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ABSTRACT 

Tailor welded blanks (TWBs) are used in the automotive industries as a method to meet economic, 

environmental and governmental demands. TWBs are welded blanks that consist of dissimilar material, 

thicknesses, shapes and/or coating prior to stamping it into the desired three dimensional shapes. The 

advantages of using TWBs include weight reduction, cost reduction, parts reductions while maintaining 

structural integrity and crash performance. The disadvantage of employing TWBs is the inhomogeneity 

of the blanks due to the material and weldment, which can affect the formability of the TWBs. 

Conventionally, TWBs incorporated mild and low strength steels such as interstitial free and draw 

quality steels because of their excellent formability traits. However, due to their low strength they are 

unsuitable for energy absorption applications; thus, the interest of incorporating advanced high strength 

steels (AHSS) into the TWBs. Dual phase (DP) steel is a type of AHSS that is of interest because of its 

combination of high strength and good formability that is comparable to high strength low alloy 

(HSLA) steels. However, welding DP steel causes softening in the heat affected zone (HAZ), which 

leads to premature failure and reduces formability.  

 The aim of this thesis was to study the effect of weld design on the formability of TWBs with 

DP steels (DP600 and DP980 steels) and with HSLA steel. This thesis is divided into three parts; the 

first part examines TWBs with different weld line positions, weld line orientations and strain paths. 

The second part investigates bead-on plate curvilinear blanks and its effect on formability of the 

blanks. The last part examines the effects of multiple welds on the formability of TWBs. Weld 

positions, orientations and strain path were studied. The formability could be optimized by placing the 

weld line away from major strain concentration regions and orientated normal to the major strain 

direction. The formability of curvilinear weld blanks were not studied extensively as the applications 

are limited at present; however, with better understanding the incorporation of curvilinear welds in 

TWBs would increase. The formability of multiple-weld TWBs are of interest because the demand for 

multiple welds applications is increasing. 

 In the first part of this thesis, it was found that formability was affected by the difference in 

material properties and weld positions. In the similar material properties combination, formability 

increased when the weld was placed furthest from the pole. In contrast, with a large material properties 

difference the formability did not improve. In addition, weld orientation played a dominant role when 

the material properties difference was large.  

 In the second part of this thesis, the formabilities of curvilinear welded HSLA and DP980 

steels were similar to that of the linear welded blank. DP600 steel was the only steel where weld 
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geometry had an effect on formability. Moreover, weld position changed the formability of the welded 

blanks which was reflected in the limiting dome heights and the strain distribution profiles.  

 In the last part of this thesis, the formability of multiple-weld TWBs was better (if not 

comparable) to that the single weld TWBs. The large difference in material properties resulted in 

similar formability of the multiple welds TWBs; whereas, in TWBs with similar material properties a 

change in the formability was noted.  
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CHAPTER 1 

1 INTRODUCTION 

Economic concerns and government regulations are forcing the automotive industries to push the limits 

in the design of their vehicles for weight reduction and cost reduction; while maintaining/improving 

structural integrity and crash performance. Now with raising environmental concerns on automotive 

emissions and the scarcity of natural resources (gas, oil and fossil fuels), the need to reduce vehicle 

weight to improve fuel economy is greater than ever. As a result, the automotive industries are 

employing tailor welded blanks (TWBs). In addition, steel makers are developing lighter and stronger 

steels, such as dual phase (DP) steel that have the same formability potential as conventional 

automotive steels such as interstitial-free (IF), drawing quality (DQ) and high-strength low-alloy 

(HSLA) steel for incorporation into the TWB designs. DP steel is a type of steel being investigated in 

TWB applications to reduce vehicle weight while maintaining structural integrity and crash 

performance. 

 

1.1 Tailor-Welded Blanks 

TWBs are blanks that consist of two or more sheet pieces differing in materials, thickness, coating, 

and/or material properties that are welded together before forming into the required part. Adjusting or 

tailoring the blank allows for the use of different materials and composites for various parts of the same 

component thereby reducing body-in-white weight while providing extra reinforcements where locally 

required. Moreover, the structural integrity is maintained without changing the forming dies. The 

advantages of using TWBs are numerous, they ensure that the components are light, stronger, and 

provide required functionality at lower cost than parts made from monolithic pressed sheets [1], as well 

as improving structural integrity, safety and corrosion resistance in specific areas; and they allow 

greater flexibility in materials selection. The part integration possible with TWB reduces the number of 

parts and assembly time required per vehicle. However, the disadvantages of TWB are related to the 

heterogeneous nature of the blank (due to the weld and dissimilar materials used), where the 

thinner/weaker material may deform preferentially and tear prematurely in stamping, which also results 

in weld line movement [2]. 

In terms of applications, TWBs were first used to overcome design challenges with the 

available material, such as the floor plate of the Audi 100 [1]. The floor plate of the Audi design 

specification was greater than the width of the steel supplied and thus, two sheets of steels were welded 
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together to create the TWB. Other applications of TWBs have been in structural members where 

different thicknesses of steels were welded together such as for centre pillars as commonly used in 

North America [3]. Currently most chassis/body structural members are being made as TWBs.  

Figure 1.1 shows examples where TWBs can be found in a vehicle [3]. These TWBs consist of 

different grades and/or thicknesses of steel welded together to form optimized blanks that take 

advantage of the localized materials properties. For example, a) using thicker material near the engine 

fire wall and hinge area improves the crash performance, and b) using thinner material near the rear to 

reduce weight [4]; thereby, reducing the overall weight of the vehicle. Therefore, it is expected that the 

number of TWBs in automotive parts manufacturing will increase with the improvement in welding 

technology and development of newer light materials available. 

From 1998 to 2009, roughly 552 million passenger cars were produced worldwide [5]. It was 

estimated in 1997 that each vehicle contained on average three to five TWBs [6] that would result in 

approximately 2-3 billion TWBs used. It is expected that more TWBs will be in use with the increasing 

and pressing demand for better fuel economy and environmental performance.  

 

Figure 1.1 Examples of tailored blanks in an automobile [3] 
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Figure 1.2 Types of materials and the strength required for body-in-white parts [7] 

 

Figure 1.2 shows a pie chart of the materials used in the body-in-white (BIW). As can be seen in 

this chart 94% of the BIW is composed of steels and the other 6% is made up of aluminum and others 

such as thermoplastics and magnesium. Although, the application of aluminum and magnesium offer 

additional weight reduction in TWBs for the BIW, there are many obstacles that make these materials 

difficult to incorporate. The main issues are welding aluminum and magnesium to themselves and 

other materials. The high reflectivity of aluminum makes laser welding difficult and the weld in an 

aluminum TWB is not significantly stronger than the base metal as it can be with steel TWBs [8]; 

besides, the heat generated from welding tends to anneal the material of the weld and the heat affected 

zone (HAZ), which affects the performance of the TWB [9,10]. Consequently, the formability of 

aluminum TWBs may be limited by the inherent weld ductility. Further heat-treatment to manipulate 

local properties is possible; however, this method is not economically feasible for automotive 

applications [2,8]. In comparison, magnesium alloys are very light in weight, but pose different 

challenges. The challenges of magnesium include, low strength and generally poor ductility, low 

melting point compared to steel which makes them unsuitable for high temperature applications. 

Welding magnesium alloys is problematic because molten magnesium is highly reactive in air if not 

properly shielded [11]. Finally, applying magnesium may not be economically feasible in some cases 

because the cost of magnesium can reach up to six times that of steel [12]. Thus, steel is still 

predominating in the automotive industries.  
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1.1.1 Welding 

Some welding methods used to create TWBs include laser, electron beam, mash seam welding 

(resistance welding) and friction stir welding. The most popular welding methods for TWBs are laser 

welding and mash seam welding because the low heat input applied by these methods does not cause 

too much thermal distortion. Laser welding is favourable in North America for TWB manufacturing 

because it can meet the increasingly “[tight] standards for weld quality, manufacturing flexibility and 

[offer] higher productivity [6].”  Conversely, mash welding is favourable to European automakers and 

about 60% of the tailored blanks in Europe are created with this welding method. The differences 

between laser welding and mash welding are as follows: 

1. Laser welding is a fusion-welding process, which joins the materials by localized melting 

by using a laser beam. The fusion zone (FZ) and heat-affected zone (HAZ) are narrow due 

to low heat input; and  

2. Mash welding is a fusion-welding process that bonds two pieces of overlapping materials 

together through diffusion when passing through rollers under a high load.  

In the laser welding process, a molten pool is created through the absorption of the incident 

radiation as the laser beam travels along the interface of the components. Upon cooling, the liquid melt 

pool solidifies and the components are joined leaving behind a FZ and a HAZ. The resultant FZ and 

HAZ have different microstructure from the base metal and material properties. For example, the final 

microstructures in the FZ depend on the heat input and cooling rate. Figure 1.3 shows a continuous-

cooling transformation diagram for weld metal of low carbon steel [10].  

 

Figure 1.3 Continuous-cooling transformation diagram for weld metal of low-carbon steel [10] 



 

5 

 

From this figure, it can be seen that as the FZ cools the microstructure can contain a 

combination of grain boundary ferrite, side-plate ferrite, accicular ferrite, bainite and martensite. In 

addition, the microstructure changes depending on factors such as the alloying additions and grain size 

of the steel. Figure 1.4 shows the effect of adding alloying elements and increasing grain size on the 

continuous-cooling transformation diagram for low-carbon steel [10]. 

 

Figure 1.4 Effect of alloying element, grain size an, and oxygen on the CCT diagrams for weld metal of 

low-carbon steel [10] 

 

HAZ is the region adjacent to the FZ where it is exposed to temperature high enough to induce 

microstructure and material properties change, but not high enough to cause melting. The metals most 

affected by the presence of the HAZ are cold-worked materials, as there is enough heat in this region to 

cause recrystallization and/or grain growth. The change in the microstructure and material properties 

can be better understood through thermal cycles. Figure 1.5 shows an example of thermal cycles and 

the change of grain size in the HAZ [10].  
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Figure 1.5 Grain growth in HAZ: a) phase diagram, b) thermal cycles, and c) grain size variations [10] 

 

The peak temperature (well above the recrystallization temperature, Tx) closest to the fusion 

bound is the highest and the material in this area stays at this high temperature the longest. At a high 

temperature and with sufficient time, the grain grows. Moving away from the fusion boundary, the 

peak temperature decreases resulting in small grains. As a result, the HAZ can be made up of different 

regions, i.e. partial grain-refining (mix of coarse and fine grains), grain-refining (fine grains) and grain-

coarsening regions (large grains) shown in Figure 1.6. Each region experiences different peak 

temperatures and has different microstructures as well as grain size. From this figure it is clear that 

welding causes inhomogeneity across the welded specimen.  
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Figure 1.6 HAZ microstructure of a gas-tungsten arc weld of 1018 steel (magnification 200x) [10] 

 

1.2 Advanced High Strength Steels  

Various grades of steels are available for manufacturing stamped automotive components, and most of 

them have been incorporated into TWBs. Typical automotive grade steels include deep drawing steels 

(interstitial-free – IF, drawing-quality – DQ, extra-deep-draw – EDD), conventional high strength steel 

(high strength low alloy – HSLA) and the newer types of advanced high strength steels: AHSS, (dual 

phase, transformation-induced plasticity, complex phase and martensitic steels).  

 Deep drawing steels such as EDD, DQ and IF steels are used in TWB for complex stamping 

because of their very high formability i.e. stretchability and drawability [13]. The formability of these 
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steels is well understood [13,14,15,16].  However, these steels have low strength, which makes them 

poor for high local stress or high energy absorbing applications such as near the engine. On the other 

hand, high strength steel (HSS) have higher strength, but the ductility is sacrificed, where ductility is an 

indicator of formability. The use of HSLA in TWB is also significant because welding HSLA does not 

significantly change the forming behaviour of the TWB [17], high yield strength combined with 

reasonable ductility makes such TWBs good for forming operations. The formability of HSLA is also 

widely studied [2,18,19]. Figure 1.7 shows the relationship between strength and elongation for the 

conventional HSS and AHSS [20]. As seen in this figure, the low strength steels have excellent 

formability; however, they may not provide the structural integrity needed for similar thickness of 

HSS. In contrast, conventional HSS have a larger range of strength although as the strength increases 

the formability decreases, so they are suitable for applications where more strength is required. Notable 

in Figure 1.7 is the AHSS, especially lower strength DP steel which have similar formability as HSLA 

but the strength is much higher. 

 

 Figure 1.7 Tensile strength-total elongation relationship for low strength, conventional HSS, and 

Advanced HSS steels [20] 

 

The main difference between conventional HSLA and AHSS lies in the microstructure. HSLA is a 

single-phase ferritic steel reinforced with second phase precipitates and strengthened by grain size 

reduction; while AHSS consists of more than one phase i.e. martensite, bainite, ferrite and retained 

austenite [20]. For example, dual phase steel (an AHSS), is made up of a soft ferritic phase reinforced 

with hard martensite islands. The martensite islands are produced by an intercritical annealing step 

followed by rapid quenching in the manufacturing process. It is during the quenching step that the 

austenite is transformed into martensite while the existing ferrite remains. As a result, the DP steels 
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have a good combination of ductility (offered by the continuous soft ferrite matrix) and high strength 

(depending on the volume fraction of martensite). The ductility of the DP steel makes it good for 

forming, while the strength is required to maintain structural integrity and improve crash performance. 

This uniqueness in DP steel lies in its material flow properties, DP steels tend to have relatively high 

work-hardening coefficients (n-values), K-values and R-values. Therefore, based on these properties, 

forming complex shapes with these high strength steel is possible [21].  

Some applications where AHSS are used are the door outer, body structure, chassis frame 

applications, safety cage components, bumpers, and door beams [22]. Figure 1.8 shows the breakdown 

of the type of steels used in the TWBs for a vehicle [23]. 

 

Figure 1.8 Materials breakdown in TWBs for a vehicle [23] 
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As seen in Figure 1.8, the majority of the TWB uses AHSS in areas where strength is required for 

energy-absorbing parts [21], while parts where formability is required use HSS and low strength steel. 

The use of AHSS, especially the lower tensile strength steels is advantageous to automotive 

manufacturers because for the same tensile strength DP, TRIP and complex steels give higher total 

elongation than the conventional HSLA. Thus, AHSS especially DP steel have the potential to replace 

HSLA in TWBs due to its high strength and comparable formability.  

 

1.3 Formability 

The formability of sheet metal is dependent on many factor such as its properties, microstructure, 

thickness and external factors. To understand formability of sheet metal is essential to define 

formability. Formability is loosely defined as a sheet metals ability to be mechanically shaped by 

plastic deformation without machining [24]. Sheet metal forming occurs when a sheet is clamped 

around the edge of a die and a punch forces the sheet (form) through a cavity where the sheet is 

stretched to conform to the shape of the tools [25]. To measure the formability of a metal, standardized 

sheet forming processes are used. There are many types of sheet metal forming processes used to 

measure formability, two well used forming operations are (1) stretch forming e.g. hemispherical 

punch test, and (2) deep-drawing.  

The hemispherical punch test is a type of limiting dome height (LDH) stretch testing equipment that 

has a high degree of reproducibility when compared to other stretch forming tests, such as the Ohio 

State University test and the Swift round bottom test. In this test, draw-beads are used to hold the steel 

sheet firmly in place to prevent drawing in during forming process. The resulting form of the sheet 

metal is a rounded dome shape. There are also many studies [26,27,28,29] done using this test to 

determine the formability of metal. On the other hand, deep drawing is an operation that forms the 

metal by forcing the punch against the sheet metal over a die edge and into the cavity. The resulting 

part looks like a cup and this test is used typically for forming cups, shells, short tubes, automobile 

bodies, and gas tanks [30] with a flat plane on the bottom.  
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1.3.1 Analytical Methods Of Quantifying Formability 

As there are different methods of characterizing formability, there are different methods of analyzing 

formability. The three most common methods are:  

(1) The height of the deformed specimen in the dome test 

(2) The strain distribution across the deformed blank (forming behaviour)  

(3) The forming limit diagram (FLD) based on the strains measured 

These methods require the sheet metal to be deformed until necking occurs or when the metal reaches 

their forming limit. All materials have a forming limit, which is the maximum uniform strain adjacent 

to a localized neck or tear in a deformed specimen [31]. When the metal reaches its forming limit the 

test is stopped to allow for measuring of the dome height, strains across the deformed blank to be used 

in the strain profiles and the FLD. The following sections discuss in further details of each of the 

common formability measurements. 

