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Abstract

I have used an analytic model of tidal interactions to predict the evolution of a sub-

structure in a static dark matter halo. Given the initial conditions of the satellite and

background halo, the model predicts with high accuracy the mass loss of the satellite and

also its density evolution. The main phenomena taken into account in the model are tidal

truncation at the tidal radius of the satellite and heating due to tidal shocks at the peri-

center of its orbit. To calibrate and test the model, it has been compared with numerical

simulations of a satellite orbiting in a static dark matter halo. The model predicts a set

of tidal radii for the satellite in different stages of its evolution. The mass of the satellite

is accurately calculated at each stage by truncating an NFW (Navarro, Frenk and White)

profile at the tidal radius. The mass lost beyond the tidal limit is scaled by half the instan-

taneous orbital period of the satellite. The model can also be used to predict analytically

the new density profile of the satellite. This new profile is given by a modification of the

NFW density profile as a function of radius. The tidal radius is the only parameter going

into this modification. The effect of numerical relaxation has been studied and quantified

by performing the same simulations in lower resolutions. I find that substructures with

less than 1000 particles are artificially relaxed and this process affects their mass loss and

results in their premature disruptions. This underlines the utility of an analytic model

predicting the evolution of substructures in minor mergers.
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Chapter 1

Introduction

Thousands of years ago, when humans looked at the night sky, they saw bright dots and

described them as shining candles rotating around us. We thought we were special, at the

center of the universe. It was only about 500 years ago, that Copernicus and Galileo proved

us wrong. The Copernican revolution dethroned us from our privileged position and placed

the Earth rotating around the Sun, a star among many others. As we could only see a few

thousand stars at most with our unaided eyes, our picture of the universe was dramatically

changed in the 20th century with the advent of powerful telescopes and computers. Figure

1.1 illustrates one of the deepest pictures of the universe taken by the Hubble Telescope.

Each spot is a galaxy, consisting of billions of stars. The study of galaxies has led to major

advances in the field of cosmology. For instance Edwin Hubble observed the recession of

galaxies in 1929 and this observation became the empirical basis of the expanding universe

paradigm. This gave birth to the Big Bang model which was later confirmed by additional

evidence such as the Cosmic Microwave Background, the first free photons traveling to us

from the early universe.

From Big Bang theory and also from observations of the early universe, we can con-

struct a cosmological model. Such a model specifies the content of the universe and the

initial conditions (small perturbations in the density and velocity field of matter) which

coupled with a growth mechanism give rise to existing structures in the universe such as

1



Figure 1.1: Hubble Ultra Deep Field (HUDF), NASA and the European Space Agency.

Equivalent sky area is shown in bottom left corner of the picture with respect to the full

Moon.

galaxies, clusters of galaxies and super-clusters. Due to its complexity, structure formation

is theoretically studied using numerical simulations.

In section 1.1, we will briefly describe the cosmological model which is the basis of

large-scale structure studies. Section 1.2 will be an overview of the process of structure

formation. The problem of substructure dynamics and the need for semi-analytic models

of mass loss will be introduced in section 1.3.
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1.1 Cosmological Model

Major observations of the 20th century, namely the recession of galaxies and the Cosmic

Microwave Background (CMB), point to the fact that the universe is expanding and began

by a Big Bang. (Although the exact nature of the initial singularity popularly known as the

Big Bang is poorly understood due to the lack of coherent theories of quantum cosmology.)

In this context, a theoretical model of the universe is mainly based on Einstein’s general

theory of relativity. The Einstein field equations in general relativity relate the content of

the universe to its geometry. If we assume that the universe is isotropic and homogeneous

in scales larger than 100Mpc (a parsec is 3.0857× 1016 meters or 3.26156 light years), we

can derive equations governing the state of the universe (namely the Friedmann equation)

from Einstein equations. The assumption of isotropy and homogeneity has proven to be

correct from observations of the CMB and large-scale structures in the universe. The

Friedmann equation can be written concisely as:

Ω− 1 =
k

H2a2
(1.1)

where a(t) is the so-called scale factor, H is the Hubble parameter defined as H(t) = ȧ(t)
a(t)

and the constant k, describing the spatial curvature, can take the values k = −1, 0, +1.

The simplest case, k = 0, corresponds to ordinary (flat) Euclidean space. If Ωi of a

substance i in the universe with density ρi is defined as ρi

ρc
, where ρc ≡ 3H2

8πG
is the density

of a flat universe, then Ω is:

Ω =
∑
i

Ωi ≡
∑
i

ρi
ρc

(1.2)

Looking at equation 1.1, we see that a cosmological model of the universe is one that

specifies Ω and then the Friedmann equation describes the state of the universe (Ryden,

2003).

Modern observations have given us hints about the content of the universe, in other

words Ω’s individual constituents. We should note that the various Ωi evolve differently

with time depending on their equation of state. Our current understanding of these main

constituents and their contribution to Ω is listed in Table 1.1.
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Component Contribution to Ω

CMB radiation Ωr = 4.7× 10−5

baryons Ωb = 0.037± 0.009

(of which stars ) Ωs = (0.0023− 0.0041)± 0.0004

dark matter Ωdm ' 0.3

dark energy ΩΛ ' 0.7

Table 1.1: The Content of the Universe, from Frenk (2002)

One of the constituents is the CMB radiation. It consists of freely traveling photons

coming to us from the time of “recombination” in the early universe, 300000 years after

the Big Bang. This radiation field fills the universe.

All matter that we may encounter or experience in everyday life, including our bodies,

is composed of atoms and is called baryonic matter. Primordial nucleosynthesis and mea-

surements of the Deuterium to Hydrogen abundance ratio D/H in our galaxy and towards

quasars result in a precise measurement of the baryon density of the universe (Tytler et al.,

2000). Stars make up a small fraction of this density. As we see in Table 1.1, baryons, which

interact electromagnetically and thus can be seen, have a small contribution to the content

of the universe. According to the standard model of cosmology, most of the universe is

invisible!

Most of the invisible matter content of the universe is called “dark matter”. We use

the term dark matter for a kind of matter whose existence is solely inferred from its

gravitational effects.

There are two kinds of observational evidence for the existence of dark matter. The first

and most important one is dark matter’s dynamical signature. An example of this which is

often mentioned as the main evidence for the existence of dark matter is the rotation curve

of galaxies. A rotation curve is a plot of the orbital velocity of stars or gas in the galaxy

versus their distance to the center of the galaxy. Figure 1.2 is the rotation curve of NGC

6503, a spiral galaxy in the Draco constellation. The dotted, dashed and dash-dotted lines

are the contributions of gas, stellar disk and dark matter halo, respectively. We see that
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Figure 1.2: Rotation curve of NGC 6503, from Begeman et al. (1991)

the rotation curve flattens as distance increases from the center.

We know that the tangential velocity of an object on a circular orbit induced by a

spherical potential φ is given by:

vc =

√
R
dφ

dR
(1.3)

Where R is the distance to the the center of the potential. If the potential of the

gravitational force of a spherical mass distribution can be written as φ = −GM(R)
R

, then

the velocity becomes:

vc =

√
GM(R)

R
(1.4)

Where M(R) = 4π
∫ R

0
ρ(r)r2dr. Therefore if the only matter content of the galaxy

were the luminous stars and gas then we would have an increase in velocity up to the
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point where mass is increasing faster than distance, and then as we go to longer distances

where the mass drops off, the velocity would decrease as R−1/2. This would give a rotation

curve looking like the dashed curve in Figure 1.2 (disk contribution). The fact that the

actual rotation curve is not decreasing at large distances means we must have additional

matter in the galaxy. In the simple spherically symmetric case considered here, in order to

explain the flatness of the rotation curve we need M(R) ∝ R at large R in equation 1.4. In

other words, we need ρ ∝ 1/R2. This implies the existence of a dark matter halo around

the galaxy. Here we considered a spherically symmetric case. However real galaxies are

not spherical and halo densities don’t decrease as R−2. Observational data coupled with

simulations give a more sophisticated distance dependance of the density profile and mass

distribution of dark matter halos. These results will be described in section 1.2.2.

A second line of evidence for the existence of dark matter is more direct. The theory of

general relativity predicts that light trajectories are bent due to the effect of gravity. This

gives rise to a phenomenon called gravitational lensing. The image we get from a distant

astrophysical object is distorted due to the gravitational field of the intervening matter.

If we study statistically these distortions we can infer the mass distribution between us

and that object. These image distortions are similar to lens image distortions in optics,

thus the name gravitational lensing. As gravitational lensing is solely a “gravitational”

phenomenon it can be a probe of the dark matter distribution in the universe. Mellier &

van Waerbeke (2001) concisely review the lensing analysis.

If most of the matter content of the universe is dark matter, then the potential dark

matter particle should have properties suitable for explaining the formation of structures in

the universe from primordial density fluctuations. If dark matter halos consisted of particles

with high velocity dispersions in the early universe, this would damp small fluctuations of

galactic size and we would end up with a universe without structures of the galactic scale.

Therefore dark matter halos should have low velocity dispersions or low temperatures in

the early universe. In other words dark matter should be “cold” (Blumenthal et al., 1984).

Finally, the last constituent of the universe and the most mysterious one is dark en-

ergy. Data from type I supernovae point to the fact that the expansion of the universe

is accelerating (Perlmutter et al., 1999). One way of explaining this acceleration is the
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cosmological constant Λ first introduced by Einstein. Such a cosmological model with cold

dark matter and dark energy as its main constituents is called the ΛCDM model (CDM

for cold dark matter) or simply the standard model of cosmology. Given this model, the

universe is 13.75± 0.11 Gyr old.

1.2 Structure Formation

One of the most interesting questions in cosmology is how structures in the universe formed.

By structures we mean objects such as dark matter halos with high matter concentrations

compared to their surrounding regions. If we look at the afterglow of the Big Bang, the

Cosmic Microwave Background, we can see tiny fluctuations in temperature, that are mea-

sures of primordial density fluctuations of matter in the early universe. These primordial

fluctuations are the seeds of all structure in the universe. The origin of these tiny fluc-

tuations can be explained quantum mechanically in the context of cosmic inflation. The

statistical properties of the primordial fluctuations can be inferred from observations of

anisotropies in the Cosmic Microwave Background (Spergel et al., 2003) and from mea-

surements of the distribution of matter, e.g., galaxy redshift surveys. If we break the

density fluctuations into an infinite number of sine waves with different components δk,

and comoving wavenumbers k, then the power spectrum is defined as the mean square am-

plitude of the components P (k) = 〈|δk|2〉. Most inflationary scenarios result in a power-law

form of the power spectrum P (k) ∝ kn. In a universe with this initial power spectrum,

fluctuations in the cold dark matter are largest in amplitude for the smallest mass scales.

This implies that in such a universe, the first objects to form are the smallest. This is

called the hierarchical scenario of structure formation. If the dark matter particle is the

neutralino (a hypothetical particle with mass m ' 100 GeV predicted by supersymmetry)

then P (k) ∝ k3 with an exponential cut-off at 0.6 comoving parsecs which corresponds to

a mass scale of 10−6 solar masses (Green et al., 2004). This is roughly the mass scale of the

first and smallest dark matter halos that form in the early universe. In order to understand

how these first structures form, we can imagine the primordial universe to be divided in

overdense and under dense regions according to the CMB maps. The overdense regions
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have a tendency to collapse under their own gravity, but at the same time the universe

is expanding. Therefore self-gravity and expansion work against each other. For regions

with overall negative energy (the energy is an integral of motion and a function of initial

conditions), at first expansion wins and the overdense region expands while its self-gravity

slowly increases. At some critical time, the process is reversed to the profit of the now

equally powerful self-gravity. At this moment (called turnaround) the structure begins

to collapse, and eventually forms a bound object. The detailed mathematics of structure

formation and non-linear evolution can be found in Padmanabhan (1993).

1.2.1 Formation of Dark Matter Halos

The radius at which the overdense region starts to collapse is called the turnaround radius,

rm. It is a function of the initial conditions (initial background density Ωi and density

fluctuation δi). Having initial conditions we can not only find rm but we can also derive

the time evolution of the overdense region. If the problem was completely symmetrical (for

instance if the overdensity was spherical and the velocities of all the particles were oriented

towards the center of the sphere) the overdense region would collapse through a central

point and expand outwards afterwards. But the symmetrical assumption doesn’t hold for

real systems. Because of the random motions of particles, and also due to the change of

the potential in a timescale of tdyn ≈ (Gρ)−1/2, much shorter than the two-body relaxation

time tR, the collisionless dark matter will be “violently” relaxed to a configuration with

radius rvir = rm/2, and a special density profile and velocity dispersion (Padmanabhan,

1993). This process is called virialization and gives rise to an approximately stable, near-

equilibrium dark matter halo. The halo is supported against its own self-gravity by the

random motions of its particles.

