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Abstract 

This work was carried out to study the effect of shot-peening on the fatigue behaviour of 

carbon steels. Differently heat treated medium and high carbon steel specimens were selected. 

Medium carbon steels, AISI 1141 and AISI 1151, were respectively air cooled and quenched-

tempered. A high carbon steel, C70S6 (AISI 1070), was air cooled. The other material was a 

powder metal (0.5% C) steel. Each group of steels was divided into two. One was shot-peened. 

The other half remained in their original conditions. All were fatigue tested under fully reversed 

(R=-1) tension-compression loading conditions. Microhardness tests were carried out on both the 

grip and gage sections of selected non shot-peened and shot-peened specimens to determine the 

hardness profile and effect of cycling. Shot-peening was found to be deeper on one side of each 

specimen. Compressive residual stress profiles and surface roughness measurements were 

provided. Shot-peening increased the surface roughness from 0.26±0.03µm to 3.60±0.44µm. 

Compressive residual stresses induced by shot-peening reached a maximum of -463.9MPa at a 

depth of 0.1mm. 

The fatigue limit (N≈106 cycles) and microhardness profiles of the non shot-peened and 

shot-peened specimens were compared to determine the material behaviour changes after shot-

peening and cycling. Also their fatigue properties were related to the manufacturing process 

including heat and surface treatments. 

 Comparing the grip and gage microhardness profiles of each steel showed that neither 

cyclic softening nor hardening occurred in the non shot-peened condition. Cyclic softening was 

apparent in the shot-peened regions of all steels except powder metal (PM) steel. The amount of 

softening in the shot-peened region was 55.0% on the left side and 73.0% on the right in the AISI 

1141 steel , 46.0% on the left side and 55.0% on the right in the C70S6AC steel and 31.0% on 

the right side in AISI 1151QT steel. Softening was accompanied by a decrease in the depth of 

surface hardness. 

It is suggested that although the beneficial effects of shot peening, compressive residual 

stresses and work hardening, were offset by surface roughness, crack initiation was more likely 

to occur below the surface. Surface roughness was not a significant factor in controlling the 



 

iv 

 

fatigue lives of AISI 1141AC and C70S6 steels, since they were essentially the same for the non 

shot-peened and shot-peened conditions.  

Shot-peening had very little effect on the push-pull fatigue limit of C70S6 steel (-2.1%), 

and its effect on AISI 1141AC steel was relatively small (6.0%). However, the influence of shot-

peening on the AISI 1151QT and PM steels was more apparent. The fatigue limit of the PM steel 

increased 14.0% whereas the fatigue limit of the AISI 1151QT steel decreased 11.0% on shot 

peening. 
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Chapter 1 

Introduction 

Fatigue is an important parameter which should be considered for engineering 

components subjected to constant or variable cyclic loading. Mechanical, metallurgical and 

environmental factors influence the fatigue behaviour of a component [1]. The basic mechanisms 

leading to fatigue failure are the initiation and propagation of cracks which mostly occur on free 

surfaces [2]. Tensile or shear stresses cause a crack to propagate while the compressive part of 

the cycle closes the crack.  

Surface treatment is widely used for improving the fatigue behaviour of engineering 

components. Shot-peening is a well-known method introduced in surface engineering to extend 

fatigue life of components and structures under cyclic loading. In this method hard steel balls 

(shots) under controlled velocity impact the surface of the component [3]. This treatment is used 

in the automotive industry, i.e. on gear parts, springs and connecting rods [3] and in the 

aerospace industry on structural components of aircraft i.e. wing panels [4] and gas turbine 

engines i.e. blades and disks [5]. This treatment has other applications, for instance, 

strengthening the component against stress corrosion and overcoming the detrimental effect of 

existing tensile stresses caused by manufacturing processes [6].  

Shot-peening changes the fatigue behaviour of components because of three effects: a) 

induced compressive residual stresses on surface and sub-surface layers b) strain or work 

hardening on surface and sub-surface layers ,which increase the yield stress of the material, and 

c) an increase of surface roughness which makes high cycle fatigue properties worse due to local 

stress concentrations [3,7]. Their influence depends on the material, strengthening method, the 

geometry of the work piece and the applied stresses, which may vary from one material or 

component to another [3]. 

The objective of the present work is to investigate how shot-peening affects the fatigue 

lives of differently heat treated medium and high carbon steels and to gain a better understanding 

of shot-peening effects on these materials. The role of surface roughness is also investigated. 

Earlier investigations have been conducted to determine whether compressive residual stresses or 
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work hardening is dominant in improving the fatigue behaviour of carbon steel components 

[6,8,9,10,11,12,13,14,15,16]. Also the deleterious effect of surface roughening has been studied 

[5,7,9,10,17,18]. A number of research studies [6,8-11] indicated that the work hardening effect 

is dominant while some others [19,20] highlighted the induced compressive residual stress in 

improving fatigue behaviour of steel components.  

In this study, the effect of shot-peening on the fatigue behaviour of medium and high 

carbon steel specimens is investigated and their fatigue properties are related to the 

manufacturing processes including heat treatment. Medium carbon steels, AISI 1141 and AISI 

1151, were air cooled and quenched-tempered respectively. A high carbon, C70S6 (AISI 1070), 

and a powder metal (PM) steel were air cooled. All the steels were divided into two groups, half 

were shot-peened and the rest remained in the non shot-peened condition. All the steels were 

fatigue tested under fully reversed (R=-1) tension-compression loading conditions. 

Microhardness tests were carried out on both the grip and gage sections of selected non shot-

peened and shot-peened specimens to determine the depth of the hardened layers and the effect 

of cycling on them. Initial compressive residual stress profile and surface roughness 

measurements were also provided for further investigation. The fatigue limits (106 cycles) and 

microhardness profiles of non shot-peened and shot-peened specimens were compared to 

determine the material behaviour changes after shot-peening and cycling. 

The influence of shot peening may be different in steels which are used in the automobile 

industry than the results of the present research demonstrate the effect of shot-peening on their 

high cycle tension-compression fatigue behaviour and the significance of shot-peening for these 

specimens. 

Shot-peening improves the high cycle fatigue properties of medium carbon steels used for 

engineering applications, especially under rotating-bending conditions. This present work deals 

with push-pull cyclic loading which is more critical. The effect of shot-peening on fatigue life 

improvement will be investigated. For this reason, differently heat treated steels, commonly used 

for automotive applications were selected in order to study their push-pull high cycle fatigue 

behaviour in the shot-peened and non shot-peened conditions. 
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The results of the present research will compare the effects of shot-peening on the high 

cycle tension-compression fatigue behavior of four steels with different processing histories, 

used in engineering applications, The effect of shot-peening and cycling on the hardness profile 

will be investigated. Also, the role of surface roughness on the fatigue lives of the four steels will 

be determined.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

4 

 

Chapter 2  

Literature Review  

2.1. Carbon Steels 

 Carbon steels are divided into: a) low carbon steels, b) medium carbon steels (carbon 

content 0.3% to 0.6%) c) high carbon steels (carbon content 0.6% to 1.0%) and d) ultra high 

carbon steels. Medium carbon steels are usually used for shafts, couplings, crankshafts, axles, 

gears, forgings and engine connecting rods. High carbon steels are mostly used for springs and 

high strength wires [21], however, these steels are used in the manufacture of engine connecting 

rods after the advent of crackable forging steels in the 1990s. 

2.2. Heat Treatment 

Steels are heat treated to produce the desired mechanical properties [22].”Normalizing” is 

heating the steel to the austenizing temperature and slowly cooling in air. Improving 

machinability, grain structure refinement, homogenization and modification of residual stresses 

are some of the reasons for normalizing [23].”Quenching” is rapidly cooling the steel from the 

austenitizing temperature to produce a non-equilibrium structure such as martensite.”Tempering” 

is a process which follows quenching. In tempering, the steel is heated to a temperature lower 

than the critical temperature then cooled to obtain specific mechanical properties i.e. 

microstructure, hardness, strength and toughness [23].  

2.3. Connecting Rods 

Internal combustion engine connecting rods are high volume production components. For 

instance, 100 million rods are manufactured in North America annually [24]. This component 

must meet strict design criteria since it must have an infinite life and high performance under 

high rate cyclic loading conditions, therefore, the durability of these components is of critical 

importance and a primary design criterion is its fatigue limit [24]. 

The application of forging a preformed near-net shape consolidated from metal powder 

has been widely accepted recently. At the present time, 60% of the connecting rods in North 
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America are manufactured using this technique. The remaining portion of this market is 

produced by use of either conventional steel forging or casting processes [24]. 

The steel rods are conventionally produced by forging wrought steel billets at high temperature 

then cap ends are cut or fractured and machined separately to accommodate bearing and allow 

attachment to the crankshaft (Figure 2.1) [24,25].  

 
Figure 2.1.Conventional connecting rod [25] 

 
The powder metal (PM) rods are manufactured by consolidating metal powders into a 

sintered preform, reheating to the forging temperature, then fully densifying by forging to the 

final shape, cutting of the rod cap end, and then minimal machining to achieve final dimensions. 

This process results in a controlled material flow which improves the mechanical properties due 

to a fine grain size and ultimately longer tool life. In addition, a reduction in material waste and 

energy savings are other advantages of this technique.  

A higher carbon steel, C70S6, was introduced as a crackable forging steel in the 1990s 

[24,25]. The advent of crackable rods provided some advantages i.e. lower cost to separate the 

cap end, reducing the number of splitting steps, the surfaces of the cracked ends mated more 

accurately when reassembled and the tolerances of the cap end internal diameter could be closely 

held to a perfectly circumferential circle. The processing accuracy, product quality and bearing 

capability were improved and the manufacturing steps decreased up to 60% using the fracture 

splitting process (Figure 2.2) [24, 25]. 
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Figure 2.2.Crackable connecting rods [25] 

2.4. Fatigue  

Fatigue is a process which causes premature irreversible damage or failure of a 

component subjected to repeated loading. Fatigue generally occurs in several stages: a) cyclic 

slip b) fatigue crack initiation c) stage I fatigue crack growth d) stage II fatigue crack growth and 

e) brittle fracture or ductile rupture [2]. 

Figure 2.3 shows the general situation in which crack initiation (nucleation) occurs due to 

slip under cyclic loading. Figure 2.3a shows coarse slip under monotonic loading and Figure 

2.3b shows fine slip as the result of cyclic loading. The progressive development of an          

extrusion-intrusion pair under cyclic loading is shown in Figure 2.3c in which vertical and 

sloping arrows indicate loading and deformation directions respectively. 
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Figure 2.3.Schematic of slip due to external loads: (a) Static (steady) stress (b) Cyclic stress 
(c) Fatigue propagation in the formation of an extrusion/intrusion pair [26] 

 

In stage I the microcracks are nucleated at the surface and grow across several grains 

controlled primarily by shear stresses and strains. Therefore, the microcracks grow along the 

maximum shear directions, i.e. – 45º to the loading direction as shown in Figure 2.4 [26]. 

Once microcracks are formed in stage I and cycling continues fatigue cracks tend to 

coalesce and grow along the plane of maximum tensile stress which is called stage II crack 

growth shown in Figure 2.4. In stage II, the crack grows in a zigzag manner essentially 

perpendicular to the maximum tensile stress [26]. 
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Figure 2.4.Stages I and II fatigue crack growth [2] 

High cycle fatigue (HCF) describes the situation of a long fatigue life in which fatigue 

stresses are adequately low and the elastic strains exceed the plastic strains, so yielding effects do 

not dominate the behaviour. The start of the high cycle fatigue regime varies with material, but is 

typically between 102 to 104 cycles. Low-cycle fatigue (LCF) is characterized by high stress 

levels, and a short lifetime, less than 103 cycles, as shown in Figure 2.5. This range is rarely 

considered in engineering design applications. In the low-cycle range the plastic behaviour of 

material is important [26,27]. 
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Figure 2.5.Schematic of an S-N curve [26] 

The “fatigue limit” or “endurance limit” can be identified in S-N diagrams of steels in the 

region where the curve becomes flat, for instance, 106 to 108 cycles in Figure 2.5. The term 

“fatigue strength” is used to specify a stress amplitude from an S-N curve at a particular life i.e. 

the fatigue strength at 105 cycles is the stress amplitude which corresponds to Nf =105, 60MPa in 

Figure 2.5. 

