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Abstract

Recurrent events experienced by individual units or systems occur in many fields. The

main target of this thesis is to develop formal tests for certain features of recurrent event

processes, and to discuss their properties. In particular, carryover effects and time trends

are considered. The former is related to clustering of events together in time, and the latter

refers to a tendency for the rate of event occurrence to change over time in some systematic

way. Score tests are developed for models incorporating carryover effects or time trends.

The tests considered are easily interpreted and based on simple models but have good

robustness properties against a range of carryover and trend alternatives. Asymptotic

properties of test statistics are discussed when the number of processes approaches infinity

as well as when one process is under observation for a long time. In applications involving

multiple systems or individuals, heterogeneity is often apparent, and there is a need for

tests developed for such cases. Allowance for heterogeneity is, therefore, considered.

Methods are applied to data sets from industry and medicine. The results are supported

by simulation studies.
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Chapter 1

Models and Methodology

The aim of this chapter is to introduce the research topics, concepts and notation for this

thesis. A general discussion of some problems involving recurrent events is given in Sec-

tion 1.1 with real life examples. We also discuss types of data. In Section 1.2 terminology

and notation for recurrent event processes are briefly introduced, and some useful results

are presented. We next introduce some families of models for recurrent event settings in

Section 1.3. This section includes Poisson processes and renewal processes as well as more

general models. We discuss multiplicative models and hypothesis testing in Section 1.4.

Simulation procedures for recurrent event processes are explained in Section 1.5. In the

last section, we give the outline of thesis.

1.1 Introduction

In many fields of study, processes or individuals may have a chance of experiencing events

more than once over time or space in a probabilistic way. The processes that involve such

recurrent events are called recurrent event processes, and the data generated are called

recurrent event data.

Recurrent event processes have been extensively studied in areas such as medicine,

public health, reliability, engineering, economics, insurance, and sociology. For example;

in medical area, Byar (1980) and Gail et al. (1980) examine the occurrence of tumors

over time, Aalen and Husebye (1991) discuss recurrent small bowel cycles; in software

engineering, Dalal and McIntosh (1994) give data in debugging a large software system;

in reliability, Lawless and Nadeau (1995) consider data on automobile warranty claims.

Many models for recurrent events have been proposed and studied; see, for example, Cox

and Isham (1980) and Daley and Vere-Jones (2003) for a wide variety of models, and

Cook and Lawless (2007) for statistical methods of analysis.
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In the thesis, we deal with tests for certain features of recurrent event processes. In

particular, a time trend is often of interest in recurrent event studies. The presence of this

feature amounts to a change in the rate of event occurrence in a systematic way over time.

Another important feature is clustering of events. Carryover effects are a special type

of this feature in which there is an effect for a limited time after each event occurrence.

In the thesis, tests are developed to assess the presence or absence of time trends and

carryover effects.

1.1.1 Examples

The following examples illustrate some problems involving recurrent event data that will

be studied in the thesis.

Unscheduled maintenance events for a submarine engine

Lee (1980) presents cumulative operating hours until the occurrence of significant main-

tenance events (“failures”) for the main propulsion diesel engine of the submarine U.S.S.

Grampus No. 4. The original data set, given in Table A.1 of appendix, includes event

times of 58 unscheduled corrective maintenance actions as well as 7 scheduled engine

overhauls. The time axis represents the operating times (in hours of operation) of the

submarine engine. The observation time ends with an observed event at time t = 22, 575.

An important issue here is to reveal whether the reliability is improving or deteriorating

over time. That is, we want to check if there is a time trend in event times of unsched-

uled maintenance actions. Lee (1980) considered the unscheduled corrective maintenance

events, and showed that there is a tendency for the rate of events to first decrease and

then increase. He therefore concluded that there is a need for a more comprehensive

model than a simple trend model for this data set. Another process feature that is of

interest here is clustering of events in time. Statistical tests for the absence or presence

of trend and clustering effects would be useful here.

Hydraulic systems of LHD machines

Load-haul-dump (LHD) machines are used to pick up ore or waste rock from mining

points and for dumping it into trucks or ore passes. Kumar and Klefsjo (1992) discuss

data on the time (in operating hours) between successive failures of hydraulic systems

of the diesel-operated LHD machines used in Kiruna mine, Sweden. The operation and

maintenance cards of LHD machines were used to collect the data for two years. Although

the original data were given for a fleet of LHD machines, Kumar and Klefsjo (1992)

classify the machines into 3 groups (old, medium old and new), and present data only for
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2 machines from each group. The data are tabulated in Table A.2 of appendix, where

LHD 1 and LHD 3 are old, LHD 9 and LHD 11 are medium old, and LHD 17 and LHD 20

are new machines. Since the end of observation times are not clearly denoted, we consider

that the last failure times of each machine are the end of observation times. The main

objectives of study are here to analyze any time trend in the rate of occurrence of failures

and to assess the presence or absence of clustering of failures.

Asthma prevention trial

Duchateau et al. (2003) give data from an asthma prevention trial in infants. At the start

of the study the subjects who were 6 months of age had not yet experienced any asthma

attacks but were chosen from a population with a high risk of asthma. The follow-

up period for each subject was approximately 18 months, and started after a random

allocation of each subject into a placebo control group or an active drug treatment group.

The main aim of this study was to assess the effect of the drug on the occurrence of

asthma attacks. Furthermore, the evolution of the asthma recurrent event rate over time

and how the appearance of an event influences the event rate were also of interest. Since

an asthma attack can be longer than one day, and a patient is not considered at-risk

over that time, the timescale of the study should be arranged accordingly. Duchateau et

al. (2003) present the data for the subjects who had at least one asthma attack over the

at-risk period, and discuss three different timescales; the calendar time, the gap time and

the total time. A part of the data is given in Table A.3 in Appendix A.3.

1.1.2 Types of Data

Data on recurrent events are generally presented as event occurrence times or gap times

between successive events with fixed or time-varying covariates. There are also applica-

tions in which the subjects are observed intermittently with only the number of events

occurred between inspections available (see Cook and Lawless, 2007, Section 7.1).

Data are obtained through prospective or retrospective studies. In a prospective study

the observed event history data are conditionally independent of whether a person or

unit is chosen for the study, given covariates and event history prior to selection. In

retrospective studies this may not be true, and it may be necessary to account for this.

The time scale is usually calendar time but in some settings, especially in reliability, usage

measures such as operating time are also used. For example, in the study of unscheduled

maintenance events for a submarine, the time t represents the operating times of the

submarine engine but, in the asthma prevention trial, t stands for real or calendar time.

The choice of the origin of a time scale is also important, especially, in settings where

more than one process is of interest.
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A subject is observed longitudinally over an observation window [τ0i, τi] that may vary

for each subject, and data on event times are collected. An event process is often assumed

to start at time t = 0, and observation of a subject starts at time τi0 ≥ 0. In each example

given in Section 1.1.1, τi0 = 0 for all subjects. However, left-truncated data or delayed

entries of subjects to a study are also possible. Observation of a subject is typically

right-censored at time τi. An important issue about the τi as well as the τi0 is whether

they are prespecified or random. This issue is important in likelihood constructions, and

discussed in Section 1.4.1.

1.2 Terminology and Notation

In this section, we introduce the notation and basic definitions used in the later develop-

ments. We will use standard notation for event processes, as follows.

A stochastic process {X(t); t ∈ T } is a collection of random variables indexed by a set

T which is called the index set. In this study, T = R+ = [0,∞), and t is continuous time.

Let us start with a single recurrent event process in continuous time where the starting

time of the process is 0. Let T0 < T1 < T2 < · · · denote the event times, where Tj is the

time of the jth event and T0 = 0. Then, Wj = Tj − Tj−1 (j = 1, 2, . . .) is called the

waiting time or gap time between the (j − 1)st and jth events.

A counting process {N(t); t ≥ 0} is a stochastic process in which N(t) represents

the number of events occurring in the interval [0, t]. Let I(A) be the indicator random

variable of event A; that is, I(A) equals 1 if A occurs and 0 otherwise. Then, N(t) =∑∞
k=1 I(Tk ≤ t). The random variable N(t) is a nondecreasing and integer valued function

of time with jumps of size one only. Let N(s, t) denote the number of events occurring

in the interval (s, t]. Then, N(s, t) = N(t) − N(s). The mean and rate functions of a

counting process are defined as µ(t) = E{N(t)} and ρ(t) = µ′(t), respectively.

We next define the intensity function. Let ∆N(t) = N(t + ∆t−)−N(t−) denote the

number of events occuring in the interval [t, t+∆t), and H(t) = {N(s); 0 ≤ s < t} denote

the history of a process at time t. The intensity function λ(t|H(t)) for a counting process

specifies the instantaneous probability of an event occurring at time t, conditional on the

process history H(t). The intensity function is defined as

λ(t|H(t)) = lim
∆t↓0

Pr{∆N(t) = 1|H(t)}
∆t

, t ≥ 0. (1.1)

The intensity function completely specifies a recurrent event process for which two or

more events cannot occur simultaneously. It can be easily generalized by including fixed

or time-varying covariates in the history of a process so that covariates which are believed

having effects on the event occurrences can be included in a model via the intensity
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function. We use the notation x to represent a fixed covariate and x(t) to represent a

time-varying covariate. A covariate is categorized as external when its value is determined

independently of the occurrence of events, and otherwise it is categorized as internal. Note

that all fixed covariates are categorized as external. Let x(t) = (x1(t), . . . , xp(t))
′ denote

a p-dimensional vector of covariates, and x(t) = {x(s); 0 ≤ s ≤ t} denote the history

of covariates up to and including time t. We assume for notational convenience that

the complete covariate path denoted by x(∞) is known at the start of the process. In

other words, we assume that x(∞) is included in H(0). It is assumed, however, that

the intensity function depends only on the covariate path until time t. We also let

z(t) = (z1(t), . . . , zp(t))
′ denote a p-dimensional vector of observable functions whose

components could contain both external covariates and functions of t or the event history

H(t); this is used in specifying models for λ(t|H(t)).

Let W be a continuous, nonnegative random variable, e.g. a response time. The

cumulative distribution function of W is then defined as F (w) = Pr{W ≤ w}, and the

probability density function of W is given by f(w) = dF (w)/dw. The survivor function

of W is defined as S(w) = 1− F (w). Another important function is the hazard function

of a response time W that is defined as

h(w) = lim
∆w↓0

Pr{w ≤ W < w + ∆w|W ≥ w}
∆w

, w ≥ 0. (1.2)

Note that h(w) = f(w)/S(w), w > 0. The properties of these functions can be found in,

for example, Lawless (2003, p. 9).

It is useful to denote when an individual or process is under observation and at risk of

an event. This can be done with the at-risk indicator Y (t). For example, let a subject be

observed over the interval [τ0, τ ]. If the subject is under risk of having an event all over the

observation window, then Y (t) = I(τ0 ≤ t ≤ τ). Note that τ0 is referred to as a starting

time for the observed process and τ is called a right censoring time or end-of-followup

time for the observed process. It should be pointed out that it can be useful in studies

where the subjects are intermittently observed or cease to be at risk temporarily. For

example, in the asthma prevention trial example, the subjects are assumed to be risk-free

while they have an attack. That is, Y (t) = 0 whenever a subject has an asthma attack.

We next give a number of useful results based on the intensity function. The following

lemma follows from (1.1) and the fact that two events cannot occur at the same time,

and can be used to prove Theorem 1.2.1 below.

Lemma 1.2.1. Under the assumption that two or more events cannot occur simultane-

ously, the event process {N(t); t ≥ 0} with the intensity function (1.1) has the following
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jump probabilities in a small interval [t, t + ∆t);

Pr {∆N(t) = n|H(t)} =


1− λ(t|H(t))∆t + o(∆t), if n = 0;

λ(t|H(t))∆t + o(∆t), if n = 1;

o(∆t), otherwise,

where n = 0, 1, . . ., and o(t) represents a function h(t) with h(t)/t → 0 as t → 0.

We are now in a position to state the theorem that is pivotal in writing down the like-

lihood functions used for statistical inference procedures in recurrent event settings. For

a more comprehensive discussion about likelihood construction, see Andersen et al. (1993,

Section 2.7) and Cook and Lawless (2007, Section 2.1).

Theorem 1.2.1. Let {N(t); t ≥ 0} be a counting process of a specified type of event

observed over the prespecified interval [τ0, τ ] for an individual or a single system with the

intensity function (1.1). Then

n∏
j=1

λ (tj|H (tj)) exp

{
−
∫ τ

τ0

λ (u|H (u)) du

}
(1.3)

is the probability density function of the event “exactly n events occur at times t1 < t2 <

· · · < tn over the observation interval [τ0, τ ]”, conditional on H(τ0).

The likelihood function (1.3) is also valid in more general cases in which τ may depend

on prior event history (Cook and Lawless, 2007, Section 2.6). The following theorem and

corollary are useful in statistical analysis of gap times and simulation of recurrent events.

Their proofs can be found in Cook and Lawless (2007, p. 30).

Theorem 1.2.2. Let {N(t); t ≥ 0} be a counting process with an absolutely continuous

intensity function λ(t|H(t)). Then, conditional on H(s+) = {N(u); 0 ≤ u ≤ s}, the

probability of the event “{N(t); t ≥ 0} has no jump over the interval (s, t]” is

exp

{
−
∫ t

s

λ(u|H(u)) du

}
. (1.4)

Corollary 1.2.1. Let Wj = Tj − Tj−1 be the waiting time between the (j − 1)st and jth

events, where T0 = 0 and j = 1,2,. . . Then

Pr {Wj > w|Tj−1 = tj−1,H(tj−1)} = exp

{
−
∫ tj−1+w

tj−1

λ(u|H(u)) du

}
. (1.5)

Other technical details regarding counting processes in the context of this study are

given by Fleming and Harrington (1991) and Andersen et al. (1993). Chief among them

is the concept of a martingale which is briefly discussed in Section 1.4.2.
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1.3 Some Families of Models

This section provides an overview of the most commonly used models for recurrent event

data; Poisson processes and renewal processes, and other models. Event counts over

specified time intervals are often useful in describing recurrent events. The Poisson process

is a basic mathematical model for the analysis of event counts, and it is introduced in

Section 1.3.1. Models based on gap times are another important class of models that are

useful in analyzing recurrent events. In particular, these models are often used in settings

where interest is in prediction of the next event or when there exist interventions after

occurrence of an event. The renewal process is a mathematical model that is widely used

to model gap times; it is introduced in Section 1.3.2. Some other recurrent event models

are briefly discussed in Section 1.3.3.

1.3.1 Poisson Processes

There are various mathematically equivalent ways to characterize a Poisson process. For

example, the Poisson process with rate function ρ(t) is a counting process with the follow-

ing postulates; (i) Pr {N(0) = 0} = 1; (ii) the process {N(t); t ≥ 0} has the independent

increment property; that is, for any 0 ≤ a < b ≤ c < d, the random variables N(a, b) and

N(c, d) are independent; and (iii) for any 0 ≤ s < t, the increment N(s, t) is a Poisson

random variable with mean µ(s, t) = µ(t) − µ(s) where µ(t) =
∫ t

0
ρ(u) du. That is, for

n = 0, 1, 2, . . . ,

Pr {N(s, t) = n} =
µn(s, t)

n!
exp {−µ(s, t)} . (1.6)

Because of the independent increment property, Poisson processes are Markovian. An-

other characterization of a Poisson process is given, for example, by Cook and Law-

less (2007, p. 31) via the intensity function as follows. The counting process {N(t); t ≥ 0}
is said to be a Poisson process if the intensity function is of the form

λ (t|H(t)) = ρ(t), t ≥ 0, (1.7)

where ρ(t) is a positive valued function on [0,∞). It is easily seen from the definition

that ρ(t) is the rate function for the process. Moreover, if ρ(t) is constant, say ρ, then

the process is called a homogeneous Poisson process (HPP). Otherwise, it is called a

nonhomogeneous Poisson process (NHPP). Note that (1.7) implies that the intensity

function in a Poisson process is independent of the history of the process.

In a reliability context, if after a repair a system is in exactly the same condition

as it was just before the failure then the repair is called minimal repair (Rigdon and

Basu, 2000, p. 30). In this case, an NHPP can be used to model a repairable system.

Thus, a NHPP is sometimes called a minimal repair model. There is a vast literature
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on Poisson processes and their properties. For example, Snyder and Miller (1991) and

Grandell (1997) give many details and examples about Poisson processes. Here, we state

only the following two useful properties. The former is useful in simulation of an HPP,

and the latter is useful in simulation of an NHPP and other processes. The proof of the

first one can be found in Rigdon and Basu (2000, pp. 45–49). For the second one, see

Cook and Lawless (2007, p. 33).

Proposition 1.3.1. The waiting times are independent and identically distributed ex-

ponential variables with mean ρ−1 if and only if the associated process is a HPP with

intensity ρ.

Proposition 1.3.2. Suppose that {N(t); t ≥ 0} is an NHPP with mean function µ(t) =∫ t

0
ρ(u) du and {N∗(s); s ≥ 0} is an HPP with rate function ρ∗(s) = 1 . If s = µ(t), then

N∗(s) = N(µ−1(s)) for all s > 0.

As noted in Section 1.2, external covariates can be included in a Poisson process model

via the intensity function. Let x(t) = {x(u); 0 ≤ u ≤ t} be an external covariate history

and z(t) be a vector that could contain both external covariates and functions of t or the

event history H(t). Then, consider intensities of the form

λ(t|H(t)) = ρ0(t) g(z(t); β), t ≥ 0, (1.8)

whereH(t) = {N(s); 0 ≤ s < t; x(∞)} is the process history including the complete covari-

ate path at time 0, β = (β1, . . . , βp)
′ is a p-dimensional vector of regression parameters,

and ρ0(t) and g(z(t); β) are positive-valued functions. In (1.8), ρ0(t) is called baseline

intensity or baseline rate function. The model (1.8) is called the multiplicative model or

log linear model. It is called parametric if ρ0(t) is specified up to a finite parameter, and

semiparametric if ρ0(t) is not specified parametrically. Many semiparametric models for

recurrent event data are summarized by Cai and Schaubel (2004). Although there are

other choices in the literature, the function g(z(t); β) is usually chosen as exp{z′(t)β}
so that it is guaranteed that g(z(t); β) is positive-valued. It should be pointed out that

models containing values in z(t) such as the backward recurrence time are not Poisson

processes because they include internal covariate components. These models are called

modulated Poisson processes (Cook and Lawless, 2007, p. 35).

Other types of models are often useful, for example, additive models in which the

intensity function is of the form

λ(t|H(t)) = ρ0(t) + g(z(t); β), t ≥ 0, (1.9)

and time transform models in which the intensity function is given by

λ (t|H(t)) = ρ0

(∫ t

0

exp (z′ (u) β) du

)
exp (z′(t)β) , t ≥ 0. (1.10)
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The Poisson models are adequate in many applications. Conditioning on the covariates

provides more flexibility in modeling event processes. However, in some settings involving

multiple systems or individuals, heterogeneity is often apparent (e.g. Lawless, 1987; Cook

and Lawless, 2007, Section 3.5). Because of heterogeneity across individual processes, the

plausibility of a Poisson process may be in doubt in certain settings. This is indicated

when the variance of Ni(t) is significantly larger than the expectation of Ni(t), conditional

on any fixed covariates being considered. Note that in a Poisson process the expectation

and variance of the counts Ni(t) should be equal. This problem may be addressed by

introducing unobservable random effects into the model. Suppose that m individuals are

under observation. Let ui be an i.i.d. random effect having a distribution function G(u)

with finite mean. Then, given ui and a fixed covariate vector zi, the intensity function

λi (t|zi, ui) = ρi (t|zi, ui) = uiρ0(t) exp (z′iβ) , t ≥ 0, (1.11)

defines the Poisson process {Ni(t); t ≥ 0}; i = 1, . . ., m. We may assume with-

out loss of generality that E(ui) = 1 and V ar(ui) = φ. In this case, for any dis-

tribution function for ui, the unconditional mean and variance of Ni(s, t) are, respec-

tively, given by E{Ni(s, t)} = µi(s, t) and V ar{Ni(s, t)} = µi(s, t) + φµ2
i (s, t) where

µi(s, t) =
∫ t

s
ρ(v|zi) dv. Furthermore, the unconditional covariance function is given by

Cov{Ni(s1, t1), Ni(s2, t2)} = φµi(s1, t1)µi(s2, t2) for nonoverlapping intervals (s1, t1] and

(s2, t2]. Note that V ar{Ni(s, t)} = E{Ni(s, t)} and Cov{Ni(s1, t1), Ni(s2, t2)} = 0 when

φ = 0.

The gamma distribution with mean 1 and variance φ is the most commonly used

distribution for ui. That is, ui has the probability density function of the form

g(u; φ) =
uφ−1−1 exp(−u/φ)

φφ−1Γ(φ−1)
, u > 0. (1.12)

In this case, given zi and ui, Ni(s, t) has a Poisson distribution with mean function

uiµi(s, t). However, conditional only on zi, the distribution of Ni(s, t) is not Poisson

anymore but is negative binomial with probability distribution function given by

Pr{Ni(s, t) = n|zi} =
Γ(n + φ−1)

n! Γ(φ−1)

{φµi(s, t)}n

{1 + φµi(s, t)}n+φ−1 , n = 0, 1, 2, . . . . (1.13)

As φ approaches 0, (1.13) converges to a Poisson distribution (Cook and Lawless, 2007,

p. 36), and the process becomes a Poisson process. When φ > 0 the process is called

a negative binomial process, and the intensity function can be shown to be (Cook and

Lawless, 2007, Section 2.2.3)

λi(t|Hi(t)) =
(1 + φNi(t

−)) ρi(t)

1 + φµi(t)
, t ≥ 0, (1.14)

so the process is Markovian.
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1.3.2 Renewal Processes

Let Tj denote the event time for the jth event and Wj = Tj−Tj−1 the waiting (gap) time

between the (j − 1)st and the jth events. A renewal process is one in which the waiting

times W1, W2, . . . are independent and identically distributed. This definition implies

that the intensity function of a renewal process is given by

λ(t|H(t)) = h(B(t)), t ≥ 0, (1.15)

where B(t) is the time since the last event strictly before time t; that is, B(t) = t−TN(t−),

and is referred to as the backward recurrence time. The function h(w) in (1.15) is the

hazard function for the distribution of a gap time Wj. In a reliability context, the renewal

processes are called perfect repair models in which after a repair the system becomes like

new.

In a general renewal process, Pr{N(s, t) = n} is complicated, and so is µ(s, t) =

E{N(s, t)}. An exception is the case where the Wj are exponentially distributed because

in this case the renewal process is an HPP. Although in general the distribution of N(s, t)

is not mathematically tractable, the distribution of N(t) = N(0, t) can be obtained using

the fact that the events “N(t) ≥ n” and “Tn ≤ t” are equivalent. Therefore,

Pr {N(t) ≥ n} = Pr {Tn ≤ t} = Pr

{
n∑

i=1

Wi ≤ t

}
, (1.16)

where the Wi are i.i.d. Now, it is easy to show that

µ(t) = E {N(t)} =
∞∑

n=1

Pr {Tn ≤ t} . (1.17)

Similar to Poisson process models, fixed covariates or external time-varying covariates

can be introduced into renewal process models. Survival regression models are useful when

fixed covariates are present. As noted by Cook and Lawless (2007, p. 40), two important

families of such models are the proportional hazards model and accelerated failure time

model that are specified with the conditional hazard functions of the form h(w|z) =

h0(w) exp (z′β) and h(w|z) = h0 [w exp(z′β)] exp (z′β), respectively. When z(t) contains

both external covariates and functions of t or H(t), the models are called modulated

renewal processes (Cox, 1972). In particular, multiplicative models in which the intensity

function of the form λ(t|H(t)) = h0(B(t)) exp(z′(t)β) are very useful. Modulated renewal

processes are explained by Cook and Lawless (2007, Section 4.2.4). Random effects can

also be incorporated into renewal processes by certain approaches; see, e.g., Cook and

Lawless (2007, Section 4.2.2).
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1.3.3 Other Models

Although in many cases Poisson and renewal processes and their extensions are convenient

to model recurrent event processes, if they are needed, more general models are available

as well. Cook and Lawless (2007, Section 2.4 and Chapter 5) and books on point processes

(e.g. Cox and Isham, 1980; Daley and Vere-Jones, 2003) give examples. Discrete time

models are also proposed in the literature. More details about discrete time models are

given by Cook and Lawless (2007, Section 2.5).

In reliability literature, other than the minimal and perfect repair models, imperfect

repair models are also proposed. Brown and Proschan (1983) suggest an imperfect repair

model in which a perfect repair is given with probability p and a minimal repair is given

with probability 1 − p at event (or failure) times. Kijima (1989) extends this model by

introducing the concept of the virtual age or effective age of the system, which is defined

as the present condition of a system at a calendar time t (system’s age). The literature

and more details (including mathematical definitions) about these models, with paramet-

ric and nonparametric statistical inference procedures, is reviewed by Lindqvist (2006).

Baker (2001) considers some general models to study the dependence of failure rate on

system (medical equipment) age and time since repair. In a review paper, Pena (2006)

gives examples of models where the dependence on history is allowed for. Also, Aalen et

al. (2008) investigate some additive models with covariates including number of previous

events in the process.

1.4 Multiplicative Models and Hypothesis Testing

In this section, we focus on score test procedures for multiplicative models with intensity

function of the form

λ(t|H(t); α, β) = λ0(t; α)g(z(t); β), t ≥ 0, (1.18)

where α = (α1, . . . , αr)
′ is an r × 1 vector of unknown parameters, β = (β1, . . . , βp)

′ is a

p×1 vector of unknown regression parameters, z(t) = (z1(t), . . . , zp(t))
′ is a p×1 vector, λ0

is a baseline intensity function and g is a positive valued function. Note that z(t) could

contain both external covariates and functions of t or the event history H(t). Models

of the form (1.18) are widely used in modeling recurrent event data in many settings,

and are by far the most common framework to specify the covariate effects (Cook and

Lawless, 2007, p. 60). The adequacy of any model should be checked in applications, and

we will consider this by embedding models in larger families; this is often called model

expansion. We will assume that the expanded model family is adequate. However, this

can be checked by model diagnostics (see, e.g., Cook and Lawless, 2007, Section 5.2.3).

Therefore, the interest is often to test a composite null hypothesis H0 : λ(·) ∈ G =
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{λ(·; θ); θ = (α′, β′)′ ∈ Ω}, where Ω is a subset of a q-dimensional Euclidean space and

q = r + p, and the alternative hypothesis is H1 : λ(·) /∈ G. Score tests, introduced by

Rao (1947), can be used for testing H0. They are convenient in ways discussed below,

and we consider them here.

1.4.1 Likelihood for Multiplicative Models

To develop a score test, we need to write down the likelihood function for the data

observed over the observation window [τ0, τ ]. For convenience, τ0 = 0 in this study unless

otherwise stated. When τ0 and τ are fixed, from (1.3) the likelihood function for the event

“n events occur at exact times t1 < · · · < tn, ti ∈ [τ0, τ ], i = 1, . . ., n”, given H(τ0), is

L(θ) =
n∏

j=1

λ (tj|H (tj)) exp

{
−
∫ τ

τ0

λ (u|H (u)) du

}
, (1.19)

where θ is a parameter vector specifying λ(t|H(t)). However, this likelihood is valid

in more general cases as well. Here, we only underline a couple of points, referring to

Andersen et al. (1993, Chapter 2) and Cook and Lawless (2007, Section 2.6).

When starting and end-of-followup times of an observation window are random but

they are determined independently of the event process, a more general case in which

(1.19) is the p.d.f. “n events occur at exact times t1 < · · · < tn, ti ∈ [τ0, τ ], i = 1, . . ., n”,

conditional not only onH(τ0) but also on τ0 and τ , is obtained. This censoring mechanism

is called completely independent censoring. When the starting and ending times are not

independent of an event process but are stopping times with respect to the process, then

(1.19) is still valid providing that the event intensity is defined as

λ(t|H(t)) = lim
∆t↓0

Pr {∆N(t) = 1|H(t), τ0 ≤ t ≤ τ}
∆t

, t ≥ τ0, (1.20)

(Cook and Lawless, 2007). The concept of a stopping time with respect to a process is

formally defined by, for example, Andersen et al. (1993, Section 2.2), yet it intuitively

means that the decision to specify the random times τ0 and τ should be determined by the

information provided by an event history up to and including times τ0 and τ , respectively,

but not after those times. In this case, (1.19) is not a likelihood function anymore but

a partial likelihood function, which was introduced by Cox (1975), and can be still used

for statistical inference purposes; see Fleming and Harrington (1991) and Andersen et

al. (1993) for details.

Sometimes it is more convenient to write down the likelihood function by using the

at-risk indicator defined in Section 1.2. Following the notation given by Cook and Law-

less (2007, Section 2.6), the observed part of the process, called the observable process,
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can be written as N̄(t) =
∫ t

τ0
Y (u) dN(u) where Y (t) = I{process is observed at time t}.

Then, the intensity function of the observable process is

λ̄(t|H̄(t)) = lim
∆t↓0

Pr{∆N̄(t) = 1|H̄(t)}
∆t

, t ≥ τ0, (1.21)

where H̄(t) = {N̄(s), Y (s); τ0 ≤ s < t} is the history of the observable process. In

order to facilitate further development, we need a conditionally independent censoring

mechanism; that is, ∆N(t) and Y (t) are conditionally independent given H(t), so that

λ̄(t|H̄(t)) = Y (t)λ(t|H(t)) (Cook and Lawless, 2007). As a consequence of this, the

likelihood (1.19) can be written as

L(θ) =
n∏

j=1

λ (tj|H (tj)) exp

{
−
∫ ∞

0

Y (u)λ (u|H (u)) du

}
. (1.22)

This allows us to deal with more general cases in which, for example, τ0 and τ are stopping

times or the observation is intermittent or a process may have a period of not being at-risk

of having an event during the observation period.

So far, the discussion has been concentrated on univariate counting processes. How-

ever, a setup for multivariate counting processes is required when there is more than one

process. For example, we need multivariate counting processes when we examine large

sample properties of goodness-of-fit test statistics. Here, we consider only independent

processes when we observe multiple independent units or individuals.

Suppose that m independent processes are under observation over the observation

windows [τi0, τi], where τi0 and τi are, respectively, the starting and end-of-followup times

for process i, and process i experiences events at times ti1 < · · · < tini
, i = 1, 2, . . ., m.

Then, under the conditionally independent censoring mechanism the likelihood function

of the m independent processes is

L(θ) =
m∏

i=1

ni∏
j=1

λi (tij|Hi(tij)) exp

{
−
∫ τ

τ0

Yi(u)λi (u|Hi(u)) du

}
, (1.23)

where Yi(t) = I{τi0 ≤ t ≤ τi} is the at-risk indicator of process i, Hi(t) is the history of

process i, τ0 = min(τ10, . . . , τm0), τ = max(τ1, . . . , τm) and

λi(t|Hi(t)) = lim
∆t↓0

Pr{∆Ni(t) = 1|Hi(t)}
∆t

, t ≥ τi0, (1.24)

is the intensity function for process i. Each intensity (1.24) is specified in terms of

parameter vector θ. Fixed or time-varying covariates of process i can be incorporated

into Hi(t) as explained in Section 1.2.
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1.4.2 Martingale Framework

In this section, a martingale is informally defined and the use of martingales in a rigorous

development of asymptotics is discussed. For an extensive treatment, see Fleming and

Harrington (1991) and Andersen et al. (1993).

Suppose that m subjects are under observation. Let {Ni(t); t ≥ 0} be a counting

process for subject i with an absolutely continuous intensity function λi(t|Hi(t)), t ∈
[0, τi], and {N̄i(t); t ≥ 0} be the associated observable process with an intensity function

λ̄i(t|H̄i(t)) = Yi(t)λi(t|Hi(t)). A formal definiton of a martingale can be found in, for

example, Andersen et al. (1993, Section 2.3.1). It arises in this study of the form

Mi(t) = N̄i(t)−
∫ t

0

Yi(u)λi(u|Hi(u)) du, (1.25)

which is called a counting proceses martingale. A martingale increment over a small

interval [t, t + dt) is defined as dMi(t) = dN̄i(t) − Yi(t)λi(t|Hi(t)) dt. A predictable vari-

ation process of Mi(t) (cf. Andersen et al., 1993, Section 2.3.2), which is denoted by

〈Mi〉(t) =
∫ t

0
λ̄i(s|H(s)) ds, is another important stochastic process because of the rela-

tion d〈Mi〉(t) = V ar(dMi(t)|Hi(t)). Many important properties of martingales and pre-

dictable variation processes are given by Fleming and Harrington (1991) and Andersen

et al. (1993).

In certain recurrent event settings, counting process martingales can be used in rig-

orous development of asymptotic properties of test statistics, which can be expressed in

terms of martingales. They provide a mathematical basis to develop central limit theo-

rems. It should be noted that there are several central limit theorems for martingales, but

Rebolledo’s central limit theorem given in Andersen et al. (1993, p. 83) is suitable for this

thesis. The idea is that normalized martingales that arise from a sequence of counting

processes converge weakly to a Gaussian martingale in the limit providing that (i) the

predictable variation processes of these counting process martingales should converge in

probability to a deterministic function as a normalizing constant increases, and (ii) the

jump sizes of these counting process martingales should approach 0 as the normalizing

constant increases.

Let Hi be a predictable process. That is, Hi(t) is a measurable random variable with

respect to the history Hi(t). The above discussion also applies when we have functions

of the structure
m∑

i=1

∫ t

0

Hi(u)dMi(u), t ∈ [0, τ ], (1.26)

which is a sum of stochastic integrals (cf. Andersen et al., 1993, Section 2.3.3). In

other words, under certain conditions, a normalized version of (1.26) converges weakly

to a Gaussian process with mean zero and a variance function, say Σ(t), t ∈ [0, τ ]. In
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Section 1.4.3, we will see an example of how martingales occur in maximum likelihood

estimation.

1.4.3 Likelihood Inference and Score Tests

In this section, we first introduce general concepts of score procedures, and then, score test

procedures for recurrent event processes in the context of Section 1.4.2. A more detailed

introduction of asymptotic theory is given by Serfling (1980). The use of martingale

framework in asymptotic theory for the estimators and test statistics considered here is

given by Fleming and Harrington (1991) and Andersen et al. (1993).

Suppose that D = (D1, . . . , Dm)′ is an m-dimensional vector of i.i.d. random variables,

d = (d1, . . . , dm)′ is an m-dimensional vector of observations, and θ = (θ1, . . . , θq)
′ is a

q-dimensional vector of parameters, where θ ∈ Ω and Ω ⊂ Rq. Let L(θ) be the likelihood

function of θ that depends on data D, and `(θ) be the log likelihood function; that is,

`(θ) = log L(θ). If it exists, the value of θ that maximizes L(θ), or equivalently `(θ),

is called the maximum likelihood estimate of θ, and denoted by θ̂ = (θ̂1, . . . , θ̂q)
′. For

convenience, we generally maximize the log likelihood function, instead of the likelihood

function, with respect to θ.

Let U (θ) = (U1(θ), . . . , Uq(θ))′ be a q×1 score vector with entries, Uj(θ) = ∂`(θ)/∂θj,

j = 1, . . ., q, called score functions. Then, θ̂ is usually given by the solution of U (θ) = 0,

where 0 is a q × 1 vector of zeros, and the Uj(θ) = 0 are called maximum likelihood

equations. The observed information matrix I(θ) = [(Ijk(θ))] is a q × q matrix where

Ijk(θ) = −∂2`(θ)/∂θj∂θk = −∂Uk(θ)/∂θj ; j, k = 1, . . ., q, and the expected information

matrix or Fisher information matrix J(θ) = [(Jjk(θ))] is a q×q matrix with components

Jjk(θ) = E {−∂2`(θ)/∂θj∂θk} = E {−∂Uk(θ)/∂θj}; j, k = 1, . . ., q, where the model

is assumed correct, with θ the true parameter value. For regular models E {U (θ)} = 0

and the covariance matrix of U (θ) is the expected information matrix; that is, J(θ) =

Cov {U (θ)} = E {U (θ)U ′(θ)}. We assume models are regular and that matrix inverses

in the following development exist. A test statistic having the form

U ′(θ0)J(θ0)
−1U (θ0) (1.27)

for testing the null hypothesis H0 : θ = θ0 is referred to as a score statistic, and a test

based on (1.27) is called a score test. Under regularity conditions and a correctly specified

model the asymptotic distribution of (1.27) is a chi-squared distribution with q degrees

of freedom under H0.

