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Abstract
In this thesis, we are interested in empirical likelihood (EL) methods for two-

sample problems, with focus on the difference of the two population means. A
weighted empirical likelihood method (WEL) for two-sample problems is devel-
oped . We also consider a scenario where sample data on auxiliary variables are
fully observed for both samples but values of the response variable are subject to
missingness. We develop an adjusted empirical likelihood method for inference of
the difference of the two population means for this scenario where missing values
are handled by a regression imputation method. Bootstrap calibration for WEL is
also developed. Simulation studies are conducted to evaluate the performance of
naive EL, WEL and WEL with bootstrap calibration (BWEL) with comparison to
the usual two-sample t-test in terms of power of the tests and coverage accuracies.
Simulation for the adjusted EL for the linear regression model with missing data is
also conducted.
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Chapter 1

Introduction

Two-sample problems are common in applied statistics. Suppose we have two
study populations and our interest is the difference between the two populations.
Particularly we are interested in the difference of the two population means. For
example, Zhou, Gao and Hui (1997) studied the effects of race on medical costs of
patients. Their interest is whether the average medical costs for African American
patients is the same as white patients. In this thesis, we focus on comparing the
difference of two population means.

1.1 Two-sample problems

Suppose {y11, · · · , y1n1} is a random sample from a population following the
distribution F0 and {y21, · · · , y2n2} is a random sample from a population following
the distribution G0 and the two samples are independent. Let µ1 and µ2 be respec-
tively the two population means and σ2

1 and σ2
2 be respectively the two population

variances. Let d = µ1 − µ2. Let ȳi. = n−1
i

∑ni

j=1 yij, i = 1, 2 be the two sample
means and S2

i = (ni − 1)−1
∑ni

j=1(yij − ȳi.)
2, i = 1, 2, be the two sample variances.

We are interested in making inference on d. More specifically, we are interested in
testing the hypothesis

H0 : d = 0,

or equivalently,
H0 : µ1 = µ2.

When F0 and G0 are from the same location-scale family of distributions, this
two-sample problem is called the Behrens-Fisher problem. The restriction to a
normal distribution is often made. In this case, the variances σ2

1 and σ2
2 for two

samples are not necessarily the same.

1



1.2 Parametric methods

In this section we provide a brief review of several classic parametric methods
to deal with two-sample problems.

Large sample test Under the null hypothesis H0 : µ1 = µ2, we know that

T1 =
ȳ1. − ȳ2.√

S2
1

n1
+

S2
2

n2

→ N(0, 1)

when both n1 and n2 go to infinity. As a result, we can construct the large sample
test which has the rejection region {|T1| > zα/2}. Here zα/2 is the (1 − α/2)th
quantile of the standard normal distribution.

Student’s t-test and likelihood ratio test Suppose F0 and G0 are normal
distributions, that is, y11, · · · , y1n1 ∼ N(µ1, σ

2
1) and y21, · · · , y2n2 ∼ N(µ2, σ

2
2), and

the two population variances σ2
1 and σ2

2 are the same, say σ2
1 = σ2

2 = σ2. we can use
the parametric two-sample t-test. Define the pooled variance estimator as

S2 =
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2
,

and the Student’s t-statistic is defined as

T2 =
ȳ1. − ȳ2.

S ×
√

( 1
n1

+ 1
n2

)
,

then
T2 ∼ tn1+n2−2,

and the standard two-sample t-test has the rejection region as {|T2| > tn1+n2−2

(α/2)}, where α is the size of the test and tn1+n2−2(α/2) is the (1−α/2)th quantile
of a t-distribution with n1+n2−2 degrees of freedom. We reject H0 if |T2| > tn1+n2−2

(α/2).

The likelihood ratio test under the assumption that σ2
1 = σ2

2 will lead to the
same result as the Student’s t-test. Details can be found in standard textbooks.

Test for the Behrens-Fisher problem The most popular solution for the
Behrens-Fisher problem was proposed by B.L. Welch (1938). He considered the
statistic

T1 =
ȳ1. − ȳ2.√

S2
1

n1
+

S2
2

n2

,
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which is the same as the one for the large sample test. However, there is a major
difference in terms of limiting distributions. The key idea is that the distribution
of S2

1/n1 + S2
2/n2 can be approximated by a scaled chi-squared distribution. The

number of degrees of freedom can be estimated by using the Welch-Satterthwaite
equation

v̂ =
(S2

1/n1 + S2
2/n2)

2

S4
1/[n

2
1(n1 − 1)] + S4

2/[n
2
2(n2 − 1)]

.

As a result, the distribution of T1 can be approximated by a t distribution.
When the sample sizes are small or the two population variances are equal or
approximately equal, then the standard two-sample t-test is more accurate.

3



Chapter 2

Two-Sample Empirical Likelihood
Methods

The empirical likelihood (EL) method, proposed by Owen (1988), has been one
of the most popular inference methods in the last 20 years. It was first intro-
duced to construct confidence intervals for a population mean of a single sample
of independent and identically distributed observations. Owen (2001) provides an
excellent overview of the EL method, including intuitive ideas, theoretical develop-
ments, and applications. In the section, we develop empirical likelihood methods
for two-sample problems. We first provide a short review of the EL method for a
single sample and then describe a naive EL method and establish a weighted EL
method for two-sample problems. Performances of these methods are compared
through simulation studies.

2.1 A brief review of empirical likelihood for a sin-
gle sample

Suppose that we are interested in testing the population mean of one single
sample using empirical likelihood, which was first proposed by Owen (1988). Let
X1, · · · , Xn be a random sample from cumulative distribution function (CDF) F0

and x1, · · · , xn is the realization of the sample. Suppose the population mean is µ.
The empirical cumulative distribution function (ECDF) of X1, ..., Xn is defined as

Fn(x) =
1

n

n∑
i=1

I{Xi ≤ x},

4



for x ∈ R. The nonparametric likelihood of any CDF F (not necessarily F0) is
defined as

L(F ) =
n∏

i=1

Pr(Xi = xi).

Define F as the class of all distribution functions. Then from Kiefer and Wol-
fowitz (1956), the ECDF Fn uniquely maximizes L(F ). That is, for any F 6= Fn,
L(F ) < L(Fn) = ( 1

n
)n. As a result, L(Fn) = sup{L(F ) : F ∈ F}.

Consequently, Fn maximizes the nonparametric likelihood L(F ) =
∏n

i=1 pi over
pi ≥ 0, i = 1, · · · , n, and

∑n
i=1 pi = 1, where pi = Pr(Xi = xi). That is,

L(Fn) = sup{L(F ) : F ∈ F0},

where F0 ∈ F contains all multinomial distributions which put weights p1, · · · , pn

entirely on x1, · · · , xn respectively.
The (profile) empirical likelihood ratio function for µ is defined as

R(µ) =
sup{L(F ) : F ∈ F0,

∑n
i=1 pixi = µ}

sup{L(F ) : F ∈ F0}

= sup{
n∏

i=1

npi :
n∑

i=1

pi = 1, pi ≥ 0,
n∑

i=1

pixi = µ}.

The above second equality holds because F (x) =
∑n

i=1 piI{Xi ≤ x} when F ∈ F0

and sup{L(F ) : F ∈ F0} = L(Fn) = ( 1
n
)n. In the following, we state the important

and fundamental result in the empirical likelihood theory, which was proved by
Owen (1988).

Theorem 2.1 (Owen (1988)) Let X1, · · · , Xn be an i.i.d. random sample
from F0 ∈ F . Let µ0 =

∫
xdF0(x) and assume that σ2 = V ar(Xi) < ∞. Then

−2 logR(µ0) → χ2
1.

This theorem is similar to Wilks’ theorem in parametric settings, which can be
used to test statistical hypothesis and construct confidence intervals on µ. Since
Owen’s pioneer work on empirical likelihood, the EL method has been extended and
applied to different statistical problems. One of the applications is the two-sample
problem described in the next section.
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2.2 Naive two-sample empirical likelihood

In this section, we briefly introduce how to use Owen (1988)’s method to es-
tablish the naive two-sample empirical likelihood method. Owen (2001) provides a
multi-sample empirical likelihood theorem, which includes the two-sample problem
as a special case. This theorem is stated in the two-sample setting as follows:

Theorem 2.1 (Owen (2001)) Let y11, · · · , y1n1 ∈ Rt ∼ F0 and y21, · · · ,

y2n2 ∈ Rt ∼ G0, with all observations independent. Let θ ∈ Rt be defined by
E[h(y1, y2, θ)] = 0, where y1 ∼ F0, y2 ∼ G0 and h(y1, y2, θ) ∈ Rt. Define the
(profile) empirical likelihood ratio function as

R(θ) = sup{
n1∏
i=1

(n1pi)

n2∏
j=1

(n2qj) :

n1∑
i=1

n2∑
j=1

piqjh(y1i, y2j, θ) = 0}.

