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Abstract

This work develops a nonconservative finite volume approach for solving two-
dimensional partial differential equation option pricing models. The finite volume
method is more flexible than finite difference schemes which are often described in
the finance literature and frequently used in practice. Moreover, the finite volume
method naturally handles cases where the underlying partial differential equation
becomes convection dominated or degenerate. This work will demonstrate how a
variety of two-dimensional valuation problems can all be solved using the same
approach. The generality of the approach is in part due to the fact that changes
caused by different model specifications are localized.

For convection dominated pricing problems, a compact positive coefficient
scheme is developed. The positive coefficient scheme allows accurate solutions of
degenerate problems to be obtained with essentially the same computational cost
as nondegenerate problems.

The conditions under which finite volume/element methods, when applied to
the two-factor option pricing equation, give rise to discretizations with positive
coefficients are also outlined in this work. The importance of positive coefficients in
numerical schemes is often stressed in the finance literature. Numerical experiments
indicate that constructing a mesh which satisfies the positive coefficient condition
may not be necessary, and in some cases appears to even be detrimental. As well,
it is shown that schemes with negative coefficients due to the discretization of the
diffusion term satisfy approximate local maximum and minimum principles as the
mesh spacing approaches zero. This finding is of significance since, for arbitrary
diffusion tensors, it may not always be possible to construct a positive coefficient
discretization for a given set of nodes.

In addition, it is shown that several lattice methods are equivalent to known

finite difference/element schemes.

v
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Chapter 1

Introduction

The gross market value of outstanding over-the-counter derivative securities at the
end of 1998 has been estimated to be roughly 3.2 trillion U.S. dollars [28]. It goes
without saying that the formulation of sound pricing models and the development of
accurate numerical techniques to solve pricing models in the absence of closed-form
solutions are important.

Options are a type of derivative security. Perhaps the most common numerical
methods used to model the value of options are lattice methods. Although it has
been argued (see [38, 76]) that lattice methods are in fact finite difference schemes,
it appears that it is common in finance to consider finite difference schemes and
lattice schemes as qualitatively different. That is, finite difference schemes are
discretizations of continuous models while lattice methods are implementations of

discrete models. For example, the following passage is taken from [63] (p. 4):

It is well known that the price of the option can be computed by
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solving a second-order partial differential equation (PDE). The binomial
pricing method can be interpreted as a finite-difference approximation
to this PDE, but it is actually more helpful to think of the binomial
pricing method as being an ezact calculation relative to a discrete-time
discrete-state Markov process which approximates the log-price process.

The binomial method [19] will be shown to be equivalent to an explicit finite dif-
ference scheme in Section 5.5.1.

It is undeniable that lattice methods are simple and efficient techniques for basic
pricing problems. One can implement such lattice schemes without knowledge of
complex mathematics. However, for more complex option pricing problems, the
simplicity of lattice methods breaks down. Evidence of this is provided by the
myriad of papers devising lattice schemes for pricing, for example, Asian and barrier
options.

In [81] it is shown that certain lattice methods for the pricing of Asian options
have a greater computational complexity than standard finite difference/volume
approaches. Furthermore, in [31] it is shown that a known lattice scheme for the
pricing of Asian options does not converge. It appears that for complicated option
pricing problems, viewing lattice schemes as models (even implicitly) and not as
numerical techniques is no longer constructive and can be detrimental.

The primary purpose of this work is to develop a general discretization for
the solution of two-factor PDE option pricing models. By general, we mean that
the discretization can be used to price different types of options with little or no
modification. Such an approach differs from lattice techniques, where different
lattice schemes are often devised to price different types of options.

Two-factor option pricing problems will typically have one or more of the fol-
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lowing characteristics:
e Accurate solutions are required only in a small region.

e Constraints on the solution, such as barriers, which can cause irregular bound-

ary geometries (see [57]).

e The underlying convection diffusion equation can become convection domi-

nated or degenerate.

¢ The treatment of boundary conditions is complicated by the fact that the PDE

can degenerate to a first-order hyperbolic equation normal to the boundary.

Consequently, to handle all of the above situations we will use a finite volume
approach defined on triangles to discretize the PDE model.

The finite volume discretization supports the use of irregular triangular meshes
and the use of perpendicular bisector or centroid control volumes. There is some
evidence to suggest that, in some circumstances, centroid control volumes can dete-
riorate accuracy [6] (which will be investigated in this work). Unlike the orthogonal
grids that are typically used in finance, triangular meshes allow one to insert nodes
near the region of interest, without introducing nodes elsewhere in the domain.
Triangular meshes can also readily support irregular boundary geometries caused
by constraints on the solution.

The discretization differs from traditional finite volume approaches because it
is nonconservative. Option pricing PDEs are originally in nonconservative form,
thus the discretization can be applied without manipulating the original PDEs.

The nonconservative discretization often simplifies the treatment of boundaries by
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allowing one to solve the original equation on portions of the boundary (typically
where the value of an underlying factor approaches zero). In such cases, the need
for applying boundary conditions (there are often no explicit boundary conditions
for pricing problems) on those portions of the boundary is eliminated.

Option pricing models may become convection dominated or degenerate. For
example, some path-dependent option pricing models are degenerate because the
diffusion tensor is singular. To ensure the generality of the discretization, a positive
coefficient scheme is developed for the convective terms in order to ensure that
discrete local maximum and minimum principles hold. The positive coefficient
scheme is defined on irregular triangular meshes and uses a modified van Leer flux
limiter (a previous work [81] developed a total variation diminishing (TVD) scheme
for non-uniform one-dimensional grids using the modified van Leer limiter). The
positive coefficient scheme is compact, that is, the Jacobian has the same nonzero
structure as would result from using a centrally weighted scheme. Furthermore,
diffusion in the underlying PDE can be used to reduce the amount of augmenting
diffusion introduced by the scheme.

The PDE for the fair market value of an option is sometimes deduced via dy-
namic programming principles, and hence this results in a Hamilton-Jacobi-Bellman
(HJB) equation. For a rigorous account of existence/uniqueness issues associated
with solutions of HJB equations, we refer the reader to [20, 27]. The notion of
viscosity solutions is used in the absence of classical solutions for HJB equations.
Viscosity solutions of Hamilton-Jacobi equations are analogous to entropy condition

satisfying solutions of hyperbolic conservation laws [56]. Note that Hamilton-Jacobi
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equations are not in conservative form. In the one-dimensional case, it has been
shown that monotone numerical schemes will converge to the viscosity solution for
a first-order Hamilton-Jacobi equation [21] and the entropy condition satisfying so-
lution for a hyperbolic conservation law [37]. For detailed accounts of the theory
of entropy condition satisfying solutions of hyperbolic conservation laws, we refer
the reader to [50], [66] and [48]. Recently the use of positive coefficient schemes
for first-order Hamilton-Jacobi equations has been demonstrated in [7]. In view
of the success of finite volume methods for conservative problems, it appears that
it would be a natural extension to use such approaches for the discretization of
the Hamilton-Jacobi-type option pricing equations. Although we are dealing with
essentially linear equations (weak nonlinearity is introduced by American-type con-
straints), we expect that the finite volume method formulated in this work can be
generalized in a straightforward fashion to more complex nonlinear PDEs arising
in finance.

In the above, the importance of discretizing the convective term in convection
dominated option pricing problems so that (ignoring any negative contributions
made by discretizing the diffusion term) the coefficients are ensured to be positive
was discussed. In this work, the finite volume approach that is developed will also
be used to investigate the effect of negative contributions to coefficients from the
discretization of the diffusion term in the option pricing PDE. Specifically, we will
determine if such contributions result in a reduction in the quality of solutions for
several sample pricing problems.

Finance literature stresses that when the underlying pricing equation is dis-
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cretized using an explicit finite difference scheme, the coefficients in the resulting
difference equations should be nonnegative {13, 41]. The nonnegativity of coeffi-
cients is a sufficient condition for the stability of a consistent explicit scheme [33].
For the one-dimensional diffusion equation (with linear basis functions), nonneg-
ativity is also necessary for stability. Although nonnegative coefficients are only
sufficient conditions for the stability of explicit schemes in two dimensions, they
are also sufficient conditions for schemes of arbitrary temporal weighting to possess
discrete local maximum and minimum principles (see [59, 29, 58, 81]). Of course,
there exist two-dimensional and higher dimensional explicit schemes that do not
satisfy the positive coefficient condition, but are stable nonetheless [11].

Lattices (explicit finite difference/element schemes) are generally constructed in
such a way as to ensure that the coefficients are positive (see [10, 1, 43, 34, 44]).
This is perhaps primarily due to the fact that the coefficients are viewed as risk-
neutral probabilities [26]. The following quote from [34] (p. 14) demonstrates the
view of coefficients as probabilities and highlights the emphasis placed on positive

coefficients (probabilities):

... the ... model may produce a negative probability which may cause

the model to explode, ...
It is not always possible to construct a finite difference or finite element scheme with
nonnegative coefficients. Whether such a nonnegative scheme can be constructed
depends on the form of the diffusion tensor. That is, the diffusion tensor must be
constant so that, effectively, a rotation can be performed to remove any cross-partial

terms. If a scheme produces negative coefficients then one cannot generally ensure
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that discrete local maximum and minimum principles hold. Hence, the scheme can
possibly introduce spurious oscillations into the solution. In Section 5.5.2 it will
be shown that the two-dimensional positive probability lattice scheme in [34] has
positive coefficients, in part, because it is in fact an explicit finite element scheme

which uses skewed or nonorthogonal quadrilateral meshes.

1.1 Contributions

The main contributions of this work are:

e The formulation of a nonconservative finite volume discretization defined on
irregular triangular meshes that supports both perpendicular bisector and
centroid control volumes. The discretization allows us to work directly with

the original pricing equation.

e The development of a compact positive coefficient scheme for convection.
The scheme maximizes the use of central weighting in order to minimize the
amount of augmenting diffusion that is required to obtain positive coefficients.
To the best of our knowledge, a high-order positive coefficient scheme that is

compact has not been previously developed.

e Demonstrating that several lattice schemes are equivalent to known finite

difference/element schemes.

e Establishing that high quality solutions can be obtained when the discretiza-

tion of diffusion produces negative coefficients. Moreover, demonstrating that
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under certain criteria, solutions of poor quality may result when the discretiza-

tion of diffusion ensures positive coefficients.

e Demonstrating that a wide array of option models, including models of two-
asset options, path-dependent options and convertible bonds, can all be solved
within the same numerical framework. The discretization makes no assump-
tions about the underlying factors or the processes which they follow (except

that we only consider processes that do not permit negative factor values).

1.2 Outline

The outline of this work is as follows. Chapter 2 presents the underlying option
pricing PDE and discusses some of its properties. Chapter 2 also outlines the sample
pricing problems which will be used for the numerical experiments in this work. The
nonconservative finite volume discretization is derived in Chapter 3. In Chapter
4 a positive coeflicient scheme for convection is developed. Chapter 5 contains a
discussion of when one can ensure that the finite volume discretization of diffusion
will result in positive coefficients. It is shown in Chapter 5 that discretizations of
the diffusion term which produce negative coefficients will approximately satisfy
discrete local maximum and minimum principles. It is also shown in Chapter
5 that several lattice methods are equivalent to known finite difference/element
schemes. The numerical results are contained in Chapter 6. Concluding remarks

and suggestions for future research are in Chapter 7.



Chapter 2

Pricing Problems

Before outlining the pricing problems that will be examined in the numerical exper-
iments of this work, this chapter will introduce the form of the underlying PDE for
the pricing problems and describes some situations in which the underlying PDE
becomes convection dominated or degenerate. In addition, an explanation is pro-
vided for the observation that the underlying PDE can often be solved on portions

of the boundary.

2.1 Some Properties of Option Pricing PDEs

The value of many financial options is conveniently modelled in terms of two factors
[77). For example, suppose that the value of an option U is a function of two

stochastic variables (z, and z;) and time (¢*). The time evolutions of z; and z,
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are given by the stochastic differential equations (SDEs):

d.'Bl = al(zl)dt' + bl(zl)dWI (2.1)

and

dz: = az(zg)dt- + bz(zz)sz, (2.2)

where W, and W, are Wiener processes (see [55] for a discussion of SDEs).! The
two Wiener processes are related through their correlation coefficient p.

Based on the contingent claims analysis developed by Black and Scholes (8], and
Merton [52], a partial differential equation (PDE) for the price of an option which
is a function of the above two factors and ¢t* can be derived. Readers unfamiliar
with this theory can find readable accounts in [40, 77]. The final form of the PDE

for the option price U = U(z;, z,,t%) is

Ue -V-VU+(DV)-VU —tU + P =0, (2.3)

where D = D(z;, z;) is the diffusion tensor, V = V(z,, z,) is the velocity tensor, r
is an interest rate and P is a penalty term which is used to enforce constraints (see
[80]). Some of the possible constraints include early-exercise features (American
options), conversion provisions and call provisions. Effectively, P adds or subtracts

value in order to ensure that the constraints are met. We will be solving equation

INote that a; and b; can also be dependent on t*.
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(2.3) backwards in time from option maturity (t* = T') to the present (t* = 0).
Consequently, by letting ¢ = T — t* we can convert equation (2.3) into the more

familiar form:

U=-V-VU +(DV)-VU —rU + P. (2.4)

Equation (2.4) is simply the two-dimensional convection-diffusion equation along
with an exponential decay term due to a discounting effect.

The diffusion tensor D is symmetric positive semidefinite and is usually a func-
tion of the space-like coordinates z, and z,. Typically, z; and z, represent quan-
tities such as asset value or interest rate (which are usually constrained to be non-
negative). In the examples considered in this work z,,z; > 0 (before any transfor-
mations are made). It then follows that we must have (to ensure the nonnegativity

of z; and z,)

ay(z,) > 0 and by(z,) = 0 as z; — 0, (2.9)

and

az(z2) > 0 and by(z2) > 0as z2 > 0 (2.6)

in equations (2.1) and (2.2) [35].2 As a consequence of (2.5) and (2.6), the compu-

2If z; is an asset price, then we must have a;1(z;) = 0 and b;(z;) = 0 as z; — 0 in order to
avoid arbitrage opportunities.
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tational domain can be restricted to

0<zy<ooand 0 < z; <oo.

The diffusion tensor has the form [40]

bi(z1)?/2 b1(z1)b2(z2)p/2
b1(z1)b2(z2)p/2 bx(z2)%/2

D($1,22) =

It therefore follows from (2.5) and (2.6) that

0 0

lim Dz, ) =
! 0 b2(z2)?/2

and

51(1’1)2/2 0

limoD(:cl, zy) =
= 0 0

That is, there is no diffusion normal to the boundaries at £, = 0 or z; = 0. Note
that if the diffusion goes to zero sufficiently fast, then the underlying PDE becomes
first-order hyperbolic on those portions of the boundary. Another consequence of
the fact that z; and z, cannot become negative is that only outgoing information

is required at z; =0 or 2z, = 0. Thatis,at z; =0 or z; =0

V.i > 0, (2.7)
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where 7 is the outward pointing unit normal. In general, if V -7 < 0 or if there is
diffusion normal to a boundary, then a Dirichlet condition must be imposed.

In some situations there may be no diffusion in one of the coordinate directions
throughout the domain. This is the case for some options where the payoff is
a function of the continuously monitored average value of the underlying asset
(Asian options). In such situations equation (2.4) is degenerate (with all the usual
difficulties).

