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Abstract

Modern storage systems are complex. Simple direct-attached storage devices are
giving way to storage systems that are flexible, network-attached, consolidated and
virtualized. Today, storage systems have their own administrators, who use spe-
cialized tools and expertise to configure and manage storage resources. As a result,
database administrators are no longer in direct control of the design and config-
uration of their database systems’ underlying storage resources. This introduces
problems because database physical design and storage configuration are closely
related tasks, and the separation makes it more difficult to achieve a good end-to-
end design. For instance, the performance of a database system depends strongly
on the storage layout of database objects, such as tables and indexes, and the
separation makes it hard to design a storage layout that is tuned to the I/O work-
load generated by the database system. In this thesis we address this problem
and attempt to close the information gap between database and storage tiers by
addressing the problem of predicting the storage (I/O) workload that will be gen-
erated by a database management system. Specifically, we show how to translate
a database workload description, together with a database physical design, into a
characterization of the I/O workload that will result. Such a characterization can
directly be used by a storage configuration tool and thus enables effective end-to-
end design and configuration spanning both the database and storage tiers. We
then introduce our storage layout optimization tool, which leverages such workload
characterizations to generate an optimized layout for a given set of database objects.
We formulate the layout problem as a non-linear programming (NLP) problem and
use the I/O characterization as input to an NLP solver. We have incorporated our
I/O estimation technique into the PostgreSQL database management system and
our layout optimization technique into a database layout advisor. We present an
empirical assessment of the cost of both tools as well as the efficacy and accuracy
of their results.
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Chapter 1

Introduction

The complexity of modern enterprise computing environments is prompting changes
in the way that computing resources and the systems that depend on them are de-
ployed and managed [22, 28, 49, 50, 58]. As a major component of a computing
environment, storage systems are getting more sophisticated, too. Simple, direct-
attached storage devices are giving way to flexible, network-attached, consolidated
and virtualized storage systems. Increasingly, storage resources are consolidated
into a common pool, virtualized to accommodate individual application require-
ments, and shared by multiple enterprise applications, including database manage-
ment systems (DBMS). Furthermore, in order to effectively address this complexity,
storage resources are increasingly administered separately from the server infras-
tructure. Storage administrators (SAs) are expected to balance the requirements
of multiple database systems and other storage clients by applying their own do-
main knowledge and expertise. As a result, database administrators (DBAs) are no
longer in direct control of the design and configuration of their database systems’
underlying storage resources.

Managing the storage infrastructure is, like database administration, a complex
task. A storage administrator has to configure storage arrays, create logical units
at storage arrays, create logical volumes at servers, configure storage controllers
and storage network switches with appropriate access credentials, and manage the
ongoing usage of the storage devices to prevent performance bottlenecks or resource
shortages. The configuration decisions made by the SA determine the performance,
reliability, and capacity characteristics of the storage system as seen by the DBMS.
Good configuration decisions should take into account the characteristics of the
storage (I/O) workload generated by the DBMS.

To help SAs cope with the complexity of these storage configuration tasks,
researchers have developed tools that can be used to automate them [7, 8, 27, 56].
Those tools rely on storage workload information in some form. Hence, effective
storage administration, whether manual or automatic, depends on the knowledge of
storage system workload. Although storage workloads can be described in different
ways, e.g., as a sequence of I/O requests or as a set of statistical parameters, their
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purpose is to describe the I/O characteristics or behavior of the storage clients. In
general, a storage workload description identifies the I/O access characteristics for
each of the distinctly addressable chunks of data, such as files or logical volumes,
accessed by the storage clients.

Accurate workload characterizations can be difficult to obtain, particularly at
initial configuration time. Before the system is operational and it is not possible
to observe the storage clients’ I/O behavior, a storage administrator can depend
only on generic guidelines and rough “guesstimates”. Once the storage system is
operational, workload characteristics can be observed. However, such observations
are not a panacea: they may be expensive to obtain and use, they do not solve
the initial configuration problems, and they are of no use in addressing “what if”
questions. For example, a DBA may be considering a possible physical design
change such as the creation of an index. If created, this index would affect the I/O
workload experienced by the underlying storage system. Direct observation of the
current storage system workload does not by itself provide any guidance as to what
the storage workload would look like if the index were added.

In the first part of the thesis, specifically in Chapter 2, we attempt to close
the information gap between the database tier and the storage tier by addressing
the problem of predicting the storage (I/O) workload that will be generated by a
database management system. By estimating database systems’ storage workloads,
we can provide storage administrators with information that they can use to make
informed planning, design, and configuration decisions. Storage workload estima-
tion provides an SA with not only a faster alternative to observing an operational
system and collecting the actual workload but also a means to obtain a storage
workload description at initial configuration time. In addition, workload estima-
tion makes it possible to obtain the storage workload for a hypothetical database
physical design. For example, the effect of adding an index on the storage workload
can be estimated without materializing the index.

By providing storage workload estimations, we also enable end-to-end solutions
to database physical design and storage configuration problems. With storage work-
load estimation, both the DBA and SA have sufficient information to address their
part of the end-to-end design and configuration problem. One example of this is
shown in Figure 1.1, which illustrates how existing database physical design tools
and storage configuration tools could be combined to determine both a database
physical design and an appropriate storage configuration for a given database work-
load, while preserving the administrative autonomy of the database and storage
tiers.

In the second part of the thesis, specifically in Chapter 3, we show how such
storage workload information can be leveraged to improve and facilitate one of the
aspects of storage system design. Specifically, we focus on storage layout design
for database management systems. Storage layout is an important part of storage
configuration. In brief, a layout describes how logical volumes which contain storage
clients’ data are mapped to actual physical storage devices. A DBMS relies on an
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Figure 1.1: End-to-End Physical Design Using Existing Design Advisors

underlying storage system for persistent storage of database objects such as tables,
indexes, and logs, and the performance of the database system depends strongly
on the layout of those objects. In Chapter 3, we describe our technique to find a
good layout for a given storage workload; that is, a storage layout which is tuned to
the given storage workload. A good layout will both balance the storage workload
generated by the database system and avoid performance-degrading interference
that can occur when concurrently accessed objects are stored on the same volume.

In summary, this thesis addresses two complementary and independent prob-
lems. First, we address the problem of predicting the storage workload that will
be generated by a database management system. Second, we focus on one aspect
of storage system design, and describe a technique which leverages I/O workload
information to recommend a storage layout for database objects.

1.1 Contributions

This thesis makes the following contributions:

• We formulate the storage workload estimation problem for relational database
management systems. In our formulation, storage workloads are described in a
domain-independent and configuration-independent language called Rome [60].
By “domain-independent”, we mean that the workload description that is pro-
duced is not specific to database management systems. Similar descriptions
can be produced for other storage system clients. As storage consolidation be-
comes more common, this property becomes more important. Using a common
and generic storage workload model makes it feasible to aggregate workload de-
scriptions from multiple storage applications, including database management
systems.

3



• We present a technique for producing storage workload estimates. Those es-
timates not only are a faster alternative to monitoring a running system to
obtain I/O workload information but they also make it possible to generate
I/O workload information at initial configuration time and for hypothetical
database physical designs. Our technique has been implemented in the con-
text of the PostgreSQL DBMS.

• We present an empirical evaluation of the accuracy of the storage workload
estimates produced by our technique, and the cost of producing them.

• We formulate the database storage layout problem as a non-linear optimization
problem incorporating the important characteristics of the storage workload
and of the underlying storage targets.

• We propose a technique for solving the layout problem to identify good layouts.
Our technique exploits a generic non-linear program (NLP) solver as well as
heuristics specific to the layout problem.

• We present an experimental evaluation of the efficacy and efficiency of our
technique under various scenarios. We also compare our methodology with a
recently proposed related work.

1.2 Organization of the Thesis

The remainder of this thesis is structured as follows. Chapter 2 explains our
methodology for estimating the I/O workload that is generated by a database
management system. Chapter 3 describes the layout optimization technique. Both
Chapter 2 and Chapter 3 present experimental evaluations of the proposed meth-
ods. Chapter 4 discusses the existing work related to I/O workload estimation and
data layout. Finally, Chapter 5 concludes the thesis.

4



Chapter 2

Storage Workload Estimation for
Database Systems

Modern storage systems are complex. As was stated in the preceding chapter, stor-
age resources are increasingly administered separately from the server infrastructure
to effectively address this complexity. Therefore, database administrators (DBAs)
are no longer in direct control of the design and configuration of their database
systems’ underlying storage resources. Storage administrators (SAs) are expected
to balance the requirements of multiple database systems and other storage clients.
Configuration decisions made by the SA determine the performance, reliability, and
capacity characteristics of the storage system as seen by the database management
system (DBMS). As a result, the separation of the management of database systems
and storage systems may introduce problems if storage configuration decisions do
not take into account the characteristics of the storage (I/O) workload generated by
the DBMS. Effective storage administration depends on knowledge of the storage
system workload.

A storage workload description provides an SA with valuable information on the
I/O characteristics or behaviour of the storage clients. Although storage workloads
can be described in different ways, such as a sequence of block I/O requests or a set
of statistical parameters, each description identifies the I/O access characteristics
for one of the distinctly addressable chunks of data, such as files or logical volumes
accessed by the storage clients. Provided with database systems’ storage workloads,
SAs can make informed planning, design, and configuration decisions. In fact,
to help SAs cope with the complexity of storage configuration, researchers have
developed tools to automate storage configuration tasks [7, 8, 27, 56]. Those tools
rely on storage workload information in some form.

In this chapter we address the problem of predicting the storage workload that
will be generated by a database management system. Specifically, we show how
to translate a database workload description, together with a database physical
design, into a characterization of the storage workload that will result. Our I/O
workload estimation technique produces storage workloads described in a domain-
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independent and configuration-independent language called Rome [60]. By “domain-
independent”, we mean that the workload description that is produced is not spe-
cific to database management systems. Similar descriptions can be produced for
other storage system clients. Since shared, consolidated storage systems must ac-
commodate workloads from a variety of clients, including databases, it is important
to target a generic workload model. Doing so allows an SA to aggregate workload
descriptions from multiple storage applications. As storage consolidation becomes
more common, this property becomes more important.

The remainder of this chapter is structured as follows. Section 2.1 describes
the storage workload estimation problem and defines the target storage workload
model. Section 2.2 presents the proposed workload estimation technique and its
implementation in PostgreSQL DBMS, and Section 2.3 describes its evaluation.
Finally, Section 2.4 concludes the chapter.

2.1 Storage Workload Estimation Problem

In this section, we will define the problem of estimating storage workload charac-
teristics given a specification of the database workload. To formulate this problem
more precisely, “database workload” and “storage workload” must be defined first.

2.1.1 Database Workload Model

Existing relational database design tools typically expect the database workload to
be defined as a set of SQL statements along with some indication of the relative
frequency of occurrence of each statement [3, 62]. We use a similar characterization
of the database workload for the storage workload estimation problem, so that a
single workload description can be used for both tasks. Specifically, it is assumed
that the workload is characterized by a fixed set Q of SQL statements defined over
a known database schema. We refer to each such statement as a query type. Each
query type Qi has an associated weight fi which represents its prevalence in the
workload. The proportion of queries of type Qi in the workload is given by fiP

i fi
.

This kind of database workload characterization describes the mix of queries in
the database workload. This is sufficient for tasks such as index selection, where the
goal is to choose a set of indexes that will provide superior performance relative to
the performance achievable using other sets of indexes. However, we would like our
storage workload estimates to be useful for a variety of storage management tasks,
including those that require information about absolute frequency of occurrence of
the various queries. An example of such a task is capacity planning. To enable this,
it is also required that the database workload description include a specification
of a target operating point for the database system. We use two parameters to
characterize an operating point. The first is the total query throughput, denoted
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Symbol Description

Q set of possible SQL statements (query types)
fi relative frequency of query type Qi
T query throughput (in queries per second)
CL number of concurrent queries
D set of database physical objects

Figure 2.1: Database Workload Model Parameters

by T . The second is the query multiprogramming or concurrency level, CL, which
describes the expected number of concurrently executing queries at any given time.

Finally, since the proposed storage workload estimator relies on the database
system’s query optimizer, it is required that optimizer be configured to behave as
it would at the target operating point. In particular, database statistics should
be available so that the query optimizer will choose appropriate query execution
plans. Again, existing database administration tools have similar requirements for
the availability of statistics, and some database systems support the definition of
hypothetical database instances to support cost-based “what if” analyses without
the need to populate the hypothetical instance [13].

It is assumed that a database physical design has been selected, perhaps through
the use of a physical design advisor [3, 62], and that the physical design is known
to the query optimizer. We use D to represent the set of physical database ob-
jects: tables, indexes, tablespaces and so on. Figure 2.1 summarizes the database
workload parameters.

2.1.2 Storage Workload Model

One way to characterize I/O workloads is to use a trace of I/O events, or a set
of traces. Although traces are a very detailed and expressive way to describe
storage workloads, they have some disadvantages. They are large and expensive
to store and manipulate. Traces of database I/O workloads are also expensive to
collect, as collection requires populating the database and applying a realistic load.
Trace-based workload descriptions cannot be used as input to analytical models of
storage system behavior. Finally, traces tend to be specific to a particular storage
configuration, and difficult to generalize. It is prohibitively expensive to collect
traces from multiple candidate storage configurations.

Instead, we adopt a more abstract I/O workload model called the Rome model [60,
61]. The Rome model is the unifying “glue” for a collection of storage management
tools that support performance modeling, capacity planning, storage system design
and configuration, and other tasks [7, 8, 56]. The Rome model is not specifically
designed to model the I/O workloads generated by database management systems.
It is a general purpose model intended to model storage workloads generated by
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Symbol Description

ton burst duration (in seconds)
toff inter-burst gap (in seconds)
λr read request rate during bursts (in requests per second)
λw write request rate during bursts (in requests per second)
Br average size of read requests (in bytes)
Bw average size of write request (in bytes)
Q average block count of sequential runs
Φi[j] burst overlap between streams i and j

Figure 2.2: I/O Request Stream Parameters in the Rome Model

any kind of storage client. Since shared, consolidated storage systems must accom-
modate workloads from a variety of clients, including databases, it is important
to target a generic workload model. Doing so allows a storage administrator to
aggregate workload descriptions from multiple storage applications. By targeting
the Rome model in particular, it is also possible to leverage existing Rome-based
workload analysis and storage management tools.

The Rome model views the storage system abstractly, as a set of stores. A store
can be thought of as a virtual block storage device, disjoint from other stores, to
which block read and write requests can be directed. The I/O workload directed
to a store is represented by one or more concurrent streams. A stream consists
of bursts of I/O request activity of duration ton interleaved with idle periods of
duration toff , during which no requests occur. During each on burst, read requests
to the underlying store occur at rate λr and write requests occur at rate λw.

Each I/O request has a starting position (within the underlying store) and a
size, or length, Br for read requests and Bw for write requests. The starting position
of each request is determined by a run count parameter Q. Successive requests in a
stream start where the previous request left off, until the total number of requests
in the run reaches Q. The next request then starts a new run, with a randomly
chosen starting position. Thus, Q = 1 models a random I/O request pattern,
while larger values of Q model sequentiality. Figure 2.2 summarizes the parameters
associated with a Rome request stream. Together, these parameters describe the
request stream properties that are important to the underlying storage modeling
and management tools: request rates, read/write mix, burstiness, request size, and
sequentiality.

In addition to these per-stream properties, Rome also describes burst correla-
tions, which model the amount of temporal overlap among the bursts of different
streams. Given a set S of streams, Rome defines an |S| × |S| overlap matrix Φ.
Entry Φi[j] in the overlap matrix, 1 ≤ i, j ≤ |S|, describes the percentage of stream
i’s burst period during which stream j is also active. Note that, as defined by the
Rome model, the overlap matrix need not be symmetric. For example, consider
two streams Si and Sj, with ton [i] = 100 and ton [j] = 10, for which Sj’s bursts are
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completely contained within Si’s bursts. This will be described by Φi[j] = 10% and
Φj[i] = 100%.

2.1.3 Problem Statement

With the definitions of a database workload and storage workload in place, the
problem can be stated as follows:

Definition 1 Storage Workload Estimation Problem: Given a database work-
load characterization, including a target operating point, and a database physical
design, produce an I/O workload characterization that accurately models the stor-
age workload that will be generated by the database system under the given database
load at the target operating point.

In general, to estimate a Rome storage workload characterization, it is necessary
to address several questions:

• How many stores should the model have?

• How many request streams should each store have?

• What stream parameter settings should be used for each stream?

Here, the workload estimation problem is simplified by fixing the answers to
two of these questions, thus restricting the space of workload models that can
potentially be generated by the estimator. First, only workload models that include
exactly |D| Rome stores (one for each physical database object) are considered.
There is little reason to have more than one store per physical database object,
since this provides sufficiently fine granularity in the workload description for most
storage configuration tasks. Second, only workload models with a single request
stream per store are considered. A natural alternative to this would allow up
to |Q| request streams for each store, where each stream would describe the I/O
requests generated by queries of a particular type against a particular physical
database object. In contrast, single-stream-per-store models must use a single set
of stream parameter settings to characterize the aggregate workload of all types
of queries against a given store. We focus on single-stream-per-store models here
because they are simpler. However, the storage estimation method described in
the following section can easily be extended to generate |Q|-streams-per-store if
additional expressiveness is required. Furthermore, existing Rome-based storage
management tools can accommodate multi-stream stores.
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1: for Qi in Q do
2: Use the database query optimizer to obtain a plan for Qi
3: Generate an I/O request sequence RS i for Qi’s plan.
4: end for
5: Merge the RS i to produce a representative I/O request trace Tr

6: for Dj in D do
7: Extract the representative request trace Trj for Dj from Tr

8: Fit Rome model parameters to Trj
9: end for

Figure 2.3: Storage (I/O) Workload Estimation Algorithm

2.2 Estimating Storage Workload

Figure 2.3 gives a high-level outline of the proposed method of estimating a Rome
I/O workload model. As described in Section 2.1.3, the output of this method is
one set of Rome I/O model parameter values (as shown in Figure 2.2) for each
physical database object Dj ∈ D. The model parameters for Dj describe the I/O
workload that the DBMS is expected to apply to the stored representation of that
object.

The method shown in Figure 2.3 consists of three phases. First, the estimator
generates an I/O request sequence corresponding to each query type in the database
workload in isolation (Figure 2.3 lines 1-4). Second, it merges those individual
sequences into a single I/O request trace, which is called the representative I/O
trace for the given database workload and operating point (line 5). Finally, it
projects each physical object’s requests from the representative trace and fits the
Rome stream parameters to the projected trace (lines 6-9). What follows is a
detailed description of these phases.

2.2.1 Estimating Query I/O Request Sequences

An I/O request sequence is an ordered list of records, each of which describes a
single block I/O operation. Specifically, each record consists of the following fields:
physical object identifier, starting offset within the physical object, request size, and
request type (read or write). Note that, in Figure 2.3, request sequences (RS i’s)
have been distinguished from request traces (Tr and Trj’s). A request trace differs
from a request sequence in that the former includes timing information for each
I/O operation, while the latter does not.

The first phase of the storage workload estimation process is to predict a sepa-
rate I/O request sequence for each type of query in the database workload. These
request sequences describe the I/O behavior of a single query running in isolation.
Figure 2.4 summarizes the approach.
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Figure 2.4: Generating Query I/O Request Sequences

To obtain these sequences, we perform a data-free simulation of the control flow
of each query’s execution plan. A query execution plan is a tree in which the nodes
represent database query execution plan operators such as table scan and merge
join and the edges represent the data flow between operators. During the data-
free simulation of a plan, the plan operators generate I/O records describing any
I/O operations that they would have generated during a normal plan execution.
However, they do not actually generate the I/O operations. Instead, they log the
descriptions of those operations as if they have been actually issued. These I/O
records are concatenated to form the I/O request sequence for the query.

When a query plan is actually executed by the database system, its control
flow depends on the data that is flowing through the plan. During the data-free
simulation, operators neither retrieve the data nor flow the data through the plan.
The simulation relies instead on the cardinality estimates produced by the query
optimizer to approximate the control flow that would have occurred during an
actual execution of the plan. For example, for a tuple-oriented nested loop join,
we use the optimizer’s estimate of the cardinalities of the inner and outer relations
and its estimate of the join selectivity to estimate the number of times that the
join operator’s left and right children in the plan will be asked to produce data.
The simulation also relies on some operator-specific assumptions. For example, a
(external) sort operation is assumed to create initial runs that are twice the size of
the working memory available for the sort operator.

By performing the data-free simulations, we attempt to capture several im-
portant properties of the I/O workload that will be generated by queries of each
type. First, the resulting I/O sequences will contain the correct numbers of I/O
requests for each physical database object used by the query, up to the accuracy
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of the query optimizer’s cardinality estimates and the simplifying assumptions in
the simulation. Second, the I/O request sequences will distinguish sequential and
random I/O, based on the type of operator that is generating the requests and
on information from the database catalog. For example, a table scan of a relation
will generate sequential requests, while an index scan of the same relation using an
uncorrelated (i.e., unclustered) secondary index will generate random requests. Fi-
nally, the sequence will capture the interleaving of requests for the various physical
database objects used by the query plan. For example, the simulation understands
that a hash join will first retrieve the entire build input and then retrieve the entire
probe input, resulting in non-interleaved access to the physical objects that provide
the build and probe inputs. Conversely, a nested loop join will result in interleaved
accesses to the inner and outer inputs.

Implementation of data-free simulation is embodied in a modified version of
PostgreSQL. In the modified version of PostgreSQL, there are 18 different opera-
tors that may appear in execution plans. The plan simulator handles most aspects
of these operator types. One limitation of the current implementation is that queries
referring to view definitions are not handled. This is a restriction of the current
prototype, not a fundamental or technical restriction. Figure 2.5 illustrates the
simulation for three of the PostgreSQL operators: table (sequential) scan, index
scan, and nested loop join. Illustrations of the simulation of all of the PostgreSQL
operators can be found in Appendix A. In these illustrations “ReadPage()” and
“WritePage()” functions cause an I/O request to be logged in an I/O request se-
quence. Both functions accept two arguments representing an I/O request: a unique
object identifier and an offset within the object. Note that request size is implicit
because PostgreSQL uses an 8KB page size. There are only seven operators that
can issue an I/O request. Three of them are scan operators that can be found only
at the leaf level of an execution plan: table scan, index scan and tid scan operators.
Other four operators can only be found in the inner nodes of a plan, and write into
and read from temporary files: sort, hash, hash join and materialize operators.

Note that data-free simulation of a query plan is generally much faster than
the actual execution of the plan. This is because the simulation does not retrieve
any stored data, does not flow these data through the plan operators, and does not
generate any intermediate or final query results. More information about the cost
of data-free simulation is given in Section 2.3.4.

2.2.2 Generating the Representative Trace

The I/O request sequences generated in the first phase capture the I/O workload
characteristics of a single query running in isolation. In the second phase, the
estimator generates a representative I/O trace that describes the aggregate storage
workload of the entire database workload.

The generation of the representative I/O trace adds three kinds of information
to the individual query request sequences. First, since the representative I/O trace
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Cursor
PageNum
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RELATION
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Cursor := 0;
PageNum := 0;

position := ceil(Cursor);
Cursor += PagesIn/TuplesOut;
for i := 1 to (ceil(Cursor)-position)

ReadPage(RELATION,PageNum);
PageNum += 1;

OUTER INNER

PLAN PLAN

OuterTuplesIn

TuplesOut  

InnerTuplesIn   

Nested Loop Join

Cursor Cursor := 0;

position := ceil(Cursor);
Cursor += OuterTuplesIn/TuplesOut;
for i := 1 to (ceil(Cursor)-position)

getNext(OUTERPLAN);
Init(INNERPLAN);
for j := 1 to InnerTuplesIn

getNext(INNERPLAN);

RCursor
RPageNum
ICursor
IPageNum

RSeqPagesIn

RRandomPagesIn

RPages

IPagesIn   

IPages

Index Scan

TuplesOut

RELATION INDEX

RCursor := 0;
RPageNum :=

random(0,RPages-RSeqPagesIn);
ICursor :=

random(0,IPages-IPagesIn);
IPageNum := ICursor;

Iposition := ceil(ICursor);
ICursor += IPagesIn/TuplesOut;
Rposition := ceil(RCursor);
RCursor += RSeqPagesIn+RRandomPagesIn

TuplesOut ;
for i := 1 to (ceil(ICursor)-Iposition)

ReadPage(INDEX,IPageNum);
IPageNum += 1;

for i := 1 to (ceil(RCursor) - Rposition)
if Rposition < RSeqPagesIn

ReadPage(RELATION,RPageNum);
RPageNum += 1;
Rposition += 1;

else
pagenum := random in [0,..,RPages];
ReadPage(RELATION,pagenum);

Figure 2.5: Data-Free Simulation of the PostgreSQL Plan Operators. In the di-
agram, operators are annotated with the names of state variables maintained by
the simulation. Operator inputs and outputs are annotated with the names of
PostgreSQL optimizer statistics and configuration parameters that are used by the
simulator.

describes the aggregate storage workload generated by the database system, it
reflects the mixture and frequency of the various types of queries that make up
the database workload. Second, it accounts for the effect of buffer caching and
prefetching on the aggregate I/O stream. Finally, unlike the per-query request
sequences, the representative trace incorporates timing information in the form
of an arrival timestamp for each I/O request. These timestamps reflect the I/O
request throughput that will be required to support the database system at the
specified operating point.

Figure 2.6 summarizes the process of generating the representative I/O trace. A
simple probabilistic operational model of the database system is used to generate a
merged I/O sequence from the per-query I/O sequences obtained in the first phase.
The database system is assumed to have a fixed query multiprogramming level CL at
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Figure 2.6: Generating the Representative I/O Trace

the target operating point. CL is specified as a workload parameter (see Figure 2.1).
To generate a merged I/O sequence, CL query types are selected at random, with
query type i selected with probability proportional to fi. The I/O sequences for
the selected query types are then round-robin merged to produce a single request
sequence. When one of the per-query sequences is exhausted during the merger,
another query type is selected and its I/O sequence replaces the exhausted one. This
generative process continues until a specified number of per-query I/O sequences
have been merged.

As the merged request sequence is formed, the estimator passes it to a DBMS-
specific buffer cache model. To model the buffer cache, the estimator is currently
employing a simulation of the 2Q cache replacement algorithm [26] that is used by
PostgreSQL version 8.0.6. This simulation is parametrized by the buffer cache size.
The effect of the simulation is to remove from the request sequence any I/O requests
that hit the (simulated) buffer cache. Note that the buffer cache simulator does
not store any actual data. It merely stores information (physical object identifier
and offset within the object) which uniquely identifies each 8KB page that would
be cached.

