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Abstract

While text Information Retrieval applications often focus on extracting semantic fea-
tures to identify the topic of a document, and Music Information Research tends to deal
with melodic, timbral or meta-tagged data of songs, useful information can be gained from
surface-level features of musical texts as well. This is especially true for texts such as song
lyrics and poetry, in which the sound and structure of the words is important. These types
of lyrical verse usually contain regular and repetitive patterns, like the rhymes in rap lyrics
or the meter in metrical poetry. The existence of such patterns is not always categorical, as
there may be a degree to which they appear or apply in any sample of text. For example,
rhymes in hip hop are often imperfect and vary in the degree to which their constituent
parts differ. Although a definitive decision as to the existence of any such feature cannot
always be made, large corpora of known examples can be used to train probabilistic models
enumerating the likelihood of their appearance. In this thesis, we apply likelihood-based
methods to identify and characterize patterns in lyrical verse. We use a probabilistic model
of mishearing in music to resolve misheard lyric search queries. We then apply a probabilis-
tic model of rhyme to detect imperfect and internal rhymes in rap lyrics and quantitatively
characterize rappers’ styles in their use. Finally, we compute likelihoods of prosodic stress
in words to perform automated scansion of poetry and compare poets’ usage of and ad-
herence to meter. In these applications, we find that likelihood-based methods outperform
simpler, rule-based models at finding and quantifying lyrical features in text.
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meter The regular, underlying stress pattern in a poem.

phoneme The fundamental unit of speech sound in a language.

plosive A phoneme produced by the stoppage and sudden release of breath.

prosody The pattern of intonation and stress applied to syllables in language.

scansion The assignment of meter to poetic verse.

trochee A foot with one heavily stressed syllable followed by a light one.
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Chapter 1

Introduction

In Music Information Research, investigators tend to focus on extracting melodic or timbral
data from audio signals to characterize and categorize the musical sound of songs, or on
aggregating user-generated meta-tags and ratings to recommend similar music and generate
playlists. In the text Information Retrieval domain, applications often involve extracting
semantic features using the meanings and grammatical classification of words to generate
information about the topical content and writing style of a document. When song lyrics
are studied, it is generally their content which is mined for mood and theme indicators.
This work is our attempt to synthesize these fields of study with methodology derived
from biological sequence analysis to investigate a neglected aspect of text: the sound of
the words themselves. These speech sounds are especially important in texts of a musical
or poetic nature, i.e. lyrical verse.

When music listeners attempt to identify and retrieve songs, they often perform searches
using the lyrics that they have heard. However, the lyrics that they hear are not always the
lyrics that were sung, preventing standard text search engines from retrieving the desired
song. The sound of the lyrics is far more important than their meaning for this task.

In hip hop music, rappers perform intricately rhymed verses over repetitive instrumental
beats. Due to the relative simplicity of the backing tracks, most of the musical content in
rap songs is contained within the lyrics themselves. Rappers’ inventive formation, usage,
and positioning of rhymes within lines of lyrics form an integral part of their unique style,
about which they often boast.

In conventional poetry, poets often use the prosodic stress patterns within words to pro-
duce works with rhythmic meter underlying the structures. The less conventional among
them modify these meters to create more complex metrical forms. Furthermore, they de-
liberately use words that do not fit the underlying meter to emphasize emotionally charged
and figurative language.
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In this thesis, we apply probabilistic techniques from biological sequence analysis to
lyrical texts to identify, define, and discover these patterns and features.

1.1 The Theory

The main inspiration for this work comes from the field of bioinformatics. In the past
few decades, vast amounts of biological data have been compiled as the DNA and RNA of
thousands of organisms is continually being sequenced. A common application in the field
is the comparison of biological sequences using alignments, in which unknown information
about one sequence can be inferred from data known about the other. This allows for the
prediction of gene expression and function, protein structure, and possible targets for drug
discovery [20, 104].

While the goal in many sequence comparison tasks is to determine the probability
that a given pair of sequences is related, it is often impossible to calculate this probability
directly. The common solution to this problem is to use Bayesian methods to estimate these
likelihoods. The basic methodology requires a collection of pairs of sequences known to be
related. This collection is used to train a probabilistic model of similarity which provides
a log-odds score for any pair of characters indicating their likelihood of being matched
in related sequences vs. randomly. This score compares the frequency with which the
pair of characters is seen matched in alignments of similar sequences with the background
frequency of the pair in the collection.

Suppose we have an alignment of two protein sequences A and B, and we would like
to know whether they are homologous (meaning that they are from species evolved from a
common ancestor). What we want is the posterior probability of the hypothesis that they
are homologous (H), Pr(H|A,B), but what we can more easily calculate is the likelihood
of seeing the particular alignment of A and B given a homologous pair of sequences:
Pr(A,B|H). Using Bayes’ Theorem, the probability of the hypothesis becomes:

Pr(H|A,B) =
Pr(A,B|H)

Pr(A,B)
[30] (1.1)

Since the probability of the pair being homologous alone is not particularly informative,
it must be compared with the probability that the alignment is due to the proteins matching
by chance (R). An odds ratio is used to make the comparison:

Pr(H|A,B)

Pr(R|A,B)
=

Pr(A,B|H)/ Pr(A,B)

Pr(A,B|R)/ Pr(A,B)
=

Pr(A, B|H)

Pr(A, B|R)
(1.2)

Under the assumption that the component amino acids (i.e. the “letters”) of the sequences
are independent (which is not necessarily true, but useful in this model), the probability
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of seeing the alignment is the product of the probabilities of each constituent amino acid
pair:

Pr(A,B|H) =
∏

i

Pr(Ai, Bi|H), and (1.3)

Pr(A,B|R) =
∏

i

Pr(Ai, Bi|R). (1.4)

Pr(Ai, Bi|H), the likelihood of seeing amino acids Ai and Bi matched in a homologous
sequence, is taken to be the frequency of Ai,Bi pairs in collections of proteins known to
be homologous. Pr(Ai, Bi|R), the likelihood of seeing the particular amino acids match by
chance, is taken to be the product of the background frequencies of Ai and Bi in the data.

When the logarithm of the odds ratio is taken, the constituent parts can be added
together:

log2

Pr(H|A,B)

Pr(R|A, B)
=

∑
i

log2

Pr(Ai, Bi|H)

Pr(Ai, Bi|R)
=

∑
i

s(Ai, Bi), (1.5)

resulting in a log-odds score s(Ai, Bi) for each pair of amino acids, and a summed total
score for the alignment. A positive score indicates that the alignment is more likely to be
for homologous proteins; a negative score indicates that the alignment is seen by chance;
a score of zero means that both hypotheses are equally likely. The individual amino acid
scores can be grouped into a scoring matrix determining the likelihood of any pair matching
in homologous vs. randomly matched proteins.

1.2 The Applications

With the advent and growth of the internet, the compilation of large and accessible corpora
of texts has become easily achievable and various websites now exist devoted to various
kinds of song lyrics, poetry, musical scripts, and other literature. This suggests the ap-
plication of probabilistic methods derived from bioinformatics for the purposes of lyrical
sequence analysis: automated processing of large collections of text can be used to train
probabilistic models describing many different features of lyrical text. Based on the data
used to train them, these models can be tailored specifically for particular features and
can then be used to identify them in other documents and make inferences and charac-
terizations about their existence in different corpora. The general approach in this work
involves producing alignments of lyrical texts to generate log-odds scoring matrices of dif-
ferent constituent parts (letters, phonemes, syllables) and for different features (acoustic
similarity, rhyme, and metrical stress).

In Chapter 2, we introduce a probabilistic model of mishearing sung lyrics. This model
is trained using alignments of phonetic transcriptions of actual misheard lyrics with their

3



correct counterparts. We then use this model’s log-odds likelihood scores to perform
phoneme alignment pattern matching to search for the correct lyric from a collection given
a misheard lyric query. We compare the performance of this model with simpler, rule-based
methods on a set of 146 misheard lyric queries with correct target lyrics in a collection of
2,345 songs. We then identify and describe queries for which the correct target lyrics were
not found in the collection. Finally, we build and evaluate a phoneme trigram indexing
system to speed up query run times by avoiding exhaustive dynamic programming search.

In Chapter 3, we develop a model of rhyme in hip hop music. This model is trained
using syllable-by-syllable alignments of end rhymes from a corpus of influential rap lyrics in
rhyming couplets. We use this model’s syllable pair similarity scores to detect both internal
and imperfect rhymes in a collection of lyrics and calculate statistical features about these
detected rhymes. We then analyze these features and investigate their relationships with
time, critical acclaim, and commercial success. We use rhyme feature-based classification to
characterize and compare style in hip hop, and suggest other applications of this stylometry.
Finally, we present a user interface which allows for the simple visualization and analysis
of rhyme in rap lyrics.

In Chapter 4, we present an algorithm to perform automatic scansion and produce
a correspondence score to quantify how well a poem aligns with the underlying metrical
structure. We calculate likelihoods of metrical stress in words using alignments of prosodic
stress markings with template metrical stress patterns discovered in a large collection of
poems. We then use these likelihoods to develop a probabilistic method of performing
scansion that allows for less strict metrical forms. Next, we compare different poets’
adherence to metrical form and examine the emotional content and imagery of words on
beats with modified stress. We then compare the formation of rhyme between hip hop
and conventional poetry. Finally, we present a user interface tool which performs phonetic
transcription, and scansion analysis and visualization.
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Chapter 2

Solving Misheard Lyric Queries

2.1 Introduction

In this chapter, we apply probabilistic pattern-matching techniques inspired by algorithms
from bioinformatics to resolve misheard song lyric queries. Though most Music Information
Research (MIR) work on music query and song identification is driven by audio similarity
methods, in which features extracted from digital signals are compared [67, 87, 71], users
often use lyrics to determine the artist and title of a particular song, such as one they
have heard on the radio. A common problem occurs when the listener either mishears or
misremembers the lyrics of the song, resulting in a query that sounds similar to, but is not
the same as, the actual words in the song she wants to find.

Furthermore, entering such a misheard lyric query into a search engine often results in
many practically identical hits caused by various lyric sites having the exact same versions
of songs. For example, a Google search for “Don’t walk on guns, burn your friends” (a
mishearing of the opening line, “Load up on guns and bring your friends,” from Nirvana’s
“Smells Like Teen Spirit”) gets numerous hits to “Shotgun Blues” by Guns N’ Roses
(Figure 2.1). A more useful search result would give a ranked list of possible matches to
the input query, based on some measure of similarity between the query and text in the
songs returned. This goal suggests a similarity scoring measure for speech sounds: which
potential target lyrics provide the best matches to a misheard lyric query?

The misheard lyric phenomenon has been recognized for quite some time. Sylvia Wright
coined the autological term “Mondegreen” in a 1954 essay. This name refers to the lyric
“They hae slain the Earl O’ Moray / And laid him on the green,” misheard to include the
murder of one “Lady Mondegreen” as well [112]. However, the problem has only recently
been tackled in the MIR community.
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Figure 2.1: Search for misheard lyrics from “Smells Like Teen Spirit” returning results for
Guns N’ Roses.
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Ring and Uitdenbogerd [94] compared different pattern-matching techniques to find the
correct target lyric in a collection given a misheard lyric query. They found that a method
based on aligning syllable onsets performed the best at this task, but the increase in per-
formance over simpler methods was not statistically significant. Xu et al. [113] developed
an acoustic distance metric based on phoneme confusion errors made by a speech recogni-
tion program. Using this scoring scheme provided a slight improvement over phoneme edit
distance; both phonetic methods significantly outperformed a standard text search engine.

We describe a probabilistic model of mishearing based on phonetic confusion data
derived from pairs of actual misheard and correct lyrics found on misheard lyrics websites.
For any pair of phonemes a and b, this model produces a log-odds score giving the likelihood
of a being (mis)heard as b. We replicated Ring and Uitdenbogerd’s experiments using this
model, as well as phonetic edit distance as described in Xu et al.’s work, on misheard lyric
queries from the misheard lyrics site KissThisGuy.com. Our statistical method significantly
outperformed all other techniques, and found up to 8% more correct lyrics than phonetic
edit distance. Our work is presented in ISMIR 2010 [49].

2.2 Related Work

Ring and Uitdenbogerd [94] compared three different pattern-matching techniques for find-
ing the correct lyrics or matches judged to be relevant given a misheard lyric query. The
first is a simple Levenshtein edit distance [65] performed on the unmodified text of the
lyrics. The second, Editex, groups classes of similar-sounding letters together and does not
penalize substitutions of characters within the same class as much as ones not in the same
class.

The third algorithm is a modified version of Syllable Alignment Pattern Searching they
call SAPS-L [41]. In this method, the text is first transcribed phonetically using a set of
simple text-to-phoneme rules based on the surrounding characters of any letter. It is then
parsed into syllables, with priority given to consonants starting syllables (onsets). Pattern
matching is performed by local alignment where matching syllable onset characters receive
a score of +6, mismatching onsets score -2, and other characters score +1 for matches
and -1 for mismatches. Onsets paired with non-onset characters score -4, encouraging
the algorithm to produce alignments in which syllables are matched before individual
phonemes. SAPS is especially promising since it is consistent with psychological models of
word recognition in which segmentation attempts are made at the onsets of strong syllables
[73].

They found that the phonetic based methods, Editex and SAPS-L, did not outperform
the simple edit distance for finding all lyrics judged by assessors to sound similar to a given
query misheard lyric but SAPS-L most accurately determined its single correct match.
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However, due to the size of the test set of misheard lyric queries, they did not establish
statistical significance for these results.

In a similar work, Xu et al. [113] first performed an analysis of over 1000 lyric queries
from Japanese question and answer websites and determined that 19% of these queries
contained misheard lyrics. They then developed an acoustic distance based on phoneme
confusion to model the similarity of misheard lyrics to their correct versions. This met-
ric was built by training a speech recognition engine on phonetically balanced Japanese
telephone conversations and counting the number of phonemes confused for others by the
speech recognizer. They then evaluated different search methods to determine the correct
lyric in a corpus of Japanese and English songs given the query misheard lyrics. Phonetic
pattern matching methods significantly outperformed Lucene, a standard text search en-
gine. However, their acoustic distance metric only found 2-4% more correct lyrics than a
simpler phoneme edit distance, perhaps due to its basis on machine speech recognition.
They also implemented an indexed version of the search which reduced the running time
by over 85% with less than 5% loss of accuracy.

2.3 Method

2.3.1 A Scoring Approach

We used a model inspired by protein homology detection techniques from bioinformatics,
in which proteins are identified as sequences of amino acids. In this framework, a pair of
proteins is modeled as two sequences of amino acid symbols generated either randomly
or based on shared ancestry (known as homology) [30]. Using the BLOSUM (BLOcks of
amino acid SUbstitution Matrix) local alignment scoring scheme, pairs of amino acids are
assigned log-odds scores based on the likelihood of their being matched in alignments of
homologous proteins. A positive score indicates the pair more likely co-occurs in proteins
evolved from a shared ancestor, while a negative score indicates the pair is more likely to
co-occur due to chance [46]. In a BLOSUM matrix M , the score for any two amino acids
i and j, is calculated as

M [i, j] = log2

Pr(i, j|H)

Pr(i, j|R)
, (2.1)

where Pr(i, j|H) is the likelihood of i being matched to j in an alignment of two homologous
proteins, while Pr(i, j|R) is the likelihood of them being matched by chance.

These likelihoods are calculated using frequencies of amino acid pairings in alignments
of proteins known to be homologous. Given an amino acid residue pair frequency table
A, where Ai,j is the number of times residue i is matched to residue j in a collection of
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homologous protein alignments, the homology likelihood is calculated as

Pr(i, j|H) =
Ai,j∑

m

∑
n Am,n

. (2.2)

This corresponds to the proportion of amino acid pairs in which i matches with j. The
match by chance likelihood is calculated as

Pr(i, j|R) =
Ai × Aj∑

m Am ×
∑

n An

, (2.3)

where Ai is the total number of times amino acid i appears in the collection. This is
simply the product of the background frequencies of each amino acid in the pair. If a pair
of protein sequences contains regions in which the amino acids align to give high scores,
the pair is considered to be homologous.

A similar methodology is employed by Ristad and Yianilos [95] for learning a stochastic
string edit distance from a collection of examples. They found that this type of edit distance
achieved close to one fifth of the error rate of a simpler Levenshtein edit distance at the
task of determining the pronunciations of unlabeled words.

In the song lyric domain, we treat lines and phrases as sequences of phonemes and
develop a model of mishearing to determine the probability of one phoneme sequence
being misheard as another. This requires a pairwise scoring matrix which produces log-
odds scores for the likelihood of pairs of phonemes being confused. The score for a pair
of phonemes i and j is calculated as in Equation (2.1), where Pr(i, j|H) is the likelihood
of i being heard as j, and Pr(i, j|R) is the likelihood of i and j being matched by chance.
Instead of base 2, we use natural logarithms for these scores:

M [i, j] = ln
Pr(i, j|H)

Pr(i, j|R)
, (2.4)

In analogy to the likelihoods of pairs of amino acids that give rise to the BLOSUM ma-
trix, these phoneme pair likelihoods are calculated using frequencies of phoneme confusion
in actual misheard lyrics. Instead of an amino acid pair frequency table, we use a phoneme
confusion frequency table F , where Fi,j is the number of times a phoneme i is heard as j
(where j may equal i). As in Equation 2.2 for amino acids matching due to homology, the
mishearing likelihood is calculated as

Pr(i, j|H) =
Fi,j∑

m

∑
n

Fm,n

, (2.5)
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which is the proportion of phoneme pairs in which i is heard as j. Similarly, if Fi is the
total number of times phoneme i appears in the lyrics, the match by chance likelihood is
calculated as

Pr(i, j|R) =
Fi × Fj

(
∑

m Fm)2
, (2.6)

which is the product of the background frequencies of each phoneme in the pair.

2.3.2 Training Data for the Model

To produce the phoneme confusion frequency table F, we required a training set of misheard
lyrics aligned to their correct versions. Our corpus contains query and target pairs from
two user-submitted misheard lyrics websites, KissThisGuy.com and AmIRight.com. In
both cases, the first phrase in the pair is the song lyric heard by the submitter and the
second phrase is the true song lyric.

The KissThisGuy.com pairs were provided by HumorBox Entertainment, the parent
company of KissThisGuy.com, and consist of 9,527 pairs randomly selected from the
database and comprising 10% of the total number of misheard lyrics on the website. The
pairs from AmIRight.com were selected from the pages for the top 10 artists (by number
of misheard lyrics submitted) on the site and total 11,261 pairs, roughly corresponding
to 10% of the misheard lyrics on the site. The artists included are The Beatles, Michael
Jackson, Elton John, Nirvana, Red Hot Chili Peppers, Queen, Metallica, Madonna, and
Green Day, as well as traditional songs.

2.3.3 Producing Transcriptions

We first used the Carnegie Mellon University pronouncing dictionary to obtain phonetic
transcriptions of the lyrics. The CMU pronouncing dictionary has phonetic transcriptions
for over 100,000 words and is tailored for North American English [64], the language used
by the majority of artists in our data. To avoid the complications and computational com-
plexity required to evaluate all possible transcriptions for heteronyms and other words with
numerous pronunciations, we selected the first transcription for each word, corresponding
to the most common pronunciation.

The transcriptions contain 39 phonemes, consisting of 24 consonants, including af-
fricates such as /tS/ and /dZ/, and 15 vowels, including diphthongs like /aU/ and /OI/ [9].
The vowels include metrical stress markings indicating whether they receive primary (1),
secondary (2), or no stress (0). Thus, for each word in the dictionary, the transcription
provides the speech sounds (phonemes), as well as the prosody (the pattern of empha-
sis placed on each syllable when pronounced.) To avoid overfitting due to the relatively
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small number of secondary stressed syllables in the dictionary, we combined primary and
secondary stresses into strong stress to contrast with weak or unstressed syllables. This
resulted in a set of 54 phonemes: 24 consonants and 30 stress-marked vowels.

We used the Naval Research Laboratory’s text-to-phoneme rules to transcribe any words
not found in the dictionary [32]. These rules provide a phonetic substitution approximating
the correct pronunciation for each of the 26 letters of the alphabet, based on the characters
surrounding them in the word. The phonemes used in the NRL rules correspond almost
exactly with those in the CMU dictionary; the only differences are a lack of stress markings
and that /@/ and /2/ are treated as two separate phonemes, as opposed to the same
phoneme with different assigned stress. The full list of phonemes used, along with their
International Phonetic Alphabet (IPA) versions, and English examples is detailed in Table
2.1.

To better model actual prosody in singing, we reduced the stress in common single-
syllable words with less metrical importance such as “a,” “and,” and “the.” To allow
for variation in the likelihood of different phonemes being missed (deleted) or misheard
without having been sung (inserted), we introduced an additional symbol, “ ”, for gaps in
alignment and treated it like any other phoneme. This allowed “softer” approximants such
as /r/ to receive lesser penalties when missed than “harder” affricates such as /tS/.

2.3.4 Iterated Training

We performed an iterated alignment method with the lyric pairs to determine the confusion
frequencies in the matrix F . In the first phase, phonemes were lined up sequentially starting
from the left end of each phrase in the pair. This may seem to be too rough an alignment
method, but it resulted in the highest frequencies for identical phoneme pairs since most of
the misheard lyrics contained some correct lyrics within them. For example, “a girl with
chestnut hair” being misheard as “a girl with just no hair” from Leonard Cohen’s “Dress
Rehearsal Rag” was first aligned as

A g—ir–l w–i–th j—u–s–t n–o h—ai—r
@ g "Ç l w I T dZ "2 s t n oU h "eI r

@ g "Ç l w I T tS "E s t n @ t h "eI r

A g—ir–l w–i–th ch—e–s–t—n–u—t h—ai—r

with all phonemes matching exactly until the /tS/ heard as /dZ/, then the /"E/ heard
as /"2/, etc. From these simple alignments, we constructed an initial phoneme confusion
frequency table F’.

