
Software Simulation of 5-Axis

CNC Milling using

Multidirectional Heightmaps

by

Marshall Hahn

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2010

c© Marshall Hahn 2010

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Machinists often simulate a part program to verify its correctness, since mistakes

can cause damage to the part, machine, oneself, or others. A popular approach for

part program simulation involves representing the stock (the material the part is

being carved from) as a heightmap. Although this approach is computationally fast

and memory efficient, only objects that are representable as functional surfaces (e.g.,

z = f(x, y)) can be machined. This thesis presents a new heightmap-based data

structure, called a multidirectional heightmap, that does not have this limitation.

A multidirectional heightmap, in response to an overhang, recursively subdivides

itself until each piece can be represented by an axis-aligned heightmap. More

precisely, a multidirectional heightmap is a kD-tree with the property that all cells

are “functional”: each cell contains a heightmap that represents a functional portion

of the stock. To improve accuracy, each regular heightmap can be replaced by a

3-Way Heightmap, a new type of heightmap that samples the tool along all three

stock axis directions (three ways) rather than just one. The experimental results

herein suggest that the multidirectional heightmap data structure achieves a good

level of performance with respect to memory usage, CPU usage, and approximation

error.

iii

Acknowledgements

I would like to thank my supervisor Stephen Mann for his support, guidance,

and patience, and also for suggesting the intriguing idea of stock representation

via multiple heightmaps. I would also like to thank my readers, Craig Kaplan and

Sanjeev Bedi, for their helpful comments and suggestions. I would also like to

thank the members of the Computer Graphics Lab for helping me hone my public

speaking skills, and for all the enchanting coffee hours. I would also like to thank

my family for their love and support.

iv

Dedication

Dedicated to my parents.

v

Contents

List of Tables viii

List of Figures xi

1 Introduction 1

1.1 The ToolSim Project . 2

1.2 Objectives . 4

1.3 Outline . 4

2 Background 5

2.1 Milling . 5

2.2 ToolSim . 6

2.3 Related Work . 8

3 Cell Subdivision 10

3.1 Good-Bad Maps . 11

3.2 Possible Split Planes for Cell Subdivision 14

3.2.1 Sign Conflict Split Planes 16

3.2.2 Indirect Split Planes . 20

3.2.3 Direct Split Planes . 23

3.3 Minimization Selection Heuristics 31

vi

4 Stock Rendering with Continuous Seams 36

4.1 Discontinuous Seams . 36

4.2 3-Way Heightmaps . 38

4.3 3-Map Mesh Construction . 40

4.3.1 Exterior Mesh Construction 40

4.3.2 Interior Mesh Construction 42

4.4 3-Maps versus Regular Heightmaps 45

5 Implementation Issues 47

5.1 Data Structure Implementation . 47

5.2 Solid Segment Construction . 48

5.2.1 Heightmap Solid Segments 49

5.2.2 Tool Solid Segments . 51

5.3 Good-bad Map Region Bounding 52

6 Evaluation By Simulation 54

6.1 Simulation Examples . 54

6.2 Heuristic Evaluation . 59

6.3 CPU and Memory Usage . 64

6.4 Maximum Error of Surface Approximation 69

7 Conclusion 72

7.1 Summary and Contributions . 72

7.2 Limitations . 73

7.3 Other Simulation Techniques . 73

7.4 Optimizations . 75

References 76

vii

List of Tables

3.1 The four types of connecting sets. 25

6.1 Simulation parameters . 54

6.2 Ruleset total subdivision count. 60

6.3 Ruleset percentage increase/decrease of total subdivision count. . . 60

6.4 Overall ruleset performance. 61

6.5 Run time results. 67

6.6 Memory usage. 68

6.7 Closest error data. 71

6.8 Simulation parameters . 71

6.9 Heightmaps versus 3-maps with half the density. 71

6.10 Closest error data. 71

viii

List of Figures

1.1 The process of milling. 1

1.2 Some nonfunctional parts. 2

1.3 A 2D example of simulation with multidirectional heightmaps. . . . 3

2.1 Machine axes. 5

2.2 An example toolpath. 6

2.3 Stamp intersection. 7

2.4 Swept surface intersection . 7

2.5 Grazing curve swept surface construction. 8

2.6 Discontinous swept surface. 8

3.1 The CutCell algorithm. 11

3.2 Good bad-map pixel types. 12

3.3 Usage of good-bad maps . 13

3.4 Splitting with a Quadtree versus a kD-tree. 14

3.5 The unresolved/resolved curve classification. 15

3.6 Sign conflict example . 17

3.7 Complete isolation versus partial isolation 18

3.8 An example of multiple conflicting good regions. 18

3.9 Calculation of partial/complete split planes. 19

3.10 A 2D example of indirect split planes. 20

3.11 A 3D indirect split example. 21

3.12 A more complex 3D indirect split plane example. 22

ix

3.13 Two DSP series examples. 23

3.14 Segments sets and overlap intervals. 24

3.15 The ComputeOverlapIntervals algorithm. 26

3.16 The ComputeSets procedure. 26

3.17 The ComputeOverlapInterval procedure. 27

3.18 calculation of DSP series . 28

3.19 The ExpandSets procedure. 29

3.20 The RelaxSets procedure. 29

3.21 A 3D direct splits example . 30

3.22 A 2D illustration of the Closest-Toolcut-Direction (CTD) rule. . . . 32

3.23 3D illustration of Closest-Toolcut-Direction rule. 33

3.24 The Furthest-From-Side (FFS) rule. 34

4.1 Discontinuous seam example. 37

4.2 Embedded heightmap illustrations. 39

4.3 The partial side square cases. 41

4.4 The partial nonside square cases. 42

4.5 The partial cube cases. 43

4.6 Heightmap and 3-map wireframe representations of a vertical wall. . 45

4.7 A comparison of 3-maps and regular heightmaps. 46

5.1 Multidirectional heightmap memory layout. 48

5.2 Solid segments and usage. 50

5.3 Calculation of bounding rectangles for pixel regions. 53

6.1 Cylinder Spiral (CS). 55

6.2 Donut With Overhang 1 (D1). 56

6.3 Donut With Overhang 2 (D2). 56

6.4 Donut Spiral (DS1). 56

6.5 Donut Spiral (DS2). 56

x

6.6 Top face drilling and angled edge cut (MA1). The top face cuts

connect with the other cut. 57

6.7 Top face drilling and angled edge cut (MA2). 57

6.8 NonAA 45 Degree Drill (NA). 58

6.9 Angled drilling aligned with plane (A1). 58

6.10 Drill To Center of Cube Along Each Axis (A2). 58

6.11 Two planar toolcuts (A3). 58

6.12 A case where the CTD rule fails. 62

6.13 Closest Error Calculation . 69

xi

Chapter 1

Introduction

A computer numerically controlled (CNC) milling machine carves a piece of mate-

rial, such as wood or metal, into a particular object, or part, using a fast spinning

computer-controlled tool. For instance, Figure 1.1 illustrates the milling of a sim-

ple sign. The user specifies the path that the tool is to follow via a toolpath. The

machine will execute the toolpath exactly as specified, even if the given movements

will cause damage to the part, machine, or people. Although some support for

automatic toolpath generation exists, it is still not possible to avoid manual part

programming completely; people make mistakes [2]. Machine simulation is the

safest and most cost effective way to test multiaxis toolpaths [20].

Figure 1.1: The process of milling.

1

1.1 The ToolSim Project

Israeli developed a CNC machining simulator called ToolSim [10]. ToolSim uses

a heightmap to represent the stock. Although a stock represented in this manner

can be updated and rendered easily and efficiently, only objects that are repre-

sentable as functional surfaces (e.g., z = f(x, y)) can be machined. However, not

all machinable objects meet this requirement; examples are given in Figure 1.2.

The main goal of my thesis is to develop a new heightmap-based data structure,

called a multidirectional heightmap (mdh-map), that does not have this limitation.

This data structure, in response to an overhang, recursively subdivides itself until

each piece can be represented by an axis-aligned heightmap.

(a) (b) (c)

Figure 1.2: Some parts that cannot be represented using a heightmap [2].

More precisely, a multidirectional heightmap is a kD-tree with the property that

all cells are “functional”: each cell contains a heightmap that represents a functional

portion of the stock. Furthermore, a tool is said to “cut” a cell if it occupies some

portion of the cell’s solid space. To maintain the functional cell property, the

following simple rule is applied recursively to each cut cell: if the surface within

a cell is nonfunctional, subdivide the surface (and cell) into two pieces with an

axis-aligned split plane. To improve accuracy, each cell can be represented by a

3-Way Heightmap (3-map), a new type of heightmap that samples the tool along

all three stock axis directions (three ways) rather than just one. Since a 3-map

samples along two directions within each boundary face of its cell, discontinuous

seams will not occur if 3-maps are used in place of regular heightmaps.

As an illustration, a 2D simulation example is given in Figure 1.3 (although

machining is a 3D problem, 2D examples are easier to understand). This example

uses white arrows to indicate the direction of each cell’s heightmap, and it has the

following four steps:

2

(a) Initially, the multidirectional heightmap consists of one uncut cell C.

(b) Cell C is cut by the tool, and is represented with a heightmap in the direction

of −~x.

(c) Cell C becomes nonfunctional after a second cut. Thus, the resulting curve is

cut into three functional pieces coloured red, green and blue. This partitioning

is accomplished in the following recursive fashion. Cell C is first subdivided by

the split plane (black line) labelled A. The upper child of this split contains

the green curve, and consequently, requires no further subdivision; however, the

lower child is nonfunctional because it contains the nonfunctional red and blue

curve. As a result, the lower child is subdivided by split plane B, which isolates

the red curve portion from the blue curve portion. The recursive process now

terminates since all cells are functional: the green, red, and blue curves are

represented using heightmaps with directions −~x, ~z and −~x, respectively.

(d) A cut is made into the top cell; a cyan curve that is functional with respect to

direction ~z is the result. However, the top cell is already representing the green

curve with a heightmap in the direction of −~x. As a result, the green and cyan

curves are separated from each other by split plane C. No further subdivision

is required since the children of this split are functional.

(a) (b)

(c) (d)

Figure 1.3: A multidirectional heightmap demonstration.

3

1.2 Objectives

The goal of this thesis is to describe the multidirectional heightmap data structure

in detail, and show that it has good performance with respect to memory usage,

CPU usage, and approximation error. I describe in detail when cell subdivision

is necessary, and where split planes should be placed to reduce the number of

subdivision operations necessary. I note why discontinuous seams can occur, and

show how this problem can be prevented using another new data structure called

a 3-Way Heightmap (3-map). Finally, beneficial aspects of 3-maps as compared to

regular heightmaps are noted.

1.3 Outline

Chapter 2 describes some basic CNC machining concepts, relevant aspects of Tool-

Sim’s internals, and related work. Chapter 3 explains when and where a cell should

be subdivided. Chapter 4 describes how to render a multidirectional heightmap

with continuous seams. Chapter 5 covers additional implementation details not

covered in chapters 3 and 4. Chapter 6 experimentally evaluates the performance

of multidirectional heightmaps. Chapter 7 summarizes the important results in this

thesis, notes the limitations of those results, and outlines future work that could

be done.

4

Chapter 2

Background

This chapter covers some basic CNC machining concepts and terminology (Sec-

tion 2.1), how ToolSim simulates the milling process (Section 2.2), and related

research (Section 2.3).

2.1 Milling

A CNC milling machine carves a solid block of material, called the stock, into an

object. The tool can be moved along a number of axes. A three axis machine

can translate the tool along the stock’s ~x, ~y, and ~z axes (see Figure 2.1(a)). A

five axis machine is similar but has two additional rotational axes. There is no

standard physical implementation for the rotational axes; one possibility is given

in Figure 2.1(b). A five axis machine can mill nonfunctional objects, but a three

axis machine cannot.

(a) (b)

Figure 2.1: A three axis machine (part (a)) and a five axis machine (part (b)) [10].

5

A toolpath is a list of commands called g-codes that are executed by the machine

in the order given. The most important g-code specifies a machine coordinate, a

tuple of numbers that encode a particular tool location, and possibly orientation,

relative to the stock (the orientation part is omitted if no rotational axes are avail-

able). The machine linearly interpolates between each successive machine coordi-

nate pair (see Figure 2.2) to produce the intended part, which is referred to as

the design surface. There are many other g-codes [20], but most of them specify

actions that ToolSim does not simulate. For instance, ToolSim does not simulate

the command used to control the tool’s speed of rotation.

(a) (b)

Figure 2.2: A toolpath (part (a)) and the path the tool will trace when it is exe-
cuted (part (b)).

2.2 ToolSim

In this section, I cover the aspects of ToolSim’s internals that are essential to

understand my thesis. ToolSim simulates a toolpath without taking into account

the forces involved; in concept, the volume swept by the tool is calculated, and this

volume is subtracted from the stock representation. Since the tool spins significantly

faster than its speed in relation to the stock, it can be represented using simple

geometric primitives. Specifically, the tool’s base is represented using a cylinder and

the tip is represented using a sphere, cylinder, cone or torus (in this work, I mostly

rely on a spherical tip but sometimes use a cylindrical tip). Furthermore, ToolSim

assumes that the input toolpath specifies a functional design surface. Therefore,

the stock can be represented as heightmap.

The machine’s continuous motion is approximated with discrete time steps.

6

That is, linear interpolation over time is used to generate the tool’s position in

between each machine coordinate. The state of the simulation at each of these

steps is referred to as an in-between frame or in-between step. The tool’s intersection

with the stock (a heightmap) is computed for each in-between step, a process called

stamping. More precisely, stamping involves intersecting a number of rays with the

geometric primitives representing the tool; an axis-aligned bounding box is used to

prune the number of ray intersection computations necessary.

The smaller the step size (the number of in-between steps), the more accurate

the representation of the design surface. In other words, a more accurate simulation

is obtained when the degree of overlap between the current stamp and previous

stamp is high (see Figure 2.3). Clearly the stamping approach can be computational

wasteful. Therefore, ToolSim approximates the tool’s cutting path with a swept

surface, an approach first developed for CNC machining by Blackmore et al. [3]. As

can be see via a comparison of figures 2.3 and 2.4, greater accuracy can be achieved

with a larger step size when swept surfaces are used instead of stamping.

(a) Large step size. (b) Small step size.

Figure 2.3: Stamp intersection [10].

(a) Large step size. (b) Small step size.

Figure 2.4: Swept surface intersection [10].

ToolSim approximates the tool’s swept surface as a piecewise polygonal surface,

an approach developed by Roth et al. [4] and Mann and Bedi [13]. To see how it

is constructed, note that the tool is always in contact with the swept surface along

a curve. This curve, referred to as a grazing curve, is approximated using a fixed

number of points interconnected by line segments. The grazing curve for the current

in-between frame is connected by line segments to the grazing curve of the previous

in-between frame to obtain a triangular strip (see Figure 2.5), and this triangular

strip is used to update the stock for the current in-between frame. Stamping is still

sometimes used to deal with discontinuous tool direction changes (see Figure 2.6).

7

It should be noted that Figures 2.5 and 2.6 illustrate swept surfaces generated

from the tool tip (a sphere) only. A ToolSim user can specify that the base of the

tool should be intersected with the stock as well, and if this feature is enabled, it

will be necessary to generate a swept surface for the tool base (a cylinder) as well.

Figure 2.5: A swept surface created from
grazing curve points [10].

Figure 2.6: Swept surfaces created from a
discontinuous toolpath [10].

ToolSim can render each in-between frame to create an animation of the milling

process; alternatively, the expense of rendering can be forgone if only the final result

is desired. The heightmap data is interpreted as a triangular mesh, and a normal

vector is stored with each height sample so that smooth shading via OpenGL is

possible [5]. To avoid the CPU-GPU data exchange bottleneck, the heightmap data

is uniformly partitioned into cells, and the content of each cell is represented by a

display list.

ToolSim has three parameters that allow the user to trade off simulation speed

versus accuracy. The stock density specifies the number of height samples per unit

area by which to represent the design surface. The step size indicates how many in-

between steps should be used in between consecutive machine coordinates. Finally,

the grazing curve density is the number points used to construct each grazing curve.

2.3 Related Work

In this section, I briefly mention some previous research involving the representation

of solid objects with multiple heightmaps [17, 18]; simulation techniques utilizing

other stock representations will be covered in Section 7.2. Santos et al. [18] repre-

sent solid objects using “solid heightmap sets”, layers of heightmaps having parallel

directions. Odd layers add geometric information while even layers subtract. In

8

constrast, the approach of Ochotta et al. [17] places no restrictions on the heightmap

directions. Whereas I use heightmaps for their usefulness as a dynamic data struc-

ture, the other approaches use them to reduce the memory requirements of a static

object.

9

Chapter 3

Cell Subdivision

In Figure 1.3, a simple 2D example was used to illustrate the dynamic nature of a

multidirectional heightmap. That is, the following simple rule recursively processes

any cut cell: if the surface within a cell is nonfunctional, subdivide the surface (and

cell) into two pieces with an axis-aligned split plane. During Step (b) for instance,

subdivision was deemed necessary after the tool cut the multidirectional heightmap

a second time. The cell was then subdivided using an appropriately-placed split

plane. Next, the same logic was applied to each child cell, and as a result, the lower

child was also subdivided.