Then −2 log R(θ0) converges in distribution to a χ2
t distribution random variables.

Proof: the proof can be found in Owen (2001).
Now we define h(y1, y2, d) = y1− y2− d where d = µ1−µ2, where µ1 and µ2 are

two population means respectively. Then this theorem provides a naive two-sample
empirical likelihood method for general two-sample problems:

Corollary 2.3 Define the naive two-sample empirical likelihood ratio function

R(d) = sup{
n1∏
i=1

(n1pi)

n2∏
j=1

(n2qj) :

n1∑
i=1

n2∑
j=1

piqj(y1i − y2j − d) = 0}.

Then when d is the true difference of two population means, −2 log R(d) converges
in distribution to a χ2

t distribution random variables.
The above result can be derived under a different formulation, as outlined in

Wu (2009). We consider t = 1. We maximize the empirical likelihood function

L(p1,p2) =

n1∏
j=1

(n1p1j)

n2∏
j=1

(n2p2j)

subject to constraints

n1∑
j=1

p1j = 1,

n1∑
j=1

p1j(y1j − µ0 − d) = 0,

n2∑
j=1

p2j = 1,

n2∑
j=1

p2j(y2j − µ0) = 0

6



for a fixed µ0, where p1 = (p11, · · · , p1n1)
′ and p2 = (p21, · · · , p2n2)

′ are the discrete
probability measures over these two samples respectively, and µ0 = µ2 + O(n

−1/2
2 ).

This leads to a log empirical likelihood ratio function r(µ0, d) with two parameters
d and µ0, where

r(µ0, d) = −
n1∑

j=1

log{1 + λ1(y1j − µ0 − d)} −
n2∑

j=1

log{1 + λ2(y2j − µ0)},

and λ1 and λ2 are the solutions to

n1∑
j=1

y1j − µ0 − d

1 + λ1(y1j − µ0 − d)
= 0

and
n2∑

j=1

y2j − µ0

1 + λ2(y2j − µ0)
= 0

respectively.
To derive the empirical likelihood ratio function for d, we find µ̂0, which max-

imizes r(µ0, d) for a fixed d. After plugging µ̂0 into the EL ratio function, we
get

−2r(d) = −2r(µ̂0, d) = (ȳ1. − ȳ2. − d)2/(
σ2

1

n1

+
σ2

2

n2

) + op(1).

Hence we have the following theorem:

Theorem 2.4 Suppose that the log empirical likelihood ratio function r(d) is
defined as above, then when d is the true difference of the two population means,
−2r(d) converges in distribution to a χ2

1 random variable.

2.3 Weighted two-sample empirical likelihood

As shown by Owen (2001), EL can be applied to solve multi-sample problems,
including two-sample problems. One can use the EL methods to construct confi-
dence intervals without assuming the distributions of the samples. However, the
EL method may encounter some problems when applied to multiple-sample prob-
lems. The major one is that, EL may not perform well when the distributions are
quite skewed or sample sizes are not large or sample sizes from each population are
quite different. Fu, Wang and Wu (2009) developed a weighted empirical likelihood
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(WEL) method, and tried to alleviate the difficulties that EL may encounter. They
showed through simulation studies that WEL performs better than the naive EL
and some other traditional methods, when population distributions are skewed and
sample sizes are small or moderate.

In this section, enlightened by Fu, Wang and Wu (2009)’s idea, we construct
the weighted empirical likelihood methods for two sample problems.

We use the same setting as before. We suppose {y11, · · · , y1n1} is a random
sample from a population following the distribution F0 and {y21, · · · , y2n2} is a
random sample from a population following the distribution G0 and these two
samples are independent. Their population means, µ1 and µ2, differ by d. We are
interested in testing the hypothesis:

H0 : d = 0,

or equivalently,
H0 : µ1 = µ2.

Some inspiring techniques for dealing with multi-sample problems are proposed
by Fu, Wang and Wu (2009). We use similar method to establish a Wilk’s type
theorem for two-sample problems under a weighted EL formulation. First, we define
the weighted log empirical likelihood function as

lw(p1,p2) =
w1

n1

n1∑
j=1

log(p1j) +
w2

n2

n2∑
j=1

log(p2j), (2.1)

subject to
∑ni

j=1 pij = 1, i = 1, 2, and
∑n1

j=1 p1jy1j −
∑n2

j=1 p2jy2j = d, where w1 =

w2 = 1
2
, pij = Pr(Yij = yij), and p1 = (p11, · · · , p1n1)

′ and p2 = (p21, · · · , p2n2)
′.

Note that σ2
1 and σ2

2 denote respectively the two population variances.

Theorem 2.5 Assume that both σ2
1 and σ2

2 are finite and that n1/n2 → c0 6= 0

as n = n1 + n2 → ∞. When d is the true difference of two population means, we
have

−2rw(d)/c1 → χ2
1, (2.2)

where the weighted log empirical likelihood ratio −2rw(d) is defined in (2.3) and c1

is an adjusting constant and is specified in (2.4).
Proof: we rewrite our constraints as

2∑
i=1

wi

ni∑
j=1

pij = 1

8



and
2∑

i=1

wi

ni∑
j=1

pijZij = η,

or rewrite the above equation as

2∑
i=1

wi

ni∑
j=1

pijuij = 0

where Z1j = (1, y1j/w1)
′, Z2j = (0,−y2j/w2)

′, η = (w1, d)′, uij = Zij − η. Let

G = lw − λ′(
2∑

i=1

wi

ni∑
j=1

pijuij)− τ(1−
2∑

i=1

wi

ni∑
j=1

pij).

Use the standard Lagrange multiplier method, we get

pij =
1

ni(1 + λ′uij)
,

and λ is the solution to

g(λ) =
2∑

i=1

wi

ni

ni∑
j=1

uij

1 + λ′uij

= 0.

Substituting 1/(1 + λ′uij) = 1 − λ′uij/(1 + λ′uij) into the above formula, we
have

[
2∑

i=1

wi

ni

ni∑
j=1

uiju
′
ij

1 + λ′uij

]λ =
2∑

i=1

wi

ni

ni∑
j=1

uij.

Noting that

U =
2∑

i=1

wi

ni

ni∑
j=1

uij = (0, y1. − y2. − d)′,

and using similar argument in Owen (2001), we get

λ = D−1U + op(n
−1/2),

where D =
∑2

i=1
wi

ni

∑ni

j=1 uiju
′
ij.

The two-sample weighted log empirical likelihood ratio can be defined as

rw(d) = −
2∑

i=1

wi

ni

ni∑
j=1

log(1 + λ′uij), (2.3)
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then using the Taylor series expansion, we get

−2rw(d0) = 2
2∑

i=1

wi

ni

ni∑
j=1

log(1 + λ′uij)

= 2
2∑

i=1

wi

ni

ni∑
j=1

(λ′uij −
1

2
λ′uiju

′

ijλ) + op(n
−1)

= U ′D−1U + op(n
−1)

= d(22)(y1. − y2. − d0)
2 + op(n

−1),

where d(22) is the second diagonal element of D−1. Let

c1 = d(22)

(
S2

1

n1

+
S2

2

n2

)
. (2.4)

It follows that when d is the true difference of two means, −2wr(d)/c1 converges in
distribution to a χ2

1 random variable with one degree of freedom.

2.4 Simulation studies

In this section, we assess the power of the tests using the two-sample naive
EL method and the two-sample WEL method, and compare them to the student’s
t-test using pooled sample variance, under small or moderate sample-size settings.
We generate our data from four different types of distributions: normal, log-normal,
exponential and uniform. Different variance structures and different sample sizes
are also taken into account. The null hypothesis is set as

H0 : d = µ1 − µ2 = 0,

and the alternative hypothesis is

H1 : d = 1/
√

m,

when data are generated by normal, exponential and uniform distributions, where m

is chosen for different values. For lognormal distributions, the alternative hypothesis
is

H1 : d = e(µ1+σ2
1/2) − e(µ2+σ2

2/2).