 

1.3.1.1 Limiting Height Of The Deformed Specimen 

The first method of determining formability is finding the maximum height of the dome formed in a 

specimen in the hemispherical punch LDH test. Under simulative tests, the test is stopped when 

localized necking or fracture occurs and the resulting height is referred to as the limiting height. This 

limiting height is a measure of the maximum deformation the material experiences before failure and is 

often referred to as the forming limit and is used as a quantitative indicator of formability. In addition, 

the load required to obtain the LDH can be used as an additional definition of the limit of formability 

as it helps to indicate where plastic instability occurs [24]. Figure 1.9 shows a deformed sheet specimen 

that has been subjected to the limiting dome height test. 
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Figure 1.9 Deformed welded steel specimen under the limiting dome height test  

 

1.3.1.2 Strain Distribution 

The second method of analyzing formability or forming behaviour of the materials after deformation is 

the strain distribution, which can be used to generate a plot of the major and minor principal strain. 

Typically, true strains are used to plot the strain distributions because true strains are equivalent in 

tension and compression, except for the sign; true strains are additive; and due to the volume 

constancy, the combined normal strains are zero for the plastic portion of the total strain [32]. 

Figure 1.10 shows an example of a strain distribution profile of a bent sample [33]. As shown in this 

figure, as the bend radius reduces, the strain profile sharpens. The strain distribution is obtained after 

the simulative test on the gridded material is stopped at localized necking i.e. when the forming limit of 

the material is reached.  

Also, the strain distribution profile illustrates the forming behaviour of the metal across the 

sheet material, high strain concentration areas (vulnerable regions where necking occurs), the amount 

of formability (area under the major strain curve) and the modes of stretching. The modes of stretching 

can be determined from the strain profiles by examining the major and minor strain curves and are 

categorized in the Table 1-1. The strain distribution profile may be used in TWB design is to determine 

areas prone to failure. 
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Figure 1.10 Strain distribution profile [33] 

 

Table 1-1Modes of stretch forming determined by the strain distribution profile 

 

 

1.3.1.3 Forming Limit Diagram 

The third method of analyzing formability is the forming limit diagram (FLD), also known as the 

Keeler-Goodwin diagram shown in Figure 1.11, which can be used determine critical areas of strain. 

Generally, the forming limit curve (FLC) of the material is plotted in the FLD, which refers to the 

forming limit of the specific material under a full range of strain states. A higher FLC (higher forming 

limit for a range of strain states) of the sheet metal results in better formability. FLC shape depends on 

the material properties (n-value, anisotropy), sheet thickness and size and the strain path and strain 

gradients [31].  

 Major strain Minor strain 

Biaxial stretch forming Positive Positive (close to major strain value) 

Plane strain stretch forming Positive Zero 

Tensile-compression stretch forming Positive Negative (compression) 
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The use of the FLD in formability analysis is to diagnose problems by comparing the failure-

prone areas to the FLD. This approach is used to determine the severity of the potential problems due 

to factors such as lubrication, tooling, material properties and thickness. In addition, the nature of the 

problem can be assessed i.e. where the forming is performed under specific modes of stretching. For 

example, under dry conditions, a square blank will stretch under close to plane strain conditions where 

the forming limit of the metal is the lowest; however, with the use of lubrication the mode of stretching 

or strain path can be made more biaxial where there is more formability, as can be seen in Figure 1.11 . 

The FLD shows that the strain path and the strain at localized necking are a function of the 

minor strain [33]. Some points of interest in an FLD are the modes of stretching; the right side of the 

FLD involves strains in both the major and minor direction in tension; while in the left side the minor 

strain is negative, similar to the uniaxial tensile condition; finally, the lowest point in the FLC occurs 

under plane strain stretching condition where the major strain is the lowest and the minor strain 

remains unchanged at zero. Figure 1.11 shows the strain path during punch stretching and the effect of 

applying lubrication and changing the blank width. Decreasing the blank width (so that the lateral 

edges of the blank are not uniformly clamped) results in a tensile-compression stretching (i.e. reducing 

the minor strain); while increasing the blank width results in a tensile-tensile stretching (i.e. increasing 

the minor strain). 
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Figure 1.11 A forming limit diagram generated in laboratory tests by changing the width of the blanks [33] 

 

There are also factors that shift the FLC, which are the thickness and the n-value since they 

change the FLD0 (the lowest point on the FLD). The relationship of thickness, n-value, and FLD0 is 

represented by the Keeler-Brazier equation [34] in Equation 1.1: 

Equation 1.1 Keeler-Brazier relationship for FLD0 
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An example of application of the FLD in the automotive industries is shown in Figure 1.12 

[35]. For example, when stamping the front door and front fender, the material used for stamping 

experiences more biaxial stretch forming; while stamping the roof and trunk lid the strain path of the 

material will follow plane strain stretch forming. The FLD allows TWB designers to correct potential 

failures prior to the commencement of volume production. 

 

Figure 1.12 Major and minor strains (strain paths) of various automotive parts 

 

1.4 The Problem 

As mentioned in the section 1.1: Tailor Welded Blanks, assembly of blanks by welding has major 

effects on formability due to the inhomogeneity of the weldment and materials used. In addition, weld 

in DP steels may contain a softened zone at the outer edge of the HAZ [36,37,38,39]. This softened 

region is caused by the tempering of martensite, which reduces the hardness of this region during the 

welding thermal cycle. Significant softening may in turn affect the formability of welded DP steels by 

concentrating strains in this region during the forming process, resulting in premature failure. One 

method of improving the formability of TWBs involving DP steel is to combine it with HSLA steel. 

When deforming this TWB combination, the strain concentration location shifts to the weaker material 

(HSLA steel) as the hardness of HSLA steel is lower than the softened region in the DP steel [27]. Yet, 

the formability of TWBs with DP steel needs to be improved further.  
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Moreover, most TWBs used in the automotive industries contain more than one single straight 

weld (see Figure 1.1) and the interaction of multiple welds may also affect formability, but research 

results on the formability of these more complex TWBs are not available. In addition, TWB 

manufacturers orient multiple welds to simulate and accommodate components of curved shape, such 

as shock towers. However, this approach may also result in the presence of an inflection point, which 

during forming is the most likely area for failure. The study of the effect of curvilinear seams on 

formability is limited. Therefore, curvilinear seams need to be investigated further; in order to increase 

the application of more complex TWBs in the automotive industries.  

 

1.4.1 Objectives 

The objective of this thesis is to investigate methods to improve formability of DP steel by combining 

it with HSLA through weld geometry designs. The dissimilar TWB combinations studied involves 

DP600-HSLA and DP980-HSLA. The weld designs being investigated are:  

(1) Weld line positions, orientation and strain path. Weld line positions are studied 

since weld line placement in areas of low strain concentration improves formability. For 

instance, in deep drawing applications, placing the weld close to the pole increases draw 

depth [40]. Weld orientations, tested under plane strain condition affect formability 

depending on weld ductility and material properties of the blanks 

(2) Curvilinear welds. Although, the application of the curvilinear weld is limited to 

shock towers at present, there is potential for curvilinear welds. Curvilinear welds can 

decrease material usage, the number of weld requirements and offer possible 

opportunities to avoid defects when two welds intersect. 

 (3) TWBs with multiple straight welds. The interaction of more than a single weld may 

change the formability and many TWB applications involve multiple welds and multiple 

materials, e.g. vehicle floor plates [3]. 

 In addition to weld designs, the TWBs with the exception of the curvilinear weld blanks are 

made of dissimilar thickness and dissimilar materials combination. It is the intent of this work to 

provide formability data for use in models, so predicting future failure locations while assessing 

forming behaviours of dissimilar thickness and materials combination TWBs with different weld 

designs is made easier. An understanding of the forming behaviour of dissimilar blanks with DP steel 
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promises to be beneficial to the weight reduction, crash performance and future vehicle design 

considerations. This thesis investigates the effect of blank designs (with DP600, DP980 and HSLA, 

specifically) and all other conditions i.e. factors that influence formability such as welding parameters 

and testing equipment designs are kept constant.  

  

In this thesis, a literature review of factors that affect formability is given in chapter two. 

Chapter three features the experimental procedures, which includes the welding- and forming- 

parameters and the use of analytical tools. Chapter four examines the formability of the different weld 

position TWBs, orientation TWBs, failure locations and the strain distributions involved. Chapter five 

features curvilinear seam blanks and their effects on formability. Chapter six investigates the effect of 

two welds and their orientations on formability. Lastly, current conclusions and recommendations for 

future work are presented in chapter seven.   
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CHAPTER 2 

2 LITERATURE REVIEW 

This chapter reviews past studies on the effect of material properties, thickness differences, welding, 

weld positions and orientations and curvilinear seam welds on formability of TWBs. 

 

2.1 Factors Affecting Formability And Fracture Modes 

While the formability of TWBs has been widely studied with the introduction of new materials there 

are still many unknowns about the factors affecting formability. Some factors that affect formability 

are shown in Table 2-1. Some of these factors can be divided into three categories: 1) material, 2) 

process and 3) testing equipment design. For the purpose of this thesis, the process and testing 

equipment design remained constant. 

Table 2-1 Factors that affect formability 

Material Process Testing equipment design 

Sheet thickness Mode of stretching 

 In-plane 

 Out-of plane 

Draw bead 

Material properties 

 Strain hardening 

coefficient (n) 

 Anisotropy (r) 

Strain path 

 Biaxial 

 Plane strain 

 Uniaxial  

Die corner radius 

Grain size Deformation speed Punch corner radius 

Inclusions Blank holding force Punch-die clearance 

Welding  Lubrication   

 

As shown in Table 2-1, the material properties that affect formability include the strain hardening-

coefficient, and anisotropy. Also, ductility contributes to formability, as it is an indicator of 

formability. These material properties are obtained through intrinsic tests i.e. uniaxial tensile test. The 

significance of: (1) strain hardening coefficient - n-value; (2) plastic anisotropy - R-value and (3) 

ductility of the material on formability is summarized in Table 2-2: 
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Table 2-2 Summary of the effect of the three material properties on formability 

 Strain hardening coefficient 

Plastic anisotropy 

(associated with rolled 

material) 

Ductility 

Relationship 

to 

formability 

The material’s ability to distribute 

strain during deformation and 
resistance to necking. 

Higher n-value = better ability to 

distribution strain 

The material’s ability to 

resist thinning. 
Higher R-value = 

higher resistance to 

thinning 

Strengthening 
mechanisms that 

increase flow strength 

causes an increase in 
the stresses during 

forming 

Represented 

by 

Power-law hardening 

      
                    

                 
                      

                               

   
           

 
 

  
  

  
 

  

  
 

            

             
  

  
 

Property 

associated 

with 

UTS Strain Strain 

 

2.1.1 Fracture Modes  

Although the fracture does not affect formability, it is related to the ductility of the blanks being 

deformed, as fracture modes depend on the material combination. There are essentially three types of 

fracture modes seen in the forming of TWBs. The types of fracture are summarized in Table 2-3 and 

the two most common fractures are shown in Figure 2.1. 

 

Table 2-3 Summary of the types of fracture modes 

 Mode I Mode II Mode III 

Fracture location Across the weld Parallel to the weld in 

the base metal 

Parallel to the weld in 

the HAZ 

Reason for fracture Low weld ductility as 
the weld is stretched 

along the major strain 

direction 

Base metal is stretched 
past its forming limit 

Local drop in hardness 
in the HAZ [18] 

Types of TWB 

combination fracture 

occurs 

Similar thickness and 

material properties 

Dissimilar thickness 

and material properties 

Dual phase steels 
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Figure 2.1 Failure modes: I) fracture across the weld, and II) fracture in the base metal [41] 

 

2.2 The Effect Of Strain Hardening And Plastic Anisotropy  

The two material properties that are related to the formability of a material are the n-value and the R-

value. Their effects on formability are summarized in Table 2-2, where the n-value is the ability of the 

material to redistribute strain before necking and the R-value is the ability of the material to resist 

thinning during deformation. It should be noted that anisotropy may be introduced by the large 

deformation inherent in the steel sheet manufacturing process. For example, the initial rolling of the 

sheet metal will affect further deformation of the material [36].Therefore, the studying of these two 

properties on the formability of material provides TWB manufacturers a point of reference in choosing 

materials based on the application.  

 Yang et al [29] studied the effects of the n-value and the R-value on the forming limit in the 

hemispherical-punch stretching test, numerically. They found that the n-value was proportion to the 

LDH; while the r-value was inversely proportional to the LDH, shown in Figures 2.2 a) and b), 

respectively. The numerical models showed that as the n-value increased and the r-value decreased, the 

strain distribution became more uniform with lower peak strains [29]. Thus, the strain-hardening and 

anisotropy affect the results of the standard LDH tests for formability. 
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Figure 2.2 Numerical effect of a) n-value, and b) R-value on the limiting dome height [29] 

 

 On the other hand, Padmanabhan et al were interested in the effect of anisotropy under 

complex stress-strain state of the square cup deep-drawing process of mild steel welded to DP steel, 

numerically [36]. From the simulation, the thinner material experienced more deformation causing the 

weld line movement towards the stronger material. Significant weld line movement is undesirable as it 

may create problems such as wrinkling, tearing, and uncontrollable springback [42]. Anisotropic 

property behaviour was seen significantly in the mild steel side of the mild steel-DP steel TWB. In 

addition, the thinning along the weld line resembled an isotropic material combination more than an 

anisotropic TWB [36], which may indicate that the effect of anisotropy was erased during the welding 

process. 

 

2.3 The Effect Of Thickness And Strength Ratios 

TWBs made with dissimilar thickness and strength ratios are very common in vehicles especially 

where weight reduction and structural integrity are required, such as in a door inner panel. A number of 

studies showed that increasing the thickness and/or strength ratios decreases the formability of the 

TWBs [43,44,45]. A large thickness ratio forces more deformation into the weaker material and the 

strain is concentrated there, which results in premature failure.  During deformation, the thinner 

material undergoes plastic deformation, whereas, the thicker material undergoes primarily elastic 

deformation. An increase in strength ratios has a similar effect on failure mode as the thickness ratio, 

whereby the weaker material deforms more and fails first. Failure may occur in the base metal i.e. the 

TWB experienced fracture mode II. In addition, due to non-uniform deformation, the weld line also 

tends to move towards the thicker/stronger materials [43,44,46]. Thus, to determine the effect of 



 

23 

 

thickness ratio Lee et al suggested forming TWBs comprised of materials with similar yield strength, 

but different thicknesses [47]. 

Shi et al [46] analyzed forming issues in terms of the strength ratio and the thickness ratio. The 

strength ratio (Equation 2.1) is described with the following relationship: 

Equation 2.1 Strength ratio [46] 

STAtOA=SYBtOB 

Where,  

 STA is the tensile strength of material A 

 STB is the yield strength for material B 

 

The limiting strength ratio becomes (Equation 2.2): 

Equation 2.2 Limiting strength ratio [46] 

     
                                                  

                                                    
 

 

An application having a LSR of less than unity for the TWB provides better uniform 

stretching; however, in laser welded AHSS, the presence of the softened HAZ region and the increased 

hardness of the fusion zone as well as differences between those and the base metal hardness changes 

the formability of the TWB[39]. Conversely, the limiting thickness ratio does not change significantly. 

The limiting thickness ratio is given by Equation 2.3: 

Equation 2.3 Limiting thickness ratio [46] 

     
   

   
        

   

   
 

Where, 

 t0B is the original thickness of material B 

 t0A is the original thickness of material A 

 

 

When evaluating the effect of dissimilar materials TWB with dissimilar thickness and strength, 

the strength and thickness of material B should be the one with the greater thickness as well as greater 

yield strength. Based on these criteria, it was suggested that when failure mode I (fracture across the 

weld) was observed, the weld line should be positioned away from the major strain direction and/or 
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away from major strain concentration areas. When failure mode II (fracture parallel to the weld) was 

observed, the thickness/strength ratio was considered to be too large as the fracture occurred in the 

thinner or weaker material. Based on the failure modes, weld line movement or the amount of strain in 

the thinner/weaker material should be limited to improve formability [48]. 

Azuma et al studied the effect of strength ratio (thickness ratio) and its relationship to the 

maximum forming height [49], shown in Figure 2.3. In this study, two weld line orientations were 

studied, longitudinal and transverse, and compared to the parent unwelded material. The longitudinal 

weld orientation referred to the weld placed parallel to the major strain direction. During forming of the 

longitudinal TWB, the weld is being stretched. In the transverse weld orientation, the weld was placed 

perpendicular to the major strain direction and the base metal is stretched during forming.  

This study showed that the forming height of the longitudinal and transverse welded TWB 

(with a strength ratio of 1.0) reduced by 30% and 8%, respectively when compared to the parent 

material. However, as the strength ratio increased the loss of forming height in the TWB with the weld 

in the transverse direction showed a steady drop until a ratio of 1.5 is reached. Comparatively, the drop 

in the maximum forming height for the longitudinal TWB was relatively small for the strength ratio of 

1.0 to 1.8. This suggested that the ductility of the welds were similar.  Surprisingly, the maximum 

height for the strength ratio of 1.5 for two loading directions was very close with a difference of 

approximately 10%. 

