-up definition citeria starting

from 2000.

LTF in Kaplan-Meier estimation and Cox PH modelling, 7.3

The descriptive information presented in section 7.1 pertains to loss to follow up as defined

above. A further restriction for LTF was used in sections 7.2 and 7.3, where Kaplan-Meier

estimation and Cox PH modelling are performed. Individuals’ time to LTF was further

adjusted according to patterns of ”looking for work” and ”not looking for work” observed

in the individual jobless spells sequences.

Table B.1 shows the number of spells in the working data set by ”looking for work”

response. There are about 35% of the spells in which the person was not looking for work.

Jobless spells where the person was not looking for work have a different distribution than

those from people who were looking. This was verified in a short analysis (not shown

here) where distributions of jobless spells with ”looking for work” and ”don’t know” were

similar and stood apart from the distributions of spells with ”not looking”. Sequences of

the kind ”0 7 2” for example, were truncated to ”0 7” and LTF was adjusted accordingly.
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Table B.1: Number of jobless spells by ”looking for work” response, after adjustments.

Spell order 1 (Yes) 2 (No) 7 (Don’t know) Total

1 4652 3629 3600 11881

2 2414 2017 297 4728

3 1166 913 133 2212

4 585 428 44 1057

5+ 488 270 33 791

Total 9305 7257 4107 20669

B.2 Jobless spell SLID definition

The labour force status of a person at a given time can be assigned to one of the following

categories:

a) Have a job and working.

b) Self-employed or unpaid family worker.

c) Have a job but absent for something other than a layoff or waiting for job to start.

d) Have a job but absent due to layoff or waiting for job to start.

e) Does not have a job but looking for work.

f) Remainder (do not have a job and not looking).

The SLID (and Labour Force Survey) definition of employed refers to sets (a), (b) and

(c); unemployed refers to (d) and (e); and not in the labour force to (f) (not employed or

unemployed).

A “jobless spell” in SLID, is defined as the period of time in which a person is out

of work and may or may not be looking for work, categories (e) and (f). The descriptive

analysis in section 7.1 pertains to this definition while the analyses in sections 7.2 and

7.3 pertains to the jobless spells where the person was looking for work (category (e)).
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B.3 General features of SLID sample

Among the 31576 observed spells from the third SLID panel, about 73.4% had an known

start date. From these spells, Table B.2 shows the number of spells by start year and

number of spells that started before January of 1999.

Table B.2: Jobless spell counts by start year, SLID data panel 3.

Cumulative Cumulative

Year Frequency Proportion Frequency Proportion

1999 3,333 0.1433 3,333 0.1433

2000 2,789 0.1199 6,122 0.2632

2001 3,096 0.1331 9,218 0.3964

2002 2,725 0.1172 11,943 0.5135

2003 2,662 0.1145 14,605 0.6280

2004 2,505 0.1077 17,110 0.7357

Before 1999 6,146 0.2643 23,256* 1.0000

* This amounts for 73.4% of spells with a known start date.

Table B.3 shows counts of individuals by number of jobless spells; 59.3% of the in-

dividuals had only one spell, 22.11% had two, and the remaining 18.56% consists of

individuals having three jobless spells or more. The total number of individuals that

had at least one jobless spell is 18,009. The number of individuals with no spells in the

six-year period is 43683− 18009 = 25674, 58% from the total number of individuals.

Table B.4 shows counts of individuals by their number of spells with unknown starting

dates. For instance, among the total of 3981 persons with two jobless spells (last column),

there are 1764 persons for whom both spells have a known starting date. There were 1828

individuals with two spells, 1018 and 810 had the first and second spell with a missing

start date, respectively. Further, there were 389 people with their two spells with an

unknown start date.

The total number of individuals that had all their starting spells dates known is 10551,

those that had an unknown start date once are 6635 and more than once are 823. These

all sum up to the total number of people who had at least one jobless spell in the six
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Table B.3: Number of individuals by number of spells, SLID data panel 3.

Cumulative Cumulative

No. of spells Frequency Proportion Frequency Proportion

1 10,685 0.5933 10,685 0.5933

2 3,981 0.2211 14,666 0.8144

3 1,723 0.0957 16,389 0.9100

4 871 0.0484 17,260 0.9584

5 443 0.0246 17,703 0.9830

6 182 0.0101 17,885 0.9931

7 67 0.0037 17,952 0.9968

8 31 0.0017 17,983 0.9986

9+ 26 0.0014 18,009 1.0000

years, 18009. Further, those individuals with all their starting jobless spell dates known

(10551) have altogether a total of 16627 spells.

B.4 Ending types of jobless spells from SLID.

The definition of LTF from SLID variables from section B.1 can used to determine the

year in which a person was last seen. That is, if a person was considered lost to follow-up

for example, in 2001, then he or she was last seen the year before, in 2000. A jobless spell

from this person that was ongoing in the year 2000 is therefore not observed completely

at the end of this year, and is labeled as censored.

There is a SLID variable “endtyp7”, that indicates whether the jobless spell was

observed completely or not. That is, endtyp7=1 if a spell ended “normally”, that is, was

completely observed; and endtyp7=2 if ended “not normally”, which may be due to any of

the following reasons: (a) the respondent reported working in subsequent interviews, (b)

there is non-response or (c) the respondent is no longer eligible for the labour interview.

The reason (a) refers to an inconsistency in the responses from individuals in two

consecutive interviews, and happens when during the interview of a given year, the person

reported that was jobless in a time period and the next year’s interview reports that was
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Table B.4: Number of individuals with known and unknown durations in their sequence

of jobless spells.

All within-individual Within-individual spells with unknown start dates

No. spells spells with a known Once More than once Total

start date 1st 2nd 3rd 4th 5th+

1 7,281 3,404 - - - - - 10,685

2 1,764 1,018 810 - - - ∗ 389 3,981

3 800 486 124 112 - - ∗∗ 201 1,723

4 375 212 43 63 46 - 132 871

5+ 331 179 27 27 45 39 101 749

Total 10,551 5,299 1,004 202 91 39 823 18,009

∗ Both spells with unknown start date.
∗∗ 20 individuals with three spells with unknown start date.

working in that period.

