Using Software Model Checking for Software Certification

by

Ali Taleghani

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Computer Science

Waterloo, Ontario, Canada, 2010

©Ali Taleghani 2010
I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.
Abstract

Software certification is defined as the process of independently confirming that a system or component complies with its specified requirements and is acceptable for use. It consists of the following steps: (1) the software producer subjects her software to rigorous testing and submits for certification, among other documents, evidence that the software has been thoroughly verified, and (2) the certifier evaluates the completeness of the verification and confirms that the software meets its specifications. The certification process is typically a manual evaluation of thousands of pages of documents that the software producer submits. Moreover, most of the current certification techniques focus on certifying testing results, but there is an increase in using formal methods to verify software. Model checking is a formal verification method that systematically explores the entire execution state space of a software program to ensure that a property is satisfied in every program state.

As the field of model checking matures, there is a growing interest in its use for verification. In fact, several industrial-sized software projects have used model checking for verification, and there has been an increased push for techniques, preferably automated, to certify model checking results. Motivated by these challenges in certification, we have developed a set of automated techniques to certify model-checking results.

One technique, called search-carrying code (SCC), uses information collected by a model checker during the verification of a program to speed up the certification of that program. In SCC, the software producer’s model checker performs an exhaustive search of a program’s state space and creates a search script that acts as a certificate of verification. The certifier’s model checker uses the search script to partition its search task into a number of smaller, roughly balanced tasks that can be distributed to parallel model checkers, thereby using parallelization to speed up certification.

When memory resources are limited, the producer’s model checker can reduce its memory requirements by caching only a subset of the model-checking-search results. Caching increases the likelihood that an SCC verification task runs to completion and produces a search script that represents the program’s entire state space. The downside of caching is that it can
result in an increase in search time. We introduce cost-based caching, that achieves an exhaustive search faster than existing caching techniques.

Finally, for cases when an exhaustive search is not possible, we present a novel method for estimating the state-space coverage of a partial model checking run. The coverage estimation can help the certifier to determine whether the partial model-checking results are adequate for certification.
Acknowledgements

My PhD and this thesis took a total of six years to finish. I would like to use this section to thank all those who helped and supported me throughout this long process.

First and foremost, I would like to thank my supervisor Dr. Joanne Atlee. Jo, thank you for believing in me from the beginning and accepting to work with me. Throughout the entire program, your continued guidance and support helped me to be a better student and a better researcher. You showed me how to aim higher, not to take shortcuts, and ultimately, produce better results. You were always patient with me and guided me to the right direction. Your advice regarding better research and clear writing skills will always stay with me. I hope we can continue to work together in the future.

I would like to thank my PhD committee members: Dr. Rance Cleveland, Dr. Nancy Day, Dr. Patrick Lam and Dr. Ian Goldberg. Thank you for agreeing to be part of my committee, reading my thesis so carefully, and providing me with lots of great feedback. Your comments have helped me create a better thesis.

Finishing a PhD does not only take lots of academic work, but there is also a lot of administrative work involved. It was because of the great administrative staff at UW that my studies went so smoothly. I would like to thank Margaret Towell, Wendy Rush, Jessica Miranda, and Paula Zister for performing all the necessary administrative work and make it seem so easy. Thanks for being so patient with us graduate students and reminding us of deadlines several times!

My time as a PhD student was mostly fun. That was mainly because of my great fellow WatForm students. Thanks to my “roomies” Zarrin, Shoham, and Samaneh. You guys made being in the office fun. I will miss our many chats and our discussions about the meaning of a phd and life in general. Shahram and Pourya, you guys are great friends that I can always depend on. I hope we will stay in touch in the future. Alma and Vlad, we were in it together from the beginning. Thanks for being great officemates. Thanks to everyone in the lab for being always supportive and easy to get along with.

Besides the support inside the university, I had tremendous help and support outside the university. I would like to thank my wife Vida for understanding me and encouraging me when things got tough. Vida, you entered my life in the middle of my phd and had to deal with my occasional mood swings when my experiments went wrong or my disappointments when some
paper did not get accepted. You were always patient and understanding. I am grateful that you are part of my life.

Finally, I would like to thank my parents – even though these few lines will never be enough. You have been there for me from the beginning. Anything I am now and anything I have ever achieved is because of you. You have always been there for me, supported me and helped me get through the difficulties of life. This PhD has been only possible because of you and your sacrifices. It is great to know that there is always two people in life that have my back.
Contents

List of Figures ... xi
List of Tables .. xii

1 Introduction ... 1
 1.1 Verification 2
 1.1.1 Software Testing 2
 1.1.2 Formal Verification 3
 1.2 Software Certification 4
 1.3 Certifying Formal Verification 6
 1.3.1 Current Research in Certifying Formal Verification .. 7
 1.4 Contributions and Scope of the Thesis 7
 1.4.1 Search Carrying Code 9
 1.4.2 SCC with State-Space Caching 10
 1.4.3 State-Space Coverage Estimation 11
 1.4.4 Thesis Validation 12
 1.5 Thesis Organization 13

2 Background and Related Work 14
 2.1 Model Checking 14
 2.1.1 Software Model Checking 16
 2.2 State-Space Reduction Strategies 18
 2.2.1 Partial Order Reduction 19
 2.2.2 Abstract Interpretation 19
3.3.4 Parallel Model Checking .. 66
3.3.5 Using Different Model Checkers 67
3.3.6 Model-Dependent Reduction Techniques 67
3.3.7 Property-Specific Reduction Techniques 69
3.4 Summary ... 70

4 State-Space Caching ... 71
 4.1 Introduction ... 71
 4.2 Cost-Based Caching .. 73
 4.2.1 Cost-Based Caching Algorithm 74
 4.2.2 State Spaces with Strongly Connected Components 78
 4.2.3 Implementation ... 82
 4.2.4 Experiments and Results 83
 4.2.5 Discussion of Cost-Based Caching 87
 4.3 Eliminating Duplicate Transitions 89
 4.3.1 Eliminating Duplicate Transitions 90
 4.3.2 Implementation and Evaluation 93
 4.4 Memory Optimization for Certification 93
 4.4.1 Memory Optimization Algorithm 94
 4.4.2 Evaluation ... 95
 4.5 Summary ... 96

5 State-Space Coverage Estimation 97
 5.1 Coverage Estimation .. 98
 5.1.1 Exhaustive-Search Phase 103
 5.1.2 Random-Search Phase 104
 5.1.3 Memory Management 105
 5.2 Evaluation .. 106
 5.2.1 Experiments and Results 107
 5.3 Discussion .. 110
 5.3.1 Rate of Discovering New States 110
6 Conclusion and Future Work

Bibliography
List of Figures

3.1 Sample reachability graph of a program 37
3.2 Perfect search of a state space 42
3.3 Reachability graph with its script and Subgraphs 49
3.4 Result of partitioning after one iteration of algorithm 51
3.5 Subgraphs with scripts and initialization paths 52
3.6 Script partition for trustful SCC 59

4.1 Sample reachability graph with each state’s associated cost in parentheses 75
4.2 Sample reachability graphs with cycles. Values in parentheses show each state’s cost value. 81
4.3 Sample reachability graph 90

5.1 Schematic example of our estimation algorithm 99
5.2 Rate of discovering new states for the Dining Philosopher Program 111
5.3 BFS level graph for Elevator program 112
5.4 BFS level graph for RWVSN program 113
List of Tables

3.1 Java Programs Used for Evaluation 44
3.2 Results for SCC Verification and Certification 46
3.3 Results for Parallel SCC Certification 61
3.4 Average and Maximum Lengths of Initialization Paths 62
4.1 Comparison of Cost-Based Caching to Other Caching Tech-
niques at Cache Sizes of 15%, 25% and 50% 85
4.2 Comparison of Cost-Based Caching to Other Caching Tech-
niques at Cache Sizes of 75% and 95% 86
4.3 Memory Usage During Certification after Optimization 96
5.1 State-Space Coverage Estimation Results 108
Chapter 1

Introduction

The IEEE Standard Glossary of Software Engineering Terminology [IEE90] defines certification as “the process of confirming that a system or component complies with its specified requirements and is acceptable for operational use”. This general definition has been widely adopted in the software certification literature [AdAdLM07, TC95, WR94, Mai07]. Certification could be applied to software systems across a wide range of domains, but because of its high cost, certification is mostly applied to safety-critical systems. For example, the Federal Aviation Administration (FAA) requires that any software used in an airborne environment be certified to be safe and reliable [RTC92]. Similarly, software used in other safety-critical systems, such as medical devices and nuclear power plants, must be certified to be safe and to behave according to its specified requirements [Mai07].

An implication of the formal definition of certification is that the certification process only confirms adherence to the specifications and ensures that verification has been performed satisfactorily. Thus, prior to certification, a verification process must establish the software’s adherence to the specified requirements. In general, verification is performed by the software producer, whereas certification is done by the software consumer or an independent body (e.g., a third-party certifier). In this thesis, we refer to the software
producer as the entity that is responsible for creating and verifying a software program, and we refer to the certifier as the entity that receives a software program and certifies that it complies with its advertised properties.

1.1 Verification

Software verification refers to the process of determining whether the product(s) of one software-development phase fulfill the specified requirements established during the previous phase [IEE90]. Software verification occurs throughout the evolution of a software product, and a variety of verification techniques are used in isolation or in combination to show that the software behaves according to its specifications. Two common techniques to verify software are software testing and formal verification.

1.1.1 Software Testing

Software testing refers to the activity in which a software system is executed under specified conditions and the test results are compared to the expected results [IEE90]. There exist various levels of testing activities, each with its own specific goals. For example, unit testing involves the testing of a software module or “unit”. The goal of unit testing is to ensure that the tested module satisfies its requirements and can be integrated with other components of the system. System testing, on the other hand, tests the entire integrated hardware and software system to ensure that it meets its specified requirements.

Software testing is often the verification method of choice because it produces results quickly and can handle large software systems. However, testing is not exhaustive and only covers a subset of all possible execution traces of a program. Therefore, it is not suitable to show that a given property is satisfied in all program states [Dij72]. Testing is more suited to finding execution
traces that violate a property rather than to demonstrate that a program satisfies some required property.

1.1.2 Formal Verification

The goal of formal verification is to show that a software component or system satisfies its correctness criteria. Formal-verification techniques are in general exhaustive and consider all execution traces of a program for a given property. The most common formal verification techniques are model checking [CGP99] and theorem proving [GM93, KM97].

Model checking is an automated method that systematically and exhaustively explores the execution state space of a model \(M \) of a system \(S \), and checks that a specified property \(P \) is satisfied in each state of \(M \)'s state space. Model checkers are implemented using either an explicit [CE81, QS82] or symbolic representation [BCM+90] of the program's state space. In explicit state model checking [CE81, QS82], states are enumerated on the fly and each visited state is saved in some data structure (e.g., hash table) against which new states are compared. The purpose of the hash table is to avoid re-exploration of a previously visited state. Symbolic model checking [BCM+90] avoids storing states individually and instead uses formulas in propositional logic to represent sets of states that are explored and reasoned about together. As a result, symbolic model checking can potentially handle very large state spaces.

Automated theorem proving involves the development of mathematical proofs that deductively argue that the system exhibits desired properties. Given that developing proofs is a hard task and it is generally not possible to automate the entire proof construction, most theorem provers allow the user to specify intermediate lemmas to be proved by the automated theorem prover on the way to the proof of a conjecture.

Model checking and automated theorem proving can often not handle real-world software because model checking is very memory intensive and
often runs out of time or memory resources, and theorem proving is computationally expensive and requires expert human interaction. However, there are indications that the field of formal verification is maturing and formal verification techniques can be used to verify large software programs. In fact, several industrial-sized software projects have used formal methods for verification [Abr06, BBFM99, tBGKM08, tBML+05].

1.2 Software Certification

In software certification, a third-party certifier confirms that a software component or system meets its specified requirements. To ease certification, certain government and private organizations publish certification standards [ISO06, RTC92, Und98] that include a set of guidelines that the software producer should follow in order to create trustworthy and certifiable software. These standards often include a list of deliverables that the software producer must create during development and submit for certification.

Certification standards tend to specify guidelines on either the process used to develop the software (process-oriented) [Sof07] or the properties of the final software product (product-oriented) [MW08]. In process-oriented certification, the certifier evaluates the process and the people that were used to develop the software. It is believed that following high standards in development and using highly-qualified developers leads to high-quality software [Sof07]. Others [Mai07, DS09] argue that product-oriented certification should be the main approach when evaluating a software program because it is possible to follow a high-quality process but still create software that fails. The focus of this thesis is on product-oriented certification.

Certification standards outline various documents and deliverables that the software producer must create, in addition to the end product, and submit for certification. In general, the software producer is required to document the different phases of the software’s production, including planning,
development, verification and management of the system. For example, the certification standard DO-178B [RTC92], which is used by the Federal Aviation Administration (FAA) to certify software for airborne systems, requires that the software producer submit, among others: the software requirements specification, software-design documentation, source code, executable object code, and test data. As another example, the US Food and Drug Administration (FDA) requires that the Software Requirements Specification (SRS), a deliverable that documents all the requirements for a software system, does not contain ambiguous, incomplete or unverifiable requirements [US 02]. Test data submitted for certification must include, among others, documentation of the test plan, test cases, test results, and test coverage.

The software producer submits the final software product plus other required documents to the certification authority (certifier) for certification. The certifier can be the same organization that published the certification standard or can be a third-party certifier who has been authorized to perform certifications on behalf of another organization. The certifier’s responsibility is to confirm that the software producer has taken the necessary steps to produce trustworthy software and that the software program satisfies its advertised properties. In the case of the SRS required by the FDA, the certifier would confirm that the SRS and the evidence regarding its validation show that the requirements are unambiguous, complete and verifiable. The certifier would also review the test cases and their results to confirm that the tests are complete and that the results demonstrate that the new software component can inter-operate with existing ones.

In general, certification standards do not specify how the evidence submitted to the certifier should be evaluated [CTvGS98], and in most cases, the evidence is evaluated manually. However, given the sheer volume of associated artifacts, this form of certification is very time consuming and can be error prone because it relies on humans reading thousands of pages of documents. In fact, in some cases, certification has taken so long that the
product has become obsolete by the time certification has finished [Wil07]. On the other hand, if more certifiers are used to speed up the process, then certification becomes prohibitively expensive for smaller software vendors. Thus, there is a push towards automated software-certification techniques [DFS04, LGW07, LPR01].

1.3 Certifying Formal Verification

Advances in formal-verification techniques enable corresponding advances in certification. A software producer must have some means of creating and submitting for certification some form of proof or certificate that the program satisfies its advertised properties; and the certifier must have some means of using the certificate to check the producer’s claims. In fact, there have been calls for new techniques, preferably automated, to certify software that has been verified using formal methods [DFS04, LPR01, WBH+05]. We believe that any technique for certifying formal-verification results must at least satisfy the following conditions:

1. Verification should produce an output that serves as a certificate that verification has been performed, and that can be submitted along with the final product for certification. The certifier would use the certificate to check the producer’s claims regarding the software’s advertised properties.

2. If verification is automated, then certification should also be automated to decrease the workload of the human certifier and make the certification results more dependable and reproducible.

3. In general, certification should be faster than verification, otherwise, the certifier might just as well repeat the verification process. Specifically, automated certification should be faster than automated verification.
1.3.1 Current Research in Certifying Formal Verification

In the research community, the use of formal methods for certification has not been extensively researched. The first work in this area was the use of proof-carrying code (PCC) [Ire05, Nec97]. In PCC, the software producer verifies via theorem proving that his program satisfies a set of predefined safety properties, and provides as evidence a safety proof. The certifier certifies the program by checking the validity of the accompanying safety proof against the code. PCC certification has not been widely adopted because it can certify only the properties that are substantiated by the safety proof. Moreover, because many properties of a program are generally undecidable, PCC verification has so far focused on program-independent security properties such as memory safety, type safety, and resource bounds. The size of safety proofs is another shortcoming of PCC.

There has also been some work on certifying model-checking results: abstraction-carrying code (ACC) [XH04] and model-carrying code (MCC) [SVB+03]. In both cases, the program to be certified is accompanied by an abstract model of the program. Since the abstract model is smaller than the original program, certification of it is faster than verification. ACC and MCC are property-independent certification techniques, and can be used to certify any property that is specified in temporal logic [CGP99]. However, their models are conservative abstractions, which means that they could report spurious errors.

1.4 Contributions and Scope of the Thesis

In our proposed scenario, a software producer uses model checking to verify her software and produces and submits for certification a “certificate” of verification. This certificate is constructed in such a way that it can be used by the certifier to speed up the automated certification of the model-checking
results. Because model checking is an exhaustive search of a program’s state space, its success depends on the size of the program and the available computing resources (e.g., time and memory). We distinguish between three possible outcomes of verification model checking:

1. A model-checking search runs to completion and produces a definitive result. A positive result ("true") means that the property being model checked is satisfied in all program states.

2. The model checker has insufficient memory to complete the search. However, the model checker can be modified to cache only a subset of search results, thereby reducing its memory requirements enough for the search to run to completion — at the expense of increased search time because the model checker might search the same states more than once.

3. The model checker does not have sufficient resources to complete the search, even with caching. In this case, the goal is to provide partial results that might be useful for certification.

Thesis Statement: Model-checking based techniques can be used to facilitate the automated certification of explicit-state model-checking results for invariants, assertions and deadlocks. We present the following three techniques:

- A model-checking-based certification method that (1) can be used to automatically certify a invariants, assertions and deadlocks, (2) is faster than automated verification, and (3) can be parallelized.

- A novel state-space caching technique that achieves an exhaustive model-checking search, in cases where model checking would otherwise terminate prematurely, faster than existing caching methods;
• A state-space coverage estimation method that provides more accurate
estimation results than previous approaches when an exhaustive search
is not possible.

We describe each technique in more detail below.

1.4.1 Search Carrying Code

We present a new technique to certify model-checking results called search
carrying code (SCC) [TA10]. A software producer who wants her product
certified conducts a model-checking search of the program. During model
checking, the producer’s model checker creates a search script for the program
to be certified. The search script encodes the search path that the model
checker followed in its exploration of the program’s state space. The search
script acts as a certificate of model checking.

During certification, the certifier’s model checker uses the search script
to direct its search of the program’s state space to speed up re-verification of
the program. In order to protect against a producer who submits a tampered
search script, that perhaps hides problems in the program, the search script
is constructed in such a way so that its veracity can be checked on the fly.

Basic SCC certification achieves only slight reductions in certification
time because the model checker re-explores the entire state space of the
program being certified. However, SCC can be optimized via parallel model
checking. In parallel SCC, the search script, which encodes the certification
search task, is partitioned into multiple scripts, each covering a different
region of the program’s state space. The certifier then uses the collection
of scripts to search the program’s state space in parallel. Because of the
way that the certification task is partitioned, parallel SCC avoids many of
the problems that arise in traditional parallel model checking, such as high
degrees of communication, synchronization among parallel processors, or the
uneven splitting of search spaces.
1.4.2 SCC with State-Space Caching

One of the main obstacles to successful model checking is the *state explosion problem*: the size of a program's state space grows exponentially in proportion to the number of variables in the program and the number of concurrently executing components. The model checker keeps track of each visited state during the search, and it might run out of memory before completing the search.

Today's model checkers employ a variety of techniques to combat the state-space explosion problem. One such method is *state-space caching* [Hol87], where the model checker caches only a subset of the already-visited program states.

When the cache is full and the search visits a new state, the model checker replaces a state in the cache with the newly visited state. Model checking with state-space caching limits the amount of memory that is used to store already-visited states. As a result, the model checker may explore parts of the program's state space if a previously visited state is not found in the cache and is thus deemed unvisited, causing re-exploration of the state space that is reachable from it. Thus, a model-checking search that employs state-space caching uses less memory, but requires more time than a traditional, non-cached search.

We introduce a new state-space caching technique, referred to as *cost-based caching*, that replaces states in the cache according to the cost of re-exploring the state and the state space that is reachable from it. For acyclic state spaces, our method can calculate the exact cost for each state and for cyclic state spaces, our method calculates an under-count of the cost value. Nonetheless, our empirical evaluation shows that cost-based caching achieves exhaustive coverage of a program's state space faster than existing caching techniques.

Cost-based caching is useful for SCC verification because when memory resources are limited, it increases the likelihood that a verification task runs
to completion. However, the resulting search script would record the verifier’s search path through the program’s state space, including re-explorations. We describe how to identify and remove from the search script duplicate transitions that would cause the certifier’s model checker to revisit regions of a program’s state space. An SCC-certification search that uses a script produced by SCC verification with cost-based caching has an execution time comparable to that of a non-cached exhaustive search.

We also introduce a memory-optimization technique that reduces the memory requirements of SCC certification. In particular, we show how to use the information in the search script to reduce the number of already-visited states that the model checker must keep track of. As a result, up to 85% less memory is needed for SCC certification compared to SCC verification.

1.4.3 State-Space Coverage Estimation

Even with state-of-the-art memory-reduction techniques, there are still cases where an exhaustive search of a program’s state space terminates prematurely due to insufficient memory. In such cases, an estimate of how much of the program’s state space was covered during verification can be useful in certification. Such an estimate would be analogous to test-coverage results in that it reflects the degree to which the verification was complete. The software producer submits an estimate of the program’s state space that was covered during verification. The certifier uses the estimate in deciding whether to (1) accept the partial verification as being sufficient, (2) ask the software producer to perform a more thorough verification, or (3) re-model check the software herself and compare the resulting estimated coverage to the level of coverage reported by the software producer.