 

Figure 2.3 The relationship between the strength ratio and forming height for steel TWB [49] 
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 From the study by Azuma et al it is clear that thickness ratio affects the forming height; 

however, the effect of thickness ratio on the strain distribution and its consequence on the FLD is 

unclear. Thus, Chan et al [45] investigated the effects of the thickness ratio of TWBs on the 

experimental FLC with varying TWB widths from balanced biaxial tension to uniaxial tensile with the 

weld line at the centre of the blank and perpendicular to the major strain direction; and also on the 

minimum major strain on formability. The results showed that the FLCs of the TWBs were lower than 

the base metal, which was expected; however, as the thickness ratio of the TWBs increased the FLC 

decreased. This relationship is shown in Figure 2.4, which compared the FLCs of the different 

thickness ratios to the base metal. The TWB FLC most similar to the base metal had the smallest 

thickness ratio. The small thickness ratio means that plastic deformation in the TWB for both sides of 

the weld was similar.  

 

Figure 2.4 Comparison of the FLCs of the TWB with 1 mm base metals [45] 
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The study on the minimum major strain showed an inversely proportional relationship between 

the thickness ratio and formability of the TWB i.e. as the thickness ratio increased the formability 

decreased [45]. This relationship is seen clearly in Figure 2.5. As the thickness ratio increased the 

minimum major strain decreased, which implied that increasing thickness ratio decreased formability 

[45,47].  

 

Figure 2.5 The relationship of thickness ratio to minimum major strain [45] 

 

 As seen in this section, these studies examined the formability of different thickness ratio; 

however, Heo et al took the investigation further by trying to control the amount of deformation by 

employing a draw bead during forming [50]. This investigation showed that by using the draw-bead to 

restrain the deformation in the thinner sheet, the drawing forced increased. Consequently, increasing 

the draw forced decreased the drawing depth of the blank as the deformation in the thinner material is 

restrained. From this study, the researchers reasoned that employing the proper use of draw-beads the 

draw depths of dissimilar material TWBs can increase; thus, suggesting the advantage of testing 

equipment design prior to the stamping process. 
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2.4 The Effect Of Welding  

Fusion welding creates inhomogeneity across the TWB, such as a change in the microstructure in the 

FZ and the HAZ, which affects the formability of the TWB. Adonyi et al studied the effect of laser 

welded steel tailored blanks with automotive grade steels i.e. IF, HSLA and drawing-quality special-

killed (DQSK) steels [51]. The TWBs studied were made up of similar thickness, material and coating 

combinations in plane strain stretch forming. Adonyi et al found the typical increase in the hardness of 

the TWB at the fusion zone, and forming the TWBs gave lower LDH than the parent materials. Upon 

investigation of the fracture surface of the plane strain specimens (transverse weld TWBs where the 

weld is perpendicular to the major strain direction compared to the longitudinal weld TWBs where the 

weld is parallel to the major strain direction), there was a strong correlation between the LDH variation 

and weld ductility for the longitudinal weld TWBs; however, the correlation between weld FZ hardness 

and formability remains unclear. To clarify the relationship between hardness and formability, the 

LDH of TWBs welded with GTAW was compared to that of laser welded TWBs. The weld FZ in the 

GTAW specimens was wider due to slower welding speed and higher heat input than the laser welded 

specimen, but the hardness of the GTAW was lower; however, the formability was lower in the GTAW 

welded specimens. This result led to the conclusion that weld-width (metallurgical inhomogeneous 

area) in a blank affected the formability and thus, weld ductility along with weld size and location are 

better indicators of formability than weld hardness [51,52]. 

Shao et al [53] studied laser blank welding of high-strength steels to mild steel of various 

dissimilar materials TWB combinations. Combining high-strength steels and mild steel caused a 

lowering of the cup height (quantitative indicator of formability) when the strength ratio of the 

dissimilar material TWB was higher than their LSR. Table 2-4 shows the LSR and the strength ratios 

of the different welded blanks and Figure 2.6 shows the cup height at fracture for the different parent 

material and TWB combinations. The TWB combinations that showed the strength ratio exceeding the 

LSR were MS + MS and HS3+ MS in Table 2-4, which corresponded to the higher cup height than the 

parent materials seen in Figure 2.6.  From this observation, the authors reasoned that both base metals 

contribute plastic strain during the deformation process. 

 

Table 2-4 LSR and strength ratio of different laser welded blanks [53] 
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Figure 2.6 Comparison of equiaxial stretch formability between laser-welded blanks and the parent 

materials [53] 

 

 The formability of these TWBs was studied as a whole was shown above; however, the 

distinctive effect of the weldment was not accounted. Cheng et al [54] investigated the effect of the 

weldment of the TWB on formability analysis experimentally and numerically. In order to study the 

mechanical properties of the weldment, specially designed tensile specimens where only the weld was 

present in the gauge length were used.  The result showed typical increase in hardness in the weldment, 

and compared with the results in the standard tensile tests, the authors concluded that the tensile 

properties of the thinner material had a dominant effect on the formability [54]. The dominant 

influence of the thinner material in TWBs [44,45,46] was discussed in the previous section. To support 

this observation, the strain distribution across the weld was plotted (experimentally and numerically) in 

Figure 2.7. These results showed that in both the experimental and numerical simulation, twin peaks 

occurred across the weld; although, failure occurred in the thinner material because the peak strain was 

higher than the peak strain in the thicker material. However, the strain across the weld bead was nil 

despite the high strains in the adjacent areas. Therefore, the authors suggested that the minimum strain 

at the weld was due to its high strength and ability to withstand large applied stress [54].   
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Figure 2.7 Strain distributions along the centreline perpendicular to the weld of the TWB with 32 mm 

width [54] 

 

2.4.1 Welding AHSS 

The interest in welding DP steel TWBs with laser has been focused mainly on the process and 

optimization [55,56,57].  The potential of integrating DP steel into TWB for automotive applications is 

high because of the combination of high yield strength and good formability (high work-hardening rate 

and high uniform elongation) for improving crashworthiness, mass reduction and overall performance 

of the BIW components. Therefore, with such interest in incorporating DP steel in TWB applications, 

researchers [18,58,59] have studied the effects of welded DP steel on formability.  

Xia et al investigated the effect of welding of DP steels on formability as compared to similar 

weldments in HSLA steel. The welds on the DP980 steel and HSLA blanks were done by full-

penetration bead-on plate welding then these blanks were formed and compared to the unwelded blank 

metal [38]. Figure 2.8 shows the hardness profiles of the welded DP980 and HSLA steels. The DP980 

steel showed a significant drop in hardness in the HAZ compared to the base metal hardness, which 

was due to local tempering of the martensite phase. The hardness profile of HSLA steel did not show 

any drop in hardness and both these profiles are shown in Figure 2.8 a). In addition, the effect of 

welding speed was investigated and it was found that increasing the welding speed reduced both the 

width of the softening and its magnitude, shown in Figure 2.8 b). In general, increasing the welding 

speed decreased the heat input and produced narrower welds, which are desirable for TWBs [38,52].  
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Forming welded DP980 steel showed that failure initiated in the softened region i.e. strain 

concentrated there since this region was the weakest, causing fracture mode III. As mentioned in the 

previous section, during deformation the weakest material will experience plastic deformation while 

the stronger material experiences elastic deformation; hence, causing premature failure. This premature 

failure led to a significant decrease in the formability of welded DP980 steel compared to the base 

metal. This observation was further studied by Panda et al (2008) through numerical simulation of 

DP980 steel and the finite element analysis confirmed that the strength of the joint was significantly 

decreased with the formation of the soft zone [60]. 

 

Figure 2.8 Hardness profiles of a) DP980 and HSLA at welding speed of 1.0m/min, and b) DP980 and 

HSLA welds at different welding speeds [38] 

 

 Xia et al (2008) further investigated the softening of different grades of DP steels (DP450, 

DP600 and DP980 steels) by forming bead-on plate blanks of these steels [39]. The softening seen in 

these steels was shown in the hardness profiles in Figure 2.9. The DP steel that showed the most 

softening was DP980 followed by DP600 and DP450 steels. According to the previous study by Xia et 

al (2007) [38] the severe softening in DP980 steel resulted in the most significant reduction in 

formability; while it is likely the softening in DP450 steel exert less influence on the formability. Thus, 

due to the high strength ratio, strain concentrated in the softened zone during, deformation will lead to 

premature failure. Increasing the heat input/decreasing the weld speed tends to increase the softened 

zone area; also, an increase in the initial martensite content affects the softened zone [39]. 
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Figure 2.9 Hardness profile of diode laser welded DP steel [39] 

 

 Another study by Xia et al [61] considered the initiation of the failure during the forming of 

welded DP steel. Bead-on plate laser welded DP980 and HSLA steels were investigated. The failure 

observed in the DP980 welded blanks occurred in the HAZ region (corresponding to the softened 

region) parallel to the weld. The failure in the HSLA welded blank initiated at the welds and 

propagated perpendicularly to the weld line as shown in Figure 2.10. The resulting LDHs of the bead-

on plate blanks compared to the parent base metal are shown in Table 2-5. 

.  

Figure 2.10 Top view of LDH of bead-on plate a) DP980, and b) HSLA fracture locations [61] 
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Table 2-5 LDH comparison bead-on plate DP980 and HSLA to parent base metal DP980 and HSLA [61] 

 

 

From this table, it was concluded that welding affected the formability of DP980 steel. The underlying 

reason for the significant decrease in the formability of welded DP980 steel was the presence of the 

softened region in the HAZ. This softened region created an area for high strain concentration, due to 

its lower hardness; therefore, leading to premature failure in DP980 steel.  

 In the research cited so far, laser welding DP steel resulted in softening in the HAZ and the 

studies discussed so far studied and suggested methods to reduce the effect of softening on formability 

through material usage. Based on the softened region in laser welded DP steel blanks, Miles et al 

compared the formability of friction-stir (FSW) weldments of DP590 to laser weldments. FSW was of 

interest because the heat generated during this solid state process does not melt the material during the 

joining process and therefore, the weld nugget and HAZ could have more favourable properties [62]. 

The results of this study showed that the formability of the FSW-TWB when the weldment was 

oriented along the major strain direction increased ~20% compared to the laser welded TWB. 

However, the welding speed used in FSW was too low and not appropriate for production applications 

[62].  

Conversely, Uchihara et al determined guidelines for choosing the appropriate welding type for 

materials used for TWBs based on the forming performance of the materials [57].  The welding 

processes investigated were laser welding, mash welding and arc welding. Three grades of DP steels 

were investigated, 590MPa, 780MPa and 980MPa. They were welded to equal strength grade and 

thickness materials to create the TWBs. Upon testing, it was apparent that laser welding was the best 

process for all grades of DP steel because of its narrow weld and small heat input [63,64], which 

cannot be duplicated with mash welding and arc welding. As a result of the smaller weldment and 

HAZ, the formability of the laser welded TWB showed the highest dome height. In addition, the 

authors suggested that plasma arc and mash welding should be limited to welding DP590 steels 

because of the large weld and HAZ. For any higher grades of DP steel, softening in the HAZ occurred 
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when welding with plasma arc and mash welding. Finally, the authors combined DP980 with low 

strength steel by the three welding processes and their results showed that the formability of these 

combinations was similar. Hence, welding high grade DP steel with low strength steel can be done with 

any welding process [57].  

Panda et al [27] further studied the formability of TWBs made with different AHSS, namely 

DP980, DP800 and DP450 steels laser welded to HSLA. The formability was measured depending on 

the LDH and the best combination was determined. Their results shown in Figure 2.11 showed that 

combining DP steel with HSLA improved the formability when compared to the similar material 

TWBs, which was in accordance to [57].  In addition, failure location of the dissimilar TWBs was in 

the HSLA steel, which was the lower strength material, i.e. the higher strength and hardness of the soft 

zone in the DP steel caused the strain localization to occur in HSLA. This study also considered the 

formability of dissimilar TWBs numerically (without incorporating the soft zone) and found that the 

result was compatible to the experimental results. The soft zone was not modelled because the material 

properties in this region were still superior to the HSLA base metal [27]. 

  

Figure 2.11 Comparison of LDH of parent metals and dissimilar TWB combinations [27] 
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2.5 The Effect Of Weld Positions  

The formability of TWBs may change according to weld line position in critical areas. Studies have 

suggested that the best formability will occur when the weld line is placed away from areas of high 

strain i.e. place the weld far from the major strain direction [46]. Kridli et al. suggested that placing the 

weld closer to the thinner material in a dissimilar thickness TWB (i.e. decreasing the amount of thinner 

material in the TWB) increases the formability by allowing the thicker material to deform more [8]. 

However, weld line location does significantly reduce the forming-limit strains when compared to the 

unwelded blank as Narayanan [65] found, where increasing the weld line offset increases the forming 

limit reduction where the decrease in limit strain is in the stretching region.  

 Choi et al [40] studied the weld line movement and formability of dissimilar materials TWB 

with three different initial weld-line locations for a deep drawing process. This study showed that as 

the weld line was shifted farther from the centre of the blank, more weld line movement occurred. Heo 

et al [66] followed up on the study by Choi et al and studied the effect of different weld position in a 

deep drawing process and using a draw bead to limit the amount of weld line movement. Although, 

with the use of the draw-bead, the weld line movement was reduced, the same effect as found by 

Choi et al  was observed where the maximum drawing depth and maximum drawing force were 

reduced as the weld line was placed farther from the centre of the blank.   

 

2.6 The Effect Of Weld Orientation 

Weld orientations affect the forming-limit strains of TWBs by adjusting the regions being affected by 

the major strain direction. Positioning the weld in the longitudinal orientation (the weld line is parallel 

to the major straining direction) where stretching is placing more emphasis on the weld as opposed to 

positioning weld in the transverse orientation (the weld line is normal to the major straining direction) 

where deformation is concentrated on the thinner/weaker material. Weld orientation also determines 

the mode of fracture as the weld only responds to uniaxial tensile deformation. In longitudinal welds, 

fracture occurs across the weld as the weld is being stretched (fracture mode I); in contrast, failure 

occurs on the weaker/thinner material when the weld is transverse to the major strain direction due to 

different work-hardening effects resulting in fracture mode II. Thus, the consideration of weld 

orientation is important in the TWB design process [42]. 

The effect of weld orientation on the formability of aluminum alloy 5754-O laser welded blanks 

showed that the longitudinal TWBs underwent significant forming limit reduction [67]. 

Narayanan et al. studied the weld orientations of steel bead-on-plate specimen to avoid the influence of 
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thickness/strength and material on forming. That study showed that welding in any orientation lowered 

the forming limit strain in the FLD; however, the forming limit strains (shown with the LDH tests) 

were similar in the longitudinal and transverse TWBs and it was concluded that there was negligible 

influence due to weld orientation in forming [65].  This study was followed by a numerical simulation 

by Narayanan et al of the TWB with different weld orientations to generate FLDs where forming limits 

could be predicted [68]. It was found that the simulated FLDs correlated to the experimental FLDs 

when failure occurred in the base metal of the TWB. Similarly, Kusuda et al [69] observed that when 

TWBs were formed near the weld; the strength ratio could be used to determine the formability.  

A study by Panda et al. investigated three different TWB conditions (dissimilar thickness, 

dissimilar materials properties and dissimilar surface conditions) in plane strain stretch forming with 

different weld orientations and found that the formability of the longitudinal weld orientation was 

similar to the formability of the transverse weld orientation in the dissimilar surface condition TWB. 

While, thickness ratio and material properties resulted in lower LDH in the longitudinal condition by 

up to 11%. These results were consistent with finite element analysis [26]. Chatterjee et al. also found 

that the formability of longitudinal weld TWBs of IF-DP was comparable to the transverse weld TWBs 

with the longitudinal weld TWBs being only 10% lower [15]. These studies showed that weld 

orientation did not influence the formability of the plane strain TWB significantly when the materials 

properties of the blanks were similar. The weld orientation did affect the failure mode: in the 

longitudinal weld orientation failure initiated at the weld and propagated towards the base metals, 

while in the transverse weld orientation the failure initiated in the weaker/thinner materials [15,26,65]. 

Moreover, for these laser-tailored blanks with dissimilar thickness with transverse weld orientation, the 

forming limit (FLC) could be predicted based on the thinner/weaker steel in draw and plane strain 

conditions [70]. 