As mentioned above, each particle in a virialized halo is on an orbit with a particular

energy. Due to the extremely large number of particles and the chaotic nature of the

problem, modeling theoretically such a halo and its merging with another halo is extremely

difficult. That is why we study structure formation using N-body numerical simulations

(although there are a number of successful theoretical models such as the Press & Schechter

(1974) formalism for predicting the abundance of halos of a given mass within a given
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volume of the universe). One example of such simulations is the Millennium simulation

(Springel et al., 2005). If the simulation is solely composed of dark matter it has to

make relatively few assumptions as the physics of gravitationally interacting matter in

cosmological scales is simple. However if the simulation also includes baryons then it has

to make more assumptions about baryonic processes that are complicated as they are of

electromagnetic nature.

One of the successful results of simulations that appears to be correct observationally

is the universal density profile of dark matter halos. Many theoretical models, as the ones

discussed in this thesis, need to assume this density profile.

1.2.2 Structure of Dark Matter Halos

As mentioned in section 1.1, one of the observational lines of evidence for the existence of

dark matter halos is the rotation curve of galaxies. In our simple approach to the problem

in section 1.1, we explained the flattening of the rotation curve by assigning a density

profile ρ(r) ∝ 1/r2 to the dark matter halo. Such a profile known as the isothermal profile

was widely used before the 90s to model virialized dark matter halos. This profile gives

rise to constant velocity dispersions therefore we can assign a constant temperature to it,

thus the name isothermal. It has been plotted versus distance in log scale as the dashed

line in figure 1.3.

The numerical simulations of Navarro, Frenk and White (and others) suggest that the

density profile of halos are not well approximated by isothermal profiles but rather have

gently changing logarithmic slopes (Navarro et al., 1996). The NFW density profile has

the form:

ρNFW (r) =
ρs

r/rs(1 + r/rs)2
(1.5)

Where ρs is the scale density and rs is the scale radius. This profile is plotted as the

solid curve in figure 1.3. As we see in the figure, the behavior of the NFW profile is almost

isothermal near r = rs.

9



Figure 1.3: The NFW density profile (solid) and the isothermal density profile (dashed) as

a function of radius.

Recent studies by Navarro et al. (2004) have shown that dark matter halos are slightly

better described by an Einasto density profile. This profile has the form:

ρ(r) ∝ exp
(
− A rα

)
(1.6)

Where the parameter α controls the degree of curvature of the profile. The NFW profile

is good to within 10 to 20% making it still useful (Benson, 2010). The radius inside which

the virial equilibrium holds in a dark matter halo is called the virial radius rvir. The

concentration of the halo is defined as cNFW = rvir/rs.
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1.3 Substructure Dynamics

For a long time it was believed that in the hierarchical picture of structure formation, as

each halo is formed from the merging of smaller halos any sign of the progenitors is erased

due to their complete disruption. Early simulations seemed to confirm this assumption.

As simulations grew in resolution in the 90s, they uncovered a wealth of subhalos that had

remained bound after merging had happened and were on orbits around their host halos

(Klypin et al., 1999; Moore et al., 1999).

Subhalos more massive than 109 to 1010 M� (solar masses) host galaxies that evolve

in bigger systems such as clusters of galaxies. We need to understand the dynamics of

galaxies within clusters in order to know more about galaxy formation and evolution.

These galaxy dynamics are closely related to the collisionless dynamics of sub-halos within

bigger halos of dark matter. Substructure evolution, as other fields of structure formation

can be studied using cosmological simulations. Unfortunately, this approach has two major

inconveniences: first an foremost the lack of resolution (in mass, force field and time) of

cosmological simulations at sub-halo scales limits their use. The second reason is the

computational costs and resources they require. An analytic approach to the problem is

useful because it independently provides insight in issues related to galaxy formation and

evolution in cluster environments.

If resolution limits affect the accuracy of cosmological simulations in the study of galax-

ies, they make it impossible to study dark matter halos in smaller scales such as the scale of

the solar system. In order to study galaxy formation, a spatial resolution better than 1 kpc

and a mass resolution better than 106 M� in volumes at least 100 Mpc across containing

more than 1017 M� is required (Bertschinger, 2001). This means that galaxy formation

can be effectively studied using cosmological simulations with ' 1011 particles. With com-

putational advances we are slowly reaching this resolution. Figure 1.4 shows the particle

number in cosmological simulations as a function of publication date. As seen in the figure

the growth in simulation size has been exponential over the last three decades. However

if we want to study dark matter in small scales such as 1 AU (the Astronomical Unit is

roughly equal to the length of the semi-major axis of the Earth’s elliptical orbit around the

Sun ' 10−6 parsecs) in similar cosmological volumes, we will roughly need 1020 particles
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with masses of 10−3 M� (having in mind that the mass scale of the smallest dark matter

halos is of order 10−6 M� thus lower particle masses are required). Looking at figure 1.4

we see that this would not be computationally possible in the next 50 years. Many dark

matter detection experiments are based on the annihilation of dark matter particles (neu-

tralinos) resulting in Gamma rays. This annihilation rate is proportional to the square of

the density of dark matter. Therefore, if we hope to eventually detect the dark matter

particle it will be extremely helpful to know how dark matter is distributed and how dense

dark matter clumps are locally. To overcome the resolution limits imposed on cosmic simu-

lations, Diemand et al. (2005) carried out a large cosmological simulation and re-simulated

at higher resolution a small region of it. The simulation started at redshift z = 350 and

followed the evolution of the higher resolution region until redshift z = 26 when it started

to merge into the lower resolution surroundings. The authors found that the first halos to

form are triaxial objects of mass 10−6 M�. These objects did not have substructures in

them as they were the first to form in the hierarchy. The density of these sub-halos was

well fitted by a power law form ρ(r) ∝ r−γ where γ was in the range from 1.5 to 2. The

authors also found the mass function of the halos and estimated their number density at

the solar radius as n(R�) ' 500 pc−3.

As only a small region of such a simulation has high resolution, predicting the interac-

tion of these subhalos with galaxies and even stars (as the first subhalos to form have little

mass and are affected by the motion of stars) can not be done numerically and requires

analytic models describing subhalo mergers and predicting whether substructures get dis-

rupted by galactic gravitational forces or stay bound. Diemand et al. (2005) analytically

predicted that the small halos of dark matter could stay bound to about 3 kpc from the

center of the galaxy. As encounters with stars could result in the disruption of halos,

Green & Goodwin (2007) studied, analytically and numerically, the energy input into dark

matter mini-haloes by interactions with stars. They found that for mini-haloes with mass

M < 10−7 M� on typical orbits which pass through the galactic disc, the estimated dis-

ruption time-scales are independent of mini-halo mass, and are of the order of the age of

the Milky Way. The authors also found that for more massive mini-haloes, the estimated

disruption time-scales increase rapidly with increasing mass.

12



Because of the complexity of the problem an analytic model of substructure evolu-

tion will be approximative. The validity of the approximations it makes can be tested

with numerical simulations of substructure evolution. Then such a semi-analytic model

will be useful where cosmological simulations are of no help. These semi-analytic models

should describe important physical phenomena going on in minor mergers, and predict

how subhalos lose mass on their orbit in the host halo.

Semi-analytic models of mass loss usually take into account two major processes: Dy-

namical friction and tidal interactions: (a) Dynamical friction is due to the subhalo trav-

eling through a sea of dark matter particles. As the subhalo gravitationally drags the

particles and forms a region of higher density behind it, it suffers a steady deceleration

due to the gravity of that dense region. The effect of this friction on the motion of the

subhalo around the host is the shrinking of its orbit. (b) Tidal interactions are due to

the inequality of the gravitational forces from the host on different parts of the subhalo.

These tidal forces strip away the outer regions of the satellite and might even result in its

disruption. In addition to this unbinding effect on the outer regions of the satellite, tidal

forces can also heat the inner regions of the satellite and result in its expansion that would

in turn result in more mass loss. Tidal stripping reduces the mass of the satellite and as a

result reduces the effect of dynamical friction. Therefore tidal interactions and dynamical

friction work against each other to some degree.

Taylor & Babul (2001) have developed a simple analytic scheme that accounts for these

processes. The parameters of the model were calibrated to fit the numerical results of

Velazquez & White (1999). Athough the model matches simulations very well, there are

some discrepancies found. The high sensitivity of the satellite evolution to its density

profile was suggested by the authors as a possible explanation for these discrepancies.

Does heating for instance affect the density profile of the subhalo? Hayashi et al. (2003)

have found that the density profile of satellites changes as a function of their bound mass

throughout their evolution and Kazantzidis et al. (2004b) have found that the density

profiles of substructure halos can be well fitted with a power-law central slope that is

unmodified by tidal forces even after the tidal stripping of over 99% of the initial mass

and an exponential cutoff in the outer parts. Another question about heating is how it
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transfers energy to the satellite. Green & Goodwin (2007) have found that the fractional

energy input in simulations agrees well with the impulse approximation. The Taylor &

Babul model also uses the impulse approximation to calculate heating.

As dynamical friction decreases when the ratio Mhost/Msat increases, for a situation

in which the mass of the satellite is much smaller than the mass of the halo the effect

of dynamical friction is small. In addition dynamical friction is relatively easy to model

analytically while modeling mass loss is much harder (Taylor & Babul, 2001). Therefore it

is useful to isolate heating from other effects such as dynamical friction in order to study

it. To do so in this thesis we consider a satellite orbiting around a host. The host will be a

static non-discretized NFW potential. As a result we will not have dynamical friction. The

satellite will lose mass due to tidal stripping and heating only. We will use the simulations

described in chapter 2 to compare our model with. The tidal approximation, impulse

approximation and a model incorporating both will be described in chapter 3. In chapter 4

we will adjust the parameters of the model based on energy criteria to fit numerical results.

We will also look at the change of the density profile and its effects on mass loss. Finally

in chapter 5 we will look at the effect of resolution on the evolution of the subhalo.
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Figure 1.4: Particle number in high-resolution N-body simulations of cosmic structure as

a function of publication date, from Springel et al. (2005)
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Chapter 2

The Simulations

We need to simulate a satellite (or substructure) orbiting in a spherically symmetric dark

matter halo. Such a problem has two components: (a) The Halo: As we are neglecting the

effect of dynamical friction we do not need to discretize the halo. Therefore the halo will

be simply represented by a static NFW density profile. The parameters of such a profile

will be described in section 2.1.1. (b) The Satellite will be discretized with N particles.

In the highest resolution N = 105. The customary way to adjust the initial conditions of

the satellite will be briefly reviewed in 2.1.2. The satellite will first evolve in isolation to

reach equilibrium and then will evolve in the gravitational field of the background halo. In

section 2.2 the code that simulates this evolution as well as the orbit of the satellite in the

halo will be discussed. Finally in section 2.3 we will look at how the satellite loses mass

according to the numerical results. The simulations analyzed here were originally carried

out by Andrew Benson, Eric Hayashi and Carlo Nipoti.

2.1 Initial Conditions

The simulations were run to produce two sets of data for this research. The two sets

correspond to two orbits with different parameters including different initial conditions for

the satellite and the halo. As one of the orbits is more eccentric than the other we will call

one OrbitC (more circular) and the other OrbitE (more eccentric).

16



2.1.1 Background Halo

The halo is a static NFW profile (Navarro et al., 1996). This density profile is given by:

ρNFW =
ρs

r/rs(1 + r/rs)2
(2.1)

Where rs is the scale radius. As the scale radius gives us the relative scales of the halo and

the satellite, we will choose rs, satellite = 1 for the two orbits. For OrbitC, rs, halo = 16 and

for OrbitE, rs, halo = 4. We can find the mass enclosed in radius R by:

M(< R) = 4π

∫ R

0

ρNFW (r)r2dr = 4π

∫ R

0

ρs
r/rs(1 + r/rs)2

r2dr (2.2)

M(< R) = 4πρsr
3
s

[
ln(

rs +R

rs
)− R

rs +R

]
(2.3)

This expression goes to infinity when R → ∞. We conventionally define the mass of

the halo as its virialized mass, that is the mass within the virial radius rvir. Therefore the

profile can be truncated at this radius. However a sharp truncation does not correspond

to a physical system. Springel & White (1999) and Kazantzidis et al. (2004a) have used

an exponential cutoff for r > rvir. This cutoff starts at the virial radius and turns off the

density profile on a scale rdecay.

We defined the concentration of a dark matter halo as c = rvir/rs in the introduction.

The concentration of the background halo is chalo = 8 for OrbitC and chalo = 4 for OrbitE.

The mass of the halo enclosed in the virial radius is given by:

M(< rvir) = 4πρsr
3
s

[
ln(

rs + rvir
rs

)− rvir
rs + rvir

]
(2.4)

From the definition of concentration we can rewrite this as:

M(< rvir) = 4πρsr
3
s

[
ln(1 + c)− c

1 + c

]
(2.5)
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Parameter OrbitC OrbitE

rshalo
16 4

rssatellite
1 1

chalo 8 4

csatellite 16 4

Mvirhalo
512 64

Mvirsatellite
1 1

Table 2.1: The NFW Profile Parameters

The virial mass of the halo M(< rvir) or simply Mvir is one of the parameters of the

problem. We choose our units so that the virial mass of the satellite is one and the virial

mass of the halo is Mvir = 512 for OrbitC and Mvir = 64 for OrbitE. If we choose the scale

radius rs, the concentration c and the virial mass Mvir as the main parameters of the halo

profile, the scale density will be a function of these parameters (from equ. 2.5):

ρs =
Mvir

4πr3
s

1

ln(1 + c)− c/(1 + c)
(2.6)

In table 2.1, the NFW profile parameters of the two numerical orbits are summarized.