2.5. Shot Peening 

“Shot peening” is a cold working process in which the surface of a component is 

bombarded with small metal shot under controlled velocity. A single shot plastically deforms the 

material making a dimple when it strikes the surface. The surrounding elastic material creates a 

compressive residual stress field within the cold-work hardened layers on attempting to return 

the yielded layers to its initial shape [28].  

Shot peening effects on the surfaces and sub-surface layers can be classified into: a) 

mechanical b) metallurgical and c) micro-geometrical imperfections [3,7]. The mechanical effect 

is induced compressive residual stresses known to improve high cycle fatigue resistance. This 

retards crack propagation while it has little effect on crack nucleation [7]. The beneficial 

metallurgical effect is surface work hardening which retards crack nucleation [7]. Shot peening 
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also changes the initial surface properties and increases the surface roughness. This effect 

aggravates high cycle fatigue properties due to local stress concentrations which accelerate the 

crack nucleation phase [7]. The influence of these factors depends on the original structure, 

geometry of component, applied stress, strengthening method and strength or hardness of the 

material [3]. 

2.6. Work Hardening Effects 

Induced compressive residual stress and work hardening are two essential factors which 

improve the fatigue behaviour of shot-peened parts. Some researchers [6,8-11] proposed that the 

influence of work hardening was greater than induced compressive residual stresses while other 

suggested that the greater effect was that of the compressive residual stresses [19,20].  

Farrahi et al. [3] suggested that the improvement in torsion fatigue life of high carbon 

spring steels after shot peening was attributed to both compressive residual stress and the depth 

of the plastically deformed layer. The importance of these two factors depended on the material. 

In a study on the fatigue properties of shot-peened ductile cast iron, Yasuo et al. [29] showed that 

both work hardening and compressive residual stress improved rotating bending fatigue strength 

of ductile cast iron. 

Hoffmann et al. [8] concluded that a small improvement, 14.0% for quenched and 22.0% 

for quenched-tempered, in bending fatigue behaviour (HCF) of smooth medium carbon steel 

(AISI 1045) specimens after shot peening could be more attributed to work hardening than 

compressive residual stresses. In another study [9] a small improvement, 10.3% for PM steels, in 

push-pull fatigue limit of smooth shot-peened carbon steel specimens was observed and related 

to work hardening since compressive residual stresses relaxed significantly after long periods of 

cycling.  

Guechichi and Castex [10] showed respectively 9.0%, 12.0% and 22.0% enhancement in 

rotary bending, tension-compression and torsion fatigue limits of low-alloy medium carbon 

steels (35NiCrMo16 and 32CrMoVa13) after shot-peening. They also developed a model which 

incorporated both compressive residual stress and work hardening as beneficial effects of shot 
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peening. Based on the model, the effect of residual stress on the fatigue limit was negligible and 

any improvement of the fatigue limits was due to work hardening effect. 

A.M.Eleiche et.al [6] showed an increase of the rotating-bending fatigue limit for shot-

peened smooth steel specimens of high-strength martensitic steel by about 22.0%. For these 

specimens, they showed that after stress relieving the fatigue limit remained approximately 16.0-

19.0% higher than non shot-peened conditions indicating that induced compressive residual 

stress was not the only reason for fatigue limit improvement, but rather the most of the shot 

peening strengthening effect on high cycle fatigue behaviour could be attributed to the change of 

surface texture introduced by the rotation of surface crystals. 

Pariente and Guagliano [11] investigated the effect of shot peening on pre-cracked 

specimens of medium carbon steel (42CrMo4). They observed that fatigue crack propagation 

retarded in these specimens after shot-peening. They concluded this fatigue behaviour 

improvement was associated more with the surface work hardening than with the residual stress. 

It is suggested that for smooth steel shot-peened specimens, the effect of residual stress 

on fatigue limit is of second order and fatigue limit improvement is more due to the increasing 

effect of work hardening [8-10].  

2.7. Compressive Residual Stress 

Assessment of induced residual stresses and their relaxation during cyclic loading are 

important aspects in design of engineering components and prediction of their life [17]. 

Shot peening induces compressive residual stresses at the surface. The initial residual 

stresses are released and redistributed during the fatigue process [10]. Stress relaxation has been 

investigated by many researchers [8,9,12,13,17,18]. 

Hoffman and Macherauch [8] demonstrated that in both smooth and notched quenched 

and tempered medium carbon steel (AISI 1045) specimens, compressive residual stresses 

decreased considerably during fully reversed bending fatigue tests. They concluded that a small 

increase in bending fatigue limit could be due to increased work hardening rather than small 

amounts of the compressive residual stresses at and below the surface. Surface stress 
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concentrations caused relaxation of compressive residual stress during cycling by allowing 

initiation and finally propagation of fatigue cracks below the surface [9].  

Two stages for stress relaxation under fully reversed cyclic loading (R=-1) were 

identified. In the first stage, a significant relaxation of the compressive residual stresses during 

the first cycles (~103 cycles) occurred in proportion to the magnitude of the applied load 

[7,10,12] and corresponded to the rearrangement of the residual stresses caused by plastic strain 

[10]. In the second stage, the residual stresses decreased linearly as function of Ln (N) and the 

change was proportional to the loading amplitude [3]. 

In an experimental investigation, carried out by Cao [12], similar results were obtained. 

In this study shot peened thin plates of medium carbon steel (AISI 4135) were fatigue tested 

under repeated bending at load controlled (R=0) conditions. The results showed a significant 

relaxation of residual stresses on the compressed surface. By a careful analysis of the change of 

residual stresses and FWHM profiles during the cyclic loading Cao concluded that:  a) the first 

phase of relaxation was an effect of a balance of the residual stresses due to plastic strain 

redistribution in the affected layers. This step was called “quasi-static” or “elastic-shakedown”. 

During the first cycles, relaxation was mainly due to plastic deformation followed by an elastic 

stabilization. b) The second phase was a slow relaxation principally due to the evolution of the 

mechanical properties under cyclic loading (cyclic softening or hardening of the affected layers). 

Some factors such as fatigue stresses and cyclic mechanical properties of shot peened 

steels affect the relaxation of compressive residual stresses [7]. Torres and Voorwald [13] 

suggested that relaxation of compressive residual stresses was directly associated with the 

applied stress and the number of cycles. Guechichi and Castex [10] suggested that residual stress 

relaxation was associated with both the amplitude and the direction of the applied load and 

residual stress became stable when the superposition of the stresses remained below the cyclic 

yield stress. Zhuang and Halford [17] added some other influencing factors on residual stress 

relaxation: a) initial magnitude and gradient of the residual stress field b) degree of cold working 

c) fatigue stress amplitude d) mean stress ratio e) the number of cycles f) material cyclic stress-

strain response and g) the degree of cyclic work hardening or softening. 
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2.8. Surface Roughness Effect 

Shot-peening typically increases surface roughness and the surfaces of the shot-peened 

specimens are rougher than those of the non shot-peened ones. Roughness increase is a function 

of the hardness and size of shots, however, the hardness is clearly dominant [3]. 

In a study conducted by Plumtree [9], smooth specimens were tested under fully reversed 

tension-compression fatigue test (R=-1) in which the gradient of the loading stresses were 

shallower than any other type of fatigue tests i.e. rotating-bending tests and the gradient of 

compressive residual stresses became much steeper than the gradient of loading stresses, 

consequently, fatigue cracks initiated below the surface where loading stresses exceeded the 

local fatigue strength and the applied tension stresses were able to counter the compressive 

residual stresses.  

The fractographical examinations, performed by [8,10,13,18], showed that fatigue cracks 

in the shot-peened specimens shifted to interior layers whereas they were located at surface for 

non shot-peened specimens. The mechanism of shifting fatigue cracks to interior layers 

minimized the detrimental effect of surface roughness on the high cycle fatigue properties since 

the initiation of cracks occurred in sub-surface layers in the shot-peened condition. 

A study by Jiang et. al [5] on the effect of shot-peening on the bending fatigue behaviour 

of Ti-6Al-4V indicated that shot-peening roughened the surface but fatigue cracks, which were 

always initiated on the surface of as-received Ti-6Al-4V, were initiated in the sub-surface after 

shot-peening.  

A model by Guechichi and Castex [10] determined the position of fatigue cracks for shot-

peened low-alloy medium carbon steel at the depth of 0.3mm which was similar to the thickness 

of shot-peened layers. Wang et.al [14] performed three-point bending fatigue tests on shot-

peened 20Cr, 30CrMo, 40Cr, GC4, 45 steels and Al-alloy LC9. They showed that fatigue cracks 

were always located at the surface for non shot-peened cases, whereas these cracks were located 

beneath the compressive residual stress zone in all the shot-peened specimens except medium 

carbon steel (AISI 1045 steel) in which crack sources were located inside the hardened layer 

within compressive residual stress zone.  



 

14 

 

In the micro-meso-processes theory for fatigue crack initiation and fatigue limit theory, a 

concept of an internal or a surface fatigue limit of material is proposed and it is confirmed that 

the critical stress for initiation of a fatigue crack in the interior (the internal fatigue limit of 

material) should be higher than at the surface (the surface fatigue limit of material) by about 

40%. Transfer of the fatigue crack from surface into the interior is the beneficial mechanism 

caused by shot-peening and improves the fatigue limit of shot-peened specimens [18]. Landgraf 

and Chernenkoff [30] tested AISI 5160 steel under four point bending and found that all failures 

initiated subsurface, nominally where the residual stress profile became tensile. 

Based on the experimental studies and the suggested models which predict the initiation 

of fatigue cracks in the subsurface layers, it is inferred that the surface roughening caused by 

shot-peening is of lesser importance than two other shot-peening effects, compressive residual 

stresses and work hardening,  since the origin of fatigue cracks shifts into the region below the 

surface hardened layer. 

2.9. Crack Initiation and Propagation 

It is known that induced compressive residual stresses have little effect on crack 

nucleation, but can drastically retard crack propagation [3,7]. The metallurgical modification, 

observed in the majority of shot-peened materials, is favourable surface work hardening which 

retards crack nucleation [7].  

Fracture surface observation of shot-peened specimens by Rios et al. [28] under an 

optical microscope and scanning electron microscope (SEM) showed that a crack usually starts 

growing from the edge of a specimen, initially in a quarter of a circle shape. It then assumes 

approximately a semi-elliptical shape, growing faster in the depth direction than on the surface, 

thus showing that surface compressive residual stresses delay crack growth [28]. 

Torres and Voorwald [13] concluded that shot peening shifted the crack sources below 

the surface in most of the high cycle cases due to induced compressive residual stresses that were 

greater than the applied stresses. 
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Rios et al. [28] performed pure bending fatigue tests (R=-0.8) on annealed A316 stainless 

steels. They showed typical initial retardation of crack growth and its subsequent acceleration in 

a non shot-peened condition and a significant deceleration of fatigue crack growth in a shot-

peened condition as depicted in Figure 2.6. 

 

Figure 2.6.Fatigue crack propagation (U2: non shot-peened, A1: shot-peened)  
 

 One interpretation is that micro-structural barriers constrain crack tip plasticity until the 

stress concentration at the barrier reaches a critical value. At that point crack tip plasticity moves 

past the barrier, consequently, the crack growth rate begin to rise again [28]. 

Rios et al. also showed that shot-peening significantly affected the crack growth within 

the short-crack region. Crack growth in this region was dependent on the microstructure and this 

dependence extended for several grains. Short-crack propagation rates in the shot-peened 

specimens were much lower than the non shot-peened ones (Figure 2.6). In addition to the initial 

effect of the residual stresses, the resistance to plastic deformation at the crack tip is much higher 

in shot-peened condition due to the work hardening. The critical stage for crack propagation in 
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shot-peened surfaces seems not to be the overcoming of barriers, but rather the generation of 

sufficient crack tip plasticity to drive the crack forward [28]. 

Most of the studies were carried out on quenched-tempered medium carbon components 

to determine the effect of shot-peening on the fatigue behaviour. In this research, air cooled and 

quenched-tempered steels as well as a powder metallurgical steel were studied to determine and 

compare the effect of metallurgical structure on the high cycle fatigue properties. 