In general, jobless spells with endtyp7=2 end in the same year in which the person

was last seen. However, this is not always the case. It is assumed that our LTF variable

accounts for reasons (b) and (c) above, because every end date of spells that coincides

with the year the person was last seen has endtyp7=2. Whenever the end date does not

match with the year the person was last seen, it will be assumed that the reason for the

spell being incomplete was (a). As a convention, every spell that has a type 2 ending

will be treated as censored if its date coincides with the year last seen; but if the spell is

succeeded by more spells then it will be treated as fully observed.

This is illustrated in Table B.5. Note that the second spell from person “X” has

a type 2 ending (endtyp7=2: not normally) and is succeeded by another spell, so it is

coded as “observed”. The last spell ends the same year in which the person was last

seen, therefore will be treated as censored. The only spell of person “Y” had a type 2

ending but it did not end the same year in which the person was last seen, so was coded

as “observed”.

This decision sounds reasonable from the perspective that if the spell was recorded as
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Table B.5: Illustration of Status (censoring variable) depending on ending types of jobless

spells and year prior to LTF.

Year last Status

Personid Start date End date Spell ID Endtyp7 Seen (0=Obs.)

X 05/09/1999 10/11/1999 1 1 2001 0

X 05/08/2000 31/12/2000 2 2 2001 0

X 23/11/2001 31/12/2001 3 2 2001 1

Y 10/11/2003 31/12/2003 1 2 2004 0

incomplete because the respondent reported working in subsequent inteviews, this can be

considered as an interview collection mistake and thus may form part of the variability

associated with this type of error.

There were 1759 spells that ended at least one year prior to the year in which the

person was last seen. Table B.6 shows the number of complete and incomplete spells by

the endtyp7 variable and by starting year.

Table B.6: Number of spells by starting year and ending type based on the SLID variable

endtyp7. “EndYear1”: spell end year = last year seen; “EndYear2”: spell end year <

last year seen.

START ENDTYP7=2

YEAR ENDTYP7=1 EndYear1 EndYear2 TOTAL

1999 2,243 672 416 3,331

2000 1,928 463 398 2,789

2001 1,844 516 387 2,747

2002 1,574 436 316 2,326

2003 1,358 494 242 2,094

2004 669 1,239 0 1,908

Total 9,616 3,820 1,759 15,195
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Appendix C

Modelling Loss to Follow-up from

SLID

C.1 Variables used

The model that was used to describe dropout from SLID is the logistic model discussed

in section 4.1, expression (4.5). The selection of covariates was based on those that are

used for non-response modeling in SLID, see La Roche [30]. In SLID, non-response is

one of the four conditions that define our dropout response variable, discussed previously.

The list of covariates and counts of individuals within each category are shown in Tables

C.1 and C.2 for Ontario and Quebec, respectively.

An additional level referring to missing values (“don’t know”, “refusals”) is included in

the variables Education Level, Immigration Status, Student and Jobless Status. Records

with missing values in the variable Marital Status were not included, since they accounted

for few people, about 15 in years 1999 and 2000 together. The number of individuals

within each missing category are also shown in tables C.1 and C.2.

C.2 Summary of model fits

The model selection was performed using the backwards elimination technique, which is

done automatically in SAS. The selection of variables is done based on Wald tests. Tables
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Table C.1: Number of individuals by covariate category, LTF model (Ontario).

Year
Variable Level 2 3 4 5 6

Sex 1(male) 2,321 2,303 2,006 1,682 1,560
2(female) 2,091 2,129 1,874 1,577 1,464

Age * Continuous centered 4,412 4,432 3,880 3,259 3,024
Edlev L(low) 834 701 624 486 447

LM(low-med) 603 533 492 454 431
M (med) 2,738 2,368 2,140 1,857 1,748
H (high) 185 152 143 124 116
Missing 52 678 481 338 282

Marst ** 1(married/comon law) 2,960 2,935 2,578 2,245 2,073
2(single) 1,097 1,108 951 710 657
3(other) 350 388 351 304 294

Immst 1(yes) 897 712 626 525 479
2(no) 3,508 3,072 2,803 2,416 2,281
Missing <15 648 451 318 264

Stud 0 (not a student) 3,720 3,694 3,249 2,802 2,580
1(full time) 492 514 444 306 320
2(part time) 182 207 176 142 106
Missing 18 17 <15 <15 18

Renter 1(yes) 3,461 3,553 3,186 2,749 2,597
2(no) 951 879 694 510 427
Other 0 25 35 29 33

HHsz 1 372 396 302 262 244
2 1,068 1,051 913 772 722
3 899 970 857 728 673
4 1,323 1,224 1,120 935 858
5+ 750 791 688 562 527

Famtype 1(unrelated person) 483 485 373 306 283
2(couple/lone no child) 820 834 734 639 583
3(couple/lone child) 2,449 2,406 2,128 1,770 1,656
4(other) 660 707 645 544 502

HHtype 1(one family) 4,264 4,305 3,767 3,179 2,957
2(multi-family) 148 127 113 80 67

Urban 1(yes) 3,603 3,600 3,141 2,633 2,393
2(no) 809 832 739 626 631

Jstat 1(jobless) 3,744 3,552 3,185 2,777 2,599
2(not jobless) 395 470 357 274 239
Missing 273 410 338 208 186

Total individuals 4,412 4,432 3,880 3,259 3,024

* Mean values of age by year: 40.17,40.93,41.46,42.54,42.98
** Less than 15 missing values in years 2 and 3 together.
Missing values are used as covariate category except for marst.
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Table C.2: Number of individuals by covariate category, LTF model (Quebec).