Unlike many commercial database management systems, PostgreSQL relies on
the underlying operating system to carry out prefetching, and thus issues buffered
I/O. This means that the data pages are also buffered in the operating system’s
buffer cache, and write I/O requests are deferred for some amount of time be-
fore they are submitted to the storage subsystem. Therefore, the output of the
PostgreSQL buffer simulation is fed to a simulation of the Linux virtual filesystem
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Figure 2.7: Decision Flow Diagram for PostgreSQL I/O Requests

(VFS) buffer cache. The Linux VFS buffer cache simulation is parametrized by the
amount of available memory. It is assumed that the DBMS is the only application
running in the system, and all of the system memory is available for data buffering
except for the memory allocated to the DBMS for caching.

The current implementation uses a simulation of the two-list LRU cache re-
placement algorithm [10]. Writeback and readahead mechanisms implemented by
the VFS are also simulated. Writeback simulation is parametrized by three pa-
rameters: the threshold that sets the maximum number of dirty pages in the
cache at any time, the expiration time of dirty pages, and the period of the
dirty page reclaiming process. Those parameters are tunables in a Linux system,
and can be found in /proc/sys/vm: dirty ratio, dirty expire centisecs, and
dirty writeback centisecs. Readahead simulation is parametrized by two pa-
rameters: maximum readahead window size and the maximum size of an I/O re-
quest. Those parameters are tunables for each I/O request queue, and are named
read ahead kb and max sector kb. Normally, each device in a Linux system has
its own queue and each queue can be tuned independently. However, the simulator
assumes that there is a single device in the system (thus a single queue) that con-
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tains all of the database objects. The current implementation is using a simulation
of the stock readahead algorithm found in Linux 2.6 kernels [10]. Figure 2.7 depicts
the decision flow diagram for a given 8KB I/O request from a request sequence.

After the cache simulations, timing information is associated with each I/O
request. To do this, we use the query throughput T that is supplied as a parameter
to the workload estimation process. Query throughput is first translated to I/O
throughput by multiplying query throughput by the average number of I/O requests
per query:

Tio = T · Total Number of I/O Requests in the Trace

Total Number of Queries

Here, “Total Number of I/O Requests in the Trace” is the total length of the
combined I/O request trace obtained after cache simulations, and “Total Number
of Queries” gives the number of queries handled in the round-robin merging loop.
The jth request in the representative I/O trace is assigned an arrival time of j/Tio.
This reflects the requirement that the necessary query throughput at the target
operating point be satisfied by a storage system capable of handling I/O requests
at this rate.

2.2.3 Fitting the Rome Model

To produce a Rome model of the I/O workload, a set of Rome stream parameter
values must be chosen to characterize the I/O requests directed to each of the
physical database objects. To select parameter values for a given object, first
object’s requests from the aggregate representative trace are projected, and then
Rome parameter values (see Figure 2.2) are chosen to fit the per-object trace.

We take advantage of an existing I/O trace analysis tool called Rubicon [54] to
implement this procedure. Rubicon implements both the per-object projection of
the representative trace as well as the parameter fitting. Rubicon includes a number
of statistical analyzers for estimating Rome model parameters from a request trace.
Figure 2.8 summarizes how each of the per-object Rome parameters is estimated.
In the figure, “I/O Count” of an object is the total number of I/O requests directed
at the object.

2.3 Experimental Evaluation

In this section, an empirical evaluation of the proposed storage workload estimation
technique will be presented. The evaluation has two goals: to determine how
accurate the storage workload estimates are and to analyze how costly it is to
generate those estimates.

Here, the important question is how to measure accuracy. One way to charac-
terize accuracy is to compare, for a given database workload, the estimated storage
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Symbol Description Estimation
ton average burst duration Trace requests are partitioned into bursts, with a re-

quest interarrival gap greater than 2 seconds indicat-
ing a burst boundary. ton is estimated as the average
duration of the resulting bursts.

toff avg. inter-burst gap duration Estimated as the average duration of the inter-burst
gaps.

λr read request rate during bursts Estimated as the I/O count divided by the sum of the
burst lengths.

λw write request rate during bursts Estimated as the I/O count divided by the sum of the
burst lengths.

Br average read request size Estimated as the average size of the read requests in
the trace.

Bw average write request size Estimated as the average size of the write requests in
the trace.

Q avg. sequential run length Trace requests are partitioned into runs. Consecu-
tive requests are part of the same run if the starting
position plus the length of the first request matches
the starting position of the second request. Other-
wise, there is a run boundary between the requests.
Q is estimated as the average length of the runs in
the trace.

Φi[j] pairwise overlap fraction This describes how stream j’s bursts overlap with
those of stream i, 1 ≤ j ≤ |D|. First, the total amount
of time during which both streams are simultaneously
in I/O bursts is measured. This is divided by the sum
of stream i’s burst durations to generate an estimate
for Φi[j].

Figure 2.8: Estimation of Rome I/O Model Parameters Using Rubicon Trace An-
alyzers

workload with the actual storage workload generated by the DBMS. This approach
gives a characterization of accuracy that is independent of the intended usage of
the storage workload estimate. However, it requires that we have some means of
comparing storage workloads, which are complex artifacts.

An alternative means of evaluation is to characterize the suitability of the es-
timated workload for a particular purpose. In this case, the primary interest is in
generating storage workload characterizations that will be useful as input to design
and configuration advisors for storage systems. Such advisors use storage system
cost models to determine how well a particular storage system configuration will
perform under a given workload. Thus, one way to characterize the accuracy of a
workload estimate is to use both estimated and actual workloads as input to a stor-
age system performance model, and test whether they result in similar performance
predictions. If they do, this indicates that the estimated workloads are accurate
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enough to replace actual workloads as inputs to a storage system design advisor.

Both types of evaluation have been considered. In Section 2.3.2, we present
a direct comparison of estimated and measured workloads. In Section 2.3.3, we
examine the utility of estimated workload traces for the purpose of predicting the
performance of various storage system configurations. Section 2.3.4 presents mea-
surements of the cost of estimation.

2.3.1 Experimental Configuration

The Linux kernel-2.6.21.7’s low-level block IO layer was modified so that it would
produce I/O request logs when the DBMS is running. The request logs include
one record for each I/O operation initiated by PostgreSQL. Since I/O operations
are logged at I/O scheduler queue level, the request logs capture PostgreSQL I/O
requests that miss both the database buffer cache and the VFS cache. They also
accurately reflect writeback delays and readahead I/O requests. These logs are
the actual storage workload generated by the database system, against which the
estimated workloads can be compared.

PostgreSQL 8.0.6 is used as the DBMS. It was running on a Dell Poweredge
2600 server with two 2.2 GHz Intel Xeon processors and 4GB of main memory,
running SUSE 10.0 Linux kernel-2.6.21.7. The server has a 70GB 15K RPM SCSI
disk that is used to hold all system software, including PostgreSQL itself, as well as
the I/O logs. In addition, the server has four 18.4GB 15K RPM SCSI hard drives
behind a configurable Dell Perc 4Di RAID controller. These drives were configured
into a single RAID0 LUN (logical device), on which a Reiserfs file system was built
to hold the database objects.

PostgreSQL uses an 8KB page size, and the database system is configured with
a 2GB shared buffer. The PostgreSQL work mem parameter, which controls the
amount of memory used by operators that hash or sort, was set to 2MB. The
kernel’s I/O scheduler queue properties for the logical device storing the database
objects were set as follows: max sector kb to 128KB, readahead kb to 1024KB,
scheduler type to noop. Note that, since the storage subsystem has a RAID con-
troller which employs I/O re-ordering algorithms, noop scheduler gives the best
performance results among all four available scheduler types. The kernel’s virtual
memory parameter settings were kept at their default values: dirty ratio to 40,
dirty writeback centisecs to 500, and dirty expire centisecs to 3000.

We experimented with a scale-factor 5 TPC-H database. We used the open
source implementation of the TPC-H benchmark [40]. Normally, the TPC-H bench-
mark [15] defines 22 query types, but Query 9 and Query 15 were excluded from our
experiments. Query 9 was not included because of its excessive run time compared
to the run times of other queries. While the average run time of other queries is
around 10 minutes, the run time of Query 9 is around 260 minutes in our system.
Query 15 refers to a view, which is not supported by the current implementa-
tion of the I/O Estimator. Thus, the SQL workload running against the TPC-H
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Figure 2.9: Experiment Design for Comparing Estimated and Measured Storage
Workloads

database consisted of randomly-generated instances of 20 TPC-H query types with
each query type having equal probability of occurrence. The execution plans for
these queries make use of a total of twenty physical database objects, including 8
tables (lineitem, orders, supplier, customer, part, partsupp, region, and nation), 4
primary key indexes (orders pkey, supplier pkey, customer pkey, and part pkey),
7 indexes (i l orderkey, i l suppkey partkey, i l suppkey, i l partkey, i o custkey,
i o orderdate, and i ps partkey) on lineitem, orders and partsupp tables, and a
tablespace for temporary files (TempSpace). This workload will be denoted by
WTPCH.

2.3.2 Accuracy of Estimated Workloads

The first goal was to directly compare estimated storage workloads with actual
storage workloads logged by the kernel. Figure 2.9 illustrates the design of the
experiment. Using the default WTPCH query workload at a specified multiprogram-
ming level CL, queries were generated and submitted to PostgreSQL for execution.
A trace of the actual storage (I/O) workload generated by PostgreSQL as it exe-
cuted the queries was captured, and the query throughput, T was also measured.
We then used this database workload, including the measured query throughput,
as input to the storage workload estimator.1 This produces an estimated storage
workload model, Mest. Finally, a Rome workload model was fitted to the actual
storage workload trace using the same Rubicon-based model fitting procedure used
in the third phase of the I/O estimation process. This results in a Rome model of
the measured storage workload, which is denoted by Mmeas. Appendix B gives a
direct comparison of all of the I/O workload parameters obtained from the actual
workload trace and the estimated representative trace for the WTPCH workload at
two concurrency levels, CL = 1 and CL = 5. Here, we present a summary of those
comparisons.

Figure 2.10 summarizes the results as weighted average estimation errors over
all of the objects’ request streams. Error is computed for each database object

1It was ensured that the estimator ran the same set of queries as PostgreSQL, and that they
were initiated in the same order as they were in PostgreSQL. This ensures that any storage
modeling error can be attributed to the proposed methodology and not to differences in the
database workloads seen by PostgreSQL and the I/O estimator.
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I/O Burst Burst Inter-Burst Run
Workload Size Request Rate Time Time Count

(Br, Bw) (λr, λw) (ton) (toff ) (Q)

CL = 1 15% 45% 65% 39% 18%
CL = 5 33% 64% 106% 57% 29%

Figure 2.10: Weighted Relative Estimation Errors. Error is computed for each
database object as the absolute difference of the estimated and measured values,
divided by the measured value. The reported value is a weighted average over
all database objects, with weights determined by the objects’ measured total I/O
counts.

Percentage Burst Time Average Request Rate
ton

ton+toff
λ · ton

ton+toff

CL = 1 16% 14%
CL = 5 9% 44%

Figure 2.11: Weighted Relative Estimation Errors for Percentage Burst Time and
Average Request Rate.

as the absolute difference of the estimated and measured values, divided by the
measured value. The weights are determined by the objects’ measured I/O counts.
In addition to the parameters that are explicitly specified in the Rome model, we
find it useful to compare some parameters that can be derived from the existing
Rome parameters. These parameters are “percentage burst time” and “average
request rate”, which are computed as follows

Percentage Burst Time = ton

ton+toff

Average Request Rate = λ · ton

ton+toff

“Average request rate” is an important parameter to consider for two reasons.
First, it indicates how accurately we estimate the I/O count of an object because
it approximates the request rate as if the stream is always active. In other words,
it ignores the burstiness of the request stream. Second, as will be introduced in
Section 2.3.3, the storage system performance model utilizes average request rate
rather than burst rate. Figure 2.11 summarizes the comparison of estimated and
measured values for these two parameters as weighted average estimation errors
over all of the objects’ request streams.

Figure 2.12 compares some of these statistics in measured (Mmeas) and estimated
(Mest) workload models and the derived parameters described above. Each bub-
ble in these graphs represents one database object, with bubble sizes scaled to the
object’s measured I/O count. Thus, more important objects have larger bubbles.
Note that TempSpace is the only database object which receives write I/O requests.
Therefore, we will not present two separate graphs for the parameters that are dis-
tinguished by I/O type; these parameters are B, λ and λavg. Instead, in the graphs
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Figure 2.12: Estimated vs. Measured I/O Workload Model Parameters. Values
from Mest are on the vertical axis, values from Mmeas are on the horizontal axis. The
center of each bubble represents estimated and measured values for one database
object. Bubble area is scaled to the corresponding object’s total I/O count. The
line in each graph is estimated = measured, indicating perfect estimation.

of these parameters, we will represent TempSpace using two objects, one for read
requests (TempSpace(read)) and the other for write requests (TempSpace(write)).

Before analyzing the statistics parameter-by-parameter, it is worth noting pos-
sible sources of errors in our estimations. The simplifying assumptions made in
data-free plan simulation are one source of estimation errors. One of the other
important reasons behind these errors is inaccurate query optimizer statistics and
estimations. For example, TempSpace object is an outlier for the parameters which
directly depend on I/O count (see Figure 2.12(b),(d),(f) and (h)). It is no surprise
that the PostgreSQL version we used has made inaccurate cardinality estimates
pertaining to this object. For instance, Figure 2.13 depicts the execution plan
generated by PostgreSQL for TPC-H Query 18. While the optimizer estimates
that materialize operator will create a temporary object for 30 million tuples,
in the actual run the operator materializes only 36 tuples. Note that inaccurate
cardinality estimations further affect the access pattern to the buffer cache in our
simulations. For example, overestimating the I/O count of an object may result in
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Figure 2.13: Execution Plan for TPC-H Query 18

evicting pages that would be utilized by an upcoming query. Comparing CL = 1
and CL = 5 cases in Figure 2.12, we see that capturing the caching impact on an
I/O workload has a crucial role. Normally, as the concurrency level increases, one
would expect the estimation errors (due to inaccurate cardinality estimates) to get
worse. However, we do not observe a dramatic increase in error rates at CL = 5
(see Figures 2.10 and 2.11). Although error rates tend to increase as the multipro-
gramming level increases, one of the reasons is the difference between query mixes
for CL = 1 and CL = 5. At CL = 1, the database workload is composed of 40
queries, a random mix of 20 TPC-H queries and each query template occurs twice
in the mix. At CL = 5, the database workload is composed of 60 queries, a random
mix of 20 TPC-H queries and each query template occurs three times in the mix.
As a result, query templates with erroneous cardinality estimates, such as Query
18, occur more at CL = 5. The overall effect is that the estimator overestimates the
number of I/O requests more at CL = 5 than it does at CL = 1. In the following,
we discuss some of the other reasons behind the estimation errors.

Request Size: Both at CL = 1 and CL = 5, the highest error rates are observed
for TempSpace object and for certain indexes (see Figure 2.12(a) and (e)).
The I/O size is overestimated for TempSpace because of our assumptions.
For example, a sort operator uses a single temporary file when performing
merge-sort algorithm. It stores initial and intermediate sorted runs in this
file. When simulating sort operator we assume that each run is accessed
sequentially; however, in reality, this may not be the case. In our simulations,
sequentiality triggers readahead which in turn results in I/O requests larger
than 8KB. As for the indexes, I/O sizes are mostly underestimated for certain
indexes. For example, while the measured I/O size is 97KB for i o custkey,
it is estimated 17KB (see Figure 2.12(a)). This behaviour is observed for the
indexes that are used in a subplan in a query execution plan. Such subplans
are executed repeatedly for a given value, generally to check whether the value
exists in the underlying relation. When we simulate a subplan, we always re-
initialize its state at each call (i.e., getNext()) and thus pick a random offset
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within the index (see Figure 2.5). Therefore, our simulation does not take
into account any locality which may be observed in an actual run. Note that
access locality may trigger readahead, and thus increase the I/O size. In
addition, we do not simulate request merging that happens at the operating
system’s I/O queue so access locality again may result in request merging
that we ignore in our simulations. Nevertheless, the weighted average error
for the I/O size parameter is small: 15% for CL = 1 and 33% for CL = 5
(see Figure 2.10).

Burst Time and Percentage Burst Time: Burst time (ton) and inter-burst gap
time (toff ) are the two Rome parameters for which we observe the highest er-
ror rates (see Figure 2.10). As was presented in Figure 2.8, ton and toff are
the average duration of all burst and inactive periods, respectively. Although
we make large errors in estimating the average duration of the burst period
of a stream, we estimate percentage burst time much more accurately (see
Figure 2.11). As a matter of fact, percentage burst time is more important
for analytical storage system models. As will be explained in the following
section, the storage system performance model utilizes percentage burst time
rather than burst duration. ton and toff are crucial for trace-based storage
system simulators [59], in which a Rome stream is simulated as if it is an
infinite I/O stream and active for ton with a period of toff . Burst periods play
the most important role when analyzing two streams’ relative active periods;
Rubicon uses burst periods to compute the pairwise overlap fraction matrix
Φ. As we will discuss shortly, the I/O estimator does a good job in estimating
how two streams’ burst time overlaps. In conclusion, although we make large
errors in estimating ton and toff , the I/O estimator accurately estimates the
relative duration of burst and inter-burst times of a stream and the relative
burst times (i.e., correlation) between two streams.

Burst and Average Request Rates: Rubicon computes the burst rate as
I/O CountP

ton

(see Figure 2.8). Thus, any error made in the estimation of the objects’ I/O
counts would be reflected into the request rate estimations. Moreover, as de-
scribed in Section 2.2.2, I/O request time is computed using query throughput
T and total estimated I/O count, thus

∑
ton depends on I/O count, too. The

I/O estimator tends to overestimate the burst request rate for most of the
objects (see Figure 2.12(b) and (f)) because for both CL = 1 and CL = 5
I/O counts of those outlier objects are overestimated. For example, while the
measured I/O count of lineitem table is 4.6 million and 6.2 million requests
for CL = 1 and CL = 5 respectively, those are estimated at 5.1 million and 7.8
million requests. However, the estimation errors for the average request rate
is lower (see Figure 2.11) because it approximates I/O count and cancels out
the impact of

∑
ton .

Run Count: The estimator is able to capture the effect of concurrency on se-
quentiality (see Figure 2.12(c) and (g)). For example, while lineitem and
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Object CL = 1 CL = 5
lineitem 5.9% 16.6%
orders 3.7% 13.9%
i l orderkey 2.1% 16.5%
TempSpace 5.8% 14.3%
orders pkey 3.1% 12%
partsupp 16.8% 17.7%
i l suppkey partkey 5.2% 14.8%
part 4.8% 9%
customer 4.6% 23.5%
i l suppkey 0% 11.3%
Weighted Estimation 5.4% 15.9%Errors over all Objects

Figure 2.14: Overlap Fraction Average Absolute Estimation Errors. Error is com-
puted for each database object as the absolute difference of the estimated and
measured values, divided by the number of objects. The last row is the weighted
average of these errors over all objects, with weights determined by the objects’
measured total I/O counts.

i l orderkey objects are accessed sequentially at CL = 1, they are being ran-
domly accessed at CL = 5. There are a few outliers such as part and part-
supp tables, but these are already sequentially accessed at both CL = 1 and
CL = 5. Fortunately, this kind of run length estimation error is probably
not significant. Any Q greater than 100 represents very sequential I/O. The
most important thing for the estimator is to distinguish between very small
run lengths (e.g., Q = 1) and large run lengths. In Section 2.3.3, we show
that these large run length estimation errors do not lead to large errors in
predicting the performance of the underlying storage system.

The remaining I/O model feature that has not been discussed yet is the burst
overlap matrix, Φ. Figures 2.15 and 2.16 compare measured and estimated burst
overlaps, Φi[j], among the database objects’ request streams for CL = 1 and CL = 5.
Each graph shows the percentage overlap of one object’s request bursts with the
bursts of other objects. The figure includes only the ten objects with the highest
measured I/O counts. Figure 2.14 summarizes these results as the average absolute
estimation errors over the overlap fractions of each object with all of the remaining
objects. Error is computed for each database object as the absolute difference of
the estimated and measured values, divided by the number of objects: for object

objecti,
P|D|

k=1|Φi[k]meas−Φi[k]est|
|D| . The last row in Figure 2.14 summarizes these per-

object estimation errors as the weighted average estimation error over all of the
objects, and the weights are again determined by the objects’ measured I/O counts.

These data show that the estimator does a good job of estimating which objects’
request bursts overlap and which do not in both CL = 1 and CL = 5. For example,
at CL = 1, when the orders table is being accessed (Figure 2.15(b)), so are the
lineitem table, the orders table’s primary index (orders pkey), and the i l orderkey
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(a) lineitem (b) orders

(c) i l orderkey (d) Tablespace for temporary files

(e) orders pkey (f) partsupp

(g) i l suppkey partkey (h) customer

(i) part (j) i l suppkey

Figure 2.15: Measured and Estimated Burst Overlaps at CL = 1. The left (blue)
bar of each pair shows measured values, the right (red) bar shows estimated values.

and i l suppkey indexes. Other objects, like the part, partsupp and customer tables,
are not. This kind of information is useful to storage configuration tools, since
placing co-accessed objects on different storage devices can reduce interference and
improve performance [2]. As the concurrency increases, some objects start to be
co-accessed. When the partsupp table is being accessed at CL = 1 (Figure 2.15(f)),
some objects like orders table, i l orderkey and orders pkey indexes and TempSpace
object are never accessed. However, at CL = 5 (Figure 2.16(f)), those objects are
accessed.

2.3.3 Storage Performance Prediction Using Estimated Work-
loads

As was noted in the beginning of the chapter, one of the motivations for generating
storage workload estimates is to be able to use them to estimate the performance
of candidate storage configurations. Storage configuration advisors, such as the
one that will be introduced in the following chapter, use storage system models to
estimate the performance of candidate configurations. In this section, we present
the results of an experiment in which both measured and estimated storage work-
load models were used as input to a storage system performance model. We then
compared the storage system performance predicted by the model under the two
workloads. Ideally, the predictions would be identical. This would indicate that the
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(a) lineitem (b) orders

(c) i l orderkey (d) Tablespace for temporary files

(e) orders pkey (f) partsupp

(g) i l suppkey partkey (h) part

(i) customer (j) i l suppkey

Figure 2.16: Measured and Estimated Burst Overlaps at CL = 5. The left (blue)
bar of each pair shows measured values, the right (red) bar shows estimated values.

estimated workload models were as good as the measured models for this particular
task.

For this experiment, we used the storage system performance model that will be
explained in detail in the following chapter. This performance model takes Rome
storage workload descriptions as input. Thus, the output of the storage workload
estimator can be used without modification as input to this model. The model
assumes that a storage system is structured into a set of independent RAID groups
(or arrays), and it describes how the “stores” that are referred to in the workload are
mapped to RAID groups. In our case, each store corresponds to a physical database
object, so the layout effectively describes how database objects are laid out on the
available RAID groups. The storage system performance model predicts the average
utilization of each RAID group for a given set of objects, their I/O workloads (i.e.,
Rome streams) and mappings to the RAID groups. Although workloads are bursty,
the model predicts average utilization rather than peak utilization by using average
request rate which is derived from burst rate and percentage burst time as described
in the preceding section. The evaluation of this storage system performance model
is presented in the next chapter, and the empirical results show that the model
estimates device utilizations accurately.

To run each experiment, first a target storage system configuration must be
chosen. We have designed different RAID group configurations and object layouts.
RAID groups and layouts are not materialized in our experimental environment
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Figure 2.17: Storage System Performance Predictions Under Estimated and Mea-
sured Storage Workload Models. Each storage system configuration is illustrated
next to a graph showing the average percentage utilization of each RAID group. In
the graphs, the left bar in every pair shows utilization under Mmeas, and the right
bar shows utilization under Mest.

but their descriptions are given inputs to the storage system performance model
as “what-if” storage system configurations. The measured and estimated storage
workload models obtained for WTPCH at CL = 1 and CL = 5 are fed to the storage
system model for each of the target configurations. Figure 2.17 illustrates the stor-
age system configurations that we tested, as well as the predicted storage system
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Phase 2 (Merging)
Wkld Phase1 DB Caching VFS Sim. Timestamp other Phase3 Total

CL = 1 280 77 500 52 40 35 984
CL = 5 280 119 626 83 59 58 1225

Figure 2.18: Total and Per-Phase Times (in seconds) for Storage Workload Esti-
mation of WTPCH SQL workload.

utilizations under Mmeas and Mest for CL = 1 and CL = 5. Three of the configura-
tions (4RAID0, 2RAID0, 1RAID0) defined a single RAID0 group (labeled RG1 in
Figure 2.17) to store all database objects. The other three configurations (4JBOD,
2RAID0-3JBOD and 3RAID0-1JBOD) defined multiple RAID groups. For those
configurations, Figure 2.17 specifies which physical database objects were mapped
to the each RAID group. Basically, objects are distributed across RAID groups
in a round-robin fashion starting from the object with the highest measured I/O
count to the one with the least.

Figure 2.17 shows that estimation errors in RAID group utilizations are mostly
small. It also shows that RAID group utilizations predicted using Mest tend to be
higher than the ones using Mmeas. It is mostly because the request rates of impor-
tant objects are overestimated as depicted in Figure 2.12(g) and (h). Although Mest

gives higher estimates, it accurately captures the relative differences between RAID
group utilizations that are observed when Mmeas is used for all of the configurations.
Note that the 4JBOD, 2RAID0-2JBOD and 3RAID0-1JBOD configurations used
data layouts that are quite imbalanced, and that this imbalance is easily observable
in the performance predictions produced with Mest. This is a limited experiment
with a small number of storage system configurations. However, we consider that
predictions of this level of accuracy are quite reasonable, given that we start with
SQL workloads. For storage administrators, the alternatives (of populating the
database, running a workload, and measuring the resulting storage system load)
are guesstimates and rules of thumb.

2.3.4 Cost of Storage Workload Estimation

Figure 2.18 shows the wall-clock time required for storage workload estimation
under our two workloads. Phase 1 takes the same amount of time for both experi-
ments because both do exactly the same thing: generate I/O request sequences for
20 TPC-H query types. Phase 2 includes the request sequence merging, database
buffer cache simulation, and VFS cache, readahead and writeback simulations.
Phase 2 spends most of the time for the VFS simulation. As a matter of fact,
VFS simulation is the most costly part of the whole simulation process, and ac-
counts for 51% of the total simulation time for both CL = 1 and CL = 5. In the
current version of the estimator, some inefficient data structures were used when
implementing the VFS simulation. Therefore, it is is open for optimization. Re-
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ducing the run time of the VFS simulation will reduce the run time of Phase 2.
Finally, Phase 3 is the statistical analysis performed by Rubicon. These times de-
pend primarily on the total length of the representative storage workload trace that
is generated. The representative trace is composed of 6.5 million and 9.7 million
I/O requests for CL = 1 and CL = 5, respectively. Measurement times for WTPCH

at CL = 1 and CL = 5 are 24000 and 18000 seconds, respectively. A measurement
duration can be compared with the summation of Phase 1 and Phase 2, which is
949 seconds for CL = 1 and 1167 seconds for CL = 5. As a result, data-free
simulation is 25 times faster for CL = 1 and 15 times faster for CL = 5 than the
corresponding real executions.