The purpose of this chapter is to explain when and where a cell should be

subdivided, but first, some concepts and terminology must be defined. A cell is

a bounded region of space that occupies some portion of a solid object and is

classified as either completely solid (solid), partially solid (partial), or completely

empty (empty). In this work, a cell is either a box (box cell), rectangle (rectangle

cell), or a line segment (segment cell). A partial cell is divided into one solid portion

and one empty portion by a separating entity, a triangular mesh surface for a box

(separating surface), a piecewise linear curve for a rectangle (separating curve), and

finally, a point for a line segment (separating point).

A separating curve/surface may be disjoint. For instance, a disjoint separating

curve occurs in Figure 3.2. In this figure, the cell outline is the black box, and the

separating curve (black) divides the empty portion (white) from the solid portion

(brown). The same conventions are used to illustrate all other cells shown in this

work.

A heightmap is a collection of heights, calculated at grid locations relative to

an axis-aligned plane, that represent a functional surface. The separating surface

10

of a functional cell is represented using a heightmap. The direction of such a

heightmap is referred to as the direction of representation of the heightmap/cell,

and in each example, this direction is indicated with a white arrow. Whenever the

term “heightmap” is used, it refers to a heightmap that composes a portion of the

stock. Collectively, the heightmaps a multidirectional heightmap consists of serve

as a surface representation for the solid being machined.

The term stock refers to a multidirectional heightmap. The notation F (p,~v1, ~v2, ~v3)

denotes a frame named F specified by point p and vectors ~v1, ~v2 and ~v3. The stock

has a frame S(P, ~x, ~y, ~z), where P is a corner of the root node’s cell. It often appears

near the lower left corner of the figures; see Figure 3.2 for instance.

The pseudocode of Figure 3.1 overviews how a surface representation is found

for a cell that has become nonfunctional. The algorithm uses a set of three good-

bad maps to determine if the cell must be subdivided, as described in Section 3.1.

If cell subdivision is necessary, possibly several (sign conflict, indirect and direct)

split planes are calculated using the algorithms described in Section 3.2. Finally,

one of these split planes is selected for application using the heuristics described in

Section 3.3.

CutCell(const sweptTool& tool, const Cell& cell)

Generate three good-bad maps GX , GY , and GZ , one for each stock axis.

if GX , GY , or GZ corresponds to a valid direction of representation ~d

then

{
Resample cell’s separating surface S in the direction of ~d.
Subtract tool from S.

else

Produce a list LP of direct, indirect and sign conflict splits.
Select from LP a single split plane P using a combination of heuristics.
Split the cell with plane P into leftChildCell and rightChildCell.
CutCell(tool, leftChildCell)
CutCell(tool, rightChildCell)

Figure 3.1: The CutCell algorithm.

3.1 Good-Bad Maps

A ~v-good-bad map is a 2D image that indicates which portions of a cell’s separating

surface can be represented by a heightmap with direction ±~v (good), and which

portions cannot (bad). Each pixel indicates whether or not the separating surface

11

is functional at a particular grid location. A bad pixel indicates it is not, and a

good pixel indicates that it is. Each type of pixel is illustrated in Figure 3.2, which

shows a 1D ~x-good-bad map generated from a disjoint separating curve. Rays that

are parallel to ~x, the direction of computation, are cast from each grid location.

The number of times a ray intersects the separating curve (or surface) determines

the value of the corresponding pixel. A pixel is bad when there is more than one

intersection, and good otherwise.

Figure 3.2: A 1D good-bad map. To the right is a table summarizing the pixel types.
To the left is a 1D ~x-good-bad map generated from a disjoint separating curve.

Although a single intersection point indicates that the surface is functional, a

heightmap surface is backfacing relative to its direction of representation. There-

fore, it is necessary to distinguish between intersection points that are backfacing

relative to the direction of computation, and those that are frontfacing. The former

case indicates a good-positive pixel and the latter indicates a good-negative pixel.

Good (unsigned) pixels can also occur if there is no intersection point.

When a good-bad map contains both good-positive and good-negative pixels,

the pixels are said to have “conflicting” signs, and a situation called a sign conflict

exists. Hence, a good-bad map indicates a “valid” direction of representation exists

for a cell’s separating surface if and only if (1) there are no bad pixels, and (2) there

are no sign conflicts. Furthermore, a cell is functional if and only if a valid direction

of representation exists.

If a cell becomes nonfunctional after a toolcut, a recursive subdivision process

then restores the functional cell property (the CutCell algorithm, Figure 3.1). As

a cell is functional only if a valid direction of representation exists, three good-bad

12

maps, one in the direction of each stock frame axis, are used to decide if the recursive

case should be applied. As an illustration, Figure 3.3(b) displays a particular set

of good-bad maps generated from the cell being cut in Figure 3.3(a). None of these

good-bad maps correspond to a valid direction of representation, and therefore, cell

subdivision is necessary.

(a)

(b) (c)

Figure 3.3: 2D good-bad map generation. (a) Angled drilling into a heightmap surface.
(b) A set of three good-bad maps, one for each stock axis direction, generated from
the boolean subtraction of the tool’s swept volume from the cell of part (a). Since each
good-bad map contains bad (red) pixels, a heightmap cannot represent the surface that is
being machined; recursive cell subdivision is necessary. (c) Computation of one column
of pixels for the ~x-good-bad map from part (b).

The separating surface from which good-bad maps are generated is created using

constructive solid geometry (CSG) [14]: the volume swept by the tool is subtracted

from the cell’s solid space. For example, Figure 3.3(c) illustrates how CSG is used

to compute one column of pixels for the ~x-good-bad map of Figure 3.3(b). Line

segments that represent solid objects are produced by intersecting rays with both

the cell’s solid space and tool’s swept volume. The tool line segments (gray) are

13

subtracted from the cell line segments (brown). Along each ray, the intersection

points that remain are counted to determine the value of the associated pixel.

3.2 Possible Split Planes for Cell Subdivision

A cell must be subdivided if it becomes nonfunctional. While it would be simplest

to always divide a cell into eight equally-sized children, as is done with an Octree,

minimization of the total number of subdivisions is desirable for performance rea-

sons. Both memory consumption and traversal time increase as the tree grows.

Moreover, cell subdivision operations can be expensive since every height must be

examined. It is more appropriate to organize the cells as a kD-tree, since more “in-

telligent” split planes can be computed at a reasonable cost. Figure 3.4 illustrates

that such split planes exist. It compares the kD-tree and Quadtree approaches

when applied to the example of Figure 1.3. Clearly the kD-tree approach requires

fewer subdivisions. If the stock were even larger relative to the size of the cuts,

the quad-tree approach would require even more splits, while the kD-tree approach

would not.

(a) Quadtree (b) kD-tree

Figure 3.4: A comparison of the kD-tree approach and the Quadtree approach when
applied to the example of Figure 1.3. The kD-tree approach requires fewer splits.

Algorithms for intelligent split plane computation are described in this section,

and they have a few common features. For one, they all exploit the following con-

cept: whenever a cell becomes nonfunctional, usually only part of the cell’s new sep-

arating surface cannot be represented by the current heightmap of the cell. The un-

representable curve/surface regions together compose an unresolved curve/surface

and all other curve/surface regions compose a resolved curve/surface. Since the

14

resolved surface already has a representation, the unresolved surface should be the

focus when calculating split planes.

Figure 3.5(a), which shows a cell that has been cut by the tool (gray), illustrates

the unresolved/resolved curve classification. With respect to the ~z axis, the current

direction of representation, the red curve is nonfunctional and thus unresolved,

while the green curve is resolved. A second example is given in Figure 3.5(b).

Recall that a heightmap curve/surface must be backfacing relative to its direction

of representation, which is ~x in this case. After the toolcut, this condition still

holds for the green curve, which is therefore resolved; but it does not hold for blue

curve, which is consequently unresolved.

(a) (b)

Figure 3.5: The unresolved/resolved curve classification. The red curve of part (a) is
unresolved because it is nonfunctional with respect to the heightmap’s direction ~z; the
blue curve of part (b) is unresolved because it is frontfacing relative to the heightmap’s
direction ~x.

The other feature split plane computation algorithms have in common is that

they all utilize information provided by good-bad maps. We saw in Section 3.1

how good-bad maps are used to determine the functionality of a cell. When first

partitioned into regions of “related” pixels, they are also useful for split plane com-

putation purposes. There are two ways the pixels are partitioned. First, the pixels

are partitioned based upon the unresolved/resolved classification of the separat-

ing curve/surface: rays that intersect the unresolved surface generate unresolved

regions, and all other rays generate are resolved regions. Next, the pixels are par-

titioned based upon pixel type (bad, good-positive, etc.).

I have derived three split plane calculation algorithms based on the above con-

cepts, and each one computes exactly one of the following split plane types:

15

• Sign conflict split planes, described in Section 3.2.1, help eliminate a sign

conflict.

• Direct split planes, described in Section 3.2.3, help directly eliminate an unre-

solved bad region. That is, they help cut the unresolved surface into functional

pieces relative to an axis ~a, and thereby, help directly eliminate an unresolved

bad region with direction ~a.

• Indirect split planes, described in Section 3.2.2, help indirectly “eliminate” an

unresolved bad region with direction ~a. Specifically, an indirect split (plane)

isolates an unresolved good region with direction ~b from surrounding bad

regions, thereby allowing the unresolved curve/surface to be represented using

the alternative direction of representation ~b.

Direct splits are calculated directly from 3D intersection information, but only

a subset of rays are considered (i.e., rays that generate unresolved pixels). In

contrast, indirect and sign conflict splits are calculated from 2D good-bad maps, but

3D intersection information from all rays is considered indirectly ; furthermore, all

resolved pixels can be computed using a series of computationally cheap projection

operations rather than with ray intersection calculations (see Section 5.2.1). This

optimization is one reason why it would be costly to calculate all split planes directly

from 3D intersection information; however, at least some direct consideration of 3D

intersection information is necessary since, in some cases, all unresolved pixels will

be bad. As all split planes are axis-aligned (e.g., x = 4), they are all ultimately

calculated from the projections of 3D intersection information onto stock frame

axes. All three split plane types will be discussed in turn.

3.2.1 Sign Conflict Split Planes

Recall that if a ~v-good-bad map contains a sign conflict (contains both good-positive

and good-negative pixels), the cell’s separating surface cannot be represented using

a heightmap with direction ~v. The goal of a sign conflict split is to eliminate,

or resolve, a sign conflict. Specifically, a sign conflict split (plane) helps isolate an

unresolved good region from other regions that conflict (more on the unresolved part

later). As an illustration, Figure 3.6(a) is a cube with two removed corners. After

the second corner (the lower of the two) was removed by the tool (see Figure 3.6(b)),

a good-bad map was generated for each direction. Since there was a sign conflict

in every direction, cell subdivision was necessary. Any one of sign conflict split

16

planes A, B, or C (shown as black outlines) could have restored the functional cell

property.

(a) (b)

Figure 3.6: A sign conflict split plane example. (a) A cube with two removed corners.
(b) The three good-bad maps generated after the lower corner was removed by the tool.
Any one of splits A, B, or C could have restored the functional cell property.

As Figure 3.7 illustrates, a split plane can be classified as either complete or

partial. A “complete” split plane completely isolates an unresolved good region

from conflicting regions to its left or right. For instance, split planes A, B and C

of Figure 3.7(a) are complete split planes, since they each completely isolate the

unresolved good region (blue) from a conflicting good region (green). But note that

more splitting is necessary after either split B or C whereas no further splitting is

required after split A.

On the other hand, a “partial” split plane partially isolates an unresolved good

region from conflicting regions to its left or right. For example, splits A and B in

Figure 3.7(b) partially isolate the unresolved good region (blue) from a conflicting

region (green); the region is fully isolated after complete split C. In general, further

splitting is usually necessary after application of a partial split.

Only unresolved regions must be isolated to achieve resolution; isolation of con-

flicting resolved regions from each other is not necessary. For example, Figure 3.8(a)

shows a cell with direction of representation ~z that became nonfunctional after the

tool (gray) drilled into its side. The ~y-good-bad map shown in Figure 3.8(b) was

generated from this cell. This good-bad map contains an unresolved good-negative

region U , two resolved good-positive regions that conflict with U , and three re-

solved good-negative regions. Five split planes A, B1, C1, B2 and C2 could have

been calculated from this good-bad map. Each of splits B2 and C2 isolates a pair

of conflicting resolved regions from each other, while split A isolates an unresolved

region U from the two conflicting regions above (ignoring the other two splits for

17

(a) (b)

Figure 3.7: Complete versus partial split planes. (a) Three complete splits A, B, and C.
(b) Two partial splits A and B. Split C, the final split, is a complete split plane.

now). After application of split A, resolution would be achieved. The top child

would use direction of representation ~z (the parent’s direction of representation),

and the bottom child would use direction −~y. If any combination of splits B2 and

C2 were used instead, split A would still be required; these splits are useless.

(a) (b)

Figure 3.8: Unresolved good region isolation. (a) A cell with direction of representation
~z becomes nonfunctional after it is cut by the tool (transparent gray). (b) The ~y-good-
bad map. Resolution can only be achieved if the unresolved good-negative region U is
isolated from the resolved conflicting regions above. Only split A, or the pair of splits B1

and B2, could have accomplished this goal.

Together, split planes B1 and C1 could also achieve resolution. Split B1 isolates

the unresolved region (blue) from the conflicting resolved region (green) to the

left, and split C1 isolates the unresolved region (blue) from the conflicting resolved

region (green) to the right. However, since minimization of the total number of

split planes is desirable, resolution would be best achieved via split A (ignoring

18

other high level criteria discussed in Section 3.3).

The following algorithm is used to compute from a good-bad map the sign

conflict split planes that intersect an axis ~a (Figure 3.9 provides a visualization):

1. Compute the orthogonal projection of each region onto axis ~a, with segment U

(blue) being the orthogonal projection of an unresolved good region, segment

CL being the closest “conflicting” segment to the left of segment U , and segment

CR being the closest conflicting segment to the right of segment U .

2. Compare the resulting line segments as follows:

A. If segment U and segment CL (or CR) overlap, each overlapped endpoint

(black) corresponds to a partial split plane. For instance, two partial split

planes (black dashed lines) occur along the ~z axis in Figure 3.9.

B. If segment U and segment CL (or CR) do not overlap, a separating interval

exists between them. Any point within the range of a separating interval

corresponds to a complete split plane. For instance, along the ~x axis in

Figure 3.9, a separating interval (black) occurs on each side of segment U ,

and the range of each one is shown as a dark box.

Figure 3.9: Split calculation via orthogonal projection of regions onto stock frame axes.

Note that a good-bad map may contain a sign conflict as well as various bad

regions. If this is the case, either indirect splits (Section 3.2.2) or direct splits

(Section 3.2.3) are applied first to eliminate the bad regions. If any of the resulting

child cells contain sign conflicts, only then are sign conflict splits computed. While

possibly non-optimal, this algorithm is easy to implement.

19

3.2.2 Indirect Split Planes

The indirect split plane concept is demonstrated using a simple 2D example (Fig-

ure 3.10(a)). The tool (gray) has cut into the side of a cell with direction of

representation ~z. The red portion of the resulting separating curve cannot be rep-

resented using the current heightmap, and is thus unresolved. A ~v-good-bad map

G was then generated to check if the unresolved curve is representable using a

heightmap with an alternative direction of representation ~v, ~x in this case (shown

to the left of the cell as red and blue line segments). Consider the unresolved region

belonging to good-bad map G. If it is at least partially composed of good pixels, at

least part of the unresolved surface can be represented using direction ~v. An indi-

rect split (plane) isolates an unresolved good region from surrounding bad regions,

thereby allowing the unresolved curve/surface to be represented using an alterna-

tive direction of representation. In the case of Figure 3.10(a), the blue unresolved

region is good, and the red unresolved region is bad. Any split within the range of

the dark box divides in between these regions, and is therefore is an indirect split.

Figure 3.11 shows a 3D example similar to the 2D example of Figure 3.10(a).

(a) (b)

Figure 3.10: A 2D example of indirect split planes. (a) The tool (gray) has cut a cell
with direction of representation ~z. The lower component of the unresolved curve U (red)
is representable in the direction of −~x because the corresponding unresolved region is
good-negative (blue); the upper component is not since the corresponding unresolved
region is bad (red). A separating interval (black) exists between the unresolved good
region and the unresolved bad region. (b) This example is nearly identical to the part
(a) example, but differs because the unresolved surface is not disjoint.

Indirect split planes are computed from a good-bad map using a technique

similar to the method used for sign conflict split planes. The key difference is the

following: each split plane computed should isolate an unresolved good region from

surrounding bad regions. However, there are two reasons why it is not necessary

to isolate the entire unresolved good region. First of all, the part of the unresolved

20

good region generated from only the heightmap (no ray passed through the tool)

can be ignored. The reason why is that any child cell that does not contain the

tool can be represented with the same direction used by the parent cell. Consider

Figure 3.10(b) for instance. After a split within the range of the dark box, the

top child contains part of the unresolved surface, but does not contain the tool.