Year
Variable Level 2 3 4 5 6

Sex 1(male) 1,606 1,443 1,228 1,056 970
2(female) 1,496 1,336 1,169 1,013 928

Age * Continuous centered 3,102 2,779 2,397 2,069 1,898
Edlev L(low) 833 672 558 458 424

LM(low-med) 341 300 281 255 240
M (med) 1,797 1,480 1,327 1,179 1,077
H (high) 77 67 63 58 58
Missing 54 260 168 119 99

Marst ** 1(married/comon law) 1,976 1,770 1,529 1,333 1,188
2(single) 841 725 595 463 436
3(other) 284 284 273 273 274

Immst 1(yes) 161 123 103 91 75
2(no) 2,936 2,429 2,157 1,881 1,744
Missing <15 227 137 97 79

Stud 0 (not a student) 132 111 113 89 59
1(full time) 353 321 264 196 184
2(part time) 2,604 2,327 2,004 1,783 1,648
Missing <15 20 16 <15 <15

Renter 1(yes) 2,306 2,050 1,787 1,559 1,477
2(no) 796 729 610 510 421

HHsz 1 357 314 254 243 227
2 779 762 663 596 558
3 722 626 534 437 386
4 821 718 636 550 491
5+ 423 359 310 243 236

Famtype 1(unrelated person) 420 370 294 278 262
2(couple/lone no child) 542 539 482 436 409
3(couple/lone child) 1,806 1,579 1,349 1,120 1,014
4(other) 334 291 272 235 213

Hhtype 1(one family) 3,022 2,711 2,345 2,027 1,853
2(multi-family) 80 68 52 42 45

Urban 1(yes) 2,236 1,979 1,725 1,483 1,334
2(no) 866 800 672 586 564

Jstat 1(jobless) 2,465 2,119 1,861 1,697 1,564
2(not jobless) 378 351 290 199 176
Missing 259 309 246 173 158

Total individuals 3,102 2,779 2,397 2,069 1,898

* Mean values of age by year: 40.44,41.49,42.17,43.28,43.78
Missing values are used as covariate category.
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C.3 to C.5 and C.6 to C.8 show the summary of the fits for years 2 to 6 (2000 to 2004)

based on the data sets from Ontario and Quebec, respectively.

C.3 Model checks.

The assessment of the model was performed in SAS, and is based on the method by

Hosmer and Lemeshow [24] for ungrouped binary data, by constructing levels of risk

calculated from the estimated logistic model and comparing observed versus expected

frequencies within each level. The levels of risk were obtained by sorting the fitted values

from the dropout model in ascending order and then dividing them into 10 groups. These

percentile groups are formed so that each contains approximately one tenth of the data

and are known as “deciles of risk”.

Within each group and for each value of t ∈ {2, ..., 6}, the expected and observed

number of responses where Rt = 1 and Rt = 0 were compared. The members of the first

group correspond to the lowest estimated probabilities that Rt = 1 or Rt = 0, and so on.

The expected number of events where Rt = 1 is estimated by êk = nkp̄k, where

p̄k =
∑nk

j=1 p̂j is the mean logistic probability for each group and nk ≈ n/10, where n

represents the number of observations. Similarly, the expected and observed number of

events where Rt = 0 are nk − êk and nk − ok, respectively.

Tables C.9 to C.10 and C.11 to C.12 show output from the assessment of the LTF

models for t ∈ {2, 3, ...6}, for Ontario and Quebec, respectively. From the five tables, it

can be seen that the expected number of observations within each group remains fairly

close to the observed. Tables C.13 and C.14 confirm this, showing high p-values based

on the Hosmer and Lemeshow statistic by year and province.
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Table C.3: Summary of model fits, LTF, years 2 and 3 (Ontario).

Year Variable Level DF Estimate StdErr WaldChiSq ProbChiSq

2 Intercept 1 0.6975 0.1804 14.9543 0.0001
2 Age 1 -0.0032 0.0062 0.2661 0.6060
2 Age2 1 -0.0008 0.0003 5.8144 0.0159
2 Edlev 2:LM 1 0.3231 0.1558 4.2994 0.0381
2 Edlev 3:M 1 0.2419 0.1123 4.6430 0.0312
2 Edlev 4:H 1 0.0659 0.2184 0.0911 0.7628
2 Edlev 5:97 1 -0.6939 0.3434 4.0836 0.0433
2 Marst 2 1 -0.4289 0.1259 11.6052 0.0007
2 Marst 3 1 -0.4719 0.1703 7.6815 0.0056
2 Immst 2 1 0.4535 0.0997 20.6724 < 0.0001
2 Immst 7 1 -2.4083 1.1271 4.5657 0.0326
2 Renter 2 1 -0.4294 0.0981 19.1394 < 0.0001
2 Urban 2 1 0.2503 0.1191 4.4183 0.0356
2 Jstat 2 1 0.6896 0.1255 30.1753 < 0.0001
2 Jstat 97 1 3.0628 0.4009 58.3666 < 0.0001
2 Age*Marst 2 1 -0.0059 0.0109 0.2900 0.5902
2 Age*Marst 3 1 0.0350 0.0151 5.4050 0.0201

3 Intercept 1 0.7870 0.3028 6.7549 0.0093
3 Age 1 0.0015 0.0050 0.0933 0.7600
3 Age2 1 -0.0009 0.0003 9.4534 0.0021
3 Edlev 2:LM 1 0.5811 0.1948 8.8980 0.0029
3 Edlev 3:M 1 0.3530 0.1312 7.2331 0.0072
3 Edlev 4:H 1 0.3310 0.2954 1.2555 0.2625
3 Edlev 5:97 1 0.5468 0.5168 1.1197 0.2900
3 Marst 2 1 -0.2233 0.1392 2.5736 0.1087
3 Marst 3 1 -0.3433 0.1520 5.0980 0.0240
3 Immst 2 1 0.1940 0.1319 2.1637 0.1413
3 Immst 7 1 -1.2383 0.5140 5.8030 0.0160
3 Stud 2 1 -0.1817 0.2705 0.4510 0.5019
3 Stud 3 1 -0.0990 0.2328 0.1806 0.6708
3 Stud 7 1 -2.0878 0.5876 12.6248 0.0004
3 Renter 2 1 -0.2822 0.1080 6.8291 0.0090
3 Jstat 2 1 1.2685 0.1183 115.0402 < 0.0001
3 Jstat 97 1 2.8893 0.2505 133.0785 < 0.0001
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Table C.4: Summary of model fits, LTF, years 4 and 5 (Ontario).

