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Abstract

A design method for thermo-fluid engineering problems is proposed in which the
desired distribution of pressure. for example. is specified on the boundary. and the
dependent variables in the equations of motion are the boundary coordinates that
define the boundary shape. and the field variables (e.g. pressure and velocity). When
the surface (boundary) shape is unknown. the problem is called a shape design prob-
lem. The final discretized form of the governing equations. obtained by the proposed
method and called the unified formulation. can be used for solving both analysis and
shape design problems.

The method. at its current stage of development. is applied to some steady two-
dimensional thermal and fluid flow problems. Shape design problems in the context
of inviscid. irrotational flow in ducts (formulated with the secondary variables) and
conduction heat transfer problems are directly solved to achieve a prescribed pressure
or heat flux distribution along the boundaries.

An integral boundary layer analysis method is modified and used together with
the proposed direct shape design method to design short ducts. Short ducts are
defined as ducts in which the flow is hydrodynamically developing and the boundary
viscous layers remain thin along the duct.

A simple one dimensional flow model which uses primitive variables (pressure and
velocity) is used to discuss some new ideas regarding the pressure-velocity coupling
and advection modeling and also to implement the proposed direct shape design
method in the context of primitive variable formulation.
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Chapter 1

Introduction

1.1 Motivation

The challenge of designing hardware involving fuid flow or heat transfer such as
intake manifolds. duct reducers. fins. etc. is one of determining the shapes of the
solid elements so that the flow or heat transfer rate is optimal in some sense. In these
optimal shape design problems, an optimum flow or heat transfer condition is defined
as the design objective and the shape which provides that particular condition is
sought. Calculation of the optimum shape requires a computational algorithm which
inevitably includes the flow field calculations. Often it is necessary to use numerical
methods to be able to solve for the flow field. Therefore. both the Computational
Fluid Dynamics (CFD) and design algorithms are involved in solving optimal shape
design problems. Due to the complexity of the fluid flow calculations. in general. and
the limitations and computational cost of the design techniques. these are challenging
problems for the computational technology available at the present time.

In shape design problems. the shape of the flow field boundaries is unknown (or
partially unknown) and therefore extra information in the flow domain or along the
boundaries has to be specified to make the problem mathematically well-posed. In
the most common form of optimal shape design problems. the pressure distribution
along the boundaries of the domain is specified as the required extra information.
This surface pressure distribution is called the target pressure distribution and the
associated design problem is called a Surface Shape Design (SSD) problem. In surface
shape design in the context of heat transfer problems. a target surface heat flux is
often specified as the design objective.

There are basically two different algorithms for solving SSD problems: “direct”
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and “iterative” techniques. Iterative design methods solve a sequence of “analysis”
problems and iteratively correct the shape until the target pressure is approached.
An analysis problem is defined as one in which the governing equations are solved for
a prescribed geometry. Direct design methods relate the surface shape to dependent
variables in the governing equations and provide an alternative form of the governing
equations so that the solution to these equations directly gives the shape. For exam-
ple, boundary coordinates could appear as unknowns in the alternative form of the
governing equations.

Iterative methods, such as optimization techniques. have been by far the most
widely used for solving practical SSD problems. However. these methods are com-
putationally expensive. On the other hand. the available direct design methods are
inherently limited to some simple (e.g. potential) flow models. Engincering would
greatly benefit from improved direct design methods which are applicable for solv-
ing different flow or thermal problems and are less expensive computationally than
iterative methods.

1.2 Objective

The objective of the current work is to develop a new direct design method for solving
SSD problems. This method should apply to internal and external flows. should be
applicable whether the full Navier-Stokes equations or a simplified set (e.g. potential
flow) is applied as the flow model. and should be comparable or cheaper than iterative
methods in terms of computational cost. In this thesis the basic idea is developed
and implemented for some simple shape design problems.

The primary objective of the thesis. as just explained. is to propose a new direct
solution technique for SSD problems. As is usual. and reasonable. the new proposal
is applied to simple test cases. This provides insight into the possible implementation
difficulties for more complex problems.

The following are considered as sub-objectives in this thesis:

¢ Develop a unified formulation of governing equations and computational algo-
rithm which can be used in solving both the analysis and corresponding shape
design problem.

* Apply the proposed method to design two-dimensional potential low ducts.

* Apply the proposed method to design flow passages which have large potential
cores and thin viscous wall layers (here called short ducts).
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* Apply the method to design the shape of conducting materials , governed by the
Laplace equation, to achieve a given target heat flux along the boundaries.

e Since much of the proof of concept work for the above sub-objectives is done
with the Laplace equation as the flow model. there is a need to establish that

the method is applicable to VPlnrity-pressm'e formulations.

1.3 Outline

The thesis is divided into nine chapters. of which this is the first.

Chapter 2 reviews the relevant background and literature and briefly explains the
basic idea behind the proposed method as compared to the available shape design
methods.

Chapters 3 and 4 explain. in detail. how a unified formulation. as the discretized
mathematical model of the Laplace cquation. is obtained and the proposed direct
design approach is implemented for the design of two-diiensional ducts in which
the fluid motion is treated as potential flow. This simplified problem has challenged
researchers for years. It is believed that the proposed method has distinct advan-
tages compared to earlier methods. especially when it is implemented in the three-
dimensional context.

In Chapter § the validation of the proposed potential flow duct design method is
discussed. In real flows the effect of viscosity cannot be neglected throughout the flow
field. For high Reynolds number flow in sufficiently short ducts. there is a potential
core surrounded by a thin viscous layer all along the duct. The proposed direct shape
design method for potential flows can be used in short duct design if an appropriate
turbulent boundary layer analysis technique is also used. Therefore. in Chapter 6.
turbulent boundary layer analysis and prediction of separation are discussed and a
generalized integral boundary layer approach. based on the well known integral inner
variable theory. is developed.

Chapter 7 is devoted to some engineering applications of the method at its current
stage of development. In this chapter first some practically important short ducts are
categorized into three general families of shapes and then design of these shapes is
discussed. Afterwards. two families of shapes are introduced for two-dimensional heat
conductors and a number of conduction shape design problems are solved. The ease of
implementation of the method for solving different flow and thermal design problems.
which have been solved separately and with different approaches during the years. is
emphasized. Problems which are solved in this chapter are sufficient proof that the
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proposed method is robust and has the ability of solving shape design problems with
different levels of geometrical complexities.

Successful solution of the conduction and potential flow duct design problems
confirms mainly the geometrical capability of the new method. There are many other
difficulties that appear when the potential flow equation of motion is replaced by
wore complete equations expressed in terms of primitive variables. These issues arise
for analysis problems. and persist for shape design problems as well. Chapter 8 may
be considered as an introduction to those issues. In this chapter one-dimensional
ideal flow in a duct is considered as the flow model. Even though this simple flow
model is used to clarify the idea of the unified governing equations in the context of
primitive variable formulation and implement the direct design method. the issues of
pressure-velocity coupling and convection modeling are also discussed in some detail
and some new ideas are introduced.

Areas of research which remain untouched in the current work will be addressed
in a closure chapter. Chapter 9 wraps up the thesis with some final conclusions and
discussions and proposes some topics for further research.



Chapter 2

Background

2.1 Introduction

This chapter is devoted to some of the required theoretical background and the rele-
vant literature survey. The background material. and the survey. is presented in four
sections.

In Section 2. engineering analysis and design problems are more precisely defined
and categorized. Surface Shape Design (SSD) problems are then introduced as one
of the sub-categories of engineering design problems.

In Section 3, alternatives for mathematically modeling fluid flow problems are
addressed. Some of these alternatives are used to model the flow problems discussed
in this thesis.

Noting that the mathematical models are often in the form of some Partial
Differential Equations (PDE's). the basic concepts related to the discretization and
numerical solution of PDE's. in the context of CFD, are discussed in Section 4.
Some important features of the discretization technique used in the proposed direct
design method are highlighted in this section.

Section 5 reviews two general families of algorithms for solving design problems.
Le. direct and iterative approaches. In Section 6 a direct shape design method.
which is one of the contributions of this research work. is conceptually described and
compared to the available design algorithms.

The chapter ends with a summary section.
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2.2 Analysis and Design Problems in Engineering

Mathematical models for engineering problems are symbolic statements of some phys-
ical laws and models. These physical laws and models are obtained either directly
from experiments or indirectly from many observations. The mathematical models
are often in the form of some PDE’s which are called the governing equaticns. The
governing equations for fluid flow problems, which are the main focus here. when
written in the Eulerian form, specify how unknown quantities (dependent variables)
vary with respect to time and space (independent variables). The physical-based
mathematical models are not always well posed. Well posedness is defined based on
the definition given by Hadamard [1]. A mathematical problem is well posed if its
solution exists, is unique and is stable. Stability here means continuous and smooth
dependency of the solution (output) on the given information (input).

Analysis problems in engineering may be defined as those well-posed problems
in which the governing PDE’s. the solution domain Q bounded by the boundary I.
and a set of appropriate boundary and initial conditions (hereafter cailed the formal
conditions) are known. The distribution of the dependent variables inside the solution
domain and along its boundary is the result or output of the analysis.

In contrast. in engineering design problems some extra information (hereafter
called the ertra conditions) is provided and because of this over-specification of the
input data, compared to the corresponding analysis problems. more unknowns can
be found (designed).

There is no universally accepted categorization for different engineering design
problems. to the knowledge of the author. in the context of thermo-fluid problems.
However. it is beneficial to classify them in terms of the knowns and unknowns. Based
on what has appeared in the literature [2-8]. it seems logical to define four types of
thermo-fluid design problems. In the proposed categorization. the first descriptor
(field or surface) refers to the location where extra information. compared to the
analysis formulation, is provided. The second descriptor (value or shape) refers to
whether additional solution variables must be calculated or the shape must be found.
Here, for the sake of simplicity, only steady problems are taken into the consideration.
The four types of design problems are:

o field value design problems.
e surface value design problems.

o field shape design problems.
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e surface shape design problems.

In the field value design problems, the shape of the solution domain (T). part of
the beundary conditions and some extra information in § are given and the field
dependent variables as well as missing boundary conditions are sought. In the surface
value design problems, the extra information is provided at the bonndary (T') and tn
render the problem well posed, some unknown sources or sinks have to be determined
in the domain Q.

Correspondingly, in field shape design problems. boundary conditions and some
extra information in the solution domain are given and the field dependent variables
as well as the shape of the missing part of the boundary (I') are sought. In the
surface shape design problems. the extra information is provided at the boundary
whose shape is unknown.

Note that the proposed categorization can be extended to unsteady problems as
well.

Optimal shape design problems. which were briefly introduced in the previous
chapter, are now described as oue of the sub-categories in Surface Shape Design
(SSD) problems. In aerodynamic or hydrodynamic SSD problems. a Target Pres-
sure Distribution (TPD) is specified as the extra given information. The pressure
distribution. specified at the domain boundary. is directly related to many important
engineering phenomena such as lift. drag. separation. cavitation. frictional losses and
shock waves. Therefore. the TPD may be specified to achieve objectives such as
lift maximization. drag minimization or other design objectives. It should be noted
that the solution of a SSD problem is not generally an optimum solution in a math-
ematical sense. The optimality. in many of the applications. is not studied rigorously
in this type of the design problem; it just means that the solution satisfies a TPD
which resembles a nearly optimum performance. In other words. it is assumed that
an optimized TPD is known as the objective and the solution of the corresponding
surface shape design problem is considered. then. as the optimum.

In heat transfer SSD problems, a target surface heat flux is specified as the extra
information.

2.3 Formulation of the Flow Governing Equations

In both analysis and design problems. the equations governing the relevant physical
phenomena have to be known. The phenomenon of steady incompressible flow of a
Newtonian fluid inside a duct is considered in this thesis. The governing equations for
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these types of flow problems are the conservation statements for mass and momentum.
The issue of the formulation of the required governing equations is considered in this
section.

2.3.1 Primitive Variable Formulation

When pressure P and velocity V are considered as the field variables, the mass and
momentum constraints for a steady incompressible flow are written as follows [9]:

—

V.V =0 (2.1)

pV NV = pj+ V- 7. (2.2)

This form of the governing equations is independent of the coordinate system and the
theorems and techniques of vector calculus can be easily applied to obtain alternative
forms of the governing equations. In a Cartesian reference frame. which is more
convenient for discretizing the equations and used here to mathematically model the
problems. the mass constraint is':

au,-

— =0. 2.3
7z, (2.3)
The i component of the momentum equation is:
d(puju;) a7;)
— = pg; . 2.4
oz; PR T (24)

In these equations all the dependent quantities are time averaged so that the equations
are valid for both laminar and turbulent flows. V is the velocity with components
u; . g is the gravitational acceleration vector with components g; and 7 is the total
(laminar + turbulent) stress tensor with components 7;;. The Stokes viscosity law
gives the constitutive equations. which specify the relationship between stress and the
rate of deformation for the laminar flow of a Newtonian fluid. Based on the Stokes
postulates. equations for the normal and shear stresses in laminar flows are obtained.

A common modified form of the Stokes law combined with the eddy viscosity
assumption is often used in turbulence modeling when the time-averaged form of the

1. Einstein summation is assumed.
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equations are used {10,11]. The modified form is introduced here as follows?:

T;j = (5,’]‘ [—P - gpk:l +y,_.ff (%ﬁ' + gl;%) . (25)
In this equation, P is the thermodynamic pressure of the fluid, Pess. 15 the sum of
the dynamic viscosity, w. which is a fluid property, and the turbuient eddy viscosity.
K¢, which is a flow property and k is the turbulent kinetic energy.

The pressure gradient, which is part of the V - 7 term in Eq. 2.2, arises from
both the hydrostatic effect which depends on 7 and a “hydrodynamic” component
which depends on the fluid motion. The hydrostatic pressure gradient is defined
as equal and opposite to the pg term so these terms cancel out of the momentum
equation. This cancelation makes sense because. for example. the velocity field around
a moving fish is the same regardless of the depth of the water (considered truly
incompressible). Therefore. combining the turbulent kinetic energy term. which is 2
scalar quantity. with the hydrodynamic pressure. the mementum conservation can be
written as follows:

Npujw;) 9Py 9

Ju;  Ju;
- = - + etflm— + =) . 2.6
Jz; dr; Oz; [# H(E):z:j Om,-) (2.6)
Knowing that density variations are negligible in incompressible isothermal flows.

this constant quantity can also be cancelled to get another simplified version of the
momentum equation:

A ;u; P d du;  Ou;
M=——+—- Veff (—+—J->J . (2.7)

a.'l:j 81,, 0:81' a:l:j 021),‘
In this equation. P stands for P;/p and Verf = v + 1 is the effective kinematic

viscosity.

It is clear that the mass and momentum constraints provide four equations for
the four unknowns in a general three-dimensional steady incompressible flow. i.e the
velocity components and the (modified) pressure. In turbulent flows a set of equations.
provided by the turbulence model. should be solved for the unknown v,. In spite
of the fact that there are enough independent equations for finding the unknowns
from the mathematical point of view. a problem arises in the numerical solution
of the set because the pressure does not appear in the continuity equation. The

2. In most of the references the Reynolds stresses are written and then modeled. The final result
will be similar to the modified form of the Stokes law as is introduced hLere.
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strategy for solving these coupled set of equations has been, and still remains, a
matter of debate. The momentum equations can always be solved for arbitrarily
specified pressure fields. In other words there is a multiplicity of flow fields that
satisfy the momentum equations. The correct pressure field is the one that results
in a velocity field which also satisfies continuity equation. The formulation that
allows pressure to play this role in the satisfaction of continuity in CFD solutions of
these equations is called the pressure-velocity coupling algorithm. Pressure-velocity
coupling is discussed in the eighth chapter of this thesis and some new ideas in that
regard will be introduced then.

Pressure and velocity are measurable quantities and appear naturally in the
governing equations when the conservation principles are formulated mathematically.
Therefore. the above formulation is called the primitive-variable formulation. If the
effect of the viscosity is negligible. the inviscid flow assumption can be used and the
momentum equation simplifies to the following:

Y (TL]'IL,') _ P

Jz; Jz;

This form of the momentum equation simply states a balance between pressure and
momentum change. The governing equations of inviscid flows are known as the Euler
equations. The following forms of the momentum constraint in the Eulerian flows

can be obtained by using the concepts and identities of vector calculus [12]:

(2.8)

V.-VV=-VB, (2.9)
V.VV=-Vp (2.10)
-~ -~ =/(1, - -
ExV+V (;q') =-Vph. (2.11)

In these equations, € stands for the vorticity (€ = V x V). qis the fluid speed (¢ = |V])
and VV is the dyadic product for the velocity vector.

The equations of motion for both viscous and inviscid flows can be manipulated
into different forms with alternative dependent variables [13]. Some of the formula-
tions for inviscid flows are reviewed in the next section.
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2.3.2 Secondary Variable Formulation

One well known idea is to eliminate the pressure from the equations. While there are
some benefits in eliminating pressure, new difficulties arise. One obvious difficulty
is that extra work is required to calculate the pressure field separately. Also, the
physical-based primitive variahie formulation is replaced by a sct of mathematically
obtained equations and one should be very careful to not lose physical clarity in favor
of mathematical beauty!

The pressure is eliminated from momentum by taking the curl of Eq. 2.11:

VxExV=0. (2.12)

Now. Eq. 2.1 and 2.12 are the governing equations for the steady inviscid inconipress-
ible flows. Equation 2.1 constrains the incompressible velocity fields to be divergence-
free (solenoidal). If the velocity field is defined as the curl of another vector field.
it will be solenoidal and continuity is automatically and unconditionally satisfied.
Therefore. assuming V =V x @. renders the following governing equations:

v « [x‘? X (v" x xﬁ)] < (6 < lf:) = 0. (2.13)

The vector quantity ¥ is known as the vector potential in calculus {12] and stream
vector in fluid mechanics [14]. The stream function () is often considered as the two-
dimensional counterpart of . although it is not strictly true from the mathematical
and physical point of view. It is important to note that the field variable in the ¥ for-
mulation is still a vector quantity whose pliysical interpretation in three-dimensional
flows is not an easy task.

Another idea for automatically satisfying the mass constraint and defining a
solenoidal velocity field, is to use a pair of stream functions (. n) and defining the
velocity field as V = Vo x Vi for a general three-dimensional flow. I this case the
governing equations are obtained from the following vector equation:

v x [6 x (V4 x ﬁq)} x (V9 x Vi) =0. (2.14)

The mathematical structure of this equation looks horrible and in fact it is. How-
ever, better physical interpretation of the stream functions. compared to the vector
potential. is the benefit.

If the flow is assumed to be irrotational as well (E: 0). then Eq. 2.13 and 2.14



2 Background 12

respectively simplify to:
Vv x (6 x &) =0. (2.15)

v x (W, x ‘?n) =0. (2.16)

For incompressible irrotational (ideal) flow applications. another formulation (¢ for-
mulation) has been proposed in which just one scalar parameter (the scalar potential
or ¢) is required. For potential flows, the velocity is defined as V = 645. This
definition automatically satisfies the irrotationality condition, which replaces the mo-
mentum equations, and renders the mass constraint as below:

V. (%) = V34 = 0. (2.17)

Although the application of this idea is limited to ideal flows. the flow field is described
by just one scalar quantity. no matter how many spatial dimensions are involved.
The unknown scalar potential is given by the Laplace equation (Eq. 2.17). This
equation is probably the most well known equation in mathematical physics and all
the mathematicians, physicists and engineers would love it!

Having appropriate mathematical models for the flow problem. the question now
is how to solve the equations. The next section discusses this issue.

2.4 Numerical Solution of the Governing Equa-
tions

In the past few decades CFD has advanced tremendously. The basic idea of CFD
is to replace the governing differential equations (including the initial and bound-
ary conditions) with algebraic equations. CFD. as a technology. depends heavily on
computer hardware and software. Due to the amazing development in computer tech-
nology, CFD has become an indispensable tool in thermo-fluid analysis and design.
From the implementation point of view, the issues of pre-processing, processing and
post-processing are the major subdivisions in CFD. The evolving picture of CFD.
from the point of view of the discretization and solution techniques, has been reviewed
comprehensively by some of the experts in the field over recent years [15-285).

Traditionally, in the context of the analysis problems and assuming that the
governing equations are appropriately formulated. the following issues are discussed
separately in CFD:
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e issues related to the discretization:

o discretization of the solution domain (grid generation)

.

o discretization of the governing equations (interpolation schemes)

b

e issues related to the numerical solution of discrete equations:
o solver technology and performance.

These issues are now briefly explained in the following sub-sections.

2.4.1 Discretization of the Solution Domain

The issue of the solution domain discretization. or grid generation, is an important
part of CFD. The accuracy of the numerical solution. and the solver performance.
depend strongly on the quality of the grid. Commonly. time and space are discretized
separately but discretization of the time-space domain has also been investigated
by some researchers [26]. Time is usually discretized by simply defining some time
steps. Regarding the discretization of space there are. at least conceptually, two basic
discretization approaches.

In the first spatial discretization approach. one may directly define a number
of points in the solution domain (nodes or grid points) on which the unknowns are
approximately calculated. This type of the grid for a simple rectangular domain is
shown in Figure 2.1. For lack of a better name. it is referred to here as a finite-
difference type grid [1].

Another approach. more popular in solid mechanics. is to approximate the so-
lution domain by some sub-domains. called finite elements. In the latter type of the
grid, nodes are defined at different locations on or inside the elements. but usually
at the element vertices. Figure 2.2 shiows a finite element type grid in a rectangular
domain with the nodes defined at the element vertices.

In fluid flow problems, as will be explained in the next section, it is beneficial to
associate with each node a specified region in the domain. called a control volume. In
conventional finite volume methods. control volumes are associated with each node
as is shown in Figure 2.3 [27]. Oune may first define the nodes and then specify the
control volumes (vertex-centered mesh in which each control surface is located midway
between two neighbor nodes) or first define the control volumes and then specify the
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Figure 2.1: A finite difference type grid.
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Figure 2.2: A finite element type grid.



2 Background 15

Figure 2.3: Control volumes defined in a finite difference type grid.

nodes (cell-centered mesh in which the nodes are located in the centers of the control
volumes).

More recently another interesting space discretization technique has been used by
researchers [28-30] and in some commercial codes {11]°. It has been common to first
define the elements (solid lines in Figure 2.4) and then the control volumes (dashed
lines). Considering the fact that the grid points are often defined at the element ver-
tices. the nodes are not necessarily in the center of the control volumes and the grid
is basically vertex-centered . In [11] the discretization of the space using both finite
elements and control volumes has been described in detail for three-dimensional Carte-
sian domains. Figure 2.4 shows a two-dimensional rectangular domain discretized by
finite elements and control volumes. In this thesis. both finite elements and control
volumes are used and further details about this form of the grid will be discussed in
the next chapter.

There are other categorizations for computational grids among which the follow-
ings are particularly important:

e orthogonal or non-orthogonal.

3. Baliga and Patankar were the first researchers who acknowledged the benefits of using both finite
elements and control volumes in the context of CFD (28]. They preferred to call schemes which use
both finite elements and control volumes. control-volume-based finite element methods.
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Figure 2.4: A finite element-based control volume grid.

e structured or unstructured.

Non-orthogonal comiputational grids allow more flexibility in the placement of nodes
with a very modest increase in complexity compared to orthogonal grids. Unstruc-
tured meshes provide still greater flexibility but with considerable added complexity.
The ability to change the shape and the resolution of the grid is important in solving
geometrically complex problems. Having an unstructured mesh that automatically
adapts to provide an optimized solution is something that CFD experts are eagerly
looking for.

In this thesis. domains are discretized using structured non-orthogonal grids.
These grids provide sufficient flexibility for the geometries encountered without in-
creasing the complexity associated with unstructured meshes.

2.4.2 Discretization of the Governing Equations

Discretization methods for the flow governing equations can be divided into three
major groups. at least from a historical point of view.

The Finite Difference Method (FDM) is the oldest method used to solve differ-
ential equations. Various schemes in the FDM give point-wise approximations of the
actual solution. In fact the method is based on the difference approximation of the
derivatives obtained from truncated Taylor series.

The Finite Element Method (FEM) was first developed for stress analysis in



2 Background 17

solid mechanics and later was used in thermo-fluid problems as well. In this method.
the solution is approximated by some profiles in a piecewise manner. Shape functions
are used in the assumed profiles.

The Finite Volume Method (FVM) was specifically designed to retain and guar-
antee the conservation properties over the finite volume associated with each node
during the numerical modeling. The FVM originaily used finite ditterence type grids
and discretization techniques and because of that may be called the difference-based
finite volume method. Another version of FVM which is called the Element-Based
Finite Volume Method (EB-FVM) preserves the traditional conservation philosophy
of FVM. but uses the geometrical as well as the algorithmic advances in the FEM.
In other words FVM is a conservative numerical approach which may use point or
piece-wise approximations to numerically model the problem.

While many consider the FVM to be very close to FDM., it Las been explained
in some references (e.g. [31]) that in fact FEM and FVM are both members of one
family. called the method of weighted residuals. This issue has been studied by some
researchers [28.32] and it is now believed that the distinction between the methods is
not always clear. Of course the philosophies of the methods are different and because
of that. they are introduced here as different approaches.

While more detailed explanations about the FVM are given in Chapter 3. where
the method is used for the numerical solution of a specific flow problem. here one im-
portant feature of successful FVM schemes. i.e. correct modeling of the transportive
properties of the flow field. is emphasized. As is explained in [31]. the FVM needs
exact integral conservation equations as the starting point. These integral expres-
sions may be obtained by directly expressing the conservation laws for a chosen finite
volume or by integrating the divergence form of the differential conservation laws.
The divergence form of the transport (comservation) equation for the generic scalar
®. defined per unit mass. in the presence of a known velocity field is (27]:

I ¢ - — - - .
(—%ﬂ+v-(F§)+v-(F£)=5@. (2.18)

The generic terms. which are all per unit volume. are as follow:

rate of storage of ®.

convective flux of ®: ﬁf =pV®.

diffusive flux of ® (I'¢ represents a diffusion coefficient): }—7’}? = [ V.

rate of generation (or dissipation) of &.
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Equation 2.18 represents the differential form of mass conservation (® = 1), momen-
tum conservation (P represents the Cartesian velocity components), energy conser-
vation (P is internal energy). etc. The starting point in the FVM is the integral of
the above equation over the discrete volume ., with surface ', and outward unit
normal vector 7n:

(p<b)d9+/ ﬁg-ﬁdr+/ FP.adl = | $p dQ. (2.19)

cv cv QCU

@t Ja.,

The surface integrals in Eq. 2.19 are usually approximated by discretizing the
surface into discrete panels, and evaluating ® at an integration point on each panel
from values of ® at neighboring nodes. Tlese interpolated values should be both
“accurate” and have correct “transportive properties”. Accuracy requires that the
interpolated value lies on an accurate profile spanning the neighbor points. so that
the value is reasonable and the error diminishes quickly with grid refinement. Correct
transportive properties requires some kind of upwinding. so that the influence of the
swrrounding nodes on the interpolated value at the integration point is physically
correct. Stubley et.al. [33] show how “profile” and “operator™ errors propagate to
produce the solution error. It is shown, for example. how a higher order scheme
(which is accurate) can lead to a large solution error if the transportive properties of
the approximation are incorrect (i.e. there is large operator error).

Ferziger and Peric [34] point out that successful application of CFD requires
background in both fluid mechanics and numerical analysis. Accordingly. the dis-
cretization methods used in CFD should be flexible enough to satisfy both physical
and mathematical requirements. The FVM is capable and adaptive enough to take
care of both and therefore it is often the chosen approach in CFD.

The issue of obtaining robust and accurate discretization schemes for the con-
vective and diffusive fluxes. in particular. has been (and is) one of the most impor-
tant issues in FVM. In fact discretization schemes in FVM are different mainly
because they provide different computational molecules for the diffusion and advec-
tion fluxes [35]. Generally speaking, the diffusion phenomenon is not as complicated
as convection. For that reason much of the efforts in CFD have been devoted to
convection modeling [36,37].

Considering all these factors. in this thesis. EB-FVM is selected for the numeri-
cal modeling of the problems. Because only steady problems are considered here, the
transient term of the generic governing equation will no longer be discussed.

The issues of robustness and accuracy of the numerical schemes are not only
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important from the point of view of the analysis problems in CFD, but also have
great impact on the numerical solution of the design problems. This point will be
addressed later again when the new direct design method and the unified discrete
formulation are discussed.

2.4.3 Solution of the Discretized Equations

The numerical solution of the discretized equations (the solver issue) is another im-
portant part of CFD technology. However. it is beyond the objectives of this thesis
to consider this issue. Although iterative solvers are often chosen for solving complex
problems with many thousands or millions of unknowns. here an appropriate direct
sparse matrix solver [38] is used for solving the algebraic equations obtained as the
result of the discretization of the governing equatious. The formulation and solution
of the discrete equatious were treated as separate issues. and the focus here was on
the formulation.

2.5 Surface Shape Design Algorithms

SSD problems can be solved by two families of methods. i.e. iterative and direct
methods.

In the iterative methods for solving flow design problems. governing equations
in their primitive or secondary variable forms are used. and a sequence of analysis
problems are solved in which the surface shape is altered between iterations in such
a way that the desired TPD is approached.

In the direct solution approach. an alternative formulation of the problem is
used in which the surface coordinates appear (explicitly or implicitly) as dependent
variables. In other words, direct methods tend to find the unknown part of the
boundary and the flow field unknowns simultaneously in a (theoretically) single-pass
or one-shot approach. In this section. available iterative and direct design methods
are reviewed. The emphasis will be on the internal potential flows but the survey
covers more general flow situations.

2.5.1 Iterative Design Algorithms

In Figure 2.5 a general iterative design flow chart is shown. All the iterative methods
start with an initial guess, solve the corresponding analysis problem and then correct
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the shape, and repeat until a convergence criterion (normally defined as the difference
between the current surface pressure distribution and the TPD) is satisfied. The dif-
ference among the available iterative methods is how they correct an initial guess.
The correction strategy is the most important part of an iterative design algorithm.
In simple iterative techniques. the designer has to define special, problem dependent.

a N

( Initial Guess J

>[ Analysis J

( Correction )
t No

Convergence ?

Figure 2.5: Iterative design algorithm.

correction rules. Obviously these methods lack generality. In [39], a simple iterative
technique is proposed for solving two-dimensional internal potential flow design prob-
lems. In that reference the analysis problem is solved and the results of the analysis
are used to calculate the Surface Tangential Velocity (TVD) distribution*®. The cal-
culated velocity at each boundary node is then compared to the TVD at that node.