Thus, the top child can be represented with direction ~z, the parent cell’s direction

of representation. Notice that the separating interval (black) overlaps the part of

the unresolved good region (blue) generated from non-tool-intersecting rays.

(a) (b)

Figure 3.11: A 3D indirect split example. (a) A cell with direction of representation ~z

is cut a second time (previously the top face was cut). (b) The three good-bad maps
generated in response to this event. The ~z-good-bad map indicates that an unresolved
surface is present. Fortunately, both the ~x-good-bad map and ~y-good-bad map possess
an unresolved region composed of only good-positive pixels (green). Therefore, the unre-
solved surface can be represented with either direction ~x or ~y. However, both good-bad
maps also contain a bad region (red). Three indirect split planes (dashed outlines) could
eliminate this problem, and each one isolates an unresolved good region from a bad region.

Figure 3.12 illustrates the second reason isolation of the entire unresolved good

region is unnecessary. Recall that the unresolved surface cannot be represented with

the direction of the current heightmap. Of the other two directions, one direction

may be able to represent the part of the unresolved surface that the other direction

cannot. As a result, the unresolved bad region from one map can be used to restrict

the good region that must be isolated in the other.

21

(a) (b) (c)

Figure 3.12: A more complex 3D indirect split plane example. (a) A donut with an
overhang along the outer rim was machined by rotating an angled tool. (b) A cell that
occurred during the machining process. The tool (gray) cut the cell in such a way that
there was an unresolved surface relative to the cell’s direction of representation ~z, as
indicated by the unresolved bad region (red) the corresponding good-bad map contains.
The two other good-bad maps each contain an unresolved region that is part good (green)
and part bad. One of these regions indicates that part of the upper portion of unresolved
surface cannot be represented with direction ~y; another indicates part of the lower portion
cannot be represented with direction ~x. A split plane in between these bad regions (see
the black dashed lines) will resolve the situation. (c) How the separating interval (black)
is calculated. The unresolved bad region in the direction of ~x is used to restrict the
unresolved good region in the direction ~y (dark green) that must be isolated.

22

3.2.3 Direct Split Planes

The split planes discussed so far are calculated from 2D/1D information (good-bad

maps). Such split planes are insufficient to deal with all possibilities. For example,

Figure 3.13(a) shows a cell with direction of representation ~z that was cut by the

tool (gray). Notice that the unresolved regions (red) generated from the unresolved

curve (red) consist entirely of bad pixels. To calculate sign conflict splits and/or

indirect splits, an unresolved good region must be present. Consequently, another

variety of split plane is needed: the direct split (plane).

(a) (b)

Figure 3.13: Two DSP series examples, each for cells with direction of representation ~z.
(a) A DSP series with direction ~x and two exterior splits EL and ER. (b) A DSP series
with direction ~z and three interior splits I1, I2 and I3. Three additional (sign conflict)
splits (cyan) were required after its application.

The goal of a direct split plane (DSP) series is the direct elimination of an

unresolved bad region with direction ~a. With respect to an axis ~a, the interior

(direct) splits cut the unresolved surface into functional pieces, and each exterior

(direct) split isolates the unresolved surface from a portion of resolved surface to

the left or right. After a DSP series is applied, the leftmost and rightmost child

cells will not contain a portion of the unresolved surface and can therefore each use

the same direction of representation as the parent cell. In contrast, all other child

cells will contain a portion of the unresolved surface functional with respect to axis

~a; but before the unresolved surface can be represented with a direction parallel

to ~a, these cells may require additional (indirect and/or sign conflict) splits.

Continuing with the Figure 3.13(a) example, a DSP series with direction ~x was

generated after the toolcut. That is, a ray (black) was cast from each unresolved

pixel (red), and two exterior splits EL and ER were calculated from the intersection

information along these rays. After application of this DSP series, the middle

23

child cell contained a portion of resolved/unresolved curve (green/red) functional

and backfacing with respect to ~x; thus, this cell used direction of representation

~x. In contrast, the leftmost and rightmost child cells used the same direction of

representation as the parent (~z), because the unresolved curve was absent from

their interiors.

A second DSP series example is given in Figure 3.13(b). Again, the tool (gray)

has cut a cell with direction of representation ~z. In this case, a DSP series with

direction ~z, and three interior splits I1, I2, and I3, was calculated. Notice that after

this DSP series was applied, the two middle cells were subdivided by sign conflict

splits (cyan). A larger view of the circled sign conflict split plane is shown near the

upper right corner.

DSP Series Computation

The DSP series for an axis ~a, the axis of computation, is computed from particular

sets of line segments (segment sets). Rays are cast from each unresolved pixel of the

~a-good-bad map; see the rays (black) generating the unresolved bad region (red) in

Figure 3.14(a) for instance. Next, along each ray, successive intersection pairs are

connected by line segments. Only three sets of line segments are of interest: a set of

tool (intersecting) segments (orange), a set of directly to the left-of-tool segments

(purple) and finally, a set of directly to the right-of-tool segments (cyan).

(a) (R, U); (U , UP); (UP , R) (b) (R, U); (U , R); (R, R)

Figure 3.14: Two cells (a) and (b) with direction of representation ~z. After each cell was
cut by the tool, a DSP series for direction ~x was computed. Below each cell, the notation
from Table 3.1 denotes each connecting set in the order left-of-tool, tool (intersecting),
and right-of-tool. Every overlap interval computed is shown as a dark box.

In general, every segment set generated (e.g., those of Figure 3.14) will be a

connecting set, a set of line segments that “connect” two distinct functional portions

of curve/surface SL and SR; that is, all left segment endpoints coincide with SL

24

and all right segment endpoints coincide with SR. Moreover, every segment set

shown in Figure 3.14(a) has the following property: all member segments intersect

when orthogonally projected onto the axis of computation (~x in this case); their

intersection is referred to as an overlap (interval). Any plane within the range of

a “connecting” set’s overlap interval (see the dark boxes labelled EL, I, and ER)

divides in between a curve/surface to the left (SL) and a curve/surface to the right

(SR), and is therefore a direct split.

In terms of the resolution status of the connected curves/surfaces, four types of

connecting sets can occur, and they are summarized in Table 3.1. As an example,

the segment sets generated in Figure 3.14(a) are of types 1, 3, and 2 (left to right

order). Another example is given in Figure 3.14(b), and it illustrates types 1, 2,

and 4. Note that no overlap interval (the red box) was computed from the type 4

connecting set (it lies in between two resolved curve portions).

Type Definition Associated Split Type Composing Segments

1 (R, U or UP) left exterior left-of-tool xor tool

2 (U or UP , R) right exterior right-of-tool xor tool

3 (U or UP , U or UP) interior tool

4 (R, R) none left-of-tool xor right-of-tool

Table 3.1: The four types of connecting sets. The notation (RSL, RSR) is used to
denote a connecting set, with RSL as the resolution status of the left curve/surface,
and RSR as the resolution status of the right curve/surface. Resolution status will be
one of the following: resolved (R), unresolved (U), or partially unresolved and partially
resolved (UP).

In general, the members of each respective segment set generated (i.e., the

left-of-tool, tool, and right-of-tool sets) may not overlap; thus, as is necessary, Al-

gorithm ComputeOverlapIntervals (Figure 3.15) partitions each segment set

(input as three lists LL, LT , and LR) into smaller sets whose respective members do

overlap (overlap sets), and outputs the corresponding overlap interval of each one

(as a list LO). From the output list LO a DSP series is calculated. That is, one direct

split plane within the range of each overlap interval is computed (see Section 3.3).

Algorithm ComputeOverlapIntervals has four main steps, and these steps

are implemented using procedures computeSets, ComputeOverlapInterval,

ExpandSets, and RelaxSets. All steps will be discussed in turn.

Steps 1 and 3 of algorithm ComputeOverlapIntervals are implemented with

procedure computeSets (Figure 3.16). This procedure assigns each segment of

a connecting set (a list LI initialized as either tool, left-of-tool or right-of-tool) to

an overlap set, and outputs each corresponding overlap interval (to a list LO). The

25

ComputeOverlapIntervals(segment& U ,

segmentList& LL, segmentList& LT , segmentList& LR, segmentList& LO)

Step (1)
{
ComputeSets(LT , LO)

Step (2)

{
ExpandSets(LL, LO)

ExpandSets(LR, LO)

Step (3)

{
ComputeSets(LL, LO)

ComputeSets(LR, LO)

Step (4)
{
RelaxSets(U , LO)

Figure 3.15: The ComputeOverlapIntervals algorithm.

segments of the input list LI are sorted in increasing order of associated grid index

(left to right, bottom to top). Processing of list LI consists of repeated application

of procedure ComputeOverlapInterval (Figure 3.17), with argument SO set

equal to a sentinel value. The sentinel values causes SO to be set equal to the first

segment of LI . Thus, the net effect of procedure ComputeOverlapInterval is

the following: (1) the segments from LI that overlap the first segment of LI are

deleted, and (2) the first segment of LI is shrunk until it equals the corresponding

overlap interval. The resulting overlap interval is then appended to the output list

LO, but only if the corresponding overlap set does not connect two resolved surface

portions. The algorithm terminates when list LI becomes empty.

ComputeSets(segmentList& LI , segmentList& LO)

while not LI .isEmpty()

do

/* SO is initialized to sentinel value */
segment SO ← segment(DBL MIN, DBL MAX)
bool notType4Set← ComputeOverlapSegment(LI , SO)
if notType4Set then LO.add(SO)

Figure 3.16: The ComputeSets procedure.

As an example of procedure computeSets, consider Figure 3.18(a). A cell

with direction of representation ~z was cut by the tool (gray). After the connecting

sets in the direction of ~x were generated, procedure computeSets processed the

tool segments (orange) in the following way. The first pass of procedure Com-

puteOverlapInterval iterated over the segments in bottom to top order. The

overlap of the first two segments was calculated. Next, the overlap of this re-

sult and the next segment was calculated. After the third segment from the top

was reached, the overlap of segments examined so far (SO) became a single point

(which corresponds split plane A). As shown in Figure 3.18(b), procedure Com-

26

ComputeOverlapInterval(segmentList& L, segment& SO)

bool allResolved← true
L.initIteration()
while L.hasNext()

do

segment SC ← L.getNext()
if SO.overlaps(SC)

then

if SO.length() > 0 then SO ← overlap(SO, SC)
if SC .hasUnresolvedEndpoint() then allResolved← false
L.deleteNext()

return (not allResolved)

Figure 3.17: The ComputeOverlapInterval procedure.

puteOverlapInterval also removed all segments of the output overlap set from

the tool set; the overlap of the remaining segments (see overlap interval B) was

then calculated via second pass of procedure ComputeOverlapInterval. After

this second pass, the tool set became empty (see Figure 3.18(c)).

Algorithm ComputeOverlapIntervals as described so far processes each

segment set independently. Consequently, the overlap intervals produced from tool

segments (during step 1) may overlap the members of another connecting set. Thus,

during step 2 the tool overlap sets are expanded to include additional members

from the left-of-tool and right-of-tool sets; this processing helps reduce the total

number of split planes calculated (i.e., fewer segments will be intersected by two

planes). Step 2 is implemented using procedure ExpandSets (Figure 3.19), which

computes the overlap of each tool overlap interval (input as list LO) with seg-

ments from another set (input as list LI). Similar to procedure computeSets,

procedure ExpandSets shrinks segments (the tool overlap intervals) using pro-

cedure ComputeOverlapInterval. Note that the overlapped left-of-tool and

right-of-tool segments are removed from the left-of-tool and right-of-tool sets, re-

spectively. Therefore, step 3 processes any remaining left-of-tool and right-of-tool

segments.

As an example of step 2, let us consider further the Figure 3.18 example. The

overlap intervals A and B from step 1 were examined in sequence. Since overlap

interval A was already a single point, it could shrink no further; however, some

left-of-tool segments were overlapped by interval A, and these segments were re-

moved from that set as a result (see Figure 3.18(c)). In contrast, overlap interval

B overlapped several right-of-tool segments, and was shrunk until it represented

the overlap of those segments as well; the shrunken overlap interval B is shown in

27

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.18: An example showing calculation (A-F) and usage (G-H) of a DSP series.
(a) Step 1 processing begins. The orange segments are examined in a bottom to top
sequence. After examination of the third segment from the top, the overlap of segments
examined so far becomes a single point; the black line labelled A corresponds to its range.
(b) The orange segments that remain are then examined; the resulting overlap interval
is indicated with the dark box labelled B. (c) Step 2 processing begins since no orange
segments remain. All purple segments overlapped by point A are removed from the
purple set. (d) Overlap interval B is shrunk to represent its overlap with several cyan
segments. (e) Step 3 processing begins. The overlap of all purple segments is found,
and is indicated by the dark box labelled C. The three remaining cyan segments are
discarded since they connect two resolved curves. (f) Step 4 processing begins. Overlap
interval B is expanded until it touches the unresolved surface. DSP series computation is
now complete. (g) The overlap intervals are selected for use in alphabetical order, and a
single split plane is calculated from each one. (h) Two sign conflict splits are necessary
after these direct splits are applied.

28

ExpandSets(segmentList& LI , segmentList& LO)

LO.initIteration()
while LO.hasNext()

do

segment& SO ← LO.getNext()
ComputeOverlapSegment(LI , SO)
if LI .isEmpty() then break

Figure 3.19: The ExpandSets procedure.

Figure 3.18(d). Next, the overlapped right-of-tool segments were removed from the

right-of-tool set, and step 2 processing was concluded (see Figure 3.18(e)). Dur-

ing step 3 processing, the remaining left-of-tool and right-of-tool segments were

processed using procedure computeSets (as were the tool segments beforehand).

An overlap interval C for the left-of-tool segments was found, but the right-of-tool

segments were simply deleted (since they connect resolved curves).

The purpose of step 4 (see procedure RelaxSets, Figure 3.20) is to increase

the range of overlap intervals corresponding to exterior split planes; doing so can

improve the performance of the FFS heuristic discussed in Section 3.3. Let U be

a bounding interval for the unresolved surface along the axis of computation ~a. It

is possible that several of the uppermost segments of a connecting set will connect

two resolved curve portions. An exterior split need not divide such segments in

two. Thus, any overlap interval outside the range of bounding interval U can be

expanded to touch the range of U . For example, overlap interval B of Figure 3.18(e)

is shown after expansion in Figure 3.18(f).

RelaxSets(segment& U , segmentList& LO)

LO.initIteration()
while LO.hasNext()

do

segment& SO ← LO.getNext()
/* a segment is defined by its left (L) and right (R) endpoints */
if SO.L > U.R then SO.L← U.R

if SO.R < U.L then SO.R← U.L

Figure 3.20: The RelaxSets procedure.

So far only 2D direct split examples have been shown. It is difficult to give a

complete 3D example. Instead the example of Figure 3.21 is given, which shows

two cross sections (green and blue in Figure 3.21(a)) of a cell with direction of

representation ~z. The solid was drilled into at an angle, and when the tool reached

a certain depth, an overhang occurred (see the red unresolved curves). The green

29

cross section illustrates the DSP series for direction ~x (see splits A, B and C of

Figure 3.21(b)); the blue cross section illustrates the DSP series for direction ~y (see

splits A and B of Figure 3.21(c)) and ~z (see split A of Figure 3.21(d)). The split

planes and overlap intervals shown apply to the nonvisible slices as well.

(a)
X

Z

A BC

(b)

A B

Y
Z

(c)
Y

Z A

(d)

Figure 3.21: A 3D direct split example. In part (a), a second cut made into a previously
cut cell. A DSP series is computed along the ~x axis (part (b)), the ~y axis (part (c)), and
~z axis (part (d)). Each DSP series is illustrated using a single 2D slice. The part (b) slice
corresponds to the green outline, and the parts (c) and (d) slices correspond to the blue
outline. Along the exterior of the cells, the corresponding unresolved bad regions (red)
and overlap intervals (purple, orange and cyan) are shown.

30

3.3 Minimization Selection Heuristics

Typically, when a cell requires subdivision, one of possibly several split planes could

be chosen. This section will explain the system of heuristic rules used to make this

choice. We already know that complete split planes occur within the range of a

separating interval (see the black intervals along axis ~x in Figure 3.9), and direct

split planes occur within the range of an overlap interval (see Figure 3.14(a)). Also,

a point corresponding to a partial split plane can also be viewed as having a range

of only one split plane (see the black points along axis ~z in Figure 3.9). So in all

cases, a split plane is a member of a family of split planes all within some range

specified by an interval (along an axis). Such an interval is referred to as a split

interval. Therefore, the opening statement of this section can be restated as the

following: when a cell requires subdivision, one of possibly several split intervals

must be chosen; next, a single split plane within this interval is used to subdivide

the cell.

Ideally, the number of subdivision operations should be minimized (splitting is

both expensive computationally and in terms of memory). However, to find the

minimum number of splits, (1) a global analysis of the entire toolpath would be

required and (2) knowledge of the final answer may be required; such an algorithm

would be computationally expensive and difficult to develop. Instead of finding the

minimum number of splits, a multidirectional heightmap utilizes several heuristics

intended to minimize its total subdivision count: Closest-Toolcut-Direction (CTD),

Split-Plane-Type (SPT), Furthest-From-Side (FFS), and Random-Selection (RS).

