The Life-Cycle Assessment of a Single-Storey Retail Building in Canada

by

Kevin Van Ooteghem

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Applied Science
in
Civil Engineering

Waterloo, Ontario, Canada, 2010

©Kevin Van Ooteghem 2010
AUTHOR'S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.
Abstract

In North America, the operation of buildings accounts for approximately one third of the total energy use and greenhouse gas emissions annually. Office buildings are responsible for roughly 35% of the total commercial/institutional secondary energy use in Canada, followed by retail buildings at 17% (NRCan, OEE, 2010).

In recent years, a number of researchers from around the world have conducted life-cycle assessment (LCA) studies to investigate the impacts of buildings on the environment. Most studies have focused on three types of buildings: office buildings, single residential dwellings, and multi-unit residential apartments. There have been almost no comprehensive LCA studies of retail buildings, specifically single-storey retail buildings. This is a problem, since compared to office buildings, single residential dwellings, and multi-unit residential apartments, retail buildings consume approximately 1.2, 2.0, and 2.3 times more energy per floor area respectively (NRCan, OEE, 2010). In addition, retail buildings usually undergo major resource intensive renovations far sooner than other building types. Therefore, the primary goal of this study was to conduct a comprehensive LCA for the components of a single-storey retail building located in Toronto, Canada, to determine which building components contribute the most towards the total life-cycle energy use and global warming potential (GWP) after 50 years.

Using the latest LCA techniques, the total life-cycle energy use and GWP was calculated for 220 different building components including: exterior infill walls, roofs, structural systems, floors, windows, doors, foundations, and interior partition walls. Also, a comprehensive LCA study was conducted for five single-storey retail buildings (including a pre-engineered steel building system which is lacking in the literature), in order to determine which components of a single-storey retail building are responsible for the most environmental damage.

For a typical single-storey retail building located in Toronto, Canada, the operating energy (and GWP) accounts for about 91% (88%) and the total embodied energy (and GWP) accounts for about 9% (12%) of the total energy (and GWP) after 50 years. The roof alone is responsible for nearly half of the total embodied energy and GWP of the entire building. The LCA study also found that after 50 years, the total energy (and GWP) of the five case study buildings only differed at most by 6% (7%), regardless of the choice of structural system, or whether the building was made predominately of steel or wood building components. This thesis concludes with a prioritized list of recommendations for reducing the total life-cycle energy use and GWP of a single-storey retail building in Canada.
Acknowledgements

First and foremost I would like to thank my supervisor Dr. Lei Xu for his guidance and enthusiastic support of this project from the beginning. His insight and expertise in cold-formed steel design was sincerely appreciated and his support during the completion of this thesis was invaluable. Throughout this process he has always encouraged me to pursue my interests on this study.

I would also like to express my sincere gratitude to Dr. John Straube. Dr. Straube has continued to be a source of encouragement and his enthusiasm for this work has been contagious. Our many conversations over the last two years have proven to be a great source of inspiration for this work. His expertise in building science has been invaluable.

Dr. Bryan Tolson also deserves credit for his work reviewing this thesis. I would like to thank him for his efforts in this regard.

Also, I would also like to thank the Canadian Sheet Steel Building Institute (CSSBI) and its members. Without their support, this project would not have been completed. From the very beginning, they have been the largest supporter of this research. In particular, I would like to especially thank Dr. Steven Fox for his help and expertise along the way. Dr. Fox has provided me ample opportunity to grow on a professional level and for that I sincerely thank him.

Over the last two years I have had the opportunity to collaborate with Associated Professor Terri Meyer Boake and her graduate student Chris Black, from the School of Architecture at the University of Waterloo. Terri has been a tremendous help and her knowledge and expertise in the area of sustainable building was much appreciated. Chris was responsible for creating the renderings of the five case study retail buildings, as well as the architectural plans referenced in this thesis. I would like to thank him for this and acknowledge his assistance.

Finally, most of all I would like to thank my family and friends for their unwavering support and encouragement throughout my many years of school. Without their support, none of this would be possible.
Table of Contents

AUTHOR'S DECLARATION ... ii
Abstract .. iii
Acknowledgements ... iv
Table of Contents ... v
List of Figures ... ix
List of Tables .. xiv
Glossary of Terms ... xv
Chapter 1 Introduction and Background .. 1
 1.1 Introduction .. 1
 1.2 Description of Problem ... 2
 1.3 Objectives of Research ... 3
 1.4 Organization of Thesis ... 4
Chapter 2 Literature Review .. 6
 2.1 Introduction .. 6
 2.2 The ‘Green’ Building Movement ... 6
 2.3 Operating Energy of Buildings .. 9
 2.3.1 Background on Operating Energy Statistics for Buildings .. 9
 2.3.2 Operating Energy Statistics for Canadian Commercial Buildings .. 10
 2.4 Embodied Energy in Buildings ... 13
 2.4.1 Background on Embodied Energy in Buildings .. 13
 2.4.2 Embodied Energy of Common Building Materials .. 15
 2.4.3 Problems with Measures of Embodied Energy .. 17
 2.5 Operating Global Warming Potential (GWP) of Buildings ... 17
 2.5.1 Background on Operating GWP Statistics for Buildings .. 18
 2.5.2 Operating GWP Statistics for Canadian Commercial Buildings ... 18
 2.6 Embodied Global Warming Potential (GWP) in Buildings ... 21
 2.6.1 Background on Embodied GWP in Buildings .. 21
 2.6.2 Embodied GWP of Common Building Materials .. 22
 2.6.3 Problems with Measures of Embodied GWP .. 24
 2.7 Life-Cycle Assessment (LCA) of Buildings ... 24
 2.7.1 Background on LCA of Buildings ... 24
2.7.2 Methods of Performing a LCA of Buildings ...26
2.7.3 Previous LCA Studies of Commercial Buildings ...28
2.7.4 Problems with LCA Studies of Buildings...42

Chapter 3 Methodology: Life-Cycle Assessment of Building Components45
3.1 Introduction ..45
3.2 Description of Baseline Retail Building ..46
3.3 Identifying Building Components for the LCA ..49
 3.3.1 Description of Exterior Infill Wall Enclosures ..50
 3.3.2 Description of Roof Enclosures ...53
 3.3.3 Description of Structural Systems ...55
 3.3.4 Description of Floor Assemblies ...56
 3.3.5 Description of Windows and Doors ...57
 3.3.6 Description of Foundations ..58
 3.3.7 Description of Interior Partitions ...61
3.4 Scope of LCA ...62
3.5 Evaluating Embodied Energy and Embodied GWP ...64
3.6 Evaluating Operating Energy and Operating GWP ...67
3.7 Calculating the Thermal Resistance of Building Enclosures69
 3.7.1 Background on Heat Transfer in Buildings ...69
 3.7.2 Calculating One-Dimensional Heat Flow Using the Tabular Method70
 3.7.3 Calculating Two-Dimensional Heat Flow Using THERM72
 3.7.4 Calculating Two-Dimensional Heat Flow Using ASHRAE Standard 90.1-200774
 3.7.5 Explanation of Differences in Thermal Resistance between THERM and ASHRAE
 Standard 90.1-2007 ...76
3.8 Evaluating Total Energy and Total GWP ...78

Chapter 4 Methodology: Life-Cycle Assessment of Whole Buildings80
4.1 Introduction ...80
4.2 LCA of Case Study Retail Buildings ..80
 4.2.1 Description of Typical Hot-Rolled Steel Structure Retail Building (Case Study #1)81
 4.2.2 Description of Typical Heavy Timber Structure Retail Building (Case Study #2)83
 4.2.3 Description of Typical Pre-Engineered Steel Retail Building (Case Study #3)85
 4.2.4 Description of Predominately Steel Retail Building (Case Study #4)87
4.2.5 Description of Predominately Timber Retail Building (Case Study #5) 88

Chapter 5 Results: Life-Cycle Assessment of Whole Buildings ... 91

5.1 Introduction ... 91

5.2 LCA Results for the Baseline Retail Building (Case Study #1) ... 91

5.2.1 Operating Energy and GWP of the Baseline Retail Building (Case Study #1) 92

5.2.2 Embodied Energy and GWP of the Baseline Retail Building (Case Study #1) 95

5.2.3 Total Energy and GWP of the Baseline Retail Building (Case Study #1) 98

5.2.4 Comparison of the Baseline Retail Building (Case Study #1) to Average Canadian Retail
Building .. 102

5.3 LCA Results for Case Study Retail Buildings .. 103

5.3.1 Operating Energy and GWP of Case Study Retail Buildings .. 104

5.3.2 Embodied Energy and GWP of Case Study Retail Buildings ... 105

5.3.3 Total Energy and GWP of Case Study Retail Buildings ... 109

5.4 Data Quality and Assessment ... 114

Chapter 6 Results: Life-Cycle Assessment of Building Components .. 115

6.1 Introduction ... 115

6.2 Interpreting the LCA Graphs of Building Components .. 115

6.3 LCA Results for Exterior Infill Wall Enclosures ... 116

6.4 LCA Results for Roof Enclosures ... 122

6.5 LCA Results for Structural Systems .. 127

6.6 LCA Results for Floors .. 128

6.7 LCA Results for Windows and Doors .. 129

6.8 LCA Results for Interior Partitions ... 132

6.9 LCA Results for Foundations ... 133

6.10 Data Quality and Assessment .. 136

Chapter 7 Summary of Results .. 137

7.1 Introduction .. 137

7.2 Sensitivity Analysis of Total Embodied Effects verses Operating Effects 137

7.3 Magnitudes of Order in the LCA of Buildings .. 143

7.4 A Summary of Design Strategies to Reduce the Total Life-Cycle Energy Use and GWP of
Retail Buildings ... 147

Chapter 8 Conclusions and Recommendations .. 151
List of Figures

Figure 2-1: Canada’s Greenhouse Gas Emissions from 1990-2007 ... 7
Figure 2-2: The Transformation from Primary to Secondary to Tertiary Energy 10
Figure 2-3: Breakdown of Total Secondary Energy Use by Sector in Canada in 2007 11
Figure 2-4: Breakdown of Total Commercial/Institutional Secondary Energy Use by Activity Type in Canada in 2007 ... 12
Figure 2-5: Breakdown of Retail Secondary Energy Use by End Use in Canada in 2007 12
Figure 2-6: Commercial/Institutional Sector Average Annual Operating Energy Intensity by Activity in Canada for 2007 ... 13
Figure 2-7: Breakdown of Total Secondary GWP by Sector in Canada in 2007 19
Figure 2-8: Breakdown of Commercial/Institutional Total Secondary GWP by Activity Type in Canada in 2007 .. 20
Figure 2-9: Breakdown of Retail Secondary GWP by End Use in Canada in 2007 20
Figure 2-10: Commercial/Institutional Sector Average Annual Operating GWP Intensity by Activity in Canada for 2007 ... 21
Figure 2-11: Life-Cycle Diagram for LCA of Buildings ... 25
Figure 2-12: Typical Life-Cycle Energy Use of a Building ... 28
Figure 2-13: Total Energy for a Range of Residential and Non-Residential Buildings from a Literature Review of LCA Studies ... 30
Figure 2-14: Breakdown of the Initial Embodied Energy for Steel Structural Office Building Located in Toronto .. 31
Figure 2-15: Breakdown of Initial Embodied Energy for Wood, Steel, and Concrete Structure Office Buildings Located in Toronto ... 32
Figure 2-16: Initial Embodied Energy for Wood, Steel, and Concrete Structural Systems for Office Building Located in Toronto .. 33
Figure 2-17: Breakdown of Initial Embodied Energy verses Recurring Embodied Energy for Wood Structure Office Building after 50 Year Lifespan in Toronto ... 34
Figure 2-18: Breakdown of Total Embodied Energy for Wood Structure Office Building after 50 Year Lifespan in Toronto .. 34
Figure 2-19: Life-Cycle Energy Use for Wood, Steel, and Concrete Structure Office Buildings after 50 Year Lifespan in Toronto .. 35
Figure 7-4: A Sensitivity Analysis of the Δ Total Life-Cycle GWP for the Components of a
Typical Retail Building after a 50 Year Lifespan in Toronto ... 143

Figure 7-5: Orders of Magnitude for Energy Consumption of a Typical Retail Building after 50
Year Lifespan in Toronto ... 144

Figure 7-6: Orders of Magnitude for Global Warming Potential of a Typical Retail Building
after 50 Year Lifespan in Toronto .. 146
List of Tables

Table 2-1: Initial Embodied Energy of Common Building Materials ..16
Table 2-2: Initial Embodied CO$_2$ of Common Building Materials ...23
Table 2-3: A Summary of the Prominent LCA Tools and What They Do ...27
Table 2-4: A Summary of Relevant LCA Studies of Commercial Buildings41
Table 3-1: Description of Baseline Retail Building Components ...48
Table 3-2: Range of Exterior Infill Wall Design Strategies ..51
Table 3-3: Range of Roof Design Strategies ..54
Table 3-4: Range of Window and Door Design Strategies ..58
Table 3-5: Range of Foundation Design Strategies ..60
Table 3-6: Range of Interior Partition Wall Design Strategies ...62
Table 3-7: Calculating Thermal Resistance of CMU-W1 Using the Tabular Method72
Table 4-1: Building Component Quantities for Case Study #1 ..83
Table 4-2: Building Component Quantities for Case Study #2 ..84
Table 4-3: Building Component Quantities for Case Study #3 ..86
Table 4-4: Building Component Quantities for Case Study #4 ..88
Table 4-5: Building Component Quantities for Case Study #5 ..90
Table 5-1: Annual Operating Energy and GWP Results for Case Study Buildings105
Table 6-1: A Summary of the Δ Total Energy and Δ Total GWP from the Baseline Case for the
 Alternative Building Components in this Study after 50 Years ...120
Table 6-2: Comparison of Embodied LCA Data in this Study to ATHENA® EcoCalculator136
Table 7-1: Alternative Design Strategies to Reduce the Total Life-Cycle Energy Use of the
 Baseline Retail Building after a 50 Year Lifespan in Toronto ..148
Table 7-2: Alternative Design Strategies to Reduce the Total Life-Cycle GWP of the Baseline
 Retail Building after a 50 Year Lifespan in Toronto ...150
Glossary of Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATHENA® Environmental Impact Estimator for Buildings</td>
<td>The only life-cycle assessment software in North America that is capable of evaluating whole buildings and individual building components based on internationally accepted LCA methodology. Refer to website: (http://www.athenasmi.org/tools/impactEstimator/)</td>
</tr>
<tr>
<td>Carbon Dioxide Equivalency (CO₂ eq.)</td>
<td>Carbon dioxide equivalency (CO₂ eq.) is a measure of the equivalent amount of CO₂ that would have the same global warming potential (GWP) as a mixture of CO₂ and other greenhouse gases in the Earth’s atmosphere.</td>
</tr>
<tr>
<td>Embodied Energy</td>
<td>The total energy (usually primary energy) associated with the acquisition, processing, manufacturing, transportation, construction, repair, replacement, and end-of-life effects of whole buildings or building materials. The total embodied energy is the sum of the initial embodied energy and the recurring embodied energy and is usually measured in MJ (or GJ) of energy.</td>
</tr>
<tr>
<td>End-of-Life Energy</td>
<td>The energy (usually primary energy) associated with the demolition and recycling/disposal of whole buildings or building materials.</td>
</tr>
<tr>
<td>eQUEST</td>
<td>The ‘Quick Energy Simulation Tool’ (eQUEST) is an energy modelling software program for buildings that is available free of charge. eQUEST is based on the latest DOE-2 building simulation engine. Refer to website: (http://www.doe2.com/equest/)</td>
</tr>
<tr>
<td>Global Warming Potential (GWP)</td>
<td>A term that was developed to compare one greenhouse gas to another in terms of their ability to trap heat in the Earth’s atmosphere. GWP is measured in mass of CO₂ equivalent. For buildings, the total GWP is the sum of the initial embodied GWP and the recurring embodied GWP and is typically expressed in either kg of CO₂ eq. or tonnes of CO₂ eq.</td>
</tr>
<tr>
<td>Greenhouse Gas (GHG)</td>
<td>Gases in the Earth’s atmosphere that absorb and emit radiation and are the fundamental cause behind the greenhouse effect. Some common GHG’s include carbon dioxide, methane, nitrous oxide, ozone, and water vapour.</td>
</tr>
<tr>
<td>Initial Embodied Energy (or GWP)</td>
<td>The energy (or GWP) used to acquire raw materials and manufacture, transport, and install building products in the initial construction of a building.</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>LEED</td>
<td>The ‘Leadership in Energy and Environmental Design’ green building rating system encourages global adoption of sustainable building practices through a performance based point system. LEED is operated by the U.S. Green Building Council (the Canadian Green Building Council in Canada). Refer to web site: (http://www.cagbc.org/leed/what/index.php)</td>
</tr>
<tr>
<td>Life-Cycle Assessment (LCA)</td>
<td>“A method used to quantify environmental burdens based on inventory of environmental factors for a product, process, or activity from the abstraction of raw materials to their final disposal” (Lee, O'Callaghan, & Allen, 1995).</td>
</tr>
<tr>
<td>Operating Energy</td>
<td>The use of either renewable or non-renewable energy in buildings to meet their demands for heating, cooling, lighting, ventilation, etc. during the occupancy phase of its life. Typically operating energy in buildings is measured in either kWh or GJ of energy.</td>
</tr>
<tr>
<td>Primary Energy</td>
<td>“Encompasses the total requirements for all uses of energy. This includes secondary energy use. Additionally, primary energy use refers to the energy required to transform one form of energy to another (e.g. coal to electricity). It also includes the energy used to bring energy supplies to the consumer (e.g. pipeline). Further, it entails the energy used to feed industrial production processes (e.g. the natural gas used by the chemical industries)” (NRCan, 2009).</td>
</tr>
<tr>
<td>Recurring Embodied Energy (or GWP)</td>
<td>The energy (or GWP) associated with maintaining, repairing, and replacing materials and components over the lifetime of the building.</td>
</tr>
<tr>
<td>Secondary Energy (or Site Energy)</td>
<td>“Energy used by the final consumer in various sectors of the economy. This includes, for example, the energy used by vehicles in the transportation sector. Secondary energy also encompasses energy required to heat and cool homes or businesses in the residential and commercial/institutional sectors. It also comprises energy required to run machinery in the industrial and agricultural sectors” (NRCan, 2009).</td>
</tr>
<tr>
<td>THERM</td>
<td>A two-dimensional (finite element based) heat flow analysis software program for building enclosures that is available free of charge. It was developed by the Lawrence Berkeley National Laboratory. Refer to web site: (http://windows.lbl.gov/software/therm/therm.html)</td>
</tr>
<tr>
<td>Total Life-Cycle Energy (or GWP)</td>
<td>The sum of the total embodied energy (or GWP) and the total operating energy (or GWP) of a building over a specified lifespan. The total life-cycle energy (or GWP) is usually expressed in MJ (or kg of CO\textsubscript{2} eq.).</td>
</tr>
</tbody>
</table>
Chapter 1
Introduction and Background

1.1 Introduction

The building industry in North America is changing. Over the past few decades, there has been an industry movement towards the design and construction of more energy efficient buildings. In North America, LEED® has become the foremost green building protocol and continues to encourage an aggressive reduction of energy use and greenhouse gas (GHG) emissions within the building industry. Over the past decade, the number of LEED® certified buildings in North America has increased at an exponential rate. There is a clear and growing market demand for energy efficient buildings. In the coming years, architects and engineers will need to adopt a more holistic design approach that fully considers the total life-cycle environmental impacts of the buildings that they design.

The building industry has an overwhelming impact on the environment. In the United States, buildings are responsible for around 39% of primary energy use, 38% of all carbon dioxide emissions, and nearly 40% of all raw material use annually (USGBC, 2010). The trends in Canada are much the same. In Canada, the building sector as a whole accounts for approximately 29% of the total secondary energy use (NRCan, OEE, 2010). This is effectively equal to the secondary energy consumption of the entire transportation sector in Canada. Of this, retail buildings are responsible for about 17% of the total commercial/institutional secondary energy use, second only to office buildings which consume roughly 35% (NRCan, OEE, 2010). However, compared to office buildings in Canada, retail buildings on average have a higher energy intensity, consuming approximately 23% more energy per square meter of floor space (NRCan, OEE, 2010). Despite the need for energy efficient retail buildings, issues of sustainability have rarely been addressed for retail buildings in Canada. Of the 137 total LEED® Canada certified commercial buildings (excluding single family homes less than three storeys), only 10 (7%) are retail buildings compared to 43 (31%) office buildings (CaGBC, 2009).

Operational energy use in buildings is only one part of the problem. Over the life of a building, the total energy use is a combination of both the operational energy use and the embodied energy of the building materials. In a typical building today, about 85% of the total life-cycle energy use after 50 years is a result of the building operations, while only about 15% is due to the energy that is embodied in the materials (Cole & Kernan, 1996). Given this, there is a misconception among some building professionals who place a disproportionally large emphasis on material selection as a means
of achieving significant reductions in total life-cycle energy use. That being said, as the operating energy use of buildings continues to decrease through a combination of conservation and the use of renewable energy sources, an intelligent allocation of building materials will gain increasing importance.

1.2 Description of Problem

Over the past two decades, a number of researchers around the world have conducted life-cycle assessment (LCA) studies to investigate the impacts of buildings on the environment. However, the vast majority of these studies have focused on three types of buildings: office buildings, single residential dwellings, and multi-unit residential apartments. In Canada, these buildings account for 15%, 45%, and 10% of the secondary energy use in the building sector (NRCan, OEE, 2010). Despite retail buildings accounting for 7% of the secondary energy use in the building sector in Canada, they have not historically been the focus of many LCA studies (NRCan, OEE, 2010). The lack of focus on retail buildings is a problem, since compared to office buildings, single residential dwellings, and multi-unit residential apartments, retail buildings consume approximately 1.2, 2.0, and 2.3 times more energy per floor area respectively (NRCan, OEE, 2010). In addition, retail buildings usually undergo major renovations or demolition far sooner than office buildings or residential dwellings. Also, a large majority of retail buildings are single-storey buildings. There is currently a lack of understanding in the literature of the life-cycle environmental impacts of single-storey commercial buildings. Single-storey buildings have a very different roof-to-wall area ratio than multi-storey buildings. For this reason, among others, it is important to investigate single-storey retail buildings within the framework of a comprehensive LCA to identify ways of reducing their life-cycle energy consumption and global warming potential (GWP).

In addition to the fact that few LCA studies have been conducted for retail buildings, there is still as widespread lack of knowledge on the part of many building industry professionals when it comes to material/assembly selection in low-energy buildings. Specifically, some building professionals have an inherent bias against the use of certain materials or assemblies in low-energy buildings, based solely on the initial embodied energy of an individual material. However, buildings and their component parts are far from homogenous systems in terms of material use. Comparing the life-cycle environmental impacts of different building components (or entire buildings) based solely on a comparison of the initial embodied energy of an individual building material is a gross simplification that is flawed.
Historically, LCA studies for buildings have primarily focused on a comparison of either different wall assemblies or structural systems. In most cases, these studies focus on a comparison of wood, steel, and concrete alternatives. This approach inevitably distils to a comparison of the embodied energy of wood, steel, and concrete. However, this approach places a disproportionately large emphasis on one material as an effect gauge of determining the life-cycle environmental burdens of an overall building assembly (or an entire building).

Buildings are more than just a structural system or a wall assembly. They are complex systems with numerous components and sub-assemblies that act together as part of a greater system. Few studies have investigated a wider range of building components with the goal of determining the relative impacts of all of the components of a building, not just the wall assembly and the structural system. The few comprehensive studies that have been done all vary drastically in their approach, the building components that are studied, and their degree of complexity. There needs to be a sensitivity analysis of a large range of building components within one comprehensive study using the latest LCA techniques, to develop a more complete understanding of the relative environmental impacts of all the components of a building, specifically in a single-storey retail building.

1.3 Objectives of Research

The purpose of this study is to conduct a comprehensive LCA of the energy use and GWP of a single-storey retail building in Canada. A sensitivity analysis of numerous building components will be performed to determine which components of a single-storey retail building have the greatest impact on the environment. Using these findings, a range of different retail building types in Canada will be analyzed and compared based on their life-cycle environmental burdens. A key objective will be to rank the components of a single-storey retail building in order of the damage that they cause to the environment. The ultimate goal of this research is to develop a list of recommendations for reducing the life-cycle energy use and GWP of single-storey retail buildings in Canada.

The specific objectives of this research study are:

1. To review previous LCA studies of embodied energy, embodied GWP, operating energy, and operating GWP in commercial buildings.

2. To identify a comprehensive list of alternative design strategies for a single-storey retail building across the following seven areas:
 a. The exterior infill wall enclosures
b. The roof enclosures

c. The floor assemblies

d. The windows and doors

e. The structural systems (beams and columns)

f. The foundations

g. The interior partitions

3. To calculate the total life-cycle energy and total GWP of each alternative building component identified in objective 2, over a 50 year lifespan in Toronto, Canada.

4. Using the findings from Objective 3, perform a sensitivity analysis of the total life-cycle energy use and total GWP for a typical Canadian retail building, in order to determine which building components have the greatest negative impact on the environment after 50 years.

5. Using the results from Objective 3 and 4, conduct a LCA of energy use and GWP for a range of common Canadian retail building types, in order to identify if there is a significant difference in the total life-cycle energy use and total GWP of these buildings after 50 years.

6. To use the results of this study to develop a list of recommendations for reducing the total life-cycle energy use and GWP of single-storey retail buildings in Canada.

1.4 Organization of Thesis

The organization of this thesis closely parallels the list of objectives that were presented in the previous section.

Chapter 2 contains a literature review of previous LCA studies of buildings. As virtually no significant LCA studies have been published for retail buildings specifically, most of the literature review deals with commercial buildings in general. There is also a discussion of energy and GWP trends in the Canadian building sector, along with a presentation of some background terminology.

The method employed for calculating the total life-cycle energy use and total GWP of the extensive list of building components in this study is discussed in Chapter 3. A detailed description of the building components considered is also presented, along with the method that was followed for calculating both the embodied effects and the operating effects for each building component. The scope of the LCA is also discussed.
Chapter 4 presents a detailed description of the five single-storey retail buildings looked at in this study.

The results of the comprehensive LCA of energy use and GWP for the five case study retail buildings are presented in Chapter 5, along with a discussion of the results. In Chapter 6, the LCA results for the extensive list of buildings components are presented.

Chapter 7 contains a summary of the data presented in the previous two chapters and distils it into a list of key findings. A list of recommendations for reducing the total life-cycle energy use and total GWP of a retail building in Canada is also presented.

Provided in Chapter 8 are concluding remarks for this study, as well as a list of recommendations for future work.

There is also a detailed Appendix with supplementary information and results at the end of this thesis.
Chapter 2
Literature Review

2.1 Introduction
The life-cycle assessment of whole buildings and their components has been a growing area of research over the last 15 years. In the past, the focus of the vast majority of these studies has been on residential (single family dwellings and multi-unit apartments) and multi-storey office buildings. Significant strides have been made in the understanding of material effects and operating effects in these types of buildings. However, limited research has been conducted on the life-cycle environmental impact of single-storey retail buildings.

A large proportion of commercial buildings in North America are single-storey buildings. As well, retail buildings tend to be some of the least energy efficient buildings constructed today. Not only do they use more energy per square meter than office buildings, but they tend to undergo energy intensive renovations on a more frequent basis.

Unfortunately, the number of LCA studies dealing with retail buildings specifically are very scarce. Therefore, in this section a literature review of the important LCA studies of commercial buildings over the past 15 years will be conducted. The goal is to develop an understanding of the literature as it pertains to commercial buildings in general. Having an understanding of the relevant LCA studies of commercial buildings is an important first step towards a more complete understanding of the life-cycle environmental impacts of single-storey retail buildings. As well, some important terms and concepts relating to energy use in buildings will be discussed.

2.2 The ‘Green’ Building Movement
Since the 1800’s, scientists have predicted that a rise in carbon dioxide (CO\textsubscript{2}) concentrations in the atmosphere could result in unprecedented global climate change, due to an increase in global temperatures. As Dr. Gilbert Plass (a physicist at John Hopkins university and a pioneering researcher on the relationship between CO\textsubscript{2} and climate change) describes “humanity is conducting a large-scale experiment on the atmosphere, the results of which will not be available for several generations” (Fleming, 1998).

In terms of total GHG emissions, Canada emitted the seventh highest amount of GHG in 2005 of any country in the world and was second only to Australia in terms of GHG emissions per capita.
In 1997, the Kyoto Protocol agreement was signed under the United Nations Framework Convention on Climate Change (UNFCCC) by 37 industrialized nations including Canada (as well as a host of other nations) with the goal of reducing global climate change. The Protocol is aimed at tackling the problem of global climate change by providing member countries with binding targets for reducing their GHG emissions. Under the Kyoto Protocol, Canada has agreed to reduce its GHG emissions to 6% below what they were in 1990 by the year 2012. Figure 2-1 illustrates Canada’s GHG emissions from 1990 to 2007. Given the most recent data (for 2007) Canada currently stands about 34% above its Kyoto target. Given that the Kyoto commitment period is from 2008 to 2012, it seems highly unlikely that Canada will be able to meet its Kyoto commitment.

That being said, one of the single biggest contributors to CO₂ emissions worldwide is the building industry. In fact, the construction and operation of buildings accounts for over a third of the world’s energy consumption and 40% of all the mined recourses (Straube J. F., 2006). In addition, the vast majority of buildings constructed in the developed world in the last 30-50 years have a shorter service
life than older buildings (Straube J. F., 2006). This means that ‘modern’ building practices have resulted in inferior buildings from the standpoint of performance and durability. This often requires modern buildings to go through many resource intensive renovations over their lifespan.

The term ‘sustainability’ is used a lot in the building industry, often without a complete understating of what it means. The ‘Brundtland Report’ to the United Nations in 1987 defined the concept of sustainability as “development that meets the needs of the present without compromising the ability of future generations to meet their own needs” (The World Commission on Environment and Development, 1987). “A subset of sustainable development, sustainable construction, addresses the role of the built environment in contributing to the overarching vision of sustainability” (Kibert, 2005). In terms of the building industry today, Straube (2006) provides a working definition of a ‘green’ building: “a building that uses energy and material more effectively both in production and operation while polluting and damaging natural systems as little as possible” (Straube J. F., 2006).

The push for more sustainable buildings in recent years has led to the development of numerous ‘green’ building protocols around the world. In North America, the most prominent ‘green’ building protocol is LEED. LEED stands for “Leadership in Energy and Environmental Design” and aims to encourage the adoption of sustainable building practices through the creation of performance criteria. LEED was first developed by the United States Green Building Council (USGBC) in 1998 and was later adopted by the Canadian Green Building Council (CaGBC). LEED operates on a points based system, whereby a score is awarded for performance in five key areas: sustainable site development, water efficiency, energy efficiency, materials selection, and indoor environmental quality (CaGBC, 2009). As of May 2010, 249 buildings in Canada (excluding residential projects less than 600 m²) had achieved LEED certification and the number is increasingly rapidly (CaGBC, 2009). “Despite the success of LEED and the green building movement in general, challenges abound when implementing sustainability principles within the well-entrenched, traditional construction industry” (Kibert, 2005). At the end of the day, the reluctance of the building industry to change will likely present the biggest obstacle in the struggle to reach a new level of sustainability in the built environment.
2.3 Operating Energy of Buildings

Perhaps one of the biggest objectives of many of the green building protocols today is the pursuit of an aggressive reduction in the operating energy use of buildings. In general, there are two forms of energy available: non-renewable energy (e.g. coal, oil, natural gas, etc.) and renewable energy (e.g. solar, wind, water, etc.). Today, the vast majority of buildings depend on non-renewable energy to meet their demands for heating, cooling, lighting, ventilation, etc.

To begin a discussion of energy use in buildings, it is important to have an understanding of the relevant terms and definitions. In this section, some background terms relating to energy will be presented, along with a discussion of the energy use trends in the Canadian building sector.

2.3.1 Background on Operating Energy Statistics for Buildings

Energy use is typically expressed in terms of Joules (J). However, since the quantity of energy use in buildings is relatively large, it is often more convenient to express the energy use in terms of Megajoules (MJ), Gigajoules (GJ), or Petajoules (PJ). To help put these terms in context, one PJ is equivalent to “the energy required by almost 9,000 households (excluding transportation requirements) over one year” (NRCan, 2009).

According to Harvey (2006) there are three forms of energy: primary, secondary, and tertiary (or final end-use) energy. Primary energy is “energy as it occurs in nature” (Harvey, 2006). Examples of primary energy are oil, natural gas, coal, and uranium as they exist in the ground. Harvey (2006) explains that “to be useful to humans, these forms of energy need to be extracted and transformed into secondary energy” (Harvey, 2006). Examples of secondary energy are things like electricity and refined petroleum. Finally, tertiary energy (or end-use energy) are “things like warmth, motion, mechanical power, or light” (Harvey, 2006). Whenever energy is transformed, transported, or utilized there are losses. Harvey (2006) illustrates the relationships between primary, secondary, and tertiary energy in Figure 2-2.

Natural Resources Canada (NRCan) provides a similar distinction between primary and secondary energy:

“Secondary energy use is the energy used by the final consumer in various sectors of the economy. This includes, for example, the energy used by vehicles in the transportation sector. Secondary energy use also encompasses energy required to heat and cool homes
or businesses in the residential and commercial/institutional sectors. In addition, it comprises energy required to run machinery in the industrial and agricultural sectors.

Primary energy use encompasses the total requirements for all uses of energy. This includes secondary energy use. Additionally, primary energy use refers to the energy required to transform one form of energy to another (e.g. coal to electricity). It also includes the energy used to bring energy supplies to the consumer (e.g. pipeline). Further, it entails the energy used to feed industrial production processes (e.g. the natural gas used by the chemical industries)” (NRCan, 2009).

Figure 2-2: The Transformation from Primary to Secondary to Tertiary Energy (Harvey, 2006)

In the context of buildings, the operating energy can be defined as the amount of energy (renewable or non-renewable) that is required to maintain the functions of the building (e.g. heating, cooling, lighting, ventilation, equipment, etc.) and the activities of the occupants.

2.3.2 Operating Energy Statistics for Canadian Commercial Buildings

Each year the Office of Energy Efficiency (OEE) at National Resources Canada (NRCan) publishes the Energy Use Data Handbook (NRCan, OEE, 2010). The OEE completes an annual audit of the energy use by sector in Canada. The most recent data available is for 2007. According to the OEE, in 2007 the total primary energy consumed in Canada was about 12,786 PJ and the total secondary energy use was about 8,870.5 PJ (or about 69% of the total primary energy use) (NRCan, 2009). The OEE also provides a detailed breakdown of the energy consumption trends in each sector of the Canadian economy. Figure 2-3 illustrates the breakdown of the total secondary energy use by sector in Canada in 2007.
Figure 2-3: Breakdown of Total Secondary Energy Use by Sector in Canada in 2007 (NRCan, OEE, 2010)

By adding the residential secondary energy use (16%) with the commercial/institutional secondary energy use (13%), then the total secondary energy use of the building sector (not including material related effects or transportation) accounts for around 29% of the total secondary energy use in Canada. This is essentially equal to the secondary energy use of the entire transportation sector in Canada. However, the primary energy use changes the relative proportions and buildings are more significant.

Figure 2-4 illustrates the breakdown of the total commercial/institutional secondary energy use by activity type in Canada in 2007. Office buildings are responsible for about 35% of the total secondary energy use in the commercial/institutional sector in Canada. This is interesting as office buildings have historically been the major focus of studies dealing with energy use in buildings. Interestingly enough, retail buildings are responsible for the next highest amount of secondary energy consumption at 17%. Despite the fact that retail buildings are responsible for the highest percentage of secondary energy use in Canada next only to office buildings, they have not historically been the focus of studies dealing with energy use in buildings.

Looking specifically at the case of retail buildings now, Figure 2-5 illustrates the breakdown of secondary energy use by end use in Canada in 2007 for retail buildings. Not surprisingly, space
heating accounts for half of the energy use in retail buildings in Canada. Canada is a cold climate and buildings located here require a significant amount of energy for space heating.

Figure 2-4: Breakdown of Total Commercial/Institutional Secondary Energy Use by Activity Type in Canada in 2007 (NRCan, OEE, 2010)

Figure 2-5: Breakdown of Retail Secondary Energy Use by End Use in Canada in 2007 (NRCan, OEE, 2010)
An interesting and useful way to compare the energy consumption of the various commercial/institutional type buildings in Canada is to consider their energy intensity. Energy intensity is essentially a measure of the amount of energy that is consumed per square meter of floor area. Figure 2-6 illustrates the average annual operating energy intensity by activity type for the commercial/institutional sector in Canada in 2007. Retail buildings actually consume about 1.2 times more operating energy per square meter than office buildings.

Figure 2-6: Commercial/Institutional Sector Average Annual Operating Energy Intensity by Activity in Canada for 2007 (NRCan, OEE, 2010)

2.4 Embodied Energy in Buildings

The operating energy consumption of buildings has been studied for years. Statistics are kept and reported by Natural Resources Canada each year for every sector of the Canadian economy. However, the energy associated with the acquisition, processing, manufacturing, transportation, construction, and repair/replacement of building materials is less familiar. The amount of energy that is associated with these activities is called embodied energy.

2.4.1 Background on Embodied Energy in Buildings

Embodied energy refers to “the total energy consumed in the acquisition and processing of raw materials, including manufacturing, transportation, and final installation” (Kibert, 2005). The
embodied energy can be calculated for a building material, a component of a building, or even an entire building project. The embodied energy of a particular building material is usually reported in terms of MJ of primary energy per kg (or m³) of material. There are two kinds of embodied energy: initial embodied energy and recurring embodied energy. The initial embodied energy of a building refers to “the energy used to acquire raw materials and manufacture, transport and install building products in the initial construction of a building” (Cole & Kernan, 1996). On the other hand, recurring embodied energy is “the energy associated with maintaining, repairing and replacing materials and components over the lifetime of the building” (Cole & Kernan, 1996). The total life-cycle embodied energy is simply the sum of the initial embodied energy plus the recurring embodied energy.

Embodied energy can be divided into direct embodied energy and indirect embodied energy. In terms of a building project, the direct embodied energy is the energy needed to transport building materials to the site and then construct the building. The indirect embodied energy is the energy required to extract and process the raw materials, the energy required to manufacture the building materials, and any related transportation energy. Determining the indirect embodied energy requires inputs from a large array of other industries. According to Harvey (2006), “there are a number of indirect energy inputs of first order, second order, third order, and so on. Fully accounting for the embodied energy in building materials requires accounting for a very large succession of linkages” (Harvey, 2006).

As mentioned, the total embodied energy (initial embodied energy plus recurring embodied energy) can be calculated for a building material, building component, or even an entire building. “Products with greater embodied energy usually have higher environmental impact due to the emissions and greenhouse gases associated with energy consumption” (Kibert, 2005). “The embodied energy depends on the energy intensity of the industries involved in producing building materials, while transportation energy depends on the energy intensity of transportation and the distances transported” (Harvey, 2006). “As the energy intensities (in the industrial and transportation sectors) improve, the embodied energy in new buildings will decrease” (Harvey, 2006).

In theory, calculating the embodied energy of a building is relatively straightforward if the embodied energies of the individual building materials are known. In reality, calculating the embodied energy of a building is anything but straightforward. The problem today is that the embodied energies of the various building materials are not well known. There is a lack of reliable information on the embodied energy of building materials. In fact, there is often a wide range of variability in these numbers from one source to the next. No industry standard for the embodied energy of building
materials exits. Furthermore, since the embodied energy of a material depends on the local industries that manufacture them, the energy generation profile of the region where the materials are being produced, the availability of raw materials, etc., the embodied energy numbers vary from country to country and even from one region to the next. However, in theory calculating the embodied energy of a building “requires determining the embodied energy per unit mass or per unit volume of all the materials that go into a building, multiplying by the amounts of each material used, accounting for energy used during construction and adding all these terms” (Harvey, 2006).

2.4.2 Embodied Energy of Common Building Materials

To date, there are no industry standard embodied energy numbers for the various building materials. In fact, the embodied energy of a building material can vary (sometimes significantly) depending on the location that it is produced, the energy intensity of the manufacturing industries, the availability of raw materials, and numerous other factors. In addition, the embodied energies of the various building materials continually change as industries reduce their energy consumption and get more efficient at producing their products. That being said, it is still valuable to have an understanding of the range of values that are currently cited in the literature for the embodied energy of some common building materials. Table 2-1 lists a range of values for the embodied energy of some common building materials.

It can be seen that some materials like virgin aluminum have a relatively high embodied energy (201.0 to 217.0 MJ/kg). Insulation materials also tend to have a high embodied energy although little mass is used. For example, polystyrene insulation ranges from about 88.6 to 117.0 MJ/kg in Table 2-1. Depending on the recycled content, general virgin steel can vary from about 15.4 to 35.3 MJ/kg. Other naturally occurring materials such as stone have a relatively low embodied energy (0.8 to 6.8 MJ/kg). One important material to make mention of is concrete. In Table 2-1 the embodied energy of cement (4.6 to 15.0 MJ/kg) is listed as well as the embodied energy of concrete (1.1 to 4.5 MJ/kg). Concrete is actually about 75% aggregates, 10% water, and only 15% cement. Therefore, even though the embodied energy of cement can be relatively high, when combined with water and aggregates (which have very low embodied energy) the concrete mixture has a relatively low embodied energy. However, in building projects concrete is usually used in far greater mass than any other building material. Therefore, when the embodied energy of concrete is multiplied by the quantity of concrete, the total embodied energy of concrete used in a project can be significant. Once again, the embodied energy numbers presented here are by no means standard values for the industry. They have been
collected from a sample of the literature and represent a range of values that one would find if they consulted the literature. It was difficult to find embodied energy numbers for building materials in Canada or the United States specifically, so most of the data in Table 2-1 was taken from comprehensive studies done in New Zealand and the United Kingdom.

Table 2-1: Initial Embodied Energy of Common Building Materials

<table>
<thead>
<tr>
<th>Building Material</th>
<th>Initial Embodied Energy (MJ/kg) (Low / High)</th>
<th>Source (Low)</th>
<th>Source (High)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum (extruded, recycled)</td>
<td>17.3 / 34.1</td>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>Aluminum (extruded, virgin)</td>
<td>201.0 / 217.0</td>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>Bitumen</td>
<td>44.1 / 47.0</td>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>Building Paper</td>
<td>24.8 / 25.5</td>
<td>(B)</td>
<td>(A)</td>
</tr>
<tr>
<td>Carpet</td>
<td>72.4 / 74.4</td>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>Cement</td>
<td>4.6 / 15.0</td>
<td>(B)</td>
<td>(C)</td>
</tr>
<tr>
<td>Clay Brick</td>
<td>3.0</td>
<td>(B)</td>
<td>(B)</td>
</tr>
<tr>
<td>Concrete (30MPa)</td>
<td>1.1 / 4.5</td>
<td>(B)</td>
<td>(C)</td>
</tr>
<tr>
<td>Concrete Block</td>
<td>0.7 / 0.9</td>
<td>(B)</td>
<td>(A)</td>
</tr>
<tr>
<td>Float Glass</td>
<td>15.0 / 15.9</td>
<td>(B)</td>
<td>(A)</td>
</tr>
<tr>
<td>Gypsum Board</td>
<td>4.5 / 6.8</td>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>Insulation (cellulose)</td>
<td>0.9 / 3.3</td>
<td>(B)</td>
<td>(A)</td>
</tr>
<tr>
<td>Insulation (polystyrene)</td>
<td>88.6 / 117.0</td>
<td>(B)</td>
<td>(A)</td>
</tr>
<tr>
<td>Insulation (fiberglass)</td>
<td>28.0 / 30.3</td>
<td>(B)</td>
<td>(A)</td>
</tr>
<tr>
<td>Paint (solvent based)</td>
<td>68.0 / 98.1</td>
<td>(B)</td>
<td>(A)</td>
</tr>
<tr>
<td>Paint (water based)</td>
<td>68.0 / 88.5</td>
<td>(B)</td>
<td>(A)</td>
</tr>
<tr>
<td>Plywood</td>
<td>10.4 / 15.0</td>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>PVC Plastic</td>
<td>70.0 / 77.2</td>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>Steel (galvanized, virgin)</td>
<td>121.6 / 39.0</td>
<td>(D)</td>
<td>(B)</td>
</tr>
<tr>
<td>Steel (general, recycled)</td>
<td>9.5 / 10.1</td>
<td>(B)</td>
<td>(A)</td>
</tr>
<tr>
<td>Steel (general, virgin)</td>
<td>15.4 / 35.3</td>
<td>(D)</td>
<td>(B)</td>
</tr>
<tr>
<td>Steel (reinforcing)</td>
<td>8.9 / 13.3</td>
<td>(A)</td>
<td>(D)</td>
</tr>
<tr>
<td>Stone</td>
<td>0.8 / 6.8</td>
<td>(A)</td>
<td>(A)</td>
</tr>
<tr>
<td>Timber (glulam)</td>
<td>4.6 / 12.0</td>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>Timber (softwood, kiln dried)</td>
<td>1.6 / 7.4</td>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>Vinyl Flooring</td>
<td>65.6 / 79.1</td>
<td>(B)</td>
<td>(A)</td>
</tr>
</tbody>
</table>

Reference	Country	Primary Energy (Y/N)
(A) | New Zealand | Unknown |
(B) | United Kingdom | Y |
(C) | Australia | Y |
(D) | Global Average | Y |

1 Includes global average initial recycled content
2 Includes global average initial recycled content (value is for structural sections)
2.4.3 Problems with Measures of Embodied Energy

It can not be stressed enough the variability of embodied energy numbers for building materials. The process of calculating the embodied energy of a building material depends on many factors. For example, to calculate the embodied energy of a material, one must rely on the manufacturers to accurately and comprehensively account for the energy use associated with every aspect of their manufacturing process. In reality, this is rarely the case. More often than not, a detailed accounting of the total energy associated with the raw material extraction, transportation, processing, and manufacturing of a building material is not done. Therefore, this makes it difficult to determine the true embodied energy of a building material with any certainty of accuracy.

Also, the various industries that produce building materials are continually updating their processes and becoming more efficient. Therefore, the true embodied energy of a building material is not static. It can vary from one year to the next and depends heavily on the specific location in which it is produce, as the energy generation, transportation, and manufacturing process in one location can vary drastically from the next.

When deciding on a material to use in a building project, it is a gross simplification to simply compare the embodied energy of two alternative materials and pass judgement on which is better for the environment. Recall that the embodied energy numbers are presented in terms of MJ of primary energy per kg (or m3) of material. Therefore, one must also accurately determine the material quantities involved in order to determine the total embodied energy of a material that is used in a project. For example, even though the embodied energy per kg of concrete is relatively low, concrete tends to be one of the most significantly used materials in construction projects. As well, it weighs a great deal more than other building materials like insulation, which has a significantly higher embodied energy per kg, but weighs far less than concrete. Therefore, without a full accounting of materials in a project, it is difficult to make a comparison based solely on embodied energy.

2.5 Operating Global Warming Potential (GWP) of Buildings

In addition to understanding the consumption of energy in buildings, it is also useful to look at the related GHG emissions. In recent years, as the problem of global climate change has been thrust to the forefront of the public agenda, there has been an increasing effort to quantify and ultimately minimize the release of GHG emissions from buildings. Similar to the operating energy use, buildings also produce GHG emissions from their operation. In this section, some background terms relating to
GHG emissions will be presented, along with a discussion of the GHG emission trends in the Canadian building sector.

2.5.1 Background on Operating GWP Statistics for Buildings

The main reason why there has been an increase in the global temperature in recent decades is because of the presence of greenhouse gases in the atmosphere. Some of the more abundant greenhouse gases include: carbon dioxide, methane, nitrous oxide, ozone, and water vapour. These gases are unique in that they are ‘spectrally selective’ materials. Essentially, these gases in the Earth’s atmosphere allow shortwave solar radiation to pass through them uninhibited, while at the same time not allowing longwave terrestrial radiation to pass back out. The net effect is a rise in global temperatures due to some of the terrestrial radiation being ‘trapped’ in the Earth’s atmosphere by these spectrally selective gases.

As mentioned previously, greenhouse gases actually refer to more than just carbon dioxide. However, carbon dioxide is the most abundant GHG in the Earth’s atmosphere. Therefore, scientists have developed the term call Global Warming Potential (GWP). The term, GWP was developed to compare one GHG to another in terms of their ability to trap heat in the Earth’s atmosphere. GWP is measured in mass of CO$_2$ equivalent. Carbon dioxide equivalency (CO$_2$ eq.) is a measure of the equivalent amount of CO$_2$ that would have the same GWP as a mixture of CO$_2$ and other GHGs in the Earth’s atmosphere. Often for the case of buildings the GWP is expressed in either kg of CO$_2$ eq. or tonnes of CO$_2$ eq.

2.5.2 Operating GWP Statistics for Canadian Commercial Buildings

Similar to operating energy, each year the OEE at NRCan publishes the GWP data for each sector of the Canadian economy. The data is published annually in the Energy Use Data Handbook (NRCan, OEE, 2010). The most recent data available is for 2007. According to the OEE, in 2007 the total GWP released in Canada was estimated to be about 746.7 Mt of CO$_2$ eq. and the total secondary GWP was about 501.6 Mt of CO$_2$ eq. (or about 67% of the total GWP). Figure 2-7 illustrates the breakdown of the total secondary GWP by sector in Canada in 2007.
By adding the residential and commercial/institutional sectors together, the building sector is responsible for about 28% of the total secondary GWP in Canada. This represents a significant percentage of the total GWP each year.

Next, Figure 2-8 illustrates the breakdown of commercial/institutional total secondary GWP by activity type in Canada in 2007. Office buildings account for about 35% of the total secondary GWP followed by retail buildings at 17%.

Focusing now on retail buildings specifically, Figure 2-9 illustrates the breakdown of the retail secondary GWP by end use in Canada in 2007. Not surprisingly space heating accounts for nearly half of the total secondary GWP of retail buildings. Notice how the trends in secondary GWP are very similar to the trends presented earlier for the secondary energy. There is a close relationship between energy use and GWP, as the release of greenhouse gases often accompanies the consumption of energy.

Next, Figure 2-10 illustrates the average annual GWP intensity by activity type for the commercial/institutional sector in Canada in 2007. Similarly to energy use, retail buildings produce about 1.2 times the GWP per square meter of floor area than office buildings.
Total commercial/institutional global warming potential (GWP) in Canada in 2007 = 64.5 Mt of CO₂ eq.

Figure 2-8: Breakdown of Commercial/Institutional Total Secondary GWP by Activity Type in Canada in 2007 (NRCan, OEE, 2010)

Total retail global warming potential (GWP) in Canada in 2007 = 10.7 Mt of CO₂ eq.

Figure 2-9: Breakdown of Retail Secondary GWP by End Use in Canada in 2007 (NRCan, OEE, 2010)
2.6 Embodied Global Warming Potential (GWP) in Buildings

Recall that the energy use in buildings can be divided into operating energy and embodied energy. A similar division can be done for the GWP of buildings. Not only is there a release of GHG during the operating phase of a building, but there are also GHG emissions associated with the acquisition, processing, manufacturing, transportation, construction, and repair/replacement of building materials. The amount of GWP that is associated with these effects is called embodied GWP.

2.6.1 Background on Embodied GWP in Buildings

Embodied GWP refers to the total GWP produced in the acquisition and processing of raw materials, including manufacturing, transportation, and final installation. The embodied GWP can be calculated for a building material, a component of a building, or even an entire building project. The embodied GWP of a particular building material is usually reported in terms of kg of CO$_2$ eq. per kg (or m3) of material. Similar to energy use, there are two kinds of embodied GWP: initial embodied GWP and recurring embodied GWP.

The embodied GWP of a building material depends on the GHG emissions of the industries that produce them. An accurate measure of embodied GWP is extremely difficult to determine for the various building materials. The same concerns and limitations that have already been discussed for
the embodied energy numbers in previous sections, also apply to the case of embodied GWP numbers here. A repeat of that discussion will not be provided. However, it is important to note that the GWP numbers for building materials are even more difficult to find and exhibit a greater range of values than is the case for the embodied energy numbers. It is far easier to look at energy bills and determine how much energy was required to operate a manufacturing plant that produced a certain building material. However, since consumers do not pay for GHG emissions, there is no easy way of tracking the exact amount of GHG that is emitted during the production of a building material. These numbers can be estimated from the energy use, but such data is much harder to find and can vary significantly from one source to the next. Once again, there are no industry standard values for the embodied GWP of the various building materials. In the next section some common values for the embodied GWP of some common building materials will be presented.

2.6.2 Embodied GWP of Common Building Materials

To date, there are no industry standard embodied GWP numbers for the various building materials. Recall that the embodied GWP of a building material can vary (sometimes significantly) depending on the location that it is produced, the GWP intensity of the manufacturing industries, the availability of raw materials, and numerous other factors. In addition, the embodied GWP of the various building materials continually change as industries reduce their GWP emissions and get more efficient at producing their products. That being said, it is still valuable to have an understanding of the range of values that are currently cited in the literature for the embodied GWP of some common building materials. Table 2-2 lists a range of values for the embodied GWP of some common building materials.

Materials that have a high embodied energy also tend to have high embodied GWP. Those materials include things like virgin aluminum (8.4 to 11.2 kg of CO$_2$ eq./kg). General virgin steel has less embodied GWP (1.2 to 2.8 kg of CO$_2$ eq./kg) and can have less than this depending on the recycled content. Naturally occurring building materials like stone tend to have the least embodied GWP (0.1 kg of CO$_2$ eq./kg). Similar to embodied energy, embodied GWP values have been listed for both cement and concrete.

Once again, the embodied GWP numbers presented here are by no means standard values for the industry. They have been collected from a sample of the literature and represent a range of values that one would find if they consulted the literature. It was extremely difficult to find embodied GWP
numbers for building materials in Canada or the United States specifically, so most of the data in Table 2-2 was taken from comprehensive studies done in New Zealand and the United Kingdom.

Table 2-2: Initial Embodied CO\(_2\) of Common Building Materials

<table>
<thead>
<tr>
<th>Building Material</th>
<th>Initial Embodied GWP (kg of CO(_2)/kg) (Low / High)</th>
<th>Source (Low)</th>
<th>Source (High)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum (extruded, recycled)</td>
<td>1.9 / 2.0</td>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>Aluminum (extruded, virgin)</td>
<td>8.4 / 11.2</td>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>Bitumen</td>
<td>0.2 / 0.5</td>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>Building Paper</td>
<td>1.3</td>
<td>(B)</td>
<td>(B)</td>
</tr>
<tr>
<td>Carpet</td>
<td>3.9</td>
<td>(B)</td>
<td>(B)</td>
</tr>
<tr>
<td>Cement</td>
<td>0.8 / 0.9</td>
<td>(B)</td>
<td>(A)</td>
</tr>
<tr>
<td>Clay Brick</td>
<td>0.2 / 0.7</td>
<td>(B)</td>
<td>(A)</td>
</tr>
<tr>
<td>Concrete (30MPa)</td>
<td>0.2 / 0.2</td>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>Concrete Block</td>
<td>0.1 / 0.1</td>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>Float Glass</td>
<td>0.9 / 1.7</td>
<td>(B)</td>
<td>(A)</td>
</tr>
<tr>
<td>Gypsum Board</td>
<td>0.4 / 0.4</td>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>Insulation (cellulose)</td>
<td>0.1</td>
<td>(A)</td>
<td>(A)</td>
</tr>
<tr>
<td>Insulation (polystyrene)</td>
<td>2.5 / 2.5</td>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>Insulation (fiberglass)</td>
<td>0.8 / 1.4</td>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>Paint (solvent based)</td>
<td>3.6</td>
<td>(B)</td>
<td>(B)</td>
</tr>
<tr>
<td>Paint (water based)</td>
<td>3.6</td>
<td>(B)</td>
<td>(B)</td>
</tr>
<tr>
<td>Plywood</td>
<td>0.8</td>
<td>(B)</td>
<td>(B)</td>
</tr>
<tr>
<td>PVC Plastic</td>
<td>2.4 / 4.3</td>
<td>(B)</td>
<td>(A)</td>
</tr>
<tr>
<td>Steel (galvanized, virgin)</td>
<td>2.8</td>
<td>(B)</td>
<td>(B)</td>
</tr>
<tr>
<td>Steel (general, recycled)</td>
<td>0.4</td>
<td>(B)</td>
<td>(B)</td>
</tr>
<tr>
<td>Steel (general, virgin)</td>
<td>1.2 / 2.8</td>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>Steel (reinforcing)</td>
<td>0.4</td>
<td>(A)</td>
<td>(A)</td>
</tr>
<tr>
<td>Stone</td>
<td>0.1</td>
<td>(B)</td>
<td>(B)</td>
</tr>
<tr>
<td>Timber (glulam)</td>
<td>0.7</td>
<td>(B)</td>
<td>(B)</td>
</tr>
<tr>
<td>Timber (softwood, kiln dried)</td>
<td>0.5</td>
<td>(B)</td>
<td>(B)</td>
</tr>
<tr>
<td>Vinyl Flooring</td>
<td>2.3</td>
<td>(B)</td>
<td>(B)</td>
</tr>
</tbody>
</table>

Reference

(A) (Alcorn, 2003)
(B) (Hammond & Jones, 2008)

Initial embodied GWP are very difficult to find and can vary greatly from one source to the next
2.6.3 Problems with Measures of Embodied GWP

The same problems and concerns that applied to embodied energy numbers also are applicable to embodied GWP numbers. These problems include: reliance on manufacturers to accurately report embodied GWP numbers, continual improvements in the manufacturing process, and variation in numbers based on location for example.

Once again, it is important to accurately account for all the material quantities in a building project, in order to get an accurate measure of the total embodied GWP. Passing judgement on the GWP of different materials without considering the greater scope of a building project is a gross simplification that is flawed. In the next section, the proper way of accounting for the true life-cycle impact of both the operating effects and embodied effects in buildings will be presented.

2.7 Life-Cycle Assessment (LCA) of Buildings

In recent years, the process of tracking the environmental burdens of various products and processes from cradle-to-grave has been gaining in popularity. Across most industries today, there continues to be a push to reduce energy consumption and to decrease the environmental impacts associated with all aspects of production and operation. However, only recently has the initiative to reduce the cradle-to-grave environmental impacts in the building industry gained popularity.

Buildings are complex, multi-facet systems that have a direct and indirect impact on the environment. Their influence spans multiple industries and uncovering the relationships between the built and natural environment is not an easy task. Therefore, “given the complexities of interactions between the built and the natural environment, life-cycle assessment represents a comprehensive approach to examining the environmental impacts of an entire building” (Scheuer, Keoleian, & Reppe, 2003).

2.7.1 Background on LCA of Buildings

The European Committee for Standardization has defined LCA to be “a method used to quantify environmental burdens based on inventory of environmental factors for a product, process, or activity from the abstraction of raw materials to their final disposal” (Lee, O'Callaghan, & Allen, 1995). The International Organization for Standardization states that “LCA addresses the environmental aspects and potential environmental impacts (e.g. use of resources and the environmental consequences of releases) throughout a product’s life-cycle from raw material acquisition through production, use, end-of-life treatment, recycling and final disposal (i.e. cradle-to-grave) (ISO, 2006). Essentially, “LCA is a method for determining the environmental and resource impacts of a material, product, or
even a whole building over its entire life” (Kibert, 2005). Typically, “the upstream (extraction, production, transportation, and construction), use, and downstream (deconstruction and disposal) flows of a product or service are inventoried. Next, the global and/or regional impacts are calculated based on energy consumption, GWP, and other measures” (Scheuer, Keoleian, & Reppe, 2003).

Although LCA techniques vary from once source to the next, ISO 14040 has emerged in recent years as the standard of choice. According to the International Organization for Standardization, ISO 14044 outlines the requirements of conducting a LCA and generally involves the following four phases:

1. Defining the goal and scope of the LCA
2. A life-cycle inventory (LCI) of the materials and their associated environmental impacts
3. A life-cycle impact assessment of the product or process using the LCI data
4. Interpretation of the results

The first stage of a LCA (goal and scope definition) defines the purpose, scope, and system boundaries of the LCA (ISO, 2006). In their LCA study of a new university building located on the University of Michigan campus, Scheuer, Keoleian, & Reppe, (2003) outlined the following system boundary for their LCA.

![Life-Cycle Diagram for LCA of Buildings](image)

Figure 2-11: Life-Cycle Diagram for LCA of Buildings (Scheuer, Keoleian, & Reppe, 2003)
Stage two of a LCA (the LCI of materials) involves the collection of data to quantify the material and energy inputs and outputs of a system (ISO, 2006). Specifically, a LCI is “an objective data-based process of quantifying energy and raw material requirements, air emissions, water borne effluents, solid waste, and other environmental releases incurred throughout the life-cycle of a product, process, or activity” (Lee, O'Callaghan, & Allen, 1995).

In stage three of a LCA, a life-cycle impact assessment is conducted using the LCI data to calculate the significance of the potential environmental impacts of the product or process. Finally, the last stage of a LCA involves interpreting the results, which is important to do in order to provide a list of findings and recommendations.

For the case of a building specifically, a life-cycle assessment involves evaluating the environmental burdens of a building throughout its lifespan. This involves calculating the environmental burdens associated with all aspects of a building from manufacturing the building materials, to constructing the building, to operating the building, to renovating or disposing of it at the end of its life. Generally speaking, this most often involves calculating the embodied effects and the operating effects of a building (or components of a building) from cradle-to-grave.

Unfortunately there is no industry standard that is followed in the building industry when it comes to conducting a LCA. In fact, from country to country and within the literature, there is considerable variation in the scope of the LCA studies, their system boundaries, and in particular, the LCI data. Collecting a detailed database of material and energy inputs and outputs for all the various building materials, construction techniques, transportation methods, etc. is enormously complex. This data is regional specific, as the methods, techniques, and energy generation (or energy use profile) of one country (or region) to the next can differ dramatically. Therefore, the LCI data in one country (or region) can be entirely different, even for the same building material, in another country (or region).

2.7.2 Methods of Performing a LCA of Buildings

In recent years, numerous software programs have been developed (and continue to be developed) to simplify the LCA process. At the heart of these LCA programs is their LCI database of materials. Most developers of these programs have spent significant resources populating a LCI database for the various building materials. Trusty and Horst (2005) conducted a review of the most prominent LCA software tools in North America, as well as other international tools. Table 2-3 was taken from their study and summarizes the key LCA programs that are available today and what they do.
Table 2-3: A Summary of the Prominent LCA Tools and What They Do (Trusty & Horst, 2005)

<table>
<thead>
<tr>
<th>LCA Tools and What They Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1A Tools: Focus is on individual products or simple building assemblies (intended for use by LCA practitioners)</td>
</tr>
<tr>
<td>SimaPro</td>
</tr>
<tr>
<td>GaBi</td>
</tr>
<tr>
<td>Umberto</td>
</tr>
<tr>
<td>TEAM</td>
</tr>
<tr>
<td>Level 1B Tools: Focus is on individual products or simple building assemblies (intended for those who want results, but detailed LCA work is done in the background)</td>
</tr>
<tr>
<td>BEES</td>
</tr>
<tr>
<td>LCAiT</td>
</tr>
<tr>
<td>TAKE-LCA</td>
</tr>
<tr>
<td>Level 2 Tools: Focus on whole building or complete building assemblies or elements (tend to apply from early conceptual through detailed design stages of project)</td>
</tr>
<tr>
<td>ATHENA Environmental Impact Estimator (EIE)</td>
</tr>
<tr>
<td>BRI LCA (energy and CO₂)</td>
</tr>
<tr>
<td>EcoQuantum</td>
</tr>
<tr>
<td>Envest</td>
</tr>
<tr>
<td>Green Guide to Specifications</td>
</tr>
<tr>
<td>LISA</td>
</tr>
<tr>
<td>LCADesign</td>
</tr>
<tr>
<td>Level 3 Tools: Whole building assessment frameworks encompassing a broad range of environmental, economic, and social concerns relative to sustainability</td>
</tr>
<tr>
<td>BREEAM</td>
</tr>
<tr>
<td>GBTTool</td>
</tr>
<tr>
<td>Green Globes</td>
</tr>
</tbody>
</table>

Note: This table was taken from (Trusty & Horst, 2005)*

A similar critical review of building environmental assessment tools was conducted by Haapio and Viitaniemi (2008). In their study, they found that “the comparison of the tools and their results is
difficult, if not impossible. For example, the tools are designed for assessing different types of buildings, they emphasise different phases of the life cycle, and they rely on different databases, guidelines, and questionnaires” (Haapio & Viitaniemi, 2008). This highlights one of the major problems with conducting a LCA of a building: there is no clear industry standard to follow in terms of methodology or scope. The process remains extremely complicated and the results can vary, sometimes significantly, from one study to the next. As Trusty and Horst (2005) describe, “because LCA attempts to track a complex world, it remains a complex methodology” (Trusty & Horst, 2005).

2.7.3 Previous LCA Studies of Commercial Buildings

Over the past 15 years, there have been an increasing number of LCA studies of buildings. Historically, most of these studies have investigated the relationships between embodied energy and operating energy for the case of residential (single dwelling or multi-unit apartment) buildings and multi-storey office buildings. Extremely few LCA studies have looked at single-storey retail buildings, which is one of the reasons that this type of building was chosen for this study.

Most of the LCA studies tend to focus on calculating the relationships between embodied energy (initial and recurring) and operating energy of a building over a set lifespan. Figure 2-12 illustrates the typical life-cycle energy use of a building.

![Diagram of Typical Life-Cycle Energy Use of a Building](image)

Figure 2-12: Typical Life-Cycle Energy Use of a Building (Itard & Klunder, 2007)
It can be seen how there is an initial amount of embodied energy that is incurred at time 0 due to the construction of the building. Then over time there is a linear increase in the total energy use due to the building operations. At certain intervals of the building’s life, as materials and systems need repair and replacement, there are discrete intervals of recurring embodied energy (and possibly an end-of-life energy for decommissioning the building, depending on the scope of the LCA). At the end of the building’s lifespan, the total energy use is simply the summation of the initial embodied energy, the recurring embodied energy (and the end-of-life energy if applicable), and the total life-cycle operating energy. The way in which each of these phases is calculated varies from one study to the next.

2.7.3.1 Sartori and Hestne’s Study

In order to place the findings of this study into the appropriate context, it is important to have an understanding of the results from previous LCA studies of buildings. Sartori and Hestnes (2007) conducted a literature survey of the total life-cycle energy use of 60 different buildings (both residential and non-residential) from nine different countries. They focused on gathering information on the total embodied energy and operating energy of these buildings (no data was collected on GWP). The majority of buildings that were surveyed were either residential or office buildings. From their literature review, they concluded that despite climate and other differences between the case study buildings, a linear relationship between operating energy and total energy was found (Sartori & Hestnes, 2007). In other words, the operating energy of a building has the single greatest impact on the total life-cycle energy of a building.

Sartori and Hestnes (2007) also discussed one of the systemic problems with the literature dealing with the LCA of buildings. In their literature review, Sartori and Hestnes (2007) found that there was a wide variation in how the data was presented from one study to the next. For instance, the 60 case study buildings that they looked at, all varied in terms of their lifespan, whether energy data was presented in terms of secondary or primary energy, whether only the initial embodied energy or total embodied energy was calculated, and whether end-of-life effects (such as recycling) were considered. These variations in methodology from one study to the next highlight the major problem with the literature dealing with the LCA of buildings. There is no standard methodology that is followed from one LCA study to the next. This creates a huge problem when trying to compare the results from one LCA study to another. Regardless, a review of the literature is still important, as the general trends between embodied energy and operating energy remain consistent from study to study.
Figure 2-13 illustrates the range of total energy for the buildings examined by Sartori and Hestnes (2007) in their comprehensive literature review. It is important to note that only those studies that reported the energy in terms of primary energy (not secondary energy) were included in this graph. The total energy in each case has been divided into the total embodied energy and the total operating energy, annualized for one year. Their data gathering clearly shows the dominance of operating energy compared to embodied energy that is common throughout the literature. They demonstrated that a linear relationship between operating and total energy exists, despite climate and other contextual differences (Sartori & Hestnes, 2007). In their study, the also showed that in the design of low energy buildings (i.e. buildings with a lower operating energy than the typical case), that low energy buildings have a net decrease in total life-cycle energy, but generally also have an increase in total embodied energy (Sartori & Hestnes, 2007). This is because extra materials such as insulation (which is high in embodied energy) are used to help decrease the operating energy of the building.

Note: 1 kWh = 0.0036 GJ

Figure 2-13: Total Energy for a Range of Residential and Non-Residential Buildings from a Literature Review of LCA Studies (presented in terms of primary energy) (Sartori & Hestnes, 2007)
2.7.3.2 Cole and Kernan’s Study

One of the most influential LCA studies of buildings was conducted by Cole and Kernan (1996). Their investigation of the life-cycle energy use in office buildings was one of the first studies to comprehensively investigate the relationships between embodied energy and operating energy (this study did not look at GWP). Since then, this paper has been referenced in almost every LCA study of buildings in the last 15 years.

In their investigation, Cole and Kernan looked at the relationships between initial embodied energy, recurring embodied energy, and operating energy for the case of a 4,620 m\(^2\) (50,000 ft\(^2\)) three-storey generic office building, located in Toronto and Vancouver and constructed from alternative wood, steel, and concrete structural systems (with and without underground parking).

Figure 2-14 illustrates the breakdown of the initial embodied energy for the steel structure office building located in Toronto as determined by Cole and Kernan (1996). They found that the structure, envelope, and services accounted for 25%, 27%, and 23% of the initial embodied energy of the three-storey office building respectfully. The initial embodied energy was less impacted by the finishes (12%), construction (7%), and the site work (6%).

![Figure 2-14: Breakdown of the Initial Embodied Energy for Steel Structural Office Building Located in Toronto (Cole & Kernan, 1996)](image)

A similar breakdown of initial embodied energy was calculated for the wood and concrete structure office buildings as well. Figure 2-15 illustrates the initial embodied energy breakdown for the three
office buildings (wood, steel, and concrete structure) as determined by Cole and Kernan (1996). It can be seen that there is a slight variation in the initial embodied energy of the structural systems, but that very little variation exists across the three different buildings for the site work, construction, finishes, envelope, and services (HVAC, conveyance, etc.). In essence, the components of the building that are common to all three buildings (i.e. other than the structure) tend to have a moderating effect on the total initial embodied energy of the buildings.

![Figure 2-15: Breakdown of Initial Embodied Energy for Wood, Steel, and Concrete Structure Office Buildings Located in Toronto (Cole & Kernan, 1996)](image)

Looking specifically at the initial embodied energy of the structural systems for the three types of buildings, Figure 2-16 illustrates the initial embodied energy. Cole and Kernan (1996) found that the steel structure had about 1.83 and 1.31 times more initial embodied energy than the wood and concrete structural systems.

Cole and Kernan (1996) also looked at the relationships between the initial embodied energy and the recurring embodied energy for the three types of buildings. Figure 2-17 illustrates the relationships between the initial embodied energy and the recurring embodied energy for the case of the wood structure office building (the steel and concrete buildings are similar). One can see that somewhere between 25 years and 50 years, the recurring embodied energy becomes greater than the initial embodied energy. By the end of a 100 year lifespan, the recurring embodied energy is about 3.4 times greater than the initial embodied energy. Therefore, Cole and Kernan (1996) found that recurring
embodied energy is a significant percentage of the total embodied energy of an office building after about 25 years.

Figure 2-16: Initial Embodied Energy for Wood, Steel, and Concrete Structural Systems for Office Building Located in Toronto (Cole & Kernan, 1996)

The relationships between the initial embodied energy and the recurring embodied energy were also determined for the steel and concrete structure office buildings. Figure 2-18 illustrates the relationships between the initial and recurring embodied energy as determined by Cole and Kernan (1996). The most important point to note is that after about 50 years, the finishes, envelope, and services completely dominate the total embodied energy of the three buildings, since there is far more recurring embodied energy associated with these building components than there is with the structure, site work, or construction. One can imagine that the structure of the building is erect at time 0 and then little to no repair/maintenance is ever done. On the contrary, the finishes in the building are often repaired or replaced many times over the life of a building. Therefore, there is far more recurring embodied energy associated with the finishes over any significant length of time. These findings by Cole and Kernan (1996) show the insignificance of the embodied energy of the structure compared to the other components of the building like the finishes, envelope, and services.
Figure 2-17: Breakdown of Initial Embodied Energy verses Recurring Embodied Energy for Wood Structure Office Building after 50 Year Lifespan in Toronto (Cole & Kernan, 1996)

Figure 2-18: Breakdown of Total Embodied Energy for Wood Structure Office Building after 50 Year Lifespan in Toronto (Cole & Kernan, 1996)

Cole and Kernan (1996) also calculated the operating energy of the three different office buildings. Figure 2-19 illustrates the relationships between the operating energy and the embodied energy for the three buildings. Cole and Kernan (1996) showed that after 50 years, the operating energy
represents about 85% of the total energy, compared to only about 15% for the total embodied energy. They also determined that any differences in the embodied energy of the three different buildings are far outweighed by the similarities in the operating energy. In other words, the operating energy has a moderating effect, as it is very similar for the three buildings despite any differences in the material used for the structural system. In fact, the total energy of the steel building is only 1.01 times greater than either the wood or concrete structure office building. Therefore, Cole and Kernan (1996) showed that after 50 years of operation, the total energy is essentially identical for the three office buildings, despite the type of structural systems that is chosen.

Note: 1 kWh = 0.0036 GJ

Figure 2-19: Life-Cycle Energy Use for Wood, Steel, and Concrete Structure Office Buildings after 50 Year Lifespan in Toronto (Cole & Kernan, 1996)

Finally, Figure 2-20 was created from the data that Cole and Kernan (1996) found for the three-storey generic office building located in Toronto. The values for the wood, steel, and concrete structure buildings were averaged and the results were plotted. In this case, a linear relationship between the recurring embodied energy and time was assumed for the purposes of this figure. This figure shows how after about 10 years, that operating energy of the building begins to completely dominate the total energy of the office building. After 50 years, the operating energy represents about 88% of the total energy, compared to only about 7% for the recurring embodied energy and 5% for the initial embodied energy.
In summary, the main conclusions from this very important and influential LCA study of commercial office buildings by Cole and Kernan (1996) are:

1. After about 50 years, the total embodied energy associated with the finishes, envelope, and services far outweighs that of the structure, site work, and construction due to higher amounts of recurring embodied energy.

2. Structure can represent a significant proportion of the initial embodied energy of a commercial office building, but after 50 years the operating energy of the building represents about 85% of the total energy compared to only about 15% for the total embodied energy of the building.

3. Not until the operating energy is reduced by about 50% from typical values, does the embodied energy of the building become significant.

4. Strategies for reducing the life-cycle energy use of an office building should focus on those design considerations that significantly reduce the building’s operating energy. Only when the operating energy has been significantly reduced should the emphasis be directed at reducing the building’s embodied energy.
2.7.3.3 Ding’s Study

An important LCA study that is relevant to this project was conducted by Ding (2007). In this study, Ding (2007) calculated the total energy consumption of 20 public secondary schools in New South Wales, Australia. These schools ranged in size from 1,300 m2 to 16,000 m2. In this study, Ding (2007) looked at the initial embodied energy, the recurring embodied energy, and the operating energy (not the end-of-life energy or GWP) of the schools.

In this project, the lifespan of the schools was assumed to be 60 years. The average initial embodied energy per square meter of gross floor area of the 20 schools was found to be about 7.83 GJ/m2. The average recurring embodied energy was determined to be about 8.19 GJ/m2 over the 60 year lifespan. In this study, the author also listed a range of values for the initial embodied energy and the recurring embodied energy from their literature review. For commercial buildings, the initial embodied energy per square meter of gross floor area was found to range from 3.4 GJ/m2 to 19.0 GJ/m2 (Ding, 2007). Ding (2007) also noted that the recurring embodied energy per square meter of gross floor area from the literature review ranged between 6.32 GJ/m2 to 20.40 GJ/m2 for commercial buildings. In this study, Ding (2007) found the average annual operating energy to be about 0.55 GJ/m2 for the 20 schools in Australia. Recall that the average annual operating energy for an educational services building in Canada is about 1.73 GJ/m2 (NRCan, OEE, 2010).

Ding (2007) found that the total embodied energy represented about 38% of the total energy after 60 years, compared to 62% for the operating energy. According to Ding (2007), the total embodied energy represents about 37 years of operating energy. Ding (2007) also noted that in the literature, the total embodied energy range from 15 to 37 years of operating energy. So, one can see that the significance of embodied energy relative to operating energy in this study is relatively high compared to the literature. This is likely due to the fact that little heating energy is required for these schools due to them being located in a warm climate in Australia. If these schools were located in a cold climate, like in Canada, then it would be reasonable to expect that the operating energy would be higher.

2.7.3.4 Junnila et al.’s Study

In this study, the authors conducted a LCA of a newly constructed office building in Finland and in the Midwest region of the United States. In both instances, the lifespan of the office building was taken to be 50 years. The office building in Finland was a four-storey, concrete frame building with a
gross floor area of about 4,400 m2. The office building in the United States was a five-storey, concrete frame building with a gross floor area of about 4,400 m2. In this study, the energy, CO$_2$ emissions, and other measures were reported.

After 50 years of operation, Junnila et al. (2006) calculated the breakdown of total energy use for the Finnish office building to be: materials (6.4%), construction (2.1%), use-phase (87.1%), maintenance (4.1%), end-of-life (0.3%). In terms of CO$_2$ emissions, this breakdown was: materials (9.8%), construction (1.5%), use-phase (83.0%), maintenance (5.3%), end-of-life (0.4%).

Similarly, after 50 years of operation, Junnila et al. (2006) calculated the breakdown of total energy use for the United States office building to be: materials (8.7%), construction (1.5%), use-phase (82.9%), maintenance (6.0%), end-of-life (0.9%). In terms of CO$_2$ emissions, this breakdown was: materials (7.7%), construction (1.5%), use-phase (85.0%), maintenance (5.0%), end-of-life (0.8%).

After 50 years, the Finnish building consumed about 35% less total energy and emitted about 49% less total CO$_2$ than the office building in the United States (Junnila, Horvath, & Guggemos, 2006). In either case, despite the differences in climate and location, the two offices buildings had a similar breakdown of embodied energy (and CO$_2$ emissions) and operating energy (and CO$_2$ emissions).

2.7.3.5 Scheuer et al.’s Study

In this study, the authors conducted a comprehensive LCA of a 7,300 m2, six-storey university building with a projected lifespan of 75 years. The building is located on the University of Michigan campus.

A complete inventory of all the materials was conducted covering the building structure, envelope, interior structure and finishes, as well as the utility and sanitary systems (Scheuer, Keoleian, & Reppe, 2003). As well, energy modelling was conducted to determine the primary energy use associated with the heating, cooling, ventilation, lighting, hot water, and sanitary water consumption. Demolition and end-of-life effects were also accounted for.

The total life-cycle primary energy intensity over the building’s lifespan was calculated by the authors to be about 316 GJ/m2. The production of the building materials, their transportation to site, and construction of the building was responsible for about 2.2% (7.0 GJ/m2) of the total life-cycle primary energy of the building. HVAC, electricity, and water services (i.e. building operations) accounted for 97.7% (309 GJ/m2) of the total life-cycle primary energy. Only about 0.2% (0.63 GJ/m2) of the total life-cycle primary energy intensity was attributed to the building demolition. In
In this case, the operating phase primary energy demand exceeds the total embodied energy after only about 3.1 years.

In this particular study, the authors also calculated the GWP of the building. The total life-cycle GWP over the building’s lifespan was calculated to be about 18.5 tonnes of CO$_2$ eq./m2. They found that the operating phase alone accounted for about 96.5% (17.8 tonnes of CO$_2$ eq./m2) of the total life-cycle GWP. The production of the building materials, their transportation to site, and construction of the building was responsible for about 3.2% (0.59 tonnes of CO$_2$ eq./m2) of the total life-cycle GWP. Only about 0.2% (0.04 tonnes of CO$_2$ eq./m2) of the total life-cycle GWP was attributed to the building demolition.

The findings in this study are much the same as other LCA studies of buildings. The operating phase was by far the greatest contributor to the total life-cycle energy and GWP. The authors noted that one of the greatest limitations on the applicability of LCA research is that it is difficult to do without the building having already been constructed. In fact, they state that “in order for life-cycle modeling to fulfill its potential in assisting design decisions, there is a need for detailed data on specific building systems and components” (Scheuer, Keoleian, & Reppe, 2003).

2.7.3.6 John et al.’s Study

This study is one of the most comprehensive LCA studies of multi-storey buildings that have been conducted to date. The study was completed for the Ministry of Agriculture and Forestry in New Zealand.

In this study, the authors modelled the life-cycle performance of four similar office buildings constructed from concrete, steel, timber, and timber-plus (similar to timber building but timber was also used for the exterior cladding, windows, and ceiling). All the buildings were based on an actual six-storey 4,200 m2 office building located in New Zealand. Both the primary energy and the GWP were calculated over the life of the building for the various building components. The study assumed a 60 year lifespan for all the buildings.

The authors determined that in every case, the life-cycle operating energy and operating GWP of all four buildings contributed towards the total life-cycle energy and total GWP far more than the total life-cycle embodied energy and embodied GWP. In particular, the total life-cycle operating energy (and total life-cycle operating GWP) of the concrete, steel, timber, and timber-plus buildings were 89% (72%), 87% (73%), 91% (86%), and 94% (95%) of the total life-cycle energy (and total life-
cycle GWP) (John, Nebel, Perez, & Buchanan, 2008). On the other hand, the total life-cycle embodied energy (and total life-cycle embodied GWP) of the concrete, steel, timber, and timber-plus buildings were 10% (25%), 12% (25%), 8% (18%), and 6% (13%) of the total life-cycle energy (and total life-cycle GWP) (John, Nebel, Perez, & Buchanan, 2008).

Once more, this study showed that for a typical multi-storey office building, the operating effects far outweigh the embodied effects after 60 years, even for buildings that use different materials.

2.7.3.7 A Summary of Previous LCA Studies of Buildings

So far, a brief summary of the LCA studies of buildings that are relevant to this project have been presented. However, it would also be useful to have a summary of a wider scope of LCA studies of commercial buildings, in order to understand the range of values for the total life-cycle energy and GWP of commercial buildings. In this section, the results from a number of LCA studies of buildings have been summarized in Table 2-4.

Only those LCA studies that focus on commercial type buildings have been included in Table 2-4. These include office buildings, schools, and mixed-use buildings (combination of office, retail, and other). A preference was taken towards those LCA studies that looked at buildings located in Canada. Both the operating effects and the embodied effects were recorded for each study. It was decided not to include residential buildings in this review, as residential buildings tend to have a different operating schedule than commercial buildings and are generally constructed using different systems. Therefore, a focus on commercial type buildings was taken.

From Table 2-4, it can be seen that the values for annual total life-cycle operating energy per gross floor area varied from 0.23 to 4.23 GJ/m²/yr. Similarly, the operating GWP varied from 0.02 to 0.24 tonnes of CO₂ eq./m²/yr. The total life-cycle embodied energy per gross floor area varied from 3.42 to 22.45 GJ/m². Likewise, the total embodied GWP varied from 0.20 to 0.89 tonnes of CO₂ eq/m².
<table>
<thead>
<tr>
<th>Source</th>
<th>Location</th>
<th>Type of Building (# of Storeys)</th>
<th>Gross Floor Area (m²)</th>
<th>Lifespan (years)</th>
<th>1 Operating Energy (GJ/m²/yr)</th>
<th>Operating GWP (tonnes of CO₂ eq./m²/yr)</th>
<th>Initial Embodied Energy (GJ/m²)</th>
<th>Recurring Embodied Energy (GJ/m²)</th>
<th>Total Embodied Energy (GJ/m²)</th>
<th>Total Embodied GWP (tonnes of CO₂ eq./m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Cole & Kernan, 1996)</td>
<td>Toronto, Canada</td>
<td>3 OFF, Timber Frame (3)</td>
<td>4,620</td>
<td>50</td>
<td>1.64 (U)</td>
<td>N/A</td>
<td>4.26</td>
<td>6.32</td>
<td>10.58</td>
<td>N/A</td>
</tr>
<tr>
<td>(Cole & Kernan, 1996)</td>
<td>Toronto, Canada</td>
<td>3 OFF, Steel Frame (3)</td>
<td>4,620</td>
<td>50</td>
<td>1.64 (U)</td>
<td>N/A</td>
<td>4.86</td>
<td>6.60</td>
<td>11.46</td>
<td>N/A</td>
</tr>
<tr>
<td>(Cole & Kernan, 1996)</td>
<td>Toronto, Canada</td>
<td>3 OFF, Concrete Frame (3)</td>
<td>4,620</td>
<td>50</td>
<td>1.64 (U)</td>
<td>N/A</td>
<td>4.52</td>
<td>6.42</td>
<td>10.94</td>
<td>N/A</td>
</tr>
<tr>
<td>(Sartori & Hestnes, 2007)</td>
<td>Varies</td>
<td>Varies</td>
<td>Varies</td>
<td>Varies</td>
<td>0.23 to 4.23 (P)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>0.04 GJ/m²/yr to 0.5 GJ/m²/yr</td>
<td>N/A</td>
</tr>
<tr>
<td>(Junnila, Horvath, & Guggemos, 2006)</td>
<td>Finland</td>
<td>OFF, Concrete Frame (4)</td>
<td>4,400</td>
<td>50</td>
<td>0.93 (U)</td>
<td>0.05</td>
<td>4.50</td>
<td>2.16</td>
<td>7.64</td>
<td>6.05</td>
</tr>
<tr>
<td>(Junnila, Horvath, & Guggemos, 2006)</td>
<td>Midwest, U.S.A.</td>
<td>OFF, Concrete Frame (5)</td>
<td>4,400</td>
<td>50</td>
<td>1.35 (U)</td>
<td>0.10</td>
<td>8.32</td>
<td>4.91</td>
<td>13.98</td>
<td>0.89</td>
</tr>
<tr>
<td>(Morrison Hershfield Ltd., 2009)</td>
<td>Ottawa, Canada</td>
<td>MIX, Concrete Frame (2)</td>
<td>462</td>
<td>60</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>14.12</td>
<td>0.75</td>
</tr>
<tr>
<td>(Morrison Hershfield Ltd., 2009)</td>
<td>Winnipeg, Canada</td>
<td>OFF, Steel and Wood Frame (4)</td>
<td>3,030</td>
<td>60</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>18.69</td>
<td>0.80</td>
</tr>
<tr>
<td>(Morrison Hershfield Ltd., 2009)</td>
<td>Alberta, Canada</td>
<td>MIX, Concrete and Steel Frame (6)</td>
<td>8,882</td>
<td>60</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>11.21</td>
<td>0.81</td>
</tr>
<tr>
<td>(Morrison Hershfield Ltd., 2009)</td>
<td>Vancouver, Canada</td>
<td>MIX, Concrete and Steel Frame (4)</td>
<td>1,360</td>
<td>60</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>12.57</td>
<td>0.68</td>
</tr>
<tr>
<td>(Treloar, Fay, Ilozor, & Love, 2001)</td>
<td>Melbourne, Australia</td>
<td>OFF, Concrete Frame (3)</td>
<td>6,480</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>10.70</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>(Ding, 2007)</td>
<td>New South Wales, Australia</td>
<td>SCH (varies)</td>
<td>Varies</td>
<td>60</td>
<td>0.29 to 1.61 (P)</td>
<td>N/A</td>
<td>2.95 to 12.96</td>
<td>5.87 to 9.49</td>
<td>8.83 to 22.45</td>
<td>N/A</td>
</tr>
<tr>
<td>(Scheuer, Keoleian, & Reppe, 2003)</td>
<td>Michigan, U.S.A.</td>
<td>SCH, Steel Frame (6)</td>
<td>7,300</td>
<td>75</td>
<td>4.12 (P)</td>
<td>0.24</td>
<td>N/A</td>
<td>N/A</td>
<td>7.63</td>
<td>0.63</td>
</tr>
<tr>
<td>(John, Nebel, Perez, & Buchanan, 2008)</td>
<td>New Zealand</td>
<td>OFF, Steel Frame (6)</td>
<td>4,200</td>
<td>60</td>
<td>0.55 (P)</td>
<td>0.02</td>
<td>0.52</td>
<td>0.52</td>
<td>5.09</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Table 2-4: A Summary of Relevant LCA Studies of Commercial Buildings
Table 2-4 (Cont.): A Summary of Relevant LCA Studies of Commercial Buildings

<table>
<thead>
<tr>
<th>Source</th>
<th>Location</th>
<th>Type of Building (# of Storeys)</th>
<th>Gross Floor Area (m²)</th>
<th>Lifespan (years)</th>
<th>Operating Energy (GJ/m²/yr)</th>
<th>Operating GWP (tonnes of CO₂ eq/m²/yr)</th>
<th>Initial Embodied Energy (GJ/m²)</th>
<th>Recurring Embodied Energy (GJ/m²)</th>
<th>Total Embodied Energy (GJ/m²)</th>
<th>Total Embodied GWP (tonnes of CO₂ eq/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>John, Nebel, Perez, & Buchanan, 2008</td>
<td>New Zealand</td>
<td>OFF, Concrete Frame (6)</td>
<td>4,200</td>
<td>60</td>
<td>0.54 (P)</td>
<td>0.02</td>
<td>3.28</td>
<td>0.41</td>
<td>4.15</td>
<td>0.45</td>
</tr>
<tr>
<td>John, Nebel, Perez, & Buchanan, 2008</td>
<td>New Zealand</td>
<td>OFF, Timber Frame (6)</td>
<td>4,200</td>
<td>60</td>
<td>0.57 (P)</td>
<td>0.02</td>
<td>2.76</td>
<td>0.45</td>
<td>3.42</td>
<td>0.20</td>
</tr>
<tr>
<td>Yohanis & Norton, 2002</td>
<td>UK</td>
<td>OFF, Steel Frame (1)</td>
<td>584</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>9.5</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Range

| Range | 0.23 to 4.23 (P) | 0.02 to 0.24 | 0.52 to 12.96 | 0.45 to 9.49 | 3.42 to 22.45 | 0.20 to 0.89 |

Note: 1 kWh = 0.0036 GJ

Note: OFF = Office, SCH = School, MIX = Mixed-Use (Office, Retail, Other)

1. (P) = Primary Energy, (S) = Secondary Energy, (U) = Unknown
2. Assumed that embodied energy was calculated in terms of primary energy (unclear in most studies)
3. Office buildings with no underground parking
4. Cole and Kernan (1996) also calculated operating energy for same building located in Vancouver, Canada to be 47.95 GJ/m² (0.96 GJ/m²/yr)
5. Sartori and Hestnes (2007) conducted a literature review of 60 buildings (both residential and non-residential) from nine different countries. The range of values in this table were estimated from their graphs
6. GWP is presented in terms of CO₂ not CO₂ equivalent
7. Also includes energy (and/or GWP) for end-of-life
8. In this study, 20 public secondary schools were examined

2.7.4 Problems with LCA Studies of Buildings

As alluded to thus far, there are several problems with the way that LCA’s of buildings have been conducted in the literature that make it difficult (if not impossible) to compare one LCA study to the next. Some of the more important limitations and discrepancies between the LCA studies from the literature are discussed in the paragraphs below.

Perhaps the most systemic problem with the LCA studies of buildings in the literature today is the lack of consistency when it comes to the life-cycle inventories (LCI) of building materials. Only in recent years has there been a concerted effort to quantify the embodied energy and GWP of the numerous building materials. However, to date there is still no industry standard LCI that is recognized. Without an industry standard LCI, it is virtually impossible to compare the results of one
LCA study to the next. Each study in the literature tends to use different embodied energy and GWP numbers for the various building materials (see Table 2-1 and Table 2-2). Historically it has been left up to the LCA researchers to establish a range of possible values for the embodied energy and GWP of the various building materials and to estimate the expected lifespan of the materials. The significant variation in LCI data from one LCA study to the next makes it extremely difficult to compare results.

Another problem with the LCA studies of buildings in the literature is the confusion between primary energy and secondary energy. It is extremely important to distinguish between the two when talking about the embodied energy and the operating energy of a building. Secondary energy is the energy used by the final consumer. In terms of buildings, this is the heating, cooling, lighting, etc. energy use of a building. On the contrary, primary energy is a measure of the total energy including the energy used by the final consumer (i.e. the secondary energy) as well as the energy used in transforming one energy form to another (like coal to electricity), the energy used by providers in providing energy to the market, and more. In other words, the primary energy is a complete measure of the total energy, as it includes the energy requirements upstream of the final end use, such as the energy generation and transportation. In the literature, many of the studies neglect to mention if their results are in terms of primary or secondary energy. This is a problem, as the results cannot be compared with any degree of certainty from one LCA study to the next.

The absence of any data on the GWP of buildings in the literature is also a problem. It is difficult to find comprehensive LCA studies of energy use in buildings, but it is nearly impossible to find detailed LCA studies of the GWP of buildings. Those studies that do attempt to quantify the GWP of buildings either present the results in terms of \(\text{CO}_2 \) emissions or \(\text{CO}_2 \) equivalent emissions. Carbon dioxide equivalency (\(\text{CO}_2 \) eq.) is a measure of the equivalent amount of \(\text{CO}_2 \) that would have the same GWP as a mixture of \(\text{CO}_2 \) and other greenhouse gases in the Earth’s atmosphere. Therefore, it includes a measure of other gases such as methane, nitrous oxide, ozone, even water vapour, which all have an ability to trap heat in the Earth’s atmosphere and therefore contribute towards global warming. Those studies that only report \(\text{CO}_2 \) emissions fail to account for these other gases.

The level of complexity varies significantly between LCA studies in the literature. Some studies are very detailed and comprehensive, while others only attempt a simple approximation of the life-cycle environmental effects. For instance, some studies consider a wide range of building components such as the exterior walls, roofs, windows, doors, structure, interior finish, services, foundations, etc.
However, other studies only consider a few of these components in detail. The number of building materials that are considered in each case also differs. Some studies provide a detail material takeoff, while others only estimate the materials in the building on a gross scale. Not every LCA study considers the end-of-life effects, construction effects, transportation effects, or recurring effects. In other words, the scope of the various LCA studies can be drastically different, making a direct comparison between studies very challenging. On top of this, some LCA studies make use of advanced LCA software programs to conduct their analysis. Others tend to use simple material takeoffs and hand calculations to come up with an estimate of embodied effects and operating effects for a building.

A big problem that everyone who conducts a LCA of a building faces is a lack of information at the design phase of the project (which is when a detailed LCA would be most helpful). It is difficult to estimate the total life-cycle environmental effects of a building accurately when the building has yet to be designed or built. A detailed and accurate LCA of a building is possible only after it is designed or built. However, at this point one could argue that a LCA is not as useful, as the impact of the building on the environment has already been set. Scheuer, Keoleian, & Reppe (2003) state that one of the greatest limitations of LCA research for buildings is that it is difficult to do without the building having already been constructed. In fact, “in order for life-cycle modeling to fulfill its potential in assisting design decisions, there is a need for detailed data on specific building systems and components” (Scheuer, Keoleian, & Reppe, 2003). This is currently lacking in the literature.

Finally, a significant deficiency in the literature is the lack of information on the life-cycle environmental burdens of single-storey retail buildings. In fact, no relevant LCA studies dealing with single-storey retail buildings could be located in the literature. Most LCA studies for commercial buildings have been done for multi-storey buildings (usually office buildings or mixed-use buildings).
Chapter 3
Methodology: Life-Cycle Assessment of Building Components

3.1 Introduction

The LCA process in this study was carried out in accordance with the four phase approach suggested in ISO 14044 (ISO, 2006). According to ISO 14044, the first phase of any LCA study is to define a goal (ISO, 2006). The primary goal of this study was to conduct a comprehensive LCA for the components of a single-storey retail building located in Toronto, Canada, to determine which building components contribute the most towards the total life-cycle energy use and GWP after 50 years.

To date, the vast majority of LCA studies of buildings tend to focus on residential and multi-storey office buildings. Despite the fact that single-storey commercial buildings represent a large proportion of buildings in North America, there is little to no research on the LCA of these types of buildings. There is a need for a comprehensive LCA study of single-storey commercial buildings in Canada, specifically single-storey retail buildings. In particular, there is a need for a study that looks at a broad scope of building components for a single-storey retail building and that puts the life-cycle impacts of these various components into perspective. That is the goal of this study.

In order to evaluate the components of a single-storey retail building and to put the life-cycle impacts of the various components into perspective, the following two part methodology was followed:

1. First, a comprehensive LCA was conducted for the major components of a single-storey retail building in Canada. It is worth mentioning that many of the building components that were studied are also found in residential buildings. These building components can be divided into seven categories: exterior infill walls, roofs, floors, windows and doors, structural systems (beams and columns), foundations, and interior partitions. A description of these building components, along with an explanation of the method that was followed to calculate their total life-cycle energy use and GWP, is presented here in Chapter 3.

2. Next, the focus was expanded to include entire building systems rather than only individual building components. A detailed LCA was performed for five single-storey retail buildings located in Toronto. The energy use and GWP of the various components of a single-storey retail building (exterior infill walls, roofs, floors, windows and doors, structural systems, foundations, and interior partitions) were compared to the overall energy use and GWP of an entire building. The five case study retail buildings are described in Chapter 4.
3.2 Description of Baseline Retail Building

In order to conduct a comprehensive LCA of energy use and GWP for the components of a single-storey retail building, it was useful to establish a baseline building. The baseline building was created to represent the features of a typical single-storey retail building that would be constructed in Canada today. Using the baseline retail building as a datum, alternative design strategies were explored for the various building components (exterior infill walls, roofs, floors, windows and doors, structural systems, foundations, and interior partitions).

The baseline retail building was established based on a combination of ASHRAE Standard 90.1-2007 (ASHRAE, 2007) requirements for climate zone 6 (Toronto, Canada) and the RSMeans Assemblies Cost Data (RSMeans, 2003). A rendering of the baseline retail building can be seen in Figure 3-1.

A detailed description of the baseline retail building can be found in Appendix A. This includes architectural floor plans, sections, elevations, structural drawings, as well as a summary of the key building descriptors. However, a brief summary of some important features of the baseline retail building are presented next.

- Located in Toronto, Ontario, Canada
- 50 year lifespan
- Stand alone retail building
- Single-storey with a small mezzanine for offices
- Gross floor area (not including mezzanine) of 6,300 ft\(^2\) (586 m\(^2\))
- Building orientation: rectangular shape (long dimension aligned along E-W axis)
- Approximately 17% window-to-wall ratio
- Hours of operation: Monday to Saturday, 8am-9pm and Sunday, 9am-6pm
- Cooling equipment: direct expansion (DX) coils (electric)
- Heating equipment: combustion furnace (natural gas)
- System type: packaged single zone DX with furnace (central packaged single zone air conditioner with combustion furnace)
- Thermostat set-points:
 - Occupied spaces: cool to 76.0°F (24.4°C) and heat to 70.0°F (21.1°C)
 - Unoccupied spaces: cool to 82.0°F (27.8°C) and heat to 64.0°F (17.8°C)
- Zoning: 100% perimeter zone
- Designed for NBCC 2005 structural loads

A summary of the building components that make up the baseline retail building including: the exterior infill wall, roof, structure, mezzanine floor, windows, doors, interior partitions, and foundations can be found in Table 3-1. As mentioned earlier, these building components were chosen to represent typical assemblies that would be specified for a single-storey retail building in Canada. Although the building components for the baseline retail building were chosen as representative of common practice in Canada, there are countless alternative strategies that could have been chosen. The goal of this study is to investigate the components of a single-storey retail building within a comprehensive LCA, in order to determine which components have the greatest impact on the environment. Therefore, in the next section a range of alternative design strategies for the components of a typical single-storey retail building in Canada are presented.
Table 3-1: Description of Baseline Retail Building Components

<table>
<thead>
<tr>
<th>Exterior Infill Wall</th>
<th>ID: SS-W6 (see Appendix B for details)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>39 mm x 152 mm x 1.21 mm cold-formed steel studs (400 mm o/c) with 50 mm extruded polystyrene rigid insulation and exterior insulation and finish system (EIFS) coating over metal mesh</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Roof</th>
<th>ID: OWSJ-R2 (see Appendix B for details)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>OWSJ (1,200 mm o/c) and metal deck with continuous 75 mm polyisocyanurate insulation and 4-ply built-up asphalt roof assembly</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structure (Beams and Columns)</th>
<th>ID: S-1 (see Appendix B for details)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Conventional braced steel frame (H.S.S. columns and W-section beams). Lateral bracing provide by steel rod X-bracing.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mezzanine Floor</th>
<th>ID: FL-3 (see Appendix B for details)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>OWSJ (1,200 mm o/c) and metal deck with 89 mm concrete topping, vinyl floor tile finish, and drywall ceiling</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Windows (i.e. Curtainwall)</th>
<th>ID: W-9 (see Appendix B for details)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Self-supported aluminum curtainwall system with thermal break (two 6 mm sealed viewable glazing panes with 12.7 mm airspace, no low-E coating, and no argon between panes)</td>
</tr>
</tbody>
</table>
Table 3-1 (Cont.): Description of Baseline Retail Building Components

<table>
<thead>
<tr>
<th>Doors</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ID:</td>
<td>D-2, D-3, D-4 (see Appendix B for details)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Description: | D-2: Insulated steel exterior door with no glazing
D-3: Uninsulated aluminum exterior door with 80% glazing
D-4: Insulated overhead steel door with no glazing | | |

<table>
<thead>
<tr>
<th>Interior Partitions</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ID:</td>
<td>CMU-P1, SS-P2 (see Appendix B for details)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Description: | CMU-P1: 200 mm concrete masonry unit partition
SS-P2: 39 mm x 152 mm x 0.91 mm cold-formed steel studs (600 mm o/c) with two layers of drywall | | |

<table>
<thead>
<tr>
<th>Foundations</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ID:</td>
<td>SOG-5, IF-5, PF-7 (see Appendix B for details)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Description: | SOG-5: 200 mm thick concrete slab-on-grade (30 MPa concrete, average flyash content, and 10 mil poly)
IF-1: Isolated concrete footing with concrete pier (20 MPa concrete and average flyash content)
PF-5: Perimeter concrete strip footing with uninsulated concrete foundation wall (20 MPa concrete strength and average flyash content) | | |

3.3 Identifying Building Components for the LCA

As stated in the introduction of this chapter, the primary goal of this LCA study is to understand the breakdown of energy use and GWP as it pertains to the components of a single-storey retail building in Canada. In order to do this, 220 different building components were analyzed within the framework of a comprehensive LCA. The LCA of these building components was performed over a 50 year lifespan for a commercial building located in Toronto, Canada. These building components represent the spectrum of common assemblies that are used in commercial buildings in Canada, but many of the components are also used in residential buildings. A detailed description of each of the 220 different building components that were studied can be found in Appendix B.
The building components chosen for this study were selected based on two criteria: discussions with building industry professionals and from the RSMeans Assemblies Cost Data (RSMeans, 2003) manual. The RSMeans manual lists a range of typical assemblies for commercial buildings in Canada. The remainder of this section will introduce the range of buildings components that were examined in this study.

3.3.1 Description of Exterior Infill Wall Enclosures

A total of 109 commercial exterior infill wall enclosures were examined in this study. The wall assemblies represent a broad sample of exterior infill walls that are typically used in commercial buildings in Canada. Aside from resisting lateral loads, these walls were not designed for load bearing applications. A complete description of the wall enclosures (including all of the assembly layers and a list of the building material quantities) that were chosen for this study can be found in Appendix B-1.

The various wall assemblies have been classified based on their structural framing material and have been placed into the following eight categories:

- Concrete masonry unit walls (CMU-W)
- Concrete tilt-up walls (CTU-W)
- Wood structural insulated panel walls (WSIP-W)
- Metal structural insulated panel walls (MSIP-W)
- Cold-formed steel stud walls (SS-W)
- Wood stud walls (WS-W)
- Pre-engineered steel building walls (PENG-W)
- Aluminum curtainwalls (CWALL-W)

Displayed in Figure 3-2 are the typical assembly layers that were modelled for each of the exterior infill wall enclosures. In general, each wall consisted of: an exterior cladding material, an air space, exterior installed rigid insulation (if applicable), a water barrier membrane, the structural framing (with cavity insulation if applicable), and an interior finish. The air barriers (AB), vapour barriers/retarders (VB/VR), and water barriers (WB) were selected and located within the wall assemblies based on building science principles for a cold-climate in Canada.
The wall types examined in this study are listed in Table 3-2, along with a breakdown of the different options that were explored. It is important to note that most wall assemblies are a collection of multiple sub-assemblies, layers, and materials that all act together as part of a greater system. A change to one of these layers can have a significant impact on the performance of the entire enclosure (both in terms of thermal resistance and total energy use or GWP). One of the goals of this study is to compare the LCA results for various different types of walls. Therefore, it is not enough to simply look at one or two different steel stud walls for example. The interdependency of the layers within a wall assembly means that a change to one layer or material can have an impact on the remaining layers. It was important to look at a broad range of different wall enclosures, including several variations of the same wall. It was important to consider an array of strategies for each wall type that included different cladding materials, insulation strategies, structural materials, and finishes.