Having defined our halo with its density parameters, we can now find its gravitational

potential. After all the only effect of the halo in our problem is the gravitational field it

induces on the satellite. As the halo is spherically symmetric its gravitational potential

φ(r) at radius r will be the sum of two terms (Binney & Tremaine, 1994):

φ(r) = −4πG
[1

r

∫ r

0

ρ(r′)r′
2
dr′ +

∫ ∞
r

ρ(r′)r′dr′
]

(2.7)

The first term is equivalent to the potential of the mass enclosed inside radius r, φ1(r) =

−GM(<r)
r

. The second term is the sum of the potentials of individual spherical shells from

radius r to ∞. If we take the above integrals for the NFW density profile (equ. 2.1), we

find the following expression:
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Figure 2.1: The absolute value of the NFW potential of the background halo.

φ(r) = −4πGρsr
3
s

ln(1 + r/rs)

r
(2.8)

If we use equ. 2.6 to substitute for ρs we find:

φ(r) = −GMvir

r

ln(1 + r/rs)

ln(1 + c)− c/(1 + c)
(2.9)

Figure 2.1 shows −φ(r) versus r in log scale for the halo parameters of OrbitC (table

2.1). We set G = 1 throughout this thesis. As G = 4.4987 × 10−3pc3M−1
� Myr−2, setting

G equal to 1 will fix the time unit of the problem given the distance and mass units. For

instance for a length unit of 1 pc and a mass unit of 1 solar mass, the time unit is 14.91

Myr (≈ tH/1000). For a length unit of 1 kpc and a mass unit of 109M� , the time unit is

the same. For a length unit of 10 kpc and a mass unit of 109M�, the time unit is 471.5

Myr (≈ tH/30), where tH ≡ 1/H0 ≈ 13.8 Gyr.
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It is worth mentioning that as the background halo is static and doesn’t evolve nu-

merically all of the above quantities could be found analytically. The situation is more

complicated for the satellite.

2.1.2 Satellite

We would like the satellite to have the same initial density profile as the halo, because

the satellite is a sub-halo and the NFW profile is universal. But the satellite consists

of N particles. Therefore we should find a distribution of particles that would result in

an NFW profile. A collisionless system of particles is fully described by its distribution

function f(x, v, t), giving the number of particles centered at position x in the volume d3x

with velocities centered around v in the small range d3v. Such a function satisfies the

collisionless Boltzmann equation (Binney & Tremaine, 1994):

∂f

∂t
+ v · ∇f −∇φ · ∂f

∂v
= 0 (2.10)

If we have this distribution function the spatial density ρ(r) can be easily found:

ρ(r) =

∫
f(r, v) d3v (2.11)

The inversion of the above integral gives the distribution function as a function of the

density profile given that the velocity distribution of the satellite should support it against

its self-gravity and be in equilibrium. As ρ(r) is a function of position only and f(r, v) is

a function of both the position and velocity, this inversion is difficult and involves making

assumptions about the velocities of particles. It has been first studied by Eddington (1916).

Different methods have been used to find suitable equilibrium distribution functions for

the NFW profile.

To avoid this difficult inversion, the velocity distribution of the satellite is taken to be

Maxwellian initially, in other words:

f(r, v) = 4π
( 1

2πσ2

)3/2
v2 exp(−v2/2v2

r) (2.12)
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Figure 2.2: Satellite at time zero: The red

contour shows the scale radius r = rs = 1

and the blue region in the middle corresponds

to r < 0.3 where the density falls below the

NFW profile as seen in 2.3
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Figure 2.3: Satellite’s initial density in log

scale: The black dots are the densities of thin

shells of radius r and thickness dr = 0.004.

The red dashed curve is the theoretical NFW

density profile.

Where:

v2
r =

1

ρ(r)

∫ ∞
r

ρ(r′)
GM(r′)

r′2
dr′ (2.13)

This in turn is given by the second moment of the collisionless Boltzmann equation assum-

ing the profile is initially spherical and isotropic (Hernquist, 1993). The satellite is then

allowed to relax in isolation before the main potential is turned on. Figure 2.2 shows the

xy projection of the satellite’s final mass distribution with the concentration parameter

c = 16. Thus the virial radius is 16 as the scale radius of the satellite is set to 1. We

see that the satellite has been exponentially truncated after radius 16 instead of a sharp

truncation. Figure 2.3 shows the density profile of the satellite. Each of the black dots

is the average density of a thin shell of thickness dr = 0.004 centered at radius r. The

red dashed curve is the analytical NFW density profile given by equ. 2.1 with density

parameters c = 16, rs = 1 and Mvir = 1.
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We see that the density of the satellite falls below the NFW density in radii larger than

rvir = 16. This is due to the exponential cutoff imposed on the satellite. The density

is almost exactly NFW at smaller radii until around r = 0.3 where it falls below the

NFW density again. The r < 0.3 region corresponds to the blue region in the middle

of the satellite in figure 2.2. This discrepancy is probably due to the softening length of

the simulation being larger than the central radii. In the highest resolution simulation

(N = 105), the softening length is ε ' 0.126 in the units described in section 2.1.1 where

rs = 1. The discrepancy may also arise after the isolated evolution of the satellite because

the initial distribution function has not exactly been in equilibrium. Kazantzidis et al.

(2004a) have shown that this behavior is seen in locally Maxwellian distributions and have

introduced methods to produce equilibrium distribution functions.

Figure 2.4 illustrates the radial velocity dispersion of the satellite. Each dot is the

velocity dispersion σr = (vr − vr)2 calculated in a thin shell of thickness dr = 0.004 centered

at radius r. We see that the radial velocity dispersion has its maximum at r = rs = 1

where the behavior of the profile is isothermal as seen in figure 1.3.

2.2 Evolution of the Satellite

Given this initial distribution of particles of the satellite that results in a near-equilibrium

NFW profile, the center of mass of the satellite will be given an initial velocity and the

satellite will start orbiting in the gravitational potential of the background halo. Each

particle of the satellite will feel the gravitational field of the other particles in addition to

the gravity of the background halo. The code that has been used to simulate the motion of

particles and the evolution of the satellite is called GADGET (GAlaxies with Dark matter

and Gas intEracT). It has been developed by Springel et al. (2001). As its name indicates

the code was originally designed to simulate both the baryonic component and the dark

matter component of the galaxy. Here only the gravitational part of the code has been used

as we do not have gas in our problem. In GADGET, as in most other N-body simulations of

collisionless dark matter, a softening length is introduced in the gravitational potential in

small separations. This is done to avoid large-angle scatterings in two-particle collisions, as
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Figure 2.4: Satellite’s initial velocity dispersion. Each dot is the velocity dispersion calcu-

lated in a shell of thickness dr = 0.004 at radius r.

the particles used in the simulations are 1070 times more massive than the Gev candidates

for the dark matter particle. This softening length imposes a spatial resolution limit. As

mentioned in the previous section, the softening length is ε ' 0.126 in the units where

rs = 1 in the highest resolution simulation (N = 105). To decrease the effect of two-body

relaxation, we need to increase the number of particles in the simulation. The effect of

two-body relaxation on the evolution of the satellite and the problem of resolution limits

will be inspected in more detail in chapter 5.

GADGET uses a tree method to calculate the gravitational forces between the parti-

cles. In this method the particles are arranged in different groups. Instead of calculating

the force on each particle from all the other particles, GADGET finds the low-multipole
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approximation of the force on the particle from each distant group. In this way the com-

putational cost is reduced to order N log(N), where N is the number of particles. This

imposes a force resolution limit. The force becomes more accurate in higher moments of

the multipole expansion, but to make the code efficient the multipole expansion is cut at

the quadropole.

As a time integrator, GADGET uses a variant of the Leapfrog method, which introduces

a time resolution (for details see Springel et al. (2001)). In this simulation we follow the

evolution of the satellite in 50 time steps. Theoretically, the orbit of an object in a spherical

gravitational potential is governed by Newton’s law of motion:

d2−→r
dt2

= F (r)êr (2.14)

Where F (r) is the force per unit mass. If we use plane polar coordinates (r, ψ) we find:

r̈ − rψ̇2 = F (r) (2.15)

2ṙψ̇ + rψ̈ = 0 (2.16)

Integrating the second equation gives one of the integrals of motion, the angular momen-

tum:

r2ψ̇ = constant ≡ L (2.17)

And integrating the first equation (see Binney & Tremaine (1994)) gives another integral

of motion, the energy:

E =
1

2
ṙ2 +

1

2
(rψ̇)2 + φ(r) (2.18)

Therefore to constrain the orbit of the satellite we need the initial r, ṙ and ψ̇. In both

OrbitC and OrbitE, we start at apocenter so ṙinitial is set to 0. If Lc is defined as the

angular momentum of a circular orbit with the same energy, the circularity parameter e

is defined as e = L/Lc. The orbits are chosen to have specific values of e. In OrbitC the

satellite is given a tangential velocity ψ̇ = vt = 1.34396 at its apocenter r = ra = 171.4336

and in OrbitE a tangential velocity ψ̇ = vt = 0.76242 at the apocenter r = ra = 25.183.

These choices result in circularity parameter e = 0.9 for OrbitC and e = 0.6 for OrbitE.

These two orbits are illustrated respectively in figure 2.5 and figure 2.6. As we see OrbitE is
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Figure 2.6: OrbitE

more eccentric. Both orbits form a “rosette” which is the typical form of orbits in spherical

potentials. The orbits precess backwards, at a precession rate which can be analytically

calculated having the energy and angular momentum of the orbit (Binney & Tremaine,

1994). Giving the center of mass of the satellite its initial orbital position and tangential

velocity, GADGET simulates its evolution in the next 50 outputs.

Figure 2.7 shows this evolution. The yellow points are the positions of the center of

mass of the satellite. The satellite starts in the top left plot at the apocenter of its orbit

with the initial conditions described above. Then as it moves on the orbit in subsequent

steps it forms tidal arms backward and forward, one of the arms inside the orbit and the

other outside. The particles in the arms are the ones that are more under the effect of

the background potential than the potential of the satellite and have separated or become

“unbound”. The dense core of the satellite stays bound (see figure 2.9).

As we see in figure 2.7, the orbit of the satellite does not shrink. If we had discretized

the background halo then dynamical friction would have slowed the satellite and made it

go to smaller radii. Here as the apocenter distance ra stays constant the satellite loses

mass solely due to its tidal interactions with the background halo. These tidal interactions

are responsible for producing the tidal arms of the satellite.
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2.3 Mass Loss

To be able to ask how much of the mass of the satellite gets lost as it orbits in the

background halo, we should first specify what we mean by bound mass. There is a use-

ful iterative criterion for specifying the particles that are gravitationally captured by the

satellite and are thus bound to it. This criterion was first introduced by Tormen et al.

(1998). In each step:

(1) Only the particles are chosen that were bound at the previous time step. For

instance at step = 0 these will be all the particles of the satellite and at step = 1 the

particles bound in step = 0.

(2) The total energy of each particle is calculated by summing the potential energy

resulting from the distribution of the satellite’s particles and the kinetic energy calculated

in a reference frame moving with the average velocity of all particles.

(3) Particles with positive energy are removed.

(4) Energies are calculated again using the new set of particles.

The last two steps are repeated until the number of bound particles (with negative

energy) doesn’t change. This gives a numerical measure of the bound mass of the satellite.

Figure 2.8 shows the fraction of the bound mass of the satellite versus time step. We see

this fraction decreases steeply at first and eventually flattens. Mass loss occurs rapidly

around the pericenter of each orbit, and slows at apocenter. About 40% of the mass stays

bound at the end. Figure 2.9 illustrates the satellite at its zeroth time step. The particles

are colored with their unbinding step. As we see the particles in the dense core of the

satellite with r < 4 (for OrbitC) stay bound to the satellite until the last time step.

This measure for the self-bound mass of the satellite has two shortcomings and therefore

should be considered as a good approximation of mass loss rather than an exact criterion.

The first one is that it definitely unbinds particles, which means that as soon as a particle’s

energy goes positive in a certain time step of the simulation it definitely gets unbound. This

gives rise to the perfectly monotonic decrease of mass seen in figure 2.8. However in reality

it takes time for a particle’s velocity to reach the velocity dispersion of the background halo
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and thus it might stay around the satellite for a while and thus might be recaptured by the

satellite’s gravitational field. This suggests that a better mass loss curve would have small

fluctuations rather than being perfectly monotonic. As these fluctuations are very small

and we worry mainly about the long term evolution of the satellite this can be neglected.