If the interest is not in all parameters of θ = (α′, β′)′ but in a part of it, say β, then

α is an r-dimensional vector of nuisance parameters and β is a p-dimensional vector of

parameters of interest. Accordingly, U (θ) is partitioned into two components Uα(θ) and
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Uβ(θ). Then, the partitioned expected information matrix J(θ) is of the form

J(θ) =

(
Jαα(θ) Jαβ(θ)

Jβα(θ) Jββ(θ)

)
, (1.28)

where Jαα(θ) is r× r, Jαβ(θ) is r× p, and so on. The observed information matrix I(θ)

is also partitioned in a similar manner. The inverse matrix of (1.28) is denoted by

J−1(θ) =

(
Jαα(θ) Jαβ(θ)

Jβα(θ) Jββ(θ)

)
. (1.29)

Let β0 be a fixed value of β. Then, L(α, β0), or equivalently `(α, β0), is maximized

for a value of α that is denoted by α̃(β0). The function L(α̃(β), β) is called the profile

likelihood function for β, and the corresponding profile log likelihood function for β is

given by `(α̃(β), β) = log L(α̃(β), β). Then, the score statistic

U ′
β(θ̃0) Jββ(θ̃0) Uβ(θ̃0) (1.30)

can be used to test the null hypothesis H0 : β = β0, where θ̃0 = (α̃(β0), β0). A test for

hypothesis H0 : β = β0 based on (1.30) is called a partial score test. Under H0 : β = β0,

a correctly specified model and some regularity conditions, the asymptotic distribution

of (1.30) is a chi-squared with p degrees of freedom, and the same asymptotic result

holds when a consistent estimator of Jββ(θ0) is used in place of Jββ(θ̃0) (Boos, 1992).

Henceforth, we will use α̃ to denote α̃(0).

Score tests in a family of multiplicative recurrent event models (1.18) can be developed

in this way. Suppose that m individuals are under observation. Let {Ni(t); t ≥ 0} be a

counting process for subject i with the intensity function (1.18), in which the function g

is specified with exp {z′i(t)β}; that is,

λi(t|Hi(t); θ) = λ0(t; α) exp {z′i(t)β} , t ≥ 0, (1.31)

where zi(t) = (zi1(t), . . . , zip(t))
′ is a p-dimensional vector that may contain external

covariates as well as previous event information. Suppose the interest is in estimation or

testing of β, and thus α is a vector of unknown nuisance parameters. Let {N̄i(t); t ≥ 0}
be the associated observable process for subject i with the intensity function λ̄i(t|H̄i(t)) =

Yi(t)λi(t|Hi(t); θ), where Yi(t) is the at-risk process of the ith subject. In this context,

the (partial) likelihood function L(θ) is given by (1.23). Therefore, the log likelihood

function is given by `(θ) =
∑m

i=1 `i(θ), where

`i(θ) =

ni∑
j=1

log λi(tij|Hi(tij); θ)−
∫ ∞

0

Yi(u)λi(u|Hi(u); θ) du. (1.32)

Using a Riemann-Stieltjes integral (cf. Cook and Lawless, 2007, p. 29), we can rewrite

the log likelihood (1.32) as follows;

`i(θ) =

∫ ∞

0

Yi(u) log λi(u|Hi(u); θ) dNi(u)−
∫ ∞

0

Yi(u)λi(u|Hi(u); θ) du, (1.33)
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where dNi(t) = Ni(t)−Ni(t
−). Assuming mild conditions so that the order of differenti-

ation and integration are interchangeable, the score vector is U (θ) = (Uα(θ)′, Uβ(θ)′)′,

where Uα(θ) = (Uα1(θ), . . . , Uαr(θ))′ is an r-dimensional vector with components

Uαl
(θ) = ∂`(θ)/∂αl, l = 1, . . ., r, and Uβ(θ) = (Uβ1(θ), . . . , Uβp(θ))′ is a p-dimensional

vector with components Uβk
(θ) = ∂`(θ)/∂βk, k = 1, . . ., p, composed of the terms

Uαl
(θ) =

m∑
i=1

∫ ∞

0

Yi(u)

(
∂

∂αl

log λ0(u; α)

)
{dNi(u)− λi(u|Hi(u); θ) du} , (1.34)

and

Uβk
(θ) =

m∑
i=1

∫ ∞

0

Yi(u)zik(u) {dNi(u)− λi(u|Hi(u); θ) du} . (1.35)

The observed information matrix I(θ) can be partitioned as follows;

I(θ) =

(
Iαα(θ) Iαβ(θ)

Iβα(θ) Iββ(θ)

)
, (1.36)

where, under the interchangeability of the order of the differentiation and integration, the

components of I(θ) are given below:

Iαα(θ) = [(Iαlαk
(θ))] is an r × r matrix with components Iαlαk

(θ) = −(∂2/∂αl∂αk)`(θ),

l, k = 1, . . ., r, so that

Iαlαk
(θ) = −

m∑
i=1

∫ ∞

0

Yi(u)

(
∂2

∂αl∂αk

log λ0(u; α)

)
{dNi(u)− λi (u|Hi(u); θ) du}

+
m∑

i=1

∫ ∞

0

Yi(u)

(
∂

∂αl

log λ0(u; α)

)(
∂

∂αk

log λ0(u; α)

)
λi(u|Hi(u); θ) du, (1.37)

Iαβ(θ) = (Iβα(θ))′ = [(Iαlβk
(θ))] is an r × p matrix where Iαlβk

(θ) = −(∂2/∂αl∂βk)`(θ),

l = 1, . . ., r, k = 1, . . ., p, is given by

Iαlβk
(θ) =

m∑
i=1

∫ τ

0

Yi(u)zik(u)

(
∂

∂αl

log λ0(u; α)

)
λi (u|Hi(u); θ) du, (1.38)

and Iββ(θ) = [(Iβlβk
(θ))] is a p×p matrix with components Iβlβk

(θ) = −(∂2/∂βl∂βk)`(θ),

l, k = 1, . . ., p, that is;

Iβlβk
(θ) =

m∑
i=1

∫ τ

0

Yi(u)zil(u)zik(u)λi (u|Hi(u); θ) du. (1.39)

Note that if we take the expectation of (1.37), the first term in the right hand side of

(1.37) becomes 0 because E {dNi(u)− λi (u|Hi(u)) du|Hi(u)} = 0.

Let λ(t|H(t)) be an unknown intensity function of a counting process {N(t); t >

0}, and consider the model λ0(t|H(t); α) whose functional form is known up to a finite
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parameter vector α, and that belongs to a class such that D = {λ(·; α); α ∈ Rr}.
Suppose we want to test the hypothesis H0 : λ(t|H(t)) ∈ D. This can be done with

a widely used approach called model expansion (see, e.g., Lawless, 2003, pp. 469–471).

A general method of expanding a null model was suggested by Neyman (1937). The

score tests from his method are generally referred to as Neyman’s smooth tests, and is

not suitable for applications involving censored data. Pena (1998) extended his method

in this respect. For example, consider embedding the base model λ0(t|H(t); α) into an

expanded model of the form (1.18) with g(z(t); β) = exp{z′(t)β} which belongs to a

larger class G = {λ(·; θ); θ = (α′, β′)′ ∈ Rq}. Then β = 0 corresponds to the base model,

which would be tested by testing H0 : β = 0.

More generally, we can test the null hypothesis H0 : β = β0 against the alternative

hypothesis H1 : β 6= β0. A partial score test can be used for testing H0. For example,

following the previous development in this section, let θ0 = (α′
0, β

′
0)
′
be a q-dimensional

vector in which α0 is the true value of α and β0 = 0 is the value of β under the

null hypothesis so in this case θ0 = (α′
0,0

′)′. Then, let α̃ denote the value of α0 that

maximizes `(θ0). The score statistic (1.30) for testing H0 : β = 0 is in the form

U ′
β(θ̃0)J

ββ(θ̃0)Uβ(θ̃0), (1.40)

where θ̃0 = (α̃′,0′)′, Uβ(θ̃0) = (Uβ1(θ̃0), . . . , Uβp(θ̃0))
′ is a p-dimensional score vector

with components, k = 1, . . ., p,

Uβk
(θ̃0) =

m∑
i=1

∫ ∞

0

Yi(u)zik(u)
{

dNi(u)− λi(u|Hi(u); θ̃0) du
}

, (1.41)

and Jββ(θ̃0) is a p× p matrix given by[
Jββ(θ̃0)− Jβα(θ̃0)J

−1
αα(θ̃0)Jαβ(θ̃0)

]−1

. (1.42)

Note that replacing Jββ(θ̃0) in (1.40) with Iββ(θ̃0) does not change the asymptotic results.

We will use this method frequently in the following chapters.

Let’s also consider a setting in which only one process is observed over time period

[0, τ ], so m = 1 above. The score statistic for testing the null hypothesis H0 : β = 0 is still

in the form of (1.40) where components U (θ̃0) and Iββ(θ̃0) are considered when m = 1.

Asymptotic properties of the score test can be considered in this case as τ approaches

infinity, or in some cases, as certain components of α increase in size.

In Section 1.4.2, we mentioned that there is a link between martingales and maximum

likelihood estimation in recurrent event settings. Note that the score functions (1.34) and

(1.35) can be rewritten as follows; for any finite interval [0, t],

Uαl
(t; θ) =

m∑
i=1

∫ t

0

Hαl
(u) dMi(u; θ), l = 1, . . . r, (1.43)
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and

Uβk
(t; θ) =

m∑
i=1

∫ t

0

Hβk
(u) dMi(u; θ), k = 1, . . . , p, (1.44)

where Hαl
(t) = Yi(t)(∂/∂αl) log λ0(t; α), Hβk

(t) = Yi(t)zik(t) and dMi(t; θ) = dNi(t) −
λi(t|Hi(t); θ) dt. Assuming that Hαl

and Hβk
are predictable processes, and that

λi(u|Hi(u); θ) is absolutely continuous, then the score functions (1.43) and (1.44) are

of the form (1.26), that is, a martingale structure. Therefore, it is possible, under certain

conditions, to show that appropriately normalized score functions (1.43) and (1.44) con-

verge weakly to a normal distribution with mean zero and a specific variance. This key

result will lead to derivation of the asymptotic properties of partial score statistics (1.40)

in certain settings.

1.4.4 Robust Methods Based on Marginal Characteristics of

Event Processes

Methods involving full specification of the processes via the intensity functions are very

useful, in particular, when an extensive understanding of a recurrent event process is

needed. In some cases, however, it is possible to develop methods using marginal charac-

teristics of processes such as the rate and mean functions. One use of these methods is

to give robust tests with respect to certain model features. For example, in Chapters 4

and 5 we will introduce robust tests for time trends based on rate and mean functions.

Suppose that m independent processes are under observation. Let θ = (α′, β′)′ and

xi(t) be a vector of time-dependent external covariates for subject i (i = 1, . . ., m).

Following the notation of the previous section, we consider the mean function µi(t) =

E{Ni(t)} and the parametric rate function ρi(t) dt = dµi(t), where

ρi(t; θ) = ρ0(t; α) exp(xi(t)
′β). (1.45)

From score vectors (1.34) and (1.35), with intensity function (1.45) of the Poisson form

score estimating equations are obtained as

0 = Uα(θ) =
m∑

i=1

Uαi(θ)

=
m∑

i=1

∫ ∞

0

Yi(s)
∂ log ρ0(s; α)

∂α
[dNi(s)− ρi(s; θ) ds] , (1.46)
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and

0 = Uβ(θ) =
m∑

i=1

Uβi(θ)

=
m∑

i=1

∫ ∞

0

Yi(s)xi(s) [dNi(s)− ρi(s; θ) ds] . (1.47)

When observation processes {Yi(t); t > 0} and event processes {Ni(t); t > 0} are in-

dependent, expectations of (1.46) and (1.47) are zero. This result holds as long as

E{dNi(t)} = ρi(t; θ) dt, where dNi(t) represents the number of events in an arbitrary

short interval (t − dt, t]. Under some regularity conditions (White, 1982) and applying

results on empirical processes (Lin et al., 2000), as m →∞,

1√
m

U (θ) =
1√
m

(Uα(θ)′, Uβ(θ)′)′
D−→ MV N(0, B(θ)),

where MVN stands for the multivariate normal distribution, 0 is a vector of zeros, B(θ) =

limm→∞ E{Bm(θ)} and Bm(θ) = 1
m

∑m
i=1 U i(θ)U i(θ)′. A consistent estimator of B(θ)

is Bm(θ̂) where θ̂ = (α̂′, β̂
′
)′ is the Poisson process maximum likelihood estimator of

θ obtained by solving (1.46) and (1.47). Under the above conditions, an asymptotic

variance estimate of U (θ̂) is, therefore, given by
∑m

i=1 U i(θ̂)U i(θ̂)′, which is valid under

a Poisson process as well as under departures from the Poisson process.

Consider testing the null hypothesis H0 : β = 0. From the above argument, assuming

Yi(t) and Ni(t) are independent and specification of the rate function is correct, a robust

asymptotic variance estimate of Uβ(θ̃0) is given by
∑m

i=1 Uβi(θ̃0)Uβi(θ̃0)
′, where θ̃0 =

(α̃′,0′)′, and α̃ is the maximum likelihood estimator of α obtained by solving (1.46) when

β = 0.

1.5 Simulation Procedures for Event Processes

In this section, we introduce how a recurrent event process with a given intensity function

can be simulated, and discuss how this could be used in order to either (i) study the null

distribution of a test statistic, (ii) study the distribution of a test statistic under an

alternative model (for looking at power), or (iii) obtain a p-value based on a given data

set. First, simulation algorithms for a recurrent event process are explained, and then

these situations are discussed. In the following discussion we assumed that a process is

observed over an observation window [0, τ ] uninterruptedly; that is, Y (t) = I(0 ≤ t ≤ τ),

and τ is prespecified.
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1.5.1 Simulation of an Event Process with a Given Intensity

Function

Let {N(t); t ≥ 0} be a counting process with an associated intensity function λ(t|H(t)).

A computer simulation algorithm to generate event times of an intensity based model can

be given by using the result of Corollary 1.2.1. In particular, if we let

Ej =

∫ tj−1+Wj

tj−1

λ(t|H(t)) dt j = 1, 2, . . . , (1.48)

where the Wj are the gap times generated by the process {N(t); t ≥ 0} with intensity

λ(t|H(t)), then it is easy to show that, given tj−1 and H(tj−1), each random variable Ej

has an exponential distribution with mean 1. This follows from the fact that Pr{Wj >

w|Tj−1 = tj−1,H(tj−1)} = exp
{
−
∫ tj−1+w

tj−1
λ(t|H(t)) dt

}
, j = 1, 2, . . ., and so Uj =

exp(−Ej) has a standard uniform distribution. In the algorithm, we need to solve the

equation Ej =
∫ tj−1+Wj

tj−1
λ(t|H(t)) dt for each Wj. This can be done numerically (see, e.g.,

Lawless and Thiagarajah, 1996). To generate failure times for a general intensity based

model by a computer simulation, the algorithm used in this thesis is then given as follows:

1. Set j = 1 and t0 = 0.

2. Generate Uj from a standard uniform distribution.

3. Use the transformation Ej = − log(Uj).

4. Calculate the jth event time Tj by solving Ej =
∫ Tj

tj−1
λ(t|H(t)) dt for Tj, where

Tj = tj−1 + Wj.

5. If Tj ≤ τ , advance j by 1 and let tj−1 = Tj−1. Then, return to the second step.

Otherwise, stop the loop and the recurrent event times observed over [0, τ ] are given

by t1, . . ., tn, where n = j − 1.

It should be noted that the history H(t) may include external covariates. There are

other proposed simulation algorithms in order to generate arrival times or, equivalently,

failure times for an intensity based model in the literature; for more details, see Daley

and Vere-Jones (2003) and Cook and Lawless (2007, Problem 2.2).

When generating the event times from a HPP with the rate function ρ, steps 2–4 of the

above algorithm give Wj = −ρ−1 log(Uj), j = 1, 2, . . .. Event times for a NHPP with the

rate function ρ(t) and mean function µ(t) can be generated by using Proposition 1.3.2. In

this case, steps 2–4 give the event times of a HPP with rate 1 as µ(Tj) = µ(tj−1)− log(Uj),

j = 1, 2, . . .. Then, the inverse transformation Tj = µ−1(µ(tj−1)− log(Uj)) gives the j’th

event time for the NHPP.
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1.5.2 The Use of Simulation Procedures

By generating data using simulation, it is possible to study the distribution of a test

statistic under both null and alternative hypotheses, and obtain a p-value for a given

data set.

Suppose that the expanded model is in the form of a multiplicative model; that is

λ(t|H(t); θ) = λ0(t; α) exp{z′(t)β}. Then, we can simulate B realizations of the data un-

der the null hypothesis. For each realization, the estimate θ̃0 = (α̃′,0′)′, the partial score

vector Uβ(θ̃0), the matrix Jββ(θ̃0) and the partial score statistic U ′
β(θ̃0) Jββ(θ̃0) Uβ(θ̃0)

are obtained, and kept in a B-dimensional vector. Then, we use these vectors in order to

study the null distribution of a score test statistic.

If the interest is in the power of a score test, a simulation study can be conducted as

follows. The power function of the test of hypothesis

H0 : β = 0, α ∈ Rr vs. H1 : β 6= 0, α ∈ Rr (1.49)

is defined by P (β1) = Pr{reject H0; β = β1}. Therefore, in order to look at the power

function, data sets should be generated from the expanded model for different values

of β1. We then simulate B realizations of the data set at some value β1 6= 0. For

each realization, the estimate θ̃0 = (α̃′,0′)′, the partial score vector Uβ(θ̃0), the matrix

Jββ(θ̃0) and the partial score statistic U ′
β(θ̃0) Jββ(θ̃0) Uβ(θ̃0) are obtained, and kept in

a B-dimensional vector. Then, we use these vectors in order to look at the power function

P (β1) of the test (1.49) for a given nominal test size.

Under the null hypothesis of (1.49), a partial score statistic (1.30) has an approximate

chi-square distribution with p degrees of freedom in some situations. Then, a p-value for

a data set is given by Pr{χ2
p ≥ U ′

β(θ̃0) Jββ(θ̃0) Uβ(θ̃0)}, where θ̃0 = (α̃′,0′)′. However,

we can also obtain a p-value by simulation. To do this we generate data sets Dj under

H0, then calculate the partial score statistic Zj. Repeat this step B times, and then the

p-value is estimated by ∑B
j=1 I(Zj > Zobs)

B
, (1.50)

where Zobs is the test statistic based on the given data set. The adequacy of χ2 approx-

imations for test statistics will be examined in the following chapters. In settings where

they are inaccurate, we recommend using simulation to determine p-values.

1.6 Outline of Thesis

The main target of this thesis is to develop formal tests for certain features of recurrent

event processes, and to discuss their properties. In particular, a carryover effect and a
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time trend are of interest. The former may cause clustering of events together in time,

and the latter refers to a tendency for the rate of event occurrence to change over time

in some systematic way. In this chapter, we introduced notation and families of models

that are widely used in recurrent event settings as well as mathematical concepts and

simulation methods that are useful in the subsequent chapters. The remainder of the

thesis is organized as follows.

In Chapter 2, we discuss testing for carryover effects in identical recurrent event pro-

cesses. We first consider testing for carryover effects in homogeneous Poissson processes.

A model expansion technique is considered for test procedures. This amounts to including

internal covariates in models. Asymptotic properties of test statistics are discussed when

the number of processes approaches infinity as well as when the observation period or a

model parameter increases for a single process. Tests are investigated by simulations. We

present an example from industry to illustrate the methods. We then consider testing for

carryover effects in nonhomogeneous Poisson processes. Large sample properties of tests

are discussed, and an example is given.

In Chapter 3, we introduce models and tests that are useful in testing for carryover

effects when heterogeneity is present between processes. In particular, although individ-

ual processes may be adequately described by a modulated Poisson process, the process

rate functions may vary across individuals. Such variation is typically due to unmea-

sured differences in the individuals or the environment in which the processes operate.

If carryover effects tests developed for homogeneous processes are used when substantial

heterogeneity is present, false indications of an effect can occur, producing an inflated

Type 1 error rate. Therefore, we focus on testing for carryover effects under fixed and

random effects models. A simulation study is conducted to investigate the properties of

test statistics. We also present an example from medicine to illustrate the tests.

We discuss testing for trend in identical recurrent event processes as well as definitions

of trend in Chapter 4. We focus on the case where several processes are under observation,

and consider tests based on Poisson and renewal processes. Robust trend tests based on

rate functions are also discussed. The main aim of Chapter 4 is to introduce the robust

tests, and to compare them with other prominent tests. These topics are considered under

two different censoring schemes with both the presence and absence of covariates. An

extensive simulation study is given to investigate large sample approximations and power

properties of tests. In Chapter 5, we discuss tests for trends in nonidentical recurrent

event processes. We extend the tests given in Chapter 4, and follow a parallel approach

to investigate their properties with simulation. We illustrate the tests with an example.

We summarize the results of the previous chapters, and give practical recommenda-

tions in Chapter 6. Also, future research topics are discussed.
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Chapter 2

Testing for Carryover Effects in

Identical Processes

In the previous chapter, we mentioned the concept of carryover effects in recurrent event

processes. We discuss this feature here and in the following chapter. In this chapter, we

consider testing for carryover effects in a single process or in m identical processes. The

outline of this chapter is as follows. We first discuss carryover effects and the purpose

of this chapter. We next introduce the models and estimation methods for carrover

effects testing. In Section 2.3, tests of no carryover effect for homogeneous processes are

introduced. We discuss the large sample properties of test statistics in different settings.

In Section 2.4, we present results of simulation studies. In Section 2.5, we give an example

to illustrate the methods explained in previous sections. In the last section, we discuss

testing for carryover effects in nonhomogeneous Poisson process settings.

2.1 Introduction

In certain settings the event intensity may be temporarily increased (or in some cases,

decreased) after an event occurs; we refer to this as a carryover effect. This phenomenon

has been widely discussed for hardware or software systems where the repairs undertaken

to deal with a failure may not resolve the problem or may even create new problems

(see e.g. Baker, 2001; Pena, 2006). A number of general models have been proposed for

repairable systems (see Lindqvist, 2006; Stocker and Pena, 2007), which provide consider-

able flexibility in specifying the effects of past events on the intensity function. However,

such models are complex and tie the examination and interpretation of event patterns to

assumptions that may be hard to check. Our purpose here is to consider some simple

models and tests for carryover effects. The tests are easily interpreted, robust and less

subject to the criticism that they are carried out after elaborate model fitting.
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Figure 2.1: Cumulative air-conditioning failures. Time unit is thousands of hours of

operation.

Our approach is based on an expansion of ideas in Lawless and Thiagarajah (1996)

and Cook and Lawless (2007, Section 5.2). To motivate and illustrate the approach in

a simple setting, we show in Figure 2.1 a plot of cumulative failures versus total hours

of operation for the air-conditioning system in an airplane (Cook and Lawless, 2007, pp.

167–170). The data suggest the rate of failures is increasing with time. In addition,

we observe a pattern of clustering of failures that may indicate a carryover effect, and

analysis by Cook and Lawless (2007, pp. 167–169) suggests the presence of such an effect.

In this chapter, we develop simple tests of carryover effects, and study their properties.

Our approach can deal with single or multiple systems, and cases where the event intensity

is either temporarily increased or decreased following an event. We remark that, although

there is some similarity, the carryover effect concept is different than the concept of

temporal clustering in a series of events (e.g. see Xie et al., 2009). In the latter case the

emphasis is on detecting and identifying clusters and models in which some underlying

process generates clusters of varying size are typically used (e.g. Cox and Isham, 1980).
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2.2 Models and Estimation

2.2.1 Models for Carryover Effects

We assume that an individual process is observed over time [0, τ ], and let N(t) denote

the number of events in [0, t]. The event generating counting process {N(t); t ≥ 0} is

assumed to have an associated intensity function λ(t|H(t)), which is defined in Section 1.2.

The times of events in [0, τ ] are denoted T1 < · · · < Tn, and B(t) = t − TN(t−) is the

backward recurrence time; that is, the time since the most recent event prior to t. In

some settings, we may need to introduce the at-risk indicator Y (t) into the model. This

is discussed in Section 1.4.1. Therefore, the following discussion can be easily generalized

to more complex observation schemes such as random censoring as well as intermittent

observation.

Poisson models often turn out to be adequate in practical settings, if allowance is made

for heterogeneity across systems. In some settings, however, there is a tendency for the

intensity of events to increase for a limited time period after each event. We consider such

effects here through modulated Poisson process models in which the intensity function

takes the form

λ(t|H(t)) = ρ0(t) exp (z′(t)β) , t ≥ 0, (2.1)

where z(t) is a q×1 vector of time-varying covariates that is allowed to contain functions of

the event historyH(t) as well as external covariates. More specifically, we consider models

for which z(t) includes terms that are zero except for a limited time period following the

occurrence of an event. Such terms specify what we call carryover effects.

A simple but very useful model is one where z(t) in (2.1) includes one term, and takes

the form

z(t) = I
(
N(t−) > 0

)
I (B(t) ≤ ∆) , (2.2)

where ∆ > 0 is a specified value. In that case the intensity function following an event

temporarily changes from ρ0(t) to ρ0(t) eβ. Tests of the null hypothesis H0 : β = 0,

developed below, provide simple and intuitive tests of no carryover effect.

Tests for carryover effects based on (2.1)–(2.2) are attractive, as we show here. How-

ever, other models with carryover effects can also be specified. For example, a model

(2.1) with z(t) = I(N(t−) > 0) exp(−γB(t)) or a linear self-exciting process (Cox and

Isham, 1980, Section 3.3) with λ(t|H(t)) = ρ0(t) + β
∑N(t−)

j=1 e−γ(t−tj) also produce tran-

sient effects following events, while allowing possible time trends as in (2.1). However,

they are more difficult to handle than (2.1)–(2.2), and do not impose a time limit on the

duration of an effect.

Models where the times between events have mixture forms can be used for introducing

carryover effects in renewal processes. For example, a discrete mixture model for gap times
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Wj is given by f(w) = πf1(w) + (1 − π)f2(w), where f is the p.d.f. of the Wj, f1 and

f2 are two different p.d.f.’s for the gap times, and 0 < π < 1. A carryover effect would

correspond to one component (say f1) being “early” and f2 being “late”. The model (2.1)–

(2.2) is a “delayed” modulated renewal model in which W1 has a different distribution

than Wj (j ≥ 2), in the case when ρ0(t) = ρ0 is constant. Other models in which the times

between successive events have mixture models with substantial mass near zero could be

specified (e.g. see Lindqvist, 2006; Pena, 2006) but they are more difficult to handle than

(2.1)–(2.2). The tests we consider are easily interpreted and robust in the sense that they

retain good power to reject the hypothesis of no carryover effect even when model (2.1)

is misspecified. Simulation results in Section 2.4 demonstrate this.

The discussion given above is for a single process. When multiple processes are

identical, the generalization of model (2.1) with (2.2) is then given by λi(t|Hi(t)) =

ρ0(t) exp(βzi(t)), where zi(t) = I (Ni(t
−) > 0) I (Bi(t) ≤ ∆) and Bi(t) = t−TNi(t−) is the

backward reccurence time for subject i at time t.

The tests here require specification of a value for ∆. We discuss this, and study

robustness of the test to misspecification of ∆, or of the model (2.1), in the following

sections.

2.2.2 Estimation and Testing for No Carryover Effect

Consider model (2.1) with ρ0(t) specified parametrically as ρ0(t; α), with α a p × 1

vector of parameters, and z(t) given by (2.2) with a specified value of ∆. Suppose m

independent systems have identical intensity functions (2.1) and that system i is observed

over the interval [0, τi] and has ni events, at times tij (j = 1, . . . , ni). We also define

ti0 = 0, ti,ni+1 = τi and wij = tij − ti,j−1 (j = 1, . . . , ni + 1); for j = 2, . . . , ni the wij are

the times between successive events for system i. For notational convenience we define

R(α, β) =
m∑

i=1

∫ τi

0

ρ0(t; α) exp (βzi(t)) dt. (2.3)

The log likelihood function for α and β, based on the observed event histories for systems

i = 1, . . . ,m, is (cf. Section 1.4.3)

`(α, β) =
m∑

i=1

{
ni∑

j=1

[βzi(tij)− log ρ0(tij; α)]

}
−R(α, β). (2.4)

Estimates α̂, β̂ are obtained by maximizing `(α, β) and if β = 0, an estimate α̃ is obtained

by maximizing `(α, 0). This is easily done with optimization software that does not

require coding of expressions for derivatives of `(α, β). In this thesis we make extensive
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use of the R function nlm. We note for use later that R(α, β) in (2.4) may be rewritten

from (2.2) and (2.3) as

R(α, β) =
m∑

i=1

{(
eβ − 1

) ni∑
j=1

∫ min(ti,j+1, tij+∆)

tij

ρ0(t; α) dt +

∫ τi

0

ρ0(t; α) dt

}
. (2.5)

A test of no carryover effect within the family of models (2.1) can be obtained by

testing the null hypothesis H0 : β = 0. This can be tested using the likelihood ratio

statistic Λ = 2`(α̂, β̂) − 2`(α̃, 0), where α̃ maximizes `(α, 0). An alternative test that

requires us to find only α̃, and not α̂, β̂, is based on the score statistic Uβ(α̃, 0), where

Uβ(α, β) = ∂`(α, β)/∂β (cf. Section 1.4.3). This gives

Uβ(α̃, 0) =
m∑

i=1

ni∑
j=1

zi(tij)−R(β)(α̃, 0), (2.6)

where

R(β)(α, β) = ∂R(α, β)/∂β =
m∑

i=1

{
eβ

ni∑
j=1

∫ min(ti,j+1, tij+∆)

tij

ρ0(t; α) dt

}
. (2.7)

Inspection of (2.6) shows it to be of the form “Observed - Expected”, where “Observed”

is the total number of events that follow the previous event by a time of ∆ or smaller,

and “Expected” is an estimate of the expected number of such occurrences under the null

hypothesis. A variance estimate for Uβ(α̃, 0) under H0 is given by asymptotic theory for

counting processes in the case where m → ∞ (Andersen et al, 1993, Chapter 6; Pena,

1998). This takes the standard form (see (1.40) and (1.42))

V̂ ar {Uβ(α̃, 0)} = Iββ(α̃, 0)− Iβα(α̃, 0)I−1
αα(α̃, 0)Iαβ(α̃, 0), (2.8)

where the components of (2.8) are given by (cf. Section 1.4.3)

Iββ(α̃, 0) = R(β)(α̃, 0) (2.9)

Iαα(α̃, 0) = −
m∑

i=1

ni∑
j=1

∂2 log ρ0(tij; α̃)

∂α̃∂α̃′ +
m∑

i=1

∫ τi

0

∂2ρ0(t; α̃)

∂α̃∂α̃′ dt (2.10)

Iαβ(α̃, 0) = I ′βα(α̃, 0) =

(
∂2R(α, β)

∂α∂β

)∣∣∣∣
(α̃,0)

=
m∑

i=1

ni∑
j=1

∫ min(ti,j+1, tij+∆)

tij

∂ρ0(t; α̃)

∂α̃
dt. (2.11)

The standardized partial score statistic for testing H0 is then

S = Uβ(α̃, 0)/V̂ ar {Uβ(α̃, 0)}1/2 . (2.12)
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The p × p matrix (2.10) is the negative Hessian matrix from the model with β = 0

and so is obtained by fitting the null model. The scalar (2.9) and p × 1 vector (2.11)

are readily computed from the fitted null model. For illustration, consider the often-used

power law model ρ0(t; α) = α1α2t
α2−1. Then Uβ(α̃, 0) is given by (2.6) with

R(β)(α̃, 0) =
m∑

i=1

ni∑
j=1

α̃1

{
[min (ti,j+1, tij + ∆)]α̃2 − tα̃2

ij

}
(2.13)

and (2.8) contains the elements

Iββ(α̃, 0) = R(β) (α̃, 0) (2.14)

Iαβ(α̃, 0) =
m∑

i=1

ni∑
j=1

∫ min(ti,j+1, tij+∆)

tij

(
α2t

α2−1

α1t
α2−1 (1 + α2 log t)

)
dt (2.15)

and Iαα(α̃, 0), which is the 2 × 2 Hessian matrix from the fitted null model ρ0(t; α) =

α1α2t
α2−1. Good optimization software can give this without requiring analytical deriva-

tives for `(α, 0), by using numerical differentiation. The only elements requiring additional

computation are (2.14) and (2.15); the former is trivial but the latter requires numerical

integration.

Asymptotic distributions for the test statistics Λ and S as m → ∞ take, under mild

assumptions on ρ0(t; α) and β, the usual χ2
(1) and N(0, 1) forms (Andersen et al., 1993,

Chapter 6; Pena, 1998). We will discuss these assumptions and aymptotics in the next

section for the case where ρ0(t; α) = α. Simulation studies in Section 2.4 consider the

adequacy of these as approximations for finite sample settings. In cases where m is small

but event occurrence rates or the τi are sufficiently large, the same approximations may

be used. In some settings the asymptotic approximations are inaccurate and we then

recommend obtaining p-values by simulation. This can be done by simulating B (=1000,

say) data sets under the null model with α = α̃, obtaining estimates and test statistic

Λ or S for each, and then taking the proportion of the B samples for which the statistic

exceeds the observed value in the original sample as the (estimated) p-value. We described

a method for simulating Poisson processes in Section 1.5. The special case where the null

model is an HPP is of special interest in many settings, including ones involving a single

system observed over a long period of time. We consider this in the next section.

2.3 Tests of No Carryover Effect for Homogeneous

Poisson Processes

In this section, we discuss tests for no carryover effect in identical processes and their

asymptotic properties. We consider the HPP as the null hypothesis of no carryover effect
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throughout this section. When the null model is an HPP with rate function α for subject

i (i = 1, . . ., m), both the likelihood ratio and partial score statistics take a simple form.

Let zi(t) be as given in (2.2). For convenience, we then define

O(∆) =
m∑

i=1

ni∑
j=1

zi(tij), E(∆) =
m∑

i=1

ni∑
j=1

min (Wi,j+1, ∆) , (2.16)

and let n =
∑m

i=1 ni, τ =
∑m

i=1 τi. The log likelihood (2.4) is then

`(α, β) = βO(∆) + n log α− α
{
(eβ − 1)E(∆) + τ

}
(2.17)

and solving ∂`/∂α = 0, ∂`/∂β = 0, we find

eβ̂ =
O(∆) [τ − E(∆)]

E(∆) [n−O(∆)]
, α̂ =

n

(θ̂ − 1)E(∆) + τ
. (2.18)

The estimate eβ̂ of the relative intensity for the carryover period of length ∆ has the

intuitive form O(∆)/E(∆) divided by [n−O(∆)]/[τ −E(∆)], which estimates the event

rate within and outside of a carryover period, respectively. In particular, note that O(∆)

and n−O(∆) are the observed numbers of events inside and outside a carryover period.

The estimate α̃ under the null hypothesis H0 : β = 0 is α̃ = n/τ , and the likelihood

ratio statistic for testing H0 reduces to

Λ = 2β̂O(∆)− 2n log
{

1 +
(
eβ̂ − 1

)
E(∆)/τ

}
. (2.19)

The partial score statistic (2.6) also takes a simple form:

Uβ(α̃, 0) = O(∆)− n

τ
E(∆), (2.20)

which is the observed number of events in a carryover period minus an estimate of the

expected number, under H0. The variance estimate (2.8) reduces here to

V̂ ar {Uβ(α̃, 0)} =
nE(∆) {τ − E(∆)}

τ 2
. (2.21)

Significance levels (p-values) can often be computed by using asymptotic χ2
(1) and

N(0, 1) approximations for Λ = 2`(α̂, β̂)− 2`(α̃, 0) and

S = Uβ(α̃, 0)/V̂ ar {Uβ(α̃, 0)}1/2 , (2.22)

respectively. Simulation results in Section 2.4 provide guidance as to when these approx-

imations are reliable. When they are not, simulation may be used. We discuss large

sample properties of (2.22) in the next two subsections; first, when m → ∞, and then

when m = 1.
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2.3.1 Settings with Large m

In recurrent event settings, convergence of maximum likelihood estimators and asymptotic

distributions of test statistics for a model of multiplicative type can be derived by methods

similar to those of the classical case of i.i.d. random variables under sufficient conditions.

