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Abstract 

Toxicity assessment of large numbers of oil sands process-affected waters (OSPW) are 

needed in order to reclaim mined oil sands aquatic reclamation scenarios, such as End Pit Lakes 

(EPLs). Conventional toxicity testing using whole animals can make this process extremely 

costly, thus alternatives are being sought. A non-lethal bioassay is being developed and validated 

to aid in supporting reclamation planning. This study employed six fish cell-lines (WF-2, GFSk-

S1, RTL-W1, RTgill-W1, FHML, FHMT) in 24h viability assays for rapid fluorometric 

assessment of cellular integrity and functionality.  Eight ml from forty-nine OSPW samples 

received from Syncrude Canada Ltd. were mixed with 2 ml of 5X concentrated L-15/ex minimal 

media solution and used to expose cells.  After 24h exposure to OSPW samples, significant 

decreases in cell viability as measured by Alamar blue (AB) were seen in all cell lines for a 

number of samples.  Bioassays were done in blind, but when OSPW chemical composition was 

revealed there was a consistent correlation between decreasing cell viability and increasing 

naphthenic acid (NA) concentrations present in the samples.  Regression analysis yielded 

correlation coefficients
2
 as high as 0.6171 (WF-2 cell line, AB; p<0.0001). NAs have been 

identified as the chief toxicants in OSPW.  Therefore, a fish-cell line bioassay sensitive to 

fluctuations in NA concentration could be a tool integral to the safe implementation and 

biomonitoring of wet reclamation landscapes in the Athabasca oil sands region, such as EPLs.  
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1 Introduction 

The ecological impact of the oil sands industry has been significant (Giesy et al., 2010; 

Holowenko et al., 2000), and with many oil sands projects approved or pending approval this 

impact is likely to grow in the near future.  In order to obtain reclamation certification, that is, 

return post-mining areas to a land capability similar to that which existed prior to mining, a self-

sustaining, self-propagating ecosystem must be established (ERCB, 2009).  Part of this 

ecosystem development will rely heavily on sound testing processes likely to include a battery of 

toxicological tests leading to an overarching evaluation of the potential success of the ecosystem 

as a whole.  Fish will be an integral part of a reclaimed ecosystem.  Through the use of 

established fish cell-lines, as well as new cell-lines derived from fish native to the oil sands 

region, the development and validation of a non-lethal bioassay to aid in supporting reclamation 

planning and implementation was explored in this thesis. An overview on the Athabasca oil 

sands is introduced for the general audience before the details of the project are presented in the 

remainder of this thesis. 

1.1 Athabasca Oil Sands 
 

The Athabasca Oil Sands, located in north-eastern Alberta, is an expansive reserve of fossil 

fuels consisting of crude bitumen, silica sand, clay minerals and water (Schramm et al, 2000).  

Conservative estimates of conventional and non-conventional oil reserves in Canada are a 

combined 180-185 billion barrels (AEUB, 2007; Chastko, 2004).   

Subsequent to mining, oil sand undergoes the Clarke hot water extraction process to separate 

the bitumen from silica sand, and clay minerals (Schramm et al, 2000) using large volumes of 

water (FTFC, 1995a).  This process promotes the solubilisation of NAs due to the alkalinity 
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(pH=8) due to the presence of NaOH during extraction, thereby concentrating them as mixtures 

of sodium salts in the aqueous tailings (Rogers et al., 2002).  The oil sands process-affected 

water (OSPW) produced by this method is composed mainly of sand, clay, and unrecoverable 

bitumen and hydrocarbons (FTFC, 1995b).  The volume of oil sand and water being processed is 

so great that up to 119 million litres of hydrocarbon-containing process-affected material is 

produced daily (AOSIU, 2010).   

However, the Canadian Energy Research Institute estimates the processing and development 

of the oil sands will generate an overwhelming $800 billion surge in the Canadian economy 

(Righton, 2006), a decidedly strong, positive aspect of oil sands development.  This places 

critical accountability on both the government and oil sands companies working in Alberta.  The 

responsibilities of the latter are two-fold: A zero-discharge policy states that all oil sands process 

affected material be contained on approved oil sand lease sites (Grant et al. 2008); and all 

processed land must be reclaimed, meaning mining areas must be returned to a land capability 

equivalent to that which existed prior to mining (Carey, 2008).  The evident paradox forces 

companies to effectively reclaim the disturbed land on which they are storing process-affected 

material containing adverse chemical components such as naphthenic acids (NAs), polycyclic 

aromatic hydrocarbons (PAHs), trace metals, and elevated salinity (Westcott, 2007).   

The main reclamation initiative aimed at satisfying zero-discharge and reclamation 

responsibilities is called an End Pit Lake (EPL).  EPLs (Figure 1; Westcott, 2007) are an aquatic 

reclamation system in the form of an engineered body of water located below grade in oil sands 

post-mining pits resulting from the strip mining process (Westcott and Watson, 2007).  An EPL 

will be a meromictic, or permanently stratified body of water with a well defined top, or cap 

(mixolimnion), and a bottom layer containing mature fine tailing, composite tailings, lean oil 
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sand, overburden, and waste water. (monimolimnion; Grant et al. 2008).  The intention is this 

stratification may allow a permanent, self-sustaining and biologically productive ecosystem to 

exist in the of fresh water cap above dense, process-affected material effectively fulfilling both 

the zero-discharge and reclamation policies.  

 

Figure 1.1 – Schematic of proposed End Pit Lake.  End pit lakes are aquatic reclamation scenarios 

proposed for the reclamation of the Athabasca oil sands lease sites in Alberta.  They will exist in post-mining pits 

and contain dense, process-affected material at the bottom and a layer of fresh water on top.  This layer of fresh 

water is proposed to support an self-sustaining ecosystem in time. (Adapted from Westcott and Watson, 2007)   

 

In order for EPLs to support healthy, functioning and sustainable aquatic ecosystems the 

potential acute and chronic toxicity of an EPL must be assessed and minimized; a major 

biophysical issue is the toxicity of EPL-water and -sediment to aquatic life.  As EPLs are 

developed and implemented there will be growing demand for established ecotoxicity and 



4 

 

4 

biomonitoring models to ensure that levels of toxicants remain within acceptable ranges in and 

around reclamation systems.   

For every barrel of crude oil extracted, it is estimated that as much as four barrels of water 

are used in the extraction process (Holowenko et al., 2002). This water must be cleaned as per 

Directive 74 of the Energy Resources Conservation Board (ERCB, 2009), and remediation 

estimates run up to $2 million dollars/week (Sassoon, 2010). These costs could wipe out any 

earnings for the oil extraction companies involved, thus alternatives are being sought at all levels 

of the remediation process, including the biomonitoring of EPL waters and toxicity assessment 

steps that must be done on a routine basis. Testing of such samples on whole organisms can be 

extremely expensive, especially when the water samples need to be carted to testing facilities 

miles away from the sites. Furthermore, because relevant organisms in aquatic ecosystems are 

often fish, large sample volumes would be required, which means tanker loads of test waters 

would be needed. Additionally, the impact on indigenous fish species would be deemed most 

relevant, and testing representative native fish species would be cost prohibitive. A synopsis on 

general environmental monitoring techniques is presented below as well as alternative 

methodologies, including the topic of this thesis on the application of non-lethal bioassays based 

on indigenous fish cell lines for assessing toxicity of oil sands process affected waters.   

1.2 OSPW samples and chemicals 

 

This study looked at the cytotoxicity of 49 whole oil sands process-affected water (OSPW) 

samples from the Syncrude Canada Ltd. lease site in north-eastern Alberta.  Industrial effluents 

from mining operations often contain heavy metals and synthetic detergents or surfactants 

liberated during the extraction, production or refinement processes (Feng et al., 2005). 
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 The chief toxicants in OSPW are thought to be naphthenic acids (NA) (Dokholyan and 

Magomedov, 1983; MacKinnon and Boerger, 1986).  NAs are natural constituents of petroleum 

evolved from the oxidation of naphthenes (cycloalkanes).  NAs are an eclectic mixture of mono- 

and poly-saturated carboxylic acids accounting for up to 4% of raw petroleum by weight (Rogers 

et al., 2002).  NAs have the general formula CnH2n+zO2 (where z is zero or a negative, even 

integer whose absolute value divided by two gives the number of rings in a compound) (Young 

et al., 2002).  Hence, in addition to metals and other processing byproducts, NAs represent an 

important component of waste generated during oil sands processing and will likely be 

ubiquitous in EPLs where fish will be readily exposed.   

NAs likely behave as surfactants as they consist of a hydrophilic head and a hydrophobic tail 

giving them unique solubility properties (Ivankovic and Hrenovic, 2010).  These compounds are 

commonly found in detergents or cleaning products used in mining, oil, food and textile 

industries (Sandbacka et al, 2000).  Untreated industrial effluents often contain surfactants or 

surfactant-like compounds in concentrations sufficient to elicit acute toxicity in aquatic 

organisms (Ankley and Burkhard, 1992).  Surfactants can induce emulsification of phospholipid 

bilayers leading to extensive cellular damage, and subsequent cytolytic release of proteins, and 

lysosomal and cytoplasmic enzymes (Effendy and Maibach, 1995; Lee et al, 2000).   

Surfactants are generally classified as anionic, cationic, amphoteric, and non-ionic depending on 

the charge of their head group.  Anionic surfactants are the most common and have applications 

as detergents or common soaps, and even biotechnology and other industrial processes, such as 

cosmetics (Ivankovic and Hrenovic, 2010).   

The anionic surfactant, sodium dodecyl sulphate (SDS) was chosen for this study because it 

exerts a low log P (octanol/water partition coefficient) and log HCL (Henry‘s law coefficient) 
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value and is miscible in water.  For these reasons, it is easy to handle and sorption to the 

exposure vessel and evaporation will not likely confound the derivation of effective 

concentrations (Schirmer et al., 2008).  Also, SDS is classified as membrane damaging, thus, 

toxicity should be easily measured by any non-specific bioassay.  Lastly, SDS represents the 

group of anionic surfactants used in industrial processes that can be of environmental concern 

(Cserhati et al., 2002). 

 

1.3 Tissue Culture and Applications in Toxicology  

 

Tissue culture originated in the early twentieth century (Harrison, 1907) in an effort to 

study individual cells free of systemic variation that may affect the way we understand basic 

cellular biology.  Subsequent development of cell culture was facilitated by research into viruses 

and the production of antiviral vaccines, and the need for a better understanding of neoplasia 

(Freshney, 2007).  Scientists are provided the unique ability to monitor and control the 

physicochemical environment and the physiological conditions of cells in culture, which has led 

to prevalent use of tissue culture techniques in research areas such as cancer, immunology, tissue 

engineering, and toxicology (Atala and Lanza, 2002). 

Of particular interest in this study are the applications of tissue culture in the area of 

toxicology, specifically environmental aquatic toxicology: the study of the interactions of natural 

and anthropogenic toxicants with aquatic biological systems and their subsequent impacts on 

structure and function (Landis and Yu, 1995).  This practice is fundamental to the risk 

assessment paradigm that functions to identify hazardous substances and conditions of their 

exposure to predict adverse effects to humans or the environment (Derelanko, 2002).  Currently, 



7 

 

7 

risk assessment is largely achieved through the elucidation of gross toxic effects such as acute 

lethality, organ-related toxicity, birth defects, and cancer.  To this end, animal models are used as 

human surrogates or representatives of the same or similar animals in the wild.  These animals 

are used to evaluate the likelihood or nature of a response (i.e., death, tumour induction, 

reproductive impairment) to a certain chemical (Bengtson and Henshel, 1996).   

1.4 Current methods in aquatic toxicology 

 

Fish are the largest and most diverse group of vertebrates, making them important models 

in a number of research areas including environmental biology (Powers, 1989).  Fish cell lines 

and associated bioassays are important in vitro models often used to ascertain relevant 

physiological data quickly, inexpensively, and with a high degree of reproducibility, both within 

and between laboratories (Lorenzen et al., 1999).  Aquatic regulatory testing with fish is often 

done measuring endpoints such as mortality in the static acute fish toxicity assay, the evaluation 

of bioconcentration factors in a flow-through system (Halder and Worth, 2003), or effects on 

specific stages of development (Schirmer, 2006).   

The most widely used is the fish acute lethality test (OECD, 2009 test guideline 203). The 

test involves the exposure of fish to effluent samples for up to 96h, using at least 7 fish per 

concentration at a minimum of 5 concentrations plus controls, in search of the concentration 

causing 50% of the fish to die (LC50).  However, fish acute lethality tests are costly, fail to meet 

societal pressure to reduce animal testing, and reflect an integrative endpoint, which makes it 

difficult or impossible to differentiate routes of toxic mechanism (Fent, 2001).  In addition to 

these points, the European Commission encourages the development and application of animal 

test alternatives in order to ethically and economically facilitate the new European legislation of 
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the Registration, Evaluation and Authorisation of Chemicals (REACh) which will likely require 

the accurate testing and characterization of thousands of compounds (European Commission, 

2006).  Whole-animal alternatives in toxicology will be desirable for use in projects of similar 

magnitude, such as oil sands reclamation, where vast numbers of samples need to be tested or 

constant biomonitoring necessary to aid in the safe facilitation of viable reclamation scenarios in 

a time- and cost-effective manner. 

1.5 Whole-animal alternatives in aquatic toxicology 

 

In recent years, the ‗3Rs‘ principle of replacement, reduction and refinement (Russell and 

Burch, 1959) has gained a higher profile in toxicology due to a convergence of scientific, 

ethical/animal welfare, financial and legislative imperatives.  The adoption of in vitro 

alternatives reduces the cost and time of toxicity assays as well as the number of animals 

necessary to safely evaluate potential toxicants.  As such, there has been a movement for the 

application and refinement of existing laboratory animal test-alternatives in toxicology and an 

impetus for the development and implementation of new alternative methods (Bruner et al., 

1996). 

 In order to establish an effective in vitro alternative that will reduce or eliminate the use of 

animals in toxicity testing, it must be shown that in vitro results accurately predict in vivo results 

across a range of similar chemical concentrations.  Thus, we must develop a prediction model 

that marries in vitro results with in vivo predictions (Figure 1.2).  Such a prediction model is very 

complicated and well beyond the scope of this project, however, preliminary steps can be made 

to improve in vitro methods such that they more accurately predict in vivo results.   
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Figure 1.2 – Prediction model schematic.  Illustration of the current gap between in vitro and in 

vivo data.  In vitro improvements may help to bridge this gap and eventually reduce or eliminate 

the use of animals in regulatory toxicity testing. 

 

Current alternative toxicity tests include mathematical models and experimental, whole-

animal alternatives.  Mathematically derived quantitative structure activity relationships 

(QSARs) are computer models designed to make in vivo predictions about toxicity based on 

physico-chemical properties of test chemicals.  However, these models largely rely on existing 

data and future data compiled by animal tests. 

Experimental alternatives include single-cell organisms, fish embryos, and vertebrate cell 

cultures (Schirmer, 2006).  Single-celled prokaryotes, such as Vibrio fischeri (Microtox assay; 
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Frank et al., 2008), eukaryotes like the algae, Selenastrum capricornutum (Ke et al., 2010), and 

even protozoans like Tetrahymena (Dayeh et al., 2004) are commonly used as alternatives in 

toxicity testing but do not necessarily reflect the impact on vertebrate species (Lee et al., 2008).  

The zebrafish embryo test (DarT) is typically a 48h exposure at fertilization followed by 

microscopic observation of development and vitality (Nagel, 2002).  However, this method does 

require the maintenance of a breeding stock of non-treated, mature zebrafish and subsequent 

collection of delicate fertilized eggs.  In 2005, DarT was implemented to substitute fish tests in 

national regulatory testing of waste water in Germany.  Such regulatory implementation of fish 

and mammalian cell cultures as alternatives to fish tests have yet to be established (Segner, 

2004). 

1.6 Vertebrate cell cultures as whole-animal alternatives 

 

Vertebrate cell cultures have been recognized in toxicology research since the 1960‘s.  In 

1985, Ahne proposed fish cell lines be used as alternatives to the fish lethality test in order to 

reduce the use of animals in ecotoxicological testing (Schirmer, 2006).  The philosophy 

underlying the application of vertebrate cells for predicting the toxicity of chemicals in whole 

animals is that chemical interaction with an organism is initiated at the cellular level (Lee et al. 

2008; Schirmer, 2006).  Cells‘ reactions may be useful in extrapolating and predicting 

subsequent tissue, organ and entire organism reactions to similar concentrations of those 

chemicals. 