Year Variable Lev0 Lev1 DF Estimate StdErr WaldChiSq ProbChiSq

4 Intercept 1 1.0571 0.2845 13.8103 0.0002
4 Sex 2 1 -0.1876 0.1203 2.4320 0.1189
4 Age 1 -0.0127 0.0068 3.4534 0.0631
4 Age2 1 -0.0010 0.0004 8.1895 0.0042
4 Edlev 2:LM 1 0.4497 0.1941 5.3697 0.0205
4 Edlev 3:M 1 0.1914 0.1327 2.0808 0.1492
4 Edlev 4:H 1 0.0911 0.2799 0.1060 0.7447
4 Edlev 5:97 1 -0.7373 0.1558 22.4028 < 0.0001
4 Marst 2 1 -0.5052 0.1783 8.0280 0.0046
4 Marst 3 1 -0.5817 0.2547 5.2177 0.0224
4 Stud 2 1 0.4585 0.2532 3.2797 0.0701
4 Stud 3 1 0.2569 0.2068 1.5425 0.2142
4 Stud 7 1 -1.7067 0.6906 6.1085 0.0135
4 Renter 2 1 -0.4608 0.1121 16.8994 < 0.0001
4 Jstat 2 1 0.8778 0.1320 44.2185 < 0.0001
4 Jstat 97 1 2.0960 0.2224 88.8241 < 0.0001
4 Sex*Marst 2 2 1 0.5226 0.1998 6.8451 0.0089
4 Sex*Marst 2 3 1 0.1746 0.3151 0.3072 0.5794
4 Age*Marst 2 1 0.0429 0.0129 10.9932 0.0009
4 Age*Marst 3 1 0.0475 0.0144 10.8937 0.0010

5 Intercept 1 1.0961 0.3624 9.1504 0.0025
5 Age 1 0.0027 0.0062 0.1913 0.6618
5 Age2 1 -0.0012 0.0004 9.5384 0.0020
5 Edlev 2:LM 1 0.5088 0.2573 3.9113 0.0480
5 Edlev 3:M 1 0.2751 0.1781 2.3858 0.1224
5 Edlev 4:H 1 -0.0293 0.3499 0.0070 0.9333
5 Edlev 5:97 1 -0.4981 0.2143 5.4031 0.0201
5 Marst 2 1 -0.3437 0.1962 3.0684 0.0798
5 Marst 3 1 -0.4605 0.1952 5.5644 0.0183
5 Stud 2 1 0.4287 0.3260 1.7296 0.1885
5 Stud 3 1 0.2195 0.2775 0.6256 0.4290
5 Stud 7 1 -2.8124 0.7865 12.7874 0.0003
5 HHtype 2 1 -0.8435 0.3063 7.5858 0.0059
5 Urban 2 1 0.5423 0.1841 8.6754 0.0032
5 Jstat 2 1 1.1992 0.1623 54.5922 < 0.0001
5 Jstat 97 1 2.1647 0.3551 37.1680 < 0.0001
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Table C.5: Summary of model fits, LTF, year 6 (Ontario).

Events Non Events
Year Variable Level DF Estimate StdErr WaldChiSq ProbChiSq

6 Intercept 1 1.4727 0.5098 8.3446 0.0039
6 Age 1 0.0004 0.0100 0.0016 0.9681
6 Age2 1 -0.0015 0.0005 9.3771 0.0022
6 Marst 2 1 -0.2876 0.2658 1.1708 0.2792
6 Marst 3 1 -0.4928 0.2593 3.6129 0.0573
6 Stud 2 1 0.0154 0.4636 0.0011 0.9735
6 Stud 3 1 -0.3578 0.4095 0.7632 0.3823
6 Stud 7 1 -2.0590 0.6590 9.7620 0.0018
6 Famtype 2 1 0.3038 0.3049 0.9923 0.3192
6 Famtype 3 1 0.6674 0.2712 6.0575 0.0138
6 Famtype 4 1 0.2335 0.2581 0.8180 0.3658
6 Urban 2 1 0.3844 0.1862 4.2596 0.0390
6 Jstat 2 1 1.2500 0.1798 48.3089 < 0.0001
6 Jstat 97 1 2.5658 0.4836 28.1537 < 0.0001
6 Age*Marst 2 1 0.0016 0.0172 0.0084 0.9272
6 Age*Marst 3 1 0.0529 0.0185 8.1574 0.0043
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Table C.6: Summary of model fits, LTF, years 2 and 3 (Quebec).

Year Variable Level DF Estimate StdErr WaldChiSq ProbChiSq

2 Intercept 1 0.9405 0.2556 13.5341 0.0002
2 Age 1 0.0198 0.0045 19.5885 <0.0001
2 Age2 1 -0.0021 0.0003 47.8731 <0.0001
2 Edlev 2:LM 1 0.1272 0.1826 0.4856 0.4859
2 Edlev 3:M 1 -0.0229 0.1172 0.0383 0.8448
2 Edlev 4:H 1 -0.0259 0.3147 0.0068 0.9344
2 Edlev 5:97 1 -1.1692 0.3168 13.6185 0.0002
2 Stud 2 1 0.3106 0.2606 1.4203 0.2334
2 Stud 3 1 0.3829 0.2120 3.2633 0.0708
2 Stud 7 1 -1.3455 0.6798 3.9172 0.0478
2 Jstat 2 1 0.4419 0.1318 11.2444 0.0008
2 Jstat 97 1 3.2764 0.3876 71.4563 <0.0001

3 Intercept 1 0.3879 0.4090 0.8995 0.3429
3 Age 1 0.0097 0.0053 3.3445 0.0674
3 Age2 1 -0.0023 0.0003 45.1350 <0.0001
3 Immst 2 1 0.6013 0.2563 5.5060 0.0190
3 Immst 7 1 -0.9888 0.2884 11.7542 0.0006
3 Stud 2 1 0.1256 0.3238 0.1504 0.6981
3 Stud 3 1 0.3966 0.2726 2.1164 0.1457
3 Stud 7 1 -0.9102 0.5656 2.5896 0.1076
3 Famtype 2 1 -0.0322 0.2011 0.0256 0.8728
3 Famtype 3 1 0.3877 0.1811 4.5824 0.0323
3 Famtype 4 1 0.0663 0.2278 0.0847 0.7710
3 Hhtype 2 1 -0.6920 0.3191 4.7031 0.0301
3 Urban 2 1 -0.2923 0.1252 5.4457 0.0196
3 Jstat 2 1 0.8954 0.1416 40.0129 <0.0001
3 Jstat 97 1 3.3447 0.3433 94.8934 <0.0001
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Table C.7: Summary of model fits, LTF, years 4 and 5 (Quebec).