A second problem is that the criterion is energy based. In other words it assumes that

only particles with negative energies are bound to the satellite. However, energy is not the

only integral of motion for a particle’s orbit. Other integrals of motion can give rise to

bound orbits around the satellite. The theoretical treatment of these integrals of motion

is described in detail in Binney & Tremaine (1994). The authors as well as others they

refer to have argued that the phase-space density of these kinds of orbits decreases rapidly

after the so-called tidal radius of the satellite described in the next chapter. Therefore this

second shortcoming doesn’t introduce much error either.

As a result, we will choose this numerical criterion as a trustable measure of the bound

mass of the satellite. In the next chapters we will analytically model mass loss. Figure 2.8

will be our reference mass loss curve, as the main purpose of our semi-analytic model is to

predict mass loss as closely as possible to the numerical iterative result.
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Figure 2.7: Evolution of the satellite in OrbitC: The bottom right plot shows OrbitC with

the yellow dots on it representing the center of mass of the satellite in 50 steps of the

simulation. From top left to right we see the evolution of the satellite in time steps 0, 5,

10, 15, 20, 25, 30 and 40 of the simulation.
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Figure 2.8: Mass Loss: Mbound versus Minitial, where Mbound is the bound mass according

to the numerical iterative result described in section 2.3.
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Figure 2.9: Unbinding step of particles, in other words the step at which the energy of the

particle becomes positive according to the iterative criterion and results in its unbinding

from the satellite. The particles in the core r < 4 stay bound to the satellite until the end

of the simulation.
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Chapter 3

Tidal Model

As the satellite orbits in the host halo it gradually loses mass. The criterion described in

section 2.3 gives a numerical measure of this mass loss. In this chapter we want to find an

analytic model predicting mass loss based on a few physical phenomena. If we look at figure

2.9 we see that particles getting unbound in each time step of the simulation form almost

spherical shells around the satellite’s initial mass distribution. Based on this, we may

intuitively postulate that in each time step, particles beyond a certain radius get unbound

from the satellite due to the gravitational potential of the host halo. As the numerical

mass loss criterion is an energy based criterion, this radius should be energy dependent. An

approximative approach based on this assumption is the tidal approximation that truncates

particles beyond a certain tidal radius. This approach is a steady state approximation of

mass loss and doesn’t take into account structural changes of the satellite due to tidal

shocks. Therefore it is not enough to adequately predict mass loss. Heating due to tidal

shocks coupled with tidal truncation can more effectively model mass loss. The tidal

approximation will be described in section 3.1. An approximative measure of tidal shocks

(the impulse approximation) will be studied in section 3.2. The effect of virialization will

be described in section 3.3.
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3.1 Tidal Truncation

Astrophysical objects such as globular clusters have been observed to have sharp edges.

At first sight this might seem in conflict with our expectations. As globular clusters pass

through the galactic plane we would expect orbital diffusion to erase sharp features in their

structure (Binney & Tremaine, 1994). von Hoerner (1957) studied the internal structure

of globular clusters and concluded that beyond a “radius of stability” called tidal radius,

stars are swept away by external forces. The same approach can be taken for our satellite

orbiting in the dark matter halo. Particles of the satellite feel tidal forces from the halo.

These tidal forces increase the energy of the particles and those passing the tidal radius

will have positive energy and will get unbound. Therefore we can truncate the satellite at

its tidal radius as it orbits around the host halo. We start by estimating the tidal radius

in a simple situation where the host is a point masse at distance R from the satellite.

A particle’s distance from the center of the satellite is r � R. The mass of the host is

Mhost and the satellite’s mass inside radius r is Msat(< r). The acceleration at the center

of the satellite toward the host is GMhost/R
2. The same acceleration at the position of

the particle is GMhost/(R − r)2. The difference of these two accelerations gives the tidal

acceleration of the particle due to the host force in an inertial frame centered on the host:

atidal =
GMhost

(R− r)2
− GMhost

R2
= GMhost

[ 1

(R− r)2
− 1

R2

]
(3.1)

As r � R we can approximate the term in brackets and the tidal acceleration becomes:

atidal '
2 GMhost r

R3
(3.2)

The acceleration of the particle toward the satellite is:

asat =
GMsat(< r)

r2
(3.3)

The radius at which atidal = asat is called the “tidal radius”. If the particle passes

this radius the tidal force from the host will be greater than the satellite’s gravity and the

particle will get unbound. From equating 3.2 and 3.3 we can obtain this radius:

rt = R
[
0.5

Msat(< rt)

Mhost

]1/3

(3.4)
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Rearranging equation 3.4 we find:

Mhost

R3
= 0.5

Msat(< rt)

r3
t

(3.5)

In other words with a point mass host the tidal radius of the satellite is a place where the

average density of the satellite is twice the average density of the host:

ρ̄sat(< rt) = 2 ρ̄host(< R) (3.6)

This expression of the tidal radius was first found for globular clusters moving towards the

galactic plane by von Hoerner (1957).

Now we want to find a more general expression of the tidal radius for a satellite on

a circular orbit around a spherically symmetric mass distribution with a given potential

Φ(R). For this we choose our coordinate system to be centered at the center of mass of

the satellite and co-rotating with it so that its x -axis points toward the center of the host.

The angular velocity of the motion of the coordinate system around the host is Ω. As the

orbit is circular Ω is constant. The fact the orbit is circular also implies that the coordinate

system needs to self-rotate with the same angular velocity as its orbit for the alignment of

its x -axis. In this frame the center of the host halo is at ~Rhalo and the position of a particle

of the satellite is ~r. The accelerations of this particle due to the host halo and the satellite

are respectively:

~ahost(~r) = −∇Φ(|~Rhost − ~r|) (3.7)

~asat(~r) = −GMsat(< r)

r3
~r (3.8)

As the frame is non-inertial its acceleration gives rise to fictitious forces on the particle.

The acceleration of the frame’s motion relative to an inertial frame such as a static frame

at the center of the host halo is:

~aframe = −∇Φ(Rhost) + ~r Ω2 (3.9)

The tidal radius is where the following equation holds:

~ahost − ~asat = ~aframe (3.10)
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Figure 3.1: Schematic illustration of the satellite centered at point C moving on a circular

orbit around the host which is a point mass positioned at A.

Substituting for each of the accelerations we have:

−∇Φ(|~Rhost − ~rt|) +
GMsat(< rt)

r3
t

~rt = −∇Φ(Rhost) + ~rt Ω2 (3.11)

∇Φ(Rhost)−∇Φ(|~Rhost − ~rt|) +
GMsat(< rt)

r3
t

~rt = ~rt Ω2 (3.12)

If r � Rhost then we have:

∇Φ(Rhost)−∇Φ(|~Rhost − ~rt|) '
d2Φ(R)

dR2

∣∣∣
~rt
~rt (3.13)

Therefore equation 3.12 becomes:

d2Φ(R)

dR2

∣∣∣
~rt
~rt +

GMsat(< rt)

r3
t

~rt = ~rt Ω2 (3.14)

d2Φ(R)

dR2

∣∣∣
~rt

+
GMsat(< rt)

r3
t

= Ω2 (3.15)
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We can find the tidal radius from equation 3.15:

rt =
[ GMsat(< rt)

Ω2 − d2Φ(R)
dR2

∣∣∣
~rt

]1/3

(3.16)

It is interesting to note that if Φ(R) corresponded to the potential of a point particle

Φ(R) = −GM/R, then the orbital velocity around it would be keplerian Ω =
√
GM/R3

and d2Φ(R)
dR2 = −2GM/R3. Therefore putting these in the above equation and rearranging

we would get:

ρ̄sat(< rt) = 3 ρ̄host(< R) (3.17)

Therefore for a circular orbit, the tidal radius happens when the density contrast is 3 rather

than 2 as the first situation with two inertial point particles.

To find the general average density contrast at the tidal radius we rearrange equation

3.16:
Msat(< rt)

4/3 π r3
t

=
1

4/3 π G

[
Ω2 − d2Φ(R)

dR2

∣∣∣
~rt

]
(3.18)

We define Ωc =
√
GMhost/R3 as the angular velocity of a circular orbit of radius R around

the host. We can rewrite equation 3.18 as:

Msat(< rt)

4/3 π r3
t

=
1

4/3 π G

[ Ω2

Ω2
c

− 1

Ω2
c

d2Φ(R)

dR2

∣∣∣
~rt

] GMhost

R3
(3.19)

Which can be written as:

ρ̄sat(< rt) = η ρ̄host(< R) (3.20)

Where:

η =
Ω2

Ω2
c

− 1

Ω2
c

d2Φ(R)

dR2

∣∣∣
~rt

(3.21)

It is worth noting that Ω2/Ω2
c = L2/L2

c = e2 where e is the circularity parameter.

Equation 3.16 gives an approximative expression for the tidal radius. This approxi-

mation called the tidal approximation is based on two assumptions: (1) The orbit of the

satellite is circular. (2) The satellite is far from the host, rsat � Rhost so that the change
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of the gravitational potential of the host halo is small inside the satellite. None of these

two assumptions holds for our problem. First our satellite is on an elongated orbit around

the host and second it gets close to the center of the halo at pericentral passages.

King (1962) has argued that for elongated orbits the tidal radius just needs to be

calculated at the pericenter of the orbit from expression 3.16. From the point mass host

example discussed above (equ. 3.4) we saw that rt ∝ Rhost, which means that as we go

toward the center of the host halo the tidal radius of the satellite shrinks. This in turn

means that the tidal radius will be smallest at the pericenter of the orbit. According to

King (1962) the density profile of the satellite should be truncated when the tidal radius

is smallest.

Taylor & Babul (2001) suggested a better procedure. They used expression 3.16 as the

instantaneous tidal radius of the satellite. They chose the instantaneous angular velocity of

the satellite around the host halo as Ω in this expression. They calculated the tidal radii at

different positions of the satellite on its orbit. The satellite was truncated instantaneously

at each tidal radius. However as mentioned in section 2.3 it takes some time for the energy

of each particle that passes through the tidal radius to become positive. This timescale is

of the order of the orbital period of the satellite around the host. Taylor & Babul (2001)

assumed that the satellite mass beyond the tidal radius is lost over the course of one orbital

period, and scaled the mass loss accordingly.

Here I adopt the same procedure. I calculate the instantaneous tidal radii of the satellite

for 50 time steps on its orbit using equ. 3.16. The angular velocity in this equation will be

Ωinst = vperp/Rhost (the perpendicular component of the velocity of the center of mass of

the satellite divided by the distance of the center of mass to the center of the host halo).

The second derivative of the potential of the host halo will be calculated at the center

of mass of the satellite using the analytic expression of the NFW potential (equ. 2.9).

Calculating the potential at the center of mass of the satellite instead of doing so at the

tidal radius is valid in the rsat � Rhost limit, which is the limit of validity of the tidal

approximation. Figure 3.2 shows this tidal radius versus time step for the parameters of

OrbitC. The tidal radius has been scaled by the virial radius of the satellite (rvir = 16

in OrbitC). If we use a fixed Msat(< rt) = 1 in equ. 3.16 we will have the solid curve in
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Figure 3.2: The solid curve shows the tidal radius versus time, where the tidal radius is

calculated using a fixed Msat(< rt) = 1 in equ. 3.16. The red dashed curve shows the tidal

radius versus time, where Msat = Msat(< rt) of the preceding step in equ. 3.16.

figure 3.2. We see that this tidal radius is equal to the virial radius of the satellite at the

beginning when the satellite is at its apocenter (time step=0). This is logical as all the

particles are bound in time step zero. Then it goes to its minimum at the first pericentral

passage (time step=5), and goes back to its initial apocenter value and oscillates between

the maximum and minimum. However if we use a varying Msat(< rt) in equ. 3.16 (the

bound mass of the preceding time step calculated using MNFW (< rt) from equ. 2.3 where

rt is the tidal radius found in the preceding time step) we will have the red dashed curve in

figure 3.2. In this case the tidal radius will start by the same value, but will decrease more

as the tidal bound mass is now decreasing in equ. 3.16. As a result the tidal radius will

oscillate between a lower maximum and minimum. Figure 3.3 illustrates the tidal radius

of the satellite as a function of its center of mass distance from the center of the host. As
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Figure 3.3: Tidal radius versus distance from the center of the host for OrbitC. Both the

tidal radius and the distance have been scaled to the virial radii of the satellite and the

host halo.

we saw in equ. 3.4, rt ∝ Rhost.

Now that we have the tidal radii in different time steps, we want to predict mass loss.

We truncate the NFW mass of the satellite (from equ. 2.3) at each tidal radius and scale

this according to the Taylor & Babul (2001) criterion described above. In other words,

from the mass beyond the tidal radius in that step we only unbind a fraction dt/T , where

dt is the time between two subsequent time steps and T is a measure of the period of the

satellite around the host. More precisely, going from step i− 1 to step i:

Mi = Mi−1 − (
dt

T
)×

(
Mi−1 −MNFW, i [ < rt ]

)
(3.22)

Where MNFW (< rt) = 4πρsr
3
s

[
ln(1 + rt/rs)− rt/(rs + rt)

]
. We can use different measures

for T . Figure 3.4 shows this calculation for four measures of the period (the radial and
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azimuthal orbital periods of the satellite defined in appendix A and the instantaneous

period calculated as Tinst = 2π/Ωinst). The solid black curve is the numerical mass loss

curve from fig 2.8. The red solid curve is the analytic Mi from the tidal truncation (equ.