Each rule is assigned a priority value. Initially, the highest priority rule is used

to select a split interval. If there are ties, the rule with the next highest priority

is used to break that tie, and so on. It is not clear which combination of rules is

most effective; I investigate this question experimentally in Section 6.2. Here all

heuristics will be described in turn (and in isolation).

The Closest-Toolcut-Direction rule assigns priority to a split interval based

upon the size of the angle between the members of the split interval (which are

parallel to each other) and the tool’s direction ~t; the smaller this angle, the higher

the priority. Without loss of generality, this rule will be further explored using split

planes (split intervals having only one member).

Figure 3.22 illustrates a scenario where the rule proves beneficial. The figure

shows five in-between steps (a) through (e) of angled drilling into the side of a block.

Initially the cut is representable during step (a), but an overhang occurs during step

(b). The lower half of the figure shows what happens if the opposite of the CTD

31

rule is applied: the red split plane, the plane whose angle with ~t is the largest,

is chosen. First, the right child then requires an additional split plane (cyan).

More importantly, notice that this choice ultimately causes a similar overhang to

occur for the left child during step (c). If same bad choice is then made again, the

outcome is repetitive bad behaviour, a process the CTD rule could have prevented.

Specifically, during step (b) this rule would have selected the more tool-aligned split

plane (black). As a result, no additional subdivision would have been required (see

top half of steps (b) to (e)). Another example of repetitive bad behaviour is given

in Figure 3.23.

(a) (b) (c) (d) (e)

Figure 3.22: A 2D illustration of the Closest-Toolcut-Direction (CTD) rule. The toolcut
becomes unrepresentable during step (b). The Upper Half: if the tool-aligned split
plane (black) is chosen, no further subdivision is required during steps (c) to (e). The
Lower Half: if the nontool-aligned split plane is chosen for each step, repetitive bad
behaviour is the outcome.

The Split-Plane-Type rule assigns priority to each split interval according to

the type of split plane associated with it. Given two split planes with different types,

choosing one over the other can lead to fewer cell subdivisions for the current in-

between step. We know that after at most two complete splits no further subdivision

is required (see Figure 3.7(a)). Also, often less subdivision is required if a direct

split that is the sole member of its DSP series is selected instead of other direct

splits (compare Figures 3.21(c) and 3.21(d) for instance). However, a complete split

is often superior to a sole-member direct split, since additional (indirect and/or sign

conflict) splits may be required after the latter split plane type. Consequently, the

32

(a) (b)

Figure 3.23: A 3D illustration of how the Closest-Toolcut-Direction rule avoids repetitive
bad behaviour. (a) In response to an overhang, a split plane angled 90 degrees relative to
the tool’s direction ~t is chosen. A similar overhang then occurs for the right child. This
same bad choice is then made again, and the process repeats. (b) The split plane angled
0 degrees with respect to ~t is chosen; no further subdivision is required.

SPT rule ranks split intervals in the following order: complete splits; sole-member

direct splits; and with the same rank, partial splits and non-sole-member direct

splits.

The goal of the Furthest-From-Side rule is to ensure that the dimensions

of each child cell are as equal as possible. That is, the ideal child cell is a cube

according to this rule. Thus, the ideal split plane would divide a cell at the middle

along the longest dimension (see the dashed line labelled SA in Figure 3.24). Of

course, such a split plane may not exist; so the closer a split plane is to this ideal,

the higher the priority that split plane will be assigned.

The FFS rule helps reduce the total number of subdivisions required. For exam-

ple, note that the FFS rule would also select the black split plane in Figure 3.22(b),

and thus would also avoid repetitive bad behaviour. However, the continuation of

this example shown in Figure 3.24(a) better illustrates the strength of the FFS rule.

The multidirectional heightmap has been cut a second time by the tool (gray). To

the left, we see what happens if the four close together red split planes were used

to resolve the first cut; then four cells must be subdivided twice in response to

the second cut. On the other hand, the right side of Figure 3.24(a) shows how if

the black split were chosen to resolve the first cut instead, only one cell must be

subdivided.

33

(a) (b)

Figure 3.24: The Furthest-From-Side rule. (a) A continuation of the Figure 3.22 example.
Left: Five children must be subdivided. Right: One child must be subdivided. (b) An
illustration of the FFS priority equation.

To define the FFS rule more precisely, let R be a split interval along an axis

~a, M~a be the midpoint along the cell edge (E ~a1, E ~a2) parallel to ~a, and SR be the

plane within the range of R closest to point M~a. Then the FFS rule assigns priority

to split interval R based upon the equation |M~a − E ~a1| − |M~a − PR|, where PR is

the intersection point between plane SR and split interval R; the larger this result,

the higher the priority assigned. The |M~a−PR| term of the equation measures how

close plane SR is to midpoint M~a. When this term is subtracted from |M~a − E ~a1|,
we get plane SR’s distance towards the closest surrounding cell boundary. Thus,

the FFS priority equation will assign highest priority to the following split range:

the one containing the split plane furthest from its surrounding cell boundaries.

The example in Figure 3.24(b) illustrates how the FFS rule assigns priority.

Observe that if splitting is restricted to one axis only, the closer a split interval is

the middle of its corresponding dimension, the higher the priority it is assigned.

Consider the ~x axis for instance. Split interval A has the highest priority because

it contains midpoint Mx. Likewise, split interval B has higher priority than split

interval C since point PB is closer to midpoint Mx than point PC . Split interval

D, which is along the ~z axis, is also available if the arbitrary one axis restriction

is removed. Similar to split interval A, split interval D also contains the midpoint

(MZ) of its corresponding cell edge. However, point PD is closer to a surrounding

cell boundary (see the two red points along the ~z axis) than any other point within

a split interval (compare to points PA, PB and PC). Split interval D will thus be

assigned the lowest priority.

The Random-Selection rule simply chooses a split interval at random, thereby

avoiding repetitive behaviour. This rule is also useful for evaluating the effectiveness

of various combinations of the other rules, as is done in Section 6.2.

34

After a split interval is selected using a combination of the above rules (CTD,

SPT, FFS, RS), a single split plane must be chosen from within its range. Currently,

my implementation selects the split plane that is closest to the middle. For instance,

if split interval A in Figure 3.24(b) were selected, split plane SA would be used for

subdivision.

35

Chapter 4

Stock Rendering with Continuous

Seams

This chapter explains how a multidirectional heightmap is rendered as a continuous

surface. Specifically, the goal is to construct a triangular mesh from the sample

data, and then, using the normals stored with each height, render it with smooth

shading via OpenGL. Ideally, the portion of mesh corresponding to each individual

heightmap could be constructed in isolation (a trivial task). However, as is covered

in Section 4.1, these surface fragments do not always fit together in a continuous

way. The solution to this problem, discussed in Section 4.2, is to modify the

heightmap data structure to include additional surface data. This new type of

heightmap is called a 3-Way Heightmap (3-map), and how to construct a triangular

mesh from such a data structure is the topic of Section 4.3. Some other advantages

of 3-maps over regular heightmaps are discussed in Section 4.4.

4.1 Discontinuous Seams

To make rendering easier, the multidirectional heightmap surface representation

was simplified as follows. The space a stock occupies is uniformly subdivided into

cubical cells by a 3D grid called the sampling grid. The purpose of the sampling grid

is to ensure that all surface data is aligned in a convenient way. In particular, a point

is said to be grid-aligned if it coincides with a grid line; every height corresponds

to a particular grid-aligned point in space, referred to as a surface sample, specified

relative to the stock frame. Likewise, a plane is said to be grid-aligned if it coincides

with at least one cube face (it never occupies the interior of any cube); all split

36

planes are grid-aligned.

While the above simplifications are helpful, discontinuous seams between adja-

cent cells are still possible. To be more precise, a common boundary is defined as the

plane of intersection between two adjacent cells. The curve of intersection between

a heightmap surface and a common boundary is a piecewise linear curve referred to

a boundary curve (b-curve). A b-curve is an approximation of the curve of intersec-

tion between a common boundary and the precise surface being machined, a curve

referred to as the true curve (t-curve). Thus, a discontinuous seam occurs when

two heightmaps sharing a common boundary have different b-curve representations

for the corresponding t-curve.

An illustration of a discontinuous seam is shown in Figure 4.1(a). In the figure,

we see the common boundary between a heightmap in the direction of ~x (red) and

a heightmap in the direction of ~z (blue). The t-curve is black and coloured dashed

lines indicate its b-curve representations. Also visible are the grid-aligned surface

samples (coloured dots) each b-curve is composed of.

(a) (b)

Figure 4.1: A comparison of the b-curve representations between two heightmaps (part
(a)) and two 3-maps (part (b)). The red heightmap/3-map has sampling direction ~x,
and the blue heightmap/3-map has sampling direction ~z. The true boundary curve is
black and coloured dashed lines indicate its b-curve representations. Only in the case of
part (b) are both b-curve representations the same (both sampling directions are used).

Notice that the red b-curve provides a different representation of the t-curve

than that of the blue b-curve. In general, this problem can only occur between

37

two heightmaps with different sampling directions. In this case, the red heightmap

samples the t-curve along grid lines parallel to the ~x axis, and the blue heightmap

samples the t-curve along grid lines parallel to the ~z axis. Surface samples common

to both b-curves only occur where these grid lines intersect (see the black dots in

Figure 4.1(a)). Provided that each b-curve is extended to include the sample points

that belong to the other, the seam will be continuous. That is, both b-curves will

provide the representation shown as a gray piecewise linear curve in Figure 4.1(b).

In the next section, we will see how the heightmap data structure can be extended

so that, given two b-curves sharing a common boundary, both representations will

be equivalent.

4.2 3-Way Heightmaps

A 3-Way Heightmap (3-map) samples the tool along all three stock axis directions

(three ways) rather than just one. Specifically, a 3-map will potentially embed a

1D heightmap between all pairs of adjacent heights (including non-cell-boundary

heights, to simplify rendering and reduce approximation error). To be more precise,

let HL be a height that is adjacent to a smaller height HS (see Figure 4.2(a)). There

is a grid line coinciding with each of heights HL and HS, and the space between

them is divided into squares by other grid lines called dividing lines. Along each

dividing line above HS but below or equal to HL, an embedded heightmap stores

a height measured relative to height HL; heights HL and HS are referred to as

parent heights (green) and the other heights are referred to as embedded heights

(red). Note that an embedded heightmap does not exist for every pair of adjacent

heights; see Figure 4.2(b) for example.

In Figure 4.1(a), we saw that a discontinuous seam can occur between two

heightmaps with different sampling directions. Since a 3-map samples along two

directions within each boundary face of its cell, discontinuous seams will not occur

if 3-maps are used in place of regular heightmaps. As an illustration, consider how

3-maps could be applied to Figure 4.1(a). In the blue heightmap, a 1D heightmap

consisting of three red heights would be embedded in between the two leftmost blue

heights. Likewise, a 1D heightmap consisting two blue heights would be embedded

in between the two bottommost red heights of the red heightmap. Since both

heightmaps now sample the t-curve along all grid lines (two directions), the seam

will be continuous as in Figure 4.1(b).

38

(a) (b)

Figure 4.2: Embedded heightmap illustrations. Embedded heights are red; parent heights
are green and labelled HL (large) and HS (small); surface samples are appropriately-
coloured dots; t-curves are black; and b-curves are gray. (a) An embedded 1D heightmap
with three entries. (b) A pair of heights that do not require an embedded heightmap.

39

4.3 3-Map Mesh Construction

A 3-map mesh consists of two components: the interior mesh, which consists of all

triangles not coincident with a face of the 3-map’s cell; and the exterior mesh, which

consists of all triangles on a face of the 3-map’s cell. The interior mesh is generated

using a specialized version of the marching cubes algorithm [12], and the exterior

mesh is generated using a specialized version of the marching squares algorithm,

the unpublished 2D version of marching cubes [16]. But while marching cubes has

an ambiguity problem, when applied to CNC machining there is enough additional

information to properly interpret the ambiguous faces; bilinear interpolation [16] is

not necessary.

4.3.1 Exterior Mesh Construction

Besides partitioning the interior of a 3-map’s cell into cubical cells, the sampling

grid also partitions a 3-map’s cell boundary into cells called squares. An exterior

mesh is constructed through examination of these squares. Only the nonempty

squares coincident with the boundary of the multidirectional heightmap must be

considered; nonempty squares that occur along a common boundary are not visible

to the viewer. For each nonempty square examined, a line loop that bounds its

solid portion is calculated and subsequently triangulated. For a solid square, the

line loop is simply the square’s corner points; for a partial square, it can be shown

that all surface samples as well as solid corner points form the line loop required,

a fact I will demonstrate with a case-based proof.

The possibilities for a partial square depend on its relationship with the 3-

map’s direction of representation ~v. A nonside square has a normal parallel to ~v.

Consequently, each edge of a nonside square may coincide with an embedded surface

sample, and is referred to as embedded edge. In contrast, a side square has a normal

perpendicular to ~v. Thus, for a side square, only the two edges perpendicular to ~v

are embedded edges; each other edge may contain a parent surface sample, and is

referred to as parent edge.

The only possible partial side squares (i.e., the only squares functional with

respect to the direction of representation) are shown in Figure 4.3. Again, parent

heights are shown in green, and embedded heights in red. In addition, the points

of each line loop are shown as dots, which are black in the case of solid corners,

and in the case of surface samples, green or red as appropriate. Observe that each

square has two surface samples interconnected by a separating curve (a gray line

40

segment). Thus, in all cases the surface samples and solid corners compose the line

loop required.

(a) (b) (c) (d)

(e) (f) (g)

Figure 4.3: The partial side square cases. Solid corners are black; embedded heights and
surface samples are red; parent heights and surface samples are green; separating curves
are gray line segments.

The reason for only seven partial side squares should be explained more precisely.

The relationship between two parent heights solely determines what embedded

heights, if any, will be present between them (see Figure 4.2). Also, there is only

one way a parent edge can be partial: the bottom half must be solid, and the upper

half must be empty. Thus, since a side square has two parent edges, each of which

can be partial, empty or full, there are nine possible cases; but only seven of these

cases are partial.

The only possible partial nonside squares (up to symmetry) are shown in Fig-

ure 4.4. Since each corner is either coincident with a parent height (green dot)

or not (no dot), there are sixteen possible nonside square configurations; but only

fourteen of these are partial. Only four partial cases (five if the second interpreta-

tion of configuration (d) is considered as a separate case) are given in Figure 4.4

because all other cases are rotationally symmetric to one of these cases. From each

of cases (a) to (c), three more cases can be generated from repeated rotation in the

plane by 90 degrees. Similarly, another case is obtained from each interpretation

of case (d) via a planar rotation of 90 degrees.

Configuration (d), the “ambiguous face”, has two interpretations [16]. The left

interpretation has one solid portion and two empty portions (closed interpretation),

whereas the right interpretation has one empty portion and two solid portions (open

41

(a) (b) (c) (d)

Figure 4.4: The partial nonside square cases. Embedded heights and surface samples
are red; parent heights are green dots; separating curves are gray line segments.

interpretation). Although the open interpretation can occur (e.g., imagine a ball

nose tool that skims across the face from corner to corner), and is easy to detect,

it was not implemented to simplify interior mesh generation. I primarily developed

the 3-map data structure to prevent the occurrence of discontinuous seams; a single

consistent interpretation of the ambiguous face is sufficient to achieve this goal.

It may seem that 3-maps will not always guarantee continuous seams since there

is no configuration (d) for side squares (the necessary sample data is not available

for this type of side square to be possible). This is not a problem since if a second

corner of a side square is removed, the heightmap will be resampled in a new

direction: the side square will become a nonside square.

The algorithm given above is similar to the marching squares algorithm. As

noted earlier, one difference arises because extra information is available to inter-

pret the ambiguous face. The only other difference is that the marching squares

algorithm does not make any distinction between squares based upon “direction of

representation”. Specifically, it only applies those cases shown in Figure 4.4.

4.3.2 Interior Mesh Construction

An interior mesh is constructed via an examination of all cubes inside a 3-map.

For each cube, a line loop that bounds its separating surface is constructed and

subsequently triangulated. By careful consideration of all cases, I have developed

an algorithm to generate this line loop. These cases (up to symmetry) are given in

Figure 4.5) as “proof” of its correctness.

As previously mentioned, a parent edge can be in one of three possible states

(empty, partial, or full). Thus, there are 34 − 2 = 79 partial cube configurations.

However, up to rotational and reflective symmetry, only the 19 configurations (five

with more than one interpretation) shown in Figure 4.5 are unique. Additional

cases can be generated from each cube via a 90 degree rotation about the direction

42

(a) 4 (b) 4 (c) 4 (d) 8 (e) 4

(f) 2 (× 2) (g) 4 (× 2)

(h) 2 (× 4) (i) 4

(j) 4 (k) 8 (l) 8 (m) 4 (× 2)

(n) 4 (o) 1 (p) 4 (q) 4

(r) 2 (× 2) (s) 4

Figure 4.5: The partial cube cases. Embedded heights and surface samples are red; parent
heights and surface samples are green; solid line loops are gray. Below each cube, the
total number of symmetric configurations is given. Some configurations have more than
one interpretation due to the presence of ambiguous face(s). The closed-interpretation
cases (dark-coloured) are not implemented.