Table 3-2: Range of Exterior Infill Wall Design Strategies

<table>
<thead>
<tr>
<th>Wall Type</th>
<th>Variables</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMU-W</td>
<td>Cladding</td>
<td>− Standard (Ontario) clay brick cladding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− Split-faced concrete brick cladding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− 125 mm concrete pre-cast cladding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− Pine wood bevel siding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− 26 ga. (0.46 mm) galvanized corrugated cold-formed steel (CFS) cladding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− EIFS coating over metal mesh</td>
</tr>
<tr>
<td></td>
<td>Insulation</td>
<td>− 50 mm exterior installed extruded polystyrene rigid insulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− 100 mm exterior installed extruded polystyrene rigid insulation</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>− 140 mm fibreglass batt insulation installed between CFS studs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− 200 mm standard weight concrete block with grouted 15M rebars @ 400 mm o/c</td>
</tr>
<tr>
<td>Wall Type</td>
<td>Variables</td>
<td>Options</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>Cladding</td>
<td>− None</td>
</tr>
<tr>
<td>CTU-W</td>
<td></td>
<td>− 50 mm concrete front wythe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− Standard (Ontario) clay brick cladding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− Split-faced concrete brick cladding</td>
</tr>
<tr>
<td></td>
<td>Insulation</td>
<td>− None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− Same options as CMU</td>
</tr>
<tr>
<td></td>
<td>Interior</td>
<td>− Latex/alkyd based paint</td>
</tr>
<tr>
<td></td>
<td>Finish</td>
<td>− Regular gypsum board</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− 26 ga. (0.46 mm) galvanized corrugated CFS cladding</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>− 150 mm concrete tilt-up wall (30 MPa, 9% flyash) with reinforcement and miscellaneous steel angles</td>
</tr>
<tr>
<td>WSIP-W</td>
<td>Cladding</td>
<td>− Same options as CMU</td>
</tr>
<tr>
<td></td>
<td>Insulation</td>
<td>− 50 mm exterior installed extruded polystyrene rigid insulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− 100 mm extruded polystyrene rigid insulation between two layers of OSB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− 150 mm extruded polystyrene rigid insulation between two layers of OSB</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>− Wood structural insulated panel comprised of 12 mm OSB, extruded polystyrene insulation (thickness varies), and 12 mm OSB with 200 mm, 14 ga. (1.90 mm) galvanized CFS Z-girts @ 1,200 mm o/c</td>
</tr>
<tr>
<td>MSIP-W</td>
<td>Insulation</td>
<td>− 150 mm polyurethane foam insulation installed between two corrugated CFS sheets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− 100 mm polyurethane foam insulation installed between two corrugated CFS sheets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− 75 mm polyurethane foam insulation installed between two corrugated CFS sheets</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>− Metal structural insulated panel comprised of 26 ga. (0.46 mm) galvanized corrugated CFS cladding, polyurethane foam insulation (thickness varies), and 26 ga. (0.46 mm) galvanized corrugated CFS cladding with 200 mm, 14 ga. (1.90 mm) galvanized CFS Z-girts @ 1,200 mm o/c</td>
</tr>
<tr>
<td>SS-W</td>
<td>Cladding</td>
<td>− Same options as CMU</td>
</tr>
<tr>
<td></td>
<td>Insulation</td>
<td>− Same options as CMU</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>− 39 mm x 152 mm 18 ga. (1.21 mm) CFS studs @ 400 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− 39 mm x 152 mm 16 ga. (1.52 mm) CFS studs @ 600 mm</td>
</tr>
<tr>
<td>WS-W</td>
<td>Cladding</td>
<td>− Same options as CMU</td>
</tr>
<tr>
<td></td>
<td>Insulation</td>
<td>− Same options as CMU (except wood studs not CFS studs)</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>− 38 mm x 140 mm wood studs @ 400 mm o/c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− 38 mm x 140 mm wood studs @ 600 mm o/c</td>
</tr>
<tr>
<td>PENG-W</td>
<td>Insulation</td>
<td>− None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− 140 mm fibreglass batt insulation (compressed at girt locations)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− 150 mm extruded polystyrene rigid insulation between two corrugated CFS sheets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− 250 mm extruded polystyrene rigid insulation between two corrugated CFS sheets</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>− 26 ga. (0.46 mm) galvanized corrugated CFS cladding with 200 mm, 14 ga. (1.90 mm) galvanized CFS Z-girts @ 1,200 mm o/c</td>
</tr>
<tr>
<td>CWALL-W</td>
<td>Cladding</td>
<td>− Painted metal spandrel panel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− Opaque glazing spandrel panel</td>
</tr>
<tr>
<td></td>
<td>Insulation</td>
<td>− None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>− 90 mm high density fibreglass insulation with metal backpan</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>− Self-supporting aluminum curtainwall system with thermal break (100 mm deep mullions spaced 2,000 mm o/c vertically and 1,500 mm o/c horizontally</td>
</tr>
</tbody>
</table>
3.3.2 Description of Roof Enclosures

A total of 58 different commercial roof enclosures were examined in this study. In the literature, very little research has been carried out on the LCA of roof enclosures, especially for single-storey commercial buildings. The roof enclosures that were included in this study represent a broad sample of typical roof enclosures for a commercial building in Canada. A complete description of the roofs (including all of the assembly layers and the material quantities) can be found in Appendix B-2.

The various roof assemblies have been classified based on their structural framing material and have been placed into the following seven categories:

- Concrete hollow core roof (CHC-R)
- Open web steel joist roofs (OWSJ-R)
- Cold-formed steel roofs (CFS-R)
- Glulam roofs (GLU-R)
- Wood structural insulated panel roofs (WSIP-R)
- Metal structural insulated panel roofs (MSIP-R)
- Pre-engineered steel building roofs (PENG-R)

Displayed in Figure 3-3 is the typical assembly layers that were identified for each of the roofs. In general, each roof enclosure consisted of: a roof covering, a roof coverboard (if required), insulation, a water barrier membrane, the roof deck, the roof structure, and a suspended acoustic tile ceiling.

![Figure 3-3: Typical Assembly Layers for Roof Enclosures](image-url)
The roof types examined in this study are listed in Table 3-3, along with a breakdown of the different options that were explored. Similar to the exterior infill walls, a wide range of different roofs were identified, including many variations of the same roof type. It was acknowledged that even within the same type of roof, there could be significant variation in terms of the thermal resistance, the total energy use, and GWP. It was important to consider an array of strategies for each roof type that included different roof coverings, insulation strategies, and structural materials.

Table 3-3: Range of Roof Design Strategies

<table>
<thead>
<tr>
<th>Roof Type</th>
<th>Variables</th>
<th>Options</th>
</tr>
</thead>
</table>
| **CHC-R** | Roof Covering | – SBS modified bitumen membrane roof assembly
 – 4-ply built-up asphalt roof assembly with gravel ballast
 – EPDM roof assembly with gravel ballast
 – PVC membrane roof assembly with gravel ballast
 – Commercial 26 ga. (0.46 mm) galvanized standing seam steel roof
 – Green roof assembly |
| | Insulation | – 75 mm polyisocyanurate insulation
 – 100 mm extruded polystyrene rigid insulation (green roof assembly only)
 – 150 mm polyisocyanurate insulation
 – 200 mm extruded polystyrene rigid insulation (green roof assembly only) |
| | Structure | – 200 mm concrete hollow core roof slab (45+ MPa, 9% flyash, typical reinforcement) |
| **OWSJ-R** | Roof Covering | – Same options as CHC |
| | Insulation | – Same options as CHC |
| | Structure | – 550 mm open web steel joists @ 1,200 mm o/c with 39 mm x 22 ga. (0.76 mm) galvanized corrugated CFS deck |
| **CFS-R** | Roof Covering | – Same options as CHC |
| | Insulation | – Same options as CHC |
| | Structure | – (1) – 39 mm x 245 mm, 16 ga. (1.52 mm) galvanized CFS C-joist @ 600 mm o/c with 19 mm plywood deck
 – (2) – 39 mm x 245 mm, 16 ga. (1.52 mm) galvanized CFS C-joists back-to-back @ 600 mm o/c with 19 mm plywood deck
 – 600 mm deep CFS trusses spaced @ 600 mm with 19 mm plywood deck
 – 762 mm deep CFS trusses spaced @ 1,200 mm with 39 mm x 22 ga. (0.76 mm) galvanized corrugated CFS deck |
| **GLU-R** | Roof Covering | – Same options as CHC |
| | Insulation | – Same options as CHC |
| | Structure | – 80 mm x 494 mm 24f-E D-Fir-L glulam joists @ 1,800 mm o/c with 38 mm tongue and groove solid wood plank decking |
Table 3-3 (Cont.): Range of Roof Design Strategies

<table>
<thead>
<tr>
<th>Roof Type</th>
<th>Variables</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSIP-R</td>
<td>Roof Covering</td>
<td>Same options as CHC</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>Wood structural insulated panel comprised of 12 mm OSB, extruded polystyrene insulation (thickness varies), and 12 mm OSB with 229 mm, 14 ga. (1.90 mm) galvanized CFS Z-shape purlins @ 1,200 mm o/c</td>
</tr>
<tr>
<td>MSIP-R</td>
<td>Roof Covering</td>
<td>None, Green roof assembly</td>
</tr>
<tr>
<td></td>
<td>Insulation</td>
<td>150 mm polyurethane foam insulation installed between two corrugated CFS sheets, 100 mm polyurethane foam insulation installed between two corrugated CFS sheets, 75 mm polyurethane foam insulation installed between two corrugated CFS sheets</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>Metal structural insulated panel comprised of 26 ga. (0.46 mm) galvanized corrugated CFS cladding, polyurethane foam insulation (thickness varies), and 26 ga. (0.46 mm) galvanized corrugated CFS cladding with 229 mm, 14 ga. (1.90 mm) galvanized CFS Z-shape purlins @ 1,200 mm o/c</td>
</tr>
<tr>
<td>PENG-R</td>
<td>Insulation</td>
<td>None, 150 mm fibreglass batt insulation, 150 mm extruded polystyrene rigid insulation between two corrugated CFS sheets, 250 mm extruded polystyrene rigid insulation between two corrugated CFS sheets</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>26 ga. (0.46 mm) galvanized corrugated CFS cladding with 200 mm, 16 ga. (1.52 mm) galvanized CFS Z-shape purlins @ 1,200 mm o/c</td>
</tr>
</tbody>
</table>

It is important to note that not all roof joists can span the same distance. Some reach their optimum design state when spanning longer distances and some at shorter spans. To account for this variability, each roof joist was designed for a typical span that it would likely be used for, rather than for one standard span for all. This ensured that unfair advantage/disadvantage was not placed on one system over another, by designing it for a span for which it was not intended. Each roof was designed for loads according to Part 4 of the NBCC 2005 (Canadian Commission on Building and Fire Codes, 2006) using the typical design span.

3.3.3 Description of Structural Systems

Three different structural systems were examined in this study. The structural systems that were looked at are described in more detail in Appendix B-3.

For the purposes of this study, the structural system is defined as the primary structural components of a building including the beams and columns. In this study, the wall framing and roof purlins are included in the exterior infill wall and roof assemblies respectfully. As this study is specifically dealing with a single-storey retail building, it was important to identify the most common types of
structural systems that are used in these types of buildings today. Those structural systems include: conventional hot-rolled steel systems, heavy timber systems, and pre-engineered steel building systems. Previous LCA studies have examined many of the conventional types of structural systems including: hot-rolled steel, timber, and concrete structures. However, there is almost no research on the environmental impact of pre-engineered steel building systems, in comparison to other conventional structural systems. Pre-engineered building systems are highly optimized structural systems from a materials and cost perspective. It is thought that this high level of material optimization will translate into a structural system that is very competitive in terms of total life-cycle energy use and GWP. Therefore, one of the major contributions of this study will be the detailed LCA of a pre-engineered steel building system, which is currently lacking in the literature.

It should be noted that structural systems are very unique to the characteristics of an individual project. Therefore, rather than trying to evaluate the total life-cycle energy use and GWP for countless different arrangements of beams and columns here, the results in Appendix B-3 were calculated per m² of floor area for each type of structural system. A full LCA of the three different structural systems as applied to a typical single-storey retail building in Canada will be discussed in more detail in Chapter 4.

3.3.4 Description of Floor Assemblies

A total of five different commercial floors were examined in this study. A complete description of the floor assemblies (including all of the assembly layers and the material quantities) that were examined can be found in Appendix B-4.

In this study, only single-storey retail buildings were examined. Therefore, only the most common floor assemblies were examined. The floor assemblies in this study were restricted to typical floor systems that would be used for a mezzanine level where offices are located. Each floor was designed for structural loads according to Part 4 of the NBCC 2005 (Canadian Commission on Building and Fire Codes, 2006) using a typical design span (similar to the method described for the roof enclosures).

Figure 3-4 illustrates the typical assembly layers that were modelled for each of the floor systems. In general, each floor system consisted of: vinyl floor tile secured with adhesive, a floor deck, a floor structure (with fiberglass batt insulation if required), and two layers of regular gypsum board with steel resilient channels (if required).
3.3.5 Description of Windows and Doors

A total of nine different windows and six different doors were examined in this study. The windows and doors were chosen to represent both what is typically used in commercial buildings in Canada today, as well as some more progressive alternatives. A complete description of the windows and doors that were chosen for this study can be found in Appendix B-5. Figure 3-5 displays the typical components that were modelled for the windows and doors in this study.

In general, each window consisted of a window frame and a glazing unit. No operable windows were considered. Each door consisted of a door frame and glazing (if applicable). The list of doors
examined in this study included: exterior doors, interior doors, and an overhead sectional door. In each case, the frame material and the characteristics of the glazing were varied when populating the list of windows and doors to examine in this study.

The windows and doors examined in this study are listed in Table 3-4, along with a breakdown of the different options that were explored. In general, the frame material was varied in each case as well as the glazing (from typical glazing to a more progressive alternative).

Table 3-4: Range of Window and Door Design Strategies

<table>
<thead>
<tr>
<th>Type</th>
<th>Variables</th>
<th>Options</th>
</tr>
</thead>
</table>
| WINDOWS (W) | Frame material | - Aluminum with thermal break
- PVC clad wood with thermal break
- PVC with thermal break
- Wood with thermal break
- Self-supporting aluminum curtainwall grid system with thermal break |
| | Glazing | - Typical sealed double pane glazing unit with 12.7 mm airspace (no argon between panes) and no low-E coating
- Sealed double pane glazing unit with 12.7 mm argon space (argon gas between panes) and tin based low-E coating (e = 0.05)
- Two 6 mm sealed viewable glazing panes with 12.7 mm airspace (no argon between panes and no low-E coating) (aluminum curtainwall only) |
| DOORS (D) | Type | - Solid wood, no glazing
- Insulated steel, no glazing
- Uninsulated aluminum, 80% glazing |

3.3.6 Description of Foundations

Seven different isolated concrete footing and pier combinations, eight different concrete strip footing and foundation wall combinations, and six different concrete slab-on-grades were examined in this study. All of the foundation options considered in this study can be found in Appendix B-6.

Displayed in Figure 3-6 to Figure 3-8 are the typical components that were identified for each of the foundation systems. Figure 3-6 illustrates a typical isolated concrete footing and pier that was identified for this study. Figure 3-7 shows the typical parameters that were identified for the concrete strip footings and foundation walls. Likewise, Figure 3-8 illustrates the typical parameters for a slab-on-grade. The goal was to populate a list of common foundation systems that are used in commercial buildings in Canada. Typical sizes were selected based on design experience.
The foundation components examined in this study are listed in Table 3-5, along with a breakdown of the different options that were explored. In each case, a number of different options were identified. Variables such as concrete strength, flyash content, insulation, and size were among the options that were explored. Obviously footing size and concrete strength vary depending on the structural loads that must be resisted and the nature of the soil conditions. However, it is still useful to identify a range of typical options for a single-storey retail building.
Table 3-5: Range of Foundation Design Strategies

<table>
<thead>
<tr>
<th>Foundation Type</th>
<th>Variables</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF-FDN</td>
<td>Strength</td>
<td>– 20 MPa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– 30 MPa</td>
</tr>
<tr>
<td></td>
<td>Flyash Content</td>
<td>– Average flyash content (9%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– High flyash content (35%)</td>
</tr>
<tr>
<td></td>
<td>Footing Size</td>
<td>– 1,200 mm x 1,200 mm x 350 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– 1,500 mm x 1,500 mm x 350 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– 1,800 mm x 1,800 mm x 350 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– 2,400 mm x 2,400 mm x 400 mm</td>
</tr>
<tr>
<td>PF-FDN</td>
<td>Strength</td>
<td>– 20 MPa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– 30 MPa</td>
</tr>
<tr>
<td></td>
<td>Flyash Content</td>
<td>– Average flyash content (9%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– High flyash content (35%)</td>
</tr>
<tr>
<td></td>
<td>Exterior Insulation</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– 50 mm extruded polystyrene rigid insulation</td>
</tr>
<tr>
<td>SOG-FDN</td>
<td>Slab Thickness</td>
<td>– 100 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– 200 mm</td>
</tr>
<tr>
<td></td>
<td>Flyash Content</td>
<td>– Average flyash content (9%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– High flyash content (35%)</td>
</tr>
<tr>
<td></td>
<td>Under Slab Insulation</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– 50 mm extruded polystyrene rigid insulation</td>
</tr>
</tbody>
</table>

Figure 3-8: Typical Components of Slab-On-Grade
3.3.7 Description of Interior Partitions

Nine different interior partition walls were examined in this study. A detailed description of each interior partition wall (including all of the assembly layers and the material quantities) can be found in Appendix B-7.

The various interior partition walls have been classified based on their structural framing material and have been placed into the following three categories:

- Concrete masonry unit partition walls (CMU-P)
- Cold-formed steel stud partition walls (SS-P)
- Wood stud partition walls (WS-P)

Figure 3-9 displays the typical assembly layers that were identified for each of the interior partition walls. In general, each interior partition wall consisted of an interior finish on either side of the wall and the structural framing (with cavity installed fiberglass batt insulation if required). The interior partition walls were not designed for load bearing applications.

![Figure 3-9: Typical Assembly Layers for Interior Partition Walls](image)

The interior partition walls examined in this study are listed in Table 3-6, along with a breakdown of the different options that were explored. The primary variables considered were the framing material, the stud spacing, and the presence of insulation for fire-rating and sound dampening.
Table 3-6: Range of Interior Partition Wall Design Strategies

<table>
<thead>
<tr>
<th>Type</th>
<th>Variables</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMU-P</td>
<td>None</td>
<td>Only one concrete masonry unit interior partition wall was examined. It consisted of 200 mm standard weight concrete block with grouted 15M rebars @ 400 mm o/c</td>
</tr>
<tr>
<td>SS-P</td>
<td>Structure</td>
<td>39 mm x 152 mm 20 ga. (0.91 mm) CFS studs @ 400 mm or 39 mm x 152 mm 20 ga. (0.91 mm) CFS studs @ 600 mm</td>
</tr>
<tr>
<td></td>
<td>Insulation</td>
<td>None or 140 mm fibreglass batt insulation installed between CFS studs</td>
</tr>
<tr>
<td>WS-P</td>
<td>Structure</td>
<td>38 mm x 140 mm wood studs @ 400 mm or 38 mm x 140 mm wood studs @ 600 mm</td>
</tr>
<tr>
<td></td>
<td>Insulation</td>
<td>Same as SS</td>
</tr>
</tbody>
</table>

Up to this point, the baseline retail building has been discussed along with the range of alternative building components to be considered in the comprehensive LCA. The remainder of this chapter will concentrate on outlining the method that was followed in carrying out the LCA study. In particular, the scope of the LCA will be identified, as well as the methods that were followed for calculating the life-cycle embodied energy, embodied GWP, operating energy, and operating GWP of a typical single-storey retail building in Canada.

3.4 Scope of LCA

According to ISO 14044, the first step in performing any LCA study is defining the goal and scope (ISO, 2006). The goal of this LCA study has already been discussed: to conduct a comprehensive LCA for the components of a single-storey retail building located in Toronto, Canada, to determine which building components contribute the most towards the total life-cycle energy use and GWP after 50 years. In this section, the scope of the LCA study will be presented.

From one LCA study to the next, there can be substantial variation in the scope of the analysis. Some LCA studies only consider the immediate effects, such as the on-site construction and operating energy of a building (and its components). Other studies get into more detail and look back up the supply chain to account for the environmental effects that are associated with mining the natural resources, manufacturing the building materials, transporting them to the construction site, and so on. Therefore, it is very important to specify the system boundaries as well as the outputs of the LCA analysis. Figure 3-10 illustrates the system boundaries and outputs for the LCA in this study.
Life-Cycle Assessment System Boundaries

Pre-Occupancy Phase
- Raw Material Resource Extraction
- Manufacturing of Building Materials (includes average initial recycled content)
- On-Site Construction of Building and Components
 (includes construction, material, and transportation effects)

Occupancy Phase
- Operation of Building (retail building, located in Toronto, Ontario, Canada, 50 year lifespan)
 (includes regional variations in energy use, transportation, and pre-combustion effects)
- Maintenance, Repair, and Replacement of Building Materials and Components
 (includes construction, material, and transportation effects)

Post-Occupancy Phase
- Demolition of Building and Components
- Recycling and Re-Use of Building Materials
- Disposal of Building Materials to Landfill
 (includes construction, material, and transportation effects)

Note: Trans. = Transportation

Outputs
- Primary Energy Consumption (MJ)
- Global Warming Potential (kg of CO₂ eq.)

Figure 3-10: Life-Cycle Assessment System Boundaries and Outputs
In the LCA of the components of a single-storey retail building in this study, the system boundaries can essentially be divided into three categories: the pre-occupancy phase, the occupancy phase, and the post-occupancy phase. The outputs of this LCA study include the total primary energy consumption and the total GWP for all three phases.

The pre-occupancy phase includes the effects of mining the raw materials, manufacturing the building materials, and constructing the building (and its components) on-site. The occupancy phase is concerned with the operation of the building over its lifespan (i.e. the non-renewable resources used for heating, cooling, ventilating, lighting, etc.) as well as the effects of maintenance, repair, and replacement of the various building components over their lifespan. The post-occupancy phase deals with the demolition of the building, the recycling and re-use of the building materials, and the disposal of the remaining waste materials. At each stage, the total transportation effects are included, along with the construction and material effects. It is also important to note that the primary energy consumption and the GWP associated with each of the three phases were calculated based on region specific data. In this case, Toronto was used as the location for the LCA study. Therefore, the energy generation profile (i.e. percentage of energy from hydroelectric, nuclear, coal, oil, natural gas, etc.) of Toronto was used, as well as the transportation and repair/maintenance profiles of a building located in Toronto. In other words, the outputs were generated from location specific data.

The outputs of this LCA study were generated for a building with a 50 year lifespan. A 50 year lifespan is commonly used in LCA studies of buildings and allows for a reasonable cycle of maintenance, repair, and replacement of building components.

As mentioned, the two main outputs from this LCA study are primary energy consumption and GWP. Recall that primary energy includes “the effects of energy used by the final consumer (secondary energy use), non-energy uses, intermediate uses of energy, energy in transforming one energy form to another (e.g. coal to electricity), and energy used by suppliers in providing energy to the market (e.g. pipeline fuel)” (Natural Resources Canada, 2008). Some LCA studies only consider the secondary energy in their outputs. However, by using primary energy as one of the outputs of this study, the result is a more complete analysis of the actual energy use across all three phases.

3.5 Evaluating Embodied Energy and Embodied GWP

Now that the goal and scope of the LCA have been identified, a discussion of the methods for conducting the LCA can proceed. From the literature review it is known that energy use and GWP for
a building can be divided into embodied effects and operating effects. The method for evaluating the embodied effects in this study will be presented first, followed by a discussion of how the operating effects were accounted for in the next section.

Accurately accounting for the environmental damage caused by a building over its lifespan is a very complex task. Buildings and their components are far from homogenous assemblies and often are comprised of an extensive array of materials that are intertwined within numerous sub-assemblies. Accurately identifying, quantifying, and optimizing all of the materials used over the lifespan of a building from an environmental perspective is extremely complex. A major source of difficult arises from the fact that buildings and their component parts are comprised of numerous different materials and their effects are linked to multiple different industries. Accounting for the energy use and GWP at each stage of the raw material acquisition, processing, manufacturing of building materials, transportation, construction, repair, replacement, and end-of-life effects of whole buildings (and their components) is computationally intense. Fortunately, there is a growing list of computer programs available to calculate the cradle-to-grave environmental impacts of both building materials and whole building projects.

In North America, the ATHENA® Environmental Impact Estimator (ATHENA® EIE) for Buildings is the only software tool available that is specific to the North American industry, can evaluate both whole buildings and individual assemblies, and is based on internationally recognized LCA methods. The ATHENA® EIE for Buildings is quickly becoming the standard for LCA calculations in the North American building industry. The ATHENA® EIE for Buildings v4.0.64 (The Athena Institute, 2010) was used in this study to calculate the embodied energy and embodied GWP for each alternative building component of a single-storey retail building over a 50 year lifespan in Toronto, Canada.

The ATHENA® Institute is a non-profit organization that has been around for over a decade. The Institute is dedicated to improving the sustainability of the built environment by providing a tool that can be used at the conceptual design phase of a building to evaluate and compare alternative design options within a comprehensive LCA methodology.

Recall that according to ISO 14044, the second stage of any LCA study is the definition of a life-cycle inventory LCI) of the materials and their associated environmental impacts (ISO, 2006). As one might imagine, calculating the environmental impacts of all the materials in a building project would be incredibly complex and time consuming. In fact, without access to the energy use and GWP data
from the manufactures of the building materials, this would be impossible. Fortunately, the ATHENA® Institute has spent a great deal of money, time, and resources compiling a comprehensive LCI database for the various building materials and continues to update the database as new information becomes available. A major strength of the LCI database is the fact that it is regionally specific to North America and considers variations in manufacturing technology, energy generation, recycled content, and transportation depending on the location of the building project. The ATHENA® LCI database is widely considered to be the most comprehensive and relevant LCI database for the North American building industry and is the main engine used in the ATHENA® EIE for Buildings.

Using its comprehensive LCI database, the ATHENA® EIE for Buildings v4.0.64 considers the full life-cycle impacts of (The Athena Institute, 2009):

- Building type and lifespan
- Material manufacturing, including resource extraction and initial recycled content
- Related transportation effects
- On-site construction effects
- Regional variation in energy use, energy generation, transportation, and other factors
- Maintenance, repair, and replacement effects over the building’s lifespan
- Demolition, disposal, and recycling effects at the end of the building’s lifespan
- Operating energy emissions and pre-combustion effects over the building’s lifespan

The ATHENA® EIE is able to summarize the complex LCA calculations into a series of useful measures. For the purposes of this study, the primary energy consumption and the GWP were the two important outputs that were calculated.

Each building component identified in this study was individually modeled as accurately as possible using the standard inputs in the ATHENA® EIE for Buildings v4.0.64. A bill of materials was then generated in the ATHENA® EIE for each case. This bill of materials was compared to expected results and any discrepancies were overcome by adjusting the material quantities for the building component via. the user specified additional materials input feature of the software. It should be mentioned that the ATHENA® EIE is currently unable of calculating the embodied effects associated
with the mechanical, electrical, and plumbing services in a building directly. Therefore, the embodied effects associated with these services have not been accounted for in this study.

Ultimately, calculating the life-cycle primary energy consumption and GWP of a building and its component parts is not an exact science. Some degree of uncertainty is inevitable given the complexity of the calculations and the inherent degree of uncertainty in the LCI data. However, the ATHENA® EIE for Buildings v4.0.64 provides the best method for estimating these effects for the North America building industry today. According to the ATHENA® Institute, the ATHENA® EIE for Buildings is able to “model well over 1000 structural and envelope assembly combinations and is generally applicable to more than 90% of the typical North American building stock” (The Athena Institute, 2008). However, there is one significant limitation of this software. The ATHENA® EIE for Buildings is unable of calculating the operating energy consumption and operating GWP of a building directly. In fact, the total energy use and total GWP of a building is a combination of the embodied energy, embodied GWP, operating energy, and operating GWP. Therefore, since the ATHENA® EIE is only capable of calculating the embodied effects, additional means had to be employed to calculate the operating effects. The method for calculating the operating effects for the components of a building will be discussed next.

3.6 Evaluating Operating Energy and Operating GWP

Recall that the total energy use of a building is a combination of the total embodied energy and the total operating energy. The ATHENA® EIE for Buildings is able to calculate the embodied energy of the building materials, but is unable to calculate the operating energy consumption of a building directly. It does have a calculator that converts operating energy (i.e. secondary energy) into primary energy and GWP over a building’s lifespan. However, additional software programs are required to determine the appropriate fuel consumption due to building operations to input into the ATHENA® EIE converter. There are a number of different computer programs that are available to do this and they all vary in terms of their difficulty to use and their comprehensiveness. The ‘Quick Energy Simulation Tool’ (eQUEST) computer software provides an excellent combination of both a user friendly interface and detailed building energy simulation capability.

eQUEST is based on the latest DOE-2 building simulation engine. DOE-2 is the most widely respected building energy simulation program available today. It has been around since the 1970’s and has been funded in large part by ASHRAE, NASA, and the United States Department of Energy.
eQUEST allows a user to perform sophisticated hourly energy simulations of a building to predict its operating energy use. Among other inputs, eQUEST allows for a detailed description of a building’s geometry, layout, envelope, operating schedule, space conditioning systems (such as HVAC and lighting), climatic data, and much more. The result is a comprehensive and detailed output of monthly and annual energy use for the building. Recall from the literature review that two kinds of energy were identified: secondary energy (i.e. operating energy) and primary energy. Embodied energy is expressed in terms of primary energy. However, eQUEST (and other building energy modelling programs) calculate secondary energy. Therefore, once the annual energy use of a building has been determined from eQUEST, it can be entered into the ATHENA® EIE converter to calculate the resulting total primary energy consumption and total GWP. By converting the operating energy (i.e. secondary energy) into primary energy, the results can be compared directly with the embodied energy results from the ATHENA® EIE for Buildings.

Calculating the embodied energy for each of the 220 different building components in this study is relatively straightforward using the ATHENA® EIE for Buildings. However, estimating the impact on the operating energy of a building for each of the 220 different building components is less straightforward. In order to get an estimate of the operating energy for each of the 220 different building components in this study, an energy model was created for the baseline retail building using QUEST v3.63 (Hirsch, 2009). Using this model, the 50 year operating energy use was estimated for the baseline retail building. Once the breakdown of natural gas and electricity use was determined from eQUEST, the numbers were input in the ATHENA® EIE converter and the total operating primary energy use and GWP was determined for the baseline retail building. These values became the datum for all subsequent energy models in this study.

Next, using the eQUEST model of the baseline retail building as the datum, a new eQUEST model was created for each of the 220 different building components. In each model, all of the other building variables were held constant, except that one of the 220 different building components was substituted for the corresponding component in the baseline retail building model. In each case, the 50 year operating energy use of the modified baseline retail building was simulated in eQUEST. By doing this for each of the 220 different building components, the 50 year operating energy of the modified baseline retail building could be compared to the 50 year operating energy of the baseline retail building. The difference (either an increase in energy or a decrease in energy) from the baseline could be found and the difference attributed to the corresponding substitution of a particular building component.
component. Therefore, one-by-one the impact on the 50 year operating energy of the baseline retail building due to the systematic substitution of the 220 different building components could be determined. In each case, the annual electricity and natural gas use of the modified baseline retail building from eQUEST was input into the ATHENA® EIE converter and the primary operating energy and GWP for each of the 220 building components was determined. In this way, the impact that each of the 220 different building components in this study had on the operating energy use of a single-storey retail building after 50 years could be estimated.

3.7 Calculating the Thermal Resistance of Building Enclosures

In the previous section, a method was presented for calculating the impact on the operating energy of a typical single-storey retail building for each of the 220 different building components. In each case, an eQUEST model was created and the 50 year operating energy of the modified baseline retail building was determined. However, in order to create the eQUEST models, the thermal resistance of the different building components had to be determined. In particular, it was important to get an accurate measure of the thermal resistance for each exterior infill wall, roof, window, door, and slab-on-grade in order to determine the corresponding operating energy and GWP related to each case.

This section begins with a brief overview of some basic principles of heat transfer through buildings and some of the underlying assumptions that were made for this study. This is followed by a comparison of the primary methods that were used in this study to calculate the thermal resistance of the different building components.

3.7.1 Background on Heat Transfer in Buildings

Accurately accounting for heat transfer through the building enclosure is critical to calculating the total life-cycle energy and GWP of a building. In addition, “understanding heat transfer and the temperature distribution through building materials and assemblies is important for assessing energy use, thermal movements, durability, and the potential for moisture problems” (Straube & Burnett, 2005).

A number of LCA studies have estimated that the operating energy of a typical building (either residential or commercial) is upwards of 85% or more of the total life-cycle energy after 50 years. With operating energy contributing so heavily towards the overall environmental burdens of a building, it is critical to accurately calculate the resistance to heat flow through each alternative building enclosure, in order to determine which systems use less energy over time.
Thermal resistance is a measure of the ability of a building material (or assembly) to resist heat flow through it. In the imperial system, thermal resistance is expressed in terms of R-value and has units of (hr·ft²·°F)/Btu. In the SI system, thermal resistance is expressed in terms of R_{SI}-value and has units of (m²·K)/W.

Alternatively, the heat flow through an enclosure assembly is sometimes expressed in terms of the overall heat transfer coefficient (U-value or U_{SI}-value). The overall heat transfer coefficient is “a system measure of the amount of heat flow that will occur across a unit area of an enclosure system or other assembly for a unit temperature difference” (Burnett & Straube, 2005). The overall heat transfer coefficient is simply the inverse of the thermal resistance and is often referred to in these types of calculations.

Heat flow through the building enclosure can occur in one, two, or three dimensions. It can also be steady state or transient, where temperature and/or heat flow vary with time. The appropriate method for calculating the thermal resistance of a building enclosure depends on the type of problem at hand. That being said, there are several ways of calculating the thermal resistance of the building enclosure. The three most common methods are discussed next, as well as the method that was chosen for this study.

3.7.2 Calculating One-Dimensional Heat Flow Using the Tabular Method

The tabular (or series) method is the simplest of the three methods and as such, has a limited range of usefulness. It is appropriate to use when the enclosure assembly can be considered to be a one-dimensional, steady-state heat flow system, where no significant thermal bridges (a short circuit for heat flow) exist such as wood, steel, or concrete penetrations through the enclosure.

According to Burnett and Straube, to calculate the R-value (or R_{SI}-value) of an enclosure assembly using the tabular method, the following steps should be taken (Burnett & Straube, 2005):

1. List each material in the enclosure assembly, its conductivity (k), and its thickness (l)
2. Calculate the conductance (C) of each layer using $C = \frac{k}{l}$
3. Calculate the thermal resistance of each layer (R_{SI _Layer}) using $R_{SI _Layer} = \frac{1}{C}$
4. Sum the individual thermal resistances of each layer (R_{SI _Layer}) to get the overall thermal resistance (R_{SI _Overall}) of the entire assembly: $R_{SI _Overall} = \sum R_{SI _Layer}$
5. Take the inverse of the overall thermal resistance to get the overall heat transfer coefficient
\(U_{SI \, Overall} = 1 / R_{SI \, Overall}\)

Figure 3-11 shows an example of a wall assembly in this study, where the thermal resistance can be reasonably approximated using the tabular method. There are no significant thermal bridges through this assembly, so a one-dimensional analysis can be applied with reasonable accuracy. Table 3-7 illustrates how an application of the tabular method can result in an approximation of the overall resistance to heat flow through the wall system.

Figure 3-11: Assembly Layers for Concrete Masonry Unit Wall #1 (CMU-W1)

As mentioned earlier, this method has its limitations. It can only be used to calculate the thermal resistance of very simple building enclosures. In this study, it was not appropriate to assume steady state, one-dimensional heat flow for all of the building enclosures. Many of the building enclosures in this study had thermal bridging, which requires at least a two-dimensional analysis to accurately calculate the overall thermal resistance. In this study, the tabular method was used to verify the results of other methods and not as the primary method for calculating the thermal resistance of the enclosures. The two primary methods that were used to calculate the two-dimensional heat flow through the building enclosures in this study are discussed next.
Table 3-7: Calculating Thermal Resistance of CMU-W1 Using the Tabular Method

<table>
<thead>
<tr>
<th>Layer Material</th>
<th>Conductivity (k) W/(m·K)</th>
<th>Thickness (l) m</th>
<th>Conductance (C) W/(m²·K)</th>
<th>Resistance (R_SI Layer) (m²·K)/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior air film (moving air, winter conditions, ε = 0.90)</td>
<td>-</td>
<td>-</td>
<td>33.40</td>
<td>0.03</td>
</tr>
<tr>
<td>Ontario (standard) clay brick cladding</td>
<td>1.30</td>
<td>0.09</td>
<td>14.44</td>
<td>0.07</td>
</tr>
<tr>
<td>25mm air gap</td>
<td>-</td>
<td>-</td>
<td>5.19</td>
<td>0.19</td>
</tr>
<tr>
<td>50mm extruded polystyrene rigid insulation</td>
<td>0.03</td>
<td>0.05</td>
<td>0.58</td>
<td>1.72</td>
</tr>
<tr>
<td>Self-adhesive membrane with primer</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>200mm standard weight concrete block with solid grouted cores @ 400mm o/c</td>
<td>-</td>
<td>-</td>
<td>5.10</td>
<td>0.20</td>
</tr>
<tr>
<td>Latex paint</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Interior air film (still air, ε = 0.90)</td>
<td>-</td>
<td>-</td>
<td>8.35</td>
<td>0.12</td>
</tr>
</tbody>
</table>

\[R_{SI \, \text{overall}} = 2.33 \, (m^2 \cdot K)/W \]

\[U_{SI \, \text{overall}} = 0.43 \, W/(m^2 \cdot K) \]

Note: To convert R_SI-value to R-value, multiple R_SI-value by 5.678

3.7.3 Calculating Two-Dimensional Heat Flow Using THERM

One-dimensional, steady-state heat flow calculations using the tabular method no longer accurately predict the heat flow through an enclosure, when one of the following conditions exist (Burnett & Straube, 2005):

1. **Thermal bridging** - a short circuit for heat flow through the building enclosure when a structural member such as wood, steel, or concrete penetrates through the enclosure.

2. **Thermal mass** – storage of heat in thermally massive materials (such as concrete and stone) which is stored and released throughout the day. This process is not steady-state.

3. **Air leakage** – a loss of air through the building enclosure which results in excess heat loss that would not be accounted for by a one-dimensional analysis.

Given any of these conditions, a two or three-dimensional heat flow analysis is required. In this study, two-dimensional heat flow analysis was required due to all three of the above conditions being true.

There are many readily available computer programs that can perform a two-dimensional heat flow analysis of building enclosures. These programs rely on a finite element analysis to predict the heat...
flow in two dimensions. In this study, THERM v5.2.14 (LBNL, 2009) was used. THERM was developed by the Lawrence Berkeley Laboratory in California and is well respected within the building science industry. In this study, each alternative building enclosure was modelled in THERM to get an estimate of the overall heat transfer coefficient ($U_{SI \text{ Overall}}$).

Figure 3-12 shows an example of a typical wall assembly from this study that was modelled in THERM, to determine the overall heat transfer coefficient ($U_{SI \text{ Overall}}$). Figure 3-13 shows both the THERM model that was created for this wall assembly, as well as a plot of the resulting temperature distribution (heat flow) through the enclosure.

Figure 3-12: Assembly Layers for Cold-Formed Steel Stud Wall #1 (SS-W1)

Figure 3-13: Example of Two-Dimensional Heat Flow through SS-W1 Using THERM
A similar model was constructed for each building enclosure component in this study, for which an approximation of the thermal resistance was required. The thermal resistance of each building component can be found in Appendix B.

For each THERM model in this study, both the geometric properties of the building enclosure, as well as the conductivity (k) of each different building material were specified. For each different building material there is a range of possible values for the conductivity based on numerous parameters (such as the moisture content of a material, the specific chemical or physical composition of the material, etc.). In this study, the conductivity of the individual building materials were primarily taken from the THERM database, ASHRAE Standard 90.1-2007 (ASHRAE, 2007), and “Building Science for Building Enclosures” (Straube & Burnett, 2005). In each THERM model, appropriate interior and exterior air films were included on the exterior cladding surface and the interior finish surface of the assemblies. In each case, an adiabatic boundary condition was also specified at either end of the enclosure, as only a portion of the entire building enclosure was modelled in THERM.

Although a two-dimensional heat flow analysis is reasonably accurate for the types of building enclosures that were modelled in this study, there are some sources of error. For example, the heat loss through the sill plate and top plate of the wood stud and steel stud walls was not accounted for. Neither was the heat loss due to additional framing around window and door openings. The THERM model only considered a typical section cut through the building enclosure, not all of the unique framing effects. Also, thermal bridging at the corners of buildings (where two walls intersect) was a source of heat loss that was not accounted for in this study. To accurately account for the heat loss through these irregularities (such as sill plates, top plates, framing effects around openings and at corners of walls), a three-dimensional, or even four-dimensional (which includes thermal mass effects) heat flow analysis would be required. This level of accuracy is beyond the scope of this project.

In addition to calculating the thermal resistance of each building enclosure in this study using THERM, ASHRAE Standard 90.1-2007 was also used for comparison/verification of the results.

The original American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard was first published in 1975. The purpose of the Standard is “to provide minimum requirements for the energy-efficient design of buildings, except low-rise residential buildings”
The ASHRAE Standard 90.1-2007 is the most recent publication and it outlines the minimum energy-efficient requirements for the design and construction of new buildings (and their systems) and new portions of buildings (and their systems). This includes provisions for the envelope of buildings and the systems and equipment of buildings. Compliance with the ASHRAE Standard is completely voluntary and it is not enforceable under any building codes in Canada at this time. However, the ASHRAE 90.1 Standard is widely adopted within the building industry, so it was important to evaluate the thermal resistance of the building enclosures in this study using this method as well. Section 5 of ASHRAE Standard 90.1-2007 deals with the building envelope. Generally speaking, this section provides guidelines for estimating the thermal resistance of walls, roofs, fenestrations (windows), doors, and foundations (slab-on-grades).

For the purposes of this study, ASHRAE climate zone 6 (Toronto, Canada) was assumed. Generally speaking, for each building enclosure type (exterior infill walls, roofs, fenestrations, doors, and foundations), a base assembly is specified in the ASHRAE Standard. This base assembly is usually representative of a typical assembly that would be specified in a commercial type building. To determine the thermal resistance of a specific building enclosure using the ASHRAE Standard, the general procedure involves:

1. Identifying the ASHRAE base assembly that most closely approximates the building enclosure in question.
2. Following the various guidelines and tables in the ASHRAE Standard to modify the ASHRAE base assembly until it accurately represents the building enclosure in question.
3. Calculating the thermal resistance of the building enclosure in question.

As mentioned earlier, both THERM and ASHRAE Standard 90.1-2007 were used to determine the thermal resistance of the building enclosures identified in this study. However, there were some exceptions to this, when only one of the two methods was used. The following list identifies which method was used to calculate the thermal resistance of the building enclosures in this study:

- Roofs: THERM and ASHRAE Standard 90.1-2007
- Fenestration (windows) and doors: ASHRAE Standard 90.1-2007 only
- Foundations (slab-on-grades): THERM only
When calculating the thermal resistance of the exterior infill walls and roofs, both the THERM and ASHRAE Standard 90.1-2007 values were calculated. Both values have been listed for each applicable building component in Appendix B.

In practice, there are a huge number of different windows and doors that could be specified. These types of enclosures can vary in a number of ways including: frame material, number of glazing layers, argon-filled verses air-filled, low-E coatings, and fixed verses operable. The ASHRAE Standard lists the overall U-value (including the frame effects and glazing effects) for a large variety of fenestration types. Rather than trying to model a large number of these very unique and complex types of enclosures using THERM, typical U-values were simply selected from the supplementary information on fenestrations found in the ASHRAE Standard (ASHRAE Fundamentals SI, 2009). Therefore, when it came to calculating the thermal resistance of the windows and doors in this study, only the ASHRAE Standard 90.1-2007 values were used.

When it came to calculating the thermal resistance of the foundations (slab-on-grades) in this study, only the THERM results were used and not the ASHRAE Standard values. The ASHRAE Standard uses what they call an ‘F-factor’ (rather than an R-value) for specifying the thermal resistance of slab-on-grades. The F-factor is a measure of the perimeter heat loss around the slab-on-grade. In this study, THERM was the sole means of calculating the thermal resistance of the slab-on-grades, not the F-factor method as specified in the ASHRAE Standard.

In cases where the thermal resistance was calculated using both the THERM and the ASHRAE Standard, some slight differences were noticed. The next section will discuss some of the reasons that the results from these two methods are slightly different.

3.7.5 Explanation of Differences in Thermal Resistance between THERM and ASHRAE Standard 90.1-2007

As mentioned in the previous section, when it came to calculating the thermal resistance of the exterior infill wall and roof enclosures in this study, two methods were used: THERM and ASHRAE Standard 90.1-2007. The thermal resistance of each exterior infill wall and roof in this study can be found in Appendix B. Both the results from THERM as well as the results that were calculated using the ASHRAE Standard 90.1-2007 have been included for comparison purposes. An explanation of the differences between the two methods will be presented next. As well, an explanation of the method that was ultimately chosen for this study will also be discussed.
In many cases, the ASHRAE Standard values were found to be somewhat generic and simplified values, due to the fact that they must be applicable to a wide range of alternative enclosures. In many cases, so long as the major components of a wall or roof assembly are indentified in ASHRAE (i.e. the structure and the insulation), then the thermal resistance of that assembly can be calculated with reasonable accuracy. However, the generic approach to calculating the thermal resistance of building enclosures using the ASHRAE method often neglects the unique differences between assemblies. This can have a tendency to underestimate the true thermal resistance of an enclosure.

Exterior Infill Wall Enclosures

In almost every case, the thermal resistances of the walls calculated using THERM were found to be slightly higher than the values calculated using the ASHRAE Standard. Typically, the thermal resistance that was calculated using THERM was between 1% and 15% higher than the thermal resistance that was calculated for the same wall enclosure using the ASHRAE Standard 90.1-2007. The maximum difference between the two methods in any case was found to be about 23%. The reason that the THERM values are higher than the ASHRAE values is because the ASHRAE method does not consider the thermal resistance of the cladding material or any air spaces within the enclosure. On the contrary, the THERM values include the thermal resistance contributions from every single layer of the enclosure assembly, including the different cladding materials and the air spaces. Therefore, the THERM method is slightly more comprehensive than the ASHRAE method, in that every single layer of the assembly was included in the calculation of thermal resistance. Thus, in this study the THERM R_{SI}-values were used instead of the ASHRAE values, as it was felt that the THERM values were even more accurate than the ASHRAE values. The ASHRAE values were included in Appendix B along with the THERM values for comparison.

Roof Enclosures

Similar to the wall enclosures, the thermal resistances of the roofs that were calculated using THERM were found to be slightly higher in most cases than the values calculated using the ASHRAE Standard. Typically, the thermal resistance that was calculated using THERM was between 1% and 10% higher than the thermal resistance calculated for the same roof enclosure using the ASHRAE Standard 90.1-2007. The maximum difference between the two methods in any case was found to be about 12%. The reason that the THERM values are slightly higher than the ASHRAE values is because the ASHRAE method does not consider the thermal resistance of the roof covering or the
roof deck (other than for the case of a metal deck). On the contrary, the THERM values include the thermal resistance contributions from every single layer of the roof assembly, including the different roof coverings and roof deck materials. Thus, in this study the THERM R_{SI}-values were used instead of the ASHRAE values, as it was felt that the THERM values were more accurate. The ASHRAE values were again included in Appendix B along with the THERM values for comparison.

Therefore, in many instances, the thermal resistance values that were calculated using the ASHRAE Standard were found to be slightly conservative, in that they underestimated the true thermal resistance of the enclosures. The ASHRAE Standard is somewhat generic and simplified, due to the fact that it must be applicable to a wide range of similar enclosures that only differ in some small way. Although the omissions by the ASHRAE Standard are small in terms of the overall thermal resistance of the building enclosures (usually less than 10%), this study is concerned with evaluating the life-cycle environmental burdens of many similar enclosures and requires a higher degree of accuracy. This higher degree of accuracy was provided by the THERM method. Every single assembly layer (including the cladding materials, air spaces, roof coverings, and roof decking) were input and modelled in THERM. Thus, in this study the THERM R_{SI}-values were used instead of the ASHRAE values, as it was felt that the THERM values were more accurate that the ASHRAE values. However, the ASHRAE values were still calculated and included in the results for comparison purposes.

3.8 Evaluating Total Energy and Total GWP

Thus far the discussion has focused on methods of calculating embodied energy, embodied GWP, operating energy, and operating GWP for buildings and their components. In this section, the two results are combined as a method for calculating the total life-cycle energy and total GWP of a building and its components is discussed.

The total energy or total GWP is a combination of the total embodied energy, total embodied GWP, total operating energy, and total operating GWP. This can be explained using the example of a wall enclosure. Suppose there is a choice of using two different wall enclosures on a building project. These two walls will be made up of different materials. Therefore, there will be a difference in the embodied energy or embodied GWP between the two walls. However, depending on the assembly layers (such as the cladding material, insulation, structural framing, etc.) these two walls will also have a different thermal resistance (R_{SI}-value). Therefore, over the lifespan of a building, both of
these walls will have a different influence on the operating energy of the building. It is important to note that just because a building assembly has a higher embodied energy or embodied GWP this does not necessarily mean that it will have a higher operating energy or operating GWP. For example, adding insulation to a wall assembly will increase the embodied energy of the wall, but will result in a lower operating energy. This is also true of other building components such as the roof, windows, and foundations for example. The total energy and total GWP accounts for both the materials effects and the operating effects of a building assembly.

The total embodied energy (and total embodied GWP) and the 50 year operating energy (and operating GWP) for the baseline retail building can be calculated. Then, by systematically substituting the 220 different building components in this study for the corresponding building component in the baseline retail building, the difference in the total energy or total GWP from the baseline building can be determined in each case. Therefore, the difference in the total energy from the baseline retail building for each of the 220 different building components in this study was calculated according to Eq. 1 for a 50 year lifespan.

\[\Delta T.E. = \Delta T.E.E. + \Delta T.O.E. \]

(1)

Where \(\Delta T.E. \) = difference in the total energy from the baseline retail building after 50 years due to changing baseline building component to an alternative building component, \(\Delta T.E.E. \) = difference in the total embodied energy from the baseline retail building (from ATHENA® EIE for Buildings) after 50 years, and \(\Delta T.O.E. \) = difference in total operating energy from baseline building (from eQUEST) after 50 years.

Likewise, the difference in the total GWP from the baseline retail building for each of the 220 different building components in this study was calculated according to Eq. 2 for a 50 year lifespan.

\[\Delta T.GWP = \Delta T.E.GWP + \Delta T.O.GWP \]

(2)

Where \(\Delta T.GWP \) = difference in the total GWP from the baseline retail building after 50 years due to changing baseline retail building component to an alternative building component, \(\Delta T.E.GWP \) = difference in the total embodied GWP from the baseline retail building (from ATHENA® EIE for Buildings) after 50 years, and \(\Delta T.O.GWP \) = difference in total operating GWP from baseline building (from eQUEST) after 50 years.
Chapter 4
Methodology: Life-Cycle Assessment of Whole Buildings

4.1 Introduction

In Chapter 3, a method was outlined for calculating the total life-cycle energy use and GWP of 220 individual building components that are typically used in single-storey retail buildings. A baseline retail building was established and the process of systematically replacing the baseline retail building components with the 220 different building components in this study was discussed. However, so far the discussion has only focused on individual building components. It would be useful to have an understanding of the relationships between the individual building components as they pertain to an entire building project. In this section, a method is presented for calculating the total life-cycle energy use and GWP of five different single-storey retail buildings, located in Toronto, with a 50 year lifespan. The goal is to determine whether there is a significant difference in the life-cycle energy use and GWP of different types of single-storey retail buildings. Also, a list of recommendations for reducing the environmental burdens of a single-storey retail building will be developed, once a detailed breakdown of energy use and GWP in an entire building project is determined.

4.2 LCA of Case Study Retail Buildings

In Chapter 3, a method was discussed for calculating the life-cycle energy use and GWP of 220 individual building components. In this section, the scope of the LCA study is broadened to include entire building systems. In this section, the five case study single-storey retail buildings that were investigated within the framework of a comprehensive LCA are introduced. These five case study buildings have been designed specifically for this study. They are the result of collaboration between the author of this study and a colleague from the School of Architecture at the University of Waterloo.

As mentioned in the introduction, five different single-storey retail buildings were developed for this study. When selecting the case study buildings, the goal was to identify the most common types of single-storey retail buildings that are constructed in Canada today. The five case study buildings presented next are identical to the baseline retail building in every respect (see description of baseline retail building in Chapter 3 and Appendix A), except as outlined here. The five retail buildings include:
1. A typical hot-rolled steel structure, single-storey retail building

2. A typical heavy timber structure, single-storey retail building

3. A typical pre-engineered steel, single-storey retail building

4. A predominately steel, single-storey retail building

5. A predominately timber, single-storey retail building

The first three case study buildings represent common types of single-storey retail buildings in Canada today. The predominately steel and predominately timber case study buildings were developed to investigate the influence of material selection on the life-cycle energy use and GWP of a single-storey retail building. As mentioned, all of these buildings are identical to the baseline retail building in this study, except for the differences that will be outlined in the next sections.

4.2.1 Description of Typical Hot-Rolled Steel Structure Retail Building (Case Study #1)

A large proportion of single-storey retail buildings in Canada are built with a conventional hot-rolled steel structure. For this reason, it was important to select this type of building to examine within a comprehensive LCA.

Recall the baseline retail building that was introduced in Chapter 3. The baseline retail building in this study was chosen to be one of the five case study buildings. Specifically, Case Study #1: Typical Hot-Rolled Steel Structure Retail Building is exactly the same as the baseline retail building in every respect.

This building is comprised of 350W hollow structural steel columns and W-section beams. The structure is a series of braced frames, which rely on cross bracing and a concrete masonry stair tower for lateral stability. For the foundations, isolated concrete footings with piers were designed at every column location. As well, strip footings and concrete foundation wall were specified where required. A 200 mm (8 in.) thick slab-on-grade with 10mil poly was also used in this case. The exterior infill walls are comprised of cold-formed steel studs with exterior installed rigid insulation and an exterior insulation and finish system (EIFS). This assembly is very common in single-storey retail buildings, which is why it was chosen here. An open web steel joist roof with metal deck was designed in this case. A 4-ply built-up asphalt roof assembly was specified, along with 75 mm (3 in.) of insulation. The mezzanine floor is made up of open web steel joists with a metal deck and a concrete topping. A common floor finish in retail applications is vinyl tile, which was used in this building. The interior
partitions are cold-formed steel studs with two layers of drywall finish. The windows are a self-supported aluminum curtainwall system with thermal break (two 6 mm sealed viewable glazing panes with 12.7 mm airspace, no low-E coating, and no argon between panes). The doors are a combination of opaque steel doors, aluminum doors with glazing, and an insulated overhead steel door in the shipping and receiving area. As Case Study #1 is exactly the same as the baseline retail building in this study, a detailed description of this building can be found in Appendix A. An illustration of Case Study #1 (i.e. the baseline retail building) can bee seen in Figure 4-1.

![Figure 4-1: Case Study #1 – Typical Hot-Rolled Steel Structure Single-Storey Retail Building](image)

Table 4-1 contains a breakdown of the various building components that were specified for Case Study #1, as well as the estimated quantity of each component. The building components have been listed by their ID, so Appendix B can be referenced for a further description of these components.
Table 4-1: Building Component Quantities for Case Study #1

<table>
<thead>
<tr>
<th>Building Component</th>
<th>ID</th>
<th>Estimated Quantity</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior Infill Wall Enclosure</td>
<td>BASE-W</td>
<td>581.0</td>
<td>sq.m</td>
</tr>
<tr>
<td>Roof Enclosure (Includes Roof Joists, JOIST-1)</td>
<td>BASE-R</td>
<td>586.0</td>
<td>sq.m</td>
</tr>
<tr>
<td>Structural System - 350W Hot-Rolled Steel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beams (Includes BM-1, BM-2, BM-3, GIRT-1)</td>
<td>S-1</td>
<td>11.8</td>
<td>tonnes</td>
</tr>
<tr>
<td>Columns (Includes COL-A)</td>
<td>S-1</td>
<td>3.3</td>
<td>tonnes</td>
</tr>
<tr>
<td>Hot-Rolled Steel Connection Plates</td>
<td>N/A</td>
<td>0.3</td>
<td>tonnes</td>
</tr>
<tr>
<td>Fasteners</td>
<td>N/A</td>
<td>0.2</td>
<td>tonnes</td>
</tr>
<tr>
<td>Miscellaneous Hot-Rolled Steel</td>
<td>N/A</td>
<td>1.2</td>
<td>tonnes</td>
</tr>
<tr>
<td>Mezzanine Floor (Includes Floor Joists, JOIST-1)</td>
<td>FL-3</td>
<td>48.0</td>
<td>sq.m</td>
</tr>
<tr>
<td>Windows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curtainwall (Façade)</td>
<td>W-9</td>
<td>128.0</td>
<td>sq.m</td>
</tr>
<tr>
<td>Curtainwall (Interior Vestibule)</td>
<td>W-9</td>
<td>34.5</td>
<td>sq.m</td>
</tr>
<tr>
<td>Mezzanine Floor (Includes Floor Joists, JOIST-1)</td>
<td>FL-3</td>
<td>48.0</td>
<td>sq.m</td>
</tr>
<tr>
<td>Windows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curtainwall (Façade)</td>
<td>W-9</td>
<td>34.5</td>
<td>sq.m</td>
</tr>
<tr>
<td>Curtainwall (Interior Vestibule)</td>
<td>W-9</td>
<td>34.5</td>
<td>sq.m</td>
</tr>
<tr>
<td>Windows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curtainwall (Façade)</td>
<td>W-9</td>
<td>34.5</td>
<td>sq.m</td>
</tr>
<tr>
<td>Curtainwall (Interior Vestibule)</td>
<td>W-9</td>
<td>34.5</td>
<td>sq.m</td>
</tr>
<tr>
<td>Windows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curtainwall (Façade)</td>
<td>W-9</td>
<td>34.5</td>
<td>sq.m</td>
</tr>
<tr>
<td>Curtainwall (Interior Vestibule)</td>
<td>W-9</td>
<td>34.5</td>
<td>sq.m</td>
</tr>
<tr>
<td>Windows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curtainwall (Façade)</td>
<td>W-9</td>
<td>34.5</td>
<td>sq.m</td>
</tr>
<tr>
<td>Curtainwall (Interior Vestibule)</td>
<td>W-9</td>
<td>34.5</td>
<td>sq.m</td>
</tr>
<tr>
<td>Windows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curtainwall (Façade)</td>
<td>W-9</td>
<td>34.5</td>
<td>sq.m</td>
</tr>
<tr>
<td>Curtainwall (Interior Vestibule)</td>
<td>W-9</td>
<td>34.5</td>
<td>sq.m</td>
</tr>
<tr>
<td>Windows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curtainwall (Façade)</td>
<td>W-9</td>
<td>34.5</td>
<td>sq.m</td>
</tr>
<tr>
<td>Curtainwall (Interior Vestibule)</td>
<td>W-9</td>
<td>34.5</td>
<td>sq.m</td>
</tr>
<tr>
<td>Windows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curtainwall (Façade)</td>
<td>W-9</td>
<td>34.5</td>
<td>sq.m</td>
</tr>
<tr>
<td>Curtainwall (Interior Vestibule)</td>
<td>W-9</td>
<td>34.5</td>
<td>sq.m</td>
</tr>
<tr>
<td>Windows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curtainwall (Façade)</td>
<td>W-9</td>
<td>34.5</td>
<td>sq.m</td>
</tr>
<tr>
<td>Curtainwall (Interior Vestibule)</td>
<td>W-9</td>
<td>34.5</td>
<td>sq.m</td>
</tr>
<tr>
<td>Windows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curtainwall (Façade)</td>
<td>W-9</td>
<td>34.5</td>
<td>sq.m</td>
</tr>
<tr>
<td>Curtainwall (Interior Vestibule)</td>
<td>W-9</td>
<td>34.5</td>
<td>sq.m</td>
</tr>
<tr>
<td>Windows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curtainwall (Façade)</td>
<td>W-9</td>
<td>34.5</td>
<td>sq.m</td>
</tr>
<tr>
<td>Curtainwall (Interior Vestibule)</td>
<td>W-9</td>
<td>34.5</td>
<td>sq.m</td>
</tr>
<tr>
<td>Windows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhead Doors</td>
<td>D-4</td>
<td>1.0</td>
<td>doors</td>
</tr>
<tr>
<td>Exterior Doors - Opaque</td>
<td>D-2</td>
<td>1.0</td>
<td>doors</td>
</tr>
<tr>
<td>Exterior Doors - Glazing</td>
<td>D-3</td>
<td>6.0</td>
<td>doors</td>
</tr>
<tr>
<td>Interior Doors</td>
<td>D-6</td>
<td>9.0</td>
<td>doors</td>
</tr>
<tr>
<td>Interior Partitions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire Rated Stair Tower</td>
<td>CMU-P1</td>
<td>84.0</td>
<td>sq.m</td>
</tr>
<tr>
<td>Insulated Interior Stud Wall Partition</td>
<td>SS-P3</td>
<td>75.0</td>
<td>sq.m</td>
</tr>
<tr>
<td>Uninsulated Interior Stud Wall Partition</td>
<td>SS-P1</td>
<td>52.0</td>
<td>sq.m</td>
</tr>
<tr>
<td>6mm Tempered Glass</td>
<td>N/A</td>
<td>5.7</td>
<td>sq.m</td>
</tr>
<tr>
<td>Foundations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slab-On-Grade</td>
<td>S0G-FDN4</td>
<td>586.0</td>
<td>sq.m</td>
</tr>
<tr>
<td>Isolated Footings with Concrete Piers</td>
<td>IF-FDN1</td>
<td>15.0</td>
<td>units</td>
</tr>
<tr>
<td>Strip Footings with Concrete Foundation Wall</td>
<td>SF-FDN5</td>
<td>160.0</td>
<td>m</td>
</tr>
</tbody>
</table>

* See Appendix B for a detailed description of the building components corresponding to the building component ID

4.2.2 Description of Typical Heavy Timber Structure Retail Building (Case Study #2)

The second type of single-storey retail building considered in this study is a heavy timber structure building. This is the same building as Case Study #1, except that a heavy timber structure is used instead of a hot-rolled steel structure.

In this study, Case Study #2: Typical Heavy Timber Structure Retail Building is exactly the same as Case Study #1, with the exception of the structural system. The heavy timber structure is comprised of Douglas-Fir-Larch (D-Fir-L) glulam columns and beams. The structure is a series of braced frames, which rely on cross bracing and a concrete masonry stair tower for lateral stability. In every other respect (the foundations, walls, roofs, floor, interior partitions, windows, and doors), Case Study #2 is exactly the same as Case Study #1. The difference between Case Study #1 and #2 comes down to the structural system only. An illustration of Case Study #2 can be seen in Figure 4-2. Table 4-2 contains a breakdown of the various building components that were specified for Case Study #2.
Figure 4-2: Case Study #2 – Typical Heavy Timber Structure Single-Storey Retail Building

Table 4-2: Building Component Quantities for Case Study #2

<table>
<thead>
<tr>
<th>Building Component</th>
<th>Building Component Quantities ID</th>
<th>Estimated Quantity</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior Infill Wall Enclosure</td>
<td>BASE-W</td>
<td>581.0</td>
<td>sq.m</td>
</tr>
<tr>
<td>Roof Enclosure (Includes Roof Joists, JOIST-1)</td>
<td>BASE-R</td>
<td>586.0</td>
<td>sq.m</td>
</tr>
<tr>
<td>Structural System - 24F-E Glulam Timber</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beams (Includes BM-1, BM-2, BM-3, GIRT-1)</td>
<td>S-2</td>
<td>25.4</td>
<td>cu.m</td>
</tr>
<tr>
<td>Columns (Includes COL-A)</td>
<td>S-2</td>
<td>8.0</td>
<td>cu.m</td>
</tr>
<tr>
<td>Hot-Rolled Steel Connection Plates</td>
<td>N/A</td>
<td>0.3</td>
<td>tonne</td>
</tr>
<tr>
<td>Fasteners</td>
<td>N/A</td>
<td>0.2</td>
<td>tonne</td>
</tr>
<tr>
<td>Miscellaneous Hot-Rolled Steel</td>
<td>N/A</td>
<td>1.2</td>
<td>tonne</td>
</tr>
<tr>
<td>Mezzanine Floor (Includes Floor Joists, JOIST-1)</td>
<td>FL-3</td>
<td>48.0</td>
<td>sq.m</td>
</tr>
<tr>
<td>Windows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curtainwall (Façade)</td>
<td>W-9</td>
<td>128.0</td>
<td>sq.m</td>
</tr>
<tr>
<td>Curtainwall (Interior Vestibule)</td>
<td>W-9</td>
<td>34.5</td>
<td>sq.m</td>
</tr>
<tr>
<td>Windows</td>
<td>W-1</td>
<td>20.3</td>
<td>sq.m</td>
</tr>
<tr>
<td>Doors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhead Doors</td>
<td>D-4</td>
<td>1.0</td>
<td>doors</td>
</tr>
<tr>
<td>Exterior Doors - Opaque</td>
<td>D-2</td>
<td>1.0</td>
<td>doors</td>
</tr>
<tr>
<td>Exterior Doors - Glazing</td>
<td>D-3</td>
<td>6.0</td>
<td>doors</td>
</tr>
<tr>
<td>Interior Doors</td>
<td>D-6</td>
<td>9.0</td>
<td>doors</td>
</tr>
<tr>
<td>Interior Partitions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire Rated Stair Tower</td>
<td>CMU-P1</td>
<td>84.0</td>
<td>sq.m</td>
</tr>
<tr>
<td>Insulated Interior Stud Wall Partition</td>
<td>SS-P3</td>
<td>75.0</td>
<td>sq.m</td>
</tr>
<tr>
<td>Uninsulated Interior Stud Wall Partition</td>
<td>SS-P1</td>
<td>52.0</td>
<td>sq.m</td>
</tr>
<tr>
<td>6mm Tempered Glass</td>
<td>N/A</td>
<td>5.7</td>
<td>sq.m</td>
</tr>
<tr>
<td>Foundations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slab-On-Grade</td>
<td>SOG-FDN4</td>
<td>586.0</td>
<td>sq.m</td>
</tr>
<tr>
<td>Isolated Footings with Concrete Piers</td>
<td>IF-FDN1</td>
<td>15.0</td>
<td>units</td>
</tr>
<tr>
<td>Strip Footings with Concrete Foundation Wall</td>
<td>SF-FDN5</td>
<td>160.0</td>
<td>m</td>
</tr>
</tbody>
</table>

* See Appendix B for a detailed description of the building components corresponding to the building component ID
4.2.3 Description of Typical Pre-Engineered Steel Retail Building (Case Study #3)

The third common type of single-storey retail building in Canada is the pre-engineered steel retail building. The components of these buildings are designed and built off-site, then transported to the building location and erected. Typically, these buildings are comprised of a series of rigid steel frames, with corrugate cold-formed steel wall cladding and a standing seam steel roof. Fiberglass batt insulation is usually installed between the wall girts and roof purlins. The main advantages of pre-engineered buildings are: they are highly optimized structures in terms of cost and material use, they are less expensive than other systems, and they have a shorter construction time. For these reasons they have become popular in the single-storey retail building market. However, almost no research has been conducted at this point on the LCA of pre-engineered steel building systems. It is unknown how these types of buildings compare to conventional systems like the previous two buildings.

In this case, a company that specializes in the design of pre-engineered steel buildings was asked to design a building for the purposes of this study. The company provided a design, including a series of construction drawings and material quantities that met the specifications of this project. Case Study #3: Typical Pre-Engineered Steel Retail Building was designed to have exactly the same characteristics as the previous two buildings, except for the differences that will be discussed next.

The structure of Case Study #3 is made up of a series of 350W hot-rolled steel rigid frames. Cross bracing is provided for lateral stability between the frames. Isolated concrete footings with piers were designed at every column location. As well, strip footings and concrete foundation wall were specified where required. A 200 mm (8 in.) thick slab-on-grade with 10mil poly was also specified in this case. The exterior infill wall consists of cold-formed steel girts with galvanized cold-formed steel cladding. Fiberglass batt insulation is installed within the wall cavity and is compressed at the girt locations. The roof consists of cold-formed steel purlins and a galvanized standing seam steel roof with fiberglass batt insulation compressed at the purlin locations. The mezzanine floor is comprised of cold-formed steel joists with a metal deck, concrete topping, and vinyl floor tile. The interior partitions are cold-formed steel studs with two layers of drywall finish. The windows are a self-supported aluminum curtainwall system with thermal break (two 6 mm sealed viewable glazing panes with 12.7 mm airspace, no low-E coating, and no argon between panes). The doors are a combination of opaque steel doors, aluminum doors with glazing, and an insulated overhead steel door in the shipping/receiving area. An illustration of Case Study #3 can bee seen in Figure 4-3. Table 4-3 contains a breakdown of the various building components that were specified for Case Study #3.
Table 4-3: Building Component Quantities for Case Study #3

<table>
<thead>
<tr>
<th>Building Component</th>
<th>Building Component Quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Estimated Quantity</td>
</tr>
<tr>
<td>Exterior Infill Wall Enclosure (Includes Girts)</td>
<td>PENG-W2</td>
</tr>
<tr>
<td></td>
<td>581.0</td>
</tr>
<tr>
<td>Roof Enclosure (Includes Roof Joists)</td>
<td>PENG-R2</td>
</tr>
<tr>
<td></td>
<td>586.0</td>
</tr>
<tr>
<td>Structural System - Pre-Engineered Steel</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Beams and Columns (Hot-Rolled Steel)</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>13.1</td>
</tr>
<tr>
<td>Fasteners</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>Additional Hot-Rolled Steel (Including Hot-Rolled Steel Connection Plates)</td>
<td>N/A</td>
</tr>
<tr>
<td>Additional Cold-Formed Steel</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>Mezzanine Floor (Includes Floor Joists)</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>48.0</td>
</tr>
<tr>
<td>Windows</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Curtainwall (Facade)</td>
<td>W-9</td>
</tr>
<tr>
<td></td>
<td>128.0</td>
</tr>
<tr>
<td>Curtainwall (Interior Vestibule)</td>
<td>W-9</td>
</tr>
<tr>
<td></td>
<td>34.5</td>
</tr>
<tr>
<td>Windows</td>
<td>W-1</td>
</tr>
<tr>
<td></td>
<td>20.3</td>
</tr>
<tr>
<td>Doors</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Overhead Doors</td>
<td>D-4</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Exterior Doors - Opaque</td>
<td>D-2</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Exterior Doors - Glazing</td>
<td>D-3</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
</tr>
<tr>
<td>Interior Doors</td>
<td>D-6</td>
</tr>
<tr>
<td></td>
<td>9.0</td>
</tr>
<tr>
<td>Interior Partitions</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Fire Rated Stair Tower</td>
<td>CMU-P1</td>
</tr>
<tr>
<td></td>
<td>84.0</td>
</tr>
<tr>
<td>Insulated Interior Stud Wall Partition</td>
<td>SS-P1</td>
</tr>
<tr>
<td></td>
<td>75.0</td>
</tr>
<tr>
<td>Uninsulated Interior Stud Wall Partition</td>
<td>SS-P1</td>
</tr>
<tr>
<td></td>
<td>52.0</td>
</tr>
<tr>
<td>6mm Tempered Glass</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>5.7</td>
</tr>
<tr>
<td>Foundations</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Slab-On-Grade</td>
<td>SOG-FDN4</td>
</tr>
<tr>
<td></td>
<td>586.0</td>
</tr>
<tr>
<td>Isolated Footings with Concrete Piers</td>
<td>IF-FDN1</td>
</tr>
<tr>
<td></td>
<td>15.0</td>
</tr>
<tr>
<td>Strip Footings with Concrete Foundation Wall</td>
<td>SF-FDN5</td>
</tr>
<tr>
<td></td>
<td>160.0</td>
</tr>
</tbody>
</table>

* See Appendix B for a detailed description of the building components corresponding to the building component ID.
4.2.4 Description of Predominately Steel Retail Building (Case Study #4)

The fourth single-storey retail building looked at in this study was a predominately steel retail building. The goal was to create a building that used steel building components wherever it was possible to do so. The objective was to investigate the influence of material selection on the life-cycle energy use and GWP of a single-storey retail building constructed primarily of steel, compared to other buildings where a broad mix of materials were used.

For Case Study #4: Predominately Steel Retail Building, the structural system, foundations, mezzanine floor, interior partitions, windows, and doors are exactly the same as Case Study #1. However, in Case Study #4 the exterior infill walls are comprised of cold-formed steel studs with exterior installed rigid insulation and a galvanized cold-formed steel cladding. An open web steel joist roof with metal deck was designed in this case, along with a galvanized standing seam steel roof with 75 mm (3 in.) of insulation. Otherwise, Case Study #4 is exactly the same as Case Study #1. An illustration of Case Study #4 can be seen in Figure 4-4.

![Figure 4-4: Case Study #4 – Predominately Steel Single-Storey Retail Building](image)

Table 4-4 contains a breakdown of the various building components that were specified for Case Study #4. The building components have been listed by their ID, so Appendix B can be consulted for a detailed description of each building component.
Table 4-4: Building Component Quantities for Case Study #4

<table>
<thead>
<tr>
<th>Building Component</th>
<th>ID</th>
<th>Estimated Quantity</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior Infill Wall Enclosure</td>
<td>SS-W17</td>
<td>581.0 sq.m</td>
<td></td>
</tr>
<tr>
<td>Roof Enclosure (Includes Roof Joists, JOIST-1)</td>
<td>OWSJ-R5</td>
<td>586.0 sq.m</td>
<td></td>
</tr>
<tr>
<td>Structural System - 350W Hot-Rolled Steel</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Beams (Includes BM-1, BM-2, BM-3, GRT-1)</td>
<td>S-1</td>
<td>11.8 tonnes</td>
<td></td>
</tr>
<tr>
<td>Columns (Includes COL-A)</td>
<td>S-1</td>
<td>3.3 tonnes</td>
<td></td>
</tr>
<tr>
<td>Hot-Rolled Steel Connection Plates</td>
<td>N/A</td>
<td>0.3 tonnes</td>
<td></td>
</tr>
<tr>
<td>Fasteners</td>
<td>N/A</td>
<td>0.2 tonnes</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous Hot-Rolled Steel</td>
<td>N/A</td>
<td>1.2 tonnes</td>
<td></td>
</tr>
<tr>
<td>Mezzanine Floor (Includes Floor Joists, JOIST-1)</td>
<td>FL-3</td>
<td>48.0 sq.m</td>
<td></td>
</tr>
<tr>
<td>Windows</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Curtainwall (Façade)</td>
<td>W-9</td>
<td>128.0 sq.m</td>
<td></td>
</tr>
<tr>
<td>Curtainwall (Interior Vestibule)</td>
<td>W-9</td>
<td>34.5 sq.m</td>
<td></td>
</tr>
<tr>
<td>Windows</td>
<td>W-1</td>
<td>20.3 sq.m</td>
<td></td>
</tr>
<tr>
<td>Doors</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Overhead Doors</td>
<td>D-4</td>
<td>1.0 doors</td>
<td></td>
</tr>
<tr>
<td>Exterior Doors - Opaque</td>
<td>D-2</td>
<td>1.0 doors</td>
<td></td>
</tr>
<tr>
<td>Exterior Doors - Glazing</td>
<td>D-3</td>
<td>6.0 doors</td>
<td></td>
</tr>
<tr>
<td>Interior Doors</td>
<td>D-6</td>
<td>9.0 doors</td>
<td></td>
</tr>
<tr>
<td>Interior Partitions</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Fire Rated Stair Tower</td>
<td>CMU-P1</td>
<td>84.0 sq.m</td>
<td></td>
</tr>
<tr>
<td>Insulated Interior Stud Wall Partition</td>
<td>SS-P3</td>
<td>75.0 sq.m</td>
<td></td>
</tr>
<tr>
<td>Uninsulated Interior Stud Wall Partition</td>
<td>SS-P1</td>
<td>52.0 sq.m</td>
<td></td>
</tr>
<tr>
<td>6mm Tempered Glass</td>
<td>N/A</td>
<td>5.7 sq.m</td>
<td></td>
</tr>
<tr>
<td>Foundations</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Slab-On-Grade</td>
<td>SOG-FDN4</td>
<td>586.0 sq.m</td>
<td></td>
</tr>
<tr>
<td>Isolated Footings with Concrete Piers</td>
<td>IF-FDN1</td>
<td>15.0 units</td>
<td></td>
</tr>
<tr>
<td>Strip Footings with Concrete Foundation Wall</td>
<td>SF-FDN5</td>
<td>1660.0 m</td>
<td></td>
</tr>
</tbody>
</table>

* See Appendix B for a detailed description of the building components corresponding to the building component ID

4.2.5 Description of Predominately Timber Retail Building (Case Study #5)

The fifth single-storey retail building considered was a predominately timber retail building. The goal was to create a building using timber building components wherever timber was the best choice. Once again, the objective was to investigate the influence of material selection on the life-cycle energy use and GWP of a single-storey retail building constructed primarily of timber, compared to other buildings where a broad mix of materials were used.

For Case Study #5: Predominately Timber Retail Building, the structural system and foundations are exactly the same as Case Study #2. However, in Case Study #5 the exterior infill walls are comprised of wood studs with exterior installed rigid insulation and wood siding. The roof structure consists of glulam joists with tongue and groove solid wood plank decking. Since no timber roof coverings are commonly used in commercial buildings, a 4-ply built-up asphalt roof assembly was specified along with 75 mm (3 in.) of insulation. This is a very common roof assembly for single-storey retail
buildings and was also used for Case Study #1 and #2. The mezzanine floor is made up of glulam joists with tongue and groove solid wood plank decking and a vinyl tile floor finish. The interior partitions are wood studs with two layers of drywall finish. The windows are timber frame with a thermal break (two sealed viewable glazing panes with 12.7 mm airspace, no low-E coating, and no argon between panes). The doors are a combination of opaque wood doors, wood doors with glazing, and an insulated overhead steel door in the shipping and receiving area. An illustration of Case Study #5 can be seen in Figure 4-5.

![Image of Case Study #5](image)

Figure 4-5: Case Study #5 – Predominately Timber Single-Storey Retail Building

Table 4-5 contains a breakdown of the various building components that were specified for Case Study #5. The building components have been listed by their ID, so Appendix B can be consulted for a detailed description of each building component.

In this chapter, five single-storey retail buildings were presented. These five buildings were examined within the framework of a comprehensive LCA, in order to determine the relative significance of the various building components in relation to the overall environmental burdens of an entire building. In Chapter 3 a method for calculating the life-cycle energy use and GWP of entire buildings and individual building components was discussed. In addition, 220 different building components that are commonly used in single-storey retail buildings in Canada were identified. The remainder of this study will focus on the results of the life-cycle assessment of the 220 different building components and the five case study buildings, as well as an interpretation of the results.
Table 4-5: Building Component Quantities for Case Study #5

<table>
<thead>
<tr>
<th>Building Component</th>
<th>Building Component Quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior Infill Wall Enclosure</td>
<td>WS-W4 581.0 sq.m</td>
</tr>
<tr>
<td>Roof Enclosure (Includes Roof Joists, JOIST-1)</td>
<td>GLU-R2 586.0 sq.m</td>
</tr>
<tr>
<td>Structural System - 24F/Glulam Timber</td>
<td></td>
</tr>
<tr>
<td>Beams (Includes BM-1, BM-2, BM-3, GIRT-1)</td>
<td>S-2 25.4 cu.m</td>
</tr>
<tr>
<td>Columns (Includes COL-A)</td>
<td>S-2 8.0 cu.m</td>
</tr>
<tr>
<td>Hot-Rolled Steel Connection Plates</td>
<td>N/A 0.3 tonnes</td>
</tr>
<tr>
<td>Fasteners</td>
<td>N/A 0.2 tonnes</td>
</tr>
<tr>
<td>Miscellaneous Hot-Rolled Steel</td>
<td>N/A 1.2 tonnes</td>
</tr>
<tr>
<td>Mezzanine Floor (Includes Floor Joists, JOIST-1)</td>
<td>FL-2 48.0 sq.m</td>
</tr>
<tr>
<td>Windows</td>
<td></td>
</tr>
<tr>
<td>Curtainwall (Façade)</td>
<td>W-9 128.0 sq.m</td>
</tr>
<tr>
<td>Curtainwall (Interior Vestibule)</td>
<td>W-9 34.5 sq.m</td>
</tr>
<tr>
<td>Windows</td>
<td>W-4 20.3 sq.m</td>
</tr>
<tr>
<td>Doors</td>
<td></td>
</tr>
<tr>
<td>Overhead Doors</td>
<td>D-4 1.0 doors</td>
</tr>
<tr>
<td>Exterior Doors - Opaque</td>
<td>D-1 1.0 doors</td>
</tr>
<tr>
<td>Exterior Doors - Glazing</td>
<td>D-3 6.0 doors</td>
</tr>
<tr>
<td>Interior Doors</td>
<td>D-5 9.0 doors</td>
</tr>
<tr>
<td>Interior Partitions</td>
<td></td>
</tr>
<tr>
<td>Fire Rated Stair Tower</td>
<td>CMU-P1 84.0 sq.m</td>
</tr>
<tr>
<td>Insulated Interior Stud Wall Partition</td>
<td>WS-P3 75.0 sq.m</td>
</tr>
<tr>
<td>Uninsulated Interior Stud Wall Partition</td>
<td>WS-P1 52.0 sq.m</td>
</tr>
<tr>
<td>6mm Tempered Glass</td>
<td>N/A 5.7 sq.m</td>
</tr>
<tr>
<td>Foundations</td>
<td></td>
</tr>
<tr>
<td>Slab-On-Grade</td>
<td>SGD-FDN4 586.0 sq.m</td>
</tr>
<tr>
<td>Isolated Footings with Concrete Piers</td>
<td>IF-FDN1 15.0 units</td>
</tr>
<tr>
<td>Strip Footings with Concrete Foundation Wall</td>
<td>SF-FDN5 160.0 m</td>
</tr>
</tbody>
</table>

See Appendix B for a detailed description of the building components corresponding to the building component ID
Chapter 5
Results: Life-Cycle Assessment of Whole Buildings

5.1 Introduction

Over the life of a building, the total energy use and total GWP is a combination of the embodied energy and embodied GWP of the building materials and the operating energy and operating GWP of the building. In a typical multi-storey office building, about 85% of the total life-cycle energy use after 50 years is a result of the building operations, while only about 15% is due to the energy that is embodied in the materials (Cole & Kernan, 1996).

A similar relationship between embodied effects and operating effects is thought to exist for the case of a single-storey retail building, but the data to support this is difficult to find. Therefore, this study examined the breakdown of embodied energy, embodied GWP, operating energy, and operating GWP for five different single-storey retail buildings, located in Toronto, Canada, with a 50 year lifespan. The five retail buildings included: a typical hot-rolled steel structure retail building, a typical heavy timber structure retail buildings, a typical pre-engineered steel retail building, a predominately steel retail building, and a predominately timber retail building.

Similar to the studies of multi-storey office buildings (Cole & Kernan, 1996), the operating effects of the five single-storey retail buildings in this study were found to dominate over the lifespan of the buildings. However, some interesting relationships in terms of the embodied energy and embodied GWP for the components of the retail buildings were found. The aim of this chapter is to present a summary of the LCA results for the five case study retail buildings. It is important to develop an understanding of the energy use and GWP for whole buildings first, before moving onto a detailed analysis of the individual building components. Having an understanding of the energy use and GWP of an entire building will allow the detailed analysis of the 220 different building components in this study to be placed in context. Therefore, the results for the LCA study of the five case study buildings will be presented first, followed by a discussion of the life-cycle energy use and GWP of the 220 alternative building components in Chapter 6.

5.2 LCA Results for the Baseline Retail Building (Case Study #1)

A LCA was performed for the baseline retail building (Case Study #1) described in Chapter 3 and Appendix A, in order to establish a datum of total embodied energy, embodied GWP, operating
energy, and operating GWP for a single-storey retail building. Recall that the baseline retail building is a typical hot-rolled steel structure building. This building represents a typical single-storey retail building that would be constructed in Canada today. The remainder of this section will present the results of the comprehensive LCA study for the baseline retail building. A summary of the LCA results can be found in Appendix C.

5.2.1 Operating Energy and GWP of the Baseline Retail Building (Case Study #1)

Based on Cole & Kernan (1996), the operating energy of a typical Canadian office building represents upwards of 85% of the total life-cycle energy after 50 years. An analysis of operating energy and operating GWP was conducted for the baseline retail building in this study using eQUEST and the ATHENA® EIE converter. A rendering of the baseline retail building, along with the corresponding eQUEST model are illustrated in Figure 5-1.
The electricity and natural gas use for the baseline retail building were determined from eQUEST. A breakdown of the annual energy consumption for the baseline retail building is presented in Figure 5-2.

![Figure 5-2: Breakdown of Annual Energy Consumption for the Baseline Retail Building (Case Study #1) from eQUEST](image)

The eQUEST simulations found the annual electricity consumption of the baseline retail building to be about 79,000 kWh/year. Clearly, Figure 5-2 indicates that area lighting is responsible for the largest proportion of electricity use on an annual basis. In fact, area lighting is responsible for approximately 66% of the annual electricity use for the entire baseline retail building. This result is expected for a retail building. Electricity use in a retail type building is primarily due to lighting, given that a prominent display of retail merchandise is often a primary concern. The eQUEST results for the baseline retail building also indicate that ventilation fans (13%), space cooling (11%), and miscellaneous equipment such as office equipment (10%) are also significant consumers of electricity on an annual basis. Recall that the cooling equipment for the baseline retail building in this study was taken to be direct expansion (DX) coils, which operate on electricity. Therefore, space cooling load appears in the form of electricity use in the eQUEST results.
Focusing now on the annual natural gas consumption in Figure 5-2, the eQUEST simulations found the annual natural gas consumption of the baseline retail building to be about 376 MBtu/year. About 98% of this was due to space heating. This is expected as the heating equipment for the baseline retail building was specified as a natural gas combustion furnace, as the building is located in Toronto, Canada (which is a cold climate). Therefore, it is naturally expected to see a significant amount of energy for space heating as demonstrated herein.

Using the ATHENA® EIE converter, the annual electricity use and natural gas use were converted into a total of about 1,014 GJ/year of annual primary energy use. Over a 50 year lifespan, the baseline retail building therefore consumes about 50,700 GJ of primary energy. Similarly, using the ATHENA® EIE converter, this translates into about 46 tonnes of CO₂ eq./year (or 2,310 tonnes of CO₂ eq. over a 50 year lifespan). The total electricity use and the total natural gas use represent about 56.9% (47.3%) and 43.1% (52.7%) of the annual operating energy use (and operating GWP) respectfully. A breakdown of the annual operating energy use (and operating GWP) for the baseline retail building can be further divided into: space heating (assuming a natural gas furnace) = 42.4% (51.8%), area lighting = 37.3% (31.0%), ventilation fans = 7.4% (6.2%), space cooling (assuming DX electric coils) = 6.4% (5.4%), miscellaneous equipment = 5.6% (4.6%), water heating = 0.7% (0.9%), and pumps and auxiliary = 0.2% (0.1%).

The annual energy use for the baseline retail building from eQUEST can also be displayed in terms of the monthly energy consumption in Figure 5-3. The electricity consumption from area lighting is relatively constant each month, as is the ventilation fans and the miscellaneous equipment. However, the electricity consumption due to space cooling goes up in the summer months. This is expected, as space cooling is only required during the summer in a single-storey, 100% perimeter zone building such as this.

Figure 5-3 also shows the monthly distribution of natural gas use for the baseline retail building. Notice that in the summer months when the space cooling electricity use is the highest, this corresponds to when the natural gas use for space heating is the least. This makes sense, as there is no need to operate the furnace for space heating during the warm summer months. As expected, the natural gas use due to space heating is highest during the winter months. Recall that operating energy and operating GWP are only one part of the equation. The results for the total embodied energy and embodied GWP of the baseline retail building will be presented in the next section.
5.2.2 Embodied Energy and GWP of the Baseline Retail Building (Case Study #1)

Using the ATHENA® EIE for Buildings v4.0.64, the total life-cycle embodied energy (initial embodied energy + recurring embodied energy) of the baseline retail building was calculated for a 50 year lifespan in Toronto. The results for the various components of the building are presented in Figure 5-4 in terms of the total primary energy.

The total embodied energy of the baseline retail building was calculated to be about 5,247 GJ. This includes both the initial embodied energy as well as the recurring embodied energy. The key observation to note is the relatively large total embodied energy of the roof compared to the other components of the baseline retail building. In fact, the roof alone represents about 52% of the total embodied energy of the entire building. This is primarily due to two factors: the roof-to-wall area ratio in a single-storey building and the relatively high total embodied energy of the roof structure compared to the other components of the building.

In a single-storey building like in this study, the roof-to-wall area ratio is typically much larger than in a multi-storey building. This ratio is dependent on the geometric proportions of the building. In a single-storey building, the roof is a larger proportion of the total enclosure area than in a multi-storey building. The roof-to-wall area ratio for the baseline retail building in this study is about 1.0

Figure 5-3: Monthly Energy Consumption for the Baseline Retail Building from eQUEST
(including the window area in the calculation would result in a roof-to-vertical enclosure area ratio of about 0.80). In multi-storey buildings, these ratios are typically much less than 1.0. Therefore, in a single-storey retail building like in this study, the roof is a larger proportion of the total enclosure area and therefore plays a significant role in terms of the total embodied energy.

![Figure 5-4: Total Life-Cycle Embodied Energy of the Baseline Retail Building (Case Study #1) after 50 Year Lifespan in Toronto](image)

In addition to the roof being a large proportion of the total enclosure area, the embodied energy per m\(^2\) of roof is relatively high compared to the embodied energy per m\(^2\) of wall. For the exterior infill wall enclosures identified in Appendix B, the total embodied energy m\(^2\) of wall ranged from 0.49 GJ/m\(^2\) to 3.17 GJ/m\(^2\). The average embodied energy per m\(^2\) of exterior infill wall for the walls identified in Appendix B was about 1.42 GJ/m\(^2\). On the contrary, the total embodied energy per m\(^2\) of roof ranged from 0.74 GJ/m\(^2\) to 5.18 GJ/m\(^2\) for the roof enclosures identified in Appendix B. The average embodied energy per m\(^2\) of roof for the roofs in Appendix B was about 2.67 GJ/m\(^2\). Therefore, on average the total embodied energy per m\(^2\) of enclosure for the roofs could be up to about two times greater than that of the exterior infill walls. This is because many of the roof coverings have to be replaced or repaired many times over a 50 year lifespan with the exception of the commercial standing seam steel roof. Also, many roof enclosures tend to use asphalt-based materials which are both high in embodied energy and need to be replaced/repaired often.
contrary, the exterior infill walls tend to have less recurring embodied energy associated with them, as the cladding materials for example are not replaced/repaired as often as the roof covering. Therefore, the roof enclosures tend to have significantly higher recurring embodied energy than the walls, which results on average in a higher total embodied energy per m² of enclosure.

On its own, the total embodied energy of the roof is responsible for over half of the total embodied energy of the entire single-storey retail building. If the total embodied energy of the roofs, exterior infill walls, and windows/doors are grouped together (referred to as the building enclosure), then the total embodied energy of the enclosure would be responsible for about 74% of the total embodied energy of the building. Compared to the structural system, which is responsible for only about 9% of the total embodied energy of the building, the enclosure has a far greater impact on the environment than the structural system. The foundations actually represent about 13% of the total embodied energy of the building, which is more than that of the entire structural system.

In this study, the floor area refers to the mezzanine floor, not the slab-on-grade. The impacts from the slab-on-grade are included in the foundation results. In this building, the floor was only responsible for about 1% of the total embodied energy after 50 years. However, this is because the floor area in this building was relatively small (only a 50 m² mezzanine). The total embodied energy of the floors in Appendix B ranged from 0.56 GJ/m² to 1.21 GJ/m² of floor area. Therefore, in buildings with a larger proportion of floor area, the total embodied energy of the floor could potentially represent a much higher percentage of the total embodied energy of the building.

Next, a comparison of the total embodied GWP of the building components is made for the baseline retail building. The LCA results for the embodied GWP are displayed in Figure 5-5.

It can be seen that the relationships between the various building components for the baseline retail building in terms of embodied GWP are much the same as the relationships for embodied energy. Again, the roof enclosure represents the most significant contribution towards the total embodied GWP of the building. The building enclosure (roof, exterior infill walls, windows, and doors) is responsible for about 63% of the total embodied GWP of the building. The total embodied GWP of the building is slightly less influenced by the enclosure than was the case with the total embodied energy. This is mainly due to the fact that the embodied GWP of the foundations accounts for about 25% of the total embodied GWP of the building (compared to only 13% of the total embodied energy of the building). This is primarily because the foundations are comprised almost entirely of concrete.
and steel, which tend to have higher embodied GWP than many other building materials when used in large quantities.

Figure 5-5: Total Life-Cycle Embodied GWP of the Baseline Retail Building (Case Study #1) after 50 Year Lifespan in Toronto

Therefore, total life-cycle embodied energy and embodied GWP of the baseline retail building was calculated for a 50 year lifespan. Next, the total embodied energy and embodied GWP are compared to the total operating energy and operating GWP for the baseline retail building, in order to determine the relative importance of each to the total energy and total GWP of the building.

5.2.3 Total Energy and GWP of the Baseline Retail Building (Case Study #1)

The operating energy, operating GWP, embodied energy, and embodied GWP of the baseline retail building have already been discussed. In this section, the results will be compared in order to determine the relative proportion of the total life-cycle energy use and total GWP that is attributed to the operations of the building verses the embodied effects.

Figure 5-6 illustrates the breakdown of the total life-cycle energy use for the baseline retail building. Over a 50 year lifespan, the operating energy is equal to about 50,700 GJ of primary energy use and the total embodied primary energy is about 5,247 GJ. This results in a total life-cycle primary energy use of about 55,947 GJ after 50 years for the baseline retail building.
Also indicated in Figure 5-6 is the distribution of embodied energy to operating energy for the baseline retail building. Some very interesting results can be derived from the Figure. First, after a 50 year lifespan the operating energy accounts for nearly 91% of the total life-cycle energy use. The total embodied energy is only about 9%. Recall that Cole and Kernan (1996) found the operating energy to be 85% and the total embodied energy to be 15% for a typical multi-storey office building in Toronto, with a 50 year lifespan. Therefore, after 50 years for the case of a single-storey, 100% perimeter zone retail building, located in Toronto, the embodied effects account for less than 10% of the total life-cycle energy use.

In the past, many people have argued that the choice of a structural system has a significant role to play in designing a low-energy building, simply due to the fact that a particular structural system has less embodied energy than another. This argument is most often made as the basis for selecting a wood-based system over a steel or concrete-based system. However, the results in Figure 5-6 clearly show that as less than 1% of the total life-cycle energy use after 50 years is due to the embodied energy of the structural system, the structural material is essentially negligible. In other words, the maximum savings in terms of life-cycle energy use after 50 years is limited to about 1% of the total
energy for a typical retail building in Canada. In fact, reducing the annual operating energy use of the building by only 5% would save around five times as much energy over 50 years as is currently embodied in the entire structural system. Looking at the big picture, the embodied energy of the structural system is simply not a factor when the operating energy of the building is so much more significant. Only when the operating energy of the building is decreased drastically, would the embodied energy of the structural system gain greater importance.

Looking at the other components of the retail building in Figure 5-6, it can be seen that the total embodied energy of the roof accounts for about 5% of the total energy use of the baseline retail building after 50 years. Grouping the roof, exterior infill walls, windows, and doors together, the embodied energy of the exterior enclosure is responsible for about 7% of the total energy.

Next, looking at the breakdown of total GWP for the baseline retail building after 50 years, similar trends can be observed in terms of operating effects verses embodied effects as illustrated in Figure 5-7.

![Figure 5-7: Total Life-Cycle GWP Breakdown of the Baseline Retail Building (Case Study #1) after 50 Year Lifespan in Toronto](image)

Total 50 Year Embodied GWP = 322 tonnes of CO$_2$ eq.
Total 50 Year Operating GWP = 2,310 tonnes of CO$_2$ eq.
Total 50 Year GWP = 2,632 tonnes of CO$_2$ eq.
The total operating GWP represents about 88% of the total life-cycle GWP after 50 years, compared to only about 12% for the embodied GWP. The relative significance of embodied effects versus operating effects has gone up slightly for GWP compared to primary energy, due to the fact that the GWP of the foundations is relatively higher. The foundations are responsible for about 3% of the total GWP of the retail building after 50 years. The exterior enclosure is responsible for about 8% of the total GWP of the building, while the structural system accounts for a negligible 1%.

Therefore, for a typical single-storey retail building in Canada, the operating energy and operating GWP are by far the most significant contributors towards the total life-cycle energy use and total GWP after a 50 year lifespan. Not until the operating energy and operating GWP of the building are reduced by around 50% from typical values today, would the embodied energy and embodied GWP of the building components even begin to become a concern.

The relationship between operating effects and embodied effects for the baseline retail building are very significant. Understanding that the embodied effects play a minor role in terms of the total life-cycle effects in a typical retail building today, can go along way to designing better performing retail buildings from an energy and GWP standpoint. These relationships are not exclusive to retail type buildings. In fact, the conclusions that have been drawn for the baseline retail building thus far could conceivably be applied to any single-storey commercial building in Canada with a 50 year lifespan.

The LCA results of operating effects versus embodied effects for a typical single-storey retail building in Canada can be displayed in another way. Figure 5-8 displays the relative proportions of the embodied effects versus the operating effects for the components of the baseline retail building. Essentially, the percentage of the total life-cycle energy use and total GWP for the components of the baseline retail building have been represented as a scaled proportion of the total area of the building (or emission cloud for the case of GWP) in Figure 5-8. Again, one can see that when plotted to scale, the embodied effects are small compared to the operating effects. This figure simply serves to display these relationships in a different way.
5.2.4 Comparison of the Baseline Retail Building (Case Study #1) to Average Canadian Retail Building

It is important to compare the LCA results for the baseline retail building to the average retail building in Canada, in order to determine how accurately this baseline retail building represents the typical retail building in Canada.

Figure 5-8: A Scaled Diagram of Total Life-Cycle Energy Use and GWP for a Typical Retail Building after a 50 Year Lifespan in Toronto
Recall that after a 50 year lifespan in Toronto, the total operating energy of the baseline retail building was found to be about 50,700 GJ of primary energy use. Given a total floor area of about 581 m², this translates into about 1,745 MJ/m²/yr of primary energy use. The total operating GWP of the baseline retail building was found to be about 2,310 tonnes of CO₂ eq. after 50 years (80 kg of CO₂ eq./m²/yr).

The average retail building in Canada uses about 1,740 MJ/m²/yr of energy and emits about 97 kg of CO₂ eq./m²/yr (NRCan, OEE, 2010). The baseline building in this study consumes about the same energy per year and emits approximately 18% less CO₂ eq. per year than the average retail building in Canada. Therefore, the baseline retail building in this study was deemed to adequately represent the life-cycle operating energy and operating GWP of a typical retail building in Canada.

Unfortunately, there is no data available when it comes to the embodied energy and embodied GWP of single-storey retail buildings. Therefore, it is difficult (if not impossible) to provide a comparison of the embodied energy or embodied GWP of the baseline retail building in this study to the average retail building in Canada.

So far the LCA results for the baseline retail building (Case Study #1) have been presented. In the next section, a comparison of the LCA results for the remaining four retail buildings will be discussed.

5.3 LCA Results for Case Study Retail Buildings

Thus far, the LCA results have been discussed for the baseline retail building (Case Study #1). In this section, the LCA results will be presented for the remaining four case study retail buildings.

The objective here is to investigate what affect changing the structural system from a typical hot-rolled steel structure (Case Study #1), to a typical heavy timber structure (Case Study #2), to a typical pre-engineered steel structure (Case Study #3) has on the total life-cycle energy use and GWP of a retail building. Also, the impact on the total life-cycle energy use and GWP will be determined for the case when a predominately steel building (Case Study #4) and a predominately timber building (Case Study #5) are designed.

All of the case study buildings are identical to the baseline retail building (Case Study #1), except for the specific variables that have been changed such as the structural system. Otherwise, all of the buildings have the same dimensions, layout, mechanical systems, operating hours, etc. A detail description of all the case study buildings, along with the LCA results, can be found in Appendix C.
Based on the results from the previous section for the baseline retail building, it is expected that the operating effects will dominate over the lifespan of the other four case study buildings. The remainder of this section will present the relationships between embodied effects and operating effects for all of the case study buildings.

5.3.1 Operating Energy and GWP of Case Study Retail Buildings

In the same way as the baseline retail building, the annual operating energy of each case study building was calculated using eQUEST. Using the ATHENA® EIE converter, the annual electricity use and natural gas use was then converted into an equivalent amount of annual primary energy and GWP. The annual operating energy and GWP results for all five case study buildings are listed in Table 5-1.

The trends in electricity use and natural gas use were found to be the same for all five case study buildings. Area lighting dominated the annual electricity use and space heating was responsible for almost all of the annual natural gas use.

Case Study #4 (the predominately steel retail building) was found to have the highest annual operating energy use (and operating GWP) at about 1,040 GJ/yr (48 tonnes of CO$_2$ eq./yr). Case Study #3 (the typical pre-engineered steel structure retail building) actually had the least annual operating energy use (and operating GWP) at approximately 1,009 GJ/yr (46 tonnes of CO$_2$ eq./yr). These results are essentially identical. It is important to note that the operating effects are highly dependent on the degree of thermal resistance (i.e. R-value or RSI-value) provided by the exterior infill walls and roof. Therefore, the R-values (and RSI-values) are also listed in Table 5-1 alongside the operating energy and GWP results for each case study building. For each case study building, the exterior walls and roofs were designed based on typical practice. Wherever possible, the thermal resistances were taken to be as close as possible to Case Study #1, in order to ensure an equal comparison. However, in some instances the thermal resistances deviated slightly from Case Study #1 (either higher or lower). However, for the purposes of this study, these slight deviations were deemed to be acceptable.

In any case, the annual operating energy and operating GWP of all five case study buildings only differed at most by 3% and 4% respectfully. Therefore, given the level of accuracy required in this study, it can be said that all of these buildings had almost identical annual operating energy and operating GWP. Therefore, assuming that the thermal resistance of the exterior walls and roof are
similar, the impact of changing the structural system from a timber system to a steel system has a negligible impact on the annual operating effects. The same is true of the predominately steel and predominately timber retail buildings. So long as the thermal resistance of the exterior walls and roof are similar, the differences in annual operating effects are minimal.

Table 5-1: Annual Operating Energy and GWP Results for Case Study Buildings

<table>
<thead>
<tr>
<th>Case Study #</th>
<th>Building Description</th>
<th>* R-Value (RSI-Value)</th>
<th>Data from eQUEST</th>
<th>Data from ATHENA® EIE Converter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Exterior Walls</td>
<td>Roof</td>
<td>Annual Electricity Use (kWh/yr)</td>
</tr>
<tr>
<td>1 (Baseline Retail Building)</td>
<td>Typical Hot-Rolled Steel Structure Retail Building</td>
<td>15.6 (2.7)</td>
<td>20.8 (3.7)</td>
<td>78,947</td>
</tr>
<tr>
<td>2</td>
<td>Typical Heavy Timber Structure Retail Building</td>
<td>15.6 (2.7)</td>
<td>20.8 (3.7)</td>
<td>78,947</td>
</tr>
<tr>
<td>3</td>
<td>Typical Pre-Engineered Steel Structure Retail Building</td>
<td>17.9 (3.2)</td>
<td>17.8 (3.1)</td>
<td>79,341</td>
</tr>
<tr>
<td>4</td>
<td>Predominately Steel Retail Building</td>
<td>13.0 (2.3)</td>
<td>17.8 (3.1)</td>
<td>79,839</td>
</tr>
<tr>
<td>5</td>
<td>Predominately Timber Retail Building</td>
<td>14.9 (2.6)</td>
<td>23.1 (4.1)</td>
<td>79,420</td>
</tr>
</tbody>
</table>

* Note: The exterior walls and roofs were designed based on typical practice for each type of building. Wherever possible, the R-values were taken to be as close as possible to the R-values of Case Study #1. However, in some circumstances the R-values deviate slightly from Case Study #1. The differences in R-values do affect the annual operating energy and GWP of the buildings, but this was assumed to be acceptable for the purposes of this study.

5.3.2 Embodied Energy and GWP of Case Study Retail Buildings

In this section, the results are presented for the total embodied energy and total embodied GWP of the five case study buildings. Figure 5-9 displays the total life-cycle embodied energy of each of the five case study buildings after a 50 year lifespan in Toronto using the ATHENA® EIE for Buildings.
The total embodied energy of each case study building has been divided into the relevant building components: exterior walls, roof, structure, interior partitions, floor, windows, doors, foundations, and other. Case Study #3 (the typical pre-engineered steel retail building) was found to have the least total embodied energy of all the buildings (2,927 GJ). This result is logical as pre-engineered steel buildings are highly engineered and optimized structures from a material standpoint. This is primarily achieved to save material and construction costs. However, this high degree of material optimization has the added benefit of creating a building that uses less material and therefore, has less embodied energy than other types of buildings. Although pre-engineered steel buildings are comprised mostly of steel (a material with a relatively high embodied energy), little recurring embodied energy is associated with this system as most of the building components can last 50 years with minimal repair/replacement. From an embodied energy standpoint, pre-engineered buildings show excellent potential as building systems for low-energy building applications.

Case Study #1 (the typical hot-rolled steel structure retail building) was found to have the highest total embodied energy of all five buildings (5,247 GJ). One might understandably expect Case Study #4 (the predominately steel retail building) to have a higher total embodied energy, but this is not the case. The reason for this is that the predominately steel retail building had a standing seam steel roof which had significantly less embodied energy than the 4-ply built-up asphalt roof that was specified for the typical hot-rolled steel structure retail building. This observation leads to a very important conclusion for single-storey commercial buildings.

Of all the building components, the roof has by far the largest total embodied energy. Roof coverings are often made of asphalt-based materials which are very high in embodied energy and must be replaced often. Case Studies #1, #2, and #5 all have a 4-ply built-up asphalt roof system. On the contrary, Case Studies #3 and #4 have a commercial standing seam steel roof. The steel roof requires less maintenance, repair, and replacement than the asphalt-based roof. Therefore, the recurring embodied energy of the steel roof system is much smaller after 50 years. Although steel as a material has a relatively high embodied energy, steel roofs perform much better than asphalt-based roof systems due to less recurring embodied energy. It should be noted that if Case Study #5 (the predominately timber retail building) were to have a commercial standing seam steel roof instead of a 4-ply built-up asphalt roof, it would actually have the least total embodied energy of all five buildings. This just serves to reinforce the importance of the roof in the calculations of total embodied energy for a single-storey building. Generally speaking, if the concern is to reduce the total embodied
energy of a single-storey building, then the attention should focus on reducing the total embodied energy of the roof.

![Figure 5-9: Total Life-Cycle Embodied Energy of the Case Study Buildings after 50 Year Lifespan in Toronto](image)

With the discussion of the total embodied energy for the five case study buildings completed, the focus can now be shifted to a comparison of the total embodied GWP. As before, the embodied GWP
was calculated using the ATHENA® EIE for buildings and the results for the five case study buildings are displayed in Figure 5-10.

![Graph showing total life-cycle embodied GWP of case study buildings](image)

*Note: With a steel roof (46 tonnes of CO₂ eq.) instead of a 4-ply built-up asphalt roof (109 tonnes of CO₂ eq.), Case Study #5 would have a total embodied GWP of about (201 tonnes of CO₂ eq.).

Similar to the total embodied energy, Case Study #3 (the typical pre-engineered steel retail building) was found to have the least total GWP after 50 years (208 tonnes of CO₂ eq.). Again, this can be attributed to the high degree of material optimization that is inherent to these types of buildings. On
the contrary, Case Study #1 (the typical hot-rolled steel structure retail building) was found to have the highest total embodied GWP (322 tonnes of CO$_2$ eq.). Again, the roof plays a significant role in this. The standing seam steel roof had much less embodied GWP compared to the 4-ply built-up asphalt roof systems, due to less recurring GWP. It should be pointed out that if Case Study #5 (the predominately timber retail building) were to switch from a 4-ply built-up asphalt roof to a steel roof, it would actually have the least total embodied GWP of any building after 50 years. Figure 5-10 also indicates that in most cases, the embodied GWP of the foundations was the highest single contributor towards the total embodied GWP next to the roof. This suggests that a concerted effort to optimize the foundation systems for low-energy buildings should be undertaken, if reducing the embodied GWP is a concern.

Now that the total life-cycle operating energy, operating GWP, embodied energy, and embodied GWP for the five case study buildings has been discussed, the results will be combined to determine which case study building has the least total energy and total GWP after 50 years.