We present a new method [TA09] for estimating on the fly, during model checking, the percentage of the program’s state space that has been covered. Our estimation method is based on Monte Carlo sampling of the unexplored state space.
1.4.4 Thesis Validation

The thesis was validated as follows:

We implemented each of our three techniques in the explicit-state software model checker Java PathFinder (JPF) \cite{VBHP00, LV01}. To evaluate the performance of each technique, we used a set of nine Java programs that were used in previous research studies.

In the case of SCC, we want to evaluate whether (1) certification can be automated, (2) SCC-based certification is faster than automated verification, and (3) SCC-based certification can be parallelized. We use our nine evaluation programs to show that it is possible to automatically create a certificate of verification that can be used to automatically certify a specific class of model checking results, and that the certificate can be used to speed up certification. We also evaluate the effectiveness of parallelizing SCC such that there is no overlap between the work performed by each processor. Our results show that parallel SCC can achieve speed up factors of up to n, for n processors, when the program comes from an un-trusted source. SCC can achieve speed up factors of up to $5n$ when the program comes from a trusted source.

For cost-based caching, the goal is provide the software producer with a technique that increases the number of cases where she can achieve an exhaustive search of the state space and submits an SCC search script that represents the search of the entire program. For this, we implement six common caching techniques in JPF and compare the time it takes for an exhaustive search using these six techniques to the time it takes for an exhaustive search using cost-based caching. Our results indicate that cost-based caching is up to 25% faster than existing techniques.

Finally, when an exhaustive search of the state space is not possible, then the coverage estimation should be accurate enough to (1) help the software producer to effectively choose the next verification step and (2) provide the certifier with a clear indication whether to accept or reject the partial model-
checking results. We evaluate the accuracy of our estimation technique by estimating the coverage of partial model checking runs, while varying the actual coverage of the state space. Our empirical studies show that, on average, our algorithms coverage estimates differ from the actual coverage by less than 10 percentage points, with a standard deviation of about 5 percentage points regardless of whether the actual state-space coverage is low (3%) or high (95%).

1.5 Thesis Organization

This thesis is organized as follows. In Chapter 2, we present background material and related work on software certification, software model checking, state-based caching techniques, and state-space coverage estimation. In Chapter 3, we present search carrying code (SCC) and describe how the certification task can be partitioned into multiple search tasks that can be distributed to parallel model checkers. We evaluate the performance of SCC and parallel SCC on a suite of Java programs. In Chapter 4, we introduce cost-based caching applied to a state-space search. We combine cost-based caching with SCC and compare its performance to existing caching techniques. We also describe how to reduce memory requirements for SCC certification. In Chapter 5, we describe our algorithm for estimating the coverage of a partial model-checking search and evaluate its accuracy on a set of Java programs. Finally, we conclude with Chapter 6 and describe future work.
Chapter 2

Background and Related Work

In this chapter, we first present background material that is necessary to understand the model-checking technologies used in our research. We then describe the state of the art of certification and state-space coverage estimation.

2.1 Model Checking

Model checking is an automated method to systematically explore the execution state space of the model of a system and to check that a specified property is satisfied in each state. The inputs to the model checker are a model M that represents the behaviour of a system S and a property P to be checked in every state of M. The model checker exhaustively explores all the paths through M while checking that P is true at each reachable state.

System models are often represented as a state-transition graph called a Kripke structure. A Kripke structure M is a four tuple $M = (S, S_0, R, L)$ where

1. S is a finite set of states.
2. $S_0 \subseteq S$ is the set of initial states.
3. \((R \subseteq S \times S)\) is a transition relation such that for every state \(s \in S\) there is at least one state \(s' \in S\) such that \(R(s, s')\).

4. \(L : S \rightarrow 2^{AP}\) is a function that labels each state with a set of atomic propositions \(AP\) that are true in that state.

The paths in a Kripke structure represent all possible computations of the system.

The property \(P\) is often specified as a temporal logic formula. Temporal logic formulas are used to express properties of temporal orderings of events. The two most widely used temporal logics are linear-time logic (LTL) [Pnu77] and computation-tree logic (CTL) [CE82]. LTL formulas are used to express properties related to all paths in the model, whereas CTL formulas can be used to discriminate between paths.

Model checkers are implemented using either an explicit-state [CE81, QS82] or symbolic representation [BCM+90] of the model’s state space. In explicit-state model checking, states are enumerated on-the-fly and each explored state is typically stored in a hash table; the model checker checks new states against the contents of the hash table, to avoid re-examining states. Explicit-state model checking is generally more memory intensive than symbolic model checking because each state is explicitly represented and stored. However, this approach can handle dynamic creation of objects and threads, and thus is the primary choice for model checking software.

Symbolic model checking avoids storing states individually and instead uses formulas in propositional logic to represent sets of states that are explored and reasoned about together. The states and transition relation are often encoded in a variant of Binary Decision Diagrams (BDD) [Bry86]. Symbolic model checking works best with a static transition relation and hence does not deal well with dynamic creation of objects and threads. It is therefore better suited for model checking hardware models rather than program models.
2.1.1 Software Model Checking

The input to a software model checker is a software program, such as a Java program. The goal of the model checker is to search the program’s execution state space and check that each state satisfies some property P. Let $V = \{v_1, ..., v_n\}$ be the dynamic set of program variables. For an object-oriented program, such as a Java program, V includes declared variables, dynamic variables (heap-based objects), and information about concurrent threads. We assume that the variables in V range over a finite set D. A valuation for V is a function that maps every variable v in V to a value in D. A state in a program’s execution represents the current set of program variables and the valuation of those variables.

Definition 2.1.1. A state S of a program is a valuation $d : V \rightarrow D$.

Definition 2.1.2. A program’s initial state S_0 is the state of the program at the start of its execution.

In other words, a state is a snapshot of a program’s execution. The system transitions between states by executing the statements of the program.

Definition 2.1.3. A transition from one program state to another reflects the execution of one program statement and shows the effects of that statement as applied to the transition’s source (program) state.

The granularity of the statement that is executed by a transition depends on the programming language and the model checker. For Java programs, it is often a single byte-code instruction.

Given the definitions of a state and transition, we can now define the set of all reachable states of a program and the graph that represents all executions of the program.

Definition 2.1.4. A reachable state of a program is a state that results from applying a sequence of program statements to the initial state. The sequence of program statements must reflect an execution of the program.
Definition 2.1.5. A program’s state space is the set of all reachable states in the program.

Definition 2.1.6. A program’s reachability graph is a directed graph where each of the program’s reachable states is represented by a vertex, and there is a directed edge from state S_i to state S_j if there exists a transition (program statement) in S_i that can be executed in S_i and that moves the program execution from state S_i to state S_j.

There is no restriction on the number of incoming transitions into a state and outgoing transitions from a state.

The software model checker starts its search in the program’s initial state and performs an exhaustive search of the program’s reachability graph until all states in the program’s state space have been visited and all transitions have been explored.

Definition 2.1.7. A visited state is a state that has been reached in a model-checking search, and has been verified to satisfy property P.

Definition 2.1.8. A partially explored state is a visited state that has at least one outgoing transition that has not been explored in the model-checking search.

Definition 2.1.9. A fully explored state is a visited state whose outgoing transitions have all been explored in the model-checking search.

To ensure that its searches terminate, the model checker keeps two data structures: a worklist of partially explored states and the set of visited states.

Definition 2.1.10. A model-checking worklist is a list of partially explored states.

The worklist represents the set of states that have been visited during the model-checking search and who still have at least one unexplored transition.
When the model checker visits a new state S_i, it inserts S_i into the worklist and into the set of visited states. During each iteration of the search, the model checker selects a state from the worklist and explores one of its unexplored transitions. When a state is fully explored, it is removed from the worklist. In the case of a depth-first search, the worklist is a stack. The search terminates when the worklist is empty. The list of visited states is often a hash table.

Currently, there exist a wide variety of software model checkers [BR01b, LV01, RDH03] that support various programming languages and use different techniques to handle very large state spaces. Java Pathfinder (JPF) [VBHP00, LV01], the model checker developed at NASA Ames Center, is one of the most-widely used software model checkers, mainly because of its rich set of features and continued support and development. It is a custom-made explicit-state model checker for Java programs. JPF accepts as input Java byte code and performs an exhaustive search of the state space to find deadlocks, invariant violations, and assertion violations. For this thesis, we implemented all our algorithms on top of JPF.

2.2 State-Space Reduction Strategies

One of the main obstacles to model checking is the state-explosion problem [CGJ fists]: the size of a program’s state space grows exponentially with the number of variables and components in the program. As a result, an exhaustive search may not be possible because the model checker runs out of memory in its effort to keep track of all of the visited states. Also, model checking typically works on finite-state systems, but dynamically-created objects and threads may cause a program to be infinite state. For these reasons, software model checkers use various state-space abstraction techniques to reduce the size of the state space and make analyzing programs more feasible. We describe four commonly used techniques below.
2.2.1 Partial Order Reduction

The goal of partial-order reduction (POR) [God96] is to reduce the size of the state space that must be searched by exploiting the commutativity of concurrently executed transitions. POR identifies transitions whose executions could be interleaved in any order and whose interleavings result in the same program state. It then executes only one such interleaving. POR is suitable only for asynchronous systems. In synchronous systems, concurrent transitions are executed simultaneously and are not interleaved.

POR searches reduced graphs without ever constructing a program’s full reachability graph, which might be too big to fit in memory. The reduced model preserves all of the properties of the original model, except for properties that include the temporal-logic operator “next”. The “next” operator checks that a certain property is true after executing one transition from the current state. Thus, to check such a property, the model must include all possible transitions.

Finding all transitions of the current state that are independent of others and can be interleaved in any order is difficult because it requires knowledge of the entire state space, which is not known in advance. As a result, model checkers use heuristics and possibly stronger conditions to make POR both feasible and fast [CGP99, VBHP00]. Java Pathfinder, for example, uses a transition’s associated byte-code instruction to identify independent transitions. Only about 10% of Java byte-code instructions can have effects across thread boundaries. For such transitions, all interleavings must be explored, but the remaining transitions are independent and can be interleaved in any order.

2.2.2 Abstract Interpretation

Abstract Interpretation [CC77, GS97] is based on the observation that the specification of a system often depends on simple relationships among data
values rather than on actual data values. As a result, it may be possible to model actual data values in the system as a small set of abstract data values. If we extend the abstraction and apply it to states and transitions that refer to abstract states, it is possible to obtain an abstract version of the system under consideration. The idea is to merge together all of the states that have the same labeling of abstract variable values. In the reduced graph, every state will have a unique labeling. Simulation [CC77] is used to ensure that the abstract graph simulates the original one: If model M has a transition between two states, then in the abstract state space there there must be a transition between the corresponding abstract states. The abstracted system is often smaller than the actual system and therefore faster to verify.

As an example, suppose x is a variable and the domain D_x is the set of all integers. If we are interested in expressing a property involving the sign of x, then we can create a domain A_x of abstract values for x, with $A_x = \{a_0, a_+, a_-\}$. We define a mapping h_x from D_x to A_x as follows:

$$h_x(d) = \begin{cases}
a_0 & \text{if } d = 0,
a_+ & \text{if } d > 0,
a_- & \text{if } d < 0
\end{cases}$$

Using this abstraction, we need only three atomic propositions to express the abstract values of x. It may no longer be possible to express properties that depend on the actual values of x because by using abstraction, we are reducing the amount of knowledge about the values of a variable, but in many cases, knowing just the abstract values is enough. Also, the model checker cannot always determine a unique abstract value, for example, after an operation such as $x++$.

20
2.2.3 Symmetry Reduction

The main idea of symmetry reduction [ES96, ID96, CJEF96] is to exploit symmetries between states and therefore model check a reduced and abstract state space. Symmetries represent equivalence relations on program states. During model checking, one can disregard a state if an equivalent state has already been explored. A canonicalization function usually maps each state to a unique representative from its equivalence class.

Software systems can exhibit different types of symmetries, but two types that are unique to object-oriented software, such as Java programs, are class loading and garbage collection [VBHP00]. Non-determinism, either from a program’s concurrency or its environmental input, can cause classes to be loaded or objects to be created in different orders in different executions. The resulting states may be deemed to be different. Comparing all possible permutations of the order in which classes are loaded and objects are created can be very expensive. Thus, modern software model checkers use a canonicalization function [VBHP00] that equates states that are identical except for the order in which classes and objects are loaded.

The second possible source of symmetry is dynamic program variables (e.g., objects) that are no longer referenced, and are referred to as “garbage” [VBHP00]. Two states are considered to be equivalent if they are identical except for any “garbage” that they contain.

2.2.4 Program Slicing

The goal of program slicing [Wei81] is to remove from a program statements that do not affect the results of a particular test case or analysis. Program slicing consists of specifying a point of interest in the program, identifying the set of variables or property of interest, and removing program statements that cannot affect the values of the specified variables at the given program point. The idea is that a smaller (sliced) program results in a smaller program
state space. In general, finding a minimal program slice is an undecidable problem [Wei81], but approximations are often effective.

A program slice can be computed statically or dynamically [Wei81]. For static slicing, the slice is computed without executing the program. The resulting slice includes all program statements that affect the variable(s) of interest at the point of interest for all possible inputs. In dynamic slicing, the slice is computed for a given input and the resulting program execution trace.

A static program slice is often created using a technique called backward slicing, in which the slice is computed by working backward in the program. Starting from the point of interest, all program statements that cannot affect the specified variables are identified and removed. Forward slicing is the opposite of backward slicing and is often used for dynamic slices to avoid the recording and storage of very long execution traces.

2.3 State-Space Search Strategies

Another way to combat state-space explosion is to modify the way that the model checker searches a program’s state space. These methods include searching the state space in parallel, searching it randomly to find an error before memory is exhausted, and searching only those parts of the state space that are more likely to contain errors. Below, we describe these methods in more detail.

2.3.1 Parallel Model Checking

The goal of parallel model checking is to distribute a model-checking task among parallel processors. In general, the challenge in parallel model checking is to distribute the workload evenly. Stern and Dill were one of the first to introduce this idea by parallelizing the Murϕ explicit-state verifier [SD97]. In this initial work, model checking was performed on a set of networked ma-
chines, each having its own memory and processor. The goal was to reduce both search time and memory requirements of a model-checking search. A static hashing function determined in advance how to distribute program states among the processors during the search. In such an approach, it is possible that the hashing results in an uneven distribution of states and the search proceeds at different speeds on different processors. Moreover, state information must be passed between processors whenever a state is created on a processor other than its assigned one, creating a significant communication overhead.

Subsequent works by other researchers investigate how to improve local and global load-balancing and reduce communication among processors [NC97, KM05]. Nicol and Ciardo [NC97] present a global load-balancing algorithm in which all processors communicate with each other to distribute their load. If a processor has too many states to process, it will try to offload some of that work to other, possibly idle processors. To reduce communication, Kumar and Mercer [KM05] propose a heuristic in which each processor communicates only with three neighboring processors when trying to offload some of its work.

Recently, with the advent of multi-core computers, there has been increased research on reducing the search time of parallel model checking on shared-memory architectures [BBR07, IB06]. In these systems, the overhead of communication among processors is greatly mitigated because information is no longer sent over a network. Nonetheless, the problems of load balancing and synchronizing of access to shared resources remain. In the latter case, processors must be able to deposit into each others worklist of partially explored states, and they share a hash table of state fingerprints. Interestingly, some works [BBR07, IB06] report that after reaching a certain number of parallel processors, search time starts to increase again as new processors are added because the synchronization overhead dominates any benefit from parallelization.
Another problem is that an even partitioning of a program’s states into multiple search tasks does not guarantee that the workloads will be balanced. Processors are utilized only if they have states to process. If a program’s reachability graph is spindly rather than bushy, then progress may be hampered by the slow production of new states to be explored as processors wait for the output of other processors.

2.3.2 Random State-Space Searches

The idea of random walks and randomized state-space search was first suggested by West [Wes86]. In each step of a random walk, the algorithm randomly chooses an outgoing transition of the current state and explores it. If the current state does not have any outgoing transitions, the algorithm restarts from the initial state. Since the original random walk method was introduced, many optimizations have been suggested to improve its effectiveness in finding errors. These optimizations include re-initializing the search frequently to avoid getting trapped in a strongly connected component [PHvB05], performing local exhaustive searches once a certain search depth has been reached [SG03], keeping a small cache of visited states [TPIZ01], and running parallel random walks [TPIZ01, SG03].

The Lurch model checker [OM03] uses random walks to perform partial searches of large state spaces. Lurch inserts newly discovered states at random indices in the worklist to randomize the search. Dwyer et al. [DEPP07] perform random searches of the state space by randomizing the order in which child states are explored. They parallelize this method by distributing the search to multiple non-communicating machines.

2.3.3 Partial State-Space Searches

Stateless model checking [God97, MQ08] is another method for exploring large state spaces. In stateless model checking, the search does not keep
track of already-visited states. Instead, there is a bound on the depth of the search, to keep the model checker from continuously visiting the same states. The result is a partial search of the state space.

Bounded model checking [BCC+03, BCCZ99] is a partial search that is exhaustive up to some bound k on the length of execution traces. If no bug is found, one increases k until either a bug is found or some pre-defined upper-bound is reached.

2.4 State-Space Caching

The state-space-explosion problem is linked to the requirement for storing already-visited states during the search to (1) guarantee termination and (2) save time by avoiding re-exploration of states. State-space caching [Hol87] combats this problem by limiting the amount of memory used to store visited states. A cache of visited states is maintained. When the cache is full, states in the cache are replaced by newly discovered states. Of course, by removing a state S_i from the cache, the model checker commits itself to possibly re-exploring S_i and its children if S_i is revisited through a different path in the reachability graph. For acyclic state spaces, termination and thus a full state-search are guaranteed [God97, Hol88, DH82]. For cyclic state spaces, the model checker must be able to detect states that form strongly connected components to guarantee termination and a full coverage. We describe these issues in Chapter 4.

State-space caching techniques differ in their cache replacement policies. A cache replacement policy dictates how states are chosen for replacement when the cache is full. We explain the most commonly used policies below.

2.4.1 Hit-Based Caching

In hit-based caching [Hol87], states in the cache are replaced based on the number of times they have been revisited (referred to as the number of cache
The work in [Hol87] investigates policies that replace states that have had the most hits and states that have had the fewest hits.

2.4.2 Age-Based Caching

In age-based caching [Hol87], states in the cache are replaced based on the length of time that they have been in the cache. In particular, a state that has been in the cache the longest is selected first. The intuition behind this method is that the longer a state remains in the cache, the fewer cache hits it will receive in the future.

2.4.3 Stratified Caching

The authors of [Gel04] propose stratified caching, which uses each state’s distance from the root of the depth-first-search graph (referred to as a state’s search level) as the criteria for replacement. When the cache is full, the model checker specifies that all states at search levels \(k \) modulo \(m \) are available for replacement. Thus, all states at search levels \(k, k + m, k + 2m, \ldots \) could be removed.

Stratified caching places an upper limit on the number of descendant states that must be re-explored if a removed state \(S_i \) is revisited because it guarantees that all of \(S_i \)’s already-visited descendant states are still in the cache, unless they reside at search levels selected for replacement.

2.4.4 Depth-Based Caching

Depth-based caching [Hol87] also uses a state’s search level as the criteria for replacement. This technique is similar to stratified caching, but instead of replacing all states at a certain search level, it replaces the deepest states in the reachability graph first. The main idea is that the deepest states probably have fewer reachable descendant states. As a result, replacing states deep in the reachability graph should result in re-exploring less of the state space if
the removed state is revisited after its descendant states have been removed from the cache.

2.5 Software Certification

In this section, we review the state of the art of software certification, focusing on product-oriented certification. We categorize the research into three major areas: testing-based approaches, static-based approaches, and formal-methods-based approaches.

Testing-Based Certification

Current certification standards emphasize the use of testing and test results to assess the quality of a software system. The software producer tests a program to build an argument that the program satisfies its requirements. She submits for certification the program to be certified, along with documentation of the test cases and their results. For example, the DO-178B standard [RTC92] requires that a software producer submit, along with other artifacts, the following documents:

- Software-verification test cases and procedures
- Software verification results, including reviews of all requirements, design, and code; and test results of executable code.

Because testing exercises only a subset of a program’s execution traces, current certification standards require various test-coverage metrics to measure the adequacy of the test results. These metrics include:

- Statement coverage [Hua75] — the percentage of all program statements that were executed.
- Decision or branch coverage [Hua75] - the percentage of all branches in the program that were explored.
• Condition coverage [Mye79] — the percentage of all atomic boolean sub-expressions that have been tested for both their true and false value.

• Condition/decision coverage [Mye79] — combination of decision and condition coverage.

• Modified condition/decision coverage (MC/DC) [RTC92] — extends condition/decision criteria with the requirement that each condition should affect the decision outcome independently. For avionics software, testing is required to achieve MC/DC coverage [RTC92].