 

2.7 The Effect Of Curvilinear Welds 

Curved seams have not been studied extensively as the number of applications is limited currently to 

shock towers as used mainly in North American automobiles [4]. However, the application of 

curvilinear welds can be expanded by proposed TWB designs for the inner doors. The inner door is 

made of multiple straight line welds, which change into broken lines after forming [71]. The problems 

of using multiple straight line welds to create curves are the inconsistency of the blank dimensions and 

the occurrence of inflection points where two welds meet [72,73]. The use of curvilinear welds 

eliminates the inflection. Recently, two studies were done on the formability of curvilinear seams. The 
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influence of curved weld radius, thickness ratio and different blank size was studied.   The forming 

behaviours of curvilinear TWB with a radius of 76.2 mm with thickness ratio   1.5 is lower than the 

TWB with a thickness ratio of 1 in biaxial stretch forming. Increasing the radius produces a larger 

variation of the forming height during biaxial stretch forming. Interestingly, the formability of the 

TWB with a thickness ratio of 2.5 is higher than the blank with a thickness ratio of 1.5 [73].  

A further study compared the formability of curved welds to straight welds and found that 

larger thickness ratio increased the forming height of the curved welds, while the straight weld TWB 

had the lowest forming height [72] as shown in Figure 2.12. From this figure, it is clear that when the 

thickness ratio is 1, increasing the curve radius does not affect the forming height. Also, with a 

thickness ratio of 1.5, curved weld blanks and straight weld blanks give the same forming height; 

however, increasing the curved radius is ideal when the thickness ratio is larger than 1.5. 

  

Figure 2.12 Relationship between formability, thickness ratio and curved weld radius [72] 
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CHAPTER 3 

3 EXPERIMENTAL 

The experiments in this thesis were divided into two parts. The general experimental techniques and 

methods used to characterize the properties of the base metals, and welding and forming of the laser 

welded blanks are described in this chapter. The dimensions and design of the tailored blanks for each 

section will be described in their corresponding chapters.  

 

3.1 Metallurgical Examination 

3.1.1 Base Metal 

The materials used in this thesis were HSLA (high strength-HSS), DP600, and DP980 (both AHSS) 

steels with a nominal thickness of 1.14 mm, 1.2 mm and 1.2 mm, respectively. The thickness of the 

steel included the layer of galvanized coating (GI), GI, and galvannealed coating (GA), respectively. 

These materials have been developed for automotive part manufacturing for structural exterior and 

applications in which improved crash and part performance is required.  

 

Figure 3.1 Microstructure of base metal a) HSLA, b) DP600, and c) DP980 
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Figure 3.1 shows the scanning electron microscopy (SEM) images of the microstructures of the base 

metals. Figure 3.1 a) shows the microstructure of HSLA steel, consisting of a ferrite matrix in which 

the grain boundaries are revealed, reinforced with sub-micron second phase precipitates through micro-

alloying, these being the bright particles randomly distributed in the grains. Thus, the strength of the 

HSLA steel is obtained through grain size reduction and precipitation strengthening. Figure 3.1b) 

shows the microstructure of the DP600 steel, consisting of a ductile α-ferrite matrix reinforced with a 

volume fraction of 26% elongated banded martensite (M) islands. These martensite islands are aligned 

parallel to the rolling direction. Figure 3.1 c) shows the microstructure of DP980 steel, which has 

higher martensite content at a volume fraction of 54%. 

 

3.1.2 Sample Preparation 

The weld characteristics of dissimilar TWBs (Chapter 4) and curvilinear seams (Chapter 5) were 

evaluated through microhardness measurements and/or microstructure examination. Thin cross 

sectional specimens of the laser welded specimens were mounted, ground, and polished according to 

standard metallographic procedures to reveal the microstructure of the different zones in the welded 

specimens. After polishing the specimens were etched with 2% Nital. The specimens were observed 

under the optical microscope.  

 

3.1.3 Optical Microscopy and SEM Analysis 

Stereo-microscope images and optical micrographs for fracture analysis (Chapter 4) and the cross 

sections of the welded specimens (Chapter 5) were acquired with an image-analysis software. The weld 

profiles were observed at 50X magnification to reveal the different zones in the specimen. SEM 

examination of the formed fracture surfaces (Chapter 4) was performed on a Jeol JSM 6460. 

 

3.2 Hardness Examination 

The Vickers microhardness testing on the cross sections of the dissimilar materials combination 

(Chapter 4) and curvilinear seam at the curvature of the weld (Chapter 5) was conducted on etched 

specimens at a load of 300g with a loading time of 15s. Three rows of indentations with indentation 

spacing of 200μm apart (0.2 mm) were made across the weld zones, so the microhardness variations 

could be more clearly defined. The distance between each indentation horizontally was also 200μm.  
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3.3 Mechanical Testing 

This section discusses the experimental techniques used to characterize the tensile properties of the 

parent materials and the TWBs, and also the formability of these welded blanks. 

 

3.3.1 Uniaxial Tensile Testing 

3.3.1.1 Parent Material 

Uniaxial tensile tests were performed on the parent materials to obtain the standard tensile properties, 

such as 0.2% offset yield strength (YS), ultimate tensile strength (UTS), elongation percentage, strain 

hardening coefficient n, and strength coefficient K, where the strain hardening behaviour of the sheets 

can be described using the power-law hardening equation [32]. The tensile specimens were machined 

to ASTM E8M standard, Figure 3.2[74]. The specimens were tested along the three directions, where 

the tensile axis is parallel (0°), diagonal (45°) and normal (90°) to the rolling direction of the sheet, 

shown in Figure 3.3 and were machined to ASTM E571 standard. A uniform cross head speed of 

2 mm/min was used. 

 

Figure 3.2 ASTM E8 schematic of tensile specimen 
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Figure 3.3 Tensile specimens of unwelded metal with different orientations relative to the rolling direction 

 

Mechanical properties, shown in Table 3-1, of the parent materials for the three testing directions were 

obtained to determine the plastic strain ratio (R) of the parent materials. The R value was obtained 

when the specimens were elongated to 75% of the uniform elongation before the maximum load was 

reached. The R value was calculated using the final width and length of the specimen with the 

following equation for all three directions of the parent tensile materials [32]. 

  
  

  
 

  

       
  

    
  

  
 

    
    
    

 
 

Where,  

             True width strain, true length strain, and true thickness strain, 

respectively 

          : Initial width and length of the specimen 

          : Final width and length of the specimen 

 

 

 

 

Table 3-1 Tensile properties of various AHSS sheets present in this study 



 

41 

 

 

 

3.3.1.2 Tailor Welded Specimens 

Tensile specimens were cut from the laser welded TWBs in the transverse direction on the TWBs (i.e. 

the weld is normal to the tensile force direction) shown in Figure 3.4 as per ASTM E8M standard [74].  

 

Figure 3.4 Tensile specimens with the weld placed a) -30 mm, b) -15 mm, c) 0 mm, d) +15 mm, and 

e) +30 mm offset from the centre 

 

The purposes of testing these specimens were: 1) to determine the quality of the weld; and 2) to 

determine the formability effect of the weld locations under tensile loading. The same cross head speed 

used to test the parent metals was used to test these welded tensile specimens. 
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3.3.1.3 Sub-Size Tensile Specimen 

Welding changes the materials properties of the weldment and it is necessary to determine the 

flow/mechanical properties of the weld bead for the dissimilar (DP600-HSLA and DP980-HSLA) and 

the similar (DP600-DP600 and DP980-DP980) materials combinations. The mechanical properties of 

the weld bead were determined by machining mini-tensile specimens where the weld bead was along 

the length of the gauge length, shown in Figure 3.5. The properties of these mini-tensile specimens 

were determined with the tensile Hopkinson bar (TSHB) test [75]. In this situation, only the weld bead 

was tested under tension. Table 3-2 shows the flow properties/mechanical properties of the weld zone. 

 

Figure 3.5 Sub-size tensile specimens used to evaluate the fusion zone of the TWB 

 

Table 3-2 Flow properties of the weld bead 

 

 

3.4 Laser Welded Blank Fabrication  

The DP steels were laser butt welded to HSLA steel to create the dissimilar material TWBs for the 

different weld positions, orientation, and multiple-weld angles. The curvilinear seam weld was bead-on 

plate. The specimens were mechanically edge sheared and the welding direction was perpendicular to 

the rolling direction of the sheet metal. 

 

Tailor blank 

combination
YS (MPa)

UTS 

(MPa)

Uniform 

elongation 

(%)

n-value K-value

DP600-DP600 250 1370.75 3.45 0.165 2398.4

DP980-DP980 406 1051.6 3.8 0.147 1734.75

DP600-HSLA 273 813 4.5 0.1343 1275.2

DP980-HSLA 344.9 851 4.9 0.137 1345.07
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3.4.1 Diode Laser 

Laser welds were produced using a Nuvonyx ISL-4000L High Power Diode Laser head (a 4kW 

AlGaAs diode laser with a wavelength of 805±5 nm [76]) mounted on a Panasonic VR-16 robotic arm 

shown in Figure 3.6.  The diode lasers operate on the same principles as the light emitting diodes, 

which are semiconductors with P-N junctions. These semiconductors are typically doped with GaAs, 

GaAlAs, and InGaAs [77]. In the laser diode, the light is reflected around between the cleaved ends of 

the semiconductor crystal; thus, changing the light to behave like a laser, the laser is emitted from a 

rectangular window in the active region [78]. Figure 3.7 shows a schematic of a typical laser diode. 

 

 
Figure 3.6 Nuvonyx diode laser head mounted on a Panasonic robotic arm 



 

44 

 

 

Figure 3.7 Schematic of a diode laser [78] 

 

The output wavelength of the diode laser is dependent on dopping concentration and the most 

common semiconductor is the GaAlAs. By adjusting the ratio of Ga to Al the wavelength can be 

adjusted from 808 to 810 nm [77]. During operation, the high power of the diode laser result in high 

heat output; therefore, a heat sink is necessary to prevent the degradation of the diodes. Adequate 

cooling is achieved by the design of the diode arrays. As seen in Figure 3.7 the diode is in actual a thin 

strip. When an array of these strips is mounted onto a heat sink, cooling is achieved. These thin strips 

act as planes where the photons reflect and the output beam is elliptical when it exits the active layer.  

The shape of the beam can be corrected with optics of different focussing properties, but is it difficult; 

as a result, the elliptical shape is not altered [77]. The Nuvonyx HPDL consists of four water cooled 

heat sinks with 20 individual diodes, which contains condensed optics to deliver a combined 

rectangular beam of 12 mm x 0.9 mm.  

The laser system is made up of a system control unit that contains the current power supply, 

system control PLC modules and a touch-screen control interface; the laser head that contains the diode 

laser arrays, a focussing lens and output window; and a chiller that cools the laser by water flowing 

through the channels in the heat sinks where the diode bars are mounted [79]. 
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3.4.2 Clamping Fixture and Shielding Gas 

The sheet steels (i.e. DP600-HSLA, DP980-HSLA, DP980, DP600, and HSLA) were clamped down in 

a welding fixture and butt welded together with the weld bead transverse to the rolling direction. The 

welding speed ranged from 0.85m.min to 1.0m/min for full penetration for bead-on-plate conditions to 

dissimilar TWBs, respectively. The beam characteristics of the diode laser are summarized in 

Table 3-3. Due to the curvature of the curvilinear seams (Chapter 5), a new clamping fixture was 

designed, shown in Figure 3.9. This custome fixture had a widened back shielding gap to accommodate 

the weld curvature and an inlet for the back shielding gas to enter. 

 

Figure 3.8 Clamping fixture for laser welding of TWBs [11] 

 

 

Figure 3.9 Clamping fixture for laser welding of curvilinear seam blank 

Table 3-3 Beam characteristics of the diode laser 
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Figure 3.10 A schematic of the laser head configuration 

 

The configuration of the laser head used is shown in Figure 3.10. During welding the air knife 

releases compressed air to blow away splatter from the process away from the shield glass lens 

protecting the laser. Argon shielding gases for top and back shielding is provided by the shield gas 

nozzle and the gas feed attached to the fixture base at a rate of 35 l/min to prevent blow holes and 

oxidization of the weld bead. During welding, the specimen was clamped using the clamping bars to 

the fixture base to prevent distortion and keep the specimen in place. 

 

  

Welding speed 

(m/min)

Laser power 

(kW)
Beam size

Diode laser 0.85 and 1.0 4 12 x 0.9 mm

Welding Parameters
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3.5 Formability Testing And Analysis  

Welding caused variations in the mechanical properties across the weldment of the laser welded blanks. 

Therefore, the strain along the across the weld sample was expected to vary. To understand the local 

strain in the welded specimens after deformation the circular grid strain measurement method was 

employed. There are three parts to this strain analysis method: 

1. Applying the circular grids prior to deformation; 

2. Deformation; and  

3. Measuring the deformed grids after testing 

 

3.5.1 Gridding 

The strains of the deformed blanks were analyzed with grids electro-etched on the unformed blanks. 

The circular grids had a diameter of 2.5 mm and were etched using a setup shown in Figure 3.11. This 

etching setup includes A) the power supply; B) the conductive roller through which current passes to 

etch the material; C) the specimen; D) the stencil for the grids; E) the wicking pad which is soaked 

with the electrolyte used in the etching process and to act as an insulator between the conductive 

specimen and the conductive roller; and F) the ground electrode. 

The procedure of electro-etching involves passing an alternating current (for dark circles) or 

direct current (for white circles) through an electrolyte solution on the steel samples. The specimens 

were cleaned prior to electro-etching with a cleaning solution. The sheet surface was wet with the 

electrolyte with the (circular grid) stencil placed on top and connected to the ground electrode (F). A 

wicking pad (D) soaked with electrolyte was placed on top of this set-up to avoid shorting the circuit 

when the conductive roller (B) was applied. The conductive roller was connected to the power supply 

(A). The circuit was completed when the conductive roller rolled over the wicking pad until the grids 

were produced. During etching an AC potential of ~15V was applied; therefore, black grids were 

produced.   
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Figure 3.11 Grid etching system A) Power supply, B) conductive roller, C) specimen, D) wicking pad, E) 

stencil, and F) ground electrode [79] 

 

3.5.2 Limiting Dome Height Test Equipment: Hecker’s Hemispherical Punch 

The limiting dome height tests were done according to the procedure documented by Hecker [80] using 

an MTS 866.02 hydraulic press (Figure 3.12). A schematic of the hemispherical punch with a diameter 

of 101.6 mm, and the upper and lower dies are shown in Figure 3.13. The upper and lower dies had a 

circular draw bead at a distance of 132 mm from the die centre.  

During forming, the blank was placed at the centre of the lower die, so that the centre of the 

blank (marked with the guidelines) was at the centre of the punch. A clamping force of 135 kN was 

used to keep the blank in place so that no draw-in occurs in the flange region for biaxial stretch 

forming. Lubrication in the form of Teflon sheets and mill oil were used for the biaxial stretch forming 

blanks to yield smoother material flow during deformation. In plane strain stretching, the specimen size 

was narrower, so the draw-bead did not clamp the entire blank. During forming, the unclamped sides of 

the blank were allowed to draw-in to induce plane strain stretch forming condition and no lubrication 

was used. In addition, spacers were not used in the dissimilar materials TWB tests because there was 

negligible difference between the sheet thicknesses at 5%. 
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The punch velocity was maintained at 0.2 mm/s. Figure 3.12 shows the MTS formability press 

used in this research. The load progression and limiting dome height were obtained with an in-house 

developed data acquisition system consisting of a load cell and a rotary encoder to record the 

load-displacement data during the experiments. During testing, the load progression was monitored 

with the data-acquisition software. As soon as the load dropped i.e. when necking/failure occurred, the 

test was stopped and the load progression and LDH were obtained. After testing, the strain distribution 

or grid analysis measurements were done, described in the next section.  

 

Figure 3.12 MTS 866.02 formability press [79] 
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Figure 3.13 Hecker's hemispherical punch [41,79] 

 

3.5.3 Strain Measurement 

After forming, the deformed grids across the TWBs were measured for strain using an in-house 

developed camera and software shown in Figure 3.14.  The circular grids of the unformed specimen 

were calibrated using the camera and software as a reference. After the calibration, the deviation was 

checked. The tolerance of up to approximately 6% strain is expected. After the specimens were 

deformed the grids were measured with the strain measuring system to calculate the strains in across 

the TWBs. To measure the strain, five points were chosen around the outer edge of each ellipse and the 

dimensions of the ellipse were calculated by the software.  
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Figure 3.14 Grid measuring system [79] 

 

The calculations of the major and minor strains are shown with Equation 3.1and Equation 3.2, 

respectively. The grids were used to develop strain distribution patterns and FLDs, which clearly 

showed the safe limiting strains from the unsafe zone with the failed and necked portions by plotting 

the major strains vs. minor strains. The change in the strains across each TWB was a good indicator of 

the forming behaviour and the influence of the material combination, thickness dissimilarity and the 

effect of the weld. Additionally, these strains could be plotted into an FLD. 