4. Note that in ideal flows the pressure and velocity are related through the Bernoulli equation.
Therefore one may use the surface velocity distribution instead of the pressure distribution.
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The corrector. then, decides how to change the position of the nodal point to alter the
velocity at that location. One obvious difficulty is that the relocation of each node is
done independently and the effects of the neighbors are not taken into consideration.
Consequently the convergence is often very slow in simple iterative techniques. If the
initial guess is not good enough, the iterations will not converge at all.

Optimization techuiques offer an automatic correction routine for solving SSD
problems. This. in principle. makes the optimization methods problem independent.
Ideally. a CFD code can be linked to an optimizer to get an optimization (iterative)
algorithm. No special. problem dependent. policy is required and an automatic math-
ematical procedure is used in the optimizer. In terms of the common terminology in
the optimization [40]. an objective function has to be defined. The objective function
in fluid flow SSD problems. which has to be minimized. is defined as a weighted dif-
ference between the current surface pressure distribution and the TPD. Constraints
may also be defined. In each iteration the optimizer checks the objective function.
determines the search direction and finally chooses a step size (magnitude of the
change in tle design variables which should be implemented in the search direction).
Generally speaking. different optimizers use different logic to find the search direction
and the step size in each iteration. In terms of the elements of the general iterative
algorithm (shown in Figure 2.5) they use different correctors. Optimization methods
have been used for solving many different SSD problems successfully. mostly in ex-
ternal flows [41-33]. In [54-56] examples of applications of optimization techniques
m solving shape design preblems in the context of heat transfer have been givell.

In recent years the application of evolutionary and genetic algorithms. which may
be considered as trained optimizers. has been an interesting research topic and some
researchers have tried to use it in some applications [57-60]. The major shortcoming
of the optimization methods. which has been the driving force for the development of
the control theory-based approaches. is the huge computational cost in real practical
design problems [61.62].

The control theory approach tries to reduce the computational cost in optimiza-
tion techniques by offering a more efficient method for finding a search direction in
each iteration. Instead of calculating the sensitivities. a set of equations. called the
adjoint equations. are solved to find a search direction in each iteration [63.64]. It has
been claimed that the control theory approach is more efficient than the optimization
techniques. when the number of unknowns is very high [65].
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2.5.2 Direct Design Algorithms

The idea of using an alternative (inverse) formulation for solving a design problem.
Just as using a regular (direct) formulation in an analysis problem, seems very at-
tractive. However. there are many difficulties. It is well known, even from very basic
algebra, that the inverse formulation of a well-posed problem is not going to work
well in general [66]. The same thing happens for the mathematical models (governing
equations) used in the flow problems. As a matter of fact the flow equations at the
continuous level. are so complex that one cannot. in general. even find an inverse
formulation for the problem. However. there are certain simplified flow situations in
which the alternative (inverse) formulation idea works.

Stanitz [67]. in a very remarkable study. noted that for potential low SSD
problems there is such an opportunity. He showed that an alternative formulation
to the Laplace equation for steady ideal flows can be formulated in a transformed
computational space. This alternative formulation for the two-dimensional case is:

d*(InV) N 9*(in V)
Jv? Q2

Where ¢ is the stream function and ¢ is the potential function. In the Stanitz shape
design method. the TVD is required along the boundaries of the solution domain
in the computational space. When Eq. 2.20 is solved with appropriate boundary
conditions (Stanitz used the FDM to solve the equation). £ and y coordinates of the
stream and iso-potential lines and the distribution of the flow angles along them can
be calculated through the following equations '68]:

dlmV

= 0. (2.20)

g = lp. 2.21
e (2.21)
dlnvVv
=- — . 2.22
= (2.22)
cos d
z = de. 2.2
’ /w v (229
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sin 4
= [ —d 2.2
v= [ Sas (2.25)
cos d
y = b, 2.2
v LV“ (2.26)

In these equations ¢ stands for the direction of the streamlines at each point. and the
duct geometry is obtained by knowing the stream function values of the boundary
stream lines. This method needs special treatments at the stagnation points. Stanitz
method has been used by many researchers for solving shape design problems in both
internal and external flow problems [69].

About thirty years after the two-dimensional solution. Stanitz published the
equally remarkable three-dimensional version of his method (70]. Stanitz solves the
three-dimensional potential duct design problem in the ¢ -4 —p computational space
(¥ and n are pair of stream functions which make the stream tubes in the three-
dimensional space). The simplified final working form of the (alternative) governing
equation for the three-dimeunsional ideal flow shape design problems is as follows:

%— n (V) +ln(sin 8)] + Bgai: In (V)] + A:’aa'; In (V)] +
B? [% (In B) - % (In V)J + 42 [(%(ln A). %(In V)} -
[%““B) : %(m V) + % (In B) - 0%(1113)] -

[% (In A) - a% (InV) + % (In A) - a% (ln A)} +

[36}, Jéy ey ae},J ' [06,, dey, e, Oe}J
- LAl

¢ oy Y 0o ¢ an  ap 3¢

In this equation A = (dn/dy)sind. B = (dm/dn)sin 6 and ds. dn and dm are differen-
tial path lengths in the directions €. €, and €q. Two stream surfaces (3 = const. and
1 = const.) intersect each other on potential surfaces with the angle 4 (0 < 6 < 180°).
Equation 2.27 should be solved in the (¢ — 1 — n) space for the unknown (In V). Aux-
lliary integral equations (like Eq. 2.21 to 2.26) then have to be solved for the duct
shape. Note that the above formulation which is used to solve a three-dimensional
ideal flow problem in the computational space is considerably more complicated than
the Laplace equation.
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It is interesting to note that Stanitz mentions an ill-posedness in three-dimensional
potential duct design problems. He points out. however, that the ll-posedness is
not serious and one can solve the problem using reasonably compatible prescribed
upstream boundary shapes and prescribed velocity distributions on lateral bound-
aries [71]. Stanitz used his method for designing aerodynamically efficient ducts [72].
shuwed how his method can be used for designing high solidity cascades and validated
his numerical calculations experimentally [73].

In 1995. Chaviaropoulos et.al solved the three-dimensional potential duct de-
sign problem with another approach [74-78]. They proved that the problem was
ill-posed (accepted multiple solutions) and showed how the multiplicity can be alle-
viated. Their method is again based on the potential-stream function formulation
where the physical space is mapped onto a computational one via a body fitted co-
ordinate transformation. Although the Chaviaropoulos et.al approach uses the same
type of variables as the Stanitz method. they derive the final governing equations
from differential geometry and generalized tensor analysis arguments. The final work-
ing equations in their approach are somewhat more complicated than in the Stanitz
method.

The use of stream functions (¢ and 7) or stream vector (‘17) in solving non-
recirculating flow problems (both analysis and design). has been studied by many
researchers. These are attractive because they are not limited to the inviscid and
potential flow applications and do not have some of the difficulties of the primitive
variable formulation.

Flow field calculations using the familiar concept of stream functions. has been
studied by some researchers. Dulikravich [79]. Greywall (80-82] and many others
[83-90] have used the stream functions to solve flow problems. The problem with
these approaches is the difficulties associated with the vorticity which appears in
rotational inviscid and in viscous flows. When there are recirculation zones in the flow
field, stream function-based methods face the difficulties associated with unbounded
values of the stream functions. To the knowledge of the author. stream functions have
not been used to solve design problems in the context of three-dimensional viscous
flows.

The stream vector concept has failed to provide a general solution technique for
complex flow problems. although there are many successful applications limited to
certain flow situations [91-102]. The main difficulty is the implementation of the
stream vector boundary conditions {103]. In fact. the application of the vector poten-
tial concept in three-dimensional problems with arbitrary geometries. even inviscid
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flow type problems. has some difficulties which at the present time and to the knowl-
edge of the author, have not been solved in a satisfactory manner. Lack of generality
for solving analysis problems and difficulties in implementing the formal boundary
conditions, prevent ¥ from being used in shape design problems. This author is not
aware of any design application of the stream vector concept.

Having a briet survey of the available iterative and direct design methods, the
idea behind the proposed direct shape design method in this thesis is introduced in
the next section.

2.6 The New Direct Design Method

In this section the ideas behind a new direct design technique for solving SSD prob-
lems is given very briefly. Implementation of the idea in the context of ideal flows
will be given in Chapters 3 and 4.

Iterative design methods usually solve the design problem in physical space.
There are also iterative design methods which do the caiculations in transformed
(computational) space (e.g. [54]). Obviously these methods suffer not only from
time consuming design iterations. but also from the necessary operations involved in
transforming the equations. In general the transformed equations are mathematically
more complicated than the original equations.

In direct design methods. the difficulty in obtaining appropriate alternative (in-
verse) formulations is the major drawback. In most cases. an appropriate inverse
formulation requires transformation of the equations into a space other than the
physical space. This. as was just explained. complicates the governing equations.

A question arises here: is there any possibility to start with an initial guess
in physical space and find the desired shape in a (theoretically) one shot (direct)
procedure? Note that the generality of the method is important. i.e. it should
not be inherently limited to certain applications. it should not rely on alternative
formulations at the continuous level (which are not available for most of the flow
problems and often require transformations). and it has to be direct (not iterative)
from the algorithmic point of view. The last argument does not rule out the possibility
of a few iterations. which may be required because of the nonlinearities involved or
other similar reasons.

The answer to this question is yes! This thesis. in fact, addresses the ingredients
and logical steps required in the implementation of such a direct shape design algo-
rithm. To provide an overview of the method. consider potential flow in the straight
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two-dimensional nozzle in Figure 2.6A. If one uses an appropriate discretization ap-
proach and solves an analysis problem corresponding to this potential flow nozzle. the
surface pressure along the upper and lower walls can be obtained as shown in Figure
2.6B. Now suppose that another nozzle. as shown by the dashed lines in Figure 2.6C.
is analyzed. The surface pressure distribution along the boundaries for this nozzle is
shown with the dashed line in Figure 2.6D. Basically, two known geometries (nozzles

f

T

Figure 2.6: The proposed direct SSD method.

A and C) are given. The governing equations and boundary conditions are known
and the surface pressure distributions for both cases are calculated.

However. one can look at the whole process from another point of view. One
may equally assume that this whole process has been as follows:

an initial shape is given (Figure 2.6A).

distribution is obtained (Figure 2.6B).

Figure 2.6C),

dashed line in Figure 2.6D).

the flow field in the initial shape is solved and consequently the surface pressure

a known shape perturbation is implemented (as shown by the dashed line in

the resulting perturbed surface pressure distribution is obtained (as shown by the

Of course in the direct form of the governing equations there is no perturbation terms
for the geometry and the governing PDE in its continuous form does not allow such
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an operation. However, one can define or interpret each boundary point of the new
geometry in terms of its old position and a perturbation (correction) term.

Having this form of the interpretation for the two previous analysis problems in
mind, the new direct shape design method looks to the corresponding SSD problem
as follows:

¢ an nitial guess is made for the nozzle (Figure 2.64).

e the flow field in the initial shape is solved and consequently the initial surface
pressure distribution is obtained (Figure 2.6B).

* a known perturbed surface pressure distribution (the TPD) is implemented (as
shown by the dashed line in Figure 2.6D).

o the resulting perturbed shape is obtained (as shown by the dashed lines in Figure

2.6C).

The direct design approach needs the solution for the initial guess and the TPD as the
input. The initial surface pressure distribution. shown in Figure 2.6B is not required
as the input but cousidering the fact that the difference between the initial surface
pressure distribution and the TPD is conceptually the driving force for the shape
change. it is shown here for the purpose of comparison. Also. as will be explained
later. the initial surface pressure distribution can be used to propose or modify the
TPD. This very important point. which is one of the rewards of solving the shape
design problem in the physical space. will be used in Chapter 7 where some design
examples are presented.

It is obvious. from the above explanations. that the analysis and design problems
are just different because of the difference between inputs and the outputs. Both type
of problems are governed by the same physical laws. Mathematically. this means a
unified formulation should exist which governs both the analysis and the correspond-
ing shape design problem.

The concept of solving both analysis and design problems with just one formula-
tion is a natural outcome of the direct design philosophy. The idea of using a unified
formulation was proposed by Xu et.al. in the context of compliant-surface flows (104]
and also Raithby et.al. in the context of free surface flows [105]. The computer code
used in {105] could be applied to solve several types of free surface flow problems
by simply changing the inputs. If the user provided the pressure at the free surface
(which was simply the constant atmospheric pressure). the shape of the free surface
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was calculated among the other dependent variables. and if the shape of the free sur-
face was given. the corresponding surface pressure distribution could be calculated.
That is to say that the work of Raithby et.al. and Xu et.al. triggered the idea behind
the proposed direct duct design method in this thesis.

The intention of presenting this kind of interpretation for the analysis and design
problemis licre is tu provide a unified framework in which the difference between an
analysis problem and its corresponding shape design problem appears only in the
inputs and outputs. In other words. both the mentioned problems talk about one
single physical phenomenon in two different ways. Mathematically. the flow governing
equations can be formulated in a unified discretized form such that the designer simply
switches between the required inputs (in the analysis and design problem) to solve
either of the problems in the physical space.

While in conventional direct design methods. the inversion of the formulation
takes place at the continuous level (the governing PDE’s are formulated in an alter-
native form). in the proposed direct design method a unified formulation is obtained
at the discrete level which governs both the analysis and design problems. In other
words the conventional direct design methods first do a kind of inversion and then dis-
cretization and the new direct design method first discretize the governing equations
and then does the inversion as is required in shape design applications.

The final discretized working equatious in the proposed direct design approach
arc obtained from the governing equations used in the corresponding analysis problem
but can be used in solving both analysis and design problems. Because of this. the
discretized governing equations. which are used in the direct shape design method.
are here called unified governing equations. The unified governing equations can be
used in solving both analysis and design problems with Just changing the inputs.

2.7 Summary

In this chapter. engineering analysis and design problems were defined and categorized
with particular attention to the thermo-fluid problems. Also the issue of numerical
solution of the governing PDE’s in thermo-fluid problems was briefly reviewed and
then iterative and direct design algorithms for solving SSD problems were introduced.
Finally, the philosophy of a new direct design method. which is intended to be an
efficient solution technique for SSD problems. was explained. In the next two chapters
the details regarding to the implementation of the new method in a fairly simple flow
situation (ideal flow) is discussed.



Chapter 3

Direct Design: Secondary Variable
Formulation

3.1 Introduction

In this chapter the implementation of the proposed direct design method. introduced
in Chapter 2. is discussed. To make the problem as simple as possible. a steady two-
dimensional ideal (incompressible and irrotational) flow is considered. This simplified
flow model leads to simple equations that can be solved with little computational
effort: this. in turn, allows experience to be gained that will be invaluable when the
same direct design method is applied using the full Navier-Stokes equations. The
present direct design method applied to ideal two-dimensional fows also provides a
simpler. and perhaps superior, method for solving problems previously solved by the
Stanitz approach [71].

The first step in the proposed shape design method is to make an appropriate
initial guess. The next section explains how an appropriate initial guess is made in
the proposed design method. Then the issues of the formulation and discretization
of the governing equations are discussed with the aim of providing a unified set of
governing equations applicable in both analysis and shape design problems.

3.2 The Initial Guess Generator

The proposed direct design method starts the design process with an initial guess for
the shape in the physical space. The designer will be able to make such a guess based
on previous experience. or based on a few solutions to analysis problems in which

29
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different geometries are prescribed.

In this thesis the required flexibility to quickly generate initial guesses is obtained
by using a Bezier curve fitting technique®. According to the Bezier method. each point
on a curve can be described by the following parametric function:

n
Plu) = Bfifu). (3.1)
i=0
In this equation P, presents a polygon with (n+1) vertices which are called the control
points. u is the parameter (u € [0.1]) and fi(u) represents blending functions. Bezier
chose a family of functions. called Bernstein polynomials. as the blending functions:

n!
fi(w) = Bin(u) = -

mlti(l -'U,)n—i. (32)

For (n + 1) points. B;.(u) determines a polynomial with degree n. Bezier curves
are sensitive to local changes in contrcl points and because the effects of these local
changes are propagated along the curve. they are not appropriate for local fine tuning
of the shape. B-splines use different blending functions and have a better ability
to control the shape locally. However. For the initial guess. local fine tuning is not
necessary and Bezier curves can provide the required shapes. Therefore. Bezier curves
are used in this thesis. In a Bezier curve if the number of control points is low. one
does not have a good ability to control the shape and if there are too many coutrol
points. it is difficult to figure out how the curve is affected by the control points.
Here the Bezier curves are generated by 4 control points as is shown in Figure 3.1.
Consequently. the parametric function for the Bezier curves would be as follow:

-

Pu)=(1-u)*Py+ 3u(l —u)*P, + 3u’ (1l —u)Py + u°PB. (3.3)

15:) and P are the end points of the curve and }51 and 153 actually control the shape
of the curve. For complex curves. one can use different pieces of curves and control
the shape of each piece by simply playing with two internal control points.

3.3 Formulation of the Problem

It was shown that there were three possible secondary variable formulations for steady
ideal flows: Equations 2.15. 2.16 and 2.17. For a two-dimensional problem all of the

1. Bezier invented this approximation method for the design of automobile bodies in 1960 (106].
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A control point

. J/

Figure 3.1: Creating Bezier curves with four control points.

above formulations simplify to the following general form:
Ve = 0. (3.4)

The scalar © stands for ¢ in the scalar potential formulation. 1" in the vector poten-
tial formulation, 4 in the stream function formulation? and T (the temperature) in
conduction heat transfer problems. Two points are worthy of mention at this stage.
First. note that. for the particular flow model used here (i.e. the ideal flow).
the ¢ formulation is the simplest and also the most convenient one. Even in three-
dimensional problems the governing equation for ¢ is just the Laplace equation.
Another point is that the Laplace equation represents many equilibrium type
phenoniena in different branches of the physics and engineering. Solving a shape de-
sign problem for this linear operator (the Laplacian) is not just useful in the context
of fluid flow. Steady heat conduction is a typical example and obviously electrical
fields and other diffusion type transport phenomena can also be described by this
mathematical model. To make the solution of the SSD problem as general as pos-
sible at this level. the solution procedure has to be able to handle different types
of boundary conditions. This. indeed. has been considered and will be discussed in

2. " is used for the two-dimensional counterpart of the vector potential to differentiate it from the
stream function ().
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Chapter 4.

Having described an appropriate initial guess generator and the flow governing
equation, the following sections turn to the numerical simulation of the problem.

3.4 Discretization of the Solution Domain

A typical computational grid. as is required in EB-FVM. was shown in Chapter 2.
Other relevant information about this type of grid in the context of two-dimensional
potential flow duct design is explained in this section. Figure 3.2 shows a two-
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Figure 3.2: The solution domain.

dimensional duct. which may be considered as the initial guess for a typical design
problem. The computational domain () is bounded by the exterior bourdary surface
[ which is composed of the inlet boundary [;. upper boundary I'y. outlet boundary
Io and lower boundary '3 This domain should be discretized to make a computa-
tional grid. The computational grid is known when the Cartesian coordinates (z and
y) of all of the grid points (nodes) are known. The grid is structured so that each node

3. In this thesis, the inlet of the duct is always located at the left hand side and the flow is from
the left (west) to the right (east). Therefore, the upper boundary is in the north and there is no
ambiguity in defining the upper and lower surfaces.
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is described by a pair of numbers (/. J) which shows its position in a two-dimensional
data matrix. In general, the grid is also non-orthogonal.

v

3.4.1 Local and Global Coordinates
T

c the grid in the direct design method, as is introduced here. starts
with defining some reference points for a number of spines. Spines were introduced
and used by S. F. Kistler and L.E. Scriven [107]. In [105] vertical spines were used in
free surface flow computations. Each spine (e.g. spine ) is defined here by a reference
point (z; . y7) and an angle (6*) as shown in Figure 3.3 for a straight two-dimensional
nozzle. Note that all the spines are fixed vertical lines in this simple case. but this will
not generally be the case. The intersection of the Bezier curves with the spines define
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Figure 3.3: Semi-discretized domain and the spines.

nodes on the boundary. Interior nodes are distributed between the boundary nodes
on each spine. The computational grid. and the approximation of the boundary. are
obtained by joining nodes by straight lines to produce a mesh of quadrilaterals as
shown in Figure 3.4.

To be able to describe all the geometrical properties of the domain in terms of the
global coordinates of the grid points (z and y). the element local coordinate system
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(x.y) bl

Figure 3.4: The finite element grid.

(s . t) and the bi-linear shape functions (V) are introduced. In Figure 3.4 the local
numbering system of the nodes within an element and their local coordinates are
shown. The bi-linear shape functions for an arbitrary point A inside a quadrilateral
element are defined as follows:

1

IVIA =Z(1+8,§81)(1+t,{t1) (35)
. 1

l\/g,ﬂ = 1(1 + 5‘452)(1 + t,;tg) (36)
1

ZVSA = 1(1+SA83)(1 +tAt3) (37)
1

Nyy = 1(1 +sas4)(1 + taty) (3.8)

These shape functions can be used to determine global coordinates of an arbitrary



3 Direct Design: Secondary Variable Formulation 35

point A in an element in terms of the global coordinates of neighbor nodes:

4

za=Y Nz (3.9)
=1

Yya = ZZ iAlYi. (310)
i=1

4
Hereafter, the summation rule is used and it is not necessary to use the Y ©_ to

Lan=l]

denote summation. Therefore the global coordinates of any point can be expressed
as follows:

r = IV".L';'. (311)

y= Zngi. (312)

The finite element grid (shown in Figure 3.4) is used to define the control vol-
umes which are necessary for the implementation of the conservation law(s) in the
discretized domain. Figure 3.5 shows the fully discretized space as required by EB-
FVM. Note the following points regarding to the computational grid:

e internal control volumes have 8 internal integration points (ip’s).
e regular boundary control volumes have 4 internal and 2 boundary ip’s.

e corner control volumes have 2 internal and 2 boundary ips.

in each element 4 Sub-Control Volumes (SCV'’s) are defined.

there are 4 integration points inside each element. numbered locally as shown in
Figure 3.5.

Hereafter. nodes associated with the regular boundary control volumes will be called
regular boundary nodes and those associated with corner control volumes are called
corner nodes.

In EB-FVM. it is often required to calculate the length of a directed line segment
A7 and its corresponding normal vector ARt as shown in Figure 3.6. From analytic
geometry:

|AT] = \/(Az)? + (Ay)2. (3.13)
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Figure 3.5: The computational grid as required in EB-FVM.
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A7 = (Az)i + (Ay)j. (3.14)

In these equations i and J are the Cartesian unit vectors and Az and Ay can be
calculated as below:

b
Az = / dz, (3.15)
Ja
b
Ay = / dy. (3.16)
Using the chain rule in differentiation. one would obtain:
dz = %ds + %dt, (3.17)
dy Jdy
= —ds + —dt. 1
dy s ds % (3.18)
It is not difficult to show that [108]:
4 N\

. J/

Figure 3.6: Definition of a directed-line segment and its normal.

3} ON AN.
== (zy — Iz)ﬁ + (z3 — 23)—5—51-

EP s (3.19)
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0 E)N 8N»
5';”- = (21 — 3) Otl + (2 = 2a) 52, (3.20)
O aN IN.
52 = (11— 92) 55t (s = va) . (3.21)
5 5N OGN
;—!t/ = (y, — U4)% + (y2 — y3) 5{- (3.22)

One can use equations 3.15 to 3.22 to obtain the following equations for Az and Ay
(see Appendix A):

Az = aycp,. (3.23)
Ay = auy,. (3.24)
in these equations:
a, = Oéj”/_\..s + Oé\tl"’:lt. (3.25)
As = 3, — s,. (3.26)
At =ty — ¢t,. (3.27)

Note that the outward normal vector for the directed line segment Ar is defined
according to Figure 3.6 and can be obtained by the following equation:

At = (Ay)i — (Az)j. (3.28)

Calculation of finite surfaces in the domain (or volumes in three-dimensional prob-
lems) can also be done easily. However. in this thesis. the above mentioned geometrical
relations are sufficient.

3.4.2 Spine Coordinates

As was mentioned in the previous section. all geometrical information in the domain
can be obtained with the aid of the local co-ordinates once the computational grid
(defined by the global positions of the nodes) is available. This section provides details
on how the global co-ordinates of the nodes are computed from “spine coordinates”.

Each grid point on a spine. for example node m on the spine ¢ (Figure 3.7). can
be located by just a single variable called the spine coordinate of that node (R™).
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Figure 3.7 shows that the position of point m on spine i can be described by either
(z*. y) or R when the spine i reference point coordinates (z:.y;) and 6 are known.
The following transformation relates the global coordinates of an arbitrary node m

f

Figure 3.7: Spine coordinate of a grid point.

to its spine coordinate (the distance between nodal point m and the reference point
along its associated spine):

R . m ..ot
'Li = -L" + R‘ LODH N (3.29)

y™ =y + R sin ' (3.30)

Note that ¢ is used as a superscript in #* to emphasize that the summation rule does
not operate on §'. The fact that a grid point remains on a specified spine during the
shape evolution in shape design problems. allows the designer to address the unknown
position of each boundary node in a shape design problem with just one variable: its
spine coordinate. This means that even in a three-dimensional shape design problem
only one variable (unknown) appears in the discrete governing equations to represent
the (unknown) location of each boundary node.
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It is assumed that in shape design problems, the designer has chosen a grid
evolution strategy which constrains the grid points to remain along their associated
spines and relates the internal nodes to the boundary nodes. There are different
strategies for relating interior and boundary nodes, but the simplest one would be
to keep the relative positions of nodes along a spine fixed as is shown in Figure 3.8.
In other words, the parameter O™ for the node m on the spine ¢, as defined below,

remains fixed during the shape evolution:

R"‘ RL

In this definition. RF and RY are the spine coordinates of the boundary points and
R is the spine coordinate of the internal node m along the spine i. Fixing C*™
causes the internal nodes to be tied to the boundary nodes and to follow them during
the shape evolution. This is the boundary-connection rule used here as part of the
grid evolution policy. Each nedal point. in the global discretized space has its own
C'™. When the local numbering system for the nodes in an element is used. each
local node has its own position characteristic parameter C™ and m goes from | to 4.
Note that one superscript is used to address nodes” C parameters when the element
local numbering system is applied.

3.4.3 Boundary-Linked Computational Grids

In the previous section some concepts related to the computational grid were intro-
duced: the spine coordinate. the grid evolution policy and the boundary-connection
rule. There are different ways that one could manage the spines and the relative
positions of the internal nodes to keep or modify the quality of the grid. The chosen
strategy (fixed spines with fixed C parameters). as described in the previous section.
is fairly appropriate for now and as the computational results will show. it works well
at this level.

The purpose of choosing a grid evolution policy is to control and keep track
of the computational grid during the shape evolution. Whatever strategy is used
(whether the spines are straight or curved. or whether spines are used at all) there
must be some boundary-connection rule. Therefore it is meaningful to call these
types of computational grids boundary-linked computational grids. Boundary-linked
computational grids deserve to be considered as one of the main ingredients of all
the numerical simulation methods used in direct shape design algorithms. The whole
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. J/

Figure 3.8: Nodes with equal distances along a spine.

purpose of a boundary-linked computational grid is to recover all the geometrical
information in the solution domain based on the geometrical information provided at
the boundary (the boundary shape). The idea is not only extremely useful in solving
shape design problems. as will be shown later. but also can be very useful for the
analysis problems as well.

Now that the domain is discretized, the discretization of the governing equation
is in order. This is the subject of the next section.

3.5 Discretization of the Governing Equation
3.5.1 Level C Mathematical Model

Following the brief discussion in Chapter 2. regarding to the generic form of the field
equations. the Laplace equation (Eq. 3.4) is now written in the following form:

V0 =V.-(VO)=V.FP =q. (3.32)
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This form of the Laplace equation is actually a balance equation and the quantity ﬁg
can be considered as a diffusion flux term. For the sake of simplicity, the superscript
D will be dropped and Fg represents this flux term hereafter.

The starting point in the EB-FVM would be the following integral equation for
an arbitrary control volume:

/. / / (V- Fo)dn =0, (3.33)

Using the divergence theorem. the volume integral changes to a surface integral as

follows:
// Fo-dd, =0. (3.34)

Equation 3.34 is the governing equation for the problems governed by the Laplace
equation at the continuous level as required by the FVM. The governing equation
at this level is called here the level C (C for Continuous) mathematical medel. In
this equation dA,, is the differential outward normal vector with a magnitude equal

to | dA,, |.

3.5.2 Level Dy Mathematical Model

Using the midpoint rule. the integral balance equation for an internal control volume
1s approximated by the following algebraic equation:

8
Y Foi- A =0. (3.35)
i=1

Let’s define the quantity (F;; . A-;l") as the flow term (Fg) and rewrite the above
equation in the following form:
8
Z Foi = 0. (3.36)
i=1
In Eq. 3.36 the integration point quantities (in this case diffusion flow terms) appear.
This equation is a discretized form of Eq. 3.34 but is not the final working form which
must only include the nedal quantities. Therefore. it is called the level Dy (D for
Discrete) mathematical model for the problems governed by the Laplace equation.
According to Eq. 3.36, for the implementation of the conservation law over a control
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volume it is only necessary to specify how the flow term (Fo) is estimated at an
arbitrary integration point.

Eq. 3.36 is a balance equation written for an internal control volume. From the
coding point of view. it is better to implement the constraint given by Eq. 3.36, in an
element-wise manner. As was shown in Figure 3.5. each quadrilateral finite element is
composed of four SCV's. The fow tcrms can be calculated at the integration points
in each element and the balance equation (Eq. 3.36) is actually satisfied after the
elemental equations are assembled.

For the simple problem considered here. the flow term at an arbitrary integration
point is equal to:

P@s%uﬁ=€@qq.. (3.37)
ip
Note that in a two-dimensional geometry (shown in Figure 3.5) the integration faces
are represented by line segments. Thercfore. using Eq. 3.28 (A4, is equal to A7 in
this case). Eq. 3.37 can be written in the following form:

[0@ J0 }
21)

Foly = | =4y - A

o 5 (3.38)

—

Az and Ay are the r and y components of the flux surface associated witl A

3.5.3 Level D Mathematical Model

The level D mathematical model is the final working form of the governing equa-
tions in the FVM. In general. two major steps are required to obtain the level D
mathematical model from the corresponding level Dy model. The integration point
quantities in the level Dy mathematical model have to be related to nodal point quan-
tities. An appropriate interpolation scheme is required to establish the relationships
between the integration and nodal point quantities. Furthermore. often the algebraic
equations have to be linearized. In this sub-section. both these issues are discussed.
First. by using an appropriate interpolation scheme. a nonlinear discrete expression
for the flow term at the Level D is derived. Then. linearization of the flow term
expression and derivation of the final (linearized) discrete form of the flow term is
discussed.

