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Abstract

In finance, the implied volatility surface is plotted against strike price and time to maturity.

The shape of this volatility surface can be identified by fitting the model to what is actually

observed in the market. The metric that is used to measure the discrepancy between the

model and the market is usually defined by a mean squares of error of the model prices to the

market prices. A regularization term can be added to this error metric to make the solution

possess some desired properties. The discrepancy that we want to minimize is usually a highly

nonlinear function of a set of model parameters with the regularization term. Typically

monotonic decreasing algorithm is adopted to solve this minimization problem. Steepest

descent or Newton type algorithms are two iterative methods but they are local, i.e., they

use derivative information around the current iterate to find the next iterate. In order to

ensure convergence, line search and trust region methods are two widely used globalization

techniques.

Motivated by the simplicity of Barzilai-Borwein method and the convergence properties

brought by globalization techniques, we propose a new Scaled Gradient (SG) method for

minimizing a differentiable function plus an L1-norm. This non-monotone iterative method

only requires gradient information and safeguarded Barzilai-Borwein steplength is used in

each iteration. An adaptive line search with the Armijo-type condition check is performed in

each iteration to ensure convergence. Coleman, Li and Wang proposed another trust region

approach in solving the same problem. We give a theoretical proof of the convergence of

their algorithm. The objective of this thesis is to numerically investigate the performance

of the SG method and establish global and local convergence properties of Coleman, Li and

Wang’s trust region method proposed in [26]. Some future research directions are also given

at the end of this thesis.
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Chapter 1

Introduction

The number of function and derivative evaluations is considered as the main computa-

tional cost for solving nonlinear programming problems. For convex problems, interior point

method has been proved to be an efficient approach. For nonconvex problems, trust region

and affine scaling interior point method [24] was proposed to generate approximate affine

scaling Newton steps for the complementarity conditions. These methods are in the family

of monotonic decreasing algorithms. Barzilai and Borwein in [1] presented a remarkable

result of the stepsize calculation and provided a non-monotone gradient algorithm. In this

chapter, we first give a literature survey on the algorithms that have been used to solve least

squares problems with L1 penalty. Then we review some globalization methods to solve non-

linear optimization problems with the L1-norm regularization. In the end, we summarize

the objectives and contributions of this thesis.

1.1 Literature Review of Least Squares with L1 Penalty

In practice, it can be very important to solve a least squares optimization problem with the

L1-norm regularization. A simple example of such problems is given below

min
w∈Rn

‖Xw − y‖2
2 + ρ ‖w‖1 (1.1)
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where X is an m × n design matrix, y is an m × 1 column vector containing the values of

the target variables, w is an n×1 coefficient column vector and ρ is a positive regularization

parameter. L1 regularization has retained many benefits of L2 regularization. However, L1

regularization yields sparse and more stable solutions. In compressive sensing, L1-norm is

widely used to formulate the signal recovery algorithm [18, 19, 20]. Problem (1.1) can be

formulated either in an unconstrained manner or a constrained manner.

The equivalent form to the objective function (1.1) in a constrained formulation is given

by

minw∈Rn ‖Xw − y‖2
2

st. ‖w‖1 ≤ t (1.2)

where t > 0 is in relation to the optimal solution to (1.1).

In [14], the constraint in (1.2) can be converted to a linear system of inequalities by adding

either plus sign or minus sign in front of each component of w, yielding 2n combinations.

Then the problem is formulated as a standard Quadratic Programming (QP) problem with

exponentially many linear inequality constraints. Tibshirani in [14] proposed to sequentially

add constraints and seek solutions satisfying Karush-Kuhn-Tucker (KKT) conditions [13].

They claimed that this algorithm on average converges in 0.5n ∼ 0.75n iterations. The

problem of this approach is that it requires to solve a potentially large number (up to 2n in

theory) of QP problems, which is computationally very expensive.

Tibshirani in [14] used a second approach converting the constraints by introducing 2n

non-negative variables. The design matrix now becomes X̄ = [X,−X] and each component

wi is represented as

wi = w+
i − w−i
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where w+
i =


|wi| wi > 0

0 wi = 0

0 wi < 0

and w−i =


0 wi > 0

0 wi = 0

|wi| wi < 0

.

Thus the constraint in (1.2) is converted to taking the form as w+
i , w

−
i ≥ 0, i ∈ {1, · · · , n}

and
∑n

i=1

[
w+
i + w−i

]
≤ t. The number of variables has been doubled but one only needs to

solve a single QP problem and the number of constraints is 2n+ 1.

Basis Pursuit Denoising method [15] was proposed to solve (1.2) on non-negative variables

w+, w− in the following form

minv,λ ‖λ‖2
2 + ρ · eTv

st. λ = y − X̄v v ≥ 0

where eT =

1, · · · , 1︸ ︷︷ ︸
#2n

 is the vector of all one and v =

 w+

w−

. By adopting an Interior

Point Method (IPM) [29] with a log barrier function, the problem (1.3) can be iteratively

solved

minv,λ ‖λ‖2
2 + ρeT · v − µ

∑2n
i=1 log vi (1.3)

st. λ = y − X̄v

where µ > 0 . The main idea of this approach is to perform a Newton step based on the

KKT conditions on the primal feasibility, the dual feasibility and the duality gap. When

µ→ 0, this algorithm solves the original problem (1.2). It is well known that IPM converges

very fast but can be computationally expensive in each iteration.

Active set method was proposed in [16] to solve (1.2) by exploiting linearization of the

norm constraint about the current solution estimate w and maintaining an active set acting

on the non-zero variables. On each iteration, a quadratic program is solved to find a descent
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direction. This method converges fast but when the active set is large, partial factorization

of a permuted design matrix needs to be performed in order to maintain efficiency. Moreover,

this algorithm needs to handle the sign change in the active set during an iteration.

Problem (1.1) can also be solved using Iterated Ridge Regression [25]. This method starts

with a solution to the least squares with L2 penalty and solves the regression formula using

approximation of the objective function. Despite of its simplicity, this algorithm may stop

at a sub-optimal solution and become very unstable when some components are very close

to zero due to approximation.

Grafting [21] is another approach by properly defining the sign of wi when it is zero. It

has been argued that Grafting can be much more efficient than applying a quasi-Newton

step. Gauss-Seidel [22] is a similar approach to Grafting except that it is used to optimize

the free variables. This method has a very low iteration cost due to its extremely cheap

line search. In the meantime, convergence rate of Gauss-Seidel is not comparable to other

aforementioned methods.

We prefer to solve (1.1) in its original formulation since

• We want to solve a general nonlinear minimization problem with the L1-norm regular-

ization. In addition, we do not restrict ourselves to least squares problems only.

• We add proper diagonal scaling in each iteration to handle nondifferentiability caused

by the L1 -norm.

In finance, volatility surface calibration is a very important problem. The volatility surface

can be recovered by finding the coefficients for a set of spline basis. We have some observed

option prices as the training set and we intend to minimize the discrepancy between the

derived model prices and the observed market prices. The objective function we want to

minimize is usually least squares of the discrepancy between those two prices. More often

than not, it is required to solve a PDE to get the model prices hence the objective function

is nonlinear in the model parameters, namely, the spline basis coefficients. L1 regularization
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is added to ensure a volatility function is simple to achieve stability; this is achieved in [26]

by making the number of nonzero coefficients as small as possible.

Trust region methods and line search methods are two possible globalization approaches

for descent algorithm for nonlinear minimization. In Section 1.2, we will give a brief de-

scription of the trust region method and the Barzilai-Borwein method and highlight their

strength and weakness to motivate the research in this thesis.

1.2 Review of Globalization Methods

In order to ensure the globalization properties, there are two means to achieve this goal.

One approach is through line search and typically it provides a monotonic decreasing algo-

rithm. When GLL type line search [8] is performed and Barzilai-Borwein stepsize is used,

the algorithm becomes non-monotone. The other approach is trust region method. This

method finds the approximate Newton solution within the trust region and it is a monotonic

decreasing algorithm.

1.2.1 Trust Region Methods

The pure Newton method is arguably the most complex and the fastest iterative method

under certain conditions [13]. However, the Newton step is calculated as the minimizer of

the second-order Taylor expansion of the objective function around the current iterate. If

the function around the current iterate is highly nonlinear, second-order approximation to

the objective function may not be good and result in the next iterate too far away from the

current iterate. Therefore it makes sense to consider a quadratic approximation in a small

neighborhood, usually within a circle in which we believe the second-order approximation

is acceptable. In view of the cost, when the Hessian is not positive definite, pure Newton

direction may not be a descent direction. Minimizing the quadratic approximation in a

suitably chosen small neighborhood provides a descent direction.
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Line search and trust region methods can both use the second-order Hessian information.

The difference for trust region method is that the search direction and the step size are

determined simultaneously. For the trust region method, it is not necessary to find the exact

solution for the sub-problem. Indeed, most practical trust region algorithms seek for an

approximate solution within the trust region to give a sufficient decrease. It is relatively

easy to compute the Cauchy point for the trust region sub-problem. However, if we always

take Cauchy point, it in essence is similar to applying the steepest descent method. Dogleg

method and two dimensional subspace minimization method [17] are the two variations

improved on the Cauchy point based trust region methods. They both yield the approximate

solution to be the Newton solution whenever the Newton solution is within the trust region.

Dogleg method is suitable for positive definite Hessian case. Dogleg method takes a

dogleg-like trajectory which is composed of two line segments. If the trust region size is small,

the Newton solution may lie outside of the trust region. Dogleg method will first move along

the steepest descent direction to the Cauchy point then move towards the Newton solution.

The dogleg path can be easily computed.

The two dimensional subspace method enlarges the search space for approximate solution

in the span of gradient g and the Newton step B−1g. Under slight modifications, this method

can be applied to nonconvex problems.

In [26], Coleman, Li and Wang proposed a trust region method which is capable of solving

a minimization problem for a twice differentiable function plus an L1-norm. If a sufficient

decrease is obtained along a scaled descent direction, it is theorized that the first order

necessary optimality condition holds. If a sufficient decrease along the global solution to

the trust region sub-problem is derived, asymptotically speaking, the second-order necessary

optimality condition and superlinear convergence are expected to be achieved. We will show

how their algorithm works in Chapter 4.
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1.2.2 Barzilai-Borwein Method and Extensions

1.2.2.1 Original Barzilai-Borwein Method

Barzilai and Borwein proposed in 1988 a remarkable choice of the steplength for the gradient

method for the unconstrained minimization of a differentiable function. For some convex

quadratic functions, this gradient based algorithm achieves better convergence rate than the

steepest descent line search method and requires less computational burden as compared

to the standard steepest descent method. In their original paper [1], they proved that the

generated sequence by Barzilai and Borwein method converges to the global minimizer R-

superlinearly for a two dimensional convex quadratic optimization problem. In [2], Raydan

established the convergence analysis for convex quadratic minimization in any dimension by

spectral decomposition of the residual error norms. For the same problem in dimension ≥ 3,

the convergence rate was proved to be R-linear by Y.H. Dai and L.Z.Liao in [3].

The most magnificent part of the Barzilai-Borwein method lies in that convergence is

maintained while allowing for some occasionally nondecreasing steps. The calculation of the

BB stepsize is also very simple in the form of the Rayleigh Quotient. For the traditional

steepest descent method, it is a gradient method with an exact line search. The performance

of the steepest descent method in terms of the convergence speed is well known to deterio-

rate as the condition number of the Hessian increases. For the more ill-conditioned convex

quadratic problem, usually it is very difficult to maintain monotonicity at some iterates that

in turn result in taking very small stepsizes to converge to the minimum. In contrast, loss

of monotonicity sometimes can help take larger stepsizes to jump away from those flat areas

and achieve better convergence results as the Barzilai-Borwein method seems to provide.

For a general non-quadratic problem, the Barzilai-Borwein method is not as comparable

as the Conjugate Gradient(CG) based algorithm. However, if the objective function is made

up of a quadratic plus a small non-quadratic term, improvements are expected to be made

relative to CG based method [4].
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1.2.2.2 Variations of the Barzilai-Borwein Method

Recently, there have been many variations of the Barzilai-Borwein method in the literature.

Barzilai-Borwein method can be classified as a special case in the family of Gradient Methods

with Retards(GMR) [5]. In [6], Yuhong Dai et al. investigated the connection between the

convergence rate and two versions of the BB stepsize and proposed an Adaptive Steepest

Descent (ASD) method, which chooses the appropriate BB stepsize using the metric related

to the ratio of the two versions of the BB stepsize. By introducing proper truncation on the

BB stepsize, the algorithm is surprisingly monotone.