We pre-specify the nominal level of the test at α = 0.05. The total number of
simulations is B = 2000.

10



Under each simulation run, the data were generated under different distribu-
tions, which have different means, variances and sample sizes. The true parameters
of µ1 and µ2, and hence d, were set under the alternative hypothesis. The propor-
tion of times of rejecting the null hypothesis is the so-call empirical power of a test.
Specifically, let (L̂b, Ûb) be the confidence interval for d from the bth simulation.
Then the empirical power is defined as

P = 1−B−1

B∑
b=1

I(L̂b < 0 < Ûb)× 100,

where L̂b and Ûb were computed using bi-section methods which is described in the
next section, and I is the indicator function.

Tables 2.1, 2.2, 2.3 and 2.4 report the comparison of the empirical powers of
t-test, naive empirical likelihood (EL) and weighted empirical likelihood (WEL).
In Table 2.1, sample 1 and sample 2 were both generated from normal distribution
with different means, standard deviations and sample sizes, indicated by (µ1, µ2),
(σ1, σ2) and (n1, n2) respectively.

From Table 2.1, we see that three tests have similar performance in terms of
power in most settings. However, when (σ1, σ2) = (1, 1.5) and (n1, n2) = (15, 30)

or (30, 15), the empirical powers of EL an WEL are much higher than the t-test.
For example, when (µ1, µ2) = (1 + 1/

√
5, 1), (σ1, σ2) = (1, 1.5) and (n1, n2) =

(15, 30), the powers of EL and WEL methods are 0.2440 and 0.2300, respectively,
while the power of the t-test method is 0.1610. In this case the powers of EL
and WEL are approximately 50% higher than that of t-test. When (µ1, µ2) =

(1 + 1/
√

30, 1), (σ1, σ2) = (1, 1.5) and (n1, n2) = (15, 30), the powers of EL and
WEL are approximately 100% higher than that of t-test.
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Table 2.1: Comparisons of powers of t-test, EL and WEL when Y ∼ N(µ, σ2)

(σ1, σ2) (n1,n2) (µ1, µ2) t-test EL WEL
(1,1) (30,30) (1+1/

√
5,1) 0.3855 0.4055 0.3945

(1+1/
√

10,1) 0.2165 0.2325 0.2205
(1+1/

√
30,1) 0.1075 0.1150 0.1105

(15,30) (1+1/
√

5,1) 0.2795 0.3095 0.2895
(1+1/

√
10,1) 0.1790 0.1995 0.1835

(1+1/
√

30,1) 0.1025 0.1205 0.1135
(30,15) (1+1/

√
5,1) 0.2755 0.3090 0.2920

(1+1/
√

10,1) 0.1660 0.1950 0.1805
(1+1/

√
30,1) 0.0935 0.1140 0.1010

(1,1.5) (30,30) (1+1/
√

5,1) 0.2585 0.2710 0.2640
(1+1/

√
10,1) 0.1555 0.1690 0.1595

(1+1/
√

30,1) 0.0805 0.0920 0.0860
(15,30) (1+1/

√
5,1) 0.1610 0.2440 0.2300

(1+1/
√

10,1) 0.0945 0.1635 0.1520
(1+1/

√
30,1) 0.0510 0.1045 0.0935

(30,15) (1+1/
√

5,1) 0.2485 0.2125 0.1975
(1+1/

√
10,1) 0.1745 0.1435 0.1320

(1+1/
√

30,1) 0.1195 0.1025 0.0905
(1.5,1) (30,30) (1+1/

√
5,1) 0.2625 0.2810 0.2685

(1+1/
√

10,1) 0.1515 0.1600 0.1535
(1+1/

√
30,1) 0.0830 0.0925 0.0845

(15,30) (1+1/
√

5,1) 0.2465 0.2110 0.1970
(1+1/

√
10,1) 0.1820 0.1475 0.1365

(1+1/
√

30,1) 0.1250 0.1025 0.0905
(30,15) (1+1/

√
5,1) 0.1525 0.2315 0.2180

(1+1/
√

10,1) 0.0960 0.1545 0.1415
(1+1/

√
30,1) 0.0490 0.0945 0.0850
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In Tables 2.2, 2.3 and 2.4, data were generated from skewed distributions: the
lognormal distribution, the exponential distribution, and the uniform distribution.
From these tables, we see that EL and WEL perform better or much better than
t-test in most cases.

For instance, when both samples are generated from lognormal distributions
with parameters (µ1, µ2) = (1+1/

√
5, 1), (σ1, σ2) = (1.5, 1) and (n1, n2) = (30, 15),

the powers of EL and WEL methods are 0.6815 and 0.7185, respectively, while the
power of the t-test is 0.0930, which is unacceptably low.

13



Table 2.2: Comparisons of powers of t-test, EL and WEL when Y ∼ lognorm(µ, σ2)

(σ1, σ2) (n1,n2) (µ1, µ2) t-test EL WEL
(1,1) (30,30) (1+1/

√
5,1) 0.2700 0.3860 0.3755

(1+1/
√

10,1) 0.1515 0.2465 0.2360
(1+1/

√
30,1) 0.0690 0.1355 0.1290

(15,30) (1+1/
√

5,1) 0.2700 0.3055 0.2235
(1+1/

√
10,1) 0.1630 0.2020 0.1475

(1+1/
√

30,1) 0.0860 0.1365 0.1025
(30,15) (1+1/

√
5,1) 0.1410 0.3805 0.4160

(1+1/
√

10,1) 0.0805 0.2775 0.3025
(1+1/

√
30,1) 0.0460 0.1775 0.2010

(1,1.5) (30,30) (1+1/
√

5,1) 0.0400 0.1260 0.1210
(1+1/

√
10,1) 0.0350 0.1525 0.1480

(1+1/
√

30,1) 0.0560 0.2270 0.2170
(15,30) (1+1/

√
5,1) 0.0390 0.1435 0.1335

(1+1/
√

10,1) 0.0185 0.1665 0.1790
(1+1/

√
30,1) 0.0125 0.2320 0.2550

(30,15) (1+1/
√

5,1) 0.0730 0.1685 0.1630
(1+1/

√
10,1) 0.0745 0.1665 0.1535

(1+1/
√

30,1) 0.0945 0.1800 0.1540
(1.5,1) (30,30) (1+1/

√
5,1) 0.3825 0.7540 0.7465

(1+1/
√

10,1) 0.2785 0.6355 0.6205
(1+1/

√
30,1) 0.1880 0.5075 0.4970

(15,30) (1+1/
√

5,1) 0.4470 0.5740 0.4935
(1+1/

√
10,1) 0.3450 0.4800 0.3925

(1+1/
√

30,1) 0.2655 0.3770 0.3055
(30,15) (1+1/

√
5,1) 0.0930 0.6815 0.7185

(1+1/
√

10,1) 0.0630 0.5920 0.6270
(1+1/

√
30,1) 0.0370 0.4940 0.5300
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Table 2.3: Comparisons of powers of t-test, EL and WEL when Y ∼ exp(1/µ)

(n1,n2) (µ1, µ2) t-test EL WEL
(30,30) (1+1/

√
5,1) 0.2575 0.3290 0.3165

(1+1/
√

10,1) 0.1550 0.2000 0.1925
(1+1/

√
30,1) 0.0820 0.1095 0.1050

(15,30) (1+1/
√

5,1) 0.2480 0.2550 0.1940
(1+1/

√
10,1) 0.1620 0.1735 0.1340

(1+1/
√

30,1) 0.1035 0.1195 0.0810
(30,15) (1+1/

√
5,1) 0.1470 0.3135 0.3420

(1+1/
√

10,1) 0.0920 0.2180 0.2395
(1+1/

√
30,1) 0.0530 0.1480 0.1585

Table 2.4: Comparisons of powers of t-test, EL and WEL when Y ∼ unif(0, 2µ)

(n1,n2) (µ1, µ2) t-test EL WEL
(30,30) (1+1/

√
5,1) 0.6360 0.6700 0.6560

(1+1/
√

10,1) 0.4080 0.4400 0.4245
(1+1/

√
30,1) 0.1795 0.1925 0.1860

(15,30) (1+1/
√

5,1) 0.5155 0.4765 0.4485
(1+1/

√
10,1) 0.3285 0.2945 0.2775

(1+1/
√

30,1) 0.1520 0.1495 0.1390
(30,15) (1+1/

√
5,1) 0.4320 0.5755 0.5550

(1+1/
√

10,1) 0.2535 0.3585 0.3450
(1+1/

√
30,1) 0.1140 0.1660 0.1560
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2.5 Computational algorithms