The issue of approximating the gradient terms at an integration point is the
major issue here. The elements are assumed to be iso-parametric and therefore the
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same bi-linear shape functions which were used for the geometrical modeling are used
in the diffusion modeling. Therefore, the following approximations are used:

[@]ip = IV,'@,', (339)
[907 dN:
l.—zJ . = E( i (3.40)
5] =G (3.41)
Yl dy

In {108] it has been shown that:

% = L (QEON" _ @aN") i (3.42)
Oz (JI\dt s  9s Ot
ON; _ 1 O:B(’)JV,' a.L‘ON,
‘aj-m(aat‘mﬂ' (343)

|J] is the determinant of the Jacobian of the local-global transformation and is equal
to:
_0z0y  Jy Oz

|J| = E TR TR (3.44)

For the sake of simplicity |J| is represented by J hereafter and called the Jacobiamn.

It is useful. in shape design problems in the context of EB-FVM. to separate
the quantities defined in terms of the local coordinates and the quantities defined in
terms of the global coordinates. During the shape evolution. the local coordinates
of a point (for example) in an element does not change, but its global coordinates
might change. Therefore the above equations are re-written in the following forms
(see Appendix A):

J = (Yon) (Zpyn — Znlp) - (3.45)
90 Yn ,
3 = (i = o) ( J) 0, (3.46)

g—S = = (Ymn = Tom) (J}—“) Om. (3.47)
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In these equations the summation rule is applied and dummy variables m, n and D
take values 1 to 4 to account the effects of all the nodes surrounding an integration
point. Y, is defined as:

IONy, . AN,
Tmn =( Js )(W) (3.48)

Using equations 3.23. 3.24. 3.46 and 3.47 in Eq. 3.38. the flow term can be written

in the following compact form:

AnOm
T

For simplicity. the subscript ip will not be used hereafter and Fo represents the flow

term associated with the quantity © from the integration point ip. In Eq. 3.49. A
is defined as below (see Appendix A):

[.F@]ip = (3.49)

Am = ap (Ymn = Ynm) (1"1:1311 + Up.’/n) . (3.50)

In analysis problems. in which the duct geometry is known. J and \,, are known and
Fo is just a linear function of unknown ©'s at the nodes associated with the element
which contains the integration point. These nodes are defined here as neighbor nodes
for the integration point ip. Equation 3.49. in fact. provides the level D mathematical
model of the diffusion flow term appropriate for solving analysis problems which are
described by the Laplace equation.

The computational molecule, provided by the EB-FVM for the Laplace equa-
tion. models the physical influences of the neighbor nodes quite appropriately. In
Figure 3.9 the diffusion computational molecules provided by different numerical
schemes. when applied in a uniform Cartesian grid. are shown and compared. It
is seen that the diffusion computational molecule provided by the EB-FVM is bet-
ter than ones obtained by the Galerkin FEM. Note that the FDM computational
molecule in this case would be similar to the computational molecule provided by the
Galerkin method used with the triangular elements.

In shape design problems. in which the duct geometry is not known. Fg is a
function of both global co-ordinates and ©'s of neighbor nodes. The dependency
of the flow term on the global coordinates of the neighbor nodes is through the
parameters A, and J which are non-linear functions of the global co-ordinates of the
neighbor nodes.

Looking back to the conceptual description of the new direct design method.
given in Chapter 2, it makes sense to assume that if the initial (old) flow term at an
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Figure 3.9: Comparison of some diffusion computational molecules.

arbitrary integration poiunt is Fg. it will take a new (perturbed) quantity Fg* for
the final (designed) shape. Mathematically. this can be written as follows:

Fo™ = Fo = Fg + 8Fo. (3.51)
Note that Fo as expressed by Eq. 3.49 may be considered as a function of AnOm. J:
Fo=Fo(Am-On.J). (3.52)

Therefore. d Fg can be estimated as:
- (?.7'-(-) ° 0 0]:@ 0 0 !
()]?@ =~ (m) (’\m - /\m) “+ (E) (@m - @m) -

Q0
(%9) (7 - J°). (3.53)
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Using Eq. 3.49 it is easy to obtain:

9Fo\° 9..\°
(52) = (%) (954
(OFa\®  /A.\°

&)~ ()

0 0 i 0
(5~

Using Eq. 3.54 to 3.56 in Eq. 3.53 results in the following approximate expression
for the perturbed (diffusion) flow term (as described in Eq. 3. 51):

8 \° Am )’ Fo on
Fo = <7> Am + (7) O — <—l’> J. (3.573

Considering the fact that A, and J are nonlinear functions of the coordinates
of the neighbor nodes of an arbitrary internal integration point. the above expression
for the flow term should be linearized in shape design problems. To linearize Eq.
3.57. linearized forms of \,, and J are substituted in this equation. Full Newton
linearization of these terms results in:

Am & Qp (Ymn — 7nm) (;Bg:l!n + 1:9;1';: + Ug.'/n + Ugyp) - )\9“ (358)

J X Apn(2pyn + Yoz, — & 2JP—J§- ) = J°. (3.59)

Using the above linearized forms of A,, and J in Eq 3.57 and arranging terms.
the following linear equation is obtained for the flow term at an arbitrary internal
integration point:

Fo = [B?] ©; + [Bf]z: + [BY]y: + [B™°]. (3.60)

Coefficients B are just functlons of old values of the geometry and the flow parameters
and are reported in Appendix A.

It is important to note that Eq. 3.60 not only provides an appropriate expression
for the flow term at the level D mathematical model for the shape design problems.
but also can be used in modeling and solving analysis problems as well. The major
step in obtaining the level D mathematical model from the corresponding level D,
model (Eq. 3.36), as far as the FVM is concerned. was the profile assumption or
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the interpolation scheme used to relate the integration point quantities to the nodal
point quantities. The bi-linear assumption used in the elements, in fact, provides the
required interpolations in the EB-FVM as used here. More precisely. the level D
equation for the flow term was obtained after implementing the profile assumption
and the linearization. These two logical steps may be distinguished by defining an in-
termediate step between the level D; and the lovel D. This, in fact, will be considered
in Chapter 8.

For a boundary-linked grid. like the one used here. the coordinates of all the
internal grid points can be expressed in terms of the boundary node coordinates.
This is very beneficial in shape design problems in which the boundary shape is
under consideration. For the proposed grid evolution policy in this thesis. spines are
used and all the grid points are constrained to follow some fixed spines. Using Eq.
3.29. 3.30 and 3.31. which describe the linkage between the internal and boundary
nodes and constrain the grid deformation, it is easy to show that:

z; = &} + (C'cos 'y RY + (D' cos ') RE. (3.61)

yi =y + (C'sin6') RY + (Dsin 6*) RE. (3.62)
In equations 3.61 and 3.62. D' is defined as below:
Di=1-C" (3.63)

Note that C* and D' here are attributed to nodes with local numbers 1 to <4 in an
element. Introducing z; and y;. as defined by equations 3.61 and 3.62. in Eq. 3.60.
results in an appropriate equation for the flow term (Fg) in terms of the problem
unknowns (i.e. RY. Rf and O):

Fo = [CP] @i+ [CFY] RY + [CRX] RE + [CR9). (3.64)
Coefficients C in Eq. 3.64 are defined as:
c? =B? (3.65)
CHY = (BF cos ' + BY sin ¢') C* (3.66)
CHt = (Bf cos§* + BYsin¢') D (3.67)

CFO = B; (s - =) + BY (4 - ?) (3.68)
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Note that (z7,y;) represent the reference coordinates for the spine associated with
the local node number i and (z?. y°) represent the old coordinates of a grid point with
the local number :.

Figure 3.10 shows a typical internal integration point in an element and its asso-
ciated neighbor and boundary neighbor nodes. The numerical model for the flow term
at an internal integration point (Eq. 3.64). when applied in the balance equations.
introduces the unknowns © and RY and RL into the element equation and finally
(after assembling the elemental equations) into the global set of equations. This com-
pletes the numerical modeling of the problem inside the domain. It remains to apply
the formal and extra boundary conditions and close the set of equations. This is the
subject of the next chapter.

3.6 Summary

In this chapter a number of important issues regarding to the imuplementation of the
proposed direct design approach was explained.

First. a simple robust initial guess generator was introduced.

Second. domain discretization was discussed in which the importance of the
spines and boundary-linked computational grids was emphasized.

Third. the derivation of the discretized form of the governing equation in the con-
text of EB-FVM was discussed. The equation proposed for calculating the diffusion
flow term at an integration point (Eq. 3.64) may be considered as a unified expression
for the estimation of the flow term. both in the analysis and shape design problems.
However. if the computational grid is known (analysis problems). no linearization is
required and Eq. 3.49 can be more easily used to estimate the flow term.

It remains to talk about the implementation of the formal and extra boundary
conditions required to close the system of (linear) equations. This is the subject of
the next chapter.
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Figure 3.10: Neighbor and boundary neighbor nodes for an integration point.




Chapter 4

Direct Design: Boundary
Condition Implementation

4.1 Introduction

In Chapter 3 an approximate expression for the flow term at an arbitrary internal
integration point was obtained. It was shown how the flow term (Fo) could be
modeled and approximately calculated at each integration point (control surface).
After using that approximate expression at integration poiuts. the element equations
are assembled to form the conservation law (Eq. 3.36).

In this chapter the boundary conditions required to define a well-posed analysis
problem (called formal boundary conditions) and the extra boundary conditions re-
quired in the corresponding shape design problem (called eztra boundary conditions
as compared to analysis problems) are also discretized and the complete unified nu-
merical model of the problem is obtained. To do so. first some difficulties in the
implementation of the extra boundary conditions required in SSD problems are dis-
cussed. Then formal and extra boundary conditions in two-dimensional internal ideal
flows (for both ¢ and ¢ formulations) and in Leat conduction problems are imple-
mented to close the system of equations in the discretized domain.

4.2 Extra Boundary Conditions

As was mentioned previously, in SSD problems the boundary coordinates are un-
knowns. to be constrained by the specified target surface distribution. In the context
of heat conduction problems target heat flux distribution is assumed to be known

51
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and in the context of the fluid flow problems the TPD is often specified. In potential
flow shape design problems, the Target Velocity Distribution (TVD) can be specified
along the boundary instead of the TPD. The boundary shape and length is unknown
in shape design problems and a question that arises is how can one specify the pres-
sure, velocity or the heat flux along an unknown boundary. Because of the similarity
of the guverning equations in the steady heat conduction and potential flow, only the
latter is discussed lere. Obviously. the arguments given in this section about the
TVD are equally applicable when a target surface heat flux is specified.

In some applications it is possible to use a reference coordinate for specifying the
TVD. For example it is quite usual to use the fixed chord length as the reference
coordinate in airfoil shape design [109]. As an another example. in straight ducts one
can use the axis of the duct (from the inlet to the outlet) as the reference length.

However. it is difficult to find an appropriate reference coordinate in general duct
design problems. Therefore. in this thesis. a normalized body-fitted coordinate along
the boundary is used for specifying the TVD. The body-fitted coordinate along the
upper wall of a duct (s) is shown in F igure 4.1 and normalized as below:

. _ body — fitted coordinate (s)
- total length (L)

s (4.1)

Note that s is independent of the real length and takes values in the range 0 < s* < 1.
When this normalized coordinate is used. the tangential velocities along the lower

{ Y

/

S

— J

Figure 4.1: The body-fitted coordinate.
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and upper walls can be represented on the same diagram with the same domain.
Obviously two points at the upper and lower boundaries with the same s° are not
generally at the same distance from the inlet. Another important point about the
normalized body-fitted coordinate is that the s* positions of boundary nodal points in
the initial guess would not remain fixed when the shape evolves and changes to a new
one. Iniciaily, the s* positions of boundary nodes are known and the target velocity
corresponding to each boundary node is also known. When the shape evolves. the s*
positions of boundary nodes change and therefore the target velocity for a particular
boundary node is actually not known in advance.

Therefore two problems should be addressed: first. how to define the TVD such
that it does not change when the shape evolves. and second. how to assign a target
velocity to a boundary node whose final location is not known.

The remedy for the first problem. i.e. specification of the TVD. is to specify it
with analytical functions in the range 0 < s* < 1. Even though simple mathematical
functions can be used in some cases. they are not flexible enough to produce desirable
TVD's in general. To cope with this problem in this thesis. the TVD is specified
using Bezier curves. This allows the designer to arbitrarily change the TVD without
being worried about the mathematical expressions which actually govern the curve.
Figure 4.2 shows a typical TVD produced by three Bezier curves.

For the second problem. the uncertainty about the final s- position of the bound-
ary nodes. it is assumed that the final s* position of each boundary node is equal to its
initial s*. This assumption is obviously not realistic and means that a wrong target
velocity has been assigned to the boundary node. Therefore. a few iterations are re-
quired to assign correct target velocities to boundary nodes. The number of iterations
depends on the TVD and also the difference between the initial and final shape. If
the TVD is uniform. for example when the shape is designed to achieve a constant
boundary tangential velocity. no iteration for correcting the TVD is required. In gen-
eral, if the difference between the TVD and the current boundary tangential velocity
is considerable, it is better to define some intermediate or temporary TVD's. In other
words the design problem is solved when a sequence of sub-design problems. in each
of which an intermediate boundary tangential velocity is used as the TVD. is solved.
Therefore. the shape does not change drastically in each sub-design problem and the
uncertainty about the final s* position of the boundary nodes is not then a serious
problem. It should be emphasized that the iterations Jjust described. are actually the
price that should be paid for not using a fixed reference coordinate in specifying the
TVD. There are many shape design problems. for example airfoil design or design of
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Figure 4.2: Specification of the TV D.

straight ducts. for which the designer can easily find an appropriate fixed reference to
specify the TVD and no extra iterations. for correcting the assigned target velocities
to the boundary points. are required.

4.3 Shape Design in Internal Potential Flow Prob-
lems

4.3.1 ¢ Formulation

In the ¥ formulation of the design problem. one may use the Dirichlet boundary con-
dition at all boundary nodes as the formal boundary conditions (see Figure 4.3). The
extra information at the upper and lower boundaries (the TVD) specifies the normal
derivatives of the stream function on those boundaries. [n this section the implemen-
tation of these constraints in the frame work of the EB-FVM will be discussed.
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Figure 4.3: Formal boundary conditions in the v formulation.

4.3.1.1 Formal Boundary Conditions

Implementation of the Dirichlet boundary conditions poses no difficulty at all. In fact
when the ¢ values of the boundary nodes are known. no equation for the boundary
¥'s is required. The conservation law for a boundary control volume can be imple-
mented. in analysis problems. to calculate the tangential velocity at the boundary. In
design problems. as will be explained. the couservation law is implemented for each
boundary control volume to obtain an equation for the unknown spine coordinate of
the corresponding boundary node.

4.3.1.2 Extra Boundary Conditions

The stream-wise velocity at each point in a two-cimensional flow field is related to
the cross-stream derivative of the stream function at that point as:

dy

(%0
Therefore, in the discretized numerical model of the flow field. the flow term at the
boundary integration point A (see Figure 4.4) can be calculated as:

= ~ 0 1 1_
.F,p = V?[’ CA, = —¢ (aLppv) = VA <-9-pr> . (43)

)p = Vp. (4.2)

" Onla

-
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Figure 4.4: Extra boundary conditions in the ¢ formulation.

Now. the conservation equation (Eq. 3.36) can be satisfied at a typical regular upper
boundary control volume (see Figure 4.4) as:

4
1 1
Z}-t."i + <;LPW) Va+ (;LPE) Vs =0. (4.4)
i=1 - =

This can be easily done for the regular lower boundary control volumes as well. The
above equation should provide an equation for the unknown Rp. To do so. Lpw and
Lpg have to be written in terms of the spine coordinates of the neighbor nodes (Rp.
Ry and Rg). The required equations are obtained as below (see Appendix A):

Lpg = (CgP®)Re + (C§"%)Rp + (D* ). (4.5)

Lew = (CL™™)Rw + (CE*™)Rp + (D**v), (4.6)

When equations 3.64. 4.5 and 4.6 are used in the conservation equation for the control
volume around the boundary node P (Eq. 4.4). and the value Yp = 1 is inserted. an
equation for the unknown Rp is obtained.
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4.3.1.3 Final Working Equations

In the ¢ formulation of the shape design problem. the stream function values of all the
internal nodes and the spine coordinates of all the regular upper and lower boundary
points are unknown. The required equations for the unknown stream functions were
obtained in Chapter 3 and the equations for the unknown spine coordinates at lower
and upper boundaries were obtained in the previous sub-section. After using all of
the equations. which form a closed set of linear algebraic equations. and assembling
the element equations to satisfy the conservation law for the control volumes. the
following matrix equation is obtained:

{v}
EARRCANERE-AY (4.7)
{R"}
Iu this equation the elements of the coefficient matrix /i,[, and vector By, are known.
As was mentioned previously. this equation may be considered as a unified formulation
for an analysis and its associated shape design problem. One can sunply change the
inputs (elements of A¢ and By) to switch from the analysis mode to the design mode
and vice versa.

In Figure 4.5. an example of the application of the ¥ formulation in SSD prob-
lems is shown. For the given (fixed) inlet and outlet. the initial straight nozzle shape
is prescribed as shown in Figure 4.5A. The calculated initial surface tangential ve-
locity distribution is shown in Figure 4.5B. The TVD (Figure 4.3D) is then used to
(directly) design a new shape as shown in Figure 4.5C. Note that the duct length
and width is non-dimensionalized by the inlet width (W,) and the velocities are non-
diniensionalized by the inlet (uniform) velocity (V}).

4.3.2 ¢ Formulation

In the ¢ formulation of the ideal flow design problem. Neumann boundary conditions
(¢n or J¢/On. in which n is in the direction of the unit normal vector directed
outward) are used as the formal boundary conditions as is shown in Figure 4.6. It
is well known that an equilibrium problem with Neumann type boundary conditions
is ill-posed because it accepts an infinite number of solutions. To define a level
for ¢ and make the problem well-posed. the EB-FVM allows ¢ to be specified for
one arbitrary nodal point and still satisfies the conservation principle everywhere.
In other words the conservation law is not actually implemented for one control
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Figure 4.6: Formal boundary conditions in the ¢ formulation.
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volume. But. considering the fact that the conservation principle is satisfied globally
by the boundary conditions and locally for all control volumes except one, then the
conservation property of the method is actually satisfied for all control volumes.

In this section, the implementation of the formal and extra boundary conditions
for the ¢ formulation is discussed.

4.3.2.1 Formal Boundary Conditions

At the lower and upper boundaries. the fluid cannot cross the walls. This means that
the Neumann boundary condition is applied at these boundaries as follows:

&
)
In other words for a regular lower or upper boundary control volume. Fy4 = Fug = 0
(see Figure 4.4). Therefore. the conservation law is implemented as:

) =0. (4.8)

> Fu=u. (4.9)

Equation 4.9 provides one equation for one unknown at each node located on the
upper or lower boundaries. Considering the fact that in the ¢ formulation there are
two unknowns at each upper or lower boundary node (R and ¢). another equation
1s required at these points to close the system of equations. The extra boundary
information (TVD) will be used to do so. This issue will be discussed in the next
sub-section.

Inlet and outlet boundaries are kuown in the duct design problems considered
in this thesis. In other words. the spine coordinates of the inlet and outlet boundary
nodes are known and remain fixed during the shape design procedure. Therefore.
only one equation is required to find the unknown ¢ at each node located at the inlet
or outlet boundary. Neumann boundary conditions are used to provide the required
equations. The implementation of the Neumann boundary condition at the inlet and
outlet is as below:

9¢
%n
The + sign is used at the outlet where the velocity is equal to V5 and n is in the flow
direction and the — sign is used at the inlet where the velocity is equal to V] and n
is in the opposite flow direction. Therefore. the conservation law for a regular inlet

)=+V. (4.10)
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Figure 4.7: Implementation of the formal boundary conditions (¢ formulation).

or outlet boundary control volume is as follows (see Figure 4.7):

[NV N
NI —

4
Y Fuit(5)LpsVe £ (5)LenVp = 0. (4.11)
i=1

Note that Vo = Vp = Vi in Figure 4.7. When equation 3.64 and the known values for
the Lps. Lpy and inlet and outlet velocities are used in the conservation equation
for the control volume around the boundary node P. an equation is obtained for each
unknown ¢p at the inlet and outlet boundaries.

4.3.2.2 Extra Boundary Conditions

The TVD which is specified as the required extra boundary information in potential
flow shape design problems is related to the tangential derivative of ¢ as (see Figure
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4.8):
d¢
(a)

Application of Eq. 4.12 in the discretized domain raises a serious problem which

=V (4.12)

( )

- J

Figure 1.8: Implementation of the extra boundary conditions (¢ formulation).

did not arise in the ¢ formulation. If one attempts to discretize this equation using
a Central Difference Scheme (CDS). the final (discretized) mathematical model will
be ill-posed. As it is well known. CDS creates an unconstrained numerical oscilla-
tion accepting an infinite number of oscillatory solutions. Unconstrained modes are
among the biggest problems in all numerical schemes and their removal is surprisingly
complex.

To examine the undesirable properties of CDS approximations. different possible
discretizations and their difficulties are first explored. The final proposed scheme.
which is actually used in the ¢ formulation. is then described.

The first and most natural choice for the discretization of Eq. 4.12 would be the
following CDS form (see Figure 4.8):

d¢.  bg —dw

Ve=(—)p=—"—"",
i (35)P Lpg + Lpw

(4.13)
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As is clear, ¢p has no role in this equation and is not constrained by this equation.
If one uses this equation to apply the extra boundary conditions in the numerical
scheme, the solution of the straight nozzle design problem (previously solved by the
¥ formulation and showed in Figure 4.5) gives rise to the wiggly duct in Figure 4.9C.
Note that an unacceptable shape is obtained for a smooth TVD. As a matter of fact
the numerical model accepts oscillatory solutions with different amplitudes as the
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Figure 4.9: Implementation of Eq. 4.13 in the ¢ formulation.
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Another CDS discretization for Eq. 4.12 is as follows:

bp — b

Lpw
The difficulty with this scheme is that the number of midpoints (like W;) along each
boundary is one more than the unknown nodes along that boundary. Therefcre Eq.
4.14 can not be applied for the last boundary element and the ¢ value of the last node
15 not constrained. Consequently, wiggles triggered at the outlet, spread backward
as 1s shown in Figure 4.10. However, it is interesting to note that this scheme works

1

well near the inlet and in the middle part of the boundary.
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Figure 4.10: Implementation of Eq. 4.14 in the ¢ formulation.

To be able to fix the above mentioned problem. one possibility is to apply Eq. 4.14
at all midpoints along each boundary such that for each boundary node. one equation
is obtained. In other words. at each boundary point P the following condition is
satisfied:

0 d¢
l:(a_q:)wl - leJ + l:(a—f')gx - VEI] =0. (+.15)
The discretized form of this equation is as follows:
1 1 1 1
—=—)¢w + (75— — =—)dbp + (=—)bg = Lpw + Lps. 1.16
( Vi )bw (VW, Ve, )ép (VE. Jée = Lpw + Lpg (4.16)

If this scheme is used in the discretized mathematical model of the design problem.
the straight nozzle shown in Figure 4.11C will be obtained. Note that the scheme
works well in regions for which Vg, # Viy,. In fact. as Eq. 4.16 shows. the coefficient
of ¢p vanishes when Vg, = Wiy, and this allows the wiggles to appear.

The implementation of the extra boundary condition used in this thesis is now
explained. It is a requirement that second order accuracy be maintained, which rules
out the use of one-sided differences. Instead. a combination of the equations already
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Figure 4.11: Implementation of Eq. 4.16 in the ¢ formulation.

presented is used: in regions where the TVD in the neighborhood of a boundary
node is uniform. Eq. 4.14 is used: in regions where the TVD varies, Eq. 4.16 is used.
Note that in the potential flow ducts. designed in this thesis. there is always uniform
ow sections near the inlet and outlet. This means that Eq. 4.14 is always used for
the discretization of the extra boundary conditions near the inlet and outlet.
Application of this algorithm results in a satisfactory solution of the nozzle prob-
lem as is shown in Figure 4.12C. This algorithm has been found to work very well
except when the specified TVD has very sharp slopes and the grid is not fine enough.

4.3.2.3 Final Working Equations

In the ¢ formulation of the shape design problem. the potential function values at
all nodes (except the one which determines the level) and the spine coordinates of
all the regular upper and lower boundary points are unknown. Required equations
were obtained in Chapter 3 and this section. Using all of the equations. which form
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Figure 4.12: Implementation of the proposed policy in the ¢ formulation.

a closed set of linear algebraic equations. the following matrix equation is obtained:

. {6} .
[AJ {RV} § = {Bd,} . (4.17)
- U{RY}
In this equation. the elements of the coefficient matrix A4 and vector B, are known.
Again. this equation may be considered as a unified formulation for an analysis and

its associated shape design problem. One can simply change the inputs (elements of
.A¢, and By) to switch from the analysis mode to the design mode and vice versa.

4.4 Shape Design in Heat Conduction Problems

A two-dimensional domain can be tailored to conduct heat in an appropriate way. For
steady two-dimensional conduction. the shape design method would be the same as
described previously. Different (Dirichlet or Neumann) boundary conditions may be
used at different boundaries but the mathematical treatment would not be different.
The application of the method in shape design of heat conductors will be discussed
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in Chapter 7.

4.5 Summary

In Chapter 3. an appropriate discretized torm of the diffusion flow term at an arbitrary
integration point was obtained. In this chapter the ollowing were discussed to obtain
a unified discretized formulation for the Laplace equation applicable in both analysis
and shape design problems:

e low to specify the required extra boundary information.
e how to implement fornial boundary conditions.
¢ how to implement extra boundary conditions.

The final matrix equation. which is a unified formulation for the Laplacian in
a discrete domain applicable in solving both analysis and shape design problems.
obtained as:

{0}
[Ao] ¢ {RU} | = {Bo}. (4.18)
{R"}
The scalar © can be the stream function ¥ or the scalar potential ¢ in ideal flow
problems or the temperature T in heat conduction problermns.



Chapter 5

Direct Design: Validation

5.1 Introduction

In this chapter. the numerical technique. developed in Chapters 3 and 4. is validated.
Special attention is devoted to the application of the ¢ formulation in solving ideal
flow duct design problems.

In Section 2. the convergence criterion. required when the unified formnulation is
used to solve a SSD problem. is introduced.

In Section 3. a straight potential flow duct with constant cross sectional area is
designed. Considering the fact that the TVD is a constant tangential velocity along
the upper and lower boundaries and also the final shape (constant cross sectional area
duct) is known. this is a good validation test and also a good test for the robustness
of the method. Different initial guesses are given to see if the method converges to
the expected solution independent of the initial guess.

Section 4 uses a bench-mark solution provided by Stanitz for a 90°-curved noz-
zle [71]. The TVD. as given in [71]. is applied and the computational results are
compared to the Stanitz solution.

Finally, it is shown that the unified formulation. which can be used in both
analysis and design problems. and the direct discretized formulation. which can only
be used in the analysis problems. are practically the same and produce similar results
when applied to the same problem.

67
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5.2 Convergence Criterion

One needs to set a convergence criterion for an iterative algorithm. Usually there
are two levels of iterations: inner iterations. within which the linear equations are
solved. and the outer iterations. that deal with the non-linearity and coupling of the
equations [34].

The solver used in this research is a direct solver. It was shown that in the
proposed direct shape design method. a nonlinear set of equations has to be solved
even when the associated analysis problem is linear. Therefore. here only one level
of iterations (outer iterations). is involved. The converged solution is actually the
correct solution of the nonlinear equations. although it is arrived at by solving a
sequence of linear equations.

If correct coefficients are used in the linearized discrete equations. which are
conservation statements for the control volumes. the right and left hand sides of the
equations will be the same and there are no residuals (non-physical or numerical
sources or sinks) associated with the control volume balance equations. For a consis-
tent set of discrete equations. when the residuals are small and the computational grid
is fine enough. the numerical solution is close to the exact solution of the problem.

In this study absolute values of the residuals for all control volumes are calcu-
lated in each (outer) iteration aud the largest residual is used as the measure of the
couvergence. It was observed that when this maximum value was less than 0.001.
the changes in the dependent (unknown) variables (in particular the positions of the
boundary nodes which describe the shape) were negligible. Therefore. this is used as
the convergence criterion in this study.

5.3 A Trivial Test Case

The robustness of the proposed design method can be checked with a trivial test
problem. Here the robustness of the design method is considered as the ability of
the method to use different initial guesses and computational grids. An ideal robust
method should work well regardless of the resolution of the computational grid and
the initial guess.

To examine the robustness of the proposed potential flow design method. a 20 x 10
computational grid is used to design a straight duct with constant cross sectional area.
The nice thing about this example is that both the TVD and its corresponding shape
are exactly known in advance.
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Let’s start with an intentionally distorted shape (Figure 5.1A) as the initial guess
and impose a constant tangential velocity as the TVD (Figure 5.1D). The boundary
tangential velocity corresponding to the initial shape is shown in Figure 5.1B. In
this case the deviation of the initial boundary tangential velocity distribution from
the TVD is moderate and both % and ¢ formulations solve the design problem in 3
(outer) iterations and find the desired shape (Figure 5.1C)

Figure 5.2A shows another initial guess. whose corresponding boundary velocity
distribution is shown in Figure 5.2B. For this problem the v formulation solves the
problem in a single pass with 3 iterations. However. when the ¢ formulation was
applied. convergence was not obtained. To obtain the solution, some intermediate
TVD'’s were defined and the shape design problem was replaced with some sub-
design problems: for each of these the difference between its initial boundary velocity
distribution and the corresponding TVD was less than the original problem. With
five intermediate TVD's. it takes 15 iterations for the ¢ formulation to converge
to the solution shown in Figure 5.2C. Therefore. for this particular problem the ¢
formulation is not as robust as the ¢ formulation. N:merical experiments also show
that the ¢ formulation is sensitive to the grid resolution. In other words in some cases
Just changing the grid resolution can result in convergence rather than divergence.

Figure 5.3 shows another example. While the final result is obtained with 3
iterations and without any intermediate TVD when the ¥ formulation is used. the ¢
formulation never converges to the solution regardless of the number of intermediate
TVD’s used. If the designer chooses a finer grid. the ¢ formulation will converge to
a solution. Therefore. for the given grid. the initial guess shown in Figure 5.3A may
be considered as a bad initial guess for the ¢ formulation.