We can also see that equation (2.4) is in nonconservative form. This is not an
artifact of some manipulation of the PDE, but is a direct consequence of the contin-
gent claims analysis. Since V is generally an arbitrary function of the coordinates,
it is advantageous in terms of the discretization to leave the convective term in
nonconservative form.

Alternatively, we can write equation (2.4) as

U.=(-V—-(VD))-VU+V.-DVU —rU + P, (2.8)

where V' is the transpose of V. The diffusion term in (2.8) is in standard con-
servative form, which is convenient for integrating by parts in finite element dis-
cretizations. This approach was used in [32] and [80]. However, there are several
disadvantages to this approach. The differentiation of the diffusion tensor may in-
troduce singularities into the effective velocity (—V — (V'D)’). Furthermore, for
some option models a PDE will be solved at the boundaries. In such cases the
original nonconservative equation (2.4) must be discretized at the boundaries in

order to ensure the correct flow of information. Discretizing (2.8) for the interior
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domain and (2.4) at the boundary complicates software development (see [32]) and
mesh construction.

As discussed above, in many models it is common to have no diffusion normal to
portions of the boundary. This often leads to misconceptions about what boundary
conditions are required at those points on the boundary. In order to clarify this
matter, consider the following one-dimensional case. Under the assumption of an

interest rate process of the form
dr = a(b-r)dt* + o,r°dW, (2.9)

where a, b, c and o, are positive parameters, and dW, is the increment of a Wiener
process (W, ), then, by using standard methods (see [74]), the PDE for the value of
a bond U(r,t) where r follows the process (2.9) is given by

Ue = %dfr"’U" +(a(b—r) = Ao, )V, — rU, (2.10)

where A = A(r,t) is the market price of interest rate risk. Equation (2.10) is to be
solved on the domain r > 0.

If U represents the value of a bond paying fixed coupons, then U tends to
zero as r — oo. Consequently, the boundary condition imposed as r — oo is
lim, e U(r,t) = 0, ¢ > 0. Now, assuming that the diffusion goes to zero sufficiently

fast (for example, if ¢ = ; then we require that 2ab > o2 [18]) and that A(r, t)o,r° —
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0 as r — 0, then taking the limit of equation (2.10) as r — 0 gives us

U, = abl,. (2.11)

Since a,b > 0, equation (2.11) degenerates into a first-order hyperbolic equation,
with domain of dependence consisting of points in » > 0. Hence, no boundary
condition is required at r = 0. In fact, imposing any type of condition other
than equation (2.11) at r = 0 would be inappropriate. Consequently, the discrete
equations should not require any conditions at r = 0. Such a practice is common
in computational fluid dynamics and it is known in finance [69].

To solve equation (2.10) numerically, the infinite domain is truncated to produce
a finite computational domain. An artificial condition determined by asymptotic
analysis or financial reasoning (U = 0 in this case as r — o0) must then be imposed
at the maximum interest rate (r,,z) on the computational domain. In practice,
we have found that if r.,. is sufficiently large, then the artificial condition has a
negligible effect on the solution in the region of interest (see also [4]). The same
cannot be said if an inappropriate boundary condition is imposed at » = 0 since
this may be near the region of interest.

Returning to the general case, for boundaries at z; = 0 and z, = 0, equation
(2.7) holds and there will be no diffusion normal to the boundaries for the two-factor
models considered in this work (before any transformations). Thus, no conditions
other than the original PDE need to be imposed along z; = 0 and z, = 0.

Options can be broadly classified as European or American. A European option

can only be exercised at maturity, while an American option can be exercised at
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any time during the life of the option. Thus, the value of an American option
can never fall below the payoff (terminal) value. Let g(z,,z2,t) denote the payoff
function, then the American option pricing problem can be formally stated as the

following linear complementarity problem [77]

(% +V.V-(DV)-V+r)U(z,,z5,t) >0,
U(Il,22,t) - g(zg,zz,t) Z 0, (2.12)

(U(z1,22.6) - 921,22, ) (g + V-V = (DV) - V 4 1)U (21, 72,£) = 0

subject to the conditions that U(z,, zs,t) and VU(z,, z;,t) are continuous (if we
restate the problem as a variational inequality, we require that U € H?! [23]).
Equivalently, we can state the American pricing problem as equation (2.4) where
the penalty term is defined such that
. =0 ifU(213227t) Zg(zltz27t)s
P is
> 0 otherwise.
The discrete definition of P will be given in Chapter 3. Other continuously applied
constraints on the solution, such as, convertible bond call and conversion provisions,

and time-varying barriers can be implemented by using a penalty term.

2.2 Two Asset Options

We will now define several two-asset option pricing problems. A two-asset option

such as a put on the minimum of two assets gives the holder the right to sell the
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cheaper asset at a specified price (the exercise price). A call on the maximum of
two assets allows the holder to buy the more expensive asset for a specified price.

Let the asset price processes be

dS1 = ﬂlsldt. + Ts, S],dp‘lsl (2.13)

and

dSz = ﬂzSzdt- + 0’5252JW$2, (2.14)

where 4, and u; are expected rates of return, os, and os, are volatilities, and Wy,
and Ws, are Wiener processes. Defining the gradient operator as
9
v=|
-
852
then the price of an option based on two underlying assets, U(S), S»,t), has the
form of equation (2.4) with (by the usual no arbitrage arguments (8, 52})

282 05,0555
D= THo1 PISISS | (2.15)

pasps,Sng Uisg

N | =

where p is the coefficient of correlation, and

V=- . (2.16)
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2.2.1 Puts on the Worst of Two Assets

The payoff function (terminal condition) for a put on the worst of two assets is

U(Slv Sz,O) = max(K - min(S;,Sz),O), (2‘17)

where K is the exercise price. For an American put on the worst of two assets the

early-exercise constraint is

U(S1, Sg,t) > max(K - min(Sl, Sz),O). (218)

The boundary conditions are

= %ag,sgg—;’é +r52g—g; —rU +Pas 5 -0, (2.19)
%% = 3% sfg;z + 8, aasUl —+U + P as §; - 0, (2.20)
aa_l;f = ; ol ng;le +’Slgg tU +PasS; = 00,5 #8S2, (2.21)
‘96_[{ _ 1 %sgg;Uz +r52g—g ~tU+Pas S = 00,5 £S5  (2.22)
U(S1.52.t) = 0as 51,5 0,5 =5y (2.23)

Recalling the discussion in Section 2.1, conditions (2.19) and (2.20) are the limits
of the underlying PDE as S; — 0 and S; — 0, respectively. Condition (2.21) is
deduced from the fact that for fixed S,, the payoff becomes independent of S, as
S3 — oo. Thus, all derivatives with respect to S, vanish as S, — co. Condition

(2.22) is derived in the same fashion. The Dirichlet condition (2.23) follows from
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the payoff function (2.17). Note that the resulting pricing problem is well-posed

since conditions (2.19) to (2.22) each have a domain of dependence that falls on the

boundary.

2.2.2 Calls on the Maximum of Two Assets

The payoff function for a European call on the maximum of two assets is

U(S1, S2.0) = max(max(S,, Sz) — K, 0). (2.24)

The boundary conditions are

1 oU oUu

_ .2 27 v = _
U = 575 S 352 +rS, 35, rU as §; — 0, (2.25)
_ 1, afU o 0U
U = 575 St 57 +rS5 EXA rU as S; — 0, (2.26)
U(Sl, Sz,t) = 51 — Ke'" as Sl — 00, (227)
U(Sl, Sz,t) = Sz - Ke"‘ as Sz — OO. (228)

Note that conditions (2.25) and (2.26) are the limits of the underlying equation as

S1 — 0 and S, — 0, respectively.
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2.2.3 Digital Call Options

The payoff function for a European digital call on two assets is

1 fS;>KandS; > K
U(Sy, S2,0) = (2.29)

0 otherwise.

One can impose the following boundary conditions:

U(S1,55,¢) = 0Oas Sy —0, (2.30)
U(5:.52.t) = Oas S, —0, (2.31)
1 U oU
Ug = 50%25223_5%, +r523—52 —rU as Sl — 00, Sl # Sz, (2.32)
1 a*U au
Ug = Edg‘ 51255'—3' +T51'a—5: —rU as Sz — 00, 51 # Sz, (2.33)
U(Sl, Sg, t) = et as Sl, Sz — 0O, Sl = Sz. (2.34)

Condition (2.32) is derived by noting that for fixed S,, the payoff (2.29) will be
insensitive to small changes in S, as §; — oo. Condition (2.33) is derived using
a similar argument. This pricing problem is of interest numerically because of the

discontinuous payoff function.

2.2.4 Discrete Double Barrier Calls on the Maximum of
Two Assets

The value of a barrier option depends on whether the underlying assets reach a

certain price level. For example, the value of a particular European discrete double-
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knockout barrier option must satisfy the following constraint

U(S1,S2,t.) if Higwer < $1,52 < H,,
U(S1,S2.ts) = (51.52,¢-) H Hi DR TR (2.35)

0 otherwise

where t, and ¢_ are the times just before and after the application (monitoring date)
of a barrier, respectively. Also in equation (2.35), Hiower and Hypper are the lower
and upper barriers, respectively. If the option is a call where the payoff depends
on the maximum of two assets, then the payoff function is given by equation (2.24)
and the boundary conditions are U(S;,S,,t) =0as S; - 0, S2 = 0, S; — oo or
S, — oo.

The presence of barriers makes such options cheaper than options without bar-
riers. Discrete barrier options are of interest numerically because the discrete ap-
plication of the barriers will generally introduce discontinuities at each monitoring

date.

2.3 Asian Options

Asian options have a payoff which is a function of the average of an underlying asset
price. Asian options are often used when the underlying asset is a commodity (for
example, oil or aluminum). The use of an average price reduces the option’s sen-
sitivity to price changes in the underlying asset near maturity. There continues to
be much interest in developing pricing algorithms for both European and American
Asian options [47, 42, 62, 5, 81, 15]. Asian option models are of interest numer-

ically because they are degenerate (there is no diffusion in one of the space-like



CHAPTER 2. PRICING PROBLEMS 22

dimensions).
Assume that the value of an Asian option is a function of the asset price (S),

the average price (A) and time. Let the asset price process be
dS = uSdt* + 0sSdWs, (2.36)

where u is the expected rate of return, os is the volatility and Ws is a Wiener

process. The average of the asset price at any time is defined as

1 ¢
A= — S(7)dr.

t* Jo

By standard arguments, the diffusion and velocity tensors in equation (2.4) are

0282 0
D= % $ (2.37)
0 0
and
)
V=- , (2.38)
S—A
T—t

where the gradient operator is defined as

We have assumed that averaging is continuous, but alternative formulations for
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discrete averaging are possible [25, 82].
The payoff function for a fixed-strike Asian call is

U(S, At = 0) = max(A — K, 0) (2.39)

and the boundary conditions are

ou A oU

5 = “7—j4 " TUa S0, (2.40)
e () raane
aa_(tf - % 52‘;25U2+ sgg (5 A)gg rUas A— 00, S£ A, (2.42)
aa_[tj - ( )ZiasS—-)ooS;éA (2.43)
U = A-Ke™as 5,A—> 0,5 =A. (2.44)

With respect to conditions (2.40) to (2.42), note that the domain of dependence
of the original PDE is on the interior of the domain and the boundary as A — 0,
A — 00 (A>S)or S — 0. Condition (2.43) is deduced from the no-arbitrage
jump condition for discretely observed Asian options [82], taking the limit as the
observation interval tends to zero (the continuous observation limit). Equation
(2.44) follows from the fact that if A = S — oo, then the option will surely be

exercised.
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2.4 Convertible Bonds

A convertible bond is a hybrid bond that allows the holder to convert the bond into
a specified number of shares, thereby allowing the holder to gain from increases in
the stock’s value. There will often be a call provision that allows the issuer to force
holders to redeem the bonds at a specified price. Firms issue convertible bonds
primarily to serve as a form of delayed equity or in order to sweeten the debt [54].

The first PDE model for pricing convertible bonds was formulated in [45] and
(12]. This model was a one factor model where the interest rate was taken to be
constant. A two-factor model which incorporated a stochastic interest rate factor
was first proposed in [14]. In these early models the value of the firm was taken
to be an underlying factor. Dilution and bankruptcy effects were also incorporated
into the model in [14] . In more recent work the value of the stock itself is taken to
be an underlying factor and dilution and bankruptcy effects are typically ignored
(51, 16, 39].

Consider a model with interest rate process

dr = a(b — r)dt" + o.r°dW,

and stock price process

dS = puSdt” + 0sSdWs.

By the usual no arbitrage arguments we obtain an equation of the form (2.4) with
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the gradient operator defined as

r
v=| 3
k-2
ar
and
1 0sS®*  poso,.Sre
D=- (2.45)
2 poso.Sre air?
and
rS
V=-— , (2.46)

a(b—r)— Ao,r¢

(see [77]) where the symbols are defined in Table 2.1. Note that a,b are assumed

to be non-negative.

| Symbol Definition

o, interest rate volatility

reversion rate of r

reversion level of r

distributional parameter for r
market price of interest rate risk
coefficient of correlation

Wi |oe

Table 2.1: Symbol definitions.

It is assumed that the holder of the bond can convert the bond at any time and

receive w (the conversion ratio) shares of the stock. We also assume that the bond
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is continuously callable prior to maturity. That is, the issuer can buy back the
bond at any time before maturity for the call price (C,). Dilution and bankruptcy
effects will not be considered.

Equation (2.4) is solved subject to the terminal condition
U(S,r.t =0) = max(F,wS), (2.47)

where F' is the face value of the bond. Equation (2.47) simply states that the holder
will elect to receive the face value of the bond or w shares, whichever is worth more.

The conversion and call provisions introduce two constraints on the value of the
convertible. First, if the holder can convert the bond into shares at any time, then

the value of the bond cannot be less than the conversion value. Hence we have
U(S,r,t) > wS. (2.48)

Secondly, the call provision prevents the value of the bond from exceeding the call
price since it is optimal for the issuer to call the bonds as soon as their value equals

the call price. Thus, the constraint introduced by the call provision is
U(S,r,t) <C,. (2.49)

The boundary conditions for the convertible bond are

U 1 ,,8U W OU
S = 3o o t(ab-r)=Aer)Z= —rU+Pas S50, (250)
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AU 1 ,.,0°U au

E = 50’55 asz +ab—0—r-+Pasr—+0, (2.51)

U 1 ,,0U  _oU

E = 20’55 asz +TS¥—TU+P35T-)W, (2.52)
U(S,r,t) = Cpas S — oo. (2.53)

Note that equations (2.50) and (2.51) are simply the limiting forms of the PDE as
S — 0 and r — 0, respectively. Equation (2.52) is deduced from the fact that the
value of a straight bond tends to zero as r — co. Thus, the convertible bond derives
value (which is capped by the call price) only from the conversion provision (which
depends upon S) as r — co. Equation (2.53) follows from the call provision. That
is. wS — oo (the conversion value) as S — oo, but the value of the bond cannot
exceed the call price.

Convertible bonds with discrete coupon payments can be modelled using

U(S,r,t*) =U(S.r,t7) +C, (2.54)

where C is the dollar amount of the coupon. In equation (2.54), t+ and ¢~ are the
times the instant before and after the coupon payment (recall that t = T — ¢* is
moving backwards in real time).