There are two types of vertebrate cell cultures that can be used to study animal cells in 

vitro: primary cultures and cell lines (Dayeh et al., 2005; Freshney 2005).  The initiation of 

primary cultures involves the mechanical or enzymatic dissociation of tissue or organ pieces and 
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subsequent growth on plastic or glass surfaces (Bols and Lee, 1991; Freshney 2005).  Successful 

subculturing of a primary culture results in a cell line (Bols and Lee, 1991; Dayeh et al. 2005).     

Disaggregation of cells explanted from an organism followed by plating dispersed cells 

was first demonstrated in 1916 (Rous and Jones, 1916).  Once cells are explanted from their in 

vivo environment, cell viability becomes fundamental, particularly with regard to experimental 

manipulations (Freshney, 2005).  That is, cells can be used experimentally in vitro to elucidate 

toxicity.  Primary cultures are useful because cells retain their differentiated function, however, 

primary cultures can be disadvantageous as they: 1) are often employed while recovering from 

their traumatic initiation; 2) may become heterogeneous over time; 3) may be harbouring 

resident pathogens; 4) are short-lived; 5) offer little ease of interlab reproducibility (Bols and 

Lee, 1991).  Vertebrate cell lines, notably those of fish, are advantageous and particularly useful 

in aquatic toxicology due to their physiologically relevant storage and testing temperatures, ease 

of maintenance (Bols et al., 2005), and tolerance of simple culture media (Schirmer, 2006).   

Vertebrate cell lines compare well with fish lethality tests in their relative sensitivity 

toward toxicants (Schirmer, 2006).  However, cell monocultures employing a single cell line 

often show decreased absolute sensitivity when compared to in vivo studies (Segner, 2004; 

Magwood and George, 1996; Saito et al., 1994); most likely due in part to the invariable 

reduction in target sites compared to a whole organism (Schirmer, 2006).  Reduced absolute 

sensitivity observed in vertebrate cell lines may also be due to decreased exposure duration 

(typically 24 h), the specific tissue origin of the cell line being used (cells derived from tissues of  

varying characteristics may be affected differently by toxicants of varying physico-chemical 

characteristics), and even the viability endpoint being measured (cell line bioassays may appear 
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less sensitive if the chosen endpoint is monitoring a cell viability criteria not directly, or initially 

affected by the toxicant). 

Using a multitude of cell lines from varying species and tissue origin may ameliorate this 

limitation rendering the target site diversity of the in vitro assay more akin to that of a whole 

organism.  Six cell lines of varying tissue and species origin were chosen for this study (Table 

1.1) based on one or more of the following criteria: economic relevance of origin species, direct 

OSPW exposure of origin tissue, origin tissue function, and indigenity of origin species.   

The use of cell lines derived from fish indigenous to the Athabasca region in Alberta was 

important because these species were more likely to be representative of the receiving 

environment (Giulio and Hinton, 2008) in which aquatic reclamation scenarios (i.e., EPLs) will 

be implemented.  As shown in Table 1.1, the cell lines used are derived from tissues from 

rainbow trout, fathead minnow, goldfish, and bluegill.  Nelson and Paetz (1993) state that 

rainbow trout and fathead minnow are indigenous to the Athabasca region, while goldfish can be 

found as well but primarily due to illegal release.  It remains unclear whether bluegill are found 

in the Athabasca region specifically, although they are found in lakes in North America, such as 

the Great Lakes (Page and Burr, 1991).    

The WF-2, FHML-W1, and FHMT-W1 cell lines were also from tissues that may provide 

physiologically relevant data regarding oil- or mining-derived chemical impact on whole-fish 

fry, liver tissue, and reproduction, respectively.  Similarly, the respective liver- and gill 

epithelium-derived RTL-W1 and RTgill-W1 cell-lines may provide data important for predicting 

liver and gill function in whole-fish exposed to similar chemical compounds.  The Rainbow trout 

and other Goldfish cell-lines have also been used extensively in ecotoxicology studies in the past 
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(Reeves et al., 2007, Dodd and Jha, 2009, Lee et al., 1997, Kuhnel et al., 2009, Dayeh et al., 

2009, Woelz et al., 2009, Schnell et al., 2009). 
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Table 1.1 – List of cell lines used in this study, media supplementation, and rationale 

*WF-2 cells were originally thought to have been derived from Walleye.  However, this cell line turned out to be of 

Bluegill origin after subsequent molecular authentication. 

Cell line 
Common 

name 
Species Tissue Source FBS Rationale 

WF-2 Walleye* 

 

Bluegill 

Sander 

vitreus* 

Lepomis 

macrochirus 

Fry B.W. 

Calnek 

(Wilensky 

and 

Bowser, 

2005) 

10% -Economic 

relevance 

-Direct OSPW 

exposure 

RTgill-W1 Rainbow 

Trout 

Onchorynchus 

mykiss 

Gill Bols et al. 

(1994) 

10% -Direct OSPW 

exposure 

-Indigenous 

species 

-Economic 

relevance 

RTL-W1 Rainbow 

Trout 

Oncorhynchus 

mykiss 

Liver Lee et al. 

(1993) 

5% -Detoxifying 

organ 

-Indigenous 

species 

-Economic 

relevance 

FHML Fathead 

Minnow 

Pimephales 

promelas 

Liver Lee et al. 

(2009a) 

5% -Indigenous 

species 

-Detoxifying 

organ 

FHMT Fathead 

Minnow 

Pimephales 

promelas 

Testes Vo et al. 

(2010) 

10% -Indigenous 

species 

-Reproductive 

implications 

GFSk-S1 Goldfish Carassius 

auratus 

Skin Lee et al. 

(1997) 

10% -Direct 

exposure to 

OSPW 
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1.7 Assays used to detect acute toxicity 

 

Effective whole-animal alternatives also require rapid and sensitive cell viability assays.  

Past studies have used fish cell lines to measure cytotoxicity, but have done so by looking at 

acute cytotoxicity as opposed to damage specific to one or more cellular viability criteria 

(Segner, 1998).  This methodology is supported by Ekwalls (1995) theory of basal cytotoxicity 

stating that rapidly developing cell death due to chemical insult will likely be seen for similar 

chemical concentrations, regardless of the cell system applied.  However, this concept is limited 

by the fact that every chemical can cause acute cytotoxicity at sufficient concentrations.  This 

makes it difficult to learn anything about the nature of a toxicant and its mode of toxic action.  

Therefore, testing at appropriate chemical concentrations on numerous cell lines, using multiple 

viability assays can give valuable insight into the mechanism of cell death. 

Numerous assays for cell viability have been developed, but the best are those that 

measure impairment to the integrity of the plasma membrane and metabolism using fluorescent 

indicator dyes because they can be used after only short exposures (Dayeh et al., 2005).  Also, 

the development of multiwell fluorometric plate readers has made the use of these fluorescent 

indicator dyes quite easy and rapid (24h) (O‘Connor et al., 1991).  Microwell plates are later read 

by a fluorescent microwell plate reader, and relative fluorescence units are assigned to each well 

as they compare to control wells.  Fluctuations in observed fluorescence units (FU) indicate 

changes in the cell viability criteria being measured.  This combination of microwell plate and 

reader also allows for large numbers of replicates while conserve resources and cells, it helps 
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facilitate interlab reproducibility of results, and managing data on the computer is very 

convenient.  

By using multiple fluorescent indicator dyes measuring slightly different cell viability 

criteria it is possible to deduce a compounds mode of toxic action and simply interpret results 

with greater strength (Schirmer, 2006).  This study used three different indicator dyes measuring 

membrane integrity, metabolic impairment, and lysosomal activity. 

1.7.1 Membrane integrity (CFDA-AM) 

 

Membrane integrity is critical for cell viability as many cellular processes depend on 

effective compartmentalism.  Membrane integrity has traditionally been measured by a cells 

ability to exclude large bulky dyes, such as Trypan blue.  However, this method is tedious and 

requires observation and quantification of cells under the microscope (Dayeh et al., 2005).   

The fluorescent indicator dye to measure membrane integrity in this study was 5-

carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM).  CFDA-AM diffuses into cells 

rapidly where non-specific esterases in viable cells convert it into a polar, fluorescent product, 5-

carboxyfluorescein (CF) which is largely retained by cells.  Decreases in FU indicating impaired 

esterase function could be due to declines in membrane integrity or decreases esterase activity 

(Dayeh et al., 2005).  Loss of esterase function could be achieved through loss of cell membrane 

integrity causing eseterases to readily leave the cell during toxicant exposure where they are 

subsequently evacuated from the microwell or are denatured by the extracellular milieu.  In some 

cases, the toxicant being tested may directly affect esterase activity.  This would be rare and is a 

good reason why more than one fluorometric indicator dye should be used. 
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1.7.2 Metabolic impairment (Alamar blue) 

 

Reduction of the dye resazurin (commercially available as Alamar blue, AB) in both 

cytoplasmic and mitochondrial locations by enzymes, such as diaphorases, is thought to be 

indicative of cellular metabolic integrity.  Thus, decreasing FU as measured by AB suggests 

impairment of cellular metabolism.  Metabolism can also be measured by ATP content or by a 

cells ability to reduce 3-(4,5-dimethylthizol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) 

(Segner, 1998), but AB is advantageous because it can be measured fluorometrically or 

spectrophotometrically and can even be used repeatedly over time on the same culture (Ganassin 

et al., 2000).   

1.7.3 Lysosomal activity (Neutral red) 

 

 Neutral red (NR; 3-amino-7-dimethylamino-2-methylphanzine hydrochloride) can detect 

cell damage specific to the lysosomes (Dayeh et al., 2005) as only viable cells will accumulate 

NR in the lysosomes (Borenfreund and Puerner, 1984).  However, it should be noted that NR 

accumulation in the lysosomes is likely dependent on intact cell membranes, sufficient metabolic 

integrity, as well as a functioning lysosomes making NR a detector of all three cellular viability 

criteria (Dayeh et al., 2005).   

1.8 Thesis goals and organisation 

 

 The goal of this thesis is to compare the sensitivity of six fish cell-lines to OSPW samples 

from the Athabasca Oil Sands, and apply them as rapid, inexpensive alternatives to the use of 

whole fish in ecotoxicology testing.  This will be achieved through the use of cytotoxicity or cell 



18 

 

18 

viability assays monitoring different cellular processes or endpoints to determine the live/dead 

status of cells.   
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2 Materials and Methods 

2.1 Fish cell cultures and maintenance  

 

Six fish cell-lines of varying tissue and species origin were chosen for this study: WF-2 

(Wilensky and Bowser, 2005) originally reported as being derived from Walleye (Sander vitreus) 

but subsequent genetic barcode testing identified the cell line as Bluegill (Lepomis macrochirus); 

two rainbow trout (Oncorhynchus mykiss) cell lines derived from liver (RTL-W1; Lee et al., 

1993) and gill (RTgill-W1, Bols et al., 1994; ATCC Accession No. CRL-2523) tissue; two 

fathead minnow (Pimephales promelas) cell-lines derived from testis (FHMT; Vo et al., 2009) 

and liver (FHML; Lee et al., 2009) tissue; and GFSk-S1 cells (Lee et al., 1997), derived from 

Goldfish skin (Carassius auratus).   

Cells were routinely cultured in 75 cm
2
 tissue culture flasks at ambient room temperature 

(20 ± 2°C) in Leibovitz‘s L-15 culture medium (Gibco BRL, Bulrington, ON, Canada) 

supplemented with fetal bovine serum (FBS, Sigma; 10% for WF-2, Rtgill-W1, GFSK-S1, 

FHMT and 5% for FHML, RTL-W1) and 2% penicillin-streptomycin (100µg/ml, 100 IU/ml 

penicillin; Gibco, BRL).  Culture supplies and subcultivation procedures were as previously 

described (Bols and Lee, 1994; Schirmer et al., 1994).  Prior to toxicant exposures, 100µl of cell 

suspension was plated in 96-well tissue culture plates (Falcon, Becton Dickinson, Franklin 

Lakes, NY) at a cell density ranging from 2 X 10
4
 to 9 X 10

4
 (specific optimal cell density was 

not determined, but cells were always plated within an appropriate range as determined by 

standard curves) cells per 100µl L-15/ex and allowed to adhere for 24h.  L-15/ex is a simple 

exposure medium originally developed by Schirmer et al. (1997) to study polycyclic aromatic 
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hydrocarbon toxicity in the RTgill-W1 cell line.  This simple media formulation (Appendix A) 

supports cell viability but lacks supplements that may interact with toxicants in some way during 

experiments resulting in potential errors in derived effective concentrations.  L-15/ex is also 

quite inexpensive and can be used to assess whole-water samples, such as produced water and 

effluents (Dayeh et al., 2005). 

2.2 Species of origin authentication of cell lines 

 

All sample preparation was performed in a sterile flow hood. Powder-free nitrile gloves 

were worn to limit the possibility of human DNA contamination. Confluent flasks of cells were 

rinsed in Hank‘s Buffered Salt Solution (HBSS) and the cells were removed from the flask using 

TrypLE, a recombinant form of trypsin, trademarked by InVitrogen, or scraped using cell 

scrapers (Falcon). Enzymatic activity was diluted after 5 min by adding 8 ml of HBSS to a 2ml 

of TrypLE cell mixture. This cell mixture was centrifuged at 1000g for 5 min on a bench top 

centrifuge. The supernatant was removed and the cell pellet was resuspended in 200 to 1000 µl 

of sterile, HBSS to have a cell density of approximately 10
4
 cells/µl. A 50 µl sample of the cell 

suspension was then blotted onto FTA cards (Whatman), allowed to dry within the flow hood 

and stored before being taken to the DNA barcoding laboratory at the University of Guelph. FTA 

cards are trademarked filter papers that contain a proprietary formulation from Whatman that 

lyses cells and denatures proteins upon contact. The nucleic acids (DNA & RNA) are retained in 

the filters and are protected from UV damage and from bacterial or fungal attack. 
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2.3 Chemical Preparation 

 

Preliminary testing of all cell lines was done using known toxicants of varying 

physicochemical characteristics using all fluorometric dyes in order to validate sufficient 

bioassay sensitivity.  A stock solution (10,000 µg/ml) of the model toxicant CuSO4 (Castaño et 

al., 1995; Ryan and Hightower, 1994; Segner et al., 1994) was prepared by weighing 0.001 g of 

CuSO4 (Sigma) on an analytical balance and dissolving in 10 ml L-15/ex.  Stock solution was 

then filter sterilized using a 10 ml syringe and a 0.2 µm pore-size syringe filter.  Sterile stock 

solution then made into serial dilutions (0.5, 1, 5, 10, 20, 30, 40, 60, 80, 100 µg/ml) again using 

L-15/ex.   

A commercial (Acros) naphthenic acid preparation (CNA – 0.1, 1, 10, 20, 25, 30, 40, 50, 

100, 1000 µg/ml), and a crude naphthenic acid extract (Cr.NA – 0.1, 1, 7, 15, 30, 60, 120, 250, 

500, 1000 µg/ml; prepared as per Frank et al., 2006) were also assayed.  The CNA stock solution 

(100,000µg/ml) was made by dissolving solid CNA in a solution of 70% tissue-culture grade 

ethanol (Commercial Alcohols Inc.) made with e-pure water.  The stock solution was not filter 

sterilized because the sterilization filters clogged at such a high NA concentration.  The stock 

CNA solution was diluted to the highest experimental concentration (1000 µg), then filter 

sterilized similar and serial dilutions made in L-15/ex.   

Sodium dodecyl (lauryl) sulphate (SDS, CAS 151-21-3), an anionic surfactant, was 

weighed, dissolved in L-15/ex and filter sterilized as was the CuSO4 solution.  Leibovitz‘s-15/ex 

was used again to prepare serial dilutions of SDS (0.1, 1, 10, 20, 25, 30, 40, 50, 100, 1000 

µg/ml).   
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2.4 OSPW-Sample Preparation 

 

Since direct testing of water samples is not feasible with cell cultures, OSPW samples 

were tested at 80% concentration after mixing with a 5x concentrate of L-15/ex. This is the 

exposure media that contains basic salts and is physiologically compatible with fish cells in 

culture. Forty-nine OSPW samples were shipped in 100 ml vials from Syncrude Canada, Ltd. 

and subsequently stored in the dark at 4°C.  Only OSPW sample numbers were disclosed prior to 

toxicity testing, not chemical composition.  Leibovitz‘s – 15/ex media was prepared as described 

by Schirmer et al. (1997) but solutes were dissolved in 1/5 the suggested volume of ePure water 

resulting in a 5X concentrated version of L-15/ex media.  Eight ml of each OSPW sample was 

then added to 2 ml of the 5X concentrated L-15/ex solution to adjust the osmolality of each 

OSPW sample.  Each sample was filter sterilized using 10 ml syringe (BD 309604) and 0.2µm 

syringe filter (VWR 28145-501).  Adding OSPW samples to a concentrated solution of L-15/ex 

resulted in 80% OSPW-sample concentration that greatly minimized necessary sample 

preparation.  More importantly, this method allowed the direct exposure of cell lines to iso-

osmotic, chemically unmodified OSPW samples.  Furthermore, this method reduced labour 

intensive sample preparation and helped facilitate rapid sample assessment.   