For the naive two-sample empirical likelihood method, the major computational
problem is to maximize the joint empirical log-likelihood

l(p1, p2) =

n1∑
j=1

log(p1j) +

n2∑
j=1

log(p2j)

subject to
∑n1

j=1 p1j = 1,
∑n2

j=1 p2j = 1 and
∑n1

j=1 p1jy1j −
∑n2

j=1 p2jy2j = d. We
adopt the technique used in the section on WEL to reformulate the constraints as

1

2

n1∑
j=1

p1j +
1

2

n2∑
j=1

p2j = 1,

1

2

n1∑
j=1

p1jz1j +
1

2

n2∑
j=1

p2jz2j = η,

where z1j = (1, y1j)
′, z2j = (0,−y2j)

′ and η = (1/2, d/2)′. We define u1j = z1j − η

and u2j = z2j − η and qij = 1/2pij and the computational task is equivalent to
maximizing

l1(q1, q2) =
2∑

i=1

ni∑
j=1

log(qij)

with the re-formulated constraints
2∑

i=1

ni∑
j=1

qij = 1,

2∑
i=1

ni∑
j=1

qijuij = 0.

The maximization problem thus is changed to a standard formulation. Hence we
can use the standard computational procedure developed by Wu (2004) to deal
with it. To be specific, we define the Lagrangian

G = l1(q1, q2)− λ1(
2∑

i=1

ni∑
j=1

qij − 1)− (n1 + n2)λ
′

2(
2∑

i=1

ni∑
j=1

qijuij).

Differentiating G with respect to qij and set ∂G
∂qij

= 0, we get

1

qij

− λ1 − (n1 + n2)λ
′

2uij = 0,

where j = 1, · · · , ni, i = 1, 2. This gives

1− λ1qij − (n1 + n2)λ
′

2qijuij = 0. (2.5)
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We sum the above equation over i and j and noting that
∑2

i=1

∑ni

j=1 qijuij = 0, we
get

λ1 = n1 + n2.

From (2.5), we have

qij =
1

n1 + n2

1

1 + λ
′
2uij

.

Substituting this into
∑2

i=1

∑ni

j=1 qijuij = 0, we obtain

g(λ2) =
1

n1 + n2

2∑
i=1

ni∑
j=1

uij

1 + λ
′
2uij

= 0. (2.6)

Similar to the arguments used by Owen (2001), (2.6) has a unique solution as-
ymptotically with probability one. However, the basic version of Newton’s method
is not reliable to solve this equation. A modified version of Newton’s method de-
veloped by Wu (2004) can be used to solve (2.6). Let λ2 = λ2(d) be the solution of
(2.6) with a fixed d.

Since l(p1, p2) =
∑2

i=1

∑ni

j=1 log(pij), subject to
∑ni

j=1 pij = 1, i = 1, 2 attains its
maximum when pij = 1

ni
. That is, l =

∑2
i=1

∑ni

j=1 log( 1
ni

).
Besides,

l1(d) = sup{l1(q1, q2)|
2∑

i=1

ni∑
j=1

qij = 1,
2∑

i=1

ni∑
j=1

qijuij = 0}

attains its maximum when d = ȳ1. − ȳ2., so that d̂el = ȳ1. − ȳ2..

Notice that

l1(d) =
2∑

i=1

ni∑
j=1

log(
1

n1 + n2

1

1 + λ
′
2uij

),

so

l(d) =
2∑

i=1

ni∑
j=1

log(
2

n1 + n2

1

1 + λ
′
2uij

),

then we know the two-sample log-likelihood ratio is

−2r(d) = 2l − 2l(d) = −2
2∑

i=1

ni∑
j=1

log(
2ni

n1 + n2

1

1 + λ
′
2uij

).

Next our task is to find the confidence interval {d| − 2r(d) < χ2
1(α)}. First we note

that
y1(1) − y2(n2) ≤ d ≤ y1(n1) − y2(1),

where y1(1) = min{y11, · · · , y1n1}, y2(n2) = max{y21, · · · , y2n2}, y1(n1) = max{
y11, · · · , y1n1} and y2(1) = min{ y21, · · · , y2n2}. Then according to Wu (2004)
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and Tsao and Wu (2006), −2r(d) is convex for d ∈ (y1(1) − y2(n2), y1(n1) − y2(1)),
hence we get the monotone property of −2r(d): it is monotone decreasing in
(y1(1) − y2(n2), ȳ1. − ȳ2.) and monotone increasing in (ȳ1. − ȳ2., y1(n1) − y2(1)). As
a result, we can use the bisection method to find the lower and upper bound of
{d| − 2r(d) < χ2

1(α)} for any given α.

Next we briefly introduce the computational algorithms for weighted empirical
likelihood.

The maximization procedure of WEL is similar to the naive EL, except that we
need to deal with the adjusting factor in this section.

The major task is to maximize

lw(p1, p2) =
1

2n1

n1∑
j=1

log(p1j) +
1

2n2

n2∑
j=1

log(p2j)

subject to

2∑
i=1

1

2

ni∑
j=1

pij = 1,

2∑
i=1

1

2

ni∑
j=1

pijuij = 0.

Here u1j = (1/2, 2y1j)
′ and u2j = (−1/2,−2y2j − d)′. The adjusted weighted two-

sample log-likelihood ratio is

−2rw(d)/c1 = 2
2∑

i=1

1

2c1ni

ni∑
j=1

log(1 + λ′uij)

where c1(d) = d(22)
(

S2
1

n1
+

S2
2

n2

)
and λ is the solution of

gw(λ) =
2∑

i=1

1

2ni

ni∑
j=1

uij

1 + λ′uij

= 0.

Use similar arguments to Wu (2004), −2rw(d)/c1 still maintains similar monotone
property. Hence, we can still use bi-section method to find the lower and upper
bound of {d| − 2rw(d)/c1 < χ2

1(α)}.
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Chapter 3

Two-sample Empirical Likelihood in
Linear Models with Missing Data

3.1 Missing data in two-sample problems

As shown by Owen (2001) and many other authors, the naive EL method and
it’s varieties have been successfully applied to many statistical areas. However, EL
methods for multi-sample problems with missing data have not been developed.

For one-sample problems, Qin’s University of Waterloo 1992 Ph.D. thesis and
Qin (2000) studied a conditional parametric model, say, f(y|x, θ), while leaving
the marginal distribution G(x) of X totally unspecified. He assumed the auxil-
iary information is available and can be summarized through estimating equations.
Suppose the observed values are (yi, xi), for i = 1, · · · , m, and xm+1, · · · , xn, and
the last n−m response data are missing. The major interest is the mean response.
His key idea was to combine parametric and empirical likelihood to give an efficient
point estimator and to construct confidence intervals. Under this setting, he showed
that the point estimator of θ is more efficient than maximum likelihood estimator
when the auxiliary information is available. Besides, Qin (2000) proved a Wilks’
type theorem for the combined likelihood ratio statistic when making inference for
the mean response. However, Qin (2000) simply omitted the missing data. That
is, he dropped the observed xi with the missing response from his analysis. This
may cause a serious loss of efficiency.

Based on Qin (2000)’s work, Wang and Dai (2008) imputed the missing data in
the same setting except that they assumed that the data are missing at random.
Hence, they proposed a new point estimator of θ and demonstrated that it’s more
efficient than Qin (2000)’s estimator. Besides, they also proved that the imputation-
based likelihood ratio statistic converges to a weighted sum of chi-squared variables.
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However, Qin (2000) and Wang and Dai (2008) did not give point estimation of
the mean response. Wang and Veraverbeke (2002) studied the same model by
using a different imputation method and didn’t combine empirical likelihood with
parametric likelihood. Similar results were proved. Furthermore, they gave a point
estimator of the mean response, while the efficiency was not studied and the point
estimator of θ was not provided.

Wang and Rao (2001, 2002a, 2002b) and Wang, Linton and Hardle (2004)’s
ideas are similar. They used several kinds of imputation, including linear regres-
sion imputation and kernel regression imputation, to handle the incomplete data,
and then adjusted the empirical likelihood methods to make inference. The empiri-
cal likelihood method needs to be adjusted in these situations since the data become
dependent after imputation. These adjustments are based on different model as-
sumptions and can lead to efficient point estimators and Wilks’ type theorems.
Above all, the intuitive idea to handle missing data problems by using EL methods
is originated from Qin’s 1992 Ph.D. thesis.