1.2.2.3 Extension to the Linearly Constrained Optimization Problem

Many researchers use non-monotone Armijo-type line search with acceptability test to ensure

global convergence. The way they handle the constraints is to project the trial point back

to the feasible region whenever it is out of the boundary. Yu-Hong Dai and Roger Fletcher

[7] examined the performance of Adapted Projected Barzilai-Borwein method (PABB) for

large scale box-constrained quadratic programming problem. They argued that, in a convex

quadratic case, if GLL [8] non-monotone line search is performed on every iteration, the

performance is noticeably degraded unless large number of candidate function values that

are used to generate the reference function is chosen. They proposed to periodically update

the reference values on every 10 iterations to achieve better performance. However, for

indefinite Hessian case, the original PBB method outperforms PABB method.

Spectral Projected Gradient (SPG) method was proposed in [9] to find the minimizer

of a first-order differentiable general function on a closed convex set. SPG method is a

combination of Barzilai-Borwein and line search methods to give convergence. However,

they used a simplified adaptive line search method thus only one projection is required for

each line search instead of doing projection on every trial point. They used the original

Barzilai-Borwein stepsize to find the trial point along the negative gradient direction. If this

trial point is out of the feasible region, an orthogonal projection is performed to map the trial
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point onto the boundary of the feasible region. The new search direction then is determined

by connecting the current iterate to the new projected point. Line search is performed on

this line segment to find the first trial point at which non-monotone Armijo-type rule is

satisfied. They proved that either the algorithm stops at the stationary point or every limit

point of the generated sequence is stationary.

In all, both trust region method and Barzilai-Borwein type method can be applied to

solve a minimization problem for a twice differentiable function plus an L1-norm. We are

motivated to use affine scaling in both the proposed scaled gradient method and trust region

method. Barzilai-Borwein type methods inspire us to investigate the possibility to adopt

a non-monotone algorithm along certain properly defined gradient based descent direction.

We hope to devise such a new gradient based algorithm so that it possesses the properties of

a small computational cost and fast convergence, at least when the smooth function in the

objective is not too nonlinear. Although we can use some other generalized steepest descent

or Newton type method which is capable of handling nondifferentiable points, we prefer to

treat the optimization problem as an unconstrained problem and devise an algorithm with

cheap computational cost.

1.3 Objectives and Contributions

Nonlinear optimization problem with the L1-norm regularization has drawn intense research

attention due to its wide applications in many areas. A lot of research effort has been

dedicated to finding an efficient algorithm to solve this problem. The objectives and con-

tributions of this thesis are two-fold. Motivated by the role of affine scaling in dealing with

the L1-norm and the simplicity of the Barzilai-Borwein type non-monotone algorithms, we

want to investigate an efficient non-monotone method using gradient and appropriate affine

scaling for minimizing a nonlinear function with the L1-norm regularization. We also want

to analyze and establish convergence properties of Coleman, Li and Wang’s trust region
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method proposed in [26].

The main contributions of the thesis include:

• Propose an affine scaling gradient based algorithm with non-monotone line search

for minimizing nonlinear function regularized by an L1-norm. The novelty of this

algorithm comes from taking a scaled descent direction with safeguarded Barzilai-

Borwein stepsizes. In order to ensure convergence, an adaptive line search is performed

on each iteration. This algorithm does not require exact line search and the overall

computational cost is cheap.

• Investigate the computational performance of our proposed scaled steepest descent

method and impact of the parameter choice. We also compared our method against

the spectral projected gradient method to illustrate the effectiveness of our algorithm.

• Establish the 1-st order convergence properties of the affine scaling trust region method

proposed in [26]. The 2-nd order convergence properties are presented but the proof is

omitted due to its strong similarity to the proof in [11].

We will discuss the optimality conditions for the problem we consider in Chapter 2. In

Chapter 3, we will propose a scaled steepest descent method using safeguarded BB stepsize.

In Chapter 4, we will prove the convergence properties of Coleman, Li and Wang’s trust

region method proposed in [26], which is another approach to solve the same nonlinear

minimization optimization problem with the L1 regularization. Chapter 5 will conclude the

thesis and some future research directions will be given.
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Chapter 2

Optimality Conditions

The Karush-Kuhn-Tucker Necessary Conditions for smooth and constrained optimization

problems [13] can be specified as the following

Proposition 2.1. Let x∗ be a local minimum of the problem

min f (x)

st. E1 (x) = 0, · · · , Em (x) = 0

I1 (x) ≤ 0, · · · , Ir (x) ≤ 0

where f, Ei, Ij are continuously differentiable function from Rn to R, and assume that x∗

is regular. Then there exist unique Lagrange multiplier vectors λ∗ = (λ∗1, · · · , λ∗m), µ∗ =

(µ∗1, · · · , µ∗r) , such that

∇xL (x∗, λ∗, µ∗) = 0

µ∗j ≥ 0, j ∈ {1, · · · , r}

µ∗j = 0,∀j /∈ A (x∗)
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where A (x∗) is the set of active constraints at x∗ and L (x, λ, µ) is the Lagrangian function

defined by L (x, λ, µ) = f (x) +
∑m

i=1 λiEi (x) +
∑r

j=1 µjIj (x). If in addition f, E and I are

twice continuously differentiable, there holds

yT∇2
xxL (x∗, λ∗, µ∗) y ≥ 0

for all y ∈ Rn such that

∇Ei (x∗)T y = 0,∀i = 1, · · · ,m

and

∇Ij (x∗)T y = 0,∀j ∈ A (x∗)

where ∇xL (x, λ, µ) and ∇xxL (x, λ, µ) are the first-order partial derivative and second-order

partial derivative with respect to x, respectively.

A feasible vector x is said to be regular if the quality constraint gradients ∇Ei (x) , i =

1, · · · ,m , and the active inequality constraint gradients ∇Ij (x) , j ∈ A (x) , are linearly

independent. For any feasible point x, the set of active inequality constraints is denoted by

A (x) = {j |Ij (x) = 0} .

Without loss of generality, we assume in this thesis, that we want to minimize a nonlinear

function plus an L1-norm regularization. Specially, we want to solve

min
x∈Rn

f (x) + ‖x‖1 (2.1)

where f ∈ C2 is a twice continuously differentiable function and the L1-norm of x ∈ Rn is

defined by ‖x‖1 :=
∑n

i=1 |xi| . Since (2.1) has an equivalent nonlinear programming formu-

lation, it can be shown, see, e.g. [28], that the first order necessary KKT condition for (2.1)

12



can be expressed as the following : for any 1 ≤ i ≤ n


(xi) · ((∇f (x))i + sign (xi)) = 0

|(∇f (x))i| ≤ 1

(2.2)

where

sign (x) :=


−1 x < 0

0 x = 0

1 x > 0

.

For the gradient component x∗i = 0, the objective function (2.1) is not differentiable but

condition|(∇f (x∗))i| ≤ 1 should be satisfied. Otherwise, for example, if |(∇f (x∗))i| > 1, we

can always find a descent direction along the i-th axis that will lead to the contradiction of

the optimality assumption at x∗.

Define a vector v (x) ∈ Rn as

(v (x))i :=


1 |(∇f (x))i| > 1

|xi| otherwise

(2.3)

and the corresponding scaling matrix as D (x) := diag (v (x)) ∈ Rn×n
+ . Note that v (x) is

a vector of the distance to each axis from the current iterate other than the component

whose scaling factor is defined to be one. We choose affine scaling because affine scaling

can help avoid the non-differentiable points. Otherwise, when |(∇f (x))i| ≤ 1, if we choose

(v (x))i = |xi|α, then the distance from the current iterate to the corresponding break point

is degenerated to be either 0 for α < 1 or +∞ for α > 1, respectively.

The component-wise KKT condition (2.2) can be rewritten in a vector/matrix form as

D (x) · (∇f (x) + sign (x)) = 0. (2.4)
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If we assume that at the current iterate xk ∈ Rn, xk satisfies (xk)i 6= 0,∀i ∈ {1, · · · , n}, then

a Newton step dk for (2.4) can be defined as the solution to

(
Jvk · diag (gk) + diag (vk) · ∇2f (xk)

)
dk = −diag (vk) gk (2.5)

where gk := ∇f (xk)+sign (xk) and Jvk (x) ∈ Rn×n is a diagonal matrix, which corresponds to

the Jacobian matrix of |v (xk)| with each diagonal element (Jvk (x))i,i = 0 when (v (xk))i = 1,

(Jvk (x))i,i = 1 when (v (xk))i = xi and (Jvk (x))i,i = −1 when (v (xk))i = −xi, respectively.

Affine scaling as defined in (2.3) is specially designed to handle the L1-norm. Prob-

lem (2.1) is essentially a minimization problem for a differentiable function f (x) with non-

differentiable L1-norm ‖x‖1. When the Lagrangian multiplier associated with nondiffer-

entiable hyperplane {xi = 0} suggests that this hyperplane should not be binding at the

solution, i.e., |(∇f (x))i| > 1, the scaling Di,i = 1 facilitates the iterates to quickly move

away from this hyperplane. On the contrary, when the Lagrangian multiplier associated

with nondifferentiable hyperplane {xi = 0} suggests that xi = 0 is likely to be binding, the

scaling Di,i = |(xk)i| can prevent the iterates from crossing {xi = 0} prematurely and help

iterates to converge to a solution.

The Newton step defined by (2.5) suggests that, if ∇2f (xk) ≈ 0, −Dkgk can be regarded

as an approximate Newton step, which motivates us to use −diag (vk) gk as our descent

direction.

From the necessary optimality condition for (2.1), we would like the iterates to satisfy

limk→∞ ‖Dkgk‖ = 0. We will see this in Chapter 3 by simulation, that the scaled gradient

method terminates with limk→∞ ‖Dkgk‖ = 0 being approximately satisfied. Moreover, both

the first-order and the second-order necessary optimality conditions are satisfied for the trust

region method as described in Chapter 4.

14



Chapter 3

A Scaled Gradient Method

3.1 Motivations of Our Research

A main attractive feature of a gradient based method is computational simplicity. A Newton

type method requires a solution to an n × n linear systems of equations. For large n, this

computation can be expensive. Inspired by the simplicity of the Barzilai-Borwein method

and the SPG method, we want to solve the nonlinear optimization problem with L1 penalty

using a similar approach.

For simplicity, in this investigation, we first focus on a convex quadratic plus an L1-norm

as given below

min
x∈Rn

1

2
xTHx− bTx︸ ︷︷ ︸

f(x)

+ ‖x‖1 (3.1)

where H is an n×n positive definite matrix and b is an n× 1 column vector. Problem (3.1)

is a convex problem since a superposition of two convex functions is convex. It is known

that, for a convex function, the local minimum and the global minimum coincide. We use

h (x) to denote the objective function, i.e., h (x) = 1
2
xTHx− bTx+ ‖x‖1.

We want to use a gradient-type approach since only first-order information is supplied

and it is easy to compute at each iteration. Similar to [10], we do not force our algorithm to
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be monotone because monotone gradient algorithm can converge very slowly. We want to

use BB-type stepsize for the reason that computing BB-stepsize only requires ∆x and ∆g

and it has been proved to work well for unconstrained quadratic minimization. We prefer

to keep using adaptive non-monotone line search in order to ensure a non-monotone Armijo

rule being satisfied.

Cauchy steplength αk =
gTk gk
gTk Hgk

where g = ∇h = Hx − b + sign (x) in the steepest

descent direction does not work for (3.1) since the problem (3.1) is essentially a constrained

optimization problem. Motivated by the KKT conditions (2.4), we intend to use a Scaled

Steepest Descent (SSD) direction −diag (vk) gk as our search direction to handle the second

term in the objective function.

3.2 Our Proposed Method

We want to answer the following questions. Firstly, what search direction should we take?

Secondly, what stepsize should be applied? Next, what type of line search should be per-

formed? Finally, what terminating conditions should be specified? In this section, we will

elaborate on how we design our affine scaling gradient based method.

3.2.1 Challenges and Solutions

3.2.1.1 Search Direction

A simple method that one might naturally want to use is the steepest descent −gk with the

exact line search. We explain how the line search can be done and why this method will not

work. We can still move along the steepest descent direction −gk = − (Hxk − b+ sign (xk))

using the exact line search. The stepsize will be taking different formulation from that for

unconstrained minimization because we have the L1-norm in the objective function (3.1).
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We define the change in the objective function h (x) along dk as

p (α) , f (xk+1) + ‖xk+1‖1 = α (Hxk − b)T dk +
1

2
α2dTkHdk + ‖xk + αdk‖1 + f (xk)

where the iterate is updated by xk+1 = xk + αdk.