43

of representation (except for case (o)). Additional cases can also be generated from

cubes (d), (g), (k), (l) and (m) by moving a single parent surface sample to a

different parent edge. The total number of cases that can be generated from each

cube is noted just below it.

Configurations (f), (g), (m), and (r) have an ambiguous face and thus, two

interpretations; case (h) has two ambiguous faces (four interpretations). Thus,

seven more unique cases (dark-coloured) would be needed to properly handle the

ambiguous face (the total number of cases would be 79 + 18 = 97). Necessary

line-loop diagonals are shown for some of the alternative interpretations; if the

ambiguous face is to be interpreted as closed, diagonals that coincide with the

ambiguous face must be avoided. That said, my implementation only supports the

leftmost interpretation of each of these configurations for reasons I discussed earlier.

The following algorithm is used to derive the line loop for all supported (lightly-

coloured) cases. Iterate over all side squares (see Figure 4.3) in counterclockwise

order. For cases (a), (b), and (c) add the surface samples in bottom to top order;

for cases (e), (f), and (g) add the surface samples in top to bottom order; and

finally, add the surface samples of case (d) in left to right order. However, do not

add a point a second time if it was already added for the previous square.

Observe that cases (f), (g) and (h) of Figure 4.5 have more than one line loop.

The above algorithm still works but is applied to such cubes twice, each time to a

pair of side squares that share a nonfull parent edge.

It should be noted how the interior mesh construction algorithm differs from

marching cubes. The first version of marching cubes considered 256 cases (a cube

corner can be either absent or present) [12]. However, more cases are required to

deal with the ambiguous face [16]. In contrast, a 3-map cube has the restriction

that, relative to the direction of representation, a lower corner cannot be absent

unless the corner above it is also absent. Thus, there are 81 cases in total (97 cases if

ambiguous faces are interpreted properly), as was previously mentioned. Moreover,

this restriction makes it easy to generate the cases on the fly; the marching cubes

algorithm uses a case lookup table instead.

44

4.4 3-Maps versus Regular Heightmaps

Although the 3-map data structure was developed to deal with the discontinuous

seams problem, it has other benefits as well. Consider a heightmap and a 3-map

representing the same design surface with the same density. The 3-map will use

more memory because of the embedded 1D heightmaps; but the 3-map will also have

lower approximation error, and it can be rendered with better quality of shading

due to the additional normal samples it stores. These concepts are illustrated by

Figures 4.6 and 4.7. Figure 4.6 compares heightmap (part (b)) and 3-map (part

(c)) wireframe representations of a “vertical wall” (part (a)). Clearly, the 3-map

representation is substantially more accurate.

Figure 4.7 compares heightmap and 3-map representations of a design surface

with vertical walls. Furthermore, the comparison is shown at various densities

(32, 64, 128), and each 3-map representation is shown once with flat shading and

once with Gourand shading. Observe that, even at the highest density (128), the

heightmap representation of the curved walls is jagged. Also, Gourand shading

cannot help here since all normals happen to have the same direction, and the tool-

cut would thus be invisible if it were used. In constrast, the 3-map representation

suffers from neither of these problems; if Gourand shading is enabled, the curved

walls are smoothly represented even at the lowest density (32).

(a)

D
irectio

n
 o

f R
ep

resen
tatio

n

(b) (c)

Figure 4.6: Heightmap (b) and 3-map (c) wireframe representations of a “vertical
wall” (a). Parent heights and surface samples are green; embedded heights and surface
samples are red; triangular mesh edges are gray.

45

Density Heightmap 3-map, flat shading 3-map, Gourand shading

32

64

128

Figure 4.7: For a particular design surface, a comparison of a single-cell heightmap
representation and a single-cell 3-map representation.

46

Chapter 5

Implementation Issues

This chapter covers some additional implementation details not covered in chapters

3 and 4. Section 5.1 describes the memory layout of a multidirectional heightmap.

Section 5.2 describes how to compute the solid-representing line segments neces-

sary for good-bad map generation and direct split plane computation. Finally,

Section 5.3 covers good-bad map region bounding.

5.1 Data Structure Implementation

In this section I explain the memory layout of a multidirectional heightmap for the

current implementation. It is illustrated in Figure 5.1. I utilize arrays for purposes

of fast spatial look up of data; lazy allocation is used to help minimize memory

usage.

A multidirectional heightmap is represented by a Stock object, which links

to the root node of a kD-tree composed of Cell nodes. The grid data of each

Cell is stored in a separate ThreeMap object. This allows allocation of the

grid, possibly a large quantity of data, to be forgone if the Cell is PARTIAL

or EMPTY, as indicated by the solidness field. Each entry of the grid is a

pointer to one of three types of GridEntry objects. A PartialGridEntry object

stores a parent height/normal and two arrays of embedded height/normal pairs. A

SolidGridEntry object is assigned to a grid entry if no embedded heightmap is

needed there and the parent height located there is solid; an EmptyGridEntry

object has a similar purpose. Thus, many grid entries will only use the memory

required to store a pointer. The other two grids (DLrebuild and DLid) are for

display list management.

47

A multidirectional heightmap’s memory usage depends on the number of cells,

the size of each cell, and the way in which each cell has been cut. In other words,

the amount of memory used depends a great deal on the toolpath itself; not just

on the stock’s density. Therefore, it is difficult to estimate the memory usage of a

simulation beforehand.

Stock
double stkWidth
double stkDepth
double stkHeight
double stkDensity

Cell* topcell

enum solidT{EMPTY, PARTIAL, SOLID}
enum absDirT{X, Y, Z}
enum dirSignT{POS, NEG}
struct hn{ Height h, Normal n}

Type Definitions:

... ... ThreeMap
absDirT absDir
dirSignT dirSign

gridEntry* grid[][]
bool DLrebuild[][]
int DLid[][]

Cell

Point frameP
double width, length, depth
int numSamplesW,
 numSamplesL,
 numSamplesD

 solidT solidness
Heightmap* map

...

Cell* left, right

...

PartialGridEntry
hn parentHN
hn* embeddedX[]
hn* embeddedY[]

...

...

...

{
{

SolidGridEntry

EmptyGridEntry

...

...

...

...
...

Figure 5.1: Multidirectional heightmap memory layout.

5.2 Solid Segment Construction

Recall that constructive solid geometry (CSG) is applied when generating a good-

bad map: the tool line segments are subtracted from the cell line segments (see

48

Figure 3.3(c)). The purpose of this section is to explain how the solid-representing

line segments (solid segments) are computed from heightmaps (Section 5.2.1) and

the tool’s swept volume (Section 5.2.2).

5.2.1 Heightmap Solid Segments

This section discusses how solid segments parallel to a direction ~v are constructed

from a heightmap with direction ~u. These segments are needed to compute good-

bad maps (Section 3.1) and direct splits (Section 3.2.3). Here I will focus on the

case where ~v is perpendicular ~u; the opposite case is trivial since each height directly

maps to a solid segment.

To see how the solid segments are computed, it is helpful to think of the

heightmap data as being partitioned into slices of heights interconnected by line

segments. Each slice is considered independently. The general idea is to use a seg-

ment’s orthogonal projection to prune the number of rays that must be intersected

with it. Whenever enough intersection data is available along a ray, a solid segment

is output.

The algorithm applied to each slice is illustrated in Figure 5.2(a). The segments

of the slice are examined in sequence, starting with a segment that touches cell

boundary face FS, and ending with a segment that touches cell boundary face FE.

Let segment SC (red) be the segment currently under consideration. The projection

SP (purple) of segment SC onto face FS is computed, and for each grid point within

this projection, a ray intersection point (green) with segment SC is calculated.

Since other rays may be processed in between successive intersection calcula-

tions involving a particular ray, it is necessary to allocate and maintain a buffer of

previous intersections. Whenever a new intersection IN is found along a ray, solid

segments are output in the following cases:

(1) There is no previous intersection, and the new intersection IN is backfacing. In

this case, the output segment is bounded by face FS and intersection IN ; see

the green segments in Figure 5.2(b) for example.

(2) The previous intersection IP is frontfacing, and the new intersection IN is back-

facing. In this case, the output segment is bounded by intersection IP and

intersection IN ; see the red segment in Figure 5.2(b) for example.

49

(a) (b)

Figure 5.2: Solid segment computation and usage. (a) Generation of solid segments for
the horizontal direction from a heightmap with heights in the vertical direction. (b) After
the part (a) heightmap is cut by the tool (gray), usage of solid segments for computation
of the horizontally-directed good-bad map.

(3) The previous intersection IP is frontfacing, and there is no new intersection. In

this case, the output segment is bounded by intersection IP and face FE; see

the blue segments in Figure 5.2(b) for example.

There may be no intersections along some rays; this is simple to deal with. For

each grid point below the minimum height of the slice, a segment bounded by face

FS and face FE is output; see the purple segment in Figure 5.2(b) for example.

The good-bad map pixels generated from a particular slice of solid segments

are shown in Figure 5.2(b) to the left of face FS. This figure also demonstrates

an optimization that is applied to the above algorithm when it is used to generate

a good-bad map. If a ray does not intersect the tool, then it is not necessary to

compute any solid segments along that ray. That is, after the orthogonal projection

SP of the current segment SC is determined, it is not necessary to cast rays from

the grid points within projection SP . Instead, it is sufficient to count the num-

ber of times each grid point is contained by a segment’s projection; this is enough

information to distinguish between good and bad pixels. Furthermore, to distin-

guish between good-positive and good-negative pixels, an orientation value (back-

facing/frontfacing) corresponding to the first intersection found must be stored with

each grid point; if more than one intersection occurs, the value is simply ignored.

In Section 3.2.3 I mentioned that direct split planes are also computed from solid

segments that occur along tool-intersecting rays (the left-of-tool, tool and right-of-

50

tool sets of line segments). I made this decision based upon two facts: (1) the

above optimization would have no benefit if all solid segments were considered

when calculating direct split planes, and (2) consideration of the left-of-tool, tool

and right-of-tool segments is sufficient to handle situations where all unresolved

regions consist entirely of bad pixels.

5.2.2 Tool Solid Segments

ToolSim approximates the tool’s swept surface as a piecewise polygonal surface (see

Figure 2.5). It is not necessary for this surface to fully bound the swept volume if

the stock is represented as a regular heightmap, because only the closest intersec-

tion with the tool is needed; solid intervals are necessary when a multidirectional

heightmap is used instead. Consequently, extra triangles are added to each portion

of swept surface between two in-between frames to obtain a triangle strip loop, and

a “stamp” is used to bound each of the two holes that remain. As a result, my

implementation uses one stamp per in-between step. In contrast, stamps are only

necessary to deal with discontinuous direction changes when the stock is represented

as a regular heightmap.

Spatial look-up techniques similar to those described in Section 5.2.1 are applied

to efficiently compute solid intervals from the stamps and triangles. Furthermore,

the solid intervals are stored in an intermediate buffer, one for each stock axis

direction, since often the same information is needed for more than one cell. The

time needed to compute most simulations is drastically reduced by doing so.

Each buffer is a 2-dimensional array to allow access to entries based upon spatial

location. This approach is not without its disadvantages, however. If the tool’s

orthogonal projection onto a buffer has an angle close to 45 degrees, there will be

many unused entries. Whenever all intersection data must be accessed, I simply

scan every entry and ignore the empty ones, a rather inefficient approach (and the

slowdown can be quite noticeable). One possible way to remove this limitation is

to store each table as an array of rows, each possibly having a distinct number of

entries, and use the first entry of each row to store its spatial displacement relative

to a full grid.

51

5.3 Good-bad Map Region Bounding

This section describes an algorithm that computes a tight bounding rectangle for

each region composed of a particular pixel type P . Bounding rectangles are neces-

sary to compute split planes from good-bad maps. As discussed in Section 3.2.1,

split planes are calculated from good-bad maps via a comparison of the orthogonal

projections of regions (see Figure 3.9). The two projections resulting from a region

can be obtained directly from a tight bounding rectangle for that region.

Given a good-bad map and a pixel type P , all rectangles that tightly bound

pixels of type P are computed using a row by row examination of all pixels. The

following steps are carried out for each row (ignoring the boundary conditions):

(1) Each pixel is examined in left to right order to compute a bounding rectangle

for each continuous sequence of type P pixels. This is done by keeping track of

when a P pixel sequence in entered and when it is left. All bounding rectangles

found are added to the current list.

(2) The current list is compared to another list of rectangles, the previous list,

which includes only rectangles that bound pixels in previous rows. Any current

list member C that is adjacent to a previous list member B is expanded

enough to fully overlap B. B is then removed from the previous list.

(3) Any previous list members that remain after step (2) are moved to the done

list, which contains all bounding rectangles that completely bound a region of

P pixels.

(4) All current list members are added to the previous list. Go back to Step

1, but apply the steps to the next row.

Figure 5.3 illustrates the algorithm as applied to a simple example.

52

(a) (b)

(c) (d)

(e) (f) Key

Figure 5.3: An example illustrating how bounding rectangles are calculated for all gray
pixel regions. (a) Bounding rectangles are computed for the first row and added to the
current list. (b) The current list becomes the previous list. A bounding box from the
second row is added to the new current list. The current list is compared to the previous
list. A current list member C is adjacent to a previous list member B. (c) Rect C is
expanded to fully cover B. B is deleted from the previous list. (d) The previous list
member that was not adjacent to a current list member is added to done list. The current
list becomes the previous list. A bounding box from the third row is added to the new
current list. (e) The current list is compared to the previous list. The current list member
is not adjacent to the previous list member. So the previous list member is moved to the
done list. The current list member is also added to done list since the third row is the
last.

53

Chapter 6

Evaluation By Simulation

In this chapter I experimentally evaluate various aspects of a multidirectional

heightmap’s performance. Section 6.1 presents numerous examples of solid ob-

jects that can be represented. Section 6.2 evaluates how successful the heuristics

presented in Section 3.3 are. Section 6.3 evaluates the CPU and memory usage of a

multidirectional heightmap. Finally, Section 6.4 addresses the relationship between

maximum approximation error and stock density.

6.1 Simulation Examples

This section presents some examples that were machined using a multidirectional

heightmap (Figures 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 6.10, 6.11). These

examples were used as test cases for the various experiments presented in this

chapter. The simulation parameters used to compute these examples are given in

Table 6.1.

Simulation Parameter Value

stock density 100

grazing curve density 256

number of in-between steps 10

Table 6.1: Simulation parameters used to compute the examples.

54

Figure 6.1: Cylinder Spiral (CS).

55

Figure 6.2: Donut With Overhang 1 (D1). Figure 6.3: Donut With Overhang 2 (D2).

Figure 6.4: Donut Spiral (DS1). Figure 6.5: Donut Spiral (DS2).

56

Figure 6.6: Top face drilling and angled edge cut (MA1). The top face cuts connect with
the other cut.

Figure 6.7: Top face drilling and angled edge cut (MA2).

57

Figure 6.8: NonAA 45 Degree Drill (NA). Figure 6.9: Angled drilling aligned with
plane (A1).

Figure 6.10: Drill To Center of Cube
Along Each Axis (A2).

Figure 6.11: Two planar toolcuts (A3).

58

6.2 Heuristic Evaluation

The goal of this section is to determine which combination of heuristics from Sec-

tion 3.3 is most effective at minimizing the total cell subdivision count. I evaluate

each rule combination (ruleset) experimentally using the examples from Section 6.1

as test cases (and the simulation parameters of Table 6.1). Each ruleset is denoted

as a tuple of rules in order of descending priority. To help avoid repetitive bad

behaviour, the Random-Selection (RS) rule is always used and is always the lowest

priority rule.

Recall the other heuristic rules are Furthest-From-Side (FFS), Closest-Toolcut-

Direction (CTD) and Split-Plane-Type (SPT). Table 6.2 tabulates the total subdi-

vision count for ruleset versus test case. I computed additional data (see Tables 6.3

and 6.4) from Table 6.2 using a few metrics for ruleset performance measurement.

Table 6.3 tabulates the metric RS-percentage, subdivision count as a percentage of

Random-Selection subdivision count, for ruleset versus test case (each cell ti,j of

this table is di+1,j/d1,j ∗ 100 where d is a cell from Table 6.2). The premise here

is that if a rule cannot outperform the mindless Random-Selection rule (i.e, its

RS-percentage is greater than 100), it probably is not an effective rule. The last

row of Table 6.3 is the lowest RS-percentage achieved for each test case.

Table 6.4 measures a ruleset’s overall performance across all test cases. Specifi-

cally, it tabulates the difference between RS-percentage and the lowest RS-percentage

achieved for ruleset versus test case (each cell ti,j of this table is di,j−dlastrow,j where

d is a cell from Table 6.3); this was done to compare how close a ruleset’s perfor-

mance is to the best performing rule. The rightmost column contains the sum of

all results (a summation value) for each row. The lower a ruleset’s summation

value, the more likely it is to be good. Of course, such a metric fails to take into

account poor performance for particular examples; the data of Table 6.4 should not

be ignored.

The first seven cases (complex cases) are complex enough to require a large

number of subdivisions no matter what combination of rules is applied. In contrast,

the remaining cases (simple cases) require few subdivisions. Very good or bad

heuristic performance is more likely to be experienced with simple cases. Thus,

separate summation values are given for each type of case: the SC column is the

sum of all complex results, and the SS column is the sum of all simple results.