Even though the ¢ formulation is more robust than the ¢ formulation for the
given trivial test cases. it has its own limitations. For example if the duct shown in
Figure 5.4A is used as the initial guess. none of the formulations will work. regardless
of the number of intermediate TVD's used. Of course the initial guess in this example
is too far from the expected result and the initial grid is so much distorted. Therefore
the proposed design method shares one of the limitations of the iterative methods.
l.e. the need for a relatively good initial guess. However. as was shown in the test
cases. the method is fairly robust in this regard.
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5.4 Comparison to Stanitz’ Results

In Chapter 2 Stanitz’ shape design method was briefly described. The Stanitz 90°-
elbow example. with area ratio equal to 0.5! not only was validated by the experi-
mental results [71], but also was reproduced by many others. e.g. [69,110]. A 65 x 15
computational grid was used in the Stanitz calculations. This solution is used here
as & bench wark solution to validate che present method.

The TVD used by Stanitz is shown in Figure 5.5B. and his corresponding elbow
shape appears in Figure 5.5A. When the EB-FVM is used to solve the potential
flow inside the Stanitz elbow in Figure 5.5A (solving the analysis problem). the tan-
gential velocity distribution at the boundary is obtained. The present predictions are
compared with the Stanitz results in Figure 5.5B. It is seen that the computational
results match very well with the Stanitz results.

In Figure 5.6 the Stanitz TVD (Figure 5.6D) is used to design a 90°-elbow
with the proposed shape design method. The initial guess and its associated surface
velocity distribution are shown in Figure 5.6A and 5.6B and the designed duct is
shown in Figure 3.6C. Ouly one intermediate TVD was used and it took the -
formulation 7 iterations to converge to the solution. The Stanitz duct is shown
by dashed lines in Figure 5.6C which are not distinguishable from the solid lines
(computational results).The results indicate that the design approach works very
well.

Figure 5.7 shows the results obtained for the Stanitz elbow problem when a 20 x 4
computational grid is used. It is seen that the designed shape is nearly the same as
the Stanitz duct. even for this extremely coarse grid.

5.5 Comparison Test For the Unified Formulation

As explained previcusly. the final discretized equations in the proposed method may
be considered as a unified formulation applicable for solving both analysis and design
problems. However. one should note that different approximations are used for the
estimation of the flow term in the direct formulation (used in the analysis problems)
and in the unified formulation (used in the design problems). As a matter of fact.
(Fo)design (Eq. 3.64) is a linearized form of the (Fo)unarysis (Eq. 3.49). Therefore.
when (Fg)esign is used in an analysis problem. a sequence of linear problems have to
be solved to approach the solution which is obtained when the (F0)analysis 1s used as

1. The area ratio for a duct is defined as the outlet area divided by the inlet area.
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the flow term in the same problem.

In other words when (F©)design 1s used in an analysis problem, iterations are
required to correct the initially guessed ©° (see the coefficients of Eq. 3.64, fully
defined in the Appendix A). This usually takes very few iterations.

Even though the unified formulation was validated in the previous sections,
here the results ohtained from {F& )icoyn are compared to the results obtained from
(F©)unalysis when both applied to the same problem and the initial guess or TVD is
reproduced in a two-step calculation procedure. This numerical test. which is now
described. was proposed in [74] to check the accumulated numerical errors and was
called the reproduction test.

In Figure 5.8 the ¢ formulation is used to design a straight nozzle®*. The com-
putational grid is (65 x 15). Figure 5.8A shows the designed potential flow duct
corresponding to the TVD shown in Figure 5.8B. (F©)design Was used in the numer-
ical model in this calculation. The potential flow in the designed duct. shown again
in Figure 5.8C. is now analyzed with the direct formulation (this time {Fo)anatysis is
used in the numerical model) and the boundary tangential velocity is calculated af-
terward. As Figure 5.8D shows. the calculated velocity at the boundary is practically
the same as the TVD. One could first solve an analysis problem and calculate the
surface tangential velocity and then use the calculated surface velocity as the TVD to
solve a design problem and reproduce the initial shape. The real value of these repro-
duction test cases becomes more evident in three-dimensional problems in which the
number of the numerical calculations is huge and these solutions form a hard test for
the accuracy of both the inverse (design) and direct solver since the numerical errors
tend to accumulate within the two-step validation procedure. Here. the concept of
reproduction test. as proposed in [74]. was used to check the accumulated numerical
errors and the equivalence of (Fo)dessgn and (Fo)natysis-

5.6 Summary

In this chapter the application of the EB-FVM in the analysis and shape design
problems. in the context of potential flows. was validated.

First. the convergence criterion. used to terminate the (outer) iterations in the
numerical solution, was introduced.

Second, the design of a two-dimensional straight constant cross-sectional area

2. Similar results were obtained when the ¢ formulation was used.
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duct was considered. This trivial test case was used to examine the flexibility and
robustness of the method. The results showed that the method was robust and
converged to the right solution after few iterations. In some cases it was necessary to
use intermediate TVD's to obtain the convergence.

Third, the Staniiz computational results were used to validate the proposed
shape design method. Results obtained from both analysis and unified formulations
were in excellent agreement with the Stanitz data.

Finally. The TVD used to design a potential duct was reproduced by analyzing
the potential flow in the designed duct. This reproduction test case was also used to
confirm the equivalence of the (Fo)unatysis (Eq. 3.49) and (Fo)design (Eq. 3.64). when
both are applicable.
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Chapter 6

Turbulent Boundary Layer
Analysis And Separation

6.1 Introduction

Having a validated direct design method for phenomena governed by Laplace's equa-
tion. this chapter provides additional computational tools necessary for applying the
direct shape design method to solve some engineering problems.

First. efficient short ducts are introduced. Then. two major related subjects. i.e.
turbulent boundary layer analysis under arbitrary pressure gradients and prediction
of separation. will be addressed. Both of these issues are. in fact. very difficult to cope
with and at the present time there is no any accurate. robust and handy computational
tool appropriate for predicting the separation and turbulent boundary layer evolution
in a general design problem. Available integral turbulent boundary layer analysis
methods are reviewed and categorized and a generalized integral turbulent boundary
layer analysis method. based on the inner variable theory [9]. is proposed.

Discussions are limited to steady. two-dimensional turbulent boundary layer
flows.

6.2 Efficient Short Ducts

There are many engineering applications in which high Reynolds number flow occurs
in a relatively short duct. As Figure 6.1 shows. in such cases a potential core exists
all along the duct. If the boundary layers remain attached and thin. the pressure
distribution at the edge of the potential core is almost the same as the pressure dis-

77
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tribution along the walls. As was explained previously. the pressure and tangential
velocity (V;) at the edge of the potential core are related through the Bernoulli equa-
tion and one can use the TVD to design the potential core. The flow in a duct like

( -

Boundary Layer

-

-

Figure 6.1: A short duct.

the one shown in Figure 6.1 is. in fact. hydrodynamically developing and boundary
layer theory can be used to analyze the viscous layers near the walls. Such a duct is
called here a short duct. To design a short duct. one may first design the potential
core and then calculate and add the displacement thickness to the potential core to
obtain the actual duct shape.

Depending on the inlet flow and the required turning and acceleration or deceler-
ation. there is a minimum length for which the boundary layers can remain attached.
A short duct with such a minimum length and attached flow is called here an efficient
short duct. Design of efficient short ducts. in the context of incompressible turbulent
Hows. is practically important in low speed aerodynamics. The duct designer. in this
case. needs to be able to predict the separation (to determine the minimum required
length) and calculate the displacement thickness of the attached turbulent boundary
layer (to correct the potential core shape for the viscous effects).

The complexity of attached turbulent boundary layer analysis is, to large extent.
a function of the external pressure field imposed on the boundary layer. The pressure
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distribution at the edge of thin viscous layers in short ducts is determined mainly
by the duct shape. Therefore, turbulent boundary layer analysis and prediction of
separation are necessary tools in efficient short duct design and are discussed in the
following sections.

6.3 Turbulent Boundary Layer Analysis

A boundary layer is developed whenever a fluid stream meets a solid surface. The
flow near the wall (in the boundary layer) is first laminar, but enters a transitional
state and finally becomes turbulent. If the flow Reynolds number is sufficiently high.
the transition to turbulent boundary layer flow occurs in a short distance and one
may treat the entire boundary layer flow as turbulent. A turbulent boundary layer.
as 1s known from many observatious. is a three layer structure cousisting of a laminar
sub-layer. a buffer (transition) layer and a turbulent core (layer) [9]. The turbulence
is represented by the appearance of eddies which provide bulk circulatory fluid mo-
tions. Eddies carry mass. momentum and energy and therefore affect the transport
phenomena in the flow field. It is very conimon to neglect the buffer layer and assume
that the turbulent boundary layer is composed of just two. inner and outer. layers.
This two-layer model of turbulent boundary layers seems to be very useful. and more
or less realistic. as will be discussed later. It is believed that large eddies. mainly in
the outer layer. break down and finally disappear in the inner layer [10]. One may
assume that the wall is a momentum sink and the boundary layer takes the flow
momentum from the main (external) stream and carries it down towards the wall.

With this physical picture of a turbulent boundary layer. the key issue is to
determine the effects of the eddies on the boundary layer flow. Engineers and physi-
cists have tried different ways to analyze the turbulence. Regardless of the analysis
method. it is important to note that the turbulence is usually described by eddies and
their dynamics. In the next sub-section the major turbulent flow analysis techniques
are described briefly.

6.3.1 Data Correlation, Modeling and Simulation of The Tur-
bulence
It was hoped that one could find some universal laws governing turbulent bound-

ary layer flows. Motivated with that hope. experimental data were collected and
correlated for many important engineering situations.
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Velocity and friction laws [9], given for the turbulent flow over flat plates and in
circular tubes. are the results of organizing and correlating such data. Further spec-
ulations suggested that for certain types of flows, called equilibrium flows, universal
laws can be derived. The characteristic parameter of these equilibrium flows is the 3
parameter which remains constant in an equilibrium flow. 3 is defined as below:

=42 (6.1)

Ty dz
In this definition &~ is the displacement thickness of the boundary layer and 7, is
the shear stress at the wall. Obviously the flow over a flat plate (3 = 0) and fully
developed internal flows (3 = const.) are both equilibrium flows.

Simple dimensional analysis. supported with order of magnitude analysis. shows
that the scales of the eddies in the inner and outer layers of a turbulent boundary
layer differ considerably [10].

The velocity scale of the turbulence in the outer layer is estimated to have an
order of magnitude equal to the free-stream velocity (u.). For the inner layer the
velocity scale is rated as something proportional to w,. where . is the shear velocity
defined later in this chapter. Obviously. the velocity scale of the turbulence is smaller
in the inner layer as compared to the outer layer.

Regarding the length scales. while the scales of the eddies in the outer layer are
the same order of magnitude as the thickness of the boundary layer itself (J). the
scale of the inner layer eddies is estimated as v/, which is much less than the outer
layer length scale.

One may develop time scales for the turbulence in the inner and outer layers
as well. The time scale for the turbulence in the outer layer would be d/u. and
for the inner layer v/u2. In general the time scale of the turbulence in the inner
layer is much smaller than the outer layer. This means that the outer layer cannot
respond to a change in the flow condition as fast as the inner layer. This results in
relazation or historical effects in turbulent boundary layers. In other words. the state
of a turbulent flow at a given position depends upon upstream history and cannot be
uniquely specified in terms of the local strain-rate tensor as in laminar flows [10].

Rouglly speaking. the ratio of the length and time scales of the turbulence in
the outer layer to the inner layer scales is equal to ¢+ which. as will be explained
later. is often a big number.

Because the inner layer rapidly responds to the variation of the flow condition.
it can be analyzed based on the local flow conditions. The memory effects caused
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by the large time scales of the outer layer means that analysis based on local flow
conditions may be subject to large error. The failure to obtain a universal velocity
law for non-equilibrium flows (flows with variable 3 ) can, for example, be attributed
mainly to this physical effect.

The need for robust computational tools has motivated the researchers to propose
aniversal laws {although not quite accuraie) for turbuient boundary iayer flows under
variable pressure gradients. Need dictates that the information obtained for many
equilibrium flows be used to roughly predict a non-equilibrium flow. It is this approach
which will be explained further and used in this thesis to design efficient short ducts.
It should be expected that the results will be quantitatively correct in some cases.
but only show reasonable trends in other situations.

There is a pressing need for more powerful analysis techniques. which would
allow the engineers to cope with arbitrary equilibrium or non-equilibrium turbulent
boundary layer flows.

In turbulence modeling. which is the most popular approach in today's CFD
technology. the required scales are calculated by solving some transport equations.
The turbulent quantities are actually modeled and related to mean quantities. The
k—< model. which uses two PDE's for the production and destruction of the turbulent
energy has been very successful in many industrial applications.

In large eddy simulation. only small eddies are modeled and the large ones are
directly simulated and solved. The argument is that small eddies (concentrated near
the wall or in the so called inner layer of the boundary layer) behave in a predictable
way and can be accurately modeled. There are hopes that this approach may be a
good compromise between the complete modeling and the direct simulation approach.

Finally. direct numerical simulation is used to accurately simulate and resolve all
scales of the eddies. This approach will not. it seems. be a practical computational
tool for the engineering analysis applications in the near future.

6.3.2 Integral Boundary Layer Analysis

The effects of an incompressible turbulent boundary layer on the flow field can be
modeled in terms of some integral parameters. The most important ones are the coef-
ficient of friction (Cr). the displacement thickness (6*) and the momentum thickness
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(6) defined as follows (u. is the velocity at the outer edge of the boundary layer):

Tw
Cp =1 (62)
3pu;
= - Sy (5.3)
|-
g = / 2= Eay. (6.4)
g U Ue

In integral boundary layer analysis the governing equations are integrated across the
boundary layer and transformed to another form in which the unknowns are these
boundary layer integral quantities. Velocity and friction laws. mentioned previously.
are used in the integral analysis methods.

For a steady two-dimensional incompressible turbulent boundary layer flow. the
governing equations (the mass and momentum constraints) can be written in the
following forms [9]:

071. (?'v i

Ou  Ju 9P Pu 9 — 3
uﬂrua——OjruaTﬁ—a—y-(uv)—a—x(u ). (6.6)
0P 9 — ]
Ty Tl (6.7)

The integrated form of Eq. 6.7 is:

P(z.y)=B — v (6.8)

In the inviscid (external) flow field. the Bernoulli equation relates the pressure and
the velocity as follows:

dP, du,
e uez. (6.9)
The total shear stress is defined as below:
Feu (6.10)

/‘%-
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After integrating Eq. 6.5 to find an expression for the cross-wise velocity component
v and using Eq. 6.8. 6.9 and 6.10, Eq. 6.6 can be written in the following form:

.. Ou Y ou ou du. 107 @ -
[11.]0—2:-{— {—/0 a—zd!j} %—TLCET;O—y+0—I(U —u ) (6.11)

Experiments show that the last term is negligible. in many applications. compared to
the other terms [9]:

0 —
= (v?—u"?) = 0. 12
- (v ” ) (6.12)
Therefore. the governing equation for incompressible turbulent boundary layer flow
1s:
du Y du du du, 107
—+ = | —dy| — = w2+ 2", 1
[u] Oz [ /l; (');L'(U} dy el p dy (0.13)

This equation clearly shows that if the external flow field (u.) 1s known. there are
two unknowns in this equation: « and #. In fact. velocity and friction laws. which are
obtained from the correlated data. can be used in this equation. Integration of Eq.
0.13 across the boundary layer and using Eq. 6.2. 6.3 and 6.4 results in the following
nonlinear first order ordinary differential equation [9]:

di (J'+29> du. Tw

=2CF. (6.14)

Ue de  pu?

In this equation. as was expected. integral parameters of the boundary layer (6.4". Cy)
appear. Rewriting Eq. 6.14 in the following form clearly shows that the wall force
balances the momentum change and the pressure change.

rwdz = d (pu2f) — (J'dP) . (6.15)

Now the question is how one can obtain all the required information from this
equation (Eq. 6.14). As will be explained. there are two family of methods: the
classical (Von Karman-type) integral boundary layer analysis techniques and the inner
variable-based methods.

6.3.3 Von-Karman-Type Approaches

The basic philosophy of Karman-type integral boundary layer analysis methods is
explained comprehensively in [111]. These methods are well known by the shape
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parameters which are defined and used by them. Particularly the shape parameter
H (H = 67/8) is important because of its application in the correlation of data and
prediction of separation. It is meaningful to call these methods outer variable methods
because mainly the outer layer variables are used.

The velocity profiles used in this family of methods are categorized into two

families [111]. The one-parameter fomily; can be generally shown as below:
u y .
—=J-'(—.H>. (6.16)
Uo g

The two-parameter family is:
]

l’- = }'(é.H. Re,,) . (6.17)

The Reg is the momentum thickness Reynolds number defined as Rey = bu./v. As
an example. the famous power law velocity profile is a member of the one-parameter
family and has the following form:

H=1
7 y\n" ! H-1 17
Loyofy E-1 )% 619
U, ) 6 H(H+1)
Note that the velocity law. given in Eq. 6.18. introduces two unknowns # and H.
Now. using the definition of H. the governing equation (Eq. 6.14) can be written in

the following form:
dé H + 2\ du, Tw ,
— + —I = —. .
dz [( Ue ) d.c} pu? (0-19)

This equation is considered as the required equation for the unknown 6 and. assuming
e 1s known. two other equations are required for H and Tw (or Cy). One of the
required equations comes from a friction law which has the following general format:

Tw
pug
The other required equation. which is an equation for the unknown H. can be obtained

from many different equations like the energy equation. the moment of momentum
equation or an entrainment equation. The general format. however. has been proposed

as [111]:
dH MY du, N\ Ty
— == — - = . 21
dz (ue) dz (0 ) pu? (6.21)

= F (H.Re;). (6.20)
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M and N in this equation are, in general. functions of H and Rey.

Therefore, the classical integral boundary layer analysis methods need, in general,
three auxiliary equations (a velocity law. a friction law and a shape factor law) to
solve the boundary layer integral governing equation (Eq. 6.19). Experimental data
are used in these auxiliary equations to close the system of equations.

6.3.4 Inner Variable-Type Approaches

The use of boundary layer inner variables (to be defined in this section) in integral
boundary layer analysis does not seem. at first glance. to be a new strategy. In fact
when the first paper about the inner variable theory was published in 1969 (112]. and
it was introduced as a new method. some researchers strongly objected. claiming it
to be the classical Von-Karman approach. But. as will be explained here. although
the method can be implemented exactly like the conventional Karman-type methods.
it has new features and deserves to be considered as a new approach. In fact. a
generalized formulation for the integral inner variable theory is presented here as
a contribution of this thesis. and the philosophy behind this family of methods is
explained.

While there is a well established agreement about the mathematical description
of the inner layer of turbulent boundary layers. the approgriate way of correlating the
available experimental information in the outer layer has been a matter of debate for
a long time. Interestingly. this debate still has not been resolved and there are two
different lines of thought [113]. Let’s return back to the velocity law concept and see
how a turbulent boundary layer is described.

For the region close to the wall. here called the inner layer. the law of the wall
is applicable. According to this law. a universal velocity distribution exists near the
wall which can be written as follow:

vt = F (y*). (6.22)

It can be shown (analytically) that quite close to the wall. in the so called viscous
sub-layer. the velocity law takes the following amazingly simple form:

wt =yt (6.23)

This simple equation uses the so called inner variables yt and u*. In fact the inner
layer velocity and length scales are used to non-dimensionalize the velocity and length
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near the wall. Formal definitions of y* and u* are as follows:

Yy Uy
yt = o= Aty (6.24)

In these definitions. v is the fluid kinematic viscosity and u,. the shear velocity. is
defined as below:

Tw
Uy =,/ —. 6.26
; (6.26)
The data available for the outer layer can be correlated by the defect law:
=k =g<¥.if>. (6.27)
wr 0 1, dr

The inner and outer layers meet in an overlap region which can be described by
either of the following logarithmic expressions (hence called the logarithmic region or
log layer):

U — u, 1 ,
=——Iny™+ A4 (6.28)
Uy k
.1 ,
uT = Elny" + B (6.29)

The linear part of the inner layer merges to the logarithmic region through a smooth
curve. This part of the turbulent boundary layer. described mathematically by Spald-
ing [9]. is called the buffer layer and extends from yT = 5 (the edge of the viscous
sub-layer) to y* = 30 (the inner edge of the log layer).

Coles [114] noted that the deviations or excess velocity of the outer layer above
the log layer in turbulent boundary layers have a wake-like shape. By adding the
wake to the log-law. the following composite velocity law. which is valid from the
outer edge of the buffer layer to the edge of the boundary layer. is obtained (this is
called the wake law?):

1 211
ut = clnyt 4 B+ (T)}‘(—.). (6.30)

L. In [115] it has been called the law of the wall and wake.
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In Eq. 6.30, B and k are experimental constants (k = 0.41,B = 5.0) and II is the
wake parameter. In fact the wake law is based on the notion that the boundary layer
can be modeled as a wake flow constrained by a wall. One interesting fact about the
wake law. which is used as the standard velocity law in inner variable theory. is that
it contains both the velocity u and the shear stress 7, and therefore both of these
quantities (x and 7, ) in Eq. 6.13 arc represented Ly inuer variables and a separate
friction law is no longer necessary. Also. there is no shape parameter involved?.

Clauser [116] noticed that if the pressure gradient parameter () is kept constant
in a flow. then the wake parameter (IT) will also remain constant. Therefore a uni-
versal velocity law (the law of the wake) governs all equilibrium turbulent boundary
layer flows in which 3 (and II) remains constant. Normally 3 is variable and the
flow is called a non-eqnilibrium flow. In an attempt to extend the wake law to non-
equilibrium flows as well. the wake parameter in Eq. 6.30 is considered as a variable
and the equation is called the eztended law of the wake. It has been observed that
if the flow is not severely non-equilibrium. the extended law of the wake works well
and can be used in engineering applications (10]. Obviously a I — 3 correlation is
required as an auxiliary equation for the extended law of the wake.

In this thesis the inner variable theory is chosen for the integral boundary layer
analysis. This theory has been used by White [9] and Das [115. 117] for solving ordi-
nary and inverse boundary layer problems. Here. the main ideas are borrowed from
the Das™ method of solving inverse boundary layer problems. However. the governing
equations are derived and formulated to be applicable for calculating boundary layer
thicknesses and predicting separation. The generalized set of ordinary differential
equations. previously obtained by Das in a different form. is obtained first and then
simplified for the particular application in this thesis.

The wake law which provides the velocity law in the integral inner variable theory
can be written as:

1 . 211
U = Uygll + Uyake = Ur Eln yT+ B +u, T}'(n) . (6.31)

This velocity law states that if the wall shear stress (or the shear velocity) and the
adverse pressure gradient (or the wake parameter) are known. the velocity profile in
terms of the n coordinate is known. Here. the algebraic form of F (n). proposed by
Moses [118], is used. Using the proposed function for F(n) (n =y* /"), the velocity

2. Some researchers strongly believe in shape parameters and have tried to define many different
shape parameters [111].
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law is obtained as:

2 3
u+={%lny++3}+{% [3(?-1) —2(%)” (6.32)

One can use Eq. 6.32 as the velocity law and use it in equations 6.3 and 6.4 to obtain
the following [115!:

. vdt o
" = T (1 +10) (6.33)
. votu, 92_, 19
0 =9 — =M+ = 2 3
<k21‘3)<85H+6H+ ) (6.34)

Noting that 7, = pu? and using equations 6.33 and 6.34. the boundary layer governing
equation (Eq. 6.14) can be written as:

[.‘/[‘] ((1;:- + {1"[3] % -+ [."/[3] % + [./\/[4] % = [1"[5] . (635)
Parameters M, to M; are functions of Ue.ur. 7. 0°. II. This equation is the most
general form of the inner variable theory. as used for the analysis of boundary layer
flows and contains all the information hidden in the momentum and continuity equa-
tion and also the velocity law. If parameters u.. II. §%. ¢~ and u. satisfy Eq. 6.35.
mass and momentum constraints are satisfied. In inverse boundary layer problems.
another form of Eq. 6.35 is used in which u, is unknown and 4= is considered as a
known quantity [115]. In the analysis of boundary layers. as is the case lhere. U 1S
known and Eq. 6.35 introduces 4 unknowns.

To close the system of equations (solving the turbulence closure problem) three
extra equations are required. Assuming that Eq. 6.35 is an equation for .. two
equations are readily obtained from the velocity law itself.

The equation for d* has been already obtained (Eq. 6.33) and applying the
velocity law at the edge of the boundary layer (where v = .99u,) results in the
following equation for §+:

. i il
“ llno++B+T. (6.36)

ur k

Now. an equation for IT is required. A correlation. in the form of a IT — 3 relation.
1s an input which is needed in the inner variable theory. Here a correlation proposed
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by Das [115] is used:
,B = Co + C'JI + ang. (637)

In this correlation, Co = —0.4, C;, = 0.76 and C» = 0.42. These are obtained by
fitting Eq. 6.37 to 15 sets of data.

The form of Das’ correlation, given by BEq. 6.37. is cpen to question. Also.
it is not necessary to use a II — 3 correlation in the inner variable theory. In fact
Ferziger [119] used the wake law at the edge of the boundary layer to obtain an
equation for the friction coefficient. An entrainment correlation was used in [119] to
allow the experimental data. required in turbulent boundary layer analysis methods.
to be used. Use of the correlations. such as Eq. 6.37. limits the range of application of
the method (assuming that the velocity law is more or less universal). If it is applied
to cases where the pressure gradient is outside the range of data used to obtain
the correlation. large errors should be expected. Besides. it can be shown that the
correlation given by Eq. 6.37 does not have any mathematical limitation for adverse
pressure gradients but does have such a limitation for favorable pressure sradients.
In fact this correlation predicts negative wake strength for highly accelera:zing flows.
It can be shown that the logical range of the application of the Das’ correlation is as
below:

du —Cyu?
c g =0T (6.38)
dr 0"

Let’s assume that u, is known at a point along the boundary layer. Given that

the external velocity field u. is also known. the quantities IT. §* and §° can be obtained

ass:

du,
dz

e (kz:_ oml - Bk) = [~ku (Co + Gl + CuII?)] [u

r

(1+ n)] - (6.39)

-1
0" = [-u? (Co + CiI1 + CuI1%)] [ue%} ) (6.40)

0% = [k} v (1 +1I)7". (6.41)

As Eq. 6.39 shows. the calculation of IT requires solving an implicit nonlinear equa-
tion. Using Eq. 6.35 and differentiating equations 6.39. 6.40 and 6.41. results in the

3. Details of the derivation of equations in this section is given in Appendix B.
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following system of Ordinary Differential Equations (ODE’s):

M1 ZWQ M. 3 M 4 d’ll..,- / dz 1W5

N1 Ng N; N.; dII/dI - Ns (6 40)
P P, P P dé+/dz Py [~ e
Qi Q2 Qi Q s /dzx Qs

Parameters M;, N;, P; and Q; are functions of u..u,,d%, 8", II and are defined in Ap-
pendix B. This system of ODE's may be considered as the 4-equation model of the
integral inner variable theory appropriate for turbulent boundary layer analysis. A
similar generalized 4-equation model could be obtained for the inverse boundary layer
problems.

White [9] has formulated a one-equation model in which only one differential
equation is used for calculating w, and other unknowns are obtained through some
algebraic equations. Das and White [115] have proposed a three equation model
applicable in inverse boundary layer problems and have called that inverse inner
variable theory. A four-equation model of the inverse inner variable theory has been
also introduced in [9]. Here. based on the type of the information which are needed
in the design problem. a three equation model is developed and used. To do so the
wake parameter II is eliminated from the set of equations to obtain the following set
of nonlinear ODE"s:

Cu Ci2 Cis du./dz Ciy

C'_)l ng C'_)g d(5+/d:l: = C34 . (643)

Ca Cs2 Cys dé*/dx Ca,

The coefficients C;; are defined as below:

Cu = Nl.“/fg — IVQI‘/.[I. (644)
Clg = Ngl‘/fg - lv'_al‘/[;;, (645)
Cm = N.;."/[z — .'ng\/f.;. (646)
CH = IVsl‘/[g - .’\!’g.‘\/[s. (647)
Cgl = Pl A/['_; - Pg."/fl. (648)

ng = P;;A/Ig - Pgﬂ/fg.

(6.49)
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Cys = P.M, — P, M,,
Cas = Ps M — Py M.
Car = QuMs — Q.M.
Caz = QaMs — Qs M,
Cas = QsMs — Q2 M,

034 = Qsl‘/fg - le‘/ls.

(6.50)
(6.51)
(6.52)
(6.53)
(6.54)

(6.55)

Note that the solution of this system of nonlinear first order ODE's requires
three initial conditions. These initial conditions are not independent and actually just
one initial value (for example u,) is required. The other two initial conditions can be
obtained ihrough the algebraic equations. i.e. equations 6.39. 6.40 and 6.41. However.
if initial conditions are available for all of the unknowns (u,. §* and d7). they can be
used as the correct (experimental) initial conditions in the set of ODE's. In other
words the integral mass and momentum constraints are always explicitly enforced
and satisfied but if three required initial conditions are specified independently. the
velocity law and the experimental IT — 3 correlation are not necessarily satisfied at
the initial point.

It is beneficial to non-dimensionalize the above system of equations and obtain
the following form:

Ch Ci, Cp X* Cla
Ciy Ci Ci & = 24 | - (6.56)
Cs Ci Cg z 34
The non-dimensional parameters are defined as follows:
._ (L) du. -
. dét
Y= (L) (6.58)
dé"
Z = — (6.59)
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. 1
ChL= (‘L‘)Cu-, (6.60)
. 1
Ch = (W)Cm‘ (6.61)
1
Cl-3 = (E)Cm. (662)
1
ChL= (U)Cl-h (6.63)
U :
Ci = (Z’)C'.’l- (6.64)
Cyn = (i)C 6.65)
22 = I 22. ( .
Ca3 = Cas (6.66)
C;, = Cas (6.67)
U
Cs = (f)C:u (6.68)
. 1
ng = (Z)ng (669)
C:;:! = 033. (670)
C;. = Cas. (6.71)

U and L in these definitions are two appropriate reference quantities. In duct problems

U is generally chosen as the inlet velocity and L is the wall length.



6 Turbulent Boundary Layer Analysis And Separation 93

6.4 Prediction of Separation

Separation is a phenomenon which may be observed in real (viscous) fluid flows
under adverse pressure gradients. If one of these two factors (viscosity or the adverse
pressure gradient) is missing, then the flow will not separate (120]. In other words,
the flow separation occurs under an adverse pressure gradient and with laminar or
turbulent viscosity effects.

In practice. depending on the separation driving force. two types of separation
can be defined (Figure 6.2). In geometry-driven separation there is a sharp turning
point and the detachment (separation) point is fixed and nearly independent of the
Reynolds number. In contrast. in pressure-driven separation the separation point is
strongly affected by the Reynolds number. While the analysis of the separated flow
field is a difficult task in both types of separation, the prediction of the separation
point in pressure-driven separation is a further complication.