2.4 Conclusion

We have presented a technique for estimating the storage system workloads that
are generated by database management systems. The technique generates storage
workload models in a form that is easily used by storage administration tools, such
as configuration advisors. The feasibility of this approach has been demonstrated by
implementing it in PostgreSQL DBMS. The experimental results suggest that the
workload estimations produced by the proposed technique are sufficiently accurate
to be useful for predicting the performance of alternative storage configurations. We
expect the estimates to be of similar use for other related tasks, such as capacity
planning. This is the first attempt that we are aware of to design tools intended to
improve the flow of information from the database tier to the storage tier.
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Chapter 3

Workload-aware Storage Layout
for Database Systems

The preceding chapter has presented a technique for estimating the I/O workload
that a database system will generate for a given SQL workload. I/O workload
characterizations can also be obtained by monitoring an active DBMS and obtaining
its I/O trace. In this chapter we will describe how I/O workload information, no
matter whether it is obtained through estimation or monitoring, can be leveraged
to reach a storage layout design which is tuned to that workload. The performance
of a database system depends on the layout of its objects, such as tables or indexes,
on the underlying storage devices.

In the following sections, we first discuss what exactly storage layout for database
systems means. Later, current practices, which are used by system administrators
while laying out data, will be presented. Then, a formal definition of the layout
problem will be introduced. The presented approach to the problem requires ex-
ploiting information about the I/O workload and the underlying storage system,
so a way to model I/O workload and the storage system is required. Therefore,
after giving the formal definition of the problem, we will explain in detail how such
models can be built. Afterwards, we present and evaluate the proposed layout
algorithm. Lastly, potential extensions of this work will be discussed.

3.1 Database Storage Layout Problem

Database management systems rely on an underlying storage system for persistent
storage of database objects such as tables, indexes and logs. The storage system
also hosts temporary objects and intermediate results when primary storage (i.e.,
memory) is not sufficient. A storage system typically provides a set of RAID groups
(groups of storage devices in some type of RAID configuration) or individual storage
devices, such as rotational disk drives or solid-state drives (SSDs). We will refer to
each distinctly addressable and independent data container as a storage target. At
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Figure 3.1: At the coarsest level, database storage layout problem is to find a
mapping of database objects onto the available storage targets.

the coarsest level, the database storage layout problem can be seen as the problem
of finding a mapping of database objects to the available storage targets (see Figure
3.1). In Section 3.1.2, when a formal definition of the problem is presented, more
details on the nature of this mapping will be given.

Our goal is to improve the performance of a database system by providing a
good layout. A good layout should result in a balanced load across the storage
targets. Otherwise, the most heavily utilized target may become a performance
bottleneck while storage bandwidth available from other targets is wasted. A good
layout should minimize interference between requests for different objects that are
laid out on the same target. For example, if a sequentially accessed object is laid
out on the same target as some other objects (which are accessed either sequentially
or randomly) and if all those objects are accessed simultaneously, then interference
among I/O requests may prevent the underlying storage devices from exploiting the
sequentiality, thus increasing data access time. Lastly, a good layout should take
into account the different characteristics of the available targets. Storage targets
may vary in capacity and performance. For example, RAID groups may vary in
configuration, e.g., in the RAID level used, or in the number of devices in the
group. Performance characteristics may also vary from device to device. Disk
drives are typically added to storage systems over time, and the more-recently
added disks are likely to be faster. Device heterogeneity may also occur by design.
It is not uncommon to have mixed storage systems containing both enterprise-class
15K RPM disk drives targeted for high throughput of small random I/O requests
and cost-effective nearline 7200 RPM disks, better suited for sequential accesses.
Similarly, a flash memory SSD storage target will have much better random I/O
performance than the one implemented using disk drives. The promise of good
performance for database workloads with SSDs [31] suggests that storage systems
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will likely continue to include heterogeneous configurations with SSDs or high-
end disks for small random I/Os and cost-effective disk drives for large sequential
accesses. A layout that fails to account for these kinds of heterogeneity may result
in poor performance.

In summary, the goal is to figure out a database storage layout which leads
the storage system to have balanced load, minimized inter-object interference, and
awareness of system heterogeneity. Unfortunately, these objectives may conflict
with one another. For example, while balancing the load requires that each ob-
ject be laid out on as many targets as possible, reducing interference necessitates
isolating some objects from the others.

3.1.1 Current Practice

In current practice, database layout is primarily guided by heuristics and rules of
thumb. Database vendors give generic advice to database administrators on how to
design the storage backend for databases. Such advice includes tips on how many
disk spindles to have per CPU core, how to configure storage targets out of disk
spindles, and how to lay out data on those targets. For example, a vendor might
recommend the use of at most 15-20 dedicated spindles per CPU core or the use of
RAID10 targets for logs and RAID5 targets for data, or the allocation of 15%-25%
of the disk spindles for logs and the rest for data. In this work, the primary focus
is on how to lay out objects onto storage targets. Therefore, we will review only
guidelines regarding layout.

Vendor advice is usually generic because database vendors assume minimal
knowledge about the database I/O workload. As a result, they see simplicity
as an important layout property. All major vendors suggest distributing every
database object across all available targets [41, 47]; an approach that is known as
stripe-everything-everywhere (SEE). Not only do vendors suggest SEE, but they
also integrate it into their layout automation tools. For example, both IBM DB2
Automatic Storage (AS) and Oracle Automatic Storage Manager (ASM) implement
the SEE approach1. SEE distributes data, thus workload, evenly across all avail-
able storage targets. As a result, it ensures that the load across targets will always
be balanced. However, since SEE results in interference with sequentially-accessed
objects, it may not result in an optimal performance for a given I/O workload.
Moreover, to be able to get the most benefit from the SEE approach, it is required
that the targets be uniform in capacity and performance [47]. Since all targets
receive the same load under the SEE layout, faster targets will be under-utilized
and the performance of the whole system will be bounded by the slowest target.
As a result, it is not clear how to apply SEE effectively in heterogeneous systems.

1In Oracle ASM, the layout strategy is actually called Stripe and Mirror Everything (SAME).
If economically feasible, Oracle advises mirroring in addition to striping. In SAME each device is
mirrored, and thus the number of devices needed is doubled.
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As discussed at the beginning of the section, it is not uncommon for a storage
system to have storage targets varying in capacity and performance. Especially
with the advent of SSDs, system heterogeneity has become a more commonly en-
countered situation. Therefore, DBAs face with the problem of deciding how to
map database objects onto a pool of targets with different performance characteris-
tics. The problem of figuring out which database object must be laid out on which
target is notoriously viewed as an unachievable task [47]. However, database ven-
dors offer heuristic layout hints in such situations, too. For example, they suggest
what kinds of database objects to map to SSDs in order to get the most benefit out
of them. The core idea of those heuristics is to isolate randomly accessed objects,
such as unclustered indexes, onto SSDs [21]. Similar issue arises when the storage
system has to serve different database servers, which may occur as a result of stor-
age consolidation. Although database vendors recommend that objects belonging
to different database servers be separated [47], it can be difficult to determine which
targets to use for each database server’s objects.

In conclusion, generic guidelines may give useful hints to DBAs on how to lay out
database objects in case they have limited or no knowledge on the I/O workload, but
in general it is not always clear how to apply these heuristic guidelines, especially in
heterogeneous systems. Our layout technique goes beyond those generic guidelines
by making use of a description of the database system’s I/O activity to provide
a workload specific layout. Thus, the underlying storage system can be tuned to
the workload generated by the database(s) that use it. Moreover, this technique
supports what-if scenarios and makes it feasible to examine non-trivial layouts.
Commonly, testing a layout requires constructing the storage targets, materializing
the database system and observing the active system’s performance. Therefore, it
is infeasible for a DBA to test a variety of layouts. However, the proposed approach
enables a DBA to estimate the quality of a large set of possible layouts efficiently.

3.1.2 Formulation of the Layout Problem

Now, we will describe the database layout problem more formally. The software
component which solves the layout optimization problem and recommends a good
layout is called the layout advisor. We will explain the inputs expected by the
layout advisor, and then present the formal definition of the layout optimization
problem.

It is assumed that a storage system provides M disjoint storage targets, and cj
denotes the capacity of the jth target. The layout advisor is indifferent to the exact
nature of the targets. No matter whether a target is a stand-alone storage device or
a combination of devices, the layout advisor cares only that each storage target has
an associated performance model and that the performance of each storage target is
independent of the performance of the other targets. In an enterprise-class storage
system [20, 24, 39], a target might correspond to a RAID group, i.e., a set of storage
devices in a particular RAID configuration. In smaller-scale settings, an individual
storage device directly attached to a server could be a storage target.
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Figure 3.2: Database Object Layout Problem. Each database object is laid out
onto a subset of available storage targets.

The layout advisor is given N disjoint database objects that are to be laid out
on the available storage targets, and si denotes the size of the ith object. Again, the
exact nature of the database objects is not important. They could be tablespaces,
individual tables, indexes, or logs. Moreover, all of the objects may be part of
the same database or they may originate from different databases. The layout
advisor cares only that each database object has an associated set of I/O workload
characteristics similar to the ones introduced in Chapter 2.

As stated earlier, database storage layout is a mapping of database objects to
storage targets (see Figure 3.2). Thus, a layout L can be represented as an N ×M
matrix, where 0 ≤ Lij ≤ 1 is the fraction of object objecti that is assigned to target
targetj. Validity of a layout L is ensured through two constraints:

Definition 2 Capacity constraints:

N∑
i=1

siLij ≤ cj. ∀j, 1 ≤ j ≤M

Definition 3 Integrity constraints:

M∑
j=1

Lij = 1. ∀i, 1 ≤ i ≤ N

The capacity constraints ensure that no target is assigned more data than it can
hold, and the integrity constraints ensure that each object is mapped in its entirety
to the storage target(s).

The goal of the layout advisor is to identify a good layout from among all pos-
sible valid ones. Specifically, the advisor’s objective is to minimize the maximum
utilization across all storage targets. As a result, a layout Li will be considered bet-
ter than another layout Lj, j 6= i, if the utilization of the most utilized target when
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Symbol Description

N Number of database objects
si Size of ith object
Wi I/O workload for the ith object
M Number of storage targets
ci Capacity of ith target
µj Utilization of the jth storage target
Lij Layout: the fraction of object objecti laid out on target targetj

Figure 3.3: Parameters of the Layout Problem

Li is used is lower than the one when Lj is used. As was discussed, a good layout will
allow the storage system to have certain characteristics: balanced load, minimized
inter-object interference and awareness of system heterogeneity. Minimizing the
maximum target utilization encourages the layout advisor to pick a good layout
by balancing the potentially-conflicting optimization objectives described earlier.
First of all, this objective encourages the advisor to identify balanced layouts, since
the most heavily utilized target determines the quality of the layout. Secondly, it
also encourages the advisor to avoid interference, since interference increases I/O
request service times and hence storage target utilizations. Finally, when there are
different types of storage targets, this objective encourages the advisor to consider
the performance characteristics of the targets as it makes layout decisions. For
example, with a mix of fast and slow storage targets in the system, good layouts
will tend to place more load on the faster targets than on the slower ones.

Now, we will briefly explain what pieces of information the layout advisor uses
to determine the storage target utilizations resulting from a candidate layout. More
detailed explanation is deferred to the upcoming sections. Firstly, the advisor needs
information about the I/O workload for each object. It is assumed that the layout
advisor is given a workload description for each database object, and Wi is used to
denote the workload description for the ith object. As described in the preceding
chapter, an object’s workload description characterizes the object’s I/O activity.
For example, it describes the I/O request rate for the object, the mix of reads and
writes, the sequentiality of the requests. Section 3.2.1 will present the I/O workload
model the layout advisor has adopted. Secondly, the advisor needs a storage system
performance model, which predicts the utilizations of the targets for the given I/O
workloads and a candidate layout. µj(W1, . . . ,WN , L) is used to denote the model-
predicted utilization of the jth storage target under the I/O workloads W1, . . . ,WN

and the layout L. To simplify this notation, we will refer to the utilization of the
jth target as µj when the workloads and layout on which it depends are clear from
the context. Section 3.2.2 will explain in detail the storage system performance
model adopted by the layout advisor.

Figure 3.3 summarizes the parameters of the layout problem, and the following
definition gives the formal problem statement.
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Definition 4 Database Storage Layout Problem
Given N database objects with sizes si, M storage targets with capacities cj, and an

I/O workload description Wi for each object, find a valid layout L that minimizes

M
max
j=1

µj(W1, . . . ,WN , L)

Once the layout advisor has recommended an optimized layout, a variety of
mechanisms can be used to implement the layout. Most storage systems provide
mechanisms for defining logical volumes, which are mapped to underlying storage
targets. A recommended layout L can be implemented by defining logical volumes
for database objects, or for groups of database objects that have the same layout
in L. The storage system’s mechanism for mapping logical volumes to the under-
lying RAID groups or devices can then be used to implement L. On the host side,
operating-system-supported logical volume managers (LVMs) can be used to imple-
ment a layout in essentially the same way. Finally, at the application level, many
database systems are capable of distributing database objects (e.g., tablespaces)
across containers (e.g., files or raw devices) provided by the underlying operating
system [41]. By defining one or more containers for each object and placing them
appropriately on the available storage targets, a database administrator can use
this mechanism to implement the recommended layout.

Some layout implementation mechanisms are more limited than others in the
types of layouts that they can support. For example, some mechanisms use round-
robin striping of objects across targets. This always distributes an object evenly
across the targets. However, Definition 4 does not enforce an even distribution of
the objects. For example, the layout of the object TableT illustrated in Figure 3.4
is a valid layout according to this definition. For this reason, we provide the ability
to optionally restrict the layout advisor to produce regular layouts:

Definition 5 Regular Layout
A regular layout is a valid layout in which, for every pair of elements Lij and Lik,
either Lij = 0 or Lik = 0 or Lij = Lik.

In a regular layout, each object is distributed evenly across one or more storage
targets. For example, 50% of the object may be placed on each of two targets, or
25% may be placed on each of four targets. In order to distinguish layouts which
are not regular from the regular layouts, non-regular layouts will be named general
layouts from now on. Although general layouts may not be materialized feasibly in
some systems, there are commercial storage systems which favor this kind of layouts.
For example, Network Appliances has recently introduced flexible volumes [17] for
their storage servers (i.e., NetApp filers). A flexible volume, which can contain
any number of data objects, can be mapped in any number of storage targets (i.e.,
RAID groups) available in a NetApp Filer and in any portion. The layout advisor
is able to provide both general and regular layouts for a given problem instance. To
be brief, it first finds out a general layout as the solution. If the target system can
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Figure 3.4: General (Non-Regular) Layout. Table T is laid out on three storage
targets. In general layouts, objects can be distributed un-evenly across targets.

only implement regular layouts then the advisor converts the general layout into a
regular one. The details of the layout algorithm adopted by the layout advisor will
be discussed in greater detail in Section 3.3.

3.2 I/O Workload and Storage System Modeling

In this section, we will discuss the details of the database layout problem param-
eters, which have been briefly introduced in the preceding section. The layout
advisor relies on workload descriptions (i.e., Wi’s) and a storage system perfor-
mance model which reports target utilizations (i.e., µj’s), c.f. Definition 4. A
workload description reveals certain characteristics of the I/O workload directed
at a database object. An I/O workload model defines what characteristics are in-
cluded in a workload description. A storage system performance model is used to
evaluate the quality of a layout. Given a particular layout of objects and the I/O
workload information for each object, this model has to estimate the utilization of
the targets in the system. The maximum target utilization then determines the
quality of the layout. What follows is the explanation of the workload and storage
system performance models adopted by the current implementation of the layout
advisor.

3.2.1 I/O Workload Model

I/O workload information acts like the glue between database and storage tiers. The
workload information allows us to go beyond the generic guidelines often used by
database administrators, and recommend a workload-aware layout. In Chapter 2,
we have already introduced an I/O workload model to describe the characteristics of
an I/O workload directed at a data object, i.e., the Rome model (language) [60, 61].
The layout advisor adopts the Rome model to describe the I/O characteristics of
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Parameter Description

Request Sizes (Br
i and Bw

i ) Average read/write request sizes
Request Rates (λri and λwi ) Average read/write request rates
Run Count (Qi) Average number of requests in a sequential run
Overlap Fractions (Φi[j]) Temporal correlation of I/O requests in workload

Wi with I/O requests from the jth workload, 1 ≤
j ≤ N . Each workload description includes N − 1
overlap statistics, one for each other workload.

Figure 3.5: I/O Workload Parameters. The layout advisor assumes that the I/O
workload description Wi of object objecti is composed of the above statistical pa-
rameters.

each database object because the Rome model’s utility has already been demon-
strated [5, 7, 8].

Remember that, in the Rome model, the I/O workload of a system is represented
as a set of stores and a set of streams. Here, the layout advisor assumes that each
workload description is a Rome stream, and each database object is a Rome store.
The advisor makes use of a subset of the available Rome stream parameters, and
Figure 3.5 summarizes those parameters included in each workload description Wi,
1 ≤ i ≤ N . Thus, an I/O workload description is a set of N + 4 statistical
parameters.

Note that a workload description captures the I/O workload characteristics for
an object assuming that the object is accessed uniformly. However, database objects
may observe skewed access; that is, some parts of an object may be accessed more
frequently that the other parts. In order to capture the workload characteristics
at this finer granularity, an object can be viewed as a set of stores (i.e., partitions)
instead of a single store, each partition with its own workload description. Thus,
partitions can be laid out independently.

3.2.2 Storage System Performance Model

The layout advisor needs a model that can predict the utilizations of storage targets,
given descriptions of the workloads and a candidate layout. In theory, any function
that maps workloads and layout to target utilizations could be used. In practice, the
storage system model employed by the current implementation of the advisor has
a particular internal structure, as illustrated in Figure 3.6. The model is composed
of two sub-models.

As depicted in Figure 3.6(a), a layout model takes as an input an object’s work-
load, Wi, and a candidate layout, L, and produces a description of the workload
that will be generated by that object on each storage target. Wij is used to denote
the workload imposed by the ith object on the jth storage target under a given
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Figure 3.6: An Overview of the Storage System Model

layout. The layout model describes the distribution of the object’s workload that
is implied by the candidate layout. In brief, the layout model transforms each I/O
workload Wi, i = 1..N , into sub-workloads Wij, i = 1..N and j = 1..M .

After all of the database object workloads have been distributed by the layout
model, each storage target will have its own set of workload descriptions as illus-
trated in Figure 3.6(b). Given these workloads, a target model has to produce an
estimate of the utilization of the storage target. The layout advisor, after obtaining
the utilizations of all targets from the target models, represents the quality of the
candidate layout by the maximum of these utilizations. In other words, the perfor-
mance of the storage system under the given layout is represented by the utilization
of the most utilized target. What follows is the explanation of the layout and target
models adopted by the layout advisor.

3.2.2.1 Layout Model

A layout model describes how to transform the workload description of an object
into per-target workload descriptions, given a particular layout. This model must
capture the effects of whatever system is responsible for implementing the layout.
This may be a RAID controller, a logical volume manager in the host operating
system, or an underlying storage system. The per-target workload descriptions use
the same Rome-style statistical parameters as the original object workload descrip-
tions (see Figure 3.5). The layout model describes how to calculate the parameters
of the per-target workload descriptions from the parameters of the database object
workload descriptions and the layout. Development of such a model requires some
knowledge of the mechanism that will implement the layout. In the current imple-
mentation, it is assumed that if an object is found on more than one target then
it is striped across these targets. For example, to model the run count of Wij, it
is necessary to know the run count of Wi and the size of the “stripes” into which
objects are broken when they are laid out onto the storage targets. Here, the stripe
unit is a property of the layout mechanism.

Figure 3.7 is an illustration of the transformations of statistical parameters
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Figure 3.7: An Illustration of the Layout Model Transformations

applied by the layout model based on a given layout. For the experiments reported
in Section 3.4, layouts were implemented by the logical volume manager (LVM) in
the host operating system. As configured, the LVM divides objects into fixed-size
stripes and distributes the stripes round-robin to the underlying storage targets.
In the following, we describe how the layout model estimates the parameters of the
target workloads using the parameters of the given object workload.

Request Size:

Br
ij =

{
Br
i , Lij > 0

0, otherwise.

Bw
ij =

{
Bw
i , Lij > 0

0, otherwise.

A simplifying assumption here is that a request is not broken into smaller
requests because of striping. Thus, the original I/O workload of an object
and the sub-workloads directed at the targets containing this object all have
the same request sizes.

Request Rate:
λrij = λri · Lij
λwij = λri · Lij

Since it is assumed that request size of an I/O workload does not change when
the workload is striped across targets, request rate is transformed solely based
on the layout. Additionally, it is assumed that the portion of an object laid out
on a target will receive I/O requests proportional to how much of the object
is mapped on that target. For example, given in Figure 3.7, 20% of object
objecti is residing on the target target1. Based on the assumption, target
target1 will receive 20% of the requests directed at object objecti. Therefore,
the request rate of the sub-I/O workload imposed by object objecti on target
target1 will be 20% of the original workload’s request rate: λri1 = 0.2 · λri .
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Figure 3.8: Layout Model: Run Count Transformation. A sequential run may be
broken into smaller runs when object objecti is striped across more than one target.

Run count: Run count parametrizes the sequentiality of an I/O stream (see Sec-
tion 2.1.2 for more information). It represents the average number of I/O
requests in a sequential run. A sequential run is a series of I/O requests se-
quentially accessing an object. Here, it is assumed that a sequential run may
be broken if the object is laid out on more than one target.

The average length of a sequential run (in terms of bytes) is described by run
length. Basically, run length is compared to the stripe unit when deciding
on whether a sequential run will be broken across storage targets. Figure 3.8
illustrates a scenario in which sequentiality is disturbed and two targets ob-
serve smaller-sized sequential runs. In the figure, the workload Wi has an
average request size of 64KB and a run count of 12. As a result, the average
run length is 768KB. The stripe unit is taken as 128KB. The sequential run
is broken because of striping and each target now observes a sequential run
whose average run length is 384KB; it corresponds to a run count value of 6.

The formulas below describe the run count transformation, and Figure 3.9
summarizes the parameters used in the transformation. Except for the stripe
unit, other parameters are derived from the workload description parameters
(request sizes and run count). The run count parameter does not distinguish
between read and write requests; it is the average number of requests of all
read and write sequential runs. As a result, in order to obtain the average
length of a sequential run in terms of bytes, the read/write mix of the workload
is taken into account:

rpi =
λr

i

λr
i +λw

i

avgRSi = rpi ·Br
i + (1− rpi) ·Bw

i

rli = avgRSi ·Qi
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Parameter Description

Layout Stripe Unit (lSU) The stripe unit that is used while striping an ob-
ject on more than one target (default: 128KB)

Intermediate (Derived) Parameters
Read Probability (rpi) The probability of a request being a read request

in I/O workload Wi

Average Request Size (avgRSi) Average request size in bytes in workload Wi

Run Length (rli) The average size of a sequential run in bytes: Qi

· avgRSi

Figure 3.9: Parameters Used in Run Count Transformation.

Finally, the run count transformation can be formulated as follows,

Qij =


Qi, rli ≤ lSU
Lij ·Qi, rli > lSU · M
lSU

avgRSi
, otherwise.

Here, it is assumed that run length is bound by the stripe unit. If the run
length of a workload is less than the stripe unit, then the sub-workloads will
have the same run count value as the original workload (condition 1). Other-
wise, run length is diminished to the stripe unit (condition 3). However, if the
run length is too large, then the sequential run will wrap around (condition
2).

Overlap fraction :

Φij[k] =

{
Φi[k], Lij > 0 and Lkj > 0
0, otherwise.

∀i, k, 1 ≤ i, k ≤ N and ∀j, 1 ≤ j ≤M

A workload Wi has N − 1 overlap fraction parameters, one for each of the
remaining objects. It is assumed that, for a given target targetj, the sub-
workloads (e.g., Wij and Wkj) of two objects (objecti and objectk) preserve the
overlap fractions between them if both objects are laid out on the given target
(no matter what Lij and Lkj values are). Otherwise, the overlap fractions
between these two objects are ignored. This simplification is realistic because
when two objects are mapped to a given target, the temporal relation between
the I/O requests belonging to these objects is preserved.

Figure 3.10 summarizes the workload description parameter transformations
applied by the layout model.
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Br
ij =

{
Br
i , Lij > 0

0. otherwise.

Bw
ij =

{
Bw
i , Lij > 0

0. otherwise.

λrij = λri · Lij
λwij = λwi · Lij

Qij =


Qi, rli ≤ lSU
Lij ·Qi, rli > lSU · M
lSU

avgRSi
. otherwise.

Φij[k] =

{
Φi[k], Lij > 0 and Lkj > 0;
0. otherwise.

∀i, k, 1 ≤ i, k ≤ N and ∀j, 1 ≤ j ≤M

Figure 3.10: Layout Model for LVM Using Striping

3.2.2.2 Target Model

A target model estimates the utilization of storage target targetj (i.e., µj), given
the I/O workloads directed at this target (i.e., Wij, 1 ≤ i ≤ N). Most of the
existing modeling techniques treat storage targets as black boxes and do not require
knowledge of the internal structure of the targets. However, the layout advisor
distinguishes two types of targets, and directly applies a black-box technique only
for one of the target types. As for the other type, it leverages the knowledge of the
internal structure of targets (i.e., a white-box approach). It makes this distinction
based on the number of storage devices that a target contains. If a storage target is
an individual storage device, a storage device performance model is used to estimate
the utilization of the device. This performance model treats the storage device
as a black-box and reports back the utilization of the device given a set of I/O
workload descriptions. Details of this model will be presented shortly. If the target
is composed of more than one storage device (i.e., a RAID array) then the layout
advisor needs to know how the target is constructed (e.g., RAID level, number
of devices, etc.). Therefore, the advisor applies a white-box modeling technique
for arrays. Details of the model will be presented shortly. In brief, this model is
responsible for generating the I/O workload descriptions for each of the devices
in the array. After obtaining the per-storage device workload descriptions, storage
device performance models are employed to estimate the utilization of individual
devices. The utilization of the target becomes the maximum of the individual device
utilizations.