 

Equation 3.1 Major engineering strain 

   
                                              

                    
 

 

Equation 3.2 Minor engineering strain 
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CHAPTER 4  

4 EFFECT OF WELD LOCATION, ORIENTATION AND STRAIN 

PATH  

4.1 Limiting Dome Height Testing 

The limiting dome height (LDH) test was performed according to the procedure in Chapter 3 for stretch 

forming. The dimensions of the biaxial TWBs with different weld locations and the plane strain TWBs 

with the different weld orientation are discussed in this section. 

 

4.1.1 Weld Line Positions: Biaxial Stretch Forming 

Five different weld line positions were studied with HSLA kept consistently on the right and DP steel 

on the left, shown in Figure 4.1. The biaxial blanks had a dimension of 200 mm x 200 mm and dotted 

guidelines were drawn to help identify the pole of the blank, and helped in aligning the blanks with the 

limiting dome height testing equipment. The centreline parallel to the weld line is referred to as the 

vertical centreline and the line normal to the weld is the horizontal centreline. The purposes of the 

centrelines were to assess the weld line position with respect to the vertical centre and to assist in 

aligning the blank to the die before forming.  

Figure 4.1 shows the representative dissimilar materials combination TWBs (DP600-HSLA) with 

different weld locations. The other dissimilar materials combination TWB (DP980-HSLA) studied 

followed the same naming convention. The signs in front of each weld position indicate the side the 

weld line is on i.e. the negative numbers indicate that the weld is on the left side of the pole with more 

HSLA than DP steel in the TWB and positive numbers indicate less HSLA and more DP steel. The 

numbers refer to the distance away from the pole in mm. 

Before testing these TWBs, parent unwelded blanks with the same dimensions were tested with 

the same conditions to determine if equi-biaxial stretch forming was achieved. The strain distribution 

patterns also showed areas of high strain concentration, i.e. where necking would likely occur. The 

results are shown the true strain distribution patterns of the parent materials for DP980, DP600 and 

HSLA steels in Figure 4.2.  
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Figure 4.1 Biaxial TWBs with the weld placed a) -30 mm, b) -15 mm, c) 0 mm, d) +15 mm, and e) +30 mm 

offset from the centre 

 

 

Figure 4.2 Strain distribution of the base unwelded metal in biaxial stretch forming a) DP980, b) DP600, 

and c) HSLA 
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These strain profiles showed that the major and minor strains were uniform and well 

developed, which indicated that the formability of these unwelded specimens was good. In addition, 

the major and minor strains were close together, which indicates biaxial stretch forming was achieved. 

 

4.1.2 Weld Orientation: Plane Strain Stretch Forming  

As mentioned in the literature review, plane strain stretch forming condition occurs when the minor 

strain is zero. Over 80% of failed stamping operations have been found to involve in this mode of 

deformation [81]. Therefore, the effect was studied of this mode of stretching on the formability of 

dissimilar materials. The dimensions of these TWBs, which results in near plane strain stretch forming 

under dry (no lubrication) condition, was determined after several trials of experimenting with various 

blank widths. The TWBs dimensions 120 mm x 200 mm were fabricated. The parent unwelded blanks 

were tested and the strains were plotted. Figure 4.3 shows the strain distribution profiles of the near 

plane strain stretched blanks, confirming that the minor strain was very close to zero. 

 

Figure 4.3 Strain distribution of the plane strain TWBs the base unwelded material a) DP980, b) DP600, 

and c) HSLA 
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Figure 4.4 Plane strain TWBs with different weld orientations a) longitudinal TWB, and b) transverse 

TWB 

 

Therefore, the dissimilar combination TWBs were created for two weld line orientations. 

Figure 4.4 shows the two weld orientations studied. Figure 4.4 a) shows the longitudinal weld, where 

the weld is parallel to the major strain direction and Figure 4.4 b) shows the transverse weld, where the 

weld is perpendicular to the major strain direction.   

 

4.2 Hardness Measurements 

Figure 4.5 shows the hardness profiles of DP600-HSLA (Figure 4.5 a)) and DP980-HSLA 

(Figure 4.5 b)) TWB welds. These profiles were obtained from an average of three rows of indentations 

across weldments of DP600-HSLA and DP980-HSLA. Figure 4.5 a) shows the increased hardness 

value (averaged 347±17 HV) measured in the FZ of the DP600-HSLA TWB. The HAZ was 

characterized by the hardness values (350 HV for the DP600 steel side and 374 HV on the HSLA steel 

side) close to the fusion zone line and by a decreasing hardness along the HAZ towards their respective 

base metal. Interestingly, softening in the DP600 was not observable in the hardness profile.  
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a)  

b)  

Figure 4.5 Vickers hardness profiles of dissimilar materials TWB: a) DP600-HSLA, and b) DP980-HSLA 

 

The hardness profile of DP980-HSLA is shown in Figure 4.5 b). The average hardness in the 

FZ of this specimen was 363±27 HV whilst the DP980 steel base metal hardness was measured to be 

~363 HV and the HSLA steel base metal was ~220 HV. In addition, severe softening was observed in 

the HAZ of the DP980 steel in contrast, to the unobservable softening in DP600 steel. The peak 
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softening observed in the DP980 steel HAZ was measured to be 258±3 HV.  This trend observed in the 

hardness profiles was also seen in [27]. The general failure location during forming could be 

determined by examining the hardness profile across the weldment. Areas of low hardness results in 

strain concentrating in that area and failure to occur there. Low hardness indicates low strength of the 

material, when forming, this area of low hardness will fail first [43]. From the hardness profiles shown 

in Figure 4.5, it was expected that failure would happen in the HSLA steel for the DP980-HSLA 

TWBs, since HSLA is the weaker material. The HSLA steel, being weaker than the softened area of the 

DP980 HAS was expected to deform more and be the location of failure [27,43,44]. 

 

4.2.1 Uniaxial Tensile Test 

Necking and fracture during the uniaxial tensile test for all the transverse TWB specimens occurred at 

the HSLA steel side. The failure location was dependent on the material combination and the weld 

location as shown in Figure 4.6. Figure 4.6 shows the representative tensile specimens for the tests with 

different weld locations. 

Both DP600-HSLA and DP980-HSLA tensile TWBs showed similar trends of failure 

occurring in the HSLA steel.  During deformation, the weld beads did not crack or fracture; this 

indicated that the welds were sound. In addition, failure did not occur in the softened region of the DP 

steel, which indicated that softening did not influence the deformation of the TWBs in tensile testing. 

This is confirmed that HSLA steel had a lower strength than the softened zone in the DP steels seen in 

Figure 4.6. 

The comparison of the engineering stress-strain diagram of the transverse laser welded blanks 

where the weld location was the middle, with those of the three parent metals is shown in Figure 4.7. In 

this figure, the strength of the laser welded blanks was comparable to the HSLA steel parent material; 

however, the % elongation decreased as the weld line was placed towards the positive side, i.e. where 

there was less HSLA steel available, shown in Figure 4.8. 
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Figure 4.6 Deformed tensile specimens with different weld locations 

 

 

Figure 4.7 Engineering stress-strain graph of TWB (weld position at the middle) and parent materials 
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Figure 4.8 %elongation of tensile specimens with different weld position for DP600-HSLA, and 

DP980-HSLA 

 

Figure 4.8 shows the % elongation of the different TWBs for DP600-HSLA and 

DP980-HSLA. As the weld line shifted from -30 mm offset to +30 mm offset, the elongation of the 

TWBs decreased. This trend was consistent with both types of TWBs; as the amount of HSLA steel 

decreased so did the elongation. Therefore, the amount of HSLA steel influences the elongation 

(deformation) of these TWBs. From this figure, during tensile deformation of these specimens, the 

stronger side (DP600 and DP980 steels) experienced negligible deformation. HSLA steel being the 

weaker material contributed the majority of the plastic deformation. The negligible deformation in the 

DP steel was due to the higher UTS and strength coefficient (K) compared to HSLA sheet steel.  

 

4.2.1.1 Uniaxial Strain Distribution  

The strain distribution profiles of the tensile TWBs showed the strain experienced by the tensile 

specimens during deformation. These profiles also exhibited the forming behaviour of the tensile TWB 

specimens for DP600-HSLA and DP980-HSLA. 
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a)  

 b)  

Figure 4.9 Major-strain distribution profiles of uniaxial tensile specimens with different weld locations: 

a) DP600-HSLA, and b) DP980-HSLA 
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Figure 4.9 shows the major strain distribution profiles of DP600-HSLA (Figure 4.9 a)) and 

DP980-HSLA (Figure 4.9 b)) tensile specimens with different weld line positions. As shown in these 

figures, as the weld line shifted from left to right, the amount of HSLA steel decreased, the major strain 

concentration peak (location of necking) shifted along with the weld position. The major strain 

concentrations were all located on the HSLA steel side, which corresponded with the necking locations 

on the specimen. Also, shown in this figure is the tail (trailing end) of the strain distribution pattern, 

which indicates the strain in the DP steel. From the minimal strain shown, there was negligible 

deformation in the DP steel and all deformation was in the HSLA steel; hence, the % elongation 

decreased (Figure 4.8). Both figures show the same trend of negligible strain in the stronger DP steel 

and most of the deformation in the HSLA steel.  

 

4.3 Fracture Observations  

4.3.1 Failure Locations 

4.3.1.1 Biaxial Stretch Forming  

The biaxial strain stretch formed specimens with different weld locations for DP600-HSLA and 

DP980-HSLA are shown in Figure 4.10 and Figure 4.11, respectively. The failure locations were 

identified on each TWB with arrows. Figures 4.10 a)- e) show failure occurred across the weld or in the 

HSLA steel and not on the DP600 steel side, ranging from 8-15 mm (Figures 4.10 c)- d)) away from 

the weld line. Failure did not occur in the softened region; consequently, the soft zone did not 

contribute to the failure these TWBs. Figure 4.11 shows the deformed DP980-HSLA TWBs with 

different weld line positions. Figure 4.11 a) shows the -30 mm specimen where failure occurred across 

the weld; while Figures 4.11 b) - e) show that the failure occurred on the HSLA steel side. The failure 

on the HSLA steel was parallel to the weld line position and very close to the weld (i.e. 3-5 mm). In all 

the specimens examined, failure did not occur in the soft zone in the DP980 steel side (see 

Figure 4.5 b) for the hardness profile); thus, indicating that the lower strength of HSLA affected the 

formability more than the softened region of the DP980 steel.  

Comparing the failure locations in Figure 4.10 to Figure 4.11, the fractures occurred closer to 

the weld line in the DP980-HSLA TWB than in DP600-HSLA TWB. The closeness of the fracture 

location in the tailored blank was the result of the larger material properties difference in DP980 and 

HSLA steels compared to DP600 and HSLA steels.  
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Figure 4.10 Deformed DP600-HSLA biaxial specimens with different weld positions a) -30 mm, b) -15 mm, 

c) 0 mm, d) +15 mm, and e) +30 mm offset from centre 

 

 

Figure 4.11 Deformed DP980-HSLA biaxial specimens with different weld positions a) -30 mm, b) -15 mm, 

c) 0 mm, d) +15 mm, and e) +30 mm offset from centre 
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4.3.1.2 Plane Strain Stretch Forming  

The plane strain stretch formed TWBs are shown in Figure 4.12 with the fracture locations: TWBs with 

longitudinal and transverse weld orientations for DP600-HSLA in Figures 4.12 a) - b) and 

DP980-HSLA in Figures 4.12 c) - d), respectively. In the longitudinal weld orientations, 

Figures 4.12 a) and c) failure occurred across the weld – fracture mode I; while in the transverse weld 

orientation, Figures 4.12 b) and d), failure occurred in the HSLA base metal – fracture mode II. Failure 

occurred across the weld in plane strain stretch forming for the longitudinal TWBs because the major 

strain direction was parallel to the weld line i.e. the weld was being stretched. The formability of a 

longitudinal TWB thus depends on the ductility of the weld line. On the other hand, failure occurred in 

the base metal in the transverse orientation because the weld line was normal to the major strain 

direction, which caused the base materials to deform. Also, the FZ at the pole experiences much less 

deformation, which will be discussed in the strain distribution section. In the case of dissimilar material 

combinations, the weaker material HSLA steel failed first as strain concentrated in this area. From 

these observations, the formability of transverse weld orientation TWBs is dominated by the 

formability of the weaker material, while the weld ductility dominated in the longitudinal weld 

orientation TWBs. 

 

Figure 4.12 Deformed plane strain TWBs a) DP600-HSLA longitudinal TWB, b) DP600-HSLA transverse 

TWB, c) DP980-HSLA longitudinal TWB, and d) DP980-HSLA transverse TWB 
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4.3.2 Fracture Modes 

The fractures of the specimens in biaxial stretch forming and plane strain stretch forming for the 

longitudinal and transverse weld orientations are shown in Figure 4.13, Figure 4.14 and Figure 4.15, 

respectively. Each figure is composed of three parts: a) the macrostructure of the cross-section at the 

failure location; b) the optical microscope image of the microstructure beside the failure; and c) the 

SEM image of the fractured surface. 

 

4.3.2.1 Biaxial Stretch Formed Specimens 

Figure 4.13 a) shows the general fracture appearance of the TWB in the HSLA steel a few millimetres 

from the fusion zone (the dissimilar TWB combination shown is DP980-HSLA).  

 

Figure 4.13 Representative images of the biaxial stress forming specimen showing a) cross section 

macrostructure at the failure location, b) microstructure at the tip of failure, and c) fracture surface 
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Shown in this figure is the necking observed at the failure and the reduction in the sheet 

thickness at the tip. This reduction was approximately 75% and the final thickness was 0.27 mm beside 

the tip. Figure 4.13 b) shows the magnified failure area of the deformed HSLA steel at the region of 

necking. This figure shows clearly elongated α-grains and dark second phase particles. The second 

phase particles appeared to be aligned to the prior rolling direction of the sheet. Figure 4.13 c) shows 

the fracture surface under SEM. Observable cup-like depressions in this figure indicate dimple fracture 

mode. The dimples appeared to be equiaxed and their distribution was uniform along the fractured 

surface. The appearance of dimples is characteristic in ductile fracture and this mode of fracture is 

predominating in biaxial stretched specimens for both dissimilar materials TWBs (DP600-HSLA and 

DP980-HSLA). The initiation of the fracture may be started by the second-phase particles in the HSLA 

steel sheet as is typically found in this type of fracture [82,83]. 

 

4.3.2.2 Transverse Plane Strain Stretch Specimens 

Figure 4.14 a) shows a macrograph of the transverse plane strain stretched specimen (DP600-HSLA 

combination, but also representative for DP980-HSLA combination). Failure in this figure showed 

necking on the HSLA steel side and the thickness reduction of this necking region was 70% (i.e. 

0.36 mm at the tip). A closer look at the material adjacent to the fracture, showed elongated α-grains 

and second-phase particles as illustrated in Figure 4.14 b). While the fracture surface in Figure 4.14 c) 

revealed the presence of dimples; these dimples were sparsely distributed along the apparent sheared 

surface. Despite the presence of dimples in the transverse plane strain TWB, the observable sheared 

surface indicated a distinct difference in failure mechanism when compared to the biaxial strain 

stretched TWBs. 
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Figure 4.14 Representative images of the transverse plane strain forming specimen showing a) cross 

section macrostructure at the failure location, b) microstructure at the tip of failure, and c) fracture 

surface 

 

4.3.2.3 Longitudinal Plane Strain Stretch Formed Specimens 

The fracture mechanism in the longitudinal plane strain stretch formed specimens was similar in both 

the dissimilar materials combination conditions (DP600-HSLA and DP980-HSLA). A representative 

figure is used; the representative dissimilar combination TWB used was DP600-HSLA. 

The failure location in the longitudinal plane strain TWB was in the FZ as seen in 

Figures 4.15 a) and b). The macrostructure in Figure 4.15 a) did not reveal any apparent necking. The 

fracture in this specimen appeared to propagate from a 45 degree path angle with respect to the sheet 

surface. Failure initiated in the fusion zone and extended through the HAZ and then through to the base 

metal seen in Figures 4.12 a) and c). The optical microscopy image of the fusion zone microstructure 
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Figure 4.15 b), which was beside the fracture location, exhibited mainly martensite, some bainite phase 

and also some fractions of ferrite side plate, allotriomorph structure. The fracture surface of the 

longitudinal plane strain stretch specimen showed few shallow dimples and a large number of trans-

granular cleavage-shaped fractured regions [84]. The trans-granular fracture was observable at the edge 

of the fracture as shown in Figure 4.15 b). 

According to the observations in this section it is possible to infer that fracture mode of the 

stretched formed TWBs is dependent on the weld orientation and strain state (biaxial or plane strain) 

caused by the different forming test constructions. 