Those papers we mentioned above were all dealing with single sample problems.
In this section, we will extend their results to two-sample problems where our inter-
est is the difference of two population means. Difficulties arise since the technique
to deal with multi-sample problems is quite different from single-sample problems.

3.2 Main results

In this section, we consider the following situation. Suppose we obtain i.i.d.

(x1j, y1j, δ1j), and i.i.d. (x2j, y2j, δ2j), where j = 1, · · · , ni, and δij = 1 if yij ob-
served, and δij = 0 otherwise. Here all xij are t-dimensional vectors and yij are
univariates. Our interest is still the difference of two population means. We assume
that yij’s are missing at random (MAR) assumption. That is, P (δi = 1|yi, xi) =

P (δi = 1|xi).

We further assume the following linear regression model:

yij = x
′

ijβi + εij,

where j = 1, · · · , ni, i = 1, 2, and βi are regression parameters. Here εij’s are i.i.d.
random errors with mean 0 and variance σ2

i . We should note that when responses
are complete, then these covariates xij provides no additional information for the
inference of the difference of two means. However, when the MAR assumption
is made and there are missing responses, xij provides useful information on the
missing responses.
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First we estimate βi by the least squares estimator:

β̃i = (

ni∑
j=1

δijxijx
′
ij)

−1

ni∑
j=1

δijxijyij,

where i = 1, 2. Then we define

ỹij = δijyij + (1− δij)x
′
ijβ̃i,

where j = 1, · · · , ni, i = 1, 2.
Next, the (profile) two-sample empirical likelihood ratio is defined as

r(d) =

n1∑
j=1

log(n1p1j) +

n2∑
j=1

log(n2p2j), (3.1)

subject to
∑ni

j=1 pij = 1, i = 1, 2, and
∑n1

j=1 p1j ỹ1j −
∑n2

j=1 p2j ỹ2j = d.
Now we establish the main result:

Theorem 3.1 Under the assumed linear regression model and suitable regular-
ity conditions, we have

−2r(d0)/c2 → χ2
1, (3.2)

where c2 is an adjusted constant and is specified in (3.7).
Proof: let µi0 be the true parameter and µi is in the neighborhood of µi0 such

that µi = µi0 + O(n
−1/2
i ). We define

r(µ2, d) =

n1∑
j=1

log(n1p1j) +

n2∑
j=1

log(n2p2j)

where p1 = (p11, · · · , p1n1)
′ and p2 = (p21, · · · , p2n2)

′ maximize

l(p1,p2) =

n1∑
j=1

log(p1j) +

n2∑
j=1

log(p2j), (3.3)

subject to

ni∑
j=1

pij = 1, i = 1, 2,

n1∑
j=1

p1j(ỹ1j − µ2 − d) = 0,

n2∑
j=1

p2j(ỹ2j − µ2) = 0.
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By using the Lagrange multiplier method, we have

p1j =
1

n1[1 + τ
′
1(ỹ1j − µ2 − d)]

,

p2j =
1

n2[1 + τ
′
2(ỹ2j − µ2)]

,

where τ1, τ2 are the solutions to

1

n1

n1∑
j=1

ỹ1j − µ2 − d

1 + τ
′
1(ỹ1j − µ2)

= 0

and
1

n2

n2∑
j=1

ỹ2j − µ2

1 + τ
′
2(ỹ2j − µ2)

= 0.

Then,

r(µ2, d) = −
n1∑

j=1

[1 + τ
′

1(ỹ1j − µ2 − d)]−
n2∑

j=1

[1 + τ
′

2(ỹ2j − µ2)].

Let
∂r(µ2, d)

∂µ2

= 0,

then we get
n1τ1 + n2τ2 = 0. (3.4)

Besides, from Wang and Rao (2002), we have

1
√

ni

ni∑
j=1

(ỹij − µi0) → N(0, Vi),

τi = Op(n
−1/2
i ),

1

ni

ni∑
j=1

(ỹij − µi0)
2 → Ui,

max
1≤j≤ni

|ỹij| = op(n
1/2
i ).

Here

Vi = Vi(µi) = Si1 + S ′
i2S

−1
i3 Si2σ

2
i + β′

iSi4βi − 2S ′
i5βiµi + µ2

i + 2S ′
i2S

−1
i3 Si6σ

2
i ,

and
Ui = Ui(µi) = Si1 + β′

iSi4βi − 2S ′
i5βiµi + µ2

i ,
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where Si1 = E[δi(Yi−X ′
iβi)

2], Si2 = E[(1−δi)Xi], Si3 = E[δiXiX
′
i], Si4 = E[XiX

′
i],

Si5 = E[Xi], Si6 = E[δiXi]. Hence we can get

τ1 = [

n1∑
j=1

(ỹ1j − µ2 − d)2]−1

n1∑
j=1

(ỹ1j − µ2 − d) + op(n
−1/2
1 ), (3.5)

τ2 = [

n2∑
j=1

(ỹ2j − µ2)
2]−1

n2∑
j=1

(ỹ2j − µ2) + op(n
−1/2
2 ), (3.6)

then (3.5) and (3.6) lead to the solution to (3.4) as

µ̃2 = α(ỹ1. − d) + (1− α)ỹ2. + op(n
−1/2),

where
α =

(
n1

U1

)
/

(
n1

U1

+
n2

U2

)
and ỹi. = n−1

i

∑ni

j=1 ỹij. It follows that

µ̃2 − µ20 = α(ỹ1. − µ20 − d0) + (1− α)(ỹ2. − µ20) + op(n
−1/2)

= α(ỹ1. − µ10) + (1− α)(ỹ2. − µ20) + op(n
−1/2)

= Op(n
−1/2),

where n = n1 + n2. As a result, τ1(ỹ1. − µ̃20 − d0) = op(n
−1/2) and τ2(ỹ2. − µ̃2) =

op(n
−1/2).

Finally we get

−2r(d0) = −2r(µ̃2, d0)

=
n1

U1

(ỹ1. − µ̃2 − d0)
2 +

n2

U2

(ỹ2. − µ̃2)
2 + op(1)

= (ỹ1. − ỹ2. − d0)
2/

(
U1

n1

+
U2

n2

)
+ op(1).

If we define
c2 =

(
V1

n1

+
V2

n2

)
/

(
U1

n1

+
U2

n2

)
, (3.7)

we can easily see that −2r(d0)/c2 converges in distribution to a χ2
1 random variable.

3.3 Simulation studies

In this section, we report results from a simulation study in comparing our two-
sample EL method with the student’s t-test treating imputed data as the original
data, under small or moderate sample-size settings.
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We consider the simple linear regression model Yi = Xiβi + εi, i = 1, 2. Here we
set β1 = 1.5 and β2 = 1. The dimension of the Xi’s is set to be 1. The Xi’s and
εi’s are generated from different distributions.

Different variance structures and different sample sizes are also taken into ac-
count. We always set the null hypothesis as

H0 : d = µ1 − µ2 = 0,

and the alternative hypothesis as

H1 : d = 0.5.

We pre-specify the nominal level of the test as α = 0.05. The total number of
simulations is B = 2000. Tables 3.1, 3.2 and 3.3 present the empirical power of the
tests under different settings.

Under each simulation run, the data were generated under different distribu-
tions, which have different means, variances and sample sizes, and parameters were
set under the alternative hypothesis. The proportion of times of rejecting the null
hypothesis is the so-call empirical power of a test. See Section 2.4 for detailed
definitions.

Under the model Yi = Xiβi + εi, i = 1, 2, the correlation between the responses
Yi and the covariates Xi

ρi =
Cov(Yi, Xi)√

V ar(Yi)V ar(Xi)
=

1√
1 +

σ2
εi

σ2
Xi

1
β2

i

.

Let
EP (Xi) = E[P (δi = 1|Xi)],

which indicates the expectation of observed rate of the responses in sample i, where
i = 1, 2.

In Table 3.1, the covariates X1 and X2 are both generated from the normal
distribution with mean 1 and standard deviation 1.

We consider the following two missing cases under the MAR assumption in
Table 3.1.

Case1:

P (δi = 1|Xi = xi) =


0.2, if Xi − 1 ≤ −1;
0.84, if −1 ≤ Xi − 1 ≤ 1;
0.6, if Xi − 1 ≥ 1.