Since gaps do not appear explicitly in any lyrics, we approximated their occurrence by
adding gap symbols to the shorter phrase in each pair to ensure that the phrases were of
the same length. In the example above, we counted one gap, and had it occurring as an
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CMU Phoneme IPA Phoneme Example Word
AA A father
AE æ at
AH 2 / @ hut / about
AO O ought
AW aU cow
AY ai hide
B b be
CH tS cheese
D d dee
DH D thee
EH E Ed
ER Ç / Ä hurt / father
EY ei ate
F f fee
G g green
HH h he
IH I it
IY i eat
JH dZ gee
K k key
L l lee
M m me
N n knee
NG N ping
OW oU oat
OY Oi toy
P p pee
R r read
S s sea
SH S she
T t tea
TH T theta
UH U hood
UW u two
V v vee
W w we
Y j yield
Z z zee
ZH Z seizure [64]

Table 2.1: List of phonemes in CMU and IPA form
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/r/ being missed in the F’ table. This approximation resulted in an essentially random
initial distribution of gap likelihood across phonemes.

Now, given the initial frequency table, we calculated an initial scoring matrix M’ using
Equations (2.1), (2.5), and (2.6) above. We then used the scores found in M’ to align the
pairs in the second phase of training. In this stage, we used dynamic programming [30] to
produce the optimal global alignment between each misheard lyric and its corresponding
correct version. This allowed for the inclusion of gaps in either sequence, regardless of
its length. We then traced back through the alignment and updated the phoneme co-
occurrences in a new confusion frequency table F. For the example cited above, the new
alignment looked like

A g—ir–l w–i–th j—u–s–t n–o h—ai—r
@ g "Ç l w I T dZ "2 s t n oU h "eI r

@ g "Ç l w I T tS "E s t n @ t h "eI r

A g—ir–l w–i–th ch—e–s–t—n–u–t h—ai—r.

The gap was computed to have occurred earlier and resulted in an additional entry for
F [ , /t/], increasing the frequency of missed /t/ phonemes. After all the pairs had been
processed, we calculated a final scoring matrix M from frequency table F, as above.

2.3.5 Structure of the Phonetic Confusion Matrix

One interesting property of the phonetic confusion matrix is that, from first principles, we
discovered perceptual similarities between sounds: if two phonemes a and b had positive
scores in our confusion matrix, then they sounded similar to the real people who entered
these queries into the misheard lyrics websites from which our database is drawn.

Table 2.2 shows all of the pairs of distinct consonant phonemes a and b such that M [a, b]
was positive. These consisted mainly of changes in voicing (e.g., /g/ versus /k/) or moving
from a fricative to a plosive (e.g., /f/ versus /p/) The only distinct consonant pairs scoring
above +1.0 (meaning they were at least e1.0 or about 2.7 times more likely to appear in
lyrics misheard as each other than expected by chance) were pairs of sibilants (such as /tS/
versus /dZ/ or /Z/ versus /S/). All of these similarities were discovered without any input
knowledge or constraints on which phonemes should sound similar. They were discovered
by the training process itself, and highlight the pairs which were confused for each other
by actual music listeners.

Table 2.3 shows all pairs of distinct stressed vowel phonemes a and b such that M [a, b]
was positive. When examining these scores in detail, it becomes evident that vowel height
is the least salient articulatory feature for listeners to determine from sung words, as most
of the confused vowels differed mainly in height. These pairs included /A/ and /2/, /2/ and
/U/, /æ/ and /E/, and /E/ and /I/. Other common confusions included vowels differing
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Query Phoneme Target Phoneme
/b/ /f/,/p/,/v/
/tS/ /dZ/,/k/,/S/,/t/,/Z/
/f/ /b/,/p/,/T/
/g/ /dZ/,/k/
/dZ/ /tS/,/S/,/y/,/Z/
/k/ /g/
/N/ /n/
/p/ /b/,/f/,/T/,/v/
/s/ /z/
/S/ /tS/,/dZ/,/s/,/Z/
/T/ /f/
/z/ /s/,/Z/
/Z/ /dZ/,/S/

Table 2.2: Non-identical consonants with positive scores.

mainly in length and diphthongs confused with their constituent phonemes, such as /I/
with /i/, /A/ with /aU/, and /O/ with /OU/.

When examining differences in gap scores, we found that the phonemes most likely to
be missed (deleted) or heard without being sung (inserted) were /r/, /d/, /N/, and /z/.
Although the model was trained without any domain knowledge, a semantic explanation
is likely for this finding since /d/ and /z/ are often added to words to form past tenses or
plurals which could be easily confused; for example, “jam” could easily be heard for both
“jammed” or “jams.” /N/ is often changed to /n/ in verb present progressive tenses in
popular music; for example, “runnin’ ” could be sung for “running.” The phonemes least
likely to be missed were /Z/, /S/, /OI/, and /I/, probably (with the surprising exception of
/I/) due to their relative “length” of sound. Similarly, /S/, /U/, /I/, and /Ç/ were least
likely to be heard without being sung.

2.3.6 Searching Method

To perform phonetic lyric search with this model, we used matrix M to score semi-local
alignments [30] between the query phrase (sequence of phonemes) and all candidate songs in
the database. For every query phrase Q of length m and song T of length n, we constructed
an (m + 1) × (n + 1) matrix S to score the alignment. After initializing the first row with
zeros (to allow alignments to start anywhere in the song) and the first column with the
penalties for inserting (hearing sounds that were not sung) the phonemes in Q, S was filled
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Query Phoneme Target Phoneme
/A/ /2/,/O/,/aU/,aI/,oU/
/æ/ /A/,/aU/,/aI/,/E/
/2/ /A/,/O/,/Ç/,/oU/,/U/
/O/ /A/,/2/,/oU/,/OI/,/U/
/aU/ /A/,/æ/
/E/ /æ/,/I/
/Ç/ /2/,/U/
/eI/ /E/
/I/ /E/,/i/
/i/ /I/
/oU/ /O/,/OI/,/U/
/OI/ /O/,/oU/,/U/
/U/ /O/,/Ç/,/oU/,/OI/,/u/
/u/ /U/

Table 2.3: Pairs of non-identical stressed vowels with positive scores.

in row-by-row and column-by-column as follows:

S[i, j] = max


S[i − 1, j − 1] + M [Q[i − 1], T [j − 1]] (for matching/substituted phonemes),

S[i − 1, j] + M [Q[i − 1], ] (for a phoneme being heard but not sung),

S[i, j − 1] + M [ , T [j − 1]] (for a phoneme being sung but not heard).

(2.7)
After S was completely filled in, the highest value in the last row was selected as the best
score for the alignment between the query phoneme string Q and the song text lyrics T .
Selecting the maximum value from only the last row ensured that the entire query string
was aligned. This differs from standard local alignment in which the maximum value in
the entire scoring matrix is used as the best score.

In addition to this phonemic model, we developed a syllable-based model which pro-
duced a log-likelihood score for any syllable being (mis)heard as another. For any pair of
syllables a and b, we calculated this score as

S[a, b] = align(ao, bo) + M [av, bv] + align(ae, be), (2.8)

where av is the vowel in syllable a and M [av, bv] is defined in Equation 2.1 above. align(ao, bo)
is the score for the optimal global alignment between the onset consonants of a and b, and
align(ae, be) is the score for the optimal global alignment between the ending consonants
(or coda) of a and b.
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Searching and training were performed in the same way as with the phonemic method
(see Equation 4.1), except that syllables were aligned instead of phonemes. Essentially,
this ensured that vowels only matched with other vowels and consonants only matched
with other consonants.

2.4 Experiment

To compare the performance of the probabilistic model of mishearing with other pattern
matching techniques, we reproduced the experiment of Ring and Uitdenbogerd [94] find-
ing the best matches for a query set of misheard lyrics in a collection of full song lyrics
containing the correct version of each query.

2.4.1 Target and Query Sets

We used Ring and Uitdenbogerd’s collection, comprising a subset of songs from the lyrics
site lyrics.astraweb.com containing music from a variety of genres by artists such as Alicia
Keys, Big & Rich, The Dave Matthews Band, Queensrÿche, and XTC. After removing
duplicates, it contained 2,345 songs with a total of over 486,000 words. This formed our
set of targets.

We augmented their original query set of 50 misheard lyrics from AmIRight.com with
96 additional misheard lyrics from the KissThisGuy.com data. These additional queries
had corresponding correct lyric phrases that matched exactly with a phrase from a single
song in the collection. They did not necessarily match the same song the query lyric
was misheard from, but only had one unique match in the collection. For example, “you
have golden eyes” was heard for “you’re as cold as ice,” from Foreigner’s “Cold As Ice,”
a song which does not appear in the collection. However, the same line occurs in 10cc’s
“Green Eyed Monster,” which is in the collection. We included at most one query for each
song in the collection. In practice, misheard lyric queries may have correct counterparts
which appear in multiple songs, potentially making our results less generalizable for large
corpora. However, this occurs for correct lyric queries as well, especially when they are
short, common phrases like “I just want to” or “I love you,” making it a general problem
in lyric search, not one unique to the similarity-based matching for misheard lyrics.

2.4.2 Methods Used in Experiments

We implemented three different pattern-matching algorithms in addition to the proba-
bilistic mishearing models described above: SAPS-L and simple edit distance as the best
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methods from Ring and Uitdenbogerd’s paper, and phonemic edit distance to estimate a
comparison with Xu et al.’s Acoustic Distance. (The actual scoring matrix used in that
work was not made available to us despite our requests.) We removed all test queries from
the training set for the probabilistic models.

2.4.3 Evaluation Metrics

For each method, we found the top 10 best matches for each misheard lyric in our query
set and used these results to calculate the mean reciprocal rank (MRR10) as well as the hit
rate by rank for the different methods. The MRR10 is the average of the reciprocal ranks
across all queries, where reciprocal rank is one divided by the rank of the correct lyric if
it is in the top ten, and zero otherwise. The hit rate by rank is the cumulative percentage
of correct lyrics found at each rank in the results.

As a small example illustrating these measures, consider a sequence of five queries
where the correct lyrics are returned as the second entry, then the fourth entry, then the
first entry, then not at all, then the ninth entry, respectively. The reciprocal ranks for this
sequence would be (1

2
, 1

4
, 1, 0, 1

9
), with an MRR10 of 0.372 (the average of this vector). The

hit rate by rank would be 20% at 1 (one out of five correct lyrics returned as the first
entry), 40% at 2 (two out of five returned in the first two entries), 40% at 3 (since no more
correct lyrics were returned as the third entry), 60% at 4 through 8, and 80% at 9 and 10.

2.5 Results

The probabilistic model of phoneme mishearing significantly outperformed all other meth-
ods in the search task, achieving an MRR10 of 0.774 and ranking the correct lyric for 108
of the 146 queries (74.0%) first. The next best methods were phonemic edit distance and
probabilistic syllable alignment, receiving MRR10 of 0.709 and 0.702, respectively. Per-
forming a paired t-test on the reciprocal rankings of the probabilistic phoneme model and
the phonemic edit distance returned a p-value less than 0.001, strongly indicating that
the results were drawn from different distributions. There was no statistically significant
difference between the probabilistic syllable model and the phonemic edit distance results.
Both these methods were found to significantly outperform SAPS-L, with p-values less
than 0.05 on paired t-tests. SAPS-L produced an MRR10 of 0.655, which was marginally
better than the simple edit distance’s MRR10 of 0.632. However, the difference between
these two was again not found to be statistically significant. The Mean Reciprocal Rank
results are shown in Table 2.4.

The hit rate by rank (Figure 2.2) further illustrates the effectiveness of the probabilistic
phoneme model as it ranked between 5% and 8% more correct lyrics within the top five
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Pattern Matching Method Mean Reciprocal Rank
Probabilistic Phoneme Model 0.774
Phoneme Edit Distance 0.709
Probabilistic Syllable Model 0.702
SAPS-L 0.655
Simple Edit Distance 0.632

Table 2.4: Mean reciprocal rank after ten results for different search techniques.

matches than phonemic edit distance and the probabilistic syllable model. These next two
methods appear to have performed equally well and considerably better than SAPS-L and
edit distance. SAPS-L seems to improve in performance over simple edit distance moving
down the ranks, indicating that it may be better able to find less similar matches.

2.5.1 Analysis of Errors

We also observed that the performance of the probabilistic phoneme model plateaued at a
hit rate of 83%. This corresponds to 121 of the 146 misheard lyric queries, and we provide
a brief analysis of some of the 25 queries missed.

Differences Among Methods

The phoneme edit distance method did not return any correct lyrics not found by the
probabilistic phoneme model. There was one query for which SAPS-L returned a hit in the
top 10 and the probabilistic model did not: “spoon aspirator” for “smooth operator,” from
Sade’s song of the same name. In SAPS-L, this was transcribed as “SPoon AsPiRaTor,”
getting a score of 24 when matched with “Smooth OPeRaTor” (here, as in the SAPS-L
transcription algorithm, syllable onsets are marked as upper case letters.) The relatively
high number of matching syllable onsets (S, P, R, and T) in the short query gave SAPS-
L the advantage since it heavily emphasizes matched onsets. On the other hand, the
probabilistic method produced higher scores for results such as “spoon in spoon stir(ring)”
and “I’m respirating” due to the high number of exactly matching and similar phonemes.

The probabilistic syllable model also returned a hit for one query for which the phoneme
model did not. The misheard lyric in this case was “picture Mona runnin’ ” heard for “get
your motor runnin’ ,” presumably from Steppenwolf’s “Born to be Wild.” This was likely
due to the parsing of the phonetic transcription so that paired syllables had high scores
at both the onset and ending consonants (“Mon” and “mot”, “run” and “run”). The
top ranking match using the phoneme model was “picture on your button.” When the
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Figure 2.2: Cumulative percentage of correct lyrics found by rank for different search
methods. The probabilistic phoneme model found 5-8% more correct targets in the first
five matches than the next best method. The probabilistic syllable model and phoneme
edit distance performed nearly identically, and significantly better than SAPS-L and simple
edit distance.
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phrases are transcribed without word or syllable boundaries, the only large differences are
an inserted /m/ from “Mona” and a missed /b/ from “button.”

Common Types of Errors

Though syllable parsing and alignment may have helped for the two misheard lyrics de-
scribed above, the majority of the queries not returning results tended to be quite dissimilar
from their target correct lyrics. Some examples of these include a young child hearing “ooh,
Tzadee, I’m in a cheerio” for “we are spirits in the material” from The Police’s “Spirits
in the Material World;” “Girl, I wanna yodel” for “You’re The One That I Want” from
Grease; “Apple, dapple, and do” for Prince’s “I Would Die 4 U;” “Swingin’ the bat” for the
Bee Gees’ “Stayin’ Alive;” and the extremely puzzling “Rhubarb” for “Move out” from
Yaz’s Situation. In other interesting cases the listener superfluously heard the singer’s
name within the song lyrics: “Freddie time!” for “and turns the tides” in Queen’s My
Fairy King (referring to lead singer Freddie Mercury), and “Oh, Lionel (Oh Line’)” for
Lionel Richie’s “All Night Long (all night”). Without knowledge of the song’s performer,
it would be difficult to consider these similar to their originals.

The other common problem preventing the algorithms from finding the correct matches
for many misheard lyrics stems from the short length of such queries. Some of these
included “chew the bug” for “jitterbug,” “can of tuna” for “can’t hurt you now,” “rhubarb”
for “move out”, and “wow thing” for “wild thing.” While these tended to be fairly similar
to their correct counterparts, their short length made it much more likely for exact partial
matches to be found. These partially matching segments often scored highly enough to
balance out the dissimilar remaining portions in incorrectly returned lyrics. Though the
models were trained on mishearing, most misheard lyrics tend to have parts heard correctly,
so matching identical phonemes will usually give the highest scores. For all the search
methods, longer queries were more likely to have their correct lyrics found in the top 10,
resulting in a positive correlation between the length of the query and the reciprocal rank
of the correct result. Table 2.5 details these correlations for the different algorithms. This
correlation is smallest for the probabilistic phoneme model, indicating that it is the least
fragile in this way and best able to disambiguate even short misheard lyric queries.

2.6 Phonetic Indexing

The implementation of the search algorithm described so far is an exhaustive dynamic
programming search over the entire collection of lyrics. This results in O(mn) computing
complexity per query, where m is the length of the query and n is the size of the collection
(in phonemes). This would likely not be feasible in a commercial application due to the
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Pattern Matching Method Correlation
Probabilistic Phoneme Model 0.45
Phoneme Edit Distance 0.54
Probabilistic Syllable Model 0.55
SAPS-L 0.53
Simple Edit Distance 0.51

Table 2.5: Correlation between misheard query length and reciprocal rank of correct answer
returned. Longer queries were more likely to have the correct lyric ranked higher, though
this effect was least pronounced for the probabilistic phoneme model.

long search time required (about 3 seconds per query on a 1.6 GHz laptop). Xu et al.[113]
demonstrated the effectiveness of using n-gram indexing to reduce the running time by pre-
computing the distances from 90% of all syllable trigrams in their collection and pruning off
the most dissimilar lyrics. In a similar fashion, we experimented with trigram indexing on
our collection. However, iterating syllable n-grams is simpler with Japanese than English
since Japanese has a limited number of possible syllables (100). English, in contrast, has
thousands of possible syllables. For this reason, we used phoneme n-grams in our indexing.

2.6.1 Building The Index

The method we followed in our indexing was similar to that of Xu et al. [113] and also
inspired by the Basic Local Alignment Search Tool (BLAST) [6] used for protein and DNA
homology searches within large databases of biological sequences. Both these methods
involve creating an “inverted index,” in which subsequences of the input query (called
“words” or amino acid “k-mers” in the bioinformatics domain and n-grams in the MIR
field), are used as the key to return a list of all highly similar “hits” in the database being
searched. Using amino acid 4-mers in BLAST, for each of the 160,000 possible 4-mers
(since there are 20 different amino acids for each of the four characters = 204) the entire
database is first scanned to generate a list of all locations (hits) that score above a threshold
T with that 4-mer. Then, for each 4-mer in a query sequence, the list of hits is returned
and scanned. Alignments are extended in both directions from each hit until the similarity
score drops a certain distance below the best score previously found for shorter alignments.
This significantly reduces the overall running time since much less dynamic programming
must be performed.

In building our index, we first iterated over all 175,616 (= 563) possible phoneme
trigrams and for each we generated a list of every location in the lyric collection that scored
above a threshold value T . To avoid having excessively long lists of hits which would drive
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Figure 2.3: Number of correct lyrics hit versus total number of hits returned for different
threshold values T . The threshold T = 9 performs as well as less strict T values.

up running time and memory requirements, we only saved hit lists for relatively uncommon
trigrams. This naturally lead to the dilemma of determining what makes an uncommon
trigram; i.e. how many hits should be allowed per trigram? We limited our lyric collection
to only those songs for which we had a misheard query in our test set, and compared the
total number of hits returned (as an estimation of required running time) with the number
of queries returning a hit in the correct song lyric, while varying the maximum size hit
list per trigram. We tried a few different values for the score threshold T and decided
that 9 was a good value balancing sensitivity with specificity as higher values returned
fewer correct results, but lower values didn’t return many more. The comparisons between
number of correct lyrics hit and total number of hits returned is illustrated in Figure 2.3.

All threshold choices had the number of correct lyrics hit plateauing in the high 120s
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(out of the 146 total queries), which is reasonable since only 121 songs were returned in the
top ten when performing an exhaustive search. However, these results only indicate that
the correct lyric had the potential to be returned in the top 10 if a search were performed
with its query. Furthermore, we could not be certain that the query trigram causing the
hit in the correct lyric necessarily matched the particular part of the song which had been
(mis)heard as that trigram. Nevertheless, we used this score threshold to determine the
maximum number of hits to allow per trigram.

2.6.2 Index Performance

With an uncapped number of trigrams returned per hit and extending alignments (up to
the length of the query) from each, the run time required per query averaged 2.6 seconds on
a 1.6 GHz laptop. This was only marginally faster than the 2.7 seconds average required
to perform the dynamic programming alignments with the full collection of song lyrics.
The Mean Recipocral Rank (10) using this unfiltered index set dropped to 0.718, which
we considered to be a rough upper-bound on the best accuracy for searching indexed
queries. Misheard lyrics with correct counterparts found in the exhaustive search but
missed using the index included “Bake sale! Bake sale!” for “Exhale! Exhale!” from
Prodigy’s “Breathe,” and “He wears socks on the moon” for “He wakes up in the morning”
from Dave Matthews Band’s “Ants Marching,” neither of which had a single trigram pair
scoring above 9.0. We could have used a lower trigram score threshold but the memory
required to build the full index was beyond our computing power and would likely not be
feasible in a real-world application with far more songs than the 2,345 in our collection.

To further reduce the running time, we decided to limit the number of hits returned
per trigram, eliminating some of the most common (and hence, least informative) trigrams
in the lyrics. Since the number of correct lyrics (as well as the total number of hits)
returned from the set of 146 songs mentioned above plateaued at around 60 hits per trigram
(approximately 0.4 times the number of songs), we allowed a total of 0.45 × 2345 = 1055
hits per trigram in the full collection. Using this additional restriction, we were able
to decrease the average running time per misheard lyric query to 1.2 s, less than half
the time required for an exhaustive search. However, the MRR with this limitation was
reduced to 0.681, about 8% less than that of the unfiltered index and 12% less than
the full dynamic programming search. This result is similar to the accuracy achieved
by phoneme edit distance, and would outperform standard text-based search engines in
resolving misheard lyrics. While the indexing method could be improved, these results
demonstrate the potential of phoneme trigram indexing to speed up misheard lyric queries
for English songs.
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Chapter 3

Characterizing Rhyming Style in Rap
Lyrics

3.1 Introduction

In this chapter, we consider applications of probabilistic methods in identifying and charac-
terizing rhymes in rap lyrics. Song lyrics have received relatively little attention in music
information retrieval, but can provide data about song style or content that is missing
from raw audio files or user-input tags. Recent work focusing on lyrics uses the meaning
of lyric text words to extract song topic, theme, or mood information. Wei et al. [108]
used sentence level clustering to generate novel keywords from centers of semantic graphs
in song lyrics. Kleedorfer et al. [60] developed algorithms to identify the common topic in
songs and allowed for music collections to be browsed by affiliated topics. Fujihara et al.
[40] used common phrases between different songs as keywords to create a interconnected
web of lyrics. This previous work tends to ignore the pattern and sound of the words
themselves.