In other studies [6-16], fatigue testing of shot-peened steels was carried out mostly under 

rotating-bending conditions but in this research fully reversed (R=-1) push-pull fatigue tests were 

conducted since many engineering components are subjected to these conditions. Generally, the 

fatigue stresses in push-pull loading result in a lower fatigue strength than bending since the 

stresses are uniform. This will be investigated in the present study.  
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Chapter 3  

Experimental Design 

3.1. Material 

Medium carbon steels, AISI 1141 and AISI1151, have been used in the manufacture of 

engineering components, for example, forged steel connecting rods. Now, most North American 

companies use forged powder metallurgy (PM) connecting rods [31]. In 2003, 60.0% of the 

North American market used powder metallurgy steel rods whereas 35.0 to 40.0% were forged 

steel. By comparison, a crackable steel (C70) has been recently introduced and is widely used in 

Europe. [31]. 

To compare the fatigue behaviour, four groups of steels, AISI 1141, AISI 1151, powder 

metallurgy 0.5% C (PM) and C70S6 (AISI 1070), were chosen for investigation. The chemical 

compositions of these steels are shown in Table 3.1. 

Table 3.1.Chemical composition (%) 

Steel 
Chemical Composition (%) 

C Mn S P Si Cu Cr Mo Ni V 

AISI 1141 0.39 1.41 0.12 0.01 0.24 0.05 0.1 0.01 0.03 0.06 
AISI 1151 0.48-0.55 0.7-1.00 0.08-0.13 0.04 (Max) - - - - - - 

PM 0.5 0.31 0.12 - - 3.06 - - - - 
C70S6 0.72 0.5 0.06-0.07 0.009 0.22 - 0.061 - - 0.04 

 

3.2. Specimens 

3.2.1. Heat and surface treatments 

All four steels were heat treated to give similar hardness values and good balance of 

strength and ductility. The AISI 1141, PM and C70S6 steels were normalized while the AISI 

1151 steel was quenched and tempered. After heat treatment, half of the specimens from each 

group were shot peened with 100% coverage to Almen scale 14-18A using 1mm diameter steel 

shots. 
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3.2.2. Specimens shape and dimensions 

The shape and size of sheet type specimens are shown in Figure 3.1. These specimens 

were machined from the shank of connecting rod. They were previously fatigue tested. Smaller 

specimens (Figure 3.2) were taken from the grip section of the sheet type specimens for tensile 

testing. The grip section was then used for microhardness tests. Table 3.2 gives the total number 

of non shot-peened and shot-peened specimens tested under tensile and fatigue conditions. 

 

 
Figure 3.1.Fatigue (original) specimen dimensions 
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Figure 3.2.Small tensile specimen dimensions 

 

 

Table 3.2. Number of specimens tested 

Test 
Number of Specimens 

Non Shot-Peened Shot-Peened 
Tensile  4 4 
Fatigue  36 40 

 

3.3. Tensile Test 

Tensile tests were performed with an Instron-4206 hydraulic powered 150KN tensile 

machine only on small specimens to compare the reported tensile strength by Galt Testing 

Laboratories with these test results as shown in Table 3.3. Table 4.1 and Table A1 give other 

tensile test data for the tested steels. 
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Table 3.3. Tensile test comparison  

Material 

Galt Testing Laboratories MME - University of Waterloo 

Tensile 
Strength 

(MPa) 

Elongation 
(%) 

Tensile 
Strength 

(MPa) 

Elongation 
 (%) 

AISI 1141 855.0 17.0 921.2 16.2 
AISI 1151 999.8 12.0 997.0 13.1 

PM 889.5 15.0 956.1 16.1 
AISI 1070 1006.7 13.0 980.5 14.0 

3.3.1. Selection of specimens 

Small specimens were prepared from each group, one shot-peened and one non shot-

peened and then tensile tested.  

The original specimens were numbered for fatigue testing. The same numbering was used 

for the tensile test. The first digit indicated the material group, where 1, 2, 3 and 4 indicated AISI 

1141AC, AISI 1151QT, PM and C70S6AC respectively. The second digit expressed the 

specimen’s condition. If non shot-peened specimen, the digit was between 1 and 9, if the 

specimen was shot peened it was between 10 and 19. 

3.3.2. Tensile testing  

Crosshead speed was 2mm/min for the first specimen (1-3) and 1mm/min for the rest.  

3.4. Microhardness Tests 

3.4.1. Specimens 

The first series of microhardness tests were performed on the grip sections of small 

tensile specimens. For the remaining series of microhardness tests, the grip or gage sections of 

the fatigue specimens were used. 

3.4.2. Specimen preparation 

Careful preparation of the samples was necessary for the microhardness tests and the 

measurement of indentations. The practical sample preparation procedure was as follows. 
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3.4.2.1. Cutting 

Cutting, or sectioning, was performed with a cutting-wheel. Cooling was necessary in 

order to avoid structural changes by heating. The specimen number was engraved on each 

sample immediately after cutting. The outer edge of each specimen was marked for identification 

purposes. 

The orientations in the present tests were those which are customarily used to specify 

specimen and crack orientations. For these flat sections, the three standard designated directions 

were longitudinal (L), transverse (T), and short transverse (S). An ordered pair of these symbols, 

L, T and S, in which the first letter designated the direction of loading plane and the second letter 

(eg. L-T) designated the fracture plane (T) as shown in Figure 3.3. 

The majority of the microhardness tests were performed in the L-S orientation, however, 

supporting tests were carried out in the T-S orientation in the grip section and in the L-T 

orientation in the gage section.  

 
Figure 3.3.Code system for specimen orientation and crack propagation direction in plane [32] 
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3.4.2.1.1. Grip section (L-S and T-S) 

For the first series of microhardness tests, the small specimens in L-S and T-S 

orientations were tested. For the rest of the tests, the original specimens in the L-S orientation 

were used. 

3.4.2.1.2. Gage section (L-T) 

Three specimens 1-16, 3-15, 4-11 were examined. Microhardness tests on the surface (L-

T) parallel to the crack, at distances of 1mm to 2mm away from the crack were carried out.  

3.4.2.1.3. Gage section (L-S) 

The specimens were prepared to enable the user to conduct the hardness test across 

thickness (L-S) close to the crack site, i.e. 2mm to 8mm from the crack. For the specimens 

without a crack, the whole gage section was cut and the microhardness indentations were taken 

in the center of this section. 

3.4.2.2. Mounting 

After cutting, the microhardness samples were mounted using “phenolic hot mounting 

powder” and a Struers press. Immediately after mounting, each sample’s number was engraved 

for identification. 

3.4.2.3. Grinding 

Emery paper was used to carry out the planar grinding. In the present case it has been 

performed in six steps with hand and spinning grinder using 240, 320, 400, 600, 1200 and   

4000-grit emery papers from the roughest to the smoothest. Each step took about 10 minutes. It 

is important to carefully rotate the sample 90° between each step and to keep the papers wet. 

3.4.2.4. Polishing 

Polishing was carried out with 5µm, 1µm, 0.3µm and 0.05µm alumina powders from the 

roughest to the smoothest each lasting for about 5 minutes. The samples were rinsed with water 
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between each grade of polish and finally rinsed with alcohol to avoid stains from water on the 

sample surface. 

3.4.3. Microhardness test 

The Leco micro-indenter was used to perform the Vickers microhardness test. The loads 

applied were 0.1 and 0.5kgf with a standard dwell (load) time of 30 seconds for each load. 

3.4.3.1. L-S and T-S  

For the L-S test, both 0.1and 0.5kgf loads were used. Under 0.5kgf (HV0.5), the number 

of indentations was different from one specimen to another: 14 indentations in two lines or 27 

indentations in three lines in a staggered pattern. On average, 7 to 9 indentations were made per 

line. Under 0.1kgf (HV0.1), the number of indentations was the same for all the specimens. 

Eighty four (84) indentations were performed in six lines. There were two series of three 

indentation lines each containing 42 indentations in a staggered pattern. The second series (the 

second 42 indentations) was carried out as a verification for the first 42 indentations. The results 

from both series have been included in the results.  

For the T-S tests, a 0.5kgf load was applied (HV0.5). Thirteen (13) to 14 indentations 

were carried out in two lines of indentations, on average, 7 indentations per line. For specimen 3-

5, four lines of indentations, 24 indentations in total, were made. The values of the first and 

second rounds are reported both separately and together in the Results section. 

In general, for indentations under 0.5kgf load, the spacing was almost 250µm. Other 

spacings existed and have been reported on the hardness profile. The spacing between either the 

first or last indentation relative to the edges ranged from 40 to100µm.  

Under a 0.1kgf load, the spacing between all two adjacent indentations in a line was 

100µm but the spacing between the first indentation to the closest edge was different from one 

line to another line since the indentations were made in staggered arrangement. This spacing was 

25µm for the first line while 50µm and 75µm for the second and third lines respectively.  
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3.4.3.2. L-T  

Two lines of indentations on the surface of the gage section, parallel to the crack, 1mm 

and 2mm away the crack, were made. Each line included 14 to 20 indentations. 

3.4.3.3. Surfaces hardness test  

Since the surface hardness could not be taken for the cross section test, supplementary 

hardness tests were made on the surface (L-T). Hardness values at zero and 1.7mm in the L-S 

hardness profile were obtained by the surface tests. 

For this purpose, 4 indentations (2 under 0.1kgf and 2 under 0.5kgf load) were performed 

on each surface. As reported in the results section, surface 1 and surface 2 correspond to zero and 

1.7 mm respectively. 

3.4.4. Measurements  

The diagonals of the microindentations were measured using the microscope of the 

microhardness tester or an optical microscope and image processing and analysis software 

installed on lab computer namely “Image-Pro6.0”. The optical microscope lenses were 

connected to the laboratory computer through a piece of hardware enabling the user to work with 

“Image-Pro6.0”. 

For the present tests, “Image-Pro6.0” was used to carry out the measurements. Initially, 

for some specimens both the microhardness tester and software were used to ensure the accuracy 

of the readings obtained from the software. Since the results of the software were in good 

agreement with microhardness tester, “Image-Pro6.0” was then used for the rest of the 

specimens. 

To measure the diagonals under 0.5 and 0.1kgf, 50X and 100X magnification lenses were 

used respectively, 10X lenses were used to measure spacings which were 100 and 250µm 

approximately. 

The diagonals of the indentations left in the surface of the material by the indenter were 

measured. The average measurement of diagonals was converted to a Vickers hardness number 
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through a hardness conversion table. It should be noted that an interpolation was used when 

average dimension of the diagonals did not correspond with any of the values in conversion 

table. Interpolation was necessary for almost all HV0.5 hardness tests whereas it was needed for 

only a few HV0.1 indentations. 

3.5. Microstructure 

Selected non shot-peened and shot-peened specimens were used for a microstructure 

examination. The preparation steps for etching were similar to the steps taken for a 

microhardness test: mounting, grinding and polishing (3.4.2.2 to 3.4.2.4). The purpose of etching 

is to optically enhance microstructural features such as grain size and phase features. A swab 

etching technique was performed using a swab cotton and Nital (%2.0) as etchant on specimen 

for few seconds (~5-10sec) to reveal general structure (grain and grain boundaries).
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Chapter 4 

Results  

4.1. S-N Curves 

All the non shot-peened specimens including 1-1 to 1-9, 2-1 to 2-9, 3-1 to 3-9 and 4-1 to 

4-9 and all the shot-peened specimens including 1-10 to 1-19, 2-10 to 2-19, 3-10 to 3-19 and 4-

10 to 4-19 were fatigue tested. Push-pull fatigue tests were conducted using a stress ratio of    

R=-1. The fatigue test results and the original S-N curves for all the specimens are given in Table 

B1 to Table B8 and Figure B1 to Figure B8 in Appendix B. 

4.1.1. S-N curves non shot-peened 

Figure 4.1 gives simplified S-N curves for the non shot-peened specimens. Detailed S-N 

curves are given in Figure B1 to B8 in Appendix B. 

 
Figure 4.1.S-N curves for non shot-peened specimens 

To determine the fatigue strengths at 106 cycles, an average and one standard deviation of 
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gave the fatigue strength with one standard deviation at 107 cycles. Detailed fatigue testing data 

for non shot-peened and shot-peened specimens are given in Table B1 to B8 in Appendix B. 

At N=106 and 107, the fatigue strengths of the non shot-peened AISI 1151QT specimens 

were 418.3±18.6MPa and 427.3±7.6MPa and for PM were 310.0±13.8MPa and 311.0±19.5MPa 

respectively. Fatigue strengths of two other non shot-peened ones, AISI 1141AC and C70S6AC, 

at N=106 were 323.2±7.3MPa and 349.8±5.2MPa and at N=107 were 324.3±5.1MPa and 

348.8±5.5MPa respectively. 