Case2:

P (δi = 1|Xi = xi) =


0.2, if Xi − 1 ≤ −1;
0.638, if −1 ≤ Xi − 1 ≤ 1;
0.2, if Xi − 1 ≥ 1.
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where Case 1 leads to EP (Xi) ∼= 0.7 and Case 2 leads to EP (Xi) ∼= 0.5.
The error terms εi are generated from normal distributions with mean 0 and

different variances, that is, εi ∼ N(0, σ2
εi
). The choose of σεi

is specified as follows:
In Table 3.1, we used σε1 = 1.125 and σε2 = 0.75. This leads to ρ2 = ρ2 = 0.8.

Similarly we let σε1 = 2.598 and σε2 = 1.732 such that ρ1 = ρ2 = 0.5 and σε1 = 4.770

and σε2 = 3.180 such that ρ1 = ρ2 = 0.3.
In Table 3.1, t-test and EL have similar performance in terms of power. In some

cases, EL performs a little better. When the correlation between the response and
covariate decreases, the power of both tests tend to decrease too, which justifies
that the information from covariates could help improve the power of the test.
For example, when (E[P (X1)], E[P (X2)]) = (0.7, 0.7), (n1, n2) = (60, 60) and the
correlations (ρ1, ρ2) decrease, the power of both tests also decreases while the power
of the EL test is always slightly higher than the power of the t-test. When (ρ1, ρ2) =

(0.5, 0.5), (E[P (X1)], E[P (X2)]) = (0.7, 0.7) and (n1, n2) = (30, 60) then the power
of the t-test is 0.143 while EL is 0.154.

When the sample sizes (n1, n2) = (60, 30), the power of the t-test tends to be
slightly higher than the power of the EL test. And in some other cases, t-test
is a little better than the EL method. For example, when (ρ1, ρ2) = (0.3, 0.3),
(E[P (X1)], E[P (X2)]) = (0.5, 0.5) and (n1, n2) = (60, 60), the power of the t-test is
0.1515 while EL is 0.1380.
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Table 3.1: Comparisons of powers when covariates Xi ∼ N(1, 1) and εi ∼ N(0, σ2
i )

(ρ1, ρ2) (EP (X1), EP (X2)) (n1,n2) t-test EL
(0.8,0.8) (0.7,0.7) (60,60) 0.4160 0.4190

(30,60) 0.2850 0.2880
(60,30) 0.3655 0.3590

(0.5,0.5) (60,60) 0.4120 0.4080
(30,60) 0.2880 0.2825
(60,30) 0.3635 0.3590

(0.5,0.7) (60,60) 0.3950 0.3910
(30,60) 0.2755 0.2770
(60,30) 0.3510 0.3465

(0.5,0.5) (0.7,0.7) (60,60) 0.1895 0.1910
(30,60) 0.1460 0.1570
(60,30) 0.1970 0.1900

(0.5,0.5) (60,60) 0.2175 0.2135
(30,60) 0.1795 0.1800
(60,30) 0.2170 0.2135

(0.5,0.7) (60,60) 0.1940 0.1880
(30,60) 0.1710 0.1705
(60,30) 0.2010 0.1885

(0.3,0.3) (0.7,0.7) (60,60) 0.1060 0.1085
(30,60) 0.0960 0.1030
(60,30) 0.1035 0.1005

(0.5,0.5) (60,60) 0.1515 0.1380
(30,60) 0.1430 0.1375
(60,30) 0.1565 0.1455

(0.5,0.7) (60,60) 0.1265 0.1220
(30,60) 0.1335 0.1345
(60,30) 0.1370 0.1300
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Tables 3.2 and 3.3 report results when data are generated from skewed distri-
butions. In Table 3.2, the covariates X1 and X2 are generated from exponential
distributions: Xi ∼ exp(1), i = 1, 2, so that their means are both 1 and variances
are both 1.

We consider the following two missing cases under the MAR assumption in
Table 3.2.

Case1:
P (δi = 1|Xi = xi) =

{
0.78, if −1 ≤ Xi − 1 ≤ 1;
0.2, if Xi − 1 ≥ 1.

Case2:
P (δi = 1|Xi = xi) =

{
0.44, if −1 ≤ Xi − 1 ≤ 1;
0.9, if Xi − 1 ≥ 1.

where Case 1 leads to EP (Xi) ∼= 0.7 and Case 2 leads to EP (Xi) ∼= 0.5.
We set the error terms εi ∼ σεi

(exp(1)−1) so that they have standard deviations
σi. As a result, σε1 = 1.125 and σε2 = 0.75 lead to ρ1 = ρ2 = 0.8, σε1 = 2.598 and
σε2 = 1.732 lead to ρ1 = ρ2 = 0.5, σε1 = 4.770 and σε2 = 3.180 lead to ρ1 = ρ2 = 0.3.
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Table 3.2: Comparisons of powers when covariates Xi ∼ exp(1) and εi ∼
σεi

(exp(1)− 1)

(ρ1, ρ2) (EP (X1), EP (X2)) (n1,n2) t-test EL
(0.8,0.8) (0.7,0.7) (60,60) 0.3815 0.4050

(30,60) 0.2140 0.2690
(60,30) 0.3450 0.3370

(0.5,0.5) (60,60) 0.4615 0.4845
(30,60) 0.2790 0.3585
(60,30) 0.3965 0.3790

(0.5,0.7) (60,60) 0.4355 0.4545
(30,60) 0.2840 0.3525
(60,30) 0.3965 0.3875

(0.5,0.5) (0.7,0.7) (60,60) 0.1665 0.1970
(30,60) 0.0980 0.1355
(60,30) 0.1745 0.1780

(0.5,0.5) (60,60) 0.2285 0.2630
(30,60) 0.1575 0.2160
(60,30) 0.2400 0.2390

(0.5,0.7) (60,60) 0.2300 0.2625
(30,60) 0.1545 0.2185
(60,30) 0.2370 0.2370

(0.3,0.3) (0.7,0.7) (60,60) 0.0980 0.1125
(30,60) 0.0765 0.1010
(60,30) 0.1210 0.1275

(0.5,0.5) (60,60) 0.1310 0.1575
(30,60) 0.1115 0.1560
(60,30) 0.1565 0.1675

(0.5,0.7) (60,60) 0.1360 0.1570
(30,60) 0.1080 0.1560
(60,30) 0.1565 0.1605
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In Table 3.3, the covariates X1 and X2 are still generated from exponential
distributions: Xi ∼ exp(1), i = 1, 2, so that their means are both 1 and variances
are both 1.

We consider the same missing cases under the MAR assumption in Table 3.3 as
the one in Table 3.2.

The error terms are generated from a re-scaled lognormal distribution:

ε ∼ σεi

(lognorm(0, 1)− e1/2)

e2 − e

so that they have standard deviations σi. Here definitions of σεi
are the same as in

Table 3.1 and 3.2.
From Table 3.3, we see that in 21 out of 27 cases, EL performs better or much

better than the t-test. When sample sizes are (30, 60), EL has powers approximately
30% ∼ 50% higher than those by the t-test.
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Table 3.3: Comparisons of powers when X ∼ exp(1), ε ∼ σεi
(lognorm(0, 1) −

e1/2)/(e2 − e)
(ρ1, ρ2) (EP (X1), EP (X2)) (n1,n2) t-test EL
(0.8,0.8) (0.7,0.7) (60,60) 0.5270 0.5480

(30,60) 0.3195 0.3985
(60,30) 0.4580 0.4355

(0.5,0.5) (60,60) 0.5450 0.5635
(30,60) 0.3435 0.4220
(60,30) 0.4695 0.4465

(0.5,0.7) (60,60) 0.5455 0.5620
(30,60) 0.3370 0.4200
(60,30) 0.4730 0.4480

(0.5,0.5) (0.7,0.7) (60,60) 0.3710 0.4050
(30,60) 0.2100 0.2975
(60,30) 0.3485 0.3450

(0.5,0.5) (60,60) 0.4620 0.4855
(30,60) 0.2735 0.3515
(60,30) 0.3945 0.3890

(0.5,0.7) (60,60) 0.4340 0.4530
(30,60) 0.2755 0.3550
(60,30) 0.3815 0.3795

(0.3,0.3) (0.7,0.7) (60,60) 0.2100 0.2495
(30,60) 0.1250 0.1920
(60,30) 0.2250 0.2440

(0.5,0.5) (60,60) 0.3025 0.3335
(30,60) 0.1750 0.2575
(60,30) 0.2880 0.3010

(0.5,0.7) (60,60) 0.2815 0.3100
(30,60) 0.1835 0.2650
(60,30) 0.2885 0.2910
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Chapter 4

Bootstrap Procedures for the
Two-Sample Empirical Likelihood
Methods

4.1 Bootstrap procedure for the two-sample weighted
empirical likelihood method

As we described in Chapter 2, we derived the so-called weighted two-sample
empirical likelihood method for the complete data case, which also involves a scaling
constant c1 in Theorem 2.5. In order to improve the performance of weighted EL
method when sample sizes are not large and to avoid calculating c1, we now develop
a bootstrap procedure to achieve that goal.