Year Variable Lev0 Lev1 DF Estimate StdErr WaldChiSq ProbChiSq

4 Intercept 1 1.4171 0.2989 22.4831 <0.0001
4 Age 1 0.0130 0.0050 6.7896 0.0092
4 Age2 1 -0.0017 0.0003 24.8819 <0.0001
4 Edlev 2:LM 1 0.3787 0.2460 2.3697 0.1237
4 Edlev 3:M 1 0.1594 0.1612 0.9771 0.3229
4 Edlev 4:H 1 0.0245 0.3937 0.0039 0.9505
4 Edlev 5:97 1 -0.9315 0.2236 17.3577 <0.0001
4 HHsz 2 1 -0.3314 0.2538 1.7048 0.1917
4 HHsz 3 1 0.0527 0.2712 0.0377 0.8460
4 HHsz 4 1 -0.2044 0.2608 0.6145 0.4331
4 HHsz 5 1 -0.1174 0.3132 0.1404 0.7079
4 Urban 2 1 -0.3381 0.4356 0.6022 0.4377
4 Jstat 2 1 0.7583 0.1563 23.5475 <0.0001
4 Jstat 97 1 2.6499 0.3482 57.9207 <0.0001
4 HHsz*Urban 2 2 1 1.0036 0.5257 3.6448 0.0562
4 HHsz*Urban 3 2 1 0.0125 0.5144 0.0006 0.9807
4 HHsz*Urban 4 2 1 1.1021 0.5429 4.1210 0.0424
4 HHsz*Urban 5 2 1 -0.1085 0.5389 0.0405 0.8405

5 Intercept 1 1.2667 0.4264 8.8266 0.0030
5 Age 1 0.0080 0.0059 1.8694 0.1715
5 Age2 1 -0.0017 0.0004 19.0324 <0.0001
5 Immst 2 1 0.8767 0.2847 9.4839 0.0021
5 Immst 7 1 0.0854 0.3849 0.0492 0.8245
5 HHsz 2 1 -0.6666 0.3096 4.6354 0.0313
5 HHsz 3 1 -0.7280 0.3182 5.2322 0.0222
5 HHsz 4 1 -0.8162 0.3138 6.7665 0.0093
5 HHsz 5 1 -0.0584 0.3832 0.0232 0.8789
5 Jstat 2 1 1.0559 0.1908 30.6313 <0.0001
5 Jstat 97 1 2.2084 0.3886 32.2926 <0.0001
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Table C.8: Summary of model fits, LTF, year 6 (Quebec).

Events Non Events
Year Variable Level DF Estimate StdErr WaldChiSq ProbChiSq

6 Intercept 1 1.8951 0.2929 41.8512 <0.0001
6 Age 1 0.0068 0.0064 1.1312 0.2875
6 Age2 1 -0.0019 0.0004 18.8550 <0.0001
6 Edlev 2:LM 1 0.8016 0.3747 4.5761 0.0324
6 Edlev 3:M 1 0.4690 0.2145 4.7786 0.0288
6 Edlev 4:H 1 0.3496 0.5525 0.4004 0.5269
6 Edlev 5:97 1 -0.7048 0.3350 4.4265 0.0354
6 Renter 2 1 -0.4279 0.1904 5.0517 0.0246
6 Jstat 2 1 0.7438 0.2306 10.4023 0.0013
6 Jstat 97 1 3.5313 0.7463 22.3911 <0.0001
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Table C.9: Deciles of risk of model fits, years 2 to 4 (Ontario).

Events Non Events
Year Group Total Observed Expected Observed Expected

2 1 441 293 281.149 148 159.851
2 2 441 330 333.125 111 107.875
2 3 441 347 350.103 94 90.897
2 4 441 352 363.481 89 77.519
2 5 441 369 370.011 72 70.989
2 6 441 378 378.904 63 62.096
2 7 441 379 387.577 62 53.423
2 8 441 395 391.535 46 49.465
2 9 441 403 395.546 38 45.454
2 10 438 422 416.568 16 21.432

3 1 443 238 236.875 205 206.125
3 2 443 336 327.442 107 115.558
3 3 443 364 368.677 79 74.323
3 4 443 394 387.912 49 55.088
3 5 443 392 395.886 51 47.114
3 6 443 405 401.037 38 41.963
3 7 443 404 406.089 39 36.911
3 8 444 407 409.660 37 34.340
3 9 443 411 410.760 32 32.240
3 10 443 417 423.662 26 19.338

4 1 388 205 206.605 183 181.395
4 2 388 275 280.663 113 107.337
4 3 388 308 306.938 80 81.062
4 4 388 335 323.699 53 64.301
4 5 388 339 335.524 49 52.476
4 6 388 345 342.092 43 45.908
4 7 388 347 347.144 41 40.856
4 8 388 350 350.739 38 37.261
4 9 388 351 355.067 37 32.933
4 10 388 357 363.527 31 24.473
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Table C.10: Deciles of risk of model fits, years 5 and 6 (Ontario).