The above model is of interest numerically for several reasons. First, we have
Dirichlet conditions and differential equations on the boundaries. Secondly, there
are two algebraic constraints on the solution. Since these constraints are continu-
ously applied, they are mathematically a type of American constraint. Finally, the

underlying PDE becomes degenerate on portions of the boundary.
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Discretization

In this chapter we will derive a nonconservative finite volume discretization for PDE
(2.4). We will first consider the treatment of interior nodes before incorporating
nodes on the boundary into the discretization. The discretization is defined on a
two-dimensional computational domain § which is tiled by triangles. The noncon-
servative discretization will allow us to work with the original PDE directly, that
1s, without converting it into conservative form. Working with the original PDE
will permit us to often solve the PDE on portions of the boundary (such bound-
aries can be handled by the nonconservative discretization without requiring special
treatment).

It will also be shown that the nonconservative finite volume discretization of
the diffusion term in PDE (2.4) is equivalent to a nonconservative Galerkin finite
element approach which uses a low order quadrature rule. In the case of constant
D and V, the finite volume discretization using central weighting is equivalent to

a standard finite element discretization with mass lumping.

28
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Uy

ll"j

Figure 3.1: An ezample of a control volume constructed using centroids on a trian-
gulated domain. Points e and f are the centroids of their respective triangles. The
face (line segments from e to f) passes through the middle of the edge connecting
nodes t and j. Uzup;; is the second upstream value.

For a node 7 in the interior of the computational domain a control volume
can be constructed by connecting the midpoints of triangle edges to the triangle
centroids (refer to Figure 3.1), or using perpendicular bisectors (see [53]). A centroid
construction can always be carried out, but the perpendicular bisector construction

requires a Delaunay triangulation [6]. Integrating equation (2.4) over the finite

volume F'V; gives
/m U = -/m V.vUde + /FV__(DV) . VUdQ — /m rUdQ + /m PdQ. (3.1)

Let UP*! = U(z;,yi, t"*!). Using fully implicit time stepping for ease of exposition,

the following approximations are used for the terms in equation (3.1)
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Urt - Up
/mU,dQ ~ A (T) (3.2)
n+l
—( v.VUdQ) ~ —V;- }( U™'idT, (3.3)
FV; 8FV;
n+l
. ~ . +1y | =~ .
( /m(DV) VUdQ) f;m(D.VU“ ) - 2dT, (3.4)
n+l
( / rUdQ) ~ ArUrH, (3.5)
FV;
n+l
( PdQ) ~ pit, (3.6)

where A; denotes the area of the finite velume FV;, At is the time step size, §; is
the set of nodes that neighbour node ¢, 7 is the outward pointing unit normal and p;
is the discrete form of the penalty function used to enforce Dirichlet conditions and
constraints such as those introduced by American early-exercise features, and by call
and conversion provisions. Note that in equations (3.3) to (3.5) the integrals have
been approximated by evaluating terms which depend on the space-like variables
at node ¢. This will be advantageous when dealing with boundary nodes.

Equation (3.3) is further discretized in the following manner. Let
- !
L= / ndl’

where e and f are the endpoints of the face, and 2 is an inward pointing unit normal

to the face (refer to Figure 3.1) between nodes ¢ and j. If U.';:_l,_ is the value at the
2

control volume face separating nodes ¢ and j, then equation (3.3) becomes

V.. HEdC ~ Vs - L..U™+ .
\'2 }gmm Adl ~V:- Y L;Um (3.7)

P ii+3
JEQ: 2
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Figure 3.2: A boundary control volume. The segment (e, f) is the face between
nodes ¢ and j. The segment (f,g) is the portion of the boundary edge included in
order to construct a closed control volume.

The calculation of U";:l,_ will be discussed in Chapter 4.
2

Let N; be the usual C° Lagrange basis functions defined on triangles where

N; = 1 at node 1,

0 at all other nodes,

Y N; = 1 everywhere in the solution domain.
J

Also. let U™*! = 3=, N;UT*'. Then

]2 L, (DVU™) - idl ~ 3 - /n V' N;D;V N;dQU+ — Up+) (3.8)
' JEN;

in equation (3.4). The derivation of approximation (3.8) is contained in Section
3.1.

We have assumed that node ¢ is an interior node. For the case where node 2 is
on the boundary, consider the boundary control volume represented in Figure 3.2.

The construction of boundary control volumes is similar to that of control volumes
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Figure 3.3: A self-intersecting boundary control volume.

for interior nodes, except that a portion of the boundary edge must be included in
order to construct a closed volume. That is, in Figure 3.2 the face denoted by the
boundary segment (f,g) must be included. The boundary node has no neighbour
for the face (f.g). Without loss of generality, we can assume that V -7i > 0 and
that there is no diffusion normal to the face (f,g). If either condition is violated,
then ¢ must be a Dirichlet node. Hence, an appropriate discretization method will
require knowledge of the solution only at points within the computational domain.
We can then define the discrete outflow term

o Jf ids - V;U*' if i is a boundary node and ffnds-V; <0
witt = (3.9)

0 otherwise.

Note that for perpendicular bisector control volumes, triangles that contain a
boundary edge should contain angles no greater than ¥ in order to ensure that the
control volumes fall within the computational domain (which also prevents self-
intersecting control volumes, refer to Figure 3.3. Combining approximations (3.2)
to (3.9) and incorporating a temporal weighting factor, 6, gives us the following

nonconservative finite volume discretization of equation (2.4)

———U;.n+1 _ U'“ +1 +1 F +1 +1
Jek JEQ
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+ (1—0)(2 ’hJ(Un Ui+ V;- ZL'J l__At"'t )

Jen- Jeﬂ 2
+ prtl 4 6wlt! 4 (1 - )ul, (3.10)

where n;; = — Jo V' N;D;VN;dQ. When 6 = 1 scheme (3.10) is fully implicit, § = }
gives us the Crank-Nicolson method and § = 0 produces a fully explicit scheme.
Note that since discretization (3.10) is nonconservative, it is valid for both interior
and boundary nodes. If the discretization were conservative we could no longer
solve the underlying PDE on portions of the boundary. That is, we could no longer
assume that there is no diffusion normal to the boundary, or that the convective
flow is outward.

Let L be a large number and U be the value that must be met by U7**! in order
to satisfy a constraint on the solution. For example, in the case of an American
option, U is equal to the payoff function. For an American option, the penalty

term in equation (3.10) is defined to be

AL(U; - UPY) UMM < U7

pitt =
0 otherwise.
For a sufficiently large L, equation (3.10) becomes! UF*! = mU " or, equivalently,

n+l __ = — U'
U; = U] — € where € = It

The selection of an appropriately sized L is related to the convergence tolerance

[80]. In [80] it is shown that the above penalty method approach for American

! Assuming that the terms ien: r];j(U;"H -UM1) and Vi-3iea, L; U-'.IH»‘- in equation (3.10)

are bounded. This should be the case in the presence of the penalty term for ¢ > 0 because of
parabolic smoothing, although we have not proven it.
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node j

portion of control volume

Figure 3.4: Finite element/volume triangle with control volume.

34

options is equivalent to a discrete form of the linear complementarity problem

(2.12).

3.1 Nonconservative Discretization of Diffusion

We will now derive expression (3.8), the discretization of the diffusion term. Let

T: be the set of triangles with node ¢ as a vertex and FV,™ be the portion of the

control volume associated with node ¢ in triangle m (A,,). Then equation (3.4)

becomes (dropping time dependence)

fam_(D.-VU)-iid[‘ = ¥ /apv,.m(D"VU)'ﬁdr'

Am€T;

(3.11)
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With reference to Figure 3.4, VU = ¥, VN(U; — U;) since U = ¥; N;Uj,
where the NT* are the usual C° Lagrange basis functions on A, (note that VN; =

—VN; — VN,). Then the R.H.S. of equation (3.11) can be written as

2 (/apv_...(Df(VN}" (U; — U:) + VNE (U = U3))) -iidr) : (3.12)

AmeTi

We can rewrite expression (3.12) as

> ((D;(VN,'-"(U,- - U:) + VNI (U — Uy))) - oy ﬁdr‘)

Am€T:

which is equal to

> ((D,-(VN,’-"(U,- = U:) + VN (U — Ui))) x

Am€eT;

facey

( /ar':"m, Al oce; + ./arm adl’ “‘k) ) ; (3.13)

where I'F, .. and I'},.., are the portions of the control volume in A, (see Figure

3.4). Note that the integrals in expression (3.13) are independent of path. Hence,
without loss of generality, we can take I'f, ... and I'f, ., to be portions of a centroid
control volume. In [65] it is shown that for centroid control volumes
‘ 1
/ Adl™ _ + a7 = L _ Lymam L _
arm 6

face; arm faceg — 6 s 'Y 6 F I ]

[ocej facey
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where [T is the length of triangle edge i for A,, and @i is the outward pointing

unit normal to edge i (refer to Figure 3.4). Thus, expression (3.13) equals

S (D(VNP(U; = U:) + VNP (U - U2))) -

AmeT;
(AT = SIPAY + AT — SIPAT ) (3.14)
After noting that VN* = —% (see [6]), where [A,,]| is the area of A,,, expression

(3.14) becomes

> ((D(VNPU; - Uy + VNP (U - 12))) -

AmeT;

1 1
—-VN" + =
(=3 V" +

3

1

VN -3

VNP + %VN,:")IA,,.I)
which simplifies to

> ((D(VNPU; = U) + VND(Ue = U))) - (-VNT)Am])  (3.15)

AmeTi

since VN; = —VN; — VN,. Expression (3.15) equals

> (- /A V'NID,VNdQU; — Us) — /A V/NPD, VNI QU — U.~))

Am€eT;

which simplifies to

S [ V'ND:VN;dQU; ~ U, (3.16)

JEQN
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Expression (3.16) is the finite volume discretization of the nonconservative diffusion

term in equation (2.4).

3.2 Relationship to a Galerkin Discretization

Equation (3.10) can be viewed as a finite element discretization. We will now show

that the ni; = — f V' N;D;VN;dRQ in discretization (3.10) are equivalent to the n;;

which result from using a Galerkin approach with a low order quadrature rule.
After performing integration by parts, we have, for the nonconservative diffusion

in (2.4)
i = — /‘; V' (N;D)V N;dQ. (3.17)
By Green's theorem equation (3.17) becomes

w= 5 (-f, wrovr.an) s

where T;; is the set of two triangles which share the common edge k (refer to Figure
3.4) and N/ is basis function N; on triangle m (A,,). Equation (3.18) is equivalent

to

w= 5 (- [ NFDVNP . apdy - [ NFDUNp.apar) (@19
J

where ['T" is triangle edge j and 7" is the outward pointing unit normal to edge

J (see Figure 3.4) for A,,. Note that edge i does not appear in equation (3.19)
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because N is zero along edge i. After integrating using the trapezoidal rule, (3.19)

becomes

1
mio= Y (——I;P(N{:‘D.-+N:;‘D,-)VN;"-1T;?‘— (3.20)

1
ST (NI'Di + NTDL)VNT - 77 ) + O(h)

where [T is the length of triangle edge j for A,,, N7 is the value of N* at node j,

D; denotes D evaluated at node j and h is the mesh size parameter. After noting

. . IR . .
that Ni™ is zero at nodes j and k, VNJ* = —511—5""—' where |A,,]| is the area of triangle

m and N[ is one at node ¢, equation (3.21) becomes

mi= 3 (~DiVNP - (~YNP)|An| — DVNT - (=VN)|Am|) + O(R),

which is equivalent to
s = — /n (=V'N; — V' Ny )D;VN;dQ + O(h). (3.21)
After noting that VN; = —VN; — VNj, equation (3.21) becomes
s = — /ﬂ V' N;D;VN;dQ + O(h). (3.22)

Note that in general 7;; # 7;i, which is a consequence of the fact that equation
(2.4) is in nonconservative form.

Although the diffusion term in equation (2.4) is not self-adjoint, using a quadra-
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ture rule of the above accuracy is sufficient for achieving first-order convergence in
the H! norm for self-adjoint elliptic problems using linear elements [17]. For the
sample pricing problems considered in this work, the numerical results in Chapter
6 indicate second-order convergence in L™ for discretization (3.10).

In addition, the finite volume approximation of the convective term (3.3) can be
viewed as a Galerkin finite element method with a special quadrature rule [65]. Ap-
proximations (3.2) and (3.5) can also be derived by using a Galerkin approach with
mass lumping (see [78]) since A; = [, N;dQ, if the finite volumes are constructed

using triangle centroids.

3.3 Summary

In this chapter we derived a nonconservative FVM, where the discretization of dif-
fusion is equivalent to a nonconservative Galerkin finite element approach. Unlike
a conservative discretization, the nonconservative approach allows one to directly
(without converting the PDE into conservative form) discretize equation (2.4). Con-
verting the underlying PDE into conservative form may introduce several complica-
tions. First, the new velocity tensor may become singular. Secondly, by converting
the PDE into conservative form, we may alter the direction of flow at the boundary.
Recalling the discussion in Chapter 2, we often can solve the underlying PDE on
portions of the boundary because information is outward flowing (typically where
the value of an underlying factor approaches zero). If the flow at those portions
of the boundary is altered to be inward flowing, then we can no longer simply

discretize the equation at those portions of the boundary.



Chapter 4

Discretization Analysis:

Convection

In Chapter 2 we described instances in which the underlying pricing equation (2.4)
becomes convection dominated or degenerate. A discretization of equation (2.4)
must cope with such cases in order to be considered a general method. In this
chapter, we will develop a positive coefficient scheme in order to handle convection
dominated problems. The positive coefficient scheme possesses discrete local max-
imum and minimum principles (thus the scheme is stable). Furthermore, owing to
the fact that the discretization is nonconservative, the positive coefficient scheme
is compact. That is, the positive coefficient scheme produces a Jacobian with the
same nonzero structure as a Jacobian that results from using central weighting or
first-order upwinding. To the best of our knowledge, a compact positive coefficient
scheme has not been previously developed.

To see how a positive coefficient scheme can bound local extrema, consider the

40
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following discrete equation

(1+ 3 )P =UT + Y U7 (4.1)
Jje; JEN
Define U™** = max(U?, U;‘gnl') If all the ¢;; are nonnegative in equation (4.1), we

can write equation (4.1) as

(143 e)Ur* <1+ X ;) U™, (4-2)
JEN; JER
which gives us UP*! < Um*. Hence, U"*! cannot exceed the value at any node to
which it is connected, nor its value at the previous time step. Similarly, by defining
UrP™ = min(UP, UZZ,.) it can also be shown that U+ > Umin,

Positive coefficient schemes are sometimes called local extremum diminishing
schemes (LED). However, if a scheme only possesses the property that Umi® <
U,-"“ < U/ex, this does not imply that local extrema will diminish, but rather
only that local extrema will be bounded. Hence, calling such a scheme LED is a
misnomer. Nonetheless, positive coefficient schemes have been applied to Hamilton-
Jacobi equations (see [7]), which are similar in form to equation (2.4). It should
be noted that in one dimension, positive coefficient schemes are also total variation
diminishing (TVD) [72].