Suppose we have univariate data yij, i = 1, 2, j = 1, · · · , ni, which are our
original samples. Here i indicate the i-th sample. The sample sizes n1 and n2 are
fixed. The two samples are independent.

The weighted EL function defined in Chapter 2 is given by (2.1):

lw(p1,p2) =
w1

n1

n1∑
j=1

log(p1j) +
w2

n2

n2∑
j=1

log(p2j),

where w1 = w2 = 1/2 are the equal "weights" for these two samples, and p1 =

(p11, · · · , p1n1)
′ and p2 = (p21, · · · , p2n2)

′ are the discrete probability measures over
the two samples, respectively. Due to Kiefer and Wolfowitz (1956), it is easy to
verify that p̂1 = (1/n1, · · · , 1/n1)

′ and p̂2 = (1/n2, · · · , 1/n2)
′ uniquely maximize

lw(p1,p2) subject to
∑n1

j=1 p1j = 1 and
∑n2

j=1 p2j = 1. As a result, the maximum
WEL estimator for the difference d = µ1 − µ2 is simply d̂ = ȳ1. − ȳ2., where
ȳ1. = n−1

1

∑n1

j=1 y1j and ȳ2. = n−1
2

∑n2

j=1 y2j. Let p̃1(d) and p̃2(d) be the maximizer
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of lw(p1,p2) subject to
n1∑

j=1

p1j = 1,

n2∑
j=1

p2j = 1,

n1∑
j=1

p1jy1j −
n2∑

j=1

p2jy2j = d

for a fixed d. Then the two-sample weighted empirical likelihood ratio function
rw(d) = {lw(p̃1(d), p̃2(d)) − lw(p̂1, p̂2)}, which has another expression as stated in
(2.3). As we showed in Chapter 2, when d0 is the true difference of two population
means, −2rw(d0)/c1 converges in distribution to a chi-squared distribution with
one degree of freedom under some mild regularity conditions, where c1 is defined in
(2.4). Hence, the (1-α)-level WEL confidence interval on d0 is constructed as

C1 = {d | − 2 rw(d)/c1 < χ2
1(α)}

since P (−2rw(d0) < χ2
1(α))

.
= 1− α in the asymptotical sense.

However, the two-sample WEL confidence interval has the low coverage proba-
bility problem, which can be seen from the simulation studies reported in the next
section. Sometimes it performs worse than the usual two-sample t-test. In addition,
c1 has a quite complicated form and one may wish to avoid calculating it every time
using the two-sample WEL. These problems motivate us to use bootstrap method,
an effective calibration method, to improve the performance in terms of coverage
probabilities. Our proposed two-sample bootstrap empirical likelihood method is
as follows.

First select a bootstrap sample {y∗i1, · · · , y∗ini
} from the i-th original sample

{yi1, · · · , yini
}, i = 1, 2 with replacement. Then the bootstrap analogy of lw(p1,p2)

can be defined to be

l∗w(p∗
1,p

∗
2) =

w1

n1

n1∑
j=1

log(p∗1j) +
w2

n2

n2∑
j=1

log(p∗2j),

Maximizing l∗w(p∗
1,p∗

2) subject to
n1∑

j=1

p∗1j = 1,

n2∑
j=1

p∗2j = 1,

n1∑
j=1

p∗1jy
∗
1j −

n2∑
j=1

p∗2jy
∗
2j = d̂
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gives us the bootstrap version of the WEL ratio function in (2.3), here d̂ is the
difference of two original sample means, that is d̂ = ȳ1. − ȳ2..

r∗w(d̂) = −
2∑

i=1

wi

ni

ni∑
j=1

log(1 + λ∗
′
u∗ij),

where u∗1j = (1− w1, y
∗
1j/w1 − d̂)′ and u∗2j = (−w1,−y∗2j/w2 − d̂)′, and λ∗ satisfies

2∑
i=1

wi

ni

ni∑
j=1

u∗ij
1 + λ∗′u∗ij

= 0.

Next we need to show this bootstrap version of WEL has the same asymptotic
scaled chi-squared distribution as rw(d0), that is, the asymptotic distribution of
r∗w(d̂) approximates that of rw(d0) . Denote bα as the upper α quantile of the
asymptotic distribution of rw(d0). That is P (rw(d0) < bα)

.
= 1−α, where bα can be

determined by Theorem 2.5. So that the (1-α)-level approximate WEL confidence
interval can be constructed as

C2 = {d | rw(d) < bα}.

If this bootstrap version of WEL has the same asymptotic scaled chi-squared
distribution as rw(d0), for which we will give a proof in the following, then we can
replace bα by using the upper α quantile of the asymptotic distribution of r∗w(d̂),
denoted as b̃α. All we left is to calculate b̃α, which generally is also not easy to
figure out. To do this, we use the Monte Carlo Simulation to approximate b2

α by
the upper 100α-th sample quantile b∗α from a repeated sequence. Specifically, we
repeat our procedure independently for many times, say B = 1000 times, to get a
sequences r∗w,1(d̂), · · · , r∗w,B(d̂) in the same way that we get r∗w(d̂). Then b∗α is the
100α-th sample quantile of this sequences. Then the so-called bootstrap calibrated
WEL confidence interval on d0 can be constructed as

C∗ = {d | rw(d) < b∗α}.

As we can see, calculation of c1 is bypassed. We also expect this bootstrap
calibrated WEL confidence interval C∗ would have better performance than the
WEL confidence interval C1 or equally C2. This is demonstrated by our simulation
studies reported in the next section.

In order to prove that the confidence interval C∗ has correct asymptotic coverage
probability at the (1-α)- level, we only need to show that the bootstrap version of
WEL ratio r∗w(d̂) has the same asymptotic scaled chi-squared distribution as rw(d0).
That is, the bootstrap procedure provides an approximation to the asymptotic
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distribution of rw(d0):

Theorem 4.1 Assume σ2
1, σ2

2 < ∞ and that n1/n2 → c0 6= 0 as n = n1 + n2 →
∞. When d0 is the true difference of two population means, then as n →∞

|P (rw(d0) < x)− P ∗(r∗w(d̂) < x)| → 0

with probability 1 for any x ∈ R and P ∗ means the bootstrap probability. That is,
rw(d0) and r∗w(d̂) converge in distribution to the same scaled χ2

1 random variable
according to Theorem 2.5.

Proof: Since {y∗i1, · · · , y∗ini
} is selected from the i-th original sample {yi1, · · · , yini

},
i = 1, 2 with replacement, it follows that y∗i1, · · · , y∗ini

are i.i.d. for i = 1, 2 and these
two bootstrap samples are still independent and they are all uniformly distributed
on the observations of the i-th sample. As a result, we have E∗(y∗ij) = ȳi. and
V ar∗(y∗ij) = n−1

i

∑ni

j=1(yij − ȳi.)
2. Here E∗ and V ar∗ means the bootstrap expecta-

tion and bootstrap variance respectively.
Since E∗(y∗2ij ) = ȳ2

i. + n−1
i

∑ni

j=1(yij − ȳi.)
2, we have P (E∗(y∗2ij ) < ∞) = 1 under

the assumption σ2
1, σ2

2 < ∞. Then from Lemma 11.2 in Chapter 11 of Owen (2001),
we know that max1≤j≤n1 |y∗ij| = op∗(

√
n) and hence max1≤j≤n1 |u∗ij| = op∗(

√
n). Here

|u∗ij| =
√

(u∗ij,1)
2 + (u∗ij,2)

2, where u∗ij,1 and u∗ij,2 are the first and second component
of u∗ij.