5.3.3 Total Energy and GWP of Case Study Retail Buildings

So far it can be seen that the annual operating energy and operating GWP do not significantly differ among the five case study buildings. It was also observed that the embodied energy (and embodied GWP) does differ between the five buildings, sometimes by as much as 44% (35%). In this section, the total operating energy, operating GWP, embodied energy, and embodied GWP are combined to determine the total life-cycle energy and total GWP of the five case study buildings.

Displayed in Figure 5-11 are the total life-cycle energy and GWP for the five case study buildings after a 50 year lifespan in Toronto. After a 50 year lifespan, the total energy and GWP of the five case study buildings differs at most by only 6% and 7% respectfully. This is a very important result as it indicates that regardless of the choice of structural system, or whether the building is primarily made of steel or timber building components, the differences in total energy and GWP after 50 years are minimal. The operating energy and operating GWP completely dominate the total energy and total GWP of the buildings after 50 years.

It was found that Case Study #3 (the typical pre-engineered steel retail building) had the least total energy and total GWP of any building. However, the energy and GWP savings for Case Study #3 were minimal compared to the other buildings. Regardless, a pre-engineered steel retail building performs at least as well as other types of buildings (and in this case slightly better). It is difficult to
say that in every case a pre-engineered steel building would perform better than other types of buildings in terms of life-cycle energy use and GWP. This is highly dependent on the thermal resistance of the enclosure among other variables. Historically, pre-engineered steel buildings have been plagued by massive thermal bridging problems at the location of wall girts and roof purlins. Therefore, a concerted effort has to be taken to limit the thermal bridging problems in pre-engineered steel buildings, in order for them to be competitive with other conventional building types.

It is important to note that since the differences in the total energy and GWP among the five case study buildings are so small, it is totally plausible that under slightly different circumstances (for example a slight change to the thermal resistance of the enclosure) that the rankings in Figure 5-11 could differ. However, this study proved that the type of building does not significantly impact the total life-cycle energy use and GWP. Only once the operating effects of a typical retail building are reduced significantly (by at least 50 %), would a comparison of the total embodied effects of different building types become important.

![Figure 5-11: Total Life-Cycle Energy Consumption and GWP of the Case Study Buildings after 50 Year Lifespan in Toronto](image)

To reinforce the importance of operating effects for the different building types, a breakdown of operating energy and embodied energy has been plotted for Case Study #2 and #3 in Figure 5-12 and
Figure 5-12 illustrates the breakdown of total life-cycle operating energy and embodied energy for Case Study # 2 (the typical heavy timber structure retail building). The total operating energy in this case represents about 91% of the total life-cycle energy, while the total embodied energy is only responsible for about 9%.

Similarly, Figure 5-13 illustrates the breakdown of total life-cycle operating energy and embodied energy for Case Study # 3 (the typical pre-engineered steel retail building). The total operating energy in this case represents about 94% of the total life-cycle energy, while the total embodied energy is only responsible for about 6%.

A similar breakdown of the total life-cycle operating GWP and embodied GWP can be done. Figure 5-14 and Figure 5-15 illustrate the results for Case Study #2 and #3 respectfully. Again, the dominance of the operating GWP compared to the embodied GWP is clear.
Figure 5-13: Total Life-Cycle Energy Breakdown of the Typical Pre-Engineered Steel Retail Building (Case Study #3) after 50 Year Lifespan in Toronto

Total 50 Year Embodied Energy = 2,927 GJ
Total 50 Year Operating Energy = 50,470 GJ
Total 50 Year Energy = 53,396 GJ

Figure 5-14: Total Life-Cycle GWP Breakdown of the Typical Heavy Timber Structure Retail Building (Case Study #2) after 50 Year Lifespan in Toronto

Total 50 Year Embodied GWP = 303 tonnes of CO$_2$ eq.
Total 50 Year Operating GWP = 2,310 tonnes of CO$_2$ eq.
Total 50 Year GWP = 2,613 tonnes of CO$_2$ eq.
These LCA results for the five case study retail buildings in Canada are very informative. The importance of operating effects versus embodied effects is obvious. Practically speaking, any building designer who is concerned with reducing the life-cycle energy and GWP of a single-storey retail building should focus primarily on reducing the operating energy and operating GWP of the building. Only once the operating effects can be reduced by at least 50% from typical values today, does a comparison of embodied effects become relevant.

That being said, as aggressive reductions in operating effects are achieved through such means as the LEED® certification process, it will be important to know which building components (exterior walls, roofs, floors, structural systems, foundations, windows, doors, and interior partitions) consume the most amount of energy and have the most GWP. The remainder of this study will examine in greater detail some of the differences between these various building components in terms of operating and embodied effects. However, one should not forget that in a typical retail building today, operating effects account for upwards of 90% of the total effects, while embodied effects only represent about 10%.
5.4 Data Quality and Assessment

Before moving onto a detailed discussion of the LCA results for the 220 different building components in this study, it would be prudent to briefly compare the LCA results for the five single-storey retail buildings in this study to the literature.

Recall from Table 2-4 in Chapter 2 that the annual total life-cycle operating energy per gross floor area for the LCA studies of commercial buildings in the literature ranged from about 0.23 to 4.23 GJ/m²/yr. The annual total life-cycle operating energy per gross floor area for the five single-storey retail buildings in this study ranged from about 1.74 to 1.75 GJ/m²/yr, which is within the range from the literature. Likewise, the annual total life-cycle operating GWP per gross floor area for the LCA studies of commercial buildings in the literature ranged from about 0.02 to 0.24 tonnes of CO₂ eq./m²/yr. The annual total life-cycle operating GWP per gross floor area for the five single-storey retail buildings in this study was about 0.08 tonnes of CO₂ eq./m²/yr, which is also within the range from the literature. Also, in the literature the total life-cycle embodied energy per gross floor area at the end of the building’s lifespan ranged from about 3.42 to 22.45 GJ/m² for a commercial building. In this study, the equivalent values for the five single-storey retail buildings ranged from about 5.04 to 9.03 GJ/m², which is within the range from the literature. Likewise, the total life-cycle embodied GWP per gross floor area at the end of the building’s lifespan from the commercial buildings in the literature ranged from about 0.20 to 0.89 tonnes of CO₂ eq./m²/yr, compared to a range of about 0.36 to 0.55 tonnes of CO₂ eq./m²/yr for the five single-storey retail buildings in this study. Therefore, the LCA results in this study fall within the range of LCA results for commercial buildings from the literature.
Chapter 6

Results: Life-Cycle Assessment of Building Components

6.1 Introduction

To this point, the LCA results have been presented for five different single-storey retail buildings with a 50 year lifespan in Toronto. The dominance of operating energy and operating GWP on the total life-cycle energy and total GWP has been established. Specifically, about 90% of the total life-cycle energy use and total GWP of a single-storey retail building after 50 years is a result of building operations, while only 10% or less is attributed to the embodied effects. However, as the building industry continues to strive for reductions in the annual operating energy and operating GWP of buildings, it will become increasingly important to consider the embodied energy and embodied GWP of the building components.

In this chapter, a brief overview of the total energy and total GWP for the 220 different building components that were examined in this study will be conducted. Recall that these building components are grouped into the following categories: exterior infill walls, roofs, structural systems, floors, windows, doors, interior partitions, and foundations. The LCA calculations are performed over a 50 year lifespan for the case of a building located in Toronto, Canada.

The ultimate objective of this chapter is to examine a wide array of strategies within each of the building component categories, in order to rank the alternative strategies in order of increasing total energy use and total GWP. By completing a detailed LCA of a wide array of strategies, this will serve as a reference to building professionals who are interested in a relative comparison of the total life-cycle energy use and total GWP of different walls, roofs, structural systems, floors, windows, doors, interior partitions, and foundations. The intent of this chapter is not to deal specifically with a direct comparison of one building component to another, but rather to present the range of values that are possible for the various categories of building components. Thus, the results in this chapter are a summary of the detailed LCA results that can be found in Appendix B.

6.2 Interpreting the LCA Graphs of Building Components

Interpreting the graphs of the total life-cycle energy and GWP presented in this chapter is relatively straightforward. The baseline retail building (Case Study #1) was used as the datum. Each building component of the baseline building was then systematically replaced with a new building component
(for example the baseline exterior infill wall was replaced with a new exterior infill wall). The difference in the total embodied energy (Δ embodied energy) and the difference in the total operating energy (Δ operating energy) from the baseline case after 50 years was plotted. Similarly, the difference in the total embodied GWP (Δ embodied GWP) and the difference in the total operating GWP (Δ operating GWP) from the baseline case was also plotted.

The key point to note when interpreting these graphs is that the values (both embodied energy and operating energy) have been plotted relative to a baseline component. In each case, the baseline component is also plotted on the graphs and is highlighted in grey. The range of building components were potted in order of increasing total energy (embodied energy + operating energy). Therefore, those building components that are plotted to the left of the baseline component (highlighted in grey) consume less total energy after 50 years than the baseline component. Conversely, those building components that are plotted to the right of the baseline building component, consume more total energy after 50 years than the baseline component. In this way, one can quickly tell from these graphs how the various building components compare to one another, based on their relative comparison to a baseline building component.

6.3 LCA Results for Exterior Infill Wall Enclosures

In this section, the LCA results for the collection of exterior infill walls in Appendix B will be presented. The Δ total energy and Δ total GWP of the different types of exterior infill walls examined in this study relative to the baseline wall (BASE-W) can be seen in Figure 6-1 to Figure 6-6. Recall that a detailed description of these walls can be found in Appendix B.

From outside to inside, BASE-W is comprised of: an exterior insulation and finish system (EIFS), 64 mm of extruded polystyrene rigid insulation, a self-adhesive membrane with primer, 16 mm non paper-faced gypsum sheathing, 39 mm x 152 mm cold-formed steel studs spaced at 600 mm on center, regular 16 mm gypsum board, and a latex paint finish. After 50 years, the total embodied energy of BASE-W is about 0.927 GJ/m² of primary energy and the total embodied GWP is about 49 kg of CO₂ eq./m² (results are per m² of exterior wall).
Figure 6-1: Total Life-Cycle Energy and GWP of Concrete Masonry Unit Exterior Infill Walls (CMU-W) after 50 Year Lifespan in Toronto

Total embodied energy (GWP) of BASE-W after 50 years = 0.927 GJ/m² (49 kg of CO₂ eq./m²)

**Total operating energy (GWP) of baseline building after 50 years = 50,700 GJ (2,310 kg of CO₂ eq.)*

Exterior Infill Wall ID (Arranged in Order of Increasing Δ Total Energy)

Note: Δ Total Energy = Δ Embodied Energy + Δ Operating Energy (GWP similar)

Figure 6-2: Total Life-Cycle Energy and GWP of Concrete Tilt-Up Exterior Infill Walls (CTU-W) after 50 Year Lifespan in Toronto

Total embodied energy (GWP) of BASE-W after 50 years = 0.927 GJ/m² (49 kg of CO₂ eq./m²)

**Total operating energy (GWP) of baseline building after 50 years = 50,700 GJ (2,310 kg of CO₂ eq.)*

Exterior Infill Wall ID (Arranged in Order of Increasing Δ Total Energy)

Note: Δ Total Energy = Δ Embodied Energy + Δ Operating Energy (GWP similar)

(CTU-W1 was excluded from graph due to very high operating energy & operating GWP)
Figure 6-3: Total Life-Cycle Energy and GWP of Structural Insulated Panel Exterior Infill Walls (WSIP-W & MSIP-W) after 50 Year Lifespan in Toronto

* Total embodied energy (GWP) of BASE-W after 50 years = 0.927 GJ/m² (49 kg of CO₂ eq./m²)
** Total operating energy (GWP) of baseline building after 50 years = 50,700 GJ (2,310 kg of CO₂ eq.)

Figure 6-4: Total Life-Cycle Energy and GWP of Cold-Formed Steel Stud Exterior Infill Walls (SS-W) after 50 Year Lifespan in Toronto

* Total embodied energy (GWP) of BASE-W after 50 years = 0.927 GJ/m² (49 kg of CO₂ eq./m²)
** Total operating energy (GWP) of baseline building after 50 years = 50,700 GJ (2,310 kg of CO₂ eq.)
Figure 6-5: Total Life-Cycle Energy and GWP of Wood Stud Exterior Infill Walls (WS-W) after 50 Year Lifespan in Toronto

Figure 6-6: Total Life-Cycle Energy and GWP of Pre-Engineered Steel Building (PENG-W) and Opaque Spandrel Panel Exterior Infill Walls (CWALL-W) after 50 Year Lifespan in Toronto
Table 6-1 summarizes the data presented in the preceding figures, along with a summary of the data for the additional building components that will be presented in subsequent sections. The average, minimum, and maximum values for the Δ total energy and Δ total GWP from the baseline datum have been calculated for the 220 different building components in this study. Table 6-1 allows for a quick comparison of the range of values that are possible for the different types of exterior infill walls and other building components in this study, with respect to the Δ total energy and Δ total GWP. Negative values indicate a savings in energy and GWP and positive values indicate an increase.

Table 6-1: A Summary of the Δ Total Energy and Δ Total GWP from the Baseline Case for the Alternative Building Components in this Study after 50 Years

<table>
<thead>
<tr>
<th>Building Component</th>
<th>Δ Total Primary Energy (GJ/m2)</th>
<th>Δ Total GWP (kg of CO$_2$ eq./m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>Min</td>
</tr>
<tr>
<td>Exterior Infill Walls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete Masonry Unit Walls (CMU-W)</td>
<td>0.911</td>
<td>-1.879</td>
</tr>
<tr>
<td>1 Concrete Tilt-Up Walls (CTU-W)</td>
<td>1.751</td>
<td>-1.597</td>
</tr>
<tr>
<td>Wood Structural Insulated Panel Walls (WSIP-W)</td>
<td>-2.606</td>
<td>-3.810</td>
</tr>
<tr>
<td>Metal Structural Insulated Panel Walls (MSIP-W)</td>
<td>-2.085</td>
<td>-3.189</td>
</tr>
<tr>
<td>Cold-Formed Steel Stud Walls (SS-W)</td>
<td>0.837</td>
<td>-2.521</td>
</tr>
<tr>
<td>Wood Stud Walls (WS-W)</td>
<td>-0.465</td>
<td>-3.393</td>
</tr>
<tr>
<td>2 Pre-Engineered Steel Building Walls (PENG-W)</td>
<td>-1.768</td>
<td>-2.759</td>
</tr>
<tr>
<td>3 Opaque Curtainwalls (CWALL-W)</td>
<td>9.008</td>
<td>8.920</td>
</tr>
<tr>
<td>Roofs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete Hollow Core Roofs (CHC-R)</td>
<td>-2.675</td>
<td>-4.850</td>
</tr>
<tr>
<td>Open Web Steel Joist Roofs (OWSJ-R)</td>
<td>-2.537</td>
<td>-4.602</td>
</tr>
<tr>
<td>Cold-Formed Steel Joist Roofs (CFS-R)</td>
<td>-2.341</td>
<td>-4.925</td>
</tr>
<tr>
<td>Glulam Joist Roofs (GLU-R)</td>
<td>-3.123</td>
<td>-5.161</td>
</tr>
<tr>
<td>Wood Structural Insulated Panel Roofs (WSIP-R)</td>
<td>-3.186</td>
<td>-4.627</td>
</tr>
<tr>
<td>Metal Structural Insulated Panel Roofs (MSIP-R)</td>
<td>-4.313</td>
<td>-5.180</td>
</tr>
<tr>
<td>4 Pre-Engineered Steel Building Roofs (PENG-R)</td>
<td>-3.754</td>
<td>-4.580</td>
</tr>
</tbody>
</table>
Table 6-1 (Cont.): A Summary of the \(\Delta \) Total Energy and \(\Delta \) Total GWP from the Baseline Case for the Alternative Building Components in this Study after 50 Years

<table>
<thead>
<tr>
<th>Building Component</th>
<th>(\Delta) Total Primary Energy (GJ/m(^2))</th>
<th>(\Delta) Total GWP (kg of CO(_2) eq./m(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>Min</td>
</tr>
<tr>
<td>Structural Systems (S)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>-0.343</td>
<td>-0.547</td>
</tr>
<tr>
<td>(Min) (Max)</td>
<td>(S-2)</td>
<td>(S-3)</td>
</tr>
<tr>
<td>Floors (FL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>-0.527</td>
<td>-0.646</td>
</tr>
<tr>
<td>(Min) (Max)</td>
<td>(FL-5)</td>
<td>(FL-4)</td>
</tr>
<tr>
<td>Windows (W)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>-10.399</td>
<td>-18.082</td>
</tr>
<tr>
<td>(Min) (Max)</td>
<td>(W-8)</td>
<td>(W-3)</td>
</tr>
<tr>
<td>Doors (D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>-17.404</td>
<td>-107.796</td>
</tr>
<tr>
<td>(Min) (Max)</td>
<td>(D-1)</td>
<td>(D-4)</td>
</tr>
<tr>
<td>Interior Partitions (WS-P, SS-P, & CMU-P)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>-0.056</td>
<td>-0.196</td>
</tr>
<tr>
<td>(Min) (Max)</td>
<td>(WS-P2)</td>
<td>(WS-P1)</td>
</tr>
<tr>
<td>Foundations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolated Footing and Concrete Pier (IF-FDN)</td>
<td>0.882</td>
<td>-0.091</td>
</tr>
<tr>
<td>(Min) (Max)</td>
<td>(IF-FDN2)</td>
<td>(IF-FDN7)</td>
</tr>
<tr>
<td>Strip Footing and Concrete Wall (SF-FDN)</td>
<td>0.273</td>
<td>-0.044</td>
</tr>
<tr>
<td>(Min) (Max)</td>
<td>(SF-FDN6)</td>
<td>(SF-FDN3)</td>
</tr>
<tr>
<td>Slab-On-Grades (SOG-FDN)</td>
<td>-1.184</td>
<td>-2.976</td>
</tr>
<tr>
<td>(Min) (Max)</td>
<td>(SOG-FDN3)</td>
<td>(SOG-FDN5)</td>
</tr>
</tbody>
</table>

Note: Baseline building components are not included in the average, min, and max calculations

1 Results for CTU-W1 were not considered in table due to very high operating energy and operating GWP
2 Results for PENG-W1 were not considered in table due to very high operating energy and operating GWP
3 Results for CWALL-W3 & CWALL-W4 were not considered in table due to very high operating energy and operating GWP
4 Results for PENG-R1 were not considered in table due to very high operating energy and operating GWP
5 Numbers are expressed for one individual door not per m\(^2\)
6 Numbers are expressed for one isolated footing and pier combination not per m\(^2\)
7 Numbers are expressed per m of strip footing and wall not per m\(^2\)

If the average values in Table 6-1 are used as an indicator of overall performance, then the different types of exterior infill walls in this study can be ranked in order of increasing total energy relative to the baseline case. Arranged in order of the highest savings in total energy to the highest increase in total energy after 50 years, the exterior infill walls in Table 6-1 would be ranked: WSIP-W, MSIP-W, PENG-W, WS-W, SS-W, CMU-W, CTU-W, and CWALL-W. In essence, the results indicate that on average the WSIP-W walls were the best performing exterior infill wall enclosure after 50 years and that the CWALL-W walls were the worst performing in terms of energy use. However, it may be misleading to draw any general conclusions about the competitiveness of a given wall type relative to other wall types based entirely on the average values in Table 6-1. The results in Table 6-1 also indicate that for each different type of exterior infill wall, a range of values were possible for the \(\Delta \) total energy and \(\Delta \) total GWP in each case, depending on the exact composition of the wall (i.e. the
type of cladding material used, cavity insulation versus exterior installed rigid insulation, etc.). Therefore, the minimum and maximum values for the Δ total energy and Δ total GWP in each case are more representative of the competitiveness of a given wall type. Thus, the minimum and maximum values in Table 6-1 indicate the range of possible values for a given wall type and should be referenced when drawing any general conclusions about the relative competitiveness of a given wall type to another.

That being said, some important observations can be made for the exterior infill walls examined in this study based on the results in Table 6-1 and Figure 6-1 to Figure 6-6. In general, there was found to be a strong correlation between the thermal resistance of the exterior infill walls in this study and the Δ total energy and Δ total GWP. It was found that an increase in total energy and total GWP corresponded in general to a decrease in the thermal resistance of the exterior infill walls. Therefore, thermal resistance (i.e. R-value or RSI-value) played a more significant role in terms of energy use and GWP over the life of the building than any differences in embodied effects between the building materials in the walls. In other words, in almost every case there were far more significant energy and GWP savings to be had because of savings in operating effects than from savings in embodied effects for the various exterior infill walls examined in this study. In general, the best performing walls after 50 years were the ones that were able to reduce the total operating energy and total operating GWP due to an increased thermal resistance compared to the BASE-W. A similar comparison can also be done for the roof enclosures in this study.

6.4 LCA Results for Roof Enclosures

Presented in this section are the LCA results for the various roof enclosures from Appendix B. Figure 6-7 to Figure 6-12 illustrate the Δ total energy and Δ total GWP of the different types of roof enclosures examined in this study relative to the baseline roof (BASE-R).

From outside to inside, BASE-R is comprised of: gravel ballast, a 4-ply built-up asphalt roof, 12 mm roof coverboard, 75 mm of continuous polyisocyanurate insulation, 39 mm galvanized corrugated steel deck, open web steel joists spaced at 1,200 mm on center, and a suspended acoustic ceiling. After 50 years, the total embodied energy of BASE-R is about 4,684 GJ/m2 of primary energy and the total embodied GWP is about 213 kg of CO$_2$ eq./m2 (results are per m2 of roof).
Figure 6-7: Total Life-Cycle Energy and GWP of Concrete Hollow Core Roofs (CHC-R) after 50 Year Lifespan in Toronto

Figure 6-8: Total Life-Cycle Energy and GWP of Open Web Steel Joist Roofs (OWSJ-R) after 50 Year Lifespan in Toronto
Figure 6-9: Total Life-Cycle Energy and GWP of Cold-Formed Steel Roofs (CFS-R) after 50 Year Lifespan in Toronto

Figure 6-10: Total Life-Cycle Energy and GWP of Glulam Joist Roofs (GLU-R) after 50 Year Lifespan in Toronto
Figure 6-11: Total Life-Cycle Energy and GWP of Structural Insulated Panel Roofs (WSIP-R & MSIP-R) after 50 Year Lifespan in Toronto

Figure 6-12: Total Life-Cycle Energy and GWP of Pre-Engineered Steel Building Roofs (PENG-R) after 50 Year Lifespan in Toronto
Table 6-1 also illustrates the range of possible values for the Δ total energy and Δ total GWP of the different types of roof enclosures in this study. Similar to the case of the exterior infill walls, the minimum and maximum values for the Δ total energy and Δ total GWP of each roof have been included for comparison.

Based on the results of this study, some general conclusions can be made about the various types of roof enclosures that were examined. First, there is a stronger correlation between the embodied energy and embodied GWP of the various roofs and the Δ total energy and Δ total GWP than was the case for the exterior infill walls. In fact, in many instances the embodied effects of the various roof enclosures outweighed the operating effects. This result suggests that for the roof enclosures, the building materials have a more significant effect on the Δ total energy and Δ total GWP than was observed for the exterior infill walls. That is not to say that the operating energy and operating GWP of the roof enclosures did not have an impact on the Δ total energy and Δ total GWP. In fact, an increase in the total energy and total GWP of the roofs corresponded in general to a decrease in the thermal resistance of the roof enclosures. However, this relationship was less marked than for the case of the exterior infill walls.

Another very important observation to note has to do with the roof covering. The results of this study suggest that significant savings can be achieved in terms of the total energy and total GWP if a green roof or a steel roof covering is used as opposed to an asphalt-based roof covering. This presumably has to do with the fact that green roofs have significantly less embodied effects compared to asphalt-based roof coverings and that steel roof systems tend to be very durable systems that need to be repaired or replaced less often.

Two of the most promising roof types that were looked at in this study were the WSIP-R and MSIP-R roofs. Structural insulated panel roofs tend to have a higher thermal resistance than other conventional types of roofs and they also tend to have similar or less embodied effects. Therefore, the WSIP-R and MSIP-R roofs performed very well in terms of total energy and total GWP after a 50 year lifespan in this study.

It should be noted that PENG-R roofs also show significant promise as relatively good systems in terms of energy use and GWP. These roofs tend to be significantly lower in embodied effects compared to other conventional roof types. However, one of the biggest drawbacks to conventional pre-engineered steel roofs is their poor thermal resistance due to massive thermal bridging problems. Therefore, if the thermal resistance of these types of enclosures can be improved, then these types of
roof systems look promising in terms of life-cycle energy use and GWP compared to conventional roof enclosures.

6.5 LCA Results for Structural Systems

A comparison of the Δ total energy and Δ total GWP for the different structural systems from Appendix B is presented next. Figure 6-13 illustrates the Δ total energy and Δ total GWP of the three different structural systems examined in this study.

In this case, the Δ total energy and Δ total GWP of the different structural systems were compared relative to S-1 (typical hot-rolled steel structural system). This was the structural system that was used in the baseline retail building. After 50 years, the total embodied energy of S1 was found to be about 0.813 GJ/m2 and the total embodied GWP was about 46 kg of CO$_2$ eq./m2 (results are per m2 of structural system).

It is important to note that the three structural systems only differed in terms of the total embodied energy and total embodied GWP. Changing the structural system did not impact the operating energy and operating GWP of the baseline building at all. Therefore, although S-2 and S-3 have less total energy and total GWP than S-1 after 50 years, in the overall scheme of things these differences are minimal. Recall that negative values in Figure 6-13 denote that those structural systems have less total energy and total GWP than the baseline structural system after 50 years. Therefore, it can be seen in Figure 6-13 that both the typical heavy timber structural system (S-2) and the pre-engineered steel building structural system (S-3) had less total energy and total GWP than the baseline case.

Table 6-1 also indicates the range of values that were calculated for the Δ total energy and Δ total GWP of the different structural systems examined in this study. Average, minimum, and maximum values have been calculated for the range of different structural systems.
In this section, the LCA results are compared for the different floor assemblies from Appendix B. Figure 6-14 illustrates the Δ total energy and Δ total GWP of the different floor assemblies examined in this study. Table 6-1 also contains the range of values that were calculated for the Δ total energy and Δ total GWP of the different floor assemblies.

In this case, the Δ total energy and Δ total GWP of the different floor assemblies were compared relative to FL-3. This was the floor assembly that was used in the baseline retail building. FL-3 consists of: vinyl floor tile, 89 mm reinforced concrete topping, 39 mm galvanized corrugated steel deck, open web steel joists spaced at 1,200 mm on center, 90 mm fiberglass batt insulation, galvanized steel resilient channels, two layers of 12 mm gypsum board, and finished with latex paint. After 50 years, the total embodied energy of FL-3 was found to be about 1.205 GJ/m2 and the total embodied GWP was about 86 kg of CO$_2$ eq./m2 (results are per m2 of floor).

All of the floor assemblies had less total energy and total GWP than FL-3. It is important to note that the floor assemblies only differed in terms of their total embodied energy and total embodied GWP. Changing the floor assembly did not significantly impact the operating energy or operating GWP of
the baseline building in this case. It is interesting to note that the baseline floor assembly (FL-3) performed the worst of all the floor assemblies that were examined in this study. This is an interesting observation because this floor type is one of the most common types of floor systems used in commercial buildings today.

Figure 6-14: Total Life-Cycle Energy and GWP of Floors (FL) after 50 Year Lifespan in Toronto

6.7 LCA Results for Windows and Doors

A detailed LCA was conducted for the different windows and doors in Appendix B. The results of this LCA are displayed in Figure 6-15 and Figure 6-16. As well, Table 6-1 contains the range of values that were calculated for the \(\Delta \) total energy and \(\Delta \) total GWP of the different windows and doors.

In this case, the \(\Delta \) total energy and \(\Delta \) total GWP of the different windows were compared relative to W-1. W-1 consists of a thermally broken aluminum window frame, with a sealed double pane glazing unit filled with air (no low-E coating and no argon gas). After 50 years, the total embodied energy of W-1 was found to be about 8,657 GJ/m\(^2\) and the total embodied GWP was about 537 kg of CO\(_2\) eq./m\(^2\) (results are per m\(^2\) of window).

Figure 6-15 illustrates that the windows with high performance glazing (argon filled, low-E coating) outperformed the corresponding windows with typical glazing (air filled, no low-E coating). This is
because the high performance glazing resulted in windows with a higher thermal resistance. The results found a strong correlation between the thermal resistance of the windows and the Δ total energy and Δ total GWP. In fact, it was found that an increase in total energy and total GWP corresponded to a decrease in the thermal resistance of the windows.

Figure 6-15: Total Life-Cycle Energy and GWP of Windows (W) after 50 Year Lifespan in Toronto

These results show that per m2 of enclosure, windows actually have a relatively large total energy and total GWP compared to the exterior infill walls and roofs. In fact, both the embodied effects and the operating effects of the windows are relatively high. This suggests that when designing a building, the area of windows should be optimized from both a daylighting perspective, but also from an embodied energy and embodied GWP perspective. Having a very large window-to-wall ratio (say > 50%) could not only increase the operating requirements of the building, but also increase the embodied energy and embodied GWP of the building significantly. It is interesting to note that many of the retail buildings and office buildings in North America are made almost entirely of glass/aluminum curtainwall. The results from this study suggest that significant energy and GWP savings could result from a better balance of glass curtainwall with opaque enclosures in commercial buildings.
Figure 6-16 illustrates the Δ total energy and Δ total GWP for the doors in Appendix B. In this case, the values were plotted relative to D-2, which is an 813 x 2,134 mm insulated steel exterior door. After 50 years, the total embodied energy of D-2 was found to be about 8.335 GJ/door and the total embodied GWP was about 290 kg of CO$_2$ eq./door.

D-5 and D-6 are interior doors and were found to have no significant impact on the operating energy or operating GWP of the building. D-4 is an insulated sectional steel overhead door and has a significantly higher embodied energy and embodied GWP than the other doors. It can be seen from Figure 6-16 that D-1 (solid wood exterior door with no glazing) had a significant savings in terms of operating energy and operating GWP. After 50 years, D-1 resulted in a Δ total energy of about -108 GJ/door and a Δ total GWP of about -273 kg of CO$_2$ eq./door. The significance of the energy and GWP savings for D-1 was surprising. To date, very little research can be found in the literature on the primary energy and GWP of different types of doors. The results from this study suggest that further research should be conducted in this respect. Only three exterior doors were considered in this study (D-1, D-2, and D-3) and a larger sample of doors should be considered.

Figure 6-16: Total Life-Cycle Energy and GWP of Doors (D) after 50 Year Lifespan in Toronto
6.8 LCA Results for Interior Partitions

The range of interior partition walls examined in this study is outlined in Appendix B. Table 6-1 displays the range of values that were calculated for the Δ total energy and Δ total GWP and Figure 6-17 illustrates the results for the different interior partitions.

The Δ total energy and Δ total GWP of the different interior partitions were compared relative to SS-P3. From one side to the next, SS-P3 consists of: latex paint, two layers of regular 12 mm gypsum board, 39 x 152 mm cold-formed steel studs spaced at 400 mm on center, 140 mm fiberglass batt insulation, two layers of regular 12 mm gypsum board, and latex paint. After 50 years, the total embodied energy of SS-P3 was found to be about 0.523 GJ/m2 and the total embodied GWP was about 30 kg of CO$_2$ eq./m2 (results are per m2 of wall).

Figure 6-17: Total Life-Cycle Energy and GWP of Interior Partition Walls (WS-P, SS-P, & CMU-P) after 50 Year Lifespan in Toronto

In every case, the interior partitions did not have an affect on the operating energy or operating GWP of the building. Therefore, the differences between the various partition walls are solely a result of the differences in embodied effects. Generally speaking, the wood stud partition walls performed slightly better than the cold-formed steel stud equivalent. However, the concrete masonry unit partition wall
had a significantly higher total energy and total GWP than either the wood stud or cold-formed steel stud partition walls.

6.9 LCA Results for Foundations

Lastly, in this section the LCA results are compared for the different foundations from Appendix B. Figure 6-18 illustrates the Δ total energy and Δ total GWP of the different isolated footings and concrete pier foundations (IF-FDN) examined in this study. Table 6-1 displays the range of values that were calculated for the Δ total energy and Δ total GWP for the different foundation components.

In this instance, the Δ total energy and Δ total GWP of the different IF-FDN’s were compared relative to IF-FDN1. IF-FDN1 is a 1,200 x 1,200 x 350 mm isolated concrete footing with a 450 x 450 x 1,200 mm concrete pier (concrete is 20 MPa with 9% flyash content). After 50 years, the total embodied energy of IF-FDN1 was found to be about 1.609 GJ/unit and the total embodied GWP was about 175 kg of CO$_2$ eq./unit (results are per footing and pier combination).

Figure 6-18: Total Life-Cycle Energy and GWP of Isolated Footing and Concrete Pier Foundations (IF-FDN) after 50 Year Lifespan in Toronto

Since the different IF-FDN’s did not have any affect on the operating energy or operating GWP of the building, the differences in Figure 6-18 are a result of embodied effects alone. The variable that had
the most significant affect on the Δ total energy and Δ total GWP of the IF-FDN’s in this study was the size of the footing and pier. The larger footings and piers required more concrete and reinforcement, which resulted in a higher total energy and total GWP. Generally speaking, the use of higher percentages of flyash resulted in a lower total energy and total GWP.

Figure 6-19 illustrates the Δ total energy and Δ total GWP of the different strip footings and concrete foundations walls (SF-FDN) examined in this study. The values in this case are plotted relative to SF-FDN5, which consists of a 600 x 200 mm concrete strip footing with a 1,200 x 200 mm concrete foundation wall with waterproofing (concrete is 20 MPa with 9% flyash content). After 50 years, the total embodied energy of SF-FDN5 was found to be about 1.097 GJ/m and the total embodied GWP was about 94 kg of CO$_2$ eq./m (results are per linear m of footing and wall).

Once again, the different SF-FDN’s did not have any affect on the operating energy or operating GWP of the building. Therefore, the differences observed in Figure 6-19 are solely based on differences in the embodied effects. The larger foundation components tended to result in a higher total energy and total GWP due to more concrete and reinforcement being required. The use of higher percentages of flyash was once again found to slightly decrease the total energy and total GWP.

Figure 6-19: Total Life-Cycle Energy and GWP of Strip Footing and Concrete Wall Foundations (SF-FDN) after 50 Year Lifespan in Toronto
Lastly, Figure 6-20 illustrates the Δ total energy and Δ total GWP of the different concrete slab-on-grades (SOG-FDN) examined in this study. The values in this case are plotted relative to SOG-FDN4. SOG-FDN4 is a 200 mm thick, reinforced concrete slab, on a poly vapour barrier, and with a concrete sealant finish (concrete is 30 MPa with 9% flyash content). After 50 years, the total embodied energy of SOG-FDN4 was found to be about 0.515 GJ/m2 and the total embodied GWP was about 65 kg of CO$_2$ eq./m2 (results are per m2 of slab-on-grade).

The best performing slab-on-grades were found to be the ones where under slab insulation was specified. This was because significant savings in operating effects were achieved. Also, in cases where a thinner slab-on-grade was specified, there was a slight savings in embodied effects.

The goal of this chapter was to present the simplified LCA results for the range of different building components that were examined in this study. These buildings components have been ranked in order of increasing total energy, so that a building professional can quickly compare one system to the next from a life-cycle energy and GWP perspective. By summarizing the comprehensive LCA results in this way, a building professional is able to quickly make LCA decisions that otherwise would be extremely exhaustive both in time and effort.
6.10 Data Quality and Assessment

Now that the LCA results have been presented for the 220 different building components in this study, it is useful to compare the data to the values for similar components in the literature. Unfortunately, this task is extremely difficult. There are an endless number of unique building components that can be generated and so, the LCA data tends to differ from one study to the next. Therefore, it is difficult to directly compare the LCA results for the 220 building components in this study to the literature. However, the ATHENA® Institute has published a free program on their website called the ATHENA® EcoCalculator for Assemblies (The ATHENA Institute, 2010). It lists the embodied energy and embodied GWP for 400 common building components. The results do not include operating effects and were generated for a low-rise office building with a 60 year lifespan, but will be used for comparison in this study. Table 6-2 indicates that the embodied LCA data in this study is relatively close to the range of values listed in the ATHENA® EcoCalculator for Assemblies.

<table>
<thead>
<tr>
<th>Building Component</th>
<th>ATHENA® EcoCalculator</th>
<th>This Study</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primary Energy (MJ/m²)</td>
<td>GWP (kg of CO₂ eq./m²)</td>
</tr>
<tr>
<td>Concrete Masonry Unit Walls</td>
<td>1,228 – 2,659</td>
<td>72 – 212</td>
</tr>
<tr>
<td>Concrete Tilt-Up Walls</td>
<td>983 – 2,414</td>
<td>68 – 208</td>
</tr>
<tr>
<td>Wood Structural Insulated Panel Walls</td>
<td>1,224 – 2,401</td>
<td>34 - 169</td>
</tr>
<tr>
<td>Metal Structural Insulated Panel Walls</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Cold-Formed Steel Stud Walls</td>
<td>599 – 1,945</td>
<td>28 - 172</td>
</tr>
<tr>
<td>Wood Stud Walls</td>
<td>602 – 1,851</td>
<td>20 – 156</td>
</tr>
<tr>
<td>Pre-Engineered Steel Building Walls</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Opaque Curtainwalls</td>
<td>1,156 – 1,876</td>
<td>46 - 133</td>
</tr>
<tr>
<td>Roofs</td>
<td>1,399 – 9,050</td>
<td>50 - 306</td>
</tr>
<tr>
<td>Concrete Hollow Core Roofs</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Open Web Steel Joist Roofs</td>
<td>1,449 – 9,050</td>
<td>53 – 306</td>
</tr>
<tr>
<td>Cold-Formed Steel Joist Roofs</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Glulam Joist Roofs</td>
<td>1,399 – 8,850</td>
<td>50 - 287</td>
</tr>
<tr>
<td>Wood Structural Insulated Panel Roofs</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Metal Structural Insulated Panel Roofs</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Pre-Engineered Steel Building Roofs</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Structural Systems</td>
<td>114 – 1,260</td>
<td>4 - 68</td>
</tr>
<tr>
<td>Floors</td>
<td>370 – 1,390</td>
<td>10 - 106</td>
</tr>
<tr>
<td>Windows</td>
<td>2,764 – 6,521</td>
<td>213 - 356</td>
</tr>
<tr>
<td>Interior Partitions</td>
<td>314 – 1,078</td>
<td>10 - 60</td>
</tr>
</tbody>
</table>

*Note: Doors and foundations have been omitted from table due to lack of comparison data
Chapter 7
Summary of Results

7.1 Introduction

In Chapter 5, the LCA results were presented for five single-storey retail buildings with a 50 year lifespan in Toronto. It was shown that after 50 years, operating energy and operating GWP accounts for about 90% of the total energy and total GWP, while embodied energy and embodied GWP is only responsible for about 10%. It was also determined that among the five buildings, there was very little difference in the total life-cycle energy use and total GWP after 50 years.

Next, focus was shifted from an analysis of whole buildings to a comparison of individual building components. In Chapter 6, 220 different building components including: exterior infill walls, roofs, structural systems, floors, windows and doors, interior partitions, and foundations were analyzed within the framework of a comprehensive LCA of energy use and GWP. Within each building component category, numerous alternative strategies were analyzed. The goal was to determine the range of possible values for the life-cycle energy and GWP of the different building components.

In this chapter, the data from Chapters 5 and 6 will be summarized into a series of useful measures to help reinforce the key findings. In essence, the data summary in this chapter will serve as an overview of the more detailed analysis that has been conducted in previous chapters. The goal here is to enable the reader to quickly grasp the most important concepts of this study through the use of a few key figures and tables. The ultimate objective is to provide a clear and simple summary of an otherwise incredibly complex and time consuming LCA study. In doing so, the final step of the LCA process according to ISO 14044 will be completed: an interpretation of the LCA results (ISO, 2006).

7.2 Sensitivity Analysis of Total Embodied Effects verses Operating Effects

In Chapter 6, the results from a detailed LCA of 220 different building components were presented. These results are very useful if one has several specific building components in mind that one wishes to compare. However, to get a better understanding of the greater picture, it is useful to plot the results for all of the 220 different building components on one graph.

Figure 7-1 illustrates the results of a sensitivity analysis of the total embodied energy for the components of the baseline retail building after 50 years. In this figure, the various building components of the baseline retail building were systematically replaced with each alternative building
component in this study, such that a new estimate of the total embodied energy of the building could be determined. In this way, an approximation of the total embodied energy for each of the 220 different building components was calculated, appropriately scaled for the baseline retail building as a whole. In other words, the total embodied energy of each alternative building component has been multiplied (i.e. weighted) by the appropriate material quantities in order to take into consideration scale effects for the entire building. In doing so, some interesting observations can be made about the range of possible values for the weighted embodied energy of the building components.

From Figure 7-1, it can be seen that within each building component category (structure, foundations, exterior walls, roofs, windows and doors, floors, and interior partitions) the various different alternatives from Appendix B have been grouped together. For example, for the exterior walls the different alternatives are grouped into CMU, CTU, WSIP & MSIP, SS, WS, PENG, and CWALL type walls. Also, the annual operating energy of the baseline retail building has been plotted for

Figure 7-1: A Sensitivity Analysis of the Total Embodied Energy Use for the Components of a Typical Retail Building after a 50 Year Lifespan in Toronto
comparison. This allows one to quickly approximate the number of equivalent years of operating energy that is associated with the total embodied energy of the different building components.

Quickly one can begin to see how little the total embodied energy of the structural system, foundations, doors, interior partitions, and floors matters compared to the total embodied energy of the exterior walls, roofs, and windows. It also becomes clear how much variation is possible in the total embodied energy of different alternatives within the same category of building component. For example, depending on which OWSJ one chooses, the total embodied energy can vary from as little as 0.9 years of equivalent operating energy to 2.9 years.

The multitude of conclusions and comparisons that could be drawn from this figure are too numerous to explain in detail here. The real usefulness of this figure is its ability to show the relative importance of the different building components and the range of possible values for the total embodied energy within each category.

In a similar way, Figure 7-2 illustrates the results from a sensitivity analysis of the total embodied GWP for the components of the baseline retail building after 50 years. Again, an approximation of the total embodied GWP for each of the 220 different building components was calculated for the case of the baseline retail building, in the same way that the total embodied energy was calculated (i.e. multiplied by the appropriate material quantities in order to take into consideration scale effects for the entire building). Once more, the annual operating GWP was also plotted for comparison.

Similar to the case of total embodied energy, there is a range of possible values for the total embodied GWP within each building component category. It is apparent in this case as well, that the total embodied GWP of the structural system, foundations, doors, interior partitions, and floors is insignificant compared to the total embodied GWP of the exterior walls, roofs, and windows. This figure is able to show the relative importance of the different building components and the range of possible values for the total embodied GWP within each category.

Now, it has been shown throughout this study that operating energy and operating GWP are a much greater concern than embodied energy and embodied GWP in a typical retail building today. Although a comparison of the total embodied energy and total embodied GWP are useful, it does not tell the whole story. For example, it has been shown that some building components come with an increase in total embodied energy and total embodied GWP, but result in an even greater decrease in operating energy and operating GWP after 50 years. To account for this, the Δ total life-cycle energy
for each of the 220 different building components was plotted in Figure 7-3. In this case, the baseline retail building was used as the datum. Each of the building components of the baseline retail building was systematically replaced with the building components in Appendix B and the difference in embodied energy (Δ embodied energy) and operating energy (Δ operating energy) was calculated. Recall that Δ total energy is equal to Δ embodied energy plus Δ operating energy.

Figure 7-2: A Sensitivity Analysis of the Total Embodied GWP for the Components of a Typical Retail Building after a 50 Year Lifespan in Toronto

Figure 7-3 is divided into the various different building component categories in much the same way as the previous two figures. Also, the annual operating energy for the baseline retail building has also been plotted. One will notice that the vertical axis of the graph has both positive and negative values. In some cases, certain substitutions of building components resulted in an increase in the total energy from the baseline case. In these cases, the values are plotted above the horizontal axis. The horizontal axis represents the baseline retail building (since the Δ total energy compared to the baseline retail
building is 0). In other circumstances, certain substitutions of building components resulted in a decrease in the total energy from the baseline case and are plotted below the horizontal axis. Similar to before, the Δ total energy values have been scaled accordingly for the baseline retail building and represent total values for the building (i.e. they account for the appropriate quantities and numbers of the various building components in the baseline retail building).

![Building Components Diagram](image)

Building Components

Note: Values were generated using the baseline retail building (located in Toronto with a 50 year lifespan) and the range of building components identified in Appendix B

Interpreting the Figure

- Values plotted above the x-axis, represent those building components that resulted in an increase in the total energy use (Δ embodied energy + Δ operating energy) of the baseline building after 50 years.
- Values plotted below the x-axis, represent those building components that resulted in a decrease in the total energy use (Δ embodied energy + Δ operating energy) of the baseline building after 50 years.

Figure 7-3: A Sensitivity Analysis of the Δ Total Life-Cycle Energy Use for the Components of a Typical Retail Building after a 50 Year Lifespan in Toronto

From Figure 7-3, one can understand the possible range of Δ total energy associated with the baseline retail building, depending on the specific choice of building components. It is evident that building components that have no impact on the operating energy of a building (like the structural system),
tend to pale in comparison to those building components that do have a direct influence on the operating energy of a building (like the exterior walls and roof). It can be seen that the exterior walls, roofs, and windows have the greatest variation in Δ total energy from the baseline. Depending on the specific exterior wall, roof, or window, it can be observed in Figure 7-3 that this could be equivalent to +/- about three years of operating energy. It is interesting to note that the curtainwalls (CWALL) result in the greatest potential increase in total energy compared to the baseline. In fact, using certain curtainwall enclosures can result in an increase of as much as five years of operating energy compared to the baseline.

A similar figure was created for the Δ total GWP. Figure 7-4 illustrates the Δ total life-cycle GWP for each of the 220 different building components from Appendix B. Again, similar to before these values represent either an increase in total GWP (plotted above the horizontal axis) or a decrease in total GWP (plotted below the horizontal axis) compared to the baseline retail building components. The horizontal axis represents the baseline retail building components. The annual operating GWP has also been plotted.

Once again it is evident that those building components that tend to have an influence on the operating GWP of a building (like the exterior walls, roofs, and windows), have the greatest range in Δ total GWP. Those building components that tend not to affect the operating energy of a building show less range in Δ total GWP.

It can be seen in Figure 7-4 that there is the potential for a substantial amount of variation within each building component category. Depending on the building component, there could be a relatively insignificant deviation in the total GWP from the baseline, or an increase/decrease of up to four years of operating GWP (an increase of six years of operating GWP for the case of the curtainwall enclosures).

Once again, the purpose of these figures is to summarize what otherwise is a very complex and time consuming task of evaluating the LCA of the various components of a retail building over 50 years. These figures are a useful reference at the beginning stages of a building design process, as the priorities for reducing the total energy use and total GWP of a building can quickly be set. For example, these results would suggest that the efforts of the design team be spent on reducing the total energy and total GWP of the exterior infill walls, roofs, and windows of a building rather than worrying about the structural system, foundations, or interior partitions. Also, using these figures these decisions can quickly be placed in terms of the number of equivalent years of operating energy.
Therefore, given the expected lifespan of a building in question, one could reference these figures and quickly determine how many years of operating energy could be saved by specifying one building component strategy over the next. One could also quickly see how little a particular decision has on the total life-cycle energy use and GWP compared to one year of operating energy.

![Building Components Diagram](image)

Building Components

Note: Values were generated using the baseline retail building (located in Toronto with a 50 year lifespan) and the range of building components identified in Appendix B

Interpreting the Figure

- Values plotted above the x-axis, represent those building components that resulted in an increase in the total GWP (Δ embodied GWP + Δ operating GWP) of the baseline building after 50 years.
- Values plotted below the x-axis, represent those building components that resulted in a decrease in the total GWP (Δ embodied GWP + Δ operating GWP) of the baseline building after 50 years.

Figure 7-4: A Sensitivity Analysis of the Δ Total Life-Cycle GWP for the Components of a Typical Retail Building after a 50 Year Lifespan in Toronto

7.3 Magnitudes of Order in the LCA of Buildings

Throughout this study, the relationships between embodied energy, embodied GWP, operating energy, and operating GWP have been discussed. It has been shown that after 50 years, operating energy and operating GWP are a much greater concern than embodied energy and embodied GWP.
However, as the operating energy and operating GWP of buildings continues to decrease in the coming years, the embodied energy and embodied GWP will become an increasing concern. In this section, the embodied energy and embodied GWP of the components of a building are compared to various reductions in the operating energy and operating GWP of a typical retail building.

Compared to the 50 year operating energy of a typical retail building, the embodied energy of the various building components is relatively insignificant (less than 10%). However, suppose one was able to reduce the 50 year operating energy of a building by 50% or more. At what level of operating energy reduction would the effects be on par with the embodied energy of the building components? Figure 7-5 displays the relationships between the embodied energy of the building components and various levels of operating energy for the case of the baseline retail building.

![Figure 7-5: Orders of Magnitude for Energy Consumption of a Typical Retail Building after 50 Year Lifespan in Toronto](chart.png)

Note: Values were generated using the baseline retail building (located in Toronto with a 50 year lifespan) and the range of building components identified in Appendix B

Figure 7-5: Orders of Magnitude for Energy Consumption of a Typical Retail Building after 50 Year Lifespan in Toronto

The results in Figure 7-5 were generated using the baseline retail building with a 50 year lifespan, as well as the range of building components identified in previous chapters. The results in Figure 7-5
have been plotted on a log-scale. This means that for every increment on the vertical axis, this corresponds to an increase by a factor of ten in primary energy. The building components have been classified based on the quantity of primary energy that is associated with them. In particular, the 1st order impacts have ≥ 10,000 GJ, the 2nd order impacts have < 10,000 GJ and ≥ 1,000 GJ, and the 3rd order impacts have < 1,000 GJ of primary energy after 50 years. It can be seen that a low, average, and high value has been plotted for each building component category. These values were generated from the data in the previous section for the weighted embodied energy of the 220 different building components examined in this study. They represent the range of possible values for each building component.

Using Figure 7-5 some important observations can be made about the level of operating energy reduction that would be required to be on par with the embodied energy of the building components. First, notice how the 50 year operating energy of the baseline retail building is a 1st order impact. Essentially, this means that there is around 100 times more energy associated with the 50 year operating energy of the baseline retail building, than for a 3rd order impact such as the total embodied energy of the foundations, structure, interior partitions, and floors. Compared to the 2nd order impacts, the 50 year operating energy is responsible for around 10 times more energy after 50 years than the total embodied energy of opaque enclosure (exterior walls and roof) or the windows and doors.

Suppose that the 50 year operating energy of the baseline retail building was reduced by 50% through a combination of conservation, better design, and improved construction practices. Notice in Figure 7-5 that the 50 year operating energy reduced by 50% has been plotted. Interestingly, the 50% reduction in operating energy is still a 1st order impact. Even if the typical 50 year operating energy was reduced by half, the amount of energy associated with building operations would still be about 50 to 100 times more than a 3rd order impact and about 10 times more than a 2nd order impact.

Now suppose that the 50 year operating energy of the baseline retail building was reduced by an aggressive 90% (extremely unlikely today). The 50 year operating energy reduced by 90% has been plotted. Only once the 50 year operating energy of the baseline retail building has been reduced by 90% does it become on par with a 2nd order impact like the opaque enclosure or the windows and doors. Even at a 90% reduction in the 50 year operating energy, the operating effects still consume about 10 times more energy than a 3rd order impact.

It is not until the 50 year operating energy of the baseline retail building has been reduced by 99% (almost impossible to do today), that the operating effects are on par with a 3rd order impact. Clearly,
a significant reduction in the operating energy is the most effective way to reduce the life-cycle energy consumption of a building. Not until the operating energy has been reduced by around 90% does the embodied energy of the building components begin to become a real concern.

A similar discussion can be done for the case of the life-cycle operating GWP verses embodied GWP for the baseline retail building. Figure 7-6 displays the relationships between the embodied GWP of the building components and various levels of operating GWP for the baseline retail building.

Again, the GWP has been plotted on a log-scale. The building components have been classified based on the quantity of GWP that is associated with them. In particular, the 1st order impacts have \(\geq 1,000 \) tonnes of CO\(_2\) eq., the 2nd order impacts have \(< 1,000 \) tonnes of CO\(_2\) eq. and \(\geq 100 \) tonnes of CO\(_2\) eq., and the 3rd order impacts have \(< 100 \) tonnes of CO\(_2\) eq. after 50 years. Similar to before, a low, average, and high value has been plotted for each building component, based on the sensitivity analysis of the weighted embodied GWP of the 220 building components in this study.
Similar to the primary energy, the same relationships between the various reductions in operating effects and the embodied effects for the GWP are observed. Not until the typical 50 year operating GWP is reduced by around 90% does it become on par with a 2nd order impact. Likewise, the typical 50 year operating GWP has to be reduced by around 99% before it is on par with a 3rd order impact. Once again, the importance of reducing the operating GWP relative to the embodied GWP is apparent.

7.4 A Summary of Design Strategies to Reduce the Total Life-Cycle Energy Use and GWP of Retail Buildings

Given the relationships between the operating energy, operating GWP, embodied energy, and embodied GWP for a typical single-storey retail building in Toronto with a 50 year lifespan, some design strategies for reducing the life-cycle effects can be explored.

Table 7-1 lists a number of alternative design strategies to reduce the total life-cycle energy use of the baseline retail building after a 50 year lifespan. Notice how the design strategies are divided based on the building component, as well as into low-impact, mid-impact, and high-impact design strategies. The low-impact design strategies are those changes to the baseline retail building that would result in \(\leq 5\% \) savings in the total life-cycle energy use of the building. Likewise, the mid-impact design strategies correspond to a savings in total life-cycle energy between 5% and 25%. High-impact design strategies are those that result in \(> 25\% \) savings in total energy.

The first key observation to note is that none of the design strategies, other than reducing the annual operating energy by \(> 28\% \), can achieve the highest-level of energy savings. In other words, the only individual design strategy to decrease the total energy of the baseline retail building by more than 25% would be to reduce the operating energy. Not even a combination of all the best design strategies for the other building components would be able to achieve a 25% reduction in the total life-cycle energy use of the baseline building.

Looking now at the mid-impact design strategies, it can be seen that switching from the baseline roof enclosure (BASE-R) to the roof enclosure with the lowest total life-cycle energy (MSIP-R1), would result in a savings of just over 3,000 GJ of primary energy after 50 years. No other substitution of a single building component is able to achieve a mid-impact energy savings for the baseline building (other than a reduction in operating energy).
Table 7-1: Alternative Design Strategies to Reduce the Total Life-Cycle Energy Use of the Baseline Retail Building after a 50 Year Lifespan in Toronto

Design strategies are divided into low, mid, and high-impact strategies that correspond to a different percentage reduction in the total life-cycle energy use of the baseline retail building.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations</td>
<td>Reduce annual operating energy by ≤ 5.5% [Energy Savings ≤ -2,789 GJ]</td>
<td>Reduce annual operating energy by > 5.5% and ≤ 27.6% [Energy Savings between -2,789 GJ & -13,993 GJ]</td>
<td>Reduce annual operating energy by > 27.6% [Energy Savings > -13,993 GJ]</td>
</tr>
<tr>
<td>Exterior Infill Wall Enclosures</td>
<td>Switch from baseline wall enclosure (BASE-W) to the wall enclosure with the lowest total life-cycle energy (WSIP-W12) [Energy Savings = -2,214 GJ]</td>
<td>Unable to achieve this level of energy reduction using only the exterior infill wall design strategies in Appendix B</td>
<td>Unable to achieve this level of energy reduction using only the exterior infill wall design strategies in Appendix B</td>
</tr>
<tr>
<td>Roof Enclosures</td>
<td>Switch from baseline roof enclosure (BASE-R) which has a 4-ply built-up asphalt roof covering to (OWSJ-R5) which has a galvanized standing seam steel roof [Energy Savings = -1,556 GJ]</td>
<td>Switch from baseline roof enclosure (BASE-R) to the roof enclosure with the lowest total life-cycle energy (MSIP-R1) [Energy Savings = -3,035 GJ]</td>
<td>Unable to achieve this level of energy reduction using only the roof design strategies in Appendix B</td>
</tr>
<tr>
<td>Structure</td>
<td>Switch from conviential hot-rolled steel structural system (S-1) to heavy timber glulam structural system (S-2) [Energy Savings = -320 GJ]</td>
<td>Unable to achieve this level of energy reduction using only the structural system design strategies in Appendix B</td>
<td>Unable to achieve this level of energy reduction using only the structural system design strategies in Appendix B</td>
</tr>
<tr>
<td>Mezzanine Floor</td>
<td>Switch from baseline mezzanine floor (FL-3) to the mezzanine floor with the lowest total life-cycle energy (FL-5) [Energy Savings = -31 GJ]</td>
<td>Unable to achieve this level of energy reduction using only the mezzanine floor design strategies in Appendix B</td>
<td>Unable to achieve this level of energy reduction using only the mezzanine floor design strategies in Appendix B</td>
</tr>
<tr>
<td>Windows & Doors</td>
<td>Switch from aluminum curtainwall with no low-E coating and no argon (W-9) to (W-8) which has a wood frame, low-E coating, and argon gas [Energy Savings = -1,679 GJ]</td>
<td>Unable to achieve this level of energy reduction using only the window/door design strategies in Appendix B</td>
<td>Unable to achieve this level of energy reduction using only the window/door design strategies in Appendix B</td>
</tr>
<tr>
<td>Interior Partitions</td>
<td>Switch all interior partitions in the baseline retail building (including stair tower) to WS-P2 which uses the least amount of life-cycle energy [Energy Savings = -42 GJ]</td>
<td>Unable to achieve this level of energy reduction using only the interior partition design strategies in Appendix B</td>
<td>Unable to achieve this level of energy reduction using only the interior partition design strategies in Appendix B</td>
</tr>
<tr>
<td>Foundations</td>
<td>Switch from 200mm thick concrete SOG with no under slab insulation (SOG-FDN4) to 100mm thick concrete SOG with 50mm insulation (SOG-FDN3) [Energy Savings = -1,744 GJ]</td>
<td>Unable to achieve this level of energy reduction using only the foundation design strategies in Appendix B</td>
<td>Unable to achieve this level of energy reduction using only the foundation design strategies in Appendix B</td>
</tr>
</tbody>
</table>

Total life-cycle energy of baseline retail building = 55,947 GJ (100%)
Total life-cycle operating energy of baseline retail building = 50,700 GJ (90.6%)
Total life-cycle embodied energy of baseline retail building = 5,247 GJ (9.4%)

There are a number of different low-impact design strategies that could be implemented in order to save ≤ 5% of the total energy for the baseline retail building. For example, switching from a 200 mm
thick concrete slab-on-grade with no under slab insulation (SOG-FDN4) to a 100 mm thick concrete slab-on-grade with 50 mm of under slab insulation (SOG-FDN3) would result in a saving of over 1,700 GJ of primary energy after 50 years. Similarly, switching from the baseline wall enclosure (BASE-W) to the wall enclosure with the lowest total life-cycle energy (WSIP-W12) would save over 2,200 GJ of primary energy.

Clearly, the best strategy to reduce the total life-cycle energy use of the baseline retail building would be to implement as many of the energy saving design strategies in Table 7-1 as possible. Only focusing on one or two design strategies probably won’t save a great deal of energy in the end. The most effective way to reduce the total life-cycle energy of the baseline retail building is to find ways of reducing the annual operating energy (such as shortening the hours of operation, providing a better balance between daylighting and space heating, increasing the efficiency of the mechanical systems, implementing passive heating, cool, and ventilation strategies, etc.).

A similar list of design strategies for reducing the total GWP of the baseline retail building can also be developed. Table 7-2 lists the alternative design strategies for reducing the total life-cycle GWP of the baseline retail building after a 50 year lifespan.

Essentially the same trends apply for the case of total GWP as were just discussed for total energy. The only single strategy for reaching a high-impact of GWP savings is to reduce the annual operating GWP by more than about 29%. Switching from the baseline roof (BASE-R) to the roof enclosure with the lowest total life-cycle GWP, would save about 150 tonnes of CO$_2$ eq. after 50 years. A number of low-impact GWP saving design strategies are possible. For example, switching from aluminum curtainwall with no low-E coating and no argon gas (W-9) to a wood frame window with a low-E coating and filled with argon gas (W-8) would save about 90 tonnes of CO$_2$ eq. after 50 years. Only if all of the low-impact design strategies (excluding the operating GWP) were implemented, would one be able to achieve a mid-impact GWP savings. Similar to the case of primary energy, the best approach to saving the most about of total GWP would be a combination of as many design strategies as possible, with a focus on reducing the annual operating GWP.
Table 7-2: Alternative Design Strategies to Reduce the Total Life-Cycle GWP of the Baseline Retail Building after a 50 Year Lifespan in Toronto

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations</td>
<td>Reduce annual operating GWP by ≤ 5.6% [GWP Savings ≤ -130 tonnes of CO₂ eq.]</td>
<td>Reduce annual operating GWP by > 5.6% and ≤ 25% [GWP Savings between 130 & 660 tonnes of CO₂ eq.]</td>
<td>Reduce annual operating GWP by > 25% (> 660 tonnes of CO₂ eq.)</td>
</tr>
<tr>
<td>Exterior Infill Wall Enclosures</td>
<td>Switch from baseline wall enclosure (BASE-W) to the wall enclosure with the lowest total life-cycle GWP (WSIP-W12) [GWP Savings = -118 tonnes of CO₂ eq.]</td>
<td>Unable to achieve this level of GWP reduction using only the exterior infill wall design strategies in Appendix B</td>
<td>Unable to achieve this level of GWP reduction using only the exterior infill wall design strategies in Appendix B</td>
</tr>
<tr>
<td>Roof Enclosures</td>
<td>Switch from baseline roof enclosure (BASE-R) which has a 4-ply built-up asphalt roof covering to (OWSJ-R5) which has a galvanized standing seam steel roof [GWP Savings = -59 tonnes of CO₂ eq.]</td>
<td>Switch from baseline roof enclosure (BASE-R) to the roof enclosure with the lowest total life-cycle GWP (GLU-R10) [GWP Savings = -149 tonnes of CO₂ eq.]</td>
<td>Unable to achieve this level of GWP reduction using only the roof design strategies in Appendix B</td>
</tr>
<tr>
<td>Structure</td>
<td>Switch from conviential hot-rolled steel structural system (S-1) to heavy timber glulam structural system (S-2) [GWP Savings = -19 tonnes of CO₂ eq.]</td>
<td>Unable to achieve this level of GWP reduction using only the structural system design strategies in Appendix B</td>
<td>Unable to achieve this level of GWP reduction using only the structural system design strategies in Appendix B</td>
</tr>
<tr>
<td>Mezzanine Floor</td>
<td>Switch from baseline mezzanine floor (FL-3) to the mezzanine floor with the lowest total life-cycle energy (FL-5) [GWP Savings = -3 tonnes of CO₂ eq.]</td>
<td>Unable to achieve this level of GWP reduction using only the mezzanine floor design strategies in Appendix B</td>
<td>Unable to achieve this level of GWP reduction using only the mezzanine floor design strategies in Appendix B</td>
</tr>
<tr>
<td>Windows & Doors</td>
<td>Switch from aluminum curtainwall with no low-E coating and no argon (W-9) to (W-8) which has a wood frame, low-E coating, and argon gas [GWP Savings = -90 tonnes of CO₂ eq.]</td>
<td>Unable to achieve this level of GWP reduction using only the window/door design strategies in Appendix B</td>
<td>Unable to achieve this level of GWP reduction using only the window/door design strategies in Appendix B</td>
</tr>
<tr>
<td>Interior Partitions</td>
<td>Switch all interior partitions in the baseline retail building (including stair tower) to WS-P2 which uses the least amount of life-cycle GWP [GWP Savings = -3 tonnes of CO₂ eq.]</td>
<td>Unable to achieve this level of GWP reduction using only the interior partition design strategies in Appendix B</td>
<td>Unable to achieve this level of GWP reduction using only the interior partition design strategies in Appendix B</td>
</tr>
<tr>
<td>Foundations</td>
<td>Switch from 200mm thick concrete SOG with no under slab insulation (SOG-FDN4) to 100mm thick concrete SOG with 50mm insulation (SOG-FDN3) [GWP Savings = -114 tonnes of CO₂ eq.]</td>
<td>Unable to achieve this level of GWP reduction using only the foundation design strategies in Appendix B</td>
<td>Unable to achieve this level of GWP reduction using only the foundation design strategies in Appendix B</td>
</tr>
</tbody>
</table>

Total life-cycle GWP of baseline retail building = 2,632 tonnes of CO₂ eq. (100%)
Total life-cycle operating GWP of baseline retail building = 2,310 tonnes of CO₂ eq. (87.8%)
Total life-cycle embodied GWP of baseline retail building = 322 tonnes of CO₂ eq. (12.2%)
Chapter 8
Conclusions and Recommendations

8.1 Conclusions
A detailed review of the literature determined that there is a need for a comprehensive life-cycle assessment (LCA) study of single-storey commercial buildings in Canada, specifically single-storey retail buildings. Multi-storey office buildings and residential buildings have been the focus of the vast majority of LCA studies in the past, despite the fact that retail buildings consume more energy per floor area than both these types of buildings. As well, second only to office buildings, retail buildings in Canada are responsible for the largest percentage of energy use in the commercial/institutional building sector. This thesis addresses the need for a study that looks at a broad scope of building components for a single-storey retail building and that puts the life-cycle impacts of the various components into perspective.

That being said, the primary goal of this study was to conduct a comprehensive LCA study for the components of a single-storey retail building located in Toronto, Canada, to determine which building components contribute the most towards the total life-cycle energy use and global warming potential (GWP) after 50 years. In order to accomplish this goal, a two part methodology was followed.

First, the total life-cycle energy use and GWP was calculated for 220 different building components grouped into the following categories: exterior infill walls, roofs, structural systems, floors, windows, doors, foundations, and interior partition walls. Next, the scope of the study was broadened to include the LCA of five different single-storey retail buildings including: a typical hot-rolled steel structure retail building (i.e. the baseline retail building), a typical heavy timber structure retail building, a pre-engineered steel retail building, a predominately steel retail building, and a predominately timber retail building. For both the analysis of the individual building components and the entire buildings, the LCA calculations included the embodied and operating effects related to a pre-occupancy, occupancy, and post-occupancy phase.

Although a detailed analysis of 220 different individual building components was conducted in this study, the major thrust of this research work was focused on establishing the overall relationships between energy use and GWP for single-storey retail buildings as a whole. A detailed comparison of the LCA results for the individual building components was left to future work.
LCA Results for a Typical Single-Storey Retail Building (i.e. Baseline Retail Building)

A detailed LCA was conducted for a typical single-storey retail building, with a 50 year lifespan, located in Toronto, Canada. The relationships between operating energy, operating GWP, embodied energy, and embodied GWP were determined. Like previous studies of commercial type buildings (Cole & Kernan, 1996), operating effects accounted for the vast majority of the total effects as compared to embodied effects.

Total Energy and Total GWP

After a 50 year lifespan in Toronto, Canada, the typical single-storey retail building in this study was found to have a total life-cycle primary energy use of about 55,947 GJ and a total life-cycle GWP of around 2,632 tonnes of CO$_2$ eq.

As a percentage of the total life-cycle energy use (and total life-cycle GWP) the operating energy (and operating GWP) accounted for about 91% (88%) and the embodied energy (and embodied GWP) accounted for about 9% (12%) after 50 years. Therefore, it was determined that the best strategy for reducing the total life-cycle energy use and GWP of a typical single-storey retail building in Canada, is to decrease the energy use and GWP associated with the operating phase of the building. Any strategies that either directly or indirectly reduce the operating effects of the building should be a priority, if reducing the total life-cycle environmental impacts is a concern. In fact, the operating effects of a typical single-storey retail building in Canada would have to be reduced by about 90% from typical values today before a concerted effort to reduce embodied effects would be justified.

That being said, as a percentage of the total energy (and total GWP) of the entire building, the following breakdown of the total embodied energy (and total embodied GWP) for the components of a single-storey retail building in Canada was found: roof = 4.9% (4.7%), foundations = 1.2% (3.0%), windows and doors = 1.1% (1.9%), exterior infill walls = 1.0% (1.1%), structure = 0.9% (1.0%), interior partitions = 0.2% (0.3%), and mezzanine floor = 0.1% (0.2%).

Total Operating Energy and Total Operating GWP

In a typical single-storey retail building in Canada, the operating effects were found to account for around 90% of the total effects after 50 years. In this study, the total electricity use and the total natural gas use represented about 56.9% (47.3%) and 43.1% (52.7%) of the annual total operating energy (and total operating GWP) respectfully. A breakdown of the annual total operating energy use (and total operating GWP) for the typical single-storey retail building in this study can be further
divided into: space heating (assuming a natural gas furnace) = 42.4% (51.8%), area lighting = 37.3% (31.0%), ventilation fans = 7.4% (6.2%), space cooling (assuming DX electric coils) = 6.4% (5.4%), miscellaneous equipment = 5.6% (4.6%), water heating = 0.7% (0.9%), and pumps and auxiliary = 0.2% (0.1%).

Total Embodied Energy and Total Embodied GWP

In a typical single-storey retail building in Canada, the embodied effects were found to account for around 10% of the total effects after 50 years. The results of this study found that the roof accounted for nearly half of the total embodied energy of the entire building and about 40% of the total embodied GWP after 50 years. This is an important finding as the embodied effects of the roof were found to account for a significantly greater percentage of the total embodied effects compared to any other individual building component and were found to account for a significantly greater percentage of the total embodied effects compared to multi-storey buildings. The following breakdown of total embodied energy (and total embodied GWP) for a typical single-storey retail building was found in this study: roof = 52.0% (38.5%), foundations = 12.9% (24.5%), windows and doors = 12.0% (15.8%), exterior infill walls = 10.2% (8.7%), structure = 9.1% (8.4%), interior partitions = 2.7% (2.8%), and mezzanine floor = 1.1% (1.2%).

The Impact of Material Selection on the LCA of a Typical Single-Storey Retail Building

A detailed LCA of five single-storey retail buildings with a 50 year lifespan, located in Toronto, Canada was conducted. These five retail buildings included: a typical hot-rolled steel structure retail building (Case Study #1), a typical heavy-timber structure retail building (Case Study #2), a typical pre-engineered steel retail building (Case Study #3), a predominately steel retail building (Case Study #4), and a predominately timber retail building (Case Study #5). In each case, the operating effects were found to far outweigh the embodied effects after a 50 year lifespan.

Total Energy and Total GWP

A comprehensive LCA study was conducted for each of the five single-storey retail buildings in this study. After a 50 year lifespan, the total energy (and total GWP) of the five case study buildings was found to only differ at most by 6% (7%). Regardless of the material chosen for the structural system, or whether the building was primarily made of steel or timber building components, the range in the total energy and total GWP of the five case study buildings after 50 years was minimal. In each case, the operating effects far outweighed the embodied effects after 50 years. Therefore, as the annual
operating energy (and operating GWP) of the five buildings only differed by about 3% (4%), the similarity in operating effects moderated any differences in embodied effects between the buildings due to using different building materials.

That being said, the typical pre-engineered steel building (Case Study #3) was found to have the least total energy and total GWP of any building after 50 years. However, the energy and GWP savings were minimal compared to the other buildings and was highly dependent on the thermal resistance of the enclosure. Therefore, it is possible that under slightly different conditions that another building would have less total energy and total GWP after 50 years. However, the typical pre-engineered steel retail building was found to have the least total energy and total GWP of any building in this study.

Total Operating Energy and Total Operating GWP

The annual operating energy (and operating GWP) of the five single-storey retail buildings in this study only differed at most by 3% (4%). Therefore, using steel or timber building components did not significantly affect the operating energy or operating GWP of a typical single-storey retail building, so long as the thermal resistance of the enclosure could be kept relatively consistent.

Total Embodied Energy and Total Embodied GWP

After a 50 year lifespan, the total embodied energy (and total embodied GWP) of the five single-storey retail buildings in this study differ by as much as 44% (35%). The typical pre-engineered steel retail building (Case Study #3), was found to have the least total embodied energy and total embodied GWP of all the buildings. This was due in large part to the high degree of material optimization that is inherent to these types of buildings.

The standing seam steel roof performed significantly better after 50 years than the asphalt-based, PVC, and EPDM roofs. Standing seam steel roofs have significantly less recurring embodied energy and recurring embodied GWP and show great promise in comparison to other roof coverings with higher recurring embodied effects. If a standing seam steel roof was to replace the 4-ply built-up asphalt roof in the predominately timber retail building (Case Study #5), then this building would have the least total embodied energy and total embodied GWP of all five buildings. The typical hot-rolled steel structure retail building (Case Study #1) was found to have the highest total embodied energy and total embodied GWP of all five buildings.
LCA Results for Individual Building Components

In general, a strong correlation was observed between the thermal resistance of the exterior infill walls in this study and the Δ total energy and Δ total GWP compared to the baseline datum. In fact, it was found that an increase in total energy and total GWP corresponded in general to a decrease in the thermal resistance of the exterior infill walls. In almost every case there were far more significant energy and GWP savings to be had because of savings in operating effects than from savings in embodied effects for the various exterior infill walls examined in this study.

For the case of the roof enclosures examined in this study, the magnitude of the embodied effects outweighed the operating effects in many instances. This result suggests that for the roof enclosures, the building materials have a more significant affect on the Δ total energy and Δ total GWP than was observed for the exterior infill walls. However, there was still a correlation between a decrease in the thermal resistance of the roof enclosures and an increase in the total energy and total GWP of the roofs. The results also indicate that significant savings could be achieved in terms of the total energy and total GWP if a green roof or a steel roof covering were used as opposed to an asphalt-based roof covering.

The choice of structural system, floor assembly, or interior partition wall type did not have any impact on the operating energy and operating GWP of the baseline building at all. Therefore, the Δ total energy and Δ total GWP compared to the baseline datum were minimal in these types of building components. The differences between the various options for these types of building components were solely a result of the differences in embodied effects.

The results of this study found a strong correlation between decreasing thermal resistance of the windows and increasing total energy and total GWP. Therefore, high performance glazing (argon filled, low-E coating) outperformed the corresponding windows with typical glazing (air filled, no low-E coating). The results also found that per m2 of enclosure, windows actually have a relatively large total energy and total GWP compared to the exterior infill walls and roofs. A larger sample of doors must be examined before conclusive remarks can be made about the Δ total energy and Δ total GWP of different types of doors.

The best performing foundation components in this study were the ones that used less material. Therefore, smaller concrete footings, piers, foundation walls, and thinner slab-on-grades generally performed better in the LCA calculations. Also, higher percentages of flyash in the concrete mix
resulted in greater energy and GWP savings. The best performing slab-on-grades were the ones where under slab insulation was specified, as significant savings in operating effects resulted.

8.2 Recommendations for Future Work

Based on the findings of this study, the following recommendations for future work have been compiled:

1. Determine how the relationships between embodied energy, embodied GWP, operating energy, and operating GWP change for a different building lifespan (5, 25, 100 years for example).

2. Determine how the results of this study would differ if the retail building were located elsewhere in Canada or in the United States.

3. Further investigate the LCA of pre-engineered steel buildings since they showed great promise in this study as an effective system to use in low-energy building applications due to their high degree of material optimization. For example, the savings in construction energy that would result from using a pre-engineered steel building system compared to other conventional systems might be significant due to shorter construction times and pre-fabrication benefits.

4. Compare the LCA results for a single-storey retail building to a multi-storey retail building in order to determine which building components have the most impact on the total life-cycle energy and GWP.

5. Calculate the embodied energy and embodied GWP that is associated with the mechanical, electrical, and plumbing components of a building. The operating effects of these components have been included in this study, but their embodied energy and embodied GWP has not been calculated here.
Bibliography

Appendix A

Description of Baseline Retail Building (Case Study #1)

Appendix A provides a detailed description of the baseline retail building (Case Study #1 – Typical Hot-Rolled Steel Structure Retail Building) that was used in this study. This includes drawings of the floor plans, sections, building elevations, structural drawings, as well as a detailed list of building descriptors that were used for the energy modeling. Where noted, Appendix B should be consulted for a more complete description of certain building components.
NOTES:

1. ROOF SPECIFIED DESIGN LOADS:
 OL = 1.5kPa
 LL = 1.1kPa
MEZZANINE FRAMING PLAN

S2

SCALE: 1:200

Member Sizes

<table>
<thead>
<tr>
<th>Member ID</th>
<th>Hot-Rolled Steel Building</th>
<th>Heavy Timber Building</th>
</tr>
</thead>
<tbody>
<tr>
<td>COL-A</td>
<td>H.S.S. 178x178x6.4mm</td>
<td>265x304mm D-FIR-L</td>
</tr>
<tr>
<td>BM-1</td>
<td>W310x21</td>
<td>80x494mm D-FIR-L</td>
</tr>
<tr>
<td>BM-2</td>
<td>W200x15</td>
<td>80x342mm D-FIR-L</td>
</tr>
<tr>
<td>BM-3</td>
<td>W610x92</td>
<td>265x874mm D-FIR-L</td>
</tr>
<tr>
<td>JOIST-1</td>
<td>350mm OWSJ @ 1200mm o/c</td>
<td>80x418mm D-FIR-L @ 1800mm o/c</td>
</tr>
<tr>
<td>GIRT-1</td>
<td>H.S.S. 178x127x6.4mm</td>
<td>175x304mm D-FIR-L</td>
</tr>
<tr>
<td></td>
<td>(2 in total, eq. spacing vertically)</td>
<td>(2 in total, eq. spacing vertically)</td>
</tr>
</tbody>
</table>

NOTES:

1. **MEZZANINE SPECIFIED DESIGN LOADS:**
 - DL = 3.6kPa
 - LL = 4.8kPa
NOTES:

1. ENTIRE FLOOR TO BE 150mm CONCRETE SLAB-ON-GRADE ON 10mm POLY VAPOUR BARRIER, ON 150mm GRAN 'A' COMPACTED BASE

2. FOUNDATIONS DESIGNED FOR NATURAL UNDISTURBED SOIL HAVING A MINIMUM BEARING PRESSURE AS FOLLOWS:

 ALLOWABLE (SLS) = 3,000psf (150kPa)
 ULTIMATE (ULS) = 4,500psf (225kPa)

FOOTING SCHEDULE

<table>
<thead>
<tr>
<th>Mark</th>
<th>Size (mm)</th>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1 (Isolated Ftg.)</td>
<td>1200 x 1200</td>
<td>350</td>
</tr>
<tr>
<td>F2 (Strip Ftg.)</td>
<td>600</td>
<td>200</td>
</tr>
</tbody>
</table>

PIER SCHEDULE

<table>
<thead>
<tr>
<th>Mark</th>
<th>Size (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>450 x 450</td>
<td>1200</td>
</tr>
</tbody>
</table>
General Descriptors

<table>
<thead>
<tr>
<th>Building Type</th>
<th>Stand alone retail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Toronto, Ontario, Canada</td>
</tr>
<tr>
<td>Number of Stories</td>
<td>1 storey with mezzanine for offices</td>
</tr>
<tr>
<td>Gross Floor Area</td>
<td>586 m² (6,300 ft²)</td>
</tr>
<tr>
<td>Gross Dimensions</td>
<td>Length x width (not including shipping and receiving area): 36.8 m x 15.8 m (120.7 ft x 51.8 ft)</td>
</tr>
<tr>
<td></td>
<td>Mid-height of roof: 6.7 m (22.0 ft)</td>
</tr>
<tr>
<td></td>
<td>Floor to ceiling height: 5.6 m (18.4 ft)</td>
</tr>
<tr>
<td>Hours of Occupancy</td>
<td>Monday to Saturday 8am to 9pm</td>
</tr>
<tr>
<td></td>
<td>Sunday 9am to 6pm</td>
</tr>
<tr>
<td></td>
<td>Closed during statutory holidays</td>
</tr>
<tr>
<td>Building Orientation</td>
<td>Long dimension aligned along E-W axis</td>
</tr>
<tr>
<td>Roof Slope</td>
<td>Mono-slope roof with 1:12 pitch</td>
</tr>
<tr>
<td>Percentage of Gross Floor Area by Activity Type</td>
<td>Retail sales and wholesale showroom: 64%</td>
</tr>
<tr>
<td></td>
<td>Exhibit display area: 15%</td>
</tr>
<tr>
<td></td>
<td>Conditioned storage: 6%</td>
</tr>
<tr>
<td></td>
<td>Office: 8%</td>
</tr>
<tr>
<td></td>
<td>Restrooms: 5%</td>
</tr>
<tr>
<td></td>
<td>Mechanical and electrical room: 2%</td>
</tr>
</tbody>
</table>

Design Maximum Occupancy by Activity Type	Retail sales and wholesale showroom: 27.9 m²/person (300 ft²/person)
	Exhibit display area: 4.6 m²/person (50 ft²/person)
	Conditioned storage: 46.5 m²/person (500 ft²/person)
	Office: 18.6 m²/person (200 ft²/person)
	Restrooms: 27.9 m²/person (300 ft²/person)
	Mechanical and electrical room: 185.9 m²/person (2,000 ft²/person)

| **Infiltration (Shell Air Tightness)** | Core zone: 5.08 x 10⁻⁶ m³/s/m² (0.001 cfm/ft²) |
| | Perimeter zone: 1.93 x 10⁻⁴ m³/s/m² (0.038 cfm/ft²) |

| **Limitations** | Shelving, furniture, and retail merchandise not accounted for in models |
| | Mechanical equipment not accounted for in embodied energy (and GWP) calculations |

Structural Design Assumptions

<table>
<thead>
<tr>
<th>Structural Loads</th>
<th>NBCC 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S_s = 0.9 kPa</td>
</tr>
<tr>
<td></td>
<td>S_r = 0.4 kPa</td>
</tr>
<tr>
<td></td>
<td>q (1/10) = 0.39 kPa</td>
</tr>
<tr>
<td></td>
<td>q (1/50) = 0.52 kPa</td>
</tr>
<tr>
<td></td>
<td>LL = 1.0 kPa (roof) and 4.8 kPa (mezzanine)</td>
</tr>
<tr>
<td></td>
<td>DL = see Appendix B for DL of building components</td>
</tr>
<tr>
<td></td>
<td>Earthquake loads not considered. Assumed that wind loads govern lateral force resisting system</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Building Codes</th>
<th>Hot-Rolled Steel: CAN/CSA S16-01 9th ed.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cold-Formed Steel: CSA S136-07</td>
</tr>
<tr>
<td></td>
<td>Timber: CAN/CSA-086-01</td>
</tr>
<tr>
<td></td>
<td>Concrete: CSA Standard A23.9-04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deflections</th>
<th>Max allowable roof deflection: L/240</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max allowable horizontal deflection of building: 64 mm (2.5 in)</td>
</tr>
</tbody>
</table>
Structural Design Assumptions (Cont.)

<table>
<thead>
<tr>
<th>Category</th>
<th>Assumptions/Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columns</td>
<td>Height = 7.4 m (24.3 ft)</td>
</tr>
<tr>
<td></td>
<td>Pin-pin connections assumed</td>
</tr>
<tr>
<td></td>
<td>Bearing not considered</td>
</tr>
<tr>
<td></td>
<td>Columns selected based on axial loads, lateral bending moments, deflections,</td>
</tr>
<tr>
<td></td>
<td>minimum connection widths, typical practice, and least weight per m</td>
</tr>
<tr>
<td>Beams</td>
<td>Length = varies (see drawings)</td>
</tr>
<tr>
<td></td>
<td>Simply supported pin-pin connections assumed</td>
</tr>
<tr>
<td></td>
<td>Beams selected based on bending moments, deflections, minimum</td>
</tr>
<tr>
<td></td>
<td>connection widths, typical practice, and least weight per m</td>
</tr>
<tr>
<td>**Lateral Force Resisting</td>
<td>Combination of reinforced concrete masonry unit stair tower and 300W steel</td>
</tr>
<tr>
<td>System</td>
<td>rod x-bracing (i.e. braced frame system)</td>
</tr>
</tbody>
</table>

Description of Building Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior Infill Walls</td>
<td>[BASE-W] – CFS studs @ 400 mm o/c with EIFS (see Appendix B)</td>
</tr>
<tr>
<td>Roof</td>
<td>[BASE-R] – OWSJ @ 1,200 mm o/c and metal deck with continuous polyisocyanurate insulation and 4-ply built-up asphalt roof assembly (see Appendix B)</td>
</tr>
<tr>
<td></td>
<td>No roof overhang assumed</td>
</tr>
<tr>
<td>Structure</td>
<td>[S-1] – Conventional braced steel frame (H.S.S. columns and W-section beams) (see Appendix B)</td>
</tr>
<tr>
<td>Mezzanine Floor</td>
<td>Mezzanine includes office space (not modeled in eQUEST)</td>
</tr>
<tr>
<td></td>
<td>[FL-3] – OWSJ @ 1,200 mm o/c and metal deck with concrete topping, vinyl floor tile finish, and drywall ceiling (see Appendix B)</td>
</tr>
<tr>
<td>Window</td>
<td>[W-1] – Aluminum window frame with thermal break, typical double glazing unit with airspace, no low-E coating, no argon, fixed (see Appendix B)</td>
</tr>
<tr>
<td></td>
<td>[W-9] - self-supported aluminum curtainwall system with thermal break, double glazing unit with airspace, no low-E coating, no argon (see Appendix B)</td>
</tr>
<tr>
<td></td>
<td>Window-to-wall ratio: 17%</td>
</tr>
<tr>
<td></td>
<td>Typical window overhang = 0.3 m (1.0 ft)</td>
</tr>
<tr>
<td></td>
<td>No window blinds or drapes to provide shade</td>
</tr>
<tr>
<td>Door</td>
<td>[D-2] – Insulated steel exterior door with no glazing (see Appendix B)</td>
</tr>
<tr>
<td></td>
<td>[D-3] – Uninsulated aluminum exterior door with 80% glazing (see Appendix B)</td>
</tr>
<tr>
<td></td>
<td>[D-4] – Insulated sectional overhead steel door with no glazing (see Appendix B)</td>
</tr>
<tr>
<td></td>
<td>[D-6] – Steel interior door with no glazing (see Appendix B)</td>
</tr>
<tr>
<td>Interior Partition</td>
<td>[CMU-P1] for stair tower – Reinforced 200 mm concrete masonry unit wall (see Appendix B)</td>
</tr>
<tr>
<td></td>
<td>[SS-P2] elsewhere – CFS studs @ 600 mm o/c with two layers of drywall (see Appendix B)</td>
</tr>
</tbody>
</table>
Description of Building Components (Cont.)

<table>
<thead>
<tr>
<th>Component</th>
<th>Details</th>
</tr>
</thead>
</table>
| **Foundations** | - Assume natural undisturbed soil with minimum bearing pressure of:
 - Allowable (SLS) = 150 kPa (3,000 psf)
 - Ultimate (ULS) = 215 kPa (4,500 psf)
- Design load for isolated footings = 150 kN (34 kips)
- All isolated footings assumed to be the same size for simplicity
- [SOG-5] – 200 mm thick concrete slab, 30 MPa, average flyash content, 10 mil poly vapor barrier, earth contact (see Appendix B)
- [IF-1] – 1,200 mm x 1,200 mm x 350 mm isolated footing with 450 mm x 450 mm x 1,200 mm concrete pier, 20 MPa, average flyash content (see Appendix B)
- [PF-5] – 600 mm x 200 mm strip footing with 1,200 mm x 200 mm concrete foundation wall, 20 MPa, average flyash content (see Appendix B) |
| **Finish Materials** | - As per building components in Appendix B |

Mechanical Systems

<table>
<thead>
<tr>
<th>Component</th>
<th>Details</th>
</tr>
</thead>
</table>
| **Hours of Operation** | - Mechanical systems operate 1 hour before and 1 hour after hours of occupancy
- Off during statutory holidays |
| **HVAC** | - Direct expansion (DX) coils (electric)
- Combustion furnace (natural gas)
- Packaged single zone DX with furnace (central packaged single zone air conditioner with combustion furnace)
- Ducted return air
- Occupied spaces: Cool to 24.4°C (76.0°F), Heat to 21.1°C (70.0°F)
- Unoccupied spaces: Cool to 27.8°C (82.0°F), Heat to 17.8°C (64.0°F)
- Minimum design air flow: 2.54 x 10⁻³ m³/s/m² (0.50 cfm/ft²) |
| **Zoning** | - 0% core zone
- 100% perimeter zone |

Hot Water

<table>
<thead>
<tr>
<th>Component</th>
<th>Details</th>
</tr>
</thead>
</table>
| **DHW Equipment** | - Heater fuel: natural gas
- Heater type: storage
- Hot water use: 1.9 L/person/day (0.50 gal/person/day)
- Supply water temperature: 57.2°C (135.0°F)
- Inlet water temperature: equal to ground temperature |
Load Profiles by Space

<table>
<thead>
<tr>
<th>Space</th>
<th>Interior Lighting W/m² (W/ft²)</th>
<th>Office Equipment W/m² (W/ft²)</th>
<th>Misc. Electric Loads W/m² (W/ft²)</th>
<th>Misc. Natural Gas Loads W/m² (Btuh/ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retail sales and wholesale showroom</td>
<td>25.60 (2.38)</td>
<td>-</td>
<td>2.69 (0.25)</td>
<td>-</td>
</tr>
<tr>
<td>Exhibit display area</td>
<td>11.08 (1.03)</td>
<td>-</td>
<td>2.69 (0.25)</td>
<td>-</td>
</tr>
<tr>
<td>Conditioned storage</td>
<td>12.80 (1.19)</td>
<td>-</td>
<td>0.00 (0.00)</td>
<td>-</td>
</tr>
<tr>
<td>Office</td>
<td>13.34 (1.24)</td>
<td>5.0 (0.46)</td>
<td>8.07 (0.75)</td>
<td>-</td>
</tr>
<tr>
<td>Restrooms</td>
<td>8.28 (0.77)</td>
<td>-</td>
<td>1.08 (0.10)</td>
<td>-</td>
</tr>
<tr>
<td>Mechanical and electrical room</td>
<td>8.71 (0.81)</td>
<td>-</td>
<td>1.08 (0.10)</td>
<td>-</td>
</tr>
</tbody>
</table>

Additional Loads/Notes
- **Building Occupants**: Average occupant heat gain of 132 W/person
- **Exterior Lighting**: Not considered in models
- **Daylight Controls**: No daylighting controls
Appendix B

Life-Cycle Assessment Data for Building Components

This Appendix contains detailed LCA data for the 220 different building components that were examined in this study. For each building component, there is a detailed description of the assembly, a summary of the important LCA data, as well as a detailed list of the material quantities that were assumed.

Appendix B is divided into the following sub-sections:

- Appendix B-1: Exterior Infill Walls (pg 175)
- Appendix B-2: Roofs (pg 235)
- Appendix B-3: Structural Systems (pg 269)
- Appendix B-4: Floors (pg 272)
- Appendix B-5: Windows and Doors (pg 276)
- Appendix B-6: Foundations (pg 286)
- Appendix B-7: Interior Partition Walls (pg 299)

For each building component group in this Appendix, there is a brief introduction as well as a graph that summarizes the embodied energy and embodied GWP of the relevant building components. When reading this Appendix, it may be useful to reference the table below, which lists common thickness and gauges.

Common Thicknesses and Gauges

<table>
<thead>
<tr>
<th>Gauge</th>
<th>Nominal Thickness (mm)</th>
<th>Nominal Thickness (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4.176</td>
<td>0.164</td>
</tr>
<tr>
<td>10</td>
<td>3.416</td>
<td>0.135</td>
</tr>
<tr>
<td>12</td>
<td>2.657</td>
<td>0.105</td>
</tr>
<tr>
<td>14</td>
<td>1.897</td>
<td>0.075</td>
</tr>
<tr>
<td>16</td>
<td>1.591</td>
<td>0.060</td>
</tr>
<tr>
<td>18</td>
<td>1.214</td>
<td>0.048</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gauge</th>
<th>Nominal Thickness (mm)</th>
<th>Nominal Thickness (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.912</td>
<td>0.036</td>
</tr>
<tr>
<td>22</td>
<td>0.759</td>
<td>0.030</td>
</tr>
<tr>
<td>24</td>
<td>0.607</td>
<td>0.024</td>
</tr>
<tr>
<td>25</td>
<td>0.531</td>
<td>0.021</td>
</tr>
<tr>
<td>26</td>
<td>0.455</td>
<td>0.018</td>
</tr>
<tr>
<td>28</td>
<td>0.378</td>
<td>0.015</td>
</tr>
<tr>
<td>29</td>
<td>0.343</td>
<td>0.014</td>
</tr>
</tbody>
</table>
Appendix B-1

LCA Data for Exterior Infill Walls
LCA Data for Concrete Masonry Unit Walls

This section contains a detailed description of each concrete masonry unit (CMU) exterior infill wall that was examined in this study (18 in total). The assembly layers are listed for each wall, along with a detailed description of the material quantities from the ATHENA® Environmental Impact Estimator for Buildings.

A breakdown of the total primary energy consumption and the total global warming potential (GWP) for each wall is also included. In each case, the results were calculated for an area of wall equal to 50.9 m², which represents a typical bay size for a single-storey retail building. The results are also expressed on a per m² basis in each case. The data has been calculated for two different lifespans: at the completion of initial construction and after 50 years.

As a summary, the figure below illustrates a comparison of the total embodied energy (and GWP) after 50 years for the various walls in this section. For comparison purpose, the building component used in the baseline retail building has been shaded in grey.

Concrete Masonry Unit Wall #1 (CMU-W1)

<table>
<thead>
<tr>
<th>Category</th>
<th>Exterior Walls</th>
<th>Assembly Layers</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Concrete masonry unit wall with typical exterior rigid insulation and standard clay brick cladding</td>
<td>Ontario (standard) clay brick cladding</td>
<td>orange (standard) clay brick cladding</td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>1,393.1 kg, 1,393.1 kg, 1,393.1 kg</td>
<td>250mm standard weight concrete block</td>
<td>250mm standard weight concrete block</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Life-Cycle (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Embedded Energy (EE)</th>
<th>Difference in Operating Energy from Baseline after Life-Cycle</th>
<th>Global Warming Potential (kg of CO₂ eq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>74.658</td>
<td>485</td>
<td>853</td>
<td>1,183</td>
<td>1,183</td>
</tr>
<tr>
<td>50</td>
<td>74.658</td>
<td>485</td>
<td>853</td>
<td>1,183</td>
<td>1,183</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time 0, at the completion of initial construction
2. Trans = Transportation
3. Total EE or Total GWP = Total embodied energy or total GWP of building component after lifespan, total manufacturing + total construction + total maintenance + total energy use effect
4. Total Energy or Total GWP per m² = Total EE or Total GWP of building component/area of building component that was modelled in ATHENA® EIE
5. Total Difference in Operating Energy for GWP from Baseline after Lifespan = This difference in the total Recycle operating energy for GWP from the baseline retail building after lifespans due to using this building component instead of the baseline component
6. Total Difference in Operating Energy for GWP from Baseline after Lifespan per m² = Total difference in operating energy for GWP from baseline after lifespan/ net wall area of baseline retail building
7. Total operating primary energy use of baseline retail building after 50 years = 907,000 GJ (7,740 MWhr)
8. Total operating GWP of baseline retail building after 50 years = 2,131 tonnes of CO₂ eq (686 kg of CO₂ eq/MWhr)
Concrete Masonry Unit Wall #2 (CMU-W2)

Building Component Description:

Category: Exterior Walls
Assembly Layers: Outside

Brief Description:
Concrete masonry unit wall with special exterior rigid insulation and split-faced concrete block cladding.

Quick Numbers:
- Material: Solvent Based Alkyd Paint 19.6 L
- Material: Split-faced Concrete Block 1,238.2 Blocks
- Material: Water Based Latex Paint 66.3 L

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Life-Cycle (Years)</th>
<th>Initial</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embodied Energy (EE)</td>
<td>1,092.8 kg</td>
<td>1,238.2 Blocks</td>
</tr>
<tr>
<td>Construction</td>
<td>2,713</td>
<td>2,713</td>
</tr>
<tr>
<td>End of Life</td>
<td>3,327</td>
<td>3,327</td>
</tr>
<tr>
<td>Total</td>
<td>5,320</td>
<td>5,320</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO2 eq.)

<table>
<thead>
<tr>
<th>Life-Cycle (Years)</th>
<th>Initial</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embodied Energy (EE)</td>
<td>1,092.8 kg</td>
<td>1,238.2 Blocks</td>
</tr>
<tr>
<td>Construction</td>
<td>2,713</td>
<td>2,713</td>
</tr>
<tr>
<td>End of Life</td>
<td>3,327</td>
<td>3,327</td>
</tr>
<tr>
<td>Total</td>
<td>5,320</td>
<td>5,320</td>
</tr>
</tbody>
</table>

Notes:

- 1Initial=Time 't'0, at the completion of initial construction
- 2Transportation
- 3Total EE (or Total GWP) = Total embodied energy (or embodied GWP) of building component after LifeSpan (i.e., total manufacturing + total on-site/40 effects)
- 4Total Embodied Global Warming Potential (GWP) in kg CO2 eq. = Total Embodied Energy (EE) per m² = Total Embodied Energy (EE) per m² x 0.161 kg CO2 eq. / MJ
- 5Total Energy usage of basaltic masonry building after 50 years = 50.7 kWh / m²

ATHENA® EIE Material List

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 m3 Polystyrene</td>
<td>54.0</td>
<td>m³</td>
</tr>
<tr>
<td>Gold Polystyrene</td>
<td>10.3</td>
<td>kg</td>
</tr>
<tr>
<td>Concrete Blocks</td>
<td>648.0</td>
<td>Blocks</td>
</tr>
<tr>
<td>Extruded Polystyrene</td>
<td>104.3</td>
<td>m³ (150mm)</td>
</tr>
<tr>
<td>Modified Bitumen membranes</td>
<td>40.1</td>
<td>kg</td>
</tr>
<tr>
<td>Metal</td>
<td>6.4</td>
<td>m³</td>
</tr>
<tr>
<td>Nails</td>
<td>3.1</td>
<td>kg</td>
</tr>
<tr>
<td>Rebar, Rod, Light Sections</td>
<td>1,092.8</td>
<td>kg</td>
</tr>
<tr>
<td>Split-faced Concrete Block</td>
<td>1,238.2</td>
<td>Blocks</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>66.3</td>
<td>L</td>
</tr>
</tbody>
</table>

Concrete Masonry Unit Wall #3 (CMU-W3)

Building Component Description:

Category: Exterior Walls
Assembly Layers: Outside

Brief Description:
Concrete masonry unit wall with typical exterior rigid insulation and pre-cast concrete block cladding.

Quick Numbers:
- Material: Solvent Based Alkyd Paint 19.6 L
- Material: Split-faced Concrete Block 1,238.2 Blocks
- Material: Water Based Latex Paint 66.3 L

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Life-Cycle (Years)</th>
<th>Initial</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embodied Energy (EE)</td>
<td>1,092.8 kg</td>
<td>1,238.2 Blocks</td>
</tr>
<tr>
<td>Construction</td>
<td>2,713</td>
<td>2,713</td>
</tr>
<tr>
<td>End of Life</td>
<td>3,327</td>
<td>3,327</td>
</tr>
<tr>
<td>Total</td>
<td>5,320</td>
<td>5,320</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO2 eq.)

<table>
<thead>
<tr>
<th>Life-Cycle (Years)</th>
<th>Initial</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embodied Energy (EE)</td>
<td>1,092.8 kg</td>
<td>1,238.2 Blocks</td>
</tr>
<tr>
<td>Construction</td>
<td>2,713</td>
<td>2,713</td>
</tr>
<tr>
<td>End of Life</td>
<td>3,327</td>
<td>3,327</td>
</tr>
<tr>
<td>Total</td>
<td>5,320</td>
<td>5,320</td>
</tr>
</tbody>
</table>

Notes:

- 1Initial=Time 't'0, at the completion of initial construction
- 1Total Energy usage of basaltic masonry building after 50 years = 50.7 kWh / m²
- 2Total Energy usage of basaltic masonry building after 50 years = 50.7 kWh / m²
- 3Total Energy usage of basaltic masonry building after 50 years = 50.7 kWh / m²
- 4Total Energy usage of basaltic masonry building after 50 years = 50.7 kWh / m²

ATHENA® EIE Material List

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 m3 Polystyrene</td>
<td>54.0</td>
<td>m³</td>
</tr>
<tr>
<td>Concrete (30 MPa)</td>
<td>8.7</td>
<td>m³</td>
</tr>
<tr>
<td>Concrete Blocks</td>
<td>648.0</td>
<td>Blocks</td>
</tr>
<tr>
<td>Extruded Polystyrene</td>
<td>104.3</td>
<td>m³ (150mm)</td>
</tr>
<tr>
<td>Modified Bitumen membranes</td>
<td>68.2</td>
<td>kg</td>
</tr>
<tr>
<td>Metal</td>
<td>2.1</td>
<td>m³</td>
</tr>
<tr>
<td>Nails</td>
<td>3.1</td>
<td>kg</td>
</tr>
<tr>
<td>Rebar, Rod, Light Sections</td>
<td>1,092.8</td>
<td>kg</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>66.3</td>
<td>L</td>
</tr>
</tbody>
</table>
Concrete Masonry Unit Wall #4 (CMU-W4)

Building Component Description:
- **Category**: Exterior Walls
- **Assembly Layers**
 - Outside: 60 mm thick concrete masonry unit with spacial exterior rigid insulation and pine wood furring strip
 - Inside: Moisture barrier, 19.2 mm thick polyethylene vapor retarder
- **Brief Description**:
 - Concrete masonry unit wall with spacial exterior rigid insulation and pine wood furring strip
- **Quick Numbers**:
 - Material weight: 8.82 kg/m²
 - R value: 11.9
 - Optional: 50 mm insulated polyethylene rigid insulation
 - No significant thermal bridge through exterior insulation
 - Standard finish: Stucco finish

Life-Cycle Assessment Results:
- **Primary Energy Consumption (MJ)**
 - Embodied Energy (EE)
 - Material: Initial = 63.37 MJ/m², 50 years = 63.37 MJ/m²
 - Construction: Initial = 47.20 MJ/m², 50 years = 47.20 MJ/m²
 - Global Warming Potential (kg of CO₂ eq.)
 - Material: Initial = 3.039 kg CO₂ eq., 50 years = 3.039 kg CO₂ eq.
 - Construction: Initial = 1.910 kg CO₂ eq., 50 years = 1.910 kg CO₂ eq.

ATHENA® EIE Material List
- (Includes all materials after 50 years)

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 m Polyethylene</td>
<td>54.0</td>
<td>m²</td>
</tr>
<tr>
<td>Concrete Blocks</td>
<td>648.0</td>
<td>Blocks</td>
</tr>
<tr>
<td>Extruded Polystyrene</td>
<td>104.3</td>
<td>m³ (25mm)</td>
</tr>
<tr>
<td>Modified Bitumen membrane</td>
<td>68.2</td>
<td>kg</td>
</tr>
<tr>
<td>Furring</td>
<td>2.1</td>
<td>m</td>
</tr>
<tr>
<td>Wood</td>
<td>4.5</td>
<td>m³</td>
</tr>
<tr>
<td>Soffit Channel & Furring</td>
<td>102.3</td>
<td>kg</td>
</tr>
<tr>
<td>aluminum flashed</td>
<td>38.5</td>
<td>L</td>
</tr>
</tbody>
</table>

Notes:
- Initial = Time 0, i.e., at the completion of initial construction
- Years = Transportation
- Total EE for 50 years = Total embodied energy for total embodied (GWP) of building component after Lifespan (lm total manufacturing + total construction + total maintenance + total embodied effects)
- Total GWP for 50 years = Total GWP of building component area of building component that was modelled in ATHENA® EIE
- Total Difference in Operating Energy for GWP from Baseline after Lifespan = The difference in the total Recycle operating energy (GWP) from the baseline retail building after Lifespan due to using this building component instead of the baseline component
- Total Difference in Operating Energy for GWP from Baseline after Lifespan per m² = Total difference in operating energy for GWP from baseline after Lifespan/Net wall area of baseline retail building
- Total operating primary energy use of mass building retail building after 50 years = 507000 GJ (1745 MWhyr)
- Total operating primary energy use of mass building retail building after 50 years = 3.310 tonnes of CO₂ eq (69g of CO₂ eq/kWhyr)

Concrete Masonry Unit Wall #5 (CMU-W5)

Building Component Description:
- **Category**: Exterior Walls
- **Assembly Layers**
 - Outside: 60 mm thick concrete masonry unit wall with spacial exterior rigid insulation and commercial steel cladding
 - Inside: Moisture barrier, 19.2 mm thick polyethylene vapor retarder
- **Brief Description**:
 - Concrete masonry unit wall with spacial exterior rigid insulation and commercial steel cladding
 - Standard finish: Stucco finish
 - Optional: 50 mm insulated polyethylene rigid insulation
 - Conduits and through exterior insulation
- **Quick Numbers**:
 - Material weight: 11.9 kg/m²
 - R value: 11.9
 - Optional: 19.2 mm thick polyethylene vapor retarder

Life-Cycle Assessment Results:
- **Primary Energy Consumption (MJ)**
 - Embodied Energy (EE)
 - Material: Initial = 63.37 MJ/m², 50 years = 63.37 MJ/m²
 - Construction: Initial = 47.20 MJ/m², 50 years = 47.20 MJ/m²
 - Global Warming Potential (kg of CO₂ eq.)
 - Material: Initial = 3.039 kg CO₂ eq., 50 years = 3.039 kg CO₂ eq.
 - Construction: Initial = 1.910 kg CO₂ eq., 50 years = 1.910 kg CO₂ eq.

