Automated Storage Layout for
Database Systems

by

Oguzhan Ozmen

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Computer Science

Waterloo, Ontario, Canada, 2010

(© Oguzhan Ozmen 2010

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

i

Abstract

Modern storage systems are complex. Simple direct-attached storage devices are
giving way to storage systems that are flexible, network-attached, consolidated and
virtualized. Today, storage systems have their own administrators, who use spe-
cialized tools and expertise to configure and manage storage resources. As a result,
database administrators are no longer in direct control of the design and config-
uration of their database systems’ underlying storage resources. This introduces
problems because database physical design and storage configuration are closely
related tasks, and the separation makes it more difficult to achieve a good end-to-
end design. For instance, the performance of a database system depends strongly
on the storage layout of database objects, such as tables and indexes, and the
separation makes it hard to design a storage layout that is tuned to the I/O work-
load generated by the database system. In this thesis we address this problem
and attempt to close the information gap between database and storage tiers by
addressing the problem of predicting the storage (I/O) workload that will be gen-
erated by a database management system. Specifically, we show how to translate
a database workload description, together with a database physical design, into a
characterization of the I/O workload that will result. Such a characterization can
directly be used by a storage configuration tool and thus enables effective end-to-
end design and configuration spanning both the database and storage tiers. We
then introduce our storage layout optimization tool, which leverages such workload
characterizations to generate an optimized layout for a given set of database objects.
We formulate the layout problem as a non-linear programming (NLP) problem and
use the I/O characterization as input to an NLP solver. We have incorporated our
I/O estimation technique into the PostgreSQL database management system and
our layout optimization technique into a database layout advisor. We present an
empirical assessment of the cost of both tools as well as the efficacy and accuracy
of their results.

il

Acknowledgements

[would like to thank my supervisor Kenneth Salem for his invaluable guidance and
support throughout my PhD studies. His continuous encouragement and positive
attitude made it not only possible to earn my PhD degree but also a delightful
experience. Among many lessons I learned from him, one has become a pillar in
my professional life: think simple!

[also would like to thank my thesis committee at the University of Waterloo, Tamer
Ozsu, Thab Ilyas, Patrick Lam and Mahesh Tripunitara, and my external examiner
Amr El Abbadi from University of California at Santa Barbara for reviewing my
thesis.

I am grateful to both HP Labs Storage Group and Network Appliance for their
support to our projects. This thesis has been greatly inspired by the 1/O workload
characterization and capacity planning projects held at HP Labs. I would like
to thank HP Labs for sharing their code base and Mustafa Uysal, a member of
Storage Group, for his involvement in our I/O workload estimation project. I am
indebted to Network Appliance for their financial support to our storage layout
project. In particular, I would like to thank Jiri Schindler from NetApp for his
direct involvement in this project.

Last but not least, I'd like to thank my mother, my father and the rest of my family
for their support and pray.

v

Contents

List of Figures

1

3

Introduction
1.1 Contributions
1.2 Organization of the Thesis

Storage Workload Estimation for Database Systems

2.1 Storage Workload Estimation Problem
2.1.1 Database Workload Model
2.1.2 Storage Workload Model
2.1.3 Problem Statement 0L

2.2 Estimating Storage Workload
2.2.1 Estimating Query I/O Request Sequences
2.2.2 Generating the Representative Trace
2.2.3 Fitting the Rome Model

2.3 Experimental Evaluation
2.3.1 Experimental Configuration
2.3.2 Accuracy of Estimated Workloads
2.3.3 Storage Performance Prediction Using Estimated Workloads
2.3.4 Cost of Storage Workload Estimation

2.4 Conclusion

Workload-aware Storage Layout for Database Systems
3.1 Database Storage Layout Problem
3.1.1 Current Practice

3.1.2 Formulation of the Layout Problem

S

© N o o O«

10
10
12
16
16
18
19
25
28
29

3.2 I/O Workload and Storage System Modeling 37
3.2.1 I/O Workload Model 37
3.2.2 Storage System Performance Model 38

3.2.2.1 Layout Model 39

3.2.2.2 Target Model 43
3.2.2.2.1 Modeling Individual Storage Devices: Stor-

age Device Performance Models 43

3.2.2.2.2 Performance Modeling of RAID Arrays . . 47

3.2.3 Existing Approaches to Storage System Modeling 48

3.2.3.1 Analytical Models 50

3.2.3.2 Table-based Models o1

3.2.3.3 Layout Advisor’s Storage System Performance Model 52

3.3 Recommending Workload-Aware Optimized Layouts 52
3.3.1 Solver 52
3.3.2 Imitial Layouto 53
3.3.3 Regularization oo 54
3.3.4 Putting Things Together 55

3.4 Experimental Evaluation 55
3.4.1 Experimental Setupo 56
3.4.2 Layout Quality: Homogeneous Systems 58
3.4.3 Layout Quality: Heterogeneous Systems 61

3.4.3.1 Configuration Heterogeneity 61
3.4.3.2 Device Heterogeneity 63
3.4.4 Layout Quality: Consolidation Scenario 65
3.4.4.1 Homogeneous System 65
3.4.4.2 Heterogeneous System 66
3.4.5 Optimization Time 69
3.4.6 AutoAdmin Comparison 70

3.5 Conclusion and Future Directions 72

Related Work 74

4.1 Storage Workload Characterization 74

4.2 Other Load Characterizations 75

4.3 Database Design Tools 76

4.4 Storage Layout 7

vi

5 Conclusion 80
APPENDICES 82
A Data-Free Simulation of PostgreSQL Operators 83

B Measured and Estimated Rome Parameters for the WIPCH Work-

load 95
C Generating Performance Look-up Tables for Storage Devices 100
C.1 Look-Up Table Construction 100
C.2 Using the Tabular Cost Model 103
D Modeling the Layout Problem Using AMPL 105

References 108

vil

List of Figures

1.1 End-to-End Physical Design Using Existing Design Advisors

2.1 Database Workload Model Parameters
2.2 I/O Request Stream Parameters in the Rome Model
2.3 Storage (I/O) Workload Estimation Algorithm
2.4 Generating Query 1/O Request Sequences
2.5 Data-Free Simulation of the PostgreSQL Plan Operators
2.6 Generating the Representative I/O Trace
2.7 Decision Flow Diagram for PostgreSQL I/O Requests
2.8 Estimation of Rome Model Parameters by Rubicon
2.9 Experiment Design oo
2.10 Weighted Relative Estimation Errors
2.11 Weighted Relative Estimation Errors for Derived Parameters
2.12 Estimated vs. Measured I/O Workload Model Parameters
2.13 Execution Plan for TPC-H Query 18
2.14 Overlap Fraction Average Absolute Estimation Errors
2.15 Measured and Estimated Burst Overlapsat CL=1
2.16 Measured and Estimated Burst Overlapsat CL=5

2.17 Storage System Performance Predictions Under Estimated and Mea-
sured Storage Workload Models

2.18 Execution Time of the I/O Estimator

3.1 An Overview of Database Storage Layout Problem
3.2 Database Object Layout Problem
3.3 Parameters of the Layout Problem
3.4 General (Non-Regular) Layout

3.5

3.6

3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23

3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34

C.1

I/O Workload Parameters 38

An Overview of the Storage System Model 39
An Tllustration of the Layout Model Transformations 40
Layout Model: Run Count Transformation 41
Layout Model: Parameters Used in Run Count Transformation . . . 42
Layout Model for LVM Using Striping 43
Contention Factor L 45
A Slice of Service Time (Cost) Model 46
Target Parameters L oL 47
Target Modeling: White-Box Approach 48
RAID Transformations 49
A Modular View of a Storage System 50
Layout Algorithm 53
Putting the Steps of Layout Optimization Together 56
Databases Used in the Experiments 57
Query Workloads Used in the Experiments 58
Storage Target Configurations Used in the Experiments 58
OLAP1-63 and OLAP8-63 Run Times under 4JBOD 59
Optimized Regular and Non-Regular Layouts: OLAP1-63 and OLAP8-63

under 4JBOD 60
Estimated Target Utilizations 60
Optimized Layouts for OLAP8-63 under 2HETERO and 3HETERO . . . 62
OLAP8-63 Run Time under 2HETERQO and 3HETERO 62
Optimized Layouts for OLAP8-63 under 4JBOD+SSD 64
OLAP8-63 Run Time under 4JBOD+SSD 65
Consolidation Workload Run Time under 4JBOD 66
Optimized Layouts for the Consolidation Workload under 4JBOD . 66