Events Non Events
Year Group Total Observed Expected Observed Expected

5 1 326 221 226.495 105 99.505
5 2 326 280 277.413 46 48.587
5 3 326 290 290.501 36 35.499
5 4 326 305 297.644 21 28.356
5 5 326 309 301.339 17 24.661
5 6 326 304 304.708 22 21.292
5 7 326 305 306.539 21 19.461
5 8 326 306 307.712 20 18.288
5 9 326 310 311.074 16 14.926
5 10 325 308 314.573 17 10.427

6 1 302 220 227.344 82 74.656
6 2 302 269 264.648 33 37.352
6 3 302 275 272.877 27 29.123
6 4 302 278 277.626 24 24.374
6 5 303 284 282.110 19 20.890
6 6 302 289 284.865 13 17.135
6 7 302 283 287.095 19 14.905
6 8 302 288 287.898 14 14.102
6 9 302 292 289.852 10 12.148
6 10 305 293 296.685 12 8.315
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Table C.11: Deciles of risk of model fits, years 2 to 4 (Quebec)

Events Non Events
Year Group Total Observed Expected Observed Expected

2 1 310 168 171.078 142 138.922
2 2 310 214 219.726 96 90.274
2 3 310 258 240.348 52 69.652
2 4 310 240 249.383 70 60.617
2 5 310 263 257.183 47 52.817
2 6 310 261 261.572 49 48.428
2 7 310 263 263.953 47 46.047
2 8 311 263 266.115 48 44.885
2 9 310 264 266.892 46 43.108
2 10 310 298 295.750 12 14.250

3 1 278 139 140.459 139 137.541
3 2 278 194 201.082 84 76.918
3 3 278 231 225.548 47 52.452
3 4 278 239 238.623 39 39.377
3 5 278 252 246.010 26 31.990
3 6 278 244 250.832 34 27.168
3 7 278 258 253.805 20 24.195
3 8 278 257 257.769 21 20.231
3 9 281 265 262.703 16 18.297
3 10 274 265 267.160 9 6.840

4 1 240 150 149.637 90 90.363
4 2 240 188 185.296 52 54.704
4 3 240 207 199.813 33 40.187
4 4 240 205 206.949 35 33.051
4 5 240 200 210.820 40 29.180
4 6 240 217 213.561 23 26.439
4 7 240 218 216.136 22 23.864
4 8 240 216 219.112 24 20.888
4 9 240 227 223.125 13 16.875
4 10 237 225 228.550 12 8.450
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Table C.12: Deciles of risk of model fits, years 5 and 6 (Quebec).

Events Non Events
Year Group Total Observed Expected Observed Expected

5 1 207 137 145.501 70 61.499
5 2 207 181 171.089 26 35.911
5 3 207 188 183.531 19 23.469
5 4 207 193 187.426 14 19.574
5 5 207 197 188.926 10 18.074
5 6 207 184 189.671 23 17.329
5 7 207 183 190.692 24 16.308
5 8 207 188 192.140 19 14.860
5 9 207 196 197.370 11 9.630
5 10 206 198 198.654 8 7.346

6 1 190 143 143.689 47 46.311
6 2 190 169 165.581 21 24.419
6 3 190 175 172.228 15 17.772
6 4 190 169 176.275 21 13.725
6 5 190 180 178.272 10 11.728
6 6 190 180 180.519 10 9.481
6 7 190 183 181.422 7 8.578
6 8 192 180 183.736 12 8.264
6 9 191 188 184.101 3 6.899
6 10 185 181 182.178 4 2.822

Table C.13: ChiSquare p-values of Hosmer and Lemeshow statistic by year (Ontario).

Year ChiSq DF ProbChiSq

2 8.378 8 0.397
3 5.517 8 0.701
4 5.737 8 0.677
5 9.958 8 0.268
6 6.216 8 0.623

Table C.14: ChiSquare p-values of Hosmer and Lemeshow statistic by year (Quebec).

Year ChiSq DF ProbChiSq

2 9.865 8 0.275
3 6.642 8 0.576
4 10.096 8 0.258
5 19.116 8 0.014
6 10.352 8 0.241
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Appendix D

Summary of Estimation and

Modelling from SLID

D.1 Kaplan-Meier estimates

Tables D.1 and D.2 give the results from applying the weighted Kaplan-Meier methods

from chapter 5 on jobless spells from SLID individuals living in Ontario and Quebec

in 1999, respectively. The estimates shown correspond to jobless spells that started in

the years 1999 and 2000 and are associated to the times in which the estimated survival

probability was closest to 0.1, 0.2, . . . , 0.9 with stardard errors in parenthesis. These tables

show results when using unity weights, in the column labeled as “Unw”. The columns

“DES” and “COMB” show the results from using design weighted and combined weighted

(design*IPC) methods.

D.2 Cox PH model analysis

Tables D.4 and D.5 show results from estimating parameters from the Cox PH model,

which are approximated by a piecewise constant model (PC). First jobless spells from

SLID that started in the year 2000 and belong to individuals that lived in Ontario in

1999 were used. The methods employed are UNWEIGHTED (unity weights), DESIGN,
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Table D.1: Estimated survival probabilities, jobless spells in Ontario.

Year 1999

Unw DES COMB
Time Est (SE) Est (SE) Est (SE,N.SE)

3 0.908 (0.015) 0.918 (0.016) 0.919 (0.014, 0.016)
7 0.805 (0.021) 0.827 (0.022) 0.831 (0.019, 0.022)
11 0.733 (0.024) 0.748 (0.027) 0.755 (0.024, 0.026)
19 0.596 (0.027) 0.595 (0.032) 0.609 (0.027, 0.032)
29 0.501 (0.028) 0.510 (0.034) 0.517 (0.029, 0.035)
35 0.399 (0.027) 0.398 (0.033) 0.405 (0.030, 0.035)
45 0.311 (0.026) 0.297 (0.032) 0.298 (0.026, 0.032)
70 0.202 (0.023) 0.186 (0.026) 0.188 (0.021, 0.027)
100 0.103 (0.018) 0.108 (0.022) 0.111 (0.018, 0.023)

Year 2000

Unw DES COMB
Time Est (SE) Est (SE) Est (SE,N.SE)

3 0.911 (0.017) 0.894 (0.027) 0.898 (0.019, 0.026)
6 0.806 (0.024) 0.798 (0.032) 0.803 (0.023, 0.032)
10 0.693 (0.028) 0.700 (0.036) 0.712 (0.025, 0.035)
15 0.602 (0.030) 0.624 (0.037) 0.633 (0.028, 0.037)
21 0.486 (0.031) 0.502 (0.039) 0.520 (0.028, 0.040)
33 0.384 (0.030) 0.410 (0.041) 0.439 (0.029, 0.042)
39 0.292 (0.028) 0.317 (0.038) 0.339 (0.029, 0.041)
54 0.190 (0.025) 0.198 (0.032) 0.214 (0.027, 0.035)
108 0.086 (0.018) 0.083 (0.022) 0.098 (0.017, 0.026)
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Table D.2: Estimated survival probabilities, jobless spells in Quebec.