Notes:
- Initial = Time 0, i.e., at the completion of initial construction
- Years = Transportation
- Total EE for 50 years = Total embodied energy for total embodied (GWP) of building component after Lifespan (lm total manufacturing + total construction + total maintenance + total embodied effects)
- Total GWP for 50 years = Total GWP of building component area of building component that was modelled in ATHENA® EIE
- Total Difference in Operating Energy for GWP from Baseline after Lifespan = The difference in the total Recycle operating energy (GWP) from the baseline retail building after Lifespan due to using this building component instead of the baseline component
- Total Difference in Operating Energy for GWP from Baseline after Lifespan per m² = Total difference in operating energy for GWP from baseline after Lifespan/Net wall area of baseline retail building
- Total operating primary energy use of mass building retail building after 50 years = 507000 GJ (1745 MWhyr)
- Total operating primary energy use of mass building retail building after 50 years = 3.310 tonnes of CO₂ eq (69g of CO₂ eq/kWhyr)
Concrete Masonry Unit Wall #6 (CMU-W6)

Building Component Description:

Material List

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>#15 Organic Fall</td>
<td>21.2</td>
<td>m²</td>
</tr>
<tr>
<td>3 in Polystyrene</td>
<td>54.0</td>
<td>m²</td>
</tr>
<tr>
<td>Concrete Blocks</td>
<td>648.0</td>
<td>Blocks</td>
</tr>
<tr>
<td>Extruded Polystyrene</td>
<td>104.3 m³</td>
<td>25mm</td>
</tr>
<tr>
<td>Cementitious</td>
<td>52.4 kg</td>
<td></td>
</tr>
<tr>
<td>Modified Bitumen Membrane</td>
<td>65.2 kg</td>
<td></td>
</tr>
<tr>
<td>Mortar</td>
<td>2.1 m³</td>
<td></td>
</tr>
<tr>
<td>Nails</td>
<td>4.6 kg</td>
<td></td>
</tr>
<tr>
<td>Red, Red Light Sections</td>
<td>120.8 kg</td>
<td></td>
</tr>
<tr>
<td>Solvent Based Alkyd Paint</td>
<td>19.6 L</td>
<td></td>
</tr>
<tr>
<td>Stucco over metal mesh</td>
<td>138.6 m²</td>
<td></td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>132.5 L</td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Life-span (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total Energy (MJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>67.227</td>
<td>474.3</td>
<td>1,244.3</td>
<td>1,244.3</td>
<td>5,000.000</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Life-span (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GWP (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>4,243</td>
<td>4,243</td>
<td>44</td>
<td>44</td>
<td>4,345</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = 0 (MJ) at the completion of initial construction.
2. Trans = Transportation.
3. Total EE (for Total GWP) = Total embodied energy (or total embodied GWP) of building component after lifespan (i.e., total manufacturing + total construction + total maintenance + total embodied effects).
4. Total EE (for Total GWP) per m² = Total EE (for Total GWP) of building component / area of building component that was modeled in Athena EIE.
5. Difference in Operating Energy for GWP from Baseline after Lifespan = the difference in the total lifecycle operating energy (for GWP) from the baseline retail building after lifespan due to using this building component instead of the baseline component.

Concrete Masonry Unit Wall #7 (CMU-W7)

Building Component Description:

Material List

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>#15 Organic Fall</td>
<td>51.9</td>
<td>m²</td>
</tr>
<tr>
<td>Red, Red Light Sections</td>
<td>10.0</td>
<td>m²</td>
</tr>
<tr>
<td>Solvent Based Alkyd Paint</td>
<td>14.5 L</td>
<td></td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>66.3</td>
<td>L</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Life-span (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total Energy (MJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>520</td>
<td>474.3</td>
<td>1,244.3</td>
<td>1,244.3</td>
<td>5,000.000</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Life-span (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GWP (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>5,570</td>
<td>444</td>
<td>44</td>
<td>44</td>
<td>5,570</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = 0 (MJ) at the completion of initial construction.
2. Trans = Transportation.
3. Total EE (for Total GWP) = Total embodied energy (or total embodied GWP) of building component after lifespan (i.e., total manufacturing + total construction + total maintenance + total embodied effects).
4. Total EE (for Total GWP) per m² = Total EE (for Total GWP) of building component / area of building component that was modeled in Athena EIE.
5. Difference in Operating Energy for GWP from Baseline after Lifespan = the difference in the total lifecycle operating energy (for GWP) from the baseline retail building after lifespan due to using this building component instead of the baseline component.
6. Difference in Operating Energy for GWP from Baseline after Lifespan per m² = Difference in operating energy in operating energy (for GWP) from the baseline retail building after lifespan per m² due to using this building component instead of the baseline component.
7. Total operating primary energy use of baseline retail building after 50 years = 0.047 GJ (1,274 kWh/yr).
8. Total operating GWP of baseline retail building after 50 years = 2,867 kg of CO₂ eq. (809 kg of CO₂ eq. for 50 years).
Concrete Masonry Unit Wall #8 (CMU-W8)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Concrete Masonry Unit Wall with Special Ball Insulation Installed between Drywall Studs and Pre-Cast Block Casting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quick Numbers:</td>
<td>Includes #96048 6x11.1 150mm/5" Block; 150mm/5" Block is a standard weight concrete block.</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE</th>
<th>Total EE per m²</th>
<th>Total EE per m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>96.9512</td>
<td>1,083</td>
<td>2,698</td>
<td>2,345</td>
<td>2,894</td>
<td>10.1</td>
<td>2,048</td>
<td>2,048</td>
</tr>
<tr>
<td>50</td>
<td>96.9512</td>
<td>1,083</td>
<td>2,698</td>
<td>2,345</td>
<td>2,894</td>
<td>10.1</td>
<td>2,048</td>
<td>2,048</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.):

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GWP</th>
<th>Total GWP per m²</th>
<th>Total GWP per m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>74.4895</td>
<td>77.6589</td>
<td>65.923</td>
<td>30.9457</td>
<td>73.871</td>
<td>15.9</td>
<td>58.72</td>
<td>58.72</td>
</tr>
<tr>
<td>50</td>
<td>74.4895</td>
<td>77.6589</td>
<td>65.923</td>
<td>30.9457</td>
<td>73.871</td>
<td>15.9</td>
<td>58.72</td>
<td>58.72</td>
</tr>
</tbody>
</table>

Athena® EIE Material List:

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>#19 Organic Fall</td>
<td>51.9</td>
<td>m²</td>
</tr>
<tr>
<td>6 mm Polystyrene</td>
<td>54.9</td>
<td>m²</td>
</tr>
<tr>
<td>#300 Block</td>
<td>259.8</td>
<td>m³/20mm</td>
</tr>
<tr>
<td>Concrete Blocks</td>
<td>648.0</td>
<td>Blocks</td>
</tr>
<tr>
<td>Galvanized Studs</td>
<td>138.3</td>
<td>kg</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>35.9</td>
<td>kg</td>
</tr>
<tr>
<td>Modified Bitumen</td>
<td>333.3</td>
<td>kg</td>
</tr>
<tr>
<td>Metal</td>
<td>6.4</td>
<td>m³</td>
</tr>
<tr>
<td>Nails</td>
<td>3.7</td>
<td>kg</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>0.9</td>
<td>kg</td>
</tr>
<tr>
<td>Sealer, Red, Light Sections</td>
<td>1,039.8</td>
<td>kg</td>
</tr>
<tr>
<td>Screws, Nuts & Bolts</td>
<td>2.6</td>
<td>kg</td>
</tr>
<tr>
<td>Split-faced Concrete Block</td>
<td>1,238.2</td>
<td>Blocks</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>66.3</td>
<td>L</td>
</tr>
</tbody>
</table>

Notes:

1: Initial Time '0' (i.e. at the completion of initial construction)
2: Trans = Transportation
3: Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component after life span. It includes total manufacturing + total construction + total maintenance + total end-of-life effects.
4: Total EE (or Total GWP) per m² = Total EE (or Total GWP) of building component of area of building component that was modeled in Athena® EIE
5: Total Difference in Operating Energy (or GWP) from Baseline after Lifespan = The difference in the total lifecycle operating energy (or GWP) from baseline after lifespan due to using this building component instead of the baseline component.
6: Total operating primary energy use of baseline retail building after 50 years = (230-tonnes of CO2 eq. (kg of CO2 eq.))
Concrete Masonry Unit Wall #10 (CMU-W10)

Building Component Description:
- **Category**: Exterior Walls
- **Assembly Layers**:
 - Outside
 - Concrete masonry unit wall with special batt insulation installed between drywall studs and pre-cast wood siding
- **Quick Numbers**:
 - **ATHENA Standard EIE**:
 - B Value: 11.3
 - R Value: 2.2
 - Includes 1/2" fibers of cotton batt insulation
 - **WALL Thickness**: 4" (102.4 mm)
 - **Total Embodied Energy**: 1,394 kg CO₂eq.
 - **Total Embodied Weight**: 18 kg

Life-Cycle Assessment Results:
- **Primary Energy Consumption (MJ)**
- **Difference in Operating Energy from Baseline after Lifespan**
- **Global Warming Potential (kg of CO₂ eq.)**

Concrete Masonry Unit Wall #11 (CMU-W11)

Building Component Description:
- **Category**: Exterior Walls
- **Assembly Layers**:
 - Outside
 - Concrete masonry unit wall with special batt insulation installed between drywall studs and commercial steel framing
- **Quick Numbers**:
 - **ATHENA Standard EIE**:
 - B Value: 11.3
 - R Value: 2.2
 - Includes 1/2" fibers of cotton batt insulation
 - **WALL Thickness**: 4" (102.4 mm)
 - **Total Embodied Energy**: 2,339 kg CO₂eq.
 - **Total Embodied Weight**: 189 kg

Life-Cycle Assessment Results:
- **Primary Energy Consumption (MJ)**
- **Difference in Operating Energy from Baseline after Lifespan**
- **Global Warming Potential (kg of CO₂ eq.)**

Notes:
1. Initial = Time 17 (at the completion of initial construction)
2. Trans = Transportation
3. Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component after Lifespan, i.e., total manufacturing + total construction + total maintenance + total end-use effects
4. Total Energy (or Total GWP) per m² = Total EE (or Total GWP) of building component area of building component that was modeled in ATHENA EIE
5. Total Difference in Operating Energy (or GWP) from Baseline after Lifespan = The difference in the total lifecycle operating energy (or GWP) from the baseline retail building after Lifespan, due to using this building component instead of the baseline component
6. Total Difference in Operating Energy (or GWP) from Baseline = The difference in the total lifecycle operating energy (or GWP) from the baseline retail building after Lifespan, due to using this building component instead of the baseline component
Concrete Masonry Unit Wall #12 (CMU-W12)

Building Component Description:

- **Brief Description:** Concrete masonry unit wall with special stucco sheathing between stucco stud and EIFS cladding.
- **Quick Numbers:**
 - 209mm standard weight concrete block
 - 56.7mm Gypsum Board
 - 43.0mm EIFS cladding
- **Material List (Includes all materials after 50-year):

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>#15 Organic Fall</td>
<td>271.3 m2</td>
<td></td>
</tr>
<tr>
<td>T16 Rein Gypsum</td>
<td>56.0 m2</td>
<td></td>
</tr>
<tr>
<td>#6 Polyethylene</td>
<td>54.0 m2</td>
<td></td>
</tr>
<tr>
<td>Batt Fiberglass</td>
<td>255.9 m2</td>
<td></td>
</tr>
<tr>
<td>#665 Block</td>
<td>180.0 m2</td>
<td></td>
</tr>
<tr>
<td>Exterior Polystyrene</td>
<td>154.3 m2</td>
<td></td>
</tr>
<tr>
<td>Galvanized Sheet</td>
<td>97.4 kg</td>
<td></td>
</tr>
<tr>
<td>Galvanized Studs</td>
<td>136.3 kg</td>
<td></td>
</tr>
<tr>
<td>Joint Compound</td>
<td>32.9 kg</td>
<td></td>
</tr>
<tr>
<td>Nails</td>
<td>2.1 m2</td>
<td></td>
</tr>
<tr>
<td>Paper Tape</td>
<td>0.1 kg</td>
<td></td>
</tr>
<tr>
<td>Riser Fin. Light Sections</td>
<td>1,200.6 kg</td>
<td></td>
</tr>
<tr>
<td>Screws Nail & Bit</td>
<td>2.6 kg</td>
<td></td>
</tr>
<tr>
<td>Source Steel metal mesh</td>
<td>136.0 m2</td>
<td></td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>132.5 L</td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

- **Primary Energy Consumption (Mj):**
 - Embodied Energy (EE)
 - Maintenance
 - End of Life
 - Total EE from Baseline after Lifespan

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trans</td>
<td>544.0 m2</td>
<td>145.0 m2</td>
<td>6.0 m2</td>
<td>1.0 m2</td>
<td>0.0 m2</td>
</tr>
<tr>
<td>Total</td>
<td>78.0 m2</td>
<td>16.0 m2</td>
<td>6.0 m2</td>
<td>1.0 m2</td>
<td>0.0 m2</td>
</tr>
</tbody>
</table>

- **Global Warming Potential (kg of CO2 eq.):**

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GWP from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trans</td>
<td>544.0 m2</td>
<td>145.0 m2</td>
<td>6.0 m2</td>
<td>1.0 m2</td>
<td>0.0 m2</td>
</tr>
<tr>
<td>Total</td>
<td>78.0 m2</td>
<td>16.0 m2</td>
<td>6.0 m2</td>
<td>1.0 m2</td>
<td>0.0 m2</td>
</tr>
</tbody>
</table>

Note: Initial time 17m (at the completion of initial construction)

Concrete Masonry Unit Wall #13 (CMU-W13)

Building Component Description:

- **Brief Description:** Concrete masonry unit wall with two layers of exterior rigid insulation and standard clay brick cladding.
- **Quick Numbers:**
 - 209mm standard weight concrete block
 - 56.7mm Gypsum Board
 - 43.0mm EIFS cladding
- **Material List (Includes all materials after 50-year):

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>#15 Organic Fall</td>
<td>271.3 m2</td>
<td></td>
</tr>
<tr>
<td>T16 Rein Gypsum</td>
<td>56.0 m2</td>
<td></td>
</tr>
<tr>
<td>#6 Polyethylene</td>
<td>54.0 m2</td>
<td></td>
</tr>
<tr>
<td>Batt Fiberglass</td>
<td>255.9 m2</td>
<td></td>
</tr>
<tr>
<td>#665 Block</td>
<td>180.0 m2</td>
<td></td>
</tr>
<tr>
<td>Exterior Polystyrene</td>
<td>154.3 m2</td>
<td></td>
</tr>
<tr>
<td>Galvanized Sheet</td>
<td>97.4 kg</td>
<td></td>
</tr>
<tr>
<td>Galvanized Studs</td>
<td>136.3 kg</td>
<td></td>
</tr>
<tr>
<td>Joint Compound</td>
<td>32.9 kg</td>
<td></td>
</tr>
<tr>
<td>Nails</td>
<td>2.1 m2</td>
<td></td>
</tr>
<tr>
<td>Paper Tape</td>
<td>0.1 kg</td>
<td></td>
</tr>
<tr>
<td>Riser Fin. Light Sections</td>
<td>1,200.6 kg</td>
<td></td>
</tr>
<tr>
<td>Screws Nail & Bit</td>
<td>2.6 kg</td>
<td></td>
</tr>
<tr>
<td>Source Steel metal mesh</td>
<td>136.0 m2</td>
<td></td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>132.5 L</td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

- **Primary Energy Consumption (Mj):**
 - Embodied Energy (EE)
 - Maintenance
 - End of Life
 - Total EE from Baseline after Lifespan

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trans</td>
<td>544.0 m2</td>
<td>145.0 m2</td>
<td>6.0 m2</td>
<td>1.0 m2</td>
<td>0.0 m2</td>
</tr>
<tr>
<td>Total</td>
<td>78.0 m2</td>
<td>16.0 m2</td>
<td>6.0 m2</td>
<td>1.0 m2</td>
<td>0.0 m2</td>
</tr>
</tbody>
</table>

- **Global Warming Potential (kg of CO2 eq.):**

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GWP from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trans</td>
<td>544.0 m2</td>
<td>145.0 m2</td>
<td>6.0 m2</td>
<td>1.0 m2</td>
<td>0.0 m2</td>
</tr>
<tr>
<td>Total</td>
<td>78.0 m2</td>
<td>16.0 m2</td>
<td>6.0 m2</td>
<td>1.0 m2</td>
<td>0.0 m2</td>
</tr>
</tbody>
</table>

Note: Initial time 17m (at the completion of initial construction)
Concrete Masonry Unit Wall #14 (CMU-W14)

Category: Exterior Walls
Assembly Layers: CMU
Brief Description: Concrete masonry unit wall with two layers of exterior rigid insulation and split-faced concrete block cladding
Quick Numbers:
- **THERM-O:** 20 in.
- **THERM-2:** 2 in.
- **Wall Thickness:** 4 in.

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>End of Life</th>
<th>Total EE (M)</th>
<th>Total Global Warming Potential (GWP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>Material</td>
<td>Trans.</td>
<td>Material</td>
<td>Trans.</td>
<td>Total</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Material List:
- 3 in. Polystyrene
- CMU
- Exuded Polystyrene
- Modified Bitumen membrane
- Mortar
- Split-faced Concrete Block
- Water Based Latex Paint

Notes:
- Initial = 17.0 M (at the completion of initial construction)
- Trans = Transportation

Concrete Masonry Unit Wall #15 (CMU-W15)

Category: Exterior Walls
Assembly Layers: CMU
Brief Description: Concrete masonry unit wall with two layers of exterior rigid insulation and pre-cast concrete cladding
Quick Numbers:
- **THERM-O:** 20 in.
- **THERM-2:** 2 in.
- **Wall Thickness:** 4 in.

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>End of Life</th>
<th>Total EE (M)</th>
<th>Total Global Warming Potential (GWP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>Material</td>
<td>Trans.</td>
<td>Material</td>
<td>Trans.</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Trans.</td>
<td>Trans. Total</td>
<td>Trans. Total</td>
<td>Trans. Total</td>
<td>Total</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Material List:
- 3 in. Polystyrene
- CMU
- Exuded Polystyrene
- Modified Bitumen membrane
- Mortar
- Neat
- Rebar, Rod, Light Sections
- Split-faced Concrete Block
- Water Based Latex Paint

Notes:
- Initial = 17.0 M (at the completion of initial construction)
- Trans = Transportation
Concrete Masonry Unit Wall #16 (CMU-W16)

Building Component Description:
- **Category:** Exterior Walls
- **Assembly Layers:** Outside
- **Brief Description:** Concrete masonry unit wall with two layers of exterior rigid insulation and pine wood siding.
- **Quick Numbers:**
 - 340 mm
- **Material List:**
 - Pine Wood Bevel Siding: 160.4 m²
 - Rebar, Rod, Light Sections: 1,092.8 kg
 - Solvent Based Alkyd Paint: 19.6 L
 - Water Based Latex Paint: 132.5 L

Life-Cycle Assessment Results:
- **Primary Energy Consumption (MJ):**
 - Initial: 71,817 MJ
 - 50 years: 66,554 MJ

AThENA® EIE Material List:
- 3.0 Polyethylene
- Concrete Blocks
- Expanded Polystyrene
- Modified Bitumen membrane
- Mortar
- Nails

Concrete Masonry Unit Wall #17 (CMU-W17)

Building Component Description:
- **Category:** Exterior Walls
- **Assembly Layers:** Outside
- **Brief Description:** Concrete masonry unit wall with two layers of exterior rigid insulation and commercial metal cladding.
- **Quick Numbers:**
 - 340 mm
- **Material List:**
 - Pine Wood Bevel Siding: 193 kg CO₂ eq

Life-Cycle Assessment Results:
- **Primary Energy Consumption (MJ):**
 - Initial: 55,526 MJ
 - 50 years: 55,526 MJ

AThENA® EIE Material List:
- 3.0 Polyethylene
- Concrete Blocks
- Expanded Polystyrene
- Modified Bitumen membrane
- Mortar
- Nails

Notes:
1. *Initial* = Time 0.00 at the completion of initial construction.
3. *Total EE for Total GWP* = Total embodied energy (for total embodied GWP) of building component after Lifespan (in total manufacturing + total construction + total maintenance + total end-use effects).
4. *Total Difference in Operating Energy (for GWP)* from Baseline after Lifespan = *The difference in the total Lifecycle operating energy (for GWP)* from the baseline retail building after Lifespan due to using this building component instead of the baseline component.
5. *Total Difference in Operating Energy (for GWP)* from Baseline after Lifespan = *The difference in the total Lifecycle operating energy (for GWP)* from the baseline retail building after Lifespan due to using this building component instead of the baseline component.
Concrete Masonry Unit Wall #18 (CMU-W18)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Exterior Walls</th>
<th>Assembly Layers</th>
<th>End of Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Concrete masonry unit wall with two layers of exterior rigid insulation and EIFS cladding</td>
<td>EIFS coating over metal sheet</td>
<td>Self-adhered modified bitumen membrane</td>
</tr>
</tbody>
</table>

Quick Numbers:

<table>
<thead>
<tr>
<th>Environmental Impact Estimator for Buildings</th>
<th>1.597 MJ/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Embodied Energy</td>
<td>93 kg CO₂eq.</td>
</tr>
<tr>
<td>Wall Thickness</td>
<td>3.8 in</td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>1,597 MJ/m²</td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>2,238 MJ/m²</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Initial</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing</td>
<td>74,820</td>
<td>4,851</td>
</tr>
<tr>
<td>Construction</td>
<td>78,228</td>
<td>46</td>
</tr>
<tr>
<td>Maintenance</td>
<td>1,256</td>
<td>50</td>
</tr>
<tr>
<td>End of Life</td>
<td>1,341</td>
<td>44</td>
</tr>
<tr>
<td>Total Energy</td>
<td>117,551</td>
<td>590</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂eq.)

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Initial</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing</td>
<td>74,820</td>
<td>4,851</td>
</tr>
<tr>
<td>Construction</td>
<td>78,228</td>
<td>46</td>
</tr>
<tr>
<td>Maintenance</td>
<td>1,256</td>
<td>50</td>
</tr>
<tr>
<td>End of Life</td>
<td>1,341</td>
<td>44</td>
</tr>
<tr>
<td>Total GWP</td>
<td>117,551</td>
<td>590</td>
</tr>
</tbody>
</table>

A summary of the life cycle assessment results shows that the total primary energy consumption and the total global warming potential (GWP) for each wall is also included. In each case, the results were calculated for an area of wall equal to 50.9 m², which represents a typical bay size for a single-storey retail building. The results are also expressed on a per m² basis in each case. The data has been calculated for two different lifespans: at the completion of initial construction and after 50 years.

As a summary, the figure below illustrates a comparison of the total embodied energy (and GWP) after 50 years for the various walls in this section. For comparison purpose, the building component used in the baseline retail building has been shaded in grey.

LCA Data for Concrete Tilt-Up Walls

This section contains a detailed description of each concrete tilt-up (CTU) exterior infill wall that was examined in this study (7 in total). The assembly layers are listed for each wall, along with a detailed description of the material quantities from the ATHENA® Environmental Impact Estimator for Buildings.

<table>
<thead>
<tr>
<th>Material</th>
<th>Counts</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>#15 Organic Felt</td>
<td>219.4</td>
<td>m²</td>
</tr>
<tr>
<td>3 mil Polyethylene</td>
<td>54.0</td>
<td>m²</td>
</tr>
<tr>
<td>Concrete Blocks</td>
<td>648.0</td>
<td>Blocks</td>
</tr>
<tr>
<td>Extruded Polystyrene</td>
<td>205.6</td>
<td>m² (25mm)</td>
</tr>
<tr>
<td>Galvanized Sheet</td>
<td>51.4</td>
<td>kg</td>
</tr>
<tr>
<td>Modified Bitumen</td>
<td>68.2</td>
<td>kg</td>
</tr>
<tr>
<td>Metal</td>
<td>2.1</td>
<td>m³</td>
</tr>
<tr>
<td>Nails</td>
<td>4.6</td>
<td>kg</td>
</tr>
<tr>
<td>Rebar, Rod, Light Section</td>
<td>1,002.8</td>
<td>kg</td>
</tr>
<tr>
<td>Solvent Based Akyd Paint</td>
<td>19.6</td>
<td>L</td>
</tr>
<tr>
<td>Baseline steel mesh</td>
<td>136.0</td>
<td>m²</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>132.5</td>
<td>L</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time 0 (at the completion of initial construction)
2. Frame = Transportation
3. Total EE for Total GWP = Total embodied energy for total embodied GWP of building component after lifespan (ie total manufacturing + total construction + total maintenance + total end-use effects)
4. Total EE for Total GWP per m² = Total EE for Total GWP of building component / area of building component that was modeled in ATHENA® EIE
5. Total Difference in Operating Energy for GWP from Baseline after Lifespan = The difference in the total lifecycle operating energy (or GWP) from the baseline retail building after lifespans due to using the building component instead of the baseline component
6. Total Difference in Operating Energy for GWP from Baseline after Lifespan per m² = Total difference in operating energy for GWP from baseline after lifespan / net wall area of baseline retail building
7. Total operating primary energy use of baseline retail building after 50 years = 50/700/0.1(1740 MJ/m²y)
8. Total operating GWP of baseline retail building after 50 years = 2.21 tonnes of CO₂eq 800y of CO₂eq/m²y
Concrete Tilt-Up Wall #1 (CTU-W1)

Building Component Description:

- **Category:** Interior Walls
- **Assembly Layers:**
 - **Material:** Modified Portland cement
 - **Thickness:** 160 mm
 - **Total Embodied Energy:** 542 MWh
 - **R-Value:** 1.2
 - **RSI-Value:** 0.2

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete 30 MPa (flyash av)</td>
<td>8.0</td>
<td>m³</td>
</tr>
<tr>
<td>Rebar, Rod, Light Sections</td>
<td>347.6</td>
<td>kg</td>
</tr>
<tr>
<td>Solvent Based Alkyd Paint</td>
<td>58.3</td>
<td>L</td>
</tr>
</tbody>
</table>

Notes:

1. **Initial** = Time 0, at the completion of Initial construction
2. **Trans.** = Transportation

Concrete Tilt-Up Wall #2 (CTU-W2)

Building Component Description:

- **Category:** Interior Walls
- **Assembly Layers:**
 - **Material:** Modified Portland cement
 - **Thickness:** 150 mm
 - **Total Embodied Energy:** 1.543 MWh

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>16mm Regular Gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>6 mm Polystyrene</td>
<td>54.0</td>
<td>m²</td>
</tr>
<tr>
<td>Batt. Fiberglass</td>
<td>283.6</td>
<td>m² (25mm)</td>
</tr>
<tr>
<td>Concrete 30 MPa (flyash av)</td>
<td>8.0</td>
<td>m³</td>
</tr>
<tr>
<td>Galvanized Studs</td>
<td>138.3</td>
<td>kg</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>55.9</td>
<td>kg</td>
</tr>
<tr>
<td>Nails</td>
<td>3.7</td>
<td>kg</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>0.6</td>
<td>kg</td>
</tr>
<tr>
<td>Rebar, Rod, Light Sections</td>
<td>347.6</td>
<td>kg</td>
</tr>
<tr>
<td>Solvent Based Alkyd Paint</td>
<td>58.3</td>
<td>L</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>66.3</td>
<td>L</td>
</tr>
</tbody>
</table>

Notes:

1. **Initial** = Time 0, at the completion of Initial construction
2. **Trans.** = Transportation
3. **Total EE (or Total GWP)** = Total embodied energy (or total embodied GWP) of building component after Lifespan (net total manufacturing + total construction + total maintenance + total end of life effect)
4. **Total Difference in Operating Energy (GWP) from Baseline after Lifespan:** The difference in the total Recycle operating energy (or GWP) from the baseline retail building after lifespans due to using this building component instead of the baseline component
5. **Total Difference in Operating Energy (GWP) from Baseline after Lifespan per m²:** Total difference in operating energy (or GWP) from baseline after Lifespan per net wall area of baseline building
6. **Total Energy Use of Baseline Retail Building after 50 years:** 50,705 kJ (1.75 MWh/yr)
7. **Total operating primary energy use of baseline retail building after 50 years:** 2,310 tonnes of CO₂ eq (680 kg of CO₂ eq/yr)

Athena® EIE Material List

- **Includes all materials after 50 years**

Notes:

1. **Initial** = Time 0, at the completion of Initial construction
2. **Trans.** = Transportation
3. **Total EE (or Total GWP)** = Total embodied energy (or total embodied GWP) of building component after Lifespan (net total manufacturing + total construction + total maintenance + total end of life effect)
4. **Total Difference in Operating Energy (GWP) from Baseline after Lifespan:** The difference in the total Recycle operating energy (or GWP) from the baseline retail building after lifespans due to using this building component instead of the baseline component
5. **Total Difference in Operating Energy (GWP) from Baseline after Lifespan per m²:** Total difference in operating energy (or GWP) from baseline after Lifespan per net wall area of baseline retail building
6. **Total operating primary energy use of baseline retail building after 50 years:** 50,705 kJ (1.75 MWh/yr)
7. **Total operating primary energy use of baseline retail building after 50 years:** 2,310 tonnes of CO₂ eq (680 kg of CO₂ eq/yr)
Concrete Tilt-Up Wall #3 (CTU-W3)

Building Component Description:

Category: Exterior Walls

Assembly Layers:

- **Wall Insulation:** 100mm closed cell polyurethane foam (R-value 3.7)
- **Concrete:** 600mm concrete (1500kg/m³)
- **Coating:** Fiber reinforced cementitious overlay

Quick Numbers:

- **Weight:** 347.6 kg
- **Energy:** 0.677 MWh
- **CO2eq:** 1.076 kg

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

- **Initial Life:** 80.890
- **50 Years:** 80.890

Embodied Energy (EE):

- **Initial Life:** 1,186.000
- **50 Years:** 1,186.000

Global Warming Potential (kg of CO2 eq):

- **Initial Life:** 59.9
- **50 Years:** 59.9

ATHENA® EIE Material List:

- **6 mm Polystyrene:** 54.0 m²
- **800 mm Polyurethane Foam:** 54.0 m²
- **Cement:** 156.9 kg
- **Rebar, Rod, Light Sections:** 347.6 kg
- **Concrete 30 MPa:** 356.9 L
- **Water Based Latex Paint:** 67.0 L

Notes:

1. Initial = Time 0 (i.e., start of initial construction)
2. Total EE (Total GWP) = Total embodied energy (total embodied GWP) of building component after Lifespan (i.e., total manufacturing + total construction + total maintenance + total end of life effects)

Concrete Tilt-Up Wall #4 (CTU-W4)

Building Component Description:

Category: Exterior Walls

Assembly Layers:

- **Wall Insulation:** 100mm closed cell polyurethane foam (R-value 3.7)
- **Concrete:** 600mm concrete (1500kg/m³)
- **Coating:** Fiber reinforced cementitious overlay

Quick Numbers:

- **Weight:** 2.6 kg
- **Energy:** 0.677 MWh
- **CO2eq:** 1.076 kg

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

- **Initial Life:** 52.188
- **50 Years:** 52.188

Embodied Energy (EE):

- **Initial Life:** 1,315
- **50 Years:** 1,315

Global Warming Potential (kg of CO2 eq):

- **Initial Life:** 59.9
- **50 Years:** 59.9

ATHENA® EIE Material List:

- **Concrete 30 MPa (typical use):** 37.7 m³
- **Extended Polyurethane:** 104.3 m³
- **Rebar, Rod, Light Sections:** 394.0 kg
- **Sediment Based Hard Surf.:** 115.5 L

Notes:

1. Initial = Time 0 (i.e., start of initial construction)
2. Total EE (Total GWP) = Total embodied energy (total embodied GWP) of building component after Lifespan (i.e., total manufacturing + total construction + total maintenance + total end of life effects)

Recommendations:

- For further energy and environmental improvements, consider the use of alternative insulations and materials that offer better performance in terms of energy efficiency and CO2 emissions.

Additional Notes:

- The embodied energy and global warming potential values are based on the materials and processes used in the construction of these walls, which include both the manufacturing and installation phases.
- The calculations take into account the entire life cycle of the components, from raw material extraction to end-of-life disposal.
- The values provided are indicative and may vary based on local conditions and specific material sources.
- Further research and optimization of materials and processes could lead to significant reductions in embodied energy and CO2 emissions.
Concrete Tilt-Up Wall #5 (CTU-W5)

Building Component Description:

- **Category:** Exterior Walls
- **Assembly Layers:**
 - Concrete back panel (280mm, 9% flyash)
 - 150mm concrete back wythe (280mm, 9% flyash)

Quick Numbers:

- **Select:**
 - 150mm concrete back wythe (280mm, 9% flyash)
 - 150mm concrete back wythe (280mm, 9% flyash - high insulation)

Main Material:

- **CTU-W5:** 150mm concrete back wythe (280mm, 9% flyash)

Wall Thickness:

- 150mm

Total Embodied Energy:

- 1.223 Metric tons

Total Embodied CO₂:

- 97 kg of CO₂ eq m²

Life-Cycle Assessment Results:

Primary Energy Consumption:

<table>
<thead>
<tr>
<th>Lifecycle Assessment Results</th>
<th>Material</th>
<th>Trans</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing</td>
<td>Total EE per m²</td>
<td>Total</td>
<td>per m²</td>
</tr>
<tr>
<td>Construction</td>
<td>Maintenance</td>
<td>End of Life</td>
<td>Total EE</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Lifecycle Assessment Results</th>
<th>Material</th>
<th>Trans</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing</td>
<td>Total GWP per m²</td>
<td>Total</td>
<td>per m²</td>
</tr>
<tr>
<td>Construction</td>
<td>Maintenance</td>
<td>End of Life</td>
<td>Total GWP</td>
</tr>
</tbody>
</table>

ATHENA® EIE Material List

- **Concrete 36 MPa (450 psi):** 15.7 m³
- **Extruded Polystyrene:** 206.8 m³ (525mm)
- **Nails:** 3.1 kg
- **Rebar, Rod, Light Sections:** 294.0 kg
- **Solvent Based Acrylic Paint:** 193.6 L

Concrete Tilt-Up Wall #6 (CTU-W6)

Building Component Description:

- **Category:** Exterior Walls
- **Assembly Layers:**
 - 150mm concrete back wythe with 60mm insulation and standard clay brick cladding

Quick Numbers:

- **Select:**
 - 150mm concrete back wythe with 60mm insulation and standard clay brick cladding

Main Material:

- **CTU-W6:**
 - 150mm concrete back wythe with 60mm insulation and standard clay brick cladding

Wall Thickness:

- 150mm

Total Embodied Energy:

- 1.185 Metric tons

Total Embodied CO₂:

- 97 kg of CO₂ eq m²

Life-Cycle Assessment Results:

Primary Energy Consumption:

<table>
<thead>
<tr>
<th>Lifecycle Assessment Results</th>
<th>Material</th>
<th>Trans</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing</td>
<td>Total EE per m²</td>
<td>Total</td>
<td>per m²</td>
</tr>
<tr>
<td>Construction</td>
<td>Maintenance</td>
<td>End of Life</td>
<td>Total EE</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Lifecycle Assessment Results</th>
<th>Material</th>
<th>Trans</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing</td>
<td>Total GWP per m²</td>
<td>Total</td>
<td>per m²</td>
</tr>
<tr>
<td>Construction</td>
<td>Maintenance</td>
<td>End of Life</td>
<td>Total GWP</td>
</tr>
</tbody>
</table>

ATHENA® EIE Material List

- **Concrete 36 MPa (450 psi):** 15.7 m³
- **Extruded Polystyrene:** 206.8 m³ (525mm)
- **Nails:** 3.1 kg
- **Rebar, Rod, Light Sections:** 294.0 kg
- **Solvent Based Acrylic Paint:** 193.6 L

Notes:

1. **Initial:** Time 0 (at the completion of Initial construction)
2. **Trans.** = Transportation
3. **Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component after Lifespan = total manufacturing + total construction + total maintenance + total end-of-life effects**
4. **Total EE (or Total GWP) per m² = Total EE (or Total GWP) of building component/area of building component that was modeled in ATHENA® EIE**
5. **Total Difference in Operating Energy (for GWP) from Baseline after Lifespan = The difference in the total Recycle operating energy (GWP) from the baseline retail building after lifespans due to using this building component instead of the baseline component**
6. **Total Difference in Operating Energy (for GWP) from Baseline after Lifespan per m² = Total difference in operating energy for GWP from baseline retail building after lifespans per m²**

* Total operating primary energy use of baselines retail building after 50 years = 50,700 GJ (1.745 MWh/yr)
* Total operating primary energy use of baselines retail building after 50 years = 50,700 GJ (1.745 MWh/yr)
* Total operating primary energy use of baselines retail building after 50 years = 50,700 GJ (1.745 MWh/yr)
Concrete Tilt-Up Wall #7 (CTU-W7)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
<th>Outside</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Concrete tilt-up wall with 60mm insulation and split-faced concrete block cladding</td>
<td>Split-faced concrete block cladding</td>
<td>Split-faced concrete block cladding</td>
</tr>
<tr>
<td>Quick Numbers:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEED</td>
<td>Standard #9.1</td>
<td>FYI #9.2</td>
<td>FYI #9.2</td>
</tr>
<tr>
<td>FYI</td>
<td>Standard #9.1</td>
<td>FYI #9.2</td>
<td>FYI #9.2</td>
</tr>
<tr>
<td>FYI 2.0</td>
<td>Standard #9.1</td>
<td>FYI #9.2</td>
<td>FYI #9.2</td>
</tr>
<tr>
<td></td>
<td>Metלב based panel</td>
<td>Insulation</td>
<td>Insulation</td>
</tr>
<tr>
<td>Wall Thickness:</td>
<td>50mm</td>
<td>60mm</td>
<td>50mm</td>
</tr>
<tr>
<td>Total Embodied Energy:</td>
<td>1.610 MWh**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Embodied GWP:</td>
<td>137.3 kg of CO2 eq**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total Energy</th>
<th>Total Embodied Energy (EE)</th>
<th>Difference in Embodied Energy (EE)</th>
<th>Embodied GWP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>74.650</td>
<td>1.647</td>
<td>102.927</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>74.650</td>
<td>1.647</td>
</tr>
<tr>
<td>50</td>
<td>74.650</td>
<td>1.647</td>
<td>102.927</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>74.650</td>
<td>1.647</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO2 eq)

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total Energy</th>
<th>Total Embodied Energy (EE)</th>
<th>Difference in Embodied Energy (EE)</th>
<th>Embodied GWP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>6,960</td>
<td>3,903</td>
<td>0</td>
<td>0</td>
<td>6,960</td>
<td>6,960</td>
<td>6,960</td>
<td>3,903</td>
</tr>
<tr>
<td>50</td>
<td>6,960</td>
<td>3,903</td>
<td>0</td>
<td>0</td>
<td>6,960</td>
<td>6,960</td>
<td>6,960</td>
<td>3,903</td>
</tr>
</tbody>
</table>

*Embodied Energy (EE) and Global Warming Potential (GWP) numbers are based on an area of wall = 50.9 m². Net wall area of baseline retail building (gross wall area - openings) = 50.9 m².

ATHENA® EIE Material List

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 mil Polyethylene</td>
<td>65.0</td>
<td>m²</td>
</tr>
<tr>
<td>Cold Rolled Steel</td>
<td>15.9</td>
<td>kg</td>
</tr>
<tr>
<td>Concrete 30 MPa (flyash ag)</td>
<td>8.0</td>
<td>m³</td>
</tr>
<tr>
<td>Extruded Polyurethane</td>
<td>104.3</td>
<td>m³ (10mm)</td>
</tr>
<tr>
<td>Modified Bitumen Membrane</td>
<td>401.5</td>
<td>kg</td>
</tr>
<tr>
<td>Mortar</td>
<td>4.3</td>
<td>m³</td>
</tr>
<tr>
<td>Nails</td>
<td>3.1</td>
<td>kg</td>
</tr>
<tr>
<td>Rebar, Rod, Light Sections</td>
<td>347.6</td>
<td>kg</td>
</tr>
<tr>
<td>Sprayed Based Acrylic Paint</td>
<td>77.9</td>
<td>L</td>
</tr>
<tr>
<td>Split-faced Concrete Block</td>
<td>1,238.2</td>
<td>Blocks</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = 1st year, at the completion of initial construction
2. Trans = Transportation
3. Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component after lifespan, in total manufacturing + total construction + total maintenance + total end-of-life effects
4. Total EE (or Total GWP) per m² = Total EE (or Total GWP) of building component / area of building component that was modeled in ATHENA® EIE
5. Total Difference in Embodied Energy (GWP) from Baseline after Lifespan = The difference in the total lifecycle operating energy (or GWP) from the baseline retail building after lifespans, due to using this building component instead of the baseline component
6. Total Difference in Embodied Energy (GWP) from Baseline after Lifespan per m² = Total Difference in operating energy (or GWP) from baseline after lifespan per m²

LCA Data for Wood Structural Insulated Panel Walls

This section contains a detailed description of each wood structural insulated panel (WSIP) exterior infill wall that was examined in this study (12 in total). The assembly layers are listed for each wall, along with a detailed description of the material quantities from the ATHENA® Environmental Impact Estimator for Buildings.

A breakdown of the total primary energy consumption and the total global warming potential (GWP) for each wall is also included. In each case, the results were calculated for an area of wall equal to 50.9 m², which represents a typical bay size for a single-storey retail building. The results are also expressed on a per m² basis in each case. The data has been calculated for two different lifespans: at the completion of initial construction and after 50 years.

As a summary, the figure below illustrates a comparison of the total embodied energy (and GWP) after 50 years for the various WSIP walls in this section and the metal structural insulated panel (MSIP) exterior infill walls from the next section. For comparison purpose, the building component used in the baseline retail building has been shaded in grey.
Wood Structural Insulated Panel Wall #1 (WSIP-W1)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>10mm (3/8") SIPS panel with standard clay brick cladding</td>
<td>Interior concrete floors & walls, structural SIPS panel</td>
</tr>
<tr>
<td>Quick Numbers:</td>
<td>102.3 m²</td>
<td>102.3 m²</td>
</tr>
<tr>
<td>Material List</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ontario (Standard) Brick</td>
<td>102.3 m²</td>
<td></td>
</tr>
<tr>
<td>Oriented Strand Board</td>
<td>145.8 m² (9mm)</td>
<td></td>
</tr>
<tr>
<td>Paper Tape</td>
<td>0.6 kg</td>
<td></td>
</tr>
<tr>
<td>Screws & Nuts & Bolts</td>
<td>2.6 kg</td>
<td></td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>66.3 L</td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Primary Energy Consumption (MJ)</th>
<th>Global Warming Potential (kg of CO₂ eq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifespan (Years)</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Initial</td>
<td>104.4</td>
</tr>
<tr>
<td>50</td>
<td>104.4</td>
</tr>
</tbody>
</table>

Notes:

- **Embodied energy (and GWP) numbers are based on an area of wall = 50.3 m²** (Length x Height = 7.6 m x 6.7 m = 50.3 m²).
- **ATHENA ® EIE Material List:** (all materials after 50 years)

Wood Structural Insulated Panel Wall #2 (WSIP-W2)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>10mm (3/8") SIPS panel with split board vapor barrier</td>
<td>Interior concrete floors & walls, structural SIPS panel</td>
</tr>
<tr>
<td>Quick Numbers:</td>
<td>102.3 m²</td>
<td>102.3 m²</td>
</tr>
<tr>
<td>Material List</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ontario (Standard) Brick</td>
<td>102.3 m²</td>
<td></td>
</tr>
<tr>
<td>Oriented Strand Board</td>
<td>145.8 m² (9mm)</td>
<td></td>
</tr>
<tr>
<td>Paper Tape</td>
<td>0.6 kg</td>
<td></td>
</tr>
<tr>
<td>Screws & Nuts & Bolts</td>
<td>2.6 kg</td>
<td></td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>66.3 L</td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Primary Energy Consumption (MJ)</th>
<th>Global Warming Potential (kg of CO₂ eq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifespan (Years)</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Initial</td>
<td>104.4</td>
</tr>
<tr>
<td>50</td>
<td>104.4</td>
</tr>
</tbody>
</table>

Notes:

- **Embodied energy (and GWP) numbers are based on an area of wall = 50.3 m²** (Length x Height = 7.6 m x 6.7 m = 50.3 m²).
- **ATHENA ® EIE Material List:** (all materials after 50 years)

Notes:

- **Total EE per Total GWP = Total embodied energy/ Total GWP** of building component after 50 years; total manufacturing + total construction + total maintenance + total embodied effects.
- **Total EE per Total GWP per m² = Total EE per Total GWP** of building component/area of building component that was modeled in ATHENA. EIE.
Wood Structural Insulated Panel Wall #3 (WSIP-W3)

Category: Interior Walls
Assembly Layers:
- Outside
- 145.8 m² oriented strand board (9mm)
- 65.0 m² polyethylene
- 20.6 m² galvanized sheet
- Joint Compound
- Stucco
- Decorative Paint

Brief Description: 145.8m² (530ft²) wood SIP with concrete precast paneling
Quick Numbers:
- ATHENA Standard #1
- Material, Trans, Total
- 56.0 m²
- 10.2 m²
- 2.3 m²
- 58.9 kg
- 145.8 m²
- 0.08 kg
- 66.3 L

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EEE</th>
<th>Total EEC</th>
<th>Total GWP</th>
<th>Total GWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>59.367</td>
<td>1.090</td>
<td>60.457</td>
<td>165</td>
<td>1.142</td>
<td>1.062</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>59.367</td>
<td>1.090</td>
<td>60.457</td>
<td>165</td>
<td>1.142</td>
<td>1.062</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:
- Initial = Time 0 (at the completion of initial construction)
- Trans = Transportation
- EEE = Total embodied energy (J)
- EEC = Total embodied energy (MJ)
- GWP = Global Warming Potential (kg of CO₂ eq.)
- GWC = Global Warming Credits (kg of CO₂ eq.)

Mathematical Formulae:
- EEE = EEC + GWP
- GWP = (L) x (E) x (t) x (G)

ATHENA ® EIE Material List:

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>145.8 m² Oriented Strand Board</td>
<td>1</td>
<td>m²</td>
</tr>
<tr>
<td>10.2 m² Stucco</td>
<td>1</td>
<td>m²</td>
</tr>
<tr>
<td>2.3 m² Joint Compound</td>
<td>1</td>
<td>m²</td>
</tr>
<tr>
<td>58.9 kg Decorative Paint</td>
<td>1</td>
<td>kg</td>
</tr>
<tr>
<td>0.08 kg Paper Tape</td>
<td>1</td>
<td>kg</td>
</tr>
<tr>
<td>66.3 L Water Based Paint</td>
<td>1</td>
<td>L</td>
</tr>
</tbody>
</table>

Wood Structural Insulated Panel Wall #4 (WSIP-W4)

Category: Interior Walls
Assembly Layers:
- Outside
- 144.8 m² oriented strand board (5½") wood truss wall siding
- 64.8 m² polyethylene
- 10.5 m² galvanized sheet
- Joint Compound
- Stucco
- Decorative Paint

Brief Description: 144.8m² (475ft²) wood truss wall siding
Quick Numbers:
- ATHENA Standard #1
- Material, Trans, Total
- 56.0 m²
- 10.2 m²
- 2.3 m²
- 58.9 kg
- 144.8 m²
- 0.06 kg
- 132.5 L

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EEE</th>
<th>Total EEC</th>
<th>Total GWP</th>
<th>Total GWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>51.452</td>
<td>0.503</td>
<td>51.955</td>
<td>160</td>
<td>352</td>
<td>712</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>51.452</td>
<td>0.503</td>
<td>51.955</td>
<td>160</td>
<td>352</td>
<td>712</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:
- Initial = Time 17 (at the completion of initial construction)
- Trans = Transportation
- EEE = Total embodied energy (J)
- EEC = Total embodied energy (MJ)
- GWP = Global Warming Potential (kg of CO₂ eq.)
- GWC = Global Warming Credits (kg of CO₂ eq.)

ATHENA ® EIE Material List:

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>144.8 m² Oriented Strand Board</td>
<td>1</td>
<td>m²</td>
</tr>
<tr>
<td>10.2 m² Stucco</td>
<td>1</td>
<td>m²</td>
</tr>
<tr>
<td>2.3 m² Joint Compound</td>
<td>1</td>
<td>m²</td>
</tr>
<tr>
<td>58.9 kg Decorative Paint</td>
<td>1</td>
<td>kg</td>
</tr>
<tr>
<td>0.06 kg Paper Tape</td>
<td>1</td>
<td>kg</td>
</tr>
<tr>
<td>132.5 L Water Based Paint</td>
<td>1</td>
<td>L</td>
</tr>
</tbody>
</table>
Wood Structural Insulated Panel Wall #5 (WSIP-W5)

Building Component Description:
- **Material List**
 - Oriented Strand Board 145.8 m² (9mm)
 - Paper Tape 0.6 kg
 - Screws, Nuts & Bolts 3.9 kg
 - Water Based Latex Paint 132.5 L

Life-Cycle Assessment Results:
- **Primary Energy Consumption (MJ)**
- **Global Warming Potential (kg of CO₂ eq.)**

Wood Structural Insulated Panel Wall #6 (WSIP-W6)

Building Component Description:
- **Material List**
 - Oriented Strand Board 145.8 m² (9mm)
 - Paper Tape 0.6 kg
 - Screws, Nuts & Bolts 3.9 kg
 - Water Based Latex Paint 132.5 L

Life-Cycle Assessment Results:
- **Primary Energy Consumption (MJ)**
- **Global Warming Potential (kg of CO₂ eq.)**

Notes:
- **Athena® EIE Material List**
 - Includes all materials after 50 years

Building Component Description

Category: Interior Walls

Assembly Layers
- Outside
- Building Wrap
- BoardWrap 450
- Oriented Strand Board

Quick Numbers:
- **GWP Standard** - 0
- **GWP Equivalent** - 0
- **Wall Thickness** - 13 cm (5 in)
- **Total Embodied Energy** - 145.8 MJ
- **Total Embodied GWP** - 0 kg CO₂ eq.

Life-Cycle Assessment Results:
- **Primary Energy Consumption (MJ)**
- **Global Warming Potential (kg of CO₂ eq.)**

Athena® EIE Material List

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oriented Strand Board</td>
<td>145.8 m²</td>
<td>(9mm)</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>0.6 kg</td>
<td></td>
</tr>
<tr>
<td>Screws, Nuts & Bolts</td>
<td>3.9 kg</td>
<td></td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>132.5 L</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **Initial Time** = Time of façade completion
- **Transport** = Transportation
- **GWP** = Global Warming Potential

Building Component Description

Category: Interior Walls

Assembly Layers
- Outside
- Building Wrap
- BoardWrap 450
- Oriented Strand Board

Quick Numbers:
- **GWP Standard** - 0
- **GWP Equivalent** - 0
- **Wall Thickness** - 13 cm (5 in)
- **Total Embodied Energy** - 145.8 MJ
- **Total Embodied GWP** - 0 kg CO₂ eq.

Life-Cycle Assessment Results:
- **Primary Energy Consumption (MJ)**
- **Global Warming Potential (kg of CO₂ eq.)**

Athena® EIE Material List

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oriented Strand Board</td>
<td>145.8 m²</td>
<td>(9mm)</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>0.6 kg</td>
<td></td>
</tr>
<tr>
<td>Screws, Nuts & Bolts</td>
<td>3.9 kg</td>
<td></td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>132.5 L</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **Initial Time** = Time of façade completion
- **Transport** = Transportation
- **GWP** = Global Warming Potential
Wood Structural Insulated Panel Wall #7 (WSIP-W7)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Material</th>
<th>Quantity (m²)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interior Walls</td>
<td>Ontario standard clay brick building</td>
<td>895 m²/yr</td>
<td></td>
</tr>
<tr>
<td>Assembly Layers</td>
<td>85mm Polyiso & 111mm Aerogel</td>
<td>499 m²</td>
<td></td>
</tr>
<tr>
<td>Quick Numbers:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Athena Standard</td>
<td>9.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wall Thicknesses:</td>
<td>150mm aerogel polystyrene insulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>1.47 GJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Embodied CO₂eq</td>
<td>81 kg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Embodied Energy (EE)</th>
<th>Global Warming Potential (GWP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Manufacturing</td>
<td>Construction</td>
</tr>
<tr>
<td>Initial</td>
<td>70,269.0</td>
<td>79,785.0</td>
</tr>
<tr>
<td>50</td>
<td>35,246.2</td>
<td>39,871.4</td>
</tr>
</tbody>
</table>

ATHENA ® EIE Material List:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>10mm Regular Gypsum Board</td>
<td>56.0 m³</td>
<td></td>
</tr>
<tr>
<td>6mm Polystyrene</td>
<td>108.0 m³</td>
<td></td>
</tr>
<tr>
<td>Cold Rolled Sheet</td>
<td>30.5 kg</td>
<td></td>
</tr>
<tr>
<td>Exuded Polystyrene</td>
<td>310.0 m³ (25mm)</td>
<td></td>
</tr>
<tr>
<td>Galvanized Sheet</td>
<td>50.0 m³</td>
<td></td>
</tr>
<tr>
<td>Cast Iron Gutter</td>
<td>35.9 kg</td>
<td></td>
</tr>
<tr>
<td>After</td>
<td>1.5 m³</td>
<td></td>
</tr>
<tr>
<td>Nails</td>
<td>3.7 kg</td>
<td></td>
</tr>
<tr>
<td>Ontario Standard Block</td>
<td>53.5 m³</td>
<td></td>
</tr>
<tr>
<td>Laminated Strand Board</td>
<td>145.8 m³ (25mm)</td>
<td></td>
</tr>
<tr>
<td>Paper Tape</td>
<td>0.8 kg</td>
<td></td>
</tr>
<tr>
<td>Screws Nuts & Bolts</td>
<td>2.6 kg</td>
<td></td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>66.3 L</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Athena = Time (T) at the completion of initial construction
2. Trans. = Transportation
3. **Total EE per Total GWP = Total embodied energy (for total embodied GWP) of building component after lifespan, total manufacturing + total construction + total maintenance + total end of life effects.
4. **Total EE for Total GWP per m² = Total EE (for Total GWP) of building component/area of building component that was modeled in ATHENA EIE.
5. **Total Difference in Operating Energy per GWP from Baseline after Lifespan = The difference in the total lifecycle operating energy (for GWP) from the baseline retrofit building after Lifespan due to using this building component instead of the baseline component.
6. **Total Difference in Operating Energy for GWP from Baseline after Lifespan per m² = Total difference in operating energy per GWP from baseline after Lifespan/retrofit wall area of baseline retrofit building.**

Wood Structural Insulated Panel Wall #8 (WSIP-W8)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Material</th>
<th>Quantity (m²)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interior Walls</td>
<td>Self-fit standard concrete brick building</td>
<td>895 m²/yr</td>
<td></td>
</tr>
<tr>
<td>Assembly Layers</td>
<td>85mm Polyiso & 95mm Aerogel</td>
<td>499 m²</td>
<td></td>
</tr>
<tr>
<td>Quick Numbers:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Athena Standard</td>
<td>9.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wall Thicknesses:</td>
<td>150mm aerogel polystyrene insulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>1.84 GJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Embodied CO₂eq</td>
<td>128 kg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Embodied Energy (EE)</th>
<th>Global Warming Potential (GWP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Manufacturing</td>
<td>Construction</td>
</tr>
<tr>
<td>Initial</td>
<td>95,351.2</td>
<td>106,405.8</td>
</tr>
<tr>
<td>50</td>
<td>47,752.7</td>
<td>53,250.0</td>
</tr>
</tbody>
</table>

ATHENA ® EIE Material List:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>10mm Regular Gypsum Board</td>
<td>56.0 m³</td>
<td></td>
</tr>
<tr>
<td>6mm Polystyrene</td>
<td>108.0 m³</td>
<td></td>
</tr>
<tr>
<td>Cold Rolled Sheet</td>
<td>30.5 kg</td>
<td></td>
</tr>
<tr>
<td>Exuded Polystyrene</td>
<td>310.0 m³ (25mm)</td>
<td></td>
</tr>
<tr>
<td>Galvanized Sheet</td>
<td>50.0 m³</td>
<td></td>
</tr>
<tr>
<td>Cast Iron Gutter</td>
<td>35.9 kg</td>
<td></td>
</tr>
<tr>
<td>After</td>
<td>1.5 m³</td>
<td></td>
</tr>
<tr>
<td>Nails</td>
<td>3.7 kg</td>
<td></td>
</tr>
<tr>
<td>Ontario Standard Block</td>
<td>53.5 m³</td>
<td></td>
</tr>
<tr>
<td>Laminated Strand Board</td>
<td>145.8 m³ (25mm)</td>
<td></td>
</tr>
<tr>
<td>Paper Tape</td>
<td>0.8 kg</td>
<td></td>
</tr>
<tr>
<td>Screws Nuts & Bolts</td>
<td>2.6 kg</td>
<td></td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>66.3 L</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Athena = Time (T) at the completion of initial construction
2. Trans. = Transportation
3. **Total EE per Total GWP = Total embodied energy (for total embodied GWP) of building component after lifespan, total manufacturing + total construction + total maintenance + total end of life effects.
4. **Total EE per Total GWP per m² = Total EE (for Total GWP) of building component/area of building component that was modeled in ATHENA EIE.
5. **Total Difference in Operating Energy per GWP from Baseline after Lifespan = The difference in the total lifecycle operating energy (for GWP) from the baseline retrofit building after Lifespan due to using this building component instead of the baseline component.
6. **Total Difference in Operating Energy for GWP from Baseline after Lifespan per m² = Total difference in operating energy per GWP from baseline after Lifespan/retrofit wall area of baseline retrofit building.**

...
Wood Structural Insulated Panel Wall #9 (WSIP-W9)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Outside</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Outside</td>
</tr>
<tr>
<td>Brief Description</td>
<td>145.8 m² (78 in²) wood SIP panel with concrete pre-cast cladding</td>
<td>165 mm concrete post sheathing</td>
</tr>
<tr>
<td>Quick Numbers:</td>
<td></td>
<td>165 mm thick SIP panels</td>
</tr>
<tr>
<td>Athena Standard 91</td>
<td>0000</td>
<td>NH</td>
</tr>
<tr>
<td>Thickness (mm)</td>
<td>145.8</td>
<td>85</td>
</tr>
<tr>
<td>Wall Thickness</td>
<td>366</td>
<td>36 mm (1.46 in)</td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>1,778</td>
<td>MJ/m²</td>
</tr>
<tr>
<td>Total Embodied GWP</td>
<td>81</td>
<td>kg CO₂-eq/m²</td>
</tr>
<tr>
<td>Inside</td>
<td></td>
<td>Inside</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LEGOUS</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Lifespan</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total Energy Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>99.9,943</td>
<td>160,154</td>
<td>1,914</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>99.9,943</td>
<td>160,154</td>
<td>1,914</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂-eq)

<table>
<thead>
<tr>
<th>Lifespan</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total Global Warming Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

ATHENA © EIE Material List

(Includes all materials after 50 years)

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>16mm Regular Gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>6 mm Polystyrene</td>
<td>108.0</td>
<td>m²</td>
</tr>
<tr>
<td>Concrete 30 MPa (fly ash)</td>
<td>0.7</td>
<td>m³</td>
</tr>
<tr>
<td>Extruded Polystyrene</td>
<td>313.0</td>
<td>m³ (25mm)</td>
</tr>
<tr>
<td>Insulated Sheet</td>
<td>30.0</td>
<td>m²</td>
</tr>
<tr>
<td>Glued Studs</td>
<td>287.5</td>
<td>kg</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>58.9</td>
<td>kg</td>
</tr>
<tr>
<td>Nails</td>
<td>0.2</td>
<td>kg</td>
</tr>
<tr>
<td>Oriented Strand Board</td>
<td>145.8</td>
<td>m² (4m²)</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>0.8</td>
<td>kg</td>
</tr>
<tr>
<td>Rebar, Rod, Light Sections</td>
<td>404.0</td>
<td>kg</td>
</tr>
<tr>
<td>Screws Nuts & Bolts</td>
<td>2.4</td>
<td>kg</td>
</tr>
<tr>
<td>Water Based Latex, Paint</td>
<td>66.3</td>
<td>L</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time 10a, at the completion of initial construction
2. Trans = Transportation
3. Total EE for GWP = Total embodied energy for total embodied GWP of building component after lifespan (including all manufacturing + construction + maintenance + total end-of-life effects)
4. Total EE for GWP per m² = Total EE for GWP of building component/area of building component that was modeled in ATHENA © EIE
5. Total Difference in Operating Energy (kWh) from Baseline after Lifespan = The difference in the total lifecycle operating energy (kWh) from the baseline Retrofit after lifespan due to using this building component instead of the baseline component
6. Total Difference in GWP from Baseline after Lifespan per m² = Total difference in operating energy (kWh) from baseline Retrofit after lifespan due to using this building component instead of the baseline component

Wood Structural Insulated Panel Wall #10 (WSIP-W10)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Outside</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Outside</td>
</tr>
<tr>
<td>Brief Description</td>
<td>2.13 tonnes CO₂-eq/yr</td>
<td>1.2 tonnes CO₂-eq/yr</td>
</tr>
<tr>
<td>Quick Numbers:</td>
<td></td>
<td>150 mm thick SIP panels</td>
</tr>
<tr>
<td>Athena Standard 91</td>
<td>0000</td>
<td>NH</td>
</tr>
<tr>
<td>Thickness (mm)</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Wall Thickness</td>
<td>254</td>
<td>254</td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>3,186</td>
<td>MJ/m²</td>
</tr>
<tr>
<td>Total Embodied GWP</td>
<td>61</td>
<td>kg CO₂-eq/m²</td>
</tr>
<tr>
<td>Inside</td>
<td></td>
<td>Inside</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LEGOUS</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Lifespan</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total Energy Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>99.9,943</td>
<td>160,154</td>
<td>1,914</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>99.9,943</td>
<td>160,154</td>
<td>1,914</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂-eq)

<table>
<thead>
<tr>
<th>Lifespan</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total Global Warming Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

ATHENA © EIE Material List

(Includes all materials after 50 years)

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>16mm Regular Gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>6 mm Polystyrene</td>
<td>108.0</td>
<td>m²</td>
</tr>
<tr>
<td>Concrete 30 MPa (fly ash)</td>
<td>0.7</td>
<td>m³</td>
</tr>
<tr>
<td>Extruded Polystyrene</td>
<td>313.0</td>
<td>m³ (25mm)</td>
</tr>
<tr>
<td>Insulated Sheet</td>
<td>30.0</td>
<td>m²</td>
</tr>
<tr>
<td>Glued Studs</td>
<td>287.5</td>
<td>kg</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>58.9</td>
<td>kg</td>
</tr>
<tr>
<td>Nails</td>
<td>0.2</td>
<td>kg</td>
</tr>
<tr>
<td>Oriented Strand Board</td>
<td>145.8</td>
<td>m² (4m²)</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>0.8</td>
<td>kg</td>
</tr>
<tr>
<td>Rebar, Rod, Light Sections</td>
<td>404.0</td>
<td>kg</td>
</tr>
<tr>
<td>Screws Nuts & Bolts</td>
<td>2.4</td>
<td>kg</td>
</tr>
<tr>
<td>Water Based Latex, Paint</td>
<td>66.3</td>
<td>L</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time 10a, at the completion of initial construction
2. Trans = Transportation
3. Total EE for GWP = Total embodied energy for total embodied GWP of building component after lifespan (including all manufacturing + construction + total maintenance + total end-of-life effects)
4. Total EE for GWP per m² = Total EE for GWP of building component/area of building component that was modeled in ATHENA © EIE
5. Total Difference in Operating Energy (kWh) from Baseline after Lifespan = The difference in the total lifecycle operating energy (kWh) from the baseline Retrofit after lifespan due to using this building component instead of the baseline component
6. Total Difference in GWP from Baseline after Lifespan per m² = Total difference in operating energy (kWh) from baseline Retrofit after lifespan due to using this building component instead of the baseline component

Note: The values for embodied energy and GWP numbers are based on an area of wall = Net wall area of baseline retrofit building (gross wall area - openings) = 505 m². (Length x Height = 7.6m x 6.7m = 50.9 m²)
Wood Structural Insulated Panel Wall #11 (WSIP-W11)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
</tr>
</thead>
</table>
| Brief Description | 6mm (7/32") oriented strand board, 6mm glues/wraps, 6mm redwood. | Outside:
- 6mm laminated external steel framing
- 6mm glues/wraps, 6mm redwood |

Quick Numbers:

<table>
<thead>
<tr>
<th>Material</th>
<th>Unit Quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shielded Solid Board</td>
<td>125.0 m² (9mm)</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>3.5 L</td>
</tr>
<tr>
<td>Screws</td>
<td>2.0 kg</td>
</tr>
<tr>
<td>Nuts & Bolts</td>
<td>3.9 kg</td>
</tr>
<tr>
<td>6mil poly (AB, VB)</td>
<td>6.0 kg</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Life-cycle (Years)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Embodied Energy (EIE)</th>
<th>End of Life</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
<th>1st Year EE per m²</th>
<th>Total GWP per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 140.027</td>
<td>140.027</td>
<td>140.027</td>
<td>140.027</td>
<td>140.027</td>
<td>140.027</td>
<td>140.027</td>
<td>140.027</td>
<td>140.027</td>
</tr>
<tr>
<td>50</td>
<td>140.027</td>
<td>140.027</td>
<td>140.027</td>
<td>140.027</td>
<td>140.027</td>
<td>140.027</td>
<td>140.027</td>
<td>140.027</td>
</tr>
</tbody>
</table>

Wood Structural Insulated Panel Wall #12 (WSIP-W12)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
</tr>
</thead>
</table>
| Brief Description | 6mm (7/32") wood SIP wall with exterior wall insulation | Outside:
- 6mm laminated plywood/laminate/fibre cement
- Insulation heat transfer @ 600mm ic @50°C (ic weight @ 0.35 kg/m²) |

Quick Numbers:

<table>
<thead>
<tr>
<th>Material</th>
<th>Unit Quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shielded Solid Board</td>
<td>125.0 m² (9mm)</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>3.5 L</td>
</tr>
<tr>
<td>Screws</td>
<td>2.0 kg</td>
</tr>
<tr>
<td>Nuts & Bolts</td>
<td>3.9 kg</td>
</tr>
<tr>
<td>6mil poly (AB, VB)</td>
<td>6.0 kg</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Life-cycle (Years)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Embodied Energy (EIE)</th>
<th>End of Life</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
<th>1st Year EE per m²</th>
<th>Total GWP per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 140.027</td>
<td>140.027</td>
<td>140.027</td>
<td>140.027</td>
<td>140.027</td>
<td>140.027</td>
<td>140.027</td>
<td>140.027</td>
<td>140.027</td>
</tr>
<tr>
<td>50</td>
<td>140.027</td>
<td>140.027</td>
<td>140.027</td>
<td>140.027</td>
<td>140.027</td>
<td>140.027</td>
<td>140.027</td>
<td>140.027</td>
</tr>
</tbody>
</table>
LCA Data for Metal Structural Insulated Panel Walls

This section contains a detailed description of each metal structural insulated panel (MSIP) exterior infill wall that was examined in this study (3 in total). The assembly layers are listed for each wall, along with a detailed description of the material quantities from the ATHENA® Environmental Impact Estimator for Buildings.

A breakdown of the total primary energy consumption and the total global warming potential (GWP) for each wall is also included. In each case, the results were calculated for an area of wall equal to 50.9 m², which represents a typical bay size for a single-storey retail building. The results are also expressed on a per m² basis in each case. The data has been calculated for two different lifespans: at the completion of initial construction and after 50 years.

As a summary, the figure below illustrates a comparison of the total embodied energy (and GWP) after 50 years for the various walls in this section as well as the WSIP walls from the previous section. For comparison purpose, the building component used in the baseline retail building has been shaded in grey.

Metal Structural Insulated Panel Wall #1 (MSIP-W1)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>508mm (20") metal SIP wall with standard backer cladding</td>
<td>Outside</td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>59,330 70 59,401 160 53 53 60,094 1,180 -2,000,000 -3,442</td>
<td></td>
</tr>
<tr>
<td>Wall Thickness</td>
<td>185 mm (7.2") Min.</td>
<td>Inside</td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>1,180 MJ/m²</td>
<td></td>
</tr>
<tr>
<td>Total Embodied GWP</td>
<td>11 kg CO₂eq/m²</td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Life-Cycle (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE</th>
<th>Difference in Operating EE from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>103,930</td>
<td>70</td>
<td>59,401</td>
<td>160</td>
<td>53,515</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>59,330</td>
<td>70</td>
<td>59,401</td>
<td>160</td>
<td>53,515</td>
<td>59,718</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂eq):

<table>
<thead>
<tr>
<th>Life-Cycle (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GWP</th>
<th>Difference in Operating GWP from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>3,601</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>3,601</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>3,618</td>
</tr>
</tbody>
</table>

Embodied energy (and GWP) numbers are based on an area of wall = 50.9 m² (Length x Height = 7.2m x 7.2m = 50.9 m²)

Net wall area of baseline retail building (gross wall area openings) = 581.0 m²

Notes:

1. Initial = Time 17(0) from the completion of Initial construction
2. Trans = Transportation
3. Total EE (for Total GWP = Total embodied energy (or total embodied GWP of building component)/area of building component = total construction + total maintenance + total end-of-life effects)
4. Total Difference in Operating Energy (for GWP) from Baseline after Lifespan The difference in the total lifecycle operating energy (for GWP) from the baseline retail building after lifespan due to using this building component instead of the baseline component
5. Total Difference in Embodied Energy (or GWP) from Baseline after Lifespan per m² = Total difference in energy operating for GWP from baseline (after lifespan)/net wall area of baseline retail building
6. Total operating primary energy use of baseline retail building after 50 years = 25,700 GJ (7.46 MMBtu/yr)
7. Total operating GWP ofbaseline retail building after 50 years = 2,310 tonnes of CO₂eq (860g of CO₂eq/m²)

Athena® EIE Material List

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foam Polyisocyanurate</td>
<td>31.8</td>
<td>m² (20mm)</td>
</tr>
<tr>
<td>Galvanized Sheet</td>
<td>529.2</td>
<td>kg</td>
</tr>
<tr>
<td>Galvanized Studs</td>
<td>287.9</td>
<td>kg</td>
</tr>
<tr>
<td>Nails</td>
<td>3.1</td>
<td>kg</td>
</tr>
<tr>
<td>Screws Nuts & Bolts</td>
<td>2.6</td>
<td>kg</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>13.5</td>
<td>L</td>
</tr>
</tbody>
</table>

(Without all materials after 50 years)
Metal Structural Insulated Panel Wall #2 (MSIP-W2)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>1-1/2 in. (41 mm) metal SIP wall with standard clay brick cladding</td>
<td>Glazed steel, 0.6mm galvanized commercial steel cladding (0.8 kg/m²)</td>
</tr>
<tr>
<td>Quick Numbers:</td>
<td></td>
<td>0.18mm galvanized commercial steel cladding (0.8 kg/m²)</td>
</tr>
<tr>
<td>Athena Standard R1</td>
<td>30% OK/NA</td>
<td>30% OK/NA</td>
</tr>
<tr>
<td>Athena R2.6</td>
<td>30% OK/NA</td>
<td>30% OK/NA</td>
</tr>
<tr>
<td>Athena R3.0</td>
<td>30% OK/NA</td>
<td>30% OK/NA</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Embedded Energy (EE)</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
<th>Total EE</th>
<th>EE/GWP</th>
<th>EE/GWP per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>53.205 67 130.126 235</td>
<td>0 0 0 0 0 0 0 0</td>
<td>53.205</td>
<td>53.205</td>
<td>53.205</td>
</tr>
<tr>
<td>50</td>
<td>53.205 67 130.126 235</td>
<td>0 0 0 0 0 0 0 0</td>
<td>53.205</td>
<td>53.205</td>
<td>53.205</td>
</tr>
</tbody>
</table>

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Athena® EIE Material List</td>
<td></td>
</tr>
<tr>
<td>Foam Polystyrene</td>
<td>205.2</td>
<td>205.2</td>
<td>25.5</td>
<td>25.5</td>
<td>12.9</td>
<td>12.9</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glasswool</td>
<td>525.2</td>
<td>525.2</td>
<td>65.6</td>
<td>65.6</td>
<td>39.4</td>
<td>39.4</td>
<td>23.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>3.5</td>
<td>3.5</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time of use at the completion of initial construction
2. Trans = Transportation
3. Total EE of total GWP = Total embodied energy of total embodied GWP of building component after lifespan (Total manufacturing + Total construction + Total maintenance + Total end-of-life effects)
4. EIE EE of total GWP per m² = EIE embodied energy of total embodied GWP of building component (area of building component that was modelled in ATHENA® EIE)
5. Difference in Operating Energy (GWP) from Baseline after Lifespan = This difference in the total Recycle operating energy (GWP) from the baseline retail building after lifespan due to using this building component instead of the baseline component.
6. Difference in Operating Energy (GWP) from Baseline after Lifespan per m² = Difference in operating energy (GWP) from baseline after lifespan per net wall area of baseline retail building.
7. Total operating primary energy use of baseline retail building after 50 years = 50.700GJ (1.745 MWh/yr)
8. Total operating GWP of baseline retail building after 50 years = 2.310 tonnes of CO2 eq (860g of CO2eq/yr)

Metal Structural Insulated Panel Wall #3 (MSIP-W3)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>1-1/2 in. (41 mm) metal SIP wall with standard clay brick cladding</td>
<td>Glazed steel, 0.6mm galvanized commercial steel cladding (0.8 kg/m²)</td>
</tr>
<tr>
<td>Quick Numbers:</td>
<td></td>
<td>0.6mm galvanized commercial steel cladding (0.8 kg/m²)</td>
</tr>
<tr>
<td>Athena Standard R1</td>
<td>30% OK/NA</td>
<td>30% OK/NA</td>
</tr>
<tr>
<td>Athena R2.6</td>
<td>30% OK/NA</td>
<td>30% OK/NA</td>
</tr>
<tr>
<td>Athena R3.0</td>
<td>30% OK/NA</td>
<td>30% OK/NA</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Embedded Energy (EE)</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
<th>Total EE</th>
<th>EE/GWP</th>
<th>EE/GWP per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>55.147 55 192.316 274</td>
<td>0 0 0 0 0 0 0 0</td>
<td>55.147</td>
<td>55.147</td>
<td>55.147</td>
</tr>
<tr>
<td>50</td>
<td>55.147 55 192.316 274</td>
<td>0 0 0 0 0 0 0 0</td>
<td>55.147</td>
<td>55.147</td>
<td>55.147</td>
</tr>
</tbody>
</table>

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Athena® EIE Material List</td>
<td></td>
</tr>
<tr>
<td>Foam Polystyrene</td>
<td>156.9</td>
<td>156.9</td>
<td>19.7</td>
<td>19.7</td>
<td>11.9</td>
<td>11.9</td>
<td>7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glasswool</td>
<td>526.2</td>
<td>526.2</td>
<td>66.4</td>
<td>66.4</td>
<td>40.5</td>
<td>40.5</td>
<td>24.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>3.5</td>
<td>3.5</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time of use at the completion of initial construction
2. Trans = Transportation
3. Total EE of total GWP = Total embodied energy of total embodied GWP of building component after lifespan (Total manufacturing + Total construction + Total maintenance + Total end-of-life effects)
4. EIE EE of total GWP per m² = EIE embodied energy of total embodied GWP of building component (area of building component that was modelled in ATHENA® EIE)
5. Difference in Operating Energy (GWP) from Baseline after Lifespan = This difference in the total Recycle operating energy (GWP) from the baseline retail building after lifespan due to using this building component instead of the baseline component.
6. Difference in Operating Energy (GWP) from Baseline after Lifespan per m² = Difference in operating energy (GWP) from baseline after lifespan per net wall area of baseline retail building.
7. Total operating primary energy use of baseline retail building after 50 years = 50.700GJ (1.745 MWh/yr)
8. Total operating GWP of baseline retail building after 50 years = 2.310 tonnes of CO2 eq (860g of CO2eq/yr)
LCA Data for Cold-Formed Steel Stud Walls

This section contains a detailed description of each cold-formed steel stud (SS) exterior infill wall that was examined in this study (31 in total). The assembly layers are listed for each wall, along with a detailed description of the material quantities from the ATHENA® Environmental Impact Estimator for Buildings.

A breakdown of the total primary energy consumption and the total global warming potential (GWP) for each wall is also included. In each case, the results were calculated for an area of wall equal to 50.9 m², which represents a typical bay size for a single-storey retail building. The results are also expressed on a per m² basis in each case. The data has been calculated for two different lifespans: at the completion of initial construction and after 50 years.

As a summary, the figure below illustrates a comparison of the total embodied energy (and GWP) after 50 years for the various walls in this section. For comparison purpose, the building component used in the baseline retail building has been shaded in grey.
Cold-Formed Steel Stud Wall #1 (SS-W1)

Building Component Description:
- **Material List:**
 - ATHENA® EIE Material List
 - Notes:
 - Initial - Time T90, at the completion of initial construction
 - Trans - Transportation
 - Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component after lifetime. Total manufacturing + total construction + total maintenance + maintenance energy effect (if applicable)
 - Total EE (or Total GWP) per m² = Total EE (or Total GWP) of building component area of building component that was modeled in ATHENA® EIE
 - Total Difference in Operating Energy (GWP) from Baseline after Lifespan - difference in the total Recycle operating energy (GWP) from the baseline building component after lifetime due to using this building component instead of the baseline component
 - 3.0 mil Polythene
 - Thermoset Resistant Gypsum Board
 - Cold Rolled Steel
 - Extruded Polystyrene
 - Glazed Studded
 - Glass Fibre
 - Sand-Based Acrylic Primer
 - Water Based Lacquer Paint

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Embedded Energy (EE)</th>
<th>Embodied Global Warming Potential (GWP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.258 MJ</td>
<td>49.9 kg CO₂ eq. m²</td>
</tr>
<tr>
<td>5</td>
<td>6.294 MJ</td>
<td>249.6 kg CO₂ eq. m²</td>
</tr>
</tbody>
</table>

Cold-Formed Steel Stud Wall #2 (SS-W2)

Building Component Description:
- **Material List:**
 - ATHENA® EIE Material List
 - Notes:
 - Initial - Time T90, at the completion of initial construction
 - Trans - Transportation
 - Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component after lifetime. Total manufacturing + total construction + total maintenance + maintenance energy effect (if applicable)
 - Total EE (or Total GWP) per m² = Total EE (or Total GWP) of building component area of building component that was modeled in ATHENA® EIE
 - Total Difference in Operating Energy (GWP) from Baseline after Lifespan - difference in the total Recycle operating energy (GWP) from the baseline building component after lifetime due to using this building component instead of the baseline component
 - Total Difference in Operating Energy (GWP) from Baseline after Lifespan per m² = Total difference in operating energy (GWP) for GWP from the baseline building component area of building component that was modeled in ATHENA® EIE
 - Extruded Polystyrene
 - Glazed Studded
 - Glass Fibre
 - Sand-Based Acrylic Primer
 - Water Based Lacquer Paint

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Embedded Energy (EE)</th>
<th>Embodied Global Warming Potential (GWP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.416 MJ</td>
<td>56.9 kg CO₂ eq. m²</td>
</tr>
<tr>
<td>5</td>
<td>7.075 MJ</td>
<td>338.3 kg CO₂ eq. m²</td>
</tr>
</tbody>
</table>
Cold-Formed Steel Stud Wall #3 (SS-W3)

Building Component Description:
- **Category:** Interior Walls
- **Assembly Layers:**
 - Outside
 - Inside

Brief Description:
- Structural steel counterflange studs (460mm sq) with typical exterior rigid insulation and new coal cored siding
- Interior concrete pre-cast flooring
- Exterior concrete pre-cast siding
- Steel stud walls & steel framing
- Concrete flat slab floor
- Non-asbestos mineral fiber wallboard

Quick Numbers:
- ATHENA Standard 9.1
- 12.5 V. 12.5 V. 2.2
- Includes pull-up and framework per note
- Includes fiber glass batt insulation

Wall Thickness:
- 364 mm

Total Embodied Energy:
- 1,011 MJ

Total Embodied CO2:
- 96 kg of CO2 eq/m²

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Total EE</th>
<th>Total Embodied Energy (MJ)</th>
<th>Difference in Operating Energy from Baseline after LifeSpan</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>43,450</td>
<td>46,582</td>
<td>400,000</td>
</tr>
<tr>
<td>100</td>
<td>43,450</td>
<td>46,582</td>
<td>560,000</td>
</tr>
</tbody>
</table>

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Total EE</th>
<th>Total Embodied Energy (MJ)</th>
<th>Difference in Operating Energy from Baseline after LifeSpan</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>43,450</td>
<td>46,582</td>
<td>400,000</td>
</tr>
<tr>
<td>100</td>
<td>43,450</td>
<td>46,582</td>
<td>560,000</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂eq):

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Total EE</th>
<th>Total Embodied Energy (MJ)</th>
<th>Difference in Operating Energy from Baseline after LifeSpan</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>43,450</td>
<td>46,582</td>
<td>400,000</td>
</tr>
<tr>
<td>100</td>
<td>43,450</td>
<td>46,582</td>
<td>560,000</td>
</tr>
</tbody>
</table>

ATHENA ® EIE Material List: (not all materials after 50 years)

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 m Polyethylene</td>
<td>54.0</td>
<td>m2</td>
</tr>
<tr>
<td>Insulation Sheet</td>
<td>56.0</td>
<td>m2</td>
</tr>
<tr>
<td>10mm Rebar</td>
<td>56.0</td>
<td>m2</td>
</tr>
<tr>
<td>60mm Rebar</td>
<td>56.0</td>
<td>m2</td>
</tr>
<tr>
<td>60mm Rebar</td>
<td>56.0</td>
<td>m2</td>
</tr>
<tr>
<td>10mm Insulation Sheet</td>
<td>56.0</td>
<td>m2</td>
</tr>
<tr>
<td>Shear Panel Paper</td>
<td>56.0</td>
<td>m2</td>
</tr>
<tr>
<td>Steel Stud</td>
<td>56.0</td>
<td>m2</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>56.0</td>
<td>L</td>
</tr>
</tbody>
</table>

Notes:
1. Initial = Time 0, at the completion of initial construction
2. Trans = Transportation
3. Total EE for Total GW = Total embodied energy for total embedded GW of building component / area of building component that was modeled in ATHENA® EIE
4. Difference in Operating Energy for GW from Baseline after LifeSpan = The difference in the total Lifecycle operating energy for GW from the baseline retail building after lifespan due to using this building component instead of the baseline component
5. Total Embodied Energy (MJ) = Total EE for Total GW per m² = Total EE for Total GW of building component / area of building component that was modeled in ATHENA® EIE
6. Total Difference in Operating Energy for GW from Baseline after LifeSpan = The difference in the total Lifecycle operating energy for GW from the baseline retail building after lifespan due to using this building component instead of the baseline component
7. Total Embodied Energy (MJ) = Total EE for Total GW per m² = Total EE for Total GW of building component / area of building component that was modeled in ATHENA® EIE

Cold-Formed Steel Stud Wall #4 (SS-W4)

Building Component Description:
- **Category:** Exterior Walls
- **Assembly Layers:**
 - Outside
 - Inside

Brief Description:
- Structural steel counterflange studs (460mm sq) with special exterior rigid insulation and new wood siding
- Steel stud walls & steel framing
- Concrete flat slab floor
- Non-asbestos mineral fiber wallboard

Quick Numbers:
- ATHENA Standard 9.1
- 7.5 V. 12.5 V. 2.2
- Includes pull-up and framework per note
- Includes fiber glass batt insulation

Wall Thickness:
- 364 mm

Total Embodied Energy:
- 373 MJ

Total Embodied CO2:
- 46 kg of CO2 eq/m²

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Total EE</th>
<th>Total Embodied Energy (MJ)</th>
<th>Difference in Operating Energy from Baseline after LifeSpan</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>43,450</td>
<td>46,582</td>
<td>400,000</td>
</tr>
<tr>
<td>100</td>
<td>43,450</td>
<td>46,582</td>
<td>560,000</td>
</tr>
</tbody>
</table>

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Total EE</th>
<th>Total Embodied Energy (MJ)</th>
<th>Difference in Operating Energy from Baseline after LifeSpan</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>43,450</td>
<td>46,582</td>
<td>400,000</td>
</tr>
<tr>
<td>100</td>
<td>43,450</td>
<td>46,582</td>
<td>560,000</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂eq):

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Total EE</th>
<th>Total Embodied Energy (MJ)</th>
<th>Difference in Operating Energy from Baseline after LifeSpan</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>43,450</td>
<td>46,582</td>
<td>400,000</td>
</tr>
<tr>
<td>100</td>
<td>43,450</td>
<td>46,582</td>
<td>560,000</td>
</tr>
</tbody>
</table>

ATHENA ® EIE Material List: (not all materials after 50 years)

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 m Polyethylene</td>
<td>54.0</td>
<td>m2</td>
</tr>
<tr>
<td>Insulation Sheet</td>
<td>56.0</td>
<td>m2</td>
</tr>
<tr>
<td>10mm Rebar</td>
<td>56.0</td>
<td>m2</td>
</tr>
<tr>
<td>60mm Rebar</td>
<td>56.0</td>
<td>m2</td>
</tr>
<tr>
<td>60mm Rebar</td>
<td>56.0</td>
<td>m2</td>
</tr>
<tr>
<td>10mm Insulation Sheet</td>
<td>56.0</td>
<td>m2</td>
</tr>
<tr>
<td>Shear Panel Paper</td>
<td>56.0</td>
<td>m2</td>
</tr>
<tr>
<td>Steel Stud</td>
<td>56.0</td>
<td>m2</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>56.0</td>
<td>L</td>
</tr>
</tbody>
</table>

Notes:
1. Initial = Time 0, at the completion of initial construction
2. Trans = Transportation
3. Total EE for Total GW = Total embodied energy for total embedded GW of building component / area of building component + total construction + total maintenance + total ex40444E effects
4. Total EE for Total GW per m² = Total EE for Total GW of building component / area of building component that was modeled in ATHENA® EIE
5. Difference in Operating Energy for GW from Baseline after LifeSpan = The difference in the total Lifecycle operating energy for GW from the baseline retail building after lifespan due to using this building component instead of the baseline component
6. Difference in Operating Energy for GW from Baseline after LifeSpan per m² = Total difference in operating energy for GW from baseline after lifeSpan / net wall area of baseline building
7. Total operating primary energy use of baseline retail building after 50 years = 50,700/0.60 = 50,000 kWh/yr
8. Total operating primary energy use of baseline retail building after 50 years = 50,700/0.60 = 50,000 kWh/yr
9. Total operating primary energy use of baseline retail building after 50 years = 50,700/0.60 = 50,000 kWh/yr
10. Total operating primary energy use of baseline retail building after 50 years = 50,700/0.60 = 50,000 kWh/yr
Cold-Formed Steel Stud Wall #5 (SS-W5)

Building Component Description:

Category: Exterior Walls
Assembly Layers: Outside

Brief Description: Structural steel curtainwall studs (460mm sq) with typical exterior rigid insulation and commercial steel cladding.

Quick Numbers:
- Exterior material thermal transmittance 0.4 W/m²K
- Weight: 242 kg

Continuous Thermal Bridge Through Exterior Insulation @ 600mm o/c:

- Nominal R value: 4.4 R
- Nominal R value: 4.4 R

Wall Thicknesses:
- 216 mm
- 216 mm (includes metal cladding and fastener per stud)

Total Embodied Energy:
- 2,447 MJ/m²
- 242 kg CO₂ eq/m²

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE/M²</th>
<th>Total EE/kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>413,409</td>
<td>301.4</td>
<td>160.7</td>
<td>0</td>
<td>0</td>
<td>747.8</td>
<td>1493.42</td>
</tr>
<tr>
<td>50</td>
<td>413,409</td>
<td>301.4</td>
<td>160.7</td>
<td>0</td>
<td>0</td>
<td>747.8</td>
<td>1493.42</td>
</tr>
</tbody>
</table>

Embodied Energy (EE):

- Initial: 747.8 MJ/m²
- 50 Years: 747.8 MJ/m²

Embodied Global Warming Potential (GWP):

- Initial: 129.4 kg CO₂ eq/m²
- 50 Years: 129.4 kg CO₂ eq/m²

Cold-Formed Steel Stud Wall #6 (SS-W6)

Building Component Description:

Category: Exterior Walls
Assembly Layers: Outside

Brief Description: Structural steel curtainwall studs (460mm sq) with typical exterior rigid insulation and commercial steel cladding.

Quick Numbers:
- Exterior material thermal transmittance 0.4 W/m²K
- Weight: 242 kg

Continuous Thermal Bridge Through Exterior Insulation @ 600mm o/c:

- Nominal R value: 4.4 R
- Nominal R value: 4.4 R

Wall Thicknesses:
- 216 mm
- 216 mm (includes metal cladding and fastener per stud)

Total Embodied Energy:
- 2,447 MJ/m²
- 242 kg CO₂ eq/m²

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE/M²</th>
<th>Total EE/kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>413,409</td>
<td>301.4</td>
<td>160.7</td>
<td>0</td>
<td>0</td>
<td>747.8</td>
<td>1493.42</td>
</tr>
<tr>
<td>50</td>
<td>413,409</td>
<td>301.4</td>
<td>160.7</td>
<td>0</td>
<td>0</td>
<td>747.8</td>
<td>1493.42</td>
</tr>
</tbody>
</table>

Embodied Energy (EE):

- Initial: 747.8 MJ/m²
- 50 Years: 747.8 MJ/m²

Embodied Global Warming Potential (GWP):

- Initial: 129.4 kg CO₂ eq/m²
- 50 Years: 129.4 kg CO₂ eq/m²
Cold-Formed Steel Stud Wall #7 (SS-W7)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Exterior Walls</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Structural steel cut/external studs (490mm sq) with typical wall insulation and standard drywall finish</td>
<td></td>
<td>Outside</td>
</tr>
<tr>
<td>Quick Numbers</td>
<td></td>
<td></td>
<td>Inside</td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>264 MWh</td>
<td></td>
<td>Outside</td>
</tr>
</tbody>
</table>
| Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Life-Cycle (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE per m²</th>
<th>Total EE per t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>36.59</td>
<td>14.35</td>
<td>150</td>
<td>279</td>
<td>244</td>
<td>933</td>
</tr>
<tr>
<td>50</td>
<td>36.59</td>
<td>14.35</td>
<td>150</td>
<td>279</td>
<td>244</td>
<td>933</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.):

<table>
<thead>
<tr>
<th>Life-Cycle (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE per m²</th>
<th>Total EE per t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>3.315</td>
<td>1.350</td>
<td>150</td>
<td>257</td>
<td>276</td>
<td>922</td>
</tr>
<tr>
<td>50</td>
<td>3.315</td>
<td>1.350</td>
<td>150</td>
<td>257</td>
<td>276</td>
<td>922</td>
</tr>
</tbody>
</table>

Notes:

- Initial = Time 1 (t) at the completion of initial construction
- Trans = Transportation
- Total EE for SS-W7 = Total embodied energy (for total embodied GW) of building component after lifespan (life total manufacturing + total construction + total maintenance + total endlife effect)
Cold-Formed Steel Stud Wall #9 (SS-W9)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
<th>Outside</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Structural steel curtainwall studs (400mm o/c) with typical batt insulation and pre-cast concrete cladding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>Structural steel curtainwall studs (400mm o/c) with typical batt insulation and pine wood bevel siding</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outside</th>
<th>Outside</th>
<th>Outside</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latex paint</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural steel curtainwall studs (400mm o/c) with typical batt insulation and pine wood bevel siding</td>
<td>25mm air gap</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outside</td>
<td>Outside</td>
<td>Outside</td>
</tr>
<tr>
<td>Outside</td>
<td>Outside</td>
<td>Outside</td>
</tr>
<tr>
<td>Outside</td>
<td>Outside</td>
<td>Outside</td>
</tr>
</tbody>
</table>

Brief Description:

Building wrap (WB)

channels @ 400mm o/c (self-weight: 0.82 kg/m)

16mm non paper-faced gypsum sheathing

Quick Numbers:

16mm non paper-faced gypsum sheathing

ASHRAE Standard 90.1:

140mm fiberglass batt insulation

234 mm

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE per m²</th>
<th>Total EE per m²</th>
<th>Total EE per m²</th>
<th>Total EE per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>42,200</td>
<td>894</td>
<td>43,094</td>
<td>160</td>
<td>1,313</td>
<td>1,472</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>24,361</td>
<td>819</td>
<td>32,140</td>
<td>160</td>
<td>723</td>
<td>882</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GWP per m²</th>
<th>Total GWP per m²</th>
<th>Total GWP per m²</th>
<th>Total GWP per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>3,601</td>
<td>2</td>
<td>3,603</td>
<td>10</td>
<td>13</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>1,776</td>
<td>1</td>
<td>1,777</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time '0' (i.e. at the completion of initial construction)
2. Trans = Transportation
3. Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component after Lifespan (i.e. total manufacturing + total construction + total maintenance + total end-of-life effects)
4. Total Difference in Operating Energy (or GWP) from Baseline after Lifespan = The difference in the total life-cycle operating energy (or GWP) from the baseline retail building after Lifespan, due to using this building component instead of the baseline component
5. Total Difference in Operating Energy (or GWP) from Baseline after Lifespan = The difference in the total life-cycle operating energy (or GWP) from the baseline retail building after Lifespan, due to using this building component instead of the baseline component

Cold-Formed Steel Stud Wall #10 (SS-W10)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
<th>Outside</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Structural steel curtainwall studs (400mm o/c) with typical batt insulation and pine wood bevel siding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>Building wrap (WB)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outside</th>
<th>Outside</th>
<th>Outside</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Brief Description:

Building wrap (WB)

channels @ 400mm o/c (self-weight: 0.82 kg/m)

16mm non paper-faced gypsum sheathing

Quick Numbers:

16mm non paper-faced gypsum sheathing

ASHRAE Standard 90.1:

140mm fiberglass batt insulation

234 mm

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE per m²</th>
<th>Total EE per m²</th>
<th>Total EE per m²</th>
<th>Total EE per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>24,361</td>
<td>919</td>
<td>34,281</td>
<td>160</td>
<td>723</td>
<td>882</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>24,361</td>
<td>919</td>
<td>34,281</td>
<td>160</td>
<td>723</td>
<td>882</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GWP per m²</th>
<th>Total GWP per m²</th>
<th>Total GWP per m²</th>
<th>Total GWP per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>1,776</td>
<td>1</td>
<td>1,777</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>1,776</td>
<td>1</td>
<td>1,777</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time '0' (i.e. at the completion of initial construction)
2. Trans = Transportation
3. Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component after Lifespan (i.e. total manufacturing + total construction + total maintenance + total end-of-life effects)
4. Total Difference in Operating Energy (or GWP) from Baseline after Lifespan = The difference in the total life-cycle operating energy (or GWP) from the baseline retail building after Lifespan, due to using this building component instead of the baseline component
5. Total Difference in Operating Energy (or GWP) from Baseline after Lifespan = The difference in the total life-cycle operating energy (or GWP) from the baseline retail building after Lifespan, due to using this building component instead of the baseline component

ATHENA® EIE Material List:

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>16mm Moisture Resistant Gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>6 in Polyurethane Board</td>
<td>108.0</td>
<td>m²</td>
</tr>
<tr>
<td>Batt, Fiberglass</td>
<td>789.6</td>
<td>m² (25mm)</td>
</tr>
<tr>
<td>Concrete 36 MPa/20 day</td>
<td>6.3</td>
<td>m³</td>
</tr>
<tr>
<td>Cementitious Studs</td>
<td>342.5</td>
<td>kg</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>111.8</td>
<td>kg</td>
</tr>
<tr>
<td>Nails</td>
<td>4.2</td>
<td>kg</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.5</td>
<td>kg</td>
</tr>
<tr>
<td>Rebar, Rod, Light Sections</td>
<td>404.0</td>
<td>kg</td>
</tr>
<tr>
<td>Screws Nuts & Bolts</td>
<td>3.9</td>
<td>kg</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>68.3</td>
<td>L</td>
</tr>
</tbody>
</table>
Cold-Formed Steel Stud Wall #11 (SS-W11)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Structural steel cut-out-clad (460mm sq) with initial bolt insulation and commercial metal stud cladding</td>
<td>Outside</td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>Stainless steel bolt insulation</td>
<td></td>
</tr>
<tr>
<td>Athena Standard</td>
<td>GWP 3.4 kg/total wall</td>
<td></td>
</tr>
<tr>
<td>Wall Thickness</td>
<td>2.724 mm</td>
<td></td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>144 kg of CO₂ eq.</td>
<td></td>
</tr>
<tr>
<td>Athena Global Warming Potential (GWP)</td>
<td>120.0 kg of CO₂ eq.</td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Life-Cycle (Years)</th>
<th>Embodied Energy (EE)</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
<th>GWP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>50</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time 0 (in, at the completion of initial construction)
2. Trans = Transportation
3. Total EE = Total EE (from total lifetime energy for all building components)
4. Total GWP = Total GWP (from total lifetime global warming potential for all building components)
5. Athena Global Warming Potential (GWP) = Athena Global Warming Potential (GWP) (from total lifetime Athena Global Warming Potential for all building components)

Cold-Formed Steel Stud Wall #12 (SS-W12)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Structural steel cut-out-clad (460mm sq) with initial bolt insulation and EFGS building</td>
<td>Outside</td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>Stainless steel bolt insulation</td>
<td></td>
</tr>
<tr>
<td>Athena Standard</td>
<td>GWP 3.4 kg/total wall</td>
<td></td>
</tr>
<tr>
<td>Wall Thickness</td>
<td>2.724 mm</td>
<td></td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>144 kg of CO₂ eq.</td>
<td></td>
</tr>
<tr>
<td>Athena Global Warming Potential (GWP)</td>
<td>120.0 kg of CO₂ eq.</td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Life-Cycle (Years)</th>
<th>Embodied Energy (EE)</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
<th>GWP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>50</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time 0 (in, at the completion of initial construction)
2. Trans = Transportation
3. Total EE = Total EE (from total lifetime energy for all building components)
4. Total GWP = Total GWP (from total lifetime global warming potential for all building components)
5. Athena Global Warming Potential (GWP) = Athena Global Warming Potential (GWP) (from total lifetime Athena Global Warming Potential for all building components)
6. Total Difference in Operating Energy (GWP) from Baseline after Lifespan = Total difference in lifetime operating energy (GWP) from all building components after lifespan compared to the baseline component
7. Total Difference in Operating Energy (GWP) from Baseline after Lifespan per m² = Total difference in lifetime operating energy (GWP) from all building components after lifespan per m² compared to the baseline component

Athena Global Warming Potential (GWP) = Athena Global Warming Potential (GWP) (from total lifetime Athena Global Warming Potential for all building components)
Building Component Description: Cold-Formed Steel Stud Wall #13 (SS-W13)

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
<th>Outside</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Structural steel corrugated studs (460mm sq) with two layers of rigid insulation and standard clay brick cladding</td>
<td>Orange colored Kingsway brick cladding</td>
<td>Green clay bricks</td>
</tr>
<tr>
<td>Quick Numbers:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATHENA Standard No.</td>
<td>9.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-Wall</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>E-Wall</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Wall Thickness:</td>
<td>150 mm</td>
<td>160 mm</td>
<td>365 mm</td>
</tr>
<tr>
<td>Total Embodied Energy:</td>
<td>1214 MJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Embodied GWP:</td>
<td>115 kg of CO2 eq/m2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Life Cycle (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>End of Life</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total EE per m2</td>
</tr>
<tr>
<td>Initial</td>
<td>56.312</td>
<td>276</td>
<td>96.588</td>
<td>160 1.387 1.547 0 0 0 0 0 0 0 0 58.144 1.142</td>
</tr>
<tr>
<td>50 Years</td>
<td>56.312</td>
<td>276</td>
<td>96.588</td>
<td>160 1.387 1.547 3.099 10 3.110 0 369 590 618.344 2.144 1.600,000 2.754</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO2 eq.)

<table>
<thead>
<tr>
<th>Life Cycle (Years)</th>
<th>Total GW per m2</th>
<th>Total GW per m2</th>
<th>Total GW per m2</th>
<th>Total GW per m2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>0.727</td>
<td>0.158</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>50 Years</td>
<td>0.727</td>
<td>0.158</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

ATHENA® EIE Material List

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 mil Polyethylene</td>
<td>54.0</td>
<td>m2</td>
</tr>
<tr>
<td>10mm Insulating Gypsum Board</td>
<td>56.0</td>
<td>m2</td>
</tr>
<tr>
<td>10mm Regular Gypsum Board</td>
<td>56.0</td>
<td>m2</td>
</tr>
<tr>
<td>Cold Rolled Steel</td>
<td>10.3</td>
<td>kg</td>
</tr>
<tr>
<td>Extruded Polystyrene</td>
<td>206.6</td>
<td>m2 (25mm)</td>
</tr>
<tr>
<td>Galvanized Studs</td>
<td>342.5</td>
<td>kg</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>111.8</td>
<td>kg</td>
</tr>
<tr>
<td>Modified Bitumen membranes</td>
<td>68.2</td>
<td>kg</td>
</tr>
<tr>
<td>Miter</td>
<td>7.6</td>
<td>m3</td>
</tr>
<tr>
<td>Nails</td>
<td>4.2</td>
<td>kg</td>
</tr>
<tr>
<td>Gypsum (Standard Block)</td>
<td>53.5</td>
<td>kg</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.3</td>
<td>kg</td>
</tr>
<tr>
<td>Screws Nuts & Bolts</td>
<td>3.9</td>
<td>kg</td>
</tr>
<tr>
<td>Acrylic Based Alkyd Paint</td>
<td>19.6</td>
<td>L</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>66.3</td>
<td>L</td>
</tr>
</tbody>
</table>

Notes:
1. Initial = Time 0 (t=0, at the completion of initial construction)
2. Trans = Transportation
3. Total EE (for Total GW) = Total embodied energy (or total embodied GWP) of building component after lifespan (ex. total manufacturing + total construction + total maintenance + total end of life).
4. Total EE (for Total GW) per m² = Total EE (for Total GW) of building component area of building component that was modelled in ATHENA® EIE.
5. Total Difference in Operating Energy (GW) from Baseline after Lifespan = Difference in the total Recycle operating energy (GW) from the baseline building component instead of the baseline component.
6. Total Difference in Operating Energy (GW) from Baseline after Lifespan per m² = Total difference in operating energy from GW for building component after Recycle (net wall area of baseline building component area of building component)
7. Total operating primary energy use of baseline ret hospital building after 50 years = Total operating energy (GW) of baseline building component after 50 years (183.720 MJ per m²).

Building Component Description: Cold-Formed Steel Stud Wall #14 (SS-W14)

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
<th>Outside</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Structural steel corrugated studs (460mm sq) with two layers of rigid insulation and standard clay brick cladding</td>
<td>Structural insulated panel cladding</td>
<td>White clay bricks</td>
</tr>
<tr>
<td>Quick Numbers:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATHENA Standard No.</td>
<td>9.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-Wall</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>E-Wall</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Wall Thickness:</td>
<td>955 mm</td>
<td>750 mm</td>
<td>2000 mm</td>
</tr>
<tr>
<td>Total Embodied Energy:</td>
<td>1454 MJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Embodied GWP:</td>
<td>115 kg of CO2 eq/m2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Life Cycle (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>End of Life</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total EE per m2</td>
</tr>
<tr>
<td>Initial</td>
<td>75.349</td>
<td>899</td>
<td>76.179</td>
<td>160 2.197 2.357 0 0 0 0 0 0 0 0 79.533 1.542</td>
</tr>
<tr>
<td>50 Years</td>
<td>75.349</td>
<td>899</td>
<td>76.179</td>
<td>160 2.197 2.357 3.099 10 3.110 0 3110 5115 61376 2.116 1.645 1.500,000 2.583</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO2 eq.)

<table>
<thead>
<tr>
<th>Life Cycle (Years)</th>
<th>Total GW per m2</th>
<th>Total GW per m2</th>
<th>Total GW per m2</th>
<th>Total GW per m2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>5.799</td>
<td>0.150</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>50 Years</td>
<td>5.799</td>
<td>0.150</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

ATHENA® EIE Material List

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 mil Polyethylene</td>
<td>54.0</td>
<td>m2</td>
</tr>
<tr>
<td>10mm Insulating Gypsum Board</td>
<td>56.0</td>
<td>m2</td>
</tr>
<tr>
<td>10mm Regular Gypsum Board</td>
<td>56.0</td>
<td>m2</td>
</tr>
<tr>
<td>Cold Rolled Steel</td>
<td>10.3</td>
<td>kg</td>
</tr>
<tr>
<td>Extruded Polystyrene</td>
<td>208.6</td>
<td>m2 (25mm)</td>
</tr>
<tr>
<td>Galvanized Studs</td>
<td>342.5</td>
<td>kg</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>111.8</td>
<td>kg</td>
</tr>
<tr>
<td>Modified Bitumen membranes</td>
<td>401.5</td>
<td>kg</td>
</tr>
<tr>
<td>Mortar</td>
<td>4.3</td>
<td>m³</td>
</tr>
<tr>
<td>Nails</td>
<td>4.2</td>
<td>kg</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>3.9</td>
<td>kg</td>
</tr>
<tr>
<td>Screws Nuts & Bolts</td>
<td>19.6</td>
<td>L</td>
</tr>
<tr>
<td>Acrylic Based Alkyd Paint</td>
<td>68.3</td>
<td>L</td>
</tr>
</tbody>
</table>

Notes:
1. Initial = Time 0 (t=0, at the completion of initial construction)
2. Trans = Transportation
3. Total EE (for Total GW) = Total embodied energy (or total embodied GWP) of building component after lifespan (ex. total manufacturing + total construction + total maintenance + total end of life).
4. Total EE (for Total GW) per m² = Total EE (for Total GW) of building component area of building component that was modelled in ATHENA® EIE.
5. Total Difference in Operating Energy (GW) from Baseline after Lifespan = Difference in the total Recycle operating energy (GW) from the baseline building component instead of the baseline component.
6. Total Difference in Operating Energy (GW) from Baseline after Lifespan per m² = Total difference in operating energy from GW for building component after Recycle (net wall area of baseline building component area of building component)
7. Total operating primary energy use of baseline ret hospital building after 50 years = Total operating energy (GW) of baseline building component after 50 years (183.720 MJ per m²).
8. Total operating primary energy use of baseline ret hospital building after 50 years = Total operating energy (GW) of baseline building component after 50 years (183.720 MJ per m²).
9. Total operating primary energy use of baseline ret hospital building after 50 years = Total operating energy (GW) of baseline building component after 50 years (183.720 MJ per m²).
Cold-Formed Steel Stud Wall #15 (SS-W15)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Structural steel with two layers of rigid insulation</td>
<td>Steel lower stud and two wood stud</td>
</tr>
<tr>
<td>Quick Numbers:</td>
<td>Area: 38.2 m²</td>
<td>Perimeter: 40.5 m</td>
</tr>
<tr>
<td>Athena Standard</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Phase: 2</td>
<td>3.0</td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIE Material List</td>
<td>304.0 kg</td>
<td>m²</td>
</tr>
</tbody>
</table>

Notes:

1. Initial: Time 0 (6m at the completion of initial construction)
2. Trans = Transportation
3. Total EE (or Total GW) = Total embedded energy (or total embedded GW) of building component after life span (Total manufacturing + Total construction + Total maintenance + Total end of life effect)

Global Warming Potential (kg of CO2 eq.)

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIE Material List</td>
<td>204.0 kg</td>
<td>m²</td>
</tr>
</tbody>
</table>

Notes:

1. Initial: Time 0 (6m at the completion of initial construction)
2. Trans = Transportation
3. Total EE (or Total GW) = Total embedded energy (or total embedded GW) of building component after life span (Total manufacturing + Total construction + Total maintenance + Total end of life effect)

Cold-Formed Steel Stud Wall #16 (SS-W16)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Structural steel with two layers of rigid insulation</td>
<td>Steel lower stud and two wood stud</td>
</tr>
<tr>
<td>Quick Numbers:</td>
<td>Area: 38.2 m²</td>
<td>Perimeter: 40.5 m</td>
</tr>
<tr>
<td>Athena Standard</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Phase: 2</td>
<td>3.0</td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIE Material List</td>
<td>304.0 kg</td>
<td>m²</td>
</tr>
</tbody>
</table>

Notes:

1. Initial: Time 0 (6m at the completion of initial construction)
2. Trans = Transportation
3. Total EE (or Total GW) = Total embedded energy (or total embedded GW) of building component after life span (Total manufacturing + Total construction + Total maintenance + Total end of life effect)

Global Warming Potential (kg of CO2 eq.)