Note the extremely poor performance (i.e., RS-percentage > 100) of ruleset

(CTD, RS) when applied to the following test cases: CS, 143%; D1, 933%; D2,

59

Name CS D1 D2 DS1 DS2 MA1 MA2 NA A1 A2 A3

RS 2893 528 508 2448 911 707 321 31 4 16 1

CTD, RS 4143 4928 4642 16816 10946 683 150 43 3 14 1

SPT, RS 1390 276 269 1547 843 584 147 22 1 11 1

FFS, RS 282 159 132 1246 286 562 224 12 10 5 2

FFS, CTD, RS 285 165 134 1216 284 538 209 12 10 5 2

FFS, SPT, RS 279 155 133 1203 286 543 210 12 10 5 2

FFS, CTD, SPT, RS 285 165 134 1231 284 539 201 12 10 5 2

FFS, SPT, CTD, RS 279 157 133 1203 284 539 202 12 10 5 2

FESF, RS 410 176 149 1208 313 641 240 15 8 22 1

FEFS, CTD, RS 366 193 101 1151 356 626 138 15 8 19 1

FEFS, SPT, RS 363 143 123 1052 278 543 148 10 1 13 1

FEFS, CTD, SPT, RS 358 120 96 1163 307 560 128 12 1 12 1

FEFS, SPT, CTD, RS 342 130 125 1057 285 531 122 10 1 14 1

FESF-FFS, RS 345 169 142 1212 314 637 174 15 8 17 1

FEFS-FFS, CTD, RS 314 172 79 1148 339 635 174 15 8 17 1

FEFS-FFS, SPT, RS 384 147 125 1067 279 552 161 10 1 14 1

FEFS-FFS, CTD, SPT, RS 314 103 81 1109 293 550 163 12 1 12 1

FEFS-FFS, SPT, CTD, RS 379 131 125 1059 289 547 158 10 1 15 1

SPT, FEFS-FFS, RS 929 220 152 1228 399 554 136 28 1 15 1

SPT, CTD, RS 709 478 373 1919 1393 537 122 30 1 15 1

SPT, FEFS-FFS, CTD, RS 539 205 127 1228 458 549 133 28 1 15 1

SPT, CTD, FEFS-FFS, RS 701 468 370 1906 1373 540 120 30 1 15 1

Table 6.2: The total subdivision count for ruleset versus test case.

Name CS D1 D2 DS1 DS2 MA1 MA2 NA A1 A2 A3

CTD, RS 143 933 914 687 1202 97 47 139 75 88 100

SPT, RS 48 52 53 63 93 83 46 71 25 69 100

FFS, RS 10 30 26 51 31 79 70 39 250 31 200

FFS, CTD, RS 10 31 26 50 31 76 65 39 250 31 200

FFS, SPT, RS 10 29 26 49 31 77 65 39 250 31 200

FFS, CTD, SPT, RS 10 31 26 50 31 76 63 39 250 31 200

FFS, SPT, CTD, RS 10 30 26 49 31 76 63 39 250 31 200

FESF, RS 14 33 29 49 34 91 75 48 200 138 100

FEFS, CTD, RS 13 37 20 47 39 89 43 48 200 119 100

FEFS, SPT, RS 13 27 24 43 31 77 46 32 25 81 100

FEFS, CTD, SPT, RS 12 23 19 48 34 79 40 39 25 75 100

FEFS, SPT, CTD, RS 12 25 25 43 31 75 38 32 25 88 100

FESF-FFS, RS 12 32 28 50 34 90 54 48 200 106 100

FEFS-FFS, CTD, RS 11 33 16 47 37 90 54 48 200 106 100

FEFS-FFS, SPT, RS 13 28 25 44 31 78 50 32 25 88 100

FEFS-FFS, CTD, SPT, RS 11 20 16 45 32 78 51 39 25 75 100

FEFS-FFS, SPT, CTD, RS 13 25 25 43 32 77 49 32 25 94 100

SPT, FESF-FFS, RS 32 42 30 50 44 78 42 90 25 94 100

SPT, CTD, RS 25 91 73 78 153 76 38 97 25 94 100

SPT, FESF-FFS, CTD, RS 19 39 25 50 50 78 41 90 25 94 100

SPT, CTD, FESF-FFS, RS 24 89 73 78 151 76 37 97 25 94 100

Lowest RS-Percentage 10 20 16 43 31 75 37 32 25 31 100

Table 6.3: For each test case, the percentage increase/decrease of the total subdivision
count achieved by each ruleset set compared to the Random-Selection rule. Each cell
ti,j of this table is di+1,j/d1,j ∗ 100 where d is a cell from Table 6.2. The last row is the
greatest percentage decrease achieved for each test case.

60

N
a
m

e
C

S
D

1
D

2
D

S
1

D
S

2
M

A
1

M
A

2
N

A
A

1
A

2
A

3
S

C
S

S
S

T

C
T

D
,

R
S

1
3
4

9
1
4

8
9
8

6
4
4

1
1
7
1

2
1

9
1
0
6

5
0

5
6

0
3
7
9
1

2
1
3

4
0
0
4

S
P

T
,

R
S

3
8

3
3

3
7

2
0

6
2

7
8

3
9

0
3
8

0
2
0
7

7
6

2
8
3

F
F

S
,

R
S

0
1
1

1
0

8
1

4
3
2

6
2
2
5

0
1
0
0

6
7

3
3
1

2
9
8

F
F

S
,

C
T

D
,

R
S

0
1
2

1
1

7
1

1
2
8

6
2
2
5

0
1
0
0

5
9

3
3
1

2
9
0

F
F

S
,

S
P

T
,

R
S

0
1
0

1
1

6
1

2
2
8

6
2
2
5

0
1
0
0

5
7

3
3
1

2
8
9

F
F

S
,

C
T

D
,

S
P

T
,

R
S

0
1
2

1
1

7
1

1
2
5

6
2
2
5

0
1
0
0

5
7

3
3
1

2
8
9

F
F

S
,

S
P

T
,

C
T

D
,

R
S

0
1
0

1
1

6
1

1
2
6

6
2
2
5

0
1
0
0

5
4

3
3
1

2
8
6

F
E

S
F

,
R

S
5

1
4

1
4

6
4

1
6

3
7

1
6

1
7
5

1
0
6

0
9
5

2
9
7

3
9
3

F
E

F
S

,
C

T
D

,
R

S
3

1
7

4
4

9
1
3

6
1
6

1
7
5

8
8

0
5
6

2
7
9

3
3
5

F
E

F
S

,
S

P
T

,
R

S
3

8
9

0
0

2
9

0
0

5
0

0
3
0

5
0

8
0

F
E

F
S

,
C

T
D

,
S

P
T

,
R

S
3

3
3

5
3

4
2

6
0

4
4

0
2
4

5
0

7
4

F
E

F
S

,
S

P
T

,
C

T
D

,
R

S
2

5
9

0
1

0
1

0
0

5
6

0
1
8

5
6

7
4

F
E

S
F

-F
F

S
,

R
S

2
1
3

1
2

7
4

1
5

1
7

1
6

1
7
5

7
5

0
6
9

2
6
6

3
3
6

F
E

F
S

-F
F

S
,

C
T

D
,

R
S

1
1
3

0
4

7
1
5

1
7

1
6

1
7
5

7
5

0
5
6

2
6
6

3
2
3

F
E

F
S

-F
F

S
,

S
P

T
,

R
S

4
8

9
1

0
3

1
3

0
0

5
6

0
3
7

5
6

9
4

F
E

F
S

-F
F

S
,

C
T

D
,

S
P

T
,

R
S

1
0

0
2

2
3

1
3

6
0

4
4

0
2
2

5
0

7
2

F
E

F
S

-F
F

S
,

S
P

T
,

C
T

D
,

R
S

3
5

9
0

1
2

1
2

0
0

6
3

0
3
3

6
3

9
6

S
P

T
,

F
E

S
F

-F
F

S
,

R
S

2
2

2
2

1
4

7
1
3

3
5

5
8

0
6
3

0
8
8

1
2
1

2
0
8

S
P

T
,

C
T

D
,

R
S

1
5

7
1

5
8

3
5

1
2
2

1
1

6
5

0
6
3

0
3
6
8

1
2
7

4
3
0

S
P

T
,

F
E

S
F

-F
F

S
,

C
T

D
,

R
S

9
1
9

9
7

2
0

3
4

5
8

0
6
3

0
7
1

1
2
1

1
9
2

S
P

T
,

C
T

D
,

F
E

S
F

-F
F

S
,

R
S

1
5

6
9

5
7

3
5

1
2
0

1
0

6
5

0
6
3

0
2
9
7

1
2
7

4
2
4

T
ab

le
6.

4:
E

xc
ep

t
fo

r
th

e
th

re
e

ri
gh

tm
os

t
co

lu
m

ns
,e

ac
h

ce
ll
t i
,j

of
th

is
ta

bl
e

is
d
i,
j
−
d
la
st
r
o
w
,j

w
he

re
d

is
a

ce
ll

fr
om

T
ab

le
6.

3.
E

ac
h

ce
ll

of
co

lu
m

n
SC

is
th

e
su

m
of

al
lc

om
pl

ex
ca

se
re

su
lt

s,
ea

ch
ce

ll
of

co
lu

m
n

SS
is

th
e

su
m

of
al

ls
im

pl
e

ca
se

re
su

lt
s,

an
d

ea
ch

ce
ll

of
co

lu
m

n
ST

is
th

e
su

m
of

th
e

su
m

s
fr

om
co

lu
m

n
SC

an
d

SS
.

61

914%; DS1, 687%; and DS2, 1202%. The reason why is the following: Closest-

Toolcut-Direction tends to produce numerous extremely thin cells if the tool’s di-

rection gradually changes. To avoid this problem, Closest-Toolcut-Direction should

be assigned lower priority than Furthest-From-Side (or Far-Enough-From-Side, ex-

plained later). Thus, I did not consider any rulesets that assign Closest-Toolcut-

Direction the highest priority. As an illustration, Figure 6.12 shows a cellular view

of two multidirectional heightmap representations of case D2 (see Figure 6.3); one

was produced using ruleset (CTD, RS) (part (a)), and the other was produced using

ruleset (FEFS-FFS, CTD, SPT, RS) (part (b)). Case D2 was produced via rota-

tion of an angled tool 360 degrees and thus, the tool’s direction gradually changes.

Ruleset (FEFS-FFS, CTD, SPT, RS) clearly helps avoid skinny cells in this case

(and it also decreases the subdivision count by a factor of 57).

(a) (CTD, RS) - 4643 cells (b) (FEFS-FFS, CTD, SPT, RS) - 82 cells

Figure 6.12: Two celluar representations of case D2 (see Figure 6.3).

Far-Enough-From-Side (FEFS) is meant to be a less restrictive version of Furthest-

From-Side. Far-Enough-From-Side assigns high priority to each split plane that is

further than a threshold distance R (the tool’s radius) from both surrounding cell

boundaries; low priority is assigned to all other split planes. All results obtained

when Furthest-From-Side has the highest priority are roughly the same or identical

for each test case, which suggests that the other rules are not being used to break

ties very often. This is not the case when Far-Enough-From-Side is used in its

place.

I also tried some rulesets that use both Furthest-From-Side and Far-Enough-

From-Side, but not at the same time. The idea here is to use Furthest-From-Side

whenever Far-Enough-From-Side fails to partition the split planes into two sets

62

(perhaps because all cell dimensions are less than 2R), since close together split

planes may not be avoided if this happens.

Overall, the data of Table 6.4 certainly does suggest the heuristics are helpful:

every ruleset except for (CTD, RS) works better than Random-Selection. Here the

six best performing rulesets are listed with their summation values:

(1) (FEFS-FFS, CTD, SPT, RS), 72

(2) (FEFS, CTD, SPT, RS), 74

(3) (FEFS, SPT, CTD, RS), 74

(4) (FEFS-FFS, SPT, RS), 94

(5) (FEFS, SPT, RS), 80

(6) (FEFS-FFS, SPT, CTD, RS), 96

From the above results I suggest the following:

(1) Either FEFS or FEFS-FFS should be used and have the highest priority.

(2) The SPT rule is also useful. The results are often much better when this rule

is included.

(3) The CTD rule might be useful. Sometimes it helps, and sometimes it does not;

the results are too close to tell for sure.

When ruleset (FEFS-FFS, CTD, SPT, RS) was used, on average, 40.20% of the

splits selected were indirect splits, 44.76% of the splits selected were direct splits

and finally, 14.94% of the splits selected were sign conflict splits.

63

6.3 CPU and Memory Usage

This section experimentally addresses the CPU and memory usage of simulations

with multidirectional heightmaps; the Section 6.1 test cases, and the simulation

parameters of Table 6.1, were used once again. First I will consider CPU usage.

All simulations utilized a 2.40 GHz Intel Core 2 Duo CPU with access to 2.0 GB of

333.9 MHz DDR2 RAM, and a NVIDIA GeForce 7600GT graphics card; but note

that my implementation is not optimized for multiple cores. Table 6.5 tabulates

simulation run time (in seconds) for rulesets (FEFS-FFS, CTD, SPT, RS), (FEFS-

FFS, SPT, CTD, RS) and (RS). Run time results for each simulation pass as well

as the total were computed; for reasons I note in Chapter 7, a second simulation

pass is necessary to eliminate discontinuous seams. In addition, since sometimes

only the final result of the simulation is required, run time results were computed

with and without rendering enabled; however, there are no benefits to rendering

the first pass so those numbers are not included in the table.

There are two important general trends to note from the results of Table 6.5:

(1) For the most part, whichever ruleset achieves the lowest subdivision count

also achieves the shortest run time. This fact is particularly apparent when

comparing ruleset (FEFS-FFS, CTD, SPT, RS) or (FEFS-FFS, SPT, CTD,

RS) with the RS rule.

(2) The second pass run time is much slower when rendering is enabled. However,

the rendering code was not optimized for speed and can likely be made to run

much faster.

Table 6.6 tabulates numerous memory usage metrics for rulesets (FEFS-FFS,

CTD, SPT, RS), (FEFS-FFS, SPT, CTD, RS) and (RS). The most obvious met-

ric is the Total, which equals the total amount of memory used to store all as-

pects of the multidirectional heightmap data structure (kD-tree, heightmap grids,

height/normal samples, etc.) in megabytes.

A few of the other metrics are intended to measure the memory efficiency of

the data structure. First of all, the Unique Height/Normal Samples metric

is the percentage of total memory occupied by “unique” height/normal samples

(embedded and parent); larger values are better. The unique part of the definition

refers to the fact that duplicate height/normal samples sometimes occur along a

common boundary between cells (see Chapter 4).

64

The Total as % of 3D Pointer Grid metric also measures memory efficiency,

but before this metric can be defined, the 3D pointer grid stock representation must

be defined. As a multidirectional heightmap can be viewed as a more memory-

compact version of a 3D pointer grid, but is likely more complex to implement

and more computationally expensive, it would be good to know whether usage of

a multidirectional heightmap is likely to significantly reduce total memory usage.

That said, a 3D pointer grid is a 3D array of pointers. Each grid entry is either

null or points to a triplet of point/normal samples; each height/normal sample is

calculated along a distinct cube edge, and these edges share a common point and

are orthogonal.

The Total as % of 3D Pointer Grid metric equals the total memory as a

percentage of the memory a 3D pointer grid would use to store the same design

surface; smallers values are better. The metric is approximate because I did not

actually machine any of the test cases using a 3D pointer grid stock representation.

Thus, this metric does not measure height/normal pairs that are unused (a triplet

is allocated even if only one sample is necessary).

Observe that if the relevant results of tables 6.2 and 6.6 are compared, it is

apparent that as the subdivision count decreases, the height/normal samples per-

centage tends to increase, and the total memory as a percentage of a 3D pointer

grid tends to decrease.

The Embedded Height/Normal Samples metric is the percentage of total

memory occupied by embedded height/normal samples. The result of this metric

is toolpath dependent, and is high for every test case considered in Table 6.6. For

example, when ruleset (FEFS-FFS, CTD, SPT, RS) was used, results obtained from

this metric range from 42.14% to 74.93%. However, the memory cost for embedded

1D heightmap usage is not as high as it appears. Since these extra surface samples

signficantly reduce approximation error, a lower sampling density can be used (see

Section 6.4).

All other metrics measure the various uses of the memory a multidirectional

heightmap uses organizing the sample data. These metrics are the following:

• Null Grid Entries - the percentage of total memory occupied by null sam-

pling grid pointers.

• Null Embedded Heightmaps - the percentage of total memory occupied

by null embedded heightmap pointers.

65

• Unused Parent Height/Normal Samples - the percentage of memory

occupied by solid and empty parent heights/normals.

• Duplicate Height/Normal Samples - the percentage of total memory

occupied by duplicate sample heights/normals.

• Display List Management - the percentage of total memory used for dis-

play list management.

The “waste” metric data of Table 6.6 suggests that null grid pointers are mostly

responsible for wasted memory. For example, when ruleset (FEFS, CTD, SPT,

RS) was used, results obtained from this metric were in the range of 5.08% to

32.96%. Thus, data structures for sparse arrays could possible help reduce memory

consumption further.