The difference between the two cases is that, in the recurrent event setup, the score

functions evaluated at a given parameter vector are in the form of stochastic integrals,

and these integrals may not be well-defined. Technical details can be found in many

textbooks on stochastic integration (e.g., Kuo, 2006). We are interested in versions of the

law of large numbers and central limit theorem for counting processes. Fortunately, these

are available from the theory of stochastic processes. Chief among them are Lenglart’s

inequality and martingale central limit theorem. These results are rigorously discussed

by Andersen et al. (1993, Section II.5). Here, we discuss the asymptotics for a general

multiplicative model with intensity function

λ(t|H(t); θ) = λ0(t; α) exp {z′(t)β} , t ≥ 0, (2.23)

where θ = (α′, β′)′. The interest is to test null hypothesis H0 : β = 0. In the following

discussion, we first discuss sufficient conditions for some important asymptotic properties

of score test statistics to hold. We focus on score test statistics when the null model is

a homogeneous Poisson process and the expanded model is modulated Poisson process

including a term for a carryover effect. In Section 2.6 we discuss the results when the null

model is a nonhomogenenous Poisson process.

The large sample properties of the maximum likelihood estimator θ̂ under the multi-

plicative intensity assumption are carefully derived by Andersen et al. (1993, Chapter 6),

and sufficient conditions for these asymptotic results to hold are given as well. These con-

ditions have to be checked for each specific model under study. Checking such conditions

is usually tedious and often tricky (see, for example, Ogata (1978) and van Pul (1990,

1992) for earlier examples). The asymptotic properties of partial score functions in the

context of this chapter are studied by Pena (1998). He basically uses the approach of

Andersen et al. (1993), and applies it to a family of models. The models with intensity of

the form (2.23) are a special case of the models considered by Pena (1998). A set of suffi-

cient conditions similar to that given by Andersen et al. (1993) is given by Pena (1998) in

order for these asymptotic results to hold. When z(t) does not depend on any parameter,

as here, then these two sets of conditions become the same. In the following, we check

that these conditions are satisfied for the models under study.

Andersen et al. (1993, p. 420–421) state five conditions (Condition A–E) to derive the

large sample properties of the maximum likelihood estimators. Condition A and Condi-

tion E are regularity conditions concerning the continuity, boundedness and convergence

of log likelihood derivatives, similar to those found in the classical case. Condition A al-

lows us to use a Taylor series expansion and it holds for the models with intensity (2.23),
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with z(t) as in (2.2). Condition E should be checked in order to show that the remainder

term in a Taylor expansion is negligible. The crucial conditions, which we discuss now,

are Conditions B–D.

Condition B is given to ensure that predictable variation processes and thus the vari-

ances of score functions converge in probability to deterministic functions. That is, for

the model with intensity (2.23), the sum

a−2
m

m∑
i=1

∫ ∞

0

{
∂

∂θk

log λi(u|Hi(u); θ0)

}{
∂

∂θl

log λi(u|Hi(u); θ0)

}
× Yi(u)λi(u|Hi(u); θ0) du, (2.24)

should converge, as m →∞, in probability to a deterministic function σkl(θ0), (k, l = 1,

. . ., q), for some sequence (am)∞m=1 of positive constants increasing to infinity. Typically,

am =
√

m can be used.

Condition C is required to show that jumps of martingales or stochastic integrals with

respect to these martingales approach zero as the normalizing constant am approaches

infinity. That is, for all ε > 0 and k = 1, . . ., q, the sum

a−2
m

m∑
i=1

∫ ∞

0

{
∂

∂θk

log λi(u|Hi(u); θ0)

}2

I

{∣∣∣∣ ∂

∂θk

log λi(u|Hi(u); θ0)

∣∣∣∣ > amε

}
× Yi(u)λi(u|Hi(u); θ0) du, (2.25)

should converge in probability to 0 as m →∞. Condition D is that the matrix constituted

by the σkl(θ0) defined in Condition B should be positive definite.

For the case of model (2.1) and (2.2) with m → ∞, we can take a2
m = m. The

conditions B–D then can be shown to hold, provided that 1
m

∑m
i=1 Yi(t)

p−→ y(t) > 0 for

some interval 0 ≤ t ≤ τ . The conditions that need to be satisfied are considered here for

the null hypothesis model

λi(t|Hi(t); α) = α, t ≥ 0, i = 1, . . . ,m, (2.26)

where α ∈ R+. The intensity function of the observed counting process {N̄i(t); t ≥ 0},
i = 1, . . ., m, is then

λ̄i(t|H̄i(t); α) = Yi(t) α, t ≥ 0, (2.27)

where Yi(t) is the at-risk indicator. The data for m independent individual processes are

{(N̄i(t), Yi(t)); i = 1, . . . ,m}, and inference for α can be based on the likelihood function

(cf. Section 1.4.1) αn. exp
{
−α
∑m

i=1

∫∞
0

Yi(u) du
}
, where n. =

∑m
i=1 ni.

In order to check the sufficient conditions of Andersen et al. (1993), we make the

following rather weak assumption. Suppose that for a specified τ > 0,

1

m

m∑
i=1

∫ t

0

Yi(u) du
p−→ r(t), t ∈ [0, τ ], (2.28)
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as m →∞, where r(t) is a positive constant for any t ∈ [0, τ ]. By the convergence (2.28),

we assume that the exposure is stabilized on average as m increases. Under this as-

sumption, we can show that the conditions given by Andersen et al. (1993) hold for the

model (2.26).

Condition A is a Cramer-type condition, and it is easy to see that it holds for (2.26).

In order to show that Condition B is fulfilled, we show that for α0 > 0,

1

m

m∑
i=1

∫ τ

0

[
∂(log α0)

∂α0

]2

Yi(u)α0 du
p−→ σ2(α0), (2.29)

as m → ∞, where τ = max(τi) = max{t; Yi(t) > 0} and σ2(α0) > 0. Since the left hand

side of (2.29) is

1

α0

1

m

m∑
i=1

∫ τ

0

Yi(u) du, (2.30)

the convergence (2.29) directly follows from (2.28) with σ2(α0) = r(τ)/α0.

Condition C of Andersen et al. (1993) for the model (2.26) is that, for all ε > 0,

1

m

m∑
i=1

∫ τ

0

1

α0

I

{
(1/α0)√

m
> ε

}
Yi(u) du

p−→ 0 (2.31)

as m → ∞. Note that, the left hand side of (2.31) is (r(τ)/α0)I( 1√
m

> α0ε) which

converges to 0 as m → ∞. Condition D is about positiveness of σ2(α0), and is fulfilled

since both r(τ) and α0 are positive constants.

Condition E is stated to regulate the remainder term of a Taylor series expansion in

the proof of the theorem given by Andersen et al. (1993, p. 422). We need to show that,

first, for any m, supremum norms of the third derivative of (2.26) and the log of (2.26)

with respect to α are bounded by some predictable processes that are independent of α

for any m and t ∈ [0, τ ].

Suppose that α ≥ M for some M > 0. Since (∂3/∂α3)(α) = 0, (∂3/∂α3)(log α) =

2/α3 and α > 0, the required supremum norms are bounded by a positive con-

stant, say c, which does not depend on α for any m. Furthermore, from (2.28),
1
m

∑m
i=1

∫ τ

0
cYi(u) du

p−→ c r(τ) and 1
m

∑m
i=1

∫ τ

0
c Yi(u)α0 du

p−→ c α0 r(τ), as m →∞. There-

fore, the first part of Condition E holds for the model (2.26). Next, by a similar argu-

ment, 1
m

∑m
i=1

∫ τ

0
{(∂2/∂α2)(log α0)}2 Yi(u)α0 du converges to r(τ)/α3 in probability as m

increases. The last part of Condition E holds since, for all ε > 0,

1

m

m∑
i=1

∫ τ

0

c I
{
m−1/2

√
c > ε

}
Yi(u)α0 du

p−→ 0

as m → ∞. This completes the requirements for the model (2.26) to have the usual

large sample properties for α̂ and also for likelihood ratio and score statistics. Thus,
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α̂ = (
∑m

i=1 Ni(τi))/(
∑m

i=1

∫∞
0

Yi(u) du) is a consistent estimator of α0, and

√
m(α̂− α0)

D−→ Z ∼ N(0, σ2) (2.32)

as m → ∞, where σ2 = α0/r(τ) can be consistently estimated by α̂/r(τ) (Andersen et

al., 1993). Furthermore, the score statistic U(α) =
∑m

i=1 Ui(α) ,where

Ui(α) =
Ni(τi)

α
−
∫ ∞

0

Yi(u) du,

satisfies
1√
m

U(α0)
D−→ Z ∼ N(0, σ2(α0)) (2.33)

as m → ∞, where σ2(α0) = r(τ)/α0 can be consistently estimated by r(τ)/α̂. A score

test then can be developed from (2.33) for testing H0 : α = α0.

We now consider models with a carryover effect, where the intensity is

λi(t|Hi(t); α, β) = α exp {βzi(t)} , t ∈ [0, τi], i = 1, . . . ,m, (2.34)

where α > 0 and zi(t) = I(Ni(t
−) > 0)I(Bi(t) ≤ ∆) is a function of the recurrent

event history at time t. For simplicity, we assume that the observation processes are

completely independent of the event occurrence processes. The log likelihood function

(cf. Section 1.4.3) is then given by

`(α, β) = n. log α + β
m∑

i=1

ni∑
j=1

zi(tij)−
m∑

i=1

∫ ∞

0

Yi(u)αeβzi(u) du, (2.35)

where n. =
∑m

i=1 ni, Yi(t) is the at-risk process, and zi(t) is a function of the event history

at time t ∈ [0, τi]; i = 1, . . ., m. The score functions are then given by

Uα(α, β) =
n.

α
−

m∑
i=1

∫ ∞

0

Yi(u)eβzi(u) du (2.36)

and

Uβ(α, β) =
m∑

i=1

ni∑
j=1

zi(tij)−
m∑

i=1

∫ ∞

0

Yi(u)zi(u)αeβzi(u) du. (2.37)

Furthermore, the observed information matrix I(α, β) consists of the following compo-

nents:

Iαα(α, β) =
n.

α2
, (2.38)

Iαβ(α, β) = Iβα(α, β) =
m∑

i=1

∫ ∞

0

Yi(u)zi(u)eβzi(u) du, (2.39)
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and

Iββ(α, β) =
m∑

i=1

∫ ∞

0

Yi(u)z2
i (u)αeβzi(u) du. (2.40)

The partial score statistic for testing H0 : β = 0 is given by U2
β(α̃(0), 0)Jββ(α̃(0), 0). The

partial score function Uβ(α̃(0), 0) is obtained by plugging (α, β) = (α̃(0), 0) into the score

function (2.37), where α̃(0) = n./τ. and τ. =
∑m

i=1 τi. When β = 0, this case becomes

that in the previous section. However, now we need to deal with the convergence in

probability of
1

m

m∑
i=1

∫ ∞

0

Yi(u)zi(u) du, (2.41)

as m →∞, where zi(t), i = 1, . . ., m, is given by

zi(t) = I(Ni(t
−) > 0) I(t− TNi(t−) ≤ ∆), t ∈ [0, τi]. (2.42)

Let the event Ai(t) be “the ith individual experiences at least 1 event in [max(t−∆, 0), t]”.

Note that the function (2.42) for the ith individual is then

zi(t) = I{Ai(t)}, t ∈ [0, τi]. (2.43)

Under the null hypothesis H0 : β = 0, we can easily check the sufficient conditions

A–E given by Andersen et al. (1993, p. 420–421) for the model (2.34). Suppose that the

true value of α is α0, and that the convergence (2.28) holds. Condition A (Cramer-type

condition) can easily be shown that it holds for the model (2.34). In order to check

Condition B, we need to show that

1

m

m∑
i=1

∫ τ

0

1

α0

Yi(u) du
p−→ σαα, (2.44)

1

m

m∑
i=1

∫ τ

0

Yi(u)zi(u) du
p−→ σαβ, (2.45)

and
1

m

m∑
i=1

∫ τ

0

α0Yi(u)zi(u) du
p−→ σββ, (2.46)

as m → ∞, where σαα, σαβ and σββ are defined on R+ and τ > 0 is pre-specified.

The convergence (2.44) immediately follows from the assumption (2.28), which gives that

σαα = r(τ)/α0. To show (2.45) and (2.46), we need to deal with the convergence of (2.41)

as m → ∞. Note that, from (2.43), E {zi(t)} = Pr{Ai(t)}. Therefore, under H0 : β = 0

and α = α0,

Pr{Ai(t)} = I{t < ∆}(1− e−α0t) + I{t ≥ ∆}(1− e−α0∆). (2.47)
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The probability (2.47) and the assumption that the at-risk processes Yi and the event

processes Ni are completely independent lead to result that the expectation of the left-

hand side of (2.45) is∫ ∆

0

E{Yi(u)}(1− e−α0u) du +

∫ τ

∆

E{Yi(u)}(1− e−α0∆) du, (2.48)

where we assume {Yi(t); t ≥ 0} has an expected value for 0 ≤ t < ∞. Thus, as m →∞,

by a weak law of large numbers the left hand side of (2.45) converges in probability to

(2.48), which is σαβ in (2.45). Similarly, σββ in (2.46) is α0σαβ, where σαβ is given by

(2.48).

Condition C for the model (2.34) is just the condition in (2.31), and directly follows

from the assumption (2.28). We next need to show that, for all ε > 0,

α0
1

m

m∑
i=1

∫ τ

0

zi(u) I

{
1√
m

zi(u) > ε

}
Yi(u) du

p−→ 0, (2.49)

as m → ∞. Since zi(t) = 0 or 1 only, it is easy to see that the convergence (2.49) is

satisfied as m →∞.

Condition D is fulfilled if the matrix Σ = [(σjl)] (j, l = α, β) with the components

given by the right-hand side of (2.44), (2.45) and (2.46) is positive definite. Note that

σαα is positive because r(τ) > 0 and α0 > 0. Furthermore, we need to show that the

determinant of Σ which is σαβ(r(τ)−σαβ) is positive. Since σαβ given by (2.48) is positive,

Condition D is satisfied when r(τ) > σαβ. This follows directly from (2.48).

Condition E can be shown to hold in a similar way to that of the illustration of the

previous subsection. This completes the requirements for the convergence of (α̂, β̂) to

normality under H0 : β = 0, α ∈ R+, and also that

1√
m

Uβ(α̃, 0)/σ(α0)
D−→ Z ∼ N(0, 1), (2.50)

as m →∞, where α̃(0) = (
∑m

i=1 Ni(τi))/(
∑m

i=1

∫∞
0

Yi(u) du) and σ2(α0) = σββ−(σ2
αβ/σαα)

(see, Andersen et al. (1993) and Pena (1998)). Note that the left-hand side of (2.50) is

not a statistic since it depends on the unknown parameter α0. A partial score statistic for

testing H0 : β = 0, α ∈ R+ is obtained by replacing σ2(α0) with any consistent estimator

of it, and it also converges in distribution to N(0, 1) as m →∞.

The conditions A–E can also be verified in a similar way when β 6= 0. A simple

condition that suffices to satisfy A–E is to bound |β| < B for some B. Then |eβzi(u)| ∈
(e−B, eB) and simple modifications of the arguments above show A–E hold.
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2.3.2 Settings with m = 1

A case of special interest in some applicatons is that of a single process observed over a

long period. The aforementioned asymptotic results can also be shown to apply under

suitable conditions when m = 1 and τ → ∞ as well as when m = 1 and a parameter

approaches infinity. The τ →∞ case is more important and we consider it first.

Testing the null hypothesis of a Poisson process with known intensity is discussed by

Dachian and Kutoyants (2006). They consider self-exciting type processes under con-

tiguous alternatives, and construct locally asymptotically uniformly most powerful tests.

They obtain the asymptotic distribution as τ → ∞. We here consider testing the null

hypothesis of a homogeneous Poisson process with unknown rate function against the

alternative of a model with carryover effect. We focus once again on the model

λ(t|H(t); α, β) = α exp{βz(t)}, t ≥ 0, (2.51)

where

z(t) = I{N(t−) > 0}I{t− TN(t−) ≤ ∆}.

The proof below based on Cigsar and Lawless (2010) and was developed from an outline

provided by the second author.

The likelihood function (cf. 1.4.1) for this model is given by

n∏
j=1

αeβz(tj) exp

{
−
∫ ∞

0

Y (u)αeβz(u) du

}
, (2.52)

where 0 < T1 < · · · < Tn < τ denote the event times. In the following discussion

Y (t) = I(0 ≤ t ≤ τ), and τ is prespecified. The partial score function obtained from the

log of (2.52) is

Uβ(α̃, 0) =
n∑

j=1

z(tj)− α̃

∫ τ

0

z(u) du, (2.53)

where α̃ = N(τ)/τ . We want to show under the null model (i.e. the model is an HPP

with rate α0) that

Uβ(α̃, 0)/V̂ ar(Uβ(α̃, 0))1/2 D−→ Z ∼ N(0, 1) (2.54)

when m = 1 and τ → ∞. We will use martingale convergence results. Let us rewrite

(2.53) as

Uβ(τ ; α̃) = Uβ(α̃, 0) =

∫ τ

0

z(t){dN(t)− α̃ dt}, (2.55)

and then

Uβ(τ ; α0) =

∫ τ

0

z(t){dN(t)− α0 dt}. (2.56)
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First we note that

1√
τ
Uβ(τ ; α̃) =

1√
τ
Uβ(τ ; α0)−

√
τ(α̃− α0)

1

τ

∫ τ

0

z(t) dt. (2.57)

We now show that the two parts of (2.57) are asymptotically bivariate normal. We first

show that, as τ →∞,
1√
τ
Uβ(τ ; α0)

D−→ N(0, σ2), (2.58)

where σ2 = α0Q = α0(1−e−α0∆). Since {M(t) =
∫ t

0
[dN(s)−α0 ds]; t ≥ 0} is a martingale,

the convergence in (2.58) holds under following conditions (Karr 1991, Theorem B.21):

(i) As τ →∞,
1

τ

∫ τ

0

z(t) α0 dt
p−→ σ2, (2.59)

where z(t) is a predictable process and 0 < σ2 < ∞.

(ii) For every ε > 0,

lim
τ→∞

1

τ
E

{∫ τ

0

z(t) I
(
|z(t)| > ε

√
τ
)

α0 dt

}
= 0. (2.60)

Note that z(t) = I(N(t−) > 0)I(t − TN(t−) ≤ ∆) is measurable at time t− ∈ [0, τ ] with

respect to H(t); that is, given the history, z(t) is a known quantity just before t, and thus,

it is predictable. From the previous section we know that if we let A(t) be the event “at

least one event in [max(t−∆, 0), t]”, then z(t) = I{A(t)} and

E

{
1

τ

∫ τ

0

z(t) dt

}
=

1

τ

[∫ ∆

0

(
1− e−α0t

)
dt +

∫ τ

∆

(
1− e−α0∆

)
dt

]
=

1

τ

[
∆ +

(
τ −∆− α−1

0

) (
1− e−α0∆

)]
. (2.61)

Therefore,

lim
τ→∞

E

{
1

τ

∫ τ

0

z(t) dt

}
= 1− e−α0∆ = Q. (2.62)

This shows that, by a weak law of large numbers, condition (i) holds with σ2 = α0 Q.

Since z(t) = 0 or 1, for a sufficiently large τ and for every ε > 0, I (|z(t)| > ε
√

τ) = 0

for all 0 ≤ t ≤ τ . Hence, as τ → ∞, condition (ii) holds. Therefore, by a central

limit theorem (see, Karr, 1991, Theorem B.21), we obtain the convergence in (2.58) with

σ2 = α0 Q.

In the next part we need to show that
√

τ(α̃−α0)
D−→ Z ∼ N(0, α0), as τ →∞. Note

that α̃ = N(τ)/τ =
∫ τ

0
dN(t)/τ and so

√
τ(α̃− α0) =

1√
τ

∫ τ

0

{dN(t)− α0 dt} . (2.63)
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It is easy to see that, with z(t) = 1 in (2.56), conditions (i) and (ii) hold for (2.63).

Therefore, we showed that

√
τ(α̃− α0)

D−→ Z ∼ N(0, α0), (2.64)

as τ →∞.

Now let dM(t) = dN(t)− α0 dt, and note that E{dM(t)} = 0 under H0. Then, from

Fleming and Harrington (1991, Sections 2.4–2.7),

Cov

{
1√
τ
Uβ(τ ; α0),

√
τ(α̃− α0)

}
=

1

τ
Cov

{∫ τ

0

z(t) dM(t),

∫ τ

0

dM(t)

}
=

1

τ
E

{∫ τ

0

z(t) d 〈M〉 (t)
}

=
1

τ
E

{∫ τ

0

z(t)α0 dt

}
→ α0 Q, as τ →∞, (2.65)

where 〈M〉 (t) is defined in Section 1.4.2.

Therefore, from (2.58), (2.64) and (2.65), and the bivariate version of Theorem 13.3.9

in Daley and Vere-Jones (1988) we obtain(
1√
τ
Uβ(τ ; α0)√
τ(α̃− α0)

)
D−→ N2

[(
0

0

)
,

(
α0 Q α0 Q

α0 Q α0

)]
, (2.66)

as τ →∞. (2.57) can be written as

1√
τ
Uβ(τ ; α̃) =

(
1 − 1

τ

∫ τ

0
z(t) dt

)( 1√
τ
Uβ(τ ; α0)√
τ(α̃− α0)

)
. (2.67)

By using (2.66), (1/τ)
∫ τ

0
z(t) dt

p−→ Q, as τ →∞, and Slutsky’s lemma, (2.67) is asymp-

totically normally distributed with mean 0 and variance(
1 −Q

)(α0Q α0Q

α0Q α0

)(
1

−Q

)
= α0Q(1−Q). (2.68)

Hence, as τ →∞,
1√
τ
Uβ(τ ; α̃)√

α0Q(1−Q)

D−→ N(0, 1) (2.69)

and the term α0Q(1 − Q) in the denominator can be estimated by α̃Q̃(1 − Q̃). The

variance estimator (2.21) when m = 1 is asymptotically equivalent to this.

We could also consider asymptotic properties of the test statistic when a model param-

eter approaches infinity, in this case, α0. A similar situation in which asymptotic prop-

erties of the maximum likelihood estimators are derived is considered by van Pul (1990,
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1992) for a class of software reliability models. His study is also discussed by Andersen

et al. (1993, p. 430). We can however equate the case where α0 becomes arbitrarily large

with that where τ →∞ and the rate is fixed. If αm = mγ, say, is the Poisson process rate

then we just consider the new time scale t(m) = mτ with the rate γ unchanged. Thus,

E{N(0, t(m))} = γmt = γt(m) and τ(m) = mτ is the follow-up time. The results for τ →∞
above thus can be applied here. It is important to note, however, that if we consider the

alternative models (2.51) then, when t changes to t(m), ∆ must change to ∆(m) = ∆/m.

This makes sense, because when αm = mγ increases, ∆ = ∆(m) must decrease or else

the probability of an event within time ∆ of the previous event approaches one. We can

then consider the model of interest, λ(t|H(t)) = α exp{βZ(t)}, t ≥ 0, and discuss the

asymptotics under the null hypothesis H0 : β = 0 when α → ∞, and when β 6= 0, by

referring to the preceding results for τ →∞.

2.3.3 Power and Consistency of Tests

The tests of H0 : β = 0 in the preceding two sections are based on a specific family

of alternative hypotheses. However, it can be shown that the tests of the null Poisson

processes are also consistent against some carryover alternatives that are not in the specific

family represented by (2.1) and (2.2). That is, as m → ∞ (or as τ → ∞ in the m = 1

case of Section 2.3), the probability H0 is rejected approaches one under the alternative.

We illustrate this property via simulation in the next section. This result is important,

because in practice a carryover effect will never be of exactly the form of (2.1) and (2.2),

with the assumed value of ∆.

In choosing a value of ∆, we should consider how long a carryover effect might last for

the specific process under study. A technical requirement is that ∆ be sufficiently small

relative to the mean time α−1 between events under H0, but this is sure to be met in

reasonable applications of the carryover concept. Simulation studies below suggest that it

is better to choose a value of ∆ that is a little too small than one that is a little big relative

to the true value of ∆. It would be possible to consider ∆ as a parameter to be estimated,

but our objective here is to provide simple, powerful tests for carryover effect that can be

routinely applied before extensive model fitting and checking has been undertaken. Some

examination of the data is needed to determine whether the null hypothesis should be an

HPP or an NHPP, and we recommend first plotting the Nelson-Aalen estimate µ̂(t) of the

mean function µ(t) =
∫ t

0
ρ(s)ds (Cook and Lawless, 2007, p. 68). If µ̂(t) is close to linear

then we apply the tests of Section 2.3. If this is not the case then it is necessary to fit

a NHPP with a parametric rate function ρ0(t; α) (Cook and Lawless, 2007, Section 3.2),

following which the tests of Section 2.2.2 can be applied.
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2.4 Simulation Studies

In this section, we present the results of simulation studies conducted to assess when

asymptotic normal approximations for score test statistics are satisfactory, to investigate

the performances of test statistics and to evaluate their robustness with respect to different

types of model misspecification. The results of the simulations show that the normal

approximations are suitable for certain finite sample settings when m = 1 and τ → ∞
and when m → ∞. The score test is powerful for testing carryover efects, and robust

with respect to certain model misspecifications which are explained below. When there

is significant heterogeneity across individual processes, results of the simulation studies,

however, reveal that the tests considered in this chapter may give misleading conclusions.

We first consider testing for no carryover effect in a single process (m = 1). The model

is then (2.51). The hypothesis of no carryover effect, i.e. H0 : β = 0, is tested with the

partial score statistic

S = Uβ(α̃, 0)/V̂ ar{Uβ(α̃, 0)}1/2, (2.70)

where the score function Uβ and its estimated variance are given by (2.20) and (2.21). We

first investigate the null distribution of S and assess the standard normal approximation

for it as τ increases. Without loss of generality, we fixed α at 1, and generated 10, 000

realizations of the HPP for various τ and ∆ values. In practice we would be interested in

small values of ∆, and in the simulations we consider ∆ = 0.0202, 0.0513 and 0.1054. The

Wj under a homogeneous Poisson process model with intensity α0 are i.i.d. exponential

random variables with mean 1/α0 so Pr(Wj ≤ ∆) = 1 − e−α0∆ = c (say). With α0 = 1,

the preceding values of ∆ give c = 0.02, 0.05 and 0.10. Normal quantile-quantile (Q-Q)

plots of the 10,000 values of S are shown for scenarios with ∆ = 0.0202 in Figure 2.2. The

standard normal distribution is suitable when τ is 1000, but off in the tails when τ = 100

or 500. Similar results are shown for ∆ = 0.0513 in Figure 2.3, where the approximation

is seen to be quite accurate at τ = 500 and 750. For ∆ = 0.1054 (see Figure 2.4), the

approximations are better still at τ = 250 and 500 but off in the tails for τ = 100.

The results in Figures 2.2, 2.3 and 2.4 may seem discouraging in showing that the

expected number of events ατ under H0 must be very large for the normal approximation

to be accurate, but this is not too surprising. The expected number of events occurring

within time ∆ of the preceding event is approximately τ(1 − e−∆) under H0 and for

∆ = 0.0202, τ = 100, for example, this is only 2. A normal approximation for a discrete

count variable with this small a mean is not especially accurate. In spite of the departures

in the tails of the distribution, the approximation is, however, is useful for testing. Let

Qp be the pth quantile of the standard normal distribution. Table 2.1 presents empirical

pth quantiles, Q̂p, of the 10,000 score statistics S as well as the estimates of Pr(S >

Qp) = 1− p. Table 2.1 presents empirical pth quantiles, Q̂p, of the 10,000 score statistics

S as well as the estimates of Pr(S > Qp) = 1 − p, where p = 0.950, 0.975 and 0.990.
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Figure 2.2: Normal Q-Q plots of 10,000 simulated values of S when m = 1, ∆ = 0.0202,

and (1) τ = 100, (2) τ = 500 and (3) τ = 1, 000.

Figure 2.3: Normal Q-Q plots of 10,000 simulated values of S when m = 1, ∆ = 0.0513,

and (1) τ = 100, (2) τ = 500 and (3) τ = 750.

Figure 2.4: Normal Q-Q plots of 10,000 simulated values of S when m = 1, ∆ = 0.1054,

and (1) τ = 50, (2) τ = 250 and (3) τ = 500.
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∆ τ Q̂.950 Q̂.975 Q̂.990 P̂r(S > 1.645) P̂r(S > 1.960) P̂r(S > 2.326)
0.0202 100 1.773 2.224 2.786 0.0632 0.0371 0.0214

200 1.744 2.173 2.626 0.0599 0.0353 0.0185
500 1.706 2.106 2.560 0.0558 0.0330 0.0168

1,000 1.669 2.019 2.401 0.0522 0.0278 0.0120
0.0513 100 1.729 2.128 2.608 0.0583 0.0338 0.0177

200 1.695 2.075 2.493 0.0543 0.0298 0.0140
500 1.670 2.041 2.506 0.0521 0.0301 0.0141

1,000 1.664 2.027 2.386 0.0527 0.0293 0.0118
0.1054 100 1.716 2.039 2.445 0.0574 0.0297 0.0134

200 1.709 2.038 2.433 0.0566 0.0302 0.0124
500 1.694 2.073 2.423 0.0543 0.0311 0.0128

1,000 1.636 1.948 2.331 0.0490 0.0242 0.0103

Table 2.1: Q̂p is the empirical pth quantile of S computed from 10,000 samples when

m = 1. P̂r(S > Qp) is the proportion of the values of S in 10,000 samples which are

larger than the pth quantile of a standard normal distribution.

The normal approximation overestimates right tail probabilities less than 0.05 by 0.01

or less for cases where ∆τ > 2. The normal approximation might be improved if one

were to consider a transformation of O(∆) and treat it as normal. We can also estimate

p-values by simulation, however, and that is the approach we will use in cases where the

approximation is inadequate.

We also considered the score statistic (2.70) when m > 1. We fixed τ at 10, and gen-

erated 10,000 realizations of m processes under the null homogeneous Poisson processes

with rate one, for various m values, with ∆ = 0.0202, 0.0513 and 0.1054. Normal prob-

ability plots (Figures 2.5, 2.6 and 2.7) closely resemble those of the m = 1 case with the

equivalent total expected number of events under H0. For example, the plots for m = 10,

50 and 100 are close to those for τ = 100, 500 and 1000 in Figures 2.2, 2.3 and 2.4. A table

similar to Table 2.1 was also constructed. Table 2.2 shows Q̂p and estimated Pr(S > Qp)

values when p = 0.950, 0.975 and 0.990. The results are very similar to those in Table 2.1.

For example, with ∆ = 0.0202 and (m, τ) = (100, 10), the probabilities corresponding to

the values 0.0522, 0.0278, 0.0120 for τ = 1000 in Table 2.1, and are 0.0532, 0.0278, 0.0141.

Also, as m increases, the standard normal distribution approximates the distribution of

the test statistic S quite well.

The power of the statistic (2.70) against specific alternative hypotheses was also in-

vestigated by Monte Carlo studies. We used the 10,000 realizations of the null model for

different (∆, τ) combinations discussed above to estimate the 5% critical values, in order

to estimate powers for a test with true size 0.05. We considered τ = 100 and 200, and
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Figure 2.5: Normal Q-Q plots of 10,000 simulated values of the test statistic S when

τ = 10, ∆ = 0.0202, and (1) m = 10, (2) m = 50 and (3) m = 100.

Figure 2.6: Normal Q-Q plots of 10,000 simulated values of the test statistic S when

τ = 10, ∆ = 0.0513, and (1) m = 10, (2) m = 50 and (3) m = 75.

Figure 2.7: Normal Q-Q plots of 10,000 simulated values of the test statistic S when

τ = 10, ∆ = 0.1054, and (1) m = 5, (2) m = 25 and (3) m = 50.
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∆ m Q̂.950 Q̂.975 Q̂.990 P̂ (S > 1.645) P̂r(S > 1.960) P̂r(S > 2.330)
0.0202 10 1.824 2.241 2.807 0.0668 0.0405 0.0214

20 1.752 2.141 2.551 0.0591 0.0348 0.0162
50 1.741 2.083 2.551 0.0586 0.0333 0.0146

100 1.671 2.016 2.422 0.0530 0.0286 0.0133
0.0513 10 1.706 2.132 2.599 0.0551 0.0337 0.0172

20 1.689 2.053 2.538 0.0548 0.0298 0.0144
50 1.691 2.031 2.441 0.0541 0.0295 0.0130

100 1.670 1.993 2.347 0.0520 0.0265 0.0107
0.1054 10 1.694 2.028 2.465 0.0554 0.0288 0.0135

20 1.686 2.036 2.434 0.0550 0.0295 0.0128
50 1.664 1.986 2.412 0.0517 0.0274 0.0118

100 1.615 1.965 2.375 0.0469 0.0254 0.0111

Table 2.2: Q̂p is the empirical pth quantile of S computed from 10,000 samples when

m > 1 and τ = 10. P̂r(S > Qp) is the proportion of the values of S in 10,000 samples

which are larger than the pth quantile of a standard normal distribution.

generated 1,000 processes under scenarios based on two different types of models:

Model A: λ(t|H(t)) = α exp{βI(N(t−) > 0)I(B(t) ≤ ∆0)}, (2.71)

Model B: λ(t|H(t)) = α + βI(N(t−) > 0)D(t), (2.72)

where α = 1. Model B is a piecewise model in which D(t) = {1.5I(B(t) ≤ 0.5∆0) +

I(0.5∆0 < B(t) ≤ ∆0) + 0.5I(∆0 < B(t) ≤ 1.5∆0)}, and is of additive rather than

multiplicative form. The value of ∆0 in (2.71) is not necessarily the same as the value

∆ used in the test statistic; this allows us to assess the effect of an incorrect choice

of ∆. Scenarios were considered with various combinations of (∆, ∆0, τ, e
β). The data

were generated according to an algorithm for point processes given in Section 1.5 under

the various models. Results for Model A are presented in Table 2.3; the entries are the

proportion of samples in which S exceeds its 5% critical value. The power of the test is

high for almost all scenarios with eβ = 4 and 6, which represent levels of increased risk

that would be of interest in many applications. As expected, the power increases as τ and

∆ increase. Regarding misspecification of ∆, some loss of power results from choosing

too large a value of ∆ (i.e. ∆0 is less than ∆), but choosing a value that is a little too

small has little effect. This should be kept in mind when selecting ∆ in practice.

In a similar simulation study, we considered model misspecification by generating

1,000 processes under various scenarios from Model B. We used the statistic (2.70) once

again for testing H0 : β = 0. The power results are given in Table 2.4; values are slightly

smaller than those of Table 2.3, but very good overall, which indicate that S is robust

in the sense that it retains power to reject the hypothesis of no carryover effect when
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τ = 100 τ = 200
∆ ∆0 eβ = 2 eβ = 4 eβ = 6 eβ = 2 eβ = 4 eβ = 6

2
3∆ 0.140 0.580 0.886 0.247 0.850 0.991

0.0202 ∆ 0.273 0.836 0.986 0.468 0.977 1.000
4
3∆ 0.237 0.852 0.993 0.434 0.975 1.000
2
3∆ 0.285 0.912 0.999 0.474 0.996 1.000

0.0513 ∆ 0.510 0.993 1.000 0.754 1.000 1.000
4
3∆ 0.456 0.993 1.000 0.746 1.000 1.000
2
3∆ 0.480 0.993 1.000 0.740 1.000 1.000

0.1054 ∆ 0.788 1.000 1.000 0.993 1.000 1.000
4
3∆ 0.751 1.000 1.000 0.945 1.000 1.000

Table 2.3: Power of S: Model A, m = 1.