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIE Material List</td>
<td>204.0 kg</td>
<td>m²</td>
</tr>
</tbody>
</table>

Notes:

1. Initial: Time 0 (6m at the completion of initial construction)
2. Trans = Transportation
3. Total EE (or Total GW) = Total embedded energy (or total embedded GW) of building component after life span (Total manufacturing + Total construction + Total maintenance + Total end of life effect)
Cold-Formed Steel Stud Wall #17 (SS-W17)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Structural steel curtainwall studs (460mm oc) with two layers of rigid insulation and commercial steel cladding</td>
<td>Outside</td>
</tr>
<tr>
<td>Quick Numbers:</td>
<td>10mm expanded polystyrene rigid insulation</td>
<td>Inside</td>
</tr>
<tr>
<td>Corelose Tropic Plus Through Exterior Insulation Extends 300mm</td>
<td>Non-paper facia grade gypsum board</td>
<td></td>
</tr>
<tr>
<td>R-value</td>
<td>11.3 R-value 9.3</td>
<td></td>
</tr>
<tr>
<td>Total Wt:</td>
<td>279 kg</td>
<td></td>
</tr>
<tr>
<td>Wall Thickness:</td>
<td>99.9 mm</td>
<td></td>
</tr>
<tr>
<td>Total Embedded Energy</td>
<td>2.831 MJ/m²</td>
<td>Life-Cycle</td>
</tr>
<tr>
<td>Total Embedded GWP</td>
<td>156 kg CO₂ eq/m²</td>
<td>Life-Cycle</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Lifespan (Yrs)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE per m²</th>
<th>Total EE per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 55</td>
<td>13.30</td>
<td>15.08</td>
<td>14.38</td>
<td>15.08</td>
<td>582.9</td>
<td>582.9</td>
</tr>
<tr>
<td>50</td>
<td>13.30</td>
<td>15.08</td>
<td>14.38</td>
<td>15.08</td>
<td>582.9</td>
<td>582.9</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.):

<table>
<thead>
<tr>
<th>Lifespan (Yrs)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GWP</th>
<th>Total GWP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 55</td>
<td>111.00</td>
<td>124.20</td>
<td>116.10</td>
<td>124.20</td>
<td>456.0</td>
<td>456.0</td>
</tr>
<tr>
<td>50</td>
<td>111.00</td>
<td>124.20</td>
<td>116.10</td>
<td>124.20</td>
<td>456.0</td>
<td>456.0</td>
</tr>
</tbody>
</table>

Notes:

1. Initial: Time 0 (t), at the completion of initial construction
2. Trans: Transportation
3. Total EE for Total GWP = Total embedded energy for total embedded GWP of building component after Lifespan (i.e. total manufacturing + total construction + total maintenance + total endoflife effects)
4. Total Energy for Total GWP per m² = Total EE for Total GWP of building component/area of building component that was modeled in ATHENA EIE
5. Total Difference in Operating Energy (GWP) from Baseline after Lifespan = The difference in total Lifecycle operating energy (GWP) from the baseline retail building after Lifespan due to using this building component instead of the baseline component
6. Total operating primary energy use of baseline retail building after 50years = 55000.0 GJ (11.5 MWh/yr)
7. Total operating primary energy use of baseline retail building after 50years = 2270000000 (800t of CO₂ eq/M²yr)

Cold-Formed Steel Stud Wall #18 (SS-W18)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Structural steel curtainwall studs (460mm oc) with two layers of rigid insulation and commercial steel cladding</td>
<td>Outside</td>
</tr>
<tr>
<td>Quick Numbers:</td>
<td>10mm expanded polystyrene rigid insulation</td>
<td>Inside</td>
</tr>
<tr>
<td>Corelose Tropic Plus Through Exterior Insulation Extends 300mm</td>
<td>Non-paper facia grade gypsum board</td>
<td></td>
</tr>
<tr>
<td>R-value</td>
<td>11.3 R-value 9.3</td>
<td></td>
</tr>
<tr>
<td>Total Wt:</td>
<td>279 kg</td>
<td></td>
</tr>
<tr>
<td>Wall Thickness:</td>
<td>99.9 mm</td>
<td></td>
</tr>
<tr>
<td>Total Embedded Energy</td>
<td>2.831 MJ/m²</td>
<td>Life-Cycle</td>
</tr>
<tr>
<td>Total Embedded GWP</td>
<td>156 kg CO₂ eq/m²</td>
<td>Life-Cycle</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Lifespan (Yrs)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE per m²</th>
<th>Total EE per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 55</td>
<td>13.30</td>
<td>15.08</td>
<td>14.38</td>
<td>15.08</td>
<td>582.9</td>
<td>582.9</td>
</tr>
<tr>
<td>50</td>
<td>13.30</td>
<td>15.08</td>
<td>14.38</td>
<td>15.08</td>
<td>582.9</td>
<td>582.9</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.):

<table>
<thead>
<tr>
<th>Lifespan (Yrs)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GWP</th>
<th>Total GWP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 55</td>
<td>111.00</td>
<td>124.20</td>
<td>116.10</td>
<td>124.20</td>
<td>456.0</td>
<td>456.0</td>
</tr>
<tr>
<td>50</td>
<td>111.00</td>
<td>124.20</td>
<td>116.10</td>
<td>124.20</td>
<td>456.0</td>
<td>456.0</td>
</tr>
</tbody>
</table>

Notes:

1. Initial: Time 0 (t), at the completion of initial construction
2. Trans: Transportation
3. Total EE for Total GWP = Total embedded energy for total embedded GWP of building component after Lifespan (i.e. total manufacturing + total construction + total maintenance + total endoflife effects)
4. Total Energy for Total GWP per m² = Total EE for Total GWP of building component/area of building component that was modeled in ATHENA EIE
5. Total Difference in Operating Energy (GWP) from Baseline after Lifespan = The difference in total Lifecycle operating energy (GWP) from the baseline retail building after Lifespan due to using this building component instead of the baseline component
6. Total Difference in Operating Energy (GWP) from Baseline after Lifespan per m² = Total difference in operating energy (GWP) from baseline after Lifespan/Net wall area of baseline retail building
7. Total operating primary energy use of baseline retail building after 50years = 55000.0 GJ (11.5 MWh/yr)
8. Total operating primary energy use of baseline retail building after 50years = 2270000000 (800t of CO₂ eq/M²yr)
Cold-Formed Steel Stud Wall #19 (SS-W19)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Structural steel curtain wall studs (6096mm sq) with typical exterior rigid insulation and half-hour concrete base block</td>
<td>Structural steel curtain wall studs</td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>20mm exterior rigid insulation</td>
<td>Half-hour concrete base block</td>
</tr>
<tr>
<td>Athena Standard</td>
<td>90, 4</td>
<td>12.4</td>
</tr>
<tr>
<td>Significant Thermal Bridge Through Interior Insulation</td>
<td>Significant thermal bridge through interior insulation</td>
<td></td>
</tr>
<tr>
<td>Wall Thickness</td>
<td>144 mm</td>
<td>Significant thermal bridge through interior insulation</td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>1478 MWh</td>
<td>Significant thermal bridge through interior insulation</td>
</tr>
<tr>
<td>Total Embodied GWP</td>
<td>116 kg of CO₂ eq/ m²</td>
<td>Significant thermal bridge through interior insulation</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Δ Total EE (MJ) per m²</th>
<th>Δ Total EE (MJ) per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>66.710</td>
<td>837</td>
<td>67.547</td>
<td>160 1,218 2,340</td>
<td>0 0 0 0 69.890 1,372</td>
<td>0 0 0 0 69.890 1,372</td>
</tr>
<tr>
<td>50</td>
<td>56.614</td>
<td>591</td>
<td>56.610</td>
<td>10 1,310 2,310</td>
<td>1 1,310 2,310 150.105 1,475 400.000 688</td>
<td></td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Δ Total GWP (kg CO₂ eq) per m²</th>
<th>Δ Total GWP (kg CO₂ eq) per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>5.307</td>
<td>2 1.384</td>
<td>5.306</td>
<td>0 0 0 0 5.306 156 280.000 34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>5 2 1.380</td>
<td>10 4 15 44 4 4 4 4 5.370 156 30.000 34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time 0 (i.e., at the completion of initial construction)
2. Trans = Transportation
3. Total EE for Total GWP = Total embodied energy (or total embodied GWP) of building component after lifespan (in total manufacturing + total construction + total maintenance + total end-of-life effects)
4. Total Difference in Operating Energy (or GWP) from Baseline after Lifespan = The difference in the total Recycle operating energy (or GWP) from the baseline retail building after lifespan, due to using this building component instead of the baseline component.
5. Total Difference in Operating Energy (or GWP) from Baseline after Lifespan per m² = Total difference in operating energy (or GWP) from baseline after lifespan / net wall area of baseline retail building
6. Total operating primary energy use of baseline retail building after 50 years = 2,310 tonnes of CO₂ eq (80 kg of CO₂ eq/m²/yr)
7. Total operating GWP of baseline retail building after 50 years = 3,500 GJ (11,145 MWh)

ATHENA ® EIE Material List:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 mm Polystyrene</td>
<td>54.2</td>
<td>m²</td>
</tr>
<tr>
<td>16mm</td>
<td>Moisture Resistant Gypsum Board</td>
<td>56.0</td>
</tr>
<tr>
<td>16mm</td>
<td>Regular Gypsum Board</td>
<td>56.0</td>
</tr>
<tr>
<td>Cold Rolled Sheet</td>
<td>10.3</td>
<td>kg</td>
</tr>
<tr>
<td>Extruded Polystyrene</td>
<td>104.3</td>
<td>m² (35mm²)</td>
</tr>
<tr>
<td>Galvanized Studs</td>
<td>300.5</td>
<td>kg</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>111.8</td>
<td>kg</td>
</tr>
<tr>
<td>Modified Bitumen membrane</td>
<td>401.5</td>
<td>kg</td>
</tr>
<tr>
<td>Motor</td>
<td>4.3</td>
<td>m³</td>
</tr>
<tr>
<td>Nails</td>
<td>4.2</td>
<td>kg</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.3</td>
<td>kg</td>
</tr>
<tr>
<td>Screws</td>
<td>2.6</td>
<td>kg</td>
</tr>
<tr>
<td>Solvent Based Akril Paint</td>
<td>11.6</td>
<td>L</td>
</tr>
<tr>
<td>Split-faced Concrete Block</td>
<td>1,258.2</td>
<td>Blocks</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>66.3</td>
<td>L</td>
</tr>
</tbody>
</table>

Cold-Formed Steel Stud Wall #20 (SS-W20)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Structural steel curtain wall studs (6096mm sq) with special exterior rigid insulation and raw wood base siding</td>
<td>Structural steel curtain wall studs</td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>20mm exterior rigid insulation</td>
<td>Raw wood base siding</td>
</tr>
<tr>
<td>Athena Standard</td>
<td>90, 4</td>
<td>12.4</td>
</tr>
<tr>
<td>Significant Thermal Bridge Through Interior Insulation</td>
<td>Significant thermal bridge through interior insulation</td>
<td></td>
</tr>
<tr>
<td>Wall Thickness</td>
<td>144 mm</td>
<td>Significant thermal bridge through interior insulation</td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>895 MWh</td>
<td>Significant thermal bridge through interior insulation</td>
</tr>
<tr>
<td>Total Embodied GWP</td>
<td>16 kg of CO₂ eq/ m²</td>
<td>Significant thermal bridge through interior insulation</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Δ Total EE (MJ) per m²</th>
<th>Δ Total EE (MJ) per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>36.714</td>
<td>351</td>
<td>36.714</td>
<td>150 179 379</td>
<td>0 0 0 0 379.093 104.168 104.000 198</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>36.714</td>
<td>351</td>
<td>36.714</td>
<td>150 179 379</td>
<td>0 0 0 0 379.093 104.168 104.000 198</td>
<td></td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Δ Total GWP (kg CO₂ eq) per m²</th>
<th>Δ Total GWP (kg CO₂ eq) per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>1.796</td>
<td>1 1.796</td>
<td>10 12 12</td>
<td>0 0 0 0 1.796 0.000 0.000 0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>1.796</td>
<td>1 1.796</td>
<td>10 12 12</td>
<td>0 0 0 0 1.796 0.000 0.000 0.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time 0 (i.e., at the completion of initial construction)
2. Trans = Transportation
3. Total EE for total GWP = Total embodied energy (or total embodied GWP) of building component after lifespan (in total manufacturing + total construction + total maintenance + total end-of-life effects)
4. Total EE (or Total GWP) per m² = Total EE (or Total GWP) of building component / area of building component that was modeled in ATHENA® EIE
5. Total Difference in Operating Energy (or GWP) from Baseline after Lifespan = The difference in the total Recycle operating energy (or GWP) from the baseline retail building after lifespan, due to using this building component instead of the baseline component.
6. Total Difference in Operating Energy (or GWP) from Baseline after Lifespan per m² = Total difference in operating energy (or GWP) from baseline after lifespan / net wall area of baseline retail building
7. Total operating primary energy use of baseline retail building after 50 years = 50.700 GJ (17,145 MWh)
8. Total operating primary energy use of baseline retail building after 50 years = 3,500 GJ (11,145 MWh)
9. Total operating GWP of baseline retail building after 50 years = 2,310 tonnes of CO₂ eq (80 kg of CO₂ eq/m²/yr)

ATHENA ® EIE Material List:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 mm Polystyrene</td>
<td>54.0</td>
<td>m²</td>
</tr>
<tr>
<td>16mm</td>
<td>Moisture Resistant Gypsum Board</td>
<td>56.0</td>
</tr>
<tr>
<td>16mm</td>
<td>Regular Gypsum Board</td>
<td>56.0</td>
</tr>
<tr>
<td>Extruded Polystyrene</td>
<td>104.3</td>
<td>m² (35mm²)</td>
</tr>
<tr>
<td>Galvanized Studs</td>
<td>300.5</td>
<td>kg</td>
</tr>
<tr>
<td>Joint Component</td>
<td>111.8</td>
<td>kg</td>
</tr>
<tr>
<td>Modified Bitumen membrane</td>
<td>401.5</td>
<td>kg</td>
</tr>
<tr>
<td>Motor</td>
<td>4.3</td>
<td>m³</td>
</tr>
<tr>
<td>Nails</td>
<td>4.2</td>
<td>kg</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.3</td>
<td>kg</td>
</tr>
<tr>
<td>Screws</td>
<td>2.6</td>
<td>kg</td>
</tr>
<tr>
<td>Solvent Based Akril Paint</td>
<td>11.6</td>
<td>L</td>
</tr>
<tr>
<td>Pine Wood Bead Board</td>
<td>102.4</td>
<td>m²</td>
</tr>
<tr>
<td>Screws</td>
<td>2.6</td>
<td>kg</td>
</tr>
<tr>
<td>Solvent Based Akril Paint</td>
<td>11.6</td>
<td>L</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>120.5</td>
<td>L</td>
</tr>
</tbody>
</table>
Cold-Formed Steel Stud Wall #21 (SS-W21)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Structural steel curtainwall studs (600mm o.c.) with typical exterior rigid insulation and commercial steel stud framing</td>
<td>Outside</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inside</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Core</td>
</tr>
<tr>
<td>Quick Numbers:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cold-Formed Steel Stud Wall #23 (SS-W23)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Structural steel curtainwall studs (600mm oc) with typical bolt insulation and split-faced concrete block cladding</td>
<td></td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>Steel stud walls</td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>379 mm</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>1.249 kWh</td>
<td></td>
</tr>
<tr>
<td>Total Embodied GWP</td>
<td>180 kg CO₂ eq</td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE (kWh)</th>
<th>Total GWP (kg CO₂ eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>Material</td>
<td>Trans Total</td>
<td>Material</td>
<td>Trans Total</td>
<td>Material</td>
<td>Trans Total</td>
<td>Material</td>
</tr>
<tr>
<td>50</td>
<td>Steel</td>
<td>200 160</td>
<td>60 120</td>
<td>1.80 1.20</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
</tbody>
</table>

Notes:

- Initial = Time 0 (i.e. at the completion of initial construction)
- Trans = Transportation
- EE = Energy efficiency
- GWP = Global Warming Potential
- CO₂ eq = Carbon dioxide equivalent

Cold-Formed Steel Stud Wall #24 (SS-W24)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Structural steel curtainwall studs (600mm oc) with typical bolt insulation and joint board cladding</td>
<td></td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>Steel stud walls</td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>379 mm</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>1.249 kWh</td>
<td></td>
</tr>
<tr>
<td>Total Embodied GWP</td>
<td>180 kg CO₂ eq</td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE (kWh)</th>
<th>Total GWP (kg CO₂ eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>Material</td>
<td>Trans Total</td>
<td>Material</td>
<td>Trans Total</td>
<td>Material</td>
<td>Trans Total</td>
<td>Material</td>
</tr>
<tr>
<td>50</td>
<td>Steel</td>
<td>200 160</td>
<td>60 120</td>
<td>1.80 1.20</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
</tbody>
</table>

Notes:

- Initial = Time 0 (i.e. at the completion of initial construction)
- Trans = Transportation
- EE = Energy efficiency
- GWP = Global Warming Potential
- CO₂ eq = Carbon dioxide equivalent

Athena EIE Material List:

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>16mm Moisture Resistant Gypsum Board</td>
<td>56.0 m²</td>
</tr>
<tr>
<td>16mm Regular Gypsum Board</td>
<td>56.0 m²</td>
</tr>
<tr>
<td>6 mm Polystyrene</td>
<td>108.0 m²</td>
</tr>
<tr>
<td>Ball, Fiberglass</td>
<td>289.8 m² (255mm)</td>
</tr>
<tr>
<td>Cold Rolled Steel</td>
<td>10.3 kg</td>
</tr>
<tr>
<td>Galvanized Shute</td>
<td>330.5 kg</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>111.8 kg</td>
</tr>
<tr>
<td>Modified Bitumen membrane</td>
<td>333.3 kg</td>
</tr>
<tr>
<td>Nails</td>
<td>2.6 kg</td>
</tr>
<tr>
<td>Nails</td>
<td>2.6 kg</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.8 kg</td>
</tr>
<tr>
<td>Screws Nuts & Bolts</td>
<td>2.6 kg</td>
</tr>
<tr>
<td>Split-faced Concrete Block</td>
<td>1,230.2 Blocks</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>66.3 L</td>
</tr>
</tbody>
</table>

Athena EIE Material List (includes all materials after 50 years):

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel Studs</td>
<td>180 kg CO₂ eq</td>
</tr>
<tr>
<td>Total Embodied GWP of baseline retrofit after 100 years = 2,130 tonnes of CO₂ eq (80% of CO₂ eq for 40 years)</td>
<td></td>
</tr>
</tbody>
</table>
Cold-Formed Steel Stud Wall #25 (SS-W25)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Structural steel Studwall (609mm) with interior insulation</td>
<td></td>
</tr>
<tr>
<td>Quick Numbers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Athena Standard</td>
<td>6.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Wall Thickness</td>
<td>50.8 mm</td>
<td></td>
</tr>
<tr>
<td>THERM 3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wall Density</td>
<td>11.0 kg/m³</td>
<td></td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>537 MJ</td>
<td></td>
</tr>
<tr>
<td>Total Embodied GWP</td>
<td>142 kg/m² CO₂eq</td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Embodied Energy (EE)</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>Trans.</td>
<td>Trans.</td>
<td>Trans.</td>
<td>Total</td>
<td>1 Total EE per m²</td>
<td>1 Total EE per m²</td>
</tr>
<tr>
<td>116.106.000</td>
<td>116.097.000</td>
<td>116.015.000</td>
<td>116.015.000</td>
<td>116.097.000</td>
<td>1771.630.000</td>
<td>2111.630.000</td>
</tr>
<tr>
<td>50</td>
<td>116.106.000</td>
<td>116.097.000</td>
<td>116.015.000</td>
<td>116.097.000</td>
<td>1771.630.000</td>
<td>2111.630.000</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂eq)

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Embodied Global Warming Potential (GWP)</th>
<th>Difference in Operating GWP from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>Trans.</td>
<td>Trans.</td>
<td>Trans.</td>
<td>Total</td>
<td>1 Total GWP per m²</td>
<td>1 Total GWP per m²</td>
</tr>
<tr>
<td>116.106.000</td>
<td>116.097.000</td>
<td>116.015.000</td>
<td>116.015.000</td>
<td>116.097.000</td>
<td>1771.630.000</td>
<td>2111.630.000</td>
</tr>
<tr>
<td>50</td>
<td>116.106.000</td>
<td>116.097.000</td>
<td>116.015.000</td>
<td>116.097.000</td>
<td>1771.630.000</td>
<td>2111.630.000</td>
</tr>
</tbody>
</table>

ATHENA® EIE Material List (includes all materials after 50 years)

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>10mm Moisture Resistant Gypsum Board</td>
<td>56.0 m²</td>
<td>m²</td>
</tr>
<tr>
<td>16mm Regular Gypsum Board</td>
<td>56.0 m²</td>
<td>m²</td>
</tr>
<tr>
<td>6 mm Polystyrene</td>
<td>108.0 m²</td>
<td>m²</td>
</tr>
<tr>
<td>Batt. Fiberglass</td>
<td>289.8 m²</td>
<td>m² (25mm)</td>
</tr>
<tr>
<td>Commercial 49mm Steel Stud Cladding</td>
<td>168.0 m²</td>
<td>m²</td>
</tr>
<tr>
<td>Galvanized Studs</td>
<td>381.9 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>111.8 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Nails</td>
<td>4.2 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.3 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Screws Nuts & Bolts</td>
<td>3.9 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>132.5 L</td>
<td>L</td>
</tr>
</tbody>
</table>

Notes:

1. Trans = Transportation
2. EE = Energy consumption
3. Total GWP = Total embodied energy from baseline after Lifespan
4. Difference in Operating GWP from Baseline after Lifespan
5. ATHENA® EIE Material List includes all materials after 50 years

Cold-Formed Steel Stud Wall #26 (SS-W26)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Structural steel Studwall (609mm) with special insulation and EPS wrapping</td>
<td></td>
</tr>
<tr>
<td>Quick Numbers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Athena Standard</td>
<td>6.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Wall Thickness</td>
<td>50.8 mm</td>
<td></td>
</tr>
<tr>
<td>THERM 3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wall Density</td>
<td>11.0 kg/m³</td>
<td></td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>177 MJ</td>
<td></td>
</tr>
<tr>
<td>Total Embodied GWP</td>
<td>56 kg/m² CO₂eq</td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Embodied Energy (EE)</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>Trans.</td>
<td>Trans.</td>
<td>Trans.</td>
<td>Total</td>
<td>1 Total EE per m²</td>
<td>1 Total EE per m²</td>
</tr>
<tr>
<td>46.799.000</td>
<td>46.798.000</td>
<td>46.798.000</td>
<td>46.798.000</td>
<td>46.799.000</td>
<td>1571.963.000</td>
<td>1571.963.000</td>
</tr>
<tr>
<td>50</td>
<td>46.799.000</td>
<td>46.798.000</td>
<td>46.798.000</td>
<td>46.799.000</td>
<td>1571.963.000</td>
<td>1571.963.000</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂eq)

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Embodied Global Warming Potential (GWP)</th>
<th>Difference in Operating GWP from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>Trans.</td>
<td>Trans.</td>
<td>Trans.</td>
<td>Total</td>
<td>1 Total GWP per m²</td>
<td>1 Total GWP per m²</td>
</tr>
<tr>
<td>46.799.000</td>
<td>46.798.000</td>
<td>46.798.000</td>
<td>46.798.000</td>
<td>46.799.000</td>
<td>1571.963.000</td>
<td>1571.963.000</td>
</tr>
<tr>
<td>50</td>
<td>46.799.000</td>
<td>46.798.000</td>
<td>46.798.000</td>
<td>46.799.000</td>
<td>1571.963.000</td>
<td>1571.963.000</td>
</tr>
</tbody>
</table>

ATHENA® EIE Material List (includes all materials after 50 years)

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>#15 Organic Felt</td>
<td>219.4 m²</td>
<td>m²</td>
</tr>
<tr>
<td>16mm Moisture Resistant Gypsum Board</td>
<td>56.0 m²</td>
<td>m²</td>
</tr>
<tr>
<td>16mm Regular Gypsum Board</td>
<td>56.0 m²</td>
<td>m²</td>
</tr>
<tr>
<td>6 mm Polystyrene</td>
<td>184.8 m²</td>
<td>m²</td>
</tr>
<tr>
<td>Batt. Fiberglass</td>
<td>289.8 m²</td>
<td>m² (25mm)</td>
</tr>
<tr>
<td>Extruded Polystyrene</td>
<td>104.3 m²</td>
<td>m² (25mm)</td>
</tr>
<tr>
<td>Galvanized Steel</td>
<td>24.1 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Galvanized Studs</td>
<td>200.0 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>111.8 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Nails</td>
<td>8.8 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.3 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Screws Nuts & Bolts</td>
<td>2.5 kg</td>
<td>kg</td>
</tr>
<tr>
<td>Gluecer meal mesh</td>
<td>130.0 m²</td>
<td>m²</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>132.9 L</td>
<td>L</td>
</tr>
</tbody>
</table>

Notes:

1. Trans = Transportation
2. EE = Energy consumption
3. Total GWP = Total embodied energy from baseline after Lifespan
4. Difference in Operating GWP from Baseline after Lifespan
Cold-Formed Steel Stud Wall #27 (SS-W27)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
<th>Exterior Walls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Structural steel wall panels (6060 mm high) with two layers of rigid insulation and high-performance concrete block layering</td>
<td>Thermal insulation</td>
<td>Sheathing</td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>Thermo-clad exterior concrete block layering</td>
<td>Non-paper faced glassier insulation</td>
<td>No significant thermal bridge through interior insulation</td>
</tr>
<tr>
<td>ATHENA Standard R</td>
<td>9.0 In. R-22 4.0 In. R-22</td>
<td>Includes R-value of 1.5 for sheathing and R-value of 10.0 for exterior concrete block layering</td>
<td>Minimize the use of interior concrete block layering</td>
</tr>
<tr>
<td>Thermo-clad exterior concrete block layering</td>
<td>Non-paper faced glassier insulation</td>
<td>No significant thermal bridge through interior insulation</td>
<td></td>
</tr>
<tr>
<td>Wall Thickness</td>
<td>1,238.2 mm</td>
<td>Regular concrete block board</td>
<td>Lap joints</td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>1,039.5 MJ</td>
<td></td>
<td>616 MJ</td>
</tr>
<tr>
<td>Total Embodied GWP</td>
<td>113 kg CO₂ eq</td>
<td></td>
<td>0.1 kg CO₂ eq</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Life (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE</th>
<th>Total EE per m²</th>
<th>Total Energy</th>
<th>Total Energy per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>74.24 MJ</td>
<td>536.7 MJ</td>
<td>3.8 MJ</td>
<td>5.54 MJ</td>
<td>77.46 MJ</td>
<td>77.46 MJ</td>
<td>691.6 MJ</td>
<td>691.6 MJ</td>
</tr>
<tr>
<td>50</td>
<td>39.38 MJ</td>
<td>268.3 MJ</td>
<td>1.9 MJ</td>
<td>2.77 MJ</td>
<td>79.15 MJ</td>
<td>79.15 MJ</td>
<td>680.4 MJ</td>
<td>680.4 MJ</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Life (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GWP</th>
<th>Total GWP per m²</th>
<th>Total GWP</th>
<th>Total GWP per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>0.00 kg</td>
</tr>
<tr>
<td>50</td>
<td>0.00 kg</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time 0 (at the completion of initial construction)
2. Trans = Transportation
3. Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component at lifespan 0 (total manufacturing + total construction + total maintenance + total end-of-life effects)
4. Total EE (or Total GWP) per m² = Total embodied energy (or total embodied GWP) of building component per area of building component that was modeled in ATHENA EE
5. Total Difference in Operating Energy (or GWP) from Baseline after Lifespan = The difference in the total Recycle operating energy (or GWP) from the baseline building after lifespan, due to using this building component instead of the baseline component
6. Total Difference in Operating Energy (or GWP) from Baseline after Lifespan per m² = Total difference in operating energy (or GWP) from baseline after lifespan per net area of baseline building
7. Total operating primary energy use of baseline retail building after 50 years = 50,700 kWh/105,830 ft² (5.64 MJ/ ft²)
8. *Total operating GWP of baseline retail building after 50 years = 2,310 tonnes of CO₂ eq (8900 kg CO₂ eq/yr)*

Cold-Formed Steel Stud Wall #28 (SS-W28)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
<th>Exterior Walls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Structural steel wall panels (6060 mm high) with two layers of rigid insulation and high-performance concrete block layering</td>
<td>Thermal insulation</td>
<td>Sheathing</td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>Thermo-clad exterior concrete block layering</td>
<td>Non-paper faced glassier insulation</td>
<td>No significant thermal bridge through interior insulation</td>
</tr>
<tr>
<td>ATHENA Standard R</td>
<td>9.0 In. R-22 4.0 In. R-22</td>
<td>Includes R-value of 1.5 for sheathing and R-value of 10.0 for exterior concrete block layering</td>
<td>Minimize the use of interior concrete block layering</td>
</tr>
<tr>
<td>Thermo-clad exterior concrete block layering</td>
<td>Non-paper faced glassier insulation</td>
<td>No significant thermal bridge through interior insulation</td>
<td></td>
</tr>
<tr>
<td>Wall Thickness</td>
<td>1,238.2 mm</td>
<td>Regular concrete block board</td>
<td>Lap joints</td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>1,039.5 MJ</td>
<td></td>
<td>616 MJ</td>
</tr>
<tr>
<td>Total Embodied GWP</td>
<td>113 kg CO₂ eq</td>
<td></td>
<td>0.1 kg CO₂ eq</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Life (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE</th>
<th>Total EE per m²</th>
<th>Total Energy</th>
<th>Total Energy per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>74.24 MJ</td>
<td>536.7 MJ</td>
<td>3.8 MJ</td>
<td>5.54 MJ</td>
<td>77.46 MJ</td>
<td>77.46 MJ</td>
<td>691.6 MJ</td>
<td>691.6 MJ</td>
</tr>
<tr>
<td>50</td>
<td>39.38 MJ</td>
<td>268.3 MJ</td>
<td>1.9 MJ</td>
<td>2.77 MJ</td>
<td>79.15 MJ</td>
<td>79.15 MJ</td>
<td>680.4 MJ</td>
<td>680.4 MJ</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Life (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GWP</th>
<th>Total GWP per m²</th>
<th>Total GWP</th>
<th>Total GWP per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>0.00 kg</td>
</tr>
<tr>
<td>50</td>
<td>0.00 kg</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time 0 (at the completion of initial construction)
2. Trans = Transportation
3. Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component at lifespan 0 (total manufacturing + total construction + total maintenance + total end-of-life effects)
4. Total EE (or Total GWP) per m² = Total embodied energy (or total embodied GWP) of building component per area of building component that was modeled in ATHENA EE
5. Total Difference in Operating Energy (or GWP) from Baseline after Lifespan = The difference in the total Recycle operating energy (or GWP) from the baseline building after lifespan, due to using this building component instead of the baseline component
6. Total Difference in Operating Energy (or GWP) from Baseline after Lifespan per m² = Total difference in operating energy (or GWP) from baseline after lifespan per net area of baseline building
7. Total operating primary energy use of baseline retail building after 50 years = 50,700 kWh/105,830 ft² (5.64 MJ/ ft²)
8. *Total operating GWP of baseline retail building after 50 years = 2,310 tonnes of CO₂ eq (8900 kg CO₂ eq/yr)*
Cold-Formed Steel Stud Wall #29 (SS-W29)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Wall Type</th>
<th>Materials</th>
<th>Embodied Energy (MJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside Wall</td>
<td>Outside Wall</td>
<td>Structural steel穿心钉的壁板 (520mm 厚) with two layers of rigid insulation and commercial steel cladding</td>
<td>Exterior Wall</td>
</tr>
</tbody>
</table>

Quick Numbers:
- 11.65 mm thick paper-faced gypsum wallboard
- 16.0 mm thick glass wool batt insulation
- 2.44 x 10^6 kg of CO2 eq. m^2

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Life-Cycle (Years)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE per m^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>Material</td>
<td>Trans. Total</td>
<td>Trans. Total</td>
<td>Material</td>
<td>Trans. Total</td>
<td>Total EE per m^2</td>
</tr>
<tr>
<td>50</td>
<td>Material</td>
<td>Trans. Total</td>
<td>Trans. Total</td>
<td>Material</td>
<td>Trans. Total</td>
<td>Total EE per m^2</td>
</tr>
<tr>
<td>50</td>
<td>Material</td>
<td>Trans. Total</td>
<td>Trans. Total</td>
<td>Material</td>
<td>Trans. Total</td>
<td>Total EE per m^2</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO2 eq.):

<table>
<thead>
<tr>
<th>Life-Cycle (Years)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GHG per m^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>Material</td>
<td>Trans. Total</td>
<td>Trans. Total</td>
<td>Material</td>
<td>Trans. Total</td>
<td>Total GHG per m^2</td>
</tr>
<tr>
<td>50</td>
<td>Material</td>
<td>Trans. Total</td>
<td>Trans. Total</td>
<td>Material</td>
<td>Trans. Total</td>
<td>Total GHG per m^2</td>
</tr>
</tbody>
</table>

Notes:
- Initial Time: 0.7kWh at the completion of initial construction
- Trans: Transportation
- Total EE for (Total GWP) = Total embodied energy for (total GWP) of building component after Lifespan (i.e., total manufacturing + total construction + total maintenance + total end-of-life effects)
- Total GWP for building component per m^2 = Total embodied energy for (total GWP) of building component after Lifespan (i.e., total manufacturing + total construction + total maintenance + total end-of-life effects)
- Total Difference in Operating Energy (for GWP) from Baseline after Lifespan = Total embodied energy for (total GWP) of building component after Lifespan (i.e., total manufacturing + total construction + total maintenance + total end-of-life effects) - Total embodied energy for (total GWP) of building component before Lifespan (i.e., total manufacturing + total construction + total maintenance + total end-of-life effects)
- Athena EIE Material List (includes all materials after 50 years)

Cold-Formed Steel Stud Wall #30 (SS-W30)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Wall Type</th>
<th>Materials</th>
<th>Embodied Energy (MJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside Wall</td>
<td>Outside Wall</td>
<td>Structural steel穿心钉的壁板 (520mm 厚) with two layers of rigid insulation and commercial steel cladding</td>
<td>Exterior Wall</td>
</tr>
</tbody>
</table>

Quick Numbers:
- 11.65 mm thick paper-faced gypsum wallboard
- 16.0 mm thick glass wool batt insulation
- 2.44 x 10^6 kg of CO2 eq. m^2

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Life-Cycle (Years)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE per m^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>Material</td>
<td>Trans. Total</td>
<td>Trans. Total</td>
<td>Material</td>
<td>Trans. Total</td>
<td>Total EE per m^2</td>
</tr>
<tr>
<td>50</td>
<td>Material</td>
<td>Trans. Total</td>
<td>Trans. Total</td>
<td>Material</td>
<td>Trans. Total</td>
<td>Total EE per m^2</td>
</tr>
<tr>
<td>50</td>
<td>Material</td>
<td>Trans. Total</td>
<td>Trans. Total</td>
<td>Material</td>
<td>Trans. Total</td>
<td>Total EE per m^2</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO2 eq.):

<table>
<thead>
<tr>
<th>Life-Cycle (Years)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GHG per m^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>Material</td>
<td>Trans. Total</td>
<td>Trans. Total</td>
<td>Material</td>
<td>Trans. Total</td>
<td>Total GHG per m^2</td>
</tr>
<tr>
<td>50</td>
<td>Material</td>
<td>Trans. Total</td>
<td>Trans. Total</td>
<td>Material</td>
<td>Trans. Total</td>
<td>Total GHG per m^2</td>
</tr>
</tbody>
</table>

Notes:
- Initial Time: 0.7kWh at the completion of initial construction
- Trans: Transportation
- Total EE for (Total GWP) = Total embodied energy for (total GWP) of building component after Lifespan (i.e., total manufacturing + total construction + total maintenance + total end-of-life effects)
- Total GWP for building component per m^2 = Total embodied energy for (total GWP) of building component after Lifespan (i.e., total manufacturing + total construction + total maintenance + total end-of-life effects) - Total embodied energy for (total GWP) of building component before Lifespan (i.e., total manufacturing + total construction + total maintenance + total end-of-life effects)
- Total Difference in Operating Energy (for GWP) from Baseline after Lifespan = Total embodied energy for (total GWP) of building component after Lifespan (i.e., total manufacturing + total construction + total maintenance + total end-of-life effects) - Total embodied energy for (total GWP) of building component before Lifespan (i.e., total manufacturing + total construction + total maintenance + total end-of-life effects)
- Athena EIE Material List (includes all materials after 50 years)
LCA Data for Wood Stud Walls

This section contains a detailed description of wood stud (WS) exterior infill wall that was examined in this study (30 in total). The assembly layers are listed for each wall, along with a detailed description of the material quantities from the ATHENA® Environmental Impact Estimator for Buildings.

A breakdown of the total primary energy consumption and the total global warming potential (GWP) for each wall is also included. In each case, the results were calculated for an area of wall equal to 50.9 m², which represents a typical bay size for a single-storey retail building. The results are also expressed on a per m² basis in each case. The data has been calculated for two different lifespans: at the completion of initial construction and after 50 years.

As a summary, the figure below illustrates a comparison of the total embodied energy (and GWP) after 50 years for the various walls in this section. For comparison purpose, the building component used in the baseline retail building has been shaded in grey.
Wood Stud Wall #2 (WS-W2)

Building Component Description:

Exterior Walls

Category: Assembly Layers

- **Brief Description:**
 - Outside: Wood stud wall (400mm o/c) with typical exterior rigid insulation and split-faced concrete block cladding
 - Inside: Wood stud wall (400mm o/c) with typical exterior rigid insulation and pre-cast concrete cladding

Quick Numbers:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside</td>
<td>0.542</td>
<td>0.442</td>
<td>0.442</td>
<td>0.542</td>
</tr>
<tr>
<td>Inside</td>
<td>0.542</td>
<td>0.442</td>
<td>0.442</td>
<td>0.542</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside</td>
<td>0.542</td>
<td>0.442</td>
<td>0.442</td>
<td>0.542</td>
</tr>
<tr>
<td>Inside</td>
<td>0.542</td>
<td>0.442</td>
<td>0.442</td>
<td>0.542</td>
</tr>
</tbody>
</table>

Wood Stud Wall #3 (WS-W3)

Building Component Description:

Exterior Walls

Category: Assembly Layers

- **Brief Description:**
 - Outside: Wood stud wall (400mm o/c) with typical exterior rigid insulation and pre-cast concrete cladding
 - Inside: Wood stud wall (400mm o/c) with typical exterior rigid insulation and pre-cast concrete cladding

Quick Numbers:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside</td>
<td>0.542</td>
<td>0.442</td>
<td>0.442</td>
<td>0.542</td>
</tr>
<tr>
<td>Inside</td>
<td>0.542</td>
<td>0.442</td>
<td>0.442</td>
<td>0.542</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside</td>
<td>0.542</td>
<td>0.442</td>
<td>0.442</td>
<td>0.542</td>
</tr>
<tr>
<td>Inside</td>
<td>0.542</td>
<td>0.442</td>
<td>0.442</td>
<td>0.542</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time 0 (i.e. at the completion of initial construction)
2. Trans. = Transportation
3. Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component after lifespan (i.e. total manufacturing + total construction + total maintenance + total end-of-life effects)
4. Total EE (or Total GWP) per m² = Total EE (or Total GWP) of building component / area of building component that was modelled in ATHENA® EIE
5. Total Difference in Operating Energy (or GWP) from Baseline after Lifespan = The difference in the total life-cycle operating energy (or GWP) from the baseline retail building after 50 years, due to using this building component instead of the baseline component
6. Total Difference in Operating Energy (or GWP) from Baseline after Lifespan per m² = Total difference in operating energy (or GWP) from the baseline retail building after 50 years = 50.700 GJ (1,745 kWh/yr)
7. Total operating energy per m² of baseline retail building after 50 years = 50.700 GJ (1,745 kWh/yr)
8. Embodied energy and GWP numbers are based on net area of wall = 50.9 m² (Length x Height = 7.6m x 6.7m = 50.9 m²)
9. Embodied energy and GWP numbers are based on net area of wall = 581.0 m² (Length x Height = 7.6m x 6.7m = 50.9 m²)
10. Notes:

ATHENA® EIE Material List:

(Includes all materials after 50 years)

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 mil Polyethylene</td>
<td>54.0</td>
<td>m²</td>
</tr>
<tr>
<td>16 mil. Moisture Resistant Gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>16 mil. Regular Gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>Cold Rolled Steel</td>
<td>10.0</td>
<td>kg</td>
</tr>
<tr>
<td>Extruded Polystyrene</td>
<td>104.3</td>
<td>m²(25mm)</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>113.8</td>
<td>kg</td>
</tr>
<tr>
<td>Modified Bitumen membrane</td>
<td>405.7</td>
<td>kg</td>
</tr>
<tr>
<td>Mortar</td>
<td>4.3</td>
<td>m³</td>
</tr>
<tr>
<td>Nails</td>
<td>9.0</td>
<td>kg</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.3</td>
<td>kg</td>
</tr>
<tr>
<td>White calcium silicate (grounded)</td>
<td>0.9</td>
<td>m³</td>
</tr>
<tr>
<td>Split-faced Concrete Block</td>
<td>1,236.2</td>
<td>L</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>66.3</td>
<td>L</td>
</tr>
</tbody>
</table>

ATHENA® EIE Material List:

(Includes all materials after 50 years)

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 mil Polyethylene</td>
<td>54.0</td>
<td>m²</td>
</tr>
<tr>
<td>16 mil. Moisture Resistant Gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>16 mil. Regular Gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>Cold Rolled Steel</td>
<td>10.0</td>
<td>kg</td>
</tr>
<tr>
<td>Extruded Polystyrene</td>
<td>104.3</td>
<td>m²(25mm)</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>113.8</td>
<td>kg</td>
</tr>
<tr>
<td>Modified Bitumen membrane</td>
<td>405.7</td>
<td>kg</td>
</tr>
<tr>
<td>Mortar</td>
<td>4.3</td>
<td>m³</td>
</tr>
<tr>
<td>Nails</td>
<td>9.0</td>
<td>kg</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.3</td>
<td>kg</td>
</tr>
<tr>
<td>White calcium silicate (grounded)</td>
<td>0.9</td>
<td>m³</td>
</tr>
<tr>
<td>Split-faced Concrete Block</td>
<td>1,236.2</td>
<td>L</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>66.3</td>
<td>L</td>
</tr>
</tbody>
</table>
Wood Stud Wall #4 (WS-W4)

Building Component Description:

Category: Interior Walls

Assembly Layers:
- Outside
 - Inner Stud(s)
 - Sheathing
 - R-Value: 10.2 RSI-Value: 1.8

Quick Numbers:
- Steel nails @ 400mm o/c
- 39.6 kg of CO₂ per m²
- 16mm non paper-faced gypsum sheathing
- Solvent Based Alkyd Paint 19.6 L
- Water Based Latex Paint 0.3 L

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total Embodied Energy (MJ)</th>
<th>Total GWP (kg of CO₂ eq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 mil Polyethylene</td>
<td>54.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>16mil Mineral Reinforced Gypsum Board</td>
<td>56.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>16mil Regular Gypsum Board</td>
<td>56.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Exterior Paper</td>
<td>54.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>111.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Modified Bitumen Membrane</td>
<td>68.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Nails</td>
<td>10.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Fibe Wood Bevel Siding</td>
<td>168.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Small Dimension Softwood Lumber, Kiln-dried</td>
<td>0.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Solvent Based Acrylic Primer</td>
<td>19.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>10.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Notes:
- Initial: Time 0 (as at the completion of retail construction)
- **Material List:** Includes all materials after 50 years
- **Goals:**
 - Minimize the overall energy impact of the building
 - Minimize the overall environmental impact of the building
 - Minimize the overall cost of the building
 - Maximize the overall comfort of the building

Wood Stud Wall #5 (WS-W5)

Building Component Description:

Category: Interior Walls

Assembly Layers:
- Outside
 - Inner Stud(s)
 - Sheathing
 - R-Value: 10.2 RSI-Value: 1.8

Quick Numbers:
- Steel nails @ 400mm o/c
- 39.6 kg of CO₂ per m²
- 16mm non paper-faced gypsum sheathing
- Solvent Based Alkyd Paint 19.6 L
- Water Based Latex Paint 0.3 L

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total Embodied Energy (MJ)</th>
<th>Total GWP (kg of CO₂ eq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 mil Polyethylene</td>
<td>54.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>16mil Mineral Reinforced Gypsum Board</td>
<td>56.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>16mil Regular Gypsum Board</td>
<td>56.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Exterior Paper</td>
<td>54.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>111.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Modified Bitumen Membrane</td>
<td>68.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Nails</td>
<td>10.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Fibe Wood Bevel Siding</td>
<td>168.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Small Dimension Softwood Lumber, Kiln-dried</td>
<td>0.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Solvent Based Acrylic Primer</td>
<td>19.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>10.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Notes:
- Initial: Time 0 (as at the completion of retail construction)
- **Material List:** Includes all materials after 50 years
- **Goals:**
 - Minimize the overall energy impact of the building
 - Minimize the overall environmental impact of the building
 - Minimize the overall cost of the building
 - Maximize the overall comfort of the building
Wood Stud Wall #6 (WS-W6)

Building Component Description:

Category: Interior Walls
Assembly Layers:
- Exterior: Wood stud wall, 18x90mm strip, with typical interior rig insulation and E86 boarding
- Interior: Plywood, 10mm thick, and typical interior rig insulation, E86 boarding
- Exterior: Plywood, 10mm thick, and typical interior rig insulation, E86 boarding
- Total Embodied Energy (EE): 6 MJ

Quick Numbers:
- Initial 39,324 MJ
- Total Embodied GWP: 37 kg CO2-eq/m²

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE</th>
<th>Total EE per m²</th>
<th>Total EE per m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>35.102</td>
<td>37.341</td>
<td>39.742</td>
<td>40.911</td>
<td>141.962</td>
<td>177.743</td>
<td>209.403</td>
</tr>
<tr>
<td>50</td>
<td>35.102</td>
<td>37.341</td>
<td>39.742</td>
<td>40.911</td>
<td>141.962</td>
<td>177.743</td>
<td>209.403</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq):

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GWP</th>
<th>Total GWP per m²</th>
<th>Total GWP per m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>1.819</td>
<td>1.819</td>
<td>1.819</td>
<td>1.819</td>
<td>5.404</td>
<td>37.650</td>
<td>37.650</td>
</tr>
<tr>
<td>50</td>
<td>1.819</td>
<td>1.819</td>
<td>1.819</td>
<td>1.819</td>
<td>5.404</td>
<td>37.650</td>
<td>37.650</td>
</tr>
</tbody>
</table>

ATHENA ® EIE Material List:

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>#15 Organic</td>
<td>219.4</td>
<td>m²</td>
</tr>
<tr>
<td>3-m Polyethylene</td>
<td>54.0</td>
<td>m²</td>
</tr>
<tr>
<td>16mm Moisture Resistant Gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>16mm Regular Gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>Embossed Polystyrene</td>
<td>114.3</td>
<td>m² (1.35m³)</td>
</tr>
<tr>
<td>Galvanized Sheet</td>
<td>51.6</td>
<td>kg</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>111.8</td>
<td>kg</td>
</tr>
<tr>
<td>Modified Bitumen membrane</td>
<td>68.2</td>
<td>kg</td>
</tr>
<tr>
<td>Nails</td>
<td>10.5</td>
<td>kg</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.3</td>
<td>kg</td>
</tr>
<tr>
<td>Interior Insulation Insulated Tubular Insulation</td>
<td>0.9</td>
<td>m³</td>
</tr>
<tr>
<td>Solvent Based Acrylic Paint</td>
<td>19.6</td>
<td>L</td>
</tr>
<tr>
<td>Screco Inner metal mesh</td>
<td>130.0</td>
<td>m²</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>132.5</td>
<td>L</td>
</tr>
</tbody>
</table>

Notes:
1. Initial = Time 0.0 (i.e., at the completion of initial construction)
2. Trans = Transportation
3. Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component after lifespan (i.e., total manufacturing + total construction + total maintenance + total end-of-life effects)
4. Global Warming Potential (kg of CO₂ eq) = Total in the difference in lifecycle operating energy (or GWP) from the baseline retail building after lifespan, due to using this building component instead of the baseline component.
5. Total Difference in Operating Energy (or GWP) from Baseline after Lifespan = The difference in the total lifecycle operating energy (or GWP) from the baseline retail building after lifespan, due to using this building component instead of the baseline component.

Wood Stud Wall #7 (WS-W7)

Building Component Description:

Category: Exterior Walls
Assembly Layers:
- Exterior: Wood stud wall, 18x90mm strip, with typical exterior rig insulation and E86 boarding
- Interior: Plywood, 10mm thick, and typical interior rig insulation, E86 boarding
- Total Embodied Energy (EE): 6 MJ

Quick Numbers:
- Initial 39,702 MJ
- Total Embodied GWP: 30 kg CO2-eq/m²

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE</th>
<th>Total EE per m²</th>
<th>Total EE per m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>39.341</td>
<td>39.742</td>
<td>40.911</td>
<td>141.962</td>
<td>194.962</td>
<td>232.709</td>
<td>273.954</td>
</tr>
<tr>
<td>50</td>
<td>39.341</td>
<td>39.742</td>
<td>40.911</td>
<td>141.962</td>
<td>194.962</td>
<td>232.709</td>
<td>273.954</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq):

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GWP</th>
<th>Total GWP per m²</th>
<th>Total GWP per m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>1.819</td>
<td>1.819</td>
<td>1.819</td>
<td>1.819</td>
<td>5.404</td>
<td>37.650</td>
<td>37.650</td>
</tr>
<tr>
<td>50</td>
<td>1.819</td>
<td>1.819</td>
<td>1.819</td>
<td>1.819</td>
<td>5.404</td>
<td>37.650</td>
<td>37.650</td>
</tr>
</tbody>
</table>

ATHENA ® EIE Material List:

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>16mm Moisture Resistant Gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>16mm Regular Gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>6mm Polyethylene</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>BPF Blenders</td>
<td>206.8</td>
<td>m² (2.02m³)</td>
</tr>
<tr>
<td>Cold Rolled Sheet</td>
<td>10.5</td>
<td>kg</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>111.8</td>
<td>kg</td>
</tr>
<tr>
<td>Meter</td>
<td>7.5</td>
<td>m³</td>
</tr>
<tr>
<td>Nails</td>
<td>9.0</td>
<td>kg</td>
</tr>
<tr>
<td>Ontario (Standard) Birch</td>
<td>53.5</td>
<td>m²</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.3</td>
<td>kg</td>
</tr>
<tr>
<td>Interior Insulation Insulated Tubular Insulation</td>
<td>0.9</td>
<td>m³</td>
</tr>
<tr>
<td>Solvent Based Acrylic Paint</td>
<td>19.6</td>
<td>L</td>
</tr>
<tr>
<td>Screco Inner metal mesh</td>
<td>130.0</td>
<td>m²</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>132.5</td>
<td>L</td>
</tr>
</tbody>
</table>

Notes:
1. Initial = Time 0.0 (i.e., at the completion of initial construction)
2. Trans = Transportation
3. Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component after lifespan (i.e., total manufacturing + total construction + total maintenance + total end-of-life effects)
4. Global Warming Potential (kg of CO₂ eq) = Total in the difference in lifecycle operating energy (or GWP) from the baseline retail building after lifespan, due to using this building component instead of the baseline component.
5. Total Difference in Operating Energy (or GWP) from Baseline after Lifespan = The difference in the total lifecycle operating energy (or GWP) from the baseline retail building after lifespan, due to using this building component instead of the baseline component.
6. Total Difference in Operating Energy (or GWP) from Baseline after Lifespan per m² = Total difference in operating energy (or GWP) from the baseline retail building after lifespan, per m², divided by the total wall area of the baseline retail building.
Wood Stud Wall #8 (WS-W8)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Exterior Walls</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Wood stud wall (50x90mm) with typical wall insulation and split faced concrete block cladding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>58mm x 90mm wood studs @ 450mm c/c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Athena Standard</td>
<td>6.4</td>
<td>6.4</td>
<td>7.6</td>
</tr>
<tr>
<td>Wall Thickness</td>
<td>98mm</td>
<td></td>
<td>Height x Width = 7.6m x 6.7m = 50.9m²</td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>1,766 MJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Embodied GWP</td>
<td>50 kg of CO₂ eq/m²</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Life Span (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE/m²</th>
<th>Total EE/m³</th>
<th>Diff in EE/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 50,657</td>
<td>392</td>
<td>59,399</td>
<td>399</td>
<td>2,598</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>392</td>
<td>59,399</td>
<td>399</td>
<td>2,598</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>392</td>
<td>59,399</td>
<td>399</td>
<td>2,598</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time 17.9k at the completion of initial construction
2. Trans = Transportation
3. Total EE for Total GWP = Total embodied energy (kg of CO₂ eq) of building component after its lifespan (i.e., total manufacturing + total construction + total maintenance + total end of life effects)
4. Diff in EE = Difference in total GWP per m² from Baseline after Lifespan = Total energy (kg of CO₂ eq) from the baseline building after lifespan due to using this building component instead of the baseline component.
5. Total Difference in Operating Energy for GWP from Baseline after Lifespan = Total energy difference in operating energy (kg of CO₂ eq) from the baseline building after lifespan due to using this building component instead of the baseline component.
6. Notes:
 - Total operating primary energy use of baseline retail building after 50 years = 2,310 tonnes of CO₂ eq
 - Total operating primary energy use of baseline retail building after 50 years = 2,310 tonnes of CO₂ eq

Wood Stud Wall #9 (WS-W9)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Exterior Walls</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Wood stud wall (50x90mm) with typical wall insulation and pre-cast concrete block cladding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>58mm x 90mm wood studs @ 450mm c/c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Athena Standard</td>
<td>6.4</td>
<td>6.4</td>
<td>7.6</td>
</tr>
<tr>
<td>Wall Thickness</td>
<td>98mm</td>
<td></td>
<td>Height x Width = 7.6m x 6.7m = 50.9m²</td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>771 MJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Embodied GWP</td>
<td>56 kg of CO₂ eq/m²</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Life Span (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE/m²</th>
<th>Total EE/m³</th>
<th>Diff in EE/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 50,617</td>
<td>809</td>
<td>36,389</td>
<td>309</td>
<td>2,157</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>809</td>
<td>36,389</td>
<td>309</td>
<td>2,157</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>809</td>
<td>36,389</td>
<td>309</td>
<td>2,157</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time 17.9k at the completion of initial construction
2. Trans = Transportation
3. Total EE for Total GWP = Total embodied energy (kg of CO₂ eq) of building component after its lifespan (i.e., total manufacturing + total construction + total maintenance + total end of life effects)
4. Diff in EE = Difference in total GWP per m² from Baseline after Lifespan = Total energy (kg of CO₂ eq) from the baseline building after lifespan due to using this building component instead of the baseline component.
5. Total Difference in Operating Energy for GWP from Baseline after Lifespan = Total energy difference in operating energy (kg of CO₂ eq) from the baseline building after lifespan due to using this building component instead of the baseline component.
6. Total Difference in Operating Energy for GWP from Baseline after Lifespan per m² = Total energy difference in operating energy (kg of CO₂ eq) from the baseline building after lifespan due to using this building component instead of the baseline component.
Wood Stud Wall #10 (WS-W10)

Building Component Description:
- **Category:** Interior Walls
- **Assembly Layers:**
 - Outside: 2" Water-based latex paint 132.5 L, 2" wood stud wall (400mm o.c.) with typical wall insulation and pine wood batten siding
 - Inside: 2" Water-based latex paint 132.5 L, 2" wood stud wall (400mm o.c.) with typical wall insulation and pine wood batten siding

Quick Numbers:
- **GWP Standard Eq.:** 18.4
- **Net Wall Area of Baseline Retail Building (Gross Wall Area - Openings):** 581.0 m²
- **Total Embodied GWP:** 261 kg CO₂ eq. (Includes all materials after 50 year life)

Life-Cycle Assessment Results:
- **Primary Energy Consumption (MJ):**
 - Manufacturing: Initial - 29,485, 56%, 29,485, 56%, 29,485, 56%, 29,485, 56%
 - Construction: 1,169, 1,170, 1,169, 1,170
 - End of Life: 0, 0, 0, 0
- **Difference in Embodied Energy from Baseline after LifeSpan:**
 - Initial - 29,485, 56%, 29,485, 56%, 29,485, 56%, 29,485, 56%
 - Construction: 1,169, 1,170, 1,169, 1,170
 - End of Life: 0, 0, 0, 0

Total Embodied GWP: 261 kg CO₂ eq.

- **Global Warming Potential (kg of CO₂ eq.)**
 - Initial - 29,485, 56%, 29,485, 56%, 29,485, 56%, 29,485, 56%
 - Construction: 1,169, 1,170, 1,169, 1,170
 - End of Life: 0, 0, 0, 0

Note:
- **ATHENA EIE Material List:**
 - Includes all materials after 50 year life.

Wood Stud Wall #11 (WS-W11)

Building Component Description:
- **Category:** Interior Walls
- **Assembly Layers:**
 - Outside: 2" Water-based latex paint 132.5 L, 2" wood stud wall (400mm o.c.) with typical wall insulation and commercial steel siding
 - Inside: 2" Water-based latex paint 132.5 L, 2" wood stud wall (400mm o.c.) with typical wall insulation and commercial steel siding

Quick Numbers:
- **GWP Standard Eq.:** 18.4
- **Net Wall Area of Baseline Retail Building (Gross Wall Area - Openings):** 581.0 m²
- **Total Embodied GWP:** 261 kg CO₂ eq. (Includes all materials after 50 year life)

Life-Cycle Assessment Results:
- **Primary Energy Consumption (MJ):**
 - Manufacturing: Initial - 29,485, 56%, 29,485, 56%, 29,485, 56%, 29,485, 56%
 - Construction: 1,169, 1,170, 1,169, 1,170
 - End of Life: 0, 0, 0, 0
- **Difference in Embodied Energy from Baseline after LifeSpan:**
 - Initial - 29,485, 56%, 29,485, 56%, 29,485, 56%, 29,485, 56%
 - Construction: 1,169, 1,170, 1,169, 1,170
 - End of Life: 0, 0, 0, 0

Total Embodied GWP: 261 kg CO₂ eq.

- **Global Warming Potential (kg of CO₂ eq.)**
 - Initial - 29,485, 56%, 29,485, 56%, 29,485, 56%, 29,485, 56%
 - Construction: 1,169, 1,170, 1,169, 1,170
 - End of Life: 0, 0, 0, 0

Note:
- **ATHENA EIE Material List:**
 - Includes all materials after 50 year life.
Building Component Description: Wood Stud Wall #12 (WS-W12)

Category: Interior Walls
Assembly Layers:

- **Type:** 3.8 mm (1/8"), 5.0 mm (3/32"), 6.3 mm (1/4"), 6.3 mm (1/4")
- **Material:** Regular metal, green, high, and a low of metal BC grade
- **Wall Thickness:** 250 mm
- **Quick Numbers:**
- **ATHENA Standard**: 12.2
- **Material**: Stucco over metal mesh
- **Quick Numbers:**
- **Wall Thickness:** 400 mm
- **Quick Numbers:**
- **Total Embodied Energy:** 121.0 MJ
- **Total Embodied CO₂:** 14 kg of CO₂ eq

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):
- **Life-Cycle Embodied Energy (EE):**
 - **Manufacturing:**
 - **Material:** 159.6 MJ
 - **Total:** 159.6 MJ
 - **Construction:**
 - **Material:** 40.6 MJ
 - **Total:** 40.6 MJ
 - **Total EE:** 200.2 MJ
- **Difference in Embodied Energy from Baseline after Life-span:**
 - **Material:** -30.6 MJ
 - **Total:** -30.6 MJ

Global Warming Potential (kg of CO₂ eq):
- **Life-Cycle Embodied Global Warming Potential (GWP):**
 - **Manufacturing:**
 - **Material:** 159.6 MJ
 - **Total:** 159.6 MJ
 - **Construction:**
 - **Material:** 40.6 MJ
 - **Total:** 40.6 MJ
 - **Total GWP:** 200.2 MJ
- **Difference in Embodied Global Warming Potential from Baseline after Life-span:**
 - **Material:** -30.6 MJ
 - **Total:** -30.6 MJ

Notes:
- **Initial Time:** 0.7 hours at the completion of initial construction
- **Transports:** Transportation
- **Total Embodied Energy from Baseline after Life-span:**
 - **Material:** 3.8 kg
 - **Total:** 3.8 kg
- **Total Global Warming Potential from Baseline after Life-span:**
 - **Material:** 0.0 kg
 - **Total:** 0.0 kg

ATHENA ® EIE Material List

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantity</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>15% Organic Felt</td>
<td>219.4</td>
<td>m²</td>
</tr>
<tr>
<td>16mm Moisture Resistant Gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>16mm Regular Gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>6.3mm Polyethylene</td>
<td>106.6</td>
<td>kg</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>171.8</td>
<td>kg</td>
</tr>
<tr>
<td>Nails</td>
<td>13.6</td>
<td>kg</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.3</td>
<td>kg</td>
</tr>
<tr>
<td>Redwood Summerflower Cedar kiln-dried</td>
<td>0.9</td>
<td>m³</td>
</tr>
<tr>
<td>Sanded over metal mesh</td>
<td>136.0</td>
<td>m²</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>105.6</td>
<td>L</td>
</tr>
</tbody>
</table>

Building Component Description: Wood Stud Wall #13 (WS-W13)

Category: Interior Walls
Assembly Layers:

- **Type:** 3.8 mm (1/8"), 5.0 mm (3/32"), 6.3 mm (1/4"), 6.3 mm (1/4")
- **Material:** Regular metal, green, high, and a low of metal BC grade
- **Wall Thickness:** 400 mm
- **Quick Numbers:**
- **ATHENA Standard**: 12.2
- **Material**: Stucco over metal mesh
- **Quick Numbers:**
- **Wall Thickness:** 635 mm
- **Quick Numbers:**
- **Total Embodied Energy:** 14.0 MJ
- **Total Embodied CO₂:** 4 kg of CO₂ eq

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):
- **Life-Cycle Embodied Energy (EE):**
 - **Manufacturing:**
 - **Material:** 14.0 MJ
 - **Total:** 14.0 MJ
 - **Construction:**
 - **Material:** 14.0 MJ
 - **Total:** 14.0 MJ
 - **Total EE:** 28.0 MJ
- **Difference in Embodied Energy from Baseline after Life-span:**
 - **Material:** -30.6 MJ
 - **Total:** -30.6 MJ

Global Warming Potential (kg of CO₂ eq):
- **Life-Cycle Embodied Global Warming Potential (GWP):**
 - **Manufacturing:**
 - **Material:** 14.0 MJ
 - **Total:** 14.0 MJ
 - **Construction:**
 - **Material:** 14.0 MJ
 - **Total:** 14.0 MJ
 - **Total GWP:** 28.0 MJ
- **Difference in Embodied Global Warming Potential from Baseline after Life-span:**
 - **Material:** -30.6 MJ
 - **Total:** -30.6 MJ

Notes:
- **Initial Time:** 0.7 hours at the completion of initial construction
- **Transports:** Transportation
- **Total Embodied Energy from Baseline after Life-span:**
 - **Material:** 0.0 kg
 - **Total:** 0.0 kg
- **Total Global Warming Potential from Baseline after Life-span:**
 - **Material:** 0.0 kg
 - **Total:** 0.0 kg

ATHENA ® EIE Material List

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantity</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 mm Polyethylene</td>
<td>54.5</td>
<td>m²</td>
</tr>
<tr>
<td>16mm Moisture Resistant Gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>16mm Regular Gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>Cold Rolled Steel</td>
<td>10.3</td>
<td>kg</td>
</tr>
<tr>
<td>Expanded Polystyrene</td>
<td>288.8</td>
<td>m³ (25mm)</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>111.8</td>
<td>kg</td>
</tr>
<tr>
<td>Modified Bitumen</td>
<td>66.7</td>
<td>kg</td>
</tr>
<tr>
<td>Mortar</td>
<td>1.5</td>
<td>m³</td>
</tr>
<tr>
<td>Paint</td>
<td>0.0</td>
<td>kg</td>
</tr>
<tr>
<td>Orange (Standard) Brick</td>
<td>53.5</td>
<td>m²</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.3</td>
<td>kg</td>
</tr>
<tr>
<td>Solvent Based Acrylic Paint</td>
<td>19.6</td>
<td>L</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>65.5</td>
<td>L</td>
</tr>
</tbody>
</table>
Wood Stud Wall #14 (WS-W14)

Building Component Description:
- **Category:** Interior Walls
- **Assembly Layers:** (1) 380mm rigid insulation and split-faced concrete block cladding
- **Brief Description:** Wall stud and 380mm rigid insulation, split-faced concrete block cladding
- **Quick Numbers:**
 - R-Value: 24.1
 - RSI-Value: 4.2
 - Total Embodied Energy: 77,781 Mj/m²

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Material</th>
<th>Trans.</th>
<th>Total</th>
<th>Trans.</th>
<th>Material</th>
<th>Trans.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>96.773</td>
<td>944</td>
<td>96.773</td>
<td>944</td>
<td>1,461</td>
<td>1,495</td>
</tr>
<tr>
<td>50</td>
<td>96.773</td>
<td>944</td>
<td>96.773</td>
<td>944</td>
<td>1,461</td>
<td>1,495</td>
</tr>
</tbody>
</table>

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Embodied Energy (GWP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>96.773 Mj/m²</td>
</tr>
</tbody>
</table>

Notes:
- **R-Value**
- **RSI-Value**
- **Total Embodied Energy:**

ATHENA® EIE Material List

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 m Polyethylene</td>
<td>54.0</td>
<td>m²</td>
</tr>
<tr>
<td>15mm Acoustic Resistant gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>15mm Regular Gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>Cardboard Sheathing</td>
<td>10.3</td>
<td>m³</td>
</tr>
<tr>
<td>Expanded Polystyrene</td>
<td>208.6</td>
<td>m³</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>111.8</td>
<td>kg</td>
</tr>
<tr>
<td>Modified Bitumen membrane</td>
<td>401.5</td>
<td>kg</td>
</tr>
<tr>
<td>Mortar</td>
<td>43.3</td>
<td>m³</td>
</tr>
<tr>
<td>Tubing</td>
<td>9.0</td>
<td>kg</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.3</td>
<td>kg</td>
</tr>
<tr>
<td>Small Dimension Softwood Lumber</td>
<td>0.9</td>
<td>m³</td>
</tr>
<tr>
<td>Sunbaked Ashy Plant</td>
<td>19.8</td>
<td>L</td>
</tr>
<tr>
<td>Split-faced Concrete Block</td>
<td>1,236.2</td>
<td>Bricks</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>66.3</td>
<td>L</td>
</tr>
</tbody>
</table>

Wood Stud Wall #15 (WS-W15)

Building Component Description:
- **Category:** Interior Walls
- **Assembly Layers:** (1) 50mm rigid insulation and split-faced concrete block cladding
- **Brief Description:** Wall stud and 50mm rigid insulation, split-faced concrete block cladding
- **Quick Numbers:**
 - R-Value: 23.3
 - RSI-Value: 4.1
 - Total Embodied Energy: 66.3 Mj/m²

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Material</th>
<th>Trans.</th>
<th>Total</th>
<th>Trans.</th>
<th>Material</th>
<th>Trans.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>96.773</td>
<td>944</td>
<td>96.773</td>
<td>944</td>
<td>1,461</td>
<td>1,495</td>
</tr>
<tr>
<td>50</td>
<td>96.773</td>
<td>944</td>
<td>96.773</td>
<td>944</td>
<td>1,461</td>
<td>1,495</td>
</tr>
</tbody>
</table>

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Embodied Energy (GWP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>96.773 Mj/m²</td>
</tr>
</tbody>
</table>

Notes:
- **R-Value**
- **RSI-Value**
- **Total Embodied Energy:**

ATHENA® EIE Material List

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 m Polyethylene</td>
<td>54.0</td>
<td>m²</td>
</tr>
<tr>
<td>15mm Acoustic Resistant gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>15mm Regular Gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>Cardboard Sheathing</td>
<td>10.3</td>
<td>m³</td>
</tr>
<tr>
<td>Expanded Polystyrene</td>
<td>208.6</td>
<td>m³</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>111.8</td>
<td>kg</td>
</tr>
<tr>
<td>Modified Bitumen membrane</td>
<td>401.5</td>
<td>kg</td>
</tr>
<tr>
<td>Mortar</td>
<td>43.3</td>
<td>m³</td>
</tr>
<tr>
<td>Tubing</td>
<td>9.0</td>
<td>kg</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.3</td>
<td>kg</td>
</tr>
<tr>
<td>Radiant Heat Strips</td>
<td>404.0</td>
<td>kg</td>
</tr>
<tr>
<td>Small Dimension Softwood Lumber</td>
<td>0.9</td>
<td>m³</td>
</tr>
<tr>
<td>Sunbaked Ashy Plant</td>
<td>19.8</td>
<td>L</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>66.3</td>
<td>L</td>
</tr>
</tbody>
</table>
Wood Stud Wall #16 (WS-W16)

Building Component Description:

Category: Interior Walls
Assembly Layers: Outside

Brief Description:
Wood stud wall (600mm x 300) with two layers of rigid insulation and pine wood stud siding

Quick Numbers:
- 100mm extruded polystyrene rigid insulation
- Self-adhesive membrane with primer (AB, VB, WB)
- 38mm x 140mm wood studs @ 400mm o/c
- 2145 kg of CO₂ per m²

Primary Energy Consumption (MJ)
Lifespan (Years)
Material Manufacturing Construction End of Life Total EE Total per m²
Initial 86.081 371 39.189 209 851 1,062 0 0 0 0 0 49,200 790 - -
50 86.081 371 39.189 209 851 1,062 3,096 10 3,110 182 182 43,541 855 1,300,000 2,238

Global Warming Potential (kg of CO₂ eq.)
Lifespan (Years)
Embodied Global Warming Potential (GWP)
Initial 1,680 1 1,680 13 2 15 0 0 0 0 0 1,720 34 10,000 130
50 1,680 1 1,680 13 2 15 44 0 44 0 0 0 1,720 34 10,000 130

ATHENA ® EIE Material List:
Includes all materials after 50 years

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 mm Polystyrene</td>
<td>54.0</td>
<td>m²</td>
</tr>
<tr>
<td>165mm Moisture Resistant gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>160mm Regular gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>Enclosed Polystyrene</td>
<td>208.8</td>
<td>m²</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>111.8</td>
<td>kg</td>
</tr>
<tr>
<td>Modified Bitumen membrane</td>
<td>38.2</td>
<td>kg</td>
</tr>
<tr>
<td>Nail</td>
<td>10.3</td>
<td>kg</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.3</td>
<td>kg</td>
</tr>
<tr>
<td>Pine Wood Batet Siding</td>
<td>100.4</td>
<td>m²</td>
</tr>
<tr>
<td>Solid Dimension Wood Lumber Laminated</td>
<td>0.9</td>
<td>m³</td>
</tr>
<tr>
<td>Solvent Based Acyd Paint</td>
<td>19.6</td>
<td>L</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>120.5</td>
<td>L</td>
</tr>
</tbody>
</table>

Notes:
1. Initial = Time 0 (i.e. at the completion of initial construction)
2. Trans. = Transportation
3. Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component after Lifespan.
4. Total EE (or Total GWP) per m² = Total Per m² of building component after Lifespan.
5. Total Difference in Operating Energy (or GWP) from Baseline after Lifespan = The difference in total life-cycle operating energy (or GWP) from the baseline building after Lifespan, due to using this building component instead of the baseline component
6. Embodied energy (and GWP) numbers are based on an area of wall = 50.9 m² (Length x Height = 7.6m x 7.6m).

Wood Stud Wall #17 (WS-W17)

Building Component Description:

Category: Interior Walls
Assembly Layers: Outside

Brief Description:
Wood stud wall (600mm x 300) with two layers of rigid insulation and commercial wood siding

Quick Numbers:
- 125mm extruded polystyrene rigid insulation
- Self-adhesive membrane with primer (AB, VB, WB)
- 38mm x 140mm wood studs @ 400mm o/c
- 2145 kg of CO₂ per m²

Primary Energy Consumption (MJ)
Lifespan (Years)
Material Manufacturing Construction End of Life Total EE Total per m²
Initial 23.356 371 39.170 209 851 1,062 0 0 0 0 0 124,689 2,149 - -
50 23.356 371 39.170 209 851 1,062 3,096 10 3,110 176 176 123,916 2,076 2,513 900,000 1,549

Global Warming Potential (kg of CO₂ eq.)
Lifespan (Years)
Embodied Global Warming Potential (GWP)
Initial 7,305 1 7,305 13 1 15 0 0 0 0 0 7,365 34 144
50 7,305 1 7,305 13 1 15 44 0 44 0 0 0 7,365 34 144

ATHENA ® EIE Material List:
Includes all materials after 50 years

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 mm Polystyrene</td>
<td>54.0</td>
<td>m²</td>
</tr>
<tr>
<td>165mm Moisture Resistant gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>160mm Regular gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>Commercial 12.5mm Steel Studs</td>
<td>111.8</td>
<td>m²</td>
</tr>
<tr>
<td>Extruded Polystyrene</td>
<td>258.6</td>
<td>m³</td>
</tr>
<tr>
<td>Gypsum Studs</td>
<td>135.3</td>
<td>kg</td>
</tr>
<tr>
<td>Modified Bitumen membrane</td>
<td>69.2</td>
<td>kg</td>
</tr>
<tr>
<td>Nail</td>
<td>9.0</td>
<td>kg</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.3</td>
<td>kg</td>
</tr>
<tr>
<td>Screw Nuts & Bolts</td>
<td>1.3</td>
<td>kg</td>
</tr>
<tr>
<td>Solid Dimension Wood Lumber Laminated</td>
<td>0.9</td>
<td>m³</td>
</tr>
<tr>
<td>Solvent Based Acyd Paint</td>
<td>19.6</td>
<td>L</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>120.5</td>
<td>L</td>
</tr>
</tbody>
</table>

Notes:
1. Initial = Time 0 (i.e. at the completion of initial construction)
2. Trans. = Transportation
3. Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component after Lifespan, total manufacturing + total construction + total maintenance + total end-of-life effects
4. Total EE (or Total GWP) per m² = Total Per m² of building component (i.e. components that were modeled in ATHENA EIE)
5. Total Difference in Operating Energy (or GWP) from Baseline after Lifespan = The difference in total lifecycle operating energy (or GWP) from the baseline building after Lifespan, due to using building component instead of the baseline component.
6. Total Difference in Operating Energy (or GWP) from Baseline after Lifespan per m² = Total Difference in operating energy (or GWP) from baseline after Lifespan/ net wall area of baseline building
7. Embodied energy (and GWP) numbers are based on an area of wall = 50.9 m² (Length x Height = 7.6m x 7.6m).
Wood Stud Wall #18 (WS-W18)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Material</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior Wall</td>
<td>Wood stud wall (600mm o/c) with two layers of rigid insulation and SIPS cladding</td>
<td></td>
</tr>
<tr>
<td>Insulation</td>
<td>80 mm closed cell rigid foam</td>
<td></td>
</tr>
<tr>
<td>Metal Stud</td>
<td>8.0 kg/m²</td>
<td></td>
</tr>
<tr>
<td>Exterior Cladding</td>
<td>60.0 kg/m²</td>
<td></td>
</tr>
<tr>
<td>Interior Wall</td>
<td>15.0 kg/m²</td>
<td></td>
</tr>
<tr>
<td>Insulation</td>
<td>80 mm closed cell rigid foam</td>
<td></td>
</tr>
<tr>
<td>Metal Stud</td>
<td>8.0 kg/m²</td>
<td></td>
</tr>
<tr>
<td>Interior Cladding</td>
<td>60.0 kg/m²</td>
<td></td>
</tr>
</tbody>
</table>

Quick Numbers:

<table>
<thead>
<tr>
<th>Athena Standard</th>
<th>90.1</th>
<th>AAA</th>
<th>90.1</th>
<th>AAA</th>
<th>90.1</th>
<th>AAA</th>
<th>90.1</th>
<th>AAA</th>
<th>90.1</th>
<th>AAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall Thickness</td>
<td>240 mm</td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>5.24 kg CO₂ eq/m²</td>
</tr>
<tr>
<td>Total Embodied GWP</td>
<td>40.9 kg CO₂ eq/m²</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Embodied Energy (EE)</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
<th>Total EE per m²</th>
<th>GWP per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>42.03 kg/m²</td>
<td>39.05 kg/m²</td>
<td>1.08 kg/m²</td>
<td>0.0 kg/m²</td>
<td>44.11 kg/m²</td>
<td>866.0 kg/m²</td>
<td>44.11 kg/m²</td>
<td>866.0 kg/m²</td>
</tr>
<tr>
<td>50</td>
<td>42.03 kg/m²</td>
<td>39.05 kg/m²</td>
<td>1.08 kg/m²</td>
<td>0.0 kg/m²</td>
<td>44.11 kg/m²</td>
<td>866.0 kg/m²</td>
<td>44.11 kg/m²</td>
<td>866.0 kg/m²</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Embodied Global Warming Potential (GWP)</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
<th>Total GWP per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>2.02 kg/m²</td>
<td>1.24 kg/m²</td>
<td>0.0 kg/m²</td>
<td>0.0 kg/m²</td>
<td>2.02 kg/m²</td>
<td>44 kg/m²</td>
<td>2.02 kg/m²</td>
</tr>
<tr>
<td>50</td>
<td>4.76 kg/m²</td>
<td>2.19 kg/m²</td>
<td>0.0 kg/m²</td>
<td>0.0 kg/m²</td>
<td>4.76 kg/m²</td>
<td>99 kg/m²</td>
<td>4.76 kg/m²</td>
</tr>
</tbody>
</table>

Notes:

1. *Initial* = Time 0 (at the completion of initial construction)
2. Months = Transportation
3. Total EE (for total GWP) = Total embodied energy for total embodied GWP of building component after lifespan (in total manufacturing + total construction + total maintenance + total end of life effects)
4. Total GWP (for total GWP) = Total GWP of building component after lifespan (in total manufacturing + total construction + total maintenance + total end of life effects)

Wood Stud Wall #19 (WS-W19)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Material</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior Wall</td>
<td>Wood stud wall (600mm o/c) with typical wall rigidity insulation and split-faced concrete block cladding</td>
<td></td>
</tr>
<tr>
<td>Insulation</td>
<td>80 mm closed cell rigid foam</td>
<td></td>
</tr>
<tr>
<td>Metal Stud</td>
<td>8.0 kg/m²</td>
<td></td>
</tr>
<tr>
<td>Exterior Cladding</td>
<td>60.0 kg/m²</td>
<td></td>
</tr>
<tr>
<td>Interior Wall</td>
<td>15.0 kg/m²</td>
<td></td>
</tr>
<tr>
<td>Insulation</td>
<td>80 mm closed cell rigid foam</td>
<td></td>
</tr>
<tr>
<td>Metal Stud</td>
<td>8.0 kg/m²</td>
<td></td>
</tr>
<tr>
<td>Interior Cladding</td>
<td>60.0 kg/m²</td>
<td></td>
</tr>
</tbody>
</table>

Quick Numbers:

<table>
<thead>
<tr>
<th>Athena Standard</th>
<th>90.1</th>
<th>AAA</th>
<th>90.1</th>
<th>AAA</th>
<th>90.1</th>
<th>AAA</th>
<th>90.1</th>
<th>AAA</th>
<th>90.1</th>
<th>AAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall Thickness</td>
<td>240 mm</td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>5.24 kg CO₂ eq/m²</td>
</tr>
<tr>
<td>Total Embodied GWP</td>
<td>40.9 kg CO₂ eq/m²</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Embodied Energy (EE)</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
<th>Total EE per m²</th>
<th>GWP per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>42.03 kg/m²</td>
<td>39.05 kg/m²</td>
<td>1.08 kg/m²</td>
<td>0.0 kg/m²</td>
<td>44.11 kg/m²</td>
<td>866.0 kg/m²</td>
<td>44.11 kg/m²</td>
<td>866.0 kg/m²</td>
</tr>
<tr>
<td>50</td>
<td>42.03 kg/m²</td>
<td>39.05 kg/m²</td>
<td>1.08 kg/m²</td>
<td>0.0 kg/m²</td>
<td>44.11 kg/m²</td>
<td>866.0 kg/m²</td>
<td>44.11 kg/m²</td>
<td>866.0 kg/m²</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Embodied Global Warming Potential (GWP)</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
<th>Total GWP per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>2.02 kg/m²</td>
<td>1.24 kg/m²</td>
<td>0.0 kg/m²</td>
<td>0.0 kg/m²</td>
<td>2.02 kg/m²</td>
<td>44 kg/m²</td>
<td>2.02 kg/m²</td>
</tr>
<tr>
<td>50</td>
<td>4.76 kg/m²</td>
<td>2.19 kg/m²</td>
<td>0.0 kg/m²</td>
<td>0.0 kg/m²</td>
<td>4.76 kg/m²</td>
<td>99 kg/m²</td>
<td>4.76 kg/m²</td>
</tr>
</tbody>
</table>

Notes:

1. *Initial* = Time 0 (at the completion of initial construction)
2. Months = Transportation
3. Total EE (for total GWP) = Total embodied energy for total embodied GWP of building component after lifespan (in total manufacturing + total construction + total maintenance + total end of life effects)
4. Total GWP (for total GWP) = Total GWP of building component after lifespan (in total manufacturing + total construction + total maintenance + total end of life effects)

ATHENA EIE Material List

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Organic Felt</td>
<td>219.4</td>
<td>m²</td>
</tr>
<tr>
<td>5 mm Polystyrene</td>
<td>54.0</td>
<td>m²</td>
</tr>
<tr>
<td>10 mm Moisture Resistant Gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>10 mm Gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>Embedded Polyethylene</td>
<td>206.8</td>
<td>m²</td>
</tr>
<tr>
<td>Galvanized Steel</td>
<td>51.4</td>
<td>kg</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>111.8</td>
<td>kg</td>
</tr>
<tr>
<td>Modified Bitumen membrane</td>
<td>85.2</td>
<td>kg</td>
</tr>
<tr>
<td>Yarn</td>
<td>10.6</td>
<td>kg</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.3</td>
<td>kg</td>
</tr>
<tr>
<td>Small diameter softwood lumber</td>
<td>0.9</td>
<td>m³</td>
</tr>
<tr>
<td>Soy-Based Alkyl Paint</td>
<td>18.6</td>
<td>L</td>
</tr>
<tr>
<td>Stucco over metal mesh</td>
<td>136.0</td>
<td>m²</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>132.5</td>
<td>L</td>
</tr>
</tbody>
</table>

Notes:

1. *Initial* = Time 17 (at the completion of initial construction)
2. Months = Transportation
3. Total EE (for total GWP) = Total embodied energy for total embodied GWP of building component after lifespan (in total manufacturing + total construction + total maintenance + total end of life effects)
4. Total GWP (for total GWP) = Total GWP of building component after lifespan (in total manufacturing + total construction + total maintenance + total end of life effects)
Wood Stud Wall #20 (WS-W20)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Assembly Layers</th>
<th>Outside</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Wood stud wall (600mm oc) with typical interior thermal insulation and pine wood stud siding</td>
<td></td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>0.3 m</td>
<td>1.8 m</td>
</tr>
<tr>
<td>Thickness</td>
<td>479 mm</td>
<td>39 mm</td>
</tr>
<tr>
<td>Total Emissivity</td>
<td>0.25 m²</td>
<td>0.02 m²</td>
</tr>
<tr>
<td>Fall Back</td>
<td>Wood stud wall (600mm oc) with typical interior thermal insulation and pine wood stud siding</td>
<td></td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>0.3 m</td>
<td>1.8 m</td>
</tr>
<tr>
<td>Thickness</td>
<td>479 mm</td>
<td>39 mm</td>
</tr>
<tr>
<td>Total Emissivity</td>
<td>0.25 m²</td>
<td>0.02 m²</td>
</tr>
<tr>
<td>Fall Back</td>
<td>Wood stud wall (600mm oc) with typical interior thermal insulation and pine wood stud siding</td>
<td></td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>0.3 m</td>
<td>1.8 m</td>
</tr>
<tr>
<td>Thickness</td>
<td>479 mm</td>
<td>39 mm</td>
</tr>
<tr>
<td>Total Emissivity</td>
<td>0.25 m²</td>
<td>0.02 m²</td>
</tr>
<tr>
<td>Fall Back</td>
<td>Wood stud wall (600mm oc) with typical interior thermal insulation and pine wood stud siding</td>
<td></td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>0.3 m</td>
<td>1.8 m</td>
</tr>
<tr>
<td>Thickness</td>
<td>479 mm</td>
<td>39 mm</td>
</tr>
<tr>
<td>Total Emissivity</td>
<td>0.25 m²</td>
<td>0.02 m²</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifecycle Assessment</th>
<th>Primary Energy Consumption (MJ)</th>
<th>Embodied Energy (GWP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material:</td>
<td>Manufacturing</td>
<td>Construction</td>
</tr>
<tr>
<td>Material:</td>
<td>Manufacturing</td>
<td>Construction</td>
</tr>
<tr>
<td>Initial</td>
<td>30.876</td>
<td>347</td>
</tr>
<tr>
<td>50</td>
<td>30.876</td>
<td>347</td>
</tr>
</tbody>
</table>

ATHENA ® EIE Material List:

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 mm Plywood</td>
<td>54.2</td>
<td>m²</td>
</tr>
<tr>
<td>16mm Moisture Resistant gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>16mm Regular Gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>Extruded Polystyrene</td>
<td>104.3</td>
<td>25 (mm²)</td>
</tr>
<tr>
<td>Insulation Sheet</td>
<td>108.3</td>
<td>kg</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>111.8</td>
<td>kg</td>
</tr>
<tr>
<td>Molded Bitumen membranes</td>
<td>88.2</td>
<td>m²</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.3</td>
<td>m</td>
</tr>
<tr>
<td>Pile Wood Bead Sling</td>
<td>180.4</td>
<td>m²</td>
</tr>
<tr>
<td>Small Dimension Softwood Lumber, kiln-dried</td>
<td>0.7</td>
<td>m³</td>
</tr>
<tr>
<td>Solvent Based Acrylic Paint</td>
<td>13.6</td>
<td>L</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>13.5</td>
<td>L</td>
</tr>
</tbody>
</table>

Wood Stud Wall #21 (WS-W21)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Assembly Layers</th>
<th>Outside</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Wood stud wall (600mm oc) with typical interior thermal insulation and commercial wood siding</td>
<td></td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>0.3 m</td>
<td>1.8 m</td>
</tr>
<tr>
<td>Thickness</td>
<td>479 mm</td>
<td>39 mm</td>
</tr>
<tr>
<td>Total Emissivity</td>
<td>0.25 m²</td>
<td>0.02 m²</td>
</tr>
<tr>
<td>Fall Back</td>
<td>Wood stud wall (600mm oc) with typical interior thermal insulation and commercial wood siding</td>
<td></td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>0.3 m</td>
<td>1.8 m</td>
</tr>
<tr>
<td>Thickness</td>
<td>479 mm</td>
<td>39 mm</td>
</tr>
<tr>
<td>Total Emissivity</td>
<td>0.25 m²</td>
<td>0.02 m²</td>
</tr>
<tr>
<td>Fall Back</td>
<td>Wood stud wall (600mm oc) with typical interior thermal insulation and commercial wood siding</td>
<td></td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>0.3 m</td>
<td>1.8 m</td>
</tr>
<tr>
<td>Thickness</td>
<td>479 mm</td>
<td>39 mm</td>
</tr>
<tr>
<td>Total Emissivity</td>
<td>0.25 m²</td>
<td>0.02 m²</td>
</tr>
<tr>
<td>Fall Back</td>
<td>Wood stud wall (600mm oc) with typical interior thermal insulation and commercial wood siding</td>
<td></td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>0.3 m</td>
<td>1.8 m</td>
</tr>
<tr>
<td>Thickness</td>
<td>479 mm</td>
<td>39 mm</td>
</tr>
<tr>
<td>Total Emissivity</td>
<td>0.25 m²</td>
<td>0.02 m²</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifecycle Assessment</th>
<th>Primary Energy Consumption (MJ)</th>
<th>Embodied Energy (GWP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material:</td>
<td>Manufacturing</td>
<td>Construction</td>
</tr>
<tr>
<td>Material:</td>
<td>Manufacturing</td>
<td>Construction</td>
</tr>
<tr>
<td>Initial</td>
<td>114.528</td>
<td>299</td>
</tr>
<tr>
<td>50</td>
<td>114.528</td>
<td>299</td>
</tr>
</tbody>
</table>

ATHENA ® EIE Material List:

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 mm Plywood</td>
<td>54.2</td>
<td>m²</td>
</tr>
<tr>
<td>16mm Moisture Resistant gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>16mm Regular Gypsum Board</td>
<td>56.0</td>
<td>m²</td>
</tr>
<tr>
<td>Extruded Polystyrene</td>
<td>104.3</td>
<td>25 (mm²)</td>
</tr>
<tr>
<td>Insulation Sheet</td>
<td>108.3</td>
<td>kg</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>111.8</td>
<td>kg</td>
</tr>
<tr>
<td>Molded Bitumen membranes</td>
<td>88.2</td>
<td>m²</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.3</td>
<td>m</td>
</tr>
<tr>
<td>Pile Wood Bead Sling</td>
<td>180.4</td>
<td>m²</td>
</tr>
<tr>
<td>Small Dimension Softwood Lumber, kiln-dried</td>
<td>0.7</td>
<td>m³</td>
</tr>
<tr>
<td>Solvent Based Acrylic Paint</td>
<td>13.6</td>
<td>L</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>13.5</td>
<td>L</td>
</tr>
</tbody>
</table>

Notes:

1. Initial Time D’Uso at the completion of initial construction
2. Trans = Transportation
3. Total EE per Total GWP = Total embodied energy or total embodied GWP of building component after lifespan due to total manufacturing + total construction + total maintenance + total end-of-life effects
4. Total EE per Total GWP = Total embodied energy or total embodied GWP of building component / area of building component that was modelled in ATHENA EIE
5. Total Difference in Operating Energy for GWP from Baseline after Lifespan = The difference in the total lifecycle operating energy for GWP from the baseline building described above due to using this building component instead of the baseline component
6. Total Difference in Operating Energy for GWP from Baseline after Lifespan = Total difference in operating energy for GWP from baseline after Lifespan / net wall area of baseline building
7. Total operating primary energy use of baseline retail building after 50 years = 50.706 GJ (1746 kWh/M²)
8. Total Operating GWP of baseline retail building after 50 years = 2,310 tonnes of CO₂eq (6938 kg of CO₂ eq/m²)
Wood Stud Wall #22 (WS-W22)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Wall Type</th>
<th>Assembly Layers</th>
<th>Quick Numbers:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Wood stud wall (65mm) with typical exterior insulation and EIFS cladding</td>
<td>15mm vertically aligned metal mesh in 10mm expanded polystyrene (R-10.3) and an additional 10mm EIFS wall cladding</td>
<td>15mm non-paper faced gypsum sheathing (R-1.0) 10mm expanded polystyrene (R-5.0) 5mm metal mesh (R-3.0) 5mm metal mesh (R-3.0)</td>
</tr>
<tr>
<td>Wood Stud</td>
<td>1.000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Metal Stud</td>
<td>1.000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10mm Expanded Polystyrene</td>
<td>0</td>
<td>2.000</td>
<td>0</td>
</tr>
<tr>
<td>10mm Metal Stud</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5mm Metal Mesh</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5mm Metal Mesh</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Embedded Energy</td>
<td>778</td>
<td>kg/m²</td>
<td>778</td>
</tr>
<tr>
<td>Total Embedded GWP</td>
<td>37</td>
<td>kg CO₂ eq/m²</td>
<td>37</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Trans. EE (Total GWP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>34,242</td>
<td>34,152</td>
<td>209</td>
<td>791</td>
<td>1,200</td>
</tr>
<tr>
<td>50</td>
<td>34,242</td>
<td>34,152</td>
<td>209</td>
<td>791</td>
<td>1,200</td>
</tr>
</tbody>
</table>

Wood Stud Wall #23 (WS-W23)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Wall Type</th>
<th>Assembly Layers</th>
<th>Quick Numbers:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Wood stud wall (60mm) with typical exterior insulation and EIFS cladding</td>
<td>Metal Stud/Mesh + Metal Stud/Mesh + Metal Stud/Mesh + Metal Stud/Mesh</td>
<td>Metal Stud/Mesh + Metal Stud/Mesh + Metal Stud/Mesh + Metal Stud/Mesh</td>
</tr>
<tr>
<td>Wood Stud</td>
<td>1.000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Metal Stud</td>
<td>1.000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10mm Expanded Polystyrene</td>
<td>0</td>
<td>2.000</td>
<td>0</td>
</tr>
<tr>
<td>10mm Metal Stud</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5mm Metal Mesh</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5mm Metal Mesh</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Embedded Energy</td>
<td>778</td>
<td>kg/m²</td>
<td>778</td>
</tr>
<tr>
<td>Total Embedded GWP</td>
<td>37</td>
<td>kg CO₂ eq/m²</td>
<td>37</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Trans. EE (Total GWP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>34,242</td>
<td>34,152</td>
<td>209</td>
<td>791</td>
<td>1,200</td>
</tr>
<tr>
<td>50</td>
<td>34,242</td>
<td>34,152</td>
<td>209</td>
<td>791</td>
<td>1,200</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time 17 yr, at the completion of initial construction
2. Trans = Transportation
3. Total EE (for Total GWP) = Total embodied energy (or total embodied GWP) of building component after lifespan (excludes manufacturing + total construction + total maintenance + total end-of-life effects)
4. Total EE (for Trans GWP per m²) = Total embodied energy (or total embodied GWP) of building component/area of building component that was modeled in Athena EIE
5. Global Warming Potential (kg of CO₂ eq.)
6. Athena EIE Material List (includes all materials after 50 years)
7. Athena EIE Material List (includes all materials after 50 years)
8. Initial = Time 17 yr, at the completion of initial construction
Building Component Description: Wood Stud Wall #24 (WS-W24)

Category: Interior Walls
Assembly Layers: Outside

Brief Description: Wood stud wall (609mm x2) with typical wall insulation and pine wood batten siding

<table>
<thead>
<tr>
<th>Quick Numbers:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F 600x122x6.0</td>
<td></td>
</tr>
<tr>
<td>M 110x42x2.0</td>
<td></td>
</tr>
<tr>
<td>W 600x60x2.5</td>
<td></td>
</tr>
<tr>
<td>T 20x3.0</td>
<td></td>
</tr>
<tr>
<td>P 20x2.0</td>
<td></td>
</tr>
<tr>
<td>H 50x50x3.0</td>
<td></td>
</tr>
<tr>
<td>S 12x2.0</td>
<td></td>
</tr>
<tr>
<td>L 35x2.0</td>
<td></td>
</tr>
<tr>
<td>B 18x2.0</td>
<td></td>
</tr>
<tr>
<td>G 25x1.0</td>
<td></td>
</tr>
<tr>
<td>E 25x1.0</td>
<td></td>
</tr>
<tr>
<td>N 25x1.0</td>
<td></td>
</tr>
<tr>
<td>D 25x1.0</td>
<td></td>
</tr>
<tr>
<td>C 25x1.0</td>
<td></td>
</tr>
</tbody>
</table>

GUARD® Standard: 1.1
Wall Thickness: 200 mm
Total Embodied Energy: 570 MWh
Total Embodied GWP: 29.1 kg CO₂ eq.
Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>End of Life</th>
<th>Total Embodied Energy (MJ)</th>
<th>Total Embodied GWP (kg CO₂ eq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td></td>
<td></td>
<td></td>
<td>289.75</td>
<td>116.16</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td>289.75</td>
<td>116.16</td>
</tr>
</tbody>
</table>

Notes:

1. Initial: Time 17y(40), at the completion of initial construction
2. Trans: Transportation
3. Total EE for Total GWP: Total embodied energy for total embodied GWP of building component after lifespan (in total manufacturing + total construction + total maintenance + total embodied effects)
4. Total Embodied Energy per m²: Total EE for Total GWP per m² of building component
5. Total Difference in Operating Energy (GWP) from Baseline after Lifespan = The difference in the total lifecycle operating energy (GWP) from the baseline retail building after lifespan due to using the building component instead of the baseline component
6. Athena EIE Material List:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>16mm Moisture Resistant Gypsum Board</td>
<td>56.0 m²</td>
<td></td>
</tr>
<tr>
<td>16mm Regular Gypsum Board</td>
<td>56.0 m²</td>
<td></td>
</tr>
<tr>
<td>6 ml Polyethylene</td>
<td>106.0 m²</td>
<td></td>
</tr>
<tr>
<td>6 ml Polyurethane</td>
<td>3.0 m²</td>
<td></td>
</tr>
<tr>
<td>Joint Compound</td>
<td>2.0 kg</td>
<td></td>
</tr>
<tr>
<td>Nails</td>
<td>8.7 kg</td>
<td></td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.3 kg</td>
<td></td>
</tr>
<tr>
<td>Pine Wood Bead Siding</td>
<td>100.4 m²</td>
<td></td>
</tr>
<tr>
<td>Small Dimension Softwood Lumber (kiln-dried)</td>
<td>0.7 m³</td>
<td></td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>132.5 L</td>
<td></td>
</tr>
</tbody>
</table>

ATHENA® EIE Material List: (Includes all materials after 50 years)

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>16mm Moisture Resistant Gypsum Board</td>
<td>56.0 m²</td>
<td></td>
</tr>
<tr>
<td>16mm Regular Gypsum Board</td>
<td>56.0 m²</td>
<td></td>
</tr>
<tr>
<td>6 ml Polyethylene</td>
<td>106.0 m²</td>
<td></td>
</tr>
<tr>
<td>6 ml Polyurethane</td>
<td>3.0 m²</td>
<td></td>
</tr>
<tr>
<td>Joint Compound</td>
<td>2.0 kg</td>
<td></td>
</tr>
<tr>
<td>Nails</td>
<td>8.7 kg</td>
<td></td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.3 kg</td>
<td></td>
</tr>
<tr>
<td>Pine Wood Bead Siding</td>
<td>100.4 m²</td>
<td></td>
</tr>
<tr>
<td>Small Dimension Softwood Lumber (kiln-dried)</td>
<td>0.7 m³</td>
<td></td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>132.5 L</td>
<td></td>
</tr>
</tbody>
</table>

Building Component Description: Wood Stud Wall #25 (WS-W25)

Category: Interior Walls
Assembly Layers: Outside

Brief Description: Wood stud wall (600mm x2) with typical wall insulation and commercial steel siding

<table>
<thead>
<tr>
<th>Quick Numbers:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F 600x122x6.0</td>
<td></td>
</tr>
<tr>
<td>M 110x42x2.0</td>
<td></td>
</tr>
<tr>
<td>W 600x60x2.5</td>
<td></td>
</tr>
<tr>
<td>T 20x3.0</td>
<td></td>
</tr>
<tr>
<td>P 20x2.0</td>
<td></td>
</tr>
<tr>
<td>H 50x50x3.0</td>
<td></td>
</tr>
<tr>
<td>S 12x2.0</td>
<td></td>
</tr>
<tr>
<td>L 35x2.0</td>
<td></td>
</tr>
<tr>
<td>B 18x2.0</td>
<td></td>
</tr>
<tr>
<td>G 25x1.0</td>
<td></td>
</tr>
<tr>
<td>E 25x1.0</td>
<td></td>
</tr>
<tr>
<td>N 25x1.0</td>
<td></td>
</tr>
<tr>
<td>D 25x1.0</td>
<td></td>
</tr>
<tr>
<td>C 25x1.0</td>
<td></td>
</tr>
</tbody>
</table>

GUARD® Standard: 1.1
Wall Thickness: 216 mm
Total Embodied Energy: 3.255 MWh
Total Embodied GWP: 114 kg CO₂ eq.
Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>End of Life</th>
<th>Total Embodied Energy (MJ)</th>
<th>Total Embodied GWP (kg CO₂ eq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td></td>
<td></td>
<td></td>
<td>112.02</td>
<td>120.02</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td>112.02</td>
<td>120.02</td>
</tr>
</tbody>
</table>

Notes:

1. Initial: Time 17y(40), at the completion of initial construction
2. Trans: Transportation
3. Total EE for Total GWP: Total embodied energy for total embodied GWP of building component after lifespan (in total manufacturing + total construction + total maintenance + total embodied effects)
4. Total Embodied Energy per m²: Total EE for Total GWP per m² of building component
5. Total Difference in Operating Energy (GWP) from Baseline after Lifespan = The difference in the total lifecycle operating energy (GWP) from the baseline retail building after lifespan due to using this building component instead of the baseline component
6. Athena EIE Material List:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>16mm Moisture Resistant Gypsum Board</td>
<td>56.0 m²</td>
<td></td>
</tr>
<tr>
<td>16mm Regular Gypsum Board</td>
<td>56.0 m²</td>
<td></td>
</tr>
<tr>
<td>6 ml Polyethylene</td>
<td>106.0 m²</td>
<td></td>
</tr>
<tr>
<td>6 ml Polyurethane</td>
<td>3.0 m²</td>
<td></td>
</tr>
<tr>
<td>Joint Compound</td>
<td>2.0 kg</td>
<td></td>
</tr>
<tr>
<td>Nails</td>
<td>8.7 kg</td>
<td></td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.3 kg</td>
<td></td>
</tr>
<tr>
<td>Pine Wood Bead Siding</td>
<td>100.4 m²</td>
<td></td>
</tr>
<tr>
<td>Small Dimension Softwood Lumber (kiln-dried)</td>
<td>0.7 m³</td>
<td></td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>132.5 L</td>
<td></td>
</tr>
</tbody>
</table>

ATHENA® EIE Material List: (Includes all materials after 50 years)

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>16mm Moisture Resistant Gypsum Board</td>
<td>56.0 m²</td>
<td></td>
</tr>
<tr>
<td>16mm Regular Gypsum Board</td>
<td>56.0 m²</td>
<td></td>
</tr>
<tr>
<td>6 ml Polyethylene</td>
<td>106.0 m²</td>
<td></td>
</tr>
<tr>
<td>6 ml Polyurethane</td>
<td>3.0 m²</td>
<td></td>
</tr>
<tr>
<td>Joint Compound</td>
<td>2.0 kg</td>
<td></td>
</tr>
<tr>
<td>Nails</td>
<td>8.7 kg</td>
<td></td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.3 kg</td>
<td></td>
</tr>
<tr>
<td>Pine Wood Bead Siding</td>
<td>100.4 m²</td>
<td></td>
</tr>
<tr>
<td>Small Dimension Softwood Lumber (kiln-dried)</td>
<td>0.7 m³</td>
<td></td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>132.5 L</td>
<td></td>
</tr>
</tbody>
</table>
Wood Stud Wall #26 (WS-W26)

Building Component Description:

- **Category:** Exterior Walls
- **Description:** Wood stud wall with typical batt insulation and EIFS cladding

Quick Numbers:

- **ASHRAE Standard 90.1:**
 - 2
 - 2

- **Wall Thickness:** 260 mm
- **Steel Nails:** 16 mm non-paper-faced gypsum sheathing, (also includes double top plate and one sil plate)

Life-Cycle Assessment Results:

- **Primary Energy Consumption (MJ):**
 - Initial: 66,959
 - 50: 66,959

- **Global Warming Potential (kg of CO₂-eq.):**
 - Initial: 64,500
 - 50: 64,500

ATHENA ® EIE Material List:

- **Notes:** (Includes all materials after 50 years)

Wood Stud Wall #27 (WS-W27)

Building Component Description:

- **Category:** Exterior Walls
- **Description:** Wood stud wall (500 mm o/c) with two layers of rigid insulation and split-faced concrete block cladding

Quick Numbers:

- **ASHRAE Standard 90.1:**
 - 25

- **Wall Thickness:** 1,515 mm

Life-Cycle Assessment Results:

- **Primary Energy Consumption (MJ):**
 - Initial: 69,448
 - 50: 69,448

- **Global Warming Potential (kg of CO₂-eq.):**
 - Initial: 892
 - 50: 892

ATHENA ® EIE Material List:

- **Notes:** (Includes all materials after 50 years)

227
Building Component Description: Wood Stud Wall #28 (WS-W28)

Category: Exterior Walls

Assembly Layers:
- Outside
 - Insulation: 2 layers of rigid insulation
 - Cladding: Commercial steel cladding
- Inside
 - Insulation: Self-adhesive membrane with primer

Quick Numbers:
- 38mm x 140mm wood studs @ 600mm o/c
- THERM 5.2

Lifespan (Years):
- Manufacturing: 2
- Construction: 2
- Maintenance: 2

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Material</th>
<th>Total Embodied Global Warming Potential (GWP)</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 mm Polystyrene</td>
<td>55.5 kg/m²</td>
<td>56.0 kg/m²</td>
<td>Initial = Time 1 (i.e. at the completion of initial construction)</td>
</tr>
<tr>
<td>16 mm Moisture Resistant gypsum board</td>
<td>56.0 kg/m²</td>
<td>56.0 kg/m²</td>
<td></td>
</tr>
<tr>
<td>16 mm Regular gypsum board</td>
<td>56.0 kg/m²</td>
<td>56.0 kg/m²</td>
<td></td>
</tr>
<tr>
<td>Enclosed Polyethylene</td>
<td>208.8 kg/m²</td>
<td>208.8 kg/m²</td>
<td></td>
</tr>
<tr>
<td>Joint Compounds</td>
<td>113.8 kg</td>
<td>113.8 kg</td>
<td></td>
</tr>
<tr>
<td>Modified Bitumen membrane</td>
<td>28.2 kg</td>
<td>28.2 kg</td>
<td></td>
</tr>
<tr>
<td>felt</td>
<td>6.7 kg</td>
<td>6.7 kg</td>
<td></td>
</tr>
<tr>
<td>Paper tape</td>
<td>1.1 kg</td>
<td>1.1 kg</td>
<td></td>
</tr>
<tr>
<td>Pine Wood Bevel Siding</td>
<td>180.4 kg/m²</td>
<td>180.4 kg/m²</td>
<td></td>
</tr>
<tr>
<td>Shrinkage Stabilized Wood Lumber, kiln-dried</td>
<td>2.7 m³</td>
<td>2.7 m³</td>
<td></td>
</tr>
<tr>
<td>Sanded Sanded Alkyd Primer</td>
<td>19.6 L</td>
<td>19.6 L</td>
<td></td>
</tr>
<tr>
<td>Water Based Primer</td>
<td>120.5 L</td>
<td>120.5 L</td>
<td></td>
</tr>
</tbody>
</table>

Building Component Description: Wood Stud Wall #29 (WS-W29)

Category: Exterior Walls

Assembly Layers:
- Outside
 - Insulation: 2 layers of rigid insulation and commercial steel cladding
- Inside
 - Insulation: Self-adhesive membrane with primer

Quick Numbers:
- 38mm x 140mm wood studs @ 600mm o/c
- THERM 5.2

Lifespan (Years):
- Manufacturing: 2
- Construction: 2
- Maintenance: 2

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Material</th>
<th>Total Embodied Global Warming Potential (GWP)</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 mm Polystyrene</td>
<td>54.0 kg/m²</td>
<td>54.0 kg/m²</td>
<td>Initial = Time 1 (i.e. at the completion of initial construction)</td>
</tr>
<tr>
<td>16 mm Moisture Resistant gypsum board</td>
<td>56.0 kg/m²</td>
<td>56.0 kg/m²</td>
<td></td>
</tr>
<tr>
<td>16 mm Regular gypsum board</td>
<td>56.0 kg/m²</td>
<td>56.0 kg/m²</td>
<td></td>
</tr>
<tr>
<td>Enclosed Polyethylene</td>
<td>208.6 kg/m²</td>
<td>208.6 kg/m²</td>
<td></td>
</tr>
<tr>
<td>Joint Compounds</td>
<td>113.8 kg</td>
<td>113.8 kg</td>
<td></td>
</tr>
<tr>
<td>Modified Bitumen membrane</td>
<td>28.2 kg</td>
<td>28.2 kg</td>
<td></td>
</tr>
<tr>
<td>felt</td>
<td>6.7 kg</td>
<td>6.7 kg</td>
<td></td>
</tr>
<tr>
<td>Paper tape</td>
<td>1.1 kg</td>
<td>1.1 kg</td>
<td></td>
</tr>
<tr>
<td>Pine Wood Bevel Siding</td>
<td>180.4 kg/m²</td>
<td>180.4 kg/m²</td>
<td></td>
</tr>
<tr>
<td>Shrinkage Stabilized Wood Lumber, kiln-dried</td>
<td>2.7 m³</td>
<td>2.7 m³</td>
<td></td>
</tr>
<tr>
<td>Sanded Sanded Alkyd Primer</td>
<td>19.6 L</td>
<td>19.6 L</td>
<td></td>
</tr>
<tr>
<td>Water Based Primer</td>
<td>120.5 L</td>
<td>120.5 L</td>
<td></td>
</tr>
</tbody>
</table>
Wood Stud Wall #30 (WS-W30)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
<th>Exterior Walls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description:</td>
<td>Wood stud wall (609mm x 76mm) with two layers of rigid insulation and EPS skirtings</td>
<td>6" for stud wall interior finish</td>
<td>6" thermal insulation spray foam insulation</td>
</tr>
<tr>
<td>Quick Numbers:</td>
<td>45m² non-paper faced gypsum board</td>
<td>15mm @ 400mm o.c. steel gussets</td>
<td>15mm @ 400mm o.c. steel gussets</td>
</tr>
<tr>
<td>ATHENA Standard & Ref.</td>
<td>REF: 6.3</td>
<td>REF: 6.4</td>
<td>REF: 6.4</td>
</tr>
<tr>
<td>Wall Thickness</td>
<td>116mm</td>
<td>116mm</td>
<td>116mm</td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>1160 MJ</td>
<td>1160 MJ</td>
<td>1160 MJ</td>
</tr>
<tr>
<td>Total Embodied GWP</td>
<td>44 kg of CO2 eq/m²</td>
<td>44 kg of CO2 eq/m²</td>
<td>44 kg of CO2 eq/m²</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Life-Span (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE</th>
<th>Total EE per m²</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>2522.2</td>
<td>1484.9</td>
<td>716.2</td>
<td>0</td>
<td>4723.3</td>
<td>354.4</td>
<td>-</td>
</tr>
<tr>
<td>50</td>
<td>2522.2</td>
<td>1484.9</td>
<td>716.2</td>
<td>0</td>
<td>4723.3</td>
<td>354.4</td>
<td>-</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Life-Span (Years)</th>
<th>Embodied Global Warming Potential (GWP)</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>2044 kg</td>
<td>-</td>
</tr>
<tr>
<td>50</td>
<td>2044 kg</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: Net wall area of baseline retail building (gross wall area - openings) = 381.2 m² (Length x Height = 7.6m x 8.6m = 65.0m²)

ATHENA® EIE Material List

- **#15 Organic Felt**
- **3.0mm Moisture Resistant Gypsum Board**
- **18mm Regular Gypsum Board**
- **Galvanized Sheet**
- **Joint Compound**
- **Modified Bitumen membranes**
- **Nails**
- **Paper Tape**
- **Softwood Lumber Kiln-dried**
- **Sawn End Alkyd Paint**
- **Screws over metal nails**
- **Water Based Latex Paint**

Notes:

1. Initial = Time 17.0m, at the completion of initial construction
2. Trans = Transportation
3. Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component after lifespan + total manufacturing + total construction + total maintenance + total embodied effects
4. Total EE (or Total GWP) per m² = Total EE (or Total GWP) of building component area + 2044 kg
5. Total Difference in Operating Energy (40kW) from Baseline after Lifespan = Total difference in operating energy from baseline after lifespan + 150 kg CO₂ eq/yr
6. Total operating energy use of baseline retail building after 50 years = 50700 GJ/yr (174.4 MWh/yr)
7. Total operating energy use of baseline retail building after 50 years = 2,310 tonnes of CO₂ eq (60kg of CO₂ eq/yr)

LCA Data for Pre-Engineered Steel Building Exterior Walls

This section contains a detailed description of each pre-engineered steel building (PENG) exterior infill wall that was examined in this study (4 in total). The assembly layers are listed for each wall, along with a detailed description of the material quantities from the ATHENA® Environmental Impact Estimator for Buildings.