Osmolality and pH of raw and L-15/ex-containing samples were measured using a vapour 

pressure osmometer (Westcor 5001B) and a pH meter, respectively.  Cell viability assays were 

done on the WF-2 cell line to verify that the measured fluctuations in pH were not cytotoxic. 
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2.5 Chemical and OSPW sample exposures 

 

After a 24h incubation period allowing cells to adhere to the bottom of plate wells, L-

15/ex was removed from the plate wells by inverting over paper towel.  This plate-inversion 

method helped eliminate the risk of unwanted cell aspiration and effectively reducing the overall 

cell manipulation during the bioassay resulting in more consistent results and smaller standard 

deviations between wells.  Cells were then exposed to 100µl/well of serial dilutions of the 

aforementioned chemicals in replicates of 6-8 wells per sample or chemical concentration.  Each 

96-well plate also contained 6-8 no-treatment wells containing only cells and fluorescent dye and 

6-8 no-cell wells containing only fluorescent dye from which background fluorescence could be 

calculated and subtracted from experimental wells after viability assays.  Treated plates were 

then incubated at their routine culture temperature of 20°C for 24h.  It should be noted that 

previous experiments have confirmed fish cell lines to survive for at least 48h in L-15/ex made 

up in both cell culture water (Schirmer et al., 1997) and industrial effluents (Dayeh, 2004). 

2.6 Fluorometric indicator dyes 

 

Three fluorometric dyes were used to measure cell viability; Alamar Blue (AB; 

Biosource International DAL1100), 5‘-carboxyfluorescein diacetate acetoxymethyl ester 

(CFDA-AM; Sigma), and Neutral red (3-amino-7-dimethylamino-2-methylphenazine 

hydrochloride) (NR; Sigma).  Dye preparation was followed as described in Dayeh et al. (2003) 

(Appendix C). 
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2.7 Cell line viability assays 

  

Step-by-step protocols for alamar blue and CFDA-AM can be found in Ganassin et al. 

(2000), and in Dayeh et al. (2003) for neutral red (adapted in Appendix C).  After the 24h 

incubation period chemical compounds were removed from plate wells by inversion over paper.  

Microwell plates were treated with the fluorometric dye solutions and then incubated for 1h at 

20°C after which fluorescence was quantified using the SpectraMax Gemini XS microplate 

reader (Molecular Devices 02518) at respective excitation and emission wavelengths of 485 and 

530 nm for CFDA-AM, 530 and 595 nm for AB, and 530 and 645 nm for NR.   

2.8 Data analysis 

 

The no-cell control wells were treated the same as the experimental wells during the 

experiment.  The subsequent designation of these wells as blanks during fluorometric 

measurements automatically subtracted their raw relative fluorescence units (RFUs) from that of 

the no-treatment control wells and all experimental wells in order to eliminate background 

fluorescence.  The 6-8 wells per plate for each chemical concentration were averaged and 

expressed as a percentage of the no-treatment control wells (L-15/ex control).  Decreasing cell 

viability indicating toxicity was marked by decreasing RFUs as compared to the L-15/ex control.  

Results were plotted and means and standard deviations were calculated in Microsoft Excel 

(Microsoft Corporation, Redmond, WA).  EC50 values were calculated using GraphPad Prism 

5.02 (Appendix D).  Regression and correlation analyses were done using GraphPad InStat 3.06.  

Unpaired t-test was used to compare two EC50 values, and an ANOVA was used for comparing 

three or more.   
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For OSPW samples, significant deviation of cell viability from control was measured by 

one-way analysis of variance, followed by Dunnett‘s test (α=0.05).  Regression analysis was 

done through the generation of a Pearson correlation matrix to identify simple correlations 

between cell viability and OSPW sample components.  Multiple-regression analysis was also 

done to look for multicollinearity within data for the individual components of the OSPW 

samples.  
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3 Results 

3.1 Authentication of cell lines 

 

DNA barcoding performed at the University of Guelph, through the Barcode of Life 

Database (BOLD), with universal primers for cytochrome c oxydase gene I, used for fish species 

identification as reported by Ivanova et al., 2007, confirmed the origin of species for 5 of the 6 

tested fish cell lines.  WF-2 were the only cells that did not come back as originating from 

Walleye. The cells were attributed to belong to Bluegill (Lepomis macrochirus), but since 

Bluegills are commonly occurring species in North America, the WF-2 cells were still used as 

representative indigenous fish species.  

3.2 Standard curve generation for cell viability assays 

 

 Standard curves were generated for the three fluorometric indicator dyes using all six cell 

lines.  The purpose of these standard curves was to demonstrate that increases in measured RFUs 

correspond to increases in the presence of viable cells.  Serial dilutions of a high-concentration 

cell suspension were exposed to AB, CFDA-AM and NR as per the standard protocol for these 

indicator dyes.  For all cell lines tested, linear correlation of increasing cell numbers to 

increasing fluorescence units could be established routinely for all three fluorescence assays. A 

representative graph for FHML is presented in Figure 3.0.  The R
2
 values close to 1 indicate a 

strong correlation between increasing number of viable cells and increasing RFUs.  Therefore, in 

an experiment where cells are exposed to putative toxicants, cytotoxicity can be quantified by 

decreases in measured RFUs. 
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Figure 3.0 - Fluorescence response of FHML-W1 cells to AB, CFDA-AM, NR.  A standard curve 

was generated to determine the correlation of increasing cell number and relative fluorescence units as measured by these 

indicator dyes. Cells were plated in a 96-well microplate, incubated for 24 hours at 18°C.  Cells then underwent standard 

exposures to AB, CFDA-AM, and NR. Six-well replicates (n=6) were used for each cell concentration.  Data points are shown as 

mean RFUs of the six wells with error bars representing standard deviations. R2 values close to 1 indicate a strong correlation 

between increasing number of viable cells and increasing RFUs. 
 

 

3.3 Cell line exposure to chemicals 

 

Cell lines were used to evaluate the toxicity of four putative toxicants as measured by the 

suite of three viability assays; CFDA-AM, alamar blue (AB), and neutral red (NR).   

The four chemical compounds evaluated were CuSO4, sodium dodecyl sulphate (SDS), a 

commercial naphthenic acid (CNA), and a crude naphthenic acid extract (Cr.NA).  Cell exposure 

to all four chemical compounds caused an overall dose-dependent decline in cell viability as 

measured by at least two fluorometric indicator dyes (graphs shown in Appendix E).  EC50 

values (concentrations causing a 50% decline in cell viability) calculated for individual cell lines 

(Table 3.1) for CuSO4 using AB and CFDA-AM ranged from 3.5 ± 1.6 to 8.32 ± 0.9 µg/ml and 
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were not statistically different (p>0.05) from one another for any cell lines except for FHMT 

(38.7 ± 3.49 µg/ml).   

NR was not used to assay CuSO4 toxicity as it has yielded confounding results in a 

previous study (Dayeh et al., 2005).  This finding was validated by exposing RTgill-W1, FHML, 

and FHMT cells to CuSO4 ranging from 0.01 – 100µg/ml for 24h in L-15/ex and assaying with 

NR.  Results showed a similar biphasic curve with decreases in viability observed until 10µg/ml 

at which point cell viability appeared to increase again (Appendix F – Figure 5.7).    

Viability data for SDS, CNA, and Cr.NA as measured by CFDA-AM was problematic.  

As cell viability measured with AB and NR dropped, CFDA-AM measurements appeared to 

spike, showing erratic increases in relative fluorescence units.  In the event that the relative 

viability of cells did not drop below 50% of the control, EC50 values were not calculated; this 

was often the case for CFDA-AM when testing CNA and is simply indicated by a dash in Table 

3.1.  Where EC50 values could be calculated for these chemicals, the values were quite erratic 

ranging from 34.09 ± 7.73 µg/ml to 2168 ± 152 µg/ml, often much greater than EC50 values 

calculated using AB or NR, and always significantly greater than reported LC50 values obtained 

in vivo.   

For these latter three chemical compounds, there was a relatively similar dose-dependent 

decrease in cell viability as measured by both AB and NR.  In most cases, the EC50 values 

obtained for both fluorometric dyes were not statistically different from one another (p>0.05).  

Where values were significantly different they were still relatively close and well within the 

same order of magnitude.  The only exception were the values obtained for Cr.NA using the WF-

2 cell line (p=0.0466). 
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Reported lethal concentrations (LC50 - the concentration lethal to 50% of the test 

organisms in vivo) for each of the test compounds determined in vivo are listed in Table 3.1.  

Where multiple values were found, the mean was calculated and standard deviation indicated.  

Correlations between calculated EC50 (µg/ml) values for all test compounds and the reported 

LC50 (µg/ml) values reported in the literature are shown in Figure 3.1.  Individual test 

compounds are not labelled for visual clarity but can be inferred from Table 3.1.  There is a 

relatively good correlation observed for all three fluorometric dyes (AB R
2
 = 0.7395, p<0.0001; 

CFDA-AM R
2
 = 0.5358, p<0.001; NR R

2
 = 0.6142, p<0.0001) indicating relative sensitivity of 

the cell line bioassay comparable to the in vivo LC50 data.  The dashed line on each graph 

indicates a correlation of 1.0.  Although there appear to be discrepancies between the absolute 

sensitivity of the in vitro and in vivo data it should be noted that they do show considerable 

relative agreement with each other.   

Appearance of cells was also monitored during experiments via phase contrast 

microscopy.  All cell lines showed very similar morphological differences pre- and post-

exposure.  Figures 3.2 – 3.3 show only the WF-2 cell line before and after chemical exposure.  In 

all cases, changes in morphology were present at the highest chemical concentrations as 

compared to pre-exposure morphology.  Exposure to 100µg/ml CuSO4 resulted in cell shrinkage 

accompanied by a dark cell contrast.  Similarly, exposure to Cr.NA resulted in cell shrinkage but 

cells appeared quite rounded and not as dark as those seen after CuSO4 exposure.  Lastly, the 

cells observed after exposure to SDS and CNA were completely disrupted, showing absolutely 

no morphological similarity to their pre-exposure counterparts.  These last two compounds 

appear to have totally deteriorated the integrity of the cellular membranes. 
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Table 3.1 In vivo and in vitro effective concentrations after exposure to CuSO4, SDS, CNA, and Cr.NA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* 96hLC50 reported in literature 

―—―= EC50 value not calculated because relative fluorescence units did not fall below 50%  

§ - Neutral red assay not done for CuSO4.   

¥ - Data retrieved from pesticideinfo.org.  CNA (CAS # 61790-13-4) data specific to these fish were scarce, but 96h LC50 data from 5 fish were 
averaged (Russian sturgeon, Acipenser gueldenstaediti; Common goby, Neogobius melanostomus; Chum salmon, Oncorhynchus keta; Kutum, 

Rutilus frisii kutum; Caspian roach, Rutilus rutulius caspicus) 

Underlined EC50 values within a cell line (row) and for a single toxicant were found not to be statistically different from one another (p>0.05) 

Superscripts correspond to numbered references – (11) refers to Microtox assay done by Frank et al., (2006). 

Fish/Cell line 96h LC50 or 24h EC50 (µg/ml) ± STD (n) 

 CuSO4 SDS CNA Cr.NA 

Bluegill* 3.2±4.3(3)5,3 4.5 (1)1 30.24 ± 22.57(12)1¥ 64.9 ± 14.5(3)11 

WF-2 cell line     

AB 8.13 ± 1.5(4) 31.35 ± 5.37(3) 42.91 ± 4.2(3) 66.64 ± 9.08(3) 

CFDA-AM 8.32 ± 0.9(4) 141.3 ± 58.5(3) --  (3) 402.1 ± 149.3(3) 

NR §  18.1 ± 5.09(3) 13.44 ± 2.1(3) 120.9 ± 19(3) 

Rainbow Trout* 0.55±0.48(2)6,7 14.4 ± 15.1 (13)1 30.24 ± 22.57(12)1¥ 64.9 ± 14.5(3)11 

RTL-W1 cell line     

AB 4.04 ± 0.143 (4) 11.51 ± 0.45 (3) 15.48 ± 3.6(3) 45.26 ± 2.44(3) 

CFDA-AM 3.92 ± 1.1(4) 34.09 ± 7.73 (3) -- (4) 158.8 ± 24.2(3) 

NR § 16.26 ± 6.3 (3) 18.22 ± 5.36(3) 174.23 ± 26.1(3) 

RTgill-W1 cell line     

AB 6.06 ± 1.25(3) 5.89 ± 1.23(3) 6.84 ± 1.95 (3) 76.35 ± 12.63 (3) 

CFDA-AM 7.08 ± 0.67(3) 398.93 ± 104.5(3) 81.48 ± 52.83 (3) 682.7 ± 163.4 (3) 

NR 27.0 ± 7.87(3) 4.11 ± 0.16(3) 4.23 ± 0.73 (3) 126.07 ± 72.4 (3) 

Fathead minnow* 0.67±0.37(3)4,8,9 7.7 ± 3.1 (12)1 30.24 ± 22.57(12)1¥ 64.9 ± 14.5(3)11 

FHMT cell line     

AB 3.47 ± 0.84(4) 21.75 ± 0.67(3) 24.7 ± 14.22 (3) 146.3 ± 46.61 (3) 

CFDA-AM 38.7 ± 3.49(3) 2168 ± 152(3) -- (4) 536.7 ± 128.2 (3) 

NR 37.8 ± 17.1(3) 27.18 ± 0.87(3) 12.67 ± 4.39 (3) 319.9 ± 159.95 (3) 

FHML cell line     

AB 7.83 ± 3.6(3) 14.0 ± 1.43(3) 14.15 ± 8.36 (5) 74.49 ± 15.27(3) 

CFDA-AM 4.9 ± 2.6(3) 122.7 ± 61.56(3) -- (4) 370.2 ± 58.36 (3) 

NR 67.69 ± 19.2(3) 26.2 ± 3.8(3) 13.98 ± 10.51 (3) 103.67 ± 51.7(3) 

Goldfish* 2.5±1.9(3)3,4 28.4 (1)1 30.24 ± 22.57(12)1¥ 64.9 ± 14.5(3)11 

GFSK-S1 cell line     

AB 5.086 ± 0.29 (4) 9.08 ± 0.47 (3) 24.31 ± 2.65(3) 101.6 ± 8.2(3) 

CFDA-AM 3.5 ± 1.6 (3) 180.14 ± 36.8 (3) -- (3) 390.97 ± 185.7 (3) 

NR § 20.09 ± 2.67 (3) 26.44 ± 5.13 (3) 163.8 ± 28.6(3) 



31 

 

31 

 

 

  

Figure 3.1 - Correlation between AB50, CFDA-AM50, and NR50 values and reported LC50 

values found in vivo.  WF-2, GFSk-S1, RTL-W1, RTgill-W1, FHMT, and FHML cell lines 

were exposed to varying concentrations of CuSO4, SDS, CNA, and Cr.NA.  Graphs illustrate the 

correlation between the calculated EC50 value and the reported LC50 values in the literature for a 

given test compound (values taken from Table 2.1).  Linear regression analysis was done to 

generate correlation coefficients and p-values.  Individual chemical compounds not labelled for 

visual clarity.  Data points represent the average of three EC50 values calculated from separate 

experimental trials. Dashed line indicates in vitro/in vivo correlation of 1.0. 
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Figure 3.2. Phase contrast micrographs of WF-2 cells before and after 24 h exposure to 

CuSO4 and SDS.  WF-2 cells were exposed to varying concentrations of CuSO4 and SDS in L-

15/ex media for 24 h.  Phase contrast images were taken before (1) and after cells exposed to 

100µg/ml CuSO4 or SDS (2).  Cells exhibit typical morphology pre-exposure but appear dark 

and shrunken after CuSO4 exposure.  WF-2 cells appear disrupted and globular after exposure to 

SDS.  In the latter case, this is likely due to membrane damage from exposure to a surfactant.   
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Figure 3.3. Phase contrast micrographs of WF-2 cells before and after 24 h exposure to 

Cr.NA and CNA.  WF-2 cells were exposed to varying concentrations of Cr.NA and CNA in L-

15/ex media for 24 h.  Phase contrast images were taken before (1) and after cell exposure to 

1000µg/ml µg/ml Cr.NA or 50µg/ml CNA (2).  Cells exhibit typical morphology and appear 

very similar pre-exposure but appear quite rounded and some have detached from the plate after 

Cr.NA exposure.  WF-2 cells have been totally disrupted and appear as a monolayer of 

homogenous remains after exposure to CNA indicating severe membrane damage.     
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3.4 OSPW graphs and correlations 

 

 After standard curves and dose-response curves for positive control chemicals were 

generated, cell lines were exposed to iso-osmotic OSPW samples prepared in the minimal media, 

L-15/ex.  Samples prepared in L-15/ex ranged in osmolality from 270 – 326 mOsm/kg and pH 

from 6.9 – 9.1.  Most cells in culture have a wide tolerance for fluctuations in osmolality 

(Waymouth, 1970), but anything with the range of 260 – 320 mOsmol/kg is acceptable 

(Freshney, 2005).  In a separate experiment, WF-2 cells were exposed to L-15/ex solution with 

pH ranging from 6 – 9 (pH adjusted by drop-wise addition of HCl or NaOH) with no significant 

decreases in viability as measured by AB (data not shown).   