These sound features are central to rap music, providing information about vocal deliv-
ery and rhyme scheme. This data can be characteristic of different rappers, as MCs often
boast of the uniqueness and superiority of their rhyming style. Mayer et al. [72] previously
studied lyric rhymes as an aid in predicting musical genre, but this prior work ignores two
stylistic features of rap lyrics: imperfect rhymes, where syllable end sounds are similar
but not identical, and internal rhyme, which occurs in the middle of lines. Kawahara [59]
analyzed rhyme in Japanese rap lyrics, and demonstrated that some pairs of consonants
were significantly more likely to appear in imperfect rhyme than others. Krims [62] studied
variations in performance and production and developed a genre system for hip hop. This
included identifying categories for flow (delivery) such as speech-effusive and percussion-
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effusive, describing different musical styles, and naming topical themes like “mack rap”
and “reality rap.”

We developed a system for automatic detection of rap music rhymes to identify im-
perfect and internal rhymes. We trained a probabilistic scoring model of rhymes using a
corpus of rap lyrics known to be rhyming, using ideas derived from bioinformatics. We
then used this model to find and categorize various rhymes in different song lyrics, and
assessed the model’s success. High-level statistical rhyme scheme features we calculated
allowed us to quantitatively model and compare rhyming styles between artists and gen-
res. These features correlated with real-world notions of rapping style and we identified
trends in their use in hip hop music over time. Finally, we used these rhyme features to
classify rappers and investigated potential applications of rhyme stylometry. Our work has
been presented at ISMIR 2009 [47] and 2010 [48] and is in review in the journal Empirical
Musicology Review [50].

3.2 Background

Hip hop music is characterized by lyrics with intermittent rhymes being rhythmically
chanted (rapped) to an accompanying beat. In “Old School” rap (from the late 1970s
to mid 1980s), lyrics typically followed a simple pattern and contained a single rhyme
falling on the fourth beat of each bar [17]. Contemporary rap features more varied delivery
and many complex rhyme stylistic elements that are often overlooked [4]. Key among these
are rhymes that are imperfect, extended, or internal.

3.2.1 Imperfect Rhymes

Holtman [51] provides a good overview of the abundance of imperfect rhyme (also called
slant rhyme) in rap lyrics and identifies some examples of their use in Eric B. and Rakim’s
1990 album Let the Rhythm Hit ’Em [12]. A normal rhyme involves two syllables that
share the same nucleus (vowel) and coda (ending consonants). Two syllables form an
imperfect rhyme if one of these two parts does not correspond exactly. However, these
types of rhymes are not just composed of vowels and consonants being paired randomly:
there is a constraint to the amount of dissimilarity in these rhymes, determined by the
shared articulatory features of matching phonemes.

In Holtman’s hierarchy, the most similar consonants are nasals, fricatives, and plosives
differing only in place of articulation, as in the line-ending /m/ and /n/ phonemes in:

Entertain and tear you out of your frame
Leave you in a puddle of blood, then let it rain, [12]
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as well as the /k/-/t/ from “black”-“fat” and /t/-/p/ from “coat”-“rope” pairs in:

Cool, I heat you up like a black mink coat
Hug your neck like a fat gold rope. [12]

(Rhyming syllables in quoted lyrics are displayed with the same font style.)
Less similar consonant pairs include those with the same place of articulation, but differing
in voice or continuancy, such as the /k/ and /g/ pair in:

Bring a bullet-proof vest, nothin’ to ricochet
Ready to aim at the brain, now what the trigger say? [12]

Though vowel identity tends to be preserved in rhymes, nonidentical vowels are most similar
when differing only in height or “length” (advanced tongue root), such as the penultimate
vowels (/E/ and /eI/) in:

I’m the alpha, with no omega
Beginning without the, end so play the, [12]

or the /A/ and /O/ in:

Beats and bullets pass me, none on target
They want the R hit, but watch the god get. [12]

Less similar vowel pairs differ in front/back position such as the /E/ and /O/ in:

Vocabs is endless, vocals exist
Rhyme goes on, so no one can stop this. [12]

Holtman’s work is largely taxonomic and describes known rhymes, rather than discov-
ering them. Hence, we used a statistical model of phonetic similarity based on frequencies
in actual rap lyrics. However, the patterns we automatically discovered largely validate
her taxonomy.

3.2.2 Polysyllabic Rhymes

Rap music often features three syllable or longer rhymes with unstressed syllables following
the initial stressed pair. Also known as multisyllabic rhymes or multis [17], these may
span multiple words, in which case they are called mosaic rhymes. Longer rhymes can also
include more than one pair of stressed syllables:

Maybe my sense of húmor gets ı́nto you
But girl, they can make a perfúme from the scént of you.[38]

(Here, the accents mark the syllables with primary stress in the six syllable rhyme.)
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3.2.3 Internal Rhymes

Finally, contemporary rap music features dazzlingly complex internal rhyme. Alim [4]
analyzed Pharoahe Monch’s 1999 album Internal Affairs [77] as a case study, and identified
chain rhymes, compound rhymes, and bridge rhymes. Chain rhymes are consecutive words
or phrases in which each rhymes with the previous, as in:

New York City gritty committee pity the fool that
Act shitty in the midst of the calm the witty,[77]

where “city”, “gritty”, “committee”, and “pity” participate in a chain since they all rhyme
and follow each other contiguously.

Compound rhymes are formed when two pairs of line internal rhymes overlap within a
single line. A good example of this is given in “Official”:

Yo, I stick around like hockey, now what the puck
Cooler than fuck, maneuver like Vancouver Canucks,[77]

where “maneuver” and “Vancouver” are found between “fuck” and “Canucks.”

Bridge rhymes are internal rhymes spanning two lines:

How I made it you salivated over my calibrated
Raps that validated my ghetto credibility
Still I be packin agilities unseen
Forreal-a my killin abilities unclean facilities.[77]

Here, we called pairs in which both members are internal (such as “agilities” / “abilities”)
bridge rhymes, and those where the first word or phrase is line-final (such as “calibrated”
/ “validated”), link rhymes.

3.3 A Probabilistic Model of Rhyme

As we did for misheard lyrics (detailed in Section 2.3.1), we modeled our rhyme detection
program after the BLOSUM (BLOcks of amino acid SUbstition Matrix) protein homology
detection algorithms [46]. In analyzing rap as opposed to misheard lyrics, we treated song
lyrics as sets of sequences of syllables, with each sequence corresponding to a line of text.
We used syllables instead of phonemes since they are the fundamental unit of rhyme; two
similar matching sets of phonemes may not necessarily rhyme but two similar matching
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sets of syllables will. To determine the possibility of rhyme in candidate pairs of song lyrics,
we assigned positive scores to syllables which matched with each other in known rhyming
phrases more often than expected by chance, and negative scores to those which matched
less often than expected by chance. We identified rhymes as those regions with syllables
that, when matched to each other, had a total score surpassing a cut-off threshold.

3.3.1 A Collection of Known Rhyming Syllables

To generate models of rhyming and randomly co-occurring syllables in rap lyrics, we re-
quired a data set of known rhymes. This data set corresponded to the corpus of alignments
of homologous proteins used to train the BLOSUM matrix. Our training corpus included
the lyrics of 31 influential albums from the “Golden Age” of rap (1984-1994) [76, 5], chosen
because they received the highest rating from The Source, the top-selling US rap music
magazine of the time, plus nine additional albums by influential artists from the time
period (Run-D.M.C., LL Cool J, The Beastie Boys, Public Enemy, Eric B. and Rakim).
We downloaded lyrics from the Web and manually corrected them to fix typos and ensure
that pairs of consecutive lines ended with matching rhymes, yielding 27,956 lines of lyrics
(13,978 rhymed pairs), approximately 700 lines per album.

As in Section 2.3.3, we first transcribed plain text lyrics into sequences of phonemes
using a wrapper we built around the Carnegie Mellon University (CMU) Pronouncing
Dictionary [64], which gives phonemes and stress markings for words in North American
English. To avoid the complications and computational complexity required to evaluate
all possible transcriptions for heteronyms and other words with numerous pronunciations,
we selected the first transcription for each word, corresponding to the most common pro-
nunciation.

We augmented the dictionary with common elements of hip hop vernacular and slang,
including terms such as “DJ,” “basehead,” and “AK-47,” as well as a wide variety of
profanity. To accommodate for variations in spelling and pronunciation in the lyrics, we
implemented rules to transform pronunciations for common occurrences of these variations.
For example, if a word ending with “-in” was not found in the dictionary but the same
word with a final “g” added was in the dictionary, we would use the pronunciation of the
found word, replacing the /N/ with an /n/. This corresponded to the “-in” ending in
verbs such as “runnin’,” or “kickin’.” If a word ending with “-a” was not found in the
dictionary but the same word with the “a” replaced with an “er” was in the dictionary,
we would use the pronunciation of the found word, replacing the /Ä/ with a /@/. This
corresponded to the “-a” formation for nouns like “brotha” or “killa.” We also added
rules to transcribe plural endings (/z/ for “-s”) and the simple future contraction “-’ll.”
Finally, we reduced the stress assigned to about 30 common one-syllable words of minor
significance in rhyme (“a,” “I,” “and,” etc.) to better model their actual realizations in
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rap performance. To handle words not found in the augmented dictionary, we added the
Naval Research Laboratory’s text-to-phoneme rules [32], as we did for misheard lyrics.

3.3.2 Scoring Potential Rhymes

To generate a log-odds scoring matrix for rhyming syllables, we required models for ran-
dom syllables and for rhymes. For any pair of syllables i and j, the random model,
Pr(i, j|Random), gives the likelihood of i and j being matched together by chance while
the rhyme model, Pr(i, j|Rhyme), gives the likelihood of i and j being paired in a true
rhyme. As in BLOSUM [46] Equation 2.1, the log-odds score was calculated as

M [i, j] = ln
Pr(i, j|Rhyme)

Pr(i, j|Random)
, (3.1)

(though we used natural logarithms instead of base 2). However, due to the extremely high
number of possible syllables in the English language, creating a pair-wise syllable scoring
matrix was not feasible. Instead, we reduced each syllable to its vowel (nucleus), end con-
sonants (coda), and stress—the relevant features for determining rhyme. We approximated
the coda by taking the first half (rounded up) of the consonants between adjacent pairs
of vowels. As an example, given the word “example” (transcribed as /I g z "æ m p @ l/),
the codas would be /g/, /m/, and /l/. Both models were trained using the occurrence
frequencies of phonemes in the training set of 40 albums mentioned above. In the random
model, the likelihood of vowel a matching with vowel b is calculated by taking the product
of the frequencies of a and b:

Pr(i, j|Random) =
Fa × Fb

(
∑

m Fm)2
, (3.2)

where Fa is the number of times phoneme a appeared in the training lyrics. The likelihoods
for consonants and varying stress were calculated independently in the same manner.

For the rhyming model, the likelihood of vowels a and b being matched was calculated
by taking the number of times a and b were seen matching in known rhymes, and dividing
by the total number of matched vowel pairs in known rhymes. This was calculated as:

Pr(i, j|Rhyme) =
Fa,b∑

m

∑
n Fm,n

, (3.3)

where Fa,b is the number of times vowels a and b appeared matched in the known rhymes.
Then the log-odds score for the vowels was calculated as before:

vowelScore(a, b) = ln
Pr(a, b|Rhyme)

Pr(a, b|Random)
. (3.4)
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The likelihood for consonants was more complicated since we needed to consider un-
matched consonants when aligning syllable codas of differing size. For example, the follow-
ing pair from Public Enemy’s “Black Steel in the Hour of Chaos” has line final consonant
clusters of /l d/ and /d/:

Cold holdin’ the load, the burden breakin’ the mold
I ain’t lyin’ denyin’, because they’re checkin’ my code [36].

As we did when aligning misheard lyrics with actual counterparts of different lengths, we
used an iterated approach to solve these problems. In the first pass over the training data,
we consider rhymes in paired lines to be all syllables following the final primary-stressed
syllable, after Holtman [51], and aligned consonants sequentially from left to right. For the
example given, the IPA transcription ends with

the b—ur–d–e–n b–r—ea–k–i–n’ the m—o–l–d
D @ b "Ç d @ n b r "eI k I n D @ m "oU l d

b @ k "2 z D E r tS "E k I n m aI k "oU d

b–e–c–au–se they’re ch–e–ck–i—n m–y c—o–de,

so the rhyme would start at the /oU/ vowels. The /l/ from “mold” was matched with
the /d/ from “code” and the /d/ in “mold” was unmatched. Here, we introduced symbols
/ */ and /* / that we treated as consonants to allow for different penalties for different
unmatched consonants at the beginning and end of codas. This distinction was useful since
some consonants (such as the liquids /l/ and /r/) were more likely to be unmatched at the
beginning of clusters, and others (often coronals, such as /d/ and /z/) were more likely to
be unmatched at the ends of clusters. A simple example of this is found in the occurrences
of “harm,” “unarmed,” and “alarmed” rhyming with “bomb” in Public Enemy’s “Louder
Than A Bomb.” [36] In these cases, the words still form imperfect rhymes, despite the
unmatched consonants.

We used these alignments to produce initial scoring matrices by calculating the statistics
above. In the second pass, we identified the starts of rhymes using these preliminary
matrices to score syllables in paired lines. We moved backwards from the end of the line
and stopped when we encountered a negative score for a stressed syllable pair. We identified
the start of the rhyme as the last positive-scored stressed syllable pair encountered. For
the example above, the rhyme was identified as “breakin’ the mold” with “checkin’ my
code.”

We used the initial scoring matrices to perform global alignment[30] on matched co-
das to determine frequencies for consonants pairing with other consonants, and being
unmatched at the start or end of the coda. When the codas for “mold” and “code” were
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aligned in this way, the /d/s matched with each other and the /l/ was treated as an un-
matched phoneme at the start of the consonant cluster (matching with / */:

the b—ur–d–e–n b–r—ea–k–i–n’ the m—o—l–d
D @ b "Ç d @ n b r "eI k I n D @ m "oU l d

b @ k "2 z D E r tS "E k I n m aI k "oU * d

b–e–c–au–se they’re ch–e–ck–i—n m–y c—o—–de,

These updated alignments gave us new frequency statistics from which we produced the
rhyming model and log-odds scores for consonants and stress in the same way as for vowels.
Finally, we normalized the consonant score by dividing by the length of the coda to avoid
the problem of syllables with long codas having the consonant score dominate. Intuitively,
“win” and “gin” rhyme as well as “splints” and “mints.” Since all the constituent scores
were log-odds, we added them together to form a combined probabilistic log score. In mak-
ing this combination, we implicitly assume that all sound features are independent. This is
not necessarily correct (for example, after different vowels, there are different distributions
of consonants), but works well as an approximation. The final score for two given syllables
i and j is the sum of the vowel score, normalized consonant score, and stress score:

Rhyme(i, j) = vowelScoreiv, jv + align(ic, jc) + stressScore(istress, jstress), (3.5)

where iv is the vowel in i, align(ic, jc) is the score for the global alignment of the end
consonants of i and j, and istress is the metrical stress marking of i. Since we only
considered the pronunciations, homophones and identical syllables were treated in the
same manner, and both generally received high scores.

Tables 1 and 2 show the pairwise scoring matrices for stressed vowels and consonants.
The symbols “ *” and “* ” indicate scores for unmatched consonants at the beginning and
end of codas, respectively. The similarity of vowels differing in height only appears for
back vowels: /A/, /O/, and /U/, receiving high scores when paired. We see this less for
front vowels /eI/, /E/, /I/, and /i/, though these tend not to score as negatively as other
vowels when paired. In the consonant matrix, high scores for fricative pairs like (/f/,/T/)
and (/v/,/D/), nasals (/m/,/n/), as well as plosives such as (/k/,/p/) and (/p/,/t/) largely
validate Holtman’s hierarchy [51]. We also see an interesting effect where affricates score
highly with their constituent fricatives: (/tS/,/S/) and (/dZ/,/Z/). The consonants most
likely to appear unmatched at the ends of codas include /d/, /z/, /t/, and /s/, which
for the most part probably correspond to common endings for verb past tenses and noun
plurals, such as “trap” rhyming with “capped” or “hot” rhyming with “rocks.” (We note
that “rhymes with” is not a categorical relationship in this domain: while it is not obvious if
a particular listener would say “trap” rhymes with “capped,” most native English speakers
would likely agree that these rhyme better than “trap” with “fit.”) The consonants most
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likely to be unmatched at the start of codas are the approximants /r/ and /l/, and /s/, as
in “master” rhyming with “stature.”

A æ 2 O aU aI E Ç eI I i oU OI U u

A 2.3 -3.3 -0.8 1.6 -1.7 -2.7 -7.2 -0.6 -3.9 -4.8 -3.9 -1.0 -1.7 -3.3 -3.9
æ 2.1 -1.5 -6.6 -1.9 -3.3 -1.5 -3.4 -1.8 -2.0 -4.3 -4.6 -4.5 -3.7 -6.7
2 2.2 -1.2 -1.4 -1.4 -0.6 -0.2 -1.7 -0.3 -3.0 -1.0 -0.6 -0.9 -1.5
O 3.1 -1.0 -3.8 -6.5 -1.1 -3.9 -4.2 -6.3 -0.3 -0.4 1.1 -3.3
aU 3.8 -0.3 -6.0 -4.2 -5.7 -6.0 -5.7 -2.0 -2.9 -4.5 -1.4
aI 2.5 -4.2 -1.1 -7.0 -1.8 -3.2 -4.3 -1.1 -5.7 -6.4
E 1.9 -1.2 -1.5 0.2 -2.1 -7.0 -4.5 -6.1 -4.3
Ç 3.9 -5.6 -1.5 -5.5 -1.6 -2.7 -1.3 -2.6
eI 2.5 -3.4 -2.7 -4.4 -4.3 -5.8 -6.5
I 2.0 -0.9 -7.1 0.2 -2.2 -3.7
i 2.4 -4.4 -4.2 -5.8 -6.4
oU 2.8 -4.0 -2.5 -1.5
OI 4.9 0.1 -3.7
U 2.6 -0.5
u 3.1

Table 3.1: Log-odds scoring matrix for vowels. Each value represents the natural logarithm
of the ratio of the likelihood of the pair matching in a rhyme versus the likelihood of the
pair matching by chance. For example, the score of 1.6 for /O/ and /A/ indicates that the
pair is e1.6, or approximately five, times more likely to appear matched in a rhyme than
by chance. Positive scores for non-identical vowel pairs are in bold face.

For the example used in this section above, “breakin’ the mold” rhyming with “checkin’
my code,” the total score for the four syllable rhyme is 9.0: The first syllable scores -1.5
(/"eI/:/"E/) + 2.6 (/k/:/k/) + 1.0 (matched strong stress) = 2.1. The second syllable scores
2.0 (/I/:/I/) + 2.2 (/n/:/n/) + 0.0 (matched weak stress) = 4.2. The third syllable scores
-1.4 (/@/:/aI/) + 0.0 (weak stress) = -1.4. The fourth syllable scores 2.8 (/"oU/:/"oU/) +
(0.4+2.3)/2 (/l d/:/ * d/) + 1.0 (strong stress) = 4.1; the sum is 9.0.