3.22). For the red dashed curve, we have looked at the simulation of the satellite in different

time steps and unbound particles beyond the tidal radius found from equ. 3.16. Therefore

this curve is not completely analytic and has used the particle positions in the simulation.

The first conclusion from this plot is that the tidal truncation model alone (red solid curve)

predicts less mass loss than the numerical results (solid black) in all cases. The second

conclusion is that a fixed orbital period such as the radial or azimuthal orbital periods

does not give the correct mass loss curve. More specifically, a fixed orbital period does

not reproduce the more rapid mass loss expected at pericenter and the less rapid mass

loss expected at apocenter. The third conclusion is that the best measure of the period of

the satellite for scaling mass loss in the tidal truncation is half the instantaneous period

(bottom right plot in fig. 3.4). With this scaling the tidal approximation predicts tidal radii

in an almost exact way (red dashed curve). It also predicts tidal mass loss correctly until

the first pericentral passage (time step=5, red solid curve). After that it diverges from the

numerical result. This divergence is due to the fact that the steady-state approximation

of the tidal truncation model doesn’t hold when the satellite is near the center of the host

halo. As we shall see tidal shocks become important at pericenter.
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Figure 3.4: Tidal Mass Loss. The solid black curve is the numerical mass loss curve from

fig 2.8. The red solid curve is the analytic Mi from the tidal truncation (equ. 3.22). For

the red dashed curve, we have looked at the simulation of the satellite in different time

steps and unbound particles beyond the tidal radius found from equ. 3.16. In the top

figures mass loss has been scaled with constant radial (left) and azimuthal (right) orbital

periods. In the bottom figures mass loss has been scaled with the instantaneous orbital

period (left) and half this period (right).
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3.2 Tidal Shocks

As we saw in the previous section, the tidal truncation model alone can not explain fully

the mass loss of the satellite. This is mainly because the tidal approximation is based

on the assumption that the distance of the satellite from the host is much bigger than

the radius of the satellite. In other words rsat � Rhost. This assumption gives rise to a

small tidal field that does not change appreciably the velocities of particles in orbit inside

the tidal limit of the satellite. Only at the tidal radius, the gravitational potential of the

satellite falls below the tidal field and this results in the unbinding of particles and the

truncation scheme explained in section 3.1.

However this assumption does not hold everywhere. When the satellite gets close to

the pericenter of its orbit the tidal field becomes strong enough to change the velocities of

particles inside the tidal limit. Since the duration of this strong tidal field at pericenter is

usually much less than the period of the orbit of a typical particle in the satellite this is

called a tidal shock. Tidal shocks have been first studied in other astrophysical contexts. For

instance Spitzer (1958) studied shocks induced by passing interstellar clouds accelerating

stars in a galactic cluster and Ostriker et al. (1972) studied the effect of tidal shocks on

the evolution of globular clusters. According to these past works in order to calculate the

effect of tidal shocks it is useful to make the “impulse approximation”.

3.2.1 Impulse Approximation

In order to do a simple calculation to understand tidal shocks we can use the schematic

figure 3.1 again. The satellite’s center of mass is at a distance R from the center of the host

halo. A particle at point B is orbiting in the satellite. This time R is small (the satellite

is at its pericenter). If the gravitational field of the host halo is g(R) at the center of the

satellite and is g(R− r) at the position of the particle, then the tidal field induced on the

particle will be g(R− r)− g(R). This tidal field will change the velocity of the particle so

that:
dv

dt
= g(R− r)− g(R) ' r

dg(R)

dR

∣∣∣
R

(3.23)
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∆v =

∫
r
dg(R)

dR

∣∣∣
R
dt (3.24)

∆v =

∫
r
dg(R)

dR

∣∣∣
R

dt

dR
dR ' ∆g(R) r

V (R)
(3.25)

Where ∆g(R) is the change of the gravitational field of the host at the center of mass

of the satellite during the shock period and V (R) is the velocity of the center of mass

of the satellite on its orbit around the host. The approximation in equ. 3.25 assumes

that the distance of the particle to the center of the satellite r does not change due to

the shock; only its velocity changes. In the impulse approximation, the tidal field changes

suddenly before the the satellite’s structure changes so that each particle experiences an

instantaneous change of velocity at a fixed position.

For this assumption to be valid we need:

dr � r (3.26)

dr

dt
� r

dt
⇒ vr �

r

∆R/V (R)
(3.27)

Where ∆R is the change of position of the center of mass of the satellite during the

shock. In other words the shock is impulsive for particles far from the center of the satellite.

As we saw in figure 2.4 the radial velocity dispersion of particles in an NFW profile increases

up to the scale radius and then decreases, which means that large radii correspond to long

internal periods of the particles. Therefore another way of stating the shock criterion is:

tshock � torb (3.28)

Where tshock is the time scale of the shock and torb is the internal orbital period of the

particles in the satellite. Taylor & Babul (2001) have chosen tshock ' R/V (R) and torb

as the internal orbital period at the half mass radius rh of an NFW potential with the

parameters of our satellite. The authors have also used the following general expression

for the tidal acceleration in a Cartesian coordinate frame centered on the center of mass

of the satellite:

Atid = x(t) · ∇g
∣∣∣
(x=0)

= ga,b xb(t) ea (3.29)

42



Where x is the position vector in the satellite frame and ga,b = ∂ga/∂Xb. The Xi are the

coordinates in the frame of the host halo. Equation 3.29 is the generalization of equation

3.23. ∇g is calculated at the center of mass position of the satellite in equation 3.29. If R

is the position of the center of mass of the satellite in the host frame, then as the host has

a spherical NFW profile the gravitational force g is given by:

g(R) = −GMNFW (< R)

R3
~R (3.30)

Where from equation 2.3 we have:

MNFW (< R) = Mvir
ln(1 +R/rs)−R/(rs +R)

ln(1 + c)− c/(1 + c)
(3.31)

Mvir, rs and c are the NFW parameters of the host halo explained in the last chapter.

Substituting 3.31 in 3.30 we can write one of the components of g as:

gX = − GMvir

ln(1 + c)− c/(1 + c)

ln(1 +R/rs)−R/(rs +R)

R3
X (3.32)

As R =
√
X2 + Y 2 + Z2 we can find ∂gX/∂X, ∂gX/∂Y and ∂gX/∂Z. These calculations

are done in Appendix B. Overall we have nine terms for the ga,b = ∂ga/∂Xb. Substituting

these terms in equation 3.29 will give use the tidal acceleration of particles in the satellite.

We want to know how much work this tidal acceleration does on the particles during

the shock and how much energy is transfered to the satellite. Assuming the initial velocity

of a particle is v, the tidal acceleration will change it to v + ∆v where ∆v is of the order

of the expression in equation 3.25 where we have used the impulse approximation. As the

impulse approximation assumes that the shock only changes the velocity of particles and

not their position, this change of velocity will result only in a change of the kinetic energy.

Therefore the energy change per unit mass will be:

∆E = ∆K =
1

2
[ (v + ∆v)2 − v2 ] (3.33)

∆E = v ∆v +
1

2
(∆v)2 (3.34)

If we average this over all particles, the first term will average to zero because of the

different directions of v and we will have:

〈∆E〉 =
1

2
〈(∆v)2〉 (3.35)
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Using the impulsive ∆v from equation 3.25 the average change of energy will be of the

order of:

〈∆E〉 =
1

6

∆g2 〈r2〉
V 2

(3.36)

Where the 1/3 factor comes from averaging over the three spatial directions. This shift in

energy does not depend on the velocities of particles in the satellite. Kundic & Ostriker

(1995) calculated the higher moments of energy change due to tidal shocks and found that

the dispersion is large and does depend on the internal velocities of particles. For instance

the second moment is:

〈(∆E)2〉 =
1

3
〈v2(∆v)2〉+

1

4
〈(∆v)4〉 (3.37)

Which from Kundic & Ostriker (1995) is of the order of:

〈(∆E)2〉 =
1

9

〈v2〉 ∆g2 〈r2〉
V 2

+
5

64

r4 ∆g4

V 4
(3.38)

The shift in energy and energy dispersion will heat the satellite in pericentral passages.

Taylor & Babul (2001) have calculated the average first-order change of energy 〈∆E〉 and

have accounted for the higher moments introducing a factor εh:

∆Eshock = εh × 〈∆E〉 (3.39)

This is useful in our problem as the energy change due to heating can be compared with

the actual energy change in the simulation thus the parameter εh can be adjusted. In order

to calculate 〈∆E〉 the authors used the general expression for the tidal acceleration given

in equation 3.29 substituting for the nine ga,b terms calculated in Appendix B. They then

calculate the change of energy and average it over a sphere of radius r. If the shock is

divided into a series of n discrete time steps of length ∆t this average change of energy in

the time step n is:

〈∆E〉(tn → tn+1) =
1

6
r2 ∆t2

[
2 ga,b(tn)

n−1∑
i=0

ga,b(ti) + ga,b(tn)ga,b(tn)

]
(3.40)

For the details of this calculation see Taylor & Babul (2001). This approach is useful in

our problem as we want to calculate the effect of shock heating in discrete steps.
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3.2.2 Adiabatic Correction

We saw that the impulse approximation successfully predicts the average change of energy

as well as its higher moments due to tidal shocks. However the impulse approximation

has its limit of validity. The shock criterion 3.28 says that the approximation is valid only

for particles with low orbital velocities compared to the orbital velocity of the satellite.

For particles with high velocities or short orbital periods we can not use the term tidal

shock anymore as the shock time scale is large, and the gravitational potential varies slowly

compared to the change of the potential of the particle on its orbit. We know from orbital

dynamics that in slowly varying potentials the actions of motion are adiabatically invariant

(Binney & Tremaine, 1994). An action is the area of the two dimensional surface of an

orbit in phase-space. As for the orbits discussed here the action is proportional to the

energy (which is an integral of motion), the energy does not change. Therefore for these

types of short-period orbits there will be no heating.

As a result we have to include this effect and shut down heating when the internal

orbital periods become comparable or smaller than the shock time scale. This is done by

introducing an adiabatic factor A(x) where x = tshock/torb.

∆E = A(x)×∆Eshock (3.41)

This factor was first calculated by Spitzer (1958). He found that A(x) = e−2x2
. This

correction imposes an exponential cutoff on heating. However Weinberg (1994) showed

that if we think of the gravitational potential of the perturber (the host halo here) as

a sum of perturbations in different frequencies, some of those frequencies might resonate

with the internal frequencies of the satellite and actually produce heating. Taking this

into account, Gnedin & Ostriker (1999) concluded that instead of an exponential cutoff

the following less steep adiabatic function is more suitable:

A(x) = (1 + x2)−3/2 (3.42)

Figure 3.5 is a comparison of this adiabatic correction with the Spitzer correction. Gnedin

& Ostriker (1999) have pointed that for detailed simulations the power of the adiabatic
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Figure 3.5: Comparison of the Spitzer A(x) = e−2x2
(red dashed) and Weinberg A(x) =

(1 + x2)−3/2 (solid black) adiabatic corrections.

correction can be adjusted as a free parameter −γ. This correction A(x) = (1 + x2)−γ will

have a falling slope somewhere between the Weinberg and Spitzer corrections in figure 3.5.

3.3 Virialization

During the tidal shock an amount of energy ∆E is injected in the satellite. This has been

corrected adiabatically:

∆E = A(x)×∆Eshock (3.43)

It also takes into account the higher moments of energy change:

∆Eshock = εh × 〈∆E〉 (3.44)
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Where 〈∆E〉 is calculated during the shock using equation 3.40. Therefore the energy

change can be summarized as:

∆E = A(x)× εh × 〈∆E〉 (3.45)

Now we want to know how this energy affects the satellite. The impulse approximation used

in calculating 〈∆E〉 and its higher moments assumed that the tidal field of the satellite only

changes the velocities of particles and not their positions. This means that the additional

energy is in the form of kinetic energy:

∆E = 〈∆K〉 (3.46)

We know that for a physical system to remain stable it has to redistribute its energies

in a way that satisfies the virial theorem. In other words:

− 2 〈K〉 = 〈P 〉 (3.47)

If we assume that the satellite was in virial equilibrium before the shock and evolves to

virialize after the shock we will have:

〈E2〉 = 〈E1〉+ ∆E = 〈K1〉+ 〈P1〉+ ∆E (3.48)

− 2 〈K1〉 = 〈P1〉 (3.49)

Therefore:

〈E2〉 = 0.5 〈P1〉+ ∆E (3.50)

The virialization of the satellite gives us:

〈E2〉 = 〈K2〉+ 〈P2〉 = 0.5 〈P2〉 (3.51)

Equating 3.50 and 3.51 we will have:

〈∆P 〉 = 2 ∆E (3.52)

This is the magic of virialization! We started by giving particles kicks in kinetic energy

with the average 〈∆K〉, and the satellite redistributes its orbits in phase space in a way

that results in two times that change in potential energy.