Optimized Layouts for the Consolidation Workload under 4JBOD+SSD 67
Consolidation Workload Run Time under 4JBOD+SSD 68
Execution Time of the Layout Advisor 69
AutoAdmin Layout 70
Request Cost versus Contention Factor at Different Run Counts. . . 101

X

C.2 Values Used for the Look-up Table Parameters
C.3 LookUp Table Generation Times

C.4 Cost Models for a Rotational Hard Drive and an SSD

Chapter 1

Introduction

The complexity of modern enterprise computing environments is prompting changes
in the way that computing resources and the systems that depend on them are de-
ployed and managed [22, 28, 49, 50, 58]. As a major component of a computing
environment, storage systems are getting more sophisticated, too. Simple, direct-
attached storage devices are giving way to flexible, network-attached, consolidated
and virtualized storage systems. Increasingly, storage resources are consolidated
into a common pool, virtualized to accommodate individual application require-
ments, and shared by multiple enterprise applications, including database manage-
ment systems (DBMS). Furthermore, in order to effectively address this complexity,
storage resources are increasingly administered separately from the server infras-
tructure. Storage administrators (SAs) are expected to balance the requirements
of multiple database systems and other storage clients by applying their own do-
main knowledge and expertise. As a result, database administrators (DBAs) are no
longer in direct control of the design and configuration of their database systems’
underlying storage resources.

Managing the storage infrastructure is, like database administration, a complex
task. A storage administrator has to configure storage arrays, create logical units
at storage arrays, create logical volumes at servers, configure storage controllers
and storage network switches with appropriate access credentials, and manage the
ongoing usage of the storage devices to prevent performance bottlenecks or resource
shortages. The configuration decisions made by the SA determine the performance,
reliability, and capacity characteristics of the storage system as seen by the DBMS.
Good configuration decisions should take into account the characteristics of the
storage (I/O) workload generated by the DBMS.

To help SAs cope with the complexity of these storage configuration tasks,
researchers have developed tools that can be used to automate them [7, 8, 27, 56].
Those tools rely on storage workload information in some form. Hence, effective
storage administration, whether manual or automatic, depends on the knowledge of
storage system workload. Although storage workloads can be described in different
ways, e.g., as a sequence of 1/O requests or as a set of statistical parameters, their

purpose is to describe the 1/O characteristics or behavior of the storage clients. In
general, a storage workload description identifies the 1/O access characteristics for
each of the distinctly addressable chunks of data, such as files or logical volumes,
accessed by the storage clients.

Accurate workload characterizations can be difficult to obtain, particularly at
initial configuration time. Before the system is operational and it is not possible
to observe the storage clients’ I/O behavior, a storage administrator can depend
only on generic guidelines and rough “guesstimates”. Once the storage system is
operational, workload characteristics can be observed. However, such observations
are not a panacea: they may be expensive to obtain and use, they do not solve
the initial configuration problems, and they are of no use in addressing “what if”
questions. For example, a DBA may be considering a possible physical design
change such as the creation of an index. If created, this index would affect the I/O
workload experienced by the underlying storage system. Direct observation of the
current storage system workload does not by itself provide any guidance as to what
the storage workload would look like if the index were added.

In the first part of the thesis, specifically in Chapter 2, we attempt to close
the information gap between the database tier and the storage tier by addressing
the problem of predicting the storage (I/O) workload that will be generated by a
database management system. By estimating database systems’ storage workloads,
we can provide storage administrators with information that they can use to make
informed planning, design, and configuration decisions. Storage workload estima-
tion provides an SA with not only a faster alternative to observing an operational
system and collecting the actual workload but also a means to obtain a storage
workload description at initial configuration time. In addition, workload estima-
tion makes it possible to obtain the storage workload for a hypothetical database
physical design. For example, the effect of adding an index on the storage workload
can be estimated without materializing the index.

By providing storage workload estimations, we also enable end-to-end solutions
to database physical design and storage configuration problems. With storage work-
load estimation, both the DBA and SA have sufficient information to address their
part of the end-to-end design and configuration problem. One example of this is
shown in Figure 1.1, which illustrates how existing database physical design tools
and storage configuration tools could be combined to determine both a database
physical design and an appropriate storage configuration for a given database work-
load, while preserving the administrative autonomy of the database and storage
tiers.

In the second part of the thesis, specifically in Chapter 3, we show how such
storage workload information can be leveraged to improve and facilitate one of the
aspects of storage system design. Specifically, we focus on storage layout design
for database management systems. Storage layout is an important part of storage
configuration. In brief, a layout describes how logical volumes which contain storage
clients’ data are mapped to actual physical storage devices. A DBMS relies on an

DBMS ! Storage System

DBMS Workload
Description (SQL)

Storage System
Physcial Characteristics

DB Physical Design 44: Storage Workload Storage System
Advisor DB Physical Characterization Sto\ggek?yséem Design Advisor
orkloa

Design .
Description Storage

I

I

! Configuration
/ |

I

I

I

I

I

End-to—End Physical Design System

Figure 1.1: End-to-End Physical Design Using Existing Design Advisors

underlying storage system for persistent storage of database objects such as tables,
indexes, and logs, and the performance of the database system depends strongly
on the layout of those objects. In Chapter 3, we describe our technique to find a
good layout for a given storage workload; that is, a storage layout which is tuned to
the given storage workload. A good layout will both balance the storage workload
generated by the database system and avoid performance-degrading interference
that can occur when concurrently accessed objects are stored on the same volume.

In summary, this thesis addresses two complementary and independent prob-
lems. First, we address the problem of predicting the storage workload that will
be generated by a database management system. Second, we focus on one aspect
of storage system design, and describe a technique which leverages 1/O workload
information to recommend a storage layout for database objects.

1.1 Contributions

This thesis makes the following contributions:

e We formulate the storage workload estimation problem for relational database
management systems. In our formulation, storage workloads are described in a
domain-independent and configuration-independent language called Rome [60].
By “domain-independent”, we mean that the workload description that is pro-
duced is not specific to database management systems. Similar descriptions
can be produced for other storage system clients. As storage consolidation be-
comes more common, this property becomes more important. Using a common
and generic storage workload model makes it feasible to aggregate workload de-
scriptions from multiple storage applications, including database management
systems.

e We present a technique for producing storage workload estimates. Those es-
timates not only are a faster alternative to monitoring a running system to
obtain I/O workload information but they also make it possible to generate
I/O workload information at initial configuration time and for hypothetical
database physical designs. Our technique has been implemented in the con-
text of the PostgreSQL DBMS.

e We present an empirical evaluation of the accuracy of the storage workload
estimates produced by our technique, and the cost of producing them.

e We formulate the database storage layout problem as a non-linear optimization
problem incorporating the important characteristics of the storage workload
and of the underlying storage targets.

e We propose a technique for solving the layout problem to identify good layouts.
Our technique exploits a generic non-linear program (NLP) solver as well as
heuristics specific to the layout problem.

e We present an experimental evaluation of the efficacy and efficiency of our
technique under various scenarios. We also compare our methodology with a
recently proposed related work.

1.2 Organization of the Thesis

The remainder of this thesis is structured as follows. Chapter 2 explains our
methodology for estimating the I/O workload that is generated by a database
management system. Chapter 3 describes the layout optimization technique. Both
Chapter 2 and Chapter 3 present experimental evaluations of the proposed meth-
ods. Chapter 4 discusses the existing work related to I/O workload estimation and
data layout. Finally, Chapter 5 concludes the thesis.