3.4 Rhyme Detection Algorithm

With our probabilistic scoring method for matched syllables in place, we needed a procedure
to identify internal and end rhymes. Our technique is a variant on local alignment[30];
for each syllable, we identified its closest preceding rhyming syllable, as well its longest
preceding rhyming phrase within the current and previous lines. For example, given the
line

Unobtainable to the brain it’s unexplainable what the verse’ll do [77]

32



b tS d D f g dZ k l m n N p r s S t T v z Z * *
b 4.3 -4.8 1.1 0.4 -5.5 1.9 1.9 -6.9 -0.3 -0.5 -1.6 -5.5 0.1 -0.9 -1.6 -4.6 -1.0 -4.3 2.3 0.3 -2.5 -0.6 -1.5
tS 4.2 -1.6 -4.9 -0.3 0.3 0.4 1.5 -6.8 -6.6 -2.8 -5.5 1.1 -6.7 0.3 0.6 0.9 1.4 -6.1 -2.0 -2.5 -6.0 -2.6
d 2.3 -7.0 -7.6 0.1 0.2 -3.1 -1.7 -2.2 -2.2 -3.0 -1.8 -0.9 -9.0 -2.1 0.2 0.0 -0.2 0.0 -4.6 -0.2 1.2
D 3.5 -5.6 -5.1 -4.2 -0.4 -0.2 -2.0 -7.5 -5.6 -6.2 -1.4 -7.0 -4.8 -0.3 1.3 2.8 1.1 -2.6 -6.0 -3.4
f 3.4 -1.2 -4.9 -0.3 -1.5 -1.3 -3.5 -1.6 1.1 -2.7 1.1 1.2 -0.9 4.0 0.6 -7.3 -3.2 -1.4 -2.9
g 4.2 1.9 0.0 -0.2 -1.0 -1.9 -5.7 -0.6 -0.8 -2.5 -4.9 -1.1 -4.5 0.3 -0.3 -2.7 -0.9 -2.8
dZ 5.2 -6.3 -1.5 0.1 -0.5 -4.8 -0.2 -0.3 -0.6 0.6 -1.1 -3.6 1.4 1.0 4.1 -5.3 0.5
k 2.6 -2.9 -2.1 -2.6 -1.3 1.7 -2.1 -0.7 -0.6 0.9 0.5 -1.8 -3.1 -4.7 -1.0 -1.8
l 2.8 -1.8 -1.8 -2.8 -8.1 -0.5 -2.9 -6.6 -2.9 -6.3 -1.3 -1.6 -4.5 0.4 -1.0
m 2.7 1.8 0.7 -3.2 -1.2 -2.9 -1.1 -2.5 0.4 -0.6 -3.7 -4.2 -0.8 -1.7
n 2.2 1.2 -2.5 -1.0 -2.3 -0.7 -1.5 -0.6 -1.5 -2.1 -5.1 -0.4 -2.3
N 4.1 -6.8 -2.7 -2.3 -5.3 -3.5 -5.0 -2.1 -2.0 -3.2 0.2 -3.9
p 3.3 -2.0 -1.1 -0.7 1.1 0.9 -0.6 -7.9 -3.8 -0.7 -0.8
r 2.8 -2.3 -0.8 -1.2 -6.1 -2.1 -2.2 -4.3 1.7 -0.7
s 2.6 2.4 -1.0 1.0 -2.4 0.5 0.0 0.6 0.6
S 5.2 -0.6 -4.1 -1.3 -0.2 3.6 -5.8 -7.7
t 1.7 1.6 -0.9 -9.2 -5.2 0.0 0.7
T 4.4 0.5 -6.1 -2.0 -5.4 -0.6
v 2.9 -0.4 1.6 -1.2 -1.7
z 2.6 3.0 -1.3 1.1
Z 6.8 -3.7 -5.6

Table 3.2: Log-odds scoring matrix for consonants

from Pharoahe Monch’s “Right Here,” the middle /eI n/ (“ain”) syllables all rhyme, while
the whole of “unexplainable” also rhymes with “unobtainable.”

For every line in a set of lyrics, we first constructed a two-dimensional matrix of the
score for every pair of syllables in the current and preceding line. We then initialized tables
for the closest and longest preceding rhymes found for each syllable. For each syllable in
the current line, we moved backward in the line(s) and extended rhymes forward from
entries marked as “anchors.” Entries in the matrix (corresponding to pairs of syllables in
the lines) were selected as anchors if they scored above a threshold and contained a stressed
syllable or were line-final. We used a threshold value of 3.6, meaning anchor syllables were
at least e3.6, or about 37, times more likely to rhyme than randomly matched syllables.
We considered syllable pairs to be line-final if both syllables were the same distance (of
at most three syllables) from the end of their respective lines. Three syllables covers the
most common types of end rhymes found in traditional rap lyrics.

From these anchor positions, we extended the rhymes forward as long as the total
similarity scores were above a per-syllable threshold. We used a per-syllable threshold
value of 2.7, meaning, on average, rhymed syllables were at least e2.7, or about 15, times
more likely to rhyme than randomly matched syllables. Hence, a two syllable rhyme needed
to score above 5.4, a three syllable rhyme above 8.1, a four syllable rhyme above 10.8, etc.
In addition to the iterative extension, we allowed a “jump”-type extension, in which one
or two syllables could be skipped over if the following syllable pair formed an anchor with
score above the anchor threshold. Longer polysyllabic mosaic rhymes often contain one or
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two syllables that do not rhyme in the midst of three or four that do. A good example of
this can be found in Fabolous’ “Can’t Deny It”:

I keep spittin’, them clips copped on those calicos
Keep shittin’, with ziplocks of that Cali ’dro [38]

where the two lines rhyme in their entirety, with the exception of “them”/“with” and
“those”/“that.”

After the rhyme was extended forward as far as possible, we checked to see if it was
either closer than the previous closest rhyme found for the anchor syllable or longer than the
longest rhyme found including that syllable. If so, we updated the “closest” and “longest”
tables for each syllable participating in the rhyme, and added the rhyme to the collection
for the set of lyrics. Each rhyme in the collection was stored as a pair of addresses and a
length. The addresses gave the line number (from the lyrics) as well as the starting syllable
for each phrase in the rhyming pair. Having only a single value for the length restricted
rhymes to those without any unmatched syllables, even though this is not always the case
in rap lyrics, as some syllables are deliberately missed and others under-pronounced in
rhyming phrases. However, the relative rarity of these types of rhymes made it impractical
to train a model for their detection.

After a set of lyrics was processed, we filtered the collection of rhymes to remove
duplicates and consolidate consecutive and overlapping rhymes. For each line in the set,
we compared every pair of rhymes beginning on that line. If one rhyme began exactly
where another ended or began in the middle of another such that both starting syllables
of the rhyme were the same distance from the starting syllables of the second rhyme, we
joined the two into a single rhyme beginning at the earlier starting syllables and having
the combined length of the two constituent rhymes. If one rhyme was entirely contained
within another such that both of its starting syllables were the same distance from the
starting syllables of the second rhyme, we removed the contained rhyme entirely. For the
example given above, suppose the collection began with the following four rhymes: “keep
spittin’, them clips” with “keep shittin’ with zip-,” “clips copped on those calicos” with
“ziplocks of that Cali ’dro,” “shit-” with “clips,” and “calicos” with “Cali ’dro.” The first
two rhymes would have been combined to form “keep spittin’, them clips copped on those
calicos” with “keep shittin’, with ziplocks of that Cali ’dro,” then the last rhyme (being
contained entirely within the first) would have been removed from the collection.

3.5 Validating the Method

Our first test verifies that our probabilistic score for syllable rhyming is better at identifying
perfect and imperfect rhymes than rules-based phonetic similarity measures. We did a 10-
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fold cross validation where we chose 36 albums from the training data (of 40 albums),
trained a rhyme model from those albums, and used it to score the known rhyming lines
from the other four albums (true positives) as well as randomly selected lines from those
four albums (presumed to be true negatives).

We developed implementations of the minimal mismatch of articulatory features and
Kondrak alignment metrics to compare the performance of these scoring measures, which
are based on the physical process of the human voice. In the minimal mismatch method, the
similarity score for a pair of phonemes is the number of their common articulatory features
(such as voicing, airflow stoppage, manner of articulation, height, length, etc.) divided by
the total number of articulatory features (10). The Kondrak score for a pair of phonemes
is calculated in the same way, except that the articulatory features are weighted, with the
most weight being given to place and manner of articulation. The alignment method was
designed for identifying pairs of words in different languages sharing a common etymolog-
ical root (called cognates) [61]. We show receiver operator characteristic (ROC) curves
comparing the true positive rate to false positive rate when varying the score threshold for
each of the three methods in Figure 3.1. The probabilistic method significantly outperforms
both simpler rules-based methods.

Figure 3.1: ROC curves for the three different scoring methods, comparing percentage
of actual rhymes found by algorithm on the y-axis with percentage of unrelated syllables
detected as rhyming on the x-axis. The kink in the Minimal Mismatch curve is caused
by a sharp decline in the number of detected rhymes when zero mismatched articulatory
features are allowed, meaning only perfect rhymes are counted.

Next, we considered false positives and negatives for detected end rhymes, using the
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score threshold of 1.5 (meaning matched syllables are at least e1.5, or about 4.5, times more
likely to rhyme than expected by chance). Out of 1000 pairs of unrelated random lines from
our training data, 79 syllables were marked as parts of end rhymes (“false positives”) by our
procedure. Of these, 22 were in fact true rhymes, with scores higher than 3.0. Thirty were
near-rhymes; that is, that they could be found (though less frequently) as line final rhymes
in actual lyrics. Usually scoring above 2.0, they included matches such as “stiff”/“fit”,
“pen”/“thing”, and “cling”/“smothering”, with more than one articulatory difference or
different stress. Fourteen matched end syllables (often suffixes), typically with high scores
(greater than 3.0). Examples such as “weaker”/“drummer” and “tappin’”/“position”,
may have exact matches, but are not relevant rhymes due to their lack of stress. The
remaining 13 moderately high scoring (between 1.5 and 2.5) pairs featured either high
consonant scores (like “bust”/“test”) or high vowel scores due to matching rare vowel
sounds (“box”/“wrong”).

From a set of 1000 matched pairs of lines, we used the iterative method (moving back-
wards from the end of the line while scores for stressed syllables are positive) to see which
true rhymes would be missed. Pairs with all such matches scoring less than 1.5 were
marked and treated as false negatives. Out of 132 such syllables, the largest group (48)
were moderately low scoring (between -1.0 and 1.5) pairs participating in polysyllabic and
mosaic rhymes. A good example of this is “battery”/“battle me” in Eric B. and Rakim’s
“No Omega”[12]; many of these were flanked by high scoring pairs, and would be included
in rhymes using the jump extension described in the above section. Thirty-five were very
low scoring pairs (less than 0.0) which were either caused by words having been transcribed
improperly or the lack of a true rhyme in the lyrics. Twenty-two were caused by the rhyme
start being extended too far back and starting with a low positive scoring pair. Again, this
would not cause problems in our actual detection algorithm since, in that case, rhymes are
extended forward from stressed anchors. Seventeen were caused by differences between the
actual pronunciation and the dictionary’s pronunciation (“poems” treated as one syllable,
or “battles” specifically being pronounced to rhyme with “shadows”). Finally, 10 were
caused by deliberate mismatch in syllable stress.

The probabilistic model is quite good at finding both perfect and imperfect rhymes.
Quite few syllable pairs (less than 15 in the 1000 line pairs) scored highly without being
perceivably rhyming, and most low scoring “true” rhyme pairs take part in complex mosaic
and polysyllabic rhymes.

Finally, we used our model on a set of manually annotated rap lyrics, to measure the
ability of the program to find both internal and line-final rhymes. We used five songs from
a variety of styles: the Beastie Boys’ “Intergalactic” (1998), a Grammy-winning song in the
old-school style; Pharoahe Monch’s “The Truth” (featuring Common and Talib Kweli) and
“Right Here” (1999), which were annotated by Alim [4] and feature high rhyme density and
a complicated scheme; Jay-Z and Eminem’s “Renegade” (2001), which features very high
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rhyme density; and Fabolous’ “Trade It All (Part 2)” (2003), a song specifically mentioned
by Alim for its prevalence of long (five or six syllable) rhymes. We show the ROC curves for
this test set in Figure 3.2; the best overall performance is for specificity and sensitivity just
above 60%. Most “false positives” were rhymes that were not annotated by the human
annotator due to lack of rhythmic importance or accidental omission. False negatives
included several where the performer created a rhyme from words that do not appear to
rhyme as text, and some longer rhymes that were cut off prematurely due to too many non-
rhyming syllables within them and lower scoring syllable pairs surrounding them. Finally,
some rhymes were missed due to intervening rhymes being found between the rhyming
parts, particularly when the threshold for rhymes is set low. This is especially evident in
the ROC curves at lower cut-off thresholds, where true positive rates peak around 80%
and begin to decline as the threshold is lowered.

Figure 3.2: Rhyme detection syllable ROC curves for different songs. The y-axis indicates
the percentage of true rhymes identified by the algorithm, while the x-axis shows the
percentage of automatically identified rhymes not considered to be true rhymes.

3.6 Experiments

3.6.1 Genre Identification

We used our procedure to compute a variety of features about the rhymes in several sets
of lyrics. These statistics include the number of syllables per line, the number of rhymes
per line, the proportion of rhymes of different syllable lengths, as well as the occurrences
of the complex rhyming features (bridge, link, chain, etc.) per line discussed earlier. The
complete list of features calculated is detailed in 3.3.
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Feature Description
Syllables per Line Average number of syllables per line
Syllables per Word Average word length in syllables
Syllable Variation Standard deviation of line lengths in syllables

Novel Word Proportion Average percentage of words in the second line
in a pair not appearing in the first

Rhymes per Line Average number of detected rhymes per line
Rhymes per Syllable Average number of detected rhymes per syllable

Rhyme Density Total number of rhymed syllables divided by total number syllables
End Pairs per Line Percentage of lines ending with a line-final rhyme
End Pairs Grown Percentage of rhyming couplets in which the second line

is more than 15% longer (in syllables) than the first
End Pairs Shrunk Percentage of rhyming couplets in which the second line

is more than 15% shorter (in syllables) than the first
End Pairs Even Percentage of rhyming couplets neither grown or shrunk

Average End Score Average similarity score of line final rhymes
Average End Syl Score Average similarity score per syllable in line final rhymes

Singles per Rhyme Percentage of rhymes being one syllable long
Doubles per Rhyme Percentage of rhymes being two syllables long
Triples per Rhyme Percentage of rhymes being three syllables long
Quads per Rhyme Percentage of rhymes being four syllables long
Longs per Rhyme Percentage of rhymes being longer than four syllables
Perfect Rhymes Percentage of rhymes with identical vowels and codas

Line Internals per Line Number of rhymes with both parts falling in the same line
divided by total number of lines

Links per Line Average number of link rhymes per line
Bridges per Line Average number of bridge rhymes per line

Compounds per Line Average number of compound rhymes per line
Chaining per Line Total number of words or phrases involved in chain rhymes

divided by total number of lines

Table 3.3: Description of higher-level rhyme features calculated.
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We hypothesized that these features would show differences between genres of popular
music, and calculated them for four sets of data: the top 10 songs from Billboard Magazine’s
2008 year-end Hot Rap Singles chart; the top 20 songs from the 2008 year-end Hot Modern
Rock Songs chart; the first 400 lines of Milton’s “Paradise Lost” [75], as a similar-sized
sample of historically important non-rhyming verse; and the top 10 songs from the 1998
year-end Hot Rap Singles chart. To compare the verses most of all, the song lyrics were
modified to remove intro/outro text, repeated lines, and additional choruses. Our results
are in Table 3.4. High end rhyme scores are indicative of song lyrics in general (relative to
unrhymed verse); rap has higher rhyme density, internal rhyme, link rhymes, and bridge
rhymes. Interestingly, blank verse and rock lyrics have similar amounts of rhyming per
line, but rock lyrics have more rhymes per syllable. Although “Paradise Lost” is written in
iambic pentameter (meaning it should have exactly 10 syllables per line), its use of archaic
words not found in the pronouncing dictionary and shifts in English pronunciation over
time have it being detected as using a bit more than 10 syllables per line. The data from
1998 and 2008 rap songs suggest that in their rhyming pattern, there has not been much
shift in style, other than a possible increase in the amount of chain rhymes used.

Rap ’08 Rap ’98 Rock Blank
Number of Lines 476 613 502 400
Number of Syllables 4646 6492 4053 4146
Syllables per Line 9.76 10.59 8.07 10.37

Number of Rhymes 794 1118 476 393
Rhymes per Line 1.67 1.82 0.95 0.98
Rhymes per Syllable 0.17 0.17 0.12 0.09
Rhyme Density 0.28 0.27 0.19 0.12
Average End Score 5.28 5.21 4.36 2.49

per Syllable 3.75 3.67 4.01 2.28

Doubles per Rhyme 0.23 0.29 0.15 0.18
Triples per Rhyme 0.08 0.06 0.04 0.03
Quads per Rhyme 0.02 0.03 0.05 0.00
Longs per Rhyme 0.03 0.02 0.04 0.01

Internals per Line 0.62 0.60 0.27 0.28
Links per Line 0.20 0.28 0.13 0.16
Bridges per Line 0.43 0.48 0.28 0.40
Chaining per Line 0.32 0.18 0.15 0.07

Table 3.4: Comparison of selected rhyme features for different genres. Some of the more
interesting differences are highlighted.
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3.6.2 Use of Rhyme Features within Hip Hop

We also hypothesized that features of individual rappers might be informative, so we
produced these statistics for popular albums by 25 famous MCs from a diverse range of
styles and eras. These include some best-selling rappers [81], as well as those considered
by many to be among the best of all time [78, 3]: Run-D.M.C., LL Cool J, the Beastie
Boys, Rakim, KRS-One of Boogie Down Productions, Chuck D of Public Enemy, Big
Daddy Kane, Slick Rick, Kool G Rap, Ice Cube, MC Hammer, Scarface, Redman, Nas,
Andre 3000 of Outkast, The Notorious B.I.G., 2Pac, Bone Thugs-n-Harmony, Jay-Z, DMX,
Eminem, Nelly, Fabolous, 50 Cent, and Lil’ Wayne. We again focused on the rapped verses,
removing any lyrics which were either spoken, sung, or performed by guest artists. Since
many of the statistics involve the position of rhymes in relation to the end and middle of
lines, we listened to each album to ensure that lyrics were transcribed such that each line
of text corresponded to a single bar or measure of music in the song. For example, upon
downloading the following lyrics from Lil’ Wayne’s “A Milli,”

I do what I do an you do wat you can do about it
Bitch I can turn a crack rock into a mountain
Dare me
Don’t you compare me cause there ain’t nobody near me
They don’t see me but they hear me
They don’t feel me but they fear me, [107]

after listening to the song, we corrected errors and transcribed them into:

And you do what you can do about it Bitch
I can turn a crack rock into a mountain Dare me
Don’t you compare me cause there ain’t nobody near me
They don’t see me but they hear me They don’t feel me but they fear me [107].

The results indicate that many of these features can be quite characteristic of different
artists’ styles. For example, early rappers Run-D.M.C. [97, 98], LL Cool J, [53, 54], and
the Beastie Boys’ [15, 16] old-school style uses less rhyme with around 1.7 rhymes per line
and a rhyme density of 0.22 compared to the overall average among artists of 2.0 rhymes
per line and a rhyme density of 0.27. Rakim [10, 11], recording around the same time
but known for his more complex style, is detected as using more triplet rhymes (9%) than
previous artists (4%). Later Golden Age rappers, such as KRS-One [89, 90], Big Daddy
Kane [57, 58], and Kool G Rap [91, 92], display even higher rhyme density scores, as well
as a tendency to move away from line final rhymes. This is especially the case with Chuck
D [36, 37], whose 0.32 end rhymes per line is amongst the lowest in our collection and quite
a bit lower than the average (0.40). Rival rappers 2Pac [1] and The Notorious B.I.G.’s [13]
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early albums display some fairly similar style characteristics: about two rhymes per line,
30% of rhymes being two syllables long, and 9% being longer. However, The Notorious
B.I.G.’s lines are shorter in length, with, on average, 11.1 syllables compared to 2Pac’s
12.4.

Faster rappers like Andre 3000 [84, 85, 86] and Bone Thugs-n-Harmony [79] can squeeze
in the most syllables per line (14.7 and 17.2, compared to the average of 11.6), allowing
them to achieve the most rhymes per line (3.2 and 3.6) since they rap more words that
can be matched with others in adjacent lines. Andre 3000 can also be considered to be
one of the most eloquent MCs, using about 1.4 syllables per word, compared to the artist
average of 1.25. DMX [26, 27], on the other hand, uses the shortest words of any rapper
(around 1.19 syllables), though he does tend to use more mosaic rhymes, with 17% of his
rhymes being longer than two syllables. Artists from the early 2000s like Eminem [34, 35],
and especially Fabolous [38, 39], also favour longer rhymes, with 19% and 30% respectively
of their rhymes being longer than two syllables. The most recent MC in the group, Lil’
Wayne [106, 107] manages one of the highest rhyme density scores (0.33) while using some
of the shortest lines (11.1 syllables) since the early ’90s. The full set of feature data by
album is included in the Appendix.

These data lead us to the observation of a few key trends in the development of rhyming
style in hip hop over time. Most significant is the increase in rhyme density as MCs began to
use more rhymes and longer rhymes. Rhyme density and year have a moderate correlation
with a Pearson r2 of 0.23 (p-value < 0.001). This is displayed in Figure 3.3.

Low rhyme density scores at 1990 and 1991 correspond to albums by Ice Cube [21] and
Scarface [82] (whose raps are more story-oriented and feature less intricate rhyming) and
MC Hammer [44, 45] (who generally performed dance-style rap songs with less rhyme).
The low scores at 2003 and 2005 are for 50 Cent, whose removal from the data set would
result in a correlation with r2 0.33 (p-value < 0.001). 50 Cent’s more traditional and less
rhyme dense style may be due to his being tutored by Run-D.M.C.’s Jam Jaster Jay, who
taught him to count bars and write choruses [114]. There is another major outlier in Run-
D.M.C.’s 1988 album Tougher Than Leather, which has the highest rhyme density score
(0.43) in the entire collection. This drastic increase in the amount of rhyme is due to the
duo adopting a rap style often featuring lines split by caesurae with two rhyming words
appearing in each half of the line, such as the following lyrics from the title track:

Just peep and keep but don’t sleep or weep
Get deep to leap or I’ll beep the Jeep
Put down the clown, get ’round the town
I found the sound that I pound the ground [99].

In these lines, the /i p/ sounds in “peep,” “keep,” “sleep,” etc. all rhyme, then “peep
and keep” rhymes with “sleep or weep” rhymes with “deep to leap” rhymes with “beep
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Figure 3.3: The increase in rhyme density (number of rhymed syllables divided by total
number of syllables) over time. The outliers at the top left and bottom right of the graph
are Run-D.M.C.’s Tougher Than Leather and 50 Cent’s first two albums, respectively.

the Jeep,” and finally “peep and keep but don’t sleep or weep” rhymes with “deep to leap
or I’ll beep the Jeep.” The same pattern occurs with the /aU n/ sounds in the second
pair of lines. These patterns of highly repetitive rhymes result in this album having much
higher rhyme density (0.43), more triplet and longer rhymes (17%), and less perfect rhymes
(17%) than previous albums. However, other features less affected by this style of rhyming
still appear consistent with Run-D.M.C.’s overall style: percent perfect rhymes, line-final
rhyme pairs (0.46), and average score per syllable in end pairs (4.24) are all higher than
the average among rappers.