A standard approach for computing the value U";II;_ in (3.10) is to use central
weighting, that is

gty - WA UPT

] > (4.3)
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Such a scheme is second-order accurate, but it can introduce spurious oscillations
into the solution if the problem is convection dominated. For example, one cannot

ensure that the solution for the hyperbolic equation

ou

7 =~ V(z.v)- VU (44)

will be free of spurious oscillations if central weighting is used. An alternative to
using (4.3) is to use first-order upstream weighting, where
Urtt i L;- V<0
Uzty = Ut = ’ (45)
: Urt! otherwise,
which generally produces solutions of poor quality because of excessive numerical
diffusion. If U*! is the upstream point (U}}) in (4.5), then U;*! is referred to as
: n+1
the downstream point (Uzx.,..) [61].
In order to avoid the excessive diffusion of first-order upstream weighting, the

following flux limiting scheme can be used

B(qth)

+1 _ prn+l ij+3 +1 +1
U?j+;- =Uspi —TL(U;W"-';' — Ui (4.6)
where
n +1
n+l _ Uu;;:" - U,

upij (4.7)

i+t = )
i+ 3 Um‘j - U"‘;i;,_l
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q:l+1 n+1
n i+ T Gl
#(q J:.lx = : (4.8)
1/‘7|J+!- + th+
and
Nl = ”(zdoum.'," ydawn.'j) - (zup.-,-’y'l?-‘j)”
g+ ”(zup-','ayup.',-) - (zZup.'j’yzup;,-)“
where || - || denotes Euclidean length. U;‘,,P in equation (4.7) is a convex weighting

(i.e., linear interpolation) of U™*! from the two adjacent nodes in the upstream
triangle (see Figure 3.1). Equation (4.8) is known as the van Leer limiter (73, 70].
Since the limiter was originally designed for uniform grids, it has been modified to
account for nonuniform (irregular) meshes [81]. The modified van Leer limiter (4.8)

possesses the following properties

< élgi1) <2
and
$(aSF
0 < — 75 < 29,1 (4.9)
qt'j+§ :

Equation (4.6) reverts to central weighting when 4>(q"*’1 ) =1 and becomes

‘7..
+1 + i+ +1 +1
U:;+: U"“P-: 2 5 (U"‘;’-J U;"P-'j (4'10)
when 4S(q:1l_) = "_"11_7” +1- Equation (4.10) is equivalent to the two-point up-
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stream scheme

n+1 n+1
Uij+'5 - Uupu‘ +
n+1l +1
(”(zdoum.',': ydoum.-,-) — (zup.','tyup.'j)”) U“l;tj B U;“P-’j
2 ”(zup.',-s yum,') = (zzup.',-, y2up.‘j)”

Both central weighting and the two-point upstream scheme linearly reconstruct
Un*! at the cell interface.

For one-dimensional problems the flux limiting scheme (4.6) possesses local max-
imum and minimum principles (see [72]) and is TVD for arbitrary temporal weight-
ings if a Courant, Friedrichs, Lewy (CFL)-like condition is met [9, 8§1]. Equation
(4.6) is a convex weighting of a second-order accurate two-point upstream scheme
and central weighting (4.3). Hence, scheme (4.6) is second-order accurate except
at local extrema where it reverts to a first-order upstream scheme. Unfortunately,

TVD schemes can be no more than first-order accurate in two-dimensions [36].

4.1 Compact Positive Coefficient Scheme

To maintain high order accuracy for convection dominated problems, positive coef-
ficient schemes which bound local extrema have been developed [67, 2, 6, 46]. We

will now derive the conditions under which the following scheme,

+1 HUP + U if E‘-‘i V(ziu) 20
Ui = #arth ) = (4.11)
Uptt + —2h gl Ut if L - V(ziw) <0,

upij
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with arbitrary temporal weighting and on an arbitrary triangular mesh produces a
positive coefficient scheme for nonconservative hyperbolic equations such as (4.4).
We will also show that the positivity of coefficients in scheme (4.11) implies that
local extrema are bounded.

For ease of exposition, we will consider discretizing the first-order hyperbolic
equation (4.4). The following results can be easily, although tediously, generalized
to equation (2.4). We will simply provide the final result for equation (2.4).

Discretizing equation (4.4), along the lines used to derive (3.10), using scheme

(4.11) gives us

n n n+l
A; (Z_“;U,_) = 03 a;Ur* + f(q_"*’_?)_(U;H — UrtY)
At JEN; 2
+ 63 Bylz(Ur +Upt)
JEN;
#(a%y)

b A-0) X aglip + 2 wr vy
JEQ;

+ (=6 % BulzUr + U] (4.12)
je

where A; is the area of the control volume, a;; = min(z.-,- - V(zi,¥:),0) and G;; =

- urtt_uptt
max(Li; - V(zi,y:),0). After noting that q:;:ll = » _Uz,':" , equation (4.12) be-
2 f i
comes
Ur+t — yr $(grt1)
4 (5 E) = 0% astort + SR 0 - g
Jjen; i+ 5

+ 0% Byly(Urt + U7t

JEN;
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+ (1-6)Y ay[Ur + Livy )(U"

2up., )]
j€n; u+'
1
+ (1-8) 3 Bul5 (U7 + )]
JEN;
which after collecting terms becomes
1
Urtt — U-") ( ¢(th:— ﬁu) 1
A; (_'___' = § "_2 urt
a1 &\ gt

n+1

#(q;51) ;
+ 03 ey (- ) +6 3 Bigpn

JEQ; ‘lJ+- JEQ;

+ (I—O)Z(a.,+a,,2" 2

JEN lJ+

1J —)
+ (1—0)2«:.,2 S (~Ul)

JEN; sJ+-

+ (1-6) Y ﬂ"U"

JEN;

¢(q,1) g,-,-) -

46

(4.13)

After letting a;; = ﬁ—:a,-,- and B;; = ﬁ—:'ﬂ.’j, and regrouping terms, equation (4.13)

becomes

ML) B,
e (e )

JENR |_1+
¢( n+1 )
= Y Gy iy gy ﬁ"U"“
e 2454 €M

¢ L 3..
romng (aratSel )

JEN; |J+l

1)
+ (1-6)) a ,2q:.’+’( Uzupi;) +(1—6) 3

Jeﬂ. qﬁJ+ L Gnu

ﬂ lJ
2

2 U5

(4.14)
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Note that 3;cq.(@; + Bi;) = 0 since V is always evaluated at node i because
equation (4.4) was discretized in nonconservative form and $nrdl’ = [V(1)dQ = 0.
Thus. equation (4.14) simplifies to

n+1
[1+0 > ( x ¢2(q—::1') ﬂ")] U+t

jEN; ij+1
n+1
- 0% (e« o)
JjEq; s1+1
(g7 ,)
+ [14-(1—0)2( :2.,’+ ﬂ")]
jeQ t.1+l
+ 1-6) 3% ( a.,¢(q;’+‘)U;u,,,..+@U;). (4.15)
JjEN; 2 u+' ! 2

Note that &; <0, B;; > 0 and —'”’f— > 0 (recall property (4.9)). Hence, in order

i+ 3
that all the coefficients in (4.15) be positive we need to ensure that

(1_9)2( J¢;q:+l) %) -

jEN lJ+‘

which, by property (4.9), simplifies to

z: ( atJ7tJ+' + Bi ) < (1 19) (4.16)

JEQ;

If condition (4.16) is met, then all the coefficients in (4-15) are positive. By defining

ax n+l n
U™ = max(Uldy,, Ui, UT)
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(noting that U;‘up is the convex weighting of two U,:""’,:en._) we can write equation

(4.15) as

Ha) Ay
[1 +02 ( a;J—z—%"}'%) U.'n+l

JEQ; t,1+

$(a7ry) B
o (o2 ) e

JEQ; J+-L
+ [1+(1 = ( ,¢2(q:,’+l) 92—’)] Umax
JER; 'J+
+ (1-0) E ( _ J¢2(‘I::,+-) ﬂ_;_) e
JEN; tJ+-

which simplifies to

[ ¢(qn+l‘) 3.:\ |
1+GZ( a.,—i-%ﬁ'—ﬂé—’ urtt
JEX ql]+— i
é(a771) 3]
< |1+63y ( z ,2"% 5 | | U
JE; tJ+- J
Thus,
Urtlt < gmex,
Similarly, if

Urt = min(Updy,, Uk, UT)
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then
Ut 2 e,

Hence, if condition (4.16) is satisfied then scheme (4.11) possesses local maximum
and minimum principles. It is interesting to note that this result holds only when a
ronconservative discretization is used, since the velocity (V') is an arbitrary function
of the coordinates.

Although similar results can be obtained if the flux limiting scheme (4.6) is used
when either E,-,- - V(zi,y:i) < 0 or Z.-,- - V(z;,y:) 2 0, there are two advantages to
using scheme (4.6) only when Z,-,- - V(z;,y:) < 0. First, the amount of additional
numerical diffusion is reduced when we decrease the use of the flux limiter. Secondly,
the value of U"*! depends only on values at neighbouring nodes. That is, the value
of U** depends only on the U, and the USd).. Hence, the nonzero structure of
the Jacobian matrix is no different from that resulting when central weighting or
first-order upstream weighting is used.

When diffusion is present!, scheme (4.11) can be used. In such cases condition

(4.16) becomes (using similar arguments)

~ B-‘j _ 1
g‘:h (—aij‘)'.'j+§ + —2—) — i < a=e (4.17)

where 7;; is ‘:—fqg;. Note that —7); is positive. If condition (4.17) is met and all the

1Note that the pricing equation (2.4) has an exponential decay term, which we ignore for
clarity. We can perform an analysis on the full equation by multiplying the U™*! by a factor in
order to isolate the solution from the decay term, as was done in [81].
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7;; are nonnegative, then it can be shown that the scheme possesses local maximum
and minimum principles. In general, it is not possible to ensure that all the n;; will
be nonnegative for equation (2.4) because the diffusion terms are nonconstant. If
the 7;; are not all nonnegative and U satisfies a Lipschitz condition, then as will be

shown in Chapter 5

UP® + O(h) < UP*! < UP™ + O(h),

where h denotes the mesh spacing, when scheme (4.11) is used.

If all the 7;; are nonnegative then the following scheme

l(U’H»l Un+1) if z;,’-V(zs.y.‘) +17;;>0
U:;il = ? ! L. = (4.18)
2 n u n -V Zi.Ys
Uu;:,l + +§ (Un+l Uu;t,l) if Lii ( Vi) +1:;;<0

can be used instead of (4.11). After some tedious algebra, it can be shown that
scheme (4.18) will possess local maximum and minimum principles when the fol-

lowing condition is satisfied

,B: a;; _ 1
Z a;:7.,+ + Z -2 + z -2 ’7“ — (1 _ 0) (4.19)
. jen
JEN JFEN;
S +mi<o % 4 mii20

There are two advantages to using scheme (4.18) instead of (4.11) when all the
7:i; are nonnegative. First, the amount of additional numerical diffusion is usually
reduced. Secondly, condition (4.19) is usually less strict than condition (4.17).

Although it can only be shown that local extrema will be approximately bounded
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if we have negative 7;;, scheme (4.18) can be modified to

n+l

e ) =
Ugt + =5 wgas, — Uz) if Ly Vieww) <0

up;, 2
U:;ilé_ — and f.'i-Vz(z.‘.v-') + 1 < 0, (420)

(UM + U otherwise,

when we have negative 7;;, in order to use any positive 7i; in an attempt to reduce
the amount of additional numerical diffusion (relative to scheme (4.11)). Scheme
(4.20) maintains the nonzero structure of the Jacobian matrix which results from
central weighting, and reverts to scheme (4.18) when all the 7;; are nonnegative.
Note that if we were to use scheme (4.18) when we have negative nij, there would
be an increase in the number of nonzeros in the Jacobian. Scheme (4.20) will be

used for the numerical examples in this work.

4.2 Summary

In this chapter we developed a compact positive coefficient scheme for convection.
The scheme utilizes any true diffusion in order to reduce the use of the flux limiter,
thereby reducing the amount of augmenting diffusion required to ensure nonnega-
tive coefficients. In other words, the positive coefficient scheme maximizes the use
of central weighting. Since the discretization is nonconservative, the positive coeffi-
cient scheme is compact (the resulting Jacobian has the same nonzero structure as
a Jacobian constructed using central weighting). The compact positive coefficient

scheme does not appear to have been previously developed.



Chapter 5

Discretization Analysis: Diffusion

This chapter describes the conditions under which discretizations of the (DV).VU
term in equation (2.4) using the finite volume method with linear shape functions
are guaranteed to produce nonnegative coefficients. Recall that in Chapter 4 it
was shown that the convective term can be discretized using arbitrary temporal
weighting, such that the coefficients are positive. For clarity, we will only exam-
ine discretizing the diffusion term in equation (2.4). That is, we will drop time
dependence and the convective term. Note that, for explicit and partially explicit
schemes, a condition on the time step size must also be satisfied in order to ob-
tain nonnegative coefficients. This chapter also relates previous work in finance
to the current topic. In addition, it is shown that when a scheme produces neg-
ative coeflicients, that local maximum and minimum principles are approximately

satisfied.

52
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5.1 Constant Coefficients

Consider discretizing

(DV)-VU =0 (5.1)

when D is constant and symmetric positive definite using the finite volume approach
used in discretization (3.10), which in this case is equivalent to a standard Galerkin
finite element approach with U = 3°; U;Nj;, where U; = U(z;,y;). Then for each

U; we obtain

S 0 (Ui —U:i) =0 (5.2)
JEQ;
where, for constant D,
i = — [ﬂ V' N;DVN;dQ. (5.3)
For
10
D= (5.4)
01

equation (5.3) becomes

ni; = — /n V'N;VN;dQ. (5.5)
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Cousider two nodes, ¢ and j, in the interior of the mesh. Let A; and A, be two
triangles which share the common edge & (see Figure 3.4). Also, let I} be the length
of edge i for A; and 7%} be the outward pointing unit normal to edge ¢ for A,. After
noting that VN; = _% for C° triangular shape functions, equation (5.5) can be

rewritten as

- A poa 56)
4|4, | 4|A,|

for interior nodes. Equation (5.6) gives

_ Llcos(m —6r,)  1}12 cos(m — bk,)
" 44, 48]

(5.7)
where ki, k; € §Qy, Ok, is 6 (see Figure 3.4) for A, and [A,]| is the area of A,.
Equation (5.7) can be simplified to

nes = [}}cos b, I} cos by,
N 4|4, | 4|A,]

Noting that |A,;| = (I}1} sin 6k, )/2 gives us

cot 8y, + cot 8
ni; = < 5 k2 (5.8)

Hence, 7;; will be nonnegative if and only if 6;, + 6, < m [29]. In other words,
the sum of the angles opposite each interior edge must be less than or equal to
7. The condition 8, + 8k, < 7 is satisfied if the mesh is a Delaunay triangulation

[6]. A regular triangular mesh (we define a regular triangular mesh in this work
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3 n 12 33 3 as s a7 8 is L
[}

Figure 5.1: A regular triangular mesh.

to be a triangulation where the triangles have an edge parallel to the z axis and
another edge parallel to the y axis) is a Delaunay triangulation. Refer to Figure 5.1
for a plot of a regular triangular mesh. Note that. in general, for triangles with a
boundary edge we require that the angle opposite the boundary edge be non-obtuse
in order to ensure that the n;; for boundary nodes are nonnegative. Such an angle
condition may not be met when the triangulation is Delaunay unless a suitable

node placement is used near the boundary.