Decreases in cell viability were detected using all three fluorometric indicator dyes, 

dropping below 50% of that of the control for some OSPW samples.  Some samples had a slight 

stimulatory effect on cell viability, and further tests may need to be performed to elucidate the 

cause of such an effect. 

Cell line responses to OSPW samples as measured by AB were the most consistent both 

from trial to trial for each cell line and between cell-lines (Figure 3.4).  One-way analysis of 

variance (ANOVA) followed by Dunnett‘s test (α=0.05) identified a number of OSPW samples 

for which the mean RFUs deviated significantly from the control values (not identified in the 

graphs for lack of space).  OSPW samples (Table 3.2) 8, 12, 13, 16, 19, 42, 43 resulted in a 

decrease in viability below 50% of the control for all cell lines.  Samples 23, 35, 36, 44, 47, 48 

showed similar decreases below 50% of the control in all cell lines but one (most often GFSk-

S1). And, samples 7, 17, 18, 20, 24 and 37 showed a similar decrease in 3 or more cell lines.  All 
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samples showing such decreases below 50% were found to be significantly different than the 

control (p<0.01), with the exception of samples 47 and 48 using the GFSk-S1 cell line. 

Data was extremely inconsistent for CFDA-AM and NR assays showing high variability 

and low consistency between trials or across cell lines (Appendix G – Figures 5.17 & 5.18).  

Based on the erratic results and the high degree of inconsistency of the data generated by CFDA-

AM and NR when testing the crude NA samples most of the analysis in this section was done 

using AB.     

The chemical composition of the OSPW samples was unknown throughout the testing 

period so as to not bias reporting.  When the composition of the samples was revealed (Table 

3.2), data analysis was done to identify correlations between the viability data and the relative 

concentrations of the OSPW sample components.  A correlation was found between the 

concentration of NAs present in a given sample and the measured viability of cells exposed to 

that sample.  Specifically, with increasing concentrations of NAs, decreases in cellular viability 

were measured.  Table 3.3 summarizes the degree of correlation between cell viability and NA 

concentration for each OSPW sample.  Again, AB was the most consistent and also showed the 

highest correlation between decreasing viability and increasing NA concentration with R
2
 values 

as high as 0.6171 (p<0.0001).  The cell line responses to OSPW-sample exposure were not 

nearly as consistent when measured by CFDA-AM or NR.  The highest correlation coefficient 

produced by linear regression analysis using CFDA-AM was 0.4352 (p<0.0001), while none of 

the data generated by the NR assay was considered significant. 

Regression analysis was also done on the other components of the OSPW samples 

revealing a high degree of correlation between the viability of cells and the concentration of 
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OSPW sample-components other than NA, specifically, Na, HCO3, and sample conductivity.  

Table 3.4 shows correlation between these sample components and cell viability after 24 h 

exposures.  AB generally had the highest correlation coefficients ranging from 0.4025 – 0.8757 

(p<0.0001).  CFDA-AM was much lower (R
2
=0.09398 – 0.6317), and NR almost never 

generated a significant correlation (with the exception of the RTgill-W1 cell line). 

Multiple regression analysis of the OSPW component data revealed a high degree of 

multicollinearity indicating concomitant increases between a number of the OSPW sample 

components.  The R
2
 values for multicollinearity were high (>0.8) for all components listed in 

Table 3.2 except pH, and above 0.9 for conductivity, bicarbonate, and sodium.  A Pearson 

correlation matrix (Table 3.5) between select OSPW sample components and RFUs (WF-2, AB) 

shows significant correlations between rising levels of NA, HCO3, and between sample 

conductivity and major ions (Na, Cl, and K).     
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Figure 3.4 – Cell line response to 24 h exposure to OSPW samples as measured by AB.  FHML, FHMT, RTgill-W1, RTL-W1, GFSk-S1, 

and WF-2 cells were exposed to iso-osmotic OSPW samples for 24 h at 18°C.  Cell viability was then measured by AB.  Data points represent the mean of 4 

separate experiments (each experiment consisted of 6-well replicates for each OSPW sample).  Cells were plated at densities ranging from 3.3X10
4
 – 8.0X10

4
 

cells/well.   
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Table 3.2 – Annotated chemical composition of OSPW samples (µg/ml unless stated otherwise; 

chemical data obtained from Dr. Mike MacKinnon).    

 

 

 

 

 

 

 

 

Sample # Source pH NA 
Cond. 

(uS/cm) 
HCO3 Na SO3 

NH4 

(ppm) 
K Mg Ca Cl 

1 FE1 7.20 1.35 704 182 76.9 259 0.286 0.5 32.7 57.6 4.6 

2 FE2 7.60 3.01 696 367 144 37.6 0.274 0.5 16.9 21.6 35 

3 FE3 7.60 2.85 690 348 143 43.8 0.295 0.5 16.5 19.5 31 

4 FE4 7.60 3.56 667 322 137 58.4 0.278 0.5 17.6 18 27 

5 FE5 7.90 11.20 2340 481 614 777 2.08 8 39 20 140 

6 FE6 7.70 2.48 1260 385 273 308 0.209 0.5 30.8 19.7 34 

7 TPWPOND 8.10 21.64 2040 664 528 122 0.183 6.16 10.1 8.95 240 

8 STORPD 8.20 36.80 2740 959 795 234 0.289 7.21 11.3 10.8 320 

9 BPIT 8.00 8.29 1530 575 379 164 0.349 5.13 18 14.2 110 

10 SHALWL-Ditch 7.40 0.37 620 223 91.2 125 0.212 0.5 38.1 19.3 14 

11 CT POND 7.70 27.65 3750 357 1040 1220 0.01 14.6 33.5 35.9 650 

12 MLSP-OP 7.60 44.22 1920 1030 548 71.6 2.31 0.5 11.6 27.8 220 

13 BCV-A5 8.00 24.05 2490 821 628 89.2 0.01 0.5 21.6 45.9 480 

14 MLAKE 7.40 0.30 340 160 22.9 29.8 0.155 0.5 10.1 35.9 12 

15 BCV-B16 7.80 1.94 1280 346 176 229 0.234 0.5 34.6 103 150 

16 DD B2506 7.50 65.53 2310 1050 702 295 2.72 8.96 14.2 18.1 240 

17 MLSB 7.60 5.50 3200 648 704 424 16.9 15.6 11.9 19.5 440 

18 WIP 7.70 15.42 3380 742 844 384 13.4 15 10.7 16 530 

19 DDW 7.90 30.23 2740 969 677 300 2.61 8.9 12.7 15.9 250 

20 WIP 7.70 21.39 3460 825 793 383 14.9 14.2 10.8 16.3 520 

21 SCL_Golden Pond 8.83 3.39 1680 163 225 746 <0.01 1.1 57.6 115 38 

22 SUN_High SO4WL 7.64 15.19 2980 239 437 1590 <0.01 15.9 118 200 4.4 

23 SUN_4m CT 8.25 22.34 1953 512 326 595 0.22 13.5 58.5 83.3 43 

24 SUN_NatWL 9.11 44.12 1242 504 292 204 0.56 11.9 14.1 19.4 17 

25 CNRL 9.32 2.37 256 120 22.3 22.2 <0.01 0.6 8.7 23.0 4.7 

26 South Beaver 7.57 3.19 345 231 30.8 5.1 <0.01 0.8 10.3 41.3 6.0 

27 SCL_NWID Ditch WL 8.19 2.27 663 333 94.4 37.9 0.11 1.6 22.1 39.7 56 

28 SUNCTWL_Waste Area 11 8.69 7.03 868 169 112 308 0.18 9.8 32.4 52.4 6.5 

29 U-SHAPED  POND 8.91 4.64 342 80 37.1 79.4 0.17 1.0 8.0 29.1 25.0 

30 FE1 7.69 1.32 729 173 78.2 249 0.12 1.0 30.0 53.9 5.6 

31 FE2 8.35 3.18 688 322 148 51.7 0.70 1.0 15.4 14.9 33.0 

32 FE3 8.52 2.42 674 308 147 54.8 0.14 1.0 15.0 13.5 29.0 

33 FE5 8.96 10.56 2680 403 630 784 0.23 8.7 37.6 15.1 140 

34 FE6 9.03 2.53 1252 259 268 341 0.34 1.0 29.3 12.4 37.0 

35 TPW POND 9.20 20.01 2080 553 519 119 0.28 1.0 8.7 5.7 230 

36 STOR POND 8.81 44.97 3010 896 780 275 <0.01 7.6 11.0 9.7 310 

37 BPIT 9.06 12.14 1584 419 378 188 0.15 1.0 15.8 8.9 112 

38 DEEP WL 7.83 0.92 547 258 72.2 78.6 <0.01 1.0 23.9 30.9 12.0 

39 SHALWL-Ditch 8.61 0.55 748 218 113 174 <0.01 1.0 37.1 19.9 15.0 

40 CT POND 8.72 29.02 4730 298 1080 1260 <0.01 15.0 32.3 31.2 690 

41 CT PROTO POND 8.93 5.53 540 158 124 28.5 0.10 1.0 3.5 7.4 69 

42 MSLB OP 7.56 68.51 2230 1025 570 84.5 2.17 5.5 11.7 28.1 210 

43 SCP1 7.96 46.64 2270 914 557 124 0.51 5.6 17.6 40.0 250 

44 BCV-A5 8.07 19.81 2280 756 519 91.3 <0.01 1.0 18.2 44.8 340 

45 BCV-B16 7.49 5.36 1261 351 159 185 <0.01 1.0 32.0 94.9 130 

46 ETB POND 8.94 12.87 535 184 123 29.1 <0.01 1.0 3.0 7.5 55 

47 DD B2506 7.59 82.30 2850 1020 706 310 2.81 9.5 14.4 18.9 250 

48 DD B2503 7.20 75.84 2950 1040 733 301 2.70 10.5 14.6 24.3 280 

49 MLAKE 8.22 0.40 287 138 17.9 31.1 <0.01 1.0 9.8 33.7 8.0 
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Table 3.3 – Correlation coefficient
2
  (r

2
) between fish cell line viability and NA concentration of OSPW sample 

 Alamar blue CFDA-AM NR 

WF-2 0.6171*** 0.2274** 0.02247 

GFSk-S1 0.5048*** 0.3797*** 0.06599 

FHML-W1 0.5086*** 0.1131* 0.02942 

FHMT-W1 0.4519*** 0.4352*** 0.01877 

RTL-W1 0.5658*** 0.3718*** 0.006414 

RTgill-W1 0.5637*** 0.3903*** 0.04314 
*p<0.05, **p<0.01, ***p<0.0001 

  

Table 3.4 – Correlation coefficient2 (r2) between fish cell line viability and sample conductivity, [HCO3], [Na] (µg/ml)  

 Conductivity (uS/cm) HCO3 Na 

AB CFDA-AM NR AB 
CFDA-

AM 
NR AB CFDA-AM NR 

WF-2 0.4025*** 0.1304* 0.02648 0.6802*** 0.1141* 0.05260 0.4381*** 0.09398* 0.03153 

GFSk-S1 0.4568*** 0.2631** 0.0001 0.8150*** 0.3200*** 0.01674 0.5680*** 0.2242** 0.0001 

FHML-W1 0.4610*** 0.1680** 0.0027 0.7937*** 0.1348** 0.04128 0.5643*** 0.2055* 0.0056 

FHMT-W1 0.4104*** 0.2938*** 0.02037 0.7222*** 0.5968*** 0.02107 0.4600*** 0.3850*** 0.02771 

RTL-W1 0.5636*** 0.3655*** 0.09498* 0.8015*** 0.6917*** 0.00254 0.6025*** 0.4547*** 0.08426* 

RTgill-W1 0.4785*** 0.3495*** 0.5150*** 0.8757*** 0.6003*** 0.6991*** 0.5822*** 0.4290*** 0.6327*** 

*p<0.05, **p<0.01, ***p<0.0001 

 

 

Table 3.5 – Correlation matrix (Pearson) for OSPW sample chemical components and WF-

2 cell line bioassay RFUs (as measured by AB); significant coefficients underlined, (p<0.05) 

  pH NA Cond. HCO3 Na SO3 NH4 K Mg Ca Cl RFUs 

pH  1.0000            

NA  -0.1764 1.0000           

Cond.  -0.1214 0.5774 1.0000          
HCO3  -0.3067 0.8282 0.6339 1.0000         

Na  -0.1119 0.6500 0.9686 0.7206 1.0000        

SO3  -0.0091 0.1058 0.6512 -0.0486 0.5215 1.0000       
NH4  -0.2706 0.1175 0.4461 0.3653 0.4224 0.0820 1.0000      

K  -0.1028 0.4536 0.7885 0.3907 0.7262 0.6841 0.5314 1.0000     

Mg  -0.1034 -0.1754 0.1663 -0.2783 -0.0197 0.7326 -0.1958 0.2695 1.0000    
Ca  -0.2048 -0.1417 0.0477 -0.2431 -0.1513 0.5061 -0.1671 0.1304 0.8256 1.0000   

Cl  -0.1376 0.4514 0.8696 0.5687 0.8952 0.3771 0.4981 0.5923 -0.1721 -0.1733 1.0000  
RFUs  -0.0592 -0.7856 -0.6345 -0.8245 -0.6619 -0.0994 -0.1347 -0.4042 0.0721 0.0978 -0.4616 1.0000 

 

 



40 

 

40 

4 Discussion 

The present work was carried out to develop whole-animal alternatives or preliminary 

screening tests for toxicity assessment to aid in current and future remediation operations in the 

Athabasca oil sands. The use of fish cell lines appear promising as alternative biomonitoring 

systems and the viability assays used in this study, specifically Alamar Blue, appears to be a 

sensitive, cost- and time-effective assay for detecting cytotoxic samples. However, the 

ecotoxicological relevance of these assays still needs to be evaluated as the EC50 values obtained 

for model chemicals were below those reported in the literature for whole organisms. 

Nevertheless, the general trend was in agreement with those values reported for the respective 

chemicals and was consistent for all cell lines over numerous replicates.  Therefore, the present 

work sets the path for further work on the evaluation of OSPW using fish cell lines. 

 

4.1 Cell line exposures to CuSO4, SDS, CNA, and Cr.NA 

 

Interactions between organisms and chemical compounds is initiated at the cellular level, 

hence, vertebrate cell cultures are potentially valuable tools in predicting toxicity in whole-

animals (Schirmer, 2006).  Furthermore, bioassays utilizing cell lines and various fluorescent 

indicator dyes allow for the elucidation of toxic mode of action of a chemical compound 

(Kramer et al., 2009) and can do so in a rapid, inexpensive fashion (Lee et al., 2008).   

Cell exposure to all four chemical compounds in this study caused an overall dose-

dependent decline in cell viability as measured by at least two of three fluorometric indicator 

dyes.  Although the three fluorometric indicator dyes did not always yield EC50 values similar to 
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one another, two of the assays were usually not significantly different and were within the same 

order of magnitude as reported LC50 values for the same or similar compounds.   