47



This change of potential energy can be interpreted in two ways. The first one can relate

it to a decrease in the binding energy and gravitational potential of the satellite due to the

unbinding of its particles at the shock. The second interpretation is the expansion of the

satellite due to heating. We will see in the next chapter that this really corresponds to an

expansion. If we assume the satellite expands in a way that particles move from position

r to r + dr and the sphere contains mass M , the potential energy change will be:

dφ ∝ d (
M

r
) ∝ M

r2
dr (3.53)

We assume we do not have shell crossings so that M does not change. The way average

density changes in this type of expansion is:

dρ̄ ∝ d (
M

r3
) ∝ M

r4
dr (3.54)

Therefore:

dρ̄ ∝ (1/r2) dφ (3.55)

We saw in equation 3.52 that because of virializaton the change of potential energy is

proportional to the change of energy due to heating, therefore:

∆ρ̄ ∝ (1/r2) ∆E (3.56)

∆ρ̄ ∝ (1/r2) A(x) εh 〈∆E〉 (3.57)

From 3.40 we see that 〈∆E〉 ∝ r2. As a result ∆ρ̄ will not have an explicit radial depen-

dence. If we use 3.40 to substitute for 〈∆E〉 :

∆ρ̄ ∝ 1

6
A(x) εh ∆t2

[
2 ga,b(tn)

n−1∑
i=0

ga,b(ti) + ga,b(tn)ga,b(tn)

]
(3.58)

There is still an implicit dependence on radius in A(x). We know that the adiabatic

correction truncates toward the center of the satellite where orbital periods are shorter than

the shock time scale. In modeling mass loss we will use an average adiabatic correction

A(x̄) where x̄ is the orbital period at the half mass radius of the satellite over the shock time

scale. This new correction will have a similar effect, this time without a radial dependence.

Equation 3.58 gives us a constant shift in density over all radii at the shock. We will

have a closer look at average density changes in the the next chapter.
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A satellite expanded in the above fashion will have a smaller tidal radius, and therefore

will lose more mass than in the steady-state regime. In the next chapter we will see how

we can use this tidal model to effectively predict mass loss.
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Chapter 4

Evolution of Substructure

In the last chapter we saw that two processes should be taken into account when studying

the satellite’s evolution: (1) Tidal truncation, where all matter beyond a tidal radius gets

unbound in a time scale of the order of half the orbital period of the satellite around the

host; and (2) Tidal shocks at pericentral passages of the satellite that heat it and make it

expand. This expansion will decrease the tidal radius resulting in more mass loss. It will

also affect the structure of the satellite.

To use the tidal model to predict mass loss, we will do the following: We will use the

tidal approximation to truncate the satellite throughout its evolution in the host system.

During shocks, we will calculate a smaller tidal radius based on the change of density of

the satellite due to heating described in the previous chapter. Then we will truncate the

mass of the satellite at those tidal radii. This results in a very accurate prediction of mass

loss. We will spend the remaining of the chapter investigating how the structure of the

satellite evolves and how this can explain the success of the tidal model.

The time scale of mass loss, T in equation 3.22 is one of the parameters of the problem.

It affects the amount of mass lost beyond the tidal radius. It can be readjusted. However

we prefer to keep the value of T found when applying tidal truncation to the satellite (figure

3.4) as that successfully predicted the tidal limit of the satellite given by the simulations.

This value was half the instantaneous orbital period of the satellite around the host halo.
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The tidal model’s prediction of heating and the change of density of the satellite during

shock (equation 3.58) has two free parameters that need to be adjusted: (1) The heating

parameter, εh is the signature of two main phenomena. First the fact that it accounts for the

higher moments of energy change. As we saw in section 3.3 the actual change of potential

energy that in turn results in density change is higher than the amount of heating at least

by a factor of two due to the virialization of the satellite. We will also account for this in

the heating parameter εh. (2) The power of the adiabatic correction, −γ needs to be chosen

as its value is somewhere between the Spitzer and Weinberg corrections. From previous

studies of the adiabatic correction (Gnedin & Ostriker, 1999; Taylor & Babul, 2001) we

choose γ = 2.5. This will be a suitable choice for predicting the amount of heating. The

heating parameter εh will be adjusted comparing the model with the numerical results

of OrbitC. We will then see whether these parameters are correct by using the model to

predict the mass loss of OrbitE.

4.1 Model Parameters

To adjust the heating parameter εh, we calculate the energy change due to heating and

adjust it to agree with the actual change of energy of the satellite calculated from the

simulation data of OrbitC. To calculate the latter, in each time step of the simulation

we choose the particles that are bound to the satellite according to the iterative criterion

described in section 2.3 plus the ones that have got unbound in that time step. Then we

subtract the orbital energy of the center of mass of the satellite from the energies of each

of these particles found in the frame of reference of the host halo and calculate the change

of the total bound energy of the satellite in that time step. We do not find the energies of

particles by simply adding their kinetic and potential energies in the frame of reference of

the satellite because this frame in non-inertial and does not conserve energy.

The change of energy due to heating is calculated only in shock periods. The criterion

for the shock is:

tshock/torb < 1 (4.1)

Where Tshock = Rcom/Vcom is the ratio of the distance of the center of mass of the satellite
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to the the center of the host halo to its orbital velocity. Torb is the internal orbital period

of the satellite calculated at its half mass radius. The value of the half mass radius of the

satellite depends on how one defines the bound mass of the satellite. The bound mass of

the satellite itself needs to be found after adjusting the heating parameter and predicting

the amount of mass loss of the satellite. Therefore we initially find the half mass radius at

the first step of the simulation. We use this value to adjust heating. We then predict mass

loss. This gives a measure of the bound mass of the satellite in each time step, therefore we

can find the correct values of the half mass radius at different steps. Then using these half

mass radii gives a better adjustment of the heating parameters. This kind of iteration can

be avoided if we use the measure of bound mass from the numerical criterion to find the

half mass radius and adjust the heating parameter. The shock criterion turns on heating

close to the pericenter and turns it off everywhere else. The heating is calculated using

equation 3.40 with ∆t being the duration of our time steps and r = rh the half mass radius

of the satellite.

Figure 4.1 shows the energy change of the satellite given by numerical results (black

solid curve) and the heating predicted by the tidal shock model (red dashed curve). As we

see, most of the heating happens at the first pericentral passage (time step = 5). There are

two small peaks at the second pericentral passage (time step ' 15). The shocking criterion

turns off heating during other parts of the orbit. I have adjusted the parameter εh to the

value below by fitting the first peak in energy change and heating.

εh = 3.4 (4.2)

This value of εh is higher than the value expected from Gnedin & Ostriker (1997) (εh=2.33)

and is closer to the value used by Taylor & Babul (2001) (εh=3).

The reason why the the predicted heating does not match the energy change very well

after the first peak is due to our approximative shock criterion. We assume that either the

whole satellite is under shock (when tshock < torb where torb is found at the half mass radius

of the satellite) or it is not. This assumption predicts heating at pericenter and predicts

zero heating everywhere else. However in reality, a fraction of the particles of the satellite

are under shock (when tshock < ti,orb where ti,orb is found for each particle) at each time
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Figure 4.1: Heating ∆E: The black solid curve is the energy change of the satellite given

by numerical results and the red dashed curve is the heating predicted by the tidal model.

step. Therefore we will have a net energy change in different steps of the simulation. This

net energy change will be highest at pericenter.

4.2 Mass Loss Revisited

Now that the parameters are adjusted and the model predicts the amount of heating during

shock periods, we can ask how this affects mass loss. If we assume the average density of

the satellite changes by an amount ∆ρ̄ given by equation 3.58:

∆ρ̄ =
1

6
(1 + x)−2.5 εh ∆t2

[
2 ga,b(tn)

n−1∑
i=0

ga,b(ti) + ga,b(tn)ga,b(tn)

]
(4.3)
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where εh = 3.4 and we put the first cumulative term in brackets equal to zero outside of

shock, then we can find a new set of tidal radii based on the new average densities. We

saw in section 3.1 that the tidal radius occurs where:

ρ̄sat(< rt) = η ρ̄halo (4.4)

Where:

ρ̄sat(< rt) =
3 Msat(< rt)

4 π r3
t

(4.5)

ρ̄halo(< rt) =
3 MNFW (< Rcom)

4 π R3
com

(4.6)

Where Rcom is the distance of the center of mass of the satellite to the center of the host.

η is given by the following expression:

η =
ω2

ω2
c

− 1

ω2
c

d2Φhost(r)

dr2

∣∣∣
Rcom

(4.7)

Where ωc is the orbital velocity associated with a circular orbit of radius Rcom around the

host, and ω is the instantaneous orbital velocity of the satellite around the host. If we put

ωc =
√

(1/R) (dΦ/dR) =
√
MNFW (< Rcom)/R3

com in the expression for η the tidal radius

equation 3.16 is recovered. If we didn’t have any expansion then equation 4.4 would be

written as:

ρ̄NFWsat(< rt) = η ρ̄halo (4.8)

This would give the tidal radii found in section 3.1 and shown in figure 3.2. If we calculate

the average change in density ∆ρ̄ given by 4.3 (where the first cumulative term is set to

zero outside of shock) in each time step and add it to the ∆ρ̄ of each of the previous time

steps we will find ∆ρ̄tot of that step, and the above equation becomes:

ρ̄NFWsat(< rm) + ∆ρ̄tot = η ρ̄halo (4.9)

If we solve this equation for rm it will give us a set of tidal radii illustrated in figure 4.2

as the red solid curve. These radii are smaller than the previous set of tidal radii found

without heating. Now if we truncate the mass of the satellite using equation 3.22 with a

scaling of half the orbital period of the satellite we will have a mass loss curve illustrated in

figure 4.3. We see that the tidal model agrees remarkably well with numerical results! To
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Figure 4.2: New set of tidal radii rm (red solid curve) calculated with heating included and

old set of tidal radii (black dashed curve) versus time step.

test the applicability of the model to other situations we use the same parameters εh = 3.4

and γ = 2.5 to apply the tidal model to OrbitE. In OrbitE the satellite is on a more

eccentric orbit and gets completely disrupted by tidal forces after 25 time steps. We see

in figure 4.4 that the tidal model predicts mass loss to high accuracy in this case too. We

conclude that in order to model mass loss analytically we need to take into account the

energy change due to heating to first-order. The higher orders will be accounted for by

the simple parameter εh. The updated tidal truncation scheme (taking into account the

total average change of density of the satellite due to heating) applied on an NFW density

profile will predict mass loss accurately. This prediction is completely analytic whereas the

agreement in figure 3.4 (bottom right) used the simulations data.

The density profile of substructures changes due to their expansion caused by heating.

This will be inspected in more detail in the following section.
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Figure 4.3: Mass loss curve of OrbitC predicted by the tidal model (dashed magenta)

agrees very well with the numerical mass loss curve (solid black).
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Figure 4.4: Mass loss curve of OrbitE predicted by the tidal model (dashed magenta)

agrees with the numerical mass loss curve (solid black).
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4.3 Density Evolution

The tidal model predicts mass loss accurately. However, there are a number of questions

that need to be answered. One of them is about the truncation method. We have used

the new set of tidal radii (solid red in figure 4.2) found by changing the average density

of the satellite in the tidal approximation to truncate an NFW profile. How is it that we

predict mass loss correctly truncating the unchanged profile? Another question is about

the tidal radii themselves. We saw in figure 3.4 (dashed red curve in bottom left figure)

that we can correctly calculate the mass loss of the satellite when we unbind the particles

of the simulation that fall outside of the old set of tidal radii (rt) found using the original

NFW profile. What is the connection between these two sets of tidal radii?

We can not say that the model is correctly describing the evolution of the satellite

without having answered these questions.

4.3.1 Expansion of the Satellite

To see whether the satellite really expands we look at the outer limits of different fractions

of its mass in the simulation. This is illustrated in figure 4.5 as well as the two sets of

tidal radii rt and rm. We see that the satellite’s different layers are expanding. We notice

three regimes of expansion: (1) Towards the center of the satellite expansion is very slow

and almost negligible. (2) Near the new and old tidal radii we have appreciable expansion.

(3) Outside the old tidal radius particles are unbound and part of the tidal arms of the

satellite stretching in two directions. Thus this latter does not correspond to expansion

from heating, but evolution of stripped material.

Using the simulation data, we calculate the densities in different shells at 5 apocenter

passages of the satellite. This calculation is carried out for the bound particles of the

satellite. These are shown in figure 4.6 with the NFW density profile as the dashed curves.