If

D= (5.9)

in (5.1), where k., and k,, are constant and positive, a transformation from z, y to,
say, z',y’ can be performed so that diffusion tensor (5.9) becomes tensor (5.4) in
the z', y’ plane and a Delaunay triangulation can be constructed in the transformed

plane by performing edge swapping (see [49]). Equation (5.1) can then be solved in
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Figure 5.2: Edge swapping.

the original coordinate system by mapping the Delaunay triangulation back into the
z.y plane. Note that for tensor (5.9) a regular triangulation (which is a Delaunay
triangulation) in the transformed plane will also be a regular triangulation in the
original coordinate system. For a given set of nodes in the original coordinate
system, the transformation can be bypassed by performing edge swapping (refer
to Figure 5.2) in the z,y plane to ensure that all the 7;; are nonnegative [29].
Swapping edges in such a manner produces a triangulation which corresponds to a
Delaunay triangulation in a transformed coordinate system.
For positive definite

el : (5.10)

ey i
where k.., k2, and Ak, are constant, a rotation (to remove the cross-partial terms
kzy) followed by a transformation can be performed in order to obtain diffusion
tensor (5.4). For a given set of nodes, one can again swap edges in the original
coordinate system to construct a triangulation which corresponds to a Delaunay
triangulation in a rotated/transformed coordinate system.

In summary, for a constant diffusion tensor (5.10), meshes where the 7;; for
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interior nodes are nonnegative can always be constructed in the original coordinate
system for any given set of nodes, but such meshes will generally not be regular
triangulations. Regular triangulations will be guaranteed to produce nonnegative
ni; only when &, = 0. Similarly, standard finite difference schemes will not produce
positive coefficients for equation (5.1) unless k., = 0. Finite element methods using
bilinear quadrilateral elements will in general require nonorthogonal meshes (unless
kzy = 0) to ensure that the 7;; are nonnegative. Note that use of bilinear elements

will also require. in general, an aspect ratio condition in order to ensure nonnegative

m; [3]-

5.2 Relation to Previous Work in Finance

Although the concepts of rotations and nonorthogonal grids for obtaining positive
coefficients in numerical schemes have not been explicitly addressed in the finance
literature, they are not new to finance. Consider the case where we have two factors,
z = log(51) and y = log(S;), where S; and S, follow processes (2.13) and (2.14),

respectively. Then, the underlying PDE has the form of equation (2.4) with

o Plo

o’ Os, O
D= S PIRIs | (5.11)

pos,0s, US;

DD bt
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and

(5.12)

If there is correlation (p # 0), it is suggested in [41] that two new uncorrelated

variables, 1; and ¥, be defined by performing the following transformation

Y, =05,z + 05,y

and

P2 = 05, T — 05,y

The above transformation can be written as

P L 1 1 O V20 0 z
tla| v TR 5 . (5.13)
P2 12 :% 0 -1 0 \/fasl y

Observe that
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in equation (5.13) rotates an intermediate coordinate system in order to remove the

correlation. The underlying PDE now has the form of equation (2.4) with

2
v = Sy
I
59
D (1+ p)o o, 0
0 (1 —p)o o3,
and
a2 o
ve_| = Fes +(r—Fos,

o% 5
(r— F*+)os, — (r — 2)os,

It can be shown (see Section 5.5.2) that the positive probability two-dimensional
nine state lattice scheme in [34] is in fact a scheme which uses a finite element
method with bilinear quadrilateral elements for diffusion to discretize the log-
transformed two-asset Black-Scholes equation. The lattice scheme differs from con-
ventional finite element methods in that the coefficients in the discrete equations
are effectively given positive a priort values and then the nodes are placed in ac-
cordance to the a priori coefficient values. Note that placing nodes in appropriate
locations can create higher-order compact schemes {38]. However, such an approach
is restricted to the case where the velocity and diffusion tensors in the underlying

PDE are constant. The positivity of the lattice scheme in Section 5.5.2 is in part
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Figure 5.3: A unique positive coefficient Delaunay triangulation for D = 1.

due to the fact the quadrilaterals are not rectangles (unless there is no correlation).

That is, the underlying mesh/grid is not orthogonal, but skewed.

5.3 Nonconstant Coefficients

In option pricing models the diffusion coefficients are typically nonconstant. If
transformations can be performed that produce constant diffusion coefficients, then,
as was pointed out in Section 5.1, a mesh where all the 7;; in discretization (3.10) are
nonnegative for interior nodes can always be constructed for any node placement.
When the diffusion coefficients are nonconstant, the finite volume discretization of

equation (5.1) becomes

> mii(U; — Uz) =0,

JER;

where

= — /n V' N:D;V N;dQ.



CHAPTER 5. DISCRETIZATION ANALYSIS: DIFFUSION 61

Figure 5.4: A unique positive coefficient triangulation (left) for diffusion tensor
(5.14) which corresponds to the unique Delaunay triangulation (right) in a ro-
tated /transformed coordinate system where D = I.

v
i
'

Vi
v

- --@---0---@---8
(A}

'

"
L)

L)
AL
"

*--0---0--
"

(A

Figure 5.5: Two regions of nodes with different diffusion tensors. In region AD =1
and in region B the diffusion tensor is tensor (5.14). A triangulation which ensures
that the 7;; are nonnegative for interior nodes in both regions cannot be constructed

because nodes in each region require a different unique triangulation in order to
obtain nennegative n;;.
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One cannot ensure, in general, that the 7;; will be nonnegative for interior nodes
when the diffusion tensor is nonconstant for a given node placement.

We can see that nonnegative 7;; cannot be ensured by means of a counter
example. Consider the set of uniformly spaced nodes in Figure 5.3. By construction,
for the triangulation in Figure 5.3, we have the angles opposite each interior edge
summing to less than 7 and the angles opposite each boundary edge are less than

. Thus, if D =1, then all the n;; are nonnegative. The triangulation in Figure 5.3

9P

is a unique Delaunay triangulation since no local edge swap can be performed such
that the sum of the two angles opposite the new edge will be less than or equal to
T.

Now, consider the diffusion tensor

(5.14)

Let z'.y" be the rotated/transformed coordinate system where the transformed
diffusion tensor D' = I. If the original nodes shown in Figure 5.3 are transformed
into the z'.y" coordinate system and an edge swap is performed, we obtain the
unique Delaunay triangulation shown in the right panel of Figure 5.4. Mapping
this triangulation back into the z,y plane results in the mesh shown in the left
panel of Figure 5.4. This mesh ensures that all the 7;; are nonnegative and it is
unique.

Referring to Figure (5.5), we now divide the given set of nodes into two regions

(A and B) with different diffusion tensors. In region A welet D = I and in region B
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we let the diffusion tensor be tensor (5.14). Note that because of the quadrature rule
used in the finite volume method, the 7;; for nodes in one region are independent of
the different diffusion tensor in the other region. As indicated in Figure 5.5, there
are no triangulations which will ensure nonnegative 7;; for interior nodes in both
regions, because each region requires a different unique triangulation.

In the special case where

D kzz(z,y) 0 ’ (5.15)

0 kyy(z.y)
which occurs in option pricing problems when p = 0, we will show that a sufficient
condition for the nonnegativity of the n,; is that the mesh be a regular triangulation.
That is, the mesh consists of triangles with an edge parallel to the z axis and another

edge parallel to the y axis. For (5.15), equation (5.6) becomes

EL . D 2RR2 - Dai?
ms = _li Iin; - Dn; _ R D,nJ. (5.16)
4|A, | 4|A.|

n:; will be nonnegative if i} - D;7} <0 and i - D.-r'i? < 0. In (5.16) D; determines
- - . ~1 - - -
the linear mapping F : R? — R? defined by 7} — D;1i}. Since D; has nonnegative
entries, D;ﬁ} is in the same quadrant as ﬁ}. Thus, 7} - D.-ii;- < 0 if #} and ﬁ;-
are separated by a quadrant or if they lie on opposite axes, which is a property of

regular triangles.
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node k
J &
nodei & \ —» node j
boundary edge

Figure 5.6: Boundary triangle with boundary edge parallel to the z aris.

5.3.1 Boundaries

We will now show that for boundary nodes, if there is no diffusion normal to a
boundary which is parallel to the z or y axis, then there is no constraint on the size
of the angle opposite to the boundary edge that is required to ensure that the ni;
for boundary nodes are nonnegative. Such a situation is common for option pricing
problems where the original PDE is solved at the boundary. In this case, in order to
have a well-posed problem, there must be no diffusion normal to the boundary and
any convective flow must be outgoing. If such conditions are not met, asymptotic
Dirichlet conditions are usually imposed.

Without loss of generality, we can let the boundary be parallel to the = axis

(see Figure 5.6). For a node i on the boundary

_ l;ljﬁ; . D,'T-I:J'

= 17
When there is no diffusion normal to the boundary
. i Yi 0

0 0
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Let n;, be the z component of the unit outward normal vector to edge i (the edge
opposite node ¢). Diffusion tensor (5.18) implies that equation (5.17) can be written
as

o bdikee(zi, yi)T 75,
i = 4[A| '

Since the boundary edge is parallel to the z axis, 7i;,7;, <0 for any 6i (see Figure

5.6). Hence, n;; will be nonnegative for any 6.

5.4 Approximate Local Maximum and Minimum
Principles

It cannot be shown that discrete local maximum and minimum principles hold for
a scheme when any of the 7;; are negative. That is, it cannot be proved that
minjeq; U; < U; < maxjeq, U;. However, we will now show that if U satisfies a
Lipschitz condition, then minjeq, U; + O(h) < U; < maxjeq; U; + O(k), where h

denotes the mesh spacing, for a finite volume discretization of equation (5.1) when

kzz(z,y) kzy(z,y)
kry(z,y) ky(z.y)

D=

Assume that the computational domain is bounded. After discretizing (5.1) using
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a finite volume approach, we have

( > -np+ Y —n.".-) Udzow) = Y, Y nUi(zj,y;) +

AmEA;, AL€A;_ Avich., jem
Y X akUi(ziy),  (5.19)
As€A;_ jEN;

where z; and y; are the coordinates at node z, and 5 is the value of 5;; over triangle
Am. In (5.19), Ai, U A;_ is the set of triangles that have node i as a vertex, where
4A;, is the set of triangles where each ;; is nonnegative and A;_ is the set of
triangles where an 7;; is negative. Let j,, € Q; be the set of nodes where 7;; > 0,
and j_, € @ be the set of nodes where 7;; < 0. Also, let z;_ = zj, +a;_ hand
Yie, = Yis, +Bi_ h, where a;_ and B;_, are constants. Then equation (5.19) can

be rewritten as

( o o—nE+ Y —ﬂf.-) Uziwi) = Y Y aRUj(zj,v;) (5-20)

Am€EA;, AgeA_ Am€A;, jEN;

+ Z [’7:1;. UJ'+. (z.ii», 1Yie, )
AEA_

+ ’75‘_. Uj‘“k (zj“’k + A5y h, Yis + 'Bj—k h)]

If U is Lipschitz continuous, equation (5.20) becomes

( S -0+ Y —'lﬁ) Uzi,y) = Y. Y n3Ui(zi,y5)

AmeA;+ AyEA;_ Am&A.‘_,, JEN;

k
+ z: ['lij+. UJ.+. (zj\fk ? yj#. )
A€l

+ 'l?j_. (UJ'+. (ziﬁ, 1 Yis, ) + O(R))]
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which, after noting that —nk = qf‘jﬂ + "?J'-.’ can be simplified to

( Yo -nE+ Y —n!i-) U = Y Y n2u; (5.21)

Amea;, AzEA_ AmeA;, jeN;
+ z "ﬂ?iUJ},, + z: 'I?j_‘ O(h)'
AzEA_ A:€A;_

Note that nf_ = #f - D:aif_ /(2sin 6%, ), where i is the outward pointing unit
normal to edge ¢ for A, (see Figure 3.4) and 6;_. is 8;, for A.. Since the compu-
tational domain is bounded, 34, ca; qf,-_. is a finite quantity assuming that the

triangles are nondegenerate. Equation (5.21) can be written as

( > -mE+ X _f,,!:.)U,- 2 X n5U;

Ame€a;, A€l _ AmEA;, JEQ
+ Y -nEU;,, +O(h).  (5.22)
Az€A_

Since it can be shown that —n; > 0, and recalling that 5 > 0 (Anm € Ay), we

can deduce an approximate maximum principle. By defining

U™ = maxU;
JEN;

we can write equation (5.22) as

( > -+ Y —n.f:-)U.-s

A,,.GA.'+ AzeA;_

( 2 -+ X —n.’i-) U™ + O(h), (5.23)

Am€A€+ Al eAn’_
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which gives, after recalling —ni > 0,

U; < U™ + O(h).

Similarly, if we define

Ure = min U;,
then
U: > UM™ + O(h).
Hence.

min U; + O(h) < U; < max U; + O(h).

Thus. discrete local maximum and minimum principles are approximately satisfied
as h — 0. Similar bounds were derived in [11] for finite difference operators.

The above result can be extended to incorporate time dependence with arbitrary
temporal weighting. For example, if we incorporate time dependence and use a fully

implicit scheme, equation (5.23) becomes

(1+%( > oo+ X —qﬁ))U;ﬂ-lS

AmEA;, Az€Q;_

(1+%( S oot ¥ —nf,-))rf:mom)%, (5.24

Am€A;, Az€A;_
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where A; is the area of the control volume and U™** = max(U,"UJ"gnl) After

noting that A; = O(h?), equation (5.24) can be written as

1
n+l < max .
U: Umax 4 AN TC =O(h), (5.25)

where C is some positive constant. Since grrapze < ¢, equation (5.25) becomes

Ut < UP + O(h).

5.5 Lattices as Finite Differences/Elements

In this section we will show that the positive probability two-dimensional lattice
scheme described in [34] is equivalent to an explicit discretization which uses a finite
element method with bilinear quadrilaterals for diffusion. The scheme has positive
coefficients, in part, because the quadrilaterals are not rectangles (unless there is
no correlation).

Before examining the two-dimensional scheme, we will show that the single-

factor binomial method is equivalent to a known explicit finite difference scheme.

5.5.1 The Binomial Method
In this section we will show that the binomial method is an explicit finite difference
discretization of the log-transformed Black-Scholes equation

oU _ 40U

o o3 U _
- taegm Y (5.26)
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Sis1
q
q 1q
S; S.
1q
1q
Sia

Figure 5.7: A two period binomial process.

where z = log(S), plus an O(At) term, where the space-like derivatives are approx-
imated using central differences.