3.2.2.2.1 Modeling Individual Storage Devices: Storage Device Per-
formance Models A storage device performance model reports the estimated
utilization of an individual storage device given a set of I/O workload descriptions.
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In theory, any function that maps the I/O workloads to device utilization could be
used. However, in addition to device utilization, the layout advisor also needs this
model to report the individual contribution of each workload to the device utiliza-
tion, such that the total device utilization is the sum of those individual loads. As
will be explained in Section 3.3.3, the regularization step of the layout algorithm
leverages individual workload contributions. Hence, the utilization of the target
targetj can be expressed as follows,

µj =
N∑
i=1

µij

Here, µij represents the load of object objecti on target targetj; in other words,
the contribution of the workload Wij to the device utilization µj. Two request cost
models are constructed for a storage device, one model for read requests and the
other for write requests. Then, µij is estimated as follows,

µij = λrij · COST read
(
Br
ij, Qij, χij

)
+ λwij · COST write

(
Bw
ij , Qij, χij

)
Here, Br

ij, B
w
ij , λ

r
ij, λ

w
ij and Qij are the parameters of the workload description

Wij. COST read and COST write are the read and write I/O request cost models of
the storage device. The details of the cost model will be explained shortly. Note
that each type of device may have a different cost model, and hence different cost
functions COST read and COST write.

The read and write request costs for workload Wij depend on the characteristics
of the storage device and the properties (request sizes, run count) of the workload.
Furthermore, because of the potential for interference among workloads, the request
costs also depend on the other workloads Wkj, k 6= i and 1 ≤ k ≤ N , that impinge
on the same target. A workload’s contribution cannot be determined independently
of the other workloads; I/O service time of a workload varies with how the object
shares the target it is laid on with other objects. To simplify the task of estimating
µij, storage device models assume that the impact of all of the workloads (other
than ith) for a given valid layout can be captured using a single numeric contention
factor, χij. This factor is essentially an estimate of the number of active workloads
competing with the ith workload for the storage device. The contention factor for
the ith workload is calculated analytically using the request rates and the over-
lap fractions of ith workload with the other workloads on the same device. The
storage device model then estimates µij using only the parameters of Wij, plus the
contention factor.

We will give more insight into the contention factor concept through two sce-
narios depicted in Figure 3.11. In Figure 3.11(a), object objectij does not share
the target with any other object. As a result, the I/O requests for object objecti
that are dispatched to target targetj will not be interfered with by any other re-
quests. In this scenario, the I/O request queue of target targetj can be illustrated
as in Figure 3.11(a). The contention factor for the workload Wij, χij, is 1; in other
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Figure 3.11: Two Scenarios to Illustrate the Concept of Contention Factor. (a)
The target contains only object objecti and thus I/O requests to the object are not
interfered with. (b) The target contains all of the objects and the request rates of
all the workloads are the same and all the workloads overlap fully.

words, the number of concurrently running workloads when workload Wij is active
is just 1 (only Wij itself). In Figure 3.11(b), target targetj contains all N objects.
Assume that the total request rates of all workloads are the same and all the work-
loads temporally overlap all the time. If it were possible to take the snapshot of
the target’s request queue, we would see a sequence of I/O requests similar to the
one pictured in 3.11(b). There is always a request outstanding for each object, and
since all the objects have the same request rate there would be the same number
of requests outstanding for each object. As a result, all workloads seem to be ac-
tively accessing the target at any time. The contention factor, χij, now becomes N
because the workload Wij will compete for the disk service along with other N − 1
workloads. Here, some of the complexity is eliminated by taking into consideration
only the request rate of other competing workloads. It is assumed that run counts
and request sizes of the competing workloads do not play an important role in the
estimation of contention factor. In conclusion, the layout advisor estimates the
contention factor for a given workload Wi as follows:

χi =
N∑
k=1

Φi[k] · λ
r
k + λwk
λri + λwi

.

With this simplification, the per-request costs COST read () and COST write ()
are functions of the properties of storage device and three workload parameters:
request size, run count (sequentiality), and the contention factor.

Here, both cost functions are black-box cost models for a given storage device.
It is possible, but difficult, to build accurate analytic cost models [30, 34, 52, 53].
Instead, black-box models are constructed based on interpolation among tabulated
measurements of storage device performance; that is, two three-dimensional look-
up tables are constructed (one for read and another for write requests). There are
many types of storage devices in the market, with diverse characteristics. Therefore,
it would be a relatively hard task to design an analytical cost model for each of
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Figure 3.12: Service Time (Cost) Model of SEAGATE ST318453LC Hard Disk for
8 KByte Read Requests

them. However, using a black-box technique, any type of storage device (from
rotational to solid-state devices) can be modeled using the same technique with the
same amount of effort.

Others have used similar techniques to build black box models for disk arrays
and storage devices [6, 55]. The models are constructed by subjecting the storage
devices to calibration workloads with known request sizes, run counts, and degrees
of contention, and measuring the request service times, which are then tabulated.
To estimate COST read () or COST write () for a workload, the layout advisor looks
up the tabulated cost from the appropriate table, interpolating among nearby cal-
ibration points if necessary. Appendix C gives detailed information about how a
look up table is constructed for a given storage device, and how the interpolation
is conducted.

Although the behavior of storage devices can be complex and highly non-linear,
the generality of the tabulation/interpolation approach allows us to model them
accurately. Figure 3.12 shows one “slice” of the read request cost model for the
SCSI disk drives used in our experiments. This slice corresponds to read requests
of size 8 KBytes. The figure shows request costs as a function of the contention
factor. Each curve corresponds to a different run count (degree of sequentiality) in
the workload. This slice of the model illustrates several interesting effects. When
contention is low, sequential requests are significantly faster than non-sequential
ones, as expected. The sequential advantage is preserved in the face of a small
amount of contention because the device is able to track and read-ahead on a small
number of concurrent sequential streams. However, the advantage collapses quickly
and completely when the contention factor reaches 2. The cost of non-sequential
requests (RunCount = 1) gradually decreases with increasing contention because
disk head scheduling is more effective when there is a larger request queue.
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Parameter Description

RAID level (RAIDxj) RAID level (or configuration) used to con-
struct the array.

Number of Devices (Dj) Number of devices in the array.
Stripe Unit (SUj) Stripe unit of the RAID array.
Storage Device Types (T1 . . . TDj

) A target contains Dj many devices. Each
device may have a distinct type.

Figure 3.13: Parameters that Define Target targetj.

3.2.2.2.2 Performance Modeling of RAID Arrays In the preceding sec-
tion, we have presented how the layout advisor models storage targets which are
individual storage devices. Here, we will discuss how it estimates the utilization of
a target which is composed of more than one storage device. It is assumed that
targets containing multiple storage devices are constructed using a RAID configura-
tion. RAID arrays differ from each other with respect to the attributes presented in
Figure 3.13. The layout advisor models RAID arrays using a white-box technique,
and needs to know those attributes for all of the storage targets in the system.
Therefore, in addition to targets’ storage capacities cj (see Figure 3.3), those at-
tributes (per-target) are also given to the layout advisor as input parameters.

Figure 3.14(a) is the illustration of the data placement problem, the same figure
was presented in Section 3.1.2 (see Figure 3.2). It depicts the problem of finding
out a layout for each object on a subset of the available targets. Figure 3.14(b)
depicts the situation after the layout model transforms workload descriptions based
on a particular layout. Note that Figure 3.14(b) can be viewed as a special and
trivial instance of Figure 3.14(a) because the layout is not unknown anymore. As
a result, similar to what layout model does, the layout advisor can transform I/O
workload descriptions (directed at a given target) to generate the set of I/O work-
load descriptions for each storage device in the target. Since a target with multiple
devices is a RAID array, the transformations taking place within the target will be
called RAID transformations.

After obtaining the I/O workload descriptions for each storage device, storage
device performance models (presented in the preceding section) can be employed
to estimate the utilizations of individual devices in the array. Hence, the problem
of finding the utilization of a target can be diminished into simpler sub-problems:
finding the utilizations of the devices within the target. Finally, the utilization of
target targetj becomes the utilization of the most utilized device:

µj =
Dj

max
k=1

µkj

Here, µkj represents the utilization of the kth device in target targetj. What
follows is a more detailed explanation of how workload descriptions are transformed
to generate per-device workloads.
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Figure 3.14: White-box approach to RAID array modeling can be viewed as a
special case or instance of the data placement problem.

Figure 3.15(a) illustrates the situation after the layout model transforms work-
load descriptions. Since it is assumed that the performance of a target does not
depend on another, each target’s utilization can be estimated independently. Like
a layout model, a RAID transformation model further transforms I/O workload de-
scriptions to obtain workload descriptions per storage device. Basically, each I/O
workload description directed at target targetj (Wij, 1 ≤ i ≤ N) is transformed to
obtain per-storage device I/O workloads (W d

ij, 1 ≤ i ≤ N and 1 ≤ d ≤ Dj). What
RAID transformation does is simply to reflect the behaviour of the given RAID
array onto each workload. For example, RAID0 transformation applies almost the
same set of transformations as the one applied by the layout model. In RAID0
transformation, unlike the layout model, there is no default stripe unit. Instead,
each target has its own stripe unit (SUj) and all objects are laid out on all devices
evenly; that is, the layout is fixed and known. As a result, RAID0 transformation
can be viewed as a special instance of the layout model. Figure 3.15(b) summarizes
how workload description parameters are transformed for a RAID0 target.

For other RAID levels, similar set of transformations can be applied. For ex-
ample, RAID1 transformation applies exactly the same transformations as RAID0.
However, since each storage device is a mirror of another, the number of devices in
a target is taken as D

2
. In case of RAID4 arrays, write requests of a workload incur

additional read workload if the workload’s write request size is less than stripe size
of the array (i.e., SU ·D). Moreover, RAID4 transformation adds a new workload
description for the parity device(s). RAID5 transformation is similar to RAID4
transformation, except there is no need to generate a separate parity workload.

3.2.3 Existing Approaches to Storage System Modeling

We have introduced the storage system performance model adopted by the layout
advisor. In this section, we will present some other existing approaches that are
used to model storage systems or storage targets, and show that the proposed
technique can be considered as a hybrid.
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Figure 3.15: RAID Transformations. (a) Each workload description is transformed
based on the configuration of the target: RAID level, stripe unit and number of
devices. (b) RAID0 Transformations. I/O workload description of object objecti
is transformed to generate the workload description impinged on the kth device in
RAID0 target targetj.

There are two main approaches to system modeling, based on whether the inter-
nals of the system to be modeled are known or not: black-box models and white-box
models. Black-box modeling requires no knowledge of the internals of the storage
system being modeled, while white-box modeling requires deep understanding of
the internal implementation of the system. In a black-box approach, the system’s
performance is measured using a set of controlled workloads, and performance mea-
surements are collected. Those measurements are used either to design an analytical
model through regression or to construct a look-up table. In a white-box approach,
a system can be modeled analytically using a mathematical model since how the
system works is exposed to the model designer.

System modeling approaches can further be classified based on how they im-
plement the model: analytical models and tabular models. As described above,
a black-box or a white-box approach uses either an analytical model or a tab-
ular model to describe the system. Both analytical and tabular models (e.g.,
[6, 52, 53, 55, 30]) are preferred over trace-driven simulations (e.g., [59, 11]) because
they are much faster. Considering that the storage system performance model will
be employed frequently to compare a large set of valid layouts to identify good ones,
the efficiency of the model plays a very critical role.
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Figure 3.16: A Modular View of a Storage System. Delphi models each component
of a storage system. A workload is transformed by each component until its impact
on each hard drive is estimated.

3.2.3.1 Analytical Models

Delphi [52], developed at HP Laboratories, offers a modular analytical model which
reports utilizations of individual devices (i.e., hard drives). Figure 3.16(a) depicts a
typical storage system that can be modeled by Delphi. Delphi is a modular model
because it models the components constituting a storage system separately, and one
model’s output is taken as an input by the other. In brief, I/O workloads (repre-
sented using the Rome model) are transformed by each component until workloads
per-hard drive are obtained as depicted in Figure 3.16(b). This is very similar to
what the proposed layout and target (RAID transformations) models do. Delphi
and the proposed approach differ after obtaining per-storage device I/O workload
descriptions.

Delphi, as a fully analytical model, models the performance of a hard drive
analytically, too. A drive’s performance is characterized by its sustained read/write
transfer rates and average seek time, and the behavior of the drive is mathematically
modeled to estimate the device utilization for a given set of workloads. However,
it is not trivial to mathematically model the behavior of a storage device correctly,
and doing so requires deep understanding of the internal implementation of the
device. As discussed in the preceding section, performance of a storage device is
highly non-linear. In addition, modern storage devices employ complex algorithms
whose details are not exposed to their users. Therefore, analytically modeling a
device’s performance can potentially be inaccurate.

Curve-fitting models (or regression) can be used in place of the modular model
described above, or as a complement to it. Curve-fitting is not generally employed
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to model a complete storage system but rather individual devices or arrays. To
build the model, a storage target is subjected to calibration workloads with known
workload parameters, and the performance (e.g., throughput or average response
time) is measured for various parameter values. Those measurement points are
used to design some form of function (from workload parameters to performance)
which is fitted to these measurements. For example, Varki et al. suggested such a
performance model for disk arrays [53]. They parametrize the I/O workload with
a set of parameters such as request size, run count, and the number of concurrent
workloads. They also take some of the device characteristics like array cache size,
sustained transfer rate, average read/write seek time, stripe unit, number of disks
in the array as inputs to their performance model. Curve fitting techniques are used
to model certain performance metrics; for example, disk seek time as functions of
these parameters.

Since the performance of a storage device can be highly non-linear, analytical
models which perform curve-fitting are potentially more accurate than models like
Delphi. However, in general, white-box techniques can be used to build a single
parametrized model covering a whole class of devices. As a result, it is flexible
where there is a need to model a large set of storage targets. On the other hand, to
generate a model using curve-fitting technique for a new storage target, the whole
cycle of obtaining performance measurements using controlled workloads and then
curve fitting has to be performed again.

3.2.3.2 Table-based Models

Table-based models have similarities to curve fitting models. First of all, they are
typically not used to model a whole storage system but rather individual storage
devices or arrays. Secondly, a synthetic workload generator is used to generate
calibration workloads. However, in table-based modeling, instead of doing regres-
sion, a look-up table is constructed using the performance measurements taken at
different workload parameter settings.

Anderson [6] presents a table-based model for a disk array. The I/O workload is
parametrized by using request type, request size, sequentiality, and average request
queue length. For each of those parameters a set of values are determined, and for
each possible combination of values an I/O workload is generated and run against
the disk array. For each workload, the performance of the array is measured and
the look-up table is populated. The layout advisor uses similar look-up tables to
estimate the utilizations of individual devices rather than disk arrays.

Wang et al. propose to improve table-based models by employing machine
learning tools [55]. In brief, they use classification and regression tree (CART)
modeling, which can be viewed as a type of non-linear regression tool. CART
modeling is used to approximate functions on a multi-dimensional Cartesian space
using piecewise-constant functions. As a result, their method can also be viewed
as a curve-fitting model. It is useful when the number of workload parameters and
thus number of possible calibration points increase.

51



3.2.3.3 Layout Advisor’s Storage System Performance Model

The storage system performance model adopted by the layout advisor is a hybrid
of modular analytical modeling and the tabular method. The layout model and the
RAID transformations performed within each multi-device target resemble Del-
phi’s modular analytical model. Storage device performance models to estimate
individual device utilizations use tabulation in order to model the performance of
a storage device. Modeling the storage system infrastructure analytically makes
the proposed system model flexible. A database or storage administrator can eas-
ily generate what-if scenarios by designing various storage targets. Modeling the
performance of individual devices using tabulation increases the accuracy of the
performance estimations.

3.3 Recommending Workload-Aware Optimized

Layouts

The two key elements of the proposed algorithm for solving the layout problem
are (i) its formulation as a non-linear programming (NLP) problem and (ii) the
use of a generic NLP solver. Initially, some ad hoc heuristics were explored for
finding optimized layouts, but ultimately we found the generic solvers to be fast
and effective. By using a generic solver, the solver’s techniques for exploring the
optimization space can directly be leveraged. Thus, instead of re-inventing the
wheel or designing heuristic algorithms, the state of art techniques incorporated
into NLP solvers can be leveraged. Explicitly formulating layout as a non-linear
programming problem also makes it easy to incorporate additional constraints on
the resulting layout. For example, if administrative constraints require certain
objects to be laid out onto particular targets, such constraints can easily be added
to the NLP problem before solving it.

3.3.1 Solver

We use AMPL [23], a C-like standard mathematical modeling language, to formu-
late the layout problem as a non-convex NLP. There exist several general solvers
designed to solve non-convex optimization problems with non-linear objective func-
tions and non-linear constraints. We use the MINOS solver [36], because it supports
the use of external (i.e., non-AMPL), black-box functions as part of the definition of
the objective function. This feature is leveraged for the storage device performance
models (black-box tabular models).

In order to use a generic NLP solver like MINOS, several issues must be ad-
dressed. First, a valid initial layout must be provided. This step is described in
more detail in Section 3.3.2. Second, the solver will find a valid, optimized layout,
but the resulting layout may not be regular. If a regular layout is required, then
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1 s o l u t i o n = EMPTY;
2 for ( i = 1 ; i <= NoOfI te rat ions ; ++i ){
3
4 i n i t l a y o u t = FindAVal idIn i t ia lLayout ( ) ;
5 g e n e r a l l a y o u t = CallAnNLPSolver ( i n i t l a y o u t ) ;
6
7 i f ( Look ingForaRegular i zedSo lut ion )
8 new so lut ion = Regu la r i z e ( g e n e r a l l a y o u t ) ;
9 else

10 new so lut ion = g e n e r a l l a y o u t ;
11
12 i f ( s o l u t i o n == EMPTY | | BetterThan ( new so lut ion , s o l u t i o n ) )
13 s o l u t i o n = new so lut i on ;
14 }

Figure 3.17: Layout Algorithm. Here, the function FindAValidInitialLayout () is
assumed to generate a different initial layout each time it is invoked.

the solver’s solution has to be regularized. This regularization step is described in
Section 3.3.3. Figure 3.17 summarizes the behavior of our layout optimizer.

Many NLP solvers, like MINOS, are not guaranteed to identify a globally opti-
mal solution. Moreover, the solution found by the solver may depend on the choice
of the initial layout. Thus, it is possible to improve the quality of the optimized
layout, at the cost of additional optimization time, by repeating the optimization
process using different initial layouts. The optimization procedure described in
Figure 3.17 incorporates this iteration (i.e., the outer-most for loop). A potential
advantage of using multiple initial layouts is that they offer a convenient way of
introducing the knowledge of domain experts into the optimization process. For
example, if a knowledgeable database administrator expects that certain layouts
might perform well, those layouts can be used as initial layouts. We have not yet
explored this possibility in the layout advisor. All of the results presented in Ex-
perimental Evaluation section use a single initial layout (i.e., NoOfIterations=1).
The choice of a suitable initial layout is detailed below.

3.3.2 Initial Layout

Originally, SEE was used as the initial layout, as it is simple and balanced. However,
it often represents a local minimum in the search space, and we found that MINOS
at times had difficulty breaking out of this minimum. Therefore, SEE is not an
ideal choice if the layout advisor uses only a single initial layout. To avoid this
problem, the layout advisor uses a simple heuristic for choosing an initial layout:
placing database objects based on their sizes and total request rates. An object’s
total request rate is one of its workload characteristics, as described in the preceding
section.
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The initial configuration is chosen by laying out one object at a time, in de-
creasing order of request rate. Each object is assigned to the target that has the
lowest total assigned request rate from among those targets that have sufficient
remaining storage capacity to hold the object. This approach assigns each object
to a single storage target. By assigning each object to the least-loaded target, we
hope to obtain an initial layout that is at least approximately balanced. However,
the heuristic does not make any attempt to minimize interference, nor does it take
into account the performance characteristics of the storage targets. In addition,
if there are tight space constraints, it is possible that this algorithm will fail to
provide a layout (even if such a layout is possible) and manual intervention would
be necessary.

3.3.3 Regularization

If non-regular layouts can be handled by the storage system, operating system
or database system that is responsible for implementing them, then the layout
generated by the NLP solver can be implemented directly and there is no need for
regularization. For systems that only support regular layouts, the layout advisor
needs to perform the final regularization step.

One way to generate regular layouts would be to add regularization constraints
directly to the NLP problem formulation. However, such constraints would effec-
tively turn a continuous optimization problem (each of the decision variables Lij is
a continuous variable in the range 0 ≤ Lij ≤ 1) into a combinatorial problem. With
the addition of regularization constraints, there are up to 2M − 1 possible layouts
for each object, and hence O(2MN) possible layouts for all objects. To solve the reg-
ularized problem effectively, a solver that is intended for combinatorial problems
should be used. Thus, instead, the solver is used to identify an optimized non-
regular layout and then apply a post-processing step to regularize the optimized
layout.

The regularization algorithm starts with the non-regular optimized layout pro-
duced by the solver and regularizes the layout of one object at a time, until all
objects’ layouts are regular. The algorithm regularizes the objects in decreasing
order of the total storage system load (for object objecti,

∑M
j=1 µij) they impose

on the storage system. By considering the objects in this order, load imbalances
introduced by regularizing the initial objects can potentially be corrected by the
regularizations of subsequent objects. Load imbalances created by regularization
of the final objects will be uncorrectable but relatively small.

To choose a regular layout for a particular object, the algorithm generates a
small set of candidate regular layouts of that object. Two classes of candidates
are generated. The first class consists of all regular layouts of the object that are
consistent with the layout chosen by the solver. By consistent, we mean that if
Lij > Lik in the original layout generated by the solver, then only regular layouts
for which Lij ≥ Lik will be candidates. For example, if there are 3 storage targets
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and the solver lays out an object as follows: (47%, 35%, 18%), then the regular-
ization algorithm will consider only the following regular layouts: (100%, 0%, 0%),
(50%, 50%, 0%), and (33%, 33%, 33%).2 The second class of candidates consists of
regular layouts that place the object on the least loaded targets, according to the
current layout. Specifically, the regularizer considers layouts that assign 100% of
the object to the least loaded storage target, 50% of the object to each of the two
least loaded targets, and so on. These are called balancing layouts, since they tend
to correct load imbalances that may arise from the regularization of previous ob-
jects. For each object, there will be 2M candidate regular layouts, M of each class.
From this set of candidates, the regularizer eliminates any layouts that would result
in violations of the targets’ space constraints, and from the remaining valid layouts
it chooses the one that minimizes the optimization objective, i.e., the regular layout
that minimizes the maximum utilization of the storage targets.

It is possible that, as a result of space constraints, all of the regular layouts
considered by the regularization algorithm for some object will be invalid. In this
case, the regularization algorithm may fail to generate a regular layout (even if such
a layout does exist), and manual intervention would be necessary. In practice, this
is unlikely to be a problem unless space constraints are very tight.

3.3.4 Putting Things Together

Here, we will present how different stages of the layout optimization algorithm are
glued together by AMPL. The heart of the optimization algorithm is the storage
system performance model described in Section 3.2.2. To recap, this model accepts
I/O workload information for a set of database objects and the description of a set
of storage targets, and reports back the maximum target utilization for a given valid
layout. The NLP solver and the regularizer use this metric to asses the quality of
valid layouts. Figure 3.18 depicts how the AMPL-coded storage system model sits
at the heart of the layout optimization process. More details on the AMPL-coded
model can be found in Appendix D.

3.4 Experimental Evaluation

In this section, we present an experimental evaluation of the layout algorithm. The
primary goal is to evaluate the quality of the optimized layouts that are recom-
mended by the layout advisor given different scenarios. In addition, we consider
the time required by the layout advisor to produce a recommendation. Finally,
the NLP-based layout advisor is compared to a previously-proposed technique for
laying out relational databases.

2In case Lij = Ljk in the solver’s layout, the tie is broken arbitrarily, using target identifiers.
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Figure 3.18: Putting the Steps of Layout Optimization Together. AMPL-coded
storage system model is called by the NLP solver and the regularizer to assess the
quality of valid layouts.

3.4.1 Experimental Setup

The storage devices we have considered for the evaluation consist of rotational hard
drives and a solid-state drive, and the objects to be laid out are individual database
tables, indexes, logs, and a tablespace for temporary objects. To evaluate the
quality of the optimized layouts, we compare the performance of a database system
that uses an optimized layout to the performance of the same database system using
a baseline layout. The baseline layouts are simple heuristic layouts that make little
or no use of workload information. In most cases, the performance metric is the total
elapsed (wall-clock) time required to execute a particular set of queries. In addition
to the elapsed times, which are the primary metric, we also record the estimated
storage target utilizations (µj) that are used internally by the layout advisor to
judge the quality of a layout. These estimated utilizations are used to illustrate and
explain the advisor’s behavior. Although target utilizations are directly measured
in the experimental environment, we cannot compare utilizations measured under
the optimized layout with utilizations measured under the baseline layouts. This is
because the experimental setup has a closed loop testing environment. Optimized
layouts make queries run faster and hence cause new queries to be submitted more
quickly. Thus, the optimized layouts tend to have higher measured utilizations than
the baseline layouts simply because they have higher query throughput. However,
we can directly compare the estimated utilizations for the baseline and optimized
layouts, because both are computed using the query rates and other workload
characteristics specified in the input workloads (the Wi’s). Any improvements in
the estimated utilizations are the result of improvements in the quality of the layout.
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Number of Objects
Database Total Size Tables Indexes Temporary Space Transaction Log

TPC-H 9.6GB 8 11 1 0
TPC-C 9.2GB 9 10 0 1

Figure 3.19: Databases Used in the Experiments

In the experiments, we have used the PostgreSQL database management sys-
tem, version 8.0.6. We experimented with two databases: a scale factor 5 TPC-H
database and a scale factor 90 (i.e., number of warehouses) TPC-C database. We
used the open source implementation of the TPC-H and TPC-C benchmarks [40].
The numbers of objects in these databases and their total sizes are shown in Fig-
ure 3.19. Note that the total sizes do not include the sizes of the transaction log
and temporary tablespace. In an active system, those two objects may vary in size
depending on several factors such as the sizes of other objects, number of queries
concurrently running in the system, read/write mix of the workload, available sys-
tem memory, the writeback settings of the operating system.