Year 1999

Unw DES COMB
Time Est (SE) Est (SE) Est (SE,N.SE)

3 0.906 (0.017) 0.898 (0.022) 0.898 (0.021, 0.022)
7 0.816 (0.022) 0.799 (0.030) 0.801 (0.027, 0.030)
13 0.699 (0.027) 0.657 (0.039) 0.665 (0.033, 0.038)
19 0.613 (0.029) 0.567 (0.042) 0.577 (0.036, 0.041)
26 0.503 (0.030) 0.484 (0.042) 0.488 (0.037, 0.041)
31 0.402 (0.029) 0.423 (0.041) 0.429 (0.037, 0.041)
39 0.304 (0.028) 0.327 (0.037) 0.334 (0.033, 0.037)
64 0.205 (0.025) 0.221 (0.033) 0.217 (0.027, 0.032)
119 0.112 (0.020) 0.146 (0.030) 0.133 (0.022, 0.028)

Year 2000

Unw DES COMB
Time Est (SE) Est (SE) Est (SE,N.SE)

3 0.910 (0.020) 0.862 (0.040) 0.860 (0.038, 0.041)
4 0.800 (0.028) 0.769 (0.042) 0.768 (0.036, 0.043)
8 0.688 (0.032) 0.657 (0.050) 0.659 (0.042, 0.050)
19 0.563 (0.035) 0.537 (0.048) 0.547 (0.039, 0.048)
23 0.497 (0.035) 0.461 (0.054) 0.463 (0.047, 0.056)
30 0.388 (0.035) 0.383 (0.050) 0.380 (0.047, 0.054)
38 0.305 (0.033) 0.283 (0.044) 0.268 (0.040, 0.047)
53 0.218 (0.029) 0.199 (0.037) 0.181 (0.029, 0.037)
97 0.104 (0.022) 0.094 (0.025) 0.084 (0.019, 0.023)
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which corresponds to the method based on Boudreau and Lawless [9] (results based on

Binder [4] and Lin et al. [39] were very similar ). The COMBINED method consists of

variance estimates based on the proposed techniques in chapter 6.

Similarly, Tables D.6 and D.7, show the results obtained from sequences of jobless

spells that started in 2000-2001, from SLID individuals that lived in Ontario in 1999.

Table D.3: Values of estimated constant hazards from first jobless spells starting in 2000

and sequences of jobless spells in 2000-2002.

First jobless spells starting in 2000.
(bj−1, bj ] Unweighted Design Combined

1 0.00 7.14 0.018 0.020 0.027
2 7.14 7.86 0.011 0.017 0.022
3 7.86 17.29 0.027 0.023 0.031
4 17.29 25.00 0.013 0.016 0.020
5 25.00 38.21 0.011 0.015 0.020
6 38.21 50.00 0.024 0.025 0.030
7 50.00 100.00 0.016 0.024 0.030
8 100.00 150.00 0.010 0.011 0.016
9 150.00 193.00 0.006 0.007 0.006

Sequences of jobless spells starting in 2000-2002.
(bj−1, bj ] Unweighted Design Combined

1 0.00 7.14 0.011 0.011 0.010
2 7.14 7.86 0.004 0.006 0.004
3 7.86 17.29 0.013 0.013 0.012
4 17.29 25.00 0.008 0.008 0.007
5 25.00 38.21 0.010 0.011 0.012
6 38.21 50.00 0.012 0.012 0.012
7 50.00 100.00 0.008 0.009 0.009
8 100.00 150.00 0.004 0.004 0.005
9 150.00 193.00 0.003 0.004 0.002
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Table D.4: Unweighted estimation results, PC and Cox PH models. SLID first jobless

spells starting in 2000.

UNWEIGHTED
COX PC

Estimate SE∗ Estimate SE∗

Age -0.0125 0.0061 -0.0127 0.0063
Sex 0.1144 0.1691 0.1037 0.1733
Minority 0.2353 0.2651 0.2363 0.2699
Ei -0.0826 0.2329 -0.1093 0.2374
Occup2 0.2605 0.3016 0.2666 0.3120
Occup3 -0.1902 0.3228 -0.2312 0.3327
Occup4 -0.2245 0.8201 -0.2973 0.8413
Occup5 0.1712 0.3175 0.1766 0.3233
Occup6 -0.1797 0.3068 -0.1970 0.3184
Occup99 -0.7660 0.3535 -0.7998 0.3671
Income.cat2 0.3511 0.2326 0.3735 0.2423
Income.cat3 0.4468 0.2652 0.4703 0.2740
∗ Based on robust variance estimates without strata,
used for assessment of PC approximation.
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Table D.5: Sampling design and combined with IPC weighted estimation results (PC

and Cox PH models). SLID first jobless spells starting in 2000.

DESIGN
COX PC

Estimate SE∗ Estimate SE∗ SE.B&L

Age -0.0170 0.0068 -0.0177 0.0071 0.0071
Sex 0.0231 0.1787 0.0178 0.1849 0.1831
Minority 0.2241 0.2839 0.1909 0.2777 0.2779
Ei -0.3295 0.2913 -0.3839 0.3022 0.3020
Occup2 0.1485 0.3309 0.1703 0.3443 0.3412
Occup3 -0.1759 0.3999 -0.2208 0.4149 0.4174
Occup4 -0.1391 0.8504 -0.2350 0.8992 0.9014
Occup5 0.0326 0.3580 0.0339 0.3706 0.3722
Occup6 -0.1834 0.3292 -0.1984 0.3478 0.3460
Occup99 -1.0991 0.3904 -1.1294 0.4121 0.4165
Income.cat2 0.4957 0.2435 0.5435 0.2557 0.2602
Income.cat3 0.7176 0.2724 0.7673 0.2819 0.2775