In the binomial method, the asset price (§) is assumed to follow a discrete
multiplicative binomial process. Figure 5.7 shows the possible price movements
after two time steps, where S;;, is the price after two upward movements and Si—1
is the price after two downward movements. The value of an option U written on

S can be computed using the binomial method [19):

U(Sitns1) = e-'m‘[qu(s{H’ ta) +29(1 — q)U(S;, tn) +

(1 = 9)*U(Si-1,ta)], (5.27)

where t,1; = t, +2At and ¢ = (e"2* —e"'s‘/A—‘) /(e7sVBE _e-vs \/E) is a risk-neutral
probability. Note that t = T — ¢t*. Denoting the U(S;.t,) as U in equation (5.27)

gives us

Uptt = e 8 @*U7, + 29(1 — q)UT + (1 - q)*UR, ). (5.28)

T
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After noting that 2¢(1 — ¢) = 1 — ¢* — (1 — ¢)?, equation (5.28) can be written as
Uit = e UT + ¢(Ufy = UT) + (1 - )X (U, — U7))]

which results in

urtt = e"2°‘U,?‘+e"2A‘q2(Ui11"2’[{2.'"+U.~"-1) N

e "28t(1 — 2q) 7 , (5.29)

where § = e"At — e=7sVAt and h = e7sVAL _ g-7sVAL By performing Taylor series

expansions, the coefficients in equation (5.29) can be expressed as

e "8t = 1 —r2At + O(AL?), (5.30)

2 3
et _ GIAL L 95g(r — 525-)/.\.:5 +O(AL), (5.31)
e—rZAt(l _ 26) — (_21. + dg)At + O(Atz)_ (532)

Substituting (5.30) to (5.32) into equation (5.29) gives us

Ur, —2Ur +Un,)
+1 hz 1 +

2
UMt = (1 =r2A8)UT + (o2At + 205(r — %)At%)(

U, - Ur)

(—2r + o2)At-—= 5 + O(At?),

which gives us, after noting that h = 205V At + O(At%),

(U, — 20" + UL

Urtt —Ur = —r2AtUT + 02At 2 =) +
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o3 (Un, - 2UP + U
(r > YAt A

(=2r + ag)At——-—(U‘-‘h_ v

D,

+ O(At?). (5.33)

Equation (5.33) assumes that U™ is smooth (at least in C?), which will be the case

for t, > 0 (see [71]).! Simplifying equation (5.33) and dividing by 2At gives

Urt - Uy 0% (UR, — 207 + UR,)
“ear - WS x ¥
2 n_ _[yn
(- 2y U _L5) | oan, (5.34)

which is an explicit finite difference scheme (where the space-like derivatives are
approximated using central differences and the time step size is 2At) for the log-

transformed Black-Scholes equation plus a term of order At.

5.5.2 2-D Positive Probability Lattice Schemes

In this section we will show that the two-dimensional lattice scheme described in
[34] is equivalent to a scheme which uses a finite element method with bilinear
quadrilaterals for diffusion, characteristics [64] for convection and mass lumping.
For clarity. we will first look at the one-dimensional case before examining the
two-dimensional case.

We will now show that one time step of the one-dimensional lattice scheme of

[34] is an explicit discretization of the log-transformed Black-Scholes equation which

lIf a discrete barrier is not present. For certain node placements, smoothing of the payoff
function may be required (see [75]).
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uses central differencing for the diffusion term and characteristics for convection.
Consider the case where z = log(S) and dz = u.dt + 0sdW,, where under the

2
assumption of risk neutrality u, = r — 52-“1 Using the scheme presented in [34], the

value of an option (U) written on S after one time step (At) is approximated by?

U(Tnpi,tnsr) = e 78 (%U(zn.“ + p:At + osV3AL. t,) + (5.35)

2 1
SU(Bnss + oDt tn) + 2U(2nss + pe At — o5V/3AL, e,.))

where ¢t = T —t” and t,n41 = t, + At. After noting that e "3t = 1 — rAt + O(At?),

equation (5.36) can be written as

1 f—
U($n+1: tn+1) = (EU("B!HH + l‘zAt + Os 3At~ tn)

+-

2 1
5U(@nts + 2l ,ta) + 2U(znss + pelbt — 05V3AL, t,,))
— rAt (%U(:,,+l + pa At + osV3AL, L)

2
+ EU(:B'H»I + [let, tn)

+ éU(z,.“ + poAt — osV3AL, t,.)) + O(AL?). (5.36)

After denoting U(Zn+1, tnt1) as UMY and U(Zn4y + p-At. t,) as U}, equation (5.36)

equals

7

Ut -up a3 (U;-:H —2Ur +UR,
At 2 X

) - 205 + 407 +U7.0) + 0(80), 637)

At first glance it appears odd that the coefficients (or risk-neutral probabilities) are constant.
That is, they do not appear to depend on the time step size and node spacing. However, the node
spacing is coupled to the time step size. The nodes are always placed so that the coefficients equal
the specified values for any time step size.
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where h = 0sv3At. Equation (5.37) is an explicit discretization, using central
differencing for diffusion and characteristics for convection, of the log-transformed
Black-Scholes equation plus a term of order At. Note that the discounting term
(—7U) in equation (5.26) is approximated using a weighted average of U7,,, U}
and U7_,.

We will now show that one time step (At) of the two-dimensional scheme in
(34] is equivalent (to order At) to a discretization of the log-transformed two-
dimensional Black-Scholes equation (PDE (2.4) with V = ( 58;, c%)', diffusion tensor
(5.11) and velocity tensor (5.12)) that uses characteristics for velocity terms, a finite

element method for the diffusion terms and mass lumping.

Let z = log(S,) and y = log(S:) follow processes

dr = pdt + o5, dW,

and

dy = pydt + o5,dW,,,

LQ
wfye

2
where, assuming risk-neutrality, u, = r — ’—:1- and p, = r — —%. Using the scheme
outlined in [34], the value of an option, U, written on S; and S, can be approximated

by

11
U(Znt1; Yns1, bng1) = €770 Z E P(i,J)U(zns1 + p:At + 105, V3IAL,

i=—1j=-1

Yn+1 Ty At + (ip + j\/1 — p?*)os, V3AL L), (5.38)
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where t 41 =t, + At,t =T — t* and with probabilities

1 1 1
36 9 36
L 1 — 1 4 1 y — —
(p(z,])) = 3 9 @8 3,1 = 1,0.1.
1 1 1
36 9 36

After denoting U(Zn+1,Yn+1:tns1) as UpF? and U(znsy + pz At + i0s, V3AL, Yns1 +
pyAt + (ip + j/1 — p?)os,V3AtL,t,) as U, equation (5.38) can be rewritten as

11
Uglt =e7 32 3 p(i,5)U;,

i=—-1 j=-1

which, after noting that e ™3¢ = 1 — rAt + O(At?), equals

U"'H—Ugo 1 1 1 o
Gl W 5 S e +08) = = 3 Y s
i=—1j=-1 . -
1 = =1 i=-1
# J#0
- Sy (5.39)
9At ¥ '

A discretization of the log-transformed two-dimensional Black-Scholes equation
using characteristics for convection, a weighted average for the discounting term,
mass lumping and a Galerkin approach with bilinear quadrilateral elements for

diffusion is given by

Uii' —Uso 1 & L1 4
A +r Z z p(z, J) = E z Z EU:,‘, 9At oo (5 40)
i 1 =

i=-1j5=-1
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1,1

0,1

1,0

,0

0,-1

Figure 5.8: Quadrilateral finite element mesh when correlation is positive, where
node (-1.1) refers to the node at whicht = —1 and j = 1.

1.1
node 4

01 T 1 e node 3

Ay '

———— y

R
y
1,0 ‘5!"2 node | node 2
0.0 X 0 1
l-——- Ax —.{ x

Figure 5.9: Transforming a quadrilateral in z,y to a standard square in z',y’.

The underlying mesh for discretization (5.40) is represented in Figure 5.8. Note

that the quadrilateral elements are not rectangular (unless there is no correlation).

Determining the coefficients on the R.H.S. of equation (5.40) involves a fair
amount of tedious algebra. The following provides a sketch of how the coeffi-
cients were determined. Let Az = 05,V3At, Ay = 05,/1 — p?/3At and Ay, =
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pos,V3AtL. The transformation

' = (z—=z00)/Az
, o
y = (y ~ Yoo — p—s’:) /Ay,
gs,

77

where 20,0 and yo 0 are the coordinates at node i = 0, J = 0, converts the quadri-

laterals in Figure 5.8 into standard squares (refer to F igure 5.9). Assume, without

loss of generality, that we are working in the upper right quadrant of z,y’. Let N

denote the standard basis functions in z’,y’ and V = (. %)'. Then

’

y -1 11—y y

VN, = VN, = and VNA;=

z' —1 ~z' z’

Let R denote the region covered by the quadrilateral in Figure 5.9,

oz' 9z’ 1 0
J 1= 9z 9y — Az
% s 1
8z 3y o5, Ay
and recall that
p-l| 9 rosos
2 pos,0s, 0%
Then
1 g YA o = A7/ 7—1\7 ) AtAy
R/ [ VNosDVN, odzdy = /O /O VEITD(V I ey = SERY,
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where |J| = AzAy is the determinant of J. By symmetry,

AzA
[[ I NooDNosdzdy = [ [ VNooDVN; odzdy = 222V
R R
Finally,
' Nex S o AzAy
— 7 7—-1 ’r =1y 1y _
Z [ VNooDV Nysdzdy = [ [ ORI D(O NI Y\ datdy’ = el

By again using symmetry arguments, we can use the above results to determine the
contributions from the remaining three quadrilaterals. Summing the contributions
and dividing by AzAy (which arises from mass lumping) gives us the coefficients
on the R.H.S. of equation (5.40).

Now. subtracting the R.H.S. of (5.40) from the R.H.S. of (5.39) gives (after yet

more tedious algebra)

1§ - N 1 Uy
Ar > X (P(z,J) - Ts_) U~ U0 = 23 (azzz;;zo(mz)) = O(At),

i= -1 j

13 =
i£0  j#0

which assumes U™ is smooth (at least in C*), which is the case for t, > 0. Thus,

equation (5.39) equals

Un+1 _yUn 1 1 o
%ﬁ = —r > Y p(i,5)UY
1=—13=-1
1 ! ! 1 4
t A )OS 0~ gA; oo T O(AR).

i=-1 j=-1

i£0  j#o0
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Therefore, one time step of the two-dimensional scheme in [34] is equivalent to a
discretization of the two-dimensjonal log-transformed Black-Scholes equation which
uses a finite element method with bilinear quadrilateral elements for diffusion, char-
acteristics for velocity, mass lumping, a weighted average for the discounting term

Plus a term of order At.

5.6 Summary

For any given set of nodes, if the diffusion tensor is constant, then a mesh can
always be constructed such that the coefficients are nonnegative. However, it was
shown in this chapter that if the diffusion tensor is nonconstant, then a mesh which
ensures positive coefficients cannot be constructed in general.

Fortunately, it was also shown that the finite volume method will approximately
satisfy discrete local maximum and minimum principles when the discretization of
the diffusion term produces negative coefficients.

Finally, it was shown that the binomial method and the two-dimensional positive
probability scheme in [34] are in fact equivalent to known finite difference/element
schemes (to order At). Since the binomial method is a consistent finite difference
scheme, the convergence of the binomial method to the solution of the Black-Scholes
equation as At — 0 can be proved without resorting to the use of probabilistic
arguments. With respect to the two-dimensional scheme in [34], the probabilities
(coefficients) are Positive, in part, because the scheme uses skewed meshes when
correlation is not zero.

The above results highlight a common misconception in finance. It is sometimes
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stated that lattice methods and finite difference schemes are qualitatively different.
That is, lattice schemes are in some way implementations of discrete models while
finite differences solve continuous models. The results in this chapter show that

lattice methods and finite differences/elements are equivalent numerical techniques.



Chapter 6

Results

This chapter contains results obtained discretizing equation (2.4) using (3.10). The

results are divided into two parts (I and II). In Part I, we address
e convergence
e efficiency gains
e convection dominance/degeneracy
e control volume construction

by examining several different option pricing problems. Part II addresses the issue
of constructing meshes such that the discretization of the diffusion term in equation
(2.4) does not produce nonnegative coefficients.

In both Parts I and II, the runs were performed using ILU-CGSTAB with level
one fill for the solution of the Jacobian. The discrete equations (3.10) are nonlinear

because of the flux limiter (4.8) or the penalty term. Consequently, full Newton

81
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iteration was used to solve the algebraic equations. The absolute Newton iteration

tolerance was 10~3 and the inner iteration tolerance was

|| res™ ”2

<1074
|| res© ”z ’

where || res® ||, and || res™ ||, are the 2-norms of the initial residual and the residual
after m iterations, respectively.! All the computational domains were chosen such
that increasing them had no effect on the solution at the region of interest, to at
least five figures. Of course, the size of the computational domains may have to be
increased for longer term options and options with higher volatilities.

In Part I all the triangulations were Delaunay and the control volumes were
constructed using perpendicular bisectors (see Figure 6.1) unless stated otherwise.
The Crank-Nicolson method (6 = %) with a constant time step was used for the
computations. It should be noted that computational savings can be obtained for
long-term pricing problems by using an adaptive time-stepping routine (83].

In Part I, in order to ensure that any negative coefficients were only caused by
the discretization of the diffusion term, flux limiting scheme (4.20) was always used
for convection and the discretization was fully implicit (§ = 1). The control volumes
were constructed using triangle centroids to allow comparisons to be made between
regular triangulations (which are Delaunay) and positive coefficient non-Delaunay
triangulations. The sensitivities (deltas) were calculated using the method outlined

in [79].

!For pricing problems where the solution values are large, a relative tolerance should be used
for the Newton iterations.
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Centroid control volume

Perpendicular bisector coatrol volume

Figure 6.1: Perpendicular bisector and centroid control volumes.

6.1 Partl

6.1.1 Worst of Two Asset Options

To demonstrate the convergence of discretization (3.10) on an irregular mesh (see
Figure 6.2), European put options on the worst of two assets were priced since an
analytic solution [68] is known for such problems. Although the underlying PDE
(equation (2.4) with V = (5‘?5, %)', diffusion tensor (2.15) and velocity tensor
(2.16)) is not convection dominated in this case, flux limiting scheme (4.20) was
used in order to test the full method. The results for half year European puts
with various exercise prices (K) computed on successively finer (refer to Figure
6.3) irregular meshes are contained in Table 6.1. The results demonstrate that
numerical solutions of high accuracy (no more than 0.006% of the exercise price
away from the analytic solution for the cases considered) can be obtained using a

mesh with a relatively small number of nodes.

Table 6.2 contains the values of half year American put options on the worst
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Q
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Figure 6.2: An irregular triangular mesh with 3558 nodes.

new triangle edge
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Figure 6.3: Ezample of mesh refinement. The original triangle is denoted by the
solid lines.
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Figure 6.4: A regular triangular mesh.

Nodes 3588 | 13140 | 50220 || Analytic
At 0.02 | 0.01 | 0.005

35 1.671 | 1.674 | 1.675 1.675
K 40 4.262 | 4.267 | 4.268 4.268
45 7.986 | 7.990 | 7.991 || 7.991
Normalized 1 811 | 71.60 ||

exec. time

Table 6.1: European put options on the worst of two assets when r = 0.05, o5, =
os, =030, p=0.5,T —t* =0.5 and S; = S = 40. The solutions were computed
on successively finer irreqular meshes using the modified van Leer fluz limiter. The
normalized ezecution times were obtained by using the coarse grid (3588 nodes and
At = 0.02) ezecution time as the base time.
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of two assets computed using flux limiting scheme (4.20). The American case
differs from the European case because the early-exercise constraint (2.18) is being
imposed (using the penalty method described in Chapter 3). Successively finer
regular meshes (see Figure 6.4) were used to calculate the American put prices
in Table 6.2. The results in Table 6.2 appear to indicate quadratic convergence.
Regular triangular meshes are similar to orthogonal grids (which are typically used
when solving PDE models in finance) in the sense that if nodes are added to a
region of interest, then the number of nodes in other parts of the domain will
also increase. Unlike regular meshes, irregular meshes allow one to add nodes to
the region of interest without increasing the number of nodes in other parts of
the domain. Consequently, substantial computational savings can be achieved by
using irregular meshes. Table 6.3 contains American put values computed using
flux limiting scheme (4.20) and irregular meshes. Tables 6.2 and 6.3 indicate that
an irregular mesh can be used to price options to within $0.01 with an order of
magnitude less computation time, relative to when a regular mesh is used. With
respect to the computed values in Table 6.3, the initial irregular mesh (similar to
the mesh in Figure 6.2, but with 2664 nodes) was refined by inserting nodes only
near the exercise price.