We define four SQL workloads running against these databases, as shown in
Figure 3.20. Three of those SQL workloads are online analytical processing (OLAP)
workloads. OLAP workloads run against the TPC-H database. Normally, the
TPC-H benchmark defines 22 query types; however, Query 9 is not included in
our workloads because of its excessive run-time compared to the run times of the
other queries. While the average run time of other queries is around 10 minutes,
the run time of Query 9 is around 260 minutes in our system. The OLAP1-63

workload consists of 63 TPC-H queries, each TPC-H query type occurs three times
in the mix. The entire mix is randomly permuted and the queries are executed
sequentially with no think times. OLAP8-63 is the same as OLAP1-63 except that
queries are executed with a concurrency level of eight. That is, whenever a query
finishes, the next query in the sequence is started so that eight queries are active at
all times. The last OLAP workload is OLAP1-21. The OLAP1-21 workload consists
of 21 queries, each TPC-H query type occurs once in the mix. The queries are
executed sequentially in a randomly selected order, with no think times. Finally, the
OLTP8-90 workload generates an online transaction processing (OLTP) workload
running against the TPC-C database. The OLTP8-90 workload is generated by eight
simulated terminals per warehouse, one database connection per terminal and with
no think time or keying time.

The PostgreSQL database management system is deployed on a Dell PowerEdge
2600 server with two 2.4GHz Intel Xeon processors and 4GB of main memory, run-
ning SUSE 10.0 Linux with kernel version 2.6.21.7. We instrumented the kernel
so that we were able to obtain the I/O request traces that were used to build the
workload models, as described in Section 3.2.1. The size of the database system’s
shared buffer is set to the maximum allowable value, 2GB, for all of the OLAP work-
loads (OLAP1-63, OLAP8-63 and OLAP1-21), and to 1.5GB for the OLTP workload
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Workload SQL Concurrency Number of Target
Type Workload Level Queries Database

OLAP1-63 1 63
OLAP OLAP8-63 8 63 TPC-H

OLAP1-21 1 21
OLTP OLTP8-90 8x90 n/a TPC-C

Figure 3.20: Query Workloads Used in the Experiments

Config. No of Type of No of Devices
Explanation

Name Targets Mixture in Targets

4RAID0 1 n/a {4} Single target which is a 4-disk
RAID0 array.

4JBOD 4 Homog. {1,1,1,1} Four identical targets, each is a
standalone disk.

2HETERO 2 Heterog. {3,1} Two targets: a target is a 3-disk
RAID0 array, the other is a stan-
dalone disk.

3HETERO 3 Heterog. {2,1,1} Three targets: a 2-disk RAID0 ar-
ray and two standalone disks.

4JBOD+SSD 5 Heterog. {1SSD} + Five targets: a SSD and four
{1, 1, 1, 1} standalone disks.

Figure 3.21: Storage Target Configurations Used in the Experiments

(OLTP8-90). The server has a 70GB 15K RPM SCSI disk which holds all system
software, including PostgreSQL itself. In addition, it has four 18.4GB 15K RPM
SCSI hard drives (SEAGATE ST318453LC [51]) behind a configurable Dell Perc
4Di RAID controller, and a 32GB solid-state drive (Patriot PE32GS25SSDR [33])
behind a 3Gb/s Koutech SATA-II controller. The performance of those two types
of storage devices under various workloads is presented in Appendix C (see Fig-
ure C.4). These five storage devices are used to hold the TPC-H and TPC-C
database objects. Database objects will be laid out on the devices using different
configurations. Figure 3.21 summarizes those configurations that were used in the
experiments. I/O workload information for all of the SQL workloads is obtained
by running those workloads under the 4RAID0 target configuration.

3.4.2 Layout Quality: Homogeneous Systems

In this set of experiments, we compare DBMS performance under advisor-recommended
layouts with the performance under a baseline stripe-everything-everywhere (SEE)
layout. We have used the OLAP1-63 and OLAP8-63 workloads, and the 4JBOD tar-
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Workload
Execution Time (seconds)
Baseline Optimized Speedup
(SEE) Layout (Gain)

OLAP1-63 40927 31879 1.28x
OLAP8-63 16201 13527 1.2x

Figure 3.22: Execution Times of the OLAP1-63 and OLAP8-63 Workloads Using
Baseline (SEE) and Optimized Layouts under the 4JBOD Configuration.

get configuration. For each workload, the layout advisor is asked to recommend a
layout of the TPC-H database objects onto the four identical targets. As discussed
in Section 3.1.1, SEE is the most widely advised layout technique by database ven-
dors, especially in homogeneous systems. Therefore, SEE is used as the baseline
layout.

Figure 3.22 summarizes the results. It presents the total execution time of the
SQL workloads when the baseline and advisor recommended layouts were used. The
last column of the figure shows the speed-up obtained when the optimized layouts
were used. Although this scenario is well-suited to SEE, the layout advisor is able
to obtain some performance improvement for both workloads. Figure 3.23(a) illus-
trates the optimized regular layouts that the advisor recommends for the OLAP1-63

and OLAP8-63 workloads under the 4JBOD target configuration. Objects are shown
in decreasing order of request rate, and the layout of only first ten objects is showed.
For both OLAP1-63 and OLAP8-63, the recommended layouts separate the two most
heavily-requested objects (LINEITEM and ORDERS). For OLAP8-63, the workload on
LINEITEM is less sequential than it is under OLAP1-63, because of concurrency.
As a result, the performance penalty for interference with LINEITEM is lower un-
der the OLAP8-63 workload, and thus LINEITEM is not completely isolated in the
OLAP8-63 layout. Instead, the layout advisor distributes I L ORDERKEY and TEMP

SPACE across all of the targets to better balance the load.

Figure 3.24 illustrates the behavior of the layout advisor by showing the quality
of the layouts that it considers at different stages of its execution. In the figures,
each group of bars shows the estimated utilization (µj) of one of the four disks. The
leftmost bar in each group shows the advisor’s estimated utilization for the baseline
SEE layout, for the purpose of comparison. The second bar in each group shows
the estimated target utilization under the initial layout generated by the advisor
as a starting point for the NLP solver. These initial layouts assign each object to
a single target. They tend to be unbalanced, as is the case for both OLAP1-63 and
OLAP8-63, because the advisor does not take interference, workload sequentiality,
and the other factors into account, but rather employs a simplistic algorithm when
generating them. In addition, the resulting layout minimizes the I/O parallelism
because each object is mapped to a single target.

The third bar in each group shows the estimated utilization for the (non-regular)
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Figure 3.24: Estimated Target Utilizations for the OLAP1-63 and OLAP8-63 Work-
loads under 4JBOD.
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layout identified by the NLP solver. The solver’s layouts for both OLAP1-63 and
OLAP8-63 are shown in Figure 3.23(b). For both workloads, this layout is very
balanced, and it reduces the maximum target utilization relative to the default
SEE layout, which is also balanced. These reductions are achieved by reducing
interference among the objects and at the same time by mapping some objects to
multiple targets to distribute the load. Thus, the layout advisor could address this
trade-off effectively for the given I/O workloads and target configuration.

If, in the host system, the layout mechanism supports non-regular layouts, then
the layouts shown in Figure 3.23(b) can be implemented directly. If not, then the
final regularization step is needed. The fourth bar in each group in Figure 3.24
shows the estimated utilizations under the final regularized layout that the ad-
visor produces in its post-processing step. In general, these layouts will be less
balanced than those produced by the solver, as the regularization process disturbs
the balanced layout produced by the solver, and it may be unable to completely
correct these disturbances. In the case of the OLAP8-63 workload, the solver’s
layout (Figure 3.23(b)(2)) is almost regular, and the resulting regularized layout
(Figure 3.23(a)(2)) is very close to the solver’s. For the OLAP1-63 workload, the
solver’s layout (Figure 3.23(b)(1)) is less regular, and regularizing the layout of the
heavily-requested LINEITEM table creates some load imbalance, which the regular-
izer is unable to correct completely. Nonetheless, the maximum target utilization
under the regularized layout is almost the same as it is under the solver’s layout.

3.4.3 Layout Quality: Heterogeneous Systems

In this set of experiments, the layout advisor is asked to recommend layouts given
heterogeneous systems. For these experiments, we have used the OLAP8-63 work-
load, and 2HETERO, 3HETERO and 4JBOD+SSD target configurations. 2HETERO is com-
posed of two targets: a RAID0 array of 3 disks and an individual disk. 3HETERO

contains three targets: a RAID0 array of 2 disks and 2 individual disks. 4JBOD+SSD
is a mix of 4 individual disks and the SSD. The server’s RAID controller was used
to create 2HETERO and 3HETERO configurations out of 4 identical rotational hard
drives. Therefore, both systems have been configured to be heterogeneous. We
will first analyze the optimized layouts for this kind of heterogeneous systems. In
practice, heterogeneity may arise not only from the storage system configuration,
but also from the presence of multiple types of devices; 4JBOD+SSD configuration
represents such a scenario. The fifth device, which is a solid state drive, has dif-
ferent performance characteristics than the rotational hard drives. As a result, the
system itself is heterogeneous by nature. In the second part, we will analyze the
layout advisor’s behavior for this kind of heterogeneous systems.

3.4.3.1 Configuration Heterogeneity

Unlike the previous scenario, in which a homogeneous system is considered, in
heterogeneous systems it is not obvious how to define baseline layouts against which
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Figure 3.25: Optimized Layouts of the TPC-H objects for the OLAP8-63 Workload
under the 2HETERO and 3HETERO Configurations.

Baseline Baseline Baseline
Storage (SEE) (isolate tables) (isolate tables, Optimized Speedup
Target Execution Execution indicies & temp) Execution (Optimized
Config. Time Time Execution Time Time vs. SEE)

2HETERO 18715 14507 n/a 13317 1.41x
3HETERO 16922 n/a 22359 13163 1.29x
4JBOD 16201 n/a n/a 13527 1.2x

Figure 3.26: Workload Execution Times (in seconds) of the OLAP8-63 Workload
using the Baseline and Optimized Layouts under the 2HETERO and 3HETERO Het-
erogeneous Target Configurations.

to compare the layout advisor’s recommendations. As the first baseline SEE is
used, although it is clear that this will lead to load imbalance when the targets
are heterogeneous. For the 2HETERO configuration, we consider a second baseline
in which the TPC-H tables are isolated on the large target and the remaining
objects are placed on the small one. For the 3HETERO configuration, we consider a
second baseline that isolates the tables on the large target, the indexes on one of
the small targets, and the temporary tablespace on the other small target. These
are the layouts that might be considered by a database administrator faced with
these situations. Figures 3.25(a) and 3.25(b) show the layouts recommended by
the advisor for the 10 most heavily-requested objects for the 2HETERO and 3HETERO

configurations, respectively.

Figure 3.26 summarizes the results of these experiments. In addition to the
results for the heterogeneous 2HETERO and 3HETERO target configurations, we have
also included the results from Figure 3.22 for the same workload (OLAP8-63) under
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the homogeneous 4JBOD configuration. The most important observation is that
the layout advisor is able to identify a good layout regardless of the storage target
configuration. In fact, the layouts it found for the heterogeneous configurations
were actually slightly better than the one that it found for the homogeneous tar-
gets. Not surprisingly, the baselines do not fare as well. The performance of SEE
degrades with increasing disparity in storage target configuration, faring worse un-
der 3HETERO than under 4JBOD, and worse under 2HETERO than under 3HETERO.
Specifically, SEE gives about the same performance under 3HETERO as it did in
the homogeneous configuration, but it starts to suffer in the 2HETERO configuration
because of load imbalance. In 2HETERO, both targets receive the same amount of
workload. Thus, the large target is underutilized and the system’s performance is
bounded by the small target. The alternative baseline layouts improved on SEE
in the 2HETERO case, but the layout advisor provided a larger improvement. In the
3HETERO configuration, the alternative baseline actually performed worse than both
SEE and the optimized layout. Isolating tables, indexes and temporary tablespace
in the 3HETERO configuration hurt the performance significantly relative to the SEE
baseline, which points to the difficulty of using heuristic layout guidelines.

3.4.3.2 Device Heterogeneity

Next, we will analyze the DBMS performance for OLAP8-63 workload under the
4JBOD+SSD target configuration. As the first baseline layout, SEE is used. We
consider a second baseline layout that places all objects on the solid-state drive.
Since OLAP workloads are mostly read-only and the solid-state drive has superior
read I/O performance than the rotational hard drives (see Figure C.4) and has
enough space to store all objects, this layout could be considered by a database
administrator. We also consider some scenarios in which the capacity of the SSD
drive is reduced. The capacity of the SSD drive is 32GB and the capacity of each
rotational hard drive is 18GB. The total size of the 19 TPC-H objects is around
10GB3, and the temporary tablespace for OLAP8-63 workload can grow up to 10GB.
Other configurations are obtained by restricting the capacity of the SSD to 10GB,
6GB and 4GB. In all of those three cases, placing all objects on the SSD is not
possible. In such mixed systems, it is indeed common that the SSD is not large
enough to hold everything as it is more expensive than rotational drives. Figure 3.27
depicts the advisor recommended layouts of the 10 most heavily-requested TPC-H
objects for all of the four cases.

Figure 3.28 summarizes the results of the experiments. The most important
observation is that the layout advisor was able to identify a good layout in all
cases. As expected, the SEE layout performed poorly because the disparity in the
performance characteristics of the SSD and the disk drives. When the SSD capacity

3The four largest objects are LINEITEM, ORDERS, PARTSUPP and I L SUPPKEY PARTKEY with
sizes 4.98GB, 1.12GB, 0.68GB and 0.62GB, respectively. There are three indexes defined on
LINEITEM with sizes 0.5GB. The sizes of the rest of the objects range from 190MB to 8KB with
an average size of 75MB.
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Figure 3.27: Optimized Layouts for the OLAP8-63 Workload under 4JBOD+SSD Con-
figuration. The capacity of the SSD is taken as (a) 32GB, (b) 10GB, (c) 6GB, and
(d) 4GB.

was sufficient to allow it, placing all of the objects on the SSD resulted in much
better performance, but this layout fails to utilize the disk drives at all. However,
the advisor recommended layout led to slightly better performance. The optimized
layout distributed the objects across the disk drives and the SSD and achieved
about a 10% speedup relative to the SDD-only layout. More importantly, in all
of the other three cases in which SSD does not have enough capacity to store all
objects, the layout advisor could still recommend good layouts. For example, even
with only a 6GB SSD, the optimized layout still performs better than the SSD-only
layout with a 32GB SSD. As a result, the layout advisor could leverage the SSD
and found a non-trivial good mapping of the objects by exploiting the knowledge
on the I/O workload and the targets’ performance characteristics.

It is also instructive to compare execution times from the SSD experiments
(Figure 3.28) to those from the disk-only experiments (Figure 3.26). For example,
the workload runs in 16201 seconds under SEE in the four disk 4JBOD configuration
(with no SSD), or in 13527 seconds in the same configuration with an optimized
layout (Figure 3.26). With the addition of a 4GB SSD to the four disks, the
recommended layout allows the workload to finish in 8529 seconds (Figure 3.28)-
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Baseline Baseline
Capacity (SEE) (all objects on SSD) Optimized Speedup

of the Execution Execution Execution (Optimized vs.
SSD Time Time Time SEE)

32GB

12145

6742 6182 1.96x
10GB 6354 1.9x
6GB n/a 6234 1.94x
4GB 8529 1.42x

Figure 3.28: Workload Execution Times (in seconds) for the Baseline and Opti-
mized Layouts for the OLAP8-63 Workload under the 4JBOD+SSD Target Configu-
ration.

almost twice as fast as the disk-only SEE layout. Thus, the layout advisor is able
to exploit a small amount of added SSD capacity to achieve a substantial boost in
workload performance.

Lastly, comparing the layouts of orders table and i l orderkey index in the
SSD experiments to those in the disk-only experiments reveals that the layout advi-
sor does a good job in matching objects’ I/O characteristics and devices’ different
performance characteristics. In OLAP8-63, orders table is sequentially accessed
and i l orderkey index is almost randomly accessed, and both objects are highly
co-accessed. In disk based systems, having these objects share the same target
would prevent the target from exploiting the sequentiality so the layout advisor
tend to separate these objects (Figures 3.23(a)(2) and 3.25). However, an SSD-
based target is indifferent to contention for read requests (see Figure C.4) so both
objects can share the same SSD target (Figure 3.27(d)).

3.4.4 Layout Quality: Consolidation Scenario

Here, we consider a consolidation scenario in which two database system instances
run on the server. One instance handles the OLAP1-21 workload and the other
OLTP8-90 workload. In this scenario, there are a total of 40 database objects to be
laid out, including 20 from the TPC-H database and 20 from the TPC-C database.
Two target configurations are considered: 4JBOD and 4JBOD+SSD.

3.4.4.1 Homogeneous System

The layout advisor is asked to generate an optimized layout of the 40 objects under
the 4JBOD target configuration, and we compare this layout against a SEE baseline,
which stripes all 40 objects across the four storage targets. In this experiment, the
performance of the OLAP1-21 workload is measured in terms of the wall-clock time
required to complete the SQL workload. For the OLTP8-90 workload, performance
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SEE Improvement
Baseline Optimized Optimized

Workload Performance Performance vs. SEE

OLAP1-21 24416 sec. 17005 sec. 1.43x
OLTP8-90 304 tpmC 360 tpmC 1.18x

Figure 3.29: Consolidation Scenario Performance Under the Baseline and Opti-
mized Layouts for the 4JBOD Target Configuration.

STOCK (c)

CUSTOMER (c)

I_CUSTOMER (c)

I_ORDERS (c)

PK_CUSTOMER (c)

I_L_ORDERKEY (h)

XactionLOG (c)

PK_STOCK (c)

ORDERS (h)

PK_ORDER_LINE (c)

LINEITEM (h)

TEMP SPACE (h)

ORDER _LINE (c)

PK_NEW_ORDER (c)

PK_ORDERS (c)

Figure 3.30: Optimized Layouts of the TPC-H (h) and TPC-C (c) Objects for the
Consolidation Scenario.

is measured in TPC-C New-Order transactions per minute (tpmC). The OLTP8-90

workload runs until the OLAP1-21 workload finishes. The reported tpmC rate is the
average rate over the lifetime of the experiment, minus an initial warm-up period
of 1400 seconds.

Figure 3.29 summarizes the results of this experiment, and Figure 3.30 shows
the regular layout recommended by the advisor for the 15 most heavily-requested
objects. Optimization boosts the performance of both the OLAP1-21 and OLTP8-90

workloads. This is achieved primarily by separating the TPC-H LINEITEM ta-
ble from the TPC-C STOCK and CUSTOMER tables, which see heavy non-sequential
workloads.

3.4.4.2 Heterogeneous System

Next, the layout advisor is asked to find an optimized layout for the same workload
under 4JBOD+SSD configuration. SEE is used as the initial baseline, and the second
baseline layout places all objects on the SSD. As was noted in the preceding sec-
tion, the total size of the 19 TPC-H objects is around 10GB, and the temporary
tablespace can grow up to 5.5GB for the OLAP1-21 workload. The total size of the
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Figure 3.31: Optimized Layouts of the TPC-H (h) and TPC-C (c) Objects for the
Consolidation Workload for the 4JBOD+SSD Configuration. SSD capacity is set to
(a) 32GB, (b) 16GB, (c) 8GB and (d) 4GB.

19 TPC-C objects is also around 10GB. Although the volume to the transaction
log can grow up to 10-15GB in the experiments, only 16MB of the log is active4

and the total size of the whole log does not exceed a couple of GBs at any time.
Therefore, the 32GB SSD can host all of the TPC-H and TPC-C objects. We
again consider scenarios in which the capacity of the SSD is reduced. Three other
configurations are generated by setting the capacity of the SSD to 16GB, 8GB
and 4GB. Figure 3.31 illustrates the advisor recommended layouts of the 15 most
heavily-requested objects for the four scenarios.

Figure 3.32 summarizes the results. The most obvious observation is that both
baseline layouts led to poor performance and the advisor recommended layouts
resulted in much better performance for both OLAP and OLTP workloads. The
reason behind the high performance degradation for baseline layouts is the SSD’s
low write I/O performance. Note that 65% of the requests are small-sized write-
requests in the OLTP8-90 workload. The layout advisor was aware of the distinct
read/write characteristics of the devices and had knowledge about the I/O workload

4PostgreSQL transaction log is composed of regular files, each of which is at most 16MB.
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Capacity SEE Baseline (all Optimized Improvement
of the Baseline (objects on SSD) Layout Optimized
SSD Workload Performance Performance Performance vs. SEE

32GB
OLAP1-21 60588 sec 4131 sec 16.8x
OLTP8-90 62.9 tpmC 475.2 tpmC 3.9x

16GB
OLAP1-21 69387 sec

n/a

3880 sec 17.9x
OLTP8-90 120.8 tpmC 455 tpmC 3.8x

8GB
OLAP1-21 13452 sec 5.2x
OLTP8-90 356 tpmC 2.95x

4GB
OLAP1-21

n/a n/a
11739 5.9x

OLTP8-90 431 tpmC 3.6x

Figure 3.32: Consolidation Scenario Performance Under the Baseline and Opti-
mized Layouts for the 4JBOD+SSD Target Configuration.

of the objects, so it could do a better mapping of the objects. Considering the
optimized layouts presented in Figure 3.32, we can conclude that the layout advisor
tends to lay out TPC-H objects on the SSD and to distribute TPC-C objects
across 4 rotational drives. This observation gave us a hint and we considered a
third baseline layout in which TPC-H objects are laid out on the SSD and TPC-C
objects are striped across 4 rotational drives. Note that this layout can be realized
only when the SSD capacity is kept at 32GB. This new baseline layout has resulted
in much better performance than the one observed when the initial two baseline
layouts were used: the OLAP workload finished in 3994 seconds and the OLTP
workload could run 387 tpmC. When compared to the optimized layout, the new
baseline layout led to almost the same performance for the OLAP workload: 3994
seconds versus 4131 seconds. However, the optimized layout resulted in a better
performance for the OLTP workload: 1.23x speedup over the new baseline layout,
475.2 tpmC versus 387 tpmC. This points to the difficulty of deciding what targets
to use for which database system in a consolidated environment so that all database
systems achieve good performance.

Lastly, another important observation that can be made from Figure 3.32 is the
performance results for the optimized layouts obtained at SSD capacities of 8GB
and 4GB. Note that the advisor picked a better layout for the 4GB case. Although
the advisor could have picked the same layout for the 8GB case, it recommended
a different layout. This shows that the optimizer does not guarantee the global
optimum. For the 8GB case, the optimizer reached to a different solution because
it started with a different initial layout. Nevertheless, the optimizer can be tuned or
other initial layouts can be tried to reach to the same solution as the one obtained
for the 4GB case.
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Solver Regularization TOTAL
Workload N M Time Time Time

OLAP8-63 20 4 3.5 0.1 3.6
4 12.1 0.5 12.6

Consolidation 40 10 55 2.2 57.2
20 120 9 129
40 200 26 226

2xConsolidation 80 10 47 12 59
3xConsolidation 120 10 340 40 380
4xConsolidation 160 10 590 72 662

Figure 3.33: Execution Time of the Layout Advisor (in seconds). N is the number
of database objects, and M is the number of storage targets.

3.4.5 Optimization Time

Figure 3.33 shows the time required to recommend regularized layouts, for several
different workloads. For each layout the total time required is reported, as well
as an indication of how much of that time is spent in the NLP solver and how
much is spent on the regularization step. The total time is the solver time plus the
regularization time plus the time required to generate the initial configuration for
the solver, which is very small (much less than a second).

The figure shows the costs for the OLAP8-63 and Consolidation workloads. To
recap, OLAP8-63 accesses 20 TPC-H objects, and Consolidation workload both 20
TPC-H objects and 20 TPC-C objects. In addition, we created additional synthetic
workloads by taking the workload descriptions (Wi’s) of the 40 objects from the
Consolidation workload and replicating them. This gives workloads with 80,
120 and 160 objects, which are labeled 2xConsolidation, 3xConsolidation, and
4xConsolidation in Figure 3.33. We measured the time required to generate an
optimized layout for these replicated workloads on 10 storage targets.

A few things are clear from these tests. First, for layout problems at these scales
(10’s of targets, a few 100’s of objects) the layout advisor is quite fast. For the
largest problem we gave it, the total time required to generate an optimized layout
was about 10 minutes. The results also show that the total optimization time is
dominated by the time required by the NLP solver, rather than the regularization
post-processing step. The solver timings reported in Figure 3.33 were obtained
without any tuning of the solver. We have found that tuning can speed the solver
up by a factor of two or three.
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Figure 3.34: AutoAdmin Layout of TPC-H Database Objects for the OLAP1-63

Workload

3.4.6 AutoAdmin Comparison

As part of the Microsoft AutoAdmin project, Agrawal et al [2] addressed a database
layout problem that is similar to the one that we have considered, and they devel-
oped a tool for recommending layouts. Although that tool and the layout advisor
address similar problems, they use different approaches to solve them. Here, we
present a brief comparison of the two tools that is intended to highlight the differ-
ences between their approaches.

The AutoAdmin tool takes as input a set of SQL statements describing a
database system’s workload. In contrast, the layout advisor expects statistical
I/O workload parameters for each object. The advisor’s approach is more general
in that it is not limited to layout for database systems, but for database systems
the AutoAdmin input is very natural and easy to generate. The AutoAdmin tool
builds a graph representation of the I/O workload, with nodes representing objects
and weighted edges between nodes representing concurrent access to those objects
by workload queries. This graph is input to a two-step layout process. The first
step separates heavily co-accessed objects in order to minimize interference between
them. The second step further distributes objects across targets to increase I/O
parallelism. In our terminology, the resulting layout is regular.

The emphasis in the AutoAdmin work is on reducing interference among concur-
rently accessed objects and on providing I/O parallelism for individual objects. It
relies on relatively simple workload and performance models, e.g., it models neither
workload concurrency nor performance differences among different types of storage
targets. In contrast, the layout advisor employs more expressive models. Unlike the
AutoAdmin tool, I/O parallelism for individual database objects is not an explicit
objective of the layout advisor, although the advisor often does distribute objects
across multiple targets in order to balance load.

Although the AutoAdmin layout technique was originally developed for Mi-
crosoft’s SQLServer DBMS, we implemented it in PostgreSQL so that we could
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compare the layouts that it recommends with those recommended by our layout
advisor. Figure 3.34 illustrates the layout generated by the AutoAdmin technique
for the OLAP1-63 workload. Figure 3.34(a) shows the layout that results from the
first step, in which each object is placed on a single target. Figure 3.34(b) shows
the final layout after the second step, which attempts to distribute objects to in-
crease the potential I/O parallelism. This final layout shares some of the features of
the layout recommended by the advisor, e.g., it separates the heavily-used objects
LINEITEM, ORDERS, and I L ORDERKEY from each other, and isolates the LINEITEM

table. However, while the advisor distributed LINEITEM across two storage targets,
the AutoAdmin optimizer assigns LINEITEM to a single target, so that it is able to
isolate the TEMP SPACE object on the remaining target. The reason for this differ-
ence is that the AutoAdmin tool relies in part on cardinality estimates from the
database system’s query optimizer to estimate the I/O load on objects, and these
estimates are sometimes erroneous. The PostgreSQL query optimizer makes errors
of multiple orders of magnitude in estimating the sizes of some intermediate objects
produced by query execution plan for TPC-H Query 18 (see Figure 2.13). This leads
the AutoAdmin tool to overestimate the importance of separating LINEITEM and
TEMP SPACE. Of course, this particular cardinality estimation error is an artifact of
PostgreSQL and may not occur in another database system. However, most query
optimizers are subject to some kinds of estimation errors.