66

F
E

F
S

-F
F

S
,

C
T

D
,

S
P

T
,

R
S

C
S

D
1

D
2

D
S

1
D

S
2

M
A

1
M

A
2

N
A

A
1

A
2

A
3

fi
rs

t
p

a
ss

,
n

o
re

n
d

er
in

g
9
5
.1

4
1
2
.0

9
6
.7

0
2
1
.8

0
1
5
.3

3
1
0
.5

2
8
.6

4
0
.8

0
1
.6

3
9
.6

1
3
.7

2

se
co

n
d

p
a
ss

,
n

o
re

n
d

er
in

g
1
0
2
.6

9
1
1
.9

2
6
.1

7
1
8
.5

8
1
2
.4

4
9
.8

8
8
.4

2
0
.6

3
1
.6

1
1
0
.0

2
3
.7

3

to
ta

l,
n

o
r
e
n
d

e
r
in

g
1
9
7
.8

3
2
4
.0

2
1
2
.8

8
4
0
.3

8
2
7
.7

7
2
0
.3

9
1
7
.0

6
1
.4

2
3
.2

3
1
9
.6

3
7
.4

5

se
co

n
d

p
a
ss

,
re

n
d

er
in

g
4
8
6
.2

3
6
8
.3

4
3
5
.8

8
1
3
6
.3

6
9
9
.0

6
2
5
.2

2
1
8
.1

6
3
.5

6
3
.7

2
3
5
.9

1
4
.6

9

to
ta

l,
r
e
n

d
e
r
in

g
5
8
9
.0

9
8
1
.8

9
4
3
.5

2
1
6
1
.3

6
1
1
7
.1

5
3
6
.5

2
2
7
.0

7
4
.4

8
5
.4

2
4
5
.8

5
8
.4

1

F
E

F
S

-F
F

S
,

S
P

T
,

C
T

D
,

R
S

C
S

D
1

D
2

D
S

1
D

S
2

M
A

1
M

A
2

N
A

A
1

A
2

A
3

fi
rs

t
p

a
ss

,
n

o
re

n
d

er
in

g
9
5
.5

6
1
2
.5

9
7
.5

3
2
0
.4

8
1
4
.3

4
1
0
.4

7
8
.6

7
0
.7

7
1
.6

3
9
.6

4
3
.7

2

se
co

n
d

p
a
ss

,
n

o
re

n
d

er
in

g
1
0
2
.9

4
1
1
.9

4
6
.2

4
1
8
.3

0
1
2
.2

5
9
.8

3
8
.4

1
0
.5

9
1
.6

3
9
.7

5
3
.7

3

to
ta

l,
n

o
r
e
n
d

e
r
in

g
1
9
8
.5

0
2
4
.5

3
1
3
.7

7
3
8
.7

8
2
6
.5

9
2
0
.3

0
1
7
.0

8
1
.3

6
3
.2

5
1
9
.3

9
7
.4

5

se
co

n
d

p
a
ss

,
re

n
d

er
in

g
4
5
6
.5

0
7
3
.4

8
4
3
.6

9
1
3
2
.9

4
9
2
.2

0
2
4
.8

9
1
7
.3

4
3
.5

3
3
.7

7
3
3
.7

3
4
.7

5

to
ta

l,
r
e
n

d
e
r
in

g
5
6
2
.2

8
8
7
.8

4
5
2
.3

9
1
5
7
.1

4
1
0
8
.8

9
3
5
.8

8
2
6
.2

9
4
.4

4
5
.4

9
4
3
.7

9
8
.4

8

R
S

C
S

D
1

D
2

D
S

1
D

S
2

M
A

1
M

A
2

N
A

A
1

A
2

A
3

fi
rs

t
p

a
ss

,
n

o
re

n
d

er
in

g
1
2
5
.8

3
1
6
.1

3
1
0
.3

1
3
1
.7

8
2
0
.5

9
1
1
.1

1
9
.3

0
0
.8

6
1
.6

9
9
.8

9
3
.7

2

se
co

n
d

p
a
ss

,
n

o
re

n
d

er
in

g
1
4
7
.8

6
1
2
.9

1
7
.3

4
2
3
.3

4
1
5
.0

5
1
0
.0

6
8
.6

7
0
.6

4
1
.6

6
1
0
.4

8
3
.7

3

to
ta

l,
n

o
r
e
n
d

e
r
in

g
2
7
3
.6

9
2
9
.0

3
1
7
.6

6
5
5
.1

2
3
5
.6

4
2
1
.1

7
1
7
.9

7
1
.5

0
3
.3

4
2
0
.3

8
7
.4

5

se
co

n
d

p
a
ss

,
re

n
d

er
in

g
1
1
2
2
.0

8
8
3
.8

3
6
7
.5

9
2
4
1
.3

6
1
5
6
.2

7
3
5
.0

5
2
7
.5

3
4
.3

0
4
.2

8
4
5
.1

4
4
.6

4

to
ta

l,
r
e
n

d
e
r
in

g
1
2
6
6
.0

0
1
0
2
.7

8
7
9
.8

6
2
8
2
.4

4
1
8
5
.3

0
4
7
.0

3
3
7
.4

4
5
.3

3
6
.0

6
5
5
.5

3
8
.3

8

T
ab

le
6.

5:
R

un
ti

m
e

re
su

lt
s

(i
n

se
co

nd
s)

fo
r

ru
le

se
ts

(F
E

F
S,

C
T

D
,

SP
T

,
R

S)
,

(F
E

F
S,

SP
T

,
C

T
D

,
R

S)
an

d
(R

S)
w

he
n

ap
pl

ie
d

to
th

e
te

st
ca

se
s

of
Se

ct
io

n
6.

1.

67

F
E

F
S

-F
F

S
,

C
T

D
,

S
P

T
,

R
S

C
S

D
1

D
2

D
S

1
D

S
2

M
A

1
M

A
2

N
A

A
1

A
2

A
3

T
o
ta

l
(M

b
)

1
7
.8

0
1
6
.5

9
5
.6

4
1
4
.7

4
1
1
.3

9
2
.8

7
2
.6

1
0
.5

9
0
.5

4
3
.1

1
0
.5

5

T
o
ta

l
(%

o
f

3
D

p
o
in

te
r

g
r
id

)
3
1
.8

2
5
.9

2
2
.1

3
5
.3

8
4
.2

2
2
4
.6

2
2
2
.9

0
6
.9

2
6
.2

4
4
.6

6
6
.3

5

U
n

iq
u

e
H

e
ig

h
t/

N
o
r
m

a
l

S
a
m

p
le

s
(%

o
f

T
o
ta

l)
8
7
.8

5
8
9
.4

1
7
5
.8

0
7
3
.7

7
7
1
.1

9
8
4
.8

2
8
6
.7

6
5
7
.9

3
7
2
.4

3
7
5
.4

7
8
0
.7

7

E
m

b
e
d

d
e
d

H
e
ig

h
t/

N
o
r
m

a
l

S
a
m

p
le

s
(%

o
f

T
o
ta

l)
6
4
.7

4
7
0
.0

5
4
2
.1

4
4
4
.3

1
4
3
.1

7
7
3
.7

2
7
4
.9

3
3
6
.0

7
4
3
.4

6
4
4
.6

1
5
3
.3

0

N
u

ll
G

r
id

E
n
tr

ie
s

(%
o
f

T
o
ta

l)
8
.1

9
5
.2

5
1
4
.5

5
1
5
.5

2
1
9
.1

5
7
.9

9
7
.9

1
3
3
.4

7
2
1
.7

4
1
7
.5

1
1
8
.4

5

N
u

ll
E

m
b

e
d

d
e
d

H
e
ig

h
tm

a
p

s
(%

o
f

T
o
ta

l)
1
.0

4
1
.1

5
1
.8

0
1
.6

9
1
.6

6
0
.8

3
0
.6

6
2
.1

2
0
.1

9
2
.2

2
0
.3

0

U
n
u

se
d

P
a
r
e
n
t

H
e
ig

h
t/

N
o
r
m

a
l

S
a
m

p
le

s
(%

o
f

T
o
ta

l)
1
.0

5
1
.1

1
1
.0

4
1
.1

7
1
.2

8
2
.3

8
1
.9

6
1
.8

4
0
.9

8
0
.7

4
1
.2

3

D
u

p
li

c
a
te

H
e
ig

h
t/

N
o
r
m

a
l

S
a
m

p
le

s
(%

o
f

T
o
ta

l)
0
.3

3
0
.3

1
0
.9

0
1
.6

1
1
.7

0
1
.2

0
1
.0

3
0
.8

2
0
.1

7
0
.2

2
0
.0

0

D
is

p
la

y
L

is
t

M
a
n

a
g
e
m

e
n
t

(%
o
f

T
o
ta

l)
0
.0

5
0
.0

3
0
.0

7
0
.1

0
0
.0

9
0
.1

2
0
.0

7
0
.1

5
0
.0

9
0
.0

7
0
.0

7

F
E

F
S

-F
F

S
,

S
P

T
,

C
T

D
,

R
S

C
S

D
1

D
2

D
S

1
D

S
2

M
A

1
M

A
2

N
A

A
1

A
2

A
3

T
o
ta

l
(M

b
)

1
7
.7

5
1
6
.6

9
5
.8

2
1
4
.0

8
1
0
.9

5
2
.8

0
2
.5

4
0
.5

7
0
.5

4
3
.2

0
0
.5

5

T
o
ta

l
(%

o
f

3
D

p
o
in

te
r

g
r
id

)
3
1
.7

0
5
.9

5
2
.2

0
5
.1

3
4
.0

5
2
4
.1

5
2
2
.3

5
6
.6

8
6
.2

4
4
.7

9
6
.3

5

U
n

iq
u

e
H

e
ig

h
t/

N
o
r
m

a
l

S
a
m

p
le

s
(%

o
f

T
o
ta

l)
8
8
.2

2
8
9
.2

0
7
4
.2

0
7
6
.9

7
7
3
.8

5
8
5
.5

6
8
7
.8

9
5
9
.4

7
7
2
.4

3
7
3
.6

0
8
0
.7

7

E
m

b
e
d

d
e
d

H
e
ig

h
t/

N
o
r
m

a
l

S
a
m

p
le

s
(%

o
f

T
o
ta

l)
6
4
.3

0
7
0
.5

0
4
3
.6

0
4
7
.4

5
4
4
.2

4
7
1
.6

8
7
4
.9

2
3
6
.9

7
4
3
.4

6
6
1
.2

6
5
3
.3

0

N
u

ll
G

r
id

E
n
tr

ie
s

(%
o
f

T
o
ta

l)
7
.6

0
5
.4

9
1
6
.3

7
1
2
.1

7
1
6
.2

1
6
.7

4
6
.5

8
3
1
.7

2
2
1
.7

4
2
3
.0

9
1
8
.4

5

N
u

ll
E

m
b

e
d

d
e
d

H
e
ig

h
tm

a
p

s
(%

o
f

T
o
ta

l)
1
.0

5
1
.1

1
1
.6

6
1
.6

1
1
.6

4
1
.0

0
0
.7

3
2
.1

8
0
.1

9
1
.0

0
0
.3

0

U
n
u

se
d

P
a
r
e
n
t

H
e
ig

h
t/

N
o
r
m

a
l

S
a
m

p
le

s
(%

o
f

T
o
ta

l)
0
.8

8
1
.0

5
1
.0

8
1
.0

1
1
.0

7
2
.1

3
1
.6

4
1
.6

7
0
.9

8
0
.9

0
1
.2

3

D
u

p
li

c
a
te

H
e
ig

h
t/

N
o
r
m

a
l

S
a
m

p
le

s
(%

o
f

T
o
ta

l)
0
.4

2
0
.3

9
1
.3

0
1
.6

5
1
.6

4
1
.1

3
0
.9

6
0
.7

7
0
.1

7
0
.2

0
0
.0

0

D
is

p
la

y
L

is
t

M
a
n

a
g
e
m

e
n
t

(%
o
f

T
o
ta

l)
0
.0

5
0
.0

3
0
.0

8
0
.0

9
0
.0

8
0
.1

2
0
.0

7
0
.1

5
0
.0

9
0
.0

9
0
.0

7

R
S

C
S

D
1

D
2

D
S

1
D

S
2

M
A

1
M

A
2

N
A

A
1

A
2

A
3

T
o
ta

l
(M

b
)

2
8
.3

9
1
9
.6

3
8
.5

3
2
0
.8

2
1
6
.3

2
3
.4

5
3
.3

0
0
.7

2
0
.6

7
3
.7

6
0
.5

5

T
o
ta

l
(%

o
f

3
D

p
o
in

te
r

g
r
id

)
4
6
.3

3
6
.9

8
3
.2

2
7
.5

5
6
.0

2
2
8
.9

0
2
8
.3

4
8
.4

3
7
.7

6
5
.6

2
6
.3

5

U
n

iq
u

e
H

e
ig

h
t/

N
o
r
m

a
l

S
a
m

p
le

s
(%

o
f

T
o
ta

l)
6
7
.5

9
7
8
.4

0
5
4
.3

4
5
6
.5

2
5
2
.8

4
7
6
.0

6
7
3
.6

7
4
9
.1

2
6
0
.5

5
6
3
.9

6
8
0
.7

7

E
m

b
e
d

d
e
d

H
e
ig

h
t/

N
o
r
m

a
l

S
a
m

p
le

s
(%

o
f

T
o
ta

l)
4
7
.6

9
6
4
.2

3
3
4
.3

0
3
7
.5

4
3
4
.0

5
6
2
.2

9
6
0
.3

4
3
2
.9

2
3
6
.7

5
3
6
.4

1
5
3
.3

0

N
u

ll
G

r
id

E
n
tr

ie
s

(%
o
f

T
o
ta

l)
2
7
.4

9
1
6
.5

9
3
8
.3

6
3
5
.1

0
3
9
.7

5
1
5
.5

1
1
9
.1

7
4
3
.6

9
3
3
.9

5
2
8
.8

5
1
8
.4

5

N
u

ll
E

m
b

e
d

d
e
d

H
e
ig

h
tm

a
p

s
(%

o
f

T
o
ta

l)
1
.2

6
1
.1

1
1
.4

0
1
.4

2
1
.2

8
1
.2

2
1
.1

3
1
.6

2
0
.2

8
2
.3

4
0
.3

0

U
n
u

se
d

P
a
r
e
n
t

H
e
ig

h
t/

N
o
r
m

a
l

S
a
m

p
le

s
(%

o
f

T
o
ta

l)
4
.0

1
2
.9

4
3
.0

4
3
.2

5
2
.7

8
3
.7

7
4
.2

0
2
.5

3
2
.1

2
1
.7

7
1
.2

3

D
u

p
li

c
a
te

H
e
ig

h
t/

N
o
r
m

a
l

S
a
m

p
le

s
(%

o
f

T
o
ta

l)
1
.7

3
0
.7

3
2
.2

1
2
.7

2
2
.1

0
1
.6

4
1
.6

2
1
.1

5
0
.3

5
0
.2

0
0
.0

0

D
is

p
la

y
L

is
t

M
a
n

a
g
e
m

e
n
t

(%
o
f

T
o
ta

l)
0
.2

5
0
.1

0
0
.2

6
0
.2

9
0
.2

3
0
.1

7
0
.1

5
0
.2

1
0
.1

4
0
.1

1
0
.0

7

T
ab

le
6.

6:
M

em
or

y
us

ag
e

fo
r

ru
le

se
ts

(F
E

F
S,

C
T

D
,

SP
T

,
R

S)
,

(F
E

F
S,

SP
T

,
C

T
D

,
R

S)
an

d
(R

S)
w

he
n

ap
pl

ie
d

to
th

e
te

st
ca

se
s

of
Se

ct
io

n
6.

1.

68

6.4 Maximum Error of Surface Approximation

A multidirectional heightmap is a triangular mesh approximation of a surface. The

purpose of this section is to establish the relationship between maximum approx-

imation error and stock density. Provided that my implementation is correct, we

should expect the maximum approximation error to decrease as stock density in-

creases. However, it would be difficult to establish that this relationship holds in all

cases. Instead, similar to Israeli’s work with regular heightmaps [10], the maximum

approximation error for one particular design surface was calculated at numerous

stock densities. The design surface used was created by rotating a sphere-tipped

tool, angled by θ with respect to its rotational axis ~z, 360◦ (Figure 6.13).

PA

PB

Ө

PT

PC
PS {

Rmaj

d z

Figure 6.13: Closest error calculation for the error at a sample point PS that approximates
a design surface created by rotation of a θ-angled tool 360◦.

The maximum approximation error for a design surface is the largest error that

occurs between a sample point lying on a mesh triangle and the point on the design

surface closest to that sample point (closest point error metric). For a design surface

similar to the one I use here, Israeli found that the maximum approximation error

for a triangle occurs at the centroid [10]. Thus, I only considered one sample point,

the centroid, per triangle.

69

The equation necessary to compute the error for a triangle sample-point approx-

imating the design surface of Figure 6.13 is somewhat complex. Thus, as a first

step, I will derive an error equation for a simpler design surface created by a single

drilling operation (see Figure 6.9). A simple bounding volume primitive called a

capsule approximates the design surface in this case. A capsule is a sphere-capped

cylinder defined by a radius R and a line segment (PA, PB) called the medial axis

[7].