( Y

Sttt T N U

Geometry-Driven Separation Pressure-Driven separation

Figure 6.2: Two types of separation.

Kline studied the phenomenon of stall in internal flows and concluded that it
is not just a single phenomenon but in fact a spectrum of states [121]. Based on
the physical model proposed by Kline. stall may already be present at very low
values of adverse pressure gradient. and the amount of stall produced then grows in
a relatively continuous fashion with increased adverse pressure gradient until finally



6 Turbulent Boundary Layer Analysis And Separation 94

a fully developed stall corresponding to the classical picture (bulk separation of the
flow from the wall) occurs. According to the Kline physical model, in an apparently
un-stalled turbulent boundary layer flow. “streaks of stall” occur regularly very near
the wall. The streaks form part of a regular but transient three-dimensional pattern
that is repeated over the entire wall. In an attached turbulent boundary layer flow.
these streaks are caught up by the main stream. and are swept away immediately.
When the adverse pressure gradient is strong enough. the streaks are no longer swept
away immediately. and they begin to accumulate into large areas of stall. These
large areas of stall create different flow regimes in confined (internal) flows. Kline
discovered four different flow regimes in a straight flat plate diffuser and showed that
the separation can be a transitory or steady and stable phenomenon depending on the
flow condition and the duct geometry [122.123]. Kline suggested that the relevant
question regarding stall is not. as previously believed. is the flow stalled? On the
contrary. the relevant questions are how fast is stall fluid produced by the action of
the pressure forces on the fluid layers very near the wall and how fast is this stalled
fluid carried away by mixing with the faster moving layers of fluid? It would appear
that the amount of stall actually present is determined by the balance between these
two rates. In the flat plate diffuser flow studied by Kline [121]. the balance appears
to be a relatively delicate one. and a small alteration in either of these rates will
frequently cause a large change in the flow pattern over a period of time.

In spite of the known physical complications of separation. engineering needs
motivated researchers to provide computational tools for the prediction of separation.
These tools have been used mostly in external flows but they can also be used in
flows in short ducts in which there are thin attached boundary layers. In [124] it
is explained that. while the analysis of a separated flow needs at least a form of
differential formulation. the prediction of the separation can be done by shortcut or
integral methods with close to acceptable accuracy in many cases. In Appendix C.
some simple shortcut methods are briefly explained and references are introduced for
further information. These shortcut methods have been useful for the prediction of
flow separation over airfoils. One of the successful shortcut methods for the prediction
of separation. has been the Stratford method. This method is based on the two layer
model of turbulent boundary layers. used in this study. and is described in some detail
in Appendix C.

In internal attached flows. pressure gradients. in general, are quite different com-
pared to flow over airfoils. In spite of successful applications of the shortcut methods
in some short duct design problems. none of the shortcut methods were found by
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the author to provide results satisfactory enough to be eligible for a general design
algorithm. The Stratford method. however. gives satisfactory results in straight short
nozzles and will be used in some straight nozzle design problems in this thesis. There-
fore, it was decided to use the integral boundary layer. theory already described, for
the prediction of the separation.

It is well known that the boundary layer equations fail to simulate the flow just
ahead of the separation point. If there is an appropriate index which shows the failure
of the equations upstream of the separation point, it can be used as the symptom
of separation. In the Karman-type integral boundary layer methods, shape factors
are used for the prediction of the separation. In general. the prediction of separation
point is not accurate in these methods but is always conservative. In this thesis. the
integral inner variable theory is used and ahead of the separation point the friction
coefficient sharply (and unexpectedly) increases (while expected to go towards zero).
the boundary layer thicknesses suddenly increase and the wake parameter increases
sharply. These symptoms may be used as the separation criterion. Comparison with
the available data shows that in straight diffuser problems the ratio of d°/¢ can also be
used as the separation criterion. Wlen this ratio gets close to 0.41. separation occurs.
In this thesis if one of these symptoms is observed during the solution. it is interpreted
as separation. This will not be an accurate method for the prediction of separation
but it works well as a conservative prediction method applicable in preliminary design
studies. It will be shown that this prediction method gives satisfactory results in some
of the situations for which there are experimental results.

6.5 Validation of the Boundary Layer Analysis
Method

One of the best available resources for the validation of turbulent boundary layer
analysis methods is the experimental results published in [118]. As a matter of fact
Das’ cerrelation [115] was obtained from some of these experimental results. To vali-
date the proposed method in this thesis. a few test cases from the Stanford conference
proceedings [118] were chosen and analyzed by the proposed method. In each case the
initial values for Cr. " and ¢ and the measured free stream velocity along the bound-
ary layer were taken from the data and the integral inner variable theory was used to
predict the variations. The experimentally determined free stream velocity has to be
approximated with an appropriately smooth mathematical function because the first
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and second velocity derivatives are required. Here, polynomials are used for fitting
appropriate curves to the data and, as will be shown, the degree of the polynomial
affects the computational results. Note that in all of the diagrams the experimental
results have been shown by circles and the computational results are designated by
solid lines. In each diagram the normalized velocity at the edge of the boundary layer
(U/WV1), the friction coefficient (Cr), the normalized displacement thickness (&=/45)
and the normalized boundary layer thickness (§/4,) are shown. The corresponding
initial value is used for the normalization in each case.

Figure 6.3 compares the predictions of the proposed method with the experimen-
tal data for the turbulent boundary layer flow over flat plates (fow 1400 in [118]).
Clearly the integral analysis works well for this standard test case.

Figure 6.4 shows the results obtained for an attached decelerated flow (called
flow 4400 in (118]). The results are in good agreement with the data and the calcu-
lated displacement thickness. which is particularly important here, matches the data
quite well. Mote that for low values of Cr. the calculated values diverge from the
experimental data.

Figure 6.5 shows the results obtained for the flow 2100 test case [118]. This
example is particularly important because it includes different pressure gradients and
also a flow separation. A polynomial of degree 9 was used to fitting a curve to the
experimentally determined free stream velocity. The computational results are in
good agreement with the data except for low values of Cr. Close to the separation
point. the calculated Cr rises up unexpectedly. Also. the rate of growth of both J*
and J increase dramatically close to the separation point. The computational results
are sensitive to the mathematical modeling of the free stream velocity (the degree of
the polynomial used) particularly close to the separation point. Figures 6.6 and 6.7
were obtained with different polynomials (degrees 7 and 9) for the same flow (flow
2100). In spite of the fact that all the polynomials fit the data in the deceleration
part of the free stream velocity quite well. it is seen that when a polynomial of degree
5 is used (Figure 6.7), the separation point is predicted accurately while in the other
two cases Cr rises up before the separation point. In short duct design. in which the
TVD is often a complicated mathematical function. this sensitivity is problematic.
It happens that for a very minor change in the TVD, a flow which was considered
to be separated, is predicted as attached flow. The only way to make sure that
the predicted attached flow is really attached. is to consider a safety margin for the
calculations. This means that the already conservative method for the prediction of
the separation, should also be used conservatively by the designer.
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Finally, Figure 6.8 compares the computational results with an accelerating flow
test case (flow 1300 [118]). The results are not as good as the previous ones and
the predicted boundary layer thicknesses are poor. In fact, computational results for
different accelerating flows show that the Das correlation is not appropriate for such
flows.

To validate the prediction of separation in internal flows, the cxpcerimental results
for the attached flow regime in flat plate straight diffusers (123,125, 126] were used.
The diffusers had a length L along the axis. and had inlet and outlet areas of W, and
W, respectively. Figure 6.9 shows Kline's “a —a” line. the experimentally determined
limit of the attached flow regime: the flow was always attached for geometries below
this curve'. Shown for comparison is the limit of attached flow predicted by the
proposed boundary layer method. The agreement is seen to be very good. especially
considering the fact that experimental curve is conservative (1.e. there were points
above the line for which the flow was attached in a time-averaged sense. but there
was unsteady local separation.)

6.6 Limitations of the Boundary Layer Analysis
Method

The proposed integral boundary layer analysis method works well for problems in
which the pressure gradients are not too far from the correlated data. In general.
for highly accelerating flows. no prediction can be made by the method. Therefore.
one cannot design efficient short nozzles of small size or. for example. wind tunnel
contractions with severe rate of area reduction. For the nozzle problems. only when
the acceleration is not severe and the actual sizes are not too small. the integral
boundary layer method can be used. For efficient short straight nozzles (aerodynamic
contractions) the method of Stratford (see Appendix C) is used for the prediction of
separation because it has been used successfully for this type of problems.

In diffusers and spacers. if there is no severe local acceleration zones. the integral
boundary layer method can be used. Again. the actual size of the duct should not
be too small. Application of the integral boundary layer method in two diffuser
design problems for which experimental data is available will be discussed in the next
chapter.

4. According to Kline's experiments. line a — a was very weakly dependent on Reynolds number
over the range from 6000 to 300000 based on the throat width and mean throat velocity [122].
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6.7 Summary

In this chapter short and efficient short ducts were introduced (defined). It was
explained that to design an efficient short duct. the designer should be able to predict
separation and analyze turbulent boundary layers under various pressure gradients.

Therefore. the available integral tnurhunlent houndary layer analysis methods were
reviewed. and a generalized formulation, based on the inner variable theory, was
proposed and tested.

The issue of the separation was also briefly discussed. While different short-
cut methods were addressed in this chapter (and Appendix C), no single method was
found appropriate for use as a general method for predicting the separation in efficient
short duct design problems. The integral boundary layer method. introduced in the
first part of the chapter. was proposed to be used for the prediction of separation as
well. It was shown that it could predict the separation in a straight two-dimensional
diffuser quite well. and will be applicable for decelerating flows.



6 Turbulent Boundary Layer Analysis And Separation

99

£10”
2 18
14
15 12
2 g ?
1 e &
S 28
0 28
24
o 2
LT YT IEY 2 32 i+ eé  ua )
¢
7 10
6 s
5
_ [
< -
.;‘ 3
4
3
2 2
1L 0
o 02 04 o6 o8 o a3z o4 o6 a8 1

s

¢
. 158
H |
298 3t
25
Y
2 5 2 ]
3 El
N
s o
ae \ \
O Fiow 4400
275 a5
-35 3 a5 G5 05 1
s s
7 1s
-]
s 3
s
R 25
& H
2
3
: / N
1 1
-8 2 &1 35 s 1
s s

Figure 6.4: Comparison of the computational results with the flow 4400 data [118].



6 Turbulent Boundary Layer Analysis And Separation 100

e13”
4
),
52
i
!
‘ Y
' ’ 3
- - 3 J 33 1 15
s H
100 w
B | )
s
o n| 8
o i
L . g
o 3=
h 4 o
¢ ' '°i
i i
N | 5t
s as ' 15 3 35 ' 'S

B s
Figure 6.5: Comparison of the computational results with the flow 2100 data (poly-

nomial of degree 9) [118].

1gb | O Flow2100 !
b
z %
-1 4
3 4 52 , !
243 %/
1
1
3 %
g 3
1

1 Q
Q s t 15 Q a5 t5
S s’
100 S 50
L] 4Q .
Q ?
° 4
30 ]
I - o
0 s 3 g
4Q a‘ 20
20 f } mj
[ [
e es 1 15 [ as 1 15
s s’

Figure 6.6: Comparison of the computational results with the flow 2100 data (poly-
nomial of degree 7) [118].



6 Turbulent Boundary Layer Analysis And Separation

101

18 5
O Flow 2100
16 4
- 3
su 5
2
H [
2 o 1
9
2
16— "
v us 1 15 Q 05 1 15
s’ s’
100 3 4 P
g 30 5
- ; 3 &
Kl <20
=
40
i f
mf ml
0 [
[] Qs 1 15 0 as 1 15
s’ s’

Figure 6.7: Comparison of the computational results with the flow 2100 data (poly-

nomiial of degree 5) [118].

28

Figure 6.8: Comparison of the computational results with the fow 1300 data (118].



6 Turbulent Boundary Layer Analysis And Separation 102

10’ ,
e ()=Expenmental B A S
(o)=Célculated: '
i
L
>
\N
=
a
[o] '
10
100 10’ 102

L/W,

Figure 6.9: Comparison of the computational results with the Kline ¢ — a line {123].



Chapter 7

Direct Design: Applications

7.1 Introduction

In this chapter some applications of the proposed direct shape design method. at its
current stage of development. are presented.

After this introduction. in Section 2. three families of duct shapes (duct families
Dy . Drpand Dyyy) are introduced and the efficient duct design algorithm is described.
Also. general guidelines relating to the specification of the TVD in different short
duct design problems are explained. Then. a number of practically important short
duct design problems are discussed and solved. Particular attention is devoted to the
specification of the TVD in each case and a brief literature survey is provided in each
relevant sub-section.

Finally. in Section 3. shape design of some heat conducting bodies is discussed.
Two families of heat conductors (families H; and H; 1). each of which has two adiabatic
surfaces. are introduced and the corresponding SSD problems are solved. The design
goal, in this case. is to achieve a specified uniform heat flux at the outer boundary.

Examples are limited to steady. two-dimensional problems.

7.2 Shape Design: Flow In Short Ducts

In this section. design of efficient short diffusers. spacers and nozzles. is discussed.
Before the design of these short ducts is discussed. some general remarks are in order.
These introductory remarks are presented in three sub-sections:

e In Sub-section 1. a number of practically important short ducts are introduced
and categorized as members of duct shape families D;. Dir and Dyy;.

103
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¢ In Sub-section 2. an efficient short duct design algorithm is described. Even
though the potential core of a short duct can be designed directly to achieve
a specified TVD, the design of efficient short ducts is inevitably iterative. An
iterative algorithm which is used to find the actual duct shape as the solution of
the SSD problem is discussed in this sub-section.

o Finally, in Sub-section 3. general guide lines for the specification of the TVD
and its modifications (if necessary) in short duct design problems are discussed.

7.2.1 Introductory Remarks
7.2.1.1 The Duct Shape Families

Figure 7.1 shows different configurations often used as short ducts in engineering
applications. The categorization provided in Figure 7.1 makes sense if one considers
these ducts as flow control devices and compares the output of the device (173 or the
uniform flow at the outlet) to the input (V; or the uniform inlet flow).

Diffusers decelerate the flow and nozzles accelerate the flow. Spacers just guide
the flow in the desired direction and do not accelerate or decelerate the flow!. Defining
the duct area ratio as the outlet area divided by the inlet area (AR = Wa/Wh).
diffusers are characterized by AR > 1. spacers are characterized by AR = 1 and
finally nozzles are characterized by AR < 1. For incompressible two-dimensional flow
in ducts with uniform inlet and outlet velocities. the area ratio is also equal to V}/Va.

The direction and lateral displacement of the inflow can also be controlled by
the duct shape. Straight ducts do not change the direction of the flow and do not
displace it laterally. Offsets are defined here as flow passages which only displace
the flow laterally without changing the mean flow direction and curved ducts cause
lateral displacement and flow turning. Different duct shapes. as shown in F igure 7.1.
provide means to control the flow as required by the application.

When the proposed design method is used to solve shape design problems. it
is beneficial to define some families of shapes. The members of each family are
characterized by some family characteristic parameters. Even though the concept
of shape families can be used to provide a framework for a general shape design
package (software). for example for the design of two-dimensional ducts, no attempt
Is made here to provide such a general framework. Instead, shape families D;. D;;

1. Note that only the flow at the duct outlet is compared with the flow at the duct inlet. Each duct,
in fact, is considered as a flow control device whose input is Vi and its output is V5.
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Figure 7.1: Classification of short ducts.

and Dy are introduced to facilitate the design procedure which will be used to solve
the SSD problem for different ducts shown in Figure 7.1. Members of each duct
shape family. which are characterized by their family characteristic parameters. are
also constrained by some geometrical constraints. Table 7.1 shows the characteristic
parameters and constraints for the families D;. Dir and Dyy; as defined and used in
this thesis. Parameters § and A in this table are defined and shown in Figure 7.2).
The designer starts the design procedure with the following given information:

e information at the inlet: inlet uniform velocity (V}). inlet width ( Wi), inlet

Ea.mily ” Characteristic Parameters [ Constraints T
D; (Straight) AR §=0and A =0
Dy (Offset) ARand A #0 =0
Drrr (Curved) ARand 6 #0 A#0

Table 7.1: Characteristic parameters and constraints in duct shape families.
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boundary layer information (as discussed in Chapter 6),

e the family of the duct and the associated characteristic parameters,
e the TVD.

The given geometrical information. however. does not fully specify the dnct shape
In fact. the actual size and the wall profile remain unknown and are considered shape
design variables. In Figure 7.2. a member of the family Dy is shown as an example.
Note that A,. A, (hereafter called the size variables) and the actual shape of the
upper and lower boundaries (hereafter called the profile) are not fixed by the design
input information. The designer has to specify the sizc variables and the profile to
completely define the duct shape.

The following section explains how the size and profile of the duct are designed
in the context of efficient short duct design problems.

Figure 7.2: Duct geometrical characteristics.
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7.2.1.2 Efficient Short Duct Design Algorithm

As was mentioned in the previous sub-section, the duct shape is specified when not
only its family is known, but also the size variables and the profile are known. Given
the required input data, the efficient short duct designer has to start with an initial
guess. The initial guess generator, introduced in Chapter 3. provides appropriate
iuitial shapes for the members of ditferent shape families. The initial shape is always
much bigger than that which is required. Let's assume that the curved nozzle shown
in Figure 7.3A is the initial guess in an efficient shape design problem. Note that
in this case W), W, and 4 are fixed. The size variables (A;, A,) have been chosen
longer than required in this initial guess.

The designer starts the design procedure by iteratively reducing the size variables.
For each modified shape. the separation and uniformity of the flow at the inlet and
outlet are checked. During these trials. no attention is drawn towards the duct profile.
Only the size variables are changed and a reasonable smooth profile is used (see Figure
7.3C). The idea is that the size affects the separation more than the wall profile?. In
other words. if the size is very big. any reasonable profile works well and results in
no separation. Conversely. if the size is too small. separation cannot be prevented
even when the best profile is used. The size iterations are stopped when the designer
finds a critical duct size (with smooth profile) for which the flow is attached but any
further size reduction results in separation. The designer, then. deliberately reduces
the size and fixes the minimum or critical size (Aic. Asc) shown in Figure 7.3D. The
surface velocity distribution associated with this shape should be reasonably close to
the TVD.

The shape with the critical size. which was obtained iteratively. is now used as
the initial guess for the direct shape design method. The concern in the proposed
shape design method is the duct profile as was discussed previously. The TVD is
imposed and the associated SSD problem is (directly) solved to find the appropriate
duct shape which prevents separation (Figure 7.3B). Slight modification in the TVD
might be needed at this stage of the design. Note that in the designed efficient short
duct there are parallel sections near the inlet and outlet. This is necessary to make
sure that the uniform inlet and outlet velocity assumptions are justified.

Strictly speaking, only the profile design part of the algorithm is relevant to the
direct shape design concept proposed in this research. Therefore. in most of the short

2. Of course it is assumed that the designer has no difficulty in providing smooth and reasonable
profiles for different duct sizes.
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duct design examples provided in the next section, a duct with critical size is used
as the initial guess and the emphasis will be on the profile design. It is assumed
that an optimized (minimum or critical) size has been obtained (iteratively) and
an appropriate TVD is used to obtain an efficient short duct. The guide lines for
providing an appropriate TVD are presented in the next sub-section.

( A) (©)

Figure 7.3: Duct size variables and profile.

After the shape (i.e. size and the profile) of the potential core of the efficient
short duct is obtained. the boundary layer displacement thickness distribution along
the duct is calculated and added to the potential core to obtain the actual shape of
the duct.

For all the numerical computations regarding duct design problems in this chap-
ter. a 65 x 15 computational grid is used. While coarser grids could be used to do the
computations in some cases, this grid. which was used by Stanitz in his benchmark
elbow design. was found appropriate and is used in all duct design examples. Grid
refinement, for the examples provided in this chapter, did not result in any changes



7 Direct Design: Applications 109

in the shapes to an extent observable with the eye. Although it was possible to de-
crease the residual to the machine zero level for each example. The uniformity of
the flow at inlet and outlet cross sections is assumed to be achieved when the dif-
ference between the minimum and maximum stream-wise velocities, normalized with
the average velocity at the section, is less than 0.05.

7.2.1.3 Target Velocity Distribution

The objective in SSD problems, in the context of ideal fluid flow. is to approach a
specified TVD by changing the shape. In this sub-section, general guidelines regard-
ing the specification of the TVD in short duct design problems are presented.

One of the useful concepts related to the specification of the TVD is the con-
cept of flow backlash in a duct flow. For the sake of clarification. consider a two-
dimensional potential flow in a straight nozzle shown in Figure 7.4A. The stream
and cross-stream coordinates are non-dimensionalized by the inlet width (W,). The
one-dimensional velocity distribution. normalized with the inlet velocity and shown
by dashed line in Figure 7.4B. is basically due to the area ratio® which is a global
geometrical characteristic of the nozzle. If this global effect were the ouly way that
the duct geometry could affect the flow. the flow would be monotonically accelerating
along the duct. However. due to local (profile) effects. induced by changes in the
curvature of the duct walls. the surface flow (fow near the boundaries) experiences
some local adverse pressure gradients. The surface velocity distribution. obtained
from the two-dimensional potential Aow analysis and shown with the solid line in
Figure 7.4B. shows these curvature-induced deceleration and acceleration regions®.
The surface velocity undershoot and overshoot. as shown in Figure 7.4B for example.
are called flow backlash in this thesis. The flow backlash represents how the surface
flow responds to the changes in the duct wall curvature. Note that whenever there
is a flow backlash. regardless of the global flow. there is a locally induced (or intensi-
fied) deceleration region which may cause separation. If the designer wants to design
a short duct which is not prone to separation and does not create or intensify the
adverse pressure gradient regions along the boundaries. the flow backlash must be tai-
lored appropriately. In other words, the designer should specify a TVD which does
not have any backlash or is carefully tailored to not have dangerous backlash which
causes separation. The concept of flow backlash. as defined here. is very helpful in

3. It is recalled that area ratio is defined here as the outlet area divided by the inlet area.
4. In each overshoot or undershoot region both flow acceleration and deceleration oceur. However,

it is the deceleration of the flow which is important in the SSD problems defined in this thesis.
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duct shape design problems. In all short duct design examples given in this section.
the boundary velocity distribution associated with the initial guess is also shown to
emphasize that the TVD is actually a modified form of the initial boundary veloc-
ity distribution in which the flow backlash is treated appropriately. Therefore, the
first physical-based rule for the specification of the TVD is that the flow backlash.
obscrved in the initial guess. lias tu be tailored appropriately to make sure that the
deceleration regions do not result in separation.

Another physical-based rule. which is used in the specification of the TVD. is
that an attached flow can accelerate very sharply but. it cannot decelerate rapidly.
Therefore. the general trend is that the slope of the TVD in deceleration regions is
kept low but the slope in the acceleration regions can be very high.

Finally. it has to be noted that. in general. the specified target velocities for the
upper and lower walls of a two-dimensional curved duct are different. This difference
is necessary to allow the duct to turn. In fact. the difference between the specified
velocities at upper and lower walls dictates the turning angle. Therefore. in straight
symmetrical ducts. the TVD's for the upper and lower walls are the same and in
other duct configurations the difference between the specified target velocities at the
upper and lower walls determines the duct turning angle or offset.
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Figure 7.4: Flow backlash in a duct flow.
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7.2.2 Design of Short Diffusers

In a diffuser, the flow is globally decelerating. The global deceleration is determined by
the area ratio of the diffuser. However. different diffusers with the same area ratio and
different wall profile. will experience different flow decelerations near the boundaries.
An efficient short diffuser does not intensify the adverse pressure gradients along
the boundaries. The foliowing examples show how the TVD should be specified to
eliminate or control the flow backlash and end up with an efficient shape. In cases
where experimental data are available, computational results are compared to the
experimental data.

7.2.2.1 Straight Diffusers

The flow phenomenon in straight diffusers. in particular. has been studied exten-
sively and addressed in many publications e.g. [125-142]. In most of these references.
boundary layer theory is used to take into account the viscous effects. Traditionally.
straight diffusers were designed based on experimental data. Experimental data. ob-
tained from many tests. have been collected in some references (e.g. [123]) and are
used in the design of straight diffusers. Kline (128] discovered four flow regimes in
straight flat plate diffusers. Considering the fact that the best performance (in terms
of the pressure recovery) is obtained in the large transitory stall regime [128]. most
recent diffuser design techniques are able to analyze and design straight diffusers
working in different flow regimes. In [126] a one dimensional potential flow model
combined with a boundary layer technique is used to design the diffuser for a given
performance. The objective of the design in most of the two-dimensional methods
is to find appropriate length or area ratio for the diffuser which results in the best
performance corresponding to the given inlet flow.

It has been found experimentally that in the straight diffuser flow. the wall
profile is not as important as the gross geometrical parameters (such as the area
ratio) and inlet boundary layer characteristics®. That is why. in practice. straight flat
plate diffusers are used and design of the wall profile has not been a major issue in the
design of straight diffusers. However. in (129] three different types of straight diffusers
have been studied experimentally and it was concluded that the bell type (see Figure
7.5) was the best design in a sense that it keeps the wall boundary layers thin and

5. The inlet blockage (defined as 24*/W;) is the most important inlet boundary layer parameter in
straight diffusers [123] and has an important effect on the performance and the fow regime of the
diffuser.
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lends itself to separation later than the corresponding flat plate and trumpet diffusers.
If one constrains the flow to be parallel and uniform at both inlet and outlet, as is
the case here, the wall profile will be more important.

Here, an efficient short straight diffuser which has parallel and uniform flow at the
inlet and exit is designed. Figure 7.6 shows a design example. The initial guess and
the tangential velocity distribution associated with it are given in Figures 7.6A and
7.6B. Separation is predicted for the diffuser shown in Figure 7.6A when the proposed
integral boundary layer theory is used for the prediction of separation (some iterations
are required to find this minimum size). The designer specifies a TVD as shown in
Figure 7.6D to provide a duct profile which prevents separation. Note that a small
overshoot in velocity is required at the inlet to allow rapid turning of the wall close
to the inlet. If the designer does not allow such an overshoot in velocity. it will take a
long upstream section to achieve uniform flow there. The major difference between the
TVD and the initial boundary or surface velocity (Figure 7.6B) is in the deceleration
policy imposed to achieve an efficient shape. While for the initial shape the adverse
pressure gradient along the boundary is more or less the same along the diffuser. in
the proposed TVD the boundary layer near the inlet is heavily loaded (sharp adverse
pressure gradient) and the adverse pressure gradient is gradually relaxed towards the
outlet.

Winter and East [140] have proposed power function TVD's (V=cz™™) in
straight diffuser design. Greywall [143] also presented a design method for the design
of the potential core in straight diffusers and suggested a similar power function as the
TVD. The TVD proposed here is consistent with the power function idea however.
as was explained previously. the designer is not required to use a simple mathematical
function. Bezier curves are flexible enough to impose any TVD. as required. In fact.
the deceleration is tuned with the ability of the boundary layer to remain attached
to the wall. Near the inlet the boundary layer is fresh and energetic and close to the
outlet of an efficient diffuser. the flow cannot tolerate any adverse pressure gradient.

The inlet boundary layer information in this design example was taken similar
to the initial data in the flow 2100 [118] and the diffuser inlet width (W;) was chosen
equal to 0.4m. Inlet blockage is equal to 0.005 which is small enough to assure that
the diffuser works in the attached flow regime.

Figure 7.7 shows the designed diffuser again and provides more information re-
garding the wall profile and the distribution of the displacement thickness along the
walls. Figure 7.7C shows the wall turning angles for the designed (optimized) diffuser.
As this Figure shows, in an efficient short straight diffuser. much of the turning, re-
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quired for the area change, takes place near the inlet. In other words, much of the
pressure recovery is gained near the inlet and the rest of the duct is mainly responsible
to return the flow back to the main stream direction safely. Figure 7.7D shows the
distribution of the boundary layer displacement thickness along the duct (normalized
with the inlet value) calculated by the integral boundary layer theory. The actual
size of the viscous layer is much less than the width of the duct. Therefore, Figure
7.TA which shows the potential core shape, is practically quite close to the actual
duct shape and the viscous corrected shape is not distinguishable from the potential
core when both are drawn with the same scale.

It is interesting to see how the flow responds to a trumpet profile for a diffuser
with same dimensions as the designed diffuser shown in Figure 7.7A. A trumpet-type
diffuser is shown in Figure 7.8A and its corresponding boundary tangential velocity
distribution is shown in Figure 7.8B. Note that the slope of the deceleration (the
adverse pressure gradient) increases towards the exit. This, does not comply with
the boundary layer demands for this particular design (the boundary flow is highly
decelerated near the end where the boundary layer flow is tired). As Figure 7.8C
shows. much of the wall turning is close to the exit. As is expected. the flow separates
from the wall due to the wrong policy imposed by the TVD. The very sharp increase
in the displacement thickness near the exit (at s* =~ 0.7 in Figure 7.8D) is the sign of
separation. Further information about the viscous flow in this trumpet-type diffuser,
obtained from the integral boundary layer method. is shown in Figure 7.9. It is seen
that Cr and the normalized wall shear stress (1, /7y ) go towards zero and then rise
up rapidly. The results shown after the separation point (s* = 0.73) have no value and
actually the parameters behave wildly (see for example the displacement thickness.
Figure 7.8D, or the shape factor A shown in Figure 7.9). Even though no quantitative
measure can be attributed to the shape factor H at the separation point . it is seen
that H rises very sharply near the separation point and can be used as a separation
symptom. These boundary layer analysis results on bell and trumpet-type straight
diffusers agree well with the observations reported in [129)].

7.2.2.2 Curved Diffusers

Combined effects of global deceleration. local curvature-induced adverse pressure gra-
dients. and the flow turning makes the curved diffuser design problem a very difficult
one. In three-dimensional cases. the secondary flow also affects the flow field and the
boundary pressure gradients. In three-dimensional curved diffusers. the secondary
flow provides a mechanism for the exchange of mass between low pressure and high
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pressure regions along the duct wall. From this point of view, the secondary flow
is a helpful phenomenon and it is expected that if a short two-dimensional curved
duct is designed to prevent separation, a three dimensional duct with same area ratio.
turning angle and wall curvature will have attached flow with a broader margin of
safety. In other words two dimensional design results can be conservatively used in
the design of three-dimensional ducts. However. the secondary flow makes the flow
non-uniform and if the flow has to be uniform at the outlet of a short duct. the sec-
ondary flow has to be suppressed or controlled somehow. Here. two-dimensional flow
is considered and the issue of secondary flow is not the concern.