τ = 100 τ = 200
∆ ∆0 eβ = 2 eβ = 4 eβ = 6 eβ = 2 eβ = 4 eβ = 6

2
3∆ 0.154 0.607 0.893 0.262 0.858 0.998

0.0202 ∆ 0.207 0.718 0.958 0.348 0.941 0.998
4
3∆ 0.217 0.771 0.971 0.379 0.960 0.999
2
3∆ 0.280 0.910 0.995 0.467 0.997 1.000

0.0513 ∆ 0.377 0.980 1.000 0.614 1.000 1.000
4
3∆ 0.363 0.981 1.000 0.655 1.000 1.000
2
3∆ 0.487 0.996 1.000 0.721 1.000 1.000

0.1054 ∆ 0.618 0.999 1.000 0.867 1.000 1.000
4
3∆ 0.637 1.000 1.000 0.865 1.000 1.000

Table 2.4: Power of S: Model B, m = 1.
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τ = 10 τ = 20
∆ ∆0 eβ = 2 eβ = 4 eβ = 6 eβ = 2 eβ = 4 eβ = 6

2
3∆ 0.157 0.594 0.876 0.241 0.850 0.987

0.0202 ∆ 0.252 0.857 0.990 0.411 0.973 1.000
4
3∆ 0.251 0.839 0.980 0.423 0.972 1.000
2
3∆ 0.282 0.917 0.998 0.476 0.995 1.000

0.0513 ∆ 0.487 0.988 1.000 0.718 1.000 1.000
4
3∆ 0.452 0.993 1.000 0.745 1.000 1.000
2
3∆ 0.497 0.999 1.000 0.762 1.000 1.000

0.1054 ∆ 0.752 1.000 1.000 0.963 1.000 1.000
4
3∆ 0.700 1.000 1.000 0.946 1.000 1.000

Table 2.5: Power of S: Model C, m = 10.

τ = 5 τ = 10
∆ ∆0 eβ = 2 eβ = 4 eβ = 6 eβ = 2 eβ = 4 eβ = 6

2
3∆ 0.153 0.596 0.868 0.257 0.842 0.985

0.0202 ∆ 0.281 0.831 0.982 0.414 0.981 0.998
4
3∆ 0.249 0.825 0.984 0.431 0.983 1.000
2
3∆ 0.295 0.913 0.995 0.482 0.996 1.000

0.0513 ∆ 0.485 0.993 1.000 0.749 1.000 1.000
4
3∆ 0.496 0.995 1.000 0.722 1.000 1.000
2
3∆ 0.464 0.997 1.000 0.716 1.000 1.000

0.1054 ∆ 0.745 1.000 1.000 0.952 1.000 1.000
4
3∆ 0.690 1.000 1.000 0.935 1.000 1.000

Table 2.6: Power of S: Model C, m = 20.

the model (2.51) is misspecified. This is in line with the consistency result mentioned in

Section 2.3.3.

We also considered power for scenarios with m > 1. The null model, like in the

previous case, is a homogeneous Poisson process with the rate function ρ0(t) = α = 1.

We consider the expanded model,

Model C: λi(t|Hi(t)) = α exp{βI(Ni(t
−) > 0)I(Bi(t) ≤ ∆0)}, i = 1, . . . ,m, (2.73)

which is just Model A but with m > 1. The statistic S was once again used for testing

the null hypothesis of no carryover effect. We consider the cases m = 10, 20 and τ = 5,

10, 20 here. The empirical powers of the test are presented in Table 2.5 when m = 10

and in Table 2.6 when m = 20 for various (∆, ∆0, τ , eβ) combinations. The results in

the two tables are similar, with power depending on β and the value of mτ . The test is

also robust with respect to the misspecification of ∆, with features similar to Table 2.3.
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τ = 10 τ = 20
∆ ∆0 eβ = 1 eβ = 2 eβ = 4 eβ = 6 eβ = 1 eβ = 2 eβ = 4 eβ = 6

2
3∆ 0.043 0.178 0.596 0.889 0.045 0.258 0.869 0.993

0.0202 ∆ 0.055 0.257 0.839 0.981 0.049 0.447 0.978 1.000
4
3∆ 0.053 0.269 0.854 0.987 0.051 0.389 0.981 1.000
2
3∆ 0.037 0.289 0.913 0.998 0.046 0.484 0.998 1.000

0.0513 ∆ 0.052 0.466 0.991 1.000 0.046 0.750 1.000 1.000
4
3∆ 0.047 0.469 0.991 1.000 0.045 0.756 1.000 1.000
2
3∆ 0.034 0.481 0.993 1.000 0.062 0.768 1.000 1.000

0.1054 ∆ 0.045 0.746 1.000 1.000 0.049 0.956 1.000 1.000
4
3∆ 0.053 0.719 0.999 1.000 0.060 0.956 1.000 1.000

Table 2.7: Power of S: Model D, φ = 0.002, m = 10.

τ = 5 τ = 10
∆ ∆0 eβ = 1 eβ = 2 eβ = 4 eβ = 6 eβ = 1 eβ = 2 eβ = 4 eβ = 6

2
3∆ 0.049 0.153 0.612 0.890 0.055 0.158 0.863 0.989

0.0202 ∆ 0.043 0.247 0.838 0.986 0.045 0.440 0.978 1.000
4
3∆ 0.048 0.252 0.840 0.988 0.046 0.429 0.974 1.000
2
3∆ 0.042 0.295 0.917 0.999 0.055 0.479 0.998 1.000

0.0513 ∆ 0.045 0.514 0.996 1.000 0.049 0.758 1.000 1.000
4
3∆ 0.046 0.469 0.992 1.000 0.047 0.722 1.000 1.000
2
3∆ 0.062 0.484 0.995 1.000 0.055 0.770 1.000 1.000

0.1054 ∆ 0.050 0.749 1.000 1.000 0.051 0.943 1.000 1.000
4
3∆ 0.047 0.718 1.000 1.000 0.053 0.954 1.000 1.000

Table 2.8: Power of S: Model D, φ = 0.002, m = 20.

φ τ = 10 τ = 20

0.002 0.055 0.049

0.3 0.077 0.095

0.6 0.125 0.191

Table 2.9: Empirical Type 1 error for S with ∆ = 0.0202 under heterogeneity of the

processes i = 1, . . ., m (m = 10).
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Finally, we consider the effect of heterogeneity that is not accounted for by the tests

by generating data from the following model:

Model D: λi(t|Hi(t)) = αi exp{βI(Ni(t
−) > 0)I(Bi(t) ≤ ∆0)}, (2.74)

where the αi (i = 1, . . ., m) are generated from a gamma distribution with mean 1 and

variance φ in each simulation run. The degree of heterogeneity depends on the choice of

φ. We first chose φ = 0.002, representing minimal heterogeneity, and then φ = 0.3 and

0.6. The power results are given in Table 2.7 and Table 2.8, where we used the critical

values obtained earlier when data are generated from HPPs with rate α = 1 (i = 1, . . .,

m) in 10,000 simulation runs. Comparing them to Table 2.5 and Table 2.6, respectively,

the results are very similar. Note that since φ = 0.002 is very small, and, thus, the

heterogeneity between processes is small, the empirical type 1 errors given under eβ = 1

column in Tables 2.7 and 2.8 are close to nominal size 0.05. However, when the αi are

generated from a gamma distribution with the variance φ = 0.3 and φ = 0.6, the Type

1 errors are inflated. This can be seen in Table 2.9, where the empirical Type 1 errors

are given under combinations of (τ , φ) when m = 10. This is caused by the fact that

the test is more sensitive to the processes having different αi’s than to the processes

having a carryover effect. These are based on 1,000 samples generated under Model D

for each scenario; the entries in the table give the proportion of the samples in which the

test statistic S exceeded the 5% critical values obtained when the αi are equal 1. When

there is a minimal degree of heterogeneity (φ = 0.002) in the m processes the Type 1

error is close to 0.05, but as φ increases, there is substantial inflation. Similar results

are found with other values of m and ∆, with the Type 1 error inflation increasing with

m and ∆. The important message is that failure to recognize heterogeneity can lead

to incorrect rejection of the hypothesis of no carryover effect. If there is any indication

of heterogeneity, the tests of this chapter should therefore not be used, and instead one

should use tests for the heterogeneity case in the following chapter.

2.5 Example: Submarine Engine Data

Here, we give an illustration of testing for carryover effects developed in the preceding

sections for the m = 1 case.

In Section 1.1.1, we introduced the data set of unscheduled maintenance events for

a submarine engine (Lee, 1980). Although the data set includes 7 scheduled engine

overhauls, we are interested in event times of 58 unscheduled corrective maintenance

actions. The last two failure times are suspicious outliers. Since our objective here is to

illustrate the carryover effect test procedures, we omit the last two failure times without

further investigation. A plot of the cumulative number of the first 56 failures versus

cumulative operating time is given in Figure 2.8. The figure reveals an approximate
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Figure 2.8: Cumulative operating hours (in hours of operation) until the occurrence of

unscheduled significant maintenance events for the U.S.S. Grampus No. 4 main propulsion

diesel engine.

straight line with a slight departure towards the end. This suggests there is little or no

trend in the data. In addition, the Lewis-Robinson trend test introduced in Chapter 4

gives a p-value of 0.305. That is, there is no significant evidence of a trend in the data.

Figure 2.8 may suggest clustering of failures together in time. We, therefore, consider

the expanded model λ(t|H(t)) = αeβz(t), where z(t) is given in (2.2), and test the null

hypothesis β = 0. The reduced model is then a HPP with rate function α. The estimates

of the parameters and the maximized log likelihood values are given in Table 2.10 for the

null and expanded models for various ∆ values. The estimated values of c = Pr{Wj ≤
∆|λ(t) = α} are presented in Table 2.10 as well. For example, when ∆ = 10, c = Pr{Wj ≤
∆} = 1− e−α̃∆ = 0.04 under a HPP with rate function α̃ = 0.004.

The score test using the statistic (2.22) was performed. The results are given in

Table 2.11 for different ∆ values. To calculate the p-values, we used parametric bootstrap

with 1,000 simulation runs. Two-sided p-values, i.e. Pr{|S| > |Sobs||α̃} where Sobs is the

observed S, based on bootstrap and N(0, 1) are presented. Note that p-values based on

N(0, 1) (denoted as p∗-value in the table) are very similar to the simulation p-values. It

is observed that there is no evidence against H0 for each ∆. Hence, a carryover effect is

not significant in the model. The likelihood ratio test 2`(α̂, β̂) − 2`(α̃, 0) for testing H0

gives similar results, as can be seen from Table 2.10.
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Expanded Model Reduced Model

∆ c α̂ β̂ `(α̂, β̂) α̃ `(α̃, 0)

5 0.02 0.004 -0.003 -369.326 0.004 -369.326

10 0.04 0.004 0.430 -369.094 0.004 -369.326

15 0.06 0.004 0.328 -369.144 0.004 -369.326

50 0.18 0.004 -0.025 -369.324 0.004 -369.326

75 0.26 0.004 -0.027 -369.324 0.004 -369.326

100 0.33 0.004 0.170 -369.149 0.004 -369.326

125 0.39 0.003 0.293 -368.748 0.004 -369.326

150 0.45 0.003 0.304 -368.686 0.004 -369.326

Table 2.10: The results of the test statistic S which is given by (2.23) for various ∆ values

(in hours of operation). The expanded model is αeβz(t) and the reduced model is α.

∆ O(∆) α̃E(∆) Uβ(α̃, 0) V̂ ar(Uβ(α̃, 0)) S p-value p∗-value

5 1 1.003 -0.003 0.985 -0.003 0.995 0.998

10 3 1.988 1.012 1.917 0.731 0.467 0.465

15 4 2.939 1.061 2.785 0.636 0.537 0.525

50 9 9.190 -0.190 7.682 -0.068 0.946 0.946

75 13 13.270 -0.270 10.125 -0.085 0.935 0.932

100 19 16.930 2.070 11.812 0.602 0.541 0.547

125 24 20.092 3.908 12.883 1.089 0.303 0.276

150 27 22.809 4.191 13.519 1.140 0.251 0.254

Table 2.11: Results for S given by (2.23), for various ∆ values (in hours of operation).
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2.6 Tests for Nonhomogeneous Poisson Processes

In this section, we discuss testing the null hypothesis of a nonhomogeneous Poisson process

model against the alternative of a model with a carryover effect. The models that we

consider are of the multiplicative form with the intensity function

λ(t|H(t); α, β) = ρ0(t; α) exp{βz(t)}, t > 0, (2.75)

where the baseline rate function ρ0(t; α) defines a NHPP, and z(t) is a function of the

recurrent event history at time t. A test for no carryover effect in NHPP is obtained by

testing the null hypothesis H0 : β = 0. This is the model considered in Section 2.2.2

(see (2.1)) but we use slightly different counting process notation here in order to discuss

asymptotic results below. General results in Section 1.4.3 apply to tests for models (2.75).

Our objective in this section is to discuss conditions for asymptotic normality of estimators

and score statistics, along the lines of Section 2.3 for homogeneous processes, and to

consider an illustration.

For discussion, we consider a specific model that belongs to (2.75), given by (i = 1,

. . ., m)

λi(t|Hi(t)) = exp{α + βt + γzi(t)}, t > 0, (2.76)

where zi(t) = I{Ni(t
−) > 0}I{Bi(t) ≤ ∆} and Bi(t) is the backward recurrence time

for the ith process. The likelihood function for the data {(N̄i(s), Yi(s)); 0 ≤ s ≤ t; i =

1, . . . ,m} is then given by (cf. Section 1.4.1)

L(θ) =
m∏

i=1

Li(θ), (2.77)

where θ = (α, β, γ)′ and

Li(θ) =

[
ni∏

j=1

λi(tij|Hi(tij))

]
e−

∫∞
0 Yi(t)λi(t|Hi(t)) dt. (2.78)

The log likelihood function `(θ) = log L(θ) is then given by

`(θ) =
m∑

i=1

∫ ∞

0

Yi(u) [log λi(t|Hi(t)) dNi(t)− λi(t|Hi(t)) du] ,

= αn. + βt. + γz.−
m∑

i=1

∫ ∞

0

Yi(t)e
α+βt+γzi(t) dt, (2.79)

where n. =
∑m

i=1 ni, t. =
∑m

i=1

∑ni

j=1 tij and z. =
∑m

i=1

∑ni

j=1 zi(tij). When testing

H0 : γ = 0, the parameters α and β are nuisance parameters. The restricted maxi-

mum likelihood estimators α̃ and β̃ can be found by maximizing `(α, β, 0). The score
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vector U (θ) = (∂/∂θ)`(θ) is given by

θ =
(
Uα(θ) Uβ(θ) Uγ(θ)

)′
=

m∑
i=1

∫ ∞

0

Yi(t)H i(t)[dNi(t)− λi(t|Hi(t)) dt], (2.80)

where H i(t) = (1, t, zi(t))
′. Note that when γ = 0, the score vector (2.83) gives

U (α, β, 0) =

Uα(α, β, 0)

Uβ(α, β, 0)

Uγ(α, β, 0)

 =

 n.−
∑m

i=1

∫∞
0

Yi(t)e
α+βt dt

t.−
∑m

i=1

∫∞
0

Yi(t)te
α+βt dt

z.−
∑m

i=1

∫∞
0

Yi(t)zi(t)e
α+βt dt

 (2.81)

The information matrix I(θ) = −(∂2/∂θ∂θ′)`(θ) is given by

I(θ) =

Iαα(θ) Iαβ(θ) Iαγ(θ)

Iβα(θ) Iββ(θ) Iβγ(θ)

Iγα(θ) Iγβ(θ) Iγγ(θ)

 , (2.82)

where

Iαα(θ) =
m∑

i=1

∫ ∞

0

Yi(t) eα+βt+γzi(t) dt,

Iαβ(θ) =
m∑

i=1

∫ ∞

0

Yi(t) t eα+βt+γzi(t) dt,

Iαγ(θ) =
m∑

i=1

∫ ∞

0

Yi(t) zi(t) eα+βt+γzi(t) dt,

Iββ(θ) =
m∑

i=1

∫ ∞

0

Yi(t) t2 eα+βt+γzi(t) dt,

Iβγ(θ) =
m∑

i=1

∫ ∞

0

Yi(t) t zi(t) eα+βt+γzi(t) dt,

and

Iγγ(θ) =
m∑

i=1

∫ ∞

0

Yi(t) z2
i (t) eα+βt+γzi(t) dt,

A score statistic for testing H0 : γ = 0 is then given by

S = U2
γ (α̃, β̃, 0)Iγγ(α̃, β̃, 0), (2.83)

where

Iγγ(θ) =

[
Iαα(θ)−

(
Iγα(θ) Iγβ(θ)

)(Iαα(θ) Iαβ(θ)

Iβα(θ) Iββ(θ)

)(
Iαγ(θ)

Iβγ(θ)

)]−1

.
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Alternatively, the likelihood ratio statistic

Λ = 2`(θ̂)− 2`(θ̃), (2.84)

where θ̃ = (α̃, β̃, 0)′, can be used for testing the hypothesis H0 : γ = 0 of no carryover

effect.

We next discuss the asymptotic properties of the test statistic S and Λ.

2.6.1 Settings with Large m

The case of main interest for nonhomogeneous processes is when m →∞, and we consider

the asymptotic properties of the partial score test statistic (2.83) for testing the null

hypothesis γ = 0. We want to show, under the null hypothesis γ = 0, that

1√
m

Uγ(θ̃) =
1√
m

m∑
i=1

∫ ∞

0

Yi(u)zi(u)
[
dNi(u)− eα̃+β̃u du

]
, (2.85)

converges weakly to a mean zero Gaussian process with a covariance function that may

be estimated by the observed or expected information matrix as in (2.83). We can show

this by checking conditions A–E given by Andersen et al. (1993, pp. 420–421) as in

Section 2.3.1. Once again we focus on the crucial conditions B, C and D. The at-risk

processes {Yi(t); t ≥ 0} are here assumed to be completely independent of the underlying

event processes {Ni(t); t ≥ 0}. Let τ be a prespecified (fixed) time such that τ ∈ [0,∞).

By replacing the upper limit of the integral in the partial score function (2.85) with t,

t ∈ [0, τ ], we obtain stochastic integrals.

Let us define the vector of the nuisance parameters η = (α, β)′ and vector of the

restricted maximum likelihood estimators η̃ = (α̃, β̃)′, and suppose that η0 = (α0, β0)
′ is

the vector of true parameter values. Condition A holds for the null model with intensity

λi(t) = exp{α + βt} because the partial derivatives of λi and log λi of the first, second,

and third order with respect to η exist, and are continous. Moreover, it can be easily

shown that `(τ ; α, β, 0) in (2.79) can be differentiated three times with respect to η by

interchanging the order of differentiation and integration.

We now consider conditions B and D. Let

H i(t) =

Hi,(1,1)(t) Hi,(1,2)(t) Hi,(1,3)(t)

Hi,(2,1)(t) Hi,(2,2)(t) Hi,(2,3)(t)

Hi,(3,1)(t) Hi,(3,2)(t) Hi,(3,3)(t)

 =

 zi(t) zi(t) zi(t)t

zi(t) 1 t

zi(t)t t t2

 . (2.86)

We need to show that, as m approaches infinity,

1

m

m∑
i=1

∫ τ

0

H i(u)Yi(u)eα0+β0u du
p−→ Σ(τ ; η0), (2.87)
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where

Σ(t; η0) =

σγγ(t; η0) σγα(t; η0) σγβ(t; η0)

σαγ(t; η0) σαα(t; η0) σαβ(t; η0)

σβγ(t; η0) σβα(t; η0) σββ(t; η0)

 (2.88)

have finite components [(σij(t; η0))], i,j = α, β, γ, for all t ∈ [0, τ ], and Σ(τ ; η0) is

positive definite. To show the convergence result (2.87), let the event Ai(t) be “the ith

individual experiences at least one event in [max(t−∆, 0), t)]” as in Section 2.3.1. Then,

zi(t) = I{Ai(t)} and E{zi(t)} = Pr{Ai(t)}, and under H0

Pr{Ai(t)} =I{t < ∆}
[
1− exp

{
−α0

β0

(
eβ0t − 1

)}]
+ I{t ≥ ∆}

[
1− exp

{
−α0

β0

(
eβ0t[1− e−β0∆]

)}]
. (2.89)

Thus, assuming that the expectations of the at-risk processes Yi exist, under the null

hypothesis γ = 0, the convergence result (2.87) holds by a weak law of large numbers.

Then, the components of Σ(t; η0) are given by

σγγ(t; η0) =

∫ t

0

E{Yi(u)}Pr{Ai(u)} eα0+β0u du,

σγα(t; η0) = σαγ(t; η0) =

∫ t

0

E{Yi(u)}Pr{Ai(u)} eα0+β0u du,

σγβ(t; η0) = σβγ(t; η0) =

∫ t

0

E{Yi(u)}Pr{Ai(u)}ueα0+β0u du,

σαα(t; η0) =

∫ t

0

E{Yi(u)} eα0+β0u du,

σαβ(t; η0) = σββ(t; η0) =

∫ t

0

E{Yi(u)}ueα0+β0u du,

and

σββ(t; η0) =

∫ t

0

E{Yi(u)}u2eα0+β0u du.

The resulting matrix (2.88) can be shown to be positive definite. This completes condi-

tions B and D.

We next consider Condition C which is a Lindeberg-type condition for proving the

weak convergence of the stochastic integrals using the martingale central limit theorem

(see Andersen et al. 1993, pp. 83–84). We need to check that; for any ε > 0,

1

m

m∑
i=1

∫ t

0

{Hi,(j,l)(u)}2I

{∣∣∣∣ 1√
m

Hi,(j,l)(u)

∣∣∣∣ > ε

}
Yi(u)eα0+β0u du

p−→ 0, (2.90)
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as m → ∞, where Hi,(j,l)(t) (j, l = 1, 2, 3) is defined in (2.86). Let us first consider

Hi,(1,1)(t) = Hi,(1,2)(t) = Hi,(2,1)(t) = zi(t). Since zi(t) = 0 or 1, for a sufficiently large m,

I {zi(u) > ε
√

m} = 0 for all 0 ≤ u ≤ τ . Thus,

1

m

m∑
i=1

∫ t

0

zi(u)I
{
zi(u) > ε

√
m
}

Yi(u)eα0+β0u du (2.91)

convergences to zero in probability. The convergence results for Hi,(1,3)(t) = Hi,(3,1)(t) =

tzi(t) can be shown similarly. For Hi,(2,2)(t) = 1, we denote Ei(t) =
∫ t

0
Yi(u)eα0+β0u du,

t ∈ [0, τ ], and then assume that

1

m

m∑
i=1

Ei(t)
p−→ e(t), t ∈ [0, τ ], (2.92)

as m → ∞. This rather weak assumption implies that the average expected number of

events should stabilize as m increases (see, Andersen et al. 1993, p. 428). Under this

assumption, the convergence result for

1

m

m∑
i=1

∫ t

0

I
{
1 > ε

√
m
}

Yi(u)eα0+β0u du (2.93)

follows directly. Other convergence results can be shown in a similar manner.

Condition E holds when we restrict 0 ≤ t ≤ τ for some τ and |α| < R and |β| < M

for some R > 0 and M > 0. Then, the conditions of Andersen et al. (1993, pp. 420–421)

are satisfied for the model under H0 : γ = 0. Then, from a theorem given by Andersen

et al. (1993, p. 422), we conclude that η̃ converges in probability to η0 as m → ∞.

Furthermore, Pena (1998) showed that, under contitions A–E and the null hypothesis

H0 : γ = 0,
1√
m

Uγ(η̃, 0)
D−→ Z ∼ N

(
0, σ2

γ(τ))
)

as m →∞, where

σ2
γ(τ) = σγγ(τ)−

(
σγα(τ), σγβ(τ)

)(σαα(τ) σαβ(τ)

σβα(τ) σββ(τ)

)−1(
σαγ(τ)

σβγ(τ)

)
,

which can be estimated by any consistent estimator of σ2
γ(τ). Therefore, significance levels

(p-values) can be computed by using N(0, 1) approximation for S in (2.83). Also, the

limiting distribution of Λ in (2.84) is χ2
(1) when m →∞.

2.6.2 Example: Hydraulic Systems of LHD Machines

Kumar and Klefsjo (1992) present failure times of hydraulic systems of 6 load-haul-dump

(LHD) machines which are chosen from a fleet of LHD machines. The data set is given in
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Figure 2.9: Time (on operating hours) dot plots for failures of hydraulic systems of LHD

machines.

the appendix. The main aim of their analysis is to study the pattern in the reliability of

the hydraulic systems. Furthermore, some maintenance policies are suggested to minimize

the total cost of operation and maximize the availability of the hydraulic systems. We

consider the LHD machines here individually (i.e. m = 1) to illustrate the carryover

effects testing in nonhomogeneous Poisson processes.

End-of-followup times of machines are not given explicitly by Kumar and Klefsjo.

Therefore, it is supposed in our study that the last failure time of the hydraulic system

for each machine is the end-of-followup time of the machine under observation. It is,

however, worth noting that the data are not failure truncated but time truncated. As

discussed in Section 1.1.1, Kumar and Klefsjo categorize the machines as old (LHD 1 and

LHD 3), medium old (LHD 9 and LHD 11) and new (LHD 17 and LHD 20). For the

machines LHD 1, LHD 3, LHD 9, LHD 11, LHD 17 and LHD 20 the number of failures

during the observation periods are 23, 25, 27, 28, 26 and 23, and the last failure times

are 2496, 3526, 4743, 2913, 3230 and 3309, respectively.

The data set is displayed as an event dot plot for each LHD machine in Figure 2.9 to

gain an insight into the frequency and patterns of the data. Since we consider the last

failure times as end-of-followup times, LHD 1 and LHD 9 machines have the smallest and

the longest observation periods, respectively. All machines experienced a similar number

of failures at the end of their observation periods. The dot plot suggests clustering of

events after each failure occurrence for some machines (e.g. LHD 11). Plots of the

cumulative number of failures versus cumulative operating time for each machine are

given in Figure 2.10. An approximate linearity in the plots of LHD 3, LHD 11 and

LHD 20 in Figure 2.10 suggests that the HPP may be a suitable model, whereas plots
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Figure 2.10: Cumulative failures of the hydraulic systems of LHD machines versus oper-

ating hours.
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Machine α̂ β̂ γ̂

LHD 1 -5.738 (0.5473) 0.000640 (0.000342) 0.257 (0.4479)
LHD 3 -5.395 (0.4744) 0.000206 (0.000203) 0.120 (0.4034)
LHD 9 -6.050 (0.4929) 0.000383 (0.000152) -0.385 (0.4055)
LHD 11 -5.112 (0.4861) 0.000121 (0.000233) 0.455 (0.4048)
LHD 17 -5.563 (0.4820) 0.000383 (0.000231) 0.107 (0.0657)
LHD 20 -5.068 (0.4632) 0.000103 (0.000216) -0.167 (0.4209)

Table 2.12: Estimates of α, β and γ in Model A for each machine. The numbers in the

parentheses are the standard errors of parameter estimates.

for other machines display an increasing rate of occurrence of failures. As this is based

on the interpretation of plots, we shall consider these comments further with statistical

tests.

Since Figure 2.9 and Figure 2.10 suggest clustering of failures for some machines, an

analysis for a carryover effect for each LHD machine could be useful. Figure 2.10 suggests

that trend is also present in the rate of failure of LHD 1, LHD 9 and LHD 17 machines

as well. We, therefore, consider the following model:

Model A: λ(t|H(t)) = exp {α + βt + γz(t)} , t ≥ 0,

where z(t) = I(N(t−) > 0)I(t − TN(t−) ≤ 100), and we want to test the null hypothesis

H0 : γ = 0. The value ∆ = 100 is chosen for illustration. By maximizing the log likelihood

(2.79), we obtain the maximum likelihood estimates and their standard errors which are

displayed in Table 2.12. The reduced model is an NHPP including a term for a monotonic

time trend. That is,

Model B: λ(t) = exp {α + βt} , t ≥ 0.

The maximum likelihood estimates with standard errors for Model B are displayed in Ta-

ble 2.13. The null hypotheses of no carryover effect (γ = 0) can be tested with likelihood

ratio statistic Λ in (2.84), and the results are given in Table 2.14. We used χ2 approxima-

tion to estimate p-values. From the p-values, the likelihood ratio tests for the absence of

a carryover effect in nonhomogeneous Poisson process do not show evidence against the

null hypothesis H0 : γ = 0 for all LHD machines. Similar p-values and conclusions are

obtained if we use Wald statistics γ̂/se(γ̂) from Table 2.14 to test that γ = 0. Finally, the

partial score statistic (2.83) can also be used. This requires a bit of computation beyond

the results of fitting models A and B, but it is also valid to use (2.83) with Iγγ(α̂, β̂, γ̂)

used in place of Iγγ(α̃, β̃, 0).
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Machine α̂ β̂

LHD 1 -5.679 (0.5375) 0.000697 (0.000311)
LHD 3 -5.349 (0.4426) 0.000213 (0.000199)
LHD 9 -6.124 (0.4914) 0.000354 (0.000150)
LHD 11 -4.836 (0.3966) 0.000127 (0.000226)
LHD 17 -5.539 (0.4709) 0.000401 (0.000219)
LHD 20 -5.138 (0.4351) 0.000099 (0.000219)

Table 2.13: Estimates of α and β in Model B for each machine. The numbers in the

parentheses are the standard errors of parameter estimates.

Machine l(θ̂) l(θ̃) Λ W

LHD 1 -127.94 -128.11 0.334 (0.5634) 0.330 (0.5660)
LHD 3 -148.10 -148.15 0.088 (0.7668) 0.088 (0.7669)
LHD 9 -163.12 -163.58 0.925 (0.3362) 0.902 (0.3422)
LHD 11 -157.23 -157.89 1.323 (0.2501) 1.262 (0.2612)
LHD 17 -149.60 -149.63 0.066 (0.7978) 0.065 (0.7982)
LHD 20 -137.10 -137.18 0.158 (0.6915) 0.157 (0.6924)

Table 2.14: The maximized log likelihoods for Model A and Model B, Λ = 2l(θ̂)− 2l(θ̃)

and W = γ̂2/s2(γ̂). The numbers in the parentheses are the p-values.
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Chapter 3

Testing for Carryover Effects in

Nonidentical Processes

In the preceding chapter, we discussed testing for carryover effects in identical processes.

In this section, we deal with the nonidentical processes case by considering fixed and

random effects models. We give the tests for carryover effects in nonhomogeneous Poisson

processes in Section 3.2. In Section 3.3, we present the results of simulation studies. In

Section 3.4, we illustrate the methods with an application from an asthma prevention

trial in infants.

3.1 Introduction

In applications involving multiple systems or individuals, heterogeneity is often apparent

(e.g. Lawless, 1987; Baker, 2001; Lindqvist, 2006; Cook and Lawless, 2007, Section 3.5),

even after adjustment for known covariates. In particular, although individual processes

may be adequately described by a modulated Poisson process, the process rate functions

may vary across individuals. Such variation is typically due to unmeasured differences in

the individuals or the environment in which the processes operate. If the tests developed

for identical processes are used when substantial heterogeneity is present, false indications

of an effect can occur, producing an inflated Type 1 error rate, as we showed in Section 2.4

(see Table 2.9).

A useful extension of modulated Poisson process models to include heterogeneity is

where independent processes i = 1, . . ., m have rate functions

ρi(t|Hi(t)) = αiρ0(t; γ) exp {z′i(t)β} , (3.1)

where α1, . . ., αm are positive parameters and γ is a p× 1 vector of parameters. Models

for which γ is also allowed to vary across individuals can be considered, but we will focus
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on (3.1). Such fixed effects models can be problematic when m is large; the number of

parameters m + p + 1 is large and estimates of the αi are not consistent as m → ∞.

An alternative is to assume the αi are independent and identically distributed random

effects with some distribution function G(α; φ), where φ is a vector of parameters (Cook

and Lawless, 2007, Section 3.5). Both these models are widely applied, and we consider

related tests for carryover effects under these two models.

3.2 Tests of No Carryover Effect for Heterogeneous

Processes

To develop tests for carryover effects, we consider the modulated Poisson process models

with intensity function (3.1), where zi(t) is a q× 1 vector of external covariates as well as

time-varying covariates including a term for carryover effects. As in Chapter 2, we focus

on

zi(t) = I
{
Ni(t

−) > 0
}

I {Bi(t) ≤ ∆} , (3.2)

where Bi(t) is the backward recurrence time at time t for the processes i. A test for no

carryover effect can be then developed by considering the hypothesis

H0 : β = 0, γ ∈ R+ vs. H1 : β 6= 0, γ ∈ R+. (3.3)

We now discuss the fixed and random effects approaches. In the following sections, we

assume as before that m independent processes are under observation, with process i ob-

served continuously over an observation window [0, τi] (i = 1, . . ., m). However, the meth-

ods below are also valid under certain conditions for more general observation schemes.

3.2.1 Fixed Effects Model

In the fixed effects model case (the model (3.1) with (3.2), where the αi > 0 are un-

known parameters), data on m independent processes give the likelihood function (cf.

Section 1.4.1)

L(α, γ, β) =
m∏

i=1

{[
ni∏

i=1

αiρ0(tij; γ)eβzi(tij)

]
e−

∫ τi
0 αiρ0(t;γ)eβzi(t) dt

}
, (3.4)

where α = (α1, . . . , αm)′. Then, the log likelihood function is

`(α, γ, β) =
m∑

i=1

{
ni log αi +

ni∑
j=1

[log ρ0(tij; γ) + βzi(tij)]− αiRi(γ, β)

}
, (3.5)
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where

Ri(γ, β) =

∫ τi

0

ρ0(t; γ)eβzi(t) dt (3.6)

=
(
eβ − 1

) ni∑
i=1

∫ min(ti,j+1,tij+∆)

tij

ρ0(t; γ) dt +

∫ τi

0

ρ0(t; γ) dt.

For given γ and β, the log likelihood function (3.5) is maximized by α̃i(γ, β) =

ni/Ri(γ, β), and substitution of this into (3.5) gives the profile log likelihood as a constant

plus

`p(γ, β) =
m∑

i=1

{
ni∑

j=1

[log ρ0(tij; γ) + βzi(tij)]− ni log Ri(γ, β)

}
. (3.7)

A likelihood ratio test of H0 : β = 0 requires estimates γ̂, β̂ obtained by maximizing (3.7)

and the estimate γ̃ obtained by maximizing `p(γ, 0). This is readily handled by general

optimization software. A likelihood ratio statistic, Λ = 2`(γ̂, β̂) − 2`(γ̃, 0), can be used

to test H0.

A score test can be based on Uβ(γ̃, 0), where Uβ(γ, β) = (∂/∂β)`p(γ, β), This takes

a simple form for homogeneous Poisson processes. In this case ρ0(t; γ) in (3.1) is one,

and the model is then λi(t|Hi(t)) = αi exp{βzi(t)}. When β = 0, α̃ = (α̃1, . . . , α̃m)′ =

(n1/τm, . . . , nm/τm)′. The profile log likelihood function (3.7) becomes a constant plus

β
∑m

i=1

∑ni

j=1 zi(tij)−
∑m

i=1 ni log Ri(0, β). This can be rewritten as

`p(β) = β O(∆)−
m∑

i=1

ni log
{(

eβ − 1
)
Ei(∆) + τi

}
, (3.8)

where O(∆) =
∑m

i=1

∑ni

j=1 zi(tij) and Ei(∆) =
∑ni

j=1 min(Wi,j+1, ∆). The standardized

score statistic for testing H0 : β = 0 is then

S1 =

(
∂`p(β)/∂β

[−∂2`p(β)/∂β2]1/2

)∣∣∣∣∣
β=0

=
Uβ(α̃, 0)[

V̂ ar(Uβ(α̃, 0))
]1/2

, (3.9)

where

Uβ(α̃, 0) = O(∆)−
m∑

i=1

niEi(∆)/τi (3.10)

and its variance estimate based on the standard asymptotics represented in (2.8) is

V̂ ar(Uβ(α̃, 0)) =
m∑

i=1

niEi(∆) {τi − Ei(∆)} /τ 2
i . (3.11)

Note that the score function (3.10) is in the simple form of the sum of the observed

number of events in a carryover period minus an estimate of the expected number for
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each process, under H0. This can be compared to the statistic (2.20) of the previous

chapter.

For the homogeneous Poisson process case, the unrestricted m.l.e of αi is α̂i =

ni/[Ei(∆)(eβ̂ − 1) + τi], i = 1, . . ., m, and the m.l.e. of β is β̂ = O(∆)/
∑m

i=1 α̂iEi(∆),

so a likelihood ratio test is also straightforward. The likelihood ratio statistic for testing

H0 : β = 0 is

Λ1 = 2`(α̂, β̂)− 2`(α̃, 0), (3.12)

= 2β̂ O(∆)− 2
m∑

i=1

ni log

[
1 +

Ei(∆)(eβ̂ − 1)

τi

]
,

where α̂ = (α̂1, . . . , α̂m)′.