The layout shown in Figure 3.34(b) is less balanced than that of Figure 3.23(a)(1),
primarily because LINEITEM is placed on a single target. Despite this, AutoAdmin’s
layout provided about the same speedup (between 1.25x and 1.3x) in workload ex-
ecution time as the advisor recommended layout did. The OLAP1-63 workload runs
in 32634 seconds under AutoAdmin layout, as compared to 31789 seconds under
the layout of Figure 3.23(a)(1) and 40927 seconds under the SEE baseline layout.
The imbalance of the AutoAdmin layout did not result in a significant workload
execution time penalty because the storage targets, even the one holding LINEITEM,
are lightly utilized under this workload on the test platform.

As noted previously, the AutoAdmin tool is oblivious to the concurrency level
in the workload. As a result, AutoAdmin layout tool gives exactly the same layout
for the OLAP8-63 workload as it does for OLAP1-63 workload because these two
workloads are composed of exactly the same queries and differ only in their con-
currency level. However, as discussed in Section 3.4.2, the workload characteristics
of the TPC-H objects under OLAP1-63 and OLAP8-63 workloads are quite different.
As a result, the AutoAdmin-recommended layout actually hurts performance (rel-
ative to the SEE baseline) under the OLAP8-63 workload. The OLAP8-63 workload
runs in 19937 seconds on the layout shown in Figure 3.34(b), compared to 16201
seconds for the SEE baseline and 13527 seconds (1.19x speedup) for the layout
recommended by the advisor.

For the workloads we tested, the AutoAdmin implementation produced a lay-
out more quickly than the MINOS-based layout advisor. For example, AutoAdmin
required 1.8 seconds for the OLAP8-63 workload, which is about half of what our
layout advisor required. It has also been observed that graph partitioning (separat-

71



ing highly co-accessed objects) is the most time consuming step of the AutoAdmin
layout algorithm.

3.5 Conclusion and Future Directions

In this chapter, we have presented a technique for recommending optimized layouts
of database objects onto storage targets, such as rotational disk drives, SSDs, or
RAID groups. However, the presented approach is general in that it is not limited to
layout for database systems only. The technique leverages input workload descrip-
tions and storage target models to avoid potential interference among co-located
objects, and to ensure that the recommended layout is balanced. It also uses the
storage target models to ensure that the recommended layout reflects the distinct
performance characteristics of each target. More specifically, our objective is to
minimize the maximum target utilization, and our black-box storage target models
report target utilization for a set of workload descriptions. Although we have not
experimented with other objectives, these black-box models could change to report
other metrics such as request latency. However, we assume that the contributions
of distinct workload descriptions into this metric are additive.

The presented technique uses a generic NLP solver along with several heuristics
that are specific to the layout problem. The technique could be deployed as a stan-
dalone storage layout advisor, whose output would guide the configuration of both
the database system and the storage system. We demonstrate empirically that such
a layout advisor can quickly recommend effective layouts over both homogeneous
and heterogeneous storage target configurations.

A layout advisor that implements the proposed layout technique can provide
layout recommendations to an administrator. This allows the administrators to
define logical storage volumes, containers, or other constructs with which to imple-
ment the recommended layout. However, it should also be possible to utilize layout
recommendations in situations in which data placements decisions are made more
dynamically. For example, NetApp storage systems [39] employ a feature called
flexible volumes, or FlexVols [17]. FlexVols use a shared pool of storage resources,
and the capacity of a FlexVol grows dynamically and only when new data is actu-
ally written to the flexible volume. Thus, instead of statically assigning disks and
fixed capacity to volumes during an initial configuration step, capacity is assigned
dynamically as the system runs. The current FlexVol implementation results in a
SEE layout of the volume over the underlying storage targets. A future direction
would be to explore how the layout techniques described in this thesis could be
used to guide the storage system’s dynamic allocation decisions as FlexVols grow.
The NLP formulation of the layout problem allows us to experiment with the use
of different allocation policies for individual flexible volumes and to isolate perfor-
mance via allocation decisions rather than through other means such as bandwidth
and resource reservations.
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Another area for exploration is techniques for automating the construction of
performance models for storage targets. Tabular models are well-suited for this
purpose, as they are based on observations of the targets under load, rather than
expert knowledge of the storage target internals. Nonetheless, it is a challenge to
decide how to parametrize such models and how to design the calibration process.

Finally, it would be useful to extend the layout advisor so that it recommends
storage configurations in addition to layouts. Instead of taking a set of storage tar-
gets as input, the advisor would instead take a description of the available uncon-
figured storage resources. The advisor’s output would recommend how to configure
specific storage targets, e.g., RAID groups, from the available resources, as well as
how to lay out objects onto the targets. This would move the layout advisor a step
in the direction of tools such as Minerva [5] and DAD [8], which use heuristics to
attack an even broader problem.
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Chapter 4

Related Work

In the thesis, we have addressed two complementary and independent problems.
First, we have introduced a method for estimating the storage workload of a
database system. Next, we have described a technique which leverages such work-
load information to recommend a storage layout of database objects. In this chapter
we survey other work related to these two problems.

4.1 Storage Workload Characterization

There are different ways to characterize storage workloads. One way to characterize
storage workloads is to use a trace of I/O events. Traces are highly detailed and
expressive. However, they are generally expensive to obtain, and it is hard to work
with them. For example, to obtain the I/O workload of a DBMS, the DBMS needs
to be populated and a realistic workload needs to be applied. The collected I/O
trace may represent gigabytes of I/O requests and it will be specific to the current
storage configuration. Therefore, it is also hard to generalize such traces.

Researchers have developed a more abstract way to characterize I/O workloads
by analyzing such I/O traces. For example, as was discussed in Section 2.1.2, the
Rome model [61] describes an I/O workload as a set of statistical parameters. It
is a general purpose model intended to model storage workloads generated by any
kind of storage client and for any configuration. The Rome model is utilized by
a collection of storage management tools. As a result, the statistical parameters
included in the model are determined by the storage system model found in those
tools. For example, the Rome model needs to describe read/write mix, request
rate, request size and sequentiality for each store defined in an I/O trace, and the
pairwise temporal correlation between these stores. This raises another question:
how much expressiveness do we need, or can we abstract the storage workload even
further without losing accuracy?

Agrawal, Chaudhuri, Das, and Narasayya employed a similar model when ad-
dressing the problem of automating the layout of relational databases on a given
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set of storage devices [2]. Some of the details of this work have been given in Sec-
tion 3.4.6 (Microsoft AutoAdmin Comparison). Here, we will discuss in more detail
the I/O model adopted in that work. The I/O model analyzes the query execution
plans and abstracts the I/O workload as a set of statistical parameters similar to
the Rome model. Internally, an access graph is used to characterize the storage
workload resulting from a given database workload. Each database object is rep-
resented as a node in the graph and the weight of a node describes the estimated
number of I/O requests (as fixed size pages) to the database object. An edge weight
between two nodes characterizes the extent of pairwise co-access as the number of
the pages that would be accessed simultaneously (e.g., as a result of the join of
two objects). This is similar to the pairwise overlap fractions in our Rome-based
descriptions. The methodology used to generate an access graph resembles the ini-
tial phase of our I/O estimation technique (query I/O request sequence estimation
phase) described in Section 2.2.1. The execution plan of each SQL statement is
obtained from the database query optimizer, and then each plan is analyzed in iso-
lation to update the access graph. Agrawal et al. considered the layout problem as
a database administration problem and targeted a simpler storage system than the
ones modeled in storage configuration tools. The storage system is assumed to be
non-consolidated and composed of a set of individual rotational hard drives. More-
over, some of the performance characteristics of storage devices are not modeled.
For example, the complex relation between contention among concurrently accessed
objects and I/O performance is not modeled. The I/O model is less expressive than
the Rome model. For example, it makes no distinction between sequential and ran-
dom I/O to an object and no distinction between reads and writes. In addition,
this model ignores concurrency, and analyzes each query execution plan in isolation.
Lastly, this model does not take into account the caching and prefetching effect on
the storage workload, thus it may not accurately model the I/O workload as seen
by the storage system.

Like the above work, our I/O estimation technique starts with a set of SQL
statements and analyzes the query execution plans. However, our methodology is
aware of the separation of the management of database and storage systems, and
aims at obtaining the I/O workload that would be seen by the storage system.
In contrast to the above work, our goal is to generate accurate database workload
characterization to enable storage administrators to make informed decisions about
layout and other related problems. Moreover, our technique produces I/O workload
using a generic I/O model which is already utilized by storage configuration tools [7,
8, 27, 56]. All of these storage layer tools require storage workload characterizations,
and can directly take advantage of our storage workload estimator.

4.2 Other Load Characterizations

A DBMS imposes loads on computing resources, such as CPU, memory, network
and storage. Being able to characterize these loads enables system administrators to
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make informed design decisions and maintain the system effectively. In this section,
we will present some related work that involves resource load characterization.

Query optimizers have their own CPU and storage cost models. In general,
CPU cost of an operator is directly proportional to the estimated number of tu-
ples to be processed by the operator. Similarly, storage cost models are potentially
simpler than the ones used in storage configuration tools. A query optimizer boils
down storage workload into a single cost value for a given query. It is based on
costing each page to be accessed by operators in an execution plan. The cost of
accessing a page is determined by whether it is accessed sequentially or randomly
using an unclustered index. Although this level of abstraction seems reasonable
at the application level, it is hard to apply such an I/O model in a consolidated
storage environment. This model ignores the correlation between concurrently run-
ning queries. For example, such a model is not expressive enough to capture the
interference with a sequential stream if queries are running concurrently.

Now, we will present a few other systems that need to characterize resource
loads in general. Narayanan, Thereska and Ailamaki describe a database resource
advisor for predicting transaction response times and throughput based on end-
to-end tracing [37]. Their technique relies on instrumentation and monitoring of
live database systems. Like the technique described here, their approach seeks
to identify a configuration-independent workload description with which to make
model-based performance predictions. The model describes DBMS load as a se-
quence of events for each computing resource. For example, buffer pool activity
is described as a sequence of page access requests. Similarly, storage activity is
described as a block I/O trace. The history of resource activities allows the advisor
to speculate about the impact of hypothetical changes in the underlying resources.
However, because this approach relies on tracing a running database system, it has
no means of speculating about the effects on the resource workloads of hypothetical
changes in the database system workload or physical design. Our approach does
accommodate such analyses.

Wasserman, Martin, Skillcorn and Rizvi [57] describe a resource-oriented work-
load characterization approach for database systems. They conduct characteriza-
tion according to several resource-related attributes, such as CPU utilization and
sequential and random I/O rates, as well as other properties such as join degree.
Resource requirements of new workloads are computed by extrapolating from the
previously monitored performance of queries. Our workload characterizations are
more detailed, and they do not contain DBMS-specific attributes, such as join de-
gree, that are not meaningful to the storage tier. More importantly, our estimation
method does not depend on any previously collected data.

4.3 Database Design Tools

In the database tier, a variety of tools are available to address various aspects of
the database physical design problem, such as choosing indexes and materialized
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views [3, 62] and partitioning relations [3, 44]. These tools typically expect as
input a database workload description similar to the one that is expected by our
estimation technique. These tools are complementary to the workload estimation
technique described in the thesis. As was discussed in Chapter 1, our storage
workload estimation tool enables end-to-end solutions to database physical design
and storage configuration problems. Figure 1.1 illustrates how existing database
physical design tools and storage configuration tools could be combined using our
I/O estimator to determine both a database physical design and an appropriate
storage configuration for a given database workload.

4.4 Storage Layout

In this section, we will discuss work related to the data layout problem. Lay-
out problem is addressed in several contexts. Some work focuses on laying out
generic data (e.g., multimedia, web files), these are called file assignment problems
(FAP) [14, 32]. Some approach the problem as a database administration problem,
and specifically handle the layout of database objects [2, 45]. Data placement and
partitioning in distributed systems has also a close resemblance to data placement
in storage systems [46]. Lastly, there is research which considers the layout problem
directly as a part of storage management and configuration task [5, 8, 9]. Although
the layout problem is addressed in different contexts, there are essential similarities
among the related work. Each work uses a cost or performance metric to optimize,
has some form of a workload model which characterizes I/O behavior of the objects
to be laid out, employs some performance model of the (storage) system, and lastly
applies a search algorithm to traverse the solution space.

File assignment problems involve assigning each of N files to one of M iden-
tical storage devices, usually with the objective of balancing the load across the
devices [14, 32]. The workload models and objective functions used for file assign-
ment problems are usually simple, e.g., each file might be associated with a numeric
request rate. Issues like interference between co-located objects are not considered.
For solving FAP, heuristic algorithms are preferred, and bin packing algorithms are
used to traverse solution space.

Rotem et al. [45] specifically focus on placing database objects, rather than
generic files. They address the problem of laying out N base tables on M identical
disk drives, with the goal of reducing the I/O cost of a given query workload. Tables
may be replicated, but each replica is placed on a single disk. The query workload
is assumed to be a set of 2-way join queries. The I/O cost of a query is lower if its
inputs can be found on different disks than if they must be retrieved from the same
disk. The optimization task is formulated as an integer programming problem.

Rubio et al. [46] considered the problem of placing database objects, given a
query workload. In their case, the problem is to place the objects on the nodes of
a distributed database system so that the inter-node traffic required to handle the
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given query workload will be minimized. The data traffic is described as a graph by
analyzing an SQL workload, and the edge weights in the graph describes the amount
of data that needs to be carried from one node to another when executing queries.
Thus, the problem becomes clustering the graph such that the sum of edges across
clusters is minimized. Simulated annealing is used to search the solution space.

The database layout tool that was developed as part of the Microsoft’s AutoAd-
min project [1, 2] has already been described and analyzed in Section 3.4.6, and
its I/O workload model has been discussed in this chapter. The AutoAdmin tool
takes as input a set of SQL statements describing a database system’s workload. In
contrast, our layout advisor expects statistical I/O workload parameters for each
object. The advisor’s approach is more general in that it is not limited to layout
for database systems, but for database systems the AutoAdmin input is very nat-
ural and easy to generate. As was explained, the AutoAdmin tool builds a graph
representation of the I/O workload, with nodes representing objects and weighted
edges between nodes representing concurrent access to those objects by workload
queries. This graph is input to a two-step layout process. The first step separates
heavily co-accessed objects in order to minimize interference between them. This
is done by partitioning the access graph such that the sum of edge weights between
partitions is maximized. The second step further distributes objects across targets
to increase I/O parallelism. This is done by using a greedy random improvement
heuristic. The emphasis in the AutoAdmin work is on reducing interference among
concurrently-accessed objects and on providing I/O parallelism for individual ob-
jects. It relies on relatively simple workload and performance models, e.g., it models
neither workload concurrency nor performance differences among different types of
storage targets. In contrast, the layout advisor employs more expressive models of
I/O workload and storage system.

Our Rome-style approach to workload and performance modeling is based on
work done at HP Laboratories. That work generated a number of tools for automat-
ing capacity planning, configuration, and other aspects of storage systems design
and management [5, 9, 48], culminating in the Disk Array Designer (DAD) [8]. A
recent paper [61] provides a retrospective overview of this work.

DAD automates the design of a storage system, given a description of the antic-
ipated workload. One of the key problems addressed by DAD is capacity planning.
In other words, the number of available storage targets is not an input to DAD.
Instead, DAD attempts to determine how many targets (and what types of targets)
are needed to support the given workload. In addition, DAD determines where to
place individual objects with the storage system that it designs, which is essen-
tially the layout problem that we consider. Thus, layout is one part of a broader
optimization problem than the one that we have considered. However, DAD only
generates layouts in which each object is assigned to a single target. To explore its
space of potential system configurations and layouts, DAD uses an ad hoc technique
involving an initial bin-backing step followed by randomized search. Moves in this
search space include steps like adding additional capacity to the current configura-
tion or assigning a particular object to a storage target. It should be possible to
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design a similar randomized search technique to solve the layout problem faced by
our layout advisor - this would be an alternative to the NLP solver that we used.

Most of the related work in data layout rely on heuristic algorithms, such as
bin-packing, greedy heuristics (e.g., random improvement) and genetic algorithms
(e.g., simulated annealing), to traverse the solution space. The resulting layouts
obtained through such heuristics are regular in our terminology. Moreover, these
work restrict each data object to be laid out on a single target, which further
reduces the size of the solution space. We formulate our problem as a non-linear
programming problem and take advantage of state-of-art generic NLP solvers. Our
layout advisor can generate both general and regular layouts.

Lastly, it is worth noting that the current practice relies mostly on generic
rules of thumb, as discussed in Section 3.1.1. Database vendors give generic advice
to database administrators on how to design the storage backend for databases.
Vendor advice is usually generic because database vendors assume minimal knowl-
edge about the database I/O workload. As a result, they see simplicity as an
important layout property. All major vendors suggest distributing every database
object across all available targets [41, 47]; an approach that is known as stripe-
everything-everywhere (SEE). However, it is not clear how to apply SEE effectively
in heterogeneous systems. It is not uncommon for a storage system to have stor-
age targets varying in capacity and performance. Especially with the advent of
SSDs, system heterogeneity has become a more commonly encountered situation.
Database vendors offer heuristic layout hints in such situations, too. For example,
they suggest what kinds of database objects to map to SSDs in order to get the
most benefit out of them. The main idea of those heuristics is to isolate randomly
accessed objects, such as unclustered indexes, onto SSDs [21].
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Chapter 5

Conclusion

The thesis proposes a methodology which can be employed to generate optimized
layouts for a given database physical design and database workload. It approaches
the problem by dividing it into two complementary and independent pieces: storage
workload estimation presented in Chapter 2 and workload-aware storage layout de-
sign presented in Chapter 3. More detailed conclusions and discussions of potential
future research directions can be found at the ends of those two chapters.

In the first part of the thesis, we have focused on estimating the storage workload
of a database system. The proposed estimation technique produces an I/O workload
characterization that accurately models the storage workload, given a database
workload and a database physical design. Storage workload models are generated
in a form that is easily used by storage administration tools, such as configuration
advisors. This makes it possible to combine database physical design tools and
storage configuration tools and enable effective end-to-end design and configuration
spanning both the database and storage system tiers. The feasibility of the proposed
approach has been demonstrated by implementing it in the PostgreSQL DBMS. The
experimental results suggest that the I/O workload estimator produces workload
descriptions that are sufficiently accurate to be useful for predicting the performance
of alternative storage configurations.

Storage workload information acts like glue between the database and storage
tiers. It enables the storage tier to tune the storage layout with respect to the
workload. In the second part of the thesis, we have focused on leveraging a storage
workload characterization to recommend workload-aware storage layout. The pro-
posed technique leverages input workload descriptions and storage device models
to avoid potential interference among co-located objects, and to ensure that the
recommended layout is balanced. It also uses the storage device models to ensure
that the recommended layout reflects the distinct performance characteristics of
each device. The layout optimization technique is incorporated into a database
layout advisor which uses a generic non-linear programming (NLP) solver along
with several heuristics that are specific to the layout problem. Formulating the
problem as a generic NLP problem allows us to take advantage of state-of-the-art
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NLP solvers rather than relying on guess work or human expertise. We demonstrate
empirically that such a layout advisor can quickly recommend effective layouts over
both homogeneous and heterogeneous storage target configurations.

In conclusion, this thesis makes several contributions. We formulate the stor-
age workload estimation problem for relational database management systems. In
our formulation, storage workloads are described in a domain-independent and
configuration-independent language called Rome [60]. We present a technique for
producing storage workload estimates and show its feasibility by implementing it
in the context of the PostgreSQL DBMS. We formulate the database storage layout
problem as a non-linear optimization problem incorporating the important charac-
teristics of the storage workload and of the underlying storage targets. We propose
a technique for solving the layout problem to identify good layouts. Our technique
exploits a generic non-linear program (NLP) solver as well as heuristics specific to
the layout problem.
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Appendix A

Data-Free Simulation of
PostgreSQL Operators

Here, we give the illustrations of the simulation of all of the PostgreSQL query
execution operators. More information on data-free operator simulation can be
found in Section 2.2.1.

In these illustrations, the “ReadPage()” and “WritePage()” functions cause an
I/O request to be logged in an I/O request sequence. Both functions accept two
arguments representing an I/O request: a unique object identifier and an offset
within the object. Note that request size is implicit because PostgreSQL uses an
8KB page size. There are only seven operators that can issue an I/O request. Three
of them are scan operators that can be found only at the leaf level of an execution
plan: table scan, index scan and tid scan operators. The other four operators
can only be found in the inner nodes of a plan, and write into and read from
temporary files: sort, hash, hash join and materialize. In the illustrations, curved
boxes represent operators and they are annotated with the name of the operator
and the names of state variables maintained by the simulation. Operator inputs
and outputs are annotated with the names of PostgreSQL optimizer statistics and
configuration parameters that are used by the simulator.

1. Table Scan
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Sequential Scan

Cursor
PageNum

PagesIn

RELATION

TuplesOut

Init() getNext()

Cursor := 0;
PageNum := 0;

position := ceil(Cursor);
Cursor += PagesIn/TuplesOut;
for i := 1 to (ceil(Cursor)-position)

ReadPage(RELATION,PageNum);
PageNum += 1;

2. Index Scan

RCursor
RPageNum
ICursor
IPageNum

RSeqPagesIn

RRandomPagesIn

RPages

IPagesIn   

IPages

Index Scan

TuplesOut

RELATION INDEX

Init() getNext()

RCursor := 0;
RPageNum :=

random(0,RPages-RSeqPagesIn);
ICursor :=

random(0,IPages-IPagesIn);
IPageNum := ICursor;

Iposition := ceil(ICursor);
ICursor += IPagesIn/TuplesOut;
Rposition := ceil(RCursor);
RCursor += (RSeqPagesIn+RRandomPagesIn)/TuplesOut;
for i := 1 to (ceil(ICursor)-Iposition)

ReadPage(INDEX,IPageNum);
IPageNum += 1;

for i := 1 to (ceil(RCursor) - Rposition)
if Rposition < RSeqPagesIn

ReadPage(RELATION,RPageNum);
RPageNum += 1;
Rposition += 1;

else
pagenum := random in [0,..,RPages];
ReadPage(RELATION,pagenum);

84



3. Tid Scan

PagesIn

Tid Scan

RELATION

Init() getNext()

/* Nothing */ PageNum := random(0, PagesIn);
ReadPage(RELATION,PageNum);

4. Subquery Scan

Subquery Scan

TuplesOut

TuplesIn

SUBPLAN

Init() getNext()

Assert(TuplesIn == TuplesOut);
Init(SUBPLAN); getNext(SUBPLAN);

5. Function Scan

Function Scan

TuplesOut

Function

Init() getNext()

Assert(TuplesOut == 1); /* Nothing */
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6. Nested Loop Join

OUTER INNER

PLAN PLAN

OuterTuplesIn

TuplesOut  

InnerTuplesIn   

Nested Loop Join

Cursor

Init() getNext()

Cursor := 0;
Init(OUTERPLAN);
Init(INNERPLAN);

position := ceil(Cursor);
Cursor += OuterTuplesIn/TuplesOut;
for i := 1 to (ceil(Cursor)-position)

getNext(OUTERPLAN);
Init(INNERPLAN);
for j := 1 to InnerTuplesIn

getNext(INNERPLAN);
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7. Merge Join

PLAN
LEFT RIGHT

PLAN

LeftTuplesIn

TuplesOut  

RightTuplesIn   

LCursor

Merge Join

RCursor

Init() getNext()

LCursor := 0;
RCursor := 0;
Init(LEFTPLAN);
Init(RIGHTPLAN);

Lposition := ceil(LCursor);
Rposition := ceil(RCursor);
LCursor += LeftTuplesIn/TuplesOut;
RCursor += RightTuplesIn/TuplesOut;
if(ceil(LCursor)-Lposition > ceil(RCursor)-Rposition)

for i := 1 to (ceil(RCursor)-Rposition)
getNext(RIGHTPLAN);
Rposition++;
for j := 1 to floor(LeftTuplesIn/RightTuplesIn)

getNext(LEFTPLAN);
Lposition++;

else
for i := 1 to (ceil(LCursor)-Lposition)

getNext(LEFTPLAN);
Lposition++;
for j := 1 to floor(RightTuplesIn/LeftTuplesIn)

getNext(RIGHTPLAN);
Rposition++;

/* read any remaining tuples */
while(ceil(LCursor)-Lposition > 0)

getNext(LEFTPLAN);
Lposition++;

while(ceil(RCursor)-Rposition > 0)
getNext(RIGHTPLAN);
Rposition++;

8. Sort

If the incoming tuples do not fit into the “work mem” of the Sort operator, the
external 6-way merge-sort algorithm is employed [29]. Sort operator uses a single
temporary file to hold all the sorted runs. It is assumed that the size of the initial
runs is 2 · work mem.

87



Sort

Cursor
TEMPFILE
TPagenum
TCursor

TuplesOut

TupleWidth
TuplesIn

SUBPLAN

work_mem

Init() getNext()

Cursor := 0;
TEMPFILE :=

new TempFile();
TPageNum := 0;
TCursor := 0;
Init(SUBPLAN);

if(TuplesIn · TuplesWidth < work mem)
/*Internal Sort*/
while(Cursor < TuplesIn)

getNext(SUBPLAN);
Cursor++;

else
/*External Sort: 6-way merging*/
if(Cursor == 0)

/*Merge-Sort till the final sorted run is obtained*/
/*Initial runs are written sequentially into the temp file*/
while(Cursor < TuplesIn)

getNext(SUBPLAN);
Cursor++;
if(Cursor% 8KB

TupleWidth == 0)
WritePage(TEMPFILE, TPageNum);
TPageNum++;

/*Merge runs 6 by 6 into a new larger sorted run*/
/*until the final sorted run is obtained*/
num runs := (TPageNum · 8KB)/(2 · work mem);
run size := (2 · work mem)/8KB;
while(num runs > 1)

for(i := 1; 1 ≤ num runs; i += 6)
for j := 1 to 6

runs[j].pagenum := random(0, TPagenum-run size);
runs[j].cursor := 0;

new run.pagenum := random(0, TPagenum-run size*6);
new run.cursor := 0;
/* read pages from each run sequentially */
/* dump every 6 pages into new run sequentially */

num runs := ceil(num runs/6);
run size *= 6;

/* At this point TEMPFILE has the final sorted run */
position := ceil(TCursor);
TCursor += TPagenum/TuplesOut;
for i := position to ceil(TCursor)

ReadPage(TEMPFILE, position);
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9. Hash

If the build-tuples will not fit in the “work memory” then hash buckets are
stored in temporary files (batches) such that each batch can fit into the operator’s
memory.