The minimizer α∗ of p (α) has the following characteristics. The optimizer α∗ for p (α)

in the negative gradient direction dk = −gk is either α∗ = βi
∗+1
k or α∗ = βi

∗

k +
〈gi∗k ,g0k〉
dTkHdk

where

i∗ ∈ {0, · · · , lk − 1} is the last break point that is crossed, i.e., βi∗k := max {βik : βik < α∗} and

gik is the gradient immediately after crossing the i-th break point. Note that βik :=
|(xk)ji|
|(dk)ji|

where ji is the component index for the i-th break point along dk.

The minimizer can only be either the local minimum of one quadratic piece or one of the

break points along the SD direction. In Chapter 4, we will provide such a proof (Lemma

4.1).

We can see that if we perform line search along the SD direction, it is possible that the

SD direction will become an ascent direction after crossing some break point. Therefore

backtracking needs to be performed to avoid staying at those non-differentiable hyperplanes

{xj = 0} , j ∈ {1, · · · , n}. Affine scaling [13] can be served to avoid non-differentiable points.

This is because, for instance, if component (xk)i of the current iterate xk is approaching zero

and the necessary optimality condition for this component is satisfied, i.e., |∇f ((xk)i)| ≤ 1,

then moving along the scaled steepest direction−diag (vk) gk with a distance of βk to {xi = 0}

can ensure that

lim inf
k→∞

βk = lim inf
k→∞

|(xk)i|
(Dk)i,i · |(gk)i|

= lim inf
k→∞

1

|(gk)i|
≥ lim inf

k→∞

1

|gk|∞
> 0

which can be interpreted as preventing the current iterate from directly approaching {xi = 0}

by taking the scaled steepest descent direction −diag (vk) gk, which is nearly tangential to

{xi = 0}. In contrast, if |∇f ((xk)i)| > 1, then the break point is nearly zero hence it allows

iterates to cross the corresponding non-differentiable hyperplane.
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For a large nonlinear problem, computing a Newton type step can be computationally

intensive. As one way out, we want to use the SSD direction −Dkgk on the k-th iteration.

This new direction is still a descent direction since the inner product of 〈−Dkgk, gk〉 =

−gTkDkgk ≤ 0 where Dk is a positive semidefinite diagonal matrix. We want to get reader’s

attention that it is possible for many components of x∗ binding at zero, i.e., the optimal faces

could reside on one or more of the non-differentiable hyperplanes {xj = 0} , j ∈ {1, · · · , n}.

Suppose that the current iterate’s i-th component xi is still far from the optimal face {xi = 0}

and |(∇f (x))i| ≤ 1, taking |xi| in as the the scaling factor for the i-th component may result

in tremendous deviation from moving towards {xi = 0}. As a result, we define the scaling

matrix in our context as

D(x) := diag (v (x))

where

(v (x))i :=


1 |(∇f (x))i| > 1

min {|xi| , 1} |(∇f (x))i| ≤ 1

(3.2)

By doing so, we avoid adding scaling effect when the iterate is not close to the optimal

solution yet. Scaling plays an important role in handling L1-norm when non-differentiability

issue comes into play. Note that the KKT condition can also be equivalently stated as

D (x) · g (x) = 0 where D (x) is defined by (3.2).

3.2.1.2 Stepsize

Similar to the derivation in [1], to obtain a BB type stepsize for (3.1), we consider the

optimization problem as defined by

minα∈Rn

∥∥ 1
α
Dk∆xk −Dk∆gk

∥∥2 (3.3)

where ∆xk = xk − xk−1 and ∆gk = gk − gk−1.
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The minimum of (3.3) is trivially derived as

αBB1
k := α∗ =

〈Dk∆xk, Dk∆xk〉
〈Dk∆xk, Dk∆gk〉

(3.4)

Similarly, the minimum of minα∈Rn ‖Dk∆xk − αDk∆gk‖2 is given by

αBB2
k := α∗ =

〈Dk∆gk, Dk∆xk〉
〈Dk∆gk, Dk∆gk〉

(3.5)

If we substitute ∆xk = xk − xk−1 and ∆gk = H∆xk + sign (xk)− sign (xk−1) into (3.4) and

(3.5), we observe that neither αBB1
k nor αBB2

k is Rayleigh quotient (For a given Hermitian

matrix H and x 6= 0, Rayleigh quotient is defined to be xTHx
xT x

and it is always positive for a

positive definite matrix H) due to break point crossings (sign (xk) − sign (xk−1) 6= 0). We

observe that the denominator 〈Dk∆xk, Dk∆gk〉 in (3.4) and (3.5) can be negative.

Based on the following arguments, we want our stepsize αBBk to be in [αmin, αmax] where

0 < αmin < 1 < αmax.

• Stepsize needs to be bounded away from zero otherwise the algorithm may stop at

non-optimal point where terminating condition can be easily satisfied since the last

two iterates could be infinitely close to each other. In contrast, if lim infk→∞ α
BB
k > 0

and the generated sequence converges, from the iterate update formula xk+1 = xk −

αBBk Dkgk, this will lead to limk→∞ ‖Dkgk‖ = 0, which means the first order necessary

optimality condition is satisfied.

• Negative stepsize is not meaningful when we move in a descent direction. In [7, 9], when

stepsize is negative, they choose to use a bold step αmax instead of αmin. Whenever

we meet negative stepsize in (3.4) and (3.5), the algorithm is in the situation that a

break point is crossed. If we choose αmin, we may prohibit from crossing the break

point since this stepsize is small and the next iterate may remain in the same orthant.

Another alternative is to use Rayleigh Quotient whenever we encounter the negative
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stepsize.

• Large stepsize inherent in the original BB stepsize formulae may lead iterates to jump

away from the minimum thus oscillate around the optimal solution. Hence we impose

an upper bound αmax on the stepsize αBBk .

• Unit stepsize 1 is effective when used with the Newton step. We can judge from the

following claim that in some occasions, we should take stepsize 1 to make the iterate

converge to the optimal face faster. Hence we let 1 < αmax.

Unit stepsize 1 helps the corresponding components of iterates binding at zero when necessary

optimality condition holds and the corresponding component is near the optimal face. This

can be seen from discussion below.

Suppose for sufficiently large k, |(∇f (xk))i| < 1 holds and |(xk)i| < 1. If the iterate

updating formula xk+1 = xk −Dkgk holds for k ≥ k̄ where k̄ is some fixed positive integer,

we can conclude that

(xk+1)i = (xk)i −min {|(xk)i| , 1} · (gk)i .

= sign ((xk)i) · |(xk)i| − (gk)i · |(xk)i|

= − (∇f (xk))i · |(xk)i|

Therefore

|(xk+1)i| = |(xk)i| · |(∇f (xk))i| < |(xk)i|

hence

|(xk+1)i| = |(xk)i| · |(∇f (xk))i| =
(

Πk
j=k̄

∣∣(∇f (xj))i
∣∣) · |(xk̄)i|

thus

lim inf
k→∞

|(xk+1)i| = 0.
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3.2.1.3 Ensuring Convergence

For a non-convex minimization, taking BB stepsize always can lead to divergence. Non-

monotone line search technique has been proposed to ensure convergence [8]. In order to do

line search, on each iteration, Non-monotone Armijo-rule says we need to find the smallest

natural number m such that

h
(
xk − θmαBBk Dkgk

)
≤ hr + θmαBBk 〈gk,−Dkgk〉

where θ ∈ (0, 1) and hr is the reference function value. In [9], they choose

hr = hmax := max {h (xk−j) |0 ≤ j ≤ min {k,M − 1}}

where M is a positive integer. In addition, shrinking factor θ does not need to be a constant

in (0, 1) in each iteration. They choose θl+1 ∈ [τ1θl, τ2θl] where l is the index to indicate the

number of shrinkings and 0 < τ1 < τ2 < 1. The typical best value for M is chosen to be

10 [4]. Notice that if M = 1, the line search criterion reduces to the monotone Armijo-rule.

In [9], it has been argued that the Spectral Projected Gradient method does not work well

when M = 1.

3.2.2 Our Proposed Scaled Gradient Method

3.2.2.1 Algorithm Description

To answer the questions raised at the beginning of this section, we propose to use the scaled

steepest descent direction as the search direction. Safeguarded Barzilai-Borwein stepsize is

used to search for the first trial point. A non-monotone Armijo-type rule is applied to find

the next iterate. Our proposed algorithm is described in Algorithm 3.1.
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Algorithm 3.1 Scaled Gradient Method
Given x0,α0,αmin,αmax,0 < τ1 < τ2 < 1, γ ∈ (0, 1) and M ∈ Z+

Step 1: If
∣∣∣h(xk − θαBBk Dkgk

)
− h (xk)

∣∣∣ < tol stop

Step 2: Calculate Dk,hmax , max {h (xk−j) |0 ≤ j ≤ min {k,M − 1}} and

αBBk =
〈Dk (xk − xk−1) , Dk (xk − xk−1)〉

〈Dk (xk − xk−1) , Dk ([H (xk − xk−1) + sign (xk)− sign (xk−1)])〉

Step 3: If αBBk < 0 then set αBBk = 〈Dk∆xk,Dk∆xk〉
〈Dk∆xk,DkH∆xk〉

;

set αBBk = min
{
αmax,max

{
αmin, α

BB
k

}}
Step 4: Compute δ ←

〈
gk,−αBBk Dkgk

〉
and set θ ← 1

Step 5: While h
(
xk − θαBBk Dkgk

)
> hmax + γθδ

{set θnew ∈ [τ1θ, τ2θ] , θ ← θnew}

Step 6: xk+1 = xk − θαBBk Dkgk and goto step 1

3.2.2.2 Discussions

Parameter M is used to set the reference values from

hmax := max {h (xk−j) |0 ≤ j ≤ min {k,M − 1}} .

AsM increases, it is more likely that the trial point gets accepted. IfM = 1, then Algorithm

3.1 becomes a monotone algorithm. Parameter γ controls required decrease relative to the

reference value. Note that the inner product δ =
〈
gk,−αBBk Dkgk

〉
is always negative. Hence,

as γ increases, the inequality

h
(
xk − θαBBk Dkgk

)
> hmax + γθδ

is more difficult to be satisfied. If, at some iterate xk, it is very unlikely that the

h
(
xk − θαBBk Dkgk

)
> hmax + γθδ
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is violated, we will keep shrinking the stepsize. We do not impose lower and upper bound

on the stepsize θαBBk in the while loop in step 5 because of these observations.

Our SG method combines the non-monotone line search scheme and Barzilai-Borwein

stepsize with our proposed scaled steepest descent direction as the search direction to han-

dle the L1-norm in the objective function. The performance of our SG method will be

comprehensively examined in Section 3.3.

3.3 Computational Investigation

To illustrate the performance of our proposed SG method for minimizing a convex quadratic

with the L1-norm regularization, we use Moré and Toraldo’s method [27] to generate random

test problems. We can specify dimension, condition number and sparsity of Hessian matrix

H for the test problems. Throughout this investigation, we set the dimension of the test

problem to be 10, condition number of H to be 3 and the sparsity of H to be 1 (a dense

matrix).

3.3.1 Verification on the Appropriateness of Our Choice

Initially, we chose γ = 0.5, αmin = 0.01, αmax = ∞, τ1 = 0.1, τ2 = 0.9 and M = 10. The

terminating condition is set to be whether or not the difference between the two consecutive

objective values is less than the tolerance value √eps = 10−8 or the maximum number of

iterations 1000 is reached. We say an execution is successful when the norm of the scaled

gradient is sufficiently small (< 10−4 typically). If the last steplength θαBBk is < 10−4, it

can easily make the change in xk+1 = xk − θαBBk Dkgk be very small so that the difference

in objective values can be less than √eps. Therefore the algorithm does not converge to the

optimal point after termination.
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ρ = 0.1 ρ = 1 ρ = 10 ρ = 100

SD 163/0.0% 158/0.0% 285/0.0% 345/16%
SSD 160/100% 126/100% 160/100% 300/100%

Table 3.1: Average Number of Iterations / Success Rate for SD and SSD direction

3.3.1.1 Comparing Search Directions

We first illustrate, without using scaling, the steepest descent −∇h (xk) with the non-

monotone stepsize rule does not work. We run 50 test cases on steepest descent direction as

well to solve (3.6) for different ρ’s

min
x∈Rn

ρ ·
(

1

2
xTHx+ bTx

)
+ ‖x‖1 (3.6)

where ρ is the weighting factor for the quadratic term. We tried ρ = 0.1, 1, 10, 100 and the

simulation results in terms of the average number of iterations and the success rate of the

algorithm are listed in Table 3.1.

When the SD direction is used, although the algorithm terminates on average in hundreds

of steps, the stepsize indeed converges to zero for most cases and the optimality condition

‖Dkgk‖ → 0 does not hold. Thus the algorithm does not stop at the optimal solution.