Tollefsen et al. (2008) found similar discrepancies between fluorometric dye sensitivity 

when exposing primary cultures of rainbow trout to a range of alkylphenols and alkylated non-

phenolics, subsequently measuring cell viability using AB and CFDA-AM.  It was found that 

EC50 values derived AB data were lower than those from CFDA-AM for most chemicals tested.  

Thus, toxicity resulting in metabolic inhibition was observed at lower concentrations than loss of 

membrane integrity.   

At first glance, the EC50 variability across assays undermines their strength.  However, 

each fluorescent indicator dye is indicative of a unique cellular viability criterion.  Therefore, just 

as chemicals of varying physico-chemical properties may affect the cell in different ways we 

might expect measured viability readings from our three unique indicator dyes to be different as 

well.   

 

4.2 Fish cell line viability after 24h exposure to CuSO4 

 

AB and CFDA-AM were successful in evaluating the viability of all six cell lines after a 

24 h exposure to copper.  These fluorometric dyes showed consistent dose-dependent declines in 

cell viability with increasing concentration of CuSO4 with viability always falling below 50% of 

the control cells at high concentrations.  CFDA-AM50 values for CuSO4 ranged from 3.5 ± 

1.6µg/ml to 8.32 ± 0.9µg/ml for the six cell lines tested while the respective LC50 values reported 

for the same compound ranged from 0.55 ± 0.48µg/ml to 3.2 ± 4.3µg/ml.  Similar AB50 results 

were obtained with effective concentrations ranging from 3.47 ± 0.84µg/ml to 8.13 ± 1.5µg/ml 

(with the exception of one outlier to be discussed later) while respective LC50 values ranged from 
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0.55 ± 0.48µg/ml to 3.2 ± 4.3µg/ml.  Dayeh et al. (2005) also reported comparable EC50 values 

(AB = 3.14 ± 0.28 ml/l; CFDA-AM = 5.67 ± 0.46 ml/l) when exposing the RTgill-W1 cell line 

to CuSO4 for 24 h. 

Evidently, there is a discrepancy between the EC50 values generated and the reported 

LC50 values (Figure 3.1).  In vitro models are typically less sensitive than their in vivo 

counterparts generating effective concentrations much higher, sometimes by orders of magnitude 

(Castano et al., 2003, Segner, 2004, Sandbacka et al., 2000).  That is, greater concentrations of 

test chemical are required to bring about a similar response in cell lines.  Whole animals 

represent an integrative endpoint as toxicity models because they are comprised of a plethora of 

tissues and organs often interacting in a dynamic and reciprocal fashion where the failure of one 

or more of these tissues can have fatal implications for the organism.  The corollary here is that 

cell lines derived from single tissues will invariable have fewer target sites and in most cases will 

likely appear less sensitive to a given toxicant (Schirmer, 2006).  Using cell lines of varying 

species and/or tissue origin, as well as three different fluorometric indicator dyes indicative of 

different cell viability criteria may actually yield a solid absolute correlation between EC50s and 

LC50s; with such a cross-section of cell lines and viability indicators, an analogous indicator of 

an LC50 is likely the lowest observed effective concentration from all cell lines and viability dyes 

combine.  In this case, the lowest observed EC50 is seen in the FHMT (3.47 ± 0.84µg/ml) cell 

line using AB, likely indicating an early breakdown in cell metabolism from copper interactions 

with cellular enzymes.  Furthermore, this EC50 falls nicely in the range of reported LC50s found 

in the literature (0.55 ± 0.48µg/ml to 3.2 ± 4.3µg/ml).  

There was a consistent increase in viability in the FHMT cell line at 10µg/ml (Figure 

5.1), a concentration where cell viability was well below 50% using AB for the same cell line as 
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well as for all other cell lines using AB and CFDA-AM in all other CuSO4 trials.  An explanation 

for this could be advanced by considering a study by Von Deimling (1985) showing mammalian 

testis tissue to be particularly high in non-specific esterases such as carboxylesterases, 

acetylesterases, and cholinesterases.  Because CFDA-AM is converted to the fluorescent, 

carboxyfluorescein by these non-specific esterases, such an abundance of these enzymes present 

in the FHMT cell line may explain the spike in the measured viability.  Of course, if this were 

the case we might also expect to see such large readings at other concentrations as well, but 

10µg/ml CuSO4 may have offered a unique combination of upregulation of cellular enzymes 

under stress and otherwise sufficient cell damage induced by chemical exposure to readily allow 

the leakage of cellular contents into the extracellular space.  Provided the extracellular milieu 

could support enzymatic activity, these esterases would likely come in contact with a larger 

concentration of CFDA-AM than seen in other concentrations of CuSO4. 

The use of NR to quantify copper toxicity was found to be problematic by Dayeh et al 

(2005).  They reported a biphasic trend where decreased viability with increasing concentrations 

of copper was seen initially followed by an increase in measured viability with subsequent 

increases in copper concentrations.  These results were confirmed in this study by exposing 

FHMT, FHML, and RTgill-W1 cells to CuSO4 and evaluating cell viability with NR.  Similar to 

data reported by Dayeh et al., cell viability decreased in a dose-response manner but then 

appeared to increase with higher concentrations (Appendix F – Figure 5.7).  Cell death was 

confirmed by microscopic evaluation of cells.    

It is thought that copper toxicity is partly due to the formation of reactive oxygen species 

(ROS) (Bopp et al., 2007) and non-specific binding of the metal ion Cu
2+

 to biologically 

important molecules.  For example, it binds to histidine-, cysteine- and methionine residues in 
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proteins with high affinity, which may result in dysfunctional enzymes (Camakaris et al., 1999).  

Since CFDA-AM and AB rely on the functioning of active enzymes to convert them to polar, 

fluorescent products that can be fluorometrically quantified, we would expect them to be 

reasonable indicators of viability but also adversely affected by inhibition of enzymes.  On the 

other hand, NR is simply sequestered in the lysosomes by viable cells.  Since this is not entirely 

dependent on enzymatic processes, enzymatic inhibition via CuSO4 toxicity may have less of an 

impact on NR fluorescence and be less indicative of cell viability in this case.   

 

4.3 Fish cell line viability after 24h exposure to surfactant compounds 

 

The Clarke hot water extraction process used to separate bitumen from the oil sand 

promotes the solubilisation of NAs due to the alkalinity (pH=8), thereby concentrating them as 

mixtures of sodium salts in the aqueous tailings (Rogers et al., 2002).  For validation and control 

purposes this study tested a commercial NA preparation and a crude NA extract prepared as per 

Frank et al. (2006).   

Surfactant-induced adverse effects in fish have been reported in a number of studies 

(Abel, 1976; Misra et al., 1985; Partearroyo et al., 1991).  The primary exposure site for 

surfactants and many other aquatic toxicants is the gill epithelium, as well as dermal tissue and 

intestinal epithelium (Sandbacka et al., 2000).  Furthermore, linear alkylbenzene sulphonic acid 

(LAS), an anionic surfactant like SDS, was found to be taken up by fish across the gills (Tolls et 

al., 2003).  Subsequent to exposure, concentrations of a few LAS analogues can be found in the 

liver and other internal organs of juvenile rainbow trout in vivo, suggesting these compounds 

readily enter systemic circulation (Ivankovic and Hrenovic, 2010) and implies potential damage 



45 

 

45 

to internal organs.  Thus, the proposed suite of cell lines should be quite relevant for testing 

surfactants in vitro. 

The viability trends for the SDS, CNA and Cr.NA were largely similar for each cell line 

as measured by AB and NR and compared reasonably well with reported LC50 values in vivo 

suggesting successful indication of cell viability after exposure to surfactants.  In each case, 

consistent dose-dependent declines in cell viability were shown with experimental RFUs falling 

below 50% of the control in each trial and for each cell line.  It was often difficult to make direct 

intraspecies EC50/LC50 comparisons for a given surfactant, but in these cases LC50 data was 

obtained for a similar species of fish, or, for the unique Cr.NA extract, data was obtained from 

the Microtox assay using Vibrio fischeri bacteria as reported in Frank et al., 2008. 

AB50 and NR50 values calculated for each cell line were lower than, or comparable, to 

reported LC50 values for SDS.  GFSk-S1, RTL-W1 and RTgill-W1 were all more sensitive to 

SDS than the in vivo tests cited.  The remaining cell lines generated AB50 and NR50 values 

consistently similar to one another and comparable to in vivo data as well.  It should also be 

noted that all LC50 data listed in Table 3.1 are from 96h exposures unless stated otherwise.  This 

exposure-time discrepancy may account for some of the absolute insensitivity of the cell line 

bioassays in this study.  In a study exposing lung carcinoma cells to docetaxel and paclitaxel 

(chemotherapeutic agents), median EC50 values were 0.48, 0.13, 0.03 and 0.02 muM for 

exposure times of 3, 24, 72, and 120 h, respectively.  Thus, cells were far more sensitive with 

increasing exposure time (Fujishita et al., 2003).  

The AB50 and NR50 values generated for cell line exposure to CNA were also quite good.  

In fact, they were lower for all cell lines than the average reported LC50 values (30.24 ± 

22.57µg/ml) except for the AB50 value of 42.91 ± 4.2µg/ml for the WF-2 cell line.  That is, the 
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vast majority of cell lines were more sensitive to 24h CNA exposure than the whole-animal, 96h 

exposure models.  The reasons for this are unclear. 

The results for the assessment of the Cr.NA extract were more variable.  The Cr.NA 

extract used in this study were received from Richard Kavanagh and were prepared as per Frank 

et al. (2008).  Briefly, the Cr.NA extract used in this study was prepared by the collection of 

2000 L of tailings pond water from Syncrude Canada Ltd. West Endpit settling basing in Fort 

McMurray, Alberta, Canada.  NAs and other organic acids were precipitated by acidifying the 

tailings water.  Precipitate was isolated and re-dissolved in 0.1 N NaOH.  Samples were kept in 

1L amber bottles at 4°C.  Naphthenic acids are a diverse mixture of acidic compounds that vary 

tremendously depending on the source (Rogers et al., 2002).  This particular Cr.NA extract was 

tested for toxicity using the Microtox assay, from which EC50 values (64.9 ± 14.5 µg/ml) are 

used for comparison in this study.  CFDA-AM50 and NR50 values calculated using fish cells in 

this study were higher, quite significantly in some cases, ranging from 103.67 ± 51.7 µg/ml to 

682.7 ± 163.4 µg/ml.  AB50 values were much better, ranging from 45.26 ± 2.44µg/ml to 146.3 ± 

46.6µg/ml.  Current concentrations of NAs in holding ponds owned by Suncor Energy Inc. and 

Syncrude Canada Ltd. are reported to range between 80 and 110 mg/l (FTFC, 1995).  Although 

the NR50 and CFDA-AM50 results were elevated by comparison, the AB50 values were 

comparable to those obtained using the Microtox assay.  Therefore, AB was sufficiently sensitive 

to detect toxicity at NA levels currently present in AOS holding ponds.  In other words, this 

assay would provide an accurate, cost- and time-effective evaluation of OSPW while providing 

in vitro toxicity data relevant to whole fish. 

It should be noted that the toxicity of CAN appeared greater than the Cr.NA extract, 

consistently yielding lower EC50 values.  Similar results were found by Nero et al. (2006) when 
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exposing young-of-the-year yellow perch to a commercial and an extracted oil sands NA mixture 

resulting in LC100 values of 3.6 and 6.8 mg/L, respectively.  This difference in toxicity is likely 

due to the difference in the relative composition of the C-number and Z-value of the NA 

compounds.  Nero et al. (2006) also found that the addition of 1 g/L of salt (Na2SO4) reduced the 

NA toxicity by 40-50%.  The addition of salt to the NA solution may cause precipitation of the 

NA out of solution making the nominal concentration of NA less than the dissolved 

concentration available to the organism, effectively reducing the apparent toxicity.  Therefore, 

salinity may be an important factor when measuring OSPW toxicity and could be a valuable area 

of research in the future. 

The trend lines for graphs representing toxicity data for Cr.NA in Figure 5.4 do not show 

a smooth decline in cell viability as surfactant concentration is increased, rather overall dose-

dependent declines with intermittent plateaus that seem to indicate no loss of cell viability across 

a concentration range.  This may have been indicative of up-regulation of specific enzymes or 

repair mechanisms that happen to effect the reduction of fluorescent indicator dye at certain 

chemical concentrations (Sandbacka et al., 2000).  Another explanation may lie simply in the 

concentrations tested.  It is interesting to note that the plateaus observed in this assay all fall 

within, but do not span across an order of magnitude of concentration across the x-axis.  A basic 

principle of toxicology is that response often varies proportionally to geometric increases in 

dose, not arithmetic (Stine and Brown, 1996).  Although we do test sequential doublings of 

Cr.NA concentration here, perhaps this extract was not acutely toxic enough to show marked 

decreases in cell viability across some changes in chemical concentration; Cr.NA was the least 

toxic of all four compounds, yielding the highest EC50 values.   
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Contrary to the promising AB50 and NR50 values, CFDA-AM was ineffective in the 

assessment of SDS, CNA, and Cr.NA, yielding erratic results and variable EC50 values both 

within and between cell lines.  Similar erratic results were found by Dayeh et al. (2004) using 

CFDA-AM when measuring toxic effects of the non-ionic surfactant, Triton X-100 on fish cell 

lines and Tetrahymena thermophila; cell viability appeared to increase while that measured by 

AB and NR appeared to decrease.  As mentioned, CFDA-AM is indicative of toxicity by 

indirectly measuring cell membrane damage via non-specific esterase activity.  This is achieved 

through the conversion of CFDA-AM to a fluorescent product (carboxyfluorescein) by non-

specific esterases in one of two scenarios:  Esterases in the cell have been released into the 

extracellular environment due to extensive membrane damage since surfactants induce 

cytotoxicity via narcosis (Frank et al., 2008), or esterases from within the cell readily interact 

with the CFDA-AM when there is cell membrane damage sufficient to allow the indicator dye to 

pass through the damaged membrane into the cell.  In the case of significant membrane damage 

viability appears to be lost when the necessary enzymes that reduce CFDA-AM are essentially 

removed from the exposure environment during the assay protocol.  That is, fewer esterases 

remain in the exposure wells when fluorescent dyes are added.   

An explanation for the erratic and often dramatic increases in perceived viability may lie 

in the protocol used.  When microwell plates were inverted to evacuate exposure wells prior to 

adding fluorescent dye solution, a small ring of exposure solution remained at the bottom of each 

well possibly containing liberated esterases.  To a certain extent, greater membrane disruption, as 

would be expected with increasing surfactant concentrations, may have resulted in greater 

concentrations of esterases in this residual solution and subsequent viability readings that were 

misleading.    
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4.5 Cell line exposure to OSPW samples 

 

 The OSPW samples are an eclectic mixture of chemicals produced from oil sand during 

the bitumen extraction process (Table 3.1).  The implementation of successful wet landscape 

reclamation options, such as EPLs, must involve the evaluation of salt- and naphthenate-

containing OSPW (Leung et al., 2003).  Analytical chemistry techniques can be helpful in 

characterizing and quantifying the components of such whole-water mixtures, but lack the ability 

to accurately predict its potential toxicity on aquatic biological systems, such as fish.  To this 

end, non-animal toxicity models utilizing fish cell lines can be used to assess toxicity of samples 

in a rapid, inexpensive, and ethical manner.   

The evaluation of toxicity of mining effluents can be extremely complex due to the nature 

of the mixtures, the diverse physico-chemical properties of the constituents, and a multitude of 

potential modes of interaction with biological systems.  However, the cell line bioassay in this 

study was able to successfully identify toxicity in a number of OSPW samples after 24 h 

exposures, showing significant decreases in measured viability, sometimes dropping below 50% 

of that of the control.  No one cell line appeared to be the most or least sensitive for every 

sample, perhaps due to the complex and varying composition of the OSPW samples.  However, 

the AB assay was the most consistent, yielding similar viability data for all trials both within and 

across cell lines (Figure 3.1).  This assay indicated OSPW samples 8, 12, 13, 16, 19, 42, 43 to be 

particularly toxic to all fish cell lines, yielding viability data dropping below 50% of that of 

control cells.   

A number of studies have identified NAs as the main toxic constituent of OSPW 

(Dokholyan and Magomedov, 1983; MacKinnon and Boerger, 1986; Alberta Environmental 

Protection, 1996; Schramm et al., 2000).  NAs are naturally found in surface water at 
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concentrations up to 1-2µg/ml in the Athabasca region as a result of erosion of exposed oil sand 

(Alberta Environmental Protection, 1996).  However, during the bitumen extraction process, 

NAs are liberated and dissolved in tailings water where concentrations may be in excess of 

100µg/ml (Leung et al., 2003).     