The increase in longer rhymes can also be illustrated by the declining usage of one-
syllable rhymes over time (see Figure 3.4). Year has a negative correlation with the per-
centage of rhymes being one syllable long (r2 = 0.42, p-value < 0.001), (and matching
positive correlations with the proportion of triples, quads, and longer rhymes, with r2 all
greater than or equal to 0.25, and p-values < 0.001).

Another interesting phenomenon is the increasing use of imperfect rhymes, resulting
in year having negative correlations with average end syllable score (r2 = 0.56, p-value <
0.001) and percent of perfect rhymes (r2 = 0.40, p-value < 0.001). See 3.5 for an illustration
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Figure 3.4: The decreasing use of monosyllabic rhymes over time.

of this relationship. Finally, we see increases in the usage of the more complex features,
such as link rhymes per line, which has a correlation of 0.18 (p-value = 0.001) with year,
and bridge rhymes per line, which has a correlation of 0.28 (p-value < 0.001) with year
(see Figure 3.6).
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Figure 3.5: The decreasing use of perfect rhymes (in which both vowels and consonant
codas match exactly) over time.
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Figure 3.6: The increasing use of bridge rhymes (containing matching internal
words/phrases in consecutive lines) over time.
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3.7 Classifying Artists Using Rhyme Features

Most MCs in our collection displayed fairly consistent styles between albums, which often
tended to be quite distinctive. We hypothesized that we might be able to classify lyrics
by rapper, using only these statistical features. We broke our data set into “songs,” which
we treated as segments of at least 40 lines (corresponding to, at the minimum, two 16 line
verses and 8 lines of chorus), and calculated the features for each of these. This resulted
in 603 songs over the 53 albums. We fed this set of instances into the Weka Data Mining
Software [42] and classified the data using a simple logistic regression. We used 10-fold
cross-validation, in which a model was trained on 90% of the instances and used to classify
the remaining 10%. The results were surprisingly good, with 314 (52%) of the instances
classified correctly.

The full classification results produced a weighted F -measure of 0.516. The F -measure
of a class is the harmonic mean of the precision (p) and recall (r) for that class; the
precision is the percentage of instances assigned by the model to the class which actually
belong to the class; the recall is the percentage of instances actually belonging to the class
which are assigned to it by the model. The formula is F1 = 2×p×r

p+r
[52]. All rappers were

most often classified as themselves: their songs were identified as being by the correct
artist more often than they were identified as being by any other particular artist, with
the exception of KRS-One who was most often classified as Rakim. He, along with Jay-Z,
Slick Rick, and Nelly, were among the most difficult to classify using the regression model,
with F -measures all below 0.3.

Considering we used fewer than 25 fairly simple statistical features and no semantic
information, the classification results are much higher than the 4% correctness we would
expect by chance. A purely random classifier would achieve our level off accuracy with
probability well under 10−50. An obvious comparison for classification would be to use a
standard bag-of-words model, which performs much better at identifying rappers. Using
a naive Bayes bag-of-words classifier and the same 10-fold cross-validation as above, 552
(91.5%) instances wee classified correctly with a weighted F -measure of 0.91. However,
this is not a very informative method in this genre. Rappers have a very strong inclination
to name-drop in their lyrics, including their own names, nicknames, and record label and
group names. This can be seen in the attributes of the naive Bayes model: the highest
weighted attributes for the majority of rappers were usually one of these names. If a song
has the word “jigga” in it, it is very likely to be by Jay-Z; seeing “weezy” is evidence of a
Lil’ Wayne song; “slim” and “shady” are indicative of Eminem; and Scarface really likes
to say “Brad” (his real first name).

Furthermore, the classification errors made by a bag-of-words model tell us nothing
about the style of the MCs in question. When Nelly was identified as Jay-Z, it was
because his vocabulary emphasizes words like “dough,” “ice,” and “game,” not because
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he rhymes like Jay-Z. Andre 3000 was often misclassified as Lil’ Wayne as they share
a Southern vernacular, but their rapping styles are dissimilar. Conversely, classification
errors made using the rhyme features can raise very interesting comparisons of rhyming
style. For example, Run-D.M.C. were often confused with the Beastie Boys. However,
Run-D.M.C. had great influence upon the Beastie Boys through their association with
Def Jam Recordings. In fact, Run-D.M.C. wrote or co-wrote some of the songs from the
Beastie Boys’ Licensed to Ill [15], including “Paul Revere” and “Slow and Low,” which was
originally a Run-D.M.C. recording. According to Beastie Boy Ad-Rock, “our sound right
then was desperately trying to sound like Run-D.M.C.” [96].

Other artists misclassified as each other included Ice Cube and Scarface, who we per-
ceive to have a similar story-telling style, light in the use of intricate rhyming patterns,
and often using uneven line lengths. The Notorious B.I.G. was most often confused with
one of his influences Kool G Rap, and hip hop scholar Adam Bradley finds the similarity
connection between superstars Eminem and Jay-Z to be the most interesting [18]. Table
3.5 is the full classification confusion matrix.

The rhymes we detected and the features we calculated are especially indicative of
rhyming style in rap music, and they allowed us to build surprisingly useful statistical
characterizations of different MCs. That these features are indicative particularly of rap-
ping style is further supported by their relative weakness at characterizing other types of
music.

We performed a similar classification experiment using ten top-selling dance/pop artists
popular around the same time as the MCs in our collection: Michael Jackson, ABBA,
Celine Dion, Madonna, the Backstreet Boys, Cher, Janet Jackson, Mariah Carey, Britney
Spears, and Eurythmics. Just as we did for the rap lyrics, we removed repeated choruses
and ensured that lines in the lyrics corresponded to bars of music in the songs. We
divided the lyrics into “songs” (containing a minimum of 40 lines each), and calculated the
statistical rhyme features for these songs. We used the resulting instances to train a simple
logistic regression classifier and performed ten-fold cross-validation as above. The model
correctly identified only 62 of 234 instances (26.5%) with an F -measure of 0.26, which is
only marginally better than the 10% classification accuracy we would expect by chance.

3.8 Applications and Discussion

3.8.1 Style Modification

Given that we have a reasonably accurate statistical characterization of various rappers’
rhyming styles, we can begin to consider other applications for which rhyming style can be
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analyzed. One such application would be in inferring an artist’s stylistic consistency from
the accuracy by which they can be classified. For the most easily identified rappers in our
collection, we can identify a single distinctive characteristic which explains their statistical
uniqueness. For Andre 3000 and Bone Thugs-n-Harmony, it is their speedy flow resulting
in relatively more syllables per line. For Fabolous, it is his extensive usage of extremely
long multisyllabic rhymes. For other relatively well classified artists such as Run-D.M.C.,
Chuck D, and Redman, it is less obvious what makes their rhyming style so consistently
distinct. Conversely, artists who are poorly classified can be considered to have a multitude
of rhyme styles with which they can “switch up” their flow. In the song “22 Two’s” from
his debut album Reasonable Doubt, Jay-Z boasts that “I don’t follow any guidelines cause
too many niggas ride mine/ so I change styles every two rhymes” [55], and his resistance
to classification can be seen as evidence of this constant changing of styles.

When speaking about MCs’ diversity of style, we note that three of the artists in our
collection are in fact not single rappers, but groups: Run-D.M.C., the Beastie Boys, and
Bone Thugs-n-Harmony. However, this does not have much of an effect on the results for
two main reasons. In the case of Run-D.M.C. and the Beastie Boys, many of their raps
are delivered in a way such that individual members perform alternating lines (sometimes
even trading parts of lines), and certain phrases (especially line-final rhymes in the case of
the Beastie Boys) are performed by the whole group. This makes it extremely difficult to
separate one member’s contribution to the song from another’s. Bone Thugs-n-Harmony
generally has each of its members performing a shortened “mini-verse” of eight to twelve
consecutive lines as part of longer verses. However, each of the five rappers in the group
rhyme similarly enough to each other and differently enough from other rappers in the
collection, that the group as a whole can be said to have a distinct style.

Rappers also sometimes consciously modify their style, perhaps in a deliberate attempt
to imitate another artist’s rhyme technique. A well-known example of this phenomenon
occurs in the song “Notorious Thugs” from The Notorious B.I.G.’s Life After Death [14],
which features Bone Thugs-n-Harmony as guest performers. Classifying The Notorious
B.I.G.’s verse in the song using the rhyme feature logistic regression described above “in-
correctly” identifies him as Bone Thugs-n-Harmony. However, his rap in this song was in
fact deliberately performed so as to mimic the Bone Thugs’ style. According to producer
Steven “Stevie J.” Jordan, “after Bone Thugs went in there and ripped it, Big took it
home for a minute. He was like, ‘I aint laying mine. I got to wait. This style ain’t what
I’m used to.’ ” As Bone Thugs member Layzie Bone put it, “When Biggie did our style,
thats when Bone received respect for our shit” [69].
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3.8.2 Ghostwriter Identification

Another interesting application of statistical rhyme style characterization is in the detection
of ghostwriting in hip hop songs. While the term can refer to a range of practices in the
industry, in this domain it generally refers to raps written by an artist other than the
performer. We performed a small experiment on identifying ghostwriters using artists
from our collection known to write for other rappers. Ice Cube was known as the primary
lyricist for the seminal gangsta rap group N.W.A. and is credited with writing most of
their songs. We classified Eazy-E’s “Boyz-n-the-Hood” and N.W.A.’s “Express Yourself”
(performed by Dr. Dre), both written by Ice Cube [31, 80], using the rhyme feature
logistic regression classifier and “Boyz-n-the-Hood” was in fact identified as Ice Cube.
Nas famously wrote for Will Smith on his multi-platinum solo album Big Willie Style
[102], but using the classifier on songs “Just Cruisin”’ and “Gettin’ Jiggy Wit It” did not
identify Nas as the rapper. However, songs written by Jay-Z for producers Dr. Dre (“Still
D.R.E.”), [29] and Timbaland (“Indian Carpet”) [105] are both identified by the classifier
as Jay-Z. As a comparison, using the naive Bayes bag-of-words classifier on these songs
only correctly identifies one of them: “Boyz-n-the-Hood” is classified as Ice Cube, likely
due to the inclusion of Cube-indicative words such as “fools,” “hoe,” and “nappy,” all of
which are in the top 10 attributes for his class. The results are detailed in Table 3.6.

Song Title Writer Performer Rhyme Classification Bag-of-Words Classification
Boyz-n-the-Hood Ice Cube Eazy-E Ice Cube Ice Cube
Express Yourself Ice Cube Dr. Dre Big Daddy Kane Big Daddy Kane
Just Cruisin’ Nas Will Smith The Notorious B.I.G Big Daddy Kane
Gettin’ Jiggy Wit It Nas Will Smith Jay-Z Jay-Z
Still D.R.E. Jay-Z Dr. Dre Jay-Z Fabolous
Indian Carpet Jay-Z Timbaland Jay-Z MC Hammer

Table 3.6: Classification results for ghostwritten songs using rhyme and bag-of-words fea-
tures. Correctly identified writers are shown in italic.

The songs we used here all had the “ghostwriter” included in the credits and also include
the performer as a writer, meaning that they are in fact co-written. However, for songs
performed by producers (not known primarily for their rhyming abilities), we may assume
that the co-writing MC had a much greater contribution to the lyrics. This may explain
why the classifier does not identify Nas in the songs co-written by Nas and Will Smith,
an established rapper himself. Perhaps the collaboration of the two writers resulted in a
conglomerate style not characteristic of either rapper. The ability to classify Jay-Z and
Ice Cube in the other cases does suggest that we may be able to identify ghostwriters even
when they are not credited, which may often be the case. For example, even though rapper
Skillz is perhaps best known as being a writer for other rappers [70], his ASCAP entry
only has one song in which he does not rap himself [7]. (Ironically, this is Will Smith’s
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“Lost & Found,” in which he asks, “Why should I try to flow the way ya’ll flow?” [103].)
Developing a statistical profile of Skillz’s rhyming style might have allowed us to identify
songs to which he has made uncredited contributions.

3.8.3 Content-based Recommendation

Finally, with our set of rhyme style features, we can make larger-scale comparisons between
different rappers allowing for content-based recommendation in hip hop. Using normalized
Euclidean distance in the 24-dimensional feature space, we built a hierarchical clustering
of our albums using the Neighbour-Joining algorithm [100] (Figure 3.7). Even with this
simple distance metric, the artists cluster in a reasonable way. Most artists tend to fall in
small clusters with their own albums and albums by similar artists. The largest distinction
is between old-school style rap (generally produced before the 1990s) and newer rap, though
even within the older artists, the more intricate rhymers (Rakim and Big Daddy Kane)
are branched off. Among the newer artists, there is a split between the less rhyme-dense
mid-’90s (2Pac, Redman, and the Notorious B.I.G.) and other performers, who are further
subdivided into the faster (Andre 3000 and Bone Thugs) and slower rappers. We can also
see that the most difficult artists to classify (Jay-Z, KRS-One, Slick Rick, but surprisingly
not Nelly) generally have albums that are not very similar to their other albums, indicating
their diversity or progression in style.

With an embedding of MCs in a high-dimensional rhyme style space such as this one,
we could easily find the two or three rappers most similar to any other artist (given enough
of their lyrics to calculate the rhyme statistics). This could allow lesser-known performers
to promote themselves by highlighting their similarity to more famous rappers, or let music
recommendation systems make suggestions based on the rhyming styles their users prefer.
Suggesting artists based on their rhyming style would be an important step towards true
content-based recommendation in hip hop, where the majority of the musical information
is in the lyrics.
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Figure 3.7: A hierarchical clustering of the albums by rhyme features built by the
Neighbour-Joining algorithm.
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3.8.4 Artist Evolution

To identify trends in an artist’s evolving or maturing rhyme style we performed a case
study on multi-platinum rapper Eminem. We calculated the statistical rhyme features for
each of the seven studio albums he has released over his 15 year recording career to identify
possible changes over time. The main effect we found was an overall shortening of rhyme
length coupled with an increase in the amount of internal rhyme. Though only using seven
albums, we found a significant negative correlation with year for percent of rhymes longer
than four syllables (r2 = 0.80, p-value = 0.01) and a significant positive correlation with
year for line internals per line (r2 = 0.55, p-value = 0.05). We also noticed trends in
Eminem’s decreasing use of three and four syllable rhymes, having correlations with year
with r2 = 0.48 (p-value = 0.09) and r2 = 0.44 (p-value = 0.1), and his increasing use of
single syllable rhymes and total number of rhymes per line, having correlations with year
with r2 = 0.48 (p-value = 0.08) and r2 = 0.53 (p-value = 0.07). In fact, every single one of
his albums had proportionately fewer longer than four syllable rhymes than the previous
one and his poorly-received debut Infinite[33] had an astounding 31% of rhymes longer
than two syllables. The features discussed are detailed in Table 3.7. These data lead us
to believe that Eminem may have consciously modified his rhyming style to become less
technically daunting and more commercially viable prior to (and during) his mainstream
success.

3.8.5 Popularity Prediction

In considering the hypothesis that rhyming style could have measurable effects on popular-
ity and critical acclaim, we compared our statistical rhyme features for each album in our
collection with measures of critical reception, consumer popularity, and market success.
To measure critics’ reactions to the albums, we aggregated scores from professional crit-
ics’ reviews compiled on the Wikipedia page for each album into a percentage grade. To
measure consumer popularity, we calculated the precise average rating (out of five stars)
from user reviews given to each album on the online retailer Amazon.com. Finally, to
measure commercial success, we used album shipment statistics from the Record Indus-
try Association of America [81]. These numbers are provided for albums receiving Gold,
Platinum, or Multi-Platinum certifications, indicating that they have sold at least 500,000,
one million, or multimillion copies. For albums not receiving RIAA certifications (BDP’s
Criminal Minded [89], Slick Rick’s The Ruler’s Back [93], and both Kool G Rap & DJ
Polo albums [91, 92]), we used a conservative estimate of 100,000 units. While this may
seem high, it is much closer to zero than the 500,000 minimum of a Gold album. For
double albums (2Pac’s All Eyez on Me [2] and The Notorious B.I.G.’s Life After Death
[14]), we divided the count by two since the RIAA counts discs (as opposed to albums) in
determining certifications. These data are presented in Table 3.8.
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Artist Album Year Sales Critics’ score Amazon aggregate
Run-D.M.C. Run-D.M.C. 1984 500,000 93.6 4.82
Run-D.M.C. Raising Hell 1986 3,000,000 91.4 4.63
Run-D.M.C. Tougher Than Leather 1988 1,000,000 71.2 4.50
LL Cool J Radio 1985 1,000,000 87.4 4.64
LL Cool J Bigger and Deffer 1987 2,000,000 61.0 4.39
Beastie Boys Licensed To Ill 1986 9,000,000 96.3 4.66
Beastie Boys Paul’s Boutique 1989 2,000,000 94.9 4.86
Rakim Paid in Full 1987 1,000,000 94.3 4.81
Rakim Follow the Leader 1988 500,000 90.1 4.75
Rakim Let the Rhythm Hit ’Em 1990 500,000 79.7 4.95
KRS-One Criminal Minded 1987 100,000 93.1 4.98
KRS-One By All Means Necessary 1988 500,000 87.7 4.87
Chuck D It Takes a Nation of Millions to Hold Us Back 1988 1,000,000 98.3 4.75
Chuck D Fear of a Black Planet 1990 1,000,000 97.0 4.63
Big Daddy Kane Long Live the Kane 1988 500,000 84.9 4.84
Big Daddy Kane It’s a Big Daddy Thing 1989 500,000 82.0 4.70
Slick Rick The Great Adventures of Slick Rick 1988 1,000,000 82.3 4.76
Slick Rick The Ruler’s Back 1991 100,000 79.3 4.62
Kool G Rap Road to the Riches 1989 100,000 83.0 4.14
Kool G Rap Wanted: Dead or Alive 1990 100,000 82.5 5.00
Ice Cube AmeriKKKa’s Most Wanted 1990 1,000,000 88.6 4.35
Ice Cube Death Certificate 1991 1,000,000 91.3 4.57
MC Hammer Please Hammer Don’t Hurt ’Em 1990 1,000,0000 50.0 3.75
MC Hammer Too Legit to Quit 1991 3,000,000 71.0 3.67
Scarface Mr. Scarface is Back 1991 500,000 84.0 4.28
Scarface The Diary 1994 1,000,000 86.0 4.75
Redman Whut? Thee Album 1992 500,000 91.1 4.73
Redman Muddy Waters 1996 500,000 85.0 4.76
Nas Illmatic 1994 1,000,000 93.3 4.78
Nas It Was Written 1996 2,000,000 80.4 4.55
Nas I Am... 1999 2,000,000 75.4 4.28
Andre 3000 Southernplayalisticadillacmuzik 1994 1,000,000 75.7 4.78
Andre 3000 ATLiens 1996 2,000,000 86.3 4.85
Andre 3000 Aquemini 1998 2,000,000 92.4 4.80
The Notorious B.I.G. Ready to Die 1994 4,000,000 96.3 4.66
The Notorious B.I.G. Life After Death 1997 5,000,000 90.8 4.38
2Pac Me Against the World 1995 2,000,000 89.0 4.81
2Pac All Eyez on Me 1996 4,500,000 88.6 4.68
Bone Thugs-n-Harmony E. 1999 Eternal 1995 4,000,000 80.0 4.84
Jay-Z Reasonable Doubt 1996 1,000,000 85.9 4.56
Jay-Z In My Lifetime, Vol. 1 1997 1,000,000 73.3 4.07
Jay-Z Vol. 2: Life and Times of Shawn Carter 1998 5,000,000 76.6 4.15
DMX It’s Dark and Hell is Hot 1998 4,000,000 74.2 4.55
DMX ...And Then There Was X 1999 5,000,000 76.5 3.77
Eminem The Slim Shady LP 1999 4,000,000 79.8 4.21
Eminem The Marshall Mathers LP 2000 9,000,000 93.9 4.48
Nelly Country Grammar 2000 9,000,000 75.3 4.06
Nelly Nellyville 2002 6,000,000 69.2 3.26
Fabolous Ghetto Fabolous 2001 1,000,000 61.6 3.73
Fabolous Street Dreams 2003 1,000,000 59.9 3.66
50 Cent Get Rich or Die Tryin’ 2003 6,000,000 77.3 3.46
50 Cent The Massacre 2005 5,000,000 76.0 2.33
Lil’ Wayne Tha Carter II 2005 1,000,000 79.6 4.22
Lil’ Wayne Tha Carter III 2008 3,000,000 80.8 3.61

Table 3.8: Sales figures, aggregate critic scores, and Amazon.com user ratings for all albums
in the collection
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Comparing statistical features with critical reception, the largest effects we observed
were for rhyme length: critics tended to favour rap with shorter rhymes as aggregate scores
were negatively correlated with the percentage of four syllable (r2 = 0.16, p-value = 0.002)
and longer rhymes (r2 = 0.19, p-value = 0.001). Smaller negative relationships were also
observed with percentage of three syllable (with r2 = 0.08, p-value = 0.04) and two syllable
rhymes (r2 = 0.08, p-value = 0.04). However, longer words were enjoyed by the critics as
syllables per word had a positive correlation with aggregate score (r2 = 0.08, p-value =
0.04). These results suggest that, when reviewing hip hop, professional music critics might
be more influenced by the content of the lyrics as opposed to the intricacy and inventiveness
of the rhymes.