We can also see that when the quadratic term becomes more dominant as ρ increases, it

is possible for the algorithm that takes safeguarded BB stepsize along the steepest descent

direction to work in some cases. This is entirely reasonable since problems become increasing

similar to a convex quadratic minimization problem, as ρ increases.

3.3.1.2 Safeguarded BB Stepsize

We observed by simulation that for a large ρ ≥ 1000, current choice of αmin = 0.01 often fails

to solve a problem (3.6). We used the same quadratic function (but without L1 term) to

test the Barzilai-Borwein method, the same thing happened. This indicates that the lower

bound of the stepsize should be problem dependent. For large ρ, since the value of ‖Dkgk‖
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might be very large, we should set αmin to be some reasonable small positive value in regard

to ‖D0g0‖ to make the algorithm converge with ‖Dkgk‖ → 0 being satisfied.

3.3.1.3 Adaptive Line Search

We can set θ to be any value in (0, 1) and it turns out that there is no significant differ-

ence in terms of convergence speed when θ varies. As an alternative, we can do quadratic

interpolations to find the

θnew = −1

2
θ2δ/ (h (x+)− h (xk)− θδ)

where h (x+) is the objective value at the trial point x+ as suggested in [9]. We observed

that the algorithm does not always converge fast in our context. For ρ = 10, this choice of

the shrinking factor θ works well and the algorithm terminates with an average number of

156 iterations. For ρ = 100, there are 4 out of 50 test cases, which terminate at the 1000-th

iteration without meeting the required precision for the objective values. The rest 46 test

problems terminate at the optimal solution.

3.3.2 Evaluate Impact of Parameters on Performance

3.3.2.1 The Impact of γ

The parameter γ is used to control the satisfiability of h
(
xk − θαBBk Dkgk

)
> hmax + γθδ in

step 5. It takes value in [0, 1]. We run simulations for different γ in order to choose the best

value of γ in terms of convergence speed.

Table 3.2 reports the number of iterations the SG algorithm takes to converge for 50

random test problems for γ = 0.2, 0.4, 0.5, 0.6, 0.8 and ρ = 100. Table 3.3 records the same

information except for ρ = 10. We observe that, for γ < 0.5 when ρ = 100, there is not much

difference in the number of iterations the algorithm takes to converge. We set the γ value

in (0.4, 0.8). We run the same test samples for ρ = 10 case. We observe that for γ ≥ 0.8
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Test # γ = 0.2 γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.8

1 592 352 323 526 576

2 328 377 329 283 336

3 195 340 235 235 394

4 127 189 189 154 181

5 132 131 174 152 107

6 176 177 200 200 121

7 390 256 251 161 363

8 178 185 178 178 218

9 177 183 183 137 172

10 173 145 214 182 206

11 349 325 258 216 313

12 271 244 203 203 191

13 575 581 487 507 621

14 261 291 291 328 389

15 200 190 152 152 172

16 202 379 228 198 265

17 139 139 194 129 126

18 307 292 285 340 319

19 288 340 360 360 342

20 196 251 258 229 452

21 222 174 149 149 163

22 246 266 279 238 299

23 348 198 449 228 268

24 389 345 394 390 423

25 308 257 252 257 228

Test # γ = 0.2 γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.8

26 321 329 412 363 413

27 771 698 669 391 824

28 499 499 664 664 377

29 300 288 229 272 250

30 131 134 134 238 170

31 298 310 255 283 333

32 299 270 319 296 462

33 364 335 386 383 522

34 248 184 184 223 238

35 181 188 196 160 211

36 220 297 321 263 263

37 396 381 314 303 339

38 262 275 428 255 336

39 402 532 447 342 498

40 207 191 215 233 285

41 278 221 221 151 194

42 594 683 669 450 693

43 273 276 369 319 355

44 490 446 396 452 457

45 232 270 281 252 370

46 334 316 420 306 286

47 333 406 284 319 277

48 139 136 136 128 146

49 198 214 214 214 185

50 443 211 325 234 270

γ = 0.2 γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.8

Average # 300 294 300 273 320

Table 3.2: Number of Iterations vs. γ , ρ = 100

, usually it takes more iterations to converge. Throughout Section 3.3.2, our SG method

terminates with the optimality condition limk→∞ ‖Dkgk‖ = 0 being approximately satisfied,

i.e., ‖Dkgk‖ ≤ 10−4 at termination.

As a result of simulations shown in Table 3.2 and 3.3, we choose γ = 0.5 since there is

no much difference when γ < 0.5 and there might be fewer iterations on average required for

large ρ.
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Test # γ = 0.2 γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.8

1 283 129 122 122 94

2 76 62 62 68 581

3 302 136 117 163 238

4 87 87 87 87 129

5 165 88 77 121 126

6 196 231 280 280 120

7 60 53 53 53 61

8 46 157 157 157 107

9 511 508 814 467 341

10 389 388 330 464 233

11 75 94 74 87 92

12 112 239 239 261 337

13 56 56 76 76 60

14 84 84 84 137 988

15 257 168 168 261 226

16 42 411 334 106 225

17 150 188 188 75 219

18 104 170 73 65 102

19 607 383 400 216 249

20 80 91 94 71 59

21 25 25 25 25 38

22 228 179 285 236 235

23 366 339 390 392 408

24 163 163 163 74 74

25 215 266 269 149 61

Test # γ = 0.2 γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.8

26 97 88 85 80 147

27 204 204 191 191 214

28 51 51 41 41 41

29 265 323 323 323 313

30 74 126 126 126 91

31 259 259 259 259 271

32 143 123 123 113 57

33 193 193 179 68 287

34 94 94 94 169 169

35 41 42 42 42 96

36 85 106 106 106 122

37 125 97 93 267 86

38 97 101 67 111 92

39 108 108 108 93 93

40 135 135 371 371 169

41 113 69 69 69 82

42 118 118 118 150 187

43 58 62 62 74 196

44 63 63 63 63 94

45 104 46 46 46 108

46 107 101 101 44 44

47 45 43 38 38 40

48 50 45 45 45 49

49 60 60 60 60 60

50 206 247 207 249 281

γ = 0.2 γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.8

Average # 152 152 160 159 176

Table 3.3: Number of Iterations vs. γ , ρ = 10
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Test # M = 1 M = 4 M = 7 M = 10

1 122 122 122 122

2 40 64 66 62

3 143 67 67 117

4 91 87 87 87

5 36 51 83 77

6 81 72 105 280

7 60 53 53 53

8 140 157 157 157

9 263 261 310 814

10 195 173 329 330

11 95 74 67 74

12 474 130 239 239

13 80 76 76 76

14 399 353 709 84

15 233 209 168 168

16 48 330 334 334

17 76 188 188 188

18 58 56 65 73

19 225 400 400 400

20 83 63 54 94

21 25 25 25 25

22 255 377 313 285

23 419 451 428 390

24 295 163 163 163

25 122 60 269 269

Test # M = 1 M = 4 M = 7 M = 10

26 157 70 83 85

27 167 191 191 191

28 27 43 44 41

29 323 323 323 323

30 126 126 126 126

31 482 259 259 259

32 104 122 123 123

33 239 332 179 179

34 148 279 94 94

35 41 41 41 42

36 103 107 105 106

37 73 123 130 93

38 104 95 67 67

39 59 167 52 108

40 203 371 371 371

41 101 80 76 69

42 95 108 118 118

43 50 54 54 62

44 43 47 63 63

45 48 46 46 46

46 36 51 73 101

47 32 33 38 38

48 44 45 45 45

49 79 60 60 60

50 202 287 249 207

M = 1 M = 4 M = 7 M = 10

Average # 143 151 158 160

Table 3.4: Number of Iterations vs. M

3.3.2.2 The Impact of M

In [7], they reported to use best value of M to avoid any performance degradation when

Armijo-type rule with GLL line search is applied. We study the ρ = 10 case for various M

values.

Table 3.4 reports the number of iterations the SG algorithm takes to converge for M =

1, 4, 7, 10 for the same 50 test problems. We can see in Table 3.4 that we do not increase

too much computational burden when choosing M = 10. It usually takes the least number

of iterations for the algorithm to converge when M = 1. This is not surprising since the
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Figure 3.1: Impact of Shrinking Factor θ

algorithm becomes monotone and the condition number of the Hessian is only 3. We take a

conservative value M = 10 to handle the more ill-posed problems.

3.3.2.3 The Impact of Shrinking Factor θ in Line Search

We tried different shrinking factor θ for ρ = 10 and 100 case, respectively. The average

number of iterations for θ = 0.1, 0.2, · · · , 0.9 and ρ = 10, 100 against θ are plotted in Figure

3.1.

We choose θ = 0.5 since we observe that there is no significant difference in terms of

number of iterations when θ varies.

3.3.2.4 Lower and Upper Bound on the Stepsize

It is more important to set a proper lower bound than an upper bound on the stepsize as

observed from our simulation results. Indeed, when ρ ≤ 100 , αmin = 0.01 works very well.

When ρ > 100, none of the components of the optimal solution are binding at zero. This

means the quadratic term is overwhelming compared to the L1 regularization term. The
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Algorithm 3.2 Spectral Projected Gradient Method [9]
Given x0,α0,αmin,αmax,0 < τ1 < τ2 < 1,γ ∈ (0, 1) and M ∈ Z+

Step 1: If
∣∣∣f (xk − θαBBk gk

)
− f (xk)

∣∣∣ < tol stop
Step 2: Calculate

αBBk = min

{
αmax,max

{
αmin,

〈xk − xk−1, xk − xk−1〉
〈xk − xk−1, H(xk − xk−1)〉

}}
and

Proj(xk − αBBk gk)

where Proj (x) is the orthogonal projection of x onto the boundary
of the feasible region F := {x : ‖x‖1 ≤ t}.

Step 3: Calculate

fmax , max {f (xk−j) |0 ≤ j ≤ min {k,M − 1}}

and
δ ←

〈
gk, P roj(xk − αBBk gk)− xk

〉
and set θ ← 1

Step 4: While f
(
xk − θαBBk gk

)
> fmax + γθδ

{set θnew ∈ [τ1θ, τ2θ] , θ ← θnew}

Step 5: xk+1 = xk − θαBBk gk and goto step 1

regularization effect is compromised by large ρ.

3.3.3 Performance Comparison

We compare our algorithm against the SPG method [9]. The detailed implementation of the

SPG algorithm is given in Algorithm 3.2 where Proj (x) is the orthogonal projection of x

onto the boundary of the feasible region whenever it lies outside. For the SPG method in

[9], projection operation is performed at most once in each iteration because the adaptive

line search is performed on the line segment connecting the current iterate to the projected

trial point and the feasible region F = {x : ‖x‖1 ≤ t} is convex.
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1 2 3 4 5 6 7 8 9 Average #
SPG 181 257 212 202 233 169 234 227 294 224
SG 329 258 258 279 449 321 428 284 325 326

Table 3.5: Number of Iterations for SPG and SG Method, for 9 problems that SPG is
successful

The equivalent optimization for the SPG method to work on is given by

minx∈Rn ρ ·
(

1
2
xTHx+ bTx

)
st. ‖x‖1 ≤ t

where t = ‖x∗‖1 and x
∗ is computed using our proposed scaled gradient method. We observed

that when our proposed SG method and Raydan’s SPG method are able to find the minimum

x∗ of (3.6), the optimal objective value differs by ‖x∗‖1 as expected.

We compare the number of iterations each algorithm takes to converge. We observe that,

for ρ = 100, the SPG method only works for 9 out of 50 test problems. The number of

iterations for those successful executions are recorded in Table 3.5. The SPG method fails

to converge for the other 41 test problems.

In Table 3.5, it shows that for the 9 problems that the SPG method is successful, our SG

method usually takes more iterations to converge but the SPG method does not always find

the minimum under the parameters setting.

For the test case #20, the SPG and SG method both converge at the same optimal

solution. The objective values versus iteration number for both the SPG and SG method

are plotted in Figure 3.2. In Figure 3.2, we can see that both the SPG and SG method are

non-monotone algorithm. The SPG method outperforms SG method in terms of convergence

speed for this test problem.

In view of the cost in each iteration, both the SPG method and our SG method demand

almost the same amount of computational effort since they are very similar to each other.

Although the SPG method, when it works, seems to require fewer iterations to converge, it

31



Figure 3.2: Trajectory of Objective Values for Test # 20, SG vs. SPG Method

takes projection step on certain iterations which is not cheap. For our SG method, it takes a

little bit more time to compute the scaled steepest descent direction. For many cases, under

the same parameter setting ofM,αmin, αmax, γ, 41 out of 50 test cases failed to converge with

the last steplength approaching zero. For ρ = 10, SPG method does not solve any of those

50 test problems.