The profiles have been shifted in density for demonstration. We see that at time step = 0

(the first apocenter, top curve in figure 4.6), the satellite’s profile is NFW as expected. In

the subsequent orbits it starts to diverge from NFW as we go to larger radii. Inside tidal
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Figure 4.5: From bottom to top the black solid curves show the outer limits of respectively

10, 20, 30, 40, 50, 60, 70, 80, 90 and 100% of the mass of the satellite versus time step.

The red curve shows the old tidal radii rt and the blue curve shows the new tidal radii rm.

radius rm (blue points), the deviation is small but outside (red points) the density decreases

more rapidly. Hayashi et al. (2003) have studied the evolution of substructure numerically

and have found a similar decrease in density in the bound parts of the satellite. The

authors have empirically concluded that the following change of the NFW density profile

fits the simulation data:

ρ(r) =
ft

1 + (r/rte)3
ρNFW (r) (4.10)

Where ft and rte are calculated from the bound mass of the satellite using a polynomial

fit:

log10 rte = 1.02 + 1.38 log10mbnd + 0.37(log10mbnd)
2 (4.11)

log10 ft = −0.007 + 0.35 log10mbnd + 0.39(log10mbnd)
2 + 0.23(log10mbnd)

3 (4.12)
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Figure 4.6: Density of the satellite at

six apocenter passages calculated for the

bound particles compared to the NFW pro-

file (dashed curves). Blue points are inside

the new tidal radius rm and red points inside

the old tidal radius rt.

Figure 4.7: Density of the satellite at six

apocenter passages calculated for the bound

particles compared compared to the Hayashi

et al. fit (dashed curves). Blue points are in-

side the new tidal radius rm and red points

inside the old tidal radius rt.

This is shown in figure 4.7 as the dashed curves. We see that it fits the density of the

satellite well while slightly underestimating it in most radii. This fit depends on the bound

mass of the satellite at each time step of the simulation. Thus it can not be considered as

an analytic prediction unless it is coupled with a model predicting the bound mass of the

satellite. The authors do not explain why the density changes in the above way. They also

found that after a few orbits, tides tend to impose a well-defined outer cutoff in the mass

distribution of the satellite.

Our results confirm the conclusion of Hayashi et al. (2003) that the satellite’s bound

structure evolves. This is due to its expansion from heating at pericenter. This expansion

is not instantaneous but happens gradually after the pericenter passages of the satellite.
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4.3.2 New Density Profile

To find an analytic expression for the new density profile of the satellite, we use a similar

functional form as 4.10 but with ft = 1 and rte = rm (our analytically calculated tidal

radius):

ρnew(r) =
1

1 + (r/rm)3
ρNFW (r) (4.13)

This new density profile is shown in figure 4.8. We see that it agrees with the actual

density of the satellite better than the Hayashi et al. (2003) fits shown in figure 4.7. At

first the profile is NFW and then it diverges from it. It is now clear why expansion is

increased in r > rm (transition between blue and red in figure 4.8). It is because r/rm

becomes bigger than 1 and as it is to the power of three its effect becomes apparent. On

the other hand (r/rm)3 is close to zero when r < rm. This is why we have an NFW profile

close to the center of the satellite. This new density profile also has the advantage of being

analytic. The tidal radii rm can be calculated analytically over the course of the evolution

of the satellite.

The evolution of density in the way described by equation 4.13 answers our questions

about the validity of the method used to truncate the mass of the satellite. Neither rm

or rt are the exact tidal radii of the satellite as we have expansion and the steady-state

approximation of the tidal truncation method does not hold. The last bound particles

lie close to the rt tidal limit. This is why unbinding particles outside of rt resulted in

a correct mass loss curve (figure 3.4). The expansion of the satellite increases in radii

bigger than rm in a way that results to an outer cut-off in the mass distribution. This is

shown in figure 4.9 where the solid black curve is MNFW (< r) and the red dashed curve is

Mnew(< r) = 4π
∫ r

0
ρnew(r)r2dr versus r/rm. We see that the mass of the satellite converges

to a value that is equal to the mass of an NFW profile at the tidal radius rm. As a result

we can choose the new set of tidal radii rm to truncate the NFW density profile.

Kazantzidis et al. (2004b) have concluded that the central profile of substructures can

be well fitted with a power-law central slope that is unmodified by tidal forces even after the

tidal stripping of 99% of the initial mass and the outer parts can be truncated exponentially.

We see from 4.9 that this would be a sensible approximation to the behavior of the satellite.
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Figure 4.8: Density of the satellite at six apocenter passages compared to the density

profile of equation 4.13 (dashed curves). Blue points are inside the new tidal radius rm

and red points inside the old tidal radius rt.

This behavior is more accurately predicted by the tidal model.

Figure 4.10 shows a comparison of the average densities of the NFW profile and the

updated density profile of the satellite (given by equation 4.13) at the 10th time step of

the evolution of the satellite when rm ' 6.5.

ρ̄new =
Mnew(< r)

4/3 π r3
=

∫ r
0
ρnew(r′)r′2dr′

r3/3
(4.14)

We see that they differ by roughly a constant ∆ρ̄ in radii between rm and rt. This

means that the assumption of the tidal model that heating gives rise to an average density

change that is constant with radius is roughly correct in regions between the two sets of

tidal radii found with and without heating.
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Figure 4.9: Mass of new profile compared to NFW. The solid black curve is MNFW (< r)

versus r/rm and the red curve is Mnew(< r) versus r/rm. The mass has been found at the

10th time step of the simulation where rm = 6.5 in units of rs = 1.
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Figure 4.10: Average density of new profile compared to NFW. The solid black curve is

ρ̄NFW (r) versus radius and the red curve is ρ̄new(r) versus radius. The average density has

been found at the 10th time step of the simulation where rm = 6.5 in units of rs = 1.
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Chapter 5

Relaxation

The tidal model successfully describes the evolution of the satellite in the dark matter

halo. It explains how the density profile of substructures changes and how they lose mass.

It predicts whether a structure with given initial conditions gets disrupted by the tides of

its host or stays bound in the course of its evolution. These predictions are particularly

useful when cosmological simulations are helpless. We know from the hierarchical nature

of structure formation that the structures in the smallest scales were formed early in the

history of the universe when the density was higher. In cosmological simulations due

to resolution limits each of these dense substructures only has a few particles. This in

turn means that each particle of satellites in those simulations is much more massive

than candidates for the dark matter particle. When particles are massive they affect

each other’s velocity. Thus the energy of the particles changes due to their gravitational

interactions. As real dark matter particles are collisionless this effect is artificial and

might result in the unbinding of particles from the satellite and the artificial disruption

of substructures in cosmological simulations. Therefore an analytic model predicting the

evolution of substructures in minor mergers is necessary. To investigate how the “artificial

relaxation” of particles can affect the evolution of substructures, the same simulations of

chapter 2 were run with lower resolutions (N=40000, 10000, 4000, 1000, 400 and 100).

Figure 5.2 shows numerical mass loss curves for resolutions N=1h, 4h, 1k, 4k, 10k and 40k

(where “h” stands for 100 and “k” for 1000). Our highest resolution N=100k that has been
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used so far in the thesis is shown as the black solid curve. We see that when the resolution

is lower than 4k the mass loss curve starts to diverge from the correct result. The difference

is particularly large for our lowest resolutions 1h and 4h where the satellite is completely

disrupted before the 30th time step of the simulation. These precocious disruptions are

due to artificial effects in low resolutions.

One way of explaining this is that as we go to lower resolutions particles of the satellite

get more massive and affect the velocities of other particles in a way the original dark matter

particles don’t. To calculate this effect let’s consider the following situation illustrated in

figure 5.1:

Figure 5.1: Trajectory of a Particle. The particle moves along a trajectory approximated

by the solid line. Another particle in vertical distance b from this trajectory exerts a

perpendicular force on the initial particle that results in its change of velocity.

Binney & Tremaine (1994) have calculated the perpendicular change of the velocity of one

particle due to the gravitational force of the other assuming that the change of velocity

is small compared to the initial velocity in a way that does not change the shape of the

trajectory. The resulting change of velocity is:

|δv| ' 2 G m

b v
(5.1)

If the surface density of particles in the satellite is of orderN/πb2
max where bmax is the largest

scale of the system chosen as about 10 times the inter-particle distance by Diemand et al.

(2004), then in one crossing the particle will have

n =
N

π b2
max

2πb db =
2N

b2
max

b db (5.2)
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encounters with particles in distances between b and db. As the changes of velocity are

random 〈δv〉=0, but we will have:

〈δv2〉 = n |δv|2 = (
2 G m

b v
)
2 2N

b2
max

b db (5.3)

Therefore:

〈∆v2〉 =

∫ bmax

bmin

〈δv2〉 ' 8 N (
G m

bmax
√
〈v2〉

)2 ln Λ (5.4)

Where bmin ≡ max(Gm/3σ2, ε) and Λ ≡ bmax/bmin. The term b0 = Gm/3σ2 is the impact

parameter where the deflection angle reaches π/2 and ε is the softening length. The

expression above is an approximation as we have assumed that the surface density of

particles is constant with radius. However the surface density of particles changes with

radius based on the density profile of the satellite. Diemand et al. (2004) have used the

term below instead of ln Λ:

C ≡ 0.5
[

ln(1 + Λ2)− Λ2

1 + Λ2

]
(' ln Λ, Λ� 1) (5.5)

This gives a better approximation to the above integral and accounts for the density

changes. The time scale needed for the velocity of particles to change of the order it-

self is given by:

trelax =
〈v2〉
〈∆v2〉

× tcross '
3 σ2

〈∆v2〉
× tcross (5.6)

Where σ2 ' 〈v2〉/3 and the crossing time is of order tcross ' bmax/
√
〈v2〉 = bmax

√
〈v2〉/〈v2〉 =

bmaxσ/3〈v2〉. Therefore:

trelax '
σ3 bmax
〈v2〉 〈∆v2〉

(5.7)

If we assume the satellite is in virial equilibrium, in other words 〈v2〉 ' GNm
bmax

and if we use

equation 5.4 then:

trelax '
σ3 b3

max

8 G2 m2 N C
=

σ3

8 G2 m ρ̄ C
(5.8)

Where ρ̄ ' Nm/bmax3 . Now if we want to use the local density in the above equation, then

we have to change the factor in the equation to the one used by Diemand et al. (2004):

trelax ' 0.17
σ3

G2 m ρ C
(5.9)
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Therefore each particle will have a relaxation time scale given by the above equation

in each time step of the simulation. As we want to know how relaxed particles become in

the course of the evolution of the satellite we define the number of relaxation crossings of

each particle as:

Nrelax(step) ≡
step∑
i=0

∆t

trelax(i)
(5.10)

Where ∆t is the duration of each time step. This gives an estimate of how much a particle

is relaxed. Nrelax is plotted versus radius in figure 5.3 for the resolutions N = 100k and N=

4h. It has been calculated for each bound particle (black points) at the 10th time step of

the simulation. The red points are Nrelax for the particles that have got unbound in that

particular time step. We see that in the high resolution simulation the particles getting

unbound have less than one relaxation crossing whereas the particles getting unbound in

the lower resolution simulation have more than one relaxation crossing.

Figure 5.4 shows the average number of relaxation crossings of unbound particles versus

time step for different resolutions. This average is calculated over particles getting unbound

in that particular time step of the simulation (the red points in figure 5.3). We see that

in the high resolution simulations (100k, 40k and 10k) stripped particles have less than

one relaxation crossing throughout the evolution of the satellite. In average, Nrelax > 1 for

stripped particles throughout the evolution of the satellite for resolutions 1k, 4h and 1h.

For resolutions 1k and 4h Nrelax has its highest values near time step 9. If we look at figure

5.2 we see that this is where the mass loss curves of resolutions 1k and 4h are beginning

to diverge from the correct curve. The relaxation is dramatic in the lowest resolution 1h

where stripped particles soon reach values close to 25 relaxation crossings.

We conclude that artificial relaxation may cause the disruption of substructures in

simulations with low resolution where satellites have less than ' 1000 particles.
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Figure 5.2: Mass Loss for Different Resolutions. The black solid curve is the mass loss in

the highest resolution 100k. The dotted curves show mass loss for lower resolutions. Mass

loss in resolutions 10k and 40k (cyan curves) are similar to 100k.
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Figure 5.3: Nrelax versus Radius for Resolutions 4h (top) and 100k (bottom). Nrelax is

the number of crossings for the energy of each particle in the simulation to change by of

order itself. It has been calculated for each bound particle (black points) at the 10th time

step of the simulation. The red points are Nrelax for the particles that have got unbound

in that particular time step. We see that in the high resolution simulation (bottom) the

particles getting unbound have less than one relaxation crossing whereas the particles

getting unbound in the lower resolution simulation (top) have more than one relaxation

crossing. 70



Figure 5.4: Average number of relaxation crossings of unbound particles versus time step

for different resolutions. From bottom to top the resolutions are 100k (black), 4k (red),

1k (green), 4h (blue) and 1h (magenta). The resolutions 40k and 10k are similar to 100k

(black). The average number of relaxation crossings is calculated over particles getting

unbound in that particular time step of the simulation (the red points in figure 5.3).