Table 6.4 contains values computed using central weighting (4.3) on irregular
meshes. The values in Table 6.4 are identical to the values obtained using the flux
limiting scheme on the same irregular meshes (refer to Table 6.3). Scheme (4.20)
uses diffusion in the underlying equation in an attempt to reduce the need for

additional numerical diffusion. The results suggest that scheme (4.20) does indeed
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Nodes 9929 | 23409 | 93025
At 0.02 | 0.01 | 0.005

35 1.690 | 1.700 | 1.702
K 40 4.330 | 4.343 | 4.346
45 8.127 | 8.138 | 8.142

Normalized | 1.50 | 12.08 | 82.54
exec. time

Table 6.2: American put options on the worst of two assets when r = 0.05, o5, =
s, =030, p=05,T —¢t"=0.5 and S; = S; = 40. The solutions were computed
on successively finer regular meshes using the modified van Leer fluz limiter. The
normalized ezecution times were obtained by using the irregular coarse grid (2664
nodes and At = 0.02, see Table 6.3) ezecution time as the base time.

introduce little augmenting diffusion. Figure 6.5 is a plot of American put option

values computed using the flux limiting scheme on an irregular mesh.

6.1.2 Asian Options

The values of quarter year European fixed strike Asian call options are contained
in Table 6.5. The results were obtained by using scheme (4.20) on irregular meshes
(similar to the irregular mesh in Figure 6.2). Valuing Asian options is numerically
one of the more difficult pricing problems because the underlying PDE (2.4) with
V = (£. %) has a convection term (see velocity tensor (2.38)) but no diffusion
term (see diffusion tensor (2.37)) in one of the spatial dimensions. Hence, the PDE
1s degenerate. Computing the solution of such a model can be viewed as a standard
problem for verifying the robustness of a numerical scheme. The cases considered

in Table 6.5 are particularly difficult because of the low volatility (os = 0.10). The

numerical results are comparable with the results obtained using various methods
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Nodes 2664 | 4744
At 0.02 | 0.01
35 1.696 | 1.701
K 40 4.336 | 4.344
45 8.131 | 8.139
Normalized 1 3.63
exec. time

Table 6.3: American put options on the worst of two assets when r = 0.05, o,

88

0s, =030,p=0.5,T—t"=0.5 and S, = S, = 40. The solutions were computed on
irregular meshes using the modified van Leer fluz limiter. The normalized ezecution
times were obtained by using the coarse grid (2664 nodes and At = 0.02) ezecution

time as the base time.

Nodes 2664 | 4744
At 0.02 | 0.01
35 1.696 | 1.701
K 40 4.336 | 4.344
45 8.131 | 8.139
Normalized | 0.97 | 3.47
exec. time

Table 6.4: American put options on the worst of two assets when r = 0.05, os, =
05, =030, p=0.5, T —¢t* = 0.5 and S, = S; = 40. The solutions were computed
on irregular meshes using central weighting. The normalized ezecution times were
obtained by using the coarse grid (2664 nodes and At = 0.02) ezecution time, when

the modified van Leer fluz limiter was used (see Table 6.3), as the base time.
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Figure 6.5: Values for an American put option on the worst of two assets when
r = 0.05, g5, =75, =0.30, p =05, T — ¢t = 0.5 and K = 40. The solution was

computed on an irregular mesh with {744 nodes using the modified van Leer fluz
limiter.
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Nodes 2853 | 10226 | 38634
At 0.01 | 0.005 | 0.0025
95 6.113 { 6.118 | 6.119
K 100 1.829 | 1.848 | 1.852
105 0.163 | 0.152 | 0.150

Normalized 1 7.20 69.72
exec. time

Table 6.5: European fized strike Asian call options computed using the van Leer
fluz limiter on successively finer meshes when r = 0.10, s = 0.10, T — ¢t = 0.25,
and § = 100. The normalized ezecution times were obtained by using the coarse
grid (2858 nodes and At = 0.01) ezecution time as the base time.

cited in [24]. Table 6.5 appears to again indicate quadratic convergence.

Figure 6.6 demonstrates the oscillations that can result when central weighting
is used to discretize the convective term. Figure 6.6 contrasts sharply with Figure
6.7. where Figure 6.7 is a plot of a solution obtained using scheme (4.20) that is

free of oscillations. Note that exactly the same parameters and irregular mesh were

used to compute both solutions.

6.1.3 Convertible Bonds

As mentioned in Chapter 1, there is evidence to suggest that centroid control vol-
umes can deteriorate accuracy [6]. Both centroid and perpendicular bisector control
volume constructions were examined when a ten year convertible bond was priced.
The convertible bond was continuously callable. Parameter values for the pricing
problem are outlined in Table 6.6. The bond pays a 5% coupon semi-annually.
Due to the fact that the underlying variables (interest rate and stock price, see

Section 2.4) differ by orders of magnitude, a rescaling of the variables was necessary



CHAPTER 6. RESULTS 91

Call Value

Figure 6.6: European fized strike Asian call option calculated using central weighting
on an irregular mesh with 10226 nodes when r = 0.10, 0s = 0.10, T — ¢t~ = 0.25

and K = 100.
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Call Value

Figure 6.7: European fized strike Asian call option calculated using the modified van
Leer fluz limiter on an irregular mesh with 10226 nodes when r = 0.10, s = 0.10,

T —-t"=0.25 and K = 100.
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| Parameter | Value | Parameter | Value
Os 0.25 c 0.5
o, 0.03 A 0.0
P -0.5 w 2.0
a 0.58 Cp 105.0
b 0.0345

Table 6.6: Convertible bond parameter values.

Nodes 2698 10327 | 40214
At ] 0125 | 0.0625 | 0.03125
50 || 104.189 | 104.231 | 104.231 | 0.04

S 40 100.462 | 100.489 | 100.488 | 0.08 | r

30 95.095 | 95.128 | 95.123 | 0.12

Normalized 1 8.01 122.49

exec. time

Table 6.7: Values of a ten year convertible bond (at T —t* = 10.0) which is contin-
uously callable and pays a 5% coupon semi-annually. The solutions were calculated
on successively finer irreqular meshes using centroid control volumes and central
weighting. The normalized ezecution times were obtained by using the coarse grid
(1541 nodes and At = 0.125) ezecution time as the base time.

in order to construct Delaunay triangulations (which are required for perpendicular
bisector control volumes). A new variable y = % was defined, and the equations
were transformed using this new variable.

The values in Table 6.7 were computed using central weighting and irregular
meshes (similar to the mesh in Figure 6.2) with centroid control volumes. Table
6.8 contains values obtained using flux limiting scheme (4.20) with centroid control
volumes on the same irregular meshes used when the solutions were computed

using central weighting. Unlike the solutions for American put options, there is a

noticeable difference between central weighting and the flux limiting scheme (4.20),
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Nodes 2698 10327 40214
At 0.125 0.0625 | 0.03125
50 104.189 | 104.231 | 104.231 | 0.04
S 40 100.428 | 100.471 | 100.479 | 0.08
30 95.036 | 95.096 | 95.110 | 0.12
Normalized 1.32 11.38 139.49
exec. time

Table 6.8: Values of a ten year convertible bond (at T —t* = 10.0) which is contin-
uwously callable and pays a 5% coupon semi-annually. The solutions were calculated
on successively finer irreqular meshes using centroid control volumes and the mod-
ified van Leer fluz limiter. The normalized ezecution times were obtained by using
the coarse grid (1541 nodes and At = 0.125) ezecution time, when central weighting
was used (see Table 6.7), as the base time.

Figure 6.8: A ten year convertible bond (at T — t* = 10.0) which is continuously
callable and pays a 5% coupon semi-annually. The solution was computed on an

irregular mesh with 5647 nodes using centroid control volumes and the modified van
Leer limater.
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Nodes 2698 10327 40214
At 0.125 0.0625 | 0.03125
50 104.189 | 104.231 | 104.231 | 0.04
S 40 100.467 | 100.491 | 100.490 | 0.08
30 95.097 | 95.132 | 95.129 | 0.12
Normalized 1 7.09 102.81
exec. time

Table 6.9: Values of a ten year convertible bond (at T —t* = 10.0) which is contin-
uously callable and pays a 5% coupon semi-annually. The solutions were calculated
on successively finer irreqular meshes using perpendicular bisector control volumes
and central weighting. The normalized ezecution times were obtained by using the
coarse grid (1541 nodes and At = 0.125) ezecution time as the base time.

with the flux limiter appearing to be more slowly convergent.

In contrast, Tables 6.9 and 6.10 contain values obtained with perpendicular
bisector control volumes using central weighting and flux limiting scheme (4.20),
respectively. The values were computed using the same irregular meshes used for
the results obtained with centroid control volumes. In this case (using perpendicular
bisector control volumes), the values obtained using central weighting and the flux
limiting scheme are very similar, and these results are also comparable to the results
computed using central weighting with centroid control volumes (Table 6.7). The
results suggest that the differences between the values calculated with centroid
control volumes were due to the fact that such control volumes have a diffusive
effect on the solution, particularly when the flux limiting scheme is used. Similar
results have been observed in the computation of the Euler equations [30].

It is interesting to note that the increases in execution time after mesh and time

step refinements were larger for the convertible bond pricing problem than for the
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Nodes 2698 10327 40214
At 0.125 0.0625 | 0.03125
50 104.189 | 104.231 | 104.231 | 0.04
S 40 100.465 | 100.490 | 100.489 | 0.08
30 95.084 | 95.125 | 95.128 | 0.12
Normalized 1.13 9.57 120.28
exec. time

Table 6.10: Values of a ten year convertible bond (at T — t* = 10.0) which is
continuously callable and pays a 5% coupon semi-annually. The solutions were
calculated on successively finer irregular meshes using perpendicular bisector control
volumes and the modified van Leer fluz limiter. The normalized ezecution times
were obtained by using the coarse grid (1541 nodes and At = 0.125) ezecution
time, when central weighting was used (see Table 6.9), as the base time.
two-asset and Asian option pricing problems.

Figure 6.8 contains a plot of the convertible bond values computed using scheme

(4.20) on an irregular mesh. Referring to Figure 6.8, the effect of the call provision

(constraint (2.49)) can clearly be seen for large S.

6.2 Part II

To investigate the effect of negative 7;;, we will examine pricing several types of
options written on two assets (S; and S,). We chose to examine pricing European
call options on the maximum of two assets, a European digital call option and a
European discrete double barrier call option on the maximum of two assets. The
pricing problems were chosen based on the fact that the European call options on
the maximum of two assets are standard pricing problems, the digital option has a

discontinuous payoff function, and the discrete barrier option introduces discontinu-
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Figure 6.9: A positive coefficient mesh constructed using edge swapping when o5, =
0.10, o5, = 0.30 and p = 0.70.

ities at monitoring dates. The price processes in all the problems follow geometric
Brownian motion.

In order to construct positive meshes for comparison purposes, we perform the
change of variables z = log(S;) and y = log(S2) so that diffusion tensor (2.15) will
be transformed into a constant tensor. After performing the transformation, the
underlying PDE is equation (2.4) with V = (£, a%)” diffusion tensor (5.11) and
velocity tensor (5.12). Note that such a transformation to produce a constant D
can be performed because the underlying price processes follow geometric Brownian
motion. Transformations that produce constant diffusion tensors are not possible
in general.

Table 6.11 contains results for quarter year European call options on the maxi-
mum of two assets. The values in Table 6.11 were computed using regular meshes
and meshes constructed using edge swapping (refer to Figure 6.9). The edge-
swapped meshes ensured that all the coefficients in the discrete equations for un-

knowns at interior nodes were positive. Note that the nodes are at the same posi-
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tions for both meshes. Table 6.11 appears to indicate that the two different meshes
produced comparable results (with the edge-swapped mesh being more slowly con-
vergent). However, Figures 6.10 and 6.11 seem to suggest that the positive coef-
fictent edge-swapped mesh produced solutions of poor quality. That is, the level

% and %) are jagged when the edge-swapped

curves of values and of the deltas (
mesh was used, but the level curves are relatively smooth when the regular mesh
was used. The jaggedness in the contour levels persists even when the edge-swapped
mesh is refined (see Figure 6.12).

It should be noted that the jaggedness is not caused by convection - the effect
occurs even if the convection term is removed entirely from equation (2.3). Nor is
the jaggedness in the level curves of the deltas an artifact of the method that was
used to compute the deltas, since it is clear that the jaggedness is already present
in the level curves of values.

A possible cause of the jaggedness is that the kinks in the payoff function occur
within elements for the edge-swapped meshes and not, as is the case for the regular
meshes used in the numerical examples, only at element edges. Accuracy may dete-
riorate when the second derivatives of the initial (terminal) condition do not exist

within elements [75]. To test this hypothesis the initial condition was smoothened

by projecting it onto the space spanned by the basis functions using

(/z/yNN'dydz) U° = /:Lg(z,y, T)Ndydz, (6.1)

where N are the basis functions, U° are the smoothened initial data and g¢(-) is

the payoff function. As pointed out in [75], this should restore optimal convergence
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P Mesh Numerical Solution Analytic

0.50 | Regular | 2.811 | 2.964 | 3.001 3.001
Swapped | 2.797 | 2.948 2.994
0.70 | Regular | 2.693 | 2.847 | 2.884 2.891
Swapped | 2.707 | 2.820 | 2.873

At 0.005 | 0.0025 | 0.00125
Nodes 6724 | 26569 | 106276

Table 6.11: Values of European call options on the mazimum of two assets when
r =0.05, 05, = 0.10, 05, =030, T — ¢t~ = 0.25, S; = S, = 40 and K = 40. The
solutions were computed on successively finer regular meshes and positive coefficient
meshes constructed using edge swapping.

rates. Note that except for the convective term in some cases, the finite volume
discretization (3.10) is equivalent to a standard finite element approach when V
and D are constant. It was found that smoothing the initial condition had little
effect on the quality of the contour plots.

The jaggedness would seem to contradict the fact that the discretization with
the edge-swapped mesh is a positive coefficient scheme. Although discrete local
maximum and minimum principles hold for the discretization when positive coef-
ficilent meshes are used, it is interesting to note that nodes are not connected to
their nearest spatial neighbours in an edge-swapped mesh. Consequently, the value
at a node may not be bounded by the values at its spatially nearest neighbouring
nodes.