Chapter 2

Storage Workload Estimation for
Database Systems

Modern storage systems are complex. As was stated in the preceding chapter, stor-
age resources are increasingly administered separately from the server infrastructure
to effectively address this complexity. Therefore, database administrators (DBAs)
are no longer in direct control of the design and configuration of their database
systems’ underlying storage resources. Storage administrators (SAs) are expected
to balance the requirements of multiple database systems and other storage clients.
Configuration decisions made by the SA determine the performance, reliability, and
capacity characteristics of the storage system as seen by the database management
system (DBMS). As a result, the separation of the management of database systems
and storage systems may introduce problems if storage configuration decisions do
not take into account the characteristics of the storage (I/O) workload generated by
the DBMS. Effective storage administration depends on knowledge of the storage
system workload.

A storage workload description provides an SA with valuable information on the
I/O characteristics or behaviour of the storage clients. Although storage workloads
can be described in different ways, such as a sequence of block I/O requests or a set
of statistical parameters, each description identifies the 1/O access characteristics
for one of the distinctly addressable chunks of data, such as files or logical volumes
accessed by the storage clients. Provided with database systems’ storage workloads,
SAs can make informed planning, design, and configuration decisions. In fact,
to help SAs cope with the complexity of storage configuration, researchers have
developed tools to automate storage configuration tasks [7, 8, 27, 56]. Those tools
rely on storage workload information in some form.

In this chapter we address the problem of predicting the storage workload that
will be generated by a database management system. Specifically, we show how
to translate a database workload description, together with a database physical
design, into a characterization of the storage workload that will result. Our I/O
workload estimation technique produces storage workloads described in a domain-

independent and configuration-independent language called Rome [60]. By “domain-
independent”, we mean that the workload description that is produced is not spe-
cific to database management systems. Similar descriptions can be produced for
other storage system clients. Since shared, consolidated storage systems must ac-
commodate workloads from a variety of clients, including databases, it is important
to target a generic workload model. Doing so allows an SA to aggregate workload
descriptions from multiple storage applications. As storage consolidation becomes
more common, this property becomes more important.

The remainder of this chapter is structured as follows. Section 2.1 describes
the storage workload estimation problem and defines the target storage workload
model. Section 2.2 presents the proposed workload estimation technique and its
implementation in PostgreSQL DBMS, and Section 2.3 describes its evaluation.
Finally, Section 2.4 concludes the chapter.

2.1 Storage Workload Estimation Problem

In this section, we will define the problem of estimating storage workload charac-
teristics given a specification of the database workload. To formulate this problem
more precisely, “database workload” and “storage workload” must be defined first.

2.1.1 Database Workload Model

Existing relational database design tools typically expect the database workload to
be defined as a set of SQL statements along with some indication of the relative
frequency of occurrence of each statement [3, 62]. We use a similar characterization
of the database workload for the storage workload estimation problem, so that a
single workload description can be used for both tasks. Specifically, it is assumed
that the workload is characterized by a fixed set Q of SQL statements defined over
a known database schema. We refer to each such statement as a query type. Each
query type Q; has an associated weight f; which represents its prevalence in the

workload. The proportion of queries of type Q; in the workload is given by Zf~ : 7

This kind of database workload characterization describes the mix of queries in
the database workload. This is sufficient for tasks such as index selection, where the
goal is to choose a set of indexes that will provide superior performance relative to
the performance achievable using other sets of indexes. However, we would like our
storage workload estimates to be useful for a variety of storage management tasks,
including those that require information about absolute frequency of occurrence of
the various queries. An example of such a task is capacity planning. To enable this,
it is also required that the database workload description include a specification
of a target operating point for the database system. We use two parameters to
characterize an operating point. The first is the total query throughput, denoted

’ Symbol ‘ Description ‘

Q set of possible SQL statements (query types)
fi relative frequency of query type Q;

T query throughput (in queries per second)

CL number of concurrent queries

D set of database physical objects

Figure 2.1: Database Workload Model Parameters

by 7. The second is the query multiprogramming or concurrency level, CL, which
describes the expected number of concurrently executing queries at any given time.

Finally, since the proposed storage workload estimator relies on the database
system’s query optimizer, it is required that optimizer be configured to behave as
it would at the target operating point. In particular, database statistics should
be available so that the query optimizer will choose appropriate query execution
plans. Again, existing database administration tools have similar requirements for
the availability of statistics, and some database systems support the definition of
hypothetical database instances to support cost-based “what if” analyses without
the need to populate the hypothetical instance [13].

It is assumed that a database physical design has been selected, perhaps through
the use of a physical design advisor [3, 62], and that the physical design is known
to the query optimizer. We use D to represent the set of physical database ob-
jects: tables, indexes, tablespaces and so on. Figure 2.1 summarizes the database
workload parameters.

2.1.2 Storage Workload Model

One way to characterize I/O workloads is to use a trace of I/O events, or a set
of traces. Although traces are a very detailed and expressive way to describe
storage workloads, they have some disadvantages. They are large and expensive
to store and manipulate. Traces of database I/O workloads are also expensive to
collect, as collection requires populating the database and applying a realistic load.
Trace-based workload descriptions cannot be used as input to analytical models of
storage system behavior. Finally, traces tend to be specific to a particular storage
configuration, and difficult to generalize. It is prohibitively expensive to collect
traces from multiple candidate storage configurations.

Instead, we adopt a more abstract I/O workload model called the Rome model [60,
61]. The Rome model is the unifying “glue” for a collection of storage management
tools that support performance modeling, capacity planning, storage system design
and configuration, and other tasks [7, 8, 56]. The Rome model is not specifically
designed to model the I/O workloads generated by database management systems.
It is a general purpose model intended to model storage workloads generated by

’ Symbol ‘ Description ‘

ton burst duration (in seconds)

tof inter-burst gap (in seconds)

A" read request rate during bursts (in requests per second)
Y write request rate during bursts (in requests per second)
B" average size of read requests (in bytes)

Bv average size of write request (in bytes)

Q average block count of sequential runs

(7] burst overlap between streams 7 and j

Figure 2.2: I/O Request Stream Parameters in the Rome Model

any kind of storage client. Since shared, consolidated storage systems must accom-
modate workloads from a variety of clients, including databases, it is important
to target a generic workload model. Doing so allows a storage administrator to
aggregate workload descriptions from multiple storage applications. By targeting
the Rome model in particular, it is also possible to leverage existing Rome-based
workload analysis and storage management tools.

The Rome model views the storage system abstractly, as a set of stores. A store
can be thought of as a virtual block storage device, disjoint from other stores, to
which block read and write requests can be directed. The I/O workload directed
to a store is represented by one or more concurrent streams. A stream consists
of bursts of I/O request activity of duration t,, interleaved with idle periods of
duration t,g, during which no requests occur. During each on burst, read requests
to the underlying store occur at rate A" and write requests occur at rate \".

Each I/O request has a starting position (within the underlying store) and a
size, or length, B" for read requests and B" for write requests. The starting position
of each request is determined by a run count parameter (). Successive requests in a
stream start where the previous request left off, until the total number of requests
in the run reaches). The next request then starts a new run, with a randomly
chosen starting position. Thus,) = 1 models a random I/O request pattern,
while larger values of () model sequentiality. Figure 2.2 summarizes the parameters
associated with a Rome request stream. Together, these parameters describe the
request stream properties that are important to the underlying storage modeling
and management tools: request rates, read/write mix, burstiness, request size, and
sequentiality.

In addition to these per-stream properties, Rome also describes burst correla-
tions, which model the amount of temporal overlap among the bursts of different
streams. Given a set S of streams, Rome defines an |S| x |S| overlap matriz ®.
Entry ®;[7] in the overlap matrix, 1 < 1,7 < |S|, describes the percentage of stream
’s burst period during which stream j is also active. Note that, as defined by the
Rome model, the overlap matrix need not be symmetric. For example, consider
two streams S; and S}, with t,,[:] = 100 and t,,[j] = 10, for which S;’s bursts are

completely contained within S;’s bursts. This will be described by ®;[j] = 10% and
®;[i] = 100%.