Noting that λ∗ satisfies

2∑
i=1

wi

ni

ni∑
j=1

u∗ij
1 + λ∗′u∗ij

= 0,

we rewrite this equation to get

0 =
2∑

i=1

wi

ni

ni∑
j=1

u∗ij
1 + λ∗′u∗ij

=
2∑

i=1

wi

ni

ni∑
j=1

u∗ij[1 + λ∗
′
u∗ij − λ∗

′
u∗ij]

1 + λ∗′u∗ij

=
2∑

i=1

wi

ni

ni∑
j=1

u∗ij − λ∗
2∑

i=1

wi

ni

ni∑
j=1

u∗
′

iju
∗
ij

1 + λ∗′u∗ij
.

After some straightforward algebra, we have

U∗ =
2∑

i=1

wi

ni

ni∑
j=1

u∗ij = (0, ȳ∗1. − ȳ∗2. − d̂)′.
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and we obtain

|λ∗|
2∑

i=1

wi

ni

ni∑
j=1

u∗
′

iju
∗
ij

1 + |λ∗|max1≤j≤n1 |u∗ij|
≤ |ȳ∗1. − ȳ∗2. − d̂|.

Here |λ∗| =
√

(λ∗1)
2 + (λ∗2)

2 where λ∗1 and λ∗2 is the first and second component of λ∗.
Since max1≤j≤n1 |u∗ij| = op∗(

√
n) and we know from the central limit theorem that

ȳ∗1. − ȳ∗2. − d̂ = Op∗(n
−1/2) and the above inequality, we must have λ∗ = Op∗(n

1/2).
Another similar way of proving this important order property can be found in
Chapter 11.2 of Owen (2001). Using similar argument as in Theorem 2.5, we get

−2r∗w(d̂) = 2
2∑

i=1

wi

ni

ni∑
j=1

log(1 + λ∗
′
u∗ij)

= 2
2∑

i=1

wi

ni

ni∑
j=1

(λ∗
′
u∗ij −

1

2
λ∗

′
u∗iju

∗′
ijλ

∗) + op∗(n
−1)

= U∗′D∗−1U∗ + op∗(n
−1)

= d∗(22)(ȳ∗1. − ȳ∗2. − d̂)2 + op∗(n
−1),

where d∗(22) is the second diagonal element of D∗−1 and D∗ =
∑2

i=1
wi

ni

∑ni

j=1 u∗ij
u∗

′
ij . Given the original samples {yi1, · · · , yini

}, i = 1, 2, we have from the central
limit theorem that −2r∗w(d̂)/c∗1 converges in distribution to a chi-squared random
variable where c∗1 = d∗(22)(σ∗21 /n1 + σ∗22 /n2).

Finally, σ∗2i = V ar∗(y∗ij) = n−1
i

∑ni

j=1(yij − ȳi.)
2 = n−1

i (ni − 1)S2
i since we select

our bootstrap sample with replacement. We can replace σ∗21 /n1+σ∗22 /n2 by S2
1/n1+

S2
2/n2 since they are asymptotically the same. Noting that c1 = d(22)(S2

1/n1 +

S2
2/n2), similar discussion leads to d(∗22)/d(22) → 1. Hence Theorem 4.1 is proved.

4.2 Simulation studies

In this section, we conducted simulation studies to evaluate the performance of
the usual two-sample t-test, naive two-sample empirical likelihood method (EL),
weighted two-sample empirical likelihood method (WEL),
weighted two-sample empirical likelihood method with bootstrap calibration (BWEL),
in terms of their coverage probabilities of confidence intervals. We generated data
from different distributions, including normal distribution, lognormal distribution,
exponential distribution and uniform distribution, similar to those considered in
section 2.4. The total number of simulation runs was 2000. For each simulation
run, B = 1000 bootstrap samples were selected by sampling with replacement.
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Table 4.1 contains results for the 95% confidence intervals on the difference d0 of
two population means when both samples were generated from normal distributions.
We assessed the performances of confidence intervals in terms of empirical coverage
probabilities. The true means µ10 and µ20 are both set to be 1. Sample sizes (n1, n2)

are chosen to be (30,30), (15,30) and (30,15). The standard deviations (σ1, σ2) are
chosen is be (1,1) or (1.5,1). As we can see from Table 4.1, four methods gave
similar results when standard deviations of two samples were set to be equal to 1
while the coverage probability by EL is a little lower than the nominal 95% when
sample sizes are set to be different. WEL and BWEL showed improvement of EL in
those cases. When standard deviations are set to be (1.5, 1) and sample sizes are the
same, the coverage probabilities of the usual two-sample t-interval performs better
than EL and WEL, and similar to BWEL. However, When standard deviations are
set to be (1.5, 1) and sample sizes are (15,30) or (30,15), the coverage probabilities
by the t-interval are quite far away from the nominal value, while EL, WEL and
BWEL all perform much better in these cases. In all five cases we examined here,
WEL showed some improvement of EL while BWEL showed slightly improvement
of WEL. In total, BWEL performed the best and EL, WEL and BWEL generally
would not be far away from the nominal level. The usual two-sample t-interval
doesn’t perform well in all cases. In 2 cases out of 5 cases, it performs badly.

For the results reported in Table 4.2, we generated our data from other dis-
tributions including lognormal distribution, exponential distribution and uniform
distribution. In the exponential and uniform case, the true means µ10 and µ20 for
sample 1 and 2 are both set to be 1, while in the lognormal case, they are both set
to be e1/2. We chose two different scenarios of sample sizes: (30,30) and (15,30).
In all 6 cased we considered here, the coverage probabilities by the t-interval and
BWEL perform better than EL, WEL. WEL still showed slight improvement of EL
in terms of coverage probabilities. Both EL and WEL encountered low coverage
probability problem in the following two cases: (i) data were generated from log-
normal distributions, while sample sizes are either (30,30) or (15,30); (ii) data were
generated from exponential distributions and sample sizes were (15,30). In both
cases BWEL performs very well and don’t have low coverage probability problem.

In summary, BWEL performs best among four methods considered, which shows
that bootstrap calibration does help improve the performance of WEL. There are
several cases where the coverage probabilities of the usual two-sample t-interval,
EL and WEL are far away from the nominal 95% level. We also note that WEL
performs a little better than EL generally in our simulation studies, which shows
that the "weighted" approach does have some advantage.

36



Table 4.1: Comparisons of coverage probabilities of t-test, EL, WEL and BWEL
when Y ∼ N(1, σ2)

(σ1, σ2) (n1,n2) t-test EL WEL BWEL
(1,1) (30,30) 0.9490 0.9445 0.9475 0.9485

(15,30) 0.9465 0.9295 0.9360 0.9390
(1.5,1) (30,30) 0.9505 0.9440 0.9490 0.9525

(15,30) 0.9055 0.9280 0.9360 0.9405
(30,15) 0.9780 0.9370 0.9445 0.9465

Table 4.2: Comparisons of coverage probabilities of t-test, EL, WEL and BWEL
when Y ∼ lognorm(1, 1), exp(1) and unif(0, 2)

Distribution (n1,n2) t-test EL WEL BWEL
lognorm (30,30) 0.9630 0.9110 0.9170 0.9505

(15,30) 0.9655 0.8985 0.8970 0.9345
exp (30,30) 0.9550 0.9360 0.9400 0.9505

(15,30) 0.9500 0.9165 0.9185 0.9300
unif (30,30) 0.9490 0.9450 0.9495 0.9520

(15,30) 0.9395 0.9300 0.9345 0.9360
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Chapter 5

Conclusion and Future Work

In this thesis, we proposed new proof for the naive empirical likelihood method
for two-sample problems, developed a two-sample weighted empirical likelihood
method for complete data case, an adjusted two-sample empirical likelihood method
for linear regression models with missing data, and the two-sample weighted empir-
ical likelihood method with bootstrap calibration for complete data case. Simula-
tion results showed that our new WEL, adjusted EL and BWEL all have favorable
properties in terms of coverage probabilities and/or power of tests.

However, there are a lot of future work we can do, especially in the missing
data area. An interesting research topic is to develop bootstrap method for the
two-sample empirical likelihood with imputation for missing responses. Also, we
investigated a parametric conditional model on the response combined with the
nonparametric marginal distribution of the auxiliary variables and attempted to
develop a semiparametric empirical likelihood but encountered some technical prob-
lems.

Applications of the two-sample techniques we developed here to case-control
studies will also be of great interest.
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