4.1.2. S-N curves shot-peened 

The S-N curves for the shot-peened specimens are shown in Figure 4.2. 

 
Figure 4.2.S-N curves for shot-peened specimens 

The shot-peened specimens fatigue strengths were 372.3±31.3MPa and 375.9±32.7MPa 

for AISI 1151QT and 353.5±19.4MPa and 343.2±22.4MPa for PM at N=106 and 107 

respectively. For the C70S6AC (crackable) steel, the fatigue strengths were 342.6±8.4MPa and 

341.3±7.4MPa and for the AISI 1141AC steel, fatigue strengths were 342.7±14.9MPa and 

331.6±2.6MPa at 106 and 107 cycles respectively.  
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4.2. Tensile Test 

As mentioned in the Experimental Design section, small (sub-size) specimens were cut 

from the grip section of fatigue (original) specimens for tensile testing. Both non shot-peened 

and shot-peened specimens were tensile tested. The test data is given in Table 4.1. Engineering 

and true stress-strain curves for the specimens are shown in Figure 4.3 to Figure 4.10.  

Table 4.1.Tensile test results  

Specimen 
 

Length Elongation 
(%) 

Tensile Strength σ UTS 
(MPa) 

Non  
Shot-peened 

1-3 16.2 921.2 
2-2 13.1 997.0 
3-5 16.1 956.1 
4-5 14.0 980.5 

Shot-peened 

1-12 17.1 912.2 
2-10 16.2 958.5 
3-19 9.5 962.8 
4-10 13.1 983.1 

Specimen 2-2 (AISI 1151QT non shot-peened) had the highest tensile strength among the 

non shot-peened specimens whereas specimen 4-10 (crackable) was the greatest among the shot-

peened specimens. The results of the non shot-peened specimens were in good agreement with 

the results from Galt Testing Laboratories carried out on other non shot-peened specimens from 

the same group (Table A1). 
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Figure 4.3.Engineering and true stress-strain curve for non shot-peened AISI 1141AC  

 
Figure 4.4.Engineering and true stress-strain curve for shot-peened AISI 1141AC  

0

125

250

375

500

625

750

875

1000

1125

1250

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

St
re
ss
  (
M
Pa

)

Strain

Stress‐Strain Curves ‐ AISI 1141AC Non Shot‐Peened
(Specimen 1‐3)  

Engineering Stress‐Strain 

True Stress‐Strain

0

125

250

375

500

625

750

875

1000

1125

1250

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

St
re
ss
 (M

Pa
)

Strain 

Stress‐Strain Curves ‐ AISI 1141AC Shot‐Peened
(Specimen 1‐12)   

Engineering Stress‐Strain

True Stress‐Strain



 

30 

 

      

 
Figure 4.5.Engineering and true stress-strain curve for non shot-peened AISI 1151QT  

 
Figure 4.6.Engineering and true stress-strain curve for shot-peened AISI 1151QT  

0

125

250

375

500

625

750

875

1000

1125

1250

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

St
re
ss
 (M

Pa
)

Strain

Stress‐Strain Curves ‐ AISI 1151QT Non Shot‐Peened
(Specimen 2‐2)   

Engineering Stress‐Strain 

True Stress‐Strain

0

125

250

375

500

625

750

875

1000

1125

1250

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

St
re
ss
 (M

Pa
)

Strain

Stress‐Strain Curves ‐ AISI 1151QT  Shot‐Peened
(Specimen 2‐10 )  

Engineering Stress‐Strain

True Stress‐Strain



 

31 

 

      

 
Figure 4.7.Engineering and true stress-strain curve for non shot-peened PM  

 
Figure 4.8.Engineering and true stress-strain curve for shot-peened PM  
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Figure 4.9.Engineering and true stress-strain curve for non shot-peened C70S6AC  

 
Figure 4.10.Engineering and true stress-strain curve for shot-peened C70S6AC  
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4.3. Microhardness 

 The average and standard deviations of the Vickers microhardness values plus fatigue 

test data for the non shot-peened specimens are shown in Table 4.2 to Table 4.5. The following 

curves give the microhardness values for the grip and gage sections in the L-S and T-S 

directions.  

 4.3.1. AISI 1141 Air cooled  

 4.3.1.1. AISI 1141AC non shot-peened specimens 

Table 4.2 shows the L-S and T-S average microhardness values of the individual non          

shot-peened specimens.  

Table 4.2.AISI 1141AC grip and gage section average hardness 

SPECIMEN σa  
(MPa) 

R 
(σmin/σmax) 

N  (CYCLES TO 
FRACTURE) 

GRIP SECTION 
HARDNESS 

(HV 0.5) 

GAGE SECTION 
HARDNESS 

(HV 0.5) 

L-S T-S L-S 

1-3 349.9 
-1 

587,800 277.2±8.1 287.9±8.5 281.5±7.5 
1-7 319.6 10,073,900 291.0±5.3 NA 285.6±10.9 

Microhardness Vickers tests were carried out on the grip section of specimen 1-3 in L-S 

and T-S directions (Figure 4.11) and specimen 1-7 in L-S direction (Figure 4.12). The test was 

also performed on the gage section of specimens 1-3 and 1-7 only in L-S direction as shown in 

Figure 4.14 and Figure 4.15. HV0.5 is indicative of Vickers hardness test using 0.5kgf load. 
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Figure 4.11.Specimen 1-3 microhardness plot in grip L-S and T-S 

 
Figure 4.12.Specimen 1-7 microhardness plot in grip L-S 
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Figure 4.13.AISI 1141AC non shot-peened grip section microhardness plot 
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Figure 4.14.Specimen 1-3 microhardness plot in gage L-S 

 
Figure 4.15.Specimen 1-7 microhardness plot in gage L-S 
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These results were combined into a single plot, Figure 4.16, to generate an average 

hardness representative of the non shot-peened AISI 1141AC in the gage section. This average 

hardness in the gage section of AISI 1141AC was 283.6±9.5 HV0.5 after 5.8×105 cycles at          

σa= 349.9 MPa.  

 
Figure 4.16.AISI 1141AC non shot-peened gage section microhardness plot 
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Figure 4.17.Specimen 1-16 L-T microhardness plot in gage section 
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Figure 4.18.Specimen 1-16 grip section L-S microhardness profile 
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from 0.1 and 0.5kgf (HV0.1 and HV0.5) tests, are included in a single diagram (Figure 4.18). 
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In Figure 4.18 and Figure 4.19 the center line indicates the average hardness in the center 
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lines are trend lines showing change of hardness from one block to another.  

 

 

 

327.8

328.5

314.5 315.4
311.0

308.8

301.0

293.4 293.4
295.8

300.8
304.8

311.5

327.5

335.3

342.7

270

280

290

300

310

320

330

340

350

360

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

M
ic
ro
ha

rd
ne

ss
  (
H
V
 0
.1
 ‐
0.
5)

Distance (mm)

Microhardness Curve in Grip Section L‐S 
Specimen 1‐16 (1141AC S.P.)

Surf 1  L‐T 

Surf 2  L‐T

L‐S 



 

40 

 

      

Grip section (Figure 4.18): 

a) The shot peened region in the grip section was 0.0 (surface1) to 0.6mm and 1.1 to 

1.7mm (surface2). From 0.0 to 0.4mm, the hardness was from 310.0 to 328.5 HV0.1-0.5. After 

reaching its highest value, 328.5, at 0.05mm it reduced to 314.5 at 0.15mm and remained 

relatively unchanged up to 0.3mm. It again decreased to 311.0 at 0.35mm without any significant 

change up to 0.45mm. The hardness reduced to 301.0 at 0.55mm. From 0.1 to 0.5mm, the 

hardness variations were small. 

On the right side of the center, the hardness increased from 295.8 to 311.5 HV0.1-0.5 

between 1.15 to 1.45mm. A greater increase was seen between 1.45 to 1.55mm where hardness 

increased to 327.5. The maximum hardness in the L-S orientation was 335.3 at 1.65mm. The 

hardness variations in the right side were higher than the left. The L-S hardness drastically 

changed between 0.0 to 0.2mm and 1.45 to 1.55mm. 

b) The center, non shot-peened region, was from 0.6 to 1.1mm with a hardness of 

293.4±14.9 HV0.1-0.5. This hardness value in the center of 1-16 grip section was similar to that 

of the non shot-peened specimens (Figure 4.11 and Figure 4.12) considering standard deviations. 

Surface 1 (left) and surface 2 (right) L-T hardness values, 327.8 and 342.7 HV0.1-0.5, 

completed L-S hardness curve. It should be noted that a reference surface have been designated 

for all specimens including 1-16. The zero level in both grip and gage curves corresponds to the 

reference surface or surface 1.  
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Figure 4.19.Specimen 1-16 gage section L-S microhardness profile 

Gage section (Figure 4.19): 

The gage section hardness results were processed in the same manner, as shown in Figure 

4.19. The original curves for all specimens are shown in Figure B1to Figure B8 in Appendix B. 

a) The shot-peened region in the gage section was between 0.0 (surface1) to 0.3mm in the 

left side and 1.4 to 1.7mm (surface2) in the right side. The hardness reached a maximum of 

332.4HV0.1-0.5 at 0.05mm then decreased to 302.2 at 0.35mm. The rate of change between 0.05 

to 0.35mm was similar. The hardness variations between 1.4 and 1.5mm were greater than 1.5 to 

1.6mm but lower than the left side. Hardness variations in the left shot peened region were 

higher than the right. 

b) The non shot-peened region or the center in the gage section was wider than the grip 

section. It started from 0.35mm and ended at 1.45mm. The hardness in this region was 

302.2±15.1 HV0.1-0.5 after 9.2×105 cycles at σa= 349.7MPa.  
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The hardness values 316.9 and 318.8 HV0.1-0.5 respectively on surface 1 and 2 were 

similar,  

Comparing the hardness in the grip and gage centers, a very small increase of hardness 

was apparent in the gage section especially when their standard deviations were considered. In 

general, the rate of hardness change in the shot-peened regions of the grip section was higher 

than in the gage section.  

Comparing the hardness averages in the L-T orientation in the grip (335.3 HV0.1-0.5) 

and gage (322.4 HV0.1-0.5) of shot-peened AISI 1141AC with the averages in the L-S 

orientation in the grip (285.4±9.4 HV0.5) and gage (283.6±9.5 HV0.5) sections of the non shot-

peened ones showed 17.5 and 13.7% of increase in the grip and gage hardness values 

respectively. The L-T direction in shot-peened condition represented a fully shot-peened surface 

whereas the L-S direction in non shot-peened condition represented the initial condition of the 

steel. 

4.3.2. AISI 1151 quenched and tempered 

4.3.2.1. AISI 1151QT non shot-peened specimens 

Table 4.3 shows the L-S and T-S average hardness values of the individual non shot-

peened specimens.  

Table 4.3.AISI 1151QT grip and gage section average hardness 

SPECIMEN σa  
(MPa) 

R 
(σmin/σmax) 

N  (CYCLES TO 
FRACTURE) 

 
GRIP SECTION 

HARDNESS 
(HV 0.5) 

 

GAGE SECTION 
HARDNESS 

(HV 0.5) 

L-S T-S L-S 

2-2 440.8 
-1 

653,600 315.5±6.8 310.7±2.9 314.0±4.5 
2-7 432.7 10,878,000 308.9±4.4 NA 321.5±3.7 
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Figure 4.20 shows microhardness profile in the grip section of specimen 2-2 in the L-S 

and T-S directions. The average hardness was 315.5±6.8 HV0.5 and 310.7±2.9 HV0.5 in the grip 

section in L-S and T-S directions respectively.  

 
Figure 4.20.Specimen 2-2 microhardness plot in grip L-S and T-S 

The L-S hardness profile of specimen 2-7 in the grip section is depicted in Figure 4.21. 

The average hardness in the grip section for this specimen was 308.9±4.4 HV0.5. These hardness 

profiles were combined into a single plot, Figure 4.22, to produce an average hardness for the 

non shot-peened AISI 1151QT group. The average hardness in the grip section of this 

combination was 311.6±5.6 HV0.5 (Figure 4.22). 
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Figure 4.21.Specimen 2-7 microhardness plot in grip L-S 

 
Figure 4.22.AISI 1151QT non shot-peened grip section microhardness plot L-S 
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Figure 4.23 and Figure 4.24 show microhardness profile in the gage section of specimen 

2-2 and 2-7 in the L-S direction. For specimen 2-2, the average hardness was 314.0±4.5 HV0.5 

and for specimen 2-7, the average hardness was 321.5±3.7 HV0.5.  