Let PC = (xc, yc, zc) be the point on the medial axis closest to a triangle sample-

point PS = (xs, ys, zs). Then the error between PS and the closest point on the

design surface is given by the following equation:

error = |
√

(xs − xc)2 + (ys − yc)2 + (zs − zc)2 −R| (6.1)

The following equations are used to compute point PC :

~m = PB − PA (6.2)

t =
(Ps − PA) · ~m

~m · ~m
(6.3)

Pc =

PA + t~m if t > 0

PA otherwise
(6.4)

Note that only a cap centered at PA is necessary in this work because no sample

points will occur such that t > 1 in Equation 6.3.

Equation 6.1 can also be used to calculate the error for the Figure 6.13 design

surface if an appropriately-placed capsule is first calculated. Specifically, the medial

axis should lie in the plane formed by the sample point PS and the tool’s axis of

rotation ~z; the capsule will intersect the design surface along a grazing curve if this

condition holds. It is also important to note that the spherical tip of the tool sweeps

out a torus with minor radius R, major radius Rmaj, and center PT = (xt, yt, zt),

which coincides with the tool’s axis of rotation ~z. Thus, the medial axis (PA, PB)

of the capsule required to calculate the error at a sample point PS is given by the

following set of equations:

~d =
(xs, ys, 0)− (xt, yt, 0)

||(xs, ys, 0)− (xt, yt, 0)||
(6.5)

PA = PT +Rmaj
~d (6.6)

PB = PT + (Rmaj/ tan θ)~z (6.7)

The error data calculated for the Figure 6.13 design surface is given in Table 6.7;

see Table 6.8 for the simulation parameters used. As was expected, approximation

70

error decreases as stock density increases. Also, if we compare a multidirectional

heightmap composed of regular heightmaps with density d to another multidirec-

tional heightmap composed of 3-maps with density d/2, the latter multidirectional

heightmap has less approximation error and uses less memory (see Table 6.9).

There is a theoretical bound on maximum approximation error as measured by

another metric referred to as vertical error [10]. This theoretical bound predicts

factor of 4 improvement in maximum vertical error as the stock density doubles.

Unfortunately, the theoretical bound only applies to regular heightmaps. However,

it is interesting to note that as the stock density doubles, the maximum closest

point error of a multidirectional heightmap has close to factor of 4 improvement

(see Table 6.10), probably because the maximum vertical error is close in value to

the maximum closest point error.

Stock Density 4 8 16 32 64 128

Heightmap Error 0.1586498 0.0891680 0.0601754 0.0383265 0.0500396 0.0086811

3-map Error 0.1082255 0.0278254 0.0069804 0.0020188 0.0005377 0.0001459

Table 6.7: Closest error data for the Figure 6.13 design surface.

Simulation Parameter Value

stock dimensions (W , L, D) (4 mm, 4 mm, 1 mm)

tool (and torus minor) radius (R) 0.15 mm

tool angle (θ) 25◦

torus major radius (Rmaj) 1.69 mm

torus center (PT) (2 mm, 2 mm, 0.6748 mm)

grazing curve density 256

number of in-between steps 100

Table 6.8: Simulation parameters used when computing Table 6.7.

Heightmapi+1,j+1/3-mapi,j Density 8/4 16/8 32/16 64/32 128/64

heightmap error/3-map error 0.82 2.16 5.49 24.77 16.07

heightmap memory/3-map memory 1.83 1.40 1.64 1.65 1.73

Table 6.9: Heightmaps versus 3-maps with half the density. Each cell ti,j of the first row
is di+1,j+1/di,j where d is a cell from Table 6.7.

Stock Densityi/Stock Densityi+1 4/8 8/16 16/32 32/64 64/128

Heightmap Error 1.78 1.48 1.57 0.77 5.76

3-map Error 3.89 3.99 3.46 3.75 3.69

Table 6.10: The ratio between successive stock densities. Each cell ti,j of this table is
di,j/di+1,j where d is a cell from Table 6.7.

71

Chapter 7

Conclusion

This thesis has described in detail a new stock representation that can handle

objects with overhangs, and its performance was experimentally verified. Here I

will summarize the important results in this thesis and note the limitations of those

results. Next, the relationship between multidirectional heightmaps and other stock

representations will be established. The final section outlines several promising

opportunities for optimization.

7.1 Summary and Contributions

In response to an overhang, an mdh-map recursively subdivides itself until each

piece can be represented by an axis-aligned heightmap. To solve the when-to-

split problem, I developed an additional data structure called a good-bad map.

Regarding the where-to-split problem, I argued for the importance of minimizing

the total subdivision count, and derived several split plane types and high-level

heuristics with this goal in mind. My simulation results suggest that my techniques

significantly help reduce memory and CPU usage.

Besides the challenge of deciding when and where to split, another challenge I

encountered was the problem of rendering with continuous seams. This problem

was solved using another new data structure called a 3-Way Heightmap (3-map).

Since each cell of an mdh-map is represented using a 3-map, it can be viewed as a

more memory-compact version of a 3D pointer grid, and can also be rendered using

a variant of the well-known marching cubes algorithm.

The data obtained via my memory performance metrics suggest that the mdh-

map is a memory efficient stock representation. The test cases considered suggest

72

that, when an mdh-map is used, simulations with reasonable accuracy and speed

are possible. My error analysis data suggest that, as the stock density doubles, the

maximum closest point error of an mdh-map has close to factor of 4 improvement.

As this improvement comes from the 3-map data structure used for separating

surface representation, a single 3-map data structure may be a good replacement

for the heightmap as a functional surface representation scheme. In summary, the

mdh-map successfully combines the accuracy of marching cubes with the memory

efficiency of heightmaps.

7.2 Limitations

This work is not without its limitations. I did not simulate any industrial 5-axis

toolpaths with overhangs. Thus, mdh-map performance in real practice is unknown.

In particular, more splitting will be required when machining objects with many

thin, non-axis-aligned features (e.g., the impeller of Figure 1.2(a)). Storing line

segments rather than heights would minimize the number of splits in such cases.

Another problem is that due to uniform tool sampling, cusps are not always repre-

sented well. A third problem is that large cells can be expensive to split. However,

this expense will be subject to a reasonable bound if the mdh-map is sufficiently

presplit into cubes (also, tree traversal can be accelerated using a 3D array in this

case).

Since I did not implement 3-map resampling, a second simulation pass is nec-

essary to eliminate discontinous seams. Besides the obvious disadvantage of longer

simulation duration, this approach does not guarantee accurate representation of

the design surface for every in-between frame.

7.3 Other Simulation Techniques

Several researchers have represented the stock using uniformly-sampled, parallel line

segments [9, 15, 21]; here I will refer to these stock representation schemes as single

direction sampling (SDS) representations. SDS representations are very fast when

GPU accelerated and are easy implement. In constrast, an mdh-map cannot be

implement for modern GPUs, since dynamic memory allocation is not possible from

shader (GPU) programs. Thus, better run time performance can likely be achieved

if an SDS representation is used instead of an mdh-map. However, the mdh-map

73

representation is more accurate since three perpendicular sampling directions are

used (long and skinny triangles are avoided). Also, the memory requirements of

an mdh-map representation are not necessarily higher; such simulations can use a

lower sampling density due to the lesser degree of approximation error.

The Octree is another stock representation that has been investigated [19, 11].

Roy and Xu [19] use a hybrid approach where each partial cell contains one face, one

edge, or one vertex. An mdh-map will often experience higher splitting costs than

a hybrid Octree would, but it will also require fewer splits (an mdh-map stores

an unbounded number of triangles per cell). Also, note that the hybrid Octree

uses a simplified tool-cube intersection calculation that assumes 3-axis machining

(overhangs cannot be represented); calculating a tool’s intersection with a cube is

a complex task in general.

Karunakaran and Shringi [11] developed a “pure” Octree approach (i.e., no extra

surface information is stored in leaf nodes). The pure Octree approach has signifi-

cantly lower splitting costs than an mdh-map, but will often require a huge number

of splits to obtain the same level of accuracy. Extremely tiny cubes are necessary

to smoothly represent a curved surface with a pure Octree; smooth shading is not

possible because surface normals are not stored.

A few simulation techniques that represent the stock using parallel 2D slices

have been developed [6, 1]. Both approaches represent the slices using points in-

terconnected by line segments. An mdh-map can also be thought of as a parallel-

2D-slice-based stock representation. However, unlike the previous slice-based ap-

proaches, an mdh-map samples slices along three perpendicular directions rather

than just one, and these slices are uniformly sampled (i.e., each slice is a marching

squares curve). There are likely cases where an mdh-map is more accurate than

these approaches, and vice versa. The supporting algorithms of the three stock

representation schemes differ greatly. Thus, it is difficult to say which one would

be faster.

Some solid modelling systems support simulation of toolpaths (including 5-axis

toolpaths). This approach involves calculating the boolean subtraction of the tool

(a combination of geometric shapes) from the stock at numerous positions along the

toolpath. The solid modeller must record all boolean operations and transformation

operations in a constructive solid geometry (CSG) tree [19]. Thus, this simulation

method is much slower than any other approach (the simulation cost is O(n4) where

n is the number in-between steps [6]), but is highly accurate when a small step size

is used.

74

Another approach for 5-axis machining would be to represent the surface of

the stock as a triangular mesh at the desired machined triangle size, and then to

perform polyhedral CSG operations on the stock mesh by subtracting away the

swept surface volume of the tool. Using a meshing library such as CGAL [8], the

code for this simulation should be fairly compact. However, the computational costs

should be similar to that of the solid modeling approach, and the memory costs

would be significantly higher than my method. In particular, this mesh approach

would have to store the x and y coordinates of the triangle vertices as well as the

connectivity information of the mesh, both of which are stored implicitly with my

method.

7.4 Optimizations

Two passes are currently necessary for simulations (that lack discontinous seams).

Two modifications are necessary to eliminate this multi-pass approach. Firstly, all

heights, whether embedded or parent, should be measured relative to one of six

stock bounding faces (i.e., the bounding face whose direction is the same). With

this change in place, 3-map resampling would only require an adjustment to the

pointer organization data of the surface samples; the surface sample data would

not be modified. Thus, numerical problems would be avoided. Second, the solid

segment construction algorithm outlined in Section 5.2.1 should be extended to

exploit the extra information 3-maps contain.

Currently, simulations are significantly slower when in-between frame rendering

is enabled. One reason why is referred to as the partitioning problem. To avoid the

CPU-GPU data exchange bottleneck, the data of a 3-map is uniformly partitioned

into cells by a 2D grid, and the sampling data within each cell is stored in a display

list. It would be better to partition the sampling data with a 3D grid instead; if the

difference between two heights is large, a large amount of data will be embedded

between them.

A closely related rendering problem is referred to as the rebuilding problem.

Since the triangular mesh (interpretation of an mdh-map) is only stored on the

graphics card, all triangles must be recalculated when a display list is rebuilt. As the

tool gradually passes through the cell of a display list, multiple rebuild operations

will occur. To eliminate this problem without using a lot of extra memory, all

triangles of such a cell should be stored in a specialized cache until the cell is no

longer being cut. Another potential solution to the rebuild problem is to offload the

75

triangle creation stage to the GPU. However, this solution may not be possible due

to the current limitations of geometry shaders (only a limited number of primitives

can be generated).

There is no reason why a 3-map (or heightmap) cannot store both backfacing

and frontfacing surface portions. Moreover, rendering and solid segment construc-

tion is probably not much harder with this extension in place. Since sign conflicts

appear to be common, such a feature may significantly reduce the number of cell

subdivisions required.

I developed a more general DSP series calculation algorithm (it does not assume

a convex tool), but did not have time to implement it. Here I will breifly describe

the main ideas of this algorithm. The algorithm takes as input several stacks of

intersection points, one for each ray. Collectively, the top elements of the stacks

compose the 1st level intersections, and below these are the second level intersec-

tions. The main step of the algorithm involves cutting away the largest functional

piece of intersections possible. More precisely, first a split plane is placed at the 2nd

level intersection closest to the first level intersections. Next, all intersections above

this plane are popped from their respective stacks. Besides being more general, I

suspect the formentioned algorithm may be less expensive computationally.

Finally, the mdh-map supporting algorithms can likely be adjusted to take ad-

vantage of additional CPU cores.

76

References

[1] L. Perez-Vidal A. Puig and D. Tost. 3D simulation of tool machining. Com-

puters and Graphics, 2003. 74

[2] Karlo Apro. Secrets of 5-Axis Machining, chapter 7. Industrial Press, Inc.,

2008. 1, 2

[3] M.C. Leu D. Blackmore and L.P. Wang. Applications of flows and envelopes

to NC machining. Annals of the CIRP, 41(1):493–496, 1992. 7

[4] F. Ismail D. Roth, S. Bedi and S. Mann. Surfaces swept by a toroidal cutter

during 5-axis maching. Computer Aided Design, 33:57–63, January 2001. 7

[5] Jackie Neider Dave Shreiner, Mason Woo and Tom Davis. OpenGL Program-

ming Guide, Fifth Edition. Addison-Wesley, 2005. 8

[6] B. Kiatsrithanakorn P. Natasukon H. Ruei-Yun L. T. Son E. L. J. Bohez, N. T.

H. Minh. The stencil buffer sweep plane algorithm. Computer-aided Design,

35:1129–1142, 2003. 74

[7] Christer Ericson. Real-Time Collision Detection. Morgan Kaufmann, Elsevier

Inc, 2005. 70

[8] P. Hachenberger and L. Kettner. Computational geometry algorithms library:

3d boolean operations on nef polyhedra. http://www.cgal.org/Manual/

latest/doc_html/cgal_manual/Nef_3/Chapter_main.html. 75

[9] Tim Van Hook. Real-time shaded NC milling display. Proceeding of the 13th

annual conference on Computer graphics and interactive techniques, pages 15–

20, 1986. 73

[10] Gilad Israeli. Software simulation of numerically controlled machining. Mas-

ter’s thesis, University of Waterloo, 2006. 2, 5, 7, 8, 69, 71

77

http://www.cgal.org/Manual/latest/doc_html/cgal_manual/Nef_3/Chapter_main.html
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/Nef_3/Chapter_main.html

[11] K. P. Karunakaran and R. Shringi. Octree-to-brep conversion for volumetric

NC simulation. International Journal of Advanced Manufacturing Technology,

32:116–131, 2007. 74

[12] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D surface

construction algorithm. Computer Graphics, 21(4):163–169, 1987. 40, 44

[13] S. Mann and S. Bedi. Generalization of the imprint method to general surfaces

of revolution of NC machining. Computer Aided Design, 34(5):373–378, April

2002. 7

[14] Martti Mantyla. An Introduction To Solid Modeling, chapter 5. Computer

Science Press, 1988. 13

[15] J. P. Menon and D. M. Robinson. Advanced NC verification via massively

parallel raycasting. Manufacturing Review, 6(2):141–154, 1993. 73

[16] G. M. Nielson and B. Hamann. The asymptotic decider: Resolving the ambi-

guity in marching cubes. Proceedings of the 2nd conference on Visualization,

pages 83–91, 1991. 40, 41, 44

[17] T. Ochotta and D. Saupe. Compression of point-based 3D models by shape-

adaptive wavelet coding of multi-height fields. Eurographics Symposium on

Point-Based Graphics, 2004. 8, 9

[18] R. D. Toledo P Santos and M. Gattass. Solid height-map sets: modeling and

visualization. ACM Symposium on Solid and Physical Modeling, pages 359–

365, 2008. 8

[19] U. Roy and Y. Xu. Computation of geometric model of a machined part from

its NC machining program. Computer Aided Design, 31(6):401–411, 1999. 74

[20] Peter Smid. CNC Programming Handbook, chapter 54. Industrial Press, Inc.,

3rd edition, 2008. 1, 6

[21] B. Tukora and T. Szalay. Fully GPU-based volume representation and material

removal simulation of free-from object. Advanced Research in Virtual and

Rapid Prototyping - Proceedings of VR@P4, 2010. 73

78

	List of Tables
	List of Figures
	Introduction
	The ToolSim Project
	Objectives
	Outline

	Background
	Milling
	ToolSim
	Related Work

	Cell Subdivision
	Good-Bad Maps
	Possible Split Planes for Cell Subdivision
	Sign Conflict Split Planes
	Indirect Split Planes
	Direct Split Planes

	Minimization Selection Heuristics

	Stock Rendering with Continuous Seams
	Discontinuous Seams
	3-Way Heightmaps
	3-Map Mesh Construction
	Exterior Mesh Construction
	Interior Mesh Construction

	3-Maps versus Regular Heightmaps

	Implementation Issues
	Data Structure Implementation
	Solid Segment Construction
	Heightmap Solid Segments
	Tool Solid Segments

	Good-bad Map Region Bounding

	Evaluation By Simulation
	Simulation Examples
	Heuristic Evaluation
	CPU and Memory Usage
	Maximum Error of Surface Approximation

	Conclusion
	Summary and Contributions
	Limitations
	Other Simulation Techniques
	Optimizations

	References