 

Figure 4.15 Representative images of the longitudinal plane strain forming specimen showing a) cross 

section macrostructure at the failure location, b) microstructure at the tip of failure, and c) fracture 

surface 
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4.4 Limiting Dome Height  

4.4.1 Effect Of Material Properties On Weld Location 

Figure 4.16 shows the comparison of the LDH of the biaxial TWBs with different weld locations for 

DP600-HSLA and DP980-HSLA. All the welded specimens showed lower LDH than the base metal, 

this effect was due to the presence of the weld zone and the different material properties of the TWB. 

The difference in the material properties led to non-uniform deformation, where the larger the material 

properties difference between the parent materials the lower the formability, as seen in the 

DP980-HSLA TWBs compared to the DP600-HSLA TWBs.  

 

Figure 4.16 LDH of the biaxial TWBs with different weld positions for DP600-HSLA, and DP980-HSLA 

 

Another trend shown in this figure is that as the weld position shifted from the extreme 

(±30 mm offset) to +15 mm the LDH decreases by 27-33% in the DP600-HSLA combinations. In the 

case of the DP600-HSLA TWBs the LDH values of the specimens placed at the extremes (-30 mm and 

+30 mm) had comparable LDHs. The weld positions that showed the lowest formability occurred in the 
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TWBs with the weld positions closest to the centre (-15, 0 and +15 mm offset) with LDH of 23 mm to 

24 mm. Comparatively, DP980-HSLA showed the lowest LDH at weld position +15 mm. The LDH 

increased significantly in this combination when the weld line was placed at -30 mm away from the 

vertical centreline; the increase was 147.7% compared to the TWB with weld position +15 mm. This 

result indicates that weld line location affects the formability of dissimilar TWBs significantly and 

placing the weld furthest from the pole results in improved formability. In spite of this, the amount of 

increase in the formability with respect to weld position is dependent on the material combination.   

 Since, there was a change in the LDH as the weld positions shifted; it was likely that the load 

carrying capacity of each TWB changed. Thus, the load progression curve for each TWB was 

investigated. The effect of the material combination on the load progression of the different weld 

location TWB during biaxial stretch forming for DP600-HSLA and DP980-HSLA TWBs is shown in 

Figures 4.17 a) and b). In both figures, the load progressions of the laser welded blanks were within the 

parent materials (DP600, DP980, and HSLA steels) load progression curves. Moreover, the slope of the 

curve depended on the amount of DP600/HSLA and DP980/HSLA in the TWB. The peak load 

depended on the slope of the curve as well as the dome height achieved.  The biaxial stretching load 

progression curves and the LDH of the laser welded blanks with the different weld locations did not 

correspond to the uniaxial tensile percentage elongation (Figure 4.8).  Consequently, due to the 

inconformity of the uniaxial percent elongation to the biaxial LDH, the uniaxial tensile test is not a 

good indicator of the actual press performance of the laser welded blanks. In a previous finding by 

Heo et al [66], the formability in deep draw decreased as the weld line shifted away from the centre.  

The reasons why the uniaxial tensile test is not a good indicator of formability are: (1) during the 

uniaxial tensile test, the specimen is stretched in one direction only; and (2) only one material is 

deformed in the dissimilar materials TWB, unlike the LDH test where both materials are being 

deformed. Therefore, the LDH is a better indicator of formability; however, it does not reveal the 

forming behaviour of the TWB. Therefore, the strain distribution patterns are discussed later as part of 

the effects of the weld placement on the formability. 
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a)   

b)  

Figure 4.17 Load progression curves of TWBs with different weld line positions: a) DP600-HSLA, and 

b) DP980-HSLA 
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4.4.2 Effect Of Weld Orientation And Strain Path (Strain Ratio) 

The LDH of the plane strain stretch formed TWBs with different weld orientations are compared to the 

parent unwelded materials in Figure 4.18. 

 

Figure 4.18 LDH of the plane strain TWB with different weld orientations for DP600-HSLA, and 

DP980-HSLA 

 

First, all of the plane strain stretched specimens had a lower LDH when compared to the biaxial stretch 

formed specimens. This decrease in LDH is due to the lower forming limit during plane strain 

condition [85], which induces different fracture morphology (shown in Figures 4.14 and 4.15 and 

compared to the biaxial stretch mode Figure 4.13). Second, the lowered LDH of the welded blank 

when compared to the parent material in the plane strain stretch formed condition was due to the 

presence of the weld and the difference in the material properties. Finally, observable in this figure, the 

longitudinal and transverse weld orientations LDH of DP600-HSLA were similar at ~18 mm (the 

difference in LDH was 1.54%); however, in the DP980-HSLA TWBs, the LDH of the longitudinal 

weld (at 14.79 mm) was significantly lower by 20% than the transverse weld (at 18.49 mm). The 
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similarity of the formability in the DP600-HSLA combination maybe attributed to the similar material 

properties; hence, the effect of the weld orientation was insignificant compared to the weld location on 

the formability of the dissimilar TWBs. Weld orientations significantly affected the formability of the 

DP980-HSLA TWBs and the decrease was attributed to the large difference in the material properties 

in the laser welded blanks. The difference in material properties in the DP980-HSLA combination 

increased the hardness of the weld zone, Figure 4.5, which also decreased the ductility of the weld. 

Thus, when the weld was being stretched in the longitudinal condition early failure occurred and gave a 

lower formability compared to the higher LDH in the transverse TWB due to the large material 

properties.  

The load progression curves of the plane strain stretched dissimilar tailored blanks are shown 

in Figure 4.19. The similarity of the DP600-HSLA TWBs with the different weld orientations is 

reflected in the load progression curves in Figure 4.19 a). The load progression curves of the 

DP980-HSLA TWBs are shown in Figure 4.19 b). The load carrying capacity of the longitudinal 

DP980-HSLA TWB was significantly lower than the transverse DP980-HSLA TWB. Hence, the weld 

line should be oriented transversely to the major strain direction when stretching DP980-HSLA 

combinations in TWBs. 
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a)  

b)  

Figure 4.19  Load progression curves of plane strain TWB specimens: a) DP600-HSLA, and 

b) DP980-HSLA 
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4.5 Strain Distribution  

The strain distribution profile indicates the forming behaviour across the TWB. These profiles are 

composed of the major and the minor strain on the dome plotted with respect to the pole. The strain 

paths with respect to the experimental FLDs of the parent materials are shown in Appendix B. 

 

4.5.1 Biaxial Stretch Forming 

The major and minor strain distribution profiles across the deformed TWBs at different weld locations 

for DP600-HSLA and DP980-HSLA are shown in Figure 4.20 and Figure 4.21, respectively. In both 

dissimilar TWB combinations (DP600-HSLA and DP980-HSLA) non-uniform strain distribution was 

observed when the weld was placed near the centre (Figures 4.20 b)- d) and Figures 4.21 b)- e)). The 

most non-uniform distribution pattern in DP600-HSLA and DP980-HSLA TWBs occurred when the 

weld position was at the +15 mm offset location, Figure 4.20 d) and Figure 4.21 d), respectively. As 

seen in all the specimens with the weld positions -15 mm, 0 mm and +15 mm, the weaker material, 

HSLA steel, deformed more compared to the stronger DP steel during the forming process.  The 

concentration of the peak strain that led to failure occurring on the HSLA steel side. The strains of 

these laser welded blanks were unlike the parent material strain distribution in biaxial and plane strain 

stretch forming shown in Figure 4.3 and Figure 4.4, which showed uniform strain distribution.  
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Figure 4.20 Strain distribution patterns of DP600-HSLA TWBs with different weld locations 
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Figure 4.21 Strain distribution patterns of DP980-HSLA TWBs with different weld locations 

 

 

The major strain distribution patterns of the TWBs with the weld position of -30 mm offset 

(Figure 4.20 a) and Figure 4.21 a)) were more uniformly distributed. In addition, the minor strains were 
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well developed indicating a strain path that was more equi-biaxial during deformation when compared 

to having the weld at the centre of the blanks. For this reason, the LDH at the weld position -30 mm 

was higher than those of the tailored blank with the weld at the centre. As to the weld position +30 mm 

offset from the centre of the TWB, uniform strain distribution with well developed minor strain 

occurred in the DP600-HSLA combination, Figure 4.20  e). In contrast, the major strain distribution 

was non-uniform in the DP980-HSLA combination with the weld at +30 mm, Figure 4.21 e). The peak 

strain in the DP980-HSLA combination occurred in the HSLA steel and the minor strain at less than 

0.1. The strain in the DP980 steel was limited. With more DP980 steel than HSLA steel material and 

the large difference in the materials properties (unlike the DP600-HSLA combination) the LDH and 

strain distribution were both limited.  

Therefore, the strain distribution and LDH of dissimilar material combinations is dependent on 

the weld position and the material properties of the TWB. The larger the material properties difference 

in the TWB, the lower the formability. Hence, it is desirable to keep the amount of stronger material in 

the blank low to get a laser welded blank with higher formability. 

 

4.5.2 Plane Strain Stretch Forming 

The major and minor strain distribution of the plane strain TWBs (with a blank width of 120 mm) with 

different orientations (longitudinal and transverse) for DP600-HSLA and DP980-HSLA combinations 

are shown in Figure 4.22. In the profiles seen in Figure 4.22, the minor strains were close to zero 

similar to the parent materials stretched in plane strain condition in Figure 4.3.  

The strain profile along the weld line in the longitudinal weld TWB of DP600-HSLA is shown 

in Figure 4.22 a). The peak strains in this figure were comparable on both sides and there was 

negligible strain at the pole, since the major strain was close to zero.  Conversely, the strains in the 

transverse tailored blank for DP600-HSLA Figure 4.22 b) showed that there was more strain in the 

HSLA steel than in the DP600 steel. Comparatively, the strain distribution profiles of the 

DP600-HSLA longitudinal TWB and the DP600-HSLA transverse TWB (Figures 4.22 a) and b)) were 

similar. Therefore, the LDH of the longitudinal specimens was comparable to the transverse specimens. 

While comparing the strain distribution of the DP980-HSLA longitudinal specimen to the 

transverse specimen (Figures 4.22 c) and d)), there was only one peak in the longitudinal TWB with 

insignificant amount of strain elsewhere along the weld. In the DP980-HSLA transverse specimen 

there was more strain due to the presence of another minor peak in the DP980 steel. This peak 
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indicated that there was some deformation in the DP980 steel side, which resulted in the higher LDH 

when compared to the longitudinal DP980-HSLA specimen. This difference in LDH also indicated the 

influence of weld orientation. 

 

Figure 4.22 Strain distribution patterns of TWBs with different weld orientations for DP600-HSLA, and 

DP980-HSLA 
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4.6 Summary  

Welding DP steel causes the formation of a soft zone and reduces the formability of the welded blank, 

but combining DP steel with HSLA steel improves formability [27]. In this study, the effect of weld 

line position and weld orientation on dissimilar materials TWB (DP600-HSLA and DP980-HSLA) on 

formability was investigated. It was found that despite the materials combination or the severity of 

softening in DP980 steel compared to DP600 steel, failure occurred in the HSLA steel and changing 

the weld position did not cause failure to occur in the DP steel. However, weld position affected the 

formability of the TWB, especially in the TWBs with similar materials properties. The decrease in 

formability was observed in the forming behaviour indicated by non-uniform strain patterns. When 

changing the stretching mode to plain strain stretch forming, it was found that effect of weld 

orientation was negligible when the materials properties of the TWB were similar. This was observed 

in the forming behaviour, where the strain profiles were similar for the longitudinal and transverse 

TWB for DP600-HSLA. In addition, analysis of the fracture topography may imply a change in the 

formability (forming mode) of the blank. 
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CHAPTER 5 

5 EFFECT OF CURVILINEAR SEAMS WITH DIFFERENT WELD 

POSITIONS ON FORMABILITY 

Chapter 4 explored the effects of weld line position and orientation on the formability of dissimilar 

TWBs. In this chapter the effects of weld geometry and weld placement on HSLA, DP600, and DP980 

steels are explored. In most past research, the weld geometry studied was focused on linear welds as 

used in TWB applications. For applications that benefit from nonlinear welds, manufacturers have 

generally used multiple welds to accommodate the blank fit up without the welding complexity of a 

nonlinear/curvilinear weld. One potential disadvantage of this method is the occurrence of a blow-hole 

or comparable process defect at the inflection point where two welds meet; hence, the study of 

non-linear or curvilinear welded TWBs is considered important. Therefore, the work recorded in this 

chapter investigates the effect of curved welded blanks on formability and compares it to straight 

welded blanks at different weld locations for HSLA, DP600, and DP980 steels.   

 

5.1 Limiting Dome Height Testing  

The curvilinear bead-on plate blanks had dimensions of 200 mm x 200 mm. The welds had a radius of 

curvature of 220 mm as shown in Figure 5.1. The testing of these blanks was done according to the 

procedure described in Chapter 3. The curvilinear seam was placed at distances, 0 mm, 15 mm, and 

30 mm to the right of the centre. In the figure, the left (concave) side of the curvilinear seam was 

labelled the inner region and the right side of the weld was labelled the outer region for simplified 

reference. During welding, each sheet was clamped in a custom fixture where the bottom opening for 

the back shielding gas was 40 mm in width, shown in Figure 3.9. The welding speed used was 

0.85 m/min to ensure full penetration. 
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Figure 5.1 Curvilinear welded TWB  

 

5.2 Hardness Measurements And Microstructures 

The cross section specimens used for the hardness profiles were taken as sections normal to the local 

weld path, near the horizontal arrow shown in Figure 5.1. The hardness profiles of the curvilinear 

welded HSLA, DP600 and DP980 sectioned blanks are shown in Figures 5.2 a), b), and c), respectively 

and Figure 5.2 d) illustrates a representative cross-sectional macrograph (DP980).  The macrograph 

illustrates the different regions of the weldment, such as the FZ, HAZ and the base metal (BM). It 

should be noted that the left side of the cross-sectioned weldment (with respect to the FZ as the 

baseline), in Figure 5.2 d) corresponds to the inner region of the bead-on plate seam curvilinear weld 

shown in Figure 5.1.  

Figure 5.2 a) shows the typical pattern of weld hardness for HSLA. The average FZ hardness 

value measured was 246±5 HV in the HSLA steel. The HAZ was characterized by the relatively high 

(but lower than the FZ) hardness value of ~245 HV close to the fusion zone line and then followed by a 

drop in hardness in the HAZ toward the base metal. The base metal hardness was measured at an 

average of 179±2 HV. The extent of the HAZ in the HSLA steel in the inner region compared to the 
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outer region was 14% longer (at 3.2 mm and 2.8 mm, respectively). Softening was not observed in the 

HAZ of the hardness profile of the HSLA.  

 In the DP600 steel weld cross section, the measured hardness average at the FZ was 

approximately 330 HV. The HAZ was characterized by high hardness values (i.e., approximately 

320 HV) close to the fusion zone line and by a decreasing hardness along the HAZ towards the base 

metal. Within the HAZ there was a slight reduction in hardness (softening) with respect to the base 

metal. The base metal hardness averaged at 200 HV, while the peak softening value on the inner region 

was ~188 HV and the peak softening value on the outer region was ~191 HV. The total extension of 

the HAZ and softening region varied according to the location of the indentations across the weld. The 

extension of the HAZ on the left side of the profile is longer than the right side HAZ (Figure 5.2 b)) 

similar to the HSLA steel. For instance, the extension of the softening region on the left side (~3 mm) 

was 33% longer than that of the right side (~2 mm).  

Figure 5.2 c) shows the hardness profile of the DP980 steel weldment; the average measured 

hardness in the FZ was 386±22 HV, whereas, the BM hardness was measured to be 335±5 HV. The 

softening in the HAZ of the DP980 steel was severe in contrast to the softening in DP600 steel 

(Figure 5.2 b)). Notably, the peak softening was larger on the left side (210±3 HV) compared to the 

right side (221±3 HV) of the DP980 steel. In terms of the HAZ length, the DP980 steel (Figure 5.2 c)) 

showed a similar trend as the DP600 steel, i.e. the extent of the softened region for DP980 steel was 

~8 mm on the inner region whereas the extent of the softened region on the outer region was ~5 mm on 

the hardness profile. The difference in the widths of softened region was ~38%. This trend regarding 

the extent of the HAZ is shown in the macrograph of the cross-sectioned DP980 steel weldment in 

Figure 5.2 d).    