Figure 6.13 contains a plot of level curves of values (where the values at the nodes
are indicated) for a European call option on the maximum of two assets when the

solution was computed using an edge-swapped mesh. Figure 6.13 demonstrates that
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Figure 6.10: Level curves of values, deltas with respect to S, % ) and deltas with

respect to S, (%’2— ) of a European call option on the mazimum of two assets when
r = 0.05, 65, = 0.10, 05, = 0.30, p = 0.70, T — t* = 0.25 and K = 40. The
solutions were computed with At = 0.005 using a regular mesh with 6724 nodes.
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Figure 6.11: Values, deltas with respect to S; and deltas with respect to S, of a
European call option on the mazimum of two assets when r = 0.05, os, = 0.10,
os, =0.30, p=0.70, T —t* = 0.25 and K = 40. The solutions were computed with
At = 0.005 using a positive coefficient edge-swapped mesh with 6724 nodes.
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Figure 6.12: Values, deltas with respect to S, and deltas with respect to S, of a
European call option on the mazimum of two assets when r = 0.05, os, = 0.10,
os, =030, p=0.70, T —¢t* = 0.25 and K = 40. The solutions were computed with
At = 0.0025 using a positive coefficient edge-swapped mesh with 26569 nodes.

Figure 6.13: Level curves of values and values at nodes for a European call option
on the mazimum of two assets when r = 0.05, o5, = 0.10, os, = 0.30, p = 0.70,
T —t* =0.25 and K = 40. The solutions were computed with At = 0.005 using a
positive coefficient edge-swapped mesh with 6724 nodes.
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although the level curves appear to indicate an oscillatory solution, the computed
values at the nodes are actually well behaved. Hence, the jaggedness is an artifact
of calculating the level curves. More specifically, linear interpolation on the edge-
swapped meshes produced poor results.

The poor quality of level curves computed on edge-swapped meshes is most
likely due to the fact that the elements are long and thin (or stretched). Although
stretched elements are optimal for interpolation with respect to minimizing the
error bound when there is a direction with dominant curvature, the placement of
the elements must be data dependent (see (22, 60]). That is, the triangles should
be short in directions where the curvature of U is high, and long in directions where
the curvature of U is low. Edge swapping to ensure positive coefficients ignores the
curvature of U. Thus, elements may be placed with their long side in the direction
of high curvature.

Poor interpolation results may be of concern when solving a model if jump con-
ditions are present. For example, in the presence of discrete dividends, interpolation
will generally be performed at ex-dividend dates.

An alternative to edge swapping is to place nodes in such a manner as to ensure
positive coefficients. Recall that a regular mesh will ensure positive coefficients
when the coordinate system has been rotated to eliminate the cross-partial terms.
Rotating such a mesh back into the original coordinate system will ensure that the
coeflicients are positive without generating stretched elements (see Figure 6.14). To
remove the cross-partial terms from diffusion tensor (5.11), the coordinate system

must be rotated by an angle of %tan‘l(f;gff,&).
1 52
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Figure 6.14: A positive coefficient mesh which corresponzds to a regular mesh when
. . 1 —17 P05, 0. —
the coordinate system is rotated by an angle of tan (a,—_*;-g:) when o5, = 0.10,

s, = 0.30 end p = 0.70.
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Figure 6.15: Values, deltas with respect to S; and deltas with respect to S; of a
European call option on the mazimum of two assets when r = 0.05, os, = 0.10,
os, =030, p=0.70, T —t* = 0.25 and K = 40. The solutions were computed with
At = 0.005 using a positive coefficient rotated mesh with 6614 nodes.
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Figure 6.16: Level curves of deltas with respect to S, and deltas at nodes for a
European call option on the mazimum of two assets when r = 0.05, os, = 0.10,
0s, =0.30, p=0.70, T — ¢t~ = 0.25 and K = 40. The solutions were computed with
At = 0.005 using a positive coefficient rotated mesh with 6614 nodes.
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Figure 6.15 contains contour plots of values and deltas of a quarter year Eu-
ropean call on the maximum of two assets computed using a positive coefficient
rotated mesh. The node positions in the rotated mesh differ from the node posi-
tions in the regular mesh, but the spacings are identical. The contours calculated
using the rotated mesh are better than the contours computed using the edge-
swapped mesh. However, the rotated mesh contours are not as smooth as the
contours calculated using regular meshes.

The contour plots computed using the rotated mesh suggest an oscillatory so-
lution. Using projection (6.1) to smooth the initial condition again had little effect
on the quality of the contour plots. As was the case with the edge-swapped meshes,
the computed solutions at the nodes are well behaved (see Figure 6.16). Hence, the
Jagged contours are once again due to poor interpolation.

The rotated mesh may have produced poor interpolation results, because unlike
the regular mesh, the element edges in the rotated mesh are not aligned with the
curvature of U. Like edge swapping, ensuring positive coefficients as a criterion for
node placement ignores other aspects of the problem.

We next examined the more difficult case of pricing a quarter year digital call
option. The problem is considered to be of greater difficulty because there are
discontinuities in the payoff function (2.29). Figures 6.17, 6.18 and 6.19 contain
contour plots of values and deltas computed using regular, edge-swapped and ro-
tated meshes, respectively. We see the same pattern of results as in the previous
pricing problem. That is, the regular mesh produced the best contours, followed by

the rotated mesh and the edge-swapped mesh produced the worst contours. The
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Figure 6.17: Level curves of values and deltas of a digital call option when r = 0.05,
s, = 0.10, 05, = 0.30, p =0.70, T — t* = 0.25 and K = 40. The solutions were
computed with At = 0.0025 using a regular mesh with 26569 nodes.
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Figure 6.18: Values, deltas with respect to S, and deltas with respect to S, of a
digital call option when r = 0.05, a5, = 0.10, os, =030, p=070, T -t~ =0.25
and K = 40. The solutions were computed with At = 0.0025 using a positive
coefficient edge-swapped mesh with 26569 nodes.
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Figure 6.19: Values, deltas with respect to S; and deltas with respect to S, of a
digital call option when r = 0.05, o5, = 0.10, 05, = 0.30, p = 0.70, T — ¢t~ = 0.25
and K = 40. The solutions were computed with At = 0.0025 using a positive
coefficient rotated mesh with 26455 nodes.

Jaggedness in the contours computed using the edge-swapped and rotated meshes
persisted even if the the initial condition was smoothened using projection (6.1).

The final problem we examined was pricing a quarter year European discrete
double barrier call option on the maximum of two assets, where the barrier is
applied in time increments of 0.025. For the sample pricing problem K = 40, and
Hiower = 30 and Hypper = 50. Like the digital option, there are discontinuities at
maturity. Moreover, each application of the barrier introduces discontinuities into
the solution.

Contour plots of solutions computed using regular, edge-swapped and rotated
meshes are contained in Figures 6.20, 6.21 and 6.22, respectively. Again we see that
the regular mesh produced the smoothest contours, while the edge-swapped mesh
produced the worst contours.

Note that when using a rotated mesh, one cannot generally place nodes such

that they line up with the barrier. This again highlights the fact that if ensuring
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Figure 6.20: Level curves of values, deltas with respect to Sy and deltas with respect
to S» of a European discrete double barrier call option on the mazimum of two assets
when r = 0.05, o5, = 0.10, 05, =0.30, p = 0.70, T — ¢t* = 0.25 and K = 40. The
barrier is applied in time increments of 0.025, and Hiower = 30 and Hypper = 50.
The solutions were computed with At = 0.0025 using a regular mesh with 26569
nodes.
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Figure 6.21: Values, deltas with respect to S, and deltas with respect to S, of a
European discrete double barrier call option on the mazimum of two assets when
r = 0.05, 05, = 0.10, s, = 0.30, p =0.70, T — t* = 0.25 and K = 40. The barrier
is applied in time increments of 0.025, and Hipwer = 30 and Hyppey = 50. The
solutions were computed with At = 0.0025 using a positive coefficient edge-swapped
mesh with 26569 nodes.
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Figure 6.22: Values, deltas with respect to Sy and deltas with respect to S, of a
European discrete double barrier call option on the mazimum of two assets when
r = 0.05, g5, = 0.10, 05, = 0.30, p = 0.70, T — t* = 0.25 and K = 40. The
barrier is applied in time increments of 0.025, and Hipyer = 30 and Hpper = 50.
The solutions were computed with At = 0.0025 using a positive coefficient rotated
mesh with 26455 nodes.

positive coefficients is used as a criterion for constructing the mesh, other aspects

of the problem, such as, the curvature of U or constraints on the solution may have

to be ignored.

6.3 Summary

Although the computational domains for option pricing problems are typically rect-
angular, irregular triangular meshes are nonetheless advantageous because they can
be used to improve computational efficiency. As the results demonstrated, suffi-
ciently accurate solutions can be obtained using irregular meshes in an order of
magnitude less time than is required when meshes which are analogous to the finite
difference grids typically employed in finance are used.

The results in this chapter appear to indicate that the finite volume discretiza-
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tion (3.10) has a second-order rate of convergence. Furthermore, the results suggest
that the flux limiting scheme (4.20) can handle convection dominated problems
without introducing excessive amounts of augmenting diffusion. For problems that
were not convection dominated, the flux limiting scheme and central weighting pro-
duced comparable results if the control volumes were constructed using perpendic-
ular bisectors. The use of centroid control volumes appears to increase the amount
of numerical diffusion introduced by the flux limiting scheme. The results suggest
that perpendicular bisector control volumes should be used whenever possible.

As shown in Chapter 5, it is not possible, in general, to construct meshes that
will ensure that discretizations of the diffusion term will produce nonnegative co-
efficients. In those cases where positive coefficient meshes can be constructed, the
numerical results suggest that solutions computed using such meshes are no better
than solutions computed with meshes that do not ensure positive coefficients. More-
over, poor interpolation of the price and deltas resulted when positive coefficient
meshes were used. The poor results appear to be due to the fact that the positive
coefficient meshes do not place nodes in such a way as to capture rapid changes in
the solution. Since, lattice methods are forms of finite difference/element schemes
(as shown in Chapter 5), we conjecture that positive probability lattice schemes

will have similar problems.



Chapter 7

Conclusions

We have developed a general finite volume framework for two-factor PDE option
pricing models. In order to ensure generality, a nonconservative finite volume
method was formulated. This method is specifically designed to handle degenerate
equations (especially at boundaries) and convection dominated situations.

It is often the case that option pricing problems are posed without explicit
boundary conditions. At large (but finite) values of the independent variables
in the computational domain, asymptotic forms can usually be used to specify
artificial boundary conditions. Since the nodes where these conditions are imposed
are usually far from regions of interest, any errors in the asymptotic form will
typically have a negligible effect. However, inappropriate boundary conditions near
zero may prevent convergence to the true solution in the area of interest because
of its proximity to these conditions. It is often the case that on the boundary
near the origin, the domain of dependence of the underlying PDE is on the interior

domain and boundary. Hence, an appropriate discretization will not need to impose
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conditions on these portions of the boundary. The nonconservative finite volume
approach presented in this work handles such boundary points correctly.

To ensure the robustness of the framework, the prevention of spurious oscilla-
tions caused by convection dominance was addressed in this work. In the case of the
pure convection problem, the FVM, through the use of a positive coefficient scheme
satisfies discrete local maximum and minimum principles on an unstructured mesh.
The positive coefficient scheme employs a combination of central weighting and a
flux limiter, which is possible since the equations are nonconservative. In the case of
the complete problem with convection and diffusion, the scheme minimizes the use
of the flux limiter. Thus, the amount of additional numerical diffusion is reduced.
Furthermore, this method is a compact scheme, where the nonzero structure of
the Jacobian matrix is no different from that obtained when central weighting or
first-order upstream weighting is used. To the best of our knowledge, a compact
positive coefficient scheme has not been previously developed.

The numerical examples presented in this work indicate that the use of the flux
limiting scheme is superior to central weighting for degenerate or convection dom-
inated cases. On the other hand, when there is enough diffusion in the problem so
that central weighting can be used, both methods give comparable results, particu-
larly if the control volumes are constructed using perpendicular bisectors. However,
if centroid control volumes are used, then there is some degradation in accuracy
when the flux limiting scheme is employed. To summarize, if a Delaunay triangu-
lation can be constructed, then the flux limiting scheme is a robust method which

produces good results in degenerate cases, and is comparable to central weighting
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when central weighting can be used.

Although the computational domains for option pricing problems are typically
rectangular, accurate solutions are only required in a small subregion near the
exercise price. As demonstrated in the numerical examples, an unstructured grid is
very useful in such cases, since more nodes can be inserted near the region of interest
without introducing additional nodes elsewhere in the computational domain.

We used the finite volume discretization to investigate the effect of negative
contributions to coefficients from the discretization of the diffusion term. For any
given set of nodes, a mesh can be constructed through edge swapping that will
ensure that all coefficients in a finite volume discretization are nonnegative in the
presence of correlation when the diffusion tensor is constant. However, an edge-
swapped mesh will often contain stretched or skewed elements. In order to avoid
such elements or when using standard finite differences, one needs to rotate the
coordinate system.

It was shown that when meshes that allow negative coefficients are used, dis-
cretizations will approximately satisfy discrete maximum and minimum principles
as the mesh size parameter approaches zero.

For the pricing problems considered in this work, it was demonstrated that
meshes which ensured nonnegative coefficients produced poor interpolation results
compared to regular meshes which did not ensure nonnegative coefficients. This
may be of concern when certain jump conditions are present, for example, when
there are discrete dividends. The poor interpolation results appear to be due to

the fact that ensuring positive coefficients ignores the curvature of the solution, as
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well as other aspects of the pricing problem.

The results suggest that meshes where the edges are aligned with features of the
payoff function (which may not result in positive coefficients) will produce solutions
of high quality. It is in fact fortunate that it does not appear necessary to enforce
the positive coefficient condition for option pricing problems, because it is generally
not possible to produce a positive coefficient discretization for a given set of nodes
when the diffusion/volatility tensor is nonconstant.

This work has also shown that the binomial method and the two-dimensional
lattice scheme in [34] are in fact equivalent (to order At) to a known finite difference
scheme and a finite element scheme, respectively. Hence, it can be proved that the
binomial method converges to the solution of the one-dimensional Black-Scholes
equation without appealing to probabilistic arguments. As well, the lattice scheme
in [34] has positive probabilities (coefficients), in part, because the scheme uses
skewed meshes when correlation is not zero.

The framework developed in this work differs from the approach that is often
employed in the finance literature, where a separate numerical technique is devel-
oped for each class of option pricing model. The discretization method used in
this work typically does not require special knowledge of the details of any par-
ticular option pricing model. The general approach allows for the development
of software that isolates model specifications. For example, in an object-oriented
implementation, model classes can be developed which specify the velocity and dif-
fusion tensors, boundary conditions and constraints. Thus, different options can be

priced by simply constructing new classes, no other modifications to the software
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are required.

7.1 Suggestions for Future Research

There are two natural future research avenues arising from this work:

e The convergence of the nonconservative finite volume discretization of diffu-
sion has only been demonstrated pointwise through numerical experimenta-

tion. An analytic proof of convergence would be desirable.

e It would be natural to extend the two-factor discretization to three factors.
It is likely that the properties of the two-dimensional discretization will hold
in three dimensions. Furthermore, the gains in efficiency achieved by using
irregular meshes in conjunction with the compact positive coefficient scheme

will be even more dramatic in three dimensions.
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