A problem with S1 and Λ1 is that if m → ∞ but the τi are fixed, the standard

asymptotics do not hold and the limiting distributions are not standard normal and χ2
(1),

respectively. This is due to the fact that the αi are not estimated consistently. When the

zi(t) are external, this problem can be solved by considering a conditional test by looking

at a conditional likelihood for β. This is based on the distribution of the event times

{(Ni(τi) = ni, ti1, . . . , tini
); i = 1, . . . ,m}, given Ni(τi) = ni and the covariate histories

{zi(t); 0 ≤ t ≤ τi}, and is easily seen to be

Lc(β) =
m∏

i=1

{
ni!
∏ni

j=1 eβzi(tij)(∫ τi

0
eβzi(u) du

)ni

}
.

The conditional score function is then

Uc(β) =
m∑

i=1

{
ni∑

j=1

zi(tij)−
ni

∫ τi

0
zi(u)eβzi(u) du∫ τi

0
eβzi(u) du

}
,

which, when β = 0, gives

Uc(0) =
m∑

i=1

{
ni∑

j=1

zi(tij)−
ni

τi

∫ τi

0

zi(u) du

}
,

= O(∆)−
m∑

i=1

niEi(∆)/τi.

Note that neither Lc(β) nor Uc(β) depend on the αi, and thus a score test for β = 0

may be based on Uc(0), which is the same as the unconditional score statistic Uβ(α̃, 0)

given in (3.10). Unfortunately, when zi(t) is internal as in (3.2), we cannot get this

because Pr{Ni(t) = ni} is not a Poisson distribution anymore. However, normal and χ2

approximations for S1 and Λ1, respectively, may be adequate in cases where m is not too

large and the numbers of events per process are fairly large. In cases where m is large,

64



an option would be to obtain E{Uci(0)} and its variance, where Uci(0) is the ith term

in Uc(0), and then to apply a central limit theorem as m → ∞. However, p-values for

the statistic S1 can be obtained by simulation, and that is our proposed approach. The

adequacy of the standard approximation for S1 is investigated in the simulation study of

Section 3.3.

3.2.2 Random Effects Model

In Section 1.3.1, random effects in Poisson processes are discussed briefly. Random effects

models employ a distribution for the αi in (3.1), which are assumed independent. To

illustrate this approach we assume the αi have a gamma distribution with mean 1 and

variance φ, as is widely done. Let G(αi; φ) and g(αi; φ) denote the distribution and

probability density functions of αi, respectively. Suppose that, given αi, i = 1, . . ., m,

the process {Ni(t); t ≥ 0} has the intensity

λi(t|Hi, αi) = lim
∆t↓0

Pr{∆Ni(t) = 1|Hi(t), αi}
∆t

= αiρ0(t; γ)eβzi(t). (3.13)

The unconditional intensity of the process {Ni(t); t ≥ 0}, i = 1, . . ., m, is then given by

λi(t|Hi(t)) = eβzi(t)ρ0(t; γ)E {αi|Hi(t)} . (3.14)

Note that when β = 0 the unconditional process {Ni(t); t ≥ 0} is not a Poisson process.

The probability of the outcome that “ni events are observed at times ti1 < . . . < tini
,

i = 1, . . ., m”, is
m∏

i=1

∫ ∞

0

Pr{ni, ti1, . . . , tini
|αi} dG(αi; φ), (3.15)

where

Pr{ni, ti1, . . . , tini
|αi} =

ni∏
j=1

αiρ0(tij; γ)eβzi(tij) exp

{
−
∫ τi

0

αiρ0(t; γ)eβZi(u) du

}
. (3.16)

Therefore, the likelihood function is given by

L(γ, β, φ) =
m∏

i=1

∫ ∞

0

{
ni∏

j=1

αiρ0(tij; γ)eβzi(tij)

}
e−αiRi(γ,β) dG(αi; φ), (3.17)

where Ri(γ, β) is given by (3.6). After simplifications, we obtain the log likelihood func-

tion (Cook and Lawless, 2007, Section 3.5.3)

`(γ, β, φ) =
m∑

i=1

{
ni∑

j=1

[log ρ0(tij; γ) + βzi(tij)] + log Γ
(
ni + φ−1

)
− log Γ(φ−1)

+ni log φ− (ni + φ−1) log [1 + φRi(γ, β)]

}
. (3.18)
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The derivatives of (3.18) with respect to γ, β and φ give (cf. Section 1.4.3)

Uγ(γ, β, φ) =
m∑

i=1

{
ni∑

j=1

[
∂ log ρ0(tij; γ)

∂γ

]
−
(

ni +
1

φ

)
φ[∂Ri(γ, β)/∂γ]

1 + φRi(γ, β)

}
, (3.19)

Uβ(γ, β, φ) =
m∑

i=1

{
ni∑

j=1

zi(tij)−
(

ni +
1

φ

)
φ[∂Ri(γ, β)/∂β]

1 + φRi(γ, β)

}
(3.20)

and

Uφ(γ, β, φ) =
m∑

i=1

{
∂

∂φ

[
ni∑

k=1

log
(
φ−1 + ni − k

)]
+

1

φ2
log (1 + φRi(γ, β))

+
ni

φ
−
(

ni +
1

φ

)
Ri(γ, β)

1 + φRi(γ, β)

}
, (3.21)

respectively. The negative Hessian matrix for the log likelihood (3.18) is given by

I(γ, β, φ) =

Iγγ(γ, β, φ) Iγβ(γ, β, φ) Iγφ(γ, β, φ)

Iβγ(γ, β, φ) Iββ(γ, β, φ) Iβφ(γ, β, φ)

Iφγ(γ, β, φ) Iφβ(γ, β, φ) Iφφ(γ, β, φ)

 , (3.22)

where Iγγ(γ, β, φ) = −∂2`(γ, β, φ)/∂γ∂γ ′, Iβγ(γ, β, φ) = −∂2`(γ, β, φ)/∂β∂γ ′,

Iφγ(γ, β, φ) = −∂2`(γ, β, φ)/∂φ∂γ ′, and so on. The components of (3.22) are given

by

Iγγ =
m∑

i=1

{
−

ni∑
j=1

∂2 log ρ0(tij; γ)

∂γ∂γ ′

+

(
ni +

1

φ

)[
φ[∂2Ri/∂γ∂γ ′]

1 + φRi

− φ2[∂Ri/∂γ][∂Ri/∂γ ′]

(1 + φRi)2

]}
,

Iφγ =
m∑

i=1

{
(ni −Ri)[∂Ri/∂γ]

(1 + φRi)2

}
,

Iβγ =
m∑

i=1

(
ni + φ−1

){ [φ−1 + Ri] [∂
2Ri/∂β∂γ ′]− [∂Ri/∂β] [∂Ri/∂γ ′]

[φ−1 + Ri]
2

}
,

Iββ =
m∑

i=1

(
ni + φ−1

){ [φ−1 + Ri] [∂Ri/∂β]− [∂Ri/∂β]2

[φ−1 + Ri]
2

}
,

Iβφ =
m∑

i=1

{
φ−2 (∂Ri/∂β) [2φ−1 + ni + Ri]

[φ−1 + Ri]
2

}
,
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and

Iφφ =
m∑

i=1

{
∂2

∂φ2

[
ni∑

k=1

log
(
φ−1 + ni − k

)]
+

ni

φ2
+

2

φ3
log(1 + φRi)

− 2Ri

φ2(1 + φRi)
−
(

ni +
1

φ

)(
Ri

1 + φRi

)2
}

,

where Ri = Ri(γ, β) and Iγγ = Iγγ(γ, β, φ), Iφγ = Iγβ(γ, β, φ) etc.

Likelihood ratio tests of H0 : β = 0 require maximum likelihood estimates γ̂, β̂, φ̂

and γ̃, φ̃ (when β = 0); these are readily obtained with general optimization software.

Therefore, the likelihood ratio statistic Λ2 = 2`(γ̂, β̂, φ̂) − 2`(γ̃, 0, φ̃) can be used for

testing H0 : β = 0. Score tests can also be used, and they require only that we obtain γ̃

and φ̃. The score statistic is given by

S2 = Uβ(γ̃, 0, φ̃)/V̂ ar
[
Uβ(γ̃, 0, φ̃)

]1/2

, (3.23)

where

Uβ(γ̃, 0, φ̃) =
m∑

i=1

{
ni∑

j=1

zi(tij)−
(1 + φ̃ni)[∂Ri(γ̃, 0)/∂β]

1 + φ̃Ri(γ̃, 0)

}
, (3.24)

and

V̂ ar
(
Uβ(γ̃, 0, φ̃

)
= Ĩββ −

(
Ĩγβ Ĩφβ

)(Ĩγγ Ĩγφ

Ĩφγ Ĩφφ

)−1(
Ĩβγ

Ĩβφ

)
, (3.25)

where Ĩγγ = Iγγ(γ̃, 0, φ̃), Ĩγβ = Iγβ(γ̃, 0, φ̃), Ĩγφ = Iγφ(γ̃, 0, φ̃), and so on.

It is instructive to consider the numerators of (3.23) and (3.9) for homogeneous

Poisson processes. In this case ρ0(t; γ) = γ in (3.1) for the random effects case and

Ri(γ, β) =
∫ τi

0
γ exp(βzi(t)) dt =

(
eβ − 1

)
γEi(∆) + γτi. From (3.24), the numerator of

(3.23), therefore, becomes

Uβ(γ̃, 0, φ̃) = O(∆)−
m∑

i=1


(
ni + φ̃−1

)
γ̃

φ̃−1 + γ̃τi

Ei(∆). (3.26)

This differs from the numerator of (3.9) only in the coefficients applied to the Ei(∆). The

fixed effects case (3.9) corresponds to the limit of (3.23) as φ̃−1 approaches zero (that is,

the estimated variance of the αi becomes arbitrarily large).

Assuming that the gamma distribution for the αi is correct, the statistic S2 in (3.23) is

asymptotically N(0, 1) as m →∞, unlike the fixed effects statistic. In practice, of course,

the gamma distribution will never be exactly correct, so it is important to consider the

performance of (3.23) under departures from the gamma. We consider this in Section 3.3.
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3.2.3 Power and Consistency of Tests

The tests of no carryover effect in fixed effects and random effects model are developed

under the alternative family of models of the form (3.1) with (3.2). However, simulations

of the following chapter indicate that tests considered here are also consistent against some

carryover alternatives that are not in this specific family of models. In other words, the

probability of rejection of H0 approaches one under the alternative as m →∞. Therefore,

we also have some flexibility in the choice of ∆ which will never be exactly known even

if the form of (3.2) is correct. A discussion about ∆ is given in Section 2.3.3. It should

be noted that, in the following section, we also discuss the use of the tests of this chapter

when the processes are identical as well as when the αi are misspecified in the random

effects model.

3.3 Simulation Studies

We present the results of simulation studies for tests based on heterogeneous processes in

this section. We first consider the fixed effects case, and then the random effects model.

In the first case, results of the simulation studies show that the normal distribution is

not suitable for large m values. However, in certain finite sample settings, p-values may

still be computed from the standard normal distribution. In the random effects case,

normal approximation becomes more accurate as m gets larger. In both cases, the tests

provide overall high power in testing for no carryover effects, and are robust with respect

to misspecification of carryover periods. In random effects case, we also show that the

test is robust when the random effects are misspecified.

We consider the fixed effects model (3.1) where ρ0(t; γ) = γ, and the hypothesis of

no carryover effect is tested by using the statistic S1 in (3.9). In simulations we took

γ = 1, and generated the αi from the gamma distribution with mean 1 and variance

φ = 0.3 or 0.6. The αi were generated once for each scenario, so that α1, . . ., αm are

fixed across the repeated samples. To examine the asymptotic normal approximation for

the null distribution of (3.9), we generated 10,000 realizations of the m processes under

the null HPP model with rates αi. In simulations reported below, scenarios with various

combinations of m, τ , ∆ were considered, with m = 10, 20, 50, 100; τ = 5, 10, 20; and

∆ = 0.0202, 0.0513, 0.1054. Normal quantile-quantile plots of the 10,000 values of S1 are

shown in Figure 3.1 and Figure 3.2 for scenarios when τ = 5 and the αi are generated

from the gamma distribution with mean 1 and variance φ = 0.3 or 0.6, respectively. We

consider similar scenarios with τ = 10 in Figure 3.3 and Figure 3.4. The standard normal

approximation is not suitable for each case, and goes off as m increases. As additional

information, Table 3.1 presents the values of Q̂p and P̂ (S > Qp) analogous to those

in Table 2.1, where p = 0.950, 0.975 and 0.990. The results indicate that the normal

68



Figure 3.1: Normal Q-Q plot of S1 in (3.9) from 10,000 samples with τ = 5, φ = 0.3,

∆ = 0.0513, and (1) m = 10, (2) m = 20, (3) m = 50.

Figure 3.2: Normal Q-Q plot of S1 in (3.9) from 10,000 samples with τ = 5, φ = 0.6,

∆ = 0.0513, and (1) m = 10, (2) m = 20, (3) m = 50.

approximation is not suitable for the distribution of the score statistic (3.9) as m gets

larger. This reflects the fact that for fixed τ and increasing m, regular asymptotics do

not apply to maximum likelihood estimation under (3.1) since the αi are not consistently

estimated. In Section 3.2.1, we mentioned that in cases where m is not too large and

the numbers of events per process are fairly large then the normal approximation may

be used. This can be seen in Figure 3.5 where the normal approximation is satisfactory

when τ = 100. The approximation is also fairly good when m is small and τ exceeds 10.

The statistic S1 in (3.9) can be used along with simulation to obtain p-values when

the normal approximation is unsatisfactory, so its power was also investigated. In each

scenario we used 10,000 realizations of the m processes, as presented in Figures 3.1 to

3.5, to obtain 5% critical values. We estimated the power of the test statistics (3.9) by

1,000 simulation runs under alternative Models A and B below. For Model A we used

the model (i = 1, . . ., m)

Model A: λi(t|Hi(t)) = α exp{βI(Ni(t
−) > 0))I(Bi(t) ≤ ∆0)}. (3.27)
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Figure 3.3: Normal Q-Q plot of S1 (3.9) from 10,000 samples with τ = 10, φ = 0.3,

∆ = 0.0513, and (1) m = 10, (2) m = 20, (3) m = 50.

Figure 3.4: Normal Q-Q plot of S1 in (3.9) from 10,000 samples with τ = 10, φ = 0.6,

∆ = 0.0513, and (1) m = 10, (2) m = 20, (3)m = 50.

Figure 3.5: Normal Q-Q plot of S1 in (3.9) from 10,000 samples with m = 10, φ = 0.6,

∆ = 0.0513, and (1) τ=20, (2) τ = 50, (3) τ = 100.
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∆ m Q̂.950 Q̂.975 Q̂.990 P̂ (S > 1.645) P̂ (S > 1.960) P̂ (S > 2.326)
0.0202 10 1.658 2.090 2.632 0.0515 0.0301 0.0174

20 1.569 1.950 2.426 0.0433 0.0248 0.0115
50 1.362 1.720 2.095 0.0292 0.0148 0.0067

100 1.243 1.591 1.990 0.0226 0.0107 0.0049
0.0513 10 1.469 1.873 2.289 0.0367 0.0206 0.0090

20 1.418 1.781 2.166 0.0319 0.0168 0.0072
50 1.234 1.511 1.932 0.0192 0.0096 0.0024

100 0.988 1.265 1.622 0.0094 0.0045 0.0017
0.1054 10 1.361 1.685 2.139 0.0276 0.0142 0.0074

20 1.242 1.599 1.981 0.0220 0.0104 0.0045
50 1.013 1.365 1.703 0.0117 0.0059 0.0026

100 0.751 1.047 1.417 0.0062 0.0027 0.0008

Table 3.1: Q̂p is the empirical pth quantile of S1 in (3.9) computed from 10,000 samples

when m > 1 and τ = 10. P̂ (S > Qp) is the proportion of the values of S1 in 10,000

samples which are larger than the pth quantile of a N(0, 1). The αi are generated once

from Gamma(1, 0.3).

(m, τ) ∆0 eβ = 1 eβ = 2 eβ = 4 eβ = 6
2
3∆ 0.055 0.243 0.856 0.990

(10, 20) ∆ 0.044 0.433 0.982 0.999
4
3∆ 0.046 0.420 0.978 1.000
2
3∆ 0.049 0.219 0.830 0.986

(20, 10) ∆ 0.044 0.433 0.972 1.000
4
3∆ 0.048 0.421 0.980 1.000

Table 3.2: Power of S1 in (3.9) with ∆ = 0.0202: Null model is Model A with β = 0; data

are generated from Model A.
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Figure 3.6: Normal Q-Q plot of S2 in (3.23) from 10,000 samples with τ = 10, αi ∼
Gamma(1, 0.3), ∆ = 0.0202, and (1) m = 20, (2) m = 50, (3) m = 100.

where α = 1, that is, the m processes are actually identical. Results are given in Table 3.2

for various (m, τ , ∆0) combinations when ∆ = 0.0202. In the simulation section of Chap-

ter 2, we showed by simulation that when there is heterogeneity between the processes,

the tests based on identical processes lead to an inflated Type 1 error, Table 3.2 indicates

that using S1 based on nonidentical processes give the correct Type 1 error as seen in the

table under the columns with eβ = 1, and S1 is still powerful for testing carryover effects.

Comparing Table 3.2 to Tables 2.5 and 2.6 of Section 2.4, the powers of the corresponding

scenarios are similar. In some cases, there may be a slight loss of power relative to the

test S in (2.70), due to fact that m values α1, . . ., αm are estimated instead of a single

common value α. However, in view of the Type 1 error seen in Table 2.9, S1 remains

preferable to the test statistic (2.70) when homogeneity in the event rates of the processes

is not certain.

We next consider the model (i = 1, . . ., m)

Model B: λi(t|Hi(t)) = αi exp{βI(Ni(t
−) > 0)I(Bi(t) ≤ ∆0)}, (3.28)

where the αi (i = 1, . . ., m) are unknown parameters. We used the αi values that were

generated from the gamma distribution with mean 1 and variances φ = 0.3 or 0.6 to

obtain critical values under the null model λi(t) = αi (i = 1, . . ., m) as repeated in

Figures 3.1 to 3.5. We then generated 1,000 realizations of m processes under Model B

using the same αi’s and non-zero values for β. Power results are presented for various

(m, τ , ∆0, eβ) scenarios in Table 3.3 where the entries are the proportion of the 1,000

samples in which S1 exceeded its 5% critical value. The power of the test is high when

eβ = 4 and 6. Power increases as τ and m increase. There is a slight increase in the power

when φ changes from 0.3 to 0.6. Once again, when ∆0 is bigger than ∆ (i.e. equivalent

to choosing ∆ a little too small), there is little effect on power. However, there is some

loss in the power when ∆0 is smaller than ∆.

We also investigated the random effects test statistic S2 in (3.23) for the case where
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Figure 3.7: Normal Q-Q plot of S2 in (3.23) from 10,000 samples with τ = 10, αi ∼
Gamma(1, 0.3), ∆ = 0.0513, and (1) m = 20, (2) m = 50, (3) m = 100.

Figure 3.8: Normal Q-Q plot of S2 in (3.23) from 10,000 samples with τ = 10, αi ∼
Gamma(1, 0.3), ∆ = 0.1054, and (1) m = 20, (2) m = 50, (3) m = 100.
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φ = 0.3 φ = 0.6
(m, τ) ∆0 eβ = 2 eβ = 4 eβ = 6 eβ = 2 eβ = 4 eβ = 6

2
3∆ 0.188 0.686 0.910 0.202 0.713 0.916

(10, 10) ∆ 0.294 0.885 0.987 0.354 0.888 0.978
4
3∆ 0.287 0.850 0.977 0.349 0.892 0.980
2
3∆ 0.174 0.675 0.938 0.213 0.745 0.943

(20, 5) ∆ 0.294 0.874 0.990 0.360 0.916 0.995
4
3∆ 0.298 0.889 0.989 0.352 0.919 0.993
2
3∆ 0.303 0.889 0.988 0.297 0.895 0.983

(10, 20) ∆ 0.504 0.976 1.000 0.515 0.982 0.998
4
3∆ 0.516 0.980 1.000 0.507 0.969 0.999
2
3∆ 0.290 0.908 0.996 0.320 0.925 0.991

(20, 10) ∆ 0.481 0.983 1.000 0.517 0.988 0.998
4
3∆ 0.473 0.988 1.000 0.504 0.991 0.999

Table 3.3: Power of S1 in (3.9) with ∆ = 0.0202: Null model is Model B with β = 0; data

were generated from Model B. The αi are generated once from Gamma(1, φ).

ρ0(t; γ) = γ. The αi were assumed to be independent gamma random variables with mean

1 and variance φ = 0.3 or 0.6. We generated 10,000 replicates of m Poisson processes for

different combinations of (∆, m, τ , φ), to evaluate the distribution and critical values of

S2. We generated a new set of αi (i = 1, . . ., m) in each simulation run. Figures 3.6, 3.7,

3.8 and Table 3.4 indicate that the standard normal distribution is accurate for large m

and reasonably satisfactory (absolute errors about 1% for right tail probabilities of 0.05

or less) even for scenarios with m = 10. We then generated 1,000 samples from versions of

Model B in (3.28) to calculate the power of the test. In each simulation run, we generated

a new set of αi from the gamma distribution with mean 1 and variance φ. Tables 3.5

and 3.6 shows the results for different (∆0, eβ, m, τ) combinations when φ = 0.3 and 0.6,

respectively. In both tables, the power is generally high when eβ = 3 or 4, with a little

decrease when ∆ is chosen too large. Also, the power is a little higher when φ = 0.6.

A final simulation study was conducted to examine the performance of S2 in (3.23)

when the assumption that the αi have a gamma distribution is not true. To do that, we

generated the αi from a lognormal distribution with mean 1 and variance φ. We then gen-

erated 1,000 realizations of m processes when τ = 10, ∆ = 0.0202, and eβ = 1, 2, 3, 4 and

calculated proportion of the time that S2 exceeded the 0.05 critical value. The results are

given in Table 3.7. The column under eβ = 1 shows the empirical Type 1 errors based on

the 1,000 samples. They are close to the nominal significance level 0.05. In addition, S2

maintains high power in this case, and we conclude that mild misspecification of the dis-

tribution of random effects is not a problem; this agrees with similar results for estimation

of rate functions in mixed Poisson processes without carryover effects (Lawless, 1987).
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∆ m Q̂.950 Q̂.975 Q̂.990 P̂ (S > 1.645) P̂ (S > 1.960) P̂ (S > 2.326)
0.0202 10 1.835 2.263 2.735 0.0479 0.0303 0.0171

20 1.785 2.177 2.707 0.0625 0.0370 0.0196
50 1.725 2.099 2.589 0.0573 0.0326 0.0159

100 1.703 2.020 2.434 0.0561 0.0284 0.0124
0.0513 10 1.779 2.179 2.656 0.0627 0.0357 0.0192

20 1.694 2.080 2.458 0.0562 0.0312 0.0146
50 1.691 2.027 2.404 0.0554 0.0289 0.0120

100 1.665 1.997 2.361 0.0515 0.0268 0.0111
0.1054 10 1.682 2.049 2.456 0.0534 0.0291 0.0126

20 1.669 2.016 2.366 0.0523 0.0285 0.0110
50 1.642 2.008 2.345 0.0497 0.0280 0.0105

100 1.631 1.942 2.359 0.0479 0.0238 0.0107

Table 3.4: Q̂p is the empirical pth quantile of S2 in (3.23) computed from 10,000 samples

when m > 1 and τ = 10. P̂ (S > Qp) is the proportion of the values of S2 in 10,000

samples which are larger than the pth quantile of a N(0, 1). The αi are generated from

Gamma(1, 0.3) in each simulation run.

m = 20, τ = 10 m = 40, τ = 5 m = 40, τ = 10
∆ ∆0 eβ = 2 eβ = 3 eβ = 4 eβ = 2 eβ = 3 eβ = 4 eβ = 2 eβ = 3 eβ = 4

2
3∆ 0.282 0.693 0.888 0.316 0.692 0.912 0.493 0.936 0.995

0.0202 ∆ 0.437 0.912 0.991 0.496 0.924 0.995 0.781 0.994 1.000
4
3∆ 0.460 0.886 0.987 0.498 0.914 0.984 0.776 0.994 1.000
2
3∆ 0.565 0.959 0.996 0.527 0.949 1.000 0.805 0.999 1.000

0.0513 ∆ 0.828 0.997 1.000 0.809 0.998 1.000 0.979 1.000 1.000
4
3∆ 0.776 0.997 1.000 0.806 0.996 1.000 0.972 1.000 1.000
2
3∆ 0.785 0.999 1.000 0.808 0.996 1.000 0.959 1.000 1.000

0.1054 ∆ 0.968 1.000 1.000 0.968 1.000 1.000 1.000 1.000 1.000
4
3∆ 0.961 1.000 1.000 0.942 1.000 1.000 0.997 1.000 1.000

Table 3.5: Power of S2 in (3.23): Model B, φ = 0.3.
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m = 20, τ = 10 m = 40, τ = 5 m = 40, τ = 10
∆ ∆0 eβ = 2 eβ = 3 eβ = 4 eβ = 2 eβ = 3 eβ = 4 eβ = 2 eβ = 3 eβ = 4

2
3∆ 0.322 0.766 0.924 0.327 0.752 0.944 0.557 0.940 0.997

0.0202 ∆ 0.566 0.923 0.991 0.537 0.937 0.992 0.846 0.995 1.000
4
3∆ 0.551 0.938 0.989 0.553 0.918 0.996 0.813 0.999 1.000
2
3∆ 0.633 0.964 0.996 0.623 0.976 1.000 0.857 1.000 1.000

0.0513 ∆ 0.871 0.996 1.000 0.856 0.999 1.000 0.981 1.000 1.000
4
3∆ 0.844 0.998 0.999 0.837 0.998 1.000 0.981 1.000 1.000
2
3∆ 0.815 0.998 1.000 0.854 0.998 1.000 0.977 1.000 1.000

0.1054 ∆ 0.966 1.000 1.000 0.976 1.000 1.000 1.000 1.000 1.000
4
3∆ 0.950 1.000 1.000 0.957 1.000 1.000 0.998 1.000 1.000

Table 3.6: Power of S2 in (3.23): Model B, φ = 0.6.

φ = 0.3 φ = 0.6
(m, τ) eβ = 1 eβ = 2 eβ = 3 eβ = 4 eβ = 1 eβ = 2 eβ = 3 eβ = 4

(20, 10) 0.044 0.607 0.965 0.999 0.055 0.652 0.953 0.996
(40, 5) 0.052 0.630 0.964 0.997 0.045 0.618 0.966 0.999
(40, 10) 0.057 0.868 1.000 1.000 0.058 0.674 0.999 1.000

Table 3.7: Empirical Type 1 error and power of S2 in (3.23) under misspecification of the

distribution of αi: ∆ = 0.0202. The αi are generated from the log normal distribution

with mean 1 and variance φ, but tests assume the αi have a gamma distribution.
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3.4 Example: Asthma Prevention Trial

Duchateau et al. (2003) discussed data from a prevention trial in infants with a high

risk of asthma, but without a prior attack. The subjects were 6 months of age on entry

to the study. The followup period for each subject was approximately 18 months, and

started after random allocation to a placebo control group or an active drug treatment

group. The main aim of the study was to assess the effect of the drug on the occurrence

of asthma attacks. Here, we consider the interesting secondary question as to whether

the occurrence of an event (asthma attack) influences the future event rate.

The Nelson-Aalen estimates of the mean function for treatment group and control

group are given in Figure 3.9 and Figure 3.10, respectively. Both plots are close to

linear and suggest roughly constant rates of event. In addition, we fitted the model

αiγ1γ2t
γ2−1eβzi(t), where the αi are i.i.d. gamma random variables with mean 1 and

variance φ and zi(t) is given in (3.2), and tested H0 : γ2 = 1 against H1 : γ2 6= 1.

We did not reject the null hypothesis by a likelihood ratio test for each group at 0.05

level of significance when ∆ = 5, 7, 10 and 14 days; p-values based on χ2
(1) are 0.366,

0.345, 0.321 and 0.281 for control group and 0.081, 0.103, 0.135 and 0.152 for treatment

group, respectively. Therefore, we consider here the tests for carryover effects based on

homogeneous processes. There were 483 asthma attacks among 119 children in the control

group and 336 asthma attacks among 113 children in the treatment group, during the 18

month followup. Distributions of the numbers of attacks are given in Table 3.8 for both

groups.

A point concerning the event rate, which we return to later, is that Duchateau et

al. (2003) do not provide the trial entry dates for each subject, so it is not possible to

assess whether there might be a seasonal effect in the rate. Also, an asthma attack lasts

an average of 6–7 days, and a patient is not considered at-risk for a new attack over that

time; the at-risk indicator Yi(t) takes value 1 if subject i at risk of an asthma attack at

time t. The intensity model for subject i that we consider is

λi (t|Hi (t)) = Yi(t)αiγ exp{βzi(t)}, t ≥ 0, (3.29)

where zi(t) = I{Ni(t
−) > 0}I{Bi(t) ≤ ∆} and Bi(t) = t − max(s : s ≤ t, Yi(s) = 0).

That is, Bi(t) is the time since subject i started their current at-risk period.

We continue our analysis by testing for extra-Poisson variation in the numbers of events

in treatment and control groups separately. We use the random effects model (3.29),

where αi ∼ Gamma(1, φ). The model under the null hypothesis (φ = 0 or αi = 1) is

Yi(t)γ exp{βzi(t)}. A likelihood ratio statistic Λ = 2`(γ̂, β̂, φ̂) − 2`(γ̃, β̃, 0) for testing

H0 : φ = 0 is computed. A choice of ∆ of interest here could be between 5–14 days.

Results from fitting Model (3.29) are given in Tables 3.9 and 3.10 with the estimates of

parameters and their standard errors in parentheses for treatment and control groups,
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Figure 3.9: Nelson-Aalen (N-A) estimate of the mean function of asthma attacks of

subjects in the treatment group versus time on study (in days).

Figure 3.10: Nelson-Aalen (N-A) estimate of the mean function of asthma attacks of

subjects in the control group versus time on study (in days).
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Number of Number of Children

Asthma Attacks Control Group Treatment Group

1 37 50

2 20 25

3 17 11

4 8 7

5 9 3

6 6 2

7 4 3

8 7 3

9 0 1

10 3 5

11+ 8 3

Total 119 113

Table 3.8: Distribution of the numbers of asthma attacks for children in the control group

and treatment group.

respectively. Note that since φ is on the boundary under the null hypothesis (φ = 0),

and the true values of γ and β are not on the boundary, the correct limiting distribution

of Λ is Pr{Λ ≤ q} = 0.5 + 0.5 Pr{χ2
1 ≤ q} (Self and Liang, 1987). Therefore, we obtain

the p-values as 0.5 Pr{χ2
1 ≥ Λ} ≈ 0 for both groups and each ∆. In other words, there is

highly significant extra-Poisson variation within the treatment and control groups.

We, therefore, consider the random effects model (3.29), where the αi ∼ Gamma(1, φ)

independently, for testing H0 : β = 0. When β = 0, the maximum likelihood estimation

gives for the treatment group that φ̃ = 0.5517 with standard error (s.e.) 0.10799 and γ̃ =

0.00608 with s.e. 0.000543, and for the control group that φ̃ = 0.5898 with s.e. 0.10167

∆ γ̂ β̂ φ̂ `(γ̂, β̂, φ̂) `(γ̃, β̃, 0) Λ

5 0.006 0.359 0.525 -2014.511 -2054.239 79.456

(0.001) (0.224) (0.107)

7 0.006 0.681 0.476 -2009.406 -2039.622 60.433

(0.001) (0.180) (0.102)

10 0.005 0.903 0.416 -2000.992 -2018.167 34.349

(0.001) (0.155) (0.096)

14 0.005 0.904 0.388 -1998.522 -2012.535 28.026

(0.0004) (0.146) (0.094)

Table 3.9: Estimation results for Model (3.29) for the treatment group.

79



∆ γ̂ β̂ φ̂ `(γ̂, β̂, φ̂) `(γ̃, β̃, 0) Λ

5 0.008 0.354 0.552 -2729.326 -2794.637 130.622

(0.001) (0.164) (0.099)

7 0.008 0.486 0.521 -2726.178 -2783.308 114.259

(0.001) (0.143) (0.097)

10 0.007 0.569 0.489 -2722.382 -2769.688 94.611

(0.001) (0.128) (0.094)

14 0.007 0.637 0.455 -2717.954 -2751.922 67.936

(0.001) (0.118) (0.091)

Table 3.10: Estimation results for Model (3.29) for the control group.

Group ∆ O(∆) E(∆) Uβ(γ̃, 0, φ̃) V̂ ar[Uβ(γ̃, 0, φ̃)] S p–value

Treatment 5 23 16.763 6.237 12.878 1.738 0.085

7 40 22.858 17.142 16.954 4.163 0

10 61 30.908 30.092 21.941 6.424 0

14 76 40.464 35.536 27.244 6.808 0

Control 5 47 35.298 11.702 25.187 2.332 0.023

7 68 47.173 20.827 32.160 3.673 0

10 93 62.495 30.505 40.688 4.782 0

14 121 80.302 40.698 49.644 5.776 0

Table 3.11: The results of the no carryover test based on S2 in (3.23) for various ∆ values;

p-values were obtained from 1,000 simulated samples in each case.

and γ̃ = 0.00822 with s.e. 0.000695. Table 3.11 shows results for the test statistic S2 in

(3.23) as well as the values of O(∆) and E(∆) =
∑m

i=1{[(ni + φ̃−1)γ̃]/(φ̃−1 + γ̃τi)}Ei(∆)

for various ∆ values. We carried out a parametric bootstrap procedure to obtain the

p–value for testing the null model for each ∆. To represent the data more accurately, we

used 1,000 bootstrap samples with at least one event per individual, as in the original

data set. The results are presented in Table 3.11, and suggest strong evidence against the

null hypothesis when ∆ = 7, 10 and 14 days. Therefore, a carryover effect is suggested in

both groups. Note that here we can also test H0 : β = 0 using β̂ and its standard error

from Tables 3.9 and 3.10. This gives results very similar to those based on S2.

Duchateau et al. (2003) consider models based on calendar and gap times for the

asthma event data, and note that in their parametric gap time models the hazard function

h(w) is decreasing in w. However, they use a proportional hazards model for treatment,

which is not checked. In their analysis, a gap time model where the first gap time Wi1

is allowed to have a different distribution than the other gap times Wi2, Wi3, . . ., fit the
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Control Group Treatment Group

γ̂ 0.002 (0.0002) 0.002 (0.0002)

b̂1 696.246 (68.987) 790.531 (106.312)

b̂2 0.876 (0.032) 0.809 (0.039)

φ̂ 4.841 (0.469) 3.95 (0.395)

`(θ̂) -3361.959 -2465.011

Table 3.12: Estimates for the gap time model of Duchateau et al. (2003) for asthma event

data. Standard error of the estimate is given in parenthesis.

data best. In particular, they considered the Wi1 to have an exponential distribution with

the rate function αiγ, where the αi are i.i.d. gamma random variables with mean 1 and

variance φ, and the other gap times to have a Weibull distribution with the hazard function

h(w) = αiw
b2−1/bb2

1 , where the αi are i.i.d. gamma random variables with mean 1 and

variance φ. We now consider their model for treatment and control groups separately, and

compare it to the carryover model (3.29) with random effects. In this case, the likelihood

function is given by (cf. Section 1.4.1)

L(θ) =
m∏

i=1

∫ ∞

0

αiγe−αiγwi1

 ni∏
j=2

(
αib2w

b2−1
ij

bb2
1

)δij

e
−

αiw
b2
ij

b
b2
1

 α
1
φ
−1

i e−
αi
φ

Γ( 1
φ
)φ

1
φ

dαi, (3.30)

where θ = (γ, b1, b2, φ)′, ni is the number of at-risk intervals for subject i, and δi1 = . . . =

δi,ni−1
= 1; δini

= 0 or 1 (i = 1, . . ., m). Table 3.12 shows the m.l.e. of γ, b1, b2, φ,

and their standard errors, and values of the log likelihood function `(θ) = log L(θ) at

θ̂ = (γ̂, b̂1, b̂2, φ̂)′ for treatment and control groups. The estimates b̂2 are less than one,

indicating that the probability of a new attack decreases as the time since the last attack

increases. Comparing the corresponding log likelihood values in Table 3.12 to those of

Tables 3.9 and 3.10, the log likelihood values are higher in the carryover effect model

(random effects model (3.29)) even though the number of parameters is less than the gap

time random effects model. Thus, the carryover effect model that we considered here is a

better fit for the recurrent asthma event data.