3.4 Conclusions

In this chapter, we have proposed a scaled steepest descent method with non-monotone line

search to ensure convergence. This affine scaling gradient based method is a non-monotone

algorithm using the safeguarded Barzilai-Borwein stepsize along the scaled steepest descent

direction. This SG algorithm only requires the first-order information and it converges fast

in all 3 scenarios where the quadratic term is negligible (ρ ≤ 1), comparable (ρ ≈ 10),

dominant (ρ ≥ 100). We also compared our algorithm against the SPG method [9] and we

observed that although SPG may converge faster than SG method, it is very sensitive to
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the settings of the parameters. Most of the time, SPG does not work for our sample test

problems.
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Chapter 4

Convergence of the Trust Region

Method [26]

The scaled steepest descent method in Chapter 3 is simple, but it may be ineffective for

nonconvex and very nonlinear problems. Coleman, Li and Wang proposed an affine scaling

trust region method in [26] to solve a minimization problem for a twice continuously differ-

entiable function with an L1-norm. This trust region algorithm as shown in Algorithm 4.1 is

split up into 2 parts: step calculation and trust region size update. For steepest descent type

algorithms, the complexity is on the order of O (n). In contrast, for trust region type algo-

rithms, the complexity is at least O (n3). However, higher rate of convergence is expected

to be achieved.

Trust region method approximates a Newton step within a certain region in which model

function (often a quadratic) is a good approximation to the objective function. Agreement

factor is used to measure how close the current model function approximates the objective

function. If the approximation is good, the trust region is expanded. Conversely, if the

approximation is poor then the region is contracted.
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For the simplicity of the proof, we define a vector v (x) ∈ Rn as

(v (x))i :=


1 i = j∗ := argmaxj∈{1,··· ,n}∧|(∇f(x))j|>1(

∣∣∣(∇f (x))j

∣∣∣)
|xi| otherwise

(4.1)

and the corresponding scaling matrix as D (x) := diag (v (x)) ∈ Rn×n
+ . Note that v (x) is

a vector of the distance to each axis from the current iterate other than the component

whose scaling factor is defined to be one. The component (v (x))j∗ corresponds to the largest

violation of the condition |∇f (x)| ≤ 1.

Define

sk = D
− 1

2
k dk

ĝk = D
1
2
k gk

M̂k = D
1
2
k∇

2f (xk)D
1
2
k + diag (gk) · Jvk (4.2)

we get the Newton direction sk in the scaled space satisfying

(
Jvk · diag (gk) + diag (vk) · ∇2f (xk)

)
dk = −diag (vk) gk

which is equivalent to

D
− 1

2
k

(
Jvk · diag (gk)D

1
2
k +Dk∇2f (xk)D

1
2
k

)
D
− 1

2
k dk = −D

1
2
k gk

or

M̂ksk = −ĝk.

Thus we consider a trust region sub-problem at each iteration in the scaled space as given

by

min
sk∈Rn

{
ψ̂k (sk) : ‖sk‖2 ≤ ∆k

}
(4.3)
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where

φ̂k (sk) := ĝTk sk +
1

2
sTk M̂ksk.

A quadratic approximation function for the original objective function f (x) + ‖x‖1 is

given below

φk (d) = ∇f (xk)
T d+ ‖xk + d‖1 − ‖xk‖1 +

1

2
dTMkd. (4.4)

In a similar fashion as defined in Coleman, Li and Wang’s paper [26], we define

φ∗k [dk] := min
{
φk (αdk) :

∥∥∥αD− 1
2

k dk

∥∥∥
2
≤ ∆k, 0 ≤ α ≤ β2

k

}

and

α∗ = argmin
{
φk (αdk) :

∥∥∥αD− 1
2

k dk

∥∥∥
2
≤ ∆k, 0 ≤ α ≤ β2

k

}
where β0

k = 0 and βik, i ∈ {1, · · · , lk} defines the i-th break point along dk, lk is the index

for the last break point and ji is the component index of the i-th break point, i.e., ((xk)ji +

βik (dk)ji = 0) in the original space where

βik := min
ji∈{1,··· ,n}\{j1,··· ,ji−1}

{
−

(xk)ji
(dk)ji

: sign
(

(xk)ji

)
= sign

(
(dk)ji

)}
=

∣∣∣(xk)ji∣∣∣∣∣∣(dk)ji∣∣∣

4.1 Proof Highlights

The chapter is dedicated to establishing the global and local convergence of the trust region

method proposed in [26] for minimizing nonlinear function with the L1-norm regularization.

The basic idea about the proof is that if the necessary optimality condition is violated,

we can show that our algorithm will asymptotically achieve a sufficient decrease, which is

bounded away from zero. Thus the objective value will go down to −∞. This will lead to

the contradiction of our Assumption 1 that the level set of f (x) + ‖x‖1 is compact over F .
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Algorithm 4.1 Affine Scaling Trust Region Algorithm
Let 0 < µ < η < 1 and x0. For k = 0, 1, · · ·
Step 1.Compute f (xk),gk,Dk,Mk and Ck;define the quadratic model as

ψk (d) := gTk d+
1

2
dTMkd.

Step 2.Compute a step dk such that xk + dk ∈ dif {F},
based on the sub-problem

min
d∈Rn

{
ψk (d) :

∥∥∥D− 1
2

k d
∥∥∥

2
≤ ∆k

}
where dif {F} is defined to be the union of the region in F that is
differentiable.
Step 3.Compute

ρfk :=
f (xk + dk)− f (xk) + ‖xk + dk‖1 − ‖xk‖1 + 1

2
dTkCkdk

φk (dk)
.

Step 4.If ρfk > µ, then set xk+1 = xk + dk. Otherwise set xk+1 = xk.
Step 5.Update the trust region size ∆k as specified below.

Updating trust region size ∆k

Let 0 < γ1 < 1 < γ2 and Λl > 0 be given.
Step 1.If ρfk < µ, then set ∆k+1 ∈ (0, γ1∆k].
Step 2.If µ < ρfk < η, then set ∆k+1 ∈ [γ1∆k,∆k].
Step 3.If ρfk ≥ η then

If ∆k > Λl then
set ∆k+1 ∈ either [γ1∆k,∆k] or [∆k, γ2∆k]

Otherwise

set ∆k+1 ∈ [∆k, γ2∆k].
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Lemma 4.1, Lemma 4.2, Lemma 4.4, Theorem 4.5 and Theorem 4.6 all together prove that

the first-order necessary optimality condition is satisfied assuming Assumption 1 to 4 hold.

Lemma 4.7 to Theorem 4.10 are used to show that the second-order necessary optimality

conditions are also satisfied. We prove next in Subsection 4.2.1 and 4.2.2 the first and the

second-order necessary optimality conditions are satisfied, respectively.

4.2 Proof of the Convergence for the Trust Region Method

We make the following assumptions for the proof of the convergence.

Assumption 1: Given an initial point x0 ∈ Rn and assume that (x0)i 6= 0,∀i ∈

{1, · · · , n}, the level set F := {x : h (x) ≤ h (x0)} is compact.

Assumption 2:{Bk = ∇2f (xk)} is bounded. That is, there exists a positive scalar χB

such that ‖Bk‖ ≤ χB,∀k.

Assumption 3: There exists a positive scalar χf such that ‖∇f (x)‖∞ < χf ,∀x ∈ F .

Assumption 4: Assume that φ (dk) < βgφ
∗
k [−Dkgk] ,

∥∥∥D− 1
2

k dk

∥∥∥
2
≤ ∆k, xk+dk ∈ dif (F)

where βg > 0.

We require that φ (dk) be less than a fraction of the minimum of φk (−Dkgk) along the

scaled gradient −Dkgk, within the differentiable trust region. This assumption can be easily

satisfied since we can solve the following trust region problem

min
{
φk (d) : D−1

k d = −νgk,
∥∥∥D− 1

2
k d

∥∥∥
2
≤ ∆k, xk + d ∈ dif (F)

}
(4.5)

where ν is some positive number. Let dk be the optimal solution to (4.5) with a possible

small step-back to maintain strict differentiability and we can see that assumption 4 holds

for such dk.
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4.2.1 First-Order Necessary Optimality Conditions

Let βik denote the stepsize from the current iterate xk to the i-th break point where i ∈

{0, 1, 2}. Notice that β0
k = 0 and β2

k could be infinity. Our piecewise quadratic approximation

model is given by

φk (αdk) := α∇f (xk)
T dk +

1

2
α2dTkMkdk + ‖xk + αdk‖1 − ‖xk‖1 (4.6)

Suppose that α ∈
[
βik, β

i+1
k

)
,∀i ∈ {0, 1}, we observe that

‖xk + αdk‖1 − ‖xk‖1

= ‖xk + αdk‖1 −
∥∥xk + βikdk

∥∥
1

+
∥∥xk + βikdk

∥∥
1
−
∥∥xk + βi−1

k dk
∥∥

1
· · ·+

∥∥xk + β1
kdk
∥∥

1
− ‖xk‖1

= sign
(
xk + βi

+

k dk

)T (
xk + αdk −

(
xk + βikdk

))
+ · · ·+ sign (xk)

T (xk + β1
kdk − xk

)
= sign

(
xk + βi+k dk

)T (
α− βik

)
dk +

i∑
j=1

sign
(
xk + β

(j−1)+
k dk

) (
βjk − β

j−1
k

)
dk (4.7)

where βi+k is used to indicate that, immediately after crossing the i-th break point along dk,

what sign should the point xk +αdk take where α ∈
(
βik, β

i+1
k

)
. Define φjk (d) :=

(
gj−1
k

)T
d+

1
2
dTMkd,∀j ∈ {1, 2} where gjk is the gradient immediately after crossing the j-th break point.

That is,

gjk := ∇f (xk) + sign
(
xk + βj+k dk

)
+ βjkMkdk (4.8)

We get

φk (αdk) = φi+1
k

((
α− βik

)
dk
)

+
i∑

j=1

φjk
((
βjk − β

j−1
k

)
dk
)
, α ∈

[
βik, β

i+1
k

)
(4.9)

Notice that

gik = ∇f (xk) + sign
(
xk + βi+k dk

)
+ βikMkdk

= gi−1
k +

(
βik − βi−1

k

)
Mkdk − 2sign (xkj) e

j
n (4.10)
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where j corresponds to the axis for the i-th break point and ejn =

[
0 · · · 1︸︷︷︸

j−th component

· · · 0

]T
and

xkj is the j-th component of xk .

Lemma 4.1 is intended to show that once Assumption 1 to 4 hold, the trust region

algorithm will achieve a sufficient decrease which is bounded from below by some positive

number, if first order optimality condition does not hold asymptotically.

Lemma 4.1. Assume assumption 1 − 3 hold and dk satisfies assumption 4, let χ be the

minimum

χ
(
µk,∆k, β

i∗

k

)
= min

{〈
ĝi

∗

k , ĝ
0
k

〉2

µk ‖ĝ0
k‖

2 ,
(
∆k − βi

∗

k

) 〈ĝi∗k , ĝ0
k

〉
‖ĝ0

k‖
,
(
βi

∗+1
k − βi∗k

) 〈ĝi∗k , ĝ0
k

〉
‖ĝ0

k‖

}

then

−φ (dk) ≥ −βgφ∗k
[
−Dkg

0
k

]
≥ βg

2

{
i∗∑
j=1

(
βjk − β

j−1
k

) 〈ĝj−1
k , ĝ0

k

〉
‖ĝ0

k‖
+ χ

(
µk,∆k, β

i∗

k

)}

where i∗ is the last break point along direction −D
1
2
k

ĝ0k

‖ĝ0k‖
that is crossed, i∗ ∈ {0, 1}, i.e.,

βi
∗

k := max
{
βik : βik < α∗

}
and

µk := dTkMkdk = sTk M̂ksk

Proof. Suppose that the i-th break point lies on the hyperplane xj = 0. We consider three

possible cases below.