Many certification standards require only a manual inspection of the test cases and their results, but research suggests that re-running of some or all of the test cases should be used to automate certification [WR94, MLP*01, Gho99]. In this scenario, the test cases and their results are submitted to the certifier in some standard format (e.g., XML). The certifier either manually inspects the documents or uses automated tools to re-run the test cases and compare the results to the expected results. It might still be necessary to manually inspect the test cases to ensure that they achieve the necessary coverage and that they actually check the desired properties.

User-based certification [Voa00, YJ03] is based on the assumption that testing is a somewhat artificial evaluation of software quality and does not exercise a program in the manner that it will be used in operation. User-based certification proposes to use information collected during operational use as a measure of the quality of a program. In one approach [Voa00], the certifier distributes instrumented code to a select set of users and collects information about any errors that occur while they use the software. A second approach [YJ03] uses some other form of initial certification (such as a static approach, described below) and then updates the results of the certification as new errors are discovered during the program’s use. The main
argument against this kind of certification is that uncertified or partially-certified code is distributed to users — a scenario that we want to avoid in the first place. This approach may be applicable only to non-safety-critical software.

Static-Based Certification

Researchers [OWB05, ABJ10] have shown that there is a correlation between static properties of a software program and the quality of the program. Static properties refer to any information about the software that does not require its execution.

The work in [OWB05] uses the structure of the program files and their change history to predict the number of errors in each program file. For example, the size of a program file (in terms of lines of code) and its type (e.g., SQL file) can be used to predict the number of errors in the file. Arisholm et al. [ABJ10] build models that predict faults in a program based on the static properties of the program such as the number of instance variables, number of methods called by each class, and the number of super- and subclasses. The models are built using historical information about the program under investigation and other analyzed programs.

Formal-Methods-Based Certification

Even though formal methods focus on the question of software correctness, very little is said about them in most certification standards. The certification standard DO-178B [RTC92] simply proposes that the results of formal methods, if they are used at all, be inspected. In the research community, the use of formal methods for certification has not been extensively studied. The first work in this area was the use of proof carrying code (PCC) [Nec97]. The premise of PCC is that proof checking is faster and simpler than theorem proving. In PCC, the software producer verifies via theorem proving that his program satisfies a set of predefined safety properties, and provides
as evidence a *safety proof*. The certifier certifies the program by checking the validity of the accompanying safety proof against the code.

However, PCC certification can only (re)verify the properties that are substantiated by the safety proof. Moreover, PCC requires significant infrastructure, including inference rules for reasoning about code, efficient representations of safety proofs, and efficient and trustworthy proof checkers that can quickly validate safety proofs about programs. Because reasoning about general properties of programs is complex, PCC has so far been applied to only program-independent security properties (e.g., memory safety, type safety, resource bounds). Most research on PCC focuses on reducing the size of proofs [BJT07] and generalizing the kinds of properties that can be proved [AAR+10, NS06].

There has also been some work on certifying model checking results: abstraction-carrying code (ACC) [XH04] and model-carrying code (MCC) [SVB+03]. In both cases, the program to be certified is accompanied by an abstract model of the program. In ACC, this abstract model is an abstract interpretation [CC77] of the program. In MCC, the model is an extended finite-state automaton over the alphabet of system calls, and is synthesized from the program’s execution traces. In both cases, certification is a two-step process: (1) certifying that the model is a faithful abstraction of the program and (2) certifying that the model respects the desired properties. In ACC, certification is done offline. In MCC, model fidelity is checked at runtime by monitoring the program, which incurs a performance penalty of 2% to 30% [SVB+03]. ACC and MCC can both accommodate infinite-state programs and both are property-independent, which means that they can be used to check additional properties. However, ACC and MCC models are conservative abstractions, which means that a model may have more behaviours than the program it is modeling. As a result, errors reported by the model checker may not be actual errors of the program.
2.6 State-Space Coverage Estimation

When memory and time resources are limited, a model-checking search might end prematurely without exploring a program’s entire reachable state space. For such cases, an estimate of the state-space coverage can help a certifier to determine how much confidence to have in the partial model-checking results.

In previous work [Tal07], we suggested that it may be possible to sample unexplored transitions as a means to estimating the size of a program’s state space, but we did not explore this idea further. Other researchers have investigated the problem of state-space coverage estimation. Pelánek et al. [Pv08] propose two techniques for estimating state-space coverage. In the first technique, the model checker executes two random partial searches of a program’s state space and uses the overlap between the two searches to estimate coverage. The second technique uses breath-first search (BFS) level graphs for state-space coverage estimation. A BFS level graph plots for each level of a breath-first search the number of states in the BFS worklist. At the end of a partial model-checking search, the corresponding BFS level graph is only a partial plot because the model checker did not explore all BFS levels. The authors use the partial BFS level graphs to predict the shape of the full BFS level graph, and thus estimate coverage. The authors evaluated both algorithms on 160 randomly generated reachability graphs and measured the accuracy of both coverage estimation algorithms in terms of whether they could classify the actual coverage of a search into the correct coverage range: < 3%, 4%-25%, or 26%-100%. The algorithm that estimated coverage based on two random partial searches performed best. This algorithm was able to classify the coverage of a search into the correct range for 72% of the 160 example reachability graphs.

Dingle et al. [DK08] try to estimate the actual size of a program’s state space by applying least-squares fitting to partial BFS level graphs. The main assumption of this work is that BFS level graphs have regular, parabola-shape curves that can be described by a quadratic formula: \(y = ax^2 + bx \) for some
Given partial BFS level graph from partial model-checking search, the authors try to solve for values a and b, and thereby obtain a representation of complete BFS level graph. The authors evaluated their approach on three programs whose state-space searches ended prematurely after 25%, 50%, and 75% of programs’ state spaces had been explored. Their results show that their algorithm can estimate size of program’s state space with accuracy from 66% to 93%, on their examples.

Others have explored how state-space search relates to code coverage or specification coverage [RDHR04, GV04]. Rodriguez et al. [RDHR04] describe and implement framework for the Bogor model checker [RDH03] that supports branch coverage and specification coverage. Branch coverage judges how many branches in program have been exercised and its results can be used to adjust environment used to run program if environment does not exercise satisfying percentage of branches in program. Specification coverage describes how much program code a specification exercises and can be used to modify specification in situations where specification is satisfied without ever exercising intended program segments. Gore et al. [GV04] describe a branch-coverage module for JPF that tries to exercise all branches of a program and reports the percentage of branches covered. None of these works estimate state-space coverage.
Chapter 3

Certification by Search Carrying Code

In this chapter, we introduce the concept of search-carrying code (SCC), a technique that uses information collected during successful verification of a program (via explicit-state model checking) to ease subsequent certification (via explicit-state model checking) of the same program. Ideally, it should be faster to certify a program than it was to verify it in the first place because the certifier could otherwise just re-verify the program.

Our approach focuses on paths through a program’s reachability graph. During verification, a software producer uses her model checker to explore a program’s reachability graph and record the search paths as a search script. Because the search script records the search of the program’s entire reachability graph, it effectively acts as a certificate of model checking: it is a sound and complete representation of the program’s reachability graph for the purpose of model checking. The software producer submits the software program with the associated search script for certification. The certifier’s model checker takes the search script as input and uses it to speed up the task of re-examining the program. We describe SCC certification in Chapter 3.1.
Basic SCC achieves only modest time savings because the certifier’s model checker must still search the program’s entire reachability graph. But SCC certification can be parallelized much more effectively/ than traditional parallel model checking. The main challenge in parallel model checking is balancing the workload among parallel processors. This challenge is mitigated in SCC certification because the search task is known in advance and is encoded in the search script. The search script can be partitioned in such a way that parallel processors perform roughly the same amount of work and the processors need not communicate or synchronize with each other. The time savings are roughly proportional to the number of parallel processors. We describe parallel SCC in Chapter 3.2.

3.1 Search-Carrying Code

Explicit-state software model checking exhaustively examines a program’s state space, checking for conformance with desired properties. During verification of a program, the emphasis is on finding bugs and ultimately showing that a program is free of certain classes of errors. For certification, the goal is to confirm that a program behaves as advertised, and possibly to check for additional non-advertised properties. The goal of search-carrying code (SCC) is to use information collected during model-checking-based verification of a program to speed up model-checking-based certification of the program. The main idea of SCC is as follows.

A software producer’s model checker performs a traditional exhaustive search and verification of a program’s state space. At the same time, the model checker constructs a search script that encodes the sequence of all transitions and their destination states that the model checker explored.

Definition 3.1.1. An SCC search script of a program is a sequence of transitions (i.e., program statements) and their resultant target states. The sequence corresponds to a depth-first search of the program’s entire reacha-
During SCC certification, a certifier’s model checker uses the provided search script to direct its search of the program’s state space and certifies that verification was performed. In general, SCC can be used to certify safety properties of programs (e.g., program invariants or assertions), and to confirm absence of deadlocks. We discuss properties in more detail in Section 3.3.

SCC certification can detect if a provided search script deviates from a program’s state space. Deviations may be intentional in the case of tampering, or may be accidental if a program has changed since the script was created. There are three types of deviation: (1) the script includes a nonexistent transition, (2) the script omits a transition, or (3) the script incorrectly claims that a transition leads to an already-visited state. The first two types of deviation are easily detected: in the first case, the program has no program statement that matches the script’s transition instruction; and in the second case, the script instructs the model checker to end the exploration of a state before it is fully explored. In both cases, the model checker detects the discrepancy and the certification fails. The third type of deviation is more menacing because, if undetected, it results in a partial search of the program’s state space: the mislabelled state is deemed to have already been visited, so the model checker does not test the state and does not explore the state space that is reachable from it. To detect this third type of deviation, SCC certification must re-explore the program’s entire reachability graph: it must not only visit and verify all states in the state space, it must also explore all transitions emanating from those states to check whether they lead to new, unvisited states. Thus, the search script encodes the full reachability graph, i.e., every transition between program states.

Given that SCC certification entails searching a program’s entire reachability graph, it might seem surprising that SCC achieves any savings at all. As will be seen, modest savings come from being able to confirm the script’s
encoding of the reachability graph, rather than determining the reachability graph, as is the case in traditional model checking. More significant savings come from parallelizing SCC certification. We describe parallel SCC in Section 3.2.

In the special case of trustful SCC certification, the software producer and the verification results are trusted. However, the certifier wants to certify additional properties of the program, and the software producer is unable or unwilling to check these. Because the software producer is trusted, the certifier may choose not to check the veracity of the script. As a result, we can aggressively optimize the certification task for speed. We describe trustful certification in Section 3.1.3.

3.1.1 Search Script Construction

An SCC search script records all transitions in a program’s reachability graph and each transition’s destination state. In order to reduce the size of the search script, the script records a destination state’s ID instead of some form of state encoding.

Definition 3.1.2. A state ID in the search script is a unique identifier. Its value reflects the order in which a state was visited during the SCC verification search.

The model checker assigns state IDs starting with identifier S_1, incrementing the state ID by 1 each time a new state is discovered. During certification, the model checker keeps a mapping between state IDs and state encodings. We describe this in more detail below.

Consider Figure 3.1, which depicts the reachability graph of an artificially simple program. Transition labels abstractly represent the program statements being executed. The numbering of transitions reflects the order in which transitions were explored relative to other transitions from the same source state. The script for this program’s reachability graph is:
Figure 3.1: Sample reachability graph of a program

where the t_is encode program statements (e.g., the byte-code instruction; or a combination of byte code and thread ID) and Bs represent backtracks. Reading the script from start to end, the search starts in the program state labelled S_1; it explores the program statement represented by transition t_1, which results in a program state labelled S_2; and so on.

SCC uses encodings of program statements in the script, so that the certifier’s model checker can choose any ordering for executing transitions. The script must include the transition’s byte code instruction and arguments, plus the thread ID of the executing thread. Below is an example partial script in which transition instructions are expressed as byte-code instructions:

<table>
<thead>
<tr>
<th>Trans instr:</th>
<th>t_1 t_1 B t_2 t_1 B t_2 t_1 B B t_3 t_1 B B B t_2 B</th>
</tr>
</thead>
<tbody>
<tr>
<td>State ID:</td>
<td>S_1 S_2 S_1 S_2 S_3 S_1 S_3 S_4 S_2 S_4 S_3 S_4 S_5 S_3 S_2 S_1 S_4 S_1</td>
</tr>
</tbody>
</table>

For the remainder of this thesis, we will abstract instructions in scripts to transition IDs for clarity of presentation.

3.1.2 Search Script Usage

During SCC certification, the software producer’s model checker follows the instructions given in the provided search script, checking properties and au-
thenticating the search script on-the-fly. In particular, the model checker
confirms that the program’s reachability graph matches the encoding in the
search script by checking that each destination state in the search script
matches the destination state discovered during model checking. To facili-
tate this check, the model checker creates a unique numerical representation
(referred to as a fingerprint) of each state and stores a mapping of state IDs
to fingerprints in a map FP.

Definition 3.1.3. A fingerprint is a numerical encoding of a state.

Fingerprints are used to check whether two discovered states are the same.
We assume that repeated searches by the same model checker generate for
each state the same fingerprint, independent of the model checker’s search
strategy or the order in which states are discovered. In JPF, fingerprints
are 32 Bit Long Integers and the model checker uses a hashing function to
hash all of a state’s data into a fingerprint. We use state IDs in the search
script, rather than fingerprints, to reduce the size of the search script. State
IDs must be mapped back to fingerprints in order to compare states in the
script against states discovered by the model checker during certification.
Fingerprints are not submitted to the certifier as part of the search script.

Definition 3.1.4. A map FP is a mapping of state IDs to fingerprints.

Algorithm 3.1 describes our certification algorithm. The inputs to the
algorithm are the search script $Script$, a Stack that holds partially explored
states, and a map FP that stores at $FP[ID_i]$ the fingerprint of the state
whose $ID = ID_i$. The search starts at the program’s initial state S_0.

For each transition instruction and destination-state ID pair $< t_i, ID_i >$
in the search script, the algorithm follows the instruction t_i and expects the
result to be the program state corresponding to ID_i. If the instruction is
a backtrack transition, then the algorithm backtracks to the previous state
(line 11). Otherwise, the model checker executes the transition instruction
t_i resulting in state $next$ (line 15) and pushes $next$ on the Stack (line 20).
If \textit{next} is a newly visited state (indicated in \textit{Script} by a destination state \textit{ID}_i that is higher than the highest ID seen so far), then the algorithm stores \textit{next}'s fingerprint at \textit{FP}[\textit{ID}_i] (line 17).

Algorithm 3.1 also checks the veracity of the search script on the fly. There are three possible sources of discrepancy between the search script and the program being certified:

1. The script instructs the model checker to backtrack but state \textit{current} is partially explored (line 8);

2. transition \textit{t}_i is not one of state \textit{current}'s enabled transitions (\textit{current.enabled}) (line 12);

3. state \textit{next} is a previously visited state (indicated in the script by a destination state \textit{ID}_i that is lower than the highest ID seen so far), but the fingerprint stored at \textit{FP}[\textit{ID}_i] does not match state \textit{next}'s fingerprint (line 19).

For any of these three discrepancies, the search stops with a veracity error.

Note that \textit{FP} can be implemented as a fixed-size map and is slightly more efficient than a hash table of visited states because its size is known in advance. In JPF, for example, the size of the hash table must be increased (by creating a larger hash table) whenever the hash table is full, all states in the hash table must be re-hashed and re-inserted into the new, larger hash table. Our results show that the use of map \textit{FP} in lieu of a hash table of visited states results in time savings of about 5\% during SCC certification.

\textbf{Theorem 3.1.1.} Algorithm 3.1, which model checks a program's state space using an SCC search script to direct its search, is \textbf{tamper-proof}: If the provided search script does not represent the search of the entire reachability graph, certification will fail.

\textbf{Proof} There are three possible discrepancies between a provided search script and the program being certified:
Algorithm 3.1: Certification Algorithm

1. **Input:** Script; /* search script encoding reachability graph */
2. **Input:** Stack; /* worklist of partially explored states */
3. **Input:** FP; /* mapping between state IDs and fingerprints */
4. push(S₀) onto Stack;
5. for each <tᵢ, IDᵢ> in Script{
6. current = top state on Stack;
7. if (tᵢ == B){
8. if (current == partially explored) break;
9. } else if (tᵢ ∉ current.enabled)
10. throw veracity error;
11. else{
12. next = succ(current, tᵢ)
13. if (IDᵢ highest ID scanned so far)
14. FP[IDᵢ] = next.fingerprint;
15. else if (FP[IDᵢ] ≠ next.fingerprint)
16. throw veracity error;
17. push(next) onto Stack;
18. }
19. }

1. The script instructs the model checker to explore a transition tᵢ (i.e., a program statement) at a particular point in the search, but that transition does not exist in the program’s reachability graph. Line 12 in Algorithm 3.1 detects this discrepancy and the search stops.

2. The script instructs the model checker to backtrack from a partially explored state Sᵢ, that is, the script instructs the model checker to not explore one or more transitions that emanate from Sᵢ. Line 8 in Algorithm 3.1 detects this discrepancy and the search stops.

3. The search script states that two transitions tᵢ and tⱼ have the same destination state with the same state IDᵢ. However, in the program’s reachability graph, the two transitions lead to different program states. Line 19 in Algorithm 3.1 detects this discrepancy and the search stops.

When tᵢ is explored, the fingerprint of its destination state is stored at FP[IDᵢ]. When tⱼ is subsequently explored, the model checker com-
parses S_j’s fingerprint to S_i’s fingerprint stored at $FP[ID_i]$. Certification fails because the two fingerprints do not match.

Because the model checker detects all three discrepancies, the search is tamper-proof.

Note that it is possible that the script instructs the model checker to explore a new state S_i which is in fact a previously visited state. In this case, the model checker would simply do duplicate work because it has explored S_i before. We do not include this case in the above theorem because the model checker would still explore the entire reachability graph.

3.1.3 Trustful Certification

In cases where a program comes from a trusted source and the certifier trusts the results of the software producer’s verification, SCC can still be useful to check additional properties. Perhaps the program is stored in a trusted software repository, but there are some additional properties to be checked about the program. The software producer might not be available or willing to perform additional checks.

When the certifier trusts the source of the program, she might also trust the veracity of the search script. If so, the certification need only examine the program’s states, to test properties. It need not explore all of the transitions in the program’s reachability graph, checking whether any reachable state has been missed.

To see the difference, consider again the reachability graph in Figure 3.1. An exhaustive search of the graph explores all nine transitions, visiting the same states multiple times. In contrast, a perfect search traverses a spanning tree of a program’s state space by executing only transitions that lead to unvisited states, thus visiting each state exactly once.

Definition 3.1.5. A productive transition is a transition that leads to an unvisited state.
Definition 3.1.6. A *perfect search* of a program explores only productive transitions of the program’s reachability graph. The resulting search traverses one possible spanning tree of the reachability graph.

Figure 3.2 depicts a depth-first, perfect search of the graph from Figure 3.1. Solid lines represent productive transitions and dashed lines represent backtracks to parent states. Backtracking does not constitute “visiting” a state because the work of constructing and testing the state is already done. Thus, each state is visited exactly once. The corresponding search script is:

\[
\text{Trans instr: } t_1, t_2, t_2, B, t_3
\]

The script need not record the transitions’ target state IDs because trustful certification does not check the veracity of the script.

In this manner, trustful SCC effects a perfect search of a program’s state space. The software producer provides a program and matching trustful search script. During certification, the certifier’s model checker uses the search script to direct its search of the program’s state space. Thus, there is no need to create or maintain state fingerprints or a hash table of visited states, resulting in additional savings.
3.1.4 Evaluation of SCC

We implemented SCC certification in Java Pathfinder (JPF) [CGJ+00]. JPF is an explicit-state model checker for Java byte-code programs. We refer to the resulting model checker as *JPF-scc*. For convenience, we implemented SCC verification and SCC certification in the same model checker but, in practice, these tasks might be performed by separate tools to allow the code producer and certifier to use the model checker of their choice. JPF, and our modified variants, employ partial-order reduction and two types of symmetry reduction: (1) states that are identical except for unreferenced objects (i.e., garbage) are considered to be equivalent, and (2) states that are identical except for the order in which classes and objects are loaded are considered to be equivalent. We discuss the compatibility of SCC with various state-space reduction techniques in Section 3.3.

We evaluated our work on a suite of nine Java programs that have been used in previous empirical studies. Table 3.1 lists each program and includes its source, the parameter values that we used (e.g., instantiating 8 dining philosophers), the numbers of invariants and assertions\(^1\) that we checked for each program, the number of states in the reachability graph, the ratio of transitions to states, and the time to model check the program using unaltered JPF. We also checked each program for deadlock violations. We ran our experiments on an Intel Pentium 4 3.2 GHz machine with 1.5 GB of memory, running Windows XP. We used this evaluation setup for all algorithms described in this thesis.