A final note about the asthma data set should be given, about the lack of the trial

entry dates for each subject. In a study related to asthma events, the patients may be

subject to seasonal effects such as air pollution and weather conditions, although this

may perhaps be less of a factor for infants. An approach in this case is to include a trend

term for seasonality, and consider a modulated nonhomogeneous Poisson process model

which includes trend and carryover effetcs at the same time. Since the data here were

not given with the entry dates for each subject, neither we nor Ducheatau et al. (2003)

could consider seasonality. However, it should be noted that the conclusion of an analysis

considering seasonality might be different than the conclusion of this section.
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Chapter 4

Testing for Trend in Identical

Recurrent Event Processes

In the previous two chapters, we discussed a feature of recurrent event processes called

carryover effects. In the current and following chapter we discuss testing for trends in

recurrent event data. We investigate settings where the processes are identical in this

chapter, and the case where the processes are nonidentical in the next chapter.

The remainder of this chapter is organized as follows. We introduce the problems

and the definition of trend in Section 4.1. We review some models and tests for trend in

Section 4.2. Section 4.3 introduces robust tests for trend. We also consider settings with

covariates. We present results of simulation studies in Section 4.4. For convenience, an

example is deferred to Chapter 5.

4.1 Introduction

A much-studied aspect of processes where individuals or systems experience recurrent

events is the existence or non-existence of time trends (Cox and Lewis, 1966, Chapter 3;

Ascher and Feingold, 1984, Chapter 5). We discuss definitions of trend below but, broadly

speaking, the term refers to systematic variation in either event occurrence rates or times

between events. Trends can be related either to the ages of individual processes or to

external factors operating on a calendar time scale, and can be monotonic (increasing or

decreasing) or non-monotonic. Examples of monotonic trends are the increasing rate of

failures seen as repairable systems age (Ascher and Feingold, 1984, Chapter 2) and the

tendency for times between repeated hospitalizations for psychiatric patients to decrease

(Kvist et al., 2008); examples of non-monotonic trends are the U-shaped rate functions

seen in systems observed from new to old (Kvaloy and Lindqvist, 1998) and the sea-

sonal fluctuations in pulmonary infections for persons with chronic bronchitis (Cook and
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Lawless, 2007, Section 6.7.2).

According to Cox and Lewis (1966, p. 37), there are two general reasons why there

is interest in the analysis of trends in a recurrent event setting. Firstly, the main aim

of a study may be to reveal any kind of trends in the failures that occur in time. For

example, in some reliability settings, the rate of failure in a process is monitored in order

to reveal problems or plan maintenance if there is an increase in the rate of failure (Cook

and Lawless, 2007, p. 88). Secondly, the use of statistical methods may depend on the

absence or presence of trends. In the first type of a problem, as it is discussed by Cox and

Lewis (1966, Chapter 3), the interest is usually not only of testing the null hypothesis of

no trend but also of revealing the shape of the trend.

Models that incorporate time trends include nonhomogeneous Poisson processes, re-

newal processes in which the distributions of successive gap times stochastically increase,

decrease or otherwise fluctuate systematically, and generally, models in which the inten-

sity function depends on time in some systematic way. Tests for absence of trend can

be carried out within such models, but it is useful to have simple and robust tests which

can be employed as a prelude to more detailed modeling. This was first considered by

Cox and Lewis (1996, Chapter 3), which remains an excellent discussion of trend testing.

They considered tests based on both nonhomogeneous Poisson process and more general

renewal process models. Other tests for departures from a renewal process have subse-

quently been proposed (e.g. Lewis and Robinson, 1974; Kvaloy and Lindqvist, 2003),

and many authors have considered tests based on nonhomogeneous Poisson processes

(e.g. Bain et al., 1985; Cohen and Sackrowitz, 1993). Many of these tests are based on

conditioning on the number of failures observed over a fixed period or observing a fixed

number of events, and mostly consider the case when m = 1. Bhattacharjee et al. (2004)

develop an unconditional test for monotonic trend in a nonhomogenous Poisson process

observed over a fixed period when m = 1. Since the literature on tests of trend in Poisson

processes is vast when m = 1, we will focus on cases in which m > 1.

In spite of previous work, there remain limitations on current trend tests. In particular,

most tests rely on the assumption that the null (no trend) model is a renewal process and

in some cases, that it is a homogenous Poisson process. In addition, the computation of

p-values for many tests is based on an assumption that observation of a process ceases

after some specified number of event occurrences, which is rarely the case in practice. Our

purpose is to study tests based on robust inference methods for rate and mean functions

(Pepe and Cai, 1993; Lawless and Nadeau, 1995), and compare them to other tests.

Cook and Lawless (2007, Problems 3.13 and 3.15) outlined such an approach but to our

knowledge this has not been followed up or studied. We show here that such tests are

flexible, easily implemented and powerful in a range of settings. Our focus is on situations

where recurrent event processes for multiple individuals or systems are observed, though

we comment on the case of long single processes in the final section.
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Definition of Trend

Consider an individual process which starts at time t = 0, and let N(t) denote the number

of events in (0, t]. The times of events are denoted T1 < T2 < . . ., and the gap times

between successive events are denoted by Wj = Tj − Tj−1, (j = 1, . . . , n), where T0 = 0.

In some clearly identified cases discussed later, we will assume a process is observed over

a time period [τ0, τ ] and in that case, we define T0 = τ0 and let N(τ0, t) represent the

number of events in (τ0, t], for τ0 ≤ t ≤ τ . As previously, we define the mean and rate

functions as µ(t) = E{N(t)} and ρ(t) = dµ(t)/dt, respectively.

There is no single definition of time trend or the absence of trend. Cook and Law-

less (2007, p. 10) define a time trend in a process as a tendency for the rate of event

occurrence to change over time in some systematic way. Although this definition is com-

prehensive enough to include various cases, it is not that easy to give a mathematically

comprehensive definition of a time trend. A discussion of this issue is given by Ascher

and Feingold (1984, p. 169); also, see Lawless and Thiagarajah (1996). The most frequent

definition for absence of trend is that the process is a renewal process. In this case the Wj

(j = 1, 2, . . .) are independent and identically distributed random variables; equivalently,

λ(t|H(t)) = h(B(t)) for some positive-valued function h(w), where B(t) = t − TN(t−) is

the time since the most recent event. A second definition of absence of trend is that

ρ(t) = α (or µ(t) = αt) for some constant α > 0; that is, the rate of event occurrence is

constant over time. Other definitions could, however, be given; for example, any process

that is stationary in certain respects (e.g. Cox and Lewis, 1966, Chapter 4; Cox and

Isham, 1980, Section 2.2) could be said to have no trend. If a monotonic trend is present,

the shape of the mean function should be either convex when the events tend to occur

more frequently in time or concave when the events tend to occur less frequently in time.

A statistical trend test is then a test of the null hypothesis that events occur according

to a stationary process against the alternative hypothesis that events occur according to

another process specified by the type of trend.

4.2 Models and Tests for Trend

We suppose that m > 1 independent and identical processes are under study. We provide

here a brief review of important trend tests, dividing them into (i) tests of a homogeneous

Poisson process, and (ii) tests of a general renewal process. We focus on tests which can

be carried out without elaborate model fitting, as indicated in the previous section, and

for now, do not consider covariates.
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4.2.1 Tests Based on Identical Poisson Processes

Likelihood methods can be applied for analysis of trends in specified models such as

models based on Poisson processes. In this case, a very useful family of models for testing

the absence trend in the rate function is given by

ρ(t; α, β) = αeβg(t), t ≥ 0, (4.1)

where the function g(t) specifies the shape of the trend, α is a positive-valued parameter,

and β is a real-valued parameter. Then, a test of no trend in the rate function of the

Poisson processes can be obtained by testing the null hypothesis H0 : β = 0 against the

alternative hypothesis H1 : β 6= 0.

Suppose that the process i (i = 1, . . ., m) with rate function (4.1) is observed over

the time interval [τ0i, τi]. As outlined by Cook and Lawless (2007, Problem 3.13), a

score test can be developed by considering the likelihood function L(α, β) for data set

{(Ni(τ0i, τi) = ni; ti1, . . . , tini
); i = 1, . . . ,m}. In this case, the log likelihood function is

given by

`(α, β) = n. log α + β
m∑

i=1

ni∑
j=1

g(tij)−
m∑

i=1

∫ τi

τ0i

αeβg(s) ds, (4.2)

where n. =
∑m

i=1 ni. Then, the score functions are

Uα(α, β) =
∂`(α, β)

∂α
=

n.

α
−

m∑
i=1

∫ τi

τ0i

eβg(s) ds (4.3)

and

Uβ(α, β) =
∂`(α, β)

∂β
=

m∑
i=1

ni∑
j=1

g(tij)− α
m∑

i=1

∫ τi

τ0i

g(s)eβg(s) ds. (4.4)

Solving Uα(α, 0) = 0 gives α̃ = n./τ., where τ. =
∑m

i=1(τi − τ0i). Plugging (α̃, 0) in (4.4),

we obtain

Uβ(α̃, 0) =
m∑

i=1

ni∑
j=1

g(tij)−
n.

τ.

m∑
i=1

∫ τi

τ0i

g(s) ds. (4.5)

A variance estimate for Uβ(α̃, 0) is given by (cf. Section 1.4.3)

V̂ ar[Uβ(α̃, 0)] = Iββ(α̃, 0)− Iβα(α̃, 0)I−1
αα (α̃, 0)Iαβ(α̃, 0). (4.6)

A test statistic for testing the absence of trend is then

S1 =
Uβ(α̃, 0)

V̂ ar[Uβ(α̃, 0)]1/2
. (4.7)

The standardized score statistic (4.7) can be used for testing H0. However, a simple

but efficient procedure is to use a score test based on a conditional likelihood function for
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β (Cox and Lewis, 1966, Section 3.3). Since processes are assumed to be independently

distributed,
∑m

i=1 Ni(τ0i, τi) has a Poisson distribution with mean
∑m

i=1 µi(τ0i, τi), where

µi(τ0i, τi) =
∫ τi

τ0i
αeg(s) ds. From this result and (4.2), the log likelihood function based on

the conditional distribution of the event times Tij (i = 1, . . ., m; j = 1, . . ., ni) given n.,

where
∑m

i=1 Ni(τ0i, τi) = n. > 0, is then proportional to

`c(β) =
m∑

i=1

ni∑
j=1

βg(tij)− n. log

(
m∑

i=1

∫ τi

τ0i

eβg(s) ds

)
. (4.8)

Therefore, the conditional score function is

Uc(β) =
∂`c(β)

∂β
=

m∑
i=1

ni∑
j=1

g(tij)− n.

∑m
i=1

∫ τi

τ0i
g(s)eβg(s) ds∑m

i=1

∫ τi

τ0i
eβg(s) ds

, (4.9)

and the variance of Uc(β) conditional on n. is

V ar[Uc(β)] = −∂2`c(β)

∂β2
= n.


∑m

i=1

∫ τi

τ0i
g2(s) eβg(s) ds∑m

i=1

∫ τi

τ0i
eβg(s) ds

−

(∑m
i=1

∫ τi

τ0i
g(s) eβg(s) ds∑m

i=1

∫ τi

τ0i
eβg(s) ds

)2
 .

(4.10)

A test of H0 : β = 0 is given by

S2 =
Uc(0)

V ar[Uc(0)]1/2
. (4.11)

Cook and Lawless (2007, p. 89) considered the test statistic (4.11) when g(t) = t. In

this case, Uβ(α̃, 0) and Uc(0) are the same. The distribution of (4.11) is asymptoticaly

normal as m → ∞ and p-values for H0 can be computed using this approximation. In

cases where m and n. are small, we can alternatively obtain the p-value based on (4.11)

by simulation.

A major limitation of these tests is the assumption the processes are homogeneous

Poisson processes in the absence of trend. The tests are sensitive to departures from this

assumption and one can, for example, falsely conclude there is a trend when the processes

are renewal processes but not HPPs (e.g. Lawless and Thiagarajah, 1996; Lindqvist et

al., 1994). The same criticism applies to similar tests based on total time on test (TTT)

statistics (e.g. Kvaloy and Lindqvist, 1998; Kvist et al., 2008). Consequently, there has

been considerable recent emphasis on tests for which the null hypothesis is that each

individual process is an arbitrary renewal process. We review such tests next.

4.2.2 Tests Based on Identical Renewal Processes

In the previous section, we considered tests for absence of trend in identical Poisson pro-

cesses. When processes are trend-free, the intervals between events are i.i.d. exponential
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random variables. It is, however, possible to give tests for the null hypothesis that the

intervals between events are i.i.d. with an arbitrary distribution.

Tests of the renewal process hypothesis H0 : The Wij (i = 1, . . ., m; j = 1, 2, . . .)

are i.i.d. can be formed in various ways. It is desirable to avoid making parametric

assumptions about the gap time distribution for each process, and we focus on tests that

do this. We consider the case where τ0i = 0 for the observation period for process i, and

the values ni are prespecified, rather than the lengths τi of the observation periods. This

is standard in the literature on these tests; we discuss the limitations of this below.

The simplest procedure is, for the ith process, to use a linear rank test of no association

between the gap time Wij and a specified covariate xij that is designed to reflect the type

of trend to be considered. In using a rank test we replace the Wij with scores and use

the fact that all ni! permutations of the ranks of Wi1, . . . ,Wini
are equally probable under

H0. This approach was introduced by Cox and Lewis (1966, Section 3.4), who used

exponential ordered scores αij and xij = j to illustrate the method. They indicated that

a test which is not efficient when the true distribution of the Wij is exponential is of a

little interest. The exponential ordered scores give high efficiency for the test of the null

hypothesis of no trend in exponentially distributed observations (Cox and Lewis, 1966,

p. 55) as well as good power in other cases. This test uses statistics

Ui =

ni∑
j=1

αij (xij − x̄i) , i = 1, . . . ,m, (4.12)

where αij is a function of the rank rij of Wij among Wi1, . . . ,Wini
. The exponential

ordered score is

αij =
1

ni

+ . . . +
1

ni − rij + 1
, j = 1, . . . , ni. (4.13)

The mean and variance of Ui under H0 are zero and

V ar(Ui) =

{
ni∑

j=1

(xij − x̄)2

}{
ni∑

j=1

(αij − ᾱi)
2

ni − 1

}
, (4.14)

and a combined test of H0 can be based on the statistic

R =
m∑

i=1

Ui/

{
m∑

i=1

V ar(Ui)

}1/2

, (4.15)

which under H0 is asymptotically normal as m →∞ or, for fixed m as the ni →∞. Other

scores besides (4.13) can be used; see for example Hajek and Sidak (1967) or Kalbfleisch

and Prentice (2002, Section 7.2) for a general discussion of linear rank tests.
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We mention two other tests which have been shown to have good power against mono-

tonic trend alternatives (Kvaloy and Lindqvist, 2003). The first is the well-known Lewis-

Robinson test (Lewis and Robinson, 1974), which uses the statistic

Z =
1√
m

m∑
i=1

Zi =
1√
m

m∑
i=1

W̄i

σ̂i


ni−1∑
j=1

Tij − (ni−1)
2

Tini

Tini

(
ni−1
12

)1/2

 , (4.16)

where σ̂i is an estimate of the standard deviation of the Wij(j = 1, . . . , ni). Under H0, the

statistic Z is asymptotically normal for m fixed and the ni →∞. A second test, developed

by Kvaloy and Lindqvist (2003), effectively uses an Anderson-Darling statistic to test that

the mean of a continuous version of the discrete processes {(Tij/Tini
−j/ni), j = 1, . . . , ni}

is zero. This test is rather awkward to compute when the ni are unequal.

Limitations of the renewal process based tests are the need for the no trend case

to be a renewal process; p-values computed under this assumption may be off when

the processes are stationary, but not renewal processes. A second and more serious

limitation is the requirement for fixed ni in the observation of processes. Although it

has been claimed (e.g. Kvaloy and Lindqvist, 2003) that the tests readily generalize to

fixed observation intervals [0, τi], it is not clear that this is the case. Intuitively, the rank

statistic (4.12) should still be suitable, since the Wij(j = 1, . . . , ni) are exchangeable under

H0 and given that Ni(τi) = ni; the variance estimate (4.14), which can be obtained from

permutation arguments, should also be valid. The Lewis-Robinson statistic (4.16) and the

Kvaloy-Lindqvist (2003) statistic do not, however, have the stated limiting distributions

as m → ∞. We investigate these points in Section 4.4. One last note is that the test

statistics (4.15) and (4.16) can be used for testing the absence of trend when there is

heterogeneity between processes. Therefore, we will return to these tests in Chapter 5.

4.3 Robust Trend Tests Based on Rate Functions

The trend tests of Section 4.2.1 are based on methods for the Poisson process models.

It is, however, possible to relax the model assumptions, and develop simple robust tests.

We discussed robust methods for rate functions in Section 1.4.4. The main target of this

section is to discuss the robust tests for trend in identical processes. We will discuss their

properties, and compare them to other tests in Section 4.4 by simulation.

Let the rate functions be ρi(t) for independent processes i = 1, . . . ,m. We consider

tests of the null hypothesis (i = 1, . . ., m)

H0 : ρi(t) = α, t ≥ 0, (4.17)
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where α is an unknown positive value. To develop tests we consider models of the form

(4.1), where ρ(t) = α exp(βg(t)). An important difference with Section 4.2.1, however, is

that we do not assume here that the processes are Poisson; no assumption is made about

the processes beyond their rate functions.

We assume as in Section 4.2.1 that the ith process is observed over the time inter-

val [τ0i, τi] and that ni events at times Ti1 < . . . < Tini
are observed. An important

requirement for the development of robust tests is that the τ0i and τi are determined

independently of the event processes. With the notation of Section 1.4.4, this means that

the observable processes {Yi(t); t ≥ 0} and the event proceses are independent. This

excludes observation schemes where ni is prespecified. In addition, we will for simplicity

ignore processes with ni = 0 (since they contain no information about the shape of ρ(t))

and assume that all of processes 1, . . ., m have ni > 0. This does not pose any restrictions;

terms in score test statistics below are zero for any process with ni = 0.

A little algebra shows that Uβ(α̃, 0) in (4.5) (or Uc(0) in (4.9)) can be rewritten as

Uβ(α̃, 0) =
m∑

i=1

Uβi(α̃, 0) =
m∑

i=1

∫ τi

τ0i

(
g(s)− g.

τ.

)
[dNi(s)− α ds] , (4.18)

where g. =
∑m

i=1

∫ τi

τ0i
g(u) du and α̃ = n./τ.(Cook and Lawless, 2007, Problem 3.13).

Under the assumption of a homogeneous Poisson process with rate function α, the expec-

tation of (4.18) is zero. However, this result holds even when the correct model is not a

homogeneous Poisson process so long as the rate function is correctly specified. This is be-

cause of the fact that E{dNi(t)} = ρi(t)dt, where dNi(t) = lim∆t↓0[N(t + ∆t−)−N(t−)]

represents the number of events in an arbitrarily short interval (t − dt, t]. It is easily

seen that under H0, E{Uβ(α̃, 0)} = 0 and that under alternatives of the form (4.1),

E{Uβ(α̃, 0)} will be bigger or smaller than zero when g(t) is increasing and decreasing,

respectively. In addition, the terms Uβi(0) in (4.18) for i = 1, . . . ,m are independent and

so Var{Uβ(α̃, 0)} can be estimated under H0 by

V̂ ar {Uβ(α̃, 0)} =
m∑

i=1

Uβi(α̃, 0)2, (4.19)

leading to the standardized statistic

SR1 =
m∑

i=1

Uβi(α̃, 0)/

{
m∑

i=1

Uβi(α̃, 0)2

}1/2

(4.20)

for testing H0. The variance estimate (4.19) is different than the Poisson estimate (4.6),

and is robust to stationary departures from a Poisson process (cf. Section 1.4.4).

In Section 4.2.1, we also mentioned that a similar procedure can be followed to develop

a score test for testing H0 by conditioning on n1, . . ., nm, instead of
∑m

i=1 ni. In this case,
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we obtain the score function (see, Section 5.2.1) as

U(0) =
m∑

i=1

Ui(0) =
m∑

i=1

∫ τi

τ0i

(
g(t)−

∫ τi

τ0i
g(t) dt

τ0i − τi

)
dNi(t). (4.21)

We observe that E{U(0)} = 0 under H0 : ρi(t) = α, whether the Poisson assumption is

true or not. This gives

SR2 =
m∑

i=1

Ui(0)/

{
m∑

i=1

Ui(0)2

}1/2

, (4.22)

which is another standardized score test statistic for testing H0. In general, the test

statistic (4.22) is different than (4.20), but is still robust.

As m → ∞, the distribution of SR1 is asymptotically standard normal under H0

as long as the integrals in (4.18) are finite. When the normal approximation is not

accurate, p-values can be obtained by simulation. Other details about SR1 are discussed

in Section 4.4.

For the special case g(t) = t, the numerator of (4.20) is given by (4.18) or (4.5), which

can be shown to equal
m∑

i=1

ni∑
j=1

tij −
n.

τ.

m∑
i=1

(τi − τ0i)
2

2
, (4.23)

where n. =
∑m

i=1 ni and τ. =
∑m

i=1(τi−τ0i). It should be noted that, when the observation

periods are equal for all processes (i.e. τi − τ0i = τ ; i = 1, . . ., m) and g(t) = t, the tests

SR1 and SR2 are equal, and the numerator simplifies to

m∑
i=1

ni∑
j=1

tij −
n.τ

2
. (4.24)

When g(t) = t, the test statistic SR2 is called the generalized Laplace test. A further

discussion of the Laplace statistic is given in Chapter 5.

4.3.1 Settings with Covariates

Most trend tests proposed in the literature do not allow covariates to be incuded in the

model. We now introduce covariates into the models where the baseline rate functions of

the processes are the same for each process. We consider models with rate functions of

the form (i = 1, . . ., m)

ρi(t) = αeβg(t)+γ′xi(t)+δ′vi , , t > 0, (4.25)

where xi(t) is a vector of time-varying external covariates and vi is a vector of fixed

covariates for process i. We develop a score test for testing the null hypothesis H0 : β = 0.
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Note that the model (4.25) is not identical for each process anymore, only the baseline

rates are assumed to be identical. A generalization of this model where the baseline rate

functions are assumed to be different for each process is considered in the next chapter.

In this section, we only develop a score test for H0, and defer a more detailed discussion

to the next chapter.

A test for trend can be based on the distribution of the observed data {(Ni(τ0i, τi) =

ni; ti1 < . . . < tni
); i = 1, . . . ,m}, but a simpler approach is based on the conditional

distribution of {(Ni(τ0i, τi) = ni; ti1 < . . . < tni
); i = 1, . . . ,m} given either n. =

∑m
i=1 ni

or n1, . . ., nm, where Ni(τ0i, τi) = ni > 0. Although this test is based on a Poisson process,

we show that the estimating functions are unbiased under the more general assumption

that (4.25) represents the process rate functions. Here, we give the score test for the

“given n1, . . ., nm” case, which is also considered in the next chapter. In this case, the

conditional likelihood function is given by

Lc (β, γ) =
m∏

i=1


ni!

ni∏
j=1

eβg(tij)+γ′xi(tij)(∫ τi

τ0i
eβg(t)+γ′xi(t) dt

)ni

 , (4.26)

which is free of parameters α and δ. Although Lc(β, γ) has been obtained under a

Poisson process assumption, the estimating functions for β and γ based on it are valid

more generally. In particular, these are

Uβ (β, γ) = ∂ log Lc (β, γ) /∂β

=
m∑

i=1

{
ni∑

j=1

g(tij)−
niD

β
i (β, γ)

Di (β, γ)

}
, (4.27)

and

Uγ (β, γ) = ∂ log Lc (β, γ) /∂γ

=
m∑

i=1

{
ni∑

j=1

xi(tij)−
niD

γ
i (β, γ)

Di (β, γ)

}
, (4.28)

where for convenience we define

Di (β, γ) =

∫ τi

τ0i

eβg(t)+γ′xi(t) dt

Dβ
i (β, γ) = ∂Di/∂β =

∫ τi

τ0i

g(t) eβg(t)+γ′xi(t) dt

Dγ
i (β, γ) = ∂Di/∂γ =

∫ τi

τ0i

xi(t) eβg(t)+γ′xi(t) dt
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and for use below,

Dβγ
i =

(
Dγβ

i

)′
= ∂2Di (β, γ) /∂β∂γ′ =

∫ τi

τ0i

g(t)xi(t)
′eβg(t)+γxi(t)dt

Dββ
i = ∂2Di (β, γ) /∂β2 =

∫ τi

τ0i

g(t)2eβg(t)+γxi(t)dt

Dγγ
i = ∂2Di (β, γ) /∂γ∂γ′ =

∫ τi

τ0i

xi(t)xi(t)
′eβg(t)+γxi(t)dt.

By noting that ni =
∫ τi

τ0i
dNi(t), rewriting (4.27) as

Uβ(β, γ) =
m∑

i=1

{∫ τi

τ0i

[
g(t)− Dβ

i (β, γ)

Di(β, γ)

]
dNi(t)

and using the fact that E{dNi(t)} = ρi(t)dt, we see that E{Uβ(β, γ)} = 0 provided (4.25)

is true and the [τ0i, τi] are independent of the event processes. It is seen similarly that

E{Uγ(β, γ)} = 0. Thus, solving Uβ(β, γ) = 0 and Uγ(β, γ) = 0 will produce consistent

estimates (as m →∞) of β and γ under mild conditions on g(t) and the xi(t).

Our interest here is in testing H0 : β = 0 and to that end we let γ̃ be the solution to

Uγ(0, γ) = 0. The pseudo score statistic for H0 is then

Ui(0, γ̃) =
m∑

i=1

Uβi(0, γ̃) =
m∑

i=1

{
ni∑

j=1

g(Tij)−
niD

β
i (0, γ̃)

Di(0, γ̃)

}
. (4.29)

A variance estimate Ṽ for Ui(0, γ̃) is given by results in Section 4.1 of Boos (1992). This

takes the form

Ṽ = Ã B̃ Ã (4.30)

where

Ã = Ĩ11 − Ĩ12Ĩ
−1
22 Ĩ21, B̃ =

(
Ĩ−1C̃Ĩ−1

)
11

,

with

Ĩ11 =
m∑

i=1

ni

{
Di(0, γ̃)Dββ

i (0, γ̃)−Dβ
i (0, γ̃)2

Di(0, γ̃)2

}

Ĩ12 = Ĩ ′21 =
m∑

i=1

ni

{
Di(0, γ̃)Dβγ

i (0, γ̃)−Dβ
i (0, γ̃)Dγ

i (0, γ̃)

Di(0, γ̃)2

}

Ĩ22 =
m∑

i=1

ni

{
Di(0, γ̃)Dγγ

i (0, γ̃)−Dγ
i (0, γ̃)Dγ

i (0, γ̃)′

Di(0, γ̃)2

}
C̃ =

m∑
i=1

Uβi(0, γ̃)2
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The test statistic Z = U1(0, γ̃)/Ṽ 1/2 is asymptotically standard normal under H0, as m →
∞. When m is not sufficiently large for the normal approximation to be accurate, there

is at present no alternative approach to obtaining p-values unless additional assumptions

about the process are made.

4.4 Simulation Studies

We present here the results of simulation studies undertaken to assess the accuracy of

large sample approximations to the null distributions of test statistics for trend, and to

compare the power of several tests under various trend alternatives. We consider three

types of “no trend” null hypothesis, as follows:

(a) H0 : Process i (i = 1, . . ., m) is a HPP with rate α,

(b) H0 : Process i (i = 1, . . ., m) is a renewal process with gap times Wij (j = 1, . . ., ni)

following a gamma distribution with scale a and shape b,

(c) H0 : Process i (i = 1, . . ., m) has intensity function α exp{βzi(t)}, where zi(t) =

I(Ni(t
−) > 0)I(Bi(t) ≤ ∆).

Note that case (a) is the special case of (b) when b = 1 and a = α−1 but because of its

importance we designate it separately. In simulations, we consider b = 0.75 and 1.5 for

case (b). Case (c) is a carryover model as in Chapter 2. We note that it is in fact a

delayed renewal process in which the hazard function is α for Wi1 and for Wi2, Wi3, . . .,

it is h2(w) = α(eβ − 1)I(w ≤ ∆) + α. We consider exp(β) = 5 and ∆ = 0.05 throughout

this section. We take α = 1 in (a) and (c) and a = (αb)−1 in (b) so that the average

gap time ab is α−1, which gives an event rate approaching α as t → ∞ in case (b). For

simplicity, we take τi = τ (i = 1, . . ., m), with τ taking values 5 and 20. We consider

m = 10, 20 or 50 processes. This gives approximately (exactly, in case (a)) mτ expected

total events under each null hypothesis setting. We consider the following test statistics

for “no trend”:

(1) the standardized robust score statistic SR1 in (4.20) with g(t) = t,

(2) the linear rank statistic R in (4.15),

(3) Z∗, a corrected version of the generalized Lewis-Robinson statistic, where Z∗ =
1√
m

∑m
i=1

√
ni

ni+1
Zi and Zi is given in (4.16).

Since the observation periods are equal for all processes and g(t) = t, the statistics SR1

and SR2 given in (4.22) are the same. In the case of (2) and (3), we ignore the final
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censored gap between tni
and τ . To mimic how fixed-ni statistics are used in practice

when τi is actually fixed, we use σ̂2
i =

∑ni

j=1(wij − w̄i)
2/(ni− 1), where w̄i =

∑ni

j=1 wij/ni,

in Z∗, and only consider systems with ni ≥ 2. The correction in (3) is useful when τ and

the E(Ni(τ)) are small but has a small effect for a large τ . We simulated 10,000 runs for

each of the “no trend” scenarios (a), (b) and (c) and (m, τ) combinations. For each test

statistic (1), (2) and (3), we report on its distribution and the adequacy of the standard

normal approximation. For convenience, results are collected in Section 4.4.1 below.

Normal quantile-quantile (Q-Q) plots of the 10,000 values of the test statistics are given

for case (a) in Figures 4.1, 4.2 and 4.3 when τ = 5 and m = 10, 20 or 50, respectively.

The standard normal approximation is suitable for R and Z∗ in each setting but is not

adequate for SR1 in the extreme tails when m = 10. This is likely because SR1 uses a

robust variance estimate effectively based on m values Ui(∆), and some departure from

normality when m = 10 is unsurprising. In Figures 4.4, 4.5 and 4.6, we consider the case

(a) when τ = 20, and obtain similar results. Table 4.1 gives additional details of the

results in the normal Q-Q plots.

In case (b), we generate data from a renewal process where the Wij have a gamma

distribution with scale a and shape b parameters. Strictly speaking, a renewal process is

not (strongly) stationary. Although ρi(t) → α = (1/E(Wij)) as t → ∞, ρi(t) can vary

quite a lot for smaller t, depending on the distribution of the Wij. Thus, the SR1 test

can show bias (i.e. E(Uβi(α̃, 0)) 6= 0) when the process is a renewal process, especially

for smaller τ . The bias disappears as τ increases. This can be seen in Figure 4.7 where

we generated the Wij from the gamma distribution with scale parameter a and shape

parameter b = 1.5. Our preliminary studies showed that the bias is negative when b < 1

and positive when b > 1, and increasing as |b| increases. When we have a renewal process

that is not an HPP, one approach is to use SR1 by taking τi = tni
(i = 1, . . ., m).

Another approach is to note that, with τi fixed, (wi1, . . . , wini
) are exchangeable under

H0, given Ni(τi) = ni. In other words, the joint distributions of (Wi1, . . . ,Wini
) and any

permutation of (Wi1, . . . ,Wini
), given Ni(τi) = ni, are the same. Thus we could estimate a

mean adjustment for each Uβi(α̃, 0) as follows: Take B permutations of Wi1, . . ., Wini
and

define, for permutation b (call it, wb
i1, . . ., wb

ini
), the new event times tbij = wb

i1 + · · ·+ wb
ij

(j = 1, . . ., ni). Then, compute

U b
βi(α̃, 0) =

ni∑
j=1

tbij −
niτi

2
, b = 1, . . . , B,

and estimate E{Uβi(α̃, 0)} by

Ūβi(α̃, 0) =

∑B
b=1 U b

βi(α̃, 0)

B
.
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Then, replace Uβi(α̃, 0) with U new
βi (α̃, 0) = Uβi(α̃, 0)− Ūβi(α̃, 0), and use the statistic

Snew

R1 =
m∑

i=1

U new

βi (α̃, 0)/

{
m∑

i=1

U new

βi (α̃, 0)2

}1/2

.

A third way involving less computation is as follows: Since Wi1, . . ., Wini
are exchangeable

, given Ni(τi) = ni, we have E{Wij|Ni(τi) = ni} = µ(ni). Then,

Uβi(α̃, 0) =

ni∑
j=1

tij −
niτi

2
=

ni∑
j=1

(ni − j + 1)Wij −
niτi

2

and

E{Uβi(α̃, 0)|Ni(τi) = ni} =

ni∑
j=1

(ni − j + 1)µ(ni)−
niτi

2

=
ni(ni + 1)

2
µ(ni)−

niτi

2
. (4.31)

Replacing µ(ni) with W̄i = 1
ni

∑ni

j=1 Wij = tini
/ni, we estimate (4.31) by

Ūβi(α̃, 0) =

(
ni + 1

2

)
tini

− niτi

2
. (4.32)

Now, let U∗
βi(α̃, 0) = Uβi(α̃, 0)− Ūβi(α̃, 0) and use the statistic

S∗R1 =
m∑

i=1

U∗
βi(α̃, 0)/

{
m∑

i=1

U∗
βi(α̃, 0)2

}1/2

. (4.33)

Figure 4.8 shows normal Q-Q plots of SR1 and S∗R1 statistics based on 10,000 realizations.

The test statistic S∗R1 works well when E{Uβi(α̃, 0)} 6= 0. Therefore, we used it for case

(b). It should be noted that using it does not change the results when E{Uβi(α̃, 0)} = 0

as well; for example, in case (a).

We next generated 10,000 realizations of m processes for case (b) by generating the

Wij from a gamma distribution with scale parameter a and shape parameter b = 0.75,

and consider S∗R1 in place of SR1. The normal Q-Q plots of the test statistics are given

in Figures 4.9, 4.10 and 4.11 when τ = 5 and m = 10, 20 and 50, respectively. We now

observe similar results to those of case (a) (see Figures 4.1, 4.2 and 4.3). When m = 10,

the expected number of events is approximately 5 for each process, and in this case the

normal approximation for S∗R1 is not good in the extreme tails. The normal approximation

is , however, adequate when m = 20 or 50. This can be seen in Table 4.2 as well, which

summarizes features of Figures 4.9–4.11. Figures 4.12, 4.13 and 4.14 show the normal

Q-Q plots when τ = 20. Increasing τ from 5 to 20 does not have a significant effect on
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the normal approximations of the test statistics. We conducted a similar simulation study

when b = 1.5. The normal Q-Q plots are not given here but Table 4.3 summarizes the

results, which are similar to the results when b = 0.75.

In case (c), we generate data from a delayed renewal process where Wi1 (i = 1, . . .,

m) has the hazard function h1(w) = α and the Wij (i = 1, . . ., m; j = 2, 3 ,. . .) have

the hazard function hj(w) = α(eβ − 1)I(w < ∆) + α (j = 2, 3, . . .), w > 0. Normal Q-Q

plots based on the 10,000 simulated values of the test statistics SR1, R and Z∗ are given

in Figure 4.15, 4.16 and 4.17 when τ = 5 and m = 10, 20 or 50, respectively. In this

case, the standard normal approximation is not adequate for R and Z∗, and for m = 5,

it is off for extreme tails in the distribution of SR1, as in case(a). The bias in the mean

of R and Z∗ gets worse as m increases. The effect of the Wi1 disappears as τ increases.

This can be seen in Figures 4.18, 4.19 and 4.20 where we present the normal Q-Q plots

of 10,000 realizations of SR1, R and Z∗ when τ = 20 and m = 10, 20 and 50. Tables 4.4

summarizes key features of the figures.

We also conducted power studies with the three test statistics under trend alternatives.

The following families of models were taken for processes exhibiting an increasing trend.

(d) Process i (i = 1, . . ., m) is a NHPP with rate function ρi(t) = α∗ exp(γt),

(e) Process i (i = 1, . . ., m) is a semi-Markov process where the gap times Wij (j = 1,

. . ., ni)are independent, and follow a gamma distribution with scale a∗ exp(γj) for

Wij and shape b,

(f) Process i (i = 1, . . ., m) has intensity function

λi(t|Hi(t)) = α∗ exp(γt) exp(βzi(t)), t ≥ 0,

where zi(t) = I(Ni(t
−) > 0)I(Bi(t) ≤ ∆).