It is clear from these results that curvilinear seam weld had a significant effect on the extent of 

the HAZ, seen in the hardness profiles of HSLA, DP600, and DP980 steels (Figures 5.2 a) to c), 

respectively). Although, softening was not observed in the HSLA steel, the extent of the HAZ in the 

inner region was longer than the outer region. The extent of the softened region in both the DP steels’ 

hardness profiles was longer in the inner region of the curvilinear seam welded blank. More 

importantly, the maximum softening in both DP steels was observed in the inner region of the 

curvilinear seam welded blank. It is very probable that these two effects (the extent/width of the HAZ 

and the severity of the softened region) might be caused by the increase in heat/thermal cycle and heat 

distribution due to the geometry of the weld. The curvature of the weld could cause the heat to 
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concentrate in the inner region whereas in the outer curvature region there is a larger area for heat 

dissipation because heat transfers in the radial direction for curved geometries [86]. 

a)  

b)  

c)  

d) 

 

Figure 5.2 Vickers hardness profiles of curvilinear welds: a) HSLA steel, b) DP600 steel, c) DP980 steel, 

and d) macrograph of cross-section (DP980) 
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5.3 Strain Distribution Profiles  

The strain distribution profiles show the forming behaviour observed across the deformed TWBs. 

These profiles show areas of high strain concentrations, the amount of deformation at the pole and the 

effect of the weld on the overall forming behaviour. To understand the effect of the curvilinear weld, 

the strain profiles of the curved weld were compared to the strain profiles of comparable straight welds 

for the same material and weld position. 

Figures 5.3, 5.4, and 5.5 show the strain distribution profiles for HSLA, DP600, and DP980 

steels at different weld placements. Each figure is divided into six parts:  a) to c) show the strain 

profiles of the straight line welds at different weld locations; and  d) to f) show the strain profiles of the 

curvilinear welds at the comparable locations.  

In all the strain profiles of the HSLA steel blanks in Figure 5.3, the major and minor strains 

were found to be very close, indicating biaxial stretch forming condition. The strain profiles of the 

curvilinear blanks were similar to the straight line blanks in terms of the strain distribution, amount of 

strain at the pole, and peak strain locations. The peak strains in the HSLA steels were located 

approximately 15-20 mm away from the weld. The similarity between the strain profiles at the 

respective weld placements indicated that the weld geometry did not significantly influence the 

formability of the welded blanks. Also, noticeable from these figures was the change in the amount of 

strain as the weld position shifted. The strain profiles were best developed i.e. had the highest strain 

occurring, when the weld was shifted away from the pole.  

The strain distributions in Figure 5.3 (despite weld geometry)  for welded HSLA steel at weld 

positions 0 mm and 30 mm show twin peaks similar to the parent unwelded HSLA steel (Figure 4.2) 

and the peak locations were also similar. The strain profile most resembled the unwelded HSLA steel 

was when the weld position was placed 30 mm from the pole. It is likely that the similarity was due to 

the weld being placed far from high strain locations; hence, the formability of the blank with weld 

position 30 mm was similar to the parent unwelded material.  

Figure 5.4 shows the strain profiles of the welded DP600 steel. The strain distribution profiles 

of the straight line welds were generally similar, shown in Figures 5.4 a) to c). The strain profiles for 

the straight line weld position at 0 mm and 15 mm were similar. However, when the weld was at 

30 mm from the pole, the amount of strain increased as did the strain at the pole indicating that the 

formability of the blank with weld position farthest from the pole gave the best formability. The shapes 

of all the straight line welded blank profiles at different weld locations resembled the parent unwelded 

DP600 steel (Figure 4.2); but, the height (the amount of strain) of the profiles were lower. This 
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indicated that the formability of welded DP600 steel was lower than the parent unwelded blank. The 

strain distribution profiles of the curvilinear welds when the welds were placed 0 mm and 15 mm from 

the pole gave similar non-uniform strain profiles. These profiles showed the peak strains on the left of 

the pole in the inner region of the blank and within the softened region as shown in Figure 5.2  b).  The 

curvilinear welded blank with weld position 30 mm from the pole showed an increase in the overall 

strain and the strain at the pole when the weld was shifted to the farthest position indicated that the 

formability of the curvilinear welded blank was affected by weld position.  

The DP600 strain profiles for the curvilinear welded blank with weld position close to the 

centre differed from the profiles of the linear welded blanks in terms of overall amount of strain 

measured and the strain at the pole. The amount of strain on the outer region (right side of the weld) 

was also reduced when compared to the linear welded blanks at similar weld positions. However, the 

strain profile of the 30 mm offset DP600 curvilinear welded blank was similar, but not as developed as 

the linear welded blank at the comparable location. These observed strain behaviours indicated that the 

weld geometry affected the formability of the DP600 welded blanks unlike the case of HSLA steel as 

shown in Figure 5.3. Moreover, even though the strain profiles of the parent unwelded DP600 and 

HSLA steels were very well-developed (Figure 4.2), the strain profiles of the welded DP600 steels 

were not as well-developed as the welded HSLA steels. This indicated that the formability of the weld 

affected DP600 steel more than HSLA steel, since welding created softening in the HAZ of the DP600 

steel shown in Figure 5.2, which was not present in the HSLA steel.  

Figure 5.5 shows the strain profiles of the welded DP980 steel blanks. These profiles show that 

the amount of strain present in welded DP980 steel was low despite the weld geometry, with the 

smallest strain magnitudes at the 15 mm location. The limited strains in welded DP980 steel were also 

seen in dissimilar material combination TWBs in Figure 4.11. When these DP980 steel strain profiles 

were compared to the HSLA steel (Figure 5.3) and DP600 (Figure 5.4), welded DP980 steel showed 

the lowest formability and the cause of this was attributed to the effect of the softening seen in the 

hardness profile in Figure 5.2 c). 

Therefore, according to the strain distribution profiles of the welded steels only DP600 steels 

showed a significant effect of weld geometry on the formability. Both welded HSLA and DP980 steels 

showed comparable strain profiles in the straight-line welded blanks as compared to the curvilinear 

welded blanks. In HSLA steel, weld geometry did not affect formability [18]; while HAZ softening 

effects dominated over the weld geometry effects in terms of formability in DP980 steel [38,39,60,61]. 
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Figure 5.3 Strain distribution profiles of HSLA linear and curvilinear welded blanks with different weld 

placements 
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Figure 5.4 Strain distribution profiles of DP600 linear and curvilinear welded blanks with different weld 

placements 
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Figure 5.5  Strain distribution profiles of DP980 linear and curvilinear welded blanks with different weld 

placements 
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5.4 Fracture Locations   

The biaxial strain stretch formed linear welded blanks and curvilinear weld blanks in HSLA, DP600, 

and DP980 steels with different curve weld positions (0, 15, and 30 mm from the centre of the blank) 

are shown in Figures 5.6, 5.7 and 5.8, respectively. The curvilinear welded blanks are all displayed 

with the inner region on the left side and the outer region on the right side like in the blank shown in 

Figure 5.1.  

The failure locations were indicated in each specimen. The failure locations in the linear 

welded HSLA blanks were located either across the weld (Figure 5.6 a)) or in the base metal 

(Figures 5.6 b) and c)). The failure location in all of the HSLA steels was located 10-20 mm away from 

the pole in Figures 5.6 a) and c). These failure locations were consistent with the high strain 

concentration peaks seen in the strain distribution profiles in Figure 5.3 when the welds were placed in 

the 0 mm and 30 mm positions and corresponded to the twin strain peaks seen in the parent unwelded 

HSLA steel strain profile in Figure 4.2.  

The failure locations in the linear welded DP600 steels occurred either across the weld 

(Figures 5.7 a) and c)) or in the HAZ (Figure 5.7 b)). From these observed failure locations, softening 

in the HAZ did not significantly affect the formability of these blanks. The failure locations in the 

curvilinear welded DP600 steels occurred very close to the weld, ~5 mm from the centre of the weld 

(Figures 5.7  d) to f)) on the inner region, which indicated the influence of softening. 

The failure locations of the linear and curvilinear welded DP980 steels occurred in the HAZ 

despite weld placement or weld geometry were located ~3-5 mm from the weld centre as shown in 

Figure 5.8. The failure locations of the curvilinear welded DP600 and DP980 steels occurred on the 

inner region of the blank corresponding to the soft zone as shown in the hardness profiles in 

Figures 5.2 b) and c). Failure occurred in the softened region because it was the weakest part of the 

blank and during the deformation process strain concentrated in this area: this failure location in 

welded DP980 was consistent with past research results [17,27,39].  
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Figure 5.6 HSLA linear welded blanks a) to c); and curvilinear welded blanks d) to f) with weld locations 

at 0, 15, and 30 mm 

 

 

Figure 5.7 DP600 linear welded blanks a) to c); and curvilinear welded blanks d) to f) with weld locations 

at 0, 15, and 30 mm 
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Figure 5.8 DP980 linear-welded blanks a) to c); and curvilinear welded blanks d) to f) with weld locations 

at 0, 15, and 30 mm 

 

5.5 Limiting Dome Height  

Similar to the strain distribution profiles, the LDH values of the curvilinear welded blanks were 

compared to the linear welded blanks at their respective weld locations. Figure 5.9 shows the LDH 

values of the HSLA, DP600, and DP980 steels in the unwelded, linear welded, and curvilinear welded 

conditions. This figure shows that shifting the weld line farthest away from the centre at 30 mm 

resulted in the highest LDH for all the laser welded blanks, with HSLA steel having the highest LDH 

of the three materials.  

 The LDH values for the linear welded HSLA blanks increased as the weld position shifted 

away from the centre. The same increase was seen in the curvilinear welded HSLA blanks. The 

similarity in the linear and curvilinear welded HSLA steels was seen in the strain distribution profiles 

in Figure 5.3. Thus, confirming that weld geometry did not affect the formability of the welded HSLA 

steel. 

The linear welded DP600 steel showed an increase in the LDH values as the weld position 

shifted away from the pole. This change in formability was also observed in the strain distribution 

profiles of the DP600 steel in Figure 5.4. Comparatively, the LDH values in the curvilinear welded 

steel showed that placing the weld at 15 mm from the centre of the blank gave the lowest LDH. This 



 

92 

 

drop in LDH when the weld was placed 15 mm from the pole was observed in the dissimilar materials 

TWB (DP600-HSLA) in Figure 4.16. Overall, the LDH values of the curvilinear welded DP600 steel 

were lower than the linear welded blanks. The difference between the LDHs of the linear versus 

curvilinear welded blank for the DP600 steel specimens was ~22%, with the largest difference seen 

where the weld was 15 mm away from the centre at 22.2%. Thus, unlike the case with HSLA steel, 

weld geometry affected the formability of welded DP600 steel. 

The welded DP980 steel showed the lowest LDH compared to the unwelded DP980 parent 

material and all the other welded blanks (HSLA and DP600 steels). The LDH values of the linear 

welded blanks were similar to those of the curvilinear welded blanks. Unlike the case of the welded 

HSLA steel, the similarity between the LDH of the linear and curvilinear welded DP980 steel was due 

to the premature failure in the softened region. In addition, the extent of the soft zone contributed to the 

significant decrease in the formability in curvilinear welded DP980 steel blanks.  Therefore, the 

dominant effect in welded DP980 was the presence of the softened region [18,27,39,58].  

Therefore, unlike the case with HSLA steel, weld geometry affected the formability of welded 

DP600 steel; and like DP980 steel, softening in the HAZ did play a role in the formability of DP600 

since the failure locations in welded DP600 steel were in the softened region. This could be the reason 

why the LDH differed when the weld geometry changed from linear to curvilinear. 
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Figure 5.9 Comparison of limiting dome height of laser welded bead-on plate straight weld blanks and 

bead-on plate curvilinear blanks with different weld locations from the centre during biaxial stretch 

forming 
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5.6 Summary  

The potential of using curvilinear welds in TWB applications lies in the absence of weld intersection 

defects such as an inflection point for complex shaped parts where typically manufacturers have relied 

on multiple angular welds to assemble blanks. This chapter has examined the effects on the formability 

of curvilinear welds versus linear welds at different weld locations for HSLA, DP600, and DP980 

steels. The result showed that curving the weld affected the cross sectional hardness profiles of all the 

steels, but the DP steels were most affected. In the DP steels, the extent of the softened region on the 

left side (inner region) of the blank was 33-38% longer than the outer region; while the extent of the 

HAZ in the HSLA differed by 14%. Since, the hardness profile of HSLA steel was not significantly 

affected, the strain distribution profiles of the curvilinear welded blanks were well-developed and 

strains were high, and comparable to the linear welded blanks.  

 Although the softening in the DP600 steel was not severe, curving the welded changed the 

strain distribution profile. The strain distribution profiles of the curvilinear welded DP600 were inferior 

to the linear welded DP600 steel, which indicated a decrease in formability with the change in weld 

geometry. This change in strain profiles was also reflected in the LDH data, where the curvilinear 

welded blanks had a lower LDH than the linear welded blanks. In contrast, the severe softening in the 

welded DP980 steel dominated the formability of the welded blanks despite the weld geometry. The 

strain profiles are reflective of this, as limited strain magnitudes were seen in all the DP980 steel 

profiles. 
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CHAPTER 6 

6 EFFECT OF TWBS WITH MULTIPLE WELDS ON FORMABILITY 

In chapters 4 and 5, the formability of welded blanks increased when the weld was placed farthest from 

the centre i.e. 30 mm offset from the pole. Also, seen in chapter 4 was the effect of weld orientation for 

dissimilar material combinations on formability. In similar material TWBs, the effect of weld 

orientation in plane strain stretch forming was negligible; while in TWBs between materials of 

dissimilar properties, the weld orientation significantly affected the formability of the TWBs.  

The tailored blanks studied so far involved a single weld; however, many TWB applications in 

practice may require multiple welds, such as the body sides and the floor pans of an automobile. Thus, 

the study of multiple-weld TWBs is important. However, research results in this area are not available 

in open literature. Therefore, this chapter examines the effect of multiple welds on the formability of 

laser welded TWBs consisting of AHSS-HSLA-AHSS. The placements of the welds for the 

multiple-weld TWBs was consistent at ±30 mm away from the centre of the blank, as seen in the single 

weld TWBs since, this position gave the highest formability (in terms of strain profiles and LDHs as 

observed in chapters 4 and 5). In addition, three weld angles have been explored, two parallel vertical 

welds with no angles; two low angle welds (at 8°); and two high angle welds (at 17°). 

 

6.1 Limiting Dome Height Testing 

As in previous biaxial stretched samples, the TWBs had dimensions of 200 mm x 200 mm. The welds 

were placed 30 mm away from the centre of the blank with respect to the horizontal line as shown in 

Figure 6.1. Figure 6.1 a) shows multiple-weld TWB with parallel vertical welds with no angles, 

Figure 6.1 b) shows multiple-weld TWB with low angle welds (low angle welds were welds made with 

an angle of 8° from a straight line); and Figure 6.1 c) shows multiple-weld TWB with high angle welds 

(high angle welds referred to welds made with an angle of 17° from a straight line). By offsetting the 

weld angles the interaction of the welds on formability and the unbalanced amount of HSLA steel at 

the top and the bottom of the blank could be studied without changing the area of the materials used. 
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All multiple-weld TWBs had HSLA steel at the centre and DP steels at either side. These weld 

locations were chosen for the following reasons: 

1. The welds are away from the major strain concentration area as shown in the strain 

distribution patterns for the base metal in biaxial stretch forming, shown in 

Figure 4.2.  

2. In the single weld TWB, the formability with the weld line positions ±30 mm away 

from the pole was the highest, especially in the DP600-HSLA combination seen in 

chapter 4. 

Two material combinations were studied, DP600-HSLA-DP600 and DP980-HSLA-DP980. 

The materials in the former combination had similar material properties and the formabilities of 

DP600-HSLA TWBs were good, as seen in Figure 4.16; while the latter had dissimilar material 

properties and the formability of welded DP980-HSLA (depending on the amount of HSLA steel 

present) was poor. 

 

Figure 6.1 Multiple-weld TWBs with different weld slopes a) parallel welds, b) low angle welds, and 

c) high angle welds 
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6.2 Strain Distribution Profiles 

The interaction of the multiple welds in these TWBs across the blank is shown in Figure 6.2. 

Figures 6.2 a) - c) show the strain distribution patterns of DP600-HSLA-DP600 parallel welds, low 

angle welds, and high angle welds TWBs, respectively. Figures 6.2 d) - f) show the strain distribution 

patterns of DP980-HSLA-DP980 parallel welds, low angle welds, and high angle welds TWBs, 

respectively.  