We evaluated the utility of SCC on the basis of how long it takes to perform SCC certification, compared to the time it would take a certifier to reverify a program using JPF. We ran each experiment 10 times and report the average of the 10 runs. Table 3.2 shows the results for SCC certification using JPF-scc. Column *Verification* shows the time incurred

\(^1\)In this thesis, invariants are checked in each program state whereas assertions are checked only where they occur in the program.
<table>
<thead>
<tr>
<th>Source</th>
<th>Program</th>
<th>Parameters</th>
<th>Properties</th>
<th>#States</th>
<th>#Trans</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CGJ+00]</td>
<td>Dining Philosopher (8)</td>
<td>#philosophers</td>
<td>#Inv/#Assert</td>
<td>1/2</td>
<td>209014</td>
<td>5.2</td>
</tr>
<tr>
<td>[San]</td>
<td>Bounded Buffer (5,4,4)</td>
<td>bufsize,#prod,#cons</td>
<td></td>
<td>1/3</td>
<td>786987</td>
<td>7.1</td>
</tr>
<tr>
<td>PSD]</td>
<td>Nasa KSU Pipeline (4,1)</td>
<td>stagesize,#listeners</td>
<td></td>
<td>3/4</td>
<td>59512</td>
<td>4.1</td>
</tr>
<tr>
<td>[San]</td>
<td>Nested Monitor (5,4,4)</td>
<td>bufsize,#prod,#cons</td>
<td></td>
<td>6/4</td>
<td>71941</td>
<td>6.9</td>
</tr>
<tr>
<td>[San]</td>
<td>Pipeline (7)</td>
<td>stagesize</td>
<td></td>
<td>3/3</td>
<td>82011</td>
<td>6.1</td>
</tr>
<tr>
<td>[San]</td>
<td>RWVSN (4,4)</td>
<td>#readers,#writers</td>
<td></td>
<td>3/4</td>
<td>227116</td>
<td>5.1</td>
</tr>
<tr>
<td>[San]</td>
<td>Replicated Workers (5,2)</td>
<td>#workers,#items</td>
<td></td>
<td>4/5</td>
<td>710022</td>
<td>5.1</td>
</tr>
<tr>
<td>[DHH+06]</td>
<td>Sleeping Barber (2,4,3)</td>
<td>#barber,#customers,#chairs</td>
<td></td>
<td>4/5</td>
<td>1452194</td>
<td>4.3</td>
</tr>
<tr>
<td>[Dav]</td>
<td>Elevator(5,10,10)</td>
<td>#elevators,#floors,#people</td>
<td></td>
<td>4/8</td>
<td>386032</td>
<td>8.4</td>
</tr>
</tbody>
</table>
by the software producer to model check the program and create the search script, including the time to write the script to disk. Column Certification reports the time incurred by the certifier to certify each program, including the time to read the search script from disk. Column Speed-up shows the speed-up of a certification search compared to a traditional JPF search, as reported in Table 3.1. For example, the time to certify the Sleeping Barber program and to check the script is 1245 seconds, which is 1.05 times faster than JPF verification of the same program. The standard deviation for our results was 0.005. The time to write the script to the disk and to read the script from the disk was between 0.5% and 1.50% of the verification time, for each operation.

The speed-ups of SCC are small and are mainly due to keeping a map of fingerprints (FP) instead of a hash table. Because of the way that JPF maintains hash tables and resizes tables as needed, the savings increase with the size of the program’s state space. For our set of programs, we report an overhead of 2% to 5% for keeping and maintaining a hash table.

Table 3.2 also shows the runtime performance of trustful SCC certification. For example, the time to certify the Pipeline program is 15 seconds, which is 6.7 times faster than traditional JPF verification of the same program. The speed-up of trustful SCC certification is proportional to the ratio of the number of transitions to the number of states in the program’s reachability graph; this is also the ratio of unproductive to productive transitions. The speed-up is slightly better than the ratio because of the savings from not creating and comparing fingerprints.

3.1.5 Search Script Size

The feasibility of SCC depends not only on runtime performance but also on the size of the search script. Given a program whose reachability graph has S states and T transitions, SCC will produce a search script containing at most $2T$ instructions (T forward transitions and at most T backtracks) and
<table>
<thead>
<tr>
<th>Program (size)</th>
<th>Verification (sec)</th>
<th>SCC certification</th>
<th>Speed-up</th>
<th>Script size (KB)</th>
<th>Certification (sec)</th>
<th>Speed-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dining Philosopher (4KB)</td>
<td>221</td>
<td>104</td>
<td>213</td>
<td>1.03</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>Bounded Buffer (6KB)</td>
<td>1090</td>
<td>329</td>
<td>1036</td>
<td>1.04</td>
<td>74</td>
<td>130</td>
</tr>
<tr>
<td>NASA KSU Pipeline (2KB)</td>
<td>45</td>
<td>91</td>
<td>44</td>
<td>1.02</td>
<td>22</td>
<td>9</td>
</tr>
<tr>
<td>Nested Monitor (7KB)</td>
<td>100</td>
<td>45</td>
<td>97</td>
<td>1.01</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>Pipeline (5KB)</td>
<td>102</td>
<td>51</td>
<td>99</td>
<td>1.01</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>RWVSN (9KB)</td>
<td>246</td>
<td>102</td>
<td>236</td>
<td>1.03</td>
<td>29</td>
<td>39</td>
</tr>
<tr>
<td>Replicated Workers (15KB)</td>
<td>862</td>
<td>272</td>
<td>819</td>
<td>1.05</td>
<td>72</td>
<td>140</td>
</tr>
<tr>
<td>Sleeping Barber (8KB)</td>
<td>1310</td>
<td>492</td>
<td>1245</td>
<td>1.05</td>
<td>187</td>
<td>245</td>
</tr>
<tr>
<td>Elevator (29KB)</td>
<td>1169</td>
<td>248</td>
<td>1122</td>
<td>1.04</td>
<td>54</td>
<td>129</td>
</tr>
</tbody>
</table>
trustful SCC will produce a search script that has at most 2S instructions. Because the number of states and transitions are exponential in the size of the program, one might expect that script size is an issue.

Fortunately, search scripts contain lots of replication (e.g., byte-code instructions, backtrack commands), which makes them good candidates for compression. ZIP data compression [IEE90] reduced the sizes of our search scripts by factors of 550 to 650. Table 3.2 shows the size in KB of the compressed search script for each program, for both SCC and trustful SCC certification. It also shows the size of each program’s class files along with the program name. The sizes of compressed scripts are on the order of \((T \times 10^{-4})\) KB for SCC and \((S \times 10^{-4})\) KB for trustful SCC. Extrapolating to larger programs, with 100 million states and a billion transitions, the script sizes might be on the order of 100MB for SCC and 10MB for trustful SCC. Such script sizes are large but are manageable.

3.2 Parallel SCC

The promise of parallel model checking [SD97] is that we can reduce search times by distributing the search among multiple parallel processors. It is difficult to balance a model-checking task evenly among processors because the size of the search space is not known in advance. Attempts to partition the workload in advance (e.g., assigning states to processors based on state information) have resulted in substantial communication overheads, due to the need to transfer new states to their designated processors. Even on a shared-memory architecture, this style of parallel model checking can suffer considerable overhead because processors need to coordinate their shared access to each others’ worklists.

In SCC, the certification workload is known in advance, in the form of a search script. As such, it is possible to partition the workload into multiple search tasks of roughly equal size. In the following sections, we first describe
how to partition an SCC search script and then explain the optimizations for trustful certification.

3.2.1 Partitioning the State Space

The goal of parallel SCC is to partition the SCC search script into multiple non-overlapping search tasks, each of which covers a contiguous region of the program’s reachability graph that can be searched separately.

Let Script be the full search script of a program, as described in Section 3.1.1, and let $|\text{Script}|$ be the size of the script in terms of the number of transitions. Prior to certification, the certifier’s model checker constructs a partition $P = \{p_1, ..., p_k\}$ of Script into k search tasks. Each partition region $p_i \in P$ corresponds to a subgraph in the program’s reachability graph, and to a partial search script Script_i that is a substring of Script.

Definition 3.2.1. A partition region p_i of a program’s reachability graph consists of all states that can be reached via productive transitions from p_i’s root state and all transitions, productive and unproductive, originating from those states.

For example, consider the reachability graph in Figure 3.3, in which thick edges represent productive transitions. In this example, the partition region rooted at state $S4$ consists of the states $S4$, $S5$ and $S6$; the partition region would not include $S3$ because it is reached via an unproductive transition from $S6$.

Definition 3.2.2. The size of a partition region p_i is the total number of transitions emanating from states in p_i.

To facilitate script partitioning, SCC verification generates, along with the search script, a list Subgraphs that records for each program state S_i the number of transitions in the partition region rooted at S_i, i.e., it records the size of the partition region p_i rooted at state S_i. The list Subgraphs could
be generated during certification from the search script. We ask the code producer to provide Subgraphs in order to reduce certification time. Basically, during verification, the model checker performs a depth-first search of the program state space. As each new state \(S_i \) is encountered, an entry indexed by state ID is added to Subgraphs. As \(S_i \)'s child states are explored and the sizes of their subtrees are computed, the size of \(S_i \) is updated. The Subgraphs list is provided to the certifier, along with the program and search script. In SCC certification, the size of a Subgraphs list is less than 10% of the size of the search script, and in trustful SCC certification, the size of Subgraphs is less than 20% of the size of the search script. The percentages are different because the size of Subgraphs is the same for trustful and tamper-proof certification, but their script sizes are different.

Figure 3.3 shows an example reachability graph with its corresponding Script and Subgraphs. The Subgraphs table shows for each state \(S_i \) (left column) the size of the partition region (right column) rooted at \(S_i \). For example, the partition region rooted at state \(S4 \) consists of the states \(S4, S5, S6 \).
Algorithm 3.2: Partitioning Algorithm

```
1 Input: Script; /* search script encoding reachability graph */
2 Input: Subgraphs; /* root and size of subgraphs in Script */
3 Input: k; /* number of partition regions to generate */
4 i = 0;
5 while (i < k−1){
6    Search Subgraphs for pi whose size is closest to |Script|/(k−i);
7    Remove search script for pi from Script;
8    Remove all states in pi from Subgraphs;
9    Update the sizes of subgraphs left in Subgraphs;
10   Compute path to initial state of pi;
11   i++;
12 }
```

and the transitions emanating from these states, and has size four (i.e., the four transitions originating from those states). The value in parentheses below each state identifier in the reachability graph in Figure 3.3 shows the same information.

Algorithm 3.2 gives an overview of our partitioning algorithm. It takes as inputs the search script Script and the Subgraphs list that are provided by the software producer, and the number of partitions k to generate (based on the number of available parallel processors). In the ith iteration, the algorithm searches Subgraphs for a partition region whose size is closest to $1/(k-i)$ of the number of transitions not yet assigned to a partition region (line 6); this subgraph becomes a new partition region p_i. Next, the partial search script Script$_i$ for partition region p_i is extracted from Script (line 7). The algorithm also removes all states in p_i from Subgraphs (line 8). We describe both processes in the section Updating Data Structures. The algorithm then updates the sizes of the remaining subgraphs in Subgraphs (line 9). Note that only the sizes of ancestor states of p_i need be modified, and their sizes are reduced by the size of p_i. We describe how ancestor states are identified in the section Constructing Initial States. Finally, the algorithm constructs the path from the program’s initial state to the initial state of search task Script$_i$ (line 10). We discuss the rationale and process for constructing this initialization path in the section Constructing Initial States.
Figure 3.4 shows the result after one iteration of our partitioning algorithm as applied to the reachability graph in Figure 3.3, for \(k = 3 \) partitions. The partition region \(p_1 \), rooted at state \(S_4 \), is selected for extraction and its subscript is removed from \(\text{Script} \) (the dark line in \(\text{Script} \) shows from where the subscript was extracted). All of the states in \(p_1 \) have been removed from \(\text{Subgraphs} \) and the sizes of \(S_4 \)'s ancestors (\(S_1, S_2, S_3 \)) have been reduced by \(S_4 \)'s size. The initialization path for \(p_1 \) is a sequence of transitions from the program's initial state to the subgraph's initial state. Dashed states in each of the resulting partition regions represent states that do not belong to the region but that are still reached as part of that region's search task; they are reached when exploring transitions that emanate from states within the region.

Figure 3.5 shows the final partition of the graph from Figure 3.3 into three regions. The scripts for \(p_1 \) and \(p_2 \) contain initialization paths to their respective root states. The resultant search scripts represent the certification tasks to be distributed among parallel processors.

The complexity of our partitioning algorithm is \(O(k(S + T)) \): steps 6, 8 and 9 each have running times of \(O(S) \) for a reachability graph with \(S_i \) states, and steps 7 and 10 each have running times of \(O(T) \). In practice, these steps
are much quicker because each iteration of the algorithm removes a substring from the script and the states of the partition region from Subgraphs. Thus, in each iteration, the algorithm scans fewer states and transitions than in the previous iteration. In our experiments, we noticed that this overhead translates into approximately 0.5% to 3% of the total certification time.

![Diagram of Subgraphs with scripts and initialization paths](image)

Figure 3.5: Subgraphs with scripts and initialization paths

Updating Data Structures

In this section, we discuss how Script and Subgraphs are updated as our partitioning algorithm extracts each partition region \(p_i \). We remove from Script the subscript \(\text{Script}_i \) that represents the search of region \(p_i \). Let \(S_i \) be the ID of the root state of \(p_i \) (i.e., \(S4 \)). Because Script records a depth-first search of the reachability graph, and because state IDs reflect the order in which the states are discovered in this search, the Script\(_i\) starts after the leftmost instance of \(S_i \) and ends before the subsequent backtrack from \(S_i \) (to a state ID less than \(S_i \)). Thus, the Script\(_1\) for region \(p_1 \) in Figure 3.4, with start state \(S4 \), is
Note that Script must have the same number of forward transitions as the size of \(p_i \) in Subgraphs. Otherwise, there is a discrepancy between Script and Subgraphs and the partitioning of Script fails. After discarding trailing backtrack commands, we obtain a search script \(\text{Script}_1 \) that specifies the search of region \(p_1 \), starting from the initial state of \(p_1 \):

\[
p_1: [t_1 | B | t_2 | t_1 | B | t_2 | B | B | S_5 | S_4 | S_6 | S_5 | S_6 | S_3 | S_6 | S_4]
\]

Given a partition region \(p_i \), updating Subgraphs entails removing all entries that correspond to states in the region (line 8 in our partitioning algorithm). Again, let \(S_i \) be the ID of the root state of \(p_i \). Any state in Script whose ID is greater than or equal to \(S_i \) refers to a state in the region \(p_i \) and must be removed from Subgraphs. For example, in \(\text{Script}_1 \), states \(S_4, S_5, \) and \(S_6 \) are removed from Subgraphs.

Each iteration of the partitioning algorithm produces a script for a different partition region. When the algorithm terminates, what remains of Script forms a search script for the \(k \)th region. Figure 3.5 shows the search scripts for each partition region.

“Constructing” Initial States

Each Script starts at the root state of a partition region \(p_i \). We could attempt to construct the corresponding “initial” program state for each search task, but JPF program states are complex and are difficult to construct and restore: they comprise not only the variable valuation but also information about threads and the progress of the search. Instead, we prefix each search script with an initialization path: a sequence of transitions from the program’s initial state to the start state of the search task. We discuss in Section 3.2.5 the overhead incurred by this decision.
To construct the initialization path, the original Script is scanned from start to end. Every time a transition is reached, it is pushed onto a stack. Every time a backtrack command is read, the top transition is popped off the stack. When a state ID S_i is first encountered, the transitions in the stack make up the initialization path from the program’s initial state to state S_i. For example, the initialization path to p_1’s root state is: $t_1 t_1 t_1$. Note that this algorithm does not construct the shortest path to a given state, but it does construct the shortest path with respect to the given script.

The states along the initialization path are all ancestor states of S_i in the reachability graph. Thus, we can use the same process to update the sizes of the subgraphs remaining in Subgraphs after removing all states of p_i from Subgraphs (line 9 of the algorithm).

3.2.2 Parallel Certification

The program and search scripts are distributed to parallel processors, which run the certifier’s model checker. Each processor creates its own local copy of FP, which maps state IDs to program-state fingerprints. If a processor detects any discrepancy between its search script and the program, it raises an error. In addition, once all processors have finished their certification tasks, the processors’ FP maps are compared to ensure that all processors map state IDs to the same fingerprints. Any mismatch is reported as an error. This final check on the veracity of the search scripts performs at most nS comparisons, where n is the number of processors and S is the total number of states.

3.2.3 Correctness

Our partitioning algorithm divides a search script in such a way that the resulting subscripts cover all states and transitions of the original script.

Theorem 3.2.1. Given a search script Script of a program’s reachability
graph, Algorithm 3.2 divides Script into \(k \) subscripts such that each resulting subscript represents a depth-first search of a subgraph of the reachability graph.

Proof We show that (1) each extracted subscript \(\text{Script}_j \) records a depth-first search and (2) the subscript \(\text{Script}_k \) that remains after all \(\text{Script}_j \)'s have been extracted from \(\text{Script} \), also represents a depth-first search.

Each iteration of the partitioning algorithm extracts a search subscript \(\text{Script}_j \) that corresponds to a *leaf subgraph* \(p_j \) of a program’s reachability graph, and is rooted at state \(S_j \).

Let \(t_{i,j} \) be a productive transition from state \(S_i \) to state \(S_j \) (i.e., the first transition in \(\text{Script} \) that leads to \(S_j \)), and let \(B_{j,i} \) be a backtrack transition from state \(S_j \) back to state \(S_i \). Because \(\text{Script} \) represents a DFS of the program’s reachability graph, the subscript \(\text{Script}_j \) between \(t_{i,j} \) and \(B_{j,i} \) represents a depth-first search of all states reachable from \(S_j \) via productive transitions, and all transitions emanating from those states. Thus, \(\text{Script}_j \) represents a depth-first search.

After the extraction of \(\text{Script}_j \) from \(\text{Script} \) (line 7), the source state of \(t_{i,j}, S_i \), is the same as the destination state of \(B_{j,i} \). Thus, the removal of the sequence does not affect the continuity of the search script, and after the \((k - 1)^{th}\) iteration of the algorithm, \(\text{Script}_k \) represents a depth-first search.

Theorem 3.2.2. Given a search script \(\text{Script} \) of a program’s reachability graph, Algorithm 3.2 divides \(\text{Script} \) into \(k \) subscripts such that the resulting subscripts cover all states and transitions of the reachability graph.

Proof By construction, \(\text{Script} \) represents a DFS of a program’s entire reachability graph. Each iteration of the partitioning algorithm extracts a search subscript \(\text{Script}_i \) that corresponds to a *leaf subgraph* \(p_i \) of the reachability graph. The subgraph is rooted at state \(S_i \) and it includes all of the states that are reachable from \(S_i \) via productive transitions and includes all transi-
tions originating from those states. By Theorem 3.2.1, \(Script_i \) is a depth-first search and explores all transitions and visits each state in \(p_i \).

When the algorithm terminates, what remains of \(Script \) is a search subscript \(Script_k \) for a \(k \)th subgraph. The subgraph is rooted at the program’s initial state \(S_1 \), and includes all of the states that are reachable from \(S_1 \) via productive transitions up to and excluding the root states of the extracted partition regions, and all of the transitions originating from those states. Again, by Theorem 3.2.1, \(Script_k \) is a depth-first search and explores all transitions and visits each state in \(p_k \). In this manner, the algorithm splits \(Script \) without removing any states or transitions (except backtrack transitions).

\[\square \]

Theorem 3.2.3. Parallel SCC certification is tamper-proof: If the provided search scripts do not match the program’s reachability graph, certification will fail.

Proof By Theorem 3.1.1, the search of \(Script_i \) on \(processor_i \) would fail if there is a discrepancy between a subscript \(Script_i \) and the corresponding subgraph \(p_i \) of the reachability graph.

We have also to show that parallel SCC detects discrepancies between transitions in different scripts. It is possible that transition \(t_i \) in subscript \(Script_i \) and transition \(t_j \) in \(Script_j \) have the same destination state with the same state ID. However, in the program’s reachability graph, the two transitions lead to different program states.

When \(t_i \) is explored on \(processor_i \), the state ID and fingerprint of its destination state \(S_i \) are stored in \(FP_i \). When \(t_j \) is explored on \(processor_j \), the state ID and fingerprint of its destination state \(S_j \) are stored in \(FP_j \). Once both processors have completed their search tasks, a master processor compares \(S_i \)’s fingerprint in \(FP_i \) to \(S_j \)’s fingerprint in \(FP_j \). Certification fails because the two fingerprints do not match.

\[\square \]

Given that the software producer provides the list \(Subgraphs \), we must ensure that tampering of the provided Subgraphs does not adversely affect the
partitioning of the script in such a way that it influences the certification results

Theorem 3.2.4. Given a search script Script of a program’s reachability graph and a list Subgraphs that is not accurate with respect to the program’s reachability graph, Algorithm 3.2 either fails or still produces subscripts that cover disjoint regions and, taken together, cover the program’s entire reachability graph.

Proof There are three possible cases of discrepancy between Subgraphs and the reachability graph.

- Subgraphs lists an incorrect size for the subgraph rooted at some state S_i: If Algorithm 3.2 chooses state S_i as the root state of a region, then line 8 of Algorithm 3.2 will fail because the number of transitions in the subscript does not match the size of the subgraph listed in Subgraphs. If Algorithm 3.2 does not choose state S_i as the root state of a region, then the algorithm may choose different partition regions in line 6 than it would have chosen if it had been given correct Subgraphs sizes. Algorithm 3.2 (line 6) uses the sizes in Subgraphs to select the subgraph that partitions the reachability graph into equal-sized subgraphs using a greedy algorithm. If there is a large discrepancy between the provided Subgraphs sizes and the subgraphs’ actual sizes, then, in the worst case, there will be a larger standard deviation in the sizes of the resulting subscripts.