NAs have been shown to be toxic to a number of organisms including plants (Wort and 

Patel, 1970), fish, zooplankton, rats, and luminescent bacteria (Clemente and Fedorak, 2005).  

Dokholyan and Magomedov (1984) studied acute NA toxicity by exposing various fish species 

to 12-100mg/l NA for 10 days, generating LC50 values ranging from 25-75mg/l.  Dorn (1992) 

found fish to be even more sensitive to oil refinery effluents showing significant toxicity in 

effluents containing NA concentrations as little as 2.5-5 mg/l.  The concentration of NA in the 

OSPW samples in this study ranged from 0.30 – 82.30 µg/ml.  However, it should be noted that 

the aforementioned studies used differing sources of NAs (e.g., commercial preparations, oil 

refinery effluents, or NAs isolated from oil sands tailings ponds).  This is important because the 

complex nature of NAs makes estimates of effective concentrations variable (Alberta 

Environmental Protection, 1996), probably because NA samples of similar concentrations from 

different sources are likely different in composition with regard to molecular weight, C-number, 

and Z-value (Nero et al., 2006), making sample-to-sample comparisons difficult (Clemente and 

Fedorak, 1984).   

Peters et al. (2007) specifically tested the toxicity of surface water from Mildred Lake 

settling basin (MLSB) containing OSPW-characteristic elevations in sodium sulphate, NAs, and 

low level PAHs. Yellow perch and Japanese medaka eggs were fertilized and exposed to serial 

dilutions of MLSB water for the duration of their development.  They found that the threshold 

concentration of NA found in the MLSB water to be 7.52 mg/L, above which there was a 
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positive correlation between NA concentration and deformed embryos.  The concentration of NA 

in the OSPW samples in this study ranged from 0.30 – 82.30 µg/ml. 

The chemical composition of the OSPW samples was unknown during toxicity testing so 

as to not bias reporting.  When the viability data was compiled and the composition of OSPW 

samples revealed there appeared to be a positive correlation between increasing concentration of 

NAs in samples and decreasing cell viability, especially as measured by AB.  The correlation 

coefficient
2
 (R

2
) between cell viability and concentration of NA was as high as 0.6171 (WF-2 

cell line, AB assay; p<0.0001), and ranged from 0.4519 to 0.5658 for the remaining cell lines 

(p<0.0001).  Because NAs widely reported as one of the main toxicants in oil sands produced 

waters it may be expected that correlation coefficients be in the 0.80-0.90 range, with little 

variation among cell lines.  An explanation for the varying correlation can be advanced by 

considering the biodegradation process of NAs in the tailings ponds and water bodies from 

which the OSPW samples were collected.  The acute toxicity of OSPW has been found to 

decrease with time (MacKinnon and Boerger, 1986).  This decrease in toxicity appears to 

correlated with an increase in the proportion of NAs that contain ≥22 carbons (Holowenko et al., 

2002) which implies OSPW sample toxicity is influenced primarily by low molecular weight 

NAs (Frank et al., 2008).  Frank et al. (2008) showed continual decreases in toxicity as measured 

by the Microtox assay with increases in the proportion of higher-molecular weight NAs.  The 

shift in proportion of high molecular weight NAs is thought to be the result of greater microbial 

degradation of low-molecular weight NAs over time.  Although the sampling date for each 

sample in this study was disclosed with the chemical composition data, the nature of the sample 

and its history on the Syncrude lease site was not.  As such, two samples that had been stored in 

tailings ponds for different periods of time may contain similar concentrations of NAs but a 
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completely different high-to-low molecular weight composition ratio.  And, in turn, this may be 

reflected in the toxicity data.   

Naphthenates occur together with other compounds, such as hydrocarbons, sulphate, and 

salinity (dominated by sodium, sulphate, and chloride), and there is evidence for toxicological 

effects of salts derived from the extraction process (Leung et al. 2001).  The aforementioned 

complex nature of naphthenates, along with the presence of these additional process-affected 

substances makes the ecotoxicological evaluation of OSPW difficult.  However, a number of 

studies have found that some of the toxicity induced by OSPW is related to salinity from major 

ions or some additional factor, such as PAHs (van den Heuvel et al., 1999; Peters, 1999, Leung 

et al., 2003).   

For this reason, multiple-regression analysis was done to identify additional components 

of the OSPW samples that may contribute to the observed toxicity.  Correlations with cell 

viability similar to those found with NA concentrations were found between concentrations of 

sodium, and bicarbonate, as well as sample conductivity (Table 3.4) as measured by AB, and 

with CFDA-AM for HCO3.  Such increases in these OSPW components and concomitant 

decreases in cell viability imply they may also inducing toxicity.  However, a high degree of 

multicollinearity was found between the concentrations of NA, Na, HCO3, and sample 

conductivity (major ions).  This suggests that these values are strongly correlated to the 

concentration of NAs in a given sample.  That is, with increases in NA, similar increases are seen 

in Na, HCO3, and sample conductivity.  The major ions typically responsible for high 

conductivity (Cl, Na, K, etc.), as well as HCO3
-
, and SO3

-
 are all likely present due to the 

processing procedures during the Clarke hot water extraction process and can be found in OSPW 

thereafter (Allen, 2008; Brient et al., 1995).   



53 

 

53 

Conductivity is often used as a measure for the common ions dissolved in freshwater 

(Goodfellow et al., 2000).  With regard to toxicity, conductivity can be used as a general 

screening tool.  The conductivity of a freshwater effluent above 2000 µS/cm may indicate a 

concentration of dissolved solids high enough to induce toxicity in aquatic organisms (American 

Petroleum Institute, 1998).  However, the correlation between increasing conductivity and 

toxicity may vary with ionic composition of effluent samples and therefore may not be the best 

predictor of toxicity.  That is, cations and anions are not present individually, but instead are 

associated with other ions making conductivity per se a poor predictor of toxicity.   Twenty of 

the OSPW samples in this study are reported to have a conductivity measurement in excess of 

2000 µS/cm.  Allen (2008) states that even if salinity concentrations in process water are 

insufficient to be acutely toxic, it may act as a stressor effectively increasing the toxicity of other 

compounds present in the effluent.  Therefore, it is critical to compare ion concentrations in the 

effluent to literature or lab-derived toxic effect concentrations (Goodfellow et al., 2000).   

Reported 96h LC50 values for HCO3
-
 for rainbow trout and bluegill were 7700 µg/ml and 

7100 µg/ml (OECD, 2002), respectively.  OSPW sample 16 had the highest concentration of 

HCO3 of the 49 samples tested, containing only 1050 µg/ml making HCO3 an unlikely source of 

toxicity on its own.  Similarly, studies have shown that Na
+
 is not generally a major contributor 

to freshwater aquatic toxicology; in fact, the absence of Na
+
 can be more toxic (Mount et al., 

1997).  Generally, toxicity with regard to Na
+
 is concerned with the associated anion 

(Goodfellow et al., 2000).  

Very little could be learned about the toxicity of these samples using CFDA-AM and NR.  

The variability seen here (Figures 5.17 & 5.18) was very much like that seen when testing the 

Cr.NA extract, and likely for the same reasons.  However, the purpose of the fish cell line 



54 

 

54 

bioassay used in this study was to accurately detect potential toxicity in a plethora of whole-

water samples in a cost- and time-effective manner.  Not only was the toxicity data generated for 

AB much more consistent and correlate better with NA concentration, the assay is much easier 

than CFDA-AM and NR.  As outlined in Appendix C, there are fewer steps involved in the dye 

preparation and assay execution for AB than for the other two.  Schirmer (2006) suggests 

retaining a suite of all three indicator dyes in order to evaluate a strong cross-section of viability 

criteria, which may be particularly useful in the assessment of complex OSPW samples. 

4.6 Conclusions 

 

For the purpose of evaluating a number of putative toxicants or unknown mixtures in a 

rapid, inexpensive, and ethical manner, bioassays using fish cell lines and fluorometric indicator 

dyes could be very useful, especially in the preliminary assessment of a large number of samples.  

Effective concentrations generated for each cell line for one or more fluorometric indicator dyes 

compared well to those obtained in vivo.  These results were generated in only 24 h and may 

provide valuable insight into potential adverse affects of a toxicant on the tissue, organ, or 

species from which they were derived.    

The easiest fluorometric indicator dye to use was AB, requiring far less time and effort 

than NR, and gave consistent dose-response curves that were generally comparable to reported 

LC50 values for those compounds.  This is important as a hallmark of these in vitro assays is time 

efficiency and ease of use.  AB was also successful with all cell lines used in this study for 

detecting toxicity of OSPW samples, yielding data that were consistent between trials and across 

cell lines and correlated well with reported NA concentrations in each sample. 

 Even though NR and CFDA-AM were problematic in different circumstances, Schirmer 

(2006) recommends using a suite of all three fluorometric dyes because they evaluate a cross-
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section of viability criteria.  This may be particularly important in studies like this that look at 

multiple chemicals of varying chemical characteristics or of complex mixtures of unknown 

composition, or of complex mixtures whose mode of toxicity is unclear.   

In closing, this fish cell line bioassay may have the potential to facilitate preliminary 

screening of large numbers of OSPW samples ameliorating the magnitude of time, money, 

whole-animals required to safely implement and monitor wet reclamation landscapes, such as 

EPLs.  
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Appendices 

 

Appendix A – Formulation for the preparation of 1L of the minimal media, L-15/ex 

(exposure) 

Inorganic salts Supplier Amount (g) 

NaCl S-5886 8.000 

KCl P-5405 0.400 

MgSO4.7H20 Caledon 4860-1 0.200 

MgCl2.6H20 BDH ACS 474 0.200 

CaCl2.2H20 BDH ACS 186 0.185 

Na2HPO4 (anhydrous) Sigma S-5136 0.190 

KH2PO4 (anhydrous) BDH ACS 657 0.060 

   

Carbohydrate source   

D-Galactose Sigma G5388 0.900 

Sodium Pyruvate Alfa Aesar 113-24-6 0.550 
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Appendix B – Storage, Preparation of OSPW samples 

 

 OSPW samples were received from Dr. Mike MacKinnon.  The samples were taken from 

various bodies of water on the Syncrude Canada Ltd. lease site in northeastern Alberta.  Samples 

were stored in a dark cold-room (4°C).  Samples were adjusted to physiologically relevant 

osmolarities by the addition of 8ml OSPW sample to 2ml of 20X concentrated L-15/ex.  This 

means that OSPW samples were actually tested at 80% their original concentration (specific 

OSPW sample preparation protocol can be found in the Materials and Methods section).  

Osmolarity of the samples after the addition of L-15/ex was checked via Westcor 5001B vapour 

pressure osmometer.   
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Appendix C – Specific assay protocol for Alamar blue, CFDA-AM, Neutral red 

(protocol adapted from Dayeh et al. 2005) 
 

Alamar blue (AB) 

 

1. Turn on and thoroughly clean laminar flow hood with 70% ethanol solution. 

2. Prepare a 5% (v/v) working solution of AB in L-15/ex.  This must be done with both the 

lights in the flow hood and the lab off to prevent photodegradation of the dye. 

3. Remove exposure medium from the plates by inverting over paper towel. 

4. Add 100µl of the AB solution to each well of the 96-well plate. 

5. Incubate plates in the dark for 45 minutes at 18°C. 

6. After sufficient incubation time, plates can be read one at a time in a fluorescence 

multiwell plate reader.  The plate reader filters should be set at excitation and emission 

wavelengths of 530nm and 595nm, respectively.  (Lids should be removed from the 

microwell plate) 

CFDA-AM 

 

1. Turn on and thoroughly clean laminar flow hood with 70% ethanol solution. 

2. A 4mM stock solution can be prepared by dissolving CFDA-AM in sterile DMSO.  

Aliquots of 0.5ml can be prepared in order to avoid damage done during repeated 

freezing and thawing of stock solution.  Also, aliquots can be wrapped in aluminum foil 

to prevent photodegradation of dye. 

3. A 4µM solution of CFDA-AM can be prepared by diluting 0.5 mM CFDA-AM stock 

solution 1:1000 in L-15/ex.  Lights in the flow hood and the lab should be out at this 

point to avoid photodegradation of dye. 
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4. Remove exposure medium from the plates by inverting over paper towel. 

5. Add 100µl of the CFDA-AM solution to each well of the 96-well plate. 

6. Incubate plates in the dark for 45 minutes at 18°C. 

7. After sufficient incubation time, plates can be read one at a time in a fluorescence 

multiwell plate reader.  The plate reader filters should be set at excitation and emission 

wavelengths of 485nm and 530nm, respectively.  (Lids should be removed from the 

microwell plate) 

 

Neutral red (NR) 

 

1. Turn on and thoroughly clean laminar flow hood with 70% ethanol solution. 

2. Prepare a 3% (v/v) working solution of NR by diluting the NR stock solution 1:100 in L-

15/ex.  Lights in the flow hood and lab should be off at this point to avoid 

photodegradation. 

3. Remove exposure medium from the plates by inverting over paper towel. 

4. Add 100µl of the NR solution to each well of the 96-well plate. 

5. Incubate plates in the dark for 60 minutes at 18°C. 

6. Remove NR from plates by inverting over paper towel. 

7. Add 100µl of NR fixative solution (0.5% (v/v) formaldehyde and 1% (v/v) CaCl2 in 

deionized water) to each well of the plate.   

8. Remove NR fixative solution after 1 minute. 

9. Add 100µl of NR extraction solution (1% (v/v) acetic acid and 50% (v/v) ethanol in 

deionized water) to each well of the plate.  Place plates on an orbital shaker (40 rpm) for 

10 minutes. 
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10. Plates can be read one at a time in a fluorescence multiwell plate reader.  The plate reader 

filters should be set at excitation and emission wavelengths of 530nm and 645nm, 

respectively.  (Lids should be removed from the microwell plate) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



71 

 

71 

Appendix D – Calculation of EC50 values using GraphPad Prism 

 

1. Open GraphPad Prism program on the computer. 

2. Under ―Choose a graph‖, choose ―Points only‖ graph. 

3. Under ―Sub-column for replicates or error values‖, leave blank for X error bar and 

choose either ―Enter and plot a single y value for each point‖ or ―Enter and plot error 

values already calculated elsewhere‖ 

4. Click ―Create‖ 

5. Enter data (as a % of Control) 

6. Click ―Analyze‖, under ―Transform‖ option double-click ―X values using X=log(x)‖ and 

then OK 

7. Click ―Analyze‖ again, under ―XY analysis‖ option double-click ―Non-linear regression 

(curve fit); under Dose-response-Inhibition select log(inhibitor) vs normalized response 

8. Click ―OK‖ 

9. A spreadsheet with EC50 values, statistical analyses and a sigmoidal dose-response curve 

will appear. 

10. Data and corresponding graphs can be saved under ―File‖ and ―Save As‖ 
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Appendix E – Cell line responses to 24 h exposure CuSO4, SDS, CNA, and Cr.NA 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CuSO4 [µg/ml]      CuSO4 [µg/ml] 

Figure 5.1 - Viability of WF-2, GFSk-S1, RTL-W1, RTgill-W1, FHMT, and FHML cell 

lines after 24 h exposure to CuSO4.  Cell lines were plated between 4.5 and 7.0 x 10
4
 cells/well and 

subsequently exposed to varying concentrations of CuSO4 prepared in L-15/ex media.  Chemical exposure lasted 24 

h at which point cellular viability was measured using fluorometric indicator dyes: alamar blue and CFDA-AM.  