 
Figure 4.23.Specimen 2-2 microhardness plot in gage L-S 

The hardness profiles of specimen 2-2 and 2-7 were combined into a single plot to 

generate an average representing the L-S gage section hardness in the non shot-peened AISI 

1151QT. The plot is shown in Figure 4.25 indicating 317.8±5.6 as the average hardness for the 

non shot-peened AISI 1151QT after 6.5×105 cycles at σa=440.8MPa. 
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Figure 4.24.Specimen 2-7 microhardness plot in gage L-S 

 
Figure 4.25.AISI 1151QT non shot-peened gage section microhardness plot L-S 
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4.3.2.2. AISI 1151QT shot-peened specimens 

Figure 4.26 and Figure 4.27 show respectively the grip and gage sections hardness curves 

for specimen 2-18 in the L-S direction. All the hardness values, HV0.1 and HV0.5, in a given 

0.1mm block were initially combined together to give an average and standard deviation. The 

original center region in both grip and gage sections was from 0.6 to 1.1mm, it is apparent that 

this region was broadened due to similar hardness values of adjacent blocks. 

The zero level in both the grip and gage curves correspond to the reference surface 

(surface1) of specimen 2-18.  

The grip and gage sections were divided into two regions namely: a) shot-peened and b) 
non shot-peened (the center). 

 
Figure 4.26.Specimen 2-18 grip section L-S microhardness profile 
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Grip section (Figure 4.26):   

a) The shot-peened region was from 0.0 (surface1) to 0.6mm and from 1.2 to 1.7mm 

(surface2). The hardness values were between 330.0 and 333.8 HV0.1-0.5 from 0.0 to 0.4mm 

and reached the highest value, 333.8 in the left region between 0.15 to 0.25mm. It decreased 

from 333.8 to 322.3 from 0.2 to 0.6mm with a similar reduction rate. The hardness remained 

unchanged, 322.3-323.6, from 1.1 to 1.25mm. The hardness reached its maximum of 337.1 

between 1.5 to 1.6mm then decreased to 328.4 at 1.65mm.  

b) The center, non shot-peened region, ranged from 0.6 to 1.3mm with a hardness of 

321.9-324.3 HV0.1-0.5 in this region.  

Surface 1 and 2 L-T hardness values, 329.9 and 342.9 HV0.1-0.5, completed the L-S 

curve. 

 
Figure 4.27.Specimen 2-18 L-S gage section microhardness profile 
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Gage section (Figure 4.27): 

a) The shot-peened region was from 0.0 (surface1) to 0.4mm and from 1.1 to 1.7mm 

(surface2). The hardness value at 0.05mm, 323.2 HV0.1-0.5, was the highest on the left side. On 

the right side, the hardness at 1.15mm was 310.6 increasing to 316.0 at 1.25mm then remained 

unchanged, 316.0-318.7, from 1.25 to 1.45mm. The hardness increased to 325.6 at 1.55mm then 

335.0 at 1.65mm.  

b) The center was originally from 0.6 to 1.1mm, but due to similar value of hardness, 

306.0, the center extended from 0.6 to 0.45mm on the left side. 

Comparing the grip (Figure 4.26) and gage sections (Figure 4.27) of the shot-peened 

specimens, the hardness was higher in the grip than the gage section, indicating that in general, 

cyclic softening had taken place after 2.9×104 cycles at 461.1MPa. 

Comparing the hardness averages of AISI 1151QT in the L-T orientation in the grip 

(336.4 HV0.1-0.5) and gage (343.9 HV0.1-0.5) in shot-peened condition with L-S orientation in 

the grip (311.6 HV0.5) and gage (317.8 HV0.5) of the non shot-peened ones showed a 8.0 and 

8.2% hardness increase in the grip and gage sections respectively. The L-T direction in shot-

peened condition represented a fully shot-peened surface whereas the L-S direction in non shot-

peened condition represented the non shot-peened condition of the steel. 
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4.3.3. Powder metallurgy (PM) 

4.3.3.1. Powder metallurgy (PM) non shot-peened specimens 

Table 4.4 shows the L-S and T-S average hardness values of the individual non shot-

peened PM specimens.  

Table 4.4.PM grip and gage section average hardness 

SPECIMEN σa  
(MPa) 

R 
(σmin/σmax) 

N  (CYCLES TO 
FRACTURE) 

 
GRIP SECTION 

HARDNESS 
(HV 0.5) 

 
GAGE SECTION 

HARDNESS 
(HV 0.5) 

 
L-S T-S L-S 

3-2 304.4 
-1 

811,700 307.1±26.5 NA 296.0±18.1 

3-5 305.7 10,007,900 293.9±24.6 
302.9±25.1 

313.7±32.2 
300.5±28.4 304.8±25.1 

 

Microhardness tests were performed in the grip section in the L-S and T-S directions of 

specimen 3-5. The hardness curve is shown in Figure 4.28. Due to large variations in the first 

microhardness test results, as seen in Figure 4.28, a second microhardness test was carried out. 

Both tests conditions were similar and performed using the same load (0.5kgf). Figure 4.29 

shows the results of the second test. 

The average hardness values resulting from the first test in L-S and T-S directions were 

293.9±24.6 HV0.5 and 313.7±32.2 HV0.5 respectively (Figure 4.28). The averages of the second 

test in L-S and T-S directions were 302.9±25.1 HV0.5 and 300.5±28.4 HV0.5, (Figure 4.29), 

which were in good agreement with the first test results considering the standard deviations. 

Compared to other steels, the standard deviations were higher. 
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Figure 4.28.Specimen 3-5 microhardness plot in grip L-S and T-S (first test) 

 

 
Figure 4.29.Specimen 3-5 microhardness plot in grip L-S and T-S (second test) 
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Figure 4.30.Specimen 3-2 microhardness plot in grip L-S 

The average hardness in the grip section in the L-S direction for specimen 3-2 was 

307.1±26.5 HV0.5. The standard deviation of this result was similar to specimen 3-5 results. To 

produce a value as the average hardness of the non shot-peened PM specimens in the grip 

section, the results of two separate hardness tests on specimen 3-5 in the L-S and T-S directions 

(Figure 4.28 and Figure 4.29) were combined with the hardness results of 3-2 in the L-S 

direction (Figure 4.30). The combinations of these test results are shown in Figure 4.31, 

representing the average hardness profile in the grip section of the non shot-peened PM 

(303.5±27.3 HV0.5). 
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Figure 4.31.Powder Metallurgy (PM) non shot-peened grip section microhardness plot L-S 

 
Figure 4.32.Specimen 3-5 microhardness plot in gage L-S 
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Figure 4.33.Specimen 3-2 microhardness plot in gage L-S 

 
Figure 4.34.Metallurgy (PM) non shot-peened gage section microhardness plot L-S 
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and 3-2 (Figure 4.32 and Figure 4.33) were combined. Figure 4.34 shows the resulting gage 

curve from the combination of specimens 3-2 and 3-5 in the L-S direction. The average hardness 

in the gage section of the non shot-peened PM specimens was 300.3±21.8 HV0.5 after 8×105 

cycles at σa=304.3MPa. 

4.3.3.2. Powder metallurgy (PM) shot-peened specimens 

As shown in Figure 4.35, the specimen 3-15 average hardness on surface (L-T) 1mm and 

2mm away from the crack site were 376.7±22.2 HV0.5 and 391.2±21.9 HV0.5 respectively after 

1.8×106 cycles at σa= 368.5MPa.  

 
Figure 4.35.Specimen 3-15 L-T microhardness plot in gage section 
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Figure 4.36.Specimen 3-15 grip section microhardness profile 

All the hardness results of specimen 3-15 in the grip section were combined, as shown in 

Figure 4.36. The L-S direction in both grip and gage sections of specimen 3-15 were divided into 

two regions namely: a) shot-peened and b) non shot-peened (the center).  

Grip section (Figure 4.36): 

a) The shot-peened region ranged from 0.0 to 0.6mm on the left side and from 1.1 to 

1.7mm on the right. On the left side, the hardness reached the highest value, 367.4 HV0.1-0.5, at 

0.05mm and decreased from 366.4 to 350.7 at 0.25mm. From 0.25 to 0.55mm, the hardness 

remained unchanged, 348.0 to 350.7 then decreased to 333.2 at 0.6mm.  

The hardness increased from 350.4 to 403.5 between 1.15 to 1.45mm. The hardness 

reached the maximum, 405.9, at 1.55mm then decreased to 396.6 HV0.1-0.5. The hardness 

change rate from 1.4 to 1.65mm was small when compared to 1.1 to 1.45mm. Relatively, on the 

right side, hardness variations were more significant than the left side. 
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b) The center, non shot-peened region, was from 0.6 to 1.1mm. The hardness was 

333.2±11.2 in this region. 

Surface 1 and 2 (L-T) hardness values completed the microhardness profile at 0.0 and 

1.7mm with the hardness values of 318.8 and 356.9 HV0.1-0.5 respectively. 

 
Figure 4.37.Specimen 3-15 gage section microhardness profile 
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the maximum value, 403.2, then decreased to 397.7. The hardness variations were higher in the 

right side than the left side in the gage section. 

b) The hardness value in the center was 341.7±5.1. This region, originally from 0.6 to 

1.1mm, extended to 1.3mm on the right side.  

Comparing the hardness values after 1.8×106 cycles at 368.5MPa in the grip and gage 

centers, respectively 333.2±35.5 and 341.7±27.9HV0.1-0.5, a very small increase of hardness 

was apparent in the gage section especially when their standard deviations were considered.  

Surface 1 and 2 (L-T) hardness completed the microhardness profile at 0.0 and 1.7mm 

with the hardness values of 374.1 and 361.4 HV0.1-0.5 respectively. 

Comparing the average hardness values in the grip and gage sections of the non shot-

peened PM specimens (303.5 and 300.3 HV0.5) with the average grip and gage hardness values 

of specimen 3-15 in L-T direction, showed 11.3% and 25.2% increase of hardness in the grip and 

gage sections respectively. The L-S direction represented a non shot-peened surface whereas the 

L-T was a fully shot-peened surface. 
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4.3.4. C70S6 (Crackable) air cooled  

4.3.4.1. C70S6AC non shot-peened specimens 

Table 4.5 shows the L-S and T-S average hardness values of the individual non shot-

peened C70S6AC specimens.  

Table 4.5.C70S6AC (Crackable) grip and gage section average hardness 

SPECIMEN σa  
(MPa) 

R 
(σmin/σmax) 

N   
(CYCLES TO 
FRACTURE) 

GRIP SECTION 
HARDNESS 

(HV 0.5) 

GAGE 
SECTION 

HARDNESS 
(HV 0.5) 

L-S T-S L-S 

4-3 341.8 
-1 

10,618,300 309.8±11.3 NA 298.4±14.3 
4-5 355.0 739,800 299.3±7.9 295.1±8.6 312.7±10.4 

The microhardness profiles of specimen 4-5 in the grip section in the L-S and T-S 

directions are shown in Figure 4.38. Average hardness was 299.3±7.9 and 295.1±8.6 HV0.5 in 

the grip section in the L-S and T-S directions respectively.  

 
Figure 4.38.Specimen 4-5 microhardness plot in grip L-S and T-S 
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Both the L-S and T-S hardness variations were similar, ±7.9 for L-S and ±8.6 for T-S, in 

the grip section of specimen 4-5 (Figure 4.38). 

 Figure 4.39 gives specimen 4-3 hardness profile for the grip section in the L-S direction. 

The average hardness was 309.8±11.3 HV0.5. 

 
Figure 4.39.Specimen 4-3 microhardness plot in grip L-S 

The microhardness results for the grip section of specimens 4-5 and 4-3 were combined 

and shown in Figure 4.40. The average hardness was 301.4±11.0 HV0.5. 
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Figure 4.40.C70S6AC (Crackable) non shot-peened L-S grip section hardness 

 
Figure 4.41.Specimen 4-5 microhardness plot in gage L-S 
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Figure 4.42.Specimen 4-3 microhardness plot in gage L-S 

 
Figure 4.43.C70S6AC (Crackable) non shot-peened L-S gage section hardness 
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The microhardness profiles in the gage section of specimen 4-5 and 4-3 are depicted in 

Figure 4.41 and Figure 4.42 respectively. Average hardness for specimen 4-5 in the gage section 

in the L-S direction was 312.7±10.4 HV0.5 after 7.3×105 at σa=355.0MPa and 298.4±14.3 

HV0.5 for specimen 4-3 after 107 cycles at σa=341.8MPa. 