- Subgraphs is missing the entry for a state S_i: Let p_j be the region to be extracted and let S_j be the root state of p_j. If state S_i belongs to p_j, then line 8 of Algorithm 3.2 will fail because the algorithm does not find S_i in Subgraphs when extracting the states within p_j from Subgraphs. If S_i is an ancestor state of S_j, then line 9 of Algorithm 3.2 will fail because the algorithm does not find S_i in Subgraphs when updating
the sizes of S_j’s ancestor states. Otherwise, the algorithm will produce partitions whose sizes have a larger standard deviation, as explained in the previous case.

- **Subgraphs** includes an additional entry S_k: If Algorithm 3.2 chooses S_k as the root state of a subgraph, line 7 of Algorithm 3.2 will fail because the algorithm does not find S_k in Script. Otherwise, the algorithm may choose different partition regions, and there may be a larger standard deviation in the sizes of the resulting subscripts.

3.2.4 Parallel Trustful Certification

The algorithm for partitioning a search script for trustful certification is similar to the algorithm presented in Figure 3.2, but is applied to a trustful Script (which contains no unproductive transitions). The only difference between the algorithms is that the partitioning algorithm for trustful certification removes the productive transitions that span regions (e.g., the transition from S_3 to S_4 in Figure 3.4). Figure 3.6 shows the partitions that we obtain for parallel trustful certification of the sample reachability graph given in Figure 3.3. The regions represent spanning subtrees of the original reachability graph.

Theorem 3.2.5. Given a trustful search script Script of a program’s reachability graph, Algorithm 3.2 divides Script into k subscripts such that each resulting subscript represents a perfect search of a subgraph of the reachability graph.

Proof We show that (1) each extracted subscript Script_j records a perfect search and (2) the Script_k that remains after all of the Script_js have been extracted from Script represents a perfect search.
Let $t_{i,j}$ be a productive transition from state S_i to state S_j (i.e., the first transition in Script that leads to S_j), and let $B_{j,i}$ be a backtrack transition from state S_j back to state S_i. Because Script represents a DFS of the program’s reachability graph, the subscript $Script_j$ between $t_{i,j}$ and $B_{j,i}$ represents a perfect search of all states reachable from S_j.

After the extraction of $Script_j$ from Script (line 7), the source state of $t_{i,j}$, S_i, is the same as the destination state of $B_{j,i}$. Thus, the removal of the sequence does not affect the continuity of the search script, and after the $(k-1)$ iteration of the algorithm, $Script_k$ represents a perfect search.

Theorem 3.2.6. Given a trustful search script $Script$ of a program’s reachability graph, Algorithm 3.2 divides $Script$ into k subscripts such that the resulting subscripts cover all states of the program’s reachability graph.

Proof By construction, Script represents a perfect search of every state of a program’s reachability graph. Each iteration of the partitioning algorithm extracts a search subscript $Script_i$ that corresponds to a leaf subgraph p_i of a program’s reachability graph. The subgraph is rooted at state S_i, it include all states that are reachable from S_i via productive transitions. By Theorem 3.2.5, $Script_i$ is continuous and visits each state in p_i.
When the algorithm terminates, what remains of Script is a search sub-
script Script_k for a kth subgraph. The subgraph is rooted at the program’s
initial state S_1 and includes all of the states that are reachable from S_1 via
productive transitions up to and excluding the root states of the extracted
partition regions. By Theorem 3.2.5, Script_k is continuous and visits each
state in p_k. In this manner, the resulting partitioning covers all states of the
program’s reachability graph.

3.2.5 Implementation and Evaluation

We implemented parallel SCC in Java Pathfinder and refer to the resulting
model checker as JPF-pscc. For convenience, JPF-pscc supports both verifi-
cation and certification modes. In the verification mode, JPF-pscc generates
a search script to be used during certification. In certification mode, JPF-
pscc can be used to partition the search script into k scripts or to model
check the program using one of k scripts to direct its search. At the end of
a certification task, JPF-pscc outputs its FP map. At present, a separate
program is needed to compare the FPs from all certification tasks.

To evaluate the performance of parallel SCC, we used JPF-pscc to parti-
tion each program’s state space into 10, 50 and 100 certification tasks (i.e.,
sub-search scripts). Because the sizes of the resulting scripts are not exactly
equal, we report for each program the time it takes to examine the largest
subscript. To this time we have added (1) the time it takes to partition the
search script and (2) the time it takes to compare all FP maps sequentially.
In practice, the actual time of this latter task would be less because the
search tasks would finish at different rates and FP maps could be compared
against a current master map as tasks complete.

Table 3.3 shows the results for parallel SCC certification and parallel
trustful SCC certification. For each certification method and the number of
subscripts (10, 50, or 100), the column Max task lists the size of the largest
sub-search script for each program; size is reported as a percentage of the
Table 3.3: Results for Parallel SCC Certification

SCC tamper-proof certification

<table>
<thead>
<tr>
<th>Program</th>
<th># subscripts</th>
<th>10</th>
<th>50</th>
<th>100</th>
<th>10</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dining Phil</td>
<td>13%</td>
<td>8</td>
<td>4%</td>
<td>22</td>
<td>2%</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Bounded Buffer</td>
<td>11%</td>
<td>9</td>
<td>4%</td>
<td>25</td>
<td>3%</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Nasa KSU Pipe</td>
<td>12%</td>
<td>8</td>
<td>4%</td>
<td>22</td>
<td>3%</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Nested Monitor</td>
<td>11%</td>
<td>9</td>
<td>5%</td>
<td>18</td>
<td>3%</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Pipeline</td>
<td>12%</td>
<td>8</td>
<td>6%</td>
<td>15</td>
<td>2%</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>RWVSN</td>
<td>11%</td>
<td>9</td>
<td>4%</td>
<td>22</td>
<td>3%</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Replicated Workers</td>
<td>12%</td>
<td>8</td>
<td>5%</td>
<td>18</td>
<td>2%</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Sleeping Barber</td>
<td>10%</td>
<td>10</td>
<td>4%</td>
<td>23</td>
<td>2%</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>11%</td>
<td>9</td>
<td>4%</td>
<td>21</td>
<td>3%</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>

SCC trustful certification

<table>
<thead>
<tr>
<th>Program</th>
<th># subscripts</th>
<th>10</th>
<th>50</th>
<th>100</th>
<th>10</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dining Phil</td>
<td>11%</td>
<td>39</td>
<td>4%</td>
<td>103</td>
<td>3%</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>Bounded Buffer</td>
<td>12%</td>
<td>48</td>
<td>4%</td>
<td>140</td>
<td>2%</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>Nasa KSU Pipe</td>
<td>11%</td>
<td>30</td>
<td>5%</td>
<td>64</td>
<td>3%</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>Nested Monitor</td>
<td>10%</td>
<td>56</td>
<td>4%</td>
<td>136</td>
<td>3%</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>Pipeline</td>
<td>13%</td>
<td>39</td>
<td>5%</td>
<td>96</td>
<td>3%</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>RWVSN</td>
<td>11%</td>
<td>38</td>
<td>5%</td>
<td>80</td>
<td>2%</td>
<td>194</td>
<td></td>
</tr>
<tr>
<td>Replicated Workers</td>
<td>12%</td>
<td>34</td>
<td>4%</td>
<td>100</td>
<td>3%</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Sleeping Barber</td>
<td>11%</td>
<td>31</td>
<td>4%</td>
<td>85</td>
<td>2%</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>Elevator</td>
<td>12%</td>
<td>57</td>
<td>5%</td>
<td>132</td>
<td>4%</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>11%</td>
<td>41</td>
<td>4%</td>
<td>104</td>
<td>3%</td>
<td>165</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.4: Average and Maximum Lengths of Initialization Paths

<table>
<thead>
<tr>
<th># subgraphs</th>
<th>10</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg path</td>
<td>Max path</td>
<td>Avg path</td>
</tr>
<tr>
<td>Program</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dining Phil</td>
<td>11</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>Bounded Buffer</td>
<td>75</td>
<td>615</td>
<td>217</td>
</tr>
<tr>
<td>Nasa KSU Pipe</td>
<td>14</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>Nested Monitor</td>
<td>14</td>
<td>77</td>
<td>24</td>
</tr>
<tr>
<td>Pipeline</td>
<td>12</td>
<td>20</td>
<td>14</td>
</tr>
<tr>
<td>RWVSN</td>
<td>50</td>
<td>495</td>
<td>57</td>
</tr>
<tr>
<td>Replicated Workers</td>
<td>35</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>Sleeping Barber</td>
<td>12</td>
<td>25</td>
<td>17</td>
</tr>
<tr>
<td>Elevator</td>
<td>50</td>
<td>68</td>
<td>71</td>
</tr>
<tr>
<td>Average</td>
<td>31</td>
<td>153</td>
<td>53</td>
</tr>
</tbody>
</table>

size of the full search script. For each certification method and number of subscripts, the column *Speed-up* reports the speed-up in certification time over the time to verify the entire program using unmodified JPF, as reported in Table 3.1.

The speed-up factors reported in Table 3.3 are not simply the product of the speed-up factors reported for nonparallel SCC certification (in Section 3) and the number of parallel processors employed. This is partly because of the time needed to compare \(FP \) maps at the end of certification, and partly because the search tasks vary in size and we report the timings associated with the largest task. Most certification subscripts carry an initialization path prefix, which adds to the size of the script. Table 3.4 reports the average (column *Avg path*) and longest (column *Max path*) initialization paths for the scripts generated for parallel SCC certification for our evaluation programs. Most path lengths are relatively short, and JPF-pscc can explore approximately 1000 transitions per second. The results for the Bounded Buffer program show that the subscripts generated for this program have much longer initialization paths than the other evaluation programs. After
evaluating these results, we noticed that this program has a deeper reachability graph compared to the other programs and thus, several subgraphs end up having long initialization paths. The lengths of initialization paths for trustful SCC certification are similar.

In SCC certification, the size of the largest subscript determines the optimum number of processors to use during certification. For example, when partitioning the search script of the Dining Philosophers program into 10 subscripts for SCC certification, the size of the largest resulting subscript is 13% of the size of the full script. For this program and partitioning, the optimum number of parallel processors is 10. Taking this into consideration, the results show that the speed up for parallel SCC certification is on average a factor of n, for n processors. Trustful SCC certification can achieve a speed up of up to a factor of $5n$, for n processors.

3.3 Discussion

In this section we discuss some outstanding issues with SCC, including some of our design decisions, restrictions on the properties that can be checked, scalability, requirements on the model checker(s) used, and compatibility with search-space reduction techniques.

3.3.1 Transition- vs. State-Based Certificates

Our SCC search script encodes all of the transitions of a program’s reachability graph. It might seem more efficient to generate, instead, a state-based certificate that encodes the states because (1) there are fewer states than transitions and (2) properties are ultimately checked on states, rather than on transitions. The problem with this approach is that it is less resistant to tampering. A malicious software producer could doctor the certificate, omitting states from the certificate or adding nonexistent states. Thus, the
certifier would still need to explore the program’s reachability graph (and the destination states of all transitions) to check the veracity of the certificate.

3.3.2 Properties

Safety properties play an important role in formal verification because they assert that the system stays within required bounds and does not perform any “wrong” actions [ES96]. SCC can be used to certify invariants and program assertions, and can also check for deadlocks. For example, an interesting invariant for a safety critical system that could be checked with SCC would be:

\[
safety_switch_on \rightarrow \text{system_off}
\]

Because the search script encodes all transitions of a program’s reachability graph, SCC can also be used to check invariants over consecutive states, such as the property

\[(x = 5) \rightarrow next(x = 8)\]

which states that if the value of \(x\) is 5, then in the next state its value will be 8. Even when certification is parallelized, each SCC search task is responsible for covering a set of contiguous states and all of their outgoing transitions. Thus, every pair of consecutive states is captured in a search script, making it possible to certify invariants over consecutive states. In contrast, trustful SCC does not cover all transitions, so it does not cover all pairs of consecutive states. Thus, trustful SCC can soundly certify only state properties.

3.3.3 Scalability

A number of factors affect the scalability of search carrying code. For one, SCC certification is limited to finite-state programs. However, this limitation applies in general to explicit-state model checking. Thus, if a program can be verified using explicit-state model checking, then it can be verified and
certified using SCC. If the software producer uses abstractions to produce a finite state space for SCC verification, then the certifier must use the same abstractions and must check that the abstractions preserve the properties being proven.

Another factor is that the results of our experiments (reported in Table 3.3) suggest that the benefits of parallelization diminish as we increase the number of subscripts we divide an SCC script into. Our partitioning algorithm does not partition a script into subscripts of exactly equal size, plus the resulting subscripts are prefaced by initialization paths of varying lengths. As such, the speed up in certification time is bounded by the amount of time it takes to certify the largest subscript. In the worst cases, when a script is partitioned into 50 or 100 subscripts, the largest subscript is 2 to 3 times the size that would be expected if the subscripts were truly equal sized. We do not know whether the observed diminishing of returns is due to the small sizes of the programs in our test suite, or is inherent to our approach. More experiments on larger programs are needed to answer this question.

A more serious issue is the size of the search script that the software producer provides, likely over a network, to the certifier. The size of a compressed script, in number of bytes, is on the order of the number of states in the program’s state space — which could be very large in the worst case, where the program’s state space is at the limit of what can be model checked. In this thesis, we assign the responsibility of partitioning the script to the certifier, on the assumption that she knows how many processors are available and thus knows how many subscripts to create. However, in cases where the script is large, it may be prudent for the software producer to partition the search script. This would certainly be the case if it turns out that there is a limit to how evenly the script can be partitioned into subscripts, as discussed above. When the producer partitions the search script, then the certifier’s model checker must ensure that it has received the collection of all states and transitions in the reachability graph. For this, one master processor
must keep track of each state processed on each processor and ensure that if a transition leads to a state that belongs to another region then that state is indeed processed by another processor.

3.3.4 Parallel Model Checking

One of the main challenges of traditional parallel model checking is to evenly distribute the work among parallel processors. In most techniques, the program’s state space is partitioned in advance (e.g., based on hash values of state IDs or fingerprints); thus, during model checking, states must often be transferred to their assigned processors for processing [BR01a, KM05, NC97, SD97].

On a distributed memory architecture, this strategy results in substantial communication overhead. On a shared memory architecture, communication among processors is negligible, but the processors must synchronize their access to shared variables: processors must be able to deposit into each other’s worklist of unprocessed states, and they share a hash-table of state fingerprints. Interestingly, some researchers report [BBR07, IB06] that, beyond an optimal number of processors, the search time starts to increase with the number of additional processors because the synchronization overhead dominates any benefit from parallelization. Parallelized SCC does not suffer from this overhead because the reachability graph is partitioned in advance in such a way that no communication or synchronization among processors is necessary. Each processor works independently of others, and shares information with an administrator process (which collects and compares fingerprint maps) only at the end of its search task.

Another problem with traditional approaches is that workload balance does not depend solely on an even distribution of the state space. Processors are utilized only if they have states to process. If a program’s reachability graph is spindly rather than bushy, then progress is hampered by the slow production of new states, and processors sit idle waiting for the output of
other processors. In contrast, parallelized SCC partitions the search script based on the shape of the reachability graph, and assigns whole subgraphs, not single states, to processors. All scripts can be processed in parallel and no processor waits for the output of another processor.

3.3.5 Using Different Model Checkers

In our work, we augmented JPF for use in both SCC verification and SCC certification. Currently, the software producer and certifier must use the same model checker to use SCC. This might seem like a restriction, however, certification is a confirmation that verification was performed and that it was thorough. Certification is not a reconfirmation that the advertised properties hold. As such, it is reasonable to expect the certifier to use the same model checker as the software producer because the certifier is simply checking that verification is complete.

3.3.6 Model-Dependent Reduction Techniques

A key question of any new model checking technique is whether and how it works in conjunction with existing search-reduction techniques, especially those described in Chapter 2. We discuss model-dependent reduction techniques in this section and property-dependent techniques in the next section.

We expect SCC to complement model-dependent reduction techniques, as long as (1) the reduction techniques are applied first so that the search script encodes the reduced reachability graph, and (2) the verifier and certifier model checkers agree on the abstractions applied. We consider only automatic reduction techniques; techniques that rely on user-input (e.g., abstraction functions [GS97]) are not safe, because a malicious software producer could specify an unsound abstraction.

Symmetry Reduction [ES96] reduces the size of the state space by exploiting symmetries among states. There are a number of different techniques
for identifying symmetries [MDC06], but the ultimate effect with respect to JPF model checking is that symmetric states are assigned the same fingerprint.

In SCC verification, symmetries result in a reduced reachability graph being explored, and a smaller search script being generated. If the same model checker is used during SCC certification, then it identifies the same symmetries, symmetric states are assigned the same fingerprint, and the shape of the reduced reachability graph matches the search script. If the software producer and consumer use different model checkers, the checkers must implement the same reductions.

Currently, it is not realistic to expect different model checkers to use the exact same symmetry reductions. But if model checkers were parameterized with respect to their state-space reduction techniques and algorithms, then requiring both model checkers to use the same symmetry reductions would not be a limitation. In fact, there has already been some work [DHJ01, HDPR02] in parameterizing model checkers with respect to their state-space reduction strategies.

Partial Order Reduction (POR) [God96] tries to identify independent transitions and execute only one of the possible interleavings. During SCC verification, the model checker detects independent transitions, explores only one interleaving, and records only that interleaving in the search script. The entire interleaving is recorded as a single transition in the search script (i.e., \(t_i \) is one complete interleaving). If the same model checker is used during SCC certification, then the certifier model checker identifies the same sets of independent transitions, chooses the same interleavings (as long as decisions are deterministic), and disables the other interleavings. As a result, the POR interleavings chosen during certification match the search script.

Because a POR interleaving is treated as a single, long transition, it is never partitioned among different subscripts and during certification, an entire interleaving is assigned to a single processor. Thus, POR does not
interfere with SCC, even after parallelization.

If different model checkers are used for SCC verification and SCC certification, they must both use the same POR heuristics to (1) determine which transitions are independent, (2) select which interleaving to explore, and (3) check that the interleaving reduction is correct. It might seem unrealistic for both model checkers to use the same heuristics, but we believe a parameterized approach to state-space reductions, as described above, could address this limitation.

3.3.7 Property-Specific Reduction Techniques

The goal of property-specific reduction techniques is to reduce the search space (and search script) to those program states that are relevant to the property being checked. Such reductions are problematic for SCC because the software producer does not know in advance which properties are of interest to the certifier and thus cannot apply the appropriate reductions. Moreover, the certifier cannot simply apply the reduction techniques herself because the resulting reduced program would no longer correspond to the supplied search script. Such techniques can only be useful if they can be applied to the search script rather than to the program.

Consider program slicing [Wei81], which is a commonly used property-specific reduction technique that reduces the size of the search space by ignoring program statements that are not relevant for a given property. Traditional program slicing cannot be used in conjunction with SCC for the reasons given above, but it might be possible for the certifier to slice the search script instead, given that the script’s transition instructions (which are bytecodes) literally encode the program statements. The certifier model checker would need to be able to determine from a transition instruction in the search script whether the transition is relevant to the property being checked. It would also need to perform a definition-use analysis on the script,
which is a much larger artifact to analyze than the original program2. Lastly, not all irrelevant transitions can be removed from the search script because the sliced script must still be a valid path in the program’s reachability graph.

We are still investigating the problem of script slicing. Although it seems to be possible, it is not clear whether the resulting reductions will be significant. In general, the savings achieved by program slicing cannot be predicted in advance, and it is possible that slicing provides no significant savings at all — especially when checking a large collection of varied properties, such as during certification. This is not the case for SCC — we can predict the achievable time savings accurately based on (1) the number of transitions that were eliminated during script slicing and (2) the number of processors available for parallel certification.

3.4 Summary

In this chapter, we presented search carrying code (SCC) as a technique to certify software from an untrusted source. The search script in SCC represents a sound and complete exploration of the reachability graph of the program to be certified, and can be used to speed up certification and perform veracity checks of the provided search script.

The time savings of basic SCC are small, but the ideas of SCC can be applied to parallel model checking. Using a combination of SCC and parallel model checking, we were able to speed up the certification of model-checking results by a factor of up to \(n\) for \(n\) parallel processors for tamper-proof certification, and by a factor of up to \(5n\) for \(n\) parallel processors for trustful certification.

\[\text{2The analysis would be linear in the size of the script.}\]
Chapter 4

State-Space Caching

4.1 Introduction

In the previous chapter, we introduced SCC, a technique for certifying a program that had been verified using software model checking. SCC requires that the software producer’s model checker perform an exhaustive search of the program’s state space and create for certification a search script that represents a search of the program’s entire reachability graph. However, one of the main obstacles to model checking is the state-explosion problem \cite{CGJ+01}: the size of a program’s state space grows exponentially with the number of variables and components in the program. As a result, an exhaustive search may not be possible because the model checker runs out of memory as it keeps track of all visited states.