Case I: The optimizer along the negative scaled gradient direction sk = − ĝ0k

‖ĝ0k‖
is strictly in

the interior of two consecutive break points (β0
k , β

1
k) or (β1

k , β
2
k). i.e., α∗ ∈

(
βi

∗

k ,min
{

∆k, β
i∗+1
k

})
.
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This implies
〈
g0
k, g

i∗

k

〉
> 0 because of crossing of the break point βi∗k . We have

φk (αdk)
′ = φi

∗+1
k

((
α− βi∗k

)
dk
)′

+
i∗∑
j=1

φjk
((
βjk − β

j−1
k

)
dk
)′

=

((
gi

∗

k

)T · (α− βi∗k ) dk +
1

2

(
α− βi∗k

)2
dTkMkdk

)′
(4.11)

=
(
gi

∗

k

)T
dk +

(
α− βi∗k

)
µk

Substitute dk = D
1
2
k sk = −D

1
2
k

ĝ0k

‖ĝ0k‖
into the above equation and derivative equals to zero at

the minimizer, we can get

α∗ = βi
∗

k +

〈
ĝi

∗

k , ĝ
0
k

〉
µk ‖ĝ0

k‖
> βi

∗

k (4.12)

which also implies µk ≥ 0. Therefore the optimal value is

φ (α∗dk) =
i∗∑
j=1

φjk
((
βjk − β

j−1
k

)
dk
)
−
〈
ĝi

∗

k , ĝ
0
k

〉2

µk ‖ĝ0
k‖

2 +
1

2

(〈
ĝi

∗

k , ĝ
0
k

〉
µk ‖ĝ0

k‖

)2

µk

=
i∗∑
j=1

φjk
((
βjk − β

j−1
k

)
dk
)
− 1

2

〈
ĝi

∗

k , ĝ
0
k

〉2

µk ‖ĝ0
k‖

2 (4.13)

For each j ∈ {1, · · · , i∗}, we have

φjk
((
βjk − β

j−1
k

)
dk
)

= −
(
βjk − β

j−1
k

) 〈ĝj−1
k , ĝ0

k

〉
‖ĝ0

k‖
+

1

2

(
βjk − β

j−1
k

)2
µk
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and notice that βj−1
k +

〈ĝj−1
k ,ĝ0k〉
µk‖ĝ0k‖

> βjk (The minimum is not in
[
βj−1
k , βjk

)
), so we can get

φjk
((
βjk − β

j−1
k

)
dk
)

= −
(
βjk − β

j−1
k

) 〈ĝj−1
k , ĝ0

k

〉
‖ĝ0

k‖
+

1

2

(
βjk − β

j−1
k

) (
βjk − β

j−1
k

)
µk︸ ︷︷ ︸

(βj
k−β

j−1
k )µk<

〈ĝj−1
k

,ĝ0
k〉

‖ĝ0k‖

≤ −
(
βjk − β

j−1
k

) 〈ĝj−1
k , ĝ0

k

〉
‖ĝ0

k‖
+

1

2

(
βjk − β

j−1
k

) 〈ĝj−1
k , ĝ0

k

〉
‖ĝ0

k‖
(4.14)

= −1

2

(
βjk − β

j−1
k

) 〈ĝj−1
k , ĝ0

k

〉
‖ĝ0

k‖

Therefore we get an upper bound on φk (α∗dk) when βi∗k +
〈ĝi∗k ,ĝ0k〉
µk‖ĝ0k‖

< βi
∗+1
k ,∀i∗ ∈ {0, 1}

φ (α∗dk) ≤ −
1

2

i∗∑
j=1

(
βjk − β

j−1
k

) 〈ĝj−1
k , ĝ0

k

〉
‖ĝ0

k‖
− 1

2

〈
ĝi

∗

k , ĝ
0
k

〉2

µk ‖ĝ0
k‖

2 (4.15)

Case II: The local minimum along the scaled steepest descent direction is located at the

boundary of the trust region. Assume that ∆k ∈
(
βi

∗

k , β
i∗+1
k

)
, i∗ ∈ {0, 1}, similarly we have

〈g0
k, g

1
k〉 , · · · ,

〈
g0
k, g

i∗

k

〉
> 0 , βi∗k +

〈ĝi∗k ,ĝ0k〉
µk‖ĝ0k‖

≥ ∆k > βi
∗

k and βj−1
k +

〈ĝj−1
k ,ĝ0k〉
µk‖ĝ0k‖

> βjk,∀j ∈ {1, · · · i∗}

when µk > 0 . Thus we can derive the following

φk (α∗dk) =
i∗∑
j=1

φjk
((
βjk − β

j−1
k

)
dk
)
−
(
∆k − βi

∗

k

) 〈ĝi∗k , ĝ0
k

〉
‖ĝ0

k‖

+
1

2

(
∆k − βi

∗

k

) (
∆k − βi

∗

k

)
µk︸ ︷︷ ︸

(∆k−βi∗
k )µk≤

〈ĝi∗k ,ĝ0
k〉

‖ĝ0k‖

≤ −1

2

i∗∑
j=1

(
βjk − β

j−1
k

) 〈ĝj−1
k , ĝ0

k

〉
‖ĝ0

k‖
−
(
∆k − βi

∗

k

) 〈ĝi∗k , ĝ0
k

〉
‖ĝ0

k‖
(4.16)

+
1

2

(
∆k − βi

∗

k

) 〈ĝi∗k , ĝ0
k

〉
‖ĝ0

k‖

= −1

2

i∗∑
j=1

(
βjk − β

j−1
k

) 〈ĝj−1
k , ĝ0

k

〉
‖ĝ0

k‖
− 1

2

(
∆k − βi

∗

k

) 〈ĝi∗k , ĝ0
k

〉
‖ĝ0

k‖
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Next we show that the same result holds when µk ≤ 0 . This is because we have 〈g0
k, g

1
k〉 , · · · ,

〈
g0
k, g

i∗

k

〉
>

0 and βj−1
k +

〈ĝj−1
k ,ĝ0k〉
µk‖ĝ0k‖

< βj−1
k ,∀j ∈ {1, · · · i∗ + 1}. Notice that

φjk
((
βjk − β

j−1
k

)
dk
)

= −
(
βjk − β

j−1
k

) 〈ĝj−1
k , ĝ0

k

〉
‖ĝ0

k‖
+

1

2

(
βjk − β

j−1
k

)2
µk︸ ︷︷ ︸

≤0

≤ −1

2

(
βjk − β

j−1
k

) 〈ĝj−1
k , ĝ0

k

〉
‖ĝ0

k‖

Hence we have when µk ≤ 0

φk (α∗dk) =
i∗∑
j=1

φjk
((
βjk − β

j−1
k

)
dk
)
−
(
∆k − βi

∗

k

) 〈ĝi∗k , ĝ0
k

〉
‖ĝ0

k‖
(4.17)

≤ +
1

2

(
∆k − βi

∗

k

)2
µk

−1

2

i∗∑
j=1

(
βjk − β

j−1
k

) 〈ĝj−1
k , ĝ0

k

〉
‖ĝ0

k‖
− 1

2

(
∆k − βi

∗

k

) 〈ĝi∗k , ĝ0
k

〉
‖ĝ0

k‖

Case III: In the last case we assume that the minimizer equals one of the break points{
β1
k , · · · βi

∗+1
k

}
. WLOG we assume α∗ = βi

∗+1
k , i∗ ∈ {0, · · · , 1}. We still have 〈g0

k, g
1
k〉 , · · · ,

〈
g0
k, g

i∗

k

〉
>

0 and βj−1
k +

〈ĝj−1
k ,ĝ0k〉
µk‖ĝ0k‖

> βjk, ∀j ∈ {1, · · · , i∗ + 1} when µk > 0 . Thus, when µk > 0,

φk (α∗dk) =
i∗∑
j=1

φjk
((
βjk − β

j−1
k

)
dk
)
−
(
βi

∗+1
k − βi∗k

) 〈ĝi∗k , ĝ0
k

〉
‖ĝ0

k‖
(4.18)

+
1

2

(
βi

∗+1
k − βi∗k

) (
βi

∗+1
k − βi∗k

)
µk︸ ︷︷ ︸

(βi∗+1
k −βi∗

k )µk≤
〈ĝi∗k ,ĝ0

k〉
‖ĝ0k‖

≤ −1

2

i∗∑
j=1

(
βjk − β

j−1
k

) 〈ĝj−1
k , ĝ0

k

〉
‖ĝ0

k‖
− 1

2

(
βi

∗+1
k − βi∗k

) 〈ĝi∗k , ĝ0
k

〉
‖ĝ0

k‖

when µk > 0.
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For µk ≤ 0, we still get

φk (α∗dk) (4.19)

=
i∗∑
j=1

φjk
((
βjk − β

j−1
k

)
dk
)
−
(
βi

∗+1
k − βi∗k

) 〈ĝi∗k , ĝ0
k

〉
‖ĝ0

k‖
+

1

2

(
βi

∗+1
k − βi∗k

)2
µk

≤ −1

2

i∗∑
j=1

(
βjk − β

j−1
k

) 〈ĝj−1
k , ĝ0

k

〉
‖ĝ0

k‖
− 1

2

(
βi

∗+1
k − βi∗k

) 〈ĝi∗k , ĝ0
k

〉
‖ĝ0

k‖

In conclusion, we have the following

− φ (dk) ≥ −βgφ∗k
[
−Dkg

0
k

]
≥ βg

2

{
i∗∑
j=1

(
βjk − β

j−1
k

) 〈ĝj−1
k , ĝ0

k

〉
‖ĝ0

k‖
+ χ

(
µk,∆k, β

i∗

k

)}
(4.20)

Notice that if the k-th iteration is successful, then

ρfk =
f (xk + αkdk)− f (xk) + ‖xk + αkdk‖1 − ‖xk‖1 + 1

2
α2
kd

T
kCkdk

φk (αkdk)
≥ µ,

Hence

h (xk + αkdk)− h (xk) ≤ µφk (αkdk)−
1

2
α2
kd

T
kCkdk︸ ︷︷ ︸

Ck�0

< µφk (αdk) (4.21)

Lemma 4.2 illustrates that if a Newton step within the trust region is taken, what de-

composition properties does this global solution to the trust region sub-problem have.

Lemma 4.2. Let pk denote a global solution to the trust region problem

min
d∈Rn

{
ψk (d) :

∥∥∥D− 1
2

k d
∥∥∥ ≤ ∆k

}
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Then there exists a parameter λk and upper triangle matrix Rk ∈ Rn×n such that

M̂k + λkI = RT
kRk,

(
M̂k + λkI

)
D
− 1

2
k pk = −ĝk, λk ≥ 0 (4.22)

with λk
(

∆k −
∥∥∥D− 1

2
k pk

∥∥∥) = 0. We can also write out above equation equivalently as

(
λkI +D

1
2
kCkD

1
2
k

)
pk = −Dk (gk +Bkpk) (4.23)

Proof. Please refer to [12].

The following lemma provides a property of the trust region size when asymptotically

the step is always successful.

Lemma 4.3. Assume that {∆k} is updated by above trust region update algorithm. If ρfk ≥ η

for sufficient large k, then {∆k} is bounded away from zero.

Proof. By assumption, there exists k̄ such that when k ≥ k̄ , we always have ρfk ≥ η. We

will prove by induction that for k ≥ k̄,

∆k ≥ min {γ0Λl,∆k̄}

Assume above inequality is true for k ≥ k̄. From Step 3 in trust region updating rule in

Algorithm 4.1, if ∆k ≤ Λl, we get

∆k+1 ≥ ∆k ≥ min {γ1Λl,∆k̄} .

If ∆k > Λl, we have

∆k+1 ≥ min {γ1Λl,∆k̄}

Hence the trust region size is bounded away from zero.

Strict complementarity condition says that, at the limit point x∗ of {xk} generated by
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Algorithm 4.1, v (x∗)j and ∇f (x∗)j + sign (x∗)j can not both be zero in

v (x∗)j ·
(
∇f (x∗)j + sign (x∗)j

)
= 0, ∀j ∈ {1, · · · , n} .

We will use this condition in Lemma 4.4 to Theorem 4.6 to prove that the first-order opti-

mality condition is satisfied.

Lemma 4.4. Assume that f : Rn 7→ R is continuously differentiable on dif (F) and as-

sumptions 1 ∼ 3 hold. Assume lim infk→∞ ‖ĝ0
k‖ > 0 and strict complementarity condition

holds, then there exists an ε̄ > 0 such that

lim inf
k→∞

βi
∗

k = 0

and

lim inf
k→∞

〈
ĝi

∗

k , ĝ
0
k

〉
‖ĝ0

k‖
≥ ε̄ > 0.

Moreover, if the k-th iteration is successful, for sufficiently large k, the following holds

h (xk)− h (xk+1) >
1

2
βgµ ·

〈
ĝi

∗

k , ĝ
0
k

〉
‖ĝ0

k‖
min

{〈
ĝi

∗

k , ĝ
0
k

〉
µk ‖ĝ0

k‖
,∆k − βi

∗

k , β
i∗+1
k − βi∗k

}
=

1

2
βgµε̄ (∆k)

Proof. Suppose that there does not exist a subsequence such that limk→∞ β
i∗

k = 0 (use k

instead of ki for simplicity). By definition of βi∗k , we can get the following facts:

βi
∗

k : =

∣∣∣(xk)ji∗ ∣∣∣ · ‖ĝ0
k‖

(Dk)ji∗ ,ji∗ ·
∣∣∣(g0

k)ji∗

∣∣∣ (4.24)

The assumption lim infk→∞ β
i∗

k > 0 implies i∗ = 1 for sufficiently large k since β0
k = 0.