As indicated by averaged Amazon.com ratings, music listeners also preferred shorter
rhymes, though less so than the professional critics. Percentage of four syllables (r2 = 0.11,
p-value = 0.01) and longer rhymes (r2 = 0.13, p-value = 0.008) both correlated negatively
with Amazon score. Listeners also tended to pay more attention to the word content when
rating music as their average scores correlated positively with syllables per word (r2 = 0.18,
p-value = 0.001) and novel word proportion (r2 = 0.20, p-value = 0.001). Interestingly,
listeners poorly rated albums with more evenly sized rhyming couplets, as the percentage
of end-pairs even correlated with the number of one star (out of five) reviews (r2 = 0.12,
p-value = 0.009). This effect was mostly caused by high values for this feature (around
60%) in albums by Nelly and 50 Cent, two of the most reviled rappers in our collection.
In fact, their combined four albums received more one star ratings (679) than all 50 other
albums combined (531). The only other artist to receive as many negative reviews is
Eminem, whose 186 one star ratings are balanced by the 1448 five star ratings his albums
have received.

Comparing sales numbers with rhyme features was more difficult since overall album
sales tended to rise with time (until the early 2000s); the correlation between sales and year
has r2 = 0.12 (p-value = 0.009). Though novel word proportion was negatively correlated
with sales (r2 = 0.16, p-value = 0.003), this was coupled with a larger negative correla-
tion with year (r2 = 0.29, p-value < 0.001). Similarly, average end score was negatively
correlated with sales (r2 = 0.09, p-value = 0.03), but there was also a negative trend with
year (r2 = 0.05, p-value = 0.11). The one feature where this effect was not observed was
syllables per word. This statistic had a significant negative correlation with units sold (r2

= 0.11, p-value = 0.02), meaning that albums with shorter words were purchased by more
people. It is somewhat surprising that this feature was positively correlated with critics’
and listeners’ review scores, indicating that the most eloquent rappers receive the most
critical acclaim but tend not to sell as many albums. Results like these suggest it may be
possible in the future for record producers to scientifically engineer the performances on
albums to maximize their commercial viability. However, the small sizes of even the most
significant relationships indicate that there is far more to a rapper’s critical and commercial
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success than we can predict with rhyme features.

3.9 User Interface

We combined the above algorithms and applications into a Java program that allows for
the visualization and analysis of rhymes in rap lyrics. This easy-to-use tool can be em-
ployed by casual fans to better appreciate hip hop music, by music industry executives to
compare potential rappers’ rhyming styles, or even by aspiring rappers to improve their
own lyrics. We used the Swing toolkit to create the graphical user interface and included
five functions for processing lyric input: phonetic transcription, assigning similarity scores
to lines, displaying detected rhymes, calculating rhyme features, and classifying the rapper.

3.9.1 Transcription and Scoring

The tool transcribes words from the input text using the methods described in Section
3.3.1. Due to the limitations of the output formatting, we used the CMU dictionary
phonemes (as described in Table 2.1) instead of the IPA glyphs. The resulting phoneme
strings are output with vertical bars (|) for word breaks and front slashes (/) for line breaks
(see Figure 3.8). The tool also allows line final rhymes to be assigned log-odds similarity
scores using the method and training corpus described in Section 3.3.2. Starting from the
ends of consecutive lines, paired syllables are assigned scores as long as stressed pairs score
above 0.

3.9.2 Displaying Rhymes

The output screen allows for the highlighting of internal and line-final rhymes using the
method detailed in Section 3.4. For each rhyme detected in the lyrics, the function cycles
through one of five modified formatting styles: bold face, italic, red colour, underline, and
strike-through. This formatting is applied to all participating words in the rhyme pair.
These formatting styles are not mutually exclusive, allowing words to be displayed as part
of multiple rhymes (see Figure 3.9).

3.9.3 Analyzing and Classifying Rhyme Style

The Analyze Rhymes function produces a list of all of the statistical rhyme features (as
described in Section 3.6) calculated for the input lyrics. Finally, when classifying the artist
based on rhyming style, the tool loads the Weka Simple Logistic Regression model trained
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Figure 3.8: Phonetic transcription of lines from The Notorious B.I.G.’s “Juicy.”
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Figure 3.9: A visualization of detected rhymes from The Notorious B.I.G.’s “Juicy.”
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in Section 3.7. The instance generated from the rhyme features of the input text is classified
by the model, and the most similar MC (from the set of 25) is returned as the guessed
writer of the lyrics.
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Chapter 4

Analyzing Meter in Poetry

4.1 Introduction

The final area we considered in which speech sounds could be analyzed statistically was
poetry. While much of the emotional content, imagery, and wordplay is driven by the
poet’s choice of words and their meanings, in many poems, the prosody and rhythm of the
words has an important effect on the overall feel of the piece. This is especially true for
poems written in a fixed meter, in which lines of verse have regular lengths in syllables, and
consistent patterns of assigned stress in those syllables. Determining the scansion of a poem
(i.e., specifying this fixed meter) can be a difficult task for novice readers, so we developed
an algorithm to automatically assign scansion using a dictionary of pronunciation. This
also allowed for the efficient analysis and comparison of metrical style across different
poets and eras. We applied this algorithm to a large corpus of poems to identify those
with fixed meter, and used those poems to calculate likelihood-based stress assignments
for words in the dictionary. We then investigated the use of modified prosody in metric
verse and its relation to the emotionality of words used. We compared the use and form of
rhyme between hip hop lyrics and poetry. Finally, we developed a software tool to perform
automated scansion analysis and visualization.

4.2 Related Work

Interest in computer applications to scansion in poetry has been around for at least the past
40 years. In 1970, Donow [28] programmed an IBM 7044 to scan Shakespeare’s sonnets,
assign syllables to the iambic pentameter, and categorize the words based on their line
position and syllable length. Dilligan and Lynn in 1973 [24] used key-punched data cards
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of poems and phonetic transcriptions to analyze and compare the metric complexity of
works by Geoffrey Chaucer and Gerrard Manley Hopkins using the Halle-Keyser theory
of prosody [43]. Logan [68] developed a set of programs to assign four levels of stress
to syllables in lines of verse and measure them against an expected prosodic template to
calculate a metrical complexity. More recently, Plamondon [88] developed a program to
identify dominant meter and rhyme scheme in poems, using rhythmic confidence values to
assign metric stress and rhyme to words not previously encountered. Our work differs from
previous approaches due to our treatment of prosodic stress as a continuous likelihood of
words or syllables appearing heavily stressed.

4.3 Corpus of Poems

To create a collection of poetry on which to calculate the stress likelihoods, we downloaded
poems from the University of Toronto Library’s Representative Poetry Online (RPO)
database. Expanded in 1994 from editions of printed anthologies called Representative
Poetry compiled between 1912 and 1967, the database contains 3,162 representative En-
glish poems. 600 poets are included, starting with Caedmon from the Old English seventh
century, to modern poets, published in the last decade [83]. In addition to the text, entries
in the RPO contain metadata about the poem, including the composition date, publication
date, publication method, rhyme scheme, and form (i.e. sonnet, rhyming couplets, blank
verse, etc.).

Upon downloading the html file for each poem, we removed introductory text, stanza
markings, blank lines, and additional html tags, and extracted as much of the metadata
as was available. As in Section 2.3.3, we used our modified CMU Pronouncing Dictionary
(with reduced stress for common one-syllable words) and the Naval Research Laboratory’s
text-to-phoneme rules to transcribe poems phonetically. In determining prosody, we only
considered the stress markings assigned to the syllables in the transcriptions and reduced
these to three possible values: heavy (1) for primary and secondary stressed syllables, light
(0) for unstressed syllables, and unknown (-1) for syllables transcribed using the text-to-
phoneme rules. Initially, each poem was represented as a two-dimensional array of these
integer values: one dimension for the lines in the poem, and the second for the syllables in
each line.

4.4 Automated Scansion Algorithm

We used a fairly exhaustive searching method to determine the metrical form of a poem.
For each poem, we attempted to determine the stanza size (i.e. the number of lines before
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the structure repeats in a regular pattern), and for each line in a stanza, the characteristics
uniquely determining the meter of the line. These values are the total number of syllables,
the number of light stressed syllables between heavy ones, and the number of light stressed
syllables before the first heavy one. For example, a line written in iambic pentameter
should have a total of 10 syllables, one light syllable between heavy syllables, and one light
syllable before the first heavy one. A line written in strict dactylic hexameter should have
a total of 18 syllables, two light syllables between heavy syllables, and no light syllables
before the first heavy one. We specify “strict” here since the last metrical foot often does
not conform exactly to the meter. This is also why we did not try to determine the number
of light syllables following the last heavy syllable.

For each poem, we evaluated stanza sizes of between one and four lines. Longer stanzas
are indeed common in poetry but for our purposes, allowing these tended to result in
metrical structures being overfit to particular poems. Furthermore, our definition of stanza
only includes the rhythmic and metrical information, not the rhyme scheme. For example,
Sir John Denham’s “Cooper’s Hill,” [23] is written in heroic couplets, meaning that it has
two line stanzas of rhyming iambic pentameter. However, since every line is in iambic
pentameter, we would consider it to have one line stanzas and find a single meter for all
lines in the poem. For each line in a particular stanza size, if the majority of corresponding
lines in the poem had the same number of syllables, we selected that value as the number
for that line. The second line in a three line stanza would have corresponding lines 2, 5, 8,
11, 14, etc. in the poem.

Then, for each line position, we iterated through the possible values for the number of
light syllables (one or two) between heavy ones, and the number of light syllables (zero,
one, or two, but not more than the number between heavy ones) before the first heavy
one. For every combination of values, we calculated a correspondence score, indicating
how well the resulting metrical structure fit with the prosody assigned to the poem by the
phonetic transcription. We calculated this score by performing global alignments between
the stress markings for corresponding lines in the poem and a template line constructed
using the characteristic metric values. For example, given a total of seven syllables, one
light syllable between heavy ones, and none before the first heavy one, the template line
would be [1, 0, 1, 0, 1, 0, 1]. In the dynamic programming alignment, we assigned scores
of +2 to matching light or heavy syllables, +1 to matching syllables with unknown stress,
0 to mismatched stress, -3 for unmatched light syllables, -4 for unmatched heavy syllables.
While selected somewhat arbitrarily, these values worked well in practice and ensured that
syllables were not skipped to force poems to conform to the template meter.

For every corresponding line, we summed the resulting alignment scores and divided the
total by the highest possible alignment score (+2 times the number of syllables in each line),
resulting in a per line correspondence score. The average of these scores among lines was
the final correspondence score for that combination of metric values, a value between 0 and
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100%. After computing this result for all the iterations of values, we selected the metrical
structure with the highest correspondence score. We saved these structural profiles for all
poems with a correspondence score above 75%. To evaluate this cut-off, we examined 20
of the lowest scoring poems and found only one which did not match the assigned meter.
This poem had eleven line stanzas in which the eleventh line in each stanza did not match
the meter of the ten others. The initial set of metrical poetry contained 749 poems.

4.5 Metrical Stress Likelihood

Once we were able to identify the metrical structure with confidence for a base set of poems,
we attempted to create a more robust method of assigning stress in words. While syllables
in poetry do tend to be realized rather strictly as either heavily or lightly stressed, and
indeed the CMU Pronouncing Dictionary does categorize syllables in this way, we predicted
that many words could have variably stressed syllables. In particular, we hypothesized that
different words, and especially monosyllabic words, would have measurable likelihoods of
being stressed in different ways. For example, the word love is a common one syllable
word in poetry usually occurring as a heavily stressed syllable but it does have some small
probability of appearing as a lightly stressed syllable. By calculating the frequencies with
which words appeared with various prosodic realizations in our base set of poems, we were
able to identify their likelihoods of being stressed in different ways.

Restricting our corpus of poems to those with metrical structures about which we were
confident, we aligned lines of poetry with their metrical template lines as described in
Section 4.4. For each word, we counted the total number number of times it appeared in
the poems, as well as the number of times it appeared heavily stressed. For words longer
than one syllable, we counted the number of times the first syllable in the word appeared
heavily stressed, as well as the number of times a syllable in the word was unmatched in
an alignment. For all common words (those appearing at least ten times), we saved these
values and calculated the likelihood of the word being—or having its first syllable—heavily
stressed, and the likelihood of it having a skipped syllable in the meter. The 50 most
common words are displayed in Table 4.1.

The first observation we made was that the most common words for the most part do
not receive heavy stress. This largely validates our decision to reduce the stress of these
words in the pronouncing dictionary but there do appear to be some exceptions. The words
“all” and “on” are among the 20 most common though both appear heavily stressed more
often than not, with “all” being stressed more than 75% of the time. “In” is the sixth most
common word but it still appears heavily stressed more than 40% of the time. Perhaps
unsurprisingly, “love” was the most often heavily stressed word in the top 50, appearing
stressed 93% of the time. At the other end of the spectrum, we noticed an interesting effect
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Word Occurrences Times stressed Stress likelihood Skipped syllables Skip Likelihood
THE 20202 963 5% 155 1%
AND 14409 1883 13% 267 2%
TO 7972 1837 23% 79 1%
OF 7874 2209 28% 109 1%
A 6103 225 4% 30 0%
IN 5653 2341 41% 98 2%
I 4762 1238 26% 46 1%

THAT 4157 848 20% 34 1%
WITH 3788 1079 28% 59 2%
HIS 3353 265 8% 20 1%
MY 3209 218 7% 15 0%
FOR 2705 663 25% 50 2%
BUT 2554 448 18% 64 3%
ALL 2533 1928 76% 20 1%
IS 2490 812 33% 42 2%
HE 2466 600 24% 23 1%

NOT 2116 696 33% 13 1%
AS 2072 668 32% 20 1%
ON 1998 1126 56% 28 1%

FROM 1905 822 43% 18 1%
OR 1854 262 14% 16 1%
IT 1820 333 18% 26 1%

HER 1795 231 13% 9 1%
THY 1759 145 8% 4 0%
BY 1728 646 37% 24 1%
ME 1678 724 43% 16 1%

THEIR 1633 128 8% 5 0%
BE 1622 712 44% 14 1%

THEY 1589 330 21% 8 1%
AT 1458 487 33% 13 1%
NO 1458 204 14% 11 1%

WHEN 1424 593 42% 29 2%
WAS 1405 437 31% 11 1%
WE 1398 333 24% 13 1%
SO 1380 327 24% 15 1%

YOU 1290 430 33% 11 1%
THIS 1223 460 38% 9 1%
ARE 1216 358 29% 9 1%

WHAT 1171 464 40% 14 1%
THOU 1079 474 44% 14 1%
HAVE 1030 367 36% 6 1%
WHO 1012 223 22% 7 1%

WHICH 1005 346 34% 12 1%
MORE 982 642 65% 5 1%
LOVE 974 906 93% 2 0%
OUR 973 76 8% 6 1%
THEN 961 460 48% 12 1%

WHERE 960 326 34% 21 2%
YOUR 940 69 7% 3 0%
LIKE 937 397 42% 16 2%

Table 4.1: The fifty most common words and how often they appear heavily stressed or
with syllables unmatched
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in which the least stressed words tended to be possessive adjectives. With the exception
of the extremely common “the” and “a,” the only words appearing heavily stressed less
than 10% of the time were “my,” “your,” “our,” “their,” “thy,” and “his.” “Her” was the
next least often heavily stressed at 13% of the time. This effect was likely due to heavy
stress being applied to the more semantically important words following these adjectives
and described by them.

We identified the common words most likely to appear heavily stressed (Table 4.2)
and most likely to appear lightly stressed (Table 4.3), as well as those most likely to have
skipped syllables (Table 4.4).

Word Occurrences Times stressed Stress likelihood
SKIES 102 102 100%
VIEW 109 109 100%

SHADE 104 104 100%
MIND 304 302 99%
STATE 131 130 99%
DOOR 110 109 99%
SHORE 109 108 99%
RACE 107 106 99%
PAIN 201 199 99%

PLACE 270 267 99%
SIGHT 180 178 99%

BREAST 174 172 99%
NAME 214 211 99%

GROUND 120 118 98%
GRACE 172 169 98%

AGE 168 165 98%
HAIR 108 106 98%

WINGS 108 106 98%
FIELDS 107 105 98%
SOUND 137 134 98%

DIE 223 218 98%
SHOW 131 128 98%
STARS 128 125 98%
HOME 170 166 98%
CARE 207 202 98%
FACE 331 323 98%
EYE 281 274 98%

Table 4.2: Common one syllable words most likely to be heavily stressed

In comparing the most often stressed common words to the least often stressed ones, we
noticed that there were far more words which rarely (less than 2% of the time) appeared
lightly stressed, whereas even the least stressed word “a” appeared heavily stressed 4% of

66



Word Occurrences Times stressed Stress likelihood
A 6103 225 4%

THE 20202 963 5%
NOR 838 54 6%
MY 3209 218 7%

YOUR 940 69 7%
WHOSE 428 32 7%

OUR 973 76 8%
THEIR 1633 128 8%

HIS 3353 265 8%
THY 1759 145 8%
ITS 641 60 9%
O 526 56 11%

AN 684 76 11%
I’LL 109 14 13%
HER 1795 231 13%
AND 14409 1883 13%
NO 1458 204 14%
OR 1854 262 14%

Table 4.3: Common one syllable words least likely to be heavily stressed

the time. This indicates that light metrical stress in words is a looser concept than heavy
stress, and poets are more likely to place a normally lightly stressed syllable on a heavy
beat than vice versa.

In examining the common words most likely to have syllables skipped when aligned
with the metric template, we noticed that most likely of these “fire,” “hour,” and “power,”
were due to differences between the dictionary and realized pronunciations. These words
have vowel triphthongs transcribed as two syllables /"aI Ç/ and /"aU Ç/ as opposed to
their poetic usage as monosyllabic /"aI r/ and /"aU r/. The other words included “heaven,”
“even,” and “ever,” which were historically often spelled as “heav’n,” “ev’n,” and “ev’r,”
explicitly specifying their single-syllable pronunciation.

4.6 Probabilistic Prosody

With our more robust, likelihood-based metrical stress assignments, we were better able
to identify the metrical structure in our collection of poems, especially for those with
many one syllable words. We performed a second iteration of scansion evaluation on the
poems, using the same algorithm as described in Section 4.4, though when performing
local alignment between lines in the poem and metrical template lines, we used the stress
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Word Occurrences Skipped syllables Skip Likelihood
FIRE 224 215 96%
HOUR 141 132 94%

POWER 134 118 88%
HEAVEN 203 157 77%
MANY 288 133 46%
EVEN 157 59 38%
BEING 118 11 9%
UNTO 113 7 6%
GLORY 138 6 4%
EVER 334 14 4%

Table 4.4: Common words most likely to have unmatched syllables

likelihoods calculated above instead of hard heavy/light values. The score c[i, j] for an
alignment matching a particular syllable i with stress likelihood Pr(si) with a metrical
beat j was calculated as follows:

c[i, j] =

{
Pr(si) × 2 (if j is heavily stressed),

(1 − Pr(si)) × 2 (if j is lightly stressed),
(4.1)

For example, “Shall I compare thee to a summer’s day” from Shakespeare’s Sonnet 18[101],
would previously have been assigned stress as [1,0,0,1,1,0,0,1,0,1], receiving a correspon-
dence score of 60% (= (0+0+2+2+0+0+2+2+2+2)/20) when aligned with the iambic
pentameter template of [0,1,0,1,0,1,0,1,0,1]. However, using the likelihood-based assign-
ment, the stresses would be [28%,26%,0%,100%,51%,23%,4%,100%,0%,94%], receiving a
correspondence score of 76%.

With these probabilistic correspondence scores, we expanded our set of poems with
metrical structures about which we were confident to 1,784 out of the full set of 3,162. We
used a slightly lower cut-off correspondence of 70% since the absence of extremely rarely
stressed syllables (see Table 4.3) made it much more difficult for poems to achieve the
highest scores.

4.7 Modifying Meter for Poetic Affect

4.7.1 Metrical Complexity and Poetic Freedom

Using our expanded set of metrical poems and our more accurate, probabilistic measure
of correspondence, we investigated poetic variations in the use of stress and meter. For
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poems with a fixed metrical structure, the calculated correspondence score could be seen
as a measure of how strictly the poet adheres to the underlying meter. We compared
these scores for poems by 22 poets from the collection, each of whom had at least 10
poems with a discovered meter. We found that Alfred Lord Tennyson kept his writing
the most tightly constrained to its metrical form, as his 46 metrical poems received an
average correspondence score of 79%. Sir Philip Sydney employed the most variation in
his metrical structures, scoring an average correspondence under 73% in his 17 metrical
poems.

While correspondence scores tended to increase slightly over time (r2 = 0.07, p-value
< 0.001; see Figure 4.1) as pronunciation in the English language evolved to more closely
resemble the modern English of our phonetic dictionary, even poets from the same era
varied in their adherence to meter. For example, Alfred, Lord Tennyson and Robert
Browning both wrote in the mid 19th century, but Browning’s poems received one of the
lowest average correspondence scores (73.4%) and were significantly lower (p-value < 0.001)
than Tennyson’s, which received the highest (79.4%). Though both used similar Victorian
era English, Browning’s lower correspondence scores indicate his less strict reliance on
metric form. Alexander Pope (born 1688) wrote before Samuel Taylor Coleridge (born
1772), but his poems received significantly higher correspondence scores (p-value = 0.01).
Similarly, Matthew Arnold (born 1822) wrote two centuries after John Dryden (born 1631),
but his poems received significantly lower correspondence scores (p-value = 0.01). The full
list of poets, along with their years of birth and average correspondence scores is displayed
in Table 4.5.

4.7.2 Stress and Emotion

We suspected that poets used words with stress patterns that did not match the underlying
meter of a poem to highlight emotionally charged or figurative language. To investigate
this prediction, we analyzed words in our collection of poetry using Whissell’s Dictionary
of Affect in Language (DAL) [109]. The DAL is a listing of over 8,700 English words along
with assessor-assigned ratings (on a scale from 1 to 3) for emotional valence, emotional
activation, and amount of imagery. Emotional valence is scaled from most unpleasant
(1) to most pleasant (3), emotional activation is scaled from most passive (1) to most
active (3), and imagery is scaled from hardest to imagine (1) to easiest to imagine (3).
We augmented the dictionary with rules to allow for plurals (words ending in “-s” or “-
es”), past (“-ed”) and present progressive (“-ing”) tenses, and noun forms (“-er”). The
supplemented dictionary covered, on average, about 85% of the words in our collection of
poems.