There exist numerous approaches to combat the state-explosion problem (see Chapter 2), and one of these methods is state-space caching. The goal of state-space caching is to perform an exhaustive search of the state space but to use less memory than a traditional model-checking search uses. Instead of keeping track of all of the visited states, the model checker stores in a cache only a subset of visited states. When the cache becomes full, the model checker replaces states in the cache with newly discovered states. Which
state to replace next depends on the cache-replacement policy that the model checker uses. There exist several cache-replacement policies including age-based caching [Hol87], stratified caching [Gel04], hit-based caching [Hol87] and depth-based caching [Hol87]. For a detailed description of these replacement policies, refer to Chapter 2.

If a state S_i is removed from the cache and is subsequently revisited, it is deemed a new state and, as a result, the model checker re-explores S_i and any of S_i’s descendant states that have also been removed from the cache. Thus, although state-space caching reduces memory requirements by limiting the cache size, it increases search time because states may be visited and tested more than once.

State-space caching is useful in SCC when an exhaustive verification of a program’s state space is not possible given the available memory resources. In such situations, the software producer’s model checker can use state-space caching to achieve a complete search of the program’s state space and output a search script that covers the program’s entire reachability graph. In general, a depth-first search of an acyclic state space is guaranteed to terminate with an exhaustive search when the model checker uses state-space caching. For cyclic state space, the model checker must detect a cycle in order for the search to terminate. We describe these issues in this chapter. Of course, because the search time could increase significantly, the verifier’s model checker might still not achieve an exhaustive coverage within a reasonable period of time.

In this chapter, we introduce a novel cache-replacement policy, called cost-based caching. Cost-based caching replaces states in the cache based on the potential cost of re-exploring the state space that is reachable from the state to be removed. Our evaluation of cost-based caching shows that it achieves exhaustive coverage of a program’s state space in a shorter amount of time than existing cache-replacement policies and thus is more likely to terminate within a given time frame.
The downside of state-space caching is that the model checker may explore sections of the state space more than once. A literal recording of the resulting search produces a search script in which states and transitions are repeatedly explored. In Chapter 4.3, we describe how to detect and remove replicated parts of a search script before SCC certification. As a result, the time it takes to perform SCC certification using a script created by a model checker that employed state-space caching is the same as the time it would take to perform a regular SCC certification.

Finally, in Chapter 4.4, we describe a memory-optimization technique for SCC certification in which the certifier’s model checker removes any entry from the FP map if it is known that the state will not be revisited during the model-checking search. Removing such entries reduces the memory needs of SCC certification by up to 89%.

4.2 Cost-Based Caching

In general, for any state-space caching technique, when the cache is full then the model checker must remove states in the cache to store newly-discovered states. Due to eviction, some replaced states might need to be revisited later in the search, causing re-exploration of the replaced states and their descendant states. The goal of current cache-replacement policies is to identify states in the cache that have a low chance of being revisited and to select them for replacement when new states are discovered. For example, one current approach employs an age-based replacement policy, in which the states chosen for replacement are those that have been in the cache the longest. However, consider a state S_1 that has been in the cache for the longest period of time and that has many descendant states. It might be unwise to replace S_1 because if its descendant states are also removed from the cache and if S_1 is revisited, then all of its descendant states will also be re-explored.
Existing cache-replacement policies for state-space caching do not consider the “cost” of removing from the cache a state that might be later revisited. Informally, the cost of replacing a state S_i is the work that the model checker must redo if S_i is revisited. We propose a cost-based replacement policy that selects for replacement a state S_i based on the cost, in the worst case, of revisiting S_i later in the search. The worst-case cost of replacing a state is the maximum number of states that would have to be re-explored if S_i were later revisited. In practice, the actual cost may be lower if, when S_i is revisited, some of its descendant states are in the cache and thus need not be re-explored.

4.2.1 Cost-Based Caching Algorithm

Cost-based caching is similar to other caching techniques in that it performs a depth-first search of the program’s reachability graph and maintains (1) a stack of partially explored states and (2) a cache of visited states. The replacement policy selects for removal from the cache the state with the lowest cost. Note that the cost of replacing S_i is not necessarily the number of S_i’s descendant states. For example, consider the sample reachability graph in Figure 4.1, which shows in parentheses below each state identifier the cost of replacing that state. The cost of replacing state S_3 is 3 because the model checker will re-explore a maximum of three states (S_3, S_5, S_6) if S_3 is revisited. In this case, the cost of replacing S_3 is equal to the number of its descendant states plus 1. However, consider state S_2 in the same reachability graph. The cost of replacing S_2 is 7 even though it has only 4 descendant states. Because S_2 is part of a directed acyclic graph (DAG), some of its descendant states (S_5, S_6) might be visited more than once if they are not found in the cache either time they are visited during the re-exploration of the states reachable from S_2. Thus, they are counted more than once when calculating the cost of replacing S_2.

Definition 4.2.1. Given a program whose reachability graph is finite and
contains no strongly connected components, the cost of a leaf state in the reachability graph (i.e., a state with no descendant states) is 1. The cost of a non-leaf state is the sum of the costs of its descendant states plus 1.

Figure 4.1: Sample reachability graph with each state’s associated cost in parentheses

Algorithm 4.1 shows an overview of our cost-based cache-replacement strategy. Throughout the search, the algorithm maintains two data structures: Stack, which is a work list of partially explored states, and Cache, which is a cache of visited states. The procedure cost-based-search starts at the program’s initial state S_0 and continues while the Stack is not empty (line 8). In each iteration of the loop, the algorithm examines the state at the top of the stack (current). If state current has unexplored transitions, then the model checker executes one transition and constructs the resulting program state next (line 11). If state next is found in the Cache (line 12), then next is known to have already been explored and tested, and the search continues with another of current’s unexplored transitions. Otherwise, next
Algorithm 4.1: Cost-based caching algorithm

Input: Stack – Worklist of partially explored states
Input: Cache – List of visited states
Input: S0 – Initial state of the program to be searched
cost-based-search{
 add(S0, Cache)
push(S0) onto Stack
 while(Stack not empty){
 current = top state on Stack
 if(current has an unexplored transition t){
 next = succ(current, t)
 if(next in Cache){ // cache hit
 current.cost += next.cost
 } else{
 next.cost = 1
 add(next, Cache)
push(next) onto Stack
 }
 } else{ //no more unexplored transitions
 if(current not the program root state){
 current.parent.cost += current.cost
 } pop(current) from Stack
 }
 } add(next, Cache){
 if(Cache is full){
 R = set of fully explored states
 Si = state in R with minimum cost
 remove(Si, Cache)
 } insert(next) into Cache
}
is deemed an unvisited state: it is added to the Cache using the procedure add (line 16) and is also pushed onto the top of the Stack (line 17). As each state current is fully explored (line 20), it is popped off the Stack and the algorithm continues with the next partially explored state at the top of the Stack.

For each state in the cache, the algorithm keeps a variable cost whose value represents a state’s cost as calculated so far in the search. Leaf states are assigned a cost of 1. For any other state, the cost is the sum of the costs of its descendant states plus 1. Algorithm 4.1 updates a state’s cost under three conditions:

- When a state next is first visited (line 15), then the model checker initializes its cost to 1.
- When a state next is revisited (line 12), then the model checker adds the value of next’s cost to the cost value of its parent state (current).
- When a state’s exploration finishes (i.e., it has no unexplored outgoing transition) (line 22), then the value of the state’s cost is added to the cost of its parent state. The parent state is the previous state on the Stack.

The procedure add (line 29) selects the state to be removed from the Cache, on the basis of our cost-based replacement policy. If the cache is full, then procedure add removes, from among all fully-explored states in the cache, the state with the smallest cost and inserts state next into the Cache. If more than one state have the same cost value, then add randomly chooses one for replacement. The procedure add selects among fully-explored states only, because the cost of a partially explored state is still being determined. We discuss the requirement that R must be non-empty in Chapter 4.2.5. For a fully-explored state S_i, its cost correctly represents the maximum number of states that must be re-explored if S_i is revisited.
Theorem 4.2.1. Given a program whose reachability graph is finite and contains no strongly connected components, Algorithm 4.1 correctly calculates the cost of each state in the reachability graph.

Proof We prove this theorem by induction: a newly visited state is assigned the cost of 1 (line 15) and its cost does not change if it has no descendant states. Thus, leaf states are correctly assigned the cost of 1.

For a non-leaf state S_i, its cost can change when (1) S_i is visited for the first time, (2) when S_i leads to a descendant state that is found in the Cache, and (3) when S_i leads to a descendant state that is not found in the Cache.

When S_i is visited for the first time, its cost is set to 1 (line 15). Let us assume that the descendant states of S_i have the correct cost values. A state S_i’s cost value will be correctly updated with the cost values of its descendant states: if S_i’s descendant state S_d is found in the Cache, we know that its value of cost is final. If the value of cost were not final, then the search is still exploring the state space reachable from S_d. If this search is now revisiting S_d, then there must be a strongly connected component in the reachability graph. But the reachability graph contains no strongly connected components. Thus, S_d’s cost is added to S_i’s cost (line 13); if S_d is not found in the Cache, then S_d is deemed an unvisited state and its cost is added to the cost of S_i, once S_d has been fully explored (line 22). Thus, all states of the reachability graph will be assigned a cost value that corresponds to the definition of cost.

4.2.2 State Spaces with Strongly Connected Components

In general, strongly connected components in a reachability graph pose no problem for an explicit-state search because the model checker keeps track of all visited states and detects when a program state is revisited. When state-space caching is used, however, the search may re-explore states that
are not found in the cache. If states that are re-explored are part of a strongly connected component in the reachability graph, then it is possible for the search to continually revisit states and continually not find them in the cache.

The method that other caching techniques use to guarantee termination of a search is to keep a state in the Cache until the state is fully explored and removed from the Stack. Algorithm 4.1 already implements this strategy: procedure add replaces only fully-explored states (i.e., states no longer on the Stack) whose cost values have been fully determined. Thus, Algorithm 4.1 eventually terminates, and the search covers the program’s entire state space.

Definition 4.2.2. A **strongly connected component** in the reachability graph is a set of states \(C \) such that there exists a path between any two states in \(C \).

Theorem 4.2.2. Given a program that has a finite reachability graph whose depth is smaller than the available memory, Algorithm 4.1 terminates having searched the entire reachability graph.

Proof It has been shown [God97, Hol88, DH82] that a stacked search (a search that keeps a stack as a worklist of partially explored states) of a program whose reachability graph is finite and contains no strongly connected components is guaranteed to terminate and to cover the program’s entire state space if the depth of the reachability graph is smaller than the available memory. Thus, we only have to show that our algorithm is guaranteed to terminate if the reachability graph is finite and has strongly connected components.

Let \(C \) be a set of states that form a strongly connected component in the reachability graph, and let \(S_i \) be the first state in \(C \) that is revisited. We have to show that the algorithm does not re-explore any state in \(C \) when \(S_i \) is revisited.
State \(S_i \) is guaranteed to be in the *Stack* because the strongly connected component from \(S_i \) to \(S_i \) represents part of the exploration of a transition emanating from \(S_i \). This exploration has not yet finished and thus \(S_i \) is still in the *Stack*. Because \(S_i \) is in the *Stack*, it is also guaranteed to be in the *Cache* (line 31). Thus, the model checker will deem \(S_i \) as visited and the search will backtrack without re-exploring the states in \(C \).

\[\square \]

For state spaces that have strongly connected components, we cannot use the Definition 4.2.1 for a state’s cost value because states in a strongly connected component can all be reached from each other so each state in the strongly connected component can reach the same set of states of the reachability graph. As a result, states in a strongly connected component must share the same cost value.

Definition 4.2.3. Given a program whose reachability graph is finite and contains strongly connected components, the cost of a state \(S_i \) is as follows:

- If \(S_i \) is a leaf state, then the cost of \(S_i \) is 1.

- If \(S_i \) is a non-leaf state and is not part of a strongly connected component, then the cost of \(S_i \) is the sum of the costs of its descendant states plus 1.

- If \(S_i \) is part of a strongly connected component \(C \), then the cost of \(S_i \) is the number of states in \(C \) plus the sum of the costs of all of the descendant states not in \(C \) of the states in \(C \).

Unfortunately, Algorithm 4.1 does not accurately compute state costs when the reachability graph contains strongly connected components. Consider the sample reachability graph in Figure 4.2a. We list in parentheses the cost values that Algorithm 4.1 would compute for each state in this graph. In this simple example, the state sequence \(S2, S3, S4, S5 \) forms a strongly connected
component in the reachability graph. When \(S_2 \) is revisited after the search traverses the strongly connected component, state \(S_2 \) is in the Cache and on the Stack. The cost value of \(S_2 \) when it is revisited is 1, and this cost value is added to the cost value of \(S_5 \) (line 12 of 4.1). The problem is that the cost of \(S_2 \) has not yet been fully computed when its value is propagated to the cost of state \(S_5 \). As a result, the final computed cost of \(S_5 \) is lower than the actual cost. This is true for all states along the strongly connected component\(^1\). As a result, the cost of any state \(S_j \) that reaches states in a strongly connected component \(C \) and is explored after the states in \(C \) have been explored would also have an under-count. Figure 4.2b shows the actual cost values for each state of the same reachability graph.

![Sample reachability graphs with cycles](image)

Figure 4.2: Sample reachability graphs with cycles. Values in parentheses show each state’s cost value.

We could modify Algorithm 4.1 to wait until all states in a strongly connected component \(C \) are fully explored before updating each state’s cost value. That means that all states in \(C \) would have to stay in the Cache until the last state in \(C \) is fully explored. As a result, many states in the cache

\(^1\)The exception is the first state \(S_i \) that is visited (and revisited) in a strongly connected component, which does have the correct cost value (minus 1) because the cost of each individual state in the strongly connected component is correctly propagated back to \(S_i \).
would not be available for replacement which would make the replacement policy less effective. We chose not to implement this alternate approach to computing the costs of states and accept the inherent inaccuracy of cost values that arise in state spaces with strongly connected components. Despite the inaccuracies, we show empirically that cost-based caching is effective.

4.2.3 Implementation

We implemented our cost-based replacement policy in Java Pathfinder (JPF), by modifying JPF’s depth-first search implementation. We refer to the resulting model checker as \texttt{JPF-cache}.

\texttt{JPF-cache} uses a stack to keep track of partially-explored states and a cache to keep track of visited states. For efficiency, the cache is implemented using two data structures: a hash table that stores the fingerprints of visited states (as before) and a list that stores cost values for each state in the cache. Corresponding fingerprint and cost values have pointers to each other. The list of cost values is divided into two sections:

- A priority queue \(Q \) which holds the cost values of fully-explored states, which are candidates for replacement. The model checker keeps \(Q \) sorted throughout the search, such that the first element always holds the smallest cost value.

- A list \(L \) that holds the cost values of partially-explored states, which are currently on the search stack. List \(L \) can remain unsorted.

When \texttt{JPF-cache} visits a new state \(S_i \) and the cache is full, it removes the first element of \(Q \) and its corresponding fingerprint from the cache’s hash-table. The model checker then inserts \(S_i \) at the top of the search stack, inserts \(S_i \)’s fingerprint into the cache’s hash-table, and adds \(S_i \)’s cost value (which is initially 1) to \(L \). The model checker creates pointers that relate the fingerprint and cost data elements. Once all of \(S_i \)’s transitions have been
explored and S_i is removed from the stack, S_i’s cost value is transferred from L to Q, and Q is re-sorted with the new element.

Performance

Only the tasks associated with updating cost values and adding and removing them from the cache incur a performance overhead. Adding a newly visited state (with cost value 1) to L takes constant time because list L is unsorted. As long as the cost value remains in L, it can be located in constant time (by following the pointer from the state’s entry in the hash table) and updated in constant time. When a state is fully-explored, its cost value must be transferred from L to Q and Q must be re-sorted. The time for this operation is $O(\log S)$, for a priority queue Q with S states. Once a state has been added to Q, its cost value no longer changes because it is fully explored.

4.2.4 Experiments and Results

In our experiments, we evaluated how well our cost-based replacement strategy performs, compared to other types of replacement strategies. This evaluation assesses whether cost-based caching enables a model-checking search to run to completion in cases where there was insufficient memory for a traditional non-cached model-checking search.

In these experiments, we compared the performance for JPF-cache to implementations of cost-based (column *Cost*), random (column *Random*), age-based (column *Age*), hit-based (column *Hits*), stratified (column *Stratified*), and depth-based (column *Depth*) caching in JPF. We evaluated JPF-cache and the implementations of the other five caching techniques on our nine evaluation programs as described in Chapter 3.1.4. The reachability graphs of all our evaluation programs contained strongly connected components.

To simulate different cache sizes, we imposed an artificial memory limit on the size of the cache, limiting it to 15%, 25%, 50%, 75%, and 95% of the total
state-space size of each program. For each program, caching technique, and cache size, we allowed the model-checking search to run until it terminated (with full state-space coverage) or until its execution time exceeded 25 times the amount of time needed for a traditional non-cached search. We measured performance in terms of the time (CPU time) that the model checker takes to achieve full coverage. We repeated each experiment 10 times and report the average results.

Table 4.1 and Table 4.2 show the results for our experiments, with each table reporting the results for a different cache size. There are two columns of data for each caching method. The first column (Time) reports the time to search each program as a factor of the time needed for a non-cached, traditional model-checking search. A value of TO means that the search did not terminate in its allocated time. The second column (RW) reports for each program the amount of redundant work performed by the model checker; this number represents the total number of transitions explored as a factor of the total number of transitions in the program’s reachability graph. We report a value of N/A when the search timed out, i.e., for TO values. For example, when model checking the Dining Philosophers program with a state space cache that can store only 25% of the program’s states using the random cache-replacement policy, the search takes approximately 14 times longer than a non-cached search of that program, and explores about 13 times more transitions than are in the program’s reachability graph.

The results show that cost-based caching is up to 25% faster than the other five caching techniques (except in one case) for the cache sizes of 15%, 25%, and 50%. Cost-based caching is as fast or faster than the other five caching techniques for the remaining two cache sizes. The advantage of cost-based caching seems to improve as the cache size decreases. Random caching almost always performs second best on all programs and cache sizes. We did not observe any specific pattern among the performances of the other caching methods.
Table 4.1: Comparison of Cost-Based Caching to Other Caching Techniques at Cache Sizes of 15%, 25% and 50%

<table>
<thead>
<tr>
<th>Program</th>
<th>15% Cache Size</th>
<th>25% Cache Size</th>
<th>50% Cache Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost</td>
<td>Random</td>
<td>Age</td>
</tr>
<tr>
<td>Dining Philosophers</td>
<td>23</td>
<td>21</td>
<td>TO N/A</td>
</tr>
</tbody>
</table>
Table 4.2: Comparison of Cost-Based Caching to Other Caching Techniques at Cache Sizes of 75% and 95%

<table>
<thead>
<tr>
<th>Program</th>
<th>75% Cache Size</th>
<th>95% Cache Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost</td>
<td>Random</td>
</tr>
<tr>
<td></td>
<td>Time</td>
<td>RW</td>
</tr>
<tr>
<td>Dining Philosophers</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Bounded Buffer</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Nested Monitor</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Nasa KSU Pipeline</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Pipeline</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>RWVSN</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Replicated Workers</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Sleeping Barber</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Elevator</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

86
Analysis of the amount of redundant work done because of caching also shows an interesting pattern. In most cases, the factor of increase in execution time is comparable to the factor of the amount of redundant work done, but for cost-based caching, the redundant-work factor is considerably lower than the additional-time factor. This suggests that, for cost-based caching, considerable search time is spent on maintaining the priority queue.

4.2.5 Discussion of Cost-Based Caching

In this section, we discuss some issues regarding cost-based caching.

Ratio of Transitions to States and Applicability of Caching

The ratio of the number of incoming transitions to the number of states in a program’s reachability graph can play an important role in the performance of any state-space caching technique. A high ratio means that many states have several incoming transitions and thus will be visited several times during the search. Therefore, there is a higher chance that large parts of the state space could be repeatedly explored. When the ratio is close to 1 (i.e., low), then most states will be visited only once and the running time of the search is linear in the number of transitions.

Many works on caching assume that the reachability graph has a low ratio of the number of transitions to the number of states. In [Gel04, Hol87], for example, most of the evaluation programs have a transition-to-state ratio of 1.2 to 2.1. The programs in our evaluation suite are taken from the model-checking literature and the transition-to-state ratio is much higher: the column (T/S) in Table 3.1 shows that this ratio for our evaluation programs ranges between 4.1 and 8.4. Thus, state-space caching techniques need to be optimized for and evaluated on programs that have high transition-to-state ratios.
Memory Requirements

The memory overhead of cost-based caching is similar to that of other state-space caching techniques. In cost-based caching, an additional count variable is maintained for each state in the cache. The memory overhead of other caching techniques is similar as each method requires, for each state in the cache, the state’s fingerprint plus some additional piece of information (e.g., the number of hits to a state, the age of a state, the depth of a state in the reachability graph) that is used in the implementation of the cache-replacement policy. Only the random-replacement policy does not require any additional data.

One of the requirements of any cache-based search is that there be enough memory available to hold the search stack (i.e., the worklist of partially-explored states). Otherwise, the search may terminate prematurely, without achieving full state-space coverage if states in the stack must be replaced, or there exist no fully explored states in the cache for replacement. It might be necessary to swap parts of the stack between the hard disk and main memory, or to grow and shrink the cache size dynamically to accommodate a large stack. This topic is beyond the scope of this thesis.