2.1.3 Problem Statement

With the definitions of a database workload and storage workload in place, the
problem can be stated as follows:

Definition 1 Storage Workload Estimation Problem: Given a database work-
load characterization, including a target operating point, and a database physical
design, produce an 1/0 workload characterization that accurately models the stor-
age workload that will be generated by the database system under the given database
load at the target operating point.

In general, to estimate a Rome storage workload characterization, it is necessary
to address several questions:

e How many stores should the model have?
e How many request streams should each store have?

e What stream parameter settings should be used for each stream?

Here, the workload estimation problem is simplified by fixing the answers to
two of these questions, thus restricting the space of workload models that can
potentially be generated by the estimator. First, only workload models that include
exactly |D| Rome stores (one for each physical database object) are considered.
There is little reason to have more than one store per physical database object,
since this provides sufficiently fine granularity in the workload description for most
storage configuration tasks. Second, only workload models with a single request
stream per store are considered. A natural alternative to this would allow up
to |Q| request streams for each store, where each stream would describe the I/O
requests generated by queries of a particular type against a particular physical
database object. In contrast, single-stream-per-store models must use a single set
of stream parameter settings to characterize the aggregate workload of all types
of queries against a given store. We focus on single-stream-per-store models here
because they are simpler. However, the storage estimation method described in
the following section can easily be extended to generate |Q|-streams-per-store if
additional expressiveness is required. Furthermore, existing Rome-based storage
management tools can accommodate multi-stream stores.

for Q, in O do
Use the database query optimizer to obtain a plan for Q;
Generate an I/0 request sequence RS; for Q;’s plan.
end for
Merge the RS; to produce a representative 1/O request trace Tr
for D; in D do
Extract the representative request trace Tr; for D; from Tr
Fit Rome model parameters to Tr;
end for

Figure 2.3: Storage (I/O) Workload Estimation Algorithm

2.2 Estimating Storage Workload

Figure 2.3 gives a high-level outline of the proposed method of estimating a Rome
I/O workload model. As described in Section 2.1.3, the output of this method is
one set of Rome I/O model parameter values (as shown in Figure 2.2) for each
physical database object D; € D. The model parameters for D; describe the I/O
workload that the DBMS is expected to apply to the stored representation of that
object.

The method shown in Figure 2.3 consists of three phases. First, the estimator
generates an I/O request sequence corresponding to each query type in the database
workload in isolation (Figure 2.3 lines 1-4). Second, it merges those individual
sequences into a single 1/O request trace, which is called the representative 1/0
trace for the given database workload and operating point (line 5). Finally, it
projects each physical object’s requests from the representative trace and fits the
Rome stream parameters to the projected trace (lines 6-9). What follows is a
detailed description of these phases.

2.2.1 Estimating Query I/O Request Sequences

An 1/0 request sequence is an ordered list of records, each of which describes a
single block I/O operation. Specifically, each record consists of the following fields:
physical object identifier, starting offset within the physical object, request size, and
request type (read or write). Note that, in Figure 2.3, request sequences (RS;’s)
have been distinguished from request traces (Tr and Tr;’s). A request trace differs
from a request sequence in that the former includes timing information for each
I/O operation, while the latter does not.

The first phase of the storage workload estimation process is to predict a sepa-
rate 1/O request sequence for each type of query in the database workload. These
request sequences describe the 1/O behavior of a single query running in isolation.
Figure 2.4 summarizes the approach.

10

Database
Statistics

Database
Workload

DBMS

Query Optimizer

Query Plans
(one per query type)

Data—Free Plan
Simulation
(modified Postgres)

1/0 Request Sequences
(one per query type)

Figure 2.4: Generating Query I/O Request Sequences

To obtain these sequences, we perform a data-free simulation of the control flow
of each query’s execution plan. A query execution plan is a tree in which the nodes
represent database query execution plan operators such as table scan and merge
join and the edges represent the data flow between operators. During the data-
free simulation of a plan, the plan operators generate I1/O records describing any
I/O operations that they would have generated during a normal plan execution.
However, they do not actually generate the I/O operations. Instead, they log the
descriptions of those operations as if they have been actually issued. These I/O
records are concatenated to form the I/0O request sequence for the query.

When a query plan is actually executed by the database system, its control
flow depends on the data that is flowing through the plan. During the data-free
simulation, operators neither retrieve the data nor flow the data through the plan.
The simulation relies instead on the cardinality estimates produced by the query
optimizer to approximate the control flow that would have occurred during an
actual execution of the plan. For example, for a tuple-oriented nested loop join,
we use the optimizer’s estimate of the cardinalities of the inner and outer relations
and its estimate of the join selectivity to estimate the number of times that the
join operator’s left and right children in the plan will be asked to produce data.
The simulation also relies on some operator-specific assumptions. For example, a
(external) sort operation is assumed to create initial runs that are twice the size of
the working memory available for the sort operator.

By performing the data-free simulations, we attempt to capture several im-
portant properties of the I/O workload that will be generated by queries of each
type. First, the resulting I/O sequences will contain the correct numbers of 1/O
requests for each physical database object used by the query, up to the accuracy

11

of the query optimizer’s cardinality estimates and the simplifying assumptions in
the simulation. Second, the I/O request sequences will distinguish sequential and
random I/O, based on the type of operator that is generating the requests and
on information from the database catalog. For example, a table scan of a relation
will generate sequential requests, while an index scan of the same relation using an
uncorrelated (i.e., unclustered) secondary index will generate random requests. Fi-
nally, the sequence will capture the interleaving of requests for the various physical
database objects used by the query plan. For example, the simulation understands
that a hash join will first retrieve the entire build input and then retrieve the entire
probe input, resulting in non-interleaved access to the physical objects that provide
the build and probe inputs. Conversely, a nested loop join will result in interleaved
accesses to the inner and outer inputs.

Implementation of data-free simulation is embodied in a modified version of
PostgreSQL. In the modified version of PostgreSQL, there are 18 different opera-
tors that may appear in execution plans. The plan simulator handles most aspects
of these operator types. One limitation of the current implementation is that queries
referring to view definitions are not handled. This is a restriction of the current
prototype, not a fundamental or technical restriction. Figure 2.5 illustrates the
simulation for three of the PostgreSQL operators: table (sequential) scan, index
scan, and nested loop join. Illustrations of the simulation of all of the PostgreSQL
operators can be found in Appendix A. In these illustrations “ReadPage()” and
“WritePage()” functions cause an I/O request to be logged in an I/O request se-
quence. Both functions accept two arguments representing an 1/O request: a unique
object identifier and an offset within the object. Note that request size is implicit
because PostgreSQL uses an 8KB page size. There are only seven operators that
can issue an I/O request. Three of them are scan operators that can be found only
at the leaf level of an execution plan: table scan, index scan and tid scan operators.
Other four operators can only be found in the inner nodes of a plan, and write into
and read from temporary files: sort, hash, hash join and materialize operators.

Note that data-free simulation of a query plan is generally much faster than
the actual execution of the plan. This is because the simulation does not retrieve
any stored data, does not flow these data through the plan operators, and does not
generate any intermediate or final query results. More information about the cost
of data-free simulation is given in Section 2.3.4.

2.2.2 Generating the Representative Trace

The I/0 request sequences generated in the first phase capture the 1/O workload
characteristics of a single query running in isolation. In the second phase, the
estimator generates a representative I/O trace that describes the aggregate storage
workload of the entire database workload.