The gage section microhardness profiles of specimens 4-5 and 4-3 were combined to find 

an average hardness value and the resulting curve is shown in Figure 4.43. The average hardness 

value for the gage section was 305.0±14.3 HV0.5. 

4.3.4.2. C70S6AC shot-peened specimens 

 
Figure 4.44.Specimen 4-10 grip section hardness profile 

All the hardness results of specimen 4-10 in the grip section were combined as shown in 

Figure 4.44. The L-S direction in both the grip and gage sections of specimen 4-10 were divided 

into two regions namely: a) shot-peened and b) non shot-peened (the center).  
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a) The shot-peened region in the grip section was from 0.0 (surface1) to 0.5mm and from 

1.1 to 1.7mm (surface2). The hardness rate of change on the left side was similar from 0.1 to 

0.5mm. The highest hardness value in this side was 347.4 HV0.1-0.5 at 0.05mm decreasing 

continuously to 316.3 from 0.05 to 0.45mm. On the right side, from 1.15 to 1.4mm, the hardness 

values were similar. From 1.35 to 1.5mm the hardness increased significantly from 333.3 to 

349.3. From 1.5 to 1.7mm, the change of hardness was insignificant, 351.7-354.3. The maximum 

of the L-S hardness value in the shot-peened region was 354.3 at 1.65mm. 

b) Non shot-peened region was from 0.5 to 1.1mm in the center with the hardness value 

of 313.9±15.5 HV 0.1- 0.5. 

Surfaces 1 and 2 (L-T) with the hardness values of 374.9 and 395.6 HV0.1-0.5 completed 

the L-S hardness curve of the grip section. 

 
Figure 4.45.Specimen 4-10 gage section hardness profile 
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Gage section (Figure 4.45): 

a) The shot-peened region ranged from 0.0 (surface1) to 0.5mm on the left side and from 

1.1 to 1.7mm (surface2) on the right side. The hardness almost remained unchanged from 0.0 to 

0.35mm on the left and from 1.25 to 1.6mm on the right side.  

b) The center was expanded to 0.4mm and 1.15mm on the left and right side respectively. 

In general, the hardness variations in the grip section were higher than the gage section.  

Surface 1 and 2 L-T hardness values were 350.6 and 372.3 HV0.1-0.5 respectively.  

Comparing the average hardness values in the grip and gage sections of the non shot-

peened PM specimens (301.4 and 305.0 HV0.5) with the average hardness values of the grip and 

gage sections of specimen 3-15 in L-T direction (385.3 and 361.5 HV0.1-0.5), showed 27.8% 

and 18.50% increase of hardness in the grip and gage sections respectively. The L-S direction 

represented a non shot-peened surface whereas the L-T was a fully shot-peened surface. 
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4.4. Microstructure 

4.4.1. AISI 1141AC 

 

 

 

Figure 4.46.AISI 1141 AC microstructure (etched in 2.0% Nital)  a,b) non shot-peened top and 
bottom c,d) shot-peened top and bottom  
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The microstructure of the AISI 1141AC steel in the non shot-peened and shot-peened 

condition is shown in Figure 4.46 a,b and c,d respectively indicating the microstructure of 

hypoeutectoid steel in which the islands of pearlite are surrounded by the primary ferrite (white). 

4.4.2. AISI 1151QT 

Figure 4.47 a,b and c,d respectively show the microstructure of the quenched-tempered 

AISI 1151 steel in the non shot-peened and shot-peened condition. The AISI 1151 microstructure 

is that of tempered martensite showing fine carbide in a ferrite matrix.  

4.4.3. PM 

The microstructure of powder metallurgy (PM) steel in non shot-peened and shot-peened 

condition is shown in Figure 4.48a,b and c,d respectively. These figures show some islands of 

pearlite are surrounded by primary ferrite.  

4.4.4. C70S6AC 

The microstructure of C70S6AC steel in the non shot-peened and shot-peened condition 

is shown in Figure 4.49a,b and c,d respectively indicating the microstructure of a hypoeutectoid 

steel in which pearlite is surrounded by primary ferrite. 
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Figure 4.47.AISI 1151 QT microstructure (etched in 2.0% Nital)  a,b) non shot-peened top and 

bottom c,d) shot-peened top and bottom  
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Figure 4.48.PM microstructure (etched in 2.0% Nital)  a,b) non shot-peened top and bottom c,d) 
shot-peened top and bottom  
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Figure 4.49.C70S6AC microstructure (etched in 2.0% Nital)   a,b) non shot-peened top and bottom 
c,d) shot-peened top and bottom  
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Figure 4.50.C70S6AC microstructure  

Figure 4.50 shows islands of pearlite in air cooled C70S6 at higher magnification. 

4.4.5. Indentations  

The indentations caused by microhardness Vickers test are shown in Figure 4.51. The 

distance between the two indentations on the left (1 and 2) to the edge were 0.05 and 0.3mm and 

on the right (3 and 4) to the edge were 0.16 and 0.41mm respectively. These indentations 

correspond to the marked point on microhardness curve shown in Figure 4.52.  
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Figure 4.51. Indentations - Microhardness Vickers Test  

 
As depicted on the microhardness curve (Figure 4.52) the closer the indentation to the 

edge (the surface), the higher the hardness value was, however, no deformation was apparent. 

 
Figure 4.52.Indentations on microhardness curve 
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4.5. Surface Roughness 

Figure 4.53a, b to Figure 4.56 a, b show top and bottom surfaces of non shot-peened AISI 

1141AC, AISI 1151QT, PM and C70S6AC specimens respectively. The increase of surface 

roughness after shot-peening was apparent as top and bottom surfaces of shot-peened specimens 

are shown in Figure 4.53c, d to Figure 4.56c, d. 

 The surface roughness of different non-shot peened steels was similar (0.26±0.03µm), 

likewise after shot-peening all the specimens had a similar surface roughness of (3.60±0.44µm) 

[9]. 

 

 

 

 
Figure 4.53.AISI 1141AC a,b) non shot-peened top and bottom c,d) shot-peened top and bottom 
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 Figure 4.54.AISI 1151QT a,b) non shot-peened top and bottom c,d) shot-peened top and bottom 
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Figure 4.55.PM a,b) non shot-peened top and bottom c,d) shot-peened top and bottom 
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Figure 4.56.C70S6AC a,b) non shot-peened top and bottom c,d) shot-peened top and bottom 
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Chapter 5  

Discussion 

5.1. Air Cooled Medium Carbon Steel (AISI 1141AC) 

5.1.1. AISI 1141AC fatigue strength 

Table 5.1.AISI 1141AC fatigue strengths 

Material Cycle Number Non Shot-Peened 
(MPa) 

Shot-Peened 
(MPa) 

Fatigue Strength 
Ave. Change (%) 

AISI 1141AC 
106 323.2±7.3 342.7±14.9 6.0% 
107 324.3±5.1 331.6±2.6 2.3% 

 At 106 and 107 cycles, AISI 1141AC fatigue strengths after shot-peening increased 6.0% 

and 2.3% respectively which are small improvements when the standard deviations are 

considered. 

5.1.2. AISI 1141AC L-S microhardness profiles (grip vs. gage) 

 Figure 5.1 shows the grip and gage hardness curves of the non shot-peened and shot-

peened AISI 1141AC in the L-S direction. 

 The hardness values in the grip and gage sections of the non shot-peened (normalized) 

AISI 1141AC were 285.4±9.4 and 283.6±9.5 HV0.5 respectively are shown in Figure 5.1 

indicating that neither cyclic softening nor hardening occurred after 5.0×105 cycles at σa=349.9 

MPa in the non shot-peened condition. These values were similar to the center hardness 

(293.4±14.9 HV0.1-0.5) in the grip section of the shot-peened specimen before cycling. 

  The gage hardness in the center of the shot-peened specimen was 302.2±15.1 HV0.1-0.5 

after 9.2×105 cycles at σa=349.7 MPa. When the hardness in the grip and gage are compared, it 

becomes apparent that shot-peening resulted in only a very small increase of hardness.  
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Figure 5.1.AISI 1141AC L-S microhardness profile non shot-peened vs. shot-peened 

  Higher surface hardness values were apparent in the shot-peened regions of the grip than 

those in the gage after 9.2×105 cycles at σa=349.7 MPa. Cyclic softening (from 342.7 to 318.8, 

right side and 327.8 to 316.9, left side) occurred that was accompanied by a decrease in the depth 

of surface hardness from 0.6 to 0.25mm on the left side and from 1.15 to 1.45mm on the right 

side. The surface hardness decreased 3.0% left side and 7.0% right side. The amount of softening 

in the shot-peened region was 1.50% on the left side and 13.2% on the right side.  

5.2. Quenched-Tempered Medium Carbon Steel (AISI 1151QT) 

5.2.1. AISI 1151QT fatigue strength 

 Table 5.2 shows fatigue strengths for the non shot-peened and shot-peened AISI 1151QT. 

The high cycle fatigue strengths decreased 11.0 and 12.0% respectively at 106 and 107 cycles on 

shot-peening.  
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Table 5.2.AISI 1151QT fatigue strengths 

Material Cycle Number Non Shot-Peened 
(MPa) 

Shot-Peened 
(MPa) 

Fatigue Strength 
Ave. Change (%) 

AISI 1151QT 
106 418.3±18.6 372.3±31.3 -11.0% 
107 427.3±7.6 375.9±32.7 -12.0% 

 The decrease of fatigue strengths after shot-peening could be due to the higher plastic 

strain amplitudes which are always measured for the shot-peened quenched-tempered medium 

carbon steels [15] with similar stress amplitudes and comparable number of cycles than for non 

shot-peened ones under tension-compression loading. Besides, the onset of cyclic softening is 

shifted to smaller numbers of cycles after shot-peening in quenched-tempered medium carbon 

steel [15].  

5.2.2. AISI 1151QT L-S microhardness profiles (grip vs. gage) 

 

Figure 5.2 shows the grip and gage hardness curves in the non shot-peened and shot-peened AISI 

1151QT in L-S direction.  
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Figure 5.2.AISI 1151QT L-S microhardness profile non shot-peened vs. shot-peened 

  The hardness in the grip section of the non shot-peened AISI 1151QT was 311.6±5.6 
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indicate that no cyclic softening or hardening occurred in the quenched-tempered (non shot-

peened) conditions after 6.5×105 cycles at σa=440.8MPa. These values were similar to the center 

hardness (306.0±11.6 HV0.1-0.5) in the grip section of the shot-peened specimen before cycling. 
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 Eifler et. al.[15] showed that for quenched-tempered AISI 4140 steel, cyclic softening 

occurred sooner in shot peened specimens than non shot-peened ones. In addition, higher plastic 

strain amplitudes occurred in shot-peened samples. This showed that relaxation of compressive 

residual stresses in the shot-peened specimens during cycling was higher than the non shot-

peened ones [15].  

5.3. Powder Metallurgy (PM) 

5.3.1. PM fatigue strength 

 Table 5.3 shows fatigue strengths for the non shot-peened and shot-peened PM 

specimens. 

Table 5.3. PM fatigue strengths 

Material Cycle Number Non Shot-Peened 
(MPa) 

Shot-Peened 
(MPa) 

Fatigue Strength 
Ave. Change (%) 

PM 
106 310.0±13.8 353.5±19.4 14.0% 
107 311.0±19.5 343.2±22.4 10.4% 

 After shot-peening, the fatigue strengths increased to 353.5±19.4MPa at 106 cycles and 

343.2±22.4 at 107 cycles, indicating 14.0% and 10.4% fatigue limit improvements respectively 

on shot-peening. 

5.3.2. PM L-S microhardness profiles (grip vs. gage) 

 Figure 5.3 shows microhardness profile in the non shot-peened and shot-peened PM in L-

S direction. The hardness values in the grip and gage sections of the non shot-peened PM were 

303.5±27.3 and 300.3±21.8 HV0.5. These similar hardness values indicate that no cyclic 

softening nor hardening occurred in the non shot-peened condition after 8.1×105 cycles at 

σa=304.3MPa. These values were different to the center hardness (333.2±35.5 HV0.1-0.5) in the 

grip section of the shot-peened specimen before cycling. 