Results are expressed as a percentage of the viability of cells not exposed to CuSO4.  Data points represent the mean 

of three separate experimental trials (with standard deviation), each trial consisting of 4-6 wells per chemical 

concentration. 
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SDS [µg/ml]      SDS [µg/ml] 

Figure 5.2 - Viability of WF-2, GFSk-S1, RTL-W1, RTgill-W1, FHMT, and FHML cell 

lines after 24 h exposure to SDS.  Cell lines were plated between 3.5 and 6.0 x 10
4
 cells/well and 

subsequently exposed to varying concentrations of SDS prepared in L-15/ex media.  Chemical exposure lasted 24 h 

at which point cellular viability was measured using fluorometric indicator dyes: CFDA-AM, alamar blue, and 

neutral red.  Results are expressed as a percentage of the viability of cells not exposed to SDS.  Data points represent 

the mean of three separate experimental trials (with standard deviation), each trial consisting of 4-6 wells per 

chemical concentration. 
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CNA [µg/ml]      CNA [µg/ml] 

Figure 5.3 - Viability of WF-2, GFSk-S1, RTL-W1, RTgill-W1, FHMT, and FHML cell 

lines after 24 h exposure to CNA.  Cell lines were plated between 5.0 and 8.0 x 10
4
 cells/well and 

subsequently exposed to varying concentrations of CNA prepared in L-15/ex media.  Chemical exposure lasted 24 h 

at which point cellular viability was measured using fluorometric indicator dyes: CFDA-AM, alamar blue, and 

neutral red.  Results are expressed as a percentage of the viability of cells not exposed to CNA.  Data points 

represent the mean of three separate experimental trials (with standard deviation), each trial consisting of 4-6 wells 

per chemical concentration. 
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Cr.NA [µg/ml]      Cr.NA [µg/ml] 

Figure 5.4 - Viability of WF-2, GFSk-S1, RTL-W1, RTgill-W1, FHMT, and FHML cell 

lines after 24 h exposure to Cr.NA.  Cell lines were plated between 4.2 and 7.5 x 10
4
 cells/well and 

subsequently exposed to varying concentrations of Cr.NA prepared in L-15/ex media.  Chemical exposure lasted 24 

h at which point cellular viability was measured using fluorometric indicator dyes: CFDA-AM, alamar blue, and 

neutral red.  Results are expressed as a percentage of the viability of cells not exposed to Cr.NA.  Data points 

represent the mean of three separate experimental trials (with standard deviation), each trial consisting of 4-6 wells 

per chemical concentration. 
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Appendix F – Raw data for individual trials for cell line exposure to CuSO4, SDS, 

CNA, and Cr.NA 

  

 

 

      CuSo4 [µg/ml]            CuSo4 [µg/ml] 

 

Figure 5.5 - Viability of WF-2, RTgill-W1, FHML, FHMT, GFSK-S1, and RTL-W1 cells 

after 24h exposure to CuSO4 as measured by alamar blue.  Cells were exposed to serial dilutions of 

CuSO4 (nominal concentrations in µg/ml) prepared in L-15/ex.   
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      CuSo4 [µg/ml]            CuSo4 [µg/ml] 

Figure 5.6 - Viability of WF-2, RTgill-W1, FHML, FHMT, GFSK-S1, and RTL-W1 cells 

after 24h exposure to CuSO4 as measured by CFDA-AM.  Cells were exposed to serial dilutions of 

CuSO4 (nominal concentrations in µg/ml) prepared in L-15/ex.   



78 

 

78 

 

 

 

 

CuSo4 [µg/ml] 

Figure 5.7 - Viability of RTgill-W1, FHML, FHMT cells after 24h exposure to CuSO4 as 

measured by NR.  Cells were exposed to serial dilutions of CuSO4 (nominal concentrations in µg/ml) prepared in L-

15/ex.   
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      SDS [µg/ml]             SDS [µg/ml] 

 

Figure 5.8 - Viability of WF-2, RTgill-W1, FHML, FHMT, GFSK-S1, and RTL-W1 cells 

after 24h exposure to SDS as measured by alamar blue.  Cells were exposed to serial dilutions of SDS 

(nominal concentrations in µg/ml) prepared in L-15/ex.   
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 SDS [µg/ml]            SDS [µg/ml] 

Figure 5.9 - Viability of WF-2, RTgill-W1, FHML, FHMT, GFSK-S1, and RTL-W1 cells 

after 24h exposure to SDS as measured by CFDA-AM.  Cells were exposed to serial dilutions of SDS 

(nominal concentrations in µg/ml) prepared in L-15/ex.   
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SDS [µg/ml]            SDS [µg/ml] 

Figure 5.10 - Viability of WF-2, RTgill-W1, FHML, FHMT, GFSK-S1, and RTL-W1 cells 

after 24h exposure to SDS as measured by NR.  Cells were exposed to serial dilutions of SDS (nominal 

concentrations in µg/ml) prepared in L-15/ex.   
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     Cr. NA [µg/ml]            Cr. NA [µg/ml] 

Figure 5.11 - Viability of WF-2, RTgill-W1, FHML, FHMT, GFSK-S1, and RTL-W1 cells 

after 24h exposure to Cr. NA as measured by AB.  Cells were exposed to serial dilutions of Cr. NA (nominal 

concentrations in µg/ml) prepared in L-15/ex.  Results illustrate cell viability measured AB.  Data points represent an average of 

6 replicate wells.   
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      Cr. NA [µg/ml]            Cr. NA [µg/ml] 

Figure 5.12 - Viability of WF-2, RTgill-W1, FHML, FHMT, GFSK-S1, and RTL-W1 cells 

after 24h exposure to Cr. NA as measured by CFDA-AM.  Cells were exposed to serial dilutions of Cr. 

NA (nominal concentrations in µg/ml) prepared in L-15/ex.   
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      Cr. NA [µg/ml]            Cr. NA [µg/ml] 

Figure 5.13 - Viability of WF-2, RTgill-W1, FHML, FHMT, GFSK-S1, and RTL-W1 cells 

after 24h exposure to Cr. NA as measured by NR.  Cells were exposed to serial dilutions of Cr. NA 

(nominal concentrations in µg/ml) prepared in L-15/ex.   
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   CNA [µg/ml]            CNA [µg/ml] 

Figure 5.14 - Viability of WF-2, RTgill-W1, FHML, FHMT, GFSK-S1, and RTL-W1 cells 

after 24h exposure to CNA as measured by AB.  Cells were exposed to serial dilutions of CNA (nominal 

concentrations in µg/ml) prepared in L-15/ex.   
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      CNA [µg/ml]            CNA [µg/ml] 

Figure 5.15 - Viability of WF-2, RTgill-W1, FHML, FHMT, GFSK-S1, and RTL-W1 cells 

after 24h exposure to CNA as measured by CFDA-AM.  Cells were exposed to serial dilutions of CNA 

(nominal concentrations in µg/ml) prepared in L-15/ex.   
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      CNA [µg/ml]            CNA [µg/ml] 

Figure 5.16 - Viability of WF-2, RTgill-W1, FHML, FHMT, GFSK-S1, and RTL-W1 cells 

after 24h exposure to CNA as measured by NR.  Cells were exposed to serial dilutions of CNA (nominal 

concentrations in µg/ml) prepared in L-15/ex.   
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Appendix G - Correlation between WF-2 cell-line viability as measured by AB and 

concentration of NA (ug/ml) in OSPW samples 
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Figure 5.17 – Representative graph showing correlation between cell viability and 

naphthenic acid concentration of evaluated OSPW samples.  WF-2 cells were exposed to OSPW 

samples for 24h after which cell viability was measured using AB, CFDA-AM, and NR.  This was done for all six 

cell-lines.  This graph shows significant correlation between cell viability as measured by AB and concentration of 

NA present in 49 individual OSPW samples (R
2
=0.6171; p<0.0001). 
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Appendix H - Comprehensive OSPW sample composition – Received from Dr. Mike MacKinnon, Syncrude 

Canada, Ltd. 

OSPW Samples 1-20 

OS
PW
# Site 

 SCL 
Pond 

# Pond  Date Tag 
N 

(UTM) 
E  

(UTM) pH 

Cond 
(uS/c

m) 
Tem

p DO 

NA 
(mg/

L) 

NH4 
(mg/

L) Na K Mg Ca 
F
    Cl SO4  CO3 

HC
O3 Al B 

1 SCL ts 1 FE1 
18-6-

07 
E4474

8 
63270

88 
45797

1 8.24 704 18.1 11.2 1.3 0.29 76.9 0.5 32.7 57.6 * 4.6 259 0.0 182 * 

0.1
5 

2 SCL ts 2 FE2 
18-6-

07 
E4474

9 
63270

15 
45795

8 8.39 696 17.8 12.5 3.0 0.27 144 0.5 16.9 21.6 * 35.0 36.7 15.9 367 * 

0.3
5 

3 SCL ts 3 FE3 
18-6-

07 
E4475

0 
63270

34 
45794

2 8.39 690 18.1 10.8 2.8 0.30 143 0.5 16.5 19.5 * 31.0 43.8 17.4 348 * 

0.4
8 

4 SCL ts 4 FE4 
18-6-

07 
E4475

1 
63270

50 
45791

9 8.53 667 18.5 11.4 3.6 0.28 137 0.5 17.6 18.0 * 27.0 58.4 18.0 322 * 

0.4
3 

5 SCL ts 5 FE5 
18-6-

07 
E4475

2 
63270

40 
45791

1 8.80 2340 18.1 12.6 11.2 2.1 614 8.0 39.0 20.0 * 140 777 50.1 481 * 

1.9
6 

6 SCL ts 6 FE6 
18-6-

07 
E4475

3 
63270

23 
45793

2 8.77 1260 18.4 11.8 2.5 0.21 273 0.5 30.8 19.7 * 34.0 308 28.0 385 * 

0.7
4 

7 SCL ts 9 

TPWPO
ND 

18-6-
07 

E4475
6 

63269
44 

45807
0 8.98 2040 17.9 9.1 21.6 0.18 528 6.2 10.1 9.0 * 240 122 75.6 664 0.6 

1.9
0 

8 SCL ts 10 

STORP
D 

18-6-
07 

E4475
7 

63269
13 

45807
6 8.91 2740 18.2 8.6 36.8 0.29 795 7.2 11.3 10.8 * 320 234 121.0 959 0.7 

2.8
3 

9 SCL ts 11 BPIT 
18-6-

07 
E4475

8 
63267

91 
45818

7 8.90 1530 18.5 10.7 8.3 0.35 379 5.1 18.0 14.2 * 110 164 55.2 575 0.1 

1.3
1 

10 SCL ts 13.1 

SHALW
L-Ditch 

18-6-
07 

E4476
0 

63266
03 

45811
2 8.85 620 19.4 14.5 0.4 0.21 91.2 0.5 38.1 19.3 * 14.0 125 25.8 223 * 

0.3
1 

11 SCL ts CTPd 

CT 
POND 

18-6-
07 

E4476
2 

63300
06 

45880
8 8.51 3750 19.6 11.1 27.7 0.01 1040 

14.
6 33.5 35.9 * 650 1220 20.7 357 * 

3.3
4 

12 SCL sw 
BCV-

1 

MLSP-
OP  

18-6-
07 

E4476
4 

63279
22 

46146
6 7.77 1920 11.1 0.8 44.2 2.31 548 0.5 11.6 27.8 * 220 71.6 13.5 

103
0 * 

1.4
9 

13 SCL sw 
BCV-

4 BCV-A5 
18-6-

07 
E4476

8 
63283

25 
46181

1 8.16 2490 17.0 8.2 24.1 0.01 628 0.5 21.6 45.9 * 480 89.2 24.9 821 * 

1.1
7 

14 Ref W ML MLAKE 
18-6-

07 
E4477

0 
63234

13 
46356

0 8.31 340 19.5 9.7 0.3 0.16 22.9 0.5 10.1 35.9 * 12.0 29.8 0.0 160 * 

BD
L 

15 
SCL 

Seep W 
BCV-

5 

BCV-
B16 

18-6-
07 

E4477
1 

63302
36 

46203
4 7.02 1280 13.1 6.4 1.9 0.23 176 0.5 34.6 103.0 * 150 229 0.0 346 * 

0.1
8 

16 
SCL 

Seep W 
Dyke
Seep 

DD 
B2506 

18-6-
07 

E4477
2 

63256
07 

46354
5 7.53 2310 9.5 1.9 65.5 2.72 702 9.0 14.2 18.1 * 240 295 13.5 

105
0 * 

2.4
1 

* Below detectable limits 
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OSPW Samples 1-16 Continued… 

 

O 
S 
P 
W Site 

 
SCL 
Pon
d # Pond  Date Tag Cr Cu Fe Li Mn Mo Ni P Pb S Sb Se Si Sr Ti V Zn Zr 

1 
SCL Test 

Site 1 FE1 
18-

Jun-07 E44748 BDL BDL BDL BDL BDL BDL BDL BDL BDL 88.3 BDL BDL 0.2 0.35 BDL BDL BDL BDL 

2 
SCL Test 

Site 2 FE2 
18-

Jun-07 E44749 BDL BDL BDL BDL BDL BDL BDL BDL BDL 14.6 BDL BDL 0.2 0.16 BDL BDL BDL BDL 

3 
SCL Test 

Site 3 FE3 
18-

Jun-07 E44750 BDL BDL BDL BDL BDL BDL BDL BDL BDL 16.8 BDL BDL 0.2 0.15 BDL BDL BDL BDL 

4 
SCL Test 

Site 4 FE4 
18-

Jun-07 E44751 BDL BDL BDL BDL BDL BDL BDL BDL BDL 21.7 BDL BDL 0.3 0.14 BDL BDL BDL BDL 

5 
SCL Test 

Site 5 FE5 
18-

Jun-07 E44752 BDL BDL BDL BDL BDL BDL BDL BDL BDL 273 BDL BDL 0.2 0.41 BDL BDL BDL BDL 

6 
SCL Test 

Site 6 FE6 
18-

Jun-07 E44753 BDL BDL BDL BDL BDL BDL BDL BDL BDL 112 BDL BDL 0.1 0.25 BDL BDL BDL BDL 

7 
SCL Test 

Site 9 
TPWPON

D 
18-

Jun-07 E44756 BDL BDL 0.2 BDL BDL BDL BDL BDL BDL 48.1 BDL BDL 3.5 0.16 BDL BDL BDL BDL 

8 
SCL Test 

Site 10 STORPD 
18-

Jun-07 E44757 BDL BDL 0.2 BDL BDL BDL BDL BDL BDL 85.8 BDL BDL 4.8 0.24 BDL BDL BDL BDL 

9 
SCL Test 

Site 11 BPIT 
18-

Jun-07 E44758 BDL BDL BDL BDL BDL BDL BDL BDL BDL 59.4 BDL BDL 1.8 0.26 BDL BDL BDL BDL 

10 
SCL Test 

Site 13.1 
SHALWL-

Ditch 
18-

Jun-07 E44760 BDL BDL BDL BDL BDL BDL BDL BDL BDL 44.8 BDL BDL 0.2 0.23 BDL BDL BDL BDL 

11 
SCL Test 

Site 
CTP

d CT POND 
18-

Jun-07 E44762 BDL BDL BDL BDL BDL BDL BDL BDL BDL 407 BDL BDL 0.4 0.74 BDL BDL BDL BDL 

12 
SCL 

Seep W 
BCV

-1 MLSP-OP  
18-

Jun-07 E44764 BDL BDL 1.9 BDL 0.2 BDL BDL BDL BDL 27.6 BDL BDL 5.1 0.24 BDL BDL BDL BDL 

13 
SCL 

Seep W 
BCV

-4 BCV-A5 
18-

Jun-07 E44768 BDL BDL 0.5 BDL BDL BDL BDL BDL BDL 32.8 BDL BDL 3.0 0.18 BDL BDL BDL BDL 

14 Ref W ML MLAKE 
18-

Jun-07 E44770 BDL BDL BDL BDL BDL BDL BDL BDL BDL 10.9 BDL BDL 1.5 0.25 BDL BDL BDL BDL 

15 
SCL 

Seep W 
BCV

-5 BCV-B16 
18-

Jun-07 E44771 BDL BDL BDL BDL BDL BDL BDL BDL BDL 81.9 BDL BDL 2.3 0.27 BDL BDL BDL BDL 

16 
SCL 

Seep W 

Dyk
eSe
ep 

DD 
B2506 

18-
Jun-07 E44772 BDL BDL 0.2 BDL BDL BDL BDL BDL BDL 106 BDL BDL 5.5 0.54 BDL BDL BDL BDL 
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OSPW Samples 17-20 

 

 Sample  

Water Source 
Carbon 
(Coke) 
Source 

Date 
Coke 

Content 
(wt%) 

Tag pH 
Cond 

(uS/cm) 

Nap 
Acids 
(mg/L) 

NH4 
(ppm) Na K Mg Ca F    Cl SO4  CO3 HCO3 Al B 

   Coke Slurry Water                                       

17 WIP_HC*-1 Slurry MLSB Coke 8-1 

12-
Jun-
07 6.7 E44727 7.93 3200 5.5 16.9 704 15.6 11.9 19.5 BDL 440 424 0.0 648 0.33 2.16 

                                           

   
Coke Adsorption Experiment Water 

              
                        

18 WIP_Ju 12_HC8-1 WIP 
Coke 8-

1_Jun 11 

13-
Jun-
2007 20 E44775 8.36 3380 15.4 13.4 844 15.0 10.7 16.0 BDL 530 384 30.9 742 BDL 2.60 