We report below on the power of tests based on SR1 (or S∗R1, for case (e)), R and Z∗

when eγτ = 2 or 4. The values used for α∗ in case (d) and (f) and a∗ in case (e) were

selected so as to give roughly the same expected total numbers of events as in the null

cases (a), (b) and (c). Thus, for case (e), we chose a∗ = (α∗b)−1.

We consider the power of tests with size (Type 1 error) 0.05. To compare the power

of the statistics independent of the adequacy of their normal approximations under the

null hypotheses, we used in each case the empirical 0.95 quantile of the test statistic

in the 10,000 simulation runs corresponding to the null hypothesis that matches each

alternative. That is, we used quantiles based on (a), (b) and (c) for alternatives of the

form (d), (e) and (f), respectively. We considered τ = 5, 10 and 20 and m = 10, 20 and

50, and generated 1,000 samples in each case. We used the same generated data with

SR1, R and Z∗.
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For case (d), the proportions of rejection of no trend (i.e. H0 : γ = 0) are given

in Table 4.5. To obtain approximately the same number of events obtained in case (a),

we chose α∗ = αγτ/(eγτ − 1), where α = 1. In each scenario, SR1 is more powerful

than R and Z∗, though as τ increases the difference becomes small. The power of Z∗ is

slightly higher than R. Note that, if we used the variance estimate based on the Poisson

process instead of the robust variance estimate (i.e. tests of Section 4.2.1) in SR1, the

test would be optimum against the alternative model given in case (d) (Cox and Lewis,

1966). However, the test SR1 maintains high power with the robust variance estimate

when m ≥ 10. The powers of test statistics in case (e) are presented in Tables 4.6 and 4.7

when b = 0.75 and 1.5, respectively. This case is the match of case (b) so we used S∗R1 in

(4.33) instead of SR1. When τ = 5, the power of S∗R1 is slightly higher than Z∗. However,

when τ = 20 or 50, Z∗ is slightly more powerful than S∗R1. Note that, although the test

Z∗ is based on the renewal processes, the differences between the powers of S∗R1 and Z∗

are small. Both statistics are more powerful than R. Also, the powers are higher when

b = 1.5 than the powers when b = 0.75 for all test statistics. In case (f), we consider

a model that incorporates monotonic trend and a carryover effect. We generated data

from the model in (f) when α = 1, eβ = 5 and ∆ = 0.05. To obtain approximately same

number of events per process as in case (c), we chose α∗ so that the numbers of events

Ni(τ) per process is approximately same to those of the case (c). Table 4.8 gives results,

and it shows that SR1 is more powerful than R and Z∗.

Section 4.4.2 summarizes results of the simulation studies, whose outputs are given in

Section 4.4.1 below.
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4.4.1 Figures and Tables
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Figure 4.1: Normal Q-Q plots of simulated values of the test statistics (1) SR1, (2) R and

(3) Z∗: Case (a), τ = 5, m = 10.

Figure 4.2: Normal Q-Q plots of simulated values of the test statistics (1) SR1, (2) R and

(3) Z∗: Case (a), τ = 5, m = 20.

Figure 4.3: Normal Q-Q plots of simulated values of the test statistics (1) SR1, (2) R and

(3) Z∗: Case (a), τ = 5, m = 50.
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Figure 4.4: Normal Q-Q plots of simulated values of the test statistics (1) SR1, (2) R and

(3) Z∗: Case (a), τ = 20, m = 10.

Figure 4.5: Normal Q-Q plots of simulated values of the test statistics (1) SR1, (2) R and

(3) Z∗: Case (a), τ = 20, m = 20.

Figure 4.6: Normal Q-Q plots of simulated values of the test statistics (1) SR1, (2) R and

(3) Z∗: Case (a), τ = 20, m = 50.
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τ m Test Q̂.950 Q̂.975 Q̂.990 P̂r(· > 1.645) P̂r(· > 1.960) P̂r(· > 2.326)
5 10 SR1 1.643 1.892 2.146 0.050 0.021 0.004

R 1.636 1.939 2.306 0.049 0.024 0.009
Z∗ 1.671 1.958 2.333 0.052 0.025 0.010

20 SR1 1.661 1.942 2.258 0.052 0.025 0.007
R 1.605 1.909 2.299 0.046 0.022 0.009
Z∗ 1.668 1.992 2.374 0.052 0.027 0.011

50 SR1 1.639 1.931 2.302 0.049 0.023 0.009
R 1.579 1.862 2.230 0.042 0.020 0.008
Z∗ 1.654 1.993 2.308 0.051 0.027 0.010

20 10 SR1 1.653 1.899 2.143 0.051 0.021 0.005
R 1.631 1.922 2.277 0.048 0.022 0.009
Z∗ 1.647 1.976 2.309 0.050 0.027 0.010

20 SR1 1.634 1.934 2.218 0.049 0.023 0.007
R 1.625 1.916 2.328 0.048 0.023 0.010
Z∗ 1.629 1.947 2.326 0.049 0.024 0.010

50 SR1 1.656 1.941 2.282 0.051 0.024 0.009
R 1.638 1.946 2.383 0.050 0.024 0.011
Z∗ 1.658 1.961 2.285 0.051 0.025 0.009

Table 4.1: Q̂p is the empirical pth quantile of SR1, R and Z∗ computed from 10,000

samples under case (a). P̂r(· > Qp) is the proportion of the values of SR1, R and Z∗ in

10,000 samples which are larger than the pth quantile of a standard normal distribution.
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Figure 4.7: Normal Q-Q plots of simulated values of SR1 when (1) τ = 5, (2) τ = 50, and

(3) τ = 500: Case (b), m = 50, Wij ∼ Gamma(a, b = 1.5).

Figure 4.8: Normal Q-Q plots of simulated values of (1) SR1 and (2) S∗R1 in (4.33): Case

(b), τ = 5, m = 50, Wij ∼ Gamma(a, b = 1.5).
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Figure 4.9: Normal Q-Q plots of simulated values of the test statistics (1) S∗R1, (2) R and

(3) Z∗: Case (b), τ = 5, m = 10, Wij ∼ Gamma(a, b = 0.75).

Figure 4.10: Normal Q-Q plots of simulated values of the test statistics (1) S∗R1, (2) R

and (3) Z∗: Case (b), τ = 5, m = 20, Wij ∼ Gamma(a, b = 0.75).

Figure 4.11: Normal Q-Q plots of simulated values of the test statistics (1) S∗R1, (2) R

and (3) Z∗: Case (b), τ = 5, m = 50, Wij ∼ Gamma(a, b = 0.75).
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Figure 4.12: Normal Q-Q plots of simulated values of the test statistics (1) S∗R1, (2) R

and (3) Z∗: Case (b), τ = 20, m = 10, Wij ∼ Gamma(a, b = 0.75).

Figure 4.13: Normal Q-Q plots of simulated values of the test statistics (1) S∗R1, (2) R

and (3) Z∗: Case (b), τ = 20, m = 20, Wij ∼ Gamma(a, b = 0.75).

Figure 4.14: Normal Q-Q plots of simulated values of the test statistics (1) S∗R1, (2) R

and (3) Z∗: Case (b), τ = 20, m = 50, Wij ∼ Gamma(a, b = 0.75).
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τ m Test Q̂.950 Q̂.975 Q̂.990 P̂r(· > 1.645) P̂r(· > 1.960) P̂r(· > 2.326)
5 10 S∗R1 1.643 1.868 2.092 0.050 0.018 0.004

R 1.674 1.978 2.346 0.054 0.026 0.011
Z∗ 1.629 1.905 2.319 0.049 0.022 0.010

20 S∗R1 1.642 1.918 2.246 0.050 0.022 0.009
R 1.624 1.954 2.304 0.048 0.025 0.009
Z∗ 1.638 1.942 2.317 0.049 0.024 0.009

50 S∗R1 1.665 1.978 2.340 0.053 0.026 0.010
R 1.633 1.948 2.313 0.049 0.024 0.010
Z∗ 1.662 2.019 2.362 0.052 0.028 0.011

20 10 S∗R1 1.648 1.895 2.187 0.050 0.020 0.006
R 1.613 1.933 2.354 0.046 0.024 0.011
Z∗ 1.642 1.973 2.354 0.050 0.026 0.011

20 S∗R1 1.652 1.919 2.259 0.051 0.023 0.008
R 1.669 1.978 2.291 0.053 0.027 0.009
Z∗ 1.641 1.942 2.319 0.050 0.024 0.010

50 S∗R1 1.666 1.974 2.299 0.053 0.026 0.009
R 1.663 1.961 2.306 0.051 0.025 0.010
Z∗ 1.662 1.971 2.338 0.052 0.026 0.010

Table 4.2: Q̂p is the empirical pth quantile of S∗R1, R and Z∗ computed from 10,000

samples under case (b) when b = 0.75. P̂r(· > Qp) is the proportion of the values of S∗R1,

R and Z∗ in 10,000 samples which are larger than the pth quantile of a standard normal

distribution.
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τ m Test Q̂.950 Q̂.975 Q̂.990 P̂r(· > 1.645) P̂r(· > 1.960) P̂r(· > 2.326)
5 10 S∗R1 1.656 1.894 2.134 0.051 0.020 0.004

R 1.668 2.001 2.321 0.052 0.027 0.010
Z∗ 1.635 1.936 2.260 0.049 0.023 0.008

20 S∗R1 1.666 1.975 2.266 0.052 0.026 0.008
R 1.668 1.989 2.371 0.053 0.027 0.012
Z∗ 1.649 1.971 2.334 0.051 0.026 0.011

50 S∗R1 1.647 1.953 2.301 0.050 0.025 0.009
R 1.656 1.973 2.375 0.051 0.026 0.012
Z∗ 1.651 1.947 2.318 0.050 0.025 0.010

20 10 S∗R1 1.648 1.897 2.191 0.051 0.021 0.006
R 1.631 1.924 2.294 0.049 0.023 0.009
Z∗ 1.639 1.957 2.349 0.050 0.025 0.010

20 S∗R1 1.667 1.931 2.235 0.052 0.024 0.007
R 1.615 1.890 2.289 0.047 0.021 0.009
Z∗ 1.672 1.975 2.328 0.052 0.026 0.010

50 S∗R1 1.642 1.959 2.317 0.050 0.025 0.010
R 1.661 1.964 2.389 0.051 0.025 0.013
Z∗ 1.660 1.954 2.365 0.051 0.025 0.011

Table 4.3: Q̂p is the empirical pth quantile of S∗R1, R and Z∗ computed from 10,000

samples under case (b) when b = 1.5. P̂r(· > Qp) is the proportion of the values of S∗R1,

R and Z∗ in 10,000 samples which are larger than the pth quantile of a standard normal

distribution.
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Figure 4.15: Normal Q-Q plots of simulated values of the test statistics (1) SR1, (2) R

and (3) Z∗: Case (c), τ = 5, m = 10.

Figure 4.16: Normal Q-Q plots of simulated values of the test statistics (1) SR1, (2) R

and (3) Z∗: Case (c), τ = 5, m = 20.

Figure 4.17: Normal Q-Q plots of simulated values of the test statistics (1) SR1, (2) R

and (3) Z∗: Case (c), τ = 5, m = 50.
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Figure 4.18: Normal Q-Q plots of simulated values of the test statistics (1) SR1, (2) R

and (3) Z∗: Case (c), τ = 20, m = 10.

Figure 4.19: Normal Q-Q plots of simulated values of the test statistics (1) SR1, (2) R

and (3) Z∗: Case (c), τ = 20, m = 20.

Figure 4.20: Normal Q-Q plots of simulated values of the test statistics (1) SR1, (2) R

and (3) Z∗: Case (c), τ = 20, m = 50.
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τ m Test Q̂.950 Q̂.975 Q̂.990 P̂r(· > 1.645) P̂r(· > 1.960) P̂r(· > 2.326)
5 10 SR1 1.637 1.888 2.168 0.049 0.020 0.005

R 1.258 1.579 1.939 0.022 0.010 0.004
Z∗ 2.059 2.349 2.664 0.111 0.061 0.027

20 SR1 1.684 1.974 2.282 0.055 0.026 0.009
R 1.106 1.431 1.781 0.014 0.006 0.002
Z∗ 2.223 2.519 2.886 0.142 0.083 0.039

50 SR1 1.659 1.991 2.346 0.052 0.027 0.011
R 0.811 1.170 1.521 0.007 0.002 0.001
Z∗ 2.579 2.835 3.160 0.238 0.151 0.083

20 10 SR1 1.651 1.903 2.162 0.051 0.020 0.005
R 1.442 1.732 2.088 0.031 0.015 0.004
Z∗ 1.816 2.127 2.497 0.072 0.038 0.015

20 SR1 1.663 1.916 2.261 0.052 0.023 0.008
R 1.360 1.674 2.049 0.026 0.013 0.004
Z∗ 1.939 2.200 2.577 0.089 0.047 0.019

50 SR1 1.658 1.942 2.306 0.052 0.024 0.009
R 1.178 1.501 1.835 0.017 0.007 0.002
Z∗ 2.096 2.412 2.769 0.123 0.067 0.031

Table 4.4: Q̂p is the empirical pth quantile of SR1, R and Z∗ computed from 10,000

samples under case (c). P̂r(· > Qp) is the proportion of the values of SR1, R and Z∗ in

10,000 samples which are larger than the pth quantile of a standard normal distribution.
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τ m eγτ SR1 R Z∗

5 10 2 0.229 0.168 0.163

4 0.706 0.514 0.506

20 2 0.485 0.271 0.261

4 0.958 0.796 0.793

50 2 0.896 0.583 0.622

4 1.000 0.994 0.995

10 10 2 0.415 0.359 0.387

4 0.931 0.845 0.901

20 2 0.750 0.630 0.676

4 1.000 0.998 0.997

50 2 0.993 0.942 0.960

4 1.000 1.000 1.000

20 10 2 0.672 0.673 0.689

4 0.999 0.998 0.999

20 2 0.972 0.950 0.959

4 1.000 1.000 1.000

50 2 1.000 0.999 1.000

4 1.000 1.000 1.000

Table 4.5: Proportion of rejection of H0 : γ = 0 under the case (d), based on 1,000

samples.
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τ m eγτ a∗ S∗R1 R Z∗

5 10 2 0.863 0.105 0.087 0.100

4 0.538 0.314 0.260 0.310

20 2 0.863 0.188 0.155 0.162

4 0.538 0.581 0.441 0.500

50 2 0.863 0.402 0.323 0.343

4 0.538 0.951 0.856 0.913

10 10 2 0.893 0.247 0.254 0.273

4 0.575 0.721 0.697 0.761

20 2 0.893 0.463 0.431 0.485

4 0.575 0.971 0.953 0.981

50 2 0.893 0.864 0.778 0.829

4 0.575 1.000 1.000 1.000

20 10 2 0.908 0.521 0.534 0.591

4 0.595 0.982 0.985 0.992

20 2 0.908 0.843 0.819 0.857

4 0.595 1.000 1.000 1.000

50 2 0.908 0.997 0.995 0.999

4 0.595 1.000 1.000 1.000

Table 4.6: Proportion of rejection of H0 : γ = 0 under the case (e) when b = 0.75, based

on 1,000 samples.
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τ m eγτ a∗ S∗R1 R Z∗

5 10 2 0.431 0.218 0.160 0.195

4 0.269 0.602 0.527 0.596

20 2 0.431 0.359 0.293 0.337

4 0.269 0.919 0.847 0.899

50 2 0.431 0.831 0.701 0.747

4 0.269 1.000 0.998 1.000

10 10 2 0.446 0.486 0.490 0.514

4 0.288 0.968 0.967 0.978

20 2 0.446 0.820 0.791 0.836

4 0.288 1.000 1.000 1.000

50 2 0.446 0.997 0.993 0.999

4 0.288 1.000 1.000 1.000

20 10 2 0.454 0.819 0.842 0.878

4 0.298 1.000 1.000 1.000

20 2 0.454 0.996 0.998 0.998

4 0.298 1.000 1.000 1.000

50 2 0.454 1.000 1.000 1.000

4 0.298 1.000 1.000 1.000

Table 4.7: Proportion of rejection of H0 : γ = 0 under the case (e) when b = 1.5, based

on 1,000 samples.
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τ m eγτ SR1 R Z∗

5 10 2 0.281 0.080 0.093

4 0.713 0.309 0.333

20 2 0.509 0.123 0.132

4 0.973 0.541 0.613

50 2 0.902 0.222 0.281

4 1.000 0.890 0.951

10 10 2 0.412 0.215 0.246

4 0.921 0.735 0.796

20 2 0.755 0.378 0.485

4 1.000 0.957 0.981

50 2 0.993 0.787 0.869

4 1.000 1.000 1.000

20 10 2 0.716 0.593 0.649

4 0.993 0.989 0.995

20 2 0.960 0.878 0.917

4 1.000 1.000 1.000

50 2 1.000 0.999 1.000

4 1.000 1.000 1.000

Table 4.8: Proportion of rejection of H0 : γ = 0 under the case (f), based on 1,000

samples.
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4.4.2 Summary

The simulation studies were conducted to assess the accuracy of the N(0, 1) approxima-

tions for SR1, S∗R1, R and Z∗ statistics under the null hypothesis, in different scenarios.

Based on 10,000 samples of each statistic, normal Q-Q plots as well as a detailed table

showed that, when the null model is an HPP (case (a)), p-values for the linear rank and

Lewis-Robinson tests can be found from standard normal approximations in all scenarios

considered (i.e. m = 10, 20, 50 and τ = 5, 20). The standard normal approximation

is suitable for SR1, but a little off in the extreme tails when m = 10. In case (b), we

generated data from a renewal process with gap times following a gamma distribution

with shape parameter 0.75 or 1.5. In this case, SR1 is biased so we proposed a mean

correction for SR1. Normal Q-Q plots and tables suggested that the normal approxima-

tions for S∗R1 is off in the extreme tails when m = 10, but is satisfactory otherwise. In all

scenarios, normal approximations are suitable for R and Z∗. In case (c), we considered

a delayed renewal process as the null model. The normal approximation is adequate for

SR1 especially when m > 10, but not for the R and Z∗ statistics, which are biased. We

also conducted simulation studies to compare the powers of the tests in three different

cases. In all cases, SR1 (S∗R1 in case (e)) is the overall most powerful test for monotonic

trend.

We recommend using SR1 as a routine check for monotonic trends in identical processes

when m ≥ 10. It is easy to implement, powerful against different types of monotonic trend

alternatives, and can be used with covariates. A good idea is to look at S∗R1 as well. If

the results of SR1 and S∗R1 are too different, S∗R1 can be used instead of SR1. When m

is small but the τi are large, either R or Z∗ can be used. However, it should be noted

that these tests assume the processes are renewal processes. Research is needed regarding

tests when this assumption is unsatisfactory.
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Chapter 5

Testing for Trend in Nonidentical

Recurrent Event Processes

A general introduction and definition of trends was given in Section 4.1, and after that

trends were considered in identical processes throughout Chapter 4. It has been, however,

stressed by several authors that it is important to allow for any heterogeneity in the form

of variation in event rates or gap time distributions across the m processes (e.g. Cox and

Lewis, 1966, p. 49; Kvaloy and Lindqvist, 2003). Failure to recognize such heterogeneity

can lead to improper rejection of a hypothesis of no trend in cases where the m processes

are each actually trend-free. Hence, in this chapter we allow for heterogeneity between

processes in the tests for trend of Chapter 4.

In Section 5.1, we review some specific models and tests for trend, with which we

will make comparisons. Section 5.2 gives robust tests for trend in nonidentical processes

in settings with and without covariates. Section 5.3 presents simulation studies on the

behavior and power of robust tests and others, and Section 5.4 illustrates the tests.

5.1 Models and Tests for Trend

In this section, we consider the trend tests of Chapter 4 in nonidentical processes settings.

As in Section 4.1, we divide the important trend tests into (i) tests of a homogeneous

Poisson process, and (ii) tests of a general renewal process, and focus on tests which are

practical in usage. The models with covariates are consider in Section 5.2.3.

Suppose that m independent processes are under observation. Consider an individual

process i (i = 1, . . ., m) which starts at time t = 0, and let Ni(t) denote the number of

events in [0, t]. The gap times between successive events are denoted by Wij = Tij−Ti,j−1,

(j = 1, . . . , ni), where Ti0 = 0. The process {Ni(t); t > 0} is assumed to be under
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observation over a time period [τ0i, τi] and in that case, we define Ti0 = τ0i and let Ni(τ0i, t)

represent the number of events in (τ0i, t], for τ0i ≤ t ≤ τi. Unless otherwise stated, we

assume that processes are under observation continuously throughout this chapter; that

is, Yi(t) = I(τ0i ≤ t ≤ τi). The history of events Hi(t) consists of the number Ni(t) = ni

of events and their times 0 < Ti1 < . . . < Tin < t as well as all information on Yi(t),

t ∈ [τ0i, τi].

5.1.1 Tests Based on Nonidentical Poisson Processes

The model (4.1) based on nonhomogeneous Poisson processes where the rate function for

the ith process is extended here so the rate function fot the ith process is (i = 1, . . ., m)

ρi(t) = αie
βg(t), t ≥ 0, (5.1)

where g(t) is a specified function, α1, . . . , αm are positive-valued parameters, and β is a

real-valued parameter. A test of no trend is based on the hypothesis H0 : β = 0, under

which the ith process is a homogeneous Poisson process with event rate αi.

As in Section 4.2.1, a score test based on a conditional likelihood function for β can

be used for testing no trend in Poisson processes (Cox and Lewis, 1966, Section 3.3). We

consider the case where the ith process is observed over the time interval [τ0i, τi], where τ0i

and τi are independent of the event process; this is the most common observation scheme

in practice. The likelihood function for (α, β), where α = (α1, . . . , αm)′, based on data

set {Ni(τ0i, τi); ti1, . . . , tini
; i = 1, . . . ,m} is (cf. Section 1.4.1)

L(α, β) =
m∏

i=1

{
αni

i exp

[
β

ni∑
j=1

g(tij)−
∫ τi

τ0i

αie
βg(s) ds

]}
. (5.2)

From (5.2) and the fact that Ni(τ0i, τi) has a Poisson distribution with mean µi(τ0i, τi) =∫ τi

τ0i
ρi(s) ds, the conditional distribution of the event times Tij (i = 1, . . . ,m; j = 1, . . . , ni)

given the ni, where Ni(τ0i, τi) = ni > 0, is

Lc(β) =
m∏

i=1

ni∏
j=1

{
ni! e

βg(tij)∫ bi

ai
eβg(t) dt

}
. (5.3)

From (5.3), we obtain the conditional score function

Uc(β) =
∂

∂β
log Lc(β)

=
m∑

i=1

{
ni∑

j=1

g(tij)−
ni∑

j=1

∫ τi

τ0i
g(s) eβg(s) ds∫ τi

τ0i
eβg(s) ds

}
, (5.4)
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and the variance of Uc(β) based on Poisson model as

V ar{Uc(β)} = − ∂2

∂β2
log Lc(β)

=
m∑

i=1

ni


∫ τi

τ0i
g2(s)eβg(s) ds∫ τi

τ0i
eβg(s) ds

−

(∫ τi

τ0i
g(s)eβg(s) ds∫ τi

τ0i
eβg(s) ds

)2
 . (5.5)

A test of H0 : β = 0 can be based on the conditional score statistic Uc(0). A little algebra

shows that

Uc(0) =
m∑

i=1

{
ni∑

j=1

g (tij)−
ni

τi − τ0i

∫ τi

τ0i

g(s) ds

}
, (5.6)

and that, under H0, the variance of Uc(0) conditional on n1, . . . , nm is

V ar {Uc(0)} =
m∑

i=1

ni


∫ τi

τ0i
g(s)2 ds

τi − τ0i

−

[∫ τi

τ0i
g(s) ds

τi − τ0i

]2
 . (5.7)

The standardized score statistic for testing H0 is given by

Sc =
Uc(0)

V ar {Uc(0)}1/2
. (5.8)

The asymptotic distribution for the test statistic Sc is standard normal as m → ∞ so

p-values for H0 can be obtained from this approximation. When m and the ni are small,

we can obtain p-values based on (5.7) by simulation. Since Sc is defined by conditioning

on the observed values of n1, . . . , nm, the appropriate simulation procedure under H0 is,

for each process, to generate the times tij (j = 1, . . ., ni) as a random sample of size ni

from the uniform distribution on [τ0i, τi].

The best known test of this type is the Laplace test, which comes from taking g(t) = t.

It has been considered by many authors (e.g. Cox and Lewis, 1966, Section 3.3) and

simplification of (5.6) and (5.7) in this case gives the test statistic (e.g. Kvaloy and

Lindqvist, 1998)

SLA =

m∑
i=1

{
ni∑

j=1

Tij − ni(τi + τ0i)/2

}
{

m∑
i=1

ni(τi − τ0i)2/12

}1/2
. (5.9)

Another well known test (e.g. Kvaloy and Lindqvist 1998, Section 2.6) corresponds to

g(t) = log t. Various authors (e.g. Bain et al., 1985; Cohen and Sackrowitz, 1993) have

conducted power studies for these tests. Most attention has been paid to monotonic

trends, where g(t) is either an increasing or decreasing function of t but in principle g(t)
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could be nonmonotonic. For example, if a seasonal trend in events was a possibility, g(t)

could be defined accordingly. It is also possible to make g(t) and β in (5.1) vectors, with

g(t) chosen to reflect different types of trends (e.g. Augustin and Pena, 2005), but we

focus here on single functions g(t).

As explained in Section 4.2.2, an important limitation of tests based on Poisson pro-

cesses is that processes are assumed to be HPP in the absence of trend. Therefore, we

consider tests based on renewal processes next.

5.1.2 Tests Based on Renewal Processes

In this section, we consider tests of the renewal process hypothesis H0 : For each i =

1, . . . ,m on the Wij (j = 1, 2, . . .) are i.i.d. The tests were introduced in Section 4.2.2

for identical processes, but we can use them for testing no trend in nonidentical processes

as well. In particular, tests considered are the linear rank test R given in (4.15) and

the Lewis-Robinson test Z given in (4.16). Simulation studies in nonidentical processes

including R and Z are given in Section 5.3.

5.2 Robust Trend Tests Based on Rate Functions

5.2.1 Pseudo Score Tests

Robust estimating function procedures are explained in Section 1.4.4, and robust tests

for testing trend in identical processes are discussed in Section 4.3. In this section, we

extend the tests in Section 4.3 to the nonidentical case.

Let the rate functions be ρi(t) for independent processes i = 1, . . ., m. We consider

tests of the null hypothesis (i = 1, . . ., m)

H0 : ρi(t) = αi, t ≥ 0, (5.10)

where α1, . . . , αm are unknown positive values. A robust test for H0 can be developed by

considering the models with rate functions ρi(t) = αi exp(βg(t)). As in Section 4.3, we do

not assume that the processes are Poisson. In the following development, it is required

that the τi and τ0i are independent of the event processes.

We now show that the statistic Uc(0) in (5.6) derived under the assumption of a Poisson

process can in fact be applied more generally. We define ḡi =
∫ τi

τ0i
g(t) dt/(τi− τ0i). Then,

noting that ni =
∫ τi

τ0i
dNi(t), we can rewrite (5.6) as

U(0) =
m∑

i=1

Ui(0) =
m∑

i=1

∫ τi

τ0i

[g(t)− ḡi] dNi(t). (5.11)

118



It is easily seen that under H0 of (5.10), E{U(0)} = 0 and that under alternatives of

the form (5.1), E{U(0)} will be bigger or smaller than zero when g(t) is increasing and

decreasing, respectively. In addition, the terms Ui(0) in (5.11) for i = 1, . . ., m are

independent and so V ar{U(0)} can be estimated under H0 by

V̂ ar {U(0)} =
m∑

i=1

Ui(0)
2, (5.12)

leading to the standardized statistic

S =
m∑

i=1

Ui(0)/

{
m∑

i=1

Ui(0)
2

}1/2

(5.13)

for testing H0. The variance estimate (5.12) is different than the Poisson estimate (5.7),

and is robust to stationary departures from a Poisson process.

Provided g(t) is integrable over the intervals [τ0i, τi], which have some positive mini-

mum length, the distribution of S is asymptotically standard normal under H0 as m →∞.

The speed of approach to normality depends on the values of αi(τi − τ0i) and, especially

when m is small or moderate in size, a normal approximation used to obtain p-values may

be somewhat inaccurate. A possible alternative is to use a permutation approach to ob-

tain a p-value, by considering the distribution of (5.13) under random permutation of the

Wij (j = 1, . . ., ni) for each i = 1, . . ., m. Another caveat about (5.13), is that when m is

small the variability in (5.12) may be larger than the variability of model-based variance

estimates such as (5.7). This can affect the power to detect trends and so, as usual, we

may face a robustness-efficiency tradeoff. These points are examined in Section 5.3.

A final important point is that the statistic (5.13) will have good power for trend

alternatives of the form (5.1), but will also have reasonable power against alternative

ρi(t) with broadly similar shapes to (5.1). In particular, note from (5.11) that if ρi(t) is

the true rate for process i, then

E{U(0)} =
m∑

i=1

∫ τi

τ0i

[g(t)− ḡi] ρi(t) dt, (5.14)

so that if the terms in (5.14) are bounded away from zero, say |E{Ui(0)}| > C > 0, then

a two-sided test based on S will reject H0 of (5.10) with probability approaching one as

m increases. This feature has been observed in previous empirical studies of tests based

on Poisson processes (e.g. Bain et al., 1985).

5.2.2 The Generalized Laplace Test

For the special case g(t) = t the test statistic S in (5.13) has numerator terms

Ui(0) =

ni∑
j=1

Tij −
ni (τ0i + τi)

2
, i = 1, . . . ,m. (5.15)
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The Poisson process-based statistic Sc in (5.8) has the same numerator but a different

denominator. The denominators will tend to differ according to how much the Tij depart

from an ordered uniform random sample, which affects how much Var(
∑ni

j=1 Tij) differs

from ni(τi − τ0i)
2.

It is of interest that the Lewis-Robinson test statistic Z in (4.16) has the same form

as a Laplace statistic SLA in (5.9) modified for observation with the ni fixed, and with

variances based on a general renewal process. It is possible to make ad hoc adjustments to

Z for the case of fixed observation periods [τ0i, τi], but as noted above, component pseudo

scores (5.15) do not in general have means equal to zero under a renewal process model.

However, the adjustment in Section 4.4 (see p. 118) can be used. This is considered in

Section 5.3. In fact, a renewal process starting, say, at t = 0 does not in general have a

constant rate function though as t increases, the rate function approaches the constant

E(Wij)
−1 (e.g. Cook and Lawless, 2007, Problem 2.8). Thus, if one observes renewal

processes which started a sufficiently long time prior to τ0i, then the rate function over

[τ0i, τi] will be approximately constant. It is important to bear in mind, however, that

the families of “no trend” processes represented by either a constant rate function or a

renewal process, overlap only for homogeneous Poisson processes, when we observe the

processes from their time origins.

5.2.3 Settings with Covariates

Kvist et al. (2008) give tests for trend in the presence of covariates but assume homo-

geneous Poisson processes in the null hypothesis. We remove this restriction and allow

external time-varying covariates in the model. In this way, we provide tests for deter-

mining whether a trend exists after adjustment for external factors that may result in

variations in the rate of events.

Let xi(t) be a vector of time-varying external covariates and let vi be a vector of fixed

covariates for process i (i = 1, . . ., m). We consider models where the rate functions are

ρi(t) = αie
βg(t)+γ′xi(t)+δ′vi , t ≥ 0, (5.16)

and consider the null hypothesis H0 : β = 0. A conditional likelihood based on Poisson

processes with rate functions (5.16) is given by the distribution of the event times Tij

(j = 1, . . ., ni), given Ni(τ0i, τi) = ni. Corresponding to Lc(β) in Section 5.1.1, we now

have

Lc (β, γ) =
m∏

i=1


ni!

ni∏
j=1

eβg(tij)+γ′xi(tij)(∫ τi

τ0i
eβg(t)+γ′xi(t) dt

)ni

 , (5.17)
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and neither the αi or δ in (5.16) are present. Note that (5.17) and (4.26) given in

Section 4.3.1 are exactly the same. Therefore, a test of H0 can be develop following the

procedure of Section 4.3.1.

5.3 Simulation Studies

In this section, we present the results of simulation studies conducted for nonidentical

processes to assess when asymptotic normal approximations for trend test statistics of this

chapter are satisfactory, and to discuss their power. To be consistent with the simulation

studies presented in Section 4.4 for identical processes, we consider similar models under

null and alternative hypothesis. Hence, we consider the following three types of “no

trend” null hypothesis:

(a) H0 : Process i (i = 1, . . ., m) is a HPP with rate αi,

(b) H0 : Process i (i = 1, . . ., m) is a renewal process with gap times Wij (j = 1, . . ., ni)

following a gamma distribution with scale ai and shape b,

(c) H0 : Process i (i = 1, . . ., m) has intensity function αi exp{βzi(t)}, where zi(t) =

I(Ni(t
−) > 0)I(Bi(t) ≤ ∆).

We will follow a similar approach to Section 4.4. Once again case (a) is the special case

of (b) when b = 1 and ai = α−1
i . We consider b = 0.75 and 1.5 for case (b). Case (c)

includes a term for a carryover effect, and is a delayed renewal process. In simulations,

we consider exp(β) = 5 and ∆ = 0.05. We take the αi in (a) and (c) and the ai in (b) to

have fixed values, as follows: αi = 0.5 + (i − 1)/(m − 1) for i = 1, . . ., m so that the αi

range from 0.5 to 1.5, with an average of 1 in (a) and (c); for (b) we take ai = (αib)
−1,

which gives average gap time aib = α−1
i and thus an event rate approaching αi as t →∞.

We take τi = τ (i = 1, . . ., m), with τ taking values 5 and 20 and m = 10, 20 or 50

processes so that the expected total number of events under each null hypothesis setting

is approximately (exactly, in case (a)) mτ . We consider the following test statistics for

“no trend”:

(1) the generalized Laplace statistic S in (5.13) with Ui(0) as in (5.15),

(2) the linear rank statistic R in (4.15),

(3) Z∗, a corrected version of the generalized Lewis-Robinson statistic, where Z∗ =
1√
m

∑m
i=1

√
ni

ni+1
Zi and Zi is given in (4.16).

121



In the calculation of R and Z∗, we ignore the final censored gap between tni
and τ , and

only use the processes with ni ≥ 2. We simulated 10,000 runs for each of the “no trend”

scenarios (a), (b) and (c) and (m, τ) combinations. For each test statistic (1), (2) and

(3) we used the same generated data, and report on its distribution and the adequacy of

the standard normal approximation.

In case (a), we present results as Normal quantile-quantile (Q-Q) plots of the 10,000

values of the test statistics in (1), (2) and (3) in Figures 5.1, 5.2 and 5.3; see Section 5.3.1.

We show results when τ = 5 and m = 10, 20 or 50. The standard normal approximation

is accurate for all statistics when m = 20 and 50, but off in extreme tails for S when

m = 10. This can also be seen in Table 5.1, which summarizes features of the plots, for

τ = 10 as well as for τ = 20.

As we discussed in Section 4.4, S shows bias (i.e. E{Ui(0)) 6= 0}) in case (b) where

we generated data from a renewal process where the Wij have a gamma distribution with

scale ai and shape b 6= 1. As in the identical processes case, the bias disappears as τ

increases. The permutation method explained in Section 4.4 can be used for a mean

adjustment in S. However, we consider the analytic method of Section 4.4, and use the

following test statistic in case (b):

S∗ =
m∑

i=1

U∗
i (0)/

{
m∑

i=1

U∗
i (0)2

}1/2

, (5.18)

where U∗
i (0) = Ui(0)−Ūi(0), Ūi(0) = [(ni+1)tini

−niτi]/2 and Ui(0) is given in (5.15). We

generated 10,000 realizations of m processes by generating the Wij from the distribution

in (b) with b = 0.75. The normal Q-Q plots in Figures 5.4, 5.5 and 5.6 show that normal

approximation is adequate for S∗, R and Z∗ when m = 20 or 50. Table 5.2 summarizes

features of the plots and supports these remarks. We also conducted a simulation study

by generating data from the renewal process given in (b) with b = 1.5. As seen from the

normal Q-Q plots in Figures 5.7, 5.8 and 5.9 and in Table 5.3, the results for b = 1.5 are

similar to those for b = 0.75. It should be noted that the normal approximation is suitable

for S∗ in case (b), where E{Ui(0)} 6= 0, as well as in case (a), where E{Ui(0)} = 0.