The strain profiles of DP600-HSLA-DP600 were well-developed. The minor strains were close 

to the major strains except at the peaks, where failure is expected to occur. This closeness of strains 

indicates biaxial stretch forming. The strains at the pole were high, which is an indicator of good 

formability. The twin peaks were roughly 15-20 mm away from the pole, unlike the dissimilar TWB 

strain profiles seen in Figures 4.20 a) and e) at weld positions -30 mm and +30 mm, but similar to the 

parent unwelded HSLA steel’s behaviour as seen in Figure 4.2. In the three strain profiles of 

DP600-HSLA-DP600, the true strains at the pole of the parallel welds and low angle welds conditions 

were high, at 0.28 and 0.26, respectively. The true strain at the pole of the high angle welds TWB was 

0.22, which was ~21% lower than the parallel welds condition. This lower strain in the high angle 

welds condition resulted in the lower LDH value for the DP600-HSLA-DP600 TWBs in Figure 6.4. In 

addition, there was less strain experienced in the DP600 steel in the high angle welds case than in 

parallel welds and low angle welds. It is possibly that due to the weld angles that the strain in the 

DP600 steel was limited and restricted in this condition causing reduced overall strain and formability. 

 The strain profiles of DP980-HSLA-DP980 (Figures 6.2 d) - f)) were not as well-developed as 

DP600-HSLA-DP600, but better than most strain distributions in the single weld dissimilar 

(DP980-HSLA) TWBs at different weld positions (Figure 4.21). However, like the 

DP600-HSLA-DP600 TWBs, twin peaks were present and at ~20 mm away from the pole, but the 

distance between the peaks were different from the parent HSLA steel (Figure 4.2). These 

DP980-HSLA-DP980 peaks were narrower than the DP600-HSLA-DP600 and the true strains at the 

pole were ~0.1. This reduced strain could be caused by the large difference in material properties and 

with DP980 steel at the sides of the blank; it restricted the amount of deformation HSLA steel could 

experience before failure.  
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Figure 6.2 Strain distribution of the multiple welded TWBs 
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Another factor that evidently contributes to the low formability of the DP980-HSLA-DP980 

TWBs was the negligible strain in the DP980 steel; whereas, in DP600-HSLA-DP600 TWBs, there 

was deformation seen in the DP600 steel as noted by the gradual increase in the strain curve. 

Observable in the DP980-HSLA-DP980 strain profiles was the strain at the pole for the major and 

minor strains were consistently 0.1. This consistent deformation at the pole could be a factor which 

resulted in similar LDHs, despite the weld angle and the uneven distribution of HSLA steel in the low 

angle welds and high angle welds TWBs. 

 

6.3 Fracture Locations 

The multiple-weld TWBs, DP600-HSLA-DP600 and DP980-HSLA-DP980 were stretched in the 

biaxial condition. According to the strain distribution profiles in Figure 6.2 failure occurred in the areas 

of peak strain i.e. ~20 mm from the pole in the HSLA steel. However, the fractured locations 

Figure 6.3 a) shows failure occurring across the weld line and in the HSLA steel; Figure 6.3 b) shows 

failure in the HSLA steel base metal; and Figure 6.3 c) shows failure across the weld.  The failure 

modes and locations in the DP600-HSLA-DP600 TWBs varied with weld angles. Figures 6.3 d) to f) of 

the DP980-HSLA-DP980 TWBs show failure locations consistently on the HSLA steel ~20 mm from 

the pole, which conformed to the areas of peak strains in the strain profiles in Figure 6.2. It appeared 

that the weld angles in the DP980-HSLA-DP980 TWBs did not affect the failure locations. 
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Figure 6.3 Multi weld TWB DP600-HSLA-DP600 a) parallel welds, b) low angle welds, and c) high angle 

welds; DP980-HSLA-DP980 d) parallel welds, e) low angle welds, and f) high angle welds 

 

6.4 Limiting Dome Height 

The comparison of LDH values of the multiple-weld TWBs is shown in Figure 6.4. These 

multiple-weld TWBs had lower LDH than the parent unwelded material (Figure 5.9). This lowering of 

the LDH was due to the presence of the weld zones and material properties within the blank similar to 

the single welded TWBs in chapter 4. The larger material properties differences 

(DP980-HSLA-DP980) led to lower values of LDH, similar to the results in chapter 4 (Figure 4.16). As 

seen in Figure 6.4, the LDH values of the DP600-HSLA-DP600 TWBs decreased as the weld angles 

increased. The LDH of the parallel weld blank was ~16% higher than the high angle blank. This 

indicated that high weld angles did affect the formability of the similar material TWBs. Interestingly, 

the LDH of the DP600-HSLA-DP600 TWBs were comparable to the DP600-HSLA TWBs with weld 

locations at -30 mm and +30 mm offset. The LDH of the single weld TWBs at weld positions -30 mm 

and +30 mm were 29.82 mm and 30.17 mm, respectively; while the LDHs of the DP600-HSLA-DP600 

TWBs were 33.21 mm (parallel weld), 29.32 mm (low angle welds), and 27.89 mm (high angle welds). 
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This shows that multiple welds gave favourable results and that weld angles in TWBs made with 

similar materials do affected formability. 

Unlike the DP600-HSLA-DP600 TWBs, the DP980-HSLA-DP980 TWBs showed consistent 

LDH values. The similarity in the LDH values of these TWBs with dissimilar material properties 

(DP980-HSLA-DP980) indicates that the weld angles did not significantly affect the formability of 

these TWBs. The LDH values of the DP980-HSLA-DP980 TWBs were comparable to the 

DP980-HSLA TWBs for all the weld positions except for the -30 mm offset TWB (Figure 4.16). It 

appears that the LDH of the DP980-HSLA TWBs depends on the amount of HSLA steel present, since 

the DP980 steel contributed negligible strain, as seen in Figure 4.21.  

 

Figure 6.4 LDH graph of multiple weld TWBs 
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6.5 Summary  

In this chapter the effect of multiple welds TWBs (DP600-HSLA-DP600 and DP980-HSLA-DP980) 

with different weld orientations has been examined. The three weld angles studied were: parallel 

vertical welds with no angles; low angle welds at 8° offset; and high angle welds at 17° offset. The 

results showed that the similar materials combination TWBs had different failure modes and the 

formability decreased as the weld angles changed from parallel welds to high angle welds. However, 

the dissimilar material combination TWBs showed similar formability despite the weld angles, since 

DP980 steel restricted the amount of strain experienced in the TWB during the deformation process. 

Therefore, when designing multiple-weld TWBs with materials having similar properties, it is 

necessary to keep the most formable material in the centre of the blank and the welds parallel. 

However, with dissimilar material properties, the effect of weld orientation is negligible in terms of 

formability.  
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CHAPTER 7 

7 CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

This thesis has investigated methods to optimize formability of tailor welded blanks made with 

advanced high strength steels by measuring the response of blanks made with various designs and 

material combinations, using the limiting dome height test. This thesis was divided into three parts. In 

the first part, the effects of weld locations, weld orientation and strain path on formability were studied. 

In the second part, the effect of weld geometry (curvilinear welds) on formability was studied. In the 

last part, the effect of multiple-welded TWBs was studied.  

 

7.1.1 The Effect Of Weld Location, Orientation And Strain Path 

The major findings in the first part of this thesis are as follows: 

1. Placing the weld close to the centre of the blank (±15 mm) resulted in the lowest 

formability; however, placing the weld farthest from the centre resulted in increased 

formability. The increase in formability was dependent on the type of materials 

combination. Therefore, formability is dependent on both weld location and materials 

combination.  

2. Welding decreases the formability of the TWB compared with the parent material and 

this was reflected in the forming behaviour, represented by the strain distribution profiles. 

The main characteristic of decreased formability was non-uniform strain distributions. On 

the other hand, the strain distribution on the dome surface could be manipulated by placing 

the weld line farthest from the centre, which increased formability. 

3. The lowest limiting dome height of the laser welded blanks occurred during plane 

strain stretch forming compared to biaxial stretch forming when the weld was placed at 

the centre. It appeared that during plane strain stretch forming, the fracture morphology 

changed from dimple like (biaxial) to a combination of sheared surface with dimples or 

transgranular cleavage (in plane strain stretch forming) depending on weld orientation. 
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4. In plane strain stretch forming, the weld orientations with respect to the major strain 

direction have little influence on the formability of TWBs with similar material 

properties (e.g. DP600-HSLA). However, weld orientation significantly influences the 

formability of dissimilar TWBs with large difference in material properties (e.g. DP980-

HSLA). These results could be seen in the strain distribution patterns. Therefore, under 

plane strain stretch forming, formability was influenced by weld orientation and material 

combinations. 

Therefore, the formability of blanks using these laser-welded advanced high strength steels could be 

manipulated by changing the TWB designs by modifying the weld location and orientation. In addition, 

these changes led to the alteration of the strain path during stretch forming. However, the amount of 

increase in formability is dependent on the materials combination. 

 

7.1.2 The Effect Of Curvilinear Welds 

The major findings in the second part of this thesis are as follows 

1. Curvilinear welds increased the extent of the HAZ on the inner region of the 

welded blank. An increase in the length of the HAZ was seen clearly in the DP steels, 

which caused peak softening to occur on the inner region of the blank. During 

deformation of the DP steel, failure occurred in the HAZ of the inner region. 

2. Formability of curvilinear seams is dependent on the position of the curved weld. 

With the curvilinear seam farthest from the centre of the blank, the formability was the 

highest for all materials, which was similar to the linear welded blanks. 

3. Weld geometry affected DP600 steel the most. DP600 steel showed that changing the 

weld path from a straight line to a curve reduced the formability of the welded blanks. 

The reason could be attributed to the combination of weld geometry and softened zone 

failure of the blank. In contrast, HSLA steel did not experience changes in formability 

with respect to weld geometry. The formability of welded DP980 steel was restricted by 

the presence of severe softening in the HAZ, which led to premature failure. 
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7.1.3 The Effect Of TWBs With Multiple Welds  

1. Formability of dissimilar materials in terms of the limiting dome height for laser 

welded blanks having multiple welds is dependent on the material combination. In 

DP600-HSLA-DP600, the formability was comparable or improved when compared to 

the highest formability of the single weld TWB. However, with a large difference in 

properties of materials, the formability was good, but was not comparable to the highest 

formability results of the single weld TWBs. The limited deformation contributed by 

the DP980 steel restricted the formability of the multiple-weld TWBs.  

2. The strain distributions of the multiple-weld TWBs resemble the parent HSLA 

steel strain distribution pattern, since HSLA steel was placed in the middle of the 

TWB. However, formability can be increased by placing material with properties 

similar to HSLA steel on either side. During forming this material may contribute to the 

deformation and further develop the strain pattern. 

In conclusion, formability of dissimilar laser welded tailored blanks is dependent on weld 

location, weld orientation, and number of welds. Ultimately, the increase in formability with respect to 

these weld designs depends on the materials combination. 

 

7.2 Recommendations  

In the present study, the materials tested were limited in terms of supply and selection. To get a 

complete understanding of the effect of weld positions, orientations and strain path on formability, 

TWBs composed of only DP steels should be investigated. Welding dissimilar DP steels together may 

highlight the effect (and severity) of softening with respect to the weld positions and orientations.  

As for the formability of TWBs having multiple welds, this study investigated one combination 

of multiple-weld TWBs, DP steel-HSLA-DP steel. However, changing the order, such as placing the 

HSLA on the sides could change the formability significantly. For example, placing DP600 in the 

middle of the blank with HSLA steel on the side may further increase the formability of the TWBs with 

multiple welds, as DP600 steel has better formability than HSLA steel. On the other hand, placing 

DP980 steel in the middle of the blank is not recommended because DP980 steel fails catastrophically 

at the high strain concentration region, around the pole.  
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APPENDICES 

A  LASER  

Since, the first laser was developed in 1960, many laser applications were developed. For example, 

materials processing, such as laser welding is one of the laser applications, which began in 1962 [87].  

LASER, light amplification by simulated emission of radiation, has three essential characteristics that 

define it. The three characteristics [88] are as follow: 

1. The ability to produce a monochromatic light energy at a specific 

wavelength depending on the lasing medium;  

2. The light produce is coherent and 

3. The light is directional i.e. the light is in the form of a tight 

concentrated beam.  

 The laser works by exciting in the atoms of the lasing medium, such as a ruby. An effective 

lasing medium must have a specific population inversion, where there are more excited atoms than 

ones in the fundamental state. The population inversion allows the energy to release when simulated 

in the lasing medium [89]. When the excited atoms return to its ground state photons are emitted at a 

specific wavelength depending on the lasing medium. The photons reflect by the two mirrors in 

either end of the laser cavity and travel within the cavity simulating the lasing medium; thus, 

releasing more photons. One of the two mirrors in the laser system is half reflective, i.e. half the 

photons are reflected and the other half of the photons emitted in the correct direction are release to 

form the laser beam which is focused by optics and delivered to the application [77,87,89] .  

 

A.1   Laser Welding  

Laser welding is used extensively in the automotive industry because of its ability to focus the 

intense beam (heat source) and reduce the weld bead width and the heat affected zone (HAZ) regions 

[90]. In laser welding there are two modes of welding, conduction mode and keyhole mode.  

 Conduction welding is dependent on the conductivity of the metal. This type of welding 

occurs when the heat source melts the metal and creates a pool of molten metal, but the surface of the 

weld pool is unbroken. In contrast, keyhole welding occurs when the laser beam is concentrated in an 
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area until the metal is melted through where some of the metal is vaporized to create a keyhole the 

same thickness as the metal sheet. The laser beam reflects within the keyhole and continues to melt 

the metal as the laser travels across the joint. The weld finishes when the liquid metal cools and 

solidifies, creating a joint seam [91]. Generally, welding in conduction mode creates a weld pool that 

is wider than keyhole. These two modes of laser welding are shown in Figure A.1. Not all laser 

systems can create keyhole welding. 

 

Figure A.1 Modes of welding, conduction mode (left) and keyhole mode (right) 

 

A.2  Laser Systems   

Many different types of lasers are used, two common ones are the Nd:YAG and the CO2 lasers. These 

lasers are capable of conduction and keyhole welding; whereas, the diode laser (a solid state laser) is 

capable of conduction mode welding, but the array diode laser has the potential to challenge 

Nd:YAG and CO2 lasers. Table A-1 shows the laser system characteristics. As seen in this table, the 

advantage of the diode laser over traditional lasers lies in its specifications. The diode laser can have 

a maximum power of up to 6 kW, generate a near infrared light beam with a wavelength of 800-

900nm and is suitable for processing material without the use of beam transporting optics like the 

other lasers [88,90]. Also, diode lasers can be mounted on coolers that do not interfere with the beam, 

which increases the efficiency to 25% whereas lamp pumped lasers are typically 2-3% efficient [88].  
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Table A-1 Summary of laser system characteristics 

 

 

B.  STRAIN PATHS WITH RESPECT TO EXPERIMENTAL FLD 

The following figures show the different strain paths with respect to the FLCs of the parent material, 

which were discussed in Chapter 4 in terms of the strain distribution profiles. The disadvantages of 

the strain distribution profiles are it does not show the forming limit strain and the change in the 

strain path due to the change in the weld line position and weld orientation.  The two experimental 

parent FLCs (DP600-HSLA and DP980-HSLA) were plotted for their respective TWBs, since the 

TWBs were made of dissimilar materials. Although, the following figures show some necking and 

fractured points, both are taken as failure according to Chan et al. [44] since stopping the formability 

test at necking was very difficult. Figure B.1 and Figure B.2 show the strain paths of the uniaxial 

tensile specimens with different weld positions. Figure B.3 and Figure B.4 show the strain paths of 

the biaxial stretched specimens with different weld positions. Figure B.5 and Figure B.6 show the 

strain paths of the plane strain stretch TWBs with different weld orientations. 

Laser systems Lasing medium 
Average output 

power 
Wavelength Welding mode 

Nd:YAG laser 

neodymium-doped 

yttrium aluminum 

garnet 

Up to 4kW 1.06µm 
Conduction and 

keyhole 

CO2 laser 

carbon dioxide gas 

mixed with helium 

and nitrogen 

Up to 50kW 10.6µm 
Conduction and 

keyhole 

Diode laser semiconductors 6kW 800-900nm Conduction 
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B.1  Uniaxial Tensile Strain Paths For Different Weld Position 

 

Figure B.1 Strain paths of the DP600-HSLA uniaxial tensile specimens with different weld positions 

. 
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Figure B.2 Strain paths of the DP980-HSLA uniaxial tensile specimens with different weld positions 
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B.2  Biaxial Stretching Strain Paths For Different Weld Positions 

 

Figure B.3 Strain paths for DP600-HSLA biaxial stretched TWBs with different weld positions 
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Figure B.4 Strain paths for DP980-HSLA biaxial stretched TWBs with different weld positions 
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B.3  Near Plane-Strain Stretching Strain Paths For Different Weld Orientations 

 

Figure B.5 Strain paths for DP600-HSLA plane strain TWBs with different weld orientations 

 

 

Figure B.6 Strain paths for DP980-HSLA plane strain TWBs with different weld orientations 
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