19 
DDW_May15_HC8-

1 DDW 
Coke 8-

1_Jun 11 

13-
Jun-
2007 20 E44776 8.25 2740 30.2 2.6 677 8.9 12.7 15.9 BDL 250 300 37.2 969 BDL 2.39 

20 
WIP_Jun12_HC8-1 

_CO2 WIP 
Coke 8-

1_Jun 11 

13-
Jun-
2007 20 E44777 7.34 3460 21.4 14.9 793 14.2 10.8 16.3 BDL 520 383 0.0 825 BDL 2.49 

 

OSPW Samples 17-20 Continued… 

 Sample  

Water Source 
Carbon 
(Coke) 
Source 

Date 
Coke 

Content 
(wt%) 

Tag Ba Cd Co Cr Cu Fe Mn Mo Ni P Pb S Se Si Sr V Zn Zr 

   Coke Slurry Water                                             

17 
WIP_HC*-1 

Slurry MLSB Coke 8-1 

12-
Jun-
07 6.7 E44727 BDL BDL BDL BDL BDL BDL BDL 0.5 BDL BDL BDL 146 BDL 3.0 0.6 

3.0
4 

BD
L 

BD
L 

                                                 

   Coke Adsorption 
Experiment Water 

        
                                    

18 
WIP_Ju 

12_HC8-1 WIP 

Coke 8-
1_Jun 

11 

13-
Jun-
2007 20 E44775 0.2 BDL BDL BDL BDL BDL BDL 0.2 BDL BDL BDL 137 BDL 2.6 0.6 

1.4
7 

BD
L 

BD
L 

19 
DDW_May15_

HC8-1 DDW 

Coke 8-
1_Jun 

11 

13-
Jun-
2007 20 E44776 0.1 BDL BDL BDL BDL BDL BDL 0.1 BDL BDL BDL 103 BDL 5.4 0.5 

1.4
1 

BD
L 

BD
L 

20 
WIP_Jun12_H

C8-1 _CO2 WIP 

Coke 8-
1_Jun 

11 

13-
Jun-
2007 20 E44777 0.2 BDL BDL BDL BDL BDL 0.0 0.2 BDL BDL BDL 129 BDL 2.5 0.6 

1.4
7 

BD
L 

BD
L 
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OSPW Samples 21-49  

O
S
P
W
# Site Pond # Location Date N (UTM) 

E  
(UTM) Tag pH 

Cond 
(uS/cm) Temp DO 

Nap 
Acids NH4 Na K Mg Ca F Cl SO4 CO3  

                      

21 SCLRecl GP 

SCL_Golden 
Pond 8-Aug-08 6317297 462018 E62430 8.83 1680 23.2  3.4 <0.01 225 1.1 57.6 115 BDL 38 746 0.0 

22 SUN Recl 
SUN_Hig

hSO4 

SUN_High 
SO4WL 8-Aug-08 6317201 466390 E62431 7.64 2980 23.5   15.2 <0.01 437 15.9 118 200 BDL 4.4 1590 0.0 

23 SUN WL 
SUN-
4mCT SUN_4m CT 8-Aug-08 6316529 467777 E62432 8.25 1953 20.4   22.3 0.22 326 13.5 58.5 83.3 BDL 43 595 16 

24 SUN WL 
SUN_N

WL SUN_NatWL 8-Aug-08 6315310 468982 E62433 9.11 1242 20.7   44.1 0.56 292 11.9 14.1 19.4 1.3 17 204 37 

25 CNRL 
CNRL_

WL CNRL 31-Jul-08   E62434 9.32 256 21.7 8.0 2.4 <0.01 22.3 0.6 8.7 23.0 BDL 4.7 22.2 0.0 

26 SCL WL 
SCL_SB
eavWL South Beaver 6-Aug-08   E62435 7.57 345 19.1  3.2 <0.01 30.8 0.8 10.3 41.3 BDL 6.0 5.1 0.0 

27 SCL WL 
SCL_NW

IDWL 

SCL_NWID Ditch 
WL 6-Aug-08   E62437 8.19 663 21.8  2.3 0.11 94.4 1.6 22.1 39.7 BDL 56 37.9 0.0 

28 SUN WL SN 

SUNCTWL_Wast
e Area 11 7-Aug-08 6316190 467187 E62439 8.69 868 22.2  7.0 0.18 112 9.8 32.4 52.4 BDL 6.5 308 6.3 

29 SCL Test 
CTUPon

d U-Shaped Pond 18-Aug-08 6323038 460234 E62402 8.91 342 21.2 10.1 4.6 0.17 37.1 1.0 8.0 29.1 BDL 25.0 79.4 0 

30 SCL Test 1 FE1 18-Aug-08 6327088 457969 E62403 7.69 729 21.9 5.9 1.3 0.12 78.2 1.0 30.0 53.9 BDL 5.6 249 0 

31 SCL Test 2 FE2 18-Aug-08 6327018 457959 E62404 8.35 688 21.1 6.8 3.2 0.70 148 1.0 15.4 14.9 0.2 33.0 51.7 20 

32 SCL Test 3 FE3 18-Aug-08 6327032 457941 E62405 8.52 674 21.5 8.7 2.4 0.14 147 1.0 15.0 13.5 0.2 29.0 54.8 21 

33 SCL Test 5 FE5 18-Aug-08 6327037 457909 E62407 8.96 2680 21.7 9.3 10.6 0.23 630 8.7 37.6 15.1 BDL 140 784 65 

34 SCL Test 6 FE6 18-Aug-08 6327019 457931 E62408 9.03 1252 21.8 12.2 2.5 0.34 268 1.0 29.3 12.4 BDL 37.0 341 44 

35 SCL Test 9 TPW POND 18-Aug-08 6326943 458066 E62411 9.20 2080 19.5 6.3 20.0 0.28 519 1.0 8.7 5.7 1.3 230 119 124 

36 SCL Test 10 STOR POND 18-Aug-08 6326915 458077 E62412 8.81 3010 22.4 8.6 45.0 <0.01 780 7.6 11.0 9.7 2.2 310 275 139 

37 SCL Test 11 BPIT 18-Aug-08 6326776 458206 E62413 9.06 1584 22.2 9.7 12.1 0.15 378 1.0 15.8 8.9 0.6 112 188 109 

38 SCL Test 12 DEEP WL 18-Aug-08 6326603 458368 E62414 7.83 547 22.7 9.7 0.92 <0.01 72.2 1.0 23.9 30.9 BDL 12.0 78.6 13 

39 SCL Test 13.1 SHALWL-Ditch 18-Aug-08 6326634 458130 E62415 8.61 748 21.2 3.1 0.55 <0.01 113 1.0 37.1 19.9 BDL 15.0 174 30 

40 SCL Test CTPd CT POND 18-Aug-08 6330003 458807 E62417 8.72 4730 23.3 10.3 29.0 <0.01 1080 15.0 32.3 31.2 3.3 690 1260 41 

41 SCL Test CTProto 

CT PROTO 
POND 18-Aug-08 6328848 458631 E62418 8.93 540 24.1 11.2 5.5 0.10 124 1.0 3.5 7.4 BDL 69 28.5 20 

42 Seep Water BCV-1 MSLB OP 18-Aug-08 6327923 461465 E62419 7.56 2230 11.2 0.6 68.5 2.17 570 5.5 11.7 28.1 1.3 210 84.5 36 

43 Seep Water SCP-1 SCP1 18-Aug-08 6328616 461375 E62422 7.96 2270 17.4 7.9 46.6 0.51 557 5.6 17.6 40.0 0.9 250 124 40 

44 Seep Water BCV-4 BCV-A5 18-Aug-08 6328331 461813 E62423 8.07 2280 19.2 6.1 19.8 <0.01 519 1.0 18.2 44.8 BDL 340 91.3 22 

45 Seep Water BCV-5 BCV-B16 18-Aug-08 6330255 462031 E62424 7.49 1261 16.5 5.4 5.4 <0.01 159 1.0 32.0 94.9 BDL 130 185 10 

46 Seep Water BCV-0.5 ETB POND 18-Aug-08 6327559 462034 E62425 8.94 535 23.1 11.3 12.9 <0.01 123 1.0 3.0 7.5 0.1 55 29.1 16 

47 Seep Water 
DykeSee

p DD B2506 18-Aug-08 6325605 463546 E62426 7.59 2850 10.1 1.8 82.3 2.81 706 9.5 14.4 18.9 4.1 250 310 30 

48 Seep Water 
DykeSee

p DD B2503 18-Aug-08 6325587 463549 E62427 7.20 2950 10.4 1.0 75.8 2.70 733 10.5 14.6 24.3 0.8 280 301 29 

49 RefPond ML MLAKE 18-Aug-08 6323411 463556 E62428 8.22 287 23.3 9.1 0.4 <0.01 17.9 1.0 9.8 33.7 BDL 8.0 31.1 0 
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OSPW Samples 21-49 Continued… 

O
S
P
W
# Site Pond # Loc Date HCO3 

Alkalinity 
expressed 
as CaCO3 

Na/Cl 
(meq/meq) 

(Ca+Mg) / 
HCO3 

(meq/meq) 

(Ca+Mg) / 
SO4 

(meq/meq) 

Na / 
(Ca+M

g) 
(meq/m

eq) Al B Fe Mn Mo S Si Sr V Zn 

                     

21 SCLRecl GP SCL_Golden Pond 8-Aug-08 163 134 9.14 3.95 0.68 0.93 BDL 0.13 BDL BDL BDL 266 0.5 0.8 BDL BDL 

22 
SUN 
Recl 

SUN_Hig
hSO4 SUN_High SO4WL 8-Aug-08 239 196 153.30 5.06 0.60 0.96 BDL 0.93 BDL BDL BDL 539 0.6 2.2 BDL BDL 

23 SUN WL 
SUN-
4mCT SUN_4m CT 8-Aug-08 512 446 11.70 1.01 0.73 1.57 BDL 1.73 0.3 BDL BDL 210 6.4 1.0 BDL BDL 

24 SUN WL SUN_NWL SUN_NatWL 8-Aug-08 504 475 26.51 0.23 0.50 5.92 0.6 2.46 0.9 BDL 0.3 70.1 6.1 0.5 BDL BDL 

25 CNRL CNRL_WL CNRL 31-Jul-08 120 98 7.32 0.95 4.05 0.52 BDL 0.07 0.1 BDL BDL 7.6 0.5 0.2 BDL BDL 

26 SCL WL 
SCL_SBe

avWL South Beaver 6-Aug-08 231 189 7.92 0.77 27.51 0.46 BDL 0.07 0.9 0.2 BDL 1.7 2.1 0.2 BDL BDL 

27 SCL WL 
SCL_NWI

DWL 
SCL_NWID Ditch 

WL 6-Aug-08 333 273 2.60 0.70 4.85 1.07 BDL 0.17 BDL BDL BDL 15.9 1.9 0.3 BDL BDL 

28 SUN WL SN 
SUNCTWL_Waste 

Area 11 7-Aug-08 169 149 26.60 1.78 0.83 0.92 BDL 0.24 BDL BDL BDL 109 0.7 0.4 BDL BDL 

29 SCL Test CTUPond U-Shaped  Pond 18-Aug-08 80 65 2.29 1.62 1.28 0.76 BDL 0.23 BDL BDL BDL 27.3 0.7 0.30 BDL BDL 

30 SCL Test 1 FE1 18-Aug-08 173 142 21.55 1.83 1.00 0.65 BDL 0.15 BDL BDL BDL 85.7 1.0 0.32 BDL BDL 

31 SCL Test 2 FE2 18-Aug-08 322 296 6.92 0.34 1.88 3.17 BDL 0.35 BDL BDL BDL 15.9 0.8 0.12 BDL BDL 

32 SCL Test 3 FE3 18-Aug-08 308 287 7.82 0.34 1.69 3.32 BDL 0.49 BDL BDL BDL 16.7 0.7 0.10 BDL BDL 

33 SCL Test 5 FE5 18-Aug-08 403 439 6.95 0.44 0.24 7.04 BDL 2.00 BDL BDL BDL 266 0.6 0.30 BDL BDL 

34 SCL Test 6 FE6 18-Aug-08 259 286 11.18 0.53 0.43 3.81 BDL 0.73 BDL BDL BDL 116 0.6 0.17 BDL BDL 

35 SCL Test 9 TPW POND 18-Aug-08 553 660 3.48 0.08 0.41 22.39 0.6 1.88 0.1 BDL BDL 41.3 4.0 0.09 BDL BDL 

36 SCL Test 10 STOR POND 18-Aug-08 896 966 3.88 0.07 0.24 24.18 0.9 2.76 0.3 BDL BDL 91.2 6.1 0.22 BDL BDL 

37 SCL Test 11 BPIT 18-Aug-08 419 525 5.21 0.17 0.45 9.33 0.2 1.27 BDL BDL BDL 63.5 2.1 0.20 BDL BDL 

38 SCL Test 12 DEEP WL 18-Aug-08 258 232 9.29 0.76 2.16 0.89 BDL 0.13 BDL BDL BDL 29.9 1.0 0.21 BDL BDL 

39 SCL Test 13.1 SHALWL-Ditch 18-Aug-08 218 228 11.63 0.90 1.13 1.20 BDL 0.37 BDL BDL BDL 58.2 1.7 0.19 BDL BDL 

40 SCL Test CTPd CT POND 18-Aug-08 298 312 2.42 0.68 0.16 11.04 BDL 3.44 BDL BDL BDL 402 0.8 0.71 BDL BDL 

41 SCL Test CTProto CT PROTO POND 18-Aug-08 158 163 2.77 0.20 1.12 8.14 BDL 0.54 0.1 BDL BDL 10.7 0.8 0.12 BDL BDL 

42 
Seep 
Water BCV-1 MSLB OP 18-Aug-08 1025 900 4.19 0.13 1.35 10.41 BDL 1.60 1.0 0.3 BDL 30.1 5.3 0.25 BDL BDL 

43 
Seep 
Water SCP-1 SCP1 18-Aug-08 914 815 3.44 0.21 1.34 6.99 BDL 1.51 0.2 BDL BDL 46.0 6.1 0.33 BDL BDL 

44 
Seep 
Water BCV-4 BCV-A5 18-Aug-08 765 664 2.36 0.28 1.98 6.01 BDL 1.26 1.2 0.1 BDL 31.4 4.7 0.17 BDL BDL 

45 
Seep 
Water BCV-5 BCV-B16 18-Aug-08 351 304 1.89 1.22 1.92 0.93 BDL 0.22 BDL BDL BDL 67.0 3.8 0.27 BDL BDL 

46 
Seep 
Water BCV-0.5 ETB POND 18-Aug-08 184 177 3.45 0.18 1.03 8.57 0.4 0.44 0.2 BDL BDL 11.4 2.2 0.10 BDL BDL 

47 
Seep 
Water DykeSeep DD B2506 18-Aug-08 1020 886 4.36 0.12 0.33 14.31 BDL 2.54 0.0 BDL BDL 110 5.7 0.60 BDL BDL 

48 
Seep 
Water DykeSeep DD B2503 18-Aug-08 1040 901 4.04 0.13 0.39 13.11 BDL 2.59 BDL 0.1 BDL 109 6.0 0.62 BDL BDL 

49 RefPond ML MLAKE 18-Aug-08 138 113 3.45 1.11 3.86 0.31 BDL 0.06 BDL BDL BDL 11.4 1.6 0.25 BDL BDL 
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Appendix I  – Cell line responses to OSPW samples as measured by CFDA-AM and NR 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18 – Cell line response to 24 h exposure to OSPW samples as measured by CFDA-AM.  FHML, FHMT, RTgill-W1, RTL-W1, 

GFSk-S1, and WF-2 cells were exposed to iso-osmotic OSPW samples for 24 h at 18°C.  Cell viability was then measured by CFDA-AM.  Data points represent 

the mean of 2 separate experiments (each experiment consisted of 6-well replicates for each OSPW sample).  Cells were plated at densities ranging from 3.3X10
4
 

– 8.0X10
4
 cells/well.    
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Figure 5.19 – Cell line response to 24 h exposure to OSPW samples as measured by NR.  FHML, FHMT, RTgill-W1, RTL-W1, GFSk-

S1, and WF-2 cells were exposed to iso-osmotic OSPW samples for 24 h at 18°C.  Cell viability was then measured by NR.  Data points represent the mean of 6 

replicate wells.  Cells were plated at densities ranging from 3.3X10
4
 – 8.0X10

4
 cells/well.  

 