The generation of the representative I/O trace adds three kinds of information
to the individual query request sequences. First, since the representative 1/0O trace

12

|

Operator

Handling Init()

Handling getNext()

TuplesOut

Sequential Scan

Cursor
PageNum

PagesIn

RELATION

Cursor := 0;
PageNum := 0;

position := ceil(Cursor);

Cursor += PagesIn/TuplesOut;

for i := 1 to (ceil(Cursor)-position)
ReadPage(RELATION,PageNum);
PageNum += 1;

ursor
OuterTuplesIn T

‘ InnerTuplesin
[

OUTER INNER

PLAN PLAN

Cursor := 0;

position := ceil(Cursor);
Cursor += OuterTuplesIn/TuplesOut;
for i := 1 to (ceil(Cursor)-position)
getNext(OUTERPLAN);
Init(INNERPLAN):
for j := 1 to InnerTuplesIn
getNext(INNERPLAN);

RELATION INDEX

RCursor := 0;

RPageNum :=
random(0,RPages-RSeqPagesIn);

ICursor :=
random(0,IPages-TPagesIn);

IPageNum := ICursor;

Iposition := ceil(ICursor);
ICursor += IPagesIn/TuplesOut;

Rposition := ceil(RCursor);
__ RSeqPagesIn+RRandomPagesIn
RCursor += TuplesOut ’

for i := 1 to (ceil(ICursor)-Iposition)
ReadPage(INDEX, IPageNum);
IPageNum += 1;
for i := 1 to (ceil(RCursor) - Rposition)
if Rposition < RSeqPagesIn
ReadPage(RELATION,RPageNum);
RPageNum += 1;
Rposition += 1;
else
pagenum := random in [0,..,RPages];
ReadPage(RELATION,pagenum);

Figure 2.5: Data-Free Simulation of the PostgreSQL Plan Operators. In the di-
agram, operators are annotated with the names of state variables maintained by

the simulation.

Operator inputs and outputs are annotated with the names of

PostgreSQL optimizer statistics and configuration parameters that are used by the

simulator.

describes the aggregate storage workload generated by the database system, it
reflects the mixture and frequency of the various types of queries that make up
the database workload. Second, it accounts for the effect of buffer caching and
prefetching on the aggregate 1/O stream. Finally, unlike the per-query request
sequences, the representative trace incorporates timing information in the form
of an arrival timestamp for each I/O request. These timestamps reflect the 1/O
request throughput that will be required to support the database system at the
specified operating point.

Figure 2.6 summarizes the process of generating the representative /O trace. A
simple probabilistic operational model of the database system is used to generate a
merged /0 sequence from the per-query I/0O sequences obtained in the first phase.
The database system is assumed to have a fixed query multiprogramming level CL at

13

from Phase 1

per query I/O
request sequences

— query throughput
— concurrency level

merge

Postgres DB

Buffer Cache

Simulation

= Available Memory — Writeback Freq.)
— Dirty Ratio — Dirty Page Expiration Time
— Max Request Size — Readahead Window Size

Linux VFS
Buffer Cache, Readahead &
Writeback Simulation

representative /O trace

Figure 2.6: Generating the Representative /O Trace

the target operating point. CL is specified as a workload parameter (see Figure 2.1).
To generate a merged 1/0O sequence, CL query types are selected at random, with
query type i selected with probability proportional to f;. The 1/O sequences for
the selected query types are then round-robin merged to produce a single request
sequence. When one of the per-query sequences is exhausted during the merger,
another query type is selected and its I/O sequence replaces the exhausted one. This
generative process continues until a specified number of per-query 1/O sequences
have been merged.

As the merged request sequence is formed, the estimator passes it to a DBMS-
specific buffer cache model. To model the buffer cache, the estimator is currently
employing a simulation of the 2Q) cache replacement algorithm [26] that is used by
PostgreSQL version 8.0.6. This simulation is parametrized by the buffer cache size.
The effect of the simulation is to remove from the request sequence any I/0 requests
that hit the (simulated) buffer cache. Note that the buffer cache simulator does
not store any actual data. It merely stores information (physical object identifier
and offset within the object) which uniquely identifies each 8KB page that would
be cached.

Unlike many commercial database management systems, PostgreSQL relies on
the underlying operating system to carry out prefetching, and thus issues buffered
I/O. This means that the data pages are also buffered in the operating system’s
buffer cache, and write I/O requests are deferred for some amount of time be-
fore they are submitted to the storage subsystem. Therefore, the output of the
PostgreSQL buffer simulation is fed to a simulation of the Linux virtual filesystem

14

8KB I/O request from
a request sequence
for TempSpace?
V
Check Postgres
Buffer Cache

cache hit?

e POSTGRESQL

YES
read I/0?
determine readahead NO
window size of the object
(start to read requested block
and readaheadqblocks if any)
V
Check VFS
Page Cache ©)
cache hit? ache full? try to free b
YES some pages | 00—

| move some pages from !
allocate a new page ractive list to inactive list (LRU) w
(identifier) in the cache) | """~~~ "1 """ "°°°°

NO o/ \ead V/O? | of the inactive list (LRU) !

YES 'Free the '<N
Log Read I/O into
the Request Trace

" write some dirty pages |
.until the cond. doés not hold

Log Write I/O into
the Request Trace

Log Write I/O into
the Request Trace

um of dirl&/ pages
irty_ratio

LINUX VFS

Figure 2.7: Decision Flow Diagram for PostgreSQL I/O Requests

(VES) buffer cache. The Linux VFS buffer cache simulation is parametrized by the
amount of available memory. It is assumed that the DBMS is the only application
running in the system, and all of the system memory is available for data buffering
except for the memory allocated to the DBMS for caching.

The current implementation uses a simulation of the two-list LRU cache re-
placement algorithm [10]. Writeback and readahead mechanisms implemented by
the VFES are also simulated. Writeback simulation is parametrized by three pa-
rameters: the threshold that sets the maximum number of dirty pages in the
cache at any time, the expiration time of dirty pages, and the period of the
dirty page reclaiming process. Those parameters are tunables in a Linux system,
and can be found in /proc/sys/vm: dirty ratio, dirty expire _centisecs, and
dirty writeback centisecs. Readahead simulation is parametrized by two pa-
rameters: maximum readahead window size and the maximum size of an I/O re-
quest. Those parameters are tunables for each 1/O request queue, and are named
read_ahead kb and max_sector _kb. Normally, each device in a Linux system has
its own queue and each queue can be tuned independently. However, the simulator
assumes that there is a single device in the system (thus a single queue) that con-

15

tains all of the database objects. The current implementation is using a simulation
of the stock readahead algorithm found in Linux 2.6 kernels [10]. Figure 2.7 depicts
the decision flow diagram for a given 8KB I/0 request from a request sequence.

After the cache simulations, timing information is associated with each I/0O
request. To do this, we use the query throughput 7 that is supplied as a parameter
to the workload estimation process. Query throughput is first translated to I/O
throughput by multiplying query throughput by the average number of /O requests
per query:

Total Number of I/O Requests in the Trace

,];o =T .
Total Number of Queries

Here, “Total Number of 1/O Requests in the Trace” is the total length of the
combined I/0 request trace obtained after cache simulations, and “Total Number
of Queries” gives the number of queries handled in the round-robin merging loop.
The jth request in the representative I/O trace is assigned an arrival time of j /7.
This reflects the requirement that the necessary query throughput at the target
operating point be satisfied by a storage system capable of handling I/O requests
at this rate.

2.2.3 Fitting the Rome Model

To produce a Rome model of the I/O workload, a set of Rome stream parameter
values must be chosen to characterize the 1/O requests directed to each of the
physical database objects. To select parameter values for a given object, first
object’s requests from the aggregate representative trace are projected, and then
Rome parameter values (see Figure 2.2) are chosen to fit the per-object trace.

We take advantage of an existing I/O trace analysis tool called Rubicon [54] to
implement this procedure. Rubicon implements both the per-object projection of
the representative trace as well as the parameter fitting. Rubicon includes a number
of statistical analyzers for estimating Rome model parameters from a request trace.
Figure 2.8 summarizes how each of the per-object Rome parameters is estimated.
In the figure, “I/O Count” of an object is the total number of I/O requests directed
at the object.

2.3 Experimental Evaluation

In this section, an empirical evaluation of the proposed storage workload estimation
technique will be presented. The evaluation has two goals: to determine how
accurate the storage workload estimates are and to analyze how costly it is to
generate those estimates.

Here, the important question is how to measure accuracy. One way to charac-
terize accuracy is to compare, for a given database workload, the estimated storage

16

Symbol \ Description

Estimation

tOTL

average burst duration

Trace requests are partitioned into bursts, with a re-
quest interarrival gap greater than 2 seconds indicat-
ing a burst boundary. t,, is estimated as the average
duration of the resulting bursts.

avg. inter-burst gap duration

Estimated as the average duration of the inter-burst
gaps.