TuplesOut

Hash

BatchFiles[]
BatchPageNum[]

work_mem

TuplesIn
TupleWidth
NumBatches

SUBPLAN

BatchTuples[]

Init() getNext()

if(NumBatches > 0)
for i := 1 to NumBatches

BatchFiles[i] := new TempFile();
BatchTuples[i] := 0;
BatchPageNum[i] := 0;

Init(SUBPLAN);

for i := 1 to TuplesIn
getNext(SUBPLAN);
if(NumBatches > 0)

batch no := random(1, NumBatches);
BatchTuples[batch no]++;
if(BatchTuples[batch no] · TupleWidth geq 8KB)

WritePage(BatchFiles[batch no], BatchPageNum[batch no]);
BatchPageNum[batch no]++;
BatchTuples[batch no] := 0; for i:= 1 to NumBatches

if(BatchTuples[i] > 0)
WritePage(BatchFiles[i], BatchPageNum[i]);
BatchPageNum[i]++;
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10. Hash Join

PLAN PLAN

OUTER INNER

InnerBatchFiles[]

InnerBatchPageNum[]

NumBatches

Hash Join

OCursor

OuterBatchFiles[]
OuterBatchTuples[]

OuterBatchPageNum[]

OuterBatchCursor[]

TuplesOut  

OTuplesIn

(Probe Input) (HashTable)

CurrBatchNo

Init() getNext()

Assert(type(INNERPLAN) == Hash);
Init(OUTERPLAN);
Init(INNERPLAN);
OCursor := 0;
CurrBatchNo := 1;
if(NumBatches > 0)

for i := 1 to NumBatches
OuterBatchFiles[i] :=

new TempFile();
OuterBatchTuples[i] := 0;
OuterBatchPageNum[i] := 0;

/* Initiate Inner
HashTable Generation */

getNext(INNERPLAN);

if(OCursor < OTuplesIn)
position := ceil(OCursor);
OCursor += OTuplesIn

TuplesOut ·
1

NumBatches+1 ;
for i := 1 to (ceil(OCursor)-position)

getNext(OUTERPLAN);
if(NumBatches > 0)

/*
Generate outer batches like Hash
operator does using:
OuterBatchFiles[], OuterBatchTuples[], and
OuterBatchPageNum[].

*/
else if(NumBatches > 0)

for i := 0 to InnerBatchPageNum[CurrBatchNo]
ReadPage(InnerBatchFiles[CurrBatchNo], i);

InnerBatchPageNum[CurrBatchNo] := 0;
position := ceil(OuterBatchCursor[CurrBatchNo]);
OuterBatchCursor[CurrBatchNo] += OuterBatchPageNum[CurrBatchNo]

TuplesOut/NumBatches ;
while(position leq ceil(OuterBatchCursor[CurrBatchNo]))

ReadPage(OuterBatchFiles[CurrBatchNo], position);
position++;

if(OuterBatchCursor[CurrBatchNo] ==
OuterBatchPageNum[CurrBatchNo])

CurrBatchNo++;
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11. Materialize

work_memMaterial

TEMPFILE
TCursor
TPageNum

SUBPLAN

TuplesIn
TupleWidth

TuplesOut

first_call=true

Init() getNext()

Assert(TuplesIn == TuplesOut);
if(first call == true)

Init(SUBPLAN);
if(TuplesIn · TupleWidth > work mem)

TEMPFILE := new TempFile();
TCursor := 0;
TPageNum := 0;

if(first call == true)
first call := false;
for i := 1 to TuplesIn

getNext(SubPlan);
if(TuplesIn · TupleWidth > work mem)

Tposition := ceil(TCursor);
TCursor += TuplesIn×TupleWidth

8KB · 1
TuplesOut ;

for i := 1 to ceil(TCursor)-Tposition
WritePage(TEMPFILE, TPageNum);
TPageNum++;

TPageNum := 0;
if(TuplesIn · TupleWidth > work mem)

Tposition := ceil(TCursor);
TCursor += TuplesIn×TupleWidth

8KB · 1
TuplesOut ;

for i := 1 to ceil(TCursor)-Tposition
ReadPage(TEMPFILE, TPageNum);
TPageNum++;

12. Unique

TuplesOut

TuplesIn

Cursor

Unique

SUBPLAN

Init() getNext()

Cursor := 0;
Init(SUBPLAN);

position := ceil(Cursor);
Cursor += TuplesIn ÷ TuplesOut;
for i := 1 to ceil(Cursor)-position

getNext(SubPlan);
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13. Aggregate

Aggregate operator is used for functions such as min, max, count. There are
3 strategies for aggregation: AGG PLAIN, AGG SORTED and AGG HASHED.
The later two are used for group aggregates. In AGG SORTED strategy, the input
is sorted, and in AGG HASHED strategy the operator uses an internal hashtable.

Cursor

Aggregate

TuplesIn
TupleWidth
NumGroups

SUBPLAN

TuplesOut

Init() getNext()

Assert((type(Aggregate)==PLAIN AND TuplesOut==1) OR
TuplesOut==NumGroups);

Init(SUBPLAN);
Cursor := 0;

if(type(Aggregate) == PLAIN)
for i := 1 to TuplesIn

getNext(SubPlan);
else

position := ceil(Cursor);
Cursor += TuplesIn/NumGroups;
for i := 1 to ceil(Cursor)-position

getNext(SUBPLAN);

14. Group

TuplesOut

Cursor

TuplesIn

Group

SUBPLAN

Init() getNext()

Cursor := 0;
Init(SUBPLAN);

position := ceil(Cursor);
Cursor += TuplesIn/TuplesOut;
for i := 1 to ceil(Cursor)-position

getNext(SubPlan);
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15. Limit

Cursor

Limit

TuplesIn

TuplesOut (limit)

SUBPLAN

Init() getNext()

Cursor := 0;
Init(SUBPLAN);

if(Cursor < TuplesOut)
getNext(SubPlan);
Cursor++;

16. Append

Append

TuplesOut

Cursor
CurPlan

ListHead

LIST

Init() getNext()

CurPlan := ListHead;
Init(CurPlan);
Cursor := 0;

if(Cursor ≥ CurPlan->TuplesIn)
Cursor := 0;
CurPlan := CurPlan->next;
Init(CurPlan);

getNext(CurPlan);
Cursor++;

17. Setop

Setop operator is used for INTERSECT, INTERSECT ALL, EXCEPT, or EX-
CEPT ALL clauses.
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Setop

Cursor

TuplesIn

TuplesOut

SUBPLAN

Init() getNext()

Assert(type(SUBPLAN)==SORT OR
type(SUBPLAN)==APPEND);

Init(SUBPLAN);
Cursor := 0;

position := ceil(Cursor);
Cursor += TuplesIn/TuplesOut;
for i := 1 to ceil(Cursor)-position

getNext(SUBPLAN);

18. Result

TuplesOut

TuplesIn

Result

Cursor

SUBPLAN

Init() getNext()

Cursor := 0;
Init(SUBPLAN);

position := ceil(Cursor);
Cursor += TuplesIn/TuplesOut;
for i := 1 to ceil(Cursor)-position

getNext(SUBPLAN);
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Appendix B

Measured and Estimated Rome
Parameters for the WTPCH

Workload

This appendix gives a direct comparison of all of the I/O workload parameters
obtained from the actual workload trace and the estimated representative trace for
the WTPCH workload at two concurrency levels, CL = 1 and CL = 5. In addition to
the parameters that are explicitly specified in the Rome I/O model (see Figure 2.8),
we also include some other parameters that are either used internally by the I/O
workload analyzer Rubicon or derived from the existing Rome parameters.

Rubicon makes use of the total length of each projected trace to compute some of
the Rome parameters (see Figure 2.8). The length of a trace is named “I/O Count”
and it gives the number of I/O requests in the trace. The derived parameters
are “page count”, “percentage burst time” and “average request rate”. Those
parameters are derived as follows,

Page Count = I/O Count·I/O Size
8KB

Percentage Burst Time = ton

ton+toff

Average Request Rate = λ · ton

ton+toff

Page count is actually the I/O count normalized to 8KB pages. PostgreSQL nor-
mally issues 8KB I/O requests, but those requests can be merged into larger ones
by the operating system. Since estimated and measured streams may have different
I/O sizes, it may be deceiving to directly compare the I/O counts. That is why
we include page count in the comparisons below. For example, at CL = 1, the mea-
sured I/O count of TempSpace object (i.e., TempSpace(write) and TempSpace(read))
is 528,631 I/O requests and the estimated I/O count is 487,754 I/O requests. How-
ever, we claimed that PostgreSQL has made a huge error by overestimating the
number of tuples (thus pages) to be materialized in one of the execution plans (see
Figure 2.13). In fact, considering the measured and the estimated page counts of
this object, we see that the number of 8KB I/O requests to this object is highly
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overestimated. While the measured page count is 1,428,047, the estimated page
count is 2,827,729 pages. The other two derived parameters (percentage burst time
and average request rate) are discussed in detail in Section 2.3.2.

Note that TempSpace is the only database object which receives write I/O
requests. Therefore, we will not present two separate tables for the parameters that
are distinguished by I/O type; these parameters are I/O size, I/O and page counts,
and burst and average request rates. Instead, in the tables below, we will represent
TempSpace using two rows, one for read requests (TempSpace(read)) and the other
for write requests (TempSpace(write)). For the parameters that are indifferent to
the I/O type, the TempSpace(read) row is used to represent the TempSpace object.

1. Results for CL=1

I/O Size (KB) I/O Count Run Count
object meas. est. err. meas. est. err. meas. est. err.
lineitem 28.3 26.3 -6.9% 4607559 5048763 9.5% 696.4 788 13.1%
orders 24 26 8.1% 633895 651124 2.7% 1499.9 870.3 -41.9%
i l orderkey 9.8 9.2 -5.9% 496736 594813 19.7% 20.8 29.3 41.2%
orders pkey 20.2 16.2 -19.7% 67380 102621 52.3% 178.5 85.7 -51.9%
partsupp 50.4 33 -34.3% 50611 80336 58.7% 2806.8 1172.4 -58.2%
i l suppkey partkey 13.9 8 -42.6% 22110 80151 262.5% 1.6 1 -37.8%
customer 102.9 126.5 22.9% 21589 15971 -26% 1465.2 1150.3 -21.4%
part 104.3 127.5 22.3% 15598 12994 -16.6% 1793.7 1478.8 -17.5%
i l suppkey 32.8 19.9 -39.3% 8787 7891 -10.1% 3.4 1.9 -42.6%
i ps partkey 59 12.3 -79% 6583 30061 356.6% 195 21 -89.1%
i o custkey 97.2 16.7 -82.7% 5405 28038 418.7% 1276.9 76.5 -94%
supplier 29.4 22.8 -22.5% 4026 4981 23.7% 40.4 61.9 53.2%
TempSpace(write) 19.5 40 105.1% 498813 392568 -21.2%
TempSpace(read) 56.9 72.6 27.6% 29818 95186 219.2% 30.1 32.2 6.8%
part pkey 98.7 125.4 27% 1484 1167 -21.3% 219 194.5 -11.2%
i l partkey 10 8 -20.2% 1228 27926 2174.1% 1.1 1 -14.5%
customer pkey 96.6 125.2 29.5% 758 585 -22.8% 133.3 146.2 9.7%
supplier pkey 8.5 8.1 -4.6% 289 303 4.8% 1 1 -6.4%
i o orderdate 71.3 121.5 70.4% 173 100 -42.1% 40.6 48 18.2%
nation 8 8 0% 12 9 -25% 1 1 0%
region 8 8 0% 6 4 -33.3% 1 1 0%

I/O Size, I/O Count and Run Count Parameters
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Request Rate (req/s) Avg. Burst(ON) Time (sec) Avg. OFF Time (sec)
object meas. est. err. meas. est. err. meas. est. err.
lineitem 214.5 265.2 23.6% 894.6 346 -61.3% 88 82.5 -6.2%
orders 55.4 79 42.5% 120.2 196.1 63% 128.4 372 189.7%
i l orderkey 32.1 55.4 72.2% 965.4 511.2 -47% 503.1 607.4 20.7%
orders pkey 8.8 17.4 96.6% 229.7 345.3 50.3% 482.2 1036.4 114.9%
partsupp 17.9 89.1 397.8% 403.7 112.6 -72.1% 2583.9 2509.9 -2.8%
i l suppkey partkey 8.3 203.2 2334.6% 1324.1 197.1 -85.1% 6949.6 7698.8 10.7%
customer 77.3 43.5 -43.7% 0.7 1.1 41.7% 65.4 70 7.1%
part 71.2 17.6 -75.2% 0.8 6.5 721.2% 85.2 201.3 136.1%
i l suppkey 1.4 1.4 4.2% 14 445.3 3060.9% 39.2 1395.8 3458.1%
i ps partkey 8.9 35.2 295.2% 1.3 142 10502.9% 41.1 3234 7757.2%
i o custkey 14 70.4 401.2% 9.6 30.6 218.4% 563.7 1649.5 192.6%
supplier 19.3 11 -42.7% 1 0.9 -8.8% 113 47.7 -57.8%
TempSpace(write) 501.4 106.4 -78.7%
TempSpace(read) 29.9 25.8 -13.8% 0.6 6.4 871.2% 14.8 34.4 131.7%
part pkey 24 15.7 -34.5% 1.4 1.4 -4.7% 545 433.6 -20.4%
i l partkey 10.7 25.1 134.7% 114.6 1110.6 868.8% 11691.3 11190 -4.2%
customer pkey 40.9 50.9 24.5% 0.2 0.1 -25% 244.5 308.9 26.3%
supplier pkey 80.1 52.9 -33.9% 1.8 2.8 58.8% 7831.2 7828.3 -0%
i o orderdate 384.9 15.7 -95.9% 0 0.4 3900% 469.9 1381.4 193.9%
nation 188.7 582.4 208.6% 0 0 -100% 1807.4 2349 29.9%
region 304.5 582.4 91.2% 0 0 0% 3356.7 4698.1 39.9%

Request Rate and Burst(ON)/Inter-Burst Gap(OFF) Durations

Page Count Percentage ON Time (%[0,100]) Avg. Request Rate (req/s)
object meas. est. err. meas. est. err. meas. est. err.
lineitem 16324437.5 16651919.8 2% 91 80.7 -11.3% 195.3 214.1 9.6%
orders 1904934.9 2116709.3 11.1% 48.3 34.5 -28.6% 26.8 27.2 1.7%
i l orderkey 611036.2 688042.9 12.6% 65.7 45.6 -30.4% 21.1 25.3 19.7%
orders pkey 170917.5 208987.5 22.2% 32.2 24.9 -22.5% 2.8 4.3 52.2%
partsupp 319092.7 332307.8 4.1% 13.5 4.2 -68.2% 2.4 3.8 58.2%
i l suppkey partkey 38581.8 80160.7 107.7% 16 2.4 -84.4% 1.3 5 279.1%
customer 277784.4 252720.7 -9% 1.1 1.5 31.8% 0.9 0.6 -26%
part 203379.4 207215.5 1.8% 0.9 3.1 239.9% 0.6 0.5 -16.4%
i l suppkey 36055.4 19635.9 -45.5% 26.4 24.1 -8.4% 0.3 0.3 -2.7%
i ps partkey 48594.6 46493.2 -4.3% 3.1 4.2 33.4% 0.2 1.4 428.5%
i o custkey 65699.9 58827.7 -10.4% 1.6 1.8 8.6% 0.2 1.2 433.3%
supplier 14826.2 14205.4 -4.1% 0.8 1.9 113.8% 0.1 0.2 23.5%
TempSpace(write) 1215856.6 1962840 61.4% 21.2 16.7 -21.3%
TempSpace(read) 212191.1 864888.9 307.5% 4.2 15.6 268.9% 1.2 4 218.8%
part pkey 18315.9 18305.8 -0% 0.2 0.3 19.6% 0 0 -16.6%
i l partkey 1538.8 27926 1714.6% 0.9 9 829.9% 0.1 2.2 2170%
customer pkey 9156.9 9155.9 -0% 0.082 0.049 -40.6% 0.03 0.03 0%
supplier pkey 307.9 307.9 0% 0.023 0.037 58.9% 0 0.02 0.02%
i o orderdate 1541.9 1518.9 -1.4% 0.002 0.029 1260.3% 0.01 0.008 -18%
nation 12 9 -25% 0 0 0% 0 0 0%
region 6 4 -33.3% 0 0 0% 0 0 0%

Derived Parameters: Page Count, Percentage Burst Time and Avg. Request Rate
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2. Results for CL=5

I/O Size (KB) I/O Count Run Count
object meas. est. err. meas. est. err. meas. est. err.
lineitem 28.7 22.4 -21.9% 6235449 7815489 25.3% 1.8 1.5 -16.6%
orders 19.2 22.6 17.7% 1308526 1183903 -9.5% 163.7 5.2 -96.8%
i l orderkey 10.5 8.5 -19% 1050374 1504873 43.2% 1 1 0%
orders pkey 20.3 11.9 -41.3% 91843 238573 159.7% 31.4 9.6 -69.4%
partsupp 53.8 47.5 -11.7% 76974 151493 96.8% 2279.7 1292.8 -43.2%
i l suppkey partkey 13.9 8 -42.4% 33136 136689 312.5% 1.6 1 -37.5%
part 100.4 126 25.4% 31610 25783 -18.4% 1469.7 1026.8 -30.1%
customer 89.5 125.5 40.2% 31257 21076 -32.5% 770.9 805.2 4.4%
i l suppkey 27.8 20 -28% 10041 11939 18.9% 2.1 1.5 -28.5%
i ps partkey 57.8 11 -80.9% 10001 56070 460.6% 140.9 11.7 -91.6%
i o custkey 71.1 18 -74.6% 9566 36656 283.1% 937.6 87.5 -90.6%
supplier 22.9 21.4 -6.5% 7407 8997 21.4% 33.5 22.7 -32.2%
TempSpace(write) 16.8 50.2 198.8% 679085 348835 -48.6%
TempSpace(read) 52.3 62 18.5% 74648 166207 122.6% 17.2 37.2 116.2%
customer pkey 22 26.3 19.5% 5376 4711 -12.3% 84.5 96.8 14.5%
part pkey 100 118.8 18.8% 2196 1852 -15.6% 217.4 181.7 -16.4%
i l partkey 10 8 -20% 1228 31060 2429.3% 1.1 1 -9%
i o orderdate 14.5 9.3 -35.8% 1190 3520 195.7% 96.8 185.4 91.5%
supplier pkey 8.5 8.1 -4.7% 432 453 4.8% 1 1 0%
nation 8 8 0% 18 19 5.5% 1 1 0%
region 8 8 0% 8 10 25% 1 1 0%

I/O Size, I/O Count and Run Count Parameters

Request Rate (req/s) Avg. Burst(ON) Time (sec) Avg. OFF Time (sec)
object meas. est. err. meas. est. err. meas. est. err.
lineitem 349.4 516.9 47.9% 17843.7 408.5 -97.7% 1 15.5 1450%
orders 82.2 101.4 23.3% 131.4 12.3 -90.6% 16.1 4.2 -73.9%
i l orderkey 58.8 100.5 70.9% 17842.7 356.3 -98% 1 17.2 1620%
orders pkey 7.5 37.9 405.3% 113.7 3.5 -96.9% 53 5.2 -90.1%
partsupp 10.4 39.2 276.9% 613.3 203 -66.9% 873.6 622.8 -28.7%
i l suppkey partkey 4.3 133.8 3011.6% 761.6 170.2 -77.6% 1022.7 2444.9 139%
part 51.6 16.4 -68.2% 1.1 2.1 90.9% 31.7 19.7 -37.8%
customer 28.2 23.7 -15.9% 0.7 1.5 114.2% 10.6 25.3 138.6%
i l suppkey 1.8 1.1 -38.8% 2.6 184.5 6996.1% 5.9 98.9 1576.2%
i ps partkey 9.3 21.6 132.2% 0.9 17.9 1888.8% 14.6 91 523.2%
i o custkey 12.5 83.1 564.8% 0.6 1.1 83.3% 14.5 40 175.8%
supplier 23.2 15.4 -33.6% 0.3 0.4 33.3% 18.2 11.2 -38.4%
TempSpace(write) 206.3 42.7 -79.3%
TempSpace(read) 22.6 20.3 -10.1% 1.4 17.6 1157.1% 6.2 16.2 161.2%
customer pkey 2.1 4.3 104.7% 5.1 9.3 82.3% 31.5 123.7 292.6%
part pkey 21.5 11.5 -46.5% 1.5 1.2 -20% 268.8 123.2 -54.1%
i l partkey 4.7 20.7 340.4% 260.2 500 92.1% 8792.5 3548 -59.6%
i o orderdate 73.5 6.1 -91.7% 0.1 0.4 300% 29.7 11.4 -61.6%
supplier pkey 18.1 25.8 42.5% 4.7 5.8 23.4% 2970.2 3918.7 31.9%
nation 109 2028.4 1760.9% 0.01 0 0% 991.3 825.9 -16.6%
region 112.2 2028.4 1707.8% 0 0 0% 1982.8 1426.5 -28%

Request Rate and Burst(ON)/Inter-Burst Gap(OFF) Durations
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Page Count Percentage ON Time (%) Avg. Request Rate (req/s)
object meas. est. err. meas. est. err. meas. est. err.
lineitem 22380481.8 21886612.9 -2.2% 100 96.3 -3.6% 349.4 498 42.5%
orders 3152793.7 3356752.3 6.4% 89 74.3 -16.4% 73.2 75.4 2.9%
i l orderkey 1378872.3 1609765.8 16.7% 100 95.3 -4.6% 58.8 95.9 62.9%
orders pkey 234114.4 357684.7 52.7% 68.2 40.1 -41.1% 5.1 15.2 195.3%
partsupp 518522.1 900081.4 73.5% 41.2 24.5 -40.3% 4.3 9.6 123.8%
i l suppkey partkey 57874.7 136705.6 136.2% 42.6 6.5 -84.7% 1.8 8.7 368.2%
part 396795.7 406308.8 2.3% 3.4 9.9 190.7% 1.7 1.6 -7.3%
customer 350073 330848.4 -5.4% 6.2 5.6 -9.1% 1.7 1.3 -23.4%
i l suppkey 34958.4 29851.8 -14.6% 31.1 65 109% 0.5 0.7 37.5%
i ps partkey 72259.4 77561.6 7.3% 5.9 16.4 176.6% 0.5 3.5 537.5%
i o custkey 85090.9 82851.8 -2.6% 4.2 2.8 -33.9% 0.5 2.3 333.3%
supplier 21276.1 24162.9 13.5% 1.7 3.7 111.8% 0.4 0.5 35.7%
TempSpace(write) 1429377.7 2192823.1 53.4% 38 22.2 -41.5%
TempSpace(read) 488100.6 1289970.8 164.2% 18.4 51.9 181.1% 4.1 10.5 153.3%
customer pkey 14844.3 15516.6 4.5% 13.9 7 -49.9% 0.3 0.3 0%
part pkey 27468.7 27508.9 0.1% 0.57 1 79.2% 0.1 0.1 0%
i l partkey 1538.8 31060 1918.3% 2.8 12.3 329.7% 0.1 2.5 1728.5%
i o orderdate 2157.4 4127.5 91.3% 0.1 3.7 3574.6% 0.07 0.2 214.2%
supplier pkey 461.9 461.9 0% 0.16 0.15 -6.9% 0.03 0.04 33.3%
nation 18 19 5.5% 0 0 0% 0 0 0%
region 8 10 25% 0 0 0% 0 0 0%

Derived Parameters: Page Count, Percentage Burst Time and Avg. Request Rate
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Appendix C

Generating Performance Look-up
Tables for Storage Devices

We have two cost models (i.e., look-up tables) for each storage device type: one
model for read requests and the other for write requests. All devices of the same
type can utilize the same cost model. As explained in Section 3.2.2.2.1, the load
imposed by an I/O workload on a storage device depends on four parameters: its
request rate, its request size, its run count (sequentiality), and a contention factor.
The first three parameters are the direct properties of the workload, given as input.
The contention factor represents the extent of the interference of the remaining
workloads with the given workload. Hence, the load of workload Wi on a storage
device of type Tj becomes,

µi = λri · COST read
Tj

(Br
i , Qi, χi) + λwi · COST write

Tj
(Bw

i , Qi, χi)

Here, COST read
Tj

(Br
i , Qi, χi) and COST write

Tj
(Bw

i , Qi, χi) are the look-up oper-
ations for read and write request costs for a given request size, run count, and
contention factor. Below, we will explain how we construct a tabular model and
how we implement look-up operation.

C.1 Look-Up Table Construction

A look-up table is populated by measuring I/O request times for various workloads.
Workloads are obtained by using a synthetic workload generator which generates
an I/O workload corresponding to given values for the three workload parameters:
request size, run count and contention factor. In general, deciding on what values
to use when populating a look up table is a difficult job because there could be
too many parameters and each parameter can take a large set of values. Covering
the whole parameter space would be infeasible. However, by applying the domain
knowledge, we can shrink the set of possible values dramatically.
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8K Read Requests (SEAGATE ST318453LC)
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Figure C.1: Request Cost versus Contention Factor at Different Run Counts.

Our testbed uses PostgreSQL database system and Linux operating system.
PostgreSQL issues 8KB requests and the Linux version installed in our system puts
a hard limit of 512KB on the maximum size of any block I/O request. This I/O size
limit depends on the capability of the underlying device controller, which negotiates
with the kernel when setting this limit. Although PostgreSQL issues 8KB requests,
because of prefetching and request merging that happens at the scheduler’s queue,
it is not unusual to observe larger request sizes. As a result, the workload generator
sets request sizes to the powers of two within [8KB, 512KB].

As for the run count parameter, we limit the max run count value to 10K. To
recap, run count is the average number of requests in a sequential run. Thus, a
purely random workload has a run count value of 1, which means no two consecutive
requests are sequential and 100% of requests are random. As the run count value
increases, the number of random jumps in a workload decreases. For example, a
run count value 10K means that there is a random seek after every 10K requests,
thus 0.01% of the requests are random. As a result, there is not a big performance
difference between I/O workloads whose run counts are 10K, 100K and even 1000K.
Figure C.1 illustrates this fact; the costs of requests belonging to workloads whose
run counts are 1K and 10K are almost the same. The same observation can also
be made for the contention factor, as the contention factor increases request cost
is flattened at a constant value, so there is no need to generate measurements for
higher contention factors. Figure C.2 summarizes the values the workload generator
uses for the three parameters.