A breakdown of the total primary energy consumption and the total global warming potential (GWP) for each wall is also included. In each case, the results were calculated for an area of wall equal to 50.9 m², which represents a typical bay size for a single-storey retail building. The results are also expressed on a per m² basis in each case. The data has been calculated for two different lifespans: at the completion of initial construction and after 50 years.

As a summary, the figure below illustrates a comparison of the total embodied energy (and GWP) after 50 years for the various walls in this section. For comparison purpose, the building component used in the baseline retail building has been shaded in grey.
Pre-Engineered Steel Building Exterior Wall #1 (PENG-W1)

Building Component Description:
- Category: Interior Walls
- Assembly Layers: Outside
- Brief Description: Pre-engineered steel building exterior envelope wall with interior steel stud framing and no insulation (not typical pre-eng. envelope)
- QUICK NUMBERS:
 - Material: 6 mil Polyethylene
 - Quantities: 540 m²
 - Total Embodied Energy: 468 MJ
 - Wall Thickness: 6 mm (framing interior 4.8 mm)

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Life-cycle Assessment (MJ)</th>
<th>Embodied Energy (MJ)</th>
<th>Difference in Operating Energy (MJ)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Manufacturing</td>
<td>Construction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trans.</td>
<td>Total</td>
<td>Trans.</td>
</tr>
<tr>
<td>Initial</td>
<td>24,579</td>
<td>24,579</td>
<td>150</td>
</tr>
<tr>
<td>50</td>
<td>24,579</td>
<td>24,579</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Total Embodied Energy (MJ): 24,579</td>
<td>24,579</td>
<td>150</td>
</tr>
</tbody>
</table>
| | Total Wall Area of Baseline Retail Building (gross wall area - openings) = 50.9 m²
| | (Length x Height) = 7.6 m x 6.7 m x 50.9 m³) |

Notes:
- ATHENA © EIE Material List (includes all materials after 50 years)
- Material List:
 - 6 mil Polyethylene
 - Galvanized Steel
 - Galvanized Studs
 - Screws Nuts & Bolts
 - Water Based Latex Paint
- *Initial = Time 17.9 years, at the completion of initial construction
- *Trans. = Transportation
- *Total EE (for Total GWP) = Total embodied energy (or total embodied GWP) of building component after lifetime (aka, total manufacturing + total construction + total maintenance + total enter-AH effects)
- *Total EE (for Total GWP) per m² = 1.154
- *Total Difference in Operating Energy (MJ) from Baseline after Lifecycle = The difference in the total lifecycle operating energy (MJ) from the baseline retail building after lifespans due to using this building component instead of the baseline component
- *Total Difference in Operating Energy (MJ) from Baseline after Lifetime per m² = The difference in the total lifecycle operating energy (MJ) from the baseline retail building after lifespans due to using this building component instead of the baseline component
- *Total Difference in Operating Energy (MJ) from Baseline after Lifetime per m² = Total difference in operating energy (MJ) from baseline after lifetime per m² of baseline retail building
- *Total operating primary energy use of baseline retail building after 50 years = 2,310 tonnes of CO₂ eq (690 kg of CO₂ eq/Ahry)

Pre-Engineered Steel Building Exterior Wall #2 (PENG-W2)

Building Component Description:
- Category: Interior Walls
- Assembly Layers: Outside
- Brief Description: Typical pre-engineered steel building exterior envelope wall with interior steel stud framing and no insulation (not typical pre-eng. envelope)
- QUICK NUMBERS:
 - Material: 6 mil Polyethylene
 - Quantities: 540 m²
 - Total Embodied Energy: 468 MJ
 - Wall Thickness: 6 mm (framing interior 4.8 mm)

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Life-cycle Assessment (MJ)</th>
<th>Embodied Energy (MJ)</th>
<th>Difference in Operating Energy (MJ)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Manufacturing</td>
<td>Construction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trans.</td>
<td>Total</td>
<td>Trans.</td>
</tr>
<tr>
<td>Initial</td>
<td>20,692</td>
<td>20,692</td>
<td>140</td>
</tr>
<tr>
<td>50</td>
<td>20,692</td>
<td>20,692</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>Total Embodied Energy (MJ): 20,692</td>
<td>20,692</td>
<td>140</td>
</tr>
</tbody>
</table>
| | Total Wall Area of Baseline Retail Building (gross wall area - openings) = 50.9 m²
| | (Length x Height) = 7.6 m x 6.7 m x 50.9 m³) |

Notes:
- ATHENA © EIE Material List (includes all materials after 50 years)
- Material List:
 - 6 mil Polyethylene
 - Galvanized Steel
 - Galvanized Studs
 - Screws Nuts & Bolts
 - Water Based Latex Paint
Pre-Engineered Steel Building Exterior Wall #3 (PENG-W3)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Pre-engineered steel building exterior enclosure wall with interior steel cladding, 2.6 kg/m² galvanized and/or 0.15 kg/m² fire insulation.</td>
<td>Ductile</td>
</tr>
<tr>
<td>Quick Numbers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS/NZ Standard 19.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight per meter</td>
<td>64.0 kg</td>
<td></td>
</tr>
<tr>
<td>Length (m)</td>
<td>10.0 m</td>
<td></td>
</tr>
<tr>
<td>Total Weight</td>
<td>640.0 kg</td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

- **Primary Energy Consumption (MJ):**
 - Embodied Energy (EE): Material, Trans, Total, Trans, Total, Trans, Total
 - End of Life: Material, Trans, Total, Trans, Total, Trans, Total
 - Total EE: Material, Trans, Total, Trans, Total, Trans, Total
 - Difference in Operating Energy: From Baseline after Lifespan: Material, Trans, Total, Trans, Total, Trans, Total

- **Global Warming Potential (kg of CO₂ eq.):**
 - Embodied Global Warming Potential (GWP): Material, Trans, Total, Trans, Total, Trans, Total
 - End of Life: Material, Trans, Total, Trans, Total, Trans, Total
 - Total GWP: Material, Trans, Total, Trans, Total, Trans, Total
 - Difference in Operating GWP from Baseline after Lifespan: Material, Trans, Total, Trans, Total, Trans, Total

Notes:

1. Initial Time: 17.9 years at the completion of initial construction
2. Trans = Transportation
3. Total EE for Total GWP = Total embodied energy (or total embodied GWP) of building component after lifespan (i.e., total construction + total maintenance + total end-use lifetime effects)
4. Total EE for Total GWP per m² = Total EE for Total GWP divided by the net wall area of baseline retard building
5. Total Difference in Operating Energy per GWP: From Baseline after Lifespan = The difference in the total operating energy (or GWP) from the baseline retard building after lifespan, due to using this building component instead of the baseline component.

Pre-Engineered Steel Building Exterior Wall #4 (PENG-W4)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Pre-engineered steel building exterior enclosure wall with interior steel cladding, 2.6 kg/m² galvanized, and interior steel use sheet.</td>
<td>Concrete</td>
</tr>
<tr>
<td>Quick Numbers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS/NZ Standard 19.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight per meter</td>
<td>64.0 kg</td>
<td></td>
</tr>
<tr>
<td>Length (m)</td>
<td>10.0 m</td>
<td></td>
</tr>
<tr>
<td>Total Weight</td>
<td>640.0 kg</td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

- **Primary Energy Consumption (MJ):**
 - Embodied Energy (EE): Material, Trans, Total, Trans, Total, Trans, Total
 - End of Life: Material, Trans, Total, Trans, Total, Trans, Total
 - Total EE: Material, Trans, Total, Trans, Total, Trans, Total
 - Difference in Operating Energy: From Baseline after Lifespan: Material, Trans, Total, Trans, Total, Trans, Total

- **Global Warming Potential (kg of CO₂ eq.):**
 - Embodied Global Warming Potential (GWP): Material, Trans, Total, Trans, Total, Trans, Total
 - End of Life: Material, Trans, Total, Trans, Total, Trans, Total
 - Total GWP: Material, Trans, Total, Trans, Total, Trans, Total
 - Difference in Operating GWP from Baseline after Lifespan: Material, Trans, Total, Trans, Total, Trans, Total

Notes:

1. Initial Time: 17.9 years at the completion of initial construction
2. Trans = Transportation
3. Total EE for Total GWP = Total embodied energy (or total embodied GWP) of building component after lifespan (i.e., total construction + total maintenance + total end-use lifetime effects)
4. Total EE for Total GWP per m² = Total EE for Total GWP divided by the net wall area of baseline retard building
5. Total Difference in Operating Energy per GWP: From Baseline after Lifespan = The difference in the total operating energy (or GWP) from the baseline retard building after lifespan, due to using this building component instead of the baseline component.
LCA Data for Opaque Curtainwall Enclosures

This section contains a detailed description of each opaque curtainwall enclosure (CWALL) that was examined in this study (4 in total). The assembly layers are listed for each wall, along with a detailed description of the material quantities from the ATHENA® Environmental Impact Estimator for Buildings.

A breakdown of the total primary energy consumption and the total global warming potential (GWP) for each wall is also included. In each case, the results were calculated for an area of wall equal to 50.9 m², which represents a typical bay size for a single-storey retail building. The results are also expressed on a per m² basis in each case. The data has been calculated for two different lifespans: at the completion of initial construction and after 50 years.

As a summary, the figure below illustrates a comparison of the total embodied energy (and GWP) after 50 years for the various walls in this section. For comparison purpose, the building component used in the baseline retail building has been shaded in grey.

Opague Curtainwall Enclosure #1 (CWALL-W1)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Walls</th>
<th>Assembly Layers</th>
<th>Exterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Self-supported aluminum curtainwall with painted metal spandrel panel and insulated metal backing</td>
<td>Painted metal spandrel panel</td>
<td>Self-supporting aluminum curtainwall with insulated and thermally broken cavity</td>
</tr>
<tr>
<td>Material List</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aluminum</td>
<td>850.4 kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Batt. Fiberglass</td>
<td>378.9 m² (25mm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EPDM membrane</td>
<td>36.4 kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Galvanized Sheet</td>
<td>34.0 kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Screws, Nuts & Bolts</td>
<td>22.0 kg</td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

- **Material:**
 - Initial: 70.306 MJ
 - After 50 years: 70.306 MJ
- **Construction:**
 - Initial: 1.039 MJ
 - After 50 years: 1.039 MJ
- **Maintenance:**
 - Initial: 0 MJ
 - After 50 years: 0 MJ
- **End of Life:**
 - Initial: 0 MJ
 - After 50 years: 67 MJ

Difference in Operating Energy from Baseline after Lifespan:

- **Total EE:** 71.302 MJ
- **Total GWP:** 1.412 tonnes CO₂ eq.

Global Warming Potential (kg of CO₂ eq.)

- **Material:**
 - Initial: 2.851 kg
 - After 50 years: 2.851 kg
- **Construction:**
 - Initial: 0 kg
 - After 50 years: 0 kg
- **Maintenance:**
 - Initial: 0 kg
 - After 50 years: 0 kg
- **End of Life:**
 - Initial: 0 kg
 - After 50 years: 67 kg

Difference in Operating GWP from Baseline after Lifespan:

- **Total GWP:** 2.854 kg
- **Total GWP per m²:** 0.056 kg

Notes:

1. Initial = Time of completion of Initial construction
2. Trans. = Transportation
3. Total EE = Total energy in (MJ) of building component at the completion of Initial construction
4. Total EE = Total energy in (MJ) of building component at the completion of Initial construction + total maintenance + total energy in (MJ) of transportation
5. Total GWP = Total GWP in (kg) of building component at the completion of Initial construction + total maintenance + total energy in (MJ) of transportation
6. Total GWP = Total GWP in (kg) of building component at the completion of Initial construction + total maintenance + total energy in (MJ) of transportation
7. Total GWP = Total GWP in (kg) of building component at the completion of Initial construction + total maintenance + total energy in (MJ) of transportation
8. Total GWP = Total GWP in (kg) of building component at the completion of Initial construction + total maintenance + total energy in (MJ) of transportation
9. Total GWP = Total GWP in (kg) of building component at the completion of Initial construction + total maintenance + total energy in (MJ) of transportation
10. Total operating primary energy use of baseline retail building after 50 years = 50.700 MJ (1.715 MWh/yr)
11. Total operating primary energy use of baseline retail building after 50 years = 50.700 MJ (1.715 MWh/yr)
12. Total operating Primary energy use of baseline retail building after 50 years = 2,310 tonnes CO₂ eq. (860kg of CO₂ eq/yr)
Opaque Curtainwall Enclosure #2 (CWALL-W2)

Building Component Description:

Assembly Layers:
- Exterior Walls
- Interior Walls
- Glazing

**Opaque glazing (clear glass) (WB)
- Opaque glazing (clear glass) (WB)
- Glass spandrel panel with thermal break
- Support system (WB)

Quick Numbers:
- In (60 mm deep multi-pane glazing) 6.15 m
- Laminated glass (80 mm)

Walls:
- Tensile (60 mm)
- Structural (10.0 mm)

Total Embedded Energy:
- 316,208 MWh

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Description</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total Energy</th>
<th>Total per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td></td>
<td>78,703</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>80,734</td>
<td>1,009</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq):

<table>
<thead>
<tr>
<th>Description</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GWP</th>
<th>Total per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td></td>
<td>6,170</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6,194</td>
<td>0.84</td>
</tr>
</tbody>
</table>

ATHENA® EIE Material List:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>621.2 kg</td>
<td></td>
</tr>
<tr>
<td>Glass</td>
<td>378.9 m²</td>
<td></td>
</tr>
<tr>
<td>EPDM</td>
<td>34.4 kg</td>
<td></td>
</tr>
<tr>
<td>Galvalume</td>
<td>225.3 kg</td>
<td></td>
</tr>
<tr>
<td>Screws</td>
<td>22.0 kg</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. **Time (h:mm)** at the completion of initial construction
2. **Trans** = Transportation
3. **Total EE (for Total GWP) = Total embedded energy (or total embedded GWP) of building component after Lifespan (kWh, total manufacturing + total construction + total maintenance + total end-of-life effects)
4. **Total EE (for Total GWP per m²) = Total EE (for Total GWP) of building component / area of building component that was modelled in ATHENA® EIE
5. **Difference in Operating Energy (for GWP) from Baseline after Lifespan = The difference in the total Lifecycle operating energy (for GWP) from the baseline retail building after Lifespan due to using this building component instead of the baseline component
6. **Difference in Operating Energy (for GWP) from Baseline after Lifespan per m² = Total difference in operating energy (for GWP) of building component / area of building component that was modelled in ATHENA® EIE

Opaque Curtainwall Enclosure #3 (CWALL-W3)

Building Component Description:

Assembly Layers:
- Exterior Walls
- Interior Walls
- Glazing

**Opaque glazing (clear glass) (WB)
- Opaque glazing (clear glass) (WB)
- Glass spandrel panel with thermal break
- Support system (WB)

Quick Numbers:
- In (60 mm deep multi-pane glazing) 6.15 m
- Laminated glass (80 mm)

Walls:
- Tensile (60 mm)
- Structural (10.0 mm)

Total Embedded Energy:
- 316,208 MWh

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Description</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total Energy</th>
<th>Total per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td></td>
<td>78,703</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>80,734</td>
<td>1,009</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq):

<table>
<thead>
<tr>
<th>Description</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GWP</th>
<th>Total per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td></td>
<td>6,170</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6,194</td>
<td>0.84</td>
</tr>
</tbody>
</table>

ATHENA® EIE Material List:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>850.4 kg</td>
<td></td>
</tr>
<tr>
<td>EPDM</td>
<td>34.4 kg</td>
<td></td>
</tr>
<tr>
<td>Galvalume</td>
<td>346.6 kg</td>
<td></td>
</tr>
<tr>
<td>Screws</td>
<td>22.0 kg</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. **Time (h:mm)** at the completion of initial construction
2. **Trans** = Transportation
3. **Total EE (for Total GWP) = Total embedded energy (or total embedded GWP) of building component after Lifespan (kWh, total manufacturing + total construction + total maintenance + total end-of-life effects)
4. **Total EE (for Total GWP per m²) = Total EE (for Total GWP) of building component / area of building component that was modelled in ATHENA® EIE
5. **Difference in Operating Energy (for GWP) from Baseline after Lifespan = The difference in the total Lifecycle operating energy (for GWP) from the baseline retail building after Lifespan due to using this building component instead of the baseline component
6. **Difference in Operating Energy (for GWP) from Baseline after Lifespan per m² = Total difference in operating energy (for GWP) from baseline retail building after Lifespan per m² / area of building component that was modelled in ATHENA® EIE

These tables provide a detailed breakdown of the materials used, their quantities, and their energy and environmental impact over the life cycle of the building enclosures #2 and #3.
Opaque Curtainwall Enclosure #4 (CWALL-W4)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Assembly Layers</th>
<th>Opaque Curtainwall Enclosure #4 (CWALL-W4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td></td>
<td>Self-supported aluminum curtainwall with opaque glazing spandrel panel and no insulated metal backup</td>
</tr>
</tbody>
</table>

Quick Numbers:

- Exterior Walls
 - 100mm deep mullions spaced 2m o/c vertically and 1.5m o/c horizontally
 - R-Value: ASHRAE Standard 90.1 - Fundamentals (SI): 1.0 RSI
 - 100 mm

Difference in Operating Energy from Baseline after End of Life

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE per m²</th>
<th>Total</th>
<th>per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>72,502</td>
<td>776</td>
<td>73,277</td>
<td>0</td>
<td>1,698</td>
<td>0</td>
<td>1,698</td>
</tr>
<tr>
<td>50</td>
<td>5,893</td>
<td>563</td>
<td>5,923</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Embodied energy and GWP numbers are based on an area of wall = 50.9 m²

*Thermal resistance and thermal mass of wall was too low to get an accurate evaluation of operating energy from computer simulations

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GWP per m²</th>
<th>Total</th>
<th>per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>5,893</td>
<td>563</td>
<td>5,923</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>5,893</td>
<td>563</td>
<td>5,923</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Embodied energy and GWP numbers are based on an area of wall = 50.9 m²

Notes:

1) Initial Time 0' at the completion of initial construction
2) Trans = Transportation
3) Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component after End of Life + total manufacturing = total construction + total maintenance + total End of Life effects
4) Total EE (or Total GWP) per m² = Total EE (or Total GWP) of building component / area of building component that was modeled in ATHENA EIE
5) Total Difference in Operating Energy (or GWP) from Baseline after Lifespan = The difference in the total Recycle operating energy (or GWP) from the baseline retail building after lifespans, due to using this building component instead of the baseline component
6) Total Difference in Operating Energy (or GWP) from Baseline after Lifespan per m² = Total difference in operating energy for GWP from baseline after Lifespan / net wall area of baseline retail building
7) Total operating primary energy use of baseline retail building after 50 years = 0.0706 GJ / (1740 MWh/yr)
8) Total operating GWP of baseline retail building after 50 years = 2310 tonnes of CO₂ eq (80% of CO₂ eq/MWh)

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>621.2</td>
<td>kg</td>
</tr>
<tr>
<td>EPDM Membrane</td>
<td>36.4</td>
<td>kg</td>
</tr>
<tr>
<td>Galvanized Steel</td>
<td>235.3</td>
<td>kg</td>
</tr>
<tr>
<td>Glazing Panel</td>
<td>1,397.9</td>
<td>kg</td>
</tr>
<tr>
<td>Screws Nuts & Bolts</td>
<td>32.9</td>
<td>kg</td>
</tr>
</tbody>
</table>
Appendix B-2

LCA Data for Roofs
LCA Data for Concrete Hollow Core Roofs

This section contains a detailed description of each concrete hollow core (CHC) roof that was examined in this study (10 in total). The assembly layers are listed for each roof, along with a detailed description of the material quantities from the ATHENA® Environmental Impact Estimator for Buildings.

A breakdown of the total primary energy consumption and the total global warming potential (GWP) for each roof is also included. In each case, the results were calculated for an area of roof equal to 57.8 m², which represents a typical bay size for a single-storey retail building with this type of roof system. The results are also expressed on a per m² basis in each case. The data has been calculated for two different lifespans: at the completion of initial construction and after 50 years.

As a summary, the figure below illustrates a comparison of the total embodied energy (and GWP) after 50 years for the various roofs in this section. For comparison purpose, the building component used in the baseline retail building has been shaded in grey.

Concrete Hollow Core Roof #1 (CHC-R1)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embodied Energy</td>
<td>Calculated per roof area and multiplied by total roof area (57.8 m²)</td>
</tr>
</tbody>
</table>

Quick Numbers:

<table>
<thead>
<tr>
<th>Material/Standard</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete 20 MPa (flyash av)</td>
<td>3.0 m³</td>
</tr>
<tr>
<td>Concrete 60 MPa (flyash av)</td>
<td>5.7 m³</td>
</tr>
<tr>
<td>Galvanized Sheet</td>
<td>155.7 kg</td>
</tr>
<tr>
<td>Isocyanurate (25mm)</td>
<td>179.2 m²</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>93.4 kg</td>
</tr>
<tr>
<td>Modified Bitumen membrane</td>
<td>2.71G2 kg</td>
</tr>
<tr>
<td>Paper</td>
<td>30.3 kg</td>
</tr>
<tr>
<td>Paper, Rod, Light Sections</td>
<td>197.2 kg</td>
</tr>
<tr>
<td>Roofing Asphalt</td>
<td>1.66G1 kg</td>
</tr>
<tr>
<td>Webbed Wire Mesh / Ladder Wire</td>
<td>56.4 kg</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Life-Span (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE</th>
<th>Total Operating Energy from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>6.93G6</td>
<td>1,134,716</td>
<td>345,938</td>
<td>933,794</td>
<td>2,997</td>
<td>49,486,256</td>
</tr>
<tr>
<td>50</td>
<td>122.099</td>
<td>1,126,701</td>
<td>339,919</td>
<td>921,780</td>
<td>2,971</td>
<td>49,486,256</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.):

<table>
<thead>
<tr>
<th>Life-Span (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GWP</th>
<th>Total Operating GWP from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>6.93G6</td>
<td>1,134,716</td>
<td>345,938</td>
<td>933,794</td>
<td>2,997</td>
<td>49,486,256</td>
</tr>
<tr>
<td>50</td>
<td>122.099</td>
<td>1,126,701</td>
<td>339,919</td>
<td>921,780</td>
<td>2,971</td>
<td>49,486,256</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time 17 years at the completion of initial construction.
2. Trans. = Transportation
3. Total EEE (Total GWP) = Total embodied energy (or total embodied GWP) of building component after lifespan.
4. Total EEE (Total GWP) per m² = Total EEE (or Total GWP) of building component per m² of area building component that was modelled in ATHENA® EEE.
5. Total Difference in Operating Energy (or GWP) from Baseline after Lifespan = The difference in the total lifecycle operating energy (or GWP) from the baseline retail building after lifespans due to using this building component instead of the baseline component.
6. Total EEE (Total GWP) per m² = Total difference in operating energy (or GWP) from baseline after lifespans per m² of roof area of baseline retail building.

Material List:

<table>
<thead>
<tr>
<th>Material</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper Tape</td>
<td>0.7 kg</td>
<td></td>
</tr>
<tr>
<td>Roofing Asphalt</td>
<td>1.66G1 kg</td>
<td></td>
</tr>
<tr>
<td>Webbed Wire Mesh / Ladder Wire</td>
<td>56.4 kg</td>
<td></td>
</tr>
<tr>
<td>Joint Compound</td>
<td>93.4 kg</td>
<td></td>
</tr>
<tr>
<td>Modified Bitumen membrane</td>
<td>2.71G2 kg</td>
<td></td>
</tr>
<tr>
<td>Paper</td>
<td>30.3 kg</td>
<td></td>
</tr>
<tr>
<td>Paper, Rod, Light Sections</td>
<td>197.2 kg</td>
<td></td>
</tr>
</tbody>
</table>
Concrete Hollow Core Roof #2 (CHC-R2)

Building Component Description:

Material List

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>#10 Organic Felt</td>
<td>50.5 m²</td>
<td></td>
</tr>
<tr>
<td>Moist Mass Moist Paper (Brown)</td>
<td>63.5 m²</td>
<td></td>
</tr>
<tr>
<td>Roofing Paper (Brown)</td>
<td>63.5 m²</td>
<td></td>
</tr>
<tr>
<td>Bitumen Asphalt Membrane</td>
<td>4.95 m²</td>
<td>kg</td>
</tr>
<tr>
<td>Concrete 30 MPa (Pink/Red)</td>
<td>0 m³</td>
<td></td>
</tr>
<tr>
<td>Concrete 20 MPa (Pink/Red)</td>
<td>0.7 m³</td>
<td></td>
</tr>
<tr>
<td>Gypsum Board</td>
<td>209.4 kg</td>
<td></td>
</tr>
<tr>
<td>Insulation</td>
<td>172.4 m² (125m²)</td>
<td></td>
</tr>
<tr>
<td>Air Compressor</td>
<td>64.2 kg</td>
<td></td>
</tr>
<tr>
<td>Nails</td>
<td>9.3 kg</td>
<td></td>
</tr>
<tr>
<td>Paper Tape</td>
<td>15.7 m</td>
<td></td>
</tr>
<tr>
<td>Paper, Polyethylene</td>
<td>145.8 m²</td>
<td></td>
</tr>
<tr>
<td>Roofing Asphalt</td>
<td>1,067.6 m²</td>
<td></td>
</tr>
<tr>
<td>Type B Glass Felt</td>
<td>1,043.2 m²</td>
<td></td>
</tr>
<tr>
<td>Welded Wire Mesh / Leader Wire</td>
<td>90.4 kg</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- **Total EE/Energy** (MJ): Total energy required for the materials listed above (at the completion of total construction).
- **Trans - Transportation**: 50.5 m² (total materials).
- **Building Component**: Total energy required for the building component.
- **Roof/Floor**: Total energy required for the roof/floor component.
- **Building Component**: Total energy required for the building component.
- **Roof/Floor**: Total energy required for the roof/floor component.
- **Building Component**: Total energy required for the building component.
- **Roof/Floor**: Total energy required for the roof/floor component.
- **Building Component**: Total energy required for the building component.
- **Roof/Floor**: Total energy required for the roof/floor component.
- **Building Component**: Total energy required for the building component.
- **Roof/Floor**: Total energy required for the roof/floor component.
- **Building Component**: Total energy required for the building component.
- **Roof/Floor**: Total energy required for the roof/floor component.

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

- **Initial**: 6,309.2
- **Total EE/Energy**: 17,170 m³

Global Warming Potential (kg of CO₂ eq):

- **Initial**: 5,390.2
- **Total EE/Energy**: 17,170 m³

Concrete Hollow Core Roof #3 (CHC-R3)

Building Component Description:

Material List

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPDM Roofing Sheet</td>
<td>1,043.2 m²</td>
<td></td>
</tr>
<tr>
<td>Roofing Paper (Brown)</td>
<td>63.5 m²</td>
<td></td>
</tr>
<tr>
<td>Roofing Paper (Brown)</td>
<td>63.5 m²</td>
<td></td>
</tr>
<tr>
<td>Bitumen Asphalt Membrane</td>
<td>1,067.6 m²</td>
<td></td>
</tr>
<tr>
<td>Concrete 30 MPa (Pink/Red)</td>
<td>0.7 m³</td>
<td></td>
</tr>
<tr>
<td>Concrete 20 MPa (Pink/Red)</td>
<td>0 m³</td>
<td></td>
</tr>
<tr>
<td>Gypsum Board</td>
<td>209.4 kg</td>
<td></td>
</tr>
<tr>
<td>Insulation</td>
<td>172.4 m² (125m²)</td>
<td></td>
</tr>
<tr>
<td>Air Compressor</td>
<td>64.2 kg</td>
<td></td>
</tr>
<tr>
<td>Nails</td>
<td>9.3 kg</td>
<td></td>
</tr>
<tr>
<td>Paper Tape</td>
<td>15.7 m</td>
<td></td>
</tr>
<tr>
<td>Paper, Polyethylene</td>
<td>145.8 m²</td>
<td></td>
</tr>
<tr>
<td>Roofing Asphalt</td>
<td>1,067.6 m²</td>
<td></td>
</tr>
<tr>
<td>Type B Glass Felt</td>
<td>1,043.2 m²</td>
<td></td>
</tr>
<tr>
<td>Welded Wire Mesh / Leader Wire</td>
<td>90.4 kg</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- **Total EE/Energy** (MJ): Total energy required for the materials listed above (at the completion of total construction).
- **Trans - Transportation**: 50.5 m² (total materials).
- **Building Component**: Total energy required for the building component.
- **Roof/Floor**: Total energy required for the roof/floor component.
- **Building Component**: Total energy required for the building component.
- **Roof/Floor**: Total energy required for the roof/floor component.
- **Building Component**: Total energy required for the building component.
- **Roof/Floor**: Total energy required for the roof/floor component.
- **Building Component**: Total energy required for the building component.
- **Roof/Floor**: Total energy required for the roof/floor component.
- **Building Component**: Total energy required for the building component.
- **Roof/Floor**: Total energy required for the roof/floor component.
- **Building Component**: Total energy required for the building component.
- **Roof/Floor**: Total energy required for the roof/floor component.

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

- **Initial**: 6,309.2
- **Total EE/Energy**: 17,170 m³

Global Warming Potential (kg of CO₂ eq):

- **Initial**: 5,390.2
- **Total EE/Energy**: 17,170 m³
Concrete Hollow Core Roof #4 (CHC-R4)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Concrete hollow core roof slab with continuous 70mm polyurethane insulation and PCC roof assembly.</td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>- 70mm polyurethane (modelled as moisture resistant gypsum) - 12mm continuous 70mm polyurethane insulation</td>
</tr>
<tr>
<td>Weight Thickness</td>
<td>335 cm (continuous cast sprayed roofing)</td>
</tr>
<tr>
<td>Span</td>
<td>5.0 - 8.0 m</td>
</tr>
<tr>
<td>Total Estimated Weight</td>
<td>90 - 95 kg/m²</td>
</tr>
<tr>
<td>Total Estimated Lifespan</td>
<td>2000 hours (continuous cast sprayed roofing)</td>
</tr>
<tr>
<td>Total Embedded Energy</td>
<td>1.747 MJ/m²</td>
</tr>
<tr>
<td>Total Embedded GWP</td>
<td>95 kg of CO₂ eq/m²</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total Energy (MJ) per m²</th>
<th>Total Energy (MJ) per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 5.441</td>
<td>2,559</td>
<td>559</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3,138</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GWP (kg of CO₂ eq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 5.441</td>
<td>2,559</td>
<td>559</td>
<td>0</td>
<td>0</td>
<td>10,000</td>
</tr>
</tbody>
</table>

Notes:

- Initial: Time between the completion of the initial construction.
- Trans.: Transportation.
- Total EE (MJ) = Total embedded energy (MJ) (includes all material and fabrication).
- Total CO₂ (kg of CO₂ eq.) = Total GWP (kg of CO₂ eq.)

ATHENA ® EIE Material List:

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0mm Galvalume Plated Drywall</td>
<td>63.5 m²</td>
</tr>
<tr>
<td>6.0m Polyurethane</td>
<td>5.8 m³</td>
</tr>
<tr>
<td>Cement (aggregate)</td>
<td>16,970.0 kg</td>
</tr>
<tr>
<td>Concrete (aggregate)</td>
<td>5.7 m³</td>
</tr>
<tr>
<td>Steel</td>
<td>153.0 kg</td>
</tr>
<tr>
<td>Expanded Polystyrene</td>
<td>170.0 kg (25m³)</td>
</tr>
<tr>
<td>Wood</td>
<td>190.0 kg</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.5 kg</td>
</tr>
<tr>
<td>PVC Membrane</td>
<td>1,540.0 kg</td>
</tr>
<tr>
<td>Hanger for Ties</td>
<td>122.0 kg</td>
</tr>
<tr>
<td>Total Embedded GWP</td>
<td>263.0 kg</td>
</tr>
</tbody>
</table>

Concrete Hollow Core Roof #5 (CHC-R5)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Concrete hollow core roof slab with non-continuous 70mm polyurethane insulation and standing seam steel roof assembly.</td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>- 70mm polyurethane (modelled as moisture resistant gypsum) - 12mm continuous 70mm polyurethane insulation</td>
</tr>
<tr>
<td>Weight Thickness</td>
<td>335 cm (continuous cast sprayed roofing)</td>
</tr>
<tr>
<td>Span</td>
<td>5.0 - 8.0 m</td>
</tr>
<tr>
<td>Total Estimated Weight</td>
<td>90 - 95 kg/m²</td>
</tr>
<tr>
<td>Total Estimated Lifespan</td>
<td>2000 hours (continuous cast sprayed roofing)</td>
</tr>
<tr>
<td>Total Embedded Energy</td>
<td>1.747 MJ/m²</td>
</tr>
<tr>
<td>Total Embedded GWP</td>
<td>95 kg of CO₂ eq/m²</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total Energy (MJ) per m²</th>
<th>Total Energy (MJ) per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 5.441</td>
<td>2,559</td>
<td>559</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3,138</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GWP (kg of CO₂ eq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 5.441</td>
<td>2,559</td>
<td>559</td>
<td>0</td>
<td>0</td>
<td>10,000</td>
</tr>
</tbody>
</table>

Notes:

- Initial: Time between the completion of the initial construction.
- Trans.: Transportation.
- Total EE (MJ) = Total embedded energy (MJ) (includes all material and fabrication).
- Total CO₂ (kg of CO₂ eq.) = Total GWP (kg of CO₂ eq.)

ATHENA ® EIE Material List:

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0mm Galvalume Plated Drywall</td>
<td>63.5 m²</td>
</tr>
<tr>
<td>Concrete 20 MPa (2000 psi)</td>
<td>3.0 m³</td>
</tr>
<tr>
<td>Concrete 60 MPa (8500 psi)</td>
<td>5.7 m³</td>
</tr>
<tr>
<td>Foam Polystyrene</td>
<td>178.0 m³ (25m³)</td>
</tr>
<tr>
<td>Galvanized Steel</td>
<td>472.0 kg</td>
</tr>
<tr>
<td>Galvanized Steel</td>
<td>70.0 kg</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>93.4 kg</td>
</tr>
<tr>
<td>Modified Bitumen membrane</td>
<td>263.0 kg</td>
</tr>
<tr>
<td>Nails</td>
<td>4.2 kg</td>
</tr>
<tr>
<td>Pipe Ties</td>
<td>1.5 kg</td>
</tr>
<tr>
<td>Rebar, Rod, Light Sections</td>
<td>197.0 kg</td>
</tr>
<tr>
<td>Screws Nuts & Bolts</td>
<td>0.6 kg</td>
</tr>
<tr>
<td>Solvent Based Adhesive</td>
<td>48.4 L</td>
</tr>
<tr>
<td>Watertight Membrane</td>
<td>48.4 kg</td>
</tr>
</tbody>
</table>
Concrete Hollow Core Roof #6 (CHC-R6)

Building Component Description:

- **Category:** Roof
- **Assembly Layers:**
 - Green Roof System (150mm of soil and vegetation)
 - 3.5mm PVC (Hydroisolation membrane)
 - 200mm concrete hollow core roof slab (2% babys, 45-50 MPa, typical reinforcement)
 - 16mm expanded polystyrene insulation

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantity</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>16mm Gypsum Faux Gypsum Board</td>
<td>63.5</td>
<td>m²</td>
</tr>
<tr>
<td>6 mil Polyethylene</td>
<td>83.1</td>
<td>m²</td>
</tr>
<tr>
<td>Concrete 20 MPa (B12)</td>
<td>72</td>
<td>kg</td>
</tr>
<tr>
<td>Concrete 60 MPa (B36)</td>
<td>3.7</td>
<td>m³</td>
</tr>
<tr>
<td>Extruded Polystyrene</td>
<td>3.27</td>
<td>m³</td>
</tr>
<tr>
<td>Galvanized Sheet</td>
<td>134.3</td>
<td>kg</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>63.4</td>
<td>kg</td>
</tr>
<tr>
<td>Modified Bitumen Mastic</td>
<td>244.9</td>
<td>kg</td>
</tr>
<tr>
<td>Hot</td>
<td>4.4</td>
<td>kg</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>0.7</td>
<td>kg</td>
</tr>
<tr>
<td>PVC Membrane</td>
<td>294.3</td>
<td>kg</td>
</tr>
<tr>
<td>Heater, Rod, Light Section</td>
<td>197.2</td>
<td>kg</td>
</tr>
<tr>
<td>Welded Wire Mesh / Ladder Wire</td>
<td>86.4</td>
<td>kg</td>
</tr>
</tbody>
</table>

Notes:
- Initial: Time 0' 0' at the completion of initial construction
- Trans = Transportation

Concrete Hollow Core Roof #7 (CHC-R7)

Building Component Description:

- **Category:** Roof
- **Assembly Layers:**
 - Roofing asphalt (mineralized asphalt)
 - 300mm concrete hollow core roof slab (AB, EP)
 - 16mm expanded polystyrene insulation

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantity</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>150mm Organic Felt</td>
<td>521.6</td>
<td>m²</td>
</tr>
<tr>
<td>65% Moisture Resistant Gypsum Board</td>
<td>63.5</td>
<td>m²</td>
</tr>
<tr>
<td>35% Moisture Resistant Gypsum Board</td>
<td>63.5</td>
<td>m²</td>
</tr>
<tr>
<td>Ballast (aggregate stones)</td>
<td>222.8</td>
<td>kg</td>
</tr>
<tr>
<td>Concrete 20 MPa (B12)</td>
<td>3.0</td>
<td>m³</td>
</tr>
<tr>
<td>Concrete 60 MPa (B36)</td>
<td>5.7</td>
<td>m³</td>
</tr>
<tr>
<td>Geotextile Fabric</td>
<td>202.2</td>
<td>kg</td>
</tr>
<tr>
<td>Insulation</td>
<td>358.6</td>
<td>m² (25mm)</td>
</tr>
<tr>
<td>Roofing</td>
<td>192.8</td>
<td>kg</td>
</tr>
<tr>
<td>Nails</td>
<td>30.3</td>
<td>kg</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>9.7</td>
<td>kg</td>
</tr>
<tr>
<td>Hot Rolled, Light Sections</td>
<td>192.8</td>
<td>kg</td>
</tr>
<tr>
<td>Roofing, Asphalts</td>
<td>1,521.6</td>
<td>kg</td>
</tr>
<tr>
<td>Type III Glass Fiber</td>
<td>1,043.2</td>
<td>m²</td>
</tr>
<tr>
<td>Welded Wire Mesh / Ladder Wire</td>
<td>86.4</td>
<td>kg</td>
</tr>
</tbody>
</table>

Notes:
- Initial: Time 0' 0' at the completion of initial construction
- Trans = Transportation

Concrete Hollow Core Roof #8 (CHC-R8)

Building Component Description:

Category: Roof
Assembly Layers:
- Bedded (aggregate) stone
- PVC membrane (lay sheet)
- 200-mm concrete hollow core roof tiles
- Construction agent (inrock DPC80)

Quick Numbers:
- **Material:** Concrete
- **Weight:** 2.6 t/m³
- **Volume:** 8.0 m³
- **Number of Roof Tiles:** 1200
- **Roof Area:** 200 m²

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE</th>
<th>Total EE per m²</th>
<th>Total EE per m³</th>
<th>Total GW</th>
<th>Total GW per m²</th>
<th>Total GW per m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>365.94</td>
<td>1,204.00</td>
<td>333.93</td>
<td>877.93</td>
<td>2,209</td>
<td>1,204.00</td>
<td>1,137.00</td>
<td>103.42</td>
<td>103.42</td>
<td>103.42</td>
</tr>
<tr>
<td>55</td>
<td>365.94</td>
<td>1,214.15</td>
<td>335.93</td>
<td>879.15</td>
<td>2,239</td>
<td>1,214.15</td>
<td>1,101.90</td>
<td>106.62</td>
<td>106.62</td>
<td>106.62</td>
</tr>
</tbody>
</table>

Material List:
- **Concrete Hollow Core Roof #8 (CHC-R8):**
 - Bedded (aggregate) stone
 - PVC membrane (lay sheet)
 - 200-mm concrete hollow core roof tiles
 - Construction agent (inrock DPC80)

Notes:
1. **Initial**: Time (h:mm) at the completion of initial construction
2. **Trans**: Transportation
3. **Total EE (for Total GW)**: Total embodied energy for total embodied GW of building component after lifespan, based on total manufacturing + total construction-related maintenance + total endlife effects
4. **Total EE (for Total GW) per m²**: Total EE (for Total GW) of building component area of building component that was modeled in ATHENA EIE
5. **Total Difference in Operating Energy (for GW) from Baseline after Lifespan:** The difference in the total lifecycle operating energy (for GW) from the baseline retail building after lifespan due to using the building component instead of the baseline component
6. **Total Difference in Operating Energy (for GW) from Baseline after Lifespan per m²**: Total difference in operating energy (for GW) from baseline after lifespan per m² due to using the building component instead of the baseline component.

ATHENA ® EIE Material List:

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>10mm Gypsum Fibre Gypsum Board</td>
<td>63.5</td>
<td>m2</td>
</tr>
<tr>
<td>Concrete 20 MPa (Screed)</td>
<td>3.0</td>
<td>m3</td>
</tr>
<tr>
<td>Concrete 40 MPa (Screed)</td>
<td>5.7</td>
<td>m3</td>
</tr>
<tr>
<td>250-60mm Polystyrene</td>
<td>40.0</td>
<td>m2</td>
</tr>
<tr>
<td>Galvanized Sheet</td>
<td>3.7</td>
<td>kg</td>
</tr>
<tr>
<td>Galvanized Sheets</td>
<td>101.0</td>
<td>kg</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>63.4</td>
<td>kg</td>
</tr>
<tr>
<td>Modified Bitumen membrane</td>
<td>203.3</td>
<td>kg</td>
</tr>
<tr>
<td>Glares</td>
<td>4.2</td>
<td>kg</td>
</tr>
<tr>
<td>Gravel</td>
<td>8.2</td>
<td>m3</td>
</tr>
<tr>
<td>Ladder, Light Sections</td>
<td>137.2</td>
<td>kg</td>
</tr>
<tr>
<td>Screws Nuts & Bolts</td>
<td>0.6</td>
<td>kg</td>
</tr>
<tr>
<td>Solder Based Adhesive</td>
<td>48.4</td>
<td>L</td>
</tr>
<tr>
<td>Waterless Mason / Ladder Wire</td>
<td>30.4</td>
<td>kg</td>
</tr>
</tbody>
</table>

Notes:
1. **Initial**: Time (h:mm) at the completion of initial construction
2. **Trans**: Transportation
3. **Total EE (for Total GW)**: Total embodied energy for total embodied GW of building component after lifespan, based on total manufacturing + total construction-related maintenance + total endlife effects
4. **Total EE (for Total GW) per m²**: Total EE (for Total GW) of building component area of building component that was modeled in ATHENA EIE
5. **Total Difference in Operating Energy (for GW) from Baseline after Lifespan:** The difference in the total lifecycle operating energy (for GW) from the baseline retail building after lifespan, due to using this building component instead of the baseline component
6. **Total Difference in Operating Energy (for GW) from Baseline after Lifespan per m²**: Total difference in operating energy (for GW) from baseline after lifespan per m² due to using the building component instead of the baseline component.
7. **Total operating primary energy use of baseline retail building after 50 years = 3,710 kWh/m²**
8. **Total operating primary energy use of baseline retail building after 50 years = 2,845 kWh/m²**

Concrete Hollow Core Roof #9 (CHC-R9)

Building Component Description:

Category: Roof
Assembly Layers:
- Bedded (aggregate) stone
- PVC membrane (lay sheet)
- 200-mm concrete hollow core roof tiles
- Construction agent (inrock DPC80)

Quick Numbers:
- **Material:** Concrete
- **Weight:** 2.6 t/m³
- **Volume:** 8.0 m³
- **Number of Roof Tiles:** 1200
- **Roof Area:** 200 m²

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE</th>
<th>Total EE per m²</th>
<th>Total EE per m³</th>
<th>Total GW</th>
<th>Total GW per m²</th>
<th>Total GW per m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>365.94</td>
<td>1,204.00</td>
<td>333.93</td>
<td>877.93</td>
<td>2,209</td>
<td>1,204.00</td>
<td>1,137.00</td>
<td>103.42</td>
<td>103.42</td>
<td>103.42</td>
</tr>
<tr>
<td>55</td>
<td>365.94</td>
<td>1,214.15</td>
<td>335.93</td>
<td>879.15</td>
<td>2,239</td>
<td>1,214.15</td>
<td>1,101.90</td>
<td>106.62</td>
<td>106.62</td>
<td>106.62</td>
</tr>
</tbody>
</table>

Material List:
- **Concrete Hollow Core Roof #9 (CHC-R9):**
 - Bedded (aggregate) stone
 - PVC membrane (lay sheet)
 - 200-mm concrete hollow core roof tiles
 - Construction agent (inrock DPC80)

Notes:
1. **Initial**: Time (h:mm) at the completion of initial construction
2. **Trans**: Transportation
3. **Total EE (for Total GW)**: Total embodied energy for total embodied GW of building component after lifespan, based on total manufacturing + total construction-related maintenance + total endlife effects
4. **Total EE (for Total GW) per m²**: Total EE (for Total GW) of building component area of building component that was modeled in ATHENA EIE
5. **Total Difference in Operating Energy (for GW) from Baseline after Lifespan:** The difference in the total lifecycle operating energy (for GW) from the baseline retail building after lifespan, due to using this building component instead of the baseline component
6. **Total Difference in Operating Energy (for GW) from Baseline after Lifespan per m²**: Total difference in operating energy (for GW) from baseline after lifespan per m² due to using the building component instead of the baseline component.
7. **Total operating primary energy use of baseline retail building after 50 years = 3,710 kWh/m²**
8. **Total operating primary energy use of baseline retail building after 50 years = 2,845 kWh/m²**

ATHENA ® EIE Material List:

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>10mm Gypsum Fibre Gypsum Board</td>
<td>63.5</td>
<td>m2</td>
</tr>
<tr>
<td>Concrete 20 MPa (Screed)</td>
<td>3.0</td>
<td>m3</td>
</tr>
<tr>
<td>Concrete 40 MPa (Screed)</td>
<td>5.7</td>
<td>m3</td>
</tr>
<tr>
<td>250-60mm Polystyrene</td>
<td>40.0</td>
<td>m2</td>
</tr>
<tr>
<td>Galvanized Sheet</td>
<td>472.7</td>
<td>kg</td>
</tr>
<tr>
<td>Galvanized Sheets</td>
<td>101.0</td>
<td>kg</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>63.4</td>
<td>kg</td>
</tr>
<tr>
<td>Modified Bitumen membrane</td>
<td>203.3</td>
<td>kg</td>
</tr>
<tr>
<td>Glares</td>
<td>4.2</td>
<td>kg</td>
</tr>
<tr>
<td>Gravel</td>
<td>8.2</td>
<td>m3</td>
</tr>
<tr>
<td>Ladder, Light Sections</td>
<td>137.2</td>
<td>kg</td>
</tr>
<tr>
<td>Screws Nuts & Bolts</td>
<td>0.6</td>
<td>kg</td>
</tr>
<tr>
<td>Solder Based Adhesive</td>
<td>48.4</td>
<td>L</td>
</tr>
<tr>
<td>Waterless Mason / Ladder Wire</td>
<td>30.4</td>
<td>kg</td>
</tr>
</tbody>
</table>

Notes:
1. **Initial**: Time (h:mm) at the completion of initial construction
2. **Trans**: Transportation
3. **Total EE (for Total GW)**: Total embodied energy for total embodied GW of building component after lifespan, based on total manufacturing + total construction-related maintenance + total endlife effects
4. **Total EE (for Total GW) per m²**: Total EE (for Total GW) of building component area of building component that was modeled in ATHENA EIE
5. **Total Difference in Operating Energy (for GW) from Baseline after Lifespan:** The difference in the total lifecycle operating energy (for GW) from the baseline retail building after lifespan, due to using this building component instead of the baseline component
6. **Total Difference in Operating Energy (for GW) from Baseline after Lifespan per m²**: Total difference in operating energy (for GW) from baseline after lifespan per m² due to using the building component instead of the baseline component.
7. **Total operating primary energy use of baseline retail building after 50 years = 3,710 kWh/m²**
8. **Total operating primary energy use of baseline retail building after 50 years = 2,845 kWh/m²**
Concrete Hollow Core Roof #10 (CHC-R10)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Ticks</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green roof and green roof assembly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inside</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete hollow core roof slab with continuous 200mm extruded polyurethane polymor slab and green roof assembly</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quick Numbers:
- Continuous 200mm extruded polyurethane rigid insulation
- Modified bitumen membrane on top of slab
- Roof thickness: 200mm concrete hollow core roof slab
- Insulation: 200mm concrete hollow core roof slab

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE per m²</th>
<th>Total Trans/Total Trans + Total Mat. Trans/Total Mat. Trans + Total Trans + Total Mat. Trans per m²</th>
<th>Total GWP per m²</th>
<th>Total GWP per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>5,300</td>
<td>Trans.</td>
<td>Trans.</td>
<td>Trans.</td>
<td>0</td>
<td>5,300</td>
<td>0</td>
<td>5,300</td>
</tr>
<tr>
<td>50</td>
<td>5,300</td>
<td>Trans.</td>
<td>Trans.</td>
<td>Trans.</td>
<td>0</td>
<td>5,300</td>
<td>0</td>
<td>5,300</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GWP per m²</th>
<th>Total Trans/Total Trans + Total Mat. Trans/Total Mat. Trans + Total Trans + Total Mat. Trans per m²</th>
<th>Total GWP per m²</th>
<th>Total GWP per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>5,300</td>
<td>Trans.</td>
<td>Trans.</td>
<td>Trans.</td>
<td>0</td>
<td>5,300</td>
<td>0</td>
<td>5,300</td>
</tr>
<tr>
<td>50</td>
<td>5,300</td>
<td>Trans.</td>
<td>Trans.</td>
<td>Trans.</td>
<td>0</td>
<td>5,300</td>
<td>0</td>
<td>5,300</td>
</tr>
</tbody>
</table>

Notes:
1. Initial = Time 0’ at the completion of initial construction
2. Trans = Transportation
3. Total EE per GWP = Total embodied energy for total embodied GWP of building component after initial lifespan (total manufacturing + total maintenance + total embodied energy)
4. Total EE per GWP per m² = Total EE per GWP divided by area of building component.
5. Total Difference in Operating Energy (GWP) from Baseline after Lifespan = The difference in the total lifecycle operating energy (GWP) from the baseline retail building after lifespan, due to using the building component instead of the baseline component.
6. Total Difference in Operating Energy (GWP) from Baseline after Lifespan per m² = Total difference in operating energy (GWP) from baseline after lifespan / net roof area of baseline retail building.
7. Total operating primary energy use of baseline retail building after 50 years = 3.11 TWh
8. Total operating primary energy use of baseline retail building after 50 years = 2,321,000 t CO₂ eq.

LCA Data for Open Web Steel Joist Roofs

This section contains a detailed description of each open web steel joist (OWSJ) roof that was examined in this study (11 in total). The assembly layers are listed for each roof, along with a detailed description of the material quantities from the ATHENA® Environmental Impact Estimator for Buildings.

A breakdown of the total primary energy consumption and the total global warming potential (GWP) for each roof is also included. In each case, the results were calculated for an area of roof equal to 69.2 m², which represents a typical bay size for a single-storey retail building with this type of roof system. The results are also expressed on a per m² basis in each case. The data has been calculated for two different lifespans: at the completion of initial construction and after 50 years.

As a summary, the figure below illustrates a comparison of the total embodied energy (and GWP) after 50 years for the various roofs in this section. For comparison purpose, the building component used in the baseline retail building has been shaded in grey.
Baseline Retail Building Roof (BASE-R)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Material</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>GWS and metal deck with continuous 75mm polyisocyanurate insulation and 4-9mm open web steel joists</td>
<td>Traditional (no spray)</td>
</tr>
<tr>
<td>Roof Type</td>
<td>Flat roof</td>
<td>Traditional (no spray)</td>
</tr>
<tr>
<td>Roof Decking</td>
<td>Metal deck</td>
<td>Traditional (no spray)</td>
</tr>
</tbody>
</table>

Quick Numbers:

- Roofing Asphalt: 93 kg/m²
- Roofing Membrane: 16 kg/m²
- Metal deck: 19 kg/m²

Material List:

<table>
<thead>
<tr>
<th>Material</th>
<th>Units</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>#13 Organic Felt</td>
<td>m²</td>
<td>5.31</td>
</tr>
<tr>
<td>Metal decking</td>
<td>m²</td>
<td>1.61</td>
</tr>
<tr>
<td>Metal sheet</td>
<td>m²</td>
<td>0.01</td>
</tr>
<tr>
<td>Metal sheet</td>
<td>m²</td>
<td>0.01</td>
</tr>
<tr>
<td>Metal deck</td>
<td>m²</td>
<td>1.61</td>
</tr>
<tr>
<td>Roofing Asphalt</td>
<td>m²</td>
<td>0.03</td>
</tr>
<tr>
<td>Roofing Membrane</td>
<td>m²</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time 1.0 at the completion of initial construction
2. Trans = Transportation

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Life-span (Years)</th>
<th>Embodied Energy (MJ)</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>51.3</td>
<td>9.093</td>
</tr>
<tr>
<td>50</td>
<td>51.3</td>
<td>9.093</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Life-span (Years)</th>
<th>Embodied Global Warming Potential (GWP)</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>50.0</td>
<td>9.093</td>
</tr>
<tr>
<td>50</td>
<td>50.0</td>
<td>9.093</td>
</tr>
</tbody>
</table>

ATHENA ® EIE Material List

- Includes all materials after 50-year span

Open Web Steel Joist Roof #1 (OWSJ-R1)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Material</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>GWS and metal deck with continuous 75mm polyisocyanurate insulation and 4-9mm open web steel joists</td>
<td>Traditional (no spray)</td>
</tr>
<tr>
<td>Roof Type</td>
<td>Flat roof</td>
<td>Traditional (no spray)</td>
</tr>
<tr>
<td>Roof Decking</td>
<td>Metal deck</td>
<td>Traditional (no spray)</td>
</tr>
</tbody>
</table>

Quick Numbers:

- Roofing Asphalt: 93 kg/m²
- Roofing Membrane: 16 kg/m²
- Metal deck: 19 kg/m²

Material List:

<table>
<thead>
<tr>
<th>Material</th>
<th>Units</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>#13 Organic Felt</td>
<td>m²</td>
<td>5.31</td>
</tr>
<tr>
<td>Metal decking</td>
<td>m²</td>
<td>1.61</td>
</tr>
<tr>
<td>Metal sheet</td>
<td>m²</td>
<td>0.01</td>
</tr>
<tr>
<td>Metal sheet</td>
<td>m²</td>
<td>0.01</td>
</tr>
<tr>
<td>Metal deck</td>
<td>m²</td>
<td>1.61</td>
</tr>
<tr>
<td>Roofing Asphalt</td>
<td>m²</td>
<td>0.03</td>
</tr>
<tr>
<td>Roofing Membrane</td>
<td>m²</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time 1.0 at the completion of initial construction
2. Trans = Transportation

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Life-span (Years)</th>
<th>Embodied Energy (MJ)</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>51.3</td>
<td>9.093</td>
</tr>
<tr>
<td>50</td>
<td>51.3</td>
<td>9.093</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Life-span (Years)</th>
<th>Embodied Global Warming Potential (GWP)</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>50.0</td>
<td>9.093</td>
</tr>
<tr>
<td>50</td>
<td>50.0</td>
<td>9.093</td>
</tr>
</tbody>
</table>

ATHENA ® EIE Material List

- Includes all materials after 50-year span

Material List

<table>
<thead>
<tr>
<th>Material</th>
<th>Units</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>#13 Organic Felt</td>
<td>m²</td>
<td>5.31</td>
</tr>
<tr>
<td>Metal decking</td>
<td>m²</td>
<td>1.61</td>
</tr>
<tr>
<td>Metal sheet</td>
<td>m²</td>
<td>0.01</td>
</tr>
<tr>
<td>Metal sheet</td>
<td>m²</td>
<td>0.01</td>
</tr>
<tr>
<td>Metal deck</td>
<td>m²</td>
<td>1.61</td>
</tr>
<tr>
<td>Roofing Asphalt</td>
<td>m²</td>
<td>0.03</td>
</tr>
<tr>
<td>Roofing Membrane</td>
<td>m²</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time 1.0 at the completion of initial construction
2. Trans = Transportation

- Total EE for Total GWP = Total embodied energy for total GWP of building component after lifespan (m²), total manufacturing + total construction + total maintenance = total embodied energy (m²)
- Total EE for Total GWP per m² = Total EE (or Total GWP) of building component area of building component that was modeled in ATHENA EIE
- Total Difference in Operating Energy (GWP) from Baseline after Lifespan = The difference in the total lifecycle operating energy for GWP from the baseline retail building after lifespan due to using this building component instead of the baseline component
- Total Difference in Operating Energy (GWP) from Baseline after Lifespan per m² = Total difference in operating energy for GWP from baseline after lifespan / net roof area of baseline building
- Total operating primary energy use of baseline retail building after 50 years = 50,000/kWh (1754.4 MWh/year)
- Total operating primary energy use of baseline retail building after 50 years = 50,000/kWh (1754.4 MWh/year)
- Total operating primary energy use of baseline retail building after 50 years = 2,310 tonnes of CO₂eq (80% of CO₂eq/kg of fuel)
- Total operating primary energy use of baseline retail building after 50 years = 2,310 tonnes of CO₂eq (80% of CO₂eq/kg of fuel)
Open Web Steel Joist Roof #2 (OWSJ-R2)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Unit Quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td>OWSJ</td>
<td>35mm polyisocyanurate insulation and 4-ply asphalt sheathing assembly (9.6 kg/m²)</td>
</tr>
<tr>
<td>Welded metal deck</td>
<td>7 mm thick galvanized corrugated metal deck (42 kg/m²)</td>
</tr>
<tr>
<td>Quick Numbers:</td>
<td></td>
</tr>
<tr>
<td>Roof Thickness</td>
<td>7.13 mm corrugated metal deck (0.68 in)</td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>1.04 MJ/m²</td>
</tr>
<tr>
<td>Total Embodied CO2</td>
<td>21.9 kg of CO2 eq/m²</td>
</tr>
<tr>
<td>Life-Cycle Assessment Results:</td>
<td></td>
</tr>
<tr>
<td>Primary Energy Consumption (MJ):</td>
<td></td>
</tr>
<tr>
<td>Initial</td>
<td>777.7 MJ</td>
</tr>
<tr>
<td>50</td>
<td>777.7 MJ</td>
</tr>
<tr>
<td>Embodied Global Warming Potential (kg of CO2 eq.):</td>
<td></td>
</tr>
<tr>
<td>Initial</td>
<td>9.06 MJ</td>
</tr>
<tr>
<td>50</td>
<td>9.06 MJ</td>
</tr>
</tbody>
</table>

Notes:
- Initial = Total 70 yr, all construction is included.
- Life-cycle = Total embodied energy (or total embodied GWP) of building component after 50yr for model construction + total manufacturing + total embodied effects.
- Athena EIE Material List includes all materials after 50yr.

Open Web Steel Joist Roof #3 (OWSJ-R3)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Unit Quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td>OWSJ</td>
<td>35mm polyisocyanurate insulation and 4-ply asphalt sheathing assembly (8.8 kg/m²)</td>
</tr>
<tr>
<td>Welded metal deck</td>
<td>7 mm thick galvanized corrugated metal deck (42 kg/m²)</td>
</tr>
<tr>
<td>Quick Numbers:</td>
<td></td>
</tr>
<tr>
<td>Roof Thickness</td>
<td>7.13 mm corrugated metal deck (0.68 in)</td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>1.06 MJ/m²</td>
</tr>
<tr>
<td>Total Embodied CO2</td>
<td>21.9 kg of CO2 eq/m²</td>
</tr>
<tr>
<td>Life-Cycle Assessment Results:</td>
<td></td>
</tr>
<tr>
<td>Primary Energy Consumption (MJ):</td>
<td></td>
</tr>
<tr>
<td>Initial</td>
<td>777.7 MJ</td>
</tr>
<tr>
<td>50</td>
<td>777.7 MJ</td>
</tr>
<tr>
<td>Embodied Global Warming Potential (kg of CO2 eq.):</td>
<td></td>
</tr>
<tr>
<td>Initial</td>
<td>9.06 MJ</td>
</tr>
<tr>
<td>50</td>
<td>9.06 MJ</td>
</tr>
</tbody>
</table>

Notes:
- Initial = Total 70 yr, all construction is included.
- Life-cycle = Total embodied energy (or total embodied GWP) of building component after 50yr for model construction + total manufacturing + total embodied effects.
- Athena EIE Material List includes all materials after 50yr.
Open Web Steel Joist Roof #4 (OWSJ-R4)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>OW SJ R4 & steel deck with continuous 10 mm glass fiber reinforced composites and PVC assembly</td>
</tr>
<tr>
<td>Quick Numbers:</td>
<td>7/8 in. R4 open web steel joists (A457)</td>
</tr>
<tr>
<td>Material</td>
<td>94.5 mm glass fiber reinforced composite and PVC assembly</td>
</tr>
<tr>
<td>Weight</td>
<td>35.9 kg/m²</td>
</tr>
<tr>
<td>Total Embedded Energy</td>
<td>2,717 MJ/m²</td>
</tr>
<tr>
<td>Total Embedded GWP</td>
<td>124 kg of CO₂e eq/m²</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifecycle Energy Consumption (MJ)</th>
<th>Embedded Energy (MJ)</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Manufacturing</td>
<td>Construction</td>
</tr>
<tr>
<td>Initial</td>
<td>95,995</td>
<td>94,995</td>
</tr>
<tr>
<td>Final</td>
<td>50,995</td>
<td>94,995</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq):

Material	Manufacturing	Construction	End of Life	Total GWP	Total GWP per m²	Total GWP per m²	Total GWP per m²						
Initial	5,455	5,455	41	2	44	3,599	3,599	1	1	6,577	134	0	0
Final	5,455	5,455	41	2	44	3,599	3,599	1	1	6,577	134	0	0

Notes:

- Initial = Time 't' (i.e., at the completion of initial construction)
- Trans = Transportation
- Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component after lifespan. Includes manufacturing, total construction, and total maintenance + total end-of-life effect.
- Total EE (or Total GWP) per m² = Total EE (or Total GWP) of building component area of building component that was modelled in ATHENA EIE.
- Total Difference in Operating Energy (or GWP) from Baseline after Lifespan = The difference in the total/collective operating energy (or GWP) from the baseline retail building after lifespan due to using the building component instead of the baseline component.
- Total operating primary energy of baseline retail building after 50 years = 50,105 kWh/year (5035 GWP/yr)
- Total open building primary energy of baseline steel joist after 50 years = 2,601 kWh/year (5.10 MJ/year)
- Total operating energy of baseline retail building after 50 years = 2,101 kWh/year (4.50 MJ/year)
- Total open building primary energy of baseline retail building after 50 years = 2,601 kWh/year (5.00 MJ/year)
- Total operating energy of baseline retail building after 50 years = 2,101 kWh/year (4.50 MJ/year)

Open Web Steel Joist Roof #5 (OWSJ-R5)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>OW SJ R5 & steel deck with non-continuous 10 mm glass fiber reinforced composites and PVC assembly</td>
</tr>
<tr>
<td>Quick Numbers:</td>
<td>7/8 in. R5 open web steel joists (A457)</td>
</tr>
<tr>
<td>Material</td>
<td>94.5 mm glass fiber reinforced composite and PVC assembly</td>
</tr>
<tr>
<td>Weight</td>
<td>35.9 kg/m²</td>
</tr>
<tr>
<td>Total Embedded Energy</td>
<td>1,511 MJ/m²</td>
</tr>
<tr>
<td>Total Embedded GWP</td>
<td>79 kg of CO₂e eq/m²</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifecycle Energy Consumption (MJ)</th>
<th>Embedded Energy (MJ)</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Manufacturing</td>
<td>Construction</td>
</tr>
<tr>
<td>Initial</td>
<td>90,034</td>
<td>90,034</td>
</tr>
<tr>
<td>Final</td>
<td>50,034</td>
<td>90,034</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq):

Material	Manufacturing	Construction	End of Life	Total GWP	Total GWP per m²	Total GWP per m²	Total GWP per m²						
Initial	5,355	5,355	41	2	44	3,599	3,599	1	1	6,577	134	0	0
Final	5,355	5,355	41	2	44	3,599	3,599	1	1	6,577	134	0	0

Notes:

- Initial = Time 't' (i.e., at the completion of initial construction)
- Trans = Transportation
- Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component after lifespan. Includes manufacturing, total construction, and total maintenance + total end-of-life effect.
- Total EE (or Total GWP) per m² = Total EE (or Total GWP) of building component area of building component that was modelled in ATHENA EIE.
- Total Difference in Operating Energy (or GWP) from Baseline after Lifespan = The difference in the total/collective operating energy (or GWP) from the baseline retail building after lifespan due to using this building component instead of the baseline component.
- Total operating primary energy of baseline retail building after 50 years = 50,105 kWh/year (5035 GWP/yr)
- Total operating energy of baseline retail building after 50 years = 2,601 kWh/year (5.10 MJ/year)
- Total operating energy of baseline retail building after 50 years = 2,601 kWh/year (5.00 MJ/year)
- Total operating energy of baseline retail building after 50 years = 2,101 kWh/year (4.50 MJ/year)
- Total operating energy of baseline retail building after 50 years = 2,101 kWh/year (4.50 MJ/year)
- Total operating energy of baseline retail building after 50 years = 2,101 kWh/year (4.50 MJ/year)
- Total operating energy of baseline retail building after 50 years = 2,101 kWh/year (4.50 MJ/year)
Open Web Steel Joist Roof #6 (OWSJ-R6)

Building Component Description:

Category: Building

Layer Description:
- **Roof:**
 - Open Web Steel Joist
 - 5/8" pre-primed plywood
 - 20 mm eps insulation
 - 20 mm polyisocyanurate insulation
 - 230 mm glass reinforced concrete (GRC) deck
- **Insulation:**
 - 80 mm glass reinforced concrete (GRC)
- **Deck:**
 - 150 mm glass reinforced concrete (GRC)

Quick Numbers:
- **Gross Area:** 2,430 m²
- **Dead Load:** 25 kN/m²
- **Live Load:** 6 kN/m²
- **Total Load:** 31 kN/m²
- **Total Embodied Energy:** 4,866 MWh
- **Total Embodied CO₂:** 234 kg CO₂ eq

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total DE</th>
<th>Total per m²</th>
<th>Total DE</th>
<th>Total per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>80,293</td>
<td>195,877</td>
<td>631</td>
<td>1,082</td>
<td>1,692</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>14,854</td>
<td>32,813</td>
<td>561</td>
<td>997</td>
<td>1,594</td>
<td>93</td>
<td>14,653</td>
<td>227</td>
</tr>
</tbody>
</table>

Embodied energy (and GWP) numbers are based on an area of roof = 83.2 m² (Span x Width = 8.5 m x 9.9 m = 83.2 m²).

Net roof area of baseline retail building (gross roof area - openings) = 588.0 m².

ATHENA EIE Material List:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 mm Pre-Primed Plywood</td>
<td></td>
<td>m³</td>
<td></td>
</tr>
<tr>
<td>150 mm EPS Insulation Board</td>
<td></td>
<td>m³</td>
<td></td>
</tr>
<tr>
<td>6 mm Polycarbonate</td>
<td></td>
<td>m²</td>
<td></td>
</tr>
<tr>
<td>Backer (rigid foam)</td>
<td></td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>Expanded Polystyrene</td>
<td></td>
<td>m³</td>
<td></td>
</tr>
<tr>
<td>Galvanized Sheet</td>
<td></td>
<td>m³</td>
<td></td>
</tr>
<tr>
<td>Joint Compound</td>
<td></td>
<td>m³</td>
<td></td>
</tr>
<tr>
<td>Modified Bitumen Membrane</td>
<td></td>
<td>m³</td>
<td></td>
</tr>
<tr>
<td>Paper Tape</td>
<td></td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>PVC Membrane</td>
<td></td>
<td>m³</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **Time:** 17 h (at the completion of initial construction)
- **Transport:**
 - Total EE (for Total GWP): Total embodied energy (for total embodied GWP) of building component after lifespan = total manufacturing + total corrosion + total maintenance + total emissions + total embodied energy
 - Total DE (for Total GWP per m²): Total EE (for Total GWP) of building component per m² of area where building component was modeled in ATHENA EIE
 - **Difference in Operating Energy:** Operating energy from baseline after lifespan = Difference in the total lifecycle operating energy (GWP) from the baseline retail building after lifespan, due to using the baseline building component instead of the baseline component.
 - **Difference in Operating GWP from Baseline after Lifespan:**
 - Initial: 10,296 MWh
 - 50: 16,026 MWh
- **Global Warming Potential (kg of CO₂ eq):** Operating energy from baseline after lifespan = 82.2 kg CO₂ eq

Open Web Steel Joist Roof #7 (OWSJ-R7)

Building Component Description:

Category: Building

Layer Description:
- **Roof:**
 - Open Web Steel Joist
 - 5/8" pre-primed plywood
 - 20 mm eps insulation
 - 20 mm polyisocyanurate insulation
 - 230 mm glass reinforced concrete (GRC) deck
- **Insulation:**
 - 80 mm glass reinforced concrete (GRC)
- **Deck:**
 - 150 mm glass reinforced concrete (GRC)

Quick Numbers:
- **Gross Area:** 2,430 m²
- **Dead Load:** 25 kN/m²
- **Live Load:** 6 kN/m²
- **Total Load:** 31 kN/m²
- **Total Embodied Energy:** 4,866 MWh
- **Total Embodied CO₂:** 234 kg CO₂ eq

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total DE</th>
<th>Total per m²</th>
<th>Total DE</th>
<th>Total per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>80,293</td>
<td>195,877</td>
<td>631</td>
<td>1,082</td>
<td>1,692</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>14,854</td>
<td>32,813</td>
<td>561</td>
<td>997</td>
<td>1,594</td>
<td>93</td>
<td>14,653</td>
<td>227</td>
</tr>
</tbody>
</table>

Embodied energy (and GWP) numbers are based on an area of roof = 83.2 m² (Span x Width = 8.5 m x 9.9 m = 83.2 m²).

Net roof area of baseline retail building (gross roof area - openings) = 588.0 m².

ATHENA EIE Material List:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 mm Pre-Primed Plywood</td>
<td></td>
<td>m³</td>
<td></td>
</tr>
<tr>
<td>150 mm EPS Insulation Board</td>
<td></td>
<td>m³</td>
<td></td>
</tr>
<tr>
<td>6 mm Polycarbonate</td>
<td></td>
<td>m²</td>
<td></td>
</tr>
<tr>
<td>Backer (rigid foam)</td>
<td></td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>Expanded Polystyrene</td>
<td></td>
<td>m³</td>
<td></td>
</tr>
<tr>
<td>Galvanized Sheet</td>
<td></td>
<td>m³</td>
<td></td>
</tr>
<tr>
<td>Joint Compound</td>
<td></td>
<td>m³</td>
<td></td>
</tr>
<tr>
<td>Modified Bitumen Membrane</td>
<td></td>
<td>m³</td>
<td></td>
</tr>
<tr>
<td>Paper Tape</td>
<td></td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>PVC Membrane</td>
<td></td>
<td>m³</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **Time:** 17 h (at the completion of initial construction)
- **Transport:**
 - Total EE (for Total GWP) = Total embodied energy (for total embodied GWP) of building component after lifespan = total manufacturing + total corrosion + total maintenance + total emissions + total embodied energy
 - Total DE (for Total GWP per m²) = Total EE (for Total GWP) of building component per m² of area where building component was modeled in ATHENA EIE
 - **Difference in Operating Energy:** Operating energy from baseline after lifespan = Difference in the total lifecycle operating energy (GWP) from the baseline retail building after lifespan, due to using the baseline building component instead of the baseline component.
 - **Difference in Operating GWP from Baseline after Lifespan:**
 - Initial: 10,296 MWh
 - 50: 16,026 MWh
- **Global Warming Potential (kg of CO₂ eq):** Operating energy from baseline after lifespan = 82.2 kg CO₂ eq

- **Total DE (for Total GWP):** Total embodied energy (for total embodied GWP) of building component after lifespan = total manufacturing + total corrosion + total maintenance + total emissions + total embodied energy
 - **Total DE (for Total GWP per m²):** Total EE (for Total GWP) of building component per m² of area where building component was modeled in ATHENA EIE
 - **Difference in Operating Energy (GWP) from Baseline after Lifespan:**
 - Initial: 10,296 MWh
 - 50: 16,026 MWh
 - **Difference in Operating GWP from Baseline after Lifespan:**
 - Initial: 82.2 kg CO₂ eq
 - 50: 82.2 kg CO₂ eq
 - **Total DE (for Total GWP per m²):** Total EE (for Total GWP) of building component per m² of area where building component was modeled in ATHENA EIE
 - **Difference in Operating Energy (GWP) from Baseline after Lifespan:**
 - Initial: 10,296 MWh
 - 50: 16,026 MWh
 - **Difference in Operating GWP from Baseline after Lifespan:**
 - Initial: 82.2 kg CO₂ eq
 - 50: 82.2 kg CO₂ eq
Building Component Description:

Category: Tools

Assembly Layers:
- OWSJ and metal deck with continuous 150mm polyiso polystyrene insulation and PCC roof assembly.
- Steel web joists (includes backing)
- PCC membrane (gusset sheet) (includes backing)
- Building steelwork in full place.

Quick Numbers:
- R-Value: 39.1
- RSI-Value: 6.9
- R-Value: 40.8
- RSI-Value: 7.2
- Include wood nailing strips
- Includes wood nailing strips
- Includes wood nailing strips
- Includes wood nailing strips

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>End of Life</th>
<th>Total Energy</th>
<th>Difference in Opening Energy from Baseline after Lifespan</th>
<th>Total Energy per m²</th>
<th>Total Energy per m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>106,495</td>
<td>455</td>
<td>800</td>
<td>1,193</td>
<td>2,325</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>106,495</td>
<td>455</td>
<td>800</td>
<td>1,193</td>
<td>2,325</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>End of Life</th>
<th>Total GWP</th>
<th>Difference in Opening Energy from Baseline after Lifespan</th>
<th>Total GWP per m²</th>
<th>Total GWP per m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>6,715</td>
<td>6,715</td>
<td>41</td>
<td>2</td>
<td>41</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>6,715</td>
<td>6,715</td>
<td>41</td>
<td>2</td>
<td>41</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:

- Material list includes all materials after 50 years
- Net roof area of baseline retail building (gross roof area - openings) = 596.0 m²

ATHENA® EIE Material List:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.15m Thick Insulated EPS Board</td>
<td>76.1</td>
<td>m²</td>
</tr>
<tr>
<td>2.5m Thick Insulated EPS Board</td>
<td>76.1</td>
<td>m²</td>
</tr>
<tr>
<td>3.75m Thick Insulated EPS Board</td>
<td>15.25</td>
<td>m²</td>
</tr>
<tr>
<td>60mm Polystyrene</td>
<td>76.1</td>
<td>m²</td>
</tr>
<tr>
<td>80mm Polystyrene</td>
<td>76.1</td>
<td>m²</td>
</tr>
<tr>
<td>100mm Polystyrene</td>
<td>76.1</td>
<td>m²</td>
</tr>
<tr>
<td>120mm Polystyrene</td>
<td>76.1</td>
<td>m²</td>
</tr>
<tr>
<td>150mm Polystyrene</td>
<td>76.1</td>
<td>m²</td>
</tr>
<tr>
<td>Insulation</td>
<td>408.2</td>
<td>m² (25MM)</td>
</tr>
<tr>
<td>Total Insulation</td>
<td>519.9</td>
<td>m²</td>
</tr>
<tr>
<td>Nails</td>
<td>8.5</td>
<td>kg</td>
</tr>
<tr>
<td>Open Web Joists</td>
<td>594.5</td>
<td>kg</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.7</td>
<td>kg</td>
</tr>
<tr>
<td>PCC membrane</td>
<td>1,112.6</td>
<td>kg</td>
</tr>
<tr>
<td>Intermittent Insulation (kcal/°C)</td>
<td>0.2</td>
<td>m³</td>
</tr>
<tr>
<td>Sarking Plywood</td>
<td>1.6</td>
<td>75.3m³</td>
</tr>
</tbody>
</table>
Open Web Steel Joist Roof #10 (OWSJ-R10)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welded</td>
<td>OWS and metal deck with continuous 30mm extruded polystyrene rigid insulation and green roof assembly</td>
</tr>
<tr>
<td>Painted</td>
<td>Painted surface applied on metal deck</td>
</tr>
<tr>
<td>Galvanized</td>
<td>Galvanized steel (modulated in PVC membrane)</td>
</tr>
</tbody>
</table>

Brief Description:
Continuous 200mm extruded polystyrene rigid insulation

Quick Numbers:

- **Material List:**
 - Open Web Steel Joists: 657.6 kg
 - Paper Tape: 1.7 kg
 - PVC membrane: 308.7 kg

- **Primary Energy Consumption (MJ):**
 - Initial: 1,963.3 MJ
 - Total: 954.1 MJ

- **Global Warming Potential (kg of CO₂ eq.):**
 - Initial: 1,782.1 kg
 - Total: 583.2 kg

- **Total Embodied Energy (EIE):**
 - Initial: 1,963.3 MJ
 - Total: 954.1 MJ

- **Total Global Warming Potential (GWP):**
 - Initial: 1,782.1 kg
 - Total: 583.2 kg

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Lifespan</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>1,963.3 MJ</td>
<td>954.1 MJ</td>
<td>954.1 MJ</td>
<td>0</td>
<td>3,872.5 MJ</td>
</tr>
<tr>
<td>Total</td>
<td>954.1 MJ</td>
<td>954.1 MJ</td>
<td>954.1 MJ</td>
<td>0</td>
<td>3,872.5 MJ</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.):

<table>
<thead>
<tr>
<th>Lifespan</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GWP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>1,782.1 kg</td>
<td>583.2 kg</td>
<td>583.2 kg</td>
<td>0</td>
<td>3,550.4 kg</td>
</tr>
<tr>
<td>Total</td>
<td>583.2 kg</td>
<td>583.2 kg</td>
<td>583.2 kg</td>
<td>0</td>
<td>3,550.4 kg</td>
</tr>
</tbody>
</table>

LCA Data for Cold-Formed Steel Roofs

This section contains a detailed description of each cold-formed steel (CFS) roof that was examined in this study (13 in total). The assembly layers are listed for each roof, along with a detailed description of the material quantities from the ATHENA® Environmental Impact Estimator for Buildings.

A breakdown of the total primary energy consumption and the total global warming potential (GWP) for each roof is also included. In general, the results were calculated for an area of roof equal to 38.0 m², which represents a typical bay size for a single-storey retail building with this type of roof system (with the exception of the double joist system and the cold-formed steel truss systems which were calculated for 57.8 m² and 69.2 m² respectfully). The results are also expressed on a per m² basis: at each case. The data has been calculated for two different lifespans: at the completion of initial construction and after 50 years.

As a summary, the figure below illustrates a comparison of the total embodied energy (and GWP) after 50 years for the various roofs in this section. For comparison purpose, the building component used in the baseline retail building has been shaded in grey.
Cold-Formed Steel Roof #1 (CFS-R1)

Building Component Description:
- **Category:** Walls
- **Assembly Layers:**
 - Steel Profile
 - Insulation: Megatherm 80
 - OSB 10mm
 - Roofing asphalt

Quick Numbers:
- **Material:** 75.163 kg
- **Thickness:** 9.4 mm
- **Span:** 25.4 m
- **Design:** Min. P.6 min. in 20 min.
- **Total Embodied Energy:** 7,419 MJ
- **Total Embodied GWP:** 146 kg of CO₂ eq.

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total Embodied Energy</th>
<th>1 Total Embodied Energy, MJ/pa²</th>
<th>1 Total Embodied GWP, kg CO₂ eq/pa²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>0.3349</td>
<td>3.395</td>
<td>0</td>
<td>1</td>
<td>2.219</td>
<td>3.350</td>
<td>3.586</td>
</tr>
<tr>
<td>Glass</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.219</td>
<td>3.586</td>
<td>146</td>
<td>0</td>
</tr>
</tbody>
</table>

Estimated Global Warming Potential:
- **Net roof area of baseline retail building (gross roof area - openings) = 586.0 m²**
- **Total embodied energy (GWP)** numbers are based on an area of 38.0 m²

Notes:
- Initial = Time 0 (at the completion of initial construction)
- Trans. = Transportation

Cold-Formed Steel Roof #2 (CFS-R2)

Building Component Description:
- **Category:** Walls
- **Assembly Layers:**
 - Steel Profile
 - Insulation: Megatherm 80
 - OSB 10mm
 - Roofing asphalt

Quick Numbers:
- **Material:** 79.163 kg
- **Thickness:** 9.4 mm
- **Span:** 25.4 m
- **Design:** Min. P.6 min. in 20 min.
- **Total Embodied Energy:** 7,419 MJ
- **Total Embodied GWP:** 146 kg of CO₂ eq.

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total Embodied Energy</th>
<th>1 Total Embodied Energy, MJ/pa²</th>
<th>1 Total Embodied GWP, kg CO₂ eq/pa²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>0.3349</td>
<td>3.395</td>
<td>0</td>
<td>1</td>
<td>2.219</td>
<td>3.350</td>
<td>3.586</td>
</tr>
<tr>
<td>Glass</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.219</td>
<td>3.586</td>
<td>146</td>
<td>0</td>
</tr>
</tbody>
</table>

Estimated Global Warming Potential:
- **Net roof area of baseline retail building (gross roof area - openings) = 586.0 m²**
- **Total embodied energy (GWP)** numbers are based on an area of 38.0 m²

Notes:
- Initial = Time 0 (at the completion of initial construction)
- Trans. = Transportation
Cold-Formed Steel Roof #3 (CFS-R3)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Cold-formed steel joists and purlin deck with continuous 75mm polyethylene insulation and EPDM foil assembly.</td>
</tr>
<tr>
<td>Quick Numbers</td>
<td></td>
</tr>
<tr>
<td>CFS-R3 (incl. wood nailing strips)</td>
<td></td>
</tr>
<tr>
<td>Outside Insulation</td>
<td></td>
</tr>
<tr>
<td>Inside Insulation</td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>End of Life</th>
<th>Total EE per m²</th>
<th>Total EE per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Softwood Plywood 80.6 m² (9mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture Resistant Gypsum Board</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.8 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPS Insulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.8 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gypsum Plaster</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104.6 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wire Screen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screws, Nuts & Bolts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>在内的2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.):

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>End of Life</th>
<th>Total GWP per m²</th>
<th>Total GWP per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Softwood Plywood 80.6 m² (9mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture Resistant Gypsum Board</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.8 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPS Insulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.8 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gypsum Plaster</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104.6 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wire Screen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screws, Nuts & Bolts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>在内的2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- **Total EE (for Total GWP):** Total embodied energy for/total embodied GWP of building component after lifespan (including total manufacturing + total construction + total maintenance + total end-use efficiency)
- **Total EE (for Total GWP per m²):** Total EE for Total GWP of building component/area of building component that was modelled in ATHENA EIE foil assembly
- **Total Difference in Operating Energy for GWP from Baseline after Lifespan:** The difference in the total/lifecycle operating energy for GWP from the baseline roof assembly after Lifespan, due to using the baseline component instead of the baseline component
- **Net roof area of baseline retail building (gross roof area - openings) = 588 m²**

ATHENA ® EIE Material List:

- **Inclined = Time 7 (at the completion of initial construction)**
- **Time = Transportation**
- **Total EE (for Total GWP):** Total embodied energy for/total embodied GWP of building component after lifespan (including total manufacturing + total construction + total maintenance + total end-use efficiency)

Cold-Formed Steel Roof #4 (CFS-R4)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Cold-formed steel joists and purlin deck with continuous 75mm polyethylene insulation and EPDM foil assembly.</td>
</tr>
<tr>
<td>Quick Numbers</td>
<td></td>
</tr>
<tr>
<td>CFS-R4 (incl. wood nailing strips)</td>
<td></td>
</tr>
<tr>
<td>Outside Insulation</td>
<td></td>
</tr>
<tr>
<td>Inside Insulation</td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>End of Life</th>
<th>Total EE per m²</th>
<th>Total EE per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Softwood Plywood 80.6 m² (9mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture Resistant Gypsum Board</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.8 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPS Insulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.8 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gypsum Plaster</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104.6 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wire Screen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screws, Nuts & Bolts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>在内的2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.):

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>End of Life</th>
<th>Total GWP per m²</th>
<th>Total GWP per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Softwood Plywood 80.6 m² (9mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture Resistant Gypsum Board</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.8 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPS Insulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.8 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gypsum Plaster</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104.6 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wire Screen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screws, Nuts & Bolts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>在内的2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- **Total EE (for Total GWP):** Total embodied energy for/total embodied GWP of building component after lifespan (including total manufacturing + total construction + total maintenance + total end-use efficiency)
- **Total EE (for Total GWP per m²):** Total EE for Total GWP of building component/area of building component that was modelled in ATHENA EIE foil assembly
- **Total Difference in Operating Energy for GWP from Baseline after Lifespan:** The difference in the total/lifecycle operating energy for GWP from the baseline roof assembly after Lifespan, due to using the baseline component instead of the baseline component
- **Net roof area of baseline retail building (gross roof area - openings) = 588 m²**

ATHENA ® EIE Material List:

- **Inclined = Time 7 (at the completion of initial construction)**
- **Time = Transportation**
- **Total EE (for Total GWP):** Total embodied energy for/total embodied GWP of building component after lifespan (including total manufacturing + total construction + total maintenance + total end-use efficiency)
Cold-Formed Steel Roof #5 (CFS-R5)

Building Component Description:

Category: Rich
Assembly Layers:
- **Outside:**
 - Cold-formed steel joists and purlin deck with non-continuous 75mm polyurethane insulation and standing seam steel roof assembly
- **Outside:**
 - Interior face:**
 - Continuous 3.5mm galvanized standing seam steel roof trim (includes fasteners)
 - 2.5mm galvanized 350 g/m² @ 1.000 mm coil (self-weight: 4.8 kg/m²)

Quick Numbers:
- **MBE Rating:** R1
- **Flame Spread:** 50
- **Smoke Spread:** 50
- **Heat Release Rate:** 540 kW
- **Net Weight:** 68 kg
- **Shear Design Loads:** 50%
- **Wind Design Loads:** 50%
- **Total Embodied Energy:** 1.25 GJ
- **Total Embodied GWP:** 61 kg of CO₂ eq. m²

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>LifeSpan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Total</th>
<th>End of Life</th>
<th>Total EE</th>
<th>Difference in Operating Energy from Baseline after LifeSpan</th>
<th>Total GWP</th>
<th>Difference in Operating GWP from Baseline after LifeSpan</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>61,705</td>
<td>61,744</td>
<td>434</td>
<td>424</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>LifeSpan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Total</th>
<th>End of Life</th>
<th>Total GWP</th>
<th>Difference in Operating GWP from Baseline after LifeSpan</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>2,265</td>
<td>2,265</td>
<td>71</td>
<td>0</td>
<td>2,300</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time 0 (km, at the completion of initial construction)
2. Trans = Transportation
3. Total EE for Total GWP = Total embodied energy (or total embodied GWP) of building component after lifespan 60 total manufacturing = total construction + total maintenance = total end-use eff.
4. Total EE for Total GWP per m² = Total EE for Total GWP of building component / area of building component that was modeled in ATHENA EIE
5. Total Difference in Operating Energy (GWP) from Baseline after Lifespan = The difference in the total lifecycle operating energy (or GWP) from the baseline retail building after lifespan, due to using this building component instead of the baseline component
6. Total operating primary energy use of baseline retail building after 50 years = 2.310 tonnes of CO₂ eq.

ATHENA EIE Material List

Rich Material List

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>6mm Gypsum fibre Gypsum Board</td>
<td>61.8</td>
<td>m²</td>
</tr>
<tr>
<td>Foam Polyurethane</td>
<td>117.1</td>
<td>m³ (35mm)</td>
</tr>
<tr>
<td>Insulated Sheeting</td>
<td>310.9</td>
<td>kg</td>
</tr>
<tr>
<td>Insulated Studs</td>
<td>310.4</td>
<td>kg</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>41.7</td>
<td>kg</td>
</tr>
<tr>
<td>Modified Bitumen membrane</td>
<td>118.0</td>
<td>kg</td>
</tr>
<tr>
<td>Nails</td>
<td>2.7</td>
<td>kg</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>0.5</td>
<td>kg</td>
</tr>
<tr>
<td>Screws Nuts & Bolts</td>
<td>9.9</td>
<td>kg</td>
</tr>
<tr>
<td>Softwood Plywood</td>
<td>72.9</td>
<td>m³ (35mm)</td>
</tr>
<tr>
<td>Roof Sheeting Alkyl Paint</td>
<td>27.3</td>
<td>L</td>
</tr>
</tbody>
</table>

Cold-Formed Steel Roof #6 (CFS-R6)

Building Component Description:

Category: Rich
Assembly Layers:
- **Outside:**
 - Cold-formed steel joists and purlin deck with continuous 100mm insulated polyurethane rigid insulation and green roof assembly
- **Outside:**
 - Interior face:**
 - Green assembly (150mm of soil and vegetation)
 - Storage (landfill) provided PVC membrane

Quick Numbers:
- **MBE Rating:** R1
- **Flame Spread:** 50
- **Smoke Spread:** 50
- **Heat Release Rate:** 540 kW
- **Net Weight:** 68 kg
- **Shear Design Loads:** 50%
- **Wind Design Loads:** 50%
- **Total Embodied Energy:** 1.237 GJ
- **Total Embodied GWP:** 57 kg of CO₂ eq. m²

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>LifeSpan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Total</th>
<th>End of Life</th>
<th>Total EE</th>
<th>Difference in Operating Energy from Baseline after LifeSpan</th>
<th>Total GWP</th>
<th>Difference in Operating GWP from Baseline after LifeSpan</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>61,705</td>
<td>61,744</td>
<td>434</td>
<td>424</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>LifeSpan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Total</th>
<th>End of Life</th>
<th>Total GWP</th>
<th>Difference in Operating GWP from Baseline after LifeSpan</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>2,265</td>
<td>2,265</td>
<td>71</td>
<td>0</td>
<td>2,300</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time 0 (km, at the completion of initial construction)
2. Trans = Transportation
3. Total EE for Total GWP = Total embodied energy (or total embodied GWP) of building component after lifespan 60 total manufacturing = total construction + total maintenance + total end-use eff.
4. Total EE for Total GWP per m² = Total EE for Total GWP of building component / area of building component that was modeled in ATHENA EIE
5. Total Difference in Operating Energy (GWP) from Baseline after Lifespan = The difference in the total lifecycle operating energy (or GWP) from the baseline retail building after lifespan, due to using this building component instead of the baseline component
6. Total operating primary energy use of baseline retail building after 50 years = 2.310 tonnes of CO₂ eq.

ATHENA EIE Material List

Rich Material List

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>6mm Gypsum fibre Gypsum Board</td>
<td>41.8</td>
<td>m²</td>
</tr>
<tr>
<td>6m Polyurethane</td>
<td>42.3</td>
<td>m³</td>
</tr>
<tr>
<td>Modified Bitumen membrane</td>
<td>144.9</td>
<td>m³</td>
</tr>
<tr>
<td>Insulated Polyurethane</td>
<td>155.7</td>
<td>m³ (25mm)</td>
</tr>
<tr>
<td>Insulated Sheeting</td>
<td>88.3</td>
<td>kg</td>
</tr>
<tr>
<td>Insulated Studs</td>
<td>386.4</td>
<td>kg</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>41.7</td>
<td>kg</td>
</tr>
<tr>
<td>Modified Bitumen membrane</td>
<td>142.1</td>
<td>kg</td>
</tr>
<tr>
<td>Nails</td>
<td>2.7</td>
<td>kg</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>0.5</td>
<td>kg</td>
</tr>
<tr>
<td>Screws Nuts & Bolts</td>
<td>9.9</td>
<td>kg</td>
</tr>
<tr>
<td>PVC membrane</td>
<td>189.6</td>
<td>kg</td>
</tr>
<tr>
<td>Roof Sheeting Alkyl Paint</td>
<td>79.6</td>
<td>m³ (35mm)</td>
</tr>
</tbody>
</table>
Cold-Formed Steel Roof #7 (CFS-R7)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Cold-formed steel joists and planked deck with continuous 150mm polyisocyanurate insulation and 4-ply built-up asphalt roof assembly.</td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>R-value 27.6</td>
</tr>
<tr>
<td>ASHRAE Standard 90.1</td>
<td>6.0, 6.0</td>
</tr>
<tr>
<td>Material List</td>
<td>Galvanized steel (5'-0" gauge)</td>
</tr>
<tr>
<td>Roof Thickness</td>
<td>644 mm (26"")</td>
</tr>
<tr>
<td>Span</td>
<td>Design 7.0 m, Design 6.0 m</td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>1,460 MJ/t2</td>
</tr>
<tr>
<td>Total Embodied GWP</td>
<td>214 kg of CO2 eq/t2</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Life-Cycle (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>End of Life</th>
<th>Total EE per m2</th>
<th>Total EE per m2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>24,687</td>
<td>249</td>
<td>1,150</td>
<td>85,680</td>
<td>2,518</td>
</tr>
<tr>
<td>50</td>
<td>94,687</td>
<td>249</td>
<td>1,150</td>
<td>170,214</td>
<td>1,703</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO2 eq.)

<table>
<thead>
<tr>
<th>Life-Cycle (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>End of Life</th>
<th>Total GWP per m2</th>
<th>Total GWP per m2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>5,013</td>
<td>5,013</td>
<td>3,130</td>
<td>13,130</td>
<td>132</td>
</tr>
<tr>
<td>50</td>
<td>5,013</td>
<td>5,013</td>
<td>3,130</td>
<td>13,130</td>
<td>132</td>
</tr>
</tbody>
</table>

Notes:

- Athena EIE Material List:

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyethylene Film</td>
<td>202,000</td>
<td>m2</td>
</tr>
<tr>
<td>Treated Wood</td>
<td>202,000</td>
<td>m2</td>
</tr>
<tr>
<td>Bitumen</td>
<td>202,000</td>
<td>m2</td>
</tr>
<tr>
<td>Screws</td>
<td>202,000</td>
<td>m2</td>
</tr>
<tr>
<td>Nails</td>
<td>202,000</td>
<td>m2</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>202,000</td>
<td>m2</td>
</tr>
</tbody>
</table>

Cold-Formed Steel Roof #8 (CFS-R8)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Cold-formed steel joists and planked deck with continuous 150mm polyisocyanurate insulation and PVC roof assembly.</td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>R-value 27.6</td>
</tr>
<tr>
<td>ASHRAE Standard 90.1</td>
<td>6.0, 6.0</td>
</tr>
<tr>
<td>Material List</td>
<td>Galvanized steel (5'-0" gauge)</td>
</tr>
<tr>
<td>Roof Thickness</td>
<td>644 mm (26"")</td>
</tr>
<tr>
<td>Span</td>
<td>Design 7.0 m, Design 6.0 m</td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>1,460 MJ/t2</td>
</tr>
<tr>
<td>Total Embodied GWP</td>
<td>214 kg of CO2 eq/t2</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Life-Cycle (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>End of Life</th>
<th>Total EE per m2</th>
<th>Total EE per m2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>24,687</td>
<td>249</td>
<td>1,150</td>
<td>85,680</td>
<td>2,518</td>
</tr>
<tr>
<td>50</td>
<td>94,687</td>
<td>249</td>
<td>1,150</td>
<td>170,214</td>
<td>1,703</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO2 eq.)

<table>
<thead>
<tr>
<th>Life-Cycle (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>End of Life</th>
<th>Total GWP per m2</th>
<th>Total GWP per m2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>5,013</td>
<td>5,013</td>
<td>3,130</td>
<td>13,130</td>
<td>132</td>
</tr>
<tr>
<td>50</td>
<td>5,013</td>
<td>5,013</td>
<td>3,130</td>
<td>13,130</td>
<td>132</td>
</tr>
</tbody>
</table>

Notes:

- Athena EIE Material List:

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyethylene Film</td>
<td>202,000</td>
<td>m2</td>
</tr>
<tr>
<td>Treated Wood</td>
<td>202,000</td>
<td>m2</td>
</tr>
<tr>
<td>Bitumen</td>
<td>202,000</td>
<td>m2</td>
</tr>
<tr>
<td>Screws</td>
<td>202,000</td>
<td>m2</td>
</tr>
<tr>
<td>Nails</td>
<td>202,000</td>
<td>m2</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>202,000</td>
<td>m2</td>
</tr>
</tbody>
</table>
Cold-Formed Steel Roof #9 (CFS-R9)

Building Component Description:

Category: Roof

Brief Description: Cold-formed steel joists and parged deck with non-insulated 150mm polyiso-spray foam insulation and standing seam steel roof assembly

Quick Numbers:

- Non-continuous 100mm polyiso-spray foam insulation
- 150mm parged deck
- Span: 16.8m wide, 8.6m deep
- Total Embodied Energy: 1.741 MJ/m²
- Total Embodied GWP: 81 kg of CO₂ eq/m²

Material List:

- Paper Tape: 0.5 kg
- Screws, Nuts & Bolts: 5.9 kg
- Softwood Plywood: 79.8 m² (9mm)
- Solvent Based Acrylic Paint: 27.3 L

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Total</th>
<th>End of Life</th>
<th>Total EE per m²</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>46.906</td>
<td>189</td>
<td>456</td>
<td>0</td>
<td>0</td>
<td>-2.989</td>
</tr>
<tr>
<td>50</td>
<td>46.906</td>
<td>189</td>
<td>456</td>
<td>0</td>
<td>0</td>
<td>-2.989</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq):

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Total</th>
<th>End of Life</th>
<th>Total EE per m²</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>2.069</td>
<td>0</td>
<td>2.069</td>
<td>0</td>
<td>0</td>
<td>-2.069</td>
</tr>
<tr>
<td>50</td>
<td>2.069</td>
<td>0</td>
<td>2.069</td>
<td>0</td>
<td>0</td>
<td>-2.069</td>
</tr>
</tbody>
</table>

Notes:

- Initial = Time 0 (at the completion of initial construction)
- Trans = Transportation
- EE = Embodied Energy
- GWP = Global Warming Potential

Cold-Formed Steel Roof #10 (CFS-R10)

Building Component Description:

Category: Roof

Brief Description: Cold-formed steel joists and parged deck with continuous 200mm insulated polyethylene rigid insulation and green roof assembly

Quick Numbers:

- Continuous 200mm insulated polyethylene rigid insulation
- 150mm parged deck
- Span: 16.8m wide, 8.6m deep
- Total Embodied Energy: 1.545 MJ/m²
- Total Embodied GWP: 79 kg of CO₂ eq/m²

Material List:

- Green assembly (100% of soil and vegetation)
- Storage bed (100% provided as PVC membrane)

Notes:

- Initial = Time 0 (at the completion of initial construction)
- Trans = Transportation
- EE = Embodied Energy
- GWP = Global Warming Potential

ATHENA ® EIE Material List

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>16mm Gypsum Fibre Gypsum Board</td>
<td>41.8</td>
<td>m²</td>
</tr>
<tr>
<td>Foam Polyisocyanurate</td>
<td>234.2</td>
<td>m3/150mm²</td>
</tr>
<tr>
<td>Galvanised Steel</td>
<td>310.9</td>
<td>kg</td>
</tr>
<tr>
<td>Galvanised Sheet</td>
<td>323.5</td>
<td>kg</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>41.7</td>
<td>kg</td>
</tr>
<tr>
<td>Modified Bitumen membrane</td>
<td>118.0</td>
<td>kg</td>
</tr>
<tr>
<td>Nails</td>
<td>2.7</td>
<td>kg</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>0.5</td>
<td>kg</td>
</tr>
<tr>
<td>Screws Nuts & Bolts</td>
<td>5.9</td>
<td>kg</td>
</tr>
<tr>
<td>Softwood Plywood</td>
<td>79.8</td>
<td>m²/3mm²</td>
</tr>
<tr>
<td>Solvent Based Acrylic Paint</td>
<td>27.3</td>
<td>L</td>
</tr>
</tbody>
</table>

Notes:

- Initial = Time 0 (at the completion of initial construction)
- Trans = Transportation
- EE = Embodied Energy
- GWP = Global Warming Potential
Cold-Formed Steel Roof #11 (CFS-R11)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Material List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back-to-back cold-formed steel plates and painted deck with continuous 75mm polyisocyanurate insulation</td>
<td></td>
</tr>
<tr>
<td>4 gusset-up asphalt membrane</td>
<td></td>
</tr>
<tr>
<td>Bottom gusset-up asphalt membrane assembly</td>
<td></td>
</tr>
<tr>
<td>Assembly Layers</td>
<td></td>
</tr>
<tr>
<td>Back (urethane foam)</td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Lifetime (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>End of Life</th>
<th>Total EE Energy per m²</th>
<th>Difference in Operating Energy from Baseline after Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trans.</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>Trans.</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Lifetime (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>End of Life</th>
<th>Total Global Warming Potential per m²</th>
<th>Difference in Operating GWP from Baseline after Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trans.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>Trans.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Cold-Formed Steel Roof #12 (CFS-R12)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Material List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back-to-back cold-formed steel back</td>
<td></td>
</tr>
<tr>
<td>Asphalt membrane (urethane foam)</td>
<td></td>
</tr>
<tr>
<td>Assembly Layers</td>
<td></td>
</tr>
<tr>
<td>Bottom gusset-up asphalt membrane assembly</td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Lifetime (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>End of Life</th>
<th>Total EE Energy per m²</th>
<th>Difference in Operating Energy from Baseline after Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trans.</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>Trans.</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Lifetime (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>End of Life</th>
<th>Total Global Warming Potential per m²</th>
<th>Difference in Operating GWP from Baseline after Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trans.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>Trans.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:

744 Cold-Formed Steel Roof #12 (CFS-R12) materials are based on an area of roof = 45.7 m² (span = 9.0 m; width = 5.1 m) Net roof area of baseline retail building (gross roof area - openings) = 585.0 m²

ATHENA EIE Material List:

- Includes all materials after 50 years

ATHENA EIE Material List:

- Includes all materials after 50 years

Notes:

- Initial Time of Gas at the completion of installation
- Trans. = Transportation
- Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component after lifespan (net, total manufacturing + total construction + total maintenance + total embodied effects)
- Total EE (or Total GWP) per m² = Total EE (or Total GWP) of building component/area of building component that was modeled in ATHENA EIE
- Total difference in operating energy (or GWP) from baseline after lifespan = net difference in operating energy (or GWP) from baseline after lifespan - net energy of baseline building after operations, due to using the building component instead of the baseline-component
- Total difference in operating energy (or GWP) from baseline after lifespan per m² = Total difference in operating energy (or GWP) from baseline after lifespan / net energy of baseline building after operations, due to using the building component instead of the baseline-component
- Total operating energy use of baseline retail building after 50 years = 744 kg of CO₂ eq, 744 kg of CO₂ eq, 744 kg of CO₂ eq, 744 kg of CO₂ eq
Cold-Formed Steel Roof #13 (CFS-R13)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Type</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walls</td>
<td>Cold-formed steel trusses @ 1,200mm o/c with metal deck with continuous 76mm polyisocyanurate insulation and 4-gal built-up asphalt roof assembly</td>
<td></td>
</tr>
<tr>
<td>Roof</td>
<td>Ballasted organic felt, 551.7 m², 13mm Moisture Resistant Gypsum Board</td>
<td></td>
</tr>
</tbody>
</table>

Quick Numbers:

- R-Value: 20.8
- RSI-Value: 3.7
- R-Value: 21.5
- RSI-Value: 3.8

- 9,100mm long x 762mm deep cold-formed steel
- 1200mm spaced @ 1,200mm o/c

- 213 kg of CO₂

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Trans</th>
<th>Total</th>
<th>Construction</th>
<th>Trans</th>
<th>Total</th>
<th>Maintenance</th>
<th>Trans</th>
<th>Total</th>
<th>End of Life</th>
<th>Trans</th>
<th>Total</th>
<th>Total</th>
<th>Total per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Initial</td>
<td>115,920</td>
<td>397</td>
<td>1,076</td>
<td>1,473</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>115,920</td>
<td>115.92 m²</td>
</tr>
<tr>
<td>30</td>
<td>115,920</td>
<td>397</td>
<td>1,076</td>
<td>1,473</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>115,920</td>
<td>115.92 m²</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Trans</th>
<th>Total</th>
<th>Construction</th>
<th>Trans</th>
<th>Total</th>
<th>Maintenance</th>
<th>Trans</th>
<th>Total</th>
<th>End of Life</th>
<th>Trans</th>
<th>Total</th>
<th>Total</th>
<th>Total per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Initial</td>
<td>9,000</td>
<td>9,000</td>
<td>9,000</td>
<td>5,986</td>
<td>1</td>
<td>5,986</td>
<td>1</td>
<td>5,986</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9,000</td>
<td>900.00 kg</td>
</tr>
<tr>
<td>30</td>
<td>9,000</td>
<td>9,000</td>
<td>9,000</td>
<td>5,986</td>
<td>1</td>
<td>5,986</td>
<td>1</td>
<td>5,986</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9,000</td>
<td>900.00 kg</td>
</tr>
</tbody>
</table>

A breakdown of the total primary energy consumption and the total global warming potential (GWP) for each roof is also included. In each case, the results were calculated for an area of roof equal to 69.2 m², which represents a typical bay size for a single-storey retail building with this type of roof system. The results are also expressed on a per m² basis in each case. The data has been calculated for two different lifespans: at the completion of initial construction and after 50 years.