)\7‘

read request rate during bursts

Estimated as the I/O count divided by the sum of the
burst lengths.

)\w

write request rate during bursts

Estimated as the I/O count divided by the sum of the
burst lengths.

BT’

average read request size

Estimated as the average size of the read requests in
the trace.

Bw

average write request size

Estimated as the average size of the write requests in
the trace.

avg. sequential run length

Trace requests are partitioned into runs. Consecu-
tive requests are part of the same run if the starting
position plus the length of the first request matches
the starting position of the second request. Other-
wise, there is a run boundary between the requests.
Q@ is estimated as the average length of the runs in
the trace.

pairwise overlap fraction

This describes how stream j’s bursts overlap with
those of stream ¢, 1 < j < |D|. First, the total amount
of time during which both streams are simultaneously
in I/O bursts is measured. This is divided by the sum
of stream ¢’s burst durations to generate an estimate
for ®;[7].

Figure 2.8: Estimation of Rome I/O Model Parameters Using Rubicon Trace An-
alyzers

workload with the actual storage workload generated by the DBMS. This approach
gives a characterization of accuracy that is independent of the intended usage of
the storage workload estimate. However, it requires that we have some means of
comparing storage workloads, which are complex artifacts.

An alternative means of evaluation is to characterize the suitability of the es-
timated workload for a particular purpose. In this case, the primary interest is in
generating storage workload characterizations that will be useful as input to design
and configuration advisors for storage systems. Such advisors use storage system
cost models to determine how well a particular storage system configuration will
perform under a given workload. Thus, one way to characterize the accuracy of a
workload estimate is to use both estimated and actual workloads as input to a stor-
age system performance model, and test whether they result in similar performance
predictions. If they do, this indicates that the estimated workloads are accurate

17

enough to replace actual workloads as inputs to a storage system design advisor.

Both types of evaluation have been considered. In Section 2.3.2, we present
a direct comparison of estimated and measured workloads. In Section 2.3.3, we
examine the utility of estimated workload traces for the purpose of predicting the
performance of various storage system configurations. Section 2.3.4 presents mea-
surements of the cost of estimation.

2.3.1 Experimental Configuration

The Linux kernel-2.6.21.7’s low-level block IO layer was modified so that it would
produce 1/0O request logs when the DBMS is running. The request logs include
one record for each I/O operation initiated by PostgreSQL. Since 1/O operations
are logged at 1/O scheduler queue level, the request logs capture PostgreSQL 1/0
requests that miss both the database buffer cache and the VFS cache. They also
accurately reflect writeback delays and readahead I/O requests. These logs are
the actual storage workload generated by the database system, against which the
estimated workloads can be compared.

PostgreSQL 8.0.6 is used as the DBMS. It was running on a Dell Poweredge
2600 server with two 2.2 GHz Intel Xeon processors and 4GB of main memory,
running SUSE 10.0 Linux kernel-2.6.21.7. The server has a 70GB 15K RPM SCSI
disk that is used to hold all system software, including PostgreSQL itself, as well as
the I/O logs. In addition, the server has four 18.4GB 15K RPM SCSI hard drives
behind a configurable Dell Perc 4Di RAID controller. These drives were configured
into a single RAIDO LUN (logical device), on which a Reiserfs file system was built
to hold the database objects.

PostgreSQL uses an 8KB page size, and the database system is configured with
a 2GB shared buffer. The PostgreSQL work mem parameter, which controls the
amount of memory used by operators that hash or sort, was set to 2MB. The
kernel’s 1/O scheduler queue properties for the logical device storing the database
objects were set as follows: max_sector_kb to 128KB, readahead_kb to 1024KB,
scheduler type to noop. Note that, since the storage subsystem has a RAID con-
troller which employs I/O re-ordering algorithms, noop scheduler gives the best
performance results among all four available scheduler types. The kernel’s virtual
memory parameter settings were kept at their default values: dirty_ratio to 40,
dirty_writeback_centisecs to 500, and dirty_expire_centisecs to 3000.

We experimented with a scale-factor 5 TPC-H database. We used the open
source implementation of the TPC-H benchmark [40]. Normally, the TPC-H bench-
mark [15] defines 22 query types, but Query 9 and Query 15 were excluded from our
experiments. Query 9 was not included because of its excessive run time compared
to the run times of other queries. While the average run time of other queries is
around 10 minutes, the run time of Query 9 is around 260 minutes in our system.
Query 15 refers to a view, which is not supported by the current implementa-
tion of the I/O Estimator. Thus, the SQL workload running against the TPC-H

18

fff

Storage Workload Estimation

| |
| |
| | :
i 1 Rome | estimated Rome
Phase 1 Phase 2 - T
| (ase H ase s) representative trace Model Fitting | workload model
) |
DBMS L |
queries
PostgreSQL Rome Rome model of
DBMS actual storage workload trace Model Fitting actual workload
logged by the kernel

Figure 2.9: Experiment Design for Comparing Estimated and Measured Storage
Workloads

database consisted of randomly-generated instances of 20 TPC-H query types with
each query type having equal probability of occurrence. The execution plans for
these queries make use of a total of twenty physical database objects, including 8
tables (lineitem, orders, supplier, customer, part, partsupp, region, and nation), 4
primary key indexes (orders_pkey, supplier_pkey, customer_pkey, and part_pkey),
7 indexes (i_l.orderkey, i_lsuppkey_partkey, i_lsuppkey, il partkey, i_o_custkey,
i_o_orderdate, and i_ps_partkey) on lineitem, orders and partsupp tables, and a
tablespace for temporary files (TempSpace). This workload will be denoted by
WTPCH.

2.3.2 Accuracy of Estimated Workloads

The first goal was to directly compare estimated storage workloads with actual
storage workloads logged by the kernel. Figure 2.9 illustrates the design of the
experiment. Using the default WTPCH query workload at a specified multiprogram-
ming level CL, queries were generated and submitted to PostgreSQL for execution.
A trace of the actual storage (I/O) workload generated by PostgreSQL as it exe-
cuted the queries was captured, and the query throughput, 7 was also measured.
We then used this database workload, including the measured query throughput,
as input to the storage workload estimator.! This produces an estimated storage
workload model, M.. Finally, a Rome workload model was fitted to the actual
storage workload trace using the same Rubicon-based model fitting procedure used
in the third phase of the I/O estimation process. This results in a Rome model of
the measured storage workload, which is denoted by M,,..s. Appendix B gives a
direct comparison of all of the I/O workload parameters obtained from the actual
workload trace and the estimated representative trace for the WTPCH workload at
two concurrency levels, CL = 1 and CL = 5. Here, we present a summary of those
comparisons.

Figure 2.10 summarizes the results as weighted average estimation errors over
all of the objects’ request streams. FKError is computed for each database object

Tt was ensured that the estimator ran the same set of queries as PostgreSQL, and that they
were initiated in the same order as they were in PostgreSQL. This ensures that any storage
modeling error can be attributed to the proposed methodology and not to differences in the
database workloads seen by PostgreSQL and the I/O estimator.

19

I/0 Burst Burst | Inter-Burst | Run
Workload Size Request Rate | Time Time Count

(B", B*) | (A, AY) | (ton) (torr) (Q)
CL=1 15% 45% 65% 39% 18%
CL=5 33% 64% 106% | 51% 20%

Figure 2.10: Weighted Relative Estimation Errors. Error is computed for each
database object as the absolute difference of the estimated and measured values,
divided by the measured value. The reported value is a weighted average over
all database objects, with weights determined by the objects’ measured total 1/0
counts.