To get an idea about the flow phenomena in a curved diffuser, a potential flow
90°-curved diffuser is considered first. Figure 7.10A shows the initial guess made for
the design of a 90°-curved diffuser with area ratio equal to 2. The tangential velocitics
along the upper and lower boundaries. calculated after solving the analysis problem
associated with the initial guess. show the undesirable flow backlash on both upper
and lower boundaries (Figure 7.10B). Note that the tangential velocity along the
upper wall for the initial guess is everywhere less than the tangential velocity along
the lower wall. This means that the pressure along the upper wall is everywhere
higher than the pressure along the lower wall and this is consistent with the fact that
the duct turns towards its lower wall.

The flow backlash regions intensify the adverse pressure gradients along the walls
and the shape designer has to propose an optimized TVD to obtain a shape that
better controls the flow (not creating backlash). Based on the guidelines explained
previously in this chapter. the TVD is proposed as shown in Figure 7.10D. The direct
shape design method uses the initial guess and the TVD. and returns the shape shown
in Figure 7.10C. This shape may be considered as an optimum shape in a sense that
the shape does not intensify the global deceleration dictated by the diffuser area ratio.
It is seen that the deceleration at the upper boundary starts sooner than the lower
wall. It takes a few iterations for the designer to determine the distance between the
velocity distributions at the upper and lower walls which results in 90° turning.

Design of an efficient short curved diffuser with a high area ratio is difficult and
often the flow separates because of the sharp deceleration. dictated by the area ratio.
Often. to design a short high area ratio diffuser with attached flow. other methods
such as suction. blowing or using guide vanes. should be considered.

In the context of the boundary layer theory (combined with the potential flow
analysis). the curved diffuser flow has been studied by some researchers, e.g. [144-147].
Also there are many experimental results on the curved diffuser flow mainly for the
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purpose of the validation of CFD codes; e.g. [148]. Most of the published results
consider, unfortunately, three-dimensional flows in curved diffusers.

Parsons [146] designed and built a two-dimensional curved diffuser with an area
ratio equal to 1.34 and a turning angle equal to 45°. Parsons used the Stanitz method
to design the potential core and used an integral boundary layer method proposed by
Mases [146] to correct the shape for viscous offccts. In Figure 7.11A the shape of the
potential core calculated by Parsons (dashed lines) and the actual duct which was
built and tested (solid lines) are shown. Figure 7.11B shows the TVD specified by
Parsons. In this figure the velocity data (calculated from the measured pressures) is
also shown®. It is seen that the agreement between the expected (specified) boundary
velocities and the actual velocities near the boundary is good.

The TVD used by Parsons was applied in the proposed shape design method.
The potential core obtained agreed exactly with that of Parsons. In Figures 7.12A
and 7.12B the initial guess and its associated boundary velocity are shown. The
imposed TVD. which was the same as the parsons TVD. is shown in 7.12D. The
designed potential core. which is the same as the Parsons potential core. is shown in
Figure 7.12C. The integral boundary layer theory. proposed in this thesis. was used to
correct the Parsons potential core shape for the viscous effects. This boundary layer
method predicts separation on the lower wall and does not provide realistic results
in this case. The boundary layer calculations on the upper wall stall close to the
acceleration region shown in the TVD (Figure 7.12D). This. seems to be related to
the weakness of the boundary layer method in dealing with highly accelerating flows.

The Parsons duct can be redesigned with another TVD in which no flow backlash
is allowed (Figure 7.13D). The initial guess and its calculated boundary velocity are
shown in Figures 7.13A and 7.13B. Figure 7.13C shows the potential core obtained
for the modified TVD shown in Figure 7.13D. Note that the elimination of the flow
backlash results in an initially sharper deceleration on the outer wall. Even though
the initial surface velocity (Figures 7.12B) is drastically changed in Figures 7.12D
and 7.13D. the designed shape does not seem to change considerably with respect to
the initial guess. In Figures 7.14, 7.15 and 7.16 important parts of the initial and
final shapes are magnified and shown. These figures show that the wall curvatures
are quite different, indeed. in the initial and designed shapes.

Figure 7.17 compares the modified potential core. shown in Figure 7.13D. with

6. In this Figure, VL and VU refer to the tangential velocities at lower and upper boundaries
respectively.



7 Direct Design: Applications 116

the Parsons potential core. The viscous corrections corresponding to this modified
TVD, predicted by the integral boundary layer. are shown in Figure 7.18. For the
purpose of comparison, the Parsons duct is also shown in this Figure’. It is seen that
the predictions of the present proposed integral boundary layer theory is poor on the
lower wall near the exit.

7.2.2.3 Offset Diffusers

S-shaped diffusers play an important role as inlets to the air-breathing propulsion
engines that are installed at offset locations in aircraft. The performance of the engine
depends on the flow condition at the engine face. which in turn depends on the inlet
design. It is desirable that an engine inlet provides a uniform flow at the engine face
with as high a total pressure as possible. This is generally the task in designing offset
diffusers. There are few publications which address this problem in the context of
boundary layer flow [149.150]. Also. there are some published experimental results
which include three-dimensional phenomena as well [151-153].

S-shaped diffusers may be considered as a combination of two 45°-curved dif-
fusers. As mentioned previously. the global geometrical parameters of a diffuser are
often more important than the details of the wall profile. In s-shaped diffusers. a
double turning of the flow is required. In an efficient short s-shaped diffuser. the first
turn should be accomplished in a shorter length compared to the second turn. This
design philosophy is consistent with the design philosophy stated for the straight dif-
fusers. i.e. the deceleration near the inlet is relatively sharp and diminishes gradually
towards the exit.

Figure 7.19 shows the design of a s-shaped diffuser. In Figure 7.19B the TVD
is shown. Note that the cross-over point. between the two serial curved diffusers. is
closer to the inlet and the deceleration in the first turn is steeper than the second
turn. Figure 7.19A shows the designed potential core of the efficient short offset
diffuser for the given offset and area ratio. As is expected. the designed potential
core has unequal deceleration ratio in the two turns. The first turn is accomplished
in a shorter length as compared to the second turn. This asymmetrical diffuser is
much superior to the diffuser with symmetric turns in terms of susceptibility to flow
separation and boundary layer displacement thickness distribution. Figure 7.19C
shows the flow angles at the upper and lower boundaries of the potential core and
Figure 7.19D shows the predicted boundary layer displacement thicknesses for upper

7. Note that different TVD's were used to design these ducts.
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and lower boundaries. The inlet width in this case was equal to 3.8cm and the inlet
blockage was equal to 0.05.

Rehman and Bowyer [150] designed and built a two-dimensional s-shape diffuser
with area ratio equal to 2 as shown with the solid lines in Figure 7.20A. To design the
duct. they specified a TVD as shown with the solid and dashed lines in Figure 7.20B.
Then the Stanitz method was used to obtain the potential core shape (dashed lines
in Figure 7.20A). Finally an integral boundary layer analysis technique. proposed
by Truckenbrodt (see [150]). was used to correct the potential core for the viscous
effects. The actual velocity distribution along the duct walls, obtained from the
measured pressures along the boundaries of the built diffuser. is close to the specified
TVD shown in Figure 7.20B.

To compare the results obtained from the proposed method with the data pro-
vided by Rehman and Bowyer [150]. the proposed design method in this thesis was
used and the TVD for the design problem was chosen exactly as was proposed in (150]
and shown in Figure 7.20B (solid and dashed lines). The designed inviscid core was
the same as the one cbtained in [150] by Stanitz’ method. For the given inlet infor-
mation (the inlet blockage was equal to 0.05). the potential core was corrected for the
viscous effects. The final designed duct shape was practically the same as the duct
tested by Rehman and Bowyer (indistinguishable from the duct shape shown with
the solid lines in Figure 7.20A). Therefore. the integral boundary layer theory. used
in this thesis. provides realistic viscous corrections for this example.

W i — Trumpet W)
1

Figure 7.5: Experimentally studied straight diffusers [129].
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Figure 7.16: Magnified shape of the duct shown in Figure 7.13C.
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7.2.3 Design of Short Spacers

In this section design of efficient short spacers is discussed. The area ratio of a spacer
is equal to one and there is no global deceleration or acceleration associated with the
gross arvea change. Therefore, a straight spacer is simply a straight duct with uniform
cross-sectional area and there is not any flow backlash in such a duct. In curved and
offset spacers. however. there are undershoot and overshoot regions along the duct
walls due to turning and profile effects. The flow backlash cannot be eliminated in
these spacers®, but the designer can propose an optimized TVD in a sense that the
boundary flow decelerates gradually and accelerates sharply. In the following two
sub-sections. examples are provided to show how the method works in this type of
short duct design problems.

7.2.3.1 Curved Spacers

Curved spacers (simple bends) are an integral part of any piping system. and are also
frequently encountered in heat excliangers. chemical reactors. and other apparatus.
Many researchers have studied the distortion of the flow field due to the centrifugal
force produced by the wall curvature and in particular the effects of secondary flows.
The number of publications in this regard is countless (references [154-157] were
consulted in this study). Two-dimensional studies have also been carried out by
some researchers [158.159]. Figure 7.21A shows an initial guess for a 90°-curved
spacer. The calculated tangential velocity along the boundaries is shown in Figure
7.21B. It is seen that there is a big velocity overshoot at the lower boundary and a
big velocity undershoot at the upper boundary. Knowing that the difference between
the upper and lower boundary velocities is necessary for the flow to turn. the designer
can only reduce the slope of the initial surface velocity in the deceleration zones and
increase the slope in the acceleration regions. The proposed TVD in this case is
shown in Figure 7.21D and the designed potential flow duct is shown in Figure 7.21C.
Again the designer only tries to suppress the intensification of the adverse pressure
gradients caused by the duct shape. Whether the flow separates or not depends on
the inlet flow condition and actual size of the duct.

In Figure 7.22. viscous corrections made for the designed potential core shown in
Figure 7.21C. are shown. The inlet boundary layer information in this design example
were taken similar to the initial data in the flow 2100 [118] and the spacer inlet width

8. If there is not any flow backlash in a spacer. the surface tangential velocities at the upper and
lower walls are the same and there can not be any flow turning. This occurs in straight spacers.
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(W,) was chosen equal to 2.0m.

7.2.3.2 Offset Spacers

Design of offset spacers can be done using the same arguments which have already
been explained. An offset spacer is considered essentially as a combination of two
curved spacers. The designer should propose a TVD with appropriate slopes in the
deceleration as well as acceleration zones and also an appropriate location for the
cross-over point between two serial curved spacers.

Figure 7.23 shows an example with a very low offset. The initial guess is shown in
Figure 7.23A and its associated surface velocity distribution is shown in Figure 7.23B.
The designer modifies the initial surface velocity and proposes a TVD as shown in
Figure 7.23D. Note that in the proposed TVD. acceleration regions are sharp and
the deceleration regions are tailored to be very mild. The optimum shape in this
case. which is associated with the optimized TVD shown in Figure 7.23D. is shown
in Figure 7.23C.

Design of non-diffusing two-dimensional s-shaped ducts has been studied by
Kitchen and Bowyer [160]. They studied s-shaped spacers with circular arc walls
and considered the duct offset-to-length ratio and width-to-length ratio as the design
parameters. The optimal duct was defined as that duct which was least prone to
separation. Kitchen and Bowyer did not tailor the TVD to obtain an optimized
shape. They. instead. specified a desirable normal acceleration function and deter-
mined the corresponding center-line path of the duct. They actually modified. with
their design method. an initial shape with two 45° turns and circular walls which
was experimentally studied by Butz [161]. The conclusion was that the first turn in
an optimized s-shaped spacer should be appreciably sharper than the second reverse
turn. They proposed that the initial turn should be completed in approximately 37%
of the overall horizontal duct length.

In Figure 7.24, the initial guess is chosen with the same dimensions as the Butz’
duct (Figure 7.24A)°. The TVD (Figure 7.24D) is proposed to modify the surface
velocity calculated for the iunitial guess (Figure 7.24B) based on the general guidelines
proposed in this thesis. Note that the deceleration on the lower wall is improved
considerably and on the upper surface also. the two deceleration zones are milder
than the initial shape. The designed shape has two unequal turns and is in qualitative
agreement with the optimized shape proposed in [160].

9. The wall profiles in Figure 7.24 are not circular though. They are created with Bezier curves.
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7.2.4 Design of Short Nozzles

In this section design of efficient short nozzles is discussed. While the bulk flow is
accelerating, there are local adverse pressure gradient regions due to the curvature
effects. If there is enough global acceleration. the designer can use these conflicting
effects and eliminate the flow backlash completely in curved and offset nozzles. In
straight short nozzles. however, one cannot eliminate the flow backlash completely
and keep the flow at the inlet and exit parallel and uniform. The reason will be
explained in the next sub-section. In spite of the fact that the flow backlash can
be eliminated in curved nozzles. efficient short nozzles have controlled flow backlash
regions. The reason will be discussed in the sub-section devoted to curved nozzles.

7.2.4.1 Straight Nozzles

Straight nozzles are used in many applications. A particularly important application
is the aerodynamic contraction used in wind tunnels. The contraction is necessary
because the cross sections of the return ducts are made much larger than the test
section in order to reduce the losses. particularly those through corners. vanes and
screens. Additionally. a contraction has the desirable effect of reducing the fluctuating
components of the velocity.

Changing the cross sectional area requires turning of the walls and this causes
flow backlash. In aerodynamic contractious the flow backlash. particularly near the
inlet. should be controlled to prevent separation. In fact the whole purpose of the
aerodynamic design of contractions is to make sure that the flow at the test section
entrance is nearly parallel and uniform. This means that the boundary layer at the
exit of the contraction should be very thin and the flow has to be uniform and parallel
and nearly free of turbulence there. An efficient short straight nozzle is the shortest
contraction which meets all these requirements.

As Figure 7.25 shows. if the designer tries to eliminate the adverse pressure gra-
dients along a short straight nozzle. it will not be possible to keep the flow parallel
and uniform at the inlet and outlet. The initial guess and its surface velocity dis-
tribution are shown in Figures 7.25A and 7.25B. If the TVD is chosen as shown in
Figure 7.25D. the designed shape will be as shown in Figure 7.25C. Note that the
sharp acceleration imposed by the TVD. has upstream and downstream effects on
the duct shape. However. the upstream geometrical effect is more severe as compared
to the downstream effect.

For the initial guess. shown in Figure 7.25A. the wall curvature at the inlet
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and outlet is zero. Rapid change of the wall curvature from zero to a finite value
results in some flow backlash upstream and downstream as shown in Figure 7.25B.
Therefore, to prevent dangerous flow backlash near the inlet!®, the cross sectional
area should be decreased very slowly. For low area ratio nozzles, which are often
used as aerodynamic contractions, the downstream geometrical effect due to sudden
acceleration is less importaut as cowpared to the upstream effec.

A comprehensive evaluation of the state of the art regarding the design of aero-
dynamic contractions has been given in [162]. Here the contraction design problem is
approached in the context of efficient short duct design. The main concern is to control
the flow backlash by appropriately profiling the duct walls when the duct length is re-
duced. In practical contraction design. the problems of laminar to turbulent transition
near the inlet and the possibility of relaminarization near the exit have to be studied
as well. Whitehead {163]. Bloomer [164]. Bossel [165]. Chmielewski [166], Morel [167]
and Mikhail [168] have had major contributions in the design of aerodynamic con-
tractions. Most of the published contraction design examples are for two-dimensional
axisymmetric geometries. Often. mathematical expressions with some unknown pa-
rameters are used to describe the contraction shape. The unknown parameters are
then found by trial and error such that attached flow is guaranteed according to the
Stratford criterion which is well suited for this type of boundary layer flows (see Ap-
pendix C). Mikhail [168] have proposed another approach in which the wall curvature
is optimized iteratively to make sure that the adverse gradient regions are tolerable.

To obtain a better sense about the effects of the wall profile on the flow near
the boundaries in straight nozzles. the potential flow was solved for different two-
dimensional straight nozzles (Figure 7.26). Bezier curves were used to provide shapes
with extreme scenarios for the wall profiles. One may gradually accelerate the flow
and basically distribute the acceleration all along the duct (Figure 7.26A). rapidly
accelerate the flow near the exit (Figure 7.26B) or decrease the cross sectional area
sharply near the inlet (Figure 7.26C). The calculated surface velocity distributions
are also shown. for these cases. in Figure 7.26. Note that the nozzle shown in Figure
7.26B provides the best surface velocity distribution in terms of the boundary layer
considerations. i.e. the deceleration is gradual near the inlet where the boundary layer
is thick and more sensitive to adverse pressure gradients and the flow experiences a
sharp deceleration near the exit where the boundary layer is energized. The conclusion

10. Note that the flow backlash near the inlet is the major concern in nozzles. The flow is accelerating
along a nozzle and the boundary layer is energized along the duct. That is why the emphasis is on
the flow backlash near the inlet.



7 Direct Design: Applications 134

is that the flow turning should be gradually increased as the velocity increases along
the duct. In other words. the surface flow deceleration should be chosen according
to the ability of the boundary layer to remain attached under the adverse pressure
gradient induced by the flow turning. Based on this design philosophy the boundary
layer near the exit has more ability to accept rapid turning and one should design the
nozzle so that much of the turning and acceleration occurs near the exit.

Bradshaw [169.170] has introduced an efficient two dimensional aerodynamic
contraction'! and showed part of the shape of that aerodynamic contraction. The
duct shape as provided in [170] is shown in Figure 7.27. It is seen that the cross
sectional area gradually reduces near the inlet and rapidly decreases near the exit.
Unfortunately. the detailed flow information is not available for this aerodynamic
contraction.

The area ratio of the contraction shown in [170]. is close to 0.1. In Figure 7.28
the potential flow design of an aerodynamic contraction with an area ratio equal to
0.1 is shown. Tle initial guess and the associated surface velocity distribution are
shown in Figures 7.28A and 7.28B. Note that the TVD (Figure 7.28D) proposes a
gradual deceleration ncar the inlet and rapid acceleration near the exit. In the TVD.
no overshoot is allowed near the exit. This causes some downstream effects on the
geometry but. as is seen in Figure 7.28C. the downstream effect on the geometry
is negligible. Due to the sharp acceleration. the proposed boundary layer analysis
method in this thesis fails to predict the separation or calculate the boundary layer
parameters for this case. The final length of the duct. shown in Figure 7.28. was
obtained based on the Stratford separation criterion when the inlet boundary layers
were considered similar to the flow 1300 [118].

The proposed integral boundary layer method in this thesis works well for accel-
erating flows when the acceleration is slow. In Figure 7.29. a TVD (Figure 7.29B) is
specified for the design of a nozzle with area ratio equal to 0.5 (Figure 7.29A). The
overshoot near the exit is necessary to return the flow back to the straight and parallel
position rapidly. The actual dimensions of the duct are large (W, = 4m) and the
actual acceleration is in fact very slow. The distribution of the boundary flow angles
(Figure 7.29C) and the displacement thickness (Figure 7.29D) are also shown'2. Note
that the flow turning is more gradual near the inlet as compared to the flow near the
exit even for this case in which the area ratio is moderate.

11. Bradshaw [170] introduces this shape as a very short two-dimensional contraction that provides
a uniform turbulence free flow at the exit.
12. The inlet boundary layers were considered similar to the flow 1300 [118].
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To conclude this sub-section, it is instructive to compare the shape of efficient
short straight nozzles and diffusers. As Figures 7.7A and 7.29A suggest, the wall
profile for an optimum nozzle is very similar to an optimum diffuser in which the
direction of the flow is reversed (outlet of the diffuser should be considered as the
inlet for the nozzle). In other words, in spite of the similarity of the profile, the
inflection point of an efficient short straight diffuser is close to the inlet (Figure 7.7A)
in contrast to the nozzle for which the inflection point is near the exit (Figure 7.294).
It is important to note that while an efficient straight nozzle was designed for which
the length of the duct was less than the inlet width (Figure 7.29A), the length of an
optimum efficient straight diffuser with the same inlet and outlet area is at least five
times greater than the inlet width (Figure 7.7A).

7.2.4.2 Curved Nozzles

Previously. in Chapter 3. the Stanitz 90°-elbow (nozzle) was considered for the pur-
pose of the validation of the proposed method. In this section again 90°-curved
nozzles are considered. Even though it is possible to consider lower turning angles.
a 90° turning angle is chosen to be able to show the physical phenomena associated
with simultaneous turning and acceleration more clearly. 90°-Curved nozzles have
been studied by some researchers and the benchmark solution of Stanitz has been
used for the purpose of validation (e.g. [171.172]).

Figure 7.30A shows the initial guess made to design a 90°-curved nozzle (AR =
0.5). The calculated surface tangential velocity is shown in Figure 7.30B. The TVD
is proposed by the designer as shown in Figure 7.30D. Note that the flow backlash
is eliminated and there is not any deceleration region along the duct. The designed
shape. corresponding to this TVD. is shown in Figure 7.30C. The shape suggests
that in a backlash-free curved nozzle, the inner wall turns inward before the turn to
prevent adverse pressure gradient being developed on the upper wall and the upper
wall turns inward after the turn to prevent adverse pressure gradient being developed
on the lower wall. The turn itself is a circular turn for which constant pressure, or in
this case velocity. difference is maintained along the turn. For this nearly optimum
shape, surface flow angles at the upper and lower walls are shown in Figure 7.31B.
Figure 7.31A shows the wall turning angles for the initial guess for the purpose of
comparison. Note that in contrast to the backlash-free TVD. proposed for a 90°-
curved diffuser (Figure 7.10D). the slope of acceleration in the backlash-free curved
nozzle has been chosen quite high.

A backlash-free curved nozzle is not efficient in a sense that the duct can be made
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shorter without causing separation. Figure 7.32D shows a typical TVD specified to
design an efficient 90°-curved nozzle. Again the initial guess and its associated surface
velocity distribution are shown in Figures 7.32A and 7.32B and the designed shape is
shown in Figure 7.32C. Note that some controlled velocity undershoot and overshoot
are allowed to occur (Figure 7.32D). This means that the upstream and downstream
flow are made parallel and uniform more rapidly in Fignre 7.32C as compared to
7.30C. In other words, the TVD shown in Figure 7.32D results in a shorter duct.

If the inlet boundary layers at the upper and lower walls are not the same, the
designer may specify surface velocities along the upper and lower walls differently (in
the proposed TVD). Two examples. in which the upper and lower boundary layers
are treated quite differently. are shown in Figures 7.33 and 7.34. In Figure 7.33. only
the lower wall is intended to be backlash-free (note the specified TVD in Figure
7.33D) and the initial guess and its associated surface velocity are shown in Figures
7.33A and 7.33B. It is seen that the upper wall. in the designed shape. adapts itself
after the turn to prevent any backlash on the lower wall. In Figure 7.34. only the
upper wall is intended to be free of backlash (see Figure 7.34D) and again the initial
guess and its associated surface velocity are shown in Figures 7.34A and 7.34B. It is
seen that in the designed shape (Figure 7.34C). the lower wall adapts itself before the
turn to control the flow on the upper wall. The viscous corrections can be made for
lower and upper walls by the proposed integral boundary layer method as before if
the actual size of the duct is chosen big enough.

7.2.4.3 Offset Nozzles

Offset nozzles accelerate the flow and laterally displace the duct axis. This requires a
double turning of the flow. The designer may consider the offset as a combination of
two curved nozzles and propose the TVD accordingly. All the previous discussions
about the selection of the TVD for curved nozzles can be applied here as well. One
further point is the selection of the cross-over point between the two nozzles. The
designer may use two different turning angles for the first and second turns. Having
in mind that the flow is globally accelerating in an offset nozzle. the boundary layer
is energized along the duci and the second turn can handle more rapid turning.
Therefore, in contrast to offset diffusers. the inflection point in the wall profile of an
efficient offset nozzle is closer to the exit.

Figure 7.35C shows an offset nozzle designed to achieve the backlash-free TVD
shown in Figure 7.35D. The initial guess and its associated surface velocity distri-
bution are shown in Figures 7.35A and 7.35B respectively. Note that much of the
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acceleration and turning occur near the inlet or in the first turn.

Figure 7.36C shows another designed offset nozzle (with the same initial guess
gross dimensions as the previous one shown in Figure 7.35) in which much of the
acceleration occurs in the second turn. Note that this policy has been implemented
in the TVD shown in Figure 7.36D. In Figures 7.37. 7.38, 7.39 and 7.40 offset nozzles
shown in Figures 7.35 and 7.36 are maguified {(for further clarity) and the surface flow
angles are also shown.

Typical distributions of the wall shear stress and displacement thickness for both
potential flow designs shown in Figures 7.37 and 7.39 are shown in Figures 7.41 and
7.42. The boundary layer results, shown in Figures 7.41C. 7.41D. 7.42C and 7.42D.
are. qualitatively. as expected. It is seen that in offset nozzles the shear stress at the
begiuning of the second turn (see Figures 7.41C and 7.42C) is higher than the inlet
shear stress. Also it is seen that the slope of the decreasing shear stress along the
upper wall near the inlet is higher in Figure 7.42C as compared to the one shown
in Figure 7.41C. Therefore. the design strategy implemented by the TVD (Figure
7.41B). which considers more acceleration (and turning) in the second turn. is a better
policy from the flow separation point of view. For efficient short offset nozzles. which
work close to the separation limit and have decelerated flow regions along the wall.
this design policy should be followed. In Figures 7.41 and 7.42. inlet boundary layer
information were chosen the same as the boundary layer initial condition given for
flow 2100 {118]. Again. actual dimensions arc large enough (W; = 4m) to make
sure that the boundary flow accelerations are not sharp and the proposed integral
boundary layer method is applicable.

To achieve an efficient short offset nozzle. the length is reduced until separation
is predicted. Figure 7.43A shows the initial guess for which the flow is predicted to
separate from the walls. The designer tries to decrease the slope of the deceleration
regions and increase the slope of the acceleration regions. The TVD is chosen as
shown in Figure 7.43D and the potential duct shape is designed as shown in Figure
7.43C. Note that the contribution of the first turn in the global acceleration in this
efficient shape is less than the second turn as shown in the TVD (Figure 7.43D). The
flow does not separate in the designed duct. shown in Figure 7.43C. according to the
integral boundary layer analysis method used in this thesis.

In Figure 7.44C another potential flow core is shown which was designed based
on an inappropriate TVD shown in Figure 7.44D. The initial guess and its surface
velocity distribution are shown in Figures 7.44A and 7.44B. As it is seen. if the de-
signer considers much of the acceleration in the first turn. severe deceleration near the
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inlet is inevitable. The integral boundary layer analysis method predicts separation
for the duct shown in Figure 7.44C as is expected.
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Figure 7.26: Effect of the straight nozzle shape on the surface flow.
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Figure 7.29: Design of a straight nozzle with small area reduction.

— (A)-GRID (NITIAL)

1%
-~ - LOWERWALL |, =
= WPPERAWALL |, Y
—_—

0 - - TVD (LOWER WaLL
O |— VO (UPPER WALL)

Q 2 Q4 as o8
.

Figure 7.30: Design of a 90°-curved nozzle.



7 Direct Design: Applications 141

.
~ ok
g
2 &0
&bk
-100 .
9 an
50
-- LOWER Wa(L
] R . UPPERWALL| |
>
F
=
e
sl , :
sco 3t a2 FE] 04 cs EX] ar ss a9 1
s

Figure 7.31: Surface flow angles for the ducts shown in Figure 7.30.
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7.3 Shape Design: Conduction Heat Transfer

Recently, inverse problems of heat transfer have attracted lots of attention [4]. In
general a well-posed heat transfer problem requires either temperature. heat flux. or
convection heat transfer coefficients specified over the entire (known) boundary of
the region. Well-posed Poisson problems also require the specification of heat source
intensities throughout the domain. These regular types of thermal problems. which
are basically analysis problems. have been called the rating problems [54]. Other
possible thermal problems, based on our categorization in Chapter 2. fall into one
of the categories of design problems and are often known as inverse heat transfer
problems. Those inverse heat transfer problems in which part of the shape of the
solution domain is not known in advance. are often called thermal sizing problems in
heat transfer text books and references [54]. Steady two-dimensional sizing problems.
in the context of conduction heat transfer. are governed by the Laplace equation and
can be solved by the propesed direct shape design method in this research.

Figure 7.45 shows a leat conducting body with thermal conductivity K which
covers a substrate material. The substrate is hot (Tw) and transfers heat to the
ambient fluid (7,). The heat is convected from the outer boundary of the heat
conductor (T,) to the ambient fluid. The convection heat transfer coefficient for the
convection of heat is assumed uniform (h). Such a physical situation occurs quite
frequently in micro-electronic cooling. If the substrate is considered as a heat source
and the ambient fluid as the heat sink. the conductor shape controls the rate of heat
transfer from the heat source to the heat sink. Therefore. the heat conductor is. in
fact. a heat flow control device.

Because of the symmetry of the heat conductor shown in Figure 7.45. only half
of the given geometry needs to be considered. Therefore, the conduction of heat in
the conductor can be modeled as steady two-dimensional conduction heat transfer in
a solution domain with four boundary surfaces. The surfaces on the symmetry line
are adiabatic (Neumann boundary condition) and Dirichlet boundary conditions are
given on the hot and cold sides of the model (Tw and T,). If T,, T, and h are uniform.
the heat flux at the outer boundary of the heat conductor (hereafter called the surface
heat flux) will be uniform. These thermal ccenstraints. in particular the uniformity of
the surface temperature and heat flux. are proposed and used in a conduction SSD
problem defined in [54] and are appropriate to test the proposed direct shape design
method in the context of thermal problems. Here. no attempt is made to explore
more practical thermal boundary conditions and the physical model proposed in (54]
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Figure 7.45: A typical SSD problem in conduction heat transfer.

15 used in all conduction SSD examples.

To generalize the idea. and show how geometrical constraints can be implemented
in this thermal SSD problem. two families of heat conductors (families H; and Hp)
are introduced and shown in Figure 7.46. The adiabatic surfaces of these families
of heat conductors might be physically insulated or simply correspond to symmetry
surfaces.

Family H;. shown in Figure 7.46, is considered here because it degenerates to a
simple one-dimensional problem when the temperatures of both hot and cold surfaces
(Tw and T,) are uniform. Family H;. also considered here. has been studied in (54]
in which a combination of the body-fitted grid generation scheme and the conjugate
gradient optimization method have been used to solve the conduction shape design
problem for this family of shapes. Family H;; is also the physical model associated
with the problem shown in Figure 7.45.

If the shape of the heat conductor is known (the so called rating problem). the
heat transfer rate. the temperature distribution inside the conductor and the surface
heat flux can be calculated. The unified discrete formulation. obtained for the Laplace
equation in this thesis. can be used to solve this analysis problem.