Each of our three dimensional look-up tables include 7×26×11 = 2002 measure-
ments. Measurements are taken by generating I/O workloads for all combinations
of the values given in Figure C.2 and measuring the I/O request times. For exam-
ple, the I/O request time for the point {request size:8KB, run count:100, contention
factor:9} is measured by running 9 identical processes (i.e., request streams), each
of which issues a single request at a time. Each request has a size of 8KB, and each
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Parameter Values

Request Size 8, 16, 32, 64, 128, 256 and 512 KB.
Run Count 1 2 3 4 5 6 7 8 9 10 13 15 20 25 50 75 100

200 300 400 500 750 1000 2000 5000 10000
Contention Factor 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 15

Figure C.2: Values Used for the Look-up Table Parameters

Read Write

SEAGATE ST318453LC 46 hrs 37 hrs
Patriot PE32GS25SSDR 13 hrs 49 hrs

Figure C.3: LookUp Table Generation Times

stream maintains a run count of 100. In the end of the run, we obtain the number
of requests completed and the total time in which the target device has been busy
with serving I/O requests during the measurement period. Here, we depend on the
statistics maintained by the Linux kernel to measure the busy duration of a device.
The Linux kernel exposes several statistics for storage devices (including device use
time) in the /proc/diskstats file. Finally, we can measure the cost of a single

request as Total Time the Device was Busy
Number of Requests Completed . Thus, this measured cost represents the

device service time for an I/O request which belongs to a workload with a request
size of 8KB, run count of 100 and a contention factor of 9.

In our system, we have two types of storage devices to hold database ob-
jects: four SEAGATE ST318453LC rotational hard drives [51] and a single Patriot
PE32GS25SSDR solid-state drive [33]. Thus, we need to generate four tables: two
tables per device type. Each measurement takes at least 5 seconds. However, since
the workload generator ensures that each request stream completes at least three
sequential runs, some measurements for which the run count parameter is given a
large value can take more time to finish. Figure C.3 presents the run time of the
whole look-up table generation process for both devices.

Lastly, in order to show that performance of storage devices can be highly non-
linear with respect to workload parameters and that different device types can
have highly different performance characteristics, we present slices from our look-
up tables. Figure C.4 shows the request service times (in milli-seconds) of 8KB
and 128KB requests for two device types with respect to contention factor under
four different workloads: read-random, read-sequential, write-random, and write-
sequential. For small-sized read requests (e.g., 8KB), solid-state derive (SSD) has
better performance than rotational hard drive (RHD). The RHD has comparable
read performance only when the workload is highly sequential and only when it is
not interfered with by other workloads. On the other hand, the RHD has better
performance for write requests, especially when the workload is random. As the re-
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quest size increases (e.g., 128KB), we observe similar behavior for the read requests
and random-write requests. However, now, the SSD’s write performance becomes
better than RHD when the workload is sequential.

C.2 Using the Tabular Cost Model

For a given request size, run count and contention factor triplet, the look-up oper-
ation may not always locate an exact match within the cost table. For example,
a workload may have the following parameters: (request size:40KB, run count:35,
contention factor:3.3). In such cases, the look-up operation interpolates among the
nearest entries in the table. It first locates the nearest entries for each of the three
parameters. If there is no exact match in any of three dimensions, this look-up
ends up with 8 nearest points. Assume the look-up operation for (rs, rc, cf) results
in 8 nearest points: (rsi, rcj, cfk) , 1 ≤ i, j, k ≤ 2. The cost model interpolates one
dimension at a time to approximate the performance point at (rs, rc, cf):

1. contention factor dimension: (rsi, rcj, cf) =
P2

k=1(rsi,rcj ,qlk)

2
, 1 ≤ i, j ≤ 2

2. run count dimension: (rsi, rc, cf) =
P2

j=1(rsi,rcj ,ql)

2
, 1 ≤ i ≤ 2

3. request size dimension: (rs, rc, cf) =
P2

i=1(rsi,rc,ql)

2
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Cost Models for 8KB Requests
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Cost Models for 128KB Requests
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Figure C.4: Cost Models for a Rotational Hard Drive and an SSD: The request
service times of (a) 8KB and (b) 128KB I/O requests for two device types (RHD
and SSD) with respect to contention factor under four workloads defined by I/O
type (read and write) and run count (random:1 and sequential:10K).
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Appendix D

Modeling the Layout Problem
Using AMPL

Below is the AMPL code which implements the storage system model introduced in
Section 3.2.2. AMPL allows us to represent the optimization problem in a standard
way and thus to benefit from generic NLP solvers which accept problems stated in
AMPL.

1 #
2 # This i s the s t o rage system model :
3 #
4
5 # These are the user−de f ined f unc t i on s ( wr i t t en in C)
6 # which are employed to look−up the co s t t a b l e . De f i n i t i o n s o f
7 # the s e f unc t i on s shou ld be in the amplfunc . so shared l i b r a r y .
8 function tableLookUp r ;
9 function tableLookUp w ;

10
11 #
12 # PARAMETERS ( inpu t s to the problem ) :
13 #
14 param N > 0 , <= 500 ; # Number o f Ob jec t s
15 param M > 0 , <= 100 ; # Number o f Targets
16
17 # For each t a r g e t ( t a r g e t parameters ) :
18 param c{ i in 1 . .M} > 0 ; # Storage Capacity
19 param D{ i in 1 . .M} > 0 i n t e g e r ; # Number o f Storage Devices
20 param U{ i in 1 . .M} >= 8 , <= 128 i n t e g e r ;# St r i p e Unit ( in Kbytes )
21 param T{ i in 1 . .M} > 0 i n t e g e r ; # Device Types
22
23 # For each o b j e c t ( o b j e c t and workload parameters ) :
24 param s { i in 1 . .N} > 0 ; # Size o f Ob jec t s
25 param R{ i in 1 . .N} >= 0 , <= 512 ; # Avg . Read Request S i z e
26 param W{ i in 1 . .N} >= 0 , <= 512 ; # Avg . Write Request S i z e
27 param lambda r{ i in 1 . .N} >= 0 ; # Avg . Read Request Rate
28 param lambda w{ i in 1 . .N} >= 0 ; # Avg . Write Request Rate

105



29 param Q{ i in 1 . .N} >= 1 ; # Run Count
30 param O{ i in 1 . .N, j in 1 . .N} >= 0 , <= 1 ; # Pairwise Overlap Fract ion Matrix
31
32 # St r i p e Unit Used by the Layout Model :
33 param layoutSU >= 8 , <= 256 , d e f a u l t 128 ;
34
35 #
36 # LAYOUT and TARGET Model Transformations :
37 # pre−computed parameters and v a r i a b l e s
38 #
39
40 # Request S i z e Sca le Factor : us ing R, U and D.
41 # A la r g e r e que s t w i th in a t a r g e t i s broken in to sma l l e r r e qu e s t s :
42 param SF r{ i in 1 . .N, j in 1 . .M} := i f R[ i ] > U[ j ] then 1/D[ j ] else 1 ;
43 param SF w{ i in 1 . .N, j in 1 . .M} := i f W[ i ] > U[ j ] then 1/D[ j ] else 1 ;
44
45 # Request S i z e Transformation
46 param rRS{ i in 1 . .N, j in 1 . .M} := SF r [ i , j ]∗R[ i ] ;
47 param wRS{ i in 1 . .N, j in 1 . .M} := SF w [ i , j ]∗W[ i ] ;
48
49 # Request Rate Transformation
50 param rRR{ i in 1 . .N, j in 1 . .M} := lambda r [ i ] / ( SF r [ i , j ]∗D[ j ] ) ;
51 param wRR{ i in 1 . .N, j in 1 . .M} := lambda w [ i ] / ( SF w [ i , j ]∗D[ j ] ) ;
52
53 # Read P r o b a b i l i t y Used by Run Count Transformation
54 param read prob { i in 1 . .N} := lambda r [ i ] / ( lambda r [ i ] + lambda w [ i ] ) ;
55
56 # Total Request Rate : used by conten t ion f a c t o r c a l c u l a t i o n
57 param t o t a l r a t e { i in 1 . .N, j in 1 . .M} :=
58 lambda r [ i ] / SF r [ i , j ] + lambda w [ i ] / SF w [ i , j ] ;
59
60 # To be Used by Run Count Transformation :
61 # a s e q u en t i a l run can not be l a r g e r than the l ayou t s t r i p e un i t
62 # i f the stream i s d i v i d ed in t o more than one t a r g e t .
63 param avg r s { i in 1 . .N} := read prob [ i ]∗R[ i ] + (1− read prob [ i ] ) ∗W[ i ] ;
64 param l a y o u t m o d e l r c m i n l i m i t { i in 1 . .N} := min (Q[ i ] , layoutSU/ avg r s [ i ] ) ;
65
66 #
67 # VARIABLES
68 #
69
70 # DECISION VARIABLES:
71 var con f matr ix { i in 1 . .N, j in 1 . .M} >= 0 , <= 1 ; # LAYOUT MATRIX (L)
72 var max ut i l >= 0
73
74 # De f i n i t i on o f the Contention Factor
75 var c f { i in 1 . .N, j in 1 . .M} =
76 sum{k in 1 . .N} ( O[ i , k ] ∗ ( ( con f matr ix [ k , j ] / ( con f matr ix [ i , j ] ) ) ∗
77 ( t o t a l r a t e [ k , j ] / t o t a l r a t e [ i , j ] ) ) ) ;
78
79 # Adjusted Run Count ( l a you t model ) : R.C. o f the i−th wkld seen by the j−th t a r g e t .
80 var Q i j { i in 1 . .N, j in 1 . .M} = max( l a y o u t m o d e l r c m i n l i m i t [ i ] ,
81 Q[ i ] ∗ con f matr ix [ i , j ] ) ;
82
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83 # Adjusted Run Count : (RAID trans format ion )
84 param t a r g e t a v g r s { i in 1 . .N, j in 1 . .M} :=
85 read prob [ i ]∗ rRS [ i , j ] + (1− read prob [ i ] ) ∗wRS[ i , j ] ;
86 param t a r g e t m o d e l r c m i n l i m i t { i in 1 . .N, j in 1 . .M} :=
87 min (Q[ i ] , U[ j ] / t a r g e t a v g r s [ i , j ] ) ;
88 var rc { i in 1 . .N, j in 1 . .M} =
89 c e i l (max( t a r g e t m o d e l r c m i n l i m i t [ i , j ] , Q i j [ i , j ] /D[ j ] ) ) ;
90
91 # Read/Write Serv i c e Time : Look−Up in the performance t a b l e
92 var readIO time { i in 1 . .N, j in 1 . .M} =
93 tableLookUp r ( rRS [ i , j ] , r c [ i , j ] , c f [ i , j ] , T[ j ] ) ;
94 var wr i te IO t ime { i in 1 . .N, j in 1 . .M} =
95 tableLookUp w (wRS[ i , j ] , r c [ i , j ] , c f [ i , j ] , T[ j ] ) ;
96
97 #
98 # OBJECTIVE (min−max t a r g e t u t i l i z a t i o n )
99 #

100 minimize Object ive : max ut i l ;
101
102 #
103 # CONSTRAINTS
104 #
105 s u b j e c t to
106
107 # 1. I n t e g r i t y Cons tra in t
108 i n t e g r i t y { i in 1 . .N} : ( sum{ j in 1 . .M} con f matr ix [ i , j ] ) = 1 ;
109
110 # 2. Capacity Constra in t
111 capac i ty { j in 1 . .M} : ( sum{ i in 1 . .N} con f matr ix [ i , j ] ∗ s [ i ] ) <= c [ j ] ;
112
113 # 3. Load Constra in t
114 t a r g e t u t i l { j in 1 . .M} : max ut i l >=
115 sum{ i in 1 . .N} con f matr ix [ i , j ]∗
116 (rRR [ i , j ]∗ readIO time [ i , j ] + wRR[ i , j ]∗ write IO t ime [ i , j ] ) ;

Lines between 14 and 30 declare the object, workload and target parameters
which were introduced in Figures 3.3, 3.5 and 3.9. All of the input parameters
are represented as vectors (e.g., arrays) whose sizes are bound to either number of
objects N or number of targets M . For example, at line 18, capacities of targets
are represented as a vector of size M ; and, at line 24, sizes of objects are held as a
vector of size N . A layout problem instance has to provide these input parameters
with values before the solver attempts to solve the problem.

The given AMPL model is a simplified instance of the generic model. At line
21, it is seen that each target can only have a single device type. Therefore, the
given AMPL model assumes that any given target is always homogeneous; that is,
it is made up of a single device type. This is not an unrealistic assumption though,
because targets are always homogeneous by design. Performance of a target is
bound to the performance of the slowest storage device in the target; as a result,
the same or performance-wise similar storage devices are normally used to construct
a target. Another simplification made in the presented AMPL model is regarding
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the RAID level used to construct targets. As you may notice, this model does not
include RAID levels of targets in the list of target parameters because it assumes
that RAID0 is the only configuration. In our experimental evaluation, all RAID
arrays were constructed using RAID0.

In the second part of the model (lines between 42 and 95), layout and target
models are implemented. Workload transformations are based on the rules pre-
sented in Sections 3.2.2.1 and 3.2.2.2.2. The assumptions specified above simplifies
the RAID transformations. Since we assume homogeneity within a target and and
RAID0 as the only RAID level (i.e., no parity devices), it is enough to transform
each I/O workload once because the utilization of a target is determined by the
utilization of a single device in the target. At lines 92 and 94, we see how the
AMPL code calls the black-box cost models. Looking-up a device’s service time for
a given workload is carried out by external functions.

In AMPL, there is a clear distinction between parameters (i.e., param) and
variables (i.e., var). Simply, parameters are constant values; that is, their values
do not change during the course of the solver’s or regularizer’s execution. On the
other hand, variables may take different values at different times, depending on the
state of the decision variable of the model. At line 71, we see the declaration of the
layout matrix L, which is the decision variable. This matrix holds a valid layout
at any time. During the course of the execution of the solver and the regularizer,
different valid layouts are visited by changing the state of this matrix.

Lastly, in the third part (lines between 100 and 116), the objective of the layout
optimization problem is stated. The objective is minimizing the maximum target
utilization, and the calculation of the target utilizations is given at line 114.
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Vivek R. Narasayya, and Manoj Syamala. Database tuning advisor for Mi-
crosoft SQL server. In International Conference on Very Large Data Bases
(VLDB), pages 1110–1121, 2004.

[4] Sanjay Agrawal, Eric Chu, and Vivek Narasayya. Automatic physical design
tuning: workload as a sequence. In Proc. ACM International Conference on
Management of Data (SIGMOD), pages 683–694, 2006.

[5] Guillermo A. Alvarez, Elizabeth Borowsky, Susie Go, Theodore H. Romer,
Ralph Becker-Szendy, Richard Golding, Arif Merchant, Mirjana Spasojevic,
Alistair Veitch, and John Wilkes. Minerva: an automated resource provisioning
tool for large-scale storage systems. ACM Transactions on Computer Systems,
19:483–518, 2001.

[6] Eric Anderson. Simple table-based modeling of storage devices. Technical
Report HPL-SSP-2001-4, HP Labs, 2001.

[7] Eric Anderson, Michael Hobbs, Kimberly Keeton, Susan Spence, Mustafa
Uysal, and Alistair C. Veitch. Hippodrome: Running circles around storage
administration. In Proc. USENIX Conference on File and Storage Technologies
(FAST), pages 175–188, 2002.

[8] Eric Anderson, Susan Spence, Ram Swaminathan, Mahesh Kallahalla, and
Qian Wang. Ergastulum: Quickly finding near-optimal storage designs. ACM
Transactions on Computer Systems, 23(4):337–374, 2005.

109



[9] E. Borowsky, R. Golding, A. Merchant, L. Schreier, E. Shriver, M. Spasojevic,
and J. Wilkes. Using attribute-managed storage to achieve QoS. In Proc. of
the 5th IFIP Workshop on QoS, pages 199–202, 1997.

[10] Daniel Bovet and Marco Cesati. Understanding The Linux Kernel. Oreilly &
Associates Inc., 3rd edition, 2005.

[11] John S. Bucy and Gregory R. Ganger. The disksim simulation environment
version 3.0 reference manual. Technical Report CMU–CS–03–102, Department
of Computer Science Carnegie-Mellon University, 2003.

[12] Surajit Chaudhuri, Ashish Kumar Gupta, and Vivek Narasayya. Compressing
SQL workloads. In Proc. of the ACM International Conference on Management
of Data (SIGMOD), pages 488–499, 2002.

[13] Surajit Chaudhuri and Vivek R. Narasayya. Autoadmin ‘What-if’ index anal-
ysis utility. In Proc. ACM SIGMOD International Conference on Management
of Data, pages 367–378, 1998.

[14] Huang-Jen Chen and Thomas D. C. Little. Physical storage organizations for
time-dependent multimedia data. In Proc. Conference on Foundations of Data
Organization and Algorithms (FODO), pages 19–34, 1993.

[15] Transaction Processing Council. Decision Support System Benchmark,
http://www.tpc.org/tpch.

[16] Transaction Processing Council. Transaction Processing Benchmark,
http://www.tpc.org/tpcc.

[17] John K. Edwards, Daniel Ellard, Craig Everhart, Robert Fair, Eric Hamil-
ton, Andy Kahn, Arkady Kanevsky, James Lentini, Ashish Prakash, Keith A.
Smith, and Edward Zayas. Flexvol: flexible, efficient file volume virtualization
in WAFL. In Proc. USENIX Annual Technical Conference, pages 129–142,
2008.

[18] EMC Corp. EMC CLARiiON MetaLUNs concepts, operations,
and management. Engineering White Paper, Part Number H1024.
http://canada.emc.com/collateral/hardware/white-papers/h1024-clariion-
metaluns-cncpt-wp-ldv.pdf, October 2003.

[19] EMC Corp. EMC DMX-4 for Oracle 10g and Oracle 11g
data warehouse layout. White Paper, Part Number 4005.
http://www.emc.com/collateral/hardware/white-papers/h4005-symmetrix-
dmx4-oracle-wp.pdf, October 2007.

[20] EMC Corp. EMC symmetrix DMX-4 series.
http://www.emc.com/products/series/symmetrix-dmx-4.htm, Feb 2009.

110



[21] EMC Corp. Leveraging EMC CLARiiON CX4 with enterprise flash drives
for Oracle database deployments. Engineering White Paper, Part Number
h5967.3, October 2009.

[22] Ian Foster and Steven Tuecke. Describing the elephant: The different faces of
IT as service. ACM Queue, 3(6):26–29, 2005.

[23] Robert Fourer, David M. Gay, and Brian Kernighan. AMPL: A Modeling
Language for Mathematical Programming. Thomson Brooks/Cole, 2nd edition,
2003.

[24] Hitachi Data Systems Corp. Hitachi universal storage platform V.
http://www.hds.com/assets/pdf/hitachi-universal-storage-platform-family-
architecture-guide.pdf, October 2008.

[25] Juraj Hromkovic. Algorithms for Hard Problems. Springer, 2nd edition, 2003.

[26] Theodore Johnson and Dennis Shasha. 2Q: A low overhead high performance
buffer management replacement algorithm. In Proc. International Conference
on Very Large Data Bases (VLDB), pages 439–450, 1994.

[27] Kimberley Keeton, Cipriano Santos, Dirk Beyer, Jeffrey Chase, and John
Wilkes. Designing for disasters. In Proc. of File and Storage Technologies
(FAST), pages 7–12, March-April 2004.

[28] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.
IEEE Computer, 36(1):41–50, January 2003.

[29] Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting
and Searching. Addison-Wesley, 2nd edition, 1973.

[30] Edward K. Lee and Randy H. Katz. An analytic performance model of disk
arrays. SIGMETRICS Perform. Eval. Rev., 21(1):98–109, 1993.

[31] Sang-Won Lee, Bongki Moon, Chanik Park, Jae-Myung Kim, and Sang-Woo
Kim. A case for flash memory SSD in enterprise database applications. In
Proc. ACM International Conference on Management of Data (SIGMOD),
pages 1075–1086, 2008.

[32] Yung-Cheng Ma, Jih-Ching Chiu, Tien-Fu Chen, and Chung-Ping Chung.
Variable-size data item placement for load and storage balancing. Journal
of Systems and Software, 66(2):157–166, 2003.

[33] Patriot Memory. Warp Series SSD (Patriot PE32GS25SSDR).
http://patriotmemory.com/products/eolp.jsp?prodline=8&catid=21&prodgroupid=83.

[34] Arif Merchant and Guillermo A. Alvarez. Disk array models in minerva. Tech-
nical Report HPL-2001- 118, HP Labs, 2001.

111



[35] Michael Mesnier, Matthew Wachs, Brandon Salmon, and Gregory Ganger.
Relative fitness models for storage. SIGMETRICS Performance Evaluation
Review, 33(4), 2006.

[36] B.A. Murtagh and M.A. Saunders. Minos: A projected lagrangian algorithm
and its implementation for sparse nonlinear constraints. Mathematical Pro-
gramming Study, 16:84–117, 1982.

[37] Dushyanth Narayanan, Eno Thereska, and Anastassia Ailamaki. Continuous
resource monitoring for self-predicting DBMS. In International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS), pages 239–248, 2005.

[38] NetApp Inc. Data ONTAP 7.3 Storage Management Guide.
http://now.netapp.com/NOW/knowledge/docs/ontap/rel731/pdfs/ontap/smg.pdf,
June 2008.

[39] NetApp Inc. Fabric Attached Storage.
http://www.netapp.com/us/products/storage-systems/fas6000/, February
2009.

[40] Open Source Development Labs. Database Test 2 (OLTP) and Database Test
3 (DSS). http://osdldbt.sourceforge.net/.

[41] Oracle. Take the guesswork out of database layout and I/O tuning with auto-
matic storage management. Oracle Technical White Paper, December 2005.

[42] Oguzhan Ozmen, Kenneth Salem, Jiri Schindler, and Steve Daniel. Workload-
aware storage layout for database systems. In Proc. ACM International Con-
ference on Management of Data (SIGMOD), 2010.

[43] Oguzhan Ozmen, Kenneth Salem, Mustafa Uysal, and M. Hossein Sheikh At-
tar. Storage workload estimation for database management systems. In Proc.
ACM International Conference on Management of Data (SIGMOD), pages
377–388, 2007.

[44] Jun Rao, Chun Zhang, Guy M. Lohman, and Nimrod Megiddo. Automat-
ing physical database design in a parallel database. In Proc. ACM SIGMOD
International Conference on Management of Data, pages 558–569, 2002.

[45] Doron Rotem, Gerhard A. Schloss, and Arie Segev. Data allocation for multi-
disk databases. IEEE Transactions on Knowledge and Data Engineering,
5(5):882–887, 1993.

[46] Juan Rubio, Charles Lefurgy, and Lizy Kurian John. Improving server perfor-
mance on transaction processing workloads by enhanced data placement. In
Proc. IEEE Symp. on Computer Architecture and High Performance Comput-
ing (SBAC-PAD), pages 84–91, 2004.

112



[47] Aamer Sachedina, Matthew Huras, and Agatha Colangelo. Best practices
database storage. White paper, IBM DB2 for Linux, UNIX, and Windows,
Oct. 2008.

[48] Elizabeth Shriver. A formalization of the attribute mapping problem. Techni-
cal Report HPL-SSP-95-10, HP Labs, 1996.

[49] S. Singhal, M. Arlitt, D. Beyer, S. Graupner, V. Machiraju, J. Pruyne, J. Rolia,
A. Sahai, C. Santos, J. Ward, and X. Zhu. Quartermaster – a resource utility
system. In Proc. of the 9th IFIP/IEEE Intl. Symposium on Integrated Network
Management, May 2005.

[50] Sun Microsystems. Sun Grid Compute Utility: Reference Guide, June 2006.
Part No. 819-5131-11.

[51] Seagate Techonology. Lowest cost-per-performance disc drive (Cheetah
15K RPM ST318453LC). http://www.seagate.com/docs/pdf/datasheet/ dis-
c/ds cheetah15k3 1552003 2003 03.pdf, March 2003.

[52] Mustafa Uysal, Guillermo A. Alvarez, and Arif Merchant. A modular, analyti-
cal throughput model for modern disk arrays. In Proc. International Workshop
on Modeling, Analysis, and Simulation of Computer and Telecom. Systems
(MASCOTS), pages 183–192. IEEE, Aug. 2001.

[53] Elizabeth Varki, Arif Merchant, Jianzhang Xu, and Xiaozhou Qiu. An inte-
grated performance model of disk arrays. In Proc. International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecom. Systems
(MASCOTS), pages 296–305, 2003.

[54] A. Veitch and K. Keeton. The Rubicon workload characterization tool. Tech-
nical Report HPL-SSP-2003-13, HP Labs, March 2003.

[55] Mengzhi Wang, Kinman Au, Anastassia Ailamaki, Anthony Brockwell, Chris-
tos Faloutsos, and Gregory Ganger. Storage device performance prediction
with CART models. In Proc. ACM SIGMETRICS, pages 412–413, 2004.

[56] Julie Ward, Michael O’Sullivan, Troy Shahoumian, and John Wilkes. Appia:
automatic storage area network design. In Conference on File and Storage
Technology (FAST), pages 203–217, January 2002.

[57] Ted J. Wasserman, Patrick Martin, David B. Skillicorn, and Haider Rizvi.
Developing a characterization of business intelligence workloads for sizing new
database systems. In Proc. of the 7th ACM International Workshop on Data
Warehousing and OLAP, pages 7–13. ACM Press, 2004.

[58] J. Wilkes, G. Janakiraman, P. Goldsack, L. Russell, S. Singhal, and A. Thomas.
Eos – the dawn of the resource economy. In 8th Workshop on Hot Topics in
Operating Systems, May 2001.

113



[59] John Wilkes. The pantheon storage-system simulator. Technical Report
HPLSSP9514, HP Labs, 1996.

[60] John Wilkes. Traveling to Rome: QoS specifications for automated storage
system management. In Proc. International Workshop on Quality of Service
(IWQoS), pages 75–91, 2001.

[61] John Wilkes. Traveling to Rome: a retrospective on the journey. SIGOPS
Operating Systems Rev., 43(1):10–15, 2009.

[62] Daniel C. Zilio, Calisto Zuzarte, Sam Lightstone, Wenbin Ma, Guy M.
Lohman, Roberta Cochrane, Hamid Pirahesh, Latha S. Colby, Jarek Gryz,
Eric Alton, Dongming Liang, and Gary Valentin. Recommending material-
ized views and indexes with IBM DB2 design advisor. In IEEE International
Conference on Autonomic Computing, pages 180–188, 2004.

114