Combining SCC and State-Space Caching

Remember that during SCC verification, the model checker assigns an integer state ID to each newly discovered state. State IDs start at 0 and are incremented by one each time a new state is reached. This numbering scheme does not work if the producer’s model checker uses state-space caching because each revisited state that has been removed from the cache is considered to be a new state and is assigned a new ID. An SCC search script that records state IDs cannot be used to check the veracity of the search script, because the same state might have been assigned two different IDs. Thus, SCC verification with state-space caching records states’ fingerprints rather than state IDs. The software producer’s model checker then performs
some post-processing of the search script, replacing fingerprints with state IDs. The script is scanned, and each fingerprint is replaced by a corresponding state ID, such that monotonically increasing state IDs are assigned to newly encountered fingerprints. The complexity of this post-processing step is $O(|\text{Script}| \times \log S)$, where $|\text{Script}|$ is the size of the script and S is the number of unique fingerprints in the script (which is equal to the number of states). The memory requirements of this process is $O(S)$ for S states in the program’s state space. The software producer might need to use memory optimization techniques for this step if not enough memory is available. However, since this process is done after the model checking search, there might be additional memory available that was occupied by the model checking search stack.

4.3 Eliminating Duplicate Transitions

When state-space caching is used during SCC verification, the search script might include multiple occurrences of the same transitions because parts of the state space might be re-explored. Consider the sample reachability graph in Figure 4.3. The search script of this reachability graph produced by an SCC verification search without state-space caching would be as follows:

| Trans instr: | t_1 t_1 t_1 B B t_2 B B t_2 t_1 B B |
| State ID: | S1 S2 S3 S4 S5 S4 S3 S6 S3 S2 S1 S7 S3 S7 S1 |

As an extreme example of state-space caching, suppose that the model checker caches only one state at a time, always replacing the state in the cache immediately with the next visited state. Such a model checker would output the following search script for the same reachability graph:

| Trans instr: | t_1 t_1 t_1 B B t_2 B B t_2 t_1 t_1 B B t_2 B B |
| State ID: | S1 S2 S3 S4 S5 S4 S3 S6 S3 S2 S1 S7 S3 S4 S5 S4 S3 S6 S3 S7 S1 |

89
The gray-colored cells reflect duplicate transitions and backtrack commands that the software producer’s model checker executes as a result of state-space caching. If such a script is submitted for SCC certification, the certifier’s model checker would follow the instructions in the search script and perform the same redundant work that was performed during verification. To speed up certification, these duplicate transitions should be removed from the search script.

4.3.1 Eliminating Duplicate Transitions

In the following, we describe an algorithm that identifies and removes duplicate transitions from an SCC search script, such that the resulting script represents a continuous search of the entire reachability graph.

Our algorithm is based on the observation that any sequence of transitions that represents the re-exploration of a state S_j and some (or all) of its descendant states will have the following form2:

2^2 A productive exploration of S_j would also have this form.
\[t_{i,j} - t_{j,k} - ... - B_{x,j} - B_{j,i} \] (4.1)

where

- \(t_{i,j} \) represents a \textit{previously-unexplored} transition from state \(S_i \) to an already-visited state \(S_j \);
- \(t_{j,k} \) represents a \textit{previously-explored} transition from state \(S_j \) to one of state \(S_j \)'s child states, \(S_k \);
- \(B_{x,j} \) represents the backtrack transition from the last fully-explored child state of state \(S_j \) back to state \(S_j \);
- \(B_{j,i} \) represents the backtrack transition to state \(S_j \)'s parent state.

The goal of our algorithm is to remove from the search script the subsequences \(t_{j,k} - ... - B_{x,j} \) that record a re-exploration of state \(S_j \) and its descendants, leaving the transitions \(t_{i,j} - B_{j,i} \), which are the transition to the already-visited state \(S_j \) and the backtrack transition back to the parent state of \(S_j \). For example, given the reachability graph in Figure 4.3, our algorithm identifies the following sequence which represents revisiting \(S_j \), re-exploring \(S_j \) and all its descendant states, and finally backtracking to \(S_j \)'s parent state \(S_i \):

\[t_{s_7,s_3} - t_{s_3,s_4} - t_{s_4,s_5} - B_{s_5,s_4} - B_{s_4,s_3} - t_{s_4,s_6} - B_{s_6,s_3} - B_{s_3,s_7} \]

The algorithm then removes the sequence that represents exploring \(S_j \) and its descendant states:

\[t_{s_4,s_4} - t_{s_4,s_5} - B_{s_5,s_4} - B_{s_4,s_3} - t_{s_3,s_6} - B_{s_6,s_3} \]
Algorithm 4.2: Algorithm for removing duplicate transitions from the search script

1	Input: Script – Search script of the program to be certified
2	Scan Script from start to end
3	For each transition $t_{j,k}$ in Script{
4	if $t_{j,k}$ has been previously scanned{
5	remove $t_{j,k}$ and all transitions up to, but not including,
6	first backtrack from S_j to a state whose ID is less than j
7	}
8	}

The pseudo-code of our algorithm is shown in Algorithm 4.2. The model checker scans the script from start to end and keeps track of the transitions scanned. If a duplicate transition $t_{j,k}$ is discovered, then the model checker removes $t_{j,k}$ and all transitions in the script up to but not including the backtrack transition from S_j.

Theorem 4.3.1. Given a search script that was obtained from an SCC verification search that used state-space caching, Algorithm 4.2 correctly removes duplicate transitions such that the resulting script does not contain any duplicate transitions and represents a depth-first search of the entire reachability graph.

Proof Algorithm 4.2 removes only duplicate transitions. Consider line 6 of Algorithm 4.2, which removes a subsequence $t_{j,k}, \ldots, B_{k,j}$. The search script records a DFS of the program’s state space. Thus, the subsequence being removed starts with duplicate transition $t_{j,k}$, and records the search of a subset of the states reachable from the transition’s source state S_j. Suppose by way of contradiction that this subsequence contains a transition $t_{l,m}$ that is not a duplicate transition. Then the source state of $t_{l,m}$, state S_l, is not fully explored. However, state S_l is reachable from state S_j. State S_j has been fully explored: if $t_{j,k}$ is a duplicate transition, then its source state was previously fully explored, removed from the Cache, and subsequently revisited. If S_j was fully explored, then S_l was fully explored.
When Algorithm 4.2 terminates, the resulting script is continuous because Algorithm 4.2 removes only subsequences of the form \(t_{j,k}, \ldots, B_{k,j} \). The source state of \(t_{j,k}, S_j \) is the same as the destination state of \(B_{k,j} \). Thus, the removal of the sequence does not affect the continuity of the search script.

4.3.2 Implementation and Evaluation

We implemented the above duplicate-transition-elimination algorithm in JPF-cache (i.e., the implementation of cost-based caching in JPF) and refer to the resulting model checker as JPF-cache-rem. At the end of SCC verification, JPF-cache-rem scans the script from start to end and keeps track of already-scanned transitions. The model checker maintains an array \(\text{trans} \) of linked lists and stores at index \(i \) all transitions that emanate from state \(S_i \). When a new transition \(t_{i,j} \) is scanned, the model checker traverses the list of transitions stored at \(\text{trans}[i] \) to determine whether \(t_{i,j} \) is a duplicate transition.

The running time of the algorithm is \(O(k \times |\text{Script}|) \), where \(|\text{Script}| \) is the size of the script in terms of the number of forward and backtrack transitions, and \(k \) is the maximum number of transitions emanating from a state. For JPF-cache-rem, the time to remove duplicate transitions was between 0.5% to 2% of the time of SCC verification with cost-based caching. The memory requirement for Algorithm 4.2 is \(O(T) \) for \(T \) transitions in the reachability graph.

4.4 Memory Optimization for Certification

Caching reduces memory requirements during SCC verification. It is, however, possible that memory usage is also a concern during certification, for example, if the certifier’s model checker has less memory than the software producer’s model checker.
During SCC certification, the certifier’s model checker maintains a mapping FP of state IDs to fingerprints for all states in the state space. The size of FP is comparable to the size of the hash table that the software producer’s model checker keeps. Our method for reducing memory requirements for certification is based on the observation that at any point during certification, the map FP needs to store only the fingerprints for those states that are still to be (re)visited. Recall that the map FP is used to check that all occurrences of a state ID in the search script correspond to the same state with the same fingerprint in the model-checking search. Thus, once a state, with ID S_k, has been visited for the last time (i.e., there are no future references to S_k in the search script), its entry can be safely removed from FP.

4.4.1 Memory Optimization Algorithm

Our goal is to identify when it is safe for the certifier’s model checker to remove a state ID and its associated fingerprint from FP. By removing mappings that are no longer required, we should be able to reduce the memory requirements for SCC certification.

The search script is preprocessed before certification: the search script is scanned backwards from end to start and the first occurrence of each state ID S_k as the destination state of a transition is marked in the script. Since during certification, the model checker processes the script in the opposite direction (from start to end), this preprocessing marks the last transition whose target state is S_k.

This preprocessing of the search script requires almost\(^3\) as much memory as a complete FP. Thus, instead of performing this step during certification, we ask the software producer to mark the script before submitting the script for certification.

Theorem 4.4.1. Asking the software producer to mark the last occurrence

\(^3\)It requires less memory because only state IDs need to be stored.
of each state ID in the search script does not affect the tamper-proofness of certification.

Proof If the software producer’s model checker marks the script such that a state ID \(S_i \) is removed too early from \(FP \), certification will fail because the certifier’s model checker fails to find \(S_i \) in \(FP \).

The running time of this algorithm is \(O(|Script|) \), where \(|Script| \) is the size of the search script in terms of the total number of forward and backtrack transitions that appear in the script. The memory usage of the algorithm is \(O(S) \) for \(S \) states in the program’s state space.

4.4.2 Evaluation

We implemented the above algorithm in JPF and measured the degree of savings in memory usage during certification. In particular, we were interested to see how much memory this algorithm could save compared to a search that uses a \(FP \) that maintains entries for all states.

For each program, we measured the maximum number of entries in \(FP \) needed for SCC certification and compared this value to the total number of states in the state space. Table 4.4.2 shows the results of our evaluation. For each program, column Memory Usage shows the maximum size of the map \(FP \) during certification, expressed as a percentage of the number of entries in \(FP \) in a non-optimized certification search. The results show that by removing no-longer needed entries from \(FP \), certification requires only 11% to 30% of the amount of memory normally required.

Note that this optimization only works for sequential SCC certification and not for parallel SCC because at the end of parallel certification, the entries of all \(FP \)s have to be compared and thus entries cannot be removed before the end of certification.
Table 4.3: Memory Usage During Certification after Optimization

<table>
<thead>
<tr>
<th>Program</th>
<th>Memory Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dining Philosophers</td>
<td>26%</td>
</tr>
<tr>
<td>Bounded Buffer</td>
<td>23%</td>
</tr>
<tr>
<td>Nested Monitor</td>
<td>30%</td>
</tr>
<tr>
<td>Nasa KSU Pipeline</td>
<td>17%</td>
</tr>
<tr>
<td>Pipeline</td>
<td>11%</td>
</tr>
<tr>
<td>RWVSN</td>
<td>27%</td>
</tr>
<tr>
<td>Replicated Workers</td>
<td>14%</td>
</tr>
<tr>
<td>Sleeping Barber</td>
<td>20%</td>
</tr>
<tr>
<td>Elevator</td>
<td>29%</td>
</tr>
</tbody>
</table>

4.5 Summary

In this chapter, we presented novel ways to tackle the state-space explosion problem, with techniques that mildly reduce memory usage during SCC verification and SCC certification. In particular, we presented cost-based caching, a novel cache-replacement policy that replaces states in the cache based on the cost of re-exploring them and their descendant states. In addition, we described a strategy to remove duplicate transitions from the search script that are a consequence of using a cached-based verification search. Finally, we presented a memory-optimization strategy for SCC certification that removes entries from the map FP once they are no longer needed.
Chapter 5

State-Space Coverage Estimation

In Chapter 4, we described how cost-based caching could decrease the memory requirements for SCC verification and increase the likelihood that the verification task runs to completion. Yet, it is still possible that, even after applying state-of-the-art memory-reduction techniques, many programs are too large to be searched exhaustively and the search ends prematurely due to insufficient memory.

When a program’s state space is too large for an exhaustive search, an estimate of how much of the state space is covered during verification can be useful in certifying the adequacy of the partial model-checking results. Such coverage information is similar to test coverage, where exhaustive coverage is not attainable [PM00] and the certifier must assess the correctness of a software program based on partial test-coverage results.

When a program is too large to be model checked exhaustively, the software producer might submit for certification an estimate of the percentage of the program’s state space covered during verification. The certifier might accept the partial results as being adequate for certification, or reject them and demand higher or full state-space coverage. Alternatively, the certifier
might opt to re-verify (via model checking) the program, and compare the estimated state-space coverage of her search to the reported state-space coverage of the software producer’s verification.

In this chapter, we propose a new method [TA09] for estimating the state-space coverage of a model-checking search, when the search terminates prematurely due to insufficient memory. Our approach uses Monte Carlo techniques to sample unexplored transitions in the reachability graph of the program being model checked. The algorithm counts the number of unvisited states that are reachable via sampled transitions and extrapolates from this an estimation of the number of states still unvisited when the search terminates. Given that the sampling of unexplored transitions is random1, the resulting search covers a random set of states and thus the probability that the model checker visits an error state are not affected.

This chapter is organized as follows. In Section 5.1, we outline our approach to estimating state-space coverage. In Section 5.2, we describe our implementation in JPF, and we report our evaluation of the accuracy of the state-space coverage estimation. In Section 5.3, we discuss some alternate approaches.

5.1 Coverage Estimation

Some programs are too large to be exhaustively model checked, in which case we would like to have an estimate of the percentage of the program’s state space that a model-checking search covered. In general, it is possible to use the number of variables in a program and the number of parallel executing components to obtain the total possible number of states in a program’s state space. This number, however, is in most cases a gross over-estimation because in practice many of these states would not be reachable in the execution of the program. In fact, one of the purposes of model checking is to determine

1We use Java’s mechanism for obtaining random generated numbers for this step.
the program’s set of reachable states.

When there is insufficient memory for an exhaustive search, the software producer’s model checker has two goals: (1) to explore and examine the program’s state space and (2) to estimate the percentage of the program’s state space covered by the search. It may be that, for these two goals, the best strategy for searching the state space is different. In general, we would expect a verification search to be a systematic exploration of a program’s entire state space, whereas an estimation search should cover different parts of the program’s state space to collect as much information as possible about the shape and size of the state space. Thus, we divide a model-checking search into two phases: The first phase focuses on a systematic search of the program’s state space, and the second focuses on collecting information needed to estimate state-space coverage.

Figure 5.1: Schematic example of our estimation algorithm
Definition 5.1.1. The **exhaustive-search phase** of a model-checking search is a (possibly partial) breadth-first search of a program’s state space, starting from the program’s initial state.

A percentage of the memory available to the model checker is reserved for this phase. We program the model checker to keep track of the amount of memory utilized as a percentage of total memory available. If this memory limit is reached before the model checker completes its search, then the model checker switches strategy and uses the remaining memory for the random-search phase.

Definition 5.1.2. The **random-search phase** of a model-checking search is a collection of depth-first searches, each starting from a randomly chosen set of transitions in the program’s reachability graph for which the model checker has discovered the starting state but not the destination state.

During the random-search phase, the model checker uses the remaining memory to search regions of the program’s state space that are reachable from transitions that were unexplored during the exhaustive-search phase. As explained in Chapter 2, the model checker maintains a worklist of partially-explored states. When the exhaustive-search phase ends, the model checker uses the worklist as a source of unexplored transitions from which to randomly select starting points of the random-search-phase searches. Figure 5.1 shows how a program’s reachability graph might be searched by this two-phased search. The states within the lighter-shaded region labelled “exhaustive phase” are those covered during the algorithm’s exhaustive-search phase, and the states within the darker-shaded regions labelled “random phase” are those visited during the random-search phase.

We note that the random-search phase continues to search and test the program’s state space. Thus, even if we set aside some memory for the purpose of estimation, that memory will be used to explore and test new states. The random-search phase ends when either all of the memory is exhausted or the state space is fully explored.
We employ Monte Carlo techniques to estimate the number of unexplored states. The model checker counts the number of new states discovered during the searches of randomly chosen transitions, and extrapolates an estimate of the number of new states that would be discovered if all of the unexplored transitions left over from the exhaustive-search phase were explored.

We assume that the ratio of (a) the number of new states discovered during the random-search phase to (b) the number of transitions sampled from the worklist during that phase is comparable to the ratio of (c) the total number of unvisited states that remain at the end of the random-search phase to (d) the total number of unexplored transitions in the worklist that remain at the end of the random-search phase:

\[
\frac{(a) \# \text{states found during random-search phase}}{(b) \# \text{sampled transitions from worklist}} \approx \frac{(c) \# \text{unvisited states}}{(d) \# \text{unsampled transitions from worklist}}
\]

The estimation algorithm measures the italicized values in Equation 5.1 and solves for the number of unvisited states.

During experimentation, we discovered that we obtain more accurate results if (1) we sample only productive, unexplored transitions (where a transition is productive if it leads to an unvisited state), and (2) we count only the productive transitions that remain unexplored at the end of the random-search phase:

\[
\frac{(a) \# \text{states found during random-search phase}}{(b) \# \text{sampled productive transitions from worklist}} \approx \frac{(c) \# \text{unvisited states}}{(d) \# \text{unsampled productive transitions from worklist}}
\]
It is important to mention that by considering productive transitions only, our algorithm deviates from traditional Monte Carlo techniques. Normally, sampling is performed on the full data set and it is assumed that the data set does not change as a result of sampling. In our case, however, the data set (unexplored productive transitions in the worklist) changes throughout the random-search phase because the exploration of a sampled transition may cause other transitions in the worklist to become unproductive. Similarly, the number of productive transitions that remain in the worklist at the end of the random-search phase might be an overestimate, since not all transitions would be deemed productive if the sampling were exhaustive. Still, the number of productive, unexplored transitions in the worklist at the end of the random-search phase is a smaller overestimation than the number of productive, unexplored transitions in the worklist at the start of the random-search phase. Also, our algorithm assumes that the reachability graph is well-connected and that the sampling can reach into a large portion of the reachability graph.

In the example shown in Figure 5.1, for example, the exhaustive-search phase ends with three states in the worklist (S_2, S_3, S_4) that together have six unexplored transitions emanating from them (numbered 1 to 6). Suppose that during the random-search phase, the model checker samples two transitions, 1 and 5, and discovers a total of six new states before it runs out of memory. At the end of the random-search phase, four transitions remain unexplored (dashed transitions), of which only two transitions are productive. Using these values in Equation 5.2, the estimated number of unvisited states is $(6 \div 2) \times 2 = 6$.

Once we obtain the estimated number of unvisited states, we compute the estimated state-space coverage using Equation 5.3. $UnVisited$ is the estimated number of states in the unexplored portions of the program’s state space: this value is obtained from Equation 5.2. $Visited$ is the number of unique states discovered during the combination of the exhaustive-search and
random-search phases:

\[
\%Coverage = \frac{Visited}{Visited + UnVisited} \times 100
\]

(5.3)

To complete the example shown in Figure 5.1, the estimated state-space coverage would be \((10) \div (10 + 6) = 63\%\). The actual state-space coverage in this example is 77\%.

In the next sections, we describe the exhaustive-search and random-search phases in more detail.

5.1.1 Exhaustive-Search Phase

The main purpose of the exhaustive-search phase is to verify the program and to discover any property violations. If the exhaustive-search phase ends without achieving full state-space coverage, we want a large sampling pool of partially-explored states whose unexplored transitions can be sampled during the random-search phase.

We use a breadth-first search (BFS) for this phase and continue exploring the state space until the memory allocated to exhaustive searching has all been utilized. A BFS is less efficient than a depth-first search (DFS) because there is more context switching with respect to the state currently being explored. However, a BFS is more effective than a DFS at populating the worklist because the worklist of a DFS (stack) contains only the state currently being explored and all of its ancestor states, whereas the worklist of a BFS (queue) contains all of the partially-explored child states of any state visited so far. Another advantage of using BFS during the exhaustive-search phase is that it ensures that the model checker tests all execution paths up to some length, where the length is determined by the exhaustive-search-phase memory limit. Thus, the exhaustive-search phase can be thought of as a form of bounded model checking [WR94].
5.1.2 Random-Search Phase

The goals of the random-search phase are to (1) sample unexplored productive transitions to estimate the ratio of unvisited states per unexplored transition (left-hand side of Equation 5.2) and (2) count the number of productive transitions that remain unexplored at the end of the random-search phase (value for (d2) on the right-hand side of Equation 5.2). We describe how to obtain both values below.

Number of Unvisited States per Unexplored, Productive Transition

The model checker samples the unexplored transitions in the worklist, one at a time, and counts the number of unvisited states that are reached from each. If a sampled transition leads to an already-visited state, then it is deemed unproductive and we pick another transition. Each sample is an exhaustive search of the state space that is reachable from a productive transition. Either BFS or DFS can be used in these state-space searches. We chose to use DFS because it is generally faster.