We examined DAL values for words whose stress pattern varied from the metrical stress
to which they had been assigned, words likely to receive heavy stress falling on light beats
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Figure 4.1: Correspondence scores by year of poem. As English pronunciation evolved to
more closely resemble modern forms, dictionary-assigned syllable counts and stresses were
more likely to match the poets’ intended use, resulting in higher correspondence scores.
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Poet Birth Year Average Correspondence
Sir Philip Sidney 1554 72.7%
John Milton 1608 72.9%
Matthew Arnold 1822 73.4%
Robert Browning 1812 73.4%
William Shakespeare 1564 73.4%
John Keats 1795 73.6%
Elizabeth Barrett Browning 1806 73.7%
Robert Herrick 1591 74.1%
Henry Howard, earl of Surrey 1517 74.5%
Samuel Taylor Coleridge 1772 74.6%
George Meredith 1828 74.7%
William Cowper 1731 75.1%
Andrew Marvell 1621 75.2%
Archibald Lampman 1861 75.6%
Henry Wadsworth Longfellow 1807 75.8%
Charles Tennyson Turner 1808 75.9%
William Wordsworth 1770 76.1%
William Blake 1757 76.3%
Robert Burns 1759 76.3%
John Dryden 1631 76.4%
Emily Dickinson 1830 77.0%
Alexander Pope 1688 77.4%
Walter Savage Landor 1775 77.5%
Rudyard Kipling 1865 77.8%
Henry Lawson 1867 78.0%
Alfred Lord Tennyson 1809 79.4%

Table 4.5: List of poets with 10 or more metrical poems, along with birth year and average
correspondence score
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(up-stressed), and compared them to the background values for all the words in a poem.
We used a threshold value of 75% to determine which words were assigned to unlikely
beats, so any syllable with a stress likelihood higher (lower) than 75% (25%) falling on a
light (heavy) beat was considered to have varied stress. For example, “my,” with stress
likelihood of 7%, falling on a heavy beat was considered to have varied stress; “fire,” with
stress likelihood of 96%, falling on a light beat was considered to be up-stressed (and also
varied in stress.)

Focusing on the mean emotional valence, activation, and imagery values for varied
stress, up-stressed, and all words in each poem, we found that varied stressed words had
significantly higher (p-value < 0.001) emotional activation values (mean = 1.71) than the
background values (mean = 1.66) for all words. For up-stressed words in particular, mean
emotional valence (1.95), emotional activation (1.83), and imagery (1.94) were all higher
than the background means (1.87, 1.66, and 1.60) with p-values all less than 0.001. Since
the most evocative emotional words tend to fall at the extremes of valence and activa-
tion scores, we compared the standard deviations of the values as well. We found that
the valence and activation values for up-stressed words varied significantly more (stan-
dard deviations = 0.45 and 0.39, F -distribution p-values < 0.001) than average (standard
deviations = 0.39 and 0.36, respectively).

As a supplement to the DAL, Whissell provides a categorization of words into Very
Pleasant (within the top 10% of valence ratings), Very Unpleasant (within the bottom
10% of valence ratings), Very Active (top 10% activation), Very Passive (bottom 10% acti-
vation), Well Imaged (top 10% imagery), Poorly Imaged (bottom 10% imagery), Fun (top
25% valence and activation), Very Sad (bottom 10% valence and activation), Nasty (bot-
tom 25% valence, top 25% activation), and Nice (top 25% valence, bottom 25% activation)
words. We compared the occurrence of these words among varied stress, up-stressed, and
normally stressed words. While words with varied stress tended to have similar frequen-
cies of these special words, up-stressed words were more likely to be Very Pleasant (13%)
or Unpleasant (9%) than normal (8% and 5%). They were also more likely to be Very
Active (9% vs. 5%) and less likely to be Very Passive (13% vs. 22%). They were more
likely to be Well Imaged (17% vs. 10%) and much less likely to be Poorly Imaged (9% vs.
41%). Finally, they were more likely to be Fun words (11% vs. 6%), but not much more
likely to be Very Sad, Nasty, or Nice. These results indicate that poets tend to use words
with strong stresses on weak beats to highlight the most emotionally active and figurative
language in their works.
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4.8 Rhyme in Poetry

Although the RPO poems are not all in rhyming couplets like our corpus of rap lyrics,
we were able to use the rhyme scheme information provided in the metadata to train a
probabilistic model of rhyme in poetry. This allowed us to compare the formation and
definition of rhyme between hip hop and traditional poetry. For all poems with a simply
parsable rhyme scheme in their metadata, we followed the method described in Section
3.3.2 to produce pairwise phoneme log-odds scoring matrices from the resulting 14,244
rhyming pairs. We first trained a model using all syllables following (and including) the
last heavy syllable in a pair of lines, then used these initial scoring matrices to train a
final model based on positive scoring line-final syllable pairs. The scoring matrices for
consonants and vowels and in heavy syllables are displayed in Tables 4.6 and 4.7.

b tS d D f g dZ k l m n N p r s S t T v z Z * *
b 4.3 -4.5 -6.3 -3.7 -4.7 -3.5 -3.4 -0.8 -6.0 -5.5 -2.0 -4.9 -4.8 -6.4 -1.5 -3.8 -6.6 -4.5 -5.4 -1.5 -2.2 -0.8 -1.5
tS 3.0 -7.4 -4.7 -5.7 -4.5 -4.5 -6.4 -7.0 -6.6 -1.9 -1.3 -5.8 -2.8 -1.9 -4.8 -1.9 -5.6 -6.5 -1.9 -3.2 -6.4 -2.2
d 2.9 -6.6 -7.6 -1.8 -1.7 -2.3 -1.9 -1.9 -1.6 -1.1 -1.5 -1.4 -2.4 -0.3 -0.6 -2.1 -1.4 -1.8 -5.1 -1.5 -0.5
D 4.1 -5.0 -3.8 -3.7 -5.7 -6.3 -5.8 -1.6 -5.1 -5.1 -6.6 -6.4 -4.0 -2.2 2.1 -5.7 0.1 -2.5 -5.6 -7.4
f 3.4 -4.8 -4.7 -2.0 -1.6 -2.2 -1.9 -1.5 -6.1 -1.9 -1.7 -5.0 -7.8 -5.8 -6.7 -7.4 -3.4 -0.6 -3.1
g 4.7 -3.5 0.2 -1.5 -5.6 -1.0 -4.9 -4.9 -1.8 -6.2 -3.8 -0.1 -4.6 -5.5 -6.2 -2.3 1.8 -2.6

dZ 5.4 -5.4 -6.0 -0.3 -0.9 -4.9 -4.8 -1.1 -6.1 -3.8 -6.6 0.1 -0.8 -0.9 -2.2 -5.4 -1.9
k 3.3 -2.3 -1.3 -1.9 -1.5 -1.5 -1.9 -1.6 -5.7 -8.6 -1.9 -1.7 -8.1 -4.2 -0.2 -1.0
l 2.9 -1.9 -1.3 -1.2 -1.4 -1.2 -1.2 -6.3 -2.5 -0.7 -8.0 -2.7 -4.8 -0.6 -2.4

m 3.3 -0.7 -1.0 -1.6 -1.3 -2.3 -5.9 -1.8 -6.7 -1.3 -1.9 -4.3 -1.8 -1.7
n 2.6 -1.0 -2.0 -1.2 -0.9 -1.6 -1.6 -1.0 -1.0 -1.7 -5.4 -0.6 -1.4
N 4.3 -6.2 0.0 -1.0 -5.2 -1.8 -6.0 -6.9 -1.2 -3.6 -1.1 -1.9
p 3.9 -1.5 -2.9 -5.1 -1.0 -1.3 -1.1 -2.9 -3.6 -1.0 -2.5
r 2.6 -1.6 -6.7 -2.0 -0.6 -1.8 -1.9 -5.1 1.0 -0.7
s 2.8 -1.2 -2.4 -7.2 -1.2 0.6 -4.9 -0.4 -1.4
S 5.0 -6.9 -4.9 -1.1 -1.9 2.1 -1.1 -2.9
t 2.4 -1.3 -2.9 -1.9 -5.3 -1.4 -0.8
T 4.3 -6.5 -7.3 1.3 -1.9 -1.2
v 3.2 -8.2 -4.2 -1.7 -2.0
z 2.8 -4.9 -2.8 -0.8
Z 6.3 -4.1 -5.9

Table 4.6: Pairwise log-odds scoring matrix for consonants trained using rhymes from
traditional poetry

The first main difference we observed was the relative lack of imperfect rhymes for
consonants in the poetry. Hip hop features a wide variety of non-identical but similar
consonants pairs being matched in rhymes, including voiceless stops like /k/, /p/, and /t/,
the nasals /m/, /n/, and /N/, and fricatives like (/f/,/T/) and (/S/,/Z/), which all received
positive scores when paired. Conversely, in poetic rhyme, only one of these pairs (/S/,/Z/)
received a positive score. In fact, while (/k/,/t/) is a fairly common rhyming consonant
pair in hip hop, it received one of the lowest log-odds scores (-8.6) in the scoring matrix
trained using rhymes in traditional poems.
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A æ 2 O aU aI E Ç eI I i oU OI U u

A 1.88 -1.34 -0.41 1.09 -2.74 -2.17 -1.29 -0.04 -2.14 -1.83 -2.48 -0.23 -4.12 -1.37 -1.29
æ 1.57 -1.17 -1.8 -3.73 -2.51 -1.66 -2.47 -0.53 -2.81 -1.6 -3.01 -4.46 -5.65 -2.72
2 1.88 -0.04 -1.03 -1.4 -0.15 -1.21 -0.57 -1.31 -1.3 0.27 -1.12 0.51 0.75
O 2.54 -1.41 -1.62 -1.42 0.82 -1.2 -1.72 -1.68 0.09 -1.61 -0.24 -2.54

aU 3.21 -1.34 -1.67 -0.03 -1.23 -1.84 -0.92 0.74 -0.98 -1.52 -0.55
aI 2.48 -1.49 0.55 -1.31 -0.14 0.6 -1.86 0.78 -2.61 -2.33
E 1.76 -0.13 0.06 -0.13 -0.51 -2.67 -1.76 -2.05 -1.57
Ç 3.07 -0.66 -0.49 -1.07 -3.03 -3.16 -0.63 -1.69
eI 2.75 -1.5 -0.41 -1.37 -4.35 -2.11 -1.81
I 1.71 -0.37 -2.57 -2.17 -3.36 -1.46
i 2.49 -2.2 -1.29 -2.09 -2.87

oU 2.78 -0.55 -2.12 -0.46
OI 5 -2.9 -3.68
U 2.77 0.9
u 2.85

Table 4.7: Pairwise log-odds scoring matrix for heavily stressed vowels trained using rhymes
from traditional poetry

Another interesting difference we saw was the extent of variation allowed in matching
vowels in poetic rhyme, compared to their relative conservation in hip hop rhyme. This can
be seen in the high scores for pairs like (/aI/,/i/), (/aU/,/oU/), (/2/,/oU/), and (/2/,/u/).
While some of these may have been due to changes in English pronunciation over time,
it seemed that many of these pairs were not even perceivably close rhymes. However,
upon closer examination of the rhyming lines, we discovered the cause of these surprising
pairings: eye rhymes. These are pairs of words which end with the same spelling, so that
they “look like” rhymes. These rhymes can explain high scores for pairs like (/2/,/u/) as
in “All things by thee are measur’d; thou by none” rhyming with “All are in thee thou
in thyself alone” from the anonymous 1602 poem “Eternal Time, that Wastest Without
Waste,” and (/aU/,/oU/) as in “There is no effort on my brow” rhyming with “I rush
with the swift spheres and glow” from Matthew Arnold’s 1852 poem “Morality.”[8]. The
most common word participating in eye rhymes was “love,” which in Aphra Behn’s 1680
poem “The Disappointment”[111] for example, rhymes with both “strove” (/2/,/oU/) and
“improve” (/2/,/u/). The modeling of rhyme allowed us to identify eye rhymes as a feature
unique to poetry since it is often written to be read, as opposed to hip hop lyrics which,
when written, are meant to be rapped and heard.
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4.9 Scansion Analysis Tool

Similar to the rhyme analysis tool described in Section 3.9, we created a Java program that
allows for the identification and display of meter in poetry. This could be used as both
an analysis tool, and as an aid for readers of poetry having difficulty in determining the
scansion of a particular poem. We used the Swing toolkit for the graphical user interface
and included three functions for processing input poetry: phonetic transcription, analyzing
the meter of the poem, and showing the detected scansion.

4.9.1 Transcription and Analysis

Transcription is performed as described in Section 3.9.1. The meter of the input poem is
identified using the stress likelihood-based method described in Section 4.6. The analysis
output includes the stanza, and for each line in the stanza, an English description of the
identified meter. If there is one weak stress between heavy ones, the meter type is iambic
or trochaic (depending on the weight of the first syllable). If there are two weak stresses
between heavy ones, the meter type is dactylic or anapestic (depending on the weight of
the first syllables). The metric length is calculated by dividing (rounding down) the total
number of syllables per line by the size of the metric foot (one plus the number of weak
stresses between heavy ones). See Figures 4.2 and 4.3 for examples.

4.9.2 Displaying Scansion

The detected scansion can be displayed on the output screen using bold face font for
heavily stressed syllables and red colour for those which do not match the meter of the
line. We used a threshold value of 30% for this distinction, meaning that any syllable with
a calculated stress likelihood less [greater] than 30% [70%] falling on a heavy [weak] beat
would be coloured red. Extra syllables which do not fall on a metrical beat are displayed
in strikethrough format (see Figure 4.4).

Since our pronouncing dictionary only provided syllable counts for the phonetic tran-
scriptions of words, we required a means of parsing syllables from the plain text words
in the output. We first segmented the words into chunks with a single vowel and split
the consonants between vowels. While the number of chunks was less than the number
of required syllables, we tried to find and split first clusters containing a consonant or
apostrophe followed by a “l,” “m,” or “r;” then any pair of consecutive consonants; then
any pair of consecutive letters. While the number of chunks was greater than the number
of required syllables, we combined first chunks containing a “y;” then those ending with
an “e;” then any pair of consecutive vowels; then any pair of consecutive chunks.
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Figure 4.2: Metrical analysis of Henry Lawson’s 1891 poem “Freedom on the Wallaby”
[63]
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Figure 4.3: Metrical analysis of Elizabeth Barrett Browning’s 1844 poem “To Flush, My
Dog” [19]
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Figure 4.4: A visualization of the detected meter from John Milton’s “Paradise Lost: Book
X” [75]. Heavily stressed syllables are displayed in bold face font, and syllables on beats
not matching their expected stress are coloured red.
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Chapter 5

Conclusion

In this thesis, we have quantitatively studied an aspect of text often ignored in Information
Retrieval research: the sound of words, realized in their delivery and pronunciation, and
modeled computationally by their phonetic transcriptions. This focus on sound allowed
us to investigate features such as acoustic similarity, rhyme, and prosodic rhythm. Using
sequence analysis methodology characteristic of bioinformatics, in which large corpora of
sequences known to be related are used to train probabilistic models of homology, we
developed models for these features of lyrical verse integral to its form and structure, and
also to its appreciation by listeners or readers.

In Chapter 2, we introduced a probabilistic model of mishearing in sung lyrics. This
model was trained using phoneme confusion frequencies calculated from alignments of
actual misheard lyrics with their correct counterparts. We collected these lyrics from
submission-based misheard lyrics websites, so that the log-odds score for any pair of
phonemes a and b indicated how likely it was for a music listener to have heard a when b
was actually sung. We discovered that voicing and airflow stoppage were the least salient
articulatory features of consonants for music listeners to distinguish as voiced/unvoiced
and plosive/fricative consonant pairs with the same place of articulation were most often
confused. Vowel height (determined in part by the openness of the singer’s mouth) was
the most difficult feature of vowels for listeners to distinguish.

Using the model’s similarity scores to perform phoneme alignment pattern matching,
we were better able to resolve misheard lyric queries than simpler methods such as phoneme
edit distance and Syllable Alignment Pattern Search [41]. Tested on 146 misheard lyric
queries with correct target lyrics in a collection of 2,345 songs, the probabilistic phoneme
model produced a Mean Reciprocal Rank of 0.774, with 108 (74%) of the correct lyrics
ranked first in the search results. The model found up to 8% more correct lyrics than
the previous best method, phoneme edit distance, which achieved an MRR of 0.709. We
analyzed the misheard lyric queries for which the correct lyric was not ranked at all and
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concluded that many of the pairs were remarkably dissimilar. In others, we observed that
listeners sometimes superfluously heard the singer’s name, as in “Freddie time!” in a Queen
song. For the shortest misheard lyrics, partial exact matches in non-target songs tended
to dominate the similarity scores. While longer misheard lyrics were more likely to have
their correct targets found across all methods, the probabilistic model was more resistant
to this phenomenon and best able to resolve the shortest queries. Finally, using a phoneme
trigram index, we were able to reduce the running time per query by more than 50% with
a moderate 12% loss in search accuracy, resulting in performance similar to phoneme edit
distance in less than half the time.

In Chapter 3, we developed a probabilistic model to identify and score both perfect and
imperfect rhymes in rap lyrics. Trained on a corpus of 40 influential “Golden Age” hip
hop albums (mostly containing line-final couplet rhymes), the model identified end rhymes
with a higher level of accuracy then simpler rules-based methods. We then designed an
algorithm using this scoring method to find the nearest and longest rhymes for words in rap
lyrics. On an evaluation set of six manually-annotated rap songs of diverse styles, the best
performance of the heuristic rhyme detection method achieved sensitivity and specificity
just over 60%, meaning around two thirds of annotated pairs were detected as rhyming
and two thirds of detected rhymes were annotated as such.

Using the detection algorithm, we were able to calculate statistical features of detected
rhymes which corresponded to real world characterizations of rhyme style. Unsurprisingly,
we found that popular hip hop songs (from the Billboard Hot Rap charts) contained more
rhyme than Hot Rock songs and unrhymed verse, and song lyrics had higher scoring end
rhymes than unrhymed verse. We calculated rhyme features for popular albums by 25
important rappers and discovered that modern rappers tended to use more rhyme, longer
rhymes, more internal rhymes, and less perfect rhymes, as all of these features varied with
time. Many of these features were consistent enough within individual artists’ lyrics and
varied enough between different artists to allow for rhyme-based artist classification and
stylometry. We used the Weka Data Mining Software to build a simple logistic regression
classifier trained on statistical rhyme features from the examined albums. In a ten-fold
cross-validation, the model achieved classification accuracy over 50% with an F-measure
of 0.516, correctly identifying the rapper for 314 out of 603 songs.

We proposed the use of statistical rhyme characterization as a viable indication of
an MC’s style by considering that the most stylistically diverse rappers were the most
resistant to classification. We also identified a particular case (“Notorious Thugs” featuring
Bone Thugs-n-Harmony [14]) in which a rapper (The Notorious B.I.G.) deliberately and
measurably modified his rhyming style to match another artist. We demonstrated the
possibility that rhyme style-based features can be used to identify ghostwritten songs,
with a small experiment in which the rhyme feature-based classifier correctly identified the
writer of more ghostwritten songs than a naive Bayes bag-of-words model. We examined
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Eminem’s lyrics over the course of his career and identified trends indicating that his rhymes
may have become less technically complex as he became more commercially successful. In
examining the relationship between rhyme features and critical and commercial success,
we found that both casual music listeners and professional critics preferred rap lyrics with
longer words and shorter rhymes, but albums with shorter words and more imperfect end
rhymes tended to sell more copies. Finally, we presented a graphical user interface tool
with the ability to perform phonetic transcriptions, score and display detected rhymes,
calculate statistical rhyme features, and perform MC classification for input rap lyrics.

In Chapter 4, we presented an algorithm to perform automatic scansion and produce
a correspondence score to quantify how well a poem aligns with the underlying metrical
structure. We used this algorithm to identify metrical poetry in the University of Toronto
Library’s Representative Poetry Online [83] collection of over 3,000 poems. Restricting
the collection to about 750 poems with fixed metrical structures about which we were
confident, we characterized words by their likelihood of being stressed. We found that the
most common words were less likely to receive heavy stress, and the least often stressed
of these tended to be possessive adjectives like “my” or “your.” We used these likelihoods
to develop a robust method of performing probabilistic scansion that allowed us to more
than double the amount of identified metrical poetry to over 1,700 poems.

We compared different poets’ adherence to strict metrical forms and found that corre-
spondence scores tended to increase over time as English evolved to more closely resemble
the modern pronunciations in our phonetic dictionary. However, we did find significant
variations between poets who wrote during the same time period, indicating differences in
their use of metrical complexity. Using Whissell’s Dictionary of Affect in Language [109],
we found that heavily stressed words falling on light beats tended to be more emotionally
charged and had better imagery. In comparing poetic rhyme with our model of rhyme
from hip hop lyrics, we found more constraints on consonant identity in rhyme, as well
as evidence of poets deliberately using eye-rhymes with similarly spelled (but differently
pronounced) words. Finally, we presented a graphical user interface tool allowing for pho-
netic transcription, probabilistic scansion analysis, and the identification and visualization
of metrical structure for input poetry.