 

82 

 

      

 
Figure 5.3.PM L-S microhardness profile non shot-peened vs. shot-peened 

 The hardness of the shot-peened sample was 333.2±35.5 in the grip center and 

341.7±27.9 HV0.1-0.5 in the gage center. Considering the standard deviations, no difference is 

seen in the center, indicating that significant cyclic softening or hardening had not occurred in 

this region after 1.8×106 cycles at σa=368.5MPa.  

 In the shot peened regions cyclic softening or hardening was not apparent, however, on 

the right side there is an indication that some softening occurred between 1.15 to 1.5mm. A 

decrease in the depth of surface hardness from 1.1mm to 1.25mm on the right side is seen and 

the amount of softening in the shot-peened region on the right side was 31%.  

5.4. Air Cooled High Carbon Crackable Steel (C70S6AC) 

5.4.1. C70S6AC fatigue strength 

 Table 5.4 shows fatigue strengths for the non shot-peened and shot-peened PM 

specimens. 
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Table 5.4.C70S6AC fatigue strengths 

Material Cycle Number Non Shot-Peened 
(MPa) 

Shot-Peened 
(MPa) 

Fatigue Strength 
Ave. Change (%) 

C70S6AC 
106 349.8±5.2 342.6±8.4 -2.1% 
107 348.8±5.5 341.3±7.4 -2.2% 

 The change of fatigue limits for C70S6AC was negligible, -2.1 and -2.2% at 106 and 107 

cycles indicating that the effect of shot peening, if any, was extremely small. 

5.4.1. C70S6AC L-S microhardness profiles (grip vs. gage) 

 Figure 5.4 shows the L-S direction microhardness profile in the grip and gage sections of 

the selected non shot-peened and shot-peened C70S6 specimens. The hardness values in the grip 

and gage sections of the non shot-peened were 301.5±11.0 HV0.5 and 305.3±14.3 HV0.5 after 

7.4×105 cycles at σa=355.0MPa. The hardness values are similar and no difference is apparent, 

indicating that neither cyclic softening nor hardening occurred. These values were similar to the 

center hardness (313.9±15.5 HV0.1-0.5) in the grip section of the shot-peened specimen before 

cycling. 
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Figure 5.4.C70S6AC L-S microhardness profile non shot-peened vs. shot-peened 

  The values of hardness in the grip and gage sections in non shot-peened condition were 

similar to the center hardness (293.4±14.9 HV0.1-0.5) in the grip section of the shot-peened 

specimen before cycling. The grip and gage hardness values in the center of shot-peened C70S6 

were 313.9±15.5 and 324.4±12.3 HV0.1-0.5 respectively. Considering the standard deviations, 

only a very small increase of hardness was apparent in the center indicating that a very small 

amount of cyclic hardening occured after 107 cycles at σa=347.4MPa. Cyclic softening occurred 

at the surface of shot-peened C70S6 after 107 cycles at σa=347.4MPa leading to a hardness 

decrease (from 395.6 to 372.3, right side and from 374.9 to 350.6, left side). The hardened 

surface decreased in the depth from 0.55 to 0.25mm on the left and from 1.1 to 1.55mm on the 

right side. The surface hardness decreased 7.0% and the net amount of softening in the shot-

peened region of C70S6 steel was 12.8% on the right side. 
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5.5. Surface Roughness  

 Surface roughness was measured using a Talysurf. The surface roughness of 

0.26±0.03µm was similar for all in the non shot-peened condition, likewise after shot-peening all 

the specimens had a similar surface roughness of 3.60±0.44µm [9]. 

5.6. Compressive Residual Stresses 

 
Figure 5.5.Compressive residual stress profile after shot-peening 

 Figure 5.5 represents the similar residual stress profiles for all the shot-peened specimens. 

The maximum stress of -463.9MPa at a depth of 0.1mm decreased to -206.9MPa at the depth of 

0.5mm [9].  

  A comparison between the microhardness profiles in the non shot-peened and shot-

peened conditions before cycling shows a relatively high increase of hardness at the surface of 

all the steels indicating that significant work hardening took place on shot peening. In AISI 
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(surface1) and 342.7 HV0.1-0.5 (surface2) and from 311.6±5.6 HV0.5 to 329.9 (surface1) and 

342.9 HV0.1-0.5 (surface2) respectively. The surface hardness values increased from 303.5±27.3 
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HV0.5 to 318.8 (surface1) and 356.9 HV0.1-0.5 (surface2) in PM steels and from 301.5±11.0 

HV0.5 to 374.9 (surface1) and 395.6 HV0.1-0.5 (surface2) in C70S6AC. 

 Comparing the non shot-peened and the shot-peened steels showed a range of effects 

from the relatively high beneficial effect of shot peening on the push-pull fatigue limit of PM 

(10.4 to 14.0%) to the relatively negative effect on AISI 1151QT (-12.0%). The effect of shot 

peening on AISI1141AC and C70S6AC steels were extremely small, (2.3 to 6.0% and -2.2% 

respectively). 

 In this study, the improvement (2.3 to 6.0%) in the fatigue strength of the air cooled steel 

(AISI 1141AC) was small when compared to the 14.0% improvement in bending fatigue strength 

of quenched shot-peened AISI 1045 (medium carbon steel) observed by [8]. This increase, (2.3 

to 6.0%), was also smaller than the 20.5% and 21.9% improvement in rotating-bending fatigue 

strengths that was observed after shot-peening of smooth air cooled medium carbon steels by [6]. 

This difference is due to different type of fatigue testing, as explained later. 

 In the present work, the push-pull fatigue strength in the quenched-tempered medium 

carbon steel (AISI 1151) decreased 12.0% after shot-peening which is different from other 

similar researches. The bending fatigue limit of shot-peened quenched-tempered medium carbon 

steel (AISI 1045) increased 22.0% for smooth specimens [8]. This improvement is restricted to 

small loading amplitudes, i.e. 0.5 to 0.65σys, leading to the high number of cycles to fracture i.e. 

106 to 107 cycles [8].  

 Guechichi and Castex [10] showed respectively 9.0%, 12.0% and 22.0% enhancement in rotary 

bending, tension-compression and torsion fatigue limits of low-alloy quenched-tempered 

medium carbon steels (35NiCrMo16 and 32CrMoVa13) after shot-peening. Torres and 

Voorwald [13] showed a 9.0 to 12.0% improvement in the rotating-bending fatigue limit in 

smooth quenched-tempered medium carbon steel (AISI 4340) using four different intensities of 

shot-peening.  

 In this study, the fatigue strengths of air cooled high carbon steel (C70S6) decreased        

-2.2% which is regarded as insignificant. Farrahi et al. [3] performed shot-peening on high 

carbon spring steel (AFNOR 60SC7) using four different types of shots for the shot-peening 

process. They showed a 14.0 to 24.0% increase in the torsion fatigue limit after shot-peening. 
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 The results of this study show that the influence of shot-peening on the fatigue limits are 

not pronounced. Fatigue stress gradients generated by the tension-compression loading 

conditions are shallower than in bending and rotating-bending. Therefore the gradient of 

compressive residual stresses is still higher than the loading stresses preventing initiation of 

cracks on the surface. This leads to crack initiation in the sub-surface layers where the loading 

stresses exceed the local fatigue strength, reducing the negative effect of surface roughness on 

the fatigue behaviour of the shot-peened specimens. Fatigue cracks initiate in the subsurface 

layers where the applied tensile stress counters the compressive residual stresses created by shot 

peening [10, 30]. 

 Metallographic examination has shown that fatigue cracking in shot-peened specimens 

shifted to the interior, so that the detrimental effects of the roughened surfaces by shot-peening 

became less important [16]. Hoffmann et.al [8] showed that cracks initiate 0.5mm below the 

surface in smooth quenched medium carbon steels (AISI 1045). A model by Guechichi and 

Castex [10] determined the position of the crack source for shot-peened quenched-tempered low 

alloy steel at a depth of 0.3mm below the surface, which was similar to the thickness of the shot-

peened layer.  

 Wang et.al [14] performed three-point bending fatigue test on 20Cr, 30CrMo, 

40Cr, GC4, 45 steels and Al-alloy LC9 after shot-peening. They showed that fatigue cracks were 

always located at the surface for non shot-peened cases, whereas these cracks were located 

beneath the compressive residual stress zone in all the shot-peened specimens except medium 

carbon steel (AISI 1045 steel) in which crack sources were located inside the hardened layer 

within compressive residual stress zone.  

 Compressive residual stresses and work hardening are the beneficial effects of shot 

peening whereas surface roughness is an accompanying detrimental effect [3,7]. In the present 

case, the surface roughness profile increased from 0.26±0.03 to 3.6±0.44µm after shot-peening 

[9]. 

 The beneficial effects of induced compressive residual stresses and work hardening are 

countered by surface roughness. Guechichi and Castex [10] introduced a model which 

demonstrated that work hardening was the more important effect. Pariente and Guagliano [11] 

studied shot-peened 42CrMo4 steel (low-alloy steel) specimens in pre-crack conditions. They 
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concluded that retardation of fatigue crack propagation after shot-peening was associated more 

with the surface work hardening than with the residual stress field caused by shot peening.                        

 Another study by A.M.Eleiche [6] et.al on the high cycle fatigue behaviour of high-

strength martensitic steels, indicated that the induced compressive residual stresses were not the 

only reason for the high cycle fatigue strength improvement in smooth specimens, but rather 

most of the shot-peening strengthening effect on high cycle fatigue behaviour could be attributed 

to the change of surface texture introduced by the rotation of surface crystals. 
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Chapter 6 

Conclusions and Recommendations 

6.1. Conclusions 

The following conclusions are based on the results of fatigue testing smooth specimens that 

have been shot peened.  

 
1. Considering the push-pull fatigue limit (106 cycles, R=-1) of the air cooled medium carbon 

steel (AISI 1141), shot-peening was found to have a small beneficial effect of 6.0%.  

 

2. Shot-peening had a small negative influence on the fatigue limit of the quenched-tempered 

medium carbon steel (AISI 1151) after 106 cycles. The push-pull fatigue limit decreased 

11.0%.  

 

3. The effect of shot-peening on the powder metallurgy (PM 0.5%C) steel was relatively high. 

The push-pull fatigue limit increased 14.0% after 106 cycles. 

 

4. Shot-peening had a very small effect on the air cooled 0.72% carbon steel (C70S6). The 

push-pull fatigue limit decreased 2.1% after 106 cycles. 

 

5. It was shown that the effect of surface roughness was not a significant factor in controlling 

the tension-compression fatigue lives of all the steels tested. 

 

6. For all the steels investigated, the surface hardness after shot-peening was found to be 

different on each side of the specimen.  
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7. The surface hardness of the shot-peened air cooled medium carbon AISI 1141 steel 

decreased 3.0% left side and 7.0% right side after 9.2×105 cycles. The depth of surface 

hardness decreased from 0.60mm to 0.25mm on both sides. 

 

8. For the shot-peened quenched-tempered AISI 1151 steel, the depth of surface hardness 

decreased from 0.60mm to 0.45mm on the left side and showed no change on the right side 

after 2.9×104 cycles. 

 

9. For the shot-peened PM steel, the surface hardness showed no change on the left side, 

however, decreased from 0.60mm to 0.25mm on the right side after 1.8×106 cycles. 

 

10. The surface hardness of the air cooled crackable C70S6 steel decreased 6.0% left and 7.0% 

right side after 10.1×107 cycles. The depth of surface hardness decreased from 0.55mm to 

0.25mm on the left side and from 0.6mm to 0.45mm on the right. 

 

11. Considering the grip sections, shot-peening increased the surface hardness as expected. 

However, the amount of surface hardening varied with the type of steel. For the AISI 

1141AC steel, shot-peening increased the average surface hardness by 17.5%. For the AISI 

1151QT, shot-peening increased the average surface hardness by 8.0%. For the PM and 

C70S6AC steels, shot-peening increased the average surface hardnesses by 11.3% and 

27.8% respectively. 

 

6.2. Recommendations 

In the present work, the effect of shot-peening on the high cycle fatigue behaviour of four 

different medium carbon heat treated steels was studied. The following recommendations are 

suggested for the future work. 

1. Compressive residual stresses should be measured before, during and after cycling at a given 

stress amplitude to investigate the relaxation rate of residual stresses for each steel in its  

normalized and heat treated condition. When the stress relaxation history is determined, the 
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dominant effect of shot-peening on fatigue life, either compressive residual stress or work 

hardening, in the different steels can be resolved. 