Then there exists an ε′0 > 0 such that for sufficiently large k, βi∗k ≥ ε′0. From (4.20) and
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(4.21) in Lemma 4.1 and χ
(
µk,∆k, β

i∗

k

)
≥ 0, we get

h (xk)− h (xk+1) >
1

2
βgµ

∥∥ĝ0
k

∥∥ βi∗k .
Based on the assumption lim infk→∞ ‖ĝ0

k‖ > 0, there exists an ε0 > 0 such that, for sufficiently

large k, ‖ĝ0
k‖ ≥ ε0. Hence

lim
ki→∞

h (xk)− h (xk+1) ≥ lim
k→∞

1

2
βgµ

∥∥ĝ0
k

∥∥ βi∗k ≥ 1

2
βgµε0 · ε′0 > 0 (4.25)

which contradicts to limk→∞ h (xk)− h (xk+1) = 0.

We show next that the subsequence corresponding to limk→∞ β
i∗

k = 0 has the prop-

erty that 〈ĝ
i∗
k ,ĝ0k〉
‖ĝ0k‖

is bounded away from zero under strict complementarity condition, i.e.,

lim infk→∞
〈ĝi∗k ,ĝ0k〉
‖ĝ0k‖

> 0. For notational simplification, we still denote the subsequence by k.

Using (4.24), we can deduce that for sufficient large k, (Dk)ji∗ ,ji∗ = 1. Otherwise

βi
∗

k =
‖ĝ0k‖∣∣∣∣(g0k)ji∗

∣∣∣∣ is bounded away from zero. We can conclude that for sufficiently large k,∣∣∣(∇f (xk))jp

∣∣∣ > 1,∀p ∈ {1, · · · , i∗}. Hence we have

∥∥ĝ0
k

∥∥ : =

√√√√ n∑
i=1

(ĝ0
k)

2
i

=

√ ∑
p/∈{j1,···ji∗}

(ĝ0
k)

2
p +

∑
p∈{j1,··· ,ji∗}

(ĝ0
k)

2
p (4.26)

=

√ ∑
p/∈{j1,···ji∗}

(ĝ0
k)

2
p +

∑
p∈{j1,··· ,ji∗}

(g0
k)

2
p
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Similarly,

〈
ĝi

∗

k , ĝ
0
k

〉
‖ĝ0

k‖
=

1

‖ĝ0
k‖

 ∑
p/∈{j1,··· ,ji∗}

(
ĝi

∗

k

)
p
·
(
ĝ0
k

)
p

+
∑

p∈{j1,··· ,ji∗}

(
ĝi

∗

k

)
p
·
(
ĝ0
k

)
p

 (4.27)

=
1

‖ĝ0
k‖

 ∑
p/∈{j1,··· ,ji∗}

(
ĝ0
k

)2

p
+

∑
p∈{j1,··· ,ji∗}

(
gi

∗

k

)
p
·
(
g0
k

)
p


where the second equality uses (Dk)ji∗ ,ji∗ = 1.

Note that

∑
p∈{j1,··· ,ji∗}

(
gi

∗

k

)
p
·
(
g0
k

)
p

=
∑

p∈{j1,··· ,ji∗}

(
(∇f (xk))p − sign

(
(xk)p

))
·
(

(∇f (xk))p + sign
(

(xk)p

))
(4.28)

=
∑

p∈{j1,··· ,ji}

(
(∇f (xk))

2
p − 1

)
︸ ︷︷ ︸

>0

> 0

Bear in mind that for any jq ∈ {j1, · · · , ji∗},

sign
(

(xk)jq

)
= sign

((
g0
k

)
jq

)
= sign

(∇f (xk))jq︸ ︷︷ ︸
|·|>1

+ sign (xk)jq︸ ︷︷ ︸
|·|=1


= sign

(
(∇f (xk))jq

)

hence
∣∣∣(g0

k)jq

∣∣∣ =
∣∣∣(∇f (xk))jq + sign (xk)jq

∣∣∣ > 2.

We hereby examine the value of
〈
ĝi

∗

k , ĝ
0
k

〉
in the following two cases:

Case I: lim infk→∞
∑

p∈{j1,··· ,ji∗} (g0
k)

2
p > 0. From (4.28), lim infk→∞

〈ĝi∗k ,ĝ0k〉
‖ĝ0k‖

= 0 implies
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that

lim inf
k→∞

∑
p∈{j1,··· ,ji}

(
(∇f (xk))

2
p − 1

)
= 0

and

lim inf
k→∞

∑
p/∈{j1,···ji∗}

(
ĝ0
k

)2

p
= 0.

Recall that we are still under the assumption that limk→∞ β
i∗

k = 0. Since limk→∞ β
i∗

k = 0,

xi∗ = 0 and
∣∣∇fkji∗ ∣∣ > 1, under strict complementarity condition lim infk→∞

∣∣∇fkji∗ ∣∣ > 1, thus

lim inf
k→∞

∑
p∈{j1,··· ,ji∗}

(
gi

∗

k

)
p
·
(
g0
k

)
p
> 0

This results a contradiction to lim infk→∞
∑

p∈{j1,··· ,ji}

(
(∇f (xk))

2
p − 1

)
= 0.

Hence

lim inf
k→∞

〈
ĝi

∗

k , ĝ
0
k

〉
‖ĝ0

k‖
> 0.

Case II: lim infk→∞
∑

p∈{j1,··· ,ji∗} (g0
k)

2
p = 0. By our assumption lim infk→∞ ‖ĝ0

k‖ > 0, this

will imply

lim inf
k→∞

∑
p/∈{j1,···ji∗}

(
ĝ0
k

)2

p
> 0

hence lim infk→∞
〈ĝi∗k ,ĝ0k〉
‖ĝ0k‖

> 0.

In both cases, we arrive at the same conclusion that lim infk→∞
〈ĝi∗k ,ĝ0k〉
‖ĝ0k‖

> 0 if lim infk→∞ ‖ĝ0
k‖ >

0.

Therefore, for sufficiently large ki, there exists ε̄ > 0 such that 〈ĝ
i∗
k ,ĝ0k〉
‖ĝ0k‖

≥ ε̄. Thus we have

h (xk)− h (xk+1) >
1

2
βgµ ·

〈
ĝi

∗

k , ĝ
0
k

〉
‖ĝ0

k‖
min

{〈
ĝi

∗

k , ĝ
0
k

〉
µk ‖ĝ0

k‖
,∆k − βi

∗

k , β
i∗+1
k − βi∗k

}
=

1

2
βgµε̄ (∆k)

(4.29)

The reason why the above minimum in (4.29) takes the form as ∆k is because of limki→∞ β
i∗

k =

0, lim infk→∞
(
βi

∗+1
k − βi∗k

)
> 0 and lim infk→∞

〈ĝi∗k ,ĝ0k〉
µk‖ĝ0k‖

> 0.

49



Theorem 4.5. Assume that f : Rn 7→ R is continuously differentiable on F and assumptions

1 ∼ 3 hold. If {dk} generated by Algorithm 4.1 satisfies assumption 4 and at every limit point

of {xk}∞k=1, strict complementarity holds, then

lim inf
k→∞

∥∥ĝ0
k

∥∥ = 0

Proof. Suppose lim infk→∞ ‖ĝ0
k‖ > 0, assume that there exists an ε > 0 such that ‖ĝ0

k‖ ≥ ε

for sufficiently large k. We will show that
∑∞

k=1 ∆k <∞. Let’s consider two cases:

Case I: If there are only finitely many successful iterations, then for sufficiently large

k ≥ k̄, based on the trust region update rule, we have ∆k+1 ≤ γ1∆k. Hence

∞∑
k=1

∆k =
k̄−1∑
k=1

∆k +
∞∑
k=k̄

∆k ≤
k̄−1∑
k=1

∆k + ∆k̄ (1 + γ1 + · · · ) =
k̄−1∑
k=1

∆k +
∆k̄

1− γ1

<∞ (4.30)

Case II: Otherwise, suppose that there is an infinite sub-sequence {ki} of successful

iterations. Since{h (xk)}∞k=1 is non-increasing by our algorithm, and is bounded from below

by assumption 1, the limit of sequence {h (xk)}∞k=1 exists. Note that

0 ≤
∞∑
k=0

(h (xk)− h (xk+1)) = h (x0)− lim
k→∞

h (xk) <∞ (4.31)

By Lemma 4.4, we see that, for subsequence {xki},

h (xki)− h (xki+1) >
1

2
βgµ ·

〈
ĝi

∗

ki
, ĝ0
ki

〉∥∥ĝ0
ki

∥∥ min

{〈
ĝi

∗

ki
, ĝ0
ki

〉
µki
∥∥ĝ0

ki

∥∥ ,∆ki − βi
∗

ki
, βi

∗+1
ki
− βi∗ki

}
=

1

2
βgµε̄ (∆ki)

This also implies for sufficiently large ki, namely, ki ≥ k̄i, we have

∞∑
k̄i

∆ki <
2

βgµε̄

∞∑
ki=k̄i

(h (xki)− h (xki+1)) ≤ 2

βgµε̄

(
h
(
xk̄i
)
− h (x∞)

)
<∞
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That is,
∞∑
i=1

∆ki <∞ (4.32)

Because lim infk→∞ β
i∗

k = 0, we have

∞∑
k=1

∆k ≤
(

1 +
γ2

1− γ1

) ∞∑
i=1

(
∆ki − βi

∗

ki

)
<∞ (4.33)

We show next that this will imply
∣∣∣ρfk − 1

∣∣∣→ 0.

Note that ‖xk+1 − xk‖ = ‖dk‖ =
∥∥∥D 1

2
kD
− 1

2
k dk

∥∥∥ =
∥∥∥D 1

2
k sk

∥∥∥ ≤ χD∆k. But
∥∥∥D 1

2
k

∥∥∥ ≤ χD is

bounded from above based on the Assumption 1. We have already established that
∑∞

k=1 ∆k

converges so that limk→∞∆k = 0. Since ‖xk+1 − xk‖ ≤ χD∆k → 0 the sequence {xk}∞k=1

converges. We observe that for sufficiently large k, the trust region can be arbitrarily small.

Because
∥∥∥D− 1

2
k dk

∥∥∥ = ‖sk‖ ≤ ∆k → 0 and f (xk) are twice continuously differentiable at

differentiable point thus

f (xk+1)− f (xk) = (∇f (xk + ξkdk))
T dk

we get

∣∣h (xk+1)− h (xk) + 1
2
dTkCkdk − φk (dk)

∣∣
=

∣∣∣f (xk+1)− f (xk)− 1
2
dTkBkdk −∇f (xk)

T dk

∣∣∣
=

∣∣∣(∇f (xk + ξkdk)−∇f (xk))
T dk − 1

2
dTkBkdk

∣∣∣
≤ 1

2
χBχ

2
D∆2

k + χD∆k ‖∇f (xk + ξkdk)−∇f (xk)‖

Based on above inequality, the continuity of ∇f (x) , the convergence of {xk}∞k=1 and

−φk (dk) ≥ 1
2
βg ε̄∆k for sufficiently large k, we can conclude that

{∣∣∣ρfk − 1
∣∣∣} converges to

zero.

From Lemma 4.3, ρfk ≥ η for sufficiently large k, then {∆k} is bounded away from zero,
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which contradicts our former result ∆k → 0. Hence lim infk→∞ ‖ĝ0
k‖ = 0.

We will prove next a stronger claim that limk→∞ ‖ĝ0
k‖ = 0.

Theorem 4.6. Assume assumption 1 ∼ 3 and strict complementarity condition hold, and

∇f (x) is uniformly continuous on F . If {xk} is generated by algorithm 4.1 and assumption

4 also holds for dk, then

lim
k→∞

∥∥ĝ0
k

∥∥ = lim
k→∞

∥∥∥D 1
2
k g

0
k

∥∥∥ = 0

Proof. We prove this theorem by contradiction. Based on Theorem 4.5, we know that

lim infk→∞ ‖ĝ0
k‖ = 0. If we can show that lim supk→∞ ‖ĝ0

k‖ = 0, then

lim
k→∞

∥∥ĝ0
k

∥∥ = lim inf
k→∞

∥∥ĝ0
k

∥∥ = lim sup
k→∞

∥∥ĝ0
k

∥∥ = 0.