71



Chapter 6

Conclusion

The purpose of cosmology as any other field of science is to ask questions, make predic-

tions and test those predictions with experiments. The process is usually inverted when

new observations challenge existing theories and incite cosmologists to come up with new

theoretical models. However there is a gap between mathematical models of the universe

that are usually based on simple assumptions and the complicated, almost chaotic data

from astrophysical observations. This gap is filled by cosmological simulations. The input

of these simulations is provided by the cosmological model. It forms the initial conditions

of the simulation. The output is the prediction of the current state of the universe, in

other words the mass, shape and distribution of current structures that can be compared

with observations. These predictions tested with observational data may confirm or refute

the model used for the simulation. For instance a simulation that starts with Gaussian

fluctuations in the density of matter predicted by inflationary models of cosmology and

assumes dark matter to be cold would make predictions that are different from a simulation

that assumes a non-Gaussian field or in which dark matter is warm. As the fate of models

lies in the hands of simulations, the latter need to be reliable.

Purely gravitational simulations, in other words those in which we do not need to take

into account the complicated processes of baryons, mainly suffer from numerical limitations.

The simulations including baryons lack the necessary physics in addition to numerical

problems. The physics of a purely gravitational system is well-understood, however limited
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dynamic range, force accuracy and time integration accuracy of the simulation are issues

that need to be taken account. Among these, dynamic range has long been considered as

the most severe problem, specially when the total resolution of the simulations was of the

order N = 105 (before the 90s). Since then, the resolutions of cosmological simulations

have increased exponentially with the advance of computing technology reaching about

N = 1010 today. However even in these simulations the smallest structures have less than

100 particles where the mass of individual particles is about 1010 solar masses. For instance

in the simulations of Springel et al. (2005) the smallest subhalos had about 20 particles. We

saw from our relaxation analysis in the last section that when satellites have this number of

particles they are affected by artificial effects that might cause their disruption or at least

the underestimation of their mass. Therefore the outcome of cosmological simulations in

small scales may not be reliable. In this case an analytic model predicting the evolution

of substructure can test the reliability of cosmological simulations in different scales and

make an alternative prediction when simulations suffer from lack of resolution. In addition

such a model is much less computationally expensive than the cosmological simulations,

making it an attractive alternative.

In addition, cosmological simulations are far from having the necessary resolution for

studying dark matter in small scales such as the scale of the solar system. The minihalos

on these scales have masses of ' 10−6 M� and the number of particles needed to resolve

them in cosmic simulations is of order 1020. If the technological advances in computational

power continue growing exponentially we will need another 50 years to reach this resolution.

Therefore it is necessary to analytically predict how small halos are distributed and how

dense they are locally. This in turn affects the calculated annihilation rate of dark matter

particles and guides us in our attempts to detect the dark matter particle. Thus we

definitely need analytic models describing the evolution of subhalos and their mass loss in

minor mergers.

The analytic tidal model explained in chapter 3 describes the evolution of substructure

with high accuracy taking into account a few physical phenomena. These phenomena had

been individually studied before in other astrophysical contexts such as globular cluster

interactions with the galaxy. But it was first Taylor & Babul (2001) who developed a simple
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analytic model incorporating them altogether for the study of substructure dynamics. This

simple model takes into account two major processes in order to describe tidal interactions:

The first is tidal truncation due to the tidal field of the host unbinding particles at a tidal

limit where the gravitational field of the host becomes stronger than the gravitational field

of the satellite. This is a steady-state approximation as it assumes that the structure of

the satellite isn’t changed due to the tidal field. This truncation scheme should be coupled

with a heating calculation that finds the amount of energy change at pericentral passages

due to tidal shocks and corrects the tidal radius at pericenter. To also take into account the

higher moments of energy change and the virialization of the satellite, the energy change

was multiplied by a factor εh. Taylor & Babul (2001) also took into account the dynamical

friction from the host halo and calibrated their model to fit simulation data.

As there were discrepancies between the model predictions and the data, we isolated

tidal interactions ignoring dynamical friction by having a static host and studied the mass

loss of the satellite following the main guidelines of the Taylor & Babul (2001) (TB01)

approach. Our first important conclusion is that the mass lost beyond the tidal limit

of the satellite should be scaled as it takes time for particles to be effectively separated

from the satellite. Our scaling was half the instantaneous orbital period of the satellite,

which differs from the TB01 approach as they chose one orbital period. We calibrated

the heating of the satellite using the actual energy change of particles in the simulation

which was not possible in TB01 as other processes were involved other than heating. Thus

TB01 calibrated their final results comparing the mass loss predicted by the model with

the actual mass loss of the satellite. Here the direct comparison with the energy change

gave us a more accurate value of the heating parameter εh = 3.4 which was higher than

the TB01 value εh = 3.0. However it is still closer to TB01 than to Gnedin & Ostriker

(1999) as the latter had used εh = 7/3.

We find our new tidal radii based on the change of energy from shocks. TB01 assumed

that the structure of the satellite does not change in their derivation of the change in the

average density from heating. We calculate the change in the average density in each time

step in a similar way. Which means we calculate the effect of shocks close to pericenter and

neglect them everywhere else. The change in the average density is cumulative. This means
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that the ∆ρ̄tot used to calculate the tidal radii in each time step has in itself the ∆ρ̄ of that

time step plus all the contributions of the previous time steps. The new set of tidal radii

found this way (rm in chapter 4) are different from the tidal radii found without taking

heating into account (rt), in the sense they do not oscillate between fixed values but rather

decrease while slightly oscillating between pericenter and apocenter. We find that the

density of the satellite really changes as it expands because of heating and the effect of this

change is present in the subsequent steps of the satellite’s evolution. Thus the tidal radii

decrease with time as the satellite is expanding and the equality of the gravitational fields

of the host and satellite (the tidal limit) happens more toward the center of the expanded

satellite. This approach in calculating tidal radii has two remarkable implications.

First, if the new tidal radii are used to truncate an NFW density profile they result in

a very accurate prediction of mass loss. This accuracy can not be directly compared to

the accuracy of TB01 mass loss curves as other phenomena are taken into account there

such as dynamical friction, galactic disk, bulge,... The second implication of this new set of

tidal radii is that they give us the only parameter needed to describe the updated density

profile of the satellite. The new density profile of the expanded satellite is modified by

a factor which is a function of radius and is given having rm. This result is an analytic

prediction of substructure density evolution while Hayashi et al. (2003) and others have

used fits to numerical results to find a similar behavior for the density evolution. The new

density profile is close to NFW up to about r = 0.4 rm and diverges from it afterwards.

This difference is more pronounced at r = rm. After that the satellite’s density decreases

rapidly in a way that results in a cut-off in the mass of the satellite. The bound mass

of the satellite will be equal to the NFW mass enclosed in rm. This is why truncating

an NFW profile at this tidal radius gives a correct mass loss. Although the set of tidal

radii are smaller than the previously calculated tidal radii rt for which we didn’t take into

account the effect of heating, the bound particles are not limited to rm and some particles

lie between rm and rt. This is because the tidal limit of the satellite is not well defined when

we are not in the steady-state regime and have expansion. The outer limit of the satellite

is given by rt. The high accuracy of the tidal model and its cost efficiency compared

to cosmological simulations make it an excellent alternative for studying the evolution of

substructures and their tidal interactions with dark matter halos that host them.
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Appendix A

Orbital Periods

As mentioned in the second chapter the integrals of motion in a spherical potential are:

(1) The angular moemntum: L = r2ψ̇.

(2) The energy: E = 1
2
ṙ2 + 1

2
(rψ̇)2 + φ(r).

Where r is the distance to center of the potential and ψ is the azimuthal angle. From the

definition of the energy, we can write:

dr

dt
= ±

√
2[E − Φ(r)]− L2

r2
(A.1)

The two radii r1 and r2 at which the above equation goes to zero are the apocenter and

pericenter distances of the orbit. The radial period is defined as the time it takes to go

from r1 to r2 and then to r1 again:

Tr = 2

∫ r2

r1

dr√
2[E − Φ(r)]− L2/r2

(A.2)

In traveling from pericenter to apocenter and back the azimuthal angle changes by the

amount:

∆ψ = 2

∫ r2

r1

dψ

dr
dr = 2

∫ r2

r1

L

r2

dt

dr
dr (A.3)

Substituting for dt/dr from equation A.1 we get:

∆ψ = 2L

∫ r2

r1

dr

r2
√

2[E − Φ(r)]− L2/r2
(A.4)
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The azimuthal period is defined as:

Tψ = (2π/∆ψ)× Tr (A.5)

For more details on orbital dynamics see Binney & Tremaine (1994).
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Appendix B

Tidal Acceleration Terms

We saw in chapter 3 that the X component of the tidal acceleration at the center of mass

of the satellite is given by:

gX = − GMvir

ln(1 + c)− c/(1 + c)

ln(1 +R/rs)−R/(rs +R)

R3
X (B.1)

Where R =
√
X2 + Y 2 + Z2 is the position of the center of mass of the satellite, rs is the

scale radius of the satellite, Mvir is the virial mass of the satellite and c is the satellite’s

concentration. We want to find ∂gX/∂X, ∂gX/∂Y and ∂gX/∂Z. We rewrite B.1 as:

gX = A×B(R)× C(X) (B.2)

A = − GMvir

ln(1 + c)− c/(1 + c)
(B.3)

B(R) = ln(1 +R/rs)−R/(rs +R) (B.4)

C(X) =
X

R3
(B.5)

∂gX/∂X = A
[∂B
∂X

C +
∂C

∂X
B
]

(B.6)
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∂B

∂X
=
∂B

∂R

∂R

∂X
=
R + rs − r3

s

(rs +R)2

X

R
(B.7)

∂C

∂X
=
∂C

∂R

∂R

∂X
=
R2 − 3X2

R5
(B.8)

Therefore from B.6:

∂gX/∂X = − GMvir

ln(1 + c)− c/(1 + c)

R + rs − r3
s

(rs +R)2

X2

R4
+
R2 − 3X2

R5

[
ln(1 +R/rs)−R/(rs +R)

]
(B.9)

Similarly:

∂gX/∂Y = − GMvir

ln(1 + c)− c/(1 + c)

R + rs − r3
s

(rs +R)2

XY

R4
− 3XY

R5

[
ln(1 +R/rs)−R/(rs +R)

]
(B.10)

∂gX/∂Z = − GMvir

ln(1 + c)− c/(1 + c)

R + rs − r3
s

(rs +R)2

XZ

R4
− 3XZ

R5

[
ln(1 +R/rs)−R/(rs +R)

]
(B.11)

∂gY /∂X = − GMvir

ln(1 + c)− c/(1 + c)

R + rs − r3
s

(rs +R)2

Y X

R4
− 3Y X

R5

[
ln(1 +R/rs)−R/(rs +R)

]
(B.12)

∂gY /∂Y = − GMvir

ln(1 + c)− c/(1 + c)

R + rs − r3
s

(rs +R)2

Y 2

R4
+
R2 − 3Y 2

R5

[
ln(1 +R/rs)−R/(rs +R)

]
(B.13)

∂gY /∂Z = − GMvir

ln(1 + c)− c/(1 + c)

R + rs − r3
s

(rs +R)2

Y Z

R4
− 3Y Z

R5

[
ln(1 +R/rs)−R/(rs +R)

]
(B.14)

∂gZ/∂X = − GMvir

ln(1 + c)− c/(1 + c)

R + rs − r3
s

(rs +R)2

ZX

R4
− 3ZX

R5

[
ln(1 +R/rs)−R/(rs +R)

]
(B.15)
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∂gZ/∂Y = − GMvir

ln(1 + c)− c/(1 + c)

R + rs − r3
s

(rs +R)2

ZY

R4
− 3ZY

R5

[
ln(1 +R/rs)−R/(rs +R)

]
(B.16)

∂gZ/∂Z = − GMvir

ln(1 + c)− c/(1 + c)

R + rs − r3
s

(rs +R)2

Z2

R4
+
R2 − 3Z2

R5

[
ln(1 +R/rs)−R/(rs +R)

]
(B.17)

We have nine terms for the ga,b = ∂ga/∂Xb. Substituting these terms in equation 3.29

will give use the tidal acceleration of particles in the satellite.

85


	List of Figures
	List of Tables
	Introduction
	Cosmological Model
	Structure Formation
	Formation of Dark Matter Halos
	Structure of Dark Matter Halos

	Substructure Dynamics

	The Simulations
	Initial Conditions
	Background Halo
	Satellite

	Evolution of the Satellite
	Mass Loss

	Tidal Model
	Tidal Truncation
	Tidal Shocks
	Impulse Approximation
	Adiabatic Correction

	Virialization

	Evolution of Substructure
	Model Parameters
	Mass Loss Revisited
	Density Evolution
	Expansion of the Satellite
	New Density Profile


	Relaxation
	Conclusion
	References
	APPENDICES
	Orbital Periods
	Tidal Acceleration Terms