COMBINED
COX PC

Estimate SE∗ Estimate SE∗ SE.COMB Naive

Age -0.0225 0.0070 -0.0233 0.0074 0.0045 0.0074
Sex -0.1481 0.2016 -0.1887 0.2177 0.1413 0.2149
Minority 0.1789 0.2675 0.1271 0.2602 0.1671 0.2576
Ei -0.2497 0.2603 -0.2982 0.2701 0.2015 0.2699
Occup2 0.1168 0.3271 0.1274 0.3452 0.2853 0.3417
Occup3 -0.2475 0.3863 -0.3009 0.4055 0.3091 0.4074
Occup4 -0.5871 1.0138 -0.6450 1.0453 0.5573 1.0453
Occup5 -0.0501 0.3724 -0.0358 0.3878 0.2948 0.3898
Occup6 -0.2845 0.3426 -0.2853 0.3654 0.2856 0.3658
Occup99 -1.3375 0.4183 -1.3540 0.4479 0.3211 0.4522
Income.cat2 0.3051 0.2610 0.3687 0.2751 0.2044 0.2798
Income.cat3 0.6421 0.2628 0.7324 0.2764 0.1719 0.2707
∗ Based on robust variance estimates without strata, used for assessment of
PC approximation.
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Table D.6: Unweighted estimation results, PC and Cox PH models. SLID sequences of

jobless spells starting in 2000-2002.

UNWEIGHTED
COX PC

Estimate SE∗ Estimate SE∗

Age -0.0287 0.0045 -0.0289 0.0046
Sex 0.1664 0.0944 0.1610 0.0951
Minority 0.3041 0.1639 0.3080 0.1654
Ei 0.1028 0.1358 0.0981 0.1363
Occup2 0.4547 0.1799 0.4507 0.1792
Occup3 0.2648 0.1873 0.2529 0.1871
Occup4 -0.4203 0.3297 -0.4256 0.3310
Occup5 0.3186 0.1875 0.3216 0.1867
Occup6 0.1017 0.1894 0.0925 0.1886
Occup99 -0.1070 0.2298 -0.1099 0.2301
Income.cat2 0.5072 0.1201 0.5090 0.1210
Income.cat3 0.6559 0.1547 0.6572 0.1556
Quarts2 -0.1649 0.1315 -0.1670 0.1325
Quarts3 -0.0691 0.1209 -0.0749 0.1222
Quarts4 -0.0865 0.1294 -0.0907 0.1298
Order 0.2311 0.0984 0.2322 0.0995
Order:P.Dur -0.0054 0.0040 -0.0053 0.0041
∗ Based on robust variance estimates without strata,
used for assessment of PC approximation.
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Table D.7: Sampling design weighted estimation results (PC and Cox PH models). SLID

sequences of jobless spells starting in 2000-2002.

DESIGN
COX PC

Estimate SE∗ Estimate SE∗ SE.B&L

Age -0.0300 0.0056 -0.0305 0.0057 0.0057
Sex 0.0443 0.1173 0.0399 0.1174 0.1161
Minority 0.2914 0.1727 0.2908 0.1737 0.1740
Ei -0.0888 0.1800 -0.0981 0.1819 0.1809
Occup2 0.3813 0.2495 0.3847 0.2491 0.2495
Occup3 0.4027 0.2487 0.3891 0.2487 0.2488
Occup4 -0.2758 0.3641 -0.2823 0.3670 0.3683
Occup5 0.2882 0.2555 0.2874 0.2544 0.2551
Occup6 0.1457 0.2542 0.1420 0.2538 0.2544
Occup99 -0.2144 0.3009 -0.2098 0.2992 0.3006
Income.cat2 0.5860 0.1470 0.5852 0.1462 0.1470
Income.cat3 0.8744 0.1718 0.8823 0.1723 0.1712
Quarts2 -0.2263 0.1562 -0.2269 0.1567 0.1570
Quarts3 -0.1168 0.1376 -0.1260 0.1382 0.1377
Quarts4 -0.1788 0.1495 -0.1928 0.1498 0.1497
Order 0.1625 0.1173 0.1600 0.1185 0.1185
Order:P.Dur -0.0084 0.0055 -0.0085 0.0056 0.0055
∗ Based on robust variance estimates without strata,
used for assessment of PC approximation.
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Table D.8: Combined sampling design with IPC weighted estimation results (PC and

Cox PH models). SLID sequences of jobless spells starting in 2000-2002.

COMBINED
COX PC

Estimate SE∗ Estimate SE∗ SE.COMB Naive

Age -0.0372 0.0060 -0.0381 0.0061 0.0049 0.0062
Sex -0.0003 0.1213 -0.0044 0.1212 0.1100 0.1196
Minority 0.2853 0.1860 0.2862 0.1888 0.1592 0.1890
Ei -0.0488 0.1944 -0.0535 0.2002 0.1727 0.1983
Occup2 0.5133 0.3212 0.5197 0.3276 0.2908 0.3280
Occup3 0.5969 0.3160 0.5882 0.3237 0.2800 0.3230
Occup4 -0.3236 0.4285 -0.2996 0.4431 0.4040 0.4448
Occup5 0.6050 0.3298 0.6221 0.3405 0.2867 0.3399
Occup6 0.2665 0.3261 0.2547 0.3338 0.2932 0.3344
Occup99 -0.0852 0.3708 -0.0902 0.3768 0.3368 0.3767
Income.cat2 0.5008 0.1551 0.4893 0.1541 0.1422 0.1542
Income.cat3 0.8566 0.1701 0.8514 0.1726 0.1513 0.1714
Quarts2 -0.2815 0.1584 -0.2875 0.1616 0.1404 0.1614
Quarts3 -0.2505 0.1473 -0.2515 0.1512 0.1311 0.1509
Quarts4 -0.2869 0.1613 -0.2770 0.1625 0.1455 0.1628
Order 0.1891 0.1156 0.1913 0.1158 0.1052 0.1156
Order:P.Dur -0.0096 0.0050 -0.0095 0.0051 0.0047 0.0051
∗ Based on robust variance estimates without strata, used for assessment of
PC approximation.
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