If the shape of the conductor is not known (the sizing problem). extra bound-
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Figure 7.46: Two particular shape families of heat conductors.

ary formation is required. This extra boundary condition. i.e. a specified surface
(target) heat flux. renders the problem as a well-posed surface shape design problem.
For different specified uniform surface heat fluxes. different conductor shapes are ob-
tained. Figure 7.47 shows how the specified target heat flux at the outer boundary
affects the shape of the conductor and the outer boundary (surface) profile. Note that
it is assumed that the surface temperature (7)) is fixed and given and the surface heat
flux (or the convection heat transfer k) has to be specified by the designer. For each
specified surface heat flux. the shape and size of the conductor (and the isothermal
surface profile of it) is different. One may also keep the convection heat transfer fixed
and change the surface temperature to generate different conductor shapes. The im-
portant point is that the total heat transfer rates corresponding to different shapes
specified by S1. S2....... in Figure 7.47. are not the same. If total heat transfer rate
(Q) is specified. as the design target, a number of SSD problems should be solved to
obtain different shapes (S1. §2, $3 and.....) corresponding to different surface heat
fluxes (q1. q2. g3 and....). These shapes provide different Leat transfer rates (Q1. Q.
Qs and.....)"3. After a sequence of SSD problems are solved. interpolation between
the results (calculated shapes: S1. §2. §3 and.....) wil provide a shape with the
outer boundary at T, which corresponds to the desired Q.

When the substrate temperature is also constrained to be uniform (Tw(X) =
Tw = const.). the heat conductor has two isothermal and two adiabatic surfaces. This

13. Note that Q = f q,dA.



7 Direct Design: Applications 151

% < 9,

T S

W

Family H 1

\. J

Figure 7.47: Variation of the conductor shape with the specified surface heat flux in
the thermal SSD example.

physical model is used extensively in steady two-dimensional conduction problems
and the shape factor. defined as § = (Q/KAT). is used to calculate the conduction
heat transfer rate. The unified discrete form of the Laplace equation. proposed in
this thesis. can be used to numerically solve these types of problems when analytic
formulas for the conduction shape factor are not available. The corresponding shape
design problem in this case may be considered as the problem of finding a shape which
provides a specified conduction shape factor for the given physical situation. Solution
of this design problem is similar to the case that the total heat transfer rate is given
as the design objective. Again a series of SSD problems have to be solved to achieve
the desired shape with the given conduction shape factor and boundary information.

To evaluate the performance of the proposed direct design method in solving
thermal SSD problems, 4 different test cases are considered in this section for the
shape families H; and Hr shown in Figure 7.46. Thermal constraints (boundary con-
ditions). used in the problem definition. have already been explained. In Figure 7.48
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these test cases are shown. In all cases the non-dimensional boundary temperature
of the cold surface (8,) is considered to be uniform!*. The normalized hot surface
temperature (6 ) is different for each of the test cases. In Case 1 it is uniform, in
Case 2 it varies linearly and in Cases 3 and 4 the substrate temperature is a non-linear
function of the normalized distance along the substrate. The X coordinate along the
substrate and the reference length I were shown and defined in Figure 7.45.
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Figure 7.48: Hot and cold surface temperature distributions in conduction test cases.

Figures 7.49 to 7.52 show the solution of the thermal SSD problem when the
shape is constrained to remain a member of the family H;. The computational grid

14. The normalized temperature is defined as § = (T -T.)/{Tr - T,). Tr is the substrate minimum
temperature (see Figure 7.45).
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is (11 x 11) in all of these examples. In Figure 7.49 test Case 1 is used. Figure 7.49A
shows the normalized hot and cold surface temperatures used in the problem. For the
initial guess (grid) shown in Figure 7.49C. the conduction heat transfer problem can
be solved and the surface heat flux can be calculated (@initiat). Now. if a higher surface
heat flux is specified as the target (in this case gugrger = 4Ginitiat). the conductor shape
should change to accommodate this new (target) snrface heat lux, When Jearger W3
imposed as the target surface heat flux and the proposed direct shape design method
was used to solve this SSD problem. the conductor shape was obtained as shown
in Figure 7.49D. Figure 7.49B shows the position of the hot surface as well as the
initial and final (designed) positions of the cold surface. The diagrams which show
the initial and final computational grids (Figures 7.49C and 7.49D) are particularly
important and show the robustness of the method in making drastic change in the
initial guess. This particular format will be used to show the computational results
in all conduction design problems discussed in this section.

The problem shown in Figure 7.49 is a one-dimensional conduction heat transfer
problem for which the analytical solution is available. The calculated height of the
conductor. normalized with the substrate length (Y/L). is equal to the analytically
calculated height for the specified surface heat flux.

Figures 7.50. 7.51 and 7.52 show similar results for different substrate tempera-
tures. In Figure 7.50, the temperature along the subsirate varies linearly (test Case
2). Note that in the designed conductor shape (Figures 7.50D) the conducting ma-
terial is accumulated near the hot side of the substrate and the conductor is thinner
near the cold side of the substrate to provide a uniform surface heat flux as dictated
by the target surface condition (Gtarget)-

In Figures 7.51 and 7.52, the substrate temperature varies nonlinearly (test Cases
3 and 4). Again, when a uniform surface heat flux. higher than the initially calcu-
lated surface heat flux in each case. was specified as the design objective and the
corresponding SSD problem was solved. a physically expected shape was obtained
(Figures 7.51D and 7.52D). It is seen that the designed shape. and in fact the con-
duction resistance of the final shape, changes appropriately in each case to comply
with the prescribed uniform surface heat flux. The flexibility and robustness of the
proposed method in starting with an initial shape too far from the desired one and
converging to the final shape in just few iterations is very desirable. For the results
shown here. 7 intermediate target heat fluxes have been used and each intermediate
stage of the design takes only three iterations to make the maximum absolute resid-
ual lower than .001. Most of the examples need only 3 or 4 intermediate stages to
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converge but obviously the required number of iterations in each intermediate stage
then increases correspondingly.

Figures 7.53 to 7.56 show the results obtained when the heat conductor is con-
strained to remain a member of the family H;;. The computational grid. used in
these cases. is (21 x 21) as was used in reference (54]. The initial guess in these design
cXaluples is a sewi-circular shape whose radius is equal to the substrate length. The
initial surface heat flux, giniria = h(T, — T,). was used to choose a target surface
heat flux (gearget > Ginitiat). In all cases the designed shapes are consistent with the
physical expectations and also comply with the results presented in [54].

The method works well regardless of the resolution of the grid or the initial
guess. However. to obtain a grid independent solution. the grid should be chosen
fine enough. In Figure 7.57 a (6 x 6) computational grid is used for the test Case 3
applied to a family H;; member. The boundary nodes move correctly to produce the
required shape but due to the coarseness of the grid the surface shape is not smooth.
The vertical scale in Figure 7.57D was changed to clearly show how the elements were
deformed in the final shape. In Figure 7.58 a fine (41 x 41) grid is used. It is seen
that the (41 x 41) grid practically produces the same result obtained by the (21 « 21)
grid.

7.4 Summary

In this chapter the proposed direct shape design method was used to solve some
engineering design problems.

First. the potential flow duct design concept was aided by the integral boundary
layer analysis method (introduced in Chapter 6) to modify initially guessed shapes and
design efficient short ducts. The required characteristics for the TVD's in different
duct design problems. which allow the designer to control the flow backlash and obtain
efficient shapes, were discussed and the following simple, physical based. guidelines
were proposed:

¢ Deceleration should be tailored conservatively along the walls and much of it
should be near the places where the boundary layer is thin and fresh.

e Acceleration can be very high but care must be taken to prevent deterioration
of the uniformity of the flow far upstream and downstream. Small controlled
undershoot and overshoot regions near the sharp pressure gradient regions are
helpful to assist the flow to become uniform in a short distance.
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o Turning of the flow requires pressure (or velocity) difference between the upper
and lower walls. In short duct design problems. this is the mechanism which
allows the designer to tune the TVD and obtain the required turning.

Second, the application of the method in the context of conduction shape design
problems was discussed. The computational results clearly show the applicability and
robustness of the method for solving this group of engineering shape design problems.
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Chapter 8

Direct Design: Primitive Variable
Formulation

8.1 Introduction

In previous chapters the secondary variable formulation was used and the application
of the proposed direct design method in the context of potential flow was discussed.
From the CFD point of view. it was shown how the method handled the diffusion
term in a general transport equation.

The primitive variable formulation has been successfully applied for solving dif-
ferent flow analysis problems. but there is not such a generality for the secondary
variable formulations at the present time. Therefore. the proposed direct shape de-
sign method has to be applied in the context of the primitive variable formulation if
it 1s intended to be a general shape design method.

In this chapter a steady ideal one-dimensional flow problem is considered using
the pressure and velocity as the flow variables. This simple problem provides a basis
for discussing some fundamental issues and paves the way towards multi-dimensional
complex cases. The algorithm which is used to obtain the final discretized form of the
governing equations and the method used to enforce the pressure-velocity coupling in
the numerical simulation step. are the most important contributions of this chapter
to the thesis. Also the content of this chapter can be considered as a complement for
the previous chapters in another sense: while in the previous chapters diffusion mod-
eling was discussed. the test cases in this chapter deal with the issues of convection
and source term modeling. Section 2 introduces the problem (physical model) and its
mathematical model. Section 3, provides a semi-discretized mathematical model for

161
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the flow phenomenon followed by a section about the linearization of the equations.
The issues of pressure-velocity coupling, convection modeling and interpolation for-
mulas are discussed in Section 5 which provides the final working equations for the
numerical solution. Sections 6 and 7 provide some test cases and show how the uni-
fied governing equations. obtained from the adopted numerical simulation technique.

successfully solve the analysis and shape design probles.

8.2 Level C Mathematical Model

It was shown in Chapter 2 that the conservative mathematical model for the momen-
tum constraint in steady inviscid flows is as follows!:

V-VV=_-VP (8.1)

The FVM requires an exact integral formulation of the problem as the starting
point. For the discretized solution domain shown in Figure 8.1. the required integral
expression is written as follows:

/Qc (64717) 40 T/Q (w) dQ = 0. (8.2)

Using the divergence theorem and multiplying the terms by the unit vector in the

—

direction of the flow (). the following integral equation is obtained:

-

/ (vv-rz)-?d,ufﬂi-(&) 9 = 0. (8.3)

The final form of the exact integral momentum equation is:

/uu(ﬁ-f)dA».’-/r P(ﬁ-f)dA:O. (8.4)

In this integral equation, u stands for the stream-wise velocity component.
An exact integral expression for the mass constraint can be obtained by a similar

approach:
/ u (ﬁ : Z) dA = 0. (8.5)

L. For the sake of simplicity. the superscript ~is dropped and P is used instead of P in this chapter.
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. e e

Figure 8.1: Discretization of the flow domain.

8.3 Level Dy Mathematical Model

It is common in CFD to approximately calculate the surface integrals. given in Eq.
8.4 and 8.5. with the mid-point rule. Applying this approximation. the exact in-
tegral governing equations are approximately represented by the following algebraic
equations?):

UpQe — UyQy, = 0 (8.6)

Uelle@e = UylyQy + Pele — Pyyly = Pp(a. — ay) (8.7)

The governing equations in the above form, which contain the integration point quan-
tities. have been named the level one approximation in the FVM (173]. Here these
equations, which are the earliest results of the discretization. are called the level Dy
mathematical model of the problem. To emphasize the physical meaning of different

2. In this chapter, capital letters are used for nodal point quantities and small letters are used to

denote the integration point quantities. Also. the summation rule is not applied to the subscripts.



8 Direct Design: Primitive Variable Formulation 164

terms. as is desirable in the FVM, Eq. 8.6 and 8.7 are expressed as below:

Fr-Fa=0 (8.8)
Fi—Fu=S8* (8.9)
The source. mass flow and momentnm fow terms? ave:

S? = a.(Pp —~ p.) + ay(pw — Pp) (8.10)

Fe = vettea, (8.11)

Fo = Uyllyy, (8.12)

F' = u.a. (8.13)

Ful = Uy (S.14)

8.4 Level Dy; Mathematical Model

Equations 8.8 and 8.9. the approximate governing equations of the flow problem.
are not appropriate for numerical solution. These equations contain all the relevant
physics and could be used in solving both analysis and shape design problems. How-
ever. there are three major problems which prevent these equations from being the
discrete mathematical model of the physical phenomenon appropriate for numerical
solution. The first issue is the non-linearity. The second issue is the appearance
of some quantities at the integration points which are not known in the discretized
domain®. The last problem is related to an interesting (and challenging) problem in
the Navier-Stokes equations. which is the absence of pressure in the mass constraint.
The first problem is discussed in this section and two others will be discussed in the
next section.

Recalling that the final (new) shape in shape design problems may be considered
as a perturbed shape. the source and flow terms are perturbed and linearized as below-

F=Fm0 L §F™, (8.15)

3. F™ and F* are not strictly mass and momentum flows. Only when the density is equal to one.
this terminology is correct. However for the sake of simplicity and to avoid new terminologies, F™

and F* will be called mass and momentum flows in this chapter.
4. The discretized domain just recognizes the nodal points.
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F* = FO 4 §Fu, (8.16)
SP = 8™ 4 §8°. (8.17)
The 0 superscript designates old values here and § stands for a variation (or distur-
bance) in the relevant quantity. The perturbation terms are approximated as follows:
\ aF™\° aF™\°
R i R - u’ -ad"). .
Fm (Ou)(u 1L)+(0a)(a a) (8.18)
OFY =~ a_]-‘"_ O(u—zo)—f- 0£ 0( %) (8.19)
T\ Ou ‘ Ja A '
. aSP\" as™\°
5% (Go-) =12+ (20) (o) +
as*\° asP\°
<0aw) (o0 =) + (aac ) (e —ac)
a8\ "
(0—5) (Pp— PR). (8.20)

Using the above approximations. the mass and momentum constraints at the level
Dqpr (the discretized linear version of the level Dy equations) will be obtained as:

(L7) ac + (LF) au + (LF) e + (L) wy, = R™, (8.21)

(LY} @e + (L3) @w + (L3) we + (LY) wy + (LE) pe + (LY) poy + (LY) Pp = RE (8.22)

The coefficients L. L¥. R™ and R* are functions of old geometrical and physical
quantities.

8.5 Level D Mathematical Model

It was explained in Chapter 2 that interpolation is required to relate the integration
point quantities to the nodal point quantities. Many different interpolation schemes
have been proposed. Schemes that appear to have only minor differences can result
in major changes in the numerical properties of the discrete equations. The goal is
to choose the best method. As discussed previously. the interpolation should be both
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accurate and have transport properties that agree with those of the governing equa-
tions. Some interpolation schemes like CDS. i.e. ue = 0.5(U, + Ug), do not satisfy
the transportive properties of the flow and therefore it is not surprising that they fail
to provide a good discretized mathematical model for the problem. Others, like the
very elegant proposal of Raw and Schneider [30]. more fully meet the requirements.
Sometimes the requirements for interpolation are counter-intuitive. For examplie. 1n
co-located methods. the velocity at the integration point apparently must be ob-
tained by two different interpolations: one for the velocity used to compute the mass
flow, and one for the convected momentum. Traditionally. failure to use different
interpolations leads to pressure-velocity decoupling [174].

While the use of two different velocity interpolations for mass and momentum
is almost universally accepted and used in co-located schemes to get the pressure-
velocity coupling. the author considers this to be Inconsistent or at least unnecessary.
A goal of this thesis was to lay the groundwork (in 1D) for a consistent formulation
in which the pressure-velocity conpling issue is treated independently and the inter-
polation formulas for the flow field quantities. including the velocity. are obtained
based on somie relevant governing equations.

The new scheme is essentially based on two concepts which will be explained in
what follows. Even though it is not claimed at this stage that the proposed scheme
will successfully cope with multi-dimensional problems. it appears to be the first
time that a co-located scheme has been successfully tested that does not use different
interpolations for the convecting and convected velocities to provide the necessary
coupling between the pressure and the velocity in the numerical inodel.

The first basic concept in developing the new scheme is the fact that in Eq.
8.20 and 8.21 six integration point quantities (a,. ay. e, uy,. P and p,,) appear and
therefore six interpolation formulas have to be specified. The interpolation formulas
for the geometrical parameters a. and a, are obtained by noting that the wall is
piecewise linear in the discretized space:

a, ~ 2P TAE (8.23)

_Ap+ Aw

w "~ 2

(8.24)

The physics of the flow provides the required constraints for finding appropri-
ate interpolations for the pressure and velocity at the integration points. The mass
and the momentum equations are used in their non-conservative forms as follows
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(conceptually this is based cn the idea developed in (30]):

[32;‘1)] =0. (8.25)
du 0 -
[ui + a—ﬂ = 0. (3.26)

These constraints have to be linearized and the derivatives have to be discretized.
To make sure that the velocity component. obtained from the momentum constraint,
satisfies the mass constraint. a factor of the mass equation is subtracted from the
momentum equation {173.175]. Therefore. the following equations are used as the
required physical constraints at the integration point ip:

du Ja
= +u'—=| = 27
[z 8w+u 0xJ,~,, 0. (8.27)
Jdu Jp wd Ju Jda
L E VI L0 2 = 2
[u dz Oz (a“) (a ar " (?x):'ip 0 (8.23)

Now. the derivatives in the equations have to be discretized. Following the general
policy in the FVM. the transportive properties of different terms are taken into the
consideration. In the present problem, only the convected velocity (specific momen-
tum) behaves parabolically. Therefore. the derivatives at the integration point e (for
example) are discretized as follows:

au convecting UE _ UP
— X —. 2
(01‘>e A (5:29)
ou convected Uy — UP
(ﬂ) T @A) (550
(?p PE - Pp
= = — 31
(ax)e Ry (83

aa ~ AE - AP D)
(%) ~ B0 (8.32)
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Following the above discretization scheme, the following equations are obtained:

a;(Ug — Up) + u(Ag — Ap) =0. (8.33)
Up +Ug 1 ug
e= 23\ Fr = Pa) + 55(As — Ap). (8.34)

It is seen that the integration point pressure does not appear in the above equations.
The modified momentum equation (Eq. 8.28) provides an interpolation formula for
the integration point velocity (u.) such that both momentum and mass constraints
have been considered to obtain an interpolation formula for .. Considering the role
of the pressure in the incompressible flow. it is expected that a modified form of the
continuity equation provides the required interpolation formula for the integration
point pressure (p.). The momentum equation. in some form. has to be used in
this modification such that both mass and momentum constraints are also being
considered in providing an interpolation formula for De-

The second basic concept in the new scheme is. indeed. the concept of a correct
second order constraint on the pressure field which is used to modify the continuity
equation to make it ready to provide an appropriate interpolation formula for the
integration point pressure. It is important to note that CDS has been used to
discretize the pressure gradient and it is expected that the predicted pressure field will
have non-physical numerical oscillations. In other words. as beautifully explained in
[176]. there is an unconstrained mode of oscillation for the pressure in the discretized
equations®.

In the new scheme. to introduce the pressure in the mass equation and also
prevent the modal oscillations in the pressure field, a correct second order constraint
on the pressure field is added to the continuity equation (Eq. 8.33). If the constraint
on the pressure field is correct. it is practically a zero term and the calculated velocity
field will satisfy the continuity equation. In other words. the conservation of mass, as
one of the governing equations. is enforced in the solution procedure. Furthermore, if
the constraint on the pressure field is second order. it will allow the integration point
pressure to appear in the discretization while the CDS. which models the elliptic
behavior of the pressure. is used. This also provides the required pressure-velocity
coupling in the interpolation formula for the integration point pressure.

9. The non-physical oscillations in the numerical solution have been called medal oscillations in (176]
and that terminology is used here as well.
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A correct second order constraint on the pressure field can be obtained by tak-
ing the divergence of the momentum equation. The result is the following Poisson
equation for the pressure:

Pp 0%
[022 = —u arg};p' (8.35)

The second derivative of the velocity in Eq. 8.35 is also constrained by the divergence
of the continuity equation. Taking the divergence of Eq. 8.25 and noting that the
second derivative of the cross-sectional area is zeroS, reveals that the required second
order constraint on the pressure field can be used as:

a*p
dz?

Equation 8.36 has to be discretized. made dimensionally consistent with the other
terms in the mass equation (Eq. 8.33) and used in that equation. For the integration
point e. it follows that:

AcaY Pg — 2p. + Pp

0 0 . (3 P -

a.(Ug —Up) + ul(Ag — Ap) = £ . 8.37

e =00+ te = e = () (238 831
Now. it is easy to re-arrange the above equation and obtain an explicit formula for
De:

=0. (8.36)

ip

Pg+Pp ul u82
pe = —32—+?(Up -Ug) + 2GS(AP‘“AE)- (8.38)

Similar expressions can be easily obtained for u, and Pw-
Having all these. the unified final (level D) mathematical model of the problem
is obtained as:
(CW") Pw + (CEP) Pp + (C3P) P+
(Cw?) Aw + (CE*) Ap + (C3*) Ag+
(C57) Uw + (CEY) Up + (C5”) Us =
(cmR) . (8.39)

6. The cross-sectional area is a linear function of z in each element.
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(C¥) Pw + (C¥°) Pp + (CEF) Pg+
(C3*) Aw + (CB*) Ap + (C¥) Ap+
(CW) Uw + (CE) Up + (C&¥) Ug =
(C*R). (8.40)

The first superscript in the C factors points to the relevant equation and the second
one represents the dependent variable which the factor multiplies. The subscripts
specify the node location in the computational molecule. The C factors in Eq. 8.39
and 8.40 are introduced in Appendix D.

Two boundary conditions for the pressure and velocity are required to render
the problem as a well-posed mathematical problem. Here, the velocity at the inlet
and the outlet pressure are specified. Note that the final (discretized) mathematical
model can be used in both analysis and shape design problems. In analysis problems
the geometry is known and pressure and velocity have to be calculated. In shape
design problems. the (target) pressure is specified and the velocity and the shape of
the duct (the wall profile) are calculated throughout the solution domain.

8.6 Validation

The proposed scheme has to be checked and validated. In particular. it is important
to check the scheme and determine whether it allows modal oscillations to appear or
not.

An interesting one-dimensional modal oscillation test method was introduced
and used by Karimian and Schneider [175]. Yin [176] used the same idea to test
one-dimensional computational molecules for the modal oscillations. The basic idea
in this test is to impose a local disturbance on the pressure and/or velocity fields and
see how these fields respond to the applied disturbance. In general, both the velocity
and pressure fields have to be checked because. due to the lack of the appropriate
pressure-velocity coupling in a scheme. modal oscillations in one field may not be
detected in the other one.

Figure 8.2 introduces one-dimensional modal oscillation test cases. some of which
were used in [175] and [176], and shows how the pressure. velocity or both can be
stimulated to trigger modal oscillations in one-dimensional numerical schemes.

In the constant area duct. duct 1 in Figure 8.2. both the pressure and the velocity
are constant and uniform along the duct and neither the pressure nor the velocity
is stimulated. Such a one-dimensional test case cannot detect any ll-posed one-
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Figure 8.2: One-dimensional test cases.

dimensional computational molecule which accepts multiple oscillatory solutions. If
a local momentum sink is located somewhere along the duct. the pressure drops and
if the computational molecules allow it. modal osciliations will appear in the solution.
Therefore. a duct with a momentum sink (or source) triggers the pressure oscillations
and may be called the pressure stimulation test case (duct 2). If there is a local area
change along the duct. the velocity as well as the pressure field will experience changes
and such a test simultaneously triggers both the velocity and pressure oscillations.
Therefore, this test may be called the pressure-velocity stimulation test case (duct 4).
It is possible to put a tuned local momentum source or sink in a variable area duct to
compensate the pressure change and just trigger the oscillations in the velocity (duct
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3). Such a duct would trigger only the velocity modal oscillations and may be used as
a velocity stimulation test case. P* and V" in the diagrams shown in Figure 8.2 are
non-dimensionalized pressure and velocity normalized with P, and V, respectively.

To check the proposed scheme in this chapter. only the pressure stimulation case
is used to determine whether the proposed scheme accepts modal oscillations or not.
The pressure-velocity conpling is checked simply by algebraic manipulations of the
interpolation formulas for the pressure and velocity (Eq. 8.34 and 8.38) to make sure
that the pressure and velocity are mathematically tied together and neither one can be
eliminated from the interpolation formulas. Because of the strong coupling, a modal
oscillation in the pressure field can cause constrained oscillations in the velocity field
and therefore if the scheme passes the pressure stimulation test case. it is concluded
that it does not accept modal oscillations. It should be mentioned that the test cases
shown in Figure 8.2 just detect any modal oscillations in the pressure or velocity
fields. A rigorous mathematical technique. for one-dimensional problems. has been
pruposed by Yin [176] which can predict the possibility and the shape of the modal
oscillations in a numerical scheme.

To not only check the proposed scheme but also give an idea that why and how the
modal oscillations appear in the numerical solutions. two il-posed numerical schemes
(called Schemes 1 and 2 in this chapter) are also developed and introduced. These
schemes use different interpolation formulas compared to the proposed scheme. It
has to be emphasized that proposing ill-posed interpolation schemes is easy and there
are many examples of such schemes. The interpolation Schemes 1 and 2. introduced
here. are just developed and used to show the importance of a logical and carefully
designed procedure in the process of developing a numerical scheme.

Scheme 1 uses Eq. 8.26 to provide an nterpolation formula for the unknown Ue-
An upstream difference scheme is used to discretize the velocity derivative and CDS
is used for the pressure gradient. The resulted interpolation formula is:

Ue = UP + < !

91,0
!

-

) (Pp —PE,‘). (841)

The interpolation formula for the pressure in the Scheme 1 is proposed based on the
elliptic behavior of the pressure in incompressible flows:
Pp + Pg
Pe = —F—.

-

(8.42)

Scheme 2 follows the same approach as was explained for the proposed scheme
except that the following equations are used as the governing equations at the inte-
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gration points:

[a"@ + u°@J = 0. (8.43)
Jz dz|.
ip

[ 00u | 9p]

%% © o]

Now. a pressure stimulation test duct which is discretized by 11 elements and a

momentum sink is located in the middle of it. is used to test the proposed scheme as

well as Schemes 1 and 2.

Figure 8.3 shows the result of the pressure stimulation test for Scheme 1. Note
that the pressure lends itself to modal oscillations and transfers the oscillations to
the velocity field. The problem with this scheme is that mass conservation was not
enforced to develop an interpolation formula for the integration point pressure. In
tact. Eq. 8.42 was not obtained from an appropriate form of the continuity equation
which relates the integration point pressure to other field variables.

=0, (8.44)

ip

‘e ! - G- CALCULATED SCHEME " |
I | —-—  EXACT 1
1 -
2 s 3 3
191e PR S J -
> I ‘ N ’
> :
) 7 B 3
0w ’ . ! 2
i ' '
3 ks
Q30—
3 s H '8 2 28 3
x. v,
[ = 9= GCALCULATED (SCHEME 1) |
1008 I EXACT H
1G04 -
oo
A P e @--0---8--0---q ©
Ay . [ l‘
- 4 A -
a99s N , . ,
N
amL * . s v, -
099 : ] - -] !
] s t s 2 24 3
X: W,

Figure 8.3: Pressure stimulation test for scheme 1.

In Figure 8.4 Scheme 2 is evaluated. Note that there are some local numerical
oscillations which are damped eventually. In this case the problem with illness of
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the computational molecules is more delicate. In fact the mass constraint is satis-
fied to provide an interpolation formula for the integration point pressure, but the
scheme does not care about the mass constraint when an interpolation scheme for the
integration point velocity is developed.
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Figure 8.4: Pressure stimulation test for scheme 2.

The performance of the proposed scheme. when the pressure-stimulation test is
applied. is shown in Figure 8.5. It is seen that the proposed computational molecules
do a great job and can be trusted as the discretized mathematical model for the
problem.

Figure 8.6 shows the results obtained when the pressure-velocity stimulation test
was used to check the proposed scheme. As is expected. the predictions. even for this
coarse grid, are in excellent agreement with the analytic solution and there are no
modal oscillations in the numerical solution.

8.7 One-Dimensional Duct Design

The unified formulation of the one-dimensional ideal flow. Eq. 8.39 and 8.40, is now
used to solve SSD problems. The pressure distribution along the duct is specified.

and the (symmetrical) distribution of the cross sectional area along the duct is directly
calculated.
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Figure 8.5: Pressure stimulation test for the proposed scheme.
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Figure 8.7 shows a trivial test case. An initial guess is provided by the designer for
which the calculated pressure distribution s shown as the initial pressure distribution.
The target pressure is a constant pressure along the duct. shown in Figure 8.7. The
code returns the expected shape. a constant area duct.
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Figure 8.7: Design of a constant area duct.

Figure 8.8 shows another design example in which the initial guess is a constant
area duct and the specified target pressure varies along the duct. It is seen that the
designed shape complies with the expected duct shape for the given target pressure.

8.8 Summary

This chapter provided an application example for the direct design method in the
context of primitive variable formulation. The selected problem was a steady one-
dimensional ideal flow. A unified discretized mathematical model. appropriate for
solving both analysis and design problems. was developed and tested. A physical-
based approach was proposed and used for finding the required interpolation formulas
and a technique was presented for introducing the role of the pressure in the continuity
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Figure 8.8: Design of a convergent-divergent duct.

equation and providing a good pressure-velocity coupling in the discretized mathe-
matical model. Even though the concepts of advected and advecting velocities were
used in the proposed numerical scheme. only one velocity interpolation formula was
used and two concepts of velocity (i.e. convected and convecting velocities) were not
used to solve the pressure-velocity coupling issue. The pressure-velocity coupling was
obtained independently and two concepts of velocity in the discretized space were
used just to correctly model the transportive properties of the mass-carrying velocity
and the velocity carried by the momentum. All required interpolation formulas were
derived from relevant governing equations and no ad-hoc interpolation formula was
used to relate the integration point quantities to the nodal point quantities.

It is hoped that this numerical scheme. which provides an appropriate pressure-
velocity coupling, and indeed the direct design procedure. can be extended to two
and three-dimensional thermo-fluid problems.



Chapter 9

Closure

9.1 Summary and Discussion

This research has develope:l a new numerical direct shape design method for thermo-
fluid engineering problems.

The fact that both the analysis and its associated shape design problem are
governed by the same physical laws and governing equations. led to the concept of
unified discrete formulation which can be used in the numerical simulation of both the
analysis and its associated shape design problem. Application of this unified discrete
formulation in solving engineering shape design problems shows that the primary
objective of the research. i.e. developing a direct design method for solving SSD
problems, have been realized.