Percentage Burst Time | Average Request Rate

ton ton

to’rL“!‘tojf) ton+t0ﬁ'
CL=1 16% 14%
CL=5 9% 44%

Figure 2.11: Weighted Relative Estimation Errors for Percentage Burst Time and
Average Request Rate.

as the absolute difference of the estimated and measured values, divided by the
measured value. The weights are determined by the objects’ measured 1/O counts.
In addition to the parameters that are explicitly specified in the Rome model, we
find it useful to compare some parameters that can be derived from the existing
Rome parameters. These parameters are “percentage burst time” and “average
request rate”, which are computed as follows

3 — ton
Percentage Burst Time = Fomtton
N . t()”L
Average Request Rate = A —eu- p

“Average request rate” is an important parameter to consider for two reasons.
First, it indicates how accurately we estimate the I/O count of an object because
it approximates the request rate as if the stream is always active. In other words,
it ignores the burstiness of the request stream. Second, as will be introduced in
Section 2.3.3, the storage system performance model utilizes average request rate
rather than burst rate. Figure 2.11 summarizes the comparison of estimated and
measured values for these two parameters as weighted average estimation errors
over all of the objects’ request streams.

Figure 2.12 compares some of these statistics in measured (M,,cqs) and estimated
(M.s) workload models and the derived parameters described above. Each bub-
ble in these graphs represents one database object, with bubble sizes scaled to the
object’s measured I/O count. Thus, more important objects have larger bubbles.
Note that TempSpace is the only database object which receives write I/O requests.
Therefore, we will not present two separate graphs for the parameters that are dis-
tinguished by I/O type; these parameters are B, A and A,,,. Instead, in the graphs

20

500 P 3000 100%

lineitem 20004
300 4
i_1_suppk_pank
200 *

d 1000
P TempSpace(write)

© panisupp

iLo_custkey w00 P
ps_partkey - o

20% | TempSpace

G onders._phey

0

T T T T T 7 T T T T T T T T T
20 40 60 80 00 120 0 100 200 300 400 500 4 1000 2000 3000 0% 20% 60%

Measured /0 Request Size (KBs) Measured Burst Request Rate (req/sec) Measured Run Count (blocks) Measured Percentage Burst Time (%)

r w _ r w _ _ t _
(a) B"and B¥ (CL=1) (b) A" and A¥ (CL=1) ()@ (CL=1) (d) Fpmi oy (CL=1)
120 customer ° ° part 600 — 120%
Tineitem o 2000 o
o] o @ o
1500
804 4004 80%
0 300 10004 60% |e.8,pue
40 200 500 /»’
rgp” @ Tempspaceturic) 1 0%
T 2 @ % w0 i 1o 3 10 200 a0 w0 0 e RS T 50 100 10 2000 B T P T T
Measured I/0 Request Size (KBs) Measured Burst Request Rate (reg/sec) Measured Run Count Measured Percentage Burst Time (%)
r w _ T w _ _ t _
(e) B" and BY (CL=5) (f) A" and A\¥ (CL = 5) (2) Q (CL =5) (h) 2~ (CL =5)

o] #Crspucsnio

0 50 100 150 200 250 0 00 200 300 400 500
Measured Average Request Rate (req/sec) Measured Average Request Rate (reg/sec)

0 TempSpace(write)

(8) ANavg and A3,

avg

(CL=1) (h) A}, and A3,

avg

(CL =5)

Figure 2.12: Estimated vs. Measured I/O Workload Model Parameters. Values
from M., are on the vertical axis, values from M,,,..s are on the horizontal axis. The
center of each bubble represents estimated and measured values for one database
object. Bubble area is scaled to the corresponding object’s total I/O count. The
line in each graph is estimated = measured, indicating perfect estimation.

of these parameters, we will represent TempSpace using two objects, one for read
requests (TempSpace(read)) and the other for write requests (TempSpace(write)).

Before analyzing the statistics parameter-by-parameter, it is worth noting pos-
sible sources of errors in our estimations. The simplifying assumptions made in
data-free plan simulation are one source of estimation errors. One of the other
important reasons behind these errors is inaccurate query optimizer statistics and
estimations. For example, TempSpace object is an outlier for the parameters which
directly depend on 1/0O count (see Figure 2.12(b),(d),(f) and (h)). It is no surprise
that the PostgreSQL version we used has made inaccurate cardinality estimates
pertaining to this object. For instance, Figure 2.13 depicts the execution plan
generated by PostgreSQL for TPC-H Query 18. While the optimizer estimates
that materialize operator will create a temporary object for 30 million tuples,
in the actual run the operator materializes only 36 tuples. Note that inaccurate
cardinality estimations further affect the access pattern to the buffer cache in our
simulations. For example, overestimating the I/O count of an object may result in

21

30M tuples
ORDERS

IN REALITY,

IT IS JUST 36 TUPLES

30M tuples

30M tuples

using i_I_orderkey

LINEITEM
(652,884 pages / 30M tuples)

Figure 2.13: Execution Plan for TPC-H Query 18

evicting pages that would be utilized by an upcoming query. Comparing CL = 1
and CL = 5 cases in Figure 2.12, we see that capturing the caching impact on an
I/O workload has a crucial role. Normally, as the concurrency level increases, one
would expect the estimation errors (due to inaccurate cardinality estimates) to get
worse. However, we do not observe a dramatic increase in error rates at CL =5
(see Figures 2.10 and 2.11). Although error rates tend to increase as the multipro-
gramming level increases, one of the reasons is the difference between query mixes
for CL =1 and CL = 5. At CL = 1, the database workload is composed of 40
queries, a random mix of 20 TPC-H queries and each query template occurs twice
in the mix. At C'L = 5, the database workload is composed of 60 queries, a random
mix of 20 TPC-H queries and each query template occurs three times in the mix.
As a result, query templates with erroneous cardinality estimates, such as Query
18, occur more at C'L = 5. The overall effect is that the estimator overestimates the
number of I/0 requests more at C'L = 5 than it does at C'L = 1. In the following,
we discuss some of the other reasons behind the estimation errors.

Request Size: Both at C'L =1 and C'L = 5, the highest error rates are observed
for TempSpace object and for certain indexes (see Figure 2.12(a) and (e)).
The 1/0O size is overestimated for TempSpace because of our assumptions.
For example, a sort operator uses a single temporary file when performing
merge-sort algorithm. It stores initial and intermediate sorted runs in this
file. When simulating sort operator we assume that each run is accessed
sequentially; however, in reality, this may not be the case. In our simulations,
sequentiality triggers readahead which in turn results in I/O requests larger
than 8KB. As for the indexes, I/0O sizes are mostly underestimated for certain
indexes. For example, while the measured 1/0 size is 97KB for i_o_custkey,
it is estimated 17KB (see Figure 2.12(a)). This behaviour is observed for the
indexes that are used in a subplan in a query execution plan. Such subplans
are executed repeatedly for a given value, generally to check whether the value
exists in the underlying relation. When we simulate a subplan, we always re-
initialize its state at each call (i.e., getNext()) and thus pick a random offset

22

within the index (see Figure 2.5). Therefore, our simulation does not take
into account any locality which may be observed in an actual run. Note that
access locality may trigger readahead, and thus increase the I/O size. In
addition, we do not simulate request merging that happens at the operating
system’s 1/O queue so access locality again may result in request merging
that we ignore in our simulations. Nevertheless, the weighted average error
for the I/O size parameter is small: 15% for CL = 1 and 33% for CL =5
(see Figure 2.10).

Burst Time and Percentage Burst Time: Burst time (¢,,) and inter-burst gap

Burst and Average Request Rates: Rubicon computes the burst rate as

time (¢,p) are the two Rome parameters for which we observe the highest er-
ror rates (see Figure 2.10). As was presented in Figure 2.8, t,, and t,5 are
the average duration of all burst and inactive periods, respectively. Although
we make large errors in estimating the average duration of the burst period
of a stream, we estimate percentage burst time much more accurately (see
Figure 2.11). As a matter of fact, percentage burst time is more important
for analytical storage system models. As will be explained in the following
section, the storage system performance model utilizes percentage burst time
rather than burst duration. ¢,, and t,s are crucial for trace-based storage
system simulators [59], in which a Rome stream is simulated as if it is an
infinite I/O stream and active for ¢,,, with a period of ¢,z. Burst periods play
the most important role when analyzing two streams’ relative active periods;
Rubicon uses burst periods to compute the pairwise overlap fraction matrix
®. As we will discuss shortly, the I/O estimator does a good job in estimating
how two streams’ burst time overlaps. In conclusion, although we make large
errors in estimating ¢,, and t,z, the I/O estimator accurately estimates the
relative duration of burst and inter-burst times of a stream and the relative
burst times (i.e., correlation) between two streams.