In case (c), we consider a delayed renewal process where Wi1 (i = 1, . . ., m) has the

hazard function hi1(w) = αi and the Wij (i = 1, . . ., m; j = 2, 3 ,. . .) have the hazard

function hij(w) = αi(e
β − 1)I(w < ∆) + αi, w > 0, as in case (c) of Section 4.4. Normal

Q-Q plots based on the 10,000 simulated values of the test statistics S, R and Z∗ are given

in Figure 5.10, 5.11 and 5.12 when τ = 5 and m = 10, 20 or 50, respectively. As discussed

in the identical processes case, the normal approximation is not suitable for R and Z∗,

but our preliminary studies showed that normal approximation becomes adequate as τ

increases, when m is fixed. This can also be seen in Table 5.4 where we display the results

for m = 10, 20 and 50 when τ = 5 as well as when τ = 20. Note that the results for S

are very similar to those given in Tables 5.2 and 5.3 for cases (a) and (b).
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We next consider power of the three test statistics, and introduce the following families

of models to incorporate an increasing trend.

(d) Process i (i = 1, . . ., m) is a NHPP with rate function ρi(t) = α∗i exp(γt),

(e) Process i (i = 1, . . ., m) is a renewal process where the gap times Wij (j = 1, 2,

. . .) are independent random variables, with Wij having a gamma distribution with

scale a∗i exp(γj) and shape b,

(f) Process i (i = 1, . . ., m) has intensity function

λi(t|Hi(t)) = α∗i exp(γt) exp(βzi(t)), t ≥ 0,

where zi(t) = I(Ni(t
−) > 0)I(Bi(t) ≤ ∆).

Note that once again the cases (d), (e) and (f) above are in agreement with the cases

(d), (e) and (f) of Section 4.4. The power of tests S (S∗ in case (e)), R and Z∗ was

investigated by simulation. We used 10,000 realizations of the m processes to obtain

5% critical values for each statistic. We consider the “matches” of case (d), (e) and (f)

with their corresponding “null model-matches” cases (a), (b) and (c), respectively; and

so, chose α∗i in (d) and (f) and a∗i in (e) so that we obtained roughly the same expected

total numbers of events as in the corresponding null cases. For case (e), we thus chose

a∗i = (α∗i b)
−1. We took eγτ = 2 or 4. We considered τ = 5, 10 and 20 and m = 10, 20

and 50, and generated 1,000 realizations of m processes in each case. We used the same

generated data with all of the three tests.

In case (d), we used the empirical 0.95 quantiles of the test statistics obtained in case

(a) as critical values. The proportions of rejection of H0 : γ = 0 are given in Table 5.5.

The power of the generalized Laplace test S is higher than R and Z∗ in each scenario.

The powers of Z∗ and R are very close, but Z∗ is slightly higher in general. This is the

case where we expect the Laplace test based on the Poisson model would excel, but using

a robust variance estimate also gives good power results. Tables 5.6 and 5.7 shows power

of the tests under case (e) with b = 0.75 and b = 1.5, respectively. We used the modified

version of the generalized Laplace statistic S∗, R and Z∗. In both cases, overall R is more

powerful than S∗ and Z∗, especially for smaller m and larger τ . However, for m ≥ 20

the robust Laplace test is very good. The powers of the tests are higher when b = 1.5,

as seen in Table 5.7. In case (f), we used eβ = 5 and ∆ = 0.05, and chose α∗i so that we

obtain roughly same ni for each process as in case (c). Results are given in Table 5.8. The

generalized Laplace test S has higher power than the other statistics in each scenario,

with the advantage decreasing as τ increases.

Results of simulations are given in Section 5.3.1 below. In Section 5.3.2, we summarize

results and give recommendations for trend testing.
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5.3.1 Figures and Tables
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Figure 5.1: Normal Q-Q plots of simulated values of the test statistics (1) S, (2) R and

(3) Z∗: Case (a), τ = 5, m = 10.

Figure 5.2: Normal Q-Q plots of simulated values of the test statistics (1) S, (2) R and

(3) Z∗: Case (a), τ = 5, m = 20.

Figure 5.3: Normal Q-Q plots of simulated values of the test statistics (1) S, (2) R and

(3) Z∗: Case (a), τ = 5, m = 50.
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τ m Test Q̂.950 Q̂.975 Q̂.990 P̂r(· > 1.645) P̂r(· > 1.960) P̂r(· > 2.326)
5 10 S 1.636 1.882 2.123 0.049 0.018 0.004

R 1.623 1.911 2.232 0.048 0.022 0.007
Z∗ 1.624 1.921 2.194 0.048 0.022 0.007

20 S 1.632 1.960 2.261 0.049 0.025 0.008
R 1.687 2.016 2.336 0.055 0.028 0.010
Z∗ 1.644 1.941 2.291 0.050 0.023 0.009

50 S 1.657 1.944 2.310 0.052 0.024 0.010
R 1.638 1.923 2.335 0.049 0.023 0.011
Z∗ 1.614 1.928 2.333 0.048 0.023 0.010

20 10 S 1.644 1.887 2.138 0.050 0.021 0.004
R 1.609 1.918 2.232 0.047 0.022 0.008
Z∗ 1.685 1.976 2.294 0.055 0.026 0.009

20 S 1.622 1.906 2.221 0.048 0.022 0.007
R 1.620 1.918 2.281 0.047 0.022 0.009
Z∗ 1.618 1.971 2.380 0.048 0.026 0.011

50 S 1.677 1.963 2.336 0.053 0.026 0.010
R 1.672 1.985 2.305 0.053 0.027 0.009
Z∗ 1.666 1.981 2.325 0.052 0.027 0.010

Table 5.1: Q̂p is the empirical pth quantile of S, R and Z∗ computed from 10,000 samples

under case (a). P̂r(· > Qp) is the proportion of the values of S, R and Z∗ in 10,000

samples which are larger than the pth quantile of a standard normal distribution.
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Figure 5.4: Normal Q-Q plots of simulated values of the test statistics (1) S∗, (2) R and

(3) Z∗: Case (b), τ = 5, m = 10, Wij ∼ Gamma(a, b = 0.75).

Figure 5.5: Normal Q-Q plots of simulated values of the test statistics (1) S∗, (2) R and

(3) Z∗: Case (b), τ = 5, m = 20, Wij ∼ Gamma(a, b = 0.75).

Figure 5.6: Normal Q-Q plots of simulated values of the test statistics (1) S∗, (2) R and

(3) Z∗: Case (b), τ = 5, m = 50, Wij ∼ Gamma(a, b = 0.75).
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τ m Test Q̂.950 Q̂.975 Q̂.990 P̂r(· > 1.645) P̂r(· > 1.960) P̂r(· > 2.326)
5 10 S∗ 1.630 1.875 2.090 0.048 0.017 0.003

R 1.650 1.924 2.239 0.051 0.023 0.008
Z∗ 1.665 1.965 2.272 0.053 0.025 0.008

20 S∗ 1.658 1.923 2.255 0.052 0.023 0.008
R 1.665 1.944 2.262 0.053 0.024 0.008
Z∗ 1.639 1.949 2.308 0.050 0.024 0.010

50 S∗ 1.650 1.945 2.262 0.051 0.024 0.008
R 1.651 1.963 2.308 0.051 0.025 0.010
Z∗ 1.652 1.968 2.271 0.051 0.026 0.009

20 10 S∗ 1.641 1.869 2.123 0.050 0.020 0.004
R 1.640 1.964 2.354 0.049 0.026 0.011
Z∗ 1.650 1.945 2.284 0.050 0.024 0.009

20 S∗ 1.680 1.968 2.313 0.054 0.026 0.010
R 1.626 1.931 2.243 0.049 0.023 0.008
Z∗ 1.657 1.985 2.382 0.052 0.026 0.011

50 S∗ 1.660 1.943 2.275 0.052 0.024 0.009
R 1.591 1.933 2.271 0.046 0.023 0.009
Z∗ 1.673 1.967 2.276 0.052 0.026 0.009

Table 5.2: Q̂p is the empirical pth quantile of S∗, R and Z∗ computed from 10,000 samples

under case (b) nonidentical processes when b = 0.75. P̂r(· > Qp) is the proportion of the

values of S∗, R and Z∗ in 10,000 samples which are larger than the pth quantile of a

standard normal distribution.
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Figure 5.7: Normal Q-Q plots of simulated values of the test statistics (1) S∗, (2) R and

(3) Z∗: Case (b), τ = 5, m = 10, Wij ∼ Gamma(a, b = 1.5).

Figure 5.8: Normal Q-Q plots of simulated values of the test statistics (1) S∗, (2) R and

(3) Z∗: Case (b), τ = 5, m = 20, Wij ∼ Gamma(a, b = 1.5).

Figure 5.9: Normal Q-Q plots of simulated values of the test statistics (1) S∗, (2) R and

(3) Z∗: Case (b), τ = 5, m = 50, Wij ∼ Gamma(a, b = 1.5).
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τ m Test Q̂.950 Q̂.975 Q̂.990 P̂r(· > 1.645) P̂r(· > 1.960) P̂r(· > 2.326)
5 10 S∗ 1.651 1.866 2.093 0.051 0.018 0.004

R 1.669 1.954 2.252 0.054 0.025 0.008
Z∗ 1.608 1.908 2.227 0.047 0.022 0.007

20 S∗ 1.635 1.926 2.224 0.049 0.022 0.007
R 1.672 1.996 2.381 0.053 0.027 0.012
Z∗ 1.659 1.966 2.287 0.051 0.025 0.009

50 S∗ 1.661 1.982 2.305 0.052 0.026 0.009
R 1.633 1.917 2.292 0.048 0.023 0.009
Z∗ 1.647 1.959 2.332 0.051 0.025 0.010

20 10 S∗ 1.671 1.911 2.165 0.054 0.021 0.004
R 1.622 1.948 2.287 0.047 0.024 0.009
Z∗ 1.651 1.934 2.319 0.051 0.024 0.010

20 S∗ 1.638 1.929 2.255 0.050 0.023 0.008
R 1.639 1.964 2.319 0.050 0.025 0.010
Z∗ 1.620 1.952 2.295 0.048 0.025 0.009

50 S∗ 1.669 1.984 2.310 0.053 0.026 0.010
R 1.653 1.951 2.336 0.051 0.025 0.010
Z∗ 1.666 1.971 2.346 0.053 0.026 0.011

Table 5.3: Q̂p is the empirical pth quantile of S∗, R and Z∗ computed from 10,000 samples

under case (b) nonidentical processes when b = 1.5. P̂r(· > Qp) is the proportion of the

values of S∗, R and Z∗ in 10,000 samples which are larger than the pth quantile of a

standard normal distribution.

130



Figure 5.10: Normal Q-Q plots of simulated values of the test statistics (1) S, (2) R and

(3) Z∗: Case (c), τ = 5, m = 10.

Figure 5.11: Normal Q-Q plots of simulated values of the test statistics (1) S, (2) R and

(3) Z∗: Case (c), τ = 5, m = 20.

Figure 5.12: Normal Q-Q plots of simulated values of the test statistics (1) S, (2) R and

(3) Z∗: Case (c), τ = 5, m = 50.
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τ m Test Q̂.950 Q̂.975 Q̂.990 P̂r(· > 1.645) P̂r(· > 1.960) P̂r(· > 2.326)
5 10 S 1.643 1.887 2.127 0.050 0.019 0.004

R 1.257 1.555 1.882 0.021 0.008 0.003
Z∗ 2.019 2.317 2.675 0.110 0.058 0.024

20 S 1.660 1.939 2.233 0.053 0.024 0.006
R 1.129 1.456 1.784 0.015 0.005 0.002
Z∗ 2.195 2.515 2.874 0.142 0.083 0.038

50 S 1.657 1.988 2.327 0.052 0.027 0.010
R 0.839 1.134 1.490 0.007 0.002 0.0003
Z∗ 2.559 2.873 3.283 0.226 0.146 0.077

20 10 S 1.652 1.898 2.173 0.051 0.020 0.004
R 1.447 1.739 2.094 0.032 0.015 0.005
Z∗ 1.857 2.170 2.561 0.075 0.039 0.018

20 S 1.657 1.930 2.222 0.052 0.023 0.008
R 1.340 1.641 2.010 0.025 0.012 0.004
Z∗ 1.915 2.235 2.540 0.086 0.045 0.020

50 S 1.713 2.003 2.326 0.056 0.029 0.010
R 1.174 1.459 1.793 0.016 0.007 0.002
Z∗ 2.116 2.421 2.793 0.118 0.067 0.031

Table 5.4: Q̂p is the empirical pth quantile of S, R and Z∗ computed from 10,000 samples

under case (c) nonidentical processes. P̂r(· > Qp) is the proportion of the values of S, R

and Z∗ in 10,000 samples which are larger than the pth quantile of a standard normal

distribution.
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τ m eγτ S R Z∗

5 10 2 0.234 0.183 0.146

4 0.710 0.533 0.508

20 2 0.472 0.282 0.273

4 0.952 0.804 0.814

50 2 0.884 0.628 0.623

4 1.000 0.994 0.993

10 10 2 0.380 0.321 0.326

4 0.914 0.866 0.896

20 2 0.788 0.649 0.669

4 1.000 0.996 0.998

50 2 0.983 0.922 0.945

4 1.000 1.000 1.000

20 10 2 0.701 0.669 0.687

4 0.996 0.997 0.999

20 2 0.962 0.930 0.945

4 1.000 1.000 1.000

50 2 1.000 1.000 1.000

4 1.000 1.000 1.000

Table 5.5: Proportion of rejection of H0 : γ = 0 under the case (d), nonidentical processes,

based on 1,000 samples.
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τ m eγτ S∗ R Z∗

5 10 2 0.139 0.171 0.149

4 0.353 0.536 0.381

20 2 0.266 0.284 0.219

4 0.738 0.792 0.671

50 2 0.602 0.579 0.466

4 0.994 0.984 0.948

10 10 2 0.284 0.476 0.363

4 0.710 0.958 0.868

20 2 0.645 0.689 0.625

4 0.992 0.999 0.995

50 2 0.976 0.971 0.931

4 1.000 1.000 1.000

20 10 2 0.554 0.829 0.749

4 0.956 1.000 1.000

20 2 0.946 0.991 0.960

4 1.000 1.000 1.000

50 2 1.000 1.000 1.000

4 1.000 1.000 1.000

Table 5.6: Proportion of rejection of H0 : γ = 0 under the case (e), nonidentical processes,

when b = 0.75 based on 1,000 samples.
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τ m eγτ S∗ R Z∗

5 10 2 0.235 0.365 0.262

4 0.553 0.897 0.715

20 2 0.537 0.598 0.477

4 0.969 0.990 0.938

50 2 0.935 0.916 0.829

4 1.000 1.000 1.000

10 10 2 0.511 0.791 0.667

4 0.915 1.000 0.995

20 2 0.923 0.960 0.913

4 1.000 1.000 1.000

50 2 1.000 1.000 1.000

4 1.000 1.000 1.000

20 10 2 0.816 0.992 0.968

4 0.997 1.000 1.000

20 2 1.000 1.000 0.999

4 1.000 1.000 1.000

50 2 1.000 1.000 1.000

4 1.000 1.000 1.000

Table 5.7: Proportion of rejection of H0 : γ = 0 under the case (e), nonidentical processes,

when b = 1.5 based on 1,000 samples.
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τ m eγτ S R Z∗

5 10 2 0.272 0.085 0.093

4 0.694 0.277 0.348

20 2 0.485 0.101 0.119

4 0.970 0.500 0.605

50 2 0.911 0.208 0.259

4 1.000 0.874 0.925

10 10 2 0.421 0.226 0.257

4 0.902 0.686 0.775

20 2 0.738 0.359 0.440

4 1.000 0.937 0.977

50 2 0.991 0.717 0.836

4 1.000 1.000 1.000

20 10 2 0.709 0.523 0.601

4 0.995 0.980 0.993

20 2 0.971 0.816 0.894

4 1.000 1.000 1.000

50 2 1.000 0.994 0.998

4 1.000 1.000 1.000

Table 5.8: Proportion of rejection of H0 : γ = 0 under the case (f), nonidentical processes,

based on 1000 samples.
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5.3.2 Summary

We conducted simulation studies to investigate the adequacy of the normal approxima-

tions (under the null hypothesis H0) for the generalized Laplace statistic S, the mean

corrected generalized Laplace statistic S∗, the linear rank statistic R and the Lewis-

Robinson statistic Z∗ in nonidentical processes. Results are similar to those obtained in

simulation studies of Chapter 4. Based on 10,000 samples of each scenario for H0, normal

Q-Q plots as well as detailed tables were used. We considered m = 10, 20, 50 and τ = 5,

20. In case (a), the null model is an HPP. The normal approximations for R and Z∗ are

suitable. The normal approximation for S is a little off in the extreme tails when m = 10,

but is adequate when m > 10. In case (b), S is biased. Instead of S, we then used S∗, a

mean corrected version of S. The normal approximation is adequate for S∗ when m = 20

or 50, but it is a little off in the extreme tails when m = 10. The p-values for R and Z∗

can be found from the standard normal distribution. In case (c), we considered a delayed

renewal process as the null model. In this case, the normal approximations for R and Z∗

are off. The results for S are similar to results for case (a).

Powers of the tests were considered under three different alternatives which are in

concordance with the null hypotheses. In case (d), the alternative model is an NHPP.

In this case, the S test is the most powerful. R and Z∗ are close in power. In case (e),

we generated 1,000 realizations of a semi-Markov model where we generated independent

gap times from a gamma distribution with shape parameter 0.75 or 1.5. The R test is

the most powerful test in this case, especially when m = 10. In case (f), the alternative

model is a delayed modulated renewal process, and S is superior.

In conclusion, the generalized Laplace test is recommended when m ≥ 10 as in Chap-

ter 4. It is easy to implement, powerful in a range of settings, flexible, and does not

involve crucial model assumptions. Also, it can be used when covariates are present. The

S∗ test can be used along with the S test to guard against the cases where the S statistic

is biased. When the result of S and S∗ are too different, S∗ can be preferable, and R can

be used to support the conclusion. For small values of m, other tests such as R or Z∗ can

be used when the τi are large enough to provide moderate numbers of events. However,

these tests are based on certain assumptions which may need to be checked.

5.4 Example: Hydraulic systems of LHD machines

Load-haul-dump (LHD) machines data were introduced in Section 1.1.1, and investigated

in Section 2.6.2 for carryover effects. As discussed previously, Figure 2.10 suggests pres-

ence of trend in the rate of occurrence of events of some LHD machines; in particular, in

LHD 3, 9 and 17. To illustrate the methods of this chapter, we now consider testing for

trend in the LHD data set.
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α̂1 α̂2 α̂3 α̂4 α̂5 α̂6 β̂ `(α̂, β̂)

6.231 4.027 2.607 6.062 4.811 4.098 0.295 -163.62

(1.4905) (1.0643) (0.8089) (1.4229) (1.2067) (1.0789) (0.0837)

Table 5.9: Estimates of the parameters in model (5.19), and the maximum value of the log

likelihood function. The numbers in the parentheses are the standard errors of parameter

estimates.

α̂ β̂ `(α̂, β̂∗)

5.363 0.181 -157.80

(0.8734) (0.0712)

Table 5.10: Estimates of the parameters in model ρi(t) = αeβ∗t and the maximum value

of the log likelihood function. The numbers in the parentheses are the standard errors of

parameter estimates.

We first consider the model (i = 1, . . ., 6)

ρi(t) = αie
βt, t ≥ 0, (5.19)

and test the null hypothesis H0 : α1 = α2 = . . . = α6 = α against the alternative H1 :

at least one differs . The maximum likelihood estimates, their standard errors obtained

from the inverse of the observed information matrix, and the maximum value of `(α, β),

where α = (α1, . . . , α6)
′, are given in Table 5.9. The reduced model is given by ρi(t) =

α exp{β∗t}, t ≥ 0 (i = 1, . . ., 6). Table 5.10 shows the m.l.e. of α and β∗, and maximum

value of `(α, β∗). A likelihood ratio test of H0 gives Λ = 2`(α̂, β̂) − 2`(α̂, β̂∗) = 11.63.

The p-value based on χ2
(5) is 0.04 indicating some evidence against H0. Therefore, we now

conduct a trend test for LHD data for the case of heterogeneous processes.

We consider tests of H0 : β = 0 in the model (5.19). The tests used are the generalized

Laplace test S, the modified generalized Laplace test S∗, linear rank test R and the

corrected Lewis-Robinson test Z∗. The average number of failures per machine is 25.

Simulation results in Section 5.3 showed that the N(0, 1) approximation is quite accurate

for the p-values for R and Z∗, but not for S and S∗, for which we used a parametric

bootstrap based on 5,000 runs. The R statistic gives -2.146. Using N(0, 1), we obtain a

two-sided p-value of 0.032. The Lewis-Robinson statistic Z∗ is 2.5532, gives a two-sided

p-value of 0.011. Similarly, we obtain that S = 2.017 and S∗ = 1.864 with the two-sided

p-values 0.037 and 0.046, respectively. According to these results, we conclude that trend

is significant in the model at 0.05 level of significance. Note that using N(0, 1) gives a

two-sided p-value 0.044 for S and 0.062 for S∗.

There is an indication in Figure 2.10 that β in (5.19) might be βi (different for each
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Machine α̂ β̂ α̃

LHD 1 -5.6794 (0.537547) 0.000697 (0.000311) -4.6870 (0.208514)

LHD 3 -5.3485 (0.442624) 0.000213 (0.000199) -4.9490 (0.200000)

LHD 9 -6.1239 (0.491414) 0.000354 (0.000150) -5.1686 (0.192450)

LHD 11 -4.8357 (0.396553) 0.000127 (0.000226) -4.6447 (0.188982)

LHD 17 -5.5385 (0.470913) 0.000401 (0.000219) -4.8221 (0.196116)

LHD 20 -5.1379 (0.435105) 0.000099 (0.000219) -4.9689 (0.208514)

Table 5.11: Estimates of α and β in the Model (5.20) and estimate of α when β = 0,

for each machine. The numbers in the parentheses are the standard errors of parameter

estimates.

Machine l(θ̂) l(θ̃) Λ SLA W = β̂2/s2(β̂)

LHD 1 -128.104 -130.800 5.390 (0.020) 2.294 (0.028) 5.016 (0.025)

LHD 3 -148.145 -148.726 1.162 (0.281) 1.075 (0.282) 1.146 (0.284)

LHD 9 -163.583 -166.552 5.937 (0.015) 2.410 (0.016) 5.552 (0.019)

LHD 11 -157.893 -158.053 0.319 (0.572) 0.565 (0.572) 0.318 (0.573)

LHD 17 -149.632 -151.376 3.488 (0.062) 1.855 (0.064) 3.349 (0.067)

LHD 20 -137.181 -137.285 0.206 (0.649) 0.455 (0.649) 0.206 (0.650)

Table 5.12: The maximized log likelihoods for expanded Model (5.20) and the reduced

model ρ(t) = eα, the likelihood ratio statistic Λ = 2l(θ̂) − 2l(θ̃), SLA in (5.9) and the

Wald type statistic W . The numbers in the parentheses are the p-values.

machine). Therefore, we now test the absence of monotonic trend separately in each

machine. This can be done by considering the following model;

λ(t|H(t)) = exp {α + βt} , t ≥ 0, (5.20)

and then by testing the null hypothesis H0 : β = 0. Let θ = (α, β)′ and θ̃ = (α̃, 0)′.

The maximum likelihood estimates and their standard errors of the parameters of the

expanded and reduced models are presented in Table 5.11. The Laplace test SLA in (5.9),

the likelihood ratio test statistic Λ = 2l(θ̂)− 2l(θ̃), and a Wald type statistic W are used

to test H0 : β = 0. The computed values of SLA, Λ and W are given in Table 5.12. A

χ2 based p-value for Λ and N(0, 1) based two-sided p-values for SLA and W indicate that

there is a strong evidence against the null hypothesis H0 : β = 0 for LHD 1 and LHD 9

machines, and some evidence for LHD 17. It should be pointed out that these results are

in concordance with the results of Kumar and Klefso (1992).

139



Chapter 6

Summary and Future Research

In this last chapter of the thesis, we summarize outcomes of the previous chapters, rec-

ommend practical usage of the methods, and briefly discuss further research topics.

6.1 Summary and Practical Recommendations

We examined two important features of recurrent event processes; carryover effects and

time trends. Formal tests for the absence of these features in the processes were developed,

and their properties were discussed.

Carryover effects cause clustering of events together in time by increasing the proba-

bility of a new event for a limited period after occurrence of an event. Carryover effects

may also cause a decrease in the probability. We did not consider such carryover effects

in the thesis but the tests of Chapters 2 and 3 also apply to this case. Our objective

for testing carryover effects was to propose a test which is simple, powerful and can be

routinely applied before extensive model fitting and checking has been undertaken.

We investigated testing for carryover effects by considering a family of modulated

Poisson processes with the intensity function given in (2.1), which includes internal time-

dependent covariates. Model expansion is an effective way of model testing, and was

applied to give score tests of absence of a carryover effect. We first considered the case in

which the null model is an HPP. The tests introduced are easily interpreted. They are in

a simple “Observed - Expected” form. What we mean by “Observed” is the number of

events during the carryover period following the occurrence of an event and “Expected”

is an estimate of the expected number of such occurrences under the null hypothesis.

Asymptotic properties of the tests were examined analytically as well as by simulation

under two different settings; (i) when the number of processes m increases, (ii) when one

process is under observation and the observation period or a model parameter increases.

We showed analytically that the standard normal approximation is suitable as m increases
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as well as when τ increases, when one process is under observation. These results were

supported by simulation studies.

One problem about the tests considered is that they include a term for a carryover

period, and we will never be sure of the exact form of it. Therefore, robustness of the tests

with respect to misspecification of the form of a carryover period is an important issue.

We examined this by simulation. Our studies showed that tests are robust and powerful

with respect to small misspecfication of a carryover period. We considered the power of

tests against various types of carryover alternatives, and found the powers are quite high

overall. We also developed a score test for a carryover effect when the null model is an

NHPP. We showed analytically that the score test has a normal limiting distribution.

Heterogeneity is often seen in studies involving multiple processes. As discussed in

Chapter 2, if the tests developed for identical processes are used when significant hetero-

geneity is present, Type 1 errors can be greatly inflated, so tests for nonidentical processes

are needed. We considered this in two different family of models in Chapter 3; (i) fixed

effects models, and (ii) random effects models. Once again the tests are in the “Ob-

served - Expected” form. In the fixed effects case, the maximum likelihood estimators are

not consistent as m → ∞ because of the nuisance parameters problem. Our simulation

studies showed that the normal approximations for the score test are adequate in some

cases where m is not too large and the numbers of events per process are fairly large,

but in general not adequate. When the standard normal approximation is not adequate,

we recommend obtaining p-values by simulation. In the random effects case, we intro-

duce unobservable i.i.d. gamma random variables into the model. Under the assumption

that the gamma distribution for random effects is correct, we showed by simulation that

the score statistic given in (3.23) is asymptotically N(0, 1) as m → ∞, unlike the fixed

effects statistic (3.9). We also conducted a simulation study, and showed that it is safe

to use the score test (3.23) under misspecification of the distribution of random effects.

Our simulation studies showed that score tests in both cases maintain high power against

various carryover alternatives as well as misspecification of the carryover periods.

In Chapter 4 and Chapter 5, we discussed tests for trend in Poisson and renewal

models when the processes are identical and nonidentical, respectively. We focused on

m > 1 case since m = 1 case is much-discussed in the literature. Most of the existing trend

tests are based on the assumption that the “no trend” model is a renewal model, or many

times an HPP as a special case of renewal processes. Another problem is, as discussed in

Chapter 4, that the computation of p-values for many tests is based on an assumption that

observation of a process ceases after some specified number of event occurrences but in

practice different observation schemes are common. Our aim was to develop simple trend

tests that are robust in the sense of retaining appropriate size and good power for more

general processes than Poisson or renewal processes. We, therefore, developed robust

score tests for time trends. The tests provided can be used with observation schemes in
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which observation is ceased after a prespecified time period, and can also be applied in the

presence of external time-varying covariates. We focused on monotonic trend alternatives.

Monte Carlo simulation studies were conducted to assess the accuracy of large sample

approximations, and to compare robust trend tests to other important tests. In particular,

the generalized Laplace test, which is a special case of robust trend tests, the linear rank

test and a corrected Lewis-Robinson trend tests were used. We considered three different

types of null hypotheses in Chapters 4 and 5. When the null model is an HPP, p-

values for the linear rank and Lewis-Robinson tests can be found from standard normal

approximations in all cases considered. The normal approximation is suitable for the

generalized Laplace test, but a little off in the extreme tails when m = 10. When we

generated data from a renewal process with gap times following a gamma distribution

with shape parameter 0.75 or 1.5, the generalized Laplace test is biased. We recommended

a mean correction which also works fine in the cases where the generalized Laplace test is

unbiased. When the null model is a delayed renewal process, the normal approximation is

adequate for the generalized Laplace test especially when m > 10, but not for the linear

rank test and the Lewis-Robinson test.

We also conducted power studies under three different alternatives which are in con-

cordance with the null hypotheses, and we obtained similar results in Chapter 4 and

Chapter 5. The generalized Laplace test is the most powerful when the alternative model

is an NHPP as explained in simulation sections. The Lewis-Robinson and linear rank

tests are close in power. We next considered semi-Markov process alternatives where we

generated independent gap times from a gamma distribution with shape parameter 0.75

or 1.5. For identical processes, the modified generalized Laplace test is the most powerful

overall. However, in nonidentical processes, the linear rank test has good power, espe-

cially when m is smaller. When the alternative model is a delayed modulated renewal

process, the generalized Laplace test is superior.

As a conclusion, the generalized Laplace test as a robust test for absence of trend is

recommended as a routine check for monotonic trends, provided m is 10 or bigger. It is

easy to implement, flexible, powerful in a range of settings, and can be applied various

type of trend alternatives. Standard normal approximation is suitable when m ≥ 10.

Robust trend tests considered in the thesis can also be used with covariates. When m

is small but the τi are large enough to provide at least a moderate number of events,

we have to rely on other tests, involving certain assumptions, such as the linear rank or

Lewis-Robinson tests.

6.2 Two-State Models

Alternating two-state models are useful when the duration of an event is important along

with the counting of events in a recurrent event process; for example, downtime periods
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in a nuclear power plant, repair times in a repairable systems, and at-risk free periods (i.e.

attack periods) of asthma patients. Alternating two-state models can be effectively used

for modeling and analyzing carryover effects where duration in each state is variable (see

Cook and Lawless, 2007, Section 1.5.3). For example, let a machine be in an active state

when it is in working condition and be in an inactive state when it has a failure after

which a repair immediately takes place. Suppose that the observation of a process starts

in the active state at t = 0. Then, a possible two-state model is defined with the transition

(jump) intensities; (i) from active to inactive state, λ12(t|H(t)) = Yi1(t)α12(t)e
βzi(t), where

Yi1(t) = I(active at t−) and zi(t) = I(Bi(t) ≤ ∆) and Bi(t) is the time since the last inac-

tive to active transition, and (ii) from inactive to active state, λ21(t|H(t)) = Yi2(t)α21(t),

where Yi2(t) = I(inactive at t−). Then, dNi(t) = 1 if there is a failure which cause the

process to jump from active to inactive state. With this model we are able to model the

“being repaired” times and carryover effects. The alternating two-state model can also be

used for analysis of trends. For example, a model with increasing trend can be developed

by considering decreasing sojourn times in each new state visited.

6.3 Multiple Type Recurrent Events

We discussed the case where processes consist of a single type of event. However, in many

settings, multitype recurrent events are of interest (Cook and Lawless, 2007, Chapter 6).

For example, a machine may have downtime periods caused by different types of failures.

Two different cases could be considered. In the first one, each type of event occurs

independently. In this case, the tests for carryover effects and trends developed in this

thesis can be still used for the individual event types. In the second case, the occurrence

of an event may affect the probability of occurrence of another type of event. This type

of carryover effects can be modeled by multivariate counting processes based on intensity

functions like those in Chapters 2 and 3, with covariates for one type of event allowed

to include event history for other event types. This is an interesting topic, and will be

considered as future work.

6.4 More Complicated Processes

In many settings more complicated models and methods are needed. In this thesis, we

did not consider covariates even though our models and methods allow us to include

covariates. Similarly, we considered only monotonic trends. As discussed in Section 3.4,

in the asthma prevention trial data, start times of observations for each individual were

not presented, but could be very useful since seasonal trends may affect the occurrence of

asthma attacks. A seasonal trend could then be incorporated into a model via covariates.
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Cook and Lawless (2007, pp. 232–236) illustrate this with an example from exacerbations

in patients with chronic bronchitis. Also, complex dependence on the previous history of

a counting process can be useful in many applications. For example, an extra term for the

previous number of events can be incorporated into carryover effect models as a covariate.

Such a model is generally useful when the number of previous events is believed to have

an effect on the course of a process. Aalen et al. (2008) give an example from a study

on sleep patterns. A possible model is given by λi(t|H(t)) = λ0(t) exp{αN(t−) + βz(t)},
where z(t) = I(N(t−) > 0)I(B(t) ≤ ∆). It is also possible to include a term for trend.

Baker (2001), Lindqvist (2006) and Pena (2006) consider reliability settings, and the need

for more complex models. We will examine such models in the future.
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Appendix A

Data Sets

A.1 Submarine Engine Data

The data presented in Table A.1 are taken from Lee (1980). Asterisk denotes times of

scheduled engine overhaul. See Section 1.1.1 for details.

Table A.1: Cumulative operating hours until the occurrence of significant maintenance

actions for the U.S.S. Grampus No. 4 main propulsion diesel engine.

860 2439 4411 6137 8498 10594* 13399 14173

1203* 3197* 4456 6221 8690 11511 13668 14357*

1258 3203 4517 6311 9042 11575 13780 14449

1317 3298 4899 6613 9330 12100 13877 14587

1442 3902 4910 6975 9394 12126 14007 14610

1897 3910 5414* 7335 9426 12368 14028 15070

2011 4000 5676 7723* 9872 12681 14035 15574*

2122 4247 5755 8158 10191 12795 14173 22000

22575
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A.2 LHD Machines Data

The data presented in Table A.2 are given by Kumar and Klefsjo (1992). See Section 1.1.1

for details.

Table A.2: Times between the successive failures of the hydraulic systems.

LHD 1 LHD 3 LHD 9 LHD 11 LHD 17 LHD 20
327 637 278 353 401 231
125 40 261 96 36 20

7 397 990 49 18 361
6 36 191 211 159 260

107 54 107 82 341 176
277 53 32 175 171 16
54 97 51 79 24 101

332 63 10 117 350 293
510 216 132 26 72 5
110 118 176 4 303 119
10 125 247 5 34 9
9 25 165 60 45 80

85 4 454 39 324 112
27 101 142 35 2 10
59 184 38 258 70 162
16 167 249 97 57 90
8 81 212 59 103 176

34 46 204 3 11 370
21 18 182 37 5 90

152 32 116 8 3 15
158 219 30 245 144 315
44 405 24 79 80 32
18 20 32 49 53 266

248 38 31 84
140 10 259 218

311 283 122
61 150

24
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A.3 Asthma Prevention Trial Data

An excerpt of the asthma prevention trial data presented in Table A.3. See Duchateau

et al. (2003) and Section 1.1.1 for details.

Column1 : id.w :identification number of the subject

Column2 : trt.w: treatment assignment: 0= control, 1=drug

Column3 : start.w: Start of the at risk period

Column4 : stop.w: End of the at risk period

Column5 : st.w: censoring indicator: 0=censored, 1=event

Column6 : nn: number of at risk periods for particular subject

Column7 : fevent: indicator for first event: 0= no, 1: yes

Table A.3: An excerpt from asthma prevention trial data.

id.w trt.w start.w stop.w st.w nn fevent
3 0 0 12 1 2 1
3 0 17 548 0 2 0
8 0 0 53 1 15 1
8 0 54 108 1 15 0
8 0 109 201 1 15 0
8 0 202 203 1 15 0
8 0 206 216 1 15 0
8 0 218 317 1 15 0
8 0 319 324 1 15 0
8 0 325 344 1 15 0
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