Prior to our work, analysis of the sound and structure of lyrical texts was a slow and
mostly descriptive process, with researchers making painstaking case studies and producing
subjective, qualitative results about the form, effect, composition, or similarity of differ-
ent works. Automated and quantitative methods involved simple or generic models of
the features being studied. Our probabilistic methods allow for quick, quantitative, and
domain-specific characterizations of large collections of data. Our software tools’ simple
user-interfaces allow anyone to easily perform efficient and accurate analyses of lyrical
texts. The Rap Analyzer could be used by a hip hop listener to better appreciate the
complexity of an MC’s rhyming scheme, by a record executive to quickly characterize a

81



potential artist’s output, or even by an aspiring rapper to break down and improve upon
her own lyrics. The Scansion Analyzer could be used by English instructors as a teaching
tool to discover and demonstrate meter, or by poetry readers to quantify and compare
poets’ metrical complexity.

Although each chapter in this thesis focuses primarily on a different aspect of lyrical
verse (acoustic similarity in misheard song lyrics, rhymes in hip hop, and rhythmic meter
in conventional poetry), an ideal application would allow for a unified analysis including
all of these features. Similar to the statistical features we used to characterize rhyming
style in hip hop, we could calculate relevant statistics on patterns in metrical form and
complexity, modified prosody, emotional and figurative language, and the usage of various
rhyme types and schemes to better quantitatively characterize poetic style

While it would not be particularly difficult to more thoroughly investigate rhyme in
poetry, a more interesting challenge would be to statistically characterize rhythm and
metric style in rap. Though rarely having fixed syllable counts per line, rap songs often
have regular (though complex) stress patterns, with a constrained but variable number of
lightly stressed syllables per metric “foot.” Identifying these patterns would aid in the
detection of rhymes, especially when the rapper modifies the pronunciation of words to fit
the rhythm.

Furthermore, while rhyme is the integral feature of hip hop music, another crucial aspect
of an MC’s unique style is his “flow,” referring to the rhythm, dynamics, and intonation of
his vocal delivery and its relation to the accompanying beat [17]. For example, Eminem’s
debut Infinite [33], was classified as Eminem using the rhyme feature logistic regression
model described in Section 3.7, but his flow on the album was considered to be derivative of
rappers Nas and AZ. He has been quoted as saying “obviously, I was young and influenced
by other artists, and I got a lot of feedback saying that I [sounded a lot like] Nas and
AZ” [74]. Upon listening, one can identify similarities in the syncopated rhythm of rapped
syllables in, for example, “Life’s a Bitch” (featuring AZ) from Nas’ Illmatic and the title
track from Infinite, and we suspect that these similarities should be quantifiable.

Both of these applications suggest the requirement of integrating rhyme and prosodic
features extracted from text lyrics with rhythm and pronunciation information drawn from
audio recordings using a speech recognition engine. Lewis and Assogba [66] presented an
artistic performance in which rapped words were recognized by Nuance’s Dragon Naturally
Speaking commercial software to form a text visualization in near real time. They reported
a recognition accuracy rate of 75% after training, but our own experiments (which we do
not discuss in this thesis) with a capella versions of rap songs proved far less successful. A
more fruitful method would likely involve determining the rhythmic position of syllables
without identifying words, essentially treating the voice as a percussive instrument and
working with vocal beats in a style similar to Dixon et al’s [25] work in discriminating
rhythmic patterns in ballroom dance music. This sort of approach could allow for the
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quantitative characterization of different MCs’ flows and allow for a unified analysis of
rhyme and rhythm.
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Artist Album Year Syllables Syllables Syllable Novel Word
per Line per Word Variation Proportion

Run-D.M.C. Run-D.M.C. 1984 10.40 1.21 1.82 0.91
Run-D.M.C. Raising Hell 1986 10.88 1.21 2.05 0.91
Run-D.M.C. Tougher Than Leather 1988 10.17 1.21 2.21 0.89
LL Cool J Radio 1985 11.49 1.29 2.03 0.92
LL Cool J Bigger and Deffer 1987 11.71 1.23 1.89 0.92
Beastie Boys Licensed To Ill 1986 10.81 1.21 1.98 0.88
Beastie Boys Paul’s Boutique 1989 11.30 1.27 2.38 0.90
Rakim Paid in Full 1987 11.18 1.24 1.93 0.90
Rakim Follow the Leader 1988 10.83 1.32 2.29 0.92
Rakim Let the Rhythm Hit ’Em 1990 10.62 1.27 1.94 0.92
KRS-One Criminal Minded 1987 11.77 1.30 2.14 0.92
KRS-One By All Means Necessary 1988 11.20 1.30 2.72 0.91
Chuck D It Takes a Nation of 1988 10.35 1.26 2.42 0.90

Millions to Hold Us Back
Chuck D Fear of a Black Planet 1990 9.78 1.25 2.43 0.92
Big Daddy Kane Long Live the Kane 1988 10.76 1.29 1.90 0.92
Big Daddy Kane It’s a Big Daddy Thing 1989 10.46 1.25 2.03 0.93
Slick Rick The Great Adventures 1988 11.40 1.20 2.11 0.91

of Slick Rick
Slick Rick The Ruler’s Back 1991 12.62 1.26 2.65 0.91
Kool G Rap Road to the Riches 1989 10.94 1.32 2.04 0.93
Kool G Rap Wanted: Dead or Alive 1990 10.96 1.29 2.47 0.92
Ice Cube AmeriKKKa’s Most Wanted 1990 10.04 1.20 2.21 0.91
Ice Cube Death Certificate 1991 9.65 1.24 2.58 0.93
MC Hammer Please Hammer 1990 8.93 1.21 3.13 0.92

Don’t Hurt ’Em
MC Hammer Too Legit to Quit 1991 10.94 1.21 2.57 0.91
Scarface Mr. Scarface is Back 1991 10.37 1.22 2.90 0.90
Scarface The Diary 1994 11.81 1.22 2.87 0.88
Redman Whut? Thee Album 1992 11.69 1.20 2.21 0.91
Redman Muddy Waters 1996 11.33 1.27 2.02 0.93
Nas Illmatic 1994 12.45 1.27 2.42 0.92
Nas It Was Written 1996 11.84 1.30 2.62 0.92
Nas I Am... 1999 12.37 1.26 2.05 0.91
Andre 3000 Southernplayalisti- 1994 14.58 1.37 3.25 0.92

cadillacmuzik
Andre 3000 ATLiens 1996 14.68 1.35 3.31 0.91
Andre 3000 Aquemini 1998 14.76 1.48 5.02 0.91
The Notorious B.I.G. Ready to Die 1994 11.08 1.26 2.31 0.92
The Notorious B.I.G. Life After Death 1997 10.62 1.25 2.52 0.92
2Pac Me Against the World 1995 12.35 1.30 2.50 0.91
2Pac All Eyez on Me 1996 12.46 1.29 2.61 0.92
Bone Thugs-n-Harmony E. 1999 Eternal 1995 17.23 1.24 3.22 0.89
Jay-Z Reasonable Doubt 1996 12.08 1.28 2.39 0.92
Jay-Z In My Lifetime, Vol. 1 1997 12.13 1.22 2.23 0.90
Jay-Z Vol. 2: Life and Times 1998 11.64 1.22 2.32 0.89

of Shawn Carter
DMX It’s Dark and Hell is Hot 1998 12.30 1.18 2.44 0.88
DMX ...And Then There Was X 1999 12.32 1.19 2.24 0.87
Eminem The Slim Shady LP 1999 12.41 1.24 2.50 0.88
Eminem The Marshall Mathers LP 2000 12.39 1.23 2.55 0.88
Nelly Country Grammar 2000 11.58 1.23 2.30 0.89
Nelly Nellyville 2002 11.81 1.23 2.55 0.88
Fabolous Ghetto Fabolous 2001 11.45 1.21 2.24 0.89
Fabolous Street Dreams 2003 11.47 1.24 2.42 0.87
50 Cent Get Rich or Die Tryin’ 2003 11.73 1.20 2.48 0.88
50 Cent The Massacre 2005 11.57 1.20 2.71 0.90
Lil’ Wayne Tha Carter II 2005 11.45 1.27 2.66 0.88
Lil’ Wayne Tha Carter III 2008 10.71 1.24 2.92 0.87
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Artist Year Rhymes Rhymes per Rhyme End Pairs End Pairs End Pairs End Pairs
per Line Syllable Density per Line Grown Shrunk Even

Run-D.M.C. 1984 1.48 0.14 0.20 0.54 0.30 0.17 0.53
Run-D.M.C. 1986 1.96 0.18 0.26 0.47 0.26 0.18 0.56
Run-D.M.C. 1988 2.51 0.25 0.42 0.43 0.21 0.18 0.62
LL Cool J 1985 1.68 0.15 0.20 0.46 0.27 0.18 0.55
LL Cool J 1987 1.87 0.16 0.21 0.47 0.37 0.16 0.48
Beastie Boys 1986 1.63 0.15 0.22 0.50 0.24 0.20 0.56
Beastie Boys 1989 1.67 0.15 0.22 0.47 0.29 0.25 0.46
Rakim 1987 1.64 0.15 0.23 0.51 0.23 0.29 0.48
Rakim 1988 1.85 0.17 0.27 0.46 0.25 0.32 0.43
Rakim 1990 1.76 0.17 0.25 0.44 0.21 0.25 0.54
KRS-One 1987 1.74 0.15 0.22 0.42 0.18 0.19 0.63
KRS-One 1988 1.90 0.17 0.26 0.43 0.26 0.28 0.46
Chuck D 1988 1.75 0.17 0.25 0.33 0.28 0.23 0.49
Chuck D 1990 1.66 0.17 0.24 0.31 0.27 0.30 0.43
Big Daddy Kane 1988 1.71 0.16 0.24 0.44 0.29 0.19 0.52
Big Daddy Kane 1989 1.82 0.17 0.26 0.42 0.31 0.23 0.46
Slick Rick 1988 1.86 0.16 0.23 0.48 0.36 0.16 0.48
Slick Rick 1991 2.25 0.18 0.29 0.34 0.28 0.12 0.59
Kool G Rap 1989 2.13 0.19 0.29 0.34 0.29 0.21 0.50
Kool G Rap 1990 2.08 0.19 0.29 0.35 0.34 0.30 0.36
Ice Cube 1990 1.35 0.13 0.19 0.44 0.31 0.29 0.40
Ice Cube 1991 1.30 0.13 0.19 0.48 0.49 0.22 0.29
MC Hammer 1990 1.30 0.15 0.20 0.46 0.51 0.13 0.36
MC Hammer 1991 1.51 0.14 0.19 0.45 0.37 0.17 0.46
Scarface 1991 1.37 0.13 0.20 0.50 0.55 0.22 0.24
Scarface 1994 1.69 0.14 0.24 0.47 0.45 0.19 0.36
Redman 1992 2.11 0.18 0.26 0.34 0.26 0.21 0.53
Redman 1996 1.89 0.17 0.24 0.37 0.32 0.19 0.49
Nas 1994 2.32 0.19 0.29 0.33 0.31 0.18 0.50
Nas 1996 2.17 0.18 0.29 0.38 0.30 0.34 0.36
Nas 1999 2.35 0.19 0.29 0.36 0.27 0.24 0.49
Andre 3000 1994 3.28 0.22 0.34 0.32 0.41 0.21 0.38
Andre 3000 1996 2.78 0.19 0.29 0.31 0.30 0.19 0.51
Andre 3000 1998 3.56 0.24 0.40 0.29 0.46 0.24 0.30
The Notorious B.I.G. 1994 1.94 0.17 0.26 0.31 0.38 0.25 0.36
The Notorious B.I.G. 1997 2.00 0.19 0.30 0.35 0.26 0.29 0.44
2Pac 1995 1.96 0.16 0.24 0.32 0.25 0.24 0.51
2Pac 1996 1.85 0.15 0.22 0.38 0.26 0.27 0.46
Bone Thugs-n-Harmony 1995 3.58 0.21 0.33 0.21 0.27 0.27 0.47
Jay-Z 1996 2.15 0.18 0.29 0.28 0.30 0.18 0.52
Jay-Z 1997 2.11 0.17 0.27 0.42 0.22 0.19 0.59
Jay-Z 1998 2.18 0.19 0.32 0.35 0.24 0.27 0.49
DMX 1998 2.06 0.17 0.30 0.33 0.28 0.16 0.55
DMX 1999 2.11 0.17 0.29 0.33 0.21 0.23 0.57
Eminem 1999 2.17 0.17 0.31 0.44 0.29 0.22 0.49
Eminem 2000 2.40 0.19 0.34 0.43 0.24 0.18 0.58
Nelly 2000 2.09 0.18 0.28 0.43 0.23 0.14 0.63
Nelly 2002 1.95 0.17 0.27 0.40 0.24 0.17 0.59
Fabolous 2001 1.86 0.16 0.35 0.34 0.25 0.32 0.43
Fabolous 2003 1.92 0.17 0.35 0.32 0.25 0.24 0.51
50 Cent 2003 1.82 0.16 0.25 0.44 0.21 0.18 0.61
50 Cent 2005 1.75 0.15 0.22 0.45 0.19 0.20 0.61
Lil’ Wayne 2005 2.21 0.19 0.33 0.40 0.32 0.26 0.42
Lil’ Wayne 2008 1.92 0.18 0.32 0.44 0.33 0.30 0.38
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Artist Year Average Average End Singles Doubles Triples Quads Longs
End Score Syl Score per Rhyme per Rhyme per Rhyme per Rhyme per Rhyme

Run-D.M.C. 1984 5.51 4.59 74% 20% 4% 1% 2%
Run-D.M.C. 1986 5.58 4.49 67% 26% 4% 2% 1%
Run-D.M.C. 1988 6.18 4.27 59% 24% 10% 4% 3%
LL Cool J 1985 5.28 4.28 75% 18% 4% 1% 1%
LL Cool J 1987 5.26 4.58 74% 21% 4% 1% 0%
Beastie Boys 1986 5.99 4.68 70% 21% 4% 4% 1%
Beastie Boys 1989 6.57 4.52 64% 27% 6% 2% 1%
Rakim 1987 6.10 4.07 63% 24% 9% 2% 1%
Rakim 1988 6.10 3.96 59% 28% 9% 3% 1%
Rakim 1990 6.00 3.85 62% 28% 7% 2% 1%
KRS-One 1987 5.88 4.10 65% 28% 5% 2% 1%
KRS-One 1988 5.46 3.87 65% 25% 6% 3% 2%
Chuck D 1988 5.46 4.00 67% 24% 6% 2% 0%
Chuck D 1990 5.40 3.89 67% 26% 6% 2% 0%
Big Daddy Kane 1988 6.33 4.13 63% 27% 7% 2% 1%
Big Daddy Kane 1989 6.04 4.01 62% 28% 8% 2% 1%
Slick Rick 1988 5.83 4.40 72% 21% 4% 2% 1%
Slick Rick 1991 6.40 3.80 58% 29% 8% 3% 2%
Kool G Rap 1989 6.49 4.25 62% 29% 6% 2% 0%
Kool G Rap 1990 6.33 4.08 58% 33% 7% 2% 1%
Ice Cube 1990 6.04 4.16 67% 25% 5% 1% 1%
Ice Cube 1991 6.08 4.01 67% 26% 5% 2% 1%
MC Hammer 1990 4.74 4.14 74% 18% 5% 2% 1%
MC Hammer 1991 5.13 4.16 70% 24% 4% 2% 0%
Scarface 1991 5.69 3.92 63% 30% 5% 2% 1%
Scarface 1994 6.35 3.87 59% 28% 7% 3% 3%
Redman 1992 5.01 3.41 66% 27% 4% 2% 1%
Redman 1996 5.09 3.51 66% 27% 5% 1% 0%
Nas 1994 5.91 3.77 60% 30% 7% 3% 1%
Nas 1996 5.36 3.44 57% 33% 6% 3% 1%
Nas 1999 5.03 3.46 63% 27% 5% 4% 1%
Andre 3000 1994 5.05 3.68 64% 27% 5% 2% 1%
Andre 3000 1996 5.44 3.84 65% 26% 6% 3% 1%
Andre 3000 1998 4.93 3.41 64% 22% 7% 5% 3%
The Notorious B.I.G. 1994 5.80 3.90 62% 29% 6% 2% 1%
The Notorious B.I.G. 1997 5.34 3.65 58% 30% 8% 3% 1%
2Pac 1995 5.08 3.58 61% 30% 7% 2% 0%
2Pac 1996 5.69 3.74 60% 31% 6% 2% 0%
Bone Thugs-n-Harmony 1995 4.59 3.47 58% 30% 7% 3% 1%
Jay-Z 1996 5.09 3.36 56% 31% 9% 3% 1%
Jay-Z 1997 5.47 3.63 62% 24% 9% 4% 1%
Jay-Z 1998 5.51 3.64 56% 28% 8% 6% 2%
DMX 1998 6.34 3.83 55% 27% 10% 6% 3%
DMX 1999 6.05 3.88 57% 28% 9% 4% 2%
Eminem 1999 6.47 3.78 54% 27% 12% 5% 2%
Eminem 2000 5.40 3.20 54% 28% 10% 6% 3%
Nelly 2000 4.95 3.74 62% 28% 8% 2% 1%
Nelly 2002 4.98 3.70 61% 27% 7% 3% 2%
Fabolous 2001 6.33 3.41 49% 19% 14% 12% 7%
Fabolous 2003 6.10 3.41 48% 23% 12% 9% 8%
50 Cent 2003 5.96 3.85 62% 26% 7% 3% 2%
50 Cent 2005 5.27 3.87 66% 25% 5% 2% 1%
Lil’ Wayne 2005 5.30 3.33 55% 29% 9% 4% 3%
Lil’ Wayne 2008 5.43 3.59 53% 30% 9% 5% 3%
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Artist Year Perfect Line Internals Links Bridges Compounds Chaining
Rhymes per Line per Line per Line per Line per Line

Run-D.M.C. 1984 27% 0.47 0.16 0.32 0.06 0.21
Run-D.M.C. 1986 22% 0.88 0.19 0.42 0.12 0.23
Run-D.M.C. 1988 17% 1.30 0.27 0.52 0.11 0.41
LL Cool J 1985 16% 0.61 0.22 0.38 0.10 0.18
LL Cool J 1987 18% 0.73 0.19 0.48 0.11 0.25
Beastie Boys 1986 25% 0.55 0.18 0.40 0.07 0.19
Beastie Boys 1989 21% 0.61 0.18 0.41 0.09 0.15
Rakim 1987 17% 0.61 0.13 0.39 0.08 0.13
Rakim 1988 13% 0.73 0.22 0.44 0.09 0.19
Rakim 1990 11% 0.68 0.24 0.40 0.08 0.12
KRS-One 1987 16% 0.62 0.27 0.43 0.10 0.12
KRS-One 1988 17% 0.67 0.27 0.53 0.11 0.22
Chuck D 1988 15% 0.79 0.25 0.38 0.10 0.20
Chuck D 1990 13% 0.79 0.21 0.36 0.11 0.27
Big Daddy Kane 1988 16% 0.71 0.18 0.38 0.07 0.19
Big Daddy Kane 1989 14% 0.80 0.25 0.35 0.10 0.26
Slick Rick 1988 16% 0.63 0.24 0.51 0.11 0.22
Slick Rick 1991 10% 0.89 0.32 0.71 0.17 0.18
Kool G Rap 1989 13% 1.04 0.37 0.38 0.15 0.25
Kool G Rap 1990 13% 1.01 0.32 0.40 0.14 0.22
Ice Cube 1990 18% 0.40 0.19 0.32 0.04 0.13
Ice Cube 1991 15% 0.34 0.18 0.30 0.05 0.12
MC Hammer 1990 23% 0.41 0.12 0.32 0.09 0.17
MC Hammer 1991 18% 0.56 0.21 0.29 0.05 0.20
Scarface 1991 15% 0.33 0.16 0.38 0.05 0.09
Scarface 1994 12% 0.47 0.22 0.53 0.07 0.14
Redman 1992 9% 1.02 0.27 0.48 0.17 0.28
Redman 1996 9% 0.74 0.30 0.48 0.11 0.18
Nas 1994 7% 1.02 0.35 0.63 0.25 0.18
Nas 1996 7% 0.90 0.34 0.56 0.16 0.17
Nas 1999 8% 0.90 0.38 0.71 0.20 0.15
Andre 3000 1994 16% 1.49 0.39 1.07 0.57 0.43
Andre 3000 1996 14% 1.23 0.27 0.98 0.41 0.29
Andre 3000 1998 18% 1.71 0.35 1.22 0.73 0.51
The Notorious B.I.G. 1994 10% 0.83 0.39 0.41 0.13 0.18
The Notorious B.I.G. 1997 9% 0.82 0.37 0.46 0.12 0.27
2Pac 1995 10% 0.69 0.33 0.62 0.14 0.12
2Pac 1996 9% 0.63 0.27 0.57 0.12 0.12
Bone Thugs-n-Harmony 1995 6% 1.85 0.37 1.14 0.65 0.76
Jay-Z 1996 8% 0.83 0.31 0.73 0.16 0.17
Jay-Z 1997 8% 0.74 0.31 0.65 0.12 0.22
Jay-Z 1998 10% 0.80 0.31 0.73 0.13 0.23
DMX 1998 8% 0.70 0.30 0.72 0.14 0.20
DMX 1999 11% 0.74 0.32 0.72 0.11 0.14
Eminem 1999 7% 0.77 0.30 0.67 0.15 0.21
Eminem 2000 8% 0.85 0.36 0.75 0.16 0.18
Nelly 2000 13% 0.74 0.34 0.59 0.14 0.18
Nelly 2002 12% 0.72 0.27 0.55 0.12 0.21
Fabolous 2001 5% 0.50 0.22 0.81 0.06 0.13
Fabolous 2003 7% 0.55 0.18 0.86 0.09 0.16
50 Cent 2003 11% 0.57 0.21 0.61 0.10 0.16
50 Cent 2005 13% 0.56 0.22 0.52 0.10 0.12
Lil’ Wayne 2005 12% 0.83 0.34 0.63 0.12 0.29
Lil’ Wayne 2008 12% 0.68 0.29 0.52 0.11 0.27
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