 

2. Once the residual stresses have been determined, the theoretical model developed by 

Guechichi and Castex [10] should be applied to the results of this study to predict the high 

cycle fatigue behaviour of shot-peened steels - the main variables (steel type, heat treatment 

and stress amplitude) of this model have already been recorded. 

 

 

3. To locate the fatigue crack initiation sites, the fracture surfaces in non shot-peened and shot-

peened cracked specimens must be examined microscopically. This investigation would be 

particularly important for the AISI 1151QT and C70S6AC steels (in which shot-peening 

decreased their fatigue limits) to determine whether the fatigue cracks initiated at or below 

the surface. 
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Appendices 

Appendix A 

A.1. Mechanical Properties of Steels 

 

Table A1.Mechanical properties† 

Material 
Yield 

Strength 
(MPa) 

Tensile 
Strength 
(MPa) 

Elongation 
(%) 

Reduction 
of Area 

(%) 

AISI 1141 575.7 855.0 17.0 39.0 
AISI 1151 930.8 999.8 12.0 31.0 

PM 565.4 889.5 15.0 30.0 
AISI 1070 575.7 1006.7 13.0 27.0 

                           †Galt Testing Laboratories report 
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Appendix B 

B.1. Fatigue Testing Data for AISI 1141AC 

 

 
Table B1.The fatigue test data for AISI 1141AC non shot-peened 

 

 

 

Table B2.The fatigue test data for AISI 1141AC shot-peened 

No. 
Average 

Thickness  
(mm) 

Net 
Width 
(mm) 

Area 
(mm2) 

Load      
( KN ) 

σ0 
(MPa) 

σa 
( MPa) 

Cycles to 
Failure 

(Nf) 
Remark 

1-10 1.780 12.100 21.5380 6.110  334.748 11876700 No crack 
1-11 1.790 12.080 21.6232 6.180  337.249 1069800 Crack 
1-12 1.820 12.180 22.1676 6.310  335.887 557700 Crack 
1-13 1.820 12.050 21.9310 6.150  330.902 10000000 No crack 
1-14 1.800 12.100 21.7800 6.130  332.112 13942300 No crack 
1-15 1.760 12.060 21.2256 5.910  328.556 10981000 No crack 
1-16 1.760 12.040 21.1904 6.280  349.705 920400 Crack 
1-17 1.780 12.000 21.3600 6.510  359.635 8788600* No crack 
1-18 1.760 12.080 21.2608 6.640  368.528 2903100 Crack 
1-19 1.760 12.180 21.4368 8.910  490.456 51800 Crack 

No. 
Average 

Thickness  
(mm) 

Net 
Width 
(mm) 

Area 
(mm2) 

Load 
( KN ) 

σ0 
(MPa) 

σa 
( MPa) 

Cycles to 
Failure 

(Nf) 
Remark 

1-1 1.78 12.00 21.36 7.51  414.878 192600 Crack 
1-2 1.76 12.04 21.19 6.40 213.904 356.388 467000 Crack* 
1-3 1.72 11.98 20.61 6.11  349.895 587800 Crack 
1-4 1.74 12.02 20.92 5.91 199.797 333.439 1889100 Crack* 
1-5 1.75 9.03 15.80 4.21 141.513 314.367 2406100 Crack* 
1-6 1.74 8.97 15.61 4.21 142.325 318.289 7108000 Crack* 
1-7 1.74 8.72 15.17 4.11  319.640 10073900 No crack 
1-8 1.76 8.93 15.72 4.31  323.590 12346700 No crack 
1-9 1.72 9.05 15.57 4.35  329.757 10190700 No crack 
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B.2. Fatigue Testing Data for AISI 1151QT 

 

 
Table B3.The fatigue test data for AISI 1151QT non shot-peened 

No. 
Average 

Thickness  
(mm) 

Net 
Width 
(mm) 

Area 
(mm2) 

Load      
( KN ) 

σ0 
(MPa) 

σa 
( MPa) 

Cycles to 
Failure 

(Nf) 
Remark 

2-1 1.74 8.98 15.6252 6.100  460.67 366900 Crack 
2-2 1.73 8.99 15.5527 5.810  440.81 653600 Crack 
2-3 1.74 9.01 15.6774 5.320  400.42 1148100 Crack* 
2-4 1.76 9.12 16.0512 5.520  405.80 3022700 Crack* 
2-5 1.74 9.00 15.660 5.210  392.58 6573800 Crack* 
2-6 1.74 9.08 15.7992 5.650  421.98 11838400 No crack 
2-7 1.72 8.99 15.4628 5.670  432.69 10878000 No crack 
2-8 1.74 9.00 15.660 5.810  437.79 1119000 Crack* 
2-9 1.72 8.81 15.1532 5.610  436.86 3710900 Crack* 

 

 

 
Table B4.The fatigue test data for AISI 1151QT shot-peened 

No. 
Average 

Thickness  
(mm) 

Net 
Width 
(mm) 

Area 
(mm2) 

Load      
( KN ) 

σ0 
(MPa) 

σa 
( MPa) 

Cycles to 
Failure 

(Nf) 
Remark 

2-10 1.82 16.74 21.9492 6.590  354.28 240400 Crack 
2-11 1.82 16.82 21.9856 6.210  353.30 12429900 No crack 
2-12 1.86 16.78 22.4688 8.210  431.17 13294100 No crack 
2-13 1.80 16.78 21.7080 6.450  350.61 6403400 Crack* 
2-14 1.78 16.88 21.5380 7.310  400.49 10463200 No crack 
2-15 1.82 16.80 21.8400 6.520  352.27 10204300 No crack 
2-16 1.82 16.80 21.8764 6.560  353.84 10221200 No crack 
2-17 1.80 16.84 21.7800 6.730  364.62 10063500 No crack 
2-18 1.84 16.80 22.2640 8.710  461.10 29100 Crack 
2-19 1.80 16.80 21.7080 7.999  434.81 164400 Crack 
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B.3. Fatigue Testing Data for PM 

 

 

Table B5.The fatigue test data for PM non shot-peened 

No. 
Average 

Thickness  
(mm) 

Net 
Width 
(mm) 

Area 
(mm2) 

Load      
( KN ) 

σ0 
(MPa) 

σa 
( MPa) 

Cycles to 
Failure 

(Nf) 
Remark 

3-1 1.740 11.980 20.8450 5.100  288.699 10775500 No crack 
3-2 1.780 11.980 21.3240 5.500 181.758 304.346 811700 Crack * 
3-3 1.760 11.980 21.0848 5.400 180.481 302.208 3038000 Crack* 
3-4 1.720 12.000 20.6400 5.310 181.601 303.576 1557600 Crack* 
3-5 1.740 11.980 20.8452 5.400  305.682 10007900 No crack 
3-6 1.760 12.000 21.1200 5.550 185.495 310.085 1491200 Crack* 
3-7 1.740 11.980 20.8452 5.750 194.388 325.495 1874700 Crack* 
3-8 1.760 8.990 15.8224 4.210  313.973 10952800 No crack 
3-9 1.740 8.990 15.6426 4.450  335.685 10935700 No crack 

 

 

 

Table B6.The fatigue test data for PM shot-peened 

No. 
Average 

Thickness  
(mm) 

Net 
Width 
(mm) 

Area 
(mm2) 

Load      
( KN ) 

σ0 
(MPa) 

σa 
( MPa) 

Cycles to 
Failure 

(Nf) 
Remark 

3-10 16.900 1.840 22.1904 6.150  327.033 5335000 Crack 
3-11 16.740 1.840 22.0800 6.820  364.475 426400 Crack 
3-12 16.820 1.840 22.1904 6.570  349.367 3536900 Crack 
3-13 16.760 1.820 21.9492 6.920 223.659 372.023 914500 Crack* 
3-14 16.780 1.860 22.3572 6.890 217.900 364.178 1365200 Crack* 
3-15 16.760 1.860 22.3200 6.970  368.486 1804900 Crack 
3-16 16.780 1.840 22.0800 6.850  366.078 10310300 No crack 
3-17 16.820 1.820 21.9856 6.900  370.333 7210800 Crack 
3-18 16.820 1.800 21.7260 6.300  342.171 10313400 No crack 
3-19 16.860 1.820 21.9856 5.988  321.385 10000000 No crack 
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B.4. Fatigue Testing Data for C70S6AC 

 

Table B7.The fatigue test data for C70S6AC non shot-peened 

No. 
Average 

Thickness  
(mm) 

Net 
Width 
(mm) 

Area 
(mm2) 

Load      
( KN ) 

σ0 
(MPa) 

σa 
( MPa) 

Cycles to 
Failure 

(Nf) 
Remark 

4-1 1.72 9.05 15.566 5.210 178.181 394.951 627000 Crack* 
4-2 1.75 9.05 15.8375 5.410  403.081 474300 Crack 
4-3 1.73 9.00 15.570 4.510  341.798 10618300 No crack 
4-4 1.75 8.98 15.715 4.710  353.662 2773200 Crack* 
4-5 1.73 9.02 15.5595 4.690  355.00 739800 Crack 
4-6 1.75 8.93 15.6275 4.600  347.34 10503500 No crack 
4-7 1.76 8.94 15.7344 4.690  351.726 11371500 No crack 
4-8 1.75 8.99 15.5008 5.610  427.06 680390 Crack 
4-9 1.73 8.96 15.5008 4.655  354.36 10335000 No crack 

 

 

 

 
Table B8.The fatigue test data for C70S6AC shot-peened 

No. 
Average 

Thickness  
(mm) 

Net 
Width 
(mm) 

Area 
(mm2) 

Load      
( KN ) 

σ0 
(MPa) 

σa 
( MPa) 

Cycles to 
Failure 

(Nf) 
Remark 

4-10 1.78 12.04 21.4312 6.310  347.428 10140400 No crack 
4-11 1.92 11.98 23.0016 6.910  354.488 130000 Crack 
4-12 1.82 12.06 21.9492 6.220  334.390 10029300 No crack 
4-13 1.82 12.05 21.9310 6.330  340.586 315100 Crack 
4-14 1.88 12.00 22.5600 6.450 201.815 337.367 38900 Crack* 
4-15 1.84 12.02 22.1168 6.310 201.726 336.658 39700 Crack* 
4-16 1.90 11.96 22.7240 6.480 200.619 336.490 70200# No crack 
4-17 1.82 11.98 21.8036 6.210  336.080 6089100 Crack 
4-18 1.80 12.04 21.6720 6.160  335.401 19062000 No crack 
4-19 1.82 12.02 21.8764 6.450  347.909 13434900 No crack 
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B.5. AISI 1141AC S-N curve 

 
Figure B1.S-N curve for AISI 1141AC non shot-peened 

 
Figure B2.S-N curve for AISI 1141AC shot-peened 
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B.6. AISI 1151QT S-N curve 

 
Figure B3.S-N curve for AISI 1151QT non shot-peened 

 
Figure B4.S-N curve for AISI 1151QT shot-peened 
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B.7.PM S-N curve 

 
Figure B5.S-N curve for PM non shot-peened 

 
Figure B6.S-N curve for PM non shot-peened 
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B.8. C70S6AC S-N curve 

 
Figure B7.S-N curve for C70S6AC non shot-peened 

 
Figure B8.S-N curve for C70S6AC shot-peened
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Appendix C 

C.1. Original Hardness Curves for AISI 1141AC 

 
Figure C1.AISI 1141AC Shot-peened Microhardness Profile Grip L-S (Specimen 1-16) 
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Figure C2.AISI 1141AC Shot-peened Microhardness Profile Gage L-S (Specimen 1-16)  
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C.2. Original Hardness Curves for AISI 1151QT 

 
Figure C3.AISI 1151QT Shot-peened Microhardness Profile Grip L-S (Specimen 2-18) 
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Figure C4.AISI 1151QT Shot-peened Microhardness Profile Gage L-S (Specimen 2-18)  
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C.3. Original Hardness Curves for PM 

 
Figure C5.PM Shot-peened Microhardness Profile Grip L-S (Specimen 3-15) 
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Figure C6.PM Shot-peened Microhardness Profile Gage L-S (Specimen 3-15) 
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C.4. Original Hardness Curves for C70S6AC 

 
Figure C7.C70S6AC Shot-peened Microhardness Profile Grip L-S (Specimen 4-10)  
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Figure C8.C70S6AC Shot-peened Microhardness Profile Gage L-S (Specimen 4-10) 
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