We assume that lim supk→∞ ‖ĝ0
k‖ > 0, i.e., there exists a sub-sequence indexed by {mi} such

that, for sufficiently large mi,
∥∥ĝ0

mi

∥∥ ≥ ε1 where ε1 ∈ (0, 1) is arbitrarily chosen. By Theorem

4.5, for any ε2 ∈ (0, ε1) , there must exist a sub-sequence pair
{
mij , lj

}
such that (WLOG,

assume mij = mj), for sufficiently large k, the following holds


‖ĝ0

k‖ ≥ ε2 mi ≤ k < li

‖ĝ0
k‖ < ε2 k = li

and limli→∞
∥∥ĝ0

li

∥∥ = 0. Otherwise we get lim infk→∞ ‖ĝ0
k‖ > 0. For sufficiently large k (in

the range [mi, li)) and if the k-th iteration is successful, by (4.20) and (4.21) in Lemma 4.1

we get

h (xk)− h (xk+1) >
1

2
βgµ

〈
ĝi

∗

k , ĝ
0
k

〉
‖ĝ0

k‖
min

{〈
ĝi

∗

k , ĝ
0
k

〉
χM̂ ‖ĝ0

k‖
,∆k − βi

∗

k , β
i∗+1
k − βi∗k

}
(4.34)

By Lemma 4.4, we can derive that ‖ĝ0
k‖ ≥ ε2, k ∈ [mi, li) implies 〈ĝ

i∗
k ,ĝ0k〉
‖ĝ0k‖

≥ ε̄2 where ε̄2 is a
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positive number. Therefore the decrease in (4.34) can be simplified as

h (xk)− h (xk+1) ≥ 1

2
βgµε̄2 min

{
ε̄2
χM̂

,∆k − βi
∗

k , β
i∗+1
k − βi∗k

}
.

Because h (xk) is bounded below on F and the sequence {h (xk)} is non-decreasing,

{h (xk)} converges and {h (xk)− h (xk+1)} converges to zero. In addition, limk→∞ β
i∗

k = 0

as in the proof of Lemma 4.4, for sufficiently large k, we have

h (xk)− h (xk+1) >
1

2
βgµε̄2 (∆k) ,mi ≤ k < li.

From ‖xk+1 − xk‖ = ‖dk‖ ≤ χD∆k, we now have for sufficiently large k ∈ [mi, li)

h (xk)− h (xk+1) ≥ 1

2
βgµε̄2∆k

≥ βgµε̄2
2χD

‖xk+1 − xk‖ (4.35)

= ε3 ‖xk+1 − xk‖

where ε3 := βgµε̄2
2χD

. By triangle inequality and (4.35), for sufficiently large i, we can easily get

h (xmi
)− h (xki) =

ki−1∑
j=mi

(h (xj)− h (xj+1)) (4.36)

≥
ki−1∑
j=mi

ε3 ‖xj+1 − xj‖

≥ ε3

∥∥∥∥∥
ki−1∑
j=mi

(xj+1 − xj)

∥∥∥∥∥
= ε3 ‖xki − xmi

‖

for any ki ∈ [mi, li] . By the uniform continuity of ∇f (x) and the convergence of {h (xk)},
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which implies ‖xmi
− xli‖ → 0 from (4.36), we have

‖∇fmi
−∇fli‖ ≤ ε2

for sufficiently large i. Note that ĝ0
mi

can be expanded as the following:

D
1
2
migmi

= D
1
2
mi (∇fmi

+ sign (xmi
))

= D
1
2
mi (∇fmi

+ sign (xmi
))−D

1
2
mi (∇fli + sign (xmi

))︸ ︷︷ ︸
(i)

+D
1
2
mi (∇fli + sign (xmi

))−D
1
2
li

(∇fli + sign (xli))︸ ︷︷ ︸
(ii)

+D
1
2
li

(∇fli + sign (xli))︸ ︷︷ ︸
(iii)

(4.37)

Note that (i) in (4.37) can be arbitrarily small since ‖∇fmi
−∇fli‖ can be arbitrarily small.

(iii) in (4.37) is approaching zero by the construction of such {xli} subsequence. Rewrite (ii)

in (4.37) as the following

D
1
2
mi (∇fli + sign (xmi

))−D
1
2
li

(∇fli + sign (xli))

=
(
D

1
2
mi −D

1
2
li

)
∇fli +

(
D

1
2
misign (xmi

)−D
1
2
li
sign (xli)

)

WLOG suppose that the full sequence{xli} converges to x∗, then {xmi
} must converge to

the same x∗ by ‖xmi
− xli‖ → 0.

By the strict complementarity condition, we can claim that, at the limit point x∗, there

is no j ∈ {1, · · · , n} such that
∣∣∣∇f (x∗)j

∣∣∣ > 1. This can be seen from discussion below.

If there exists j ∈ {1, · · · , n} such that
∣∣∣∇f (x∗)j

∣∣∣ > 1, then by definition of our scaling

matrix, (v (x∗))ji∗ = 1 and
∣∣∣∇f (x∗)ji∗

∣∣∣ > 1 (j∗ and ji∗ could coincide). This will lead to∣∣∣(D∗g∗)ji∗ ∣∣∣ 6= 0, which is a contradiction to ‖D∗g∗‖ = 0.
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We study the following two cases:

Case I: if x∗j 6= 0, j ∈ {1, · · · , n}

Based on the above claim,
∣∣∣∇f (x∗)j

∣∣∣ ≤ 1,∀j ∈ {1, · · · , n}. For sufficiently large li,

(
D

1
2
mi −D

1
2
li

)
jj

=

(√∣∣∣(xmi
)j

∣∣∣−√∣∣∣(xli)j∣∣∣
)
→ 0

by ‖xmi
− xli‖ → 0 and ‖∇fli‖∞ ≤ χf by assumption 3, we get

((
D

1
2
mi −D

1
2
li

)
∇fli

)
j
→ 0.

Moreover,

(
D

1
2
misign (xmi

)−D
1
2
li
sign (xli)

)
j

=

(√∣∣∣(xmi
)j

∣∣∣−√∣∣∣(xli)j∣∣∣
)
sign (xli)j → 0.

Case II: x∗j = 0, j ∈ {1, · · · , n}

We get ((
D

1
2
mi −D

1
2
li

)
∇fli

)
j
→ 0

since (
D

1
2
mi

)
jj
−
(
D

1
2
li

)
jj

=

(√∣∣∣(xmi
)j

∣∣∣−√∣∣∣(xli)j∣∣∣
)
→ 0

and (
D

1
2
misign (xmi

)−D
1
2
li
sign (xli)

)
j
→ 0

since ∣∣∣∣(D 1
2
misign (xmi

)−D
1
2
li
sign (xli)

)
j

∣∣∣∣ ≤√∣∣∣(xmi
)j

∣∣∣+

√∣∣∣(xli)j∣∣∣→ 0.
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Thus for sufficiently large li, we then establish the following

ε1 ≤ ‖ĝmi
‖ ≤

∥∥∥D 1
2
mi (∇fmi

+ sign (xmi
))−D

1
2
mi (∇fli + sign (xmi

))
∥∥∥

+
∥∥∥D 1

2
mi (∇fli + sign (xmi

))−D
1
2
li

(∇fli + sign (xli))
∥∥∥∥∥∥D 1

2
li

(∇fli + sign (xli))
∥∥∥

≤ χDε2 + ε2 + ε2

= (χD + 2) ε2

Since ε2 can be chosen to be any number in (0, ε1), we already arrive at a contradiction.

Therefore, our base assumption lim supk→∞ ‖ĝ0
k‖ 6= 0 is not correct.

4.2.2 Second-Order Necessary Optimality Conditions

In section 4.2.1, we have proved the first-order necessary condition limk→∞ ‖ĝ0
k‖ = 0 is

satisfied. Hereby we list assumption 5 and 6 to show the satisfiability for the 2-nd order

necessary conditions. In this section, we suppress the stepsize αk into dk. That is, we want

to solve the sub-problem as shown in assumption 6.

Assumption 5. Assume ψk (d) := (g0
k)
T
d + 1

2
dT (∇2f (xk) + Ck) d, i.e., Bk = ∇2f (xk).

We need Bk to be the exact Hessian matrix at xk.

Assumption 6. Assume that pk is a global solution to the problem

min
d∈Rn

{
ψk (d) :

∥∥∥D− 1
2

k d
∥∥∥ ≤ ∆k

}

and βq is a positive number, then dk satisfies

φk (dk) ≤ βqφ?k [dk] ,
∥∥∥D− 1

2
k dk

∥∥∥ ≤ ∆k, xk + dk ∈ dif (F)
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where

φ?k [dk] := min
τ

{
ψk (τdk) :

∥∥∥τD− 1
2

k d
∥∥∥ ≤ ∆k, τ ≤ β1

k

}
.

Lemma 4.7. Assume that assumption 6 holds. Then

−φk (dk) ≥ −βqφ?k [dk] ≥
βq

2

[
min

{
1,
(
β1
k

)2
}
λk∆

2
k + min

{
1, β1

k

}∥∥∥RkD
− 1

2
k pk

∥∥∥2
]

where β1
k is along pk, which is the global solution to mind∈Rn

{
ψk (d) :

∥∥∥D− 1
2

k d
∥∥∥ ≤ ∆k

}
.

Lemma 4.8 further extends the lower bound in Lemma 4.7 by checking into the lower

bound of the first break point β1
k .

Lemma 4.8. Assume that the conditions in Theorem 4.6 hold and Assumption 6 is satisfied

for dk. Furthermore, {xk} is any sequence generated by the trust region Algorithm 4.1. If we

assume that the objective function at every limit point of {xk} is differentiable, then there

exists 0 < ε0 < 1 such that, for sufficiently large k,

−φk (dk) ≥
βq

2
min

{
1,

λ2
kε

2
0

[χ2
D (χg + χBχD∆k)]

2 ,
λ2
k

(χg + χBχD∆k)
2

}
· λk∆2

k

where λk is defined in Lemma 4.2.

Moreover, if the k-th iteration is successful,

h (xk)− h (xk+1) >
βq

2
µmin

{
1,

λ2
kε

2
0

[χ2
D (χg + χBχD∆k)]

2 ,
λ2
k

(χg + χBχD∆k)
2

}
· λk∆2

k

If M̂k is positive definite, we can define the Newton step for

min
d∈Rn

{
ψk (d) :

∥∥∥D− 1
2

k d
∥∥∥ ≤ ∆k

}

by

dNk := −D
1
2
k M̂

−1
k ĝk, i.e, M̂kD

− 1
2

k dNk = −ĝk (4.38)
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Lemma 4.9. Assume assumption 1, 4, 5, 6 hold and f (x) is twice continuously differentiable

on F . If the sequence of trust region sub-problem mind∈Rn

{
ψk (d) :

∥∥∥D− 1
2

k d
∥∥∥ ≤ ∆k

}
solution

{pk} converges to zero, {xk} converges to x∗ and M̂∗ is positive definite, then

lim inf
k→∞

φk (β∗k [pk])

φ?k [dk]
≥ 1, lim inf

k→∞

φ?k [dk]

φk (pk)
≥ 1

where β∗k [pk] := θkτ
∗
kpk is the step obtained from pk with a possible step-back to maintain

strict differentiability.

Moreover, for sufficiently large k,

|φ∗k [pk]| ≥ εmin

{
∆2
k,
∥∥∥D− 1

2
k dNk

∥∥∥2
}

for some constant ε > 0.

Theorem 4.10 will establish the fact that the first and second-order necessary conditions

can be satisfied by Algorithm 4.1.

Theorem 4.10. Assume assumption 1 holds and f : F 7→ R is twice continuously differ-

entiable on F . Let {xk} be the sequence generated by Algorithm 4.1 under assumption 5 on

the model ψk, and under assumption 4 and 6 on the step dk. Assume strict complementarity

holds, then

(i) The sequence {ĝk} converges to zero.

(ii) There is a limit point x∗ with M̂∗ positive semi-definite.

(iii) If x∗ is an isolated limit point satisfies strict complementarity, then M̂∗ is positive

semi-definite.
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Chapter 5

Concluding Remarks

In this thesis, we have proposed an affine scaling gradient based algorithm with BB stepsize

for minimizing nonlinear function regularized by L1-norm. The novelty of this algorithm

comes from taking a new scaled descent direction with safeguarded Barzilai-Borwein step-

sizes. In order to ensure convergence, an adaptive line search is performed on each itera-

tion. This algorithm does not require exact line search and the overall computational cost

is cheap. We investigated the computational performance of our proposed scaled steepest

descent method and impact of parameter choice. We also compared our method against

the spectral projected gradient method in illustrating the effectiveness of our algorithm.

We have established the 1-st order convergence properties of the affine scaling trust region

method proposed in [26]. The 2-nd order convergence properties are presented but the proof

is omitted due to its strong similarity to the proof in [11].

Due to time limit, we haven’t investigated much on the performance of the SG method

for minimizing a differentiable function plus an L1-norm. Application of our proposed affine

scaling gradient based method to practical problems including volatility surface calibration

has not been studied yet. We also believe that we can establish the proof of the convergence

of the proposed scaled gradient method in more general cases. All these work will be done

in our future work.
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