Zton
(see Figure 2.8). Thus, any error made in the estimation of the objects’ I/O

counts would be reflected into the request rate estimations. Moreover, as de-
scribed in Section 2.2.2, I/O request time is computed using query throughput
7 and total estimated I/O count, thus > ¢,, depends on I/O count, too. The
I/O estimator tends to overestimate the burst request rate for most of the
objects (see Figure 2.12(b) and (f)) because for both CL = 1 and CL = 5
I/O counts of those outlier objects are overestimated. For example, while the
measured I/O count of lineitem table is 4.6 million and 6.2 million requests
for CL = 1 and CL = 5 respectively, those are estimated at 5.1 million and 7.8
million requests. However, the estimation errors for the average request rate
is lower (see Figure 2.11) because it approximates I/O count and cancels out
the impact of Y t,.

Run Count: The estimator is able to capture the effect of concurrency on se-

quentiality (see Figure 2.12(c) and (g)). For example, while lineitem and

23

I/0 Count

Object [CL=1][CL=5]

lineitem 5.9% 16.6%
orders 3.7% 13.9%
i_l_orderkey 2.1% | 16.5%
TempSpace 5.8% 14.3%
orders_pkey 3.1% 12%
partsupp 16.8% 17.7%
i_l_suppkey_partkey 5.2% 14.8%
part 4.8% 9%
customer 4.6% | 23.5%
i_l_suppkey 0% | 11.3%
Weighted Estimation

Errogrs over all Objects 5.4% 15.9%

Figure 2.14: Overlap Fraction Average Absolute Estimation Errors. Error is com-
puted for each database object as the absolute difference of the estimated and
measured values, divided by the number of objects. The last row is the weighted
average of these errors over all objects, with weights determined by the objects’
measured total I/O counts.

i_l orderkey objects are accessed sequentially at CL = 1, they are being ran-
domly accessed at CL = 5. There are a few outliers such as part and part-
supp tables, but these are already sequentially accessed at both CL = 1 and
CL = 5. Fortunately, this kind of run length estimation error is probably
not significant. Any @) greater than 100 represents very sequential 1/O. The
most important thing for the estimator is to distinguish between very small
run lengths (e.g., @ = 1) and large run lengths. In Section 2.3.3, we show
that these large run length estimation errors do not lead to large errors in
predicting the performance of the underlying storage system.

The remaining I/O model feature that has not been discussed yet is the burst
overlap matrix, ®. Figures 2.15 and 2.16 compare measured and estimated burst
overlaps, ®;[j], among the database objects’ request streams for CL = 1 and CL = 5.
Each graph shows the percentage overlap of one object’s request bursts with the
bursts of other objects. The figure includes only the ten objects with the highest
measured I/0O counts. Figure 2.14 summarizes these results as the average absolute
estimation errors over the overlap fractions of each object with all of the remaining
objects. Error is computed for each database object as the absolute difference of

the estimated and measured values, divided by the number of objects: for object

- o 1@ (Kl meas —®i[klest] - _
object;, ==L i . The last row in Figure 2.14 summarizes these per-

object estimation errors as the weighted average estimation error over all of the
objects, and the weights are again determined by the objects’ measured 1/O counts.

These data show that the estimator does a good job of estimating which objects’
request bursts overlap and which do not in both CL = 1 and CL = 5. For example,
at CL = 1, when the orders table is being accessed (Figure 2.15(b)), so are the
lineitem table, the orders table’s primary index (orders_pkey), and the i_1 orderkey

24

pe
lineitem orders il orderkey TempFlle orders pkey partsupp || suppk_partk customer part i1 suppkey lineitem orders i lorderkey TempFile orders pkey partsupp || suppk_partk customer part | ilsuppkey
(a) lineitem (b) orders
pe
(c) i-lorderkey (d) Tablespace for temporary files
e
e el
0% 4— r - r r 0% - r
““““ T ey P P T Ty P TP
(e) orders_pkey (f) partsupp
100% 100%
0% T 0% ——— i

Iineitem orders |l orderkey TempFlle orders pkey partsupp |1 suppk partk customer part i1 suppkey orders |l orderkey TempFlle orders pkey partsupp || suppk_partk customer part Il suppkey

(g) i_lsuppkey_partkey customer

100% 100%
0% 0%
0% 0%
0% 0%
20% 20%
LR v T E— T T T 0% T T

T T T T
lineitem orders i Lorderkey TempFle orders pkey partsupp || suppk partk customer part i1 suppkey lineitem orders il orderkey Tempfile orders pkey partsupp I_|suppk_partk customer part il suppkey

(i) part (j) i_l_suppkey

Figure 2.15: Measured and Estimated Burst Overlaps at CL = 1. The left (blue)
bar of each pair shows measured values, the right (red) bar shows estimated values.

and i_l_suppkey indexes. Other objects, like the part, partsupp and customer tables,
are not. This kind of information is useful to storage configuration tools, since
placing co-accessed objects on different storage devices can reduce interference and
improve performance [2]. As the concurrency increases, some objects start to be
co-accessed. When the partsupp table is being accessed at CL = 1 (Figure 2.15(f)),
some objects like orders table, i_1_orderkey and orders_pkey indexes and TempSpace
object are never accessed. However, at CL = 5 (Figure 2.16(f)), those objects are
accessed.

2.3.3 Storage Performance Prediction Using Estimated Work-
loads

As was noted in the beginning of the chapter, one of the motivations for generating
storage workload estimates is to be able to use them to estimate the performance
of candidate storage configurations. Storage configuration advisors, such as the
one that will be introduced in the following chapter, use storage system models to
estimate the performance of candidate configurations. In this section, we present
the results of an experiment in which both measured and estimated storage work-
load models were used as input to a storage system performance model. We then
compared the storage system performance predicted by the model under the two
workloads. Ideally, the predictions would be identical. This would indicate that the

25

\\\\\\\ rk pa stome

(a) lineitem

5 Fl
E E
H
i
3 z
H H
H H
gg%
®R
\ \
H :
g El
E E
i H
£
: H
H H
£ z

‘‘‘‘‘‘‘ m orders 1 orderkey Tem| jers_pkey partsupp 1 |su a ar customer

.z8gad NEEEE
RRRRER ER R B
:‘ =

o, |3 3

S~—
H H

(c) i-lorderkey

58

100% 100%
80% - 80%
60% - %
0% - %
20% - 20%
0% 0%
lineitem

Tineitem orders i Lorderkey TempFile key partsu ppk_partk part customer 1L suppkey

(e) orders_pkey

g g
3 3
& &
]]
3 3

£
5 3

100% o 100%
80% - 80%
60% - 60%
0% 0%
20% - 20%

0% ! 0%

(g) il_suppkey_partkey (h) part
(i) customer (j) i-l_suppkey

Figure 2.16: Measured and Estimated Burst Overlaps at CL = 5. The left (blue)
bar of each pair shows measured values, the right (red) bar shows estimated values.

estimated workload models were as good as the measured models for this particular
task.

For this experiment, we used the storage system performance model that will be
explained in detail in the following chapter. This performance model takes Rome
storage workload descriptions as input. Thus, the output of the storage workload
estimator can be used without modification as input to this model. The model
assumes that a storage system is structured into a set of independent RAID groups
(or arrays), and it describes how the “stores” that are referred to in the workload are
mapped to RAID groups. In our case, each store corresponds to a physical database
object, so the layout effectively describes how database objects are laid out on the
available RAID groups. The storage system performance model predicts the average
utilization of each RAID group for a given set of objects, their I/O workloads (i.e.,
Rome streams) and mappings to the RAID groups. Although workloads are bursty,
the model predicts av