As a summary, the figure below illustrates a comparison of the total embodied energy (and GWP) after 50 years for the various roofs in this section. For comparison purpose, the building component used in the baseline retail building has been shaded in grey.
Glulam Roof #1 (GLU-R1)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Unit 1</th>
<th>Unit 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glulam plates and wood planks deck</td>
<td>576 m²</td>
<td>576 m²</td>
</tr>
<tr>
<td>Continuous 15mm polyurethane insulation</td>
<td>576 m²</td>
<td>576 m²</td>
</tr>
<tr>
<td>Roofing asphalt</td>
<td>576 m²</td>
<td>576 m²</td>
</tr>
</tbody>
</table>

Quick Numbers:

<table>
<thead>
<tr>
<th>Category</th>
<th>Unit 1</th>
<th>Unit 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Embodied Energy (MJ)</td>
<td>7.441</td>
<td>7.490</td>
</tr>
<tr>
<td>Total Embodied CO₂eq (t)</td>
<td>302.1</td>
<td>302.1</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Embodied Energy (MJ)</th>
<th>Global Warming Potential (kg of CO₂eq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>349.65</td>
<td>155.71</td>
</tr>
<tr>
<td>50</td>
<td>343.29</td>
<td>153.79</td>
</tr>
</tbody>
</table>

Notes:

- Initial = 17.6 (at the completion of initial construction)
- Time 0 (as at the completion of initial construction)
- Transportation
- Material List (includes all materials after 50 years)

<table>
<thead>
<tr>
<th>Material</th>
<th>Quotations</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>155. Organic Felt</td>
<td>551.9</td>
<td>m²</td>
</tr>
<tr>
<td>15M. Moisture Resistant Tarps</td>
<td>76.1</td>
<td>m²</td>
</tr>
<tr>
<td>15N. Tarps</td>
<td>76.1</td>
<td>m²</td>
</tr>
<tr>
<td>15K. Glazed Sheet</td>
<td>186.2</td>
<td>kg</td>
</tr>
<tr>
<td>15L. Insulation</td>
<td>214.6</td>
<td>m² (225m²)</td>
</tr>
<tr>
<td>15M. Modified Bitumen membrane</td>
<td>219.6</td>
<td>kg</td>
</tr>
<tr>
<td>15N. Nails</td>
<td>49.2</td>
<td>kg</td>
</tr>
<tr>
<td>15Q. Paper Tape</td>
<td>0.9</td>
<td>kg</td>
</tr>
<tr>
<td>15R. Roofing Asphalt</td>
<td>1,551.1</td>
<td>kg</td>
</tr>
</tbody>
</table>

Athena® EIE Material List:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quotations</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>15S. Organic Felt</td>
<td>551.9</td>
<td>m²</td>
</tr>
<tr>
<td>15M. Moisture Resistant Tarps</td>
<td>76.1</td>
<td>m²</td>
</tr>
<tr>
<td>15N. Tarps</td>
<td>76.1</td>
<td>m²</td>
</tr>
<tr>
<td>15K. Glazed Sheet</td>
<td>186.2</td>
<td>kg</td>
</tr>
<tr>
<td>15L. Insulation</td>
<td>214.6</td>
<td>m² (225m²)</td>
</tr>
<tr>
<td>15M. Modified Bitumen membrane</td>
<td>219.6</td>
<td>kg</td>
</tr>
<tr>
<td>15N. Nails</td>
<td>49.2</td>
<td>kg</td>
</tr>
<tr>
<td>15Q. Paper Tape</td>
<td>0.9</td>
<td>kg</td>
</tr>
<tr>
<td>15R. Roofing Asphalt</td>
<td>1,551.1</td>
<td>kg</td>
</tr>
</tbody>
</table>

Glulam Roof #2 (GLU-R2)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Unit 1</th>
<th>Unit 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glulam plates and wood planks deck</td>
<td>576 m²</td>
<td>576 m²</td>
</tr>
<tr>
<td>Continuous 15mm polyurethane insulation</td>
<td>576 m²</td>
<td>576 m²</td>
</tr>
<tr>
<td>Roofing asphalt</td>
<td>576 m²</td>
<td>576 m²</td>
</tr>
</tbody>
</table>

Quick Numbers:

<table>
<thead>
<tr>
<th>Category</th>
<th>Unit 1</th>
<th>Unit 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Embodied Energy (MJ)</td>
<td>4.564</td>
<td>4.579</td>
</tr>
<tr>
<td>Total Embodied CO₂eq (t)</td>
<td>143.2</td>
<td>143.2</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Embodied Energy (MJ)</th>
<th>Global Warming Potential (kg of CO₂eq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>354.09</td>
<td>157.02</td>
</tr>
<tr>
<td>50</td>
<td>349.36</td>
<td>155.79</td>
</tr>
</tbody>
</table>

Notes:

- Initial = 17.6 (at the completion of initial construction)
- Time 0 (as at the completion of initial construction)
- Transportation
- Material List (includes all materials after 50 years)

<table>
<thead>
<tr>
<th>Material</th>
<th>Quotations</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>155. Organic Felt</td>
<td>551.9</td>
<td>m²</td>
</tr>
<tr>
<td>15M. Moisture Resistant Tarps</td>
<td>76.1</td>
<td>m²</td>
</tr>
<tr>
<td>15N. Tarps</td>
<td>76.1</td>
<td>m²</td>
</tr>
<tr>
<td>15K. Glazed Sheet</td>
<td>186.2</td>
<td>kg</td>
</tr>
<tr>
<td>15L. Insulation</td>
<td>214.6</td>
<td>m² (225m²)</td>
</tr>
<tr>
<td>15M. Modified Bitumen membrane</td>
<td>219.6</td>
<td>kg</td>
</tr>
<tr>
<td>15N. Nails</td>
<td>49.2</td>
<td>kg</td>
</tr>
<tr>
<td>15Q. Paper Tape</td>
<td>0.9</td>
<td>kg</td>
</tr>
<tr>
<td>15R. Roofing Asphalt</td>
<td>1,551.1</td>
<td>kg</td>
</tr>
</tbody>
</table>

Athena® EIE Material List:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quotations</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>15S. Organic Felt</td>
<td>551.9</td>
<td>m²</td>
</tr>
<tr>
<td>15M. Moisture Resistant Tarps</td>
<td>76.1</td>
<td>m²</td>
</tr>
<tr>
<td>15N. Tarps</td>
<td>76.1</td>
<td>m²</td>
</tr>
<tr>
<td>15K. Glazed Sheet</td>
<td>186.2</td>
<td>kg</td>
</tr>
<tr>
<td>15L. Insulation</td>
<td>214.6</td>
<td>m² (225m²)</td>
</tr>
<tr>
<td>15M. Modified Bitumen membrane</td>
<td>219.6</td>
<td>kg</td>
</tr>
<tr>
<td>15N. Nails</td>
<td>49.2</td>
<td>kg</td>
</tr>
<tr>
<td>15Q. Paper Tape</td>
<td>0.9</td>
<td>kg</td>
</tr>
<tr>
<td>15R. Roofing Asphalt</td>
<td>1,551.1</td>
<td>kg</td>
</tr>
</tbody>
</table>
Glulam Roof #3 (GLU-R3)

Building Component Description:
- **Category:** Glulam, plywood, and wood plugs
- **Assembly Layers:** Glulam joists, plywood, and wood plugs
- **Brief Description:** Glulam joists and plywood deck with continuous 75mm polystyrene insulation and EPDM/EPDM assembly
- **Quick Numbers:**
 - **Glulam:** 600 mm (modelled as moisture-resistant gypsum)
 - **Polystyrene insulation:** 75 mm
 - **Plywood deck:** 10.5 mm
 - **Life Span:** 25 years
 - **Total Embodied Energy:** 134.9 MJ
 - **Total Embodied GWP:** 87 kg of CO2 eq

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifecycle Assessment (MJ)</th>
<th>Embodied Energy (EE)</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total EE</td>
<td>134.9</td>
<td>-</td>
</tr>
<tr>
<td>Total GWP</td>
<td>87</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lifecycle Assessment (kg of CO2 eq.)</th>
<th>Embodied Global Warming Potential (GWP)</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total GWP</td>
<td>87</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes:
- **Initial:** Time D/O at the completion of initial construction
- **Trans:** Transportation
- **Total EE for GLU-R3:** Total embodied energy for the building component after the lifespan + total manufacturing + total construction + total maintenance = total embodied energy
- **Total EE for GLU-R4:** Total embodied energy for the building component after the lifespan + total manufacturing + total construction + total maintenance = total embodied energy
- **Total GWP for GLU-R3:** Total embodied energy for the building component after the lifespan + total manufacturing + total construction + total maintenance = total embodied energy
- **Total GWP for GLU-R4:** Total embodied energy for the building component after the lifespan + total manufacturing + total construction + total maintenance = total embodied energy

Glulam Roof #4 (GLU-R4)

Building Component Description:
- **Category:** Glulam, plywood, and wood plugs
- **Assembly Layers:** Glulam joists, plywood, and wood plugs
- **Brief Description:** Glulam joists and plywood deck with continuous 75mm polystyrene insulation and PVC/poly foam assembly
- **Quick Numbers:**
 - **Glulam:** 600 mm (modelled as moisture-resistant gypsum)
 - **Polystyrene insulation:** 75 mm
 - **Plywood deck:** 10.5 mm
 - **Life Span:** 25 years
 - **Total Embodied Energy:** 134.9 MJ
 - **Total Embodied GWP:** 87 kg of CO2 eq

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifecycle Assessment (MJ)</th>
<th>Embodied Energy (EE)</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total EE</td>
<td>134.9</td>
<td>-</td>
</tr>
<tr>
<td>Total GWP</td>
<td>87</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lifecycle Assessment (kg of CO2 eq.)</th>
<th>Embodied Global Warming Potential (GWP)</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total GWP</td>
<td>87</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes:
- **Initial:** Time D/O at the completion of initial construction
- **Trans:** Transportation
- **Total EE for GLU-R3:** Total embodied energy for the building component after the lifespan + total manufacturing + total construction + total maintenance = total embodied energy
- **Total EE for GLU-R4:** Total embodied energy for the building component after the lifespan + total manufacturing + total construction + total maintenance = total embodied energy
- **Total GWP for GLU-R3:** Total embodied energy for the building component after the lifespan + total manufacturing + total construction + total maintenance = total embodied energy
- **Total GWP for GLU-R4:** Total embodied energy for the building component after the lifespan + total manufacturing + total construction + total maintenance = total embodied energy

ATHENA ® EIE Material List:
- **Includes:** All materials after 50 years

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>10mm Moisture Resistant Gypsum Board</td>
<td>96.1 m³</td>
</tr>
<tr>
<td>15mm Polystyrene Sheets</td>
<td>96.1 m³</td>
</tr>
<tr>
<td>E-6 Polyurethane Cells</td>
<td>80.5 m³</td>
</tr>
<tr>
<td>3.5kg Bag</td>
<td>15,825.1 kg</td>
</tr>
<tr>
<td>EPDM Membrane</td>
<td>566.6 kg</td>
</tr>
<tr>
<td>Glulam Sections</td>
<td>15.5 m³</td>
</tr>
<tr>
<td>Inorganic</td>
<td>214.6 m² (24mm)</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>151.9 kg</td>
</tr>
<tr>
<td>Nails</td>
<td>19.9 kg</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.7 kg</td>
</tr>
<tr>
<td>Painted Material (White, Primed, Primed, Primed)</td>
<td>3.7 m³</td>
</tr>
<tr>
<td>Softwood Plywood</td>
<td>1.4 m² (24mm)</td>
</tr>
</tbody>
</table>
Building Component Description: Glulam Roof #5 (GLU-R5)

Category: Roof

Brief Description: Glulam planks and wood planks deck with non-continuous 7.0mm polycarbonate insulation and standing seam steel roof panels.

Quick Numbers:
- **ATHENA Standard Net:** 21.4 ft/rl
- **Bidders:** 9.1 ft/rl
- **Width:** 12 ft
- **Thermal Resistance:** 0.88
- **R-value:** 0.64
- **Grain:** Untreated pine
- **Total Embodied Energy:** 3.747 MJ
- **Total Embodied CO2:** 56 kg
- **Life-Cycle Assessment Results:**

<table>
<thead>
<tr>
<th>Life Cycle (Years)</th>
<th>Embodied Energy (MJ)</th>
<th>Embodied Global Warming Potential (GWP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing</td>
<td>Trns.</td>
<td>Total</td>
</tr>
<tr>
<td>Initial</td>
<td>2.382</td>
<td>3.309</td>
</tr>
</tbody>
</table>

Notes:
- Initial - Time 't' (in years at the completion of initial construction)
- Trans. = Transportation
- Total EE (or Total GWP) includes all embodied energy (or total embodied GWP) of building component after life span
- Total Energy = Total Energy from Baseline after Life span = 3.747 MJ
- Global Warming Potential = Total Energy from Baseline after Life span = 56 kg CO2 eq

Building Component Description: Glulam Roof #6 (GLU-R6)

Category: Roof

Brief Description: Glulam planks and wood planks deck with continuous 10.0mm polycarbonate rigid insulation and green roof assembly.

Quick Numbers:
- **ATHENA Standard Net:** 21.4 ft/rl
- **Bidders:** 9.1 ft/rl
- **Width:** 12 ft
- **Thermal Resistance:** 0.88
- **R-value:** 0.64
- **Grain:** Untreated pine
- **Total Embodied Energy:** 3.747 MJ
- **Total Embodied CO2:** 56 kg
- **Life-Cycle Assessment Results:**

<table>
<thead>
<tr>
<th>Life Cycle (Years)</th>
<th>Embodied Energy (MJ)</th>
<th>Embodied Global Warming Potential (GWP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing</td>
<td>Trns.</td>
<td>Total</td>
</tr>
<tr>
<td>Initial</td>
<td>2.382</td>
<td>3.309</td>
</tr>
</tbody>
</table>

Notes:
- Initial - Time 't' (i.e. at the completion of initial construction)
- Trans. = Transportation
- Total EE (or Total GWP) includes all embodied energy (or total embodied GWP) of building component after life span (i.e. total manufacturing + total construction + total maintenance + total end-of-life effects)
- Total EE (or Total GWP) per m2 = Total EE (or Total GWP) of building component / area of building component that was modeled in ATHENA® EIE
- Total Energy = Total Energy from Baseline after Life span = 3.747 MJ
- Global Warming Potential = Total Energy from Baseline after Life span = 56 kg CO2 eq

ATHENA® EIE Material List: (Inclusive of all materials after 50 years)

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>16mm Gypsum Board</td>
<td>76.1</td>
<td>m2</td>
</tr>
<tr>
<td>Roof Polyurethane</td>
<td>21.3</td>
<td>m2 (5%)</td>
</tr>
<tr>
<td>Glulam Sheets</td>
<td>6</td>
<td>kg</td>
</tr>
<tr>
<td>Glulam Beams</td>
<td>80</td>
<td>kg</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>1.5</td>
<td>m3</td>
</tr>
<tr>
<td>Nails</td>
<td>75.9</td>
<td>kg</td>
</tr>
<tr>
<td>Modified Bitumen Membrane</td>
<td>214.7</td>
<td>kg</td>
</tr>
<tr>
<td>Modified Bitumen Membrane</td>
<td>258.7</td>
<td>kg</td>
</tr>
<tr>
<td>Modified Bitumen Membrane</td>
<td>17.8</td>
<td>kg</td>
</tr>
<tr>
<td>Modified Bitumen Membrane</td>
<td>3.5</td>
<td>m3</td>
</tr>
</tbody>
</table>

Notes:
- Initial - Time 't' (i.e. at the completion of initial construction)
- Trans. = Transportation
- Total EE (or Total GWP) includes all embodied energy (or total embodied GWP) of building component after life span (i.e. total manufacturing + total construction + total maintenance + total end-of-life effects)
- Total EE (or Total GWP) per m2 = Total EE (or Total GWP) of building component / area of building component that was modeled in ATHENA® EIE
- Total Energy = Total Energy from Baseline after Life span = 3.747 MJ
- Global Warming Potential = Total Energy from Baseline after Life span = 56 kg CO2 eq

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Life Cycle (Years)</th>
<th>Embodied Energy (MJ)</th>
<th>Embodied Global Warming Potential (GWP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing</td>
<td>Trns.</td>
<td>Total</td>
</tr>
<tr>
<td>Initial</td>
<td>2.382</td>
<td>3.309</td>
</tr>
</tbody>
</table>

Notes:
- Initial - Time 't' (i.e. at the completion of initial construction)
- Trans. = Transportation
- Total EE (or Total GWP) includes all embodied energy (or total embodied GWP) of building component after life span (i.e. total manufacturing + total construction + total maintenance + total end-of-life effects)
- Total EE (or Total GWP) per m2 = Total EE (or Total GWP) of building component / area of building component that was modeled in ATHENA® EIE
- Total Energy = Total Energy from Baseline after Life span = 3.747 MJ
- Global Warming Potential = Total Energy from Baseline after Life span = 56 kg CO2 eq

Material List:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td>16mm Gypsum Board</td>
<td>76.1</td>
</tr>
<tr>
<td>Roof Polyurethane</td>
<td>21.3</td>
</tr>
<tr>
<td>Glulam Beams</td>
<td>80</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>1.5</td>
</tr>
<tr>
<td>Nails</td>
<td>75.9</td>
</tr>
<tr>
<td>Modified Bitumen Membrane</td>
<td>214.7</td>
</tr>
<tr>
<td>Modified Bitumen Membrane</td>
<td>258.7</td>
</tr>
<tr>
<td>Modified Bitumen Membrane</td>
<td>17.8</td>
</tr>
<tr>
<td>Modified Bitumen Membrane</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Notes:
- Initial - Time 't' (i.e. at the completion of initial construction)
- Trans. = Transportation
- Total EE (or Total GWP) includes all embodied energy (or total embodied GWP) of building component after life span (i.e. total manufacturing + total construction + total maintenance + total end-of-life effects)
- Total EE (or Total GWP) per m2 = Total EE (or Total GWP) of building component / area of building component that was modeled in ATHENA® EIE
- Total Energy = Total Energy from Baseline after Life span = 3.747 MJ
- Global Warming Potential = Total Energy from Baseline after Life span = 56 kg CO2 eq

Notes:

1. Initial - Time 't' (i.e. at the completion of initial construction)
2. Trans. = Transportation
3. Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component after life span (i.e. total manufacturing + total construction + total maintenance + total end-of-life effects)
4. Total EE (or Total GWP) per m2 = Total EE (or Total GWP) of building component / area of building component that was modeled in ATHENA® EIE
5. Total Energy (or Total GWP) = Total energy from Baseline after Life span = 3.747 MJ
6. Global Warming Potential = Total energy from Baseline after Life span = 56 kg CO2 eq

Notes:

1. Initial - Time 't' (i.e. at the completion of initial construction)
2. Trans. = Transportation
3. Total EE (or Total GWP) includes all embodied energy (or total embodied GWP) of building component after life span (i.e. total manufacturing + total construction + total maintenance + total end-of-life effects)
4. Total EE (or Total GWP) per m2 = Total EE (or Total GWP) of building component / area of building component that was modeled in ATHENA® EIE
5. Total Energy (or Total GWP) = Total energy from Baseline after Life span = 3.747 MJ
6. Global Warming Potential = Total energy from Baseline after Life span = 56 kg CO2 eq

Notes:

1. Initial - Time 't' (i.e. at the completion of initial construction)
2. Trans. = Transportation
3. Total EE (or Total GWP) includes all embodied energy (or total embodied GWP) of building component after life span (i.e. total manufacturing + total construction + total maintenance + total end-of-life effects)
4. Total EE (or Total GWP) per m2 = Total EE (or Total GWP) of building component / area of building component that was modeled in ATHENA® EIE
5. Total Energy (or Total GWP) = Total energy from Baseline after Life span = 3.747 MJ
6. Global Warming Potential = Total energy from Baseline after Life span = 56 kg CO2 eq

Notes:

1. Initial - Time 't' (i.e. at the completion of initial construction)
2. Trans. = Transportation
3. Total EE (or Total GWP) includes all embodied energy (or total embodied GWP) of building component after life span (i.e. total manufacturing + total construction + total maintenance + total end-of-life effects)
4. Total EE (or Total GWP) per m2 = Total EE (or Total GWP) of building component / area of building component that was modeled in ATHENA® EIE
5. Total Energy (or Total GWP) = Total energy from Baseline after Life span = 3.747 MJ
6. Global Warming Potential = Total energy from Baseline after Life span = 56 kg CO2 eq
Glulam Roof #7 (GLU-R7)

Building Component Description:
- **Category:** Glulam joists and wood plank deck with continuous 15mm polycarbonate isolation and 4 g-bu built-up asphalt roof assembly
- **Assembly Layers:**
 - Glulam joists and wood plank deck
 - Continuous 15mm polycarbonate isolation
 - 4 g-bu built-up asphalt roof assembly
- **Quick Numbers:**
 - Net roof area of baseline retail building (net roof area - openings) = 169,239 m²
 - Net roof area of baseline retail building (gross roof area - openings) = 193,289 m²
 - Total Embodied Energy = 5,698 MWh
 - Total Embodied CO₂eq = 453 kg of CO₂eq

Life-Cycle Assessment Results:
- **Primary Energy Consumption (MJ):**
 - Life-cycle saving = 45,879 MWh
 - Life-cycle saving per m² = 2.45 Wh/M²
 - Operating energy savings = 60,000 MWh
 - Operating energy savings per m² = 3.02 Wh/M²

- **Global Warming Potential (kg of CO₂eq):**
 - Life-cycle savings = 60,000 kg of CO₂eq
 - Life-cycle savings per m² = 3.02 kg of CO₂eq/M²

Athena ® EIE Material List:
- (Includes materials after 50 years)

<table>
<thead>
<tr>
<th>Material List</th>
<th>Organic</th>
<th>Basalt</th>
<th>Polycarbonate</th>
<th>Paper</th>
<th>Bitumen</th>
<th>Laminated Glass</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>#10 Organic Felt</td>
<td>551.9 m²</td>
<td>76.1 m²</td>
<td>76.1 m²</td>
<td>69.9 m²</td>
<td>76.1 m²</td>
<td>28.6 m²</td>
<td>1,312.8 m²</td>
</tr>
<tr>
<td>Basalt Aggregates</td>
<td>76.1 m²</td>
<td>76.1 m²</td>
<td>76.1 m²</td>
<td>76.1 m²</td>
<td>76.1 m²</td>
<td>76.1 m²</td>
<td>28.6 m²</td>
</tr>
<tr>
<td>Laminated Glass</td>
<td>9.5 m²</td>
<td>28.6 m²</td>
<td>28.6 m²</td>
<td>28.6 m²</td>
<td>28.6 m²</td>
<td>28.6 m²</td>
<td>9.5 m²</td>
</tr>
<tr>
<td>Notes:</td>
<td>- Time (h) at the completion of initial construction = 43.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Glulam Roof #8 (GLU-R8)

Building Component Description:
- **Category:** Glulam joists and wood plank deck with continuous 15mm polycarbonate isolation and PVC roof assembly
- **Assembly Layers:**
 - Glulam joists and wood plank deck
 - Continuous 15mm polycarbonate isolation
 - PVC membrane
- **Quick Numbers:**
 - Net roof area of baseline retail building (gross roof area - openings) = 169,239 m²
 - Net roof area of baseline retail building (net roof area - openings) = 169,239 m²
 - Total Embodied Energy = 5,698 MWh
 - Total Embodied CO₂eq = 453 kg of CO₂eq

Life-Cycle Assessment Results:
- **Primary Energy Consumption (MJ):**
 - Life-cycle saving = 45,879 MWh
 - Life-cycle saving per m² = 2.45 Wh/M²
 - Operating energy savings = 60,000 MWh
 - Operating energy savings per m² = 3.02 Wh/M²

- **Global Warming Potential (kg of CO₂eq):**
 - Life-cycle savings = 60,000 kg of CO₂eq
 - Life-cycle savings per m² = 3.02 kg of CO₂eq/M²

Athena ® EIE Material List:
- (Includes materials after 50 years)

<table>
<thead>
<tr>
<th>Material List</th>
<th>Organic</th>
<th>Basalt</th>
<th>Polycarbonate</th>
<th>Paper</th>
<th>Bitumen</th>
<th>Laminated Glass</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>#10 Organic Felt</td>
<td>551.9 m²</td>
<td>76.1 m²</td>
<td>76.1 m²</td>
<td>69.9 m²</td>
<td>76.1 m²</td>
<td>28.6 m²</td>
<td>1,312.8 m²</td>
</tr>
<tr>
<td>Basalt Aggregates</td>
<td>76.1 m²</td>
<td>76.1 m²</td>
<td>76.1 m²</td>
<td>76.1 m²</td>
<td>76.1 m²</td>
<td>76.1 m²</td>
<td>28.6 m²</td>
</tr>
<tr>
<td>Laminated Glass</td>
<td>9.5 m²</td>
<td>28.6 m²</td>
<td>28.6 m²</td>
<td>28.6 m²</td>
<td>28.6 m²</td>
<td>28.6 m²</td>
<td>9.5 m²</td>
</tr>
<tr>
<td>Notes:</td>
<td>- Time (h) at the completion of initial construction = 43.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Trans = Transportation
- EE = Energy Efficiency
- CO₂eq = Carbon Dioxide Equivalent
- MWh = Megawatt Hours
- kg = Kilograms
- m² = Square Meters
- T/L = Time/Life
- M = Mass
- T = Depth
- B = Breadth
- Notes:
 - Initial = Time (h) at the completion of initial construction
 - Trans = Transportation
 - EE = Energy Efficiency
 - CO₂eq = Carbon Dioxide Equivalent
 - MWh = Megawatt Hours
 - kg = Kilograms
 - m² = Square Meters
 - T/L = Time/Life
 - M = Mass
 - T = Depth
 - B = Breadth
 - Notes:
Glulam Roof #9 (GLU-R9)

Building Component Description:

Category: Joists

Assembly Layers:
- Multi-layered board
- Flexible polyurethane foam insulation
- 3.5 mm thick particleboard
- Polystyrene sheet
- 3.5 mm thick particleboard

Quick Numbers:
- 151.2 mm thickness
- 3.5 kg CO₂ per m²

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total Embodied Energy (EE)</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>64.289</td>
<td>583</td>
<td>84.289</td>
<td>461</td>
<td>1,630</td>
<td>2,069</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>64.289</td>
<td>583</td>
<td>84.289</td>
<td>461</td>
<td>1,630</td>
<td>2,069</td>
<td></td>
</tr>
</tbody>
</table>

ATHENA ® EIE Material List:

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>16mm Plywood Board</td>
<td>76.1</td>
<td>m³</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>426.9</td>
<td>m³ (25mm)</td>
</tr>
<tr>
<td>Phenolic Sheet</td>
<td>565.7</td>
<td>kg</td>
</tr>
<tr>
<td>Phenolic Sheets</td>
<td>121.2</td>
<td>kg</td>
</tr>
<tr>
<td>Glulam Sections</td>
<td>1.5</td>
<td>m³</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>75.9</td>
<td>kg</td>
</tr>
<tr>
<td>Medium Density Board</td>
<td>214.7</td>
<td>kg</td>
</tr>
<tr>
<td>Nails</td>
<td>17.8</td>
<td>kg</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>0.9</td>
<td>kg</td>
</tr>
<tr>
<td>Screws</td>
<td>0.7</td>
<td>kg</td>
</tr>
<tr>
<td>Gl Laminate Plywood Lumber</td>
<td>3.5</td>
<td>m³</td>
</tr>
<tr>
<td>Solvent Based Alkyd Paint</td>
<td>49.7</td>
<td>L</td>
</tr>
</tbody>
</table>

Notes:
1. Initial = Time 0 (i.e., the completion of initial construction)
2. Trans = Transportation
3. Total EE (or Total GWP) is the total embodied energy (or total embodied GWP) of building component after lifespan (i.e., total manufacturing + total construction + total maintenance + total end-of-life effects).
4. Total EE (or Total GWP) per m² = Total EE (or Total GWP) of building component / area of building component that was modeled in ATHENA® EIE.
5. Total Difference in Operating Energy (or GWP) from Baseline after Lifespan = The difference in the total life-cycle operating energy (or GWP) from the baseline total building after the differences due to using this building component instead of the baseline component.
6. Total Difference in Operating Energy (or GWP) from Baseline after Lifespan per m² = Total difference in operating energy (or GWP) from baseline after lifespan / net roof area of baseline building (gross roof area - openings).
7. Total Operating primary energy use of baseline total building after 50 years = 2,310,000 tons of CO₂ eq.

Glulam Roof #10 (GLU-R10)

Building Component Description:

Category: Joists

Assembly Layers:
- Multi-layered board
- Flexible polyurethane foam insulation
- 3.5 mm thick particleboard
- Polystyrene sheet
- 3.5 mm thick particleboard

Quick Numbers:
- 151.2 mm thickness
- 3.5 kg CO₂ per m²

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total Embodied Energy (EE)</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>66.697</td>
<td>660</td>
<td>79.487</td>
<td>461</td>
<td>1,666</td>
<td>2,138</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>66.697</td>
<td>660</td>
<td>79.487</td>
<td>461</td>
<td>1,666</td>
<td>2,138</td>
<td></td>
</tr>
</tbody>
</table>

ATHENA ® EIE Material List:

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>16mm Plywood & Particleboard</td>
<td>76.1</td>
<td>m³</td>
</tr>
<tr>
<td>E-W Polyurethane</td>
<td>75.9</td>
<td>m³</td>
</tr>
<tr>
<td>Ballast aggregate stone</td>
<td>263.7</td>
<td>kg</td>
</tr>
<tr>
<td>Extruded Polyurethane</td>
<td>566.8</td>
<td>m³ (125mm)</td>
</tr>
<tr>
<td>Glulam Sheets</td>
<td>1.8</td>
<td>m³</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>75.9</td>
<td>kg</td>
</tr>
<tr>
<td>Medium Density Board</td>
<td>258.7</td>
<td>kg</td>
</tr>
<tr>
<td>Nails</td>
<td>17.8</td>
<td>kg</td>
</tr>
<tr>
<td>Paper</td>
<td>0.8</td>
<td>kg</td>
</tr>
<tr>
<td>PVC Membrane</td>
<td>308.7</td>
<td>kg</td>
</tr>
<tr>
<td>Gl Laminate Plywood Lumber</td>
<td>3.5</td>
<td>m³</td>
</tr>
</tbody>
</table>

Notes:
1. Initial = Time 0 (i.e., the completion of initial construction)
2. Trans = Transportation
3. Total EE (or Total GWP) is the total embodied energy (or total embodied GWP) of building component after lifespan (i.e., total manufacturing + total construction + total maintenance + total end-of-life effects).
4. Total EE (or Total GWP) per m² = Total EE (or Total GWP) of building component / area of building component that was modeled in ATHENA® EIE.
5. Total Difference in Operating Energy (or GWP) from Baseline after Lifespan = The difference in the total life-cycle operating energy (or GWP) from the baseline total building after lifespan, due to using this building component instead of the baseline component.
6. Total Difference in Operating Energy (or GWP) from Baseline after Lifespan per m² = Total difference in operating energy (or GWP) from baseline after lifespan / net roof area of baseline building (gross roof area - openings).
7. Total operating primary energy use of baseline total building after 50 years = 80,700 GJ (1.74 MWh/yr).
8. Total operating primary energy use of baseline total building after 50 years = 2,310,000 tons of CO₂ eq. (80 kg of CO₂ eq/m²/yr).
LCA Data for Wood Structural Insulated Panel Roofs

This section contains a detailed description of each wood structural insulated panel (WSIP) roof that was examined in this study (6 in total). The assembly layers are listed for each roof, along with a detailed description of the material quantities from the ATHENA® Environmental Impact Estimator for Buildings.

A breakdown of the total primary energy consumption and the total global warming potential (GWP) for each roof is also included. In each case, the results were calculated for an area of roof equal to 38.0 m², which represents a typical bay size for a single-storey retail building with this type of roof system. The results are also expressed on a per m² basis in each case. The data has been calculated for two different lifespans: at the completion of initial construction and after 50 years.

As a summary, the figure below illustrates a comparison of the total embodied energy (and GWP) after 50 years for the various roofs in this section as well as the metal structural insulated panel (MSIP) roofs from the next section. For comparison purpose, the building component used in the baseline retail building has been shaded in grey.

Wood Structural Insulated Panel Roof #1 (WSIP-R1)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oriented Strand Board</td>
<td>103.3 m² (9mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roofing Asphalt</td>
<td>632.7 kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screws, Nuts & Bolts</td>
<td>147 kg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Material</th>
<th>Embedded Energy (EE) per m²</th>
<th>Embedded GWP per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oriented Strand Board</td>
<td>303.2 m²</td>
<td>418 m²</td>
</tr>
<tr>
<td>Roofing Asphalt</td>
<td>235.8 m² (25mm)</td>
<td>262.9 kg</td>
</tr>
<tr>
<td>Screws, Nuts & Bolts</td>
<td>121.6 kg</td>
<td>19.6 kg</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂eq.)

<table>
<thead>
<tr>
<th>Material</th>
<th>Embedded Global Warming Potential (GWP) per m²</th>
<th>Embedded GWP per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oriented Strand Board</td>
<td>632.7 kg (25mm)</td>
<td>133 kg</td>
</tr>
<tr>
<td>Roofing Asphalt</td>
<td>632.7 kg (25mm)</td>
<td>70 kg</td>
</tr>
<tr>
<td>Screws, Nuts & Bolts</td>
<td>147 kg</td>
<td>20 kg</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time 17.0 kn at the completion of initial construction
2. Trans = Transportation
3. Total EE/GWP = Total embodied energy (or embodied GWP) of building component after lifespans (kn, total manufacturing + total construction + total maintenance + total endoflife effect)
4. Total EE/GWP per m² = Total EE/GWP of building component per area of building component that was modeled in ATHENA® EIE
5. Total Difference in Operating Energy/GWP from Baseline after Lifespans = The difference in the total HVAC+operating energy (or GWP) from the baseline retail building after Lifespans due to using this building component instead of the baseline component
6. Total Difference in Operating Energy/GWP from Baseline after Lifespans per m² = Total difference in operating energy for GWP from baseline after Lifespans per m² of retail building area
7. Total operating primary energy use of baseline retail building after 50 years = 156.7 MWh (1.15 MWh/m²)
8. Total operating primary energy use of baseline retail building after 50 years = 156.7 MWh (1.15 MWh/m²)
9. Total operating primary energy use of baseline retail building after 50 years = 2,310 tonnes of CO₂eq (60% of 1.15 MWh/m²)
Wood Structural Insulated Panel Roof #2 (WSIP-R2)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>10mm (3/8") wood SIP roof with 4 piggybacked asphalt roof assemblies</td>
</tr>
<tr>
<td>Material Properties</td>
<td>- Oriented Strand Board (OSB) - Glass Felt</td>
</tr>
<tr>
<td>Unit Quantities</td>
<td>100 m² (1000 sq ft)</td>
</tr>
<tr>
<td>Life-Cycle Assessment Results:</td>
<td></td>
</tr>
<tr>
<td>Primary Energy Consumption (MJ)</td>
<td>Global Warming Potential (kg of CO₂ eq.)</td>
</tr>
<tr>
<td>End of Life</td>
<td>Embodied Energy (EE)</td>
</tr>
<tr>
<td></td>
<td>Total EE Total EE per m²</td>
</tr>
<tr>
<td></td>
<td>Trans.</td>
</tr>
<tr>
<td>Initial</td>
<td>99,943</td>
</tr>
<tr>
<td>50</td>
<td>99,943</td>
</tr>
</tbody>
</table>

Notes:

- Initial = Time 0 at the completion of retail construction
- Trans. = Transportation
- EE = Embodied energy
- GWP = Global Warming Potential

Wood Structural Insulated Panel Roof #3 (WSIP-R3)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>10mm (3/8") wood SIP roof with EPDM membrane assembly</td>
</tr>
<tr>
<td>Material Properties</td>
<td>- EPDM membrane - Glass Felt</td>
</tr>
<tr>
<td>Unit Quantities</td>
<td>100 m² (1000 sq ft)</td>
</tr>
<tr>
<td>Life-Cycle Assessment Results:</td>
<td></td>
</tr>
<tr>
<td>Primary Energy Consumption (MJ)</td>
<td>Global Warming Potential (kg of CO₂ eq.)</td>
</tr>
<tr>
<td>End of Life</td>
<td>Embodied Energy (EE)</td>
</tr>
<tr>
<td></td>
<td>Total EE Total EE per m²</td>
</tr>
<tr>
<td></td>
<td>Trans.</td>
</tr>
<tr>
<td>Initial</td>
<td>19,494</td>
</tr>
<tr>
<td>50</td>
<td>19,494</td>
</tr>
</tbody>
</table>

Notes:

- Initial = Time 0 at the completion of retail construction
- Trans. = Transportation
- EE = Embodied energy
- GWP = Global Warming Potential
Wood Structural Insulated Panel Roof #4 (WSIP-R4)

Building Component Description:

Assembly Layers:
- Sheathing (multiply by 2)
- SIP (McGraw-Hill/EP) (includes SIP core)
- Exterior sheathing

Quick Numbers:
- 16mm exterior polystyrene insulation

Building Component Description:
- 12mm OSB (AB, VR)

Total Embodied Energy:
- 51,742.4 Mj

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

Global Warming Potential (kg of CO2 eq.)

Notes:
- Total EE (for both GWP) = Total embodied energy or total embodied GWP of building component after lifespan. Total EE for total manufacturing + total construction + total maintenance + total end-of-life effects.
- Total EE for total GWP per m² = Total EE (for total GWP) of building component/area of building component that was modeled in ATHENA EIE (multiply by 2).
Wood Structural Insulated Panel Roof #6 (WSIP-R6)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>10.3 m² (72 ft²) wood SIP roof with green roof assembly</td>
</tr>
<tr>
<td>Assembly Layers</td>
<td>Green roof as entry (150m² of soil and vegetation)</td>
</tr>
<tr>
<td></td>
<td>Drainage board (modelled as PVC membrane)</td>
</tr>
</tbody>
</table>

Quick Numbers:

- Protection barrier (modelled as 60 psi) R-12.5
- Modelling: Insulation thickness 125mm
- Green roof membrane 2.7 kg/m²

<table>
<thead>
<tr>
<th>Material</th>
<th>Unit Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oriented Strand Board</td>
<td>103.3 m² (9mm)</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>0.5 kg</td>
</tr>
<tr>
<td>PVC membrane</td>
<td>169.6 kg</td>
</tr>
<tr>
<td>Screws & Nuts & Bolts</td>
<td>5.5 kg</td>
</tr>
</tbody>
</table>

Drainage board (WB)

Environmental Impact Estimator for Buildings. A breakdown of the total primary energy consumption and the total global warming potential (GWP) for each roof is also included. In each case, the results were calculated for an area of roof equal to 38.0 m², which represents a typical bay size for a single-storey retail building with this type of roof system. The results are also expressed on a per m² basis in each case. The data has been calculated for two different lifespans: at the completion of initial construction and after 50 years.

LCA Data for Metal Structural Insulated Panel Roofs

This section contains a detailed description of each metal structural insulated panel (MSIP) roof that was examined in this study (4 in total). The assembly layers are listed for each roof, along with a detailed description of the material quantities from the ATHENA® Environmental Impact Estimator for Buildings.

A breakdown of the total primary energy consumption and the total global warming potential (GWP) for each roof is also included. In each case, the results were calculated for an area of roof equal to 38.0 m², which represents a typical bay size for a single-storey retail building with this type of roof system. The results are also expressed on a per m² basis in each case. The data has been calculated for two different lifespans: at the completion of initial construction and after 50 years.

As a summary, the figure below illustrates a comparison of the total embodied energy (and GWP) after 50 years for the various roofs in this section as well as the WSIP roofs from the previous section. For comparison purpose, the building component used in the baseline retail building has been shaded in grey.
Metal Structural Insulated Panel Roof #1 (MSIP-R1)

Building Component Description:
- **Category:** Roof
- **Assembly Layers:**
 - 100mm (4") metal SIP roof with SBS modified bitumen membrane roof assembly
 - 3.6mm galvanized corrugated sheet metal roofing
 - 0.4mm galvanized commercial steel cladding
- **Quick Numbers:**
 - Material List
 - Screws, Nuts & Bolts: 5.5 kg
 - Water Based Latex Paint: 10.1 L
 - Assembly
 - Total Embodied Energy: 2.797 MWh
 - Total Embodied GWP: 73 kg CO₂ eq.

Life-Cycle Assessment Results:
- **Primary Energy Consumption (MJ):**
 - Initial: 27.97 MWh, at the completion of initial construction
 - Trans.: Transportation
 - Total EE (for Total GWP) = Total embodied energy (or total embodied energy) of building component after lifespan (i.e., total manufacturing + total construction + total maintenance + total end-of-life effects)
 - Total EE (for Total GWP) per m² = Total EE (for Total GWP) / area of building component
 - Difference in Total GWP = Total GWP from Baseline after Lifespan - Life Aspiration = The difference in the total life-cycle operating energy (for GWP) from the baseline retail building after lifespan, due to using this building component instead of the baseline component
- **Notes:**
 - Athena EIE Material List (includes all materials after 50 years)
 - Athena EIE Material List (includes all materials after 50 years)

Metal Structural Insulated Panel Roof #2 (MSIP-R2)

Building Component Description:
- **Category:** Roof
- **Assembly Layers:**
 - 100mm (4") metal SIP roof with 4-ply built-up asphalt membrane assembly
 - 3.6mm galvanized corrugated sheet metal roofing
 - 0.4mm galvanized commercial steel cladding
- **Quick Numbers:**
 - Material List
 - Screws, Nuts & Bolts: 9.9 kg
 - Water Based Latex Paint: 10.1 L
 - Assembly
 - Total Embodied Energy: 2.68 MWh
 - Total Embodied GWP: 61 kg CO₂ eq.

Life-Cycle Assessment Results:
- **Primary Energy Consumption (MJ):**
 - Initial: 26.8 MWh, at the completion of initial construction
 - Trans.: Transportation
 - Total EE (for Total GWP) = Total embodied energy (or total embodied energy) of building component after lifespan (i.e., total manufacturing + total construction + total maintenance + total end-of-life effects)
 - Total EE (for Total GWP) per m² = Total EE (for Total GWP) / area of building component
 - Difference in Total GWP = Total GWP from Baseline after Lifespan - Life Aspiration = The difference in the total life-cycle operating energy (for GWP) from the baseline retail building after lifespan, due to using this building component instead of the baseline component
- **Notes:**
 - Athena EIE Material List (includes all materials after 50 years)
 - Athena EIE Material List (includes all materials after 50 years)
Metal Structural Insulated Panel Roof #3 (MSIP-R3)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Brief Description</th>
<th>Assembly Layers</th>
<th>Quick Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Insulated panel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-in. galvanized corrugated steel sheets</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.44mm galvanized corrosion resistant steel cladding</td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Lifetime (Years)</th>
<th>Inventory</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total Energy (MJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Lifetime (Years)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GWP (kg of CO₂ eq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:

1. Initial Time (T₁): 17 kJ, at the completion of initial construction
2. Trans. = Transportation
3. Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component after lifespan (i.e., total manufacturing + total construction + maintenance + total end-of-life effects)
4. Total EE (or Total GWP) per m² = Total EE (or Total GWP) of building component per area of building component that was modeled in ATHENA EIE
5. Total Difference in Operating Energy (MJ) for Baseline after Lifespan = The difference in the total lifecycle operating energy (MJ) of the baseline roof after lifespan due to using this building component instead of the baseline component
6. Total Difference in Operating GWP (kg of CO₂ eq.) for Baseline after Lifespan per m² = Total difference in operating GWP (kg of CO₂ eq.) from the baseline roof after lifespan due to using the building component instead of the baseline component

Metal Structural Insulated Panel Roof #4 (MSIP-R4)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Brief Description</th>
<th>Assembly Layers</th>
<th>Quick Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Green roof assembly</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(100mm straw and vegetation)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Foam insulation board (FR) provided as PVC membrane</td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Lifetime (Years)</th>
<th>Inventory</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total Energy (MJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Lifetime (Years)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GWP (kg of CO₂ eq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:

1. Initial Time (T₁): 17 kJ, at the completion of initial construction
2. Trans. = Transportation
3. Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component after lifespan (i.e., total manufacturing + total construction + maintenance + total end-of-life effects)
4. Total EE (or Total GWP) per m² = Total EE (or Total GWP) of building component per area of building component that was modeled in ATHENA EIE
5. Total Difference in Operating Energy (MJ) for Baseline after Lifespan = The difference in the total lifecycle operating energy (MJ) of the baseline roof after lifespan due to using this building component instead of the baseline component
6. Total Difference in Operating GWP (kg of CO₂ eq.) for Baseline after Lifespan per m² = Total difference in operating GWP (kg of CO₂ eq.) from the baseline roof after lifespan due to using the building component instead of the baseline component

ATHENA EIE Material List (includes all materials after 50 years):

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foam Polystyrene</td>
<td>117.1</td>
<td>m³ (254m³)</td>
</tr>
<tr>
<td>Galvanized Sheet</td>
<td>346.9</td>
<td>kg</td>
</tr>
<tr>
<td>Galvanized Studs</td>
<td>262.9</td>
<td>kg</td>
</tr>
<tr>
<td>Nails</td>
<td>2.3</td>
<td>kg</td>
</tr>
<tr>
<td>Screws & Nuts</td>
<td>500</td>
<td>kg</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>10.1</td>
<td>L</td>
</tr>
</tbody>
</table>
LCA Data for Pre-Engineered Steel Building Roofs

This section contains a detailed description of each pre-engineered steel building (PENG) roof that was examined in this study (4 in total). The assembly layers are listed for each roof, along with a detailed description of the material quantities from the ATHENA® Environmental Impact Estimator for Buildings.

A breakdown of the total primary energy consumption and the total global warming potential (GWP) for each roof is also included. In each case, the results were calculated for an area of roof equal to 57.8 m², which represents a typical bay size for a single-storey retail building with this type of roof system. The results are also expressed on a per m² basis in each case. The data has been calculated for two different lifespans: at the completion of initial construction and after 50 years.

As a summary, the figure below illustrates a comparison of the total embodied energy (and GWP) after 50 years for the various roofs in this section. For comparison purpose, the building component used in the baseline retail building has been shaded in grey.

Pre-Engineered Steel Building Roof #1 (PENG-R1)

Building Component Description:

- **Category:**
- **Brief Description:**
- **Quick Numbers:**
 - **Embodied Global Warming Potential (GWP) for each roof is also included. The results are also expressed on a per m² basis in each case. The data has been calculated for two different lifespans: at the completion of initial construction and after 50 years.**

Life-Cycle Assessment Results:

- **Primary Energy Consumption (MJ):**
 - **Difference in Operating Energy from Baseline after Lifespan**
 - **Embodied Global Warming Potential (kg of CO₂ eq.):**
 - **Difference in Operating GWP from Baseline after Lifespan**

ATHENA® EIE Material List

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 mil Polyethylene</td>
<td>61.3</td>
<td>m²</td>
</tr>
<tr>
<td>Galvanized Studs</td>
<td>395.9</td>
<td>kg</td>
</tr>
<tr>
<td>Modified Bitumen membrane</td>
<td>179.3</td>
<td>kg</td>
</tr>
<tr>
<td>Screws, Nuts & Bolts</td>
<td>8.9</td>
<td>kg</td>
</tr>
<tr>
<td>Solvent Based Acryl Paint</td>
<td>41.5</td>
<td>L</td>
</tr>
</tbody>
</table>

Notes:

- Initial = Time 17 ye at the completion of initial construction
- Trans. = Transportation
- Total EE & Total GWP = Total embodied energy (or total embodied GWP) of building component after Lifespan
- Total EE & Total GWP = Total embodied energy (or total embodied GWP) of building component after Lifespan
- Total Difference in Operating Energy for GWP from Baseline after Lifespan = The difference in total Lifecycle operating energy (for GWP) from the baseline retail building after Lifespan due to using this building component instead of the baseline component
- Total Difference in Operating GWP from Baseline after Lifespan = The difference in total Lifecycle operating energy (for GWP) from the baseline retail building after Lifespan due to using this building component instead of the baseline component
- Total operating primary energy use of baseline retail building after 50 years = 357kWh/yr
- Total operating GWP of baseline retail building after 50 years = 7.4 tonnes of CO₂ eq/yr
Pre-Engineered Steel Building Roof #2 (PENG-R2)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material List</td>
<td></td>
</tr>
<tr>
<td>Screws</td>
<td>Nuts & Bolts</td>
</tr>
<tr>
<td>8.9 kg</td>
<td></td>
</tr>
<tr>
<td>Solvent Based Alkyd Paint</td>
<td>41.5 L</td>
</tr>
</tbody>
</table>

Quick Numbers:

- **Weight:** 8.9 kg
- **Nut & Bolt:** 41.5 L
- **Solvent Based Alkyd Paint:** 41.5 L

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Primary Energy Consumption (MJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life-span (Years)</td>
</tr>
<tr>
<td>Initial</td>
</tr>
</tbody>
</table>

Notes:

- **Initial:** Time 0.0 at the completion of initial construction
- **Trans:** Transportation

Pre-Engineered Steel Building Roof #3 (PENG-R3)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material List</td>
<td></td>
</tr>
<tr>
<td>Screws</td>
<td>Nuts & Bolts</td>
</tr>
<tr>
<td>3.500 kg</td>
<td></td>
</tr>
<tr>
<td>Solvent Based Alkyd Paint</td>
<td>15.3 L</td>
</tr>
</tbody>
</table>

Quick Numbers:

- **Weight:** 3.500 kg
- **Nut & Bolt:** 15.3 L
- **Solvent Based Alkyd Paint:** 15.3 L

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Primary Energy Consumption (MJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life-span (Years)</td>
</tr>
<tr>
<td>Initial</td>
</tr>
</tbody>
</table>

Notes:

- **Initial:** Time 0.0 at the completion of initial construction
- **Trans:** Transportation

ATHENA® EIE Material List

(Excludes all materials after 50 years)

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 mil Polyethylene</td>
<td>61.3</td>
<td>m²</td>
</tr>
<tr>
<td>Ball, Fiberglass</td>
<td>352.1</td>
<td>m³ (225m)</td>
</tr>
<tr>
<td>Galvanized Steel</td>
<td>399.5</td>
<td>kg</td>
</tr>
<tr>
<td>Modified Bitumen membrane</td>
<td>179.3</td>
<td>kg</td>
</tr>
<tr>
<td>Nails</td>
<td>3.6</td>
<td>kg</td>
</tr>
<tr>
<td>Screws, Nuts & Bolts</td>
<td>8.9</td>
<td>kg</td>
</tr>
<tr>
<td>Solvent Based Alkyd Paint</td>
<td>41.5</td>
<td>L</td>
</tr>
</tbody>
</table>

ATHENA® EIE Material List (includes all materials after 50 years)

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extruded Polystyrene</td>
<td>350.0</td>
<td>m² (35mm)</td>
</tr>
<tr>
<td>Galvanized Sheet</td>
<td>636.3</td>
<td>kg</td>
</tr>
<tr>
<td>Galvanized Shells</td>
<td>299.5</td>
<td>kg</td>
</tr>
<tr>
<td>Nails</td>
<td>3.6</td>
<td>kg</td>
</tr>
<tr>
<td>Screws, Nuts & Bolts</td>
<td>8.9</td>
<td>kg</td>
</tr>
<tr>
<td>Solvent Based Alkyd Paint</td>
<td>15.3</td>
<td>L</td>
</tr>
</tbody>
</table>
Pre-Engineered Steel Building Roof #4 (PENG-R4)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Material</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Screws</td>
<td>Nuts & Bolts</td>
</tr>
<tr>
<td></td>
<td>8.3 kg</td>
<td>Solvent Based Alkyd Paint</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quick Numbers:

- **Alkyd based paint** (AB, VB)
- **@ 1,200mm o/c with thermal block**
- **BEHLEN Industries LP**

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE per m²</th>
<th>Total EE</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>Initial</td>
<td>93.711</td>
<td>76</td>
<td>93.167</td>
<td>0</td>
<td>187</td>
<td>187</td>
<td>93.167</td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13.3</td>
<td>13.3</td>
<td>13.3</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>4.389</td>
<td>0</td>
<td>4.389</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.):

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GWP per m²</th>
<th>Total GWP</th>
<th>Difference in Operating GWP from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>Initial</td>
<td>4.389</td>
<td>0</td>
<td>4.389</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13.3</td>
<td>13.3</td>
<td>13.3</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>4.389</td>
<td>0</td>
<td>4.389</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
</tr>
</tbody>
</table>

ATHENA® EIE Material List (includes all materials after 50 years):

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extruded Polystyrene</td>
<td>593.6</td>
<td>122kWh</td>
</tr>
<tr>
<td>Galvanized Sheet</td>
<td>636.3</td>
<td>kg</td>
</tr>
<tr>
<td>Galvanized Studs</td>
<td>399.5</td>
<td>kg</td>
</tr>
<tr>
<td>Nails</td>
<td>3.8</td>
<td>kg</td>
</tr>
<tr>
<td>Screws Nails & Bolts</td>
<td>8.3</td>
<td>kg</td>
</tr>
<tr>
<td>Soffit Based Acrylic Paint</td>
<td>12.3</td>
<td>L</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time 17km at the completion of initial construction
2. Trans = Transportation
3. Total EE for Total GWP = Total embodied energy for total embodied GWP of building component after Lifespan (ex. total manufacturing + total construction + total maintenance + total end-of-life effects)
4. Total EE for Total GWP per m² = Total EE for Total GWP of building component that was modeled in ATHENA EIE
5. Total Difference in Operating Energy (for GWP) from Baseline after Lifespan = The difference in the total embodied energy (GWP) from the baseline building after Lifespan due to using this building component instead of the baseline component
6. Total Difference in Operating Energy (for GWP) from Baseline after Lifespan per m² = Total difference in operating energy (GWP) from baseline after Lifespan/ net roof area of baseline building
7. Total operating primary energy use of baseline retail building after 50 years = 30,700kJ (1145 MJ/m²yr)
8. Total operating primary energy use of baseline retail building after 50 years = 2,310 tonnes of CO₂ eq (860g of CO₂ eq/MJ/yr)
Appendix B-3

LCA Data for Structural Systems
LCA Data for Structural Systems

This section contains a detailed description of structural systems that were examined in this study (3 in total). A summary of the important elements of each system are listed, along with a detailed description of the material quantities from the ATHENA® Environmental Impact Estimator for Buildings.

A breakdown of the total primary energy consumption and the total global warming potential (GWP) for each structural system is also included. In each case, the results were calculated for an entire retail building. The results are also expressed per m² of structural system in each case. The data has been calculated for two different lifespans: at the completion of initial construction and after 50 years.

As a summary, the figure below illustrates a comparison of the total embodied energy (and GWP) after 50 years for the various structural systems in this section. For comparison purpose, the building component used in the baseline retail building has been shaded in grey.
Structural System #2 (S-2)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Structural System #2 (S-2)</td>
</tr>
<tr>
<td>Sectional</td>
<td>Concrete, steel, and glulam columns and girders</td>
</tr>
<tr>
<td>Beam type</td>
<td>Double-tee steel beam</td>
</tr>
<tr>
<td>Section</td>
<td>12 in. wide flange steel beam</td>
</tr>
</tbody>
</table>

Quick Numbers:

- **Material:** Steel, concrete, glulam
- **Total Weight:** 10,500 lb (4,762 kg)
- **Total Weight per sq ft:** 6.5 lb/ft² (3.0 kg/m²)

Life-Cycle Assessment Results:

- **Primary Energy Consumption (MJ):**
 - **Life Span (Years):** Initial
 - **Embodied Energy (EE):**
 - **Manufacturing:** 114,931 MJ
 - **Construction:** 1,105 MJ
 - **Maintenance:** 6,300 MJ
 - **End of Life:** 7,472 MJ
 - **Total EE (per m²):** 285 MJ
 - **Difference in Operating Energy from Baseline after Lifespan (MJ):** 0 MJ

- **Global Warming Potential (kg of CO₂ eq.)**
 - **Life Span (Years):** Initial
 - **Embodied Global Warming Potential (GWP):**
 - **Manufacturing:** 7,486 kg CO₂ eq.
 - **Construction:** 4 kg CO₂ eq.
 - **Maintenance:** 73 kg CO₂ eq.
 - **End of Life:** 4 kg CO₂ eq.
 - **Total GWP (per m²):** 13 kg CO₂ eq.
 - **Difference in Operating GWP from Baseline after Lifespan (kg CO₂ eq.):** 0 kg CO₂ eq.

Notes:

- **Materials:** Glulam Sections, Hollow Structural Steel, Hot Rolled Steel, Screws, Nuts & Bolts
- **Quantities:** 33.5 m³, 780.7 kg, 1,515.0 kg, 206.0 kg
- **Unit:** m³, kg

ATHENA ® EIE Material List

(Includes all materials after 50 years)

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glulam Sections</td>
<td>33.5 m³</td>
<td></td>
</tr>
<tr>
<td>Hollow Structural Steel</td>
<td>780.7 kg</td>
<td></td>
</tr>
<tr>
<td>Hot Rolled Steel</td>
<td>1,515.0 kg</td>
<td></td>
</tr>
<tr>
<td>Screws, Nuts & Bolts</td>
<td>206.0 kg</td>
<td></td>
</tr>
</tbody>
</table>

Structural System #3 (S-3)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Structural System #3 (S-3)</td>
</tr>
<tr>
<td>Sectional</td>
<td>Conventional pre-engineered steel building system with trapezoid steel sections and support web members.</td>
</tr>
<tr>
<td>Beam type</td>
<td>Galvalume steel beams</td>
</tr>
<tr>
<td>Section</td>
<td>12 in. wide flange steel beam</td>
</tr>
</tbody>
</table>

Quick Numbers:

- **Material:** Steel, galvalume
- **Total Weight:** 10,500 lb (4,762 kg)
- **Total Weight per sq ft:** 6.5 lb/ft² (3.0 kg/m²)

Life-Cycle Assessment Results:

- **Primary Energy Consumption (MJ):**
 - **Life Span (Years):** Initial
 - **Embodied Energy (EE):**
 - **Manufacturing:** 114,931 MJ
 - **Construction:** 1,105 MJ
 - **Maintenance:** 6,300 MJ
 - **End of Life:** 7,472 MJ
 - **Total EE (per m²):** 285 MJ
 - **Difference in Operating Energy from Baseline after Lifespan (MJ):** 0 MJ

- **Global Warming Potential (kg of CO₂ eq.)**
 - **Life Span (Years):** Initial
 - **Embodied Global Warming Potential (GWP):**
 - **Manufacturing:** 7,486 kg CO₂ eq.
 - **Construction:** 4 kg CO₂ eq.
 - **Maintenance:** 73 kg CO₂ eq.
 - **End of Life:** 4 kg CO₂ eq.
 - **Total GWP (per m²):** 13 kg CO₂ eq.
 - **Difference in Operating GWP from Baseline after Lifespan (kg CO₂ eq.):** 0 kg CO₂ eq.

Notes:

- **Materials:** Galvalume Steel, Screws, Nuts & Bolts
- **Quantities:** 826.7 kg
- **Unit:** kg

ATHENA ® EIE Material List

(Include all materials after 50 years)

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screws, Nuts & Bolts</td>
<td>826.7 kg</td>
<td></td>
</tr>
<tr>
<td>Wide Flange Sections</td>
<td>13,077.9 kg</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B-4

LCA Data for Floors
LCA Data for Floors

This section contains a detailed description of each floor (FL) assembly that was examined in this study (5 in total). The assembly layers are listed for each floor, along with a detailed description of the material quantities from the ATHENA® Environmental Impact Estimator for Buildings.

A breakdown of the total primary energy consumption and the total global warming potential (GWP) for each floor is also included. In each case, the results were calculated for a different area of mezzanine floor, depending on the typical spans of each system. The results are also expressed on a per m² basis in each case. The data has been calculated for two different lifespans: at the completion of initial construction and after 50 years.

As a summary, the figure below illustrates a comparison of the total embodied energy (and GWP) after 50 years for the various floors in this section. For comparison purpose, the building component used in the baseline retail building has been shaded in grey.
Floor #2 (FL-2)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Material Floors</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Floor assembly Gladam joints and wood plank deck with urethane finish and sawmill edging</td>
<td>Top and Bottom</td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>80mm (3.2"") 24" GLAM joints @ 600mm c/c</td>
<td>0.8mm galvanized steel sheet on wood plank deck</td>
</tr>
<tr>
<td>Roof Thickness</td>
<td>641 mm (25")</td>
<td>80mm Galvalume Brite Sheet Installation</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Material (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE (MJ)</th>
<th>Total EE per m²</th>
<th>Total EE per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 1,488</td>
<td>1</td>
<td>1,306</td>
<td>22</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>1,488</td>
<td>1,306</td>
<td>22</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Material (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EWP (kg)</th>
<th>Total EWP per m²</th>
<th>Total EWP per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 1,488</td>
<td>1</td>
<td>1,306</td>
<td>22</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>1,488</td>
<td>1,306</td>
<td>22</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time 17:06 at the completion of initial construction
2. Trans = Transportation
3. Total EE for Total GWP = Total embodied energy (or total embodied GWP) of building component after lifespan (i.e., total manufacturing + total construction + total maintenance + total end-of-life energy)
4. Total EWP for Total EWP per m² = Total embodied energy (or total embodied GWP) of building component/area of building component that was modeled in ATENA EIE
5. Difference in Operating Energy (GWP) from Baseline after Lifespan = The difference in the total 110-year operating energy (or GWP) from the baseline retail building after lifespans, due to using this building component instead of the baseline component.
6. Total Difference in Operating Energy (GWP) from Baseline after Lifespan per m² = Total difference in operating energy (or GWP) from baseline after lifespan/area of baseline retail building
7. Total operating primary energy use of baseline total building after 50 years = 50,700 kWh/1.74 MWh/yr
8. Total operating energy use of baseline retail building after 50 years = 2,310 tonnes of CO₂ eq.

Floor #3 (FL-3)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Material Floors</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Floor assembly GMEU and metal deck with concrete topping, vinyl finish, and sawmill edging</td>
<td>Top and Bottom</td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>580mm galvanized steel channels @ 600mm c/c</td>
<td>0.8mm galvanized steel sheet on wood plank deck</td>
</tr>
<tr>
<td>Roof Thickness</td>
<td>799 mm (31")</td>
<td>80mm Galvalume Brite Sheet Installation</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Material (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE (MJ)</th>
<th>Total EE per m²</th>
<th>Total EE per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 1,488</td>
<td>1</td>
<td>1,306</td>
<td>22</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>1,488</td>
<td>1,306</td>
<td>22</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Material (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EWP (kg)</th>
<th>Total EWP per m²</th>
<th>Total EWP per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 1,488</td>
<td>1</td>
<td>1,306</td>
<td>22</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>1,488</td>
<td>1,306</td>
<td>22</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time 0' 00" at the completion of construction
2. Trans = Transportation
3. Total EE for Total GWP = Total embodied energy (or total embodied GWP) of building component after lifespan (i.e., total manufacturing + total construction + total maintenance + total end-of-life energy)
4. Total EWP for Total EWP per m² = Total embodied energy (or total embodied GWP) of building component/area of building component that was modeled in ATENA EIE
5. Difference in Operating Energy (GWP) from Baseline after Lifespan = The difference in the total 110-year operating energy (or GWP) from the baseline retail building after lifespans, due to using this building component instead of the baseline component.
6. Total Difference in Operating Energy (GWP) from Baseline after Lifespan per m² = Total difference in operating energy (or GWP) from baseline after lifespan/area of baseline retail building
7. Total operating primary energy use of baseline total building after 50 years = 50,700 kWh/1.74 MWh/yr
8. Total operating energy use of baseline retail building after 50 years = 2,310 tonnes of CO₂ eq.

ATHENA® EIE Material List:

Notes:

1. Initial = Time 0' 00" at the completion of construction
2. Trans = Transportation
3. Total EE for Total GWP = Total embodied energy (or total embodied GWP) of building component/area of building component that was modeled in ATENA EIE
4. Total EWP for Total EWP per m² = Total embodied energy (or total embodied GWP) of building component/area of building component that was modeled in ATENA EIE
5. Difference in Operating Energy (GWP) from Baseline after Lifespan = The difference in the total 110-year operating energy (or GWP) from the baseline retail building after lifespans, due to using this building component instead of the baseline component.
6. Total Difference in Operating Energy (GWP) from Baseline after Lifespan per m² = Total difference in operating energy (or GWP) from baseline after lifespan/area of baseline retail building
7. Total operating primary energy use of baseline total building after 50 years = 50,700 kWh/1.74 MWh/yr
8. Total operating energy use of baseline retail building after 50 years = 2,310 tonnes of CO₂ eq.
Floor #4 (FL-4)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Material Floors</th>
<th>Assembly Layers</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Brief Description</td>
<td>Four assembly/Custom steel joint and panel deck with vinyl siding and grouted unit</td>
<td>- Pressed UF</td>
<td></td>
</tr>
</tbody>
</table>

Quick Numbers:	
- Nominal Clear Height	3.9 ft
- Total Embodied Energy	717 MJ/m²
- Total Embodied GWP	50 kg CO₂ eq/m²

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE per m²</th>
<th>Total CO₂ eq per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>22,541</td>
<td>22,541</td>
<td>0</td>
<td>0</td>
<td>22,541</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>1,542</td>
<td>1,542</td>
<td>1</td>
<td>1</td>
<td>1,543</td>
<td>50</td>
</tr>
</tbody>
</table>

ATHENA ® EIE Material List:

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>13mm Regular gypsum Board</td>
<td>83.6</td>
<td>m²</td>
<td></td>
</tr>
<tr>
<td>Ball Fiberglass</td>
<td>130.0</td>
<td>m²</td>
<td></td>
</tr>
<tr>
<td>Galvanized Studs</td>
<td>444.3</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>Joint Compound</td>
<td>83.4</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>Nails</td>
<td>5.1</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.0</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>Screws Nuts & Bolts</td>
<td>5.5</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>Softwood Plywood</td>
<td>72.8</td>
<td>m²</td>
<td></td>
</tr>
<tr>
<td>Soffit/Steel Alkyl Paint</td>
<td>8.8</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Vinyl Siding</td>
<td>78.7</td>
<td>m²</td>
<td></td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>49.5</td>
<td>L</td>
<td></td>
</tr>
</tbody>
</table>

Floor #5 (FL-5)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Material Floors</th>
<th>Assembly Layers</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Brief Description</td>
<td>Four assembly/Custom steel joint and panel deck with vinyl siding and grouted unit</td>
<td>- Pressed UF</td>
<td></td>
</tr>
</tbody>
</table>

Quick Numbers:	
- Nominal Clear Height	3.9 ft
- Total Embodied Energy	717 MJ/m²
- Total Embodied GWP	50 kg CO₂ eq/m²

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE per m²</th>
<th>Total CO₂ eq per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>14,364</td>
<td>14,364</td>
<td>0</td>
<td>0</td>
<td>14,364</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>1,542</td>
<td>1,542</td>
<td>1</td>
<td>1</td>
<td>1,543</td>
<td>50</td>
</tr>
</tbody>
</table>

ATHENA ® EIE Material List:

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>13mm Regular gypsum Board</td>
<td>83.6</td>
<td>m²</td>
<td></td>
</tr>
<tr>
<td>Ball Fiberglass</td>
<td>130.0</td>
<td>m²</td>
<td></td>
</tr>
<tr>
<td>Galvanized Studs</td>
<td>444.3</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>Joint Compound</td>
<td>83.4</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>Nails</td>
<td>5.1</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>Paper Tape</td>
<td>1.0</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>Screws Nuts & Bolts</td>
<td>5.5</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>Softwood Plywood</td>
<td>72.8</td>
<td>m²</td>
<td></td>
</tr>
<tr>
<td>Soffit/Steel Alkyl Paint</td>
<td>8.8</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Vinyl Siding</td>
<td>78.7</td>
<td>m²</td>
<td></td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>49.5</td>
<td>L</td>
<td></td>
</tr>
</tbody>
</table>

*Initial = Time '0' (i.e. at the completion of initial construction)

1. Trans = Transportation
2. Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component after lifespan (i.e. total manufacturing + total construction + total maintenance + total end-of-life effects)
3. Total EE (or Total GWP) per m² = Total EE (or Total GWP) of building component / area of building component that is modeled in ATHENA EIE
4. Difference in Operating Energy (or GWP) from Baseline after Lifespan = The difference in the total lifecycle operating energy (or GWP) from the baseline building after lifespan due to using this building component instead of the baseline component
5. Notes: Total operating primary energy use of baseline total building after 50 years = 2,310 MWh/yr (900 MWh/yr + 670 MWh/yr)
Appendix B-5

LCA Data for Windows and Doors
LCA Data for Windows

This section contains a detailed description of each window that was examined in this study (9 in total). The assembly layers are listed for each window, along with a detailed description of the material quantities from the ATHENA® Environmental Impact Estimator for Buildings.

A breakdown of the total primary energy consumption and the total global warming potential (GWP) for each window is also included. In each case, the results were calculated for a window area equal to 2.9 m², which represents a typical window size for a single-storey retail building. The results are also expressed on a per m² basis in each case. The data has been calculated for two different lifespans: at the completion of initial construction and after 50 years.

As a summary, the figure below illustrates a comparison of the total embodied energy (and GWP) after 50 years for the various windows in this section. For comparison purpose, the building component used in the baseline retail building has been shaded in grey.
Building Component Description: Window #2 (W-2)

Category: Windows & Doors

Brief Description: PVC clad wood window frame with typical double pane glazing unit

Assembly Layers:
- PVC clad wood window frame with thermal break
- Typical double pane glazing unit with 12.7mm airspace

Quick Numbers:
- **ASHRAE Standard 90.1:** R-Value: 2.9 RSI Value: 0.4
- **TGCF:** 0.7
- **Total Embodied Energy:** 4.692 MWh
- **Total Embodied GW:** 941 kg CO₂ eq

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>End of Life</th>
<th>Total EE</th>
<th>EE per m²</th>
<th>Total EE per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 80</td>
<td>Initial 80</td>
<td>0</td>
<td>0</td>
<td>1179</td>
<td>0</td>
<td>480</td>
<td>1179</td>
</tr>
<tr>
<td>50</td>
<td>1179</td>
<td>0</td>
<td>0</td>
<td>1179</td>
<td>0</td>
<td>480</td>
<td>1179</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>End of Life</th>
<th>Total GWP</th>
<th>GWP per m²</th>
<th>Total GWP per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 80</td>
<td>Initial 80</td>
<td>0</td>
<td>0</td>
<td>1179</td>
<td>0</td>
<td>480</td>
<td>1179</td>
</tr>
<tr>
<td>50</td>
<td>1179</td>
<td>0</td>
<td>0</td>
<td>1179</td>
<td>0</td>
<td>480</td>
<td>1179</td>
</tr>
</tbody>
</table>

ATHENA ® EIE Material List (includes all materials after 50 years)

- **Batt. Fiberglass:** 0.6 m² (25mm)
- **EPDM membrane:** 10.9 kg
- **Nails:** 8.9 kg
- **Standard Glazing (Screwed):** 0.3 m²
- **Standard Glazing:** 11.1 m²
- **Vinyl Siding:** 28.9 m²

Notes:

1. **Initial Time:** 17.06 m at the completion of initial construction
2. **Transportation:**
 - **Total EE for (Total GWP):** Total embodied energy (or total embodied GWP) of building component after LIFESPAN (in m² total manufacturing = total construction + total maintenance + total endlife effects)
 - **Total EE for (Total GWP) per m²:** Total EE (or Total GWP) of building component area of building component that was modeled in ATHENA ® EIE
 - **Inbaseline:** The difference in the total life-cycle operating energy (or GWP) from the baseline after LIFESPAN due to using this building component instead of the baseline component
 - **Standard Glazing:** The difference in the total life-cycle operating energy (or GWP) from the baseline after LIFESPAN due to using this building component instead of the baseline component

Building Component Description: Window #3 (W-3)

Category: Windows & Doors

Brief Description: PVC window frame with typical double pane glazing unit

Assembly Layers:
- PVC window frame with thermal break
- Typical double pane glazing unit with 12.7mm airspace

Quick Numbers:
- **ASHRAE Standard 90.1:** R-Value: 2.9 RSI Value: 0.4
- **TGCF:** 0.7
- **Total Embodied Energy:** 4.692 MWh
- **Total Embodied GW:** 941 kg CO₂ eq

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>End of Life</th>
<th>Total EE</th>
<th>EE per m²</th>
<th>Total EE per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 30</td>
<td>12.397</td>
<td>71</td>
<td>0</td>
<td>137</td>
<td>0</td>
<td>137</td>
<td>137</td>
</tr>
<tr>
<td>50</td>
<td>12.397</td>
<td>71</td>
<td>0</td>
<td>137</td>
<td>0</td>
<td>137</td>
<td>137</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Lifecycle (Years)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>End of Life</th>
<th>Total GWP</th>
<th>GWP per m²</th>
<th>Total GWP per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 30</td>
<td>12.397</td>
<td>71</td>
<td>0</td>
<td>137</td>
<td>0</td>
<td>137</td>
<td>137</td>
</tr>
<tr>
<td>50</td>
<td>12.397</td>
<td>71</td>
<td>0</td>
<td>137</td>
<td>0</td>
<td>137</td>
<td>137</td>
</tr>
</tbody>
</table>

ATHENA ® EIE Material List (includes all materials after 50 years)

- **Batt. Fiberglass:** 0.6 m² (25mm)
- **EPDM membrane:** 10.9 kg
- **Nails:** 8.9 kg
- **Standard Glazing:** 11.1 m²
- **Vinyl Siding:** 74.9 m²

Notes:

1. **Initial Time:** 17.06 m at the completion of initial construction
2. **Transportation:**
 - **Total EE for (Total GWP):** Total embodied energy (or total embodied GWP) of building component after LIFESPAN (in m² total manufacturing = total construction + total maintenance + total endlife effects)
 - **Total EE for (Total GWP) per m²:** Total EE (or Total GWP) of building component area of building component that was modeled in ATHENA ® EIE
 - **Inbaseline:** The difference in the total life-cycle operating energy (or GWP) from the baseline after LIFESPAN due to using this building component instead of the baseline component
 - **Standard Glazing:** The difference in the total life-cycle operating energy (or GWP) from the baseline after LIFESPAN due to using this building component instead of the baseline component

3. **Total Difference in Operating Energy for GWP** from Baseline after Lifespan per m² = Total difference in operating energy for GWP from baseline after LIFESPAN/window area of baseline retrofit building
4. **Total operating primary energy use of baseline retrofit building after 50 years =** 56/100 (kJ/m².k year)
5. **Total operating GWP of baseline retrofit building after 50 years =** 3,310 (kg CO₂ eq/m².k year)
Window #4 (W-4)

Building Component Description:
- **Category:** Windows & Doors
- **Assembly Layers:**
 - Outside: Wood window frame with thermal break
 - Inside: Typical double pane glazing unit

Quick Numbers:
- **ASHRAE Standard 90.1**
 - R-Value: 2.8
 - U-Value: 0.4
- **SGF:** 0.77
- **Total Embodied Energy:** 4.034 MWh
- **Total Embodied CO2:** 341 kg CO2 eq

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

| Lifespan (Years) | Manufacturing | Construction | Maintenance | End of Life | Total Energy Consumption
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 7.5</td>
<td>7.0</td>
<td>7.11</td>
<td>0</td>
<td>0</td>
<td>0.709 MWh/yr</td>
</tr>
<tr>
<td>50</td>
<td>7.0</td>
<td>7.11</td>
<td>0</td>
<td>0</td>
<td>0.709 MWh/yr</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO2 eq.)

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Embodied Global Warming Potential (GWP)</th>
<th>Total GWP per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 7.5</td>
<td>0</td>
<td>0.709 MWh/yr</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>0.709 MWh/yr</td>
</tr>
</tbody>
</table>

ATHENA ® EIE Material List

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>20.9</td>
<td>kg</td>
</tr>
<tr>
<td>Batt. fiberglass</td>
<td>0.6</td>
<td>m²/25mm</td>
</tr>
<tr>
<td>EPDM membrane</td>
<td>11.2</td>
<td>kg</td>
</tr>
<tr>
<td>Foam</td>
<td>15.6</td>
<td>kg</td>
</tr>
<tr>
<td>Solid Density Softwood Lumber</td>
<td>0.3</td>
<td>m³</td>
</tr>
<tr>
<td>Standard Glazing</td>
<td>12.7</td>
<td>m²</td>
</tr>
<tr>
<td>Water Based Latex</td>
<td>1.2</td>
<td>L</td>
</tr>
</tbody>
</table>

Notes:
1. Initial = Time 17 (km at the completion of initial construction)
2. Trans = Transportation
3. Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component after lifespan (Lk), total manufacturing + total construction + total maintenance + total end-of-life effects
4. Total EE (or Total GWP) per m² = Total EE (or Total GWP) of building component / area of building component that was modeled in ATHENA ® EIE
5. Total Difference in Operating Energy (GWP) from Baseline after Lifespan = This difference in the total life-cycle operating energy (GWP) from the baseline retail building after lifespans due to using this building component instead of the baseline component
6. Total Difference in Operating Energy (GWP) from Baseline after Lifespan = This difference in the total life-cycle operating energy (GWP) from the baseline retail building after lifespans due to using this building component instead of the baseline component

Window #5 (W-5)

Building Component Description:
- **Category:** Windows & Doors
- **Assembly Layers:**
 - Outside: Aluminum window frame with thermal break
 - Inside: Sanded double pane glazing unit with low-E coating

Quick Numbers:
- **ASHRAE Standard 90.1**
 - R-Value: 2.2
 - U-Value: 0.4
- **SGF:** 0.9
- **Total Embodied Energy:** 3.661 MWh
- **Total Embodied CO2:** 297 kg CO2 eq

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

| Lifespan (Years) | Manufacturing | Construction | Maintenance | End of Life | Total Energy Consumption
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 7.5</td>
<td>9.8</td>
<td>19.7</td>
<td>0</td>
<td>0</td>
<td>12.6 MWh/yr</td>
</tr>
<tr>
<td>50</td>
<td>9.8</td>
<td>19.7</td>
<td>0</td>
<td>0</td>
<td>12.6 MWh/yr</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO2 eq.)

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Embodied Global Warming Potential (GWP)</th>
<th>Total GWP per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 7.5</td>
<td>0</td>
<td>12.6 MWh/yr</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>12.6 MWh/yr</td>
</tr>
</tbody>
</table>

ATHENA ® EIE Material List

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>179.0</td>
<td>kg</td>
</tr>
<tr>
<td>EPDM membrane</td>
<td>11.8</td>
<td>kg</td>
</tr>
<tr>
<td>Low E Tig Argon Filled Glazing</td>
<td>12.7</td>
<td>m²</td>
</tr>
<tr>
<td>Nails</td>
<td>10.5</td>
<td>kg</td>
</tr>
</tbody>
</table>

Notes:
1. Initial = Time 17 (km at the completion of initial construction)
2. Trans = Transportation
3. Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component after lifespan (Lk), total manufacturing + total construction + total maintenance + total end-of-life effects
4. Total EE (or Total GWP) per m² = Total EE (or Total GWP) of building component / area of building component that was modeled in ATHENA ® EIE
5. Total Difference in Operating Energy (GWP) from Baseline after Lifespan = This difference in the total life-cycle operating energy (GWP) from the baseline retail building after lifespans due to using this building component instead of the baseline component
Window #6 (W-6)

Building Component Description:
- **Category**: Windows & Doors
- **Assembly Layers**
 - **Brief Description**: PVC clad wood window frame with argon filled double pane glazing unit and low-E coating
 - **Initial**: Glass is rated per W2 according to ASHRAE Standard 90.1
- **Quick Numbers**:
 - **ASHE Standard 90.1 Fundamentals (5) R-Value**
 - **R2-value**: 2.5
 - **Total Embodied GWP**: 3.5 kg of CO2 eq per m²
- **Global Warming Potential (kg of CO2 eq.)**
 - **Life-Cycle Assessment Results**:
 - **Primary Energy Consumption (MJ)**
 - **Difference in Operating Energy from Baseline after Lifespan**
 - **Embodied Energy (EE)**
 - **Total Embodied GWP**

ATHENA® EIE Material List:
- **(Includes all materials after 50 years)**

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batt. Fiberglass</td>
<td>0.8 m² (25min)</td>
<td></td>
</tr>
<tr>
<td>EPS Foam</td>
<td>10.9 kg</td>
<td></td>
</tr>
<tr>
<td>Low E Tin Argon Filled Glazing</td>
<td>11.1 m²</td>
<td></td>
</tr>
<tr>
<td>Nails</td>
<td>0.9 kg</td>
<td></td>
</tr>
<tr>
<td>Small Dimension Softwood Lumber, Kiln dried</td>
<td>0.9 m³</td>
<td></td>
</tr>
<tr>
<td>Vinyl Siding</td>
<td>28.9 m²</td>
<td></td>
</tr>
</tbody>
</table>

Window #7 (W-7)

Building Component Description:
- **Category**: Windows & Doors
- **Assembly Layers**
 - **Brief Description**: PVC window frame with argon filled double pane glazing unit and low-E coating
 - **Initial**: Glass is rated per W2 according to ASHRAE Standard 90.1
- **Quick Numbers**:
 - **ASHE Standard 90.1 Fundamentals (5) R-Value**
 - **R2-value**: 2.5
 - **Total Embodied GWP**: 3 kg of CO2 eq per m²
- **Global Warming Potential (kg of CO2 eq.)**
 - **Life-Cycle Assessment Results**:
 - **Primary Energy Consumption (MJ)**
 - **Difference in Operating Energy from Baseline after Lifespan**
 - **Embodied Energy (EE)**
 - **Total Embodied GWP**

ATHENA® EIE Material List:
- **(Includes all materials after 50 years)**

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batt. Fiberglass</td>
<td>0.6 m² (25min)</td>
<td></td>
</tr>
<tr>
<td>EPS Foam</td>
<td>10.9 kg</td>
<td></td>
</tr>
<tr>
<td>Low E Tin Argon Filled Glazing</td>
<td>11.1 m²</td>
<td></td>
</tr>
<tr>
<td>Nails</td>
<td>0.9 kg</td>
<td></td>
</tr>
<tr>
<td>Vinyl Siding</td>
<td>74.9 m²</td>
<td></td>
</tr>
</tbody>
</table>

1. Initial = Time (h) at the completion of initial construction
2. Frames = Transportation
3. Total EE (for Total GWP) = Total embodied energy (or total embedded GWP) of building component after lifespan (in total manufacturing + total construction + total maintenance + total end-of-life effects)
4. Total EE (for Total GWP) per m² = Total EE (for Total GWP) of building component/area of building component that was modeled in ATHENA® EIE
5. Total Difference in Operating Energy for GWP from Baseline after Lifespan = The difference in the total Lifecycle operating energy (or GWP) from the baseline retail building after Lifespan due to using this building component instead of the baseline component
6. Total Difference in Operating Energy for GWP from Baseline after Lifespan per m² = Total difference in operating energy (or GWP) from baseline after Lifespan/ window area of baseline retail building
7. Total operating primary energy use of baseline retail building after 50 years = 567.8kWh/yr (1745 MWH/yr)
8. Total operating GWP of baseline retail building after 50 years = 2310 tonnes of CO2 eq (606 kg of CO2 eq/m²/yr)
Window #8 (W-8)

Building Component Description:
- **Category:** Windows & Doors
- **Assembly Layers:**
 - Inside: Wood window frame with argon filled double pane glass unit and low E coating
 - Outside: Wood window frame with thermal break double pane glazing unit with 12.7mm argon space

Quick Numbers:
- **ASHRAE Standard 90.1 R-value:** 2.3
- **RIS Value:** 0.4
- **SHGC:** NA

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total Embodied Energy (EE)</th>
<th>Total Embodied GWP (kg CO₂eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>Trans. Total</td>
<td>Trans. Total</td>
<td>Trans. Total</td>
<td>Trans. Total</td>
<td>mg/m²</td>
<td>kg CO₂eq</td>
</tr>
<tr>
<td>Initial</td>
<td>7,071</td>
<td>95</td>
<td>7,166</td>
<td>0</td>
<td>213</td>
<td>313</td>
</tr>
<tr>
<td>50</td>
<td>7,071</td>
<td>95</td>
<td>7,166</td>
<td>0</td>
<td>213</td>
<td>313</td>
</tr>
</tbody>
</table>

Primary Energy Consumption (MJ):
- Material: 0.00
- Construction: 0.00
- Maintenance: 0.00
- End of Life: 0.00

Global Warming Potential (kg CO₂eq):
- Material: 0.00
- Construction: 0.00
- Maintenance: 0.00
- End of Life: 0.00

ATHENA ® EIE Material List

Notes:
- Initial Time (h): at the completion of initial construction
- Trans = Transportation
- Total EE (for Total GWP) = Total embodied energy (or total embodied GWP) of building component after lifespan
- Total GWP = Total maintenance + total construction + total energy (or total embodied GWP) of building component
- Total Difference in Operating Energy (GWP) from Baseline after Lifespan = Total difference in the total lifecycle operating energy (GWP) from the baseline building due to using this building component instead of the baseline component

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>20.9</td>
<td>kg</td>
</tr>
<tr>
<td>Bottle Fiberglass</td>
<td>0.6</td>
<td>m² (5mm)</td>
</tr>
<tr>
<td>EPDM membrane</td>
<td>11.2</td>
<td>kg</td>
</tr>
<tr>
<td>Low E Tri-Argon Fixed Glazing</td>
<td>12.1</td>
<td>m²</td>
</tr>
<tr>
<td>Nails</td>
<td>10.0</td>
<td>kg</td>
</tr>
<tr>
<td>Interior Finish Hardwood Lumber, Knotty</td>
<td>0.3</td>
<td>m³</td>
</tr>
<tr>
<td>Water Based Latex Paint</td>
<td>1.2</td>
<td>L</td>
</tr>
</tbody>
</table>

Window #9 (W-9)

Building Component Description:
- **Category:** Windows & Doors
- **Assembly Layers:**
 - Inside: Two 6mm clear double glass glazing panels with 12.7mm argon space
- Outside: No overhang, for argon between panels

Quick Numbers:
- **ASHRAE Standard 90.1 R-value:** 1.8
- **RIS Value:** 0.3
- **SHGC:** NA

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total Embodied Energy (EE)</th>
<th>Total Embodied GWP (kg CO₂eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>Trans. Total</td>
<td>Trans. Total</td>
<td>Trans. Total</td>
<td>Trans. Total</td>
<td>mg/m²</td>
<td>kg CO₂eq</td>
</tr>
<tr>
<td>Initial</td>
<td>6,065</td>
<td>0</td>
<td>6065</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>6,065</td>
<td>0</td>
<td>6065</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Primary Energy Consumption (MJ):
- Material: 0.00
- Construction: 0.00
- Maintenance: 0.00
- End of Life: 0.00

Global Warming Potential (kg CO₂eq):
- Material: 0.00
- Construction: 0.00
- Maintenance: 0.00
- End of Life: 0.00

ATHENA ® EIE Material List

Notes:
- Initial Time (h): at the completion of initial construction
- Trans = Transportation
- Total EE (for Total GWP) = Total embodied energy (or total embodied GWP) of building component after lifespan
- Total GWP = Total maintenance + total construction + total energy (or total embodied GWP) of building component
- Total Difference in Operating Energy (GWP) from Baseline after Lifespan = Total difference in the total lifecycle operating energy (GWP) from the baseline building due to using this building component instead of the baseline component

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>35.1</td>
<td>kg</td>
</tr>
<tr>
<td>EPDM membrane</td>
<td>2.1</td>
<td>kg</td>
</tr>
<tr>
<td>Glazing Panel</td>
<td>265.1</td>
<td>L</td>
</tr>
<tr>
<td>Screws Nails & Bolts</td>
<td>1.4</td>
<td></td>
</tr>
</tbody>
</table>

Total embodied energy (EE) of 2,310 kg CO₂eq after 50 years.
LCA Data for Doors

This section contains a detailed description of each door that was examined in this study (6 in total). The assembly layers are listed for each door, along with a detailed description of the material quantities from the ATHENA® Environmental Impact Estimator for Buildings.

A breakdown of the total primary energy consumption and the total global warming potential (GWP) for each door is also included. In each case, the results were calculated for a single door. The data has been calculated for two different lifespans: at the completion of initial construction and after 50 years.

As a summary, the figure below illustrates a comparison of the total embodied energy (and GWP) after 50 years for the various doors in this section. For comparison purpose, the building component used in the baseline retail building has been shaded in grey.

Door #1 (D-1)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Assembly Layers</th>
<th>Detailed Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows & Doors</td>
<td></td>
<td>Standard size solid wood exterior door with re-glazing</td>
</tr>
</tbody>
</table>

Quick Numbers:

- ATHENA® Standard: 9.1
- Fundamentals: 0.4
- Product Value: 0.3
- Total Embodied Energy: 199 MJ
- Total Embodied GWP: 16 kg of CO₂ eq.

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE (per unit)</th>
<th>Difference in Operating Energy from Baseline after Lifespan (per unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>199.2</td>
<td>288.2</td>
<td>0</td>
<td>0</td>
<td>507.4</td>
<td>-10.000</td>
</tr>
<tr>
<td>50</td>
<td>199.2</td>
<td>288.2</td>
<td>0</td>
<td>0</td>
<td>507.4</td>
<td></td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Embodied Global Warming Potential (GWP)</th>
<th>Difference in Operating GWP (per unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- *Initial = Time O (at the completion of initial construction)*
- *Trav = Transportation*
- *Total EE (for Total GWP per unit) = Total embodied energy for total embodied GWP of building component after lifespan (i.e., total manufacturing + total construction + total maintenance + total end-of-life effects)*
- *Difference in Operating Energy for GWP from Baseline after Lifespan per unit = The difference in the total GWP operating energy for GWP of baseline retail building after lifespan, due to using this building component instead of the baseline component*
- *Total operating primary energy use of baseline retail building after 50 years = 920,000 kWh (3.46 MJ/kWh)*
- *Total operating GWP of baseline retail building after 50 years = 2.310 tonnes of CO₂ eq. (80 kg of CO₂ eq./kWh)*

ATHENA® EIE Material List (Includes all materials after 50 years)

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nails</td>
<td>2.0 kg</td>
<td></td>
</tr>
<tr>
<td>Solid wood</td>
<td>0.1 m³</td>
<td></td>
</tr>
<tr>
<td>Insulation</td>
<td>0.7 L</td>
<td></td>
</tr>
<tr>
<td>Water Based</td>
<td>0.7 L</td>
<td></td>
</tr>
</tbody>
</table>

Door ID (Arranged in Order of Increasing Embodied Energy)
Door #2 (D-2)

Building Component Description:
- **Category:** Window & Doors
- **Assembly Layers:** Exterior
- **Brief Description:** Insulated standard size steel exterior door with no glazing
- **Quick Numbers:**
 - **ASHRAE Standard 90.1:** 9.3.5, 9.3.6
 - **Total Embodied Energy:** 0.31 MJ
 - **Total Embodied GHG:** 240 kg of CO₂ eq.

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
<th>Unit</th>
<th>Raw Energy (MJ)</th>
<th>Global Warming Potential (kg of CO₂ eq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expanded Polystyrene</td>
<td>3.3</td>
<td>m³ (25mm)</td>
<td>0.15</td>
<td>0.0</td>
</tr>
<tr>
<td>Glass</td>
<td>0.61 kg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nails</td>
<td>2.0 kg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solvent Based Alkyd Paint</td>
<td>0.3</td>
<td>L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- *Initial* = Time 17.0 h, at the completion of initial construction
- *Trans.* = Transportation
- *Total EE for Total GWP per unit* = Total embodied energy for total embodied GWP of building component after 50 years + total manufacturing + total construction + total maintenance + total end-use effects
- *Total Difference in Operating Energy for GWP* from Baseline after Life Span per unit = The difference in the total life-cycle operating energy for GWP from the baseline retail building after 50 years, due to using the building component instead of the baseline component
- *Total operating primary energy use of baseline retail building after 50 years = 2,310 tonnes of CO₂ eq (800kg of CO₂ eq/kWhr)*

Door #3 (D-3)

Building Component Description:
- **Category:** Window & Doors
- **Assembly Layers:** Exterior
- **Brief Description:** Insulated standard size aluminum exterior door with 80% glazing
- **Quick Numbers:**
 - **ASHRAE Standard 90.1:** 9.3.5, 9.3.6
 - **Total Embodied Energy:** 0.67 MJ
 - **Total Embodied GHG:** 240 kg of CO₂ eq.

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
<th>Unit</th>
<th>Raw Energy (MJ)</th>
<th>Global Warming Potential (kg of CO₂ eq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>25.7</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glazing Panel</td>
<td>50.7</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nails</td>
<td>2.0</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- *Initial* = Time 17.0 h, at the completion of initial construction
- *Trans.* = Transportation
- *Total EE for Total GWP per unit* = Total embodied energy for total embodied GWP of building component after 50 years + total manufacturing + total construction + total maintenance + total end-use effects
- *Total Difference in Operating Energy for GWP* from Baseline after Life Span per unit = The difference in the total life-cycle operating energy for GWP from the baseline retail building after 50 years, due to using the building component instead of the baseline component
- *Total operating primary energy use of baseline retail building after 50 years = 2,310 tonnes of CO₂ eq (800kg of CO₂ eq/kWhr)*
- *Total operating GWP of baseline retail building after 50 years = 2,310 tonnes of CO₂ eq (800kg of CO₂ eq/kWhr)*

283
Door #4 (D-4)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Window & Doors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly Layers</td>
<td></td>
</tr>
<tr>
<td>Insulating</td>
<td></td>
</tr>
</tbody>
</table>

Brief Description: Insulated sectional overhead steel door with no glazing

Insulated sectional overhead steel door with no glazing (insulated in 0.117 in. equivalent area of insulated steel section door with no glazing)

Quick Numbers:

- **ASHRAE Standard 90.1-2004:** R-Value: 1.2, PSR-Value: 0.2 (Material and Assembly x Multiplying Factor)
- **Building Component Description:**
 - 41.3 lb of CO₂ eq. unit
- **Total Embodied Energy:** 1,446 kg of CO₂ eq. unit

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Life-Cycle</th>
<th>Embodied Energy (kWh)</th>
<th>Difference in Operating Energy from Baseline after Life-span (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing</td>
<td>41.3</td>
<td>0</td>
</tr>
<tr>
<td>Construction</td>
<td>16.9</td>
<td>0</td>
</tr>
<tr>
<td>Maintenance</td>
<td>5.4</td>
<td>0</td>
</tr>
<tr>
<td>End of Life</td>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td>Eco-System</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total EIE</td>
<td>41.3</td>
<td>41.3</td>
</tr>
</tbody>
</table>

Notes:

- Initial = 17.0 lb, at the completion of initial construction
- Trans = Transportation
- Total EE = Total embodied energy (for total embodied GWP) of building component after lifespan, total manufacturing + total construction + total maintenance + total end-of-life effects
- Total Difference in Operating Energy (GWP) from Baseline after Life-span per unit = The difference in the total life-cycle operating energy for GWP from the baseline retail building after lifespan, due to using this building component instead of the baseline component
- Athena EIE Material List
 - Expanded Polyurethane 16.3 m2 (25mm)
 - Gypsum Board 30.05 kg
 - Nails 9.8 kg
 - Solvent Based Alkyd Paint 1.5 L

Door #5 (D-5)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Window & Doors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly Layers</td>
<td></td>
</tr>
<tr>
<td>Insulating</td>
<td></td>
</tr>
</tbody>
</table>

Brief Description: Standard size solid wood interior door with no glazing

Solid wood interior door with no glazing (estimated every year)

Quick Numbers:

- **Total Embodied Energy:** 17.0 lb
- **Total Embodied GWP:** 18 kg of CO₂ eq. unit

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Life-Cycle</th>
<th>Embodied Energy (kWh)</th>
<th>Difference in Operating Energy from Baseline after Life-span (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing</td>
<td>17.0</td>
<td>0</td>
</tr>
<tr>
<td>Construction</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>Maintenance</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>End of Life</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>Eco-System</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>Total EIE</td>
<td>17.0</td>
<td>17.0</td>
</tr>
</tbody>
</table>

Notes:

- Initial = 17.0 lb, at the completion of initial construction
- Trans = Transportation
- Total EE = Total embodied energy (for total embodied GWP) of building component after lifespan, total manufacturing + total construction + total maintenance + total end-of-life effects
- Total Difference in Operating Energy (GWP) from Baseline after Life-span per unit = The difference in the total life-cycle operating energy for GWP from the baseline retail building after lifespan, due to using this building component instead of the baseline component
- Athena EIE Material List
 - Nails 2.0 kg
 - 1/2-1/8" Dimension Solidwood Panel 0.1 m3
 - Water Based Paint 0.7 L
Door #6 (D-6)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Windows & Doors</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description:</td>
<td>Standard size steel interior door with no glazing</td>
<td>Types: Steel interior door with no glazing (includes panel and panel)</td>
</tr>
</tbody>
</table>

Quick Numbers:

- **Total Embodied Energy:** 190 MJ
- **Total Embodied CO2:** 277 kg of CO2 eq. per unit

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>² Total EE (per unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>8.067 kg</td>
<td>12.079 kg</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>50</td>
<td>8.067 kg</td>
<td>12.079 kg</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO2 eq.)

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>² Total GWP (per unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>277 kg</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>50</td>
<td>277 kg</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

ATHENA ® EIE Material List:

- **Galvanized Sheet:** 61.9 kg
- **Nails:** 2.0 kg
- **Solvent Based Alkyd Paint:** 0.5 L

Notes:

³Initial = Time 0 (i.e., at the completion of initial construction)

²Transportation

³Total EE (or Total GWP) per unit = Total embodied energy (or total embodied GWP) of building component after lifespan (i.e., total manufacturing + total construction + total maintenance + total end-of-life effects)

⁴Total Difference in Operating Energy for GWP from Baseline after Lifespan per unit = The difference in the total life-cycle operating energy for GWP from the baseline retail building after lifespan due to using this building component instead of the baseline component

Total operating primary energy use of baseline retail building after 90 years = 526700 GJ (LH5-MUHFy)

Total operating GWP of baseline retail building after 90 years = 2310 tonnes of CO2 eq. (80kg of CO2 eq.)
Appendix B-6

LCA Data for Foundations
LCA Data for Isolated Footings and Concrete Piers

This section contains a detailed description of each isolated footing and concrete pier combination that was examined in this study (7 in total). The assembly layers are listed for each case, along with a detailed description of the material quantities from the ATHENA® Environmental Impact Estimator for Buildings.

A breakdown of the total primary energy consumption and the total global warming potential (GWP) for each footing and pier is also included. In each case, the results were calculated for one isolated footing with one concrete pier. The data has been calculated for two different lifespans: at the completion of initial construction and after 50 years.

As a summary, the figure below illustrates a comparison of the total embodied energy (and GWP) after 50 years for the various footing and pier combinations in this section. For comparison purpose, the building component used in the baseline retail building has been shaded in grey.

Isolated Concrete Footing and Pier #1 (IF-FDN1)

Building Component Description:

Category: Foundations
Assembly Layers: Isolated Concrete Footing

Brief Description: Isolated concrete footing (1,200mm x 1,200mm x 350mm) with concrete pier; 20MPa concrete strength and average flyash content

Quick Numbers:

<table>
<thead>
<tr>
<th>Material</th>
<th>Initial</th>
<th>Total</th>
<th>End of Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>1,292</td>
<td>1,364</td>
<td>168</td>
</tr>
<tr>
<td>Concrete</td>
<td>168</td>
<td>168</td>
<td>168</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

- **Embodied Energy (EE):**
 - Initial: 1,292 MJ
 - 50 years: 1,364 MJ
- **Embodied Global Warming Potential (GWP):**
 - Initial: 168 kg of CO₂ eq.
 - 50 years: 168 kg of CO₂ eq.