To obtain an accurate coverage estimation, it is desirable to sample the reachability graph as uniformly as possible. Thus, to improve the breadth of sampling during the random-search phase, the model checker randomly selects unexplored transitions from the worklist. Selecting transitions randomly has an additional benefit for certification: if the program contains errors, the chances that the model checker visits an error state are not hindered.

Productive, unexplored transitions are randomly selected and explored until either no more unexplored transitions remain in the worklist or the memory allocated to the random-search phase is exceeded. The former case corresponds to an exhaustive search of the state space. In the latter case, the model checker calculates the average number of unvisited states that each sampled, productive transition discovered.
Number of Remaining Unexplored Productive Transitions

At the end of the random-search phase, the model checker counts the number of unexplored productive transitions that remain in the worklist. For that, the model checker traverses the worklist, executes every unexplored transition of every state in the list, and checks whether the destination state is unvisited. The model checker does not explore beyond the destination states. This step requires only negligible additional memory: the model checker discards all of the destination states that it creates during this step and retains only unique integer representation (fingerprint) of each states in a hash table of visited states, in order to recognize repeat visits to the same state.

5.1.3 Memory Management

The exhaustive-search phase and random-search phase both require memory to execute: in both phases, the model checker stores partially-explored states in a worklist and separately maintains fingerprints of visited states in a hash table. How the available memory is divided between the two phases can affect the accuracy of the estimation results.

In general, we might expect to obtain a more accurate coverage estimate if the exhaustive-search phase reached deeper into the program’s state space before the random-search phase starts. This is because the shape of the reachability graph may not be regular and may contain bottlenecks or regions that can be reached via only a few transitions. If the exhaustive-search phase progresses through these bottlenecks, then the unexplored portions of the reachability graph that remain are more strongly connected and are more equally reachable via searches of randomly selected unexplored transitions.

On the other hand, when the amount of total available memory is very small compared to the amount of memory needed for an exhaustive search, it is important that there be enough memory available during the random-search phase so that the individual depth-first searches can reach enough
states to return a large value for the average number of new states per sampled transition. Thus, in these cases, allocating more memory to the random-search phase may be more effective.

We experimented with allocating different percentages of available memory to each phase of a model-checking search and we report the results in Section 5.2.1.

5.2 Evaluation

We embedded our search algorithm with state-space coverage estimation into Java Pathfinder and refer to the resulting model checker as JPF-coverage. We evaluated the accuracy of our algorithm’s coverage estimations by model checking the nine evaluation programs described in Chapter 3.1.4 and artificially constraining the model checker’s memory resources, such that the searches terminate prematurely. We then compare JPF-coverage’s reported state-space coverage estimates against the actual percentages of the programs’ state space covered by the model checker. We used the first four programs of our evaluation suite as tuning programs to fine-tune our search algorithm, with respect to how memory is allocated between search phases. We used all nine evaluation programs to evaluate the accuracy of our coverage estimations.

To simulate constrained memory environments, we varied the percentage of program states that the model checker can search during each phase. Specifically, we limited the total amount of memory available to a model-checking search to be 3%, 10%, 25%, 50%, 75% or 95% of a program’s state space. We refer to these six memory thresholds as coverage limits. We used JPF-coverage to model check each of the evaluation programs in the context of each coverage limit. We then compared coverage estimates reported by JPF-coverage against the actual percentages of state space covered (i.e., the coverage limit) by the model checker.
In practice, the size of a program’s state space is not known in advance. However, one could use JPF’s facilities for keeping track of memory usage to determine when the exhaustive-search phase has utilized the percentage of total memory that is allocated to it. Such a memory-tracking facility could easily be incorporated into other model checkers by simply keeping track of the available system memory.

5.2.1 Experiments and Results

In this section, we present the experiments for evaluating JPF-coverage and report our results.

In the first set of experiments, we varied the amount of memory allocated to the exhaustive-search and random-search phases, and we compared the resulting coverage estimations with respect to their accuracy. We used coverage limits of 10%, 25%, and 75% (referred to as tuning limits), and the percentage of memory allocated to the exhaustive-search phase ranged between 40% and 90% of the available memory (artificially restricted by the tuning limit), in 10% increments. The rest of the memory (minus a small amount to compute the estimation at the end) is allocated to the random-search phase. We performed this experiment for all tuning programs and tuning coverage limits.

The results show that for low coverage limits, where a search terminates before a significant fraction (10% to 25%) of a program’s state space is explored, it is best to allocate 50% of available memory to the exhaustive-search phase. For higher coverage limits (75% and higher), it is best to allocate 70% of available memory to the exhaustive-search phase. Because we do not know ahead of time whether a model-checking search is likely to achieve low, high, or complete coverage of a program’s state space, we allocate 60% of available memory to the exhaustive-search phase. This is the allocation that we used in all of our subsequent experiments, for all coverage limits.

To assess the accuracy of JPF-coverage in estimating state-space cov-
Table 5.1: State-Space Coverage Estimation Results

<table>
<thead>
<tr>
<th>Coverage Limit</th>
<th>3%</th>
<th></th>
<th></th>
<th></th>
<th>10%</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>25%</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Best</td>
<td>Worst</td>
<td>Avg</td>
<td>σ</td>
<td>Best</td>
<td>Worst</td>
<td>Avg</td>
<td>σ</td>
<td>Best</td>
<td>Worst</td>
<td>Avg</td>
<td>σ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program</td>
<td></td>
</tr>
<tr>
<td>Dining Philosophers</td>
<td>4</td>
<td>14</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>11</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>16</td>
<td>9</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bounded Buffer</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>16</td>
<td>9</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nasa KSU Pipeline</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>12</td>
<td>7</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nested Monitor</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>13</td>
<td>7</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipeline</td>
<td>4</td>
<td>10</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>11</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>18</td>
<td>10</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWVSN</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replicated Workers</td>
<td>9</td>
<td>25</td>
<td>16</td>
<td>7</td>
<td>3</td>
<td>9</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>10</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleeping Barber</td>
<td>2</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>11</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>10</td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevator</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>9</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>12</td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coverage Limit</th>
<th>50%</th>
<th></th>
<th></th>
<th></th>
<th>75%</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>95%</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Best</td>
<td>Worst</td>
<td>Avg</td>
<td>σ</td>
<td>Best</td>
<td>Worst</td>
<td>Avg</td>
<td>σ</td>
<td>Best</td>
<td>Worst</td>
<td>Avg</td>
<td>σ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program</td>
<td></td>
</tr>
<tr>
<td>Dining Philosophers</td>
<td>5</td>
<td>15</td>
<td>10</td>
<td>4</td>
<td>2</td>
<td>23</td>
<td>15</td>
<td>5</td>
<td>5</td>
<td>19</td>
<td>10</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bounded Buffer</td>
<td>7</td>
<td>19</td>
<td>11</td>
<td>5</td>
<td>12</td>
<td>31</td>
<td>23</td>
<td>7</td>
<td>4</td>
<td>37</td>
<td>14</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nasa KSU Pipeline</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>18</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>15</td>
<td>8</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nested Monitor</td>
<td>2</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>20</td>
<td>13</td>
<td>3</td>
<td>6</td>
<td>14</td>
<td>10</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipeline</td>
<td>2</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>14</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWVSN</td>
<td>7</td>
<td>21</td>
<td>18</td>
<td>6</td>
<td>2</td>
<td>16</td>
<td>10</td>
<td>6</td>
<td>4</td>
<td>15</td>
<td>10</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replicated Workers</td>
<td>10</td>
<td>23</td>
<td>14</td>
<td>7</td>
<td>7</td>
<td>17</td>
<td>10</td>
<td>5</td>
<td>6</td>
<td>16</td>
<td>12</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleeping Barber</td>
<td>8</td>
<td>24</td>
<td>15</td>
<td>7</td>
<td>3</td>
<td>14</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevator</td>
<td>1</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td>11</td>
<td>27</td>
<td>17</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>5</td>
<td>15</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>20</td>
<td>10</td>
<td>6</td>
<td>4</td>
<td>15</td>
<td>8</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
verage, we model checked each program with respect to each coverage limit 10 times and report the results in Table 5.2.1. The first four rows, which are shaded, show the results for the four tuning programs. The deviation between a coverage estimate and a search’s actual coverage (set by the coverage limit) is expressed in terms of percentage points: the absolute value of the difference between the estimated percentage of state space covered and the actual percentage of state space covered. We report the smallest deviation (column *Best*), the largest deviation (column *Worst*), and the average deviation (column *Avg*) of ten runs; we also report the standard deviation of the deviations (column *σ*). For example, consider a search of the Pipeline program with a coverage limit 25%. A perfect estimate would report that 25% of the program’s state space had been covered by the search. The best estimate (out of ten) reported by our algorithm was off by 2 percentage points, the worst estimate was off by 18 percentage points, the average deviation was 10 percentage points, and the standard deviation from the average estimate was 7 percentage points.

The standard deviation illustrates the variability of our results: one standard deviation indicates the range of values, centered around an average, within which 60%-70% of estimates fall, assuming a normal distribution. Thus, a standard deviation of 5 percentage points indicates that most of our estimates fall within ±5% of the reported average coverage estimate. Our worst coverage estimate (of nine programs and six coverage limits, with each combination run ten times) was off by 37 percentage points.

To evaluate the performance overhead of our approach to estimating state-space coverage, we compared model checking with coverage estimation to model checking without coverage estimation. Model checking with coverage estimation allocates 60% of available memory to the exhaustive-search phase. Thus, in our first performance evaluation, model checking without coverage estimation also searches a program’s state space using a BFS until the search utilizes 60% of available memory and then switches to a DFS
for the remainder of the search. The results showed that, for all programs
and coverage limits, our model checking with state-space coverage estima-
tion is not slower than normal model checking. This was expected because
our approach does not include any2 steps that would affect its performance
compared to a model checking run without estimation.

In the second performance evaluation, we compared the search time of
JPF-coverage with the search time of model checking without coverage esti-
mation, where the latter employed a DFS for the entire search. The results
showed that the overhead was between 12\% and 38\%, depending on the
evaluation program.

5.3 Discussion

Throughout our work, we experimented with various coverage-estimation
techniques and optimizations of our current algorithm. In this section, we
describe lessons learned with respect to the most important experiments.

5.3.1 Rate of Discovering New States

It seems intuitive that the rate of discovering new states would decrease dur-
ing the course of a search and that we can use this information to improve our
coverage estimate. In particular, the algorithm could keep a running total of
the ratio of the number of transitions to the number of states, and could com-
pare the current rate of newly-discovered states (measured at fixed intervals)
against the overall ratio. To test this hypothesis, we performed exhaustive
searches of our tuning programs and counted, for fixed intervals, the fraction
of transitions that are productive (i.e., that lead to new states). Figure 5.2
shows the rate of discovering new states for one of our tuning programs. The
2Random selection of unexplored transitions and the estimation calculation add only
a negligible amount of time.
x-axis shows the progress of the search in terms of the percentage of all transitions explored, and the y-axis shows the fraction of explored productive transitions so far.

As can be seen, the rate of discovering new states drops quickly at the start of the search and then decreases slowly for the rest of the search. All evaluation programs exhibit similarly shaped graphs, although the steep drop occurs at different stages of the search for different programs. Given that the rate does not noticeably vary throughout most of a search, including up to the end of a search, we were not able to deduce any particular properties that could be used to improve coverage estimation.

5.3.2 BFS Level Graphs for Estimation

We might expect that a BFS of a program’s state space would produce a worklist whose size varies regularly and predictably over the course of a complete model checking run. That is, in early phases of the search, the size
of the worklist grows and during later phases of the search, the size of the worklist shrinks.

The authors of [DK08, Pv08] assume that the size of the worklist, measured after searching each level of the reachability graph, has a normal distribution. In [Pv08], the authors plotted the number of partially-explored states that are in the worklist at each BFS level and showed partial BFS level graphs to human subjects, who tried to guess the shape of the full graph. Given the results from the human experiments, the authors then deduced some parameters that were used to estimate state-space coverage based on the shape of a search’s BFS level graph. The authors of [DK08] use least-square fitting of partial BFS level graphs to estimate the total number of states.

Our own experiments, however, indicate that the size of a BFS worklist does not necessarily have a normal distribution and thus may not be a reliable basis for coverage estimation. Figures 5.3 and 5.4, for example, show the BFS level graphs for the elevator and RWVSN programs, respectively. Neither of these graphs have regular or parabola-shaped curves. For our evaluation suite, six programs had a normal distribution and three did not. In general, we expect diamond-shaped reachability graphs to have regular, parabola-shaped BFS level graphs.
5.3.3 BFS vs. DFS During the Exhaustive-Search Phase

In our approach, an important design decision is the search strategy used during the exhaustive-search phase. DFS is popular because it is fast: the program stack can be used to store the worklist of partially explored states, so there is less context switching when the next state is explored. However, we use BFS because we hypothesize that having a larger worklist at the start of the random-search phase results in a more accurate estimation.

To test this hypothesis, we experimented with using DFS rather than BFS during the exhaustive-search phase. We ran both versions of JPF-coverage on all nine programs and six coverage limits (54 cases), running each case 10 times.

Using DFS during the exhaustive-search phase produced estimation results in 44 cases that were inaccurate between 11 and 21 percentage points (average of 14 percentage points); produced estimation results in 3 cases that were inaccurate between 0 and 2 percentage points (average of 1 percentage point); and produced estimation results in 7 cases that were inaccurate between 5 and 10 percentage points (average of 7 percentage points). The results confirm that using BFS during the exhaustive-search phase is likely to improve the accuracy of our algorithm’s coverage estimates.
5.3.4 Round-Robin Execution of Random-Search Phase Searches

One risk of the current design for the random-search phase of our algorithm is that the remaining memory is exhausted while searching the first sampled (unexplored) transition, and that this can result in estimates that are wildly off base: the estimate may be way too high (or way too low) if the number of new states that are reached from this one transition is much higher (or much lower) than the average number of new states per unexplored transition. We hypothesized that we could improve the accuracy of our estimates by sampling multiple unexplored transitions at once.

To test this hypothesis, we modified the random-search phase of our prototype to sample several unexplored transitions in parallel in a round-robin fashion: exploring a fixed number of transitions of a DFS of some unexplored transition before switching to another DFS of another unexplored transition. The model checker keeps a separate DFS stack (worklist) for each sampled transition, and stores partially-explored states for each DFS in that DFS’s local worklist. There is one shared global hash table that stores fingerprints of visited states. If a DFS finishes before the search runs out of memory, then the model checker picks a new unexplored transition from the worklist and starts a new DFS.

To evaluate this technique, we varied the number of transitions that are sampled in parallel and evaluated the accuracy of the resulting estimation. We observed that when our algorithm samples five to ten unexplored transitions in parallel, the accuracy of its coverage estimate improves for the tuning limits of 10% and 25% but worsens for the tuning limit of 75%. When the number of parallel searches is above 15, then estimation accuracy improves for the coverage limit of 75% but worsens for the coverage limits of 10% and 25%.

It seems that when state-space coverage is low, it is better to sample a smaller number of transitions so that the searches of the sampled transitions
finish. If too many transitions are sampled, then the number of new states discovered per sampled transition is low (because the counts do not finish) and the algorithm underestimates coverage. The opposite is true when state-space coverage is high.

In general, we do not know in advance whether state-space coverage will be low, high, or complete, and thus we do not know how many transitions to sample. This method may become more applicable if there is a way to determine on-the-fly whether the coverage is likely to be low or high. We are exploring the possibility of performing the random-search phase of our algorithm more than once, in which case the estimated coverage from one execution could be used to tune the estimation algorithm in the second random-search phase.

5.4 Summary

In this chapter, we have presented a strategy for estimating the state-space coverage of a model-checking search that terminates prematurely due to insufficient memory. Our strategy would provide useful feedback to the certifier for deciding how much confidence to place in partial verification results. We have implemented our algorithm in Java Pathfinder and have evaluated the implementation on a suite of Java programs.
Chapter 6

Conclusion and Future Work

In this thesis, we have presented a set of techniques for certifying software that was previously verified using model checking. Below, we summarize each contribution and describe limitations and future work for each technique.

Search Carrying Code

In Chapter 3, we present search carrying code (SCC), a novel model-checking-based method to certify model-checking results. In SCC, the software producer submits with her program a search script that represents a search path through the program’s reachability graph. The certifier’s model checker uses the search script to direct and speed up its search of the same program.

SCC certification is property-independent. Rather than encoding the verification results for the program’s advertised properties, like a PCC certificate, an SCC search script encodes instructions for searching the program’s entire state space. The script can be used to re-model check the program for any program invariant or safety assertion, whether it is an advertised property or an additional property of interest to the certifier (or the software consumer).

SCC certification is amenable to efficient parallel model checking: the certifier’s model checker partitions the search script into a collection of mutually-
disjoint search scripts, and the scripts are distributed to parallel executing processors. In our evaluation, we have shown that parallel SCC speeds up certification up to $5n$, for n parallel processors, when the source of the program is trusted, and SCC speeds up certification up to n, for n parallel processors, when the source of the program is un-trusted.

Future Work: We implemented SCC verification and SCC certification in the same model checker, JPF. However, it is desirable that search scripts are model-checker independent so that the software producer and certifier can use any explicit-state model checker of their liking. In Chapter 3.3, we discussed an outline for using different model checkers for verification and certification. In the future, we have to determine how different model checkers interpret transition statements and whether it is possible to match statements in the scripts to statements in the program. In addition, we have to survey different state-space reduction techniques that model checkers employ and compare the implementation of each technique in each model checker. It may be possible to identify commonalities among the implementations and thus, parameterize reduction techniques. In case certain reduction techniques must be disabled to use SCC, we must determine whether the benefit of SCC outweighs the benefit of the reduction technique.

Another limitation of SCC is the size of the search script that the software producer provides, likely over a network, to the certifier. We show that, for our evaluation programs, the size of the search script, in number of bytes, is on the order of the number of states in the program’s state space. For industrial-sized programs where the program’s state space is at the limit of what can be model checked, the size of the search script could be very large. Thus, the amount of time it would take to download it over the network would make any time savings achieved by SCC certification seem insignificant. It is an open problem whether the size of the search script can be further reduced. It may be possible to use alternative representations and encodings of the information in the search script in order to reduce its size. Also, it
may be possible to eliminate some information (e.g., backtracks) from the search script altogether, but still be able to partition the script and check its veracity.

State-Space Caching

In Chapter 4, we introduce a new cache-replacement strategy, cost-based caching, for use in explicit state-space searches. State-space caching is useful during SCC verification when memory resources are limited and the goal is a full coverage of the state space (i.e., to produce a search script for SCC certification). Our evaluation shows that state-space caching using a cost-based cache-replacement strategy can achieve a full coverage of our evaluation programs in a shorter time than caching using other replacement strategies, and thus is more likely to terminate.

We also presented a memory-optimization technique that reduces the memory requirements for SCC certification by removing state information from the model checker’s table of visited states, if it is known that a state will not be visited again for the remainder of the search. Using this method in SCC certification, we reduced the memory requirements for certifying our nine evaluation programs by 70% to 89%.

Future Work: Our experiments show that for our evaluation programs, there is a significant increase in the time it takes to complete a search when the model checker uses state-space caching. Without significant search-time reductions, the software producer might be unwilling to use state-space caching techniques. An open problem is whether the search time of a cached search using our cost-based replacement policy can be significantly decreased by optimizing how cost information is computed, stored, and kept sorted. Also, future work can investigate how to calculate accurate cost values for state spaces with strongly connected components. For that, we must keep track of all states in a strongly connected component and update their cost values once the last state in such a component has been fully explored. It re-
mains to see whether keeping absolutely accurate cost values decreases search time significantly.

Our method for optimizing memory for certification can currently only be used only with non-parallel SCC because at the end of parallel certification, the entries of all FPs have to be compared. Because non-parallel SCC certification does not achieve significant time savings, it is important to explore ways to extend this optimization technique to parallel SCC. On a distributed-memory architecture, reducing memory for certification might not be an issue because in total, there is more memory available than on a single processor. On a shared-memory architecture, memory could be optimized by using a shared FP between all processors.

State-Space Coverage Estimation

When it is not possible to perform an exhaustive search of a program’s state space, then an estimate of the amount of the state space that is covered by a search can help the certifier to determine whether the partial model-checking results are adequate for certification. In Chapter 5, we presented an algorithm that estimates the percentage of a program’s state space that is covered in a model-checking search when the search terminates prematurely due to insufficient memory. Our method is based on Monte-Carlo sampling of the unexplored portion of the state space.

Future Work: With any estimation, more research is needed to improve the accuracy of the estimation. One possible approach would be to explore strategies that employ multiple estimation runs, such as merging the results from independent estimations or using the results of one estimation run to incrementally refine a second estimation run. Another approach would be to investigate whether state-space properties (e.g., ratio of discovering new states) can serve as preliminary indicators of state-space coverage. Such indicators could be used to tune our estimation algorithm on-the-fly (e.g., tuning the percentage of memory allocated to the exhaustive-search phase.
versus the memory allocated to the random-search phase, based on early indications as to whether the state space coverage will be low or high).
Bibliography

125

[tBML+05] Maurice H. ter Beek, Mieke Massink, Diego Latella, Stefania Gnesi, Alessandro Forghieri, and Maurizio Sebastianis. A case