Robustness and ease of the implementation and the physical clarity of the method
in directly calculating the shape in the physical space. were beyond the initial expec-
tations of the author at the beginning of this research. The method does not seem
to have any inherent limitations and its future looks very promising. The author
believes that the method. at its current stage of development. has distinguished fea-
tures. compared to other available techniques. and can be used in a general shape
design software for solving Laplacian-type problems (e.g. potential flow duct design).
Extension of the method to provide a unified discrete mathematical mode] for the
full Navier-Stokes equations seems a matter of implementation of the ideas already
introduced in this research. Of course, taking into account the three dimensionality
and physical complexities of the flow will be a major step forward and has its own
difficulties. However. no inherent limitation was implied by the proposed method and
considering the available CFD technology those difficulties can be resolved.

178
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The important contributions of this research to the available computational
methods in thermo-fluid mechanics may be summarized as below:

¢ A method was developed to obtain a unified formulation which governs both
the analysis and surface shape design problems. Using the proposed method, the
space coordinates of all the grid points in the discretized domain are considered as
unknowns and dircctly solved for in shape design probiems. An appropriate grid
evolution policy, which allows control and tracking of the grid, and an appropriate
linkage between the boundary points and internal ones. which allows to use the
extra boundary information to close the system of equations, were used to obtain
an appropriate unified formulation.

o A generalized inner variable theory was developed which allows the integral pa-
rameters in an arbitrary turbulent boundary layer flow be calculated. The theory
is a modified form of the theory proposed by Das [115]. but is superior and better
formulated. in the belief of the author. for making viscous corrections in poten-
tial flow soluticus. A three-equation version of the formulation was used to solve
some practical design problems. i.e. design of efficient short ducts. The limi-
tations of the integral boundary layer methods are well known and no claim is
made that the proposed method is robust or accurate in general. The robustness
and desired accuracy can be obtained. however. if a set of correlations (not a
single one) are available to choose from in different applications.

¢ Guidelines for the specification of TVD in short duct design problems. in the
context of SSD problems, were presented and used to design different efficient
short ducts.

® A new interpolation scheme was developed. in the context of co-located primi-
tive variable formulation, which provides a good coupling between the pressure
and velocity fields and does not use two different interpolations for advecting
and advected velocities. The proposed method has been only validated for one-
dimensional applications, but it seems to be extensible to multidimensional com-
plex problems as well. The general design method proposed in this thesis will,
the author believes, be extended to apply to more complex flows. and the method
will some day revolutionize the application of the CFD to the design of fluid and
heat flow surfaces.
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9.2 Recommendations For Future Research

The direct design concept is very attractive in many engineering applications. The
proposed direct surface shape design method in this thesis, at its current stage of de-
velopment. is comparable or superior to other available methods that have been specif-
ically developed for the design of two-dimensional potential flow ducts as well as the
algorithms for designing two-dimensional heat conductors. The present method ap-
pears, however. to be directly applicable for the design of complex three-dimensional
problems that involve viscous flow. To advance the capabilities of this method will
require further research on the topics briefly discussed below:

¢ Extension of the applications: secondary variable formulation.

o Physically simple 3 — D problems.

Extension of the proposed method to three-dimensional applications is
an area which was not considered in this research. It seemed appropriate
in this thesis to neglect the physical complexities like the viscosity effects.
turbulence and discontinuities in the flow field and Just concentrate on the
geometrical complexities first. The next goal is to provide engineers with a
direct shape design tool capable of modeling and solving both analysis and
shape design problems which are governed by the three-dimensional Laplace
equation. A robust three-dimensional potential flow design method is very
useful. and perhaps necessary. for attacking three-dimensional viscous flow
design problems.

o Physically complex 2— and 3 — D problems
The application of the method for solving complex two and three-dimensional
problems in the context of secondary variable formulation could be a logical
extension of the method. Considering the current state of the art of the
secondary variable formulations. it does not seem that there is too much in-
terest in this regard. However, from an academic point of view there are lots
of challenging problems when one tries to use dependent variables such as
vorticity and stream vector to attack complex three-dimensional problems.

e Extension of the applications: primitive variable formulation.

A similar research topic may be conducted to apply the method for solving
complex multi-dimensicnal problems in the context of primitive variable formu-
lation. It is now generally accepted that the primitive variable formulation is a
better candidate for solving complex problems and solving simple and complex
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two and three-dimensional shape design problems in the context of primitive
variable formulation would be highly welcomed by the engineering community.

¢ Extension of the applications: external low problems.
In this thesis the direct design method was used for solving some internal flow

problems. Applicability of the method in solving external flow problems has to
be studied.

¢ Extension of the applications: value design problems.

The concept of direct design may be applied in other design problems, defined
in Chapter 2. Many different design problems are now considered as inverse heat
transfer problems and are solved by different techniques. It would be interesting
to see how useful the idea of direct design might be in those applications.

¢ Implementation of the method: linearization.

In this research work. it was intended to show that the Newton linearization
was the most natural and best approach to linearize the governing equations
particularly in the context of (shape) design problems. However. when the prim-
itive variable formulation is used. different linearization scenarios deserve to be
considered. For example. in Chapter 8. the Newton linearization was not used
in the non-conservative form of the momentum equation used for developing an
interpolation scheme.

o Implementation of the method: solver technology.

Even though the direct design approach should not be blamed even if it uses
direct solvers for ever. it would be interesting to study the structure of the final
coefficient matrix in different applications. obtained in shape design problems.
and see how the iterative solvers deal with them.

¢ Implementation of the method: side constraints.

One of the attractive features of some of the optimization methods is the
fact that they can handle design constraints. Of course it is not a necessary
condition for a design algorithm to be able to handle the side constraints, but it
is clearly a very desirable feature. It will be a revolutionary design concept if a
multidisciplinary direct design is offered to the engineering community.

o Implementation of the method: grid related policies.
The adopted grid-related policies in this research were sufficiently good to not
impose any harm on the numerical solution procedure. However, it is not certain
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that these policies will be adequate in dealing with the complex problems in
which the quality of the grid is much more important. This is a vast area of
research and will be an important issue in later developments of the method.

e Implementation of the method: prediction of separation.

The engineering community eagerly looks for simple. robust and accurate
methods for the prediction of separation in preliminary design applications. The
hope for the existence of such a thing is still alive and further research is welcomed
in this area.

¢ Optimized target pressure distribution.

As was previously explained. in surface shape design problems it is assumed
that the designer is able to provide a good (optimized) target pressure distribu-
tion. In the literature it is quite common to assume this and nearly always this
ability is attributed to designer's experience. This is generally speaking true. In
this thesis some guidelines. in the context of internal flow shape design problems.
were provided. It would be helpful. however. to provide some general guidelines
for proposing good target pressure distributions in different flow problems or
surface heat flux distributions in thermal problems.

It is ironic that this very last recommended research topic was the first ques-
tion which was asked when this research started four years ago! Chapter 7 tried
to shed some light on this issue when the design of different diffusers. spacers
and nozzles was discussed. However. those explanations do not provide an ex-
haustive answer for this question. Therefore. the question is offered to the future
researchers as the last recommended research topic in this thesis.



Appendix A
Addendum to Chapters 3 and 4

In this appendix. the required information regarding to some mathematical expres-
sions. used in Chapters 3 and 4. are provided.

In the first sestion an appropriate equation is developed for the (diffusion) flow
erm. It is shown that how different quantities in a shape design problem can be
described by expressions consisted of two. constant and variable. parts in the context
of EB-FVM.

In the second section. it will be shown that how the length of a boundary element
face can be described in terms of the spine coordinates of the neighbor nodes.

A.1 An Appropriate Mathematical Form For the
Flow Term

It was shown in Chapter 3 that the flow term. at an arbitrary integration point. can
be mathematically described as below:

(A1)

As this equation shows. two different types of quantities need to be modeled and
calculated: a purely geometrical quantity (e.g. Az) and a gradient term (e.g. g—f)
In the following sub-sections appropriate mathematical expressions are obtained for

Ar, Ay, g—g, % and the flow term itself (Fo).
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A.1.1 An Expression For Az

In Chapter 3. the following differential equation was obtained for an infinitesimal
length (in an element) in the z direction:

0 d
dz = Zds + Zat. (A.2)
s gt
Considering the fact that the quadrilateral elements are bi-linear, one can write:
Oz Oz
Az = —As + —ZA¢. A
TEEST ot (4.3)
Using Eq. 3.19 and 3.20, Az can be written as below:

V. V.
Az = [(;1:1 - zg)% + (24 — 1:3)05;

" ' 0N1 . alv'_! ;
[(Li e .L‘.;)'a_t T (.L'_) - 133) Ot } At

J As+

(A4)

The derivatives of the shape functions in terms of the local coordinates can be calcu-
lated with the aid of Eq. 3.5 t0 3.8. It is easy to obtain:

% _ _aaj:{ (A.5)
% - _%_ (A.7)
% = —%. (A.8)

Using Eq. A5 to A8 in Eq. A4 and applying the Einstein summation rule results
in:

o oN: J z;. (A.9)

Az = {EAS + WAt

Therefore, Az can be mathematically described as:

A:L‘ = ;r;. (AlO)
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in which:
aN,' ON,- )
a; = EAS + EAt (A.11)

Note that «; is a constant quantity in both analysis and shape design problems which
depends only on the local coordinates. Therefore Az is a linear function of the z
coordinates of the neighbor nodes. A similar expression can be obtained for Ay:

Ay = agl. (AlZ)

A.1.2  An Expression For 90/0z

The assumed bi-linear variation of the unknown © in an element implies that:

a0 InN,

3 = 5 Om. (A.13)

In [108] it is shown that:

N Ny OQyON,
=7 (3 - 25e) A
Using Eq. A.14. 3.21 and 3.22. one obtains:
IN, 1 [ON, ON, ON,, AN,
3 = 7 [W?{'(Ul A vk rel O —ys)J -
L Rﬁ%% (1 — ya) + ag'“ 05\;* (ys ~ ys)J . (A.15)
This equation can also be written as below:
ONm 1 [(ON,ON, 0N, 0N,
Oz =_[<Bs ot ot ) }+
ION,, N, (?Nm 0N1
7 [( 9s ot T ot ) J +
1 IN,, aNa &)N 0N4
7 [ ( 9s ) J ¥
H( 01\; 0N‘ - a;\i 05‘?) 14] . (A.16)
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Using' the quantity 4m, as defined in Chapter 3 (Eq. 3.48). Eq. A.16 is written in

the following compact form:
a-}vm Tmn — Ynm
i = < 7 )yn. (A.17)

Therefore. the gradient of O in the = direction can ke expressed as:

a@ _ 7mn _7nm )
o ( o ),Jn@m, (A.18)

Similarly one can show:

0@ _ TYmn = Ynm ;

The Jacobian J in the above equations depends on both local and global coordinates
and therefore in the next sub-section an appropriate expression for the Jacobian is
obtained.

A.1.3 An Expression For the Jacobian (J)

The Jacobian is defined as below ( {108]):
_0z0y Qydz

= -2 _4Y A2
35t~ 0s ot (4.20)
Using Eq. 3.19. 3.20. 3.21. 3.22 and A.5 to A.S. one can obtain:
aN, 0N, JdN, 9N, \ o
T N A e (4.21)

This equation can be written in the following compact form in which the quantities
related to the local and global coordinates are separated:

J = Ypn (Zpyn — Lnyp) - (A.22)

A.1.4 An Expression For Fq

Now that appropriate expressions have been obtained for all the terms in Eq. A.L. it
Is easy to obtain:

Fo o <7mn — 7nm> (zpzn + ypyn) O, (A.23)

Yon Zpln — YpTn
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In this equation the contributions of local coordinates. global coordinates and the
physical unknowns at the neighbor nodes are separated and one can clearly see the
true mathematical form of the approximate flow term in the discretized form of the
Laplace equation in the context of the EB-FVM.

It is beneficial to define the parameter \,, as below:

/\m = (7""1 - 7n.m) (Ipzn + ypyn) . (A24)
Therefore the flow term can be written in the following compact form:
Am ‘
Fo = 7 Om. (A25)

A.1.5 Linearized Form of Fq4

It was shown in Chapter 3 that:

Fo = [BP] ©; + (Bf) w; + B y; + [B™°] . (A.26)
The coefficients B in this equation are defined as below:
9

B? = % (A.27)

PALON [TCION
Bf = Jop [ (Ton = Tnp) + @n (Vi = 1ip)] + ]Ux; £ (Yni = Yin) - (A.28)

[{Faly] 0 @0 o
x:I = Jup [ai (7pn - 7np) + Qn (7}71' - 7ip)] - JOI; (Vni — Yin) - (A?‘g)
B™® = — (Bfz! + BYy?) = 0. (A.30)

A.2  An Expression For the Boundary Element Face
Length

The length of the boundary element face Lpyy . shown in Figure 4.4. is equal to:

(s

2 2

Lew = [(zp —2zw)® + (yp ~ yw) ] (A.31)
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The Cartesian coordinates of points P and W are related to their spine coordinates
as below:

£p =zp + Rpcos 6°, (A.32)
Tw = T, + Ry cos 8", (A.33)
yp = yp + Rpsin 6%, (A.34)
yw =Yy + Rwsin 8%, (A.35)

Therefore. one can write:
Lpw = [RP + '-hLaprp + RW + '1LPWRW AéWW RpRy + ALPW] 7. (A.36)

Coefficienta A in Eq. A.36 are functions of the reference peint coordinates and the

angles of spines associated with nodes P and W as below:
Af;PW =2 [cos HP(L'}, -z} ) = sin 6% (yp — JW)J (A.37)
AT = 2[cos 8P (zjy — £p) + sin 8% (yiy ~ yp)] . (A.38)
ALEW = 9 (cos 8" cos 87 + sin 6" sin 7). (A.39)
AR = g2 1 LG+ YE + yig - 2zpriy + ypyiy ). (A.40)

The boundary line segment L pyy changes from the initial (old) value L%y to the new
value Lpw in shape design problems. One can estimate the new length based on the
old value as below:

Lo % L° T(apr) (R —R0)+(0LPW)O(RV—RO) (A.41)
P PW ORp P P Rw ; w) - A.

This results in:
Lew = (CL"™)Rw + (C5™%)Rp + (DEPw), (A.42)

in which:
2Ry + Al - (Abey) B
2L%y .

Lpw _
CL =
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2Ry + AR — (abgy) Y,

Clew — A44
: T (A4
DEY < Ly, — (CEY) RS — (CE) RS, (.49
Similarly. the line segment Lpg (see Figure 4.4) can be estimated as below:
Lpe = (CR"%)Rg + (CL*%)Rp + (DEee). (A.46)
in which:
Clee = QR% + AéPE — (A)[:’E'E) R?’ (A 17)
RO= 2LY ‘ '
PE
2RY 4+ ALre _ (ALPE) RO
CLPE="P‘ P “*PE E (A"I'S)
¢ = 218 ‘ '
PE
Dee = [0, (ChPE) RY - (C&r=) RY. (A.49)
The coefficients A in Eq. Ad7 to A.49 are defined as below:
Af;PE =2 [cos HP(;L'}, — L)+ sin HP(!/E - UEJ)] . (A.50)
AgPE =2 [cos 65(1:;5 —2Zp) +sin 9E(!/Z-7 - !/;9)] . (A.51)
AELE =9 (cos 6F cos 87 + sin 6% sin 6%) . (A.52)
AYPE =R e P ey 2Aepzy + ypyp). (A.53)



Appendix B

Addendum to Chapter 6:
Inner-Variable Theory

In Chapter 6. the general theory for obtaining the required equations in the inner-
variable approach was discussed. It was explained that if the mass and momentum
equations provide an equation for the unknown w.. three auxiliary equations are
required for II. §* and J7.

The equation for §* can be obtained by using the velocity law at the edge of the
boundary layer. The result is:

§* = exp [k“—‘—m— Bk]. (B.1)
(o
The required J* equation is obtained from the velocity law and the definition of the
displacement thickness:

5 = :‘1’: (1+10). (B.2)
An experimental correlation provides the required equation for II:
B = Cy+ C\II + C.IT%. (B.3)
Using the definition of 3 and the Bernoulli equation, Eq. B.3 can be written as:
0" = [—ui (Co + C\II + CgH"’)] [ue ‘f;;c] B . (B.4)

If one eliminates the parameter §* from Eq. B.2 and B.4. the following equation is
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obtained for §*:

v =k o[ du.]7[Co+ CII + CoII2
0% = —u; {UGEJ [ 1T } . (B.5)
Now, cancelation of §* between Eq. B.1 and B.5 results in:
am A ” avy | dte -
exp k; - 2[T — Bk) = [—ku; (Co+ CII + C'gH‘)] [v I (1+1II) . (B.6)

This equation can be solved for II. when u. and u, are known. Equation B.4 then
can be used for calculating §*. Finally. Eq. B.2 can be used to find §+:

6% = [u k™) [v (1 +II)] 7" (B.7)

Now. let’s derive four differential equations for the dependent variables in the four-
equation model of the inner variable theory.

B.1 Differential Equation For u,

The starting point for deriving a differential equation for u. is the combined (inte-
grated) mass and momentum equation:

df H + 2\ du. Tw
— + = —. :
de [( Ue ) dx J pul (B.3)
Using the equation obtained for 4 (Eq. 6.34) one can show:
df dé- v
L& B (B-9)
In this equation, 4 is defined as:
Burdé*  pBétdu, 25¥Pu.du. dtu. d (32, 19
A= - — + — | ="+ — 2]. B.
& u? dz * u? dr ud  dr w2 dzr \ 35 6 T+ (5.10)
Using Eq. B.10 in B.9 and organizing the terms results in:
du, o, dld dét dé-
In Eq. B.11 coefficients M are defined as:
5+
M=-2 3. (B.12)

20,2
k22
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véitu,
My=~—1 2, .
1, Fraz P (B.13)
U,
M, = —;; 3, (B.14)
22
M=t (B.15)
. [u. : 36 dvitu.p\ du.
1‘/[5 = (Z) - (uc — W) dz . (BIG)
Parameters 0, and 3, are defined as below:
Bi= 2+ Dy (B.17)
'T35 6 7 '
104 19
=+ 1
b 35 I 6 (B.18)
B.2 Differential Equation For [I
From Eq. B.1 one can obtain the following equation:
201
Ue = U~ (Eln ot + B) + Tu,. (B.19)
Differentiating this equation results in:
du. dIl Coodot ,dd .
[ZVI] I - [AVg} T -+ [./\/3] x -+ [ZV.;J E = [sz} . (820)
In Eq. B.20 coefficients V are defined as:
I 211
= _ N 2
1V1 = klnd + B ] 2 . (B..l)
2
N, = ‘% (B.22)
lV.; = 0. (B.'.Z-L)
N = e (B.25)
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B.3 Differential Equation For §+
Equation B.4 can be differentiated to give the following differential equation:
du, dll dst dé-
—_— | — = _ e . 2
PISE+(PI G + IR S+ (P = [y (B.26)
In Eq. B.26 coefficients P are defined as:
‘)
P, = ?L (Co+ CiII + C.IT%) . (B.27)
Lr
Pa=0 (B.29)
Pi=Ltu due (B.30)
ul o dr
o° du, \° - dPu,
B.4 Differential Equation For §*
Finally. differentiating Eq. B.2 results in:
du, dll dé+ do-
St {5+ —— 4 - = . .32
Q7+ (0 3+ (0 S + (04 T = Q4] (8.32)
In Eq. B.32 coefficients Q are defined as:
Q:=0 (B.33)
Q=1 (B.34)
w0k
Q3 = U(5+: (B-35)
ku,
Qs= -2 (B.36)
vot
Ok du,
Qs = —— (B.37)



Appendix C

Addendum to Chapter 6:
Prediction of Separation

In this appendix some short-cut methods appropriate for predicting the separation in
preliminary designs will be described. These methods have been used in the context
of external flows (mostly flow over airfoils).

C.1 Method of Stratford

The Stratford method [177.178] is based upon the equations of motion and the anal-
ysis of the turbulence utilizing either dimensional analysis or mixing length theory.
Moreover, a closed physical picture is attempted for the flow. The method postulates
that the turbulent layer in a pressure rise may be divided into two distinct regions.

The outer layer is a historical region in which the pressure rise Jjust causes a
lowering of the dynamic head profile. the losses due to the shear stresses being almost
the same as for the flow on a fat plate.

In the inner layer. on the other hand. the inertia forces are so small that the
velocity profile is distorted by the pressure gradient until the latter is largely balanced
by the transverse gradient of shear stress.

A summary of the treatment is sketched in F igures C.1 and C.2.

C.1.1 The Outer Layer

For the outer layer, downstream of Z,. the shear forces are supposed zero and in such
a flow the total pressure will remain constant along a stream line and Bernoulli's
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Figure C.2: Effect of the sudden pressure rise on the boundary layer velocity profile.

equation holds along the streamline S:

9Pt
as

This means that the dynamic head at any point is equal to the dynamic head on
the same stream line at z, minus the rise in static pressure. For the real flow the

=0. (C.1)
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Bernoulli equation being replaced by:

f)P,ot 07'
_— = 2
a8 a8’ (C.2)

It may be assumed that the distribution of g—; 1s similar to a second flow which has
identical conditions as far as z = z,. but which continnes at constant static pressurc
there after. because the effect of the pressure rise in the outer part of the boundary
layer in this region is to cause a general lowering of the velocity profile rather than a
change in shape.

If we denote the comparison profile by a dash. and 1; is the value of P at the
edge of the inner layer it may be shown that for the outer layer (¢ > ;) we have:

1, L,
3P (@) = spu(2.4) = (pz ~ pa,). (C.3)

This means that the dynamic head at any point is therefore equal to the dy-
namic head at the corresponding point in the comparison flow minus the rise in static
pressure. Equation C.3 represents for the outer part of the boundary layer a solution
which is almost exact at positions a short distance downstream of zo. and which would
be expected to indicate at least the main behavior for large distances downstream of
L.

For an alternative assessment. the reduction in the value of the local dynamic
head from its initial value may be divided into three parts. these being due respectively
to the rise in static pressure. to the viscosity between £ = 0 and z = z, and to the
viscosity downstream of z,. Of these three effects, the first two have been included
exactly in equation C.3 and the third effect which is likely to be relatively small for
the outer part of a boundary layer at separation. has been allowed for approximately.

The standard solution required for #’, the velocity in the boundary layer without
pressure rise. may be taken as the following senu-empirical form:

,ul /

<<

o = (5). (C.4)

92
5 = (n+1)n(n+..)6,’ (C.5)
' = 0.036zRe°2. (C.6)

n varies slightly with the Reynolds number but is usually close to 7.
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Summing up, the action of the pressure rise in the outer layer has been interpreted
as a direct reduction in the dynamic head along each stream line, the only effect of
the shear forces being to cause a superposed loss. It can be said that in the outer
layer the back pressure force is balanced by the fluid inertia forces.

C.1.2 The Inner Layer

In the inner layer the inertia forces at the wall are zero, so that the pressure forces
must be balanced entirely by the gradient of the shear force. This means that for
y =0:
dp _Or
dz ~ dy
as follows from the equation of motion. Such a balance at the wall can occur only
after there has been a change in the profile shape.

In the inner layer there is a transition between fluid at the wall. for which the
pressure force is balanced entirely by the shear force gradient. and fluid in the outer
layer, where the pressure force causes simply a direct reduction of dynamic head.

It may be shown that close to the wall the asymptotic form of the separation
profile is as follows:

(C.7)

4 Jp
u = p—kz(a)y. (C.S)

in which & is the Karman constant. This equation could be regarded as the first term
of a series expansion representing the whole iuner layer profile. To account for the
effects of higher terms. regardless of their sources. a simple empirical factor 3 has
been proposed by Stratford. The modified form of the equation C.8 becomes:

L 0p
p(kp)* " Oz

Thus close to the wall the asymptotic form of the separation profile is that the
velocity is proportional to V-

)y. (C.9)
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C.1.3 Separation Criterion

At the joining between the inner and outer layers. continuity is specified in . v and

g—; and this results in the following equations:

f(n)c,, \/ 4Cy L£(107%Re, )%t = 11.3428. (C.10)
Y u

Fln) = L (C.11)

n = log Re,. (C.12)

_ Pz — Pz,
“=Tnw Ty
Re, being the Reynolds number based on the local value of the distance z and the
peak value U, and J = 0.66 or 0.73 for —ﬂ<001 drﬂ>0

Based on the Stratford criterion. separation occurs when the left hand side of
equation C.10 exceeds the right hand side. So the margin of safety is defined as the
difference between the right and left hand side of the equation C.10.

Experiments have shown that for a separating turbulent boundary layer the value
of (J:TCE) is in the neighborhood of unity and so the value of C, at separation would
be between 0.3 and 0.5.

For pressure distributions having an initial region of favorable pressure gradient.
the value of z to be used in the above equation has to be an equivalent value. the flow
with favorable gradient being replaced by one at constant pressure and with a main
stream velocity equal to the peak main stream velocity. The criterion of equivalence is
the value of the boundary layer momentum thickness ¢ at the point of peak velocity:

)°. (C.13)

4Y° tL 3
Lo = Ty d.' . .1«
z /O (570X (C.14)

If the initial boundary layer is laminar also. using the standard assumption of
sudden transition. one can obtain an equivalent condition:

lU"‘-X'uin , X"us
-(Xtut)S(_)S[,/o (=)d(=)]* X, -.-/:‘ (FO) dX. (C.15)

U,
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where X and z are the distances from the actual and the equivalent leading edge. suffix
(t) indicates values at transition and suffix (o) refers to conditions at the position of
peak velocity or at transition whichever is later.

C.1.4 Modification of the Stratford Criterion

For a fully developed velocity distribution inside a duct which faces a sudden adverse
pressure gradient. it may be assumed that the displacement thickness of the boundary
layer at the starting point of the adverse pressure gradient can be used for finding
the equivalent leading edge which is required in the Stratford method. This matter
should be further investigated and the validity of the Stratford method for duct flow
problems has not been proven yet.

C.2 Method of Dulikravich

The criterion for separation in this method has been obtained based on the similarity
between this phenomenon and a stmilar process in fracture mechanics [179]. Based on
this criterion. the separation occurs in a point at the vicinity of the boundary layer
which the rate of decrease of the kinetic energy of the main stream is the minimum.
For a steady incompressible flow. this criterion results in the following expression:

v, \? v,
9 -— —_— =
-(05) +V’<05‘-’> 0. (C.16)

V, is the tangential component of the velocity at the wall. As an example of the
application of this criterion. it has been used quite successfully in predicting the sep-
aration point of the flow over a two-dimensional cylinder. For such a flow, V, is equal
to Vey/2 - 2cos(26) and one can obtain 8, = 54.73°. where 6 is measured from the
trailing edge. Various experiments have reported the separation point for this situa-
tion as 52° < 6, < 58° for flows with Reynolds numbers above 10°. Better agreement
between this theory and experiment is expected for higher Reynolds numbers (179].

C.3 Method of Page

Page has presented an approximate theory for flow separation which does not go into
great detail for any single class of flows. such as incompressible flows. but applies
over a large range of conditions in a unifying manner {180]. Figure C.3 shows the
phenomenological model of a steady separated flow as provided by Page.
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Free boundary layer The pressure increase region

Potential flow \ ~ 1.

Altached boundary layer

Separaton point 1
Reversed flow

Figure C.3: A phenomenological model of a steady separated flow.

The model portrays six entities in a separated flow. They are:
o The attached boundary layer.
o The free boundary layer.
o The reversed flow.
e The wall.
o The potential flow.
o The pressure increase region.

All of these interact with one another. Page acknowledges that each flow region is
influenced by its boundary conditions and the boundary conditions. themselves. in-
teract with each other. Nevertheless. he tries to analyze each component or entity of
the model separately. He argues that after the analysis of each component is com-
pleted. the results may be merged to give the simultaneous solution. Page provides
a criterion for the prediction of the incipient separation [180] which correctly mod-
els the variation of the separation point with the flow condition but fails to provide
acceptable quantitative results.
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C.4 Method of Head

Head’s method is an integral method that can be used both for calculating the bound-
ary layer parameters, as well as for predicting the position of separation in turbulent
flows [181]. It uses the momentum integral equation and two auxiliary equations.
namely. the Ludwieg-Tillman expression for the skin-friction coefficient and a shape
factor G(H) relationship obtained from the entrainment properties of the turbulent
boundary layer.

Head’s method. like most integral methods. uses the shape factor H as the cri-
terion for separation. Although it is not possible to give an exact value of H cor-
responding to separation, when H is between 1.8 and 2.4. separation is assumed to
exist. It has to be noted that close to separation the shape factor increases quickly
and the difference between the lower and upper limits of A makes very little difference
in locating the separation point.

C.5 Method of Goldschmied

Goldschmied's separation criterion. like Stratford's method. is based on the existence
of iuner and outer regions in the turbulent boundary layer. The Goldschmied sepa-
ration criterion has been obtained as below [182]:

(Cp),.,. = 200CF. (C.17)



Appendix D
Addendum to Chapter §8

The unified governing equations. appropriate for solving both analysis and shape
design problems. were derived in Chapter 7 in the context of primitive-variable (P~ V)
formulation. The final set of algebraic equations (the level D mathematical model)
was obtained as:

(CH") Pw + (CBP) Po + (CRP) Po+

(C%*) Aw + (CP*) Ap + (C34) Ag+

(CF°) Ui + (CRY) Up + (CEY) U =
(cmB) . (D.1)

(CW) P + (CH) Pp + (CY¥F) Py

(Cif) Aw + (CE") Ap + (CH*) As+

(C) Uw + (CH) Up + (C¥) U5 =

(cR). (D.2)
The coefficients used in these equations are defined as:
a,

Cif =- (ﬁ) (D.3)

0 0

mpP __ a, ay
CF = <2u2 ‘7110) (D4)
m a, -
CEPE_(%S) (D.5)



Addendum to Chapter 8 203
Cat=0 (D.6)
Cpt = —u (D.7)
Cpt=u? (D.8)
o0
el = _ (‘%) . (D.9)
Cp¥ = 1 (a? %) (D.10)
P = 9 a, —a, :
3]
cpl = (-’)—) . (D.11)
cmE = (alu? — aguy) . (D.12)
uP 3 0
Cy = -5 (an) . (D.13)
1, 3
Ctx:‘:P = (5(13 -+ ;(13)) (Dl-“
CuP — 1 0 D.15
E = —E(ac) ( . D)
ud _— 1 Q 0
C‘V =5 (PP —pw) (D]'G)
1
Cy' =3 (pg 0 2u2,) (D.17)
Cy' =ul +5 (sl - Pp) (D.18)
Cy = —g(vz" ) (D.19)
W = 9 Lay Gy .
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1
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C** =al(p0 - PR+ 2T +a (PR -pl—22) (D.22)
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