Notes:

1. Initial = Time 0 (i.e. at the completion of initial construction)
2. Trans. = Transportation
3. Total EE (or Total GWP) per unit = Total embodied energy (or total embodied GWP) of building component after lifespan (i.e. total manufacturing + total construction + total maintenance + total end-of-life effects)

ATHENA ® EIE Material List:

<table>
<thead>
<tr>
<th>Material Description</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete 20 MPa (flyash)</td>
<td>0.8</td>
<td>m³</td>
</tr>
<tr>
<td>Rebar, Rod, Light Sections</td>
<td>14.4</td>
<td>kg</td>
</tr>
</tbody>
</table>

*Total operating primary energy use of baseline retail building after 50 years = 50,700 GJ (1,745 MJ/m²/yr)
Total operating GWP of baseline retail building after 50 years = 2,310 tonnes of CO₂ eq. (80 kg of CO₂ eq./m²/yr)
Isolated Concrete Footing and Pier #2 (IF-FDN2)

Building Component Description:

Category: Foundations

Brief Description:
Isolated concrete footing (1,200mm x 1,200mm x 350mm) with concrete pier: 20MPa concrete strength and high flyash content

Quick Numbers:
- Total Embodied Energy: 1,518 MJ/unit
- Total Embodied GWP: 153 kg of CO₂eq./unit

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>3 Total EE (per unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>1,179 94</td>
<td>1,274 94</td>
<td>104 169</td>
<td>0 0 0 0</td>
<td>1,462</td>
</tr>
<tr>
<td>50</td>
<td>1,179 94</td>
<td>1,274 94</td>
<td>104 169</td>
<td>0 0 0 0</td>
<td>1,462</td>
</tr>
</tbody>
</table>

Notes:
- Initial = Time ‘0’ (i.e. at the completion of initial construction)
- Trans = Transportation
- Total EE (or Total GWP) per unit = Total embodied energy (or total embodied GWP) of building component after lifespan (i.e. total manufacturing + total construction + total maintenance + total end-of-life effects)
- Total Difference in Operating Energy (or GWP) from Baseline after Lifespan per unit = The difference in the total life-cycle operating energy (or GWP) from the baseline building after 50 years, due to using this building component instead of the baseline component
- Total operating primary energy use of baseline retail building after 50 years = 50,700 GJ (1,749 MJ/m²/yr)
- Total GWP of baseline retail building after 50 years = 2,310 tonnes of CO₂eq. (80 kg of CO₂eq./m²/yr)

ATHENA® EIE Material List:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete 20 MPa (flyash 35%)</td>
<td>0.8</td>
<td>m³</td>
</tr>
<tr>
<td>Rebar, Rod, Light Sections</td>
<td>14.4</td>
<td>kg</td>
</tr>
</tbody>
</table>

Isolated Concrete Footing and Pier #3 (IF-FDN3)

Building Component Description:

Category: Foundations

Brief Description:
Isolated concrete footing (1,200mm x 1,200mm x 350mm) with concrete pier: 30MPa concrete strength and average flyash content

Quick Numbers:
- Total Embodied Energy: 1,444 MJ/unit
- Total Embodied GWP: 240 kg of CO₂eq./unit

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>3 Total GWP (per unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>1,619 84</td>
<td>1,703 84</td>
<td>104 169</td>
<td>0 0 0 0</td>
<td>1,892</td>
</tr>
<tr>
<td>50</td>
<td>1,619 84</td>
<td>1,703 84</td>
<td>104 169</td>
<td>0 0 0 0</td>
<td>1,892</td>
</tr>
</tbody>
</table>

Notes:
- Initial = Time ‘0’ (i.e. at the completion of initial construction)
- Trans = Transportation
- Total EE (or Total GWP) per unit = Total embodied energy (or total embodied GWP) of building component after lifespan (i.e. total manufacturing + total construction + total maintenance + total end-of-life effects)
- Total Difference in Operating Energy (or GWP) from Baseline after Lifespan = The difference in the total life-cycle operating energy (or GWP) from the baseline building (or GWP) from the baseline retail building after 50 years, due to using this building component instead of the baseline component
- Total operating primary energy use of baseline retail building after 50 years = 50,700 GJ (1,749 MJ/m²/yr)
- Total operating GWP of baseline retail building after 50 years = 2,310 tonnes of CO₂eq. (80 kg of CO₂eq./m²/yr)
Isolated Concrete Footing and Pier #4 (IF-FDN4)

Building Component Description:

Category: Foundations

Assembly Layers: Isolated Concrete Footing

Brief Description: Isolated concrete footing (1500mm x 1500mm x 350mm) with concrete pier: 20MPa concrete strength and average flyash content

Quick Numbers:

- **Concrete Pier:**
 - 30MPa concrete strength
 - 450mm x 450mm x 1,200mm
 - 2,137 MJ/unit
 - 237 kg of CO₂eq./unit
 - Total Embodied GWP: 237 kg of CO₂eq./unit
 - 2 Equivalent of 15M bars @ 600mm o/c vert. & hor.
 - Includes allowance for 0.425kg/m³ of steel for ties, wire, etc.
 - 35% (high) flyash content

- **Concrete Footing:**
 - 20MPa concrete strength
 - 1,200mm x 1,200mm x 350mm
 - 1,740 MJ/unit
 - 195 kg of CO₂eq./unit
 - Total Embodied GWP: 195 kg of CO₂eq./unit
 - Includes allowance for 1630kg/m³ of concrete
 - 35% (high) flyash content

Brief Description:

- 20M bars @ 22kg of steel per m³ of concrete
- 35% (high) flyash content

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE (per unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>1,362</td>
<td>1,495</td>
<td>104</td>
<td>159</td>
<td>1,684</td>
</tr>
<tr>
<td>50</td>
<td>1,362</td>
<td>1,495</td>
<td>104</td>
<td>159</td>
<td>1,740</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GWP (per unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>188</td>
<td>188</td>
<td>0</td>
<td>0</td>
<td>195</td>
</tr>
<tr>
<td>50</td>
<td>188</td>
<td>188</td>
<td>0</td>
<td>0</td>
<td>195</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = T = 0 (i.e. at the completion of initial construction)
2. Trans. = Transportation
3. Total EE (or Total GWP) per unit = Total embodied energy (or total embodied GWP) of building component after lifespan (i.e. total manufacturing + total construction + total maintenance + total end-of-life effects)
4. Total Difference in Operating Energy (or GWP) from Baseline after Lifespan per unit = The difference in the total life-cycle operating energy (or GWP) from the baseline retail building after lifespan, due to using this building component instead of the baseline component
5. Total operating primary energy use of baseline retail building after 50 years = 50,700 GJ (1,745 MJ/m²/yr)
6. Total operating GWP of baseline retail building after 50 years = 2,310 tonnes of CO₂ eq. (80 kg of CO₂ eq./m²/yr)

ATHENA EIE Material List:

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete 30 MPa (flyash 35%)</td>
<td>0.8</td>
<td>m³</td>
</tr>
<tr>
<td>Rebar, Rod, Light Sections</td>
<td>14.4</td>
<td>kg</td>
</tr>
</tbody>
</table>

Isolated Concrete Footing and Pier #5 (IF-FDN5)

Building Component Description:

Category: Foundations

Assembly Layers: Isolated Concrete Footing

Brief Description: Isolated concrete footing (1500mm x 1500mm x 350mm) with concrete pier: 20MPa concrete strength and average flyash content

Quick Numbers:

- **Concrete Pier:**
 - 30MPa concrete strength
 - 450mm x 450mm x 1,200mm
 - 2,137 MJ/unit
 - 237 kg of CO₂eq./unit
 - Total Embodied GWP: 237 kg of CO₂eq./unit
 - 2 Equivalent of 15M bars @ 600mm o/c vert. & hor.
 - Includes allowance for 0.425kg/m³ of steel for ties, wire, etc.
 - 9% (average) flyash content

- **Concrete Footing:**
 - 20MPa concrete strength
 - 1,200mm x 1,200mm x 350mm
 - 1,740 MJ/unit
 - 195 kg of CO₂eq./unit
 - Total Embodied GWP: 195 kg of CO₂eq./unit
 - Includes allowance for 1630kg/m³ of concrete
 - 9% (average) flyash content

Brief Description:

- 20M bars @ 22kg of steel per m³ of concrete
- 35% (high) flyash content

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE (per unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>1,718</td>
<td>99</td>
<td>1,817</td>
<td>99</td>
<td>2,050</td>
</tr>
<tr>
<td>50</td>
<td>1,718</td>
<td>99</td>
<td>1,817</td>
<td>99</td>
<td>2,137</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GWP (per unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>188</td>
<td>188</td>
<td>0</td>
<td>0</td>
<td>195</td>
</tr>
<tr>
<td>50</td>
<td>188</td>
<td>188</td>
<td>0</td>
<td>0</td>
<td>195</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time '0' (i.e. at the completion of initial construction)
2. Trans. = Transportation
3. Total EE (or Total GWP) per unit = Total embodied energy (or total embodied GWP) of building component after lifespan (i.e. total manufacturing + total construction + total maintenance + total end-of-life effects)
4. Total Difference in Operating Energy (or GWP) from Baseline after Lifespan per unit = The difference in the total life-cycle operating energy (or GWP) from the baseline retail building after lifespan, due to using this building component instead of the baseline component
5. Total operating primary energy use of baseline retail building after 50 years = 50,700 GJ (1,745 MJ/m²/yr)
6. Total operating GWP of baseline retail building after 50 years = 2,310 tonnes of CO₂ eq. (80 kg of CO₂ eq./m²/yr)

ATHENA EIE Material List:

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete 20 MPa (flyash 35%)</td>
<td>1.1</td>
<td>m³</td>
</tr>
<tr>
<td>Rebar, Rod, Light Sections</td>
<td>16.9</td>
<td>kg</td>
</tr>
</tbody>
</table>
Isolated Concrete Footing and Pier #6 (IF-FDN6)

Building Component Description:

<table>
<thead>
<tr>
<th>Category:</th>
<th>Foundations</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description:</td>
<td>Isolated concrete footing (1800mm x 1800mm x 350mm) with concrete pier: 20MPa concrete strength and average flyash content</td>
<td></td>
</tr>
<tr>
<td>Quick Numbers:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>2.774 MJ (world)</td>
<td></td>
</tr>
<tr>
<td>Total Embodied GWP</td>
<td>315 kg of CO₂ eq/unit</td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Primary Energy Consumption (MJ)</th>
<th>Difference in Operating Energy from Baseline after Lifespan (per unit)</th>
<th>End of Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>2.297</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>2.297</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:

- Initial = Time ‘0’ (i.e. at the completion of initial construction)
- Trans = Transportation
- Total EE (or Total GWP) per unit = Total embodied energy (or total embodied GWP) of building component after lifespan (i.e. total manufacturing + total construction + total maintenance + total end-of-life effects)
- Total Difference in Operating Energy (or GWP) from Baseline after Lifespan per unit = The difference in the total life-cycle operating energy (or GWP) from the baseline retail building after lifespan, due to using this building component instead of the baseline component
- Includes allowance for 8.425 kg/m² of concrete (standard deviation)

ATHENA EIE Material List:

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete 20 MPa (flyash adm)</td>
<td>1.4</td>
<td>m³</td>
</tr>
<tr>
<td>Rebar, Rod, Light Sections</td>
<td>19.4</td>
<td>kg</td>
</tr>
</tbody>
</table>

Isolated Concrete Footing and Pier #7 (IF-FDN7)

Building Component Description:

<table>
<thead>
<tr>
<th>Category:</th>
<th>Foundations</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description:</td>
<td>Isolated concrete footing (2,400mm x 2,400mm x 400mm) with concrete pier: 20MPa concrete strength and average flyash content</td>
<td></td>
</tr>
<tr>
<td>Quick Numbers:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>4.973 MJ (world)</td>
<td></td>
</tr>
<tr>
<td>Total Embodied GWP</td>
<td>568 kg of CO₂ eq/unit</td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Primary Energy Consumption (MJ)</th>
<th>Difference in Operating Energy from Baseline after Lifespan (per unit)</th>
<th>End of Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>3.869</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>3.869</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:

- Initial = Time ‘0’ (i.e. at the completion of initial construction)
- Trans = Transportation
- Total EE (or Total GWP) per unit = Total embodied energy (or total embodied GWP) of building component after lifespan (i.e. total manufacturing + total construction + total maintenance + total end-of-life effects)
- Total Difference in Operating Energy (or GWP) from Baseline after Lifespan per unit = The difference in the total life-cycle operating energy (or GWP) from the baseline retail building after lifespan, due to using this building component instead of the baseline component
- Includes allowance for 8.425 kg/m² of concrete (standard deviation)

ATHENA EIE Material List:

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete 20 MPa (flyash adm)</td>
<td>2.7</td>
<td>m³</td>
</tr>
<tr>
<td>Rebar, Rod, Light Sections</td>
<td>24.4</td>
<td>kg</td>
</tr>
</tbody>
</table>
LCA Data for Concrete Strip Footings and Foundation Walls

This section contains a detailed description of each concrete strip footing and concrete foundation wall combination that was examined in this study (8 in total). The assembly layers are listed for each case, along with a detailed description of the material quantities from the ATHENA® Environmental Impact Estimator for Buildings.

A breakdown of the total primary energy consumption and the total global warming potential (GWP) for each footing and wall is also included. In each case, the results were calculated per linear meter of strip footing and foundation wall. The data has been calculated for two different lifespans: at the completion of initial construction and after 50 years.

As a summary, the figure below illustrates a comparison of the total embodied energy (and GWP) after 50 years for the various footing and wall combinations in this section. For comparison purpose, the building component used in the baseline retail building has been shaded in grey.

Concrete Strip Footing and Foundation Wall #1 (SF-FDN1)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Footprint</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Strip Footing</td>
<td>1.4 m x 1.2 m</td>
<td>3.9 m³ (flyash av) Concrete</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifespan</th>
<th>Primary Energy Consumption (MJ)</th>
<th>Embodied Energy (EEI)</th>
<th>Difference in Operating Energy from Baseline after Lifespan (L/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 yrs</td>
<td>1.07E+06</td>
<td>37</td>
<td>1,113</td>
</tr>
<tr>
<td>50 yrs</td>
<td>1.07E+06</td>
<td>37</td>
<td>1,113</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Lifespan</th>
<th>Primary Energy Consumption (MJ)</th>
<th>Embodied Global Warming Potential (GWP)</th>
<th>Difference in Operating Energy from Baseline after Lifespan (L/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 yrs</td>
<td>96</td>
<td>0</td>
<td>96</td>
</tr>
<tr>
<td>50 yrs</td>
<td>96</td>
<td>0</td>
<td>96</td>
</tr>
</tbody>
</table>

Notes:

- Embodied energy and embodied GWP numbers are per horizontal linear meter of footing and wall.
- Note: Calculations are per linear meter of strip footing (600mm x 200mm) and foundation wall (1200mm x 200mm) combination.
Concrete Strip Footing and Foundation Wall #2 (SF-FDN2)

Building Component Description:

Concrete Strip Footing
- Concrete strip footing with reinforced concrete strength and high finish content.
- 30MPa concrete strength
- 9 kg/m² + 1.3 kg/m²

Assembly Layers
- Concrete Strip Footing
- Concrete Foundation Wall
- 30MPa concrete strength
- 9 kg/m² + 1.3 kg/m²

Quick Numbers:
- Concrete Foundation Wall
- 30MPa concrete strength

Material List
- **Organic Felt shingles 25yr**
 - 1.3 m²
- **Rebar, Rod, Light Sections**
 - 14.9 kg
- **Solvent Based Alkyd Paint**
 - 0.1 L

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Total EIE (per m²)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Trans.</th>
<th>Total</th>
<th>Construction</th>
<th>Trans.</th>
<th>Total</th>
<th>Maintenance</th>
<th>Trans.</th>
<th>Total</th>
<th>End of Life</th>
<th>Trans.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,159</td>
<td>Material</td>
<td>120</td>
<td>0</td>
<td>120</td>
<td>218</td>
<td>2</td>
<td>220</td>
<td>0</td>
<td>28</td>
<td>28</td>
<td>1,191</td>
<td>0</td>
<td>1,191</td>
</tr>
<tr>
<td>50</td>
<td>1,159</td>
<td>Material</td>
<td>120</td>
<td>0</td>
<td>120</td>
<td>218</td>
<td>2</td>
<td>220</td>
<td>0</td>
<td>28</td>
<td>28</td>
<td>1,191</td>
<td>0</td>
<td>1,191</td>
</tr>
</tbody>
</table>

Notes:
1. Initial = Time 17.6 mo. at the completion of initial construction
2. Trans. = Transportation
3. Total EIE for Total GWP per m² = Total embodied energy for total embodied GWP of building component after lifespan (kn), total manufacturing = total construction + total maintenance + total end-of-life effect.
4. Difference in Operating Energy (GWP) from Baseline after Lifespan per m². The difference in the total lifecycle operating energy for GWP from the baseline retail building after lifespan due to using this building component instead of the baseline component.

ATHENA © EIE Material List

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 m Polyethylene</td>
<td>1.3</td>
<td>m²</td>
</tr>
<tr>
<td>Concrete 20 MPa (f.ys. 35%)</td>
<td>0.4</td>
<td>m³</td>
</tr>
<tr>
<td>Extruded Polystyrene</td>
<td>2.5</td>
<td>m² (20mm)</td>
</tr>
<tr>
<td>Modified Bitumen Membrane</td>
<td>2.1</td>
<td>kg</td>
</tr>
<tr>
<td>Neat</td>
<td>0.1</td>
<td>kg</td>
</tr>
<tr>
<td>Organic Felt shingles</td>
<td>1.3</td>
<td>m²</td>
</tr>
<tr>
<td>Rebar, Rod, Light Sections</td>
<td>14.9</td>
<td>kg</td>
</tr>
<tr>
<td>Solvent Based Alkyd Paint</td>
<td>0.1</td>
<td>L</td>
</tr>
</tbody>
</table>

Concrete Strip Footing and Foundation Wall #3 (SF-FDN3)

Building Component Description:

Concrete Strip Footing
- Concrete strip footing with reinforced concrete foundation wall 30MPa concrete strength and high finish content.
- 30MPa concrete strength
- 9 kg/m² + 1.3 kg/m²

Assembly Layers
- Concrete Strip Footing
- Concrete Foundation Wall
- 30MPa concrete strength

Quick Numbers:
- Concrete Foundation Wall
- 30MPa concrete strength

Material List
- **Organic Felt shingles 25yr**
 - 1.3 m²
- **Rebar, Rod, Light Sections**
 - 14.9 kg
- **Solvent Based Alkyd Paint**
 - 0.1 L

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Total EIE (per m²)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Trans.</th>
<th>Total</th>
<th>Construction</th>
<th>Trans.</th>
<th>Total</th>
<th>Maintenance</th>
<th>Trans.</th>
<th>Total</th>
<th>End of Life</th>
<th>Trans.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,276</td>
<td>Material</td>
<td>120</td>
<td>0</td>
<td>120</td>
<td>218</td>
<td>2</td>
<td>220</td>
<td>0</td>
<td>28</td>
<td>28</td>
<td>1,304</td>
<td>0</td>
<td>1,304</td>
</tr>
<tr>
<td>50</td>
<td>1,276</td>
<td>Material</td>
<td>120</td>
<td>0</td>
<td>120</td>
<td>218</td>
<td>2</td>
<td>220</td>
<td>0</td>
<td>28</td>
<td>28</td>
<td>1,304</td>
<td>0</td>
<td>1,304</td>
</tr>
</tbody>
</table>

Notes:
1. Initial = Time 17.6 mo. at the completion of initial construction
2. Trans. = Transportation
3. Total EIE for Total GWP per m² = Total embodied energy for total embodied GWP of building component after lifespan (kn), total manufacturing = total construction + total maintenance + total end-of-life effect.
4. Difference in Operating Energy (GWP) from Baseline after Lifespan per m². The difference in the total lifecycle operating energy for GWP from the baseline retail building after lifespan due to using this building component instead of the baseline component.
5. Total operating primary energy use of baseline retail building after 50 years = 57.6 kWh/yr (7.4 kWh/m²/yr)
6. Total operating GWP of baseline retail building after 50 years = 2,310 tons of CO₂ eq. (80G of CO₂eq/M²/yr)
Concrete Strip Footing and Foundation Wall #4 (SF-FDN4)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Concrete strip footing with reinforced concrete foundation wall; 250MPa concrete strength and high Wash content</td>
</tr>
</tbody>
</table>

Quick Numbers:

<table>
<thead>
<tr>
<th>Material</th>
<th>Unit Quantities</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Foundation</td>
<td>18.1 m³</td>
<td>250MPa concrete strength</td>
</tr>
<tr>
<td>Rebar, Rod, Light Sections</td>
<td>14.9 kg</td>
<td>6% max. reinforcement content</td>
</tr>
<tr>
<td>Solvent Based Alkyd Paint</td>
<td>0.1 L</td>
<td>8% max. liquid content</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Life-Cycle Assessment</th>
<th>Embodied Energy Consumption (MJ)</th>
<th>Global Warming Potential (kg of CO₂ eq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Manufacturing</td>
<td>Construction</td>
</tr>
<tr>
<td>Initial</td>
<td>1,120</td>
<td>56</td>
</tr>
<tr>
<td>50</td>
<td>1,120</td>
<td>56</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time 18m at the completion of initial construction
2. Trans = Transportation
3. Total EE or Total GWP per m = Total embodied energy/total embodied GWP of building component after Lifespan = total manufacturing + total operating energy + total end-of-life effects
4. Total Difference in Operating Energy for GWP from Baseline after Lifespan = the difference in the total Lifecycle operating energy for GWP from the baseline retail building after Lifespan, due to using the building component instead of the baseline component
5. Total operating primary energy use of baseline retail building after 50 years = 82,700,000 kWh/yr
6. Perceived energy efficiency of building component based on use in the baseline retail building after Lifespan.

ATHENA® EIE Material List

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Polyethylene</td>
<td>1.3</td>
<td>m³</td>
</tr>
<tr>
<td>Concrete 30 MPa (35% wash)</td>
<td>0.4</td>
<td>m³</td>
</tr>
<tr>
<td>Extruded Polystyrene</td>
<td>2.5</td>
<td>m³</td>
</tr>
<tr>
<td>Modified Bitumen membrane</td>
<td>2.1</td>
<td>kg</td>
</tr>
<tr>
<td>Nails</td>
<td>0.1</td>
<td>kg</td>
</tr>
<tr>
<td>Steel rods</td>
<td>1.3</td>
<td>m³</td>
</tr>
<tr>
<td>Steel, Rod, Light Sections</td>
<td>14.9</td>
<td>kg</td>
</tr>
<tr>
<td>Solvent Based Alkyd Paint</td>
<td>0.1</td>
<td>L</td>
</tr>
</tbody>
</table>

Concrete Strip Footing and Foundation Wall #5 (SF-FDN5)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Concrete strip footing with reinforced concrete foundation wall; 250MPa concrete strength and high Wash content</td>
</tr>
</tbody>
</table>

Quick Numbers:

<table>
<thead>
<tr>
<th>Material</th>
<th>Unit Quantities</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Foundation</td>
<td>18.1 m³</td>
<td>250MPa concrete strength</td>
</tr>
<tr>
<td>Rebar, Rod, Light Sections</td>
<td>14.9 kg</td>
<td>6% max. reinforcement content</td>
</tr>
<tr>
<td>Solvent Based Alkyd Paint</td>
<td>0.1 L</td>
<td>8% max. liquid content</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Life-Cycle Assessment</th>
<th>Embodied Energy Consumption (MJ)</th>
<th>Global Warming Potential (kg of CO₂ eq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Manufacturing</td>
<td>Construction</td>
</tr>
<tr>
<td>Initial</td>
<td>937</td>
<td>86</td>
</tr>
<tr>
<td>50</td>
<td>860</td>
<td>89</td>
</tr>
</tbody>
</table>

Notes:

1. initial = Time 18m at the completion of initial construction
2. Trans = Transportation
3. Total EE (or Total GWP per m = Total embodied energy (or total embodied GWP) of building component after Lifespan = total manufacturing + total construction + total maintenance + total end-of-life effects
4. Total Difference in Operating Energy for GWP from Baseline after Lifespan = the difference in the total Lifecycle operating energy for GWP from the baseline retail building after Lifespan, due to using this building component instead of the baseline component
5. Total operating primary energy use of baseline retail building after 50 years = 82,700,000 kWh/yr
6. Perceived energy efficiency of building component based on use in the baseline retail building after Lifespan.

ATHENA® EIE Material List

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 m Polyethylene</td>
<td>1.3</td>
<td>m³</td>
</tr>
<tr>
<td>Concrete 30 MPa (35% wash)</td>
<td>0.4</td>
<td>m³</td>
</tr>
<tr>
<td>Modified Bitumen membrane</td>
<td>2.1</td>
<td>kg</td>
</tr>
<tr>
<td>Steel, Rod, Light Sections</td>
<td>14.9</td>
<td>kg</td>
</tr>
<tr>
<td>Solvent Based Alkyd Paint</td>
<td>0.1</td>
<td>L</td>
</tr>
</tbody>
</table>
Concrete Strip Footing and Foundation Wall #6 (SF-FDN6)

Building Component Description:

Concrete Strip Footing and Foundation Wall #6 (SF-FDN6)

Category: Foundations

Assembly Layers:
- Concrete Strip Footing
- 250 MPa concrete strength
- 6% average flash content
- 600mm x 200m
- Foundation Wall
- 250 MPa concrete strength
- 6% average flash content
- 1200mm x 200m

Quick Numbers:

- **ENHANCED Standard 9.1:**
 - Volume: 1.2
 - Mass Volume: 0.2
- **ENHANCED 9.2:**
 - Equivalent to ENhanced 9.1 on wall & foundation
 - Volume: 1.3

Total Embodied Energy:
- 1,765 MJ

Total Embodied GWP:
- 80 kg CO2e/ m

Note:
- Embodied energy and embodied GWP numbers are per horizontal meter of footing and wall
- 60 mil Caliper based waterproofing membrane (modulated as 1.5 day/m² of modulated bitumen membrane and 6 mil Polyethylene sheet with primer)

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE (per m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td></td>
<td>7836</td>
<td>3137</td>
<td>0</td>
<td>0</td>
<td>1103</td>
</tr>
<tr>
<td>50</td>
<td>7836</td>
<td>3137</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1103</td>
</tr>
</tbody>
</table>

Embodied Energy (EE):
- 1,765 MJ

Difference in Embodied Energy from Baseline after Lifespan
- Initial = 1103 MJ

Global Warming Potential (kg of CO₂-eq.)

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GWP (per m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td></td>
<td>786</td>
<td>3137</td>
<td>0</td>
<td>0</td>
<td>124</td>
</tr>
<tr>
<td>50</td>
<td>786</td>
<td>3137</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>124</td>
</tr>
</tbody>
</table>

Embodied Global Warming Potential (GWP):
- 1,248 MJ

Difference in Embodied Global Warming Potential from Baseline after Lifespan
- Initial = 124 kg CO₂-eq.

Notes:
- Athena EIE Material List includes all materials after 50 years
- Initial = Time 0 at the completion of initial construction
- Trans = Transportation
- 6 mil Polyethylene
- Concrete 30 MPa (flyash 25%)
- Modified Bitumen membrane
- Rebar, Rod, Light Sections
- Solvent Based Alkyd Paint

Concrete Strip Footing and Foundation Wall #7 (SF-FDN7)

Building Component Description:

Concrete Strip Footing and Foundation Wall #7 (SF-FDN7)

Category: Foundations

Assembly Layers:
- Concrete Strip Footing
- 250 MPa concrete strength
- 6% average flash content
- 600mm x 200m
- Foundation Wall
- 250 MPa concrete strength
- 6% average flash content
- 1200mm x 200m

Quick Numbers:

- **ENHANCED Standard 9.1:**
 - Volume: 1.3
 - Mass Volume: 0.2
- **ENHANCED 9.2:**
 - Equivalent to ENhanced 9.1 on wall & foundation
 - Volume: 1.3

Total Embodied Energy:
- 1,468 MJ

Total Embodied GWP:
- 120 kg CO2e/ m

Note:
- Embodied energy and embodied GWP numbers are per horizontal meter of footing and wall
- 60 mil Caliper based waterproofing membrane (modulated as 1.5 day/m² of modulated bitumen membrane and 6 mil Polyethylene sheet with primer)

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE (per m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td></td>
<td>9952</td>
<td>1037</td>
<td>51</td>
<td>121</td>
<td>1158</td>
</tr>
<tr>
<td>50</td>
<td>9952</td>
<td>1037</td>
<td>51</td>
<td>121</td>
<td>120</td>
<td>1158</td>
</tr>
</tbody>
</table>

Embodied Energy (EE):
- 1,468 MJ

Difference in Embodied Energy from Baseline after Lifespan
- Initial = 1158 MJ

Global Warming Potential (kg of CO₂-eq.)

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total GWP (per m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td></td>
<td>120</td>
<td>124</td>
<td>5</td>
<td>0</td>
<td>124</td>
</tr>
<tr>
<td>50</td>
<td>120</td>
<td>124</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>124</td>
</tr>
</tbody>
</table>

Embodied Global Warming Potential (GWP):
- 1,248 MJ

Difference in Embodied Global Warming Potential from Baseline after Lifespan
- Initial = 124 kg CO₂-eq.

Notes:
- Athena EIE Material List includes all materials after 50 years
- Initial = Time 0 at the completion of initial construction
- Trans = Transportation
- 6 mil Polyethylene
- Concrete 30 MPa (flyash 25%)
- Modified Bitumen membrane
- Rebar, Rod, Light Sections
- Solvent Based Alkyd Paint
Concrete Strip Footing and Foundation Wall #8 (SF-FDN8)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description: Concrete strip footing with uncalcined concrete foundation wall 20MPa concrete strength and high finish content. Concrete Foundation Wall 20MPa concrete strength and high finish content.</td>
<td></td>
</tr>
</tbody>
</table>

Quick Numbers:

- **ATHENA Standard #1**: 6.0 kg of steel per linear m
- **GWP**: 104 kg of CO2 eq

Total Embodied Energy: 1.615 kWh

Total Embodied GWP: 104 kg of CO2 eq

<table>
<thead>
<tr>
<th>Life-Cycle Assessment Results:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Energy Consumption (MJ)</td>
</tr>
<tr>
<td>Global Warming Potential (kg of CO2 eq.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Life span (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE (per m)</th>
<th>Difference in Operating Energy from Baseline after Lifespan (per m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>-27</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
<td>-54</td>
</tr>
<tr>
<td>150</td>
<td>0</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
<td>0.03</td>
<td>-81</td>
</tr>
<tr>
<td>200</td>
<td>0</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td>0.04</td>
<td>-108</td>
</tr>
<tr>
<td>250</td>
<td>0</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
<td>-135</td>
</tr>
<tr>
<td>300</td>
<td>0</td>
<td>0.06</td>
<td>0</td>
<td>0</td>
<td>0.06</td>
<td>-162</td>
</tr>
<tr>
<td>350</td>
<td>0</td>
<td>0.07</td>
<td>0</td>
<td>0</td>
<td>0.07</td>
<td>-190</td>
</tr>
<tr>
<td>400</td>
<td>0</td>
<td>0.08</td>
<td>0</td>
<td>0</td>
<td>0.08</td>
<td>-217</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Life span (Years)</th>
<th>Embodied Energy (EE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.01</td>
</tr>
<tr>
<td>100</td>
<td>0.02</td>
</tr>
<tr>
<td>150</td>
<td>0.03</td>
</tr>
<tr>
<td>200</td>
<td>0.04</td>
</tr>
<tr>
<td>250</td>
<td>0.05</td>
</tr>
<tr>
<td>300</td>
<td>0.06</td>
</tr>
<tr>
<td>350</td>
<td>0.07</td>
</tr>
<tr>
<td>400</td>
<td>0.08</td>
</tr>
</tbody>
</table>

ATHENA EIE Material List (Includes all materials used):

- 6 mil Polyethylene: 1.3 m2
- Concrete 30 MPa (flyash 35%): 0.4 m3
- Modulated Blown membranes: 2.1 kg
- Galvanized Sheet: 14.9 kg
- Solvent Based Alkyd Paint: 0.1 L

Notes:

- Initial = Time 0 (ie, at the completion of initial construction)
- Trans = Transportation
- Total EE (or Total GWP per m) = Total embodied energy (or total embodied GWP) of building component after lifespan, i.e., total manufacturing + total construction + total maintenance + total embodied effect
- Total Difference in Operating Energy (per GWP) from Baseline after Lifespan (per m) = The difference in the total 120-year operating energy (or GWP) from the baseline retail building after 50 years, due to using this building component instead of the baseline component.

LCA Data for Concrete Slab-on-Grades

This section contains a detailed description of each concrete slab-on-grade that was examined in this study (6 in total). The assembly layers are listed for each case, along with a detailed description of the material quantities from the ATHENA® Environmental Impact Estimator for Buildings.

A breakdown of the total primary energy consumption and the total global warming potential (GWP) for each slab-on-grade is also included. In each case, the results were calculated for a slab-on-grade area of 610 m², which represents a typical size for a single-storey retail building. The results are also expressed per m² of slab-on-grade. The data has been calculated for two different lifespans: at the completion of initial construction and after 50 years.

As a summary, the figure below illustrates a comparison of the total embodied energy (and GWP) after 50 years for the various slab-on-grades in this section. For comparison purposes, the building component used in the baseline retail building has been shaded in grey.
Concrete Slab-On-Grade #1 (SOG-FDN1)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete slab-on-grade: 100mm thick, average flyash content, no insulation</td>
<td></td>
</tr>
<tr>
<td>Quick Numbers:</td>
<td></td>
</tr>
<tr>
<td>6 mil Polyethylene</td>
<td>846.4 m2</td>
</tr>
<tr>
<td>Solvent Based Alkyd Paint</td>
<td>87.3 L</td>
</tr>
<tr>
<td>Welded Wire Mesh / Ladder Wire</td>
<td>549.9 kg</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

- **Primary Energy Consumption (MJ):**
 - Manufacturing: 106.64 kWh
 - Construction: 106.64 kWh
 - End of Life: 0 kWh
 - Total Embodied Energy: 213 MWh

- **Global Warming Potential (kg of CO₂ eq):**
 - Manufacturing: 273 kg CO₂ eq
 - Construction: 273 kg CO₂ eq
 - End of Life: 0 kg CO₂ eq
 - Total Embodied Global Warming Potential: 546 kg CO₂ eq

ATHENA ® EIE Material List

1. Polyethylene
2. Solvent Based Alkyd Paint
3. Welded Wire Mesh / Ladder Wire

Notes:
- Embodied energy (and GWP) numbers are based on an area of SOG = 610.0 m²
- *Total EE* = *Total GWP* = Total embodied energy (or total embodied GWP) of building component (or area of building component that was modeled in ATHENA EIE)
- Total Difference in Operating Energy (for GWP) from Baseline after Lifespan = The difference in the total Recycled operating energy (or GWP) from the baseline slab on grade after lifespans, due to using this building component instead of the baseline component
- Total Difference in Operating Energy (for GWP) from Baseline after Lifespan per m² = Total difference in operating energy (or GWP) from baseline after lifespan/total building slab-on-grade area

Concrete Slab-On-Grade #2 (SOG-FDN2)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete slab-on-grade: 150mm thick, high flyash content, no insulation</td>
<td></td>
</tr>
<tr>
<td>Quick Numbers:</td>
<td></td>
</tr>
<tr>
<td>6 mil Polyethylene</td>
<td>464.4 m2</td>
</tr>
<tr>
<td>Solvent Based Alkyd Paint</td>
<td>67.3 L</td>
</tr>
<tr>
<td>Welded Wire Mesh / Ladder Wire</td>
<td>549.9 kg</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

- **Primary Energy Consumption (MJ):**
 - Manufacturing: 186.19 kWh
 - Construction: 186.19 kWh
 - End of Life: 0 kWh
 - Total Embodied Energy: 372 MWh

- **Global Warming Potential (kg of CO₂ eq):**
 - Manufacturing: 367 kg CO₂ eq
 - Construction: 367 kg CO₂ eq
 - End of Life: 0 kg CO₂ eq
 - Total Embodied Global Warming Potential: 734 kg CO₂ eq

ATHENA ® EIE Material List

1. Polyethylene
2. Solvent Based Alkyd Paint
3. Welded Wire Mesh / Ladder Wire

Notes:
- Embodied energy (and GWP) numbers are based on an area of SOG = 610.0 m²
- *Total EE* = *Total GWP* = Total embodied energy (or total embodied GWP) of building component (or area of building component that was modeled in ATHENA EIE)
- Total Difference in Operating Energy (for GWP) from Baseline after Lifespan = The difference in the total Recycled operating energy (or GWP) from the baseline slab on grade after lifespans, due to using this building component instead of the baseline component
- Total Difference in Operating Energy (for GWP) from Baseline after Lifespan per m² = Total difference in operating energy (or GWP) from baseline after lifespan/total building slab-on-grade area

*Total operating primary energy use of baseline slab on grade after 50 years = 50,700 kWh/m²
*Total operating primary energy use of baseline slab on grade after 50 years = 50,700 kWh/m²
*Total operating primary energy use of baseline slab on grade after 50 years = 50,700 kWh/m²
*Total operating primary energy use of baseline slab on grade after 50 years = 50,700 kWh/m²
Concrete Slab-On-Grade #3 (SOG-FDN3)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Foundations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly Layers</td>
<td>Concrete Slab-On-Grade</td>
</tr>
<tr>
<td>Brief Description</td>
<td>Concrete slab-on-grade: 100mm thick, average flush finish, 50mm insulation</td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>100mm thick concrete slab, 150mm x 150mm x 3.42mm steel mesh (based on steel grade of 360MPa)</td>
</tr>
<tr>
<td>Notes</td>
<td>1. Total Embedded GWP includes emissions from all phases of production, transportation, and installation</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

- **Primary Energy Consumption (MJ):**
 - Manufacturing: 229.671 MJ
 - Construction: 16.468 MJ
 - End of Life: 0.055 MJ
 - Total: 256.294 MJ

- **Embodied Energy (EE):**
 - Manufacturing: 7.117 GJ
 - Construction: 0.055 GJ
 - End of Life: 1.768 GJ
 - Total: 8.938 GJ

- **Global Warming Potential (kg of CO₂ eq.):**
 - Manufacturing: 0.307 GJ
 - Construction: 0.007 GJ
 - End of Life: 0.008 GJ
 - Total: 0.322 GJ

Notes:
- 1 = Initial |
- 2 = Total |
- 3 = Transportation |
- 4 = Construction |
- 5 = End of Life |
- 6 = Total |

Material List:
- 6 m Polyethylene: 645.4 m²
- Concrete 30 MPa: 230.8 kg
- Extruded Polystyrene: 1,246.6 m³
- Nails: 37.6 kg
- Solvent Based Acrylic Paint: 87.3 L
- Welded Wire Mesh: 549.9 kg

Concrete Slab-On-Grade #4 (SOG-FDN4)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Foundations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly Layers</td>
<td>Concrete Slab-On-Grade</td>
</tr>
<tr>
<td>Brief Description</td>
<td>Concrete slab-on-grade: 100mm thick, average flush finish, 100mm insulation</td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>100mm thick concrete slab, 150mm x 150mm x 3.42mm steel mesh (based on steel grade of 360MPa)</td>
</tr>
<tr>
<td>Notes</td>
<td>1. Total Embedded GWP includes emissions from all phases of production, transportation, and installation</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

- **Primary Energy Consumption (MJ):**
 - Manufacturing: 244.257 MJ
 - Construction: 24.254 MJ
 - End of Life: 0.176 MJ
 - Total: 270.687 MJ

- **Embodied Energy (EE):**
 - Manufacturing: 7.749 GJ
 - Construction: 0.176 GJ
 - End of Life: 0.033 GJ
 - Total: 8.960 GJ

- **Global Warming Potential (kg of CO₂ eq.):**
 - Manufacturing: 0.537 GJ
 - Construction: 0.033 GJ
 - End of Life: 0.006 GJ
 - Total: 0.577 GJ

Notes:
- 1 = Initial |
- 2 = Total |
- 3 = Transportation |
- 4 = Construction |
- 5 = End of Life |
- 6 = Total |

Material List:
- 6 m Polyethylene: 645.4 m²
- Concrete 30 MPa: 230.8 kg
- Solvent Based Acrylic Paint: 87.3 L
- Welded Wire Mesh: 549.9 kg

- 1 = Initial |
- 2 = Total |
- 3 = Transportation |
- 4 = Construction |
- 5 = End of Life |
- 6 = Total |

Material List:
- 6 m Polyethylene: 645.4 m²
- Concrete 30 MPa: 230.8 kg
- Solvent Based Acrylic Paint: 87.3 L
- Welded Wire Mesh: 549.9 kg

Notes:
- 1 = Initial |
- 2 = Total |
- 3 = Transportation |
- 4 = Construction |
- 5 = End of Life |
- 6 = Total |
Concrete Slab-On-Grade #5 (SOG-FDN5)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Slab-On-Grade</td>
<td>200mm thick, high strength, high performance, no insulation</td>
</tr>
</tbody>
</table>

Quick Numbers:

- **ATHENA Standard**: Full R-64 R-50 R-44 R-33 R-22 R-11 R-6 R-2 Insulation |
- **Concrete thickness**: 200mm |
- **Initial Embodied Energy**: 206.147 MJ |
- **Total Embodied Energy**: 298 MJ |
- **Global Warming Potential**: 46 kg of CO₂ equivalents |

Life-Cycle Assessment Results:

- **Primary Energy Consumption** (MJ):
 - **Life Cycle**
 - **Total Construction Phase**: 69,657 MJ
 - **Total Embodied Energy**: 206,147 MJ

- **Global Warming Potential (kg of CO₂ eq.)**:
 - **Life Cycle**
 - **Total Construction Phase**: 34.6 kg of CO₂ equivalents
 - **Total Embodied Energy**: 46 kg of CO₂ equivalents

Concrete Slab-On-Grade #6 (SOG-FDN6)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Slab-On-Grade</td>
<td>200mm thick, high strength, high performance, 50mm insulation</td>
</tr>
</tbody>
</table>

Quick Numbers:

- **ATHENA Standard**: Full R-64 R-50 R-44 R-33 R-22 R-11 R-6 R-2 Insulation |
- **Concrete thickness**: 200mm |
- **Initial Embodied Energy**: 206.147 MJ |
- **Total Embodied Energy**: 298 MJ |
- **Global Warming Potential**: 46 kg of CO₂ equivalents |

Life-Cycle Assessment Results:

- **Primary Energy Consumption** (MJ):
 - **Life Cycle**
 - **Total Construction Phase**: 69,657 MJ
 - **Total Embodied Energy**: 206,147 MJ

- **Global Warming Potential (kg of CO₂ eq.)**:
 - **Life Cycle**
 - **Total Construction Phase**: 34.6 kg of CO₂ equivalents
 - **Total Embodied Energy**: 46 kg of CO₂ equivalents

ATHENA® EIE Material List

- **6 mil Polyethylene**: 645.4 kg
- **Concrete 30 MPa (flyash 35%)**: 127.8 m³
- **Soil Based Alkyl Paint**: 67.3 L
- **Welded Wire Mesh / Ladder Wire**: 545.9 kg

Notes:

1. **Initial**: Time 17° (km at the completion of initial construction)
2. **Trans**: Transportation
3. **Total EE (for Total GWP)** = Total embodied energy (for total embodied GWP) of building component after lifespan (t); total manufacturing + total construction + total maintenance + total end-of-life effects
4. **Total EE (for Total GWP per m²)** = Total EE (for Total GWP) of building component / area of building component that was modeled in ATHENA® EIE
5. **Total Difference in Operating Energy (for GWP) from Baseline after Lifespan** = The difference in the total Recycle operating energy (for GWP) from the baseline retail building after lifespans, due to using this building component instead of the baseline component
6. **Total Difference in Operating Energy (for GWP) from Baseline after Lifespan per m²** = Total difference in operating energy (for GWP) from the baseline retail building after lifespans for the baseline retail building stock at grade area

ATHENA® EIE Material List

- **Material List**: Includes all materials after 60 years
- **Notes:**
 - **Initial**: Time 17° (km at the completion of initial construction)
 - **Trans**: Transportation
 - **Total EE (for Total GWP)** = Total embodied energy (for total embodied GWP) of building component after lifespan (t); total manufacturing + total construction + total maintenance + total end-of-life effects
 - **Total EE (for Total GWP per m²)** = Total EE (for Total GWP) of building component / area of building component that was modeled in ATHENA® EIE
 - **Total Difference in Operating Energy (for GWP) from Baseline after Lifespan** = The difference in the total Recycle operating energy (for GWP) from the baseline retail building after lifespans, due to using this building component instead of the baseline component
 - **Total Difference in Operating Energy (for GWP) from Baseline after Lifespan per m²** = Total difference in operating energy (for GWP) from the baseline retail building after lifespans for the baseline retail building stock at grade area

ATHENA® EIE Material List

- **Material List**: Includes all materials after 60 years
- **Notes:**
 - **Initial**: Time 17° (km at the completion of initial construction)
 - **Trans**: Transportation
 - **Total EE (for Total GWP)** = Total embodied energy (for total embodied GWP) of building component after lifespan (t); total manufacturing + total construction + total maintenance + total end-of-life effects
 - **Total EE (for Total GWP per m²)** = Total EE (for Total GWP) of building component / area of building component that was modeled in ATHENA® EIE
 - **Total Difference in Operating Energy (for GWP) from Baseline after Lifespan** = The difference in the total Recycle operating energy (for GWP) from the baseline retail building after lifespans, due to using this building component instead of the baseline component
 - **Total Difference in Operating Energy (for GWP) from Baseline after Lifespan per m²** = Total difference in operating energy (for GWP) from the baseline retail building after lifespans for the baseline retail building stock at grade area

ATHENA® EIE Material List

- **Material List**: Includes all materials after 60 years
- **Notes:**
 - **Initial**: Time 17° (km at the completion of initial construction)
 - **Trans**: Transportation
 - **Total EE (for Total GWP)** = Total embodied energy (for total embodied GWP) of building component after lifespan (t); total manufacturing + total construction + total maintenance + total end-of-life effects
 - **Total EE (for Total GWP per m²)** = Total EE (for Total GWP) of building component / area of building component that was modeled in ATHENA® EIE
 - **Total Difference in Operating Energy (for GWP) from Baseline after Lifespan** = The difference in the total Recycle operating energy (for GWP) from the baseline retail building after lifespans, due to using this building component instead of the baseline component
 - **Total Difference in Operating Energy (for GWP) from Baseline after Lifespan per m²** = Total difference in operating energy (for GWP) from the baseline retail building after lifespans for the baseline retail building stock at grade area

ATHENA® EIE Material List

- **Material List**: Includes all materials after 60 years
- **Notes:**
 - **Initial**: Time 17° (km at the completion of initial construction)
 - **Trans**: Transportation
 - **Total EE (for Total GWP)** = Total embodied energy (for total embodied GWP) of building component after lifespan (t); total manufacturing + total construction + total maintenance + total end-of-life effects
 - **Total EE (for Total GWP per m²)** = Total EE (for Total GWP) of building component / area of building component that was modeled in ATHENA® EIE
 - **Total Difference in Operating Energy (for GWP) from Baseline after Lifespan** = The difference in the total Recycle operating energy (for GWP) from the baseline retail building after lifespans, due to using this building component instead of the baseline component
 - **Total Difference in Operating Energy (for GWP) from Baseline after Lifespan per m²** = Total difference in operating energy (for GWP) from the baseline retail building after lifespans for the baseline retail building stock at grade area

ATHENA® EIE Material List

- **Material List**: Includes all materials after 60 years
- **Notes:**
 - **Initial**: Time 17° (km at the completion of initial construction)
 - **Trans**: Transportation
 - **Total EE (for Total GWP)** = Total embodied energy (for total embodied GWP) of building component after lifespan (t); total manufacturing + total construction + total maintenance + total end-of-life effects
 - **Total EE (for Total GWP per m²)** = Total EE (for Total GWP) of building component / area of building component that was modeled in ATHENA® EIE
 - **Total Difference in Operating Energy (for GWP) from Baseline after Lifespan** = The difference in the total Recycle operating energy (for GWP) from the baseline retail building after lifespans, due to using this building component instead of the baseline component
 - **Total Difference in Operating Energy (for GWP) from Baseline after Lifespan per m²** = Total difference in operating energy (for GWP) from the baseline retail building after lifespans for the baseline retail building stock at grade area

ATHENA® EIE Material List

- **Material List**: Includes all materials after 60 years
- **Notes:**
 - **Initial**: Time 17° (km at the completion of initial construction)
 - **Trans**: Transportation
 - **Total EE (for Total GWP)** = Total embodied energy (for total embodied GWP) of building component after lifespan (t); total manufacturing + total construction + total maintenance + total end-of-life effects
 - **Total EE (for Total GWP per m²)** = Total EE (for Total GWP) of building component / area of building component that was modeled in ATHENA® EIE
 - **Total Difference in Operating Energy (for GWP) from Baseline after Lifespan** = The difference in the total Recycle operating energy (for GWP) from the baseline retail building after lifespans, due to using this building component instead of the baseline component
 - **Total Difference in Operating Energy (for GWP) from Baseline after Lifespan per m²** = Total difference in operating energy (for GWP) from the baseline retail building after lifespans for the baseline retail building stock at grade area
Appendix B-7

LCA Data for Interior Partitions
LCA Data for Interior Partition Walls

This section contains a detailed description of each interior partition wall that was examined in this study (9 in total). The assembly layers are listed for each wall, along with a detailed description of the material quantities from the ATHENA® Environmental Impact Estimator for Buildings.

A breakdown of the total primary energy consumption and the total global warming potential (GWP) for each wall is also included. In each case, the results were calculated for an area of partition wall equal to 50.9 m², which represents a typical bay size for a single-storey retail building. The results are also expressed on a per m² basis in each case. The data has been calculated for two different lifespans: at the completion of initial construction and after 50 years.

As a summary, the figure below illustrates a comparison of the total embodied energy (and GWP) after 50 years for the various interior partition walls in this section. For comparison purpose, the building component used in the baseline retail building has been shaded in grey.

Concrete Masonry Unit Interior Partition Wall #1 (CMU-P1)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Interior Partition Walls</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description</td>
<td>Concrete masonry unit interior partition wall with latex paint</td>
<td>Outside</td>
</tr>
<tr>
<td>Quick Numbers</td>
<td>Wall Thickness: 100 mm</td>
<td>Inside</td>
</tr>
<tr>
<td>Total Embodied Energy</td>
<td>571 MWh</td>
<td></td>
</tr>
<tr>
<td>Total Embodied GWP</td>
<td>66 kg of CO₂ eq.</td>
<td></td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ):

<table>
<thead>
<tr>
<th>Life-Cycle (Years)</th>
<th>Embodied Energy (EE)</th>
<th>Total Energy (EE)</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 50</td>
<td>344.65</td>
<td>268</td>
<td>612</td>
</tr>
<tr>
<td></td>
<td>40.00</td>
<td>0</td>
<td>40.00</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.):

<table>
<thead>
<tr>
<th>Life-Cycle (Years)</th>
<th>Embodied Global Warming Potential (GWP)</th>
<th>Total Embodied GWP (kg of CO₂ eq. per m²)</th>
<th>Difference in Operating GWP from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial 50</td>
<td>0.000</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0</td>
<td>0.000</td>
</tr>
</tbody>
</table>

ATHENA® EIE Material List

Material List	Quantities	Unit
Concrete Blocks | 648.0 | Blocks
Mortar | 2.1 | m³
Rebar, Rod, Light Sections | 1,092.8 | kg
Water Based Latex Paint | 132.5 | L

Notes:

1. Initial = Time 0 (at the completion of initial construction)
2. Trans = Transportation
3. Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component after lifespan = total manufacturing + total construction + total maintenance + total end-of-life effects
4. Total EE (or Total GWP) per m² = Total EE (or Total GWP) of building component/area of building component that was modeled in ATHENA® EIE
5. Total Difference in Operating Energy for GWP from Baseline after Lifespan = The difference in the total life-cycle operating energy for GWP from the baseline retail building after lifespan due to using this building component instead of the baseline component
6. Total Difference in Operating Energy for GWP from Baseline after Lifespan per m² = Total difference in operating energy for GWP from baseline after lifespan interior partition wall area of baseline retail building
7. *Total operating primary energy use of baseline retail building after 50-years = 0.57TWh (1.741 MWh/yr)
8. Total operating GWP of baseline retail building after 50-years = 2.410 tonnes of CO₂ eq. (60 kg of CO₂ eq./yr)
Cold-Formed Steel Stud Interior Partition Wall #1 (SS-P1)

Building Component Description:

<table>
<thead>
<tr>
<th>Category:</th>
<th>Wall Partition Wall</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description:</td>
<td>Non-load bearing steel stud interior partition wall (610mm x 120mm)</td>
<td>Gypsum board and lath per stud</td>
</tr>
<tr>
<td>Quick Numbers:</td>
<td></td>
<td>Wall thickness: 6.6 mm</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Life-Cycle Assessment</th>
<th>Embodied Energy (EE)</th>
<th>Difference in Operating Energy from Baseline after Life-span</th>
<th>Total Embodied Energy from Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Manufacturing</td>
<td>Construction</td>
<td>Maintenance</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Initial</td>
<td>21,037</td>
<td>146</td>
<td>156</td>
</tr>
<tr>
<td>50</td>
<td>21,037</td>
<td>146</td>
<td>156</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Life-Cycle Assessment</th>
<th>Embodied Global Warming Potential (GWP)</th>
<th>Difference in Operating GWP from Baseline after Life-span</th>
<th>Total Embodied Global Warming Potential from Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Manufacturing</td>
<td>Construction</td>
<td>Maintenance</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Initial</td>
<td>1,249</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>50</td>
<td>1,249</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Notes:

- Initial = Time 17 ye (at the completion of initial construction)
- Trans = Transportation
- Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component after lifespan (i.e., total manufacturing + total construction + total maintenance + total end of life effects)
- Total EE (or Total GWP) per m² = Total EE (or Total GWP) of building component/area of building component that was modeled in ATHENA EIE
- Total Difference in Operating Energy (GWP) from Baseline after Lifespan = The difference in the total lifecycle operating energy (GWP) from the baseline retail building after lifespan due to using this building component instead of the baseline component
- Total Difference in Operating Energy (GWP) from Baseline after Lifespan per m² = Total difference in operating energy (GWP) from baseline after lifespan/interior partition wall area of baseline retail building
- Total operating primary energy use of baseline retail building after 50 years = 30700 GJ/yr (740.4 MWh/yr)
- Total operating GWP of baseline retail building after 50 years = 2.31 tonnes of CO₂ eq (80Gt of CO₂ eq.)
- *Initial = Time 17 ye (at the completion of initial construction)
- *Trans = Transportation
- *Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component after lifespan (i.e., total manufacturing + total construction + total maintenance + total end of life effects)
- *Total EE (or Total GWP) per m² = Total EE (or Total GWP) of building component/area of building component that was modeled in ATHENA EIE
- *Total Difference in Operating Energy (GWP) from Baseline after Lifespan = The difference in the total lifecycle operating energy (GWP) from the baseline retail building after lifespan due to using this building component instead of the baseline component
- *Total Difference in Operating Energy (GWP) from Baseline after Lifespan per m² = Total difference in operating energy (GWP) from baseline after lifespan/interior partition wall area of baseline retail building
- *Total operating primary energy use of baseline retail building after 50 years = 30700 GJ/yr (740.4 MWh/yr)
- *Total operating GWP of baseline retail building after 50 years = 2.31 tonnes of CO₂ eq (80Gt of CO₂ eq.)

Cold-Formed Steel Stud Interior Partition Wall #2 (SS-P2)

Building Component Description:

<table>
<thead>
<tr>
<th>Category:</th>
<th>Wall Partition Wall</th>
<th>Assembly Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Description:</td>
<td>Non-load bearing steel stud interior partition wall (610mm x 120mm)</td>
<td>Gypsum board and lath per stud</td>
</tr>
<tr>
<td>Quick Numbers:</td>
<td></td>
<td>Wall thickness: 6.6 mm</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

Primary Energy Consumption (MJ)

<table>
<thead>
<tr>
<th>Life-Cycle Assessment</th>
<th>Embodied Energy (EE)</th>
<th>Difference in Operating Energy from Baseline after Life-span</th>
<th>Total Embodied Energy from Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Manufacturing</td>
<td>Construction</td>
<td>Maintenance</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Initial</td>
<td>18,909</td>
<td>143</td>
<td>19,111</td>
</tr>
<tr>
<td>50</td>
<td>18,909</td>
<td>143</td>
<td>19,111</td>
</tr>
</tbody>
</table>

Global Warming Potential (kg of CO₂ eq.)

<table>
<thead>
<tr>
<th>Life-Cycle Assessment</th>
<th>Embodied Global Warming Potential (GWP)</th>
<th>Difference in Operating GWP from Baseline after Life-span</th>
<th>Total Embodied Global Warming Potential from Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Manufacturing</td>
<td>Construction</td>
<td>Maintenance</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Initial</td>
<td>1,074</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>50</td>
<td>1,074</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Notes:

- Initial = Time 17 ye (at the completion of initial construction)
- Trans = Transportation
- Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component after lifespan (i.e., total manufacturing + total construction + total maintenance + total end of life effects)
- Total EE (or Total GWP) per m² = Total EE (or Total GWP) of building component/area of building component that was modeled in ATHENA EIE
- Total Difference in Operating Energy (GWP) from Baseline after Lifespan = The difference in the total lifecycle operating energy (GWP) from the baseline retail building after lifespan due to using this building component instead of the baseline component
- Total Difference in Operating Energy (GWP) from Baseline after Lifespan per m² = Total difference in operating energy (GWP) from baseline after lifespan/interior partition wall area of baseline retail building
- Total operating primary energy use of baseline retail building after 50 years = 30700 GJ/yr (740.4 MWh/yr)
- Total operating GWP of baseline retail building after 50 years = 2.31 tonnes of CO₂ eq (80Gt of CO₂ eq.)
- *Initial = Time 17 ye (at the completion of initial construction)
- *Trans = Transportation
- *Total EE (or Total GWP) = Total embodied energy (or total embodied GWP) of building component after lifespan (i.e., total manufacturing + total construction + total maintenance + total end of life effects)
- *Total EE (or Total GWP) per m² = Total EE (or Total GWP) of building component/area of building component that was modeled in ATHENA EIE
- *Total Difference in Operating Energy (GWP) from Baseline after Lifespan = The difference in the total lifecycle operating energy (GWP) from the baseline retail building after lifespan due to using this building component instead of the baseline component
- *Total Difference in Operating Energy (GWP) from Baseline after Lifespan per m² = Total difference in operating energy (GWP) from baseline after lifespan/interior partition wall area of baseline retail building
- *Total operating primary energy use of baseline retail building after 50 years = 30700 GJ/yr (740.4 MWh/yr)
- *Total operating GWP of baseline retail building after 50 years = 2.31 tonnes of CO₂ eq (80Gt of CO₂ eq.)
Cold-Formed Steel Stud Interior Partition Wall #3 (SS-P3)

Building Component Description:

- **Category:** Interior Partition Walls
- **Assembly Layers:**
 - Inside: 1 layer
 - Outside: 2 layers
- **Brief Description:** Non-load bearing steel stud interior partition wall, 2 inches (50 mm) with gypsum board, fiberglass batt insulation, and 10mm drywall.
- **Quick Numbers:**
 - Unit Quantities: Paper Tape 2.6 kg, Screws 3.9 kg, Nuts & Bolts 132.5 L
- **Total Embodied Energy:** 244MJ
- **Life-Cycle Assessment Results:**
 - **Primary Energy Consumption (MJ):**
 - Total Embodied Energy: 6 MJ
 - Total operating energy from baseline: 1 MJ
 - **Global Warming Potential (kg of CO₂ eq.):**
 - Total Embodied Energy: 1.52 kg CO₂ eq.

Athena EIE Material List:

- **Material List:**
 - 12mm Regular Gypsum Board: 224.0 m2
 - Batting, Fiberglass: 285.6 m2 (125mm)
 - Gypsum Board: 200.4 kg
 - Joint Compound: 223.6 kg
 - Nails: 5.2 kg
 - Paper Tape: 2.6 kg
 - Screws Nuts & Bolts: 3.9 kg
 - Water Based Lacquer Paint: 132.5 L

Notes:

- Initial: Total Embodied Energy = \(\sum (\text{Total Embodied Energy} \times \text{Years}) \)
- Trans: Total Embodied Energy for transportation = \(\sum (\text{Transport} \times \text{Years}) \)
- Total: Total Embodied Energy = \(\sum (\text{Total Embodied Energy} \times \text{Years}) \)
- Life-Cycle: Total Embodied Energy from baseline = \(\sum (\text{Total Embodied Energy} \times \text{Years}) \)

Cold-Formed Steel Stud Interior Partition Wall #4 (SS-P4)

Building Component Description:

- **Category:** Interior Partition Walls
- **Assembly Layers:**
 - Inside: 1 layer
 - Outside: 2 layers
- **Brief Description:** Non-load bearing steel stud interior partition wall, 2 inches (50 mm) with gypsum board, fiberglass batt insulation, and 10mm drywall.
- **Quick Numbers:**
 - Unit Quantities: Paper Tape 2.6 kg, Screws 3.9 kg, Nuts & Bolts 132.5 L
- **Total Embodied Energy:** 244MJ
- **Life-Cycle Assessment Results:**
 - **Primary Energy Consumption (MJ):**
 - Total Embodied Energy: 6 MJ
 - Total operating energy from baseline: 1 MJ
 - **Global Warming Potential (kg of CO₂ eq.):**
 - Total Embodied Energy: 1.52 kg CO₂ eq.

Athena EIE Material List:

- **Material List:**
 - 12mm Regular Gypsum Board: 224.0 m2
 - Batting, Fiberglass: 285.6 m2 (125mm)
 - Gypsum Board: 200.4 kg
 - Joint Compound: 223.6 kg
 - Nails: 5.2 kg
 - Paper Tape: 2.6 kg
 - Screws Nuts & Bolts: 3.9 kg
 - Water Based Lacquer Paint: 132.5 L

Notes:

- Initial: Total Embodied Energy = \(\sum (\text{Total Embodied Energy} \times \text{Years}) \)
- Trans: Total Embodied Energy for transportation = \(\sum (\text{Transport} \times \text{Years}) \)
- Total: Total Embodied Energy = \(\sum (\text{Total Embodied Energy} \times \text{Years}) \)
- Life-Cycle: Total Embodied Energy from baseline = \(\sum (\text{Total Embodied Energy} \times \text{Years}) \)
Wood Stud Interior Partition Wall #1 (WS-P1)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Material/Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>False Partition Wall</td>
<td></td>
<td>Non-load bearing wood stud interior partition wall (40mm x 40mm) with gypsum board and latex paint</td>
</tr>
<tr>
<td>Material (lbs)</td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

Quick Numbers:

<table>
<thead>
<tr>
<th>Wall Thickness (in)</th>
<th>Material (lbs)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>50</td>
<td>Non-load bearing wood stud interior partition wall (40mm x 40mm) with gypsum board and latex paint</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Life Cycle (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE (MJ)</th>
<th>Total CO2e eq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>15,904</td>
<td>15,904</td>
<td>0</td>
<td>0</td>
<td>2340</td>
<td>382</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time 'T' (m at the completion of initial construction)
2. Trans = Transportation
3. Total EE (for Total GWP) = Total embodied energy (or total embodied GWP) of building component after lifespan (ie. total manufacturing + total construction + total maintenance + total end-of-life effects)
4. Total EE (for Total GWP per m²) = Total EE (for Total GWP) per wall area of building component that was modeled in ATHENA EIE
5. Difference in Operating Energy (GWP) from Baseline after Lifespan = The difference in the total lifecycle operating energy (GWP) from the baseline retail building after lifespan due to using this building component instead of the baseline component
6. Total Difference in Operating Energy (GWP) from Baseline after Lifespan per m² = Difference in operating energy (GWP) from baseline after lifespan/interior partition wall area of baseline retail building
7. Total operating primary energy use of baseline retail building after 50 years = 50700 kJ/L (743 MJ/m²yr)
8. Total operating primary energy use of baseline retail building after 50 years = 2.31 tonnes of CO2 eq (800 kJ/m²yr)

Wood Stud Interior Partition Wall #2 (WS-P2)

Building Component Description:

<table>
<thead>
<tr>
<th>Category</th>
<th>Material/Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>False Partition Wall</td>
<td></td>
<td>Non-load bearing wood stud interior partition wall (40mm x 40mm) with gypsum board and latex paint</td>
</tr>
<tr>
<td>Material (lbs)</td>
<td></td>
<td>40</td>
</tr>
</tbody>
</table>

Quick Numbers:

<table>
<thead>
<tr>
<th>Wall Thickness (in)</th>
<th>Material (lbs)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>40</td>
<td>Non-load bearing wood stud interior partition wall (40mm x 40mm) with gypsum board and latex paint</td>
</tr>
</tbody>
</table>

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Life Cycle (Years)</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE (MJ)</th>
<th>Total CO2e eq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>15,404</td>
<td>15,404</td>
<td>0</td>
<td>0</td>
<td>382</td>
<td>72</td>
</tr>
</tbody>
</table>

Notes:

1. Initial = Time 'T' (m at the completion of initial construction)
2. Trans = Transportation
3. Total EE (for Total GWP) = Total embodied energy (or total embodied GWP) of building component after lifespan (ie. total manufacturing + total construction + total maintenance + total end-of-life effects)
4. Total EE (for Total GWP per m²) = Total EE (for Total GWP) per wall area of building component that was modeled in ATHENA EIE
5. Difference in Operating Energy (GWP) from Baseline after Lifespan = The difference in the total lifecycle operating energy (GWP) from the baseline retail building after lifespan due to using this building component instead of the baseline component
6. Total Difference in Operating Energy (GWP) from Baseline after Lifespan per m² = Difference in operating energy (GWP) from baseline after lifespan/interior partition wall area of baseline retail building
7. Total operating primary energy use of baseline retail building after 50 years = 50700 kJ/L (743 MJ/m²yr)
8. Total operating primary energy use of baseline retail building after 50 years = 2.31 tonnes of CO2 eq (800 kJ/m²yr)
Building Component Description: Wood Stud Interior Partition Wall #3 (WS-P3)

Category: Interior Partition Walls

Assembly Layers

- Outside: Wall coating / Insulation / Airplane
- Inside: Insulation / Airplane

Brief Description:

Non-load bearing wood stud interior partition wall. (216 in.) with gypsum wallboard, fiberglass batt insulation, and latex paint.

Quick Numbers:

- Materials included: Gypsum wallboard, insulation, paper tape, and exterior coating of latex paint.
- Materials not included: Sheathing, Studs, and Nailers.

Wall Thicknesses:

- 4’x8’

Total Embodied Energy:

- 119 MWh

Total Embodied Water:

- 40 kg of H2O eq

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Initial</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE</th>
<th>Total EE per m²</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
<td>Metal</td>
<td>0.4%</td>
<td>0.1%</td>
<td>0.9%</td>
<td>0.1%</td>
<td>2.1%</td>
<td>0.01%</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes:

-wall = \text{Length} \times \text{Height} = \text{Width} \times 3.7 m = 30.9 m²

Building Component Description: Wood Stud Interior Partition Wall #4 (WS-P4)

Category: Interior Partition Walls

Assembly Layers

- Outside: Wall coating / Insulation / Airplane
- Inside: Insulation / Airplane

Brief Description:

Non-load bearing wood stud interior partition wall. (216 in.) with gypsum wallboard, fiberglass batt insulation, and latex paint.

Quick Numbers:

- Materials included: Gypsum wallboard, insulation, paper tape, and exterior coating of latex paint.
- Materials not included: Sheathing, Studs, and Nailers.

Wall Thicknesses:

- 4’x8’

Total Embodied Energy:

- 116 MWh

Total Embodied Water:

- 65 kg of H2O eq

Life-Cycle Assessment Results:

<table>
<thead>
<tr>
<th>Lifespan (Years)</th>
<th>Initial</th>
<th>Material</th>
<th>Manufacturing</th>
<th>Construction</th>
<th>Maintenance</th>
<th>End of Life</th>
<th>Total EE</th>
<th>Total EE per m²</th>
<th>Difference in Operating Energy from Baseline after Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
<td>Metal</td>
<td>0.4%</td>
<td>0.1%</td>
<td>0.9%</td>
<td>0.1%</td>
<td>2.1%</td>
<td>0.01%</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes:

- Embodied energy and GWP numbers are based on an area of wall = 30.9 m²

Athena EIE Material List (Includes all materials after 50 years)

<table>
<thead>
<tr>
<th>Material List</th>
<th>Quantities</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>13mm Regular Gypsum Board</td>
<td>224.0</td>
<td>m²</td>
</tr>
<tr>
<td>Batt, Fiberglass</td>
<td>289.8</td>
<td>m²</td>
</tr>
<tr>
<td>Joint Compound</td>
<td>223.6</td>
<td>kg</td>
</tr>
<tr>
<td>Nails</td>
<td>12.1</td>
<td>kg</td>
</tr>
<tr>
<td>Paper Tape</td>
<td>2.6</td>
<td>kg</td>
</tr>
<tr>
<td>Biaxial Dimension Slabwood Board</td>
<td>0.9</td>
<td>m³</td>
</tr>
<tr>
<td>Water Based Latex Primer</td>
<td>132.5</td>
<td>L</td>
</tr>
</tbody>
</table>
Appendix C
Life-Cycle Assessment Results for Case Study Buildings

Appendix C contains a breakdown of the LCA results for the five case study buildings. This includes a summary of the various building components for each building, the estimated quantity of each component, and the corresponding life-cycle energy use and GWP.
Case Study #1: Typical Hot-Rolled Steel Structure Retail Building (Baseline Retail Building)

Exterior Infill Wall Enclosure
- **BASE-W 581.0 sq.m**
- Total Embodied Energy of Building Components after 50 Years (MJ) = 535,776

Roof Enclosure (includes Roof Joists, JOIST-1)
- **BASE-R 586.0 sq.m**
- Total Embodied Energy of Building Components after 50 Years (MJ) = 2,728,802

Structural System - 350W Hot-Rolled Steel
- **Beams (Includes BM-1, BM-2, BM-3, GIRT-1)**
 - S-1: 11.8 tonnes
- **Columns (Includes COL-A)**
 - S-1: 3.3 tonnes
- **Hot-Rolled Steel Connection Plates**
 - N/A: 0.3 tonnes
- **Fasteners**
 - N/A: 0.2 tonnes
- **Miscellaneous Hot-Rolled Steel**
 - N/A: 1.2 tonnes

Mezzanine Floor (includes Floor Joists, JOIST-1)
- **FL-3 48.0 sq.m**
- Total Embodied Energy of Building Components after 50 Years (MJ) = 57,882

Windows
- **Curtainwall (Facade)**
 - W-9: 128.0 sq.m
- **Curtainwall (Interior Vestibule)**
 - W-9: 34.5 sq.m
- **Windows**
 - W-1: 20.3 sq.m

Doors
- **Overhead Doors**
 - D-4: 1.0 doors
- **Exterior Doors - Opaque**
 - D-2: 1.0 doors
- **Exterior Doors - Glazing**
 - D-3: 6.0 doors
- **Interior Doors**
 - D-6: 9.0 doors

Interior Partitions
- **Fire Rated Stair Tower**
 - CMU-P1 84.0 sq.m
- **Insulated Interior Stud Wall Partition**
 - SS-P3 75.0 sq.m
- **Uninsulated Interior Stud Wall Partition**
 - SS-P1 52.0 sq.m
- **6mm Tempered Glass**
 - N/A 5.7 sq.m

Foundations
- **Slab-On-Grade**
 - S0G-FDN4 586.0 sq.m
- **Isolated Footings with Concrete Piers**
 - IF-FDN1 15.0 units
- **Strip Footings with Concrete Foundation Wall**
 - SF-FDNS 160.0 m

Total Embodied GWP of Entire Building (tonnes of CO₂ eq.)
- Annual = 5,247

Total Life-Cycle Energy of Typical Hot-Rolled Steel Structure Retail Building after 50 Year Lifespan in Toronto (Case Study #1 a.k.a. Baseline Building)

<table>
<thead>
<tr>
<th>Building Component</th>
<th>Building Component Quantities</th>
<th>Total Embodied Energy of Building Components after 50 Years (MJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior Infill Wall Enclosure</td>
<td>BASE-W 581.0 sq.m</td>
<td>535,776</td>
</tr>
<tr>
<td>Roof Enclosure (includes Roof Joists, JOIST-1)</td>
<td>BASE-R 586.0 sq.m</td>
<td>2,728,802</td>
</tr>
<tr>
<td>Structural System - 350W Hot-Rolled Steel</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Beams (Includes BM-1, BM-2, BM-3, GIRT-1)</td>
<td>S-1: 11.8 tonnes</td>
<td>-</td>
</tr>
<tr>
<td>Columns (Includes COL-A)</td>
<td>S-1: 3.3 tonnes</td>
<td>-</td>
</tr>
<tr>
<td>Hot-Rolled Steel Connection Plates</td>
<td>N/A: 0.3 tonnes</td>
<td>-</td>
</tr>
<tr>
<td>Fasteners</td>
<td>N/A: 0.2 tonnes</td>
<td>-</td>
</tr>
<tr>
<td>Miscellaneous Hot-Rolled Steel</td>
<td>N/A: 1.2 tonnes</td>
<td>-</td>
</tr>
<tr>
<td>Mezzanine Floor (includes Floor Joists, JOIST-1)</td>
<td>FL-3 48.0 sq.m</td>
<td>57,882</td>
</tr>
<tr>
<td>Windows</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Curtainwall (Facade)</td>
<td>W-9: 128.0 sq.m</td>
<td>242,560</td>
</tr>
<tr>
<td>Curtainwall (Interior Vestibule)</td>
<td>W-9: 34.5 sq.m</td>
<td>65,378</td>
</tr>
<tr>
<td>Windows</td>
<td>W-1: 20.3 sq.m</td>
<td>175,737</td>
</tr>
<tr>
<td>Doors</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Overhead Doors</td>
<td>D-4: 1.0 doors</td>
<td>41,677</td>
</tr>
<tr>
<td>Exterior Doors - Opaque</td>
<td>D-2: 1.0 doors</td>
<td>8,335</td>
</tr>
<tr>
<td>Exterior Doors - Glazing</td>
<td>D-3: 6.0 doors</td>
<td>22,836</td>
</tr>
<tr>
<td>Interior Doors</td>
<td>D-6: 9.0 doors</td>
<td>72,882</td>
</tr>
<tr>
<td>Interior Partitions</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fire Rated Stair Tower</td>
<td>CMU-P1 84.0 sq.m</td>
<td>56,815</td>
</tr>
<tr>
<td>Insulated Interior Stud Wall Partition</td>
<td>SS-P3 75.0 sq.m</td>
<td>99,138</td>
</tr>
<tr>
<td>Uninsulated Interior Stud Wall Partition</td>
<td>SS-P1 52.0 sq.m</td>
<td>22,593</td>
</tr>
<tr>
<td>6mm Tempered Glass</td>
<td>N/A 5.7 sq.m</td>
<td>1,132</td>
</tr>
<tr>
<td>Foundations</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Slab-On-Grade</td>
<td>S0G-FDN4 586.0 sq.m</td>
<td>802,448</td>
</tr>
<tr>
<td>Isolated Footings with Concrete Piers</td>
<td>IF-FDN1 15.0 units</td>
<td>200,074</td>
</tr>
<tr>
<td>Strip Footings with Concrete Foundation Wall</td>
<td>SF-FDNS 160.0 m</td>
<td>175,641</td>
</tr>
<tr>
<td>Total Embodied Energy of Entire Building (GJ)</td>
<td>5,247</td>
<td></td>
</tr>
<tr>
<td>Total Operating Energy of Entire Building (GJ Annual)</td>
<td>50,700</td>
<td></td>
</tr>
<tr>
<td>Total Energy of Entire Building (GJ)</td>
<td>55,947</td>
<td></td>
</tr>
</tbody>
</table>

Total Life-Cycle GWP of Typical Hot-Rolled Steel Structure Retail Building after 50 Year Lifespan in Toronto (Case Study #1 a.k.a. Baseline Building)

<table>
<thead>
<tr>
<th>Building Component</th>
<th>Building Component Quantities</th>
<th>Total Embodied GWP of Building Components after 50 Years (kg of CO₂ eq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior Infill Wall Enclosure</td>
<td>BASE-W 581.0 sq.m</td>
<td>28,375</td>
</tr>
<tr>
<td>Roof Enclosure (includes Roof Joists, JOIST-1)</td>
<td>BASE-R 586.0 sq.m</td>
<td>124,234</td>
</tr>
<tr>
<td>Structural System - 350W Hot-Rolled Steel</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Beams (Includes BM-1, BM-2, BM-3, GIRT-1)</td>
<td>S-1: 11.8 tonnes</td>
<td>-</td>
</tr>
<tr>
<td>Columns (Includes COL-A)</td>
<td>S-1: 3.3 tonnes</td>
<td>-</td>
</tr>
<tr>
<td>Hot-Rolled Steel Connection Plates</td>
<td>N/A: 0.3 tonnes</td>
<td>26,872</td>
</tr>
<tr>
<td>Fasteners</td>
<td>N/A: 0.2 tonnes</td>
<td>-</td>
</tr>
<tr>
<td>Miscellaneous Hot-Rolled Steel</td>
<td>N/A: 1.2 tonnes</td>
<td>-</td>
</tr>
<tr>
<td>Mezzanine Floor (includes Floor Joists, JOIST-1)</td>
<td>FL-3 48.0 sq.m</td>
<td>4,120</td>
</tr>
<tr>
<td>Windows</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Curtainwall (Facade)</td>
<td>W-9: 128.0 sq.m</td>
<td>26,752</td>
</tr>
<tr>
<td>Curtainwall (Interior Vestibule)</td>
<td>W-9: 34.5 sq.m</td>
<td>7,211</td>
</tr>
<tr>
<td>Windows</td>
<td>W-1: 20.3 sq.m</td>
<td>10,901</td>
</tr>
<tr>
<td>Doors</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Overhead Doors</td>
<td>D-4: 1.0 doors</td>
<td>1,448</td>
</tr>
<tr>
<td>Exterior Doors - Opaque</td>
<td>D-2: 1.0 doors</td>
<td>290</td>
</tr>
<tr>
<td>Exterior Doors - Glazing</td>
<td>D-3: 6.0 doors</td>
<td>1,788</td>
</tr>
<tr>
<td>Interior Doors</td>
<td>D-6: 9.0 doors</td>
<td>2,493</td>
</tr>
<tr>
<td>Interior Partitions</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fire Rated Stair Tower</td>
<td>CMU-P1 84.0 sq.m</td>
<td>4,919</td>
</tr>
<tr>
<td>Insulated Interior Stud Wall Partition</td>
<td>SS-P3 75.0 sq.m</td>
<td>2,296</td>
</tr>
<tr>
<td>Uninsulated Interior Stud Wall Partition</td>
<td>SS-P1 52.0 sq.m</td>
<td>1,279</td>
</tr>
<tr>
<td>6mm Tempered Glass</td>
<td>N/A 5.7 sq.m</td>
<td>172</td>
</tr>
<tr>
<td>Foundations</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Slab-On-Grade</td>
<td>S0G-FDN4 586.0 sq.m</td>
<td>38,410</td>
</tr>
<tr>
<td>Isolated Footings with Concrete Piers</td>
<td>IF-FDN1 15.0 units</td>
<td>200,074</td>
</tr>
<tr>
<td>Strip Footings with Concrete Foundation Wall</td>
<td>SF-FDNS 160.0 m</td>
<td>15,033</td>
</tr>
<tr>
<td>Total Embodied GWP of Entire Building (tonnes of CO₂ eq.)</td>
<td>322</td>
<td></td>
</tr>
<tr>
<td>Total Operating GWP of Entire Building (tonnes of CO₂ eq.) Annual = 46</td>
<td>2,310</td>
<td></td>
</tr>
<tr>
<td>Total GWP of Entire Building (tonnes of CO₂ eq.)</td>
<td>2,632</td>
<td></td>
</tr>
</tbody>
</table>
Case Study #2: Typical Heavy Timber Structure Retail Building

Exterior Infill Wall Enclosure
- BASE-W: 581.0 sq.m
- **Total Embodied Energy of Building Components after 50 Years (MJ):** 535,776

Roof Enclosure (Includes Roof Joists, JOIST-1)
- BASE-R: 586.0 sq.m
- **Total Embodied Energy of Building Components after 50 Years (MJ):** 2,728,802

Structural System - 24f-E Glulam Timber
- **Total Embodied Energy of Building Components after 50 Years (MJ):** 2,728,802

Beams (Includes BM-1, BM-2, BM-3, GIRT-1)
- S-2: 25.4 cu.m
- **Total Embodied Energy of Building Components after 50 Years (MJ):** 155,972

Columns (Includes COL-A)
- S-2: 8.0 cu.m

Hot-Rolled Steel Connection Plates
- N/A: 0.3 tonnes

Fasteners
- N/A: 0.2 tonnes

Miscellaneous Hot-Rolled Steel
- N/A: 1.2 tonnes

Mezzanine Floor (Includes Floor Joists, JOIST-1)
- FL-3: 48.0 sq.m
- **Total Embodied Energy of Building Components after 50 Years (MJ):** 57,882

Windows
- **Total Embodied Energy of Building Components after 50 Years (MJ):** 242,560

Doors
- **Total Embodied Energy of Building Components after 50 Years (MJ):** 22,836

Interior Partitions
- **Total Embodied Energy of Building Components after 50 Years (MJ):** 76,815

Foundations
- **Total Embodied Energy of Building Components after 50 Years (MJ):** 302,448

Total Life-Cycle Energy of Typical Heavy Timber Structure Retail Building after 50 Year Lifespan in Toronto (Case Study #2)

<table>
<thead>
<tr>
<th>Building Component</th>
<th>ID</th>
<th>Estimated Quantity</th>
<th>Unit</th>
<th>Total Embodied Energy of Building Components after 50 Years (MJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior Infill Wall Enclosure</td>
<td>BASE-W</td>
<td>581.0</td>
<td>sq.m</td>
<td>535,776</td>
</tr>
<tr>
<td>Roof Enclosure (Includes Roof Joists, JOIST-1)</td>
<td>BASE-R</td>
<td>586.0</td>
<td>sq.m</td>
<td>2,728,802</td>
</tr>
<tr>
<td>Structural System - 24f-E Glulam Timber</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,728,802</td>
</tr>
<tr>
<td>Beams (Includes BM-1, BM-2, BM-3, GIRT-1)</td>
<td>S-2</td>
<td>25.4</td>
<td>cu.m</td>
<td>155,972</td>
</tr>
<tr>
<td>Columns (Includes COL-A)</td>
<td>S-2</td>
<td>8.0</td>
<td>cu.m</td>
<td></td>
</tr>
<tr>
<td>Hot-Rolled Steel Connection Plates</td>
<td>N/A</td>
<td>0.3</td>
<td>tonnes</td>
<td></td>
</tr>
<tr>
<td>Fasteners</td>
<td>N/A</td>
<td>0.2</td>
<td>tonnes</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous Hot-Rolled Steel</td>
<td>N/A</td>
<td>1.2</td>
<td>tonnes</td>
<td></td>
</tr>
<tr>
<td>Mezzanine Floor (Includes Floor Joists, JOIST-1)</td>
<td>FL-3</td>
<td>48.0</td>
<td>sq.m</td>
<td>57,882</td>
</tr>
<tr>
<td>Windows</td>
<td>W-9</td>
<td>128.0</td>
<td>sq.m</td>
<td>242,560</td>
</tr>
<tr>
<td>Doors</td>
<td>D-4</td>
<td>1.0</td>
<td>doors</td>
<td>41,677</td>
</tr>
<tr>
<td>Interior Partitions</td>
<td>CMU-P1</td>
<td>84.0</td>
<td>sq.m</td>
<td>76,815</td>
</tr>
<tr>
<td>Foundations</td>
<td>S0G+FDN4</td>
<td>586.0</td>
<td>sq.m</td>
<td>302,448</td>
</tr>
<tr>
<td>Total Embodied Energy of Entire Building (GJ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4,926</td>
</tr>
<tr>
<td>Total Operating Energy of Entire Building (GJ) Annual</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50,700</td>
</tr>
<tr>
<td>Total Energy of Entire Building (GJ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>55,626</td>
</tr>
</tbody>
</table>

Total Life-Cycle GWP of Typical Heavy Timber Structure Retail Building after 50 Year Lifespan in Toronto (Case Study #2)

<table>
<thead>
<tr>
<th>Building Component</th>
<th>ID</th>
<th>Estimated Quantity</th>
<th>Unit</th>
<th>Total Embodied GWP of Building Components after 50 Years (kg of CO₂ eq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior Infill Wall Enclosure</td>
<td>BASE-W</td>
<td>581.0</td>
<td>sq.m</td>
<td>28,375</td>
</tr>
<tr>
<td>Roof Enclosure (Includes Roof Joists, JOIST-1)</td>
<td>BASE-R</td>
<td>586.0</td>
<td>sq.m</td>
<td>124,234</td>
</tr>
<tr>
<td>Structural System - 24f-E Glulam Timber</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7,556</td>
</tr>
<tr>
<td>Beams (Includes BM-1, BM-2, BM-3, GIRT-1)</td>
<td>S-2</td>
<td>25.4</td>
<td>cu.m</td>
<td></td>
</tr>
<tr>
<td>Columns (Includes COL-A)</td>
<td>S-2</td>
<td>8.0</td>
<td>cu.m</td>
<td>7,556</td>
</tr>
<tr>
<td>Hot-Rolled Steel Connection Plates</td>
<td>N/A</td>
<td>0.3</td>
<td>tonnes</td>
<td></td>
</tr>
<tr>
<td>Fasteners</td>
<td>N/A</td>
<td>0.2</td>
<td>tonnes</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous Hot-Rolled Steel</td>
<td>N/A</td>
<td>1.2</td>
<td>tonnes</td>
<td></td>
</tr>
<tr>
<td>Mezzanine Floor (Includes Floor Joists, JOIST-1)</td>
<td>FL-3</td>
<td>48.0</td>
<td>sq.m</td>
<td>4,120</td>
</tr>
<tr>
<td>Windows</td>
<td>W-9</td>
<td>128.0</td>
<td>sq.m</td>
<td>26,752</td>
</tr>
<tr>
<td>Doors</td>
<td>D-4</td>
<td>1.0</td>
<td>doors</td>
<td>1,448</td>
</tr>
<tr>
<td>Interior Partitions</td>
<td>CMU-P1</td>
<td>84.0</td>
<td>sq.m</td>
<td>4,919</td>
</tr>
<tr>
<td>Foundations</td>
<td>S0G+FDN4</td>
<td>586.0</td>
<td>sq.m</td>
<td>302,448</td>
</tr>
<tr>
<td>Total Embodied GWP of Entire Building (GJ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4,926</td>
</tr>
<tr>
<td>Total Operating GWP of Entire Building (GJ) Annual</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,310</td>
</tr>
<tr>
<td>Total GWP of Entire Building (GJ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,613</td>
</tr>
</tbody>
</table>
Case Study #3: Typical Pre-Engineered Steel Retail Building

Total Life-Cycle Energy of Typical Pre-Engineered Steel Retail Building after 50 Year Lifespan in Toronto

<table>
<thead>
<tr>
<th>Building Component</th>
<th>Building Component Quantities</th>
<th>Total Embodied Energy of Building Components after 50 Years (MJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior Infill Wall Enclosure (Includes Girts)</td>
<td>PENG-W2 581.0 sq.m</td>
<td>394,629</td>
</tr>
<tr>
<td>Roof Enclosure (Includes Roof Joists)</td>
<td>PENG-R2 586.0 sq.m</td>
<td>544,654</td>
</tr>
<tr>
<td>Structural System - Pre-Engineered Steel</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Beams and Columns (Hot-Rolled Steel)</td>
<td>N/A 13.1 tonnes</td>
</tr>
<tr>
<td></td>
<td>Fasteners</td>
<td>N/A 0.2 tonnes</td>
</tr>
<tr>
<td></td>
<td>Additional Hot-Rolled Steel (Including Hot-Rolled Steel Connection Plates)</td>
<td>N/A 1.3 tonnes</td>
</tr>
<tr>
<td></td>
<td>Additional Cold-Formed Steel</td>
<td>N/A 1.8 tonnes</td>
</tr>
<tr>
<td></td>
<td>Mezzanine Floor (Includes Floor Joists)</td>
<td>N/A 48.0 sq.m</td>
</tr>
<tr>
<td></td>
<td>Windows</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Curtainwall (Façade)</td>
<td>W-9 128.0 sq.m</td>
</tr>
<tr>
<td></td>
<td>Curtainwall (Interior Vestibule)</td>
<td>W-9 34.5 sq.m</td>
</tr>
<tr>
<td></td>
<td>Windows</td>
<td>W-1 20.3 sq.m</td>
</tr>
<tr>
<td></td>
<td>Doors</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Overhead Doors</td>
<td>D-4 1.0 doors</td>
</tr>
<tr>
<td></td>
<td>Interior Doors - Opaque</td>
<td>D-2 1.0 doors</td>
</tr>
<tr>
<td></td>
<td>Interior Doors - Glazing</td>
<td>D-3 6.0 doors</td>
</tr>
<tr>
<td></td>
<td>Interior Doors</td>
<td>D-6 9.0 doors</td>
</tr>
<tr>
<td></td>
<td>Interior Partitions</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Fire Rated Stair Tower</td>
<td>CMU-P1 84.0 sq.m</td>
</tr>
<tr>
<td></td>
<td>Insulated Interior Stud Wall Partition</td>
<td>SS-P3 75.0 sq.m</td>
</tr>
<tr>
<td></td>
<td>Uninsulated Interior Stud Wall Partition</td>
<td>SS-P1 52.0 sq.m</td>
</tr>
<tr>
<td></td>
<td>6mm Tempered Glass</td>
<td>N/A 5.7 sq.m</td>
</tr>
<tr>
<td></td>
<td>Foundations</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Slab-On-Grade</td>
<td>SOG-FDN4 586.0 sq.m</td>
</tr>
<tr>
<td></td>
<td>Isolated Footings with Concrete Piers</td>
<td>IF-FDN1 15.0 units</td>
</tr>
<tr>
<td></td>
<td>Strip Footings with Concrete Foundation Wall</td>
<td>SF-FDN5 100.0 m</td>
</tr>
<tr>
<td>Total Embodied Energy of Entire Building (GJ)</td>
<td>-</td>
<td>2,927</td>
</tr>
<tr>
<td>Total Operating Energy of Entire Building (GJ) Annual</td>
<td>1,009</td>
<td>50,470</td>
</tr>
<tr>
<td>Total Energy of Entire Building (GJ)</td>
<td>-</td>
<td>53,396</td>
</tr>
</tbody>
</table>

Total Life-Cycle GWP of Typical Pre-Engineered Steel Retail Building after 50 Year Lifespan in Toronto

<table>
<thead>
<tr>
<th>Building Component</th>
<th>Building Component Quantities</th>
<th>Total Embodied GWP of Building Components after 50 Years (kg of CO₂ eq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior Infill Wall Enclosure (Includes Girts)</td>
<td>PENG-W2 581.0 sq.m</td>
<td>18,406</td>
</tr>
<tr>
<td>Roof Enclosure (Includes Roof Joists)</td>
<td>PENG-R2 586.0 sq.m</td>
<td>22,498</td>
</tr>
<tr>
<td>Structural System - Pre-Engineered Steel</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Beams and Columns (Hot-Rolled Steel)</td>
<td>N/A 13.1 tonnes</td>
</tr>
<tr>
<td></td>
<td>Fasteners</td>
<td>N/A 0.2 tonnes</td>
</tr>
<tr>
<td></td>
<td>Additional Hot-Rolled Steel (Including Hot-Rolled Steel Connection Plates)</td>
<td>N/A 1.3 tonnes</td>
</tr>
<tr>
<td></td>
<td>Additional Cold-Formed Steel</td>
<td>N/A 1.8 tonnes</td>
</tr>
<tr>
<td></td>
<td>Mezzanine Floor (Includes Floor Joists)</td>
<td>N/A 48.0 sq.m</td>
</tr>
<tr>
<td></td>
<td>Windows</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Curtainwall (Façade)</td>
<td>W-9 128.0 sq.m</td>
</tr>
<tr>
<td></td>
<td>Curtainwall (Interior Vestibule)</td>
<td>W-9 34.5 sq.m</td>
</tr>
<tr>
<td></td>
<td>Windows</td>
<td>W-1 20.3 sq.m</td>
</tr>
<tr>
<td></td>
<td>Doors</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Overhead Doors</td>
<td>D-4 1.0 doors</td>
</tr>
<tr>
<td></td>
<td>Interior Doors - Opaque</td>
<td>D-2 1.0 doors</td>
</tr>
<tr>
<td></td>
<td>Interior Doors - Glazing</td>
<td>D-3 6.0 doors</td>
</tr>
<tr>
<td></td>
<td>Interior Doors</td>
<td>D-6 9.0 doors</td>
</tr>
<tr>
<td></td>
<td>Interior Partitions</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Fire Rated Stair Tower</td>
<td>CMU-P1 84.0 sq.m</td>
</tr>
<tr>
<td></td>
<td>Insulated Interior Stud Wall Partition</td>
<td>SS-P3 75.0 sq.m</td>
</tr>
<tr>
<td></td>
<td>Uninsulated Interior Stud Wall Partition</td>
<td>SS-P1 52.0 sq.m</td>
</tr>
<tr>
<td></td>
<td>6mm Tempered Glass</td>
<td>N/A 5.7 sq.m</td>
</tr>
<tr>
<td></td>
<td>Foundations</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Slab-On-Grade</td>
<td>SOG-FDN4 586.0 sq.m</td>
</tr>
<tr>
<td></td>
<td>Isolated Footings with Concrete Piers</td>
<td>IF-FDN1 15.0 units</td>
</tr>
<tr>
<td></td>
<td>Strip Footings with Concrete Foundation Wall</td>
<td>SF-FDN5 100.0 m</td>
</tr>
<tr>
<td>Total Embodied GWP of Entire Building (tonnes of CO₂ eq.)</td>
<td>-</td>
<td>208</td>
</tr>
<tr>
<td>Total Operating GWP of Entire Building (tonnes of CO₂ eq.) Annual =</td>
<td>46</td>
<td>2,380</td>
</tr>
<tr>
<td>Total GWP of Entire Building (tonnes of CO₂ eq.)</td>
<td>2,508</td>
<td></td>
</tr>
</tbody>
</table>
Case Study #4: Predominately Steel Retail Building

Total Life-Cycle Energy of Predominately Steel Retail Building after 50 Year Lifespan in Toronto

<table>
<thead>
<tr>
<th>Building Component</th>
<th>Building Component Quantities</th>
<th>Total Embodied Energy of Building Components after 50 Years (MJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior Infill Wall Enclosure</td>
<td>SS-W1 581.0 sq.m</td>
<td>1,525.301</td>
</tr>
<tr>
<td>Roof Enclosure (Includes Roof Joists, JOIST-1)</td>
<td>GWJ1-R5 596.0 sq.m</td>
<td>888.710</td>
</tr>
<tr>
<td>Structural System - 350W Hot-Rolled Steel</td>
<td>B1 11.8 tonnes</td>
<td></td>
</tr>
<tr>
<td>Beams (Includes BM-1, BM-2, BM-3, GIRT-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columns (Includes COL-A)</td>
<td>S-1 3.3 tonnes</td>
<td>476.416</td>
</tr>
<tr>
<td>Hot-Rolled Steel Connection Plates</td>
<td>N/A 0.3 tonnes</td>
<td></td>
</tr>
<tr>
<td>Fasteners</td>
<td>N/A 0.2 tonnes</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous Hot-Rolled Steel</td>
<td>N/A 1.2 tonnes</td>
<td></td>
</tr>
<tr>
<td>Mezzanine Floor (Includes Floor Joists, JOIST-1)</td>
<td>FL-3 48.0 sq.m</td>
<td>57,882</td>
</tr>
<tr>
<td>Windows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curtainwall (Façade)</td>
<td>W-9 128.0 sq.m</td>
<td>242.560</td>
</tr>
<tr>
<td>Curtainwall (Interior Vestibule)</td>
<td>W-7 38.5 sq.m</td>
<td>65,378</td>
</tr>
<tr>
<td>Windows</td>
<td>W-1 20.3 sq.m</td>
<td>175,757</td>
</tr>
<tr>
<td>Doors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhead Doors</td>
<td>D-4 1.0 doors</td>
<td>41,677</td>
</tr>
<tr>
<td>Exterior Doors - Opaque</td>
<td>D-2 1.0 doors</td>
<td>8,335</td>
</tr>
<tr>
<td>Exterior Doors - Glazing</td>
<td>D-3 6.0 doors</td>
<td>22,836</td>
</tr>
<tr>
<td>Interior Doors</td>
<td>D-6 9.0 doors</td>
<td>72,882</td>
</tr>
<tr>
<td>Interior Partitions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire Rated Stair Tower</td>
<td>CM1-U-P1 84.0 sq.m</td>
<td>76,815</td>
</tr>
<tr>
<td>Insulated Interior Stud Wall Partition</td>
<td>SS-P1 75.0 sq.m</td>
<td>39,138</td>
</tr>
<tr>
<td>Uninsulated Interior Stud Wall Partition</td>
<td>SS-P1 52.0 sq.m</td>
<td>22,593</td>
</tr>
<tr>
<td>Semi-Tempered Glass</td>
<td>N/A 5.7 sq.m</td>
<td>1,132</td>
</tr>
<tr>
<td>Foundations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slab-On-Grade</td>
<td>S0G-FDN4 586.0 sq.m</td>
<td>302,448</td>
</tr>
<tr>
<td>Isolated Footings with Concrete Piers</td>
<td>IF-FDN1 15.0 units</td>
<td>203,874</td>
</tr>
<tr>
<td>Strip Footings with Concrete Foundation Wall</td>
<td>SF-FDN5 160.0 m</td>
<td>175,641</td>
</tr>
<tr>
<td>Total Embodied Energy of Entire Building (GJ)</td>
<td></td>
<td>4,396</td>
</tr>
<tr>
<td>Total Operating Energy of Entire Building (GJ)</td>
<td></td>
<td>51,981</td>
</tr>
<tr>
<td>Total Energy of Entire Building (GJ)</td>
<td></td>
<td>56,377</td>
</tr>
</tbody>
</table>

Total Life-Cycle GWP of Predominately Steel Retail Building after 50 Year Lifespan in Toronto

<table>
<thead>
<tr>
<th>Building Component</th>
<th>Building Component Quantities</th>
<th>Total Embodied GWP of Building Components after 50 Years (kg of CO₂ eq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior Infill Wall Enclosure</td>
<td>SS-W1 581.0 sq.m</td>
<td>90,679</td>
</tr>
<tr>
<td>Roof Enclosure (Includes Roof Joists, JOIST-1)</td>
<td>GWJ1-R5 596.0 sq.m</td>
<td>46,236</td>
</tr>
<tr>
<td>Structural System - 350W Hot-Rolled Steel</td>
<td>B1 11.8 tonnes</td>
<td></td>
</tr>
<tr>
<td>Beams (Includes BM-1, BM-2, BM-3, GIRT-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columns (Includes COL-A)</td>
<td>S-1 3.3 tonnes</td>
<td>26,872</td>
</tr>
<tr>
<td>Hot-Rolled Steel Connection Plates</td>
<td>N/A 0.3 tonnes</td>
<td></td>
</tr>
<tr>
<td>Fasteners</td>
<td>N/A 0.2 tonnes</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous Hot-Rolled Steel</td>
<td>N/A 1.2 tonnes</td>
<td></td>
</tr>
<tr>
<td>Mezzanine Floor (Includes Floor Joists, JOIST-1)</td>
<td>FL-3 48.0 sq.m</td>
<td>4,130</td>
</tr>
<tr>
<td>Windows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curtainwall (Façade)</td>
<td>W-9 128.0 sq.m</td>
<td>26,752</td>
</tr>
<tr>
<td>Curtainwall (Interior Vestibule)</td>
<td>W-7 38.5 sq.m</td>
<td>7,211</td>
</tr>
<tr>
<td>Windows</td>
<td>W-1 20.3 sq.m</td>
<td>10,901</td>
</tr>
<tr>
<td>Doors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhead Doors</td>
<td>D-4 1.0 doors</td>
<td>1,448</td>
</tr>
<tr>
<td>Exterior Doors - Opaque</td>
<td>D-2 1.0 doors</td>
<td>2,493</td>
</tr>
<tr>
<td>Exterior Doors - Glazing</td>
<td>D-3 6.0 doors</td>
<td>1,788</td>
</tr>
<tr>
<td>Interior Doors</td>
<td>D-6 9.0 doors</td>
<td></td>
</tr>
<tr>
<td>Interior Partitions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire Rated Stair Tower</td>
<td>CM1-U-P1 84.0 sq.m</td>
<td>4,919</td>
</tr>
<tr>
<td>Insulated Interior Stud Wall Partition</td>
<td>SS-P1 75.0 sq.m</td>
<td>2,396</td>
</tr>
<tr>
<td>Uninsulated Interior Stud Wall Partition</td>
<td>SS-P1 52.0 sq.m</td>
<td>1,279</td>
</tr>
<tr>
<td>Semi-Tempered Glass</td>
<td>N/A 5.7 sq.m</td>
<td>172</td>
</tr>
<tr>
<td>Foundations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slab-On-Grade</td>
<td>S0G-FDN4 586.0 sq.m</td>
<td>302,448</td>
</tr>
<tr>
<td>Isolated Footings with Concrete Piers</td>
<td>IF-FDN1 15.0 units</td>
<td>203,874</td>
</tr>
<tr>
<td>Strip Footings with Concrete Foundation Wall</td>
<td>SF-FDN5 160.0 m</td>
<td>175,641</td>
</tr>
<tr>
<td>Total Embodied GWP of Entire Building (tonnes of CO₂ eq.)</td>
<td></td>
<td>306</td>
</tr>
<tr>
<td>Total Operating GWP of Entire Building (tonnes of CO₂ eq.)</td>
<td></td>
<td>2,381</td>
</tr>
<tr>
<td>Total GWP of Entire Building (tonnes of CO₂ eq.)</td>
<td></td>
<td>2,687</td>
</tr>
</tbody>
</table>
Case Study #5: Predominately Timber Retail Building

Total Life-Cycle Energy of Predominately Timber Retail Building after 50 Year Lifespan in Toronto

(Case Study #5)

<table>
<thead>
<tr>
<th>Building Component</th>
<th>Building Component Quantities</th>
<th>Total Embodied Energy of Building Components after 50 Years (MJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior Infill Wall Enclosure</td>
<td>WS-W4 581.0 sq.m</td>
<td>400,119</td>
</tr>
<tr>
<td>Roof Enclosure (includes Roof Joists, JOIST-1)</td>
<td>GLU-R2 586.0 sq.m</td>
<td>2,560,210</td>
</tr>
<tr>
<td>Structural System - 24f-E Glulam Timber</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Beams (Includes BM-1, BM-2, BM-3, GIRT-1)</td>
<td>S-2 25.4 cu.m</td>
<td>155,972</td>
</tr>
<tr>
<td>Columns (Includes COL-A)</td>
<td>S-2 8.0 cu.m</td>
<td>-</td>
</tr>
<tr>
<td>Hot-Rolled Steel Connection Plates</td>
<td>N/A 0.3 tonnes</td>
<td>-</td>
</tr>
<tr>
<td>Fasteners</td>
<td>N/A 0.2 tonnes</td>
<td>-</td>
</tr>
<tr>
<td>Miscellaneous Hot-Rolled Steel</td>
<td>N/A 1.2 tonnes</td>
<td>31,527</td>
</tr>
<tr>
<td>Mezzanine Floor (includes Floor Joists, JOIST-1)</td>
<td>FL-2 48.0 sq.m</td>
<td>31,527</td>
</tr>
<tr>
<td>Windows</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Curtainwall (Façade)</td>
<td>W-9 128.0 sq.m</td>
<td>242,560</td>
</tr>
<tr>
<td>Curtainwall (Interior Vestibule)</td>
<td>W-9 34.5 sq.m</td>
<td>82,378</td>
</tr>
<tr>
<td>Windows</td>
<td>W-4 20.3 sq.m</td>
<td>82,905</td>
</tr>
<tr>
<td>Doors</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Overhead Doors</td>
<td>D-4 1.0 doors</td>
<td>121,677</td>
</tr>
<tr>
<td>Exterior Doors - Opaque</td>
<td>D-1 1.0 doors</td>
<td>16</td>
</tr>
<tr>
<td>Interior Doors - Glazing</td>
<td>D-3 0.6 doors</td>
<td>22,836</td>
</tr>
<tr>
<td>Interior Doors</td>
<td>D-5 9.0 doors</td>
<td>4,851</td>
</tr>
<tr>
<td>Interior Partitions</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fire Rated Stair Tower</td>
<td>CMU-P1 84.0 sq.m</td>
<td>56,813</td>
</tr>
<tr>
<td>Insulated Interior Stud Wall Partition</td>
<td>WS-P3 75.0 sq.m</td>
<td>52,143</td>
</tr>
<tr>
<td>Uninsulated Interior Stud Wall Partition</td>
<td>WS-P1 52.0 sq.m</td>
<td>17,666</td>
</tr>
<tr>
<td>6mm Tempered Glass</td>
<td>N/A 5.7 sq.m</td>
<td>1,132</td>
</tr>
<tr>
<td>Foundations</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Slab-On-Grade</td>
<td>S0G-FDN4 586.0 sq.m</td>
<td>39,348</td>
</tr>
<tr>
<td>Isolated Footings with Concrete Piers</td>
<td>BF-FDN1 15.0 units</td>
<td>200,674</td>
</tr>
<tr>
<td>Strip Footings with Concrete Foundation Wall</td>
<td>SF-FDN5 160.0 m</td>
<td>175,641</td>
</tr>
<tr>
<td>Total Embodied Energy of Entire Building (GJ)</td>
<td></td>
<td>4,425</td>
</tr>
<tr>
<td>Total Operating Energy of Entire Building (GJ) Annual</td>
<td></td>
<td>50,822</td>
</tr>
<tr>
<td>Total Energy of Entire Building (GJ)</td>
<td></td>
<td>55,247</td>
</tr>
</tbody>
</table>

Total Life-Cycle GWP of Predominately Timber Retail Building after 50 Year Lifespan in Toronto

(Case Study #5)

<table>
<thead>
<tr>
<th>Building Component</th>
<th>Building Component Quantities</th>
<th>Total Embodied GWP of Building Components after 50 Years (kg of CO2 eq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior Infill Wall Enclosure</td>
<td>WS-W4 581.0 sq.m</td>
<td>15,202</td>
</tr>
<tr>
<td>Roof Enclosure (includes Roof Joists, JOIST-1)</td>
<td>GLU-R2 586.0 sq.m</td>
<td>109,056</td>
</tr>
<tr>
<td>Structural System - 24f-E Glulam Timber</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Beams (Includes BM-1, BM-2, BM-3, GIRT-1)</td>
<td>S-2 25.4 cu.m</td>
<td>7,556</td>
</tr>
<tr>
<td>Columns (Includes COL-A)</td>
<td>S-2 8.0 cu.m</td>
<td>-</td>
</tr>
<tr>
<td>Hot-Rolled Steel Connection Plates</td>
<td>N/A 0.3 tonnes</td>
<td>-</td>
</tr>
<tr>
<td>Fasteners</td>
<td>N/A 0.2 tonnes</td>
<td>-</td>
</tr>
<tr>
<td>Miscellaneous Hot-Rolled Steel</td>
<td>N/A 1.2 tonnes</td>
<td>-</td>
</tr>
<tr>
<td>Mezzanine Floor (includes Floor Joists, JOIST-1)</td>
<td>FL-2 48.0 sq.m</td>
<td>1,633</td>
</tr>
<tr>
<td>Windows</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Curtainwall (Façade)</td>
<td>W-9 128.0 sq.m</td>
<td>26,752</td>
</tr>
<tr>
<td>Curtainwall (Interior Vestibule)</td>
<td>W-9 34.5 sq.m</td>
<td>7,211</td>
</tr>
<tr>
<td>Windows</td>
<td>W-4 20.3 sq.m</td>
<td>7,024</td>
</tr>
<tr>
<td>Doors</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Overhead Doors</td>
<td>D-4 1.0 doors</td>
<td>1,448</td>
</tr>
<tr>
<td>Exterior Doors - Opaque</td>
<td>D-1 1.0 doors</td>
<td>16</td>
</tr>
<tr>
<td>Interior Doors - Glazing</td>
<td>D-3 0.6 doors</td>
<td>1,788</td>
</tr>
<tr>
<td>Interior Doors</td>
<td>D-5 9.0 doors</td>
<td>144</td>
</tr>
<tr>
<td>Interior Partitions</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fire Rated Stair Tower</td>
<td>CMU-P1 84.0 sq.m</td>
<td>4,919</td>
</tr>
<tr>
<td>Insulated Interior Stud Wall Partition</td>
<td>WS-P3 75.0 sq.m</td>
<td>1,522</td>
</tr>
<tr>
<td>Uninsulated Interior Stud Wall Partition</td>
<td>WS-P1 52.0 sq.m</td>
<td>763</td>
</tr>
<tr>
<td>6mm Tempered Glass</td>
<td>N/A 5.7 sq.m</td>
<td>172</td>
</tr>
<tr>
<td>Foundations</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Slab-On-Grade</td>
<td>S0G-FDN4 586.0 sq.m</td>
<td>38,448</td>
</tr>
<tr>
<td>Isolated Footings with Concrete Piers</td>
<td>BF-FDN1 15.0 units</td>
<td>200,674</td>
</tr>
<tr>
<td>Strip Footings with Concrete Foundation Wall</td>
<td>SF-FDN5 160.0 m</td>
<td>175,641</td>
</tr>
<tr>
<td>Total Embodied GWP of Entire Building (tonnes of CO2 eq.)</td>
<td></td>
<td>264</td>
</tr>
<tr>
<td>Total Operating GWP of Entire Building (tonnes of CO2 eq.) Annual</td>
<td></td>
<td>2,319</td>
</tr>
<tr>
<td>Total GWP of Entire Building (tonnes of CO2 eq.)</td>
<td></td>
<td>2,583</td>
</tr>
</tbody>
</table>